A CHARACTERIZATION OF THE *n*-ARY MANY-SORTED CLOSURE OPERATORS AND A MANY-SORTED TARSKI IRREDUNDANT BASIS THEOREM

J. CLIMENT VIDAL AND E. COSME LLÓPEZ

ABSTRACT. A theorem of single-sorted algebra states that, for a closure space (A, J) and a natural number n, the closure operator J on the set A is n-ary if, and only if, there exists a single-sorted signature Σ and a Σ -algebra \mathbf{A} such that every operation of \mathbf{A} is of an arity $\leq n$ and $J = \operatorname{Sg}_{\mathbf{A}}$, where $\operatorname{Sg}_{\mathbf{A}}$ is the subalgebra generating operator on A determined by \mathbf{A} . On the other hand, a theorem of Tarski asserts that if J is an n-ary closure operator on a set A with $n \geq 2$, and if i < j with $i, j \in \operatorname{IrB}(A, J)$, where $\operatorname{IrB}(A, J)$ is the set of all natural numbers n such that (A, J) has an irredundant basis (\equiv minimal generating set) of n elements, such that $\{i + 1, \ldots, j - 1\} \cap \operatorname{IrB}(A, J) = \emptyset$, then $j - i \leq n - 1$. In this article we state and prove the many-sorted counterparts of the above theorems. But, we remark, regarding the first one under an additional condition: the uniformity of the many-sorted closure operator.

1. INTRODUCTION.

A well-known theorem of single-sorted algebra states that, for a closure space (A, J) and a natural number $n \in \mathbb{N} = \omega$, the closure operator J on the set A is n-ary if, and only if, there exists a single-sorted signature Σ and a Σ -algebra \mathbf{A} such that every operation of \mathbf{A} is of an arity $\leq n$ and $J = \operatorname{Sg}_{\mathbf{A}}$, where $\operatorname{Sg}_{\mathbf{A}}$ is the subalgebra generating operator on A determined by \mathbf{A} . On the other hand, in [3], it was stated that, for an algebraic many-sorted closure operator J on an S-sorted set $A, J = \operatorname{Sg}_{\mathbf{A}}$ for some many-sorted signature Σ and some Σ -algebra \mathbf{A} if, and only if, J is uniform. And, by using, among others, the just mentioned result, our first main result is the following characterization of the n-ary many-sorted closure operator on A, and $n \in \mathbb{N}$. Then J is n-ary and uniform if, and only if, there exists an S-sorted

Date: May 5th, 2016.

²⁰¹⁰ Mathematics Subject Classification. Primary: 06A15; Secondary: 54A05.

Key words and phrases. S-sorted set, delta of Kronecker, support of an S-sorted set, *n*-ary many-sorted closure operator, uniform many-sorted closure operator, irredundant basis for a many-sorted closure space.

signature Σ and a Σ -algebra \mathbf{A} such that $J = \operatorname{Sg}_{\mathbf{A}}$ and every operation of \mathbf{A} is of an arity $\leq n$.

We turn next to Tarski's irredundant basis theorem for single-sorted closure spaces. But before doing that let us begin by recalling the terminology relevant to the case. Given an n in \mathbb{N} , a set A, and a closure operator J on A, the closure operator J is said to be an n-ary closure operator on A if $J = J_{\leq n}^{\omega}$, where $J_{\leq n}^{\omega}$ is the supremum of the family $(J_{\leq n}^m)_{m\in\omega}$ of operators on A defined by recursion as follows: for $m = 0, J_{\leq n}^0 = \mathrm{Id}_{\mathrm{Sub}(A)}$; for m = k+1, with $k \geq 0, J_{\leq n}^{k+1}(X) = J_{\leq n} \circ J_{\leq n}^k$, where $J_{\leq n}$ is the operator on A defined, for every $X \subseteq A$, as follows:

$$J_{\leq n}(X) = \bigcup \{ J(Y) \mid Y \in \operatorname{Sub}_{\leq n}(X) \},\$$

where $\operatorname{Sub}_{\leq n}(X)$ is $\{Y \subseteq X \mid \operatorname{card}(Y) \leq n\}$.

Alfred Tarski in [4], on pp. 190–191, proved, as reformulated by S. Burris and H. P. Sankappanavar in [2], on pp. 33–34, the following theorem. Given a set A and an n-ary closure operator J on A with $n \geq 2$, for every $i, j \in \text{IrB}(A, J)$, where IrB(A, J) is the set of all natural numbers n such that (A, J) has an irredundant basis(\equiv minimal generating set) of n elements, if i < j and $\{i+1, \ldots, j-1\} \cap \text{IrB}(A, J) = \emptyset$, then $j - i \leq n - 1$. Thus, as stated by Burris and Sankappanavar in [2], on p. 33, the length of the finite gaps in IrB(A, J) is bounded by n - 2 if J is an n-ary closure operator. And our second main result is the proof of Tarski's irredundant basis theorem for many-sorted closure spaces.

2. Many-sorted sets, many-sorted closure operators, and many-sorted algebras.

In this section, for a set of sorts S in a fixed Grothendieck universe \mathcal{U} , we begin by recalling some basic notions of the theory of S-sorted sets, e.g., those of subset of an S-sorted set, of proper subset of an S-sorted set, of delta of Kronecker, of cardinal of an S-sorted set, and of support of an S-sorted set; and by defining, for an S-sorted set A, the concepts of many-sorted closure operator on A and of many-sorted closure space. Moreover, for a many-sorted closure operator J on A, we define the notions of irredundant or independent part of A with respect to J, of basis or generator of A with respect to J, of irredundant basis of A with respect to J, and of minimal basis of A with respect to J. In addition, we state that the notion of irredundant basis of A with respect to J is equivalent to the notion of minimal basis of A with respect to J and, afterwards, for a many-sorted closure space (A, J), we define the subset IrB(A, J) of \mathbb{N} as being formed by choosing those natural numbers which are the cardinal of an irredundant basis of Awith respect to J. On the other hand, for a natural number n, we define the concept of *n*-ary many-sorted closure operator on A and provide a characterization of the *n*-ary many-sorted closure operators J on A, in terms of the fixed points of J. Besides, for a set of sorts S, we define the concept of S-sorted signature, and, for an S-sorted signature Σ , the notion of Σ -algebra and, for a Σ -algebra \mathbf{A} , the concept of subalgebra of \mathbf{A} and the subalgebra generating many-sorted operator Sg_A on Adetermined by \mathbf{A} . Subsequently, once defined the notion of finitely generated Σ -algebra, we state that, for a finitely generated Σ -algebra \mathbf{A} , IrB $(A, \operatorname{Sg}_{\mathbf{A}}) \neq \emptyset$.

Definition 2.1. An *S*-sorted set is a function $A = (A_s)_{s \in S}$ from *S* to \mathcal{U} .

Definition 2.2. Let *S* be a set of sorts. If *A* and *B* are *S*-sorted sets, then we will say that *A* is a *subset* of *B*, denoted by $A \subseteq B$, if, for every $s \in S$, $A_s \subseteq B_s$, and that *A* is a *proper* subset of *B*, denoted by $A \subset B$, if $A \subseteq B$ and, for some $s \in S$, $B_s - A_s \neq \emptyset$. We denote by Sub(*A*) the set of all *S*-sorted sets *X* such that $X \subseteq A$.

Definition 2.3. Given a sort $t \in S$ and a set X we call *delta of* Kronecker for (t, X) the S-sorted set $\delta^{t,X}$ defined, for every $s \in S$, as follows:

$$\delta_s^{t,X} = \begin{cases} X, & \text{if } s = t; \\ \emptyset, & \text{otherwise.} \end{cases}$$

For a final set $\{x\}$, to abbreviate, we will write $\delta^{t,x}$ instead of the more accurate $\delta^{t,\{x\}}$.

We next define, for a set of sorts S, the concept of cardinal of an S-sorted set, for an S-sorted set A, the notion of support of A, and characterize the finite S-sorted sets in terms of its supports.

Definition 2.4. Let A be an S-sorted set. Then the cardinal of A, denoted by card(A), is the cardinal of $\coprod A$, where $\coprod A$, the coproduct of $A = (A_s)_{s \in S}$, is $\bigcup_{s \in S} (A_s \times \{s\})$. Moreover, $\operatorname{Sub}_{\operatorname{fin}}(A)$ denotes the set of all finite subsets of A, i.e., the set $\{X \subseteq A \mid \operatorname{card}(X) < \aleph_0\}$, and, for a natural number n, $\operatorname{Sub}_{\leq n}(A)$ denotes the set of all subsets of A with at most n elements, i.e., the set $\{X \subseteq A \mid \operatorname{card}(X) \leq n\}$. Sometimes, for simplicity of notation, we write $X \subseteq_{\operatorname{fin}} A$ instead of $X \in \operatorname{Sub}_{\operatorname{fin}}(A)$.

Definition 2.5. Let S be a set of sorts. Then the support of A, denoted by $\operatorname{supp}_S(A)$, is the set $\{s \in S \mid A_s \neq \emptyset\}$.

Proposition 2.6. An S-sorted set A is finite if, and only if, $\operatorname{supp}_S(A)$ is finite and, for every $s \in \operatorname{supp}_S(A)$, $\operatorname{card}(A_s) < \aleph_0$.

Definition 2.7. Let S be a set of sorts and A an S-sorted set. A many-sorted closure operator on A is a mapping J from Sub(A) to Sub(A), which assigns to every $X \subseteq A$ its J-closure J(X), such that, for every $X, Y \subseteq A$, satisfies the following conditions:

(1) $X \subseteq J(X)$, i.e., J is extensive.

- (2) If $X \subseteq Y$, then $J(X) \subseteq J(Y)$, i.e., J is isotone.
- (3) J(J(X)) = J(X), i.e., J is idempotent.

Given two many-sorted closure operators J and K on A, J is called smaller than K, denoted by $J \leq K$, if, for every $X \subseteq A$, $J(A) \subseteq K(A)$. A many-sorted closure space is an ordered pair (A, J) where A is an S-sorted set and J a many-sorted closure operator on A. Moreover, if $X \subseteq A$, then X is irredundant (or independent) with respect to J if, for every $s \in S$ and every $x \in X_s$, $x \notin J(X - \delta^{s,x})_s$, X is a basis (or a generator) with respect to J if J(X) = A, X is an irredundant basis with respect to J if X irreduntant and a basis with respect to J, and Xis a minimal basis with respect to J if J(X) = A and, for every $Y \subset X$, $J(Y) \neq A$.

We next state that the notion of irredundant basis of A with respect to J is equivalent to the notion of minimal basis of A with respect to J. Moreover, for a many-sorted closure space (A, J), we define IrB(A, J)as the intersection of the set of all natural numbers and the set of the cardinals of the irredundant basis of A with respect to J.

Proposition 2.8. Let (A, J) be a many-sorted closure space and $X \subseteq A$. Then X is an irredundant basis with respect to J if, and only if, it is a minimal basis with respect to J.

Definition 2.9. Let S be a set of sorts and (A, J) a many-sorted closure space. Then we denote by IrB(A, J) the subset of \mathbb{N} defined as follows:

$$\operatorname{IrB}(A,J) = \mathbb{N} \cap \left\{ \operatorname{card}(X) \middle| \begin{array}{c} X \text{ is an irredundant basis} \\ \text{of } A \text{ with respect to } J \end{array} \right\}.$$

Later, in this section, after having defined, for a set of sorts S and an S-sorted signature Σ , the concept of Σ -algebra, for a Σ -algebra $\mathbf{A} = (A, F)$, the uniform algebraic many-sorted closure operator $\mathrm{Sg}_{\mathbf{A}}$ on A, called the subalgebra generating many-sorted operator on Adetermined by \mathbf{A} , and the notion of finitely generated Σ -algebra, we will state that, for a finitely generated Σ -algebra \mathbf{A} , $\mathrm{IrB}(A, \mathrm{Sg}_{\mathbf{A}}) \neq \emptyset$.

Definition 2.10. Let A be an S-sorted set, J a many-sorted closure operator on A, and n a natural number.

(1) We denote by $J_{\leq n}$ the many-sorted operator on A defined, for every $X \subseteq A$, as follows:

$$J_{\leq n}(X) = \bigcup \{ J(Y) \mid Y \in \operatorname{Sub}_{\leq n}(X) \}.$$

(2) We define the family $(J^m_{\leq n})_{m\in\mathbb{N}}$ of many-sorted operator on A, recursively, as follows:

$$J_{\leq n}^{m} = \begin{cases} \mathrm{Id}_{\mathrm{Sub}(A)}, & \text{if } m = 0; \\ J_{\leq n} \circ J_{\leq n}^{k}, & \text{if } m = k+1, \text{ with } k \geq 0. \end{cases}$$

 $\mathbf{5}$

- (3) We denote by $J_{\leq n}^{\omega}$ the many-sorted operator on A that assigns to an S-sorted subset X of A, $J_{\leq n}^{\omega}(X) = \bigcup_{m \in \mathbb{N}} J_{\leq n}^m(X)$.
- (4) We say that J is n-ary if $J = J_{\leq n}^{\omega}$.

Remark. Let J be a many-sorted closure operator on A. Then J is 0-ary, i.e., $J = J_{\leq 0}^{\omega}$, if, and only if, for every $X \subseteq A$, we have that

$$J(X) = X \cup J(\emptyset^S),$$

where \emptyset^S is the S-sorted set whose sth coordinate, for every $s \in S$, is \emptyset .

We next prove that J is 1-ary, i.e., that $J = J_{\leq 1}^{\omega}$, if and only if, for every $X \subseteq A$, we have that

$$J(X) = J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}).$$

Let us suppose that, for every $X \subseteq A$, $J(X) = J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x})$. Then it is obvious that, for every $X \subseteq A$, $J(X) \subseteq J_{\leq 1}(X)$. Let us verify that, for every $X \subseteq A$, $J_{\leq 1}(X) = \bigcup \{J(Y) \mid Y \in \operatorname{Sub}_{\leq 1}(X)\} \subseteq J(X)$. Let Y be an element of $\operatorname{Sub}_{\leq 1}(X)$. Then $Y = \emptyset^S$ or $Y = \delta^{t,a}$, for some $t \in S$ and some $a \in X_t$. If $Y = \emptyset^S$, then

$$J(\varnothing^S) \subseteq J(\varnothing^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) = J(X).$$

If $Y = \delta^{t,a}$, then $J(\delta^{t,a}) \subseteq \bigcup_{s \in S, x \in X_s} J(\delta^{s,x})$, hence

$$J(\delta^{t,a}) \subseteq J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) = J(X).$$

Thus $J_{\leq 1}(X) \subseteq J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) = J(X)$. Therefore $J = J_{\leq 1}$. Hence, for every $m \geq 1$, $J = J_{\leq 1}^m$. Consequently J is 1-ary.

Reciprocally, let us suppose that J is 1-ary, i.e., that, for every $X \subseteq A$, $J(X) = \bigcup_{m \in \mathbb{N}} J^m_{<1}(X)$. Then, obviously, we have that

$$J(X) \supseteq J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}).$$

Let us verify that, for every $m \in \mathbb{N}$, $J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) \supseteq J_{\leq 1}^m$. Evidently $J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) \supseteq J_{\leq 1}^0(X) \cup J_{\leq 1}^1(X)$. Let k be ≥ 1 and let us suppose that $J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) \supseteq J_{\leq 1}^k(X)$. We will show that $J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}) \supseteq J_{\leq 1}^{k+1}(X)$. By definition we have that

$$J_{\leq 1}^{k+1}(X) = J_{\leq 1}(J_{\leq 1}^k(X)) = \bigcup \{ J(Z) \mid Z \in \text{Sub}_{\leq 1}(J_{\leq 1}^k(X)) \}.$$

Let Z be an element of $\operatorname{Sub}_{\leq 1}(J_{\leq 1}^{k}(X))$. Then $Z \subseteq J_{\leq 1}^{k}(X)$. But we have that $J_{\leq 1}^{k}(X) = \bigcup \{J(Y) \mid Y \in \operatorname{Sub}_{\leq 1}(J_{\leq 1}^{k-1}(X))\}$. Therefore, for some $Y \in \operatorname{Sub}_{\leq 1}(J_{\leq 1}^{k-1}(X)), Z \subseteq J(Y)$. Thus $J(Z) \subseteq J(J(Y)) = J(Y)$. But $J(Y) \subseteq J_{\leq 1}^{k}(X)$. Consequently $J(Z) \subseteq J_{\leq 1}^{k}(X)$. Whence, by the induction hypothesis, $J(Z) \subseteq J(\varnothing^{S}) \cup \bigcup_{s \in S, x \in X_{s}} J(\delta^{s,x})$. From this, since Z was an arbitrary element of $\operatorname{Sub}_{\leq 1}(J_{\leq 1}^{k}(X))$, we infer that

$$J_{\leq 1}^{k+1}(X) = \bigcup \{ J(Z) \mid Z \in \operatorname{Sub}_{\leq 1}(J_{\leq 1}^k(X)) \} \subseteq J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}).$$

Thus, for every $X \subseteq A$, we have that

$$J(X) = J(\emptyset^S) \cup \bigcup_{s \in S, x \in X_s} J(\delta^{s,x}).$$

Remark. Let n be ≥ 1 , A an S-sorted set, $X \subseteq A$, and J a manysorted closure operator on A. Then, for every $k \geq 0$ and every $Y \subseteq A$, if $Y \in \operatorname{Sub}_{\leq n}(J_{\leq n}^k(X))$, then $Y \in \operatorname{Sub}_{\leq n}(J_{\leq n}^{k+1}(X))$.

We next state, for a natural number $n \geq 1$ and a many-sorted closure operator J on an S-sorted set A, that the family of many-sorted operators $(J_{\leq n}^m)_{m \in \mathbb{N}}$ on A is an ascending chain and that $J_{\leq n}^{\omega}$, which is the supremum of the above family, is the greatest n-ary many-sorted closure operator on A which is smaller than J.

Proposition 2.11. For a natural number $n \ge 1$, an S-sorted set A, and a many-sorted closure operator J on A, the family of many-sorted operators $(J_{\le n}^m)_{m\in\mathbb{N}}$ on A is an ascending chain, i.e., for every $m \in \mathbb{N}$, $J_{\le n}^m \le J_{\le n}^{m+1}$. Moreover, $J_{\le n}^{\omega}$ is the greatest n-ary many-sorted closure operator on A such that $J_{\le n}^{\omega} \le J$.

We next provide a characterization of the *n*-ary many-sorted closure operators J on an S-sorted set A in terms of the fixed points X of Jand of its relationships with the J-closures of the subsets of X with at most n elements.

Proposition 2.12. Let A be an S-sorted set, J a many-sorted closure operator on A, and n a natural number. Then J is n-ary if, and only if, for every $X \subseteq A$, if, for every $Z \in \text{Sub}_{\leq n}(X)$, $J(Z) \subseteq X$, then J(X) = X (i.e., if, and only if, for every $X \subseteq A$, X is a fixed point of J if X contains the J-closure of each of its subsets with at most n elements).

Proof. If n = 0, then the result is obvious. So let us consider the case when $n \ge 1$. Let us suppose that J is n-ary and let X be a subset of A such that, for every $Z \in \operatorname{Sub}_{\le n}(X), J(Z) \subseteq X$. We want to show that J(X) = X. Because J is extensive, $X \subseteq J(X)$. Therefore it only remains to show that $J(X) \subseteq X$. Since, by hypothesis, $J(X) = \bigcup_{m \in \mathbb{N}} J^m_{\le n}(X)$, to show that $J(X) \subseteq X$ it suffices to prove that, for every $m \in \mathbb{N}, J^m_{\le n}(X) \subseteq X$.

For m = 0 we have that $J^0_{\leq n}(X) = X \subseteq X$.

Let us suppose that, for $k \ge 0$, $J_{\le n}^k(X) \subseteq X$. Then we want to show that $J_{\le n}^{k+1}(X) \subseteq X$. But, by definition, we have that

$$J_{\leq n}^{k+1}(X) = J_{\leq n}(J_{\leq n}^{k}(X)) = \bigcup \{J(Y) \mid Y \in \text{Sub}_{\leq n}(J_{\leq n}^{k}(X))\}.$$

Hence what we have to prove is that, for every $Y \in \operatorname{Sub}_{\leq n}(J_{\leq n}^{k}(X))$, $J(Y) \subseteq X$. Let Y be a subset of $J_{\leq n}^{k}(X)$ such that $\operatorname{card}(Y) \leq n$. Since $J_{\leq n}^{k}(X) \subseteq X$, we have that $Y \subseteq X$ and $\operatorname{card}(Y) \leq n$, therefore $J(Y) \subseteq X$. Consequently, for every $X \subseteq A$, if, for every $Z \in \operatorname{Sub}_{\leq n}(X)$, $J(Z) \subseteq X$, then J(X) = X.

7

Reciprocally, let us suppose that, for every $X \subseteq A$, if, for every $Z \in \operatorname{Sub}_{\leq n}(X), J(Z) \subseteq X$, then J(X) = X. We want to show that J is n-ary, i.e., that $J = J_{\leq n}^{\omega}$. Let X a subset of A. Then it is obvious that $J_{\leq n}^{\omega}(X) = \bigcup_{m \in \mathbb{N}} J_{\leq n}^{m}(X) \subseteq J(X)$. We now proceed to prove that $J(X) \subseteq J_{\leq n}^{\omega}(X)$. Since J is isotone and, by the definition of $J_{\leq n}^{\omega}$, $X \subseteq J_{\leq n}^{\omega}(\bar{X})$, we have that $J(X) \subseteq J(J_{\leq n}^{\omega}(X))$. Therefore to prove that $J(X) \subseteq J^{\omega}_{\leq n}(X)$ it suffices to prove that $J(J^{\omega}_{\leq n}(X)) = J^{\omega}_{\leq n}(X)$. But the just stated equation follows from the supposition because, as we will prove next, for every $Z \in \operatorname{Sub}_{\leq n}(J_{\leq n}^{\omega}(X))$, we have that $J(Z) \subseteq$ $J^{\omega}_{\leq n}(X)$. Let Z be a subset of $J^{\omega}_{\leq n}(X)$ such that $\operatorname{card}(Z) \leq n$. Then, for some $\ell \in \mathbb{N}$, $\operatorname{supp}_S(Z) = \{s_0, \ldots, s_{\ell-1}\}$ and, for every $\alpha \in \ell$, there exists an $n_{\alpha} \in \mathbb{N} - 1$ such that $Z_{s_{\alpha}} = \{z_{\alpha,0}, \ldots, z_{\alpha,n_{\alpha}-1}\}$. Therefore, for every $\alpha \in \ell$ and every $\beta \in n_{\alpha}$ there exists an $m_{\alpha,\beta} \in \mathbb{N}$ such that that $z_{\alpha,\beta} \in J^{m_{\alpha,\beta}}_{\leq n}(X)_{s_{\alpha}}$. Since it may be helpful for the sake of understanding, $le\bar{t}$ us represent the situation just described by the following figure:

$$z_{0,0} \in J_{\leq n}^{m_{0,0}}(X)_{s_0} \qquad \dots \qquad z_{0,n_0-1} \in J_{\leq n}^{m_{0,n_0-1}}(X)_{s_0}$$

$$\vdots \qquad \ddots \qquad \vdots$$

$$z_{\ell-1,0} \in J_{\leq n}^{m_{\ell-1,0}}(X)_{s_{\ell-1}} \qquad \dots \qquad z_{\ell-1,n_{\ell-1}-1} \in J_{\leq n}^{m_{\ell-1,n_{\ell-1}-1}}(X)_{s_{\ell-1}}$$

Hence, for every $\alpha \in \ell$ there exists a $\beta_{\alpha} \in n_{\alpha}$ such that $Z_{s_{\alpha}} \subseteq J_{\leq n}^{m_{\alpha,\beta_{\alpha}}}(X)_{s_{\alpha}}$. On the other hand, since the family of many-sorted operators $(J_{\leq n}^m)_{m\in\mathbb{N}}$ on A is an ascending chain, there exists an m in the set $\{m_{\alpha,\beta_{\alpha}} \mid \alpha \in \ell\}$ such that, for every $\alpha \in \ell$, $J_{\leq n}^{m_{\alpha,\beta_{\alpha}}} \leq J_{\leq n}^m$. Thus $Z \subseteq J_{\leq n}^m(X)$. Therefore, since, in addition, $\operatorname{card}(Z) \leq n$, we have that $Z \in \operatorname{Sub}_{\leq n}(J_{\leq n}^m(X))$. Thus

$$J(Z) \subseteq J_{\leq n}^{m+1}(X) = J_{\leq n}(J_{\leq n}^{m}(X)) = \bigcup \{J(K) \mid K \in \text{Sub}_{\leq n}(J_{\leq n}^{m}(X))\}.$$

Consequently $J(Z) \subseteq J_{\leq n}^{\omega}(X)$. Hence $J(X) \subseteq J_{\leq n}^{\omega}(X)$. Whence $J = J_{\leq n}^{\omega}$, which completes the proof.

We next recall the notion of free monoid on a set and, for a set of sorts S, we define, by using the the just mentioned notion, the concept of S-sorted signature and, for an S-sorted signature Σ , the concept of Σ -algebra.

Definition 2.13. Let *S* be a set of sorts. The *free monoid on S*, denoted by \mathbf{S}^* , is (S^*, λ, λ) , where S^* , the set of all *words on S*, is $\bigcup_{n \in \mathbb{N}} \operatorname{Hom}(n, S)$, the set of all mappings $w: n \longrightarrow S$ from some $n \in \mathbb{N}$ to *S*, λ , the *concatenation* of words on *S*, is the binary operation on S^* which sends a pair of words (w, v) on *S* to the mapping $w \lambda v$ from |w| + |v| to *S*, where |w| and |v| are the lengths (\equiv domains) of the

mappings w and v, respectively, defined as follows:

$$w \land v \begin{cases} |w| + |v| \longrightarrow S \\ i \longmapsto \begin{cases} w_i, & \text{if } 0 \le i < |w|; \\ v_{i-|w|}, & \text{if } |w| \le i < |w| + |v|, \end{cases}$$

and λ , the *empty word on* S, is the unique mapping $\lambda \colon \emptyset \longrightarrow S$.

Definition 2.14. Let S be a set of sorts. Then an S-sorted signature is a function Σ from $S^* \times S$ to \mathcal{U} which sends a pair $(w, s) \in S^* \times S$ to the set $\Sigma_{w,s}$ of the formal operations of arity w, sort (or coarity) s, and rank (or biarity) (w, s).

Definition 2.15. Let Σ be an S-sorted signature and A an S-sorted set. The $S^* \times S$ -sorted set of the *finitary operations on* A is the family $(\operatorname{Hom}(A_w, A_s))_{(w,s)\in S^*\times S}$, where, for every $w \in S^*$, $A_w = \prod_{i\in |w|} A_{w_i}$. A structure of Σ -algebra on A is an $S^* \times S$ -mapping $F = (F_{w,s})_{(w,s)\in S^*\times S}$ from Σ to $(\operatorname{Hom}(A_w, A_s))_{(w,s)\in S^*\times S}$. For a pair $(w,s) \in S^* \times S$ and a formal operation $\sigma \in \Sigma_{w,s}$, in order to simplify the notation, the operation from A_w to A_s corresponding to σ under $F_{w,s}$ will be written as F_{σ} instead of $F_{w,s}(\sigma)$. A Σ -algebra is a pair (A, F), abbreviated to \mathbf{A} , where A is an S-sorted set and F a structure of Σ -algebra on A.

Since it will be used afterwards, we next define, for a set of sorts S and an S-sorted set A, the notions of algebraic and of uniform manysorted closure operator on A.

Definition 2.16. A many-sorted closure operator J on an S-sorted set A is algebraic if, for every $X \subseteq A$, $J(X) = \bigcup_{K \subseteq_{\text{fin}} X} J(K)$, and is uniform if, for every $X, Y \subseteq A$, if $\operatorname{supp}_{S}(X) = \operatorname{supp}_{S}(Y)$, then $\operatorname{supp}_{S}(J(X)) = \operatorname{supp}_{S}(J(Y))$.

We next prove that, for a many-sorted closure operator, the property of being n-ary is stronger than that of being algebraic.

Proposition 2.17. Let n be a natural number. If a many-sorted closure operator J on an S-sorted set A is n-ary, then J is an algebraic many-sorted closure operator on A.

Proof. Let J be an *n*-ary many-sorted closure operator on an S-sorted set A and let X be a subset of A. Then, obviously, $\bigcup_{K\subseteq_{\mathrm{fin}}X} J(K) \subseteq J(X)$. Since $J(X) = J_{\leq n}^{\omega}(X) = \bigcup_{m \in \mathbb{N}} J_{\leq n}^{m}(X)$, to prove that $J(X) \subseteq \bigcup_{K\subseteq_{\mathrm{fin}}X} J(K)$ it suffices to prove that, for every $m \in \mathbb{N}$, $J_{\leq n}^{m}(X) \subseteq \bigcup_{K\subseteq_{\mathrm{fin}}X} J(K)$.

For m = 0, since $J_{\leq n}^0(X) = X$, we have that $J_{\leq n}^0(X) \subseteq \bigcup_{K \subseteq_{\text{fin}} X} J(K)$. Let m be k + 1 with $k \geq 0$ and let us suppose that $J_{\leq n}^k(X) \subseteq \bigcup_{K \subseteq_{\text{fin}} X} J(K)$. U_{$K \subseteq_{\text{fin}} X$} J(K). We want to prove that $J_{\leq n}^{k+1}(X) \subseteq \bigcup_{K \subseteq_{\text{fin}} X} J(K)$. However, by definition, $J_{\leq n}^{k+1}(X) = \bigcup \{J(Z) \mid Z \in \text{Sub}_{\leq n}(J_{\leq n}^k(X))\}$. Thus it suffices to prove that, for every $Z \in \text{Sub}_{\leq n}(J_{\leq n}^k(X))$, $J(Z) \subseteq$ $\bigcup_{K\subseteq_{\mathrm{fin}}X} J(K). \text{ Let } Z \text{ be a subset of } J^k_{\leq n}(X) \text{ such that } \operatorname{card}(Z) \leq n.$ Then, since, by the induction hypothesis, $J^k_{\leq n}(X) \subseteq \bigcup_{K\subseteq_{\mathrm{fin}}X} J(K)$, we have that $Z \subseteq \bigcup_{K\subseteq_{\mathrm{fin}}X} J(K)$ and, in addition, that $\operatorname{card}(Z) \leq n.$ Hence, for some $\ell \in \mathbb{N}$, $\operatorname{supp}_S(Z) = \{s_0, \ldots, s_{\ell-1}\}$ and, for every $\alpha \in \ell$, there exists an $n_\alpha \in \mathbb{N} - 1$ such that $Z_{s_\alpha} = \{z_{\alpha,0}, \ldots, z_{\alpha,n_\alpha-1}\}$. Therefore, for every $\alpha \in \ell$ and every $\beta \in n_\alpha$ there exists a $K^{\alpha,\beta} \subseteq_{\mathrm{fin}} X$ such that that $z_{\alpha,\beta} \in J(K^{\alpha,\beta})_{s_\alpha}$. Since it may be helpful for the sake of understanding, let us represent the situation just described by the following figure:

$$z_{0,0} \in J(K^{0,0})_{s_0} \qquad \dots \qquad z_{0,n_0-1} \in J(K^{0,n_0-1})_{s_0}$$

$$\vdots \qquad \ddots \qquad \vdots$$

$$z_{\ell-1,0} \in J(K^{\ell-1,0})_{s_{\ell-1}} \qquad \dots \qquad z_{\ell-1,n_{\ell-1}-1} \in J(K^{\ell-1,n_{\ell-1}-1})_{s_{\ell-1}}$$

Then, for every $\alpha \in \ell$, $Z_{s_{\alpha}} \subseteq J(\bigcup_{\beta \in n_{\alpha}} K^{\alpha,\beta})_{s_{\alpha}}$, where $\bigcup_{\beta \in n_{\alpha}} K^{\alpha,\beta} \subseteq_{\text{fin}} X$. So, for $L = \bigcup_{\alpha \in \ell} \bigcup_{\beta \in n_{\alpha}} K^{\alpha,\beta}$, we have that $L \subseteq_{\text{fin}} X$ and $Z \subseteq J(L)$. Therefore $J(Z) \subseteq J(J(L)) = J(L) \subseteq \bigcup_{K \subseteq_{\text{fin}} X} J(K)$.

We next define when a subset X of the underlying S-sorted set A of a Σ -algebra **A** is closed under an operation F_{σ} of **A**, as well as when X is a subalgebra of **A**.

Definition 2.18. Let \mathbf{A} be a Σ -algebra and $X \subseteq A$. Let σ be a formal operation in $\Sigma_{w,s}$. We say that X is closed under the operation $F_{\sigma} \colon A_w \longrightarrow A_s$ if, for every $a \in X_w$, $F_{\sigma}(a) \in X_s$. We say that X is a subalgebra of \mathbf{A} if X is closed under the operations of \mathbf{A} . We denote by $\operatorname{Sub}(\mathbf{A})$ the set of all subalgebras of \mathbf{A} (which is an algebraic closure system on A).

Definition 2.19. Let A be a Σ -algebra. Then we denote by Sg_A the many-sorted closure operator on A defined as follows:

$$\operatorname{Sg}_{\mathbf{A}} \left\{ \begin{array}{l} \operatorname{Sub}(A) \longrightarrow \operatorname{Sub}(A) \\ X \longmapsto \bigcap \{ C \in \operatorname{Sub}(\mathbf{A}) \mid X \subseteq C \}, \end{array} \right.$$

We call $\operatorname{Sg}_{\mathbf{A}}$ the subalgebra generating many-sorted operator on A determined by \mathbf{A} . For every $X \subseteq A$, we call $\operatorname{Sg}_{\mathbf{A}}(X)$ the subalgebra of \mathbf{A} generated by X. Moreover, if $X \subseteq A$ is such that $\operatorname{Sg}_{\mathbf{A}}(X) = A$, then we say that X is an S-sorted set of generators of \mathbf{A} , or that X generates \mathbf{A} . Besides, we say that \mathbf{A} is finitely generated if there exists an S-sorted subset X of A such that X generates \mathbf{A} and $\operatorname{card}(X) < \aleph_0$.

Proposition 2.20. Let \mathbf{A} be a Σ -algebra. Then the many-sorted closure operator $\operatorname{Sg}_{\mathbf{A}}$ on A is algebraic, i.e., for every S-sorted subset X of A, $\operatorname{Sg}_{\mathbf{A}}(X) = \bigcup_{K \subseteq_{\operatorname{fin}} X} \operatorname{Sg}_{\mathbf{A}}(K)$.

For a Σ -algebra **A** we next provide another, more constructive, description of the algebraic many-sorted closure operator $Sg_{\mathbf{A}}$, which, in addition, will allow us to state a crucial property of $Sg_{\mathbf{A}}$. Specifically, that $Sg_{\mathbf{A}}$ is uniform.

CLIMENT AND COSME

Definition 2.21. Let Σ be an S-sorted signature and A a Σ -algebra.

- (1) We denote by $E_{\mathbf{A}}$ the many-sorted operator on A that assigns to an S-sorted subset X of A, $E_{\mathbf{A}}(X) = X \cup \left(\bigcup_{\sigma \in \Sigma_{,s}} F_{\sigma}[X_{\operatorname{ar}(\sigma)}]\right)_{s \in S}$ where, for $s \in S$, $\Sigma_{\cdot,s}$ is the set of all many-sorted formal operations σ such that the coarity of σ is s and for $\operatorname{ar}(\sigma) = w \in S^*$, the arity of σ , $X_{\operatorname{ar}(\sigma)} = \prod_{i \in |w|} X_{w_i}$.
- (2) If $X \subseteq A$, then we define the family $(E^n_{\mathbf{A}}(X))_{n \in \mathbb{N}}$ in Sub(A), recursively, as follows:

$$\begin{split} \mathrm{E}^{0}_{\mathbf{A}}(X) &= X, \\ \mathrm{E}^{n+1}_{\mathbf{A}}(X) &= \mathrm{E}_{\mathbf{A}}(\mathrm{E}^{n}_{\mathbf{A}}(X)), \, n \geq 0. \end{split}$$

(3) We denote by $E^{\omega}_{\mathbf{A}}$ the many-sorted operator on A that assigns to an S-sorted subset X of A, $E^{\omega}_{\mathbf{A}}(X) = \bigcup_{n \in \mathbb{N}} E^{n}_{\mathbf{A}}(X)$.

Proposition 2.22. Let **A** be a Σ -algebra and $X \subseteq A$, then $\operatorname{Sg}_{A}(X) =$ $\mathrm{E}^{\omega}_{\mathbf{A}}(X).$

In [3], on pp. 82, we stated the following proposition (there called Proposition 2.7).

Proposition 2.23. Let A be a Σ -algebra and $X, Y \subseteq A$. Then we have that

- (1) If supp_S(X) = supp_S(Y), then, for every $n \in \mathbb{N}$, supp_S($\mathbb{E}^{n}_{\mathbf{A}}(X)$) = $\operatorname{supp}_{S}(\operatorname{E}^{n}_{\mathbf{A}}(Y)).$

(2) $\operatorname{supp}_{S}(\operatorname{Sg}_{\mathbf{A}}(X)) = \bigcup_{n \in \mathbb{N}} \operatorname{supp}_{S}(\operatorname{E}_{\mathbf{A}}^{n}(X)).$ (3) $\operatorname{If} \operatorname{supp}_{S}(X) = \operatorname{supp}_{S}(Y), then \operatorname{supp}_{S}(\operatorname{Sg}_{\mathbf{A}}(X)) = \operatorname{supp}_{S}(\operatorname{Sg}_{\mathbf{A}}(Y)).$

Therefore the algebraic many-sorted closure operator $Sg_{\mathbf{A}}$ is uniform.

Proposition 2.24. If A is a finitely generated Σ -algebra, then every S-sorted set of generators of A contains a finite S-sorted subset which also generates \mathbf{A} .

Corollary 2.25. If A is a finitely generated Σ -algebra, then we have that $IrB(A, Sg_A)$ is not empty.

3. A CHARACTERIZATION OF THE *n*-ARY MANY-SORTED CLOSURE OPERATORS.

A theorem of Birkhoff-Frink (see [1]) asserts that every algebraic closure operator on an ordinary set arises, from some algebraic structure on the set, as the corresponding generated subalgebra operator. However, for many-sorted sets such a theorem is not longer true without qualification. In [3], on pp. 83–84, Theorem 3.1 and Corollary 3.2, we characterized the corresponding many-sorted closure operators as precisely the uniform algebraic operators. We next recall the just mentioned characterization since it will be applied afterwards to provide

a characterization of the n-ary many-sorted closure operators on an S-sorted set.

Let us notice that in what follows, for a word $w: |w| \to S$ on S, with |w| the lenght of w, and an $s \in S$, we denote by $w^{-1}[s]$ the set $\{i \in |w| \mid w(i) = s\}$, and by $\operatorname{Im}(w)$ the set $\{w(i) \mid i \in |w|\}$

Theorem 3.1. Let J be an algebraic many-sorted closure operator on an S-sorted set A. If J is uniform, then $J = Sg_{\mathbf{A}}$ for some S-sorted signature Σ and some Σ -algebra \mathbf{A} .

Proof. Let $\Sigma = (\Sigma_{w,s})_{(w,s)\in S^*\times S}$ be the S-sorted signature defined, for every $(w,s)\in S^*\times S$, as follows:

$$\Sigma_{w,s} = \{ (X,b) \in \bigcup_{X \in \operatorname{Sub}(A)} (\{X\} \times J(X)_s) \mid \forall t \in S \left(\operatorname{card}(X_t) = |w|_t \right) \}$$

where for a sort $s \in S$ and a word $w: |w| \to S$ on S, with |w| the lenght of w, the number of occurrences of s in w, denoted by $|w|_s$, is $\operatorname{card}(w^{-1}[s])$.

Before proceeding any further, let us remark that, for $(w, s) \in S^* \times S$ and $(X, b) \in \bigcup_{X \in \text{Sub}(A)} (\{X\} \times J(X)_s)$, the following conditions are equivalent:

- (1) $(X, b) \in \Sigma_{w,s}$, i.e., for every $t \in S$, $\operatorname{card}(X_t) = |w|_t$.
- (2) $\operatorname{supp}_S(X) = \operatorname{Im}(w)$ and, for every $t \in \operatorname{supp}_S(X)$, $\operatorname{card}(X_t) = |w|_t$.

On the other hand, for the index set $\Lambda = \bigcup_{Y \in \operatorname{Sub}(A)} (\{Y\} \times \operatorname{supp}_S(Y))$ and the Λ -indexed family $(Y_s)_{(Y,s) \in \Lambda}$ whose (Y, s)-th coordinate is Y_s , precisely the s-th coordinate of the S-sorted set Y of the index $(Y, s) \in \Lambda$, let f be a choice function for $(Y_s)_{(Y,s) \in \Lambda}$, i.e., an element of $\prod_{(Y,s) \in \Lambda} Y_s$.

Moreover, for every $w \in S^*$ and $a \in \prod_{i \in |w|} A_{w(i)}$, let $M^{w,a} = (M_s^{w,a})_{s \in S}$ be the finite S-sorted subset of A defined as $M_s^{w,a} = \{a_i \mid i \in w^{-1}[s]\}$, for every $s \in S$.

Now, for $(w, s) \in S^* \times S$ and $(X, b) \in \Sigma_{w,s}$, let $F_{X,b}$ be the manysorted operation from $\prod_{i \in |w|} A_{w(i)}$ into A_s that to an $a \in \prod_{i \in |w|} A_{w(i)}$ assigns b, if $M^{w,a} = X$ and $f(J(M^{w,a}), s)$, otherwise.

We will prove that the Σ -algebra $\mathbf{A} = (A, F)$ is such that $J = \operatorname{Sg}_{\mathbf{A}}$. But before doing that it is necessary to verify that the definition of the many-sorted operations is sound, i.e., that for every $(w, s) \in S^* \times S, (X, b) \in \Sigma_{w,s}$ and $a \in \prod_{i \in |w|} A_{w(i)}$, it happens that $s \in \operatorname{supp}_S(J(M^{w,a}))$, and for this it suffices to prove that $\operatorname{supp}_S(M^{w,a}) = \operatorname{supp}_S(X)$, because, by hypothesis, J is uniform and, by definition, $b \in J(X)_s$.

If $t \in \operatorname{supp}_S(M^{w,a})$, then $M_t^{w,a}$ is nonempty, i.e., there exists an $i \in |w|$ such that w(i) = t. Therefore, because $(X, b) \in \Sigma_{w,s}$, we have that $0 < |w|_t = \operatorname{card}(X_t)$, hence $t \in \operatorname{supp}_S(X)$.

Reciprocally, if $t \in \operatorname{supp}_S(X)$, $|w|_t > 0$, and there is an $i \in |w|$ such that w(i) = t, hence $a_i \in A_t$, and from this we conclude that $M_t^{w,a} \neq \emptyset$,

i.e., that $t \in \operatorname{supp}_S(M^{w,a})$. Therefore, $\operatorname{supp}_S(M^{w,a}) = \operatorname{supp}_S(X)$ and, by the uniformity of J, $\operatorname{supp}_S(J(M^{w,a})) = \operatorname{supp}_S(J(X))$. But, by definition, $b \in J(X)_s$, so $s \in \operatorname{supp}_S(J(M^{w,a}))$ and the definition is sound.

Now we prove that, for every $X \subseteq A$, $J(X) \subseteq \operatorname{Sg}_{\mathbf{A}}(X)$. Let X be an S-sorted subset of A, $s \in S$ and $b \in J(X)_s$. Then, because J is algebraic, $b \in J(Y)_s$, for some finite S-sorted subset Y of X. From such an Y we will define a word w_Y in S and an element a_Y of $\prod_{i \in |w_Y|} A_{w_Y(i)}$ such that

(1) $Y = M^{w_Y, a_Y}$, (2) $(Y, b) \in \Sigma_{w_Y, s}$, i.e., $b \in J(Y)_s$ and, for all $t \in S$, $card(Y_t) = |w_Y|_t$, and (3) $a_Y \in \prod_{i \in |w_Y|} X_{w_Y(i)}$,

then, because $F_{Y,b}(a_Y) = b$, we will be entitled to assert that $b \in Sg_{\mathbf{A}}(X)_s$.

But given that Y is finite if, and only if, $\operatorname{supp}_S(Y)$ is finite and, for every $t \in \operatorname{supp}_S(Y)$, Y_t is finite, let $\{s_{\alpha} \mid \alpha \in m\}$ be an enumeration of $\operatorname{supp}_S(Y)$ and, for every $\alpha \in m$, let $\{y_{\alpha,i} \mid i \in p_{\alpha}\}$ be an enumeration of the nonempty s_{α} -th coordinate, $Y_{s_{\alpha}}$, of Y. Then we define, on the one hand, the word w_Y as the mapping from $|w_Y| = \sum_{\alpha \in m} p_{\alpha}$ into S such that, for every $i \in |w_Y|$ and $\alpha \in m$, $w_Y(i) = s_{\alpha}$ if, and only if, $\sum_{\beta \in \alpha} p_{\beta} \leq i \leq \sum_{\beta \in \alpha+1} p_{\beta} - 1$ and, on the other hand, the element a_Y of $\prod_{i \in |w_Y|} A_{w_Y(i)}$ as the mapping from $|w_Y|$ into $\bigcup_{i \in |w_Y|} A_{w_Y(i)}$ such that, for every $i \in |w_Y|$ and $\alpha \in m$, $a_Y(i) = y_{\alpha,i-\sum_{\beta \in \alpha} p_{\beta}}$ if, and only if, $\sum_{\beta \in \alpha} p_{\beta} \leq i \leq \sum_{\beta \in \alpha+1} p_{\beta} - 1$. From these definitions follow (1), (2) and (3) above. Let us observe that (1) is a particular case of the fact that the mapping M from $\bigcup_{w \in S^*} (\{w\} \times \prod_{i \in |w|} A_{w(i)})$ into $\operatorname{Sub}_{fin}(A)$ that to a pair (w, a) assigns $M^{w,a}$ is surjective.

From the above and the definition of $F_{Y,b}$ we can affirm that $F_{Y,b}(a_Y) = b$, hence $b \in \text{Sg}_{\mathbf{A}}(X)_s$. Therefore $J(X) \subseteq \text{Sg}_{\mathbf{A}}(X)$.

Finally, we prove that, for every $X \subseteq A$, $\operatorname{Sg}_{\mathbf{A}}(X) \subseteq J(X)$. But for this, by Proposition 2.22, it is enough to prove that, for every subset X of A, we have that $\operatorname{E}_{\mathbf{A}}(X) \subseteq J(X)$. Let $s \in S$ be and $c \in \operatorname{E}_{\mathbf{A}}(X)_s$. If $c \in X_s$, then $c \in J(X)_s$, because J is extensive. If $c \notin X_s$, then, by the definition of $\operatorname{E}_{\mathbf{A}}(X)$, there exists a word $w \in S^*$, a manysorted formal operation $(Y, b) \in \Sigma_{w,s}$ and an $a \in \prod_{i \in |w|} X_{w(i)}$ such that $F_{Y,b}(a) = c$. If $M^{w,a} = Y$, then c = b, hence $c \in J(Y)_s$, therefore, because $M^{w,a} \subseteq X$, $c \in J(X)_s$. If $M^{w,a} \neq Y$, then $F_{Y,b}(a) \in J(M^{w,a})_s$, but, because $M^{w,a} \subseteq X$ and J is isotone, $J(M^{w,a})$ is a subset of J(X), hence $F_{Y,b}(a) \in J(X)_s$. Therefore $\operatorname{E}_{\mathbf{A}}(X) \subseteq J(X)$.

The just stated theorem together with Proposition 2.23 entails the following corollary.

Corollary 3.2. Let J be an algebraic many-sorted closure operator on an S-sorted set A. Then $J = Sg_A$ for some S-sorted signature Σ and some Σ -algebra A if, and only if, J is uniform.

We next prove that for a natural number n, an S-sorted signature Σ , and a Σ -algebra \mathbf{A} , under a suitable condition on Σ related to n, the uniform algebraic many-sorted closure operator $\mathrm{Sg}_{\mathbf{A}}$ is an *n*-ary many-sorted closure operator on A.

Proposition 3.3. Let Σ be an S-sorted signature, \mathbf{A} a Σ -algebra, and $n \in \mathbb{N}$. If Σ is such that, for every $(w, s) \in S^* \times S$, $\Sigma_{w,s} = \emptyset$ if |w| > n—in which case we will say that every operation of \mathbf{A} is of an arity $\leq n$ —, then the uniform algebraic many-sorted closure operator $\mathrm{Sg}_{\mathbf{A}}$ is an n-ary many-sorted closure operator on A, i.e., $\mathrm{Sg}_{\mathbf{A}} = (\mathrm{Sg}_{\mathbf{A}})_{\leq n}^{\omega}$.

Proof. It follows from $\operatorname{Sg}_{\mathbf{A}}(X) = \operatorname{E}_{\mathbf{A}}^{\omega}(X)$ and from the fact that, for every $X \subseteq A$, $\operatorname{E}_{\mathbf{A}}(X) \subseteq (\operatorname{Sg}_{\mathbf{A}})_{\leq n}(X) \subseteq \operatorname{Sg}_{\mathbf{A}}(X)$. The details are left to the reader. However, we notice that it is advisable to split the proof into two cases, one for n = 0 and another one for $n \geq 1$. \Box

Proposition 3.4. Let A be an S-sorted set, J a many-sorted closure operator on A, and $n \in \mathbb{N}$. If J is n-ary (hence, by Proposition 2.17, algebraic) and uniform, then there exists an S-sorted signature Σ' and a Σ' -algebra \mathbf{A}' such that $J = \operatorname{Sg}_{\mathbf{A}'}$ and every operation of \mathbf{A}' is of an arity $\leq n$.

Proof. If we denote by $\mathbf{A} = (A, F)$ the Σ -algebra associated to J constructed in the proof of Theorem 3.1, then taking as Σ' the S-sorted signature defined, for every $(w, s) \in S^* \times S$, as: $\Sigma'_{w,s} = \Sigma_{w,s}$, if $|w| \leq n$; and $\Sigma'_{w,s} = \emptyset$, if |w| > n, and as $\mathbf{A}' = (A', F')$ the Σ' -algebra defined as: A' = A, and $F' = F \circ \operatorname{inc}^{\Sigma',\Sigma}$, where $\operatorname{inc}^{\Sigma',\Sigma} = (\operatorname{inc}^{\Sigma',\Sigma}_{w,s})_{(w,s)\in S^*\times S}$ is the canonical inclusion of Σ' into Σ , then one can show that $J = \operatorname{Sg}_{\mathbf{A}'}$. \Box

From the just stated proposition together with Proposition 3.3 it follows immediately the following corollary, which is an algebraic characterization of the n-ary and uniform many-sorted closure operators.

Corollary 3.5. Let J be a many-sorted closure operator on an Ssorted set A and $n \in \mathbb{N}$. Then J is n-ary and uniform if, and only if, there exists an S-sorted signature Σ and a Σ -algebra \mathbf{A} such that $J = Sg_{\mathbf{A}}$ and every operation of \mathbf{A} is of an arity $\leq n$.

4. The irredundant basis theorem for many-sorted closure spaces.

We next show Tarski's irredundant basis theorem for many-sorted closure spaces.

Theorem 4.1 (Tarski's irredundant basis theorem for many-sorted closure spaces). Let (A, J) be a many-sorted closure space. If J is an

n-ary many-sorted operator on the S-sorted set A, with $n \ge 2$, and if i < j with $i, j \in IrB_J(A)$ such that

$$\{i+1,\ldots,j-1\} \cap \operatorname{IrB}_J(A) = \emptyset,$$

then $j - i \leq n - 1$. In particular, if n = 2, then $\operatorname{IrB}_J(A)$ is a convex subset of \mathbb{N} .

Proof. Let $Z \subseteq A$ be an irredundant basis with respect to J such that $\operatorname{card}(Z) = j$ and $\mathcal{K} = \{ X \in \operatorname{IrB}_J(A) \mid \operatorname{card}(X) \leq i \}$. Since J is n-ary, we can assert that $J(Z) = A = \bigcup_{m \in \mathbb{N}} J^m_{\leq n}(Z)$, so, for every $s \in S$, $J(Z)_s = A_s = \bigcup_{m \in \mathbb{N}} J^m_{\leq n}(Z)_s$. Let X be an element of \mathcal{K} . Then there exists a $k \in \mathbb{N} - 1$ such that $X \subseteq J^k_{\leq n}(Z)$. The natural number k should be strictly greater than 0, because if $k = 0, X \subseteq J^0_{\leq n}(Z) = Z$, but $\operatorname{card}(X) = i < j = \operatorname{card}(Z)$, so Z would not be an irredundant basis. So that, for every $X \in \mathcal{K}$, $\{k \in \mathbb{N} - 1 \mid X \subseteq J_{\leq n}^k(Z)\} \neq \emptyset$. Therefore, for every $X \in \mathcal{K}$, we can choose the least element of such a set, denoted by $d_Z(X)$, and there is fulfilled that $d_Z(X)$ is greater than or equal to 1. For $d_Z(X) - 1$ we have that $X \nsubseteq J_{\leq n}^{d_Z(X)-1}(Z)$. So we conclude that there exists a mapping $d_Z \colon \mathcal{K} \longrightarrow \mathbb{N} - 1$ that to an $X \in \mathcal{K}$ assigns $d_Z(X)$. The image of the mapping d_Z , which is a nonempty part of $\mathbb{N} - 1$, is well-ordered, hence it has a least element, which is, necessarily, non zero, t+1, therefore, since $\mathcal{K}/\text{Ker}(d_Z)$ is isomorphic to $\text{Im}(d_Z)$, by transport of structure, it will also be wellordered, then we can always choose an $X \in \mathcal{K}$ such that, for every $Y \in \mathcal{K}, d_Z(X) \leq d_Z(Y)$, e.g., an X such that its equivalence class corresponds to the minimum t+1 of $\text{Im}(d_Z)$. Moreover, among the X which have the just mentioned property, we choose an X^0 such that, for every $Y \in \mathcal{K}$ with $Y \subseteq J^{t+1}_{\leq n}(Z)$, it happens that

$$\operatorname{card}(X^0 \cap (J^{t+1}_{\leq n}(Z) - J^t_{\leq n}(Z))) \le \operatorname{card}(Y \cap (J^{t+1}_{\leq n}(Z) - J^t_{\leq n}(Z))).$$

By the method of election we have that $X^0 \subseteq J^{t+1}_{\leq n}(Z)$ but $X^0 \not\subseteq J^t_{\leq n}(Z)$. Of the latter we conclude that there exists an $s_0 \in S$ such that $X^0_{s_0} \not\subseteq J^t_{\leq n}(Z)_{s_0}$, therefore

$$(J_{\leq n}^{t+1}(Z)_{s_0} - J_{\leq n}^t(Z)_{s_0}) \cap X_{s_0}^0 \neq \emptyset.$$

Let $a_0 \in (J_{\leq n}^{t+1}(Z)_{s_0} - J_{\leq n}^t(Z)_{s_0}) \cap X_{s_0}^0$ be. Then $a_0 \in X_{s_0}^0$, $a_0 \in J_{\leq n}^{t+1}(Z)_{s_0}$ but $a_0 \notin J_{\leq n}^t(Z)_{s_0}$. However, $J_{\leq n}^{t+1}(Z) = J_{\leq n}(J_{\leq n}^t(Z))$, by definition, hence there exists a part F of $J_{\leq n}^t(Z)$ such that $\operatorname{card}(F) \leq n$ and $a_0 \in J(F)_{s_0}$. Let X^1 be the part of A defined as follows:

$$X_s^1 = \begin{cases} X_s^0 \cup F_s, & \text{if } s \neq s_0; \\ (X_{s_0}^0 - \{a_0\}) \cup F_{s_0}, & \text{if } s = s_0. \end{cases}$$

It holds that $X^0 \subseteq J(X^1)$. Therefore $J(X^0) \subseteq J(X^1)$, but $J(X^0) = A$, hence $J(X^1) = A$, i.e., X^1 is a finite generator with respect to J, thus X^1 will contain a minimal generator X^2 with respect to J. It

holds that $\operatorname{card}(X^2) \leq \operatorname{card}(X^1) < \operatorname{card}(X^0) + n$. It cannot happen that $\operatorname{card}(X^0) + n \leq j$. Because if $\operatorname{card}(X^0) + n \leq j$, then $\operatorname{card}(X^2) < j$, hence, since

$$\{i+1,\ldots,j-1\} \cap \operatorname{IrB}(A,J) = \emptyset,$$

 $X^2 \in \mathcal{K}, \text{ but } X^2 \subseteq J^{t+1}_{< n}(Z) \text{ and, moreover, it happens that}$

 $\operatorname{card}(X^2 \cap (J^{t+1}_{\leq n}(Z) - J^t_{\leq n}(Z))) < \operatorname{card}(X^0 \cap (J^{t+1}_{\leq n}(Z) - J^t_{\leq n}(Z))),$

because $a_0 \notin X_{s_0}^2$ but $a_0 \in X_{s_0}^0$, which contradicts the choice of X^0 . Hence $\operatorname{card}(X^0) + n > j$. But $\operatorname{card}(X^0) \leq i$, therefore j - i < n, i.e., $j - i \leq n - 1$.

References

- G. Birkhoff and O. Frink, Representation of lattices by sets. Trans. Amer. Math. Soc., 64 (1948), pp. 299–316.
- [2] S. Burris and H.P. Sankappanavar, A course in universal algebra, Springer-Velag, 1981.
- [3] J. Climent Vidal and J. Soliveres Tur, On many-sorted algebraic closure operators. Math. Nachr. 266 (2004), pp. 81–84.
- [4] A. Tarski, An interpolation theorem for irredundant bases of closure operators, Discrete Math. 12 (1975), pp. 185–192.

UNIVERSITAT DE VALÈNCIA, DEPARTAMENT DE LÒGICA I FILOSOFIA DE LA CIÈNCIA, AV. BLASCO IBÁÑEZ, 30-7^a, 46010 VALÈNCIA, SPAIN *E-mail address*: Juan.B.Climent@uv.es

Universitat de València, Departament d'Àlgebra, Dr. Moliner, 50, 46100 Burjassot, València, Spain

E-mail address: Enric.Cosme@uv.es