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A CHARACTERIZATION OF THE n-ARY

MANY-SORTED CLOSURE OPERATORS AND A

MANY-SORTED TARSKI IRREDUNDANT BASIS

THEOREM

J. CLIMENT VIDAL AND E. COSME LLÓPEZ

Abstract. A theorem of single-sorted algebra states that, for a
closure space (A, J) and a natural number n, the closure operator
J on the set A is n-ary if, and only if, there exists a single-sorted
signature Σ and a Σ-algebra A such that every operation of A

is of an arity ≤ n and J = SgA, where SgA is the subalgebra
generating operator on A determined by A. On the other hand,
a theorem of Tarski asserts that if J is an n-ary closure operator
on a set A with n ≥ 2, and if i < j with i, j ∈ IrB(A, J), where
IrB(A, J) is the set of all natural numbers n such that (A, J) has
an irredundant basis (≡ minimal generating set) of n elements,
such that {i + 1, . . . , j − 1} ∩ IrB(A, J) = ∅, then j − i ≤ n − 1.
In this article we state and prove the many-sorted counterparts of
the above theorems. But, we remark, regarding the first one under
an additional condition: the uniformity of the many-sorted closure
operator.

1. Introduction.

A well-known theorem of single-sorted algebra states that, for a clo-
sure space (A, J) and a natural number n ∈ N = ω, the closure operator
J on the set A is n-ary if, and only if, there exists a single-sorted sig-
nature Σ and a Σ-algebra A such that every operation of A is of an
arity ≤ n and J = Sg

A
, where Sg

A
is the subalgebra generating oper-

ator on A determined by A. On the other hand, in [3], it was stated
that, for an algebraic many-sorted closure operator J on an S-sorted
set A, J = SgA for some many-sorted signature Σ and some Σ-algebra
A if, and only if, J is uniform. And, by using, among others, the just
mentioned result, our first main result is the following characterization
of the n-ary many-sorted closure operators: Let S be a set of sorts, A
an S-sorted set, J a many-sorted closure operator on A, and n ∈ N.
Then J is n-ary and uniform if, and only if, there exists an S-sorted
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2 CLIMENT AND COSME

signature Σ and a Σ-algebra A such that J = SgA and every operation
of A is of an arity ≤ n.

We turn next to Tarski’s irredundant basis theorem for single-sorted
closure spaces. But before doing that let us begin by recalling the
terminology relevant to the case. Given an n in N, a set A, and a
closure operator J on A, the closure operator J is said to be an n-ary
closure operator on A if J = Jω

≤n, where Jω
≤n is the supremum of the

family (Jm
≤n)m∈ω of operators on A defined by recursion as follows: for

m = 0, J0
≤n = IdSub(A); for m = k+1, with k ≥ 0, Jk+1

≤n (X) = J≤n◦J
k
≤n,

where J≤n is the operator on A defined, for every X ⊆ A, as follows:

J≤n(X) =
⋃

{J(Y ) | Y ∈ Sub≤n(X)},

where Sub≤n(X) is {Y ⊆ X | card(Y ) ≤ n}.
Alfred Tarski in [4], on pp. 190–191, proved, as reformulated by S.

Burris and H. P. Sankappanavar in [2], on pp. 33–34, the following
theorem. Given a set A and an n-ary closure operator J on A with
n ≥ 2, for every i, j ∈ IrB(A, J), where IrB(A, J) is the set of all
natural numbers n such that (A, J) has an irredundant basis(≡minimal
generating set) of n elements, if i < j and {i+1, . . . , j−1}∩IrB(A, J) =
∅, then j − i ≤ n − 1. Thus, as stated by Burris and Sankappanavar
in [2], on p. 33, the length of the finite gaps in IrB(A, J) is bounded by
n− 2 if J is an n-ary closure operator. And our second main result is
the proof of Tarski’s irredundant basis theorem for many-sorted closure
spaces.

2. Many-sorted sets, many-sorted closure operators, and

many-sorted algebras.

In this section, for a set of sorts S in a fixed Grothendieck universe
U , we begin by recalling some basic notions of the theory of S-sorted
sets, e.g., those of subset of an S-sorted set, of proper subset of an
S-sorted set, of delta of Kronecker, of cardinal of an S-sorted set, and
of support of an S-sorted set; and by defining, for an S-sorted set A,
the concepts of many-sorted closure operator on A and of many-sorted
closure space. Moreover, for a many-sorted closure operator J on A, we
define the notions of irredundant or independent part of A with respect
to J , of basis or generator of A with respect to J , of irredundant basis
of A with respect to J , and of minimal basis of A with respect to J .
In addition, we state that the notion of irredundant basis of A with
respect to J is equivalent to the notion of minimal basis of A with
respect to J and, afterwards, for a many-sorted closure space (A, J),
we define the subset IrB(A, J) of N as being formed by choosing those
natural numbers which are the cardinal of an irredundant basis of A
with respect to J . On the other hand, for a natural number n, we define
the concept of n-ary many-sorted closure operator on A and provide a
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characterization of the n-ary many-sorted closure operators J on A, in
terms of the fixed points of J . Besides, for a set of sorts S, we define
the concept of S-sorted signature, and, for an S-sorted signature Σ, the
notion of Σ-algebra and, for a Σ-algebra A, the concept of subalgebra
of A and the subalgebra generating many-sorted operator SgA on A
determined by A. Subsequently, once defined the notion of finitely
generated Σ-algebra, we state that, for a finitely generated Σ-algebra
A, IrB(A, Sg

A
) 6= ∅.

Definition 2.1. An S-sorted set is a function A = (As)s∈S from S
to U .

Definition 2.2. Let S be a set of sorts. If A and B are S-sorted
sets, then we will say that A is a subset of B, denoted by A ⊆ B, if,
for every s ∈ S, As ⊆ Bs, and that A is a proper subset of B, denoted
by A ⊂ B, if A ⊆ B and, for some s ∈ S, Bs −As 6= ∅. We denote by
Sub(A) the set of all S-sorted sets X such that X ⊆ A.

Definition 2.3. Given a sort t ∈ S and a set X we call delta of
Kronecker for (t, X) the S-sorted set δt,X defined, for every s ∈ S, as
follows:

δt,Xs =

{

X, if s = t;

∅, otherwise.

For a final set {x}, to abbreviate, we will write δt,x instead of the more
accurate δt,{x}.

We next define, for a set of sorts S, the concept of cardinal of an
S-sorted set, for an S-sorted set A, the notion of support of A, and
characterize the finite S-sorted sets in terms of its supports.

Definition 2.4. Let A be an S-sorted set. Then the cardinal of A,
denoted by card(A), is the cardinal of

∐

A, where
∐

A, the coproduct
of A = (As)s∈S, is

⋃

s∈S(As×{s}). Moreover, Subfin(A) denotes the set
of all finite subsets of A, i.e., the set {X ⊆ A | card(X) < ℵ0}, and, for
a natural number n, Sub≤n(A) denotes the set of all subsets of A with
at most n elements, i.e., the set {X ⊆ A | card(X) ≤ n}. Sometimes,
for simplicity of notation, we write X ⊆fin A instead of X ∈ Subfin(A).

Definition 2.5. Let S be a set of sorts. Then the support of A,
denoted by suppS(A), is the set { s ∈ S | As 6= ∅ }.

Proposition 2.6. An S-sorted set A is finite if, and only if, suppS(A)
is finite and, for every s ∈ suppS(A), card(As) < ℵ0.

Definition 2.7. Let S be a set of sorts and A an S-sorted set. A
many-sorted closure operator on A is a mapping J from Sub(A) to
Sub(A), which assigns to every X ⊆ A its J-closure J(X), such that,
for every X, Y ⊆ A, satisfies the following conditions:

(1) X ⊆ J(X), i.e., J is extensive.



4 CLIMENT AND COSME

(2) If X ⊆ Y , then J(X) ⊆ J(Y ), i.e., J is isotone.
(3) J(J(X)) = J(X), i.e., J is idempotent.

Given two many-sorted closure operators J and K on A, J is called
smaller than K, denoted by J ≤ K, if, for every X ⊆ A, J(A) ⊆ K(A).
A many-sorted closure space is an ordered pair (A, J) where A is an
S-sorted set and J a many-sorted closure operator on A. Moreover, if
X ⊆ A, then X is irredundant (or independent) with respect to J if,
for every s ∈ S and every x ∈ Xs, x 6∈ J(X − δs,x)s, X is a basis (or
a generator) with respect to J if J(X) = A, X is an irredundant basis
with respect to J if X irreduntant and a basis with respect to J , and X
is a minimal basis with respect to J if J(X) = A and, for every Y ⊂ X ,
J(Y ) 6= A.

We next state that the notion of irredundant basis of A with respect
to J is equivalent to the notion of minimal basis of A with respect to J .
Moreover, for a many-sorted closure space (A, J), we define IrB(A, J)
as the intersection of the set of all natural numbers and the set of the
cardinals of the irredundant basis of A with respect to J .

Proposition 2.8. Let (A, J) be a many-sorted closure space and
X ⊆ A. Then X is an irredundant basis with respect to J if, and only
if, it is a minimal basis with respect to J .

Definition 2.9. Let S be a set of sorts and (A, J) a many-sorted
closure space. Then we denote by IrB(A, J) the subset of N defined as
follows:

IrB(A, J) = N ∩

{

card(X)

∣

∣

∣

∣

X is an irredundant basis
of A with respect to J

}

.

Later, in this section, after having defined, for a set of sorts S and
an S-sorted signature Σ, the concept of Σ-algebra, for a Σ-algebra
A = (A, F ), the uniform algebraic many-sorted closure operator SgA
on A, called the subalgebra generating many-sorted operator on A
determined by A, and the notion of finitely generated Σ-algebra, we
will state that, for a finitely generated Σ-algebra A, IrB(A, Sg

A
) 6= ∅.

Definition 2.10. Let A be an S-sorted set, J a many-sorted closure
operator on A, and n a natural number.

(1) We denote by J≤n the many-sorted operator on A defined, for
every X ⊆ A, as follows:

J≤n(X) =
⋃

{J(Y ) | Y ∈ Sub≤n(X)}.

(2) We define the family (Jm
≤n)m∈N of many-sorted operator on A,

recursively, as follows:

Jm
≤n =

{

IdSub(A), if m = 0;

J≤n ◦ J
k
≤n, if m = k + 1, with k ≥ 0.
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(3) We denote by Jω
≤n the many-sorted operator on A that assigns

to an S-sorted subset X of A, Jω
≤n(X) =

⋃

m∈N J
m
≤n(X).

(4) We say that J is n-ary if J = Jω
≤n.

Remark. Let J be a many-sorted closure operator on A. Then J is
0-ary, i.e., J = Jω

≤0, if, and only if, for every X ⊆ A, we have that

J(X) = X ∪ J(∅S),

where ∅S is the S-sorted set whose sth coordinate, for every s ∈ S, is
∅.

We next prove that J is 1-ary, i.e., that J = Jω
≤1, if and only if, for

every X ⊆ A, we have that

J(X) = J(∅S) ∪
⋃

s∈S,x∈Xs
J(δs,x).

Let us suppose that, for everyX ⊆ A, J(X) = J(∅S)∪
⋃

s∈S,x∈Xs
J(δs,x).

Then it is obvious that, for every X ⊆ A, J(X) ⊆ J≤1(X). Let us verify
that, for every X ⊆ A, J≤1(X) =

⋃

{J(Y ) | Y ∈ Sub≤1(X)} ⊆ J(X).
Let Y be an element of Sub≤1(X). Then Y = ∅S or Y = δt,a, for some
t ∈ S and some a ∈ Xt. If Y = ∅S , then

J(∅S) ⊆ J(∅S) ∪
⋃

s∈S,x∈Xs
J(δs,x) = J(X).

If Y = δt,a, then J(δt,a) ⊆
⋃

s∈S,x∈Xs
J(δs,x), hence

J(δt,a) ⊆ J(∅S) ∪
⋃

s∈S,x∈Xs
J(δs,x) = J(X).

Thus J≤1(X) ⊆ J(∅S)∪
⋃

s∈S,x∈Xs
J(δs,x) = J(X). Therefore J = J≤1.

Hence, for every m ≥ 1, J = Jm
≤1. Consequently J is 1-ary.

Reciprocally, let us suppose that J is 1-ary, i.e., that, for every X ⊆
A, J(X) =

⋃

m∈N J
m
≤1(X). Then, obviously, we have that

J(X) ⊇ J(∅S) ∪
⋃

s∈S,x∈Xs
J(δs,x).

Let us verify that, for every m ∈ N, J(∅S) ∪
⋃

s∈S,x∈Xs
J(δs,x) ⊇ Jm

≤1.

Evidently J(∅S)∪
⋃

s∈S,x∈Xs
J(δs,x) ⊇ J0

≤1(X)∪ J1
≤1(X). Let k be ≥ 1

and let us suppose that J(∅S) ∪
⋃

s∈S,x∈Xs
J(δs,x) ⊇ Jk

≤1(X). We will

show that J(∅S)∪
⋃

s∈S,x∈Xs
J(δs,x) ⊇ Jk+1

≤1 (X). By definition we have
that

Jk+1
≤1 (X) = J≤1(J

k
≤1(X)) =

⋃

{J(Z) | Z ∈ Sub≤1(J
k
≤1(X))}.

Let Z be an element of Sub≤1(J
k
≤1(X)). Then Z ⊆ Jk

≤1(X). But we

have that Jk
≤1(X) =

⋃

{J(Y ) | Y ∈ Sub≤1(J
k−1
≤1 (X))}. Therefore, for

some Y ∈ Sub≤1(J
k−1
≤1 (X)), Z ⊆ J(Y ). Thus J(Z) ⊆ J(J(Y )) = J(Y ).

But J(Y ) ⊆ Jk
≤1(X). Consequently J(Z) ⊆ Jk

≤1(X). Whence, by the

induction hypothesis, J(Z) ⊆ J(∅S) ∪
⋃

s∈S,x∈Xs
J(δs,x). From this,

since Z was an arbitrary element of Sub≤1(J
k
≤1(X)), we infer that

Jk+1
≤1 (X) =

⋃

{J(Z) | Z ∈ Sub≤1(J
k
≤1(X))} ⊆ J(∅S)∪

⋃

s∈S,x∈Xs
J(δs,x).
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Thus, for every X ⊆ A, we have that

J(X) = J(∅S) ∪
⋃

s∈S,x∈Xs
J(δs,x).

Remark. Let n be ≥ 1, A an S-sorted set, X ⊆ A, and J a many-
sorted closure operator on A. Then, for every k ≥ 0 and every Y ⊆ A,
if Y ∈ Sub≤n(J

k
≤n(X)), then Y ∈ Sub≤n(J

k+1
≤n (X)).

We next state, for a natural number n ≥ 1 and a many-sorted clo-
sure operator J on an S-sorted set A, that the family of many-sorted
operators (Jm

≤n)m∈N on A is an ascending chain and that Jω
≤n, which is

the supremum of the above family, is the greatest n-ary many-sorted
closure operator on A which is smaller than J .

Proposition 2.11. For a natural number n ≥ 1, an S-sorted set A,
and a many-sorted closure operator J on A, the family of many-sorted
operators (Jm

≤n)m∈N on A is an ascending chain, i.e., for every m ∈ N,
Jm
≤n ≤ Jm+1

≤n . Moreover, Jω
≤n is the greatest n-ary many-sorted closure

operator on A such that Jω
≤n ≤ J .

We next provide a characterization of the n-ary many-sorted closure
operators J on an S-sorted set A in terms of the fixed points X of J
and of its relationships with the J-closures of the subsets of X with at
most n elements.

Proposition 2.12. Let A be an S-sorted set, J a many-sorted clo-
sure operator on A, and n a natural number. Then J is n-ary if, and
only if, for every X ⊆ A, if, for every Z ∈ Sub≤n(X), J(Z) ⊆ X, then
J(X) = X (i.e., if, and only if, for every X ⊆ A, X is a fixed point
of J if X contains the J-closure of each of its subsets with at most n
elements).

Proof. If n = 0, then the result is obvious. So let us consider the case
when n ≥ 1. Let us suppose that J is n-ary and let X be a subset of
A such that, for every Z ∈ Sub≤n(X), J(Z) ⊆ X . We want to show
that J(X) = X . Because J is extensive, X ⊆ J(X). Therefore it
only remains to show that J(X) ⊆ X . Since, by hypothesis, J(X) =
⋃

m∈N J
m
≤n(X), to show that J(X) ⊆ X it suffices to prove that, for

every m ∈ N, Jm
≤n(X) ⊆ X .

For m = 0 we have that J0
≤n(X) = X ⊆ X .

Let us suppose that, for k ≥ 0, Jk
≤n(X) ⊆ X . Then we want to show

that Jk+1
≤n (X) ⊆ X . But, by definition, we have that

Jk+1
≤n (X) = J≤n(J

k
≤n(X)) =

⋃

{J(Y ) | Y ∈ Sub≤n(J
k
≤n(X))}.

Hence what we have to prove is that, for every Y ∈ Sub≤n(J
k
≤n(X)),

J(Y ) ⊆ X . Let Y be a subset of Jk
≤n(X) such that card(Y ) ≤ n. Since

Jk
≤n(X) ⊆ X , we have that Y ⊆ X and card(Y ) ≤ n, therefore J(Y ) ⊆

X . Consequently, for every X ⊆ A, if, for every Z ∈ Sub≤n(X),
J(Z) ⊆ X , then J(X) = X .
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Reciprocally, let us suppose that, for every X ⊆ A, if, for every
Z ∈ Sub≤n(X), J(Z) ⊆ X , then J(X) = X . We want to show that J
is n-ary, i.e., that J = Jω

≤n. Let X a subset of A. Then it is obvious
that Jω

≤n(X) =
⋃

m∈N J
m
≤n(X) ⊆ J(X). We now proceed to prove that

J(X) ⊆ Jω
≤n(X). Since J is isotone and, by the definition of Jω

≤n,
X ⊆ Jω

≤n(X), we have that J(X) ⊆ J(Jω
≤n(X)). Therefore to prove

that J(X) ⊆ Jω
≤n(X) it suffices to prove that J(Jω

≤n(X)) = Jω
≤n(X).

But the just stated equation follows from the supposition because, as
we will prove next, for every Z ∈ Sub≤n(J

ω
≤n(X)), we have that J(Z) ⊆

Jω
≤n(X). Let Z be a subset of Jω

≤n(X) such that card(Z) ≤ n. Then,
for some ℓ ∈ N, suppS(Z) = {s0, . . . , sℓ−1} and, for every α ∈ ℓ, there
exists an nα ∈ N − 1 such that Zsα = {zα,0, . . . , zα,nα−1}. Therefore,
for every α ∈ ℓ and every β ∈ nα there exists an mα,β ∈ N such
that that zα,β ∈ J

mα,β

≤n (X)sα. Since it may be helpful for the sake
of understanding, let us represent the situation just described by the
following figure:

z0,0 ∈ J
m0,0

≤n (X)s0 . . . z0,n0−1 ∈ J
m0,n0−1

≤n (X)s0
...

. . .
...

zℓ−1,0 ∈ J
mℓ−1,0

≤n (X)sℓ−1
. . . zℓ−1,nℓ−1−1 ∈ J

mℓ−1,nℓ−1−1

≤n (X)sℓ−1

Hence, for every α ∈ ℓ there exists a βα ∈ nα such that Zsα ⊆
J
mα,βα

≤n (X)sα. On the other hand, since the family of many-sorted op-
erators (Jm

≤n)m∈N on A is an ascending chain, there exists an m in the

set {mα,βα
| α ∈ ℓ} such that, for every α ∈ ℓ, J

mα,βα

≤n ≤ Jm
≤n. Thus

Z ⊆ Jm
≤n(X). Therefore, since, in addition, card(Z) ≤ n, we have that

Z ∈ Sub≤n(J
m
≤n(X)). Thus

J(Z) ⊆ Jm+1
≤n (X) = J≤n(J

m
≤n(X)) =

⋃

{J(K) | K ∈ Sub≤n(J
m
≤n(X))}.

Consequently J(Z) ⊆ Jω
≤n(X). Hence J(X) ⊆ Jω

≤n(X). Whence J =
Jω
≤n, which completes the proof. �

We next recall the notion of free monoid on a set and, for a set of
sorts S, we define, by using the the just mentioned notion, the concept
of S-sorted signature and, for an S-sorted signature Σ, the concept of
Σ-algebra.

Definition 2.13. Let S be a set of sorts. The free monoid on S,
denoted by S⋆, is (S⋆,f, λ), where S⋆, the set of all words on S, is
⋃

n∈N Hom(n, S), the set of all mappings w : n //S from some n ∈ N
to S, f, the concatenation of words on S, is the binary operation on
S⋆ which sends a pair of words (w, v) on S to the mapping wf v from
|w| + |v| to S, where |w| and |v| are the lengths (≡ domains) of the
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mappings w and v, respectively, defined as follows:

wf v











|w|+ |v| // S

i 7−→

{

wi, if 0 ≤ i < |w|;

vi−|w|, if |w| ≤ i < |w|+ |v|,

and λ, the empty word on S, is the unique mapping λ : ∅ //S.

Definition 2.14. Let S be a set of sorts. Then an S-sorted signature
is a function Σ from S⋆ × S to U which sends a pair (w, s) ∈ S⋆ × S
to the set Σw,s of the formal operations of arity w, sort (or coarity) s,
and rank (or biarity) (w, s).

Definition 2.15. Let Σ be an S-sorted signature and A an S-sorted
set. The S⋆×S-sorted set of the finitary operations on A is the family
(Hom(Aw, As))(w,s)∈S⋆×S, where, for every w ∈ S⋆, Aw =

∏

i∈|w|Awi
. A

structure of Σ-algebra on A is an S⋆×S-mapping F = (Fw,s)(w,s)∈S⋆×S

from Σ to (Hom(Aw, As))(w,s)∈S⋆×S. For a pair (w, s) ∈ S⋆ × S and
a formal operation σ ∈ Σw,s, in order to simplify the notation, the
operation from Aw to As corresponding to σ under Fw,s will be written
as Fσ instead of Fw,s(σ). A Σ-algebra is a pair (A, F ), abbreviated to
A, where A is an S-sorted set and F a structure of Σ-algebra on A.

Since it will be used afterwards, we next define, for a set of sorts S
and an S-sorted set A, the notions of algebraic and of uniform many-
sorted closure operator on A.

Definition 2.16. A many-sorted closure operator J on an S-sorted
set A is algebraic if, for every X ⊆ A, J(X) =

⋃

K⊆finX
J(K), and

is uniform if, for every X , Y ⊆ A, if suppS(X) = suppS(Y ), then
suppS(J(X)) = suppS(J(Y )).

We next prove that, for a many-sorted closure operator, the property
of being n-ary is stronger than that of being algebraic.

Proposition 2.17. Let n be a natural number. If a many-sorted
closure operator J on an S-sorted set A is n-ary, then J is an algebraic
many-sorted closure operator on A.

Proof. Let J be an n-ary many-sorted closure operator on an S-sorted
set A and let X be a subset of A. Then, obviously,

⋃

K⊆finX
J(K) ⊆

J(X). Since J(X) = Jω
≤n(X) =

⋃

m∈N J
m
≤n(X), to prove that J(X) ⊆

⋃

K⊆finX
J(K) it suffices to prove that, for every m ∈ N, Jm

≤n(X) ⊆
⋃

K⊆finX
J(K).

Form = 0, since J0
≤n(X) = X , we have that J0

≤n(X) ⊆
⋃

K⊆finX
J(K).

Let m be k + 1 with k ≥ 0 and let us suppose that Jk
≤n(X) ⊆

⋃

K⊆finX
J(K). We want to prove that Jk+1

≤n (X) ⊆
⋃

K⊆finX
J(K).

However, by definition, Jk+1
≤n (X) =

⋃

{J(Z) | Z ∈ Sub≤n(J
k
≤n(X))}.

Thus it suffices to prove that, for every Z ∈ Sub≤n(J
k
≤n(X)), J(Z) ⊆
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⋃

K⊆finX
J(K). Let Z be a subset of Jk

≤n(X) such that card(Z) ≤ n.

Then, since, by the induction hypothesis, Jk
≤n(X) ⊆

⋃

K⊆finX
J(K),

we have that Z ⊆
⋃

K⊆finX
J(K) and, in addition, that card(Z) ≤ n.

Hence, for some ℓ ∈ N, suppS(Z) = {s0, . . . , sℓ−1} and, for every α ∈ ℓ,
there exists an nα ∈ N− 1 such that Zsα = {zα,0, . . . , zα,nα−1}. There-
fore, for every α ∈ ℓ and every β ∈ nα there exists a Kα,β ⊆fin X
such that that zα,β ∈ J(Kα,β)sα. Since it may be helpful for the sake
of understanding, let us represent the situation just described by the
following figure:

z0,0 ∈ J(K0,0)s0 . . . z0,n0−1 ∈ J(K0,n0−1)s0
...

. . .
...

zℓ−1,0 ∈ J(Kℓ−1,0)sℓ−1
. . . zℓ−1,nℓ−1−1 ∈ J(Kℓ−1,nℓ−1−1)sℓ−1

Then, for every α ∈ ℓ, Zsα ⊆ J(
⋃

β∈nα
Kα,β)sα, where

⋃

β∈nα
Kα,β ⊆fin

X . So, for L =
⋃

α∈ℓ

⋃

β∈nα
Kα,β , we have that L ⊆fin X and Z ⊆ J(L).

Therefore J(Z) ⊆ J(J(L)) = J(L) ⊆
⋃

K⊆finX
J(K). �

We next define when a subset X of the underlying S-sorted set A of
a Σ-algebra A is closed under an operation Fσ of A, as well as when
X is a subalgebra of A.

Definition 2.18. Let A be a Σ-algebra and X ⊆ A. Let σ be a
formal operation in Σw,s. We say that X is closed under the operation
Fσ : Aw

//As if, for every a ∈ Xw, Fσ(a) ∈ Xs. We say that X is a
subalgebra of A if X is closed under the operations of A. We denote by
Sub(A) the set of all subalgebras of A (which is an algebraic closure
system on A).

Definition 2.19. Let A be a Σ-algebra. Then we denote by Sg
A

the many-sorted closure operator on A defined as follows:

Sg
A

{

Sub(A) // Sub(A)
X 7−→

⋂

{C ∈ Sub(A) | X ⊆ C },
.

We call Sg
A

the subalgebra generating many-sorted operator on A de-
termined by A. For every X ⊆ A, we call Sg

A
(X) the subalgebra of

A generated by X . Moreover, if X ⊆ A is such that SgA(X) = A,
then we say that X is an S-sorted set of generators of A, or that X
generates A. Besides, we say that A is finitely generated if there exists
an S-sorted subset X of A such that X generates A and card(X) < ℵ0.

Proposition 2.20. Let A be a Σ-algebra. Then the many-sorted
closure operator Sg

A
on A is algebraic, i.e., for every S-sorted subset

X of A, Sg
A
(X) =

⋃

K⊆finX
Sg

A
(K).

For a Σ-algebra A we next provide another, more constructive, de-
scription of the algebraic many-sorted closure operator Sg

A
, which, in

addition, will allow us to state a crucial property of Sg
A
. Specifically,

that SgA is uniform.
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Definition 2.21. Let Σ be an S-sorted signature andA a Σ-algebra.

(1) We denote by EA the many-sorted operator on A that assigns to
an S-sorted subsetX ofA, EA(X) = X∪

(
⋃

σ∈Σ·,s
Fσ[Xar(σ)]

)

s∈S
,

where, for s ∈ S, Σ·,s is the set of all many-sorted formal oper-
ations σ such that the coarity of σ is s and for ar(σ) = w ∈ S⋆,
the arity of σ, Xar(σ) =

∏

i∈|w|Xwi
.

(2) If X ⊆ A, then we define the family (En
A
(X))n∈N in Sub(A),

recursively, as follows:

E0
A
(X) = X ,

En+1
A

(X) = EA(E
n
A
(X)), n ≥ 0.

(3) We denote by Eω
A

the many-sorted operator on A that assigns
to an S-sorted subset X of A, Eω

A
(X) =

⋃

n∈N E
n
A
(X).

Proposition 2.22. LetA be a Σ-algebra andX ⊆ A, then Sg
A
(X) =

Eω
A
(X).

In [3], on pp. 82, we stated the following proposition (there called
Proposition 2.7).

Proposition 2.23. Let A be a Σ-algebra and X, Y ⊆ A. Then we
have that

(1) If suppS(X) = suppS(Y ), then, for every n ∈ N, suppS(E
n
A
(X)) =

suppS(E
n
A
(Y )).

(2) suppS(SgA(X)) =
⋃

n∈N suppS(E
n
A
(X)).

(3) If suppS(X) = suppS(Y ), then suppS(SgA(X)) = suppS(SgA(Y )).

Therefore the algebraic many-sorted closure operator Sg
A
is uniform.

Proposition 2.24. If A is a finitely generated Σ-algebra, then every
S-sorted set of generators of A contains a finite S-sorted subset which
also generates A.

Corollary 2.25. If A is a finitely generated Σ-algebra, then we have
that IrB(A, Sg

A
) is not empty.

3. A characterization of the n-ary many-sorted closure

operators.

A theorem of Birkhoff-Frink (see [1]) asserts that every algebraic clo-
sure operator on an ordinary set arises, from some algebraic structure
on the set, as the corresponding generated subalgebra operator. How-
ever, for many-sorted sets such a theorem is not longer true without
qualification. In [3], on pp. 83–84, Theorem 3.1 and Corollary 3.2,
we characterized the corresponding many-sorted closure operators as
precisely the uniform algebraic operators. We next recall the just men-
tioned characterization since it will be applied afterwards to provide
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a characterization of the n-ary many-sorted closure operators on an
S-sorted set.

Let us notice that in what follows, for a word w : |w| → S on S,
with |w| the lenght of w, and an s ∈ S, we denote by w−1[s] the set
{i ∈ |w| | w(i) = s}, and by Im(w) the set {w(i) | i ∈ |w|}

Theorem 3.1. Let J be an algebraic many-sorted closure operator
on an S-sorted set A. If J is uniform, then J = Sg

A
for some S-sorted

signature Σ and some Σ-algebra A.

Proof. Let Σ = (Σw,s)(w,s)∈S⋆×S be the S-sorted signature defined, for
every (w, s) ∈ S⋆ × S, as follows:

Σw,s = { (X, b) ∈
⋃

X∈Sub(A)({X}×J(X)s) | ∀ t ∈ S (card(Xt) = |w|t) },

where for a sort s ∈ S and a word w : |w| → S on S, with |w| the
lenght of w, the number of occurrences of s in w, denoted by |w|s, is
card(w−1[s]).

Before proceeding any further, let us remark that, for (w, s) ∈ S⋆×S
and (X, b) ∈

⋃

X∈Sub(A)({X} × J(X)s), the following conditions are
equivalent:

(1) (X, b) ∈ Σw,s, i.e., for every t ∈ S, card(Xt) = |w|t.
(2) suppS(X) = Im(w) and, for every t ∈ suppS(X), card(Xt) =

|w|t.

On the other hand, for the index set Λ =
⋃

Y ∈Sub(A)({Y }×suppS(Y ))

and the Λ-indexed family (Ys)(Y,s)∈Λ whose (Y, s)-th coordinate is Ys,
precisely the s-th coordinate of the S-sorted set Y of the index (Y, s) ∈
Λ, let f be a choice function for (Ys)(Y,s)∈Λ, i.e., an element of

∏

(Y,s)∈Λ Ys.

Moreover, for every w ∈ S⋆ and a ∈
∏

i∈|w|Aw(i), let Mw,a =

(Mw,a
s )s∈S be the finite S-sorted subset of A defined as Mw,a

s = {ai |
i ∈ w−1[s]}, for every s ∈ S.

Now, for (w, s) ∈ S⋆ × S and (X, b) ∈ Σw,s, let FX,b be the many-
sorted operation from

∏

i∈|w|Aw(i) into As that to an a ∈
∏

i∈|w|Aw(i)

assigns b, if Mw,a = X and f(J(Mw,a), s), otherwise.
We will prove that the Σ-algebra A = (A, F ) is such that J =

SgA. But before doing that it is necessary to verify that the def-
inition of the many-sorted operations is sound, i.e., that for every
(w, s) ∈ S⋆×S, (X, b) ∈ Σw,s and a ∈

∏

i∈|w|Aw(i), it happens that s ∈

suppS(J(M
w,a)), and for this it suffices to prove that suppS(M

w,a) =
suppS(X), because, by hypothesis, J is uniform and, by definition,
b ∈ J(X)s.

If t ∈ suppS(M
w,a), then Mw,a

t is nonempty, i.e., there exists an
i ∈ |w| such that w(i) = t. Therefore, because (X, b) ∈ Σw,s, we have
that 0 < |w|t = card(Xt), hence t ∈ suppS(X).

Reciprocally, if t ∈ suppS(X), |w|t > 0, and there is an i ∈ |w| such
that w(i) = t, hence ai ∈ At, and from this we conclude thatMw,a

t 6= ∅,
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i.e., that t ∈ suppS(M
w,a). Therefore, suppS(M

w,a) = suppS(X) and,
by the uniformity of J , suppS(J(M

w,a)) = suppS(J(X)). But, by
definition, b ∈ J(X)s, so s ∈ suppS(J(M

w,a)) and the definition is
sound.

Now we prove that, for every X ⊆ A, J(X) ⊆ SgA(X). Let X be
an S-sorted subset of A, s ∈ S and b ∈ J(X)s. Then, because J is
algebraic, b ∈ J(Y )s, for some finite S-sorted subset Y ofX . From such
an Y we will define a word wY in S and an element aY of

∏

i∈|wY | AwY (i)

such that

(1) Y = MwY ,aY ,
(2) (Y, b) ∈ ΣwY ,s, i.e., b ∈ J(Y )s and, for all t ∈ S, card(Yt) =

|wY |t, and
(3) aY ∈

∏

i∈|wY |XwY (i),

then, because FY,b(aY ) = b, we will be entitled to assert that b ∈
Sg

A
(X)s.

But given that Y is finite if, and only if, suppS(Y ) is finite and, for
every t ∈ suppS(Y ), Yt is finite, let { sα | α ∈ m } be an enumeration of
suppS(Y ) and, for every α ∈ m, let { yα,i | i ∈ pα } be an enumeration
of the nonempty sα-th coordinate, Ysα, of Y . Then we define, on the
one hand, the word wY as the mapping from |wY | =

∑

α∈m pα into S
such that, for every i ∈ |wY | and α ∈ m, wY (i) = sα if, and only if,
∑

β∈α pβ ≤ i ≤
∑

β∈α+1 pβ − 1 and, on the other hand, the element

aY of
∏

i∈|wY |AwY (i) as the mapping from |wY | into
⋃

i∈|wY | AwY (i) such

that, for every i ∈ |wY | and α ∈ m, aY (i) = yα,i−
∑

β∈α pβ if, and only if,
∑

β∈α pβ ≤ i ≤
∑

β∈α+1 pβ − 1. From these definitions follow (1), (2)

and (3) above. Let us observe that (1) is a particular case of the fact
that the mapping M from

⋃

w∈S⋆({w} ×
∏

i∈|w|Aw(i)) into Subfin(A)

that to a pair (w, a) assigns Mw,a is surjective.
From the above and the definition of FY,b we can affirm that FY,b(aY ) =

b, hence b ∈ Sg
A
(X)s. Therefore J(X) ⊆ Sg

A
(X).

Finally, we prove that, for every X ⊆ A, Sg
A
(X) ⊆ J(X). But for

this, by Proposition 2.22, it is enough to prove that, for every subset
X of A, we have that EA(X) ⊆ J(X). Let s ∈ S be and c ∈ EA(X)s.
If c ∈ Xs, then c ∈ J(X)s, because J is extensive. If c 6∈ Xs, then,
by the definition of EA(X), there exists a word w ∈ S⋆, a many-
sorted formal operation (Y, b) ∈ Σw,s and an a ∈

∏

i∈|w|Xw(i) such that

FY,b(a) = c. If Mw,a = Y , then c = b, hence c ∈ J(Y )s, therefore,
because Mw,a ⊆ X , c ∈ J(X)s. If M

w,a 6= Y , then FY,b(a) ∈ J(Mw,a)s,
but, because Mw,a ⊆ X and J is isotone, J(Mw,a) is a subset of J(X),
hence FY,b(a) ∈ J(X)s. Therefore EA(X) ⊆ J(X). �

The just stated theorem together with Proposition 2.23 entails the
following corollary.
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Corollary 3.2. Let J be an algebraic many-sorted closure operator
on an S-sorted set A. Then J = SgA for some S-sorted signature Σ
and some Σ-algebra A if, and only if, J is uniform.

We next prove that for a natural number n, an S-sorted signature
Σ, and a Σ-algebra A, under a suitable condition on Σ related to n,
the uniform algebraic many-sorted closure operator Sg

A
is an n-ary

many-sorted closure operator on A.

Proposition 3.3. Let Σ be an S-sorted signature, A a Σ-algebra,
and n ∈ N. If Σ is such that, for every (w, s) ∈ S⋆ × S, Σw,s = ∅ if
|w| > n—in which case we will say that every operation of A is of an ar-
ity ≤ n—, then the uniform algebraic many-sorted closure operator SgA
is an n-ary many-sorted closure operator on A, i.e., Sg

A
= (Sg

A
)ω≤n.

Proof. It follows from Sg
A
(X) = Eω

A
(X) and from the fact that, for

every X ⊆ A, EA(X) ⊆ (SgA)≤n(X) ⊆ SgA(X). The details are left
to the reader. However, we notice that it is advisable to split the proof
into two cases, one for n = 0 and another one for n ≥ 1. �

Proposition 3.4. Let A be an S-sorted set, J a many-sorted closure
operator on A, and n ∈ N. If J is n-ary (hence, by Proposition 2.17,
algebraic) and uniform, then there exists an S-sorted signature Σ′ and
a Σ′-algebra A′ such that J = SgA′ and every operation of A′ is of an
arity ≤ n.

Proof. If we denote by A = (A, F ) the Σ-algebra associated to J con-
structed in the proof of Theorem 3.1, then taking as Σ′ the S-sorted
signature defined, for every (w, s) ∈ S⋆×S, as: Σ′

w,s = Σw,s, if |w| ≤ n;
and Σ′

w,s = ∅, if |w| > n, and asA′ = (A′, F ′) the Σ′-algebra defined as:

A′ = A, and F ′ = F ◦ incΣ
′,Σ, where incΣ

′,Σ = (incΣ
′,Σ

w,s )(w,s)∈S⋆×S is the
canonical inclusion of Σ′ into Σ, then one can show that J = Sg

A′ . �

From the just stated proposition together with Proposition 3.3 it
follows immediately the following corollary, which is an algebraic char-
acterization of the n-ary and uniform many-sorted closure operators.

Corollary 3.5. Let J be a many-sorted closure operator on an S-
sorted set A and n ∈ N. Then J is n-ary and uniform if, and only
if, there exists an S-sorted signature Σ and a Σ-algebra A such that
J = SgA and every operation of A is of an arity ≤ n.

4. The irredundant basis theorem for many-sorted

closure spaces.

We next show Tarski’s irredundant basis theorem for many-sorted
closure spaces.

Theorem 4.1 (Tarski’s irredundant basis theorem for many-sorted
closure spaces). Let (A, J) be a many-sorted closure space. If J is an
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n-ary many-sorted operator on the S-sorted set A, with n ≥ 2, and if
i < j with i, j ∈ IrBJ(A) such that

{i+ 1, . . . , j − 1} ∩ IrBJ(A) = ∅,

then j − i ≤ n − 1. In particular, if n = 2, then IrBJ(A) is a convex
subset of N.

Proof. Let Z ⊆ A be an irredundant basis with respect to J such that
card(Z) = j and K = {X ∈ IrBJ(A) | card(X) ≤ i }. Since J is n-ary,
we can assert that J(Z) = A =

⋃

m∈N J
m
≤n(Z), so, for every s ∈ S,

J(Z)s = As =
⋃

m∈N J
m
≤n(Z)s. Let X be an element of K. Then there

exists a k ∈ N − 1 such that X ⊆ Jk
≤n(Z). The natural number k

should be strictly greater than 0, because if k = 0, X ⊆ J0
≤n(Z) = Z,

but card(X) = i < j = card(Z), so Z would not be an irredundant
basis. So that, for every X ∈ K, { k ∈ N − 1 | X ⊆ Jk

≤n(Z) } 6= ∅.
Therefore, for every X ∈ K, we can choose the least element of such
a set, denoted by dZ(X), and there is fulfilled that dZ(X) is greater

than or equal to 1. For dZ(X) − 1 we have that X * J
dZ(X)−1
≤n (Z).

So we conclude that there exists a mapping dZ : K //N − 1 that to
an X ∈ K assigns dZ(X). The image of the mapping dZ , which is a
nonempty part of N− 1, is well-ordered, hence it has a least element,
which is, necessarily, non zero, t + 1, therefore, since K/Ker(dZ) is
isomorphic to Im(dZ), by transport of structure, it will also be well-
ordered, then we can always choose an X ∈ K such that, for every
Y ∈ K, dZ(X) ≤ dZ(Y ), e.g., an X such that its equivalence class
corresponds to the minimum t+ 1 of Im(dZ). Moreover, among the X
which have the just mentioned property, we choose an X0 such that,
for every Y ∈ K with Y ⊆ J t+1

≤n (Z), it happens that

card(X0 ∩ (J t+1
≤n (Z)− J t

≤n(Z))) ≤ card(Y ∩ (J t+1
≤n (Z)− J t

≤n(Z))).

By the method of election we have that X0 ⊆ J t+1
≤n (Z) but X0 *

J t
≤n(Z). Of the latter we conclude that there exists an s0 ∈ S such

that X0
s0
* J t

≤n(Z)s0, therefore

(J t+1
≤n (Z)s0 − J t

≤n(Z)s0) ∩X0
s0
6= ∅.

Let a0 ∈ (J t+1
≤n (Z)s0 − J t

≤n(Z)s0) ∩ X0
s0

be. Then a0 ∈ X0
s0
, a0 ∈

J t+1
≤n (Z)s0 but a0 6∈ J t

≤n(Z)s0. However, J t+1
≤n (Z) = J≤n(J

t
≤n(Z)), by

definition, hence there exists a part F of J t
≤n(Z) such that card(F ) ≤ n

and a0 ∈ J(F )s0. Let X
1 be the part of A defined as follows:

X1
s =

{

X0
s ∪ Fs, if s 6= s0;

(X0
s0
− {a0}) ∪ Fs0, if s = s0.

It holds that X0 ⊆ J(X1). Therefore J(X0) ⊆ J(X1), but J(X0) =
A, hence J(X1) = A, i.e., X1 is a finite generator with respect to J ,
thus X1 will contain a minimal generator X2 with respect to J . It
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holds that card(X2) ≤ card(X1) < card(X0) + n. It cannot happen
that card(X0)+n ≤ j. Because if card(X0)+n ≤ j, then card(X2) < j,
hence, since

{i+ 1, . . . , j − 1} ∩ IrB(A, J) = ∅,

X2 ∈ K, but X2 ⊆ J t+1
≤n (Z) and, moreover, it happens that

card(X2 ∩ (J t+1
≤n (Z)− J t

≤n(Z))) < card(X0 ∩ (J t+1
≤n (Z)− J t

≤n(Z))),

because a0 6∈ X2
s0

but a0 ∈ X0
s0
, which contradicts the choice of X0.

Hence card(X0) + n > j. But card(X0) ≤ i, therefore j − i < n, i.e.,
j − i ≤ n− 1. �
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