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Symmetric frames (those-whose vectors are metrically indistinguishable) are studied both,
from the algebraic and differential points of view. Symmetric frames which, in addition,
remain indistinguishable for a given set of concomitants of the metric are analyzed, and the
necessary and sufficient conditions for a space-time 1o admit them are given. A new version of
the cosmological principle then follows. Natural symmetric frames (induced by local charts}
are also considered, and the space-times admitting them are obtained.

1. INTRODUCTION

The so-called physically admissible frames of the space-
time consist of one timelike and three spacelike vectors. The
last ones span the local space, while the first one indicates the
direction of the space-time along which they are dragged.
Physically admissible frames are thus related to (and, at the
same time, induce) an evolution point of view.

Similarly, the nuil frames consist of two nuil and two
spacelike vectors, the null ones being usually oriented along
the principal directions of the gravitational or electromag-
netic field. Null frames are thus well adapied to radiative
propagation situations. :

We have pointed out elsewhere' that the feeling of com-
fort associated to the use of such frames has a large historical
base, but not a serious scientific one: As a physical object, the
space-time may be equally framed by any one of the frames of
the existing 199 Lorentzian causal classes.™

Among these 199 classes, there are 7 very particular
ones, which contair a striking type of frames: Those whose
vectors are metrically indistinguishable (i.e., they have the
same length and the same mixed scalar products). Such
frames are called symmetric frames.

The cosmological principle suggests in part that some
properties of space-time would be best described in such
frames that no direction be privileged. As, by definition, this
is the case for symmetric frames, one may expect them o
play an interesting role in cosmology. Symmetric frames ap-
pear well adapted to isorropy considerations.

The first problem concerning symmetric frames on non-
elliptic metrics is their existence. We shall see that only Lor-
entzian metrics admit them: The Lorentzian character of a
metric appears thus equivalently related to the notion of
symmetric frames. In any non-Lorentzian case, the number
of metrically indistinguishable vectors, and the dimension of
the subspace they sparn, appear related to the null index of
the corresponding metric.

Every symmetric frame has an axis. Its use makes easier
the obtention of some properties and, in particular the obten-
tion of the form of the elements of the transformation group
that relates symmetric frames.

A complete classification of symmetric frames from a
causal point of view shows that, in dimension rm, there exist
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2m — 1 types of them. For m = 4, this result completes the
one given by Derrick in his pionnering work on symmetric
frames.*

It may occur that the vectors of a symmetric frame be
indistinguishable even for a (differential} concomitant of
the metric. When this happens for a concomitant ¢. the
frame is said to be & -invariant, and it is said to be p-% -
invariant if, in addition, it is invariant for the covariant de-
rivatives of ¥ up to the order p. Ricci-invariant symmetric
frames are perfect fluids. and a symmetric frame is p-Rieci
invariant if it is one-Ricci invariant. This last result remains
valid for Riemman-invariant svmmetric frames, which are,
in general, conformally fiat perfect fluids. The following re-
markable results follows: the space-times admirting frames
whaose vectors are indistinguishable for any concomitant of the
metric are the Friedmann—Robertson-Walker universes. The
Cosmological Principle s thus intimately related to the com-
pleteindistinguishability of the vectors of symmetric frames.

A symmetric frame s said to be natural if it is the natural
frame of a coordinate svstem or, equivalently, if the Lie
brackets of its vectors vanish. The axis of a natural symmet-
ric frame is restricted to be shear-free and vorticity-free, and
the Lorentzian spaces admitting natural symmetric frames
may be located: They are those that admit an umbilical and
conformally flat synchronization (foliation by spacelike hy-
persurfaces).

In the four-dimensional case, the Weyl tensor with re-
spect to the axis is of electric type and thus the Petrov--Bel
type of these space-times is I, I, or O. In particular, all the
sphericaily symmetsic space-times admit natural symmetric
frames.

The paper is organized as follows: In Sec. I we study the
relations between signature and null index of the metric and
the number of indistinguishable vectors or the dimension of
the subspace they span. In Sec. I1I we analyze some proper-
ties of the axis and its orthogonal space, obtain the general
form of the transformations between symmetric frames, and
find their different types from a causal point of view. Finally,
Secs. IV and V are devoted to p-% -invariant and natural
symmetric frames, respectively.

A part of the results of this paper was presented, without
proof, in the Spanish E. R. E.” and the French J. R.® annual
relativistic meetings, and appeared in Ref. 7. '
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{Il. METRICALLY INDISTINGUISHABLE VECTORS

The metric properties of a set of vectors are completely
characterized by their scalar products. We shall consider
here the following. :

Definition: A set of vectors is said merrically indistin-
guishable if they have the same length and the same recipro-
cal scalar products. A frame whose vectors are metrically
indistinguishable is called a symmetric frame.

In dimension m=n + 1, let {£,}7., be a symmetric
frame for the metric g and let us denote

aEg(g,g:SgA): Bsg(é_,qsbfﬂ}! (1)
for A #B. Let {84}7_, be the algebraic dual coframe of

{E, 7, 64&y) =064=6,p, then the metric
g’:g,wﬁ“@e”is such that
gis={a— s + 51,1, (2)

where 1, =1 for any value of 4.
Denote by A, , ; the principal minor of order k¥ + 1 of

Eanp:
Apin Ede{:(gr'j)::j-;il =det(g, — &irs 18k 41 )im Lrak:
Taking into account that g —Eira
= (a—p)(8, —6;,. ), and developing the above deter-
minant by its first row there results

Byoy =la—B)A, +Bla—B)
and a recurrent argument leads to the following.

Lemma I: The (k + 1)thprincipal minor of g, is given
by

A,y = (@ + KB (a— B~

From this lemma Corollary 1 follows directly.
Corollary 1: g ,» 1s nonsingular if, and only if, one has

D=(a + nf)(a —B)#0. (4}

Thus the sequence of signature {1, A}, A,...,A,, } of the
metric g ., contains at most one null minor, and its signature
may be obtained from the Jacobi-Gundelfinger theorem,®
which states that when there are no consecutive zeros in the
signature sequence of a metric in dimension m, its signature is
given by o =m— 2v, v being the number of variations of sign in
the reduced sequence (that whose null minors have been sup-
pressed).

Suppose first 5> 0. If & > 3, from Lemma 1 all the prin-
cipal minors are positive and then we have o=m; if
a< —nf, then AA,,, <0 (i=0,.,n) and it results
o—m—2m= —m, meanwhile, if ~kf<a< (1 —k)B
for a given k<n, then A A, >0 and A A, <0 ViF#k,
and it results that g, is 2 Lorentzian metric of signature
g=m—2n=2—m. Thus

(3)

I +4+n, if a>p>0,
o=1 1—n if —nf<a<f
—~1—n, if a<-—-nB<0.

When S <0, a similar discussion applied to { —a, - 5}
gives the signature of — g5, and then

14+ A, if a> —nf>0,
o={—1+n, if —nB>a>ph
—1—n, |if a<ff<0.

The case 3 = 0 corresponds to a elliptic metric of signature
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me,, €, being the sign of @, €, =sgn(a). These consider-
ations are collected in the following.

Theorem 1: In dimension m = n + 1, the signature o of
a metric that admits a symmetric frame is given by

o = sgn(a + nf3) + nsgnla — ). (5)

From this follows the important result of the next Cor-
ollary.

Corollary 2: The only nonelliptic metrics admitting a
symmetric frame are the Lorentzian ones.

It is interesting to note that this corollary inveolves an
alternative, more geometric, idea of what is a Lorentz met-
ric: Instead of associating it to a diagonalization and a partic-
ular computation of signs, our corollary associates it to the
existence of symmetric frames.

In fact, from (4) the metric g, is elliptic or Lorentzian
according to the inequalities D> 0 or D <0, respectively.
Furthermore, in the Lorentzian case (with m > 2) we have

€, =sgn(o) =sgn(a — )

= —sgn(B) = —sgn(a+nb). (6)

Let us consider a symmetric frame {£,}7., and let
v = A “E, be such that {£,,..&,,,v} beasetof m + 1 metri-
cally indistinguishable vectors. From (1) it follows

a=glew) =A"g(v.s, =fB1,A7%
B=g(v:§,4)=a/:'4+ﬁ }_: AP=(a—P)A " +a, VA,
B=4

and, because of a =%, one obtains
A= —1 ¥4 and a= —mf. (7)

From {3) and (7), it follows D = (m + 1)3° >0 and the
metric is necessarily elliptic. We have thus the following
jemma.

Lemma 2: The maximal number of metricaily indistin-
guishable vectors® spanning a m-dimensional elliptic (resp.
Lorentzian) space is m + 1 (resp. m).

Now, let us consider a general metric of type (p,g),
prg=mp—qg=0o, and denote by 7 its null index, that is,
the dimension of the maximal totally null subspaces: i = min
{p.q}. The dimension of the maximal elliptic {resp. Lorent-
zian) subspaces is m —i (resp. m—i+ 1); applying
Lemma 2 to these subspaces we obtain the next theorem.

Theorem 2: In dimension 1 and metric of null index 7,
the maximal number N of metrically indistinguishabie vec-
tors generating a mnon-null subspace is given by
N=m—i+1.

Let d,, be the dimension of a maximal null subspace M
generated by metrically indistinguishable vectors; when
p#gq, a vector v will be said spacelike (resp. timelike} if
ag(v,v) is positive (resp. negative). Let {£,}*_ beabasisof
metrically indistinguishable vectors of a null subspace N,
From Lemma 1, A, = Oimpliesa =fora= (1-kp. 1if
a =0, N, is a totally null subspace and then dy =1 If
@ =f #0, the vectors [, =£, — & (a=1.., k—1)area
bhasis of a totally null (k — 1)-plane, N, ,, and then
k<i-+ 1 when 050, the greatest & is attained If N, _ is
maximal, thus d,, =7 + I and then the §;’s are spacelike
since g(&,,/,) = 0; when ¢ =0, ¥, _, cannot be maximal,
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and so d,, =i If a=(1—k)f, 2<k <m, the vectors
r.=£&, — k ~ 'l generate an elliptic (k — 1)-plane orthogo-
nal to /=1, but there exist at most / — | timelike (resp.
m—i— 1 spacelike) vectors orthogonal to / and linearty
independent, so that either d,, =i>2 or d,, = m — 1, de-
pending on whether the r,’s are timelike or spacelike. Taking
into account these results, we have the following.

Theorem 3: In dimension m and metric of null index 7,
the dimension d,, of the maximal null subspaces generated
by metrically indistinguishable vectors is given by: (i)
d,, = i if the vectors are null or timelike; (ii) d,, =7+ 1
(resp.d,, = m — I} if, for nonzero signature, the vectors are
spacelike and their lengths are equal to (resp. different
from) their mutual scalar products.

ill. ELEMENTS OF A SYMMETRIC FRAME
Suppose the following form of the inverse matrix of g:
g8 = (p— )&% + w1115 : (8
where 17=6"%1; then the only compatibility conditions of
(2) and (8) are
p={1/D)la+{(n—1)81,

and the next proposition follows,

Proposition 1: The algebraic duai coframe of a symmet-
ric frame 1s a symmetric frame.

Naote that

V= —'ﬁ/D: (9)

H—v= (-5, HAnv=(a+ 3L (10)

" Let £ be an arbitrary vector. Two vectors £, and £, wiki

be said isemetric with respect to & if g{£,5,) =g(£.4,). If

E=A",, where {£,}7_, is a symmetric frame, then

(&£, =g(&,Ey) implies 4 = A % Thus we have the fol-
lowing.

Proposition 2: For any symmetric frame {£,}7 ., there
exists a unique direction for which its vectors are isometric.
This is the direction given by £ = 1%, and it wiil be called
the axis of the symmetric frame.

In the same way, the codirection defined by @=1,8"is
the axis of the algebraic dual coframe {8} of {£,}. Thus

g(&) =g pl"8° = (a+nf)1,0" = (a + nB)O.
Proposition 3: The axis of the algebraic dual coframe of a

symmetric frame is the metric dual codirection of its axis.
Clearly, one has
g(£.8) =mg(L.€,) = m(a + nf3),
so that, from (6) and (11), it follows
sgn{g(£.5)) = — €, and then we have the following.
Proposition 4: In dimension #1 > 2, the axis of a Lorent-
zian symmetric frame is timelike.
Denoting A *=mla + nf3|, the covector associated 1o
the unit timelike vector u=A4 ~'£ is given by

glu)=u, 0= —¢, (1/m)@. (12)

Let 5% be the orthogonal hyperplane to the axis £ of a
symmetric frame. In the Lorentzian case, the induced metric
on#., y=g + €,u9u,is given by

Yug = (@ —BWE,p — (1/m}l, 1g)

(11)
that

(13)
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On the other hand v=v'¢,&7%", iff 1,v* =0, so that the
frame {, 1, defined by

e rm=$§

\m i=1
(14)
(@ = 1,...,n) is arthogonal and satisfies
glrgr,) =a—Pf, glemern) =a+nb (15)
Let us consider the elliptic metric

S§=(a—8) (g —FOe). From (2) and (14) it follows
that §(£,,8,) =8(x,,25) = 08,5, which says to us that
(14) is a S-orthogonal transformation; the inverse of this
transformation is thus its own transpose, and we have

. - 1
&1 = E z, + — ¥ms

a=1 Ja(a+1) Jm
& I I
Sm — — (—\jﬂ.r,, +‘2-m)!

Jm
é-s:—- S_lrs_l+z—"—'—1 >

5 a=s JJa{a+ 1)
+ T, (§=2,..,01). (16)
Jm

The inverse relations of (15) give us the components a
and /3 of the metric in the symmetric frame

8lEnés) = (I/m)glaprrm) +08(20x,) s

g(gf{!gﬁ) = (1/m){g{'rm"rm) _g(ra.'zg)]} A #B
(1

Let {¢,}7_, bethe projection of a symmetric frame on
.. From (11), it follows thate, = &, —m ~'§ and

yleeg) = gle eg) =845 — (1/m)(la+nB), VA4,B.

So we have the following.

Lemma 3: The projection of a symmetric frame con the
hyperplane orthogonal to its axis is a set of metrically indis-
tinguishable vectors for the induced elliptic metric on the
hyperplane.

This lermnma allows us to obtain the subgroup of
GL (m,R) relating symmetric frames. The vectors {e, } are
the radii of a regular m-hedron since 1%, =0 and
yle,e,) = —ny(e,ey) for A 5B, according to (7). On
., apart from permutations, the rotations are the only
transformations preserving this m-hedron, and the homoth-
etiese, = ae, are associated to linear transformations of the
type £, = aé, + bE. Consequently, Theorem 4 follows.

Theorem 4: Modulo permutations, orthogonal transfor-
mations, and homotheties, any transformation relating sym-
metric frames is of the form

Ee=Eq+ [A=1)/mll%,, A0

In general, an orthogonal transformation modifies the
axis of the frame but preserves the causal character of its
vectors. On the contrary, transformation {18) preserves the
axis, but may meodify the causal character of the vectors of

the frame.
Let 3/, % be the matrix associated to (18):

M= (1/m)(A 4+ 18, "+ (A —1)1,1%

(18)
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From (3), it follows that det M, ® = A, and M, ” is nonsin-

gular. The transformed metric components a=g(&,.£,)

and B = g(&,,£,) are related to (1) by
T—a=B—-F=/m)(a+nf)(A?-1).  (19)

How many types of symmetric frames admits an m-di-
mensional Lorentzian space? Let us introduce the causal in-
dex ke{0,m) of a Lorentzian symmetric frame by
k=1 —a/B; from (3) and (6) one has sgn(4,) = (€,)°
sgn{«x — 5), so that the adjoint s-planes (those spanned by s
vectors of the frame) are spacelike, null, or timelike iff k> 5,
K =5, OI K <5, respectively, and one has the following.

Theorem 5: In dimension m, there exist 2im — 1 causal
types of Lorentzian symmetric frames.

(i) Every open interval (p,p+ 1) of values of «
(p=0,1,..,n — 1) defines a causal type of frames whose
adjoint s-planes are spacelike or timelike according as s<p or
szp -+ 1, respectively.

fines a causal type of frames with null adjoint p-planes and
whose adjoint s-planes are spacelike or timelike according as
5<por 5> p, respectively.

In the four-dimensional case this gives seven different
types of symmetric frames. In them, the Minkowski metric
diag.(1, — 1, — 1, — 1) adopts the form

I—x 1 1 I

1 1—wx 1 i
B 1 i l—x 1

1 I 1 —«

where >0 and O<x<4. The frames corresponding to
& = 1,x = 2, and ¥ = 3 have null vectors, null planes, or null
hyperplanes. respectively. Note that this classification is
finer than the Derrick’s* one, five of his ten types being ob-
tained by adding the time orientation.

IV. CONCOMITANT-INVARIANT SYMMETRIC FRAMES

Symmetric frames are an algebraic concept; one can say
that they “live” in the tangent space of Lorentzian mani-
folds. In this section, we shall “glue” them. by means of the
differential concomitants of the metric, to the base manifold
itself. We shall see how interesting restrictions appear.

The vectors of a symmetric frame are not necessarily
indistinguishable for the differential concomitants of the
metric. A symmetric frame whose vectors are indistinguish-
able for the Ricci tensor of the metric will be called a Ricei-
invariant symmetric frame. In such a frame the metric is
given by (2) and the Ricci tensor is written as

Ra=(a—536,,+b1,1,.
From Lemma 1, (2), and {20) we compute directly

(203

det(R,g —A84n)
=[a+nb—Ala+nB}|la—b—Ala—]",

and taking into account (1Q), the eigenvalues of the Rica

tensor are given by

Ay =(a+nb)(p+nv), A =(@-b){p—v) (1)

Their respective eigenspaces are the axis £ of the symmetric

frame and its orthogonal hyperplane 47 :
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R4 12 = g*Rop1® = (a4 nb)g" 1o = 4,14,
RAWP = g"Repv® = (a— b)g" 6 p0® = 4,07,

where v is an arbitrary vector of &~ e Ly ' = 0. Consequent-
ly, the Ricci tensor is spatially isotropic with respect to &,
and thus

Ric=rg +susuy, {22)
where r=4,, s=4, — A,, and u is the unit vector along the
axis. Reciprocally, if Ric has the form (22) then any sym-
metric frame of axis {«} is Ricci invariant. If one considers
Einstein (s = 0) and Ricci fiat (s = r = 0) spaces as degen-
erate perfect fluids, one has, remembering Proposition 4, the
following. N

Theorem 6: A Lorentzian space admits Ricci-invariant
symmetric frames if, and only if, it is a perfect fluid. These
frames are all those whose axis is collinear to the fluid veloc-
ity. :
Let us note that the above arguments, and in particular
Eq. (22}, are valid for any second-order tensor for which the
vectors of the symmetric frame remain indistinguishable.

A Ricci-invariant symmetric frame whose vectors are
indistinguishable for the covariant derivatives of the Ricci
tensor up to the order p will be said a p-Riccl invariant spm-
metric frame. Let us consider one-Ricci invariant symmetric
frames; denoting by VRic the covariant derivative of the
Ricei tensor, one must have

VeRos =p1: VeRoo =po.

VeRpp =p3 VeRep =pu
for any different values of the indices £,¢,S. Thus
Vi Rse= Tl lple + 71, dpc

+ ¢{158,c + 1c645) + ¥Ospcn (23)

T=p, NEP P E=p3 P
d=p, 205 —ps + 01,
and &,y =8 ,56 pc {repeated indices are not summed).
From (22) it follows directly
V, Roc =ra8sc +Sqtiguc +5(Vuguc +ugVytic),
(24)
where f, = £, (/) is the derivative of the function falong £ ,.
Contracting indices in (23) and (24), and using (8) and
(12) with g, = — 1, we have

gV Ryc=rc+ (3 +s&huc

=[{mi (mrLyg+dé)4+pulmd+id)]le,
(25)
R,=mr, +5,=[mi = (mr+28) +plmy+¥)11,,
(26)
where the dot denotes derivation along # (§=u's,),

6=V 1 is the expansion of » and R=g"’R  is the scalar
curvature. These relations imply that the exterior differen-

tial of r and s are given by
dr = fu, ds=u. 27
Due to (25)—(27) the double contraction of the Bianchi
identities. R = 2¢*%V R gc, 1s equivalent to
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258 = (m — 2)F — 5. (28)

On the other hand, from (23) and (24}, we can compute
u?V R ;. separately. Equating both expressions and taking
into account {10}, (12}, (13), and (27) it follows

sV, ug = [{g —v)/A 1 (md +¢) Vs (29)

If 540, # has only expansion and we obtain the following.
Theorem 7: In a nondegenerate perfect fluid, the axis of
the one-Ricci invariant symmetric frames is geodesic, shear-
free, and vorticity-free, and its expansion and the Ricei
eigenvalues are functions of the potential of w.
Now by substitution of (22}, (27), and (28) into (24)
one has .

V. Rpc=(F+5)uuptc + j’”.q?fsc

+ (s/n}0(up¥uc + tcYas) (30)

and it is clear that higher covariant derivatives will provide
no elements able to distinguish the vectors of the frame. We
may thus state the next theorem.

Theorem 8: A symmetric frame is p-Ricci invariant if,
and only if, it is one-Ricei invariant.

Let us consider now the frames whose vectors are indis-
tinguishable for the metric and its Riemann tensor . We
call them Riemman invariant symmetric franes.

Let I, define the oriented two-plane generated by £
and &, I,; =&, N&p, and let us consider the Riemann
tensor 57 as a bilinear symmetric form defined over the {I's.
Denote % 4pcp =Riem(I1 45,11 ); a pair of [T°s may have
in common O, I, or 2 indices, and this allows us to consider

‘the three following types of scalars: 9 pppo, # popr @04

R pors, where P, Q, R, S stand for different indices. Due to

the symmetries of the Riemann tensor we have the following.
Lemma 4: The components of the Riemann tensor with

respect to 2 Riemann invariant symmetric frame satisfy

'%‘)PQPQ = .A, ﬁPQPR = B, '?;?PQRS = O’

for any distinct values of the indices P.Q,R.S.
From the following relations,

SR pgp = 1A, 115 ppp=nA 4+ (n—1)B,
¥ yppg = (n — 1B, 1157 1ppo = — A+ (n = 1)B,

it results that in a Riemann invariant symmetric frame the
Ricci tensor, R ., =g%°% ., has the form (20) with

asRpp =nuh+ (n—13vB,

b=Rpp= —vA+(n—1)(u—-2v)B (P #0),
(31
where g and v are given by (9). For n > 1, the linear system
(31) for A and B is of rank two; so that when @ = b = 0, its
solution is A = B = 0. This says that the Riemann tensoris a
linear and homogeneous function of the Ricci tensor, and so,

the Weyl tensor vanishes. Then
F#={1/(m—2)][Ric— [R/2(m — 1) ]glAg, (32)
where R is the scalar curvature and A denotes the exterior

product of double one-forms.'® Remembering Theorem 6,

one has the following result.

Theorem 9; For m > 3, the Lorentzian spaces admitting
Riemann invariant symmetric frames are the conformally
flat perfect fluids.
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It is known'® that, for m = 4, such spaces belong to the
generalized Schwarzschild interiors or to the Stephani uni-
verses. '

From (32), it follows that the vectors of a Riemann
invariant symmetric frame are indistinguishable for V4 if,
and only if, they are indistinguishable for VRic. A symmetric
frame whose vectors are indistinguishable also for the Rie-
mann tensor and its covariant derivatives up to the order p
will be said a p-Riemann invariant symmetric frame.
Theorem 7 and Eq. (30) imply that such a frame forp = 1
remains indistinguishable for the successive covariant de-
rivatives of the Ricci tensor. And then, from (32) we have
the next theorem.

Theorem 10: A symmetric frame is p-Riemann invariant
if, and only if, it is one-Riemann invariant.

The Bianchi identities for a conformaily flat space-time
can be written

6(V,Rpe — VaRye) = R, 850 — RpBuc- (33)

For n =3, when Eq. (30) takes place, these identities are
equivalent to Eq. (28), s8 = 7 — 5/2, which in terms of the
density p and the pressure p of the perfect fluid may be writ-
ten in the more familiar form p = — (p + p}4. Thus the
Bianchi identities do not impose additional kinematical re-
strictions on the expansion of u. Therefore, the space-times
admitting 2 one-Riemann invartant symmetric frame are
(conformally flat) perfect fluids with a geodesic, shear-free,
and vorticity-free velocity whose expansion is an arbitrary
function of the time coordinate only. As it is well known,
these kinematical properties characterize the spatially ho-
mogeneous and isotropic cosmological models. Conversely,
it is clear that the Friedmann-Robertson-Walker universes
are conformally flat perfect fluids satisfying (30). Thus we
have obtained the following interesting characterization.

Theorem 11: The space-times admitting one-Riemann
invariant symmetric frames are the Friedmann-Robertson—
Walker universes.

As a corollary of Theorems 10 and 11, the following
remarkable result follows: the cosmological principle states
that the space-time admits frames whose vectors are indistin-

guishable for any differential concomitant of the metric.

It should be noted that a geodesic, shear-free, and non-
rotating perfect fluid velocity may exist only in a conformal-
ly flat space-time.”” Then £ is given by (32), and from
Theorems 7 and 11, Theorem 12 follows.

Theorem 12: The space-times admitting one-Ricci in-
variant symmetric frames are the Einstein spaces and the
Friedmann-Robertson-Walker universes.

V. NATURAL SYMMETRIC FRAMES

A symmetric frame that is the natural frame of a coordi-
nate system is called a narural symmetric frame, First, let us
consider the kinematic properties of the axis of such a frame.
I{s,} ;":‘] is a natural symmetric frame, §, = d, =d /dx*,
from (2) it results

g=[(a =35, +B1,1,)dx" e dx", (34)

where a and /3 are functions of the coordinates {x*} and
{dx}" _, is the algebraic dual coframe of {d, }. One has
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1*=1,=1 for any value of the index g, so that
A, ¥=m=n+1landg, 1"=(a+ nf)1,. From Proposi-
tion 3 it follows directly that the axis & = 1“J,, of a natural
‘symmetric frame is vorticity free. From (13), the induced
metric y on the hypersurfaces orthogonal to the axis is writ-
ten as

r=(a—B)b,, — (I/m)1,1,)dx" @ dx”

and its Lie derivative with respect to the unit vector u along
the axis is given by

L)Y, = 40, Inle — By,

‘We have thus the next theorem.

Theorem 13: The axis of a natural symmetric frame is
shear-free and vorticity-free.

In a domain of a Loretzian space, a synchronization is a
foliation by spacelike hypersurfaces, and every one of these
hypersurfaces are called instants. Equation (35) shows the
umbilical character of {every instant of) the synchroniza-
tion defined by (the hypersurfaces orthogonal to) the axis of
the frame. Thus in a more geometric language Theorem 13
may be equivalently stated.

- Theorem 14: In a Lorentzian space adrn;ttmg natural
symmetric frames there exists (locally) an umbilical syn-
chronization.

A general result' states that an (7 + 1)-dimensional
space admits an umbilical foliation iff there exist local co-
ordinates {y’,y" * '} such that the metric may be written as

g=Aa; dV'edy+Bdy"" 'edy !

where A and B are arbitrary functions, and the a;’s are inde-
pendent of the (# + 1)th coordinate. If in addition the hy-
persurfaces of the umbilical foliation are conformatly fiat,
the matrix a,; can be taken diagonal and equal to the signa-
ture symbol of g. In particular, we have the following.

Lemma 5: An {(n + 1)-dimensional Lorentzian space
admits an umbilical and conformaily flat synchronization if,
and only if. there exists coordinates {y'y"~ '} such that the
metric may be written as

g= + (035,-]— dy'edy
—brdytledy" ™) (ij=l..n),

where 2 and b are functions of y',.... .

On the other handg, as the coefﬁaems of the transforma-
tions {14} and {16) are constants, it follows that a symmet-
ric frame is natural iff its associated orthogonal frame is nat-
ural. Thus we have the following gecmetric
characterization.

Theorem 15: The Lorentzian space admitting natural
symmetfic frames are those in which there exists (locally}
and umbilicai and conformally flat synchronization.

In the four-dimensional case it is well known that, for
the space-times admitting a vorticity-free and shear-free t-
melike direction, the magnetic part of the Weyl tensor with
respect to it vanishes.'”” Then, we have the following.

Proposition 5: In the space-times admitting a natural
symmetric frame, the Weyl tensor is of electric type with
respect to the axis of the frame.

(35)
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In particular, the Petrov—Bel type of these space- -times is
necessarily I, D, or O.

In relativity, spaces-times with the characteristic asked
by Theorem 15 are already known: For example, the Ste-
phani universes,'' or the isotropic class considered by Der-
rick,* which contain the Friedmann-Robertson-Walker
and Schwarzschid space-times. Also, as a direct conse-
quence of a result by Takeno'® concerning isotropic coordi-
nates, one has the following corollary.

Corollary 3: All the spherically symmetric space-times
admit natural symmetric frames.

It is interesting to observe that only in some cases, the
condition for a symmetric frame of being natural not only
implies the metric coefficients to verify at every point the
equalities (1) but, in addition, obliges these coefficients to be
symmetric functions of the corresponding local coordinates:
the “tangent” symmetry goes down to the underlying mani-
fold. This was shown by Derrick to happen for the isotropic
class he considered in Ref. 4, but also oceurs for other inter-
esting spaces-times; a study of them will be published else-
where.
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