K4-Free Graphs as a Free Algebra*

1

Enric Cosme-Llépez' and Damien Pous?

1 Univ. Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France
2 Univ. Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP, Lyon, France

—— Abstract

Graphs of treewidth at most two are the ones excluding the clique with four vertices as a minor.
Equivalently, they are the graphs whose biconnected components are series-parallel.

We turn those graphs into a free algebra, answering positively a question by Courcelle and
Engelfriet, in the case of treewidth two. First we propose a syntax for denoting them: in addition
to series and parallel compositions, it suffices to consider the neutral elements of those operations
and a unary transpose operation. Then we give a finite equational presentation and we prove it
complete: two terms from the syntax are congruent if and only if they denote the same graph.

1998 ACM Subject Classification G.2.2 Graph Theory, F.4.3 Formal Languages.
Keywords and phrases Universal Algebra, Graph theory, Axiomatisation, Graph minors.

Digital Object Identifier 10.4230/LIPIcs.MFCS.2017.76

1 Introduction

The notion of treewidth is a cornerstone in (algorithmic) graph theory [16]. It measures
how close a graph is to a forest, and classes of graphs of bounded treewidth often enjoy
good computational properties. For instance, graph homomorphism (and thus k-colouring)
becomes polynomial-time [19, 7, 21], so does model-checking of Monadic Second Order
(MSO) formulae, and satisfiability of MSO formulae becomes decidable, even linear [9]. (See
the monograph of Courcelle and Engelfriet about monadic second order logic on graphs [13].)

Here we focus on graphs of treewidth at most two. They coincide with the partial 2-trees,
with the Ky-free graphs (those that exclude the clique with four vertices (K4) as a minor),
and with the graphs whose biconnected components are series-parallel [18, 5].

We consider the set Gph of directed graphs with edges labelled with letters a,b,... in
some alphabet ¥, and with two distinguished vertices, called the input and the output. We
represent such graphs as usual, using an unlabelled ingoing (resp. outgoing) arrow to denote
the input (resp. output). Such graphs can be composed:

in parallel by putting them side by side, merging their inputs, and merging their outputs;

in series by putting them one after the other and merging the output of the first one

with the input of the second one.
Every letter of the alphabet gives rise to a graph consisting of two vertices (the input and
the output), and a single edge from the input to the output, labelled with that letter.

If we allow only those operations, we obtain the series-parallel graphs, and it is easy
to see that these form the free algebra over the signature {||,-), where || is an associative-
commutative binary operation (parallel composition), and - is an associative binary operation

An extended version of this abstract, including proofs, is available on HAL [8]. This work was sup-
ported by the European Research Council (ERC) under the Horizon 2020 programme (CoVeCe, grant
agreement No 678157) and the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within
the program “Investissements d’Avenir” (ANR-11-IDEX-0007)

© Enric Cosme Llépez and Damien Pous;

37 licensed under Creative Commons License CC-BY
42nd International Symposium on Mathematical Foundations of Computer Science (MFCS 2017).
Editors: Kim G. Larsen, Hans L. Bodlaender, and Jean-Francois Raskin; Article No. 76; pp. 76:1-76:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2017.76
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

76:2 Ks-Free Graphs as a Free Algebra

o
b O—a>O .
a c —0 o— (vi)
—> 00— o—> (V) Oo——0

Figure 1 Some graphs of treewidth at most two

(series composition). For instance, the terms ((a-(b]|¢))-d) || e and e|| (a-((c]| b)-d)) both
denote the graph (i) in Figure 1; they are equal up to associativity of - and commutativity
of ||. Parallel composition is not idempotent: (a-b) || (a-b) and a-b denote distinct graphs.

However, we cannot denote all graphs of treewidth at most two in such a way.

First the notion of treewidth does not depend on the orientation of the edges. For
instance, the graph (ii) has treewidth two, yet it is not the image of a term in the previous
syntax. To this end, we add a unary operation -° to our signature, which we interpret in
graphs as the exchange of input and output. Doing so, the terms (a-0°) || ¢ and (b-a®)° || ¢
denote the graph (ii), and series-parallel graphs with converse become a free algebra when
we ask that -° is an involution that distributes over | and satisfies (a-b)° = b°-a®.

Second, the treewidth of a graph does not depend on self-loops, so that the graph (iii)
actually has treewidth one (it is a tree once we remove the self-loop). There it suffices to
add a constant, 1, interpreted as the graph with a single vertex (both input and output),
and no edge. Doing so, the graph (iii) is denoted by a-(1]|b)-c. While the constant 1
is clearly a neutral element for series composition (-), axiomatising its interactions with
parallel composition is much harder, and is actually one of the key contributions of the
present work. For instance, the equation (1] a)-(1]b) = 1| a||b belongs to the theory as
both sides denote the graph (iv).

Up-to this point, we have recovered the syntax of allegories [20], and the graphs associ-
ated to the terms are precisely the ones Freyd and Scedrov use to obtain that the theory of
representable allegories is decidable, yet not finitely presentable [20, p. 210].

But we still miss some graphs, like (v). One can also remark that we only obtain
connected graphs using the above operations. Instead, treewidth allows disconnected graphs:
a graph has a given treedwidth if and only if all of its connected components do. Surprisingly,
it suffices to add a second constant, T, interpreted as the disconnected graph with no edges
and two distinct vertices (the input and the output). This allows us to obtain disconnected
graphs, but also to get a term for the connected graph (v), namely, a-((b-T) || ¢). Again while
it is clear that this constant is a neutral element for parallel composition (||), capturing its
interactions with the other operations is non-trivial. For instance, T-a-T-b0-T and T-b-T-a-T
both denote the graph (vi), and should thus be equated.

To sum up, the set Gph of graphs forms an algebra for the signature (-2, || 5,5, 10, To);
the various operations of this algebra are depicted in Figure 2.

E. Cosme-Llépez and D. Pous

9
>

G-H: —0—G—>0—H—>0—> 142 —>o0— +«—O0—(G—>0<—

G
G|H=— H>o—> T2 —o0 o—

[I>

a

IS

Figure 2 The 2p-algebra of graphs and the graph of a letter

Write Trm for the set of terms over the alphabet > and TWy for the set of graphs of
treewidth at most two when an extra edge is added between input and output!. One easily
proves that the latter set actually forms a subalgebra of the algebra of graphs. Therefore,
the function interpreting each term as a graph actually gives a function g : Trm — TW,.

We first prove that this function has a right-inverse: we define a function t : TWy — Trm
such that for all graph G € TWa, g(t(G)) is isomorphic to G:

Trm TW, gt(@)) ~ G (1)

By doing so, we get that the graphs of treewidth at most two are exactly the ones that can
be expressed using the syntax.

Our key contribution then consists in giving a finite equational axiomatisation of graph
isomorphism over this syntax. This answers positively the question asked by Courcelle and
Engelfriet in their book, for treewidth two [13, p. 118].

Note that the choice of the syntax is important. Various finite syntaxes have already
been proposed [15, 16, 13] to capture graphs of treewidth at most k, for a given k. However,
some choices prevent finite presentations. For instance, while the converse operation we use
could be eliminated by pushing it to the leaves, doing so would turn some of our axioms
into infinite equational schemes. (See also Remark 27.)

As explained above, a few laws are rather natural like associativity of the two compo-
sitions, commutativity of ||, or the facts that 1 and T are neutral elements and that -° is
an involution. Those are the first eight laws in Figure 3. Surprisingly, the four subsequent
axioms suffice to obtain a complete axiomatisation: for all terms u, v, u and v are provably
equal using the axioms from Figure 3 if and only if g(u) and g(v) are isomorphic:

u=v e gu)=g) (2)

In other words, calling a 2p-algebra an algebra satisfying the axioms from Figure 3, TW, is
the free 2p-algebra.

All axioms but (A3) are independent; (A3) follows from (A9) and (A12). Correctness,
i.e., the left-to-right implication in (2), is easy to establish. Indeed, it suffices to compute
and compare the graphs of each equation, and to prove that valid equations are stable under
graph substitution. The converse implication, completeness, is much harder. This is because
there is no canonical way of extracting a term out of a graph. In particular, the function t
we define to this end has to make choices based on the concrete representation of the input
graph, so that isomorphic graphs do not always map to syntactically equal terms.

1 This additional condition is natural when considering pointed graphs [11]; this is not a restriction for
unpointed graphs as one can always set input and output to the same arbitrary node.

76:3

MFCS 2017

76:4

Ks-Free Graphs as a Free Algebra

ull(vffw) = (ufv)[[w (A1) u-(v-w) = (wv)w (A4)
ullv=vlu (A2) wl=u (A5)

ul| T=u (A3) _
11=1 (A9)
U =u (A6) uov=1](u|[v°)T (A10)
(u||v)° =u® || v° (A7) wT=([1||wT)T (A11)
(uwv)° = v°-u’ (A8) (1w)v=0]u)Tlv (A12)

Figure 3 Twelve axioms for 2p-algebras, all independent except for (A3)

We proceed in the following way to obtain completeness. First we prove that the function
t maps isomorphic graphs to congruent terms:

G~H = t(G) = t(H) (3)

Then we prove that this function is a homomorphism (up to the axioms), which allows us
to deduce that for all terms u, t(g(u)) is provably equal to wu:

t(g(u)) = u (4)

In a sense, by interpreting a term u into a graph and then reading it back, we obtain a
term t(g(u)) which plays the role of a normal form even if it is not canonical (which would
typically be the case in rewriting theory, or in normalisation by evaluation [4]).

Defining a function t satisfying (1) could be done rather easily by relying on the notion of
tree decomposition. However, doing so makes it extremely difficult to obtain properties (3)
and (4): the notion of tree decomposition, despite its inductive nature, does not provide
enough structure. Instead, we use the fact that treewidth at most two graphs are Ks-free,
and we exhibit stronger graph invariants that allow us to extract terms from graphs in a
much more structured way.

For instance, when the graph is connected and when its input and output are distinct,
one can compute its checkpoints: those vertices which all paths from the input to the output
must visit. Those checkpoints are linearly ordered so that the graph has the following shape

s N ' 9

If there is at least one checkpoint then the graph should be interpreted as a series composi-
tion. Otherwise, by the absence of K4 as a minor, one can show that the graph necessarily
is a non-trivial parallel composition.

The aforementioned step is already there in the standard result that the biconnected
components of a Ky-free graph are series-parallel. More challenging is the case when the
input and output coincide. In this case, we consider the checkpoints of all pairs of neighbours
of the input, and we show that they form a tree which is a minor of the starting graph.

E. Cosme-Llépez and D. Pous

This tree is a key invariant of the isomorphism class of the graph and we show that one
can extract a term for each choice of a node in this tree. This is where our function t has
to rely on the concrete representation of the graph: although all choices of a node in the
tree result in provably equal terms, they do not yield syntactically equal terms. A similar
situation happens with components which are disconnected from the input and the output:
we handle those recursively by taking any vertex as a new choice of input and output.

2 Related work

Except for the presence of T, the algebra of graphs we work with has been proposed inde-
pendently by Freyd and Scedrov [20, p. 207], and by Andréka and Bredikhin [1]. They used
it to characterise the equational theory of binary relations over the considered signature. In-
deed the set of binary relations over a fixed set forms an algebra for the signature we consider
in this paper: - is relational composition, || is set-theoretic intersection (thus it is written
N in [20, 1]), -° is transposition, 1 is the identity relation and T is the full relation. Writing
Rel E u < v for the containments that hold in all such algebras of relations, and G € H if
there exists a graph homomorphism from H to G, we have the following equivalence.

RelFu <w & g(u) 4 gv)

This characterisation immediately gives decidability: existence of a graph homomorphism
is an NP-complete problem. Thanks to the present observation that graphs of terms have
bounded treewidth, the complexity is actually polynomial [21].

Freyd and Scedrov also use this characterisation to prove that this theory is not finitely
presentable [20]: every complete equational axiomatisation must contain axioms corres-
ponding to homomorphisms equating arbitrarily many vertices at a time, and thus must be
infinite. Andréka and Bredikhin go even further and show that it is not even a variety [1].

In this work we focus on isomorphism rather than on homomorphism, and this is why
we do obtain a finite equational axiomatisation. Although all algebras of relations validate
our axioms, these algebras cannot be free models. For instance, their parallel composition
(intersection) is always idempotent. Freyd and Scedrov remark that certain graphs cannot
be the image of a term [20, p. 207], and Andréka and Bredikhin use a weak form of the K,
exclusion property [1, Lemma 7]. They cannot obtain a characterisation result since they
do not consider T, which is necessary to reach all graphs of treewidth at most two.

Our work is also really close to that of Dougherty and Gutiérrez [17], who proposed an
axiomatisation of graph isomorphism for a slightly different syntax: instead of the constant
T, they use a unary operation dom(-), called domain. This operation can be defined in
our setting: we have dom(u) = 1| (u-T); at the graphical level, it consists in relocating
the output of a graph on its input. In contrast, T cannot be defined in terms of dom(-)
and the other operations. Choosing this domain operation has the advantage of keeping
connected graphs, and the disadvantage of being less general: disconnected graphs cannot
be expressed. More importantly, the operation T being more primitive than dom(-), we
can obtain a shorter axiomatisation: while we share with [17] the nine natural axioms
from Figure 3 that do not mention T, the four remaining ones in this figure have to be
replaced by nine axioms when using dom(-): three about 1 and ||, and six about dom(-).
To prove completeness, Dougherty and Gutiérrez compute normal forms for terms using
rewriting techniques. Like in the present work, their normal forms are not canonical and
some additional work is needed. In a second part of the paper, they characterise graphs of
terms using a minor exclusion theorem which corresponds precisely to what we obtain in

76:5

MFCS 2017

76:6

Ks-Free Graphs as a Free Algebra

the connected case (see Remark 27). There are however several typos or gaps in their paper
which we were not able to fix—see [8] for more details.

Bauderon and Courcelle gave a syntax and a complete axiomatisation for arbitrary
graphs [3]. While the overall statement is similar to ours, their syntax can hardly be related
to the present one (it is infinitary, for instance), and the present results are not corollar-
ies of their work. The structural invariants we exhibit here are reminiscent of the general
decomposition results of Tutte [27], which Courcelle later studied in the context of MSO [12].

3 2p-algebra

We consider the signature (-2, || 5,5, 1o, To) and we let u,v,w range over terms over a set
3 of variables. We usually omit the - symbol and we assign priorities so that the term
(a - (b°)) || c can be written just as ab® ||c. A 2p-algebra is an algebra over this signature
satisfying the axioms from Figure 3. We write u = v when two terms u and v are congruent
modulo those axioms, or equivalently, when the equation holds in all 2p-algebras.

Following notations from Kleene algebra with tests (KAT) [22], we let «, 8 range over
tests, those terms that are congruent to some term of the shape 1| u. (By axiom A9, u is a
test iff u = 1| u.) Graphs of tests are those whose input and output coincide.

We shall use the derived operation mentioned in Section 2, domain, as well as its dual,
codomain: dom(u) £ 1||uT and cod(u) = 1| Tu. Those are tests by definition.

As is standard for involutive monoids, the first eight axioms from Figure 3 entail 1° = 1,
T° =T, and lu = u. We use such laws freely in the sequel. We recall the four remaining
axioms below, using the above notations.

11=1 (A9) uT = dom(u)T (A11)
1 ||uv = dom(u || v°) (A10) av=aT|v (A12)
Thanks to converse being an involution, there is a notion of duality in 2p-algebras: one

obtains a valid law when swapping the arguments of all products and exchanging domains
with codomains in a valid law. (We have cod(u) = dom(u°).)

» Proposition 1. The following equations hold in all 2p-algebras.

a"=a ©) Tu®T =TuT (11)
af=alls () uTw=uT | Tw (12)
a(vfw) = avijw (®) uTvTw=uTw || ToT (13)
e ©) (u] ToTw =uw || ToT (14)
dom(uv || w) = dom(u || wv°) (10)
4 Graphs

As explained in the introduction, we consider labelled directed graphs with two designated
vertices. We just call them graphs in the sequel. Note that we allow multiple edges between
two vertices, as well as self-loops.

» Definition 2. A graph is a tuple G = (V, E, s,t,1,1,0), where V is a finite set of vertices,
F is a finite set of edges, s,t : E — V are maps indicating the source and target of each
edge, | : E — X is map indicating the label of each edge, and ¢,0 € V are the designated
vertices, respectively called input and output.

E. Cosme-Llépez and D. Pous

We write G[z;y] for the graph G with input set to 2 and output set to y; we abbreviate
Glz; z] to Glz].

» Definition 3. An homomorphism from G = (V, E, s, t,1,t,0) to G' = (V' E', ', ¢',I',//,0')
is a pair h = (f,g) of functions f : V — V' and g : E — FE’ that respect the various
components: s'og=fos, t'og=fot,l'=gol, = f(1),and o' = f(0).

A (graph) isomorphism is a homomorphism whose two components are bijective func-
tions. We write G ~ G’ when there exists an isomorphism between graphs G and G’.

» Proposition 4. Graphs up to isomorphism form a 2p-algebra.

» Definition 5. Let G = (V, E, s,t,1,1,0) be a graph. A tree decomposition of G is a tree T'
where each node t is labelled with a set V; C V of vertices, such that:

(T1) for every vertex z € V, the set of nodes ¢t such that = € V; forms a sub-tree of T
(T2) for every edge e € E, there exists a node ¢ such that {s(e),t(e)} C Vi;

(T3) there exists a node ¢ such that {¢,0} C V4.

The width of a tree decomposition is the size of the largest set V; minus one; the treewidth
of a graph is the minimal width of a tree decomposition for this graph. We write TW for
the set of graphs of treewidth at most two.

The first two conditions in the definition of tree decomposition are standard; the third one is
related to the presence of distinguished nodes: it requires them to lie together in some node
of the tree. This condition ensures that the following graph is excluded from TWs whatever
the orientation and labelling of its edges.

_.O<I>H (Ms)

Indeed, such a graph cannot be represented in the syntax we consider. (Something already
observed by Freyd and Scedrov [20]—the addition of T to the syntax does not help.)

» Proposition 6. Graphs of trecwidth at most two form a subalgebra of the algebra of graphs.

The graphs we associate to each letter (Figure 2) also belong to this subalgebra, so that we
obtain a homomorphism g : Trm — TW; associating a graph of treewidth at most two to
each syntactic term. When taking quotients under term congruence and graph isomorphism,
this function becomes a 2p-algebra homomorphism g’ : Trm /= — TW; /~- Our key result is
that g’ actually is an isomorphism of 2p-algebras (Corollary 33).

5 Kj;-freeness

In this section we establish preliminary technical results about unlabelled undirected graphs
with at most one edge between two vertices and without self-loops; we call those simple
graphs. We use standard notation and terminology from graph theory [16]. In particular,
we denote by xy a potential edge between two vertices z and y; an xy-path is a (possibly
trivial) path whose ends are x and y; G+ zy is the simple graph obtained from G by adding
the edge zy if x and y were not already adjacent; G\x is the simple graph obtained from G
by removing the vertex x and its incident edges.

» Definition 7. A minor of a simple graph G is a simple graph obtained by performing a
sequence of the following operations on G: delete an edge or a vertex, contract an edge.

76:7

MFCS 2017

76:8

Ks-Free Graphs as a Free Algebra

A cornerstone result of graph theory, Robertson and Seymour’s graph minor theorem [26],
states that (simple) graphs are well-quasi-ordered by the minor relation. As a consequence,
the classes of graphs of bounded treewidth, which are closed under taking minors, can be
characterised by finite sets of excluded minors. Two simple and standard instances are the
following ones: the graphs of treewidth at most one (the forests) are precisely those excluding
the cycle with three vertices (C3); those of treewidth at most two are those excluding the
complete graph with four vertices (K4) [18]. We eventually reprove the latter one here.

) © A«

We fix a connected simple graph G in the remainder of this section.

» Definition 8. The checkpoints between two vertices z, y are the vertices which any zy-path
must visit: CP(x,y) £ {2 | every zy-path crosses z}.

For all vertices z,y, we have CP(z,z) = {z} and {z,y} C CP(z,y) = CP(y,). Two vertices
x,y are linked, written 0y, when = # y and CP(z,y) = {z,y}, i.e., when there are no
proper checkpoints between x and y. The link graph of G is the graph of linked vertices.
Note that G is a subgraph of its link graph: if xy is an edge in G then xQy. We also have
the following properties.

» Lemma 9. Any cycle in the link graph is actually a clique.

» Lemma 10. If xyz is a triangle in the link graph and ¢ is a vertex not in G, then the
graph G + 1x + vy + vz admits K4 as a minor.

Now fix a set U of vertices; we extend the notion of checkpoints as follows.

» Definition 11. The checkpoints of U, CP(U), is the set of vertices which are checkpoints
of some pair in U: CP(U) £ U:c,yEU CP(z,y). The checkpoint graph of U is the subgraph of
the link graph induced by this set. We also denote this graph by CP(U).

» Lemma 12. CP is a closure operator on the set of vertices. In particular, for all check-
points x,y € CP(U), CP(z,y) C CP(U).

» Lemma 13. For every path in G between two checkpoints x,y € CP(U), the sequence
obtained by keeping only the elements in CP(U) is an xy-path in CP(U).

Since G is assumed to be connected, it follows that so is CP(U). A key instance of a
checkpoint graph is when U only contains two vertices, presumably the input and output
of some graph: the checkpoint graph is a line in this case, as in (5), and it allows us to
decompose the considered graph into a sequence of series compositions.

» Lemma 14. [fU = {z,y}, then CP(U) is a line graph whose ends are x and y.

The following two lemmas are helpful in Proposition 20 below, to prove that the checkpoint
graph is a tree under certain circumstances.

» Lemma 15. If zy is an edge in CP(U), then there exists ',y € U such that x and y
belong to CP(z’,y/).

» Lemma 16. If xyz is a triangle in CP(U), then there exists ', y', 2" € U such that x and
y (resp. x and z, y and z) belong to CP(z',y") (resp. CP(a',2"), CP(y',2")).

E. Cosme-Llépez and D. Pous

As explained above we use the checkpoint graphs to decompose graphs. The following
notions of intervals and bags are the basic blocks of those decompositions.

» Definition 17. Let x,y be two vertices. The strict interval Jx;y[is the following set of
vertices.

Jz;y[£ {p| there is an zp-path avoiding y and a py-path avoiding x}

The interval [z;y] is obtained by adding z and y to that set. We abuse notation and write
[x;y] for the subgraph of G induced by the set [x;y].

Note that while the intervals do not depend on the set U, we mostly use them under the
assumption that xy is an edge in a checkpoint graph.

» Definition 18. The bag of a checkpoint x € CP(U) is the set of vertices that need to cross
z in order to reach the other checkpoints.

[zl £ {p | Vy € CP(U), any py-path crosses z} .
As before, we also write [x],, for the induced subgraph of G.

Note that [z],, depends on U and differs from [«; 2] (which is always the singleton {z}).

» Proposition 19. If CP(U) is a tree, then the following set V is a partition of the vertices
of G such that any edge of G appears in exactly one graph of the set &.

V& {[z], |z € CPU)}U{Ja;y[| xy edge in CP(U)}
gL {l=]y | = € CPU)} U{[z;y] | xy edge in CP(U)}

Graphically, this means G can be decomposed as in the picture above; only the vertices
of CP(U) are depicted, the green blocks correspond to edges in CP(U), the yellow blocks
correspond to the graphs [z],;. The leaves of CP(U) are elements of U (but not always
conversely). As a consequence, when CP(U) is a tree, it is a minor of G: contract all
subgraphs of the form [z],, into vertex x and all subgraphs of the form [z;y] into edge zy.

The following proposition is a key element in the developments to come. It makes it
possible to extract a term out of a graph whose input and output coincide, by providing
ways to chose an element where to relocate the output and resort to the easier case when
input and output differ. (Note that G is still assumed to be connected.)

» Proposition 20. Assume G = H\i, for some Ky-free simple graph H and some vertex ¢.
Further assume that U is the set of neighbours of v in H and that this set is not empty.
(i) CP(U) is a tree,
(ii) for every edge xy in CP(U), the graph [z;y] + xy is Kq-free,
(i) for every vertex x in CP(U), the graph H + vz is Kq-free.

As a consequence of the above proposition, we have the following one, which makes it possible
to decompose graphs with distinct input and output into a parallel composition when they
cannot be a series composition.

76:9

MFCS 2017

76:10

Ks-Free Graphs as a Free Algebra

» Proposition 21. Let 1,0 be two distinct vertices such that G + ro is Ka-free. We have

that:

(i) if v and o are not adjacent in G and 1Qo, then the graph induced by Ji; o[has at least
two connected components.

(i) for every edge xy in CP({t,0}), the graph [x;y] + zy is Ky-free,

6 Extracting terms

Now we have enough preliminary material and we can look for a right inverse to the function
g : Trm — TW,. As explained in the Introduction, we use K4-freeness to extract terms from
graphs in a more structured way than using tree decompositions directly.

» Definition 22. The skeleton of a graph G is the simple graph S obtained from G by
forgetting input, output, labelling, edge directions, edge multiplicities, and self-loops. The
strong skeleton of G is S + to if + # o, and S otherwise.

As an example, the strong skeleton of any instance of the graph (M3) from Section 4 is Kg.
More generally, a graph belongs to TW, if and only if its strong skeleton has treewidth at
most two in the standard sense.

» Proposition 23. The strong skeleton of every graph in TWs is Ky-free.

Given a graph G and two vertices z,y, we write G[z;y] for the subgraph of G induced by
the set [x;y] (computed in the skeleton of G), with input and output respectively set to x
and y, and with self-loops on z and y removed. The strong skeleton of G[z;y] is [z;y] + xy.

Similarly, given a graph G, a set U of vertices and vertex z, we write G[z],, for the
subgraph of G induced by the set [x], (computed in the skeleton of G), with both input
and output set to x. Doing so, the skeleton and strong skeleton of G[z],, are both [z],,.
We shall omit the subscript when it is clear from the context.

» Definition 24. The term t(G) of a graph G whose strong skeleton is Ks-free is defined
by induction on the number of edges in G?. When G is connected there are two main cases
depending on whether the input and output coincide (a) or not (b). We deal with the general
case (c¢) by decomposing the graph into connected components.

(a) Connected, distinct input and output

Consider the line graph (Lemma 14) obtained by taking the checkpoint graph of U = {¢, 0}
in the skeleton of G. Write it as xg...x,+1 with ¢ = g and 0 = x,41. According to
Proposition 19, G looks as follows.

~Saimd =8~

We set t(G) £ t(Gxo])t(Gzo; 71])t(G[x1])- - - . t(G[zn]) t(G[zn; Tni1]) t(Gzns1])

The (strong) skeleton of each graph G[z;] is just [;], which is necessarily Ky-free, as a
subgraph of that of G. Proposition 21(2) moreover ensures that so are the strong skeletons
of all graphs G[x;;z;1+1]. The above recursive calls occur on smaller graphs unless n = 0
and the graphs G[:] and G[o] are reduced to the trivial graph with one vertex and no edge
(i.e., the graph 1). In such a situation,

2 More precisely, on the lexicographic product of the number of edges and the textual precedence of the
three considered cases.

E. Cosme-Llépez and D. Pous

either ¢ and o are adjacent in G. Then let G’ be the graph obtained by removing from
G all edges between ¢ and o and let u = a1 || ... [|a; |65 || ... bS be a term corresponding
to those edges. Accordingly, we set t(G) £ t(G’) || u.

Or they are not, and Proposition 21(2) applies so that we can decompose G into parallel
components: G =G4 || ... || Gy, with m > 2. We set t(G) 2 t(Gy) || ... [|t(Gm)-

(b) Connected, input equals output
If there are self-loops on ¢, let w = ay || ... || a, be a term corresponding to those edges, let
G’ be the graph obtained by removing them, and recursively set t(G) = t(G") || u.

Otherwise let H be the skeleton of G. Decompose H\: into connected components
Hi\¢,...,H,\t such that H ~ Hy; U---U H,,. The graph looks as follows.

W

If m = 0, then set t(G) = 1. If m > 1, set t(G) £ ||,-,,t(Gi) , where G; is the
subgraph of G induced by H,. It remains to cover the case where m = 1. Let U be the
set of neighbours of the input and compute the checkpoint graph CP(U) in H\¢. Pick an
arbitrary node x € CP(U). By Proposition 20(3), the strong skeleton of G[i;x] is Ks-free.
Set t(G) £ dom(t(G[t; 7])). (Remember that dom(-) relocates the output to the input.)

(c) General case

Decompose the graph G into connected components Gy,...,G,. For all i < n, pick an
arbitrary vertex x; in the component G;. There are two cases:

either input and output belong to the or they belong to two distinct components, say
same component, say G;; then set ¢ in G and o in G}, in which case we set
(@) £4(G5) | || T-e(Gilzi]) T t(G) £ t(G51]) TGelo]) || || T-t(Gilzi]) T
i#j i#j,k

- ¢ -8 8.9
¥ 9 ¢ ¥ ¥ ¢

In both cases, it is easy to check that the recursive calls occur on graphs whose (strong)
skeletons are subgraphs of the strong skeleton of G, and thus Ky-free.

The definition of the extraction function t ends here. This function is defined on “con-
crete” graphs: we need to choose some vertices in cases (b) and (c¢), and we can only do so by
relying on the concrete identity of those vertices (e.g., choosing the smallest one, assuming
they are numbers). We shall see in the following section that all those potential choices,
nevertheless, always lead to congruent terms (Theorem 30). By construction, we obtain:

» Theorem 25. For every graph G € TW3, g(t(G)) =~ G.

» Corollary 26. The following are equivalent for all graphs G:
(i) G has treewidth at most two;

(ii) the strong skeleton of G is Ky-free;

(iii) G is (isomorphic to) the graph of a term.

76:11

MFCS 2017

76:12

Ks-Free Graphs as a Free Algebra

» Remark 27. When G is connected, t(G) does not contain occurrences of T other than
those that are implicit in our uses of dom(-) in case (b). Thus we obtain an alternative
proof of Dougherty and Gutiérrez’ characterisation [17, Section 4, Theorem 31] (their minor
exclusion property is easily proved equivalent to ours—they do not mention treewidth).

Also note that we can easily avoid using 1 (but not dom(-)) when the graph does not
contain self-loops and is not reduced to the trivial graph 1. When the graph does not contain
self-loops and has distinct input and output, the construction can be modifed to produce
terms without both 1 and dom(-); the resulting construction becomes, however, less local,
and we do not know how to use it to axiomatise the 1-free reduct of 2p-algebra.

7 Completeness of the axioms

We can finally prove that the axioms of 2p-algebras are complete w.r.t. graphs: they suffice
to equate all terms denoting the same graph up to isomorphism. For lack of space, we
present only the main steps. Proofs for this last part consist in detailed analyses of the term
extraction function (t) through inductive arguments following its recursive definition, and
using the laws from Proposition 1 to relate the extracted terms. All details are in [8].

We first prove that t maps isomorphic graphs to congruent terms. We need for that the
following propositions.

» Proposition 28. Let G € TWy be a graph with 1 = o, without self-loops on v. Let S
be its skeleton, and assume that S\t is connected. Let U be the neighbours of v in G and
consider the checkpoint graph of U in the skeleton of S\t. For all checkpoints x,y, we have
dom(t(G[t, z])) = dom(t(Gle, y])).

» Proposition 29. Let G € TWy be a connected graph. For all vertices x,y, we have
THG[z)T = TH(Gy])T.

» Theorem 30. Let G, H € TWy be two graphs. If G ~ H then t(G) = t(H).

In other words, the extraction function t yields a function t' : TWy,. — Trm = between
2p-algebras. We finally prove that t’ is a homomorphism, and, in fact, an isomorphism.

» Proposition 31. The function t': TWq . — Trm = is an homomorphism of 2p-algebras.
» Theorem 32. For every term u, we have t(g(u)) = u.

» Corollary 33. For all terms u and v, we have u = v if and only if g(u) ~ g(v). Graphs of
treewidth at most two form the free 2p-algebra, as witnessed by the diagram on the right.

!

g
Trm/E TWQ/:
—

8 Future work

What is the free idempotent 2p-algebra? (Where parallel composition is idempotent.) One
could be tempted to switch to simple directed graphs, where there is at most one edge with a
given label from one vertex to another. This is however not an option: the graphs of ab|| ab
and ab are not isomorphic. One could also consider equivalences on graphs that are weaker
than isomorphism. The notion of (two-way) bisimilarity [25, 24] that come to mind does
not work either: such an equivalence relation on graphs certainly validates idempotency of

E. Cosme-Llépez and D. Pous

parallel composition, but it also introduces new laws, e.g., T(1]aa)T = T(1] a)T, which
are not even true in algebras of binary relations.

Courcelle used the algebraic theory he defined with Bauderon for arbitrary graphs [3] to
propose a notion of graph recognisability [9], based on the generic framework by Mezei and
Wright [23]. He proved that sets of graphs definable in MSO are recognisable. The converse
does not hold in general. He later proved it for graphs of treewidth at most two [10] with a
counting variant of MSO, conjecturing that it would be so for classes of graphs of bounded
treewidth. This conjecture was proved only last year, by Bojanczyk and Pilipczuk [6].

The present work makes it possible to propose an alternative notion of recognisabi-
lity for treewidth at most two, 2p-recognisability: recognisability by a finite 2p-algebra.
We conjecture that this notion coincides with recognisability. That recognisability entails
2p-recognisability is easy. The converse is harder; it amounts to proving that any finite
congruence with respect to substitutions in treewidth at most two graphs can be refined
into a finite congruence with respect to substitutions in arbitrary graphs. We see two ways
of attaining this implication:

1. prove that 2p-recognisability entails MSO-definability, which could possibly be done
along the lines of [10], by showing that our term extraction procedure is MSO-definable.

2. or use a slight generalisation of the result by Courcelle and Lagergren [14], relating recog-
nisability to k-recognisability for graphs of treewidth at most k. Indeed, 2p-recognisability
is really close to 2-recognisability. Unfortunately, Courcelle and Lagergren’s result is es-
tablished only for unlabelled, undirected graphs, without sources, while we need labelled
directed graphs with two sources.

One can easily extend our syntax to cover graphs of treewidth at most k, with k sources,
for a given k (see, e.g., [15, 2]). However, we do not know how to generate finite axiomatisa-
tions in a systematic way, for every such k. Moreover, our proof strategy heavily depends on
the fact that when k = 2, K4 is the only excluded minor. We would need another strategy
to deal with the general case since the excluded minors are not known for k& > 4.

—— References

1 H. Andréka and D. A. Bredikhin. The equational theory of union-free algebras of relations.
Algebra Universalis, 33(4):516-532, 1995. doi:10.1007/BF01225472.

2 S. Arnborg, B. Courcelle, A. Proskurowski, and D. Seese. An algebraic theory of graph
reduction. Journal of the ACM, 40(5):1134-1164, 1993. doi:10.1145/174147.169807.

3 Michel Bauderon and Bruno Courcelle. Graph expressions and graph rewritings. Mathem-
atical Systems Theory, 20(2-3):83-127, 1987. doi:10.1007/BF01692060.

4 Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation functional for typed
lambda-calculus. In LICS, pages 203-211. IEEE, 1991. doi:10.1109/LICS.1991.151645.

5 H.L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209(1):1-45, 1998. doi:10.1016/S0304-3975(97)00228-4.

6 Mikotaj Bojanczyk and Michal Pilipczuk. Definability equals recognizability for graphs of
bounded treewidth. In LICS, pages 407-416. ACM, 2016. doi:10.1145/2933575.2934508.

7 Chandra Chekuri and Anand Rajaraman. Conjunctive query containment revisited. The-
oretical Computer Science, 239(2):211-229, 2000. doi:10.1016/30304-3975(99)00220-0.

8 Enric Cosme-Llépez and Damien Pous. Ky-free graphs as a free algebra, 2017. Full version
of this extended abstract, with all proofs, available at https://hal.archives-ouvertes.
fr/hal-01515752/. URL: https://hal.archives-ouvertes.fr/hal-01515752/.

9 B. Courcelle. The monadic second-order logic of graphs. I: Recognizable sets of finite graphs.
Information and Computation, 85(1):12-75, 1990. doi:10.1016/0890-5401(90)90043-H.

76:13

MFCS 2017

http://dx.doi.org/10.1007/BF01225472
http://dx.doi.org/10.1145/174147.169807
http://dx.doi.org/10.1007/BF01692060
http://dx.doi.org/10.1109/LICS.1991.151645
http://dx.doi.org/10.1016/S0304-3975(97)00228-4
http://dx.doi.org/10.1145/2933575.2934508
http://dx.doi.org/10.1016/S0304-3975(99)00220-0
https://hal.archives-ouvertes.fr/hal-01515752/
https://hal.archives-ouvertes.fr/hal-01515752/
https://hal.archives-ouvertes.fr/hal-01515752/
http://dx.doi.org/10.1016/0890-5401(90)90043-H

76:14

Ks-Free Graphs as a Free Algebra

10

11

12

13

14

15

16
17

18

19

20

21

22

23

24
25

26

27

B. Courcelle. The monadic second-order logic of graphs V: on closing the gap between
definability and recognizability. Theoretical Computer Science, 80(2):153-202, 1991. doi:
10.1016/0304-3975(91)90387-H.

B. Courcelle. Recognizable sets of graphs: equivalent definitions and closure properties.
Mathematical Structures in Computer Science, 4(1):1-32, 1994.

B. Courcelle. The monadic second-order logic of graphs XI: Hierarchical decompositions
of connected graphs. Theoretical Computer Science, 224(1):35-58, 1999. doi:10.1016/
50304-3975(98)00306-5.

B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic - A
Language- Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applic-
ations. Cambridge University Press, 2012.

B. Courcelle and J. Lagergren. Equivalent definitions of recognizability for sets of graphs
of bounded tree-width. Mathematical Structures in Computer Science, 6(2):141-165, 1996.
doi:10.1017/5096012950000092X.

Bruno Courcelle. Graph grammars, monadic second-order logic and the theory of graph
minors. In Graph Structure Theory, volume 147 of Contemporary Mathematics, pages
565-590. American Mathematical Society, 1993. Proceedings of a Joint Summer Research
Conference on Graph Minors held June 22 to July 5, 1991, at the University of Washington,
Seattle. doi:10.1090/conm/147.

R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer, 2005.

Daniel J. Dougherty and Claudio Gutiérrez. Normal forms for binary relations. Theoretical
Computer Science, 360(1-3):228-246, 2006. doi:10.1016/j.tcs.2006.03.023.

R.J Duffin. Topology of series-parallel networks. Journal of Mathematical Analysis and
Applications, 10(2):303-318, 1965. doi:10.1016/0022-247X(65)90125-3.

Eugene C. Freuder. Complexity of k-tree structured constraint satisfaction problems. In
NCAI pages 4-9. AAAI Press / The MIT Press, 1990. URL: http://www.aaai.org/
Library/AAAI/1990/2aai90-001 . php.

P.J. Freyd and A. Scedrov. Categories, Allegories. North Holland. Elsevier, 1990. URL:
https://books.google.fr/books?id=fCSJRegkKdoC.

Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. Journal of the ACM, 54(1):1:1-1:24, 2007. doi:10.1145/1206035.
1206036.

D. Kozen. Kleene algebra with tests. Transactions on Programming Languages and Systems,
19(3):427-443, May 1997. doi:10.1145/256167.256195.

J. Mezei and J.B. Wright. Algebraic automata and context-free sets. Information and
Control, 11(1-2):3-29, 1967. doi:10.1016/S0019-9958(67)90353-1.

R. Milner. Communication and Concurrency. Prentice Hall, 1989.

David Park. Concurrency and automata on infinite sequences. In Theoretical Computer Sci-
ence, pages 167-183, 1981. URL: http://dl.acm.org/citation.cfm?id=647210.720030.
Neil Robertson and P.D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92(2):325-357, 2004. doi:10.1016/j.jctb.2004.08.001.
W. Tutte. Graph Theory. Addison-Wesley, Reading, MA, 1984.

http://dx.doi.org/10.1016/0304-3975(91)90387-H
http://dx.doi.org/10.1016/0304-3975(91)90387-H
http://dx.doi.org/10.1016/S0304-3975(98)00306-5
http://dx.doi.org/10.1016/S0304-3975(98)00306-5
http://dx.doi.org/10.1017/S096012950000092X
http://dx.doi.org/10.1090/conm/147
http://dx.doi.org/10.1016/j.tcs.2006.03.023
http://dx.doi.org/10.1016/0022-247X(65)90125-3
http://www.aaai.org/Library/AAAI/1990/aaai90-001.php
http://www.aaai.org/Library/AAAI/1990/aaai90-001.php
https://books.google.fr/books?id=fCSJRegkKdoC
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1145/256167.256195
http://dx.doi.org/10.1016/S0019-9958(67)90353-1
http://dl.acm.org/citation.cfm?id=647210.720030
http://dx.doi.org/10.1016/j.jctb.2004.08.001

	Introduction
	Related work
	2p-algebra
	Graphs
	K4-freeness
	Extracting terms
	Completeness of the axioms
	Future work

