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Various effects produced by vector perturbations (vortical peculiar velocity fields) of a flat Friedmann-
Robertson-Walker background are considered. In the presence of this type of perturbations, the polar-
ization vector rotates. A formula giving the rotation angle is obtained and, then, it is used to prove that this
angle depends on both the observation direction and the emission redshift. Hence, rotations are different
for distinct quasars and also for the cosmic microwave background (CMB) radiation coming along
different directions (from distinct points of the last scattering surface). As a result of these rotations, some
correlations could appear in an initially random field of quasar polarization orientations. Furthermore, the
polarization correlations of the CMB could undergo alterations. Quasars and CMB maps are both
considered in this paper. In the case of linear vector modes with very large spatial scales, the maximum
rotation angles appear to be of a few degrees for quasars (located at redshifts z < 2:6) and a few tenths of
degree for the CMB. These last rotations produce contributions to the B mode of the CMB polarization
which are too small to be observed with PLANCK (in the near future); however, these contributions are
large enough to be observed with the next generation of satellites, which are being designed to detect the
small B mode produced by primordial gravitational waves.
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I. INTRODUCTION

The most general perturbation of a Friedmann-
Robertson-Walker (FRW) background is the superimposi-
tion of scalar, vector, and tensor modes [1]. Scalar modes
describe mass fluctuations, tensor modes are gravitational
waves, and vector modes are vortical peculiar velocity
fields. These last modes are not usually considered because
they are not produced either during inflation or in other
phase transitions produced by scalar fields in the early
universe; however, there are vector perturbations in
brane-world cosmologies [2] and also in models with
appropriate topological defects [3]. Whatever the origin
of the vector modes may be, we are interested in their
possible effects. The analysis of some of these effects is
our main goal.

Five decades ago, Skrotskii [4] used Maxwell equations
and a perturbation of the Minkowski metric (describing a
slowly rotating body) to conclude that the polarization
vector rotates as the radiation crosses this space-time.
This rotation (hereafter called the Skrotskii effect) is analo-
gous to that produced by magnetic fields (Faraday effect);
however, its origin is gravitational and it is wavelength
independent. See Refs. [4–16] for estimates of Skrotskii
rotations in several space-times. Here, these rotations are
calculated in a new case: a perturbed flat FRW universe
including large scale vector modes.

In the geometrical optics approximation, the polariza-
tion vector lies in the 2-plane orthogonal to the line of
sight, where a basis must be chosen to define an orientation

angle,  , for the polarization vector (that formed by this
vector and another one of the chosen basis). The polariza-
tion angle  varies along the light trajectory because the
basis is not parallely transported along the null geodesics,
whereas the polarization vector parallely propagates. This
idea (interpretation of the Skrotskii effect [17]) is used in
Sec. II to derive an integral formula giving the total varia-
tion, ! , of the polarization direction, from emission to
observation. Our general formula is used to prove that, in a
flat FRW universe with vector perturbations, the angle ! 
depends on both the source redshift ze and the observation
direction (unit vector ~n). The following question arises:
Which are the main effects produced by this type of
rotation?

Since Skrotskii rotations change the polarization orien-
tations and the changes are different for distinct point
sources (ze and ~n dependence), the statistical properties
of an initial distribution (at emission time) of polarization
angles is expected to be altered by the Skrotskii rotations.
These statistical effects are the kind of effects we are
looking for. Could we measure these effects under some
conditions? Which are the most interesting cosmological
sources of polarized radiation to be studied from a statis-
tical point of view? Two types of cosmological sources are
considered: the points of the last scattering surface, which
can be considered as the sources of the cosmic microwave
background (CMB), and the distribution of quasistellar
objects (QSOs). Both cases are studied in the next sections
by using appropriate simulations.

Skrotskii rotations alter the initial angular correlations
(at ze ’ 1100) of the CMB polarization. In other words,
they change the E and B polarization modes (see
Sec. VI A). Moreover, these rotations induce correlations
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in the random initial distribution of quasar polarization
orientations. This effect reminds us (1) of observations
based on the analysis of radio emission from quasars
(reported by Birch [18] at the early eighties), which led
to the conclusion that the orientations of the quasar polar-
ization vectors are not random, and (2) of recent polari-
metric observations of hundreds of optical quasars [19],
which strongly suggest that the observed polarization vec-
tors are coherently oriented over huge regions having sizes
of the order of 1 Gpc. See [20–22] for some explanation of
this type of observation in the arena of new physics.

Birch proposed a global rotation of the Universe to
explain his observations and, moreover, a rotating
Bianchi type-VIIh universe has been recently proposed
[23] to explain some features of the WMAP (Wilkinson
Microwave Anisotropy Probe) angular power spectrum
(low multipoles, asymmetry, non-Gaussian cold spots,
and so on). In this paper, vector modes with appropriate
scales are proposed—against a global rotation—to study
both correlations in quasar polarization directions and
some CMB properties. Since the evolution of nonlinear
distributions of vector modes has not been described yet,
we are constrained to work in the linear case.

The analysis of temperature maps of the CMB, galaxy
surveys, and far supernovae lead to the so-called concord-
ance cosmological model, which is a perturbation of the
flat FRW background with cold dark matter and a cosmo-
logical constant. By this reason, curved backgrounds are
not considered along the paper. A reduced Hubble constant
h ! 10"2H0 ! 0:71 (where H0 is the Hubble constant in
units of Kms"1 Mpc"1), and the density parameters of
vacuum energy and matter (baryonic plus dark) !" !
0:73 and !m ! 0:27, respectively, are compatible with
the analysis of 3 yr WMAP data recently published [24].

Along this paper, Greek (Latin) indexes run from 0 to 3
(1 to 3), and units are defined in such a way that c ! " ! 1
where c is the speed of light and " ! 8#G=c4 is the
Einstein constant.

This article is organized as follows. In Sec. II, vector
perturbations of a flat FRW background are assumed and,
then, the variation, ! , of the polarization angle is calcu-
lated. In next section, some quantities describing the per-
turbed universe are expanded using vector harmonics and a
new integral formula for ! is derived in terms of the
expansion coefficients. The evolution of these coefficients
in the matter and radiation dominated eras is discussed in
Secs. IVA and IV B, respectively. The ! values corre-
sponding to various distributions of vector modes are
calculated in Secs. V and VI. In Sec. V, only a vector
mode is considered and angles ! are calculated for differ-
ent spatial scales of this mode and also for distinct emis-
sion redshifts. Taking into account results of Sec. V, two
appropriate superimpositions of vector modes are studied
in Sec. VI. In Secs. VI A and VI B the chosen superimpo-
sitions are linear in the redshift intervals (0,1100) and

(0,2.6), respectively. In the first (second) case, angles ! 
are calculated for the CMB (quasars at z < 2:6). Finally,
Sec. VII is a general discussion of the main results obtained
in the paper and also a summary of conclusions and
perspectives.

II. POLARIZATION ANGLE: DEFINITION AND
EVOLUTION

In practice, calculations in a perturbed FRW universe
require the use of a certain gauge (see Ref. [1] for defini-
tion and examples). Whatever the gauge may be, the line
element of the flat FRW background and that of the per-
turbed (real) universe can be written in the form:

 ds2 ! a2#$$$%&dx%dx&

! a2#$$%"d$2 & dr2 & r2#d'2 & sin2'd(2$' (1)

and

 ds2 ! g%&dx%dx& ! a2#$$#$%& & h%&$dx%dx&; (2)

respectively, where a is the scale factor (whose present
value is assumed to be a0 ! 1), $ is the conformal time,
$%& is the Minkowski metric, and the small first order
quantities h%& define the perturbation. Admissible restric-
tions satisfied by some of the h%& quantities can be used to
fix the gauge. As it is well known, scalar, vector, and tensor
linear modes undergo independent evolutions and, conse-
quently, only vector modes are hereafter considered. In this
situation, the condition hij ! 0 defines the gauge used in
all our calculations, and the absence of scalar perturbations
implies the relation h00 ! 0.

Hereafter, fr;';(g are spherical coordinates associated
to xi and fer; e'; e(g are unit vectors parallel to the coor-
dinate ones. The chosen gauge allows us to define the
polarization angle  in the most operating way. It is due
to the fact that vectors fer; e'; e(g are orthogonal among
them (hij ! 0) and, consequently, observers receiving ra-
diation in the direction er can use vectors e' and e( as a
basis in the plane orthogonal to the propagation direction
(where the polarization vector ~P lies). In this basis, the
polarization vector can be written in the form

 

~P ! P#cos e' & sin e($; (3)

and, then, the polarization angle is that formed by ~P and e'.
Using the notation h0i ! #h1; h2; h3$ ( ~h, the line ele-

ment of Eq. (2) can be written as follows:

 ds2 ! a2#"d$2 & 2hidxid$& !ijdxidxj$: (4)

An orthonormal tetrad for the corresponding metric is
given by
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where hi ! !ijhj.
The parallel propagation of the polarization vector along

null geodesics leads to

 rl
~P ! 0; (6)

where rl stands for the covariant derivative along the
geodesic null vector l associated with radiation propaga-
tion and, as a consequence, the magnitude of ~P is constant
along each null geodesic (rlP ! 0). Substitution of Eq. (3)
into Eq. (6) leads to

 rl ! "g#e(;rle'$ ! g#e';rle($: (7)

Note that the second equality directly follows from the
orthogonality of e' and e(, that is g#e'; e($ ! 0. In the
considered coordinate frame one has l ! l%@% and

 rle' ! rl

!
1
ar

@
@'

"
! l%

#
@%

!
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"
@
@'

& 1
ar

#&%'
@
@x&

$
:

(8)

Since we are using the orthonormal tetrad of Eq. (5), the
variation of the polarization angle along l is

 rl ! " 1

a2r2 sin'
l%#%':(: (9)

By substituting the Christoffel symbols #%':( ! #&%'g&(
of the metric (4) into Eq. (9) one obtains

 

d 
d)

! " 1

2r2 sin'

!@h$(
@'

" @h$'
@(

"
d$
d)

" cos'
d(
d)

; (10)

where ) is the affine parameter of the null geodesic whose
tangent vector is l% ! dx%

d) . Equation (10) holds for non-
linear modes; however, vector perturbations are hereafter
assumed to be linear. The reason of this restrictive condi-
tion is that no evolution equations are known for nonlinear
vector modes. We are studying this case, but it seems to be
a rather complicated problem whose study is out of the
scope of this basic work.

In order to obtain the overall change, ! , of the polar-
ization angle, an integration based on Eq. (10) must be
performed from observation to emission points. Up to first
order, this integration can be done along the associated
radial null geodesic of the flat FRW background, which
satisfies the equations _$ ! " _r, _' ! _( ! 0, where the dot
stands for the derivative with respect to an affine parame-
ter; hence, from Eq. (10), the total variation of  appears to
be

 ! ! 1
2 sin'

Z 0

re

!@h$(
@'

" @h$'
@(

"
dr
r2
; (11)

where re is the radial coordinate at emission.
Let us now use Cartesian coordinates x ! r sin' cos(,

y ! r sin' sin(, z ! r cos' in the flat background metric
(1). In these coordinates one easily gets

 

@h$(
@'

" @h$'
@(

! r2 sin'Aij
@h0i
@xj

; (12)

where the nonzero elements of the skew-symmetric matrix
Aij are

 A12 ! " cos'; A13 ! sin' sin(;

A23 ! " sin' cos(:
(13)

After performing this last coordinate transformation,
Eq. (11) can be rewritten as follows:

 ! ! " 1
2

Z re

0
# ~r) ~h$ * ~ndr; (14)

where ~n ! ~r=r ! #sin' cos(; sin' sin(; cos'$ is the unit
vector in the chosen radial direction (constant ' and (
coordinates). Equation (14) gives what is hereafter called
the Skrotskii cosmological effect (or rotation). Note that ~r
and the dot stand for the covariant derivative and the scalar
product with respect to the background flat three-
dimensional metric, respectively; hence, the Skrotskii ro-
tation is obtained by integrating the curl of the vector
perturbation ~h along the line of sight. In the absence of
vector modes ( ~h ! 0) one finds ! ! 0, which means that
there are no Skrotskii rotations in a flat FRW universe. The
same can be proved easily for curved unperturbed FRW
universes and also for flat and curved universes including
pure linear scalar modes.

III. SKROTSKII ROTATIONS PRODUCED BY
VECTOR MODES

In this section, we use the formalism described in
Refs. [1,25], in which the cosmological vector perturba-
tions are developed in terms of appropriate functions. In
the case of a flat FRW background, these functions are
combinations of plane waves and, consequently, the men-
tioned modes are defined in Fourier space.

Vector modes contribute to the metric perturbation ~h,
which is written in the form

 

~h#$; ~r$ ! "
Z
~f#$; ~r; ~k$d3k; (15)

where vector ~f is the following linear combination:

 

~f#$; ~r; ~k$ ! B&#$; ~k$ ~Q&# ~r; ~k$ & B"#$; ~k$ ~Q"# ~r; ~k$ (16)

of the modes ~Q+. This combination is hereafter denoted in
a more compact form:
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~f#$; ~r; ~k$ ! B+#$; ~k$ ~Q+# ~r; ~k$: (17)

Since ~h is a real vector, coefficients B+ must satisfy the
condition

 B+#$; ~k$ ! "#B+$,#$;" ~k$; (18)

where the star stands for complex conjugation. For each k
mode, ~Q+ are fundamental harmonic vectors, that is,
divergence-free eigenvectors of the Laplace operator $
corresponding to the flat three-dimensional Euclidean met-

ric ( ~r * ~Q+ ! 0 and $ ~Q+ ! "k2 ~Q+ with k !
%%%%%%%%%
~k * ~k

p
). By

choosing the representation used in Ref. [25], the ~Q+’s are
written in the form

 

~Q+#~r; ~k$ ! ~*+# ~"$ exp#i ~k * ~r$; (19)

where ~*+# ~"$ ! " i%%
2

p # ~e1 + i ~e2$ and vectors f ~e1; ~e2; ~"g form

a positively oriented orthonormal basis, ~e1 ) ~e2 ! ~" (
~k=k. In a standard orthonormal basis in which ~k !
#k1; k2; k3$, we can choose

 ~e 1 ! #k2;"k1; 0$=+1; ~e2 ! #k1k3; k2k3;"+2
1$=+2;

(20)

with the obvious notation

 +1 !
%%%%%%%%%%%%%%%%
k21 & k22

q
; +2 ! k+1:

In such a basis, which is used to perform numerical esti-
mations in next sections, one can write ~*+ ! #*+1 ; *+2 ; *+3 $
with

 *+1 ! 1%%%
2

p
!
+ k1k3

+2
" i

k2
+1

"
; (21)

 *+2 ! 1%%%
2

p
!
+ k2k3

+2
& i

k1
+1

"
; (22)

 *+3 ! - 1%%%
2

p +2
1

+2
: (23)

In this representation, the following relations can be ob-
tained easily, from Eq. (16), for each k mode:

 

~r ~f ! iB+ ~k . ~*+ exp#i ~k * ~r$; (24)

 

~r) ~f ! iB+ ~k) ~*+ exp#i ~k * ~r$
! k#B& ~*& " B" ~*"$ exp#i ~k * ~r$; (25)

where symbol . ( ) ) stands for the tensor (vector) prod-
uct. We have taken into account the relation ~*+ ) ~" !
+i ~*+ to obtain the second equality in Eq. (25). From
Eqs. (14) and (25), the contribution of each k mode to
the rotation of the polarization angle  is found to be
! k ! ! &

k & ! "
k , where

 ! &
k ! k

2
~n * ~*&# ~"$

Z re

0
B&#$; ~k$ exp#i ~k * ~r$dr (26)

and

 ! "
k ! " k

2
~n * ~*"# ~"$

Z re

0
B"#$; ~k$ exp#i ~k * ~r$dr: (27)

The integrals can be performed along a radial null geodesic
of the FRW background. Note that the explicit ~" depen-
dence of ~*+, that is function ~*+# ~"$, is given by Eqs. (21)–
(23). Finally, the total Skrotskii cosmological rotation
produced by a distribution of vector modes (vortical field
of peculiar velocities) is ! ! ! & & ! ", where

 ! + !
Z
! +

k d
3k: (28)

IV. EINSTEIN EQUATIONS FOR VECTOR
PERTURBATIONS

According to Eqs. (26)–(28), the total Skrotskii effect
depends on the coefficients (functions) B+#$; ~k$ appearing
in the expansion of h0i. These coefficients evolve coupled
to other ones, which are involved in the expansions of other
physical quantities. Two of these coefficients, v+#$; ~k$, are
related with the expansion coefficients of the matter four-
velocity, u ! u0@0 & ui@i ! #u0; ~u$. In terms of these two
new functions, the peculiar velocity ~v ! ~u=u0 can be
written as follows:

 ~v#$; ~r; ~k$ !
Z
v+#$; ~k$ ~Q+#~r; ~k$d3k; (29)

moreover, there are two coefficients, %+#$; ~k$, which
appear in the expansion of Eij=pb, where pb is the back-
ground pressure and Eij the traceless tensor describing
anisotropic stresses (see [1]).

The expansions of ~h, ~v, and Eij=pb must be introduced
into Einstein equations to get evolution and constraint
equations for the coefficients B+, v+, and %+. After
solving these equations we can use the resulting function
B+#$; ~k$ to perform the integrals in Eqs. (26) and (27). In
the chosen gauge, if the background is flat and there are no
scalar and tensor modes, Einstein equations lead to the
following evolution equation for B+:

 

k
2

d
d$

#B+a2$ ! "a4pb%+#$$; (30)

and also to the constraint

 

1
2

k2

a2
B+ ! #,b & pb$v+c ; (31)

where ,b (pb) stands for the background density (pres-
sure), and

 v+c ! v+ " B+ (32)

is a gauge invariant quantity (see [1]) that measures the
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amplitude of the matter vorticity. Since we are considering
the concordance model, there are a cosmological constant
and, consequently, we can write the equations ,b ! ," &
,rmb and pb ! p" & prmb , where ," and p" (,rmb and prmb )
are the energy density and pressure of the vacuum (radia-
tion plus matter in the background), respectively. Equation
," & p" ! 0 is always satisfied. In the radiation domi-
nated era, one can write ,b ’ ,rb and pb ’ prb ! w,rb,
where ,rb and prb are the radiation energy density and
pressure in the background, respectively. Parameter w
takes on the value 1

3 and the sound speed in the background
is cs ! 1%%

3
p . Finally in the matter dominated era one has

,b ’ ," & ,mb and pb ’ p", where ,mb is the background
energy density of matter. Since the background pressure of
matter pmb is negligible in this era, we write w ! cs ! 0, in
other words, we assume that, during the matter dominated
era, quantities w and cs are those associated to the matter
fluid (not to the vacuum). Taking into account these as-
sumptions relative to w and cs, simple manipulations of
Eqs. (30) and (31) lead to the following equations, which
are valid during any era:

 _v+
c ! _a

a
#3c2s " 1$v+c " k

pb
,mrb & pmrb

%+#$$; (33)

and

 B+ ! 2
a2

k2
#,mrb & pmrb $v+c : (34)

Equation (33) can be also directly obtained from the (con-
tracted) Bianchi identities. This equation is used to calcu-
late v+c #$; ~k$; afterward, Eq. (34) gives the function
B+#$; ~k$, which is necessary to estimate the Skrotskii
effect and, finally, Eq. (32) allows us to calculate the
coefficient v+ associated with the peculiar velocity in the
gauge under consideration. Now, let us study Eqs. (33) and
(34) in the different cosmological eras.

A. Matter dominated era

From emission to observation, the radiation emitted by
any quasar as well as the CMB radiation coming from the
last scattering surface evolve in the matter dominated era,
at redshift z < 1100; namely, before and during vacuum
energy domination. In this phase, taking into account
previous comments given in this section and the relation
,mb / a"3, Eq. (33) can be written easily as follows:

 _v+
c ! " _a

a
v+c & k

!"

!m
a3%+: (35)

In the absence of anisotropic stresses (%+ ! 0), the solu-
tion of the last equation is

 v+c ! v+c0
a
: (36)

From Eqs. (34) and (36) the following relation is easily

derived:

 B+#$; ~k$ ! 6H2
0!mv+c0# ~k$
k2a2#$$ ; (37)

and, then, from Eqs. (26)–(28) and (37), the total Skrotskii
effect is found to be

 ! ! 3H2
0!m

Z re

0

dr
a2#r$ % ~n *

~F# ~r$'; (38)

where

 

~F# ~r$ !
Z v&c0 ~*

&# ~"$ " v"c0 ~*
"# ~"$

k
exp#i ~k * ~r$d3k: (39)

Function a ! a#r$ is implicitly defined by the relation (44)
and it is numerically computed before any numerical cal-
culation of the integrals in Eqs. (38) and (39). Finally,
Eqs. (15), (16), and (37) lead to a metric perturbation of
the form
 

~h#$; ~r$ ! "6H2
0!ma"2#$$

Z v+c0# ~k$
k2

~*+# ~"$ exp#i ~k * ~r$d3k;

(40)

where vc0# ~k$ ! "v,c0#" ~k$ to ensure that Eq. (18) is sat-
isfied. Finally, the gauge invariant velocity is

 ~v+
c #$; ~r$ ! a"1#$$

Z
v+c0# ~k$ ~*+# ~"$ exp#i ~k * ~r$d3k: (41)

The notation defined in Sec. III [see Eqs. (16) and (17)]
has been used in Eqs. (29), (40), and (41). Equations. (36)–
(41) are basic for the calculations in this paper.

B. Radiation dominated era

If vector modes appeared in the early universe—during
some unknown phase transition—they evolved all along
the radiation dominated era and, afterward, in the matter
dominated era, until the period of interest (z < 1100). How
did vector perturbations evolve during radiation domina-
tion? In that phase, Eq. (33) reduces to

 

dv+c
d$

! " k
4
%+#$$; (42)

and, Eq. (34) reads as follows:

 B+ ! 8
3
,r0b k

"2a"2v+c ; (43)

where ,r0b ’ 8) 10"34 gr=cm3 is the present radiation
energy density (CMB at T ’ 2:73K). It is worthwhile to
notice that the relation ,rb ! ,r0b a

"4, which has been as-
sumed in order to derive Eq. (43), is only an approximated
relation which is good enough for us, nevertheless, the true
law is ,rb / #g,$4=3a"4, where g, gives the effective de-
grees of freedom due to relativistic species coupled to the
CMB (see [26]). This number undergoes some variations,
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which are particularly important at very high temperatures
in the early radiation dominated era.

Let us first consider vanishing %+ coefficients. Under
this assumption, the solution of Eq. (42) is v+c ! constant
and, then, Eq. (43) leads to the relation B+ / a"2; there-
fore, the coefficients B+#$; ~k$ appearing in Eqs. (26) and
(27) decrease as a"2 in both the radiation and the matter
[see Eq. (37)] dominated eras. As a result of this continu-
ous decreasing, if small vector perturbation of the back-
ground metric (vector ~h) appeared at very high redshift
(early universe), they should be negligible at redshifts z <
1100 [no significant Skrotskii rotations according to
Eqs. (26) and (27)].

In a universe containing a fluid with baryons, cold dark
matter, and vacuum energy, there are no great enough
anisotropic stresses (%+ ! 0) modifying the evolution of
the vector modes according to Eqs. (35) and (42). In order
to have nonvanishing %+ coefficients, some physical field
having an energy momentum tensor T-. with an appro-
priate vector contribution to Tij seems to be necessary. This
contribution to Tij is to be expanded in vector modes [1],
and it would play the same role as the anisotropic stresses
of a fluid. It seems that, in order to maintain a vortical
velocity field in the Universe, nonstandard fields (new
physics) are necessary. In the absence of these fields
(%+ ! 0), divergenceless velocities decay. In other words,
either vortices are maintained (%+ ! 0) in some way or
they must decay as a result of expansion.

Let us imagine (toy model) some field justifying the
condition %+#$; ~k$< 0. In such a case, Eq. (42) leads to
growing v+c functions (dv+c =d$> 0). The time evolution
of v+c depends on the explicit form of functions %+#$; ~k$.
For appropriate choices of %+#$; ~k$ the coefficient v+c
could become proportional to any power an and, then,
from Eq. (43) one easily get the relation B+ / an"2; hence,
functions B+ would be independent on time (growing
functions) during the radiation dominated era for n ! 2
(n > 2); afterward, in the matter dominated era, coeffi-
cients B+ obey Eq. (35) and, consequently, if the sign of
%+#$; ~k$ keeps negative, these coefficients decrease. If
functions B+ increase (for appropriate negative %+ val-
ues) during the radiation dominated era, the linear approxi-
mation could break before arriving to matter domination
and, then, a fully nonlinear treatment of the problem would
be necessary; moreover, quantities B+ would only decay in
the matter dominated era and their values at redshifts close
to 1100 could be large enough to produce significant
Skrotskii rotations. However, at quasar redshifts, coeffi-
cients B+ would be much smaller than those corresponding
to z ’ 1100 and Skrotskii rotations would be negligible.

An alternative idea is that vector perturbations did not
appear in the early universe, but at much more recent
cosmological times; it is possible in some scenarios, for
example, it is well known that bulk effects in Randall-

Sundrum-type brane-world cosmologies generate vector
perturbations [2] whose Skrotskii rotations will be studied
elsewhere.

Hereafter, it is assumed the presence of large scale linear
vector perturbations at low redshifts (without any justifi-
cation for them) and, then, the associated Skrotskii rota-
tions are estimated in the worst case, namely, when these
modes are freely decaying (%+ ! 0).

Let us now use Eqs. (38) and (39) to estimate Skrotskii
rotations for sources located at different redshifts and
observed in distinct directions (CMB and QSOs). Cal-
culations are performed in a universe containing appropri-
ate distributions of vector modes.

V. SKROTSKII ROTATIONS PRODUCED BY A
UNIQUE VECTOR MODE

We begin with some considerations about the spatial
scales, L, of our vector modes. The analysis of the 3 yr
WMAP data [27] strongly suggests that some of the ‘ < 10
CMB multipoles are too small, which is particularly im-
portant for ‘ ! 2 (see Fig. 19 in [27]). On account of these
facts, vector modes with very large spatial scales are tried
in our calculations. The scales must be large enough to
alter only the first multipoles of the CMB angular power
spectrum. In the concordance model described in the in-
troduction, the angle $' subtended by a comoving scale L
located at the last scattering surface (at redshift z ’ 1=a ’
1100) is $' ! L=~r, where ~r ! 14083 Mpc is the r value
given by the relation

 r ! H"1
0

Z 1

a
%#1" !"$/& !"/4'"1=2d/ (44)

for a ’ 1=1100. Finally, taking into account the relation
$' ! #=‘, one easily concludes that the contributions to
the ‘ ! 5 multipole are mainly produced by spatial scales
close to L/ 9000 Mpc. This means that scales larger than
Lmin / 10 000 Mpc could affect only small ‘ multipoles.
After these considerations, we assume that the vector
perturbations to be included in our model have very large
spatial scales greater than 104 Mpc.

In order to estimate the Skrotskii rotation ! produced
by a unique vector mode ~k0, we take into account Eqs. (18)
and (34) to write

 v+c0# ~k$ ! v+c0!# ~k" ~k0$ " #v+c0$,!# ~k& ~k0$; (45)

where the complex numbers v+c0 ! v+c0R & iv+c0I fix the
amplitude of the chosen mode and !# ~k" ~k0$ and !# ~k&
~k0$ are Dirac-distributions. After substituting the distribu-
tions v+c0# ~k$ given by Eq. (45) into Eq. (39), the integration
in d3k can be performed easily and, then, Eqs. (38) and (39)
lead to the following relation:
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 ! ! 3H2
0!m

k0
~n * %v&c0 ~*&# ~"0$ " v"c0 ~*

"# ~"0$'

)
Z re

0

exp#i ~k0 * ~r$
a2#r$ dr; (46)

moreover, vectors ~vc0# ~r$ and ~h0# ~r$ reduce to

 ~v c0#~r$ ! v+c0 ~*
+# ~"0$ exp#i ~k0 * ~r$; (47)

and

 

~h 0# ~r$ !
"6H2

0!m

k20
~vc0# ~r$: (48)

Let us now discuss amplitudes. According to Eq. (47),
the amplitude Av0 of the function ~vc0#~r$ is fixed by num-
bers v+c0. Hence, from Eq. (48) one easily concludes that
the amplitude Ah0 of function ~h0#~r$ is

 Ah0 ’ 2) 10"9L2
0Av0; (49)

where L0 ! 2#=k0 must be written in megaparsecs.
Moreover, from Eq. (37) it follows that the amplitude Ah
at redshift z is

 Ah ! Ah0#1& z$2: (50)

It is hereafter assumed that, at any redshift, a distribution of
vector modes is linear if the condition Ah 0 0:2 is satisfied;
hence, from Eqs. (49) and (50) one easily concludes that
linearity at redshift z [which implies linearity in all the
interval #0; z$] requires small enough Av0 values satisfying
the relation Av0 & 108L"2

0 #1& z$"2. According to this
inequality, for L0 ! 5) 104 Mpc, vector modes are linear
at redshifts z ! 0, z ! 2:6, and z ! 1100, if the relations
Av0 0 4) 10"2, Av0 0 3) 10"3, and Av0 0 3:3) 10"8,
respectively, are satisfied. In order to estimate Skrotskii
rotations for QSOs and the CMB, linearity is assumed in
the intervals (0,2.6) and (0,1100), respectively. The interval
(0,2.6) is appropriate because there is a numerous sample
of polarized QSOs having redshifts smaller than 2.6. On
account of Eq. (47) and the definitions of vectors ~*+# ~"0$, it
is obvious that the condition Av0 0 3) 10"3 (Av0 0
3:3) 10"8) is approximately satisfied for jv+c0j 0
3) 10"3 (jv+c0j 0 3:3) 10"8) and, consequently, the re-
quired linearity of the vector modes is hereafter fixed by
assuming v+c0 values satisfying these inequalities.

The angles ! + given by Eq. (46) are proportional to
quantities v+c0, which are conditioned by our assumptions
about linearity; hence, in the case of linear vector modes
with L0 ! 5) 104 Mpc, the greatest Skrotskii rotations
are obtained for jv+c0j ! 3) 10"3 (QSOs) and jv+c0j !
3:3) 10"8 (CMB). If we give more power to the scale
L0, namely, if greater values of jv+c0j are assumed for this
scale, it could produce greater rotations, but it would
evolve beyond the linear regime (Ah values greater than
0.2). Furthermore, if the above values of jv+c0j are assigned
to scales L0 > 5) 104 Mpc, Eqs. (49) and (50) lead to the

conclusion that the resulting vector modes also evolve in
the nonlinear regime with Ah > 0:2, at least for redshifts
close to z ! 2:6 (QSOs) and z ! 1100 (CMB). The treat-
ment of these moderately nonlinear cases is being studied.
Greater Skrotskii rotations are expected to be produced by
these modes.

Finally, let us study the angular and redshift dependence
of ! . Since only one linear mode is considered, the vector
basis in the momentum space can be chosen in such a way
that the components of vectors ~k0 and ~n are #k0; 0; 0$ and
#sin' cos(; sin' sin(; cos'$, respectively; thus, Eqs. (21)–
(23) lead to a simple representation of vectors ~*+# ~"0$.
Using this representation, Eq. (46) can be rewritten as
follows:
 

! + ! C%#Isv+c0I " Icv+c0R$ cos'
" #Isv+c0R & Icv+c0I$ sin' sin('; (51)

where C ! 6H2
0!m=k0

%%%
2

p
,

 Is !
Z re

0
a"2#r$ sin/dr; (52)

 Ic !
Z re

0
a"2#r$ cos/dr; (53)

and / ! rk0 sin' cos(. Equation (51) has been first used to
estimate the ! + angles for v+c0R ! v+c0I ! 3) 10"3. In
this case one easily finds the relation ! ! ! & &! " !
2%#!."!-$cos'&#!.&!-$ sin' sin(', where !- !
0:003CIc and !. ! 0:003CIs (!- and !. are the angles
represented in Fig. 1). In order to estimate the values of ! ,
quantities !- and !. have been always calculated for ' !
#=4 and ( ! #=2. First, a fixed quasar redshift z ! 2:6
(comoving distance of /6000 Mpc) and variable k0 values
have been considered. Results are presented in the top
panel of Fig. 1, where it is seen that the resulting !- (solid
line) and !. (dotted line) values are not negligible only for
large spatial scales greater than /104 Mpc, which are the
scales we are interested in (see above). Moreover, quanti-
ties !- and !. have been calculated for a fixed spatial
scale of 5) 104 Mpc and for variable redshifts (quasar
positions); the central panel of Fig. 1 shows the results.
Both quantities grow as the redshift increases, reaching
values of a few degrees for large enough redshifts. Finally,
in the bottom panel of Fig. 1, quantities !- and !.
correspond to z ! 1100 (CMB) and v+c0R ! v+c0I ! 3:3)
10"8 [linear vector perturbation in the interval (0,1100)].
In this last panel, the !- and !. angles reach values of a
few tenths of degree for large L0 values close to 5)
104 Mpc.

Equations (51)–(53) indicate that the rotation angles
depend on the observation direction. Apart from the ex-
plicit dependence on ' and( displayed in Eq. (51), there is
a smoother dependence due to the fact that quantities Ic
and Is depend on the bounded functions cos/ and sin/ [see
Eqs. (52) and (53)]. In general, the angle ! is a combi-
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nation of the quantities !- and !. exhibited in Fig. 1
whose coefficients depend on angles ' and ( [see
Eq. (51)]. This general dependence has been restricted
because the four quantities v+c0R and v+c0I have been as-
sumed to be identical (approximating condition allowing a
good enough estimate of Skrotskii rotations).

VI. SUPERIMPOSING VECTOR MODES.
SIMULATIONS

In Sec. V, the rotations ! produced by different isolated
linear scales have been obtained for both QSOs and the
CMB; nevertheless, calculations have been only performed
for the direction ' ! #=4, ( ! #=2 and, moreover, the
approximating condition Av0 / v+c0R ! v+c0I has been
used; therefore, more general cases must be studied. It is
done in this section, where two rather general distributions
of linear vector modes with appropriate scales are consid-
ered to study the CMB (subsection VI A) and QSOs
(subsection VI B). These modes are numerically superim-
posed using appropriate simulations.

Let us now use Eqs. (38) and (39) to calculate ! .
According to Eq. (39), the component Fi of vector ~F is
the Fourier transform of the function k"1%v&c0# ~k$*&i # ~"$ "
v"c0# ~k$*"i # ~"$'; hence, function ~F# ~r$ can be simulated by
using the three-dimensional (3D) fast Fourier transform
(FFT). In order to do that, 5123 cells are considered inside a
big box with a size of 2) 105 Mpc. In this way, the cell
size is /390 Mpc and, consequently, vector modes with
spatial scales between 104 Mpc and 5) 104 Mpc can be
well described in the simulation. For these scales, it is
assumed that v+c0R and v+c0I are four statistically indepen-
dent Gaussian variables, and also that each of these num-
bers has the same power spectrum. The form of this
common spectrum is P#k$ ! Aknv , where nv is the spectral
index of the vector modes and A is a normalization con-
stant. We also simulate vectors ~h0# ~r$ and ~vc0#~r$ taking into
account that, according to Eqs. (40) and (41), the ith
components of these vectors are the FFT transforms of
v+c0# ~k$*+i # ~"$=k2 and v+c0# ~k$*+i # ~"$, respectively. Three val-
ues of the spectral index, nv ! "3, nv ! 0, and nv ! 3,
have been considered. The wave number k varies from
104 Mpc to 5) 104 Mpc in all cases. For each spectrum,
constant A can be fixed by the condition that, at a chosen
redshift, the maximum ~h# ~r$ components be close to 0.2 in
all the box nodes; e.g., for nv ! "3 the resulting normal-
ization is A ’ 4:5) 10"4 (A ’ 8:3) 10"14) for the red-
shift z ! 2:6 (z ! 1100). In all cases one finds jvc# ~r$j 111.

After simulating functions Fi, the observer is placed at
an arbitrary point located in the central part of the simula-
tion box, where the Fourier transform is expected to be well
calculated. Then, the integral in Eq. (38) is performed for
(a) quasars characterized by their redshifts (or equivalently,
re) and the unit vectors ~n pointing to them, and (b) pixels of
a CMB map characterized only by ~n. Various sets of
directions are studied and the rotation angles ! are ob-
tained by solving the mentioned integral along each
direction.

Figure 2 contains a 2D sketch where the reader can see
the main characteristics of both the simulations and the
photon trajectories; each small square is covered by 5) 5
simulation cells (which have a size of /390 Mpc). The
size of the simulation box is 6 times greater than that of the
region represented in the figure. The radius of the circum-
ferences correspond to redshifts of 0.5, 2, 2.6, and 1100.
The minimum scale (Lmin ! 104 Mpc) is also displayed.

The distances (radius of the circumferences) crossed by
photons coming from quasars are similar to our minimum
spatial scale ( / 6000 Mpc for z ! 2:6); hence, the varia-
tions of vector ~h along the photon trajectories are smooth
and, consequently, the integrations necessary to calculate
! can be performed easily. Furthermore, in a central cube
with 3) 104 Mpc per edge (15% of the box size in our
simulations), we can place 53 observers uniformly distrib-
uted and separated by a distance of 6000 Mpc. Then, ! 

 

FIG. 1. Top: dotted (solid) line gives the angle !- (!.) in
terms of the spatial scale, in megaparsecs, for z ! 2:6. Central:
dotted (solid) line gives the angle !- (!.) as a function of z for a
spatial scale of 5) 104 Mpc. Bottom: the same as in the top
panel for z ! 1100 (CMB). In all cases, vector modes have been
forced to be linear.
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angles can be calculated for each of these observers; thus,
from a given simulation, the information we obtain is
greater than in the case of one unique observer located,
e.g., at the box center.

A. CMB: polarization

In this subsection, CMB photons are moved through the
simulation boxes. For nv ! "3, the power of the scales
close to 5) 104 Mpc is greater than that of the scales
around 104 Mpc by a factor of 125; hence, the resulting
Skrotskii rotations are essentially produced by vector
modes with scales close to 5) 104 Mpc, which mainly
affect the multipoles ‘ ! 1 and ‘ ! 2. Hence, we can be
sure that only the first few multipoles of the CMB anisot-
ropy may be affected in this case. For nv ! 3, scales close
to 104 Mpc dominate the Skrotskii effect leading to sig-
nificant multipoles for 2< ‘ & 10 (see first paragraph of
Sec. V).

As it is well known, linear polarization of the CMB
is produced by Thompson scattering during the
recombination-decoupling process. After decoupling, the
polarization is only modified during reionization; this is the
standard scenario. Hereafter, reionization is forgotten to

built up a simple model (reionization effects would be
considered in future). Linear polarization at decoupling
depends on the kind of FRW perturbations evolving during
the recombination-decoupling process; in particular, if
vector perturbations are present, they play a relevant role
[28]. Functions F ! Q& iU and G ! Q" iU, where Q
and U are the usual Stokes parameters [29], are used to
describe CMB polarization. Functions F and G can be
developed in terms of an appropriate basis of functions
and, then, the coefficients E‘ and B‘ involved in the
resulting expansion (see Eqs. (55) in [25]) define the E
and B polarization modes. Since the scales of the vector
modes we have assumed are very large, the CMB tempera-
ture and polarization correlations produced during the
recombination-decoupling process are not significantly af-
fected by vector perturbation, excepting the case of multi-
poles corresponding to small ‘ values, which will be
explicitly calculated elsewhere. In the presence of large
scale vector modes, the polarization angle  varies from
decoupling to present time. Hence, parameters Q and U as
well as functions F andG and, consequently, the E‘ and B‘
polarization coefficients undergo transformations.

Let us now look for the amplitude and angular depen-
dence of ! ; in order to do that, the redshift is fixed to be
that of decoupling, that is to say z ! 1100. Then, vector
modes are superimposed (see above) and ! # ~n$ is calcu-
lated, where ~n is a unit vector pointing toward the centers
of a set of pixels covering the full sky; indeed, a HEALPIx
(hierarchical equal area isolatitude pixelisation of the
sphere, see [30]) pixelisation covering the sky with
3072 pixels is used. Three of the resulting ! maps are
shown in Fig. 3. Top, central, and bottom panels corre-
spond to nv ! "3, nv ! 0, and nv ! 3, respectively. For
any spectra, the rms values of the Skrotskii rotations appear
to be of a few tenths of degree.

Since the linearity of the vector modes has been appro-
priately forced, from z ! 0 to z ! 1100, to simulate all the
maps of Fig. 3, the values of ! shown in these maps are
the largest values produced by linear vector modes. In
order to obtain greater values, nonlinear modes (see
Sec. V) should be present at redshift z ! 1100. The angu-
lar power spectrum (C‘ quantities) of ! #';($ has been
calculated for three maps corresponding to nv ! "3. This
calculation is performed by using the code ANAFAST of
the HEALPIx package, which was designed to analyze
temperature CMB maps; the four first multipoles are
shown in Table I. For ‘ 2 5 the resulting multipoles have
appeared to be negligible (as it is expected in the case nv !
"3, see above). That is compatible with the fact that no
small spots (high frequency angular oscillations) there
exist in the top panel of Fig. 3. The multipoles correspond-
ing to nv ! 0 and nv ! 3 are not presented by the sake of
briefness, but they are not negligible for a few ‘ 2 5 values
(see previous discussion). This is consistent with Fig. 3,
where we see that there are spots in the central (bottom)
panel which are smaller than those of the top (central) one.

 

0.5

2.7

3.1

7.2

L S S

1950 Mpc 10  Mpc
4   

FIG. 2 (color online). 2D sketch showing some characteristics
of both the simulations and the emission surfaces. The point at
the center of the region represents the observer. Circles whose
radius are 0.5, 2.7, 3.1, and 7.2 times the size of the small squares
in the panel (1950 Mpc) correspond to the redshifts 0.25, 2, 2.6,
and 1100, respectively. LSS stands for last scattering surface (the
greatest circle). The shaded (yellow) zone is the region of the
QSOs with z 0 2:6. Only /1=6 of the simulation box is dis-
played and each small square is 5 times larger than the simula-
tion cells.
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The magnitude and the orientation of the polarization
vector ~P are given by the equations P2 ! U2 &Q2 and
tan#2 $ ! U=Q, respectively. Since P does not change
along the null geodesics and condition ! 3 1 is always
satisfied, the variations of U and Q are found to be !U !

2Q! and !Q ! "2U! . Then, one gets the following
relations: !F ! 2iF! and !G ! "2iG! . Finally, we
are interested in the order of magnitude of !E‘ and !B‘,
where E‘ and B‘ are the coefficients involved in Eqs. (55)
of Ref. [25]. An exact calculation of these quantities is
complicated as a result of the angular dependence of ! ;
nevertheless, taking into account that this dependence is
smooth (almost constant values in large sky regions), we
can get a good estimate by considering a constant appro-
priate ! value, e.g. the rms value corresponding to a
standard simulation. Thus, one obtains

 !E‘ ! "2! B‘; !B‘ ! 2! E‘: (54)

The larger ! , the greater the polarization effects.
For the map of the top panel of Fig. 3, we have found

! rms ! 0:194 and, the second of Eqs. (54) gives then
!B‘ ! 6:6) 10"3E‘. Taking into account this relation
and the fact that the Wilkinson Microwave Anisotropy
Probe (WMAP) satellite [31] has detected E-mode polar-
ization with a level of /0:3%K, one concludes that
Skrotskii rotations contribute to the B polarization at a
level of ’ 0:002%K, which is too small to be detected
with the PLANCK satellite in the near future. Fur-
thermore, for a tensor to scalar ratio r ! 0:3 (upper bound
for some simple inflationary models, see [31]), the ex-
pected level of the B-mode is /0:03%K, which could be
detected with PLANCK; in this case, the first of Eqs. (54)
leads to the conclusion that the level of the Skrotskii
contribution to the E mode is /2) 10"4%K, which is
very small. Fortunately, new projects are being designed to
detect low levels of B polarization for very small ‘ values.
For example, the mission SAMPAN (satellite for analyzing
microwave polarization anisotropies) has been designed to
measure these multipoles for r > 1:5) 10"4, namely, for a
B signal whose level is greater than /7) 10"4%K. This
means that future satellites should be able to detect very
low signals smaller than the Skrotskii corrections to the B
polarization we have estimated (at a level of ’ 0:002%K).

B. QSOs: angular and redshift dependence of ! 

The Skrotskii rotation of a quasar depends on the pa-
rameters z, ', and (. In this subsection, angle ! is
calculated for three sets of QSOs characterized by fixed
values of two of these parameters. Results are presented in
Fig. 4. In the top (central) panel, the fixed parameters are
the redshift z ! 2 and the angle ( ('), which takes on the
value ( ! #=5 (' ! #=8). Various simulations have been
developed and many observers have been located in the
central part of the boxes to calculate ! for each of the
above quasar sets. Three curves obtained for different
simulations and observer positions have been selected
and displayed in the top and central panels, where it is
pointed out the fact that functions ! #';#=5$ and
! ##=8;($ always are smooth. The same occurs for other
fixed values of ' and( different from #=8 and#=5, which

TABLE I. Multipoles C1 to C4 for three ! simulations based
on a power spectrum with nv ! "3.

Realization C1 C2 C3 C4

1 0.015 0.023 0.006 0.0007
2 0.052 0.011 0.006 0.0004
3 0.008 0.064 0.005 0.0012

 

FIG. 3. Each panel shows the Skrotskii rotations (in degrees)
of the CMB polarization directions on the full celestial sphere.
The statistical realizations of the top, central, and bottom panels
correspond to the spectral indexes nv ! "3, nv ! 0, and nv !
3, respectively.
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means that function ! #';($ has not high frequency var-
iations. This function smoothly varies as ' and ( take
values on the intervals %0;#' and %0; 2#', respectively. It
is easily understood taken into account Eqs. (38) and (39);
in fact, suppose that an observer is at the center of a certain
cube covered by 53 cells observing QSOs at z < 0:25. In
such a case, photons come from the smallest circle and they
move inside the mentioned cube whose size is /1950 Mpc
(see Fig. 2). Taking into account Eq. (38) and the fact that
vector ~F only undergoes small variations inside the cube,
one easily concludes that the angular dependence of ! 
[fixed by the term ~n * ~F# ~r$] is of the form F1 sin' cos(&
F2 sin' sin(& F3 cos', with almost constant values of F1,
F2, and F3. Hence, the multipolar expansion of ! only
involves dipolar and quadrupolar components but no
higher multipoles (there are no high frequency angular
oscillations). If our observer is analyzing the light arriving
from QSOs placed at redshift z ! 2:6, photons move inside
the shaded (yellow) zone, whose size is /12000 Mpc

(similar to the minimum scale in our simulations); thus,
the vector field ~F#~r$ is not constant inside this zone, but it
varies smoothly and, consequently, this vector and the ! 
angles take on similar values for close directions. By this
reason, no high frequency angular variations of ! #';($
can appear.

In the bottom panel of Fig. 4, the absolute value of the
angle ! appears to be an increasing function of z for the
fixed angles ( ! #=8 and ' ! #=5. The same occurs for
any pair of angles #';($.

VII. DISCUSSION AND PROSPECTS

Vector perturbations of a FRW universe are generated in
some cosmological scenarios involving brane worlds [2],
topological defects [3], and vector fields (see Sec. IV B).
Therefore, the study of the physical effects produced by
these modes deserve attention. Only if these effects are
estimated, the existence of vector perturbations may be
discussed. Large enough effects could be detected, whereas
other effects might be used to put bounds to the amplitudes
and scales of vector modes in nature, restricting thus the
scenarios where they appear. In this paper, a systematic
study of the effects produced by vector modes is started.

A flat "CDM universe (concordance model) containing
vector cosmological modes with very large spatial scales is
assumed. In this universe, a Skrotskii effect—similar to
that produced by the space-time of a rotating body—is
calculated for rather general distributions of vector modes
which evolve in the linear regime under the condition
%+ ! 0. In this scenario, the polarization angle of the
radiation emitted by any source undergoes a certain
Skrotskii rotation. Quasars and points of the last scattering
surface have been considered as sources. The initial corre-
lations among the polarization angles changes because the
Skrotskii rotations are different for distinct sources.
Observations must be designed to measure these correla-
tion changes, but measurements will be only possible for
large enough ! rotations.

In previous sections we have presented: (i) analytical
calculations leading to explicit formulas for the Skrotskii
effect of vector modes, and (ii) the design of appropriate
numerical simulations allowing the estimation of this ef-
fect. Our main conclusion is that the contribution of linear
vector perturbations to the B-mode of the CMB polariza-
tion (for small ‘ values) might be larger than that produced
by cosmological gravitational waves. Data from future
satellites should lead either to a detection or to bounds
on the vector perturbations amplitudes and scales.

The Skrotskii rotations have been estimated for both
quasar distributions and CMB maps. In both cases, calcu-
lations are based on simulations. Three spectra have been
considered to get Gaussian distributions of vector modes.
All these spectra have been normalized using the same
condition (see Sec. VI). Condition %+ ! 0 has been as-
sumed. It implies that vector modes decay during the

 

FIG. 4. Dotted, dashed, and solid lines correspond to different
simulations of the vector perturbations. The observer has been
located in the central part of the simulation box in the three
cases. Top, central, and bottom panels exhibit functions ! #'$
(for ( ! #=8 and z ! 2), ! #($ (for ' ! #=5 and z ! 2), and
! #z$ (for ( ! #=8 and ' ! #=5), respectively.
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matter dominated era. Using these decaying modes (the
worst situation to get large ! angles), two independent
cases have been considered: (1) vector modes are linear in
the redshift interval (0,2.6) and nonlinear for z > 2:6
(QSOs study), and (2) vector modes are linear in the
interval (0,1100) and nonlinear for z > 1100 (CMB analy-
sis); thus, the maximum rotations produced by linear
modes, for QSOs with z < 2:6, are obtained in case 1,
whereas the maximum Skrotskii effect for linear modes
and CMB maps appears in case 2.

For QSOs with z < 2:6 (case 2), the Skrotskii rotations
have reached values of a few degrees, which are too small
to explain the correlations and alignments strongly sug-
gested by the statistical analysis ([32,33]) of recent QSO
observations [19]. Only a small part of the effect could be
due to linear vector modes. Values of ! one order of
magnitude greater than those obtained from linear freely
decaying (%+ ! 0) vector modes would be necessary to
obtain correlations comparable to those suggested by re-
cent observations. These large rotations could be obtained
in various models, among them, let us list those based on
the existence of: (a) large scale nonlinear vector modes
with %+ ! 0 (see Sec. V), (b) anisotropic stresses, %+ !
0, produced by some unknown field, which could prevent

the free decaying of the involved modes (see Sec. IV B),
(c) branes in a 5D [2], and (d) topological defects [3]. More
work is necessary to analyze possibilities (a)–(d) in detail.
That is one of our main prospects.

For the CMB (case 1), the rms values of ! appear to be
of a few tenths of a degree. Future experiments designed to
measure B‘ quantities (for small ‘) could detect signals
smaller than the B polarization induced by the vector
modes we have considered. For small enough values of r,
the vector induced B signal could be either comparable or
greater than that produced by primordial gravitational
waves. This fact should be taken into account to interpret
observations of future satellites. Neither the amplitude of
the gravitational waves nor that of the vector modes are
known, which means that the effects produced by different
amplitudes of both FRW perturbations must be predicted
for comparisons.
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