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ABSTRACT:

It is shown that, from the causal point of view, the space-time admits 199,

and only 199, different classes of frames.



[, INTRODUCTION

The space-time is usually described as a four dimensional lorentzian
manifold. Its topology, its differentiable and metric structures, its
asymptotic properties have been the object of many studies; from the formal
point of view there is no doubt that the notion of space-time is at present

well defined.

In spite of this fact, a good physical comprehension of this notion
has not yet been attained. One of the points that contribute to this
situation is our wunability to conceive directly1 local domains of the

space-time.

The importance of this deficiency may be more sensibly explained by
comparing the up to now evolution of the notion of space-time to the

ancient elaboration of the notion of space.

For our purposes, this elaboration may be considered as achieved after
the work by Aristarchus of Samos. Before it, in the historical evolution of
the notion of space, one may find the following succesive sketcheszz For
the EgyptiansB, about 2.500-2.300 b.C., the earth is a flat disk crossed by
the Nile and surrounded by the sea, and the heaven, separated from the
earth by the atmosphere, is supported by eight columns4; About 2.300-1.500
b.C., the scenario is quite similar, but the heaven is supported by four
columnss; For the Greeks, long before 600 b.C., the éar‘th is a flat disk
surrounded by the Ocean river, and the heaven is supported, at occident, by
two columns6; About 600 b.C., there are no columns at all, the heaven is
leaned upon the Ocean river forming the Vault of Heaven7; Anaximander,
about 570 b.C., transforms the Vault to a Celestial Sphere and reduces the
earth to a relatively small cylinder8; Aristarchus of Samos, about 270

b.C., affirms that the earth is spherical and turns around the sung.




The important heuristic point here is that during the first steps, the
space is constructed by elevation of the heaven over the earth, and so it
appears as a ground e height composed notion. This notion begins to change
asymptotically with the Vault of Heaven, loses its global character with
the cylinder of Anaximander ‘and transforms its basic ingredients (ground
and height) in simple local frame parameters with Aristarchus of Samoslo. It
is only after these changes that the comprehension of the notion of space
is attained. Spatial objects are then thought per se, without r‘eferenée to
any support; this is the case, in particular, for the sphere, which is

wanted as a realization of total symmetryn.

Let us now come back to the notion of space-time. Once Copernicus
reivindicates the forgotten theory of Aristarchuslz, the space-time of
Galileo and New‘con13 is constructed over the sbace and so it appears as a
space ® time composed notion. The absolute character of its ingredients is
losed in the Einstein Speéial Relativity, and their local character appear
in its General Theory. The Penrose conformal infinity techniques allow to
construct asymptotically some intrinsic concepts not related directly to
them, but any time we need a precise physical interpretation, we are still
constraint to locally decompose the space~time in its space @ time form
even thougt we do not already conceive them as "ingredients" but better as

a sort of "comfortable" parametrization.

If we try now to establish a parallelism between the evolution of both
concepts, space and space-time, it appears that we are at present at a
moment analog to some one situated after Anaximander, but before
Aristarchus: we are not yet attained the analogous of the Aristarchus
development. This last moment would correspond to a direct comprehension of

the space-time, no matter what the decomposition of it be.

Is this analogy correct? Or, in other words, is it true that we have
not sufficiently integrated the spatial and temporal parts of the

space—time’?l4

The decomposition of the espace-time in space @ time is intimately
related to the use of three rods (space) and one clock (time) to locate

space-time events., On the other hand, from a conceptual point of view,




clocks and rods are nothing but time-like and space-like projections of
light beamsls, which can be locally represented respectively by time-like,
space-like and null directions; thus, the frames associated to the above
decomposition of the space-time arev constituted by one time-liké and three
space-like directions. Clearly, they form a proper subset of the set of all
space-time frames, so that the fact that they are precisely the only frames
usually called physically admissible is already a sign of the correcteness

of the above analogy.

Appart from the physically admissible frames, how many classes of
frames, causally dif ferent, does admit a space-time?. The fact that such a
natural question has not been asked up to now seems to reinforce our idea
that we are still submitted to the prejudice of the classical conception of
the space-time. But it is the absolute lack of intuition about the answer
that shows, we believe, the correctness of our analogy: on the
4-dimensional space-time, there exist 199 causally different classes of

frames.
What is the interest of such a result?

We have choice the above historical analogy because, we believe, at
the same time it delimites the unripen aspect of the present notion of
space-time and it shows intuitively the direction at which it would be
developed, which points to the comprehension of every space-time object per
se, without reference to any spatial support. In order to acquire such an
ability, it seems fair to try to develop the habit of regarding space-time
objects from as many different view points as possible. Our table of the
199 different classes of frames appears thus as a basic device to this

training.

It seems not too distant the possibility of wusing signals from
satellites and planets to perform solar frames; this will constraint
physicyists to study in detail some not so "physically admissible" frames' as
they have do until now. Our causal classification of them would help their

study.




The analysis of the causal classes of frames may suggest new ways to
mesure the gravitational field. In this direction, among the unusual frames
we have already considered, perhaps the more interesting ‘ones are the
natural frames attached to what we called16 light-coordinates. Roughly
speaking, they are local charts such that their four coordinate lines are
light-like geodesics, In principle, they may be constructed in the domain
of intersection of four beams of laser light; the four frequencies and the
six relative angles between the beams constitute a‘ set of ten quantities
which may be related to the ten components of the metric tensor, alloWing

to mesure it.

Another domain in which the present causal analysis of frames is of
interest is the classification of symmetric frames. The frames usually
employed privilegiate some space-time directions (the time-like direction
from the three space-like ones in the ph)}sically admissible frames, the two
light-like directions from the two space-like ones in the null frames).
Nevertheles, the Cosmological Principle suggest in par“cl'7 that some
properties of the space-time would be best described in such frames that no
direction ‘be privilegiated. Such frames, constituted by metrically
indistinguishable vectors, are called symmetric frames. They have been
studied elsewhere18 both, from the points of view of natural frames and of

, . 19
metric~concomitants frames

Also, a direct, practical application of the present work is the
taxonomy of local charts. It allows to label every local chart with a set
of three numbers characterising the causal class of its associated natural

f ramezo

Perhaps the more important incidence of the causal -classification of
frames will be found in the study of deformation of lorentzian metrics.
Indeed, when one performs an arbitrary metric deformation, one obtains a
nﬁxed result: a wanted variation of the metric itself and a superfluous
variation of the field of frames (gauge) with respect to which the metric
is expressed. Our results allow to reduce the group of deformations by
considering its "quotient" by the causal classes, that is to say, roughly

speaking, by considering nothing but the "199th part of the group" which




transforms metrics but respects the causal class of the field of frames in

which they are expressed.

Any way, the surprise that the richness of the causal classes of
frames has produced to all us, shows certainly that we are not yet attained

the intellectual right to write the word space-time without its hyphen.

The paper is organized as follows: in Section 2 we consider, for the
sake of simplicity, some ‘general notions in arbitrary dimensions. In
Section 3 we expose a set of arguments allowing to deduce the existence of
the 199 classes anounced. Finally, in Section 4, we present the

corresponding table of causal classes and comment some applications.

The Table of the causal classes of frames was presented, without
proof, to the spanish E.R.E. 88 and the french J.R. 89 annual relativistic
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meetings

In its present form, this paper was not accepted for publication in
Journal of Mathematical Physics, Physical Review D and General Relativity

and Gravitation successively22

2, n-DIMENSIONAL ASPECTS.

a) Let r denote a frame of a linear space En, that is an ordered basis
of vectors, r = (ea), oo € InE {1,...,n}, and let Jp be any of the (3)
combinations of p elements of In, 1 = p < n . The p-planes Hp of En

- generated by p elements of r, Hps {Aheh | h € Jp), Ahe R , are the adjoint

Y -

p-planes of r. Let Ar be a homothetic deformation of r, Ar = (e(; | e,
Aaea) , )\(xe R-{0} , and ®r a permutation of r, ®r = (eoc’t a'= 6(a)} , 6la)
being a permutation of In. Two frames r and r’ have the same adjoint

p-planes, for any p, if and only if r’= ® A r.

let M and T’ be two s-planes corresponding respectively to the
s s .
combinations J= {¢,...,c} and J= {¢,...,0’), where ¢<.< ¢ and
s 1 s s 1 s 1 s

o*;<...<o*; . We shall say that Hs precedes TI; if there exists t such that




c= ¢ ,.., O =0 , o-t< 0';. Thus, the adjoint set of all the s-planes

(r)

]
[
1
=1

is an ordered set of 2"-2 elements.

. b) Suppose now E‘,n endowed with a hyperbolic metric g of arbitrary
signature. The causal type of a s-plane is time-like, null or space-like if
the restriction of g to it is respectively hyper'bolic,' degenerated or
elliptic. The causal character of the adjoint set T(r) is the ordered
sequence of the causal types of the adjoint s-planes ‘of r. Let r and r’ be

two frames with adjoint sets T(r) and T(r’), respectively.

Definition. The frames r and r’ belong to the same causal class if
there exists a permutation ® such that T(r) and TI(@r’) have the same causal

character.

Denote by [r] the causal class of r , let ©%) be the algebraic dual
) = s% , and let BaE g(e“) the vectors associated

B B

co-frame of r={ea}, Ga(e
to 8% by g. The causal class [r*] of the frame P*E(Ga) is called the dual

causal class of [r]. If [r*]=[r], [r] is said self-dual.

g *
The adjoint s-plane of r associated to the combination J ={¢,...,0}
s s
I-J

n S

—

]

is orthogonal to the (n-s)-plane associated to the combination J
n-

and we have:

Proposition 1. The causal class [r] of a frame r is determined by the
sequence of the causal types of the adjoint s-planes of r and of the causal
types of the adjoint s’-planes of ra‘i where 1 = s = n-k and s’s k-1 for any

integer k = n-L.

c) It is known that the hyperbolic type (p,q) of a metric g, p+tq = n ,
is determined by its signature, o(g) = p-q. In a similar way, we can
associate to every frame r a causal signature o(r) which determines the

number of vectors of the frame which are time-like, null or space-like.




Let r be a frame constituted by p time-like, q null and r space-like
vectors, p+q+r = n ; the triplet (p,q,r) is called the causal type of r. On
the set of causal types, we define the following order: (p,q,r) precedes
(p',q’,r’) if p < p  or p = p’ and q < q’. The ordinal of the causal type

will be called the causal signature ¢ of r. We héve:

Proposition 2. The causal signature ¢ of a frame r of causal type
(p,q,r) is given by

o = = (p+q)(p+q+l) + p + 1

N —

Conversely, the causal type can be obtained from the causal signature.
Taking into account that, for a given ¢, s = p+q is the highest integer

verifying s+s+2(1-¢) = 0, it follows:

Proposition 3. Let o be the causal signature of a frame; its causal

type (p,q,r) is given by p = o-1-s(s+1)/2, q = s-p, r = n-s where

s = E[é(VSO‘“7 - 1))

E being the integral part function.

It is clear that ¢ is an integer which verifies 1 =0 = (DEZ) . In
particular, the causal signatures o =1, o =1+ n(n+1‘)‘/2 and o =
(n+1)(n+2)/2 correspond to frames whose vectors are, respectively,
space-like, null and time-like, that is, of causal types (0,0,n), (0,n,0)
and (n,0,0), respectively. The normal frames of causal type (1,0,n-1),
which are the generalization to n dimensions of the physically admisible
frames of the space-time, have causal signature ¢ = 3, and the null frames

of causal type (0,2,n-2) have ¢ = 4.

Let us note that the order we have assigned to the causal types
induces an interesting property of dimensional invariance: as shown by
proposition 2, the causal signature of a frame of causal type (p,q,.) is

independent of the dimension n of the space.

d) From now on, we consider E endowed with a lorentzian metric g; we
n

have the following simple lemmas:




Lemma 1. Let us consider s linearly independént directions. i) If they

are space-like, they generate a s-plane that can be space-like, null or
time-like. ii) If one of them is null and the other‘s‘ones are space-like,
they generate a s-plane that can be null or time-like. iii) If one
direction is time-like or two of them are null, they generate a time-like

s-plane.

Lemma 2. The null direction of a lorentzian frame of causal signature

¢ = 2 can not be orthogonal to the other n-1 space-like directions.

Consider now the dual frame r*= (Ba) of r ; for every «, Ba is

orthogonal to the adjoint (n-1)-plane T " of r corresponding to the
combination In— {o}. Because the preceding lemmas and the fact that Ooc is
respectively space-like, null or time-like according to the time-like, null
or space-like character of an, the causal type of r* is partially related
to the causal type of r. Thus, if o(r)=1, all the adjoint hyperplanes of r
are generated by space-like vectors and I‘* may have any causal character.
If o(r)=2, only one adjoint hyperplane is generated by space-like vectors;
the other ones are generated by n-2 space-like vectors and one null one
and, from lemma 2, these n-1 hyperplanes are either one null and the others
time-like, or they are all time-like. If o(r)=3, there are n-1 time-like
adjoint hyperplanes; the other one is generated by space-like vectors. If
o(r)=4, all the adjoint hyperplanes are non space-like and at most two of
them are null. If o(r)=5, the causal type of r is (1,1,n-2) and,.
consequenly, there are n-1 time-like adjoint hyperplanes; the other one is
either time-like or null. If o(r)=6, there are two time-like vectors; and
if o(r)>6, at least three vectors are non space-like. Consequently, for
o(r)>5 all the adjoint hyperplanes are time-like and hence o*(r*)=1. We have

thus shown:

Proposition 4. Let r be a lorentzian frame in dimension n.
If o(r)=1 then o*(r*)=1,2,...,(n+1)(n+2)/2
If o(r)=2 then o*(r‘*)=1,2,3,4,5
If ¢(r)=3 then o*(r*)==1,2,3
If o(r)=4 then o(r )=1,2,4
If o(r)=5 then o*(r*)=1,2
If o(r)>5 then olr)=1




e) When 0‘(r)=0‘(r*)=2 the frames are of causal type (0,1,n-1), vbut they
may present different properties: ‘

«) Their spacé-like vectors generate a null hyperplane, all the other
ones being time-like; in this case the null vectors of r and r* can not be
collinear.

B) Théir‘ space-like vectors generate a time-like hyperplane ih such a
way that n-2 of these vectors are orthogonal to the null vector of the

*
frame; in this case the null vectors of r and r are necessarily collinear,

Except for these two cases all causal properties of the vectors and

adjoints hyperplanes of r are completely determined by o(r) and O‘(P*).

It is clear that two frames, r and r’, which differ by a permutation
®, r'= @r, belong to the same causal class. Let us denote by t, i, e,
respectively, time-like, null, space-like vectors; by a permutation, we may
associate, to every frame r of causal character (p,q,r), an ordered frame
o(r) = (tl,...,tp,il,...,iq,el,...,er), tl, ij, e belonging to r..
Obviously, the ordered frames associated to the frame r are determinated up

to a permutation @ of the form © = epx 6 x er, where 81 -denotes a

permutation of i elements. In general, the du;ll o*(r) of an ordered frame
o(r) is not an ordered frame: o*(r) # o(r*). But one can shows that, appart
from the frames belonging to the above case B, there exist ordered frames,
which will be noted by c(r), such that c*(r) = c(r*). In the excepcional
case B, one can always find ordered frames such that their duals are of the
2,...,en_l} : they will also be noted by c(r) and, like the

form (el,i,e
ones verifying c*(r) = c(r*) , will be called canonically ordered frames.

From this considerations and proposition 4, it can be shown:
Proposition 5. For a n-dimensional lorentzian metric, the number N of

pairs of canonically ordered frames (c(r),c(r'*)) having different causal

characters is given by N = (n+1)(n+2)+9.

* »* * *
f) Denoting, for short, by ¢ the causal signature of r, o= o(r),

the table of the N different pairs (c(r),c(r*)) adopts the aspect indicated




n+2
2 )’
causal types of s-planes, 1<s<n-1. The table follows from propositions 1, 4

in Table 1. In it, one has ¢ m = ( and nng denotes the set of
and 5. The above mentioned property of dimensional invariance induced by
the chosen order is here clearly apparent: for increassing n, the occuped
cases remain occuped, and the only occuped cases to be added are of the

m . .
form and LI Of course, the number of s-planes contained in every

-
12
case depends, in general, of the dimension n. Its evaluation for n=4 will

be our task in the next Section.

TABLE 1

Remembering proposition 1, it follows directly from proposition 5
that:
Corollary. In dimension 3, there exist 29 causal classes of lorentzian

frames.

3. THE CAUSAL CLASSIFICATION OF SPACE-TIME FRAMES.

a) For n=4, we can distinguish N = 39 causally different pairs
{e(r), c*(r)}. From proposition 1, a complete causal study of the
space-time frames still requires to specify the causal types of the adjoint

2-planes corresponding to every one of these 39 pairs.

Let us consider the 2-plane nxy generated by the vectors x and y. The
sign € of the quantity g(x,x)g(y,y)—[g(x,y)]2 does not depend neither of
the choice of the basis on nxy , nor of the sign of the signature of the
lorentzian metric g. It will be called the gausal sign of the 2-plane nxy
since we have ¢ =+, € = 0 or € = - , depending on whether nxy is
space-like, null or time-like.

Let nocB be the adjoint 2-plane of the frame r=(e(x) generated by €

*
and e and let € be its causal sign. Denoting by € the causal sign

B’ of a3

10




of the adjoint 2-plane n;B generated by the vectors ea and OB of r,

it results:

Proposition 6. For any distinct values of the indices «, B, %,
* *
8, the causal signs EOCB and 876 are related by qu=—876 .

Thus, if Ae 834) ~is the ordered set of causal

12 €13 f1a %23 Fu
signs of the set T of the adjoints 2-planes of r, the corresponding set

*
of r is given by (—834 €., "€, "€ "€ig —elz).

o

The invariance group, say @C , of the pair A{c(r), c(r)} does not
respect, in general, the order of the causal characters of the adjoint
2-planes; this is to say that the whole class of frames c(r) is too large
to be used to distinguish causal classes. From now on, we shall restrict
c(r) in such a way that those of the causal signs that are not invariant by
the action of @C be ordered not decreasingly (i.e.: -, O, +). The set of

adjoint 2-planes of c(r) so ordered will be denoted by c(n).

Now, we are able to study the different causal classes of frames. The
method works ‘in two steeps: in the first one, one obtains the sets clm)
*

associated to a given c(r), and in the second one we check the sets c(m )

corresponding to all the possible c*(r).

b) Causal classes with o(r)=1. Since c(r)={eeee}, the adjoint 2-planes
of r may have any causal type. If o*(r*)=1, all the causal characters of
c(r) may be permuted: @c ~ 64. Therefore, all the signs of any c(m) may be
ordered in a not decreasing way. The c(m), considered as frames of the
6-dimensional bivector space, may be ordered by their causal signs; the

result is:

(htttt),  {O+++++4),  {—+++++), {00++++)}, {(=O++++}, {-=++++}, {(000+++},
{(~00+++}, {—-0+++}, {---+++}, {0000++}, {-000++}, {--00++}, {---0++)},
{(----++}, {00000+}, {-0000+}, {--000+}, {---00+}, {----0+}, {(---—- +},
{000000}, {-00000}, {--0000}, {---000}, {----00}, {----- 0}, {-----—- ).

Thus, there are 28 causal classes with o*(r)=o‘(r*)=1. For ol(r)=1l and
o‘(r*)zz, the corresponding causal classes are the dual of the causal

_classes with o(r)z2 and o*(r*)=1. These ones will be obtained below.

11




c) Causal classes with o(r)=2. Now c(r) = (ielezes) and, from lemma
2, the three adjoint 2-planes (iel), (iez), (iea) can not be null at once.
Either 1) they are time-like or 2) two of them are time-like and the other
one is null, or 3) only one is time-like and the others are null. Denoting
by A any causal character (that is, A = t,i,e for vectors, and A = -,0,+
for 2-planes), the cases 1) and 2) correspond to c*(r)={Aeeé) since the

adjoint hyperplanes }els(lezes), RE(leleB) and ’RSE(leleZ) are time-like.

2
For them we have ®C ~ 63. Let us choice e and e, in such a way that the
first and the second adjoint 2-planes of r be time-like. We have then

{---AAA} for case 1) and {--0AAA) for case 2).

For case 1), no space-like vector of r has been privilegiated so that
we can take the 2-planes [(3162)(e163)(e263)] of the hyperplane

3{4E(e1e2e3) with their causal signs in a non decreasing order:

[==] [--0] [--+] [-00] [-0+] [-++] [000] [00+] [O++] [+++]

For case 2), the vector e, remains privilegiated with respect to e
and e, which are still interchangeable. For every causal type of the
2-plane (elez), we can take the two 2-planes (eles) and (ezes) with their
causal signs in a non decreasing order. Now, in terms of theirs signs, the

adjoint 2-planes of 3‘64 are:
(A--] [A-0] [A-+] [A00] [AO+] [A++]

For the cases 1) and 2), there are 28 different sets c(m). The
corresponding dual sets c*(n) are obtained from proposition 6. Now, taking
into account lemma 1, it remains to check the sets c*(n) that are
compatible with every one of the three sets c*(r)={Aeee). Of course, if

*
¢ (r)={eeee} there are no additional restrictions.

* *
If c (r)=(teee}, the first three signs in c (m) are negative. So, the
last three signs in c(n) are positive. The possible sets c(m) are {~==+++}

and {~-0+++}.

»* *
If ¢ (r)={ieee}, the first three signs in c (n) are non positive and
simultaneously non zero; this implies the following posibilities for c*(n):

{(-00+++}, {—-0+++}, {-=—+++}, (—OQO++), {--00++}, {00-0++}, {-0-O++} and

12




{---0++}. But {-00+++} and {-000++} are forbidden by the following simple

lemma,
. Lemma 3. If c*(r)={ieee) and c*(n)=(éOOAA+) then c(r)={(Aiee).

Now c*(n)=(OO—O++) is not compatible with c*(r) since the first two adjoint
2-planes being null, the fourth must be space-like. In consequence, if

c(r)= {ieee} and c*(r)={ieee} then

o(m): {~=-044)  {—=—+++}  {-=00++} {--0+0+}  {--O+++}

Finally, let us consider the case 3), that Iis, the case when one of
the adjoint hyperplanes 3(1, ?CZ, RS is null (the others being necessarily
time-like). The frame r also contains the null direction of r. Suppose
RSE(iezeS) is the null hyperplane; this fixes the first space-like vector
of r: the adjoint 2-plane (iel) is time-like. The adjoint 2-plane (e2e3)
being space-like, we have c(m)=(-00AA+}). The fourth and the fifth signs of
¢(n) are interchangeable, that is G)C ~ 92; setting them in a non decreasing

order, we have
clm) : {(-00--+}, {-00-0+}, {-00-++}, {-0000+}, {-000++}, {~00+++}

From proposition 6 it then follows:
c() :  {-++00+)}, {-0+00+}, {--+00+}, {-0000+}, {--000+}, {---00+}

which are | all compatible with c*(r)=(eiee}. If c*(r)=(tiee) only c*(n)=
{---00+} is possible . If c*(r)=(iiee), the sets c*(n) neither contain the
sign plus in the first three places nor are of the form c(n*)=(—0000+),
because then the second vector of r would be null, in contradiction with
c(r)={ieee}. Consequenly, the only possible c'(r) are {--000+) and
{---00+}.

d) Causal classes with o(r)=3. We have c(r)={teee} and c(m)={---AAA}.
From proposition 4, one has o*(r*)=1,2,3, that is, c*(r)=(Aeee} and
consequenly @C ~ 6, . Thus, the signs [AAA] can always be ordered in a non

decreasing way,

{=====- } {=---- 0} {----- +} {----00} {----0+}
cln):
{~===++} {---000} {---00+} {-=-0++} {-——+++}

13



and their respective duals are

. {(++++++) {O+++++} {-+++++} {00++++} (~O++++)
clm ):
{==++++} {000+++} {-00+++} {-=0+++) {-——+++}

If c*(r)=(eeee), all the above c*(n) are possible by lemma 1. If
c*(r)=(teee), only c‘(n)={——-—+++) is possible. And, if c*(r)=(ieee), the
possible ¢'(n) are {---+++} and {--O+++}, In fact, the three first adjoint
2-planes of c*(r) are simply restricted to be not space-like, but
c*(n)={000+++) is forbidden by lemma 2 and c*(n)=(—00+++) cannot occuvr.by »

lemma 3.

e) Causal classes with ¢(r)=4. Now, c(r)=(i1i2e1e2) and the causal
types of the adjoint 2-planes are of the form {~0s00A} where o stands for -

or 0. There are the following possibilities:

2) {----0A), {---0-A} (8 ), {--0--A} (8.), {-0---A} (8.x6 )
e : 1 1 e

3) {--0-0A}, {-0-0-4} (ee)

4) {--00-A}, {-0--0A} (ei) or (Be)

5) {---00+}, {-00--+} (ei)

6) {--000+)}, {-0-00+} (ee), {-00-0+} (ei), {-000~+} (eixee)

7) {-0000+}

Every one of these rows corresponds, for every value of A, to the same
causal class. The first term on every row has already the correct order so
that it is the causal sign representation of the corresponding c(m). Also,
we write the permutation going from every causal configuration of adjoint
2-planes to the ordered set c(m); thus, ei (resp. ee) is the transposition
of the null (resp.space-like) vectors of r. In 5), 6) and 7) the adjoint
2-plane (elez) is space-like since bo:h vectors e and e, are orthogonal to
the same null direction. If ¢ (r)={(eeee}, the adjoint hyperplanes
RlE(izelez) and HZE(ilelez) are both time-like, and the adjoint 2-planes
are: {----- A), {----04}, {--0-04}, {--00-A}. If c*(r)=(i2eee), then ZRI is

null and ?r(?z is time-like. In this case, there are two posibilities for

14




c{n): {(---00+} and ({--000+}. If c'(r)=(izileé},» then c(m)=(-0000+) due to
the fact that }el and %2 are null. Note that the null directions of r and r*

are the same, but their order is interchanged.

f) Causal classes with o(r)=5. Now, c(r)=(tiele2) and the three first
adjoint 2-planes of r are time-like. The adjoint hyperplane RlE(ieleZ) is
null or time-like. If 3‘€1 is null then c(m)={---00+} and c(r:)=(ieee} (with
same null direction as r). If ?r€1 is time-like, that is c(r )={eeee}, then»
the causal characters of the adjoint 2-planes [(iel)(iez)(elez)] are [--A]
or [-OA]l. In the latter cas we can set the two first signs in increasing
Qrder due to the fact that @C is now the transposition of e and* e,

g) Causal classes with o(r)>5. From proposition 4, c(r )={eeee}, and
these causal classes are obtained directly as follows: If o(r)=6, then
c(r)={ttee} and c(u)={----- A}, If  olr)=7, then  c(r)={iiie} and
c(m)={--o-00}, Because of @C ~ 93 the signs [o0o] can be placed in non
decreasing order., This gives four causal classes. If c(r)=8, then
clr)={tiie}, c(m)={----oo} and there are three causal classes. If o(r)=9,
then c(r)={ttie} and c(m)={~---~ o}, If o(r) = 10, 11, 12, 13, 14 or 15,

then all the adjoint 2-planes of r are time-like, that is c(m)={------ I3

h) Using the preceding results and counting the different

possibilities, we have

THEOREM: The space-time admits 199, and only 199, causal classes of

frames.

TABLE 1II

4, DISCUSSION AND COMMENTS.

a) The considerations of the preceding Section not only lead to the
above Theorem but allow to construct  explicitly the characterization of
all the causal classes. This characterization is given in Table II. Table

II differs from Table I in what it is a particularization to dimension n=4;

15




in what it explicits the notation of the causal character of the frames r
and r* (remember that, as shown by proposition 3, there is a bijection
be‘tween‘ the causal character of r and its causal signature); in what it
splits of the cases corresponding to the pairs (r,r*} {by giving them in
convenient order we may identify r and c(r)); and in what it explicits the

notation of the causal character of the adjoint 2-planes.

The natural reading of Table II begins by the left. For exemple, let be
giVen a frame of causal type ({iiee}; the corresponding row of the table
indicates that it may belong to 3x4 + 2 + 1 = 15 causal classes. If, in
addition, we know that its dual is of causal type {ieee}, the intersection
of the row with the corresponding column of duals restricts the number of
classes to two. They correspond to the only possibilities, for the adjoint

2-plane of the first and last vectors of r, of being time-like or null,

b) Thus, we can see some simple properties: i) the impossible
lorentzian frames (blank cases of the table); for exemple, there is no
frame {teee} having as dual a co-frame {eiee}. ii) there exist only six
causal classes which may be univocally determined by the causal character
of the frame (the six last classes of the first column), {ii) only the
frames of causal character {eeee} with dual {eeee} can admit any of the 28
possible causal configurations of adjoint 2-planes. iv) the frames {ieee}
with dual {eeee}, or conversely, may belong also to 28 causal classes, but
they do not correspond to the 28 causal configurations of adjoint 2-planes;
the number 28 is attained by different permutations of some configurations:
for exemple, for the first of these frames the first eight configurations
as well as the 1ith, 12th, 16th, 17th, 22th and 23th ones, are absent (this
arrangement corresponds to that induced by the causal signature, and
coincides with the arrangement shown in the first case); in fact, among the
28 causal classes, a half are permutations of the configurations of the

other half.

c) As shown by Table II, a causal class is, generically, given by the
triplet (r,n,r*) involving 4+6+4=14 symbols. The causal signature allows to
condense them: of(r), the ordinal integer of the first column, stands for
the four first causal symbols; and similarly works o~(r*), excepts for

r*={eiee), for which 0‘(r-*) is noted 2 (see Table 1I). Due to the

B
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features indicated in the part iv) of the above paragraph, a set of indices
(say, a, b, c,...) is need to indicate permutations of the same causal
configurations of 2-planes. The notation we have adopted ié given in Table
III. A causal class may thus be indicated by three numbers, a sort of
causal coordinates; for example, (4:26d:1) stand for r=(iiee}, n={(--0-0-},

.
r ={eeee}.

TABLE 1II

d) In paragraph b) of Section 2 we defined self dual causal classes.
We see now, from Table II, that the space-time admit 11 self dual classes;
in causal signature notation they are (1:10:1), (1:13:1),  (1:17:1),
(1:22:1), (2:10:2), (2:13:2), (2:13b:2), (2:13 ),  (2:17:2.),  (3:10:3),
and (4:17:4).

d:ZB g

e) As was indicated in the introduction, we are now able to label
coordinate systems from the causal point of view. For example, the

coordinates (t,x,y,z) for the metric

ds? = dt®+ % e? dx” - dyZ -dz% + 2 &¥ dt dx

(homothetic to the Godel solution) are not physically admisible; its
natural frame {at,ax,ay,az) belongs to the causal class (6:21:1).

Similarly, for coordinates (u,r,8,¢) for the metric
ds® = A du’+ 2 du dr - r¥(de® + sen’d d¢>2)

the natural frame (au,ar,ae,%} belongs to the causal classes (5:19:2),
(4:17:4) or (2:8:5) depending on whether A>0, A=0 or A<O (the well known
Vaidya solution corresponds to A = 1 - 2m(u)/r). This shows that the
unusual character of ak coordinate system may be quantitatively

characterized.
f) Table II may be considered as a sort of graphic representation of a

theorem of signature. The hyperbolic character and the sign of signature of

a regular matrix may be obtained from the table by analysing the sign of

17




the second order principal minors (they are nothing but the causal signs)
and the compatibility of them with the signs of the terms of the principal
diagonals of the matrix and its inverse. For example, if a matrix having
a o= O is to be hyperbolic, their second order principal minors must all be
strictly negative and then we know that all the elements a®® of its inverse
will have the same sign €; it follows that the signature of the metric is

(-g,e,e,e), as corresponds to the case {iiii,------ ,eeee) of the table.

g) Let us note that, except for the cases (3:10:3) and (4:17:4), the
boundary of the impossible. lorentzian frames is a "convex" stair; these two
separated cases correspond to the physically admissible and null frames.
What is the role of this "peninsular" isolation in our inertia to conceive

physically other different frames?
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TABLE 1. Correspondence between the causal character of n-dimensional

lorentzian frames and their duals. The frames are ordered according to

m ,

their causal signature o¢. The m, s stand for the sets of adjoint

s-planes of the frame, 1 < s< n-1, and the column 2*

B

corresponds to the B8

excepcional case mentioned in the text,
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||||| 0, ~mmemm-
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--0-0-, ~w=w= Q,-===0~, ===

. w04, mmem—- +, ---~-00 _

tiee| 0, —m-aQe=, —cmmm—m 00+

ttee] ~----- +, = 0, --——---

iiie|{--0-00,----00,----- 0,------

tiie ----00, -~--- 0, ~------

ttie] = ----- 0, ------

tttel 000000 ---——-

iiig] 0 meee--

tiiig] 0000 meeee-

ttii ——————

ttti] 2000 mmee--

tett)] 0 mmeee—

TABLE II. The 199 causal classes of frames of the space-time.
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{++++++)

3

{-+++++)

{+0+0++}

4
6 = {(~—++++}
8_= {-00+++}
a
9 = {--0+++}
a
11 = {0000++}
13b= {--0+0+}
14, = {--0-++}
17 = {-0000+}
l9a= {---00+}
19 = {-00--+}
e
21 = {(----- +}
25a= {---000}
26b= {--0--0}
27b= {-=0-=--}

’

1

2a= {O+++++)
4a= {00++++}
5 = {-0++++}
a
7= {000+++)
8= {-0+0++)
9b= {--+0++)
12_= {-000++)
13 = (-0-0++)
14 = {--0+-+)
c
18a= {--000+}
19, = {--0-0+}
20a= {----0+}
22 = {000000}
25b= {--0-00}
26c= {--00--}
27C= {----0-}

2b= {+++0++}
4b= {0++0++)}
5b= {-++0++}
7= {00+0++)
80= {-+00++}
9 = {-+-0++}
c
12b= {00-0++}
13d= {~-00-++)
15 = {-===4+)
l8b= {--0+00}
19 = {--00-+}
20b= {==0==~+)
23 = {-00000}
250= {--00-0}

20= {+O0++++}
4C= {++00++}
5 = {++-0++)
c
7C= {0+00++}
8d= {0+-0++}
10 = {(-=-+++}
13a= {~-00++}
14 = {-=--0++}
16 = {00000+}
18 = {-00-0+}
19d= {--0+-0}
20 = {--0+--}
c

24 = {--0000}
26a= {----00}
27 = {-----0)

TABLE III. Relation between the causal signature and the causal character
of the adjoints planes. The indices differentiate the permutations of the

adjoints planes that appear in Table II.
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"Directly" means here "without decomposing the local domain in its

classical constituents space and time".

The variety of mythologies, theologies and theories among Egyptians and
Greecs concemi‘ng the space is so immense that, obviously, we do not
pretend to resume them in a few lines. We have stripped these sketches from
the abundant cosmogonic content in which the corresponding descriptions
appear naturally immerged, and we have paid attention to present in them
only those elements attached to the notion of space which have manifestly

changed during the period concerned.

We start from Egyptian better than from Mesopotamian cosmologies because,
for our purposes, they do not differ essentially (see Histoire des
croyances et des idées réligieuses, I, Mircea Eliade, Ed. Payot, Paris,
.1976; La Mesopotamie, G. Roux, Ed. Seuil, Paris, 1985; L’histoire commence
4 Summer, S.N. Kramer, Ed. HCS, Paris, 1975).

These columns, although they frequently appear as divinities (see for
exemple La naissance du monde. Sources orientales, S. Saumeron et al., Ed.
Seuil, Paris, 1959), suggest strongly that the heaven is, like the earth

from which it has been separated, a flat disc.

The collapse from eight to four columns seems, at the same time,
theologically related to the association by pairs of the eight divinities
(see Histoire de l'Egypte Ancienne, N. Grimal, Ed. Fayard, Paris, 1988,
Mythologies du monde entier, V. Grigorieff, Ed. Marabout, Belgique 1987)
and imaginarily related to the representations of the heaven by the trunk
of the goddess Nut (Greenfield Papyrus, British Museum, London, Sarcophagus
of Butehamon, Egyptian Museum, Turin) or of the Heavenly Cow (see Mythology
in ancient Egypt, R. Anthes, in Mythologies of the Ancient World, Ed. S.N.
Kramer, Doubleday & Co., Inc., N.Y., 1961); in these last cases, there is

no doubt about the identity of the four columns.
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6 Of course, the central role played by the Nile is, for the Greecs,

implicitly assumed by the Mediterranean sea. The two columns indicated in
this sketch condense a variety of descriptions involving Atlas and
Heracles. Atlas appears bearing the heaven with the aid of columns or
directly on his shoulders or on his neck or pléying the role of a mountain
or even of the Titan who separated the waters of the heaven from those of
the earth. Heracles replaces temporarily Atlas in his task during his
Hesperides Garden labor, or constructs himself two columns in souvenir of
his capture of the oxen of Geryon (Les mythes grecs, 1, R. Graves, Ed.
Fayard, 1967; Dieux et mythes de la Gréce ancienne, J. Desautels, Ed.
Presses Université Laval, Quebec, 1988; Mythologie et géographie, J. Ramin,
Ed. Les Belles Lettres, Paris, 1979). Curiously, all these "devices" to
maintain the heaven seem located at Occident: Atlas mountains, Hesperides
Garden, Heracles Columns. The mythic and symbolic character of these
pictures is magnifically analysed in Le soleil et le Tartare: l’image
mythique du monde en Gréce archatque, A. Ballabriga, Ed. E.H.E.S.S., Paris,
1986. Their scientific absurdity and their lack of balance are, perhaps, at

the basis of the conception of the Vault.

7 This is the conception of the world known by Thales and, phylosophically

modified by him, transmited to his pupil Anaximander.

8 He is the first to speak about antipodes.

° In On the sizes and distances of the sun and moon, see Aristarchus of

Samos, the Ancient Copernicus, T. Heath, Ed. Dover Pub., Inc., N.Y., 198l

10The vanishing of the central role played by the earth in the construction
of the space is made progressively; thus, the earth turns around a central
- fire for Philolaus (about 420 b.C.), and around its axis for Heraclides
(about 320 b.C.).
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1 It is interesting to note that, after Anaximander, the earth is thought

as a sphere because of a phylosophical need of symmetry, not for
observational evidence. The role played by the concept of sphere in the
social structure is considered in Mythe et pensée chez les grecs, J.P.

Vernant, Ed. La Découverte, Paris, 1988.

12 The modesty of Copernicus honour him; in his De revolutionibus

Caelestibus, he explicitly refers to  Greek astronomers, and specially to
Aristarchus. See Civilisation greque, III, A. Bonnard, Ed. La Guilde du

Livre, Lausanne, 1959.

13 We consider here only the cinematical aspects of them, so that they are

identical.

14The "integration" we are speaking here concerns the direct feeling of the

hyperbolic space-time. It has nothing to do with the ability to use
covariant, intrinsic or fourdimensional formalisms. These formalisms are
originated by a more or less direct transcription of the elliptic formalism
of Riemannian geometry and, in spite of their unquestionable interest, mask

(almost) completely the specific features of hyperbolicity.

15 Think to the present definitions of the units of time and length.

16 B. Coll, Coordenadas luz en Relatividad, communication to the spanish

E.R.E 85 relativistic meeting, Pub. E.T.S.E.I.B., Barcelona, Spain,‘ 1985.

17 This is to approach to the greek exigence of sphericity from symmetry

considerations; see Reference quoted in Note 11.

18 B. Coll and J.A. Morales, C.R. Acad. Sc. Paris, 306, Sér. I, p. 791-4,

1988 and Repéres symmétriques lorentziens, Journées Relativistes 1988, p.
143-8, Univ. Genéve, CH-1211 Genéve 4, Switzerland.
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19 A symmetric frame is said to be of order s if its vectors are

indistinguishable for the metric and its differential concomitants of order
s.

20 We give somé examples in section 4.

21 B. Coll and J.A. Morales, Las 199 clases causales de referenciales de

espacio-tiempo, in  Proceedings E.R.E. 88 meeting, p. 171-80, Pub. Univ.
Salamanca, Salamanca, Spain, 1988, and Annales de Physique, Coll. n° 1, 14,
p. 65-69, 1989.

22 In the two first cases, the paper was directly refused by its editors, L.

C. Biedenharn and L. S, Brown respectively.
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199 Causal Classes of Space-Time Frames
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It is shown that from the causal point of.view Minkowskian space-time admits
199, and only 199, different classes of frames.

1. INTRODUCTION

Space-time is usually described as-a four-dimensional Lorentzian mani-
fold. Its topology, its differentiable and metric structures, and its asymptotic
properties have been the object of many studies; from the formal point of
view there is no doubt that the notion of space-time is at present well defined.

In spite of this fact, a good physical comprehension of this notion has
not yet been attained. A point that contributes to this situation is our inability
to conceive directly’ local domains of space-time. The importance of this
deficiency may be clarified by comparing the evolution of the notion of
space-time up to now to the ancient elaboration of the notion of space.

For our purposes, this elaboration may be considered as having been
achieved after the work of Aristarchus of Samos. The earlier history of the
notion of space can be sketched successively as follows*: For the Egyptians’

'Laboratoire de Physique Théorique, Institut Henri Poincaré, F-75231 Paris Cedex 05, France.

?Departament de Fisica Tedrica, Universitat de Valéncia, E-46100 Burjassot, Valéncia, Spain.

3 Directly” means here “without decomposing the local domain into its classical constituents
space and time.”

“The variety of mythologies, theologies, and theories among Egyptians and Greeks concerning
space is so immense that, obviously, we do not pretend to summarize them in a few lines.
We have stripped these sketches from the abundant cosmogonic content in which the
corresponding descriptions appear naturally immersed, and we present only those elements
attached to the notion of space which have manifestly changed during the period concerned.

SWe start from Egyptian rather than from Mesopotamian cosmologies because, for our
purposes, they do not differ essentially (Eliade, 1976; Roux, 1985; Kramer, 1975).
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199 Causal Classes of Space-Time Frames 1061

the natural frame {9,,9,,09,, 94} belongs to the causal classes (5:19:2),
(4:17:4), or (2:8:5), depending on whether A>0, A=0, or A<0 [the
well-known Vaidya solution corresponds to A=1-2m(u)/r]. This shows
that the unusual character of a coordinate system may be quantitatively
characterized.

(f) Table II may be considered as a sort of graphic representation of
a theorem of signature. The hyperbolic character and the sign of signature
of a regular matrix can be obtained from the table by analyzing the sign of
the second-order principal minors (they are nothing but the causal signs)
and their compatibility with the signs of the terms of the principal diagonals
of the matrix and its inverse. For example, if a matrix having a,, =0 is to
be hyperbolic, the second-order principal minors must all be strictly negative
and then we know that all the elements a® of its inverse will have the
same sign ; it follows that the signature of the metric is (—¢, ¢, ¢, €), as
corresponds to the case {iiii, —————— , eeee} of the table.

(g) Let us note that, except for the cases (3:10:3) and (4:17:4), the
boundary of the impossible Lorentzian frames is a *‘convex’ stair; these
two distinct cases correspond to the physically admissible and null frames.
What is the role of this “peninsular” isolation in our inertia to conceive
physically other different frames?
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