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1., INTRODUCTION.

There are many topics in General Relativity where matter is
represented by a mixture of two fluids. In fact, some astrophysical and
cosmological situations need to be described by %%energy tensor made with
the sum of two or more perfect fluids rather that with only one. Dunn [1]
has, recently, outlined some remarkable features of two-perfect fluid
models in Gidel type spaoetime; in which a fluid represents the matter and
the other one the isotropic radiation in the universe. Letelier [2] studied
two-perfect fluid solutions of the Einstein’'s equations when the velocities
of both components are irrotational. Bayin [3] derived some analytic
solutions for an anisotropic fluid and he argues the possibility that
certain solutions could be interpreted as due to a pair of perfect fluids.
Inhomogeneous cosmologies with two interacting and comoving fluids has been
examined by Lima and Tiomno [4]; in this models, the fluids are material:

one is taken as a FRV polytropic fluid and the other as an inhomogeneous

dust.

However, at the present time, one knows few solutions of the
Einstein's equations which describe the gravitational field associated with
two noncomoving perfect fluids. We have obtained [6] a class of such
colutions where the velocity of one of the fluids is geodesic, shear free
and(?;;gggzao;;f)

The goal of this paper is to analize the algebraic properties of the
energy tensors which are the sum of two perfect fluids. Such a study seems
interesting because it is useful to know if a given metric is a solution of
the field equations with a mixture of two perfect fluids as source, or even
to construct new solutions., Letelier [21 is the first, up to our knowledge,

who has studied some algebraic aspects of this subject. The uniqueness

problem has been considered by Hall and Negm [6].

In Section 2, we consider the class of symmetric tensors which have a
spaceliker2-eigenplane. This class contains the tensors associated with the

sum of two perfect fluids as a particular case.

In Section 3, we put the following question: if a tensor T can be
interpreted as the sum of two perfect fluids, how many decompositions of T

(in two fluids) are available?. Ve shown that, generically, there exists a




two-parameter family of pairs {T1’Tz) of perfect fluids such that T +T = T.
Also, we compute the several algebraic types (8egré types) which are

compatible with this T.

Next, in Section 4, we oBtain the expressions of the velocities,
pressures and densities of T and T, in terms of the eigenvalues and

eigenvectors of T.

Finally, in Section 5, it is required that the energy tensor of each
perfect fluid satisfies the Plebahski energy conditions [71. Then we give
the invariant characterization, i.e. the necessary and sufficient
requirements for a given tensor T splits in the sum of such two fluids. The
results, without proof, of this section were comunicated (8] to the Spanish

relativistic meeting E.R.E.-89.

2, SYMMETRIC TENSORS WITH A SPACELIKE 2-EIGENPLANE.

Let T be a real symmetric two-tensor on the space-time (V4,g) with a
spacelike 2-eigenplane I, associated to the eigenvalue A, The signature of
the lorentzian metric g is taken to be {-+++}. In an orthonormal basis

{e ,e ,e_,e ) adapted to I, [l={e_,e_}, T can be written as
o' 4’7273 2'"3
T=A eo® eo+ B e1® e1+ C eo® e, + A (ez® ez+ea® ea) (1

when ® denotes the symmetrized temsorial product, and {90,91) generates the
timelike 2-plane ﬂi'orthogonal to I, Now, let Tl.be the restriction of T on
ni} then, assuming that nt is known, the tensor Tl'provides supplementary

algebraic properties of T. The eigenvalues of Tl'are given by

-1 /B
S (B- AT VE) 2
with 2 2 2 8
&= (A+B)-4CT = (A~ A) o (3
And introducing the invariant
A= =KD = A = C= A+ NB-N) 1)
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A% results:
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Lemma 2.1. Let T be a symmetric tensor with a spacelike 2-aigenplane;
then, T is of Segré type2

a) {1,111y iff & > 0 and A &= 0,

p) {1¢11L)Y iff & > 0 and A = 0,

oy either {(1,1)(11)} or {2(11)) 1ff & = 0 and A > O,
d4) either €(1,111)) or {211} iff &6 = A =0,

ey {zz(11)) iff & < 0.

Clearly, the Begré types {(21)1), {31} and {(31)) are forbidden. So,
the case with a strict triple eigenvalue only corresponds to {1(111)}. In-
the cases c) and d), the Segré types can be dietinguished by the minimal
equation of T,. 8o, T =0 characterizes (1,111} and {(1,111)) types , and
T =0 (with T #O) the {2(11)) and {(2112} +ype=, being T the +trace free
part of T with respect the induced metric om nt ‘

From ¢(3) and (4) we have

St 4 A= (A +A_-2X 220 (5

From this equation and according to c¢) and d), we have A= 0if &6 =0, and

AS>SO0 if & ¢ 0, On the other hand, if A < 0 the Segré' type of T s

{1,1(11)). We will use this result below dealing with two-fluids energy
tensors.

Y

2= (A + M)A+ ML), Let\(suppose G # 0, then the .

From <(2) and (3), C

eigeﬁveotors of T associated with k+ are given by

Vi = C e0 + (A + Ri) e, (67
whence
1
g(v+,v+) =t 3 Y& (A + B t VY& (N
(34 Pﬂ w)x Van,

? For a comprehensive explication of Segré notation see, for exemple, [ol.




The vectors v, are complex conjugate when & < 0 and they have a timelike
real part and a spacelike imaginary part. When & = 0, then v, are collinear

null vectors. Furthermore, from (3) énd (7).4£Zresults:

k. \M:,v e.

Lemma 2.2. For a tensor T as given by (1) and wi?h S » 0, the sign of
doleyrwn Lint
A+B is the same for any orthonormal basis. This sign ,%néviﬁgég the causal

character of the eigenvectors v, of T according to

sgn. [g(v,,v )] = £ sgn, (A+B) &

e shad:

Wy
é@é Lemma 2.2. is useful,ﬂtaxistﬁgyzfthe Segré types {1,1(11)} and
5./
{1¢111>). In particular, it allow§{Y£o discriminaﬁg)\f?e Segré subtypes
(1, (111>) and €(1,111), ( betneon)

3. TWO-PERFECT FLUID ENERGY TENSOR.

Henceforth, we consider the tensors which are obtained as the sum of
two perfect fluids, Ti=<pi+ pi)ui®ui t p8 (i=1,27, that is

T = T1+ Tz= (pa+ pi) u® u + (FE+ pz) u® u, + (p+ pz) g ()

where o, Py and uy stand for the proper energy density, pressure and unit
velacity of each fluid, respectively. No assumption about energy conditions
is made in this Section, which will be devoted to study general properties
of T.

Clearly, T admits a spacelike 2-eigenplane [1 of eigenvalue k=p1+p2. Ve
can then write, without loss of generality, ui= ohqbi e, + sh¢i 8, ~where
{60’61} is an orthonormal basis on the 2-plane Hll By comparing (1) - with

(9, it follows

_ 2 2
A + A= Qioh ¢; + chh ¢2 {10a)
B - A = Qsh'¢ + Qsh’e (10b)
R Qsh ¢,
2C = Qsh 2¢, + Q,sh 2¢, (10c)

where QiE pi+ Py




Q4 s
If A, B, C and A are given, the—equatioms (10) constitute a linear
system in the unknown Q and Q , with coefficients depending on ¢, and @,
ThUSy there exist a solution if and only if, the determinant of the

extended matrix vanishes, that is to say, ¢ and ¢ satisfy the relation

(th¢ - th¢ Yy [ a4+ XD th¢ th¢ -G (th¢ + th¢ y+B-Xx1 =0 D

0. c\.'\/

Vhen both perfect fluids are ntilted” gge respect to _the other, that |is
noncomoving (¢1¢ ¢z), every solution to eq, (117 leads to a solution

<Q1’Qz) to egs. (10). Thus, we have the following:

Theorem 3.1. An energy tensor T can be interpreted as the sum of two
noncomoving perfect fluids if, and only if, it is of the form (1) and the

equation
(A + XD th¢1th¢2 -G (thqb1 + th¢z) +B-AN=0 (127

admits a solution (¢1,¢2) such that ¢1¢ ¢2,

Theorem 3.2, Let T be an energy tensor sum of two noncomoving perfect
fluids. Theq¢,every solution (¢Q’¢z) to eq. (12), with ¢1¢ ¢2, furnishes a
one—parameter9 family of pairs {T1’Tz} of perfect fluids such that
T1+TZ=T. The velocities of the fluids are given by4

u, e + th¢i e (13

i
""@JL(‘\C \t ° é\ \0 N

and% their pressures and energy densities are submitted:=-to-the=restrictions

i

p,tp, = A ' Pitpy T Qy (147

where Qi are given by
1 - th¥g,

Qi = [CA + M) th¢j -Gl g =1 (157
th¢j-th¢i

% of course, when T is a temsor field, this parameter is a real functiomn.

4 1atin indices take values 1,2.

&)
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The one-parameter family refered tS{last theorem is generated by the
transformations leaving invariant offs. (14>, On the other hand, in Section
4 we will show that there also exiets a one-parameter family of solutions
(¢ ¢ ) to Eq.(12), resulting finaly (Theorem 5, 2§%; two-parameter family
of two—periect fluid interpretations. This multiplicity of  physical

interpretations has been treated previously in [61.

Let us study now which Segré types admit a two-fluid interpretation.
From (10), the invariants & and A which were defined in (3), (4) may Dbe

written as

o
il

2 2
Q%+ QO+ 2q,Q,0h 2(8,~ ¢ (16)

A

1

2
- QinSh (¢;— ¢2) (17

and taking into account igmma 2.1, we obtain some remarkable consequences.
Clearly, T is proportional to g when ¢ ¢ and Q = - Q or when ¢ P2 ¢ and

e e
Q1= Q= 03 pﬁiﬁ cases are those for which 6 A = 0, In consequence,

Lemma 3.1. The sum of two perfect fluids with Qi¢ 0 is of type
{¢1,111>) if, and only if, the fluids are comoving and Q1= - Qz.

Lemma 3.2. No tensor of type {(211)) can be obtained as the sum of
two perfect fluids.

Suppose T be of type {(1,1)(11)}. Now, ¢1¢ ¢Z because A > 0, In a
basis of eigenvectors of T, it is verified that C = 0 and A = - B, rhence no

solution exist to eq.(12). Therefore we get,

Lemma 3.3. No tensor of type {(1,1)(11)} can be obtained as the sum of
two perfect fluids.

Since the regular electromagnetic field and pure radiation field are,
respectively, of type {¢1,1)11)) and {(211)}, because of Lemmas -3.2 and
3.3, it follows:




Theorem 3.3. The energy tensor of the electromagnetic field (regular
Maxwell field or pure radiation field) cannot be decomposed in the sum of

two perfect fluids.

Besides, a triple eigenvalue for T is impossible when Qi¢ 0 and ¢1¢¢E

because A # 0, Therefore& it results:

Theorem 3.4. The energy tensor sum of two perfect fluids (with Qi¢ »
is of type {1,1¢11), {1,111}, {211 or (zz<11))}. The type {1,(111)}

occurs if, and only if, the fluids are comoving.

The last assertion of Theorem 3.4. explains why in a two-fluid FRV
models [101, either the fluids are comoving or one of them is an imperfect

fluid,

Ye exclude the case Qi= 0 because it correspond to a ‘degenerate

fluid” Tia:g, and then Tj+g = T (i#]) is a perfect fluid too.

4. INVARIANT CHARACTERIZATION.

We w kQQ WO W
Bé@gw;7ﬂaﬁggaﬁggﬁggggp’discuss separately each one of the three Segré

types which are compatible with the sum of two noncomoving fluids.

a) Segré type <1,1C1132.

Let T be of type {1,111} with single eigenvalues Ko and Ri

associated respectively to normalized eigenvectors e, and e
T-= -ko e® e, + Ki e ® et A (e, @ et e ® ey’ (18>

Then% eq. (12) may be written
7

X - N,
the, the, = ——— = -A (19)

A~ A

G



which admits a solution iff |A} < 1. Now, ¢ and @, give the relative
velocity of each fluid with respeuer), and we have

Theorem 4.1. A symmetric tensor T of type {1,1(11)), gilven by (18),
admits a two-perfect fluid interpretation if, and only if, it verifies- Son (1@;;

A =21 > Ix-2n |
o 1

Theﬁfvelocities, pressures and energy densitles ‘of the fluids are
k.&m/given by Theorem 3,2., with ¢1 and ¢z given by

thg = r , the = —-—i-\— \ JA] < r] <1

where

b) Segré type {2C(11)>.

The canonical form of a tensor T of type {2(11)) in an orthonormal -

basis is [7]:

T = (¢ - xe @ e0+ (% + oe ® 91+ ® eoé et k(ez® o+ e ® eg) (202
=y
where e + e\(£he null eigenvector of T with eigenvalue &, and % 1s exactly
the sign of‘T(e0~e1,eo—ei), # = * 1, Let us examine eq.(12)., Comparing (20)
with (1), A= # - o, B=2+ o and C= % . Thus, when oA o= ® o, eq, {12)
becones th¢1+ th¢2 = 2, which has Hﬂ£g§ﬁy solution. However, when o-A & %5

eq. (12) is of the form

xy-ax+y +b=0 20




with x = th¢1, y = th¢2 and

% _orw - AtQ
8= TR e i wr @2

Clearly, a®> b which says that the invariant A defined by (4) 1is positive.

Considering the intersection of the hyperbola (21) with the domain
R={xy eR® [x] <land |y|] <1}

we have the following:

-

/, L.
Lemma 4.1. ﬂ%k/yﬁuation (21) with a2> b, admits a solution in R 1ff

X { 1, being
%, | 8

and its solutions are given by

x € [x,,*) and y = HG if [HeED | =1

x & (F1,x,] and y = H(x if |HCZD|

where

b - ax
a - X

(o Lol

In particular, when a and b have the expressions (22) it results

¥
®

+|1+

. = A -
+ 7 A - o

Now, lx+| = 1, and we have {x*l ¢ 1 4iff the sign of A-& is equal to

In consequence, we have




Theorem 4.2. A symmetric temsor T of type {2(11>), given Dby (207,
admits a two-perfect fluid interpretation if, and only if, it verifies

® (A - 20

AN,

Thé;\ﬁélncities, pressures and energy densities of the fluids are

given by Theorem 3.2., with @, and ¢ given by

2 (1 - %) +a-A

th¢az x e (-1,x), th¢2= I =% - a F N
where
x = 2+t a~- AN
- ® -+ A

) Segré type (zzC1127.

The canonical form of a tensor T of type {zz(11))} in an orthonormal

basis is [7):
= - Y pt 2
T=pul-e@e te® et ve®eHt A (e, ®6,te®e) (24

where v > 0 and eoi ie1 are the eigenvectors of T assaciated with the
conjugate complex eigenvalues Ki = u * iv . Now, comparing (24) with (17,
-A=B=xu and C=v . If A=y, eq. {12) becomes th¢1+ th¢2= 0, whose
solutions are ¢z= —¢1e (0,000, If A#u, eq.(l2) has again the form (21D with
a = v/(A-L) and b = -1, and expression (23) gives

B A N
Xy T A - M

+

App

(i
As x,x_=-1 and a® > b, it results that |x_| <1 and x| > 1. So & %[‘t
_ igmma 4.1 leads to the following: - ’

10



Theorem 4.3. Any symmetric tensor T of type (zz(11))} admits a
two-perfect fluid interpretation.

With the notation of (24>, velocities, pressures and energy densities
of the fluids are given by Theofem 3.2., with ¢l and @2 given by

N Y T ¢
v o+ (u-A)X

th¢u§ x € (~-1,x_7, ) th¢2=

where

x =0 when A = x, and

v - V/vz+ (A - y)z

S N - 4 when A 2 u

Generically, there exists one- parameter family of solutions (¢ ¢ ) to

eq. (12) with ¢ # ¢> Thus, because of theorem 3.2., the three\etudied/cases\
admet a two-parameter family of two-perfect fluid interpretations‘ Vhen T (1AMA;¢;

is considered as a tensor field, these parameters are real functions.

5. ENERGY CONDITIONS,

In this section we require that each perfect fluid satisfy the
Plebahski energy conditions [7]. Generally, this conditions are assumed for
macroscopic physics and they state that, for any observer, the energy
density is non negative and the Poynting vector is non spacelike . Thus, a
symmetric 2-tensor T satisfies the Plebahski energy conditions (called in

[11] the dominant energy condition) when
T¢u,w 2 0 and T (u,w < 0, ¥ u timelike,
For a perfect fluid T, the Plebahski conditions are equivalents to the
1nequalities Qi_ pi+ Py > 0 and Py~ pi~ 0. From <17), Q > 0 implies that

A <0, and/;ﬂ/aooount Df lemma 2.1], we have, according to previous results
(21061 O

1




O'Vl/’
Lemma 5.1, If/a/energy tensor T is the sum of +two perfect fluids

submitted to the Plebahski energy conditions then T is of type {1,141,

¥ow, if T 1is of type {1,1{1D}, we search for the additional
requiremf\)rcj‘gficin ordir”;o T may be decompossed in the sum of two perfect
fluids subxﬁitted tMnergy conditions. From Theorem 4.1, and . expressions
(15) and (10), 4t results il [oWouny ok

1 -r A-r
Q = — (A - N, Q = ———— (A~ N)
4 A+r ©

so that, both Q1 and Q2 are positive - 1ff A - )\0 > 7\1— A0 0. Also, we
have Q1+“ Q'z = ZN :’Ko —”?\1', and from (14) one geis

PP, =s=20 - Q PP, = AR -5
'"\\VT\V\ \.)’S/ /)
whence, both o ~p, and ©,-p, are positive iff -—(A X)) =52 0.!{@7(3“ fave
/t/'/g}}?/ the following theorems: y

Theorem 5.1. A symmetric tensor T may be decomposed in the sum of
two perfect fluids submitted to the Plebahski energy conditions 1if, and
only if, it is of type {1,1(11)) and its eigenvalues B 72 )Lm(ﬂg/

1
2

Y GllD

where }\o {resp. ?\1) is the simple eigenvalue of T which has associated Va

At A =0, A+ A) LA A
o 1 o 4

timelike (resp. spacelike) elgenvector,-and A is the double eigenvalue.

12




Theorem 5.2. Let T be as in the previous theorem. Then, there exist a
two-parameter family of pair {Ti,Tz} of perfect fluids submitted to the
energy Plebahski conditions such that T+ T,=T

Velocities, energy densities and pressures of the fluids are given by

u xe +re . cu. XK e - & e
1 o 1’ z o] r i
-1 (Q + 8 = A -A-A - 1 (Q +
P2 ! L, o "1 2 @+ s)
-1 1
P,= 5 Q - ) , p,= A - 3 (Q - s)

where e (resp. ei) is the unit eigenvector associated with ho (resp. Ki)

and the parameters r and s taking the values:

re (AL, s < [0, -A - A1
Q 1
with
- A 1 -1
A= 2 , Q= N = A
A - RO A+r

In Theorem 5.1. we have given the invariant characterization of the

class of tensors which admit a macroscoplc two-fluid interpretation. From
this result, and taking into account lemma 2.2, and expressions (2), (3), (Z)f(h>

- ——(4), one obtains a practical characterization in terms of the components of

T in an orthonormal basis adapted to the spacelike 2-eigenplane;:-

Aw

Corollary'5.1./,4energygtensor T may be interpreted as a sum of two
perfect fluids submitted to the Plebahski energy conditions 1if, and only
if, T has a spacelike 2-eigenplane and, with the notation of (1), T

. Vo
yerifiess: Joo\s C\, RN

AKB<A, A-B+2r>0 and CP<C(A+NEB-N

13




6. SUMMARY AND CONCLUSIONS.

Ve have presented a general study of the algebraic properties of
energy tensors which admit an interpretation as the mixture of two perfect

fluids. Ve have shown that only Segré types {1,(111)}, {1,1(11)}, {241},

and {zz(11)) are possible; the first one if, and only if, the fluids are

comoving fgﬁeorem 3.4). For every type, we give the invariant
characterization (only in terms of its eigenvalues and eigenvectors) and
fhe family (depending of two real functions) of possible interpretations
{fheorems 4.1, 4.2 and 4.3). In this part of the work no energy conditions
have been lmposed because, as it is known [7), these conditions may not be
applicable in some microphysic situations. Finally, the case of fluids

submitted to the Plebahski energy conditions has been considered (theorems

5.1 and 5.2),
X [ 422% 4%
1t follows pfl this study that there exist two degrees of freedom in

the splitting of an energy temsor T as sum of two perfect fluids, This
propert}gjwae shown in [6]. In our paper we give, for every interpretationm,
the explicit expressions of the densities, pressures and velocities. In the
case of macraoscopic fluids the degrees of freedom are given by two
functions r and s (see theorem 5.2) taking values in bounded real
. intervals. The first functingﬁis a kinematic meaning and it determines the
relative velocity of a fluid respect to the other, 3= (r + A/ry/7(L + A
the other one is thermodynamic and it fixes the- transformations leaving
invariant p1+ P, and pi+ Py Both freedoms may be useful in the research of
two-perfect fluid solutions submitted to given kinematic or thermodynanic
properties (equation of state of each fluid, law which describes thEiiﬁy

(A ®
interaction, particular movement for one or both fluids”%%/).

For example, when both components are formed by dust <pi= 0>, one has
necessarily A = 0 and, then s depends of £ which take values in (—Ki/lb,1)§
in this case there exist a degree of freedom. On the other hand, when an
isotropic radiative fluid (p1 = 3p1) and a dust (p2 = 0) are considered, s
and r are uniquely determined and then the interpretation is ;gn@?ﬂ An
approach concerning more general and kinematic restrictions will be

considered elsewhere.

14
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The paper contains the necessary and sufficient conditions for a given
energy tensor to be interpreted as a sum of two perfect fluids. Given
a tensor of this class, the decomposition in two perfect fluids (which is
determined up to a couple of real functions) is obtained.

1. INTRODUCTION

There are many topics in General Relativity where matter is represented
by a mixture of two fluids. In fact, some astrophysical and cosmological
situations need to be described by an energy tensor made up of the sum
of two or more perfect fluids rather than that with only one. Dunn [1] has
recently outlined some remarkable features of two-perfect fluid models in
Godel type space-time, in which one fluid represents the matter and the
other one the isotropic radiation in the universe. Letelier [2] studied two-
perfect fluid solutions of the Einstein equations when the velocities of both
components are irrotational. Bayin [3] derived some analytic solutions for
an anisotropic fluid and he argues the possibility that certain solutions
could be interpreted as due to a pair of perfect fluids. Inhomogeneous
cosmologies with two interacting and comoving fluids have been examined
by Lima and Tiomno [4]; in these models the fluids are material: one is
taken as a FRW polytropic fluid and the other as an inhomogeneous dust.
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However, at the present time we know few solutions of the Einstein
equations which describe the gravitational field associated with two nonco-
moving perfect fluids. We have obtained [5] a class of such solutions where
the velocity of one of the fluids is geodesic, shear free and irrotational.

The goal of this paper is to analyze the algebraic properties of the
energy tensors which are the sum of two perfect fluids. Such a study
seems interesting becanse it is useful to know whether a given metric is
a solution of the field equations with a mixture of two perfect fluids as
source, or even to construct new solutions. Letelier [2] is the first, to our
knowledge, to have studied some algebraic aspects of this subject. The
uniqueness problem has been considered by Hall and Negm [6].

In Section 2, we consider the class of symmetric tensors which have a
spacelike 2-eigenplane. This class contains the tensors associated with the
sum of two perfect fluids as a particular case.

In Section 3, we put the following question: if a tensor T' can be
interpreted as the sum of two perfect fluids, how many decompositions of
T (in two fluids) are available? We show that, generically, there exists a
two-parameter family of pairs {11, T3} of perfect fluids such that Ty +T3 =
T. Also, we compute the several algebraic type (Segré types) which are
compatible with this 7' .

Next, in Section 4, we obtain the expressions of the velocities, pres-
sures and densities of T} and Ty in terms of the eigenvalues and eigenvectors
of T. :

Finally, in Section 5, it is required that the energy tensor of each -
perfect fluid satisfy the Plebanski energy conditions {7]. Then we give the
invariant characterization, i.e. the necessary and sufficient requirements for
a given tensor T split in the sum of two such fluids. The results, without
the proof, of this section were communicated to the Spanish relativity
meeting E.R.E.-89 [8]. '

2. SYMMETRIC TENSORS WITH A SPACELIKE 2-EIGENPLANE

Let T be a real symmetric two-tensor on the space-time (V4, g) with a
spacelike 2-eigenplane II, associated to the eigenvalue A. The signature of
~ the lorentzian metric g is taken to be {~ +++}. In an orthonormal basis
{eg,e1,e2,€a} adapted to II, I = {ez, e}, T can be written as

T = Aeo ® eo + Be1 ® e1 4 Ceg®e1 + A(e2 @ e2 + €3 ® e3) (1)

where & denotes the symmetrized tensorial product, and {eo, e1} generates
the timelike 2-plane I+ orthogonal to II. Now, let T; be the restriction




