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Cuando emprendas tu viaje a Itaca
pide que el camino sea largo,
lleno de aventuras, lleno de experiencias.
No temas a los lestrigones ni a los cíclopes
ni al colérico Poseidón (...)
Aunque la halles pobre, Itaca no te ha engañado.
Así, sabio como te has vuelto, con tanta experiencia,
entenderás ya qué significan las Itacas.
C.P. Cavafis
Antología Poética.

When I heard the learn’d astronomer,
When the proofs, the figures, were ranged in columns before me,

When I was shown the charts and diagrams, to add, divide, and measure them,
When I sitting heard the astronomer where he lectured with much applause in the lecture

room,
How soon unaccountable I became tired and sick,

Till rising and gliding out I wander’d off by myself,
In the mystical moist night-air, and from time to time,

Look’d up in perfect silence at the stars.
Walt Whitman

And I asked old Jack, ‘Do you remember the night
when the sky was so dark and the moon shone so bright?
When a million small children pretending to sleep
nearly didn’t have Christmas at all, so to speak?
And would you, if you could, turn that mighty clock back
to that long, fateful night, now think carefully, Jack.
Would you do the whole thing all over again,
knowing what you know now, knowing what you knew then?"
And he smiled, like the old Pumpkin King that I knew,
then turned and asked softly of me, ‘Wouldn’t you?’
The Night Before Christmas
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General Introduction

1.1 General description of human microbiota

1.1.1 Origins

I believe a leaf of grass is no less than the journey-work
of the stars.

Leaves of Grass
Walt Whitman

Since its origin, around 4 billion years ago in the Eoarchaean era [1], life has spread out
freely on our planet, Earth. Life has grown in so many ways, shaped by the different forces
of evolution, that nearly every habitat has been conquered by it. The origin of life might
not have been an isolated and unlikely event as it was thought in the past. Rather, as Eric
Smith says in the preface of his book The origin and nature of life on Earth: “A common
theme was that life on Earth was not the outcome of an isolated event as suggested by the
Chance and Necessity school but a planetary property that appeared early in the history of
the planet and spread in a spontaneous way.” [2]. There are two principal forms to approach
this problem, from biology-down, or from chemistry-up [3]. Origin of life depended on
the physical-chemical conditions in the primitive Earth, so inorganic and organic chemistry,
along with physics, played a key role at the beginning of it. For example, primitive chemistry
was crucial in the synthesis of the primordial compounds that promoted the apparition of
the complex chemistry that biological entities have in the present day. Although it is a
controversial field, significant advances have been made in the last years to unravel those
first steps, with hydrogen cyanide in a special position from which several compounds arise
[3, 4]. Also, it seems that life might not have originated in the submarine vents but more
probably in the surface due to the necessity of UV radiation for some chemical reactions
[3, 5]. It is also unlikely that all the features that make something ‘alive’ were discovered
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simultaneously. For this reason, an interesting idea is that life was in different degrees of
‘aliveness’ depending on the characteristics it possessed, as shown in Figure 1.1. That Figure
also shows an intriguing concept, the chemical necessity versus chemical contingency. At
first, it seems that life was not able to explore the vast space of chemical possibilities, and
was constrained to have something similar to our system of proteins and RNA. However, at a
certain degree of development, life was capable of exploring different solutions. This can be
translated as that the very inner core of current biochemical reactions shares commonalities
with the early chemistry (the necessity), but that the sequences of proteins or RNA that are
responsible for these functions have different solutions in the enormous space of all the
possibilities (the contingency). This compelling idea is not only present in the chemistry
of life, but also in the capability of evolution (or evolvability) that genetic sequences show
[6], something with profound implications in evolution as we will see later. Multiple steps
afterwards, the protocells formed can start to operate autonomously, starting the ‘Darwinian’
machine to act upon them, and thus, giving start to the evolution of biological organisms as
we know it.

Fig. 1.1 On the left, a representation of the ‘aliveness’ versus time or complexity (from
Sutherland, 2017 [3]). On the right, a schematic view of a protocell (from Sutherland, 2016
[4]).

Despite all the knowledge we have acquired about the origin of life, there are critical
gaps that are hard to fill with data. The top-down approach has been extensively studied in
the past decades. Several attempts have been made to see which are the minimum battery of
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genes that a cell has to carry to survive, that is, the minimal genome [7–11]. This approach
is related to the concept of LUCA, or the Last Universal Common Ancestor, which is the
ancestor of every living being evolved afterwards. If one takes a look on the number of genes
that are inferred from the studies mentioned before, it is hard to think that life had all those
functions in the beginning. Thus, there is an immense gap between the protocells that we
can infer now, with the model organism that arises from the minimal genome studies. What
happened in-between, is hard to know. However, what seems clear at this moment is that
all cellular types radiated from that common ancestor, resulting in the origin of the different
domains of life [12].

The concept of domain had profound consequences to the evolutionary view because it
changed the form in which we were classifying organisms. Biology, as a natural science
field, has deep historical roots in naturalism, which was the dominant approach for the study
of life for centuries. The descriptive nature that governed the examination of biological
forms promoted the emergence of the first attempts of classification in Biology. The act
of classification is inherent to the human nature, and, for centuries, scholars of different
origin proposed their classification systems of biological entities. To be able to differentiate
between some species, or between a plant and an animal is quite easy. However, to create
higher orders of classification is a complicated task that requires some level of abstraction.
A giant step was the creation of the notion of genus, made formally by the French botanist
Joseph Pitton de Tournefort, around the 17th century. Later, Carl Linnaeus proposed the
binomial nomenclature system that operates in the present days in Biology, made by two
Latin names corresponding to the genus and the species, for example, Canis lupus. It is
worth noting that the first time that the term “biology” appeared was in the book Bibliotheca
botanica, by Carl Linnaeus.

Nevertheless, the dominant classification system in the past decades was the one based
on the five Kingdoms proposed firstly by Herbert Copeland [13], and finally established by
Robert Whittaker [14]. Briefly, the five Kingdom are: Prokaryotae; Protoctista, with algae
or protozoa; Animalia, the animals we know like dogs or parrots; Fungi like mushrooms or
molds; and Plantae, with cardiovascular plants, ferns and many other kind of organisms. A
complete and beautiful book about this topic is the one written by Lynn Margulis, Kingdom
and Domains [15]. However, this organisation is almost in complete disuse due to the concept
of domain, mentioned before. This concept, based on the works of Carl Woese [12], proposed
a complete revision of the five-Kingdom system in favour of a three-domain system, based
on molecular evidence. He proposed the use of universal gene markers, the 16S and 18S
rRNA gene, to see the evolutionary patterns of life, and thus, he proposed that there exist
another domain (or super-kingdom) more than Prokaryotae and Eukaryota, being this third
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group the Archaea. I will use Woese’s system throughout this thesis because it is the most
accepted system at this moment.

Independently of the system one chooses, the fact is that the prokaryotic world was here
before the eukaryotes. The structural, molecular and genetic differences between the two
worlds are evident, and the emergence of eukaryotic cells is considered one of the most
important evolutionary innovations in life’s history [17]. It is known that we, eukaryotes,
evolved from the evolutionary affaire between an archaea and a bacteria that belonged to
the phylum alphaproteobacterium [18]. Although recent discoveries tells that the bacteria
belonged to an ancestor of the alphaproteobacteria group [19]. As can be observed in
Figure 1.2, the domain of eukaryotes originated from the branch of Archaea, and this event
might have its origin in the recently discovered Asgard superphylum [20]. This idea of
endosymbiosis as a source of evolutionary innovations, so settled now but controversial
in its conception nonetheless, came by the hand of Lynn Margulis. Her broad ecological
knowledge allowed her to suggest a revolutionary idea for the origin of eukaryotic cells as a
serial process of endosymbiosis, in which the bacterium was engulfed by the archaea, and
became the mitochondria as we know it. It was an evolutionary innovation so important that
no eukaryotic cell lack mitochondria. Without it, we never could have happened. This process
was further demonstrated as the one that also originated the plastids in eukaryotes [21], and
also has been reported to exist secondary and tertiary endosymbiosis in dinoflagellates
[22]. In fact, secondary and tertiary processes of endosymbiosis are more common than
previously thought, a fact that has been made more and more evident with the discovery of
endosymbionts ‘living’ inside eukaryotic cells. For example, we can find the well studied
case of Buchnera aphidicola, that inhabits several species of aphids [23, 24]; or the case
of Blattabacterium cuenoti, that inhabits the gut of the cockroach Blattella germanica [25].
In the end, an enormous complexity was originated from these events, but, as we will see,
bacteria are still in the top of the mountain.
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(legend on next page)

1182 Cell 172 , March 8, 2018
Fig. 1.2 The phylogenetic tree of life. It has a three-domain topology, with the upper part of
the tree corresponding to the vast diversity of the bacteria known together with the candidate
phyla radiation (CPR). In the lower part, we have the archaea, with the new groups discovered
recently (Asgard and DPANN), and the eukaryotes emerging from this branch as the third
domain. Part B is the phylogenetic tree of archaeal sequences. From Castelle and Banfield,
2018 [16].
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1.1.2 Limits of life, the supremacy of the tiny biosphere

...how many seconds of time are there in eternity, asked the King.
The shepherd boy said: ‘In lower Pomerania is this diamond mountain,
every hundred years a little bird comes and sharpens its beak on it, and

when the whole mountain is worn away by this,
then the first second of eternity will be over.’

The Shepherd boy
The Grimm brothers

Bacteria and archaea have been, are, and will be, a true force of nature that has shaped
this planet in a myriad of forms. The emergence of life brought the biosphere into existence
as a fourth geosphere, establishing new forms in which matter and energy were organised
[2]. Once they were settled, these little inhabitants have worked as unconscious tinkerers,
working unceasingly and untiringly, transforming how Earth has been, is, and will be. The
fact that life needs to be in disequilibrium to exist has brought up profound changes in the
chemical and physical composition of this planet thought history. Even though the core
of metabolic functions in bacteria is between the most stable properties of matter [2], the
metabolic capabilities that they have been able to search are enormous, and some of these
pathways have played a vital role in the evolution of the other three geospheres [26, 27].
Yes, they are tiny, and their individual action is almost neglegible, but they have been a
multitude and had all the time in the world. The comprehension of their capabilities leads us
to humbly say that we, humans, are invited organisms living in a world that belongs to the
microorganisms. In the more-probable-than-you-think event in which humanity finds its end,
this world will still belong to these little beings.

The most well known critical transformation that microorganisms have made to the Earth
is, undoubtedly, the rise of oxygen levels on a planetary scale. This process, named as the
Great Oxygenation Event (GOE), has been extensively studied for more than a half of a
century, and albeit of the incompleteness of this puzzle, there is a solid theory about what
happened. Earth’s atmosphere has changed in a significant degree across time, and despite
previous thoughts that it was reducing (as Miller thought in his experiments [28]), it seems
that there could have been more oxidised compounds in the primary stages of this planet.
Nevertheless, what seems pretty robust is that free oxygen levels, during the first half of
Earth’s life, were less than 0.001% of those present in the atmosphere today. However, at
some point around 2.1-2.4 billion years (Gyr) ago, oxygen levels rose (see Figure 1.3). We
know that thanks to the prints in the rock record, for example, with the first appearance of
rusty red soils and the disappearance of easily oxidised minerals as pyrite (FeS2) from ancient
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The first oxygen from photosynthesis
Because oxygenic photosynthesis is the only significant source of free oxy-
gen on Earth’s surface, any evaluation of our planet’s oxygenation history
must begin by asking when this metabolism evolved. Yet despite decades
of intensive investigation, there is no consensus. Current estimates span
well over a billion years—from ,3.8 (ref. 22) to 2.35 (ref. 15) Gyr ago—
almost one-third of Earth’s history. Part of the problem lies with difficult-
ies in differentiating between oxidation pathways that can be either biotic
or abiotic and can occur with and without free oxygen. Banded iron for-
mations, for example, are loaded with iron oxide minerals that often give
these ancient deposits their spectacular red colours. The prevailing view
for many years was that microbial oxygen production in the shallow ocean
was responsible for oxidizing iron, which was locally abundant in the other-
wise oxygen-free ocean. More recent studies, however, explain this iron
oxidation without free O2—specifically, through oxidation pathways requir-
ing only sunlight (ultraviolet oxidation23 and anoxygenic photosynthesis24,25).
Microbial fossils of Archaean age (older than 2.5 Gyr; see Fig. 2 for time
units) have very simple morphologies, and it is therefore difficult to link
them to specific metabolisms, such as oxygen-producing photosynthesis.
Similarly, the significance, and even the biogenicity, of Archaean stromatolites
and microbially induced sedimentary structures have long been debated26.

Other researchers vied to find more definitive indicators of microbial
oxygen production. Among them, Brocks et al.6 published organic bio-
marker data thought to record the presence of cyanobacteria and eukar-
yotes in 2.7-Gyr-old rocks. Biomarkers are molecular fossils derived from
primary organic compounds that, in the best case, can be tied uniquely to
specific biological producers present at the time the sediments were
deposited. Cyanobacteria are important because they were the earliest
important producers of O2 by photosynthesis. Recognition of sterane

biomarkers from eukaryotes strengthens the identification of oxygen
production because O2 is required, albeit at very low levels27, for bio-
logical synthesis of their sterol precursors. If correct, these data would
extend the first production and local accumulation of oxygen in the ocean
to almost 300 Myr before the GOE as it is now popularly defined (that is,
based on the disappearance of NMD fractionations of sulphur isotopes).
Contrary studies, however, argue that O2 is not required to explain these
particular biomarkers15; others challenge the integrity of the primary
signals, suggesting later contamination instead8. Very recent results from
ultraclean sampling and analysis also raise serious concern about the
robustness of the biomarker record during the Archaean28—and in par-
ticular point to contamination for the results of Brocks et al.6 Ironically,
some the best earliest organic evidence for oxygenic photosynthesis may
lie more with the common occurrence of highly organic-rich shales of
Archaean age than with sophisticated biomarker geochemistry (Box 1).

Over the past decade, a body of trace-metal and sulphur data has
grown—independent of the biomarker controversy—that also points
to oxygen production long before the disappearance of NMD sulphur
isotope fractionations (Fig. 2). This evidence for early oxygenesis allows
for at least transient accumulation of the gas in the atmosphere and even
for hotspots of production in local, shallow, cyanobacteria-rich marine
oases29. Despite some controversy surrounding these inorganic proxy
approaches (reviewed in ref. 30), many researchers interpret strong
trace-metal enrichments in marine sediments as convincing signatures
of significant oxidative weathering of pyrite and other sulphide minerals
on land long before the GOE—implying O2 accumulation in the atmo-
sphere. Sulphide minerals in the crust are often enriched in the metals of
interest, such as molybdenum (Mo) and rhenium (Re), and when oxi-
dized those metals are released to rivers and ultimately the ocean.
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Fig. 1.3 Evolution of Earth’s atmospheric oxygen content through time. In red, the classical
view of two-step process; in blue, the modern view. Right axis is the relative to the present
atmospheric level (PAL) of O2, and the left is the log pO2 . From Lyons et al., 2014 [29]

beds [29]. Contrary to previously thought, it seems that this process of oxygenation was not a
discrete step but a continuous procedure. It is thought that oxygen level rose substantially in
the start of GOE event, but declined soon to reach, again, low oxygen levels until 800 million
years (Myr) ago. Also, it seems that there were some spots in the Earth where oxygen was
being produced 500 million years before the GOE start, meaning that it was present much
before than previously thought. It is represented with the blue arrows that emerge upwards
before the GOE in 1.3. The key word here is produced, because practically all the oxygen
that was originated on Earth was due to the action of microorganisms with one of the greatest
inventions of the evolution: the oxygenic photosynthesis.

We have talked about the origin of photosynthesis before, as an example of evolution-
ary innovation through endosymbiosis process. The rise of oxygen in our planet was a
direct consequence of the invention of the oxygenic photosynthesis by specific groups of
Cyanobacteria. It seems that the abiotic origin of oxygen was insufficient to develop the
aerobic respiration of late organisms [29–31]. It is worth noting that photosynthesis arose
early in Earth not in the oxygenic mode but with other electron sources as hydrogen, ferrous
iron or hydrogen sulfide instead of water. The use of water as electron source implies that
those electrons can be used to reduce inorganic carbon (from CO2) in order to build organic
compounds, forming O2 as a byproduct. Then, this stored redox energy can be released
by oxidising organic molecules with O2 and form water in the end [30], a process called
respiration. The group of organisms that use photosynthesis but do not make their organic
carbon are called photoheterotrophs, and is composed of purple bacteria belonging to alpha
and betaproteobacteria, or green non-sulfur bacteria belonging to Chloroflexi phylum. In
fact, only the class Oxyphotobacteria in Cyanobacteria is able to carry out the oxygenic
photosynthesis, and it seems that it was a late acquisition of this particular group instead
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of a general property of the whole Cyanobacteria. Interestingly, it has been shown that
Oxyphotobacteria, along with the other two cyanobacterial classes Melainabacteria and
Sericytochromatia developed individualised strategies for the aerobic respiration, adding
support to the hypothesis that photosynthesis arose as a particular function in Oxyphotobac-
teria [31]. An important implication of the generation of oxygen is that it was toxic for most
of the organisms living at that time. Life had to adapt to this new environment to survive,
although a good part of microorganisms that were isolated in spaces where the oxygen did
not reach remained to be anaerobic. However, despite the fact that the first rise in the level of
oxygen did not yield the levels that we have today (see Figure 1.3), it was fundamental to the
evolution of eukaryotes, complex forms of life that required an unusual quantity of energy.
That energy was provided with the creation of the mitochondria, which further habilitated the
apparition of multicellularity. Moreover, the second rise in oxygen level, the one that ended
up in the levels that we have today, was performed by the growth of plants (a direct product
of the first oxygen rise), that ‘coincided’ with the Cambrian radiation of animals [32]. A
curious chain of events that have brought us here.

Microorganisms not only have the power to transform the world, but they also have the
ability to live on it. On any place one can think. The limits of life are broader than we can
imagine, and the range of temperatures, salinity, pH or radiation that can resist, or even need,
is extensive. We find areas like Río Tinto (Huelva, Spain) where the conditions for life are
harsh due to the acid conditions, but where we find a rich biosphere that grows there without
any problem at all. A couple of examples that we can find in Río Tinto are Acidithiobacillus
ferrooxidans or Leptospirillum ferrooxidans, which grow at a pH of 1-2 [33]. However, the
prize to the acidophilic organism goes to the archaea Picrophilus oshimae, which grows in
a pH of -0.2 and was found nearby to a hydrothermal spring with solfataric gases in Japan
[34]. Regarding temperature, we can find exceptional examples of organisms that have their
optimal growth at more than 80◦C, called hyperthermophilic organisms. Several groups of
archaea as Crenarchaeota or Nanoarchaeota phyla, or the order Thermotogales in bacteria,
are part of this interesting group, and the molecular machinery they carry is thermostable and
also high stable against detergents, organic solvents, and some other chemical reagents [35].
As a last example, we can find organisms with extreme resistance to radiation, as Deinococcus
radiodurans and Thermococcus gammatolerans. D. radiodurans can tolerate radiations of
5000 Gy without any loss of viability, and T. gammatolerans can resist radiations up to 30000
Gy. If one thinks that radiations of 5 Gy are enough to kill a human, or with radiations
of 60 Gy we can kill an entire colony of Escherichia coli, we can begin to understand the
magnitude of this resistance. The usual mechanism that allows these microorganisms to live
under high radiation levels is an exceptional ability to repair damaged DNA without loss of
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viability. It is worth mentioning that life can not exist without a certain level of radiation
[36].

After having seen the impressive capabilities of the tiny biosphere, it is not strange at all
that a multitude of bacteria, archaea, and other kinds of microorganisms cohabit with the more
complex multicellular organisms. After all, we arrived later. We are surrounded by bacteria
mostly, and they have shaped our evolution in the same way that we have domesticated them.
The term microbiota refers to the community of these little forms of life that share their
destiny with the higher organisms to which they are linked. The microbiota has profound
effects on the living systems, affecting nutrition, pathogen resistance, immune development
and even the behaviour of the host [37–40]. Furthermore, the ways in which the microbial
community is assembled in the host are far to be well known, and the dynamics of these
complex communities are starting to be understood. However, before we can start making
assumptions about the effects of the microbiota in the hosts, we need to know the high
diversity of them.

1.1.3 Who lives where

(...) we have tried to go out too soon to discover
and colonise outer space,

when there is still much of our inner space
to discover and understand.

Solaris
Stanislaw Lem

An immense number of microbes have been unable to be cultured in the laboratory for
many years, as they usually have strict growth conditions that are hard to replicate, and thus,
hindering the exploration of the high diversity of microorganisms. However, the development
of high throughput sequencing techniques allowed us to start exploring the unseen biosphere
with higher precision and almost unlimited power. Since Sanger published his methodology
in 1977 [41], these technologies have been improved in many ways to permit the massive
sequencing and the discovery of a hidden diversity that was unreachable before [42]. The
improvement in the sequencing produced an explosion of new statistic and bioinformatic
methods to analyse the new data created. A glimpse can be seen in the methods that have
been used through this thesis.

Thanks to the development of the technology, we have been able to study the microbiota
in great detail. As the naturalist historical root is still present in our minds as biologists,
the first stage of the field was mostly the description of what is there, and where are they.
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This step is crucial to start knowing a system as complex as the human microbiome, which
can be divided into several main sub-ecosystems depending on the physical region one
is studying: gastrointestinal, urogenital, skin, oral, nasal, or the respiratory tract. The
microbial composition of each of these regions differ by some degree, and we also can find
subregions that are different between them even corresponding to the same main region, as
can be the hands’ skin and other skin parts less exposed to direct contact with the outside
world [43]. Another important matter that should be taken into account is that human
microbiota varies with age, geography, disease, diets, drugs, and an endless list of possible
factors that can disturb this ecosystem. Even with all these sources of variation, we can
extract some interesting general properties of the human microbiome composition.

We can be sure that we have a good representation of the human microbiome composition
at certain higher levels as genus, but new diversity is being discovered in terms of species
and strains with the analysis of whole genome shotgun data [44, 45]. The most studied
system of the aforementioned is the gut microbiome, which has been described in a great
deal for its implications in several diseases as the irritable bowel syndrome (IBS). In the
gut we have three basic layers: the lamina propria, the mucous membrane that corresponds
to the connective tissue; the epithelial cells that are in direct contact with the third part
or intestinal lumen, where is located the microbiota and all the chemical components of
nutrients, toxins or water. It has been observed that the gut microbiome is mainly composed
by bacteria (>97%), some archaea (around 2%), viruses (about 0.2%) and eukaryotes as
fungi (<0.01%) [46]. The most abundant phyla in the gut microbiome usually are Firmicutes,
Actinobacteria and Bacteroidetes, although the proportions of these groups can vary between
geographical places and other conditions [46, 47]. The three phyla dominates the majority
of the gut microbiome, and we can find some interesting genus as Bacteroides, Prevotella,
Ruminococcaceae, Alistipes, Faecalibacterium, Roseburia or Blautia to name some examples.
The estimations are that we harbour more than 200 different genera of microbes in our gut,
and around 600-700 species (see Figure 1.4) [46, 48], and that one strain typically dominates
each species [49]. Some years ago, Arumugam et al., proposed that there existed three
major groups of human the gut microbiomes, called enterotypes, which were centred around
a different genus: Bacterodies, Blautia or Prevotella [50]. Although an attractive idea,
enterotypes are not a clear separation between different microbiome modes, and it seems that
there are many intermediate steps between the three main groups [48]. However, as we will
see in further parts of this thesis, the concept of enterotype entrails interesting ideas regarding
the multiple states in which the gut microbiota can be present. Nevertheless, one essential
issue (that we will also develop after) is that, even if the taxonomical composition of the
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gut microbiome changes between persons or places, the functions encoded in the genomes
remain highly stable [43].

species, which could shed light on their survival strategies in the
human gut. In the samples analysed here, the most abundant molecular
functions generally trace back to the most dominant species. However,
we identified some abundant orthologous groups that are contributed
to primarily by low-abundance genera (see Supplementary Fig. 2, Sup-
plementary Table 6 and Supplementary Notes section 3). For example,
low-abundance Escherichia contribute over 90% of two abundant
proteins associated with bacterial pilus assembly, FimA (COG3539)

and PapC (COG3188), found in one individual (IT-AD-5). Pili enable
the microbes to colonize the epithelium of specific host organs; they
help microbes to stay longer in the human intestinal tract by binding to
human mucus or mannose sugars present on intestinal surface struc-
tures18. They are also key components in the transfer of plasmids
between bacteria through conjugation, often leading to exchange of
protective functions such as antibiotic resistance18. Pili can thus pro-
vide multiple benefits to these low-abundance microbes in their efforts
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Figure 2 | Phylogenetic differences between enterotypes. a–c, Between-class
analysis, which visualizes results from PCA and clustering, of the genus
compositions of 33 Sanger metagenomes estimated by mapping the
metagenome reads to 1,511 reference genome sequences using an 85%
similarity threshold (a), Danish subset containing 85 metagenomes from a
published Illumina data set8 (b) and 154 pyrosequencing-based 16S sequences5

(c) reveal three robust clusters that we call enterotypes. IBD, inflammatory
bowel disease. Two principal components are plotted using the ade4 package in

R with each sample represented by a filled circle. The centre of gravity for each
cluster is marked by a rectangle and the coloured ellipse covers 67% of the
samples belonging to the cluster. IBD, inflammatory bowel disease.
d, Abundances of the main contributors of each enterotype from the Sanger
metagenomes. See Fig. 1 for definition of box plot. e, Co-occurrence networks
of the three enterotypes from the Sanger metagenomes. Unclassified genera
under a higher rank are marked by asterisks in b and e.
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Fig. 1.4 On the upper left, the estimated number of different taxonomical levels measured
in a cohort of 1135 humans. From Zhernakova et al. [46]. On the upper right, the top
10 contributors to community variation in a Principal Components Analysis (PCoA) with
Bray-Curtis dissimilarities, from Falony et al. [48]. On the below line, the three different
enterotypes defined by Arumugam et al., in a PCoA with distances based on the Kullback-
Leibler discrimination information [50].

Microbes also live in more harsh environments as is our skin, which is considered the
larger organ of the human body. As large as it is, we find numerous different habitats
where the microbes can grow that can be categorised by their physiological characteristics:
sebaceous, moist or dry [51]. The skin is composed of two layers, the epidermis and the
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dermis. The skin also has components as sebaceous glands, hair follicles and sweat glands
that can alter the local conditions, and also harbour a great bunch of microbes. All these
conditions shape the microbiota associated with the different habitats. The three most
abundant and important groups of bacteria, the dominant domain in the skin microbiome,
depend on the type of habitat: in sebaceous sites, Propionibacterium spp. dominates thanks
to their ability to live in anaerobic and acidic conditions, and the humid places are dominated
by Staphylococcus spp. and Corynebacterium spp. members. Among the specialisations that
these microbial groups have developed, we find the ability to use the sebaceous contents of
the skin or strategies for surviving at high salt concentrations [52, 53].

We harbour a great diversity of microbes in the mouth, mainly because it is a warm
and moist environment where the host also offers some nutrients, such as saliva proteins,
glycoproteins, and gingival crevicular fluid [54]. Although the mouth is smaller than the gut
or the skin, we find several different ecosystems as teeth, gingival sulcus, tongue, cheek, lip
and the palate to name some. The mouth works as a connection between our inner world
and the outside, and contrary to one could think, the oral microbiota remains highly stable in
time if no other perturbations are present [55, 56]. In fact, contrary to what was thought, the
oral microbiome is a highly diverse and rich environment populated by hundreds of different
taxa such as Rothia, Aggregatibacter, Streptococcus, Haemophilus or Actinomyces [43, 57].

As the reader should have noticed in this brief look of the human microbiota composition,
we are populated with a great diversity of microbes, without taking into account the fourth
domain composed of viruses, which is highly diverse and complex. However, how is this
diversity translated into a raw number of things that we have in our body? The usual claim
that has been done in research literature was that we had 10 microbes per eukaryotic cell in
our body, it is, an order of magnitude higher. About two or three kg in an ‘average person’
weighting 70 kg. Well, it seems that the number was rather inflated, and recent estimations
put the number of microbes in a ratio between 2:1 and 1:1 with respect to eykaryotic cells
[58]. We are talking about 3.0 ·1013 bacteria. More extraordinary is the number of different
functions that they perform, which seems far from saturating in the number of gene families
discovered.

1.1.4 Variation across time and space

The previous section was intended to be a general view of the highly diverse human micro-
biota, an observation from above of a very complex system. However, in order to disentangle
its subtleties, we should study the principal sources of variation, and what are the compo-
nents that shape the community. For this purpose, we are going to see the variations of the
microbiota in the four dimensions: the spatial and the temporal component, for they are
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critical elements that entrails a good part of the shift concerning population. Time and space
are general assumptions of a significant number of minor components that are associated
with them. For example, we know that the microbial composition changes with geography,
but that is a consequence of the change in diets, health systems, and surrounding animals.
Also, the temporal component has many minor factors as the way in which the child is born,
the immune system maturation, or the change in habits. In the end, both main components
are intimately linked, as your lifestyle can change when you move to another place [59]. In
the next lines, we will try to make a brief explanation of the significant effects that these
components have on the human microbiota.

Focusing on the geographical component, we have seen that there are apparent differences
in the microbial composition of different populations around the World. As can be seen in
Figure 1.5, we find differently enriched taxa in the world, at different body parts [60]. In
an article from Yatsunenko et al., they sequenced the V4 region of the 16S rRNA gene and,
using a PCoA analysis with UniFrac distances, they showed that there were a clear separation
between US, Malawian and Amerindian gut communities [61]. In a more in-depth study,
Truong et al. analysed the microbial communities of more than 1500 gut metagenomes
at strain level, and found interesting properties about their geographical distribution [49].
Analysing the strain genetic structure from the most abundant species, they observed that
some of them have a continuous distribution, as Faecalibacterium prausnitzii, while other
strains seem to have a discrete distribution, as Eubacterium rectale (see Figure 1.6 for more
details). These types of distribution may account for the way in which some bacteria are
spread in human populations, meaning that some species might have more ability to spread
both vertically and horizontally, and others could only be transmitted vertically. Interestingly,
there seems to be a highly personalised oral microbial composition associated with ethnicity,
a property that allows identifying people’s ethnicity with machine-learning classifiers [62]. It
could happen that, with the required degree of resolution, we will also be recognised by our
microbiota with the same accuracy that our genomic markers could identify us.
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FIGURE 1 | Enriched taxa at various niches of the human body in diverse populations around the world. Box color: body niche; Color in Map: percentage urbanization

of countries (http://www.unicef.org/); Up arrow: Dominant abundance of Phylum/Genus compared to respective population; Down arrow: Low abundances of

Phylum/Genus/family compared to respective population; * and # comparisons between specific countries; Number in respective boxes: Citations.

and cultural factors and the degree to which the microbiome is
shaped by each of these factors remains debated. It is not clear yet
which factor plays a dominant role in shaping the microbiome—
nature or nurture, host genetics or his environment, traditions
and life-style? The present review has made an attempt toward
identification of the factors responsible for geography-based
alterations in microbial communities. Possible links between
the microbiome structure and the disease susceptibility of the
host population has also been discussed. Our work clearly
indicates the need for the global association studies between
human microbiota and different geographic locations for a
proper assessment of the relative importance of diet, ancestry and
locations in sculpting the human microbiome architecture.

GASTROINTESTINAL MICROBIOME

In humans, the gastrointestinal microbiome, especially the gut
microbiota (GM), has the largest number of microbes and the
greatest variety of species compared to other body habitats.

The GM constituents, as predicted from the fecal microbiome,
vary substantially across healthy individuals (Consortium,
2012). GM dysbiosis is associated with numerous metabolic
and inflammatory disorders like obesity, diabetes, allergy etc.
(Adlerberth and Wold, 2009; Armougom et al., 2009; Anderson
et al., 2011; Clemente et al., 2012). Cross-population studies on
GM usually attempt to address any of the two major issues:
(a) influence of host ethnicity and/or life-style on microbiome
structure (De Filippo et al., 2010; Yatsunenko et al., 2012;
Mardanov et al., 2013; Tyakht et al., 2013; Schnorr et al., 2014;
Martinez et al., 2015; Morton et al., 2015; Obregon-Tito et al.,
2015; Rampelli et al., 2015; Sankaranarayanan et al., 2015; Gomez
et al., 2016) and (b) plausible correlations between variations in
GM structure and disease susceptibility (O’Keefe et al., 2007; Ou
et al., 2013).

Table 1 provides the salient features of some cross-population
studies that highlighted the influence of host ancestry/life-style
on fecal microbiome structure, and Figure 2 depicts the trends
in evolution of GM with change in host life-style, as observed
in these studies. In most of these studies, investigators compared
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Fig. 1.5 Enriched taxa at various body parts and various populations around the world. The
square colour represents the body part, and the map colour represents the level of urbanisation
according to Unicef (visited in 2016). From Gupta et al. [60].

Geography is also interesting because it sheds light on human evolution because there
are differently developed populations across the world such as a) hunter-gatherers population
as the Hazda from Tanzania, or the Pygmies from Central Africa; b) traditional farming as
the Bantus of Africa; and c) high developed countries from the western world in Europe or
North America. It is interesting to observe that microbial diversity in gut decreases from the
hunter-gatherers to the developed countries [63, 64], an effect that lacks a robust explanation
but can be interpreted as the loss of metabolic plasticity and defence capacities for living in a
more controlled world [65]. One fascinating thing is that it seems that there is a Prevotella-
Bacteroides trade-off between some populations that could explain, in some degree, the
existence of the three enterotypes mentioned above [61]. Which is more interesting is the
fact that this trade-off is one of the most remarkable differences between hunter-gatherers
populations and western countries, usually more developed. Western countries have a higher
abundance of Bacteroides while the hunter-gatherers have a higher degree of Prevotella, a
difference that could be due to the diet specialisation in the more advanced communities
[60, 63]. Also, the role of human genetics in shaping the microbiome is poorly understood,
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and it seems that the main effect on gut microbial composition is related to external agents
as the lifestyle. An example of this is that the Bantu of Africa can form two types of
communities, based on fishing or based on farming, and even though they share the same
genetic ancestry and ethnicity, their gut microbiotas are quite different [65].

.

Fig. 1.6 Population genetic structure of three common intestinal microbes: Faecalibacterium
prausnitzii, Eubacterium rectale and Prevotella copri. On the upper row, it is shown the
Principal Component Analysis of the strain markers of those species studied in relation to
the geographical source to see the possible clusters. On the lower row, it is represented the
phylogenetic trees of the marker genes. From Truong et al. [49]

The other essential direction of variation in microbiota is time, it is, the age of subjects.
In fact, and as we will see in later parts of this introduction, the time dimension opens up
the ability to study microbial dynamics, which is one of the main points of this thesis work.
Nevertheless, we will see now a different time scale, the one that affects human populations
through their entire lives. The usual dynamics from this point of view are that children
microbiota is unstable, and it evolves fast toward a more stable state in the first three to five
years. Then, and until the elderly, it seems that microbiome is highly stable through time,
becoming more variable in the last part of human life [61, 66, 67]. Those changes do affect
not only microbial diversity but also the microbial community (see Figure 1.7, upper row).
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How the microbiota is assembled into newborns is a subject of high interest and importance,
and although it seems that the form of delivery (cesarean or vaginal delivery) matters [68], it
is still in discussion, as it is the place of birth (home or hospital) [48].

To know how this assembly occurs is essential for the understanding of other properties
of the system. The microbial transitions in the first years of life are well studied, and we have
enough data to form a general view of the major changes [67]. After birth, gut microbiome of
a newborn is transiently enriched with Enterobacteriaceae and Staphylococcus, a community
that longs a brief period until the establishment of a Bifidobacterium enriched population,
due to the type of food ingestion [69]. Once the child starts eating solid food, the microbiota
continuously evolves toward an adult-like conformation with a dominance of Bacteroidetes
and Firmicutes. Then, at the age of three to five years old, the child reaches the typical
adult stability [61], with a dominance of Prevotella or Bacteroides depending on the type of
foods, as we have seen in this section [67]. The period of the first years of life is critical in
the correct development in children. It was observed that intestinal microbiota helps to the
proliferation and differentiation of some T and B cells in the immune system [70]. In the
opposite side of the spectrum, it seems that the microbiota in older adults changes from the
adult-like composition into an elderly-type [66]. In Figure 1.7, on the lower row of images,
we can see that people of the same age tend to cluster together, adding evidence for the
change in microbial composition in older ages.

The main point of this section is clear: human microbiota is a highly dynamical system
that never ceases to change. It can be affected by a great deal from several types of elements,
from diets, animals that live nearby, antibiotics, age, immune system maturation and an
endless list which is growing every day. Moreover, as it happened to this planet, where
microbes shaped its geochemical cycles, they also affect the human body in a great deal.
In the next section, we will see that some of these aforementioned changes have profound
impacts on the human health.
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Fig. 1.7 Microbiota through age. On the upper left, it is represented the UniFrac distances
between children and adults in three different populations through time. On the upper right,
it is represented the observed number of OTUs in the same populations through time. From
Yatsunenko et al. [61]. Left below it is represented a PCoA of UniFrac distances (left,
unweighted; right, weighted) between groups of people clustered by age. Right below, the
average microbial composition through age in the same groups. From Odamaki et al. [66].

1.1.5 Health and Disease related to human microbiota

Better the huntsman
Should perish in the swamps,

For in the Dead Mountains
There is a deep, deep chasm,

Where dwelleth Ygramul the Many,
The horror of horrors.

The Neverending Story
Michael Ende

One of the leading forces in the study of the human-associated microbiota is the search of
the agents that cause diseases on us. In 1890, Robert Koch published his postulates changing
the paradigm in medicine. From that moment, it was accepted that microorganisms caused
some diseases, and he provided a general scheme to prove whether the candidate bug was
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the responsible for the ailment or not. However, with the apparition of the studies in human
microbiota, the paradigm shifted toward a more complex point of view of the aetiology agents.
The Koch’s postulates are still valid for some limited cases as cholera, malaria or tuberculosis,
but the steadily growing knowledge about the complex ecosystem of microorganisms we
carry has changed our point of view. Think about it, we live with approximately 1013

microorganisms in our body, they are living and doing their functions, and we deal with
them. It seems rather clear that, in the case that certain conditions are matched, we are
going to suffer the consequences. In other words, if the microbial community changes, we
might suffer particular diseases as a cause of this disequilibrium, also named as dysbiosis.
Also, if there is a disequilibrium, that means that we have a ‘healthy composition’, a concept
that has been broadly studied and currently discussed. What is the healthy composition of
microbiota? What it had be described in the previous sections could be considered as a
healthy microbiota, but as it has been noted, this composition changes in a great deal with
forces as geography or age. Moreover, as some authors agree, it might be that there is not
only one health condition because different microbial communities could be possible, an
idea that has deep roots on functional redundancy [71] and multi-stability in ecology [72].

However, in a case of dysbiosis, it is often hard to assess whether the imbalance has
provoked the disease or is the abnormal condition that induces the rupture of the healthy
microbial community. Besides, if it happens to be the second possibility, the dysbiosis might
help to worsen the symptoms in the subjects, and creates a positive feedback loop. It has
been observed that gut microbiota is related to a significant number of well-defined diseases
such as irritable bowel syndrome [73], Crohn’s disease [74], obesity [37, 75], colorectal
cancer [76], or HIV [77, 78] to cite only a very few number of examples. In other cases, it
will happen that a change in the community will occur as a consequence of other factors as
antibiotics, diets or change in lifestyle that will, in the end, make the subject more prone to
infections as it is the broadly studied case of Clostridium difficile [79], a pathogen that needs
a compromised microbiota in order to succeed. Some of these cases are going to be described
with some detail in this section, to prove the tightness between our microbial world and us.

The irritable bowel syndrome (IBS) is the most common functional gastrointestinal
disorder in Western Countries, and it is a condition for which researchers have been looking
for its microbial origin with more or less success. It is a disease with a complicated symptoms
onset, heterogeneous both in clinical presentation and in aetiology and pathogenesis [73].
IBS can appear in many grades, and based on many causes, so a gut-microbiota-centred
hypothesis is unlikely to apply to all patients to IBS [80]. Nevertheless, a growing number of
studies state that IBS is related to with an altered diversity, stability and metabolic functions
compared to healthy people. The main differences are the increased abundance of Firmicutes,
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especially of Ruminococcaceae spp. and Clostridium cluster XIVa, with the reduction of
Bacteroides [81]. The low-grade mucosal inflammation in IBS might be due to the imbalance
of bacteria as Clostridium cluster XIVa or members from Lachnospiraceae family, that
express flagellin proteins that can help to cause it [82]. Moreover, it seems that altered
levels of the archaea Methanobrevibacter smithii might be important in intestinal transit [83].
Crohn’s disease (CD) is just one of the two main forms that can take the irritable bowel
diseases (IBD). It has been observed that Faecalibacterium prausnitzii and Escherichia coli,
in particular, were decreased in patients suffering from CD [84]. The other major subtype
of IBD is the ulcerative colitis (UC), and to differentiate between them is a non-trivial
issue. It seems that dysbiosis is greater in CD than in UC, and that some microbial groups
as Faecalibacterium, Anaerostipes or Collinsela could help to distinguish between CD and
non-CD patients [84].

Regarding obesity, it is a public health problem that affects around 2 billion adults, in
which a 39% of them are in the range of overweight. We can define obesity as the excess of
body fat, and it is related to the energy harbour mechanisms that are encoded in the microbiota
along to several other factors such as host genetics and environment [85]. However, even
with the complexity of this affection with many such factors operating, it seems that there
are general patterns of microbial differences between lean and obese people, with some
essential functions or metabolic pathways implicated. At phylum level, there is a difference
in abundance between Bacteroides and Firmicutes abundances, being the later increased both
in obesity and type 2 diabetes. This imbalance has been related to the production of short
chain fatty acids (SCFAs), in which butyrate is critical due to its central functionality as
gut hormone [86]. Butyrate has protective effects against diet-induced obesity and insulin
resistance. Other differences were in the expression levels of adenosine monophosphate-
activated protein kinase (AMPK), which acts to regulate energy via fatty acids oxidation,
ketogenesis, glucose uptake and insulin secretion. It has been observed that microbiotas in
obese people could deplete the activation of AMPK, and also the NAD+ levels are also lower
in these microbiotas, which also upregulates AMPK [87].

One of the cases in which it is not already known whether the microbiota affects the
host, or is the host disease that alters the microbiota, is related to acute diarrhoea in kids,
one of the leading causes of morbidity, hospitalisation, and mortality worldwide [88]. The
rotavirus genus is the most common cause of gastroenteritis in children, and recent studies
have shown that infections can cause changes in the composition of intestinal microbiota
[89]. The rotavirus can infect intestinal epithelium villi cells and lead to watery diarrhoea,
resulting in intestinal dysbiosis that destroys the microbial barrier and, in the end, worsens
diarrhoea and leads to fatal consequences in some cases [90]. This case is interesting because
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it has been seen that the use of probiotics could improve the recovery of the children [91].
Lactobacillus rhamnosus GG, Saccharomyces boulardii and Lactobacillus reuteri DSM
17938 are the most common probiotics studied and used in children with acute gastroenteritis
(AGE) [91–93]. S. boulardii can reduce the duration of diarrhoea by approximately one
day, shorten the initial phase of watery stools, and decrease the length of hospital stay [92].
Numerous mechanisms on the action of S. boulardii in acute infectious diarrhoea have been
proposed, where S. boulardii seems to play a role in the regulation of intestinal microbial
homeostasis and the stabilisation of the barrier function [94]. This precise example of disease
and probiotic improvement will be extended and studied in Chapter III of this thesis, and
more details will be provided then.

Another example that has a great interest in the field is the effect of antibiotics in gut
microbiota. It is already known that the use of antibiotics functions as a critical perturbation
to the microbial community, generating profound changes that can produce undesirable
effects as the uprising of hidden colonisers, i.e. the case of Clostridium difficile, leading to
colitis in some cases [95, 38]. C. difficile is a spore-forming, gram-positive and anaerobic
bacterium that produces two toxins, TcdA and TcdB, that cause colitis through colonocyte
death, loss of intestinal barrier function, and neutrophilic colitis [38]. The colonisation
of C. difficile is possible only when the microbiota is compromised, and it has a reduced
diversity (see Figure 1.8). Besides, Salmonella typhimurium often take part in the infection
of C. difficile. Both bacteria catabolise sialic acid, a product excreted by other bacteria as
Bacteroides thetaiotaomicron, a process that is enhanced by the application of antibiotics
[96]. It is important to take notice of a critical issue; it is very well known the fact that
antibiotics (bad usage of them mostly), speeds up the apparition of antibiotic-resistant strains
that become hard to manipulate and are the cause of death for many people. In 2015, the
number of people dead by antibiotic-resistant was around 50,000 in Europe and USA. The
estimations are that around 10 million people will face death worldwide by 2050 [97]. The
discovery of new forms of dealing with these pathogens will become one of the hardest
challenges that science will need to overcome in the next years.
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Fig. 1.8 An illustrative case of pathogen colonisation after antibiotic treatment. In the left
part, it is represented a healthy microbiota located in the intestinal lumen. In the right part,
it is represented a colonisation by C. difficile due to the decrease of diversity in microbiota.
From Baumer and Sperandio [95].

Lastly, and changing of habitat, it would be interesting to talk a little bit about caries, as
it is the central issue explored in Chapter IV. Recent metagenomic studies showed that the
oral cavities affected by periodontitis, gingivitis, halitosis or dental caries are colonised by
a variety of microbial species, including those found in healthy oral microbiomes [57, 98].
It suggests that the oral diseases are not caused by an overgrowth of a single pathogen as
previously thought, such as Streptococcus mutans in dental caries [99], instead, they are
caused by a dysbiosis of the oral microbiome [98]. However, despite rigorous metagenomic
sequencing efforts, the specific microbes in a dysbiotic community that cause a particular
oral disease have not been identified yet. Nearly 100% of the population have experienced or
will experience dental caries or other oral diseases during their lifetime. It means that the
pathological conditions in the oral cavity are regularly occurring. When the human leukocytes
combat pathogens, reactive oxygen species (ROS) are formed [100]. Overproduction of
ROS results in oxidative stress, which triggers structural and functional changes of proteins,
lipids and nucleic acids [101]. Several studies have reported that the saliva from patients
with periodontitis and/or dental caries exhibited elevated levels of oxidative stress markers
and protein inflammatory markers [55, 102, 103]. It has been demonstrated that the levels
of the oxidative stress markers rise temporarily after consumption of meals containing ROS
stimulating bacterial strains [104]. The composition of the oral microbiome also shows
intra-individual temporal variations [55]. For all these reasons, oral health is a complex issue
in which several factors are involved, and where it is happening a change in the paradigm of
one-bacteria, one-disease, mostly related to caries.
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1.2 Dynamics of human microbiota

The previous section was intended to describe some snapshots of the human microbiota.
However, microbial communities are dynamical, and they do not exist in only one stable
(and steady) form. They evolve in different time-scales with different implications to the
stability and shape of their ecosystem. In the current section, it will be exposed some general
evolutionary concepts, and most important, the utility of knowing the short-scale dynamics
of microbiotas with follow-up studies. This latter part has been critical for the major part of
the results presented in this thesis, and it will be defended that measuring microbial systems
in time opens the way to powerful analyses for understanding essential properties of these
ecosystems.

1.2.1 The evolution of microbiota

There is grandeur in this view of life, with its several powers,
having been originally breathed into a few forms or into one;

and that, whilst this planet has gone cycling on according to the fixed law of gravity,
from so simple a beginning endless forms most beautiful

and most wonderful have been, and are being, evolved.
On the Origin of Species

Charles Darwin

Evolution is the backbone of Biology. It is the theory that unites all biological knowledge
and makes it understandable in the light of history. Dobzhansky said that nothing in biology
makes sense except in the light of evolution [105]. Since the publication of Darwin’s book,
On the Origin of Species, in 1859 [106], the field of Biology has grown in many ways
and shapes, allowing us to interpret biological entities according to their ancestry forms.
Moreover, evolutionary theory has a central role in understanding microbiome systems along
with ecological theory. In this section, we will only get a glimpse of the some evolutionary
forces acting upon the human microbiome.

As it has been exposed in the previous section, human microbiota is primarily composed
of bacteria with a minor fraction of archaea and viruses. Microorganisms have the ability to
change their genomes with great freedom, allowing to create new traits without a general loss
of fitness. It is said that microorganisms have a high ‘evolvability’, it is, a significant ability
to evolve. The mechanisms that permit these innovations go further than punctual mutations
to more sophisticated modifications as duplication and drift of existing genes, changes that
can be dramatic and well tolerated by bacteria [107]. However, one of the best and quickest
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ways that prokaryotes have to achieve new functions is through horizontal gene transfer
(HGT), an ability that eukaryotes seem to have lost [108]. In an exciting work by Smillie
et al., they proved that one of the principal forces shaping the human gut microbiota was
HGT [109]. In their work, the authors observed that bacterial genomes are shaped mainly by
the ecology rather than geography or taxonomy relatedness. This statement means that even
if millions of years of evolution separate the bacteria that live together, the genetic traffic
through HGT will be a great force shaping their genomes if they share the same ecosystem.
The HGT allows, then, rapid transit of functions between microbiome components as can be
antibiotic resistance, an issue that can completely modify the behaviour of such organisms
[110]. Moreover, the fact that new functions arise quickly, and are easily shared among the
community, has deep impacts in what we consider as an organism, and whether studying
organisms alone is an accurate approximation for the analysis of microbiomes [111].

Looking at the evolutionary scale involving both hosts and their related microbiomes
is a difficult task. We have seen that microbiotas are highly mobile and dynamic, and can
change significantly with several factors. Thus, is it possible to see evolutionary patterns
in the microbiomes that can be related to the evolution of the hosts? In a work of Groussin
et al., they studied how the gut microbiomes of mammals have changed over evolutionary
time and came to the conclusion that dietary shifts have driven horizontal acquisition of
ancestral clades, and host phylogeny only can predict the presence of recent bacterial lineages
[112]. Here, we have an essential concept that we should take in mind, which is whether the
components of human microbiome are transmitted horizontally or vertically and as often
happens in biology, the answer is a mixture of both ways. The acquisition of specific clades
due to dietary shifts are based upon the horizontal transfer, as they have to be included from
the outside to be able to colonise the gut. However, the microbial members that have shown
co-speciation in the gut are thought to be transmitted vertically, which is the reason for which
they have been able to conserve an evolutionary structure that can be distinguishable from
other related hosts. In this matter, it has been observed that co-speciation have occurred
to some members of the gut microbiota from the Hominidae family, the same that include
us with chimpanzees, bonobos and gorillas [113]. Measuring the divergence of specific
strains from Bacteroidaceae and Bifidobacteriaceae with molecular clocks, it seems that
their divergence time converges with the evolutionary times of host phylogeny (see Figure
1.9). Nevertheless, the existence of co-speciation does not involves necessarily co-evolution,
the testing of which should be assessed in a more mechanistic way [112].
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Fig. 1.9 Co-speciation events in Hominidae gut microbiota. On the left part, maximum-
likelihood phylogeny of Bacteroidaceae linages that codiversified with the African apes but
went lost in humans. On the right part, maximum-likelihood phylogeny of a Bacteroidaceae
clade that co-speciated with humans, chimpanzees, and bonobos. Modified from Moeller et
al. [113].

1.2.2 Measuring time-series

(...) profesaba que la historia es un círculo
y que nada es que no haya sido y que no será.

Los teólogos
Jorge Luis Borges

If in the last section we have seen the importance that evolutionary theory has in defining
the mammals’ microbiota, we need to go a step further and jump into another scale of the
spectrum: the short-term dynamics governed by temporal series of data. As we will see
through this thesis work, we need time-series to properly study a highly mobile system as
it is the human microbiota. By the observation of the ecosystem in time, we can study
fundamental properties that can enable better and more in-depth knowledge about how
microbiota behaves in stable conditions, how the community changes when a perturbation is
present, and how rapid (and complete) can be the restoration of the original state, to mention
some examples. In this section, we will review some works from the literature when the
temporal dimension is available, and what is the potential for such analyses.
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One of the leading and most interesting works that is published was the study of a male
and a female, in four body parts (gut, right and left hands, and the tongue), by Caporaso et al.
in 2011 [47]. A critical part of this work is that they measured more than 300 time-points in
the case of the male, and approximately 150 time-points in the case of the female, giving
us a tremendous quantity of samples to study. In the original article, Caporaso et al. did
very basic analyses regarding the depth of the sequencing, and studying the core OTUs
present in the different body parts and how they changed in time. However, many other
works have been based on this one, making use of this very useful dataset to do other kinds
of analyses as inferring microbial interactions through Lotka-Volterra system of equations
[114], or studying the universality of the dynamics in human microbiota [115]. We will study
in depth these two examples mentioned above in further parts of this introduction. Besides,
this work was also used in the Chapter I of this thesis. What is interesting here is that, first,
temporal datasets from other studies, that are under public accession, can be used to apply
other dynamical tests; and second, the temporal dimension opens new kind of information
about the system as can be the interactions between components.

Nevertheless, the main limitation of studies as the aforementioned, is the limited number
of subjects under analysis. As Faust et al. pointed out in their review in 2015, the works that
investigate temporal data are rare, and are either with few subjects and considerable amount
of time points, or with many subjects with few time points [116]. In the same review, they
have a large table with many time series analysis techniques used in microbiome profiling
studies as the Local Similarity Analysis, used in one of the main chapters of the present thesis.
Many of these techniques rely on the knowledge about dynamical systems studied with linear
and non-linear differential equations, such as Lyapunov exponents to measure whether the
community behaves with chaos or not [117]; the bistability analysis, that detects the existence
of multiple stable states in the population [118]; or the predictability analysis, that tell us
whether the community follow linear or non-linear dynamics [117]. The number of methods
available to analyse temporal data is quite large, mostly due to the inheritance of methodology
that was already developed in other fields as Physics. Still, these approaches still have to be
fine-tuned and integrated within an ecological body of knowledge in order to be of biological
interest. For example, it was reported that a lake under a massive perturbation recovered its
initial state [119], a concept known as resilience, and such recovery was not entirely present
in other kinds of perturbations like antibiotic treatment [120] or a pathogen invasion [59],
both happening in the gut microbiota. Analysing these results with the techniques mentioned
before tells us that there exist different microbial communities assemblages that can be valid,
there is multi-stability, but it does not say anything about what mechanisms are allowing this,
or what ecological consequences might have.
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Another study, carried out by David et al, in which they measured the gut and salivary
microbiotas from two subjects (A and B) for an extended period, along with daily life
measurements [59]. What makes this work attractive is the fact that both subjects suffered
a perturbation that altered their microbiotas in different ways: subject A travelled abroad
from a developed country to a developing world, changing him/her lifestyle and diet entirely;
while subject B suffered a Salmonella infection that caused disease. In Figure 1.10, in the
upper row, we can easily observe the changes in the microbial community produced by both
perturbations. The differences between subjects were higher than within subjects, except in
the case of the Salmonella infection and the travel abroad, that changed scene entirely, at least
for some time. In fact, the most exciting result is highlighted in the lower row, in Figure 1.10,
where we can observe how both perturbations altered the original microbiota. In the case of
subject A, the diet changed the community structure completely increasing the Bacteroidetes
to Firmicutes ratio during the travel abroad, but returning to the original composition after
the subject went back to the original country. On the other hand, the subject B that suffered a
Salmonella infection changed its microbial community structure and did not return to the
original composition. The authors theorise that both cases could represent different scenarios
in microbiome variation, one in which the microbiota passes through a temporary state that is
reversible, and the other in which the microbiota change its composition into another stable
conformation. Again, a case of multi-stability that has been able to be studied only with
temporal series.
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Fig. 1.10 Microbiome variation in time due to change in lifestyle. On the upper row, it can
be observed stream plots showing OTU fractional abundances over time (A), and horizon
graphs of most common OTUs’ abundances over time. On the lower row, it is represented
the cluster abundances over time during both perturbations (B,F), median log10(abundance)
of OTUs in each cluster before and after perturbation (C,G), and theoretical models proposed
to explain the change in the microbial communities. From David et al. [59].

Another kind of analyses and tools that makes use of temporal series is the network
inference of the community, an issue that will be greatly reviewed in the third section of
this introduction. Summarising, with the availability of temporal series, we can use models
based on simple correlations as it is the case of Pearson’s correlation, or more sophisticated
mathematical models based on systems of differential equations, as it is the generalised
Lotka-Volterra system, used in an elevated number of publications [79, 114, 121–123]. The
frequency of sampling is a critical factor that will determine the characteristics under study.
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While large frequencies will enable seasonal or annual properties of the system [124], smaller
frequencies will allow the researcher to study chaotic behaviours of the microbiotas or critical
shifts in detail as we have seen in the previous example [59]. However, the sampling with
human subjects have some problems regarding both the regularity and the availability. The
first problem is a general one; it is essential for some studies to have evenly-spaced time
points to apply some analyses techniques as classic Fourier transformations. The second one
is related to the randomness of life itself, as it is complicated to be regular in large times in
human studies [116]. What is important from this point is that time series help us to make
more sophisticated analyses, uncovering hidden essential features, and letting us to avoid
false positives and false negatives. As we are about to see in depth in the following sections,
dynamics are essential to understanding the fundamental nature of these ecosystems.

1.2.3 Community assembly

Dijo Tennyson que si pudiéramos comprender una sola flor
sabríamos quiénes somos y qué es el mundo.

El Zahir
Jorge Luis Borges

The first steps in the establishment of an ecosystem is known as community assembly,
and its understanding is essential because it has a great impact on microbial communities.
After many years and experiments, we still don’t know whether the order in species inclusion
is important or not for the final result. In other words, first stages dynamics in ecosystems
might be different depending on the way, and order, we put the individuals into the community.
Another question is the incidence of the host in the process of community assembly.

From the theoretical point of view, we have numerous works that explored the dynamics
of community assembly processes. The classical work from Drake explored the idea of as-
sembly and succession by means of the generalised Lotka-Volterra model and its relationship
with invasion resistance [125]. With the use of an algorithm to measure the resistance to
invasions, he observed that ecosystem formation was different in each iteration and that each
configuration was differently prone to invasions. This work has been the basis of many other
studies after it, in which the idea of ecological assembly was treated from the theoretical
point of view. That is the case of the work from Capitán et al., that explored the dynamics
of assembly using tools from statistical mechanics [126]. They used a variation of the gen-
eralised Lotka-Volterra model focused on trophic levels, and the main conclusion was that,
under certain circumstances, the process only had a single stable solution. Therefore, there
is only one stable solution, and it is independent of the initial conditions one may have, a
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conclusion that seems controversial with real data. Lastly, another interesting work is the one
of Dickens et al., that studied the ecological dynamics of an ecosystem with many species
with analytical solutions [122]. In their work, they specify that in community assembly many
forces are acting as immigration, speciation, selection and drift. They develop a model based
on the presence and absence of species that they call the Presence-Absence (PA) model. In
their model, they take into account both the carrying capacities of the different members of
the ecosystem and the rates of immigration and extinction. Among the many conclusions
that they can infer with this simple model, it seems that community assembly can be related
with the three distinct phases in which an ecosystem can be (total coexistence, a few species
dominating, or all species extinct for high noise), with the Hubbell point playing a pivotal
role in the dynamics.

Despite the usefulness of the theoretical works commented above, it is clear that they
have limitations. The main limitation is the discontinuity between the aforementioned models
and real data, or experiments. For example, it is hard to believe that independently of the
initial conditions, you will end up with the same configuration, as the work from Capitán et
al. states [126]. As it would be hard to believe that there is total and perfect control by the
host/environment to select the members of your community. There are other kind of works
that explore at what extent the host is selecting the microbiomes, with animal models (in
the end, it is difficult to experiment with humans). The work from Napflin et al. is a good
example [127]. They used a host that has a constrained population of microorganisms, the
bumblebee Bombus terrestris. These insects are known to gain their microbiomes mediated
by the environment in a vertical transmission mediated by the other insects in the colony.
This behaviour is very common in nature and also happens with cockroaches and termites,
for example [128]. They exposed germ-free insects to a mixture of all the microorganisms
present in a large selection of colonies to see whether the host filtered them or not. The
results, even being not conclusive, hint toward a certain selection pressure dependent of the
host, which was different in some of the replicas, meaning that host genetic background
could also be playing an important role.

Another quite interesting work is the one from Franzenburg et al., in which they explored
the community assembly of Hydra hatchlings [129]. Hydras are quite simple animals that
have been broadly used to study microbiomes. Most importantly, their microbiomes remain
stable in the adult stage and is easy to follow the steps of the community assembly, what
makes them good candidates to study this process. The striking results reflect a robust
process of assembly and succession that was repeated with high precision in the four replicas
of the experiment. As it is observed in Figure 1.11 on the left part, principal component
analysis of the bacterial composition place the samples in highly differentiated regimes in
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the space, meaning that all replicas were comparable between each other at all times, but
different between the times measured (with the remarkable exception of the second week
and the adult stage). Additionally, they proposed a toy model based on the replicator-mutator
equation, represented on the right part in Figure 1.11, to uncover principle rules controlling
the microbial assembly process in the Hydra. By changing the fitness and colonisation
parameters, they observed that under specific values, the output reassembled to the real data
of microbial assembly.

Fig. 1.11 Microbial assembly on Hydras. On the left part it is represented a PCoA of
Pearson’s distribution between Hydra microbiota at different time points, in all replicas.
On the right part, it is represented the mathematical model based on the replicator-mutator
equation (b), with three different scenarios: constant interactions and colonisation parameters
(c); bacterial fitness modelled as abundance-dependent values (d); and colonisation rate
assumed to be time-dependent, decaying over time (e). From Franzenburg et al. [129].

All the studies commented in this section are only a glimpse of the highly complicated
panorama which is present in more complex microbiome ecosystems. We have seen in this
introduction that the first steps of bacterial colonisation in humans are more or less well
understood, with specific periods marked by the presence of distinct microbial groups. It
might be that host genetics plays a role in the selection process, but it seems that its effect
would be minor nevertheless [130]. Microbial assembly in humans will be defined not only
by host genetics but many other forces as selection, extinctions, functional redundancy,
interactions and stochasticity, among many other unknown forces. Moreover, the final
solution will not be the only possible one. In the final section of this introduction, we will
explore one of the most important issues in microbial ecological theory, the interactions, that
will play a major role in shaping the microbiomes.
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1.3 Interactions

Up to this point, we have studied what is a microbiome, how it is in different scenarios,
that these populations are highly mobile, and that temporal series help us to discover the
dynamics governing this complex system. The final section of the introduction will focus
on the concept of interaction between the individuals in microbial systems. The individuals
present different responses to other members of the community, maybe helping their relatives
or fighting against possible invaders, but also developing more complex and sophisticated
actions of treachery, changing sides or suicide, as would happen in a classic Greek tragedy.
We will see how this battery of interactions can be modelled and also inferred, and how they
help to uncover essential properties of population stability.

1.3.1 What is an interaction

Principles
You can’t say A is made of B

or vice versa.
All mass in interaction.

Richard Feynman

Defining what is an interaction is not a trivial question. To interact is to establish a
connection between two elements, by means of transmission of matter, energy, or both, that
will end in three different classes of effects to each interactor: positive, negative or neutral. In
our case, the elements that interact are the biological entities that are present in an ecosystem,
behaving in different manners depending on the other organism. This concept is among
the most essential subjects treated in the field of Ecology, and we can classify the types of
interaction depending on the gain/loss output. We know many examples taught in schools for
years, like the classic trophic chains in which we have producers and predators of a different
hierarchy, like the herbivores that eat plants, or hunters that eat herbivores (or other hunters).
However, defining interactions in terms of trophic chains has limited value if we try to extend
this idea to other types of organisms. Instead of this way, we usually describe interactions
concerning gain or loss in fitness after the interaction event. For example, the predatory
behaviour of a lion and a gazelle will likely end up with the herbivore dead, and the hunter
with food to eat. Thus, we can say that a predatory behaviour has a positive effect on one
individual, and a negative effect for the other (+/−). With this generalisation, we can specify
a limited range of possible interactions that can happen in an ecosystem, that are summarised
in Table 1.1. Although helpful, we should not forget that a partition like this does not capture
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Interaction Species X Species Y
Mutualism, co-operation + +
Commensalism + 0
Competition − −
Exploitation, predation + −
Amensalism − 0
Neutralism 0 0

Table 1.1 Main interactions between organisms in an ecosystem. Extracted and modified
from Nature Knowledge Project.

the real complexity of the interactions in biology, and, sometimes, organisms can change
sides and shift from one type of interaction to another with ease.

At a higher scale, and focusing on the subject of this thesis, we find three different types
of effect between microbiomes and hosts: microbe to host, host to microbe, and between
microbes [131]. Even though we will focus on the third type of effect (microbe to microbe),
it will be worth knowing what we currently know about the interaction between the host and
the microbiome, which has different properties depending on the interaction direction. In fact,
we studied the effects of the microbiome to the host in the first section of this work, when we
saw how dysbiosis could cause diseases like IBD [73] or Crohn’s disease [74]. Nevertheless,
there are also positive effects from the microbiome to the host that arise both acting directly
or indirectly. For example, it is well known the fact that microbial species confer colonisation
resistance to the host by niche competition [132]. Furthermore, human microbiome has an
important role in host metabolism, providing short-chain fatty acids like butyrate, which
acts as signalling molecule on the host that promotes beneficial properties as seen in this
introduction concerning insulin resistance [87, 133]. The immune system maturation is also
affected by the microbiome [134]. There are more examples of this kind of interaction,
from the microbiome to the host, like the ability to increase the energy extraction from food,
increase nutrient harvest, and alter appetite signalling [135]. With respect to the other way of
interaction, from host to the microbiome, we have studied how the host could be selecting
the microbes to live with it in the process of microbial assembly [131]. Furthermore, there
are other types of effects from the host to the microbiome, such as compartmentalisation of
microbes, letting some parts without microbes (i.e., the brain) [132], feeding certain types of
microorganisms by epithelial cells [136], or monitoring which actions they do [131].

Either way, the interesting part for us in this section is the kind of interaction that hap-
pens between microbes. These interactions can take multiple forms, like simple predatory
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behaviour of Bdellovibrio bacteriovorus, a highly mobile delta-proteobacteria that invade the
periplasm of other larger gram-negative bacteria, killing and disgesting them [137]. Another
typical and simple interaction is the competition for nutrients, which also confers the resis-
tance to colonisation that we described before. However, we also find more sophisticated
ways to interact as are cross-feeding metabolic exchanges between microbial species. In
other words, some metabolites that are produced by specific microbes will be the metabolic
substrate for others, becoming a co-operative type of interaction between microbiome com-
ponents, which also has significant impacts in the host. In Figure 1.12 we can see that
metabolic exchange can lead to the formation of short-chain fatty acids as acetate, butyrate
or propionate, essential elements for us [138]. Microbes can also change their behaviours
depending on the conditions. On an exciting work by King et al., they observed that bacteria
belonging to Enteroccoccus faecalis, that are mild pathogens to the worm Caenorhabditis
elegans, rapidly evolved after few generations in the presence of a more pathogenic bacteria,
Staphylococcus aureus, to confer protection for the host [139]. The main changes in their
genomes were related to the production of antimicrobial molecules against S. aureus. This
change of interaction type, from parasitism to mutualism through evolutionary time, high-
lights the complexity that is present when microbes interact. These interactions can be highly
precise, bacteria acting as microbial surgeons, affecting only selected objectives. That is
the case of the example studied in the work of Wexler et al., where they described how the
strain Bacteroides fragilis NCTC 9343 interact directly with other bacteria using the Type-6
secretion system [140]. This strain establishes multiple connections with the surrounding
bacteria, injecting antimicrobial components that will be lethal for other B. fragilis that do
not have the immunity genes encoded in that specific strain. In other words, B. fragilis NCTC
9343 is making a strain-specific interaction, killing other members from its same species.
And, this is only one example in one specific strain; the possibilities in a whole microbiome
are quite large if we think about the thousands of strains that inhabits our body, with many
strategies to deal with each others.
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Fig. 1.12 Metabolic exchange between microbes. In this figure are represented the pathways
that are responsible for the biosynthesis of the major microbial metabolites that result from
carbohydrate fermentation and bacterial cross-feeding. From Louis et al. [138].

These examples of interaction complexity are only the tip of the iceberg, and how life
forms can interact are practically endless. The ecosystems become war zones where microbes
battle each other with the production of antibiotics, that also leads to the creation of counter-
measures by protecting themselves from these molecules [141]; altering the production of
quorum sensing molecules as autoinducer-2 promotes a shift in the Firmicutes/Bacteroidetes
ratio [142]; or that physical properties like adhesion in biofilms can work as a weapon against
other members that are less efficient to surface attachment [143]. Phages could also promote
diversity because they spread through host bacteria that are abundant, and can give rare
bacterial species an advantage [131], or they also help the horizontal gene transfer, a process
that fastens the transmission of helpful and advantageous functions across microbiomes
[109]. Up to this point, we should ask ourselves whether such complexity can be adequately
studied and integrated into models, or not. Microbial behaviour can shift from one type of
interaction to another, as seen in this point, and the same two bacteria can behave in different
ways between them by changing the environmental conditions. However, simplifying all this
mess and specifying the effects between microbes with only three different effects (+,−,0)
is handy when we want to model it using mathematics. So, even using this simplification, we
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are able to extract central properties of microbial ecosystems as we will see in the following
sections.

1.3.2 Inferring interactions in microbiomes

What I cannot create, I do not understand.
Richard Feynman

After the picture we draw about the complexity of interactions, just imagine how hard it
is to infer what is happening without seeing it. In the macroscopic world, we can observe
how the lion hunts the gazelle, or ants taking care of aphids to eat their ‘poop’, a sugar-rich
substance. However, it is a lot more complicated to observe a bacteria injecting antimicrobial
molecules into another. If we want to address this problem in an rich ecosystem like the
human microbiota, we should use methodologies that use the power of time series that can
robustly infer microbial interactions.

One of the most basic approaches is to use correlations to extract interactions. The idea
behind is quite easy to understand: if two species grow in time, they will have a positive
correlation; if two species have opposite behaviours (one grow, the other reduce its abun-
dance), the correlation will be negative. The usual form is by the use of Pearson’s correlation,
that takes the covariance of the two variables and divides it by the product of their standard
deviations. Other forms of correlation exist, like Spearman’s rank correlation coefficient,
which is a form of Pearson’s correlation between the rank values of the two variables. The
main problem of using correlation is due to the way in which we have microbiome data,
that is not by absolute counts but rather by relative abundances. This problem leads to
compositional effects in microbial abundances, where the increase or decrease of determined
species can mask accurate positive or negative correlations. There are some software that tries
to amend the compositional problem, like SparCC [144]. Also, correlation coefficients are
not optimised to use temporal data, an obstacle that other techniques like LSA (from Local
Similarity Analysis) try to overcome using a sophisticated form of correlation [145]. Besides,
another problem that arises from correlation analyses is the classical motto: correlation does
not imply causation, that in this case implies that a correlation between two species could be
an artefact instead of a real interaction, something that has been extensively proved [114].
However, not everything are bad news, correlation analyses are still used because they are a
quick analysis that can sed light in the first steps of a pipeline, and correctly used, they can
even be a powerful tool to extract real interactions as we will see in Chapter II.

Although the community had used correlation coefficients for a good time, there has been
a shift toward the use of more complicated models to make the inferences. The most used
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model is, without any doubt, the classical Lotka-Volterra model. This model was proposed
first by Alfred Lotka in 1910 for chemical systems [146], and further developed by him in
1920 to address biological problems [147]. Vito Volterra used the same system of equations
in 1926, and later on, the system acquired the name of both scientists. The classic form of this
model measured how a population formed of preys and predators behaved in time, and then
it was further extended to other types of biological problems, giving rise to the generalised
Lotka-Volterra model. The equation in 1.1 is an example of a generalised Lotka-Volterra
model with parameters for individual growth (µi), and an interaction network (Mi j) that
specifies how the members of the ecosystem interact with each other. This model has the
form of a system of differential equation and has been massively studied since its conception,
one of the main reasons for why it is among the most used models in ecology nowadays. In
fact, this model has appeared many times through the introduction. However, being this a
model to see what happens in an ecosystem given an interaction matrix, how can we use it to
infer precisely the interactions of a given ecosystem? It is a case of reverse engineering, and
some works have explored this way of interaction inference.

d
dt

xi(t) = µixi(t)+ xi(t)
L

∑
j=1

Mi jx j(t) (1.1)

For example, Stein et al. proved that they could robustly infer interactions by linearising
the Lotka-Volterra system, and estimating the model parameters by the Tikhonov regular-
isation [79]. A refinement of this methodology came out with the work of Bucci et al.,
where they improved the model by adding various parameter estimators based both on
maximum-likelihood or Bayesian algorithms [121]. Furthermore, Fisher and Mehta also
used the Lotka-Volterra system of equations together with an algorithm they created to infer
interactions in microbiome samples [114]. Some examples from these works are represented
in Figure 1.13. As seen in all examples, the number of species from which interactions are
inferred does not exceed the dozen or so. This aspect is one of the main limitations of the
aforementioned methods; they need a significant number of samples to make the interaction
inference. Another limitation concerning the Lotka-Volterra system of equations is its use as
a rough approximation to measure the inextricable nature of microbial interactions. The use
of model parameters helps to make it more realistic, but on the other hand, it also makes it
harder to analyse due to overfitting problems, to name one limitation. Either way, assum-
ing a more realistic model like the Lotka-Volterra, instead of simpler ones like Pearson’s
correlation, is a significant advantage which is helping to elucidate interesting biological
interpretations from metagenomic data.
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Fig. 1.13 Different interaction networks inferred from samples. On the left, it is represented
an example of the work by Stein et al. [79]; on the center, it is represented an example from
Bucci et al. [121]; on the right, it is represented an example of the work by Fisher and Mehta
[114].

In any case, researchers are exploring complementary ways like an equation-free method
that does not rely on any equation like the generalised Lotka-Volterra model [148]. This
method relies on a modification of the algorithm from Fisher and Mehta [114], generating a
sparse interaction network without assuming any particular equation. This methodology also
allows for non-linearities, a considerable limitation in other types of interaction inferences.
Furthermore, there is a good body of literature about Bayesian estimation of microbial
interactions, used in several works [78, 149, 150]. Nevertheless, Bayesian estimation will not
be treated in this introduction because we have used the Lotka-Volterra system of equations
due to its simplicity and because it is one of the most studied systems in ecology.

1.3.3 Time stability for complex networks

The problem was how to keep the wheels of industry
turning without increasing the real wealth of the world.

Goods must be produced, but they need not be distributed.
And in practice the only way of achieving this

was by continuous warfare.
1984

George Orwell

From the dynamical analysis of microbial populations we can derive essential properties
as the ecosystem stability over time, and robustness to different classes of perturbations. The
study of stability in dynamical systems is a well described body of knowledge, extensively
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treated in mathematics and physics, from where ecology utilises some of their tools [151].
Besides, microbiome stability seems to be related to the health status of the host, as we
describe in Chapter I. To know how the microbial species interact with each other enables
interesting approaches to study this key property, an issue that has been explored since
decades ago.

One of the most known facts about ecosystem stability was presented in a seminal work
by Robert May, where he described that ecosystems with a large number of species tended
to be unstable [152]. This fact resulted striking to the ecologists back in the 70s because it
was thought that a high diversity helped to stabilise an ecosystem, and May’s work came
up as a paradox for this observation. It is a paradox because we know now that systems
as our gut microbiome can be stable even with hundreds of species cohabitating the same
space. How can this be possible? Today, we know that May’s assumptions were failing
in one key point: he was studying community networks with randomly distributed types
of interactions, meaning that cooperation (+,+) and competition (−,−) were occurring
with half the probability of exploitation (+,−). Then, the question is whether the types of
interactions are important or not to promote stability in ecological networks, an issue treated
in a great work from Coyte et al. [153]. In their work, they explored the ecological stability
by different analyses, variating the proportion of cooperative interactions as represented in
Figure 1.14. First of all, measuring the network’s eigenvalues, a classic stability measure,
they observed that increasing the number of species created instabilities in the network.
Besides, networks with only cooperative interactions were unstable meanwhile increasing
the competition proportion helped to stabilise the network. They proved the same fact with
two new types of analyses: a permanence analysis that measured how communities behaved
away from equilibrium; and an individual-based, less general but more explicit that allow
them to follow each species per separate.
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Fig. 1.14 Cooperation proportion and its influence in network stability. In A, how the
proportion of cooperation (Pm) is changed in the analyses. In B, numerical analysis of Linear
Stability Analysis. From C to E, analyses of networks with different Pm and their stability
by the three different stability measures. In F, two different results in the individual-based
analysis after a perturbation in a permanent or a non-permanent population. After the
perturbation, the species remain stable only in the permanent population. Figure from Coyte
et al. [153].

The fact that competition could, in principle, be a network stabiliser, seems counterin-
tuitive. We might think that cooperation between the parts leads to an improvement of the
system, but it instead seems that positive feedback loops can destabilise the network via
coupling between species. This fact means that if a species decreases for some reason, it will
pull down the other species and thus, destabilise the ecosystem [153]. However, it is also true
that microbial cooperation promotes metabolic efficiency in microbiomes [154, 155], so, in
the end, we will have to reach a compromise between metabolic efficiency (and other positive
effects arising from cooperation) and their destabilising action. Then, a rich ecosystem
like the human microbiome should have a proper proportion of competitive interactions
among other factors that help to increase network stability. Coyte et al. [153] explore three
different factors that increases this stability: the action of the immune system can reestablish
the normal microbial abundances by an abundance-dependent action, something that helps
to stabilise the network from other positive loops [156]; the strength of the interactions is
another essential factor, and weakening them (with compartmentalisation, for example) leads
to stability [157]; and, lastly, it seems that host epithelial feeding can also lead to stability
by allowing to grow specific microbes, and by weakening their interactions. If you have a
carbon source in abundance, you do not have to compete with others for food [131].
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Up to this point, we have seen that cooperation is a double-edged sword, which can
help the microbiome in terms of metabolic efficiency but also can decrease the stability
at high species abundance. However, both cooperation and competition are needed to
maximise the ‘fitness’ of the entire ecosystem. Indeed, in a complex population like a
microbiome, there will be members that will benefit other microbes to gain advantages
[158], but competition will always exist because microbes will always fight fiercely for
the resources [159]. However, there is an essential component in ecosystems that we have
not explored in detail, the self-regulation. Barabás et al. explore the importance of self-
regulation in large ecological networks, finding that most of the species should have strong
self-regulation in order to confer stability to the network. This concept of self-regulation can
be understood concerning the carrying capacity of an ecosystem, meaning that the ecosystem
can allow a limited number of biological beings to live in there. But the concept is more
complicated than that, because, sometimes, bacteria can present complex (and somewhat
counterintuitive) behaviours as ecological suicide [160]. Contrary to what we could think,
it seems that this specific behaviour can rescue the microbial population to get extinct in
specific conditions, a practice which is very common in Nature. Finally, as Valverde et
al. points out in their wonderful work, the architecture of mutualistic network could have
been evolved as an evolutionary spandrel [161]. Given some set of rules to build ecological
networks, it seems that mutualism is a by-product of the main structures in the network.
Among the interesting questions that arise from this point, we should ask what properties of
cooperation and competition are due to the way in which Nature builds complex networks in
microbial ecosystems.

Another way in which dynamic system analysis helped to understand the behaviour
of complex systems is by defining, theoretically, that there could be different regimes in
which the ecosystem can be. This idea is strongly related to the methodology and results
from Chapter I, and it has been explored in different ways. The main idea is based on the
assumption that every system in which there is a noisy component, can be in different phases
depending on the noise magnitude along with the robustness of the system [122, 123, 162].
We have just seen that in terms of cooperative interaction proportion, or with the self-
regulation strength. Fisher and Mehta explored the different regimes in which an ecosystem
could be by the study of Lotka-Volterra system of equation, and a model of presence-absence
of species further developed and analytically solved in other work [122, 123]. The main
conclusions were that there are two different regimes, a niche and a neutral regime, depending
on whether the stochastic component was important or not. We use the same idea in the
Chapter I by using a model based on the Langevin equation [162]. The Langevin equation,
represented in equation 1.2, has been used to model the Brownian motion and has two
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main components: on the one hand it has a deterministic part that measures the ‘fitness’ of
the system; and on the other hand, a stochastic component that measures the amplitude of
fluctuations. In the original work, they study the ranking dynamics, and the equation 1.2
measures the ranking of a given object over time (ẋi). The solution of the equation gives three
different regimes: a rank-stable regime where neither the ranking nor the score of each item
varies over time; a score-stable where the score is stable, but the ranking can change; and the
unstable region, where the system is unstable under any perturbation. In Figure 1.15 it is
represented in this phase diagram, where the authors explored some systems as Wikipedia
entries, Twitter citations and English use of words among others.

ẋi = Bi · xα
i +A · xβ

i ξi(t)−φ(t) · xi, (1.2)

Both works, the one by Fisher and Mehta, and the other by Blumm et al., converge in
saying that there will be a stable regime dominated by deterministic forces, and an unstable
one dominated by stochasticity [122, 162]. In physical terms, it is more or less clear, but from
a biological point of view is more tricky. In principle, the stable regime will be dominated
by forces like the species abundance and interactions, as seen through this section; and the
unstable regime will be dominated by stochasticity, in which neutrality can be an important
factor. Neutrality in ecology shares the same principles as in evolutionary biology: a neutral
change in an ecosystem means that you can interchange specific species for others without
changing the global properties of that ecosystem. A neutral change that will root mainly in
the topic of the next point. In fact, one of the main results from the Dickens work is that
neutrality can be acting as a special point where the regimes converge, where all species
are identical, and their dynamics are uncorrelated. Nevertheless, it seems that ecosystems
transitions from one regime to the other depending on the conditions, an aspect that will be
essential in the first chapter.
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Fig. 1.15 Phase diagram of ranking stability. Three different phases where found, and some
systems were explored and placed in the Figure according to their stability. Figure from
Blumm et al. [162].

1.3.4 Function redundancy on microbiomes, and multi-stability

‘What a stupid exercise,’ said her dæmon after five minutes.
‘Words belong in contexts, not pegged out like biological specimens.’

La belle sauvage
Philip Pullman

We have talked about the different interactions that can be present in an ecosystem, and
how they shape its dynamics. These interactions are performed by individuals, and we can
explore this problem from another perspective instead the one based on the individual; it can
be explored by the functions coded in the genomes of the individuals. A crucial issue to have
in mind when we talk about microbiomes is that it is not only important who is there, but also
what are they doing. This approach based on the functional capability of a microbiome has
deep biological implications. Microbiome studies commonly refer to species or strains counts
as a proxy for what they are doing, but it is important to notice that even two strains from
the same species can perform quite differently in similar conditions [140, 163]. This fact is
mostly due for horizontal gene transfer events, a powerful microbial tool to transfer genes
rapidly among the population [109], and the spread of antibiotic resistance is one of its most
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known effects [164]. However, there is another essential property of microbial systems, their
functional redundancy, or how microbes can perform similar actions in different manners.
Functional redundancy is the product of two main forces mainly: the HGT which allows
functions to flow in the community; and the existence of non-unique solution for a problem
given that the same function can be carried out by different enzymes, for example. The
second force is also known in evolution as an analogy, when different organisms develop a
similar feature by different solutions, mostly due to distinct evolutionary trajectories. For
example, we find that many microorganisms have developed different mechanisms for the
same functions as energy-yielding, oxygen respiration or carbon fixation [111].

The important point of the functional redundancy is given by the fact that, even though a
microbial community can be different in abundance and presence of taxa, it could be similar
regarding functions carried by this community. Within the microbiome realm, this fact means
that even changing the microbiome composition through time, we could still have the same
functions as before. We can be unstable regarding taxa, but stable concerning functions.
This issue was recently reviewed by Moya and Ferrer [71] and has been observed in several
systems as children developing type 1 diabetes [165], across the Human Microbiome Project
(HMP) data [166], across body parts [43], or even the functions in all oceans on Earth [167].
In Figure 1.16 we can see that KEGG gene categories or the metabolic gene groups are pretty
stable given the instability of their taxonomic assignations [111]. Functional redundancy
has, thus, profound implications in ecosystem dynamics. As Moya and Ferrer state in their
review, the notion of stability in microbiotas can behave in different ways depending on the
output after a perturbation. For instance, a microbiota that does not change its composition
is said to exhibit resistance, a microbiota that changes its composition but can restore it
is said to exhibit resilience, and a microbiota that changes its composition but not in their
functions is said to exhibit functional redundancy [71]. Functional redundancy also reveals a
truly outstanding fact about microbial systems: you can go from a taxonomically described
community to the realm of functions, but not from the function description to the taxa [111].
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Fig. 1.16 Functional redundancy in microbial systems. In a are represented the families and
in b are represented the OTUs at 99% of gene similarity. In c it is represented the KEGG
gene categories, and in d custom metabolic groups from the taxa from the above row. From
Louca et al. [111].

The implications of functional redundancy have, also, a strong connection with another
key concept, multi-stability. The disentanglement between functions and taxa allows having
several community configurations with the same functionality. There is not only one possible
solution for the stability problem in microbial systems. In other words, there can exist
different microbial communities equally stable in the same conditions. This is the idea behind
concepts as the enterotypes [50], where different stable and healthy microbe configurations
can exist at the same time. The work of Gonze et al. explored this idea with a toy model of
bacterial interaction between three species [72]. They used a model based on Hill equations,
represented in Figure 1.17, where they observed that depending on the initial conditions, or
the change in the equation parameters (as bacterial growth), the system could have different
stable states. They extended the idea to a system with 15 species, connected in three different
modules, and concluded that any of the three clusters could be the most abundant and stable
depending on the conditions..
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Fig. 1.17 Multi-stability in microbial systems. In a, the three species of the toy model. In
b, the Hill equations that govern the system, with parameters bi for bacterial growth, ki for
death rate, and inhibition term fi with inhibition coefficients Ki. Here, n = 2. In c, numeric
simulations that shows that the abundant species depend on the initial conditions. In d, three
bifurcation diagrams show for each species the range of the three stable states. From Gonze
et al. [72].

Together, the ideas of functional redundancy, neutrality, and multi-stability are a powerful
tool to explore biological implications in microbiomes. Taking the extension of Waddington
Landscape proposed by Moya and Ferrer [71], the events that affect microbiotas shape them,
but also they have the possibility of ‘jumping’ between states in the future thanks to the
properties we have reviewed through this introduction. Nevertheless, we should be aware of
an important point in all this mess, measuring neutrality is not trivial. We can easily rely on
arguments saying that the species interchange conserving the functionality of a microbiome
are neutral changes, but the system complexity is far higher than we can observe at this
moment. Even though two different microbiotas can develop similar functions, we do not
know much information about the reaction kinetics of the enzymes, the ability to get nutrients
from the media, the genomic plasticity that some species can have, and a myriad more
details we cannot know, and, in the end, shape how are the interactions between the system
components [111]. Because of this, we should never lose focus in the species interactions,
for they are one of the most powerful factors that shape the behaviour of a microbiome.





Objectives

Microbial systems are highly dynamical, always adapting to the ever-changing conditions that
shape them. This variability is also present in the human microbiome, a diverse microbial
system which is influenced by several external forces. The interplay between host and
microbiota derives in changes to host’s homeostasis that could lead to diseases. Although it
seems that a stable microbiota is connected, somehow, to a healthy host, it is still unclear what
means to have ‘a stable microbiota’. Thus, uncovering the relationship between microbiome
variability and host health status would be an improvement in the dynamical analysis of
human microbiota.

The present thesis work aims to elucidate the conditions for stability in the human micro-
biome, propose a quantitative definition for this concept, and connect it to the health status of
the host. Once established the definition of stability, we aim to use it on our experimental
data of follow-up studies, and try to prove its validity on other kinds of diseases. Finally,
we also aim to use, and control, the variability of an in silico system emulating a human
microbiome to uncover the possible interactions that exist in the community.

The present thesis contemplates the following four objectives, that are defined as follows:

Objective 1: Establish a definition of stability in human microbiome, and relate it
with the health status of the host.

The lack of a formal definition of what constitutes a stable microbiota, along with
the variability present in different scenarios that influence the human microbiome, are of
critical importance to establish a connection between host’s health status and stability. The
availability of metagenomic data from follow-up studies and the existence of mathematical
tools based on systemic variability analysis makes possible the theoretical exploration of this
issue and its validation. The first objective aims to establish a formal definition of microbial
stability with a model based on the Langevin differential equation, used to describe the
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motion of elements given deterministic and stochastic components, and to apply this model to
real microbiome data where the subjects were subjected to different perturbations or diseases.

Objective 2: Uncovering microbial interactions by noise induced experiments.
Microbial interactions is one of the main forces that shapes the communities. The type of

interaction pattern determines the stability and robustness of the entire network, and thus, it
is essential to be able to study them. However, the inference of bacterial interactions using
temporal data is not trivial, with methods that rely on extensive data series, and which are
limited by the models used. The second objective aims to uncover microbial interactions
with noise-based experiments. As system perturbations help these models to have a better
inference of the interactions, we propose a methodology by which one can alter the behaviour
of a single specific bacterial species to study the interactions in the community.

Objective 3: Case study 1: time series analysis of the microbiota of children suffer-
ing from acute infectious diarrhoea and their recovery after treatment.

Acute infectious diarrhoea is one of the leading causes of mortality and morbidity in
children worldwide, and its main cause is an infection with rotavirus. The gut microbiota
seems to be implicated in the course of disease. Thus, understanding the dynamics of children
recovering from this disease is of clinical interest. The third objective aims to study a cohort
of 10 children suffering from acute infectious diarrhoea, and 6 healthy children, across a
month of time with 5 time samplings. We aim to use the tool from the first objective to assess
whether the children suffering the rotavirus infection were less stable than the healthy ones,
and study this case from other points of view as the functional part of the human microbiome.

Objective 4: Case study 2: dynamics of oral microbiota and its relationship with
oxidative stress.

The oral microbiome is in constant contact with the external world, and, it is still a
highly stable system in time. Previously, it was thought that cavities and other oral diseases
were caused by the presence or absence of specific bacteria such as Streptococcus mutans.
Nevertheless, recent data seems to point toward a polymicrobial theory of disease in the
mouth, defining the cause of oral disease as bacterial dysbiosis. The fourth objective aims
to explore the dynamics of the oral microbiome and its correlation with oxidative stress
markers that reflect the inflammatory processes in the oral cavity. For this purpose, we study
26 volunteers oral microbiomes during one month on a daily basis.
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3.1 Cohort and sample collection

In this section it will be explained the sample selection and subject enrolment that has been
carried out in chapters I, III and IV. Briefly, the Taylor’s law study in Chapter I was made of
data publicly available from other research articles, with a total of 99 subjects with variation
in their time-sampling; in the study of the gut microbiota of children with acute infectious
diarrhoea, in Chapter III, we had a total of 16 children with 5 time points per child; finally,
in the study of the salivary microbiota, in Chapter IV, we had a total of 26 volunteers with
an average of 21 time points per voluntary. Chapter II did not have any sample selection
procedure due to its in silico nature.

3.1.1 Sample selection in Chapter I

This study was based on data which was publicly available, except for the work regarding
the Irritable Bowel Disease carried out by Durban et al. [73], which was directly provided by
the authors. Although the material used can be seen in each reference, a table is provided
where each data source can easily be found (Table 3.1). The separation between healthy and
non-healthy periods was important, and the reasons are explained in the next lines.

We chose studies about relevant pathologies, containing metagenomic sequencing time
data series of bacterial populations from humans in various healthy and non-healthy states.
Only those subjects who had three or more time points of data available in databases were
selected. The study by Caporaso et al. [47] was selected as it featured two healthy subjects
measured over a very long time-span, with almost daily sampling. The study of Faith et
al. [168] was selected given the BMI differences between subjects. Moreover, some of
them followed diets which could be treated as system perturbations. Only those subjects
whose BMI (body mass index) was normal or overweight were considered healthy. The
study by Smith et al. [169] was selected for both the age of the patients and the rare disease.
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Regarding kwashiorkor, we considered only the discordant twins and deemed subjects
unaffected by kwashiorkor as being healthy in each pair of patients. The study by David
et al. [170] was selected for its differential diets. The healthy period was considered to be
the initial samples of each subject before starting the diet, while the remaining time points
were considered as perturbations. Dethlefsen and Relman’s work [120] was selected due to
the interesting treatment of two antibiotic intakes of the same antibiotic by three different
subjects. The healthy period was considered to correspond only to those times before any
antibiotic treatment, whereas the periods during and after antibiotic intake were considered
as perturbations. The work by David et al. [59] was selected due to the comprehensive
longitudinal data that it provides, plus its complete metadata and the interesting events
experienced by both subjects (an infection and a trip abroad). The healthy period was taken
from time points before or after each event. Finally, we also considered a study from our
group carried out by Durban et al. [73] in which the healthy subjects were considered as
those who did not suffer from irritable bowel syndrome, while the patients who had this
disease were taken as perturbations. In the end, we had a total of 99 subjects that were
analysed.

3.1.2 Sample collection in Chapter III

We enrolled a total of 16 children, 6 of them with a healthy condition, and the other 10
suffering from acute infectious diarrhoea. All children were from 3 to 4 years old; this age
range was selected because the microbiota is finally stabilised during this stage [39], and
so that the differences caused by age disparity between groups are reduced. To eliminate
potential biases associated with the intestinal microbiota during infancy, we selected children
who were normally delivered, breastfed for at least 6 months, and have not received antibiotic
therapy since birth. From every child enrolled, we collected samples at five different time
points, namely, at 0, 3, 5, 10, and 30 days, for a total of 80 different samples. More metadata
can be found at Table A.6 in the Appendix section. Children with acute infectious diarrhoea
were treated with a probiotic made of Saccharomyces boulardii. The sample at day 0 was
taken before probiotic treatment in the group of children with infectious diarrhoea. All
children belonging to the infectious diarrhoea group received oral lyophilised S. boulardii
CNCM I-745 (250 mg twice daily, Reflor, Biocodex) for the first five days, specifically days
3 and 5 (day 0 was with no intervention), in addition to ORS and/or intravenous therapy.
Rehydration and electrolyte replacement were done using hypoosmolar ORS (glucose 20
g; sodium 60 mmol/L; potassium 20 mmol/L; bicarbonate 30 mmol/L). The frequency and
consistency of the stools were recorded. Before the collection of the children’s stool and
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Table 3.1 List of the data sources of all the studies appeared in Chapter I

Study Reference number(s) Database
Moving Pictures

of Human Microbiome [47] 4457768.3-4459735.3 MG-RAST

The Long-Term
Stability of the

Human Gut Microbiota
[168] Without number

Personal web-site
gordonlab.wustl.edu

Gut microbiomes for
malawian twins pairs discordant

for Kwashiorkor
[169]

ERP001928 (16S rRNA)
ERP001911 (shotgun)

European Bioinformatics
Insitute (EBI)

Diet rapidly and reproducibly
alters the human
gut microbiome

[170] 6248 MG-RAST

Incomplete recovery and
indvidualized responses of

the human distal gut
microbiota to repeated
antibiotic perturbation

[120] SRA020961
NCBI Short Read Archive

database

Instability of the faecal
microbiota in diarrhoea-

predominant IBS
[73] Without number Provided by the author

Host life affects
human microbiota

on daily basis
[59] ERP006059

European Bioinformatics
Insitute (EBI)

https://gordonlab.wustl.edu/microbiota_stability/
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data, consent was given by their parents. This study was registered in Clinical Trials website
with the NCT number NCT00683982.

3.1.3 Sample collection in Chapter IV

Unstimulated whole mouth saliva was collected from 26 volunteers (13 males and 13 females)
recruited from students of the Comenius University in Bratislava, Slovakia. Exclusion criteria
included active periodontitis, untreated caries, oral pain or any known oral diseases, but also
smoking and major chronic systemic diseases. Subjects taking any medications including
over the counter available antioxidants were excluded as well. At least 2 mL of saliva was
taken by spitting into sterile tubes daily for 30 days at the same time between 06:00 and
08:00 at least 30 minutes after toothbrushing. The volunteers were instructed not to eat in the
morning before saliva collection. All samples were immediately frozen after collection and
stored at -20◦C until further processing.

3.2 16S rRNA gene sequencing

In order to characterise the bacterial and archaeal composition of the microbiota, the 16S
rRNA gene of the samples from the children in Chapter III and the volunteers in Chapter
IV was amplified and sequenced by high-throughput technologies. Despite the limitations
of the 16S rRNA gene sequencing are well known, especially the biases due to the PCR
amplification step or the sequencing-preparation procedures [171], and the lack of specificity
to lower taxonomical levels than genus, new methods are appearing in the recent years which
can resolve differences at one nucleotide [172, 173]. Nevertheless, it is still an approach that
has clear strengths such as its cost per sequence, the robustness of the methods available to
treat the sequences, or the ability to capture broad temporal properties [171]. Also, it seems
that it recovers the diversity information with the same confidence, at least, than WGS (whole
genome sequencing) methods [174]. Nevertheless, the scientific community is becoming
aware that the field should move from the 16S sequencing to the WGS [175].

3.2.1 Nucleic acid extraction and sequencing

For the children in Chapter III, the hypervariable V4 region of the 16S rRNA gene was
selected to be amplified, while in the volunteers from Chapter IV it was selected the hyper-
variable V3-V4 regions. It has been shown that V4-V6 are the most reliable hypervariable
regions to recover most of the phylogenetic resolution that can be obtained with the use of the
total length of the 16S rRNA gene [176]. All faecal samples were stored at -80◦C until the
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DNA extraction. All samples were weighed to extract the total DNA using the QIAamp DNA
Stool Mini Kit (Qiagen, Hilden, Germany), following the manufacturer’s instructions. The
extracted DNA was shipped under cold conditions to FISABIO in Valencia, Spain, for further
analysis. More information about the participants is available in Supplementary Table A.6.
Then, the hypervariable V4 region of the 16S rRNA gene was selected to be studied, with a
paired-ends strategy (as shown in Figure 3.1) to increase the final length of the sequence, and
therefore, improve the taxonomical assignation in further steps. Sequencing was performed
on the MiSeq Illumina platform according to the manufacturer’s specifications. Sequencing
was conducted at the Sequencing and Bioinformatics Service of FISABIO Foundation. The
Eskisehir Osmangazi University Local Ethics Committee from Turkey reviewed and approved
the protocol.

The protocol followed to obtain the DNA from the salivary samples, in Chapter IV,
was described in Polgarova et al. [177]. The work from Polgarova shows that the most
suitable way of DNA extraction from salivary samples is without any treatment, directly
from fresh salivary samples. Additionally, they describe that the most efficient extrac-
tion protocol for DNA isolation is the benzyl-chloride protocol and Chelex-100 extrac-
tion. The use of benzyl-chloride is explained in the work of Zhu et al., [178], were
they observe that it can destroy cell walls of plants, fungi and bacteria through its abil-
ity to react with -OH residues in polysaccharides. Then, the hypervariable regions V3
and V4 of the 16S rRNA gene were amplified using primers including Illumina adapter
sequences (forward primer 5’ - TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGC-
CTACGGGNGGCWGCAG -3’, reverse primer 5’ - GTCTCGTGGGCTCGGAGATGTG-
TATAAGAGACAGGACTACHVGGGTATCTAATCC - 3’) with Kapa HiFi HotStart poly-
merase, and the samples were multiplexed by 96 index combination and sequenced on MiSeq
Illumina platform.

3.2.2 Sequence analysis

After raw sequences acquisition from Illumina platforms, an essential step is required to
ensure the reliability of the bioinformatic analyses. This step consists of the quality filtering
of the sequences, to withdraw the ones that could induce misleading results. The basic idea
consists on the use of the quality information that the High-throughput sequencers give along
with the nucleotide sequence, which is encoded in a fastq type of file [179], the standard
sequence filetype nowadays. These files have a standard structure, with a four-line pattern
repetition for each different sequence. The structure is defined as follows:
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5’ 
3’

3’ 
5’

Read 1

Read 2
Overlapping


region

AdapterGenomic fragment

Fig. 3.1 A figure that shows the paired ends strategy. Two different adapters are used in
both ends of the objective sequence in the amplification step. The overlapping region is
used later to join the sequences from this step in order to have longer reads. Adapted from
biostars.org website.

1. The read identifier and optional description, which usually captures information about
the sequencing run. It always starts with a @

2. The sequence itself

3. +, and there is the possibility of the repetition of the title and description

4. The line referring to the quality

Here is one example of a raw sequence extracted from one of our samples. It has been
truncated for representative purposes:

@M00119:50:000000000-AH42A:1:1101:22066:1034
NCTACGGGAGGCAGCAGTGGGGAATATTGCACAATGGGCGCAAGTGATGC...
+M00119:50:000000000-AH42A:1:1101:22066:1034 1:N:0:1
#8ACCFGGFFBFAB==CEFGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG...

On Illumina platforms, the quality of each base is calculated according to the Phred
quality score, which is computed as shown in equation 3.1. In that expression, Q is the
Phred quality score, and P is the base-calling error probability, i.e., the probability that the
corresponding base call is incorrect. It can be easily observed that, when the base-calling
error probability is low, the quality will be high, and when the base-calling error probability
is near 1, the quality will be around 0. The way that this quality is encoded, in the fourth line,
is by the use of 93 ASCII characters, ranging from the character number 33 (!, the lowest
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quality) to the character 126 (∼, the highest quality). The quality information stored in each
ASCII character can be “translated” into a numerical scale that usually ranges from 0 (low
quality) to 41 (highest quality). The numerical values are often used as the real thresholds
used by the programs.

Q =−10 · log10 ·P (3.1)

In order to carry out the quality filtering, two different software tools were used (FastX
toolkit [180], and PRINSEQ [181]), both with the same principles. The user specifies a
quality threshold, commonly between 20 and 25, and those sequences that do not match this
requirement are withdrawn for further analyses. It is also used a sliding window approach
to withdraw fairly good sequences. This method takes a window of a certain number of
nucleotides, and the user specifies the percentage of those nucleotides that have to be above
the quality threshold to continue the analysis. For example, if the user specify a window
of 20 bases, with a certain quality threshold and a 75% as the percentage, there must be at
least 15 bases with a quality equal or higher than the threshold in the window to continue the
analysis. Another important quality filter is to discard all the sequences that do not match a
minimum length. After the quality filtering, the remaining sequences are supposed to be fine
candidates of analysis, but some other quality filters must be applied of a different nature
than the sequence quality itself such as the chimaera checking.

3.2.3 OTU characterisation

The sequences obtained and filtered are then analysed to assign them to operational taxonomic
units (OTUs). Robert Sokal and Peter Sneath first introduced this term as a part of their
Principles of Numerical Taxonomy [182], referring to a group of organisms that were being
studied. However, it was in 2005 that the term acquired the meaning it has today in the
field of microbiome [183]. Briefly, an OTU is a group of sequences clustered by a similarity
threshold, usually at 97% in 16S rRNA gene. This similarity threshold has been proved as a
reliable proxy for a species in microbiology (chapter 12 of General Microbiology book by
Brock, [184]), although the concept of species in microbiology is still discussed and debated
in the present days [185].

One of the most used tools for the OTU characterisation right now in the field is the open
source pipe-line QIIME, which stands for Quantitative Insights Into Microbial Ecology [186].
It is a collection of functions written mainly in Python programming language. At the time
of writing this thesis, the second version of QIIME has outperformed and substituted the first
version of the program, a clear statement of how rapidly evolves the field of bioinformatics.
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QIIME version 1.8, which was used to analyse the data from Chapter I and Chapter III, is
still a robust and reliable way of inspecting the properties of a human-related microbiota. In
both chapters, the master script pick_open_reference_otus.py was used to analyse the
whole dataset, and it involves many steps that will be explained in the following lines.

1. OTU creation, which is made with the script pick_otus.py. As has been explained,
an OTU is a group of sequences that shares a certain similarity. There exist several
algorithms to cluster sequence by its similarity, like uclust or usearch [187]. Both
algorithms create “seeds” of sequences which generate clusters based on a certain
similarity threshold.

2. Pick representative sequence for each OTU, with script pick_rep_set.py. For any
cluster created, a sequence will be chosen to be the representative of the entire group,
and thus, fastening the subsequent analyses. It will be chosen as the centroid sequence
in uclust or usearch, for example.

3. Assign taxonomy to each sequence, with assign_taxonomy.py. The representative
sequences from the last step will be assigned to a taxonomy against a reference
database, such as Greengenes [188] or Silva [189].

4. Sequence alignment, with align_seqs.py. The representative sequences will be
aligned to build the phylogenetic tree, and for chimera filtering.

5. Chimera filtering, with identify_chimeric_seqs.py. A chimeric sequence is a
sequence that belongs to two different taxonomic groups. In order to filter these
spurious sequences, the algorithm ChimeraSlayer in QIIME is usually applied. The
representative sequences that have been aligned will be compared to the aligned
representative set of the original database.

6. Tree building, with make_phylogeny.py. A phylogenetic tree will be built from
the representative sequences, that can be used in other analyses as the calculation of
β -diversity, explained in section 3.5

7. Make the final OTU table, with make_otu_table.py. This final step involves the
creation of a table with all taxonomic groups annotated and their abundance.

The approach used in Chapter IV had the same ideas behind, except that OTU clusters
were built with the purpose of enhancing some Streptococcus species of interest.
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3.3 Metagenomic sequence analysis

As has been said in the previous section, 16S rRNA gene sequencing has some critical
limitations, and therefore, the scientific community is moving toward the use of WGS
sequencing [175]. WGS has several advantages such as the exploration of the functions
encoded in a metagenome, or the ability to reach deeper taxonomical levels as strain [44, 190].
Although the computational requirements increase notably with this kind of studies, a
considerable amount of software tools have been developed up to the present day to facilitate
the analyses [191].

In the work of Chapter I, the samples from the study by Smith et al. [169] were also
sequenced by shotgun metagenomic by HiSeq Illumina sequencing platform. We analysed
that dataset to demonstrate that our methodology was robust independently of the origin of
the metagenomic samples.

Raw sequences were analysed with LMAT (Livermore Metagenomics Analysis Toolkit)
software package [192] (version 1.2.4, with Feb’15 release of database LMAT-Grand). We
used the “Grand” database[193], release Feb’15, provided by the LMAT team, where “Grand”
refers to a vast database that contains k-mers from all viral, prokaryote, fungal and protist
genomes present in the NCBI database, plus Human reference genome (hg19), plus GenBank
Human, plus the 1000 Human Genomes Project (HGP) (this represent about 31.75 billion
k-mers occupying 457.62 GB) [193].

3.4 Clinical measurements

In Chapter IV, five different oxidative stress markers were measured. Oxidative stress can be
measured by estimating oxidative damage to lipids (lipid peroxidation) and proteins, or by
quantifying the capacity to resist oxidative damage (antioxidant capacity). Lipid peroxidation
is a reaction of polyunsaturated lipids with reactive oxidative species (ROS), producing lipid
hydroperoxides, that can react with DNA and other macromolecules [194]. Proteins are
among the major targets of ROS due to their centrality in the cell, both for functionality
importance and for number [195]. The oxidised proteins are either destroyed in proteasomal
or lysosomal pathways, or accumulated in cellular compartments. The antioxidant status is
a global measure that explains the total antioxidant capacity of a sample, and thus, is often
desirable over the measurement of individual oxidative markers [196]. In the work of Chapter
IV, lipid peroxidation was quantified by measuring thiobarbituric acid reacting substances
(TBARS). Either carbonyl or oxidative stress can cause protein damage. Thus, advanced
glycation end products (AGEs) and advanced oxidation protein products (AOPP) were herein
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quantified as a carbonyl stress marker and as an oxidative stress marker, respectively. The
capacity to resist oxidative damage was measured by total antioxidant capacity (TAC) and
the ferric reducing ability of saliva (FRAS). The oxidative stress markers were quantified
using plate reader Safire II (Tecan, Austria) as described by Banasova et al. [197].

More specifically, the marker of lipid peroxidation, thiobarbituric acid reactive substances
(TBARS), was assessed according to Behuliak et al. [198]. Twenty µL of samples and
standards (1,1,3,3 - tetraethoxypropane) were added into a 96 well plate. Thereafter, 30 µL
of water, 20 µL of thiobarbituric acid together with 20 µL of glacial acetic acid were added
and whole mixture was incubated at 95◦C for 45 minutes. Afterwards, 100 µL of n-butanol
was added, and plate was centrifuged at 2,000 x g, at 4◦C for 10 minutes. Seventy µL of
the upper organic phase was transferred into a new microtiter plate and, subsequently, the
fluorescence was measured at ex = 515 nm and em = 535 nm. Advanced oxidation protein
products (AOPP) were measured as a marker of protein damage [199]. Chloramine T mixed
with potassium iodide was used for preparation of the calibration curve. Two hundred µL
of samples or standard were transferred onto a 96 well plate for analysis. Later, 20 µL
glacial acetic acid was added to both standards and samples and incubated on a plate shaker
(500 rpm) for 2 minutes. Then absorbance was measured at 340 nm. Advanced glycation
end products (AGEs) were assessed as a marker of carbonyl stress [200]. Twenty µL of
samples together with standards (AGE-BSA) were placed into a 96 well plate and diluted
with phosphate buffer saline (pH = 7.2). The fluorescence was measured at ex. = 370 nm and
em. = 440 nm. The analysis of antioxidant status was represented by the assessment of the
total antioxidant capacity (TAC) according to Erel et al. [196]. Twenty µL of samples and
standards (Trolox) were mixed with 200 µL of acetate buffer (pH = 5.8) and measured at 660
nm as a blank. Thereafter, 20 µL of 2, 2 azino - bis (ethylbenzthiazoline - 6 - sulphonic acid)
was added. Plate was incubated at room temperature for 5 minutes and the absorbance at 660
nm was measured. Ferric reducing antioxidant power of saliva (FRAS) was the next marker
of antioxidant status. Ferrous sulphate was used as a standard for the construction of the
calibration curve [201]. Two hundred µL of prewarmed (37 ◦C) FRAP reagent, composed of
tripyridyl - s - triazine, FeCl3 x 6H2O, acetate buffer (pH = 3.6) and water, was added to the
assay plate. Initial absorbance at 593 nm was measured as a blank. Thereafter, the samples
and standards were added and the absorbance was measured at 593 nm.



3.5 Diversity analysis 59

3.5 Diversity analysis

3.5.1 A primer of diversity in ecology

In the Ecology field, the diversity and richness are among the most basic and fundamental
analyses that can be made to study essential properties of the ecosystem. There is a funda-
mental difference between the concept of diversity and richness, as the former only takes
into account the number of different organisms in the study, and the latter also considers their
abundance. It is usually the number of individuals per species which is studied, but other
quantities can be treated in diversity analyses such as individuals per genera, haplotypes,
functional types or biomass. There exists three main classes of diversity defined by Whitaker
in his seminal work: α-diversity, β -diversity, and γ-diversity [202]. Shortly, α-diversity,
explains the diversity of a single population. It is a direct measure of how diverse a sample is,
increasing its value when we can find a higher number of species in the population. On the
other hand, β -diversity indexes explain the difference between two populations. It can be
managed as a similarity measure, or as a distance, and it says how close are two different
samples between each other. And, lastly, γ-diversity, is the total diversity that it is found
within a landscape, the total number of species, and it is the consideration of both α and β

diversity, which can be either additive or multiplicative (eq. 3.2).

γ = α ·β (3.2)

In fact, one of the first definitions of β -diversity was deduced from the multiplicative
expression from above (the original from Whitaker’s work), with the form of β = γ

α
.

There are some fundamental properties that both α and β diversity indexes must have:
α and β should be free to vary independently; γ must be determined entirely by α and β ,
and α can never be greater than γ [203]. Nevertheless, the concept of γ-diversity is seldom
calculated in microbiome research, and thus, we have focused on the calculation of the
values of α and β -diversity in our studies, as they give us valuable information about the
composition shifts of the microbiotas.

3.5.2 α-diversity indexes and calculation

As has been previously described, α-diversity is the measure of the diversity in one single
sample or ecosystem. Usually, this quantity is calculated as the Shannon entropy index,
which has the mathematical form of the equation 3.3, where pi is the proportion of the i
species (of a total of R species). It measures the uncertainty of a system, being higher when
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the uncertainty is higher. In the case that almost all the abundance concentrates on only one
species, H

′
approaches 0 (there is not almost uncertainty); and in the case one have several

species with similar abundances, H
′
approaches higher values, which will also depend on the

number of elements we have in the population.

H
′
=

R

∑
i=1

pi · ln(pi) (3.3)

Pielou’s evenness can be computed from the Shannon index (eq. 3.4), by dividing the
current Shannon value by its maximum possible value (eq. 3.5), where R is the total number
of species. It estimates the evenness of a population, ranging from 0 to 1. If there is a similar
amount of species, the evenness will be near 1, but if there are significant differences between
the abundances of the species, the evenness will approach to 0.

J
′
=

H
′

H ′
max

(3.4)

H
′
max =−

R

∑
i=1

1
R

ln(
1
R
) = ln(R) (3.5)

A problem that arises from this concept is that there are several ways to calculate the
α-diversity, such as the Shannon index, the Simpson index, the Gini-Simpson index or the
Renyi entropy to give some examples. The problem with all these forms of α-diversity is that
they are not comparable between them as non-linearities appear due to their mathematical
expressions, or also because they give differential importance to the most or least abundant
species. To solve this issue, Lou Jost proposed the use of the numbers equivalent, or the
effective number of species [203]. The idea behind this concept is to convert the non-linear
indexes to a linear estimator, and thus, helping to infer the real changes in diversity. Another
interesting property of the numbers equivalent is that they can be calculated from all the
diversity estimators mentioned above making them comparable. This concept has also been
named as the true diversity. The expression that transforms between Shannon index and its
true diversity is H

′
t = exp(H

′
).

In this thesis, it has been used both Shannon entropy and its true diversity estimator, and
Pielou’s evenness. These values have been calculated with the abundance tables obtained
in Chapter III and Chapter IV, with R programming language and the function “diversity”
in vegan package (v. 2.4-3) [204]. Differences in α-diversities were studied by performing
permutations over the Wilcoxon signed-rank test with a significance level of 0.05, calculated
with the coin R package [205]. In the case of multiple comparisons, we applied false
discovery rate (FDR) in Chapter III, or Holm correction in Chapter IV to avoid type I errors.
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3.5.3 β -diversity and ordination plots

Whitaker defined his β -diversity as “the extent of change in community composition, or
degree of community differentiation, in relation to a complex-gradient of the environment, or
a pattern of environments” in his seminal work in 1960 [202]. Despite de vague definition that
Whitaker proposed, the concept of β -diversity is of great importance and has been extensively
studied all over the past years, where many interpretations have arisen [203, 206–208]. In the
practical review from Anderson et al., [206], they give two primary definitions of β -diversity,
one based on the directional turnover of a community, and the other based on the variation in
community structure within a given spatial or temporal extent. The latter definition, implied
in the first definition of Whitaker, is the one that is often used in microbiome studies, and its
main objective is to define the differences between two communities. These differences are
encoded in metrics that can be understood as the degree of similarity or a distance between
the different samples, which commonly are normalised between 0 and 1.

In the projects of Chapter III and Chapter IV, β -diversity was estimated with a com-
bination of QIIME version 1.8 with the R programming language and the package ve-
gan. The UniFrac distance [209] was selected in Chapter III, and Bray-Curtis dissimilarity
[210] was used in Chapter IV. UniFrac distances were calculated with the QIIME script
beta_diversity.py, and Bray-Curtis dissimilarity was calculated in R with vegan package.

Once the distances or dissimilarities metrics have been computed, they can be used to
place every sample in the space of 2 or 3 dimensions, observing if they cluster together
or not depending on the explanatory variables of the problem. The main idea of these
multivariate ordination techniques is to reduce the complexity of the problem to a limited
set of dimensions, helping the interpretation of the results. It is the case, for example, of the
Principal Components Analysis (PCA) or the Multidimensional Scaling (MDS), which take
the general idea of extracting the eigenvalues and eigenvectors of a problem to see its principal
directions. In this case, we have used the Canonical Correspondence Analysis (CCA) in
Chapter III because it extracts the significant gradients among combinations of explanatory
variables in a dataset. A more generalist approximation, the Nonmetric Multidimensional
Scaling (NMDS), is used in Chapter IV, which attempts to represent, as closely as possible,
the pairwise dissimilarity between objects in a low-dimensional space.

We applied the ADONIS test, within the vegan package, a multivariate ANOVA based on
dissimilarity tests, to assess the variables that were statistically significant in the separation
of the samples in two dimensions in Chapter III. The Procrustes test (vegan) was performed
to test whether the datasets with different OTU numbers produced the same ordination of
samples in the NMDS, in Chapter IV.
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3.6 Biomarker discovery

In order to determine the features, like organisms, that most likely explain differences
between classes, we used a Linear discriminant analysis (LDA) with effect size (LEfSE).
This analysis has been made with the algorithm available from the Galaxy software package
of Huttenhower laboratory [211] to identify the specific taxa that served as the biomarkers in
Chapter III. LEfSe first determines the significant differences in taxa composition between
groups by using non-parametric factorial Kruskal-Wallis sum-rank test. Then, LEfSe uses
LDA to estimate the effect size of each differentially abundant feature. We fixed a cut-off
α value of <0.05 for the Kruskal-Wallis test, and for the bacterial taxa that had significant
differences between samples, we fixed a threshold of 4.0 in the logarithmic LDA score to
consider it a discriminative feature.

3.7 Functional analysis

The single analysis of the taxonomic groups that are present in a given microbiota is an
incomplete picture of the whole scene. A multi-omic approach is desirable, where it should
include information about the functional capability of a microbiome together with other kinds
of data as transcriptomics and proteomics. By this procedure, it can be captured not only
who is there but also what are they doing [44, 212–214]. Another kind of analysis that can
help is the metabolic reconstruction of the species of a specific microbiota, a demanding task
that has been only possible in the recent times [215]. Nevertheless, to be able to study the
microbiome in such depth, the use of whole genome sequencing is almost mandatory. In the
case only sequences from 16S rRNA gene are available, there exist some useful algorithms
that take advantage of databases and taxonomical relatedness. For the functional content
prediction in Chapter III, we used the PICRUSt software from Huttenhower laboratory
[216], a computational approach to predict the functional composition of a metagenome
using marker gene data and a database of reference genomes. Using an algorithm for the
reconstruction of the ancestral state, the software predicts the gene families present in a
metagenome and, thus, helps to provide a functional perspective. We used default parameters
and the KEGG database for inference [217–219]. We extracted the information at levels 2
and 3 in KEGG hierarchies, as we have more specificity when we increase the level of the
hierarchy. To assess the differences in function abundances, we applied the Kruskal-Wallis
test, with the α value fixed at 0.01.
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3.8 Correlations and interactions inference

Correlations in Chapter II and Chapter IV have been plotted using R packages corrplot [220]
and beeswarm [221]. Pearson’s and Spearman’s temporally direct correlations and Local
Similarity Analysis for lagged correlations were used to assess correlations between bacterial
OTUs in oral cavity of each volunteer individually taking into account the temporal dimension.
Local Similarity Analysis checks the existence of a delay in the correlations between all
possible combinations of variables. Pearson’s, Spearman’s, and LSA correlation coefficients
were computed using eLSA Python package from Xia et al., [145], with default parameters.
This package computes permutation tests that are helpful when multiple hypothesis tests
are being studied in this kind of problems. The correlation values >0.3 and <-0.3 were then
filtered by their p-value at a level of 0.05 for statistical significance. In addition, interactions
between the 15 most abundant OTUs per sample were calculated with LIMITS algorithm
from Fisher and Mehta [114] in Wolfram Mathematica software (version 11.0) [222]

3.9 Temporal analysis

The temporal analysis of the microbiome is the central part of the present thesis, and thus, it
will be explained here with detail. It is one of the main results of the Chapter I, and then it is
used as a tool in Chapter II, Chapter III and Chapter IV. Taylor’s law is an ubiquitous law that
is present in many natural systems, as ecosystems, and it has the mathematical expression of
a power law:

σi =V · xβ

i , (3.6)

where σi is the variance of the species i in the population, xi is the mean abundance of
the species i, V is the amplitude of variation, and β is the scaling index.

Our main goal was to fit this law to our data in a robust way, which is explained in the
following sections.

3.9.1 X-weighted power-law fit

When fitting the power-law of std vs mean, we can take into account that every mean has
uncertainty and estimate it for a sample size n by the SEM (Standard Error of the Mean).
Here, the uncertainties affect the independent variable, so the fit is not so trivial as a Y-
weighted fit, where the uncertainties affect the dependent variable. A standard approach to do
this fit is: a) invert the variables before applying the weights, b) then perform the weighted
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fit, and finally, c) revert the inversion. This method is deterministic, but the approximate
solution worsens with smaller coefficients of determination. To overcome this limitation, we
have developed a stochastic method by using a bootstrapping-like strategy that avoids the
inversion and is applicable regardless of the coefficient of determination.

The basic idea of bootstrapping is that inference about a population from sample data
(sample → population) can be modelled by resampling the sample data and performing
inference on (resample → sample) [223]. To adapt this general idea to our problem, we
resample the x-data array using its errors array. That is, for each replicate, a new x-data array
is computed based on:

x∗i = xi + vi (3.7)

where vi is a Gaussian random variable with mean µi = 0 and standard deviation σi = SEMi,
as defined previously. For each replicate, a complete un-weighted power-law fit is performed,
where to choose between fitting power laws (y = V xβ ) using linear regression on log-
transformed (LLR) data versus non-linear regression (NLR) we mainly follow General
Guidelines for the Analysis of Biological Power Laws [224]. The parameters of the X-
weighted fit are then estimated by averaging through all the replicate fits performed, and their
errors are estimated by computing the standard deviation also for all the fits. At the end of
each step, the relative error is calculated by comparing the fit parameters estimation in the
last step with the previous one. Finally, both the coefficient of determination of the fit and
the coefficient of correlation between the fit parameters are estimated by averaging.

3.9.2 Standardisation

In order to properly show all the studies under common axes, we decided to standardize the
Taylor parameters from section 3.9.1 using the group of healthy individuals for each study, in
Chapter I and Chapter III per separate. With this approach, all the studies can be visualised
in a shared plot with units of Taylor-parameters standard-deviation on their axes.

For a Taylor parameter, e.g. V , the estimate of the mean (V̂ ) for the healthy subpopulation,
composed of h individuals, is:

V̂ =
1

W1

h

∑
i=1

Viωi =
h

∑
i=1

Viωi (3.8)
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as W1 = ∑h
i ωi = 1, since ωi are normalized weights calculated as:

ωi =

1
σ2

Vi

∑h
i

1
σ2

Vi

(3.9)

being σVi the estimation of the uncertainty in Vi obtained together with Vi from the X-weighted
power-law fit described in Section 3.9.1, for healthy individuals.

Likewise, the estimation of the standard deviation for the healthy population (σ̂V ) is:

σ̂V =

√√√√ 1
W1 − W2

W1

h

∑
i=1

[
ωi
(
Vi −V̂

)2
]

(3.10)

being W2 = ∑h
i ω2

i , which finally yields to:

σ̂V =

√√√√ 1
1−∑h

i ω2
i

h

∑
i=1

[
ωi
(
Vi −V̂

)2
]

(3.11)

3.9.3 Langevin Model

One of the main parts of Chapter I is the model that governs the temporal variation of the
microbiota, based on the Langevin equation. This mathematical model has been used as
the solution of the Brownian motion [225], and its solution implies the existence of a phase
diagram with important dynamical properties. We model the microbial abundances across
time along the lines of Blumm et al. [162]. The dynamics of taxon relative abundances is
described by the Langevin equation:

ẋi = Fi · xα
i +V · xβ

i ξi(t)−φ(t) · xi, (3.12)

where Fi captures the fitness of the taxon i, V corresponds to the noise amplitude and
ξi(t) is a Gaussian random noise with zero mean < ξi(t)> = 0 and variance uncorrelated in
time, < ξi(t)ξi(t ′) > = δ (t ′− t). The function φ(t) ensures the normalization at all times,

∑xi(t) = 1, and corresponds to φ(t) = ∑Fixα
i +∑V xβ

i ξi(t). The temporal evolution of
the probability that a taxon i has a relative abundance xi(t), P(xi,t), is determined by the
Fokker-Planck equation:

∂P
∂ t

=− ∂

∂xi
[(Fi · xα

i −φ(t) · xi) ·P]+
1
2

∂ 2

∂x2
i
(V 2 · x2β

i ·P). (3.13)
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The microbiota evolves towards a steady-state with a time-independent probability de-
pending on the values of α , β , Fi and V. For α < 1 (otherwise, systems are always unstable),
the steady-state probability may be localized in a region around a preferred value or broadly
distributed over a wide range, depending on whether the fitness Fi dominates or is over-
whelmed by the noise amplitude V. The steady-state solution of the Fokker-Planck equation
is given by:

P0(xi) = Cne(α,β ,Fi,V ) · x−2β

i · exp
[2Fi

V 2
x1+α−2β

i
1+α −2β

− φ0

V 2
x2−2β

i
1−β

]
if 2β ̸= 1+α,

P0(xi) = Ce(α,β ,Fi,V ) · x
2Fi
V 2 −2β

i · exp
[

φ0

V 2
x2−2β

i
1−β

]
if 2β = 1+α,

where φ0 = (∑i F1/(1−α)
i )1−α and Cne and Ce are integrals that should be solved numer-

ically for the parameters of interest. The ordered phase happens when the solution has a
maximum in the physical interval (0 < xi < 1). For larger V, the transition to a disordered
phase happens when the maximum shifts to the unphysical region xi < 0, which sets the
phase transition region V(α,β ,Fi). The phase transition region can be calculated analytically
in particular cases:

F2
i = 4βφ0V 2 if β = α ̸= 1,

Fi = βV 2 if 2β = 1+α,

where the first case, simplifies to F = 3V 2 if β = 0.75 and the fitness of this taxon
dominates in φ0. In many physical systems (Brownian motion is the classical example [226]),
the two terms of the Langevin equation are related. The Fluctuation Dissipation Theorem
states a general relationship between the response to an external disturbance and the internal
fluctuations of the system [227]. The theorem can be used as the basic formula to derive the
fitness from the analysis of fluctuations of the microbiota, assuming that it is in equilibrium
(the ordered phase).

3.9.4 Rank Stability Index

The Rank Stability Index (RSI), used in Chapters I, III and IV, is shown as a percentage in
a separate bar on the right of the rank matrix plot (as for example in Fig. 4.5). The RSI is
strictly 1 for an element whose range never changes over time, and is strictly 0 for an element
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whose rank oscillates between the extremes from time to time. So, RSI is calculated, per
element, as 1 less the quotient of the number of true rank hops taken between the number of
maximum possible rank hops, all powered to p:

RSI =
(

1− true rank hops
possible rank hops

)p

=

(
1− D

(N −1)(t −1)

)p

(3.14)

where D is the total of rank hops taken by the studied element, N is the number of elements
that have been ranked, and t is the number of time samples. The power index p = 4 is
arbitrarily chosen to increase the resolution in the stable region.

3.9.5 Temporal analysis of V and β

In Chapter I, we have studied the time dependence of the variability V and power law index β

by using a sliding window approach. For this purpose, a code was written in R programming
language in order to generate the data. The total number of time points was divided into
subsets of five points, where the following subset was defined by adding the next sampling
time and eliminating the earliest one. Then, both Taylor’s parameters were calculated for
each subset.

3.10 Lotka-Volterra model with an stochastic component

We model the dynamics of our mock microbiome in Chapter II with the system of equations

d
dt

xi(t) = µixi(t)+ xi(t)
L

∑
j=1

Mi jx j(t)+Bxb
i ·dW , (3.15)

based on the generalised Lotka-Volterra (gLV) model extended with an stochastic compo-
nent described as a Wiener process. It measures the temporal evolution of a species xi, which
depends on its growth rate (µi) and the interactions with the other species parameterised in
the matrix Mi j. Ecological networks satisfy three properties: scale-free, small world and
modularity [228]. We have built the interaction matrix with the algorithm created by Klemm
and Eguíluz [229]. We used this algorithm, written in R package seqtime [230], where we
have specified a connectivity of 0.1. The matrix Mi j is represented as Figure 5.1 in Chapter
II. The amplitude of the stochastic component is based on the observation that microbial
populations follow the Taylor’s law [231], an empirical law, previously observed in ecology,
that relates the variance in the number of individuals of a given species in a population with
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its mean value by the power law (σi = Bxb
i ). This relationship is based on the results of

Chapter I. In the equation, B is the amplitude of fluctuations and b is the scaling index.
We numerically solve the system of equations with MATLAB [232], using the SDETool

package [233]. In the simulations, all µi are always equal to 1. We run several simulations
with different values of B and b in the dynamical equations. We start all the simulations
discussed in Chapter II with B =0.05, and b =1.5. The time duration was limited to 100 (in
arbitrary units), with a δ t equal to 10−2, i.e., 104 time points per simulation. A non-negativity
condition was imposed to correctly characterise abundances. The initial conditions were
given by the steady state solution of the gLV equations.

For the data analysis, we use normalised abundances at all times, as usual in microbiome
studies. We compute Pearson correlation matrices with 1000 points from the simulated time
series described above. We plot correlation matrices with corrplot R package [220].

3.11 Graph inference and error measurement

For the interaction matrix inference, we use a general regression model by solving a least
squares optimisation problem with the following expression:

argmin
ai,λ

(
∑
k

∑
i
(|xi(t + k)−ai jx j(t + k−1)|2 +λ |∑

j
ai j|)

)
(3.16)

Here, xi is the vector of species, and ai j is the inferred interaction matrix from this
regression (different from the original interaction matrix Mi j). We generalise the process
assuming that it can applied at any k times. λ term is used as a Lagrange multiplier to force
sparsity to our inferred interaction matrix. We assume that the diagonal of ai j has to be
negative, and that the other elements of the matrix range between -0.5 and 0.5 according
to our original matrix. In the end, we get ai j and λ that minimises the expression above by
an optimisation problem encoded in MATLAB, assuming it has a convex solution. For this
purpose, we use CVX modelling system for convex optimisation [234].

Given the real interaction matrix Mi j, the error can be computed as the following matrix
norm:

||Mi j −ai j||22 , (3.17)

were ai j is the matrix formed by the vectors obtained from the optimisation problem.
Then, the error for a specific species xi, which is being modified by a noise-induced

experiment or by a pulse, can be measured as the vector norm:
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||Mi −ai||22 (3.18)





Chapter I - Temporal stability of the hu-
man microbiome

4.1 Abstract

Animal microbiota (including human microbiota) plays an essential role in keeping the
physiological status of the host healthy. Research seeks greater insight into whether changes
in the composition and function of the microbiota are associated with disease. We analysed
16S rRNA, and shotgun metagenomic sequencing (SMS) published data pertaining to the
gut microbiota of 99 subjects monitored over time. Temporal fluctuations in the microbial
composition revealed significant differences due to factors such as dietary changes, antibiotic
intake, age and disease. This work shows that a fluctuation scaling law can describe the
temporal changes in the gut microbiota. This law estimates the temporal variability of the
microbial population and quantitatively characterises the path toward disease via a noise-
induced phase transition. Estimation of the systemic parameters may be of clinical utility in
follow-up studies and have more general applications in fields where it is important to know
whether a given community is stable or not.

Original publication: Martí JM*, Martínez-Martínez D*, Rubio T, Gracia C, Peña M,
Latorre A, Moya A, P. Garay C. 2017. Health and Disease Imprinted in the Time Variability
of the Human Microbiome. mSystems 2:e00144-16.
* Equal contribution
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4.2 Material and Methods

A general view of the material and methods used in this Chapter has been explained in the
Material and Methods Chapter. Nevertheless, some important points have been summarised
here to facilitate the reading of this Chapter, and more concrete details have been added when
needed.

4.2.1 Model

The mathematical expression that governs the microbial abundances across time is derived of
the work of Blumm et al. [162], and it is based on the Langevin’s equation:

ẋi = Fi · xα
i +V · xβ

i ξi(t)−φ(t) · xi, (4.1)

where Fi captures the fitness of the taxon i, V corresponds to the noise amplitude and
ξi(t) is a Gaussian random noise with zero mean < ξi(t)> = 0 and variance uncorrelated in
time, < ξi(t)ξi(t ′) > = δ (t ′− t). The function φ(t) ensures the normalisation at all times,

∑xi(t) = 1, and corresponds to φ(t) = ∑Fixα
i +∑V xβ

i ξi(t). The temporal evolution of
the probability that a taxon i has a relative abundance xi(t), P(xi,t), is determined by the
Fokker-Planck equation:

∂P
∂ t

=− ∂

∂xi
[(Fi · xα

i −φ(t) · xi) ·P]+
1
2

∂ 2

∂x2
i
(V 2 · x2β

i ·P). (4.2)

The steady-state solution of the Fokker-Planck equation is given by:

P0(xi) = Cne(α,β ,Fi,V ) · x−2β

i · exp
[2Fi

V 2
x1+α−2β

i
1+α −2β

− φ0

V 2
x2−2β

i
1−β

]
if 2β ̸= 1+α,

P0(xi) = Ce(α,β ,Fi,V ) · x
2Fi
V 2 −2β

i · exp
[

φ0

V 2
x2−2β

i
1−β

]
if 2β = 1+α,

where φ0 = (∑i F1/(1−α)
i )1−α and Cne and Ce are integrals that should be solved numer-

ically for the parameters of interest. The ordered phase happens when the solution has a
maximum in the physical interval (0 < xi < 1). For larger V, the transition to a disordered
phase happens when the maximum shifts to the unphysical region xi < 0, which sets the
phase transition region V(α,β ,Fi). The phase transition region can be calculated analytically
in particular cases:
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F2
i = 4βφ0V 2 if β = α ̸= 1,

Fi = βV 2 if 2β = 1+α,

where the first case, simplifies to F = 3V 2 if β = 0.75 and the fitness of this taxon
dominates in φ0.

4.2.2 Cohort

We did chose studies about relevant pathologies, containing metagenomic sequencing time
data series of bacterial populations from humans in various healthy and non-healthy states.
We selected healthy people from the study by Caporaso et al. [47]; people with different
BMI from the study of Faith et al. [168]; discordant children twins which had kwashiorkor
disease from the study of Smith et al. [169]; people that followed animal or plant-based
diets from the work of David et al. [170]; three patients that had two antibiotic intakes, from
Dethlefsen and Relman’s work [120]; a long temporal data from two volunteers that had
traveled abroad, from David et al.’s work [59]; and finally, people that had IBS, from Ana
Durban et al.’s work [73]. In the end, we had a total of 99 subjects that were analysed. For
more detailed information, please, see Section 3.1.1 and Table 3.1.

4.2.3 16S rRNA sequences processing

Reads from the selected studies were first quality filtered using the FastX toolkit [180], with
the command fastq_quality_filter, allowing only those reads which had more than 25
of quality along the 75% of the complete sequence. 16S rRNA reads were then clustered at
97% nucleotide sequence identity (97% ID) into operational taxonomic units (OTUs) using
QIIME package software [186] (version 1.8). We followed open reference OTU picking
workflow in all cases. The clustering method used was uclust, and the OTUs were matched
against Silva database [189] (version 111, July 2012), and were assigned to taxonomy with an
uclust-based consensus taxonomy assigner. The parameters used in this step were: similarity
0.97, prefilter percent id 0.6, max accepts 20, max rejects 500.

4.2.4 Metagenomic sequences processing

Shotgun metagenomic sequences were analyzed with LMAT (Livermore Metagenomics
Analysis Toolkit) software package [192] (version 1.2.4, with Feb’15 release of the LMAT-
Grand database). LMAT was run using a Bull shared-memory node belonging to the team’s
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HPC (high-performance computing) cluster. It was equipped with 32 cores (64 threads
available using Intel Hyper-Threading Technology) as it has two Haswell-based Xeons (22
nm technology), the E5-2698v3@2.3 GHz, sharing half a tebibyte of DRAM memory. This
node is also provided with a PCIe SSD card as NVRAM, the Micron P420m HHHL, with 1.4
TB, and 750000 reading IOPS, 4 KB, achieving 3.3 GB/s. The computing node was supplied
with a RAID-0 (striping) scratch disk area. We used the “Grand” database, released in Feb’15,
provided by the LMAT team, where “Grand” refers to a huge database that contains k-mers
from all the viral, prokaryote, fungal and protist genomes present in the NCBI database,
plus the Human reference genome (hg19), plus GenBank Human, plus the 1000 Human
Genomes Project (HGP) (this represents about 31.75 billion k-mers occupying 457.62 GB)
[193]. Before any calculations were made, the entire database was loaded into the NVRAM.
With this configuration, the observed LMAT sustained sequence classification rate was 20
kbp/s/core.

4.2.5 Taxa level robustness

We selected genus as the taxonomic level for the subsequent steps of our work. To ensure that
there were no crucial differences between adjacent taxonomic levels which could still be of
relevance after standardisation, we tested two different datasets. In the former, the antibiotics
study [120] with 16S data, we tested the differences between genus and family levels. The
latter dataset tested was the kwashiorkor discordant twins study [169] for both genus and
species taxonomic levels. The Appendix Figures A.1 (overview) and A.2 (detail) plot the
comparison between studies (and so, 16S and WGS) and between adjacent taxonomic levels.

4.3 Results

4.3.1 Gut microbiota follows the Taylor’s law

Microbiome temporal variability was analysed to extract the global properties of the system.
As systematic errors plague fluctuations in total counts, we worked on the temporal variability
of relative abundances for each taxon. The first finding was, without exception, that changes
in the relative abundances of taxa followed a ubiquitous pattern, known as the fluctuation
scaling law [235] or Taylor’s power law [236]. In other words, the microbiota of all detected
taxa followed σi = V · xβ

i , a power law dependence between the mean relative abundance
xi and the dispersion σi. The law seems to be ubiquitous, spanning even to six orders of
magnitude in the observed relative abundances. As shown in Figure 4.1, where V corresponds
to the y-intercept and β is the slope of the fit, the most abundant species were less volatile in
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relative terms than the less abundant ones. The fit to the power law was always robust (R2

> 0.88) and did not depend on microbiome condition. The power law (or scaling) index β

and the variability V (hereafter Taylor’s parameters) appear to be correlated with community
stability. Accordingly, we assume that Taylor’s parameters behave as proxies for stability. On
the one hand, β is a scaling index that provides information about the statistical properties
of the ecosystem. If it is 1/2, the system behaves like a Poisson distribution. If β is 1, the
system behaves like an exponential distribution. Generally speaking, metagenomes undergo
time-course variations with β between these two universal classes. In our study, the fact that
β was less than 1 indicates that the most abundant taxa in the microbial community were
less susceptible to perturbations than the other taxa. On the other hand, the variability V
is a direct estimator of the amplitude of fluctuations over time. V represents the maximum
variability attainable by a hypothetically dominant genus (with relative abundance close to 1).
It is an important parameter that characterises the type of system. If V is small, the ranking
is stable. As a way of example, this would be the case for the number of diagnoses of a
particular disease recorded in Medicare during a month [237]. If V is large, as occurs for
metagenomic samples, the ranking might be unstable, as it would be for the number of hourly
pages views of articles in Wikipedia [162, 235]. Interestingly, the Taylor parameters were
related to the health status of the host, which is the main finding of this study.

Taylor’s parameters describing the temporal variability of the gut microbiome in our
sampled subjects are shown as supplementary tables in Appendix section A.1.1. The results
are indicative of ubiquitous behaviour. Firstly, the variability (which corresponds to the
maximum amplitude of fluctuations) was large, which suggests the resilient capacity of the
microbiota. Secondly, the scaling index was always smaller than one, which means that more
abundant taxa were less volatile than less abundant ones. In addition, Taylor’s parameters for
the microbiome of healthy individuals in different studies [47, 59, 73, 120, 168–170] were
compatible with estimated errors. This enabled us to define an area in the Taylor parameter
space that we called the healthy zone.

In order to jointly visualise and compare the results of subjects from the above-mentioned
studies [47, 59, 73, 120, 168–170], their Taylor parameters were standardised, with standard-
isation meaning that each parameter was subtracted by the mean value and divided by the
standard deviation of the group of healthy subjects for every study independently. Due to
the different systematics in each study, we defined a healthy region from each of them, stan-
dardised to mean zero and variance one, then we computed mean and variance of unhealthy
with this standardisation (for details of the procedure, please see Standardisation subsection
in Material and Methods). Therefore, different studies were isolated so that subjects from
a given study did not affect the results for the unhealthy subjects of the other studies. It
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Fig. 4.1 X-weighted power-law fits of the standard deviations versus the mean values for each
bacterial genus monitored over time. The fit is shown for samples from a healthy subject
(top) and from a subject diagnosed with irritable bowel syndrome (bottom), studied in our
lab [73]. Taylor’s power law seems to be ubiquitous, spanning to six orders of magnitude. V
corresponds to the y-intercept and β to the slope of the line. The error bars (mean-axis) are
the SEM.

was assumed that this statistical approach was safer, as it was avoided combining data with
very different systematic errors. The healthy zone and the standardised Taylor parameters
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for the temporal variability of the gut microbiome in subjects whose gut microbiota was
compromised (i.e., they were suffering from IBS, kwashiorkor, altered diet, antibiotic intake,
a Salmonella infection, or had gone on a trip abroad) are shown in Figure 4.2. The variability
in children with kwashiorkor was smaller than that of their healthy twins. A meat/fish-based
diet significantly increased variability when compared to a plant-based diet. All other cases
presented increased variability, which was mainly severe and statistically significant at over
95% confidence level (CL), for grade III obese patients on a diet, subjects taking antibiotics,
the subject who had a Salmonella infection, the subject who had travelled abroad and the IBS–
diagnosed patients. One global property emerged from these comprehensive data: Taylor’s
parameters characterised the statistical behaviour of microbiome changes. Furthermore, we
verified that our conclusions were robust to systematic errors resulting from the taxonomic
assignment (see Taxa-level robustness in Material and Methods of this chapter).

Fig. 4.2 Taylor’s law parameter space. All the data studied in this work were compiled here.
The colored circle corresponds to a 68% confidence level (CL) region of healthy subjects in
the Taylor’s parameter space, while the dashed line delimits the 95% CL region. Points with
errors place gut microbiome in the Taylor’s parameter space, for each subject whose micro-
biota was compromised. It should be noted that the parameters were standardized (standard
deviation units) to the healthy group in each study for every single study independently, for
demonstrative and comparative purposes.
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4.3.2 The phase space of gut microbiota

Taylor’s power law has been explained in terms of various effects, though without a consensus.
It has its origin in mathematical convergence, which is similar to the central limit theorem,
and thus virtually any statistical model designed to produce a Taylor law converges to a
Tweedie distribution [238], providing a mechanistic explanation based on the statistical
theory of errors [239–241]. To reveal the generic mechanisms that drive different scenarios in
the β −V space, we modelled the system by assuming that taxon relative abundance followed
a Langevin equation with, on the one hand, a deterministic term that captured the fitness of
each taxon and, on the other hand, a randomness term associated with Gaussian random noise
[162]. Both terms were modelled by power laws, with coefficients that can be interpreted as
the taxon fitness Fi and the variability V (see Model in Material and Methods). Fitness Fi

captures the time scale that the system needs to reach equilibrium (the size of variability V
may or may not allow equilibrium to be reached). Fi has dimensions of 1/time and roughly
corresponds to the half-life of the system when decaying to the stable state. In fact, it is
exactly the half-life if β is one and V is negligible. In this model, when V is sufficiently low,
abundances are stable in time. Differences in the variability V can induce a noise-induced
phase transition in the relative abundances of taxa. The Fokker-Planck equation governs the
temporal changes in the likelihood that a given taxon has the abundance xi, given its fitness.
The results of solving this equation show that stability is best captured by a phase space
determined by the fitness F and the amplitude of fluctuations V (see Figure 4.3).

The model predicted two phases for the gut microbiome: a stable phase with large
variability that enabled some changes in the relative abundances of taxa; and an unstable
phase with even larger variability, above the phase transition, where the order of abundant
taxa varies significantly over time. The phase transition is continuous (of second order),
as is the crossing of the boundary. The state variable is the composition. Any disturbance
modifies the composition of the microbiota, with different compositions encoding different
F and V . We have shown that effective perturbations significantly change V and lead the
microbiota to a transition from the ordered phase to the noise–induced one. Our model can
be solved analytically, which allows for a simple understanding of the different regimes and,
in particular, to calculate the formula of the transition region. The order parameter is the
composition xM that maximises the probability distribution: 0 < xM < 1 defines the ordered
phase, while xM > 1 defines the disordered phase. If V is sufficiently small compared to F ,
the likelihood peaks in the physical region (relative compositions larger than zero and smaller
than one), i.e., there is a best composition solution of the differential equation, which is the
ordered solution. Conversely, if V is sufficiently large compared to F , the likelihood peaks
outside the physical region, i.e., the best composition solution of the differential equation is
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Fig. 4.3 Microbiota states can be placed in the phase space F −V . The light-blue shaded
region corresponds to the stable phase, while the grey shaded region is the unstable phase
(the phase transition line is calculated for α = β = 0.75). We placed healthy subjects
(green) and subjects whose gut microbiota is threatened (antibiotics, IBS) in the phase space
fitness–variability. The gut microbiota of healthy subjects over a long term span show a
quasi–periodical variability (central period is ten days). We show that taking antibiotics (AB1
and AB2 correspond to the first and second treatment, respectively) induces a phase transition
in gut microbiota, which impacts on future changes. We also show an IBS–diagnosed patient
transiting from the unstable to the stable phase.

at the boundaries (either zero or one), and all physical solutions have comparable likelihoods,
i.e., the noise–induced phase. The microbiome of healthy subjects was found to be in the
stable phase, while the microbiome of several other subjects was in the unstable phase. In
particular, subjects taking antibiotics and the IBS-diagnosed patient P2 had the most severe
symptoms. In this phase diagram, each microbiota state is represented by a point at its
measured variability V and inferred fitness F . The model predicted high average fitness for
all taxa, i.e., taxa were narrowly distributed in F . The fitness parameter was chosen with
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different values for demonstrative purposes. Fitness was higher for the healthiest subjects
and smaller for the IBS–diagnosed patients.

4.3.3 Rank stability of the taxa

The rank dynamics and stability plots in Figures 4.4 and 4.5 show the variations in rank over
time for the most dominant taxa and their calculated Rank Stability Index (RSI, as discussed
in Material and Methods) for the gut microbiome taxa of a healthy subject, namely subject A
in the host lifestyle study [59]. The Figure 4.4 covers the period when the subject is travelling
abroad and Figure 4.5 covers the subsequent period. The taxa are listed according to their
accumulated frequency over the time series, with the y-axis being the overall dominant axis
for each sample set. Generally speaking, we observed that the most dominant taxa had the
highest rank stability.

For the trip abroad in Figure 4.4, beyond the differences in the dominance of particular
taxa, we observed that the most dominant were the also most rank–stable. Moreover, the
medium–ranked taxa were quite rank unstable, mostly due to transient (often one or two
consecutive samples) albeit dramatic declines in their relative abundance, which usually
occurred more than twice during their time series.

Nevertheless, in the particular case of the next period (Figure 4.5), the one after the trip,
some taxa showed higher stability than other more dominant taxa, forming rank stability
islands for medium–ranked taxa displaying a moderately stable index (RSI roughly over
70%). In particular, this was the case for the genera Actinomyces, Leuconostoc, Lachnobac-
terium, Eggerthella, Clostridium and Collinsella. For the genera mentioned above, both
the overall rank and the RSI were lower during the trip (RSI under 70%). Actinomyces and
Lachnobacterium are not shown in Figure 4.4 because they sank to positions 56 and 77,
respectively. By contrast, Leuconostoc was the least sensitive to the lifestyle change. Inter-
estingly, Lachnobacterium showed anti-correlation over time compared to the vast majority
of the taxa classified in this study.

We also found those rank stability islands for maximum-ranked taxa in the other periods
belonging to subject A in the host lifestyle study [59] (see Supplementary Figure A.3
and Supplementary Figure A.4 for the corresponding rank plots in Appendix A.1). See
Supplementary Table A.5 for details about the rank and RSI for the above-mentioned taxa
over the different periods considered.
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Fig. 4.4 Rank variation over time for the 50 most dominant elements (taxa) and their
calculated RSI (Rank Stability Index), Rank Variability (RV) and Differences Variability
(DV), as detailed in Rank stability and variability in Material and Methods, for a special
period (days 72 to 122, travelling abroad) belonging to subject A in the host lifestyle study
[59].

4.3.4 Time dependence of model parameters

Finally, we studied the time dependence of the variability V and power law index β (see
Model in Material and Methods) by using a sliding window approach. The total number of
time points was divided into subsets of five points, where the following subset was defined
by adding the next sampling time and eliminating the earliest one. Both parameters were
calculated for each subset against the average time lapse. Figure 4.6 shows the variability V
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Fig. 4.5 Rank variation over time for the 50 most dominant elements (taxa) and their
calculated RSI (Rank Stability Index), Rank Variability (RV) and Differences Variability
(DV), as detailed in Rank stability and variability in Material and Methods, for an ordinary
period (days 123 to 256, after the trip) belonging to subject A in the host lifestyle study [59].

as a function of time for the two subjects in Caporaso’s study [47] corresponding to the gut
microbiota of a male (upper plot) and a female (lower plot). Both samples showed changes
in the variability V with quasi–periodic behaviour peaking at about ten days. Variability grew
more for the gut microbiota of the male and shared a minimal value of around 0.1 with the
gut microbiota of the female.

Figure 4.7 shows time–course changes in V for patient P2 in the IBS study [73] (upper
plot) and patient D in the antibiotics study [120] (lower plot). The variability of the gut
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microbiota of P2 decreased from over 0.3 to below 0.2, showing a slow tendency to increase
the order of the system. Antibiotic intake led to a quick increase in variability which lasted
for a few days to recover ordering. The second antibiotic treatment showed some memory
traits (a lower increase of variability) with a slower recovery.
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Fig. 4.6 V as a function of time for the two subjects in Caporaso’s study [47]: samples of gut
microbiome of a male (upper plot) and a female (lower plot).
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Fig. 4.7 V as a function of time for patient P2 in the IBS study [73] (upper plot) and patient
D in the antibiotics study [120] (lower plot). The blue vertical lines in the lower plot show
the periods of antibiotic treatment.

4.4 Chapter Summary

As a summary of the results presented here, which will further discussed in the General
Discussion, we can observe that all the studied microbiomes follow the Taylor’s law. What
is more interesting is that there is a robust pattern in the parameter values of the ecological
law, being β , the scaling factor, always less than 1. Briefly, this means that, in relative terms,
the most abundant elements in the population are less volatile to perturbations than the less
abundant ones. The other Taylor parameter, V , measures the variability amplitude of the
whole population. Our results highlight the connection between V and the stability of the
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microbiome, relating higher values with the perturbations under study, i.e., subjects suffering
from IBS [73], children suffering from Kwashiorkor [169], different diets [170], obese
patients [168], subjects receiving antibiotics [120], or abrupt changes in the host lifestyle
[59], as it is represented in Figure 4.2. As the results imply, the microbiome variability is
different in each condition, being more variable than the healthy subjects in adults with
diseases or other kinds of perturbation, and less variable in children with Kwashiorkor
compared to the healthy subjects from the study of Smith et al. [169].

Here, we propose the Langevin equation as a model to study the stable regimes of
the microbiomes, derived from the work of Blumm et al. [162]. This equation has two
components, one that measures the system variability, and the other component that measures
the ‘fitness’ of the system. Variability can be directly measured from data with the Taylor’s
law, and fitness still has to be modelled. The solution of this equation gives a phase space
with two regimes: one where the microbiomes are stable against perturbations, and the other
where they are unstable, as represented in Figure 4.3. Depending on the fitness, a microbiome
can be more or less variable and still be in the stable region. Interestingly, studying the
behaviour of V parameter in time, we can observe that microbiomes transitions from one state
to the other, as represented in 4.3. Furthermore, with the study of the Rank Stability of the
different subjects, we can easily observe changes in their composition due to perturbations, as
happens with the two subjects in the work of David et al., [59], represented in Figures 4.4 and
4.5. Also, in the rank stability matrices, we can observe the presence of rank stability islands
among medium-ranked taxa. We find, for example, that Lachnobacterium, Clostridium and
Actinomyces remain quite stable in health conditions, becoming more variable in perturbed
states. The implications of this fact will be considered in the General Discussion.





Chapter II - Microbial interactions as a
matter of noise

5.1 Summary

The behaviour of a microbial ecosystem is determined by the interactions among the par-
ticipating species. Time series studies of the microbiome are widely used to determine
temporal correlations among their members. However, it has been shown that correlations in
microbiota do not directly imply biological interactions. We present a novel method able to
extract microbiome interactions from metagenomes in time series experiments, where the
experimental design must include alterations of the microbial ecosystem to uncover specific
interactions. In this work, we simulate a microbial ecosystem with interactions based on a
small-world, scale-free and modular ecological networks, with parameters that mimic the
human gut microbiota. We demonstrate that microbial interactions can be inferred from noise
induced experiments in which the variability of a given species is modified. We illustrate
our findings with two examples where a four-fold increase in the variability of a given taxon
uncovers some of its interactions with other taxa in the ecosystem.
Original work:
Martínez-Martínez D, Moya A, P. Garay C. Uncovering microbial interactions by noise
induced experiments. Work in progress
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5.2 Results

5.2.1 Species simulations

In this work, we aim to study microbial interactions from a bottom-up approach, by the
modification of specific species in a community. In order to understand the potential of
the method proposed here, we have simulated a realistic microbiome with N species in
equilibrium [228], with typical variability observed in this system [242, 243], comparable to
human gut microbiome [231]. We have modelled the dynamics of the system is described by
the generalised Lotka-Volterra (gLV) model extended with an stochastic component (sgLV),
so that the compositions are random variables, as shown in equation 5.1. The model is
explained in Material and Methods section.

d
dt

xi(t) = µixi(t)+ xi(t)
L

∑
j=1

Mi jx j(t)+Bxb
i ·dW (5.1)

For simplicity, we have assumed that all species have the same growth rate (µi = 1). The
interaction matrix was built with the Klemm-Eguíluz’s algorithm. In particular, we have
constructed a network of 30 different species, with small-world, scale-free and modularity
properties (see Figure 5.1 and discussion in Methods). The network is non-symmetric, and
the interaction coefficients range from -0.5 to 0.5. The small-world property leads to only
a few members, species (sp) 14 or sp7, widely connected to other individuals, while most
of the members are scarcely connected, for example sp10 or sp25. The interaction network
passed all three stability tests in testStability function of the seqtime R package: Coyte’s
criteria on the return speed to the steady-state [153]; negative real part of the interaction
matrix eigenvalues; and Ricker’s stability criteria for explosions in simulations [230]. For
the stochastic component, we have assumed that the noise amplitude for each component
follows Taylor’s law.
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Fig. 5.1 Interaction matrix used in our simulations. The model includes thirty labeled as n,
with n = [1,30]. The order of matrix rows (and columns) is given by the abundances. The
interaction matrix coefficients are color coded from red (-0.5) to blue (+0.5), and following
the standard convention of the adjacency matrix: outputs are encoded in rows and inputs are
encoded in columns.

5.2.2 Noise-induced and pulse perturbation experiments

Firstly, we have evaluated how the amplitude of the time variability propagates from one
species to others. For doing it, we follow the time evolution of the relative abundances and at
fixed times, we modify the noise amplitude for a given species in the sgLV equation. We
have performed this study for some species and we show the results for modifications of
species sp3 and sp14. The top panel in Figure 5.2 shows the time variability of the relative
abundances of the most abundant species under different initial conditions. We have evolved
the system with initial conditions (default conditions) b = 1.5 and B = 0.05 for the noise
amplitude. At a given time, in arbitrary units, t = 20 , we modify the sgLV equation by
increasing Bsp3 fourfold, while keeping all others fixed to the default conditions. Later (t =
40), we have set the sgLV equation to default conditions. At t = 60, we modify the sgLV
equation by increasing Bsp14 fourfold, while keeping all others fixed to the default conditions.
Finally (t = 80), we have set the sgLV equation to default conditions. The reader can easily
see the species with increased variability in a given period, but data analysis is needed to
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determine how the increased noise in one species is propagated to other species. Secondly,
instead of modifying the default conditions of the sgLV model, we have instantaneously
halved the relative abundance of a given species (sp3 at t = 20 and sp14 at t = 60), as shown
in the lower panels in Figure 5.2. The abundance of the modified species quickly recovers in
less than 1 unity of time, easily seen in the figures.

Experiment 1 Experiment 1Experiment 2 Experiment 1Experiment 3

Fig. 5.2 Relative abundances in log scale of the most abundant species as a function of time
in our simulations. On the upper part, it is represented the time evolution of our population.
From t = 0 to t = 20, the population evolves with default conditions. At t = 20, the noise
amplitude of sp3 is increased fourfold until t = 40, when we recover the default conditions.
At t = 60, the noise amplitude of sp14 is increased fourfold until t = 80, when we recover
the default conditions to the end of the simulation. We have shown abundances larger than
1%. On the bottom left, sp3 abundance is halved at t = 20, and on the bottom right, sp14
abundance is halved at t =60. Both sp3 and sp4 have been highlighted on the bottom panels
to facilitate the visualisation.
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We computed Pearson’s correlations over 1000 time points of every simulation afore-
mentioned (Figure 5.3). To facilitate the visualisation, we only represented the 24 most
abundant species ordered by overall abundance, because the 6 less abundant accounted only
for 4.7 ·10−6 % of the total abundance. We observe that the modification of an important
member of the community, i.e., sp3 and sp14, enable changes in the correlation coefficients
pattern compared to the scenario with default conditions. The changes in noise amplitude of
sp3 and sp14 (middle row in Figure 5.3) produce clear changes in the correlation coefficient
patterns, with special emphasis in the case of sp14, a highly connected member. On the
other hand, when the species abundance is halved, we observe a different correlation pattern
compared to the previous type of perturbation. Interestingly, both types of perturbation on
sp3 and sp14 produced big correlation changes on the less abundant species, i.e., sp1, sp4
and sp8.

5.2.3 Graph Inference

Once we have calculated the correlation matrix associated to the time series, it is often
diagonalised the matrix to know the principal directions in the 30-dimensional space of
random functions (i.e., the time series for each individual species). Such a big dimensional
space makes unpractical the visualisation, particularly for monitoring the changes due to
the increase in noise or for a pulse in the relative composition. Nevertheless, it shows the
potential of using linear combinations of the individual time series if we were able to define
an optimisation condition that selects particular directions most sensitive to the changes
introduced in the experimental design. One of these strategies, commonly used when we
do not require any knowledge of the dynamical underneath the time series, is the Granger
causality test, an statistical hypothesis test used for verifying whether one time series can
predict future values of another one. Intuitively, the test verifies the hypothesis that the past
values of a time series should be helpful to predict future values of the other. More formally,
a time series X is said to ‘Granger cause’ another time series Y in terms of past values of Y
and X if the accuracy of regressing Y in terms of the past values of Y and X is statistically
better than just regressing with the past values of Y .

One of the fundamental parameters in the analysis is the maximum time lag allowed in
past observations. The number of lags to be included is usually chosen using an information
criterion. Any particular lagged value of one of the variables is retained in the regression if:
(1) it is significant according to a t-test; and (2) it and the other lagged values of the variable
jointly add explanatory power to the model according to an F-test. Then the null hypothesis
of no Granger causality is not rejected if and only if no lagged values of an explanatory
variable have been retained in the regression. The original definition of Granger causality
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Fig. 5.3 Interaction and correlation matrices for the normalised counts of the simulations.
On the upper left, it is represented the original interaction matrix. On the upper right, it
is represented the correlation matrix for the default conditions. On the center left, it is
represented the correlation matrix of sp3 with its noise amplitude increased fourfold. On
the center right, it is represented the correlation matrix of sp14 with its noise amplitude
increased fourfold. On the bottom left, it is represented the correlation matrix after halving
sp3 abundance. On the down right, it is represented the correlation matrix after halving sp14
abundance. All matrices have been truncated at species higher than an average abundance
of 10−3. The average abundances give species order. Colour code is blue for positive
interaction/correlation, and red for negative interaction/correlation.
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does not capture instantaneous and non-linear causal relationships, though several extensions
have been proposed to address these issues.

In practice, to perform the regression, we have solved the least squares problem to do
the interaction matrix inference (see Methods section). In particular, we have solved the
regression problem to all the aforementioned experiments: the ones in which the noise
amplitude of sp3 and sp14 were increased, and the pulse in which we halved their abundances
at a certain point. As can be seen in Figure 5.4, the inferred matrices highlighted the
importance of the most abundant species as most of the inferred interactions are located
in sp3, sp23, sp5 and sp14. On one hand, the increase in sp3 noise amplitude shows
the most marked effects on the interactions inferred. Compared to the values per default,
applying noise to sp3 seems to clean most of its connections with the exception of the
interaction between sp3 and sp5. However, it also adds spurious interactions in sp23 and
sp14. Interestingly, when we increase sp14 noise amplitude most of its spurious interactions
disappear, remaining only the interactions between sp14 with sp23, sp25, and with itself. On
the other hand, the pulse experiments do not seem to improve in a great deal our ability to
infer the interactions.

To study whether the noise-induced and the pulse experiments improved our ability to
uncover the real interactions, we calculated the error of the inference between the matrix
ai j with the original Mi j by calculating the norm between them (see Methods section). We
applied different noise amplitudes for sp3 and sp14 and compared: first, the error between the
entire matrices; and second, the specific rows of the modified species. In Figure 5.5, we show
that the inference error for sp3 and sp14 rows improve as we increase the noise amplitude to
values of B = 0.20, while the overall inference error does not necessarily decrease. We obtain
the same pattern in the inference error when we vary the noise amplitude of other highly
abundant species as sp23, improving the inference of sp23 interactions but not for the entire
matrix (see Appendix Figure A.6). On the contrary, it seems that increasing the species noise
amplitude do not work properly with low abundant species as sp7. We modified this species
as it is the most connected element of our matrix and also with a low abundance, and we did
not improved the inference error neither with the entire matrices, nor when comparing the
specific row of sp7.
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Fig. 5.4 Interaction matrices inferred from the regression model for the normalised counts..
On the upper left, it is represented the original interaction matrix. On the upper right, it
is represented the interaction matrix for the default conditions. On the center left, it is
represented the interaction matrix of sp3 with its noise amplitude increased fourfold. On
the center right, it is represented the interaction matrix of sp14 with its noise amplitude
increased fourfold. On the bottom left, it is represented the interaction matrix after halving
sp3 abundance. On the down right, it is represented the interaction matrix after halving sp14
abundance. All matrices have been truncated at species higher than an average abundance
of 10−3. The average abundances give species order. Colour code is blue for positive
interaction/correlation, and red for negative interaction/correlation.
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Fig. 5.5 Error between original and inferred interaction matrix. In the upper row, it is
represented the error between the entire matrices. On the left, the case when sp3 is modified,
and on the right, the case when sp14 is modified. In the lower row, it is represented the error
between the specific rows of sp3 (left), and sp14 (right) compared to the original interactions.

5.3 Chapter Summary

As a summary of the results presented here, which will be further discussed in the General
Discussion, we have seen that we can model the dynamics of an ecosystem, based on
a modified version of the generalised Lotka-Volterra model, extended with an stochastic
component so that the compositions are random variables. In this chapter, we propose to
make use of the noise present in this biological system, and modify the behaviour of certain
species to uncover their interactions with the community. For this purpose, we have modified
the behaviour of sp3 and sp14 in two different ways: 1) by increasing their noise in time,
and 2) by applying a pulse where we halved their abundances at a certain time point. These



96 Chapter II - Microbial interactions as a matter of noise

modifications are intended to mimic controlled perturbations that can be actually applied
to bacteria in laboratory conditions. The correlation matrices showed marked changes in
the behaviour of the community, shedding some light to the real interactions. However,
the predictive power of interaction coefficients is limited to use them as proxies for real
interactions.

In order to examine whether the noise-induced experiments increases our ability to
uncover the microbial interactions, we have solved an optimisation problem with a least-
squares regression model, applying a Lagrange multiplier to force sparsity to the inferred
interaction matrix. We have observed that the inferred matrices (ai j) were similar, at some
extent, to the real interaction matrix (Mi j), highlighting the importance of the most abundant
species in our problem. Modifying sp3 and sp14 behaviours uncovered some of their
most representative interactions. Furthermore, we can observe that the inference error
of the modified species in our experiments decrease as their noise amplitude is increased,
implying that these kind of experiments could help us to uncover real interaction in controlled
experiments with real microorganisms. However, the results presented in this chapter are
still preliminary, the inferred matrices still do not appear to be very similar to the original
interaction matrix, and the error seems too high in some occasions. Thus, to take advantage
of the presented experimental methodology, we should build better tools for the interaction
matrix prediction, more robust to take into consideration any type of graph topology to
further validate the utility of the proposed experiments.



Chapter III - Dynamical analysis of chil-
dren’s microbiota with acute diarrhoea

6.1 Abstract

Gut microbiota is closely related to acute infectious diarrhoea, one of the leading causes
of mortality in children worldwide. Understanding the dynamics of the recovery from this
disease is of clinical interest. This chapter aims to correlate the dynamics of gut microbiota
with the evolution of children who were suffering from acute infectious diarrhoea caused by a
rotavirus, and their recovery after the administration of a probiotic. The experiment involved
10 children with acute infectious diarrhoea caused by a rotavirus, and six healthy children,
all aged between 3 and 4 years. The children who suffered the rotavirus infection received
Saccharomyces boulardii CNCM I-745 twice daily for the first 5 days of the hospitalisation.
Faecal samples were collected from each participant at 0, 3, 5, 10, and 30 days after hospital-
isation. Microbial composition was characterised by 16S rRNA gene sequencing. Diversity
indices were computed, along with dynamical analysis based on Taylor’s law. We observed
low alpha diversities in the first five days (p-value <0.05, Wilcoxon test), larger at 10 and
30 days after probiotic treatment. CCA showed differences in the gut microbiota of healthy
children and of those who suffered from acute diarrhoea in the first days (p-value <0.05,
ADONIS test), but not in the last days of the experiment. Temporal variability was larger in
children with acute diarrhoea than in healthy ones. In particular, Gammaproteobacteria class
was found to be abundant in children with acute diarrhoea.

Original publication:
Dinleyici EC*, Martínez-Martínez D*, et al.. 2018. Time series analysis of the microbiota
of children suffering from acute infectious diarrhoea and their recovery after treatment.
Frontiers in Microbiology. doi:10.3389/fmicb.2018.01230.
* Equal contribution
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6.2 Material and Methods

A general view of the material and methods were explained in Material and Methods Chapter.
Nevertheless, the most relevant information is described in the following subsections to
facilitate the understanding of the results. Detailed information has been provided when
necessary.

6.2.1 Sample selection

We enrolled a total of 16 children, 6 of them with a healthy condition, and the other 10
suffering from acute infectious diarrhoea. All children were from 3 to 4 years old. From
each child enrolled, we collected samples at five different time points, namely, at 0, 3, 5, 10,
and 30 days, for a total of 80 different samples. More information can be found at Table A.6,
in the Appendix. The sample at day 0 was taken before probiotic treatment in the group of
children with infectious diarrhoea. All children belonging to the infectious diarrhoea group
received oral lyophilised Saccharomyces boulardii CNCM I-745 (250 mg twice daily, Reflor,
Biocodex) for the first five days, specifically days 3 and 5 (day 0 was with no intervention), in
addition to ORS and/or intravenous therapy. Rehydration and electrolyte replacement were
done using hypoosmolar ORS (glucose 20 g; sodium 60 mmol/L; potassium 20 mmol/L;
bicarbonate 30 mmol/L).

6.2.2 16S rRNA gene sequencing and read processing

A region of the 16S rRNA gene (V4) was selected to be studied. Sequencing was performed
on the Illumina MiSeq platform according to the manufacturer’s specifications. 16S rRNA
gene reads were quality filtered with PRINSEQ, lite version [181]. Reads with a low
score (<20) and short read lengths (<50 nucleotides) were removed. Chimeric sequence
filtering and taxonomic assignment of the 16S rRNA sequences were performed with the
ChimeraSlayer algorithm and the open-reference workflow, respectively, in QIIME (v 1.8)
[186], with default parameter values. OTUs were clustered at 97% similarity with the Uclust
algorithm. The most representative sequences for each OTU were compared with those in
the Greengenes database (representative sequences aligned at 97% similarity, August 2013).
Only those annotations that had more than 0.6 in their bootstrap confidence estimation values
were accepted for further analyses. For more information about these processes, see the
sections 3.2.2 and 3.2.3 in Material and Methods Chapter.
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6.2.3 Diversity and functional analyses

α-diversity estimators were computed with R programming language using the vegan package
(v. 2.4-3) [204]. We applied two filters on the OTU table that resulted from QIIME: any
OTU that had less than 80 counts in total was deleted, and any OTU that had a count of 0 in
more than 65 samples was excluded from the analysis. Shannon entropy and Pielou evenness
were computed. Then, the true diversity index based on Shannon entropy was also computed
with the exponentiation of the Shannon values. Differences in α-diversities were studied by
performing permutations over the Wilcoxon signed-rank test with a significance level of 0.05,
and it was calculated using the coin package in R [205]. In the case of multiple comparisons,
we applied false discovery rate (FDR) correction to avoid type I errors.

For β -diversity, canonical correspondence analysis (CCA) was performed by using the
vegan package in R programming language together with weighted UniFrac distances [37]
computed in QIIME. We applied the function ADONIS within the vegan package, a mul-
tivariate ANOVA based on dissimilarity tests, to assess the variables that were statistically
significant in the separation of the samples in two dimensions. We used the linear discrim-
inant analysis (LDA) effect size (LEfSe) algorithm from the Galaxy software package of
Huttenhower lab to identify the specific taxa that served as the biomarkers for patients with
probiotic treatment and the controls [211]. A fixed cut-off α value of 0.05 was specified
for the Kruskal-Wallis test. For the bacterial taxa that had significant differences between
samples, it was fixed a threshold of 4.0 in the logarithmic LDA score to consider it a discrim-
inative feature. We split the dataset into two subsets: the first one containing the days 0, 3,
and 5, and the second one grouping days 10 and 30. This separation was made to have, on
the one hand, the time points of the probiotic treatment and, and on the other hand, the time
points without the probiotic treatment. We performed both CCA and LEfSe analysis on the
resulting subsets.

For functional content prediction, we used the PICRUSt software from Huttenhower
laboratory [216]. To assess the differences in function abundances, we applied the Kruskal-
Wallis test, with the α value fixed at 0.01.

Further information is available at sections 3.5 and 3.7 in Material and Methods Chapter.

6.2.4 Temporal analysis and stability

The temporal analysis was conducted according to the results of the Chapter I to measure
the stability, over time, of all the individuals. Taylor’s parameters were computed and
standardised in the same manner as explained in section 3.9, with those samples of children
with acute infectious diarrhoea compared with the ones of the healthy individuals in the
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study. We also computed the rank stability of all samples, which shows time differences per
participant. For this purpose, we calculated the rank stability index (RSI), which shows the
temporal stability of a certain taxon, by considering its rank in the total population. We also
calculated the rank variability, which is the absolute difference between each taxon rank
and the overall rank, as well as the differences variability, which is the absolute difference
between each taxon rank at a given time and the value it had in the previous time step,
averaged over all taxa present.

The microbiome data from this study are available at NCBI SRA Database under Biopro-
ject ID PRJNA416445.

6.3 Results

6.3.1 Bacterial composition and diversity

A total of 3,664,535 sequences of 16S rRNA gene amplicons from 80 samples passed the
quality filters and were assigned to a taxonomy with QIIME. Each sample had an average
number of 45,806 sequences with a standard deviation of 12,598 sequences. The 25 most
abundant taxa are illustrated in Figure 6.1, and the remaining taxa were joined into a single
group named as Other. The most abundant genus is Bacteroides (13.14%), followed by
Faecalibacterium (9.6%) and two unclassified genera from the Ruminococcaceae (9.35%)
and Enterobacteriaceae (8.02%) families respectively. The abundance profile of the children
has a high heterogeneity. We can see that the Bacteroides genus is most abundant in patients
C1, H1, H4, or H5, whereas Faecalibacterium is in higher proportions in patients C2, C8, C10,
or H5, depending on the day we made the observation. C5 is dominated by the unclassified
genera from Enterobacteriaceae, as this is the sample with the clearest dominance of one
OTU over the others, in comparison with the rest of the participants. We can also observe
that the Others group fluctuates with a higher degree in the unhealthy group.

The analysis of α-diversity with the Shannon diversity index, which compared both
health states and considered all times together, reveals that healthy and non-healthy children
are statistically different in the Wilcoxon test (p-value = 6.3e-05), with a higher diversity
in the former group than in the latter (see Figure 6.2). When we compare the differences
between states, but per time, we find statistical differences at day 0 (p-value = 0.02), day 3
(p-value = 0.034) and day 5 (p-value = 0.011). On the contrary, we did not find any statistical
significance at day 10 (p-value = 0.42) nor day 30 (p-value = 0.21). All the tests were also
applied to Pielou’s Evenness index (Supplementary Figure A.7), and the results were almost

https://www.ncbi.nlm.nih.gov/bioproject/PRJNA416445
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the same except that no significant difference was observed between the healthy and sick
states at day 3 (p-value = 0.093).

We performed a canonical correspondence analysis (CCA) to the OTU community
matrix, with an ADONIS test to assess the variables that were separating the samples with
statistical significance. Not only we found statistical differences between the individuals
of the experiment (p-value = 0.001), but also between the health status of the host (p-value
= 0.009). Both variables separate the samples in two directions (see Figure 6.3). As can
be observed, a clear separation exists between the community matrix belonging to healthy
children compared with the children suffering from the rotavirus infection. By contrast,
more overlapping is present between individuals when this variable is observed in the CCA
(see Supplementary Figure A.8). This result points to a differential composition in the
communities depending on the health state. To determine if this separation between health
status was consistent with the results of α-diversity, we applied CCA and the ADONIS test
to the dataset split into two different subsets: the first one corresponding to days 0 through 5,
and the second one corresponding to days 10 and 30. Running the ADONIS test on these two
subsets revealed statistical differences in the status of the first group (p-value = 0.019), but
not in the second group (p-value = 0.289). In the first case, the region of the healthy children
is more constrained and centred than that of the children with acute diarrhoea; in the second
case, both regions overlap their area (see Figure 6.3 part B and C). These results reinforce
the results obtained by alpha diversity, highlighting that we have differences in the first three
time points, but not in the last two.
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Fig. 6.2 Shannon diversity index per health status and per day Boxplots showing the Shannon
diversity index between A) both health status with all times together; and B), separated by
time of sampling. The colour blue represents healthy children, and red colour represents
children with acute diarrhoea. P-value of Wilcoxon test is shown in the upper part of each
comparison in both parts of the Figure, and the different health states are represented by H
and C letters in part B for healthy and cases respectively. All data points were represented
using the function jitter in R.

6.3.2 Taxonomic and functional enrichment

To determine which taxa were responsible for the differences between healthy status, we
performed the LEfSe analysis test in the two subsets mentioned above (days 0 to 5, and
days 10 to 30), which is represented in Figure 6.4 (parts A and B). We found that in the
case of the subset of days 0, 3, and 5, there was an enrichment of bacteria belonging to
phylum Proteobacteria, specifically the Gammaproteobacteria class. On the other hand,
only phylum Firmicutes was abundant in the healthy children, in which we can find genera,
such as Blautia, Ruminococcus, or other bacteria belonging to the Lachnospiraceae and
Ruminococcaceae families. By contrast, the analysis of the second subset showed that only
the genus Blautia was abundant in the healthy children. The results from PICRUSt revealed
higher stability in functions, in general, concerning the variability observed at the taxonomic
level (see Supplementary Figure A.9). The Kruskal-Wallis test showed the statistically
significant differences in the metabolism of other amino acids at level 2 in KEGG hierarchy
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Fig. 6.3 Comparison of microbiotas between healthy children and children with acute diar-
rhoea. Three different representation of samples with Canonical Correspondence Analysis.
In part A) is the global differences between both health status, Healthy (H, in red), and Cases
(C, in green) for all times; in part B) we represented the CCA for the individuals from time
0 to time 5, and in part C) it is represented the CCA of samples belonging to days 10 and
30. Both health status were circled in their respective colours with no error and with 95% of
Confidence Level in all Figure parts.

in the comparison of both health states. The same test was also significant for level 3 in
KEGG, as we observed differences between four groups: the pentose phosphate pathway, the
biosynthesis of ansamycins, ether lipid metabolism, and other ion-coupled transporters (see
Figure 6.4, part C).
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Fig. 6.4 Taxonomic biomarkers and functions enriched. Linear discriminative analysis (LDA)
effect size (LEfSe) analysis between the healthy children (in red) and case children (in green),
in A) from day 0 to 5, and in B) from day 10 to 30. LDA scores (log 10) for the most
prevalent taxa in controls are represented on the negative side, whereas LDA-positive scores
indicate enriched taxa in cases. In part C) are represented the KEGG (Kyoto Encyclopedia
of Genes and Genomes) pathways at level 3 of hierarchy validated by Kruskal-Wallis test,
specifically: pentose phosphate pathway, the biosynthesis of ansamycins, the ether lipid
metabolism and other ion-coupled transporters.
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6.3.3 Dynamic analysis of the microbiota

A temporal analysis was conducted to evaluate the temporal stability of the individuals over
time. Of the two free parameters of the Taylor’s Law fit, β was always less than 1 in all
individuals, and we found pronounced differences between the values of the variability V .
Figure 6.5 shows the standardisation of the parameters with respect to the healthy group. We
can observe that all children suffering from acute diarrhoea (except child C8) are categorised
out of the healthy zone, meaning they have a higher temporal variability than the healthy
individuals of the study. The lower stability of children with rotavirus was in agreement with
the other results, as their microbiomes have been suffering changes in time in respect to the
healthy children, which have been stable through the sampling time. All the children who
are outside of the healthy zone are, at least, two σ units distant from the centre in terms of V .

We also analysed the rank stability of the individuals. We represent the two samples
with the least and the highest variability in the temporal analysis, which are H3 (a healthy
child) and C6 (a non-healthy child), respectively (see Figure 6.6). We can see that the RSI
has lower values in the non-healthy individual than in the healthy one. H3 has 33 taxa out
of a total of 50, with an RSI above 70%, whereas C6 has only 8 taxa above that threshold.
Some taxa also appear to be very stable despite their low proportions in the last 20 positions,
another example of the stability islands found as a result in Chapter I. An example is the
case of genus Actinomyces, which appears to be very stable at low proportions (around rank
40) in four of the six healthy children. There are other genera of interest, such as Collinsela,
which also seems to be very stable in healthy children, but it alternates cases where it has low
proportions with others in which is highly abundant in the affected children. Lastly, the case
of Blautia is compelling; it is very stable and has high proportions in all healthy children, but
it is absent in some of the children infected with the rotavirus and is found in low proportions
in other cases. This finding is consistent with the LEfSe results. The general tendency of
these less-abundant taxa is to belong to the phylum Firmicutes. Finally, as seen in Figure 6.6,
we can observe that both the rank variability and the differences variability are significantly
lower in H3 than in C6, an indicator that is also present in all healthy children compared
with the non-healthy group. Finally, as seen in Figure 6.6, we can observe that both the
rank variability and the differences variability are significantly lower in H3 than in C6, an
indicator that is also present in all healthy children compared with the non-healthy group.
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Fig. 6.5 Taylor’s Law Parameter Space. The inner darker-blue circle corresponds to the
68% CL region of healthy children in Taylor’s parameter space, while the bigger light-blue
circle delimits the 95% CL region. In the Figure are represented both the healthy children
(red points with error bars) and children with acute diarrhoea (green points with error bars).
Taylor’s parameters were standardised as mentioned in section 3.9.2 and they have standard
deviation units.
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H3

Fig. 6.6 Rank Stability Matrix. Rank Stability Matrix for the most variable subject (H3, part
A)), and the least variable subject (C6, part B). In both plots are represented the 50 most
abundant genera of each case, and the numbers inside each cell represent the ranking of that
specific genus at that specific time point. The colour inside each cell ranges from light-yellow
for the rank 1, to black, representing very low ranks. At the right in each case it is shown
the RSI, and below them, it is represented the Rank Variability (in red) and the Differences
Variability (in blue).

6.4 Chapter Summary

As a summary of the results presented here, which will further discussed in the General Dis-
cussion, we can observe that the most abundant phyla in all children belonged to Firmicutes
and Bacteroidetes, and the most abundant genus was Bacteroides. Concerning microbial
diversity, we find marked differences in the α-diversity between healthy children and the
ones that were suffering from the acute infectious diarrhoea in the first days of hospitalisation,
from day 0 to day 5. Also, we find differences concerning β -diversity in the same period,
implying that the microbial communities in both health states were different in composition
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and abundance. Interestingly, both the α and β diversities recovered in the last days of
hospitalisation, when the children who were suffering from the acute diarrhoea did not
have symptoms anymore. These changes are represented in Figure 6.2 for α-diversity and
Figure 6.3 for β -diversity. We can conclude that the affected microbiotas recovered their
healthy status in time, as differences between both groups disappeared in the last days of
hospitalisation.

The temporal analysis was based on the methodology developed in Chapter I, and as can
be observed in Figure 6.5, there is a clear separation between healthy children and those who
suffered from the acute infectious diarrhoea, being the unhealthy children more variable than
the healthy group, except the case of participant C8. Exploring the rank stability from the
children, we observe, again, the existence of rank stability islands as was also observed in
Chapter I. As can be seen in Figure 6.6, we still find some genus as Actinomyces that are
quite stable even their low overall abundance.

We found differences in the taxa enriched in each condition, in the first 5 days from
intervention. We found that phylum Proteobacteria was more abundant in children with acute
diarrhoea, and phylum Firmicutes was more abundant in healthy children. As happens with
the diversities and dynamical analyses, we also found that these differences disappeared in
the last two time points of the experiment, when the children stopped having symptoms and
recovered their health status. The analysis of the functions encoded in the microbiomes shown
differences between both groups, where we can find some metabolic pathways differentially
expressed in both groups as the pentose phosphate pathway, the biosynthesis of ansamycins,
the ether lipid metabolism and other ion-coupled transporters. All these analyses show that
the microbial communities were different at the beginning of the intervention in both groups,
but that the microbiomes from the children suffering from the acute diarrhoea recovered a
healthy composition and status when those children improved their healthy condition.





Chapter IV: Bacterial individuality in ox-
idative stress profiles in the oral cavity

7.1 Abstract

Recent metagenomic studies suggest that oral diseases are caused by bacterial dysbiosis.
However, the identification of the exact disease-causing bacterial consortium is complicated
because the healthy individuals and patients share the same bacterial taxa. In the present
chapter, we aimed to identify bacteria with pathogenic potential by correlation analysis with
oxidative stress markers that reflect the inflammatory processes in the oral cavity. Saliva
samples from 26 volunteers were collected daily during one month (551 samples) to quantify
five oxidative stress markers and to profile temporal variability of the oral microbiome. The
direct and lagged correlations between the markers and the bacterial taxa were computed
individually for each volunteer. The results indicate that a particular marker-taxa pair can
have negative correlations in some volunteers while positive in others. Streptococcus mutans
and certain species of Actinomyces, Rothia and Cardiobacterium genera had exclusively
either positive or negative correlations with some markers. However, these correlations were
not confirmed in all volunteers. The distinct intra-individual correlation patterns suggest that
different bacterial consortia are involved in the oxidative stress induction in each volunteer.
These results emphasise the importance of longitudinal samples collection for correlation
studies, and suggest that the oral diseases treatment should be more individual-oriented.
Original work:
Dzunkova M*, Martínez-Martínez D*, Gardlik R, Behuliak M, Jansakova K, Jiménez N,
Vázquez-Castellanos JF, Martí JM, D’Auria G, Bandara HMHN, Latorre A, Celec P, Moya
A. Oxidative stress in the oral cavity is driven by individual-specific bacterial communities.
In revision.
*Equal contribution
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7.2 Material and Methods

A general view of the material and methods were explained in Material and Methods Chapter.
Nevertheless, the most relevant information is described in the following subsections to
facilitate the understanding of the results. Detailed information has been provided when
necessary.

7.2.1 Saliva samples and Oxidative stress markers

Twenty-six volunteers (13 women and 13 men) of age between 21-28 years participated
in this study. On average 21 non-stimulated saliva samples (2 ml) were collected from
each participant during the period of 30 days. Five different oxidative stress markers were
measured: lipid peroxidation was quantified by measuring thiobarbituric acid reacting
substances (TBARS); advanced glycation end products (AGEs) and advanced oxidation
protein products (AOPP) were herein quantified as a carbonyl stress marker and as an
oxidative stress marker, respectively; the capacity to resist oxidative damage was measured
by total antioxidant capacity (TAC) and ferric reducing ability of saliva (FRAS). The oxidative
stress markers were quantified using plate reader Safire II (Tecan, Austria) as described by
Banasova et al. [197]. More information is available in sections 3.1.3 and 3.4.

7.2.2 16S rRNA gene sequencing

The regions V3 and V4 of the 16S rRNA gene were amplified using primers including
Illumina adapter sequences with Kapa HiFi HotStart polymerase (Ref. B4kk2602) and
the samples were multiplexed by 96 index combination and sequenced on MiSeq Illumina
platform (Ref. MS-102-3001). The Illumina paired-end reads were merged and chimeric
amplicons were removed by usearch program [187]. Sequences shorter than 50 bp were
removed. In addition, the samples with less than 2,500 sequences were removed from the
analysis. The obtained sequences were deposited to the EBI database with the study accession
number: PRJEB20213 (ERP022351).

In the first step, we determined which are the most suitable settings for clustering of
sequences into OTUs [244] for obtaining separate sequence clusters of Streptococcus mutans
and Streptococcus parasanguinis. This testing was crucial for distinguishing between caries-
associated S. mutans [99] and commensal Streptococcus species not associated with caries
[245]. For this purpose, all the 16S rDNA sequences belonging to the genus Streptococcus
were downloaded from the Ribosomal Database Project website (RDP, January 2016), clipped
for the region V3 and V4 (regions which are used for sequencing in this study) and the
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clustering on different similarity levels (0.95, 0.96, 0.97, 0.98, 0.99) was tested using
the usearch program. The similarity level 0.96 produced homogeneous clusters (OTUs)
corresponding to separate Streptococcus species. Afterwards, all the obtained sequences
from the 26 volunteers have been clustered together on 0.96 similarity level by the usearch
program and the reference sequences of each OTU cluster have been taxonomically assigned
by RDP classifier [246]; the annotation was accepted if the bootstrap confidence estimation
value was over 0.8. The final OTU names used in this study consisted from the assigned
genus of the reference sequence and the number of the cluster.

7.2.3 Analysis of the bacterial composition

The resulting bacterial composition was analysed in the R programming environment using
packages vegan [204] and ade4 [247]. As the clustering of large datasets into OTUs often
results in a formation of artificial low abundant OTUs corresponding to sequencing errors
[248], the dataset containing all detected OTUs was compared to the datasets containing
only OTUs with average proportion >0.001%, >0.01% and >0.1%. In the datasets with
reduced OTUs numbers, the low prevalent OTUs were discarded, while the proportions of
the OTUs with higher prevalence were not altered. The Procrustes test (R library vegan,
function “protest”) was performed to test whether the datasets with different OTU numbers
produce the same ordination of samples in the nonmetric multidimensional scaling (NMDS)
with Bray-Curtis dissimilarity.

Shannon diversity index, Pielou’s evenness index values were compared among volunteers
using t-test with Holm correction of p-values using the R package vegan. In the next step,
the “envfit” function from vegan R package was used for testing of the bacterial composition
(OTUs with average proportion >0.1%) for fitting on variable “volunteer” in the canonical
correspondence analysis (CCA). This analysis was used to test whether each volunteer has
its characteristic microbiome and whether the microbiomes differ significantly between
volunteers. More information about diversity can be found in section 3.5.

7.2.4 Temporal variations of the microbiome

The temporal analysis was conducted according to the results of the Chapter I to measure
the stability, over time, of all individuals. Taylor’s parameters were computed in the same
manner as explained in section 3.9. We also computed the rank stability of all volunteers. For
this purpose, we calculated the rank stability index (RSI), which shows the temporal stability
of a particular taxon, by considering its rank in the total population. We also calculated the
rank variability as well as the differences variability, discussed in Methods.
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7.2.5 Correlations between salivary markers and microbiota

Pearson’s and Spearman’s temporally direct correlations and Local Similarity Analysis for
lagged correlations were used to assess correlations between bacterial OTUs in oral cavity of
each volunteer individually taking into account the temporal dimension. Local Similarity
Analysis checks the existence of a delay in the correlations between all possible combinations
of variables. Pearson’s, Spearman’s, and LSA correlation coefficients were computed using
eLSA Python package from Xia et al., [145], with default parameters. This package computes
permutation tests that are helpful when multiple hypothesis tests are being studied in this
kind of problems. The correlation values >0.3 and <-0.3 were then filtered by their p-value at
a level of 0.05 for statistical significance. Correlations in this study have been plotted using
R packages corrplot [220] and beeswarm [221]. In addition, interactions between the 15
most abundant OTUs per sample were calculated with LIMITS algorithm from Fisher and
Mehta work [114] in Wolfram Mathematica software (version 11.0) [222].

7.2.6 Longitudinal sample collection vs. single sample collection

In most of the biomedical studies, only one sample per volunteer is collected and tested for
correlations with its corresponding biomedical data. Such an approach ignores the temporal
intra-individual variability of the microbiome composition and may lead to contradictory
results obtained by different research groups [249]. To test our data, we simulated such a
one-sample-one-volunteer approach and compared it with the result of the intra-individual
correlation analysis based on our longitudinal sample collection described above. For that
purpose, only one sample per each volunteer was selected randomly for a total 10,000
combinations and then tested for Pearson’s correlations between salivary markers and OTUs
proportions. The correlation values >0.3 and <-0.3 were also filtered by their p-value at a
level of 0.05 for statistical significance.

7.3 Results

7.3.1 Bacterial composition

In total, 27,072,746 sequences of 16S rDNA amplicons from 551 samples collected from 26
volunteers have passed the quality filters and have been clustered into 18,146 operational
taxonomic units (OTU). The microbiome of all volunteers was dominated by the Strepto-
coccus-OTU0 (highest similarity with Streptococcus parasanguinis) forming on average
37.51 ± 10.14% of the whole microbiome (Supplementary Figure A.10) followed by taxon
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Rothia-OTU1 (20.91 ± 11.31%). The ratios of Streptococcus-OTU0 and Rothia-OTU1
differed significantly (p <0.001, t-test) among the 15% of volunteers. For example, the
proportion of Rothia-OTU1 could be as high as 35.30 ± 10.51% in volunteer F06 or as low
as 5.43 ± 5.24% in volunteer M12.

The overall microbiome composition of the volunteers differed significantly due to the
less prevalent (average proportion 0.1 - 5.4%) individual-specific taxa (p <0.001, “envfit” test,
Supplementary Figure A.11). Some volunteers (e.g. F18, F20 and M20) were characterised
by high proportions of Granulicatella-OTU2 (8.66 ± 4.13%) and Atopobium-OTU3 (6.88
± 3.72%), while other volunteers (e.g. M12, M21) had high proportions of Gemella-OTU6
(4.17 ± 3.19%). In contrast, in some volunteers (e.g. F16), Rothia-OTU1 was very prevalent
(31.85 ± 14.42%), while Saccharibacteria-OTU4 and Gemella-OTU6 were in very low
proportions (0.25 ± 0.30% and 0.37 ± 0.25%). The volunteer F12 had the highest proportion
of Saccharibacteria-OTU4 (8.93 ± 4.57%). Saccharibacteria-OTU4 and Atopobium-OTU3
were very prevalent (4.82 ± 3.79% and 6.69 ± 4.35%, respectively) in the volunteers F21,
M08 and M19. Some volunteers did not possess any extreme proportions of the most detected
prevalent OTUs (central part of the CCA plot in the Supplementary Figure A.11).

The Shannon index (mean of 2.46, and standard deviation of 0.38) and the evenness index
(mean of 0.48, and standard deviation of 0.06) also possessed substantial inter-individual
differences (Supplementary Figure A.12). The volunteer M04 had the highest Shannon and
evenness indexes (2.80 ± 0.35 and 0.56 ± 0.06, respectively), what differed significantly (p
<0.001, t-test) from the volunteer M20 with the lowest average Shannon and evenness indexes
(2.24 ± 0.53 and 0.43 ± 0.08, respectively). The Procrust test showed that the inclusion of
OTUs with proportions of above 0.1% (50 OTUs) provide the same result as the inclusion of
all detected OTUs (Supplementary Figure A.13). Thus, the following correlation analyses
were performed with the 50 most abundant OTUs.

7.3.2 Temporal stability of the microbiome

All the values of the Taylor’s parameter β were between 0.5 and 1 which means that the
most prevalent OTUs in all samples showed less relative variability over time than the less
abundant OTUs, as explained in section 4.3. The microbiomes of the 26 volunteers had an
average of the Taylor’s parameter V values of 0.27 ± 0.06. Significant differences (p <0.001,
t-test) of V between volunteers existed (Figure 7.1) in 26% of pairwise comparisons. In
terms of V values, the volunteer F11 had the least stable microbiome of our cohort (V = 0.47
± 0.09), while the microbiome of F18 was the most stable (V = 0.20 ± 0.03).

The temporal variability of a microbiome in time can be expressed as an absolute
difference between every taxon’s rank (proportion) at a specific time point compared to the
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previous time point; it is expressed as difference variability (DV). DV had some peaks in
all volunteers (Supplementary S5). Figure 7.2 shows that the DV was generally higher in
the least stable volunteer F11 when compared to the most stable volunteer F18 (Figure 7.2).
This is expected because there are more rank differences in subjects with higher Taylor’s
parameter V (F11) than in subjects with lower fluctuations (F18).
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Fig. 7.1 Temporal variability of the microbiome. Taylor’s Parameter space for the 26
volunteers of the study. V represents the y-intercept of the linear fit, and β to the slope of the
line. Each individual has been placed in this plot according to its V and β value, where the
error bars correspond to the SEM.
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The most prevalent OTUs, Rothia-OTU1 and Streptococcus-OTU0, had the rank stability
index (RSI) over 96% in both volunteers F11 and F18 (Figure 7.2). It indicated that the most
prevalent OTUs were very stable in the volunteer with the most stable microbiome as well as
in the volunteer with the least stable microbiome. The microbiome temporal variability of
the volunteers F11 and F18 differed due to changing proportions of the less prevalent OTUs.
The average RSI of all 50 OTUs in volunteers F11 (the least stable) and F18 (the most stable)
were 52.35 ± 20.11% and 67.71 ± 19.20%, respectively. The volunteer F11 had 26 OTUs
with RSI below 50%, while the volunteer F18 had only seven such highly unstable OTUs.
When the OTUs were sorted according to their prevalence, the last OTU with an RSI above
70% in F11 was Streptococcus-OTU730 placed in the 16th position, and the last OTU above
70% in F18 was Streptococcus-OTU56148, placed in the 49th position (Figure 7.2). The
microbiome stability profiles of some selected volunteers in the Supplementary Figure A.14
show that the OTUs found in lower proportions in the microbiome were, in general, less
stable than the highly abundant OTUs. However, the most prevalent OTUs were not always
the most stable. For example, Saccharibacteria-OTU15 and Rothia-OTU15862 were in high
proportion in F11 and F18, but it possessed a low RSI in both cases (Figure 7.2).



118 Chapter IV: Bacterial individuality in oxidative stress profiles in the oral cavity

A
c
c
u

m
u

la
te

d
 a

b
u

n
d

a
n

c
e
 ra

n
k

1

50

Streptococcus.0
Rothia.1

Granulicatella.2
Saccharibacteria.4

Actinomyces.5
Atopobium.3

Streptococcus.846
Actinomyces.27

Fusobacterium.62
Streptococcus.61134
Streptococcus.35362
Saccharibacteria.15

Rothia.44997
Gemella.62

Streptococcus.14059
Streptococcus.730

Peptostreptococcus.8
Eubacterium.10

Prevotella.92
Cardiobacterium.41

Rothia.11
Porphyromonas.129

Rothia.11690
Saccharibacteria.14

Streptococcus.11432
Actinobaculum.81

Rothia.18624
Streptococcus.11787

Rothia.15862
Parvimonas.7

Cellulosilyticum.18
Corynebacterium.28
Bangiophyceae.117

Acinetobacter.202
Olsenella.58

Prevotella.22
Tannerella.134

Veillonella.25
Saccharibacteria.39

Fusobacterium.40505
Actinomyces.43781

Oribacterium.9
Streptococcus.86

Eubacterium.12
Saccharibacteria.12178

Capnocytophaga.169
Actinomyces.108

Streptococcus.73896
Anaerosalibacter.29
Porphyromonas.82

R
a
n
k S

ta
b

ility
 In

d
e
x
 (in

 %
)

RV (50 most abundant)
DV (50 most abundant)

R
a
n
k 

V
a
ri

a
b

ili
ty

Time samples

1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

D
iff

e
re

n
ce

 V
a
ria

b
ility

2 3 4 5 6 7 8 9 10 11 13 14 15 22 23 24 25 26 28 30

F11
Streptococcus.0

Rothia.1
Atopobium.3

Granulicatella.2
Actinomyces.5

Saccharibacteria.4
Parvimonas.7

Streptococcus.35362
Saccharibacteria.15

Streptococcus.11432
Streptococcus.61134

Rothia.15862
Streptococcus.14059

Rothia.11690
Streptococcus.846
Streptococcus.730
Fusobacterium.62

Gemella.6
Streptococcus.16

Actinomyces.43781
Oribacterium.9

Rothia.44997
Mogibacterium.13

Saccharibacteria.42
Streptococcus.38872

Actinomyces.24289
Streptococcus.73896
Porphyromonas.129

Atopobium.21298
Streptococcus.11787

Rothia.11
Actinomyces.27

Atopobium.39173
Actinomyces.28501
Bifidobacterium.97

Saccharibacteria.12178
Streptococcus.62259
Peptostreptococcus.8

Eubacterium.10
Eubacterium.12

Solobacterium.30
Tannerella.134

Granulicatella.26475
Atopobium.13084

Actinomyces.16789
Scardovia.34
Rothia.18624

Atopobium.13999
Streptococcus.56148
Saccharibacteria.14

A
c
c
u

m
u

la
te

d
 a

b
u

n
d

a
n

c
e
 ra

n
k

1

50

R
a
n
k S

ta
b

ility
 In

d
e
x
 (in

 %
)

RV (50 most abundant)
DV (50 most abundant)

Time samples

R
a
n
k 

V
a
ri

a
b

ili
ty

1.8
1.6
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

D
iff

e
re

n
ce

 V
a
ria

b
ility

3 4 5 6 7 8 9 10 14 15 20 21 22 23 24 25 28 29 30

F18
Rank matrix & stability

A
c
c
u

m
u

la
te

d
 a

b
u

n
d

a
n

c
e
 ra

n
k

1

50

Fig. 7.2 Rank matrix for the 50 most abundant OTUs for F11 and F18. Rank matrix
corresponding to the most and less time-variable volunteers, F11 and F18 respectively. Heat-
map colours corresponds to the abundance of each OTU at each time. Alongside, the Rank
Stability Index (RSI) is coloured by the percentage of rank stability. Below, both Rank and
Difference Variability is plotted in red and blue colours for each time point.

7.3.3 Large inter- and intra-individual difference of the oxidative stress
markers levels

Oxidative stress can be measured by estimating oxidative damage to lipids (lipid peroxidation)
and proteins (protein oxidation), or by quantifying the capacity to resist oxidative damage
(antioxidant capacity). The lipid peroxidation was quantified by measuring thiobarbituric
acid reacting substances (TBARS, average 0.10 ± 0.18 µmol/L, Supplementary Figure A.15).
Advanced glycation end products (AGEs, 0.27 ± 0.19 g/L) and advanced oxidation protein
products (AOPP, 37.6 ± 21.8 µmol/L) were herein quantified as carbonyl and oxidative stress
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markers respectively, to express oxidative protein damage. The capacity to resist oxidative
damage was measured by total antioxidant capacity (TAC, 578.6 ± 149.4 µmol/l) and ferric
reducing ability of saliva (FRAS, 396.7 ± 183.6 µmol/L). The values of the five markers
possessed intra-individual temporal variations, and they also differed significantly (p <0.001,
t-test) among volunteers, in 44 - 73% of volunteers pairwise combinations (Supplementary
Figure A.15).

In addition, the five oxidative stress markers were tested for their pairwise correlations on
intra-individual level. FRAS correlated positively with TAC in 14 out of the 26 volunteers,
but the majority of the salivary markers pairwise combinations resulted in non-uniform corre-
lation patterns on intra-individual level among the 26 volunteers (Figure 7.3). Correlations
lagged by 1-3 days accounted for 36.7% of all significant correlations detected, while the
remaining 63.3% were temporarily direct correlations.

Fig. 7.3 Correlations between the oxidative stress markers. The summary of intra-individual
correlations that can also be found in correlation plots in the Supplementary Figure A.16.
The colour of square indicates either a positive or a negative correlation (blue or red) of a
pair of oxidative stress markers in a volunteer. The number of the squares indicates the days
by which the correlation was lagged. Empty white squares indicate no significant correlation.
The majority of volunteers possessed a positive correlation between FRAS and TAC. Several
marker pairs had positive correlations in some volunteers while negative correlation in others.
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7.3.4 Correlations between bacterial taxa and oxidative stress markers
are individual-specific

Correlations of oxidative stress markers and OTUs were analysed on the intra-individual
level: five markers were correlated with 50 OTUs in 26 volunteers (Figure 7.4, details in
Supplementary Figure A.16). The analysis showed that 94% of the 250 marker – OTU pairs
(5 markers x 50 OTUs) had a significant correlation in some volunteers (1-6 volunteers).
These correlations were either temporarily direct or lagged by 1-3 days. The remaining 6%
of the marker – OTU pairs did not show any significant correlation in any of the volunteers.

The results of the Pearson’s correlations showed that a particular marker-OTU pair can
have positive correlations in some volunteers, while negative correlations in others (Figure
7.4, details in the Supplementary Figure A.16). This result is consistent with Spearman’s
correlation coefficients, a non-parametric correlation (Supplementary Figure A.16). The
volunteers with contradictory correlation results did not possess any extreme values of a
given marker-OTU pair.
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Fig. 7.4 Marker-OTU correlations on the intra-individual level. The summary of the corre-
lation plots in the Supplementary Figure A.16. The graduated colour in tones from blue to
white to red indicates whether the correlations found in the volunteers on intra-individual
levels were mostly positive or negative. The number on the left in each rectangle indicates
the number of volunteers with a negative correlation, while the number on the right in each
rectangle indicates the number of volunteers with a positive correlation. The oxidative
stress markers and the OTUs have been ordered according to their correlation tendency by
hierarchical clustering using Euclidean distances. The OTUs with the most robust tendency
of either positive or negative correlations with some of the oxidative stress markers were, e.g.
Streptococcus-OTU16, Actinomyces-OTU27 and Cardiobacterium-OTU41.
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However, there were also some marker – OTU pairs that showed only positive or only
negative correlations throughout the cohort (Figure 7.4, details in Supplementary Figure
A.16). The most prominent exclusive correlations with oxidative stress markers had Strepto-
coccus-OTU16 (S. mutans), which has been previously reported to be a causative agent of
dental caries [99]. S. mutans correlated positively with AOPP (in volunteers F18 and F25),
with FRAS (F16, F18, F20, F25, M02) and with TBARS (F13). Furthermore, S. mutans
exhibited an exclusively negative correlation with AGE (in volunteers F01, F12, M21). Corre-
lations of S. mutans with the fifth marker TAC were ambiguous: it had a negative correlation
with TAC in two volunteers (M05, M25) and a positive correlation in four volunteers (F18,
F25, M04, M12).

S. mutans formed as few as 0.19 ± 0.47% on average in the studied cohort. The volunteer
M04 had the highest average proportion of S. mutans (0.71± 0.90%), followed by F16, F25,
F18 and F06. The lowest proportion of S. mutans (average <0.01%) was found in volunteers
F12, F19, F20, M07, M19 and M25. It suggests that significant correlations of S. mutans with
the oxidative stress markers were independent of its proportion in the microbiome. Among
other marker-OTU pairs with exclusively negative correlations found in higher number of
volunteers (3-6) were e.g. AOPP - Cardiobacterium-OTU41, AOPP - Actinomyces-OTU27,
FRAS - Streptococcus-OTU56148 and FRAS - Cardiobacterium-OTU41. The marker-OTU
pairs resulting in exclusive positive correlations were e.g. AOPP - Rothia-OTU15862, FRAS -
Rothia-OTU18624, AGE - Streptococcus-OTU11787 and TAC - Actinomyces-OTU27 (Figure
7.5).

7.3.5 Correlations between the bacterial OTUs

Similar to the marker - OTU pairs, the significant intra-individual correlations found among
the OTU - OTU pairs did not show unusual generalised patterns (Supplementary Figure
A.15). For example, the negative correlation between Streptococcus-OTU0 and Rothia-OTU1
was found in 17 out of 26 volunteers, while in the remaining nine volunteers no significant
correlation was detected for this OTU - OTU pair. Furthermore, the analysis of interactions
based on Lotka-Volterra system of differential equations was used to infer the relationships of
the 15 most prevalent OTUs in each volunteer. However, they did not show any generalised
correlation pattern either (Supplementary Figure S8).

Also, we analysed the interactions of the 15 most abundant OTUs of each volunteer using
the generalised Lotka-Volterra model, a system of equations that has been often used for the
inference of bacterial interactions in complex ecosystems such as the human microbiome
[114]. These models allow us, when a temporal series is available, to make better predictions
of bacterial interactions rather than the use of classic correlation coefficients that could be
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filled by false positives and false negatives due to compositional effects. The results from
the Lotka-Volterra model are more accurate, but it did not yield any generalised interaction
pattern either (Supplementary Figure A.17).

7.3.6 Simulation of single sample collection

From each of the sample collections belonging to the 26 volunteers, single samples were
selected and combined to form a set of 26 samples in 1,000 repetitions (1,000 different
samples combination), and each set was tested for correlations of oxidative stress markers
with OTUs. The majority (82.4%) of the 250 marker-OTU pairs (5 markers x 50 OTUs)
produced contradictory results. For example, a negative correlation was found in 22.2% of
these single sample combinations for the TBARS - Rothia-OTU15862 pair, but still 0.1%
of combinations for this marker - OTU pair resulted in a positive correlation. Meanwhile,
77.7% of the combinations did not yield any significant correlation (Figure 7.5).

The results of the correlation analyses performed by this one-sample-one-volunteer ap-
proach simulation (Figure 7.5) and the correlation results obtained on the intra-individual
level (Figure 7.4) were quite inconsistent. For example, Rothia-OTU11690 had negative
correlations with TBARS in 31.2% of the 1,000 one-sample-one-volunteer combinations,
however, on intra-individual level this negative correlation was detected only in the volunteer
M07, while the volunteer M13 had a positive correlation in this marker - OTU pair. Another
example is AGE - Actinomyces-OTU27 pair that exhibited exclusively negative correlation in
26.6% of the one-sample-one-volunteer combinations, however, it showed a positive corre-
lations in two volunteers (F04, M01) on intra-individual level. Furthermore, the exclusive
positive correlation of S. mutans (Streptococcus-OTU16) with FRAS noted in five volunteers
on intra-individual level, was not confirmed by this one-sample-one-volunteer approach (only
2.2% of positive correlations and 0.3% of negative correlations in the 1,000 combinations).
In contrast, in some cases the correlation results obtained by the two approaches were quite
consistent; e.g. negative correlations between AGE - S. mutans, AOPP - Actinomyces-OTU27,
AOPP - Cardiobacterium-OTU41 and FRAS - Cardiobacterium-OTU41.

7.4 Chapter Summary

As a summary of the results presented here, which will further discussed in the General
Discussion, we can observe that OTUs belonging to Streptococcus and Rothia genera were
the most abundant taxa overall, although we also found volunteers with high levels of
Granulicatella or Atopobium. The α-diversity, measured as the Shannon index, was variable
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between volunteers. From the temporal stability, measured by the methodology developed
in Chapter I, we found that β was always less than one in agreement with the results from
Chapter I and Chapter III. Volunteers F11 and F18 had the higher and lower variability
respectively, and from the rank stability analysis, we found that Streptococcus and Rothia
were the most rank stable taxa in both volunteers. However, both volunteers differed in terms
of the number of stable OTUs. As a general result, the variability shown in all volunteers
was usually lower than the variability shown by the non-healthy microbiomes in Chapter I.

Concerning the oxidative stress markers, we applied a methodology for detecting correla-
tions that could be lagged in time, as the production of these components could be delayed
for several unknown reasons. We did not find any general pattern between oxidative stress
markers (see Figure 7.3) nor between stress markers and OTUs (see Figure 7.4). In fact,
in Figure 7.4 we can see that in many of the maker-OTU pairs, there were cases in which
the correlation was negative in some volunteers while positive in others. In any case, the
OTUs with the most robust tendency of either positive or negative correlations with some of
the oxidative stress markers belonged to Streptococcus, Actinomyces and Cardiobacterium
genera. Also, the interactions inferred with the Lotka-Volterra model shown individuality
in each volunteer, adding support to a lack of a general pattern of correlations/interactions.
Finally, we provided an interesting methodology to highlight the importance of measuring
time series in microbiome studies. Figure 7.5 shows that, in a microbiome study where we
only measured one time per volunteer, we would have missed much information and we
would have had false positives and false negatives.





General Discussion

In this section, it will be discussed all the results obtained through this thesis, with the aim to
integrate the information of every chapter in an organised manner.

The Chapter I was focused on the study of the variability in the human gut microbiome,
and its relationship with the health status of the host. One of the highlights of this study,
and of the entire thesis, is that, independently of its condition, every microbiota studied here
follows Taylor’s law. We have seen that in each case the value of the scaling index, the
parameter β , is always less than the unity, which provides us with information about the
community structure. This means that, in relative terms, the most abundant elements in the
population are less volatile to perturbations than the less abundant ones. The explanation for
this universal pattern is not clear although some hypotheses have been tested in other studies,
such as the presence of negative interactions in the population [250], and a demonstration that
this may depend on reproductive correlation [251]. Nevertheless, none of these explanations
are sufficient when it comes to microbiota, as the term reproduction is diffuse, and the
interactions between its components are not only based on competition [79, 121, 114].
Moreover, even such negative interaction may not effectively yield values less than the unity
when referring to a bacterial species. Nonetheless, the values obtained in all cases were
very similar to each other, which may suggest that the community structure is preserved
throughout the different scenarios studied herein.

The parameter V provides information about noise and can be directly linked to the
variability or fluctuation amplitude of the population over time. It is a direct estimator of
the stability of the system under study. As we have shown in Chapter I and Chapter III ,
the healthy subset of each study has lower variability than the non-healthy subset, when
dealing with adult subjects. Interestingly, the variability parameter was higher in the healthy
subset in the study of discordant twins suffering from kwashiorkor disease [169]. In this
respect, research has shown that infant microbiota needs to develop toward a definite, adult
state [252]. This implies that temporal variability is higher in children than in a healthy
adult, which should be temporally stable. Thus, our results could indicate this variability is
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necessary to reach that adult state. Furthermore, as we wanted to see how this variability
shifted over time, we calculated the changes in V for the samples which had enough time
sampling Chapter I. As shown in Figure 4.6, the variability of microbiota fluctuated over
time. Interestingly, Figure 4.7 shows how this parameter reflected the two antibiotic intakes
in one of the patients in the study by Dethlefsen and Relman [120] particularly the apparent
resilience of the microbiota due to the reduced increase in variability during the second
antibiotic intake.

The primary hypothesis of Chapter I is that, in adults, having a healthy microbiota means
that the microbial population is stable over time. This stability means the microbiota does
not shift and become susceptible to external or internal perturbations causing dysbiosis. In
order to use the valuable information provided by the empirical law of Taylor’s work, herein
we have proposed the use of Langevin’s equation to model how stability ranking changed
over time. While the system noise component can be directly measured by its variability,
the other main term needs to be inferred from the model. This term, which we have named
“fitness”, enables the system to remain stable when confronted with potential perturbations.
In ecological terms, this could represent the nature of interactions present among bacteria,
between bacteria and other minority populations, such as fungi or archaea, between bacteria
and the viral component in the microbiota, and interactions between the host and the whole
microbiota. As this is the first step to model the temporal stability of microbiota, and given
its complex nature, we calculated fitness using the Fluctuation–Dissipation Theorem as a first
approximation for demonstrative purposes [227]. Thus, future works are required to model
the fitness of microbiota to provide a more accurate model with higher predictive power.

By solving Langevin’s differential equation, we obtain a phase diagram where each
microbiota sample can be placed on its fitness and variability into one of two phases,
according to the stability ranking of the system. As shown by the phase–space in Figure 4.3,
three different conditions can occur. The first is a healthy microbiota with some fluctuations,
as shown by one of the subjects in Caporaso et al. study [47]. Because this case would
have good fitness, its temporal variability would not place the microbiota in the unstable
phase of the diagram. Secondly, we have a subject from the study by Dethlefsen and Relman
[120] whose microbiota was perturbed twice by an antibiotic intake, undergoing sufficient
change to lose its stability, and hence be placed in the unstable part. In this location, it is
more sensitive to potential perturbations such as opportunistic infections. In the third and
last condition, the subject was already in the unstable phase due to a health issue, i.e., IBS.
This can be observed in one of the patients in Durban et al. [73]. Besides, it was shown that
this subject’s health status improved during the experiment, implying that his/her microbiota
also recovered stability. Interestingly, in the study made by David et al. [59] the subject who
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had a Salmonella infection during the experiment underwent a significant shift in variability
with eventual recovery from the perturbed state (see Supplementary Figure SA.5).

Specifically, in the host lifestyle study [59], the presence of rank stability islands among
medium–ranked taxa is an interesting feature revealed by the analysis of rank stability
at different time periods in subject A. Interestingly, this stability was compromised when
the period was not an ordinary one, suggesting that those taxa were sensitive to changes
in lifestyle. Among the genera identified as rank stability islands, Lachnobacterium and
Clostridium were catalogued as genera predictive of dysbiosis in the work of Larsen and Dai
[253], which analysed the same dataset [59]. Furthermore, research has recently confirmed
a clear relationship between Actinomyces and conventional adenoma [76], one of the two
main precursors of colorectal cancer. Finally, Eggerthella is an opportunistic pathogen that is
often associated with serious gastrointestinal pathologies [254]. As we will discuss later, we
also found rank stability islands in the data analysed from the other chapters.

One might question the role of these taxa as key-players in the phase transition of the
microbiota and wonder whether they are more susceptible to perturbations than the most
abundant taxa. The types of interactions that could sustain this particular behaviour are
unclear, as these non-abundant taxa are usually excluded from dynamic studies. Further
experiments and data analysis are needed to clarify whether rank stability islands are a
widespread feature of microbiotas and whether they appear at lower taxonomic levels too.

Notwithstanding the above, we should be aware that the above hypothesis is too simplistic
to apply to reality directly. Indeed, the situation is more complicated than the idea that
healthy people can be distinguished from non-healthy people in solely compositional terms,
as highlighted by Moya and Ferrer in their recent review [71]. There are several feasible
scenarios in which we can consider microbiota to be stable, irrespective of its compositional
shifts over time. For example, it may depend on the ability of the microbiota to recover
its initial composition (resilience), or its ability to recover its original function despite its
composition (functional redundancy). What we have shown in this work could be explained
as the transition of stable microbiota into a state of dysbiosis.

The results and the model proposed in Chapter I are the first steps towards understanding
microbiota stability, although the model presents some limitations and thus further research
is required. From a biological perspective, many questions arise from this work. We
have observed the same pattern in Taylor’s parameters under all the conditions studied, but
a pertinent question is whether this is a universal feature in the hugely diverse microbial
niches. Furthermore, another relevant question relates to mechanisms involved in maintaining
the population structure. Undoubtedly, the nature of the interactions between community
components has a significant bearing on this issue, and this is related to community fitness,
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as mentioned above. How we should address community fitness remains unclear, but the
interaction between microbes, and between host and microbiome will point us in the right
direction and help us to unravel the complexity of microbiota and its relationship to host
health.

Once established a definition of stability in the first chapter, we wanted to measure its
utility and validity in an experiment with a different condition. For this reason, Chapter
III was focused on the study of microbiomes belonging to children affected by an acute
infectious diarrhoea caused by a rotavirus, and their comparison to healthy children. The
affected children recovered in time, as we saw in the results, and here we will comment
on the biological relevance of such changes. The heterogeneity observed in the abundance
profile of every individual in this study is expected because of the inherent diversity that
has been proven to exist in the human gut microbiota [166]. Several factors can cause this
heterogeneity, such as host genetics [255], microbial assembly [129, 256] and type of birth
[39], although the latter is controversial [48]. Nevertheless, the most abundant taxa belonged
to Firmicutes and Bacteroidetes, which are the dominant phyla in the adult microbiota, in
accordance with the literature [37, 257]. Specifically, the finding that Bacteroides is one of
the most abundant genera is also consistent with literature results [258]. One interesting
observation that can be made is the higher proportion and variability of the Others group in
the children with acute diarrhoea. This finding reveals two interesting features: first, these
unhealthy microbiotas showed a higher instability than the healthy subset; and second, they
had a higher representation of some taxa that were rather a minority in healthy individuals.

The results of the α-diversity analysis showed a transition from a low-diversity to a
high-diversity condition in the children with acute diarrhoea. This finding is correlated with
the health status recovery of the children in this group because no differences exist between
the healthy status at 10 and 30 days. The relationship between low diversity and diseases in
the gut microbiota has been extensively demonstrated [166], and this seems to agree with the
results of our experiment. Overall, the low α-diversity at diarrhoea stages and its recovery to
a normal diversity are in accordance with the findings of previous works [259, 260], but it is
important to remark that some of these studies were developed in low-income countries and
malnourished infants. Moreover, the β -diversity analyses with the CCA and the ADONIS
test revealed that we had different communities at the individual and condition levels. This
means that not only were the microbiotas of the unhealthy children less diverse, but they
had a different configuration of microbes, compared with those of the healthy children.
In agreement with the α-diversity results, these differences seemed to appear only in the
first time points of the experiment during the treatment. At days 10 and 30, the statistical
differences disappeared, which means that the communities in both groups of children were
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similar. Differences found at the individual level are also in agreement with the heterogeneity
observed in Figure 6.1.

From the temporal analysis, a fine distinction between both groups of children was found
regarding population dynamics. We demonstrated, in Chapter I, that temporal stability has
been proved to be related to the health status of the host [231], and, in this study, we observed
that almost every child infected with the rotavirus had lower temporal stability than the
healthy children. It is important to note that a higher temporal variability is, to a certain
extent, caused by the transition from the diseased state to a healthy one. This transition is
marked by changes in the microbes that live in the gut, along with their relative abundance.
Nevertheless, a high temporal variability during the diarrhoea process is expected because
of different reasons, such as the rapid succession of microbes resulting from continuous
and rapid faecal movement. The reason why participant C8 remained in the stable part in
Figure 6.5 is intriguing, but it is worth noting that C8 is the child that had the fastest recovery
compared to the other patients (see Table A.6 in the Appendix). He was the only affected
child in which diarrhoea disappeared 24 h later. With this quick recovery, C8 microbiome
would have been stabilised earlier than the other affected children. The rank stability plots
presented some interesting trends, as well, because of the presence of some groups of
bacterial genera that are stable even at a low abundance. The rank stability plots presented
some interesting trends, as well, because of the presence of some groups of bacterial genera
that are stable even at a low abundance. This result adds support to the rank stable islands
found in Chapter I. The case of Actinomyces is particularly compelling, as it seems to inhabit
these low-abundance regimes in a very stable manner [231] in the healthy children. Some
species of this genus are observed to be in higher proportions in other cases of diarrhoea
[258]. Because of their opportunistic nature, limiting these species to live in low abundance
could be beneficial for the host.

The microbial communities of children suffering from diarrhoea seem less mature than
those of healthy children [260]. It could be that some of the differences we see might be due
to this effect, along with the microbial assembly processes that occur in the first stages of the
human life. Suffering diseases as the acute infectious diarrhoea could delay the maturation
of the gut microbiota [261]. This high variability in non-healthy children agrees with the
other results of this study, as it seems that their microbiotas improve from a perturbed state
to a healthy one with time. This is one of the essential points of this experiment, as it proves
the power of time series analysis in the microbiota, especially in cases in which a disease is
being examined. Besides, the importance of measuring time series in microbiome studies is
one of the main general conclusions of this thesis.
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As we stated, the microbiota has a different configuration of microbes in both health
states, and the differences between them could be of clinical interest. LEfSe analysis showed
a clear differentiation concerning the phyla enriched, with a high amount of Proteobacteria
observed during the first few days in the children suffering from acute diarrhoea. This result
agrees with those of extant literature, as an enrichment of bacteria, such as Escherichia coli
(a Gammaproteobacteria), in children suffering diarrhoea was found [259, 262]. On the
contrary, Firmicutes phylum is usually lowered in children with diarrhoea, so an enrichment
of this group was expected in healthy children [40]. Interestingly, we did not see much
differences regarding functions enriched. The most intriguing case is the pathway involved
in the biosynthesis of ansamycins, a secondary bacterial metabolite that has antimicrobial
properties against a broad range of bacteria [263]. Some analogues of ansamycins interact
with Hsp90, which helps inhibit the severity of the infection by rotavirus [264]. Although
being only an in vitro study, this could be of future interest when the study is expanded to
new directions.

In summary, we have shown that microbiota composition seems to correlate with clin-
ical improvement. Children stopped experiencing most of the symptoms three days after
probiotic administration, and alongside, microbiota recovered both its diversity and healthy
configuration within this period. Therefore, gut microbiota seems to play an essential role in
diarrhoea-related processes.

Another system of interest, the oral microbiome, was the subject under study in Chapter
IV. Here, we wanted to see the possible connections between oxidative stress markers and
changes in the volunteer’s microbiome. Streptococcus mutans used to be associated with
caries before the metagenomics era, while recent metagenomics studies have assumed that
the oral diseases are of polymicrobial origin [98, 265–267]. Nevertheless, metagenomic
studies based on comparing oral microbiome composition of infected and healthy subjects
often lead to inconsistent results [231, 249, 268].

We aimed to identify bacteria with pathogenic potential on individual-specific level by
correlation analysis with oxidative stress markers that may reflect the inflammatory processes
in the oral cavity sampled on daily basis. Salivary markers of oxidative stress were found to
be associated with several oral diseases including periodontitis, caries and oral precancerose
[194, 269]. However, their usage for diagnostics of oral diseases is limited due to their large
temporal variability in healthy subjects [198]. The factors that determine this variability
are largely unknown although microbes have been postulated as their modulators several
years ago [270]. The association of microbes with oxidative stress can only be tested in
interventional experiments including long temporal sampling, because both, the microbes
and immune cells, can induce the production of ROS and oxidative stress [194, 271]. In
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addition, potential systemic causes for the variability of both, oxidative stress markers in
saliva and oral microbiome should not be omitted [272].

In order to assess association of bacterial taxa with oxidative stress markers, we needed
to detect temporal variability of the oral microbiome composition on the intra-individual
level. In general, the temporal variability of the microbiome detected in our cohort of healthy
volunteers (as measured by the Taylor’s parameter V) was lower than the variability detected
in the perturbed microbiomes previously studied in Chapter I. However, even slight temporal
variations in the oral microbiome composition provided important data for intra-individual
correlation analysis in this study. The design of the vast majority of microbiome studies
does not take into account intra-individual temporal variability, which can be in fact very
informative on the health status of the host [231]. Our results are in accordance to the study
of Gonze et al. [72] which demonstrated that a microbiome may adopt one or another distinct
state in the same environmental conditions, meaning that intra-individual temporal variability
does not have to correlate necessarily with the changes of the environmental conditions.
Interestingly, the intra-individual variability of the microbiome has been identified as the
major cause of contradictory results reported by different biomedical studies [249, 268]. As
shown in this study, an individual can have an unstable microbiome composition (expressed
by the variability parameter V, Figure 7.1), even being considered a healthy subject, thus a
realistic picture of subject’s microbiome cannot be captured by collecting only one sample
per individual. The computational simulation revealed that contradictory correlation analysis
results may be obtained, if only one sample per volunteer is collected. For example, if single
samples from the 26 volunteers are collected in 1,000 different studies and analysed for
correlations between Rothia.OTU15862 and TBARS, 22.2% of the studies would report a
negative correlation, while 0.1% would report a positive correlation, and 77.7% would report
no significant correlation. In comparison, our intra-individual correlation analysis found
negative correlations in two volunteers and a positive correlation in one volunteer, while
in the remaining volunteers the Rothia.OTU15862-TBARS pair resulted in no significant
correlations. Another advantage of using correlation analysis on intra-individual level is in
the possibility of identifying lagged correlations. The identification of lagged correlations
was very important in the present study, as increased production of ROS may not necessarily
start at the moment of overgrowth of a pathobiont, but it may be delayed by several days.

The detected correlation patterns between oxidative stress markers, between bacterial
species and between markers and bacteria were unique for each volunteer. However, we
also found some correlations which were highly consistent on intra-individual level in our
cohort, e.g. negative correlation between Streptococcus-OTU0 and Rothia-OTU1, positive
correlation between FRAS and TAC, etc. In addition, the Lotka-Volterra set of equations has
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proved the uniqueness of each volunteer interaction matrix. Interaction-based models, such
as Lotka-Volterra equations, are more robust to extract biologically relevant interactions in
the ecosystem than correlation models [114].

The set of low-abundance species (0.1-5.4% average proportion), which were mostly
individual-specific, contributed to the most of the microbiome temporal variability and
correlated with the oxidative stress markers more often than the more prevalent species (such
as Rothia and Streptotoccus parasanguinis). For example, S. mutans was one of the less
prevalent species and it had significant correlations with the oxidative stress markers in the
highest number of volunteers in our cohort. However, these correlations were not confirmed
in all volunteers. Though, S. mutans is capable of producing ROS in vitro [273], its activity
may be hampered by other species in the oral microbial community. It is possible that other
bacterial species may inhibit S. mutans ROS production, particularly in the samples in which
S. mutans did not correlate with oxidative stress markers. In addition, these volunteers are
likely to contain other bacterial species that stimulate ROS production or benefit from ROS
production to increase their biological niche in anoxic regions [274, 275]. Nevertheless,
S. mutans was the bacterial species with one of the most pronounced correlations with the
oxidative stress markers which supports its important role in caries pathogenesis.

Correlation patterns of bacterial species with oxidative stress markers differed among
volunteers which may be explained by numerous factors. First of all, cells belonging to the
same bacterial species distributed in different compartments of the oral cavity differ by their
activity - some cells are actively metabolising nutrients, while others are waiting for optimal
growth conditions in a dormant stage [276, 277]. However, differential activity of bacterial
cells is not taken into account when total DNA from saliva is sequenced which might explain
why intra-individual correlation patterns of bacterial OTUs with oxidative stress markers were
non-uniform in this study. Laboratory experiments performed with pure cultures containing
uniformly growing bacterial cells might not fully mimic the real in vivo ROS production
due to the differential activity of bacterial cells in the oral cavity. Furthermore, it was
demonstrated that only a portion of bacterial cells belonging to the same bacterial species
stimulate human immune reactions [98]. Therefore, only a proportion of each bacterial
species is involved in the induction of the ROS production and these proportions are likely
inconsistent among different individuals. Although highly active bacterial cells and those
which interact with the human immune system could be quantified using flow cytometry
[278], it is very difficult to determine the exact number of variables that may influence the
actual proportion of bacterial cells stimulating the ROS production in vivo. Having absolute
number of cells belonging to each bacterial species, rather than compositional data, would
help to address correlation patterns in each volunteer with more details.
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In our study, many bacterial OTUs correlated either positively or negatively with some of
the measured oxidative stress markers in some of the volunteers, which suggests that each
volunteer has different homeostatic mechanisms. Therefore, there is no universal answer to
which specific bacterial species are associated to the ROS production in the oral cavity in all
humans. Integrating microbiome composition data with proteomics and metabolomics may
help in determining which bacteria are associated to the ROS production in the oral cavity,
as different bacterial species are likely to be responsible for the same metabolic function
in different individuals [71, 279]. In such studies, information on microbiome temporal
variability would be also of very high importance. In addition, future experimental studies
should focus on the origin and the consequences of oxidative stress in the oral cavity in
relation to the microbiome composition and its modulation or transplantation.

Finally, in this thesis we wanted to explore the importance of microbial interactions,
and, in Chapter II, we proposed a new methodology based on noise-induced experiments
to uncover bacterial interactions. Any biological system has uncertainties that often have
been put aside from models for simplicity [280]. However, we can take advantage of
uncertainties in microbial systems to propose new approaches for the study of species
interactions. As discussed in Chapter I, the temporal variability of a microbiome can be
modelled as Taylor’s law. Thus, we modified the generalised Lotka-Volterra model by adding
a stochastic component in which the noise amplitude is based on Taylor’s law (see sgLV
equation 5.1). With this model, we can specifically control the behaviour of any species
in our community, introducing perturbations that can be of help to infer the interactions
[79, 114].

Studies with an emphasis in theory that study synthetic populations are being more
prominent in the microbiome field [72, 281], highlighting the importance of theory in biology
[282]. For many years, several authors made impressive attempts to understand microbial
interactions in different environments, evaluating them in different conditions by broad
perturbations as antibiotic administration [79, 114, 121]. However, here we attempted to
apply perturbations in a precise manner, namely, to modify specific types of microorganisms
instead of modifying a wide range of them. We think that the technology to perform this kind
of experimentation designs already exists, as we find high-specificity methods like the use
of phages along with the CRISPR-Cas system [283, 284], a technique that has been proven
valid as antimicrobial against some virulent members of the Staphylococcus genus [285]. We
proposed two different types of experiments that introduces specific perturbations to precise
community members, one that modifies the noise level of the target species, and another that
reduces the abundance of the target at an specific time point.
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We explored this methodology applied to two interesting species in our community: sp3,
the most abundant species; and sp14, highly abundant and one of the most connected members
in our community. We calculated Pearson’s correlation coefficients of the generated time
series because they are among the most used statistical tools to explore microbial communities.
Some general behaviour can be extracted from these matrices, as the modification of sp14
showed marked effects on the community, most probably for its high connectivity. However,
although we did see some changes in the community behaviour, correlation matrices alone
are not sufficient to make any assumption of the real interactions that act in our community,
as has been demonstrated [114]. For this purpose, we solved a least squares regression
problem to infer the interaction matrix, under no assumption of any specific model behind the
dynamic of our community. The results show that we increase our ability to uncover some
of the original interactions through the noise-induced experiments, but only for the most
abundant species. Interestingly, we can observe that applying noise to sp3 and sp14 ‘cleaned’
the spurious interactions that appeared in the experiments with default parameters. This result
highlights the utility of this kind of approach to study microbial interactions. On the contrary,
the pulse did not seem to be of much help to explore these interactions, so we should think
about other possible ways to deal with this method in order to improve it. These are still
preliminary results, and more work has to be done in building better regression models, and
modifying other parameters of our equations as the growth rates or the interaction parameters
in time.

What we present here is both a tool and an idea to further comprehend the complexity of
this subject. With the creation of an in-silico population governed by a simple model, we
have been able to demonstrate that noise-induced experiments are of critical importance in
the study of the relationship between the microorganisms in microbiomes. Like in particle
physics, where one need to collide different particles between them to understand their
fundamental properties, we propose that experimental studies in microbiome will take
advantage of the strategy of ‘colliding’ the microbial species with controlled perturbations.
This approach will enable new ways to understand the essential and necessary properties of
microbial ecosystems that will end up in direct applications on microbial systems of interest.

In conclusion, through this thesis, it has been shown that temporal series is critical to
gain fundamental insight about the complex problem of the interaction between humans and
their microbiomes. By the use of general ecological laws as Taylor’s law, we have been
able to understand the notion of stability in different scenarios, and that Taylor’s parameters
characterised the statistical behaviour of microbiome changes. We proved this system to be
of utility when studying the dynamics of children’s microbiomes that were affected by an
acute infectious diarrhoea, observing that the unhealthy patients were unstable with respect
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to the healthy children. Furthermore, we also characterised the lack of general patterns of
relations between the oral microbiota and oxidative stress markers, except in few, marked,
examples. Finally, we used this notion of variability based on Taylor’s law to implement it as
the stochastic part of the generalised Lotka-Volterra model, to further study the microbial
behaviour with experiments based on specific perturbations.





General Conclussions

The conclusions of the thesis are:

1. All human microbiomes under study in this thesis follow the Taylor’s law. The scaling
parameter β is always less than 1, implying that OTUs with the lesser abundance are
more vulnerable to perturbations than the most abundant. Furthermore, the variability
amplitude parameter V can help us to differentiate between healthy microbiotas and
perturbed ones.

2. We propose the Langevin equation as a model to measure the stability of a given
microbiome. Its solution describes a phase space where microbiomes can be placed
depending on their variability, measured as a Taylor’s law; and their fitness, dependent
on many ecological factors. This phase space is divided into two different regimes,
one unstable where microbiomes are susceptible to perturbations, and another stable
where microbiomes show robustness against system perturbations.

3. We observed that microbiomes transitions from the stable phase to the unstable when
the system is perturbed; microbiomes that can also travel to the stable phase if the
subject improves its health status; and other microbiomes that show a quasi-periodical
variability within the stable phase due to their high fitness.

4. Rank Stability matrices are powerful tools for stability insight. We have observed the
existence of rank stability islands of low abundant OTUs that remain quite stable within
the microbial community in all the experimental data from this thesis. The existence
of such stable groups could be of interest to evaluate the stability of a microbiome.

5. Taylor’s law can be usted as the noise amplitude, in the stochastic parameter, in
the generalised Lotka-Volterra model to mimic the behaviour of realistic microbial
systems.
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6. With noise-induced experiments, we can specifically modify the noise amplitude of
certain species in our community to analyse its interactions. Furthermore, we can also
apply a pulse that reduces the abundance of that species, as would happen in reality
with the administration of antibiotics.

7. By using these types of experiments, we can see significant changes in the other
species’ behaviour that can be analysed to infer the interaction matrix.

8. The solution of the optimisation of a regression based on least-squares problem with a
Lagrange multiplier show promising preliminary results, highlighting the reduction of
the inference error of the interactions in the species modified by our experiments.

9. The gut microbiome composition from Turkish children was dominated by Firmicutes
and Bacteroidetes, with a high representation of Bacteroides and Faecalibacterium.
However, the variability of the less abundant OTUs was higher in children with acute
infectious diarrhoea.

10. We observed that the bacterial diversity between healthy children, and those with the
acute infectious diarrhoea, recovered in time. The α-diversity was lower in children
infected by the rotavirus in the first 5 days, but it recovered to a higher diversity when
they were clinically healthy. The β -diversity showed differences between both groups
regarding their compositions also in the first 5 days, but the differences disappeared
when the children stopped having symptoms.

11. The temporal analysis showed a clear differentiation between both health groups,
being the microbiomes of children suffering from the acute infectious diarrhoea more
variable than the healthy ones. Patient C8 was the only case of the non-healthy children
that was comparable to the healthy group, but it was linked to be the patient with the
fastest recovery of the whole group. The Rank Stability matrices reveal the presence
of rank stability islands in healthy children.

12. We observed an enrichment of bacteria belonging to Proteobacteria in unhealthy
children, and an enrichment of Firmicutes group in healthy children. In the functional
analysis, among the metabolic pathways inferred that were enriched, the biosynthesis of
ansamycins could be of clinical interest in the future for its relationship with rotavirus
infection resistance.

13. The oral microbiomes studied in Chapter IV showed a some variability even belong-
ing to healthy subjects. Nevertheless, they were less variable than the non-healthy
microbiomes studied in Chapter I and Chapter III.
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14. With the simulation of the one-sample-one-volunteer analysis, we highlighted the
importance of measuring time series in microbiome studies. Taking only one sample
per voluntary and computing the correlations between all OTU-marker pairs could
yield false positives or false negatives, an issue that time series can help to solve.

15. There was not a general pattern in the correlation analyses, neither between oxidative
stress markers nor between OTUs and markers. The only exceptions worth mentioning
were the correlation between FRAS and TAC, and between Streptococcus mutans and
several markers. This result points to a polymicrobial theory of oral diseases, and
for multi-stability within microbial communities. The set of low-abundance species,
which were mostly individual-specific, correlated with the oxidative stress markers
more often than the more abundant species, as it is the case of Streptococcus mutans.





Resumen en castellano

Estabilidad del microbioma humano: salud y enfermedad
relacionados con la variabilidad temporal de la microbiota
humana.

El éxito evolutivo de los microorganismos ha hecho que éstos estén íntimamente ligados
a organismos más complejos. El microbioma humano es la colección de toda la vida mi-
croscópica que habita con nosotros en las diferentes partes del cuerpo, desde el intestino,
pasando por la cavidad oral, hasta incluso toda la superficie de nuestra piel. Esta inmensa co-
munidad, por tanto, tiene efectos directos sobre la homeostasis del hospedador, participando
en las condiciones de salud y enfermedad debidas tanto a desajustes de la propia microbiota
como a otros factores externos. Al ser un sistema tan dinámico, la microbiota puede variar
en gran medida con el tiempo, siendo esta variabilidad un aspecto que puede ser de utilidad
para comprobar el estado de salud o enfermedad de un hospedador. Sin embargo, hasta la
fecha no se tiene una definición concreta y útil de estabilidad en términos de microbiota.

El objetivo central de esta tesis ha sido establecer una definición formal de qué significa
tener una microbiota estable, y cuál es su relación con el estado de salud y enfermedad del
hospedador. Para ello, la tesis se ha divido en cuatro objetivos en los que se ha intentado
dilucidar esta relación entre variabilidad de la microbiota y salud.

El primer estudio consistió en proponer un modelo matemático para cuantificar el nivel
de estabilidad de la microbiota. Para ello, se tomaron datos de otros estudios ya publicados
que consistieran en series temporales de microbiota, en varias condiciones diferentes, y
con un mínimo de tres tiempos. Entre ellas utilizamos: datos de gente sana; pacientes con
síndrome de colon irritable; pacientes con diferentes grados de obesidad; parejas de niños
gemelos discordantes para la enfermedad de Kwashiorkor; voluntarios que siguieron dietas
basadas en vegetales o en carnes; pacientes con toma de antibióticos; y una serie temporal
para ver la influencia del estilo de vida de dos voluntarios. Todos los datos estaban en forma
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de secuencias del gen ribosómico del 16S, salvo el de los niños gemelos discordantes, cuyos
datos estaban en forma de SMS (shotgun metagenomic sequencing).

Para ver la variabilidad temporal, propusimos el uso de la ecuación diferencial de
Langevin que tiene dos parámetros bien diferenciados: uno determinista, en nuestro caso
correspondiente con el ‘fitness’ de la microbiota; y otro estocástico directamente relacionado
con la cantidad de variación temporal de una microbiota. Este segundo componente lo
modelamos siguiendo una ley ecológica presente en diversos sitemas naturales, la ley de
Taylor. Esta ley relaciona la variabilidad de una población con su media, mediante una ley
de potencias (eq. 10.1). Así pues, comprobamos que todas las microbiotas medidas, en
total 99 series temporales, seguían esta ley. Además, vimos que el parámetro V de la ley
estaba directamente relacionado con la magnitud de la variabilidad, y, por lo tanto, estaba
directamente relacionada con el estado de salud o enfermedad del hospedador. Al resolver
la ecuación de Langevin, obtenemos un diagrama de fases con los ejes del fitness y de la
variabilidad, con una fase estable y otra fase inestable. Al modelar el fitness de algunos ejem-
plos, y medir su variabilidad en el tiempo, comprobamos que las microbiotas podían realizar
una transición desde una fase a otra dependiendo de su estado de salud, y la variabilidad. Por
lo tanto, concluimos que los cambios en la microbiota son un reflejo del estado de salud del
hospedador, y que, con la debida modelización, puede ser un elemento importante para su
uso en diversos ámbitos más aplicados de la ciencia.

σ =V · xβ

i (10.1)

El segundo estudio tenía como objetivo el estudio temporal de la microbiota en niños que
padecían una diarrea aguda infecciosa en relación a niños sanos. Esta diarrea, causada por
rotavirus, es la causa principal de mortandad y mortalidad en niños, con una alta incidencia
en países del tercer mundo o en vías de desarrollo. Por lo tanto, estudiar cómo se comportaba
la microbiota durante el transcurso de la enfermedad es importante para añadir conocimiento
a posibles tratamientos que maximicen la eficiencia de la recuperación de la comunidad
microbiana. Para este estudio, fruto de una colaboración con hospitales y médicos turcos, se
enrolaron 16 niños de entre 3 y 4 años de edad, de los cuales 6 estaban sanos, y 10 sufrían la
diarrea infecciosa. Se tomaron muestras fecales de los enfermos a la entrada del hospital (día
0), y se volvieron muestras en el día 3, día 5, día 10 y día 30. En los niños sanos también
se muestreó de la misma forma. En total, tenemos 5 puntos temporales por cada uno de los
16 niños. De esas muestras fecales, se secuenciaron los fragmentos correspondientes al gen
ribosómico del 16S, y se comprobó a qué géneros correspondían.

Al analizar las diversidades de las microbiotas, hemos podido comprobar que la diversidad
de tipo alfa es inferior en los niños enfermos respecto a los niños sanos durante los tres
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primeros puntos temporales, mientras que en los días 10 y 30 no hay diferencias en diversidad.
Además, la diversidad de tipo beta nos da a entender que las comunidades microbianas de
los días 0, 3 y 5 son diferentes entre niños sanos y niños enfermos, no encontrando estas
diferencias en los días 10 y 30. Además, al analizar los taxones que estaban diferencialmente
representados en ambos estados, hemos podido comprobar que, durante los primeros cinco
días encontramos diferencias marcadas como la abundancia del filo Proteobacteria en los
niños enfermos, y abundancia del filo Firmicutes en los niños sanos. En los días 10 y 30, sin
embargo, estas diferencias desaparecieron salvo la abundancia del género Blautia en niños
sanos. Todo esto concuerda con el análisis de la variabilidad temporal, en la que vemos que
todos los niños enfermos están a varias sigmas de diferencia de los niños sanos en cuestión de
variabilidad temporal, salvo el caso especial de un niño que dejó de tener síntomas el primer
día de estar hospitalizado. Por último, hemos visto que hay algunas funciones enriquecidas
tales como la biosíntesis de ansamicinas o la ruta de las pentosas fosfato.

Es importante decir que el estado de salud de los niños mejoró de tal forma que dejaron
de tener diarrea a las 72 h de haber sido hospitalizados, algunos incluso antes. Este dato
concuerda con la mejoría en las diversidades estudiadas, ya que, aunque hay diferencias al
principio del periodo de muestreo, deja de haberlas al final. Estos resultados nos indican que
la microbiota de los niños con la diarrea aguda infecciosa estaba afectada por la enfermedad,
y que, de alguna forma, mejoraba con el tiempo. Este hecho se ve reforzado por la transición
de un estado de enfermedad a uno de salud visto por los resultados de la variabilidad temporal.
Por último, parece ser que algunas de las funciones enriquecidas en este experimento podrían
tener relación con los mecanismos bioquímicos del transcurso de la infección por rotavirus.

El tercer estudio tuvo como objetivo el estudio temporal de la microbiota oral de 26
voluntarios, donde a la vez se midieron cinco marcadores de estrés oxidativo habituales
en la búsqueda de enfermedades bucales como las caries. Hoy en día se sigue pensando
que especies como Streptococcus mutans son responsables de las caries en personas, por
lo que un estudio de la microbiota en el tiempo, junto con marcadores de estrés oxidativo,
podría arrojar luz sobre la causalidad de este y otros problemas. Para ello, contamos con
la ayuda de 26 voluntarios, 13 hombres y 13 mujeres, de entre 20 y 30 años de edad, de
los que se midieron una media de 21 tiempos por persona. Una vez más, secuenciamos el
gen ribosómico del 16S y obtuvimos las secuencias que luego usamos para establecer su
taxonomía. También se midieron cinco marcadores de estrés oxidativo.

Con todos los datos temporales recogidos, medimos la variabilidad temporal de todos
los sujetos, obteniendo un rango de valores de variabilidad que, a pesar de ser ciertamente
amplio, estaba por debajo de los valores de V de individuos enfermos de otros estudios. A
pesar de su variabilidad, los microbiomas de los voluntarios compartían la abundancia de
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ciertos OTUs muy abundantes como Streptococcus paransanguinis o bacterias pertenecientes
al género Rothia. Sin embargo, los menos abundantes fluctuaban más que los más abundantes,
algo que también concuerda con los resultados de variabilidad temporal. Los análisis de
correlaciones, tanto clásicas como con la dimensión temporal añadida al análisis, no dieron
un patrón universal en la relación marcador-OTU, ni tampoco entre los diferentes OTUs de
las muestras. Asimismo, en un análisis de las posibles interacciones por medio del modelo
generalizado de Lotka-Volterra, las matrices obtenidas tampoco apoyaban la existencia de
una matriz universal de interacciones. Todos estos datos apoyan la hipótesis de que las
enfermedades bucodentales puedan estar causadas por varios microorganismos al mismo
tiempo, y que sea la disbiosis causada por ellos la causante de ellas. Además, al haber
obtenido varias posibilidades de correlación e interacciones en los voluntarios, también se
apoya la hipótesis de la existencia de multi-estabilidad en microbiota, ya que parece ser que
hay varios estados estables diferentes. Por último, también se hizo un estudio para demostrar
la utilidad de las series temporales. Se escogió una sola muestra aleatoria por cada voluntario
en 1000 iteraciones, y en cada una de ellas se midieron las correlaciones entre los 50 OTUs
más abundantes y los marcadores. Los resultados nos permiten ver que, como máximo, solo
conseguimos un 30% de iteraciones en las que la correlación (tanto positiva como negativa)
existía, dando lugar a falsos positivos y negativos.

Finalmente, el cuarto estudio tuvo como objetivo estudiar la posibilidad de mejorar
nuestras predicciones de las interacciones en una microbiota gracias a la perturbación
específica de miembros de interés de la comunidad. Para ello partimos de la base de usar el
modelo generalizado de Lotka-Volterra, ya que su aplicación es sencilla y bien entendida, al
que implementamos un elemento estocástico basado en la ley de Taylor (eq. 10.2). Con ello
conseguimos imitar la variabilidad que hemos observado en el primer estudio, existente en
todas las microbiotas estudiadas a lo largo de esta tesis.

d
dt

xi(t) = µixi(t)+ xi(t)
L

∑
j=1

Mi jx j(t)+Bxb
i ·dW (10.2)

Hemos propuesto el uso de dos experimentos diferentes, fácilmente estudiables en nuestro
modelo, en los cuales se modifica de forma fina a miembros específicos de nuestra comunidad.
El primer experimento consiste en aumentar la amplitud del ruido de esa especie durante un
tiempo definido, mientras que el segundo experimento consistiría en diminuir bruscamente la
abundancia de esa determinada especie en un tiempo específico. Al estudiar las correlaciones
(con coeficientes de Pearson) de los diferentes escenarios, hemos comprobado que, aunque
no se asemejan a la matriz de interacción original, el comportamiento global de todos los
miembros se ve diferencialmente modificado según la especie modificada o el experimento
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aplicado. El siguiente paso fue la implementación de un sencillo modelo de regresión, el
cual se resolvió como un problema de optimización de mínimos cuadrados para inferir la
matriz de interacciones. Se ha comprobado que, aunque perturbar determinadas especies
no mejora en gran medida la inferencia de la matriz total, sí que hemos observado que la
inferencia de las relaciones específicas de la especie modificada en los experimentos sí que
mejora conforme aumentamos el ruido.

Como conclusiones finales, podemos decir que todas las microbiotas analizadas a lo
largo de esta tesis siguen la denominada Ley de Taylor, y que los parámetros de esta ley nos
permiten inferir el estado de salud de un hospedador. Asimismo, el uso de series temporales
en microbiota es esencial si queremos conseguir una profundidad analítica que solo da el
estudio de la dinámica de los sistemas. El uso de modelos matemáticos para abordar este
estudio, y modelizar el comportamiento de las microbiotas, será esencial para desenredar la
complejidad de este problema.
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Table A.1 Taylor’s parameters of individuals with either animal-based (A) or plant-based
(P) diets [170]. Previous to the diet, the population sampled was described by V̄ = 0.09±
0.05, β̄ = 0.77±0.04.

Metadata V β R̄2 Vst βst
A 0.26±0.05 0.826±0.025 0.918 3.1±0.9 1.2±0.6
A 0.32±0.06 0.857±0.025 0.924 4.4±1.1 2.0±0.6
A 0.194±0.033 0.813±0.024 0.918 1.9±0.6 0.9±0.6
A 0.24±0.04 0.824±0.020 0.924 2.7±0.7 1.2±0.5
A 0.34±0.06 0.855±0.024 0.931 4.7±1.1 1.9±0.6
A 0.30±0.05 0.847±0.022 0.921 3.9±1.0 1.7±0.5
A 0.133±0.021 0.784±0.023 0.916 0.7±0.4 0.2±0.6
A 0.25±0.04 0.831±0.024 0.929 3.0±0.8 1.4±0.6
P 0.23±0.05 0.804±0.035 0.885 2.6±0.9 0.7±0.8
P 0.097±0.018 0.705±0.031 0.891 0.03±0.34 −1.6±0.7
P 0.037±0.006 0.642±0.025 0.881 −1.12±0.11 −3.1±0.6
P 0.118±0.019 0.723±0.025 0.895 0.4±0.4 −1.2±0.6
P 0.17±0.04 0.78±0.04 0.842 1.5±0.7 0.1±0.9
P 0.123±0.020 0.757±0.026 0.914 0.5±0.4 −0.4±0.6
P 0.19±0.05 0.77±0.04 0.871 1.8±0.9 −0.0±0.9
P 0.121±0.020 0.736±0.027 0.921 0.5±0.4 −0.9±0.6
P 0.187±0.034 0.771±0.030 0.908 1.8±0.7 −0.1±0.7
P 0.097±0.015 0.735±0.025 0.922 0.05±0.28 −0.9±0.6
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Table A.2 Taylor’s parameters for individuals taking antibiotics (Ab) in the antibiotics study
[120], persons diagnosed with irritable bowel syndrome (IBS) in the IBS study [73] and for
special intervals concerning gut microbiota (HLS) in the host lifestyle study[59]. Prior to the
antibiotics intake, the population sampled in the antibiotics study [120] was described by
V̄ = 0.12±0.05, β̄ = 0.75±0.04. Healthy individuals sampled in the IBS study [73] were
characterized by V̄ = 0.135±0.010, β̄ = 0.692±0.024. The healthy and quotidian periods
in the host lifestyle study [59] are characterized by V̄ = 0.25±0.09, β̄ = 0.777±0.025.

Metadata V β R̄2 Vst βst
Ab 0.35±0.07 0.81±0.04 0.925 4.3±1.4 1.3±0.9
Ab 0.41±0.09 0.82±0.04 0.908 5.6±1.8 1.6±0.9
Ab 0.23±0.04 0.770±0.031 0.920 2.1±0.8 0.5±0.7
Ab 0.165±0.029 0.738±0.031 0.928 0.9±0.6 −0.3±0.7
Ab 0.34±0.06 0.812±0.032 0.936 4.1±1.2 1.5±0.7
Ab 0.26±0.05 0.798±0.033 0.931 2.8±0.9 1.1±0.8

IBS (minor) 0.205±0.034 0.740±0.029 0.917 6.9±3.3 2.0±1.2
IBS (severe) 0.35±0.06 0.793±0.025 0.934 21±6 4.2±1.0

HLS (abroad) 0.51±0.06 0.820±0.012 0.928 2.8±0.6 1.7±0.5
HLS (infection) 0.49±0.08 0.828±0.018 0.923 2.6±0.9 2.0±0.7

HLS (after infection) 0.36±0.05 0.776±0.015 0.922 1.1±0.6 −0.0±0.6
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Table A.3 Taylor’s parameters for the healthy subject (DH) and kwashiorkor part (DK)
of the discordant twins [169]. The population of healthy twins is characterized by V̄ =
0.25±0.10, β̄ = 0.863±0.028.

Metadata V β R̄2 Vst βst
DH 0.27±0.04 0.835±0.016 0.925 0.2±0.4 −1.0±0.6
DH 0.36±0.06 0.858±0.015 0.929 1.1±0.6 −0.2±0.5
DH 0.35±0.06 0.859±0.014 0.926 1.0±0.5 −0.1±0.5
DH 0.25±0.04 0.829±0.014 0.911 0.0±0.4 −1.2±0.5
DH 0.30±0.05 0.844±0.014 0.920 0.5±0.4 −0.7±0.5
DH 0.29±0.05 0.850±0.016 0.915 0.4±0.5 −0.5±0.5
DH 0.28±0.05 0.848±0.016 0.921 0.3±0.5 −0.5±0.6
DH 0.35±0.07 0.861±0.017 0.918 0.9±0.6 −0.0±0.6
DH 0.31±0.04 0.833±0.012 0.916 0.6±0.4 −1.1±0.4
DH 0.33±0.05 0.843±0.013 0.925 0.8±0.5 −0.7±0.5
DH 0.31±0.05 0.852±0.014 0.925 0.6±0.5 −0.4±0.5
DH 0.31±0.05 0.853±0.015 0.930 0.6±0.5 −0.4±0.5
DH 0.203±0.033 0.815±0.015 0.907 −0.44±0.32 −1.7±0.5
DK 0.40±0.07 0.859±0.017 0.926 1.5±0.7 −0.1±0.6
DK 0.44±0.08 0.868±0.016 0.919 1.8±0.8 0.2±0.6
DK 0.196±0.031 0.819±0.014 0.916 −0.50±0.30 −1.5±0.5
DK 0.160±0.026 0.798±0.015 0.904 −0.85±0.25 −2.3±0.5
DK 0.30±0.05 0.845±0.014 0.924 0.5±0.4 −0.6±0.5
DK 0.23±0.04 0.834±0.014 0.908 −0.1±0.4 −1.0±0.5
DK 0.27±0.05 0.848±0.015 0.930 0.2±0.4 −0.5±0.5
DK 0.35±0.07 0.860±0.019 0.916 1.0±0.7 −0.1±0.7
DK 0.34±0.05 0.835±0.012 0.917 0.9±0.5 −1.0±0.4
DK 0.25±0.04 0.831±0.012 0.912 0.0±0.4 −1.1±0.4
DK 0.36±0.06 0.858±0.013 0.918 1.1±0.5 −0.2±0.5
DK 0.31±0.06 0.851±0.016 0.924 0.6±0.6 −0.4±0.6
DK 0.149±0.022 0.799±0.013 0.905 −0.96±0.22 −2.2±0.5



A.1 Chapter I - Supplementary information 179

Table A.4 Taylor’s parameters for individuals with different degrees of overweight and
obesity [168]. Healthy people in this study, who were not obese, are characterized by
V̄ = 0.19±0.06, β̄ = 0.806±0.034.

Metadata V β R̄2 Vst βst
OW 0.59±0.12 0.894±0.034 0.920 6.6±2.0 2.6±1.0
OW 0.22±0.04 0.830±0.030 0.904 0.5±0.6 0.7±0.9
OBI 0.28±0.04 0.855±0.022 0.958 1.5±0.6 1.4±0.6
OBI 0.33±0.07 0.870±0.031 0.916 2.4±1.1 1.9±0.9
OBII 0.223±0.032 0.823±0.023 0.938 0.6±0.5 0.5±0.7
OBII 0.208±0.029 0.844±0.022 0.935 0.4±0.5 1.1±0.7
OBIII 0.34±0.05 0.855±0.025 0.943 2.5±0.9 1.4±0.7
OBIII 0.26±0.04 0.845±0.026 0.954 1.1±0.7 1.2±0.8
OBIII 0.33±0.06 0.870±0.027 0.908 2.4±1.0 1.9±0.8
OBIII 0.200±0.026 0.843±0.020 0.949 0.2±0.4 1.1±0.6
OBIII 0.30±0.05 0.846±0.026 0.929 1.9±0.8 1.2±0.7
OBIII 0.176±0.029 0.826±0.026 0.894 −0.2±0.5 0.6±0.8
OBIII 0.30±0.06 0.841±0.031 0.896 1.8±0.9 1.0±0.9
OBIII 0.28±0.04 0.857±0.025 0.941 1.5±0.7 1.5±0.7
OBIII 0.122±0.018 0.822±0.024 0.930 −1.05±0.30 0.5±0.7

OBIIId 0.47±0.08 0.872±0.023 0.945 4.7±1.3 1.9±0.7
OBIIId 0.38±0.06 0.846±0.023 0.951 3.2±1.0 1.2±0.7
OBIIId 0.36±0.06 0.842±0.022 0.954 2.9±0.9 1.1±0.6
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A.1.2 Supplementary Figures
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Fig. A.1 Overview of the comparison of different approaches based on adjacent taxonomic
levels using plots in the Taylor-parameters space. The former row of subfigures is for 16S,
where levels are family (blue circles) vs. genus (purple triangles), whereas the latter row of
subfigures is for WGS, where levels are genus (blue circles) vs. species (purple triangles).
The left column shows the raw results and the right column plots the standardized results.
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Fig. A.2 Detail of comparison of different approaches based on adjacent taxonomic levels
using plots of X-weighted power-law fits (see Material and Methods). The former row of
subfigures shows examples for 16S, whereas the latter row of subfigures plots examples for
WGS. The left column shows results for the superior taxonomic level (family for 16S, genus
for WGS), while the right column shows results for the inferior level (genus for 16S, specie
for WGS).
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Fig. A.3 Rank variation over time for the 50 most dominant elements (taxa) and their
calculated RSI (Rank Stability Index), Rank Variability (RV) and Differences Variability
(DV), as detailed in Rank stability and variability in Material and Methods, for an ordinary
period (days 0 to 70, before the trip) belonging to subject A in the host lifestyle study [59].
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Fig. A.4 Rank variation over time for the 50 most dominant elements (taxa) and their
calculated RSI (Rank Stability Index), Rank Variability (RV) and Differences Variability
(DV), as detailed in Rank stability and variability in Material and Methods, for an ordinary
period (days 257 to 364, further after the trip) belonging to subject A in the host lifestyle
study [59].
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Fig. A.5 Taylor’s law parameter space for intervals concerning gut microbiota in the host
lifestyle study [59]. We observe that subject B, who suffered a Salmonella infection during
the experiment, had a relevant shift in the parameters from _before to _infection and a final
recovery from the perturbed state to _afterinfec, which lies in the parameter area compatible
with the healthy and stable intervals (see Supplementary Table A.2). Subject A also had a
shift in variability from _before to _abroad and back to _returned, also in the proximity zone
of healthy and stable periods.
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A.2 Chapter II - Supplementary information

A.2.1 Supplementary Figures
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Fig. A.6 Error between original and inferred interaction matrix. In the upper row, it is
represented the error between the entire matrices. On the left, the case when sp23 is modified,
and on the right, the case when sp7 is modified. In the lower row, it is represented the error
between the specific rows of sp23 (left), and sp7 (right) compared to the original interactions.
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A.3 Chapter III - Supplementary information

A.3.1 Supplementary Tables

Table A.6 Metadata with children’s hospitalisation information. Here it is shown the Patient,
the age (in months), the weight (in kg), the fever at the hospitalisation start, the dehydration
(1 = positive, 2 = negative), and the diarrhoea duration (in h).

Patient Age Weight Fever Dehydration Diarrhoea duration
Case 1 39 14 37.9 1 72
Case 2 38 15.3 36 2 72
Case 3 37 14 36.5 1 48
Case 4 36 14 37 1 48
Case 5 36 16 36 1 72
Case 6 36 20 38 1 48
Case 7 36 18 36 1 72
Case 8 36 17 38 1 24
Case 9 36 14 36 2 72
Case 10 36 15 36.7 2 72
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A.3.2 Supplementary Figures
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A.4.1 Supplementary Figures
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Fig. A.10 Composition of the salivary microbiome of the 26 volunteers. Boxplots show the
proportion of the eight most prevalent bacterial OTUs, volunteers are ordered by the average
proportion.
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FEMALES: MALES:
LEGEND

In the canonical correspondence analysis plot, the bacterial composition of the 573 samples 
was tested to assess the fit with the “volunteer individuality” variable. All OTUs with average 
proportion > 0.001 % were included in the analysis. Samples from each volunteer are 
colored as indicated the figure legend. The graphics shows only those of the 50 most 
prevalent OTUs which had significant influence (p > 0.001) on the ordination of samples. 

Supplementary Figure S2:

Fig. A.11 In the canonical correspondence analysis plot, the bacterial composition of the 573
samples was tested to assess the fit with the ‘volunteer individuality’ variable. All OTUs with
average proportion >0.001 % were included in the analysis. Samples from each volunteer
are coloured as indicated the figure legend. The graphics shows only those of the 50 most
prevalent OTUs which had significant influence (p <0.001) on the ordination of samples.
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> 0.1 % on average per sample (50 OTUS) > 0.001 % on average per sample (663 OTUS) All 18146 OTUs
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Supplementary Figure S3: 

Comparison of NMDS ordinations of the 573 saliva samples including all 18,146 OTUs, 
OTUs with average proportion > 0.001 % (687 OTUs) and with average proportion > 0.1 % 
(50 OTUs). These three ordinations are not significantly different (p<0.001). 

Supplementary Figure S4:

Boxplots of Shannon diveristy index and evenness index for each of the volunteers, 
ordered from the lowest to the highest according to the average value.
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Supplementary Figure S5: 

Temporal variability of 50 most prevalent OTUs in the 24 volunteers. The volunteers F18 
and F11 (the most and the less stable) are shown in the Figure 2. 

Fig. A.13 Boxplots of Shannon diversity index and evenness index for each of the volunteers,
ordered from the lowest to the highest according to the average value.
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Fig. A.14 Temporal variability of 50 most prevalent OTUs in 6 volunteers. The volunteers
F18 and F11 (the most and the less stable) are shown in the Figure 7.5
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Correlation plots summarizing correlations between the 50 most prevalent OTUs, 
correlations of these OTUs with the oxidative stress markers and correlation between the 
oxidative stress markers. Both temporarily direct and lagged correlations are included 
in this analysis. 

Supplementary Figure S7: 

Fig. A.15 Boxplots showing values of AGE, AOPP, FRAS, TAC and TBARS for each
volunteer, ordered from the lowest to the highest according to the average values.
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Fig. A.16 Correlation plots summarising Pearson’s and Spearman’s correlations on intra-
individual level. The color bar on the right part of the panel explains the number of individuals
with a negative (red) or positive (blue) correlation detected.
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Fig. A.17 Microbial interactions between the 15 most abundant OTUs per sample. Blue
color corresponds to negative interaction and orange corresponds to positive interaction. All
interactions were analysed with LIMITS algorithm
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