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Abstract Let Z be a complete set of Sylow subgroups of a finite group G, that is,
a set composed of a Sylow p-subgroup of G for each p dividing the order of G. A
subgroup H of G is called Z-permutable if H permutes with all members of Z. The
main goal of this paper is to study the embedding of the Z-permutable subgroups and
the influence of Z-permutability on the group structure.
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A subgroup H of a group G is said to permute with a subgroup K of G if HK is a
subgroup of G. H is said to be S-permutable in G if H permutes with all Sylow sub-
groups of G. This property extends normality and permutability and was introduced
by Kegel in [11]. In this paper, he proved some interesting properties which turn out
to be useful in establishing results concerning the group structure. In particular, it is
proved there that every S-permutable subgroup must be subnormal ([11, Satz 1]).

On the other hand, we say that a set Z of Sylow subgroups of a group G is a
a complete set of Sylow subgroups of G if Z contains exactly one Sylow subgroup
for each prime dividing the order of G; Z is called a Sylow basis of G if the Sylow
subgroups in Z are pairwise permutable. Sylow basis were introduced and studied by
Hall in [7]. The results of this paper show that the existence and conjugacy of Sylow
bases is a characteristic property of soluble groups.

In [1], Asaad and Heliel introduced and studied the notion of a Z-permutable
subgroup, where Z is a complete set of Sylow subgroups of a group G. A subgroup
of G is called Z-permutable if it permutes with every member of a complete set Z of
Sylow subgroups of G. It is clear that S-permutability implies Z-permutability but the
converse does not hold in general. In fact, Z-permutable subgroups are not subnormal
in general, and subnormal Z-permutable subgroups are not S-permutable either as the
following example shows:

Example 1 Let E = 〈x,y〉 be an extraspecial group of order 27 and exponent 3. Let a
be an automorphism of order 2 of G given by xa = x−1, ya = y−1. Let G = E o 〈a〉 be
the corresponding semidirect product. Then Z= {E,〈a〉} is a complete set of Sylow
subgroups of G. The subgroup H = 〈x〉 is Z-permutable, but it does not permute
with the Sylow 2-subgroup 〈ay〉. Therefore, H is not S-permutable. However, H is a
subnormal subgroup of G.

Throughout the first part of our paper, proving important properties of S-permut-
able type of the subnormal Z-permutable subgroups has been our main focus.

The embedding of S-permutable subgroups was studied by Kegel [11, Satz 1] and
Deskins [4, Theorem 1] (see also [3, Theorem 1.2.14]). They proved that if A is an
S-permutable subgroup of G, then 〈AG〉/CoreG(A) is nilpotent. Our first main result
shows how a subnormal Z-permutable subgroup is embedded in the group.

Theorem 1 Let Z be a complete set of Sylow subgroups of a group G. Let A be
a subnormal Z-permutable subgroup of G. Then 〈AG〉/CoreG(A) is soluble. If, in
addition, Z is a Sylow basis of G, then 〈AG〉/CoreG(A) is nilpotent.

The alternating group of degree 6 is a non-subnormal Z-permutable subgroup of
the alternating group of degree 7 which is not soluble. Moreover, every core-free max-
imal subgroup of a soluble primitive group is Z-permutable. Therefore subnormality
is necessary in the above theorem.

A classical result of Kegel ([11, Satz 2], see also [3, Theorem 1.2.19]) shows that
the set of all S-permutable subgroups of a group G is a sublattice of the subgroup
lattice of G. Kegel’s result also holds for subnormal Z-permutable subgroups. It is
consequence of the following theorem.
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Theorem 2 Let p be a prime and U and V subgroups of a group G. If U and V
permute with a Sylow p-subgroup Gp of G and U is subnormal in G, then U ∩V
permutes with Gp.

The hypothesis of the subnormality of U is necessary in the above theorem, even
for soluble groups, as an example of Doerk [5, Beispiel 1] shows.

Corollary 1 Let Z be a complete set of Sylow subgroups of a group G. Then the set
of all subnormal Z-permutable subgroups of a group G is a sublattice of the lattice
of all subgroups of G.

If Z is a Sylow basis of a group G, the set of all Z-permutable subgroups is a
sublattice of the subgroup lattice of G ([6, Chapter I, Theorem 4.29]). However, we do
not know whether the set of all Z-permutable subgroups (not necessarily subnormal)
of a group G is a sublattice of the lattice of all subgroups of G.

There are several papers in the literature where global information about a group
is obtained by assuming that some distinguished subgroups are Z-permutable ([1,8,
9,12,13,14,15,17]). The second part of the paper concerns situations in this spirit,
but we require only that some p-subgroups, for a given prime p, have the required
property.

In order to state our results in this direction, we recall that a group is said to be
p-supersoluble if it is p-soluble and every p-chief factor has order p, where p is a
prime that we hold fixed.

In the sequel, Z= {Gq | q∈ π(G)} will denote a complete set of Sylow subgroups
of a group G, where Gq is a Sylow q-subgroup of G.

Asaad and Heliel [1, Theorem 3.1] showed that if all maximal subgroups of the
Sylow subgroups in Z are Z-permutable, then G is supersoluble. A local approach to
this theorem is the following.

Theorem 3 Let G be a group. Assume that all maximal subgroups of Gp ∈ Z are
Z-permutable. Then either Gp is cyclic or G is p-supersoluble.

If p is the smallest prime dividing the order of G, and the Sylow p-subgroups are
cyclic, then G is p-nilpotent by [10, IV, Satz 2.8]. Furthermore, if G is p-supersoluble,
then G every p-chief factor is central and so G is p-nilpotent. Therefore we have:

Corollary 2 ([14, Theorem 3.1]) If p is the smallest prime dividing the order of
a group G and the maximal subgroups of Gp ∈ Z are Z-permutable, then G is p-
nilpotent.

Corollary 3 ([1, Theorem 3.1]) Assume that G is a group whose maximal subgroups
of the Sylow subgroups in Z are Z-permutable. Then G is supersoluble.

The next natural step in our analysis to consider the structural impact of the Z-
permutability of the second maximal subgroups of the Sylow p-subgroup in Z.

Suppose that every 2-maximal subgroup of Gp ∈ Z is Z-permutable and that Gp
does not have cyclic maximal subgroups. Then every maximal subgroup of Gp is Z-
permutable and Gp is not cyclic. By Theorem 3, G is p-supersoluble. Therefore we
have:
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Corollary 4 Let G be a group. Suppose that all 2-maximal subgroups of Gp ∈ Z are
Z-permutable. Either Gp has a cyclic maximal subgroup or G is p-supersoluble.

In [14, Theorem 3.3], the authors proved the following result:

Theorem 4 ([14, Theorem 3.3]) Assume that p is the smallest prime dividing the or-
der of a group G. Suppose that all 2-maximal subgroups of Gp ∈ Z are Z-permutable.
If G is A4-free, then G is p-nilpotent.

Our goal in the sequel is to present an improvement of this theorem.
According to Corollary 4, if all 2-maximal subgroups of Gp ∈Z are Z-permutable,

then either Gp has a cyclic maximal subgroup or G is p-supersoluble. Futhermore, a
p-supersoluble group G is p-nilpotent provided that p is the smallest prime dividing
the order of G. Hence we only must consider the case when Gp has a cyclic maximal
subgroup. We prove:

Theorem 5 Assume that p is the smallest prime dividing the order of a group G.
Suppose that all 2-maximal subgroups of Gp ∈ Z are Z-permutable. If Gp has a cyclic
maximal subgroup, then G is p-soluble.

A key fact for the proof of Theorem 5 is that G cannot be non-abelian simple.
This was established in Step 3 of the proof of [14, Theorem 3.3].

Theorem 6 Assume that p is the smallest prime dividing the order of a group G. If
every 2-maximal subgroup of Gp ∈ Z is Z-permutable, then either G is p-nilpotent or
G has an epimorphic image isomorphic to Σ4.

In [12, Theorem 3.3], the authors proved that if p is the smallest prime dividing
the order of a group of G and every cyclic subgroup of Gp with order p or order 4 (if
p = 2) is Z-permutable in G, then G is p-nilpotent.

Our last results concern the Z-permutability of the minimal subgroups of the
Sylow p-subgroup in Z and include the above result as a particular case.

Theorem 7 Let G be a p-soluble group such that every cyclic subgroup of Gp with
order p or order 4 (if p = 2) is Z-permutable in G. Then G is p-supersoluble.

Theorem 8 Let G be a group such that every cyclic subgroup of Gp with order p or
order 4 (if p = 2) is Z-permutable in G. Either Gp has order p or G is p-soluble.

Corollary 5 Let G be a group such that every cyclic subgroup of Gp with order p
or order 4 (if p = 2) is Z-permutable in G. Then either Gp has order p or G is p-
supersoluble.

Corollary 6 ([12, Theorem 3.3]) If p is the smallest prime dividing the order of G
and every cyclic subgroup of Gp with order p or order 4 (if p = 2) is Z-permutable
in G, then G is p-nilpotent.
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2 Preliminaries

Suppose that G is a group and N a normal subgroup of G. Following [1], we write
ZN = {GqN : Gq ∈ Z}, ZN/N = {GqN/N : Gq ∈ Z}, and Z∩X = {Gq∩X : Gq ∈ Z}
for all subgroups X of G.

Lemma 1 ([1, Lemma 2.1]) Let G be a group and N a normal subgroup of G.

1. Z∩N and ZN/N are complete sets of Sylow subgroups of N and G/N, respect-
ively.

2. If U is a Z-permutable subgroup of G, then UN/N is ZN/N-permutable. If U is
contained in N, then U is Z∩N-permutable.

The following well-known fact, which follows from the repeated application of
[10, Kapitel I, Hilfssatz 7.7a)], will be used in this paper without further notice.

Lemma 2 Let S be a subnormal subgroup of a group G and let Q be a Sylow q-
subgroup of G, where q is a prime. Then Q∩S is a Sylow q-subgroup of S.

The following result, due to Vdovin, turns out to be crucial in the proofs of some
of our results.

Theorem 9 If, for every prime q 6= p, G possesses a Hall {p,q}-subgroup, then G is
p-soluble.

The above theorem is a consequence of the following lemma, whose proof re-
quires a bit of notation.

Let q be a natural number, and r an odd prime such that gcd(q,r) = 1. Let e(q,r)
denote the multiplicative order of q modulo r, that is, the least natural number t with
qt ≡ 1 (mod r). For an odd q, we set e(q,2) = 1 if q ≡ 1 (mod 4) and e(q,2) = 2
otherwise.

Lemma 3 Let r be a prime. Then, for every simple group S with r ∈ π(S), there exists
s ∈ π(S) such that S does not possess a Hall {r,s}-subgroup.

Proof Suppose, by contradiction, that there exists a finite simple group S and a prime
r ∈ π(S) such that, for every s ∈ π(S), S possesses a Hall {r,s}-subgroup H. Burn-
side’s paqb-theorem implies that H is soluble. We proceed case by case.

Assume first that S is an alternating group An of degree n≥ 5. If r 6= 2, then [16,
Table 2] implies that for every odd s ∈ π(G)\{p}, we have that S does not possess a
Hall {r,s}-subgroup. If r = 2, then [16, Table 2] implies that S does not have a Hall
{2,5}-subgroup.

Now assume that S is sporadic. Then the claim follows from [16, Tables 3 and 4].
Finally, assume that S is a finite simple group of Lie type over a field of char-

acteristic p and order q. If r = p, then [16, Theorem 8.3] implies that every Hall
π-subgroup of S with r ∈ π is contained in a Borel subgroup B or is parabolic. Since
B is a proper subgroup of S, there exists s ∈ π(|S : B|), and so B cannot contain a
Hall {r,s}-subgroup of S. Therefore a Hall {r,s}-subgroup H of S is parabolic. The-
orems 8.5, 8.6, and 8.7 and Table 6 from [16] imply that in this case {r,s} = {2,3}
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and S ∈ {SL3(2),SL3(3),SL4(2),SL5(2)}. In all these cases, there is no Hall {r,s}-
subgroup for s ∈ π((qn− 1)/(q− 1)), which is always contained in π ′ ∩π(G) if G
has a proper Hall π-subgroup with |π| ≥ 2.

Assume that r 6= p is that r is odd. If S is an exceptional group of Lie type and S is
neither a Suzuki nor a Ree group, then [16, Table 7] implies that S ∈ E{r,s} if and only
if e(q,r) = e(q,s). Now by the decomposition of |S| as a product of polynomials in q,
there exists an odd s∈ π(S) with e(q,r) 6= e(q,s), and so S does not have a Hall {r,s}-
subgroup. If S is either a Suzuki or a Ree group, then the claim follows immediately
from [16, Table 8]. If S is a classical group of Lie type, then [16, Table 7] implies that
S has a Hall {r,s}-subgroup only if either e(q,r) = e(q,s) or e(q,s) = b(r), where
b(r)∈ {1,r} if G = PSLn(q), b(r)∈ {2,2r} if G = PSUn(q), b(r) = 2e(q,r) if e(q,r)
is odd and G= 2Dn(q), b(r) = e(q,r)/2 if e(q,r) is even, 4 does not divide e(q,r) and
G = 2Dn(q). In particular, if e(q,s) 6= e(q,r), then e(q,s) can take at most two values.
If the rank of S is at least 2, then |{e(q,s) | s ∈ π(S)\{p}}| ≥ 3, and so there exists
s such that e(q,r) /∈ {e(q,r),b(r)} and therefore S /∈ E{r,s}. If the rank of S is less
than 2, then S ∼= PSL2(q). If S = PSL2(q) and e(q,r) = 1, then there exists s ∈ π(S)
with e(q,s) = 2 and [16, Tables 7 and 10] imply that S /∈ E{r,s}. If S ≡ PSL2(q) and
e(q,r) = 2, then S /∈ E{r,p}.

Finally, assume that r = 2 and r 6= p. If S 6= SL3(3), then S /∈ E{2,p} by the argu-
ments presented for the case r = p. If S = SL3(3), then S /∈ E{2,13}.

Corollary 7 Let G be a group and p ∈ π(G). Assume that

1. all maximal subgroups of Gp ∈ Z are Z-permutable and Gp is not cyclic, or
2. all 2-maximal subgroups of Gp ∈ Z are Z-permutable and Gp has no cyclic max-

imal subgroups.

Then G is p-soluble.

Proof Assume that 1 holds. Then Gp possesses two maximal subgroups M1 and M2,
both Z-permutable. Then M1M2 = Gp is Z-permutable. This implies that GpGq is a
Hall {p,q}-subgroup of G for each q 6= p. By Theorem 9, G is p-soluble.

Assume that 2 holds. Let M1 be a maximal subgroup of Gp. Since M1 is not
cyclic, M1 possesses two maximal subgroups M11 and M12. Since both of them are
Z-permutable, M1 = M11M12 is also Z-permutable. Hence 1 holds and G is p-soluble.

3 Proofs of the main results

Proof (of Theorem 1) We prove that A/CoreG(A) is soluble by induction on the order
of G. Since A/CoreG(A) is (ZCoreG(A)/CoreG(A))-permutable in G/CoreG(A) by
Lemma 1, we can assume that CoreG(A) = 1. Let r be a prime dividing |G| and let
R be the Sylow r-subgroup of G in Z. Consider X = AR. Let q be a prime different
from r and let Gq be the Sylow q-subgroup of G in Z. Since A is subnormal in G,
Gq ∩ A is a Sylow q-subgroup of A. Moreover, A is (Z∩ X)-permutable, because
Z∩X = {R}∪ {Gq ∩A | q 6= r}. Moreover A is subnormal in X . Assume that X is
a proper subgroup of G. By induction, the soluble residual AS of A is contained in
CoreX (A) = CoreR(A). Consequently, AS = (AS)

S ≤ CoreR(A)
S ≤ AS. It follows



Z-permutable subgroups of finite groups 7

that AS=CoreR(A)
S is a normal subgroup of X . In particular, R≤NG(AS). Suppose

that for every Sylow subgroup R of G in Z, AR is a proper subgroup of G. It follows
that R≤ NG(AS) for each R ∈ Z. Hence AS is a normal subgroup of G. Thus AS ≤
CoreG(A) = 1. Consequently A is soluble, as wanted.

Therefore there exists a prime r and a Sylow r-subgroup R of G in Z such that
G = AR. Let q be a prime different from r and let Q be a Sylow q-subgroup of G.
The subnormality of A implies that Q∩ A is a Sylow q-subgroup of A. By order
considerations, Q∩ A = Q and so Q is a Sylow q-subgroup of A. It follows that
Or(G) ≤ CoreG(A) = 1. In particular, G is a r-group and so G is soluble. Hence,
A is soluble.

We conclude that 〈AG〉/CoreG(A) is soluble.
Suppose that Z is a Sylow basis of G. We shall show that AG/CoreG(A) is nilpo-

tent. Without loss of generality we may assume that CoreG(A) = 1. Let B =
⋂

q Oq(A)
be the nilpotent residual of A. Let r be a prime dividing |G| and g ∈ G. Then g =
xy, where x is an element of Gr and y is a r′-element of Z = ∏q6=r Gq. It follows
that Br = B∩Gr = Or(A)∩Gr is a Sylow r-subgroup of B. Applying [3, Lemma
1.1.11], we have that Or(A) = Or(AGr), which is a normal subgroup of AGr, and
that Or′(A) = Or′(AZ), which is a normal subgroup of AZ. In particular, Gr normal-
ises Or(A) and Z normalises Or′(A). Moreover, Br is contained in Or′(A)

y
= Or′(A).

Since Gr normalises Br, it follows that Bg
r = By

r is contained in Or′(A) and so it is
a subgroup of A. Consequently, the normal closure 〈BG

r 〉 is contained in A and then
〈BG

r 〉 ≤ CoreG(A) = 1. Hence B = 1 and A is nilpotent.
Therefore, 〈AG〉/CoreG(A) is nilpotent.

Proof (of Theorem 2) We argue by induction on |G|. Assume that V Gp is a proper
subgroup of G. Then U ∩V Gp is a subnormal subgroup of V Gp. Since UGp∩V Gp =
(U ∩V Gp)Gp is a subgroup of G, U ∩V Gp permutes with the Sylow p-subgroup Gp
of V Gp. The induction hypothesis implies that Gp permutes with (U ∩V Gp)∩V =
U ∩V . Therefore we may assume that G = V Gp. An analogous argument with the
subnormal subgroup U of UGp and V ∩UGp shows that G = UGp. Let q 6= p be
a prime dividing |G| and let Gq be a Sylow q-subgroup of G contained in V . Then
Gq∩U is a Sylow q-subgroup of U since U is subnormal in G. Hence Gq is contained
in U by order considerations. This means that U ∩V contains a Sylow q-subgroup of
G for all primes q 6= p. Therefore |G : U ∩V | is a power of p. Applying [6, Chapter A,
Lemma 1.6 (b)], we conclude that G = Gp(U ∩V ) and Gp permutes with U ∩V , as
required.

Proof (of Theorem 3) Suppose that every maximal subgroup of Gp ∈ Z is Z-permut-
able and that Gp is not cyclic. By Corollary 7, G is p-soluble. Assume that G is not
p-supersoluble and consider G of least possible order. Let N be a minimal normal
subgroup of G. Let M/N be a maximal subgroup of PN/N. Then M/N = M1N/N
for some maximal subgroup M1 of P. Since M1 is Z-permutable, it follows that M/N
is ZN/N permutable by Lemma 1. Then GpN/N has all maximal subgroups ZN/N-
permutable. Assume that N is a p′-group. Since GpN/N ∼= Gp, we have that GpN/N
is not cyclic and so G/N is p-supersoluble by the choice of G. This implies that G
itself is p-supersoluble, against the hypothesis. Hence N is a p-group. Suppose that N
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is contained in Φ(Gp), the Frattini subgroup of Gp. Then Gp/N is not cyclic. Hence
G/N is p-supersoluble by the choice of G. Moreover, N is also contained in Φ(G).
Since the class of all p-supersoluble groups is a saturated formation, it follows that G
is p-supersoluble, contrary to assumption.

Consequently, N is not contained in Φ(Gp). Let M1 be a maximal subgroup of Gp
such that NM1 = Gp. Let q ∈ π(G)\{p} and let Gq be the Sylow q-subgroup of G in
Z. Thus 1 = Gq∩Gp = Gq∩NM1 = (Gq∩N)(Gq∩M1). By [6, Chapter A, Lemma
1.2], (N ∩M1)Gq = NGq ∩M1Gq is a subgroup of G. Futhermore, (N ∩M1)Gq ∩
N = (N ∩M1)(Gq ∩N) = N ∩M1 is a normal subgroup of (N ∩M1)Gq. Hence Gq
normalises N∩M1. On the other hand, N∩M1 is a normal subgroup of M1 and, since
N is abelian, is centralised by N. Therefore N ∩M1 is normalised by NM1 = Gp.
Consequently, N ∩M1 is a normal subgroup of G properly contained in N. Hence
N∩M1 = 1. But |Gp : M1|= |NM1 : M1|= |N : N∩M1|= p, hence N has order p. If
M1 were not cyclic, then G/N would be p-supersoluble by the minimal choice of G.
Thus, G would be p-supersoluble, against supposition. Therefore, M1 is cyclic and
G/N has cyclic Sylow p-subgroups. This implies that every p-chief factor of G/N is
cyclic and G/N is p-supersoluble. Thus, G is p-supersoluble. This final contradiction
completes the proof.

Proof (of Theorem 5) We prove that G is p-soluble by induction on the order of G.
Applying Step 3 of the proof of [14, Theorem 3.3], G cannot be non-abelian simple.
Let M be a maximal normal subgroup of G. Assume that Gp is contained in M. By
Lemma 1, Z∩M is a complete set of Sylow subgroups of M and every 2-maximal
subgroup of Gp = Mp ∈ Z∩M is (Z∩M)-permutable. By induction, M is p-soluble.
Futhermore, G/M is a p′-group. Thus G is p-soluble. Therefore we may assume
that p divides |G/M|. Then Mp = M ∩Gp is a proper subgroup of Gp. Let S be a
maximal subgroup of Gp containing Mp. Suppose that S is cyclic. Then GpM/M
has a cyclic maximal subgroup. By Lemma 1, ZM/M is a complete set of Sylow
subgroups of G/M and every 2-maximal subgroup of GpM/M is ZM/M-permutable.
Therefore, by induction, G/M is p-soluble. Futhermore, since Mp is cyclic, we have
that M is p-nilpotent by [10, Kapitel IV, Satz 2.8]. Therefore, M is p-soluble and so
is G. Hence we may assume that S is not cyclic. Then S has two different maximal
subgroups which are Z-permutable. Thus S is Z-permutable. Let q ∈ π(G)\{p} and
let Gq be the Sylow q-subgroup of G in Z. It follows that Mq = M∩Gq is a Sylow q-
subgroup of M. Now, Gq permutes with S and M. Applying Theorem 2, Gq permutes
with M ∩ S = M ∩Gp = Mp. Hence, MpMq = Mp(M ∩Gq) = M ∩MpGq is a Hall
{p,q}-subgroup of G. By Theorem 9, M is p-soluble. Consequently, G is p-soluble,
as wanted.

Proof (of Theorem 6) Suppose that G is soluble and every 2-maximal subgroup of
Gp ∈ Z is Z-permutable. Assume, arguing by contradiction, that neither G is a p-
nilpotent group nor G has an epimorphic image isomorphic to Σ4. By Corollary 4
and Theorem 5, G is p-soluble.

Let N be a minimal normal subgroup of G. The quotient group G/N inherits
the hypothesis of the theorem. Therefore G/N is p-nilpotent. Since the class of all
p-nilpotent groups is a saturated formation, it follows that N = Soc(G) is a min-
imal normal subgroup of G which is complemented in G by a core-free maximal
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p-nilpotent subgroup of G, M say. Moreover, CG(N) = N and N is a p-group. Hence
N ≤ Gp, the Sylow p-subgroup in Z. Then Gp = N(Gp∩M) and there exists a max-
imal subgroup M1 of Gp containing Mp = Gp∩M such that NM1 = Gp. Assume that
Mp is a maximal subgroup of Gp. Then |N|= |Gp : Mp|= p and G is p-supersoluble.
This implies that G is p-supersoluble, which contradicts our assumption. Therefore
Mp is not a maximal subgroup of G and so Mp is contained in a 2-maximal subgroup
S of Gp = NS. Let p 6= q ∈ π(G). Thus 1 = Gq∩Gp = Gq∩NS = (Gq∩N)(Gq∩S).
By [6, Chapter A, Lemma 1.2], (N ∩S)Gq = NGq∩SGq is a subgroup of G. In par-
ticular, (N∩S)Gq∩N = (N∩S)(Gq∩N) = N∩S is a normal subgroup of (N∩S)Gq
and Gq normalises N∩S. On the other hand, N∩S is a normal subgroup of Gp. Con-
sequently, N∩S is a normal subgroup of G properly contained in N. Hence N∩S = 1
and so |N|= p2. Since CG(N) = N, it follows that q divides p+1. Hence p = 2 and
G/N is isomorphic to Σ3. Consequently, G is isomorphic to Σ4. This contradiction
proves the theorem.

Our hypothesis in the next two theorems is that subgroups of Gp with order p or
4 (if p = 2) are Z-permutable. Let us collect together the arguments common to these
two results.

Every subgroup of GpOp′(G)/Op′(G) of order p or 4 (if p = 2) is of the form
T Op′(G)/Op′(G) for some subgroup T of Gp with order p or 4 (if p = 2). Then,
by Lemma 1, every subgroup of GpOp′(G)/Op′(G) is ZOp′(G)/Op′(G)-permutable,
Hence, arguing by induction or minimal counterexample, we assume that Op′(G)= 1.
Hence F(G), the Fitting subgroup of G, is a p-group.

Assume that 1 6= F(G) and let z be an element of Z
(
F(G)

)
of order p and let y be

an element of order p of F(G). Then 〈z,y〉 is an elementary abelian subgroup of Gp
and Gq normalises 〈w〉 for each w∈ 〈z,y〉 and each q 6= p because 〈w〉= 〈w〉Gq∩F(G)
is a normal subgroup of 〈w〉Gq. Hence p′-elements of G induce power automorphims
in the abelian socle S of G. Applying [3, Lemma 2.1.3], all the G-chief factors of G
below S are cyclic and G-isomorphic.

If N is a central minimal normal subgroup of G, then Ω1
(
Op(G)) is centralised

by all p′-elements of G. Futhermore, if p = 2, every subgroup Z of order 4 of F(G)
is normalised by every 2′-element of G. Since the automorphism group of Z is of
order 2, it follows that O2(G) centralises every subgroup with order 2 and order 4 of
F(G). In this case, we can apply [10, IV, Satz 5.12], to conclude that Op(G) centralises
F(G).

If G is p-soluble, then CG(F(G))≤ F(G) by [10, VI, Hilfssatz 6.5]. Consequently,
G is a p-group.

Proof (of Theorem 7) Assume that all subgroups of Gp ∈ Z with order p and order
4 (if p = 2), with G a p-soluble, non-p-supersoluble group of the smallest possible
order, are Z-permutable.

By the above arguments, p is odd, Op′(G)= 1. Since G is p-soluble, it follows that
S, the abelian socle of G, is just Soc(G) and every minimal normal subgroup of G is
not central in G and has order p. Let N be one of them. Then CG(N) is a proper normal
subgroup of G. Let M be a maximal normal subgroup of G containing CG(N). Since N
has order p, G/CG(N) is a cyclic group of order dividing p−1. In particular, |G : M|
is a p′-group. Since Op′(M) ≤ Op′(G) = 1, it follows that Op′,p(M) = Op(M). The
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minimal choice of G implies that M is a p-supersoluble group. Hence M/Op(M) is an
abelian group of exponent dividing p− 1. Therefore Op(M) is a Sylow p-subgroup
of G. In particular, Op(M) = Gp is a normal subgroup of G.

Since G is not p-supersoluble, then G contains a minimal non-p-supersoluble
subgroup H. Hence H is one of the groups of [2, Theorem 9]. We will follow the
notation of this paper.

Assume that |H| is divisible only by two primes, p and q. Then the Sylow p-
subgroup Hp of H is contained in Gp. The Sylow q-subgroup Hq of H is contained
in a conjugate Gx

q of Gq, with x ∈ G. By taking Hx−1
if necessary, we can assume

that Hq is contained in Gq. Let x be an element of order p of H. Then 〈x〉Gq is
a subgroup of G. Now 〈x〉Gq ∩Gp = 〈x〉(Gq ∩Gp) = 〈x〉 is a normal subgroup of
〈x〉Gq. In particular, Hq normalises 〈x〉. This rules out the groups of types 2, 4, 6, 8,
and 10. Moreover, every element of order a power of q acts in the same way on all
elements of order p. This rules out the groups of type 3, 5, 7, and 9, since there are
elements x of Hp such that Hq does not normalise 〈x〉. Suppose that H is a group of
type 1. If s = 1, we consider the generator c of C, of order p, which is not normalised
by the Sylow q-subgroup Hq. If s > 1, then if c is a generator of C, cps−1

has order p
and is centralised by Hq, but Hq does not centralise the elements of order p of M. This
contradicts the fact that Hq induces the same automorphism on all cyclic subgroups
of order p.

Assume now that H has order divisible by three primes, p, q, and r. Then H is one
of the groups of types 11 or 12. As above, we can assume that the Sylow q-subgroup
Hq is contained in Gq. As before, Gq normalises 〈x〉 for each x ∈ Gp, in particular,
Hq normalises 〈x〉 for each x ∈ Hp. If G is a group of type 12, then Hp = P is an
extraspecial group of order p3 and exponent p and the elements of Hq = M act on the
cyclic subgroups of P in the same way. This is impossible since M does not centralise
P. Assume that G is a group of type 11. There exists z ∈ G such that the Sylow r-
subgroup Hr of H is contained in Gz

r. Let c be the generator of C. Given y ∈Gr, there
exists an integer t(y) such that if x is an element of order p of Gp, xy = xt(y) for each
y ∈ Gr. In particular, given an element x of Hz−1

p , xc = xt(c). Since c acts in the same
way on all elements of Gp, for every element x of Hp, xc = xt(c). But this implies
that MC acts as a group of power automorphisms on P, in particular, MC acts as an
abelian group on P. This implies that H is p-supersoluble, a contradiction.

Proof (of Theorem 8) Let G be a group in which every cyclic subgroup with order p
or order 4 (if p = 2) of Gp is Z-permutable. Assume that the order of Gp is greater
than p. We prove that G is p-soluble by induction on the order of G. Applying the
above arguments, we may assume that Op′(G) = 1 and every abelian minimal normal
subgroup of G is of order p.

Let M be a maximal normal subgroup of G. Then, by Lemma 1, M satisfies the
hypotheses of the theorem. Therefore either Mp is of order p or M is p-soluble. If M
is p-soluble, then M is p-supersoluble by Theorem 7. Since Op′(M)≤Op′(G) = 1, it
follows that Mp = Gp∩M is a normal Sylow p-subgroup of M by [3, Lemma 2.1.6].

Let A be a maximal normal subgroup of G such that A 6= M. Then G = AM.
Applying [3, Theorem 1.1.19], there exist Sylow p-subgroups Ap and Mp of A and
M, respectively, such that ApMp is a Sylow p-subgroup of G. If |Ap|= |Mp|= p, then
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|Gp| = p2 and, by Theorem 3, G is p-supersoluble. Suppose that the order of Mp is
greater than p. Then Mp is normal in G. If A were p-supersoluble, then Ap would be
also normal in G and so would be Gp. Then G is p-soluble. Assume that |Ap| = p.
Then Mp is not contained in A and so G = AMp. This means that G/A is of order p
and |Gp|= p2. By Theorem 3, G is p-supersoluble. Therefore G is p-soluble.

Therefore we may assume that M is the unique maximal normal subgroup of
G. Assume that MGp is a proper subgroup of G. Then Z∩MGp is a complete set
of Sylow subgroups of MGp and every subgroup of Gp with order p or order 4 (if
p = 2) is (Z∩MGp)-permutable. By induction, MGp is p-soluble and Mp is a normal
subgroup of G. Since Op′(G) = 1, it follows that Mp 6= 1 and F(G) = F(M) is a
non-trivial p-group. Suppose that p = 2. Since M is 2-soluble, we conclude that M
is a 2-group and so G is 2-soluble. Assume that p is odd and every abelian minimal
normal subgroup of G is non-central. Let N be one of them. Then CG(N) is contained
in M and so G/M is a p′-group. Consequently, Mp is a normal Sylow p-subgroup of
G and G is p-soluble.

We may therefore assume that G=MGp and |G : M|= p. If M were not p-soluble,
then Mp must be of order p and so the order of the Sylow p-subgroups of G would
be p2. By Theorem 3, G is p-supersoluble.

Consequently, in all cases, G is p-soluble and the induction argument is complete.

Proof (of Corollary 5) Assume that G is a group in which every cyclic subgroup with
order p or order 4 (if p = 2) of Gp is Z-permutable. If the order of Gp is greater than
p, then G is p-soluble by Theorem 8. If the order of Gp is p, then G has Hall {p,q}-
subgroups for all q ∈ π(G). By Theorem 9, G is p-soluble. In both cases, we have
that G is p-soluble. Applying Theorem 7, G is p-supersoluble.
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