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Residual fluctuations in the microwave background at large angular scales:
Revision of the Sachs-Wolfe effect
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In this paper we revise the Sachs-Wolfe (SW) computation of large-scale anisotropies of the mi-
crowave background temperature, taking into account the properties of the metrics admitting an isotro-
pic distribution of collisionless photons. We show that the metric used by SW belongs to the aforemen-
tioned class, and conclude that the microwave background (once the dipolar anisotropy has been sub-
tracted) should now be isotropic at large angular scales, provided that it was isotropic on the last scatter-
ing surface and assuming that the growing mode of a pressureless Einstein —de Sitter perturbation is a
good description of the metric.

PACS number(s): 98.70.Vc, 98.80.Hw

I. INTRODUCTION

Up to date measurements of the cosmic microwave
background (CMB) temperature show only dipolar an-
isotropy; technical refinements are providing smaller
upper limits for temperature anisotropies at diA'erent an-
gular scales. In the framework of big bang models this
highly isotropic CMB is interpreted as a relic of a hot
past age of the Universe, when matter and radiation were
strongly coupled. If the Universe was then exactly homo-
geneous and isotropic (a Robertson-Walker universe), the
CMB could have entered the recombination era as highly
isotropic and with a blackbody spectrum [1]. However,
to understand the origin of the structures observed at
present, one needs to assume that in the early Universe
inhomogeneities existed which were much bigger than
statistical fluctuations. The problem is how these irregu-
larities are imprinted in the CMB, and if these predic-
tions are compatible with the upper limits observed. The
physical processes involved in this problem depend on
the angular scale of the observation. At large scales the
physics becomes simpler. The horizon at redshift z sub-
tends now an angle 0& = I/&I+z (we are considering an
Einstein —de Sitter background) and, assuming recom-
bination occurs at z =1000, one gets 01, =1.8'. Therefore
angular scales greater than 0& correspond to structures
that are bigger than the horizon at decoupling time, and
so scattering with electrons can be neglected. On the oth-
er hand, reionization may occur later in the process of
galaxy formation. Using general arguments one can justi-
fy [2] that if this process starts at z =30, scattering with
electrons may erase primordial anisotropies at angular
scales smaller than L9, =6', introducing new ones linked
to the peculiar motion of the plasma. According to these
considerations, anisotropies at angular scales bigger than
0, are unaffected by electron scattering. For this reason
one expects that measurements of CMB anisotropy at
these angular scales (bigger than 9, ) will probe the distri-
bution of matter on scales larger than the horizon at
decoupling time. In this case, CMB anisotropies are ex-

pected because of gravitational potential fluctuations.
This eff'ect was first stated by Sachs and Wolfe (SW) [3]
on considering the growing mode of a perturbed pres-
sureless Einstein —de Sitter universe (k =0), and assum-
ing that radiation, as measured by an observer comoving
with matter, was isotropic on the last scattering surface
Xd. This was defined in physical terms as a surface of
constant temperature T =Td, and expressed, in the coor-
dinates used by them, as a surface of constant time
'9 ='yld
The aim of this paper is to revise this procedure. So, in

Sec. II, we recall well-known results concerning the ex-
istence of isotropic solutions to the Liouville equation for
massless particles in an inhomogeneous space-time. In
Sec. III we show that the metric used in the SW paper is
not compatible with the assumption of an isotropic distri-
bution of collisionless photons with uniform temperature
on a hypersurface g= const in comoving time. The con-
clusion drawn is that radiation will remain isotropic if it
was so at the recombination epoch.

II. SPACE-TIMES ADMITTING ISOTROPIC
RADIATION

Radiation can be described as a gas of photons with a
distribution function f (x,p),p =0. If scattering with
electrons can be neglected (or if radiation is in equilibri-
um with matter) the distribution function must satisfy the
Liouville equation

f(x (A. ),p (A, ) )=const,
x (A, ) being any null geodesic and p (A, ) =dx/dA, . As one
is interested in the temperature measured by a given ob-
server, it is preferable to write the Liouville equation in
terms of specific intensity. Let us consider a unit tirnelike
vector field n, the frequency v and the specific intensity I
measured by observer n are given by v= —n .p and
I,=h v f, respectively. From the Liouville equation one
gets I /v =const along any light ray, and denoting any
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two events connected by a null geodesic as x, and xp, one
has

T
TQ- 1+z (3)

If the radiation is isotropic with respect to an observer
n, the distribution function depends on p through the fre-
quency measured by n, f (x,p) =j(x, v). Tauber and
Weinberg [4] and Ehlers, Geren, and Sachs [5] have stud-
ied the conditions imposed on the metric and the vector
field n so that the solution to the Liouville equation is iso-
tropic. We have recently treated the problem of getting
inhomogeneous solutions to Einstein s equations admit-
ting isotropic radiation [6]. The results concerning an
isotropic distribution function of massless particles may
be summarized by the equivalence of the following state-
ments: (i) A distribution function of photons, f (x,p),
p =0, exists which is isotropic with respect to an ob-
server n and verifies the Liouville equation (1); (ii) a unit
timelike vector field n exists such that o.=0 and
d (a —On /3 ) =0, where o, a, and 8 are the shear, ac-
celeration, and expansion of n, respectively; (iii) the
space-time metric is conformally stationary, that is to
say, there exists a timelike vector field g and a scalar 2
such that I.&g = Ag. Moreover, the observer of condition
(i) [which is also the vector field of (ii)] and the conformal
Killing vector of (iii) are collinear. The distribution func-
tion is an arbitrary function of the first integral associated
with the conformal Killing vector, f (x,p) =j(g p ).
An important corollary for our discussion is the fol-

lowing: when the vector field n admits a family of or-
thogonal surfaces, the metric satisfying condition (iii) can
be written in the form

ds =a (g, x')I —4 (x')de +y, (x")dx'dx'I,
where @and y; depend only on the spatial coordinates.
The observer measuring isotropic radiation will then be

n =(a@&) '8„,
and the temperature of the isotropic radiation will be in-
homogeneous

I~= (1+z)
where z is the redshift corresponding to the observers n,
and n p at x, and xp, respectively. Expressing I in terms
of an effective temperature T, one gets the relation

is given by 1+z =aiiN„/(a, @,). So, taking into account
relation (3) we get Tii=b/(a&4ii) for the temperature at
xp.

III. REVISION OF THE SACHS-WOLFE EFFECT

The following hypotheses are appropriate to studying
large angular scale anisotropies in the CMB produced by
structures bigger than the horizon at decoupling time.
(1) From matter radiation decoupling up to the

present, space-time may be described as a p =0 perturba-
tion of an Einstein —de Sitter universe. Only the density
growing mode is relevant at this epoch. Sachs and Wolfe
[3] obtained this solution in comoving time-orthogonal
coordinates I g, x'I:

ds =a (rI) —dil + 1— P 5,

1 2 Bp
Bx'Bx'

dx'dX~ -, (7)

Then, neglecting second-order terms in P, the metric (7)
turns out to be [7]

ds =a (il ) t —[1+2$(x ') ]dq
+ [1—2$(x ') ]5, dx 'dx J I .

where rI runs from 0 to 1 at the present epoch, and P de-
pends on the spatial coordinates only.
(2) The Universe is inhomogeneous at scales bigger

than the horizon. So density variations smaller than 10
light years are ignored (assuming the present value of the
Hubble constant to be Hr, =10 ' years ').
(3) Isotropic CMB with a Planck spectrum dates from

the recombination epoch. The first two hypotheses are
the same as in the SW paper. The third one is less res-
trictive because we are not assuming that decoupling
occurs simultaneously for the comoving observer.
Recombination did not occur instantaneously, but lasted
a short period of time; however, it is represented by a last
scattering surface X:rI=gz(x '). We shall use this concept
but we will not identify X with the surfaces g =const.
Let us introduce a new coordinate system I g, x'] by
i) =(1+—,'P)g,

T= b
a (i) )N(x ')

The vector field of matter in these coordinates is
(6)

b being a positive constant.
One can understand this result taking into account re-

lation (3). Let us consider a spacelike surface
X:il=i)z(x') in the past of the event xa. A null geodesic
arriving at xi' intersects X at x, =(il„x,'), with
q, =i)z(x, '). The temperature at this point, according to
(6), is T, =b/(a, C&, ). On the other hand, the redshift of
light emitted at rest with respect to n, and received by np

(10)

This space-time is of the type given by (4) with @=1+/,
and y,"=(1—2P)5,". On the other hand, as a conse-
quence of hypothesis (2), scattering with electrons may be
neglected and the distribution function for CMB photons
will be a solution of the Liouville equation. So, if we
want isotropic CMB on the last scattering surface, as is
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ri =QbHo /(2Td )[1——,'P(x ')] . (12)

In other words, a surface of constant temperature is not a
surface g=const, in the coordinates used by SW.
Finally, from (10) we conclude that matter is moving

with respect to observer n measuring isotropic radiation
with velocity V = V'e, , with V'= ——,

' rit), P and e, the
spacelike unit vector in the direction of 8;. This produces
a dipolar anisotropy in the CMB measured by an ob-
server comoving with matter. The relative velocity of
matter with respect to observer n may have originated
during the decoupling process of matter and radiation
[g].

required in hypothesis (3), we must satisfy the conditions
quoted in the previous section: i.e., (1) the observer
measuring isotropic radiation must be n =(1—P)a t)„,
and not the comoving observer with matter u =a
(2) the temperature on the last scattering surface X will
be given by

T, = [1—P(x, ')]b
a(ri, )

with g, =gz(x, '). Now, in a space-time of the type given
by (9), if we have a distribution of temperature as given
by (11) on a spacelike surface X, we will now measure (at
rest with respect to observer no) a temperature
To =b ( 1—Po ) lao, which is independent of the arrival
direction. Therefore, if radiation was isotropic with
respect to observer n on the last scattering surface, it will
remain isotropic in the future.
This result is independent of the shape of the last

scattering surface. If we had assumed (in order to com-
pare with SW's paper) that X was a surface of constant
temperature T =Td, it would be given in comoving coor-
dinates [q,x'] by

IV. CONCLUSIONS

We have revised the Sachs-Wolfe paper on CMB aniso-
tropies at large angular scales. The result known as the
SW effect comes from a choice of the last scattering sur-
face Xd.q =const (defined in physical terms as a
T =const surface), which is not compatible with the rest
of the assumptions made in the paper. The necessity of
justifying this choice was recognized in SW s paper, and
has recently been outlined by Stoeger et al. [9]. We have
proved that under the assumptions made in SW's paper a
surface of constant temperature is not a g =const surface
[Eq. (12)].
We have proved that CMB should be isotropic at large

angular scales if it was isotropic on the last scattering
surface, and if the metric is given by the growing mode of
a pressureless Einstein —de Sitter perturbation. This re-
sult is independent of the shape of the last scattering sur-
face.
The conclusions would be different if we had used a

perturbed Friedmann universe with a time-dependent
gravitational potential P, instead of the conformal sta-
tionary metric (9). This might be necessary when consid-
ering regions of high density contrast, or in the case of a
nonzero curvature background.
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