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Abstract

The aim of this paper is to present some contributions to the theory of finite transfor-
mation monoids. The dominating influence that permutation groups have on transforma-
tion monoids is used to describe and characterise transitive transformation monoids and
primitive transitive transformation monoids. We develop a theory that not only includes
the analogs of several important theorems of the classical theory of permutation groups
but also contains substantial information about the algebraic structure of the transforma-
tion monoids. Open questions naturally arising from the substantial paper of Steinberg
[A theory of transformation monoids: combinatorics and representation theory. Electron.
J. Combin. 17 (2010), no. 1, Research Paper 164, 56 pp] have been answered. Our results
can also be considered as a further development in the hunt for a solution of the Černý
conjecture.
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Introduction

The principal objects of interest in the present paper are finite nonempty sets and finite
monoids acting on them. An action or act of a monoid M on a nonempty set Ω is a monoid
homomorphism from M to the transformation monoid TΩ of Ω. The action is faithful if
the corresponding morphism is injective. In such case, we say that the pair (Ω,M) is a
transformation monoid.

Actions are quite natural, and turns out to be a useful tool to study monoids. From an
algebraic point of view, monoid actions can be seen as a generalisation of group actions in
group theory. From the computer science perspective, monoid actions are closely related to
automata; the set models the state space of the automaton and the action models transfor-
mations of states in response to inputs.

Transformation monoids play to some extent the role that is taken by permutation groups
in group theory. One of these relations is manifested by the Schützenberger group of an
element of a transformation monoid, which is represented by a permutation group rather
than a group of transformations. Another relation which is used by most functions that
deal with transformation monoids is the fact that a transformation monoid can be efficiently
described in terms of several permutation groups ([17, 18]).
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The importance of permutation groups in the study of groups comes from a theorem of
Cayley asserting that any group is isomorphic to a permutation group. The proof extends
to monoids as well: every monoid is isomorphic to a transformation monoid. This classical
result justifies the importance of these structures in semigroup theory and motivates their
study as general algebraic objects.

Recent applications to decision problems, automata theory and Markov chains, for exam-
ple, have strengthened the status and interest of the theory of transformation monoids. In
fact, most of the books and research articles dealing with these structures focus on specific
transformation monoids, and on computational, combinatorial or categorical issues (see for
instance [6, 11, 14, 16]). The Černý conjecture, for example, is an interesting problem in
automata theory that naturally requires the study of full transformation monoids. Given a
set of tranformations on n letters such that some products of elements are a constant map,
the Černý conjecture states the existence of a product of length at most (n− 1)2 which is a
constant map. There exists a vast number of papers on the subject ([26, 19, 20, 24]).

The research presented in this paper has its origin in an earlier work of Steinberg [25],
where the ideas that have been used by several authors while working on the Černý conjecture
are systematised and developed. The end result starts a theory of transformation monoids
based on Green’s theory [13] of induction and restriction functors relating an algebra A with
local algebras of the form eAe with e idempotent, and the theory of semigroup representations
introduced by Clifford, Munn and Ponizovsky [6, 1]. The functorial approach used by Stein-
berg allows him to generalise results from modules to transformation monoids. It is based
in the description of restriction and induction functors that provides a way of transforming
monoid actions into group actions and vice versa.

The second part of Steinberg’s paper is a first step in the program of understanding prim-
itive transformation monoids. Steinberg obtains a generalization for transformation monoids
of the classical result of D. Higman [8, 5] that states that a permutation group is primitive if
and only if each associated orbital digraph is connected.

The underlying motivation of the present paper is to take the studies of transformation
monoids as algebraic objects further. We exploit the dominating influence that permutation
groups have on transformation monoids and we offer a complete description of transitive
transformation monoids and primitive transformation monoids. We develop a theory that
includes the analogs of several important theorems of the classical theory of permutation
groups. These results answer some open questions naturally arising in the paper [25] and can
be considered as further developments in the hunt for a solution of the Černý conjecture.

Studying transformation monoids by a complete analogy with permutation groups is not
a good enterprise. Instead, one should benefit from the distinguishing feature of semigroups:
the existence of proper ideals. Let us recall that transitive representations of finite monoids by
total mappings correspond to the action by right multiplication on eM , with e an idempotent
in the minimal ideal of M . This is a particular case of the results proved in [21], where it is
shown that transitive representations of finite monoids by partial mappings are precisely the
quotients of Schützenberger representations by a right congruence.

In fact, the existence of a unique minimal ideal I(M) in a given finite monoid M is a
keystone in our work. The structure of the principal right ideal eM characterises any monoid
M having a transitive and faithful action as a submonoid of a wreath product of a group with
a right letter mapping monoid [2, 6, 7]. Moreover, the minimal ideal is a simple semigroup
and it is, therefore, a disjoint union of isomorphic groups. Simple semigroups were completely
determined up to isomorphism by Rees’s theorem [22, 23] as Rees matrix semigroups.

2



The groups Ge included in the minimal ideal play an important role in the present work
as transitive transformation monoids actually restrict to transitive permutation groups and
we can establish a description based on the cosets of a core-free subgroup. For every core-free
subgroup we set as many equivalence relations on the set of idempotents of eM as the index
of such subgroup in the group Ge. These equivalence relations, together with the study of
the permutation representations of Ge are crucial in our first main results: the description
of all the congruences on eM that lead to transitive transformation monoids (Theorems 17
and 20). These theorems can be used to construct all transitive and faithful actions of a
transformation monoid that restrict to a given transitive and faithful action of its maximal
subgroups at each idempotent of the minimal ideal.

The second part of the paper is motivated by the following quote by Steinberg in [25]:

“We hope that the theory of primitive permutation groups can be used to
understand primitive transitive transformation monoids in the case the maximal
subgroups of I(M) are non-trivial”.

Theorems 38 and 39 respond to that hope and characterise the primitive transitive trans-
formation monoids in terms of the primitive permutation representation of Ge for all idem-
potent e in the minimal ideal. These are improvements on the machinery used to study
transitive transformation monoids. Among other applications, we prove that no non-trivial
induced group action can be primitive, and if Ge is a primitive permutation group there exists
a unique action of M that restricts to this action. This confirms the idea that the primitive
transitive transformation monoids can be understood in terms of primitive groups in much
the same way that irreducible representations of monoids can be understood in terms of irre-
ducible representations of groups [10]. We also prove that for every transitive transformation
monoid M with maximal subgroup Ge nilpotent, for an idempotent e in the minimal ideal
of M , then the monoid M has a primitive action if and only if M is a cyclic group of prime
order. A last consequence on our study is that there is no primitive action of M on a set Ω
if |Ωe| = 2, for e an idempotent in the minimal ideal I(M).

The paper aims at being largely self-contained, but it is assumed that the reader has some
familiarity with basic semigroup theory results. The first section of the paper introduces basic
concepts and classical results of transformation monoids. A basic study of the most important
properties of the principal right ideal eM , for e idempotent in I(M), is also presented there.
Section 2 is devoted to the description of transitive transformation monoids. It contains our
first main contribution; Theorems 17 and 20. This section also contains some applications
of these results to specific transformation monoids. In section 3 we study primitive actions.
It contains our second main contribution; Theorems 38 and 39. Finally, we present a useful
method to construct examples of primitive and transitive transformation monoids.

We believe that a good understanding of interesting examples is important in any algebraic
theory. Thus, we have made a strong emphasis on this point throughout all sections.

1 Preliminaries

Unless otherwise stated, all semigroups and monoids here are finite.
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1.1 Basic concepts

An element e of a semigroup S is said to be idempotent if e2 = e. The set of idempotents of
S shall be denoted E(S). Note that eSe is a monoid with identity e. The group of units of
eSe is denoted Ge and is called the maximal subgroup of S at e. If s ∈ S, then sω denotes the
unique idempotent that is a positive power of s. Such power exists because of finiteness ([23,
Appendix A]). A subset I ⊆ S is said to be an ideal of S if SIS ⊆ I. A semigroup S is called
simple if it has no proper ideals. A semigroup S has a unique minimal ideal I(S), which is
a simple semigroup. For a semigroup S, we can always extend its structure to a monoid by
adding an extra unit element. We denote it by S1 = S ∪ {1} where 1 is a new unit element
if S has no unit. If S was already a monoid, then S1 = S. For an element s in S, the set
S1sS1 is the smallest ideal containing s. Moreover, for all s ∈ I(S), it holds S1sS1 = I(S). If
s ∈ I(S), then sω ∈ I(S) and, thus, I(S) contains idempotents.

From now on, we will only consider monoids.
A mapping f : M −→ N between monoids M and N is a monoid homomorphism if

(mn)f = (m)f(n)f , for all m,n ∈M ;

(1M )f = 1N , where 1M and 1N are the identities on M and N , respectively.

For a non-empty set Ω, the monoid of all maps on Ω acting on the right is called the full
transformation monoid of Ω and it is denoted by TΩ. Furthermore, the group of units of TΩ

is called the symmetric group of Ω and it is denoted by SΩ. For a natural number n, the
set {1, · · · , n} is denoted by n. If the set Ω contains n elements and the denotation of such
elements is not relevant, we shall use the notation Tn and Sn, respectively. A transformation
f in Tn shall be denoted by an n-tuple [a1, · · · , an] with ai = (i)f for all i ∈ n. Hence, in
T3, for example, the tuple [1, 2, 2] represents the transformation f defined by the equations
(1)f = 1, and (2)f = (3)f = 2. For an element f ∈ Tn, the rank of f is |[n]f |.

An action of a monoid M on a non-empty set Ω is a monoid homomorphism ϕ from M
to TΩ. In this case, we say that Ω is an M -set. To simplify the notation, if the action ϕ is
fixed, for m ∈ M and α ∈ Ω we will write αm instead of (α)(m)ϕ. The M -set obtained by
considering the action of M on itself by right multiplication is called the regular M -set.

For an element α ∈ Ω, we define the stabiliser of α to be the submonoid StabM (α) =
{m ∈ M | αm = α}. The action is faithful if the corresponding monoid homomorphism is
injective. In this case M can be seen as a submonoid of TΩ, and we refer to the pair (Ω,M)
as a transformation monoid.

A morphism f : Ω −→ Γ of M -sets is a map that preserves the action, that is (αm)f =
(α)fm, for all α ∈ Ω and m ∈ M . If f is a bijection, we say that the actions are equivalent.
A non-empty subset Λ ⊆ Ω is M -invariant if ΛM ⊆ Λ. The subset Λ inherits the action
defined on Ω. With this action, the inclusion map is an injective morphism of M -sets.

We say that a binary equivalence relation ≡ defined on an M -set Ω is a congruence, if for
all α, β ∈ Ω and m ∈ M , α ≡ β implies αm ≡ βm. If ≡ is a congruence on Ω, the quotient
Ω/≡ is an M -set for the action [α]m = [αm], for all α ∈ Ω and m ∈ M , and the quotient
map from Ω to Ω/≡ is a surjective morphism of M -sets.

As usual, the kernel of a morphism f : Ω −→ Γ of M -sets, defined as

kerf = {(α, β) ∈ Ω× Ω | (α)f = (β)f}

is a congruence on Ω and the image set
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imf = {β ∈ Γ | there exists some α ∈ Ω with (α)f = β}

is an M -invariant subset of Γ. Moreover, the actions of M on Ω/kerf and imf are equivalent.
An M -invariant subset of the form αM , for α ∈ Ω, is called cyclic. A cyclic subset of M

is called minimal if it does not contain any proper cyclic subset. Cyclic sets allow us to define
an equivalence relation on Ω. We say that two elements α, β ∈ Ω are related if αM = βM .
The classes of this equivalence relation are called orbits. The action of M is called transitive
if it has a single orbit. Equivalently, the action is transitive if, for every α, β ∈ Ω, there exists
m,n ∈M with αm = β and βn = α.

For example, the inclusion map define actions of Tn and Sn on n. These actions, which
are called natural, are faithful and transitive.

1.2 Preliminary Results

One of the main goals in this paper is to characterise transitive monoid actions. This problem
is completely solved in the group case. If a group G has a transitive action on a set Ω, then
the action of G on Ω is equivalent to the action of G by right multiplication on the right
coset space of a subgroup H, defined as the stabiliser of an element. The kernel of this action
is called the core of H in G, denoted CoreG(H), and is the largest normal subgroup of G
contained in H. We say that H is core-free in G if CoreG(H) = 1. Consequently, the study
of transitive permutation groups G is equivalent to the study of core-free subgroups of G.

As expected, the monoid case is not so transparent but we can still prove some interesting
structural results. The following propositions have been included for the sake of completeness.
See [11, Chapter 10] for a general overview on the subject. Generalizations to representations
by partial mappings can be found in [21].

Proposition 1. The action by right multiplication of a monoid M on mM , with m ∈M , is
transitive if and only if mM is minimal. Moreover, I(M) is the set of all m ∈ M with mM
minimal.

Proof. If nM ⊆ mM and the action is transitive, it necessarily holds that nM = mM . On
the converse, if p, q ∈ mM then pM, qM ⊆ mM . Minimality of mM yields pM = qM = mM .

Let m ∈ I(M) and x ∈ mM . Then xM ⊆ mM . Since x ∈ I(M), it follows that
MxM = MmM . Then m = uxv for some u, v ∈ M . This means that mM is contained
in uxM . Since |uxM | ≤ |xM |, we have that xM = mM and mM is minimal. Conversely,
suppose that mM is minimal for some m ∈M . Let n ∈ I(M), then mn ∈ I(M). Since mnM
is contained in mM , minimalily of mM yields mnM = mM . Therefore m ∈ I(M).

Since I(M) contains idempotents, we will use idempotents instead of arbitrary elements
from I(M).

Proposition 2. Let M be a monoid and e ∈ E(I(M)). If M has a transitive and faithful
action on a non-empty finite set Ω, then the action of M on eM by right multiplication is
transitive and faithful.

Proof. Let e be an idempotent in I(M). By Proposition 1, M acts transitively on eM by right
multiplication. Let α be an element in Ωe and consider the morphism of M -sets : eM −→ Ω,
given by m 7−→ αm. Assume that m,n ∈M satisfy that epm = epn for all p ∈M . It follows
that α(pm) = α(pn) for all p ∈ M . On the other hand, let β be an element in Ω, as the
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action on Ω is transitive there exists an element q ∈ M with β = αq. It follows that for all
β ∈ Ω, βm = α(qm) = α(qn) = βn. Finally, m = n as the action on Ω is faithful.

Since the action on Ω is transitive, it follows that the map constructed above is surjective.
As a consequence, we have:

Corollary 3. Any transitive and faithful action of a monoid M on a finite non-empty set Ω
is equivalent to the action of M on some quotient eM/≡ by right multiplication, where e is
an idempotent on I(M) and ≡ is a right congruence on the M -set eM .

Note that the action of M on eM is the right Schützenberger representation, since eM
coincides with the R-class of e [21]. Corollary 3 highlights the need to develop a structural
study of the principal right ideals eM , for e idempotent in I(M). The next two results provide
useful information in this direction. The first one describes the maximal subgroup of M at
these idempotents and it states that, up to equivalence, there is a unique action of M by right
multiplication on such minimal cyclic sets.

Proposition 4 ([25, Proposition 3.3]). Let M be a monoid and e, f ∈ E(I(M)). Then:

i) Ge = eMe.

ii) eM and fM are equivalents as M -sets.

iii) If f is an idempotent in I(M), then Ge and Gf are isomorphic.

Note that eM is contained in I(M) for all e ∈ E(I(M)). However, the equality does not
hold in general as the following example shows.

Example 5. Let M be the monoid consisting on two left zeroes e and f and an identity
element. Hence, the ideal I(M) is given by the set {e, f}, which also coincides with the
idempotent elements in E(I(M)). The corresponding cyclic subset of e is given by the principal
right ideal eM = {e}, which does not contain f .

According to [25, Proposition 3.3], I(M) is a disjoint union of the maximal subgroups Ge,
with e ∈ E(I(M)). The following theorem is crucial for analysing transitive transformation
monoids. It shows that the principal right ideal eM , with e ∈ E(I(M)), are disjoint unions of
isomorphic maximal subgroups as well. The next result easily follows from Rees’s Theorem
and Green’s Lemma [6]. We include its proof for the sake of completeness.

Theorem 6. Let e be an idempotent in I(M). Then:

i) The classes {Gem | m ∈M} form a partition of eM ;

ii) Gem has exactly |Ge| elements;

iii) If f is an idempotent in eM , then fe = e and ef = f . Moreover, for all g ∈ Ge, fg = g;

iv) If f is an idempotent in eM , it holds Gef = fMf = Gf ;

v) Gem has exactly one idempotent.
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Proof. Let g, h ∈ Ge, m,n ∈ M and f ∈ E(I(M)). If en ∈ Gem, then Gen ⊆ Gem and
en = gm for some g ∈ Ge. Hence g−1n = g−1gm = em. Thus, for all h ∈ Ge, we have
that hm = hem = hg−1n ∈ Gen. Therefore Gen = Gem and item i) follows. For item ii),
if gm = hm, we derive the equation geme = heme in Ge = eMe. It follows g = h. Hence
Gem has exactly |Ge| elements. For item iii), suppose that f ∈ eM . Since Ge = eMe, we
have that fe ∈ E(Ge). Thus, fe = e and ef = f . For every element g ∈ Ge, we have
fg = f(eg) = eg = g. For item iv), assume that f ∈ eM . Then Gef = feMef ⊆ fMf . On
the converse, fMf = efMef ⊆ Gef . Finally, for item v), note that em ∈ Gem and for every
natural number k > 1, (em)k = [(em)k−1e]m ∈ Gem. It follows that f = (em)ω ∈ E(Gem).
Then Gem = Gef . Assume there exists some g ∈ Ge such that gf idempotent. Then
gfgfe = gfe. Since, by iii), fe = e, it follows that gfg = g. Hence gfe = gfgg−1 = gg−1 = e.
Consequently gfe = e. By iii), fe = e. Hence g = e and gf = f . Therefore Gem has exactly
one idempotent.

The sets Gem are precisely the H-classes of eM [6]. The last theorem can be summarised
in the following equation

eM =
⊎

f∈E(eM)

Gf

being all groups Gf , for f ∈ E(eM), isomorphic to Ge. Note that the action of M by right
multiplication on eM transforms H-classes into H-classes. This action is transitive but it is
not necessarily faithful as the next example shows.

Example 7. Consider any non-trivial group G whose identity element shall be denoted by e.
For a natural number n, we denote the minimum of i, j ∈ n by min(i, j). The set M = G× n
is a monoid with the operation

(g, i)(h, j) = (gh,min(i, j))

with g, h ∈ G and i, j ∈ n, and unit element (e, n). It is straightforward to see that I(M) =
{(g, 1) | g ∈ G} ∼= G. The element (e, 1) is the unique idempotent in I(M). Moreover, the
principal right ideal (e, 1)M coincides with I(M). The action of M on I(M) is transitive.
However, for n ≥ 2, the action is not faithful.

Two interesting particular cases arise. We can consider the case where the maximal
subgroup Ge of the minimal ideal I(M) is trivial and the case where I(M) is a group. In
the first one, eM is a union of idempotents and, in the second one, I(M) has exactly one
idempotent e and I(M) = eM = Ge.

Corollary 8. Let (Ω,M) be a transitive transformation monoid.

i) [25, Proposition 3.13] If Ge is trivial for some e ∈ E(I(M)), then I(M) = eM , Ω and
eM are isomorphic M -sets, and I(M) is the set of constant maps on Ω.

ii) If eM is a group for some e ∈ E(I(M)), then M is a group. In particular, every transitive
transformation inverse monoid is a group.

Proof. For item i), assume that Ge is trivial for some e ∈ E(I(M)). Then eMe = {e} and Gf
is trivial for all f ∈ E(I(M)) by Proposition 4. By Theorem 6, eM is a set of idempotents on
which M acts transtively and faithfully by right multiplication. Let α be an element in Ωe.
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Then αe = α. If β ∈ Ω, there exists m ∈ M such that β = αm by transitivity. Therefore,
βe = αme = αeme = αe = α. Hence e is a constant map on Ω, and the same is true for all
f ∈ E(I(M)). In particular, f = ef and so I(M) = eM . Since the congruence in Corollary 3
is the identity, it follows that Ω and eM are isomorphic M -sets. Finally, for item ii), suppose
that eM is a group. Then, the unique idempotent in eM is exactly e . By Theorem 6,
eM = Ge. The monoid M acts transitively and faithfully on eM by Proposition 2. Since
eme = em = em1 for all m ∈M , it follows that e = 1 and eM = M = Ge = I(M).

To this matter recall that, if M is a transitive transformation inverse monoid, then I(M)
is a group ([6], [23]).

Example 9. Consider the full transformation monoid on n elements Tn. For j ∈ n, denote
by ςj the constant mapping to j, that is (k)ςj = j for all k ∈ n. The set ζn = {ςj | j ∈ n} is
an ideal in Tn. In fact, for f ∈ Tn, we have:

fςj = ςj , ςjf = ς(j)f .

Clearly I(Tn) = ζn and Ge = {e} for all e ∈ E(I(Tn)).
On the other hand, it is clear that the identity morphism defines an action of Tn on n

which is transitive and faithful. This action is called natural. By Corollary 8, I(Tn) = ςjTn

for all ςj ∈ I(Tn), and the action of Tn on I(Tn) by right multiplication is equivalent to the
natural action. It shows an striking difference with Sn: any transitive and faithful action of
Tn on a non-empty finite set is equivalent to the natural action (see [11, Theorem 10.3.1]).

Example 10. Let T3 be the full transformation monoid on 3 elements. Let N be the subset
of T3 containing all transformations whose image belongs to the set 2. N is a subsemigroup
of T3. Consider the monoid M = N1. Clearly the action of N on 3 is not transitive. Then
I(M) = {ς1, ς2} = ς1M , and so Ge is trivial for any idempotent e ∈ I(M). However, the action
of M on I(M) is transitive but it is not faithful, as the mappings f and g given by

f = [1, 2, 1], g = [1, 2, 2]

satisfy that f 6= g, but they have the same action on the elements of I(M).

1.3 A wreath product construction

For a monoid M having a transitive and faithful action on a set eM we can better describe
the structure of M through an embedding into a wreath product which heavily depends on
the partition of the right ideals eM studied before. Basic concepts about wreath products are
introduced in order to keep the paper self-contained. The work presented in this subsection
can be found in [2, 23]. The reader may consult [9, 15] for further results in group theory.

Let G be a group and let D be a monoid acting on a finite set of n elements. We can
assume this set is n = {1, · · · , n}. Consider the group Gn of all functions from n to G on which
the monoid D has an action given by (j)(ψm) = (jm)ψ, with m ∈ D, j ∈ n and ψ ∈ Gn. We
define a binary operation on the set Gn ×D = {(ψ,m) | ψ : n −→ G, m ∈ D} as follows

(ψ,m)(ψ′,m′) = (ϕ,mm′), where (j)ϕ = (j)ψ(jm)ψ′.

Then it is straightforward to verify that, with respect to this binary operation, the set
Gn ×D is a monoid in which (ψe, 1) is the identity element, where e is the identity of G, 1 is
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the identity of D and (j)ψe = e for all j ∈ n. In general, we shall use ψg to denote the map
(j)ψg = g, for all j ∈ n. We call Gn ×D the wreath product of G with D with respect to the
aforementioned action and we denote this monoid by G onD. It is also straightforward to see
that the projection (ψ,m) 7−→ m is a surjective monoid homomorphism from G on D to D.

Let M be a monoid and let e be an idempotent in I(M). Assume that the action of M
on eM by right multiplication is faithful and transitive. By Theorem 6, {Gem | m ∈M} is a
partition of eM . Let E(eM) = {e, e2, · · · , en} be the set of all idempotents of eM . Then M
acts on E(eM) in the following way: for m ∈ M and ej in E(eM), ejm is defined to be the
unique idempotent in Ge(ejm). This action is transitive, but it is not faithful in general (see
Example 7). Let M be the quotient monoid of M over the kernel of the morphism M −→ Tn

corresponding to the above action. This monoid is called Right Letter Mapping of M in
[2, 23, 25]. Clearly M has a transitive and faithful action on n. Moreover, by Theorem 6,
ej acts as the constant function ςj on n for all idempotent ej in eM , and every maximal
subgroup Gej is trivial.

The following proposition is a particular case of [25, Corollary 3.18]. We have decided
to include a proof since it turns out to be crucial in our study of transitive transformation
monoids.

Proposition 11. The monoid M can be embedded in Ge on M .

Proof. We use the notation introduced above. Let m ∈ M and ei ∈ E(eM). Then, by
Theorem 6, there exists a unique element g ∈ Ge such that eim = gei′ for some idempotent ei′

in eM . We denote the element g by (i)ρm since only depends on ei andm. To simplify notation
we will denote the idempotent ei by the symbol i. Hence we have a map ρm : n −→ Ge. We
denote the image of m in M by m. We define a map φ : M −→ Ge on M by (m)φ = (ρm,m).

Let m′ ∈ M . We have ejmm
′ = g1ej′ and ejm = g2ej′′ where g1, g2 ∈ Ge and ej′ , ej′′ ∈

E(eM). Then (j)ρmm′ = g1 and (j)ρm = g2. It follows g1ej′ = ejmm
′ = g2ej′′m

′ and so
ej′′m

′ = g−1
2 g1ej′ . Therefore (j′′)ρm′ = (jm)ρm′ = g−1

2 g1. Hence (j)ρmm′ = (j)ρm(jm)ρm′ .
It proves that φ is a monoid homomorphism.

Suppose (ρm,m) = (ρm′ ,m
′). Let p be an arbitrary element in eM , then p = gej for some

g ∈ Ge and ej ∈ E(eM). As m = m′, the cosets Ge(ejm) and Ge(ejm
′) are equal. Therefore,

there exist an idempotent ej′ ∈ E(eM) and elements g1, g2 ∈ Ge with g(ejm) = g1ej′ and
g(ejm

′) = g2ej′ . Thus, (j)ρm = g−1g1 and (j)ρm′ = g−1g2. Since (j)ρm = (j)ρm′ , it follows
that g1 = g2. Hence pm = pm′ for all p ∈ eM . Since the action is faithful, we have m = m′.
Consequently, φ is a monomorphism.

Note that M can also be embedded in Gf onM for any other idempotent f ∈ E(I(M)) and it
would immediately follow from Proposition 4 that this two embeddings would be isomorphic.
With the embedding considered in Proposition 11 we can better describe elements of eM
as elements in the wreath product. Let p ∈ eM . Then there exist elements g ∈ Ge and
ej ∈ E(eM) such that p = gej . Moreover, ej′p = (ej′g)ej = gej for every ej′ ∈ E(eM) by
Theorem 6 iii). It follows that p corresponds to ςj , the constant mapping to j in Tn, and
ρp = ψg. Therefore [eM ]φ = {(ψg, ςj) ∈ Ge on M | g ∈ Ge, j ∈ n}. Now, if (ψg, ςj) is an
element in [eM ]φ and (ρm,m) is an element in [M ]φ, the multiplication is given by

(ψg, ςj)(ρm,m) = (ψg((j)ρm), ςjm).

Let n be a natural number and let N be a submonoid of Tn containing all constant
mappings {ςj | j ∈ n}. Then I(N) = I(Tn) = {ςj | j ∈ n}. Furthermore, let G be an arbitrary
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group whose identity element shall be denoted by e. We define the following subset of the
monoid G on N

L = {(ψg, ςj) | g ∈ G, j ∈ n}.

A simple calculation shows that the equation (ψg, ςj)(ψh, ςj′) = (ψgh, ςj′) holds for all pairs
g, h ∈ G and j, j′ ∈ n. Thus, L is a subsemigroup of G on N . It is straightforward to see that
L is contained in the minimal ideal I(G on N). The set of all the idempotent elements in L is
given by E(L) = {(ψe, ςj) | j ∈ n} which is bijective to n. Moreover, fixing some element j in
n, the idempotent êj = (ψe, ςj) in L satisfies that Gêj = {(ψg, ςj) | g ∈ G} which is isomorphic
to G. It also holds that êj(G on N) = L.

Combining some of the above results, we have:

Theorem 12. A monoid M is a transitive transformation monoid if and only if there exist
a group G, a natural number n and a submonoid N of Tn containing all constant mappings
I(Tn), such that M is isomorphic to a submonoid of the wreath product G onN containing the
subsemigroup L = {(ψg, ςj) | g ∈ G, j ∈ n}.

Proof. Bearing in mind Proposition 11 and the subsequent discussions, it is clear that only
the sufficency of the condition is in doubt. Assume that M is a submonoid of GonN containing
L. If j is an element in n, the idempotent êj = (ψe, ςj) of L satisfies êjM = L. Consider the
action of M given by right multiplication on the subsemigroup L. As êj is an idempotent in
the minimal ideal, the action is transitive by Proposition 1. Let (ξ, p), (ξ′, p′) be two elements
in M such that

(ϕ, ςjp) = (ψg, ςj)(ξ, p) = (ψg, ςj)(ξ
′, p′) = (ϕ′, ςjp′), for all g ∈ G and j ∈ n.

Then (k)ϕ = (k)ψg(kςj)ξ = g(j)ξ and (k)ϕ′ = (k)ψg(kςj)ξ
′ = g(j)ξ′, for all k ∈ n. Hence, ξ =

ξ′ and p = p′. Thus, the action is faithful and M is a transitive transformation monoid.

2 Transitive and faithful monoid actions

The main goal in this section is to describe all transitive and faithful actions of a monoid.
The following simple result provides the key to the study of transitive and faithful actions.

Lemma 13 ([25, Corollary 2.11]). Let M be a monoid and e ∈ E(M). Every transitive and
faithful action of M on a set Ω restricts to a transitive and faithful action of the monoid eMe
on Ωe.

An important fact about irreducible representations of a semigroup is that they can be
parameterised in terms of the irreducible representations of its maximal subgroups. This is a
consequence of the results of Clifford, Munn and Ponizovsky (see [6, Chapter 5]).

Our main objective in this section is to parameterise the transitive and faithful actions
of a monoid M in terms of transitive and faithful actions of the maximal subgroups at each
idempotent in I(M).

We begin with a preparatory result that is a direct consequence of Theorem 6. The first
part of this theorem can be found on [11, Theorem 10.4.1]. We have include it for the sake
of completeness.

10



Proposition 14. Let M be a monoid and let e be an idempotent in I(M). If H is a subgroup
of Ge, {x1, · · · , xr} is a transversal of H in Ge and {e, e2 · · · , en} is the set of idempotents
of eM , then

1. The set H = {Hxiej | 1 ≤ i ≤ r, 1 ≤ j ≤ n} forms a partition of eM . The monoid M
acts on H by right multiplication and this action is transitive.

2. Every transitive action of M is equivalent to a transitive action of M on a quotient of
an M -set H.

3. Every transitive and faithful action of M is equivalent to a transitive action of M on a
quotient of an M -set H with CoreGe(H) = 1.

Proof. If {x1, · · · , xr} is a transversal of H in Ge, then {Hxi | 1 ≤ i ≤ r} is a partition of
Ge. By Theorem 6, if {e, e2 · · · , en} is the set of idempotents of eM , then {Geej | 1 ≤ j ≤ n}
is a partition of eM , and every Geej is bijective with Ge. Consequently H = {Hxiej | 1 ≤
i ≤ r, 1 ≤ j ≤ n} is a partition of eM of rn elements. It is clear that M acts on H by right
multiplication. This action is transitive because the transitivity of the action of M on eM .

Assume that M has a transitive action on Ω. Consider an element α ∈ Ω and the mapping
from eM to Ω that sends em ∈ eM to αem. This mapping is a surjective morphism of M -sets.
Moreover, for the subgroup H = {h ∈ eMe | αh = α} of Ge, we have that the associated
partition H lies in the kernel of this morphism. This proves Statement 2.

Assume now that the action described in Statement 2 is faithful. Then the restriction
of the action of eMe on Ωe is faithful by Lemma 13. Consequently, the stabilizer of αe is a
core-free subgroup of Ge.

According to Corollary 3 and following the results presented in Proposition 14, the de-
scription of the right-congruences on the M -set H is of interest.

Definition 15. Bearing in mind the notation introduced in Proposition 14 and the partition
described there, we define an equivalence relation 'i, for each i ∈ {1, · · · r}, in the set n =
{1, · · ·n} as follows:

j 'i j′ ⇔ Hxi(j)ρm = Hxi(j
′)ρm for all m ∈M,

where ρm is the map introduced in the proof of Proposition 11. Recall that (j)ρm = ejme.

Note that this family of equivalence relations does not depend on the choice of the transver-
sal. Moreover, another choice of a minimal idempotent f in I(M) would lead to the same
definition up to an ordering in the set of indices. That is, the family of equivalence relations
only depends on the given subgroup.

Assume that a monoid M has a transitive and faithful action on a set Ω. Let e ∈ E(I(M)).
By Proposition 2, M has a transitive and faithful action on eM by right multiplication. If we
consider a submonoid of a wreath product as in Theorem 12, the last family of equivalence
relations can be further described as follows.

Proposition 16. Let G be a group with identity e, let n be a natural number, and let N be a
submonoid in Tn containing all constant functions I(Tn). Let M be a submonoid of the wreath
product monoid G on N containing the subsemigroup L = {(ψg, ςj) | g ∈ G, j ∈ n}. Let H be
a subgroup of G and fix some transversal {x1, · · · , xr} of H in G, then

j 'i j′ ⇔ for all (ψ, p) ∈M, Hxi(j)ψ = Hxi(j
′)ψ.
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Proof. From Proposition 11, we have the following equations (ψe, ςj)(ψ, p) = (ψ(j)ψ, ςjp) =
(ψ(j)ψ, ς1)(ψe, ςjp).

Theorem 17. Let M be a monoid having a transitive action on a set Ω such that the restricted
action of Ge on Ωe is equivalent to the action of Ge on the right cosets of a subgroup H of
Ge. Let T = {x1, · · · , xr} be a right transversal of H in Ge and let {e, e2 · · · , en} be the set of
idempotents of eM . The right congruence ≡ that defines the M -set Ω, is a right congruence
on the set H = {Hxiej | 1 ≤ i ≤ r, 1 ≤ j ≤ n} satisfying the following statements:

i) If Hxiej ≡ Hxi′ej′, i.e, Hxiej and Hxi′ej′ are both contained in the same ≡-class, then
i = i′ and j 'i j′;

ii) If Hxiej ≡ Hxiej′ and m ∈M , then Hxk(ejm) ≡ Hxk(ej′m),with xi(j)ρm ∈ Hxk.

Every equivalence relation on the set H satisfying Statements i) and ii) is a congruence
on the M -set H whose action is transitive and whose restriction to Ge is equivalent to the
action of Ge on the partition {Hxi | 1 ≤ i ≤ r}.

Proof. Since the action restricted to Ge on Ωe is equivalent to the action of Ge on the right
cosets of H, there exists α ∈ Ωe such that H = {h ∈ Ge | αh = α}. By the proof of
the Statement 2 of Proposition 14, the right-congruence ≡ defining the M -set Ω is a right-
congruence on the set H.

Since the restricted action of Ge on Ωe is equivalent to the action of Ge on the right cosets
of H ≤ Ge, we have that Hxi = Hxie ≡ Hxi′e = Hxi′ if and only if i = i′.

Assume Hxiej ≡Hxi′ej′ . Then Hxieje≡Hxi′ej′e that is Hxi≡Hxi′ and i = i′. More-
over, let m ∈ M , Hxiejm = Hxi(j)ρm(ejm) and Hxiej′m = Hxi(j

′)ρm(ej′m) are contained
in the same ≡ -class and arguing as before, we have that Hxi(j)ρm = Hxi(j

′)ρm, that is,
j 'i j′. This proves Property i).

Let k ∈ {1, · · · , r} be such that xi(j)ρm ∈ Hxk. Then Hxk(ejm)≡Hxk(ej′m) and Prop-
erty ii) holds.

Conversely, an equivalence relation satisfying Statements i) and ii) is a right congruence
on H. The action of M on the quotient, say Ω, is transitive and Ωe = {Hxi | 1 ≤ i ≤ r}. The
action of Ge on this set is the desired action.

The proof of Theorem 17 depends on the construction of a surjective morphism from
eM to Ω. To do so, we choose an element α ∈ Ωe and use the map : eM → Ω defined in
Proposition 2. Any other choice of the element in Ωe would lead to the same construction.
This is due to the following:

Proposition 18. Let φ : Ω→ Γ be an injective morphism between the M -sets Ω and Γ, let e
be an idempotent in I(M) and let α be an element in Ωe. Then StabeM (α) = StabeM (φ(α)).

We apply the above result to a concrete example.

Example 19. For the set 5 = {1, · · · , 5}, consider the following submonoid of T5 :

M = {f ∈ T5 | f|{1,2,3} ∈ S{1,2,3}, (4)f = (2)f and (5)f = (3)f} ∪
{g ∈ T5 | g|{1,4,5} ∈ S{1,4,5}, (4)g = (2)g and (5)g = (3)g} ∪ {id5}.

Every element f can be labelled as fσ with σ ∈ S{1,2,3}, and every g can be labelled as gτ
with τ ∈ S{1,4,5}, where f|{1,2,3} = σ and g|{1,4,5} = τ . Clearly M has a transitive and faithful

12



action on 5. Moreover, I(M) = M \ {id5}, and it has two idempotents, f1 and g1. Note that
f1Mf1

∼= g1Mg1
∼= S3. For the element 1 ∈ (5)f1, we have that the action of M on Ω is

equivalent to the action of M on f1M/≡, where ≡ is the congruence given by

≡ = {(m,m′) ∈M | (1)m = (1)m′}.

Furthermore, if we define N = [f1]≡ = {m ∈M | (1)m = 1} and H = Nf1, we have:

N = {f1, f(2,3), g1, g(4,5)}, H = {f1, f(2,3)}.

A set of transversals of H in Gf1 could be {f1, f(1,2), f(1,3)}, thus f1M can be partitioned as:

f1M =
H Hf(1,2) Hf(1,3)

Hg1 Hf(1,2)g1 Hf(1,3)g1

Note that H and Hg1 lie in the same ≡ -class. The other 4 blocks form a ≡ -class on
themselves. With such quotient, we recover the original action on 5.

f1M/≡ =
H Hf(1,2) Hf(1,3)

Hg1 Hf(1,2)g1 Hf(1,3)g1

Theorem 20. Let M be a transitive transformation monoid, let e ∈ E(I(M)), let E(eM) =
{e, e2, · · · , en}, and let H be a subgroup of Ge. Assume that T = {x1, · · · , xr} is a transversal
of H in Ge and [ · ] is a partition on set H = {Hxiej | 1 ≤ i ≤ r, 1 ≤ j ≤ n} satisfying
Statements i) and ii) of Theorem 17. The congruence defines a faithful and transitive action
if, and only if, the following statements are satisfied.

iii) H is a core-free subgroup of Ge

iv) For each pair ej , ej′ there exists some xi ∈ T with [Hxiej ] 6= [Hxiej′ ].

Proof. Assume that the congruence induces a faithful and transitive action. From Lemma 13,
it follows that Ge has a transitive and faithful action on H. Consequently, H must be a
core-free subgroup of Ge and Statement iii) holds.

Let ej and ej′ be elements of E(eM). Suppose that [Hxiej ] = [Hxiej′ ], for every 1 ≤ i ≤ r.
Then, for every class [Hxiek], we have that

[Hxiek]ej = [Hxiej ] = [Hxiej′ ] = [Hxiek]ej′ .

Since the action is faithful, we have that ej = ej′ and Statement iv) holds.
Conversely, assume that the congruence [ · ] satisfies Statements iii) and iv). Let us prove

that the action of M on the quotient is faithful.
Let m,m′ ∈M be such that [(Hxiej)m] = [(Hxiej)m

′] for all xi ∈ T , ej ∈ E(eM). Then
[Hxi(j)ρm(ejm)] = [Hxi(j)ρm′(ejm′)]. To this regard, note that (j)ρm, (j)ρm′ ∈ Ge, ejm =

(j)ρmejm, ejm
′ = (j)ρm′ejm′ . Statement i) of the characterization given in Theorem 17 yields

Hxi(j)ρm = Hxi(j)ρm′ for all xi ∈ T . Then ((j)ρm)((j)ρ−1
m′ ) ∈ CoreGe = {e}. Consequently,

ρm = ρm′ .
Let ej ∈ E(eM) and xk ∈ T . Then there exists xi ∈ T such that Hxi(j)ρm = Hxk. Hence

[Hxkejm] = [Hxkejm′ ]. Statement ii) of the characterization given in Theorem 17 implies
that ejm = ejm′ . Since the action of M on E(eM) is faithful, it follows that m = m′. The
embedding of Proposition 11 yields m = m′.

Therefore M acts transitively and faithfully on the quotient by [ · ]. The proof of the
theorem is now complete.
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Corollary 21. Let M be a transitive transformation monoid. If Ge is trivial for some idem-
potent e in I(M), then M has a unique transitive and faithful action up to equivalence.

Corollary 22. Let M be a transitive transformation monoid. Let e ∈ E(I(M)), and let H be
a core-free subgroup of Ge. Then M has a transitive and faithful action that restricts to the
action of Ge on the right coset space of H in Ge by right multiplication.

Proof. Let {x1, · · · , xr} be a transversal of H in Ge and let {e, e2, · · · , en} be the set of
idempotents of eM . The action of M on H is transitive and faithful and recovers the original
action of Ge on {Hxi | 1 ≤ i ≤ r}.

The induced functor introduced by Steinberg in [25] clearly corresponds with the parti-
tion described in Corollary 22. Our main goal now is to give a criterion for two M -actions
determined in Theorem 20 to be equivalent. In the following, we assume that M is a monoid
satisfying the statements of Theorem 20.

Proposition 23. Let [ · ] be a equivalence relation on the set H satisfying the statements
of Theorem 20. Then StabeM ([H]) = [H] and StabGe([H]) = [H] ∩ Ge = H. Moreover,
StabeM ([Hxi])e = StabGe([Hxi]) = Hxi, for 1 ≤ i ≤ r.

Proposition 24. Let [ · ]1, [ · ]2 be two equivalence relations on the set H satisfying the
statements of Theorem 20. Let φ : [ · ]1 → [ · ]2 be a bijective morphism of M -sets. Then
φ([H]1) = [Hxi]2 for some transversal xi of H in Ge.

Proof. Assume that φ([H]1) = [Hxiej ]2 for some idempotent ej ∈ eM . As [H]1e = [H]1, then
[Hxiej ]2 = [Hxi]2.

Proposition 25. Let [ · ]1, [ · ]2 be two equivalence relations on the set H satisfying the
statements of Theorems 17 and 20. Let φ : [ · ]1 → [ · ]2 be a bijective morphism of M -sets
with φ([H]1) = [Hxi]2, then xi ∈ NGe(H).

Proof. Applying Propositions 18 and 23, we have [H]1 = StabeM ([H]1) = StabeM ([Hxi]2).
Thus H = [H]1e = StabeM ([Hxi]2)e. By Proposition 23 on Stabilizers, StabeM ([Hxi]2)e =
x−1
i StabGe([H]2)xi and StabeM ([H]2)e = H. Consequently, xi ∈ NGe(H).

We close our treatment of transitive transformation monoids with an example showing
how we can use Theorem 20 to construct non-equivalent transitive and faithful actions of M
that restrict to a given transitive and faithful action of Ge.

Example 26. Let G = S3 be the symmetric group of order 3. We will denote the identity
in G by e. Let 2 = {1, 2} be a set with two elements and let N be the submonoid of T2

containing the identity and the two constant functions, that is N = {12, ς1, ς2}. Consider the
following submonoid of the wreath product:

M = {(ψg, ςj) | g ∈ G, j ∈ 2} ∪ {(ϕe, 12)} ≤ G o2 N .

In this example, I(M) = {(ϕg, ςj) | g ∈ G, j ∈ 2} and E(I(M)) = {ê1 = (ψe, ς1), ê2 =
(ψe, ς2)} = E(ê1M). The maximal subgroup of M at ê1 is isomorphic to G. Let H =
{ê1, (ψ(2,3), ς1)} ≤ Gê1 , and let {x1 = ê1, x2 = (ψ(1,2), ς1), x3 = (ψ(1,3), ς1)} be a right
transversal of H in Gê1 . In this case, all the relations 'i for i = 1, 2, 3 are total. The
following seven equivalence relations on the set H = {Hxiej | 1 ≤ i ≤ 3, 1 ≤ j ≤ n} satisfy
the statements of Theorem 20:
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H Hx2 Hx3

Hê2 Hx2ê2 Hx3ê2

H Hx2 Hx3

Hê2 Hx2ê2 Hx3ê2

H Hx2 Hx3

Hê2 Hx2ê2 Hx3ê2

H Hx2 Hx3

Hê2 Hx2ê2 Hx3ê2

H Hx2 Hx3

Hê2 Hx2ê2 Hx3ê2

H Hx2 Hx3

Hê2 Hx2ê2 Hx3ê2

H Hx2 Hx3

Hê2 Hx2ê2 Hx3ê2

The partition on the top corresponds to the induced action on H. Applying Theorem 20,
we have that M has a transitive and faithful action on each of the seven quotient sets, and
each action restricts to the action of Gê1 on H by right multiplication. Recall that not every
quotient of the induced action satisfies this property (consider the extreme case when every
coset Hxiej lies in the same [ · ]-class). Since NGê1

(H) = H, we can apply Proposition 25
to conclude that these actions are not equivalent. Moreover, in this particular case, M is
isomorphic to submonoid of all three transformations monoids T4, T5, and T6.

3 Primitive monoid actions

Following [25], an action of a monoid M on a set Ω is said to be primitive if it admits no non-
trivial proper congruences. This is to say that if the action is primitive, then every congruence
on Ω must be equal to the diagonal relation, denoted by ∆Ω = {(α, β) ∈ Ω× Ω | α = β}, or
to the total relation, denoted by ∇Ω = Ω× Ω.

Primitive groups actions are completely characterised in terms of core-free maximal sub-
groups. We reproduce here this well-known and important result.

Theorem 27 ([3, Theorem 1.1.5]). Let G be a group. The following statements are equivalent:

i) G is a primitive permutation group.

ii) There exists a core-free maximal subgroup of G.

The main aim of this section is to describe and characterise primitive transitive transfor-
mation monoids. If |Ω| ≤ 2, every action on Ω is primitive, so we shall assume in the sequel
that |Ω| ≥ 3. In general, primitive actions are not transitive as the following example shows.

Example 28. Consider the submonoid M of T3 generated by the transformations [1, 1, 2], and
[1, 3, 1]. The monoidM contains 6 elements and its minimal ideal is given by I(M) = {[1, 1, 1]}.
The action of M on 3 is primitive as any congruence containing a pair of different elements
is equal to the total relation. However, this action is not transitive as 2M = 3M = 3, but
1M = {1}.

Throughout this section, M will denote a monoid having a transitive and faithful action.
Let e ∈ E(I(M)). Write E(eM) = {e1, e2, · · · en}. Let H be a subgroup of Ge = eMe. If
T = {e = x1, · · · , xr} is a right transversal of H in Ge, let H = {Hxiej | 1 ≤ i ≤ r, 1 ≤ j ≤ n}
be the associated partition of eM .

Theorem 29. Assume that [ · ] is a congruence on the M -set H satisfying the statements of
Theorem 17. If H 6= Ge, and the action of M on [ · ] is primitive, then [Hxiej ] = [Hxiej′ ] if
and only if j 'i j′, for all i ∈ {1, · · · , r}.
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Proof. Let i ∈ {1, · · · , r}. Only the sufficiency condition is in doubt. Consider the following
equivalence relation ' on the set {Hxiej}:

Hxiej ' Hxi′ej′ if and only if i = i′ and j 'i j′.

By Theorem 20, the equivalence relation associated to the partition [ · ] is contained in
'. Therefore ' induces an equivalence relation on the partition [ · ]. We show that ' is a
congruence. Let Hxiej ' Hxiej′ and m ∈M . Then:

(Hxiej)m = Hxk(ejm) with xi(j)ρm ∈ Hxk;

(Hxiej′)m = Hxk(ej′m) with xi(j
′)ρm ∈ Hxk.

Letm′ ∈M . According to the proof of Proposition 11, it follows the equation (j)ρm(jm)ρm′ =
(j)ρmm′ . Hence

Hxk(jm)ρm′ = Hxi(j)ρm(jm)ρm′ = Hxi(j)ρmm′

= Hxi(j
′)ρmm′ = Hxi(j

′)ρm(j′m)ρm′

= Hxk(jm)ρm′ .

Therefore (Hxiej)m ' (Hxiej′)m. Then ' is a congruence on the primitive M -set [ · ].
Moreover, |T | = |Ge : H| = |Ωe| ≥ 2. Hence there exist xi 6= xi′ ∈ T such that [Hxie] and
[Hxi′e] are not ' -related. By primitivity, ' coincides with the diagonal relation on partition
[ · ]. Hence j 'i j′ implies [Hxiej ] = [Hxiej′ ]

We derive now some interesting consequences of Theorem 29.

Corollary 30. Two primitive and transitive actions of M satisfying that the restriction of
the action of M to eMe is equivalent to the action of Ge by right multiplication on the coset
space of H are equivalent.

Corollary 31. Suppose that the action of M on Ω is transitive, primitive and faithful, and
|Ωe| ≥ 2. Then if ej 6= ej′ ∈ eM , there exists xi ∈ T such that j 6'i j′.

Theorem 32. Assume that the action of M on Ω is faithful, transitive and primitive and
|Ωe| ≥ 2. Let [ · ] be a congruence on H defining this action and satisfying that the restriction
to Ge on Ωe is equivalent to the action of Ge on the set of right cosets of H. Then, for all
ej 6= ej′ ∈ eM , there exist finite sequences (xit)

s
t=1 and (ejt)

s+1
t=1 of elements in T and E(eM),

respectively, such that

j = j1 'i1 j2 'i2 · · · 'is−1 js 'is js+1 = j′

Proof. We consider the following binary relation l on H:

Hxiej l Hxi′ej′ if and only if ∃k ∈ {1, · · · , r} with j 'k j′

If [Hxiej ] = [Hxiej′ ], then j 'i j′. This means that [ · ] is contained in l and so l induces
a binary relation on [ · ].

Let m be the transitive closure of l. Thus, m is a binary equivalence relation on [ · ]. We
prove that m is a congruence. Let m ∈M and suppose that [Hxiej ] l [Hxi′ej′ ]. Then there
exists some k ∈ {1, · · · , r} with j 'k j′. By Theorem 20, we have [Hxl(ejm)] = [Hxl(ej′m)]
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with xkρm(j) ∈ Hxl. Hence jm 'l j′m and [(Hxiej)]m = [(Hxiej)m] l [(Hxi′ej′)m] =
[(Hxi′ej′)]m.

The primitivity of M implies that either m is the diagonal relation or m is the total
relation. Moreover, |T | = |Ge : H| = |Ωe| ≥ 2. Therefore, there exists x ∈ T such that
x /∈ H. Then [H] and [Hx] are two different l - related elements of [ · ]. Consequently,
m is the total relation on [ · ]. Thus, for any pair of idempotents ej , ej′ , there exist finite
sequences (xit)

s
t=1 of T and (ejt)

s+1
t=1 of eM such that j1 = j, js+1 = j′ and jt 'it jt+1 for all

t = 1, · · · , s.

Theorem 32 can be better understood as follows: let Γ = (E,D) be a graph whose set
of vertices is the set of idempotents in eM . Two idempotents ej and e′j are connected by an

edge in D if there exists some transversal xi ∈ T for which j 'i j′ holds. Theorem 32 implies
that Γ is a connected graph.

One of the first consequences of the last theorem is that in a monoid M with more than
one idempotent in eM , no induced action, in the sense of [25], can be primitive.

Corollary 33. If |E(eM)| ≥ 2, for any subgroup H in Ge the corresponding induced action
cannot be primitive.

Proof. We cannot find a sequence as in Theorem 32 relating He and He2, for different idem-
potents e and e2.

We bring the first part of this section to a close with a nice consequence of Theorem 32.
It reveals another strikking difference between group actions and monoids actions.

Corollary 34. Let M be a transitive transformation monoid whose maximal subgroup Ge is
a non-trivial nilpotent group, for some idempotent e in I(M). Then M has a primitive action
if and only if M is a cyclic group of order prime.

Proof. If M is a cyclic group of order prime then M is primitive by Theorem 27. Thus, it
has a primitive action. On the converse, assume that M has a primitive action. Assume
towards a contradiction that E(eM) contains more than one idempotent, that is E(eM) =
{e, e2, · · · , en}. Since Ge is a non-trivial nilpotent group, the subgroup H must be equal
to {e} and so |Ωe| = |Ge| = r ≥ 2. By Corollary 31, the action of M on Ω is necessarily
equivalent to

eM =

e x2 · · · xr
e2 x2e2 · · · xre2
...

...
. . .

...

en x2en · · · xren

∼= Ω

This configuration contradicts Theorem 32. Therefore, E(eM) contains a unique idempo-
tent which must be equal to e. It follows that eM is a group and by Corollary 8, the monoid
M is equal to Ge. Thus, M is a primitive non-trivial nilpotent group. By [9, Chapter A,
Theorem 8.3] M is a cyclic group of prime order.

Corollary 35. If |Ωe| = 2 for some idempotent e in I(M), then the action of M on Ω cannot
be primitive.
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Proof. Note that |Ge : H| = |Ωe| = 2. Then H is a normal subgroup of Ge and so H = {e}.
In particular, Ge is a cyclic group of order 2. Assume towards a contradiction that the action
on Ω is primitive then, by Corollary 34, the monoid M is equal to the cyclic group of order 2.
Moreover, for e ∈ I(M), we have eM = M = Ge. Consequently, the action on Ω is equivalent
to eM/[ · ] for some congruence [ · ]. Note that |Ω| ≥ 3, whereas |eM/[ · ]| ≤ 2. Therefore,
the action cannot be primitive.

Having identified some of the natural properties of the primitive transitive transformation
monoids, we are led naturally to inquire about characterisation results. Having seen that
transitive permutation groups play an important role in the study of transitive permutation
monoids, it is reasonable to think that primitive permutation groups play a similar role in the
study of primitive transitive transformation monoids. The first indication that this is true
follows from the following lemma.

Lemma 36 ([25, Proposition 5.2]). If the action of M on Ω is primitive and e is an idempotent
on M , then the action of eMe on Ωe is primitive.

Of course, the interesting case is when e ∈ I(M). In this case, H is a core-free maximal
subgroup of Ge, that is, Ge is a primitive permutation group. The converse of Lemma 36
does not hold as the following example shows.

Example 37. Let G be a group having a maximal core-free subgroup H. Let e be the
identity of G. By Theorem 27 the action of G on Θ = {Hg | g ∈ G} by right multiplication
is primitive. For a natural number n, consider the monoid M we constructed in Example 7
from the cartesian product G×n. The monoid M acts on the set Ω = Θ×n by (Ha, i)(b, j) =
(Hab,min(i, j)). The restriction of this action to G = G(e,1) is primitive as it is equivalent to
the action of G on Θ. However, for n ≥ 2 the set Ω admits a non-trivial congruence v given
by (Hg, i) v (Hg′, i′) if and only if Hg = Hg′.

In the first part of this section, we have established some results which, when taken
together, give a rather good picture of the structure of a primitive transitive transformation
monoids in which |Ωe| ≥ 2. If |Ωe| = 2, the action cannot be primitive. Hence, we must
consider two different cases: |Ωe| ≥ 3 and |Ωe| = 1.

3.0.1 Case 1 - |Ωe| ≥ 3

Theorem 38. Assume that M has a faithful and transitive action on Ω for which the restric-
tion of Ge on Ωe is equivalent to the action of Ge on the set of right cosets of H. Let [ · ] be
the congruence on H defining this action. Assume that |Ωe| ≥ 3. Then the action of M on Ω
is primitive if and only if the following statements hold:

i) H is a core-free maximal subgroup of Ge;

ii) [Hxiej ] = [Hxiej′ ] if and only if j 'i j′ for all i ∈ {1, · · · , r};

iii) for all ej 6= ej′ ∈ eM , there exist finite sequences (xit)
s
t=1 and (ejt)

s+1
t=1 of elements T

and E(eM), respectively, such that

j = j1 'i1 j2 'i2 · · · 'is−1 js 'is js+1 = j′
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Proof. Keeping in mind the previous results, it is clear that only the sufficiency of the condi-
tions is in doubt. Assume that M has a faithful and transitive action on the quotient by [ · ]
and satisfies Statements i) to iii). We prove that this action is primitive.

Suppose there exists a proper congruence + relating two distinct classes [Hxi0ej0 ] and
[Hxi′0ej′0 ]. Hence the classes [Hxi0 ]e = [Hxi0 ] and [Hxi′0 ]e = [Hxi′0 ] are + -related.

Assume that i0 = i′0. Since [Hxi0ej0 ] and [Hxi0ej′0 ] are distinct classes, there exists an
element m ∈M with Hxk0 = Hxi0(j0)ρm 6= Hxi0(j′0)ρm = Hxk′0 . Again, as + is a congruence
relating [Hxi0ej0 ] and [Hxi0ej′0 ], multiplying by me, we conclude that [Hxk0 ] and [Hxk′0 ] are
+ -related.

In both cases, we conclude that a pair of classes [Hxk0 ] and [Hxk′0 ] are + -related for some
pair of different elements xk0 and xk′0 of T .

Thus, the action of M restricts to the action of Ge on the coset space of H in G by
right multiplication. This action is primitive because H is a core-free maximal subgroup of
G. Hence [Hxi] + [Hxi′ ] for all i, i′ ∈ {1, · · · , r}. We conclude [Hxiej ] + [Hxi′ej ] for all
i, i′ ∈ {1, · · · , r} and 1 ≤ j ≤ n.

Let [Hxiej ] and [Hxi′ej′ ] be two arbitrary classes with j 6= j′, then there exists a finite
sequence of elements (xit)

s
t=1 of T and a finite sequence of idempotents (ejt)

s+1
t=1 of eM satisfy-

ing j = j1 'i1 j2 'i2 · · · 'is−1 jn 'is js+1 = j′. The condition jt 'it jt+1 implies [Hxitejt ] =
[Hxitejt+1 ] for all t = 1, · · · s. Hence [Hxiejt ] + [Hxitejt ] = [Hxitejt+1 ] + [Hxi′ejt+1 ]. The
existence of the above chain implies that [Hxiej ] and [Hxi′ej′ ] are + -related. Thus, + is
necessarily the total relation. The proof of the theorem is now complete.

Theorem 39. Let M be a transitive transformation monoid such that Ge is non-trivial. Then
M has a faithful primitive transitive action on a set Ω if and only if there exists a maximal
core-free subgroup H of Ge such that the relations ' defined by H on the set of idempotents
of eM satisfy the following statements:

i) for all ej 6= ej′ ∈ eM , there exist finite sequences (xit)
s
t=1 and (ejt)

s+1
t=1 of elements of T

and E(eM), respectively, such that

j = j1 'i1 j2 'i2 · · · 'is−1 js 'is js+1 = j′

ii) for all ej 6= ej′ ∈ eM , there exists xi ∈ T with j 6'i j′.

Proof. If there is a faithful and primitive action, the above statements follow immediately
from Theorem 32 and Corollary 31.

Conversely, assume that M is a transitive transformation monoid such that Ge has a core-
free maximal subgroup H satisfying the statements of the theorem. Let [ · ] be the equivalence
relation in Λ:

[Hxiej ] = [Hxiej′ ] if and only if j 'i j′

It is clear that [ · ] satisfies Statement iii) of Theorem 20. We shall see that it also satisfies
Statement iv). To this end, let m ∈M and let [Hxiej ] = [Hxiej′ ]. It holds

Hxiejm = Hxi(j)ρm(ejm), and Hxiej′m = Hxi(j
′)ρm(ej′m)
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As j 'i j′, we have Hxiρm(j) = Hxiρm(j′) = Hxk. We need to check that jm 'k j′m.
Let m′ be an element in M , it holds

Hxk(jm)ρm′ = Hxi(j)ρm(jm)ρm′ = Hxi(j)ρmm′ =

= Hxi(j
′)ρmm′ = Hxi(j

′)ρm(j′m)ρm′ = Hxk(j
′m)ρm′(j

′m)

It follows from Theorem 20 that M has a transitive and faithful action on [ · ]. Moreover,
this action satisfies conditions of Theorem 38. Consequently, M has a primitive, transitive
and faithful action on [ · ].

Constructing primitive actions

In this subsection we provide a method to construct primitive transformation monoids by
means of primitive permutation groups. The reader should note that the wreath product
construction studied in subsection 1.3 is an effective one. We will follow the notation intro-
duced there.

Theorem 40. Let G be a primitive permutation group. For any natural number n and any
submonoid N of Tn containing all the constant mappings, there exists a submonoid M of
G on N such that M has a primitive, transitive and faithful action, the maximal subgroups at
every idempotent in the minimal ideal of M are isomorphic to G, and the restriction of the
action of M to these maximal subgroups coincides with the primitive action of G.

Proof. Let H be a core-free maximal subgroup of G. Let us denote the identity element in
G by e. Let n be a natural number and let N be a submonoid of the full transformation
monoid Tn containing the set I(Tn) of all constant mappings on n. In this case, I(N) =
I(Tn) = {ςj | j ∈ n}. As in subsection 1.3, we consider the subsemigroup L of G onN given by
L = {(ψg, ςj) | g ∈ G, j ∈ n}. Finally, consider the set

S = {(ψ, ςj) | there exists g ∈ G such that for all k ∈ n, (k)ψ ∈ Hg, j ∈ n}.

We claim that S is a subsemigroup of G on N . In fact, let (ψ, ςj) and (ψ′, ςj′) be two
elements in S. Let g and g′ be the elements in G satisfying that, for all k ∈ n, the equations
(k)ψ ∈ Hg and (k)ψ′ ∈ Hg′ hold. The product of (ψ, ςj) and (ψ′, ςj′) in S is given by

(ψ, ςj)(ψ
′, ςj′) = (ϕ, ςj′), where (k)ϕ = (k)ψ(kςj)ψ

′ for all k ∈ n.

Note that kςj = j and (k)ϕ = (k)ψ(j)ψ′. Moreover, (j)ψ′ = hg′ for some h ∈ H. Hence, for
all k ∈ n, we have

(k)ϕ = (k)ψ(kςj)ψ
′ ∈ Hghg′.

Let M = S1. Clearly, M is a submonoid of G on N containing the subsemigroup L. By
Theorem 12, M has a transitive and faithful action on L by right multiplication and G is
isomorphic to the maximal subgroup of M at each idempotent of I(M). Clearly, the restriction
of the action of M to G is just the action of G on the right coset space of H in G by right
multiplication. Consider the |G : H| equivalence relations 'i defined on n = {1, · · · , n}. By
Proposition 16, we have that k '1 k′ if and only if H(k)ψ = H(k′)ψ, for all (ψ, ςj) in M .
Hence '1 is the total relation on n and it fulfils the condition stated in Theorem 32. Let
us check if it also satisfies Statement ii) in Theorem 39. Let h 6= e be an element in H,
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there exists a coset Hxi such that h 6∈ Hxi , as CoreG(H) = {e}. Hence, Hxih 6= Hxi. Let
k, k′ be two arbitrary elements in n and let (ψ, ςj) be an element in M such that (k)ψ = e
and (k′)ψ = h. As Hxi(k)ψ 6= Hxi(k

′)ψ, then k 6'i k′. By Theorem 39, M is a primitive
transformation monoid.

We close our treatment of primitive monoids with an example showing how can we dis-
criminate which actions of a transitive transformation monoid are primitive.

Example 41. Let G = S3 be the symmetric group of order 3. We will denote the identity
in G by e. Let H be any subgroup of G of order 2, hence |G : H| = 3. Let 2 = {1, 2} be a
set with two elements and let N be the submonoid of T2 containing the identity and the two
constant mappings, that is N = {12, ς1, ς2}. Consider the following submonoids of the wreath
product G o2 N :

L = {(ψg, ςj) | g ∈ G, j ∈ 2};

S = {(ψ, ςj) | there exists g ∈ G such that for all k ∈ 2, (k)ψ ∈ Hg, j ∈ 2}.

The monoid M = S1 contains L. By Theorem 12, M has a transitive and faithful action
on L. In fact, for the idempotent ê1 = (ϕe, ς1), we have ê1M = L. Therefore ê1M has only
two idempotents, ê1 and ê2 = (ψe, ς2). The maximal subgroup of M at ê1 is isomorphic to
G. Let {x1 = ê1, x2, x3} be a right transversal of H in Gê1 . In this case, '1 is the total
relation, whereas '2 and '3 are equal to the diagonal relation. The following two equivalence
relations on the set H = {Hxiêj | 1 ≤ i ≤ 3, 1 ≤ j ≤ 2} satisfy statements of Theorem 20:

H Hx2 Hx3

Hê2 Hx2ê2 Hx3ê2

H Hx2 Hx3

Hê2 Hx2ê2 Hx3ê2

The partition on the left corresponds to the induced action on H which cannot be primitive
by Corollary 33. The action on the right is primitive as it corresponds to the action we
constructed in Theorem 40.

3.0.2 Case 2 - |Ωe| = 1

Assume that M has a primitive action on Ω. If |Ωe| = 1, then H = Ge = {e}; Moreover,
condition |Ω| ≥ 3 implies n ≥ 3. By Corollary 21, there is only one action of M on Ω, up to
equivalence.

eM = e e2 · · · en ∼= Ω.

Moreover, M ∼= M and M is isomorphic to a submonoid of Tn, the transformation monoid
on n elements. Applying Corollary 8, eM = I(M) and I(M) is the set of constant mappings
ςj , for j = 1, · · · , n.

Due to the nature of this case, we have not found a complete characterisation of such
monoids. Of course, the natural action of the full transformation monoid Tn on the set
n = {1, · · · , n} is always primitive. However, we have found many submonoids of Tn having
also primitive actions on n. A first attempt in GAP4 [12] for n = 3, the smallest possible
case, returned several submonoids of T3 with primitive, faithful, and transitive actions on
3. At least we found monoids of size 6, 8, 9, 10, 11, 12, 13, 16, 17, 22, 23, 24, and 27 with
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this property. The description of this kind of monoids seems intractable with the current
techniques, and therefore it remains as an open question.

However, there still quite a bit of structure for these type of monoids based on the study
of the possible ranks of the elements of M as a submonoid of Tn. We hope that our next
results could help in future characterisations.

On the study of ranks

Let M be a monoid having a primitive, transitive and faithful action on a set with n elements.
Suppose Ge is trivial for some idempotent e in I(M). Assume towards a contradiction that
M = I(M)1 = I(M) ∪ {1}, then for j 6= j′, the relation

∆eM/≡ ∪ {(ej , ej′), (ej′ , ej)}

is a non-trivial congruence on eM/≡. As the action is primitive, this congruence must be equal
to the total relation ∇eM/≡, which implies that eM has only two idempotents, contradicting
the fact that n ≥ 3. Hence, there exists an element m ∈ M , different from the identity 1,
with rank(m) > 1 (as a mapping of Tn).

This argument, based on the rank of the elements on M , can be extended to more general
situations. In order to obtain refinements of the above argument, we will introduce further
concepts. Denote the set of all two-sided ideals in M by I(M). It is clear that (I(M),⊆)
is a finite partially ordered set by inclusion. It has a lower bound given by I(M), whereas
M itself is an upper bound in I(M). Moreover, it is closed under finite intersections. The
product of two ideals I, J ∈ I(M) given by IJ = {ij | i ∈ I, j ∈ J} is an ideal. It satisfies
∅ 6= IJ ⊆ I ∩ J . Let Φ be an arbitrary M -set and let I be a two-sided ideal of M . We define
the I-center of Φ, denoted by ZI(Φ) to be a new relation in Φ defined as follows

(α, β) ∈ ZI(Φ) if and only if ∀m,n ∈ I (αm = αn⇔ βm = βn)

Proposition 42 ([4]). The center ZI(Φ) of an M -set Φ is a congruence in Φ for every ideal
I in M .

As expected, the center congruences reverse inclusions.

Proposition 43. Let I, J be two ideals in M with I ⊆ J , then ZJ(Φ) ⊆ ZI(Φ).

If the transitive and faithful action of M on Ω is primitive, then either ZI(Ω) = ∆Ω or
ZI(Ω) = ∇Ω, for every ideal I ∈ I(M).

Proposition 44. If |Ωe| = 1 for some idempotent e ∈ I(M), then ZI(M)(Ω) = ∇Ω.

Proof. Applying Corollary 8, eM = I(M) and I(M) is the set of constant mappings on ςj
on Ω, for j = 1, · · · , n. It follows that all elements in Ω are related in ZI(M)(Ω). Therefore
ZI(M)(Ω) = ∇Ω.

In fact, last condition characterises I(M). It will follow from the following Lemma.

Lemma 45. Let M be a monoid having a primitive, transitive and faithful action on Ω.
Assume that |Ωe| = 1 for some idempotent e ∈ I(M). For an ideal I of M , the following
statements are equivalent:

i) I contains an element m with rank(m) ≥ 2;
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ii) ZI(Ω) = ∆Ω.

Proof. Assume that ZI(Ω) = ∇Ω. Then for all α, β ∈ Ω and all p, q ∈ I the following equation
is satisfied

αp = αq if and only if βp = βq.

Fix some α ∈ Ω. Recall that m and ςαm are elements in I, and the equation αm = α(ςαm)
holds, therefore βm = βςαm for all β ∈ Ω. As the action is faithful, we conclude m = ςαm,
contradicing the fact that rank(m) ≥ 2. Hence, ZI(Ω) = ∆Ω. On the other hand, assume I
does not contain any element m with rank(m) ≥ 2. Then I = I(M), which contradicts the
assumption ZI(Ω) = ∆Ω.

Whereas the minimum ideal I(M) is mapped to a maximal center (in fact, it is mapped to
the greatest possible congruence), all the other ideals are mapped to the minimal center (in
fact, they are mapped to the smallest possible congruence). In an arbitrary M -set different
gradings could occur, but primitive M -sets are extreme cases. Consider the set of ideals

D = {I ∈ I(M) | ZI(Ω) = ∆Ω}.

As expected, D stands for diagonal. This set has some interesting properties.

Proposition 46. Let M be a monoid having a primitive, transitive and faithful action on Ω.
Assume that |Ωe| = 1 for some idempotent e ∈ I(M). Then D is a filter in (I(M),⊆).

Proof. Clearly M is an element in D, thus D is not empty. If I ∈ D and I ⊆ J , Proposition 43
implies that ZJ(Ω) ⊆ ZI(Ω) = ∆Ω, thus ZJ(Ω) = ∆Ω. Now, let I, J be two ideals in D,
then for all α, β ∈ Ω with α 6= β, the pair (α, β) 6∈ ZI(Ω) = ∆Ω. Therefore, one can assume
without loss of generality that there exist elements m,n ∈ I with

(a) αm = αn and βm 6= βn

again, as βm 6= βn and ZJ(Ω) = ∆Ω, one can assume without loss of generality that there
exists elements p, q ∈ J with

(b) βmp = βmq and βnp 6= βnq

Assume that ZIJ(Ω) = ∇Ω, then the elements α, β in Ω considered above satisfy that for all
r, s ∈ IJ , αr = αs if and only if βr = βs. The following double implications hold:

βmp = βmq ⇔ αmp = αmq (ZIJ(Ω) = ∇Ω, mp,mq ∈ IJ)

⇔ αnp = αnq ( By (a) αn = αm)

⇔ βnp = βnq (ZIJ(Ω) = ∇Ω, np, nq ∈ IJ).

This contradicts (b). It follows that ZIJ(Ω) = ∆Ω. Since IJ is always included in I ∩ J , it
follows that ZI∩J(Ω) = ∆Ω.

Corollary 47. If M has a primitive, faithful and transitive action on Ω with |Ωe| = 1 for some
idempotent e ∈ I(M), and I is an ideal in M containing an element m with rank(m) ≥ 2, then
for every non-zero natural number k ∈ N, the ideal Ik contains an element p with rank(p) ≥ 2.

We hope that the above corollary can be used to further understand primitive, faithful
and transitive actions of monoids M whose maximal subgroups at the idempotents of I(M)
are trivial.
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