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Two-Higgs-doublet models (2HDMs) are minimal extensions of the Standard Model (SM) that may still
be discovered at the LHC. The quartic couplings of their potentials can be determined from the
measurement of the masses and branching ratios of their extended scalar sectors. We show that the
evolution of these couplings through renormalization group equations can determine whether the observed
2HDM is a low energy manifestation of a more fundamental theory, as for instance, supersymmetry, which
fixes the quartic couplings in terms of the gauge couplings. At leading order, the minimal supersymmetric
extension of the SM (MSSM) dictates all the quartic couplings, which can be translated into a predictive
structure for the scalar masses and mixings at the weak scale. Running these couplings to higher scales, one
can check if they converge to their MSSM values, and more interestingly, whether one can infer the
supersymmetry breaking scale. Although we study this question in the context of supersymmetry, this
strategy could be applied to any theory whose ultraviolet completion unambiguously predicts all scalar
quartic couplings.
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I. INTRODUCTION

Despite several theoretical and experimental motivations
for new physics beyond the standard model (BSM), the
LHC data on the production and branching ratios of the
Higgs boson are tantalizingly close to their SM predictions
[1–4], yet to reveal any convincing sign of life beyond it.
Although it is entirely possible that no new physics exists
between the electroweak and the grand unification or
Planck scales, modulo some dark matter source, this grand
desert scenario carries with it many unpleasant features

such as the hierarchy between the electroweak and Planck
scale, lack of gauge unification, etc.
From a rather pragmatic point of view, a vital question in

motivating collider searches for BSM physics above the
electroweak scale (EWS) is whether we can foretell the
approximate mass range where new particles are expected
to appear. This is precisely the hurdle most new physics
models fail to cross. Predicting the existence of many new
particles, most such models provide guidance on what to
look for, leaving no clue, unfortunately, on where.
Therefore, any principle that gives some idea of the
probable mass scales of the new particles deserves special
attention from a phenomenological point of view. The
present article is an attempt in this direction.
Amongst the vast array of BSM scenarios, extensions of

the SM scalar sector have been explored with various
motivations, e.g. for generating the necessary additional
CP violation to account for the observed baryon asymme-
try of the Universe. In these models, the 125 GeV Higgs
boson just happens to be one of the scalars in the spectrum,
the others yet to be discovered. Phenomenologically, two-
Higgs-doublet models (2HDMs) provide one of the sim-
plest realizations in this category, wherein the scalar sector
of the SM is augmented by just one additional doublet
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[5,6]. Aside from their simplicity, these models have the
desirable property that the oblique electroweak ρ-parameter
remains unity at the tree level, along with providing an
alignment limit [7–11], where a SM-like Higgs can be
recovered. Quite notably, the minimal supersymmetric
extension of the SM (MSSM) [12–17] is structured around
two such Higgs doublets.
In view of the increasing affinity of the LHC Higgs data

to the SM-predicted values, the ability to attain the align-
ment limit might hold the key for future survival of any
such new physics model. Let us suppose that the only hint
of new physics from forthcoming data somehow points
towards a 2HDM structure, either directly or indirectly. If
the 2HDM is viewed as an effective low energy model
arising from a more fundamental ultraviolet (UV) theory, it
would be interesting to ask whether the knowledge of the
2HDM potential at LHC scales can give us any hint of its
embedding in a particular UV scenario, containing massive
states sitting at an inaccessibly high scale.
Under the assumption of CP conservation, 2HDMs

predict the existence of five physical scalars: two CP-even
(h and H), one CP-odd (A) and a pair of charged scalars
(H�). We assume that the lightest CP-even scalar (h) is the
one already discovered with a mass ∼125 GeV. Its SM-like
properties, as LHC data indicate, compel us to stay close to
the alignment limit. However, it is still possible that the
nonstandard scalars might all be lurking below the TeV
scale waiting to be discovered at the LHC. In that case, we
would, in principle, be able to measure all the parameters of
the 2HDM scalar potential. By studying the renormaliza-
tion group (RG) evolution of these parameters, we would
then be able to test whether the 2HDM is a low energy
manifestation of a more fundamental theory with an
enhanced symmetry at a high scale, ΛS.
In this paper, we focus our attention on the MSSM

framework as a well motivated example in this category.
A high supersymmetry (SUSY) breaking scale may seem to
run contrary to the common lore of its solution to the
hierarchy problem and arriving at the correct 125 GeVmass
for the light Higgs. Nevertheless, viewed as a 2HDM
effective theory, achieving the correct mass for the Higgs
can be translated into obtaining the correct value for its
quartic couplings when matched and run down from ΛS to
the EWS. Indeed, such “high scale SUSY” scenarios have
been studied before in the literature, both in the case where
the effective theory below the SUSY scale is strictly the SM
[18–22], or a 2HDM in the context of a moderately high
SUSY scale ΛS ∼ 104 GeV [23–27]. It was found that, in
both scenarios, solutions indeed exist for low values of
tan β. Larger values of ΛS have also been considered in
[28–31] where the 2HDM spectrum was obtained by
matching the 2HDM to the MSSM at the ΛS scale and
running it down to the EWS. These studies have been done
using state of the art calculations (matching at one loop plus
dominant two loops, and running at two loops). On the

contrary, here we follow a bottom-up approach by assum-
ing that the spectrum of scalar masses and mixings will be
measured at the EWS from where the scalar potential can
be determined. Then, we run the quartic couplings of the
potential, using the 2HDM renormalization group equa-
tions (RGE) [32–34] as implemented by SARAH 4 [35], and
check if they satisfy the SUSY boundary conditions at a
higher scale, as usually done in grand unified theories. This
approach has the advantage that it is independent of the
details of the underlying theory which are hidden in the
matching conditions at the high scale.

II. EFFECTIVE 2HDMS AND PARAMETER
COUNTING

The most general gauge invariant potential built with
two SU(2) doublet scalars (with hypercharge Y ¼ þ1),
ϕ1 and ϕ2, can be written as [7]

V¼m2
11ϕ

†
1ϕ1þm2

22ϕ
†
2ϕ2− ðm2

12ϕ
†
1ϕ2þH:c:Þþλ1

2
ðϕ†

1ϕ1Þ2

þλ2
2
ðϕ†

2ϕ2Þ2þλ3ðϕ†
1ϕ1Þðϕ†

2ϕ2Þþλ4ðϕ†
1ϕ2Þðϕ†

2ϕ1Þ

þ
�
λ5
2
ðϕ†

1ϕ2Þ2þðλ6ðϕ†
1ϕ1Þþλ7ðϕ†

2ϕ2ÞÞðϕ†
1ϕ2ÞþH:c:

�
:

ð1Þ

This potential contains three mass parameters and seven
quartic couplings, understood as M̄S parameters at the
EWS arising from a more complete theory at higher
energies. If m12, λ5, λ6, λ7 are all zero, the potential has
an additional U(1) global symmetry [36]. If onlym12, λ6, λ7
are zero the U(1) is broken but there remains an unbroken
discrete Z2 symmetry. If only λ6, λ7 are zero, then this
discrete symmetry is softly broken bym12. Models in which
this Z2 is also preserved by the Yukawa couplings (with ϕ1

coupled only to down-type fermions and ϕ2 only to up-type
fermions) are called type II 2HDMs. This discrete sym-
metry is useful for avoiding large flavor changing neutral
currents and appears, as an approximate symmetry, in
supersymmetric models.
We assume that all the parameters in the potential are

real. After electroweak spontaneous symmetry breaking
(SSB), one obtains the physical spectrum, specified by
seven parameters: the four physical scalar masses (mh, mH,
mA and mþ), the total vacuum expectation value (vev)
v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
, tan β ¼ v2=v1, and the alignment angle

cosðβ − αÞ (here α is the mixing angle in the CP-even
sector).
In principle, the whole spectrum can be determined from

knowledge of the quartic couplings. Consider the situation
where all the quartic couplings in Eq. (1) are known (from
some symmetry principle, e.g. supersymmetry) at a scaleΛS.
Then the remaining three bilinear parameters can be solved
from the knowledge of v (¼ 246 GeV), mh (≃125 GeV)
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and tan β [or alternatively cosðβ − αÞ]. In other words, the
complete 2HDM spectrum is then determined modulo
the experimental uncertainties in the quoted parameters.
Explicitly, the SSB contributions to the charged scalar
masses and to the mass matrix of the neutral scalars in the
Higgs basis can bewritten solely in terms of the λi and tan β,
as follows (see [28,37] for details):

g11 ¼ λ1cos4β þ λ2sin4β þ 2ðλ3 þ λ4 þ λ5Þsin2βcos2β
þ 4λ6cos3β sin β þ 4λ7sin3β cos β; ð2aÞ

g12¼ cosβ sinβðλ2sin2β−λ1cos2βþðλ3þ λ4þλ5Þcos2βÞ
þ3ðλ7−λ6Þsin2βcos2βþλ6cos4β−λ7sin4β; ð2bÞ

g22 ¼ ðλ1 þ λ2Þcos2βsin2β − 2ðλ3 þ λ4Þcos2βsin2β
þ λ5ðsin4β þ cos4βÞ þ ðλ7 − λ6Þ sin 2β cos 2β; ð2cÞ

gþ ¼ 1

2
ðλ5 − λ4Þ: ð2dÞ

The diagonalization of the mass terms leads to

g11v2 ¼ m2
Hcos

2ðβ − αÞ þm2
hsin

2ðβ − αÞ; ð3aÞ

g22v2 ¼ m2
Hsin

2ðβ − αÞ þm2
hcos

2ðβ − αÞ −m2
A; ð3bÞ

g12v2 ¼ ðm2
h −m2

HÞ cosðβ − αÞ sinðβ − αÞ; ð3cÞ

gþv2 ¼ m2þ −m2
A; ð3dÞ

which, when inverted, yield (in terms of the known mh
and v)

m2
H ¼ g11v2 þ

ðg12v2Þ2
g11v2 −m2

h

; ð4aÞ

m2
A ¼ m2

h − g22v2 þ
ðg12v2Þ2

g11v2 −m2
h

; ð4bÞ

m2þ ¼ m2
h − g22v2 þ

ðg12v2Þ2
g11v2 −m2

h

þ gþv2; ð4cÞ

cos ðβ − αÞ ¼ −sgnðg12Þ
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
�

g12v2

g11v2 −m2
h

�
2

s
: ð4dÞ

The above equations explicitly show how the scalar
masses and mixings can be obtained, once all λi are known,
in terms of v, mh and tan β.
Assuming that all supersymmetric particles are much

heavier than the EWS, the MSSM provides a perfect
example of a model where the Higgs sector is a 2HDM.
In this case, the Higgs quartic couplings come from the
supersymmetric D-terms and, at tree level, are simple
functions of the gauge couplings [13,38]:

λ1 ¼ λ2 ¼
1

4
ðg2 þ g2YÞ; λ3 ¼

1

4
ðg2 − g2YÞ;

λ4 ¼ −
g2

2
; λ5 ¼ λ6 ¼ λ7 ¼ 0; ð5Þ

where g and gY are the SUð2Þw and Uð1ÞY gauge couplings,
respectively. Note that all mass terms are also generated
at tree level. In particular, the m12 term, which breaks the
discrete Z2 symmetry softly, is related to the bilinear Bμ
term in the SUSY potential. Therefore, at tree level, the
MSSM leads to a type II 2HDM. The relations of Eq. (5)
should be understood to hold at a scale ΛS, where the
general 2HDM is matched to the MSSM. Below ΛS, the
RG evolution of the 2HDM parameters should be used to
obtain the potential at the EWS. Since the boundary
condition λ5 ¼ λ6 ¼ λ7 ¼ 0 increases the symmetry of
the quartic part of the Lagrangian, these couplings will
not be generated by the RG evolution and will still be zero
at lower energies.
This simple picture is perturbed if we consider the higher-

order corrections to the Higgs potential. In the MSSM, the
Z2 symmetry is broken by the μ-term in the superpotential
(μ being the Higgsino mass parameter), and this breaking
affects the higher order matching of all the λi at the scaleΛS.
In particular, λ5;6;7ðΛSÞ will arise at higher loops but will
always be proportional, at least, to μ=ΛS [39], which wewill
consider to be small. Then, as RG evolution cannot generate
them, it is reasonable to assume λ5 ≃ λ6 ≃ λ7 ≃ 0.
Similarly, the effective couplings λiði ¼ 1;…; 4Þ in

Eq. (5) receive corrections at the scale ΛS that depend
on the full supersymmetric spectrum. These corrections
are, however, subleading. In fact, the corrections propor-
tional to the large third generation Yukawa couplings come
with a factor of μ=ΛS or At;b=ΛS, At;b being the trilinear
soft-breaking terms. In the following, we assume that
μ=ΛS; At;b=ΛS ≪ 1, and thus these corrections as well as
the smaller gauge corrections can be safely neglected.
Under these assumptions, we have only four quartic

couplings, which can be determined from the scalar masses
and mixings by inverting Eqs. (2a)–(2d) and using Eq. (3)
as follows:

λ1 ¼ g11 þ g22tan2β − 2g12 tan β; ð6aÞ

λ2 ¼ g11 þ g22cot2β þ 2g12 cot β; ð6bÞ

λ3 ¼ g11 − g22 þ 2g12 cot ð2βÞ þ 2gþ; ð6cÞ

λ4 ¼ −2gþ: ð6dÞ

Once these couplings are determined at the EWS,
including appropriate radiative corrections [27,40], we
can use the 2HDM RGE to check whether their values
correspond to the MSSM boundary conditions at a high
scale.
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III. RG ANALYSIS AND POINTERS TO HIGH
SCALE SUSY

To obtain a qualitative understanding of the RG evolu-
tion, we can begin by simply using the one loop RGE,
checking the stability of these results under higher order
corrections a posteriori. At one loop, the RG evolution of
the gauge couplings is very simple and can be easily
integrated. We will be interested here in the combination
ðg2 þ g2YÞ=4 which, in a supersymmetric framework, would
fix the boundary values for λ1 and λ2. The RG evolution of
this combination at one loop is given by

Dðg2 þ g2YÞ ¼
−3g4 þ 7g4Y

8π2
; ð7Þ

whereD≡ d=dðlogMÞ. Substituting their EWS values, we
obtain ð−3g4 þ 7g4YÞ=ð8π2ÞjMz

≃ 0.003, i.e. this combina-
tion remains essentially constant at one loop. On the other
hand, the one loop RGE for the quartic couplings depend
on the gauge as well as Yukawa couplings as follows [5]:

Dλ1 ¼
1

16π2

�
3

4
ð3g4 þ g4Y þ 2g2g2YÞ − 3λ1ð3g2 þ g2YÞ

þ 12λ21 þ 4λ23 þ 4λ3λ4 þ 2λ24 þ 4λ1ð3y2b þ y2τÞ

− 12y4b − 4y4τ

�
; ð8aÞ

Dλ2 ¼
1

16π2

�
3

4
ð3g4 þ g4Y þ 2g2g2YÞ − 3λ2ð3g2 þ g2YÞ

þ 12λ22 þ 4λ23 þ 4λ3λ4 þ 2λ24 þ 12λ2y2t − 12y4t

�
;

ð8bÞ

Dλ3¼
1

16π2

�
3

4
ð3g4þg4Y −2g2g2YÞ−3λ3ð3g2þg2YÞ

þ2ðλ1þλ2Þð3λ3þλ4Þþ4λ23þ2λ24þ2λ3ð3y2t þ3y2b

þy2τÞ−12y2t y2b

�
; ð8cÞ

Dλ4 ¼
1

16π2
½3g2g2Y − 3λ4ð3g2 þ g2YÞ þ 2ðλ1 þ λ2 þ 4λ3Þλ4

þ 4λ24 þ 2λ4ð3y2t þ 3y2b þ y2τÞ þ 12y2t y2b�; ð8dÞ

where yf stands for the Yukawa coupling of the fermion
fð¼ t; b; τÞ. From these equations we see that only λ2
should have significant evolution due to the large top
Yukawa coupling, yt ∼Oðmt=ðv sin βÞÞ. This is true for
tan β ∼ 1–3, which is the relevant range for high scale
SUSY, as we will see below. In particular, Eq. (5) implies
that at the SUSY scale, we have λ1 ¼ λ2 ¼ −ðλ3 þ λ4Þ ¼
ðg2 þ g2YÞ=4, and we can naturally expect that at lower
scales λ1 and −ðλ3 þ λ4Þ will not deviate much from their
boundary value, ðg2 þ g2YÞ=4, while λ2 can be expected to
grow significantly.
We can observe this behavior in Fig. 1, where we have

used two loop RGE to obtain the λi values at the EWS
starting from supersymmetric boundary values at ΛS ¼
105 GeV (left panel) and ΛS ¼ 1010 GeV (right panel).
Note that we used the two loop RGE for the top quark
Yukawa coupling because there is an accidental cancella-
tion in the one loop beta function for tan β ∼ 0.75 which
makes the two loop contributions relevant. One can already
see this in the SM running of the top Yukawa coupling,
DySMt ∼ ySMt f4.5ðySMt Þ2 − 8g2sg, which vanishes for ySMt ¼
4gs=3, where gs is the gauge coupling for strong inter-
action. Strictly within the SM framework, this numerical
situation never arises. In the 2HDM, however, the corre-
sponding relation is ySMt = sin β ¼ 4gs=3. This implies that
in the vicinity of sin β ∼ 0.6, i.e., tan β ∼ 0.75, the one loop
contributions to the beta function can be overshadowed by
the two loop ones.
In Fig. 1 we showed that starting from small values

(λ1 ∼ g2; g2Y) λ1 does not run much fromΛS to the EWS, and
stays small. Now in a bottom-up approach one may wonder
if this is also true when starting with larger values of λ1 at
the EWS and evolving it up to ΛS. This evolution is shown
in Fig. 2. With respect to the other quartic couplings, we

FIG. 1. Two-loop RG evolution of λ1, λ2 and −ðλ3 þ λ4Þ starting from supersymmetric boundary values at ΛS ¼ 105 GeV with
tan β ¼ 2.8 (left panel), and ΛS ¼ 1010 GeV with tan β ¼ 1.7 (right panel), as compared to the evolution of ðg2 þ g2YÞ=4 (dashed line).
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take their initial EWS values to be λ2 ¼ 0.56, λ3 ¼ 0.015
and λ4 ¼ −0.16. Note, the evolution of λ1 is independent
of λ2 at one loop. With regards to λ3 and λ4, we take the
relatively small values corresponding to the gauge boun-
dary conditions at the high scale. We see that, indeed, λ1
evolves very little for small values of λ1 at the EWS,
λ1 ≤ 0.40, and this result is, in practice, independent of
tan β for tan β ≤ 10. Moreover λ1 grows with the scale, and
therefore, at the EWS, we should expect its value to be
slightly smaller than ðg2 þ g2YÞ=4 ≃ 0.15, if it is indeed
determined by gauge couplings at the high scale.
From this discussion we can infer that a measurement of

the quartic couplings of the Higgs potential at the EWS can
favor a high scale SUSY scenario if the following features
are observed:

(i) The values of λ1 and −ðλ3 þ λ4Þ, at the EWS, are in
the vicinity of ðg2 þ g2YÞ=4 ≃ 0.14.

(ii) The value of λ2 should then be significantly larger
than ðg2 þ g2YÞ=4, due to the large negative contri-
bution to the RGE from the top Yukawa coupling.

(iii) We can get a qualitative estimate of the SUSY scale,
ΛS, as the scale where λ2 reaches its high scale
boundary value, ðg2 þ g2YÞ=4.

(iv) If λ1 [or −ðλ3 þ λ4Þ] at the EWS is found to be larger
than ∼0.4, it will be impossible to satisfy the MSSM
boundary conditions at a higher scale.

We emphasize that a generic 2HDM is not expected
to have such correlations among its quartic couplings.
Therefore, the above assertions would constitute a strong
indication of a SUSY framework at a high scale.

IV. CONSTRAINTS AND UNCERTAINTIES OF
THE SUSY SCALE DETERMINATION

To justify our choices for the EWS values of the quartic
couplings and tan β used in Fig. 1, we perform a numerical
study of the available parameter space at low energy,
provided the quartic couplings have been fixed by the
supersymmetric boundary conditions at ΛS. We display
our results in Fig. 3 for three different choices of ΛS.
Considering the fact that sub-TeV nonstandard scalars, for

type II 2HDM, are disfavored from flavor data for tan β < 1

[41,42],1 we concentrate in the tan β > 1 region for possible
interesting phenomenology. The allowed parameter region
from this analysis, consistent with mh ¼ 125.0� 0.6 GeV
and a top pole massmt ¼ 173� 1 GeV, has been shaded in
red. The width of this region comes from the uncertainties in
the input parametersmt and mh, around the central continu-
ous line corresponding to their central values. The values of
tan β disfavored from absolute stability (from MZ to ΛS) of
the scalar potential has been shaded in blue. The hatched
region in themiddle and bottompanels of Fig. 3 is disfavored
at 95% C.L. from BRðb → sγÞ [43]. The gray shaded region
in the top panel is forbidden by the Higgs data at 95% C.L.
[44]. The gray region in the bottom panel, however, repre-
sents a disallowed region using a conservative bound on
cosðβ − αÞ from theHiggs data [44].2 Some of the interesting
features that emerge from Fig. 3 are summarized below:
(a) The main feature of Fig. 3, as apparent from the top and

middle panels, is that for a large supersymmetric scale,
only low tan β values can reproduce the observed Higgs
mass. Taking into account the constraints on cosðβ − αÞ
and mþ along with the requirement of absolute
vacuum stability, we find that 1.8 ≤ tan β ≤ 2.8 for
ΛS ¼ 106 GeV, while 1.2 ≤ tan β ≤ 2.2 for ΛS ¼
1010 GeV and 1.1 ≤ tan β ≤ 1.9 for ΛS ¼ 1016 GeV.
These results are in qualitative agreement with those in
Refs. [28,29] in the aspects where the analyses overlap.

(b) It is interesting to note that for large ΛS we obtain an
upper limit on tan β from the requirement of absolute
stability, in addition to a lower limit that stability
usually offers in a generic 2HDM where the top
Yukawa is proportional to mt=ðv sin βÞ [11]. This
upper limit, which is rather strong (tan β ≲ 2 for
ΛS ¼ 1016 GeV), arises from the requirement of sat-
isfying λ3 þ λ4 þ

ffiffiffiffiffiffiffiffiffi
λ1λ2

p
≥ jλ5j [5] at all scales, but in

our specific embedding of 2HDM in a SUSY backdrop.
(c) From the cosðβ − αÞ vs mþ plot, we see that we are

practically in the decoupling region [7]. In the middle
panel we observe that for a given value of tan β, any
value of mþ ≳ 500 GeV is possible when we take into
account the uncertainties in the parameters.3 As
mentioned before, the allowed range of tan β depends
on the scale, ΛS. It is still, nevertheless, possible to
have nonstandard scalars below the TeV scale, which
is encouraging for the collider experiments.

FIG. 2. Evolution of λ1 for different initial values (frombottom to
top, λ1 ¼ 0.10, 0.25, 0.40, 0.55), as compared with ðg2 þ g2YÞ=4
(dashed line), for tan β ¼ 1.7.

1Although the flavor constraints mainly affect mþ, additional
bounds from the T-parameter require mH , mA and mþ to be
nearly degenerate [11,36].

2Although we have used the run 1 data from the LHC to extract
the bound on cosðβ − αÞ, the run 2 data as summarized in
Ref. [45] does not significantly improve the limit.

3We have derived this limit from b → sγ admittedly from
leading order contributions; a more recent analysis with higher
order effects yields mþ ≳ 570 GeV [43].
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(d) As expected mþ and cosðβ − αÞ are strongly corre-
lated irrespective of the SUSY scale. This is easily
understood as this mixing comes from the diagonal-
ization of the neutral Higgs mass matrix in the Higgs
basis, with off diagonal elements Oðv2Þ and a large
diagonal entry Oðm2þÞ.

(e) As the allowed region in Fig. 3 is confined around
tan β ∼Oð1Þ (for Λs ≥ 106 GeV), we have to focus on
the leftmost side of Fig. 4 where we display the decay
pattern of the heavier CP-even scalar H.

As we discussed in Sec. II, the variation of λ2 with the
scale is more pronounced than that of other quartic
couplings, if we start from small boundary values at high
energy. Therefore, λ2 is our best choice to determine ΛS as
the scale where it reaches its boundary value ðg2 þ g2YÞ=4.
However, this evolution is very sensitive to the values ofmt
and tan β at the EWS, as well as to the initial λ2 value.
This behavior of λ2 is shown in Fig. 5, where we plot it

for three similar values of tan β and several closely spaced
electroweak values of λ2 consistent with the observed
Higgs mass. In fact, this figure is produced with a fixed

value of the top quark mass mt ¼ 173 GeV; however, the
intrinsic top mass error of about 1 GeV can be reproduced by
a shift in tan β. Given that the main effect of these uncer-
tainties is a change in the top Yukawa coupling, we can
translate both uncertainties as Δ tan β ¼ tan βð1þ tan2βÞ
ðΔmt=mtÞ. From here, we obtain that Δmt ¼ 1 GeV corre-
sponds toΔ tan β ∼ 0.01 for tan β ¼ 1 andΔ tan β ∼ 0.06 for

FIG. 3. Solution curves in different planes for different choices of ΛS. The widths of the solution regions (in red) arise from 2σ
experimental uncertainties in mt and mh. The regions disallowed from absolute stability (from MZ all the way to ΛSÞ have been shaded
in blue, while the hatched regions are disfavored from BRðb → sγÞ at 95% C.L. The shaded regions in gray are ruled out from the LHC
Higgs data.

FIG. 4. Branching ratios of the heavier scalar, H, into different
decay channels as a function of tan β. We have assumed j cosðβ −
αÞj ≈ 0 so that H does not decay into a pair of gauge bosons.
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tan β ¼ 2. Thus, for the small tan β values required when
ΛS ≥ 106 GeV, the effect of the top mass uncertainty is
smaller than the effect of the tan β range considered in
Fig. 5, but it grows as tan3 β and will be important for larger
values of tan β.
Using Eqs. (3), (4), and (6), we can get an a posteriori

explanation for the obtained values of λ2 and tan β at
the EWS. Under the assumptions of sub-TeV nonstandard
scalars and very small cosðβ − αÞ, Eq. (3) gives g11v2 ≃m2

h.
To a good approximation, we can also write

λ1ðMZÞ ≃ λ1ðΛSÞ ¼ λ2ðΛSÞ ¼
ðg2 þ g2YÞ

4

¼ −fλ3ðΛSÞ þ λ4ðΛSÞg
≃ −fλ3ðMZÞ þ λ4ðMZÞg: ð9Þ

Now, using Eq. (2), we obtain

m2
h ¼ M2

Zcos
2ð2βÞ þ Δλ2v2

tan4β
ð1þ tan2βÞ2

¼ M2
Z

�
tan2β − 1

tan2β þ 1

�
2

þ Δλ2v2
�

tan2β
1þ tan2β

�
2

; ð10Þ

whereΔλ2 ¼ λ2ðMZÞ − λ2ðΛSÞ. Equation (10) can easily be
recognized as the usual expression for the radiatively
improved Higgs mass in the MSSM. This implies that the
mass of the observed Higgs boson is essentially determined
by the RG evolution of λ2 and the value of tan β. For a fixed
value of tan β, the low energy value of λ2 is uniquely

determined by mh. The larger the gap between ΛS and
MZ, the more room λ2 gets to grow under RG evolution,
thereby requiring a smaller tan β to reproduce the observed
Higgs mass.
To put our results into perspective, let us assume that all

the nonstandard scalar masses have been determined with
an accuracy of 1 GeV; viz., mH ¼ ð503� 1Þ GeV, mA ¼
ð491� 1Þ GeV, mþ ¼ ð496� 1Þ GeV, and we have
settled at cosðβ − αÞ ¼ −0.05 and tan β ¼ 1.7. These
values would correspond to a supersymmetric scale of
ΛS ∼ 1010 GeV. However, it should be noted that such an
estimate of the SUSY scale is very sensitive to the precise
values of the input parameters, especially tan β, and as
shown in Fig. 5; we would need to determine tan β at a few
percent level to fix ΛS precisely. This ambiguity in the
determination of the SUSY scale may partly be attributed
to a common solution region for ΛS in the range of
106–1016 GeV, as apparent from Fig. 3 [see point (a) of
Sec. IValso]. On the other hand, if tan β turns out to be close
to 2.2 (say), then one can, for example, make a definitive
conclusion that ΛS ≤ 1010 GeV. Such a precise measure-
ment of tan βwould, perhaps, require us towait for the future
linear colliders. Nonetheless, the analysis presented in
this paper is good enough to provide an initial hint for the
location of the scale where SUSY is expected to appear.

V. CONCLUSIONS

Our intention in this work was to address the question
we posed in the title as directly as possible. To this end,
we explored an effective 2HDM arising from a more

FIG. 5. Evolution of λ2 (low to high scale) as a function of the scaleM, for different initial values (from bottom to top, λ2 ¼ 0.54, 0.55,
0.56, 0.57), as compared with ðg2 þ g2YÞ=4 (dashed line) for different tan β values.
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fundamental theory at a high scale, ΛS, which fixes the
parameters of the Higgs potential. In particular, we have
focused on the high-scale MSSM as an example, where
the Higgs quartic couplings are determined by the super-
symmetry breaking D-terms as functions of the gauge
couplings. We have found that very high-scale MSSM
scenarios are still compatible with the observed Higgs mass
for tan β ∼Oð1Þ. Though our approach and emphasis is
somewhat different, we agree with the general conclusions
of the existing analyses studying effective 2HDMs stem-
ming from high scale SUSY wherever we overlap.
We emphasize that our methodology is quite general and

can be applied not only to SUSY but to a wide variety of
UV scenarios in which all the quartic couplings of the
2HDM potential of Eq. (1) are fixed at a high scale, ΛS.
For instance, we could have started with the assumption
that all the quartic couplings vanish at ΛS. For this
particular scenario, we find that the requirement of
mh ≈ 125 GeV, v ¼ 246 GeV and j cosðβ − αÞj ∼ 0 and
the absolute stability of the potential up to ΛS favors a
region of large tan β ∼ 50. In this region, the evolution of
the quartic couplings makes the charged scalar rather light,
mþ ≈ 180 GeV, which is ruled out from the measurement
of BRðb → sγÞ. This particular scenario is, therefore,
disfavored by the experimental data.
In the context of the supersymmetry, our analysis shows

how possible (future) measurements of the nonstandard
scalar masses, tan β and cosðβ − αÞ can fix the λ1;2;3;4
couplings of the 2HDM potential, neglecting λ5;6;7, as is

natural in the MSSM. Using the 2HDM RGE we find that
λ1 and −ðλ3 þ λ4Þ should stay close to their boundary
value, ðg2 þ g2YÞ=4, all the way fromΛS toMZ, while λ2 can
grow significantly during RG running due to the large top
Yukawa coupling. This opens up the possibility of deter-
mining the supersymmetric scale, ΛS, from the RG evo-
lution of λ2 as the scale where λ2 reaches its boundary
value, ðg2 þ g2YÞ=4. However, this strategy crucially
depends on whether tan β can be determined with a percent
level precision in order to make a reasonable prediction for
the MSSM scale; a linear collider would be essential to
make further inroads.
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