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In terms of three signs associated to two vectors and to a 2-plane, a formula for 
the signature of any four-dimensional metric is given. In the process, a simple 
expression for the sign of the Lorentzian metric signature is obtained. The rela- 
tionship between these results and those already known are commented upon. 

I. INTRODUCTION 

To evaluate the signature of a metric tensor, two general methods may be used. One of 
them (Lagrange method”2) implies the explicit calculation of tensor’s diagonal form, the 
signature being then given by computation of the positive and negative elements. Through this 
method one obtains an orthonormal frame and the causal character of its vectors. The second 
one (Jacobi method’) consists of signature sequence construction, to which an appropiate rule 
is applied depending on the “degeneracy” of the sequence. 

The Lagrange method has, in some cases, two disadvantages, namely, (i) its indirect 
character: the signature is obtained as a by-product of the explicit construction of an ortho- 
normal frame, a construction that may be hard to obtain and sometimes devoid of interest, (ii) 
its nonuniform character: at some levels of the computation, the presence of vanishing diagonal 
terms (equivalent to that of null vectors) requires a change of algorithm. 

The Jacobi method is direct, but remains nonuniform: depending on the character of the 
zeros in the signature sequence (absence of them, isolated zeros, two consecutive zeros,...) one 
has to apply different particular rules (Jacobi’s rule, Gundelfinger’s rule, Frobenius rule,...) .‘P3V4 

The purpose of this paper is to give a direct, general, and simple expression for the signature 
of any four-dimensional metric. Here direct means without calculating either an orthonormal 
frame or any nonstrictly necessary quantity; generaI means that the sole expression is valid for 
all the possible forms of the metric (involving or not vanishing diagonal terms), and simple 
means which is easy to express and evaluate. 

There are some situations of int,erest in which one has to evaluate the signature of a metric. 
This is the case, for example, in the equivalence problem for metrics where one has to answer 
whether two given metrics may be related by a local diffeomorphism. Irrespective of the 
method that one wishes to use (Cat-tan’s orthonormal frame in general, or intrinsic scalar 
invariant coordinates in nonisometric cases), the direct evaluation of the signature of both 
metrics is a wise preliminary step: Their nonequivalence becomes readily evident if their sig- 
natures differ in absolute value. 

The evaluation of the signature is also necessary in the integration of Einstein equations for 
(nondiagonal) prescribed forms of metric tensors, where one has to verify the Lorentziun 
character of the solutions and to obtain the sign of its signature to complete and discuss its 
physical interpretation (e.g., causal character of eigenvectors of its energy tensor).’ 

Also, in finite perturbation algorithms, where one starts from a given metric ge and its 
variation h, one has to verify that the new metric g=gc+ h conserves the signature of gc. This 
happens, in particular, in numerical relativity when one works in gauges with nonzero shift 
(general harmonic gauges, comoving coordinates for rotating fluids, minimum shear condi- 
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tion). There, the finite interval of integration tit could transform, in principle, the signature of 
the given metric6 

The signature is also the only constraint that a metric imposes on the causal types of 
frames, so that the study of the existence of a frame corresponding to a given causal type for 
a metric is reduced to that of the frame’s compatibility with the metric signature. This study is 
far from being trivial7 

For space-time, the Lorentzian character of the metric is insured by the negative sign of its 
determinant, so that only the sign of the signature remains to be evaluated. This sign may be 
deduced of course, from known signature theorems but, as indicated above, they do not admit 
in general, an easy formulation. The first result we shall obtain in this paper is a unique simple 
expression equivalent to the three different rules (Jacobi, Gundelfinger, Frobenius) needed in 
general to determine the sign of metric signature directly. This expression is given in Sec. II 
(Theorem 1). 

It is in Sec. III that we give the general expression for the signature of any four-dimensional 
metric (Theorem 2). This expression is given as a function of three indices associated, respec- 
tively, to an arbitrary vector, a 2-plane containing it, and any vector of its orthogonal. This 
expression is not only useful for the space-time metric, but also to determine the elliptic or null 
signature of some symmetric tensors of interest (e.g., instantons, particular neutrino fields). 

The relative tediousness of the standard, known methods may be checked on the following 
metric form: 

aSPv 
PaSv 

1 I 

B P a v’ 
vvvp 

In contrast with them we shall show, in Sec. IV the efficiency with which our formula allows 
us to give a complete study of its signature. 

Finally, in Sec. V, we comment on the relationship between our results and those already 
known, and indicate some applications in the study of the causal structure of Lorentzian 
frames. 

II. SIGN OF A LORENTZIAN SIGNATURE 

By definition, the signature o of an n-dimensional metric that diagonalizes in p positive and 
4 negative squares is given by a=p-q. A metric is denominated Lorentziun if u= f (n - 2) 
and, in the case of an even dimension, it must have a negative determinant; for the space-time 
(fourdimensional Lorentzian metric) this last condition is also sufficient, so that we have in 
this case u=2e with E= f 1. In this section our aim is to give a simple expression for E. 

Let II be an arbitrary 2-plane, and u and u two vectors, respectively, tangent and orthog- 
onal to Il. To every one of these elements, say x,, let us associate a causal index i, such that 
i,= + 1, - 1, or 0 according to the positive, negative, or vanishing value of the scalar product 
(x~,x,);* denote, respectively, il, i2, O3 z the causal indices corresponding to u, II, v.’ The triplet 
(i, ,i2,i3) will be called a causal sequence. 

It is clear that the Lorentzian structure of the space-time forbids some causal sequences. 
Thus, if I1 is spacelike ( i2 = 1 ), all its vectors u are space-like ( il = E) and since the 2-plane II1 , 
orthogonal to II, is timelike, u may be chosen with any orientation (i3= l,O, - 1); if II is 
timelike ( i2 = - 1 ), it is u which may be chosen arbitrarily ( il = l,O, - 1 ), u being necessarily 
spacelike ( i3 = E); if Il is null ( i2 =O), II, being also null, all the vectors of II U II, except the 
null direction Il fl II, (i, = 0, i3 = 0) , are spacelike (i, = E; i3 = E) . We have thus the following 
lemma. 
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Lemma I: The causal sequences (il ,i2,i3) corresponding to a Lorentzian metric of signa- 
ture a=2e are of the form: 

where E takes the values 1, - 1 and i the values 1, 0, - 1. 
A causal sequence will be called regular if its causal indices do not vanish simultaneously, 

or, in other words, if the module function 

+=if+ii+ii (1) 

is strictly positive. Obviously we then have: 
Corollary: A causal sequence (i, ,i2,i3) corresponding to a Lorentzian metric determines the 

signature sign E if, and only if, it is a regular causal sequence: Q, > 0. 
As a direct comparision shows, the complement of the causal sequences of Lorentzian 

metrics of Lemma 1 in the set of 33 arbitrary triplets of indices (il,i2,i3) is the set of the eight 
triplets (O,l,i), (i,- l,O), (e,O,--E), where E takes the values + 1, - 1, and i the values + 1, 0, 
- 1. Now, looking for a function that vanishes on them, the structure of the two first classes 
leads to cancel i2i3 or - izil with - i3 or - il, respectively, which suggest an expression of the 
form i2( i3 - il) - ( i3 + i, ) ; this expression vanishes also for the third class (e,O, - E), and con- 
sidering its values for the causal sequences of Lemma 1, one obtains the two following results. 

Lemma 2: The triplets of indices ( il ,i2 ,i3) that cannot be regular causal sequences corre- 
sponding to a Lorentzian metric are those for which the function 

Z=i,+i3+i2(i,-i3) (2) 

vanishes. 
Theorem 1: The sign of the signature CT of a Lorentzian metric is the sign of the function 

Z on its regular causal sequences (il ,i2,i3): 

sgn u=sgn z. 

Ill. SIGNATURE OF A FOUR-DIMENSIONAL METRIC 

The causal sequences corresponding to elliptic metrics of signature o=4e are obviously of 
the form (e,l,e), and may also correspond to Lorentzian metrics, as was shown in Lemma 1. 
On the other hand, as a 2-plane II containing a null vector cannot have a positive causal index,’ 
the triplets (O,l,i) cannot be causal sequences of four dimensional metrics. It follows that, from 
the eight triplets that do not correspond to Lorentzian metrics, the five triplets (i,- l,O), 
(e,O, - E) correspond to metrics of vanishing signature. 

The other causal sequences of vanishing signature metrics cannot have the form (E, 1,~)~ 
(e,l,O), or (e,O,e); these forms are forbidden because, in this signature, the orthogonal to a 
totally spacelike or a null-spacelike 2-plane is, respectively, a totally timelike or a null-timelike 
2-plane and vice versa. We have thus the following result. 

Lemma 3: The causal sequences ( il ,i2,i3) corresponding to a metric of vanishing signature 
are of the form: 

where the i’s take the values 1, 0, - 1, and E the values 1, - 1. 
As Lorentzian and vanishing signature metrics have common causal sequences, they must 

be distinguished necessarily by an additional parameter. Let S be the determinant index of the 
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metric g, taking the values + 1 or - 1 according to the positive or negative character of det g. 
ASS= - 1 for Lorentzian metrics, we are looking for a function Zg such that Z- 1 = f;; a simple 
choice is 

2g=il+i3+i2(il+Si3). (3) 

For elliptic causal sequences, (E, 1 ,E), one has Z i = 4~. For the causal sequences of Lemma 
3, X1 vanishes except for (e,O,O) and (O,O,e), for which Z1 =E; for these last cases, the module 
function Q, takes the value @= 1, while for the elliptic sequences it is Q= 3: the expression 
( l/2) (Cp- 1)X6 then gives the value of elliptic and vanishing signatures. 

For the regular Lorentzian sequences of Lemma 1, Z-l takes the value 2~ except for 
(e,O,O) and (O,O,e) , for which Z _ r = I;t ; there is a unique quadratic function in + that takes 
the value 1 for @=2,3 and the value 2 for cP= 1: the expression (l/2) (a2--5++ 8)X, then 
gives the value of Lorentzian signatures. With the aid of the weights ( l&6)/2, both expres- 
sions may be linked in the following theorem. 

Theorem 2: In terms of any of its regular causal sequences (i, ,i2 ,i3), the signature CT of a 
four-dimensional metric of determinant index S is given by 

a=ti(l-6)@+2(36-2)@-96+7&, 

where @ is the modular function, @ = ii + ii + ig, and 86= il + i3 + iz ( il + Si3). 

(4) 

IV. AN EXAMPLE 

(a) In this section we shall apply our results (theorems 1 and 2) to a metric admitting an 
invariant action of the permutation group S3 over the tangent space.. The metrics admitting, in 
general, invariant actions of S, are better (i.e., more homogeneously) distributed on the space 
of solutions to the Einstein equations than those admitting (continuous group of) isometries; 
furthermore, permutation symmetries of these types are mathematically easier to detect than 
usual isometries. This is why these symmetries are interesting as a new label in the classification 
of metrics. A tirst set of results concerning the invariant action of S, on an n-dimensional 
Lorentzian manifold has been considered elsewhere.” 

In a local chart adapted to a frame invariant by S3, the metric takes the form aSBv PaDv 
g=/3pCYV 1 I v v v p 

for which, the determinant is given by 

det g= (a-812[ (a-t28)p---dl 

so that g is regular iff 

(5) 

(6) 

(7) 

and its determinant index 6 G sgn( det g) is 

(f-3) 

J. Math. Phys., Vol. 34, No. 6, June 1993 



2472 B. Coil and J. A. Morales: Comments on space-time signature 

The causal sequence (il ,i&) corresponding to the first adjoint 2-plane of the frame is 
related (see Ref. 9) to the first three principal minors Ak of g by i, =sgn hi, iZ=sgn AZ, 
i3=S sgn A,; we have thus 

il=sgn a, i2=sgn(a2-f12), is=6 sgn(a+2p), (9) 

where it is understood that sgn x= 1, 0, or - 1 if, respectively, x > 0, x=0, or x < 0. 
In order to discuss the signature of g we have to consider, on account of Eq. (9), the 

relative position of a with respect to /3, 0, -8, and -28. Thus, if we write E(CY-p) > 0 with 
E= 1 or - 1, we have to inspect the three values a=O, a= -/3, a= -28 and the four regions 
ea < 0, 0 < l a < -e/3, -e/3 < ra < - 2@, - 2e/3 < ea they delimit. 

(b) Let us consider the Lorentzian case. From Eq. (8) 6= - 1 and, with the above 
notation e(a -/L?) > 0, the causal indices (9) may be conveniently written 

il=esgn(Ea), iz=sgn[e(a+fi)], i3=-Esgn[e(a+2fl)]. ( 10) 

Now, by direct inspection of their signs for every one of the three values and four regions 
mentioned above, we obtain the following causal sequences (i, ,i2,i3): 

(-e,-1,e) for ea<O, 

(O,-1,e) for a=O, 

(e,-1,e) for O<ea< -ED, 

(e,O,e) for a=-fl, 

(e,l,e) for -@<ea< -24 

(e,l,O) for a=-28, 

(e,l,-e) for ear> -2@. 

According to our Theorem 1, the sign of the signature u of g is that of the function 
Z=il +i3+i2(il -i3). Its direct evaluation for any of the above seven cases gives X=26; 
consequently, the signature 0 of the &invariant Lorentzian metric g given by (5) is 

a=2 sgn(a-8). (11) 

(c) In the non-lorentzian cases S= 1, the causal indices il and i2 are also given by their 
expressions (10) but, by (9), i3 changes it sign: 

Thus, the corresponding causal sequences only differ from the seven evaluated in the 
Lorentzian case in their third index. Consequently, they are, respectively, given by 

Nevertheless, from the expression (8) for 6, it is clear that now the value a +2/?=0 is not 
admissible for S= 1, so that the corresponding sequence (e,l,O) cannot occur. Any way, 
according to Lemma 3 and the generic form (e, 1,~) of the causal sequences corresponding to 
the elliptic case, this sequence (E, 1,0) is always (i.e., whatever the form of the matrix metric) 
forbidden in the cases S= 1. 

For the non-Lorentzian cases, the expression of the signature u given by Theorem 2 
reduces to 0=(1/2)(Q,-1)X,, where @=if+i$+i: and &=(1+i2)(iI+i3). For the above 
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first five causal sequences, one directly finds ): i=O (and thus o=O), meanwhile for the last 
one, one finds Z i =k and Q, = 3 (and thus a=&). Consequently, the signature CT of the 
S3-invariant non-Lorentzian metrics g given by (5) is 

I 4 sgn(a-/?) for (a-fi)(a+2/3> >O 
u= 0 for (a-/3)(a+2B> CO. (12) 

(d) When one wishes a general study of form (5) metrics, both results, ( 11) and ( 12), 
may be compacted in the sole expression 

a=2 sgn(a-4) + (l+Wsgn(a+W). (13) 

It is to be noted that the calculations made in this section to obtain results ( 11) and ( 12)) or 
( 13)) are manifestly simpler than the calculations needed to construct the elements of a 
orthonormal frame which are necessary to conclude the same results. 

V. COMMENTS 

Several methods were developed over a long period of time to find the signature of a 
quadratic form g=gi$@. Perhaps the best known is the Lagrange’s one,lp2 which begins with 
a procedure to diagonalize g, whether some of the gij’S differ from zero or not. The signature 
is then obtained by direct computation of the p positive and q negative squares of the diago- 
nalized form. Obviously, in spite of its interest and simplicity, this method is excessively hard 
when one only wishes to known the signature of g, without caring about the construction of its 
orthogonal frames. This has been implemented in the preceding section. 

The starting point of all the other general methods is the sequence of signature 
U,A, ,..., A,), Ak being the kth principal minor of the matrix gij . If all the Ak’s in that sequence 
are different from zero, Jacobi’s rule’ gives the signature of g in terms of the permanences and 
variations of the signs of the Ak’s when running the sequence. If isolated (nonconsecutive) Ak’s 
are zero, a result by Gundehlnger3 states that the signature may still be obtained by Jacobi’s 
rule, but now applying it to the reduced sequence (that for which all the null minors are 
suppressed). This is due, in part, to the relation (see Ref. 3) 

2 

(14) 

which shows that, when Ak=O, one has A k _ A i k+ i <O: every isolated zero produces a variation 
of sign in the reduced sequence. Finally, if two but not three consecutive Ak’s are zero, Jacobi’s 
and Gundelfinger’s rules fail, but a result by Frobenius4 again allows one to find the signature. 
His results states that when Ak-2=Ak--1=0 but Ak-3A&0, the signature is given by Jacobi’s 
rule provided that the variations of signs in the subsequence {Ak-3,Ak-2,Ak-1,Ak) be taken 2 
for AkB3Ak > 0 or 1 for Akm3Ak < 0. 

In the four-dimensional case, the indices of a signature sequence are related to ours by 
{l,il,i2,Si3,G). It is then clear, from Lemmas 1 and 3, that for Lorentzian and vanishing 
signatures, one is confronted with signature sequences having isolated as well as consecutive 
zeros. Thus, our theorems 1 and 2 constitute simple and compact versions of the Jacobi’s, 
Gundehinger’s, and Frobenius’s rules simultaneously. 

The restrictions to signature sequences induced by relation (14) forbid our causal se- 
quences (O,l,i), (e,O,&), (iJ,O), a result that we have obtained directly by causality argu- 
ments. The easy way we have followed to show our theorems is an inprovement on the usual 
proofs of the above known results. Our compact expressions would certainly simplify computer 
programs for signature. 
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The set {u,Il,v), where u belongs to the 2-plane lI and u is orthogonal to it, may always be 
considered a~ a subset of the set {U,Ui; IIi,IIij; u~,u), i= 1,2,3, associated to a frame {U,Ui), 
where {Ui,U}, is its algebraic dual and lIi,Ilij are the 2-planes generated, respectively, by the 
pairs (tl,Ui) and (Ui,Uj). This extended set contains all the elements needed to classify com- 
pletely, from the causal point of view, the Lorentzian frames. This classification amounts the 
obtention of all the causally different coordinate systems that may be used in the space-time or, 
in a more geometric language, to obtain all the different relative positions of a frame with 
respect to the light cone. Such a classification has been made elsewhere7 and, as was shown 
there, the corresponding table may be used as a signature table. Our present Theorem 1 plays 
the r6le of a leading constraint condition. 

Twenty four causal sequences ( il ,i2 ,i3) may be obtained by permutations of a frame. When 
all of them are identical, the frame is called causally symmetric. A subclass of them, those 
which are also metricalzy symmetric, have already been considered.” In the analysis of causal 
symmetry groups of a frame, Theorem 1 simplifies many arguments; the corresponding results 
will be presented elsewhere. 
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