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Abstract

In this note, global information about a finite group is obtained by
assuming that certain subgroups of some given order are S-semiper-
mutable. Recall that a subgroup H of a finite group G is said to
be S-semipermutable if H permutes with all Sylow subgroups of G
of order coprime to |H|. We prove that for a fixed prime p, a given
Sylow p-subgroup P of a finite group G, and a power d of p divid-
ing |G| such that 1 ≤ d < |P |, if H ∩ Op(G) is S-semipermutable in
Op(G) for all normal subgroups H of P with |H| = d, then either
G is p-supersoluble or else |P ∩ Op(G)| > d. This extends the main
result of Guo and Isaacs in Arch. Math. (Basel), 105, 215–222 (2015).
We derive some theorems that extend some known results concerning
S-semipermutable subgroups.
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Recall that two subgroups H and K of a group G are said to permute if
HK = KH, that is, HK is a subgroup of G. A subgroup H of a group G is
said to be S-permutable ([5], see also [1, Section 1.2]) in G if H permutes with
all Sylow subgroups of G, and is said to be S-semipermutable in G ([9]) if H
permutes with all Sylow q-subgroups of G for the primes q not dividing |H|.

Skiba, in his seminal paper [8], introduced the following subgroup embed-
ding property: a subgroup H of a group G is said to be weakly S-permutable
in G if there is a subnormal subgroup T of G such that G = HT and
H ∩ T ≤ HsG, where HsG is the largest S-permutable subgroup of G con-
tained in H. This embedding property of subgroups has a strong structural
impact and generalises many other known properties.

Recently, Guo and Isaacs considered in [2] the condition U ∩H E U , with
U = Op(G), for a subgroup H of order d, where d > 1 is a power of p such
that d divides |G| and p is a prime that we hold fixed. This condition is
less restrictive than weak S-permutability [2, Lemma A] and allows them to
prove the following result.

Theorem 1 ([2, Theorem B]). Let P ∈ Sylp(G) and let d be a power of p
such that 1 ≤ d < |P |. Let U = Op(G), and assume that H ∩ U E U for
all subgroups H E P with |H| = d. Then either G is p-supersoluble, or else
|P ∩ U | > d.

An interesting idea of [2] is that in the hypothesis of the theorem, only
the normal subgroups of order d are considered, not necessarily the set of
all subgroups of order d, at the drawback of obtaining as a conclusion either
p-supersolubility or a restriction on the order of the Sylow p-subgroup of
Op(G).

We prove an analogous result, but instead of assuming that all subgroups
H∩U are normal in U , we assume that all of them are S-semipermutable in U .
Our starting point is the following observation. Let A be a p-subgroup of a
group G. By [1, Lemma 1.2.16], A∩Op(G) E Op(G) if and only if A∩Op(G)
is S-permutable in G. If A is contained in Op(G), and q is a prime different
from p, then every Sylow q-subgroup of G is contained in Op(G). Hence A
is S-semipermutable in G if and only if A is S-semipermutable in Op(G).

We prove:

Theorem 2. Let P ∈ Sylp(G) and let d be a power of p such that 1 ≤ d < |P |.
Assume that H ∩ Op(G) is S-semipermutable in G for all subgroups H E P
with |H| = d. Then either G is p-supersoluble, or else |P ∩Op(G)| > d.

We present some applications of Theorem 2. They concern the structure
of a group G in which the subgroupsH∩Op(G) are S-semipermutable in G for
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all subgroups H of a fixed order d of a given Sylow p-subgroup of G, and can
be regarded as S-semipermutable versions of [2, Corollary C and Corollary E].
They can be also considered as an improvement of the following result.

Theorem 3 ([7, Theorem 3.3]). Let P ∈ Sylp(G) and let d be a power of
p such that p ≤ d < |P |. Assume that every subgroup of P with order d
and all cyclic subgroups of P of order 4 (if d = 2 and P is not abelian) are
S-semipermutable in G. Then G is p-supersoluble.

We consider first the case when d is a prime.

Theorem 4. Let P ∈ Sylp(G). Suppose that H ∩Op(G) is S-semipermutable
in G for all subgroups H ≤ P with H cyclic of order p or 4 (if p = d = 2
and P is not abelian). Then G is p-supersoluble.

Our last result concerns the case when p < d < |P |.

Theorem 5. Let P ∈ Sylp(G) and let d be a power of p such that p < d < |P |.
Suppose that H ∩ Op(G) is S-semipermutable in G for all subgroups H ≤ P
with |H| = d. Then G is p-supersoluble.

We mention that Corollary C and Corollary E of [2] by Guo and Isaacs
are immediate consequences of Theorems 4 and 5. Note that the proof of
Corollary E in [2] is incomplete.

2 Proofs
Proof of Theorem 2. Assume the result is not true and let G be a counterex-
ample of least order. Write U = Op(G), N = P ∩ U . Then |N | ≤ d
and G is not p-supersoluble. In particular, N 6= 1 and d ≥ p. Write
H = {H E P | |H| = d}. By hypothesis, H ∩ U is S-semipermutable in
G for each H ∈ H.

Step 1. Op′(G) = 1.
Write V = Op′(G) and assume that V 6= 1. Consider the factor group

Ḡ = G/V . Let H̄ be a normal subgroup of P̄ of order d. Then there is
H ∈ H such that H̄ = HV/V . Since H ∩ U is S-semipermutable in G, we
have H̄ ∩ Ū = (H ∩ U)V/V is S-semipermutable in G. Since |Ū ∩ P̄ | ≤ d,
it follows that Ḡ is p-supersoluble by the minimal choice of G. Hence G is
p-supersoluble and this is contradiction. Thus V = 1, as required.

Step 2. N is S-semipermutable in G.
Since N is normal in P of order at most d, there is H ∈ H such that

N ≤ H ≤ P . Then N = H ∩ U is S-semipermutable in G.
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Step 3. Let Y be a maximal subgroup of P . Then Y ∩ U = Y ∩ N is
S-semipermutable in G.

Since |N | ≤ d, there is an H ∈ H such that Y ∩ N ≤ Y ∩ U ≤ H ≤ Y .
Then Y ∩ N = Y ∩ N ∩ H = H ∩ N = H ∩ P ∩ U = H ∩ U . Thus
Y ∩N = Y ∩ U = H ∩ U is S-semipermutable in G.

Step 4. Let 〈NG〉 be the normal closure of N in G. Then G/〈NG〉 is
p-nilpotent. In particular, G is p-soluble.

Since 〈NG〉 ≤ U and |U : 〈NG〉| divides the p′-number |U : N |, we have
that U/〈NG〉 is a p′-group. Moreover, G/U is a p-group. It follows that
G/〈NG〉 is p-nilpotent. On the other hand, we know that G = PU and,
by Step 2, N permutes with each Sylow q-subgroup of U for every prime
q 6= p. By [4, Theorem A], the normal closure 〈NG〉 of N in G is soluble. We
conclude that G is p-soluble.

Step 5. A final contradiction.
Assume that d = p. Then N is a normal Sylow p-subgroup of U by Steps 1

and 4. Hence G is p-supersoluble, against the choice of G. Thus d > p. Let
T be a minimal normal subgroup of G contained in U . By Steps 1 and 4,
T ≤ N . Thus |T | ≤ d. Suppose that |T | < d. We argue that G/T satisfies
the hypotheses of the theorem. Clearly, 1 ≤ d/|T | < |P/T |. Let H/T be
a normal subgroup of P/T of order d/|T |. Then H ∈ H. It follows that
H/T ∩ Op(G/T ) = H/T ∩ U/T = (H ∩ U)/T , which is S-semipermutable
in G/T . This shows that G/T satisfies the hypotheses of the theorem, as
claimed. Since |P/T ∩ U/T | = |(P ∩ U)/T | ≤ d/|T |, it follows that G/T
is p-supersoluble by minimality of G. By [3, Kapitel VI, Satz 8.6], we may
suppose that T 6≤ Φ(P ). Let Y be a maximal subgroup of P such that
T 6≤ Y . By Step 3, Y ∩N is S-semipermutable in G, and so (Y ∩N)Q is a
subgroup of G for every Sylow q-subgroup Q of G with q 6= p. Since T is a
normal p-subgroup of G, it follows that T ∩ (Y ∩N)Q = T ∩Y ∩N = T ∩Y ,
which is normal in (Y ∩ N)Q. Then T ∩ Y is normalised by Q. It follows
that T ∩ Y is normalised by U . Since T ∩ Y is a normal subgroup of P , we
have that T ∩ Y E G. This implies that T ∩ Y = 1, |T | = p, and so G is
p-supersoluble, which is a contradiction.

Let |T | = d. Then T = N . By Step 4, G/T is p-nilpotent. Since the
class of all p-nilpotent groups is a saturated formation by [3, Kapitel VI,
Beispiele 7.6], T is a proper subgroup of P which is not contained in Φ(G).
Let Y be a maximal subgroup of P such that T 6≤ Y . By Step 3, N ∩ Y =
T ∩ Y is S-semipermutable in G. Arguing as in the previous paragraph, we
obtain that Y ∩ T = Y ∩ N is normal in G. This implies that T ∩ Y = 1
and |T | = p, against our assumption |T | = d > p. This final contradiction
completes the proof.
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Proof of Theorem 4. We proceed by induction on |G|. Write U = Op(G),
Up = P ∩ U . We may suppose that Op′(G) = 1. By Theorem 2, we may
suppose that |Up| > p. If G = U , then each subgroup of order p or 4 is S-
semipermutable in G. Applying Theorem 3, we get that G is p-supersoluble.
Therefore, we may assume that U is a proper subgroup of G. Clearly U =
Op(U) and every subgroup of order p or 4 of Up is S-semipermutable in U by
[1, Lemma 1.2.7]. By the induction hypothesis, U is p-supersoluble. Since
Op′(U) = 1, it follows that Up is normal in U by [1, Lemma 1.2.16]. Hence
Up is a normal subgroup of G. Assume that p = 2. Then U is 2-nilpotent
and so it is a 2-group. This implies that G is a 2-group. Therefore we may
suppose that p > 2. Then every chief factor of G below Up is cyclic, by [6,
Theorem 3.3]. Since G/Up has a normal Hall p′-subgroup, we conclude that
G is p-supersoluble.

The proof of Theorem 5 depends on the following lemmas. The first one
is the S-semipermutable version of [2, Corollary C].

Lemma 6. Let P ∈ Sylp(G) with |P | > p. Suppose that, for every max-
imal subgroup H of P , H ∩ Op(G) is S-semipermutable in G. Then G is
p-supersoluble.

Proof. With a contradiction in mind, assume that G is not p-supersoluble.
Write U = Op(G). By Theorem 2, P ∩ U = P , that is, P ≤ U , and so
G = U . This means that every maximal subgroup of P is S-semipermutable
in G. Applying [7, Theorem 3.2], we conclude that G is p-supersoluble.

Lemma 7. Let P ∈ Sylp(G) and write U = Op(G). Suppose that Up = P ∩U
is a normal p-subgroup of G and that d is a power of p such that p < d < |Up|.
Suppose also that H is S-permutable in G for all subgroups H ≤ Up with
|H| = d. Then G is p-supersoluble.

Proof. We proceed by induction on |G|. We may suppose that Op′(G) = 1.
If U = G, we can apply Theorem 3 to conclude that G is p-supersoluble.
Therefore we may assume that U is a proper subgroup ofG. Since U = Op(U)
and every subgroup of order d of Up is S-permutable in U by [1, Lemma 1.2.7],
we have that U is p-supersoluble. If p = 2, we can argue as in Theorem 4 to
conclude that G is a 2-group. Hence we may assume p > 2.

Let T be a minimal normal subgroup of G contained in Up. Assume that
|T | > d. Let H be a normal subgroup of P such that H ≤ T and |H| = d.
SinceH is S-permutable inG, we have that U ≤ NG(H) by [1, Lemma 1.2.16].
Therefore G = UP ≤ NG(H), that is, H is a normal subgroup of G. Since
T is a minimal normal subgroup of G, we conclude that H = 1, against our
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assumption |H| = d > p. Therefore |T | ≤ d. We focus now on G/T and
prove that it is p-supersoluble.

Assume that |T | < d. Then H/T is S-permutable in G/T for each H/T ≤
Up/T with |H/T | = d/|T |. If d/|T | > p, then G/T is p-supersoluble by
induction. If d/|T | = p, the conclusion follows from Theorem 4.

Assume now that |T | = d. Therefore we may assume that p is odd.
Bearing in mind Lemma 6, we may suppose that |Up| > p|T | = pd. Let K
be a subgroup of Up such that |K/T | = p. Since T is non-cyclic, there is a
maximal subgroup L of K such that K = TL. Then L is of order d and so
it is S-permutable in G. By [1, Lemma 1.2.7], K/T is S-permutable in G/T .
By Theorem 4, G/T is p-supersoluble.

Since G/T is p-supersoluble and the class of all p-supersoluble groups
is a saturated formation by [3, Kapitel VI, Hilfssatz 8.3], we may assume
that T is the unique minimal normal subgroup of G contained in Up and
Φ(G) ∩ Up = 1. By [3, Kapitel III, Satz 4.5], Up is a direct product of some
minimal normal subgroups of G. Thus |Up| = |T |, against the hypothesis
|T | ≤ d < |Up|. This final contradiction completes the proof.

Proof of Theorem 5. We may suppose that Op′(G) = 1. By Theorem 2, we
may suppose that |P ∩ U | > p. If G = U , then each subgroup of order d
is S-semipermutable in G. By Theorem 3, the conclusion follows. Suppose
that U < G. By [1, Lemma 1.2.7], the hypotheses of the theorem hold in
U . By induction, U is p-supersoluble. Since Op′(U) = 1, we can apply [1,
Lemma 1.2.16] to conclude that Up = U ∩ P is a normal subgroup of G.
Therefore all subgroups of order d are S-permutable in G by [7, Lemma 2.2].
Applying Lemma 7, we conclude that G is p-supersoluble.
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