A CHARACTERIZATION OF THE n-ARY MANY-SORTED CLOSURE OPERATORS AND A MANY-SORTED TARSKI IRREDUNDANT BASIS THEOREM

J. CLIMENT VIDAL AND E. COSME LLÓPEZ

Abstract. A theorem of single-sorted algebra states that, for a closure space (A, J) and a natural number n, the closure operator J on the set A is n-ary if, and only if, there exists a single-sorted signature Σ and a Σ -algebra **A** such that every operation of **A** is of an arity $\leq n$ and $J = \text{Sg}_{\mathbf{A}}$, where $\text{Sg}_{\mathbf{A}}$ is the subalgebra generating operator on A determined by A . On the other hand, a theorem of Tarski asserts that if J is an n-ary closure operator on a set A with $n \geq 2$, and if $i < j$ with $i, j \in \text{IFB}(A, J)$, where IrB(A, J) is the set of all natural numbers n such that (A, J) has an irredundant basis (\equiv minimal generating set) of *n* elements, such that ${i + 1, ..., j - 1} \cap \text{IrB}(A, J) = \emptyset$, then $j - i \le n - 1$. In this article we state and prove the many-sorted counterparts of the above theorems. But, we remark, regarding the first one under an additional condition: the uniformity of the many-sorted closure operator.

1. Introduction.

A well-known theorem of single-sorted algebra states that, for a closure space (A, J) and a natural number $n \in \mathbb{N} = \omega$, the closure operator J on the set A is n-ary if, and only if, there exists a single-sorted signature Σ and a Σ -algebra **A** such that every operation of **A** is of an arity $\leq n$ and $J = Sg_A$, where Sg_A is the subalgebra generating operator on A determined by A . On the other hand, in [\[3\]](#page-14-0), it was stated that, for an algebraic many-sorted closure operator J on an S-sorted set A, $J = Sg_A$ for some many-sorted signature Σ and some Σ -algebra A if, and only if, J is uniform. And, by using, among others, the just mentioned result, our first main result is the following characterization of the n-ary many-sorted closure operators: Let S be a set of sorts, A an S-sorted set, J a many-sorted closure operator on A, and $n \in \mathbb{N}$. Then J is *n*-ary and uniform if, and only if, there exists an S -sorted

Date: May 5th, 2016.

²⁰¹⁰ Mathematics Subject Classification. Primary: 06A15; Secondary: 54A05.

Key words and phrases. S-sorted set, delta of Kronecker, support of an S-sorted set, n-ary many-sorted closure operator, uniform many-sorted closure operator, irredundant basis for a many-sorted closure space.

signature Σ and a Σ -algebra **A** such that $J = \mathrm{Sg}_{\mathbf{A}}$ and every operation of **A** is of an arity $\leq n$.

We turn next to Tarski's irredundant basis theorem for single-sorted closure spaces. But before doing that let us begin by recalling the terminology relevant to the case. Given an n in \mathbb{N} , a set A , and a closure operator J on A , the closure operator J is said to be an *n*-ary closure operator on A if $J = J_{\leq n}^{\omega}$, where $J_{\leq n}^{\omega}$ is the supremum of the family $(J^m_{\leq n})_{m\in\omega}$ of operators on A defined by recursion as follows: for $m = 0, J_{\leq n}^0 = \text{Id}_{\text{Sub}(A)}$; for $m = k+1$, with $k \geq 0, J_{\leq n}^{k+1}$ $J_{\leq n}^{k+1}(X) = J_{\leq n} \circ J_{\leq n}^{k},$ where $J_{\leq n}$ is the operator on A defined, for every $\overrightarrow{X} \subseteq A$, as follows:

$$
J_{\leq n}(X) = \bigcup \{ J(Y) \mid Y \in \text{Sub}_{\leq n}(X) \},
$$

where $\text{Sub}_{\leq n}(X)$ is $\{Y \subseteq X \mid \text{card}(Y) \leq n\}.$

Alfred Tarski in [\[4\]](#page-14-1), on pp. 190–191, proved, as reformulated by S. Burris and H. P. Sankappanavar in [\[2\]](#page-14-2), on pp. 33–34, the following theorem. Given a set A and an *n*-ary closure operator J on A with $n > 2$, for every $i, j \in \text{IrB}(A, J)$, where $\text{IrB}(A, J)$ is the set of all natural numbers n such that (A, J) has an irredundant basis(\equiv minimal generating set) of n elements, if $i < j$ and $\{i+1, \ldots, j-1\} \cap \text{IrB}(A, J) =$ \emptyset , then $j - i \leq n - 1$. Thus, as stated by Burris and Sankappanavar in [\[2\]](#page-14-2), on p. 33, the length of the finite gaps in $\text{IFB}(A, J)$ is bounded by $n-2$ if J is an n-ary closure operator. And our second main result is the proof of Tarski's irredundant basis theorem for many-sorted closure spaces.

2. Many-sorted sets, many-sorted closure operators, and many-sorted algebras.

In this section, for a set of sorts S in a fixed Grothendieck universe \mathcal{U} , we begin by recalling some basic notions of the theory of S-sorted sets, e.g., those of subset of an S-sorted set, of proper subset of an S-sorted set, of delta of Kronecker, of cardinal of an S-sorted set, and of support of an S-sorted set; and by defining, for an S-sorted set A, the concepts of many-sorted closure operator on A and of many-sorted closure space. Moreover, for a many-sorted closure operator J on A , we define the notions of irredundant or independent part of A with respect to J , of basis or generator of A with respect to J , of irredundant basis of A with respect to J, and of minimal basis of A with respect to J. In addition, we state that the notion of irredundant basis of A with respect to J is equivalent to the notion of minimal basis of A with respect to J and, afterwards, for a many-sorted closure space (A, J) , we define the subset $\text{IrB}(A, J)$ of N as being formed by choosing those natural numbers which are the cardinal of an irredundant basis of A with respect to J. On the other hand, for a natural number n , we define the concept of *n*-ary many-sorted closure operator on A and provide a characterization of the *n*-ary many-sorted closure operators J on A , in terms of the fixed points of J . Besides, for a set of sorts S , we define the concept of S-sorted signature, and, for an S-sorted signature Σ , the notion of Σ -algebra and, for a Σ -algebra **A**, the concept of subalgebra of **A** and the subalgebra generating many-sorted operator Sg_A on A determined by A. Subsequently, once defined the notion of finitely generated Σ -algebra, we state that, for a finitely generated Σ -algebra $\mathbf{A}, \text{IrB}(A, \text{Sg}_{\mathbf{A}}) \neq \varnothing.$

Definition 2.1. An S-sorted set is a function $A = (A_s)_{s \in S}$ from S to \mathcal{U} .

Definition 2.2. Let S be a set of sorts. If A and B are S-sorted sets, then we will say that A is a *subset* of B, denoted by $A \subseteq B$, if, for every $s \in S$, $A_s \subseteq B_s$, and that A is a proper subset of B, denoted by $A \subset B$, if $A \subseteq B$ and, for some $s \in S$, $B_s - A_s \neq \emptyset$. We denote by Sub(A) the set of all S-sorted sets X such that $X \subseteq A$.

Definition 2.3. Given a sort $t \in S$ and a set X we call delta of Kronecker for (t, X) the S-sorted set $\delta^{t, X}$ defined, for every $s \in S$, as follows:

$$
\delta_s^{t,X} = \begin{cases} X, & \text{if } s = t; \\ \varnothing, & \text{otherwise.} \end{cases}
$$

For a final set $\{x\}$, to abbreviate, we will write $\delta^{t,x}$ instead of the more accurate $\delta^{t,\{x\}}$.

We next define, for a set of sorts S , the concept of cardinal of an S-sorted set, for an S-sorted set A, the notion of support of A, and characterize the finite S-sorted sets in terms of its supports.

Definition 2.4. Let A be an S-sorted set. Then the *cardinal of A*, denoted by $card(A)$, is the cardinal of $\coprod A$, where $\coprod A$, the coproduct of $A = (A_s)_{s \in S}$, is $\bigcup_{s \in S} (A_s \times \{s\})$. Moreover, Sub_{fin} (A) denotes the set of all finite subsets of A, i.e., the set $\{X \subseteq A \mid \text{card}(X) < \aleph_0\}$, and, for a natural number n, $\text{Sub}_{\leq n}(A)$ denotes the set of all subsets of A with at most *n* elements, i.e., the set $\{X \subseteq A \mid \text{card}(X) \leq n\}$. Sometimes, for simplicity of notation, we write $X \subseteq_{fin} A$ instead of $X \in Sub_{fin}(A)$.

Definition 2.5. Let S be a set of sorts. Then the support of A , denoted by $\text{supp}_S(A)$, is the set $\{ s \in S \mid A_s \neq \emptyset \}$.

Proposition 2.6. An S-sorted set A is finite if, and only if, $\text{supp}_S(A)$ is finite and, for every $s \in \text{supp}_S(A)$, $\text{card}(A_s) < \aleph_0$.

Definition 2.7. Let S be a set of sorts and A an S-sorted set. A many-sorted closure operator on A is a mapping J from $\text{Sub}(A)$ to $\text{Sub}(A)$, which assigns to every $X \subseteq A$ its *J-closure* $J(X)$, such that, for every $X, Y \subseteq A$, satisfies the following conditions:

(1) $X \subseteq J(X)$, i.e., J is extensive.

(2) If $X \subseteq Y$, then $J(X) \subseteq J(Y)$, i.e., J is isotone.

(3) $J(J(X)) = J(X)$, i.e., J is idempotent.

Given two many-sorted closure operators J and K on A , J is called smaller than K, denoted by $J \leq K$, if, for every $X \subseteq A$, $J(A) \subseteq K(A)$. A many-sorted closure space is an ordered pair (A, J) where A is an S-sorted set and J a many-sorted closure operator on A. Moreover, if $X \subseteq A$, then X is irredundant (or independent) with respect to J if, for every $s \in S$ and every $x \in X_s$, $x \notin J(X - \delta^{s,x})_s$, X is a basis (or a generator) with respect to J if $J(X) = A$, X is an irredundant basis with respect to J if X irreduntant and a basis with respect to J, and X is a minimal basis with respect to J if $J(X) = A$ and, for every $Y \subset X$, $J(Y) \neq A$.

We next state that the notion of irredundant basis of A with respect to J is equivalent to the notion of minimal basis of A with respect to J. Moreover, for a many-sorted closure space (A, J) , we define IrB (A, J) as the intersection of the set of all natural numbers and the set of the cardinals of the irredundant basis of A with respect to J.

Proposition 2.8. Let (A, J) be a many-sorted closure space and $X \subseteq A$. Then X is an irredundant basis with respect to J if, and only if, it is a minimal basis with respect to J.

Definition 2.9. Let S be a set of sorts and (A, J) a many-sorted closure space. Then we denote by $IrB(A, J)$ the subset of N defined as follows:

$$
\text{IrB}(A, J) = \mathbb{N} \cap \left\{ \text{card}(X) \middle| \begin{array}{c} X \text{ is an irredundant basis} \\ \text{of } A \text{ with respect to } J \end{array} \right\}.
$$

Later, in this section, after having defined, for a set of sorts S and an S-sorted signature Σ , the concept of Σ -algebra, for a Σ -algebra $\mathbf{A} = (A, F)$, the uniform algebraic many-sorted closure operator $Sg_{\mathbf{A}}$ on A, called the subalgebra generating many-sorted operator on A determined by **A**, and the notion of finitely generated Σ -algebra, we will state that, for a finitely generated Σ -algebra **A**, IrB $(A, Sg_A) \neq \emptyset$.

Definition 2.10. Let A be an S-sorted set, J a many-sorted closure operator on A , and n a natural number.

(1) We denote by $J_{\leq n}$ the many-sorted operator on A defined, for every $X \subseteq A$, as follows:

$$
J_{\leq n}(X) = \bigcup \{ J(Y) \mid Y \in \text{Sub}_{\leq n}(X) \}.
$$

(2) We define the family $(J^m_{\leq n})_{m\in\mathbb{N}}$ of many-sorted operator on A, recursively, as follows:

$$
J_{\leq n}^m = \begin{cases} \text{Id}_{\text{Sub}(A)}, & \text{if } m = 0; \\ J_{\leq n} \circ J_{\leq n}^k, & \text{if } m = k+1, \text{ with } k \geq 0. \end{cases}
$$

- (3) We denote by $J_{\leq n}^{\omega}$ the many-sorted operator on A that assigns to an S-sorted subset X of A, $J^{\omega}_{\leq n}(X) = \bigcup_{m \in \mathbb{N}} J^m_{\leq n}(X)$.
- (4) We say that *J* is *n*-ary if $J = J_{\leq n}^{\overline{\omega}}$.

Remark. Let J be a many-sorted closure operator on A. Then J is 0-ary, i.e., $J = J_{\leq 0}^{\omega}$, if, and only if, for every $X \subseteq A$, we have that

$$
J(X) = X \cup J(\varnothing^S),
$$

where \varnothing^S is the S-sorted set whose sth coordinate, for every $s \in S$, is ∅.

We next prove that J is 1-ary, i.e., that $J = J_{\leq 1}^{\omega}$, if and only if, for every $X \subseteq A$, we have that

$$
J(X) = J(\varnothing^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}).
$$

Let us suppose that, for every $X \subseteq A$, $J(X) = J(\varnothing^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}).$ Then it is obvious that, for every $X \subseteq A$, $J(X) \subseteq J_{\leq 1}(X)$. Let us verify that, for every $X \subseteq A$, $J_{\leq 1}(X) = \bigcup \{ J(Y) \mid Y \in \text{Sub}_{\leq 1}(X) \} \subseteq J(X)$. Let Y be an element of $\text{Sub}_{\leq 1}(X)$. Then $Y = \varnothing^S$ or $Y = \delta^{t,a}$, for some $t \in S$ and some $a \in X_t$. If $Y = \varnothing^S$, then

$$
J(\varnothing^S) \subseteq J(\varnothing^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) = J(X).
$$

If $Y = \delta^{t,a}$, then $J(\delta^{t,a}) \subseteq \bigcup_{s \in S, x \in X_s} J(\delta^{s,x})$, hence

$$
J(\delta^{t,a}) \subseteq J(\varnothing^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) = J(X).
$$

Thus $J_{\leq 1}(X) \subseteq J(\varnothing^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) = J(X)$. Therefore $J = J_{\leq 1}$. Hence, for every $m \geq 1$, $J = J_{\leq 1}^m$. Consequently J is 1-ary.

Reciprocally, let us suppose that J is 1-ary, i.e., that, for every $X \subseteq$ A, $J(X) = \bigcup_{m \in \mathbb{N}} J^m_{\leq 1}(X)$. Then, obviously, we have that

$$
J(X) \supseteq J(\varnothing^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}).
$$

Let us verify that, for every $m \in \mathbb{N}$, $J(\varnothing^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) \supseteq J^m_{\leq 1}$. Evidently $J(\varnothing^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) \supseteq J^0_{\leq 1}(X) \cup J^1_{\leq 1}(X)$. Let k be ≥ 1 and let us suppose that $J(\varnothing^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) \supseteq J_{\leq 1}^k(X)$. We will show that $J(\varnothing^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) \supseteq J_{\leq 1}^{k+1}$ $\sum_{\leq 1}^{k+1}(X)$. By definition we have that

$$
J_{\leq 1}^{k+1}(X) = J_{\leq 1}(J_{\leq 1}^k(X)) = \bigcup \{ J(Z) \mid Z \in \text{Sub}_{\leq 1}(J_{\leq 1}^k(X)) \}.
$$

Let Z be an element of $\text{Sub}_{\leq 1}(J_{\leq 1}^k(X))$. Then $Z \subseteq J_{\leq 1}^k(X)$. But we have that $J_{\leq 1}^k(X) = \bigcup \{ J(Y) \mid Y \in \text{Sub}_{\leq 1}(J_{\leq 1}^{k-1}) \}$ $\mathcal{L}_{\leq 1}^{k-1}(X)\}$. Therefore, for some $Y \in Sub_{\leq 1}(J_{\leq 1}^{k-1})$ $\leq_{\leq 1}^{k-1}(X)$, $Z \subseteq J(Y)$. Thus $J(Z) \subseteq J(J(Y)) = J(Y)$. But $J(Y) \subseteq J_{\leq 1}^k(X)$. Consequently $J(Z) \subseteq J_{\leq 1}^k(X)$. Whence, by the induction hypothesis, $J(Z) \subseteq J(\varnothing^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x})$. From this, since Z was an arbitrary element of $\text{Sub}_{\leq 1}(J_{\leq 1}^k(X))$, we infer that

$$
J_{\leq 1}^{k+1}(X) = \bigcup \{ J(Z) \mid Z \in \text{Sub}_{\leq 1}(J_{\leq 1}^k(X)) \} \subseteq J(\varnothing^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}).
$$

Thus, for every $X \subseteq A$, we have that

$$
J(X) = J(\varnothing^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}).
$$

Remark. Let *n* be ≥ 1 , *A* an *S*-sorted set, $X \subseteq A$, and *J* a manysorted closure operator on A. Then, for every $k \geq 0$ and every $Y \subseteq A$, if $Y \in \text{Sub}_{\leq n}(J_{\leq n}^k(X))$, then $Y \in \text{Sub}_{\leq n}(J_{\leq n}^{k+1})$ $\leq_{n}^{k+1}(X)).$

We next state, for a natural number $n \geq 1$ and a many-sorted closure operator J on an S -sorted set A , that the family of many-sorted operators $(J^m_{\leq n})_{m\in\mathbb{N}}$ on A is an ascending chain and that $J^{\omega}_{\leq n}$, which is the supremum of the above family, is the greatest n -ary many-sorted closure operator on A which is smaller than J.

Proposition 2.11. For a natural number $n \geq 1$, an S-sorted set A, and a many-sorted closure operator J on A , the family of many-sorted operators $(J^m_{\leq n})_{m\in\mathbb{N}}$ on A is an ascending chain, i.e., for every $m \in \mathbb{N}$, $J_{\leq n}^m \leq J_{\leq n}^{m+1}$ $\frac{m+1}{\leq n}$. Moreover, $J_{\leq n}^{\omega}$ is the greatest n-ary many-sorted closure $\overline{operator}$ on A such that $J_{\leq n}^{\overline{\omega}} \leq J$.

We next provide a characterization of the n -ary many-sorted closure operators J on an S-sorted set A in terms of the fixed points X of J and of its relationships with the J-closures of the subsets of X with at most *n* elements.

Proposition 2.12. Let A be an S-sorted set, J a many-sorted closure operator on A, and n a natural number. Then J is n-ary if, and only if, for every $X \subseteq A$, if, for every $Z \in Sub_{\leq n}(X)$, $J(Z) \subseteq X$, then $J(X) = X$ (i.e., if, and only if, for every $X \subseteq A$, X is a fixed point of J if X contains the J-closure of each of its subsets with at most n elements).

Proof. If $n = 0$, then the result is obvious. So let us consider the case when $n \geq 1$. Let us suppose that J is *n*-ary and let X be a subset of A such that, for every $Z \in Sub_{\leq n}(X), J(Z) \subseteq X$. We want to show that $J(X) = X$. Because J is extensive, $X \subseteq J(X)$. Therefore it $\bigcup_{m\in\mathbb{N}} J^m_{\leq n}(X)$, to show that $J(X) \subseteq X$ it suffices to prove that, for only remains to show that $J(X) \subseteq X$. Since, by hypothesis, $J(X) =$ every $m \in \mathbb{N}$, $J^m_{\leq n}(X) \subseteq X$.

For $m = 0$ we have that $J_{\leq n}^0(X) = X \subseteq X$.

Let us suppose that, for $k \geq 0$, $J_{\leq n}^k(X) \subseteq X$. Then we want to show that $J_{\leq n}^{k+1}$ $\zeta_n^{k+1}(X) \subseteq X$. But, by definition, we have that

$$
J_{\leq n}^{k+1}(X) = J_{\leq n}(J_{\leq n}^k(X)) = \bigcup \{ J(Y) \mid Y \in \text{Sub}_{\leq n}(J_{\leq n}^k(X)) \}.
$$

Hence what we have to prove is that, for every $Y \in Sub_{\leq n}(J_{\leq n}^k(X)),$ $J(Y) \subseteq X$. Let Y be a subset of $J_{\leq n}^k(X)$ such that $\text{card}(Y) \leq n$. Since $J_{\leq n}^k(X) \subseteq X$, we have that $Y \subseteq X$ and $card(Y) \leq n$, therefore $J(Y) \subseteq$ \overline{X} . Consequently, for every $X \subseteq A$, if, for every $Z \in Sub_{\leq n}(X)$, $J(Z) \subseteq X$, then $J(X) = X$.

Reciprocally, let us suppose that, for every $X \subseteq A$, if, for every $Z \in Sub_{\leq n}(X), J(Z) \subseteq X$, then $J(X) = X$. We want to show that J is n-ary, i.e., that $J = J_{\leq n}^{\omega}$. Let X a subset of A. Then it is obvious that $J_{\leq n}^{\omega}(X) = \bigcup_{m \in \mathbb{N}} J_{\leq n}^{m}(X) \subseteq J(X)$. We now proceed to prove that $J(X) \subseteq J_{\leq n}^{\omega}(X)$. Since J is isotone and, by the definition of $J_{\leq n}^{\omega}$, $X \subseteq J_{\leq n}^{\omega}(\bar{X})$, we have that $J(X) \subseteq J(J_{\leq n}^{\omega}(X))$. Therefore to prove that $J(\overline{X}) \subseteq J_{\leq n}^{\omega}(X)$ it suffices to prove that $J(J_{\leq n}^{\omega}(X)) = J_{\leq n}^{\omega}(X)$. But the just stated equation follows from the supposition because, as we will prove next, for every $Z \in Sub_{\leq n}(\mathcal{J}^{\omega}_{\leq n}(X))$, we have that $J(Z) \subseteq$ $J_{\leq n}^{\omega}(X)$. Let Z be a subset of $J_{\leq n}^{\omega}(X)$ such that $card(Z) \leq n$. Then, for some $\ell \in \mathbb{N}$, $\text{supp}_S(Z) = \{s_0, \ldots, s_{\ell-1}\}\$ and, for every $\alpha \in \ell$, there exists an $n_{\alpha} \in \mathbb{N} - 1$ such that $Z_{s_{\alpha}} = \{z_{\alpha,0}, \ldots, z_{\alpha,n_{\alpha}-1}\}.$ Therefore, for every $\alpha \in \ell$ and every $\beta \in n_{\alpha}$ there exists an $m_{\alpha,\beta} \in \mathbb{N}$ such that that $z_{\alpha,\beta} \in J_{\leq n}^{m_{\alpha,\beta}}$ $\sum_{n\leq n}^{\infty} (X)_{s_{\alpha}}$. Since it may be helpful for the sake of understanding, let us represent the situation just described by the following figure:

$$
z_{0,0} \in J_{\leq n}^{m_{0,0}}(X)_{s_0} \qquad \dots \qquad z_{0,n_0-1} \in J_{\leq n}^{m_{0,n_0-1}}(X)_{s_0}
$$

\n
$$
\vdots \qquad \vdots
$$

\n
$$
z_{\ell-1,0} \in J_{\leq n}^{m_{\ell-1,0}}(X)_{s_{\ell-1}} \qquad \dots \qquad z_{\ell-1,n_{\ell-1}-1} \in J_{\leq n}^{m_{\ell-1,n_{\ell-1}-1}}(X)_{s_{\ell-1}}
$$

Hence, for every $\alpha \in \ell$ there exists a $\beta_{\alpha} \in n_{\alpha}$ such that $Z_{s_{\alpha}} \subseteq$ $J_{\langle n}^{m_{\alpha,\beta_{\alpha}}}$ $\sum_{n=1}^{\infty} (X)_{s_{\alpha}}$. On the other hand, since the family of many-sorted operators $(J^m_{\leq n})_{m\in\mathbb{N}}$ on A is an ascending chain, there exists an m in the set $\{m_{\alpha,\beta_{\alpha}} \mid \alpha \in \ell\}$ such that, for every $\alpha \in \ell$, $J_{\leq n}^{m_{\alpha,\beta_{\alpha}}} \leq J_{\leq n}^{m}$. Thus $Z \subseteq J^m_{\leq n}(X)$. Therefore, since, in addition, card $(Z) \leq n$, we have that $Z \in \overline{\text{Sub}}_{\leq n}(J^m_{\leq n}(X)).$ Thus

$$
J(Z) \subseteq J_{\leq n}^{m+1}(X) = J_{\leq n}(J_{\leq n}^{m}(X)) = \bigcup \{ J(K) \mid K \in \text{Sub}_{\leq n}(J_{\leq n}^{m}(X)) \}.
$$

Consequently $J(Z) \subseteq J^{\omega}_{\leq n}(X)$. Hence $J(X) \subseteq J^{\omega}_{\leq n}(X)$. Whence $J =$ $J_{\leq n}^{\omega}$, which completes the proof.

We next recall the notion of free monoid on a set and, for a set of sorts S , we define, by using the the just mentioned notion, the concept of S-sorted signature and, for an S-sorted signature Σ , the concept of Σ-algebra.

Definition 2.13. Let S be a set of sorts. The free monoid on S , denoted by S^* , is (S^*, λ, λ) , where S^* , the set of all words on S, is $\bigcup_{n\in\mathbb{N}}\text{Hom}(n, S)$, the set of all mappings $w: n \longrightarrow S$ from some $n \in \mathbb{N}$ to \overline{S} , λ , the *concatenation* of words on S , is the binary operation on S^* which sends a pair of words (w, v) on S to the mapping $w \wedge v$ from $|w| + |v|$ to S, where $|w|$ and $|v|$ are the lengths (\equiv domains) of the

mappings w and v , respectively, defined as follows:

$$
w \wedge v \begin{cases} |w|+|v| \longrightarrow S \\ i \longmapsto \begin{cases} w_i, & \text{if } 0 \leq i < |w|; \\ v_{i-|w|}, & \text{if } |w| \leq i < |w|+|v|, \end{cases} \end{cases}
$$

and λ , the *empty word on* S, is the unique mapping $\lambda : \varnothing \longrightarrow S$.

Definition 2.14. Let S be a set of sorts. Then an S -sorted signature is a function Σ from $S^* \times S$ to **U** which sends a pair $(w, s) \in S^* \times S$ to the set $\Sigma_{w,s}$ of the *formal operations* of *arity* w, *sort* (or *coarity*) s, and *rank* (or *biarity*) (w, s) .

Definition 2.15. Let Σ be an S-sorted signature and A an S-sorted set. The $S^* \times S$ -sorted set of the *finitary operations on A* is the family $(\text{Hom}(A_w, A_s))_{(w,s)\in S^*\times S}$, where, for every $w \in S^*$, $A_w = \prod_{i\in [w]} A_{w_i}$. A structure of Σ -algebra on A is an $S^* \times S$ -mapping $F = (F_{w,s})_{(w,s) \in S^* \times S}$ from Σ to $(\text{Hom}(A_w, A_s))_{(w,s)\in S^*\times S}$. For a pair $(w, s) \in S^*\times S$ and a formal operation $\sigma \in \Sigma_{w,s}$, in order to simplify the notation, the operation from A_w to A_s corresponding to σ under $F_{w,s}$ will be written as F_{σ} instead of $F_{w,s}(\sigma)$. A Σ -algebra is a pair (A, F) , abbreviated to **A**, where A is an S-sorted set and F a structure of Σ -algebra on A.

Since it will be used afterwards, we next define, for a set of sorts S and an S-sorted set A, the notions of algebraic and of uniform manysorted closure operator on A.

Definition 2.16. A many-sorted closure operator J on an S-sorted set A is algebraic if, for every $X \subseteq A$, $J(X) = \bigcup_{K \subseteq \text{fin} X} J(K)$, and is uniform if, for every $X, Y \subseteq A$, if $\text{supp}_S(X) = \text{supp}_S(Y)$, then $\text{supp}_S(J(X)) = \text{supp}_S(J(Y)).$

We next prove that, for a many-sorted closure operator, the property of being *n*-ary is stronger than that of being algebraic.

Proposition 2.17. Let n be a natural number. If a many-sorted closure operator J on an S -sorted set A is n-ary, then J is an algebraic many-sorted closure operator on A.

Proof. Let J be an *n*-ary many-sorted closure operator on an S-sorted set A and let X be a subset of A. Then, obviously, $\bigcup_{K\subseteq \text{fin}X} J(K) \subseteq$ $J(X)$. Since $J(X) = J_{\leq n}^{\omega}(X) = \bigcup_{m \in \mathbb{N}} J_{\leq n}^m(X)$, to prove that $J(X) \subseteq$ $\bigcup_{K\subseteq \text{fin}X} J(K)$ it suffices to prove that, for every $m \in \mathbb{N}$, $J_{\leq n}^m(X) \subseteq$ $\bigcup_{K \subseteq \text{fin} X} J(K).$

For $m = 0$, since $J^0_{\leq n}(X) = X$, we have that $J^0_{\leq n}(X) \subseteq \bigcup_{K \subseteq_{\text{fin}} X} J(K)$. Let m be $k + 1$ with $k \geq 0$ and let us suppose that $J_{\leq n}^k(X) \subseteq$ $\bigcup_{K \subseteq \text{fin } X} J(K)$. We want to prove that $J_{\leq n}^{k+1}$ $\bigcup_{K\subseteq \text{fin }X}^{k+1}(X) \subseteq \bigcup_{K\subseteq \text{fin }X} J(K).$ However, by definition, $J_{\leq n}^{k+1}$ $\zeta_n^{k+1}(X) = \bigcup \{ J(Z) \mid Z \in \text{Sub}_{\leq n}(J_{\leq n}^k(X)) \}.$ Thus it suffices to prove that, for every $Z \in Sub_{\leq n}(J_{\leq n}^k(X)), J(Z) \subseteq$

 $\bigcup_{K\subseteq \text{fin}X} J(K)$. Let Z be a subset of $J_{\leq n}^k(X)$ such that $\text{card}(Z) \leq n$. Then, since, by the induction hypothesis, $J_{\leq n}^k(X) \subseteq \bigcup_{K \subseteq \text{fin} X} J(K)$, we have that $Z \subseteq \bigcup_{K \subseteq \text{fin} X} J(K)$ and, in addition, that $\text{card}(Z) \leq n$. Hence, for some $\ell \in \mathbb{N}$, $\text{supp}_S(Z) = \{s_0, \ldots, s_{\ell-1}\}\$ and, for every $\alpha \in \ell$, there exists an $n_{\alpha} \in \mathbb{N} - 1$ such that $Z_{s_{\alpha}} = \{z_{\alpha,0}, \ldots, z_{\alpha,n_{\alpha}-1}\}$. Therefore, for every $\alpha \in \ell$ and every $\beta \in \eta_{\alpha}$ there exists a $K^{\alpha,\beta} \subseteq_{\text{fin}} X$ such that that $z_{\alpha,\beta} \in J(K^{\alpha,\beta})_{s_\alpha}$. Since it may be helpful for the sake of understanding, let us represent the situation just described by the following figure:

$$
z_{0,0} \in J(K^{0,0})_{s_0} \qquad \dots \qquad z_{0,n_0-1} \in J(K^{0,n_0-1})_{s_0}
$$

\n
$$
\vdots \qquad \vdots
$$

\n
$$
z_{\ell-1,0} \in J(K^{\ell-1,0})_{s_{\ell-1}} \qquad \dots \qquad z_{\ell-1,n_{\ell-1}-1} \in J(K^{\ell-1,n_{\ell-1}-1})_{s_{\ell-1}}
$$

Then, for every $\alpha \in \ell$, $Z_{s_{\alpha}} \subseteq J(\bigcup_{\beta \in n_{\alpha}} K^{\alpha,\beta})_{s_{\alpha}}$, where $\bigcup_{\beta \in n_{\alpha}} K^{\alpha,\beta} \subseteq_{fin}$ X. So, for $L = \bigcup_{\alpha \in \ell} \bigcup_{\beta \in n_{\alpha}} K^{\alpha,\beta}$, we have that $L \subseteq_{\text{fin}} X$ and $Z \subseteq J(L)$. Therefore $J(Z) \subseteq J(J(L)) = J(L) \subseteq \bigcup_{K \subseteq_{fin} X}$ $J(K)$.

We next define when a subset X of the underlying S -sorted set A of a Σ-algebra **A** is closed under an operation F_{σ} of **A**, as well as when X is a subalgebra of A .

Definition 2.18. Let **A** be a Σ -algebra and $X \subseteq A$. Let σ be a formal operation in $\Sigma_{w,s}$. We say that X is closed under the operation $F_{\sigma} : A_w \longrightarrow A_s$ if, for every $a \in X_w$, $F_{\sigma}(a) \in X_s$. We say that X is a subalgebra of A if X is closed under the operations of A . We denote by $Sub(A)$ the set of all subalgebras of A (which is an algebraic closure system on A).

Definition 2.19. Let A be a Σ -algebra. Then we denote by Sg_A the many-sorted closure operator on A defined as follows:

$$
\mathrm{Sg}_{\mathbf{A}}\left\{\begin{array}{l}\mathrm{Sub}(A) \longrightarrow \mathrm{Sub}(A) \\ X \longrightarrow \bigcap\{C \in \mathrm{Sub}(\mathbf{A}) \mid X \subseteq C\},\end{array}\right.
$$

.

We call $\text{Sg}_{\mathbf{A}}$ the subalgebra generating many-sorted operator on A determined by **A**. For every $X \subseteq A$, we call $\text{Sg}_{\mathbf{A}}(X)$ the *subalgebra of* **A** generated by X. Moreover, if $X \subseteq A$ is such that $Sg_{\mathbf{A}}(X) = A$, then we say that X is an S-sorted set of *generators* of \bf{A} , or that X *generates* **A**. Besides, we say that **A** is *finitely generated* if there exists an S-sorted subset X of A such that X generates **A** and $\text{card}(X) < \aleph_0$.

Proposition 2.20. Let A be a Σ -algebra. Then the many-sorted closure operator Sg_A on A is algebraic, i.e., for every S-sorted subset X of A, $\text{Sg}_{\mathbf{A}}(X) = \bigcup_{K \subseteq \text{fin} X} \text{Sg}_{\mathbf{A}}(K)$.

For a Σ -algebra **A** we next provide another, more constructive, description of the algebraic many-sorted closure operator Sg_A , which, in addition, will allow us to state a crucial property of Sg_A . Specifically, that Sg_A is uniform.

10 CLIMENT AND COSME

Definition 2.21. Let Σ be an S-sorted signature and **A** a Σ -algebra.

- (1) We denote by E_A the many-sorted operator on A that assigns to an S-sorted subset X of A, $E_{\mathbf{A}}(X) = X \cup (\bigcup_{\sigma \in \Sigma_{\cdot,s}} F_{\sigma}[X_{\text{ar}(\sigma)}]\big)_{s \in S}$, where, for $s \in S$, $\Sigma_{s,s}$ is the set of all many-sorted formal operations σ such that the coarity of σ is s and for $ar(\sigma) = w \in S^*$, the arity of σ , $X_{\text{ar}(\sigma)} = \prod_{i \in |w|} X_{w_i}$.
- (2) If $X \subseteq A$, then we define the family $(\mathbb{E}_{\mathbf{A}}^{n}(X))_{n\in\mathbb{N}}$ in $\text{Sub}(A)$, recursively, as follows:

$$
E_{\mathbf{A}}^{0}(X) = X,
$$

\n
$$
E_{\mathbf{A}}^{n+1}(X) = E_{\mathbf{A}}(E_{\mathbf{A}}^{n}(X)), n \ge 0.
$$

(3) We denote by E^{ω}_{A} the many-sorted operator on A that assigns to an S-sorted subset X of A, $E_{\mathbf{A}}^{\omega}(X) = \bigcup_{n \in \mathbb{N}} E_{\mathbf{A}}^n(X)$.

Proposition 2.22. Let **A** be a Σ -algebra and $X \subseteq A$, then $\text{Sg}_{\mathbf{A}}(X) =$ $E^{\omega}_{\mathbf{A}}(X)$.

In [\[3\]](#page-14-0), on pp. 82, we stated the following proposition (there called Proposition 2.7).

Proposition 2.23. Let A be a Σ -algebra and $X, Y \subseteq A$. Then we have that

- (1) If $\mathrm{supp}_S(X) = \mathrm{supp}_S(Y)$, then, for every $n \in \mathbb{N}$, $\mathrm{supp}_S(E_{\mathbf{A}}^n(X)) =$ $\text{supp}_S(\text{E}_\mathbf{A}^n(Y)).$
- (2) $\text{supp}_S(\text{Sg}_{\mathbf{A}}(X)) = \bigcup_{n \in \mathbb{N}} \text{supp}_S(\text{E}_{\mathbf{A}}^n(X)).$

(3) If $\text{supp}_S(X) = \text{supp}_S(Y)$, then $\text{supp}_S(Sg_{\mathbf{A}}(X)) = \text{supp}_S(Sg_{\mathbf{A}}(Y)).$ Therefore the algebraic many-sorted closure operator Sg_A is uniform.

Proposition 2.24. If **A** is a finitely generated Σ -algebra, then every S-sorted set of generators of A contains a finite S-sorted subset which also generates A.

Corollary 2.25. If **A** is a finitely generated Σ -algebra, then we have that $\text{IrB}(A, \text{Sg}_{\mathbf{A}})$ is not empty.

3. A CHARACTERIZATION OF THE n -ARY MANY-SORTED CLOSURE operators.

A theorem of Birkhoff-Frink (see [\[1\]](#page-14-3)) asserts that every algebraic closure operator on an ordinary set arises, from some algebraic structure on the set, as the corresponding generated subalgebra operator. However, for many-sorted sets such a theorem is not longer true without qualification. In [\[3\]](#page-14-0), on pp. 83–84, Theorem 3.1 and Corollary 3.2, we characterized the corresponding many-sorted closure operators as precisely the uniform algebraic operators. We next recall the just mentioned characterization since it will be applied afterwards to provide

a characterization of the n-ary many-sorted closure operators on an S-sorted set.

Let us notice that in what follows, for a word $w: |w| \to S$ on S, with |w| the lenght of w, and an $s \in S$, we denote by $w^{-1}[s]$ the set $\{i \in |w| \mid w(i) = s\},\$ and by Im (w) the set $\{w(i) \mid i \in |w|\}$

Theorem 3.1. Let J be an algebraic many-sorted closure operator on an S-sorted set A. If J is uniform, then $J = Sg_A$ for some S-sorted signature Σ and some Σ -algebra **A**.

Proof. Let $\Sigma = (\Sigma_{w,s})_{(w,s)\in S^*\times S}$ be the S-sorted signature defined, for every $(w, s) \in S^* \times S$, as follows:

$$
\Sigma_{w,s} = \{ (X,b) \in \bigcup_{X \in \text{Sub}(A)} (\{X\} \times J(X)_s) \mid \forall t \in S \left(\text{card}(X_t) = |w|_t \right) \},
$$

where for a sort $s \in S$ and a word $w: |w| \to S$ on S, with $|w|$ the lenght of w, the number of occurrences of s in w, denoted by $|w|_s$, is $card(w^{-1}[s]).$

Before proceeding any further, let us remark that, for $(w, s) \in S^* \times S$ and $(X, b) \in \bigcup_{X \in Sub(A)} (\{X\} \times J(X)_s)$, the following conditions are equivalent:

- (1) $(X, b) \in \Sigma_{w,s}$, i.e., for every $t \in S$, $\text{card}(X_t) = |w|_t$.
- (2) $\text{supp}_S(X) = \text{Im}(w)$ and, for every $t \in \text{supp}_S(X)$, $\text{card}(X_t) =$ $|w|_t$.

On the other hand, for the index set $\Lambda = \bigcup_{Y \in \text{Sub}(A)} (\{Y\} \times \text{supp}_S(Y))$ and the Λ-indexed family $(Y_s)_{(Y,s)\in\Lambda}$ whose (Y, s) -th coordinate is Y_s , precisely the s-th coordinate of the S-sorted set Y of the index $(Y, s) \in$ Λ , let f be a choice function for $(Y_s)_{(Y,s)\in\Lambda}$, i.e., an element of $\prod_{(Y,s)\in\Lambda} Y_s$.

Moreover, for every $w \in S^*$ and $a \in \prod_{i \in |w|} A_{w(i)},$ let $M^{w,a} =$ $(M_s^{w,a})_{s\in S}$ be the finite $S\text{-sorted subset of }A$ defined as $M_s^{w,a}=\{a_i\mid$ $i \in w^{-1}[s]$, for every $s \in S$.

Now, for $(w, s) \in S^* \times S$ and $(X, b) \in \Sigma_{w,s}$, let $F_{X,b}$ be the manysorted operation from $\prod_{i\in[w]} A_{w(i)}$ into A_s that to an $a \in \prod_{i\in[w]} A_{w(i)}$ assigns b, if $M^{w,a} = X$ and $f(J(M^{w,a}), s)$, otherwise.

We will prove that the Σ -algebra $\mathbf{A} = (A, F)$ is such that $J =$ $Sg_{\bf A}$. But before doing that it is necessary to verify that the definition of the many-sorted operations is sound, i.e., that for every $(w, s) \in S^* \times S$, $(X, b) \in \Sigma_{w, s}$ and $a \in \prod_{i \in |w|} A_{w(i)}$, it happens that $s \in$ $\text{supp}_S(J(M^{w,a}))$, and for this it suffices to prove that $\text{supp}_S(M^{w,a}) =$ $\text{supp}_S(X)$, because, by hypothesis, J is uniform and, by definition, $b \in J(X)_s$.

If $t \in \text{supp}_S(M^{w,a})$, then $M_t^{w,a}$ is nonempty, i.e., there exists an $i \in [w]$ such that $w(i) = t$. Therefore, because $(X, b) \in \Sigma_{w,s}$, we have that $0 < |w|_t = \text{card}(X_t)$, hence $t \in \text{supp}_S(X)$.

Reciprocally, if $t \in \text{supp}_S(X)$, $|w|_t > 0$, and there is an $i \in |w|$ such that $w(i) = t$, hence $a_i \in A_t$, and from this we conclude that $M_t^{w,a} \neq \emptyset$,

i.e., that $t \in \text{supp}_S(M^{w,a})$. Therefore, $\text{supp}_S(M^{w,a}) = \text{supp}_S(X)$ and, by the uniformity of J, $\text{supp}_S(J(M^{w,a})) = \text{supp}_S(J(X))$. But, by definition, $b \in J(X)_{s}$, so $s \in \text{supp}_S(J(M^{w,a}))$ and the definition is sound.

Now we prove that, for every $X \subseteq A$, $J(X) \subseteq \text{Sg}_{\mathbf{A}}(X)$. Let X be an S-sorted subset of A, $s \in S$ and $b \in J(X)_{s}$. Then, because J is algebraic, $b \in J(Y)_s$, for some finite S-sorted subset Y of X. From such an Y we will define a word w_Y in S and an element a_Y of $\prod_{i \in |w_Y|} A_{w_Y(i)}$ such that

(1) $Y = M^{w_Y, a_Y}$. (2) $(Y,b) \in \Sigma_{w_Y,s}$, i.e., $b \in J(Y)$, and, for all $t \in S$, card $(Y_t) =$ $|w_Y|_t$, and (3) $a_Y \in \prod_{i \in |w_Y|} X_{w_Y(i)},$

then, because $F_{Yb}(a_Y) = b$, we will be entitled to assert that $b \in$ $Sg_{\blacktriangle}(X)_{s}.$

But given that Y is finite if, and only if, $\text{supp}_S(Y)$ is finite and, for every $t \in \text{supp}_S(Y)$, Y_t is finite, let $\{ s_\alpha \mid \alpha \in m \}$ be an enumeration of $\text{supp}_S(Y)$ and, for every $\alpha \in m$, let $\{y_{\alpha,i} \mid i \in p_\alpha\}$ be an enumeration of the nonempty s_{α} -th coordinate, $Y_{s_{\alpha}}$, of Y. Then we define, on the one hand, the word w_Y as the mapping from $|w_Y| = \sum_{\alpha \in m} p_\alpha$ into S $\sum_{\beta \in \alpha} p_{\beta} \leq i \leq \sum_{\beta \in \alpha+1} p_{\beta} - 1$ and, on the other hand, the element such that, for every $i \in |w_Y|$ and $\alpha \in m$, $w_Y(i) = s_\alpha$ if, and only if, a_Y of $\prod_{i\in |w_Y|} A_{w_Y(i)}$ as the mapping from $|w_Y|$ into $\bigcup_{i\in |w_Y|} A_{w_Y(i)}$ such that, for every $i \in |w_Y|$ and $\alpha \in m$, $a_Y(i) = y_{\alpha,i-\sum_{\beta \in \alpha} p_\beta}$ if, and only if, $\sum_{\beta \in \alpha} p_{\beta} \leq i \leq \sum_{\beta \in \alpha+1} p_{\beta} - 1$. From these definitions follow (1), (2) and (3) above. Let us observe that (1) is a particular case of the fact that the mapping M from $\bigcup_{w\in S^*} (\{w\} \times \prod_{i\in |w|} A_{w(i)})$ into $\text{Sub}_{\text{fin}}(A)$ that to a pair (w, a) assigns $M^{w,a}$ is surjective.

From the above and the definition of $F_{Y,b}$ we can affirm that $F_{Y,b}(a_Y) =$ b, hence $b \in \text{Sg}_{\mathbf{A}}(X)$. Therefore $J(X) \subseteq \text{Sg}_{\mathbf{A}}(X)$.

Finally, we prove that, for every $X \subseteq A$, $Sg_{\mathbf{A}}(X) \subseteq J(X)$. But for this, by Proposition [2.22,](#page-9-0) it is enough to prove that, for every subset X of A, we have that $E_{\mathbf{A}}(X) \subseteq J(X)$. Let $s \in S$ be and $c \in E_{\mathbf{A}}(X)$. If $c \in X_s$, then $c \in J(X)_s$, because J is extensive. If $c \notin X_s$, then, by the definition of $E_{\mathbf{A}}(X)$, there exists a word $w \in S^*$, a manysorted formal operation $(Y, b) \in \Sigma_{w,s}$ and an $a \in \prod_{i \in |w|} X_{w(i)}$ such that $F_{Y,b}(a) = c$. If $M^{w,a} = Y$, then $c = b$, hence $c \in J(Y)_s$, therefore, because $M^{w,a} \subseteq X$, $c \in J(X)_s$. If $M^{w,a} \neq Y$, then $F_{Y,b}(a) \in J(M^{w,a})_s$, but, because $M^{w,a} \subseteq X$ and J is isotone, $J(M^{w,a})$ is a subset of $J(X)$, hence $F_{Y,b}(a) \in J(X)_{s}$. Therefore $E_{\mathbf{A}}(X) \subseteq J(X)$.

The just stated theorem together with Proposition [2.23](#page-9-1) entails the following corollary.

Corollary 3.2. Let J be an algebraic many-sorted closure operator on an S-sorted set A. Then $J = \mathrm{Sg}_{\mathbf{A}}$ for some S-sorted signature Σ and some Σ -algebra **A** if, and only if, *J* is uniform.

We next prove that for a natural number n , an S-sorted signature Σ, and a Σ-algebra **A**, under a suitable condition on Σ related to *n*, the uniform algebraic many-sorted closure operator Sg_A is an n-ary many-sorted closure operator on A.

Proposition 3.3. Let Σ be an S-sorted signature, A a Σ -algebra, and $n \in \mathbb{N}$. If Σ is such that, for every $(w, s) \in S^* \times S$, $\Sigma_{w,s} = \emptyset$ if $|w| > n$ —in which case we will say that every operation of **A** is of an arity $\leq n$, then the uniform algebraic many-sorted closure operator $\operatorname{Sg}_{\Delta}$ is an n-ary many-sorted closure operator on A, i.e., $\text{Sg}_{\mathbf{A}} = (\text{Sg}_{\mathbf{A}})_{\leq n}^{\omega}$.

Proof. It follows from $Sg_{\mathbf{A}}(X) = E_{\mathbf{A}}^{\omega}(X)$ and from the fact that, for every $X \subseteq A$, $E_{\mathbf{A}}(X) \subseteq (Sg_{\mathbf{A}})_{\leq n}(X) \subseteq Sg_{\mathbf{A}}(X)$. The details are left to the reader. However, we notice that it is advisable to split the proof into two cases, one for $n = 0$ and another one for $n \geq 1$.

Proposition 3.4. Let A be an S-sorted set, J a many-sorted closure operator on A, and $n \in \mathbb{N}$. If J is n-ary (hence, by Proposition [2.17,](#page-7-0) algebraic) and uniform, then there exists an S-sorted signature Σ' and a Σ' -algebra \mathbf{A}' such that $J = \mathrm{Sg}_{\mathbf{A}'}$ and every operation of \mathbf{A}' is of an $arity \leq n$.

Proof. If we denote by $\mathbf{A} = (A, F)$ the Σ -algebra associated to J con-structed in the proof of Theorem [3.1,](#page-10-0) then taking as Σ' the S-sorted signature defined, for every $(w, s) \in S^* \times S$, as: $\Sigma'_{w,s} = \Sigma_{w,s}$, if $|w| \leq n$; and $\Sigma'_{w,s} = \varnothing$, if $|w| > n$, and as $\mathbf{A}' = (A',F')$ the Σ' -algebra defined as: $A' = A$, and $F' = F \circ inc^{\Sigma', \Sigma}$, where $inc^{\Sigma', \Sigma} = (inc^{\Sigma', \Sigma}_{w,s})(w,s) \in S^* \times S$ is the canonical inclusion of Σ' into Σ , then one can show that $J = Sg_{\mathbf{A'}}$. \square

From the just stated proposition together with Proposition [3.3](#page-12-0) it follows immediately the following corollary, which is an algebraic characterization of the n-ary and uniform many-sorted closure operators.

Corollary 3.5. Let J be a many-sorted closure operator on an Ssorted set A and $n \in \mathbb{N}$. Then J is n-ary and uniform if, and only if, there exists an S-sorted signature Σ and a Σ -algebra **A** such that $J = Sg_A$ and every operation of **A** is of an arity $\leq n$.

4. The irredundant basis theorem for many-sorted closure spaces.

We next show Tarski's irredundant basis theorem for many-sorted closure spaces.

Theorem 4.1 (Tarski's irredundant basis theorem for many-sorted closure spaces). Let (A, J) be a many-sorted closure space. If J is an n-ary many-sorted operator on the S-sorted set A, with $n \geq 2$, and if $i < j$ with $i, j \in \text{IrB}_{J}(A)$ such that

$$
\{i+1,\ldots,j-1\}\cap\mathrm{IrB}_J(A)=\varnothing,
$$

then $j - i \leq n - 1$. In particular, if $n = 2$, then $\text{IrB}_{J}(A)$ is a convex subset of N.

Proof. Let $Z \subseteq A$ be an irredundant basis with respect to J such that card(Z) = j and $\mathcal{K} = \{ X \in \text{IrB}_J(A) \mid \text{card}(X) \leq i \}$. Since J is n-ary, we can assert that $J(Z) = A = \bigcup_{m \in \mathbb{N}} J^m_{\leq n}(Z)$, so, for every $s \in S$, $J(Z)_s = A_s = \bigcup_{m \in \mathbb{N}} J^m_{\leq n}(Z)_s$. Let X be an element of K. Then there exists a $k \in \mathbb{N} - 1$ such that $X \subseteq J_{\leq n}^k(Z)$. The natural number k should be strictly greater than 0, because if $k = 0$, $X \subseteq J^0_{\leq n}(Z) = Z$, but card $(X) = i < j = \text{card}(Z)$, so Z would not be an irredundant basis. So that, for every $X \in \mathcal{K}$, $\{k \in \mathbb{N} - 1 \mid X \subseteq J_{\leq n}^k(Z)\}\neq \emptyset$. Therefore, for every $X \in \mathcal{K}$, we can choose the least element of such a set, denoted by $d_Z(X)$, and there is fulfilled that $d_Z(X)$ is greater than or equal to 1. For $d_Z(X) - 1$ we have that $X \nsubseteq \mathcal{J}^{d_Z(X)-1}_{\leq n}$ $\leq_n^{a_Z(A)-1}(Z).$ So we conclude that there exists a mapping $d_Z : \mathcal{K} \longrightarrow \mathbb{N} \stackrel{\sim}{-1}$ that to an $X \in \mathcal{K}$ assigns $d_Z(X)$. The image of the mapping d_Z , which is a nonempty part of $N - 1$, is well-ordered, hence it has a least element, which is, necessarily, non zero, $t + 1$, therefore, since $\mathcal{K}/\text{Ker}(d_Z)$ is isomorphic to $\text{Im}(d_Z)$, by transport of structure, it will also be wellordered, then we can always choose an $X \in \mathcal{K}$ such that, for every $Y \in \mathcal{K}$, $d_Z(X) \leq d_Z(Y)$, e.g., an X such that its equivalence class corresponds to the minimum $t + 1$ of Im(d_Z). Moreover, among the X which have the just mentioned property, we choose an X^0 such that, for every $Y \in \mathcal{K}$ with $Y \subseteq J_{\leq n}^{t+1}$ $\zeta_n^{t+1}(Z)$, it happens that

$$
card(X^{0} \cap (J_{\leq n}^{t+1}(Z) - J_{\leq n}^{t}(Z))) \leq card(Y \cap (J_{\leq n}^{t+1}(Z) - J_{\leq n}^{t}(Z))).
$$

By the method of election we have that $X^0 \subseteq J_{\leq n}^{t+1}$ $\zeta_n^{t+1}(Z)$ but $X^0 \nsubseteq$ $J_{\leq n}^{t}(Z)$. Of the latter we conclude that there exists an $s_0 \in S$ such that $X^0_{s_0} \nsubseteq J^t_{\leq n}(Z)_{s_0}$, therefore

$$
(J_{\leq n}^{t+1}(Z)_{s_0} - J_{\leq n}^t(Z)_{s_0}) \cap X_{s_0}^0 \neq \emptyset.
$$

Let $a_0 \in (J_{\leq n}^{t+1})$ $\zeta_{\leq n}^{t+1}(Z)_{s_0} - J_{\leq n}^t(Z)_{s_0}) \cap X_{s_0}^0$ be. Then $a_0 \in X_{s_0}^0$, $a_0 \in X_{s_0}^0$ $J^{t+1}_{\leq n}$ $\frac{d+1}{2}Z_{\leq n}(Z)_{s_0}$ but $a_0 \notin J^t_{\leq n}(\overline{Z})_{s_0}$. However, $J^{t+1}_{\leq n}$ $\zeta_n^{t+1}(Z) = J_{\leq n}(J_{\leq n}^t(Z)),$ by definition, hence there exists a part F of $J_{\leq n}^{\dagger}(Z)$ such that $\text{card}(F) \leq n$ and $a_0 \in J(F)_{s_0}$. Let X^1 be the part of \overline{A} defined as follows:

$$
X_s^1 = \begin{cases} X_s^0 \cup F_s, & \text{if } s \neq s_0; \\ (X_{s_0}^0 - \{a_0\}) \cup F_{s_0}, & \text{if } s = s_0. \end{cases}
$$

It holds that $X^0 \subseteq J(X^1)$. Therefore $J(X^0) \subseteq J(X^1)$, but $J(X^0) =$ A, hence $J(X^1) = A$, i.e., X^1 is a finite generator with respect to J, thus X^1 will contain a minimal generator X^2 with respect to J. It

holds that $card(X^2) \leq card(X^1) < card(X^0) + n$. It cannot happen that card $(X^0) + n \leq j$. Because if card $(X^0) + n \leq j$, then card $(X^2) < j$, hence, since

$$
\{i+1,\ldots,j-1\}\cap\mathrm{IrB}(A,J)=\varnothing,
$$

 $X^2 \in \mathcal{K}$, but $X^2 \subseteq J_{\leq n}^{t+1}$ $\zeta_n^{t+1}(Z)$ and, moreover, it happens that

card $(X^2 \cap (J^{t+1}_{\leq n}$ $\frac{t+1}{\leq n}(Z) - J^t_{\leq n}(Z))$ < card $(X^0 \cap (J^{t+1}_{\leq n}$ $\frac{t+1}{\leq n}(Z) - J^t_{\leq n}(Z)),$

because $a_0 \notin X_{s_0}^2$ but $a_0 \in X_{s_0}^0$, which contradicts the choice of X^0 . Hence card $(X^0) + n > j$. But card $(X^0) \leq i$, therefore $j - i < n$, i.e., $j - i \leq n - 1$.

REFERENCES

- [1] G. Birkhoff and O. Frink, Representation of lattices by sets. Trans. Amer. Math. Soc., 64 (1948), pp. 299–316.
- [2] S. Burris and H.P. Sankappanavar, A course in universal algebra, Springer-Velag, 1981.
- [3] J. Climent Vidal and J. Soliveres Tur, On many-sorted algebraic closure operators. Math. Nachr. 266 (2004), pp. 81–84.
- [4] A. Tarski, An interpolation theorem for irredundant bases of closure operators, Discrete Math. 12 (1975), pp. 185–192.

UNIVERSITAT DE VALÈNCIA, DEPARTAMENT DE LÒGICA I FILOSOFIA DE LA CIÈNCIA, AV. BLASCO IBÁÑEZ, 30-7^a, 46010 VALÈNCIA, SPAIN E-mail address: Juan.B.Climent@uv.es

UNIVERSITAT DE VALÈNCIA, DEPARTAMENT D'ÀLGEBRA, DR. MOLINER, 50, 46100 BURJASSOT, VALÈNCIA, SPAIN

E-mail address: Enric.Cosme@uv.es