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RESUMEN 

 





 

Durante las últimas décadas, la utilización de terapias antirretrovirales 

combinadas para combatir la infección por el virus de la inmunodeficiencia 

humana (VIH) ha convertido esta enfermedad en una patología crónica. Por ello, 

en la actualidad, la morbimortalidad asociada a los pacientes infectados por VIH 

está fundamentalmente relacionada con el envejecimiento, ciertamente 

acelerado en comparación con la población general, y con el efecto tóxico 

crónico tanto de la propia infección vírica como de la terapia antiviral. Así pues, 

el principal criterio clínico para la elección de unos fármacos antirretrovirales u 

otros es su seguridad en terapias administradas de por vida.  

En la presente tesis doctoral se estudió la implicación de ciertos fármacos anti-

VIH en la evolución de la enfermedad hepática aguda y crónica, así como los 

mecanismos celulares y moleculares responsables. En primer lugar, se 

estudiaron, a través de modelos in vitro, los mecanismos moleculares 

subyacentes a la toxicidad mitocondrial que presentan diversos fármacos de la 

familia de inhibidores de transcriptasa inversa análogos de nucleósidos (ITIAN), 

especialmente Abacavir (ABC) y Didanosina (ddI), en hepatocitos. De esta 

manera, describimos por primera vez como estos fármacos, a dosis clínicas, son 

capaces de reducir la actividad de los complejos I y III de la cadena de transporte 

de electrones mitocondrial y el consumo de oxígeno celular sin llegar a alterar 

significativamente su viabilidad. Sin embargo, cuando ABC y ddI se 

administraron en combinación con dosis clínicas de paracetamol, otro conocido 

fármaco hepatotóxico cuyo mecanismo también implica afectación mitocondrial, 

se observó una clara disminución de la viabilidad celular de los hepatocitos, con 

un significativo aumento de los niveles de especies reactivas de oxígeno y 

disminución de los niveles endógenos de glutatión. Cabe destacar que la 

combinación de estos ITIAN con otros fármacos cuya hepatotoxicidad no implica 

tan directamente a la mitocondria no produjo estos efectos citotóxicos.    

El objetivo principal de la segunda parte de esta tesis fue estudiar la implicación 

de la terapia anti-VIH en la iniciación y progresión de la enfermedad hepática 

crónica. Para ello, en primer lugar, se llevaron a cabo un modelo nutricional de 

enfermedad de hígado graso no alcohólico (EHGNA) y diversas variantes del 

modelo clásico de fibrosis hepática inducida por tetracloruro de carbono en ratón. 

Durante la duración de los distintos modelos, distintos grupos experimentales 

fueron tratados diariamente, por vía oral, con dosis clínicas de distintos fármacos 



 

 

antirretrovirales. Paralelamente a los modelos in vivo, se llevaron a cabo cultivos 

in vitro de hepatocitos y células estrelladas hepáticas, que fueron tratadas con 

nuestros fármacos a dosis clínicamente relevantes.  

Como resumen de los datos obtenidos, podemos afirmar que, de entre los 

fármacos testados, Efavirenz (EFV) y Rilpivirina (RPV), pertenecientes a la 

familia de los inhibidores de la transcriptasa inversa no análogos de nucleósidos, 

ejercieron un inesperado e intenso efecto antiadipogénico, antiinflamatorio y 

antifibrogénico en nuestros modelos de EHGNA. Si bien el efecto 

antiadipogénico no queda completamente caracterizado en este estudio, sí que 

observamos una clara regulación de PPARγ y LXRβ en respuesta tanto a EFV 

como a RPV, que se traduce en una profunda reducción de la infiltración grasa 

en hígado. Además, el efecto antiinflamatorio de ambos fármacos parece estar 

claramente mediado por una inactivación de NF- 𝜅𝜅B y del inflamasoma NLRP3 

así como a una disminución de la infiltración hepática de neutrófilos y 

macrófagos, ambas células directamente implicadas en la respuesta inmune 

innata.  

El efecto ejercido por RPV se reprodujo también en diversos modelos de fibrosis 

hepática inducida por CCl4, en los cuales fue capaz de disminuir la progresión 

del daño crónico y, además, contrarrestar dicha progresión cuando se administró 

en animales con fibrosis ya establecida. Podemos afirmar en este punto que el 

efecto hepatoprotector de RPV es independiente del tipo de daño producido en 

el hígado y se basa, fundamentalmente, en su capacidad para inducir 

selectivamente apoptosis en células estrelladas hepáticas a través de la 

activación directa del factor de transcripción STAT1. Además, RPV induce una 

respuesta regenerativa en hepatocitos, mediada por la activación de STAT3 

inducida por el secretoma de las células estrelladas apoptóticas en respuesta a 

RPV, pero no por otros estímulos proapoptóticos independientes de STAT1. 

Cabe destacar que el efecto de RPV in vitro desapareció al silenciar STAT1 y 

que, además, este efecto se reprodujo en células estrelladas hepáticas primarias 

humanas.        

Considerando la enorme incidencia de enfermedad hepática crónica en la 

sociedad actual y la ausencia de fármacos capaces de combatirla, defendemos, 

a través de este estudio, la posible utilización terapéutica de RPV como fármaco 

hepatoprotector y antifibrótico. Puesto que su seguridad a largo plazo viene dada 



 

 

por su uso clínico como antirretroviral, su posicionamiento clínico requeriría 

únicamente de estudios confirmatorios en pacientes con enfermedad hepática 

crónica. De confirmarse este efecto terapéutico, supondría no solo un gran 

avance clínico, sino un nuevo enfoque en el desarrollo de estrategias 

antifibróticas cuya aplicabilidad iría más allá de la fibrosis hepática, pudiendo 

extenderse su estudio a trastornos fibróticos en otros órganos como riñón, 

pulmón, corazón o páncreas, entre otros. 

 

 





 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ABSTRACT 

 





 

In the last decades, the use of combined antiretroviral therapies (cART) has 

become human immunodeficiency virus (HIV) infection in a chronic disease. 

Thus, current clinical criteria to select the best antiviral combinations mainly rely 

on the safety of each drug in for life-therapeutic regimens.  

In this doctoral thesis, the involvement of several antiretrovirals in the progression 

of both acute and chronic liver damage was studied. First of all, we assessed the 

mitochondrial disturbances which lead to the clinical toxicity of the nucleoside-

analogue reverse transcriptase inhibitors Abacavir (ABC) and Didanosine (ddI) in 

hepatocytes. We described how these molecules, at clinical doses, undermined 

the mitochondrial function by inhibiting complexes I and III of the electron 

transport chain without affecting cellular viability. However, these drugs became 

cytotoxic in hepatocytes when they were combined with clinical doses of 

acetaminophen, whose hepatotoxicity also involves the mitochondria.  

The second part of this study was aimed to describe the implication of the anti-

HIV therapy in the onset and progression of chronic liver disease. After testing 

several drugs in a mouse model of non-alcoholic fatty liver disease (NAFLD), we 

focused on Efavirenz (EFV) and Rilpivirine (RPV), both non-nucleoside analogue 

reverse transcriptase inhibitors (NNRTI), because they exerted an unexpected 

and surprising anti-adipogenic, anti-inflammatory and anti-fibrogenic effect in the 

liver. To further analyse this effect, we performed both mouse models of CCl4-

induced liver fibrosis and in vitro studies with hepatocytes and hepatic stellate 

cells (HSC). In this case, we were able to reproduce the RPV-induced 

hepatoprotective effects observed in the rest of animal models, confirming that 

this drug exerts a striking anti-inflammatory and anti-fibrotic role in the liver. 

Additionally, we described that this effect is directly mediated by a selective 

induction of apoptosis in HSC, which depends on the activation of the 

transcription factor STAT1 in these cells. At the same time, the secretome of 

RPV-induced apoptotic HSC activates an intense regenerative response in the 

liver mediated by STAT3 activation in hepatocytes.  

Considering that there is no cure for either NALFD or liver fibrosis, the relevance 

and the clinical applicability of this study is evident. We defend the utilization of 

RPV in all those HIV-infected patients with special susceptibility to liver disease. 

Furthermore, we also propose RPV as a potential anti-fibrotic drug, whose 

effectivity should be tested in patients with chronic liver disease in the next future. 



 

Finally, we encourage the scientific community to deeply explore the role of JAK-

STAT1 and 3 in the different cell subsets within the liver, as well as in other 

organs, as key targets to therapeutically manage different fibrotic disorders.  
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I.A. HUMAN IMMUNODEFICIENCY VIRUS (HIV) AND 
ANTIRETROVIRAL THERAPY 

I.A.1. HIV life cycle and infection 

HIV is a retrovirus which includes two subtypes, HIV-1 and HIV-2. HIV-1 is more 

pathogenic and more prevalent than HIV-2, and is the main responsible for the 

pandemic known as acquired immunodeficiency syndrome (AIDS) 1,2. HIV has 

infected over 78 million people since 1981 and is one of the main causes of 

morbidity and mortality worldwide. The highest burden of HIV is carried by Sub-

Saharan Africa with more than 70.8% of the global infected population, especially 

Southern Africa 3,4. According to the last official statistics, in 2017 there were 36.9 

million people living with HIV, of which approximately 1.9 million were newly 

infected and 0.9 million died of the infection 5.  

Activated CD4+ T lymphocytes are the main target of HIV, and its entry into cells 

is mediated by the binding of the viral Env glycoprotein to cell surface proteins 

CD4 and the chemokine co-receptors CXCR4 and CCR5. Other cells with these 

receptors are also infected, such as resting CD4+ T cells, macrophages, 

monocytes and dendritic cells 3. Moreover, HIV infection can happen 

independently of the CD4 receptor, as occurs in astrocytes 6 and renal tubular 

epithelial cells 7. Like all retroviruses, the genome of HIV is composed of two 

copies of single strand- (ss)RNA which is transcribed to double strand- (ds)DNA 

by the viral reverse transcriptase and is then integrated into the genome of the 

host cell by the viral integrase to allow viral replication. Viral protease activates 

newly formed virions by cleaving polyproteins from their surface into active 

infectious proteins (Figure I.1) 8,9.  

HIV infection typically occurs by sexual transmission following exposure to cell-

associate or cell-free infectious virus in semen or mucosal surfaces 3,10. It is 

estimated that 50-90% of patients experience an acute HIV syndrome after two 

or four weeks following infection, a period during which HIV replicates 

aggressively, reaching the highest plasma levels of viral RNA (1-10 million 

copies/mL) 10,11. The acute HIV syndrome is characterized by flu-like symptoms 

associated with high viral load, fever and lymphadenopathy 12. Once the immune 

system develops a HIV-specific response, the viremia declines markedly for 

several months reaching the viral set point and most patients exhibit a period of 
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clinical latency that can last for years 10. During this period, patients suffer a 

progressive depletion of the CD4+ T cells with a deterioration of the immune 

system, which leads to the development of an immunodeficiency status, or AIDS, 

where the individuals are more susceptible to opportunistic infections 2. 

The different steps of the viral life cycle within the host cells (entry, reverse 

transcription, genome integration and proteolytic maturation) can be inhibited by 

several molecules commercially available which constitute the current 

pharmacological treatment of HIV infection. Nowadays, the availability and 

efficacy of these antiretroviral (ARV) drugs frequently avoid the development of 

AIDS in HIV-infected patients because of their high efficiency attenuating viral 

replication. 

Figure I.1 Overview of HIV life cycle indicating the steps inhibited by ARV drugs 13. 
 

I.A.2. ARV drugs 

The first advance in anti-HIV therapy was made in 1987, when the US Food and 

Drug Administration (FDA) approved zidovudine (AZT) to treat HIV infection. AZT 

was originally developed for cancer treatment, but it was observed that its use 

decreased opportunistic infections and mortality in patients with AIDS. However, 

this monotherapy quickly developed viral resistance and the ineffectiveness of 

long-term therapy forced the development of newer anti-HIV compounds 14,15. 

Anti-HIV drugs were mainly classified by the viral enzyme they targeted and by 

the endogenous biomolecule they mimicked. Thus, the first anti-HIV agents were 
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nucleoside analogue reverse transcriptase inhibitors (NRTI), non-nucleoside 

analogue reverse transcriptase inhibitors (NNRTI) and protease inhibitors (PI). 

Although they were individually active and produced a rapid decay in viremia, the 

success was limited, once again, due to the appearance of viral resistances and 

toxic effects 16,17. The modern era of ARV therapy began in 1997 with the 

introduction of the combined ARV therapy (cART), or highly active ARV therapy 

(HAART), consisting in the combination of three different antivirals. cART 

effectively suppressed the HIV replication cycle, reduced HIV viral load and 

increased circulating levels of CD4+ T lymphocytes, resulting in a restoration of 

immune system 3. The success of cART comes from the combination of different 

molecules directed against, at least, two different stages of the viral cycle, 

decreasing the probability of selecting virus clones and thus preventing the 

evolution of drug resistance. Although cART cannot completely eliminate the 

virus, this therapeutic regimen has transformed AIDS from a progressive and fatal 

disease to a chronic manageable infection, markedly reducing their associated 

morbidity and mortality 16,18. 

The range of available drugs has continued to expand and, currently, 26 antiviral 

drugs are approved for use in adults by European and US agencies. They are 

classified in six families, each targeting a specific stage in the HIV replication 

cycle (Figure I.1): NRTI, NNRTI, PI, integrase inhibitors (II), fusion inhibitors (FI) 

and CCR5 co-receptor antagonist 16,18. 

Due to their special relevance for this thesis, only NRTI and NNRTI will be further 

explained in the following sections.  

a) Nucleoside reverse transcriptase inhibitors 

NRTI were the first agents approved by FDA for the treatment of HIV infection 

(Table I.1) 19. These drugs are analogues of the natural nucleoside substrates 

and are integrated preferentially into viral DNA 2. NRTI are pro-drugs and hence, 

they need to be incorporated into the host cell and phosphorylated by cellular 

kinases in order to gain an antiviral effect 20. NRTI inhibit HIV replication by 

substituting endogenous nucleotides during the reverse transcription of viral 

RNA, leading to the termination of the elongation of the new viral DNA chain 
18,21,22. Unluckily, they also act as substrates for DNA polymerase gamma (pol-γ) 

of host cells, and their interference with mitochondrial DNA (mtDNA) synthesis 
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leads to a reduction in the mtDNA content, thus inducing mitochondrial toxicity 22–

24. 

b) Non-nucleoside reverse transcriptase inhibitors 

These drugs (Table I.1) are non-competitive inhibitors of HIV-1 reverse 

transcriptase by binding close to its active site and inducing the formation of a 

hydrophobic pocket, which causes a conformational change of the enzyme and 

reduces its activity 25. NNRTI exhibit a substantial interindividual variability in their 

pharmacokinetics; therefore, their plasma levels can differ greatly among 

different patients. As these drugs are bio-transformed through cytochrome P450 

(CYP) system and exert variable effects on specific isoenzymes, they can trigger 

variable effects on other drugs whose metabolism occurs through the same 

pathway 26,27.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 
 

Table I.1 NRTI and NNRTI drugs approved by FDA, 2018 28. 
 

NRTI Approval date 

Tenofovir alafenamide (TAF) November 5, 2015 

Emtricitabine (FTC) July 2, 2003 

Tenofovir disoproxil fumarate (TDF) October 26, 2001 

Abacavir (ABC) December 17, 1998 

Lamivudine (3TC) November 17, 1995 

Stavudine (d4T) June 24, 1994 

Didanosine (ddI) October 9, 1991 

Zidovudine (AZT) March 19, 1987 

NNRTI Approval date 

Rilpivirine (RPV) May 20, 2011 

Etravirine (ETR) January 18, 2008 

Efavirenz (EFV) September 17, 1998 

Neviparine (NPV) June 21, 1996 
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I.A.3. Guidelines of ARV therapy 

According to the current guidelines, first-line cART in adults consists of two NRTI 

combined with a third agent that can be a NNRTI, an II or a PI 29,30. This combined 

therapy is largely considered the standard treatment for HIV-infected patients, 

both anti-HIV drug-naïve and drug-experienced individuals 31,32. It was designed 

to decrease the probability of developing drug resistance, to reduce specific drug 

side effects by diminishing their individual dosages and to obtain a synergic effect 

between different drugs that exert their pharmacological action at different 

molecular targets 33.  

Due to the fact that cART only suppresses HIV replication and does not eradicate 

it, HIV patients must be exposed to ARV compounds for decades, obtaining 

extended virologic suppression, improved clinical results and longer life 

expectancy. Moreover, due to this demographic aging shift, these patients are 

concomitantly treated for several age-related non-AIDS disorders, such as 

cardiovascular diseases, liver diseases, neurocognitive diseases or cancer 34–36. 

Hence, treatment guidelines should recommend regimens based not only on their 

antiviral potency but also on their chronic toxicity. Although knowledge about ARV 

drugs toxicities is increasing, there is still not enough evidence to firmly establish 

which ARV drug class or combinations are safer in each patient 13,36. 

I.A.4. Side effects of ARV therapy 

ARV resistance, adherence and toxicity are the main problems of cART, which 

must be overcome in order to optimize their clinical efficacy. cART-related toxicity 

and adverse effects have been described with all ARV drugs, and have been 

considered the most common reason for discontinuing cART. The majority of 

cART-induced adverse effects arise from the therapeutic doses of ARV drugs 

and drug-drug interactions 37,38. Overall, gastrointestinal disturbances, 

hypersensitivity and skin reactions, neuropsychiatric disorders and liver toxicity 

tend to appear early after initiation of treatment. Other side effects, such as lipid 

and glucose metabolism abnormalities, kidney alterations, bone metabolic 

disorders and mitochondrial toxicity, generally develop after chronic exposure to 

these drugs. (Tables I.2 and I.3) 39–41.  
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Different factors may influence the appearance of side effects, including gender, 

underlying diseases, concomitant medications and drug interactions, diet and 

genetic factors. Regarding the latter, the administration of standard doses of most 

anti-HIV drugs results in significant individual variations in their plasma 

concentrations and in their subsequent related toxicity due to differences in their 

metabolism 42,43.  

 

Table I.2 Common NRTI-associated adverse effects 28,44. 

Table I.3 Common NNRTI-associated adverse effects 28,44. 

Drug class Adverse effects Comments 

NRTI 

Nephrotoxicity TDF 

Hypersensitivity reactions 
Seen with ABC in human 

leukocyte antigen B*57:01-
positive individuals 

Lactic acidosis Rare. Common with AZT 

Lipoatrophy AZT 

Loss of bone mineral density Prolonged TDF use 

Bone marrow suppression, 
macrocytic anemia AZT 

Fanconi syndrome Rare condition associated with 
TDF 

Myopathy AZT 

Increased risk of cardiovascular 
events ABC, ddI 

Diarrhea, pancreatitis, neuropathy ddI 

Non-cirrhotic portal hypertension, 
hepatic steatosis 

Can occur months to years after 
starting ddI and d4T 

Hyperpigmentation FTC 

Drug class Adverse effects Comments 

NNRTI 

Several drug interactions Mostly noted with EFV 

Rash All NNRTI 

Neuropsychiatric side effects 
Mostly associated with EFV. RPV 

has also been related to 
psychiatric effects 

Hepatic effects NVP > other NNRTI 

Dyslipidemia Mostly associated with EFV 

Stevens-Johnson syndrome NVP > other NNRTI 

Teratogenicity EFV 

Cardiovascular diseases RPV: QT interval prolongation 
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Mounting evidence shows that newer ARV display safer profiles than first-

generation molecules, but drug-related adverse effects and drug interactions are 

still a big problem in the therapeutic managing of HIV infection. On the other hand, 

it is important to emphasize that the vast majority of HIV-infected people live in 

areas where the older ARV agents with worse side effects are still often 

prescribed as major treatments due to the lack of infrastructures and economic 

resources 41.  
 

I.A.5. Drug-induced liver injury (DILI) 

a) HIV infection, cART and liver disease  

Introduction of effective cART has made HIV infection a chronic illness. 

Substantial reductions in the number of AIDS-related deaths have been 

accompanied by an increase in liver-related morbidity and mortality. In this 

regard, liver diseases rank in the three most-common causes of death in HIV-

infected people 34,45,46. ARV drug-associated toxicity arises as a key factor 

contributing to this morbidity and mortality since they are currently used in lifelong 

regimens, and their long-term security acquires an especial relevance and 

determines their use 47,48.  

b) ARV therapy-associated hepatotoxicity  

Hepatotoxicity, or DILI, is one of the most common disadvantages of cART, 

responsible for morbidity, mortality and treatment discontinuation in HIV-infected 

patients 49–51. Elevated liver enzyme levels have been employed as a marker of 

liver toxicity in different clinical trials and cohort studies. AIDS Clinical Trials 

Group defined severe liver toxicity as presence of an increase in plasma 

aspartate transaminase (AST), alanine transaminase (ALT) and alkaline 

phosphatase levels greater than five- and two-fold above the upper normal limit, 

respectively 52,53. Following this criterion, many studies have shown that the 

incidence of increased liver transaminases levels is around 2-18% after one or 

more months on cART, or even up to 30% in some reports 54,55. It is difficult to 

ascertain the liver toxicity associated with each ARV because its combined 

administration, the co-exposure to other liver toxins or the presence of pre-

existing hepatic conditions 56,57. Nevertheless, extensive use of these compounds 
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has contributed to elucidate that AZT, ddI and d4T, as well as NVP and EFV are 

the most potentially hepatotoxic drugs among NRTI and NNRTI, respectively 51,58.  

Besides the toxicity associated with a specific ARV drug or class, other risk 

factors have been associated with cART-induced liver injury in HIV-infected 

patients. One of the main non-drug related factors is chronic hepatitis produced 

either by hepatitis C (HCV) or hepatitis B (HBV) viruses, considering that co-

infected patients experience up to 6 times greater increases in plasma levels of 

liver enzymes compared to HIV mono-infected patients. Other situations like 

severe alcohol consumption, drug abuse, drug interactions, age, gender or 

ethnicity also contribute to cART-induced liver damage 51,59. The severity of this 

hepatic injury ranges from transient liver enzyme elevations to severe clinical 

syndromes, such as hepatitis, non-alcoholic fatty liver disease (NAFLD) or 

steatohepatitis (NASH), non-cirrhotic portal hypertension or even acute liver 

failure, which can eventually lead to death 41,50.  

Importantly, it is assumed that newer ARV drugs are safer for the liver. However, 

due to the aging of HIV-infected patients, cART-associated liver toxicity will 

probably continue to be a major challenge in the future 60,61.  

c) Acetaminophen-induced liver injury 

Acetaminophen (APAP), or paracetamol, is a widely used analgesic and anti-

pyretic drug used for the relief of fever and different minor aches and pains. It is 

extremely safe when administered at therapeutic doses but, due to its wide 

availability, deliberate or accidental overdoses are not uncommon. APAP, unlike 

other common analgesics such as aspirin and ibuprofen, has no anti-

inflammatory properties or effects on platelet function, and it is not a member of 

the drug family known as non-steroidal anti-inflammatory drugs 62,63.  

The therapeutic dose of APAP in adults is between 325 and 1000 mg, 

administered every 4 to 6 hours, with a maximum recommended daily dose of 

3250 mg. Peak concentrations of APAP are achieved within the first 90 min after 

oral ingestion, and the therapeutic serum concentrations range from 10 to 20 

mg/mL. Its protein binding is minimal at therapeutic doses and the serum half-life 

is around 2 hours. Approximately 85% to 90% of APAP at clinical doses 

undergoes phase II conjugation to sulfated and glucuronidated metabolites, 

which are then excreted in the urine; 2% of ingested APAP is excreted in the urine 
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unchanged and up to 10% undergoes phase I oxidation via the hepatic CYP2E1 

to a toxic and highly reactive intermediate, N-acetyl-para-benzoquinoneimine 

(NAPQI). The small amount of NAPQI produced from normal doses of APAP is 

rapidly conjugated with hepatic glutathione (GSH), forming non-toxic mercaptate 

and cysteine compounds that are then excreted in the urine. At toxic doses of 

APAP, sulfation and glucuronidation pathways become rapidly saturated and 

more APAP is metabolized through CYP2E1 to NAPQI. Thus, this amount of 

NAPQI saturates and depletes GSH stores, binds to hepatocytes and causes 

cellular damage in an irreversible step that leads to oxidative injury and 

hepatocellular necrosis. Other mechanisms that are likely to play an important 

role in the early-phase of APAP-induced hepatotoxicity include mitochondrial 

damage, nuclear DNA fragmentation and lipid peroxidation 64–66. Consequently, 

APAP is frequently used as a well-established model of DILI, both in in vivo and 

in vitro models, due to the induction of mitochondrial damage and reactive oxygen 

species (ROS) production 67.  

I.A.6 ARV drugs especially relevant for this thesis 

a) ABC 

ABC (Figure I.2.A) is a NRTI that was approved and marketed all over the world 

by GlaxoSmithKline in 1998 as a single drug entity with the name of Ziagen®. It 

has been extensively used for more than 20 years for the treatment of HIV-1 

infection, and it is still currently included as a first-line treatment option in 

combination with other ARV 68.  

The recommended dose of Ziagen® for adults is 600 mg daily and can be taken 

either as a single daily dose or divided into 300 mg twice a day. As this compound 

has been widely employed in long-term treatments its toxicological profile has 

been well-established, being its most common side effects loss of appetite, 

headache, nausea, diarrhea, rash, fever and lethargy. Life-threatening 

hypersensitivity reactions can also occur in patients taking ABC within the first 

weeks of treatment, thus leading to treatment discontinuation 69,70.  

ABC is primarily metabolised by the liver and its use is not recommended in 

patients with moderate or severe hepatic impairment unless judged necessary by 

clinicians, in which case close monitoring is required 71,72. Clinical studies have 
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shown that there are no clinically significant interactions between ABC and others 

ARV drugs, which simplifies its therapeutic management 73.  

All NRTI have been proven to cause a variable degree of mitochondrial damage 

in vitro and in vivo, especially the oldest compounds. These effects are 

particularly important in the context of liver toxicity, since mitochondrial activity is 

crucial for hepatocyte metabolism and hepatic function 73,74.  

b) ddI 

This NNRTI (Figure I.2.B) was approved and marketed in 1991 by Bristol-Myers 

Squibb Pharmaceuticals under the name of Videx®. Its recommended posologies 

are 250 mg per day for patient weighting less than 60 kg in a single dose and 400 

mg for patients weighting more than 60 kg, divided in 200 mg twice a day. The 

toxicological profile of this compound is worse than those of newer NRTI, like 

ABC, and thus, its use is restricted to those patients in which other ARV drugs 

cannot be used 75,76. Regarding its pharmacokinetics, ddI follows the same 

metabolism and elimination pathways that endogenous purines. Its half-life is 

really short, around 1.4 hours, and it is eliminated by renal clearance in an active 

tubular secretion process.  

Besides the general gastrointestinal and hypersensitivity side effects related to 

all NRTI, ddI treatment has also been associated with acute pancreatitis, 

peripheral neuropathies and lipodystrophic processes leading to important 

subcutaneous fat accumulation 77,78. Liver toxicity has rarely been observed in 

patients on ddI, but few cases of adverse events leading to liver transplantation 

have been described. Consequently, ddI administration should be closely 

monitored in all cases, and discontinued if hepatic enzymes rise to more than 5 

times the upper limit of normality 74. In addition, it is described that patients with 

pre-existing liver dysfunction have an increased frequency of liver function 

abnormalities during ddI treatment. Therefore, it is crucial to clarify the 

mechanisms leading to this ddI-induced liver damage in order to improve their 

clinical management 77,79.   

c) EFV 

EFV (Figure I.2.C) is a NNRTI developed by Bristol-Myers Squibb 

Pharmaceuticals in 1995 and marketed, after its approval by FDA, in 1998 as 
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Sustiva® in its single drug formulation. This compound has been widely employed 

during the last 20 years but, due to the availability of new ARV drugs with a safer 

toxicological profile (e.g. II), it is currently part of alternative cART regimens in 

developed countries. However, EFV is still one of the most commonly used anti-

HIV drugs in developing countries because of its high efficacy and low cost 80–83. 

Due to its long half-life (45-52h), the recommended dose of EFV in adults is 600 

mg in one-daily dose. It usually results in plasma levels from 5.6 ± 3.2 µM to 12.9 

± 3.7 µM. Nevertheless, EFV plasma levels vary substantially as a result of 

interindividual variability in its pharmacokinetics, with levels as high as 30-50  µM 

in up to 40% of EFV-treated patients 84,85.  

EFV is commonly considered an effective and safe drug 81,86. Nevertheless, there 

is concern about the adverse effects induced by EFV-containing cART, including 

rash, neuropsychiatric disorders, lipid and metabolic disturbances and liver 

toxicity 87–90. EFV-induced DILI has been reported in 1-8% of treated patients and 

it is correlated with significant morbidity and mortality 91–93.  

The molecular mechanisms underlying this EFV-induced DILI remain unclear. 

Mitochondrial toxicity has been involved in the liver toxicity related to cART, but 

it has been usually attributed to NRTI and their ability to inhibit pol-γ 94,95. 

However, the mechanism behind EFV-induced liver toxicity is different: in vitro 

experiments previously performed by our group have shown that acute treatment 

with EFV provokes deleterious effects in hepatocytes, inducing mitochondrial 

dysfunction through direct inhibition of complex I of the electron transport chain 

(ETC), and thus decreasing ATP production and mitochondrial membrane 

potential (ΔΨm), which finally leads to a rapid intracellular increase of lipid 

droplets. Furthermore, bioenergetic stress, elevated ROS, endoplasmic reticulum 

(ER) stress and cell survival-promoting autophagy were also reported in EFV-

treated cells, suggesting mitochondria as a common key player in all these acute 

toxic effects 96–102. 

In addition, several clinical studies have reported that hepatic alterations induced 

by EFV appear shortly after initiation of the treatment and rapidly disappear in 

several days or weeks 103,104. In summary, long-term therapies containing EFV 

are largely considered safe to the liver 103,105.  
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d) RPV 

RPV (Figure I.2.D) is the newest second-generation NNRTI, which was approved 

and marketed by Janssen-Cilag International NV in 2011 with the name of 

Endurant®. The recommended daily dose of RPV is 25 mg and it is primarily 

metabolised by CYP3A. For this reason, medicinal products that interact with 

these enzymes may thus modify the clearance of RPV 106.  

The safety profile of RPV includes many frequently reported adverse reactions 

like headache, insomnia, rash and abdominal pain. Few cases of increased liver 

enzymes were also reported. However, it is important to consider that all those 

adverse reactions were observed in the first months following the treatment 

initiation and resulted in early small alterations that were rapidly normalized, thus 

not being considered clinically relevant 106.  

Regarding RPV pharmacokinetics, after oral administration it has fast absorption, 

good bioavailability and approximately 99.7% is bound to plasma proteins. 

Moreover, RPV is primarily metabolised and eliminated by the liver by CYP3A4 

and its plasmatic half-life is approximately 45 hours. It has also been described a 

considerable hepatic bioaccumulation of RPV, and thus, it can reach higher 

concentrations within the liver than in plasma. Even though it is not in the first line 

of HIV treatment, is one of the most used NNRTI worldwide because it is safer 

and presents an easy dosing regimen that improves adherence and clinical 

efficacy 107–109. 

RPV has only been clinically used since 2011 and its long-term effects are still 

under study. However, in the last years, several ongoing clinical studies have 

reported that chronic RPV treatment is mainly safe for the liver 110,111. These 

retrospective studies have demonstrated that the frequency of liver toxicity in both 

HIV-patients and HIV/HCV-coinfected patients receiving RPV-containing 

regimens is extremely low and does not lead to drug discontinuation 47. 

Furthermore, many different prospective and retrospective studies have shown 

that RPV could be even beneficial since it is able to improve the lipid profiles of 

dyslipemic HIV patients after switching from non-RPV-containing therapies 112,113. 

Finally, it has also been demonstrated that treatment with RPV is still effective 

even in patients whose liver function is severely impaired, like in HCV-HIV co-

infected cirrhotic patients  110.  
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Figure I.2. Chemical structure of Abacavir (A), Didanosine (B), Efavirenz (C) and Rilpivirine (D). 
 

I.B. LIVER PATHOPHYSIOLOGY 

I.B.1. Liver physiology and functional structure 

The liver is a central organ that carries out a wide range of crucial functions for 

the organism such as metabolism, glycogen storage, drug detoxification, 

production of serum proteins and bile secretion. To develop these purposes, the 

liver requires a high level of vascularization, slow blood flow and highly permeable 

fenestrated endothelia, which allows direct contact between liver cells and blood 

stream. Since all those liver functions are essential for homeostasis maintenance, 

severe liver diseases, such as hepatitis, fibrosis and cirrhosis, often result in high 

rates of morbidity and mortality 114–116.  

Liver structure is organized forming many lobules, which constitute its functional 

units (Figure I.3.A). Each lobule is composed of a central vein from which 

hepatocyte cords radiate towards portal triads (portal vein, hepatic artery and 

biliary duct). Hepatocyte cords are single-cell sheets of hepatocytes separated 

by sinusoids that carry blood from the portal triads to the central vein.  Each lobule 

(Figure I.3.B) contains a varied number of sinusoids, which are discontinuous 

B 

C D 

A 
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vessels built from specialized fenestrated liver sinusoidal endothelial cells (LSEC) 

of the liver. Hepatic stellate cells (HSC) are located in the space of Disse between 

the hepatocyte cords and sinusoids. Kupffer cells (KC), which are the specialized 

resident macrophages of the liver, are also found in sinusoids 115,117,118. 

 

Figure I.3 Functional structure of the liver: hepatic lobule (A) and liver sinusoid (B) 119. 

 

 
 

I.B.2. Key cellular players in liver health and disease  

a) Hepatocytes: from homeostasis to liver injury 

Most of the metabolic and synthetic functions of the healthy liver are carried out 

by hepatocytes, which account for approximately 60% of total liver cells and 80% 

of liver volume. Hepatocytes are highly polarized epithelial cells: their basolateral 

surfaces face fenestrated LSEC, facilitating the exchange of materials between 

hepatocytes and blood vessels 119,120.  

Liver injury can result from multiple etiologies in different pathophysiological 

contexts but, in many cases, it occurs due to direct damage of hepatocytes, which 

is considered the main driver of liver inflammation. Once liver damage has 

occurred, injured and dying hepatocytes release a wide range of pro-

inflammatory signals, generally known as damage-associated molecular pattern 

molecules (DAMP) 121,122. These DAMP are a group of chemically heterogeneous 

molecules also known as alarmins due to their capability to alert the immune 

system. They include, among other molecules, ROS, phagocytosis mediators, 

pro-inflammatory and chemotactic molecules, immunostimulatory and 

immunosuppressive mediators, activators of repair pathways as well as 

proliferation-associated cytokines 123–125. Through this DAMP-associated 

response, damaged hepatocytes interact with surrounding cells (including 
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neighbouring hepatocytes, HSC, KC, LSEC and infiltrating immune cells) and 

strongly activate the inflammatory response in the liver, leading to HSC activation, 

which is the first step to fibrosis progression (Figure I.4 and I.7) 116,126.  

In hepatocytes, mitochondria are the main source of DAMP. This organelle is able 

to sense and react to multiple cellular stresses. It can be considered as a master 

regulator of danger signaling since it is able to control and activate both cell-

intrinsic and systemic adaptive responses through distinct molecular pathways 
127–129. ROS generation by hepatic mitochondria usually comes as a normal by-

product of the mitochondrial respiratory chain, mainly produced by ETC complex 

I and III. This ROS production is physiologically counteracted by a wide range of 

anti-oxidant systems, which include catalases, superoxide dismutases, 

thioredoxin and GSH. However, in response to multiple stimuli or organelle 

disorders (e.g. mitochondrial dysfunction), ROS production exceeds the buffer 

capacity of the endogenous anti-oxidant systems, resulting in oxidative stress. 

This effect leads to the activation of a cellular response in order to re-establish 

the redox homeostasis and this can be coupled to an inflammatory response, 

followed by cellular damage, progressive mitochondrial dysfunction and cell 

death by apoptosis or necrosis 130–132.  

b) HSC: inductors of fibrogenic response 

HSC are non-parenchymal cells within the perisinusoidal space of Disse, 

interposed between sinusoidal endothelium and hepatocytes. This privileged 

localization, besides their dendritic cytoplasmic processes, facilitates their direct 

contact with other HSC, hepatocytes, LSEC and KC 133,134. HSC contribute to key 

homeostatic functions of the liver such as development and regeneration (e.g. 

quiescent HSC can produce hepatocyte and vascular endothelial-growth factors), 

retinoid metabolism (they are the main reservoir of vitamin A in the organism), 

extracellular matrix (ECM) homeostasis, lipid metabolism, immunoregulation and 

drug detoxification 135,136.  

Besides these important functions, when the liver is injured, HSC coordinate a 

tightly regulated cellular network, which results in net deposition of fibril-forming 

collagen-rich ECM at the sites where liver has been damaged. To develop the 

scar, activated HSC undergo trans-differentiation of quiescent vitamin A-rich cells 

to myofibroblast-like cells, which are characterized by augmented proliferation 
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and migration, loss of lipid droplets, abundant secretion of ECM proteins, 

enhanced contractility and release of pro-fibrogenic (e.g. transforming growing 

factor (TGF) β) and pro-inflammatory factors (e.g. interleukin (IL) 6 and IL8) 
137,138. Activated HSC are characterized by an enhanced expression of alpha-

smooth muscle actin (αSMA), desmin and vimentin, massive secretion of scar-

forming type I and III collagens (among other ECM proteins), and expression of 

a wide range of matrix metalloproteinases (MMP, such as MMP2 and MMP9) and 

specific tissue inhibitors of metalloproteinases (TIMP, such as TIMP1), proteins 

that prevent matrix MMP-directed degradation of collagen, thus allowing the scar 

formation (Figures I.4 and I.7) 133,139,140. 

HSC activation involves two well-established stages: initiation (or pre-

inflammatory stage) and perpetuation. Initiation refers to early events initiated by 

paracrine signals from neighbouring cells that render the cells responsive to many 

extracellular signals. The signals involved in this HSC-activating process include 

ROS, lipopolysaccharide and other pathogen-associated molecular patterns 

(PAMP), lipid peroxides, nucleotides, inflammatory cytokines, apoptotic bodies 

and other cell death signals. Many viral agents have been also reported to directly 

activate HSC, including HCV, HBV and HIV 140,141. Perpetuation is characterized 

by events that amplify the activated phenotype of HSC: sustained release of 

cytokines and growth factors, predominantly from macrophages, results in 

retinoid loss, scar formation through enhanced proliferation, contractility, 

fibrogenesis, matrix degradation and pro-inflammatory signaling (Figure I.4) 140–

142.  

Apart from their crucial role in fibrogenic responses, HSC functions are much 

more diverse. For example, they also play a crucial role in the inflammatory and 

immune responses since they are highly responsive to DAMP, resulting in the 

activation of pro-inflammatory pathways, such as those regulated by nuclear 

factor 𝜅𝜅B (NF-𝜅𝜅B), and subsequent production of pro-inflammatory cytokines and 

chemokines. These enhanced inflammatory responses can induce hepatocyte 

cell death, and thereby enhance and perpetuate fibrogenic stimuli 143,144.  

It is important to note that HSC produce lower cytokine levels when compared to 

immune cells, thus contributing minimally to overall liver inflammation. In this 

regard, HSC probably behave as recipients of inflammatory signals to regulate 

their activation and subsequently ensure their survival 145. During liver injury, 
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activated HSC can also modulate the hepatic immune response by acting as 

antigen presenting cells and expressing several chemokines (e.g. CCL2, 

CXCL10, CCL5) and integrins (e.g. VCAM1, ICAM1), thereby altering the 

adaptive immunity and modifying immune cell chemotaxis, respectively 144,146.  

 

Figure I.4 Pathways of HSC activation, including initiation and perpetuation phases as well as 
paracrine crosstalk among different liver cell subtypes 134. 

 

c) Macrophages: coordinating liver-associated immune response 

The liver shelters roughly 80% of all macrophages in the body, and they are 

divided in two main types depending on their origin: resident liver macrophages 

or KC, which are positioned in liver sinusoids, and inflammatory macrophages 

derived from infiltrating blood monocytes 147,148. Liver macrophages are key 

players in hepatic inflammation and also hold remarkable functional diversity, 

being implicated in hepatic homeostasis, progression and regression of acute 

and chronic inflammation and fibrosis 116. Their pleiotropic actions and diverse 

roles in liver diseases are due to their high plasticity, as a response to 
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environmental signals arising from parenchymal and immune cells. Macrophages 

have been traditionally categorized either into ‘pro-inflammatory’ M1 or 

‘immunoregulatory’ M2, but now it is known that the complex biology of 

macrophages subsets is not reflected by this simple dichotomous nomenclature 
147,149.  

Beyond these classifications, it is well known that upon liver injury macrophages 

can develop multiple actions depending on their microenvironment, which is finely 

regulated by multiple processes, including transcription factors, epigenetic 

mechanisms, signaling pathways and post-transcriptional regulators 150. Pro-

inflammatory actions of macrophages are induced by, among others, pro-

inflammatory cytokines, lipoproteins or necrotic cells, and are controlled by 

different transcription factors like NF-𝜅𝜅B or signal transducer and activator of 

transcription (STAT) 1. These actions usually lead to high production of nitric 

oxide (NO) and ROS, and the secretion of pro-inflammatory cytokines and 

chemokines, promoting Th1 response and strong tumoricidal and microbicidal 

activity 151,152. Conversely, a predominance of STAT6, STAT3 and peroxisome 

proliferator-activated receptor (PPAR) γ activation promotes immunoregulatory, 

wound-healing and pro-resolutive responses by macrophages, mostly conducted 

by efficient phagocytosis and secretion of many immunomodulatory mediators 
150,153,154.  

During liver damage, hepatocyte injury triggers release of DAMP and 

subsequently activates innate immune and tissue-destructive responses via the 

production of NF-𝜅𝜅B-dependent pro-inflammatory cytokines and ROS. This 

results in a dramatic expansion of hepatic macrophage population with their 

subsequent polarization towards the M1 phenotype and release of additional 

inflammatory mediators enhancing the inflammatory response, which may 

increase hepatocyte cell death (Figure I.5) 147,155. Importantly, at the later stages 

of inflammation or once the liver insult has been eliminated, macrophages may 

undergo a functional switch towards pro-resolving or anti-inflammatory M2-like 

phenotype in order to repair damaged tissue 148,149. 
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Figure I.5. Interplay between macrophages, hepatocytes and immune cells during liver 
inflammation and resolution. a) When liver injury occurs, DAMP and PAMP are firstly recognized 
by KC which undergo M1 phenotype, produce pro-inflammatory chemokines and increase 
hepatocyte apoptosis. Endothelial cells increase the immune cell recruitment by expressing 
different adhesion molecules. In addition, HSC undergo activated. b) Afterwards, macrophages 
switch to pro-resolving M2 phenotype and trigger leukocyte apoptosis and phagocytosis of 
damaged cells. c) In the last phases of resolution, M2 macrophages increase their phagocytic 
activity and produce big amounts of anti-inflammatory, anti-fibrotic and pro-resolving molecules 
which attenuate immune cell recruitment and inflammation and restore tissue homeostasis 106. 
 
 

I.B.3. Liver immunology 

From an immunological point of view, liver homeostasis is regulated through an 

intense intercellular interplay between parenchymal and non-parenchymal cells. 

Hepatocytes and cholangiocytes, as well as LSEC, KC and HSC act as primary 

sensors for pathogens and PAMP from enterohepatic microcirculation. Moreover, 

LSEC and KC are capable of antigen presentation, as well as of cytokine and 

chemokine production. Thus, it is easy to understand the importance of the liver 

to initiate and shape immune responses 116,156,157.  
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The role of different immune cell types in the initiation, progression and resolution 

of liver injury depends on their capacity to induce changes in the HSC phenotype 

(Figure I.6) 134,135. As it has previously been explained, hepatocytes and liver 

macrophages directly interact with HSC via paracrine secretion of DAMP and 

modulatory cytokines 147,155,158. Also LSEC play an important role in liver 

homeostasis since they maintain HSC in a quiescent state through paracrine 

signaling, and they lose this ability during capillarization, allowing HSC to 

proliferate 159–161.  

A particular case of direct cell-cell interaction is produced by NK cells, which are 

able to kill or inactivate HSC through their cytotoxic potential as well as to secrete 

big amounts of cytokines that mainly coordinate the immunological restoration 

after liver injury 162,163. Moreover, B lymphocytes indirectly promote fibrosis in an 

antibody-independent manner 164, while T lymphocytes are responsible for 

initiating and maintaining the adaptive immunity with no directly interaction with 

HSC 165. 

 

Figure I.6. Immune cell interactions that promote or inhibit the activation of HSC 166. 
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I.B.4. Inflammasomes in liver disease 

Inflammasomes are cytosolic multiprotein complexes that assemble after sensing 

intracellular danger signals (DAMP and PAMP), and they serve as scaffolds to 

recruit and activate the pro-inflammatory caspase-1 167. Particularly, NLRP3 

inflammasome is the most fully characterized member of the inflammasome 

family in liver diseases 168–170, and it is considered as a general sensor of tissue 

damage and infection 171.  

Inflammasome activation is a ‘two-hit’ process, which represents a key regulatory 

checkpoint to avoid unnecessary immune responses capable of damaging the 

host 172,173. The first hit, known as ‘priming’, requires a non-activating stimulus to 

trigger the transcription of the components of the inflammasome through the 

activation of NF-𝜅𝜅B signaling, including its main downstream effector pro-IL1β; 
174,175. Priming stimuli involve any ligand able to activate NF-𝜅𝜅B, such as tumor 

necrosis factor (TNF) α. Once primed, a second hit or ‘activation’ of NLRP3 

occurs in response to either the same and/or additional stimuli, usually a DAMP 

derived from damaged cells, that promote the activation and the assembly of the 

NLRP3 inflammasome components 176–178. Once pro-caspase-1 has been 

enzymatically activated by cleavage, it is capable of provoking a pro-inflammatory 

form of cell death known as pyroptosis, which is characterized by cytoplasmic 

swelling, hyper-permeabilization and subsequent rupture of the plasma 

membrane, and release of the cellular content 179,180. On its hand, mature IL1β is 

one of the most potent pro-inflammatory cytokines and has been described as a 

major driver of the pathogenesis of many autoimmune, inflammatory and 

infectious diseases. Its multiple functions include recruitment of innate immune 

cells and modulation of adaptive immune cells, triggering, altogether, 

transcription of pro-inflammatory genes and enhancing the inflammatory 

response to injury 168,181.  

NLRP3 inflammasome has emerged as a crucial player in the onset and 

progression of several liver diseases 169,182,183. In response to acute or chronic 

liver injury, dying hepatocytes release DAMP that induce the activation of the 

NLRP3 inflammasome and consequently promote liver inflammation. 

Furthermore, in vitro studies have shown that IL1β directly promotes HSC 

activation 184,185. Consequently, many different studies have demonstrated that 
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NLRP3 inflammasome activation is an essential early process that drives to 

chronic injury progression and fibrosis development in the context of many liver 

disorders, especially DILI, NAFLD and NASH 169,170,182,186. This association 

between NLRP3 inflammasome and liver injury has also been explored in human 

studies, showing that NLRP3 inflammasome components and IL1β levels in liver 

tissue are enhanced in both HCV-infected and NASH patients 187,188. 

I.B.5. Chronic liver disease 

a) General features: when liver injury becomes chronic 

After acute liver injury the immune system rapidly activates repair mechanisms 

by inducing a controlled and self-limiting fibrotic and wound-healing response. 

Through this response, ECM generated by active HSC protect hepatocytes 

against several toxic stimuli and renders the liver more resistant to subsequent 

acute injuries. In this context, the liver can restore its complete mass and original 

architecture in a relatively short interval, even when a large fraction of the organ 

has been destroyed. However, fibrotic response becomes problematic and clini-

cally relevant when dysregulated and excessive scarring occurs in response to 

persistent injury. Liver tissue undergoes an impaired regenerative response 

characterised by altered inflammatory infiltrate and chronic wound-healing 

response, including necrosis and/or apoptosis of parenchymal cells and their 

massive replacement by ECM, distortion of the liver vascular architecture and 

angiogenesis leading to organ dysfunction 117,189,190.  

Once injury becomes chronic, perpetuation of wound-healing and inflammatory 

response is mediated by several positive feedback loops that involve autocrine 

and paracrine effects of cytokines and growth factors, cell-cell and cell-matrix 

interactions. In this context, a wide range of pro-inflammatory and pro-fibrogenic 

mediators (IL6, TNF, IL1β, TGFβ…), as well as ROS and DAMP, derived from 

recruited immune cells and damaged hepatocytes, rapidly activate HSC and 

attract resident KC. Both KC and HSC act as phagocytes of parenchymal-derived 

debris, and as enhancers of immune cells recruitment by paracrinely contributing 

to pro-inflammatory and pro-fibrogenic signaling. At the same time, all these 

signals act in an autocrine manner increasing HSC activation (mainly by TGFβ) 

and proliferation (mainly by platelet-derived growth factor (PDGF)) in a harmful 

loop 189.   
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At the same time, the microenvironment in the damaged area leads to the 

inhibition of all the cellular mechanisms aimed to tissue repair. For instance, the 

macrophage capacity to degrade newly synthetized scar matrix through the 

secretion of MMP is inhibited by the concurrent production of TIMP by active 

myofibroblasts and inflammatory-recruited macrophages, which results in 

increased ECM deposition and scar accumulation 118,155,191. Main cellular 

interactions upon liver injury are summarized in the Figure I.7.  

  

Figure I.7. Cascade of signals following liver injury (kindly provided by Dr. J. Fallowfield) 138. 
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b) NAFLD 

NAFLD is the most common chronic liver disease worldwide and is considered 

the hepatic manifestation of the metabolic syndrome. It affects up to 30% of the 

entire adult population, being more than 75% of them individuals that are obese 

and diabetic. Consequently, its prevalence is rapidly increasing in association 

with unhealthy lifestyle habits and metabolic diseases. NAFLD is nowadays the 

major cause of liver-related morbidity and mortality and, along with alcoholic-

related liver disease, the first pathology among those adults awaiting liver 

transplantation 192,193. In severe cases, NAFLD can eventually progress to 

hepatocarcinoma (HCC) and, in spite of being infrequent, the risk of associated 

mortality in such situations is significant 194,195. 

The natural history of NAFLD mirrors the natural history of the metabolic 

syndrome and encompasses a histological spectrum ranging from simple 

steatosis (where an excess of fat accumulation can be observed in hepatocytes), 

with no clinical significance, to NASH, where besides fat accumulation, 

parenchymal inflammation and lipotoxicity drive to hepatocyte death. Depending 

on the duration and severity of this inflammation, NASH can undergo different 

degrees of fibrosis, sometimes leading to clinically relevant fibrosis and cirrhosis 

(Figure I.8) 138,196. It is currently estimated that 30-40% of people with NAFLD 

progress to NASH. From this pathological state, approximately 40-50% progress 

towards more severe states of liver fibrosis and cirrhosis, with only 3-5% 

developing HCC 193,197. Although NAFLD itself does not increase the risk of HCC, 

it is well-accepted that NASH is a clear risk factor for this type of cancer, even in 

all those patients who do not develop fibrosis or cirrhosis 198–200.  

The underlying mechanisms for the development and progression of NAFLD are 

complex and multifactorial. According to the currently accepted ‘multiple-hit 

hypothesis’ 201,202, insulin resistance and gut flora are key factors that determine 

NAFLD progression. During insulin resistance, adipose tissue becomes 

dysfunctional and produces an altered pattern of adipokines and cytokines, which 

leads to inflammation and increased lipid accumulation in the liver through 

increased lipogenesis and impaired lipolysis. This altered interplay between 

adipose tissue and liver triggers lipotoxicity in hepatocytes and subsequent 

mitochondrial dysfunction and oxidative and ER stress 198,203.   
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The contribution of the gut-liver axis in this process is also very important, since 

altered gut flora leads to further production of fatty acids in the bowel, increased 

small bowel permeability and increased fatty acid and PAMP absorption to the 

portal circulation, effects that, in summary, contribute to increase fat storage and 

inflammatory activation in the liver 204. Genetic predisposition and epigenetic 

modifications have been also described as important features to determine the 

interindividual susceptibility to NAFLD development, affecting different 

parameters such as hepatocyte fat content, inflammatory microenvironment, 

HSC activation and/or evolution to more severe phases of the disease 201,205. 

Although initially it was assumed that steatosis always precedes inflammation in 

the progression of this disease, it is now recognized that NASH can be the original 

liver lesion, and the timing and combination of genetic, external and intracellular 

events rather than the simple addition of hepatic insults result in different 

pathways which lead to steatosis and/or NASH 202,204. 
 

Figure I.8. Natural history of chronic liver disease 138. 

 

c) Liver fibrosis and cirrhosis 

The two key features that lead to chronic liver disease progression are 

fibrogenesis and aberrant angiogenesis. Sustained wound-healing response 

results in a severe distortion of both liver parenchyma and vascular architecture. 

Most of the key features which lead to fibrogenesis progression have been 

already explained in the corresponding chapter of HSC biology (I.B.2 b). On its 

hand, the angiogenic process leads to shunting of the portal and arterial blood 

supply directly into the hepatic outflow (central veins), compromising exchange 
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between hepatic sinusoids and the adjacent liver parenchyma. In cirrhosis, the 

space of Disse is filled with scar tissue and LSEC lose their characteristic 

fenestrations and develop basal membrane in a process known as sinusoidal 

capillarization (Figure I.9). Histologically, cirrhosis is characterised by 

vascularised fibrotic septa that link portal tracts with each other and with central 

veins, resulting in hepatocyte islands surrounded by fibrotic septa that are devoid 

of a central vein 206,207. The major clinical consequences of cirrhosis are liver 

dysfunction, portal hypertension, ascites and HCC development. Portal 

hypertension results from the combination of structural disturbances associated 

with advanced liver disease, and of functional abnormalities leading to endothelial 

dysfunction and increased hepatic vascular tone 208,209.  

 

Figure I.9 Matrix and cellular alterations in hepatic fibrosis 133. 

https://www.sciencedirect.com/topics/medicine-and-dentistry/vascular-tone
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I.B.6. Liver regeneration 

Despite the classical conception of liver fibrosis as a passive and irreversible 

process due to hepatocyte collapse, the idea of fibrosis regression was proposed 

in the 1970s, and it was definitely demonstrated in the 1990s, being  completely 

assumed nowadays by basic researchers and physicians 210,211. It is considered 

that, at a certain stage of advanced disease, fibrosis may become irreversible, 

likely due to significant collagen cross-linking and development of an insoluble 

and hypocellular matrix, which may correspond with the appearance of clinical 

manifestations of advanced cirrhosis. However, even this conception is still in 

debate as explained afterwards in this chapter.  

a) Liver regeneration in health and disease 

Following an acute injury or resection, the remaining healthy liver rapidly 

undergoes a strong compensatory response known as ‘hepatostat’ aimed to 

regain its original volume and structure, as well as its optimal metabolic and 

homeostatic status 190,212.  

In a healthy liver, this compensatory system triggers a fantastic regeneration 

response. However, when this organ is chronically damaged by different insults 

(viral infections, alcohol, DILI, NAFLD, etc.), liver architecture becomes aberrant 

and hepatic regenerative capacity results severely altered. In brief, at a cellular 

level, hepatocytes are increasingly senescent and unable to divide efficiently, and 

HSC are activated; thus, both excessive cellular debris and settled scar tissue 

hamper an efficient regeneration. At the same time, most of the liver 

macrophages and immune cells are activated in a pro-inflammatory and pro-

fibrogenic way, which also hinders a proper regenerative response 117,213 (Figure 

I.10).  

Finally, it is important to note that even in the context of liver cirrhosis the natural 

history can be modified and patient outcome improved. Specifically, treatment 

and/or elimination of the hepatic insult favours certain liver regeneration and 

remodelling, as it has been recently demonstrated in patients with HCV-induced 

liver cirrhosis who had been successfully treated for the infection with direct-

acting antiviral drugs. These patients presented a significant decrease in collagen 

content and cirrhosis regression, which led to the reduction of the clinical 

incidence of hard end-points like HCC and death 214,215. 
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Figure I.10 Cellular interplay in normal and abnormal liver regeneration 117. 
 
 

b) Liver regeneration by targeting HSC 

Since HSC are an important contributor to ECM synthesis and fibrosis 

progression, they also play a crucial role in its regression. There are three main 

mechanisms for fibrosis regression by direct targeting HSC inactivation: 

apoptosis, senescence and cell cycle arrest with reversion to their quiescent 

stage 216,217. 

Apoptosis of HSC during liver fibrosis decreases their number and subsequently 

contributes to the partial degradation of ECM through TIMP1 expression 

decrease 218,219. Of interest, NF-𝜅𝜅B plays an important role protecting HSC from 

apoptosis during fibrosis progression and, thus, its inhibition can directly favour 

recovery and regeneration 220. Finally, as explained elsewhere in this chapter and 

observed in Figure I.6, many other liver cells contribute to HSC activation and 

deactivation. In this line, all hepatocytes, NK cells and KC are able to induce 

apoptosis of HSC by different mechanisms and paracrine mediators, all of which 

aimed to increase anti-proliferative and pro-apoptotic pathways as well as to 

decrease pro-survival signaling pathways 221,222.  
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Regarding senescence induction, recent studies have established that under 

specific circumstances, HSC reach their replicative limit, adopt a more 

inflammatory and less fibrogenic phenotype and undergo senescent in a p53-

dependent manner 223,224. Interestingly, those inactivated cells have an enhanced 

capacity to reactivate, compared to those that have never been activated. 

Quantitatively, reversion of activated HSC to quiescence is likely to be a 

significant pathway in fibrosis regression that involves approximately 50% of the 

stellate cell population, and it may in part be regulated by changes in PPARγ 

activity 133.  

Finally, despite the fact that signals that induce myofibroblast reversion remain 

largely unknown, it is well assumed that under certain conditions, activated HSC 

can exhibit cell cycle arrest with reversion to a quiescent phenotype, similarly to 

all those inactivated by senescence 225,226. In addition to this, a fourth option for 

HSC deactivation and fibrosis amelioration has been recently described: recent 

studies have demonstrated that hepatic myofibroblasts have an intrinsic capacity 

to reprogramme into hepatocyte-like cells by simultaneous expression of several 

transcription factors (FOXA1, FOXA2, FOXA3, GATA4, HNF1A and HNF4A), 

faithfully reproducing the function and proliferation of primary hepatocytes and 

thus reducing liver fibrosis 227,228.  

I.B. 7. Animal modelling of liver disease 

In the last years different experimental approaches have been developed in 

rodents and used by researchers all over the world in chronic liver disease 

modelling, from NAFLD and NASH to liver fibrosis, cirrhosis and hepatocellular 

carcinoma. In this context, two key features should be considered in these in vivo 

models. First, they should reproduce the pathological pattern of liver injury that 

defines human liver disease. Second, they must be able to reproduce systemic 

metabolic and immune responses that humans develop during liver disease 

progression. This characteristic is especially relevant in all those models which 

aim to induce NAFLD and NASH, as they always develop in a metabolic 

syndrome context.  

However, it is important to highlight that none of the currently available mice 

models has been able to fully reproduce all symptoms and features of human 

disease. The main reasons for this are the obvious interspecific differences 
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(between rodents and humans, mainly associated with metabolism). Also, the 

inherent complexity of the multiple etiologies involved in liver disease 

progression, together with the long time required for its development, plays a key 

role 229,230.  

From a physiological point of view, chronic liver disease in animals can be 

reproduced by a wide variety of factors that lead to changes in hepatic fat 

disposition, hepatocyte injury, HSC transdifferentiation and inflammatory 

activation. Major approaches to liver disease induction have been done 

employing genetic, nutritional, chemically-induced and surgical models.   

a) Genetic models 

In this type of models, animals with spontaneous or targeted alterations of certain 

genes involved in the progression of the disease are used. Some examples of 

genetic models with spontaneous development of NAFLD, among others, are 

Ob/ob and Ob/rb mice, which are deficient in leptin signaling; AOX, MAT1A or 

NRF1 null mice, that present impaired β-oxidation pathways, or KK-Ay/a and 

MRC4 mice, which have no hypothalamic control in the appetite suppression 

(5,6). Generally, these models display pathogenic features of human NAFLD 

(obesity, steatosis, and insulin resistance). However, they do not generally have 

a distinctive phase of steatosis before the development of steatohepatitis and do 

not progress to fibrosis. Therefore, the use of these mice in NASH studies is 

limited by the lack of widespread availability and high costs for long-term 

maintenance 232,233. 

b) Nutritional models 

Within this category, we can distinguish between all those models based on a 

nutritional deficiency, such as the ‘methionine and choline deficient diet’ (MCD) 

or ‘choline-deficient L-amino acid-defined diet’, and all those based on 

overnutrition, usually with high fat diet (HFD) but also with high lipogenic and 

aterogenic nutrients like glucose or fructose (commonly known as Western diet). 

Models based on the lack of essential nutrients result in impaired β-oxidation and 

altered production and secretion of lipoproteins from the liver, which leads to 

steatosis progression. They have long been used, especially that based on MCD 

diet, and are able to elicit a severe NASH phenotype in a relatively short time 
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frame. However, the mechanisms they use do not correspond with human 

NAFLD progression and they fail to induce the metabolic co-morbidities that are 

typically observed in patients 232,234.  

On the other hand, overnutrition models are able to generate considerable levels 

of steatosis, inflammation and fibrosis, which mimic quite well the 

pathophysiology and phenotype observed in human NAFLD, but they need 

longer experimental procedures. Typically, the severity of NAFLD induced by 

these models depends on the rodent species, the composition of the diet and the 

duration of the procedure. In addition, as none genetic or nutritional models fully 

reflect the real picture of human NAFLD/NASH, certain mouse models use 

combined transgenic mice plus nutritional modifications to better reproduce the 

pathogenesis of the disease 232,234.  

c) Surgical and chemically-induced models 

Chemically-induced liver injury is also a good strategy to quickly induce several 

diseases. Examples of this approach are streptozotocin-induced NAFLD in the 

context of type 1 diabetes, carbon tetrachloride (CCl4)-induced liver fibrosis or 

diethylnitrosamine (DEN)-induced HCC. As happens with genetic models, these 

models are not able to exactly reproduce all features of human diseases, so their 

use is generally limited to certain stages of liver pathology 232,234.  

The most commonly used procedure to quickly induce liver fibrosis in rodents is 

chronic CCl4 injection. It is a well-established model that induces oxidative stress 

in the liver, leading to the accumulation of toxic lipids and protein peroxidation 

products, accompanied by a strong necrotic response. In mice, peritoneal 

injection of CCl4 twice or three times per week induces extensive liver damage 

with ballooned, necrotic hepatocytes, as well as a mild mononuclear cell 

infiltration in the affected areas. In addition, transaminase and triglyceride levels 

are substantially higher compared to those of control animals. Most importantly, 

CCl4 induces a dose-dependent fibrosis that regresses after discontinuing 

compound administration. Single administration of CCl4 induces fibrosis, but no 

obesity nor insulin resistance. In addition, despite this is not a model of NAFLD 

itself, as CCl4 is dissolved in different types of oil prior administration (generally 

corn oil), these injections are also able to induce mild macro- and microsteatosis. 

Furthermore, it is also frequently combined with dietary models to efficiently 
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induce NAFLD. In this experimental setting, CCl4 potentiates the effects of HFD 

towards the development of NASH and fibrosis. In all cases, the intensity of liver 

damage directly correlates with the duration of the treatment and the doses 

employed 235. 

Finally, there are also many surgical approaches employed in animal modelling 

of liver diseases. The most common one is based in bile-duct ligation (BDL), 

which induces an obstructive cholestasis that progresses to liver inflammation, 

immune recruitment, hepatocyte necrosis and fibrosis progression 234. 

d) Importance of the species, strain and sex 

Election of species, strains and sex of experimentation animals may directly affect 

the development of liver diseases. It has been reported that C57BL/6 strain in 

mice and Wistar and Sprague Dawley strains in rats are generally preferred to 

generate these pathologies because of their higher sensitivity to liver damage in 

response to several insults, as well as because of their intrinsic capacity to 

develop liver disease with similar characteristics to human disorders 236,237. 

Moreover, both male rats and mice are slightly more sensitive to the induced liver 

injury than females. Specifically in mice, male C57BL/6 animals display higher 

liver inflammation, even though steatosis progression and liver enzymes do not 

present significant differences between both sexes 238. Despite these 

observations, many chronic studies use female animals as their behavior 

facilitates their housing in groups during extended periods of time.  

I.C. JAK-STAT signaling pathway 

I.C.1 Overview: biological function, structure and regulation  

The cytokine-activated Janus kinase (JAK)-STAT signaling pathway is one of a 

handful of pleiotropic cascades used to transduce a multitude of signals for 

development and homeostasis in animals. Its activation is involved in cell 

proliferation, differentiation, cell migration, apoptosis and many other cellular 

processes that regulate hematopoiesis, immune development, lactation or 

adipogenesis 239,240. Furthermore, JAK-STAT signaling has a central role in the 

control of mammalian immune responses, and thus its dysregulation is largely 

associated with various auto-immune disorders and pathologies where the 
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immunity contribution becomes decisive, like inflammatory and wound-healing 

disorders and cancer 241,242.  

Cytokines have essential roles in the control of immune responses and their 

biological functions mainly depend on their intrinsic capacity to activate or repress 

gene expression. JAK-STAT pathway has been described as a common 

signaling pathway used by many cytokines and, given its intrinsic pleiotropic 

nature, the same JAK-STAT pathway can be activated in different cell types in 

response to the same or different cytokines triggering diverse cellular responses, 

often with opposite biological functions 243,244.   

As displayed in Figure I.11, intracellular activation occurs when ligand binding 

induces the multimerization of receptor subunits: the binding of a cytokine to its 

cell-surface receptor results in receptor dimerization and the subsequent 

activation of JAK tyrosine kinases, which are constitutively associated with the 

receptor. Specific tyrosine residues on the receptor are then phosphorylated by 

activated JAK and serve as docking sites for a family of latent STAT cytoplasmic 

transcription factors. These STAT are phosphorylated by JAK, dimerize, and 

subsequently leave the receptor and translocate to the nucleus, where they 

activate gene transcription. Therefore, the JAK-STAT cascade provides a fast 

and direct mechanism to translate an extracellular signal into a transcriptional 

response 245,246. 

The mammalian JAK family has four members: JAK1, JAK2, JAK3 and tyrosine 

kinase 2 (TYK2). In addition, there are seven mammalian STAT: STAT1, STAT2, 

STAT3, STAT4, STAT5A, STAT5B and STAT6, which are highly homologous in 

several regions, especially in all those involved in their activation and dimerization 
247,248. 

Recent studies have shown that JAK-STAT signaling pathways can be regulated 

through distinct mechanisms. Key regulators include suppressor of cytokine 

signaling (SOCS) proteins and the protein inhibitor of activated STAT (PIAS) 

family, as well as various protein tyrosine phosphatases. The modulation of JAK 

and STAT by various protein modifications and the crosstalk between different 

JAK-STAT pathways and other cellular signaling cascades provide additional 

levels of regulation that might be crucial in the orchestration of different biological 

processes in which this pathway is essential 249.  
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SOCS proteins are the most extensively studied regulators of JAK-STAT 

signaling. These proteins are generally expressed at low levels in unstimulated 

cells and become rapidly induced by cytokines, thereby inhibiting JAK-STAT 

signaling and forming a classic negative-feedback loop 250. SOCS proteins 

complete a simple negative feedback loop in the JAK-STAT circuit: activated 

STAT stimulate transcription of the SOCS genes and the resulting SOCS proteins 

bind phosphorylated JAK and their receptors to turn off the pathway. SOCS can 

affect their negative regulation by three means: first, by binding phosphotyrosine 

residues on the receptors, SOCS physically block the recruitment of signal 

transducers, such as STAT. Second, SOCS proteins can bind directly to JAK or 

to receptors to specifically inhibit JAK kinase activity. And third, SOCS facilitates 

the ubiquitination of JAK and their receptors, targeting them for proteasomal 

degradation 251,252.  

Figure I.11 Intracellular activation of JAK-STAT pathway after cytokine stimulation 240. 
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I.C.2 JAK-STAT in the liver 

a) JAK-STAT in liver metabolism and homeostasis 

Recently, the JAK-STAT pathway has been implicated in the pathogenesis of 

several metabolic diseases in humans. The development of tissue-specific JAK-

STAT knockout (KO) mice has been fundamental in elucidating the role of this 

pathway in various metabolic organs. Cumulative evidence demonstrates that the 

role of any given JAK-STAT protein in metabolism is highly context-dependent 

and cell type-specific. This signaling pathway has crucial functions in 

metabolically active tissues including adipose, liver, skeletal muscle, and 

pancreatic β cells, as well as in immune cells 239,253. Specific disruption of JAK-

STAT signaling in these tissues leads to metabolic derangements or, in some 

cases, protection from obesity and its associated perturbations 254,255.  

Regarding lipid metabolism, multiple JAK-STAT pathways have been directly 

implicated in energy homeostasis by integrating both anabolic and catabolic 

responses. Studies have consistently demonstrated that STAT3 signaling 

integrates multiple signals in the regulation of hepatic glucose and lipid 

metabolism, since hepatocyte-specific deficiency of STAT3 leads to insulin 

resistance and increased expression of gluconeogenic genes, at least partly 

through disruption of IL6 signaling 256,257. Also STAT5 has a pivotal role in hepatic 

lipid metabolism maintenance since its action prevents lipid accumulation and 

steatosis progression by induction of several fatty acid transporters and lipolytic 

enzymes 258,259. Finally, STAT6 is also important in hepatic metabolism because 

it promotes glucose and fatty acid oxidation by specific inhibition of PPARα 

activity in hepatocytes 260. Together, all these data demonstrate that JAK-STAT 

signaling is crucial for a variety of metabolic functions of the liver and its disruption 

results in dysregulation of hepatic homeostasis, which may lead to hepatic 

steatosis and subsequent NAFLD progression 253. 

b) At a glance, JAK-STAT in liver disease 

As previously described, cytokine trafficking and signaling in the liver are crucial 

for its normal function, and JAK-STAT pathway orchestrates the signaling 

transduction cascade of many of the core cytokines involved in hepatic 

pathophysiology among different hepatic cells.  
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In order to completely understand the function of JAK-STAT signaling in liver 

pathophysiology, it is essential to clarify which effect is induced by each STAT in 

each cell subtype. The biological effects induced by all the different STAT in 

hepatocytes and non-parenchymal cells in the liver are displayed in Table I.4 and 

Table I.5, respectively. 

STAT2. Activation of both STAT1 and STAT2 plays a key role not only in host 

defense against HCV infection but also in interferon (IFN) α treatment-induced 

HCV clearance. After HCV infection, the infected hepatocytes produce IFNβ, 

which activates STAT1 and STAT2 in uninfected neighbouring hepatocytes and 

subsequently upregulates expression of various antiviral proteins that prevent 

further infection 261.  

STAT4. In general, STAT4 is important in generating inflammation during 

protective immune responses and immune-mediated diseases. Its IL12-mediated 

activation leads to liver injury and inhibits liver tumor growth by activating NK and 

NKT cells to produce IFNγ. Despite these observations, the role of STAT4 in the 

pathogenesis of liver diseases is still controversial 262,263.  

STAT5. Many studies suggest that STAT5 activation plays an important role in 

promoting tumorigenesis via upregulation of anti-apoptotic, cell-proliferative, 

invasion and metastasis-related genes. However, it has also been controversially 

reported that STAT5 activation mediates hepatoprotective effects preventing the 

development of HCC 264,265. Nevertheless, it is generally assumed that STAT5 

acts as a tumor suppressor in liver tumorigenesis via its anti-steatogenic and 

hepatoprotective effects. However, it is not clear whether STAT5, similar to 

STAT3, can also promote HCC cell proliferation once cells have become 

neoplastic 266,267. 

 

STAT6. Both IL4 and IL13 strongly induce STAT6 activation in the liver and are 

likely to play complex roles in controlling liver injury and inflammation. IL4 seems 

to induce pro-inflammatory/pathogenic effects via activation of STAT6. However, 

a hepatoprotective function of this cytokine has also been described in DILI, 

mostly mediated by the upregulation of hepatic GSH synthesis 262,263,268. In 

addition, both IL4 and IL13 have been reported to exert protective actions against 

ischemia/reperfusion liver injury, apparently through STAT6 activation and the 

subsequent inhibition of inflammation and protection against hepatocyte and 

endothelial cell damage 269,270. 

https://www.sciencedirect.com/topics/medicine-and-dentistry/host-defense
https://www.sciencedirect.com/topics/medicine-and-dentistry/host-defense
https://www.sciencedirect.com/topics/medicine-and-dentistry/hepatocyte
https://www.sciencedirect.com/topics/medicine-and-dentistry/antiapoptotic
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Table I.4 Major activators and functions of STAT proteins in hepatocytes 261. 

 

STAT Cell types Major activators Major functions 

STAT1 

in HSC IFN (α, β, γ) Inhibits fibrosis 

in KC IFNγ Promotes inflammation 

in NK cells IFN (α, β, γ) 
Promotes anti-viral, anti-tumor 
and anti-fibrotic responses 

STAT2 in non-parenchymal cells Unknown Unknown 

STAT3 

in HSC IL10 Promotes fibrogenesis 

in KC IL6, leptin Inhibits inflammation 

in endothelial cells  Unknown Inhibits inflammation 

STAT4 in NK and NKT cells IL12, IFNα/β Promotes inflammation 

STAT5 in HSC Leptin Promotes fibrogenesis 

STAT6 in HSC IL4, IL13 Promotes fibrogenesis 

Table I.5 Major activators and functions of STAT proteins in non-parenchymal cells 261. 

 

As observed above, the most important STAT involved in chronic liver disease 

are both STAT1 and STAT3, as they are able to induce different responses in 

liver parenchymal, non-parenchymal and immune cells 269,270. 

STAT Major activators Major functions 

STAT1 IFN (α, β, γ, λ) 

Promotes anti-viral responses 
Promotes anti-tumor responses 
Induces hepatocyte apoptosis 
Inhibits hepatocyte proliferation 
Promotes liver inflammation 

STAT2 IFN (α, β, λ) Promotes anti-viral response 

STAT3 IL6, IL22, IL6 family 

Promotes hepatocyte survival 
Promotes hepatocyte proliferation 
Ameliorates steatosis 
Induces innate immune response 
Promotes liver tumor, cell survival and growth 

STAT4 Unknown Unknown 

STAT5 Growth hormone 

Upregulates liver metabolism 
Promotes hepatocyte survival 
Promotes hepatocyte proliferation 
Ameliorates steatosis 

STAT6 IL4, IL13 
Promotes liver injury and inflammation 
Protects against ischemia/reperfusion and DILI 
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c) Opposing roles of STAT1 and STAT3 in liver injury and repair 

STAT1 and STAT3 can be ubiquitously activated in many different liver cell 

subtypes and their activation generally plays opposing roles in many aspects of 

liver pathophysiology 271,272. Interestingly, hepatic STAT1 and STAT3 not only 

functionally antagonize each other, but they also mutually inhibit each other’s 

activation through the induction of SOCS1 and SOCS3, respectively, that inhibit 

both STAT1 and STAT3 activation 273,274. Attending to this SOCS-mediated 

mutual inhibition, STAT3 activation rapidly induces STAT1 inhibition and vice-

versa; for this reason, the simultaneous activation of both transcription factors in 

the same cell is certainly impossible (Figure I.12).  

The involvement of STAT1 and STAT3 signaling pathways in induction of 

damage or in liver regeneration directly depends on the cytokine 

microenvironment, which determines the type and the amount of cells that 

overexpress STAT1 or STAT3 at a certain point of time 261,272,275.  

Although it is a reductionist explanation, to clearly understand this hepatic 

regulation we can assure that, in general, STAT3 activation in any cell induces 

pro-survival and pro-proliferative pathways and increases the resistance of these 

cells to the damage 276–279. Conversely, STAT1 activation triggers anti-

proliferative pathways and induces cell cycle arrest, senescence and/or 

apoptosis 280–282.  

Consequently, STAT1 activation in hepatocytes is a pro-apoptotic signal that 

leads to cell death and increased liver damage, whereas STAT3 activation is a 

pro-survival and proliferative signal that protects against hepatocyte death 283–285. 

In contrast, STAT1 activation in HSC inhibits their proliferation and induces cell 

cycle arrest and apoptosis, thus limiting the fibrogenic response 281,286. On its 

hand, STAT3 activation in these same cells has a pro-fibrotic effect since it 

increases their activation and proliferation and enhances the ECM deposition in 

the scarring tissue 277,279. 

Similar effects are observed during liver regeneration. Upon an acute liver injury, 

hepatostat sensing in the liver rapidly induces quiescent hepatocytes to enter 

the cell cycle and replicate under the control of a broad spectrum 

of cytokines, growth factors, and hormones. Among these factors, IL6 represents 

the major cytokine that activates STAT3 in hepatocytes, whose activity is crucial 
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for their proliferation. STAT1 activation, mainly driven by IFNγ, plays a deleterious 

effect in this context, since it induces cell cycle arrest and apoptosis in 

hepatocytes and thus impairs parenchymal regeneration 287,288. 
 

 

Figure I.12 Hepatocyte STAT1 and STAT3 balance in liver injury and regeneration 289. 
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The general aim of this study was to explore the role of the most widely used 

antiretroviral drugs in the onset and/or progression of acute and chronic liver 

diseases, and to characterize the cellular and molecular mechanisms involved, 

using both in vitro and in vivo models. 

The specific aims were: 

 To systematically analyse the acute mitochondrial effects of nucleoside-

analogue reverse transcriptase inhibitors and their impact in the function of 

hepatic cells. 
 

 To explore potential synergisms between these antiretrovirals and other drugs 

whose hepatotoxicity is attributed to mitochondrial dysfunction.  
 

 To characterize the chronic effects of non-nucleoside reverse transcriptase 

inhibitors on hepatic alterations associated with steatosis, inflammation and 

fibrogenesis using a nutritional animal model of non-alcoholic fatty liver 

disease.  
 

 To analyze the potential of these drugs to modulate the onset, progression and 

resolution of liver damage in animal models of fibrosis induced by CCl4. 
 

 To determine the hepatic cell subsets and the molecular mechanisms mainly 

involved in the RPV-related effects observed in vivo, with the aim of identifying 

potential therapeutic targets, specially focusing on the role of JAK-STAT 

signaling pathway. 
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III.A. DRUGS AND REAGENTS 

III.A.1. ARV drugs 

The ARV drugs employed in this thesis for in vitro experiments were purchased 

from Sequoia Research Products (Pangbourne, UK) and were dissolved in their 

respective vehicles (see Table III.1). No significant impact was found on any of 

the analysed parameters with the concentrations employed of the vehicles. 

Antiviral drugs used in vivo experiments were obtained from the Service of 

Pharmacy of the Hospital Clínico Universitario of Valencia (Spain). ARV pills were 

pulverized using a glass mortar, dissolved in pure DMSO and introduced in an 

ultrasound bath for 5 min until homogenous dissolutions were obtained, ready to 

be orally administered in animals. 

DRUG BRAND NAME VEHICLE 

3TC Epivir® Distilled water (in vitro) 

ABC Ziagen® Distilled water (in vitro) 

ddI Videx® Distilled water (in vitro) 

AZT Retrovir® Distilled water (in vitro) 

FTC Emtriva® Distilled water (in vitro) 

TDF Viread® Distilled water (in vitro) 

EFV Sustiva™ Methanol (in vitro) / DMSO (in vivo) 

RPV Endurant® DMSO (both in vitro and in vivo) 
. 

Table III.1 ARV drugs employed in this thesis. Active principles, brand names and vehicles. 

 

III.A.2. General chemical reagents 

All general chemical reagents were of analytical grade and were acquired from 

Sigma-Aldrich (Stenheim, Germany), Panreac Química S.L.U. (Barcelona, 

Spain), Merck Milipore (Darmstadt, Germany) and Roche Life Science 

(Penzberg, Germany).  

III.A.3. Cell culture reagents 

Media and supplements for cell culture were obtained from Gibco™ (Thermo 

Fisher Scientific, Waltham, MA, USA), Sigma-Aldrich and Lonza (Basel, 

Switzerland) (see Table III.2). 
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Table III.2 Reagents used in cell culture and their supplier companies. 
 

 

III.B. EXPERIMENTAL MODELS AND TECHNIQUES 

III.B.1. In vitro approaches 

a) Human cell lines 

The human hepatoblastoma cell line Hep3B (86062703, European Collection of 

Authenticated Cell Cultures (ECACC), Salisbury, UK) was used as a human 

hepatocyte model because they display a good CYP activity capable of 

metabolizing ARV drugs in a similar way to human primary hepatocytes 290,291. 

These cells were cultured in MEM supplemented with 10% heat-inactivated FBS 

(iFBS), 1 mM NEAA, 2 mM L-glutamine and 1 mM sodium pyruvate. In some 

experiments also the human hepatocellular carcinoma cell line HepG2 

(85011430, ECACC, Salisbury, UK) was used in order to confirm if the effect 

observed in response to some drugs was cell type-specific and not related to the 

particular cell line employed. The medium used for culturing these cells was 

REAGENT COMPANY 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich 

Dulbecco′s Modified Eagle′s Medium (DMEM) with high 
glucose concentration (4.5 g/L) Gibco 

Fetal bovine serum (FBS) Lonza 

Hank’s balanced salt solution (HBSS) Sigma-Aldrich 

Hydrocortisone hemisuccinate Sigma-Aldrich 

Insulin from bovine pancreas Sigma-Aldrich 

L-glutamine Gibco 

Minimum essential medium (MEM) Gibco 

Non-essential amino acids solution (NEAA) Gibco 

Penicillin/streptomycin Gibco 

Phosphate-buffered saline (PBS, pH 7.4) Gibco 

Sodium pyruvate Gibco 

Trypsin-Ethylenediaminetetraacetic acid (EDTA) 0.25% Gibco 

William’s medium E Sigma-Aldrich 
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DMEM with high glucose concentration, supplemented with 10% iFBS, 1 mM 

NEAA, 2 mM L-glutamine and 1 mM sodium pyruvate. 

LX-2 cells, a human immortalized HSC line, were routinely cultured in DMEM with 

high glucose concentration supplemented with 10% iFBS. These cells were 

kindly provided by Dr. Scott L. Friedman (Icahn School of Medicine at Mount 

Sinai, New York, USA). 

HepaRG™ cells (HPRGC10, Gibco) are bipotent progenitors isolated from a 

human hepatoma. They differentiate into hepatocyte-like and biliary epithelial-like 

cells. Cells were initially maintained at a density of 2.7 x 104 cells/cm2 in William’s 

medium E supplemented with 10% iFBS, 5 µg/mL insulin from bovine pancreas, 

2 mM L-glutamine, and 50 µM hydrocortisone hemisuccinate. After 2 weeks, 

undifferentiated HepaRG™ were cultured in presence of 2% DMSO in the 

medium for a further 2-week period to induce cell differentiation 292,293. Thereafter, 

hepatocyte-like cells were selectively harvested from differentiated HepaRG 

through mild tripsinization (0.125% trypsin-EDTA) and reseeded at a density of 

8x104 cells/cm2 in medium containing 2% DMSO. For treatment, cells were 

maintained in DMSO-free medium with the drug concentration under assay. 

All cell culture media were supplemented with 50 U/mL penicillin and 50 µg/mL 

streptomycin. Cell cultures were maintained in a cell culture incubator (MCO-

19AICUV-PE, Panasonic Healthcare Co. Ltd., Gunma, Japan) at 37⁰ C, with a 

humidified atmosphere of 5% CO2 and 95% air (AirLiquide Medical, Valencia, 

Spain). All cell lines were subcultured when they reached 90-95% confluence, 

using 0.25% Trypsin-EDTA. Sub-confluent cell cultures of passage number lower 

than 30 were used for all the experiments. 

b) Human liver tissue  

Human liver tissue was obtained from biopsies from patients (two women and 

four men) who had undergone surgical resection of liver tumours (Hospital 

Universitario Doctor Peset, Valencia, Spain) and had provided informed consent. 

Experiments were approved by the institutional ethics committee (CEIC Hospital 

Universitario Doctor Peset; reference number of approved report: 62/11). 
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c) Human primary HSC isolation 

All experiments with primary human HSC were done in collaboration with the 

Liver Vascular Biology Research Group from the Institut D’Investigacions 

Biomèdiques August Pi i Sunyer (IDIBAPS) and Hospital Clínic (Barcelona, 

Spain), headed by Dr. Jordi Gracia Sancho, and with the special support of Dr. 

Anabel Fernández Iglesias.  

Human HSC were isolated from remnant tissue, approximately weighing 20 g, 

obtained from human partial hepatectomy to excise tumor metastasis from colon 

carcinoma and from the discarded tissue after liver transplantation. Healthy 

samples obtained from peritumoral tissue were confirmed as “normal” by 

anatomical pathologists from the Hospital Clínic. This experimental protocol was 

approved by the Ethics Committee of this hospital (HCB/2015/0624) and, in all 

cases, patients agreed to an informed consent. 

Human liver tissue was perfused through major vessels for 10 min at a flow rate 

of 20 mL/min at 37° C with HBSS without Ca+2 and Mg+2 and containing 12 mM 

HEPES ((4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; Sigma‐Aldrich) pH 

7.4, 0.6 mM ethylene glycol-bis (2-aminoethylether)-N,N,N′,N′-tetraacetic acid; 

Sigma‐Aldrich) and 0.23 mM bovine serum albumin (BSA; Applichem). Then, 

sample was perfused for 30 min at a flow rate of 5-20 mL/min at 37° C with 

0.015% collagenase A (Roche), prepared in HBSS containing 12 mM HEPES pH 

7.4 and 4 mM CaCl2. The resultant digested liver was excised and in vitro 

digestion was performed at 37° C with 0.01% collagenase A, in HBSS containing 

12 mM HEPES pH 7.4 and 4 mM CaCl2 for 10 min. Disaggregated tissue was 

fractionated by density gradient centrifugation using Histodenz (Sigma‐Aldrich). 

Cells were grown in Iscove's modified DMEM supplemented with 10% FBS, 

1% L‐glutamine, 1% penicillin/streptomycin, and 1% amphotericin B 294–296. 

Experiments were performed 3-5 days after isolation. 

d) In vitro treatments 

Unless stated otherwise, cells were treated for 1 to 72 h with clinically relevant 

concentrations of APAP and ARV drugs, chosen considering the interindividual 

pharmacokinetics variability reported in several clinical studies. Treatments were 

performed using sub-confluent cell cultures in medium supplemented with 10% 

iFBS. Several concentrations of each drug were tested in order to analyse the 
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concentration-dependence of the studied effect. Additionally, a negative control 

(untreated cells) and a vehicle control were used in every experiment. Also, 

several positive controls were used depending on the biological process that was 

studied in each experiment. Additionally, some experiments in Hep3B cells were 

carried out with conditioned medium from treated LX-2 cells.  
 

III.B.2. In vivo approaches 

a) Animal studies 

Ten-week-old female C57BL/6J mice were supplied by Janvier Labs (Le Genest 

Saint Isle, France). Animals (20 ± 3 g of body weight) were given ad libitum 

access to water and chow diet (Envigo, Huntingdon, UK), they were kept at 21 ± 

1⁰ C under a standard light/dark regimen (12 h/12 h). Mice were always randomly 

divided into the different experimentation groups (ten mice per group).  

All animal procedures were performed in accordance with the guidelines for the 

care and use of laboratory animals of the University of Valencia (Valencia, Spain), 

and were approved by the local ethics committee (authorization codes 

A1406879617392 and A1415981032459). 

b) ARV drug administration 

Animal dosage were calculated using the normalized interspecies allometric 

scaling factor, based on interespecific body surface area calculations, stablished 

by FDA to reach a dose for mice equivalent to the daily maximum therapeutic 

dose of EFV (600 mg) and RPV (25 mg) 297,298. Therefore, animals were orally 

treated (p.o.) on a daily basis with 2.47 mg of EFV or 0.1 mg of RPV dissolved in 

10 µL of DMSO.  

All mice were sacrificed at the end of the protocol using isoflurane-inhaled 

anaesthesia. Blood samples were collected from the cave vein. Livers were 

weighed and fixed in 10% formalin for histological analysis or snap-frozen in liquid 

nitrogen followed by storage at -80° C. 

c) Mice models of chronic liver disease 

1. Nutritional model of NAFLD 

After carefully reviewing numerous studies about NAFLD modelling, we finally 

decided to establish an overnutrition model of NAFLD in female C57BL/6 mice 
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for 12 weeks, in order to study the implication of several anti-HIV drugs in the 

development and progression of chronic liver disease (Figure III.1). 

Specifically, we used a highly lipogenic and aterogenic diet (‘high fat diet’, HFD) 

specially prepared by Ssniff Spezialdiäten GmbH (Soest, Germany), composed 

by 59% of fat, 26% of carbohydrates, 15% of proteins and 2% of cholesterol 

(Ssniff® EFR/M D12330 mod.*/Surwit). In order to analyse the progression of 

NAFLD, and the actions of representative drugs from different ARV families in 

this process, animals were divided in different experimental groups:  

 Normal diet (ND) control group:  mice fed with normal diet. 

 HFD control group: mice fed with HFD. 

 Vehicle ND group: mice fed with ND and daily administered with 10 µL of pure 

DMSO.  

 Vehicle HFD group: mice fed with HFD and daily administered with 10 µL of 

pure DMSO. 

 Drug-treated ND group: mice fed with ND and daily administered with the ARV 

drug dissolved in 10 µL of DMSO. 

 Drug-treated HFD group: mice fed with HFD and daily administered with the 

ARV drug dissolved in 10 µL of DMSO. 

Mice were monitored daily and weighed once a week. Importantly, no differences 

between Control and Vehicle groups were found in all the studied parameters.  

 

 

 

 
 

Figure III.1: Nutritional model of NALFD. 

 

2. Liver fibrosis models 

We used different variations of the CCl4-induced liver injury model in mice to study 

the capacity of the compounds under study to modulate the pathophysiological 

mechanisms involved in liver fibrosis progression, regression and liver 

regeneration. 

Normal diet / High fat diet

30 6 9 12

Daily doses of Veh / ARV
weeks
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2.1 Effect of ARV drugs in the progression of liver fibrosis 

In this model, 0.5 mg/Kg CCl4 dissolved in 50 µL of corn oil were intraperitoneally 

injected (i.p.) in mice in alternate days for 4 weeks. ARV administration was done 

exactly as in the nutritional model. Thus, drugs were administered (p.o.) on a daily 

basis during the whole duration of the experiment (see Figure III.2).    

Three different experimental groups were defined for the study of each 

compound: 

 Control group (Veh): daily oral DMSO administration and corn oil injections in 

alternate days for 4 weeks.  

 Liver fibrosis group: daily oral DMSO administration and CCl4 injections in 

alternate days for 4 weeks.  

 Drug-treated fibrosis group: daily oral ARV administration and CCl4 injections 

in alternate days for 4 weeks.  

 
 

 

 
 

Figure III.2 Mice model to study the effect of ARV drugs in the progression of liver fibrosis. 
 

2.2 Effect of ARV drugs in the regression of liver fibrosis 

CCl4 injections were administered in the same way than in the previous protocol 

(section 2.1), but the duration of the procedure was increased until six weeks. 

Alike, ARV administration was done orally and in a daily basis, but only during 

the last two weeks of the procedure (see Figure III.3). Therefore, three 

experimental groups were defined:  

 Control group (Veh): corn oil injections in alternate days for 6 weeks and daily 

oral DMSO administration only during the last 2 weeks. 

 Liver fibrosis group: CCl4 injections in alternate days for 6 weeks and daily 

oral DMSO administration only during the last 2 weeks. 

 Drug-treated fibrosis group: CCl4 injections in alternate days for 6 weeks and 

daily oral ARV administration only during the last 2 weeks. 

daily doses of ARV 

CCl4 3 times per week

1 2 3 40

weeks
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Figure III.3: Mice model to study the effect of ARV drugs in the regression of liver fibrosis. 
 

2.3 Effect of ARV drugs in the spontaneous regeneration of the liver 

In this procedure, CCl4 injections were administered following the same protocol 

but only for four weeks. Afterwards, control and vehicle groups were allowed to 

regenerate by themselves for two weeks, whereas treated groups were daily 

administered with ARV drugs for this same period of time (see Figure III.4). Thus, 

three experimental groups were defined:  

 Control group (Veh): corn oil injections in alternate days for 4 weeks and then 

only daily oral DMSO administration for two more weeks. 

 Liver fibrosis group: CCl4 injections in alternate days for 4 weeks and then 

only daily oral DMSO administration for two more weeks. 

 Drug-treated fibrosis group: CCl4 injections in alternate days for 4 weeks and 

then only daily oral ARV administration for two more weeks. 

 
  

 

Figure III.4 Mice model to study the effect of ARV drugs in spontaneous liver regeneration. 

 

III.B.3. Transfection of mammalian cell lines: transient gene silencing 

Endo-ribonuclease prepared small interfering (si)RNA (esiRNA) are a 

heterogeneous mixture of siRNAs that all target the same mRNA sequence. As 

higher specificity and lesser off-target effects have been demonstrated when 

compared with classic siRNA, esiRNA were used in our experiments targeting 

both STAT1 and Luciferase (Sigma-Aldrich). esiRNA targeting Luciferase was 

used as transfection control (SiC), since it is not expressed in our cells 299,300.   

LX-2 cells were transiently transfected using Lipofectamine™ 2000 (Invitrogen, 

Thermo Fisher Scientific), according to the manufacturer’s instructions. Cells 

daily doses of ARV

1 2 3 40 5 6

weeks

CCl4 3 times per week

daily doses of ARV

1 2 3 40 5 6

weeks

CCl4 3 times per week
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were seeded the day before the transfection in 6-well plates and maintained at 

37º C in a CO2 incubator overnight. For the transfection, 100 pmol of STAT1 

esiRNA (Sigma-Aldrich) and 10 µL of Lipofectamine™ 2000 were diluted gently 

in 250 µL of serum-free Opti-MEM® (Invitrogen, Thermo Fisher Scientific) in two 

separate tubes.  

Diluted esiRNA and diluted Lipofectamine™ 2000 were combined (total volume 

of 500 µL), mixed gently and incubated for 20 min at room temperature (RT). The 

transfection mixture was added to LX-2 cells (80-90% confluence) in 6-well plates 

containing 1.5 mL of supplemented MEM without antibiotics and mixed gently 

before incubation for 6 h at 37º C in a cell culture incubator. After 6 h, the medium 

was replaced by fresh supplemented MEM. The following day, transfected cells 

were treated according to the different experimental conditions.   

III.B.4. Cell viability assay 

Cell viability and proliferation was detected using a MTT based-colorimetric assay 

(Cell Proliferation Kit I MTT, Roche Life Sciences). This assay is based on the 

reduction of the yellow tetrazolium salt MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyl tetrazolium bromide] to purple formazan 301, which takes place only by 

active mitochondrial reductases, such as NADH and NADPH (Figure III.5), and 

hence, MTT reduction is related to the number of viable and metabolically active 

cells. The purple formazan crystals are solubilized, usually with an organic 

solvent or a sodium dodecyl sulfate (SDS) solution, and the absorbance of the 

resulting colored solution is finally quantified spectrophotometrically at 570 nm.  

 

  

  

 

 

 
Figure III.5: Metabolization of MTT to a formazan salt by viable cells. 

 

To perform the MTT assay, cells were seeded in 96-well cell culture plates. MTT 

reagent was added (20 µL/well) to the cells for the last 4 h of treatment. Medium 
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was then discarded and 100 µL/well DMSO were added to each well, and the 

plate was incubated at 37⁰ C for 5 min, in darkness. Following incubation, 

absorbance was measured at 570 nm and 690 nm employing a Multiskan™ 

Ascent 354 microplate spectrophotometer (Thermo Scientific). To achieve 

accurate results, the absorbance measured at 690 nm (background absorbance) 

was subtracted from the 570 nm absorbance value. 

III.B.5. Mitochondrial respiration measurement 

Cellular O2 consumption was measured in Hep3B cells, employing a Clark-type 

electrode (Oxytherm System, Hansatech Instruments, Norfolk, UK). The Clark 

electrode consists of a silver anode, a platinum cathode, and an electrolyte (3 M 

KCl), where both anode and cathode are immersed. In addition, a thin teflon 

membrane is placed onto both electrodes, which is permeable to O2 and allows 

this molecule to reach the platinum cathode, where it is electrolytically reduced 

(Figure III.6). The reduction of O2 generates a current of electrons between both 

electrodes, producing a potential difference, which is simultaneously recorded by 

the software connected to the electrode. The Oxytherm System is connected to 

an integral thermoelectric temperature control that provides measurements at 

constant temperature 302.  

 

Figure III.6: Clark-type electrode’s chemical reaction: oxidation of atmospheric O2. 

The electrode was calibrated in air-saturated respiration buffer (HBSS) before 

performing each measurement: the atmospheric O2 concentration was 

considered as maximal (200 µM), and the electrode zero setting was achieved 

by adding excess of sodium dithionite (Panreac Química) to the respiration 

chamber. The measurement of the O2 consumption was performed in intact cells, 

which were detached by trypsinization and counted using a hemocytometer 

(Neubauer Improved, Laboroptik Ltd.) immediately prior to the measurement. For 

each experiment, 3 million cells were resuspended in 1 mL respiration buffer 

(HBSS) and taken into the respiration chamber, where the cellular suspension 

was constantly stirred and maintained at 37⁰ C. The mitochondrial origin of O2 

consumption was confirmed by addition of 1 mM potassium cyanide (KCN), which 

is an OxPhos specific inhibitor, acting on mitochondrial cytochrome c oxidase.  
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Data obtained with the Clark-type electrode were acquired and analysed with the 

program O2 View (Hansatech Instruments).  

III.B.6. Fluorescence microscope: static cytometry 

Static cytometry software connected to a fluorescence microscope is a useful tool 

for analysing automatically a broad range of cellular parameters in living adherent 

cells. Unlike in flow cytometry, cells remain adherent, avoiding appearance of 

artefacts such as those generated by trypsin-induced cell damage or aggregate 

formation.  

These experiments were performed using an Olympus IX81 fluorescence 

inverted microscope (Olympus, Hamburg, Germany) connected to the static 

cytometry software ScanR® v.2.03.2 (Olympus). In addition, the Cell^R software 

v.2.8 was employed to take images manually. All treatments were performed in 

duplicate in 48- or 24-well plates, and 15-25 live-cell images per well were 

recorded and analysed. For the last 30 min of treatments, cells were incubated 

with specific fluorescent probes at 37⁰ C in darkness, and subsequently washed 

with HBSS; cells were maintained in this buffer during the process of life cell 

imaging. For all experiments, nuclei were stained with the fluorescent dye 

Hoechst 33342 (2.5 µM), with the purpose of focusing the cells and performing 

cell count. All fluorescent probes were purchased from Molecular Probes™ 

(Thermo Fisher Scientific), except for Hoechst® 33342, which was supplied by 

Sigma-Aldrich. 

a) Cell survival/proliferation analysis 

Cells were treated and allowed to proliferate exponentially for 24-72 h and then 

counted according to Hoechst® 33342 fluorescence, which emits blue 

fluorescence when bound to dsDNA 303. 25 images per well were analysed and 

detection filters used were 348/496 nm (excitation/emission). 

b) Mitochondrial superoxide production 

To assess mitochondrial superoxide production, cells were incubated with 5 µM 

MitoSOX™, which permeates selectively mitochondria (due to its positive charge) 

and is immediately oxidized by superoxide, but not by other ROS, producing a 

red fluorescence. Rotenone was used as positive control. Detection filters used 

were 510/590 nm (excitation/emission). 
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c) Mitochondrial membrane potential  

Tetramethylrhodamine methyl ester (TMRM 5 µM) was employed to assess ΔΨm, 

given it is only sequestered within active mitochondria. As a positive control, an 

uncoupler of OxPhos, carbonyl cyanide m-chlorophenyl hydrazine (CCCP, 10 

µM) was employed. Detection filters used were 510/590 nm (excitation/emission).  

III.B.7. Spectrophotometric analysis of the activity of the ETC complexes 

The mammalian mitochondrial ETC includes proton-pumping enzymes known as 

complex I (NADH–ubiquinone oxidoreductase, CI), complex II (succinate-

quinone oxidoreductase), complex III (cytochrome bc1, CIII) and complex IV 

(cytochrome c oxidase, CIV), whose electron transfer activity is mediated by the 

mobile membrane-embedded carriers ubiquinone and soluble cytochrome c. The 

free energy and electrons released at each step along the chain creates an 

energetic potential in the mitochondrial membrane which is finally used by the 

ATP synthase (complex V, CV) to generate ATP (Figure III.7).  

The global activity of the ETC can be directly measured by the respiration 

analysis explained in the chapter III.B.5. However, the specific determination of 

the enzymatic activity of each mitochondrial complex provides additional and 

accurate information about the mitotoxic mechanisms exerted by the different 

drugs under study 304,305.  

Figure III.7: The electron transport chain 304. 
 

a) Protein extraction 

Cell pellets from Hep3B cells were resuspended in 0.5 mL MOPS-Sucrose buffer 

(20 mM and 0.25 mM, respectively), kept 5 min in ice and centrifuged at 5000 g 
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for 3 min. After that, supernatant was discarded and the pellets were 

resuspended in MOPS-Sucrose-EDTA buffer (20 mM, 0.25 mM and 1 mM 

respectively), maintained again in ice for 5 min and centrifuged at 1000 g for 3 

min. Finally, the obtained pellets were resuspended in potassium phosphate (KP) 

buffer pH 7.4 and kept at -20° C until enzymatic determination.  

b) Protein quantification 

The Bradford assay is based on the binding of Coomassie Brilliant Blue G-250 

dye to proteins. Under acidic conditions, the dye is predominantly in the doubly 

protonated red cationic form, but when the dye binds to protein, it is converted to 

a stable unprotonated blue form that can be detected at 595 nm using a 

spectrophotometer 306,307. 

A standard protein curve was prepared by serial dilutions of BSA in the same KP 

buffer as the samples to minimize the background absorbance. 10 µL of diluted 

sample (1:15) or standard were used per well in a 96-well plate and immediately 

after 200 µL of diluted working solution of Bradford reagent (BioRad; 1:5) was 

added to each well. Both samples and standard curve points were assayed in 

duplicate. Next, the plate was incubated (protected from light) at 37⁰ C for 10 min 

with gentle rocking. Finally, absorbance was measured at 595 nm employing a 

Multiskan™ Ascent 354 microplate spectrophotometer (Thermo Labsystems, 

Thermo Fisher Scientific). 

c) Determination of CI enzymatic activity 

CI is essential for oxidative phosphorylation in mammalian mitochondria. It 

couples electron transfer from NADH to ubiquinone with proton translocation 

across the energy-transducing inner membrane, providing electrons for 

respiration and driving ATP synthesis 305.  

The enzymatic activity of this macroprotein complex was evaluated by triplicate 

in 96-well plates. Briefly, KP buffer 100 mM (pH 7) containing 0.2 mM NADH, 1 

mM NaN3 and 0.1% BSA-EDTA was added to 15 µg of sample dissolved in the 

same KP buffer. After 8 min of incubation at 30° C, oxidized ubiquinone (CoQ1) 

was added at a final concentration of 0.1 mM as a proton recipient from NADH. 

The mixture was incubated for 2 min and the absorbance progression was 

measured every 30 sec for 3 min at 340 nm. In order to determine the intrinsic CI 
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activity non-susceptible to drug-inhibition, the specific inhibitor rotenone was 

added at 5 µM in each well. It was incubated for 2 more min and the absorbance 

was measured as previously described. This intrinsic activity was subtracted from 

the total activity recorded to obtain the final drug-sensitive complex I activity 
304,305. 

d) Determination of CII enzymatic activity 

CII is a component of both the Krebs cycle and the respiratory chain. CII oxidizes 

the Krebs cycle intermediate succinate, generating fumarate by passing electrons 

from succinate to FAD. Unlike respiratory CI or CIII, CII does not pump protons 

across the inner membrane, but is capable of reducing ubiquinone to ubiquinol, 

which can then be re-oxidized by CIII and thus participate in the proton pumping 

of oxidative phosphorylation 308,309.  

CII enzymatic activity was measured by the reduction of the chemical compound 

2,6-dichlorophenol-indophenol (DCPIP), which was reduced by the electrons 

from succinate oxidation. When oxidized, DCPIP is blue with a maximal 

absorption at 600 nm and, when reduced, DCPIP is colorless 308. Briefly, 20 µg 

of sample dissolved in KP buffer (100 mM, pH 7) containing 0.1 mM DCPIP and 

0.3 mM KCN were incubated 2 min at 30° C. Next, succinate was added at a final 

concentration of 30 mM. The mixture was then incubated for 30 sec and the 

absorbance progression was measured every 30 sec for 3 min at 600 nm. Finally, 

once DCPIP was completely reduced due to the high concentration of succinate, 

oxidized ubiquinone was added at 50 µM to assess its reduction by the DCPIP. 

Once again, this process was measured every 30 sec for 3 min. 

As KCN is a specific inhibitor of CIV, it was added in this protocol to increase the 

specificity of the determination.  

e) Determination of CIII enzymatic activity 

Mitochondrial CIII is a proton-pumping enzyme that catalyzes the reduction of 

ferricytochrome c by the reduced coenzyme Q through transferring electrons in 

the respiratory chain. This activity also contributes to generate proton motive 

force that in turn drives CV to generate ATP 279,310.  

CIII specific activity was measured analysing the reduction of cytochrome c at 

550 nm. Briefly, a mixture of 40 µL of 0.25 mM cytochrome c, 80 µL of ddH2O 
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and 50 μg of samples dissolved in KP buffer (100 mM, pH 7) were transferred 

into a 96-well plate. The reaction was started by the addition of 40 µL of the freshly 

prepared reaction mixture containing 250 mM Tris (2-Amino-2-(hydroxymethyl)-

1,3-propanediol)-HCl pH 7.4, 20 mM NaN3 and 0.25 mM decylubiquinol. The 

increase of absorbance at 550 nm was recorded spectrophotometrically every 30 

sec for 3 min at 30° C. The antimycin A-insensitive CIII activity (non-enzymatic 

reaction) or antimycin A-treated residual activity were determined simultaneously 

adding 0.01 mM antimycin A to the reaction mixture. CIII specific activity was 

calculated as total activity minus antimycin A-treated residual activity 311. 

f) Determination of CIV enzymatic activity 

CIV uses reduced cytochrome c from CIII to reduce molecular oxygen to water, 

which is the ultimate electron acceptor and the last step in the oxidative 

phosphorylation prior to ATP synthesis by CV. CIV acts also as a proton-pumping 

enzyme and contributes to the proton motive force generation in the mitochondrial 

intermembrane space 304,305,312,313.  

CIV activity was measured analysing the decrease in absorbance at 550 nm due 

to the oxidation of reduced cytochrome c. Previously to this determination, 0.8 M 

cytochrome c diluted in buffer KP 100 mM (pH 7) was completely reduced by the 

addition of solid sodium borohydride (BH4Na). For the enzymatic determination, 

20 µg of protein extracts were incubated for 2 min at 37° C with KP buffer 

containing cytochrome c at a final concentration of 80 mM. After that, absorbance 

was measured every 30 sec for 3 min at 550 nm. 

III.B.8. Fluorimetric determinations 

a) Determination of ROS production 

ROS production in Hep3B cells was determined by using the esterified form of 

dichlorofluorescin, dichlorofluorescin diacetate (DCFH-DA). This molecule 

crosses cell membranes and then undergoes deacetylation by intracellular 

esterases, resulting in dichlorofluorescin (DCFH). This new compound is 

susceptible to intracellular ROS-mediated oxidation and generates the 

fluorescent compound dichlorofluorescein (DCF). 

Drug-induced ROS production was studied by addition of 2.5 µM DCFH-DA 

before treatment with ARV for 1 h. Hydrogen peroxide (100 µM) and rotenone (a 
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specific inhibitor of the CI of the ETC; 100 µM) were used as positive controls. 

Fluorescence was detected every 5 min for 1 h using a Fluoroskan Ascent FL 

reader (Thermo Labsystems).      

b) Determination of intracellular ATP concentration 

The intracellular ATP concentration in Hep3B cells was determined using the ATP 

Bioluminescence Assay Kit HSII (Roche). This determination is based on the 

oxidation of luciferin to oxyluciferin by the luciferase enzyme, as showed in Figure 

III.8. ATP can be measured in the samples as it is directly proportional to the light 

emitted by the chemiluminescent reaction.    

 

 

 

 
 

Figure III.8: Oxidation of luciferin to oxyluciferin by luciferase 314. 

According to the manufacturer’s instructions, cell pellets from Hep3B cells were 

resuspended in the dilution buffer provided by the kit. ATP standard curve was 

prepared from 10-11 to 10-2 M. All ATP dilutions and samples were distributed by 

triplicates in a black 96-well plate. After 5 min of incubation with the cell lysis 

reagent at RT, 30 µL of luciferase reagent were added and a Fluoroskan Ascent 

FL reader (Thermo Labsystems) was used to determine the luminescence.  

ATP concentrations from samples, calculated by interpolation of the obtained 

luminescence in the standard curve, were normalized with the protein 

concentration in each sample (determined by BCA Protein Assay as described in 

the B.10.2 section of this chapter). Final values were expressed as nmol of 

ATP/mg of protein. 

III.B.9. Flow cytometry analysis 

Flow cytometry is a useful technology to study the effect of different molecules in 

living cells at the single-cell level. This approach has several advantages over 

other techniques such as microscopy, image analysis or those based on plate 

readers, like the possibility to analyse at the same time several variables in 

thousands of living cells in few seconds and with high sensitivity, and the lack of 
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influence of the medium where cells are suspended. Furthermore, the 

fluorescence values obtained are much more precise than those derived from 

plate readers and can be independently analysed in different fluorescence 

channels 315.  

a) Measurement of reduced GSH 

ROS are produced in eukaryotic cells as a result of the normal metabolism. 

Several cellular sources, including mitochondria, produce significant amounts of 

ROS that contribute to intracellular oxidative stress.  

Dismutation of O2• − generates H2O2, which is usually removed by catalase and 

peroxidases, through the action of reducing molecules such as GSH and NADH2. 

GSH is synthesized in the cytosol and then transported into different organelles, 

including mitochondria and the nucleus. It has a major role in protecting the cell 

against oxidants and electrophiles, and its intracellular concentration can be very 

high (up to 10 mM). GSH can be detected by flow cytometry by 

monobromobimane (MBB), a molecule that, if excited with a 405 nm violet laser 

or an ultraviolet (UV) lamp, becomes fluorescent only after its conjugation with 

thiols. MBB binds non-enzymatically with GSH, and reacts much more rapidly 

with this molecule than with sulfhydryl proteins 315. 

For these experiments, HepaRG cells were used. After detaching them by 

trypsinization, they were stained with 50 mM MBB for 10 min at 37° C, and 

washed with PBS. Reduced GSH was then detected using MBB and, 

simultaneously, propidium iodide was employed to assess cellular viability. 

Fluorescence was detected by a BD FACSVerse flow cytometer (BD 

Biosciences), and data were analysed with BD FACSuite software (BD 

Biosciences). Given the high concentrations of GSH present in hepatocytes, cells 

were divided in two populations, those with high and those with low levels of GSH, 

to detect more easily differences in MBB fluorescence once cellular debris and 

dead cells had been discarded. Diethyl maleate (DEM) was used as a positive 

control of GSH depletion. 

b) Measurement of apoptosis induction 

Cells undergoing apoptosis show characteristic morphological and biochemical 

features, which include chromatin condensation, cell and nuclear shrinkage, 
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formation of membrane-bound cell fragments, known as apoptotic bodies, and 

rapid phagocytosis by neighbouring cells or macrophages without associated 

inflammation. In apoptotic cells, membrane phospholipid phosphatidylserine (PS) 

is translocated from the inner to the outer leaflet of the plasma membrane, 

thereby exposing PS to the external cellular environment. Annexin V is a Ca2+-

dependent phospholipid-binding protein that has high affinity for cells with 

exposed PS. When Annexin V is conjugated to fluorochromes, it retains its high 

affinity for PS and thus serves as a sensitive probe for flow cytometric analysis of 

apoptotic cells. Since externalization of PS occurs in the earlier stages of 

apoptosis, FITC Annexin V staining can identify apoptosis at an earlier stage than 

assays based on nuclear changes such as DNA fragmentation 316–318. 

Therefore, the Annexin V-FITC Apoptosis Detection Kit (Abcam) was used. After 

72 h of treatment, LX-2 cells were detached by trypsinization from 6-well plates, 

washed with PBS, resuspended in binding buffer (provided by the kit), and 

stained with both Annexin V and propidium iodide according to the manufacturer’s 

instructions. Fluorescence was detected by a BD FACSVerse flow cytometer, and 

data were analysed with BD FACSuite software (BD Biosciences).  

III.B.10. Protein expression analysis 

III.B.10.1. Protein extracts 

a) In vitro sample collection and preparation  

After removing cell culture medium, cells were washed once with warm PBS and 

detached by adding trypsin-EDTA (at 37⁰ C for 1 min). The resulting cellular 

suspension was centrifuged at 800 g for 3 min at RT, supernatant was then 

discarded and cell pellet was resuspended in 1 mL ice-cold PBS. This suspension 

was centrifuged again at 500 g for 5 min at 4⁰ C. Finally, supernatants were 

discarded and cell pellets were obtained. 

b) Whole-cell protein extraction 

Cells pellets were resuspended in 40-90 µL of complete lysis buffer, whose 

composition was 20 mM HEPES pH 7.4, 400 mM NaCl, 20% (v/v) glycerol, 0.1 

mM EDTA, 10 µM Na2MoO4 and 10 mM NaF. Immediately prior to their use, 1 

mM DTT, 5 mM broad-spectrum serine and cysteine protease inhibitors 

(Complete Mini™ and Pefabloc®, both from Roche Life Science) and 0.05% 
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detergent solution (NP-40 Surfact-Amps™, Thermo Fisher Scientific) were 

added. Samples were then vortexed twice at maximum speed for 10 sec, 

incubated on ice for 15 min, vortexed again at maximum speed for 30 sec and 

subsequently centrifuged at 16000 g for 15 min at 4⁰ C. Pellets were discarded, 

and supernatants (whole-cell protein extracts) were collected in new ice-chilled 

tubes and stored at -20⁰ C until use. 

c) Total protein extracts from liver tissue 

Liver samples (20-35 mg) were homogenized in 900 µL extraction buffer (0.66 M 

Tris-HCl pH 7.5, 1 mM EGTA, 1 mM Na3VO4, 1 mM NaF and the protease 

inhibitor Complete Mini™) using a MACS™ Dissociator (MACS Miltenyi Biotec, 

Bergisch Gladbach, Germany). After adding 10 µL of 10% NP-40 Surfact-

Amps™, the homogenized samples were sonicated for 5 min at 15º C, and then 

centrifuged at 16000 g for 40 min at 4º C. The resulting supernatants (total protein 

extracts) were collected and stored at -20º C. 

III.B.10.2 Protein quantification: bicinchoninic acid (BCA) assay 

The BCA assay was used to quantify protein content in the extracts. This method 

combines the reduction of Cu2+ ions from Cu2SO4 to Cu+ by proteins in an alkaline 

medium (the well-known Biuret reaction) with the highly sensitive colorimetric 

detection of Cu+, based in the chelation of two molecules of BCA with one Cu+ 

ion. The purple-colored reaction product of this assay exhibits a strong 

absorbance at 562 nm, which is approximately linear with increasing protein 

concentrations over a broad working range (0.02-2 mg/mL) 319. 

This assay was performed following the manufacturer’s instructions (Pierce™ 

BCA Protein Assay Kit, Thermo Fisher Scientific). A standard protein curve was 

prepared by serial dilutions of BSA (0.03125-1 mg/mL) in the same extraction 

buffer as the samples to minimize the background absorbance. 20 µL of diluted 

samples (1:20 and 1:30 for in vitro and in vivo protein samples, respectively) or 

standard dilutions were used per well in a 96-well plate placed on ice, and 

immediately after 200 µL of working mixture reagent were added to each well. 

This working mixture was always prepared fresh before use, mixing 50 parts of 

Pierce™ BCA reagent A with 1 part of reagent B. Both the samples and standard 

curve points were assayed in duplicate. Next, the plate was incubated (protected 
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from light) at 37⁰ C for 30 min with gentle rocking. Finally, absorbance was 

measured at 570 nm employing a Multiskan™ Ascent 354 microplate 

spectrophotometer (Thermo Labsystems, Thermo Fisher Scientific).  

III.B.10.3 Western Blotting (WB) 

a) SDS-polyacrylamide gel electrophoresis (PAGE)  

SDS-PAGE was performed using the Mini-PROTEAN® Tetra Cell System (Bio-

Rad Laboratories, Hercules, CA, USA). Polyacrylamide gels were made using a 

mixture of acrylamide/bis-acrylamide solution (37.5:1) (Ultrapure ProtoGel® 

supplied by National Diagnostics, Hessle, UK). Resolving gels were prepared 

with different percentage of polyacrylamide (6-15%) in 0.375 M Tris-HCl pH 8.8 

and 0.1% SDS, whereas stacking gels were always prepared with 3.75% 

polyacrylamide in 0.125 M Tris-HCl pH 6.8 and 0.1% SDS. The polymerization 

reaction was catalysed by 0.1% ammonium persulfate (APS) (SERVA, 

Heidelberg, Germany) and N,N,N′,N′-tetramethylethylenediamine (TEMED, 

Sigma-Aldrich).  

Extracts with equal total protein amounts were loaded; previously prepared by 

adding Laemmli sample buffer (0.5 mM Tris-HCl pH6.8, 25% glycerol v/v, 10% 

SDS, 0.5% β-mercaptoethanol and 0.5% bromophenol blue) and boiled at 100⁰ 

C for 5 min in order to achieve protein denaturation. To determine the molecular 

weight of the polypeptides, a molecular weight marker (EZ-Run™ Pre-Stained 

Rec Protein Ladder, Thermo Fisher Scientific) was also loaded. Electrophoresis 

was performed in a buffer tank with running buffer (25 mM Tris pH 8.3, 0.1% SDS 

and 192 mM glycine) at a constant voltage of 120 V. 

b) Protein transfer to nitrocellulose membrane 

SDS-PAGE-resolved proteins were transferred from the resolving polyacrylamide 

gel to a 0.45 µm nitrocellulose blotting membrane (GE Healthcare Life Science), 

using a Mini Trans-Blot® Cell (Bio-Rad Laboratories). The transfer was performed 

at 4⁰ C for 1 h (proteins with molecular weight up to 100 KDa) or 1.5 h (proteins 

over 100 KDa) at a constant amperage of 0.4 A, in transfer buffer (25 mM Tris pH 

8.3, 192 mM glycine and 20% methanol).  
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c) Ponceau and antibodies staining 

In order to verify the transfer efficiency and quality, the nitrocellulose membrane 

was soaked in a 0.1% Ponceau/5% acetic acid solution (Sigma-Aldrich) for 1 min, 

which stains proteins. Ponceau staining was removed with Tris-buffered saline-

Tween (TBS-T, 20 mM Tris-HCl pH 7.2, 150 mM NaCl and 0.1% Tween-20 v/v) 

before incubating the membrane in fresh blocking solution (5% fat-free milk 

powder or BSA, diluted in TBS-T) with continuous gentle shaking, for 1 h, at RT. 

Once the membrane was blocked, it was incubated with the primary antibody, 

prepared in blocking solution supplemented with 0.02% NaN3 (Sigma-Aldrich) for 

3 h, at RT or overnight at 4⁰ C with continuous gentle shaking. Subsequently, the 

membrane was washed four times in TBS-T for 10 min, at RT and with vigorous 

shaking, incubated with a secondary antibody in fresh blocking solution at RT for 

1 h, and washed again.  

All primary and secondary antibodies used are listed in Table III.3 

d) Chemiluminescence detection 

Immunolabeling was detected by enhanced chemiluminescence, employing 

Luminata™ Crescendo Western HRP substrate (Merck Millipore, Billerica, MA, 

USA), Amersham™ ECL™ Start Western Blotting Detection Reagent (GE 

Healthcare Life Science) or SuperSignal™ West Femto Maximum Sensitivity 

Substrate (Thermo Fisher Scientific), following manufacturer’s instructions. This 

detection method is based in an oxidation reaction of luminol catalyzed by the 

enzyme horseradish peroxidase (HRP), conjugated to the secondary antibody, in 

the presence of hydrogen peroxide, and giving rise to 3-aminophthalate that emits 

light at 425 nm 320. 

Immunolabeling was visualized with a digital luminescent image analyser, Fujifilm 

LAS-3000 Imager (Fujifilm, Tokio, Japan). Densitometric analyses were 

performed using Multi Gauge V3.0 software (Fujifilm, Tokio, Japan). The protein 

expression was normalized versus that of the β-actin or GAPDH (employed as 

loading controls). 
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e) Stripping for reprobing 

Stripping, a method that removes antibodies from a nitrocellulose membrane, 

enables reutilization of the membrane and its incubation with other antibodies. 

The stripping process was performed in two different ways: 

1. Incubation with a stripping solution (62.5 mM Tris-HCl pH 6.7, 100 mM β-

mercaptoethanol and 2% SDS), at 56⁰ C for 30 min with vigorous shaking. After 

that, the membrane was washed with TBS-T three times for 10 min, at RT. 

2. Incubation with 0.5 M glycine pH 2.5 for 10 min at RT with vigorous shaking. 

Subsequently, the membrane was washed twice with TBS-T for 10 min, at RT. 

Regardless of the protocol used, the membrane was blocked with the blocking 

solution again before incubating it with the antibodies, following the protocol 

described above (III.B.10.3 b). 

PRIMARY ANTIBODIES 

PROTEIN SOURCE/CLASS MW (KDa) DILUTION COMPANY 

Plin2 Rabbit polyclonal 48 1:2000 Abcam (ab52356) 

PPARγ Mouse monoclonal 56 1:1000 Invitrogen (419300) 

LXRβ Rabbit polyclonal 63 1:1000 Santa Cruz (sc1000) 

p65 Mouse monoclonal 65 1:500 Invitrogen (339900) 

p-p65 Rabbit monoclonal 65 1:1000 Cell Signaling (3033) 

Caspase-1 Rabbit polyclonal 20/45 1:1000 Cell Signaling (2225) 

Vimentin Mouse monoclonal 57 1:1000 Abcam (ab8978) 

Desmin Mouse monoclonal 53 1:1000 Santa Cruz (sc23879) 

Col1A1 Rabbit polyclonal 130 1:1000 Cell Signaling (84336) 

STAT3 Rabbit monoclonal 88 1:1000 Abcam (ab68153) 

p-STAT3 Rabbit monoclonal 88 1:1000 Abcam (ab76315) 

p-STAT1 Mouse monoclonal 87 1:1000 Abcam (ab29045) 

GAPDH Rabbit monoclonal 38 1:10000 Sigma-Aldrich (G9545) 

SECONDARY ANTIBODIES 

ANTIBODY LABELING DILUTION COMPANY 

Goat Anti-Mouse IgG Antibody HRP 1:2000 Thermo Fisher (31430) 

Goat Anti-Rabbit IgG Antibody HRP 1:5000 Vector (PI-1000) 

Table III.3 List of primary and secondary antibodies employed in WB experiments. 
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III.B.11. Gene expression analysis 

III.B.11.1. RNA isolation 

a) RNA extraction from cell cultures 

RNA isolation and purification from cell cultures was performed using the 

RNeasy® Mini Kit supplied by Qiagen (Hilden, Germany), according to 

manufacturer’s instructions. Briefly, cell pellet was resuspended in 350 µL lysis 

buffer and was homogenized by passage through a 25-gauge needle. Next, 350 

µL of 70% ethanol were added and the solution was transferred to a column which 

retains RNA. After washing three times, RNA was eluted in 30 µL RNase-free 

water. The purity and concentration of the RNA were determined 

spectrophotometrically, using a NanoDrop™ ND-1000 spectrophotometer 

(Thermo Scientific). 

b) RNA extraction from liver tissues 

RNA extraction from liver tissues was performed using TriPure Isolation Reagent 

(Roche Life Science). Liver samples (30-40 mg) were homogenized by MACS™ 

Dissociator (MACS Miltenyi Biotec) in 750 µL TriPure and samples were then 

centrifuged at 16000 g for 15 min at 4⁰ C. Afterwards, 150 µL chloroform were 

added to the supernatant, in order to separate the different phases (aqueous, 

interphase and organic), and subsequently the samples were vigorously 

vortexed, incubated on ice for 15 min and centrifuged at 16000 g for 15 min, at 

4⁰ C. The colorless aqueous upper phase, which contains RNA, was transferred 

to new tubes and RNA was precipitated by incubation with 500 µL isopropanol 

for 1 h or overnight at -20⁰ C. Precipitated RNA was pelleted by centrifugation at 

16000 g for 20 min at 4⁰ C, washed with 1 mL 70% ethanol and pelleted again at 

16000 g for 15 min at 4⁰ C. Finally, RNA pellet was air-dried at RT and was 

resuspended in 50 µL RNase-free water.  

The purity and concentration of the RNA was determined using a NanoDrop™ 

ND-1000 spectrophotometer (Thermo Scientific). 

III.B.11.2 Complementary DNA (cDNA) synthesis by reverse transcription 

cDNA was synthetized by reverse transcription, employing the PrimeScript™ RT 

Reagent Kit (Perfect Real Time) (TaKaRa Bio Inc., Otsu, Japan). In accordance 

with the manufacturer’s protocol, the reaction was performed using 2 µg RNA and 
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1X PrimeScript Buffer, 1 µL PrimeScript RT Enzyme Mix I, 50 pmol Random 6-

mers and 25 pmol Oligo dT Primer (20 µL final volume). The reaction was carried 

out in a GeneAmp® PCR System 2400 (PerkinElmer Inc, Waltham, MA, USA) 

under the following conditions: 37⁰ C for 15 min, 85⁰ C for 5 sec and 4⁰ C for 

infinity. 

III.B.11.3 Quantitative RT-PCR (qRT-PCR) 

qRT-PCR was performed with SYBR® Premix Ex Taq™ (Tli RNaseH Plus) 

(TaKaRa Bio Inc.), containing TaKaRa Ex Taq HS, dNTP mixture, Mg2+, Tli 

RNase H and SYBR Green I (DNA intercalator that emits fluorescence only when 

bound to dsDNA, and thus, detection of its fluorescent signal allows quantification 

of the amplification products). The reaction was performed mixing 1 µL cDNA, 5 

µL SYBR® Premix Ex Taq™, 2 µM primers (forward and reverse) and RNase-

free water (10 µL final volume). qRT-PCR were carried out in a Lightcycler® 96 

Real-Time PCR System (Roche Life Science), following this protocol: 95⁰ C for 

30 sec; 95⁰ C for 5 sec, 60⁰ C for 20 sec (50 cycles); 95⁰ C for 1 sec; 65⁰ C for 15 

sec; 95⁰ C for 1 sec and 40⁰ C for 30 sec. All experiments were performed in 

duplicate, together with a negative control (RNase-free water instead of cDNA).  

The primer pairs for mice (Table III.4) and human (Table III.5) genes used were 

synthetized by IDT® (Integrated DNA Technologies, Coralville, IA, USA) or 

Metabion (Planegg, Germany). Before their use in qRT-PCR, primers were tested 

by performing melting curve analysis and standard electrophoresis on 2% 

agarose gel containing Goldview™ DNA Safe Stain (UVAT Bio C.B., Valencia, 

Spain) and using buffer TAE 1x (20 mM Tris pH 7.8, 0.5 mM EDTA and 10 mM 

sodium acetate). 

qRT-PCR data were analysed using the comparative CT method (21,22) 

obtaining the relative gene expression of the gene of interest. This method of 

presenting quantitative gene expression consists in this equation: Fold Change = 

2-Δ(ΔCT), where ΔCT = CT (target gene) - CT (housekeeping gene), and Δ(ΔCT) = 

ΔCT (treated) - ΔCT (control). ACTB/Actb (β-actin) was used as a housekeeping 

gene. 
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MURINE PCR PRIMER PAIRS 

GENE FORWARD PRIMER (5’→3’) REVERSE PRIMER (5’→3’) 

Acta2 GTCCCAGACATCAGGGAGTAA TCGGATACTTCAGCGTCAGGA 

Actb GCCAACCGTGAAAAGATGACC GAGGCATACAGGGACAGCAC 

Adgre1 TGACTCACCTTGTGGTCCTAA CTTCCCAGAATCCAGTCTTTCC 

Arg1 GTGGGGAAAGCCAATGAAGAG TCAGGAGAAAGGACACAGGTTG 

Casp1 ACAAGGCACGGGACCTATG TCCCAGTCAGTCCTGGAAATG 

Cd86 GCACGGACTTGAACAACCAG CCTTTGTAAATGGGCACGGC 

Col1a1 GCTCCTCTTAGGGGCCACT CCACGTCTCACCATTGGGG 

Ifng TCTGGAGGAACTGGCAAAAGG TTGAATGCTTGGCGCTGGA 

Il10 TGGACAACATACTGCTAACCGA CTGGGGCATCACTTCTACCA 

Il10r2 AAGCATACCTTCCGTTCTGGG AGTTTGGGGTCATCGTGTGG 

Il1b GAAATGCCACCTTTTGACAGTG CTGGATGCTCTCATCAGGACA 

Il22a1 GGACACATCCGGTCTCCTTC GGTTGCGGGTCTCCATAGTC 

Il6 TGGACAACATACTGCTAACCGA CTGGGGCATCACTTCTACCA 

Il6st GAGTGAGGAGGCTAGTGGGA GCGACATAGCGGTCATTGGT 

Jak1 AGAAGACTGAGGTGAAGCAGG ACAGGGCGAAGAGGTTGTG 

Jak2 CTGTAGTGGCAGCAGCAGAA GTCTAACACCGCCATCCCAA 

Ly6C CAACTCTTGGCGCTGCTTGG GGGTGCAGGTTCGGGATTCA 

Mmp2 CAAGTTCCCCGGCGATGTC TTCTGGTCAAGGTCACCTGTC 

Mrc1 TGTGGAGCAGATGGAAGGTC TGTCGTAGTCAGTGGTGGTTC 

Nlrp3 ATTACCCGCCCGAGAAAGG CATGAGTGTGGCTAGATCCAAG 

Nos2 CGCTTGGGTCTTGTTCACTC GGTCATCTTGTATTGTTGGGCTG 

S100a4 GCACTTCCTCTCTCTTGGTCTG AACTTCATTGTCCCTGTTGCTG 

Serpine 1 ACCGTTACCCTGATTTGCCC CCACTCACAGATGGCGTTGA 

Socs1 CTCGCTCCTTGGGGTCTGTT GGGAGATCGCATTGTCGGCT 

Socs3 CAAGGCCGGAGATTTCGCTTC CGGGAAACTTGCTGTGGGTG 

Stat1 CTGTCATCCCGCAGAGAGAAC CTCAGGGTATGGAGCAGAGC 

Stat3 TTTCATCAGCAAGGAGCGGG GGGGTAGAGGTAGACAAGTGGA 

Tgfb1 GCGGACTACTATGCTAAAGAGGG TCAAAAGACAGCCACTCAGG 

Timp1 CTTGGTTCCCTGGCGTACTC ACCTGATCCGTCCACAAACAG 

Tnf CCCTCACACTCAGATCATCTTCT GCTACGACGTGGGCTACA 

Table III.4 List of murine primer pairs used in qRT-PCR. 
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HUMAN PCR PRIMER PAIRS 

GENE FORWARD PRIMER (5’→3’) REVERSE PRIMER (5’→3’) 

ACTA2 CCAAGCAACCGGGAGAAAATGA GCATAGAGAACAGCACCGCCTGG 

ACTB GGACTTCGAGCAAGAGATGG CTGTACGCCAACACAGTGCT 

COL1A1 AAGCTGGAAAACCTGGTCGT AGCACCATCATTTCCACGAG 

MMP2 CAAGTTCCCCGGCGATGTC TTCTGGTCAAGGTCACCTGTC 

PDGFB CCATCAGCAGCAAGGACACCA CCCGAGCAGGTCAGAACGAA 

PPARG GACAGGAGACAACAGACAA ATC GGGGTGATGTGTTTGAACTTG  

SERPINE1 CGCTGTCAAGAAGACCCACA ACCTGCTGAAACACCCTCAC 

TGFB1 CTTCAGCTCCACAAGAAGAACTG CACGATCATGTTGGACAACTGCTC 

TIMP1 AATTCCGACCTCGTCATCAGG ATCCCCTAAGGCTTGGAACC 

VIMENTIN ATGAAGGAGGAAATGGCTCGTC GGGTATCAACCAGAGGGAGTGAA 
 

Table III.5 List of human primer pairs used in qRT-PCR. 

 

III.B.11.4 Transcriptomic analysis 

a) Affimetrix Expression analysis.  

Total RNA from whole liver tissue was isolated as previously described by using 

TriPure Isolation Reagent (Roche Life Science). All the following steps for 

transcriptomic analysis were carried out by the Multigenic Analysis Unit at the 

Central Service for Experimental Research (Faculty of Medicine, University of 

Valencia).  

Genequant Pro Classic spectrophotometer (GE Healthcare) was used to 

determine the concentration and purity of RNA samples. The integrity analysis 

was performed using the RNA-6000 Nano Lab-on-a-Chip kit and the Bioanalyser 

2100 (Agilent Technologies). The array used in this transcriptomic analysis was 

the GeneChip Mouse Gene 2.0 ST Array (Affymetrix). Before this, all samples 

were normalized to 300 ng of RNA and were hybridized by using the Hybridization 

Oven 645, also from Affymetrix, for 16 h at 45° C. During this protocol, the Fluidics 

Station 450 (Affymetrix) was used in all required washing steps. Finally, all 

samples were scanned through the GeneChip Scanner 3000 7G (Affymetrix). 
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b) Data analyses 

Bioinformatic analyses of the transcriptomic data were carried out by Dr. 

Francisco García García from the Biostatistics Unit at Centro de Investigación 

Príncipe Felipe (Valencia).  

Data were standarized using Robust Multi-array Average method 321 and quantile 

normalization. Differential gene expression was analysed using the limma 322 and 

masigpro 323 packages from Bioconductor. Multiple testing adjustment of p-values 

was done according to Benjamini and Hochberg methodology 324. Gene set 

analysis was carried out using the Gene Ontology (GO) terms and the Kyoto 

Encyclopedia of Genes and Genomes Pathways (KEGG), using a logistic 

regression model 325,326. This method detects significantly up- or down-regulated 

blocks of functionally related genes in lists of genes ordered by differential 

expression. Given that many functional terms are simultaneously tested, the 

results of the test are corrected for multiple testing to obtain an adjusted p-value. 

Gene set analysis returns adjusted p-values based on False Discovery Rate 

method 324,327. GO annotation for the genes in the microarray where taken from 

Ensembl 78 release (http://www.ensembl.org) and KEGG Pathways from the 

KEGG web page (http://www.genome.jp/kegg/). Paintomics was used to visualize 

gene expression data onto the significant KEGG pathway maps 328. 

III.B.12. Myeloperoxidase (MPO) activity assay 

MPO is a pro-inflammatory enzyme mostly stored in the azurophilic granules of 

neutrophilic granulocytes. It plays a crucial role in intracellular pathogen killing, 

but it can provoke inflammatory damage when extracellularly released. MPO 

catalyzes generation of HOCl from H2O2 and Cl-. This reaction is employed as an 

indirect estimation of neutrophil infiltration and intensity of the inflammatory 

response in different tissues 329,330. Thus, the extent of liver inflammation and 

neutrophil infiltration in our mice models was evaluated by measuring MPO 

activity.  

Briefly, frozen liver samples were homogenized in 0.02 M Na2HPO4 buffer (pH 

4.7) containing 0.1 M NaCl and 0.015 M Na4EDTA (1 g tissue/19 mL buffer) using 

an UltraTurrax® T-45 Homogenizer (IKA®-Werke GmbH & Co. KG, Staufen, 

Germany). After a centrifugation at 300 g for 10 min at 4° C, the obtained pellet 

underwent hypotonic lysis of 0.2% NaCl solution (1 g tissue/15 mL buffer), 
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followed 30 sec later by addition of an equal volume of a solution containing 1.6% 

NaCl and 5% glucose (1 g tissue/150 mL). After further centrifugation, the pellet 

was then homogenized in 1 mL of 0.05 M Na2HPO buffer (pH 5.4) containing 

0.5% dexadecyltrimethylammonium bromide (HTAB), followed by three freeze-

thaw cycles using liquid nitrogen and a water bath at 37⁰ C. Samples were then 

centrifuged at 10000 g for 15 min, resuspended in the same buffer and sonicated 

at 15⁰ C for 10 min. Finally, samples were kept on ice until their use 331,332.  

MPO activity was assessed by a colorimetric assay. For this, 100 µL of the 

samples were added in a 96-well plate followed by 50 µL H2O2 and 50 µL 3,3′,5,5′-

tetramethylbenzidine (TMB; Sigma Aldrich) per well, and the plate was incubated 

at 37⁰ C for 15 min. TMB is oxidized by HOCl, thus generating a blue product. 

The reaction was stopped by addition of 50 µL 1 M H2SO4 (color of reaction 

solution changes to yellow) and the absorbance was measured at 450 nm in an 

Infinite® 200 PRO series spectrophotometer (Tecan, Männedorf, Switzerland). All 

activity assays were performed in duplicate. Fold-increase in MPO activity was 

determined by comparing the results obtained of the liver samples of treated mice 

with those treated with vehicle. 

III.B.13. Plasmatic determinations 

a) Plasma isolation 

Mice blood samples were obtained from cave vein of isoflurane-anaesthetised 

mice using a 25-gauge needle, and coagulation was avoided with EDTA (0.5 M, 

pH 7.4). To obtain plasma, samples were centrifuged at 500 g for 5 min.  

b) Biochemical determinations  

Frozen plasma samples were sent to a specialized laboratory in veterinarian 

diagnosis (CEDIVET©, Valencia, Spain), where auto-analysers were employed to 

quantify the concentrations of different markers of lipid metabolism (cholesterol) 

and liver injury (bilirubin, AST and ALT). 

III.B.14. Histological determinations 

Fresh mouse liver samples were washed in saline solution and fixed using 10% 

neutral-buffered formalin solution (Histofix® Preservative, PanReac) for 48-72 h. 

Samples were then dehydrated, embedded in paraffin and subsequently cut in a 

microtome at 3-5 µm of thickness.  
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Prior to staining, samples were deparaffinized (at 65⁰ C for 60 min), rehydrated 

and rinsed with distilled water for 10 min. After staining with the different 

procedures, tissue sections were dehydrated again and coverslips were placed 

onto the slides just after the addition of the mounting medium (DPX® Mountant 

for histology, Sigma-Aldrich).  

All images obtained in histological experiments were acquired using a digital light 

microscope (Leica DMD108; Leica Microsystems, Barcelona, Spain) at different 

magnifications. Quantifications were performed using the Image J software 

V1.50i.   

III.B.14.1. Haematoxylin & Eosin Staining 

After hydration, slides were incubated with Haematoxylin solution (Gill No. 3; 

Sigma-Aldrich) for 2 min at RT. After sequentially washing with distilled water for 

2 min, acid ethanol for 30 sec and diluted H2CO4 for 1 min, slides were incubated 

with 0.5% aqueous eosin Y solution (Sigma-Aldrich, previously activated with 1 

µL/mL glacial acetic acid), for 4 min. Finally, slides were washed with distilled 

water, dehydrated and mounted as previously described (section III.B.12). 

III.B.14.2. Sirius Red Staining 

Sirius Red staining is a simple and sensitive method that identifies fibrillar 

collagen networks in tissue sections. Sirius Red is a strong, linear anionic dye 

comprising six sulfonate groups that can associate along cationic collagen fibers 

and enhance their natural birefringence under cross-polarized light 333,334. This 

staining is useful to characterize collagen network alterations in tissues and 

allows the identification of different collagen subtypes according to their colors 

under polarized light 335,336. As the aim of our experiments was to assess fibrosis 

progression among our different experimental groups, we did not distinguish 

between different collagen subtypes and all the sections were analysed under 

light microscopy, where collagen was stained in red and the background of the 

tissue in green.     

After hydration, slides were incubated with 0.01% Fast Green (Fast Green FCF 

dye content ≥ 85%, Sigma-Aldrich) in a saturated aqueous solution of picric acid 

(1.3% in water, Sigma-Aldrich) at RT for 15 min. Next, they were washed with 

distilled water and incubated again with Sirius Red for 30 min. Sirius Red reagent 
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was composed by 0.1% Direct Red 80 (Sigma Aldrich) and 0.04% Fast Green in 

picric acid 336. Finally, slides were washed with distilled water, dehydrated and 

mounted as previously described (section III.B.12). 

III.B.14.3. Immunohistochemistry (IHC)  

IHC is a method for detecting the location of proteins and other antigens in tissue 

sections using specific antibodies.  

a) Heat-induced epitope retrieval 

After deparaffinization and hydration, an antigen retrieval step is required to 

perform immunohistochemical staining, due to the formation of methylene bonds 

during fixation that can cross-link proteins and mask the antigens. The antigen 

retrieval step breaks the aforementioned bonds, exposing the antigenic sites, and 

therefore allowing antibodies to bind 337. For this purpose, slides were immersed 

in buffer citrate unmasking solution (Dako Target Retrieval Solution 1x; 10 mM, 

pH 6; Agilent, Santa Clara, USA) and heated in a microwave until boiling started. 

Then, the process was followed by 15 min incubation at sub-boiling temperature. 

Finally, slides were allowed to cool down for 30 min and washed in distilled water 

3 times for 5 min.  

b) Endogenous peroxidase blocking 

Liver contains endogenous peroxidases, which can react with the chromogenic 

substrate solution in IHC, leading to high and non-specific background staining 

(false positives). To block this reaction, slides were incubated with peroxidase 

blocking solution (3% H2O2 in distilled water) for 20 min at RT, and washed twice 

in distilled water and twice in TBS-T (5 min each). 

c) Immunohistochemical staining 

All the incubations were carried out in a humidified chamber. In order to block 

non-specific binding sites, samples were incubated with 5% normal serum diluted 

in TBS-T from the species in which the secondary antibody was generated for 1-

3 h. Slides were then incubated with the primary antibody (see Table III.6) diluted 

in the same blocking solution, overnight at 4⁰ C. The following day, slides were 

rinsed 3 times for 5 min in TBS-T and incubated with the secondary antibody (see 

Table III.6), also diluted in the same blocking solution. Finally, prior chromogenic 

detection, slides were washed with TBS-T 3 times for 5 min.  
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Table III.6 List of primary and secondary antibodies used in IHC determinations. 
 

d) Chromogenic detection 

The chromogenic substrate 3,3’-diaminobenzidine tetrahydrochloride (DAB 

Enhanced Liquid Substrate System, Sigma-Aldrich) was employed to 

immunodetect target antigens. DAB is a precipitating substrate, which produces 

an intense brown stain by peroxidase action (enzyme present in secondary 

antibody and avidin-biotin complexes). DAB was prepared following the 

manufacturer’s protocol, and was then added on the sample for 4-15 min 

(depending on the requirements of the primary antibody employed), continuously 

checking the appearance of the brown stain. Once tissue was properly stained, 

the reaction was stopped immersing slides in water for 2 min, and washing three 

times with PBS for 10 min. The specificity of the immunostaining was verified by 

the absence of staining in analogous tissue sections in which the primary or 

secondary antibodies were excluded. 

e) Signal amplification 

Two different methods were used to enhance the signal from the 

peroxidase reaction between biotinylated secondary antibodies and 

DAB. For Vimentin, F4/80 and Ki67 IHC determinations, the Vectastain® 

Universal Elite ABC Kit (Vector Laboratories, Burlingame, CA, USA) was used. 

The ABC Complex method is based on biotinylated secondary antibodies that act 

PRIMARY ANTIBODY 

PROTEIN SOURCE/CLASS DILUTION COMPANY 

Vimentin Rabbit polyclonal 1:200 Abcam (ab8978) 

F4/80 Rat monoclonal 1:150 BioRad (MCA497) 

STAT3 Rabbit monoclonal 1:200 Cell Signaling (30835) 

STAT1 Rabbit monoclonal 1:250 Cell Signaling (14994) 

Ki67 Rabbit monoclonal prediluted Abcam (ab21700) 

SECONDARY ANTIBODY 

ANTIBODY LABELING DILUTION COMPANY 

Mouse Anti-Rabbit IgG Biotinylated  1:100 Vector (PI-1000) 

Goat Anti-Rat IgG HRP 1:100 Thermo Fisher (31470) 

SignalStain® Detection Reagent HRP prediluted Cell Signaling (8114) 
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as links between a tissue-bound primary antibody and an avidin-biotin-reporter 

enzyme complex. As avidin is tetravalent, it forms large complexes containing 

multiple copies of the biotinylated reporter enzyme, resulting in high signal 

intensity 338,339. Following the manufacturer’s instructions, slides were incubated 

in ABC solution for 45 min, and washed four times with TBS-T for 5 min. 

Although biotin-based detection procedures are still widely used, they can lead 

to significant background staining in certain tissues and, consequently, several 

non-biotin-based detection methods are also employed. Specifically, we used a 

polymer-based method for IHC determination of STAT3 and STAT1. This 

technology uses a dextran backbone to which multiple enzyme molecules and 

secondary antibodies are attached. The dextran backbone-secondary antibody 

complex then binds to the primary antibody, thereby generating a greater reaction 

with the subsequent chromogen, compared with a secondary antibody directly 

conjugated with enzyme. Additionally, use of a one-step polymer method 

shortens the IHC procedure by avoiding the two-step biotinylated secondary 

antibody and ABC reagent that are required for standard avidin-biotin systems. 

III.B.14.4. TUNEL determination of apoptotic cells  

The main biochemical hallmark of apoptosis is degradation of DNA by 

endonucleases, which produce double-stranded oligonucleosomal DNA 

fragments. These DNA fragments are 180-200 bp in size and can be detected by 

the terminal deoxynucleotidyl transferase (TdT) dUTP nick end labeling (TUNEL) 

assay. This method is based on the template-independent identification of blunt 

ends of dsDNA breaks by TdT. The enzyme catalyzes the addition of labeled 

dUTPs to 3’-hydroxyl termini of DNA ends, which can be visualized using 

immunohistochemical techniques 340–343.  

In order to study the possible implication of apoptosis in the effects observed in 

our in vivo models, In situ cell death detection kit (Roche) was used. According 

to the manufacturer’s instructions 344, after hydration of tissue slides, the antigen 

unmasking procedure was performed by incubating them for 15 min with 

Proteinase K PCR Grade (Roche; 2.5 U/mg, pH 7.5) at 37° C.  

For labeling steps, the TUNEL reaction mixture was prepared by diluting the 

enzyme solution, containing the terminal deoxynucleotidyl transferase enzyme, 

and the label solution, containing a nucleotide mixture, in a 1:10 proportion. Then, 
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tissue sections were incubated with this solution for 1 h in a humidified chamber 

at 37° C in the dark.    

After three washes with PBS for 5 min, the slides were incubated with an anti-

fluorescein antibody conjugated with a peroxidase enzyme, and were then 

analysed using a fluorescence microscope, using an excitation wavelength of 

450-500 nm and a detection wavelength of 515-565 nm. Thus, we observed the 

positive brown stain after DAB development as previously described for the 

chromogenic detection of the IHC experiments 344.  

III.B.15. Presentation of data and statistical analysis 

All values are expressed as mean ± standard deviation (SD). The number of 

independent experiments (n) for each parameter is indicated in figure legends; 

all measurements were repeated 4-7 times. Unless stated otherwise, data are 

represented as percentage of control (untreated mice or cells considered 100%). 

Data were analysed using GraphPad Prism® V6.01 (GraphPad Prism® Software 

Inc., La Jolla, CA, USA).  

In in vivo experiments, comparisons were done between two different groups and 

were independently analysed by Student t-test. Statistical significance between 

control and vehicle-treated mice was expressed as #p < 0.05, and significance 

between vehicle-treated and drug-treated groups was expressed as *p < 0.05. 

In in vitro experiments, one-way ANOVA followed by a Bonferroni multiple 

comparison test was done between treatments and their respective vehicles. 

Statistical significance was expressed as *p < 0.05. In LX-2 cells and primary 

hHSC experiments, comparisons between vehicles (unstimulated versus TGFβ-

stimulated cells) were performed using a Student t-test (#p < 0.05). Results using 

primary hHSC were derived from triplicates from three independent isolations. 
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SECTION A. EXACERBATION BY NRTI OF ACUTE APAP-INDUCED 
HEPATOTOXICITY: KEY ROLE OF MITOCHONDRIA  

IV.A.1. Effect of NRTI on mitochondrial function 

Acute treatment with NRTI exerted different effects in respiration and 

mitochondrial function in Hep3B cells. Pyrimidine analogues ZDV, 3TC and FTC 

did not alter the rate of O2 consumption at clinically relevant concentrations, 

though they did significantly reduced this parameter at higher concentrations, and 

more so in the case of AZT and 3TC than in that of FTC (Figure IV.A.1 A). The 

purine analogues ABC and ddI induced a significant and concentration-

dependent reduction in O2 consumption at concentrations similar to those present 

in patients (10 µM; Figure IV.A.1 B). Tenofovir, the only nucleotide analogue 

currently used in anti-HIV therapy (used in the chemical form of TDF) did not 

affect the respiration of hepatic cells at any of the concentrations tested (Figure 

IV.A.1 C). Analysis of ETC activity showed that 1 h treatment with ddI significantly 

reduced the activity of both CI and CIII. On its hand, ABC-treated cells manifested 

a slight, but statistically significant, concentration-dependent decrease in the 

activity of CIII, with no alteration in that of CI. As expected, both rotenone and 

antimycin A induced a significant reduction of CI and CIII activity, respectively 

(Figure IV.A.1 D). Neither of these compounds induced changes in CII or CIV 

(data not shown).  
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We performed additional analyses of mitochondrial function to evaluate the 

relevance of these inhibitory effects on cell respiration (Figure IV.A.2). We studied 

through fluorescence microscopy both the production of ROS (DCFH-DA 

fluorescence) and ΔΨm (TMRM fluorescence). 

There was a significant and concentration-dependent increase in the production 

of ROS following 1 h-incubation with ddI, shown by enhanced DCFH-DA signal 

(Figure IV.A.2 A). This effect was absent in hepatocytes incubated with ABC, 

although a trend towards a slight increase was observed as the concentration 

rose. Rotenone, used as a positive control (not displayed), clearly enhanced ROS 

levels [173.6 ± 20.2** %]. In addition, ddI produced a profound reduction of ΔΨm 

at all the concentrations evaluated. ABC also influenced this parameter, but to a 

lesser extent, reaching statistical significance only at the highest concentration of 

25 µM (Figure IV.A.2 B). Despite differences in the way they affected complex 

activity, mitochondrial ROS and ΔΨm, both purine analogues produced a similar 

and concentration-dependent decrease in intracellular ATP levels (Figure IV.A.2 

C). Interestingly, when the period of incubation with ddI and ABC was extended 

to 24 h, levels of TMRM fluorescence did not differ significantly between vehicle- 

and drug-treated cells, while CCCP clearly reduced them (Figure IV.A.2 D). 

Nevertheless, inhibition of CI and CIII activity was maintained with ddI, while ABC 

significantly inhibited CI and enhanced its effect on CIII (Figure IV.A.2 E). 

Figure IV.A.1. Differential mitochondrial O2 consumption following acute administration of NRTI 
drugs. Acute effects of solvent (white bar) or various concentrations of the pyrimidine analogues 
ZDV, 3TC and FTC (A), the purine analogues ABC and ddI (B), and the nucleotide analogue 
TDF (C) on O2 consumption in Hep3B cells. Clinically relevant concentrations of each drug are 
indicated by an arrow. Impact of purine analogues and positive controls rotenone and antimycin 
A (1h) on ETC CI and CIII activity (D). Data (mean ± SEM, n= 5–6) were calculated as percentage 
of control (untreated cells) and analysed by one-way ANOVA multiple comparison test followed 
by a Newman–Keuls test (*p<0.05, **p<0.01, ***p<0.001 versus the respective solvent). Positive 
controls were independently analysed by a Student’s t-test (###P<0.001) 
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Figure IV.A.2. Analysis of mitochondrial function of Hep3B cells treated (1h) with increasing 
concentrations of purine analogues. Total ROS production was analysed after incubation with 
the fluorescent probe DCFH-DA (2.5 µM) (A). ΔΨm was assessed by measuring TMRM 
fluorescence (B). Intracellular ATP levels previously normalized to protein concentration (C). 
ΔΨm recovery and inhibition of CI and CIII activity after 24 h treatment with ABC or ddI (D). Data 
(mean ± SEM, n=5–6) were calculated as percentage of control (untreated cells) and analysed 
by one-way ANOVA multiple comparison test followed by a Newman-Keuls test (*p<0.05, 
**p<0.01, ***p<0.001) or Student’s t-test (#p<0.05). The positive control CCCP was 
independently analysed by a Student’s t-test (##p<0.01, ###p<0.001). 
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IV.A.2. APAP-induced mitochondrial and cellular toxicity 

Incubation of Hep3B cells with APAP (from 1.25 to 10 mM for 24 h) induced a 

concentration-dependent decrease of ΔΨm that reached statistical significance 

with 2.5 mM. However, only the concentration of 10 mM significantly increased 

mitochondrial superoxide production (Figure IV.A.3 A). Static cytometry 

experiments revealed a radical decrease in cell proliferation and/or survival at the 

four concentrations evaluated, as the number of cells was dramatically lower in 

all cases (Figure IV.A.3 B). The MTT assay revealed no significant changes in 

cellular viability after 24 h (data not shown); however, APAP undermined this 

parameter when incubation lasted 48 h (Figure IV.A.3 C). Finally, cell cycle was 

appraised by analysing total Hoechst fluorescence in Hep3B cells treated with 

the vehicle or APAP. A severe alteration of this parameter was observed in 

APAP-treated cells, with a substantial enhancement of the subG1 peak and a 

decrease in the G2M subpopulation, even at the lowest dose (1.25 mM) (Figure 

IV.A.3 D).  
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IV.A.3. Purine analogues increase susceptibility to APAP-induced toxicity 
in the liver 

We chose the concentration of 1.25 mM APAP for co-administration experiments 

after observing how it induced a minor toxic effect by which it reduced cell 

proliferation but did not compromise cellular viability or mitochondrial function 

after 24 h.  As shown in Figure IV.A.4, co-administration of APAP significantly 

enhanced the effects of the purine analogues on CI activity in cells incubated for 

1 h (Figure IV.A.4 A), especially in the case of ABC, while no such enhancement 

was observed at 24 h (Figure IV.A.4 B). Regarding CIII activity, no cumulative 

actions were observed after 1 or 24 h treatment with APAP and ABC or ddI 

(Figure IV.A.4 A and B). APAP alone induced a significant decrease in CIII activity 

at 24 h (Figure IV.A.4 B). 
 

 

 

 

 

 

 

 

Vehicle
APAP 1.25 mM APAP 1.25 mM + ddI 10 µM

APAP 1.25 mM + ABC 10 µMABC 10 µM
ddI 10 µM

 
 

 

 
 

 

C
om

pl
ex

III
 a

ct
iv

ity
(%

 o
f c

on
tr

ol
)

120

100

80

60

40

20

** ** ** ** **

C
om

pl
ex

I a
ct

iv
ity

(%
 o

f c
on

tr
ol

)

120

100

80

60

40

20

** *** *

B

Figure IV.A.3. (Previous page) Effect of APAP on mitochondrial function and cellular viability in 
Hep3B cells. Quantitative analysis of mitochondrial membrane potential (TMRM fluorescence) 
and mitochondrial superoxide production (MitoSOX fluorescence) by fluorescence microscopy 
after 24 h treatment (A). Cell count after 24 h treatment (B). MTT assay of cells cultured for 48 
h in the presence of the different compounds (C). Representative cytogram of cell cycle analysis 
by static cytometry (Hoechst fluorescence) in cells treated with vehicle or APAP (1.25 or 10 
mM) for 24 h (D). Data (mean ± SEM, n=4–8) were calculated as percentage of control 
(untreated cells) and analysed by one-way ANOVA multiple comparison test followed by a 
Newman–Keuls test. *p<0.05, **p<0.01, ***p<0.001 versus solvent. 

Figure IV.A.4. Mitochondrial function of Hep3B cells co-administered with NRTI and APAP. 
Analysis of CI and CIII activity in cells treated for 1 h (A) or 24 h (B). Data (mean ± SEM, n=4–
8) were calculated as percentage of control (untreated cells) and analysed by one-way ANOVA 
multiple comparison test followed by a Newman-Keuls test (*p<0.05, **p<0.01, ***p<0.001 
versus solvent) or Student’s t-test (#p<0.05)  
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Further analysis showed that co-incubation with both APAP and 10 µM of either 

ABC or ddI significantly potentiated the effects of each drug on ΔΨm (Figure 

IV.A.5 A). This synergism was evident with both NRTI drugs when mitochondrial 

ROS production was measured, but was statistically significant only in the case 

of ddI (Figure IV.A.5 A). The cumulative action of APAP and the purine analogues 

also influenced cell number and viability: APAP induced a significant reduction in 

cell proliferation, and its combination with either of the two purine analogues 

diminished cell number even further after 24 h of treatment (Figure IV.A.5 B). 

APAP alone did not modify the viability of Hep3B cells after 48 h, but this 

parameter was significantly reduced in cells co-treated with ABC or ddI (Figure 

IV.A.5 C).  
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To analyse the specificity and reproducibility of the deleterious effects of the 

aforementioned drug combinations, ABC and ddI were also administered in 

combination with three other hepatotoxic agents at concentrations known not to 

induce liver damage: ethanol (at 50 mM) and antiretroviral drugs ritonavir (RIT) 

and NPV (both at 10 µM). In sharp contrast with APAP, none of these stimuli 

enhanced the effects of purine analogues on ΔΨm or cell number (Figure I.A.6). 

 

 

 

 

 

 

 

 

 

The consistency of these results was assessed in key experiments in human liver 

tissue and differentiated hepatocyte-like HepaRG cells. In these cells, APAP 

increased mitochondrial superoxide production to a greater extent than in Hep3B 

cells, producing statistically significant results even at 5 mM (Figure IV.A.7 A). It 

Figure IV.A.5. (Previous page) Mitochondrial function and cellular viability after NRTI and APAP 
co-administration. Fluorescence microscopy images (10x) and quantification of mitochondrial 
membrane potential (TMRM fluorescence, red; Hoechst 33342 fluorescence, blue) and 
mitochondrial superoxide production (MitoSOX fluorescence, red; Hoechst 33342 fluorescence, 
blue) assessed after 24 h treatment (A). Cell count after 24 h treatment (B). MTT assay after 48 
h treatment (C). Data (mean ± SEM, n=4-8) were calculated as percentage of control (untreated 
cells) and analysed by one-way ANOVA multiple comparison test followed by a Newman–Keuls 
test (*p<0.05, **p<0.01, ***p<0.001 versus solvent) or Student’s t-test (#p<0.05).  

Figure IV.A.6. Mitochondrial membrane potential assessed by TMRM fluorescence in Hep3B 
cells treated with ABC or ddI (10 µM) and three different hepatotoxic stimuli: nevirapine (NVP, 
10 µM), ritonavir (RTV, 10 µM) or ethanol (EtOH, 50 mM) (A). Cell count after 24 h treatment 
(B). Data (mean ± SEM, n=5-6) were calculated as percentage of control value (untreated cells) 
versus Veh and analysed by one-way ANOVA and Newman–Keuls post-test.  
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also altered HepaRG cell number and viability in a concentration-dependent 

manner, both at 24 h (Figure IV.A.7 B and C) and 48 h (Figure IV.A.7 D). 

Likewise, treatment of HepaRG cells with a combination of APAP and either ABC 

or ddI reproduced the pattern of potentiation previously observed in Hep3B cells. 

Thus, superoxide production was significantly enhanced with respect to single 

treatments (Figure IV.A.8 A), while it did not induce changes in cell number or 

viability following 24 h treatment (Figure IV.A.8 B and C). Nevertheless, co-

administration produced a slight decrease in cellular viability after 48 h (Figure 

IV.A.8 D), similar to that observed in Hep3B cells (Figure IV.A.5 C).   

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Figure IV.A.7. Effects of APAP treatment on HepaRG cells. Quantitative analysis of 
mitochondrial superoxide production by MitoSOX fluorescence after 24 h treatment (A), cell 
count after 24 h treatment (B) and MTT assay of cells after 24 or 48 h culture in the presence 
of different concentrations of APAP (C and D respectively). Data (mean ± SEM, n=4-8) were 
calculated as percentage of control value (untreated cells) and analysed by one-way ANOVA 
multiple comparison test followed by a Newman-Keuls test (*p<0.05, **p<0.01, ***p<0.001 
versus solvent) or Student’s t-test (#p<0.05). 
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Finally, flow cytometry analysis of GSH levels in living HepaRG cells revealed 

that ABC and ddI produced a concentration-dependent reduction in the median 

of MBB fluorescence in the low-GSH population at 48 h (Figure IV.A.9 B), but not 

at 24 h (data not shown). The DEM-induced decrease was similar to that 

observed in cells treated with 25 µM NRTI (Figure IV.A.9 B). Co-administration 

with 10 µM of either ABC or ddI enhanced APAP-induced depletion of GSH levels 

(Figure IV.A.9 C), with a positive and significant correlation existing between the 

levels of this antioxidant and cellular viability (Figure IV.A.9 D). No changes were 

observed in the high-GSH population. 

 

 

 

 

 

 

 

 

Figure IV.A.8. Effects of APAP and its combination with NRTI on HepaRG cells. Quantitative 
analysis of mitochondrial superoxide production by MitoSOX fluorescence after 24 h treatment 
(A), cell count after 24 h treatment (B) and MTT assay of cells after 24 or 48 h culture in the 
presence of the different compounds (C and D, respectively). Data (mean ± SEM, n=4-8) were 
calculated as percentage of control value (untreated cells) and analysed by one-way ANOVA 
multiple comparison test followed by a Newman-Keuls test (*p<0.05, **p<0.01, ***p<0.001 
versus solvent) or Student’s t-test (#p<0.05). 
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Figure IV.A.9. ABC and ddI decrease GSH levels in HepaRG cells. Representative curve of 
MBB fluorescence obtained by flow cytometry in living cells after 48 h treatment; two gates were 
set to differentiate cells with low and high GSH content (A). Quantification of intracellular GSH 
levels (MBB fluorescence) in the low GSH population (B and C). There was a positive and 
significant correlation between the levels of GSH in this population and cellular viability (D). 
Results (median ± SEM, n=3-5) are expressed as percentage of control (untreated cells). 
Statistical analysis was performed by one-way ANOVA multiple comparison test followed by a 
Newman–Keuls test (*p<0.05, versus solvent) or Student’s t-test (#p<0.05, ##p<0.01). DEM 
was analysed separately by a Student’s t-test (#p<0.05). Functional correlation was analysed 
using Spearman’s correlation coefficient. 
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SECTION B. EFFECT OF NNRTI IN THE PROGRESSION OF 
CHRONIC LIVER DISEASE 

IV.B.1. Mouse model of NAFLD 

After testing several anti-HIV drugs of different pharmacological families in this 

chronic model of NAFLD induced by HFD (12 weeks), we decided to focus our 

work in the NNRTI EFV and RPV because they showed an interesting protective 

profile in the steatotic livers. Thus, we decided to characterize their effect in three 

key aspects associated with the progression of NAFLD: lipid deposition, 

inflammation and fibrogenesis.   

a) Effect of NNRTI in hepatic fat deposition 

As shown below, chronic feeding with HFD significantly induced steatosis in mice 

livers (Figure IV.B.1 A), increased body and liver weight (Figure IV.B.1 B and C, 

respectively), and augmented plasmatic levels of cholesterol and hepatic 

enzymes AST and ALT (Figure IV.B.1 D).  

Unexpectedly, chronic treatment with both EFV and RPV significantly decreased 

HFD-induced lipid deposition in the liver; however, a little increase in fat 

deposition was also observed in response to EFV in ND groups (Figure IV.B.1 

A). Regarding body and liver weight, RPV did not show any change but EFV 

significantly reduced these parameters in the HFD-fed group (Figure IV.B.1 B and 

D). Finally, EFV increased cholesterolaemia in HFD groups and, surprisingly, 

induced an increase in the ALT levels in ND groups, whereas it decreased this 

same parameter in HFD (Figure IV.B.1 C).   
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In order to understand the effect of EFV and RPV in the evolution of lipid 

deposition in HFD groups, we studied by WB the relative expression of key 

proteins involved in hepatic fat metabolism in whole-liver samples. We observed 

that HFD itself was able to significantly increase the protein expression of PLIN2 

and PPARγ, which is in line with an increased adipogenic activity. Both EFV and 

RPV were able to decrease this tendency in all the HFD groups (Figure IV.B.2).  

Interestingly, both EFV and RPV also increased the expression of LXRβ (Figure 

IV.B.2). This receptor is present in many tissues and plays a pivotal role in 

different aspects of lipid pathophysiology, including cholesterol trafficking from 

blood to tissues and regulation of the lipogenesis/lipolysis balance 345. High LXR 

activity in the liver has been associated with increased steatosis, especially 

through the action of the LXRα isoform, whose expression in enhanced in 

pathological conditions of lipid dysregulation. However, LXRβ activity is mainly 

involved in the maintenance of cellular and systemic levels of cholesterol and 

Figure IV.B.1. EFV and RPV decrease lipid deposition in the liver. Haematoxylin & Eosin staining 
of liver sections from mice treated with Vehicle, EFV and RPV, and fed with ND and HFD; 
quantification of lipid infiltration (n=5) (A). Mice weight evolution in all experimental groups (n=10) 
(B). Plasmatic determinations of cholesterol and hepatic enzymes AST and ALT (n=5) (C). Liver 
weight after 12 weeks of treatment (n=10) (D). Data are mean ± SD; #p<0.05 vs. ND group, 
*p<0.05 vs. HFD group; Student’s t-test. Scale bar = 0.1 mm. 
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triglycerides, working in a coordinated way with the sterol regulatory element-

binding protein 2 (SREBP2) in the liver 346,347. Thus, its hepatic overexpression in 

response to our treatments has a net homeostatic and beneficial effect aimed to 

decrease fat deposition, in accordance with H&E images shown in Figure IV.B.1.  

 
 

 

 

 

 

 

b) Effect of NNRTI in hepatic inflammation 

To assess the potential of these drugs to induce changes in the inflammatory 

pathways activated in HFD-fed animals, we analysed a broad spectrum of 

markers involved in hepatic inflammation. Both EFV and RPV were able to 

significantly decrease, in whole-liver samples, the activation of NF-𝜅𝜅B and NLRP3 

inflammasome induced by HFD (Figure IV.B.3 A), two key protein complexes 

whose activity is essential in the progression of hepatic inflammation. It is 

important to note that, in both cases, RPV-induced effect was stronger than that 

of EFV. In addition, RPV was more effective decreasing MPO activity (Figure 

IV.B.3 B). Regarding macrophage polarization, in spite of the limitations found 

using only RT-PCR to assess this complex process, it seemed that any of these 

two drugs induced a clear pattern of M1 or M2 polarization in liver samples. 

Importantly, RPV decreased Adgre1 gene expression, which encodes for F4/80 

protein, a marker of net macrophage content in mice. This reduction is in line with 

the anti-inflammatory profile showed by RPV (Figure IV.B.3 C).  

Figure IV.B.2. EFV and RPV regulate lipid metabolism in the liver. Protein expression of PLIN2, 
PPARγ and LXRβ. Representative Western Blot images and quantifications. Mice treated with 
vehicle, EFV and RPV and fed with ND or HFD (n=5). Data are mean ± SD; #p<0.05 vs. ND 
group, *p<0.05 vs. HFD group; Student’s t-test. 
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Finally, we observed a general decrease in the gene expression of several classic 

pro-inflammatory cytokines following EFV and RPV treatment (Figure IV.B.3 D), 

especially in all those involved in the expression of NLRP3 inflammasome 

components (Il1b, Nlrp3 and Casp1).  Gene expression of Tnfa, one of the main 

protein targets of NF-𝜅𝜅B activation 348,349, was similarly and significantly 

decreased by these NNRTI. Interestingly, only RPV induced a significant 

increase in the gene expression of several anti-inflammatory and 

hepatoprotective genes, as Il10 and Ifng, and over-expressed Il6. The systemic 

function of this interleukin is clearly pro-inflammatory, but it also plays an 

important role in the activation of many hepatoprotective mechanisms, such as 

those described in the introduction of this thesis. 
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c) Effect of NNRTI in fibrogenesis progression 

Determination of classical parameters of fibrogenesis in murine liver samples 

demonstrated, once again, that both EFV and RVP exerted a protective effect in 

this organ limiting fibrogenic progression in response to HFD feeding, as it can 

be observed in Sirius Red staining images (Figure IV.B.4). It is important to note 

that this technique also stains reticulin and, thus, ND groups and controls also 

showed low levels of red signal that are completely normal and physiologic 

(Figure IV.B.4 A). 

Analysis of protein expression also revealed a clear anti-fibrogenic effect of EFV 

and RPV characterized by decreased Col1a1 expression and inhibited HSC 

activation, demonstrated by the reduction of both Vimentin and Desmin protein 

expression. Finally, also RT-PCR experiments displayed a general decrease in 

gene expression of many fibrogenic markers after chronic treatment with NNRTI.  

Once more, RPV had a stronger effect decreasing fibrogenic response than EFV, 

similarly to what happened in the study of hepatic inflammation (Figure IV.B.3).   

Figure IV.B.3. (Previous page) EFV and RPV exert an anti-inflammatory effect in the liver. 
Representative WB of whole-liver samples and quantifications of the activation of both NF-𝜅𝜅B 
and NLRP3 inflammasome, assessed by phosphorylation of p65 protein (ratio between the 
phosphorylated form (p-p65) and the total form of the protein) and Casp1 cleavage (ratio between 
active Casp1, of 20 KDa, and the pro-Casp1 of 42 KDa), respectively (n=5) (A). Enzymatic 
determination of MPO activity (n=5) (B). Quantitative RT-PCR of markers of macrophage 
infiltration and polarization (C), as well as of classic pro- and anti-inflammatory genes (n=7) (D). 
In C and D panels, only HFD groups are displayed, since their gene expression is calculated 
assuming ND vehicle group as 100%. Gene expression data were normalized versus the 
expression of Actb gene. GAPDH is only displayed as a quality control of the experiment. Data 
are mean ± SD; #p<0.05 vs. ND group, *p<0.05 vs. HFD group; Student’s t-test. 
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d) Modulation of JAK-STAT signaling by NNRTI 

As shown in Figures IV.B.3 D and IV.B.5 A, RPV, but not EFV, induced a 

substantial over-expression of Il6 in HFD mice groups. Traditionally, this cytokine 

has been considered pro-inflammatory and is able to activate the innate immune 

response during tissue injury. However, it has also been reported as the natural 

ligand of membrane receptors Gp130 and IL6-R, whose activation induces the 

intracellular phosphorylation of STAT3.  

Considering the crucial role that both STAT1 and STAT3 have in the hepatic 

pathophysiology (see section I.C.2.c and Figure I.12), we decided to investigate 

the effect of these NNRTI in their regulation. First, we studied the relative gene 

expression of the main activator cytokines of these routes, namely IL6, IL22 
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Figure IV.B.4. EFV and RPV exert an anti-fibrogenic effect in the liver. Sirius Red staining of liver 
sections from mice treated with Vehicle, EFV and RPV and fed with ND and HFD; representative 
images and quantification of collagen deposition (red signal) (n=5) (A). Representative WB (of 
whole-liver samples) and quantifications of Col1a1, Vimentin and Desmin (n=5) (B). Gene 
expression of several markers associated with ECM deposition (Col1a1, Acta2, Timp1, Mmp2) 
and HSC activation (S110a4, Tgfb, Serpine1) (n=7) (C). In panel C only HFD groups are 
displayed, since their gene expression is calculated assuming ND vehicle group as 100%. Gene 
expression data were normalized versus the expression of Actb gene, while protein expression 
was normalized versus GAPDH expression. Data are mean ± SD; #p<0.05 vs. ND group, *p<0.05 
vs. HFD group; Student’s t-test. Scale bar = 0.1 mm. 
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(through its membrane receptors IL22R1 and IL10R2) and IFNγ (Figure IV.B.5 

A). In addition, we also analysed the gene expression of main components of the 

JAK-STAT signaling pathways (both 3 and 1; Figure IV.B.5 B). In both cases 

(IV.B.5 A and B), we observed that no evident changes were observed in 

response to EFV, while RPV clearly enhanced the expression of the main 

activator cytokines (Figure IV.B.5 A), over-expressed STAT3 components and 

down-regulated those involved in STAT1-mediated pathways (Figure IV.B.5 B).  

Finally, we studied the activation of STAT3 by WB, assessing the ratio between 

phosphorylated STAT3 (pSTAT3) and the total STAT3 protein (STAT3) (Figure 

IV.B.5 C). These experiments showed that HFD clearly inhibited the activation of 

this protein in our murine whole-liver samples. EFV did not induce significant 

changes in HFD-fed animals, but RPV was able to revert this inactivation, 

restoring STAT3 activity to levels similar to those found in ND groups. 

 

 

 

 

 

 

 

 

Figure IV.B.5. RPV, but not EFV, activates hepatic STAT3. Gene expression of cytokines 
involved in the hepatic JAK-STAT signaling regulation (A) and of constitutive members of both 
STAT1 and STAT3 pathways (n=7) (B). Only HFD groups are displayed in A and B panels, since 
their gene expression is calculated assuming ND vehicle group as 100%. Representative WB of 
whole-liver samples and quantifications of the activation of STAT3 by phosphorylation (n=5) (C). 
Gene expression data were normalized versus the expression of Actb gene, while protein 
expression was calculated by the ratio between the phosphorylated form of STAT3 (pSTAT3) 
and the total protein (STAT3); GAPDH is displayed as a quality control of the experiment. Data 
are mean ± SD; #p<0.05 vs. ND group, *p<0.05 vs. HFD group; Student’s t-test. 
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Given all the previous results, we decided to further continue investigating only 

the effect of RPV in the progression of NAFLD since it showed a really surprising 

effect decreasing lipid infiltration, inflammation and fibrogenesis. We definitely 

chose RPV because its effects were more intense than those of EFV, and also 

because these intriguing results pointed to a RPV-induced regulation of 

STAT3/STAT1 balance as a potential underlying factor of these effects. In 

addition, as explained in the introduction (section A.6.d, Chapter I), chronic 

treatment with RPV has been recently associated with an improved lipid profile in 

dyslipemic HIV patients, even when they present an advanced stage of chronic 

liver disease 47,110,112,113,350, effects that could be somehow related to its actions 

in the liver. 

Therefore, hereinafter, we will only show results obtained in the description of the 

effect of RPV in the progression of chronic liver injury. In addition, since no 

differences have been found in response to RPV in ND mice groups in previous 

data, following figures will display only three experimental groups: healthy (ND), 

steatotic (HFD) and HFD-fed and RPV-treated (HFD+RPV) mice groups.   

e) Regulation of the STAT3/STAT1 balance 

Previously, we have shown an increase in STAT3 activation in the liver of mice 

treated with RPV. However, WB experiments did not allow us to identify the liver 

cell type in which this factor is activated as we used whole-liver protein extracts. 

To study the different expression patterns in the main cell subpopulations of the 

liver we performed IHC experiments, using antibodies that targeted total STAT1 

or STAT3. This protocol enabled us to assess activation of these transcription 

factors since they appeared as a diffused cytoplasmic signal when they were 

inactive and as a nuclear signal once they were activated.  

STAT3 nuclear signal was mainly detected in hepatocytes (Figure IV.B.6 A). 

Moreover, this factor was largely expressed and activated in these cells under 

physiological conditions (ND), in spite of the general knowledge indicating that 

only a small amount of hepatocytes are actively proliferating in a certain time 

point in healthy livers 117,190,212. However, this proliferative capacity mediated by 

STAT3 disappeared when HFD-induced chronic injury was present. Conversely, 

in these injured animals, treatment with RPV normalized this STAT3 activation in 
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hepatocytes. These results were certainly in line with those previously obtained 

by WB determinations (see Figure IV.B.5).  

Regarding STAT1 expression (Figure IV.B.6 B), opposite to what happened with 

STAT3, its signal was mainly detected in non-parenchymal cells in healthy mice 

(ND), suggestive of an inactivated status of HSC and immune cells. Upon chronic 

liver injury (HFD), this staining disappeared, suggesting that all those cells were 

actively proliferating. Once again, RPV treatment partially rescued STAT1 

expression in non-parenchymal cells, which could point to HSC inactivation. 

 

 
Figure IV.B.6. Hepatic regulation of STAT3 and STAT1 in response to HFD and RPV treatment. 
Representative images of STAT3 (A) and STAT1 (B) IHC determinations in mice liver tissue 
(n=4). Scale bar = 0.1 mm. 
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f) Transcriptomic analysis of HFD groups 

We next carried out a transcriptomic analysis of both HFD and HFD+RPV liver 

samples. During this bioinformatic approach, a gene set enrichment analysis was 

performed in order to detect significantly up- or down-regulated blocks of 

functionally related genes, grouped as biological processes of functions.  

Among the obtained results, two groups of biological processes especially drew 

our attention, namely cell proliferation (Figure IV.B.7 A) and cell cycle arrest and 

apoptosis (Figure IV.B.7 B), because they highlighted the coexistence of many 

different pathways involved in these a priori opposite cellular processes. All these 

signals were displayed in two treemaps; in this kind of representation, all 

biological processes are hierarchically showed in nested rectangles, whose size 

is proportional to their differential expression between experimental groups. 

Importantly, only those functions that were up-regulated in response to RPV are 

displayed.  

As observed in the first treemap (Figure IV.B.7 A), proliferative and anti-

proliferative processes are mixed. For instance, we simultaneously found a 

general increase in ‘mitotic spindle assembly’, ‘cell growth’ and ‘cell cycle 

transition’, but also an enhancement of ‘negative regulation of the cell cycle’, 

‘negative regulation of cell growth’ and ‘negative regulation of cellular 

proliferation’, among many others. On its hand, the second treemap (Figure 

IV.B.7 B) clearly pointed to cell death activation by apoptosis. 

All these apparently controversial results could be understood bearing in mind 

the type of samples we used for transcriptomic analysis. RNA extraction from 

whole-liver tissue was done for this experimental procedure, thus including all the 

different hepatic cell subsets. These contradictory signals thus pointed to a 

differential effect induced by RPV in different cell types, which could be in line 

with the different regulation of both STAT3 and STAT1 shown in Figure IV.B.6 (A 

and B, respectively). 
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Figure IV.B.7. Treemaps showing the different biological responses upregulated in liver samples 
of RPV-treated HFD mice, associated with cell proliferation (A) and apoptotic processes (B). Data 
were obtained from bioinformatics gene set enrichment analysis performed after transcriptomic 
analysis of whole-liver tissue RNA from HFD and HFD+RPV mice groups (n=3). All displayed 
processes are significantly overexpressed in HFD+RPV animals.  

A

B



Chapter IV                                                                                                                       RESULTS 

106 
 

g) Histological determination of cell proliferation and apoptosis induction  

We next assessed the potential of RPV to modulate the proliferation of different 

liver cell subpopulations and to induce apoptotic-mediated cell death. With this 

aim, we performed IHC staining of Ki67, a protein widely used as a proliferation 

marker since it is present during all active phases of the cell cycle but is absent 

from quiescent or resting cells 351,352. In these experiments, Ki67-positive cells 

clearly appeared as well-defined brown nuclei; large nuclei corresponded to 

hepatocytes whereas small nuclei belonged to non-parenchymal cells (Figure 

IV.B.8.A). In healthy livers (ND) only few hepatocytes and non-parenchymal cells 

were actively proliferating, but in HFD-fed animals Ki67 signal was almost 

completely lost in hepatocytes, while the number of positive non-parenchymal 

cells increased. Of note, in response to RPV treatment, the quantity of 

proliferating hepatocytes significantly augmented if compared with HFD groups; 

conversely, the number of positive non-parenchymal was clearly decreased.    

TUNEL assay was employed to detect apoptosis in murine liver sections. In this 

technique, nuclei from apoptotic cells are stained in brown whereas those of 

healthy cells appear in blue. In our studies, healthy livers (ND) did not show 

apoptotic cells; however, apoptotic hepatocytes were clearly detected in 

response to HFD, while most non-parenchymal cells were still negative. Livers 

from mice fed with HFD and treated with RPV exerted a completely different 

staining pattern: the number of positive hepatocytes clearly decreased and that 

of positive non-parenchymal cells increased (Figure IV.B.8.A). Consequently, 

these data suggested that RPV is able to induce different cellular responses in 

different cell subtypes, inducing at the same time hepatocyte proliferation and 

apoptosis of non-parenchymal cells. This dual effect of the NNRTI was totally in 

line with its actions on STAT3 and STAT1 activation. 

Interestingly, there was a clear difference between the amount of hepatocytes in 

which STAT3 was active (Figure IV.B.6 A) and the number of these cells that 

were actively proliferating. Technically, this may be due to the different specificity 

of the antibodies used in both determinations. Alternatively, it could also be a 

consequence of a biological delay between STAT3 activation and the ultimate 

triggering of proliferation. Despite this controversy, the effect induced by chronic 

treatment with RPV seemed clear and relevant.  
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IV.B.2. Mouse models of liver fibrosis 

Once we had demonstrated the ability of RPV to clearly limit the progression of 

NAFLD in our experimental model, we decided to assess if the anti-inflammatory 

and anti-fibrotic effects of this drug were also present in other models of liver 

injury not related to fat accumulation. To ascertain this point, we established three 

more animal models by using CCl4 injections to directly induce liver fibrosis in our 

wild-type animals (see Chapter III.B.2 c). By using this experimental approach, 

we aimed to determine the effect of RPV in the progression and regression of 

chemically induced liver fibrosis, as well as to assess its potential to modulate the 

spontaneous regeneration in the liver.  
 

a)  Effect of RPV in the progression of liver fibrosis 
 

In this model, as previously described, both CCl4 and RPV were administered 

simultaneously for 4 weeks (Figure IV.B.9 A), and inflammation and fibrosis 

progression were studied. As expected, CCl4 itself induced a potent inflammatory 

response, observed by an intense increase in macrophages recruitment 

(assessed by F4/80 IHC), MPO activity, and NF-𝜅𝜅B activation (Figures IV.B.9 and 

IV.B.10). Additionally, it triggered an important fibrotic response characterized by 

an enhanced collagen deposition, and augmented Vimentin and Desmin protein 

expression (Figures IV.B.9 and IV.B.10). 

Histological analysis (Figure IV.B.9) demonstrated that RPV was able to 

decrease the CCl4-mediated inflammatory and fibrotic responses in the liver. 

Sirius Red staining and Vimentin IHC showed that collagen deposition and HSC 

activation were intensely enhanced in CCl4-treated groups and RPV significantly 

decreased them (Figure IV.B.9 B). In addition, RPV also diminished CCl4-induced 

increase in both F4/80 expression and MPO enzyme activity, pointing to an 

intense anti-inflammatory effect involving regulation of different immune cell 

populations (Figure IV.B.9 B and C, respectively). 

Figure IV.B.8. (Previous page) RPV increases the proliferation of hepatocytes and induces 
apoptosis in non-parenchymal cells in our mouse model of NAFLD. Evaluation of cell proliferation 
and apoptosis in mice liver tissue. Representative pictures of Ki67 immunohistochemistry (A) and 
TUNEL staining (B) in mice liver tissue. Healthy (ND), steatotic (HFD) and HFD-fed + RPV-
treated (HFD+RPV) groups are displayed in the different panels (n=5), showing cell counts of 
positive hepatocytes and non-parenchymal cells for both determinations. Data are mean ± SD; 
#p<0.05 vs. ND group, *p<0.05 vs. HFD group; Student’s t-test. Scale bar = 0.1 mm. 
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In this line, we also studied the anti-inflammatory and anti-fibrotic effect of RPV 

by WB analysing the activation of NF-𝜅𝜅B and the protein expression of Desmin. 

We observed the same protective role of RPV, significantly decreasing both 

parameters (Figure IV.B.10 A). In addition, RPV diminished the plasmatic levels 

 

 

Figure IV.B.9. RPV decreases the progression of CCl4-induced liver inflammation and fibrosis. 
Schematic representation of the fibrosis progression mouse model (A). Representative images 
and quantifications of Sirius Red staining and Vimentin and F4/80 IHC (n=5) in mice liver tissue 
(B). Enzymatic determination of MPO activity (n=5) (C). Data are mean ± SD; #p<0.05 vs. Veh 
group, *p<0.05 vs. CCl4 group; Student’s t-test. Scale bar = 0.1 mm. 
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of several markers of liver injury that were increased in response to the CCl4 

insult, namely bilirubin and hepatic enzymes AST and ALT. 

 

 

 

 

 

 

 

Considering the previous studies carried out in the NAFLD model, we then 

analysed the capacity of RPV to modulate the balance between STAT3 and 

STAT1 signaling and, consequently, its potential to modulate both proliferation 

and apoptotic cell death in different cell subpopulations. Importantly, we observed 

that RPV was able to reproduce in this model all the regulatory and 

hepatoprotective actions described in the nutritional model of NAFLD.   

We observed that CCl4-induced injury clearly decreased nuclear translocation 

and activation of STAT3 in hepatocytes, both in liver sections (Figure IV.B.11 A) 

and in whole-liver extracts (Figure IV.B.11 B), while it decreased STAT1 

activation in non-parenchymal cells (Figure IV.B.11 C), in a similar way than in 

the NAFLD model. One more time, RPV normalized both STAT3 (Figure IV.B.11 

A and B) and STAT1 (Figure IV.B.11 C) expression in parenchymal and non-

parenchymal cells, respectively.  

 

 

Figure IV.B.10. RPV decreases the progression of CCl4-induced liver inflammation and fibrosis. 
Representative WB images from whole-liver samples and quantifications of Desmin protein 
expression and activation of NF-𝜅𝜅B by phosphorylation of the p65 subunit (n=5) (B). Protein 
expression of Desmin was normalized versus GAPDH expression. NF-𝜅𝜅B activation was 
calculated by the ratio between the phosphorylated form of p65 (p-p65) and the total form of the 
protein (p65). Determination of plasmatic levels of bilirubin, AST and ALT (B).  Data are mean ± 
SD; #p<0.05 vs. Veh group, *p<0.05 vs. CCl4 group; Student’s t-test 
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Figure IV.B.11. Hepatic regulation of STAT3 and STAT1 in response to CCl4 and RPV treatment. 
Representative WB images of whole-liver samples and quantification of the activation of STAT3 
by phosphorylation (n=5). Activation was calculated by the ratio between pSTAT3 and the total 
protein (STAT3); GAPDH is only displayed as a quality control of the experiment (A). 
Representative images of STAT3 IHC in mice liver tissue (B). Representative images of STAT1 
(C) IHC determinations in mice liver tissue (n=5). Data are mean ± SD; #p<0.05 vs. Veh group, 
*p<0.05 vs. CCl4 group; Student’s t-test; Scale bar = 0.1 mm. 
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Further analysis of proliferation and apoptosis in these murine liver samples 

demonstrated that CCl4 significantly induced hepatocyte apoptosis and non-

parenchymal cells proliferation (Figure IV.B.12 A and B, respectively), which is 

compatible with a considerable injury induction. RPV reverted this tendency and 

clearly enhanced the number of Ki67-positive hepatocytes; this compound also 

induced apoptosis of non-parenchymal cells simultaneously decreasing the total 

number of dying hepatocytes (Figure IV.B.12 B). 
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b)  Contribution of RPV to the regression of liver fibrosis 
 

Data obtained in our experiments suggested that RPV has a strong capacity to 

prevent chronic liver disease progression but, as it was always administered from 

the very beginning of the procedure in combination with the deleterious stimuli, 

we could not determine its potential to induce regression of liver injury and, 

specifically, of fibrosis. For this reason, our next step was to study the potential 

of this compound to ameliorate a liver pathological condition once it has been 

already produced. In order to investigate this, we modified the previous protocol, 

administering CCl4 injections for 6 weeks and treating with RPV only during the 

last two weeks, once a substantial grade of liver fibrosis had already been 

established (Figure IV.B.13 A).  

As expected, CCl4 treatment for 6 weeks induced important collagen deposition, 

HSC activation and macrophage infiltration, determined by Sirius Red staining 

and Vimentin and F4/80 IHC, respectively (Figure IV.B.13 B). CCl4 also increased 

the MPO enzyme activity (Figure IV.B.13 C) and the plasmatic concentration of 

many liver injury markers (Figure IV.B.14 A). Furthermore, it also enhanced 

Desmin protein expression and NF-𝜅𝜅B activation (assessed by p65 

phosphorylation). According to the literature, CCl4-induced liver damage among 

different mouse models completely correlated with the duration of the CCl4 

injections 235,353,354. Thus, the toxic effect of CCl4 in our model (six weeks) was 

significantly greater than in our four-week model in all the parameters evaluated 

(Figure IV.B.9 A). Although the direct comparison between both models is not 

Figure IV.B.12. RPV increases the proliferation of hepatocytes and induces apoptosis in non-
parenchymal cells in our mouse model of CCl4-induced liver fibrosis. Representative images of 
Ki67 immunohistochemistry (A) and TUNEL staining (B) in mice liver tissue (n=5), and cell counts 
of positive hepatocytes and non-parenchymal cells for both determinations. Data are mean ± SD; 
#p<0.05 vs. Veh group, *p<0.05 vs. CCl4 group; Student’s t-test. Scale bar = 0.1 mm. 
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displayed in this thesis, this enhancement of liver injury is evident when observing 

the extension of the alterations induced by both models in all these parameters 

(e.g. plasmatic levels of markers of liver injury, MPO determinations or WB 

quantifications).  

Surprisingly, RPV also exerted a strong anti-inflammatory and anti-fibrotic effect 

in this model, since it decreased all the studied parameters of inflammation and 

fibrosis progression (as shown in Figures IV.B.13 and IV.B.14). These results 

confirmed the potential of this compound to be proposed as an antifibrotic drug 

and not only as a preventive option, being this a completely new and clinically 

relevant finding. 
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Despite this unexpected effect of RPV, we observed that this model provoked a 

severe damage in liver parenchyma, especially in CCl4 groups but also in all those 

receiving RPV, detecting a high degree of hepatocyte ballooning (white and 

diffuse cytoplasm) and the loss of parenchymal architecture. Thus, the protective 

effect of RPV was evident and significant, but its administration was too short to 

completely normalize liver function. 

To carry out this study, once again, we analysed RPV-induced STAT3 

phosphorylation by WB (Figure IV.B.15 A), as well as the histological modulation 

of STAT3 and STAT1 by IHC (Figure IV.B.15 B and C, respectively). Additionally, 

we evaluated the proliferative potential of different liver cell populations by Ki67 

IHC (Figure IV.B.16 A) and the induction of apoptosis by TUNEL (Figure IV.B.16 

B).  

 

Figure IV.B.13. (Previous page) RPV induced anti-inflammatory and anti-fibrotic effects when 
administered in mice with liver fibrosis. Schematic representation of the mouse model employed 
(A). Representative images and quantifications of Sirius Red staining and Vimentin and F4/80 
IHC (n=5) (B). Enzymatic determination of MPO activity (n=5) (C). Data are mean ± SD; #p<0.05 
vs. Veh group, *p<0.05 vs. CCl4 group; Student’s t-test. Scale bar = 0.1 mm. 

 

Figure IV.B.14. RPV has anti-inflammatory and anti-fibrotic capacity when is administered in mice 
with liver fibrosis. Determination of plasmatic levels of bilirubin and hepatic enzymes AST and 
ALT (A). Representative WB images from whole-liver samples and quantifications of Desmin 
protein and NF-𝜅𝜅B activation by phosphorylation of the p65 subunit (n=5) (B). Protein expression 
of Desmin was normalized versus GAPDH expression. NF-𝜅𝜅B activation was calculated by the 
ratio between the phosphorylated form of p65 (p-p65) and the total form of the protein (p65). Data 
are mean ± SD; #p<0.05 vs. Veh group, *p<0.05 vs. CCl4 group; Student’s t-test. 
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Figure IV.B.15. Hepatic regulation of STAT3 and STAT1 in response to RPV in a fibrotic liver. 
Representative WB images of whole-liver samples and quantification of STAT3 activation by 
phosphorylation (pSTAT3/STAT3) (n=5). GAPDH is only displayed as a quality control of the 
experiment (A). Representative images of STAT3 (B) and STAT1 (C) IHC in mice liver tissue 
(n=5). Data are mean ± SD; #p<0.05 vs. Veh group, *p<0.05 vs. CCl4 group; Student’s t-test; 
Scale bar = 0.1 mm. 
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Figure IV.B.16. RPV increases the proliferation of hepatocytes and induces apoptosis in non-
parenchymal cells when is administered in mice with liver fibrosis. Representative images of Ki67 
IHC (A) and TUNEL staining (B) in mice liver tissue (n=5), and cell counts of positive hepatocytes 
and non-parenchymal cells for both determinations. Data are mean ± SD; #p<0.05 vs. Veh group, 
*p<0.05 vs. CCl4 group; Student’s t-test. Scale bar = 0.1 mm. 
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As observed in Figures IV.B.15 and IV.B.16, RPV had similar effects with regard 

to STAT3 and STAT1 modulation in hepatocytes and non-parenchymal cells 

(Figure IV.B.15), as well as in cell proliferation and apoptosis induction (Figure 

IV.B.16), when compared to those exerted in the previous experimental models 

of chronic liver disease.  
 

c)  Role of RPV in the spontaneous regeneration of the liver 

Lastly, we established a similar murine model of CCl4-induced liver fibrosis to 

determine the capacity of RPV to modulate the spontaneous regeneration that 

takes place in the liver after discontinuation of the toxic insult. To do so, we 

induced liver fibrosis by CCl4 injections for 4 weeks and, after finishing this 

treatment, we daily administered vehicle or RPV for 2 weeks to assess whether 

this NNRTI could significantly modulate the liver recovery rate (Figure IV.B.17 A).    

As observed below, two weeks after stopping the CCl4 injections, collagen 

deposition (Figure IV.B.17 A), MPO enzyme activity (Figure IV.B.17 B) and 

plasmatic levels of bilirubin, ALT and AST (Figure IV.B.17 C) spontaneously 

decreased if compared with mice groups that were just treated with CCl4 for 4 

weeks and were not allowed to recover. Interestingly, MPO activity and plasmatic 

markers decreased until similar levels to those shown by healthy mice. However, 

collagen content was still significantly higher in CCl4 groups than in the controls. 

This makes sense since collagen degradation usually needs longer periods of 

time to finally reach physiological levels.  

Data shown in Figure IV.B.17 demonstrate that RPV treatment did not accelerate 

hepatic recovery after interrupting CCl4 injections. Specifically, it did not 

significantly decreased collagen content in treated groups if compared with the 

groups receiving only vehicle, and it neither decreased further plasmatic markers 

of liver injury (bilirubin, AST and ALT). Moreover, MPO enzyme activity was not 

influenced by antiretroviral treatment. These results could suggested that the 

effect of RPV directly targets activated HSC, since its effect disappeared when 

these cells physiologically become inactive after discontinuing the liver insult that 

keeps them active and proliferating.   

Considering all these results, we could state that RPV had a protective effect in 

the liver, limiting its inflammation and preventing the progression of fibrosis 

through the induction of HSC apoptosis and hepatocyte proliferation. We then 



Chapter IV                                                                                                                       RESULTS 

119 
 

postulated that these RPV-induced effects were directly related to the differential 

response observed in liver cell populations in the triggering of STAT-regulated 

pathways.  
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IV.B.3. In vitro study of RPV-induced actions in different liver cell 
subpopulations 

According to the existing literature about STAT regulation and cellular phenotypic 

responses, we hypothesised that the over-expression of both STAT3 and STAT1 

in different cell subtypes could be the main responsible of the hepatoprotective 

effects of RPV. In order to prove this, we carried out an extensive in vitro study 

where the two cell populations more directly involved in the fibrotic response, 

hepatocytes and HCS, were studied.  

We directly treated both hepatocyte (Hep3B and HepG2) and HSC (LX-2) human 

cell lines with increasing concentrations of RPV (from 1 to 8 µM) and their viability 

and proliferation/survival were evaluated through MTT and fluorescence 

determinations, respectively. HSC were also co-treated with low concentrations 

of TGFβ in order to increase their pro-fibrogenic activation to myofibroblast-like 

cells.  

As it can be observed in the MTT determinations displayed in Figure IV.B.18,  

RPV did not alter cell viability of hepatocyte cell lines (only a slightly decrease 

was observed with the highest dose of this compound in HepG2), but it induced 

a significant and concentration-dependent cytotoxic effect in LX-2 cells (Figure 

IV.B.18 A). This effect was confirmed assessing cell proliferation/survival through 

fluorescence microscopy in these same cell line (Figure IV.B.18 B). Furthermore, 

observation of LX-2 cells phenotype under light microscopy suggested the 

activation of cell death processes after 48 h treatment (Figure IV.B.18 C). 

We next studied gene expression of several markers of HSC activation and 

fibrosis progression using these same experimental conditions, namely, 

treatment with RPV (1-8 µM) for 48 h, in the presence or absence of TGFβ. 

Interestingly, RPV exerted a discrete effect that was only evident at higher doses 

in non-stimulated cells, except for Serpine-1 gene expression, which was clearly 

reduced. However, the anti-fibrotic effect of RPV was perfectly observed in cells 

stimulated with TGFβ co-treatment, in which this NNRTI down-regulated 

fibrogenic genes in a concentration-dependent fashion.   
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Figure IV.B.18. RPV exerts a cytotoxic effect in HSC but not in hepatocytes. Analysis of cell 
viability of Hep3B, HepG2 and LX-2 cells after 72 h of treatment with RPV (1-8 µM) by MTT assay 
(n=6) (A). Cell viability assay in LX-2 cell line by fluorescence microscopy (n=6) (B). 
Representative images by optical microscopy of LX-2 cells after 48 h of treatment with TGFβ and 
TGFβ + RPV 4 µM (C). Data are mean ± SD. #p<0.05 ‘Veh’ vs. ‘Veh+TGFβ’ groups, Student’s t-
test. *p<0.05 ‘Veh’ or ‘Veh + TGFβ‘ vs. ‘RPV’ or ‘RPV + TGFβ’, respectively; one-way ANOVA 
multiple comparison test followed by Bonferroni post-test. Staurosporine (STS) was used as a 
positive control of cytotoxicity. Scale bar = 0.1 mm. 
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In addition, we also studied this RPV-induced inactivation in LX-2 cells at the 

protein level. WB analyses of Col1A1 expression after 48 h treatment revealed 

an intense increase in its expression in response to TGFβ if compared with non-

stimulated conditions. Surprisingly, RPV treatment did not exert evident changes 

in non-stimulated conditions, but it induced a significant concentration-dependent 

decrease in the Col1A1 expression in all the conditions co-treated with TGFβ 

(Figure IV.B.20 A). Regarding pSTAT3 and pSTAT1 protein expression, we 

observed an opposite effect induced by RPV: in both non-stimulated and 

stimulated conditions, but especially in the latter, RPV induced a concentration-

dependent decrease in pSTAT3 protein expression, and a great increase in that 

of pSTAT1 (Figure IV.B.20 A). 

To assess whether RPV could trigger also apoptosis in HSC in vitro, a bivariate 

apoptosis assay was performed using flow cytometry. As displayed in Figure 

IV.B.20 B, we observed that RPV induced a concentration-dependent pro-

apoptotic effect in LX-2 cells after 72 h of treatment. Interestingly, the effect 

observed both in non-stimulated and in stimulated cells was quite similar. 

Moreover, if compared with the classical positive control Staurosporine (STS), 

RPV had only a mild pro-apoptotic effect; however, this response was really 

reproducible among all the experimental replicates. In addition, it is important to 

note that this pro-apoptotic effect was time-dependent, not being detected when 

LX-2 cells were treated with RPV for shorter periods of time (24 and 48 h 

incubations induced no changes).      

As previously explained, there are three main molecular mechanisms that drive 

HSC inactivation: apoptosis, cell cycle arrest and senescence. Although we have 

only shown the results for apoptosis induction in LX-2 cells in this thesis, the other 

two options were also explored and revealed negative results (data not shown). 

We could then confirm that RPV did not induce significant changes in cell cycle 

progression nor in cellular senescence of HSC in our experimental conditions. 

Figure IV.B.19. (Previous page) RPV down-regulates gene expression of fibrogenesis markers 
in HSC. Gene expression of fibrogenic markers in LX-2 cells after 48 h treatment with RPV (1-8 
µM), with or without TGFβ stimulation, assessed by RT-PCR (n=5). Gene expression data were 
normalized versus the expression of Actb gene. Data are mean ± SD. #p<0.05 ‘Veh’ vs. 
‘Veh+TGFβ’ groups, Student’s t-test. *p<0.05 ‘Veh’ or ‘Veh + TGFβ‘ vs. ‘RPV’ or ‘RPV + TGFβ’, 
respectively; one-way ANOVA multiple comparison test followed by Bonferroni post-test.  
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Figure IV.B.20. RPV inactivates and induces apoptosis of HSC. Representative WB images and 
quantifications of Col1A1, pSTAT3 and pSTAT1 in LX-2 cells, both stimulated and non-stimulated 
with TGFβ, after treatment with RPV for 48 h at different concentrations (from 1 to 8 µM) (n=5) 
(A). In all cases, protein expression was normalized versus GAPDH expression. Flow cytometry 
analysis of apoptosis induction in LX-2 cells after 72 h of treatment with RPV (n=4) (B). In the 
quantification graph all conditions are displayed, but the cytograms correspond only to ‘TGFβ’, 
‘TGFβ + RPV 4 µM’ and STS. Data are mean ± SD. #p<0.05 ‘Veh’ vs. ‘Veh + TGFβ’ groups, 
Student’s t-test; *p<0.05 ‘Veh’ or ‘Veh + TGFβ‘ vs. ‘RPV’ or ‘RPV + TGFβ’, respectively; one-way 
ANOVA multiple comparison test followed by Bonferroni post-test. 
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According to literature, STAT1 activation leads to cell cycle arrest and apoptosis, 

and these were exactly the effects observed in our LX-2 cell cultures. Thus, we 

decided to assess the cause-consequence relationship between this molecular 

pathway and the phenotypic and functional alterations found in this cell line in 

response to RPV. With this purpose, we first decided to chemically inhibit STAT1 

activation in LX-2 cells pre-incubating them with fludarabine, which is an 

antineoplastic drug used in many in vitro studies as a specific inhibitor of STAT1 

activation, directly inhibiting its phosphorylation 355–357. In our experimental 

approach, LX-2 cells were pre-treated for 2 h with fludarabine at 5 µM before 

adding TGFβ and RPV treatments.  

Figure IV.B.21 demonstrates that pre-treatment with fludarabine clearly inhibited 

STAT1 phosphorylation, but this inhibition was not specific since STAT3 

phosphorylation was also substantially down-regulated (Figure IV.B.21 A). It is 

also important to note that fludarabine-treated cells could still respond to TGFβ 

stimulation (Figure IV.B.21 A), although their viability was significantly decreased 

(Figure IV.B.21 B). Interestingly, RPV-induced decrease in Col1A1 protein 

expression disappeared, and even increased, when STAT1 was not activated 

(Figure IV.B.21 A). Moreover, despite the general decrease in viability induced 

by fludarabine, MTT analysis showed that the cytotoxic effect of RPV in these 

cells was blocked in presence of this inhibitor (Figure IV.B.21 B).  
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From these data we got the first evidence that pointed to STAT1 as the main 

responsible for the cytotoxic effect of RPV in HSC. Additionally, we could suggest 

that this regulation in the STAT1 pathway could be, at least in part, the 

responsible for the effect observed in mice.  

Considering that the use of fludarabine had several evident limitations that could 

bias this study, we performed lipofectamine-mediated transient gene silencing by 

using esiRNA targeting STAT1 to confirm the crucial role of this factor in the RPV-

induced actions in HSC. Through this methodology we did not block STAT1 

activation but we inhibited their gene expression upstream. After silencing, we 

analysed the same parameters previously described in Figure IV.B.20, but only 

using intermediate concentrations of RPV (2 and 4 µM). As observed in Figure 

IV.B.22, STAT1 silencing resulted in an intense inhibition of this factor, 

maintaining unaltered, in this case, STAT3 activation (Figure IV.B.22 A); 

furthermore, cell viability was also unchanged by the silencing process. However, 

a small and non-significant increase in the number of necrotic cells was detected 

in the cytometric analysis for all the transfected conditions, both from siC and 

siSTAT1 (Figure IV.B.22 B), and effect characteristic of this type of 

approach/methodology.  

  

 

 

Figure IV.B.21. RPV-induced cytotoxicity in HSC disappear when STAT1 activation is blocked. 
Representative WB images and quantifications of Col1A1, pSTAT3 and pSTAT1 in LX-2 cells, 
both stimulated and non-stimulated with TGFβ, following treatment with RPV (from 1 to 8 µM) for 
48 h, with and without pre-incubation with fludarabine (n=5) (A). Determination of cell viability of 
LX-2 cells following 72 h of treatment with the same experimental conditions (n=6) (B). Data are 
mean ± SD. #p<0.05 ‘Veh’ vs. ‘Veh+TGFβ’ groups, Student’s t-test. *p<0.05 ‘Veh’ or ‘Veh + 
TGFβ‘ vs. ‘RPV’ or ‘RPV + TGFβ’, respectively; one-way ANOVA multiple comparison test 
followed by Bonferroni post-test.  
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In line with the results shown in Figure IV.B.21, RPV-mediated decrease in 

Col1A1 and pSTAT3 protein expression was not present when STAT1 

expression was blocked (Figure IV.B.22 B). Importantly, also the pro-apoptotic 

effect of RPV disappeared once STAT1 signaling was impaired, as it can be 

observed in the quantification of flow cytometry experiments and in the 

corresponding cytograms displayed in Figure IV.B.22 C.   

These results demonstrated that RPV had a direct STAT1-dependent pro-

apoptotic effect in LX-2 cells, an in vitro mechanism that could be the main driver 

of the hepatoprotective effect observed in vivo. However, we were not able to 

reproduce in vitro all the results observed in hepatocytes in vivo. In our mice 

models, hepatocytes could restore their physiological expression of STAT3 in 

response to RPV in injured mice. Nevertheless, as shown below (Figure IV.B.23), 

direct treatment with RPV at different concentrations (from 1 to 8 µM) and times 

(from 6 to 48 h) failed to increase pSTAT3 expression in Hep3B cells. Further 

experiments were done combining RPV with low doses of IL6, the endogenous 

activator of STAT3, and once again, RPV did not enhance the expression of this 

protein. As displayed in Figure IV.B.23, the only changes observed in STAT3 

activation were due to IL6 treatment, especially between 12 and 24 h of 

incubation (Figure IV.B.22).     

  

 

 

 

Figure IV.B.22. (Previous page) RPV-induced cytotoxicity in HSC disappear when STAT1 is not 
expressed. Efficacy of STAT1 silencing by qPCR (A). Representative WB and quantifications of 
Col1A1, pSTAT3 and pSTAT1 in LX-2 transfected cells (siC and siSTAT1), stimulated and non-
stimulated with TGFβ, after treatment with RPV for 48 h at 2 and 4 µM (n=4) (B). Cytometric 
analysis of the apoptosis induction in transfected LX-2 cells after 72 h of treatment with RPV. In 
the quantification graph all conditions are displayed, but the cytograms correspond only to 
‘TGFβ’, ‘TGFβ + RPV 4 µM’ (n=4) (C). Data are mean ± SD. #p<0.05 ‘Veh’ vs. ‘Veh+TGFβ’ 
groups, Student’s t-test. *p<0.05 ‘Veh’ or ‘Veh + TGFβ‘ vs. ‘RPV’ or ‘RPV + TGFβ’, respectively; 
one-way ANOVA multiple comparison test + Bonferroni post-test.  
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Given these results, we decided to carry out conditioned medium experiments to 

explore the possibility of an active interplay between HSC and hepatocytes, 

driven by alterations in the STAT3/STAT1 balance and induced by RPV. We 

hypothesised that STAT3 activation in hepatocytes could be triggered in 

response to the secretome of apoptotic HSC, so we collected the culture medium 

from HSC previously treated with RPV for 72 h, which were consequently 

apoptotic, and cultured Hep3B cells directly with this medium for further 16 h (this 

incubation period was chosen because it was when we found the maximal STAT3 

activation in these cells, see Figure IV.B.23).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure IV.B.23. (Previous page) Treatment with RPV does not activate STAT3 in hepatocytes. 
Representative WB of pSTAT3 in Hep3B cells after treatment with RPV, alone or in combination 
with IL6 (5 ng/mL), at different concentrations (2 and 4 µM) and time points (from 6 to 48 h) (n=4).  
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As displayed above, treatment of Hep3B cells with conditioned medium coming 

from RPV-treated LX-2 cells, induced a concentration-dependent STAT3 

activation (Figure IV.B.24 A and B). This over-expression of pSTAT3, despite 

being not very intense, completely correlated with the discrete but constant pro-

apoptotic effect of RPV in LX-2 cells (Figures IV.B.20 and IV.B.22). Moreover, we 

confirmed that this STAT3 activation in hepatocytes was totally dependent on the 

amount of LX-2 cells that underwent apoptotic in response to RPV. Treatment of 

Hep3B cells with conditioned medium from LX-2 cells treated for shorter periods 

of time (24 or 48 h) did not induce any change in STAT3 activation (as described 

above, shorter incubations with RPV did not induced apoptosis in LX-2; data not 

shown). It is extremely important to note that, as shown in Figure IV.B.24 B, also 

STAT1 silencing in LX-2 cells abolished this pSTAT3 overexpression in Hep3B 

cells in the same experimental conditions, since the STAT1 deletion in LX-2 cells 

blocked the pro-apoptotic effect of RPV (Figure IV.B.22 B). We also induced 

apoptosis in LX-2 cells with different concentrations of pro-apoptotic molecules 

like STS and etoposide, whose cytotoxic mechanisms do not involve JAK-STAT 

signaling, and treated Hep3B cells with these conditioned media, detecting no 

enhancement of STAT3 activation in hepatocytes (Figure IV.B.24 C). 

Finally, to conclude this in vitro study we tested RPV in human primary HSC 

(hHSC), mainly obtained from discarded tissue after liver transplantation. hHSC 

were treated with the same conditions as LX-2 cells for 72 h, with intermediate 

doses of RPV (2 and 4 µM) and the same amount of TGFβ to stimulate their 

proliferation (2.5 ng/mL). Differently to what we observed in LX-2 cells, relevant 

phenotypic alterations in response to RPV were not observed in hHSC among 

the different experimental conditions (Figure IV.B.24 A). However, gene 

expression of several fibrogenic markers (Figure IV.B.25 B), as well as protein 

Figure IV.B.24. (Previous page) STAT3 in hepatocytes is activated in response to the secretome 
of RPV-induced apoptotic HSC. Representative WB and quantifications of pSTAT3 in protein 
extracts from Hep3B cells treated with conditioned medium for 16 h. This medium came from 
wild-type LX-2 cells (A) and transfected LX-2 cells (B) previously treated with RPV for 72 h (from 
1 to 8 µM) (n=4). Representative WB of pSTAT3 in protein extracts from Hep3B cells treated with 
conditioned medium from LX-2 for 16 h. These LX-2-conditioned media were obtained by treating 
LX-2 cells with RPV (at 2 and 4 µM) for 72 h, or with staurosporine (at 0.5 and 1 µM) and 
etoposide (at 20 and 40 µM) for 24 h (n=3) (C). Data are mean ± SD. #p<0.05 ‘Veh’ vs. ‘Veh + 
TGFβ’ groups, Student’s t-test. *p<0.05 ‘Veh’ or ‘Veh + TGFβ‘ vs. ‘RPV’ or ‘RPV + TGFβ’, 
respectively; one-way ANOVA multiple comparison test + Bonferroni post-test.  
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expression of pSTAT3 and pSTAT1 (Figure IV.B.25 C), completely reproduced 

the results obtained in LX-2 cells. In addition, a slight increase in pSTAT3 was 

observed in Hep3B cultures treated with the conditioned medium from primary 

HSC, although they did not show a clear apoptotic phenotype under the light 

microscope (Figure IV.B.25 D).  

It should be highlighted that we were able to confirm in vitro all the observations 

made in vivo and, moreover, that this effect was also reproduced in human 

primary cells, which could be clinically relevant, as it will be discussed in the 

following sections of this thesis.  
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Figure IV.B.25. RPV inactivates hHSC. Representative optical microscopy pictures of primary 
hHSC after 72 h of treatment with RPV (2 and 4 µM) with or without co-stimulation with TGFβ 
(2.5 ng/mL) (n=3) (A). Gene expression of fibrogenic markers of HSC activation after 72 h of 
treatment. Gene expression was normalized versus the expression of ACTB gene (n=3) (B). 
Representative WB and quantifications of pSTAT3 and pSTAT1 in protein extracts from hHSC 
treated for 72 h (C) and pSTAT3 in protein extracts from Hep3B cells treated with conditioned 
medium from hHSC for 16 h (previously treated for 72 h) (n=3) (D). Protein expression was 
normalized versus GAPDH.  Data are mean ± SD. #p<0.05 ‘Veh’ vs. ‘Veh + TGFβ’ groups, 
Student’s t-test. *p<0.05 ‘Veh’ or ‘Veh + TGFβ‘ vs. ‘RPV’ or ‘RPV + TGFβ’, respectively; one-way 
ANOVA multiple comparison test + Bonferroni post-test. Scale bar = 0.1 mm. 
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Combined antiretroviral regimens are the main responsible for the global 

demographic shift that HIV-infected population has experienced in the last twenty 

years 13,358. In early 80s, when antiretroviral drugs were not available to face the 

virus, HIV-infected patients had really short life expectancy and high rates of 

morbidity 31,34,36. Quick reaction of both scientific community and industry led to 

the development of therapeutic agents that were able to reduce the viral 

replication and the subsequent immunosuppression-related deaths 359,360. 

However, many acute and chronic side effects were progressively described and 

attributed to these drugs and their clinical use was constantly re-evaluated, 

mainly based on their efficacy and safety 3,18.  

Modern era of antiretroviral therapy began in the late 90s with the introduction of 

cART, whose success substantially decreased HIV-related morbidity and 

mortality. However, HIV-infected patients develop many age-related 

comorbidities, like cardiovascular or metabolic disorders, neurodegenerative 

diseases and even cancer, earlier than general population, mainly due to the virus 

infection itself, but also due to chronic antiviral treatment 361,362. Therefore, current 

selection criteria are basically focused on the long-term safety of the different 

drugs and, thus, therapeutic management of HIV infection still constitutes a 

clinical challenge 1,3. In this context, basic research focused on describing the 

underlying molecular mechanisms involved in acute and chronic side effects of 

cART is crucial to improve the clinical management of HIV population, as well as 

to facilitate the development of newer and safer antiviral drugs.  

In this thesis two different studies have been carried out, both of them aiming to 

elucidate the underlying molecular pathways implicated in the liver-related 

alterations observed in clinics due to cART and, more specifically, to clarify 

whether the effects of these compounds could be enhanced by the presence of 

other risk factors contributing to liver toxicity.  

In the first study, focused on the acute hepatotoxicity of NRTI, we demonstrate, 

for the first time, that clinically relevant concentrations of the purine analogues 

ABC and ddI 363, but not of other NRTI, inhibit O2 consumption and interfere with 

CI and CIII activity in the ETC. These effects are concentration-dependent and 

unconnected to the classic mitochondrial toxicity described following prolonged 

treatment with NRTI, which involves pol-γ inhibition and mitochondrial DNA 

depletion 364. This inhibitory action is accompanied by an immediate and 
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significant undermining of mitochondrial function, expressed by augmented 

production of ROS and reduction of ΔΨm and intracellular ATP levels, which does 

not compromise cell survival, as these parameters return to basal values after 24 

h treatment. However, the discrepancies observed between the effects of ABC 

and ddI on various parameters of mitochondrial dysfunction create a complex 

picture. In particular, the fact that the effects of ddI on ETC complexes appear 

earlier and are more pronounced than those of ABC suggests differences 

between each compound in their capacity to interact with mitochondria. It should 

be noted that, despite such differences, the ultimate consequences for hepatic 

cells are similar with either NRTI, as shown by the fact that basic parameters of 

cellular functioning (intracellular ATP levels, viability, etc) were equally affected.  

Purine analogues have previously been reported to induce adverse hepatic 

events, and their use is accompanied by severe increases in liver enzyme 

concentrations in up to 6% of subjects, which, with the exception of d4T, makes 

these compounds the most hepatotoxic NRTI 365. ABC is one of the most widely 

used NRTI, and it has a record of producing immune-related and non-

concentration-dependent hypersensitivity reactions that affect the liver 366,367. The 

use of ddI is no longer recommended, mainly because it has been associated 

with the development of severe hepatotoxicity involving mitochondrial damage 

(characterized by lactic acidosis and steatosis), portal hypertension and nodular 

regenerative hyperplasia 368–370. Several clinical cases of DILI by ABC and ddI in 

the absence of hypersensitivity and pol-γ interference have also been reported. 

The causes of this injury are still unknown 371,372, but the NRTI-related damage 

rate seems to increase when these compounds are used in combination with 

potentially hepatotoxic drugs 373. One such example is APAP, one of the most 

hepatotoxic drugs when administered in overdose. Clinical evidence indicates 

that plasma concentrations following APAP overdosing usually range between 1 

and 2 mM 374,375. However, in vitro studies have generally been conducted in the 

5–10 mM range (or at even higher doses), as this is the concentration at which 

cytotoxicity first becomes evident in hepatoma cell lines, including Hep3B cells 
376–380. In keeping with these data, our experiments revealed mitochondrial 

dysfunction and cytotoxicity at 5 and 10 mM, whereas 1.25 mM APAP failed to 

induce significant changes in cellular viability and mitochondrial parameters such 

as superoxide production and ΔΨm. A reduction in cell number and substantial 
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alteration of the cell cycle were observed at all the concentrations evaluated, 

suggesting that the lowest of the four inhibits cellular proliferation, even though it 

does not compromise cell survival. However, co-incubation of ABC or ddI (10 µM) 

with 1.25 mM APAP significantly exacerbated the deleterious effects of either 

treatment on mitochondrial function (reduced ΔΨm and increased mitochondrial 

superoxide production), cell number and cellular viability. This finding implies that 

purine analogues increase the risk of APAP-induced hepatotoxicity at 

concentrations below the established toxicity threshold. Although not detrimental 

to cellular survival per se, the acute mitochondrial interference produced by 

purine analogues may increase the vulnerability of hepatic cells to other 

physiological and/or pharmacological insults, making otherwise innocuous stimuli 

potentially harmful. However, no changes were observed in mitochondrial 

function or cell number when ABC or ddI was co-administered with sub-toxic 

concentrations of other hepatotoxic compounds, such as RIT, NPV and ethanol. 

This result suggests that only drugs which directly affect mitochondria are liable 

to have their hepatotoxicity influenced by purine analogues.  

APAP-induced damage is related to the production of a toxic metabolite, NAPQI, 

by the CYP system 381. Thus, the presence of an active CYP system in Hep3B 

cells makes them a reliable in vitro model for studying drug-induced 

hepatotoxicity. This finding was confirmed by our experiments with HepaRG cells 

and human liver tissue, which suggest that primary human hepatocytes are more 

susceptible to this toxicity 382.   

Considering the well-established role of GSH in counteracting APAP-induced 

liver injury, we hypothesised that NRTI-induced alterations in GSH levels and 

metabolism were an underlying mechanism of the synergetic effects observed in 

our experiments. Following 24 h exposure to APAP, alone or in combination with 

purine analogues, no significant reduction in GSH levels was observed in 

hepatocytes. However, following 48 h of treatment, there was a significant 

depletion of GSH in cells with low levels of GSH but not in those with high levels. 

These results, together with the increased ROS production we observed 

(probably a consequence of the inhibition of CI and CIII), demonstrate that ABC 

and ddI alter the redox status of hepatic cells and increase susceptibility to APAP-

induced liver injury. The positive correlation observed between GSH depletion 

and the reduction of cell viability emphasizes the importance of the former in the 
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deleterious effects produced by these drug combinations. A decrease in GSH has 

previously been reported in patients taking d4T 383, and it is important to note that 

the HIV infection itself has been shown to provoke GSH depletion 384. In this 

context, it is tempting to speculate that the aforementioned effects of ABC/ddI + 

APAP are more pronounced in HIV patients.  

In conclusion, this study demonstrates that clinical concentrations of ABC and 

ddI, but not of other NRTI, directly undermine mitochondrial function in 

hepatocytes, though this inhibition is not intense or prolonged enough to 

compromise cell survival. However, liver injury is clearly present when either of 

these purine analogues is administered in combination with sub-toxic 

concentrations of APAP, but not when combined with other hepatotoxic stimuli in 

which mitochondrial dysfunction plays a lesser role. Our findings are of relevance 

given the frequent use of APAP by HIV-infected patients taking NRTI, and they 

call for caution regarding the use of these antiretrovirals in combination with other 

potentially hepatotoxic stimuli capable of interfering with the mitochondria. 

 

In our second study, focused on the implication of several NNRTI in the 

progression of chronic liver disease, we described the potential hepatoprotective 

effect of two compounds, EFV and RPV, in different mouse models of chronic 

liver disease. These previously unreported effects were first observed in an 

animal model of NAFLD, demonstrating that these two compounds exert a clear 

anti-lipogenic, anti-inflammatory and anti-fibrogenic effect in damaged murine 

livers.  

Despite both EFV and RPV correspond to the same therapeutic family (NNRTI), 

we observed that they use different hepatoprotective mechanisms. It is well 

known that during NAFLD progression, an altered interplay between adipose 

tissue and liver triggers lipotoxicity in hepatocytes and leads to parenchymal 

inflammation and increased lipid accumulation (200,205). In this line, ongoing 

studies in our group analysing the effects induced by EFV in our NAFLD model, 

point to a complex and not completely understood crosstalk between hepatic and 

adipose tissue where autophagy, adipose tissue browning and metabolic 

dysregulation could play an important role. On its hand, RPV-induced actions 

clearly pointed to a direct beneficial mechanism in injured livers. Moreover, RPV 

showed that it is not only able to decrease severe liver inflammation and fibrosis 
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progression induced by overnutrition (HFD) and by CCl4, but also it can decrease 

hepatic fibrosis and inflammation when administered after generation and 

consolidation of fibrosis. The mechanistic study of this effect, performed both in 

vivo and in vitro, revealed an interesting and selective pro-apoptotic effect 

induced by RPV in activated HSC through STAT1 activation. Importantly, RPV-

induced apoptosis does not affect hepatocytes, in accordance with previous 

studies 385–387. Furthermore, we described for the first time an interesting interplay 

between HSC and hepatocytes via JAK-STAT signaling which leads to liver 

regeneration: RPV treatment also increased the number of proliferative 

hepatocytes, thereby restoring the parenchymal homeostasis through the 

activation of STAT3 signaling in these cells. Nevertheless, this activation was 

secondary and dependent on the RPV-mediated apoptosis induction on HSC 

through STAT1.  

NAFLD is the most common chronic liver disease worldwide and it is considered 

the hepatic manifestation of the metabolic syndrome. It affects up to 30% of global 

adult population, and more than 75% of those individuals are obese and diabetic; 

this prevalence is rapidly increasing in association with unhealthy lifestyle habits 

and metabolic diseases 192,193. Nowadays, it is the major cause of liver-related 

morbidity and mortality and eventually progresses to HCC 194,195. In the last years, 

numerous attempts of treating liver diseases have yielded promising results but 

they were not successful in the clinics due to several reasons, such as the lack 

of specificity of their formulations or the difficulty of directly targeting pathogenic 

mechanisms of hepatic fibrosis 388,389.  

Both EFV and RPV are drugs available in clinics for many years (since 1995 and 

2011, respectively), whose side effects and safety profile in chronic treatments 

are well known. Over the time, acute treatment with EFV has been correlated with 

few cases of liver failure 91,390,391. Additionally, in vitro experiments performed by 

our group and others have shown that acute treatment with EFV provokes 

deleterious effects in hepatocytes involving mitochondrial dysfunction, cell 

survival-promoting autophagy, bioenergetic and endoplasmic reticulum stress 

and intracellular lipid accumulation 96–101. Liver-related EFV toxicity in clinics 

appears shortly after treatment instauration and disappears in several days or 

weeks. However, it is crucial to bear in mind that, despite very infrequent, this 

toxicity can be really severe and lead to fatal liver failure 103,104,392,393. Despite 
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that, EFV has been extensively used in HIV therapy worldwide and its use in long-

term therapies is considered safe to the liver, but close clinical monitoring is 

mandatory to assess the liver functionality over the time 103,105,392. With regard to 

RPV, some mild-to-moderate abnormalities have been considered as RPV-

related hepatic adverse events, including increased AST, ALT, LDL cholesterol, 

lipase, bilirubin and triglyceride levels. However, all those minor alterations 

rapidly went back to normal levels and remained stable over time, being 

considered not clinically relevant in the vast majority of cases 106.  

Overall, clinical evidence supports the use of EFV and RPV in lifelong treatments 

as they are considered safe drugs for the liver. However, their particular 

contribution to liver disease progression and their actions on different cell 

subpopulations under different pathological conditions were uncertain. One of the 

main reasons that could have masked the protective effect that we describe here 

is the fact that these compounds are always administered in combined therapies 

and, thus, their particular contribution to either beneficial or deleterious effects in 

patients is extremely difficult to identify in clinical practice. This thesis is the first 

study that has yielded some light in describing the individual potential of these 

drugs to modulate the natural history of chronic liver disease.  

In this context, it is tempting to speculate that our results could be important for 

the management of patients with liver diseases. Provided they are reproduced in 

further in vivo studies (with animals and humans), our data suggest that the 

clinical utilization of EFV, and especially RPV, could be recommended for all 

those HIV-infected patients with special susceptibility to liver disease (e.g., 

individuals with severe metabolic syndrome or HCV-HIV co-infected patients).  

After revising clinical and basic evidence, we decided to focus in RPV as a more 

promising option for the treatment of chronic liver diseases in base to numerous 

reasons. First, it has been reported that RPV improves lipid profiles after 

switching from EFV-containing therapies in dyslipemic HIV patients 112,113,350, 

which would be in line with its more pronounced actions decreasing lipid levels 

and liver inflammation in our in vivo studies. Second, plasmatic levels of RPV, 

and its subsequent clinical effectivity, remain unaltered even in those patients 

whose hepatic function is dramatically altered (for instance, those in which HIV-

HCV co-infection and liver cirrhosis coexist), which is a really useful feature to be 

considered in clinical practice 110. Third, attending to our previous publications in 
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this field, we have described that EFV, but not RPV, exert an acute cytotoxic 

effect in hepatocytes in vitro 60. Taking all these data together, we thought that it 

made more sense to further study the RPV-related hepatic effects since these 

results could achieve more clinical relevance.  

Although the main core of this study has been focused on the progression of 

hepatic inflammation and fibrosis, it is also important to highlight the intense anti-

adipogenic capacity that RPV displayed in our animal model. Although we did not 

deeply characterize the molecular mechanisms involved in this effect, we 

consider these actions extremely interesting in the context of NAFLD pandemic 

and they will be necessarily studied by ourselves in the future.  

JAK-STAT signaling has been largely postulated as a good target for the 

treatment of liver diseases 394: selective STAT1 activation in non-parenchymal 

cells would slow down progression of liver damage driven by activated HSC and 

by local or recruited immune cells, while specific STAT3 activation in 

parenchymal cells would lead to liver regeneration. However, molecules able to 

modulate this balance and ameliorate liver fibrosis have not been developed or 

identified up to now. 

In this study we describe for the first time a hepatoprotective molecule able to 

induce a differential effect in hepatocytes and HSC via JAK-STAT signaling, 

leading to liver regeneration. RPV-mediated hepatoprotection primarily comes 

from its ability to directly induce apoptosis in HSC through STAT1 activation. 

Secondary to this effect, we also observed an intense proliferative response in 

liver parenchyma, driven by the restoration of STAT3 signaling. Given this 

combined effect, we firmly state that RPV-mediated effects in the liver constitute 

a true regenerative response, and not only a mere consequence of the 

discontinuation of injury progression produced by direct HSC inactivation (which 

would also be an interesting anyway), and thus, it may have potential as a novel 

therapeutic target.  

RPV-induced actions show certain unexpected and interesting characteristics 

that make it a unique case and may support its clinical application in liver 

diseases. Furthermore, RPV differentially regulates JAK-STAT signaling 

pathways in both parenchymal and non-parenchymal cells, finally triggering an 

effective regenerative response. Although the extraordinary regeneration 

capacity of the healthy liver has been widely demonstrated, this ability extremely 



Chapter V                                                                                                                  DISCUSSION 
 

142 
 

decreases when this organ is chronically damaged. Hepatocytes become 

increasingly senescent and unable to divide, and HSC, liver macrophages and 

immune cells are activated to a pro-inflammatory and pro-fibrogenic status. 

Surprisingly, RPV demonstrated that it is able to activate an efficient regeneration 

even in a damaged liver, which represents a considerable clinical breakthrough. 

Considering the short list of drugs effective in improving liver function in this 

pathogenic context, the therapeutic potential of this study becomes evident 395–

399. 

STAT1 signaling has been proven fundamental in the hepatoprotective actions of 

RPV, suggesting that it is a novel and interesting target that should be further 

investigated for therapy development, not only for liver fibrosis, but also for other 

hyper-proliferative diseases, including different fibrotic disorders (not only in the 

liver) and even cancer. Specifically, different high-throughput approaches, like in 

silico studies of quantitative structure–activity relationship or in vitro studies of 

cell-based phenotypic screens, should be applied in order to find molecules able 

to selectively activate this transcription factor in specific cell types. Furthermore, 

in order to enhance the selectivity of these molecules (STAT1 is a ubiquitous 

protein present in many different cells), nanotechnology could be employed 388. 

Through specific nano-formulations with different organic, inorganic, quantum dot 

or liposome-based formulations we could selectively target those hyper-

proliferating cells mainly involved in the pathology we would like to treat with RPV. 

In addition, it is well described that alternative splicing of STAT1 produces two 

different isoforms: α, known as the active form, and β, largely shown to act as a 

dominant-negative factor. Most studies have attributed STAT1-mediated 

regulation of cell growth and death to the STAT1-α variant, whose action always 

involves the downstream transcriptional activation of the tumoral suppressor 

protein p53 400–402. However, recent studies have shown that STAT1-β is not only 

a mere regulator and, once activated, it is able to induce cell death through a 

mechanism that is independent of the nuclear function of p53 403,404. In our 

experiments in LX-2 cells, pSTAT1 WB images show a clear concentration-

dependent activation in response to RPV treatment. However, comprehensive 

analysis of these representative pictures reveals that this activation is conducted 

mainly through the activation of the β subunit (lower band), while the α subunit 

(upper band) expression does not significantly change in response to the 
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treatment. In addition, we studied both gene and protein expression of the 

activated form of p53 and we did not find significant differences in response to 

RPV (data not shown), which reinforces our hypothesis that RPV-related 

hepatoprotection is mainly mediated through the specific activation of the STAT1-

β transcript variant.   

STAT3 is largely over-expressed by tumor liver cells and, consequently, it has 

been deeply studied as a key target in therapy against HCC 240,249,261,271,272. In 

particular, sorafenib, whose capacity to selectively modulate STAT3 signaling in 

different hepatic cells has been widely described, is currently used as a first-line 

standard systemic agent for advanced HCC treatment. Its effectivity combating 

tumor progression has been largely demonstrated in two large-scale phase III 

clinical trials (ClinicalTrial.gov identifiers: NCT11849 and NCT100554) 405,406. It 

primarily acts as a multi-kinase inhibitor that blocks cellular signaling within tumor 

cells (mainly PDGF, vascular endothelial-growth factor and Raf serine/threonine 

kinase), leading to anti-proliferative, pro-apoptotic and anti-angiogenic effects 407–

409. Complementary to these anti-tumoral effects, sorafenib has been also 

reported to decrease liver fibrosis progression and to increase parenchymal 

regeneration. This dual effect seems to be similar to that described with RVP, but 

sorafenib-mediated actions are mediated by the direct inactivation of STAT3 

signaling in HSC 410–412, as well as by its activation in hepatocytes at the expense 

of the IL6 released by local KC 413. Additional mechanisms of hepatoprotection 

have been attributed to this compound, such as decrease in the epithelial-

mesenchymal transition of damaged hepatocytes through the inhibition of TGFβ1 

signaling 413, inhibition of the NLRP3 inflammasome activation by directly 

blocking Caspase 1 expression 414, or direct activation of autophagic cell death 

and apoptosis in HSC through JNK and Akt signaling pathways 412,415. However, 

the utilization of sorafenib as an antifibrotic agent still has several important 

limitations mainly related with its toxicity. In fact, it is a really toxic compound 

whose narrow therapeutic window limits its clinical use and efficacy. To overcome 

this limitation several studies are attempting to obtain nano-formulations of this 

compound to increase its selectivity and reduce the doses, but they have not 

been able to translate these strategies to the clinic so far 416.  

At this point, it is tempting to compare the profile of protective actions exerted by 

sorafenib and by RPV. Sorafenib seems to reduce the proliferation of HSC by 
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decreasing STAT3 signaling 410, whereas RPV directly activates STAT1 in this 

same cell type, triggering a similar net response. Regarding hepatocytes, it has 

been described that sorafenib can indirectly increase STAT3 signaling in these 

cells due to the release of IL6 from Kupffer cells 408, while the RPV-induced over-

expression of STAT3 directly depends on the apoptotic death induced in HSC. 

Apart from this mechanistic complementarity, also an interesting 

pharmacodynamic aspect could be relevant: given the narrow therapeutic 

window of sorafenib, its combination with RPV, with a wider therapeutic range, 

would allow clinicians to reduce its doses while maintaining (or even improving) 

the final therapeutic results and reducing its inherent toxicity. Given these 

previous observations, it would be really interesting to carry out in vitro and in 

vivo studies aimed to determine the therapeutic effect of these drugs in the liver 

when administered in combination.  

On the other hand, we have not yet performed further experiments to identify the 

molecule or combination of molecules present in the secretome of RPV-induced 

apoptotic HSC that are responsible for this specific activation of STAT3 in 

hepatocytes, but it would be an extremely interesting aim for future studies. 

However, according to literature, we cannot rule out the involvement of IL6 

released by apoptotic HSC in these effects.  

An important point that must be clarified before firmly proposing RPV as a 

therapeutic option for chronic liver diseases is whether RPV-induced over-

expression of STAT3 in hepatocytes could induce some kind of pro-carcinogenic 

transformation in these cells, given that this hyper-expression of STAT3 is a 

typical feature of most types of cancer cells, included those in HCC 
407,408,411,414,415. The results obtained in our in vivo models demonstrate that RPV-

induced STAT3 activation is always enhanced if compared with steatotic or 

fibrotic mice without antiretroviral treatment (all those fed with HFD or injected 

with CCl4, respectively). However, STAT3 activation in RPV-treated mice groups 

does never significantly differ from that found in healthy mice (control groups). 

For this reason, more than a real over-expression, RPV is actually restoring 

physiological levels of STAT3. This effect clearly points to an enhanced 

regenerative response in injured hepatocytes mediated by RPV that would never 

involve a hyper-proliferative response capable of generating neoplastic disorders 

in the liver.  
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Many other cell subsets implicated in the progression of chronic liver disease 

have been largely studied and targeted with potential drugs for therapy 

development. Specifically, C-C chemokine receptors type 2 and 5 (CCR2 and 

CCR5) antagonists play a central role as coordinators of the immune cell subset 

infiltration during the progression of chronic liver disease 417,418. Plasmatic levels 

of these chemokines directly correlate with the severity of liver disease 114,419–421 

and, thus, the therapeutic inhibition of this route represents a promising strategy 

for controlling inflammatory liver diseases, particularly NASH and fibrosis 
389,420,422,423. In this line, the dual CCR2/CCR5 inhibitor cenicriviroc (CVC) has 

been deeply evaluated in different experimental models of chronic liver disease, 

from NAFLD and fibrosis 396,397,421 to alcohol-related chronic liver damage 395. 

Surprisingly, in all these studies CVC was able to exert protective properties by 

decreasing the infiltration of monocytes and immune cells into the damaged liver, 

and by significantly inactivating HSC. Consequently, therapeutic use of CVC 

against NAFLD and fibrosis is currently being tested in several ongoing clinical 

trials (ClinicalTrial.gov identifiers NCT03059446, NCT02217475, NCT03517540 

and NCT03028740) 424,425. In addition, Maraviroc (MVC), another CCR5 inhibitor 

initially approved for HIV therapy, has been studied in mouse models of NAFLD 

and showed a clear protecting role by ameliorating the plasmatic lipid profile and 

by decreasing steatosis progression 419.  

In light of this evidence, combination of either compounds with RPV may be 

clinically relevant. Especially, combined administration of MVC and RPV in the 

treatment of HIV infection could have benefits in all those patients with high risk 

of liver diseases. Similarly, combination of CVC and RPV constitutes an 

interesting therapeutic option, as both drugs have the ability to decrease lipid 

infiltration in animal models of NAFLD. Moreover, RPV also induced a general 

decrease in the macrophage content in treated animals, as well as a decreased 

MPO enzymatic activity, which correlates with a decreased neutrophil infiltration, 

an effect also attributed to CVC. In summary, we firmly propose the convenience 

of carry out further studies employing combined therapies in liver diseases.    

The liver sinusoid, formed by a specialized endothelium composed of LSEC, 

plays a key role in liver homeostasis. Damage and dysregulation at this level is a 

common feature in the pathogenesis of both acute and chronic hepatic disorders 

and, consequently, their therapeutic modulation has been deeply evaluated 
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during the last years 159–161. Specifically, extensive studies of the role of statins in 

the hepatic vascular biology have demonstrated that, independently of their lipid 

lowering potential, these drugs, and especially simvastatin, improve endothelial 

function of LSEC 399,426,427, decrease portal pressure 428,429 and limit the fibrotic 

progression upon liver injury due to an interesting interplay between LSEC and 

HSC 430–432. Additionally, it has been recently described how simvastatin 

effectively ameliorates sinusoidal function even in animal models of acute-on-

chronic liver failure 398. Considering this, therapeutic combination of simvastatin 

and RPV in different models of acute and chronic liver injury should be the focus 

of increasing attention. Although their mechanisms largely differ, both are 

molecules widely used in clinics for different purposes, and so, their 

pharmacokinetics, toxicity, interactions and long-term security are well known. 

Therefore, obtained observations could be really beneficial and easily translated 

into the clinics.  

The results presented in this thesis firmly support that RPV could be an 

interesting therapeutic option to control the progression of fibrotic disorders in the 

liver and, more importantly, they contribute to identify novel pharmacological 

targets, using JAK-STAT1 and JAK-STAT3 signaling pathways as a starting 

point. However, several limitations in both our in vivo and in vitro studies should 

be discussed and considered. In the former, we cannot ignore the difficulty of 

expanding scientific results from animal models to humans. In this line, an ideal 

animal model of liver disease must be able to reproduce the pathological pattern 

of liver injury as well as the systemic metabolic and immune responses that 

humans develop. However, none of the available models have fully reproduced 

all these vital features up to now. The main reasons are the inherent complexity 

of the multiple etiologies involved in disease progression, and the long time 

required for its development 229,230. In our case, we chose a nutritional model of 

NALFD that was carried out for 12 weeks. According to the literature, this is time 

enough to develop hepatic steatosis and inflammation in mice 232,234. However, 

this model worked beyond our expectations and we were able to observe even a 

clear incipient fibrotic response with evident collagen deposition. Regarding our 

fibrosis models, we decided to carry them out for 4 and 6 weeks because we 

wanted to induce a clear fibrosis but we were not interested in more severe 

stages like cirrhosis, which require longer experimental procedures. Evidently, in 
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both cases, if we had prolonged these protocols we would have obtained more 

severe manifestations of the disease. However, we consider that the duration of 

our protocols was enough to obtain clinically relevant results.   

In addition, we decided to use only female mice in all our models, which 

theoretically could constitute a clear bias in the study. However, we considered 

that, practically, female mice display a less aggressive behavior than males, 

avoiding hierarchical fights among animals that would increase their stress and 

complicate our chronic procedures, consequently increasing their variability. In 

this line, as we cannot yet affirm whether the effect of RPV could be conditioned 

by gender, we will approach this problem in the future by reproducing these 

studies in male mice.  

Regarding drug dosage and administration, it is important to note that we 

calculated the daily doses by using an interspecies allometric scaling factor 

widely accepted and stablished by FDA 297,298. Although we did not determine the 

plasmatic levels reached in our mice, considering the high metabolic rate of these 

rodents, the pharmacokinetics of RPV and the obtained results, we consider that 

the study was conducted in optimal or sub-optimal concentrations, if compared 

to humans. Using these doses, animals did not reach significant toxic levels and 

displayed a surprising and reproducible therapeutic effect. The dosage method 

we employed also differs from the methods generally employed in similar studies. 

We decided to perform an individualized oral administration to carefully control 

the exact amount of drug that each animal took instead of dissolving the drugs in 

drinking water. Finally, is it important to consider that our drugs were dissolved in 

pure DMSO prior administration. Chronic treatment with DMSO in animals has 

been classically associated with gastrointestinal and inflammatory disturbances 
235,236,417. However, studies about its specific toxicity in mice also demonstrated 

that daily administration of very small volumes, between 10 and 20 µL, could be 

totally safe 433–435. In accordance to these studies, our drugs were dissolved in 

only 10 µL of DMSO and no oral or gastrointestinal lesions were found 433–435.   

With regard to in vitro RPV concentrations (from 1 to 8 µM), it is important to state 

that, although the lower concentrations employed (1 to 4 µM) are clinically 

relevant, the highest concentration (8 µM) is clearly supra-therapeutic 

considering the doses administered and the plasmatic levels found in humans,. 

However, it was used as a routine treatment to clearly understand whether RPV-
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induced alterations were concentration-dependent. Although 8 µM is a supra-

therapeutic condition, this concentration was not toxic in the different hepatocyte 

cell lines we employed (Hep3B and HepG2), in line with previous studies that 

also used this range of concentrations 386,387. Importantly, RPV treatment was 

restricted to clinical concentrations (just 2 and 4 µM) in key experiments of STAT1 

silencing and hHSC primary cells. In addition, it is well described that RPV suffers 

an intense bioaccumulation in the liver and the intrahepatic concentration that it 

can reach is greater than those found in plasma 16,106,436,437. For this reason, we 

justify the convenience of the doses employed in our in vitro study since they 

better correlate with those intrahepatic concentrations found in patients that are 

exposed to chronic therapeutic regimes.          

Interestingly, there are still questions that must be answered if we want to 

describe the whole sequence of events leading to the hepatoprotective effects of 

RPV. In order to confirm that the hepatic effects of RPV are primarily mediated 

by STAT1 activation in HSC, further proof-of-concept experiments with STAT1-

knock-out mice should be necessarily performed. In this sense, it would be 

fundamental to develop mice strains in which STAT1 silencing is constrained to 

HSC. In addition, also STAT3-knock-in models in hepatocytes would be helpful 

to assure whether the indirect parenchymal response to RPV would be strong 

enough to induce regeneration without producing some ulterior pro-carcinogenic 

growth in the liver. Moreover, a deeper evaluation of JAK-STAT signaling, taking 

into account the activity of different intrinsic regulators, like SOCS and PIAS 

proteins, must be done.  

On the other hand, it has been reported that RPV is a Pregnane-X receptor (PXR) 

agonist 386 and, consequently, we cannot rule out the involvement of this 

transcription factor in RPV-mediated hepatic effects. In fact, it has been described 

that PXR activation decreases hepatic lipogenesis and increases fatty acid 

oxidation 438–440. Furthermore, its activity is mainly modulated by inflammatory 

cytokines from monocytes, macrophages and stromal cells within the liver 441, 

and triggering of PXR inhibits the activation and proliferation of HSC 442. 

Additionally, PXR is involved in liver regeneration via the activation of different 

signaling pathways 443 and the secretion of IL6 by different cells 442. Considering 

all these data together with our experimental results, we firmly believe that, 

theoretically, PXR could perfectly suit as the original orchestrator of all effects 
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induced by RPV in the liver, including all those related with hepatic fat 

accumulation. Thus, future studies in our group will be certainly aimed to decipher 

the implication of this receptor in the clinical effect displayed by RPV.  

In addition, in order to study the therapeutic potential of RPV in response to 

different deleterious stimuli and/or different clinical situations, many other animal 

models, like bile-duct ligation, partial hepatectomy, liver ischemia-reperfusion, 

alcohol-induced liver disease or acute-on-chronic liver failure (among others) 

must be performed. 

Furthermore, extensive analysis must be done in other different hepatic cell 

subpopulations directly involved in the progression and regression of liver 

damage. At this point, we are certainly convinced that the effect of RPV is not 

limited to HSC and hepatocytes. Thus, further studies should focus in the role of 

liver macrophages (both KC and recruited macrophages), immune cells, LSEC 

and dendritic cells, to better understand how RPV mediates its effects. It would 

also help us to understand how different cell subtypes paracrinely communicate 

to each other within the liver in pathogenic circumstances, and which kind of 

interactions they establish with diverse immune cells through the whole organism. 

Additionally, we firmly believe that RPV could also be interacting with different 

subsets of liver stem cells to enhance the hepatic regenerative capacity and its 

defense potential, as well as it could be stimulating bone marrow hematopoietic 

stem cells to shape effective immune responses aimed to restore homeostasis in 

the liver.    

As a final take-home message, in this study it has been described for the first 

time an unexpected off-target effect of RPV which points to a protective role in 

the liver through anti-adipogenic, anti-inflammatory and anti-fibrogenic activity. 

This effect results of especial relevance since it is partially supported by few 

clinical studies and it seems to be independent of the etiology of chronic liver 

injury. In our experiments, RPV effectively decreased the progression of steatosis 

as well as the inflammatory and fibrogenic responses. Surprisingly, it also 

decreased the progression of chronic injury and improved liver function once 

administered as a treatment in a fibrotic liver. In all models, this effect is clearly 

mediated by a direct activation of STAT1 in non-parenchimal cells and a 

subsequent apoptosis induction in HSC. These apoptotic cells promoted an 
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enhanced proliferation of hepatocytes, which seems to be mediated by an 

increased activation of STAT3 signaling.  

Under the paradigm of the translationality, despite the inherent limitations of this 

study, and considering that the protective role of RPV was reproduced in human 

primary HSC, we firmly defend the clinical relevance of our data and we consider 

they are strong enough to further explore whether this new indication of RPV 

could be definitely expanded to the clinics, from the bench to the bed side.     
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1. Acute treatment of hepatocytes with clinical concentrations of abacavir and 

didanosine, but not of other nucleoside-analogue reverse transcriptase inhibitors, 

directly undermine their mitochondrial function, though this effect is not intense 

or prolonged enough to compromise cell survival.  
 

2. Cytotoxicity in hepatocytes becomes evident when they are treated with either 

abacavir or didanosine, at clinical doses, in combination with subtoxic 

concentrations of acetaminophen, but not when combined with other hepatotoxic 

stimuli in which mitochondrial impairment is not directly involved.  
 

3. Chronic administration of the non-nucleoside-analogue reverse transcriptase 

inhibitors efavirenz and rilpivirine in mice induces an anti-adipogenic, an-

inflammatory and anti-fibrotic response that reduces non-alcoholic fatty liver 

disease progression. The effect induced by rilpivirine is significantly more intense 

than that showed by efavirenz.  
 

4. Chronic administration of rilpivirine reduces the progression of liver fibrosis in 

mice. Additionally, it is also able to revert liver damage once fibrosis is 

consolidated even when the toxic insult is still present. However, rilpivirine does 

not accelerate physiologic hepatic recovery once the insult disappears.   
 

5. The anti-inflammatory effect of rilpivirine is essentially mediated by NF-𝜅𝜅B and 

NLRP3 inflammasome inactivation. 
 

6. Regardless the aetiology of liver damage, JAK-STAT1 and JAK-STAT3 

signaling pathways are involved in the hepatoprotection induced by rilpivirine. 
 

7. Rilpivirine selectively induces apoptosis in hepatic stellate cells by STAT1 

activation. At the same time, it increases hepatocyte proliferation, and 

subsequent liver regeneration, by selective STAT3 activation in these 

parenchymal cells. 
 

8. This differential response induced by rilpivirine in both cell populations 

originally depends on the STAT1 activation in hepatic stellate cells.   
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