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Abstract: Light field technologies have seen a rise in recent years and microscopy is a field where such
technology has had a deep impact. The possibility to provide spatial and angular information at the
same time and in a single shot brings several advantages and allows for new applications. A common
goal in these applications is the calculation of a depth map to reconstruct the three-dimensional
geometry of the scene. Many approaches are applicable, but most of them cannot achieve high
accuracy because of the nature of such images: biological samples are usually poor in features and do
not exhibit sharp colors like natural scene. Due to such conditions, standard approaches result in
noisy depth maps. In this work, a robust approach is proposed where accurate depth maps can be
produced exploiting the information recorded in the light field, in particular, images produced with
Fourier integral Microscope. The proposed approach can be divided into three main parts. Initially,
it creates two cost volumes using different focal cues, namely correspondences and defocus. Secondly,
it applies filtering methods that exploit multi-scale and super-pixels cost aggregation to reduce noise
and enhance the accuracy. Finally, it merges the two cost volumes and extracts a depth map through
multi-label optimization.

Keywords: depth estimation; light field; microscope; stereo matching; defocus

1. Introduction

Light field microscopy was first introduced at Stanford in 2006 [1], and later improved in the same
laboratory [2–4]. It consists of placing a microlens array (MLA) at the image plane of a conventional
microscope, allowing for the capture of light field that records simultaneously both angular and spatial
information of microscopic samples.

The main limitation of light field in microscopy is the spatial resolution [5]. To overcome this
problem, a change of paradigm was necessary, so that the MLA is set, not at the image plane, but at the
Fourier plane [6,7]. This realization of light field concept was named as Fourier integral Microscopy
(FiMic). Light field microscopy has been used for several applications, such as brain imaging of neural
activities in [8–10].

A common goal in microscopy is to estimate the three-dimensional structure of the observed
sample. Industrial solutions reach a high accuracy of the reconstruction using different techniques
as confocal microscopy [11], interferometry or variational focus [12], scanning electron microscopy
(SEM) [13], optical profilometry [14,15], or stereo cameras [16].

However, these methods also present disadvantages in terms of real-time feasibility, sample
preparation and costs. Light field concept provides a simpler and inexpensive approach that allows
for many applications in real-time. On the other hand, because of the lack of texture and the presence
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of repetitive patterns that characterize microscopic samples, the task of extracting a depth map from
such light fields presents many challenges.

To address these challenges, different methods have been proposed, whose main limitation
still is the final resolution: in [17] optical flow and triangular meshes are used, and in [18] a Lytro
consumer camera is used to build a light field microscope and a variational multi-scale optical flow
algorithm is used to estimate the depth. An interesting approach to estimate depth of thin structure
has been proposed in [19], obtaining high quality results at the price of targeting only a small subset of
biological images.

Depth estimation from light field images has already been largely studied and different
approaches were proposed, using epipolar plane images [20,21], angular or spatial information [22,23],
focal stack [24] and correspondences cues combined [25], explicitly modeled occlusion-aware
approaches [26], robust pseudo random field [27] and learning based costs [28].

In previous works we extended similar applications to the case of focused plenoptic cameras
(plenoptic 2.0) using MLA with a large number of microlenses, where the raw image contains
micro-images capturing a portion of the scene. The main targets were the lens selection process
for such MLA-based cameras [29] and evaluating different methods for depth estimation [30].

However, FiMic images constitute another special case. Because of MLA position and structure,
the light field is sampled differently. It samples the light field as a conventional plenoptic camera
(plenoptic 1.0), while at the same time the perspective views are arranged on a hexagonal grid and
exhibit large disparities between them, thus an interpolation to transform them into a rectangular grid
would produce strong artifacts.

The main contribution of our work is the creation of a framework where different methods are
unified and adapted to obtain a more robust and accurate approach. It takes the above-mentioned
conditions into account and provides a method for recovering accurate depth information using a
sparser light field, i.e., lower number of views with higher disparity shift. The method can be applied
not only to FiMic, but also to images acquired with conventional light field cameras, by choosing only
a subset of the perspective views, or to sparser light fields.

The structure of the rest of the paper is as follows: in Section 2, the Fourier Integral Microscope
will be described; in Section 3, the depth estimation workflow is explained; in Section 4, a Comparative
Performance Analysis to prove the quality of the proposed method is performed; then in Section 5,
a potential application is shown to enhance the importance of the contributions; and finally in Section 6,
a brief summary of the proposed work is given.

2. Fourier Integral Microscope

The presented work takes as input light field microscopy images. The light field microscope used
here is the FiMic described in [7]. In the FiMic design shown in Figure 1 the MLA is conjugated with
the aperture stop (AS) of the microscope objective (MO). In this way, the sensor, that is placed at the
focal plane of the MLA, captures the perspective views directly.

Figure 1. This is the schematic of the FiMic design. From left to right it is possible to distinguish the
object, the microscope objective, two lenses (L1 and L2), one field stop, the MLA and the CCD sensor.
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Changing the focal length of the two lenses L1 and L2, the designer can change the number of
microlenses that fit in the diagonal of the AS. This affects the resolution limit (r) and the depth of field
(DOF) as follows [7]:

r = Mn
λ

2NA
(1)

DOF =
5
4

λ

NA2 M2
n. (2)

In these equations λ is the wavelength of the incoming light, NA is the numerical aperture of
the MO and Mn is the number of microlenses that fit in the diameter of the AS. Note that usually
the resolution capacity of an optical system is evaluated in terms of r−1. It must be underlined that
increasing Mn has two effects; a decrease of the resolution capacity and an increase of the DOF.
An optimal setup for 3D microscopy aims to reach the highest resolution and the largest DOF, but as
previously stated, these two factors are inversely affected by Mn. Therefore, depending on the sample
to be reconstructed, Mn will be chosen according to the resolution and DOF required.

A typical example of an image acquired with this microscope can be seen in Figure 2, which
includes seven elemental images, i.e., perspective views. These images can be seen as a particular
case of a multi-view stereo imaging system, where different viewpoints are arranged on an
hexagonal grid, having images aligned along at least three epipolar lines. This makes it suitable
for correspondence matching.

Moreover, from such views a focal stack of refocused images can be extracted, by overlapping to
the central one a shifted version of the elemental images, where the shift has to be oriented towards
the center and will be the measure of the depth of the focal plane obtained. The depth of refocusing
(zR), with respect to the focal plane of the MO (considered as zR = 0µm) can be calculated with the
following formula [7]:

zR = s
f 2
MO
fL

(
f2

f1

)2 δ

p
. (3)

Here fMO, fL, f2 and f1 are respectively the focal lengths of the MO, MLA, L2 and L1. Besides, δ

is the pixel’s pitch, p is the MLA’s pitch, and s is the integer number of shifted pixels applied to the
focal stack. The use of defocus cue is then directly applicable to the generated focal stack. Due to these
basic considerations, our approach aims to create a depth map by combining these two types of vision
cues that are suitable for light field images.

Figure 2. The setup used for the acquisition with the fluorescence laser used to illuminate the
samples, and a sample output image acquired with such setup, from where the seven elemental
images are visible.

3. Depth Map Calculation

The presented work builds on several successful ideas proposed for the depth estimation. The core
consists in combining different visual cues, namely focus and correspondences, as in [25], to create a
more versatile method, but it differs in the depth estimation.

The main contribution of this section is the combination of existing ideas and novel
implementations. As it is possible to see in Figure 3, the depth estimation process can be divided into
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intermediate steps that contributes to the outcome of the algorithm. To achieve high quality results
without losing in robustness and flexibility, we designed the estimation process to allow full controls
over the parameters and fine-tuning for each single step.

Figure 3. Pipeline of the depth estimation process. The name of cost volume (e.g., Cde f , Ccor) are
consistent with the ones used in the paper.

The pipeline consists in several steps: first, two cost volume cubes are calculated using respectively
the elemental images, in Section 3.2, and the focal stack, in Section 3.3. These two cubes are then
refined using a multi-scale approach similar to [31] in Section 3.4 and a contribution from superpixels
inspired from [32] in Section 3.5. In Appendix A an overview of the parameters is given in Table A1.

Moreover, we introduce additional steps to increase the robustness of the algorithm and to adapt
to a vast variety of input images. In Section 3.1 priors are incorporated in the fusion of the data under
three different forms. A matting mask is applied to address the dark regions of the scenes, appearing
mostly in transparent biological samples, where the empty areas do not capture light. Areas with high
and low frequencies are weighted differently on high or low resolution depth estimation, and a failure
prediction map is used to weight the contributions of the stereo matching along different epipolar lines.

The next step consists in fusing the two cost volumes and extracting a depth map. This is
approached in Section 3.6 as an energy minimization problem, building an energy function that
combines both cost volumes and finding the minimum using a multi-label optimization framework.

Finally, we used a post-processing filter to improve the estimation and obtain a smoother depth
map. We applied a weighted median filter with integer weights followed by a guided filter, using in
both cases the central image as a reference image.

3.1. Priors Information

Priors information have been incorporated into the depth estimation pipeline to deal with different
kinds of input images, increasing the robustness and the reliability of the proposed approach.

3.1.1. Frequency Mapping

As explored in the literature in [33,34], the best improvements for the multi-scale approach are
visible across areas with different frequencies: in high-frequencies areas high-resolution images can
obtain the best results, while in low-textured and low-frequency areas a lower resolution leads towards
more robust estimation.

Based on this consideration, we built a frequency map image using the difference of gaussians.
The algorithm, calculating the difference in the amount of blur between two different blurred versions
of the same image, is able to compute a frequency value for each pixel of the reference image.

Fmap = I ∗ (g(σ1)− g(σ2)) (4)

where the reference image is denoted as I and g(σ1), g(σ1) are gaussian kernels of variance σ1 and σ2.
To obtain the desired result, we must ensure σ1 6= σ2. The pixel values will then be use to weight the
sum of the depth estimation at different scales, by quantizing the images into Fs levels, where each
level corresponds to one scaled version.
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3.1.2. Failure Prediction Map

In the stereo matching case, the correspondences search is conducted along the epipolar line: this
inevitably leads to error in estimation of structures along that line, as pointed out in [35].

We built three different sobel-like kernel filters to detect edges at respectively 0, 60 and 120 degrees
along the three epipolar lines of the hexagonal grid structures. By convolving the image with such
a filter we obtain another weight map that favours the contribution of the estimation coming from
the most appropriate direction. In Figure 4 it is possible to see the three kernels and an example of
failure maps.

3.1.3. Matting

Some of the assumptions for natural images are not valid when dealing with microscope images.
Because of the nature of the object and fluorescence illumination, some scenes exhibit a uniformly dark
colored background.

In such dark and uniformly colored areas, almost every possible approach for depth estimation is
doomed to fail. Based on these considerations, we adapt a matting approach to mask the areas we do not
want to analyze. The proposed method has two steps: the first is creating a so-called trimap, that consists
in heavily quantizing the image to three levels representing respectively foreground, unknown areas and
background. This can be done by applying a multi-level thresholding on the focused image.

After this trimap is built, the next step consists in determining if the unknown areas belong to the
foreground or background. We do this by applying one of the top performer methods in this areas,
the three-layer graph approach in [36]. It introduces a new measure for discriminating pixels by using
non-local constraint in the form of a three layer graph model to supplement local constraint, consisting
of color line model, forming a quadratic programming that can be solved to obtain the alpha matte.
The results are shown in Figure 4.

Central Image Trimap Matte Frequency map

Sobel-like Kernels Failure Map for 0
degrees

Failure Map for 60
degrees

Failure Map for 120
degrees

Figure 4. Priors under different form. For coherence, all maps are represented with brighter areas
describing higher values. For the failure maps, higher values indicate higher likelihood to fail. In the
Sobel-like kernels, bright pixels indicate positive values and dark pixels negative values.

3.2. Cost Volume from Correspondences

A stereo matching is performed to compute a three-dimensional cost volume from the elemental
images. The cost function used for this scope is
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Ccor(p) = αcTAD(p) + (1− αc)ξ(p) (5)

where we use the notation C(p) to indicate the cost of a pixel p. In this formula the combination of the
two terms is controlled by the value αc ∈ [0, 1]. The first term TAD is the truncated sum of absolute
difference and is calculated between two images:

TAD(x, y) =
+hws

∑
r=−hws

+hws

∑
q=−hws

min(τ, |I1(x + r, y + q)− I2(x + dx + r, y + dy + q)|)w(x,y,r,q) (6)

In this notation we substitute the pixel p with its x and y coordinates within the image. The sum is then
computed on a window, indices r, q are used to reach the pixel within the window and hws indicates
half of the size of the window. To deal with three different epipolar lines, the disparity can be seen as
a vector d = (d, θ) where d is the disparity value and θ the direction (θ = 0, 60, 120°) and is divided
into its two horizontal and vertical components, respectively dx = d cos(θ) and dy = d sin(θ). τ is the
threshold for truncating the difference.

The second term ξ(p) indicates the census transform and is calculated as:

ξ(x, y) =
+hws

∑
r=−hws

+hws

∑
q=−hws

HD(ξ(I1(x + r, y + q), ξ(I2(x + dx + r, y + dy + q))w(x,y,r,q) (7)

where HD(·) indicates the Hamming difference between the census transform of the window around
the pixel and the weights are calculated as described in [37]:

w(x,y,r,q) = e−
(
|I(x,y)−I(x+r,y+q)|

σc +
dist(x,y,r,q)

σd

)
(8)

where dist(x, y, r, q) =
√

r2 + q2 is the euclidean distance between the central pixel and the considered
one and σc, σd are the corresponding parameters regulating the contribution of color and distance.

The cost volume is generated as follows: the correspondences search is completed along the
three epipolar lines obtaining (NEI − 1) different cost volumes, where NEI is the number of elemental
images (NEI = 7 in our case). To merge the cost volumes, the same slice corresponding to a possible
disparity value is taken from each cost volume and combined using a weighted average. The failure
map calculated in Section 3.1 contains the weights used.

As described in [38], the cost volume is filtered using a guided image filter that takes the colored
image as a reference.

3.3. Cost Volume from Defocus

To calculate an accurate defocus map the central image is used as a reference and a difference
image for each focal plane is calculated. This allows for a more precise calculation with respect to the
defocus response case as defined in [25]: a measure of how much a pixel is in focus at a certain distance.

The difference images are calculated with respect to each focal plane in a similar manner as in the
correspondence case:

Cde f (p) = αdTAD(p) + (1− αd)NCC(p) (9)

where TAD is defined in Equation (6) and the linear combination of the two terms is controlled by
αd ∈ [0, 1]. The term NCC indicates the normalized cross correlation, calculated as:

NCC(x, y) =
+hws

∑
r=−hws

+hws

∑
q=−hws

(
σ2

I1 I2
(x + r, y + q)

σI1(x + r, y + q)σI2(x + r, y + q)

)
w(x,y,r,q) (10)

where the weights w(x,y,r,q) are defined in Equation (8) and σI1I2, σI1, σI2 indicates respectively the joint
variance, the variance of the first and of the second image. The cost volume is built by stacking the
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difference images calculated for each focal plane. The cost volume is also filtered using a guided filter
as in [38].

3.4. Multi-Scale Approach

Cost volume filtering using a multi-scale approach has shown promising results in refining the
cost volume for a higher accuracy of the final depth map [31]. To add consistency and robustness
to the proposed cost function, we then adopt a multi-scale approach. Taking inspiration from [31],
we build three different layers with a scaling factor s = 2, to ensure coherence among images. It has
been verified in [31] that building more levels does not significantly improve the final estimation. The
cost volume calculated on the smaller scale is then upscaled back and propagated to the initial cost
volume.

Differently from [31], however, we do not propagate only the best results of the down-scaled
estimation. This idea ensures faster computations, but can lead to larger errors. Instead, we sum
the whole cost volume using a weighted average based on the priors information, in this case the
frequency map.

Cmsc(p) = ws0(p)C(p) + ws1(p)Cs1(p) + ws2(p)Cs2(p) (11)

As shown in Equation (11), the multi-scale cost (Cmsc) is a weighted contribution of the cost
computed at different scales, being Cs1 and Cs2 respectively the costs computed at scale s1 = 2 and
s2 = 4. In Equation (11) C(p) indicates a general cost volume: in our case this is applied to both cost
volumes, calculated in Equations (5) and (9). From now on they will be denoted as Cde f ,msc and Ccor,msc.

The weights wsi, i = 0, 1, 2 come from the frequency map, that is quantized into a number of levels
matching with the number of scales used, and calculated as:

wsi(p) =


γ1 if p ∈ fi
γ2 if p ∈ fi±1
γ3 otherwise

(12)

where we ensure 1 ≥ γ1 ≥ γ2 ≥ γ3 ≥ 0, and typical values are γ1 = 0.6, γ2 = 0.3 and γ3 = 0.1. Here
we denote with wsi the weight relative to the i-th scale, with γsi the parameter controlling the weight
of i-th scale contribution and with fi and fi±1 the i-th and (i ± 1)-th level of the frequency map.

This allows to shape the cost volume based on the characteristics of the pixels, e.g., pixels that
belong to high frequency areas will have a cost based on higher resolution and viceversa, pixel from
texture-less regions will have a cost built using the lower resolution.

Tuning the parameters allows us to control the impact of the down-scaled version, and by
changing them we can obtain more detail-preserving or smoother depth maps. Note that by setting
both γ1 = γ2 = γ3 = 0.33 we obtain a standard multi-scale approach that does not make use of the
priors information.

3.5. Superpixels

Another technique that reported significant improvement in the cost volume filtering is using
superpixels. Superpixels were introduced in [39] and exploited in the depth estimation task [19,32].
The idea behind this consists in grouping pixels with similar characteristics to obtain a more consistent
depth estimation. The superpixels are built using two parameters, controlling respectively the
approximate size and the similarity between the pixels.

For the depth estimation task there are two main ways of using them: by choosing a small
size it can be assumed that the portion of the image corresponding to this superpixel belong to a
plane. This allows to compute a single depth value for each superpixel, as done in [19]. This works
particularly well for structures that do not exhibit abrupt changes in depth. A different way is shown
in [32], where larger size is chosen to allow different depths within a single superpixel. A histogram is
built and the best depth estimations are selected and used to filter the cost volume.
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Based on these observations we build a flexible approach that takes inspiration from the latter
one, but can be restricted to the first. We take the cost volume of the pixels within the superpixels and
extract a tentative depth map by extracting the minimum values. From this, a histogram is built, where
the highest Np peaks are selected. Then a penalizing function for the labels not being a peak is built:

z(t) = max

(
0, 1−

Np

∑
i=1

t− ind(Ni)

σ

)
(13)

where t loops through the labels (different focal planes or disparity values), the maximum function
is used to avoid negative functions, ind(Ni) indicates the index of the i-th peak and σ controls the
strictness of the index, i.e., how much a peak is widened to its neighbours. This way of building z(t)
ensures z(t) ∈ [0, 1], that provides an easy handling of the superpixels contribution. In fact, we can
sum this back to our cost volume using a penalizing factor. We can then write:

Csp(p) = C(p) + ρcsp(p) (14)

where we call Csp the cost volume updated with the superpixel contribution shown as csp(p), while ρ

is the factor that controls the impact of the contribution. In Equation (14) C(p) indicates a general cost
volume: in our case this is applied to both Cde f ,msc and Ccor,msc to obtain respectively Cde f ,msc,sp and
Ccor,msc,sp. Typical values are ρ = 0.2, Np = 3 and σ = 3.

Note that by changing the parameters and ensuring a smaller size of the superpixels, a maximum
number of peak Np = 1 and a small σ, we could obtain a single depth for superpixels, as in [19]. The ρ

parameter controls the contribution to the cost volume, with a large value of ρ leading to strongly
shape the cost volume for pixels belonging to the same superpixel, and a small value of ρ reducing the
cost for having different values within the same superpixel.

3.6. Depth Map Extraction

Many approaches are applicable to extract the depth map from the cost volume. Local and
semi-global approaches as winner-takes-all (WTA), semi-global matching (SGM) and more global
matching (MGM)[40] are shown to be outperformed from global approaches, where the depth map
refinement is posed as an energy minimization problem. The general solution is obtained through
minimization of an energy function that depends on two terms, one data term accounting for the cost
volume and a smoothness to ensure consistency between neighbouring pixels.

The energy minimization problem can be addressed using several approaches: the most used
approaches consist in using Markov random field, as in [25] where the two cost volumes are refined
based on their confidence, or in [41] where different energy functions are analyzed, using graph cuts
as in [23] or belief propagation as in [42], or a combination of the above methods [43].

We have chosen to use the graph cuts method to minimize an energy function defined as:

E(p) = Edata(p) + Esmooth(p) (15)

Intuitively, the data term should include both cost volumes. We used a strategy that allows
to cleverly merge the two cubes. By extracting two tentative depth maps using a winner-takes-all
approach, some initial considerations can be made. We mainly encounter two cases: one where both
guesses agree on a depth value and one where the cost curves have different shapes. The idea here is to
apply different weights in these two situations: in the case where there is a large difference, we assume
the pixel is unreliable, being either in a texture-less area or part of a repetitive pattern, thus we choose
to stick with the defocus estimation, that is most likely to have a guess similar to the real one. In the
second case, we choose to give more weight to the correspondence matching, because it is most likely
to be more accurate.
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We model this by creating an absolute difference map Mad = 1
K |dde f ,wta − dcor,wta|, where dde f ,wta

and dcor,wta are respectively the tentative depth map from the defocus and correspondence cost volumes
and K is just a normalization factor, that will be used to weight the two contributions of each slice of
the cost volume.

Moreover, we want to exploit the points where the two estimations agree. We thus select the
reliable pixel where the difference map has its minimum (Mad = 0) and for these pixels we penalize
the curve with proportion to the distance from the minimum, creating ground control points that are
less likely to change their value during the optimization and will serve to distribute the correct value
to unreliable neighbours.

The final sum of these contributions can be expressed as

Edata(p) = (1−Mad(p))Cde f ,msc,sp(p) + Mad(p)Ccor,msc,sp(p) + βPgcp(p) (16)

where Cde f and Ccor are respectively the cost volume for defocus and correspondences and Pgcp is the
penalty function used on the ground control points cost curve to enhance the minimum and β is just a
scaling factor. The smoothness term ensures consistency across the four adjacent neighbours and can
be expressed as Esmooth(p) = ∑q∈N |l(p)− l(q)| where N contains the four neighbours of p and l(p)
indicates the pixel’s label, i.e., its depth value.

The energy is minimized using a multi-linear optimization as explained in [44–46]. The final
depth map is filtered using a weighted median filter with integer weights and a guided filter to remove
last outliers while preserving structures.

4. Comparative Performance Analysis

The algorithm has been planned for images acquired using the FiMic light field microscope [7],
where only visual comparison is possible. Therefore, to prove the worth of the proposed work,
additional comparisons were made. We created a set of synthetically generated images with its
corresponding ground truth, where numerical analysis can be conducted.

We compared state-of-the-art work on light field microscopy on their available images and
state-of-the art in depth estimation for both real and synthetic images. Methods for light fields are not
directly applicable to our images, therefore a fair comparison could not be made.

4.1. State-of-the-Art in Light Field Microscopy

Due to its recent introduction in the microscopy field, there are not many approaches available.
To the best of our knowledge, the best approach in literature belongs to [18], that built a light field

microscope using a Lytro first generation camera. The light field in this case consists in 9× 9 views of
379× 380 pixels, with lateral views exhibiting strong presence of noise. Moreover, the scale of such
images, in the order of millimeters, are quite different from the images acquired with FiMic, that can
discriminate up to some micrometers.

Despite the image conditions, the extracted depth maps achieve a high accuracy in the
reconstruction of the captured objects and maintains consistency in the structure, as shown in Figure 5.

The first image is the head of a daisy, where both approaches reach a satisfying solution, but ours
shows a higher level of detail and robustness, visible in the three-dimensional representation.

The second object is an interesting case, where noise, defocus and very low-light condition
increases the challenges. Nevertheless, our algorithm is able to reconstruct the structure of the tip of a
pencil, that is symmetrical on the y-axis, where the previous approach could not find a solution. This is
particularly visible on the lower part of the image.
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Image Ours (3D) Ours (disparity) Ihrke et al. [18]

Figure 5. Comparison of depth images from the INRIA dataset. The color coded 3D representation
shows the structure of the objects, and the disparity is scaled to try to match the colormap used in [18].

4.2. State-of-the-Art in Depth Map Estimation

To ensure that the proposed approach achieves high quality and accurate results, we also compare
against the top performing method for stereo and depth from defocus.

We have chosen to compare with the shape from the focus method, originally published in [47]
by taking the best focus measure as analyzed in [48] and a stereo method using neural network to
estimate disparity through patches of an image, described in [49]. Unfortunately, we cannot train the
network because of lack of dataset, so the pre-trained model is used.

The first set of images, shown in Figure 6, consists of biological samples: the first two images show
cotton fibers stained with a fluorescent dye. The hird one shows the head of a zebrafish. The target is
excited with a single wavelength laser and is emitting light with longer waveleght (i.e., lower energy).
With a bandstop filter the laser’s light is filtered out and the light emitted from the sample is captured
by the sensor. The wavelength and the color depends on the fluorescent die of the sample.

Image Ours CNN SFF (LAPD) CNN +
matting

SFF (LAPD) +
matting

Figure 6. Comparison with Neural Networks (CNN) [49] and Shape from Focus (SFF) [48] on dataset
of biological samples: first two rows consist of cotton fibers, last row is the head of a zebrafish.

Therefore, the image exhibits a dark background, where the matting technique described in
Section 3.1.3 can be applied. In this case the FiMic was set in order to have: r = 2.2 µm, DOF = 46.4 µm
and ZR = 17.5 µm.



Sensors 2019, 19, 500 11 of 16

As expected, approaches from depth map estimation in natural images fail to follow the thin
structure because of the lack of texture in the dark region and the presence of repetitive patterns in
the fibers.

To ensure a fair comparison, we also applied our matting results to the estimated depth map,
obtaining more consistent results. This confirms the high quality of our approach and the robustness
of our algorithm that can tackle different kinds of input images.

This being a special case, we also evaluate the results on a different dataset. The second set of
images, shown in Figure 7, consists of images of small opaque electrical components. By using a
luminance ring it is possible to illuminate the object avoiding most of the shades. For this experiment
the FiMic was built differently so it led to: r = 14.5 µm, DOF=1812 µm and ZR = 17.5 µm. Such targets
do not need a matting pre-processing step and exhibit structure and texture, being therefore more
suitable for standard approaches.

Image Ours CNN SFF (LAPD)

Figure 7. Comparison with CNN [49] and SFF [48] on dataset of opaque electrical components.

Results on these images lead to some considerations: because of the size of the image,
the luminance condition and the reflectance of the metal, the depth map calculations are highly
challenging, as proven from results of the shape from focus method [48], that recovers only a very
noisy reconstruction. Nevertheless, more sophisticated approaches that incorporate filtering steps,
as [49], are able to reach satisfying results, obtaining comparable outcomes.

We acknowledge the lack of ground truth images in this field, therefore we propose a numerical
evaluation via synthetic images. In recent works Blender has shown to be suitable for emulating light
field behaviour and complex scenes [30,50]. We have chosen to use the Blender engine to simulate
realistic images of the fibers as if they were captured using the FiMic, thus obtaining the respective
ground truth data. To recreate realistic conditions, a special material was generated to emulate the
behaviour of semi-transparent fibers and laser illumination. Such images are shown in Figure 8.
By doing so, we also obtain the ground truth that allows for a more detailed analysis. Here we show
an example of a synthetically generated image and we recap our results in Table 1.

Figure 8. Synthetic images generated with Blender. They simulate the behaviour of the FiMic, shown
in Figure 2.

The algorithm was evaluated computing the error as the absolute value of the difference between
the estimated disparity and the real one, using the matting mask computed in our approach to reduce
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the evaluation to the interesting pixels. Results were averaged over a set of five images with different
difficulties and shapes to ensure a fair and consistent comparison. The range of the disparities varies
among different images, but is consistent within different approaches.

Table 1. Table with results from synthetic images.

Approach Error Standard Deviation

Ours 2.32555 1.8154478
CNN [49] 2.4275436 2.4392762
SFF [48] 9.379839 4.1694072

The error is lower in the proposed approach, as well as the standard deviation, confirming the
accuracy and the robustness of the method. The algorithm based on neural network [49] obtains
similar performances but still exhibits larger errors, as suggested from the higher variance value, while
the shape from focus approach [48] fails in achieving high accuracy as expected, being the most naive
approach without post-processing. Nevertheless, it shows that the generated images constitute a
challenge for off-the-shelf methods for the disparity estimation and therefore enhance the importance
of tackling such challenges.

5. Applications

Depth information can also be used for displaying the 3D information of the microscopic objects.
With the technique of [51], one of the views and its corresponding depth map can be used to generate
an integral image. This image, projected in an integral imaging (InI) monitor, provides a 3D display of
the sample.

To generate the integral image, the view and its corresponding depth map are merged into a 3D
point cloud. From this point cloud, a set of synthetic views are computationally generated, and finally
processed to obtain the final integral image, which will be projected in the InI monitor. An InI monitor
is implemented placing a microlens array in front of a pixelated screen: the lenslets of the MLA
integrate the rays proceeding from the pixels to reconstruct the 3D scene. This kind of 3D display is
autostereoscopic (glasses-free), it allows multiple observers to experience full parallax and overcomes
the accommodation-convergence conflict [52].

We implemented the InI monitor through a Samsung SM-T700 and a MLA composed of lenlets
having pitch p = 1.0 mm and focal length f = 3.3 mm (MLA from Fresneltech, model 630). We used
as input for the technique of [51] the RGB and depth images of Figure 7. The integral image obtained
and its projection in the 3D InI monitor are shown in Figure 9.

Figure 9. Integral image produced with the method described in [51] and its projection in the
3D monitor.

In this example the image reference plane is set at the background, so the MLA reconstructs the
3D object as a real image, floating in front of the InI monitor. The observer, through his binocular
vision system, perceives the depth of the reconstructed objects. A video recording the InI display is
visible at the address https://youtu.be/0fPQtckzc_8, in which the parallax and the depth sensation of
the reconstructed 3D object is apparent.

https://youtu.be/0fPQtckzc_8
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In this video, the object shows increasing parallax as we move from far to closer objects. So the
left part of the chip and the solder edges move their position with respect to the point of view, while
the right part of the chip is almost fixed. This is because during the capture, the chip was tilted with
respect to the microscope, as reflected in the depth map of Figure 7.

This technique is very effective for the visualization of the 3D structure of the microscopic samples
and proves the usefulness of our work on depth estimation.

6. Summary

The work presented in this paper addresses an important challenge, namely estimating the
depth, i.e., the three-dimensional structure of microscopic images. Because of the nature of these
images, usually different from natural images, standard approaches may fail. Moreover, due to recent
development in the light field technology, light field microscope became a valid alternative for its
several applications.

We then use the light field images captured from the recently introduced FiMic [7] that exhibit
higher resolution and we showed that the proposed algorithm is capable of accurate reconstruction of
challenging scenes, even where previous approaches were failing. These improvements can be helpful
for several applications, as presented in the last chapter for the case of lenticular stereoscopic displays,
therefore constituting an important contribution for the community.

Appendix A. Implementation Details

Here we provide a table (Table A1) for the parameters relative to the implementation.

Table A1. Parameters Table. The names are consistent with the above formulas which they are referred
to. The proposed values are a recommendation and should be adjusted for specific applications.
The knowledge of the meaning and the range allow an easier manipulation of such values.

Name Value Range Equation Meaning

σ1, σ2 11, 20
σ1 > 0, σ2 > 0,

σ1 6= σ2, (4)
The variance of the two gaussians kernel used in the
difference of gaussians, to build the frequency map.

αc 0.7 αc ∈ [0, 1] (5)
Regulates contributions of TAD and Census in the
correspondences cost volume: a higher α leads to higher
weights for Census values.

hws 3
hws > 0,

mod(hws, 2) = 1 (6), (7), (10)
Half of the size of the windows around the pixel in the
cost calculations. Window size can be calculated as
ws = 2× hws + 1.

αd 0.9 αd ∈ [0, 1] (9)
Regulates contributions of TAD and NCC in the defocus
cost volume: a higher α leads to higher weights for
NCC values.

γ1, γ2, γ3 0.6, 0.2, 0.1
γ1, γ2, γ3 ∈ [0, 1],

γ1 ≥ γ2 ≥ γ3
(12)

Used in the multi-scale part. Weights for pixels at
different scales with different labels in the frequency map.

σ 3 σ > 0 (13)
Used in the superpixels section. The width of the peaks in
the function penalizing the labels not being a peak.

Np 3 Np > 0 (13)
Used in the superpixels section. Number of selected
peaks. Such peaks will not be penalized. Larger numbers
allow more values within the same superpixels.

ρ 0.2 ρ > 0 (14)
Controls the weight of the superpixels contribution with
respect to the cost volume. ρ = 0 cancels superpixels
contribution.

The parameters are application dependent, thus the optimal value may not be the same across
different executions. We then propose for each parameter a recommended value and the range within
which it should vary, followed by a brief explanation of its meaning.
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Supplementary Materials: Open-source code is available at: https://github.com/PlenopticToolbox/
RobustDepthLFMicroscopy. Images acquired with the Light Field Microscope (FiMic) are also provided.
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