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A CHARACTERIZATION OF THE n-ARY
MANY-SORTED CLOSURE OPERATORS AND A
MANY-SORTED TARSKI IRREDUNDANT BASIS

THEOREM

J. CLIMENT VIDAL AND E. COSME LLOPEZ

ABSTRACT. A theorem of single-sorted algebra states that, for a
closure space (A4, J) and a natural number n, the closure operator
J on the set A is n-ary if, and only if, there exists a single-sorted
signature ¥ and a Y-algebra A such that every operation of A
is of an arity < m and J = Sg,, where Sg, is the subalgebra
generating operator on A determined by A. On the other hand,
a theorem of Tarski asserts that if J is an n-ary closure operator
on a set A with n > 2, and if ¢ < j with ¢, j € IrB(A, J), where
IrB(A, J) is the set of all natural numbers n such that (4, J) has
an irredundant basis (= minimal generating set) of n elements,
such that {i +1,...,7 — 1} NIrB(4,J) = &, then j —i <n — 1.
In this article we state and prove the many-sorted counterparts of
the above theorems. But, we remark, regarding the first one under
an additional condition: the uniformity of the many-sorted closure
operator.

1. INTRODUCTION.

A well-known theorem of single-sorted algebra states that, for a clo-
sure space (A, J) and a natural number n € N = w, the closure operator
J on the set A is n-ary if, and only if, there exists a single-sorted sig-
nature ¥ and a Y-algebra A such that every operation of A is of an
arity < n and J = Sg,, where Sg, is the subalgebra generating oper-
ator on A determined by A. On the other hand, in [3], it was stated
that, for an algebraic many-sorted closure operator J on an S-sorted
set A, J = Sg, for some many-sorted signature > and some X-algebra
A if, and only if, J is uniform. And, by using, among others, the just
mentioned result, our first main result is the following characterization
of the n-ary many-sorted closure operators: Let S be a set of sorts, A
an S-sorted set, J a many-sorted closure operator on A, and n € N.
Then J is n-ary and uniform if, and only if, there exists an S-sorted
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signature ¥ and a Y-algebra A such that J = Sg, and every operation
of A is of an arity < n.

We turn next to Tarski’s irredundant basis theorem for single-sorted
closure spaces. But before doing that let us begin by recalling the
terminology relevant to the case. Given an n in N, a set A, and a
closure operator J on A, the closure operator J is said to be an n-ary
closure operator on A if J = J¥,, where J¢, is the supremum of the
family (J2)mew of operators on A defined by recursion as follows: for
m =0, J%, = Idsuy(a); for m = k-+1, with k > 0, JEI(X) = J, 00k |
where J<,, is the operator on A defined, for every X C A, as follows:

J<n(X) = ULJ(Y) | Y € Sub<n(X)},

where Sub<,(X) is {Y C X | card(Y) < n}.

Alfred Tarski in [4], on pp. 190-191, proved, as reformulated by S.
Burris and H. P. Sankappanavar in [2], on pp. 33-34, the following
theorem. Given a set A and an n-ary closure operator J on A with
n > 2, for every i, j € IrB(A,J), where IrB(A, J) is the set of all
natural numbers n such that (A, J) has an irredundant basis(= minimal
generating set) of n elements, if i < j and {i+1,...,7—1}NIrB(A, J) =
&, then j —i < n — 1. Thus, as stated by Burris and Sankappanavar
in [2], on p. 33, the length of the finite gaps in IrB(A, J) is bounded by
n — 2 if J is an n-ary closure operator. And our second main result is
the proof of Tarski’s irredundant basis theorem for many-sorted closure
spaces.

2. MANY-SORTED SETS, MANY-SORTED CLOSURE OPERATORS, AND
MANY-SORTED ALGEBRAS.

In this section, for a set of sorts S in a fixed Grothendieck universe
U, we begin by recalling some basic notions of the theory of S-sorted
sets, e.g., those of subset of an S-sorted set, of proper subset of an
S-sorted set, of delta of Kronecker, of cardinal of an S-sorted set, and
of support of an S-sorted set; and by defining, for an S-sorted set A,
the concepts of many-sorted closure operator on A and of many-sorted
closure space. Moreover, for a many-sorted closure operator J on A, we
define the notions of irredundant or independent part of A with respect
to J, of basis or generator of A with respect to J, of irredundant basis
of A with respect to J, and of minimal basis of A with respect to J.
In addition, we state that the notion of irredundant basis of A with
respect to J is equivalent to the notion of minimal basis of A with
respect to J and, afterwards, for a many-sorted closure space (A, J),
we define the subset IrB(A, J) of N as being formed by choosing those
natural numbers which are the cardinal of an irredundant basis of A
with respect to J. On the other hand, for a natural number n, we define
the concept of n-ary many-sorted closure operator on A and provide a
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characterization of the n-ary many-sorted closure operators J on A, in
terms of the fixed points of J. Besides, for a set of sorts S, we define
the concept of S-sorted signature, and, for an S-sorted signature X, the
notion of »-algebra and, for a »-algebra A, the concept of subalgebra
of A and the subalgebra generating many-sorted operator Sg, on A
determined by A. Subsequently, once defined the notion of finitely
generated >-algebra, we state that, for a finitely generated Y-algebra
A, IrB(A,Sgy) # @.

Definition 2.1. An S-sorted set is a function A = (Ay)ses from S
toU.

Definition 2.2. Let S be a set of sorts. If A and B are S-sorted
sets, then we will say that A is a subset of B, denoted by A C B, if,
for every s € S, Ay C B, and that A is a proper subset of B, denoted
by A C B, if A C B and, for some s € S, B, — Ay # @. We denote by
Sub(A) the set of all S-sorted sets X such that X C A.

Definition 2.3. Given a sort ¢t € S and a set X we call delta of
Kronecker for (t, X) the S-sorted set 6% defined, for every s € S, as

follows:
shX X, ifs=t;
* )@, otherwise.

For a final set {}, to abbreviate, we will write 6** instead of the more
accurate 6517},

We next define, for a set of sorts S, the concept of cardinal of an
S-sorted set, for an S-sorted set A, the notion of support of A, and
characterize the finite S-sorted sets in terms of its supports.

Definition 2.4. Let A be an S-sorted set. Then the cardinal of A,
denoted by card(A), is the cardinal of [[ A, where [] A, the coproduct
of A= (Ay)ses, 18 U,eg(As x {s}). Moreover, Subg,(A) denotes the set
of all finite subsets of A, i.e., the set {X C A | card(X) < R}, and, for
a natural number n, Sub<,(A) denotes the set of all subsets of A with
at most n elements, i.e., the set {X C A | card(X) < n}. Sometimes,
for simplicity of notation, we write X Cg, A instead of X € Subg,(A).

Definition 2.5. Let S be a set of sorts. Then the support of A,
denoted by suppg(A), is the set {s € S| As # @ }.

Proposition 2.6. An S-sorted set A is finite if, and only if, suppg(A)
is finite and, for every s € suppg(A), card(As) < No.

Definition 2.7. Let S be a set of sorts and A an S-sorted set. A
many-sorted closure operator on A is a mapping J from Sub(A) to
Sub(A), which assigns to every X C A its J-closure J(X), such that,
for every X, Y C A, satisfies the following conditions:

(1) X C J(X), i.e., J is extensive.
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(2) If X C Y, then J(X) C J(Y), i.e., J is isotone.

(3) J(J(X)) = J(X), ie., J is idempotent.
Given two many-sorted closure operators J and K on A, J is called
smaller than K, denoted by J < K, if, for every X C A, J(A) C K(A).
A many-sorted closure space is an ordered pair (A, .J) where A is an
S-sorted set and J a many-sorted closure operator on A. Moreover, if
X C A, then X is irredundant (or independent) with respect to J if,
for every s € S and every = € X, x € J(X — 6°7),, X is a basis (or
a generator) with respect to J if J(X) = A, X is an irredundant basis
with respect to J if X irreduntant and a basis with respect to J, and X

is a minimal basis with respect to J if J(X) = A and, for every Y C X,
J(Y) # A

We next state that the notion of irredundant basis of A with respect
to J is equivalent to the notion of minimal basis of A with respect to J.
Moreover, for a many-sorted closure space (A4, J), we define IrB(A, J)
as the intersection of the set of all natural numbers and the set of the
cardinals of the irredundant basis of A with respect to J.

Proposition 2.8. Let (A, J) be a many-sorted closure space and
X CA. Then X is an wrredundant basis with respect to J if, and only
if, it is a minimal basis with respect to J.

Definition 2.9. Let S be a set of sorts and (A, J) a many-sorted
closure space. Then we denote by IrB(A, J) the subset of N defined as
follows:

X is an irredundant basis
IrB(4,J) =Nn {Card(X) of A with respect to J }

Later, in this section, after having defined, for a set of sorts S and
an S-sorted signature X, the concept of Y-algebra, for a X»-algebra
A = (A, F), the uniform algebraic many-sorted closure operator Sg,
on A, called the subalgebra generating many-sorted operator on A
determined by A, and the notion of finitely generated X-algebra, we
will state that, for a finitely generated Y-algebra A, IrB(A, Sg,) # 2.

Definition 2.10. Let A be an S-sorted set, J a many-sorted closure
operator on A, and n a natural number.
(1) We denote by J<, the many-sorted operator on A defined, for
every X C A, as follows:
Jeu(X) = ULI(Y) | Y € Sube, (X)),

(2) We define the family (JZ,)men of many-sorted operator on A,
recursively, as follows:

{IdSub(A)a if m = 0;

Jo =
P Jeno JE,, ifmo=k+ 1, with k > 0.
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(3) We denote by J¢, the many-sorted operator on A that assigns
to an S-sorted subset X of A, J¢ (X) = |, ey /50 (X).
(4) We say that J is n-ary if J = JZ,.
Remark. Let J be a many-sorted closure operator on A. Then J is
O-ary, i.e., J = JZ,, if, and only if, for every X C A, we have that

J(X)=XUJ(@%),

where @° is the S-sorted set whose sth coordinate, for every s € S, is
.

We next prove that J is l-ary, i.e., that J = JZ,, if and only if, for
every X C A, we have that

J(X) = J(2°) UU,eq0ex, J(6°7).

Let us suppose that, for every X C A, J(X) = J(QS)UUseS,xeXS J(0%7).
Then it is obvious that, for every X C A, J(X) C J<1(X). Let us verify
that, for every X C A, J1(X) = U{J(Y) | Y € Sub<(X)} C J(X).
Let Y be an element of Sub<;(X). Then Y = @° or Y = §%¢, for some
t €S and some a € X;. f Y = @°, then

J(@7) € J(@7) UU,esaex, J(0°) = J(X).
If Y = 6", then J(0"*) C U,eg0ex, J(0%7), hence

J(0") € J(2%) UlUses aex, J(07) = J(X).

Thus J<1(X) C J(29) UlU.esex, J(6°%) = J(X). Therefore J = J<;.
Hence, for every m > 1, J = JZ. Consequently J is 1-ary.

Reciprocally, let us suppose that J is 1-ary, i.e., that, for every X C
A, J(X) = U pen J21(X). Then, obviously, we have that

J(X) 2 J(@%) UlU,esex, J(079)-

Let us verify that, for every m € N, J(2%) U
Evidently J(2%) UU,cg pex, J(0°%) 2 J2(X)UJL (X). Let k be > 1
and let us suppose that J(@%) U Usesaex, J(09%) 2 JE (X). We will
show that J(@%) UlU.eszex, J(67) 2 J?{l(X). By definition we have
that

seS,xeXg J(é‘s,m) 2 J£n1

JENX) = Ja(J5(X) = U{J(Z) | Z € Sub<i (JE(X))}-
Let Z be an element of Sub<;(J%,(X)). Then Z C J&,(X). But we
have that J& (X) = J{J(Y) | Y € Subgl(Jﬁjl(X))}._ Therefore, for
some Y € Sub<y(J571 (X)), Z C J(Y). Thus J(Z) C J(J(Y)) = J(Y).
But J(Y) C ng()f) Consequently J(Z) C J£,(X). Whence, by the
induction hypothesis, J(Z) C J(@°) U Usesxex J(0%%). From this,
since Z was an arbitrary element of Sub<;(J%, (X)), we infer that

JEHX) = ULJ(2) | Z € Subay(JE, (X))} € J(@%)UU,es ex, J(07)-



6 CLIMENT AND COSME

Thus, for every X C A, we have that
J(X) = J(2°) UlU,cq0ex, J(6°7).

Remark. Let n be > 1, A an S-sorted set, X C A, and J a many-
sorted closure operator on A. Then, for every £ > 0 and every Y C A,
if Y € Sub<,(J%, (X)), then Y € Sub<,(JE:'(X)).

We next state, for a natural number n > 1 and a many-sorted clo-
sure operator J on an S-sorted set A, that the family of many-sorted
operators (JZ )men on A is an ascending chain and that J¥,, which is
the supremum of the above family, is the greatest n-ary many-sorted
closure operator on A which is smaller than J.

Proposition 2.11. For a natural number n > 1, an S-sorted set A,
and a many-sorted closure operator J on A, the family of many-sorted
operators (J2 )men on A is an ascending chain, i.e., for every m € N,
Jo < J2HL Moreover, J%, is the greatest n-ary many-sorted closure

operator on A such that Jgn < J.

We next provide a characterization of the n-ary many-sorted closure
operators J on an S-sorted set A in terms of the fixed points X of J
and of its relationships with the J-closures of the subsets of X with at
most n elements.

Proposition 2.12. Let A be an S-sorted set, J a many-sorted clo-
sure operator on A, and n a natural number. Then J is n-ary if, and
only if, for every X C A, if, for every Z € Sub<,(X), J(Z) C X, then
J(X) = X (ie., if, and only if, for every X C A, X is a fized point
of J if X contains the J-closure of each of its subsets with at most n
elements).

Proof. If n = 0, then the result is obvious. So let us consider the case
when n > 1. Let us suppose that J is n-ary and let X be a subset of
A such that, for every Z € Sub<,(X), J(Z) C X. We want to show
that J(X) = X. Because J is extensive, X C J(X). Therefore it
only remains to show that J(X) C X. Since, by hypothesis, J(X) =
Upen /2,(X), to show that J(X) C X it suffices to prove that, for
every m € N, J? (X) C X,

For m = 0 we have that J2, (X) =X C X.

Let us suppose that, for k¥ > 0, JE (X) C X. Then we want to show

that Jg;l(X) C X. But, by definition, we have that

JEHX) = J<n(JE,(X)) = U{J(Y) | Y € Sube, (J,(X))}-
Hence what we have to prove is that, for every ¥ € Sub<,(JE, (X)),
J(Y) € X. Let Y be a subset of JE (X) such that card(Y") < n. Since
JE.(X) C X, we have that Y C X and card(Y") < n, therefore J(Y) C

X. Consequently, for every X C A, if, for every Z € Sub<,(X),
J(Z) C X, then J(X) = X.
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Reciprocally, let us suppose that, for every X C A, if, for every
Z € Sub<,(X), J(Z) C X, then J(X) = X. We want to show that J
is n-ary, i.e., that J = J¥ . Let X a subset of A. Then it is obvious
that J%,(X) = U ey J24(X) € J(X). We now proceed to prove that
J(X) € J¥,(X). Since J is isotone and, by the definition of J¥,,
X C J¥ (X), we have that J(X) C J(J¥, (X)). Therefore to prove
that J(X) C J2,(X) it suffices to prove that J(J¥, (X)) = J£,(X).
But the just stated equation follows from the supposition because, as
we will prove next, for every Z € Sub<,(J%, (X)), we have that J(Z) C
J¢ (X). Let Z be a subset of J¢, (X) such that card(Z) < n. Then,
for some ¢ € N, suppg(Z) = {so,..., 5,1} and, for every a € ¢, there
exists an n, € N — 1 such that Z,, = {z40,.-.,%an.—1}. Therefore,
for every a € ¢ and every 8 € n, there exists an mq,s € N such
that that z,5 € J.°(X)s,. Since it may be helpful for the sake
of understanding, let us represent the situation just described by the
following figure:

20,0 € J?;’O(X)SO C. 20,n0—1 € J?:no_l(X)so

0 € (X s € L ()

Se—1 Se—1

Hence, for every a € [ there exists a 3, € n, such that Z, C
J2oP(X),. . On the other hand, since the family of many-sorted op-
erators (J2 )eny on A is an ascending chain, there exists an m in the
set {Mma., | @ € €} such that, for every a € ¢, J_=% < J7 . Thus
7 C J2.(X). Therefore, since, in addition, card(Z) < n, we have that

Z € Sub<,(J2,(X)). Thus
J(Z) C JZINX) = J<n(J2,(X)) = U{J(K) | K € Subs, (JZ,(X))}.

Consequently J(Z) C J<,(X). Hence J(X) C JZ,(X). Whence J =
JZ,,, which completes the proof. 0

We next recall the notion of free monoid on a set and, for a set of
sorts S, we define, by using the the just mentioned notion, the concept
of S-sorted signature and, for an S-sorted signature X, the concept of
Y-algebra.

Definition 2.13. Let S be a set of sorts. The free monoid on S,
denoted by S*, is (S*, A, A), where S*, the set of all words on S, is
U,eny Hom(n, S), the set of all mappings w: n—=S from some n € N
to S, A, the concatenation of words on S, is the binary operation on
S* which sends a pair of words (w,v) on S to the mapping w A v from
|w| + |v| to S, where |w| and |v| are the lengths (= domains) of the
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mappings w and v, respectively, defined as follows:
jw| + |v] — S
wAv , w;, if 0 <i < |wl;
1 — . .
Vicpwl, 1f |w| <@ < w| + v,

and A, the empty word on S, is the unique mapping \: —5.

Definition 2.14. Let S be a set of sorts. Then an S-sorted signature
is a function ¥ from S* x S to YU which sends a pair (w,s) € S* x S
to the set X, s of the formal operations of arity w, sort (or coarity) s
and rank (or biarity) (w,s).

Definition 2.15. Let X be an S-sorted signature and A an S-sorted
set. The S* x S-sorted set of the finitary operations on A is the family
(Hom(Aw, As)) (w,s)es*xs, where, for every w € S*, A, = Hie‘w| Ay, A
structure of Y-algebra on Ais an S* x S-mapping F' = (Fys)(w,s)es* xS
from ¥ to (Hom(Au, As))w,s)esxs. For a pair (w,s) € S* x S and
a formal operation ¢ € ¥, 5, in order to simplify the notation, the
operation from A,, to A corresponding to o under F, s will be written
as F, instead of F, (). A X-algebra is a pair (A, F'), abbreviated to
A, where A is an S-sorted set and F' a structure of Y-algebra on A.

Since it will be used afterwards, we next define, for a set of sorts S
and an S-sorted set A, the notions of algebraic and of uniform many-
sorted closure operator on A.

Definition 2.16. A many-sorted closure operator J on an S-sorted
set A is algebraic if, for every X C A, J(X) = Ugc, x J(K), and
is uniform if, for every X, Y C A, if suppg(X) = suppg(Y), then
supp (/ (X)) = suppg(J(Y)).

We next prove that, for a many-sorted closure operator, the property
of being n-ary is stronger than that of being algebraic.

Proposition 2.17. Let n be a natural number. If a many-sorted
closure operator J on an S-sorted set A is n-ary, then J is an algebraic
many-sorted closure operator on A.

Proof. Let J be an n-ary many-sorted closure operator on an S-sorted
set A and let X be a subset of A. Then, obviously, Ugc. x J(K) C
J(X). Since J(X) = J£,(X) = U,en /5,.(X), to prove that J(X) C
Ugkc, x J(K) it suffices to prove that, for every m € N, JZ, (X) C
Uk cpux J(EK).

Form = 0, since J2,,(X) = X, we have that J2, (X) € Ugc, x J(K).

Let m be k 4+ 1 with & > 0 and let us suppose that J% (X) C
Ukc, x J(K). We want to prove that JE'(X) C Ugc, x J(K).
However, by definition, JE'(X) = (J{J(Z) | Z € Sub<,(JE,(X))}.
Thus it suffices to prove that, for every Z € Sub<,(JE,(X)), J(Z) C
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Ukc, x J(K). Let Z be a subset of J%,(X) such that card(Z) < n.
Then, since, by the induction hypothesis, J£,(X) € Ugc. x J(K),
we have that Z C (Jxc x J(K) and, in addition, that card(Z) < n.
Hence, for some £ € N, suppg(Z) = {sq, ..., 51} and, for every a € ¢,
there exists an n, € N — 1 such that Z;, = {240, -, 2am.—1}. There-
fore, for every a € ¢ and every 3 € n, there exists a K% Cg, X
such that that 2,5 € J(K®P),, . Since it may be helpful for the sake
of understanding, let us represent the situation just described by the
following figure:
20,0 S J(KO’O)SO NN 20,n0—1 S J(Ko’nofl)so

Ze-1,0 € J(KZ’I’O)SZ_1 20-1np_1—1 € J(Kzflvnl—lfl)

Then, for every a € ¢, Z,, C J(Uﬁe% KB, | where UBEna KB Cg.
X. So, for L =, Uﬁena K*# we have that L Cg, X and Z C J(L).
Therefore J(Z) C J(J(L)) = J(L) € Ugc, x J(K). O

We next define when a subset X of the underlying S-sorted set A of
a Y-algebra A is closed under an operation F, of A, as well as when
X is a subalgebra of A.

Definition 2.18. Let A be a Y-algebra and X C A. Let o be a
formal operation in X, ;. We say that X is closed under the operation
F,: A,— A, if, for every a € X, F,(a) € X;. We say that X is a
subalgebra of A if X is closed under the operations of A. We denote by
Sub(A) the set of all subalgebras of A (which is an algebraic closure
system on A).

Definition 2.19. Let A be a X-algebra. Then we denote by Sgj
the many-sorted closure operator on A defined as follows:

g { Sub(A) —= Sub(A)
841 X = N{CeSubA)|XCC},

We call Sg, the subalgebra generating many-sorted operator on A de-
termined by A. For every X C A, we call Sgu (X) the subalgebra of
A generated by X. Moreover, if X C A is such that Sg,(X) = A,
then we say that X is an S-sorted set of generators of A, or that X
generates A. Besides, we say that A is finitely generated if there exists
an S-sorted subset X of A such that X generates A and card(X) < Ro.

Se—1

Proposition 2.20. Let A be a Y-algebra. Then the many-sorted
closure operator Sga on A is algebraic, i.e., for every S-sorted subset

X of A, Sga(X) = UKgﬁnX Sga(K).

For a Y-algebra A we next provide another, more constructive, de-
scription of the algebraic many-sorted closure operator Sg,, which, in
addition, will allow us to state a crucial property of Sg,. Specifically,
that Sg, is uniform.
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Definition 2.21. Let 3 be an S-sorted signature and A a >-algebra.

(1) We denote by Ea the many-sorted operator on A that assigns to
an S-sorted subset X of A, Ex(X) = XU( Uses., FJ[Xar(U)])SeS,
where, for s € S, Y. 5 is the set of all many-sorted formal oper-
ations o such that the coarity of ¢ is s and for ar(c) = w € S*,
the arity of 0, Xa(o) = Hie‘w| X, -

(2) If X C A, then we define the family (E'y (X))nen in Sub(A),
recursively, as follows:

Ea(X) =X,
EA"(X) = Ea(BA(X)), n > 0.

(3) We denote by E4 the many-sorted operator on A that assigns
to an S-sorted subset X of A, E} (X) = U,,cny EA(X).

Proposition 2.22. Let A be a X-algebra and X C A, then Sga(X) =
EX (X).

In [3], on pp. 82, we stated the following proposition (there called
Proposition 2.7).

Proposition 2.23. Let A be a X-algebra and X, Y C A. Then we
have that
(1) Ifsuppg(X) = suppg(Y), then, for everyn € N, suppg(EX (X)) =
suppg(E3 (Y)).
(2) suppg(Sga (X)) = U supps(Ej (X)).
(3) Ifsuppg(X) = suppg(Y'), then suppg(Sga (X)) = supps(Sga (V).
Therefore the algebraic many-sorted closure operator Sga is uniform.

Proposition 2.24. If A is a finitely generated Y-algebra, then every
S-sorted set of generators of A contains a finite S-sorted subset which
also generates A.

Corollary 2.25. If A s a finitely generated Y-algebra, then we have
that IrB(A, Sga) is not empty.

3. A CHARACTERIZATION OF THE n-ARY MANY-SORTED CLOSURE
OPERATORS.

A theorem of Birkhoff-Frink (see [1]) asserts that every algebraic clo-
sure operator on an ordinary set arises, from some algebraic structure
on the set, as the corresponding generated subalgebra operator. How-
ever, for many-sorted sets such a theorem is not longer true without
qualification. In [3], on pp. 83-84, Theorem 3.1 and Corollary 3.2,
we characterized the corresponding many-sorted closure operators as
precisely the uniform algebraic operators. We next recall the just men-
tioned characterization since it will be applied afterwards to provide
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a characterization of the n-ary many-sorted closure operators on an
S-sorted set.

Let us notice that in what follows, for a word w: |w| — S on S,
with |w| the lenght of w, and an s € S, we denote by w™![s] the set
{i € lw| | w(i) = s}, and by Im(w) the set {w(i) | i € |w|}

Theorem 3.1. Let J be an algebraic many-sorted closure operator
on an S-sorted set A. If J is uniform, then J = Sg, for some S-sorted
signature ¥ and some Y-algebra A.

Proof. Let ¥ = (Xu.5) (w,s)es*xs be the S-sorted signature defined, for
every (w,s) € S* x S, as follows:

Zws = { (X, 0) € Uxesupay({XIxJ(X)s) [ VE € S (card(Xy) = [wle) },

where for a sort s € S and a word w: |w| — S on S, with |w| the
lenght of w, the number of occurrences of s in w, denoted by |wls, is
card(w~1[s]).

Before proceeding any further, let us remark that, for (w, s) € S*x .S
and (X,b) € Uyesupa)({X} x J(X)5), the following conditions are
equivalent:

(1) (X,b) € ¥y, L., for every t € S, card(X;) = |w|:.
(2) suppg(X) = Im(w) and, for every t € suppg(X), card(X;) =
|wle.

On the other hand, for the index set A = Uy cqp,a)({Y } X suppg(Y))
and the A-indexed family (Y;)(y,s)en whose (Y, s)-th coordinate is Y,
precisely the s-th coordinate of the S-sorted set Y of the index (Y, s) €
A, let f be a choice function for (Ys)(v,s)en, i-€., an element of [Ty ) Y.

Moreover, for every w € S* and a € Hie‘w| Ay, let MW =
(M%) ses be the finite S-sorted subset of A defined as M = {a; |
i € wl[s]}, for every s € S.

Now, for (w,s) € S* x S and (X,b) € X, let Fx; be the many-
sorted operation from Hiaw‘ Ay into A, that to an a € Hiaw‘ A
assigns b, if M = X and f(J(M™*?),s), otherwise.

We will prove that the Y-algebra A = (A, F) is such that J =
Sga. But before doing that it is necessary to verify that the def-
inition of the many-sorted operations is sound, i.e., that for every
(w,s) € S*x 8, (X,b) e ¥y sanda € Hie‘w| A (i), it happens that s €
suppg(J(M™*)), and for this it suffices to prove that suppg(M™?) =
suppg(X), because, by hypothesis, J is uniform and, by definition,
be J(X)s.

If t € suppg(M™*), then M;”" is nonempty, i.e., there exists an
i € |w| such that w(i) = ¢t. Therefore, because (X,b) € ¥, 5, we have
that 0 < |w|; = card(X;), hence ¢ € suppg(X).

Reciprocally, if ¢ € suppg(X), |w|; > 0, and there is an i € |w| such
that w(i) = t, hence a; € A;, and from this we conclude that M;"* # @,
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i.e., that t € suppg(M™*). Therefore, suppg(M™**) = suppg(X) and,
by the uniformity of J, suppg(J(M™*)) = suppg(J(X)). But, by
definition, b € J(X)s, so s € suppg(J(M™*)) and the definition is
sound.

Now we prove that, for every X C A, J(X) C Sga(X). Let X be
an S-sorted subset of A, s € S and b € J(X);. Then, because J is
algebraic, b € J(Y)s, for some finite S-sorted subset Y of X. From such

an Y we will define a word wy in S and an element ay of Hie‘w| Awy (i)
such that
(1) Y = Mwvay,
(2) (Y,b) € By s, 1€, b€ J(Y)s and, for all t € S, card(Y;) =
|wy |;, and

(3) ay € Hie\wy\ Xy (i)

then, because Fy(ay) = b, we will be entitled to assert that b €
Sga (X)s.

But given that Y is finite if, and only if, suppg(Y’) is finite and, for
every t € suppg(Y), Y} is finite, let { s, | @« € m } be an enumeration of
suppg(Y) and, for every o € m, let { yn | i € po } be an enumeration
of the nonempty s,-th coordinate, Y, , of Y. Then we define, on the
one hand, the word wy as the mapping from |wy| = )" ., po into S
such that, for every i € |wy| and o € m, wy (i) = s, if, and only if,
> peals <0 < Y scni1pp — 1 and, on the other hand, the element
ay Of [icjupy| Awy ) as the mapping from [wy| into U, | Awy ) such
that, for every i € [wy| and a € m, ay (i) = Ya,i-3,_ p, if, and only if,
> pcabp <1< D geqr1Ps — 1. From these definitions follow (1), (2)
and (3) above. Let us observe that (1) is a particular case of the fact
that the mapping M from (J,cs. ({w} X [icju| Aw@p)) into Subgn(A)
that to a pair (w,a) assigns M"™* is surjective.

From the above and the definition of Fy;, we can affirm that Fy(ay) =
b, hence b € Sga(X)s. Therefore J(X) C Sga(X).

Finally, we prove that, for every X C A, Sg,(X) C J(X). But for
this, by Proposition 2.22] it is enough to prove that, for every subset
X of A, we have that EA(X) C J(X). Let s € S be and ¢ € FEa(X);.
If ¢ € X, then ¢ € J(X),, because J is extensive. If ¢ ¢ X, then,
by the definition of EA(X), there exists a word w € S*, a many-
sorted formal operation (Y,b) € ¥, s and an a € Hie‘w| Xy such that
Fyy(a) = ¢ If M"* =Y, then ¢ = b, hence ¢ € J(Y)s, therefore,
because M C X, c € J(X)s. If M #Y, then Fyy(a) € J(M™®)s,
but, because M** C X and J is isotone, J(M™?) is a subset of J(X),
hence Fy(a) € J(X)s. Therefore Ex(X) C J(X). O

The just stated theorem together with Proposition 2.23] entails the
following corollary.
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Corollary 3.2. Let J be an algebraic many-sorted closure operator
on an S-sorted set A. Then J = Sga for some S-sorted signature ¥
and some X-algebra A if, and only if, J is uniform.

We next prove that for a natural number n, an S-sorted signature
Y., and a X-algebra A, under a suitable condition on X related to n,
the uniform algebraic many-sorted closure operator Sg, is an n-ary
many-sorted closure operator on A.

Proposition 3.3. Let X be an S-sorted signature, A a X-algebra,
and n € N. If 3 is such that, for every (w,s) € S* x S, ¥, s = @ if
|w| > n—in which case we will say that every operation of A is of an ar-
ity < n—, then the uniform algebraic many-sorted closure operator Sga
is an n-ary many-sorted closure operator on A, i.e., Sga = (Sga)%,-

Proof. 1t follows from Sg, (X) = E3(X) and from the fact that, for
every X C A, Eo(X) C (Sga)<n(X) € Sga(X). The details are left
to the reader. However, we notice that it is advisable to split the proof
into two cases, one for n = 0 and another one for n > 1. O

Proposition 3.4. Let A be an S-sorted set, J a many-sorted closure
operator on A, and n € N. If J is n-ary (hence, by Proposition[2.17,
algebraic) and uniform, then there exists an S-sorted signature ¥’ and
a X -algebra A’ such that J = Sga, and every operation of A’ is of an
arity < n.

Proof. 1f we denote by A = (A, F') the Y-algebra associated to J con-
structed in the proof of Theorem Bl then taking as Y the S-sorted
signature defined, for every (w,s) € S* xS, as: ¥ = ¥, if [w| < n;
and 3, . = &, if |w| > n, and as A’ = (A’, F') the ¥'-algebra defined as:
A = A, and F' = F oinc™ >, where inc™> = (incg:f)(w,s)es*xs is the
canonical inclusion of ¥’ into ¥, then one can show that J = Sg,,. O
From the just stated proposition together with Proposition B.3 it
follows immediately the following corollary, which is an algebraic char-
acterization of the n-ary and uniform many-sorted closure operators.

Corollary 3.5. Let J be a many-sorted closure operator on an S-
sorted set A and n € N. Then J is n-ary and uniform if, and only
if, there exists an S-sorted signature > and a Y-algebra A such that
J = Sga and every operation of A is of an arity < n.

4. THE IRREDUNDANT BASIS THEOREM FOR MANY-SORTED
CLOSURE SPACES.

We next show Tarski’s irredundant basis theorem for many-sorted
closure spaces.

Theorem 4.1 (Tarski’s irredundant basis theorem for many-sorted
closure spaces). Let (A, J) be a many-sorted closure space. If J is an
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n-ary many-sorted operator on the S-sorted set A, with n > 2, and if
i <7 withi,5 € IrB;(A) such that

{i+1,...,7—1}nkB,(A4) = o,

then j —i < n — 1. In particular, if n = 2, then IrB;(A) is a convex
subset of N.

Proof. Let Z C A be an irredundant basis with respect to J such that
card(Z) = j and K = { X € Ir'B;(A) | card(X) < i }. Since J is n-ary,
we can assert that J(Z) = A = |J,,en /5 (2), so, for every s € S,
J(Z)s = As = Uppen J20(Z)s. Let X be an element of K. Then there
exists a k € N — 1 such that X C J& (Z). The natural number &
should be strictly greater than 0, because if k =0, X C J¢ (Z) = Z,
but card(X) =i < j = card(Z), so Z would not be an irredundant
basis. So that, for every X € K, {k e N—1| X C JE (Z)} # @.
Therefore, for every X € K, we can choose the least element of such
a set, denoted by dz(X), and there is fulfilled that dz(X) is greater

than or equal to 1. For dz(X) — 1 we have that X ¢ Jifl(x)_l(Z).
So we conclude that there exists a mapping dy: K—=N — 1 that to
an X € K assigns dz(X). The image of the mapping d, which is a
nonempty part of N — 1, is well-ordered, hence it has a least element,
which is, necessarily, non zero, ¢ + 1, therefore, since K/Ker(dyz) is
isomorphic to Im(dy), by transport of structure, it will also be well-
ordered, then we can always choose an X € K such that, for every
Y € K, dz(X) < dz(Y), eg., an X such that its equivalence class
corresponds to the minimum ¢ + 1 of Im(dz). Moreover, among the X
which have the just mentioned property, we choose an X° such that,
for every Y € K with Y C J'1(Z), it happens that

card(X° N (JE(Z) — JL,(2))) < card(Y N (JEN(Z) — JL,(2))).

By the method of election we have that X° € JEH(Z) but X0 ¢
JL,(Z). Of the latter we conclude that there exists an so € S such
that X0 & JL,(Z)s,, therefore

(J (Z)s0 = J<n(Z)s0) N XG, # 2.
Let ap € (JENZ)s — JL(Z)sy) N XY be. Then ag € X0, ap €

So?

JHNZ),, but ag & JL.(Z)s,. However, Jg;}(Z) = Jn(JL,(Z)), by

definition, hence there exists a part F of JL,(Z) such that card(F) < n
and ag € J(F),,. Let X! be the part of A defined as follows:

XPU F,, if s # s;
(X2 —{ao}) UF,,, ifs=so.

It holds that X° C J(X1). Therefore J(X%) C J(X1'), but J(X°) =
A, hence J(X1) = A, ie., X! is a finite generator with respect to J,
thus X' will contain a minimal generator X? with respect to J. It

X! =

S
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holds that card(X?) < card(X') < card(X°) + n. It cannot happen
that card(X°)+n < j. Because if card(X°)+n < j, then card(X?) < 7,
hence, since

{i+1,....,7—1}NnIkB(A,J) =2,
X2 € K, but X2 C J&1(Z) and, moreover, it happens that

card(X* N (JE(Z) — JL,(2))) < card(X° N (JEH(Z) — JL,(2))),

because ag ¢ X2 but ap € X0, which contradicts the choice of X°.
Hence card(X°%) +n > j. But card(X°) < 4, therefore j —i < n, i.e.,
j—i<n—1. 0
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