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The dream goes over time. 
floating like a sailboat  

no one can crack open the seeds 
in the heart of the dream 

… 
And if the dream pretends to be walls 

in the plain of time 
then time makes it (the dream) believe 

that it is born at that momento 
 

Legend of time  (Camarón de la Isla, Federico García Lorca) 
 

 
El sueño va sobre el tiempo  

flotando como un velero  
nadie puede abrir semillas  

en el corazón del sueño  
… 

Y si el sueño finge muros  
en la llanura del tiempo  

el tiempo le hace creer  
que nace en aquel momento 

 
La leyenda del tiempo (Camarón de la Isla , Federico García Lorca) 
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Overview

This thesis is presentad as a collection of articles [1–5]. From now on they will

be cited as Paper I, Paper II, Paper III, Paper IV and Paper V respectively.

The formation of patterns in spatially extended systems is a recurring

phenomenon in nature which is usually related to situations in which there is

a nonlinear response of a system under an external forcing which drives it far

away from its (thermodynamic) equilibrium. This leads to the generation of

spatially inhomogeneous structures which are known as dissipative as in these

forced systems there is a balance between the external source of energy and the

losses of the system.

In particular, this kind of structures are very common in Nonlinear Optics,

specially in those configurations in which a medium interacts nonlinearly with

light surrounded by two mirrors (optical cavity). In this situation, the patterns

appear in the plane perpendicular to the propagation direction and this is the

reason why they are called "transverse patterns". One specially interesting

example are the localized structures or cavity solitons (they exist in a confined

region of the transverse plane and are stable); these structures are of great

interest as they can be written or erasen with coherent beams, so potentially

they could be useful for information storage and processing through purely

optical methods only. As an example, a set of N × N solitons constitutes an

optical memory of 2N×N different states.

The objective of this thesis is the theoretical, analytical and numerical,

study of the spatio-temporal dynamics of optical oscillators under bichromatic

forcing (rocking). This kind of injection, introduced in [6], possesses the feature

of breaking the phase invariance (any phase of the complex field is possible)
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of the free-running system and generates a phase-bistable system in which

two only phases (separated by π) are allowed for the homogeneous stationary

solutions.

This change in the nature of the system enables a new dynamics

characterized by the presence of a new kind of spatial structures in the

bidimensional transverse plane: bistable phase patterns in which both phases

coexist separated by domain walls (Ising if they have null intensity or Bloch

if it is different from zero). These domains can evolve either to homogeneous

patterns (in which only one phase is present) or to more complex ones, in which

curvature effects lead to the emergence of labyrinthic patterns depending on

the value of the parameters of the system. Moreover, localized structures

(stable minimum-size domains) as dark-ring cavity solitons can exist.

Other phase symmetry breaking methods have been used to control the

dynamics of many systems. One of the most popular is the parametric

resonance, i.e. injecting a field whose frequency is twice the natural frequency

of the system. However these methods are less versatile than rocking, which

can be applied to a broad range of systems like lasers, which are insensitive to

parametric resonance. In fact, many theoretical and experimental proposals

involving rocking in different (optical and non-optical) systems have been

made. In the scope of this thesis, we have focused on the influence of rocking

in two systems which have been studied profusely in the literature, as they are

very interesting both from a fundamental and a practical point of views:

Laser. The Laser (acronym for light amplification by stimulated emission

of radiation) is probably the most relevant nonlinear optical system, both for

its intrinsically nonlinear nature and the singular properties of laser emission

(extreme monochromaticity and high focusability), which allow to study many

nonlinear processes requiring high power density. A laser consists essentially

in a medium with population inversion (more electrons in an excited state

than in the fundamental one) due to interaction with a pump, being able to

generate electromagnetic radiation by stimulated emission which is amplified

after passing a large number of times through the amplifier, as given by the

bouncing back and forth between the cavity mirrors. The most studied laser

model is the two-level laser (an abstraction as population inversion requires

at least three levels) as an affordable analytical treatment is possible, being

the Maxwell-Bloch (MB) equations the ones which describe this model. Any

phase is allowed in lasing emission as it is a self-oscillatory system in which

the phase is not fixed, which determines the nature of the patterns in the

system. Pattern formation in those systems have been analyzed in small
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aperture configurations (low Fresnel number), in which the small transverse

modes allowed by the system and their nonlinear interaction are responsible

for the spatial structures (Gaussian modes), as well as in situations, when

the Fresnel number is large, in which the number of modes is enormous and

the presence of vortices and traveling waves is common. Due to its interest,

many theoretical and experimental proposals have been made to generate

localized structures (solitons) in lasers, specifically in semiconductor lasers,

which are very interesting for creating a compact system for information

processing (soliton laser). In our case, we will focus on the application of

rocking to: (i) unidirectional lasers and (ii) bidirectional lasers, in which two

counterpropagating fields coexist in a ring cavity.

Photorefractive oscillator (PRO). This system is an optical cavity in which

the nonlinear medium is a photorefractive crystal, which has a refractive index

which depends on the spatial modulation of light intensity. The interference of

two beams in the crystal creates a periodic pattern in the electric field which is

responsible for an index spatial modulation. This nonlinear effect, combined

with two-wave mixing in a ring cavity, gives rise to a radiation emission which,

like lasers, possesses continuous phase symmetry. The main difference is that,

in this case, the dynamics in the transverse plane can be much slower (of the

order of seconds, several orders of magnitude larger than in the laser) due

to the special features of photorefractive media (specifically their gain curve).

This produces enormous advantages when experimental setups for studying

pattern formation are considered as sophisticated recording devices are no

longer needed to analyze them. Because of this, photorefractive oscillators are

regarded as perfect laboratories to study transverse patterns in optical cavities

and they have generated a large numbers of experimental results. In our

case, we will study theoretically the influence of rocking in two-wave mixing

photorefractive oscillators in a ring cavity configuration.

Along this thesis, we will study the influence of rocking in those systems in

detail. As it is usual in nonlinear science, is convenient to derive equations

describing the behaviour of those systems close to (critical) points where

the stationary solutions emerge. These equations (called order parameter

equations) are relatively simple and are able to describe a large number

of nonlinear systems: physical, chemical, biological.. (the meaning ot the

parameters being the only difference , but the mathematical structure is the

same). Moreover, we will analyze the stability of the solutions and we will

perform numerical simulations of the theoretical models.

The structure of this manuscript is as follows. The first chapter will be
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devoted to an introduction, containing:

• A discussion about the pattern formation phenomenon in nature.

• A general introduction to some of the main contributions in the field of

pattern formation in nonlinear optics.

• A formal introduction to the rocking mechanism and a review of the

systems where it has been already applied.

• A short discussion about the order-parameter equations, specifically the

(real and complex) Ginzburg-Landau and Swift-Hohenberg equations, which

have been derived so far for optical cavities.

• A summary of the mathematical, analytical and numerical tools we have

used to carry out our study like: the multiple scales expansion to derive order

parameter equations, the linear stability analysis to analyze instabilities against

spatio-temporal perturbations, and the method of numerical integration split-

step, conveniently modified to incorporate time-dependent external forcing

like rocking.

In the second chapter, I will summarize my main contributions to the

published articles, organized by topic. Also unpublished results will be

presented:

• Starting from the MB equations under rocking injection, an order

parameter equation will be derived for class C lasers with positive cavity

detuning and the patterns of the system will be studied numerically.

• A reduced model of two equations will be obtained for class B lasers and

its temporal dynamics and the influence of the detuning of rocking injection

will be studied. We will also show spatial patterns obtained from simulations of

the MB equations.

• A unified model (valid for positive and negative cavity detunings) for two-

level lasers (class C and A) and photorefractive oscillators will be developed,

providing the stability domains of the phase bistable states and studying

numerically the spatial patterns that arise from the system.

• The temporal dynamics of a bidirectional laser under rocking injection

will be analyzed and some preliminary results regarding spatial patterns will be

given.

Lastly, I will review our main conclusions in chapter three. A copy of the five

published articles that support this thesis is presented as an addendum.
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Versió en valencià

Aquesta tesi es presenta en la modalitat de compendi de publicacions [1–5].

A partir d’ara se citaran com Paper I, Paper II, Paper III, Paper IV i Paper V

respectivament.

En la natura, la formació de patrons en sistemes espacialment extensos és

un fenomen recurrent que sol estar associat a situacions en les quals hi ha una

resposta no lineal d’un sistema sotmès a un forçament extern que ho situa

lluny del seu estat d’equilibri (termodinàmic). Això condueix a la generació

d’estructures inhomogènies espacialment que són conegudes com disipatives,

atès que en aquests sistemes forçats hi ha un balanç entre l’aportació externa

d’energia i les pèrdues pròpies del sistema dissipatiu.

En particular, aquest tipus d’estructures són molt comunes en el camp

de l’Òptica no lineal, especialment aquelles configuracions en les quals un

medi interacciona no linealment amb la llum envoltat de dos espills (cavitat

òptica). En aquesta situació, els patrons apareixen en el pla perpendicular a la

direcció de propagació i aquesta és la raó per la qual es denominen "patrons

transversals". Un exemple especialment rellevant són les anomenades

estructures localitzades o solitons de cavitat (existeixen en una regió limitada

del pla transversal i són estables), aquestes estructures posseeixen un gran

interès ja que poden ser escrites o esborrades independentment mitjançant

feixos de llum coherents, per la qual cosa potencialment podrien ser usades

per a emmagatzematge i processament d’informació mitjançant mètodes

purament òptics. Per exemple, un conjunt d’ N × N solitons constitueix una

memòria òptica de 2N×N estats diferents.

Aquesta tesi té com a objectiu l’estudi teòric, analític i numèric, de

la dinàmica espaciotemporal d’oscil·ladors òptics no lineals sotmesos a un

forçament bicromàtic (rocking). Aquest tipus d’injecció, introduïda en [6], té

la característica principal de trencar la invariància de fase (qualsevol fase del

camp complex) del sistema lliure (sense forçament) i genera un sistema que és

biestable en fase, ja que únicament dues fases (separades per π) són permeses

per a les solucions estacionàries homogènies.

Aquest canvi en la naturalesa del sistema provoca l’aparició d’una nova

dinàmica caracteritzada per la presència d’un nou tipus d’estructures espacials

en el pla transversal bidimensional: patrons biestables de fase en els quals

dominis d’ambdues fases conviuen separades per parets de domini (Ising si

la intensitat s’anul·la en elles o Bloch, en cas contrari). Aquests dominis poden

evolucionar a patrons homogenis (d’una de les dues fases) o uns altres, més
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complexos, que els efectes de curvatura condueixen a la creació de patrons

laberíntics segons els valors dels paràmetres del sistema. A més, poden existir

estructures localitzades (dominis de grandària mínima estables) en la forma de

solitons de cavitat d’anell fosc.

Altres mètodes de trencament de la simetria de fase han sigut usats per

a controlar la dinàmica de molts sistemes. Un dels més populars és la

ressonància paramètrica, i.e. injectar un camp la freqüència del qual és

aproximadament el doble de la freqüència natural de oscil·lació del sistema. No

obstant això, aquests mètodes són menys versàtils que el rocking, el qual pot

aplicar-se a una àmplia gamma de sistemes com el làser, que són insensibles

a la ressonància paramètrica. De fet, s’han fet múltiples propostes teòriques i

experimentals d’aplicació del rocking a diferents sistemes (òptics i no òptics).

En el domini d’aquesta tesi, ens centrarem en la influència del rocking en dos

sistemes que han sigut estudiats profusament en la literatura, donat el seu gran

interès tant des del punt de vista fonamental com pràctic:

Làser. El làser (acrònim d’amplificació de llum per emissió estimulada

de radiació) és possiblement el sistema òptic no lineal més rellevant, tant

per la seua naturalesa, intrínsecament no lineal, com perquè gràcies a

les propietats singulars de l’emissió làser (profundament monocromàtics i

altament focalitzables), es poden estudiar multitud d’efectes no lineals que

requereixen altes concentracions d’energia per a manifestar-se. Un làser

consisteix essencialment en un mitjà que presenta inversió de població (més

electrons en un estat excitat que en el fonamental) per la interacció amb

un bombeig i és capaç de generar radiació electromagnètica per emissió

estimulada que es veu amplificada després de passar un gran nombre de

vegades a través de l’ampli

ficador que ve dau pel pas de la llum una vegada i una altra entre

els espills de la cavitat. El model de làser més estudiat és el làser de

dos nivells (una abstracció, ja que es necessiten almenys tres nivells per

a aconseguir inversió de població) ja que permet un tractament analític

assumible, sent les equacions de Maxwell-Bloch (MB) les que descriuen aquest

model. En l’emissió làser qualsevol fase és possible ja que és un sistema

autooscilant en el qual la fase no està fixada, la qual cosa determina el tipus

de patrons que apareixen. La formació de patrons transversals en làsers (en

absència d’injecció) ha sigut estudiada tant en configuracions de cavitat amb

xicoteta obertura (sota número de Fresnel), en els quals el xicotet nombre

de modes transversals admeses pel sistema i la seua interacció no lineal

són els responsables de les estructures espacials (modes gaussianes), com en
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casos on el número de Fresnel és gran, en els quals el nombre de modes

és gran i la presència de vòrtexs i ones viatgeres és usual. A causa del seu

interès, s’han realitzat nombroses propostes teòriques i experimentals per a

la generació d’estructures localitzades (solitons) en làsers, especialment en

làsers de semiconductor, que són interessants per a possibles aplicacions, en

el sentit de ser capaços de crear un sistema compacte per al processament

de la informació (textitlàser de solitones). En el nostre cas, ens centrarem en

l’aplicació del rocking a làsers: (i) unidireccionals i (ii) bidireccionals, en els

quals dos camps contrapropagants conviuen dins d’una cavitat en anell.

Oscil·lador fotorrefractiu. Aquest sistema és una cavitat òptica en la qual el

mitjà no lineal és un cristall fotorrefractiu, el qual posseeix un índex de refracció

que depèn de la modulació espacial de la intensitat de la llum. La interferència

de dos feixos en el cristall crea un patró periòdic en el camp elèctric sent

responsable una modulació espacial en l’índex. Aquest efecte no lineal,

combinat amb una mescla de dues ones en cavitat d’anell, dóna lloc a l’emissió

de radiació que, com el làser, presenta invariància de fase. La principal

diferència és que, en aquest cas, la dinàmica en el pla transversal és molt més

lenta (de l’ordre de segons, diversos ordres de magnitud major que la del làser)

a causa de les especials característiques del mitjà fotorrefractiu (especialment

de la seua corba de guany). Això presenta indubtables avantatges a l’hora

d’estudiar experimentalment la formació de patrons, ja que no calen equips

sofisticats d’enregistrament per a analitzar-los. És per això que els oscil·ladors

fotorrefractius s’han convertit en perfectes laboratoris per a l’estudi de patrons

transversals en cavitats òptiques i el nombre de resultats experimentals

obtinguts en ells és enorme. En el nostre cas, estudiarem teòricament la

influència del rocking en oscil·ladors fotorrefractius en configuració de mescla

de dues ones, en cavitat d’anell.

Al llarg d’aquesta tesi, estudiarem detalladament la influència del

rocking en aquests sistemes. Com és usual en el camp de la ciència no

lineal, és convenient deduir equacions que descriguen el comportament

d’aquests sistemes prop dels punts (punts crítics) on emergeixen les solucions

estacionàries del sistema. Aquestes equacions (anomenades de paràmetre

d’ordre) tenen una forma aparentment simple i són capaces de descriure

multitud de sistemes no lineals, físics, químics, biològics.. (l’única diferència

és el significat dels diferents paràmetres, però l’estructura matemàtica és la

mateixa), per la qual cosa posseeixen un caràcter universal. Així mateix,

analitzarem l’estabilitat de les solucions trobades i realitzarem simulacions

numèriques dels diferents models teòrics.
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L’estructura del manuscrit de la tesi és la següent. El primer capítol es

dedicará a una introducció que contindrà:

• Una discussió sobre el fenomen de la formació de patrons en la

naturalesa.

• Una introducció general d’algunes de les principals contribucions fetes

fins ara en el camp de la formació de patrons en el camp de l’òptica no lineal.

• Una introducció formal al mecanisme del rocking i una revisió dels

sistemes on ha sigut aplicat.

• Una xicoteta discussió sobre les equacions de paràmetre d’ordre,

en concret les equacions (reals i complexes) de Ginzburg-Landau i Swift-

Hohenberg, que han sigut deduïdes fins ara per a cavitats òptiques.

• Un resum de les eines matemàtiques, analítiques i numèriques que hem

emprat per a dur a terme el nostre estudi, com són: l’anàlisi d’escales múltiples

per a l’obtenció d’equacions de paràmetre d’ordre, l’anàlisi d’estabilitat lineal

per a analitzar les inestabilitats de les solucions estacionàries del sistema

enfront de pertorbacions espaciotemporals, i el mètode d’integració numèrica

split-step, convenientment modificat per a incorporar forçaments externs

dependents del temps com el rocking.

En el segon capítol resumiré les meues principals contribucions als articles

presentats organitzats per temàtica. Així mateix, es presentaran alguns

resultats que no han sigut publicats encara:

• A partir de les equacions de MB amb injecció rocking, es deduirà una

equació de paràmetre d’ordre per a làsers de classe C amb desintonia positiva

de la cavitat i s’estudiaran numèricament els patrons del sistema.

• Per a làsers de classe B, s’obtindrà un model reduït de dues equacions

i s’analitzarà la seua dinàmica temporal i la influència de la desintonia de la

injecció rocking. També es mostraran patrons espacials obtinguts a partir de la

simulació de les equacions de MB.

• Es desenvoluparà un model unificat (vàlid per a desintonies de la cavitat

positives i negatives) per a làsers de dos nivells (classe C i A) i oscil·ladors

fotrorefractius, proporcionant els dominis d’estabilitat dels estats biestables en

fase i estudiant numèricament els patrons espacials que apareixen.

• S’analitzarà la dinàmica temporal d’un làser bidireccional amb injecció

rocking i es presentaran alguns resultats preliminars de patrons espacials.

Finalment, en el tercer capítol exposaré les nostres principals conclusions

del treball realitzat. Com a annex inclourem una còpia dels cinc articles

publicats que donen suport a aquesta tesi.
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Versión en castellano

Esta tesis se presenta como compendio de publicaciones [1–5]. A partir

de ahora se citarán como Paper I, Paper II, Paper III, Paper IV y Paper V

respectivamente.

En la naturaleza, la formación de patrones en sistemas espacialmente

extensos es un fenómeno recurrente que suele estar asociado a situaciones en

los que hay una respuesta no lineal de un sistema sometido a un forzamiento

externo que lo sitúa lejos de su estado de equilibrio (termodinámico). Esto

conduce a la generación de estructuras inhomogéneas espacialmente que

son conocidas como disipativas, dado que en estos sistemas forzados hay un

balance entre el aporte externo de energía y las pérdidas propias del sistema

disipativo.

En particular, este tipo de estructuras son muy comunes en el campo

de la Óptica no lineal, especialmente en aquellas configuraciones en las que

un medio interacciona no linealmente con la luz rodeado de dos espejos

(cavidad óptica). En esta situación, los patrones aparecen en el plano

perpendicular a la dirección de propagación y esta es la razón por la que se

denominan "patrones transversales". Un ejemplo especialmente relevante son

las llamadas estructuras localizadas o solitones de cavidad (existen en una

región limitada del plano transversal y son estables), las cuales poseen un gran

interés ya que pueden ser escritas o borradas independientemente mediante

haces de luz coherentes, por lo que potencialmente podrían ser usadas para

almacenamiento y procesado de información mediante métodos puramente

ópticos. Por ejemplo, un conjunto de N ×N solitones constituye una memoria

óptica de 2N×N estados diferentes.

Esta tesis tiene como objetivo el estudio teórico, analítico y numérico, de

la dinámica espaciotemporal de osciladores ópticos no lineales sometidos a un

forzamiento bicromático (rocking). Este tipo de inyección, introducida en [6],

tiene la característica principal de romper la invariancia de fase (cualquier fase

del campo complejo) del sistema libre (sin forzamiento) y genera un sistema

que es biestable en fase en el que únicamente dos fases (separadas por π) son

permitidas para las soluciones estacionarias homogéneas.

Este cambio en la naturaleza del sistema provoca la aparición de una

nueva dinámica caracterizada por la presencia de un nuevo tipo de estructuras

espaciales en el plano transversal bidimensional: patrones biestables de fase en

los que dominios de ambas fases conviven separadas por paredes de dominio

(Ising si la intensidad se anula en ellas o Bloch, en caso contrario). Estos
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dominios pueden evolucionar a patrones homogéneos (de una de las dos

fases) u otros, más complejos, en que los efectos de curvatura conducen a

la creación de patrones laberínticos según los valores de los parámetros del

sistema. Además, pueden existir estructuras localizadas (dominios de tamaño

mínimo estables) en la forma de solitones de cavidad de anillo oscuro.

Otros métodos de rotura de la simetría de fase han sido usados para

controlar la dinámica de muchos sistemas. Uno de los más populares es

la resonancia paramétrica, i.e. forzar periódicamente un sistema a una

frecuencia que es aproximadamente el doble de su frecuencia natural de

oscillación. Sin embargo, estos métodos son menos versátiles que el rocking,

el cual puede aplicarse a una amplia gama de sistemas como el láser, que

son insensibles a la resonancia paramétrica. De hecho, se han hecho

múltiples propuestas teóricas y experimentales de aplicación del rocking a

diferentes sistemas (ópticos y no ópticos). En el dominio de esta tesis,

nos centraremos en la influencia del rocking en dos sistemas que han sido

estudiados profusamente en la literatura, dado su gran interés tanto desde el

punto de vista fundamental como práctico:

Láser. El láser (acrónimo de amplificación de luz por emisión estimulada

de radiación) es posiblemente el sistema óptico no lineal más relevante,

tanto por su naturaleza, intrínsecamente no lineal, como porque gracias a las

propiedades singulares de la emisión láser (profundamente monocromáticos

y altamente focalizables), se pueden estudiar multitud de efectos no lineales

que requieren altas concentraciones de energía para manifestarse. Un láser

consiste esencialmente en un medio que presenta inversión de población (más

electrones en un estado excitado que en el fundamental) por la interacción

con un bombeo y es capaz de generar radiación electromagnética por emisión

estimulada que se ve amplificada tras pasar un gran número de veces a través

del amplificador que viene dado por el paso de la luz una y otra vez entre

los espejos de la cavidad. El modelo de láser más estudiado es el láser de

dos niveles (una abstracción, ya que se necesitan al menos tres niveles para

conseguir inversión de población) ya que permite un tratamiento analítico

asumible, siendo las ecuaciones de Maxwell-Bloch (MB) las que describen este

modelo. En la emisión láser cualquier fase es posible ya que es un sistema

autooscilante en el que la fase no está fijada, lo que determina el tipo de

patrones que aparecen. La formación de patrones transversales en láseres (en

ausencia de inyección) ha sido estudiada tanto en configuraciones de cavidad

con pequeña apertura (bajo número de Fresnel), en los que el pequeño número

de modos transversales admitidos por el sistema y su interacción no lineal son
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los responsables de las estructuras espaciales (modos gaussianos), como en

casos donde el número de Fresnel es grande, en los que el número de modos

es grande y la presencia de vórtices y ondas viajeras es usual. Debido a su

interés, se han realizado numerosas propuestas teóricas y experimentales para

la generación de estructuras localizadas (solitones) en láseres, especialmente

en láseres de semiconductor, que son interesantes para posibles aplicaciones,

en el sentido de ser capaces de crear un sistema compacto para el procesado

de la información (láser de solitones). En nuestro caso, nos centraremos en la

aplicación del rocking a láseres: (i) unidireccionales y (ii) bidireccionales, en los

que dos campos contrapropagantes conviven dentro de una cavidad en anillo.

Oscilador fotorrefractivo. Este sistema es una cavidad óptica en la que

el medio no lineal es un cristal fotorrefractivo, el cual posee un índice de

refracción que depende de la modulación espacial de la intensidad de la luz.

La interferencia de dos haces en el cristal crea un patrón periódico en el campo

eléctrico siendo responsable una modulación espacial en el índice. Este efecto

no lineal, combinado con una mezcla de dos ondas en cavidad de anillo, da

lugar a la emisión de radiación que, como el láser, presenta invariancia de

fase. La principal diferencia es que, en este caso, la dinámica en el plano

transversal es mucho más lenta (del orden de segundos, varios órdenes de

magnitud mayor que la del láser) debido a las especiales características del

medio fotorrefractivo (en especial de su curva de ganancia). Esto presenta

indudables ventajas a la hora de estudiar experimentalmente la formación

de patrones, ya que no hacen falta equipos sofisticados de grabación para

analizarlos. Es por ello que los osciladores fotorrefractivos se han convertido en

perfectos laboratorios para el estudio de patrones transversales en cavidades

ópticas y el número de resultados experimentales obtenidos en ellos es

enorme. En nuestro caso, estudiaremos teóricamente la influencia del rocking

en osciladores fotorrefractivos en configuración de mezcla de dos ondas, en

cavidad de anillo.

A lo largo de esta tesis, estudiaremos detalladamente la influencia del

rocking en dichos sistemas. Cómo es usual en el campo de la ciencia no

lineal, es conveniente deducir ecuaciones que describan el comportamiento

de dichos sistemas cerca de los puntos (puntos críticos) donde emergen las

soluciones estacionarias del sistema. Estas ecuaciones (llamadas de parámetro

de orden) tienen una forma aparentemente simple y son capaces de describir

multitud de sistemas no lineales, físicos, químicos, biológicos.. (la única

diferencia es el significado de los diferentes parámetros, pero la estructura

matemática es la misma), por lo que poseen un carácter universal. Asimismo,
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analizaremos la estabilidad de las soluciones encontradas y realizaremos

simulaciones numéricas de los diferentes modelos teóricos.

La estructura de este manuscrito es la siguiente. El primer capítulo se

dedicará a una introducción que contendrá:

• Una discusión sobre el fenómeno de la formación de patrones en la

naturaleza.

• Una introducción general de algunas de las principales contribuciones

hechas hasta ahora en el campo de la formación de patrones en el campo de la

óptica no lineal.

• Una introducción formal al mecanismo del rocking y una revisión de los

sistemas donde ha sido aplicado.

• Una pequeña discusión sobre las ecuaciones de parámetro de orden,

en concreto las ecuaciones (reales y complejas) de Ginzburg-Landau y Swift-

Hohenberg, que han sido deducidas hasta ahora para cavidades ópticas.

• Un resumen de las herramientas matemáticas, analíticas y numéricas

que hemos empleado para llevar a cabo nuestro estudio, como son: el

análisis de escalas múltiples para la obtención de ecuaciones de parámetro

de orden, el análisis de estabilidad lineal para analizar las inestabilidades

de las soluciones estacionarias del sistema frente a perturbaciones espacio-

temporales, y el método de integración numérica split-step, convenientemente

modificado para incorporar forzamientos externos dependientes del tiempo

como el rocking.

En el segundo capítulo resumiré mis principales contribuciones a los

artículos presentados organizados por temática. Asimismo, se presentarán

algunos resultados que no han sido publicados todavía:

• A partir de las ecuaciones de MB con inyección rocking, se deducirá una

ecuación de parámetro de orden para láseres de clase C con desintonía positiva

de la cavidad y se estudiarán numéricamente los patrones del sistema.

• Para láseres de clase B, se obtendrá un modelo reducido de dos

ecuaciones y se analizará su dinámica temporal y la influencia de la desintonía

de la inyección rocking. También se mostrarán patrones espaciales obtenidos

a partir de la simulación de las ecuaciones de MB.

• Se desarrollará un modelo unificado (válido para desintonías de la

cavidad positivas y negativas) para láseres de dos niveles (clase C y A) y

osciladores fotrorefractivos, proporcionando los dominios de estabilidad de los

estados biestables en fase y estudiando numéricamente los patrones espaciales

que aparecen.

• Se analizará la dinámica temporal de un láser bidireccional con
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inyección rocking y se presentarán algunos resultados preliminares de

patrones espaciales.

Por último, en el tercer capítulo expondré nuestras principales

conclusiones del trabajo realizado. Como anexo incluiremos una copia

de los cinco artículos publicados que apoyan esta tesis.





1
Introduction

1.1 Dissipative structures in Optics

Dissipative structures in nature

Spatio-temporal pattern formation occurs everywhere and everytime in nature

[7, 8]. Complex non-trivial structures can be found in systems [9] apparently

so different like the sand of a beach, the interior of a cell or a galaxy (Fig.

1.1). The dynamics of these systems have very different typical (spatial and

temporal) evolution scales (from milimiters to light-years) but the mechanisms

that lead to pattern formation are similar in all of them. Those have been

studied since a long time ago, in hydrodnamics [10], biology [11] or chemical

reactions [12]. In nonlinear optics (the invention of the lasers in 1960s allowed

to study experimentally nonlinear phenomena in optics), the seminal paper by

Lugiato and Lefever [13] was one of the first ones to address this question.

If we look closer to these systems displaying pattern formation, we see

that, in many cases, they are far for thermodynamic equilibrium [14] in the

sense that they are permanently forced by an external force which interacts

nonlinearly with the system. This externality, combined with the natural

losses of any real system, produces the appearance of patterns (stationary

or dynamical) which are called dissipative [15] due to this balance of energy

(which prevents the system from having merely decaying solutions as it is usual

in systems with losses). Nonlinear systems [16] possess features, like the non-

superposition principle, which helps to explain the appearance of patterns in

extended systems. Specifically, the Turing mechanism for reaction-difussion

models [11] arises from a competition between diffusion (diffraction in optics),
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Figure 1.1: Extended spatial patterns found in nature: (left) sand ripples

(from pixabay.com) and (right) spiral Pinwheel Galaxy M101 (from

Hubble telescope, ESA/NASA).

which tends to preserve spatial uniformity and nonlinearity, which encourages

inhomogeneity in the system. The balance between the two is reponsible

for the stability of these structures. Extended patterns like traveling waves,

labyrinths or hexagons have been predicted in chemical reactions of Belousov-

Zhabotinsky-type [17].

Similar explanations for pattern formation have been also proposed in

nonlinear optics [13], where there has been much progress since 1990s (section

1.1). This proves that the particular microscopical physical mechanism is not

essential for understanding these systems (at least in certain limits like critical

points where solutions of the systems are born or cease to exist). Moreover, they

can be studied from a more general approach which involves (relatively simple)

nonlinear equations which describe a wide range of nonlinear systems close to

critical points. These equations are called order parameter equations and they

have a universal character. So the derivation of one of these equations for a

nonlinear system happens to be the best way to understand, qualitative and

also quantitatively, its basics behaviour and making predictions of its spatio-

temporal dynamics which can be confirmed experimentally. In section 1.2 we

will study these equations more deeply.

Dissipative solitons (stable localized structures) constitute one of the most

interesting patterns we may find in these nonlinear systems. Such structures

are a generalization, in dissipative systems, of the "conventional" solitons

[18], which were observed for the first time (solitary wave) in [19] although

the concept was introduced in [20] when studying the numerical solutions of

the Korteveg de Vries equation. These solitons (also solitary pulses) can be

regarded as (a family of) nonlinear modes of a conservative system and have
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a different nature than the dissipative ones. Dissipative solitons have been

experimentally found in fluid, granulates and chemical systems [21–23].

In the following subsections, I will describe some of the spatial structures

which appear in Nonlinear Optics, starting with a short discussion about under

which conditions those patterns are observable.

Extended patterns in Optics

Patterns in nonlinear optics are ubiquitous and are present in a large variety of

systems [24, 25] like lasers, optical fibers, planar waveguides or liquid crystals

among others. For the sake of concreteness, we will restrict ourselves to pattern

formation in optical cavities (nonlinear medium placed between two mirrors of

high reflectance) with large Fresnel number1 (aspect ratio) in the transverse (to

the direction of propagation) dimensions [26, 27]. In this case the nonlinearity

comes for the interaction between the material and the electromagnetic field.

The cavity can be active if the medium provides energy to the field (i.e. laser) o

passive (Kerr-type cavity in the Lugiato-Lefever model) [28, 29].

Figure 1.2: Transitions from hexagons (left) to rolls (right) in a degenerate

optial parametric oscillator (DOPO). Spatial spectrum is shown in

the second row. From [32].

For large aspect ratio systems a practical separation between transverse

and longitudinal modes (as it is usual in optical cavities like lasers [30]) can

be made. The longitudinal dimension usually admits a single-mode (uniform)

emission whereas for the transverse directions a large number of modes are

1If Lx is one tranverse length and Lz the longitudinal length, Lx /Lz is the angle of view of an

object of linear size Lx from a distance Lz . As wavelengthλ/Lx is the minimal angular resolution

due to diffraction, then F = L2
x /λLz can be seen as the number of independent resolution

elements along Lx detectable at a distance Lz .
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allowed. If the number of these transverse modes is small (low Fresnel

number) the resulting transverse patterns are determined essentially by the

geometry of the cavity and its boundary conditions and they are the result

of the competition between a finite number of modes and the nonlinear

interaction. However, if a large number of transverse modes is present, the

emerging patterns only depend on dynamical variables and its formation can

be modelled using universal order parameter equations similar to the ones

employed in other (not only physical) systems. Additionally, this large Fresnel

number condition allows us to establish analogies between different nonlinear

optical systems as they can be described, in certain limits, by the same equation

despite the different nature of the nonlinear processes involved (section 2.4).

If we consider nonlinear optical cavities with flat mirrors, the inherent

translational symmetry simplifies the theoretical analysis as we don’t have

to deal with the set of cavity modes as it happens when curved mirrors are

considered [31]. The stationary homogeneous solutions of the systems can

become unstable against small perturbations of wavevector k with modulus

k2
c which maximizes the (positive) real part of the associated eigenvalue. All

these modes initially experiences linear growth but the nonlinear competition

between them leads to the survival of only a finite number of them. This

produces traveling waves (one surviving mode), rolls (two), squares (four) or

hexagons (six). The resulting patterns are not always stable and can suffer

secondary instabilities (Fig. 1.2).

Figure 1.3: (Upper Row) Intensity (left) and Phase (right) distributions of phase

domains obtained numerically in a DOPO [29]. (Lower row)

Intensity (left) and interferogram showing the π-phase jumps in the

boundaries (right) of phase domains obtained experimentally in a

PRO [33].
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In phase bistable systems a different kind of spatial patterns appear. They

are characterized (in 2D) by phase domains (Fig. 1.3) of one phase embedded

in a background of the opposite phase. These are transient structures which

may suffer modulational instabilities [34] leading to labyrinthic patterns.

Localized structures in Optics

The presence of solitons in nonlinear cavities (cavity solitons [35]) was first

studied by Moloney and collaborators [36] and by Rosanov in [37, 38], where

solitons ("diffractive autosolitons") came from the interaction of switching

waves with two homogeneous stationary states.

Other localized structures arise when two or more transverse patterns

are stable for the same range of parameters and the resulting multistability

generates more complex structures. Specifically, if a homogeneous stationary

solution and a spatially modulated stationary solution coexist, localized

structures (for instance, a piece of the modulated solution surrounded by the

homogenous one) can appear. The existence of such structures was predicted

in [39]. The location, shape and size of the localized states can be very

diverse depending on the system and the value of the parameters governing

its dynamics. Their movement (they can spontaneously move due to thermal

noise) can be controlled using phase or amplitude gradients in the holding

beam [40]. Moreover, control and steering of domain walls in phase-sensitive

systems has been explored (theoretically) in a DOPO [41] and (experimentally)

in a four-wave mixing PRO [42].

Figure 1.4: Bright amplitude (left) and dark-ring (right) cavity solitons in a

DOPO. From [29].

A basic classification of CS can be made, according to their relative intensity

to the background, between bright (Fig. 1.4) solitons (intensity peak) and

dark/grey (a minimum of intensity) solitons. In both cases they are amplitude

solitons and they appear in subcritical bifurcations (Fig. 1.5) where bistability

between homogeneous solutions is present.



6 Introduction

1
.
In
tr
o
d
u
c
ti
o
n

D
is
si
p
a
ti
v
e
st
ru
c
tu
re
s
in

O
p
ti
c
s

1
.1

.0

Figure 1.5: Different types of bifurcation in nonlinear systems. (a) Supercritical

Hopf bifurcation (like free-running laser), (b) subcritical Hopf

bifurcation, (c) supercritical pitchfork bifurcation. A is the

amplitude of the solution, and is p the pump (criticality) parameter.

From [29].

Another kind of CS are the phase solitons, these are formed in phase

bistable systems experiencing pitchfork bifurcations (Fig. 1.5) and can be

interpreted as minimum size phase domains. They are characterized by

domain walls (black or grey) which separate the two phases of the system

leading to straight lines (quasi 1D sytems) or rings (2D) (Fig. 1.4). These CS

are the ones we usually find in optical cavities under rocking injection although

amplitude solitons are also found in these systems [43].

As it was mentioned earlier, these CS should not be confused with other

kind of solitons, which appear in (integrable or not) Hamiltonian systems and

have a different nature (Fig. 1.6). In dissipative systems, apart from the balance

between diffraction/dispersion and nonlinearity, there is an energy balance

between gain and loss.

Other mechanisms for cavity soliton formation include intra-cavity

materials (for passive Kerr cavities) with modulated refractive index (photonic
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Figure 1.6: Qualitative difference between the soliton solutions in Hamiltonian

and dissipative systems. In Hamiltonian systems, soliton solutions

are the result of a single balance, and comprise one- or few-

parameter families, whereas, in dissipative systems, the soliton

solutions are the result of a double balance and, in general, are

isolated. From [44].

crystal) which inhibits the formation of periodic transverse patterns, extending

the bistability region where CS appear [45] and discrete models [46] for

dissipative systems [47] giving rise to discrete CS. Additionally, not restricting

ourselves to 2D spatial structures, 3D spatial CS (cavity light bullets) have been

considered in [48].

Recently, much theoretical and experimental effort have been made

regarding temporal cavity solitons (persisting light pulses) [49] although they

are beyond the scope of this introduction and are cited only for completeness.

Patterns in Lasers and Photorefractive Oscillators

Transverse patterns in broad area free-running lasers have been studied since

the late 1980s [50–54]. Universality of pattern fomation in lasers was considered

in [55, 56], where an analogy with hydrodynamics was found and the existence

of optical vortices was predicted for class A lasers for the zero detuning case

[56]. For finite positive detuning [57], vortex sheets and vortex lattices appear.

When a monochromatic off-axis injected signal is included [58], patterns due

to superposition of traveling waves are found.

The bifurcation which originates emission in a free-running laser is

supercritical so amplitude cavity soliton are not possible (their existence

requires subcritical bifurcation as we saw before) in this configuration. Many

mechanisms for generating (creating subcritical bifurcations) cavity solitons



8 Introduction

1
.
In
tr
o
d
u
c
ti
o
n

D
is
si
p
a
ti
v
e
st
ru
c
tu
re
s
in

O
p
ti
c
s

1
.1

.0

(a) (b)

(d)

(c)

(f)(e)

Figure 1.7: Transverse patterns predicted in lasers under different conditions:

(a) vortices in free-runnig resonant laser [56], (b) vortex square in

lasers with finite detuning [57], (c) laser with injected signal [58],

(d) laser with saturable absorber [60], (e) dense media [63] and (f)

laser pumped by squeezed light [64].

in lasers have been proposed since 2000s: if a saturable absorber is placed

intracavity [59], a subcritical bifurcation is achieved and amplitude solitons

are predicted to exist [60] and furher investigation taking into account the

nonlocal and noninstantaneous nature of nonlinearity has been made [18, 61].

Amplitude solitons are also predicted for two photon emission in cascade lasers

[62] and when local field effects in dense media are considered [63]. On the

other hand, sources of squeezed light lead to the formation of phase solitons

and other phase structures in lasers [64]. (Fig. 1.7)

Experimental investigations regarding CS were made in semiconductor

microcavities below the lasing emission threshold [65], where writing and

erasing of CS was demonstrated (Fig. 1.8). Temporal phase2 cavity solitons

in multimode semiconductor lasers have been explored theoretically and

experimentally in [66]. Excitability associated to topological phase solitons in

semiconductor lasers with delayed feedback is shown in [67].

In bidirectional lasers [68] 1D CS were predicted several years ago [69].

Furher analysis and investigation of the influence of coherent external injection

was given in [70] and the impact of diffusion for stabilizing CS was analyzed

2In this case, an injected signal allows a single phase in the system and the phase structure

displays a 2π rotation.
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Figure 1.8: Writing/erasing process of cavity solitons in semiconductor

microcavities. From [65].

in [71, 72]. Lastly, In photorefractive oscillators (PRO), experiments involving a

large Fresnel number [73, 74] led to the appearance of vortices in the transverse

plane (Fig. 1.9).

Some practical applications of CS in nonlinear optics were discussed in

[75], including optical memories, through writing/erasing CS (although their

size and mobility are a problem against other alternatives), all-optic delay

line, in which CS can be considered "stopped light" which can be moved

at controllable velocity, and soliton-force microscopy (SFM), exploiting the

(spontaneous or defects-driven) movement of CS to design a SFM in the few-

micrometers (size of a CS) range.

A cavity soliton laser (CSL), in which the lasing emission consists of cavity

solitons and can be regarded as a set of microlasers in a background of pure

spontaneous emission, is an active device which would allow to generate CS

without the need of a driven external beam which besides determines (in a

CSL the CS would have the freedom to choose its phase leading to interesting

fundamental and application-focused studies) the characteristics of CS in

passive systems. Experimental realizations of a CSL using a semiconductor

laser (VCSELs: vertical-cavity surface-emitting lasers) were made in [76]

by means of frequency-selective feedback VCSELs, [77] where two coupled

VCSELs in a face-to-face configuration are used and [78] in which a monolithic
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Figure 1.9: Transverse pattern of a PRO with large Fresnel number where

vortices of different charges can be oberved: intensity distribution

(left) and interferogram (right). From [74].

VCSEL with saturable absorber is considered. In these systems the motion of

CS can’t be controlled through an external beam but it is possible to introduce

gradients in the pump parameter. This has been analyzed theoretically for CSL

with saturable absorber lasers in which (self-propelled) movement of CS (in

absence of defects in the material) with constant velocity was predicted [79]

and a cavity-soliton billiard (using a square pump profile) was proposed [80].

1.2 Universal dynamics

As it was mentioned in section 1.1, it is possible to describe the spatio-temporal

dynamics of many nonlinear systems close to critical points by means of a

series of so-called order parameter equations (OPE). These equations have a

relatively simple mathematical structure and are valid for a large number of

physical and no-physical systems, being the only difference the meaning of

the parameters. This is why the dynamics described by OPE is known also as

universal dynamics.

OPE can be classified between real and complex according to the nature of

the variables used. In nonlinear optics it is usual to describe the electric field in

its complex form3 so the complex OPE are widely used, although in context

where phase locking is present (like in phase bistable system) it is possible

to describe the dynamics by means of real OPE [29]. Two equations have

been widely used in nonlinear optics: Ginzburg-Landau and Swift-Hohenberg

models:

3The actual electric field is the real part of its complex description
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Complex Ginzburg-Landau equation

The standard Complex Ginzbug-Landau equation (CGLE), which was originally

developed for a phenomenological approach to superconductivity [81], reads:

∂t A = (1+ iθ)A+ (α1 + iα2)∇2 A− (β1 + iβ2) f (|A|2)A (1.1)

where f (x) = x usually in cavity nonlinear optics (although the version with an

extra quintic term [18] is also commonly used when studying fiber solitons). In

the equation, the distance to threshold has been normalized to 1,α1 (α2) stands

for diffusion (diffraction), β1 (β2) stands for saturation (nonlinear dispersion)

and θ is the detuning parameter. In cavity nonlinear optics α1 ¿ α2 and β2 ¿
β1 in most cases. This equation has been analyzed in many contexts [82] and

possesses a continuous phase symmetry: If A is a solution, then Ae iφ is also a

solution for anyφ. This leads to the appearance of vortices in spatially extended

systems [29].

The previous equation is a prototypical model for describing self-

oscillatory systems close to threshold of emission and and CGLEs have been

derived for doubly resonant DOPO [84] and lasers [83] among other nonlinear

optical systems. A real version of this equation was obtained in [85] where

optics bistability was analyzed and in [32] for the DOPO with positive detuning.

If the laplacian is removed we obtain a, temporal only, evolution equation

(Stuart-Landau) which will be used to analyze bidirectional lasers in section

2.4.

A CGLE describes the dynamics of a (class C or class A) laser for (large)

positive cavity detuning. In the treshold the trivial solution is destabilized

through a Hopf bifurcation to a solution showin homogeneous oscillations.

However the expected traveling wave emission [86] for negative detuning is not

captured by this model. This led to the derivation of a more complex model

also valid for negative detuning: A Swift-Hohenberg equation (CSHE).

Complex Swift-Hohenberg equation

The CSHE is the complex version of the, most usual, real SHE [87] used first in

hydrodynamics:

∂t A = (1+ iθ)A+ iα∇2 A− (
∆+∇2)2

A− (β1 + iβ2) |A|2 A (1.2)

The parameters have the same meaning as the CGLE except for ∆ (usually

related to the cavity detuning in nonlinear optics) which controls the kind

of structures which emerges in the system when the trivial solution loses its
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stability. The natural solution of the system are traveling waves for negative ∆

and homogeneous oscillations or positive ∆.

In 1990s a CSHE was derived [88, 89] for a laser with (small) positive and

negative detuning which captured the predicted behaviour for every case and,

additionally, a reduced model of two coupled equations for (mathematically

stiff) class B lasers was provided. We will comment on that in the next

subsection.

The real SHE appears in DOPO [32] and other phase-bistable systems [85]:

∂t A = A− A3 − (
∆+∇2)2

A (1.3)

It has only one parameter, and it has been studied analytically and numerically

in many contexts, eg in [90], in which the stability of localized structures was

analyzed.

Class B lasers

It is possible to derive reduced models based on CGLE or CSHE for class A

and class C lasers (section 2.1) starting from MB equations for two-level lasers.

But class B lasers, which are characterized by a very small damping rate of the

population dynamics (b ¿ 1 in (2.1)), can’t be described by theses equations.

Semiconductor lasers (like VCSELs), belong to this class so it is important to

have reduced modela for them. These usually requires two equations (three

variables: one complex and one real) as the fact that b is so small (stiffness of

the equation) implies that in the linear stability analysis of stationary solutions

of MB equations [89] three eigenvalues remain close to zero and can’t be

eliminated. So typical SHE-based reduced models for class B lasers read4:

∂t A = (1+ iθ)A+ iα∇2 A− (
∆+∇2)2

A− (β1 + iβ2)N A (1.4a)

∂t N =−bN +|A|2 (1.4b)

where the additional equation for the population inversion N acts like a mean-

flow.

A linear stability analysis of class B lasers reveals [25] that above the

emission threshold the nontrivial stationary solution is always stable, but the

very small b makes the laser to exhibits a very long transient to the stationary

state when moved (significantly) above the threshold. This behaviour is

4Similar equations using a Ginzburg-Landau model can be obtained
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characterized, in an initial state, by pulsing regime and in the final state

by damped oscillations (relaxation oscillations). The frequency of these

oscillations frequency is crucial for the efficiency of rocking as we will see in

section 2.2.

The presence of stiffness in the model possesses undesired effects as

very slow dynamics, which prevents the possibility of making exhaustive

numerical simulations in these system. One alternative, using center manifold

techniques, was provided in [91] for deriving reduced model for class B lasers

in which stiffness is removed and computational times are strongly reduced .

1.3 Rocking mechanism

As it has been said before, along this thesis I will apply the rocking technique

[6] to several nonlinear optical systems (lasers and photorefractive oscillators).

In this section I will provide a general introduction to the rocking mechanism,

including its motivation and main features.

Periodic forcing of nonlinear systems

The phase symmetries on nonlinear oscillators determines the nature of the

patterns that are formed in the system. The continuous phase symmetry is

reponsible for spiral waves or vortices. A more structured behaviour arises

when some kind of external forcing is considered, being the periodic temporal

forcing [92, 93] the most usual one. This kind of injection acts an external

clock, breaking the continuous phase symmetry of the system, which now

becomes discrete. It is possible to show [92] that when the ratio between the

external frequency and the natural frequency of the system ω f /ω0 is a rational

number, the so called n : m resonance, then n equivalent phases given by

φk =φ1 +2π(k −1)/n,k = 1, ...,n are present in the (now) n-phase multi-stable.

If the oscillator is well described, close to the onset of a Hopf bifurcation, by

a complex Ginzburg-Landau equation with saturation and difussion, then the

effect of the external forcing close to a n : m resonance can be expressed as:

∂t A = (µ+ iν)A+ (1+ iα)∇2 A− (1+ iβ) |A|2 A+F m(A∗)n−1 (1.5)

where A is the amplitude, F is proportional to the amplitude of the external,

forcing, α is the diffraction parameter and β is the nonlinear dispersion.

Finally ν measures the (small) detuning respect to perfect tuned forcing: ω f =
(n/m)(ω0 +ν)
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The (widely studied) 2 : 1 resonance (also called parametric forcing) gives

rise to the appearance of phase bistable patterns, like phase domains, domain

walls (Ising-type or Bloch-type [94]), labyrinths and localized structures like

dissipative spatial (cavity) solitons (like the ones in section 1.1). However, this

parametric forcing is not always useful as it requires the system to be sensitive

(highly nonlinear) to a frequency which is far away from his natural frequency.

This is not the case for many optical systems like lasers. So the idea is to obtain

a similar behaviour we observe with parametric forcing using a 1 : 1 (frequency

of the injection close to the one of the system) resonance which could work in

those systems.

Intuition behind rocking

The rocking [6, 95] can be defined like a generalized 1 : 1 resonance in which

the amplitude of the external forcing is modulated (in space and/or time) in a

way that the sign (π separation between phases) is alternating from positive to

negative in a periodic way. If this modulation is high enough (fast time scale

or short spatial scale), then on average the system will see the same amount of

every phase to it will tend to be phase bistable.

We can think of a mechanical analogy for rocking in which a massless

particle in a bidimensional world, with coordinates q1 and q2, evolves under

the action of damping and a potential V which has a Mexican sombrero shape

(Fig. 1.10). The maximum of V corresponds to an unstable off state and its

degenerate minimum to the self oscillations state of finite amplitude (Fig. 1.10).

If we start to rock the potential periodically very fast around one axis (say q1),

then the particle will tend to rest in the areas where the perturbation is minimal

and this happens in two points of the perpendicular axis q2 which are also in

the minimum of the potential. (Fig. 1.10). The simplest candidate for V would

be:

V (q) =−µ
2

q2 + 1

4
q4 −q1F0 cosΩt , (1.6)

where q =
√

q2
1 +q2

2 is the radial coordinate. If µ is positive then there is

a maximum in the origin and a circle of radius q = p
(µ) in which there is

a minimum. The dynamical equations obey d qi /d t = −∂V /∂qi as m = 0.

Defining A = q1 + i q2 we can write:

d A

d t
=µA−|A|2 A+F0 cos(Ωt ) (1.7)

which is the normal form of a Hopf bifurcation with a time-modulated forcing,
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Figure 1.10: Qualitative three-dimensional plot of the potential V (1.6) which

describes a rocked system. (From Paper IV).

so rocking an oscillator is equivalent to a periodic 1 : 1 forcing in which the

amplitude oscillates periodically in time.

Following the previous analogy, in Fig (1.10)(b) without injection (F = 0),

the potential is radially symmetric in agreement with the phase invariance

of the free-running laser. In Fig (1.10)(a,c), with constant injection (Ω =
0), the potential tilts along the direction Re(A) proportionally to the forcing

amplitude F and a single isolated minimum (marked with a black dot) appears,

corresponding to the usual phase-locked state of the usual laser with injected

signal. Under rocking (Ω 6= 0) the potential oscillates back and forth between

the two cases (a) and (c), through (b). Under such forcing, a particle would

tend to remain close to the imaginary axis Re(A) = 0. around either of the

two regions separated by the local maximum around the origin. The phase

bistability occurs in phases in quadrature respect to the injection. If this is real

(as in Fig. 1.10), phase locking occurs at ±π/2.

Formal description of rocking

We will consider a complex Ginzburg-Landau (CGL), as the one in section 1.2,

in which rocking injection is present:

∂t A = (µ+ iθ)A+α∇2 A−β |A|2 A+F (r, t ), (1.8)

where A, space and time have been normalized 5 so that |α| = ∣∣β∣∣ = 1 without

loss of generality. Moreover we can take µ = 1. The real (imaginary) part of

parametersα andβ represents diffusion (diffraction) and saturation (nonlinear

5The details can be found in Paper IV
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dispersion) respectively. The expression for F (r, t ) is:

temporal case F (r, t ) = F0 cosΩt (1.9)

spatial case F (r, t ) = F0 cosK x (1.10)

where F0 can be taken real without loss of generality, if the spatial (K ) or

temporal (Ω) frequencies are large then the dynamics of A can be decoupled

[6] in a fast and slow component:

A(r, t ) = A f (r, t )+ As(r, t ) (1.11)

where the evolution equations for the fast components are:

∂t A f = F0 cosΩt and ∇2 A f =−F0

α
cosK x (1.12)

whose solutions are:

A f =
F0

Ω
sinΩt and A f =

F0

αK 2 cosK x (1.13)

so the fast part merely follows the injection whereas the slow part verifies:

∂t As = (1+ iθ)As +α∇2 As −β
[
〈A2

f 〉A∗
s +2〈∣∣A f

∣∣2〉As+
|As |2 As +〈∣∣A f

∣∣2 A f 〉+2 |As |2 〈A f 〉 ] (1.14)

where the angular brackets stand for averaging (time or space). Then we can

write:

∂t As = (1+ iθ−2γβ)As −γA∗
s +α∇2 As −β |As |2 As , (1.15)

where γ = 1/2(F0/Ω)2 and γ = 1/2(F0/K 2)2 for the temporal and spatial

case. Although we have considered the simplest harmonic case, the previous

equation is valid in general and the only change is the definition of γ which

depends on the functional form of the rocking. Equation (1.15) is a parametric

CGL equation which has a term A∗
s that breaks the phase invariance of the free-

running system (γ= 0) generating a discrete symmetry where only two phases

(separated by π) are possible for the homogeneous solution. In order for the

rocking to be efficient, as we can check from (1.14) that the average of the fast

part 〈A f 〉 must be null, which implies that the injected rocking must have zero

average. Additionally, it is also necessary that 〈∣∣A f
∣∣2〉 6= 0.

Apart from the systems studied in the articles which constitute this

thesis, rocking (temporal and spatial) has been investigated (theoretically

and experimentally) in a large variety of nonlinear systems. These include
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nonlinear (0-dimensional) electronic circuits for both periodic [96] and

random temporal rocking [97], passive Kerr cavities [43], small aspect ratio two-

level lasers [98] and PRO [99] and semiconductor lasers [100]. More recently,

spatial rocking in a large aspect ratio PRO was demonstrated experimentally

[101]. Application of rocking to an already phase bistable system, generating

phase tetrastability is analyzed in [102].

1.4 Mathematical techniques

In this section I will briefly describe the mathematical tools I have used to carry

out the research presented in this thesis. First, we calculate the stationary

solutions of the full model and perform a linear stability analysis. We can

use this information to derive a reduced model (OPE) using the multiple scale

expansion technique. Once this simplified model is obtained we can calculate

its solutions and their stability region (by means of, again, a linear stability

analysis). Lastly, we perform numerical simulations of the full or the reduced

model to check the analytical results we have obtained and exploring the space

of parameters looking for spatial patterns which can’t be calculated analytically.

Linear stability analysis

A linear stability analysis [14] of a model provides information about the

behaviour of the system close (in the parameter space) to its stationary

solutions and allows us to study their stability/instability regions. In this

analysis, the stationary (fixed point) homogeneous solution is perturbed with

a small periodic perturbation of wavevector k. After linearizing the system,

dropping out the nonlinear terms of the perturbation, these perturbations

either are exponentially damped (stable solution) or grow exponentially

(unstable solution). Thus, the parameter space can be divided into stable and

unstable regions, with a threshold curve that is the marginal-stability curve,

where the growth rate of the perturbations changes sign. In these curves

the qualitative structures of the solutions change. These changes are called

bifurcations and can be local or global (cannot be studied locally). In this kind

of analysis only the local ones can be considered.

The simplest bifurcations of fixed-point solutions depending on one

control parameter are saddle node, transcritical and pitchfork bifurcations [14].

In a Hopf bifurcation (Fig. 1.5), a complex pair of eigenvalues crosses from

the stable to the unstable regime. Thus, a stable fixed point loses stability to
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a stable limit cycle (as in the threshold of emission of a laser). A saddle-node

bifurcation can connect (finite amplitude) stationary solutions with oscillatory

regimes [5]. The pitchfork bifurcation (Fig 1.5) appears in systems with broken

phase symmetry for complex variables (or when only non-even power terms

are present for real variables).

Specifically, for a system of variables Ai modelled by first order equations G

for a set of parameters R:

∂t Ai =Gi (A j ;R) (1.16)

The stationary solutions A0i are slightly perturbed with a Fourier mode:

Ai = A0i +δAi (r, t ), (1.17)

where δAi (r, t ) = δA0i eλi t+k·r.

We plug (1.17) into (1.16) and solve the system for λi (they will be the

eigenvalues of the linearized G around A0i ). The solution in general will be

complex and the eigenvalue with largest positive real part (growth rate) will

be analyzed. The wavevector kc which maximizes the growth rate will informs

us about the Fourier mode which will grow the fastest, and the value of the

parameters R which makes the growth rate equal to zero will define the stability

region as we commented before. The imaginary part of the eigenvalue will tell

us the nature of the instability: If Im(λ)=0 , it will be static and if Im(λ) 6= 0

we will have an oscillatory one. According to [14] we can have three type of

pattern-forming systems (defining ω=Im(λ(kc ))) :

• Type Is(ω= 0,kc 6= 0), stationary periodic.

• Type I0(ω 6= 0,kc 6= 0), oscillatory periodic.

• Type III0(ω 6= 0,kc = 0), oscillatory uniform.

The case IIIs(ω= 0,kc = 0) does not lead to pattern formation (only a switch

between stationary homogeneous solutions)

How the real and imaginary parts of the eigenvalue depend on the

parameters is essential for performing a multiple scale expansion a it will be

commented in the next subsection.

In the case of nonlinear optics it is usual that the equations contain a

(transverse) laplacian term ∇2 for diffraction/diffusion (this is not true when

an advective term, for instance, is present) , so the eigenvalue depends only on

the modulus of the wavevector. This rotational symmetry implies that a ring of

critical wavevectors (Fig. 1.11) in the transverse Fourier plane which experience

growth.
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Figure 1.11: Critical ring of unstable modes of modulus kc in transverse Fourier

plane. (From [103]).

However, a nonlinear competition (as it was commented in section 1.1)

between modes breaks this symmetry and only a finite number modes survive

after the initial stages of evolution. The number of this modes determines the

spatial pattern shown by the system (Fig. 1.12).

Figure 1.12: Rotational symmetry breaking. Examples of the simplest patterns:

rolls (a), squares (b) and hexagons (c) in the far-field (1) and near-

field (2). (From [103]).
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Multiple scale expansion

A method commonly used in Nonlinear Physics for deriving OPEs is the

multiple-scale expansion technique [29], The starting point a linear stability

analysis, but the evolution equation of the order parameter is found as a

solvability condition. This technique consists of the following steps:

1. The relevant variables and parameters of the system are expressed in

terms of a smallness parameter ε. This allows one to write the fields as an

asymptotic expansion,

v =
∞∑

n=1
εnvn (1.18)

The appropiate scales for every variable are obtained from a linear stability

analysis of the stationary solution, which tells us how those variables grow close

to the critical point where that solution loses its stability and how the growth

rate depends on the parameters.

2. In the case of rocking, as it has been commented in section 1.3, it is useful

to define two time scales: T1 = εt (fast), which is the time scale of rocking, and

T2 = ε2t (slow), being t the usual time. Under these conditions: ∂t → ε∂T1 +
ε2∂T2 .

3. The original equations are expanded, and the coefficients of powers of ε

are gathered. At order n, the equation has the form Lvn = gn , which is linear in

vn , where gn contains the nonlinear interactions and variations of the fields at

lower orders, and L is a linear operator.

4. A solvability condition is applied at some order n, to require the existence

of solutions.

5. Finally, at a given order, a closed equation is obtained for the evolution of

the variables. In the case of rocking, the dynamics of the system under rocking

can be divided into two parts: A(T1,T2) = A1(T1)+ A2(T2), in which A1 which

merely follows the fast injection and A2 has a slow dynamics governed by an

OPE with broken phase symmetry.

Examples of the application of this technique can be found in section 2.1

and in the appendices of Paper V.

Numerical simulations

We will use a modified version of the usual split-step method [104] for

simulations of nonlinear partial differential equations. We will consider first

the system:
∂

∂t
X(r, t )=M(X)X, (1.19)
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where M(X) = L +N (X) being L independent from X(r, t ). A formal solution of

this equation reads:

X(r, t +∆t ) = exp

(∫ t+∆t

t
M(X(r, t ))d t

)
X(r,t ) (1.20)

The linear part L usually contains laplacian an other non-local terms so we

separate de linear part from the nonlinear part. Up to second order in t, we can

write:

X(r, t +∆t ) =L N L X(r, t )+O (∆t 3) (1.21)

where

L=exp

(
L
∆t

2

)
N =exp

(∫ t+∆t

t
d t ′N (X(r, t ′))

)
where we have used:

e(A+B)∆t ≈ e∆t A/2e∆tB e∆t A/2 + [[A,B ] , A]∆t 3 + ... , (1.22)

In order to calculate (1.21) we will use the following algorithm, where F is

the spatial Fourier transform:

X(r, t +∆t ) =F−1L̃ (k)FN F−1L̃ (k)FX(r, t ) (1.23)

where L̃ (k) is the linear operator in Fourier space. In the usual case where

L =L (∇2), then L̃ (k) = L̃ (−k2).

Regarding the nonlinear part, we have to solve the next integral

∫ t+∆t

t
d t ′N (X(r, t ′)) ≈

∫ t+∆t

t
d t ′

[
N (X(r, t ))+ ∂

∂t
N (X(r, t ))(t ′− t )

]
=

N (X(r, t ))∆t + 1

2

∂

∂t
N (X(r, t ))∆t 2 =

N (X(r, t ))∆t + 1

2

∂N

∂Xi

∂

∂t
Xi (r, t )∆t 2 =

N (X(r, t ))∆t + 1

2

∂N

∂Xi
(LXi (r, t )+N (Xi (r, t ))Xi (r, t ))∆t 2 (1.24)

this is equivalent (up to second order) to replace, in the integral above, X with

the result obtained after completing the first iteration (the first half of the linear

part) and then, in the second part (nonlinear term), using only the nonlinear
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part of the evolution equation. So first we evolve only with half of the linear

part, then only with with the nonlinear section and finally only with the another

half of the linear part.

Now, we will consider the case where there is a time dependent term, as it

happens when rocking is present:

∂

∂t
X(r, t )= M(X)X+Θ(t ) (1.25)

A formal solution is given by

X(r, t +∆t ) = exp

(∫ t+∆t

t
M(X(r, t ′))d t ′

)
X(r, t )+∫ t+∆t

t
d t ′ exp

[∫ t+∆t

t ′
d t ′′M(X(r, t ′′))

]
Θ(t ′) (1.26)

This expression and its justification is given in [105]. An approximation to

the previous solution is:

X(r, t +∆t ) ≈ exp

[∫ t+∆t/2

t
M(X(r, t ′))d t

]
×

(
exp

[∫ t+∆t/2

t
M(X(r, t ))d t

]
X(r, t )+

∫ t+∆t

t
d t ′Θ(t ′)

)
(1.27)

So first we apply the split-step method (for the homogeneous part M) for

the half of the interval, then we add the extra time integral and then we apply

again the standard split-step to the rest of the interval.
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Main results

In this chapter, I will present a summary of all my contributions to the

five research articles which appear appended to this thesis. For the sake of

simplicity and readability, I will group all the obtained results in four sections,

each of them not corresponding necessarily to one of the published articles.

Paper I

Bistable phase Locking of a Nonlinear Optical Cavity via Rocking: Transmuting

Vortices into Phase Patterns.

A. Esteban-Martín, M. Martínez-Quesada, V. B. Taranenko, E. Roldán and G. J.

de Valcárcel.

Physical Review Letters, 97, 093903 (2006).

Paper II

Bistable phase locking in rocked lasers.

K. Staliunas, G. J. de Valcárcel, M. Martínez-Quesada, S. Gilliland, A.González-

Segura, G. Muñoz-Matutano, J. Cascante-Vindas, J. Marqués-Hueso and S.

Torres-Peiró.

Optics Communications, 268, 160-168 (2006).

Paper III

Rocking bidirectional lasers.

M. Martínez-Quesada, E. Roldán and G. J. de Valcárcel.

Optics Communications, 284, 2554-2559 (2011).
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Paper IV

Phase-bistable pattern formation in oscillatory systems via rocking: application

to nonlinear optical systems.

G. J. de Valcárcel, M. Martínez-Quesada and K. Staliunas.

Philosophical Transactions of the Royal Society A, 372, 20140008 (2014).

Paper V

Universal description of pattern formation in optical oscillators under

bichromatic injection.

M. Martínez-Quesada and G. J. de Valcárcel.

Journal of the Optical Society of America B, 35, 1379-1389 (2018).
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2.1 Rocking in class C lasers†

As it has been mentioned before in this thesis (section 1.3), the rocking

injection has been successfully applied to a wide range of nonlinear systems.

One of the paradigmatical nonlinear optical systems where rocking could be

very useful is the two level laser as it is insensitive to the common 2:1 resonance

(feature which is shared by many other optical systems). Our primary goal is to

derive a order parameter equation for class C laser under rocking to provide

some analytical insight about the nonlinear dynamics (close to threshold) of

the resulting phase bistable system after rocking injection.

We start with the set of Maxwell-Bloch equations [51] that model pattern

formation in a single longitudinal mode, two-level laser with injected signal,

inside a plane mirrors resonator,

∂t E
(
x, y, t

)=σ [− (1+ i∆)E +P ]+ i∇2E +Ei n , (2.1a)

∂t P
(
x, y, t

)=− (1− i∆)P + (r −N )E , (2.1b)

∂t N
(
x, y, t

)= b
[−N + 1

2

(
E∗P +P∗E

)]
. (2.1c)

The complex fields E and P are the scaled envelopes of the electric field and

polarization, −N is proportional to the difference between the population

inversion and its steady value in the absence of lasing, and Ei n is the scaled

complex envelope of the injected signal. σ = κ/γ⊥ and b = γ‖/γ⊥, where

κ, γ⊥, and γ‖ are, respectively, the decay rates of E , P , and N . The

transverse Laplacian ∇2 = ∂2
x + ∂2

y , where the spatial coordinates
(
x, y

)
have

been normalized so as to make unity the diffraction coefficient, and t = γ⊥T

where T is the physical time. r is the pump parameter and the detuning

∆= (ωC −ωA)/
(
γ⊥+κ)

, being ωC (ωA) the cavity (atomic) frequency. For class

C lasers σ∼ b ∼ 1.

Equations (2.1) have been written in the frequency frame ω0 =(
γ⊥ωC +κωA

)
/
(
γ⊥+κ)

of the on-axis, or plane-wave
(∇2E = 0

)
, lasing solution

in the absence of injected signal. In particular, this means that the actual

light electric field and the injected field at the entrance face of the amplifying

medium are proportional to Ee −iω0γ⊥t + c.c. and Ei ne −iω0γ⊥t + c.c. Lastly, we

consider an injected signal of the form:

Ei n = F cos(ωt )e−iδt , (2.2)

†This section will focus mainly on Paper IV as well as some unpublished material.
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which represents an amplitude-modulated field of carrier frequency ω0 +γ⊥δ
and modulation frequency γ⊥ω or, equivalently, the superposition of two

coherent fields of equal amplitudes, and frequencies ω0 +γ⊥δ±γ⊥ω.

A weakly nonlinear analysis of the laser equations, based on the technique

of multiple scales (section 1.4), will eventually give rise to the searched reduced

model. Up to second order, the solution of (2.1) can be written as:

E = (A f + As)e−iδt , P = (1+ i∆)E , N = |E |2 (2.3)

where A f = D(F /ω)sin(ωt ) and As verifies (a detailed derivation, not present in

Paper IV, of the equation is provided in the next section):

∂t As = σD

1− i∆

[
(r − r0 −2γ)As −γA∗

s −|As |2 As
]+ iδAs + i D∇2 As (2.4)

where D = (
1+σ1+i∆

1−i∆

)−1
and γ= 1

2

( F
ω

)2
is the rocking parameter. This equation

is a PCGLE equation formally equivalent to the one which was studied in [6].

The diffusion coefficient Re(i D) needs to be positive (section 1.2) and this only

happens iff detuning ∆ is also positive1 so we have imposed this condition in

the derivation of the equation (see next section). The result is not surprising as

we know that a free-running class C laser is well described close to threshold

by a CGLE for positive and large values of detuning [83]. The introduction

of rocking has changed, as expected, the phase symmetry of the system and

a parametric term (the one multiplied by γ) shows up. The PCGLE has been

studied previously in a variety of contexts (optical and non-optical). For a

simple optical case (there is diffraction but not diffusion and saturation but

not nonlinear dispersion) the bifurcation diagram is shown in Fig. 2.1.

Figure 2.1: Bifurcation diagram of a PCGLE (eq. (3.8) in Paper IV) with α = i

and β= 1. (From Paper IV)

1A complex Swift-Hohenberg equation for rocked lasers, valid for small positive and

negative ∆, will be studied in section 2.3.
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Numerical simulations of Eqs. (2.1) using a Split-Step method (section 1.4)

were performed, for class C lasers, for a variety of situations. In Fig. 2.2 a

comparison between free-running laser transverse patterns, including vortices

in the absence of rocking, and the phase domains of the phase bistable laser,

when temporal rocking is considered, is shown.

Figure 2.2: Intensity (left) and phase(right) distributions in the transverse

pattern of a two-level laser without (first row) and with (second

row)temporal rocking injection obtained from the simulation of

Eqs. (2.1) starting from noisy initial condition. Rocking is injected

in t = 40 and first row corresponds to t = 0 and second row is t = 80.

Parameters are σ = b = 1, r = 6, ∆ = 2, δ = 0, F = 20 and ω = 2π.

(From Paper IV).

Additionally, phase domains existence are proved for two-level lasers in

Paper IV2. Plots of Bloch (gray) and Ising(black) domain walls are given in

Fig. 2.3. These phase domains exist for zero and small values of the detuning

of rocking δ whereas for large detuning, curvature instabilities appear and

labyrinthic patterns (Fig. 6 of Paper IV) show up. An important result is

the confirmation the existence of localized phase structures (dark-ring cavity

solitons) for intermediate values of δ. (Fig. 2.4).

2The results regarding lasers with temporal rocking presented in this paper are original and

constitute my main contribution to it.
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(A) (B)

Figure 2.3: (a) Intensity, (b) Phase, (c) Intensity profile and (d) Phase profile of:

(A) Bloch-type domain walls for F = 13 and (B) Ising-type domain

walls for F = 20 for class C lasers. Rest of parameters are as in Fig.

2.2. (From Paper IV).

Figure 2.4: Dark-ring cavity soliton for class C lasers. δ= 0.055. (a) Intensity, (b)

Phase , (c) Intensity profile and (d) Phase profile. Rest of parameters

are as in Fig. 2.2. (From Paper IV).
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Formal derivation of the PCGLE (2.4)

In order for the chosen form (2.2) for the injected signal to be consistent with

the uniform field and single mode approximations that lead to Eqs. (2.1), both

the carrier frequency offset γ⊥δ and the modulation frequency γ⊥ω must be

much smaller than the free spectral range of the cavity α = 2πc/L (c is the

velocity of light and L the cavity length), i.e.,

|δ| , |ω|¿α/γ⊥. (2.5)

Taking into account that the cavity loss rate in the uniform field limit reads

κ = cT /2L, being T the cavity mirrors transmissivity, α can be written as

α = (4π/T )κ. Thus, condition (2.5) reads |δ| , |ω| ¿ (
4πT −1

)
σ (remind that

σ = κ/γ⊥). Since T ¿ 1 is assumed in the uniform field limit, δ and ω can

be much larger than the normalized cavity linewidth σ without violating the

assumptions that lead to the single-mode and mean field approximations.

We concentrate on the case ∆ > 0 for which, in the absence of injected

signal, the nonlasing solution (E = 0) is destabilized towards the on-axis lasing

solution at r = r0 [83],

r0 ≡ 1+∆2. (2.6)

The reduction of the laser dynamics to simpler equations will be done in the

close to threshold regime:

r = r0 +ε2r2, (2.7)

being 0 < ε ¿ 1 a smallness parameter. In order to deal with a problem as

simple as possible we consider that ∆ = O
(
ε0

)
, where a complex Ginzburg–

Landau (CGL) equation describes the laser in the absence of injection [83].

For smaller detunings, ∆ = O (ε), the nature of the bifurcation changes and a

complex Swift–Hohenberg equation, and not a CGL equation, is obtained as

we will show in section 2.3.

Together with the close to threshold condition, appropriate scalings for

time and space are needed. In the absence of injected signal (F = 0) these scales

would be uniquely dictated by the linear stability analysis of the nonlasing

solution. In our case, we need also to take into account the driving field. We

will proceed as follows: first we will determine the relevant scales associated

with the autonomous problem (F = 0), and then we will set right scalings for

the injection that are compatible with the former. Anyway we will only consider

weak injected signals.

In the absence of injected signal and close to threshold [Eq. (2.7)] the linear

stability analysis of the trivial state (E = P = N = 0) against perturbations of the
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form exp(λt + i k · r) yields that only modes verifying |k| = εk1 can experience

growth (section 1.4). This result sets the relevant spatial scales of the problem:

X = εx, Y = εy, (2.8)

associated to which we define a slow Laplacian operator

∇2
1 ≡ ∂2

X +∂2
Y . (2.9)

For these small wavenumber modes (|k| = εk1) the three Lyapunov exponents

λ read

λ1 = ε2D−1λ12 +O
(
ε4) , (2.10)

λ2 =− (1+σ)+ i∆ (1−σ)+O
(
ε2) , (2.11)

λ3 =−b, (2.12)

where D = (1+σ)2 +∆2 (1−σ)2, and

λ12 = σ
[
(1+σ)r2 −2∆k2

1 + i∆ (1−σ)r2
]

(2.13)

−i
[
1+σ+∆2 (1−σ)

]
k2

1 .

Since no eigenvalue has an order 1 positive real part the asymptotic dynamics

of the system involves long times t ∼ ε−1,ε−2, . . .. Accordingly we define slow

time scales:

T1 = εt ,T2 = ε2t , . . . (2.14)

and search solutions to the laser equations in the form:

E
(
x, y, t

)= εE1 (X ,Y ,T1,T2, . . .)+ε2E2 (X ,Y ,T1,T2, . . .)+·· · , (2.15)

with corresponding expressions for P and N . In principle scale T1 is damped

out since the eigenvalue with largest real part is λ1 and Reλ1 ∼ ε2. We keep

however the scale T1 as we will allow the injected field amplitude to excite it.

Making use of the chain rule for differentiation, the action of the operators ∂t

and ∇2 on functions of the form (2.15) becomes

∂t → ε∂T1 +ε2∂T2 + . . . , ∇2 → ε2∇2
1. (2.16)

Clearly, expansion (2.15) will be valid only as far as the injected signal

amplitude and frequencies have right scalings. As stated, we will assume that

Eq. (2.15) holds and look for injected signals compatible with it. In particular,
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two types of scalings, one corresponding to a very slowly modulated, weak

injected signal almost resonant with the lasing line,

Slow modulation: F =σF3ε
3, ω=σω2ε

2, δ=σδ2ε
2, (2.17)

and a second choice corresponding to a ”fast” injected signal modulation,

Fast modulation: F = F2ε
2, ω=ω1ε, δ=σδ2ε

2. (2.18)

can be considered. In the following we will deal with the "fast" case. (the

another case leads to the same final equation). In the fast modulation case

we try to decouple the natural time scales of the system from those of injection.

At a first sight a good choice could be ω = σω1ε (2.18). The choice F ∼ ε is

needed if the injected signal is to play a role to the leading order dynamics of

the system, as will be evidenced below (smaller F ’s have no effect in the system

dynamics, whilst larger ones forbid the asymptotic expansion).

We are considering class C (σ∼ b ∼ 1) lasers, so σ and b are O
(
ε0

)
. We

substitute Eqs. (2.7), (2.15), (2.16), and (2.18) into to the laser equations (2.1)

and (2.2), and solve at increasing orders in ε.

O (ε)

This is the first nontrivial order and reads

N1 = 0, (2.19)

L0 |v1〉 = 0, (2.20)

where

L0 =
(
−σ (1+ i∆) σ

r0 − (1− i∆)

)
, (2.21)

and we have introduced the notation

|vi 〉 =
(

Ei

Pi

)
, i = 1,2,3, . . . (2.22)

Eq. (2.20) can be easily solved:

P1 = (1+ i∆)E1, (2.23)

hence

|v1〉 = E1

(
1

1+ i∆

)
. (2.24)
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O
(
ε2

)
Making use of Eqs. (2.19) and (2.23), we obtain

N2 = |E1|2 , (2.25)

∂

∂T1
|v1〉 =L0 |v2〉+

∣∣g2
〉

, (2.26)

∣∣g2
〉= F2 cos(ω1T1)exp(−iσδ2T2)

(
1

0

)
. (2.27)

Projecting Eq. (2.26) onto
〈
ζ1

∣∣ and making use of Eq. (2.24) we obtain(
1+σ1+ i∆

1− i∆

)
∂E1

∂T1
= F2 cos(ω1T1)exp(−iσδ2T2) , (2.28)

whose solution reads

E1 (X ,Y ,T1,T2) =
(
1+σ1+ i∆

1− i∆

)−1 F2

ω1
sin(ω1T1)exp(−iσδ2T2)

+A1 (X ,Y ,T2) , (2.29)

being A1 a function not depending on T1. Projecting Eq. (2.26) onto
〈
ζ2

∣∣ and

making use of Eq. (2.24) we obtain

P2 = (1+ i∆)E2 + (1+ i∆)
F2

µ
cos(ω1T1)exp(−iσδ2T2) , (2.30)

hence

|v2〉 = E2

(
1

1+ i∆

)
+ (1+ i∆)

F2

µ
cos(ω1T1)exp(−iσδ2T2)

(
0

1

)
. (2.31)

O
(
ε3

)
Making use of Eq. (2.25) we obtain

∂

∂T1
|v2〉 =L0 |v3〉− ∂

∂T2
|v1〉+

∣∣g3
〉

, (2.32)

∣∣g3
〉= (

i∇2
1E1(

r2 −|E1|2
)

E1

)
, (2.33)

and an equation for N3 which is not relevant for our purposes.

Projecting Eq. (2.32) onto
〈
ζ2

∣∣ and equation for |v3〉 is obtained (not

relevant for our purposes), and projecting onto
〈
ζ1

∣∣ and making use of Eqs.
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(2.24) and (2.31) we obtain(
1+σ1+ i∆

1− i∆

)
∂E2

∂T1
=−

(
1+σ1+ i∆

1− i∆

)
∂E1

∂T2
+ σ

1− i∆

(
r2 −|E1|2

)
E1

+i∇2
1E1 +σ1+ i∆

1− i∆

F2ω1

µ
sin(ω1T1)exp(−iσδ2T2) (2.34)

On the other hand, from Eq. (2.29) we obtain

∂E1

∂T2
=−iσδ2

(
1+σ1+ i∆

1− i∆

)−1 F2

ω1
sin(ω1T1)exp(−iσδ2T2)+ ∂A1

∂T2
, (2.35)

which substituted into Eq. (2.34) yields(
1+σ1+ i∆

1− i∆

)
∂E2

∂T1
= g (T1,T2) , (2.36)

where

g
(
T1,T2

)= F2

(
σ

1+ i∆

1− i∆

ω1

µ
+ i

δ2

ω1

)
sin(ω1T1)exp(−iδ2T2)

−
(
1+σ1+ i∆

1− i∆

)
∂A1

∂T2
+ σ

1− i∆

(
r2 −|E1|2

)
E1 + i∇2

1E1. (2.37)

Since g does not depend on E2, the solution to Eq. (2.36) reads E2 (T1T2) =∫ T1
0 dT ′

1g
(
T ′

1,T2
)+ A2 (T2), whose boundedness requires

lim
T1→∞

1

T1

∫ T1

0
dT ′

1g
(
T ′

1,T2
)= 0. (2.38)

Substitution of Eq. (2.37) into condition (2.38), making use of Eq. (2.29) yields(
1+σ1+ i∆

1− i∆

)
∂A1

∂T2
= σ

1− i∆

(
r2 −

(
F2

ω1

)2

−|A1|2
)

A1 + i∇2
1 A1

− 1
2

σ

1− i∆

(
F2

ω1

)2

exp(−i 2δ2T2) A∗
1 . (2.39)

The final solution to the problem, to the leading order, reads [Eqs. (2.23),

(2.19)]:

E = εE1 +O
(
ε2) , P = ε (1+ i∆)E1 +O

(
ε2) , N = ε2 |E1|2 +O

(
ε3) , (2.40)

with Eq. (2.29)

E1 (X ,Y ,T1,T2) =
(
1+σ1+ i∆

1− i∆

)−1 F2

ω1
sin(ω1T1)exp(−iδ2T2)+ A1 (X ,Y ,T2) .

(2.41)
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We thus see that the laser field is the superposition of a rapidly varying term

(proportional to sin(ω1T1)) and a slow part represented by A1, whose evolution

is governed by Eq. (2.39).

Defining D = (
1+σ1+i∆

1−i∆

)−1
, γ = 1

2

( F
ω

)2
and making the change As =

e iδtεA1, we get (after recovering the original variables):

∂t As = σD

1− i∆

[
(r − r0 −2γ)As −γA∗

s −|As |2 As
]+ iδAs + i D∇2 As . (2.42)

Another way to look at A1 in Eq. (2.41) is the following. We define the

average 〈E (r, t )〉 = 2π
ω

∫ t+2π/ω
t d t ′E

(
r, t ′

)
which is the one-modulation-period

average of the field amplitude. Using (2.40) and (2.41), and Tn = εn t we obtain

〈E (r, t )〉 = εA1 + O
(
ε2

)
, since A1

(
ε2t ′

)
remains almost constant within the

integration interval (which has a length ∼ ε−1), as well as exp
(−iε2δ2t ′

)
. Thus

εA1 is the average of the field amplitude along a modulation period of the

injected signal, to the leading order. We can write an equation for this average

as ∂t 〈E〉 = ε3∂T2 A1, returning to the original scales via Eqs. (2.7), (2.14), (2.16),

(2.18), and (2.39) obtaining the same equation as (2.39) for 〈E (r, t )〉.
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2.2 Rocking in class B lasers†

In the previous section, class C lasers were considered and a PCGLE was

obtained. This equation also describes well class A lasers under rocking

injection as it is shown in Paper II. However this is not the case for class B

lasers, in which the population inversion has a very slow dynamics compared

to electric field and polarization (b ¿ σ¿ 1 in Eqs (2.1)). These lasers, as we

saw in section 1.2, posses relaxation oscillations which strongly influence the

dynamics of the system. For the free-running case (without rocking), a single

order parameter equation is not able to capture its behaviour close to threshold

and a set of two equations is needed.

Consequently, we need to derive an equation for class B rocked lasers

in order to understand better the influence of rocking in these systems as

well as making some analytical predictions we can confirm in the numerical

simulations of the full model. Due to the complexity of the system, we first

consider only the temporal dynamics so we start from Eqs (2.1) in which we

remove the laplacian term and we take Ei n = E0 cos(σt )exp(−iνσt ). If we

eliminate adiabatically the equation of the polarization and define a new time

scale τ = σt , we can write in the limit of µ¿ 1 (close to threshold) and F ¿ 1

(which implies N , |A2|¿ 1):

d A

dτ
= iνA+ (1+ i∆)N A+F cos(Ωt ), (2.43a)

d N

dτ
=−b[N −µ+|A|2], (2.43b)

where A = E exp(iνt )/
p

1+∆2, F = E0/
p

1+∆2 and µ= r /
p

1+∆2 −1. We have

also defined a new variable N ′ = (r −N )/
p

1+∆2−1 and renormalized b′ = b/σ

(we have removed the primes for simplicity).

As we have done before, we can perform a multiple scale analysis.

Consistently with the previous approximations, we choose µ,F, N ∼ O
(
ε2

)
and

b,Ω, A ∼O (ε). We get up to second order:

A = a + F

Ω
sin(Ωτ), N = n + i

2

F

Ω
(a +a∗)

(
b

b + iΩ
e iΩt − b

b − iΩ
e−iΩt

)
, (2.44)

†This section contains contributions from Paper II and part of Paper IV.
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Figure 2.5: Locking regions of class B lasers for cavity resonance (∆ = 0). (a)

is obtained from numerical integration of Eqs. (2.1) with σ = 0.1,

b = 0.001 and r = 2 and (b) comes from Eqs. (2.46) with (equivalent

parameters to (a)) µ= 1 and b = 0.01. (From Paper II).

where the equations for a and n are:

d a

dτ
= iνa + (1+ i∆)

[(
n −γB

b2

Ω2 +b2

)
a −γB

b2

Ω2 +b2 a∗
]

(2.45a)

dn

dτ
=−b

(
n −µ+γB +|a|2) , (2.45b)

where γB = 1/2(F /Ω)2.

As we can see in (2.44), we can write the variables of the system like the sum

of a "slow" part (a and n) and a "fast" oscillatory part which follows the external

injection and has zero time average (averaging time equals to one period of

rocking). This is similar to the case of the PCGLE equation and it is a common

feature when dealing with rocking (section 1.3).

An analysis of the steady state of (2.45) reveals that we can express a =
u± exp(iφ±) (the expressions can be found in Paper II) where the solutions for

φ+, as the solutions with "− " are unstable, are two values separated by π. The

range of existence of these rocked states without cavity detuning can be written

(E0 = F for ∆= 0) for small values of ν as:

√
2|ν|Ω

2

b
< E0 <

√
(2µ)Ω (2.46)

In the space E0 −Ω the locking area is bounded by a straight line (upper

limit) and a parabola (lower limit). This is shown in Fig. 2.5b for different

values of the detuning of rocking ν. Numerical simulations of Eqs (2.1) confirm

approximately this behaviour (Fig. 2.5a). The main difference between both
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Figure 2.6: Locking regime for class B laser obtained after numerical

integration of Eqs (2.1) with ∆= 2, r = 5(µ= 1),Ω= 0.0628, σ= 0.01

and b = 0.0001. Snapshots of time evolution of the one-rocking

period average modulus of the electric field are shown for ν= 0 for

different amplitudes of rocking. (From Paper II).

approaches is the area close to the relaxation oscillations frequency, which in

this case is (for small b)
√

2bµ (its value for the parameters in Fig. 2.5 is 0.14).

As we will see later, this is important when spatial effects are considered.

The results presented so far have been obtained for perfect cavity

resonance (∆= 0). We have studied numerically the case ∆= 2 (Fig. 2.6), where

we observe that for lower values of the detuning of rocking (ν), the locking area

decreases as ν increases, which is the same behavior observed in Fig. 2.6 for

zero cavity detuning. However, for larger values of ν the locking area becomes

bigger until it eventually disappears (Fig. 2.6). From this we infer that the

detuning of rocking is an important parameter which strongly determines the

efficiency of the injection, this may be very useful in experimental realizations

of rocking.

When dealing with the behavior of the system, out of cavity resonance,

outside the locking region we see that there is a dynamical transition between

the locking regime, where the average field has constant modulus, and the

adiabatic regime (corresponding to the trivial solution of Eqs. (2.45) and

appears for very large values of the amplitude of rocking), where the average

field is zero (it merely follows the injection). Between the two regimes we

observe, close to the locking region, oscillations of the modulus of the average

field at a frequency which is half of the frequency of rocking and, as long we

are moving away of the locked regime, more complicated temporal dynamics

is found. Lastly, we can incorporate the spatial dimensions by considering
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the laplacian term in Eqs. (2.1). From the previous analysis we know that the

relaxation oscillations frequency3 ωRO =
√

2(r − r0)σb plays an important role,

as the frequency of the rocking ω must be of its same order for an effective

injection (more details in Paper II). So we choose a frequency of rocking which

is close to ωRO . In Figs. 2.7 and 2.8 patterns obtained from the numerical

integration of Eqs (2.1) with the injected field defined above are shown. Phase

domains, for small values of detuning of rocking, and labyrinths patterns (for

large detuning) forming from a modulational instability, are obtained (Fig. 2.7).

Moreover, phase cavity solitons are found (Fig. 2.8) for intermediate values of

the detuning of rocking. The main differences between those and the ones we

presented in Fig. 2.4 are that in this case the width of the dark ring is larger and

a higher central intensity peak.

Figure 2.7: Intensity (a,b) and phase (c,d) obtained in class B lasers. Phase

domains (ν = 0) and labyrinths (ν = 0.04). Parameters are σ = 0.1,

b = 0.01, r = 1.5, ∆= 0, E0 = 0.4 and ω= 0.42. (From Paper IV).

Figure 2.8: Dark-ring cavity solitons for class B lasers for ν= 0.026. (a) Intensity

and (b) Intensity profile are shown. Rest of parameters are as in Fig

2.7. (From Paper IV).

3The expression for ωRO is the same as the one used before as µ= r − r0 and t = τ/σ.
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2.3 Universal description of optical oscillators under

rocking†

In section 2.1 a PCGLE equation was derived for a class C laser with rocking

injection. The validity of such an equation is restricted to positive (and large)

values of the cavity detuning between the atomic resonance frequency and

the closest longitudinal cavity mode frequency. The derivation of an order

parameter equation for that system which remains valid for positive and

negative values of the detuning is an open question.

On the other hand, the first experimental observation of rocking,

concerning transformation of vortices into phase domains patterns, in a

Photorefractive oscillator (PRO), is reported in Paper I. For this optical system,

PCGLE is again not valid to describe its dynamics (we are close to cavity

resonance) so a new model needs to be developed.

Figure 2.9: Interferometric snapshots of spontaneously formed patterns. (a)

Vortices for free running PRO and (b) Phase domains under rocking.

(c) and (d) are magnification at a vortex (c) and π phase jump for a

domain wall (d). (From Paper I)

†This is made of contributions which were published in Paper V (mainly) and Paper I.
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For the sake of completeness, although I was not involved in the

experiment, I will comment briefly on the experimental setup employed in

Paper I. The PRO consists of a photorefractive BaTiO3 crystal inside a nearly

(self)-imaging ring resonator of cavity length 1.2 m (free-spectral range is 250

MHz). The effective cavity length is 2 cm. The crystal is pumped by a single

mode 514 nm Ar+ laser with power around 100 mW and the chosen cavity

length makes the system be close to resonance. When there is no rocking

injection, vortices are spontaneously formed in the transverse pattern of the

output field whereas when rocking is present, two-dimensional phase domains

are formed (Fig. 2.9) due to the generated phase bistability. This behavior is

in good qualitative agreement with numerical simulations of rocking in lasers

presented in the previous chapter. These bidimensional structures are unstable

due to curvature effect leading to single-phase patterns.

Now we will try to obtain an order parameter equation for a two-level laser

and a two wave mixing PRO 4 under rocking. Details of the derivations can be

found in the appendices of Paper V.

For the two level laser, our starting point is the standard set of Maxwell-

Bloch Equations for a two-level laser with injected signal as we did previously:

∂t E =σ [−(1+ i∆)E +P ]+ i∇2E +Ei n (2.47a)

∂t P =−(1− i∆)P + (r −N )E (2.47b)

∂t N = b

[
−N + 1

2

(
E∗P +P∗E

)]
(2.47c)

where the injected field is

Ei n = F cos(ωt )e iθt (2.48)

The parameters are like in Eqs (2.1) so we will only remark the differences. Like

in the previous chapter, a linear stability analysis of the trivial solution[89] will

give insight about the necessary scales: the main change is how the detuning∆

is chosen, in this case it will be (note that we are dealing with small detuning)

O (ε) so the laplacian ∇2 is also O (ε). We use two different scales for the

parameters of the rocking, "fast" and "slow" but, as it is shown in the appendix

A of Paper V (where all the details about the scales we use can be found), both

choices lead to the same final equation. The results, up to second order, for

4The CSHE model for a PRO was first presented in Paper I but the detailed derivation was

provided in Paper V
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the slow case (expressions for the fast case can be found in the aforementioned

appendix A) are:

E = Fe iθt

(1+σ)ω
sin(ωt )+ i e iθtψ(r, t ) (2.49)

P = E − i

(1+σ)

(∇2E − (1+σ)∆E
)

, N = |E |2

After renormalization 5 , the equation for ψ reads:

∂tψ= (µ−2γ− iθ)ψ− ∣∣ψ∣∣2
ψ− (

∆−∇2)2
ψ+ iα∇2ψ+γψ∗ (2.50)

where α≡ σ+1
σ and the rocking parameter is:

γ= 1

2

F 2

(1+σ)2ω2
(2.51)

Now we will deal with the two-mixing Photorefractive Oscillator. Our starting

point is the set of equations6 as in Paper I

σ−1∂t E =−(1+ i∆)E + i∇2E +N +Ei n (2.52a)

∂t N =−(1− i∆)N + g
E

1+|E |2 (2.52b)

where the injected field is as in the previous section E(r, t ) is the slowly

varying envelope of the intracavity field, N (r, t ) is the complex amplitude

of the photorefractive nonlinear grating, ∆ = (ωC −ωP )/κ (ωP and ωC are

the frequencies of the pump and its nearest longitudinal mode, respectively,

whereas κ is the cavity linewidth) σ = κτ, where τ is the photorefractive

response time (σ & 108 under typical conditions, and τ ∼ 1 s), t is time

measured in units of τ, the detuning , g is the (real) gain parameter that

depends of the crystal parameters and the geometry of the interaction.

A linear stability analysis of the trivial solution [106] provides us the scales

for the parameters (in Appendix B of Paper V we can find all the details of the

derivation). Solving up to second order, we get:

E = Eω(t )− i e−iθtψ(r, t ) (2.53)

N = (1+ (−i∆+ i∇2))E −F cos(ωt )e iθt

5We set ∇2

1+σ ≡∇′2 , t ′ ≡ σ
σ+1 t , θ′ ≡ σ+1

σ θ , define µ= r −1 and remove the primed notation

for simplicity.
6We are consideringσ+1

σ ' 1 as σ À 1 as it is explained in the text. We apply this

approximation throughout the analysis.
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where Eω is a periodic function (see appendix B in Paper V).

We finally obtain (details are provided in the aforementioned appendix B),

as in the case of the laser, a Swift-Hohenberg equation with parametric gain.

Defining µ= g −1 we can write:

∂tψ= (µ−2γ− iθ)ψ− ∣∣ψ∣∣2
ψ+ i∇2ψ− (∇2 −∆)2

ψ+γψ∗ (2.54)

where the rocking parameter is:

γ= 1

2

F 2

ω2 (ω2 +1) (2.55)

The only difference between (2.50) and (2.54) is the parameter α. As we will

see later, the specific value of this parameter does not change the essential

dynamics of the system. This allows us to state that this CSHE can be

regarded as an universal description of pattern formation of nonlinear optical

oscillations under bichromatic injection close to threshold, as it is applicable

to a wide range of systems with different sources of nonlinearity. Consequently,

the model we are going to analyze is:

∂tψ= (µ−2γ− iθ)ψ− ∣∣ψ∣∣2
ψ− (

∆−∇2)2
ψ+ iα∇2ψ+γψ∗ (2.56)

where α = 1 in the PRO while α > 1 for the laser. Setting γ = 0 we recover the

usual Swift-Hohenberg equation for lasers [88]. The extra term γψ∗ breaks the

phase invariance of the system, which becomes phase bistable as the equation

only has the discrete symmetry ψ→−ψ. Additionally, ∆ is the detuning of the

cavity from the natural frequency of the unforced system in the optical case

and θ is the detuning of the forcing from the natural frequency of the system.

Finally the "rocking parameter" γ is proportional to the squared amplitude of

rocking F 2 and also depends on its frequency ω being the exact form different

for each system as it has been shown before.

The spatially homogeneous stationary solutions (rocked states) of (2.56) are

ψ± = ∣∣ψ±
∣∣e iφ± where the expression for ψ± and φ± (only the solutions with

subscript ’+’ are stable) are given in Paper V. These states are phase bistable

as only two values for the phase, separated by π are allowed. In Fig. 2.10 the

intensity of these states as a function of γ is given.

We make a linear stability analysis of the trivial and rocked solutions against

spatial instabilities of wavenumber k (section 1.4). Expressions for the stability

regions boundaries and wavevectors that maximise the eigenvalue with the

largest real part as a function of the parameters of the system are given in Paper

V (section 4). Here (Fig. 2.11), we show bifurcation diagrams for both positive
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Figure 2.10: Intensity of the rocking states versus γ for θ = 0, (a)ψ+ , (b)ψ− and

θ = 0.01 , (c) ψ+ , (d) ψ−. (From Paper V)

and negative cavity detuning (unlike the PCGLE). If we compare them with Fig.

2.1 we see that we have more complexity, especially for negative detuning∆. In

both diagrams we check that for γ= 0 (free-running case) the solutions we find

reproduce the known behaviour of the laser without injection (homogeneous

solutions for positive detuning and traveling waves for negative detuning)

Numerical simulations of Eqs. (2.47) are performed in Paper I to reproduce

the experimental behavior observed when, after narrowing the intracavity split

in order to work in a quasi 1D geometry (to avoid the curvature effects), domain

walls (section 1.1) are injected into the system. It is verified that under rocking

injection these structures remain stable (unlike the free-running case in which

they eventually disappear). The results, both experimental and numerical, are

shown in Fig. 2.12 showing a good agreement between the model and the

experiment.

The rest of numerical results are obtained from simulations of (2.56).The

specific value of the parameter α (we use α= 2 all over the numerical analysis)

is not important, as it just controls the temporal and spatial scale of the

dynamics, being the relevant parameter the ratio between that scale and the

detuning ∆. In Paper V, a variety of simulations showing transient dynamics

and stationary states and all the patterns which appear in Fig. 2.11 are

provided. The existence of phase domains and labyrinthic patterns is shown

in Fig. 2.13. Writable/erasable cavity solitons (Fig. 2.14) are found in narrow

region (Fig. 2.11) of the space of parameters for both positive and negative

detuning.
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Figure 2.11: Bifurcation diagrams of the CSHE model (2.56) for ∆ = 0.14 (Top)

and ∆ = −0.14 (Bottom). Dashed line represents the boundary

of existence of rocked state and continuous line is the boundary

of stability. Circles stand for dark-ring cavity solitons. Rest of

parameters are α= 2 and µ= 0.05. (From Paper V).
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Figure 2.12: (Left)Experimental snapshots of injected 1D domain walls

without (a-c time sequence) and with rocking (e-f time sequence).

Lowest row is the intensity and phase profile for b (left) and f

(right) snapshots. (Right) Simulations of Eqs (2.47) reproducing

injection of 1D domain walls without (time sequence a-c) and with

rocking injection (time sequence e-g). Intensity and phase profile

are given for b (left) and f(right). Parameters are σ = 102, ∆ = 0,

g = 2, ω= 2π and F = 0.5. (From Paper I).

Figure 2.13: Contracting phase domains (middle column) for θ = −0.005 and

labyrinths formation (right column) for θ = −0.012 starting from

initial condition (left column). Intensity (upper row) and phase

(lower row) distributions are shown. The final evolution time is

3000 and the rest of parameters are µ = 0.05, ∆ = 0.14, α = 2 and

γ= 0.02. (From Paper V).
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Figure 2.14: Time sequence of writing/erasing a dark-ring cavity soliton for

θ = −0.011, Times (left to right) are t=0,t=150, t=300 and t=450.

Intensity (upper row) and phase (lower row) distributions are

shown. Rest of parameters like in Fig. 2.13. (From Paper V).
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2.4 Bidirectional rocked lasers†

In the previous sections we have studied how the rocking modifies the

dynamics of single field models, in which the external forcing produces a phase

locking where a (phase) bistability is achieved giving rise to the appearance

of a different spatio-temporal dynamics and new kind of patterns in the

transverse plane. Now, we will consider a system of two coupled fields (class

A bidirectional laser) where rocking is applied independently to each of them.

This system is very interesting because localized structures were predicted to

exist [69, 70]. Due to the complexity of the system (as we will see below), we

will restrict ourselves to the single transverse mode in which spatial effects are

not considered.

Our starting point is the following pair of complex Stuart-Landau

equations, which model a homogeneously broadened bidirectional class A

laser (section 1.2), where we add the effect of the rocking in both equations:

1

κ

dEn

d t
= (1+ i∆)

(
µ−|En |2 −2 |Em |2)En +Fn cos

(
ωt +σnφ/2

)
e−iδt (2.57)

with n,m = 1,2 (n 6= m) and σn = ± . The parameters are µ = r
1+∆2 −1 and ∆ =

ωC−ωa
κ+γ⊥ , being r the pumping rate and ωc and ωa are frequencies of the cavity

mode closest to resonance and of the atomic cavity respectively. Parameters

of rocking are Fn , which is proportional to the amplitude of forcing , ω is the

modulation frequency,φ is the dephase between the two injections and δ is the

detuning between the central frequency of rocking and the lasing frequency.

Defining En =p
µAne−iδt (change of frequency frame to that of the rocking)

and Fn = µ3/2√2γnΩ, whereΩ= ω
µκ is considered to be large, we can write the

solution up to first order inΩ−1 (using standard multiple scale analysis) as:

An(t ) =√
2γn sin(Ωt +σnφ/2)+Un(t ) (2.58)

where (n = 1,2)

(1+ i∆)−1∂tUn = λ+ iν

1+ i∆
Un − (|Un |2 +2 |Um |2)Un −γnU∗

n −4η
√
γ1γ2Re(Um)

(2.59)

being

λ= 1−2(γ1 +γ2) ,ν= δ

µκ
+λ∆ ,η= cos(φ) (2.60)

†This section reflects the work done for Paper III and some extensions.
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As in the previous systems under rocking injection, we can express the

emission (2.58) of the system like the addition of a part that merely follows the

injection and a "slow" part that verifies a certain order parameter equation. As

expected, the equations for Un posses a broken invariance phase because of the

terms proportional to U∗
n and Re(Um). We will consider two cases7, resonant

(δ= 0) and non-resonant (δ 6= 0) injection.

Resonant injection. In this case the frequency of the rocking is the same

as the lasing frequency (this means ν = λ∆). We will study the steady states

solutions for two cases8: unidirectional rocking (γ1 ≡ γ,γ2 = 0) and symmetric

rocking (γ1 = γ2 ≡ γ).

The unidirectional rocking case has six steady state solutions: the trivial

solution, three unidirectional solutions( U1, U2 and U3) and two bidirectional

solutions. U1 and U3 consist of a phase bistable emission in the rocked field and

U2 implies emission only in the unrocked field, in this case the phase symmetry

is preserved as the phase-breaking terms are neglected (see equation (2.59) for

U2 when γ2 = 0). A linear stability analysis (details can be found in Paper III)

that bidirectional solutions and U1 are always unstable. Additionally, the trivial

solution is stable for γ> 1, U2 is stable for γ< 1/3 and U3 is stable for γ< 1. So

there is bistability between the two counterpropagating solutions for γ < 1/3

and for 1/3 < γ< 1/3 only rocked field U1 is activated.

The symmetric case is more complex: there are seven different solutions

(as now both fields are rocked, phase bistability is present in all the cases): the

trivial solution, two equivalent unidirectional solutions and five bidirectional

solutions, three of which are symmetric as the intensity of both field is the

same and two are asymmetric for the intensities (the expressions for all the

solutions are provided in Paper III (section 4)). As before, a linear stability

analysis shows that all the solutions are always unstable except the trivial one,

one unidirectional (U ), one bidirectional symmetric (S) and one bidirectional

asymmetric (A). The crucial parameter is η= cos(φ). For η< 1/2 there is only a

transition between the trivial solution and U as shown in Fig. 2.15. If η> 1/2 we

have five stability regions, where two of them show bistability (whose boundary

is γU > γ> γA), one between U and S and another between U and A (Fig. 2.15).

Connections between the different stable and unstable solutions are illustrated

in Fig. 2.15 being subcritical pitchfork bifurcations the ones which give rise to

bistability (B2 and B3 in Fig. 2.15).

7The equations are symmetric under the transformation [Un ,Um ,η] −→[Un ,−Um ,−η] so

we only need to consider η> 0.
8Expressions for the solutions can be found in Paper III (section 4)
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Figure 2.15: (Left) Domains of stability of solutions of Eqs (2.59) for the

resonant symmetric rocking case in the η− γ plane. Only the

solution(s) marked is (are) stable in each region. Expressions for

γ0, γU , γS and γA are given in Paper III. (Right) Intensities of all the

solutions of Eqs (2.59) for η = 0.9. only those with some domain

of stability are marked with Ik (I A1 and I A2 are the intensities of

the asymmetric solution A for both fields). Continuous (dashed)

line indicates (un)stability of the solutions. B2 and B3 stand for

bifurcation points. (From Paper III).

Non-resonant injection. In this case, a non-null detuning (δ 6= 0) prevents

the system from having purely unidirectional solutions (these are replaced by

bidirectional solutions in which one of the field is much weaker than the other

one). Analytical expressions for the solutions are not possible in this case so

a numerical approach is mandatory. Therefore, as we will set ∆ = 0 (resonant

cavity laser), we will study the cases where ν 6= 0 in Eqs. (2.60). Additionally,

η= 0.9 and the symmetric rocking case is considered.

If rocking is not present (γ = 0), a non-null detuning ν implies oscillations

in the amplitude of the emission due to the chosen frequency frame (the

one of the rocking). As soon as γ becomes non-zero, a self-pulsing regime

appear, in which the intensity of the fields oscillates between two values, in

the quasi-unidirectional solution (Fig. 2.16). When γ reaches a certain value

γB1 this regime is replaced by a stationary solution through a saddle-node

bifurcation (B1 in Fig. 2.16). For ν < 0.0225, the qualitative behaviour is

similar to the resonant case (except for B1), in which we observe again the

bifurcations B2 and B3 (appearing at γB2 and γB3 respectively, being γB2 > γB3)

connecting quasi-unidirectional and bidirectional solutions (symmetric for B2
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Figure 2.16: Intensities of the different solutions obtained by numerical

integration of Eqs (2.59) for η= 0.9,∆= 0 and ν= 0.025. Shadowed

regions correspond to oscillatory regimes between the upper and

lower limits of the shadow. (From Paper III).

and asymmetric for B3). As ν increases, the distance between B2 and B3

becomes smaller and at ν= 0.0225 both bifurcations coincide. From this point

onwards γB2 < γB3 and a new self-pulsing regime (again due to a saddle-node

bifurcation) appears between γB2 and γB3 (Fig. 2.16). For γ > γB3 we recover

the symmetric stationary solution.

In Fig. 2.17 we can see an illustration of the oscillating regime we have

previously described. Oscillations of phase (Fig. 2.17 (a)) and intensity (Fig.

2.17 (b)) of both fields are shown and we can see how they connect two unstable

steady states: the symmetric bidirectional (long dash) and the antisymmetric

quasi-unidirectional (short dash) solutions. A phase portrait showing the

trajectory followed by one of the field compare to the position of the unstable

steady states is given in Fig. 2.17 (c).

Lastly, for larger values of η (> 0.0313 for our parameters) the bifurcations

B1 and B2 eventually collide and the two dynamical regimes we have seen

before merge. In this case, the quasi-unidirectional solution is no longer stable

in any region and the bidirectional emission is the only stable stationary state.

As we can see, the presence of detuning affects largely the domains of

existence of phase-locked steady states of the systems. Nevertheless, even for

non-zero detuning, the symmetric bidirectional solution exists and remains

always stable for values of γ large enough, so perfect resonance should not be

necessary to observe phase-locking due to rocking injection.
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Figure 2.17: Temporal evolution of (a) Phase of U1 and (b) Intensity of both

fields (b) obtained by numerical integration of Eqs (2.59) for

η = 0.9, ∆ = 0 , ν = 0.025 and γ = 0.089. Long (short) dash

corresponds to unstable symmetric bidirectional (antisymmetric

quasi-unidirectional) solutions. These states are portrayed as dots

in the phase portrait of field U1 in (c). (From Paper III).

Spatial patterns. In Fig. 2.18 we show numerical simulations of (2.59) for

the resonant case (symmetric rocking) just to illustrate the different solutions

found for the temporal case when spatial dimensions are considered. We can

see that in the symmetric case (A), the phase distributions of both field are

inverted due to the antiphase condition of the symmetric solution S (Paper

III). In the unidirectional case (B) the transverse pattern is divided in areas

when only one field is present. Phase distributions confirm phase bistability

(colors correspond to two phases separated by π) in the regions with non-zero

intensity (right part of (B)).

This a preliminary unpublished work that has to be extended by: (i)

performing a stability analysis of the solutions for spatial perturbations, (ii):

studying the influence of bistability of solutions (like S+U or S+A) in phase

bistable patterns and (iii) investigating the existence of localized structures. We

are currently working on it.
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(A) (B)

Figure 2.18: Resonant case (∆ = θ = 0). Intensity (upper row) and phase

(lower row) distributions of U1 (left) and U2 (right) for symmetric

emission corresponding to numerical simulations of (2.59) for

(A) (symmetric emission): η = 0.7, γ1 = γ2 = 0.3 and (B)

(unidirectional emission): η= 0.4, γ1 = γ2 = 0.2.



3
Conclusions

Along this thesis we have studied analytically and numerically the effect of a

bichromatic injection (rocking) in several nonlinear optical oscillators: class

C and class B two-level lasers, a photorefractive oscillator and a bidirectional

laser.

In all the cases we have derived order parameter equations, which capture

the dynamics of the systems close to critical points. We have solved (when

possible) those equations, obtaining the stationary solutions of the different

systems and we have performed a linear stability analysis of these solutions

in order to study how the instabilities that can arise from the system may

depend on the physical variables. Additionally we have performed numerical

experiments, making simulations of the behaviour of the oscillators under

different conditions and values of the parameters, trying to observe all the

predicted analytical solutions and nonlinear patterns admitted by the system.

Specifically, as under rocking injection a system with continuous phase

symmetry becomes a phase bistable one, we were interested in phase bistable

pattern formation, as phase domains, domain walls, labyrinths as well localized

structures which take the form of dark-ring cavity solitons. First, I will provide

some general conclusions before analyzing the results we obtained in detail.

A first straight general conclusion is that, although the theoretical

conditions for derivation of order parameter equations for oscillators under

rocking injection can be restrictive (and they are if we want to obtain

relatively simple equations which helps us to gain analytical insight and

physical intuition about the phenomenon of rocking), the numerical range of

efficiency of rocking is much larger than the analytical expected one (from the

assumed approximations). Simulations of the full models, as opposed to the
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reduced model represented by the order parameter equations, reveal that the

persistence of rocking in the space of parameters of the system is much larger

than expected for instance in class C two-level lasers (Paper IV). These are

good news from the experimental point of view as it increases the possibility

of observing the predicted phenomena in real-world systems.

Another interesting conclusion we obtained is the strong influence of

the detunings in rocking phenomenology. Both the cavity detuning (the

longitudinal mode selected by the system is different from one of the modes

allowed by the optical cavity) and the injection detuning (respect to the natural

frequency of the system) have a strong influence in the regions of appearance of

the phase-locked structures and their stability. One example is the bidirectional

laser (Paper III), in which a small detuning changes radically the nature of the

temporal (the only one we analyzed) dynamics of the system (non-resonant

case). In class B lasers (Paper II) we also observed a (less important) influence

of the detuning.

One last general conclusion is that the kind of nonlinearity present in

the system does not play a crucial role when rocking is involved. In certain

limits, it is possible to derive universal equations which model pattern

formation in oscillator under rocking injection for different systems like lasers

or photorefractive oscillator (Paper V). When the full models are considered,

the quantitative aspects may be lost but the general behaviour remains and

our numerical simulations were able to reproduce qualitatively an observed

experimental behaviour (Paper I).

Lasers

We derived an order parameter equation for class C two-level lasers, for positive

cavity detuning, under rocking which corresponds to a CGLE with broken

invariance (PCGLE) (Paper IV). An analytical study of this equation revealed

the existence of homogeneous phase bistable solutions which destabilized to

homogeneous oscillations or spatial static patterns depending of the sign of

the detuning of the rocking respect to the frequency of the lasing emission.

The existence of both Ising and Bloch type (depending on the intensity of

rocking) domain walls separating (transient) phase domains was numerically

confirmed. These domain walls experiences modulational instability (in 2D)

giving rise to the appearance of labyrinthic patterns. Close to this region, (dark-

ring) phase cavity solitons were found.

The obtention of a reduced equation for studying the temporal dynamics
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class B lasers with rocking injection (Paper II) led to a model of two equations

with broken phase invariance which described relatively well the domains of

existence (calculated numerically from the MB equations) of the locked phase

of the lasing emission to any of two values separated by π (phase bistability).

These regions are affected by the detuning of rocking (they are smaller for

higher detunings) but the main conclusion we extracted is that the rocking is

effective only if its frequency is close to relaxation oscillation frequency. This is

relevant if we want to study (theoretically and experimentally) the influence of

rocking in realistic models of class B (like semiconductor) lasers.

A Swift-Hohenberg equation with broken phase invariance was obtained

for (class C and class A) rocked lasers for positive or negative (provided it is

small) values of the cavity detuning (Paper V). This turned out to be the same

model (except for one parameter which is not relevant for the dynamics as it

only changes one of the the spatial scales of the equation) as we obtained for

PRO (Paper I) so we will comment our results in the next section.

Regarding bidirectional lasers (Paper III), we have seen how the presence

of rocking was able to stabilize bidirectional solutions which were unstable

without external injection. Moreover, domains of bistability between

unidirectional and bidirectional solutions appeared in the parameter space.

The case for nonzero detuning become very complex as dynamical solutions

coming from newly formed bifurcations not present in the purely resonant case

show up. Lastly, spatial patterns showing phase domains both for bidirectional

and unidirectional lasing emission were encountered.

Photorefractive oscillator

A model of two equations for PRO under rocking injection was simulated

numerically and 1D domain walls were found. These results were in good

agreement with experimental results (Paper I), showing how the vortices that

appear in the transverse plane in absence of injection become phase domains

when rocking is present.

A Swift-Hohenberg (SHE) equation with broken phase invariance is found

to describe PRO close to the emission threshold for any sign of (small)

cavity detuning (Paper I) and was analyzed in detail (Paper V). Its stationary

homogeneous solutions were calculated and the linear stability analysis of

them revealed a complex dynamics outside the phase-locked stability region.

As the SHE possesses two non-local terms, the analysis of the instabilities

became more complicated, giving rise to coexistence (in transients states)
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of different solutions. Both positive and negative cavity detuning situations

were studied numerically and a transition (not possible in the PCGLE model)

between phase-locked states and traveling waves for the negative case through

a saddle-node bifurcation was encountered. Phase domains, labyrinthic

patterns and localized structures were numerically found in both cases.

Future lines of research would include analysis of (temporal) rocking in

realistic models of semiconductor lasers (as VCSELs in [100]) and the study of

spatial patterns in bidirectional lasers under rocking.

Versió en valencià

Al llarg d’aquesta tesi hem estudiat analíticament i numèricament l’efecte

d’una injecció bicromàtica (rocking) en diversos oscil·ladors òptics no lineals:

làsers de dos nivells de classe B i C, un oscil·lador fotorefractiu i un làser

bidireccional.

En tots els casos hem deduït equacions de paràmetre d’ordre, que

capturen la dinàmica dels sistemes prop de punts crítics. Hem resolt (quan

era possible) aqueixes equacions, obtenint les solucions estacionàries dels

diferents sistemes i hem realitzat una anàlisi d’estabilitat lineal d’aquestes

solucions per a estudiar com les inestabilitats que emergeixen en el sistema

depenen de les variables físiques. Així mateix, hem dut a terme simulacions

numèriques del comportament dels oscil·ladors sota diferents condicions

i valors dels paràmetres, intentant observar totes la solucions analítiques

predites i els patrons no lineals admesos pel sistema, Específicament, ja que

la injecció rocking converteix un sistema amb simetria continua de fase en

un sistema biestable en fase, vam estar interessats en la formació de patrons

biestables, com a dominis de fase, parets de domini, laberints així com

estructures localitzades que prenen la forma de solitons de cavitat d’anell

fosc. Primer, exposaré unes conclusions generals abans d’analitzar els resultats

obtinguts detalladament.

Una primera conclusió directa és que, encara que les condicions teòriques

per a la deducció de les equacions de paràmetre d’ordre per a oscil·ladors amb

injecció rocking puguen ser restrictives (i ho són si volem obtindre equacions

relativament simples que ens ajuden a tindre una visió analítica i intuïció

física sobre el fenomen del rocking), el rang d’eficiència del rocking és molt

més gran que que l’esperat analíticament (tenint en compte les aproximacions

realitzades). Simulacions numèriques dels models complets, en oposició als

models reduïts representats per les equacions de paràmetre d’ordre, revelen
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que la persistència del rocking en l’espai de paràmetres del sistema és molt

major en, per exemple, els làsers de dos nivells de classe C (Paper IV). Això

són bones notícies des d’un punt de vista experimental ja que incrementa la

possibilitat d’observar els fenòmens predits en sistemes del món real.

Una altra conclusió interessant que vam obtindre, és l’enorme influència

de les desintonia en relació al fenomen del rocking. Tant la desintonia de la

cavitat (el mode longitudinal seleccionada pel sistema no coincideix amb un

dels modes permeses per la cavitat òptica) com la desintonia de la injecció

(respecte a la freqüència natural del sistema) tenen una gran influència a les

regions d’aparició de les estructures phase-locked i la seua estabilitat. Un

exemple és el làser bidireccional (Paper III), en el qual una xicoteta desintonia

canvia radicalment la naturalesa de la dinàmica temporal (única estudiada) del

sistema. En làsers de classe B també observem una influència de la desintonia

encara que no tan important.

Una última conclusió és que el tipus de no-linealidad present en el sistema

no juga un paper crucial quan estem en presència de rocking. En certs límits,

és possible deduir equacions universals que modelen la formació de patrons

en oscil·ladors amb rocking per a sistemes diferents com a làsers i oscil·ladors

fotorefractius (Paper V). Quan es consideren els models complets, els aspectes

quantitatius poden perdre’s però el comportament general roman i les nostres

simulacions numèriques van ser capaces de reproduir qualitativament un

comportament experimental observat (Paper I).

Làsers

Vam obtindre una equació de paràmetre d’ordre per a làsers de dos nivells

de classe C, per a desintonia de cavitat positiva, amb injecció rocking

que correspon a una CGLE amb invariància de fase trencada (PCGLE)

(Paper IV). Un estudi analític d’aquesta equació va revelar l’existència de

solucions homogènies biestables en fase que es desestabilitzen a oscil·lacions

homogènies o patrons espacials estàtics depenent del signe de la desintonia

del rocking respecte a la freqüència de l’emissió làser. L’existència de parets de

domini, tant Ising com Bloch (depenent de la intensitat del rocking) separant

(transitoris) dominis de fase va ser confirmada numèricament. Aquestes parets

de domini experimenten inestabilitats modulacionals (en 2D) donant lloc a

l’aparició de patrons laberíntics. Prop d’aquesta regió, es van trobar solitons

de cavitat de fase (d’anell fosc).

L’obtenció d’una equació reduïda per a l’estudi de la dinàmica temporal
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de làsers de classe B amb rocking (Paper II) va conduir a un model de dues

equacions amb invariància de fase trencada que va descriure relativament bé

les regions d’existència (calculades numèricament a partir de les equacions

de MB) de l’emissió làser amb la fase restringida a dos valors separats per

π (biestabilitat de fase). Aquestes regions estan afectades per la desintonia

del rocking (són més xicotetes per a valors alts d’aquesta) però la principal

conclusió que vam obtindre va ser que el rocking només és efectiu si la seua

freqüència està propera a la de les oscil·lacions de relaxació. Això és rellevant si

volem estudiar la influència del rocking en models realistes de làsers de classe

B (com els de semiconductor).

Es va deduir una equació Swift-Hohenberg amb invariància de fase

trencada per a làsers (de classe A i C) amb rocking per a valors (xicotets) positius

i negatius de la desintonia de cavitat (Paper V). Aquesta equació va resultar ser

la mateixa (excepte per un paràmetre que no és rellevant per a la dinàmica ja

que només canvia una de les escales espacials de l’equació) que vam obtindre

per al PRO (Paper I) pel que comentarem els nostres resultats en la següent

secció.

En relació als làsers bidireccionals (Paper III), hem vist que la presència del

rocking va ser capaç d’estabilitzar solucions bidireccionals que eren inestables

en absència d’injecció. Així mateix, es van trobar regions de biestabilitat, en

l’espai de paràmetres, entre solucions unidireccionals i bidireccionals. El cas

de desintonia no nul·la va resultar ser molt complex ja que sorgeixen solucions

dinàmiques provinents de bifurcacions no presents en el cas purament

ressonants. Finalment, es van trobar patrons espacials mostrant dominis de

fase tant per a emissió làser unidireccional i bidireccional.

Oscil·lador fotorrefractiu

Simulem numèricament un model de dues equacions per a PRO amb rocking,

trobant-se parets de domini 1D. Aquests resultats estan en concordança amb

els resultats experimentals (Paper I), mostrant com els vòrtexs que apareixen

en el pla transversal en absència d’injecció es converteixen en dominis de fase

quan el rocking està present.

Vam deduir una equació de Swift-Hohenberg (SHE) amb invariància de

fase trencada per a descriure PRO amb rocking prop del llindar d’emissió

per a qualsevol signe de la (xicoteta) desintonia de cavitat (Paper I) i va

ser analitzada detalladament (Paper V). Es van calcular les seues solucions

estacionàries homogènies i la seua anàlisi lineal d’estabilitat va revelar una
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dinàmica complexa fóra de la regió d’estabilitat phase-locked. Com la SHE té

dos termes no locals, l’anàlisi de les inestabilitats va ser més complex, donant

lloc a la coexistència (en transitoris) de solucions diferents. Les situacions de

desintonia de cavitat positiva i negativa es van estudiar numèricament i es va

trobar una transició (que no és possible en models PCGLE) entre estats phase-

locked i ones viatgeres a través d’una bifurcació cadira-node. Dominis de fase,

patrons laberíntics i estructures localitzades es van trobar numèricament en

tots dos casos.

Com a futures línies d’investigació, inclouríem anàlisi de rocking temporal

en models realistes de làsers de semiconductor (com VCSELs en [100]) i l’estudi

de patrons espacials en làsers bidireccionals amb rocking.

Versión en castellano

A lo largo de esta tesis hemos estudiado analíticamente y numéricamente el

efecto de una inyección bicromática (rocking) en varios osciladores ópticos no

lineales: láseres de dos niveles de clase B y C, un oscilador fotorefractivo y un

laser bidireccional.

En todos los casos hemos deducido ecuaciones de parámetro de orden, que

capturan la dinámica de los sistemas cerca de puntos críticos. Hemos resuelto

(cuando era posible) esas ecuaciones, obteniendo las soluciones estacionarias

de los diferentes sistemas y hemos realizado un análisis de estabilidad lineal

de estas soluciones para estudiar como las inestabilidades que emergen en

el sistema dependen de las variables físicas. Asimismo, hemos llevado a

cabo simulaciones numéricas del comportamiento de los osciladores bajo

diferentes condiciones y valores de los parámetros, intentando observar todas

la soluciones analíticas predichas y los patrones no lineales admitidos por el

sistema, Específicamente, ya que la inyección rocking convierte un sistema con

simetría continua de fase en uno biestable en fase, estuvimos interesados en la

formación de patrones biestables, como dominios de fase, paredes de dominio,

laberintos así como estructuras localizadas que toman la forma de solitones de

cavidad de anillo oscuro. Primero, expondré unas conclusiones generales antes

de analizar los resultados obtenidos en detalle.

Una primera conclusión directa es que, aunque las condiciones teóricas

para la deducción de las ecuaciones de parámetro de orden para osciladores

con inyección rocking puedan ser restrictivas (y lo son si queremos obtener

ecuaciones relativamente simples que nos ayuden a tener una visión analítica

e intuición física sobre el fenómeno del rocking), el rango de eficiencia del
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rocking es mucho más grande que el esperado analíticamente (teniendo

en cuenta las aproximaciones realizadas). Simulaciones numéricas de los

modelos completos, en oposición a los modelos reducidos representados por

las ecuaciones de parámetro de orden, revelan que la persistencia del rocking

en el espacio de parámetros del sistema es mucho mayor en , por ejemplo, los

laseres de dos niveles de clase C (Paper IV). Esto son buenas noticias desde un

punto de vista experimental ya que incrementa la posibilidad de observar los

fenómenos predichos en sistemas del mundo real.

Otra conclusión interesante que obtuvimos, es la enorme influencia de

las desintonía en relación al fenómeno del rocking. Tanto la desintonía de

la cavidad (el modo longitudinal seleccionado por el sistema no coincide

con uno de los modos permitidos por la cavida óptica) como la desintonía

de la inyecciónm (respecto a la frecuencia natural del sistema) tienen una

gran influencia en las regiones de aparición de las estructuras phase-locked

y su estabilidad. Un ejemplo es el láser bidireccional (Paper III), en el que

una pequeña desintonía cambia radicalmente la naturaleza de la dinámica

temporal (única estudiada) del sistema. En láseres de clase B también

observamos una influencia de la desintonía aunque no tan importante.

Una última conclusión es que el tipo de no-linealidad presente en

el sistema no juega un papel crucial cuando estamos en presencia de

rocking. En ciertos límites, es posible deducir ecuaciones universales que

modelen la formación de patrones en osciladores con rocking para sistemas

diferentes como láseres y osciladores fotorefractivos (Paper V). Cuando

se consideran los modelos completos, los aspectos cuantitativos pueden

perderse pero el comportamiento general permanece y nuestras simulaciones

numéricas fueron capaces de reproducir cualitativamente un comportamiento

experimental observado (Paper I).

Láseres

Obtuvimos una ecuación de parámetro de orden para láseres de dos

niveles de clase C, para desintonía de cavidad positiva, con inyección

rocking que corresponde a una CGLE con invariancia de fase rota (PCGLE)

(Paper IV). Un estudio analítico de esta ecuación reveló la existencia de

soluciones homogéneas biestables en fase que se desestabilizan a oscilaciones

homogéneas o patrones espaciales estáticos dependiendo del signo de la

desintonía del rocking respecto a la frecuencia de la emisión láser. La

existencia de paredes de dominio, tanto Ising como Bloch (dependiendo
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de la intensidad del rocking) separando (transitorios) dominios de fase

fue confirmada numéricamente. Estas paredes de dominio experimentan

inestabilidades modulacionales (en 2D) dando lugar a la aparición de patrones

laberínticos. Cerca de esta región, se encontraron solitones de cavidad de fase

(de anillo oscuro).

La obtención de una ecuación reducida para el estudio de la dinámica

temporal de láseres de clase B con rocking (Paper II) condujo a un modelo de

dos ecuaciones con invariancia de fase rota que describió relativamente bien

las regiones de existencia (calculadas numéricamente a partir de las ecuaciones

de MB) de la emisión laser con la fase restringida a dos valores separados por

π (biestabilidade de fase). Estas reguines esán afectadas por la desintonía

del rocking (son más pequeñas para valores altos de esta) pero la principal

conclusión que extraímos fue que el rocking sólo es efectivo si su frecuencia

está cercana a la de las oscilaciones de relajación. Esto es relevante si queremos

estudiar la influencia del rocking en modelos realistas de láseres de clase B

(como los de semiconductor).

Se dedujo una ecuación Swift-Hohenberg con invariancia de fase rota

para láseres (de clase A y C) con rocking para valores (pequeños) positivos y

negativos de la desintonía de cavidad (Paper V). Esta ecuación resultó ser la

misma (excepto por un parámetro que no es relevante para la dionámica ya que

sólo cambia una de las escalas espaciales de la ecuación) que obtuvimos para

el PRO (Paper I) por lo que comentaremos nuestros resultados en la siguiente

sección.

En relación a los láseres bidireccionales (Paper III), hemos visto que

la presencia del rocking fue capaz de estabilizar soluciones bidireccionales

que eran inestables en ausencia de inyección. Asimismo, se encontraron

regiones de biestabilidad, en el espacio de parámetros, entre soluciones

unidireccionales y bidireccionales. El caso de desintonía no nula resultó

ser muy complejo ya que surgen soluciones dinámicas provenientes de

bifurcaciones no presentes en el caso puramente resonantes. Por último,

se encontraron patrones espaciales mostrando dominios de fase tanto para

emisión láser unidireccional y bidireccional.

Oscilador fotorrefractivo

Simulamos numéricamente un modelo de dos ecuaciones para PRO con

rocking, encontrándose paredes de dominio 1D. Estos resultados están en

concordacia con los resultados experimentales (Paper I), mostrando como los
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vórtices que aparecen en el plano transversal en ausencia de inyección se

convierten en dominios de fase cuando el rocking está presente.

Dedujimos una ecuación de Swift-Hohenberg (SHE) con invariancia de

fase rota para describir PRO con rocking cerca del umbral de emisión para

cualquier signo de la (pequeña) desintonía de cavidad (Paper I) y fue analizada

en detalle (Paper V). Se calcularon sus soluciones estacionarias homogéneas y

su análisis lineal de estabilidad reveló una dinámica compleja fuera de la región

de estabilidad phase-locked. Como la SHE tiene dos términos no locales, el

análisis de las inestabilidades fue más complejo, dando lugar a la coexistencia

(en transitorios) de soluciones diferentes. Las situaciones de desintonía de

cavidad positiva y negativa se estudiaron numéricamente y se encontró una

transición (que no es posible en modelos PCGLE) entre estados phase-lockes

y ondas viajeras a través de una bifurcación silla-nodo. Dominios de fase,

patrones laberínticos y estructuras localizadas se encontraron numéricamente

en ambos casos.

Como futuras lineas de investigación, incluiríamos análisis de rocking

temporal en modelos realistas de láseres de semiconductor (como VCSELs

en [100]) y el estudio de patrones espaciales en láseres bidireccionales con

rocking.
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We report the experimental observation of the conversion of a phase-invariant nonlinear system into a
bistable phase-locked one via rocking [G. J. de Valcárcel and K. Staliunas, Phys. Rev. E 67, 026604
(2003)]. This conversion results in vortices of the phase-invariant system being replaced by phase patterns
such as domain walls. A model for the experimental device, a photorefractive oscillator, is given that
reproduces the observed behavior.

DOI: 10.1103/PhysRevLett.97.093903 PACS numbers: 42.65.Sf, 05.45.�a, 42.65.Hw, 89.75.Kd

Introduction.—The symmetry properties of the order
parameter phase in extended nonlinear systems determine
the type of localized structures supported by these systems.
On one hand, phase-invariant systems display vortices,
which are phase defects of the order parameter, around
which the phase changes in 2�, forcing the order parame-
ter to be null at the vortex center. Self-oscillatory systems
represent a paradigm of such behavior as the oscillating
state reached after a homogeneous Hopf bifurcation can
have any phase (the system is autonomous) [1]. Examples
of such systems are certain chemical reactions (like the
Belousov-Zhabotinsky reaction) and several optical sys-
tems [like lasers, nondegenerate optical parametric oscil-
lators (OPOs), and nondegenerate wave mixing photo-
refractive oscillators]. On the other hand, there are non-
linear systems with broken phase invariance that, obvi-
ously, cannot support vortices. Among them, especially
interesting systems are those displaying phase bistability.
Such systems support a different type of localized struc-
ture, the domain wall, which connects spatial regions
where the order parameter passes from one homogeneous
state, F0, to the equivalent, symmetric state, �F0, so that
the phase changes by � from one side of the wall to the
other one [1]. A paradigm of such type of phase-bistable
system is the degenerate OPO.

The question we address here is whether it is possible to
convert a phase-invariant system into a phase-bistable one
by some simple external action. In other words, can a
system displaying vortices be forced to display domain
walls? An old and well-known answer to these questions
consists in the periodic forcing of a self-oscillatory system
at a frequency around 2 times its natural oscillation fre-
quency !0 (resonance 2:1). Under that type of (so-called)
parametric driving the originally phase-invariant system is
predicted [2] and experimentally observed [3,4] to trans-
form into a phase-bistable system, exhibiting domain
walls. But while parametric driving is useful in many
contexts it is not so in general in nonlinear optics. For
instance, a laser emitting at frequency!0 is insensitive to a
forcing at 2!0 because the gain line is extremely narrow as
compared with the magnitude of the optical frequency !0.

Yet, a new mechanism coined rocking [5] has been re-
cently proposed to overcome such limitation of the usual
parametric driving. Rocking consists in forcing a self-
oscillatory system around its natural oscillation frequency
(resonance 1:1) so that the forcing amplitude is periodi-
cally modulated in time at a frequency !� !0. Thus
rocking is a multifrequency forcing (in its simplest case,
a sinusoidal modulation of the forcing amplitude, it is a
bichromatic forcing) around the resonance 1:1 of a self-
oscillatory system. We want to remark that, unlike the
parametric driving, any self-oscillatory system (including
lasers and any nonlinear optical system) should be sensi-
tive to rocking as this forcing acts on the main resonance of
the system.

In order to gain insight into the rocking idea, consider a
particle in a 2D space with coordinates �x; y� under the
action of a potential with the shape of a sombrero—having
a maximum at the origin �0; 0� and a degenerated minimum
at x2 � y2 � r2

min. This is a phase-invariant system, which
means that the equilibrium position is phase (angle) degen-
erated. Suppose now that this potential is rocked along the
x direction (e.g., by adding a term x sin!t to the original
potential). In this case the phase degeneracy is obviously
broken and now the system tends to be around (x � 0, y �
�rmin): The system is now phase bistable. This pictorial
image illustrates the physical rationale behind the rocking
idea: The coordinates of the fictious particle correspond to
the real and imaginary parts of the complex amplitude of
oscillations of the self-oscillatory system, whose evolution
derives from a sombrerolike potential in the simplest case,
as originally introduced in [5] through an analysis of a
complex Ginzburg-Landau equation, which is the simplest
model for spatially extended self-oscillatory systems [1].
As shown in [5], under the action of rocking the order
parameter of the system F�r; t� (e.g., the laser electric field
complex amplitude) develops two components, F�r; t� �
F!�t� � i �r; t�, where F! is a 2�

! -periodic function of
time that follows the modulation at frequency ! of the
forcing amplitude and  is a phase-bistable, reduced order
parameter that can display domain walls, phase domains,
and phase domain solitons [5]. Even if the original pre-
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diction is based on a complex Ginzburg-Landau model,
rocking is expected to be of wide applicability as the
phase-bistability mechanism introduced above seems to
be quite model independent.

In this Letter we give the first experimental evidence of
rocking induced phase bistability and the associated for-
mation of phase domains and domain walls. Our system is
a (nondegenerate) two-wave mixing photorefractive oscil-
lator (PRO), which highly resembles a laser from the non-
linear dynamics viewpoint. Rocking is done by injecting an
amplitude modulated laser beam into the resonator. We
show that in the absence of rocking (free running configu-
ration) the PRO exhibits vortices, which are converted into
phase domains under the action of rocking. Experiments
performed under a quasi-1D transverse geometry (in order
to avoid curvature effects) show that the system displays
domain walls in a window of rocking modulation frequen-
cies, in agreement with [5]. A model for the experimental
device is presented that reproduces the experimental find-
ings. In a limit, such a model reduces to a parametrically
driven complex Swift-Hohenberg equation, which repre-
sents an extension of [5] to other types of order parameter
equations and hence enlarges the range of the applicability
of rocking.

Experimental setup.—The PRO (Fig. 1) consists of a
photorefractive BaTiO3 crystal placed inside a (near) self-
imaging ring resonator [6] of cavity length 1.2 m (the
resonator free-spectral range is 250 MHz), similar to that
used in [7]. The effective cavity length is approximately
2 cm, which is actively stabilized by means of piezomirror
PZT1 in order to have precise control of cavity detuning
(the difference between the frequencies of the pump field
and that of the closest cavity mode). The crystal is pumped
by a single mode 514 nm Ar� laser with a power around
100 mW � cm�2. An amplitude modulated beam (the rock-
ing beam) coherent to the pump field is injected into the
cavity. The intracavity slit D is placed in a Fourier plane in
order to make the system quasi-1D in the transverse di-
mension [8]. Finally, there is the possibility of injecting a
tilted coherent beam in order to ‘‘write’’ domain walls
[9,10].

The rocking beam must be spatially uniform and ampli-
tude modulated in time with zero mean [5]: We choose to

use a field of constant amplitude, whose phase changes
exactly by � in every half period. We do this by injecting
into the cavity a beam coming from the pumping laser,
after being reflected on piezomirror PZT2 (Fig. 1), which is
moved periodically back and forth by half a wavelength
(the modulation frequency is on the order of 1 Hz). This
way the rocking has a pure amplitude modulation (only the
sign of the field amplitude changes). This operation must
be very precise as phase jumps different than � do not
produce the desired result.

Experimental results.—The cavity length is chosen for
the system to be in (almost) exact cavity resonance. This is
not mandatory but is the simplest way for the rocking field
to be resonant with the intracavity field (see the model
section below). When the rocking beam is off and the
intracavity slit is open, the system spontaneously forms
vortices in the output field, as expected [11]. Under these
conditions, the application of a rocking beam is able to
transform vortices into phase domains, as shown in Fig. 2.
This result is a direct demonstration of the rocking induced
phase bistability.

Two-dimensional phase domains are transient structures
due to curvature [5]. Hence we performed a series of ex-
periments under quasi-1D conditions (by narrowing the in-
tracavity slit), which allows stable domain walls in phase-
bistable systems [9]. These domain walls are, however,
unstable in 1D phase-invariant systems: When a domain
wall is injected into the free running PRO [Fig. 3(a)], we
observe that it vanishes with time [Fig. 3(b)] and is re-
placed by a spatially uniform state [Fig. 3(c)]. On the con-
trary, when the PRO is rocked, dramatically different re-
sults are obtained. Now an injected domain wall [Fig. 3(e)]
remains stable and fixed [Figs. 3(f) and 3(g)]. (The ampli-
tude modulation frequency of the rocking beam was
1.5 Hz, and its intensity was of the same order as that of
the output field in the absence of rocking.) Figure 3(h)

BaTiO3

c+
Pump beam

M2

M3

M1

D

f

f

f/2

Rocking
 beam

PZT1

0
πV

time

ff/2

Output beam

PZT2

FIG. 1. Scheme of the experimental setup. BaTiO3, photore-
fractive crystal; M1, M2, and M3, mirrors; PZT1 and PZT2,
piezomirrors; f, focal length of corresponding lenses; D, rect-
angular slit. PZT2 is driven by a square-wave voltage V.

FIG. 2. Interferometric snapshots of spontaneously formed
patterns. Vortices (a) existing in the free running PRO are
substituted by phase domains (b) under the action of rocking.
Lower panels are magnifications showing the annihilation of the
interference fringes at a vortex (c) and a � phase jump at a
domain wall (d).
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evidences that we are in the presence of an Ising wall [2,9].
The structure is robust, and this proves that the system is
now phase bistable. The ability of rocking to sustain do-
main walls is thus confirmed.

There remains to assess the influence of the amplitude
and the modulation frequency of rocking on its effectivity.
We have observed that the frequency of modulation cannot
be too small or too large: For modulation frequencies of
0.1 Hz or below, rocking cannot sustain the injected do-
main wall. The same happens for modulation frequencies
greater than 10 Hz. It seems that modulations from 1 to
3 Hz are optimal, which are on the order of the inverse of
the photorefractive grating decay time. While we do not
have definite measurements, we can say that rocking is
effective in a window of rocking intensities as well.

All previous features are in agreement with the predic-
tions of Ref. [5]. The theory is, however, based on a
Ginzburg-Landau model, which should not be valid near
cavity resonance [12–14], the case considered here. In
order to justify theoretically the results on a more firm
basis we thus proceed to model the PRO.

Theory.—We adopt the two-wave mixing PRO model
for a purely diffusive photorefractive crystal [15], such as
BaTiO3, generalized to account for the injection of the
rocking beam. The model equations, suitably normalized,
can be written as

 ��1@tF � ��1� i��F� iar
2F� N � FR�t�; (1)

 @tN � �N � g
F

1� jFj2
; (2)

where F�r; t� is the slowly varying envelope of the intra-
cavity field, N�r; t� is the complex amplitude of the pho-
torefractive nonlinear grating, r � �x; y� are the transverse
coordinates, r2 � @2

x � @
2
y, � � �� is the product of the

cavity linewidth �with the photorefractive response time �

(� * 108 under typical conditions, and �	 1 s), t is time
measured in units of �, the detuning � � �!C �!P�=�
(!P and!C are the frequencies of the pump and its nearest
cavity longitudinal mode, respectively), a is the diffraction
coefficient (which depends upon geometry [8] and can take
either sign), FR is the complex envelope of the rocking
(injected) field, and g is the (real) gain parameter that
depends on crystal parameters and on the geometry of
the interaction. The actual intracavity field E, and rock-
ing field ER read E � Re�FEPe

�i!P�t� and ER �
Re�FREPe�i!P�t�, respectively, where EP and !P are the
complex amplitude and the angular frequency of the pump-
ing laser field. Note that EP acts just as a scaling factor (it is
unrelated with the gain parameter g) [15,16].

For FR � 0 the model is equivalent to that in [15], which
holds the continuous symmetry �F;N� ! �Fei�; Nei��.
Hence the system is phase invariant in the absence of
forcing. This free running PRO model has two main solu-
tions [15]: the trivial solution F � N � 0, and the family
of traveling-wave solutions (parametrized by the wave vec-
tor k) F �

��������������������
g=g0 � 1

p
ei�k�r��t� and N � �1� i��F, with

g0�1��2, and �� �
��1���ak

2�!��ak2 as �
 1.
One easily sees that (i) for �=a > 0 the oscillation thresh-
old is minimum for k � 0 (on-axis emission), occurs at
g � 1��2, and the frequency of the generated field is
shifted by � � � from that of the pump beam, and (ii) for
�=a < 0 the threshold is minimum for k �

��������������
��=a

p
(off-

axis emission), occurs at g � 1, and there is no frequency
shift (� � 0). We checked these features in our experi-
ment. In particular, cavity resonance was determined by
interfering the emitted field with a reference coming from
the pumping laser: The cavity length at which the beating
frequency (�) passes from zero to a nonnull value (or vice
versa) corresponds to exact cavity resonance [15]. These
facts, together with the phase invariance of the model,
make the PRO in the two-wave mixing configuration a sys-
tem largely equivalent to a large aspect ratio laser [15,17].

In the following we use FR � R cos!t (R real without
loss of generality), which is the simplest form of amplitude
modulation and corresponds to a bichromatic injected
signal. In order to give analytical evidence of the rocking
induced phase bistability in the PRO model we perform an
asymptotic expansion of Eqs. (1) and (2) based on the of
multiple scales technique [18]. In order to approach the
experimental conditions, we assume small detuning and
large cavity linewidth: We take � � O�"�, � � O�"�4�
with " a smallness parameter (0< "� 1) (the final result
does not depend on the precise scaling for � whenever
�
 1 is assumed). We further assume that gain is close to
threshold, g � 1�O�"2�, and that the rocking parameters
verify R � O�"�, ! � O�1�. The analysis, similar to that
performed in laser [12] and nondegenerate OPO [13,14]
models, yields N � �1� i��� ar2��F� R cos!t,

 F�r; t� � F!�t� � i �r; t� �O�"3�; (3)

F!�t� �
R
! ��1� 2i�� sin!t� �1� i� !2�1

!2 �! cos!t�, the

FIG. 3. Experimental snapshots of injected domain walls
(DWs). (a)–(c) DWs are unstable in the free running PRO (the
time interval between snapshots is 5 s). (e)–(g) Stabilization of
the DW in the rocked PRO (the rocking frequency is 1.5 Hz and
the time interval between snapshots is 15 s). (d),(h) Horizontal
cuts showing the field amplitude (a.u.) and phase corresponding
to snapshots (b) and (f), respectively. The snapshots’ transverse
dimension is 1.2 mm.
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order parameter  verifying a complex Swift-Hohenberg
equation with parametric gain:
 

@t � � 
 � �g� 1� 2�� � j j2 

� i�ar2 ��� � �ar2 � ��2 ; (4)

where � � R2

2
1�!2

!2 is the rocking parameter (note that � �
R2

2 ). In the absence of rocking (� � 0), Eq. (4) is phase
invariant and is isomorphic to those describing lasers [12]
and nondegenerate OPOs [13,14], as well as highly resem-
bling that for drift-type PROs [17]. The role of rocking is
clearly appreciated in Eq. (4): It introduces a phase-
sensitive gain (first term in the right-hand side) that breaks
the original phase invariance of the undriven system down
to the discrete one  ! � . Thus the PRO becomes phase
bistable. The spatially uniform steady states of Eq. (4) are

given by  � �j jei’, j j2 � �� 2��
������������������
�2 � �2

p
,� �

g� 1� �2, and e2i’ �

�����������
�2��2
p

�i�
� (another two, intrinsi-

cally unstable states exist as well, which we do not con-
sider). These phase-locked states exist if j�j � � � �max

(�max �
2�
3 �

1
3

���������������������
�2 � 3�2

p
) as far as � �

���
3
p
j�j. These

inequalities imply analogous ones for the rocking intensity
R2 or the rocking modulation frequency ! depending on
which parameter (! or R) is kept fixed. This prediction
supports the experimental findings described above.
Finally, note that as � � R2

2 the rocked states will exist
only if R2 � 2�max and � �

���
3
p
j�j, for any !.

In a series of numerical experiments we have checked
the above predictions and have found that they remain
valid even far from the asymptotic limit described by
Eq. (4), as it happens in the original proposal [5]. In order
to have additional comparison between theory and experi-
ment, we present in Fig. 4 some numerical simulations of
Eqs. (1) and (2) for� � 102 (large, but not extremely large
in order to avoid stiffness problems), � � 0, g � 2 (we
estimate that the gain in the experiment is about 100%
above threshold), ! � 2�, and R � 0:5. Comparison with

Fig. 3 shows that the results are very similar to the experi-
mental ones. A message from this theoretical treatment
arises: Phase-invariant systems described by order parame-
ter equations of different nature (like the Ginzburg-Landau
and the Swift-Hohenberg complex models) behave simi-
larly under the influence of rocking.

In conclusion, we have experimentally demonstrated,
and theoretically justified, the ability of the rocking mecha-
nism introduced in [5] to generate phase-bistable states in
otherwise phase-invariant systems. The studied system, a
PRO in a two-wave mixing configuration, highly resembles
laser systems from the nonlinear dynamics viewpoint.
Hence the results put forth in this Letter should motivate
similar experiments in laser systems, which could have
potential applications in the field of information
technologies.
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Abstract

We investigate analytically and numerically the dynamics of single mode lasers with periodic ac injection (rocked lasers). Such lasers
show phase bistability as the phase of the light emitted by such lasers can lock to either of two values shifted by p. Locking regimes for
different lasers are studied showing that the system response is strongly modified in class B lasers due to the influence of relaxation
oscillations.
� 2006 Published by Elsevier B.V.

1. Introduction

Lasers driven by ac periodic injected signals, so-called
rocked lasers, have been predicted to display phase bista-
bility between two p-shifted values [1]. Such phenomenon
is interesting as bistability is at the root of possible applica-
tions in information technologies. Phase bistability is also a
prerequisite for the existence of interesting phase patterns,
including cavity solitons, in very large Fresnel number
optical cavities [1,2]. This rocking induced phase bistability
has just been demonstrated for the first time in a laser-like
system [2]. Here, we consider the single mode case as our
main purpose is to gain insight into the phase locking bista-
bility mechanism. Such knowledge will be obviously useful
for single mode laser applications, but also for multi-trans-
verse mode lasers.

In the simplest case when the laser cavity is exactly
tuned to the atomic transition frequency and when the
injection occurs at two sidebands, oppositely and symmet-
rically detuned from the resonance, these two phase values

are p/2 and �p/2 relative to that of injection. This some-
what counterintuitive phase-locking to two symmetric val-
ues can be qualitatively interpreted by analyzing the
periodically forced complex Landau (CL) equation [3],

dA
ds
¼ lA� jAj2Aþ F cosðXsÞ; ð1Þ

which serves as an order parameter equation for single-
mode two-level lasers with bichromatic injection, close to
the free running laser threshold. In this context A is pro-
portional to the laser electric field slowly varying complex
amplitude (the carrier frequency is that of the free running
laser; see below), s is a dimensionless time, l is propor-
tional to the amount of pumping over threshold (threshold
is at l = 0), and the ac term Fcos (Xs) is proportional to
the amplitude of the external injection, being F a real num-
ber without loss of generality. As the injected field envelope
is harmonic the actual injected electric field consists of the
superposition of two monochromatic waves of equal
amplitudes. When X = 0 the ac term transforms into a con-
stant term and the forced CL Eq. (1) becomes that describ-
ing usual two-level lasers with (monochromatic) injected
signal (LIS) [4]. Eq. (1) is variational as it can be written
as dA/ds = �dV/dA* (dA*/ds = �dV/dA) with potential
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V ¼ �ljAj2 þ 1
2
jAj4 � 2F cosðXsÞReðAÞ. In the absence of

injection (F = 0) and for positive l, the potential has the
shape of a sombrero and displays a degenerated minimum
along the circumference |A|2 = l in the complex plane Re
A � Im A, see Fig. 1a. The phase of the complex field,
u = arg(A), is thus arbitrary. (Alternatively, one says that
Eq. (1) displays phase invariance.) In the presence of a con-
stant injection (X = 0) the potential is tilted along the axis
Re A, where it exhibits an isolated minimum, see Fig. 1b
and c. Phase invariance is thus broken and the phase of
the emitted radiation is locked to that of injection
(u = 0,p). Finally, for a periodically modulated injection
(F 5 0 5 X), the case we consider here, the potential is
periodically tilted, or ‘‘rocked’’, around the axis Im A
(hence the name ‘‘rocking’’ [1]). Under this rocking the sys-
tem state in the phase space Re A � Im A avoids ‘‘noisy’’
areas (located on the axis Re A in this case) and drifts to
the quiet areas(located on the axis Im A) [1] in the phase
space, according to the general principles of physics [3].
The phase symmetry is again broken, however, unlike the
usual case of constant injection (LIS), the laser phase can
lock to two symmetric values with respect that of injection,
differing by p. In other words, the radially symmetric Hopf
bifurcation describing the free-running laser (of which Eq.
(1) with F = 0 represents its normal form) deforms into a
pitchfork bifurcation due to the rocking of the potential.
When the laser is below threshold (l < 0) the potential dis-
plays no more a local maximum at the origin and the phase
locking mechanism does not work [1].

The precise mechanisms of this phase locking have not
been explored so far for the different types of lasers. In fact
Eq. (1) represents a good description of the so-called class
A and class C lasers (where the relaxation rate of the laser
field is much smaller than those of the medium polarization
and population inversion or all relaxation rates are compa-
rable, respectively; see below) close to threshold, but it can-
not describe the dynamics of class B lasers (where the
population inversion is slow as compared with field and
polarization) or, in general, the response of lasers well
above threshold. Substantial peculiarities can be expected
for class B lasers, especially because such lasers show relax-
ation oscillations: hence for rocking frequencies close to
that of its relaxation oscillation frequency, or its harmonics
and subharmonics, specific resonant phenomena can be
expected that could affect the phase locking.

This article is devoted to the detailed analysis of the
rocking-induced phase locking in class A and class B lasers,
based on the numerical solution of the corresponding Max-
well–Bloch equations and on the analytical solutions of the
models. We have checked that class C rocked lasers behave
essentially as class A rocked lasers hence our presentation
will not consider class C lasers.

2. Model

We consider the standard Maxwell–Bloch (MB) equa-
tions for the single longitudinal, single transverse mode,
two-level ring laser with injected signal [4], which can be
written as:

dE
dt
¼ j½P � ð1þ iDÞE þ Ein�; ð2aÞ

dP
dt
¼ c?½ED� ð1� iDÞP �; ð2bÞ

dD
dt
¼ ck D0 � D� 1

2
ðE�P þ EP �Þ

� �
: ð2cÞ

The complex functions E(t) and P(t) are the scaled enve-
lopes of the electric field and the medium polarization,
respectively, D(t) is the (real) scaled population inversion,
D0 is the scaled population inversion in the absence of las-
ing (pumping parameter), and Ein(t) is the scaled complex
envelope of the injected signal. All these quantities are
dimensionless. Eq. (2) have been written in the frequency
frame of the corresponding free running laser, xL, which
is given by the pulling formula xL = (c?xC + jxA)/
(c? + j), with xC (xA) being the cavity (atomic) frequency,
and j(c?) being the decay rate of E(P). Hence the actual
laser field is proportional to Re[E(t)exp(�ixLt)]. Finally
ck is the decay rate of the population inversion and
D = (xC � xA)/(j + c?) is the scaled atom-cavity detuning.

We consider a periodically modulated injection of the
form

EinðtÞ ¼ E0 cosðXjtÞ expð�imjtÞ; ð3Þ
which alternatively represents a bichromatic injection
formed by the superposition of two coherent light beams

Fig. 1. Qualitative 3D plot of the potential V associated with Eq. (1),
which describes a rocked laser (arbitrary units are used). (a) Without
injection (F = 0) the potential is radially symmetric in agreement with the
phase invariance of the free running laser. (b) With constant injection
(X = 0) the potential tilts along the direction Re(A) proportionally to the
forcing amplitude F and a single isolated minimum appears, correspond-
ing to the phase-locked state of the usual laser with injected signal; here
F < 0. (c) as the (b), but with F > 0. Under rocking (X 5 0) the potential
oscillates back and forth between the two cases (b) and (c) through (a).
Under such forcing a particle would tend to remain close to the imaginary
axis Re(A) = 0, around either of the two regions separated by the local
maximum around the origin. (d) Effective potential describing the rocking
induced phase-locking; it is the potential associated with Eq. (9), for,
which is the initial potential (a) deformed due to fast rocking.
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of frequencies xR ± Xj (xR = xL + mj) and of amplitudes
E0/2, which we choose to be real without loss of generality.
Thus mj represents the detuning of the rocking field mid-
frequency xR from the free running laser frequency xL.

In order that Eqs. (2) and (3) be consistent with the
(assumed) uniform field and single longitudinal mode
approximations, the modulation frequency Xj, and the
rocking detuning mj must be smaller than the cavity free
spectral range (dxFSR), which relates to the cavity linewidth
as j = (4p)�1TdxFSR, T being the cavity mirrors transmis-
sivity (0 < T� 1 is assumed). Additionally the cavity detun-
ing xC � xA = (j + c?)D must be less (in absolute value)
than half the free spectral range. These inequalities are equiv-
alent to |X|, |m|� 4p/T, and to |D| < (2p/T)/(1 + c?/j). The
restrictions imposed by the latter depend on the type of laser:

Class A lasers : c?; ck � j; ð4aÞ
Class B lasers : c? � j� ck; ð4bÞ
Class C lasers : c? � ck � j: ð4cÞ

In class C lasers the last inequality becomes |D| < 2p/T,
which is a nonrestrictive condition. In class A and class B
lasers the inequality becomes |D| < (2p/T)(j/c?), which
can be restrictive as (j/c?) is a small quantity. In our sim-
ulations we chose parameter values compatible with these
restrictions.

In the following sections, we describe the phase locking
properties of class A and class B rocked lasers, both analyt-
ically and numerically. Class C lasers were also investigated,
which, however, did not add much to the dynamics
obtained for class A lasers, as already commented.

3. Class A lasers

In order to gain insight into the basic mechanisms of
rocking we undergo a reduction of Eq. (2) to a compact
form that allows a simplified treatment of the problem.
The reduction can be done, following [5], through the adi-
abatic elimination of the fast material variables, polariza-
tion and population inversion, characterizing class A
lasers. In addition to the main assumption used in [5]
(c?,ck � j) we additionally assume that the different coef-
ficients and frequencies in the field Eq. (2a) are much smal-
ler than min(c?,ck). Then the adiabatic elimination of the
fast material variables results straightforwardly in

dA
ds
¼ imAþ ð1þ iDÞ l� jAj

2

1þ jAj2
Aþ F cosðXsÞ; ð5Þ

where A ¼ E expðimsÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D2

p
(Eq. (5) is written in the fre-

quency frame of the rocking field mid-frequency xR),
F ¼ E0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D2

p
is proportional to the forcing amplitude,

l = D0/(1 + D2) � 1 plays now the role of pump parame-
ter, and s = jt is time measured in units of the inverse of
the cavity linewidth.

In the absence of forcing the lasing state A ¼ aLðsÞ
¼ ffiffiffi

l
p

expðimsÞ exists for l > 0, and the free running lasing
threshold occurs at l = 0. Eq. (5) can be simplified for a

laser operated below or slightly above threshold
(�1 < l� 1) and for 0 6 F� 1. In this case |A|� 1,
which allows a cubic approximation:

dA
ds
¼ imAþ ð1þ iDÞðl� jAj2ÞAþ F cosðXsÞ ð6Þ

to the leading order. In the special case of complete reso-
nance, D = m = 0, Eq. (6) reduces to Eq. (1). We note that
both Eqs. (5) and (6), as well as the original MB equations,
hold the discrete, nontrivial symmetry A(s)!�A(s + p/
X). This symmetry is at the origin of the phase bistability
discussed below. (Another, trivial symmetry hold by Eqs.
(5) and (6) is A(s)! A(s + 2p/X), which merely reflects
the periodic nature of forcing.)

The analytical study of the locking regimes of Eq. (1)
was performed in [1], which we adapt here to Eq. (6).
The limit of ‘‘strong and fast’’ rocking is considered
(F,X� l,D,m) that is mathematically equivalent to
F = e�1f, X = e�1x, 0 < e� 1, and the rest of parameters
as O(1) quantities. This allows the separation of the slow
time scale s of the unforced system from the fast time scale
T = e�1s of rocking, and a multiple time scale analysis [6,7]
is possible: the electric field A is expanded as A(s) = A0(T,
s) + eA1(T,s) + O(e2), and the time derivative is trans-
formed according to the chain rule: o/os! e�1o/oT +
o/os. A hierarchy of equations at increasing orders in e is
obtained, which at the lowest order (e�1) reads oA0/
oT = fcos (xT), with the trivial solution:

A0ðT ; sÞ ¼ ðf =xÞ sinðxT Þ þ aðsÞ; ð7Þ
where a(s) depends on the slow time scale only. The evolu-
tion equation for a(s) is found as a solvability condition at
the next order (e0) of the asymptotic expansion:

oA1

oT
¼ � oA0

os
þ imA0 þ ð1þ iDÞðl� jA0j2ÞA0: ð8Þ

The r.h.s. of this equation, viewed as a function of the fast
time T, can be written, in virtue of Eq. (7), as c0(s) +
c1(s)sin(xT) + c2(s)cos (2xT) + c3(s)sin(3xT). As that side
does not depend on A1 the term c0(s) must be null: otherwise
A1 would diverge. This is the solvability condition for Eq.
(8), c0(s) = 0, that reads explicitly:

da
ds
¼ imaþ ð1þ iDÞ½ðl� 2cÞa� ca� � jaj2a�; ð9Þ

where

c ¼ 1
2
ðf =xÞ2 ¼ 1

2
ðF =XÞ2 ð10Þ

is the rocking parameter [1]. The laser electric field reads

AðsÞ ¼
ffiffiffiffiffi
2c

p
sinðXsÞ þ aðsÞ ð11Þ

to the leading order, see Eq. (7). When a = 0 the rocked la-
ser just follows the injection and we say that the laser is in
the ‘‘adiabatic following’’ regime.

In the nonrocked limit c = 0 (free running laser) the
laser electric field A = a and Eq. (9) reduces to Eq. (6). In
that limit the nontrivial solution to Eq. (9) reads
aðsÞ ¼ aLðsÞ �

ffiffiffi
l
p

expðimsÞ, which is the free running lasing
state in the frequency frame of the rocking field.
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Eq. (9) is a CL equation with broken phase symmetry
due to the term proportional to a*. i.e. posses the symmetry
group a!�a. We can anticipate that Eq. (9) will support
bistable phase locked states corresponding to the two
equivalent signs of a. We note that Eq. (9) is also the order
parameter equation derived for parametrically driven sys-
tems close to Hopf bifurcations [8] (where the self-oscilla-
tory system is periodically forced at a frequency that is
close to twice the natural frequency of oscillations). Eq.
(9) shows that rocking is the mechanism for making a laser
to behave as a parametrically driven system, thus exhibit-
ing phase bistability.

Eq. (9) in the resonant limit D = m = 0 is variational, like
Eq. (1), and its potential reads V ¼ �ðl� 2cÞjaj2þ
1
2
jaj4 þ c 1

2
ða2 þ a�2Þ. Comparison with the potential of

Eq. (1) reveals that the effect of rocking consists in deform-
ing the rotationally symmetric potential of the undriven
system so that now local minima appear at a ¼ 	i

ffiffiffiffiffiffiffiffiffiffiffi
l� c
p

(two symmetric points located at the axis Im a) as a
straightforward analysis of the potential reveals. These
minima correspond to the steady solutions of Eq. (9) in
the resonant case. The deformation of the potential is com-
patible with the general theory of motion in quickly oscil-
lating fields [3], and is illustrated in Fig. 1d.

In the general, nonresonant case Eq. (9) has four steady
solutions (apart from the trivial one a = 0):

a ¼ u	 expði/	Þ; ð12aÞ

u2
	 ¼ l� 2cþ

Dm	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ð1þ D2Þ2 � m2

q
1þ D2

;

expð2i/	Þ ¼ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ð1þ D2Þ2 � m2

q
þ im

cð1þ D2Þ
: ð12bÞ

The existence of four solutions comes from the fact that
the phase equation has two solutions (differing by p) both
for /+ and /�. Solutions with subscript ‘‘�’’ are always
unstable, as is easy to be checked. Hence there are two rel-
evant ‘‘rocked‘‘ solutions, those with subscript ‘‘+’’, that
differ just in their sign. We note that the two rocked solu-
tions are related by the symmetry A(s)!�A(s + p/X),
according to (11).

The existence range of the ‘‘rocked states’’,

jmj
1þ D2

� cmin < c < cmax

�
2lð1þ D2Þ þ 2Dmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½lð1þ D2

q
Þ þ Dm�2 � 3m2

3ð1þ D2Þ
;

ð13Þ

follows from the analysis of Eq. (12a), which in its turn re-
quires that [l(1 + D2) + Dm]2 > 3m2. The latter sets a mini-
mum pumping l in order that these ‘‘rocked states’’ exist.
Two cases are particularly simple to be analyzed: (i) when
the cavity is tuned to the atomic line (D = 0) the existence
range of rocked states reads jmj � cmin < c < cmax

� ½2lþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 3m2

p
�=3; and the minimum pumping level re-

duces to l >
ffiffiffi
3
p
jmj and (ii) when the rocking mid-frequency

is tuned to the free running laser frequency (m = 0) the exis-
tence range of rocked states reads 0 � cmin < c < cmax � l,
and the minimum pumping level reduces to l > 0, indepen-
dently of the value of D. The dependence of the intensity
|a|2 = u2 of these states on the rocking parameter c is de-
picted in Fig. 2.

The double inequality (13) is an estimation of the area of
locking regimes of class A lasers. In order to have a com-
plete picture the stability of the rocked states must be
explored. A linear stability analysis of those states readily
shows that they are destabilized by a Hopf bifurcation at

c ¼ cHB �
1

4

l2 þ ðDlþ 2mÞ2

lð1þ D2Þ þ 2Dm
; ð14Þ

whenever the quantity H � z(z + 2m)(z � 2m) < 0 where
z = l(1 + D2) + 2Dm. (Note that this condition is never ful-
filled if either D = 0 or m = 0 as in this case the condition
H < 0 reduces to l < 0 that forbids the existence of rocked
states.) Under the condition H < 0 the rocked states are
Hopf unstable for c < cHB. For H > 0 the rocked states
are stable along their whole existence range (cmin < c <
cmax) and the branch of large amplitude periodic orbits ter-
minates at the turning point existing at c = cmin (see Fig. 2)
in a periodic orbit of infinite period. All this largely resem-
bles the behavior of the usual LIS [9] as well as that of the
two-photon LIS [10]. We note that the appearance of these
periodic orbits (either at the Hopf bifurcation or a the turn-
ing point) that extend towards smaller values of the rocking
parameter c is due to a lack of the phase sensitive gain pro-
vided by the rocking, which is not able to overcome the nor-
mal (phase insensitive) gain existing in the laser above
threshold, which is controlled by the pumping parameter
l. In any case these oscillations entail the loss of phase lock-
ing and their existence limits the phase locking range of the
rocked laser at low values of the rocking parameter c.

Fig. 2. Intensity of the ‘‘rocked states‘‘ for l = 2, D = 1, and m = 0.25
(solid lines), m = 0 (dotted lines). In both cases the lower branch (given by
solution (12) with the minus sign) is unstable. cmin and cmax, see (13), are
marked for the case m = 0.25.
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All these predictions are based on Eq. (9) that corre-
sponds to a limiting case of the original Eq. (6), which in
its turn is an approximation to the original MB Eq. (2)
for class A lasers. Hence we must consider the numerical
integration of Eq. (2) in order to have a more precise picture
of the behavior of class A rocked lasers. We make the pre-
sentation of different dynamical regimes in the plane
X � E0, i.e., we use the quantities defining the amplitude
and modulation of the rocking field, Eq. (3), as our control
parameters. Keeping fixed the rest of parameters, the phase
locking area on this plane is bounded by two straight lines:
(i) from above c = cmax or, equivalently, E0 ¼ Emax

0 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D2

p ffiffiffiffiffiffiffiffiffiffiffi
2cmax

p
X and (ii) from below c = cmin or equiva-

lently E0 ¼ Emin
0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D2

p ffiffiffiffiffiffiffiffiffiffi
2cmin

p
X. In the numerics we

considered the resonant cavity case D = 0, fixed pump
l = 1, what means that the laser is twice above its genera-
tion threshold (note that in the case of Eqs. (6) and (9)
one can take always this value after rescaling) and let the
rocking detuning m vary, keeping it always small. In such
case the upper boundary reads E0 ¼ Emax

0 � ½ð2lþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 � 3m2

p
Þ=3�1=2

ffiffiffi
2
p

X �
ffiffiffiffiffiffi
2l
p

X, thus weakly depends on

the detuning. On the contrary the lower boundary depends
strongly on the rocking detuning and reads
E0 ¼ Emin

0 �
ffiffiffiffiffiffiffiffi
2jmj

p
X in this case.

For relatively large amplitudes of rocking, E0 > Emax
0 ,

the homogeneous component of the oscillations a(s) decays
to zero, Fig. 2, therefore the field of the locked laser follows
adiabatically the injection of the master laser. For small
values of the rocking amplitude, E0 < Emin

0 , the phase of
the laser is unlocked from that of the master laser, and
evolves freely, as commented. The adiabatic and unlocked
regimes are separated one from another in the frame of
analysis (9)–(13). For real lasers these regimes are con-
nected, leading to nontrivial dynamics regimes, as investi-
gated numerically in the following.

We integrated numerically (second order Runge–Kutta
scheme) the MB Eq. (2) with the following parameters with
the following values of the decay rates: c? = ck = 10j,
which means relatively fast material variables, P and D,
with respect to the electric field E. As a check we increased
the above ratio, however the locking regimes did not vary

significantly from the used values. The results are summa-
rized in Fig. 3a, where the locking areas are numerically cal-
culated for different rocking detunings. The locking area
decreases with increasing detuning, in qualitative agreement
with the analytical evaluation given by (12) and depicted by
the lines in Fig. 3b. Note that the resonance condition D = 0
used in the numerics precludes the existence of a Hopf bifur-
cation limiting the locking area as discussed above.

Small quantitative difference between the analytical cal-
culations and numerical is explained by noting that the
calculations have been performed for the pump-above-
threshold ratio of the order of two, whereas the CL model,
and the analytical expressions are strictly valid close the
generation threshold. We note also that the area of small
F and X, where the discrepancies a largest, are outside of
smallness assumptions.

The different dynamical regimes observed in our numeri-
cal calculations are summarized in Fig. 4, where the phase
trajectories on the complex plane of the electric field are
depicted. Locking corresponds to the closed trajectories,
which are placed symmetrically with respect to the axis Re
E in the case of zero detuning, Fig. 4a, or shifted correspond-
ingly for nonzero detuning, Fig. 4b. The maximum rotation
angle is u = p/4, corresponding to the lower boundary of the
locking regime, in a good agreement with (12).

To conclude the analysis of the class A rocked laser we
note that a related model was previously studied by Yam-
ada and Graham [11] that in our notation reads

dA
ds
¼ imAþ l� jAj2

1þ jAj2
Aþ F 0 þ F cosðXsÞ: ð15Þ

This model is thus a perturbation of the usual LIS model.
It is apparently quite similar to our Eq. (5), with D = 0,
but has a main, and deep, difference with respect to that
equation: the presence of the constant, bias, term F0,
which corresponds to a resonant injection. Thus Eq.
(15) describes a resonant class A laser driven by an exter-
nal field composed by the superposition of three frequen-
cies: the resonant one, of amplitude F0, and two
symmetric sidebands. We note that in our study the cen-
tral frequency is absent from the injection. (That fre-
quency does appear however in the response of the laser
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Fig. 3. Locking areas of class A lasers. (a) Results of the numerical integration of the MB Eqs. (2) and (3). (b) Analytical evaluations given by Eq. (13).
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due to resonant four-wave mixing.) A main effect of the
bias term F0 in Eq. (15) is to break the nontrivial symme-
try A(s)!�A(s + p/X) of the rocked laser, see discussion
after Eq. (6). Thus the phase bistability of the rocked la-
ser is forbidden in the case of Eq. (15) and, consequently,
was not described in [11]. Zehnlé and Zeghlache [12] also
studied a similar situation but only considered the case
F� F0, very far from the case studied by us. (Incidentally
we note that they considered the low excitation regime in
which the cubic approximation for the nonlinearity is in
order, as in our Eq. (6).) Again these authors did not de-
scribe any phase-locking bistability but phenomena unre-
lated with the ones we discuss here.

4. Class B lasers

In class B lasers, characterized by the decay rates
inequalitites ck � j� c?, the polarization can be adiabat-
ically eliminated from the Maxwell–Bloch Eqs. (2) and (3),
yielding:

dA
ds
¼ imAþ ð1þ iDÞNAþ F cosðXsÞ; ð16aÞ

dN
ds
¼ �b½N � lþ ð1þ NÞjAj2�; ð16bÞ

where, as in the class A laser model analyzed in the previ-

ous section, A ¼ E expðimsÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D2

p
, F ¼ E0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ D2

p
,

l = D0/(1 + D2) � 1, and s = jt. Additionally we have de-

fined a new scaled inversion N = D/(1 + D2) � 1 and a
scaled inversion decay rate b = ck/j� 1. [Note that in
the class A laser limit b� 1, the inversion variable N can
be adiabatically eliminated from Eq. (16) and (16a) be-
comes Eq. (5).]

We integrated numerically the MB Eqs. (2) and (3) with
the following parameters: D = 0, l = 1 (which, like in pre-
vious section, means that the laser is twice above the gen-
eration threshold), c? = 10j, ck = 0.01j (equivalently,
b = 0.01) which means relatively fast polarization P, and
slow population inversion D, with respect to the electric
field. Apart from the spectral width of the mode (j), class
B laser have two more characteristic frequencies: the pop-

ulation relaxation decay rate, ck, and the relaxation oscilla-
tion frequency already introduced. We chose the value
b = 0.01 in order to separate clearly these three character-
istic frequencies. The obtained results can, however, be
applied for class B lasers with different values of b (ck),
since the character of phase locking of rocked class B laser
is essentially the same.

The calculation results are summarized in Fig. 5. The
locking area decreases with increasing detuning, similarly
to class A lasers, however much more rapidly. Another
two essential differences have been found from class A lasers:

(1) Both the upper and the bottom boundaries of the lock-
ing area are strongly deformed at the frequencies of relaxa-
tion oscillation and of subharmonics of relaxation oscilla-
tion – most strongly at the half of the relaxation oscillation
frequency (Figs. 5 and 6). In particular the strongest reso-
nance in resonant case is at the half of relaxation oscillation
frequency and, in the detuned case, at the relaxation oscilla-
tion frequency. This deformation is interpreted by the fact
that the rocking at the half of relaxation oscillation fre-
quency meets a strong resonance, and the oscillations of
the field are strongly enhanced.

(2) The locking area at nonzero detuning is no more-
unbounded as in case of class A laser, but represents now
a closed balloon. In the other words, the locking area is
no more located between two straight lines at different
slopes: the bottom area is deformed into a curve
(parabola).

Again, for an analytic treatment, we consider the low
excitation regime, defined by �1 < l� 1 and 0 6 F�
1, in which case N, |A|2� 1 as well and Eq. (16b) can be
approximated by

dN
ds
¼ �bðN � lþ jAj2Þ: ð16cÞ

An approximate analysis of the effect of rocking on class
B lasers can be done making use of a multiple time scale
technique, similar to that used in the class A laser case.
Now appropriate scalings are l,F,N = O(e2) and b,X,A
= O(e). The result of the analysis is the following:
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A ¼ aþ F
X

sinðXsÞ þOðe2Þ; ð17aÞ

N ¼ nþ i

2

F
X
ðaþ a�Þ b

bþ iX
eiXs � b

b� iX
e�iXs

� �
þOðe3Þ;

ð17bÞ
da
ds
¼ imaþ ð1þ iDÞ ðn� cB

b2

X2 þ b2
Þa� cB

b2

X2 þ b2
a�

� �
;

ð17cÞ
dn
ds
¼ �bðn� lþ cB þ jaj

2Þ; ð17dÞ

where cB coincides with the rocking parameter c of the class
A laser, Eq. (10). Derivation of (17) assumes a kind of
slowly varying envelope approximation with respect to
the rocking modulation frequency X.

The peculiarities of rocking in class B lasers described
above can be interpreted by separately inspecting the defor-
mations of the upper and lower boundaries forming the
locking area. Similarly as in the class A laser case analyzed
in the previous section, these can be determined analyti-
cally from the steady state of Eqs. (17c) and (17d), which
in this case is given by the equation

0 ¼ imaþ ð1þ iDÞ½ðl� cBð1þ LÞ � jaj2Þa� cBLa��; ð18Þ

where L = b2/(X2 + b2). Another, alternative way of analy-
sis considers the derivation of an equation for the steady
state. The advantage of this straightforward derivation is
that no scaling assumptions on rocking are done. The der-
ivation leads to basically the same Eq. (18) but with cB gi-
ven by

cB ¼
1

2

F 2

X2

X2ðb2 þ X2Þ
ðX2 � x2

ROÞ
2 þ b2X2

; ð19Þ

where xRO ¼
ffiffiffiffiffiffiffiffi
2bl
p

is the angular frequency (in units of j)
of the relaxation oscillations of the class B laser in the con-
sidered limit. (The actual value of the relaxation oscillations

frequency is xRO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2bl� b2ð1þ lÞ=4

q
.) Note that when

b� X the rocking coefficient cB (19) reduces to coefficient
c in Eq. (10), in agreement with the scalings used in the der-
ivation of Eqs. (17a–d). Eq. (19) shows that for class B la-
sers the rocking parameter (cB in this case) experiences a
strong increase at the relaxation oscillation frequency.

Expressing a as in Eq. (12a) one easily finds:

u2
	 ¼ l� cBð1þ LÞ þ

Dm	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

BL2ð1þ D2Þ2 � m2

q
1þ D2

; ð20aÞ

expð2i/	Þ ¼ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

BL2ð1þ D2Þ2 � m2

q
þ im

cBLð1þ D2Þ
: ð20bÞ
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The existence range of these rocked states reads now

jmj
Lð1þD2Þ

� cB;min < cB < cB;max

�
ð1þLÞlð1þD2Þþ2Dmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½lð1þD2ÞþDm�2L2�ð1þ2LÞm2

q
ð1þ2LÞð1þD2Þ

;

ð21Þ

which is very similar to the class A laser result given by Eq.
(13). In order to make contact with the simulations we con-
sider Eq. (21) in the limit D = 0. In this case cB,min = jmj/L
and, further assuming small m as in the numerics,
cB,max = l. Thus the upper and lower boundaries of the
phase locking regime in class B lasers are given by (in the
case D = 0 and m! 0):

ðEmin
0 Þ

2 ¼ 2jmj ðX
2�x2

RO
Þ2þb2X2

b2

ðEmax
0 Þ

2 ¼ 2l
ðX2�x2

RO
Þ2þb2X2

b2þX2

; ð22Þ

phase locking existing for rocking amplitudes in the range
Emin

0 6 E0 6 Emax
0 (note that E0 = F when D = 0). This

means that the upper boundary is strongly modified at
rocking frequencies close to resonance frequency, but not
for large rocking frequencies, where it coincides with that
of class A laser: Emax

0 �
ffiffiffiffiffiffi
2l
p

X. Also the lower boundary
is strongly modified (compared with the class A laser)
around the resonance frequency, and also has different
asymptotes for large rocking frequencies. In the limit of
large rocking frequencies one finds:

ffiffiffiffiffiffiffiffi
2jmj

p X2

b
< E0 <

ffiffiffiffiffiffi
2l

p
X; ð23Þ

which is now bounded by a straight line from above and
by a parabola from below, in a good agreement with the
numerical results (in the limit of large frequencies). Con-
dition (23) predicts that rocking will be efficient as far as
X < b

ffiffiffiffiffiffiffiffiffiffi
l=jmj

p
. This condition indicates that the rocking

region shrinks rapidly with increasing rocking detuning
(m) or decreasing the inversion relaxation rate. Finally
note that the area of the locking region on the parameter

space (X,F) can be estimated, in the case D = 0, asffiffiffi
2
p

b2l3=2=ð6jmjÞ.
All the previous results have been obtained assuming that

the atomic (xA) and cavity frequency (xC) coincide: D = 0.
This means that the emission frequency of the laser without
forcing coincides with both frequencies. We also have con-
sidered the case in which xA 5 xC in order to get a more
complete view. For the case D = 2 (emission frequency is
much closer to xC than to xA), we have obtained interesting
results which are summarized in Fig. 7. We have found that
the range of existence of locking is increased for large values
of the detuning of rocking (m). We also show that the tran-
sition locking-unlocking is not abrupt. As we increase the
amplitude of forcing we pass trough several dynamical
regimes until we reach the adiabatic state (in which the sig-
nal merely follows the injection). We observe that the mod-
ulus of average field (that is constant in locking regime and
zero in adiabatic regime) oscillates with half of rocking fre-
quency close to the locking regime whereas for moderate
amplitudes its behavior is more complicated (Fig. 7).

To conclude the analysis of the rocked class B laser, a
comment on apparently related models is in order, as we
did in the class A laser section. Braza [13] studied the same
problem as Yamada and Graham [11] but in the class B
limit. In our notation the model studied by Braza is repre-
sented by Eqs. (16a) and (16b), but with an injection term
of the form F0 + Fcos (Xs), with F� F0 as Zehnlé and
Zeghlache [12]. Again, this perturbed LIS model does not
hold the nontrivial symmetry A(s)!�A(s + p/X) already
discussed, hence no phase bistability as that discussed
along our paper was identified in [13]. For the sake of com-
pleteness we note that Braza studied laser dynamics in a
parameter region where phase entrainment is observed
and the field phase exhibits a periodic dynamics character-
ized by p-jumps, as was already observed by Braza [14] and
by Yamada and Graham [11] in the usual LIS case (with-
out periodic injection). We note that this periodic alterna-

tion between two p-shifted phase values has nothing to
do with the bistability between two p-shifted phase values
discussed here.

Fig. 7. Locking regime for class B lasers out of cavity resonance as obtained numerically from Eqs. (2) and (3) for D = 2, D0 = 5 (equivalently, l = 1),
X = 2p · 0.01j, c? = 100j, and ck = 0.01j. The two variables are the amplitude of forcing (E0) and its detuning (m) from the emission frequency of the free
running laser. For the zero rocking-detuning case (m = 0) some time traces corresponding to different dynamical regimes are plotted. (The modulus of the
one-rocking-period average of the field is plotted as a function of time.) The values of the rocking amplitude E0 are 0.019, 0.021, 0.041, and 0.055.
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5. Conclusions

The aim of this study was to theoretically and numeri-
cally investigate the dynamics of single mode lasers with
ac periodically modulated injection. This was done by
analyzing both reduced equations (complex Landau type)
for class A and class B lasers, and by numerically simulat-
ing corresponding Maxwell–Bloch equations. The theory
correctly predicts that in certain ranges of injection ampli-
tude and frequency, the laser phase locks to any of two
values shifted by p. In the class A laser the locking area
was found to decrease with increasing detuning, in quali-
tative agreement with the numerically obtained results.
In the class B lasers a locking area consisting of a parab-
ola bound by a straight line was predicted, in good agree-
ment with the numerical results, in the limit of large
rocking frequencies. Strong phase modulation was found
for injection frequencies close to the relaxation oscillation
frequency.
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We study the emission properties of a class A bidirectional laser under the action of an amplitude modulated
injected signal, i.e. a rocked bidirectional laser. We derive two coupled autonomous amplitude equations valid
close to the emission threshold and study their solutions. The most relevant result is that while in the absence
of rocking the laser can only emit in either of the two unidirectional solutions, under suitable rocking
conditions cw bidirectional emission appears and, moreover, it coexist bistably with unidirectional emission.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Rocking is a modulation technique consisting in the forcing of a
self-oscillatory system with two coherent signals of different
frequencies but both close to the system's natural oscillation
frequency. In other words, rocking consists in forcing the system
with an amplitude modulated field whose carrier is close to the
system's resonance. This technique was originally introduced as a
means for transmuting phase-invariant systems into phase-bistable
ones [1,2] in self-oscillatory systems for which parametric driving [3]
cannot be applied. Parametric driving consists in forcing periodically
of a self-oscillatory system at a frequency around twice its natural
oscillation frequency, hence it is not well suited for optical systems
given the small width of the response function of these systems
compared to the optical frequency. Then the rocking technique is
particularly well suited for optical systems as the forcing (the
amplitude modulated field) is close to their natural oscillation
frequency. Let us remark that while forcing with a monochromatic
signal (as in usual lasers with injected signal) induces a phase locking
of the system's response to that of the driving, rocking induces a
different type of phase locking, namely a bistable phase-locking, i.e.,
under rocking the system's response is phase bistable. Rocking has
been experimentally demonstrated in a photorefractive oscillator [4],
analyzed in single-mode lasers [5], demonstrated with noisy injected
fields [6], and applied to electronic oscillators [7]. In the present
article, we study the effect of rocking in homogeneously-broadened
bidirectional class A lasers.

Our motivation for this study comes from the fact that in a
bidirectional laser there are two coupled fields that can be rocked
independently and we expect new effects when the two fields are
simultaneously rocked.Moreover, cavity solitons and related localized

structures have been theoretically predicted for bidirectional lasers
quite recently [8–11]. Although in the present article we shall limit
ourselves to the study of the plane wave model (i.e., single-transverse
mode), it is worth mentioning that rocking can open new ways for
stabilizing or manipulating these localized structures, even more,
could lead to the prediction of new types of them for these systems.

As stated, we consider the single-transverse mode case in this
article. Moreover, we treat the simplest configuration possible, i.e., we
assume a homogeneously-broadened class A laser (for which all
atomic variables can be adiabatically eliminated) in which the two
fields have equal detunings and losses and further assume that the
laser works close to the emission threshold. Then we add the rocking
signal and derive a simplified autonomous model consisting of two
complex Stuart–Landau equations with broken phase invariance. This
simplified model contains the most relevant result of the present
article namely that the rocked bidirectional laser can exhibit stable cw
bidirectional emission, something impossible in a homogeneously
broadened bidirectional laser [12,13]. Another relevant result is the
existence of bistability between unidirectional and bidirectional
solutions for a wide enough range of rocking strengths amplitudes.

2. Model

It can be shown [8,13] that a homogeneously-broadened bidirec-
tional class A laser (i.e., a laser verifying γ⊥≫γ||≫κwith γ⊥,γ||, and κ
the decay rates of the atomic coherence, atomic inversion and field
amplitude, respectively) can be described, sufficiently close to the
emission threshold, by a pair of complex Stuart–Landau equations.
These equations can be put in the form

1
κ
d
dt

En = 1 + iΔð Þ μ− Enj j2−2 Emj j2
� �

En; ð1Þ

with n,m=1,2 and n≠m. In the above equations En are proportional
to the fields intracavity amplitudes (say running clockwise or anti-
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clockwise), and the normalized pump and cavity detuning parameters
read

μ =
r

1 + Δ2 −1; ð2aÞ

Δ =
ωc−ωa

κ + γ⊥
; ð2bÞ

with r the incoherent pumping rate, and ωc and ωa the frequencies of
the cavity mode closest to resonance and of the atomic transition,
respectively. Eq. (1) is written in the frequency frame of the
unidirectional lasing state frequency, which is given by the well
known pulling-formula ωL=(κωa+γ⊥ωc)/(κ+γ⊥).

Let us briefly review the solutions and stability properties of Eq.
(1) [12]. It contains up to four possible stationary solutions: the laser-
off solution, E1=E2=0; two equivalent unidirectional (or single-
mode) solutions, {|En|2=μ,Em=0,n≠m}; and the bidirectional (or
bimode) solution, |E1|2=|E2|2=μ/3. The linear stability analyses of
these solutions reveal that: (i) the laser-off solution loses its stability
at μ=1 giving rise to any of the equivalent unidirectional solution,
which is always linearly stable for μ≥1; and (ii) the bidirectional
solution is always unstable. Thus bidirectional cw emission is
impossible in a homogeneously broadened bidirectional laser [12–
14] and the only bistability exhibited by the system is that between
the two equivalent unidirectional solutions.

Now we consider the effect of rocking, i.e., we add two amplitude
modulated injected signals, each of them acting on one of the two
counterpropagating fields. Hence, we write

1
κ
d
dt

En = 1 + iΔð Þ μ− Enj j2−2 Emj j2
� �

En + Fncos ωt + σnϕ = 2ð Þe−iδt
;

ð3Þ
with σ1, 2=±. In this equation Fn are proportional to the driving
amplitudes, which are taken to be real and positive without loss of
generality. These are modulated at a frequencyω and are dephased by
ϕ among them. As the above equations are written in the
unidirectional lasing frequency frame, δ is the detuning between the
carrier of the injections, ωR, and the lasing frequency, i.e. δ=ωR−ωL.

It is convenient to define new field amplitudes as

E1;2 =
ffiffiffi
μ

p
A1;2e

−iδt
; ð4Þ

that, apart from a rescaling, implies a change in the frequency frame to
that of the rocking fields (ωR=ωL+δ). We also define a new
dimensionless time τ=μκt and obtain

d
dτ

An = 1 + iθð Þ− 1 + iΔð Þ Anj j2 + 2 Amj j2
� �h i

An

+ Bncos Ωτ + σnϕ= 2ð Þ;
ð5Þ

where we have introduced

Bn =
1

μ
ffiffiffi
μ

p Fn; Ω =
ω
μκ

; θ =
δ
μκ

+ Δ: ð6Þ

3. Derivation of a reduced model

In order to better understand the effect of rocking, we consider the
formal limit Bn∼Ω≫1 [1], i.e., large amplitude and also large
frequency of the rocking fields as compared to μκ. Then we write
Bn =

ffiffiffiffiffiffiffiffiffi
2γn

p
Ω, which introduces the new rocking strength γn, define a

fast time through T=Ωt and search multiple-scale solutions of the
form

An τð Þ = A 0ð Þ
n τ; Tð Þ + Ω−1A 1ð Þ

n τ; Tð Þ + O Ω−2
� �

: ð7Þ

Substituting this expansion and the scalings into Eq. (5), and
making use of the chain rule for differentiation, an infinite hierarchy of
problems at decreasing order inΩ is obtained. To the leading,Ω order
one obtains

∂TA
0ð Þ
n τ; Tð Þ =

ffiffiffiffiffiffiffiffiffi
2γn

p
cos T + σnϕ = 2ð Þ; ð8Þ

whose solution is

A 0ð Þ
n τ; Tð Þ =

ffiffiffiffiffiffiffiffiffi
2γn

p
sin T + σnϕ = 2ð Þ + Un τð Þ; ð9Þ

with Un(τ) a yet undetermined function not depending on the fast
time scale T. The next, Ω0 order reads

∂τUn τð Þ + f τð Þ = −∂TA
1ð Þ
n τ; Tð Þ + ∑

3

k=1
gk τð Þsin kT : ð10Þ

As the left hand side of this equation does not depend on T, its
solvability requires ∂ τUn(τ)+ f(τ)=0, which reads explicitly as

1 + iΔð Þ−1∂τUn =
λ + iν
1 + iΔ

Un− Unj j2 + 2 Umj j2
� �

Un;

−γnU
�
n−4η

ffiffiffiffiffiffiffiffiffiffiffi
γ1γ2

p
ReUm; ð11aÞ

where

λ = 1−2 γ1 + γ2ð Þ; ð11bÞ

ν = θ−2 γ1 + γ2ð ÞΔ =
δ
μκ

+ λΔ; ð11cÞ

η = cosϕ: ð11dÞ

Eq. (11a) (n=1,2) forms a set of two coupled complex Stuart–
Landau equations with broken phase invariance because of the extra
terms proportional to Un and ReUm. The term proportional to Un

introduces a parametric coupling that breaks the original system's
phase invariance, while the term ReUm also does but its existence
depends on the simultaneous rocking of both fields (γ1γ2≠0) as well as
on the rockings' relative phase through η. Notice finally that the above
equations are symmetric under the transformation {Un,Um,η}↔{Un,
−Um,−η} hence we only need to consider ηN0, which is what we do
below.

Before analyzing the solutions of Eq. (11a) let us remark that the
actual (approximated) physical solutions describing the emission of
the rocked bidirectional laser are given by Eq. (9). They consist of a
trivial part that follows the injection oscillating with frequencyΩ, first
term in Eq. (9), plus the nontrivial part governed by Eq. (11a) that
evolves on the much slower temporal scale τ, second term in Eq. (9).
In the following we shall refer only to the nontrivial part of the
solutions, but one must keep in mind the existence of the first trivial
term. Notice that the trivial part of the solutions could be easily
removed from the laser output by using a low-pass frequency filter as
Ω is large as compared to the frequencies governing the evolution of
amplitudes Un. Next we split our study into two cases: resonant
injection with the lasing frequency (cases for which δ=ωR−ωL=0)
and non-resonant injection.

4. Resonant injection

Once the reduced model (11a) has been derived, we pass to obtain
its cw solutions and study their linear stability. Within the present
section we take δ=0, that is, we assume that the injected signal has
the same frequency as the lasing solution. This implies taking ν=λΔ
or, equivalently, Δ=θ≠0, see Eqs. (6) and (11c).
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Next we consider two special cases regarding the amplitudes of
the rocking fields: (i) unidirectional rocking (γ2=0 and γ1≠0, i.e.,
rocking acting only on one field); and symmetric rocking (γ1=γ2=γ,
i.e., rocking acting symmetrically on both counterpropagating fields).

4.1. Unidirectional rocking

We define γ≡γ1 in this case. Eq. (11a) has up to six different
steady state solutions. These solutions are: (i), the trivial solution
U1=U2=0 (which is not the laser-off solution as there is the trivial
part of the solution in Eq.(9), but plays the same role, hence we call it
laser-“off” solution); (ii), the three unidirectional emission solutions
(five indeed, but we shall count the number of solutions attending
only the field modulus)

U U1ð Þ
1 = F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−3γ

p
; U U1ð Þ

2 = 0; ð12aÞ

U U2ð Þ
1 = 0; U U2ð Þ

2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−2γ

p
eiϕ2 ; ð12bÞ

U U3ð Þ
1 = F

ffiffiffiffiffiffiffiffiffiffiffi
1−γ

p
eFiπ =2

;U U3ð Þ
2 = 0; ð12cÞ

and (iii), the two bidirectional emission solutions

U B1ð Þ
1 = F

ffiffiffiffiffiffiffiffiffiffiffiffi
1
3
−γ

r
eFiπ =2

;U B1ð Þ
2 = F

1ffiffiffi
3

p eiϕ2 ; ð13aÞ

U B2ð Þ
1 = F

ffiffiffiffiffiffiffiffiffiffiffi
1−γ
3

r
; U B2ð Þ

2 = F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4γ

3

r
eiϕ2 : ð13bÞ

In the above expressions ϕ2 is an arbitrary phase and the
superscripts in the above solutions refer to their unidirectional or
bidirectional character.

The above list of solutions shows that rocking is effective in
removing the phase invariance of the field U1, the field in which the
rocking signal acts, converting it into a phase bistable field (only the
phases ϕ1=0,π appear in the solutions), but leaving the counter-
propagating field U2 phase invariant (ϕ2 is arbitrary). This is not
surprising as for γ2=0, the only way that U1 influences U2 is through
its modulus in the saturating nonlinearity, see Eq. (11a), and U2 does
not feel U1 phase in any way. Hence the phase invariance in U2 in spite
of the phase bistability in U1.

The linear stability of the above solutions is governed by the
eigenvalues of the stability matrix M that reads

M =

Y A1 B0 C0
A�

1 Y� C�0 B�
0

B�
0 C0 Y −U2

2

C�0 B0 −U�2
2 Y�

0
BBBBB@

1
CCCCCA
; ð14aÞ

with

A1 = − 1 + iΔð Þ γ + U2
1

� �
; ð14bÞ

B0 = −2 1 + iΔð ÞU1U
�
2; ð14cÞ

C0 = −2 1 + iΔð ÞU1U2; ð14dÞ

Y = 1 + iΔð Þ 1−2 γ + U1j j2 + U2j j2
� �h i

: ð14eÞ

Substitution of the steady state solutions onM allows the fixing of
their stability properties. It is easy to demonstrate that the two
bidirectional emission solutions (Eqs. (13)) are always unstable, as it
is the unidirectional solution (Eq. (12a)). The stability of the other
three solutions is not sensitive to Δ and summarizes as follows: The

trivial solution is stable for γN1, solution (Eq. (12b)) is stable for γb1/
3, and solution (Eq. (12c)) is stable for γb1.

We see that asymmetric rocking (γ2=0) breaks the original
equivalence between the two unidirectional solutions: the two
counterpropagating fields have different intensities, different phase
properties (U1 is phase bistable whilst U2 is not), and different
domains of existence: bistability between counterpropagating solu-
tions is limited to γb1/3, and for 1/3bγb1 only field U1 is on. We
remark that rocking one of the two fields does not stabilize any
bidirectional solution in the system.

4.2. Symmetric rocking

We define γ≡γ1=γ2 in this case. Eq. (11a) has now up to seven
different steady state solutions. They are: (i), the trivial solution
U1=U2=0; (ii), the two equivalent unidirectional emission solutions

U Uð Þ
n = F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−3γ

p
eiπ =2;U Uð Þ

m = 0; n≠m; ð15Þ

and (iii), up to five different bidirectional solutions. Of these, the
following three solutions are symmetric with respect to the intensities
of the two modes (i.e., they verify |U1|=|U2|)

U S1ð Þ
n = F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−3γ

3

r
eiπ=2

;U S1ð Þ
m = FU S1ð Þ

n ; ð16aÞ

U S2ð Þ
n = U S2ð Þ

m = F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−5γ−4γη

3

r
; ð16bÞ

U Sð Þ
n = −U Sð Þ

m = F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−5γ + 4γη

3

r
; ð16cÞ

(n,m=1,2 and n≠m); and there are two other bidirectional
solutions that are asymmetric with respect to the intensities, reading

U Að Þ
1;2 = F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−5γ∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−5γð Þ2− 8γηð Þ2

q
2

vuut
; ð17Þ

and

U
A′ð Þ

n =
F nffiffiffi
3

p eiϕn ; ð18aÞ

cosϕ1 = −2η
F 2

F 1
;ϕ2 = 0; ð18bÞ

with

F 1 = F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−γ 7−16η2

� �q
; ð18cÞ

F 2 = F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−γ 1 + 8η2

� �q
: ð18dÞ

The superindexes in the bidirectional solutions refer to their
symmetric or asymmetric character with respect to intensities. Notice
that in this symmetric rocking case, both fields have lost their original
phase invariance, becoming phase bistable.

The linear stability of these solutions is governed by the
eigenvalues of the stability matrix L that reads

L =

Z A1 B C
A�

1 Z� C� B�

B� C Z A2

C� B A�
2 Z�

0
BBBB@

1
CCCCA; ð19aÞ
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where

An = − 1 + iΔð Þ γ + U2
n

� �
; n = 1;2; ð19bÞ

B = −2 1 + iΔð Þ ηγ + U1U2

� �
; ð19cÞ

C = −2 1 + iΔð Þ ηγ + U1U2ð Þ; ð19dÞ

Z = 1 + iΔð Þ 1−2 2γ + U1j j2 + U2j j2
� �h i

: ð19eÞ

The linear stability analysis shows that all bifurcations occurring in
the system are pitchfork bifurcations and, as before, are insensitive to
Δ. The results can be put in short as follows: (i) the trivial solution is
stable for γNγ0 with

γ0 = max 1 = 3; 5−4ηð Þ−1
n o

; ð20Þ

(ii) the unidirectional solution Eq. (15) is linearly stable for γ b min
{1/3,γU} with

γU = 1 + 8η2
� �−1

; ð21Þ

(iii) the bidirectional solutions Eq. (18) are always unstable; (iv) the
bidirectional solution (Eq. (16c)) is stable for γ0NγNγS with

γS = 5 + 8ηð Þ−1
; ð22Þ

provided ηN1/2; and (v), the bidirectional solution (Eq. (17)) is stable
whenever γSNγNγA, with

γA = 7 + 8η2
� �−1

; ð23Þ

which again requires ηN1/2. These results are shown in Fig. 1 where
the domain of stability of the different solutions are represented on
the parameter plane 〈η,γ〉.

Clearly η=1/2 is a crucial value for the dephasing between the
two rocking signals as only for ηN1/2 the bidirectional solutions can
be stabilized (the stability domain being quite large for the
symmetrical solution (Eq. (16c)) and quite reduced for the asym-
metric solution (Eq. (17))). Thanks to this stabilization, apart from the
phase-bistability exhibited by all the solutions, for ηN1/2 there are
two domains of bistability between the unidirectional emission
solution (Eq. (15)) and the bidirectional solutions, as marked in the
figure. Notice that one of these bistable domains (that denoted by U+
A in Fig.1) is larger for larger η, while the other domain (U+S)
becomes smaller.

In order to better understand the above results, Fig. 2 illustrates
how the different bifurcations affect the different solutions by
representing their intensities as a function of the rocking strength γ
for a special value of the dephasing between the two rocking signals
(we choose η=0.9). This case illustrates well the behaviour of the
system for ηN1/2 (for ηb1/2 only the unidirectional emission solution
is stable, hence no plot is needed for these cases). All the steady state
solution intensities have been represented in Fig. 2, the dashed lines
corresponding to the unstable solutions. Notice that the bifurcations
affecting the unidirectional and asymmetric bidirectional solutions
(whose intensities are denoted by IU, IA1, and IA2 in the figure) are
subcritical pitchfork bifurcations (denoted as B2 and B3 in the figure).
We shall come back to them in the following section.

In passing we would like to note the similarity between the results
shown and those found in [15]: the competition between the
bidirectional and unidirectional solutions (which are connected via
the unstable bidirectional solution that appears at their corresponding
subcritical pitchfork bifurcations B2 and B3) reminds that occurring in

the extended optical parametric oscillator model of Ref. [15]
(consisting of two coupled generalized complex Swift–Hohenberg
equations) between traveling-wave and standing-wave patterns.

In resume, the properties of the bidirectional laser under
symmetric rocking conditions notably differ from those of unidirec-
tional rocking as far as ηN0.5 (that is, when the two rocking fields are
dephased among them by less than π/4): now there are two stable
bidirectional solutions, each of them with two possible phase values
for each of the two fields, that coexist bistably with the unidirectional
solutions for rocking strengths γUNγNγA.

Now we recall the comments made in the introduction on
localized structures in bidirectional lasers [8–11]. It has been shown
that for large Fresnel number lasers localized structures consisting of
walls separating adjacent spatial domains in which different unidi-
rectional solutions exist. Rocking adds phase bistability as well as
bistability between unidirectional and bidirectional solutions, which
notably increases the types of localized structures that these lasers
could exhibit. We are currently investigating these possibilities.

Fig. 1. Domains of stability of the different solutions in the parameter plane 〈η,γ〉. For
γbγ0 the nontrivial part of the laser solution, see Eq. (9), is on: Within the domain
marked by S only the symmetric bidirectional solution (Eq. (16c)) is stable, within the
domain U+S both the symmetric bidirectional solution and the unidirectional one
coexist stably, within the domain U+A both the asymmetric bidirectional solution
(Eq. (17)) and the unidirectional one coexist stably, and in the domain U only the
unidirectional solution exists. See text for the analytical expressions of the different
boundaries.

Fig. 2. Intensities of all possible stationary solutions for δ=0 and η=0.9. Only those
having some domain of stability aremarkedwith Ik=|U(k)|2 . Continuous (dashed) lines
indicate stable (unstable) solutions, and the bifurcations are marked with a filled circle.
Solution IS extends till γ≃0.7143. The (unstable) solution connecting the bifurcations
affecting IA and IU is that given by Eq. (18). B2 and B3 mark two of the bifurcations for
discussion convenience, see text.
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5. Non-resonant injection

We have seen that cavity detuning effects can be compensated by
properly choosing injection detuning as stability turns out to be
insensitive to detuning as far as δ=ωR−ωL remains null. But if not
compensated in this way, detuning is detrimental for the effectivity of
rocking as it reduces the domain of phase locking [5].

It is easy to see is that unidirectional solutions cease to exist when
δ≠0, being replaced by bidirectional solutions in which one of the
fields is much weaker that the other. However cases involving a non
null detuning δ aremore difficult to handle as the steady states are not
analytical in this case. As a general analytical treatment is not possible,
we choose to make a numerical study in order to gain some insight
into the system's behaviour. In particular, we choose the special case
Δ=0 (resonant laser cavity) and study the influence of a non-null θ.

Numerics reveal the appearance of oscillations for small γ values
as soon as θ≠0. These oscillations have their origin in the limit cycle
that exists for γ=0 and θ≠0: as Eq. (11a) is written in the frequency
frame of the rocking field, in the absence of rocking (γ=0) the
unidirectional solutions have a (trivial) oscillation with frequency θ.
We say that this oscillation is trivial because it manifests in the field
amplitudes but not in their intensities, and can be removed by
changing the frequency frame. But, keeping θ≠0, these oscillations
become nontrivial (they cannot be removed by a frequency frame
change) as γ is increased and continues existing till γ reaches a value
γB1 where they disappear. The value of γB1 increaseswith increasing θ.

Keeping θ small (below 0.0225, see below) we see that by
increasing γ the stationary solutions are affected by the same
bifurcations B2 and B3 we have seen for δ=0 (although the values
of γ at which they appear, let's name them γB2 and γB3, change) and
no new oscillating regimes appear. The increase of θ affects
bifurcations B2 and B3 by approaching them to each other, i.e., by
decreasing the value of γB2−γB3. Regarding the character of
bifurcation B1, we have numerically checked that it is a single
eigenvalue that becomes null at this bifurcation. This fact, together
with the type of pulsations (that reach an infinite period at the
bifurcation) identifies this bifurcation as a heteroclinic bifurcation.
(We do not give now more details because we describe a similar
bifurcation immediately below.)

When θ is further increased, the behaviour for increasing γ
changes. The change consists in that now bifurcations B2 and B3 give
rise to oscillations. This occurs as follows: as stated, increasing θ
makes B2 and B3 approach each other till θ reaches the value
θc=0.0225 where they merge (γB2=γB3 for θ=θc). For θNθc,
bifurcation B2 occurs at a γ value smaller than that for which
bifurcation B3 appears, i.e. γB2bγB3, which implies a change in the
dynamic behaviour of the system as now these bifurcations give rise
to intensity pulsations.

This is well illustrated by Fig. 3, where we have represented the
solution intensities as a function of γ for a detuning value
θ=0.025Nθc. In this case the system displays two self-pulsing
domains: There is the self-pulsing regime occurring for
0bγbγB1=0.035 (corresponding to the oscillations originating at
γ=0 that we have already analyzed), and there is a new self-pulsing
region, occurring for γB2≃0.083bγbγB3≃0.089. The existence of this
last dynamic domain means that the character of bifurcations B2 and
B3 has changed for θNθc. (In Fig. 3 themaximum andminimum values
that the intensities reach during their oscillations correspond to the
upper and lower limits of the shadowed areas.)

The origin of the new self-pulsing domain can be easily
understood: the change in the order in which B2 and B3 appears
when θNθc implies that for γB2bγbγB3 no stable steady state exists.
Hence B2 and B3 are no longer pitchfork bifurcations and become
heteroclinic ones as for γB2bγbγB3 the system trajectories in phase
space have no stable steady state or limit cycles to go to, and they can
only move from one unstable steady state to the other, with a period

that tends to infinity at the bifurcations. We have numerically
calculated the system's eigenvalues at bifurcations B2 and B3 and
have seen that there is a single eigenvalue that becomes positive
when crossing them, i.e., the bifurcations are not Hopf bifurcations:
we are in the presence of heteroclinic bifurcations having an infinite
period at the bifurcation points.

An example of the type of behaviour found within the self-pulsing
regime is shown in Fig. 4 where the phase dynamics of field U1 is
shown in Fig. 4(a), the field intensities are shown in Fig. 4(b), and a
phase portrait of field U1 is shown in Fig. 4(c) for γ=0.089 (see
caption). The figure confirms that we are in the presence of
heteroclinic orbits connecting the unstable steady states (see, in
particular, in Fig. 4(c) the dots marking their position in the field
phase portrait): Notice in Fig. 4(a) and (b) how the trajectory spends
some time in the neighbourhood of the unstable steady states. We
notice that this behaviour is very similar to that shown in [16] for a
bistably phase locked laser when tuned close but out of the phase
locking region. Finally, we notice the antiphase dynamics [17]
exhibited by the intensity pulsations.

A comment is in order concerning the phase dynamics. First we
notice that the abrupt phase changes visible in Fig. 4(a) are an artifact
because we are plotting the phasemod(2π) in order to appreciate that
the plateaus are located in the proximities of the unstable steady state
values. Notice, however, apart from these artificial 2π jumps the phase
dynamics is nontrivial exhibiting a sequence of plateaus followed by
more abrupt jumps. This phase behaviour was analyzed long ago in
the laser–Lorenz model [18,19] and we refer the reader to those
papers for details concerning the relation of this phase dynamics with
frequency changes in the field spectrum. Notice, however, that the
cavity detuning is non-null what implies that the field frequency is no
more that of the cavity mode, a fact that is reflected in the phase
dynamics in a nontrivial way [18–21]. Another relevant comment is
that the existence of amplitude and phase pulsations implies a
modulation and a shift of the interference pattern of the bidirectional
solution along the ring cavity.

For still larger θ, there is a new qualitative change in the dynamics
as bifurcations B1 and B2 approach each other till they merge when
θ=θc2=0.0313, which implies that the quasi-unidirectional solution
is no longer stable for θNθc2. Now the two dynamical domains
described abovemerge and the symmetric bidirectional solution is the
only remaining stable stationary state.

The above results show that detuning is indeed detrimental for
phase locking. However for large enough rocking strength γ, phase
locking remains and the symmetric bidirectional solution exists and is
stable. Hence we can conclude that the results we have described in
the previous section for resonant injection are not singular, i.e., there

Fig. 3. Intensities of the different solutions found by numerical integration of Eq. (11a)
for η=0.9, Δ=0 and θ=0.025. In the shadowed areas a self-pulsing regime appears, in
which intensities oscillate between a maximum and minimum value corresponding to
the upper and lower limits of the shadows. B1, B2 and B3 denote the different
bifurcations occurring for this parameter set, see text. The symmetric bidirectional
solution exists till γ=0.715.
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exists a certain (small) domain in detuning for which these results
remain (qualitatively) valid.

6. Conclusions

In this article we have studied the effect of rocking (i.e., the effect
of injecting amplitude modulated signals) on a class A bidirectional
laser model. We have derived a simplified model in the limit of large
modulation (i.e., large rocking strength and frequency) consisting of a
pair of complex Stuart–Landau equations with broken phase
invariance, Eq. (11a). We have analyzed these model steady states
and found that, apart from the phase symmetry breaking effect of
rocking, for symmetric rocking (with a relative dephasing between
the rocking fields smaller than π/4), some bidirectional solutions
become stable. Moreover, domains of bistability between unidirec-
tional and bidirectional emission appear in the parameter space.
Hence rocking allows for bidirectional cw emission in bidirectional
lasers and extends the types of bistabilities that the system displays.
We have checked that the results we have derived form the simplified
model of Eq. (11a) does reproduce the solutions of the original Eq. (5).
Of course the degree of quantitative agreement depends on the choice
of the rocking parameters, that must be large enough.

We expect that these results will have relevance for the type of
localized structures that this system can develop when a large Fresnel
number cavity is considered, as we have commented at the end of
Section 4.2.
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We present a review, together with new results, of
a universal forcing of oscillatory systems, termed
‘rocking’, which leads to the emergence of a phase
bistability and to the kind of pattern formation
associated with it, characterized by the presence of
phase domains, phase spatial solitons and phase-
bistable extended patterns. The effects of rocking
are thus similar to those observed in the classic
2 : 1 resonance (the parametric resonance) of spatially
extended systems of oscillators, which occurs under
a spatially uniform, time-periodic forcing at twice
the oscillations’ frequency. The rocking, however,
has a frequency close to that of the oscillations
(it is a 1 : 1 resonant forcing) and hence is a good
alternative to the parametric forcing when the latter
is inefficient (e.g. in optics). The key ingredient is
that the rocking amplitude is modulated either in
time or in space, such that its sign alternates (exhibits
π -phase jumps). We present new results concerning a
paradigmatic nonlinear optical system (the two-level
laser) and show that phase domains and dark-ring
(phase) solitons replace the ubiquitous vortices that
characterize the emission of free-running, broad area
lasers.

2014 The Author(s) Published by the Royal Society. All rights reserved.



2

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A372:20140008

.........................................................

1. Introduction
The phase symmetries of systems of nonlinear oscillators deeply affect the nature of spatial 
patterns that form therein. For instance, the continuous phase symmetry characterizing the 
free oscillations is responsible for the spontaneous emergence of vortices and spiral waves in 
reaction–diffusion, optical and other kinds of oscillatory, spatially extended nonlinear systems 
[1–8]. In order to control the turbulent-like behaviour associated with the presence of those 
phase defects different types of forcing have been considered [1,2,4,9–14], the most popular 
being the classic time-periodic one. Periodic forcing acts as an external clock, which is ‘seen’ by 
the system oscillations, hence the equivalence of all the oscillation phases disappears, and the 
original continuous phase symmetry is broken down to a discrete one. The nature of the discrete 
symmetry depends on the ratio of the forcing frequency, ωf, to the free oscillations frequency, 
ω0: a simple and elegant symmetry argument [11] allows to conclude that, when ωf/ω0 is close 
to a rational number, say n : m, n equivalent phases, given by φk = φ1 + 2π (k − 1)/n, k = 1, . . . , n 
[11], are preferred by the oscillations and the system becomes n-phase multi-stable.1 Once the 
continuous phase symmetry is replaced by the discrete one, the vortices are no more stable 
solutions. They are then substituted by other kind of structures, such as periodic patterns and 
localized structures (dissipative spatial solitons). Thus periodic forcing of spatially extended 
systems of oscillators is a powerful tool to control the nonlinear waves existing therein [4,9–28].

According to our previous discussion, when the forcing frequency is approximately twice 
the system’s natural frequency (n : m = 2 : 1), so-called 2 : 1 resonance or parametric resonance, 
two dynamically equivalent oscillation phases exist, which differ by π [9–11]. If the system is 
large enough, adjacent spatial regions can oscillate with opposite phases thus forming so-called 
phase domains, which are unstable in the free-running case. Between adjacent domains a π phase 
jump occurs and the curve containing those jumps is known as a wall or front. When the wall 
is abrupt, a one-dimensional phase singularity appears and the amplitude of the oscillations 
becomes null (one speaks then of a non-equilibrium Ising wall [10]), which manifests as a dark 
line of the light field in the optical case. The wall can also be smoother if the minimum oscillations 
amplitude is small, not null when crossing the wall (one speaks then of a non-equilibrium 
Bloch wall [10]), leading to a grey line in the light field in the optical case. As a parameter is 
varied, Ising walls can bifurcate into Bloch walls through a so-called non-equilibrium Ising–
Bloch transition [10,17,29]. These phenomena have been predicted and observed in many different 
systems [4,10,11,13–18,25–27,29]. Apart from domain walls, pattern formation in a 2 : 1 resonance 
includes extended patterns, like rolls or labyrinths, and localized patterns, known as dissipative 
spatial solitons (cavity solitons in optics for obvious reasons).

Parametric forcing is, however, not always efficient, as it requires that the nonlinearity in the 
system be strong enough (or the natural resonance be wide enough) so that an excitation at a high 
frequency (twice the natural one) leads to appreciable response in the system. Optical systems, 
like lasers, belong to this class (they are insensitive to parametric forcing), and hence a pertinent 
question arises: is there an alternative to the classic 2 : 1 resonant forcing leading to similar effects?
The positive answer is given by what is known as ‘rocking’ [30,31]. Rocking is a type of forcing 
in which the external perturbation frequency is close to the system’s natural frequency (it is a 
kind of 1 : 1 resonance, to which all systems respond) but, unlike the classic 1 : 1 periodic forcing, 
the amplitude of rocking is modulated in time (temporal rocking) or in space (spatial rocking). 
This modulation must be such that the sign of the forcing amplitude alternates in time or in 
space. As we will show along the rest of this article rocking leads to a behaviour analogous 
to that of the 2 : 1 resonant forcing: the oscillatory system is ‘converted’ into a phase-bistable 
pattern-forming system.

The rest of this article is organized as follows. In §2, we provide a simple explanation of why 
rocking induces a phase bistability in an otherwise phase invariant oscillatory system. In §3, we

1The phase φ1 depends on the phase of the external driving and on the (small) mistuning ωf − nω0/m
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R(r, t) = F(r, t)exp(−iωRt) + c.c., (2.1)

where ωR denotes the carrier frequency of the forcing, which is close to the natural frequency
of oscillations ω0 (we remind that rocking is a generalized 1 : 1 resonant forcing), and F(r, t) is
the rocking amplitude. Importantly, the sign of F must alternate in space or in time (when F is a
constant, one gets the classic 1 : 1 resonant forcing, which, in optical terms, can result in injection
locking). If the sign alternation occurs on a fast time scale or on a short spatial scale, the system’s
oscillations will ‘see’ both phases (differing by π , corresponding to sign changes), but will not be
able to accommodate locally to that rapidly varying drive. To which phase of the perturbation
will the system lock then? Clearly, if, on average, both phases are equally distributed, the system
will tend to lock to any of the driving phases (or to some set of two opposite phases, as explained
below) and, as a result, will display phase bistability.

On a more formal basis, rocking can be explained in terms of a mechanical analogy, which
historically was the line of reasoning that led to the discovery of rocking and led to its name.
A simple way to visualize a (single) nonlinear oscillator is to use a mechanical analogy, in which
the real and imaginary parts of the complex oscillation amplitude are interpreted as the two
Cartesian coordinates q = (q1, q2) of a fictitious massless particle affected by viscous damping
and under the action of a potential V having the form of a Mexican sombrero (see figure 1). The
maximum of V at the origin corresponds to the unstable off state (of null oscillation amplitude)
and its degenerate minimum (the ‘valley’) to the self-oscillating state of finite amplitude (figure 1).
The degeneracy of the minimum signals the phase invariance of the free oscillations, as no
angle is preferred. Now, imagine that we rock2 that potential in a periodic way around some
axis, say q2, and that rocking is sufficiently fast. Where would the fictitious particle tend to
rest (remind that the particle motion is damped)? It is evident that this would happen at the
quietest regions, where the rocking of the potential produces less perturbation, i.e. around any of
the ‘poles’ symmetrically located along the q2-axis (figure 1). Then, an initially phase invariant
oscillator would end up being a phase-bistable one! Note that this phase bistability requires,
in this picture, a potential with a maximum (an unstable point) at the origin, as otherwise
there are not two separated, quiet regions. The simplest ‘rocked’ potential displaying the above
features reads

V(q) = −μ

2
q2 + 1

4
q4 − q1F0cosΩt, (2.2)

where q =
√

q2
1 + q2

2 is the radial coordinate. The parameter μ controls whether the potential
has a local maximum at the origin (μ > 0), and then a degenerate circular minimum happens
at the radius q = √

μ or the potential single extremum (minimum) occurs at the origin (μ < 0).

2By ‘rock’, we mean ‘to move or cause to move from side to side or backwards and forwards’ (Collins dictionary,
first definition of ‘rock’ as a verb: http://www.collinsdictionary.com/dictionary/english/rock) or ‘to move back
and forth in or as if in a cradle’ (Merriam-Webster dictionary, first definition of ‘rock’ as a transitive verb:
http://www.merriam-webster.com/dictionary/rock).

give a quantitative description of rocking in terms of universal models. In §4, we review previous 
work on temporal and spatial rocking in specific systems. In §5, we study the effect of rocking in 
a particular, very relevant case: the laser. In §6, we consider the case when oscillations are weakly 
damped (below a Hopf bifurcation) and show that rocking is efficient in that case. Finally, §7 
contains the main conclusion.

2. The rationale behind the phase bistability via rocking (and why ‘rocking’?)
According to the discussion in Introduction, the rocking (forcing) field can be written as
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q2 q2 q2

q1
q1

W

q1

(b)(a) (c)

Figure 1. Qualitative three-dimensional plot of the potentialV associatedwith equation (2.1), which describes a rocked system.
(b) Without injection (F = 0), the potential is radially symmetric in agreement with the phase invariance of the free-running
laser. (a,c)With constant injection (Ω = 0), the potential tilts along thedirectionRe(A) proportionally to the forcing amplitude
F and a single isolated minimum (marked with a black dot) appears, corresponding to the phase-locked state of the usual laser
with injected signal. Under rocking (Ω �= 0), the potential oscillates back and forth between the two cases (a), and (c), through
(b) one. Under such forcing, a particle would tend to remain close to the imaginary axis Re(A)= 0, around either of the two
regions separated by the local maximum around the origin. (Online version in colour.)

The dynamical equations following from (2.2) read mq̈ + q̇ = −∇V, or dqi/dt = −∂V/∂qi (remind
that m = 0), and can be written compactly in terms of the complex amplitude of oscillations
A = q1 + iq2 as

dA
dt

= μA − |A|2A + F0cos(Ωt). (2.3)

Without its last term, we recognize this equation as the simplest normal form of a Hopf
bifurcation. The inhomogeneous, last term accounts for a forcing at the frequency of oscillations
(1 : 1 resonant forcing) and amplitude proportional to F0cos(Ωt) [9]. Hence, physically, rocking
of an oscillator is accomplished by an almost periodic forcing at the oscillations frequency,
whose amplitude is harmonically modulated in time. As explained in the Introduction, this initial
definition became broader as other types of rocking (random versus periodic, and spatial versus
temporal) are considered. In all cases, a sign alternation (a π phase jump sequence) is necessary.

We note that equation (2.3) describes a single-mode, two-level laser with injected signal (A is
proportional to the complex amplitude of the electric field of the radiation and the signal, injected
into the cavity, has amplitude proportional to F0 cos(Ωt), in the limit where the material variables
are fast (and can be adiabatically eliminated) and the cavity is perfectly resonant with the atomic
line. When Ω = 0 (constant injection), there is no phase symmetry in (2.3) and the oscillations
phase locks to that of the injection, corresponding to a tilted, static potential (2.2) displaying a
single, isolated minimum (one of the extreme positions in figure 1). Note that the dynamical phase
bistability under rocking happens at phases in quadrature with respect to the injection: if the
injection amplitude is real, as in figure 1, phase locking occurs at ±π/2 (on the q2-axis).

3. A universal description of rocking
A lot of physical insight can be gained by studying universal models, which, on the other hand,
allow giving a broad applicability to the results. As rocking is a modified 1 : 1 resonant forcing
of oscillatory systems, these universal models are complex Ginzburg–Landau (CGL) equations,
containing an inhomogeneous term [1,2,10–12,32,33], which are valid close to a spatially uniform
Hopf bifurcation. If we express the oscillations field (e.g. the electric field in the optical case)
as Re[A(r, t)exp(−iωRt), where A is a complex field amplitude and ωR is the angular frequency
of rocking (close to the natural frequency of oscillations ω0), the dynamics of the system is
universally governed by the following CGL equation [1,2,10–12,30–33]:

∂tA(r, t) = μ(1 + iν)A + i(ωR − ω0)A + α∇2A − β|A|2A + ηF(r, t), (3.1)
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where r = (x, y), ∇2 = (∂2
x + ∂2

y ), μ is real and measures the distance from the bifurcation,
ν measures the linear variation of the oscillation frequency around the bifurcation, the
complex coefficients α = α1 + iα2 and β = β1 + iβ2 account for diffusion/diffraction and
saturation/nonlinear frequency shift, respectively, and η is a parameter that measures how
effective forcing is. After a simple rescaling of time, space and amplitudes A and F, equation (3.1)
can be made dimensionless and the coefficients α and β and κ can be chosen at will (just the ratios
α2/α1 and β2/β1 are relevant). In particular, we take |α| = |β| = η = 1 without loss of generality.3

As well, if the system is above threshold (μ > 0), which is the situation we consider for most of
this work, one can take μ = 1, and the CGL equation becomes

∂tA(r, t) = (1 + iθ )A + α∇2A − β|A|2A + F(r, t), (3.2)

where we keep the same symbols as in (3.1) and we defined the normalized detuning
θ = ν + (ωR − ω0)/μ. Note that, in the following, space, time, the fields A and F, and the three
parameters (θ , α and β), in equation (3.2) are dimensionless. Concerning parameters α and β, one
can use α = 1 (α = i) if diffusion (diffraction) dominates, and β = 1 (β = ±i) if saturation (nonlinear
dispersion) dominates, without any loss of generality. In the optical context, equation (3.2)
represents the simplest description of broad area lasers with injected signal, whose complex
amplitude is proportional to F(r, t).

Equation (3.2) is the one we will consider throughout this section. As for the rocking
amplitude, we will consider both

the temporal case: F(r, t) = F0cosΩt (3.3a)

and the spatial case: F(r, t) = F0 cos Kx, (3.3b)

where F0 is taken as a real without loss of generality as it just sets the reference phase at x = 0.
In order to capture analytically the main effects of rocking, and following our discussion in §2,

the limit where the rocking frequency Ω (in the temporal case) or K (in the spatial case) are large,
is especially interesting. In this case, the driving term in equation (3.2) is highly oscillating and
solutions to the problem should be well approximated by [34,35]

A(r, t) = Af(r, t) + As(r, t), (3.4)

where the subscripts ‘f’ and ‘s’ refer to fast and slow components, either in time (if rocking is
temporal) or in space (if rocking is spatial). Substituting (3.4) and (3.3) into (3.2) and equating
like terms with respect to the fast or slow frequencies in the system, and considering only the
leading-order terms, we get

∂tAf = F0 cos Ωt and ∇2Af = −F0

α
cos Kx, (3.5)

in the temporal and in the spatial cases, respectively, yielding

Af = F0

Ω
sin Ωt and Af = F0

αK2 cos Kx, (3.6)

respectively. Concerning the slow components, we obtain the same equation in both cases,

∂tAs = (1 + iθ )As + iα∇2As − β
[〈

A2
f

〉
A∗

s + 2
〈
|Af|2

〉
As + |As|2 As +

〈
|Af|2 Af

〉
+ 2 |As|2 〈Af〉

]
,

(3.7)

where the angular brackets denote an averaging over the fast scale (temporal or spatial). Using
(3.6), we get

∂tAs = (1 + iθ − 2βγ )As − γ A∗
s + α∇2As − β|As|2As, (3.8)

3Equation (3.1) is valid only if Re α, Re β ≥ 0, hence arg α, arg β ∈ [−π/2, π/2] in equation (3.4).
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where the ‘effective rocking parameter’

γ = 1
2

(
F0

Ω

)2
and γ = 1

2

(
F0

K2

)2
, (3.9)

in the temporal and in the spatial cases, respectively.4 Equation (3.8) is a central result in rocking
theory as it governs the evolution of the ‘slow’ component, which is the one having its own
dynamics (the fast component is just ‘slaved’ to the rocking injection; see (3.6)). Alternative
derivations of equation (3.8), based on rigorous multiple scale methods [36], can be found in
[30–33]. Our derivation has considered the simplest case of harmonic rocking, equation (3.3), but
in general any periodic form of rocking, and even certain types of random rocking, have been
demonstrated to be effective as well [31–33,37]. In these cases, equation (3.8) still holds, the only
difference being in the definition of the effective parameter γ , which follows from the averages
〈A2

f 〉 and 〈|Af|2〉 in equation (3.7), and depends on the specific form of forcing.
Equation (3.8) is a so-called parametric CGL equation and captures the main effects rocking.

In the absence of forcing (F0 = 0), γ = 0 and equation (3.8) becomes the classic CGL equation with
the continuous phase symmetry As → Aseiφ for arbitrary φ, corresponding to free oscillations.
Once rocking in on, γ �= 0 and the presence of the term proportional to A∗

s breaks the continuous
phase symmetry down to the discrete one As → −As, so that any two solutions connected by this
symmetry are dynamically equivalent. Hence, the system becomes phase bistable and these two
phases differ by π . Equation (3.8) also shows that both types of rocking (spatials and temporal)
are equivalent, the only difference being in the definition of the effective rocking parameter γ in
(3.9). Finally, the effects of rocking are seen not to depend separately on its amplitude (F0) and
frequency (Ω or K), but on the effective rocking parameter γ .

Concerning the conditions for an efficient rocking, we observe that the phase symmetry
breaking term, −γ A∗

s in equation (3.8), exists only if the average 〈A2
f 〉 �= 0 (see equation (3.7)). Note

as well that, in passing from equation (3.7) to equation (3.8), the terms proportional to 〈Af〉 and
〈|Af|2Af〉 have disappeared. This is because of the form of rocking we have considered, leading
to (3.6). Should those averages not vanish, no phase symmetry would exist in the end, hence
weakening the phase bistability when 〈Af〉 is relatively small, or completely destroying phase
bistability when 〈Af〉 becomes dominant. Hence, the necessary conditions for efficient rocking
are 〈Af〉 = 〈|Af|2Af〉 = 0 and 〈A2

f 〉 �= 0, which point to a forcing with two opposite phases, equally
distributed on average, as we guessed in §2.

Equation (3.8) allows two kinds of spatially homogeneous solutions: the off state As = 0 (hence
A = Af) and the on (or ‘rocked’) state As �= 0, the latter of which is phase-bistable. The off state
exists always, whereas the rocked states exist in a closed region of the parameter space γ − θ

(the ‘rocking balloon’), whose form depends on the structural parameters α and β. Next, we
concentrate on the case α = i and β = 1, which is typical in nonlinear optics. Figure 2 summarizes
the bifurcation diagram of both solutions as obtained by a standard linear stability analysis
against perturbations with wavenumber k. Increasing γ inside the balloon leads to a decrease
of the oscillations amplitude, till As becomes null by crossing the balloon upper boundary
(continuous line); hence, the bifurcation from the trivial state As = 0, which exists always, to the
rocked states is supercritical by entering the balloon from above. On the contrary, the (V-shaped)
lateral boundaries of the balloon correspond to a saddle-node bifurcation. The left one (for
negative detuning) gives rise to oscillations of the slow component, meaning a loss of the phase
locking. These oscillations have an infinite period at the bifurcation and are the continuation
of free-running orbits that exist in the system at γ = 0: for null injection, equation (3.8) admits
the limit cycles As = ALC exp[−i(ωLCt + φ)], with ALC = 1/

√
Reβ, ωLC = −θ + Imβ/Reβ and

arbitrary φ, which extend (perturbed) towards non-null values of γ . These orbits can terminate

4A phase factor ei2η multiplying A∗
S in (3.8) has been removed, as it disappears after the simple rotation As → Aseiη . This phase

factor reads ei2η = β in the temporal case and ei2η = βα−2 in the spatial case (remind that we have chosen |α| = |β| = 1).
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1.2

off state
pattern-forming

bifurcation

pitchfork
bifurcation

Hopf
bifurcation

oscillations
(phase unlocking)

patterns
rocked states

saddle-node

bifurcation

1.0

0.8

0.6

0.4

0.2

0
–1.0 –0.5 0

q

g

0.5 1.0

Figure 2. Bifurcation diagram of equation (3.8) corresponding to the case α = i, β = 1. The off solution is stable for large
enoughγ ,whereas the ‘rocked states’ (thehomogeneous steady states) arewithin theballoon. For positive detuningθ patterns
form, either from the off state by crossing the horizontal line at γ = 1 or by leaving the rocking balloon through its right
boundary, which is a pattern-forming bifurcation as well. For negative detuning θ oscillations happen, either by leaving the
balloon through its left boundary (saddle-node bifurcation) or by crossing the Hopf bifurcation of the off state downwards. The
dashed line represents the right boundary of the existing region of the rocked states, which become unstable before reaching
it as explained above. (Online version in colour.)

at a saddle-node (with diverging period) or can disappear at a Hopf bifurcation of the off state,
similarly to the case of the laser with injected signal [38–40]. For positive detuning, the generic
scenario is of pattern formation where the most unstable wavenumber reads kc = √

θ .

4. Rocking in specific systems
The universal description of rocking has been given in [30] (temporal periodic rocking), [31]
(spatial rocking, both periodic and random) and [37] (temporal random rocking). Clearly, the
predictions from universal nonlinear dynamical models are only quantitative in the very limit
where such descriptions hold, which in our case requires operating the system very close
to a spatially uniform Hopf bifurcation. Clearly, such predictions must be contrasted with
experiments and with theoretical studies of specific models.

So far rocking has been investigated experimentally in photorefractive oscillators (PROs)
[41,42], which are a kind of nonlinear optical systems, and in nonlinear electronic circuits [37,43],
finding good agreement with the theoretical predictions. Both types of experiments have an
oscillatory nature and exhibit phase invariance in the absence of external perturbations. In [41],
a PRO was submitted to temporal periodic rocking, and the transmutation of vortices into phase
domains and the stable excitation of phase domain walls were demonstrated. A similar set-
up, but now with a small aspect ratio (small Fresnel number in the optical terminology) was
considered in [42], now under spatial rocking. That experiment could evidence the phase-bistable
nature of the rocked emission, but clearly not the pattern formation predicted by the theory; an
experiment addressing pattern formation in a spatially rocked PRO is under progress at present.
The nonlinear electronic circuits considered in [37,43] were Chua circuits, which are highly
versatile and controllable, in particular they can be tuned to a Hopf bifurcation giving rise to self-
oscillations. Clearly, these systems are zero-dimensional in space; hence, in those experiments,
only the phase-bistable response associated to rocking was demonstrated, both under periodic
rocking [43] and under random rocking [37]. The fact rocking shows its effectiveness in systems
as diverse as optical and electronic evidences its universality.

From the theoretical side, rocking has been investigated in PRO models under temporal
[41] and (small aspect ratio) spatial [42] rocking. Two-level laser models have been studied as
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∂tP(r, t) = −(1 − i�)P + (r − N)E

and ∂tN(r, t) = b[−N + Re(EP∗)],

⎫⎪⎪⎬
⎪⎪⎭

(5.1)

for the complex envelopes of the electric field E, and the medium polarization P, and for the
(real) population inversion N. Time t is normalized to the polarization decay rate γ⊥, σ = κ/γ⊥
and b = γ‖/γ⊥ are normalized decay rates (κ is the one for the cavity and γ‖ is the one for the
population inversion), � = (ωc − ωa)/(γ⊥ + κ) is the normalized cavity detuning (ωa is the atomic
resonance frequency and ωc is the closest longitudinal cavity mode frequency), and r is the pump
parameter: free-running lasing threshold happens at r = 1 for a perfectly tuned cavity (� = 0).
Finally, Ein is the complex envelope of an injected signal, which is the essential element of rocking.
Equation (5.1) are written in the frequency frame of the on-axis lasing solution; i.e. the actual
light electric field and the injected field are proportional to Ee−iω0γ⊥t + c.c. and Eine−iω0γ⊥t + c.c.,
respectively (note that γ⊥t is the actual time), where the lasing emission frequency is given by the
mode pulling formula ω0 = (γ⊥ωc + κωa)/(γ⊥ + κ). As we are considering temporal rocking, the
injected signal has the form

Ein = E0 cos(ωt)e−iδt, (5.2)

which corresponds to the injection of two plane waves into the laser cavity with equal amplitudes
(E0/2, which we take as real without loss of generality) and with frequencies ω0 + γ⊥δ ± γ⊥ω: the
carrier frequency ω0 + γ⊥δ plays the role of ωR in equation (2.1) and the rocking frequency γ⊥ω

plays the role of the modulation frequency Ω in equation (2.3). Parameter δ controls the detuning
of the rocking mid-frequency from the free-running laser frequency ω0. In order that this kind
of injection is compatible with the uniform field and single longitudinal mode approximations
subjacent to (5.1), both the rocking detuning γ⊥δ and the modulation frequency γ⊥ω must be
much smaller than the cavity-free spectral range, which can be expressed as 4πκ/T, where T is
the (very small) transmission factor of the laser output coupler: |δ|, |ω| 
 4πσ/T. As 0 < T 
 1, δ

and ω can be large as compared with the normalized cavity damping rate σ without violating the
hypothesis leading to (5.1).

In the following, we concentrate on the detuning side � > 0(ωc > ωa), in which, in the absence
of injection, the off state E = 0 destabilizes to the on-axis (spatially uniform) lasing solution at
r = r0 ≡ 1 + �2.

well: temporal rocking in zero-dimensional class B lasers was considered in [44], spatial rocking 
in small aspect ratio lasers (with just two transverse modes) was studied in [45], and zero-
dimensional bidirectional lasers under temporal rocking were investigated in [46]. In all cases, 
the basic phenomenon, phase bistability, was demonstrated, which in its turn yields new types 
of solutions, especially in the bidirectional laser case [46]. The spatial rocking has also been 
numerically investigated in semiconductor-based lasers, namely in broad area semiconductor 
lasers (so-called BAS lasers), where evidences of rocking patterns were shown [47], also in 
vertical-cavity surface-emitting lasers (so-called VCSELs), where more rich rocking patterns were 
demonstrated [48]. Next, we present the first investigation of rocking in a large Fresnel number 
two-level laser.

5. Pattern formation via rocking in two-level lasers
Lasers are paradigmatic, self-oscillatory nonlinear optical systems. Pattern formation therein is 
relevant both from the basic science viewpoint and from the applied science one, because of their 
potential applicability in information storage and processing [49–53]. Here, we investigate pattern 
formation in two-level lasers submitted to temporal rocking.

The starting point of the study is the classic set of dimensionless Maxwell–Bloch equations for 
a two-level laser with injected signal
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Figure 3. Transformation of vortices into phase domains in a rocked two-level laser as given by a simulation of equations (5.1).
The light intensity of the slow component is shown on the left, and its phase is on the right. Rocking is applied from the second
frame (t = 40) on. Frames are given for t = 20, t = 40, t = 50, and t = 80 from top to bottom. The size of the window is
300 × 300 and the grid of points is 128 × 128. Parameters areσ = b= 1 (class C laser), r = 6,� = 2, δ = 0, E0 = 20 and
ω = 2π .

In order to gain analytical insight into the problem, we consider first a limit where an
equation isomorphic to (3.8) can be obtained. This occurs close to the free-running lasing
threshold, r − r0 = O(ε2), where ε is a smallness parameter, and when injection amplitude and
frequencies are small enough: E0, θ = O(ε2) and ω = O(ε). Further introducing slow time scales
T1 = εt, T2 = ε2t, . . . , and spatial scales (X, Y) = ε(x, y), motivated by the linear stability analysis
of the off solution in the absence of rocking, and making use of standard multiple scale analysis
[30–33,36,54–62], we are able to express the complex electric field amplitude as the sum of a fast
part and of a slow part, as in (3.4), namely E = (Af + As)e−iδt, where we moved to the reference
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Figure 4. Bloch-type domain walls. Parameters are as in figure 3, but with a smaller rocking amplitude, E0 = 13. (a) Intensity,
(b) phase, (c) intensity profile and (d) phase profile (across the vertical line in (a)) are plotted.

frame of the rocking mid-frequency. Here, Af = D(E0/ω) sin ωt, and the slow envelope verifies
the equation

∂tAs = σD
1 − i�

[
(r − r0 − 2γ )As − γ A∗

s − |As|2As

]
+ iδAs + iD∇2As, (5.3)

where D = [1 + σ (1 + i�)/(1 − i�)]−1, and γ = 1/2(E0/ω)2 is the effective rocking parameter, to
be compared with (3.9). Equation (5.3) is a CGLE with broken phase invariance, similar to
equation (3.8), as expected, which evidences the main effect of rocking: the emergence of a
phase bistability. Equation (5.3) has been derived under the assumptions � > 0 and σ , b = O(ε0).
(The latter defines so-called class C lasers.) The detuning condition follows from analysing the
diffusion coefficient, given by Re(iD) = 2σ�/[(1 + σ )2 + (1 − σ )2�2], which becomes negative
(and then equation (5.3) loses its validity) when � < 0 [55,56]. On physical grounds, for � < 0,
lasing involves off axis emission (tilted waves, having a spatial dependence), which equation (5.3)
cannot account for, and a different treatment is necessary. In fact, for small � (either positive or
negative), a complex Swift–Hohenberg equation, not a CGL equation, governs the dynamics of
the free-running laser (and of other nonlinear optical cavities) [41,56,58,59,61–63]. Nevertheless,
the specific description (CGL or Swift–Hohenberg) is not essential regarding the effects of rocking,
as discussed in [41]. Concerning the size of the normalized decay rates σ and b, equation (5.3) is
valid for any value of σ ; in particular, in the usual case σ 
 1 (so-called class A laser), D → 1
simply. However, if b 
 1 (a situation characterizing the so-called class B lasers, like solid-state
and semiconductor lasers), not a single equation, but two, are needed to capture the system
dynamics: one for E and one for N [44,62,63]. In such case, few analytical insights can be gained;
nevertheless, rocking is efficient as well in class B lasers.
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Figure 5. Ising-type domain walls. Parameters are as in figure 3. (a) Intensity, (b) phase, (c) intensity profile and (d) phase
profile (across the vertical line in (a)) are plotted.

(b)(a)

Figure 6. (a,b) Ising-type labyrinths obtained in a rocked two-level laser, for the same parameters as in figures 3–5, but for a
slightly positive rocking detuning, δ = 0.1.

We have performed extensive numerical simulations of the original Maxwell–Bloch
equations (5.1) under different conditions (class C and class B lasers), finding that the effect
of rocking is robust, even extremely far from the conditions used to derive equation (5.3),
e.g. for r − r0 = 1. In figure 3, we show an example of the ‘conversion’ of vortices (the basic
spatial structures in free-running lasers) into phase domains, which is typical for null or negative
detuning δ. These phase domains are of Bloch type for small injection (figure 4), or of Ising type for
larger injection (figure 5) [10]. We note that Ising and Bloch walls can coexist in two-dimensional
systems because of curvature effects [64,65].

For positive rocking detuning δ, the typical scenario involves pattern formation via labyrinths
(figure 6). In a small detuning region close to the labyrinth formation, phase (dark-ring) cavity
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Figure 7. Dark-ring cavity soliton. Parameters are as in figures 5 and 6, but with an intermediate detuning δ = 0.055 and size
of the window (150 × 150). (a) Intensity, (b) phase, (c) intensity profile and (d) phase profile are plotted.
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Figure 8. Intensity (a,b) and phase (c,d) of several structures found in class B lasers. From left to right, phase domains (δ = 0)
and labyrinths (δ = 0.0040). Rest of parameters:� = 0, r = 1.5, b= 0.01, σ = 0.1, F = 0.04 andω = 0.042. The size of
the integration window is 600 × 600. Simulations were performed on a 64 × 64 grid. Time-step dt = 0.3.
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Figure 9. Cavity solitons for class B laser in the case of temporal rocking. Parameters areσ = 0.1, b= 0.01, r = 1.5,� = 0,
δ = 0.0026, E0 = 0.04,ω = 0.042, (a) shows the intensity, and (b) shows the intensity profile across the vertical cut marked
in (a). Rest of parameters as in figure 8. (Online version in colour.)

solitons are found (figure 7). The formation of the dark-ring solitons can be interpreted as a
stabilization of contracting phase domains to a finite (minimum) size [66–68]. The stabilization
is mainly due to the spatial oscillation of the tails of domain boundaries, which trap a
segment of domain boundary to the opposite segment of boundary in accordance to [69].
This leads to stable, round, phase solitons, in the form of a dark rings of field intensity, as
shown in figure 7.

Similar results are obtained in class B lasers, i.e. lasers in which the population inversion is
a very slow variable (small parameter b in equation (5.1)), as shown in figures 8 and 9. The
presence of relaxation oscillations in class B lasers deeply affects the performance of rocking as
already demonstrated in [44]. In this case for rocking to be effective, its modulation frequency
ω (see equation (5.2)) must be on the order of the relaxation oscillations frequency ωRO, whose
expression is ωRO = √

2(r − r0)σb. As a marked difference with respect to the class C laser
case, we note that phase cavity solitons have a broad dark ring and a large central intensity
peak (figure 9).
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∂tA = F − (1 + iηθ )A + i∇2A + iη|A|2A, (6.1)

where A is the intracavity field complex amplitude, F is the amplitude of injected field, ηθ is
the normalized detuning between the injection frequency and the cavity resonance frequency
(the single longitudinal mode case is considered), and η is +1 for a self-focusing nonlinearity
and −1 for a self-defocusing one. Equation (6.1) is as equation (3.2), with α = i, β = −iη, but
with damping (the linear term −A) instead of gain (+A in (3.2)). As shown in [70], when the
injection is of rocking type, as in equation (3.3), the decomposition (3.4), with (3.5) and (3.6), holds
and the slow part is governed by the following damped nonlinear Schrödinger equation with
parametric gain,

∂tAs = −[1 + iη(θ − 2γ )]As + iηγ A∗
s + i∇2As + iη|As|2As. (6.2)

This equation predicts the existence of phase-bistable homogeneous states and patterns, and these
predictions hold even far from the conditions leading to (6.2), which are fast rocking.

Note that this result concerning the effectiveness of Rocking below a Hopf bifurcation (i.e. for
weakly damped waves) is not at odds with the reasoning in §2 because in the case of the Kerr
cavity, equation (6.1), no mechanical analogue (in terms of a potential) can be drawn. In fact, if we
consider a variational case (deriving from a potential) below the oscillation threshold (μ = −1), it
is easy to check, following the steps in §3, that equation (2.3) for a single oscillator admits solutions
of the form ((3.4) and (3.6)), where the slow part verifies

dAs

dt
= −(1 + 2γ )As − γ A∗

s − |As|2As, (6.3)

and this equation does not hold but the trivial solution As = 0, i.e. no phase bistability below the
Hopf bifurcation if the nonlinearity is real. It is the imaginary character of the Kerr nonlinearity
that makes rocking effective below the oscillation threshold.

Figures 10 and 11 illustrate typical results of the numerical integration of a Kerr nonlinear
system below the threshold, equation (6.1). We note that both the temporal and the spatial rocking
is possible, as already shown in [70]. Here, we concentrate on spatial rocking by injecting a
periodic pattern in the form of parallel stripes (figure 10), which can be called one-dimensional
rocking, and by injecting a pattern of square symmetry (figure 11)—two-dimensional rocking. In
both cases, we show the small-scale pattern, its amplitude (figure 11a) and phase (figure 11b), and
also the large-scale patterns (figure 11c,d) corresponding to the slow component. The large-scale
patterns were obtained by spatial filtering, i.e. by removing in spatial Fourier domain the field
components with sufficiently large transverse wavevector. All variety of patterns (rolls, phase
domains and phase solitons) can be obtained, depending mainly on the detuning parameter and
on the sign of the nonlinearity: here, in figures 10 and 11, we show patterns occurring at moderate
detuning values—the metastable phase domains.

6. Rocking in weakly damped oscillatory systems
So far, we have considered self-oscillatory systems, i.e. systems in which nonlinear oscillations 
emerge spontaneously. In other words, we have considered systems above a spatially uniform 
Hopf bifurcation. As explained in §2, the initial idea leading to rocking led to the conclusion 
that such above threshold condition was necessary for rocking to be effective. Nevertheless, 
a recent study [70] has demonstrated that it is not the case: everything depends on the 
nature of the nonlinearity (real—saturating—or imaginary—dispersive) and on the non-locality 
(real—diffusive—or imaginary—diffractive). In [70], the effects of rocking in a passive optical 
cavity containing a Kerr nonlinear medium (the classic Lugiato–Lefever model [71]) were 
studied. It was demonstrated, analytically and numerically, that the same type of phenomena 
occurring in lasers (above threshold) happen in such a Kerr cavity. The (dimensionless) 
model reads
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(a) (b)

(c) (d )

Figure 10. Field domains of opposite phases obtained for the passive resonatorwith Kerr nonlinearity, forη = −1 (defocusing
nonlinearity) in the cases of spatial rocking, by injecting one-dimensional-periodic function (stripes). (a,b) The amplitude the
phase of small-scale pattern, respectively; (c,d) The intensity and thephase of the large-scale pattern (after low-k pass filtering).
Parameters: space window (70 × 70), detuning θ = 2.5, F0 = 9.5 and k20 = 7.

(a) (b)

(c) (d )

Figure 11. Field domains of opposite phases obtained for the passive resonator with Kerr nonlinearity, forη = −1 (defocusing
nonlinearity), in the cases of spatial rocking, by injecting two-dimensional-periodic function of square symmetry. (a,b) The
amplitude and the phase of the small-scale pattern, respectively; (c,d) The intensity and the phase of the large-scale pattern
(after low-k pass filtering). Parameters: space window size (70 × 70), detuning θ = 7, F0 = 16 and k20 = 2.
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1. INTRODUCTION

The dynamics of nonlinear systems is largely nontrivial in gen-
eral and numerical simulations, involving sophisticated math-
ematical techniques, are usually needed to fully understand
their temporal evolution. The situation is even more compli-
cated in spatially extended systems, such as in nonlinear optics,
in which (multi)dimensional variables are present in the
dynamics. In these cases, an analytical (or semi-analytical) ap-
proach that allows us to gain physical insight about the system
is only possible if we consider universal models [1], which for-
mally capture the dynamics of nonlinear systems close to critical
points (such as the threshold of emission in a laser). These
models, also known as order parameter equations (OPEs), pro-
vide a simplified yet powerful description of the system. Their
universal character is due to the fact that very different systems
(biological, chemical, physical, etc.) are described by the same
OPE, the only difference being the meaning of variables and
parameters under this approach.

The symmetries of the system play a central role in the form
of the OPE. These OPEs can be real or complex depending on
the fundamental variable (electric field, temperature) that is
considered or, even better, depending on the phase freedom
supported by the system (see below). In nonlinear optics, com-
plex OPEs are commonly used since a complex Ginzburg
Landau for lasers with finite positive detuning was derived

[2] and they have been proven to be very helpful for under-
standing a variety of systems [3–5]. Another equation, a com-
plex Swift–Hohenberg (CSHE), which is valid for small
detunings (positive and negative), was later obtained for lasers
[6,7] and optical parametric oscillators [8,9].

The phase symmetry determines the nature of patterns
which are possible in the system. In systems with continuous
phase symmetry, the dynamics is usually turbulent and the
presence of vortices and spiral waves is common. When the
systems only allow a finite number of phases (by means of a
n:m forcing [10,11], for instance) the dynamics become more
ordered and controllable. Furthermore, when a 2:1 (paramet-
ric) forcing is applied to a system with continuous phase sym-
metry, the dynamics of the system allows only two phases in it,
which leads to the appearance of novel structures in the system,
such as phase domains, domain walls, and localized structures
(cavity solitons) [3,10,12,13]. The proper OPE for the system
must reflect this change and a generic equation can be derived
for systems with n:m forcing [10]. For parametric forcing, a
family of OPEs, such as the parametric complex Ginzburg
Landau (PCGLE) [12], is obtained.

Optical systems (like lasers) are usually insensitive to para-
metric forcing as the nonlinear response of these systems to
high frequencies (twice the natural frequency) is negligible.
In the last few years a technique involving a new kind of
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forcing, known as “rocking,” was introduced [14]. This is a 1:1
forcing (the frequency of the injection is close to the frequency
of the system), so it is appropriate for optical systems. The key
factor is that the amplitude of the injection oscillates in time
(temporal rocking) [14] or space (spatial rocking) [15] with
a given small frequency unlike the usual 1:1 forcing, which uses
purely monochromatic injection. This modulation modifies
the dynamics of the system, which becomes phase bistable.
It can be shown [16] that a PCGLE describes the universal
dynamics of a laser close to threshold under rocking when
the undriven system exhibits an homogeneous Hopf bifurca-
tion. Recently, temporal modulation of the pump of a laser
in order to excite transverse patterns was considered in [17],
where it was found that pattern formation occurs when the
modulation frequency is approximately equal to the relaxation
frequency, or twice this value, for class B lasers.

Rocking has been successfully applied (theoretically and
experimentally) to a wide range of systems [16,18,19]. This
has led to the derivation of OPEs describing those systems
under certain limits and that provide relevant information of
the dynamics. Numerical simulations also prove that the
behavior predicted by these OPEs extends (qualitatively) far
beyond the conditions imposed in their derivation, which
increases the utility of this universal description. A complex
Swift–Hohenberg equation with parametric gain, which de-
scribes a photorefractive oscillator (PRO) under the injection
of rocking, was derived in [20]. Here we show that a similar
equation describes lasers with small detuning when rocking
forcing is present, as well as we generalize the result of [20]
to more general setups.

Therefore, we will consider the spatiotemporal dynamics of
extended systems, close to a bifurcation to traveling waves of
long wavelength, when the system is forced in time close to
its natural frequency (1:1 resonance) and uniformly in space.
We will study two paradigmatic examples of optical oscillators,
a two-level laser and a two-wave mixing photorefractive oscil-
lator, with continuous phase symmetry (but with different
kinds of nonlinearity) and therefore, they have similar nonlin-
ear dynamics close to threshold. The kind of forcing which we
refer to can be thus expressed as

F�t� � P�t�e−iωRt � c:c:, (1)

where P�t � T � � P�t� is a T -periodic function of time of
period T ≫ 2π

ωR
and ωR is a high optical frequency, almost

resonant with the natural frequency of the undriven system.
A simple realization of P�t� is the function

P�t� � F cos�ωt�, (2)

where ω ≪ ωR and F is an amplitude. According to Eqs. (1)
and (2) the forcing phase (sign) alternates in time.

As we will show below, the state of the system can be
expressed as

A�r, t� � AR�t� � ψ�r, t�, (3)

where AR�t� is a T -periodic, spatially uniform contribution
merely following the forcing, plus a spatially two-dimensional
field ψ�r, t�, whose dynamics is governed by a parametrically
driven Swift–Hohenberg equation.

The structure of the paper is as follows. In Section 2 we
derive the equation that is the object of our study for two rel-
evant optical systems. In Section 3 we present the model and
their different terms. In Section 4 we obtain their homogeneous
solutions and a linear stability analysis is performed, to both
trivial and homogeneous solutions, to study instabilities against
perturbations of wave vector k. In Section 5 we present some
numerical simulations of our model for different values of the
parameters and show the patterns that can be found. We con-
clude in Section 6. In the appendices we present the derivation
of the equation for lasers and the PRO.

2. DERIVATION OF THE CSHE

We will consider two optical systems: the two-level laser and a
two-wave mixing PRO.

A. Laser

Our starting point is the standard set of Maxwell–Bloch
equations for a two-level laser [17,21,22] with injected
signal [16,23,24]:

∂tE � σ�−�1� iΔ�E � P� � i∇2E � E in, (4a)

∂tP � −�1 − iΔ�P � �r − N �E , (4b)

∂tN � b
�
−N � 1

2
�E�P � P�E�

�
, (4c)

where the injected field is of the form [16]

E in � F cos�ωt�eiθt : (5)

The complex fields E and P are the scaled envelopes of the
electric field and polarization, −N is proportional to the
difference between the population inversion and its steady
value in the absence of lasing. σ � κ∕γ⊥ and b � γ∥∕γ⊥, where
κ, γ⊥, and γ∥ are, respectively, the decay rates of E , P, and N .
The transverse Laplacian ∇2 � ∂2x � ∂2y , where the spatial co-
ordinates �x, y� have been normalized so as to make unity the
diffraction coefficient, and t is time in units of γ⊥. Additionally,
r is the pump parameter and the detuning Δ � �ωC − ωA�∕
�γ⊥ � κ�, with ωC (ωA) the cavity (atomic) frequency. We will
consider class C lasers so σ ∼ b ∼ 1.

Equations (4) have been written in the frequency frame
ωL � �γ⊥ωC � κωA�∕�γ⊥ � κ� of the on-axis, or plane-
wave �∇2E � 0�, lasing solution in the absence of injected
signal (lasing pulling formula [25]). This means that the
actual bichromatical injected field has frequencies given by
ωL � γ⊥θ	 γ⊥ω.

In the absence of rocking (F � 0), the system is phase-
invariant: �E ,P,N � → �Eeiϕ, Peiϕ,N �. The trivial solution
(E � P � N � 0) is destabilized to a family of traveling-wave
solutions E � E0ei�k·r−Ωt�, P � P0ei�k·r−Ωt�, and N � N 0 [7],
where

jE0j2 � r − 1 −
�
Δ� k2

σ � 1

�
2

, (6a)

P0 � E0

�
1� i

�
Δ� k2

σ � 1

��
, (6b)
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N 0 � jE0j2, Ω � k2

σ � 1
: (6c)

The threshold for lasing emission under spatial perturba-
tions of wavenumber k is r0 � 1� �Δ� k2∕�σ � 1��2. For
positive detuning the laser shows patterns with critical wave
vector kc � 0 for r > 1� Δ2; conversely for negative detuning
we have traveling-wave patterns whose threshold is minimum
�r � 1� for kc �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−�σ � 1�Δ

p
.

Multiple scales expansion is a usual way to derive an order
parameter equation [6,9,14]. To do that, we need to know the
order of magnitude of the parameters that determine the sys-
tem dynamics. A linear stability analysis of the trivial solution
[7,26] will give insight about the necessary scales: the detun-
ing Δ is chosen O�ε� so the Laplacian ∇2 is also O�ε�.
Additionally, the pump is r � 1� ε2r2. We will consider
two time scales, fast and slow, T 1 � εt and T 2 � ε2t. We
also set

�E ,P,N � � ε�E1, P1,N 1� � ε2�E2,P2,N 2� �… (7)

We will consider two different scales for the parameters of
the rocking, “fast” (ω ∼O�ε�, F ∼O�ε2�) and “slow”
(ω ∼O�ε2�, F ∼O�ε3�). In both cases, θ is O�ε�. The con-
sistency of the results will prove the robustness of the method.
As is shown in Appendix A, both choices lead to the same final
equation. The results, up to the second order, for the slow case
(expressions for the fast case can be found in Appendix A) are

E � Feiθt

�1� σ�ω sin�ωt� � ieiθtψ�r, t�,

P � E −
i

�1� σ� �∇
2E − �1� σ�ΔE�, N � jE j2: (8)

Note that Eq. (8) is consistent with the general case Eq. (3).
Lastly, setting ∇2

1�σ ≡ ∇ 02, t 0 ≡ σ
σ�1 t, θ 0 ≡ σ�1

σ θ, α ≡ σ�1
σ ,

defining μ � r − 1, and removing the primed notation for
simplicity, the equation for ψ reads

∂tψ � �μ − 2γ − iθ�ψ − jψ j2ψ − �Δ − ∇2�2ψ
� iα∇2ψ � γψ�, (9)

where the rocking parameter is

γ � 1

2

F 2

�1� σ�2ω2 : (10)

This equation is a Swift–Hohenberg equation with parametric
gain, which we will analyze later.

B. Two-Wave Mixing Photorefractive Oscillator

Our starting point is the set of equations as in [20,27] in which
we consider a bichromatical injection and we make the
change �E 0,N 0� → �E ,N �e−iΔt for convenience, where Δ �
�ωC − ωP�∕κ (ωP and ωC are the frequencies of the pump
and its nearest longitudinal mode, respectively, whereas κ
is the cavity linewidth). After removing the commas and
considering σ�1

σ ≃ 1 as σ ≫ 1 as is explained below (we apply
this approximation along the further analysis), we get

σ−1∂tE � −�1� iΔ�E � i∇2E � N � E in,

∂tN � −�1 − iΔ�N � g
E

1� jE j2 , (11)

where the injected field is as in the previous case, E�r, t� is the
slowly varying envelope of the intracavity field, N �r, t� is
the complex amplitude of the photorefractive nonlinear
grating, σ � κτ, where τ is the photorefractive response time
(σ ≳ 108 under typical conditions, and τ ∼ 1 s), t is time mea-
sured in units of τ, and the detuning, g , is the (real) gain param-
eter that depends on the crystal parameters and the geometry of
the interaction.

In the absence of rocking (F � 0), the model [20,27] is, like
in the previous case, phase-invariant: �E ,N � → �Eeiϕ,Neiϕ�.
This free-running model has two main solutions: the trivial sol-
ution E � N � 0 and the family of traveling-wave solutions
F � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g∕g0 − 1
p

ei�k·r−Ωt� and N � �1� iΩt�E with g0 �
1� Ω2 and Ω � Δ� k2. From these results we conclude that
for Δ > 0 the threshold is minimum for k � 0 (homogeneous
emission) and occurs at g � 1� Δ2 and the frequency of the
field is shifted by Ω � Δ. On the other hand, for Δ∕a < 0 the
threshold �g � 1� is for k � ffiffiffiffiffiffi

−Δ
p

(off-axis emission) and there
is no frequency shift �Ω � 0�.

As before, a linear stability analysis of the trivial
solution [27] provides us the scales for the parameters: we take
σ ∼ O�ε−4� (results are independent of the specific scale pro-
vided that σ is very large) and Δ, θ ∼O�ε�, which implies
∇2 ∼O�ε�. We also assume that g is close to threshold,
g � 1� g2ε

2, and that F ∼ O�ε�,ω ∼ O�1�. As in the previous
case, we will have “two times,” T 1 � εt and T 2 � ε2t . We
also set

�E ,N � � ε�E1,N 1� � ε2�E2,N 2� �… (12)

Solving up to the second order, we obtain

E � Eω�t� − ie−iθtψ�r, t�,
N � �1� �−iΔ� i∇2��E − F cos�ωt�eiθt , (13)

where Eω is a periodic function (see Appendix B). Note
that, as in the previous case, Eq. (13) is consistent with
Eq. (3).

We finally obtain (Appendix B), as in the case of the laser, a
Swift–Hohenberg equation with parametric gain. Defining
μ � g − 1, we can write

∂tψ � �μ − 2γ − iθ�ψ − jψ j2ψ � i∇2ψ − �∇2 − Δ�2ψ � γψ�,

(14)

where the rocking parameter is

γ � 1

2

F 2

ω2 �ω2 � 1�: (15)

3. CSHE MODEL

Comparing Eqs. (9) and (14), we see that they share the same
structure as the only difference is the diffraction term, so we will
analyze both of them using an unified model. Therefore, the
equation we are going to study is
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∂tψ�r, t� � �μ − jψ j2�ψ � iα∇2ψ − �Δ − ∇2�2ψ − iθψ

� γ�ψ� − 2ψ�: (16)

This equation is the usual complex Swift–Hohenberg equation,
which models pattern formation arising from a finite wavenum-
ber instability to traveling waves close to threshold
[6,8,9,28–30], with additional terms, those multiplied by γ,
which appear when rocking is considered [14–16,20]. The
term −2γψ refers to losses whereas the extra term γψ� is the
actual novelty as it breaks the phase invariance of the system,
which becomes phase bistable as the equation only has the dis-
crete symmetry ψ → −ψ. As for the parameters, μmeasures the
distance from threshold (it can be removed from the equation
by simple scaling but we keep it not to overwhelm the notation)
and α controls diffraction/dispersion. Other parameters are Δ,
the detuning of the cavity from the natural frequency of the
unforced system in the optical case, and θ, which is the detun-
ing of the forcing from the natural frequency of the system.
Finally the “rocking parameter” γ is proportional to the squared
amplitude of rocking F 2 and also depends on its frequency ω
in a way whose exact form depends on the system considered
(see Section 2); note that when γ � 0 the effect of rocking is
lost and Eq. (16) becomes a usual complex Swift–Hohenberg
equation. In our case, α � 1 in the PRO while α > 1 for
the laser.

Equation (16) with γ � 0 models class C (and class A) la-
sers. Class B lasers (such as semiconductor lasers) possess a more
complicated dynamics, which cannot be captured by a single
equation. Models of two equations for these lasers were con-
sidered in [7,31,32]. The interested reader can find in
[16,33] theoretical analysis about rocking in class B lasers.
As an additional remark, previous studies of rocking considered
PCGLE equations for modeling the dynamics of rocked
nonlinear systems [16]. In the case of a two-level laser, that
equation remains valid only for positive (and large) values of
detuning Δ; however, the CSHE model derived here is suitable
(as the original SHE for lasers) for positive and negative values
of detuning provided they are small.

4. PHASE-LOCKED SPATIALLY UNIFORM
SOLUTIONS: ROCKED STATES AND THEIR
STABILITY

The spatially uniform nontrivial solutions of Eq. (16), or
“rocked states,” can be expressed as ψ	 � jψ	jeiϕ	 , where

jψ	j2 � μ − 2γ − Δ2 	
ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − θ2

p
, (17a)

e−2iϕ	 � −
iθ	

ffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 − θ2

p
γ

: (17b)

The state ψ− is always unstable as follows from a standard
linear stability analysis, so we will not consider it in the follow-
ing. On the other hand, as ϕ� can take two values (differing by
π), this produces two phase-locked states (with same ampli-
tude) and phase differing by π (bistable phase locking).
From now on we rename ψ� ≡ ψ0 (ϕ� � ϕ0). The existence
of these states requires μ − Δ2 > 0 and γ > jθj; see Eq. (17a).
Moreover, they exist only if γ0 < γ < γ�, where

γ0 �
� jθj, if jθj < �μ − Δ2�∕2

γ− otherwise
,

γ	 � 2�μ − θ2�
3

	 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�μ − θ2�2 − 3Δ2

p
: (18)

On the plane γ − θ the existence region is a closed domain
(“rocking balloon”) as we can see in Fig. 1. Outside that region
we have the trivial solution and phase-unlocked solutions
(traveling waves or patterns).

We have performed a linear stability analysis of the trivial
and uniform solutions against perturbations with wave vector
k. The eigenvalue with the largest real part (for the stability of
the trivial solution we just set ψ0 � 0) reads

λ�k� � μ − 2γ − jψ0j2 − �k2 � Δ�2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jψ0j4 − 2γ cos�2ϕ0�jψ0j2 − ��αk2 � θ�2 − γ2�

q
:

(19)

As we have two different nonlocal terms in the Swift–
Hohenberg Eq. (16), λ�k� will have, in general, two local
maxima. One of them �ks� is associated with a real eigenvalue
and it will give rise to static patterns through a pattern-forming
bifurcation; the another one �ko� corresponds to a complex

Fig. 1. (Top) Amplitude of the rocking states versus γ for θ � 0,
(a) ψ�, (b) ψ− and θ � 0.01, (c) ψ�, (d) ψ−. (Bottom) Domain of
existence of ψ� (bold line) and ψ− (dotted line) in the θ − γ plane; the
lower bound is the same for both functions. The rest of the parameters
are μ � 0.05, Δ � 0.14, and α � 2.
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eigenvalue and it will produce oscillatory solutions (homo-
geneous or traveling waves) through a Hopf bifurcation from
the trivial solution. We could not obtain an exact analytical
expression for ks but an approximated one by considering
(as is observed numerically) that it is close to −θ∕α. Writing
k2 � −θ∕α� ε in Eq. (19) and expanding λ up to the second
order in ε, the resulting quadratic expression can be maximized
and solved for ε, leading to

k2s � max

�
−
αθ� 2ΔS
α2 � 2S

, 0
�
, (20)

where S � γ for the trivial solution and S �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2 � �2γ � Δ2 − μ�2

p
in the case of the rocked states. The

expression for k2o is just

k2o � max�−Δ, 0�,
so for Δ > 0 we will have homogenous oscillations, while for
Δ < 0 we will obtain traveling waves.

All these results are summarized in Fig. 2 (positive Δ) and
Fig. 3 (negative Δ) for α � 2 (laser case) and μ � 0.05. For
positive Δ, if γ is large, the trivial solution, which always exists,
is stable. As we decrease the rocking parameter γ, we see bifur-
cations to other solutions like static patterns (for the trivial
state, k2s > 0⇔θ < −2γΔ∕α) and homogeneous oscillations
(for γ � �μ − Δ2�∕2, θ > γ, k20 � 0�. The transition to uni-
form rocked states is supercritical in the upper bound (the
amplitude ψ0 becomes 0 along that line). Regarding the lower
bound (two straight lines, where ψ� � ψ−), there is a
saddle-node bifurcation which connects with oscillations by
means of a complex eigenvalue both for positive and very small
negative values of θ (Fig. 2). For negative θ, the rocked states
become unstable close to the left edge of the balloon to insta-
bilities (real eigenvalue) of wavenumber k2s for moderate values
of γ, whereas oscillations appear for low γ (the line γ � 0 cor-
responds to the standard SHE). In Fig. 4 we can see an example
of the temporal dynamics of spatially homogenous states close
to the bifurcation: as we go closer to this, the period of the
oscillations becomes larger and is infinite at the bifurcation.

The analysis for negative Δ is richer, as expected, because in
this regime the Swift–Hohenberg equation [Eq. (16)] without
rocking (γ � 0) already displays traveling waves of wavenum-
ber kSH � ffiffiffiffiffiffi

−Δ
p

. For large positive θ we still have a Hopf
bifurcation connecting trivial and traveling-wave solutions
(for γ � μ∕2, θ >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 − 4Δ2

p
∕2, k2o � −Δ). For negative

and small positive θ (θ < −2γΔ∕α) the trivial solution desta-
bilizes to a pattern with leading wavenumber k2s at a
certain γ � γ�θ�.

Fig. 2. Bifurcation diagram of Eq. (16) for α � 2, μ � 0.05, and
Δ � 0.14. The dashed line indicates the left boundary of existence of
the uniform rocked states, which become unstable before reaching it.
The circles refer to the existence of dark-ring cavity solitons. The sad-
dle-node bifurcation extends to very small and negative values of θ
(lower limit not shown).

Fig. 3. Bifurcation diagram of Eq. (16) for α � 2, μ � 0.05, and
Δ � −0.14. The dashed line indicates the boundary of existence of the
uniform rocked states, which become unstable before reaching it. In
the shadowed region the two instabilities (with two different spatial
frequencies) for the uniform rocked states are present as explained
in the text. The circles refer to the existence of dark-ring cavity sol-
itons.

Fig. 4. Temporal evolution of intensity (top) and phase (bottom) of
a homogeneous solution close to the saddle-node bifurcation in Fig. 2.
Parameters are μ � 0.05, Δ � 0.14, α � 2, γ � 0.01, and
θ � 0.01001.
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Additionally, for small γ we have traveling waves for both
positive and negative θ. Regarding the rocked states, these
are destabilized in two ways: (i) through a complex eigenvalue
with most unstable wave vector k2o � −Δ, which happens sym-
metrically around θ (see Fig. 3); and (ii) through a real eigen-
value with most unstable wave vector equal to k2s�rocked�,
which happens, as in the case of positive detuning, close to
the left side of the balloon (here the unstable region is bigger).
The presence of these two unstable wavenumbers can be only
seen in the simulations in the transient development of the
instabilities (Fig. 5) as only one of the two spatial frequencies
eventually survives. Close to the lower bound we find (i) and
close to the upper bound we get (ii). In a range of values of
Δ�∼ − 0.14� we find that both instabilities arise simultaneously
(the two peaks of λ�k� at ko and ks�rocked� becomes both positive
as in Fig. 6: codimension 2 point), this happens for a small
region in the γ − θ plane (Fig. 3). This behavior also appears

(for negative θ), outside of the region where rocked states exist,
along a line that separates static patterns from traveling
waves (Fig. 3).

5. SPATIAL STRUCTURES

We studied the spatial patterns that appear outside the tongue,
where rocked (phase-bistable) states exist, by means of numeri-
cal simulations. They basically confirm the previous analysis as
we were able to obtain static spatial patterns that arise from real
eigenvalue instabilities, selecting a particular spatial frequency
as we have seen in the previous analysis. Then the (slow)
dynamics finally leads to a pattern where two spatial modes
(of opposite wavenumber) are dominant, leading to roll-like
patterns (as in the right column of Fig. 5). Additionally, we
observe phase-unlocked patterns as (slightly modulated) travel-
ing waves for negative Δ (Fig. 7), as a result of an instability
governed by a complex eigenvalue.

On the other hand, numerical experiments of Eq. (16) con-
firm the existence of a variety of spatial patterns due to the
phase bistability and the instabilities studied in the previous
section. In the simulations we fix α � 2 (remember that
α � 1 for photorefractive oscillators and α > 1 for lasers) as
it can be shown that, after proper rescaling, the parameter α
does not affect the dynamics of the system and its value can
be set an arbitrarily. Different values of α just change the tem-
poral scale and the spatial scale associated with the real eigen-
value instability, but what is relevant to the dynamics is the

Fig. 5. Competition between two instabilities. Snapshots of inten-
sity (upper row), phase and spatial spectrum (lower row) of the tran-
sient dynamics in (left to right) t � 150, t � 1725, and t � 120000.
Parameters are μ � 0.05, Δ � −0.14, α � 2, γ � 0.0297, and
θ � −0.0142. The size of the windows is 400 × 400.

Fig. 6. Real part of the eigenvalue λ�k� obtained in the linear sta-
bility analysis of the URS solution for parameters: μ � 0.05,
Δ � −0.14, α � 2, γ � 0.0205, and θ � −0.0139.

Fig. 7. Intensity (left), phase (middle), and spatial spectrum (right)
of a traveling-wave pattern obtained for μ � 0.05, Δ � −0.14, α � 2,
γ � 0.012, and θ � −0.025. The size of the windows is 500 × 500.

Fig. 8. Contracting phase domains. Snapshots of intensity (upper
row) and phase (lower row) of transient dynamics of phase domains
starting from noise in (left to right) t � 1000, t � 3000, and
t � 7500. Parameters are μ � 0.05, Δ � 0.14, α � 2, γ � 0.02,
and θ � −0.005. The rest of the parameters are as in Fig. 7.

1384 Vol. 35, No. 6 / June 2018 / Journal of the Optical Society of America B Research Article



ratio between that scale and the one associated with the com-
plex eigenvalue, which is determined by Δ.

Traveling waves (negative Δ) and homogenous oscillations
(positive Δ) are found outside the “rocked” balloon for small val-
ues of γ, whereas inside that region two uniform rocked states of
opposite phase, connected through domain walls and generating
phase domains (Fig. 8), are obtained. In two spatial dimensions,
these domains are always a transient state before one phase domi-
nates [34]. Close (but still inside the stability region) to the edge
where the uniform rocked states lose their stability with real eigen-
value (see Section 4), the walls become unstable due to curvature
effects [34] giving rise to the appearance of labyrinth patterns
(Fig. 9). Before reaching the threshold where these labyrinths
appear, we find dark-ring cavity solitons [3,20,35–38], which
can be written/erased, as is shown in Fig. 10. This happens
for both positive and negative Δ.

6. CONCLUSIONS

We have proposed and studied, analytically and numerically, a
complex Swift–Hohenberg equation with a parametric term

that breaks the phase invariance, giving rise to phase-bistable
patterns. This equation models diverse nonlinear optical
cavities and can be thought of as a universal equation for
rocked, spatially extended systems close to a homogeneous
Hopf bifurcation. In particular we have derived such an equa-
tion for two optical oscillators: the two-level laser and the
two-wave mixing photorefractive oscillator. The structure of
the equation, with two nonlocal terms, produces two kinds
of instabilities as revealed by a linear stability analysis of the
homogeneous states. These two differ in the character of the
eigenvalue governing the instability (real or complex) and in
the spatial scale, generating a complex variety of spatial pat-
terns, phase locked and phase unlocked. The existence of
extended patterns like Ising domain walls and labyrinths is con-
firmed with numerical solutions as well as of dark-ring (phase)
solitons.

APPENDIX A: LASER

We are considering two types of scales: fast and slow.

1. Fast Scales

As has been explained in the main text, we will consider that the
detuning Δ and Laplacian ∇2 are O�ε�. As we consider class C
lasers, σ and b are O�ε0�. Additionally, F � O�ε2� and
θ � O�ε�. We consider two time scales T 1 � εt and
T 2 � ε2t , and the pump is r � 1� ε2r2 (we are close to
the threshold).

O�ε0�
At this order, E0 � P0 � N 0 � 0.
O�ε�
This is the first nontrivial order and reads

N 1 � 0, (A1)

L0jv1i � 0, (A2)
where

L0 �
�
−σ σ
1 −1

�
,

and we have introduced the notation

jvii �
�
Ei
Pi

�
, i � 1, 2, 3,… (A3)

Equation (A2) can be easily solved with the help of the left
eigenvectors of matrix L0:

hζ1jL0 � 0hζ1j, hζ2jL0 � μhζ2j, (A4)

hζ1j � �1, σ�, (A5)

hζ2j � �1, − 1�, μ � −�1� σ�: (A6)

Projecting Eq. (A2) onto hζ1j we obtain 0 � 0, and projecting
onto hζ2j we obtain

P1 � E1, (A7)
hence

jv1i � E1

�
1
1

�
: (A8)

Fig. 9. Labyrinth formation. Snapshots of intensity (upper row)
and phase (lower row) of transient dynamics of labyrinths starting from
the left picture in Fig. 8 in (left to right) t � 0, t � 500, and
t � 3000 for θ � −0.012. The rest of the parameters are as in Fig. 8.

Fig. 10. Writing/erasing phase cavity solitons. Intensity (upper
row) and phase (lower row) plots of transient dynamics of the erasing
of a dark-ring cavity soliton for θ � −0.011. Times (left to right) are
t � 0, t � 150, t � 300, and t � 450. The rest of the parameters are
as in Fig. 8.
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O�ε2�
At this order, we obtain

N 2 � jE1j2, (A9)
∂

∂T 1

jv1i � L0jv2i � jg2i, (A10)

where

jg2i �
�
i∇2E1 − iσΔE1 � F 1 cos�ωT 1�eiθT 2

iΔE1

�
: (A11)

Projecting Eq. (A10) onto hζ1j and making use of Eq. (A7),
we obtain

�σ � 1� ∂E1

∂T 1

� i∇2E1 � F 1 cos�ωT 1�eiθT 2 : (A12)

We solve

E1� x!,T 1,T 2� � A1� x!,T 1,T 2� � F 1�T 1,T 2�, (A13)

F 1�T 1,T 2� ≡
F

�1� σ�ω sin�ωT 1�eiθT 2 , (A14)

�σ � 1� ∂A1

∂T 1

� i∇2A1: (A15)

Projecting onto hζ2j and making use of Eq. (A12), we
obtain

P2 � −

�
∂

∂T 1

− iΔ
�
E1 � �1� σ�E2, (A16)

O�ε3�
∂

∂T 1

jv2i �
∂

∂T 2

jv1i � L0jv3i � jg3i, (A17)

where

jg3i �
�

0
�r2 − jE1j2�E1 � iΔP2

�
:

Projecting

σ

�
∂

∂T 1

− iΔ
���

∂
∂T 1

− iΔ
�
E1 � �1� σ�E2

�

� −�1� σ� ∂E1

∂T 2

� σ�r2 − jE1j2�E1, (A18)

we can rewrite this as follows:

σ

�
∂

∂T 1

− iΔ
�
�1� σ�E2 � g�T 1,T 2�,

where

g�T 1,T 2� � −σ

�
∂

∂T 1

− iΔ
�

2

A1 − �1� σ� ∂A1

∂T 2

� σ�r2 − jA1j2�A1 � −σ

�
∂

∂T 1

− iΔ
�

2

F 1

− �1� σ� ∂F 1

∂T 2

� σ�r2 − jF 1j2�F 1

− 2σjA1j2F 1−2σjF 1j2A1 − σF 2
1A

�
1 � σF�

1A
2
1:

(A19)

The solution can be written formally as

E2 �
1

σ�1� σ�

�
eiΔT 1 �

Z
T 1

0

g�T 1,T 2�dT 1 � A2�T 2�
�
:

To ensure convergence it must be true that

lim
T 1→∞

1

T 1

Z
T 1

0

g�T 1,T 2�dT 1 � 0: (A20)

Taking into account that if A1 is homogeneous then it does
not depend on T 1, the following condition must be fulfilled
[we make use of Eq. (A15)]:

�1�σ�∂A1

∂T 2

�−σ

�
i∇2

1�σ
− iΔ

�
2

A1

�σ�r2− jA1j2�A1−σ

�
F
ω

�
2

A1−
σ

2

�
F
ω

�
2

e2iθT 2A�
1 ,

(A21)

in order to avoid divergences (in the case ∇2A1 � 0).

We finally compute the time derivative ∂tA1 ��
ε ∂
∂T 1

� ε2 ∂
∂T 2

	
�εA1� up to the third order in ε, from which,

making use of Eqs. (A21) and (A15), setting ψ � e−iθT 2A1, and
rescaling to the original variables, we obtain

�1� σ� ∂ψ
∂t

� σ

�
i∇2

1� σ
− iΔ

�
2

ψ − �1� σ�iθψ

� i∇2ψ � σ�r − 1 − jψ j2�ψ − 2γψ � γψ�,

(A22)

where

γ � 1

2

F 2σ

�1� σ�2ω2 :

2. Slow Scales

The scales in this case will be

r � 1� ε2r2Δ, ∇2 ∼ O�ε�,
ω ∼ O�ε2� F ∼O�ε3�,

�E ,N , P� ∼ �E1,P1,N 1�ε� �E2, P2,N 2�ε2 �…: (A23)

O�ε�
N 1 � 0,

L0jv1i � 0, (A24)

L0 �
�
−σ σ
1 −1

�
: (A25)

The left-eigenvectors are hξ1j � �1, σ� and hξ1j � �1, − 1�,
with eigenvalues 0 and −�1� σ�, respectively. We can use this
to write
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hξ1jL0jv1i � 0hξ1jv1i,
hξ2jL0jv1i � −�1� σ�hξ2jv1i,

v1 �
�
E1

P1

�
: (A26)

We obtain E1 � P1.
O�ε2�

N 2 � jE1j2,
∂

∂T 1

jv1i � L0jv2i � jg2i, (A27)

jg2i �
�
i∇2E1 − iσΔE1

iΔE1

�
: (A28)

Using the same procedure as above, we obtain (we can
choose E2 � 0)

�1� σ� ∂E1

∂T 1

� i∇2E1, (A29)

P2 � −
i

�1� σ� �∇
2E1 − �1� σ�ΔE1�: (A30)

O�ε3�
∂

∂T 1

jv2i �
∂

∂T 2

jv1i � L0jv3i � jg3i, (A31)

jg3i �
�

F cos�ωT 1�eiθT 2

�r2 − jE1j2E1 � iΔP2

�
: (A32)

Now we obtain the following equation:

σ

�
∂

∂T 1

− iΔ
�
P2 � −�1� σ� ∂E1

∂T 2

� F cos�ωT 1�eiθT 2

� σ�r2 − jE1j2�E1: (A33)

Using Eq. (A30) and undoing the scaling,

∂E
∂t

� ∂E1

∂T 1

ε� ∂E1

∂T 2

ε2: (A34)

We can write

�1� σ� ∂E
∂t

� σ

�
i∇2

1� σ
− iΔ

�
2

E � i∇2E

� σ�r − 1 − jE j2�E � F cos�ωt�eiθt : (A35)

Setting E ≡ Aeiθt the previous equation becomes

�1� σ� ∂A
∂t

� σ

�
i∇2

1� σ
− iΔ

�
2

A − �1� σ�iθA

� i∇2A� σ�r − 1 − jAj2�A� F cos�ωt�:
(A36)

If the frequency ω is high compared with the dynamics of
the system we can set T � ωt → ε−1t with T ≫ t and as it is
done in [14] separate the slow dynamics from the fast dynamics
(we set F ∼ O�ε−1�).

Specifically we consider

A�τ,T � � A0�τ,T � � εA1�τ,T �, (A37)

with T � ε−1t and τ � t .

Now we solve at different orders.
O�ε−1�

�1� σ� ∂A0

∂T
� F cos�T � → A0�T �

� F
�1� σ�ω sin�T � � iψ�τ�: (A38)

O�ε0�
The equation reads at this order

�1� σ� ∂A1

∂T
� �1� σ� ∂ψ

∂τ

� σ

�
i∇2

1� σ
− iΔ

�
2

A0 � �1� σ�iθA0 � i∇2A0

� σ�r − 1 − jA0j2�A0 � F cos�T �: (A39)

This can be written as �1� σ� ∂A1�τ,T �
∂T � g�T , τ�, which

can be solved: A1�τ,T � � �1� σ�−1 R T
0 dT 0g�T 0, τ��B�τ�.

The boundness of this requires

lim
1

T

Z
T

0

dT 0g�T 0, τ� � 0: (A40)

Therein, we obtain the following solvability condition:

�1� σ� ∂ψ
∂τ

� σ

�
i∇2

1� σ
− iΔ

�
2

ψ − �1� σ�iθψ

� i∇2ψ � σ�r − 1 − jψ j2�ψ − 2γψ � γψ�,

(A41)

where

γ � 1

2

F 2σ

�1� σ�2ω2 :

This condition is exactly the same equation as Eq. (A22),
so we recover the result that we obtained considering fast
scales by just assuming that F and ω are large. So, independ-
ently of the set of scales we consider, the final equation is
consistent.

Setting ∇2

1�σ ≡ ∇ 02, τ 0 ≡ σ
σ�1 τ, θ

0 ≡ σ�1
σ θ, γ 0 ≡ γ

σ, α ≡ σ�1
σ ,

and defining μ � r − 1, we can write (removing the commas
for simplicity)

∂τψ � �μ − 2γ − iθ�ψ − jψ j2ψ − �Δ − ∇2�2ψ
� iα∇2ψ � γψ�: (A42)

APPENDIX B: PHOTOREFRACTIVE OSCILLATOR

We will solve Eqs. (11) at different orders. We set
F � εF 1 cos�ωT 1�eiθT 2 . At order O�1� we trivially have
E0 � N 0 � 0.

O�ε�

0 � −E1 � N 1 � F 1 cos�ωT 1�eiθT 2 ,

∂T 1
N 1 � −N 1 � E1: (B1)
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The solution is

N 1 � E1 − F 1 cos�ωT 1�eiθT 2 ,

E1 � F 1 cos�ωT 1�eiθT 2 � F 1∕ω sin�ωT 1�eiθT 2

�φ1�r,T 2� ≡ Eω
1 � φ1:

O�ε2�

0 � −E2 � �−iΔ� i∇2�E1 � N 2,

∂T 1
N 2 � ∂T 2

N 1 � −N 2 � iΔN 1 � E2: (B2)

We solve

N 2�E2−�−iΔ� i∇2�E1,

E2�
Z

T 1

0

G2�T 1,T 2�dT 1�φ2� x!,T 2�≡Eω
2 �φ2,

G2�T 1,T 2���−iΔ��−F 1ω cos�ωT 1�eiθT 2

�F 1 cos�ωT 1�eiθT 2�F 1 cos�ωT 1�eiθT 2�
��iθ�F 1∕ω sin�ωT 1�eiθT 2 −∂T 2

φ1� i∇2φ1:

(B3)

Solvability of E2 requires

lim
T 1→∞

1

T 1

Z
T 1

0

G2�T 1,T 2�dT 1 � 0: (B4)

The oscillatory terms in Eq. (B3) vanish so the previous con-
dition remains:

∂T 2
φ1 � i∇2φ1: (B5)

O�ε3�
0 � −E3 � �−iΔ� i∇2�E2 � N 3,

∂T 1
N 3 � ∂T 2

N 2 � −N 3 � iΔN 2

� E3 � �g − 1�E1 � jE1j2E1: (B6)

We already know that

E1 � Eω
1 �T 1,T 2� � φ1�r,T 2�,

E2 � Eω
2 �T 1,T 2� � φ2�r,T 2�: (B7)

We solve

N 3 � E3 − �−iΔ� i∇2�E2, (B8)

E3 �
Z

T 1

0

G3�T 1,T 2�dT 1 � φ3�r,T 2�, (B9)

G3�T 1,T 2�
� ��−iΔ��∂T 1

Eω
2 �∂T 2

Eω
1 ���g2 −1−Δ2�Eω

1 −∂T 2
Eω
2 �

��−∂T 2
φ2��g2 −1�φ1 −�−iΔ� i∇2�2φ1� i∇2φ2 − jφ1j2φ1�

− �jEω
1 j2Eω

1 �2Eω
1 jφ1j2��Eω

1 ��φ2
1�2jEω

1 j2φ1�jEω
1 j2φ�

1 �:
(B10)

Solvability of E3 requires

lim
T 1→∞

1

T 1

Z
T 1

0

G3�T 1,T 2�dT 1 � 0: (B11)

The oscillatory terms in Eq. (B10) vanish so the previous
condition remains:

∂T 2
φ2 � −�−iΔ� i∇2�2φ2 � i∇2φ2

− jφ1j2φ1 − 2γφ1 − γφ
�
1 e

i2θT 2 , (B12)

where γ � 1
2
F 2

ω2 �ω2 � 1�.
Finally, developing up to the second order we have

E � εE1 � ε2E2,

N � εN 1 � ε2N 2

� ε�E1 − F 1 cos�ωT 1�eiθT 2� � ε2�E2 − �−iΔ� i∇2�E1�
� �1� �−iΔ� i∇2��E − F cos�ωt�eiθt ,

φ � εφ1 � ε2φ2 ∂tφ � ε∂T 2
φ1 � ε2∂T 2

φ2: (B13)

Undoing the scaling and if we make the change
ψ � iφeiθT 2 , we can write (defining μ � g − 1)

∂tψ � �μ − 2γ − iθ�ψ − jψ j2ψ � i∇2ψ − �∇2 − Δ�2ψ � γψ�:
(B14)
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