
Research Article

International Journal of Distributed
Sensor Networks
2018, Vol. 14(5)
� The Author(s) 2018
DOI: 10.1177/1550147718774465
journals.sagepub.com/home/dsn

Experimental trade-offs between
different strategies for multihop
communications evaluated over real
deployments of wireless sensor
network for environmental monitoring

Santiago Felici-Castell, Juan J Pérez-Solano, Jaume Segura-Garcia ,
Miguel Garcı́a-Pineda and Antonio Soriano-Asensi

Abstract
Although much work has been done since wireless sensor networks appeared, there is not a great deal of information
available on real deployments that incorporate basic features associated with these networks, in particular multihop
routing and long lifetimes features. In this article, an environmental monitoring application (Internet of Things oriented)
is described, where temperature and relative humidity samples are taken by each mote at a rate of 2 samples/min and
sent to a sink using multihop routing. Our goal is to analyse the different strategies to gather the information from the
different motes in this context. The trade-offs between ‘sending always’ and ‘buffering locally’ approaches were analysed
and validated experimentally, taking into account power consumption, lifetime, efficiency and reliability. When buffering
locally, different options were considered such as saving in either local RAM or FLASH memory, as well different alterna-
tives to reduce overhead with different packet sizes. The conclusion is that in terms of energy and durability, the best
option is to reduce the overhead. Nevertheless, sending larger packets is not worthy when the probability of retransmis-
sion is high. If real-time monitoring is required, then sending always is better than buffering locally.

Keywords
Wireless sensor network, environmental monitoring, TinyOS, real deployment, Internet of Things, communication
strategies

Date received: 19 December 2017; accepted: 4 April 2018

Handling Editor: Miguel A Zamora

Introduction

Internet of Things (IoT) platforms are the basis for new
value systems and the guide for development of new
applications. However, all these things require the coor-
dination of several elements: IoT platforms, efficient
and wide-range communications, robust control, simple
and reliable management and security. In combination
with wireless sensor networks, IoT systems become a
powerful tool to sense the environment, although some
requirements are necessary for specific data gathering,
like audio or video.1

A wireless sensor network (WSN) is a set of nodes,
also called motes, which have wireless communication
and processing capabilities. These nodes work in a col-
laborative way, implementing multihop routing proto-
cols designed to aid the collection of data gathered by

Department of Computer Science, Universitat de València, Valencia, Spain

Corresponding author:

Miguel Garcı́a-Pineda, Department of Computer Science, Universitat de

València, Avd. de la Universitat s/n, 46100 Burjassot, Valencia, Spain.

Email: migarpi@uv.es

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://doi.dox.org/10.1177/1550147718774465
http://journals.sagepub.com/home/dsn
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1550147718774465&domain=pdf&date_stamp=2018-05-09


sensors on all nodes by a data sink. WSN is useful in
monitoring applications where the nodes collect data
about one or more parameters over a large area. Motes
are low-power, low-performance devices, equipped with
a microcontroller system with a CPU and memories
(RAM and FLASH), a radio frequency chipset follow-
ing the IEEE 802.15.4:2006 standard,2 various sensors
and an autonomous power supply (in most cases, two
AA batteries). In general, this technology has been con-
solidated and several hardware and software options
are currently available. One of the most widely used
hardware and software systems is TelosB motes,3,4 with
the TinyOS operating system,5,6 designed specifically
for use in motes. There are several combinations for
hardware and software as shown in Strazdins et al.;7

nevertheless, as shown in Delamo et al.,8 this combina-
tion (TelosB and TinyOS) is still the most optimum in
terms of reliability, network lifetime and efficiency.

WSN has many applications, but lend themselves
particularly well to environmental monitoring (EM).9,10

On one hand, applications such as Harvester11 based
on TinyOS (discussed in more detail in section
‘Hardware and software: TelosB and TinyOS’) allow
the installation of many sensors over a large area, with-
out the need for any form of network infrastructure,
making the collection of accurate data from a large
area an easy task. On the other hand, most commer-
cially available motes include temperature (T), relative
humidity (RH) and light sensors as standard, and it is
easy to add other external sensors to augment the num-
ber of parameters to be monitored.

In the application to be discussed here, data for
meteorological studies (T and RH) must consist of a
series of readings taken at 10-min intervals. Each read-
ing is the average of a series of samples taken every
30 s during the 10- and 50-min period in question. The
sampling frequency is determined by the accuracy of
the sensors used and the margin of error we wish to
assume. The formula used for the estimation of the dif-
ferent meteorological variables can be found in envi-
ronmental protection agency (EPA).12 Following this
criteria, we determine that for our sensors, as described
in section ‘Design issues for EM applications’, a sam-
pling period of 30 s is sufficient to provide accurate
results. Further information and a complete guide to
develop similar applications can be found in Delamo
et al.8

In the design of these EM applications, different
options are available for processing the data and calcu-
lating the 10-min averages. There is a trade-off between
two different approaches, ‘sending always’ versus ‘buf-
fering locally’. This is our goal. The former option
avoids saving data locally and improves real-time per-
formance, but requires transmitting many packets. The
latter option reduces the number of data packets sent
and allows local processing of the 10-min average, but

requires data to be saved locally in the motes. In the
case of local buffering of the data, we will evaluate two
different implementations, the first sends each 10-min
average in a single packet and the second fits as many
10-min averages as possible in a single packet without
fragmentation, maximizing the payload and reducing
the overhead. Thus, the contribution of this article is to
study and analyse experimentally the advantages and
disadvantages of both the ‘send always’ and ‘buffering
locally’ strategies.

The rest of the paper is structured as follows. In sec-
tion ‘Related works’, we analyse the related work. In
section ‘Hardware and software: TelosB and TinyOS’,
we briefly introduce the hardware and software ele-
ments of the network: TelosB motes and the TinyOS
operating system. In section ‘Design issues for EM
applications’, we look at the design issues that must be
taken into account when designing an application for
EM. In section ‘Send always versus buffering locally’,
we analyse the behaviour and results over a real deploy-
ment of the two different approaches, send always and
buffering locally, before concluding with a discussion
and analysis of the results in section ‘Analysis and eva-
luation of send always and buffering locally approaches
under a real WSN deployment’.

Related works

WSNs have been used in many different applications,
such as EM, precision agriculture, habitat monitoring,
with real deployments, most of them were analysed in
Strazdins et al.7 Some of these deployments are worth
mentioning. Dozer13 shows an ultra-low-power data
gathering application, based on TinyOS, using TDMA
MAC (Time Division Multiple Access Media Access
Control) and multihop routing. Dozer achieves an
average duty cycle of less than 0.2%, using a sampling
period of 2 min. SensorScope14 explains the difficulties
in EM in harsh conditions, using TinyOS, with a global
synchronized duty-cycle MAC algorithm as well as
multihop routing. GreenOrbs is a large-scale WSN for
forest monitoring and research, used to carry out per-
formance analysis and scalability properties.15 The soft-
ware part of sensor scope is based on TinyOS and
Collection Tree Protocol (CTP)16 routing protocol
using TelosB motes. Finally, in Gallart et al.,17 it is
described the deployment of a low-cost WSN for EM
in an urban street, also based on TelosB motes running
TinyOS.

In addition, in the literature, we find relevant works
that help us to improve the performance of WSN. In
Aguirre-Guerrero et al.,18 the authors consider different
strategies for distributed congestion control in WSN for
a fair packet delivery between nodes, while at the same
time, the network congestion is mitigated using

2 International Journal of Distributed Sensor Networks



adaptive traffic mechanisms. In Yang et al.,19 we find
different optimization techniques for node deployment
in real scenarios, in particular at oilfields, where the
major concern is the optimum placement of nodes to
ensure the full connectivity. Finally, in Gana Kolo
et al.,20 the authors show an adaptive lightweight loss-
less data compression mechanism to improve network
efficiency.

Finally, we can find previous studies related to the
topic of this article, both in the design aspects of the
EM application itself and in the analysis of the trade-
off between the send always and buffering locally
approaches. In Zennaro et al.,21 the authors study the
temporal and energy characteristics of a 2.4 GHz sen-
sor network in an outdoor environment. They suggest
that when deploying WSN in real world scenarios, the
sampling periods of sensor networks should be adjusted
according to distance to normalize battery lifetime as
well as running more accurate energy-aware routing
protocols. From another point of view, Mathur et al.22

studied on detail the power consumption of various
processes, including the transmission of data over the
radio and saving data to various storage devices.

Although all these papers help to find out the basic
features associated with WSN such as multihop routing
and long lifetimes over real deployments, WSN is a
non-trivial task and many issues remain still open. Due
to the complexity and low-performance on the devices
on these networks, very few real deployments are
found.7 The weak point of these networks is the wire-
less communication because it is difficult to implement
an efficient and reliable data transmission. Thus, in this
article, we evaluated experimentally the trade-offs
between several strategies to perform this task.

Hardware and software: TelosB and
TinyOS

In this section, we will introduce the mote hardware
and software, focusing on one of the most widely used
combinations; TelosB motes with the TinyOS operating
system.

TelosB mote

TelosB mote is an ultra-low-power wireless device,
suitable for use in sensor networks and monitoring
applications. The TelosB hardware includes a Texas
Instruments 8 MHz MSP430 F1611 microcontroller, a
32 kHz oscillator, a Chipcon CC2420 2.4 GHz IEEE
802.15.4:2006 compliant radio,2 10 kB of on-chip
RAM, 48 kB on-chip flash, a further 1 MB of on-board
flash memory (STM25P80 from STMicroelectronics),
an integrated Planar Inverted Folded Antenna (PIFA)

and an SubMiniature version A (SMA) coax connec-
tion for an external antenna. It is important to highlight
that the CC2420 transceiver allows the detection of
start frame delimiter (SFD) in IEEE 802.15.4 frames
that will help to improve time accuracy.23 In addition,
TelosB motes embedded high-quality sensors to mea-
sure T and RH. Since these motes are not suitable for
transmission over long distances, we require the colla-
boration of the different motes to create a path to the
sink using multihop routing.

Finally, it must be noted that this mote may show
some drawbacks such as the lack of a radio frequency
(RF) amplifier or it only works in the 2.4 GHz band.
However, these weaknesses can be overcome using
TelosB compatible commercial motes with RF ampli-
fiers that can be found in the market or using external
antennas with higher gain.8

TinyOS

TinyOS5,6 is an open-source operating system
designed for low-power wireless devices. TinyOS sup-
ports multiple microcontroller families and radio
chips. It includes a large repository of components
that can be combined for fast prototyping of new
applications. TinyOS has become one of the most
used operating systems for WSN applications due to
its performance, good adaptation to WSN require-
ments and widespread acceptation by researchers and
company developers.

Several tools suitable for EM applications are avail-
able in the repository.5 To the best of our knowledge,
only two complete EM applications capable of data
gathering with multihop routing and low-power listen-
ing operation at the MAC layer are freely available
The first application is ‘‘Boomerang’’, a pioneering
application developed by the Moteiv Company, which
was integrated in a specific TinyOS distribution. This
application includes a synchronous low-power listening
(LPL) MAC protocol,24 periodically flooding the entire
network with broadcast packets containing its local
time. The routing protocol used in Boomerang is the
well-known MultihopLQI, which establishes a routing
tree from every node to the sink using the link quality
LQI as the routing metric. The second application is
Harvester,11 a low-power, open-source, data gathering
application developed by researchers from the
Computer Engineering and Networks Laboratory of
the ETH, Zurich. In this work, the Harvester tool has
been implemented. This tool will be explained in detail
in the next sections. Finally, it is worth mentioning that
there are other interesting operating systems for these
motes, such as Contiki, but it is less efficient in terms
of energy when compared with TinyOS.8

Felici-Castell et al. 3



Design issues for EM applications

Several issues must be taken into account when design-
ing a WSN application for EM.8 The first of these is
the need to reduce energy consumption as much as pos-
sible to improve the lifetime of the network. Second,
the reliability of the motes and the data collection must
be maintained or improved. Finally, the accuracy of
the measurements taken by the sensors must be within
the desired levels.

As it has been mentioned, Harvester11 is a low-
power, open-source data gathering application devel-
oped by researchers from the Computer Engineering
and Networks Laboratory of the ETH, Zurich, which
is freely available in the TinyOS repository. It is com-
posed of two layers: the application layer, which per-
forms the sensor sampling, topology discovery and
data status analysing of the nodes, and the protocol
stack, composed of a synchronization stack at the
MAC level, and modifications to the CTP protocol,16

using LPL.24 For the enhancements in Harvester to be
implemented, modifications to LPL have been made.
These include changing the power cycling of the radio
to a predictable wake-up schedule, adding time infor-
mation in the packets sent and adding wake-up predic-
tion for neighbouring nodes.

Since one of the most critical areas in WSN design is
that of power consumption, several methods are used
in Harvester in order to reduce it as much as possible.
At the MAC level, there is a modified version of the
typical TinyOS low-power listening (LPL) protocol that
is capable to estimate the duty cycle of the neighbour-
ing nodes. It must be noted that TelosB motes allows
high temporal accuracy for the MAC time stamping
using SFD pin by CC2420 transceiver. Using this infor-
mation, a node can start its transmissions according to
the estimated wake-up schedule of the intended recei-
ver. The routing layer in Harvester is based on the CTP
that builds a routing tree to collect the data in one or
several network sinks, based on multihop behaviour.
CTP is a best-effort routing protocol that makes use of
expected transmission (ETX) as the routing metric to
determine the best path to one sink. The protocol is not
completely reliable, since each packet is sent from its
source only once. It is then ‘collected’ by the protocol
and forwarded to the sink. The sink cannot notice that
a packet has been sent, so cannot request a resend if it

does not arrive. Similarly, no acknowledgement is sent
by the sink when it receives a packet, so the source has
no way of determining whether the packet has arrived
correctly.

While Harvester shows increased power savings over
the standard MAC protocol, it works on a ‘send
always’ philosophy sending every 30 s by default. E-
Harvester (Enhanced Harvester) is a modified version
of Harvester that in addition, it includes a ‘buffering
locally’ approach to reduce the number of packets to
be sent while increasing the reliability of the transmis-
sions by sending all packets twice. Developed at the
Department of Computer Science, University of
Valencia, details of the application can be found in
Delamo et al.8 and Gallart et al.17 Thus, E-Harvester
we can run in the motes both strategies ‘send always’
and ‘buffering locally’. This tool will be used in order
to analyse both approaches. In addition, we can config-
ure the ‘buffering locally’ approach to send packets
with different payloads, to send the information gath-
ered at each motes from different time periods. It must
be stressed that we can find other routing protocols
such as Routing Protocol for Low-Power and Lossy
Networks (RPL) to deliver the information to the sink,
but according to Ogawa et al.25 after a thorough analysis
on TelosB motes, the authors conclude that CTP is more
reliable than RPL, because the loss rate is smaller, it needs
less memory and is more efficient in terms of energy.

Send always versus buffering locally

When E-Harvester is running a ‘send always’ approach,
it will transmit a packet for each reading taken from
the sensors. When a node sensor is triggered, taking a
sample from each of the sensors, they are immediately
encapsulated in a packet and sent via the radio compo-
nent to the father node. While in some situations this
immediate sending of packets may be beneficial, it
causes a high number of small packets to be sent, which
may not provide the most efficient use of the radio.
This strategy is useful in real-time monitoring, but in
many cases, data are not analysed in real time and
there is no need to send all data immediately.

Since the radio component of the mote has a high-
power requirement (see Table 1), it should be used as
little as possible in order to reduce the total power con-
sumption of the mote.22 If there is no need to send each

Table 1. Comparison of energy cost for communication and storage processes in a TelosB mote.

Hardware Description Process Energy (mJ)

CC2420 Radio chipset Sending 1 byte 1.5
STM25P80 External flash memory Adding 1 byte write and read cycles 0.368
MSP430 instruction Microcontroller instruction Touching a byte in RAM 0.0008

4 International Journal of Distributed Sensor Networks



sensor reading immediately, we can reduce the use of
the radio by saving each reading locally and sending
them together in a single packet. This can be config-
ured in E-Harvester too using the ‘buffering locally’
approach.

In addition, there are two possible solutions for local
buffering of data in the motes: local RAM and FLASH
memory. Since all data provided by the sensors must
be stored in RAM before being transmitted, no extra
cost is incurred if it is stored but not transmitted imme-
diately. Storing the data in the FLASH memory is pos-
sible, but the energy cost is much higher than storing in
RAM, as can be seen in Table 1. The FLASH memory
requires a minimum of 2.7 V, which makes its long-
term use in a mote unfeasible. Also, since the data for
each 10-min period occupy very little space, the RAM
has enough capacity to hold all the data that can be
sent in a single packet.

We will now analyse the packets sent by the radio in
each approach and their energy cost. The packets sent
by the ‘send always’ approach include a fixed overhead
of 26 bytes in all cases, of which 11 bytes correspond
to the packet header and 15 bytes are a fixed overhead
required by the CTP and included in the packet pay-
load. The payload of each packet varies, depending on
the amount of data to be sent. In this approach, the
payload is 24 bytes: 15 bytes for the CTP and 9 bytes
for the actual data. Table 2 shows the various fields
within the payload and the bytes assigned to each one.

In the ‘buffering locally’ approach for 10-min
period, the sensors continue to provide readings at 30-s

intervals, but the total value of all the readings is calcu-
lated by the mote and saved in the RAM. If a reading
is deemed to be an error or invalid (due to an unusually
high or low value), it is ignored. Once 20 readings have
been taken and the total value has been calculated,
ignoring any invalid reading, the total value for the
sum of all correct readings is sent to the sink, along
with the number of correct readings taken (in order to
accurately calculate the average). Since the total value
for the sum of all readings is substantially higher than
the value of just one reading, the fields for temperature
and humidity have been increased in size to 4 bytes
each. The other payload fields (mote ID, sequence
number and battery voltage level) remain the same, but
two new fields of 1 byte each are added for control.
The third column in Table 2 shows the content of the
payload when the ‘buffering locally’ approach for 10-
min period approach is used. The total payload is
30 bytes with ‘buffering locally’ approach only 6 bytes
more than in the ‘send always’ approach. The main dif-
ference between the two approaches is that for any 10-
min period, ‘send always’ sends 20 packets, while ‘buf-
fering locally’ for 10-min period only sends 1 packet,
resulting in much less packet overhead with the latter.
Regardless of the payload size, packet overhead
remains the same; further reductions in overhead can
be made by maximizing the payload of each packet in
the buffering locally approach.

However, as we mentioned above, the payload size
of each packet is variable and we could fit E-Harvester
in order to carry more information. In this case,

Table 2. Packet payload when using the send always and buffering locally (10 and 50 min) approach.

Field description Send always
(bytes)

Buffering locally for
10 min (bytes)

Buffering locally for
50 min (bytes)

CTP 15 15 15
Mote ID 2 2 2
Sequence Number 1 1 1
Temperature 2 4 20
Relative humidity 2 4 20
Number of OK measurements – 1 5
Control – 1 1
Internal voltage (battery level) – 2 2
Total payload 24 30 66

CTP: Collection Tree Protocol.

Table 3. Comparison of the energy required for transmitting the data from a 50-min period with all three approaches.

Approach Number of packets Total packet
size

Total bytes TX Energy cost per
byte (mJ)

Total energy
cost (mJ)

Send always 100 35 3500 1.5 5250
Buffering locally for 10 min 10 41 410 1.5 615
Buffering locally for 50 min 2 77 154 1.5 231

Felici-Castell et al. 5



TinyOS must reserve sufficient space in the RAM for
the largest possible packet. This is done by modifying
the variable TOSH_DATA_LENGTH in TinyOS.
Although larger payloads are possible in some config-
urations, we have found that if TOSH_DATA_
LENGTH is set to more than 69 bytes, the program-
ming of the motes does not compile correctly.
Increasing the payload size also increases the demands
on the RAM of all motes, as all packets are increased
in size, requiring more RAM for queuing the packets.

When setting TOSH_DATA_LENGTH (the maxi-
mum payload size) to 69 bytes, a total of 54 bytes are
available for the actual data because 15 bytes are
required by the CTP. Since all data are from the same
mote, the mote ID, sequence number, there is no need
to duplicate control byte and battery voltage fields.
Every 10-min period added to the packet requires only
9 extra bytes, 4 bytes for the temperature, 4 bytes for
the humidity and 1 byte for the number of correct read-
ings. Taking into account the maximum of 69 bytes
and the fields whose size does not vary (CTP, mote ID,
sequence number, control and voltage), 21 bytes in
total, we can calculate the number of 10-min periods
that can be included in a single packet

21+(9 � n)� 69

n� 5:33
ð1Þ

where fixed fields are the CTP, mote ID, sequence num-
ber, control and voltage fields whose value does not
change and n is the number of 10-min periods. The
maximum possible value for n is 5, which results in a
total payload size of 66 bytes, as seen in the fourth col-
umn in Table 2. This configuration is called ‘buffering
locally’ approach for 50-min period.

Once we have analysed the payload and overhead
for each approach, we can compare the energy require-
ments of each of them. In the first approach, the total
number of bytes transmitted by the radio for each
packet is 35 (11 bytes for the header and 24 bytes pay-
load). When saving the data locally and sending pack-
ets at 10-min intervals, 41 bytes are transmitted by the
radio. Finally, when saving the data from five 10-min
periods and maximizing the packet size, a single packet
of 77 bytes is sent every 50 min. Note as explained in
section ‘Design issues for EM applications’ that in the
two buffering locally approaches, each packet is sent
twice. This is a deliberate measure, designed to improve
the reliability of the data collection.

In order to easily compare the energy cost of each
approach, we will compare them for a sample collec-
tion period of 50 min. The results can be seen in
Table 3, where it is clear that the two buffering locally
approaches require much less energy to transmit the
same number of sensor readings to the sink. It must be

noted that this information only is available taking into
account the data exchanged by the application itself.
This means that, we have not included the detail of
routing, synchronization protocols or even MAC over-
head because they are related to the network conditions
(environment) and they will vary due to the dynamic
features of these WSN and their channels.

Analysis and evaluation of send always and
buffering locally approaches under a real
WSN deployment

Description of the deployment

In order to evaluate the performance between the three
different approaches (‘send always’, ‘buffering locally’
for 10 and 50 min) and compare them, we have
deployed three identical sparse WSN in the vicinity of
the Robotics Institute of the University of Valencia
(Lat 398 300 49:208400(N), Long 08 250 31:418400(0)).
Each network consists of eight TelosB motes, six sensor
motes, one relay mote and a final mote connected to a
PC acting as a data sink. A plan of the networks and
table of straight-line distances between motes can be
found in Figures 1 and 2. A different radio channel has
been assigned to each network, in particular 11, 21 and
26 for ‘send always’, ‘buffering locally’ for 10 and
50 min, respectively. It must be stressed that these
channels did not have any interference from WiFi
because we changed it to 5 GHz. We also tested previ-
ously these channels and all of them share the same
characteristics. The motes are housed in specially
designed weatherproof housings, as shown in Figure 3.
Each housing contains three motes, one from each net-
work. The scope of the deployment is to compare all
three approaches in the same multihop environment.

Figure 1. Plan of the network topology in the area
surrounding the Robotics Institute.

6 International Journal of Distributed Sensor Networks



Performance evaluation metrics

Before evaluating the performance of each approach,
first we will define the performance metrics to be used
in the evaluation. First, we will compare the number of
packets sent, received and lost, to give an indication of
the reliability of each approach. The energy used by
each mote in the network will also be compared by con-
trasting the drop in voltage of the batteries of the motes
in both networks. Finally, we will analyse the usage of
each link in the networks, the network topology and
the hop count distribution for each approach.

Results

When analysing the number of packets sent, received
and lost by each protocol, we will concentrate on the
same 7-day period (14 March 2016 to 21 March 2016)
for all three approaches. Nodes 0 and 1 only act as

relays to forward the data collected and do not generate
packets themselves. Table 4 shows the number of sent
packets by each node in the ‘send always’ approach, the
number of packets that successfully arrived at the sink
and the number of lost packets.Tables 5 and 6 show the
same data for the two buffering locally approaches. The
percentage of lost packets is lower with the buffering
locally approaches, especially in the 50-min configura-
tion. It must be noted that in 10-min buffering locally
deployment, mote 7 that caused several resets through-
out the test period, caused changes in the route, as

Table 4. Number of packets sent, received and lost with the send always approach.

Mote Number of packets Packets lost (%)

Sent Received Lost

2 20,160 20,081 79 0.39
3 20,160 20,106 54 0.27
4 20,160 20,113 47 0.23
5 20,160 17,342 2818 13.98
6 20,160 20,104 56 0.28
7 20,160 20,114 46 0.23

Table 5. Number of packets sent, received and lost with the buffering locally (10 min) approach.

Mote Number of packets Packets lost (%)

Sent Received Lost

2 1008 1008 0 0.00
3 1008 1008 0 0.00
4 1008 1005 3 0.30
5 1008 1008 0 0.00
6 1008 1008 0 0.00
7 1008 915 93 9.23

Figure 2. Table of straight-line distances in metres between all
motes in the network.

Figure 3. (a) Detail of a TelosB mote and the weatherproof
housing and (b) mote and weatherproof housing attached to a
tree.

Felici-Castell et al. 7



number of hops, loss of packets (see Figure 4). With the
exception of mote 7, the buffering locally approaches
show better reliability and very few dropped packets.
Table 7 compares the total number of packets sent with
each approach during a period of 7 days. It should be
noted though that a dropped packet in the buffering
locally approaches means the loss of all data from
either a 10- or 50-min period, which is a more serious
problem than the loss of individual packets from the
send always approach. This possible loss of data forms
part of the trade-off between the two approaches: the
reduction in energy consumption and increased lifetime
at the cost of losing small amounts of data.

The average voltage for the motes in each deploy-
ment is shown in Figure 5, including their standard
deviation. The motes use 2 3 1.5 V new AA batteries
with 1500 mAh. In the ‘send always’ approach, the vol-
tage dropped 0.038 V; in the ‘buffering locally’
approach, the voltage dropped 0.033 and 0.02 V for
10 and 50 min, respectively. With longer deploy-
ments, it is expected that there will be noticeably
less drop in voltage with the ‘buffering locally’
approaches than with the ‘send always’ approach. In
addition, we can see that the average voltage in ‘send
always’ has a shorter standard deviation that means
that the behaviour is similar among the motes when
the number of sent packets increases. However, in
10 min ‘buffering locally’, these differences are
higher, but in 50 min ‘buffering locally’, due to the
reduced number of sent packets, showing lower stan-
dard deviations.

The path to the sink used by each mote depends on
the considered approach. The larger packet sizes in the
‘buffering locally’ approaches cause variations in the
ETX metric used by CTP to determine the best path.
We can analyse the number of hops in all source–
destination paths in each network. Figure 4 shows how
the source–destination path from one mote to the sink
changes with time, over a period of 24 h. In this case,
the plot corresponds to mote 7 in the network using the
buffering locally (10 min) approach. Figures 6–8 show
the distribution of hop counts due to the multihop
routing protocol during a 7- day period for all motes in
each of the three networks. We can see from these three
figures that in the ‘send always’ approach, paths with
higher hop counts are used more often than in the ‘buf-
fering locally’ approaches. This is justified because in
‘buffering locally’, we send less packets, the network is
less congested and CTP is more stable. This indicates
that a shorter, more suitable path to the destination can
be found more often in the ‘buffering locally’ approach.

Table 6. Number of packets sent, received and lost with the
buffering locally (50 min) approach.

Mote Number of packets Packets lost (%)

Sent Received Lost

2 201 201 0 0.00
3 201 201 0 0.00
4 201 199 2 1.00
5 201 201 0 0.00
6 201 198 2 1.49
7 201 200 1 0.50

Table 7. Number of packets sent, lost (%) and drop voltage
(volts) lost for each approach.

Approach Packets sent Lost (%) Drop voltage

30 s 120,960 2.56 0.038
10 min 6048 1.59 0.033
50 min 1206 0.50 0.020

Figure 4. Change in source–destination hop count for mote 7,
buffering locally (10 min) approach.

2.94

2.95

2.96

2.97

2.98

2.99

3

3.01

Av
g.

 V
ol

ta
ge

Days

30 s 10 min 50 min

Figure 5. Average battery voltage for the different approaches
(‘send always’, ‘buffering locally’ for 10 and 50 min) with
standard deviations.

8 International Journal of Distributed Sensor Networks



Fewer hops also result in less packet forwarding by the
nodes in the path, reducing overall radio usage and
energy consumption. Lower hop counts also reduce the
possibility of losing packets, as each time packet must
be forwarded there is a possibility loose the packet due
to full queue buffers, interference, network congestion
or other factors.

Conclusion

From the results, we conclude that the ‘send always’
approach requires a greater demand in the network due
to a much larger number of packets to be sent, which in
turn causes a higher energy consumption and shortens
the network lifetime. However, one advantage of this
approach is that the loss of one or more packets does
not necessarily affect the final data gathering. Unless
all 20 samples from a 10-min period are lost, there will
be always at least one sample in order to estimate the
average T and RH for that period.

Finally, with the buffering locally approach, the loss
of one packet with 10 or 50 samples avoids estimating
these averages. Nevertheless, the main advantages of
this approach are the reduced number of packets sent
over the network and a larger network lifetime. In this
approach, it is strongly recommended to forward a
packet at least twice to improve reliability.

Acknowledgements

S.F-C., J.J.P-S. conceived and designed the network and the
experiments for data collection; J.S-G., M.G-P. and A.S-A.
performed the experiments; S.F-C. and J.S-G. analysed the
data and made all the statistical analysis; S.F-C. and J.J.P-S
contributed with the WASN nodes; S.F-C. wrote the paper.
Copyright � 2017 SAGE Publications Ltd, 1 Oliver’s Yard,
55 City Road, London, EC1Y 1SP, UK. All rights reserved.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) disclosed receipt of the following financial sup-
port for the research, authorship, and/or publication of this
article: This work was supported by the Universitat de
València under the projects UV-INV-PRECOMP14-207134,
UV-INVAE15-339582, UV-SFPIE RMD17, by the
Generalitat Valenciana under the project GV-2016-002 and
mainly by Ministry of Economy and Innovation under the
project BIA2016-76957-C3-1-R.

ORCID iD

Jaume Segura-Garcia https://orcid.org/0000-0002-9138-
5465

References

1. Jennehag U, Forsstrom S and Fiordigigli FV. Low delay

video streaming on the Internet of Things using Rasp-

berry Pi. Electronics 2016; 5: 60.
2. IEEE 802.15.4:2006. IEEE standard for information

technology – telecommunications and information

Figure 6. Distribution of hop counts for each mote, sending
always approach.

Figure 7. Distribution of hop counts for each mote, buffering
locally (10 min) approach.

Figure 8. Distribution of hop counts for each mote, buffering
locally (50 min) approach.

Felici-Castell et al. 9



exchange between systems – local and metropolitan area

networks – specific requirements – part 15.4: Wireless

Medium Access Control (MAC) and Physical Layer

(PHY) specifications for Low-Rate Wireless Personal

Area Networks (WPANs) (Technical report, 2006).
3. TelosB datasheet, http://www.memsic.com
4. Polastre J, Szewczyk R and Culler D. Telos: enabling

ultra-low power wireless research. In: Proceedings of the

4th IEEE international symposium on information process-

ing in sensor networks, Boise, ID, 15 April 2005. New

York: IEEE.
5. TinyOS, https://github.com/tinyos/tinyos-main
6. Levis P, Madden S, Polastre J, et al. TinyOS: an operat-

ing system for sensor networks. In: Weber W, Rabaey

JM and Aarts E (eds) Ambient intelligence. Berlin; Hei-

delberg: Springer-Verlag, 2005, pp.115–148.
7. Strazdins G, Elsts A, Nesenbergs K, et al. Wireless sen-

sor network operating system design rules based on real-

world deployment survey. J Sens Actuator Netw 2013;

2(3): 509–556.
8. Delamo M, Felici-Castell S, Pérez-Solano JJ, et al.

Designing an open source maintenance-free Environmen-

tal Monitoring Application for Wireless Sensor Net-

works. J Syst Software 2015; 103: 238–247.

9. Du W, Xing Z, Li M, et al. Optimal sensor placement

and measurement of wind for water quality studies in

urban reservoirs. In: Proceedings of the ACM/IEEE 13th

international symposium on information processing in sen-

sor networks (IPSN), Berlin, 15–17 April 2014, pp.167–

178. New York: IEEE Press.
10. Corke P, Wark T, Jurdak R, et al. Environmental wireless

sensor networks. P IEEE 2010; 98(11): 1903–1917.
11. Lim R, Woehrle M, Meier A, et al. Harvester – energy

savings through synchronized low-power listening. In:

Proceedings of the 6th European workshop on sensor net-

works, Cork, 11–13 February 2009, pp.29–30. ACM.
12. EPA. Quality assurance handbook for air pollution mea-

surement systems – volume IV: meteorological measure-

ments version 2.0. Technical report EPA-454/B-08-002,

March 2008, https://www3.epa.gov/ttnamti1/files/ambi-

ent/met/Volume_IV_Meteorological_Measurements.pdf
13. Burri N, Von Rickenbach P and Wattenhofer R. Dozer:

ultra-low power data gathering in sensor networks. In:

Proceedings of the 6th IEEE international symposium on

information processing in sensor networks, Cambridge,

MA, 25–27 April 2007, pp.450–459. New York: IEEE.

14. Ingelrest F, Barrenetxea G, Schaefer G, et al. Sensor-
Scope: application-specific sensor network for environ-
mental monitoring. ACM T Sensor Network 2010; 6: 17.

15. Liu Y, He Y, Li M, et al. Does wireless sensor network
scale? A measurement study on GreenOrbs. IEEE T Par-

all Distr 2013; 24(10): 1983–1993.
16. Fonseca R, Gnawali O, Jamieson K, et al. TEP 123: the

collection tree protocol (CTP). TinyOS 2.0.2 documenta-
tion, February 2007, http://tinyos.stanford.edu/tinyos-wi
ki/index.php/TinyOS_Network_Protocol_Working_Group

17. Gallart V, Felici-Castell S, Delamo M, et al. Evaluation
of a real, low cost, urban WSN deployment for accurate
environmental monitoring. In: Proceedings of the 2011

IEEE 8th international conference on mobile adhoc and

sensor systems (MASS), Valencia, 17–22 October 2011,
pp.634–639. New York: IEEE.

18. Aguirre-Guerrero D, Marcelı́n-Jiménez R, Rodriguez-

Colina E, et al. Congestion control for a fair packet deliv-
ery in WSN: from a complex system perspective. Sci

World J 2014; 2014: 381305.
19. Yang Z-L, Wu A and Min H-Q. Deployment of wireless

sensor networks for oilfield monitoring by multiobjective
discrete binary particle swarm optimization. J Sensors

2016; 2016: 9358358.
20. Gana Kolo J, Anandan Shanmugam S, Gin Lim DW, et

al. An adaptive lossless data compression scheme for
wireless sensor networks. J Sensors 2012; 2012: 539638.

21. Zennaro M, Ntareme H and Bagula A. Experimental eva-
luation of temporal and energy characteristics of an out-
door sensor network. In: Proceedings of the international

conference on mobile technology, applications & systems,
Yilan, Taiwan, 10–12 September 2008. New York: ACM.

22. Mathur G, Desnoyers P, Chukiu P, et al. Ultra-low
power data storage for sensor networks. ACM T Sensor

Network 2009; 5(4): 33.
23. Pérez-Solano JJ and Felici-Castell S. Improving time syn-

chronization in Wireless Sensor Networks using Bayesian
Inference. J Netw Comput Appl 2017; 82: 47–55.

24. Moss D, Hui J and Klues K. TEP 105: low power listen-
ing. TinyOS 2.0.2 documentation. Technical report, 2008,
http://tinyos.stanford.edu/tinyos-wiki/index.php/TEPs

25. Ogawa HS, de Oliveira BT, Rodrigues TJ, et al. Energy
consumption and memory footprint evaluation of RPL
and CTP in TinyOS. In: Proceedings of the XXXIV Sim-

posio Brasileiro de Telecomunicacxoes (SBrT 2016), San-
tarém, PA, 30 August–2 September 2016, http://sbrt.
org.br/sbrt2016/anais/ST02/1570270153.pdf (accessed 14
March 2018).

10 International Journal of Distributed Sensor Networks




