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Recently, some Lemaı̂ tre-Tolman-Bondi metrics have been considered as models alternative to the dark
energy within the Friedmann-Lemaı̂ tre-Robertson-Walker universes. The vanishing of the intrinsic energy
of these metrics is examined since such a vanishing, in the present case and in general, could be interpreted
as a necessary condition to consider the possibility of the quantum creation of a metric. More specifically,
this vanishing is examined in the particular case where the Lemaı̂ tre-Tolman-Bondi metrics behave
asymptotically like a Friedmann-Lemaı̂ tre-Robertson-Walker universe. Finally, we deal with a particular
model ruled out after being confronted with cosmic observations. In a minimal agreement with this negative
result, leaving aside an unstable case, the value of the intrinsic energy of this particular model does not
vanish and becomes in fact minus infinite.
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I. INTRODUCTION

Out of the particular case where A0 ¼ 0 (see next
section), the Lemaı̂ tre-Tolman-Bondi (LTB) metric family
is the most general family of spherically symmetric metrics
in General Relativity, corresponding to a pressureless
matter source [1,2].
Some of these metrics have been used, in a cosmological

context, to describe large inhomogenous structures and the
anisotropies they produce on the cosmic background
radiation temperature [3–5] and, more recently, as models
alternative to the dark energy Friedmann-Lemaı̂ tre-
Robertson-Walker (FLRW) universes [6–15] (see also
the reviews [16,17] on the subject and beyond). The models
have been confronted with cosmological observations, and
the final conclusion of one of these papers [14] is that the
confrontation has become sufficiently constraining to “rule
out the whole class of adiabatic LTB models,” by testing a
particular LTB model hereafter called the constrained
García-Bellido-Haugbølle (CGBH) model.
On the other hand, from the beginning of the 1970s,

people have speculated on the possibility that the Universe
could have arisen from a vacuum quantum fluctuation
[18,19], an idea further developed by Vilenkin [20]. If this
had been the case, we could expect that the energy of
our Universe, P0, and also the corresponding linear
3-momentum, Pi, and angular 4-momentum, Jαβ, would
vanish (i; j; ::: ¼ 1; 2; 3 and α; β; ::: ¼ 0; 1; 2; 3). But it is
well known that the energy and momenta of a space-time in
General Relativity are dramatically dependent on the
coordinates used. So, which coordinates must be used in
order to calculate the specific two 4-momenta, Pα, Jαβ, that

have to vanish in the case of a creatable universe, that is, in
the case of a universe arising from a quantum fluctuation?
Our answer in [21] is that these specific coordinates have to
be intrinsic ones, defined as follows:
(a) First, they are Gauss coordinates in some region of the

considered space-time, covering the three-space boun-
dary. That is, in this region, the metric components g0α
take the values g00 ¼ −1, g0i ¼ 0. As is well known,
these are coordinates related to free-falling synchron-
ized observers (Gauss coordinates have been also
selected in [22] as the ones leading to a sound energy).

(b) Second, the corresponding linear 3-momentum, Pi,
and angular 3-momentum, Jij, vanish, the last one
irrespective of the momentum origin.

(c) Third, let it be the spacelike three-surface t ¼ t0≡
const:, with t the time coordinate. We denote this
three-surface by Σ3. Then, asymptotically, the three-
space metric, gij, approaches fast enough a manifestly
conformally flat metric (gij ¼ G2δij) when we
approach the boundary, Σ2, of Σ3. Of course, if the
space-time is asymptotically Minkowskian, the con-
formal factor is the unity.

Notice that in Gauss coordinates the time coordinate, t, is
the proper time of those falling observers. Furthermore, it is
a universal time. This means that distant readings of this
time, that are equal, correspond to events which are
physically simultaneous (see [23], epigraph 84). This could
be important in order to define a consistent energy, P0,
since, as is well known and we are going to see, its
expression [see (1)] is a three-volume integral taken in a
given time instant t. That is, the elementary partial con-
tributions to this integral are taken for the same t value, and
it would be a good thing that this common time instant
labeled physically simultaneous events. Therefore, it would
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be good to deal with a proper and universal time, i.e., with
Gauss coordinates, at least asymptotically, when calculat-
ing what we call here the intrinsic P0 energy value: by
definition, the one calculated in intrinsic coordinates. As far
as the energy, P0, is concerned, the term “intrinsic” refers to
the fact that this energy is, first, calculated for coordinates
whose corresponding linear and angular 3-momenta, Pi

and Jij, vanish and, second, since these coordinates are
associated with free-falling observers (local inertial ones)
that, in the present case of LTB metrics, are further
comoving with the source pressureless matter. Thus, these
observers add nothing extra to the considered space-time
(compare this situation with, for example, the static
observers in a static metric that would have to be prevented
of free falling by some virtual nongravitational action).
Therefore, we choose just these coordinates to define the
specific P0 energy and momenta, the intrinsic 4-momenta,
which must vanish if a given metric has to be quantically
creatable: that is, in our case, if some LTB metric had to be
quantically creatable.
These intrinsic coordinates can be proved to exist always

[21] for each constant value t ¼ t0 and, as mentioned
above, the corresponding linear and angular 4-momenta Pα

and Jαβ will be called intrinsic momenta. In all, the above
creatable universes would be space-times whose intrinsic
linear and angular 4-momenta, the last one irrespective of
the momentum origin, vanish.
We will make explicit the existence of intrinsic coor-

dinates in the particular case of the LTB and FLRWmodels
considered in the present paper. As we will see next, the
closed and flat FLRW universes have vanishing intrinsic
momenta, while the value of the intrinsic energy of the open
nonflat FLRW universe is −∞ [24]. Thus, in our parlance,
the two first ones could be creatable universes, but the last
one could not be. Furthermore, neither of the perturbed flat
FLRW universes in the frame of standard inflation might
be creatable, while the perturbed closed one could be
creatable [25]. Notice that discarding, as we actually do, the
physically perturbed flat FLRW model, because of its
noncreatable character (and so discarding the unperturbed
flat model itself) does not contradict the present standard
cosmological model where inflation leads to a FLRW
universe with a, perhaps, tremendously small curvature,
but not necessarily a strictly vanishing one.
Let us point out that the starting point for our definition

of the intrinsic momenta of a space-time is the Weinberg
energy-momentum complex [26]. There are many com-
plexes present in the literature on the subject, but in [27] we
have explained why we have selected, among all of them,
the one from Weinberg, from which some specific expres-
sions for the energy, P0, the linear 3-momentum, Pi, and
angular 4-momentum, Jαβ, can be deduced. These expres-
sions involve three-space volume integrals that in the
particular case of P0 read

P0 ¼ 1

16π

Z
∂ið∂jgij − ∂igÞd3x; (1)

where the gravitational constant has been taken equal to 1,
g≡ δijgij and the summation on repeated indices is
performed with the Kronecker δ. This defined P0 coincides
(after writing it as a two-surface integral on the above Σ2

boundary) with the well-known Arnowitt-Deser-Misner
energy [28].
Assuming that an existing universe has to be creatable is

an attempt at saying something about our Universe all
along its existence from just after the big bang. It can also
supply us with criteria for, from the beginning, tentatively
discarding, as good candidates for good cosmological
models, all metrics in General Relativity having any non-
vanishing intrinsic moment component. This would be the
case in the present paper with the observationally discarded
CGBH model of the Universe. This discarding could have
been suggested from the very beginning because of the
physically noncreatable character of this model. In the
present paper, we will characterize the LTB metrics that
could be, in principle, creatable ones, by characterizing the
ones whose two intrinsic 4-momenta vanish.

II. THE LTB METRICS AND THE GENERAL
EXPRESSION FOR THEIR ENERGY

The LTB metric class [1,2] can be written as [10]

ds2 ¼ −dt2 þ A0ðt; rÞ2

1 − kðrÞ
dr2 þ A2dσ2 ≡ −dt2 þ dl2; (2)

with dσ2 ¼ dθ2 þ sin2 θdϕ2 and where A and k are
functions of the corresponding arguments satisfying the
Einstein field equations, with A0 ≡ ∂rA and k < 1. This
family of metrics describes the spherical solutions of the
Einstein field equations with a pressureless matter source
[1,2]. We can see that the coordinates used are adapted to
this spherical symmetry. Furthermore, they are Gauss
coordinates; that is, for the metric components g0α we
have g00 ¼ −1, g0i ¼ 0, such that the observers associated
to these coordinates are synchronized free radially falling
observers comoving with the pressureless matter source.
We will assume that A0 exists and is different from zero

everywhere, except perhaps for r ¼ 0. Note that from (2)
we recover the FLRW metrics by putting A ¼ aðtÞr,
k ¼ κr2, with a the corresponding expansion factor and
κ the curvature index, κ ¼ 1, 0, −1.
Because of the manifest spherical symmetry of the

metric (2), its linear 3-momentum, Pi, and its angular
3-momentum, Jij, relative to the center r ¼ 0, vanish (see
in detail the case of Jij at the end of Sec. V). Thus, the
coordinates used in (2) will be intrinsic coordinates, as
defined above, provided that the r coordinate be such that
dl2 becomes in the boundary of the corresponding three-
space a manifest conformally flat metric. Then, we are left
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with the question of whether the energy, P0, calculated in
such coordinates, that is, the intrinsic energy, vanishes or
not in order to conclude if a particular LTB metric could be
creatable or not.
According to some general expressions given in [29], the

expression for the P0 energy of the metric (2) becomes

P0 ¼ 1

2
lim
r→∞

!
ðA − rA0Þ2

r
þ krA02

1 − k

"
; (3)

where we have put both the gravitational constant and the
speed of light equal to 1.
To obtain this expression one must transform the three-

space integral giving P0 in (1) into a two-surface integral on
the boundary of this three-space by applying Gauss
theorem. To apply this theorem we need that the metric
be regular enough: the three-space derivatives of the three-
space metric must be continuous.1 Thus, we will assume
not only that, except for r ¼ 0, A00 in (2) exists everywhere
and is different from zero, but further that A00 is continuous,
and that there is no intrinsic singularity at r ¼ 0.
As remarked above, since we want this energy P0 to be

an intrinsic one, we must use in (3) an r coordinate such
that dl2 in (2) can be asymptotically conformally flat in a
manifest way. This is what we are going to discuss in the
next section.

III. LTB METRICS IN ASYMPTOTIC
CONFORMALLY FLAT COORDINATES

Let us make a transformation of the radial coordinate r in
(2), going to a new radial coordinate ρ, trough a time
independent function, that is r → ρ ¼ ρðrÞ. We will chose
this function such that the three-space metric, dl2, becomes
in the new radial coordinate asymptotically conformally
flat in a manifest way for any constant time t0. That is,

dl2ðt ¼ t0; ρ → ρbÞ ≃ G2ðt0; ρb; ρÞδijdρidρj

¼ G2ðdρ2 þ ρ2dσ2Þ; (4)

where ρi is such that δijρiρj ¼ ρ2 and where ρ ¼ ρb ≡
ρbðt0Þ is the equation of the radial boundary, Σ2, of the
space-time given by the metric ds2 in (2) at t0. We know
such a radial coordinate to exist since in [21,24] it has been
proved on general grounds for every such constant time

t ¼ t0. This existence is obvious in the particular case of the
LTB metrics which behave asymptotically like FLRW
universes (see next Sec. IV).
Then, by simply comparing (4) with (2), we obtain

A0ðt0; ρ → ρbÞ2

1 − kðρ → ρbÞ
≃ G2ðt0; ρ → ρbÞ; (5)

ρ2bG
2ðt0; ρ → ρbÞ ≃ A2ðt0; ρ → ρbÞ: (6)

We will write these two equations more compactly by
putting

A02

1 − k
≃ G2; A2 ≃ ρ2G2: (7)

These asymptotic equations give trivially

k ≃ 1 − ρ2
A02

A2
; (8)

which, since k only depends on ρ, means that asymptoti-
cally the function ρ2A02=A2 does not depend on t0.
Then, let us calculate the intrinsic energy P0 of any LTB

metric that is P0 calculated in coordinates such that we have
(4). Since we have assumed at the beginning of Sec. II that
our LTB metrics are regular enough, we can, using Gauss
theorem, write (1) as the two-surface integral on the
corresponding boundary,

P0 ¼ 1

16π
lim
ρ→ρb

Z
ð∂jgij − ∂igÞniρ2 sin θdθdϕ; (9)

with ni ≡ ρi=ρ.
Since now we have asymptotically dl2 ≃

G2ðt0; ρÞδijdxidxj, P0 becomes

P0 ¼ −
1

8π
lim
ρ→ρb

Z
∂iG2niρ2 sin θdθdφ

¼ −
1

2
lim
ρ→ρb

ðρ2∂ρG2Þ; (10)

or what is equivalent, according to the second equation
of (7),

P0 ¼ 1

2
lim
ρ→ρb

ð2ρ−3A2 − ∂ρA2Þ: (11)

Equalizing to zero, this P0 expression allows us to fully
characterize the family of LTB metrics whose two
4-momenta vanish for any constant time t0. For instance,
if ρb ¼ ∞, then G2 ∼ 1

ρp with p > 1 gives P0 ¼ 0. This
situation describes all the corresponding creatable LTB
universes when ρb ¼ ∞, although there is still another
particular case in which P0 ¼ 0: i. e., the one in which G
does not depend on ρ.

1If there are no intrinsic singularities in the integration three-
volume, there always exist coordinates in which the Gauss
theorem can be applied, provided that we assume, as it is always
done, that the differentiable manifold of the General Relativity is
C2 class by pieces. Nevertheless, in the present work, we only
have to use intrinsic coordinates. Then, the C2 class by pieces
character could not be fulfilled if we are restricted to only use
these intrinsic coordinates. Therefore, for intrinsic coordinates,
the above regularity condition in order to apply Gauss theorem
should be verified in each case for the particular metric used.
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IV. THE LTB METRICS BEHAVING
ASYMPTOTICALLY AS FLRW UNIVERSES

Imagine that function A factorizes as we approach the
boundary, Σ2, of the three-space. That is, we have near Σ2,

Aðt; ρÞ ≃ aðtÞfðρÞ: (12)

Having in mind this factorization, the Einstein field
equations (see for example [10]),

A
: 2 þ 2AA

::
þ k ¼ 0; (13)

2
A
::

A
þ A0

::

A0 ¼ −4πρM; (14)

become asymptotically

a
: 2 þ 2aa

:: ¼ ρ2
f02

f4
−

1

f2
(15)

and

a
::

a
¼ − 4

3
πρMðtÞ; (16)

respectively, with ρMðtÞ ¼ ρMðt; ρ → ρbÞ, and ρMðt; ρÞ the
matter density.
From (15) we obtain

a
: 2 þ 2aa

:: ¼ C; ρ2
f02

f4
−

1

f2
¼ C; (17)

with C an arbitrary constant.
Equation (16) and the first equation of (17) are

equivalent to the two dynamical cosmic equations for
the expansion factor, aðtÞ, of a FLRW with −C curvature,
i.e., equivalent to (16) jointly with

#
a
:

a

$
2

¼ 8πρM
3

þ C
a2

: (18)

As far as the second equation of (17) is concerned, its
general solution is

f ¼ 2Bρ
1 − B2Cρ2

; (19)

with B an arbitrary constant. This gives for G the
expression

G2ðt; ρÞ ¼ a2ðtÞ 4B2

ð1 − B2Cρ2Þ2
: (20)

Then, let us change to the new radial coordinate ~ρ ¼ − 2
BCρ.

We obtain for the asymptotic value of this ds2 metric

ds2 ¼ −dt2 þ a2ðtÞ
δijd~ρid~ρj

ð1 − C~ρ2=4Þ2
: (21)

That is, all LTB metrics satisfying (12) reduce asymp-
totically to a FLRW universe: close, open or flat according
to whether it is C < 0, C > 0, or C ¼ 0, respectively.
Actually, from (21), we obtain the corresponding standard
form

ds2 ¼ −dt2 þ a2ðtÞ
#

dr2

1þ Cr2
þ r2dσ2

$
; (22)

by making the coordinate transformation

r ¼
~ρ

1 − C~ρ2=4
: (23)

According to previously obtained results (see [24] for
example), the intrinsic energy, P0, of a closed or flat FLRW
universe vanishes, while it gets a −∞ value for the open
nonflat one. Then, it becomes obvious that P0 ¼ 0 for any
LTB metric behaving asymptotically like a closed FLRW
universe, and P0 ¼ −∞ when it behaves asymptotically
like an open nonflat one. But what about the case where the
LTB metric approaches asymptotically a flat FLRW uni-
verse? We deal with this question in the next section.

V. THE PARTICULAR CASE OF THE LTB
METRICS ASYMPTOTICALLY BEHAVING

LIKE A FLAT FLRW UNIVERSE

In Refs. [13,14], the corresponding authors explore the
possibility that we live close to the center of a large void,
i.e., close to the center of a suitable LTB model, as an
alternative to the prevailing interpretation of the Universe
acceleration in terms of a ΛCDM model with a dominant
dark energy component. They confront this possibility with
a series of cosmological observations through two versions,
the flat and the open ones, of the CGBHmodel cited above,
the first (second) version becoming asymptotically a flat
(an open nonflat) FLRW universe without cosmological
constant. The CGBHmodel, in its two versions, is ruled out
as a result of the confrontation.
Because of the asymptotic behaviour of the open nonflat

version of this CGBH model, this intrinsic energy P0 has to
be −∞. This result is in minimal accordance with the
reported ruling out of this version by observational reasons
(remember that, in our frame, universes with at least one of
the components of their intrinsic 4-momenta different from
zero would not be a good candidate to be quantically
creatable). Of course, getting P0 ¼ −∞ from this asymp-
totic behavior assumes that the metric of this open nonflat
version is everywhere regular enough in order to apply the
Gauss theorem. The same question will be raised below, in
the present section, for the flat version. We will postpone to

RAMON LAPIEDRA AND JUAN ANTONIO MORALES-LLADOSA PHYSICAL REVIEW D 89, 064033 (2014)

064033-4



the end of this section the proof that, in both cases, the
theorem becomes applicable.
But, what about the asymptotic flat version of the CGBH

model? In the present section, we will see that in this case
the intrinsic energy P0 vanishes or not depending on how
fast the flat version of the CGBH model approaches
asymptotically a flat FLRW universe.
Then, let us compare the LTB metric (2) with its flat

FLRW universe limit for r → ∞. Having in mind the
expression ds2 ¼ −dt2 þ aðtÞ2ðdr2 þ r2dσ2Þ for this flat
FLRW metric, we easily obtain

Aðt; r → ∞Þ ≃ aðtÞr; lim
r→∞

kðrÞ ¼ 0: (24)

Notice that because of this asymptotic character, the
coordinates in (2) are asymptotic conformally flat coor-
dinates for dl2. Consequently, they are intrinsic coordinates
(they fulfill the three conditions ðaÞ − ðcÞ defining the
notion of intrinsic coordinates in the Introduction) and the
corresponding P0 energy we are going to calculate will be
the intrinsic energy.
Because of (24), the partial contribution to P0, in (3),

coming from the term containing the k function is

1

2
lim
r→∞

rkA02

1 − k
¼ a2

2
lim
r→∞

rk
1 − k

¼ a2

2
lim
r→∞

ðrkÞ; (25)

whose actual value depends on how fast k vanishes when
r → ∞. Then, in accordance with [13], let us define the
function ΩMðrÞ, that generalizes the matter cosmic param-
eter, Ω, of the FLRW cosmology, by writing kðrÞ like

k≡ A
: 2
0ðΩM − 1Þ; (26)

with A
:

0 ≡ ∂tAðt ¼ t0; rÞ and t0 the cosmic present time.
The value of this function for the asymptotic flat version

of the CGBH model is [13]

ΩM ¼ Ωout þ ðΩin − ΩoutÞ
1 − tanh½ðr − r0Þ=2Δr&
1þ tanhðr0=2ΔrÞ

; (27)

with Ωout ¼ 1 (Ωout < 1, for the open nonflat case), where
Ωin, r0, and Δr are parameters to be fitted by cosmological
observations. In particular, r0 characterizes the void size,
near whose center we are assumed to be placed, and Δr the
transition to uniformity.
From (27), we easily obtain

ΩMðr ≫ ΔrÞ − 1 ≃ λe−r=Δr; (28)

with

λ≡ 2er0=Δr

1þ tanhðr0=2ΔrÞ
ðΩin − 1Þ: (29)

Then, from (26) and the first equation of (24) we have

kðr ≫ ΔrÞ ≃ λa
: 2
0r

2e−r=Δr: (30)

According to (25), this asymptotic behavior of k means
that the contribution to P0 in (3) from the term involving k
vanishes. Thus, in order to calculate P0 for the asymptotic
flat version of the CGBH model, we are left with the
remaining contribution from the term dealing with the
function A. To calculate this contribution we have to make
explicit how fast A approaches aðtÞr [see the first equation
of (24)] when r → ∞. The easiest way to make this is to use
one of the Einstein field equations (13) and (14) for the LTB
metrics (2).
More precisely, we will consider Eq. (13) for r → ∞,

where, as we have just seen, k behaves like k ∼ r2e−r=Δr,
jointly with the parametric A value for the asymptotically
flat CGBH model [13,14], i.e.,

Aðt; rÞ ¼ ΩM

2ð1 −ΩMÞ
ðcosh η − 1Þr; (31)

H0ðrÞt ¼
ΩM

2ð1 −ΩMÞ3=2
ðsinh η − ηÞ; (32)

with η a positive real parameter, η ∈ ð0;þ∞Þ, and

H0ðrÞ ¼
3H0

2ð1 − ΩMÞ

"

1 −
ΩMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −ΩM

p sinh−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −ΩM

ΩM

s #

;

(33)

with the inserted factor 3=2 allowing us to obtain the
Hubble constant H0, for H0ðr → ∞Þ. Finally, ΩM is given
by (27) with Ωout ¼ 1.
Then, in accordance with (24), let us write the asymp-

totic form of A as

Aðt; r → ∞Þ ¼ aðtÞr½1þ εðt; rÞ&; (34)

where ϵ is a function of t and r such that limr→∞
ϵ
rp ¼ 0 for

any t value and for any p > 1. This asymptotic expression
for A would guarantee the vanishing of the corresponding
contribution to the intrinsic value of P0. In the Appendix
we show that A has actually such an asymptotic behavior
since we obtain

ϵðt; r → ∞Þ ∼ e−r=Δr: (35)

Then, the resulting asymptotic form for A when r → ∞
leads to

lim
r→∞

ðA − rA0Þ2

r
¼ 0; (36)
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and so to the final vanishing of the intrinsic energy of the
asymptotically flat CGBH model.
It seems, then, that the asymptotically flat CGBH

cosmological model could be quantically creatable.
However, we are going to see in Sec. VI that this vanishing
of P0 is a dramatically nonstable result. We will account for
this limitation by saying that the model is physically
noncreatable.
But, according to the general considerations on the

applicability of the Gauss theorem, made at the end of
Sec. II (including footnote 1), we will show before going
into Sec. VI that the metric of both versions of the CGBH
model is regular enough to allow for the application of this
theorem: we need to apply the theorem to go from (1) to (9)
in order to calculate P0. In our case, a sufficient condition
for the theorem is that the first r derivatives of the three-
space metric components of the LTB metric (2) be
continuous functions everywhere. In the particular case
of the CGBH model, this means that the second r
derivatives of Aðt; rÞ given by (31), (32), (33), and (27),
is continuous, and the same for the first r derivative of kðrÞ
given [13] by kðrÞ ¼ r2H2

0ðrÞ½ΩMðrÞ − 1&.
But notice that to begin with, the function ΩMðrÞ is

infinitely derivable since it is essentially tanh r. On the
other hand, the first r derivative of the function
sinh−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 −ΩMÞΩ−1

M

p
in (33), when calculated, gives

the value −ð1=2ÞΩ0
MΩ−1

M ð1 −ΩMÞ−1=2. Then, it is straight-
forward to see that the function H0ðrÞ given by (33) has a
continuous first r derivative everywhere, out perhaps of
ΩM ¼ 0 and ΩM ¼ 1. But, by definition ΩM ≠ 0 (notice
[14] that ΩM ≡ ρ̄ðrÞ=ρc, where ρc ≡ 3H0ðrÞ=8π is the
critical density and ρ̄ðrÞ ¼ ð1=VÞ

R
r
0 4πr

02ρðr0; t0Þdr0, with
V ¼ 4πr3=3). Further, there is no physical singularity for
ΩM → 1, since in this case we simply recover asymptoti-
cally the corresponding flat FLRW limit. Then, in H0ðrÞ
given by (33), we can leave out the particular ΩM values
ΩM ¼ 0, ΩM ¼ 1, so that H0ðrÞ is continuous everywhere.
In all, k0ðrÞ is a continuous function as we wanted to prove.
Now, let us prove the continuity of A00ðt; rÞ. In order to

do this, let us write Eq. (32) as

sinh η − η ¼ 2tH0ðrÞΩ−1
M ð1 − ΩMÞ3=2 ≡ tχðrÞ; (37)

where χðrÞ≡ 2H0ðrÞΩ−1
M ð1 −ΩMÞ3=2.

But the function sinh η − η of η is infinitely r derivable,
monotonously increasing from 0, for η → 0, to þ∞, for
η → þ∞. Then, the corresponding inverse function of r,
η ¼ fðtχÞ, is unique and infinitely derivable.
Thus, let us calculate A0ðt; rÞ from (31),

A0ðt; rÞ ¼ 1

2

&!
rΩM

1 −ΩM

"0
ðcosh f − 1Þ þ rΩMf0

1 −ΩM
sinh f

'
;

(38)

where cosh f and sinh f are infinitely derivable functions of
r and the same for f0 ≡ χ0∂χf according to the above
reasoning. Then, by a mere inspection of (38) we can see
that (out of ΩM ¼ 0 and ΩM ¼ 1, as it is due) A00 exists and
is continuous.
Therefore, the sufficient regularity conditions to apply

Gauss theorem to (1) are fulfilled.
Before finishing the present section, let us see in detail

how the explicit spherical symmetry of a four-metric in
Gauss coordinates leads to the vanishing of the correspond-
ing Jij, as announced at the beginning of Sec. II. Notice
that, because of this symmetry, when using rectilinear
coordinates at the space infinity r → ∞, the three-space
metric, gij, has the asymptotic form

gij ¼ αðt; rÞδij þ βðt; rÞninj; ni ¼
xi
r

r ¼ ffiffiffiffiffiffiffiffi
xixi

p
;

(39)

where αðt; rÞ and βðt; rÞ are two functions of t and r.
On the other hand, and similar to expression (9), starting

from the Weinberg complex [26], we obtain for Jij referred
to the angular momentum origin r ¼ 0, the following
general expression as a two-surface integral on the boun-
dary r → ∞ of the three-space,

Jij ¼ 1

16π
lim
r→∞

!
r3
Z

ðnjg
:
ki − nig

:
kjÞnk sin θdθdϕ

"
: (40)

Of course, we need to apply the Gauss theorem to the
corresponding three-volume integral in order to obtain (40).
In our case, having just proved above that kðrÞ is regular
enough, this requires as a sufficient condition that A

: 0 be a
continuous function of r. But from (38) we obtain

A
: 0ðt; rÞ ¼ rΩMf

:
sinh f

2ð1 − ΩMÞ
¼ rΩMχ sinh f

2ð1 − ΩMÞ
df

dðtχÞ
; (41)

which, for reasons similar to the ones explained above to
conclude the everywhere continuity of A00, is an everywhere
continuous function of r. Therefore, we can write (40) for
Jij referred to the angular 3-momentum origin r ¼ 0.
Finally, we can substitute (39) in (40) and obtain Jij ¼ 0
since it is obvious that now the integrand vanishes
identically.
But, what if we shift the angular 3-momentum origin

from the above value r ¼ 0 to r ¼ ffiffiffiffiffiffiffiffi
aiai

p ≡ a, where ai are
the components of a constant three-vector? We will have in
an evident notation

J̄ij ¼ 1

16π
lim
r→∞

!
r2
Z

ðx̄jg
:
ki − x̄ig

:
kjÞnk sin θdθdϕ

"
(42)

where x̄j ≡ xj þ aj.
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A sufficient condition to have J̄ij ¼ 0 irrespective of the
chosen angular 3-momentum origin, that is, irrespective of
the constant value ai, is to have:

Ii ≡
Z

g
:
kink sin θdθdϕ ¼ 0: (43)

But, according to (39), this integral actually becomes

Ii ¼ ðα: þ β
:
Þ
Z

ni sin θdθdϕ ¼ 0; (44)

since identically
R
ni sin θdθdϕ ¼ 0.

Thus, for any manifestly spherically symmetric four-
metric in Gauss coordinates, Jij vanish identically irre-
spective of the chosen angular 3-momentum origin.
For completeness we can report that J0i vanish too,

irrespective of the chosen origin of angular 4-momenta,
simply because in the present case P0 ¼ 0 and Pi ¼ 0.
This double vanishing happens too for the CGBH model

in intrinsic coordinates, since in such a particular case,
aside from being P0 ¼ 0 and Pi ¼ 0, Eq. (39) reduces to
gij ¼ αðt; rÞδij, as it must according to the intrinsic
coordinate definition (see point c of this definition in the
Introduction).
The reader can see that asymptotically gij ¼ αðt; rÞδij

for the open nonflat version of the CGBH model by
consulting (21) for C > 0. For the flat version, this
asymptotic behavior, gij ¼ αδij, becomes obvious by
having in mind (30), (34), and (35).

VI. THE INSTABILITY OF THE ENERGY
VANISHING FOR A LTB METRIC BEHAVING

ASYMPTOTICALLY AS A FLAT FLRW
UNIVERSE: DISCUSSION AND CONCLUSION

Let us come back to the open nonflat FLRWmetric in the
form (21) with C normalized to the corresponding value
C ¼ 1. The coordinates used are then intrinsic ones and,
according to (10), the intrinsic value of P0 becomes,

P0 ¼ −
a2

2
lim
ρ→2

!
ρ2

d
dρ

ð1 − ρ2=4Þ−2
"
¼ −∞; (45)

since in this case it is ρb ¼ 2.
Therefore, P0, whose value for the asymptotically flat

CGBH model (Sec. V) was zero, jumps to a minus infinite
value, P0 ¼ −∞, when an elementary shift of the C
constant from its original value is performed, or what is
the same, when a shift from Ωout ¼ 1 (see (27)) to the new
value Ωout < 1 is performed as close to 1 as we want.
Thus, in the frame of a hypothetical quantum creation of

a universe (this universe being constrained to have vanish-
ing energy in accordance with, for example, authors like
Tryon [19] or Vilenkin [20]), the resulting vanishing of P0

for this asymptotically flat CGBH model could be

considered as an unstable result, and so the quantum
creation of this asymptotically flat model could perhaps
have a vanishing probability. All this is, of course,
compatible with some inflationary process leading to a
universe extremely (but not exactly) flat, as is the case in
the present cosmological standard model. Then, though in
our frame this flat model could be strictly speaking a
creatable one, we can consider and denote it, jointly with
the asymptotically nonflat open CGBH model, as physi-
cally noncreatable universes. All this could be seen in
accordance with the fact that this model is ruled out by its
confrontation with cosmological observations [13,14]. In
conclusion: had this confrontation not taken place, in view
of this physical noncreatable character, we could have
predicted a subsequent negative result, not as a true
prediction but as some plausible suggestion.
Furthermore, assuming a negative value for the constant

C in (21) and normalizing to C ¼ −1 we obtain the closed
FLRW metric in three-space conformal flat coordinates:

ds2 ¼ −dt2 þ a2ðtÞ
δijdρidρj

ð1þ ρ2=4Þ2
: (46)

The boundary limit ρb is now ρb ¼ ∞. Then, using the
expression (10), we straightforwardly obtain P0 ¼ 0; that
is, the LTB metric approaching asymptotically the closed
FLRWmodel could be creatable. Thus, we could ask if this
“closed” LTB model would not be better entitled than the
CGBH one to be observationally tested as a model of the
void universes considered in the present paper. Actually,
aside with other models, the “closed” LTB model has been
tested in [12], without fully conclusive results. But,
obviously, the possible creatable character of this model,
by itself, could not avoid that finally the model was ruled
out by observations. In fact, as stated in [12], “in practice
we could always approximate the correct answer by setting
Ωk to a small nonzero value.”
Nevertheless, according to [30] (cf. [31] and references

therein), it seems that the kinematic Sunyaev-Zel’dovich
effect puts further severe limitations on the viability of
simple LTB void models, irrespective of their asymptotic
(closed, open, or flat) character and the constraining
requirement of a homogeneous universe age.
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APPENDIX A: CALCULATING
THE ϵðt;rÞ FUNCTION

We start from (13), that is, A
: 2 þ 2AA

::
þ k ¼ 0, and from

(30), that is, kðr ≫ ΔrÞ ≃ λa0
: 2r2e−r=Δr. Then we write A

as A ¼ aðtÞr½1þ ϵðt; rÞ& with aðtÞ ¼ ðt=t0Þ2=3. After an
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elementary calculation, neglecting quadratic terms in ϵ, we
find

1

r2
ðA
: 2 þ 2AA

::
Þ ≃ ða: 2 þ 2aa

::Þð1þ 2εÞ þ 2aðaε:: þ 3a
:
ε
: Þ:

(A1)

But we have a
: 2 þ 2aa

:: ¼ 0. Then, Eq. (13) becomes for
large values of r

2aðaϵ:: þ 3a
:
ϵ
: Þ ≃ −a: 02λe−r=Δr; (A2)

which in accordance with aðtÞ ¼ ðt=t0Þ2=3 can be written as

ða3ϵ: Þ_≃ −
2

9t02
λe−r=Δr; (A3)

whose general solution for large values of r (r ≫ Δr) is

ϵðt; rÞ ¼ gðrÞαðtÞ þ hðrÞ; (A4)

with

gðrÞ ¼ −
2

9t02
λe−r=Δr; (A5)

where hðrÞ is an arbitrary function, and αðtÞ is the general
solution of

ða3a: Þ_¼ a; (A6)

that is to say,

α ¼ 9

10
t04=3t2=3 þ μt02t−1 þ ν; (A7)

with μ and ν two arbitrary constants.
Substituting this expression of α in (A4), we obtain, for

large values of r but for any time,

ϵðt; rÞ ¼ −
!
1

5
aþ 2

9

#
μ
t
þ ν
t02

$"
λe−r=Δr þ hðrÞ: (A8)

Then, in order to fix both arbitrary constants, μ and ν,
and the arbitrary function hðrÞ, let us come back to the
CGBH model, more precisely, to Eqs. (31) and (32). For
small η values, that is, for small t values, we obtain

Aðt; rÞ ≃
#
3

2

$
2=3

Ω1=3
M ðrÞH2=3

0 ðrÞrt2=3; (A9)

where we can substitute ΩM by its asymptotic expression
from (28).
Furthermore, having in mind (27) with Ωout ¼ 1 and

(33), after an elementary calculation, we obtain the follow-
ing asymptotic value:

Hðr ≫ ΔrÞ ≃ H0

#
1 −

1

5
λe−r=Δr

$
: (A10)

Carrying this expression to (A9) we obtain for large
values of r and small values of t,

Aðt; rÞ ≃ ar
!
1þ 1

5
ð1 − aÞλe−r=Δr

"
: (A11)

Finally, through the relation A ¼ arð1þ ϵÞ, let us
compare this approximated expression of Aðt; rÞ with
ϵðt; rÞ, given by (A8). We obtain for large values of r,
but for any time,

ϵ ≃ 1

5
λð1 − aÞe−r=Δr; (A12)

which is in accordance with Eq. (35).
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