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Abstract	

Hybrids and composite materials offer a synergic combination of polymer and inorganic features. 

The integration of specific functionalities at the nanoscale leads to the improvement of the 

characteristics of macroscopic materials. In this context, the attractiveness of multifunctional 

polymer–inorganic nanoparticles is remarkable. The relative arrangement of the components 

forming the hybrid nanostructure determines the accessibility of the functionalities, the properties, 

and the applicability of the material. Colloidal methods have been traditionally used for the 

preparation of hybrid nanoparticles, but the precise control of their morphology remains still a 

challenge.  

The objective of this thesis is to establish the bases for the preparation of multifunctional polymer–

metal oxide hybrid nanoparticles and capsules with a morphology controlled according to the 

application. The miniemulsion technique was used to overcome the structural restrictions of other 

synthetic platforms. For this aim, inorganic species with complementary catalytic (ceria and titania) 

and magnetic (magnetite) properties were simultaneously incorporated within different polymer 

supports (polystyrene, PMMA, and polyurethane) via miniemulsion polymerization processes and 

their variations. The inorganic species were functionalized with different silanes. The control of the 

hybrid morphology was approached by tuning the differences of polarity and the interfacial 

chemistry involved between the inorganic functionalities and the polymer. The chemical structure 

of the coupling agent was related to the specific deposition of metal oxides nanoparticles on the 

polymer surface, within the matrix or to the formation of Janus-like structures. The control allowed 

by this strategy was used for the preparation of magnetoresponsive polymer-supported catalysts. 

The catalytic functionalities were also incorporated by functionalization of the polymer surface 

with chiral units of amino acids. The hybrid nanoparticles were proposed for heterogeneous and 

enantioselective catalysis with industrial relevance. In addition, miniemulsions were used for the 

preparation of a specific type of particles with a liquid core (capsules), which were exploited for the 

encapsulation of hydrated salts as phase change materials for energy storage applications. The 

efficiency and scalability of the synthetic strategy was studied and related to the performance of the 

product in energy-related applications. In this fashion, the work proposes the substitution of 

traditional surfactants by surface active monomers (surfmers) and inorganic nanoparticles as 

functional emulsifiers.  

In summary, this thesis proves the versatility of the miniemulsion technique as a synthetic platform 

for the preparation of multifunctional hybrid nanomaterials with a controlled structure for catalytic 

and energy–related applications.
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 1 

 Motivation	1
“The	science	of	today	is	the	technology	of	tomorrow”	

–	Edward	Teller 

The increase of the impact of technology in our current society requires the development of 

advanced multifunctional materials with high performance and improved properties. In addition, 

the unaffordable growth of the population and the consumption of resources demand the continuous 

optimization of the energy, the chemical, and the pharmaceutical sectors. In this context, the 

research on hybrids and composites is being greatly developed. The attractiveness of polymer–

inorganic hybrid materials relies on the synergic combination of the features of polymers (e.g., 

biocompatibility, chemical stability, and easy processability) and the specific functionalities of 

inorganic compounds (e.g., with optical, thermal, electrical, magnetic or catalytic properties).1  

The integration of elements with different nature in a hybrid material needs to deal with 

problematic interfacial processes and loss of continuity (e.g., of thermal or electric conductivity) 

related to the presence of pores or aggregates. Bottom-up strategies are highlighted in the design of 

materials with specific characteristics achievable only at the nanoscale, and the controlled assembly 

of such nanomaterials leads to enhanced macroscopic systems. The morphology of the 

nanostructures plays also an essential role in the properties of the final material. Therefore, the 

requirement of accessibility of the different functionalities will be strongly determined by the 

application. With the increase of complexity of the system (e.g., the incorporation of several 

inorganic functionalities) and the decrease of the size of the individual structures (e.g., nanometric 

size), the relevance of the morphology is even greater. The preparation of complex hybrid 

nanomaterials has been approached by different methods,2 but the control of their structure remains 

still a challenge.3-5  

Colloidal methods offer a versatile synthetic platform for the preparation of hybrid polymer–

inorganic nanoparticles via wet-chemistry processes. Both inorganic and polymer particles can act 

as hard templates allowing precipitation and crystallization processes on their surface.6-7 In 

addition, micelles and stable droplets can act as soft templates or nanoreactors to confine 

physicochemical processes. Therefore, inorganic precipitation or polymerization processes have 

been carried out in emulsions, allowing the encapsulation and compartmentation of the inorganic 

compounds within a polymer matrix.7-8 The droplet confinement introduces also a high surface area 

where interfacial processes can be controlled.6,9, 10 
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This thesis aims the development of a synthetic toolbox for the preparation of polymer–inorganic 

hybrid nanomaterials with controlled morphology by methods involving the miniemulsion 

technique. The prepared nanostructures are specifically designed for catalytic and energy-related 

applications. 

Chapter 2 offers an introduction to the theoretical background and the state of the art in the use of 

miniemulsion for the synthesis of polymer–inorganic hybrid nanoparticles and capsules with 

magnetic and catalytic properties. Chapter 3 describes the main techniques that are used in this 

thesis for the characterization of the produced hybrid materials. Chapter 4 is dedicated to the 

establishment of the synthetic strategies that allow the preparation of hybrid nanostructures with 

controlled morphology by miniemulsion polymerization. The specific migration of the inorganic 

functionalities within the matrix is governed by self-assembly processes promoted by the 

minimization of the interfacial energy of the system. The energy balance of the hybrid is controlled 

by the surface functionalization of the inorganic components with specific silanes. The chapter 

offers an insight on the role of the chemical structure of the functionalizing agent on the 

achievement of different energetic equilibria and the development of the final morphology.  

The following two chapters are based on the application of the magnetoresponsive and/or 

catalytically active hybrid nanostructures in specific fields. In every case, we consider the use of 

straightforward processes and the reduction of the consumption of time and resources associated to 

the synthesis in miniemulsion. Chapter 5 is focused on the preparation of magnetoresponsive 

polystyrene-supported metal oxide nanocatalysts, highly efficient for reactions with great industrial 

relevance such as the hydration reaction of nitriles. In Chapter 6, the immobilization of catalytically 

active inorganic species is substituted by the incorporation of chiral amino acids on the surface of 

polymer particles. The specific biological behavior of the chiral substances is a source of interest of 

the pharmaceutical companies. The chapter describes the synthesis of proline-functionalized 

polymer nanoparticles for the enantioselective catalysis of an intermolecular aldol reaction in 

aqueous media.	 

Finally, the development of magnetically recoverable polyurethane-based capsules is discussed in 

Chapter 7. Hybrid carriers are studied for the encapsulation of hydrated salts as phase change 

materials (PCMs) with promising features for thermal energy storage applications. 
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 Theoretical	Background	2

2.1 Synthesis	of	Polymer–Inorganic	Hybrid	Nanoparticles	and	Capsules	 in	

Miniemulsion	

The incorporation of inorganic components within polymer particles has gained a great interest in 

the materials science community during the last two decades. The integration of the easy 

processability, the stability, or the biocompatibility of polymer materials and the functional features 

specifically provided by inorganic components (e.g., optical, magnetic, electrical, catalytic 

functions) offers the possibility of developing complex and multifunctional hybrid materials with 

applicability in a wide range of sectors.11 Inorganic species are also used as a reinforcement of 

mechanical, thermal, chiral, and electric properties of specific polymer matrices. The characteristics 

of the resulting polymer–inorganic hybrids go beyond the simple addition of the individual 

properties of the forming components and allow the achievement of materials with enhanced 

characteristics. Nevertheless, the morphology of the hybrid structures plays an essential role in the 

properties of the final material, and its relevance increases with the complexity and the reduction of 

the size of the system. From the synthetic point of view, the preparation of hybrid nanomaterials 

with a precisely controlled structure remains as the “holy grail” looked for many researchers.3, 12-13 

The miniemulsion technique stands out in colloidal chemistry for the preparation of polymer–

inorganic hybrid nanoparticles that overcomes the structural limitations of other methods.2 For 

instance, layer-by-layer deposition, suspension or emulsion polymerization processes are 

commonly restricted to the production of hybrid nanostructures with inorganic particles located on 

the polymer surface or of single inorganic particles covered by a polymer shell. Miniemulsions 

offer higher versatility and allow the incorporation of inorganic functionalities at different locations 

within a polymer matrix. In our recent publication,14 we have dedicated a specific chapter of the 

book Nanoemulsions: formulation, applications, and characterization for the description of the 

theory and the state of the art in the preparation of hybrid nanoparticles in miniemulsion.  

Polymer–inorganic hybrid nanoparticles (and capsules) have been prepared via different synthetic 

strategies. According to the presence or the absence of the counterpart species or precursors during 

the synthesis of the polymer and/or the inorganic components, we propose a classification of the 

different strategies based on the groups listed below. 
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• Strategies type A consist of the self-assembly of preformed polymer and inorganic 

components and involve typical processes of inorganic complexation on functionalized 

polymers or solvent evaporation techniques. 

• Strategies type B are polymerization processes in the presence of preformed inorganic 

components. Typical miniemulsion polymerization, interfacial polymerization, semi-batch 

polymerization or seed emulsion polymerization processes in the presence of inorganic 

components synthetized ex-situ are considered in this group. 

• Strategies type C use the polymer nanoparticles as supports for inorganic synthesis. In 

these processes, the in situ formation of the inorganic species takes place on the preformed 

polymer by inorganic crystallization, precipitation/mineralization, or interfacial sol–gel 

processes. 

• Strategies type D or the so-called all in-situ strategies are challenging syntheses related to 

the formation of the inorganic nanoparticles via hydrolysis and condensation reactions of 

inorganic precursors occurring simultaneously to miniemulsion polymerization processes. 

• Finally, multi-step strategies involve complex cases resulting from the mixture of pure 

synthetic processes, which occur either simultaneously or consecutively. 

In all cases considered in this work, at least one of the steps of the process takes place in 

miniemulsion. Despite the great interest of the all in-situ strategies, groups A and D are beyond the 

scope of this thesis. The preparation of polymer–inorganic hybrid nanoparticles and capsules with 

controlled structure has been addressed mainly via strategies type B (i.e., miniemulsion 

polymerization, Pickering miniemulsion polymerization, and interfacial polyaddition) and type C 

(i.e., in-situ inorganic crystallization on the surface of preformed polymer nanoparticles). 

 

2.2 Basic	Principles	for	the	Structure	of	Hybrid	Nanoparticles	Prepared	in	

Miniemulsion	

The specific arrangement of the different components of polymer–inorganic hybrid nanostructures 

synthesized in miniemulsion results from self-assembly processes driven by the minimization of 

the global energy of the system (E): 

𝐸 = 𝐴ij𝛾!" = 
ij

𝐴PW𝛾PW + 𝐴IW𝛾IW + 𝐴IP𝛾!P 
(2.1) 

For an aqueous dispersion of hybrid nanoparticles, E is expressed according to eq. (2.1) as the sum 

of the individual interfacial energies (𝐸!) between the different phases (i, j) (i.e., the polymer (P), 
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the inorganic species (I), and the aqueous phase (W). In the equilibrium, the development of the 

preferential hybrid morphology takes place by lowering the interfacial areas (Aij) and interfacial 

tensions (γij) related to the three phases. According to this theory, the control of the inner structure 

of hybrid nanoparticles synthetized in miniemulsion can be addressed by tuning the energy balance 

of the system. In this sense, Gonzalez-Ortiz and Asua4, 15 proposed a mathematical correlation 

between the interfacial tensions (γPW, γIP and γIW) and the development of different hybrid 

structures. The authors established morphology diagrams that were used to evaluate the theoretical 

predictions by comparison with the empirical results reported for different polymer–inorganic 

combinations.4, 15 The study points out the nature and the amount of the surfactant,16 the type of 

initiation17 of the polymerization, and the differences of polarity of the monomer/polymer18 versus 

the inorganic species as the three main parameters influencing the interfacial tensions in a 

miniemulsion polymerization process and governing the hybrid structures reached in the 

equilibrium. Figure 2.1 presents schematically the synthesis of polymer–inorganic nanoparticles by 

miniemulsion polymerization and the different morphologies achievable. The miniemulsion 

formulation will strongly determine the homogeneous distribution of the inorganic species within 

the polymer matrix, the phase segregation of the species with formation of Janus-like or core–shell 

morphologies, or the complete separation of the polymer and the inorganic materials.  

The concentration of the surfactant determines the interfacial tension between the polymer (γPW) 

and the inorganic components (γIW) with the aqueous phase. At low surfactant concentrations, the 

phase with the lower interfacial tension respect to the water (usually the polymer) will be exposed 

at the droplet interface. The use of high surfactant concentrations lowers both γPW and γIW, whose 

difference becomes negligible. Then, the development of the hybrid morphology relies on the 

interfacial tension between the polymer and the inorganic components (γPI). According to these 

considerations, the inorganic encapsulation is favored at low concentrations of the surfactant, 

whereas high concentrations allow phase segregation and Janus-like structures. 
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Figure 2.1. Scheme of the preparation of polymer–inorganic nanoparticles by miniemulsion polymerization 
and the possible hybrid morphologies achieved. (Based on ref. 14) 

In a free-radical polymerization process in a direct miniemulsion, the initiator has a direct influence 

in the interfacial tension between the polymer and the aqueous phase (γPW). Table 2.1 presents the 

solubility in water, the associated radicals, and the chemical structure of the initiators that have 

been used in this thesis. Water-soluble initiators, such as potassium peroxodisulfate (KPS), 

commonly present charged groups that make the molecular structure water-compatible. Therefore, 

the radicals generated in the aqueous phase enter in the hydrophobic droplets and lead to an 

increase of the charge at the droplet interface. Consequently, the decrease of the interfacial tension, 

γPW, favors the increase of the interfacial area between the hybrid nanoparticle and water (AWP) by 

keeping the hydrophobic inorganic species within the polymer matrix. When oil-soluble initiators, 

such as 2,2′-azobis(2-methylpropionitrile) (AIBN) or 2,2'-azobis-(2-methylbutyronitrile) (AMBN), 

are used, the generation of the radicals takes place within the droplet confinement making more 

likely the contact of the inorganic components with the water phase. Thus, the encapsulation of the 

inorganic species occurred using KPS, whereas for identical polymer–inorganic combinations the 

use of AIBN and AMBN resulted into phase segregation and the formation of Janus-like structures. 
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Table 2.1. Free-radical initiators commonly used for heterophase polymerization processes in direct 
miniemulsions. 

Initiator Chemical structure Radicals generated 
Solubility in water 

at 20 °C / g·L–1 

AIBNa 

         

< 1 

AMBN 

    

< 1 

KPS  

  

27 

a AIBN: 2,2′-azobis(2-methylpropionitrile). 
b AMBN: 2,2'-azobis-(2-methylbutyronitrile). 
c KPS: potassium peroxodisulfate. 
d Based on the product/safety data sheet of AzkoNobel and Sigma-Aldrich. 
 

The third parameter controlling the development of hybrid morphologies is related to the polarity 

of the different species in the hybrid and its essential role played in the interfacial energy of the 

whole system. The polarities of the polymer and the inorganic components determine the respective 

interfacial tensions with the aqueous phase (γPW and γIW). For a certain polymer–inorganic 

combination, the differences of polarity can be tuned via the surface functionalization of the 

inorganic components. Comonomers are also used for compatibilization of the different species and 

the control of their self-assembly. Besides tuning the hydrophobicity, the functionalization of the 

inorganic surface is a versatile tool to introduce reactive groups, which can copolymerize and act as 

linker between polymer and inorganic materials. The copolymerization allows the control of the 

structure development, which cannot be simply explained with Gonzalez-Ortiz and Asua’s model.4  

Not only the formulation of the miniemulsion but also the selection of the organic–inorganic 

species and the synthetic strategy will strongly determine the hybrid structure. Sections 2.6.1, 2.6.2, 

and 2.6.3 present an overview of the state of the art in the preparation of polymer–inorganic hybrid 

nanoparticles via the strategies type B and C described in section 2.1.1. 

In this thesis, the control of the morphological development of hybrid nanomaterials prepared in 

miniemulsion is addressed by selection of both the synthetic strategy and the surface 

functionalization of metal oxides via silane chemistry.  
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2.3 Synthesis	of	Polymer–Inorganic	Hybrid	Nanocapsules	in	Miniemulsion	

2.3.1 General	Overview	

Miniemulsions can be used for the preparation of polymer–inorganic hybrid nanocapsules, a 

specific type of nanoparticles characterized by the presence of a solid shell occluding an inner core 

(e.g., a liquid). The capsule structures present a great potential for a wide range of applications 

(e.g., as hermetic encapsulating units, tracking carriers, or as vectors for the controlled release of 

substances). The combination of the polymer and inorganic features highlights the attractiveness of 

hybrid nanocapsules for the development of self-healing coating films,19-20 energy storage 

materials,9 or drug delivery systems applied in biomedicine.21 

The synthetic methods allowing the achievement of a capsule-like morphology are divided into 

phase separation strategies and interfacial processes involving polymerization reactions (i.e., 

polymerization, polyaddition and polycondensation) and/or inorganic synthesis (i.e., crystallization 

and hydrolysis/ condensation of inorganic precursors).10, 14 

2.3.2 Basic	Principles	for	Structure	Control	of	Hybrid	Capsules	via	Phase	Separation		

The development of the capsule morphology by phase separation mechanisms is governed by 

similar physical principles to the ones described for hybrid nanoparticles in section 2.3.2. The 

minimization of the overall energy of a system consisting into three immiscible liquid phases (i, j, 

and k) is defined as the driving force for the achievement of the liquid core–shell structure.14 The 

mathematical model proposed by Torza and Mason22 is applied to explain the formation of capsules 

according to the spreading coefficient of each liquid phase (si): 

𝑠i =  𝛾jk − 𝛾ij +  𝛾jk  (2.2) 

For a certain phase i, si is determined with the contribution the interfacial tensions (γij) between the 

different phases, as expressed in eq. (2.2). If in a direct miniemulsion the oil phase to be 

encapsulated is named as phase 1 (e.g., the hydrophobe), the continuous polar phase as 2 (e.g., an 

aqueous solution of a surfactant), and the oil phase precursor of the solid shell as 3 (e.g., 

monomer), different possible situations (shown in Figure 2.2) can be predicted by the model. 
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Figure 2.2. Phase segregation in a three-component system comprised of two oil dispersed phases (1 and 3) 
and a polar continuous phase (2), determined by the spreading coefficients (si). (Based on refs. 14 and 22) 

• If the hydrophobicity of phase 3 is much higher than phase 1 (γ12 >> γ23) and the 

interfacial tension between the oil phases is low (Figure 2.2(a)), a multiple engulfment of 

oil 1 in 3 is achieved. 

• A liquid core–shell morphology is reached with the single engulfment of phase 1 into 3, 

which occurs when the oil 3 is more hydrophobic than the oil 1 (γ12 >> γ23) and the 

interfacial tension between the oil phases is still low (Figure 2.2(b)). 

• If phases 1 and 3 present similar hydrophobicity (γ12 ≈ γ23) and the interfacial tension 

between them is low, one of the oil phases (1) is partially engulfed by the other one (3) 

(Figure 2.2(c)). 

• If the interfacial tension between two oil phases (1 and 3) with similar polarity is high, the 

non-engulfment and the separation of the droplets from Figure 2.2(d) occur. 

Only the single engulfment of a second liquid phase within the nanodroplets of the miniemulsion 

(Figure 2.2(b)) leads to the capsule morphology. With regard to the morphology development of 

the hybrid capsules, the process is again considered a result of the minimization of the overall 

energy of the system (𝐸), expressed in terms of interfacial energies. Therefore, the energy balance 

PHASE 1

PHASE 2

PHASE 3

(polar phase)

(oil) (oil)

Multiple engulfment

a S1<0
S2<0
S3>>0

Single engulfment

b S1 < 0
S2 < 0
S3 > 0

Partial engulfment

c S1 < 0
S2 < 0
S3 < 0

Non-engulfment

d S1 < 0
S2 > 0
S3 < 0
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of hybrid nanocapsules prepared in a direct miniemulsion is understood as the sum of the energetic 

contribution of four phases (i.e., the inorganic component (I), the aqueous phase (W), the 

monomer/dissolved polymer system (P), and the oil phase to be encapsulated (O)): 

𝐸 = 𝐴ij𝛾!" = 
!"

𝐴!" 𝛾!" + 𝐴!" 𝛾!" + 𝐴!" 𝛾!" + 𝐴!" 𝛾!" + 𝐴OP 𝛾OP + 𝐴OI 𝛾OI (2.3) 

The spreading coefficient drives the phase separation of the liquid phases from the initial 

miniemulsion, among which the inorganic components assemble depending on the relative 

interfacial energies with the different liquids. After polymerization or solvent evaporation 

processes, the formation of a solid polymer shell leads to the most favorable hybrid structure with 

minimal interfacial energies.23  

 

2.4 Stability	of	Emulsions	

Emulsions are dispersions of droplets of a liquid (the disperse phase) in a second immiscible liquid 

(the continuous phase). Depending on the relative nature of the phases, direct or oil-in-water (O/W) 

emulsions are defined when a non-polar liquid is dispersed within a polar continuous phase, and 

inverse or water-in-oil (W/O) emulsions in the opposite case. According to the size and stability of 

the droplets, emulsions are classified in three groups: macroemulsions, miniemulsions, and 

microemulsions.24 

The so-called macroemulsions are thermodynamically unstable emulsions with large droplet sizes         

(1–10 µm), which are kinetically stabilized with the aid of surfactants. The relatively high amount 

of surfactant required for the colloidal stabilization results in the coexistence of droplets and empty 

micelles. In the absence of a suitable mixture, macroemulsions experience fast processes of droplet 

growth, phase separation, and destabilization.  

In the other extreme, microemulsions are translucent and thermodynamically stable emulsions that 

form spontaneously without requiring further homogenization. The stabilization is achieved by 

using surfactant concentrations well above the critical micelle concentration (cmc) and typically 

short-chain alcohols as cosurfactants. The emulsifier assembles at the interface of the nanodroplets 

(10–100 nm) forming a complete coverage and allowing minimal interfacial tensions.25-26  

Miniemulsions are critically stabilized emulsions (kinetically stable but thermodynamically 

metastable) with intermediate droplet sizes (50–500 nm). The achievement of the miniemulsion 

state requires the use high shear forces (e.g., ultrasonication, microfluidizers, or high pressure 
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homogenizers) to reach a equilibrium between droplet fission and fusion processes. The presence 

of surfactants at concentrations below the cmc and, typically, the addition of costabilizers or 

osmotic agents (long chain alkanes, alcohols or salts) confer a colloidal stability to the 

miniemulsions that ranges from days to months. The term of miniemulsion is also commonly used 

with mechanistic implications, involving polymerization processes based in a “one-to-one copy” 

concept.27 According to this generally accepted concept, the miniemulsion polymerization process 

occurs in pre-existing monomer droplets without the formation of new particles. Consequently, the 

particle size corresponds to the size of the droplet of the initial miniemulsion. This feature of the 

miniemulsions is especially attractive for the controlled incorporation of inorganic functionalities 

within a forming polymer matrix.  

This thesis addresses the preparation of polymer–inorganic hybrid nanoparticles with controlled 

morphology via synthetic strategies in miniemulsion. Traditionally, both direct and inverse 

miniemulsions have been exploited for the synthesis of polymer nanoparticles.28 The strategy has 

been further extended towards the preparation of organic–inorganic hybrid nanostructures (particles 

and capsules),5, 29 which stand for promising scenarios for the development of the aimed materials. 

2.4.1 Stabilization	of	Miniemulsions	

Coalescence and Ostwald ripening are the two main mechanisms governing the droplet growth and 

destabilization of miniemulsions.3, 27 Figure 2.3 presents schematically the phenomenon of 

coalescence, which is based on the fusion of droplets promoted by van der Waals attractive forces 

existing between them. The droplets being in a continuous Brownian motion and propelled by the 

stirring system collide and form larger droplets. As a consequence, the interfacial contact area and 

surface free energy of the emulsion is reduced. 

The collision and coalescence of the droplets can be suppressed (or at least reduced) by 

electrostatic, steric or electrosteric strategies, mainly based on the use of efficient surfactants. 

Surfactants are surface active and amphiphilic molecules that lower both the surface tension of the 

medium in which they are dissolved and the interfacial tension between two immiscible liquid 

phases. Ionic surfactants, with either anionic (e.g., sulfate or phosphate) or cationic (e.g., 

ammonium) groups in the hydrophilic head of the molecule provide electrostatic stabilization of 

miniemulsions. The charged species tend to assemble at the droplet interface avoiding the collision 

of the droplets with identical charge via Coulomb repulsions. The conditions of the continuous 

phase (especially the pH value) play an essential role in the miniemulsion stability, as they will 

determine the charges of the surfactant.30 Thus, the acidity or basicity of the media needs to be 
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carefully controlled to allow the efficient interdroplet electrostatic repulsion interactions. Similar 

results can be achieved with the use of large amounts of ionic initiators (e.g., initiators with 

persulfate groups). Steric stabilization plays a major role when non-ionic surfactants (e.g., block 

copolymers with ethylene oxide groups) are used. In this case, the polymer chains at the interface 

of two approaching droplets interact leading to a repulsion based on two phenomena. On the one 

hand, the droplet repulsion is promoted by the decrease of the entropy of the system due to the 

restriction of the movement and the possible conformations of the surfactant chains. On the other 

hand, the osmotic pressure between droplets increases due to the gradient of concentration created 

by the polymer chains, which also contributes to the steric repulsion. Electrosteric stabilization is 

reached by a combination of electrostatic repulsion and steric hindrance.  

 

Figure 2.3. Schematic representation of the coalescence and the droplet growth in minienulsions. Colloidal 
stabilization offered by surfactants, based on steric and electrostatic repulsion between droplets. (Based on 
ref. 3) 

Ostwald ripening is based on the interdroplet diffusion of mass occurring from smaller to bigger 

droplets as a consequence of the differences of the Laplace pressure between droplets. The Laplace 

pressure (pL) describes the differences between the inner and outer pressures in a curved surface (as 

the droplet interface), as a function of the interfacial tension (γ) and the droplet radius (r): 

𝑝L = 𝑃!"#!$% − 𝑃!"#$%&' =
2𝛾
𝑟

 (2.4) 

The inverse proportionality defined in eq. (2.4) between pL and r is translated into an increase of the 

Laplace pressure with the decrease of the droplet size. The equilibration between the pressures of 

the droplets with slight differences in size causes Ostwald ripening.31 In miniemulsions, Ostwald 

Non-ionic surfactant

Coalescence

Steric repulsion Electrostatic repulsion

Collision Collision

Ionic surfactant
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ripening is suppressed with the incorporation of osmotic agents, as represented in Figure 2.4. These 

“costabilizers” are soluble in the disperse phase and insoluble in the continuous phase, which 

avoids their diffusion out of the droplet confinement. Because of these specific solubility features, 

osmotic agents in direct miniemulsions are known as hydrophobes (e.g., hexadecane), whereas they 

are named as liphophobes in inverse systems (typically inorganic salts, such as sodium chloride). If 

an interdroplet diffusion occurred to compensate a gradient of Laplace pressure from smaller to 

bigger droplets, the increase of the concentration of the osmotic agent in the shrinking droplets 

would let to the increase of the osmotic pressure (Πosm). Then, the counterbalance between the 

Laplace and the osmotic pressure of the droplets hinders the Ostwald ripening. The osmotic 

pressure is expressed in terms of the universal constant of the gases (R), the absolute temperature 

(T), the concentration of the osmotic agent (c), and the molecular weight of the costabilizer (M): 

𝛱osm =
𝑅𝑇𝑐
𝑀

 (2.5) 

The suppression of both coalescence and Ostwald ripening allow the colloidal stability of 

miniemulsions. The stable droplet confinement can be used as a nanoreactor for polymerization and 

inorganic synthesis reactions.7-8 

 

Figure 2.4. Schematic representation of the Ostwald ripening principle in miniemulsions. Stabilization 
against the interdroplet mass diffusion allowed with the incorporation of osmotic agents. (Based on ref. 3) 
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2.4.2 Pickering	Stabilization	

The so-called Pickering stabilization of emulsions, described for the first time by Ramsdem in 

1904,32 but systematically studied by Pickering,33 is based on the substitution of molecular 

surfactants by a layer of nanoparticles irreversibly adsorbed at the droplet interface. The 

environmental advantages offered by these nanoparticle-stabilized emulsions are complemented 

with the absence of adsorption–desorption mechanisms in emulsions stabilized with conventional 

surfactants. Additionally, inorganic particles have no significative influence in the droplets 

interfacial tension. These particularities of Pickering emulsions confer robustness on the colloidal 

stability against external variations. The colloidal stability essentially depends on the ability of the 

inorganic emulsifier to form an adsorbed layer at the droplet interface. This ability is quantified 

with the adsorption energy (ΔE): 

∆𝐸 = 𝜋𝑟!𝛾 1 − cos 𝜃  (2.6) 

Eq. (2.6) expresses the dependence of ΔE on the radius of the particles (r), the interfacial tension 

between the continuous and the disperse phase (γ), and the contact angle of the particles at the 

droplet interface (θ). The contact angle determines the wettability of the inorganic particles in the 

liquid phases forming the droplet interface. Only situations close to θ ≈ 90° will allow the two-side 

wettability of the nanoparticles and the creation of an interfacial layer. The preferential wettability 

of the particles by a more or less polar liquid determines the type of emulsion that is formed. In 

general, particles stabilize the liquid phase in which they present lower wettability. According to 

this statement, Figure 2.5 depicts the stabilization of direct (O/W) emulsions by hydrophilic 

particles with θ < 90°, whereas the hydrophobic particles with θ > 90° will form inverse emulsions. 

If θ = 90°, the particles will be equally wettable and partitioned between the liquid phases. This 

situation is related to the formation of theoretical structures of bicontinuous interfacially jammed 

emulsion gels (bijes). 

The wettability of inorganic nanoparticles at the oil–water interface is affected by the surface 

chemistry, the concentration of the emulsifier, the pH value or the ionic strength of the media (i.e., 

the presence of salts).34-35 In this sense, the stability and even the inversion of Pickering emulsions 

can be controlled by tuning the amphiphilicity of the stabilizing particles.35 Among the different 

functionalization strategies, the use of silanes offers a wide range of possibilities. 

Chapter 5 describes the use of direct Pickering miniemulsions, stabilized with unmodified ceria 

nanoparticles, for the preparation of polystyrene-supported ceria nanocatalysts. Chapter 7 discusses 

the influence of the surface functionalization of titania, ceria and magnetite nanoparticles using 
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silane components with different chemical structure on the stabilization of inverse Pickering 

emulsions for the synthesis of polyurethane-based hybrid capsules. 

 

Figure 2.5. Schematic representation of the nature of the Pickering emulsions formed depending on the 
contact angle of the particles at the oil/water interface. (Based on ref. 36) 

 
2.4.3 Polymerizable	Surfactants	(Surfmers)	

Polymerizable surfactants, often named with the acronym surfmers, are surface active monomers 

with an amphiphilic structure that makes them suitable to act as surfactants. They offer an attractive 

alternative to the use of traditional surfactants, being able to provide miniemulsions with colloidal 

stabilization against coalescence and to incorporate building blocks with polymerizable units and 

specific functionalities.37 

The copolymerization between surfmers and the main monomers included in the disperse phase of 

miniemulsions allows the preparation of surface-active polymer nanoparticles. The functionalized 

polymers can act as supports for interfacial processes (e.g., inorganic crystallization) or as carriers 

of biomolecules for specific applications (e.g., biomedicine, asymmetric organocatalysis). In 

addition, the covalent bond formed between the surfmer and the polymer overcomes the typical 

problems of traditional surfactants related with adsorption–desorption equilibriums and the 

consequent risk of colloidal destabilization. 

Since the pioneer work of Freedman et al.38 about the preparation of vinyl monomers also used as 

surfactants, surfmers with a wide range of structures, colloidal and polymerization behaviors have 

been developed.39, 40-43 Typically, the molecular structure of surfmers consists of a hydrophobic 

segment with a polymerizable head, and a second hydrophilic part incorporating a specific 

functionality. However, the location of the polymerizable section in the hydrophilic head or as an 
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intermediate conjunctive link44 have also been reported, leading to other structural variations (e.g., 

a polymerizable group connecting two hydrophobic chains with their corresponding hydrophilic 

heads from the so-called Gemini surfactants).44 Polymerizable surfactants can be classified 

according to different criteria including the nature of the polar head, the type of polymerizable unit 

and its location, the hydrophilic–hydrophobic balance (HLB) of the molecule, and the presence of 

functional groups.37 The surface activity of surfmers is related to the group in the polar head and 

defines the structures as non-ionic, anionic, cationic or zwitterionic (if the head present two groups 

with opposite charges).  

The polymerizable unit (e.g., maleic, acrylic, methacrylic, styrenic or maleimide units) determines 

the polymerization ability of the compound. However, the polymerization ability itself will not 

determine its surface incorporation, the efficient copolymerization yield with the main monomer, 

nor the colloidal stabilization of the miniemulsion. In this sense, the relative reactivity of the 

polymerizable group versus the monomer will also have an essential role. In general, a moderate 

reactivity between the polymerizing units is required to avoid both the entrapment within the 

polymer particle and the loss of the surfmer within the continuous phase.45 

The nature and length of the hydrophobic blocks, as well as the origin of the hydrophilic fragment, 

determine the colloidal properties of the surfmer structure. In this sense, the hydrophilic–lipophilic 

balance is used to describe the distribution of the molecule between the disperse and the continuous 

phase of a miniemulsion. The HLB for non-ionic surfmers is expressed in terms of the molecular 

mass of the hydrophilic section and the entire molecule, whereas incremental methods are proposed 

for the characterization of ionic surfmers.  

Surfmers can be also classified according to the presence and the type (if existing) of functional 

groups in the hydrophilic head of their structure. Among the functional groups, mostly sulfate,46 

phosphate,47-48 phosphonate,47, 49 carboxylate, quaternary ammonium46 or even BODIPY  

(4,4-difluoro-4-bora-3a,4a-diaza-s-indacene)50 functional groups have been linked to different 

hydrophobic chains. The combination of polar amino acids and non-polar alkyl chains (with 

different lengths, structures, and number) leads to the development of chiral and polymerizable 

molecules with high surface activity, and specific physicochemical and biological properties.  

Amino acids and amino acid-based molecules are chiral structures that cannot be superposed with 

their mirror image. The asymmetry property of chirality counts with great relevance in many 

branches of science. In chemistry, the chirality of molecules is generally related to the presence of 

an asymmetric atom of carbon and to the existence of two different enantiomers or optical isomers. 
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The plane of polarization of a linearly polarized light that passes through a chiral molecule rotates 

along the axis of the source clockwise (to the left) or anticlockwise (to the right) in the presence of 

dextrorotatory (D) or levorotatory (L) enantiomers. Equimolecular mixtures of enantiomers with the 

same constitution (i.e., racemic mixtures) cancel the rotation of the linearly polarized light. The 

enantiomers present identical chemical and physical properties in a symmetric environment, which 

hinders their identification or separation by physical/chemical methods. However, their ability of 

rotation of the polarization plane of linearly polarized light in opposite directions establishes the 

bases for identification of the chirality of molecules by circular light polarization. The biological 

behavior of a pair of pure enantiomers is commonly different, which justifies the great interest of 

the pharmaceutical sector on the development synthetic processes with controlled 

enantioselectiviy.51 In this context, the use of chiral molecules has been widespread to introduce 

stereochemistry in inorganic chemistry, organic chemistry, physical chemistry, biochemistry, and 

supramolecular chemistry.52 

In biology, all natural amino acids (except glycine) are homochiral (with uniform chirality) and are 

produced in the L-form, whereas sugars are naturally present in D-form. Such homochirality seems 

to be a form of storage of biological information, which reduces the entropic barriers for the 

formation of large organized molecules. We have used this principle for the preparation of amino 

acid-based nanoparticles to control the stereochemistry of asymmetric organocatalysis.  

The synthesis of amino acid-based polymerizable surfactants (e.g., sodium lauroyl sarcosinate 

(SLSar), sodium myristoyl sarcosinate (SMSar), and sodium lauroyl glutamate (SLGlu),53 or 

undecanoyl-L/D-glutamic acid, and methacryloyl-aminoundecanoyl-L/D-glutamic acid54) has been 

reported for the preparation of stable polymer particles by free-radical emulsion53 and 

miniemulsion54 polymerization. The chiral nanoparticles were used for the enantioselective 

crystallization of a conglomerate system (i.e., rac-asparagine).54 A proline-based polymerizable 

surfactant has been conceived in Chapter 6 for the preparation of chiral and magnetoresponsive 

nanoparticles for the enantioselective catalysis of the intermolecular aldol reaction. 

 

2.5 Synthesis	of	Inorganic	Nanoparticles	

2.5.1 Synthesis	of	Superparamagnetic	Magnetite	Nanoparticles	

Superparamagnetic nanoparticles are commonly related to transition metal oxides with a spinel 

structure (M3O4) and sizes in the range of Weiss domains (4–5 nm).55 Due to the alignment of the 
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spins, the nanostructures present a paramagnetic behavior upon exposition of even small external 

magnetic fields, and high magnetic fields are consequently induced within the particles without any 

retention.3 Regarding the synthesis, such particles are mainly synthetized by thermal or pH-based 

methods.56 On the one hand, the thermal techniques consist of a controlled decomposition of 

precursor molecules at high temperatures followed by crystallization (i.e., nucleation and growth) 

processes. The strategy allows the achievement of controlled particle sizes and morphologies.57 On 

the other hand, the change of the pH value results into the deprotonation of precursor molecules 

and further formation of particles58-59 with a wider size distribution under basic conditions. This 

second technique has been used in this work for the preparation of 5–10 nm magnetite (Fe3O4) 

nanoparticles whose surface was functionalized for the incorporation within different polymer 

matrices. 

2.5.2 Synthesis	of	Crystalline	Ceria	Nanoparticles	

Crystalline cerium(IV) oxide (CeO2) nanoparticles offer excellent physical and chemical (i.e., acid–

base, redox (Ce4+/Ce3+), and oxygen exchange) properties, which are significantly enhanced with 

respect to the bulk particle properties. Nanosized ceria has been considered for applications in 

nanotechnology, such as catalysis,60 fuel cells, oxygen or hydrogen storage,61 or for the 

development of optical devices.62 According to the requirements of these applications, in the last 

two decades, the synthesis of crystalline ceria nanoparticles and the control over the crystallinity, 

the particle size, and the morphology has been achieved by a wide variety of methods. In this 

context, sol–gel,63 sonochemical,64 spray hydrolysis,65 combustion,66 precipitation,67-68 

hydrothermal,69-71 mechanochemical,72 or more complex combinations of sonochemical and 

microwave assisted73 or sol–gel and microwave methods74 have been developed. Precipitation 

strategies (i.e., chemical precipitation, or other variations as two-emulsion,75 semi-batch,76 in 

micelles/microemulsion77 precipitation) present a great attractiveness due to the low prize of the 

salt precursors, and the simplicity, easy scalability, and the mild conditions of pressure and 

temperature of the method. Furthermore, the precipitation technique has been used for the 

straightforward preparation of surface-functionalized ceria nanocrystals in an aqueous solution 

containing different capping agents.78 

We have prepared crystalline ceria nanoparticles by chemical precipitation at room temperature in 

an aqueous medium. Depending on the requirements of hydrophobicity of the particles, the 

inorganic surface functionalization was achieved afterwards via silane chemistry strategies, 

described in section 2.5.3. The synthesis is based on the oxidation of the cerium(III) ions from an 

aqueous solution of a metal precursor salt (i.e., cerium nitrate hexahydrate salt) to cerium(IV) with 
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the controlled basification of the media (i.e., with sodium hydroxide). The overall process79 results 

from a multistep synthesis, whose complexity in terms of formation of possible hydrated 

complexes has been simplified. 

2Ce(NO!)! +
!
!
O! + 6OH!                    2CeO! + 𝐶𝑒!! + 3H!O (2.7) 

Initially, the precipitation of the unstable hydroxides of Ce(OH)3 occurred and the initially 

transparent solution turned into light brown, characteristic from this product with low solubility 

constant (Ks = 7×10−21) in water.77 With the evolution of the reaction in basic media, the oxidation 

of Ce(III) to Ce(IV) leads to the formation of more stable hydroxides, Ce(OH)4 , and the 

precipitated turned into purple.  

Ce!! + 3OH!                    Ce(OH)!                 Ce(OH)! (2.8) 

The final white pale solution with crystalline structures of ceria (CeO2) was achieved by 

condensation of the hydroxides, as shown in Scheme 2.1. For simplicity reasons, the formation of 

hydrated Ce(IV) ions, and hydroxides complexes (Ce(OH)x(H2O)y
(4−x)+),80-81 whose deprotonation 

by the molecules of water leads to the nucleation of ceria nanoparticles,77-78, 82-83 has not been 

considered in the scheme.  The yellowish nanocrystals of cerianite were recovered after 

centrifugation.  

 

Scheme 2.1. Simplified representation of the condensation of hydroxides Ce(OH)4 to CeO2. The presence of 
hydrated complexes has been omitted for simplicity reasons.  

2.5.3 Functionalization	of	Inorganic	Nanoparticles	

Inorganic nanoparticles commonly present a homogeneous composition in the whole structure, 

which is protected by hydrophilic surfaces with charged groups (e.g., OH− groups). For most of the 

applications, post-synthetic functionalization strategies are required to provide the metal/metal 

oxide surface with functional, reactive, or compatibilizing groups. The inorganic surface 

functionalization has been traditionally addressed by different strategies, using surfactants (e.g., 

cetyltrimethylammonium chloride, CTAB)84-85 specific reactive groups (e.g., oleic acid (OA) for 
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magnetite,58 or thiol groups for gold86) or by preparation of core–shell structures.86-88 These 

strategies allowed either the direct application of the inorganic species or favored further surface 

modifications. 

In this thesis, the incorporation of functional metal oxide (i.e., titania, ceria, and magnetite) 

nanoparticles within polymer matrices (i.e., polystyrene (PS), poly(methyl methacrylate) (PMMA) 

and polyurethane (PU)) has been approached via inorganic surface functionalization with silane 

components. Chapter 4 presents the use of three alkoxysilane components for the hydrophobization 

of metal oxides nanoparticles. Not only the hydrophobicity, but also the chemical structure of the 

functional groups would determine the inorganic incorporation within the hybrid nanostructures. 

Due to the variability in terms of inorganic species, particle size and morphologies, and the aimed 

final morphologies, the silanization strategy was used as a versatile technique that offers a wide 

spectrum of functional groups and chain lengths. Surface functionalization of metal oxide 

nanoparticles using alkoxysilane components is a sequential process with different steps as shown 

in Scheme 2.2. 

 

Scheme 2.2. Schematic representation of the functionalization of metal oxide nanoparticles using 
trialkoxysilane components as coupling agents. (Based on ref. 89) 
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2.6 Specific	 Strategies	 for	 the	 Preparation	 of	 Polymer–Inorganic	 Hybrid	

Nanoparticles	and	Capsules	in	Miniemulsion		

2.6.1 Synthesis	of	Hybrid	Nanoparticles	by	Miniemulsion	Polymerization	Processes	in	

the	Presence	of	Preformed	Inorganic	Components	

In the last decade, the preparation of superparamagnetic hybrid nanoparticles with no citotoxicy 

and high biocompatibility has been intensively studied for tracking, targeting, and treatment and 

diagnosis applications in biomedicine. In this context, magnetite (Fe3O4) nanoparticles have been 

encapsulated within different polymer matrices (e.g., poly(methyl methacrylate) (PMMA),37,90,91,92 

polystyrene (PS),93,94 poly(styrene-co-methacrylic acid) (P(S–MA)),93,95 poly(styrene-co-styrene 

sulfonate) (PS–SS),96 poly(styrene-co-4-vinyl pyridine) (P(S–4-VP)),96 or poly(acrylic acid) 

(PAA)97 via miniemulsion polymerization processes. In this type of strategies, the incorporation of 

inorganic nanoparticles required the hydrophobization of their surface for the compatibilization 

with the monomer and the forming polymer. Different degrees of encapsulation of magnetite were 

reached using oleic acid (OA),90-92 ammonium oleate in acid media,93-96 or silane compounds such 

as 3-(methacryloyloxy)propyl trimethoxysilane (MPS)97-98 and octadecyl trimethoxysilane 

(ODTMS)13,98 as coupling agents. In this fashion, the surface functionalization of preformed 

inorganic nanoparticles (e.g., silica (SiO2)99-100 or magnetite98) via silane chemistry is highlighted as 

a versatile strategy to address the inorganic migration within a forming polymer matrix. The wide 

range of chain lengths and functional groups available among trialkoxysilane components offer 

more flexibility and effectiveness than the traditional carboxylic acids (e.g., OA) or ionic 

surfactants (e.g., CTAB). The use of silanes with polymerizable vinyl moieties, such as MPS, 

allowed the homogeneous encapsulation and fixation of metal oxide nanoparticles via the 

copolymerization with the surrounding monomer (e.g., MMA). In the case of polymer matrices 

based on the use of mixtures of the styrene (S) and 4-vinyl pyridine (4-VP), the MPS-

functionalized silica nanoparticles formed an inorganic core chemically bonded to polystyrene, 

whereas raw silica nanoparticles added post-sonication stayed anchored to the polymer surface 

through acid–basic interactions between the silanol group of silica and the amino group of 4-VP.101 

At high pH values, double-decked raspberry-like morphologies were reached. The use of silane 

components, such as ODTMS, with longer alkyl chains and the absence of polymerizable units 

resulted into thermodynamically preferred structures with the inorganic component at the surface of 

polymer particles or Janus-like morphologies.13,98-100 The combination of traditional coupling agents 
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(e.g., OA) and silane components (e.g., MPS) was also reported as a synergic hydrophobization 

strategy that lead to mono- or multi-core structures depending on the sonication time.102  

Polymer-grafting strategies have also been used for inorganic (e.g., silica) surface functionalization. 

Alkoxyamine initiators with a functional group were used as an alternative to functionalizing 

agents, which allowed the controlled growth of polystyrene chains on the silica surface. After 

miniemulsion polymerization, the polystyrene-grafted silica nanoparticles resulted entrapped within 

a polystyrene matrix. In this case, hybrid core–shell structures were achieved by adjusting the 

molecular weight of the grafted polymer.103 

Other authors have addressed the structural control of hybrid nanoparticles by tuning the size of the 

inorganic nanoparticles (e.g., silica),13,104,105,106 the nature and the concentration of the surfactant,105 

or the use of auxiliar comonomers.104-107 MPS-functionalized silica nanoparticles were incorporated 

within polystyrene102-104 and PMMA106 matrices, including auxiliar comonomers such as 4-VP101 or 

butyl acrylate (BA).105-106 The incorporation of soft comonomers with carboxylic groups (e.g., BA) 

reduces the surface energy of the nanodroplets due to structural similarity with the organomodified 

silica.107 The encapsulation of silica forming multi-core structures was improved with the reduction 

of size of the inorganic nanoparticles, whereas raspberry-like or core–shell structures were 

achieved by modification of the surfactant concentration.104-105 

From an inorganic perspective, a wide range of species has been incorporated within polymer 

matrices prepared by miniemulsion polymerization processes. For instance, clay platelets were used 

in the preparation of poly(methyl methacrylate-co-butyl acrylate) (P(MMA–BA) hybrid 

nanoparticles for the development of films. According to the application, butyl acrylate, allyl 

methacrylate, stearyl acrylate, and n-dodecyl mercaptan were used as soft comonomer, cross-

linking agent, costabilizer, and as chain-transfer agent to control the crosslinking density and the 

adhesion properties of the material. The larger dimensions of the clay platelets respect to the 

miniemulsion droplets resulted into dumbbell-like structures with the clay platelets embedded 

between two polymer particles or located at the particle/water interface. The hybrid morphology 

was determined by the functionalization of the clay platelets with  

(2-methacryloxyethyl)hexadecyldimethylammonium bromide or methyl-bis-2-hydroxyethyl tallow 

ammonium.108 P(MMA–BMA) nanoparticles with clay platelets engulfed within the matrix were 

also prepared by a semi-batch miniemulsion polymerization processes using a redox system  

(t-butyl hydroxyperoxide (TBHP) and ascorbic acid) as initiators. A fresh inlet of monomers, 

stearic acid and boric acid for auxiliary stabilization, and an oil-soluble initiator (AIBN) lead to a 

seed-emulsion polymerization governed by droplet and micellar nucleation mechanisms. The 
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strategy allowed the increase of the solid content of the final dispersion close to industrial 

requirements.109 Nickel nanoparticles hydrophobized with oleylamine and triphenylphosphine were 

also incorporated within polystyrene and PMMA matrices. The hybrid morphology was related to 

the anionic (e.g., sodium dodecyl sulfate (SDS)) or non-ionic (e.g., poly(ethylene oxide) hexadecyl 

ether (Lutensol AT50)) nature of the surfactant and the high (e.g., KPS) or low polarity (e.g., 

AMBN) of the initiator. The study revealed that the compatibilization with the monomer does not 

ensure the encapsulation of the inorganic nanoparticles within the polymer. Increasing the level of 

complexity of the inorganic system, β–diketonate metal complexes Me(tmhd)  (tmhd =2,2,6,6-

tetramethyl-3,5-heptanedione) of Gd, Eu, Tb, La, Yb, Co, Cr, Al, Mn, In, Bi, Ga, Cu and Ag were 

integrated within a PMMA matrix using different surfactants combinations. The metal components 

were restricted via complex self-assembly processes in a bilayer conformation created between 

lamellar surfactants and the polymer matrix. The hybrid morphology was controlled with the chain 

length of the anionic surfactants, which determines the interlayer distance. Nano-onions or kebab-

like structures were respectively formed when sodium alkylsulfates or dodecylphosphates, and 

sodium carboxylates were used as surfactants.110 The miniemulsion polymerization strategy was 

also suitable for the incorporation magnetic (Mn12O12(VBA)16(H2O)4 and 

Mn8Fe4O12(VBA)16(H2O)4)111 and zirconium (Zr4O2[O(O)CC(CH3)=CH2]12 (Zr4))112 oxoclusters 

within PS111 and PMMA112 matrices. The incorporation of the vinylbenzoate (VBA) ligand and 

vinyl groups in the hybrid structure of the oxoclusters enabled the copolymerization with the 

monomers. The hybrid morphology, the cross-linking, and the swelling degree of the final structure 

was related to the anionic (e.g., SDS) or non-ionic (e.g., Lutensol AT50) nature of the surfactant, 

the cluster content, and the reticulation of the polymer chains.112 

In contrast to direct miniemulsions, only few examples have been reported on free-radical 

polymerization processes in inverse systems for the preparation of hybrid particles. Poly(2-

hydroxyethyl methacrylate) (PHEMA)) nanoparticles containing hydrophilic metal salts 

(combinations of metal cations (Fe2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+) and BF4
−, NO3

−, and Cl− 

ions) were prepared by miniemulsion polymerization in cyclohexane by using AIBN as initiator. 

The distribution of the salt within the polymer was mainly determined by electrostatic cation–ion 

interactions of the salt.113 

In Chapter 4, catalytically active (ceria (CeO2) or titania (TiO2)), or magnetoresponsive (magnetite) 

nanoparticles were incorporated within polystyrene or PMMA matrices via free-radical 

polymerization processes in direct miniemulsions. The selective migration of the inorganic 

nanoparticles within the polymer was addressed by inorganic surface functionalization using 
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alkoxysilane components with different chemical structures. The strategy was further extended 

towards the preparation of a second generation of multifunctional nanoparticles incorporating 

complementary inorganic functionalities with different surface chemistry. 

2.6.2 Synthesis	of	Nanoparticles	by	Pickering	Miniemulsion	Polymerization		

Pickering stabilization (described in section 2.4.2) has been used as a surfactant-free strategy for 

the synthesis of hybrid nanoparticles by miniemulsion polymerization. Schrade et al.34 published a 

detailed revision about heterophase polymerization processes in Pickering-stabilized emulsions. 

Nowadays, the technique is widely spread in direct systems, in which the chemical environment 

determined by the pH value and the ionic strength of the aqueous phase has a great influence in the 

characteristics of the surface and the stabilizing ability of the particles. The electrochemical 

principle of the electric double layer shown in Figure 2.6 is related to the colloidal stability of 

miniemulsions and it establishes that a charged particle in an electrolyte solution is surrounded by a 

double layer of ions with opposite charge.114  

  

Figure 2.6. Schematic representation of the electrostatic principle of the double layer. (Based on ref. 115) 

The ionic corona is constituted by two regions formed by the Helmholtz inner layer (with its 

respective inner (IHL) and outer Helmholtz (OHL) layers) and the diffuse layer. The Helmholtz 

layer includes the ions more strongly bonded to the particle surface, whereas the distribution of the 

ions in the diffuse layer is governed by electrostatic forces and a random thermal motion. The 
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surface potential (Ψ0) surrounding the particle surface drops until a minimum value in the IHL (Ψi), 

and follows a linear tendency along the Helmholtz layer until the Stern potential at the OHL(Ψs). 

Then, the electric potential follows an exponential tendency towards the zero value in the diffuse 

layer.	 The addition of salts (e.g., sodium chloride) to the aqueous phase of direct Pickering 

miniemulsions is commonly used as a costabilization factor. The salt promotes a slight colloidal 

instability compressing the electrostatic corona of the nanodroplets, creating partial flocculation 

and increasing the partitioning of the inorganic particles to the oil-water interface where they 

reversible adhere during emulsification.116
	

Poly(vinyl acetate-co-vinyl neodecanoate) latexes were prepared using silica nanoparticles 

modified with 2-[methoxy (polyethyleneoxy)propyl] trimethoxy silane as inorganic stabilizer.117-118  

The authors used the polyethylene oxide chains as coupling agent, which allowed Pickering 

stabilization but did not guarantee the stability of the final dispersion. In this context, the nature of 

the initiator (i.e., hydrophobic or hydrophilic, ionic or non-ionic, and with thermal or redox 

activation) played a critical role on the final stability. At higher loads of emulsifier, the particle size 

and the molecular weight of the polymer decreased. Titania nanoparticles functionalized with 

acetyl acetone and parabenzene sulfonic acid,119,120 and ceria nanoclusters121 were used as 

emulsifiers in the free-radical copolymerization of BA and MMA. Titania resulted into 

homogeneously covered honeycomb nanostructures,119 whereas the irregular shape of the clusters 

of ceria hindered a complete inorganic coverage.121 During the early stages of the polymerization in 

nanoparticle-stabilized miniemulsions, the changes between the droplet/water and the forming 

particle/water interfaces can affect the metal oxide–polymer affinity, modify the inorganic 

adsorption energy, and create slight coalescence problems. Therefore, the total conversion of the 

monomers was restricted and some bucket morphologies appeared due to the accumulation and 

further evaporation of the unreacted monomer.119,121 In addition, some empty polymer particles 

(i.e., without inorganic species) were formed due to homogeneous nucleation processes generated 

by radicals from the aqueous phase.117 Similar drawbacks were observed when clay disks were used 

as stabilizers in the polymerization of MMA or MA using water-soluble initiators.122 Better results 

were achieved using hydrophobic monomers (e.g., styrene, lauryl methacrylate, butyl methacrylate, 

octyl acrylate or 2-ethyl hexyl acrylate), and dimethyl-2, 2-azobis(isobutyrate) as oil-soluble and 

non-ionic initiator. Nevertheless, some compartmentalization and intermediate monomer 

conversions were still found within the smaller nanoparticles. 

In this thesis, Pickering miniemulsion polymerization was used for the preparation of 

magnetoresponsive polystyrene-supported ceria nanoparticles for catalytic applications. Figure 2.7 
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offers a schematic representation of the synthetic strategy. The encapsulation of MPS-

functionalized magnetite nanoparticles within a polystyrene matrix by miniemulsion 

polymerization described in the section 2.6.1 is combined with the Pickering stabilization achieved 

using catalytically active ceria nanoparticles.  

 

Figure 2.7. Scheme of the preparation of magnetoresponsive polystyrene-supported ceria nanocatalysts by 
Pickering miniemulsion polymerization. (Based on ref. 14) 

 
2.6.3 Synthesis	 of	 Hybrid	 Nanoparticles	 in	 Minimemulsion	 Using	 the	 Surface	 of	

Preformed	Polymers	as	Supports		for	the	In-Situ	Inorganic	Crystallization	

The use of polymer nanoparticles as supporting templates for inorganic synthesis via in-situ 

crystallization processes belongs to the strategies type C defined in section 2.1.1. The controlled 

crystallization of different metal oxides (e.g., ceria,6 maghemite (Fe2O3), magnetite (Fe3O4) or zinc 

oxide (ZnO))47 has been performed using PMMA and polystyrene nanoparticles as organic 

templates for the preparation of hybrid nanoparticles with accessible inorganic functionalities. The 

polymer structures were prepared by miniemulsion polymerization processes in aqueous47 or 

alcoholic (methanol, ethanol, and 2-propanol) media.47 This type of synthesis requires the 
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introduction of functional groups (e.g., carboxylic, phosphate, phosphonate or sulfate groups) 

accessible on the polymer surface to allow the complexation of metal ions (e.g., Ce(IV) ions), as 

precursors of the final crystalline particles. After polymerization, the metal ions are incorporated in 

the system by external addition of a metal-based salt (e.g., cerium nitrate hexahydrate). The metal 

ions complexate on the polymer surface and the subsequent the metal oxide (e.g., ceria) 

nanoparticles are crystallized by controlled addition of a precipitating agent (e.g., sodium 

hydroxide). As a consequence, a layer of crystalline inorganic species assembles on the polymer 

surface. The resulting inorganic particles enter in competence with the molecular surfactant and 

lead to a certain Pickering stabilization of the final dispersion.  

The surface functionalization of polymers has been traditionally reached by using available 

comonomers (e.g., acrylic acid,6, 123 maleic acid,6 ethylene glycol methacrylate, phosphate 

vinylphosphonic acid,124 or vinylbenzylphosphonic acid). The functionalization strategy was 

effective for different monomers, functional comonomers, and surfactants.6 In a similar way, the 

bioinspired mineralization of calcium phosphate was performed on differently surface-

functionalized polystyrene nanoparticles. The mineralization process was achieved through a 

sequential addition of calcium (e.g., with Ca(NO3)2⋅4H2O) and phosphate (e.g., with (NH4)2HPO4) 

ions, sufficiently spaced on time to ensure the binding of the Ca(II) ions to the polymer surface.124 

In this case, the inorganic coverage and the crystalline morphology depended only on the negative 

charges present on the polymer surface, independently of the comonomer used. Thus, the 

concentration and the nature of the surfactant, and the combined effect of the pH and the functional 

comonomer allowed to tune the crystallinity, the morphology (needle-like or platelet) of the (if 

formed) hydroxyapatite crystals, and the inorganic density on the polymer surface.123  

The incorporation of functionalities (e.g., phosphate or phosphonate groups) on the polymer surface 

by combinations of comonomers and traditional surfactants was alternatively achieved using the 

so-called surfmers (described in section 2.4.3).47 In this approach, the complexation chemistry has a 

critical role on morphology control. A dense and homogeneous coverage of the polystyrene 

nanoparticles functionalized with phosphate and phosphonate surfmers was achieved with the 

crystallization of ceria nanoparticles in aqueous media, whereas iron oxide (i.e., maghemite and 

magnetite) nanoparticles resulted into raspberry-like structures. The use of alcohol in the 

continuous phase allowed the development of raspberry-like morphologies also with ZnO and 

improved the inorganic surface density with Fe2O3 via a sol–gel-like oxide formation. The use of 

sulfate-based surfmers and hydrophilic initiators (i.e., KPS) resulted into bulk inorganic 

crystallization.  
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The in-situ crystallization strategy using acrylic acid as functional comonomer is developed in 

Chapter 5 for the preparation of magnetoresponsive polystyrene-supported ceria nanoparticles. An 

overview of the synthetic process is schematically presented in Figure 2.8. The great efficiency of 

inorganic coverage traditionally reported for this technique is compared with hybrid materials 

prepared via more challenging synthesis based on Pickering stabilization.  

 

Figure 2.8. Schematic representation of the preparation of magnetoresponsive polystyrene-supported ceria 
nanocatalysts via miniemulsion polymerization and in-situ inorganic crystallization on the polymer surface. 
(Based on ref. 6) 

2.6.4 Synthesis	of	Hybrid	Capsules	by	Phase	Separation		

Polymerization processes have been commonly performed with an increased content of the 

hydrophobe phase for the preparation of capsules in direct miniemulsions via phase separation 

mechanisms. Raspberry-like nanocapsules of P(S–4-VP) with silica nanoparticles embedded within 

the polymer shell were prepared by Pickering miniemulsion copolymerization processes using 

hexadecane as soft template and divinylbenzene as cross-linking agent.1 The colloidal stability 

relied on the interaction between a commercial silica sol and 4-VP moieties, which was highly 

influenced by the extension of the polymerization to the aqueous phase, the pH value, and the size 

of the silica particles. There exist only a few examples of the preparation of hybrid polymer–
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inorganic hybrid nanocapsules in miniemulsion, in which the metal oxide nanoparticles resulted 

contained within the liquid core. Hydrophobized silica nanoparticles were encapsulated within 

PMMA nanocapsules with a hexadecane core using the solvent evaporation approach. The 

chemical similarity between the surface of the MPS-functionalized silica and the monomer/polymer 

system resulted into a low interfacial tension between phases and the assembly of the inorganic 

species within the PMMA shell. The higher affinity of ODTMS-functionalized silica nanoparticles 

for the hexadecane phase lead to the preferred retention of the inorganic system within the liquid 

core of the capsules. Double emulsions or solvent evaporation strategies have also been used for 

the encapsulation of inorganic nanoparticles (e.g., magnetite)1,125 within different polymer capsules. 

Sundber126 carried out a complex theoretical and empiric study based on the morphological 

development of a system consisting of three organic phases inside an emulsion droplet. However, 

the complexity of the control of such systems is beyond the scope of this thesis.  

2.6.5 Synthesis	of	Hybrid	Capsules	via	Chemical	Processes	at	the	Droplet	Interface	of	

Miniemulsions	

The droplet interface of miniemulsions offers a platform for the preparation of hybrid polymer–

inorganic nanocapsules. Both the organic and/or the inorganic components from the hybrid 

structure can be synthetized via interfacial processes. This type of strategies has been mostly 

exploited in inverse miniemulsions. 

The inorganic species of hybrid nanocapsules can be synthetized via sol–gel processes taking place 

at the droplet interface of miniemulsions. In this fashion, the synthesis of silica nanocapsules has 

been commonly reported using tetraethyl orthosilicate (TEOS), a traditional silica precursor, whose 

hydrolysis and condensation reactions are driven at the droplet interface under acidic or basic 

conditions.127,128 Similar interfacial sol–gel processes have been reported for the preparation of 

nanocapsules with metals from group 4. In those cases, the metal precursor present in the 

nanodroplet was precipitated by the controlled addition of a base soluble in the continuous phase 

and partially soluble in the disperse phase (e.g., triethylamine).129  

From a polymer perspective, the synthesis of hybrid capsules has been commonly related to 

polyurea, polyurethane,130 or biopolymers (e.g., potato starch) 131 shells formed via interfacial 

polyaddition or polycondensation of diisocianates using low-molecular diamines or diols in the 

presence of inorganic nanoparticles. Polyurea–magnetite nanocapsules were prepared via an 

interfacial polyadition reaction between 1,6-diaminohexane (HMD) and toluene-2,4-diisocyanate 

(TDI). The amine moieties of polyisobutylene-succinimide pentamine allowed the control of the 
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partial reaction of TDI according to its ratio with the monomer. Magnetite nanoparticles were 

embedded within the polymer shell as a result of the phase segregation occurred during the 

polymerization.130 A similar interfacial polyaddition reaction between 1,6-hexanediol and TDI in 

cyclohexane allowed the preparation of polyurethane–silica hybrid capsules with an aqueous core.9 

The surface of commercial silica nanoparticles was tuned with trimethoxy(propyl)silane (PTMS) to 

promote the Pickering stabilization of the miniemulsion. Figure 2.9 shows the preparation of the 

polyurethane–metal oxide hybrid capsules by interfacial polymerization in inverse Pickering 

emulsions. Furthermore, interfacial polymerization processes and inorganic synthesis have been 

simultaneously combined in more challenging strategies, which are beyond the scope of this 

thesis.2 

 

Figure 2.9. Scheme of the preparation of polyurethane–inorganic capsules by interfacial polymerization 
process in an inverse Pickering miniemulsion.  

Interfacial polyaddition reaction between 1,6-hexanediol and TDI has been used in this thesis for 

the preparation of magnetoresponsive polyurethane capsules in inverse emulsions stabilized with 

magnetite and/or titania or ceria nanoparticles. The development of magnetoresponsive capsules is 

described in Chapter 7 for the encapsulation of phase change materials (PCMs) for thermal energy 

storage applications.   
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 Characterization	Techniques	3
 

3.1 Colloidal	Characterization	

3.1.1 Dynamic	Light	Scattering	(DLS)	

The technique of dynamic light scattering (DLS), also named as quasi-elastic light scattering 

(QELS) or photon correlation spectroscopy (PCS), uses the Brownian motion of the 

macromolecules present in a dispersion of nanostructures to establish a correlation with the particle 

size and size distribution. The solvent molecules and the surrounding nanoparticles in a colloidal 

dispersion promote the continuous and random Brownian motion of individual particles.132-133 The 

Brownian motion can be described with the translational diffusion coefficient (D), which is directly 

proportional to the Boltzmann constant (kB) and the temperature (T), and inversely proportional to 

the particle size (the hydrodynamic radius, Rh) and the viscosity of the media (η):133 

𝐷 =
𝑘!𝑇
6𝜋𝜂𝑅!

 (3.1) 

A dynamic light scattering equipment produce monochromatic light beams that scatter in all 

directions when encountering the macromolecules/particles diffusing within a dispersion. The 

intensity of the scattered light is recorded in a detector. As the scattering particle is moving, a 

stationary observer (i.e., the detector) will appreciate differences between the frequency (and, thus, 

the intensity) of the scattered and the incident radiation, which is known as the Doppler effect. 

Therefore, the Brownian motion of the particles in the dispersion will cause a fluctuation of the 

intensity of the signal collected in the detector. The particle size plays an essential role in the 

diffusion of the particles in the media, and it also determines the rate of the fluctuation in the 

intensity of the scattered light. A digital autocorrelator interprets the statistical fluctuations of the 

intensity in time of ns to µs. On the one hand, the system uses correlation functions (G) that 

describe the motion of the particles as an integral of the product of the intensities at a time t and a 

delayed time (t + τ) with a lapse of time τ: 

𝐺 𝜏 = 𝐼 𝑡 𝐼 𝑡 + 𝜏  (3.2) 

On the other hand, the relative motion of the particles in solution is correlated by an electric field 

correlation function. Both the electric field and the intensity correlation functions can be coupled 

assuming that only the scattered light is detected and that the photons are counted via a random 

Gaussian process. For monodisperse samples the electron field correlation factor decays 
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exponentially depending on a decay constant or relaxation rate (Γ), which is related to the diffusion 

coefficient: 

𝛤 = −𝐷𝑞! (3.3) 

According to eq. (3.3), the relation is based on the magnitude of the scattering vector (q), which is 

defined as the difference between the scattered and the incident wave vectors. Thus, q is expressed 

in terms of the refractive index of the medium (n0), the wavelength of the incident radiation in air 

(λ0), and the scattering angle (θ): 

𝑞 =
4π𝑛!
𝜆!

sin
𝜃
2  (3.4) 

The adjustment of the intensity of the correlation function to a simple exponential decay using two 

constants (A and B) associated to the base line and the intercept of a correlation function, allows 

the calculation of the diffusion coefficient: 

𝐺 𝜏 = A 1 + B𝑒!!!"  (3.5) 

Then, the hydrodynamic radius, defined as the radius of a hypothetical sphere that diffuses at the 

same rate than the particle of study is calculated using the Stokes–Einstein equation for hard 

spheres: 

𝑅! =
𝑘!𝑇
6𝜋𝜂𝐷 (3.6) 

In the case of polydisperse samples, the intensity correlation function is expressed as a combination 

of several exponential decays. As an accepted convention, the logarithm of this function is fitted to 

a quadratic expression with constants a, b and c: 

ln𝐺 𝜏 = 𝑎 + 𝑏𝜏 + 𝑐𝜏! (3.7) 

The width of the distribution defines polydispersity index (PDI): 

PDI =
2𝑐
𝑏!  (3.8) 

The resulting particle size distribution is an intensity distribution, which can be translated into 

volume and number distributions assuming the spherical morphology of the particles.134 The 

intensity distribution commonly gives a more accurate characterization of homogeneous size 

distributions. In the presence of two (or more) size populations the volume distribution would 

provide a more realistic approach, whereas the number distribution would become unreliable. 
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3.1.2 Polyelectrolyte	Titration	(PCD)	

The polyelectrolyte titration is an analytic technique used to determine the surface charge density 

of polymer particles with a functional surface. The method relies on the stoichiometric reaction 

between the surface charges and an oppositely charged polyelectrolyte (e.g., 

poly(diallyldimethylammonium chloride) (polyDADMAC) as shown in Figure 3.1. 

    

Figure 3.1. Schematic representation of the electrostatic interaction between the negatively charged surface 
of a functionalized polymer particle and the positively charged chains of polyDADMAC. (Based on ref. 115) 

For the determination of the effective charge of functional nanoparticles, an aqueous dispersion of 

charged nanoparticles with a volume Vs and a solid content or fraction of solid FS is titrated with an 

aqueous solution of an oppositely charged polyelectrolyte with a molar concentration c. The 

volume (V) of polyelectrolyte required for the inflexion of the electric potential (PCD = 0) of the 

sample can be translated into a number of charged groups (Nch) using the Avogadro constant (NA): 

𝑁!" = 𝑉𝑐𝑁!  (3.9) 

The number of groups (or charges) per gram of particles is calculated as the coefficient of Nch by 

the total mass of the particles of the sample (ms), which can be calculated using the density of water 

(1 g∙cm−3) as an approximation of the density of the sample (ρ): 

𝑚! = 𝐹S𝑉!𝜌 (3.10) 

If the particles are considered as spheres with a volume Vp; the hydrodynamic radius (Rh), and the 

particle density (ρp) determine the mass of the particle (mp): 
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𝑚! = 𝑉!𝜌! =
4
3
π𝑅!!𝜌!  (3.11) 

Then, the number of charges per particle is calculated by multiplying the number of charged groups 

per sample (Nch) by 𝑚!. In addition, the assumption of spherical particles allows us to determine 

the area of the particles (Ap): 

𝐴! = 4π𝑅!! (3.12) 

According to eq. (3.9), (3.10), (3.11), and (3.12) the number of charges per unit of area (σN) is 

determined: 

𝜎! =
𝑉𝑐𝑁!𝑅!𝜌!
3𝐹S𝑉!𝜌

 (3.13) 

This technique has been used in Chapters 5 and 6 to characterize the surface charge density of P(S–

AA) and proline-functionalized PMMA nanoparticles with negative charges related to the presence 

of carboxylic groups. The deprotonation of the functional groups of the sample, which depends on 

the pH value, influences the volume of cationic polyelectrolyte (e.g., polyDADMAC) required for 

the titration. In our case, the complete deprotonation of carboxylic groups was guaranteed at a pH 

value of 9.5, and thus, the samples were basified before the determination.  

 

3.2 Thermal	Characterization	

3.2.1 Thermogravimetric	Analysis	(TGA)		

Thermogravimetric analysis (TGA) offers an evaluation of the thermal degradation experienced by 

materials within a certain range of temperatures. The technique allows us to detect fusion and 

evaporation processes and to determine the amount of organic matter present in a sample via the 

decomposition of C–C bonds. The measurement is performed in a protective chamber incorporating 

a thermobalance with the sample, a resistance in charge of the heating of the process, and a cooling 

system for the stabilization and the decrease of the temperature at the end of the thermal cycle.  

TGA measurements were carried out in this thesis under protected atmosphere of nitrogen to avoid 

the changes on the mass of the system due to oxidation processes. The inorganic load of hybrid 

materials was determined as the fraction of mass remaining after the thermal treatment. The 

incorporation of the coupling agent (i.e., the silane component) to the inorganic nanoparticles was 

also determined as the difference between the fraction of mass remaining after the thermal 

treatment of the raw and the functionalized nanoparticles. In all the cases, it exists a percentage of 
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about 2 wt.% of the organic matter that is not calcinated under inert atmosphere. The so-called 

residual carbon was determined by evaluation of pure polymer particles or organic functionalizing 

components, and it was used to correct the estimation of the inorganic/organic balance.  

3.2.2 Differential	Scanning	Calorimetry	(DSC)		

Differential scanning calorimetry (DSC) is used to determine the thermal behavior of materials that 

suffer phase transformations as a consequence of an increase or a decrease of the temperature. A 

known weight of sample contained in a measurement cell is placed next to a second reference cell 

in a calorimetric chamber fluxed with nitrogen at a constant rate. The enthalpy of the phase 

transitions and the possible thermal processes occurring are detected with the flow of heat between 

the sample and the cell of reference.3 Thus, the unit provides diagrams of heat flow as a function of 

the temperature. Thermal transitions are observed in the form of peaks, whose integration 

corresponds to the enthalpy associated to the process.  

DSC is used in Chapter 7 to study the cycles of melting and recrystallization of phase change 

materials (PCMs). The chemical and thermal stability of the hydrated salts is analyzed by 

submitting the materials to several cycles of thermal treatment around the melting and 

crystallization temperatures. The integration of the melting peaks allows the calculation of the 

capacity of the materials for the storage of thermal energy. 

 

3.3 Electron	Microscopy	(EM)	Characterization	

The shorter wavelength (λ) of the electron beams compared to visible light allows a high angular 

resolution (δ) in electron microscopes, which is used for the imaging of samples at the nanoscale. 

The smaller distance between two spot points that can be resolved by the Abbe equation is what is 

known as the angular resolution of electron microscopes:135,136 

𝛿 =
𝜆

2𝑛sin (𝛼)
 (3.14) 

According to eq. (3.14), δ is directly proportional to the wavelength of the beam (λ) and inversely 

proportional to two times the numerical aperture (nsin(α)) of the lenses system, where n is the 

refractive index of the medium and α the angular aperture of the objective lenses. 

The electron microscopy techniques (i.e., transmission electron microscopy (TEM) and scanning 

electron microscopy (SEM)) have been complementary used in this thesis for the characterization 
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of polymer–metal oxide hybrid nanoparticles and capsules both at the surface and the inner levels. 

The information revealed by TEM about the inner hybrid structures is especially important to 

verify encapsulation features. Nevertheless, the TEM observations require the corroboration 

allowed with the surface characterization by SEM, in which the deeply encapsulated inorganic 

species are not observed. 

3.3.1 Transmission	Electron	Microscopy	(TEM)	

Transmission electron microscopy (TEM) is a direct imaging technique based on the detection of 

the electrons transmitted from the interaction between the sample and an electron bean generated 

by thermal emission in a thermoionic cathode at acceleration voltages of 50–200 kV.3 A 

combination of electromagnetic lenses allows the reorientation of the beam and the interaction with 

the sample, which results into an electron scattering phenomena. The transmitted electrons that go 

through the sample are detected with a chip creating a direct image from the sample. The ratio of 

scattering of the beam depends on the properties and the thickness of the sample (i.e., heavier and 

thicker materials present stronger intensities of scattering).136 This principle is exploited for the 

differentiation between the inorganic and polymer species with greater and lighter intensities of 

scattering, respectively. The transmitted electrons allow the observation of deeply encapsulated 

inorganic species within a polymer matrix, which will not be observed with the surface observation 

allowed by SEM. 

3.3.2 Scanning	Electron	Microscopy	(SEM)	

Scanning electron microscopy (SEM) is based on the detection of secondary electrons emitted from 

the surface of a sample as a result of the interaction of the material with an electron beam.3 The 

beam is generated by thermal emission at acceleration voltages of 0.1–30 kV, and the secondary 

electrons are observed via a detector sideways located above the sample. This indirect imaging 

technique offers an observation of the sample via a scanning process performed line by line. The 

intensity of the signal received by the detector and the brightness of the image formed is 

proportional to the number of electrons emitted and the relative position of the sample and the 

detector. Thus, a three-dimensional image of the surface of the sample is generated with a spatial 

resolution determined by the size of the different sample spot points instead of the wavelength of 

the applied electron beam. 
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3.4 Characterization	of	Chemical	Composition	and	Chemical	Structure		

3.4.1 Inductively	Coupled	Plasma-Mass	Spectrometry	(ICP-MS)	

Inductively coupled plasma mass spectrometry (ICP-MS) is a mass spectrometry analytic technique 

with high speed, sensitivity, and precision used for the detection of chemical elements (specially 

metals) at very low concentrations (i.e., in the range of ppt).  

The technique uses a plasma, a partially ionizing argon gas (Ar → Ar+ + e−) generated in an 

electromagnetic torch at extremely high temperatures (i.e., 10,000 K) to promote the nebulization, 

atomization and further ionization (M → M+ + e−) of the samples. The ions from the plasma are 

extracted through a series of cones into a mass spectrometer. In this unit, the ions are separated 

according to the mass/charge ratio providing the detector with signals proportional to the specific 

concentration of each ion.  

In this thesis, ICP-MS analysis was used for the determination of specific meals (i.e., titanium, 

cerium or iron), present in multifunctional hybrid nanoparticles. The metal concentration allowed 

us to quantify the inorganic load (i.e., titania, ceria or magnetite) of multifunctional hybrid 

materials in which TGA is not able to discern between the different inorganic species. Due to the 

presence of polymer-based matrix particles, a digestion process of the samples with strong acids 

was required before characterization. 

3.4.2 X-Ray	Diffraction	(XRD)	

X-ray diffraction (XRD) is a physicochemical technique used to investigate the structural and the 

crystalline characteristics of materials. It allows the description of the phase composition of the 

sample, and the order and perfection of crystals (i.e., crystallinity, unit cell parameters, crystal 

structure refinement or Rietveld,137 and crystallite size).138 

X-rays are electromagnetic waves with a wavelength (λ) that scatter when striking with a regular 

array of electrons.139 The elastic scattering generates secondary waves, which are mostly cancelled 

by a destructive interference between each other. However, when the waves scattered by different 

planes present a path-length equivalent to a multiple n of the wavelength of the incident wave, it 

takes place a constructive interaction and the addition of the secondary waves in specific directions. 

Thus, the physical phenomenon of XRD is based on the diffraction experimented by incident  

X-rays on a crystalline lattice, whose interatomic distances (1–100 Å) are comparable to the 

incident wavelength. In a diffractometer, a monochromatic beam of wavelength λ with an angle θ 

falls upon the family of parallel crystalline planes separated a distance d from each other. The 
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peaks obtained in the diffractograms correspond to the constructive interactions and their position 

allows us to calculate the interplanar distances d according to Bragg’s law:140 

𝑛𝜆 = 2𝑑 sin 𝜃 (3.15) 

A crystalline structure is characterized by the unit cell and the crystalline planes. The unit cell 

consists of the smallest unit forming the crystalline lattice by three-dimensional repetition, and it is 

defined by the crystallographic axis (with lengths a, b, c, and relative angles α, ß, γ) and the 

vertices, which are occupied by atoms, molecules or ions. Regarding the crystalline planes, it exist 

a convention to identify them using the intercepts of the crystalline planes and the axis, known as 

the Miller indices (ℎ𝑘l). The parameters of the unit cell are related to the interplanar distance (d) 

via geometrical considerations. At the same time, according to Bragg’s law, the space between the 

crystalline planes d is a function of the diffraction angle (θ), which identifies the directions of the 

constructive interactions. The diffraction angles appear as reflections spots in the diffraction 

pattern, which are translated into specific positions of the peaks in the diffractograms whose 

diffracted intensity is also a function of 𝜃. Therefore, the crystalline structure of the sample can be 

elucidated by calculating the interplanar distance and the unit cell parameters determined from the 

position of the peaks of a diffractogram. 

If the instrumental and the lattice strain (i.e., the presence of crystalline distortions) factors are 

neglected, the broadening of the diffraction lines can be used to estimate size of the coherently 

scattering domains, commonly called as crystallite size (Lhkl): 

𝐿!!" =
𝐾𝜆

𝛽1/2 cos 𝜃
 (3.17) 

The Scherrer formula (eq. (3.17)) introduces a form factor (K) ranging from 0.89 to 1.39, which is 

often assumed as 0.94, and the full width (ß1/2) at the half maximum of a reflection on the 2 𝜃 scale 

(in radians).141 

3.4.3 Ultraviolet-Visible	Spectroscopy	or	Spectrophotometry	(UV-Vis)	

Ultraviolet-visible (UV-Vis) spectroscopy is an absorption (or reflectance) spectroscopic technique, 

which determines the amount of light with a certain wavelength in the electromagnetic spectra from 

the ultraviolet to visible region that is absorbed (or reflected) by a sample. In this region, the 

absorption processes are related to atomic and molecular electronic transitions that occur when the 

requirement of energy is comparable to the energy of the photon.142 According to the Lambert–

Beer law, the absorbance of a sample in solution is related to the concentration of the absorbing 

species: 
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The decrease of the intensity of the incident light (I0) after passing through a sample in solution 

(i.e., with a transmitted beam (I)) is related to the molar absorptivity or the extinction coefficient (ε) 

of a solvent at a certain temperature and pressure conditions, the concentration of the absorbing 

species (c) and the path length (d) of the light through the sample. For a fixed path length 

corresponding to the width of a measurement cell, the concentration of absorbing species in 

solution can be calculated. With the aid of a calibration curve, which allows us to adjust the 

changes of the absorbance with the concentration, the technique is used to track the evolution of the 

concentration of absorbing species.  

UV-Vis spectroscopy has been used in Chapter 7 to study the release of the dye Brilliant Blue FCF 

encapsulated within magnetoresponsive and/or catalytic hybrid capsules. 

3.4.4 High	Performance	Liquid	Chromatography	(HPLC)	

High performance liquid chromatography (HPLC) is a separation method whose mechanism can be 

related to a simple liquid–liquid extraction process. The technique is based on the partitioning of 

the molecules of a sample between two liquid phases, a mobile phase in constant movement 

relative to a second phase, stationary. The molecules in the mobile phase are eluted with the phase 

movement, whereas the ones partitioned in the stationary phase are retained mostly by adsorption 

interactions. During a chromatographic separation, the partition of the solute between the phases 

occurs in a range of thousands of times, which confers to the technique a high resolution for the 

separation of components with similar physical properties.143 

A pump system injects a pressurized liquid solvent (50–350 bar) containing a certain concentration 

of sample at a desired flow in a column filled with an adsorbent material. The different interactions 

of the molecular components in the sample with the column lead to specific flow rates and their 

separation occurs according to the time that they remain retained by the stationary phase.  

The travel of the solutes can be described as a random walk in which the molecules experiment 

cycles of adsorption and desorption along the column. The solute stays a time ts adsorbed at the 

stationary phase, and a time tm migrating with the mobile phase at the velocity ux. During the 

retention time tR= tm+ ts, the solute will expend a fraction of time (tm/ tR) at this speed.143 If the 

fraction of time that the solute spends in the mobile phase is correlated with the fraction of solute in 

the mobile phase of a faction of the column, the velocity of a molecule of the solute is expressed in 

terms of the retention factor (k): 

𝐴 = log
𝐼0
𝐼
= 𝜀𝑐𝑑 (3.18) 
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𝑢s = 𝑢x

𝑡m
𝑡m + 𝑡s

= 𝑢x

1
1 + 𝑘 (3.19) 

The retention factor is at the same time related to the retention time and the travelling time of the 

solvent in the mobile phase (t0): 

𝑘 =
𝑡R − 𝑡0
𝑡!

  (3.20) 

The selectivity (σ) between two components is defined as the ratio of the retention factors of two 

species (1 and 2) with neighboring peaks (tR1 < tR2): 

𝜎 =
𝑘2
𝑘1

 (3.21) 

At the exit of the column, the solutes are collected as separated zones. The signal generated by the 

detector is plotted in chromatograms as a function of time in the form of peaks with an area 

proportional to the concentration of the eluted component. A digital microprocessor allows the 

analysis of the data, the deconvolution, and the integration of the peaks to obtain the related 

parameters (i.e., retention time, area, height, and width of the peak). In an ideal case, the peaks 

would present a normal Gaussian distribution, in which the retention time (tR) is calculated at the 

maximum of the peak. The width (Wt) of the peak would be then defined at the baseline as the 

distance between the crossings of the base line with the tangents of the inflection points of the 

distribution. In practice, the ideal distribution is commonly distorted, with a tail due to the presence 

of different adsorption sites in a given component. An asymmetry factor (Asfx%) is considered for 

the analytical treatment of the data.143 The resolution (Rs) is used to evaluate the efficiency of the 

chromatographic separation of two substances with adjacent solute zones with an average width 

(Wt): 

A chromatogram offers qualitative information of a sample with the retention time of the contained 

species, as well as quantitative information about the concentration of the species, which can be 

related to the area of the peaks. This strategy was used in Chapter 5 to follow the advance of the 

hydrolysis reaction of 2-cyanopyridine to 2-picolinamide and to evaluate the catalytic performance 

of polymer-supported ceria nanocatalysts. 

In this thesis, HPLC was performed by using a reversed-phase column (RP-HPLC) with a 

moderately polar phase (acetonitrile and acidified water) that flows through a non-polar stationary 

𝑅S =
2 𝑡R2 − 𝑡R1
𝑊t1 +𝑊t2

 (3.21) 
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phase. Fused-core silica particles (2.6 µm) incorporating a straight chain alkyl group C18H37 packed 

in a cylindrical column were used as a stationary phase. The system was equipped with a pre-

column, which allowed us to decrease the working pressure and to afford the increase of the water 

content in the mobile phase. The retention time in this type of columns is decreased with the 

polarity of the molecules, whereas hydrophobic structures are retained longer. The chemical 

structure of the molecules determines the retention characteristics. In general, molecules with C–H, 

C–C and non-polar atomic bonds such as S–S are retained longer than others with a higher polarity 

(presenting polar groups such as –OH, –COO−, –NH2, or NH3
+) and greater affinity to the mobile 

phase. Not only the chemical composition, but also the spatial conformation of the molecules 

influenced by steric effects and the accessible hydrophobic surface area determine the interaction 

with the pores of the stationary phase. In general, the surface hindrance results in faster elutions. 

Thus, larger molecules or branched structures present lower retention times with respect to the 

corresponding linear isomers or shorter molecules. 

The mobile phase also determines the retention of molecules in the column. The retention of the 

different species in a sample can be increased or decreased with the addition of a less or more polar 

solvent in the mobile phase to modify the relative surface tension. The use of gradients of elution 

allows an automatic modification of the polarity and the surface tension relative to the mobile 

phase during the course of the analysis. This strategy enables the adjustment of the separation in the 

chromatogram of adjacent peaks corresponding to substances with similar chemical structures. The 

chromatographic resolution can be increased with the incorporation of inorganic salts influencing 

the surface tension of the eluent solvent, or with changes of the pH value. In this sense, the addition 

of acids or buffering agents is used to modify the polarity of the chemical species by protonation or 

deprotonation mechanisms.  
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Results	and	Discussion	

 Preparation	 of	 Hybrid	 Polymer–Metal	 Oxide	4

Nanoparticles	with	Controlled	Morphology	
This chapter is dedicated to the preparation of polymer–metal oxide hybrid nanoparticles with 

controlled morphology by direct miniemulsion polymerization. The selective migration of 

inorganic functionalities within a polymer matrix is addressed via the specific surface 

functionalization of metal oxide nanoparticles. Three alkoxysilane components with different 

chemical structures were used as coupling agents for the compatibilization of the hydrophilic 

surface of catalytically active (ceria and titania) and magnetoresponsive (magnetite) inorganic 

nanoparticles, with hydrophobic polystyrene or poly(methyl methacrylate) (PMMA) matrices. 

Silane chemistry allowed us to establish a synthetic platform to control the encapsulation of the 

inorganic nanoparticles within the polymer, the phase segregation, and the deposition of the 

inorganic functionalities on the polymer surface, or the formation of Janus-like structures.  

The strategy was extended to the preparation of a second generation of multifunctional polymer–

metal oxides hybrid nanoparticles. For this aim, two types of inorganic species with complementary 

(catalytic and magnetoresponsive) functionalities and surface functionalization were combined. 

The final accessibility of the different functionalities resulted from a self-assembly process, which 

was controlled by tuning the surface chemistry of the inorganic nanoparticles. The miniemulsion 

technique was proven to be suitable for the preparation of recyclable heterogeneous catalysts 

consisting of polymer-supported hybrid nanoparticles with a catalytic surface and a 

magnetoresponsive core. 

 

4.1 Synthesis	and	Functionalization	of	Functional	Inorganic	Nanoparticles	

Magnetite (Fe3O4), ceria (CeO2), and titania (TiO2) were selected as model inorganic species with 

catalytic and magnetic functionalities. We used a commercial dispersion of titania nanorods with an 

average length of 20 nm, whereas magnetite and ceria nanoparticles with sizes about 5–10 nm were 

prepared by (co)precipitation methods. Working with aqueous dispersions and inorganic 

nanoparticles synthetized without any calcination step minimizes the formation of inorganic 
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aggregates. The great surface area and dispersibility in aqueous media of the nanoparticles is 

critical to guarantee an efficient surface functionalization of the inorganic species. 

The surface of metal oxide nanoparticles is originally hydrophilic due to the presence of charged 

groups, such as OH−. The incorporation of hydrophilic nanoparticles within hybrid nanostructures 

with polymer matrices is commonly hindered by the differences of polarity between inorganic and 

polymer species. Typically, hydrophobization of the surface of inorganic species is required for 

compatibilization with the monomer/polymer system. The versatility of alkoxysilanes in terms of 

structure and their chemical affinity to metal oxides makes silane chemistry an attractive option for 

hydrophobization of the inorganic species. As explained in section 2.5.3, under basic reaction 

conditions, silanes are hydrolyzed to silanol groups, which condense and form oligomers that 

adsorb at the inorganic particles through interactions with the charged groups on the surface. With 

the increase of temperature, oligomers condense and form covalent bonds on the particle surface. 

After equilibration and drying, silane functionalities are irreversibly and covalently attached to the 

inorganic species.  

The functionalization strategy from previous works focused on silica75 and magnetite98  

nanoparticles was adapted to the catalytic species.  The control of the development of the hybrid 

morphologies was addressed using three silane components with specific length of the alkyl chain 

and functional end groups. Therefore, 3-(methacryloyloxy)propyl trimethoxysilane (MPS), propyl 

trimethoxysilane (PTMS), and octadecyl trimethoxysilane (ODTMS), whose specific chemical 

structures are presented in Scheme 4.1, were used to tune the hydrophobicity and reactivity of the 

inorganic particles. 

 

Scheme 4.1. Chemical structures of the three alkoxysilane components used as coupling agents for the 
surface functionalization of the magnetite, ceria, and titania nanoparticles. 

The effectiveness of the functionalization was analyzed by thermogravimetric analysis (TGA) of 

the dried nanoparticles before and after functionalization. The thermal degradation of the organic 

(MPS) (PTMS) (ODTMS)
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matter and the subsequent loss of mass observed in Figures 4.1 and 4.2 can be associated with the 

incorporated silanes. The similar thermal degradation between the last cycles of washing of the 

nanoparticles observed in Figure 4.1(a) is a hint of a covalent attachment of MPS to the ceria 

nanoparticles, which did not desorb even under application of ultrasounds in an ethanol/water 

media. Analogous results were obtained for the other combinations of silanes and inorganic 

species. Taking into account the molar mass of each silane (MODTMS = 375 g/mol,  

MPTMS = 164 g/mol, and MMPS = 248 g/mol) and the use of an identic amount of coupling agent 

proportional to the mass of inorganic nanoparticles, similar yields of functionalization were reached 

for the three silanes. 

 

Figure 4.1. TGA curves of ceria nanoparticles functionalized with MPS before and after the last washing 
operation (a), and comparative of the curves of ceria nanoparticles with the functionalization achieved with 
the three different silane compounds used in the work (MPS, PTMS, and ODTMS) (b). 

 

Figure 4.2. TGA curves of titania (a) and magnetite (b) nanoparticles functionalized with three different 
silane components (MPS, PTMS, and ODTMS), compared with the raw nanoparticles. 

In the case of magnetite, an incorporation of 35, 30, and 20 wt.% of coupling agent was obtained 

for ODTMS, MPS, and PTMS, respectively. For ceria nanoparticles, of similar size and 

morphology as the magnetite ones, 35, 30, and 10 wt.% were respectively observed. Due to the 
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higher hydrophobicity of ODTMS with respect to MPS and PTMS, the oligomers formed in 

solution precipitate faster, leading to a reduction of the silane available for the inorganic 

functionalization. From a macroscopic point of view, the precipitation of the oligomers was 

observed through the increase of turbidity of the media as previously reported by Schoth et al.75 

The respective percentages of incorporation of silanes achieved with titania nanoparticles were of 

15, 15, and 10 wt.%. The efficiency of hydrophobization of titania, especially lower with respect to 

ceria and magnetite, can be attributed to the rod-like shape and to the presence of a pre-

functionalization in the commercial particles, which allows the stability of the dispersion but 

hinders the post-functionalization with silanes. 

 
4.2 Preparation	 of	 Polymer–Metal	 Oxide	 Hybrid	 Nanoparticles	 with	

Specific	Morphology	Controlled	via	Inorganic	Surface	Functionalization	

Polymer–metal oxide hybrid nanoparticles were prepared by incorporation of preformed inorganic 

nanoparticles within a polymer support by free-radical polymerization in direct miniemulsion, as 

described in section 2.6.1. Miniemulsions were stabilized using sodium dodecyl sulfate (SDS) as a 

surfactant. The inorganic nanoparticles (20 wt.% with respect to the monomer), functionalized at 

their surface with the three previously mentioned silanes (ODTMS, PTMS or MPS), were dispersed 

within the disperse phase together with the monomer, 2,2′-azobis(2-methylpropionitrile) (AIBN) as 

an oil-soluble free-radical initiator and hexadecane as an osmotic pressure agent. The incorporation 

of different metal oxide (ceria or titania) nanoparticles with a specific surface functionalization was 

investigated by using methyl methacrylate (MMA) or styrene (S) as monomers forming the 

polymer matrix. The relative polarity between the inorganic and the polymer species plays a major 

role in the morphology development of the nanostructures. In principle, ODTMS- and PTMS-

functionalized inorganic nanoparticles would be more affine to hydrophobic polymers such as 

polystyrene, whereas MPS-functionalized species would be better integrated within PMMA. 

A certain level of dispersity in size is one of the most critical issues almost inherent to the 

miniemulsion technique. Whereas miniemulsion offers an optimized media for the preparation of 

model polymer (e.g., polystyrene) nanoparticles, the development of homogeneous hybrid 

nanostructures deals with greater complexity. The incorporation of inorganic species leads to a 

different partition within the nanodroplets. The steps of dispersion of the inorganic nanoparticles, 

homogenization of the miniemulsion phases, pre-emulsification and emulsification are essential to 

guarantee an acceptable homogeneity in size and inorganic load. Nevertheless, the formation of 
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empty polymer particles or a heterogeneous distribution of the inorganic load is practically 

unavoidable. The purification or fractioning of the particle dispersions achieved after 

polymerization offers the possibility to optimize the homogeneity of the sample and to collect the 

functional fraction of the product. As described in the following sections, the incorporation of 

magnetically recoverable inorganic species (magnetite) is the key of purification by simple 

application of an external magnetic field. In the absence of such magnetoresponsive components, 

centrifugation was used as a separation method to collect the heavier fraction of the dispersion (i.e., 

the bigger particles, which also correspond to the particles with higher inorganic load). Table 4.1 

lists the different types of polymer–metal oxide hybrid nanoparticles prepared by miniemulsion 

polymerization using different polymer, inorganic, and coupling agent combinations. The materials 

consisting of polystyrene–ceria nanoparticles are labeled as SC, followed by 1, 2 or 3 according to 

the functionalization of ceria with ODTMS, PTMS or MPS, respectively. Analogously, the samples 

named as MC present PMMA as polymer support. The labels ST and MT correspond to the 

incorporation of titania nanoparticles within polystyrene and PMMA matrices, respectively. 

Table 4.1. Material composition and main features of the polymer–metal oxide hybrid nanoparticles 
incorporating catalytic species with specific surface functionalization. 

Sample Monomer Inorganic 
Component 

Coupling 
Agent da / nm  Solid Content /wt.% 

BPb                            APc 
Inorganic 

Loadd / wt.% 
 SC1 S CeO2 ODTMS 160  ± 40 20.0 0.7 35 
 SC2 S CeO2 PTMS 170 ± 40 18.1 0.7 15 
 SC3 S CeO2 MPS 190 ± 60 19.2 1.3 10 
 MC1 MMA CeO2 ODTMS 180 ± 60 8.8 5.1 5 
 MC2 MMA CeO2 PTMS 200 ± 40 17.7 7.4 5 
 MC3 MMA CeO2 MPS 200 ± 40 19.9      7.6      5 
 ST1 S TiO2 ODTMS 180 ± 50 5.6 1.1 30 
 ST2 S TiO2 PTMS 140 ± 30 16.2 4.6 25 
 MT1 MMA TiO2 ODTMS 200 ± 70 15.7 8.3 15 
 MT2 MMA TiO2 PTMS 280 ± 40 11.2 4.6 15 
 MT3 MMA TiO2 MPS 170 ± 50 19.8 2.9 5 

a Determined by DLS before purification. 
b BP: Solid content determined before purification. 
c AP: Solid content determined after purification. 
d Determined by TGA after purification. 
 

Particle sizes (hydrodynamic diameters, d), determined by dynamic light scattering (DLS), are in 

the range 150 to 250 nm. In general, the PMMA nanoparticles are slightly larger than polystyrene 

ones with similar inorganic content. According to the one-to-one copy concept of the miniemulsion 

polymerization, this observation might be ascribed to differences in droplet sizes. In general, the 

droplet size is determined by the droplet break-up reached during the sonication step. The break-up 
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depends on the viscosity ratio between disperse and the continuous phases, in the case of pure 

liquids.144 According to this statement, the lower viscosity of MMA (0.6 cP at 20 °C) with respect 

to styrene (0.76 cP at 20 °C) would result into smaller droplets and, consequently, smaller particles 

under the same synthetic conditions, which is not the case. The incorporation of inorganic 

nanoparticles leads to an increase of the viscosity of the droplets, the viscosity ratio between the 

miniemulsion phases, and the droplet size. In addition, some counter-acting stresses appear and the 

droplet deformation occurs in the presence of high inorganic contents, aggregates or inorganic 

species with large sizes and irregular shapes (as it is the case for titania nanoparticles). The larger 

particle sizes of the PMMA-based hybrids would be explained by the higher affinity of the 

monomer/polymer system to the silanized nanoparticles, which can lead to a better entrapment of 

the inorganic functionalities within the polymer matrix. The copolymerization between the 

monomer and the functionalizing species can also favor the inorganic encapsulation and the 

subsequent increase of the particle size. Nevertheless, no clear trend is observed in the influence of 

the coupling agent or the metal oxide with respect to the size of the resulting hybrid structures. 

The comparison of the solid content before and after purification offers an estimation of the 

efficiency of the overall synthetic process. Since the purification process applied for each type of 

particles was the same, the value of the fraction recovered will depend not only on the quantity of 

sample with a minimal presence of empty polymer particles, but also on the quality of the material 

(inorganic load and homogeneity). The inorganic load was determined by thermogravimetric 

analysis (TGA) of the dried particles recovered after purification. Styrene offers an incorporation 

about 20–35 wt.% of inorganic nanoparticles functionalized with PTMS and ODTMS, as observed 

in the TGA curves shown in Figures 4.3 and 4.4. Percentages of 5–15 wt.% of inorganic load were 

achieved with of MPS-functionalized inorganic nanoparticles and PMMA-based hybrid structures. 

Figure 4.3. TGA curves of the hybrid nanoparticles incorporating ceria functionalized with ODTMS (blue 
line), PTMS (green line), or MPS (magenta line) within polystyrene (SC1-3) (a) and PMMA (MC1-3) (b). 
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Figure 4.4. TGA curves of the hybrid nanoparticles incorporating titania functionalized with ODTMS (blue 
line), PTMS (green line), or MPS (magenta line) within polystyrene (ST1-3) (a) and PMMA (MT1-3) (b). 

Electron microscopy was used to discern the migration of the inorganic functionalities within the 

polymer. Transmission electron microscopy (TEM) offers the possibility to identify encapsulated 

inorganic species that remain invisible with the surface characterization allowed by scanning 

electron microscopy (SEM). The combination of both techniques was used to build up a global 

image of the hybrid morphology, both at surface and inner levels. Figures 4.5 and 4.6 show TEM 

and SEM images of polystyrene and PMMA nanoparticles incorporating ceria with different 

surface functionalization (with ODTMS, PTMS, and MPS), whereas Figures 4.7 and 4.8 present 

the analogous cases with titania as an inorganic system.  

In agreement with the results previously reported for silica13 and magnetite98 nanoparticles, the long 

alkyl chains of ODTMS and the absence of copolymerizable end groups results into Janus-like 

structures, that is, nanoparticles show a two-sides with different nature (polymer or inorganic). The 

low affinity between the ODTMS-functionalized catalytic nanoparticles (ceria and titania) and the 

polymer matrix promotes the minimization of the contact area between polymer and inorganic 

species. The phase segregation results into the agglomeration of the inorganic nanoparticles in one 

side. In the case of polystyrene-based systems SC1 and ST1, the inorganic functionalities are 

mostly deposited on the polymer surface, as shown in Figures 4.5 and 4.7(a, d). The asymmetric 

morphology was maintained in the PMMA hybrids MC1, and MT1. For both ceria and titania 

species, inorganic agglomerates resulted partially embedded at one side of the polymer/water 

interface as observed in Figures 4.6 and 4.8(a, d). Nevertheless, the larger particle size and the 2D 

shape of titania nanorods compared with ceria nanoparticles lead to hybrid materials with greater 

polydispersity in terms of particle size and inorganic load per particle. 
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Figure 4.5. TEM and SEM micrographs of the polystyrene–based hybrid nanoparticles incorporating ceria 
nanoparticles functionalized with ODTMS (a, d), PTMS (b, e), and MPS (c, f). 

 

 

Figure 4.6. TEM and SEM micrographs of the PMMA–based hybrid nanoparticles incorporating ceria 
nanoparticles functionalized with ODTMS (a, d), PTMS (b, e), and MPS (c, f). 
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Figure 4.7. TEM and SEM micrographs of the polystyrene–based hybrid nanoparticles incorporating titania 
nanoparticles functionalized with ODTMS (a, d) and PTMS (b, e). 

 

 

Figure 4.8. TEM and SEM micrographs of the PMMA–based hybrid nanoparticles incorporating tiania 
nanoparticles functionalized with ODTMS (a, d), PTMS (b, e), and MPS (c, f). 
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monomer and the hydrophobized inorganic species. The shorter alkyl chains in PTMS in 

comparison with ODTMS increase the phase segregation process. Therefore, the inorganic 

nanoparticles remain aggregated in one side of the polymer surface, as shown in Figures 4.5, 4.6, 

4.7, and 4.8(b, e) for SC2, MC2, ST2, and MT2, respectively. 

In comparison with the previous silanes, MPS presents a methacrylic acid ester with the ability to 

copolymerize with surrounding monomers (e.g., MMA). The covalent bond between the inorganic 

species and the forming polymer matrix reduces the energetically preferred inorganic 

agglomeration and the phase segregation. Thus, a relatively homogeneous encapsulation of the 

inorganic component within the polymer matrix can be achieved,98,75 as it was proven for sample 

MC3 (PMMA–ceria nanoparticles), shown in Figure 4.6(c, f). The reduction of the inorganic 

aggregation and a more homogeneous distribution of the inorganic load were also achieved by 

using polystyrene, as observed in Figure 4.5(c, f) for sample SC3. Nevertheless, a greater 

exposition of the inorganic nanoparticles on the polystyrene surface is revealed. The incorporation 

of MPS-functionalized titania nanoparticles within the polystyrene matrix leads to the 

destabilization of the miniemulsion during the polymerization process. The lower efficiency of the 

hydrophobization of titania with MPS, together with the difficulties related to the size and 

morphology of the inorganic species hindered its incorporation. The balance between the 

entrapment and the inorganic aggregation resulted into the partial encapsulation of titania within 

PMMA in MT3, as observed in Figure 4.8(c, f). 

 

4.3 Influence	of	the	Initiator	over	the	Morphology	of	the	Polymer–Metal	

Oxide	Hybrid	Nanoparticles	Prepared	by	Miniemulsion	Polymerization	

Heterophase polymerization processes are mainly governed by three different mechanisms: droplet, 

homogeneous, and micellar nucleation. In an ideal miniemulsion polymerization process, 

performed below the critical micelle concentration (cmc) of the surfactant, the micellar nucleation 

is ideally suppressed. When highly hydrophobic monomers and initiators are used, droplet 

nucleation predominates. The initiator present in each single droplet initiates the generation of 

radicals reacting with the monomer molecules. However, homogeneous nucleation in the aqueous 

phase might also occur and gain relevance, depending on the concentration of the initiator and, 

mostly, on the solubility of both the monomer and the initiator in the aqueous phase. As explained 

in section 2.2, the nature and the type of initiator are parameters governing the development of 

hybrid morphologies. Therefore, the effect of the initiator over the hybrid morphology was studied 
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for the incorporation of ODTMS-functionalized ceria nanoparticles within polystyrene and titania 

within PMMA. In the previous section (4.2), the corresponding materials SC1 and MC1, achieved 

using AIBN as a free-radical initiator, offered the better results in terms of inorganic load and 

defined morphology, at expenses of the reduction of the yield of the synthesis. For comparison, 

2,2'-azobis-(2-methylbutyronitrile) (AMBN) and potassium peroxodisulfate (KPS) were used as 

initiators with different polarity respect to AIBN, leading to the respective hybrids named as SC4, 

SC5, and MT4, MT5. The synthetic conditions and the characterization of the resulting materials 

are described in Table 4.2. The concentration and the type of initiator and the polarity of the 

monomer would determine the nucleation and heterophase polymerization process. In addition, the 

polymerization temperature will increase or decrease the rate of formation of radicals, the 

polymerization reaction, and the termination step. The conditions of polymerization were 

established based on the temperature of formation of radicals specific for each initiator. To avoid 

high rates of generation of radicals, problems of colloidal stability, or low monomer conversions, 

the reactions using AIBN were performed at 72 °C. In the case of the processes initiated with 

AIBN or KPS, the polymerization was driven at 65 °C. The presence of inorganic nanoparticles 

and, consequently, the differences in droplet sizes could influence the polymerization rate. 

However, in a similar synthetic context to the one considered in this chapter, the presence of MPS- 

and ODTMS-functionalized silica nanoparticles did not greatly affect the polymerization kinetics 

of MMA.13  

Table 4.2. Synthetic details and material features of polymer–metal oxide hybrid nanoparticles incorporating 
ODTMS-functionalized catalytic species, prepared with different initiators and polymerization temperatures. 

Sample Monomer Inorganic 
Component 

Coupling 
Agent Initiator T / °C  da / n Solid Contentb 

/ wt. % 
SC1 S CeO2 ODTMS AIBN 65 160 ± 40 20.0 
SC4 S CeO2 ODTMS AMBN 72 160 ± 50 19.0 
SC5 S CeO2 ODTMS KPS 65 380 ± 70 12.3 
MT1 MMA TiO2 ODTMS AIBN 65 200 ± 70 15.4 
MT4 MMA TiO2 ODTMS AMBN 72 170 ± 50 19.0 
MT5 MMA TiO2 ODTMS KPS 65 360 ± 60 10.0 

a Determined by DLS before purification. 
b Solid content determined before purification. 
 

The oil-soluble initiators offer analogue results in terms of particle size and solid contents, close to 

the theoretical values around 20 wt.%. The use of KPS as a water-soluble initiator promoting the 

homogeneous nucleation leads to the formation of more coagulum and to an increase of the average 

particle size. The thermographs shown in Figure 4.9 for polystyrene–ceria nanoparticles (samples 
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SC1, SC4, and SC5) reveal the lower incorporation of ceria achieved with KPS (10 wt.%) in 

comparison with AIBN and AMBN (with a load about 30 wt.%). 

 

Figure 4.9. TGA curves obtained for the polystyrene–ceria hybrid nanoparticles SC1 (blue line), SC4 (green 
line), and SC5 (magenta line) prepared by miniemulsion polymerization using AIBN, AMBN, and KPS as 
free-radical initiators, respectively. 

With regard to the morphology of the hybrids, Janus-like structures were achieved for all polymer–

inorganic materials, as observed in the TEM micrographs of Figure 4.10. These results highlight 

the dominance of the inorganic surface functionality as controlling parameter over the role of the 

initiator. 

 

 
 

Figure 4.10. TEM micrographs of the polystyrene with ODTMS-functionalized ceria (SC1, SC4, and SC5) 
and PMMA with ODTMS-functionalized titania (MT1, MT4, and MT5) hybrid nanoparticles, prepared by 
miniemulsion polymerization using AIBN, AMBN, and KPS as free-radical initiators respectively. 
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4.4 Preparation	 of	 Multifunctional	 Polymer–Metal	 Oxide	 Hybrid	

Nanoparticles	

The control over the morphology development of polymer–metal oxide hybrid nanoparticles was 

further extended to the preparation of a second generation of multifunctional materials via the 

combination of two inorganic species with complementary functionalities (magnetic and catalytic) 

and different surface functionalization. Aiming for the development of magnetically recoverable 

heterogeneous nanocatalysts, structures with a catalytically active surface and a magnetoreponsive 

inorganic component within the supporting polymer matrix were conceived. Based on the results 

discussed in section 4.2, ODTMS-functionalized catalytic species (ceria and titania) were 

incorporated within polystyrene and PMMA matrices by miniemulsion polymerization. The 

synthesis was combined simultaneously with the fixation of MPS-functionalized magnetite 

nanoparticles, which incorporated the magnetic functionality within the polymer matrix. Table 4.3 

presents the polymer and inorganic composition, the surface functionalization of the catalytic and 

magnetic species, and the particle size of the multifunctional hybrid materials studied in this 

section. The systems of polystyrene–magnetite incorporating ceria and titania are named as SF1 

and SF2, respectively. Analogously, the samples of PMMA with ceria and titania are designed as 

MF1 and MF2, respectively. 

Table 4.3. Material composition and particle size of multifunctional polymer–metal oxide hybrid 
nanoparticles incorporating catalytic and magnetic species with specific surface functionalization. 

Sample Monomer Inorganic 
Component 1  

Coupling 
 Agent 1 

Inorganic  
Component 2 

Coupling  
Agent 2 da / nm 

 SF1 S CeO2 ODTMS Fe3O4 MPS 100 ± 50 
 SF2 MMA CeO2 ODTMS Fe3O4 MPS 140 ± 60 
 MF1 S TiO2 ODTMS Fe3O4 MPS 150 ± 60 
 MF2 MMA TiO2 ODTMS Fe3O4 MPS   170 ± 70 

a Determined by DLS before purification. 
 
The multifunctional polymer–metal oxide nanoparticles cannot be directly compared with the 

hybrid structures from section 4.2 (with only one catalytic species) because the corresponding 

synthetic processes are not equivalent. Nevertheless, both systems present similar trends in 

morphology and material properties. In this case, the inorganic components (MPS-functionalized 

magnetite and OTDMS-functionalized ceria or titania nanoparticles) were incorporated as 10 wt.% 

with respect to the organic phase. Particle size of the multifunctional hybrids ranges from 100 to 

200 nm, and slightly bigger particle sizes are observed for structures containing MMA and titania. 

The higher ratio of the surfactant concentration and the disperse phase with respect to the 
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formulation used in section 4.2 leads to smaller multifunctional nanoparticles compared to the 

previous ones. 

The incorporation of a magnetoresponsive species allowed the magnetic purification (and thus 

fractioning) of the samples. Table 4.4 presents the main features of the multifunctional hybrid 

nanoparticles (SF1, SF2, MF1, and MF2) before and after purification. The solid content 

determined after polymerization (8–9 wt.%) is close to the theoretical value  

(10 wt.%), which is a good hint of the nearly complete conversion of the monomer. The solid 

content remaining after the magnetic purification reveals a similar efficiency of the method for the 

encapsulation of magnetite despite the presence of a second inorganic component. 

The load of catalytic and magnetoresponsive inorganic species was determined by inductively 

coupled plasma mass spectrometry (ICP-MS). The magnetic purification offered an increase of the 

content of magnetite from 2–5 wt.% to 40 wt.%. The technique revealed the different partition of 

the inorganic species. In this sense, there is a segregation between ceria and magnetite systems, 

which are mostly incorporated in different polystyrene-based nanoparticles. Both the catalytic and 

magnetic functionalities are simultaneously embedded within PMMA particles. PMMA allows the 

best encapsulation for the MPS-functionalized magnetite, which is not hindered by the presence of 

ceria nanoparticles. The incorporation titania nanoparticles leads to a lower load of magnetite, both 

for polystyrene or PMMA matrices. The magnetic content was increased in a factor of 30 with the 

purification process, whereas the titania content raised only in a factor of 3. 

Table 4.4. Main features of the multifunctional polymer–metal oxide hybrid nanoparticles before and after 
magnetic purification. 

Sample 
Before purification After purification 

Solid Content 
/ wt. % 

Catalyst  
Loada / wt.% 

Fe3O4 
Loada / wt.% 

Solid Content  
/ wt. % 

Catalyst 
Loadb / wt.% 

Fe3O4 
Loadb / wt.% 

 SF1 8.6 1.92 ± 0.05  2.02 ± 0.02 0.14 1.5 ± 0.5 45.3 ± 0.2 
 SF2 8.9 2.09 ± 0.05 1.595 ± 0.008 0.15 4.15 ± 0.09 37.5 ± 0.3 
 MF1 7.7 3.36 ± 0.06  4.87 ± 0.03 0.13 28.9 ± 0.3 39.3 ± 0.6 
 MF2 8.6 3.52 ± 0.02  1.69 ± 0.06  0.15 9.81 ± 0.02 37.5 ± 0.6 

a Determined by ICP-MS before purification. 
b Determined by ICP-MS after purification. 
 

The morphology of the magnetoresponsive and catalytically active hybrid nanoparticles collected 

after purification was elucidated by SEM and TEM. The corresponding micrographs, presented in 

Figure 4.11, evidence the absence of a significant competition in the migration of the different 

inorganic species with specific surface functionalization within the polymer matrix. The similarities 

on contrast, size, and morphology between ceria and magnetite species make difficult the specific 
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identification of the species, which seems easier in the case of the titania. MPS-functionalized 

species tend to be homogeneously distributed within the polymer, whereas ODTMS-hydrophobized 

species form aggregates close to the polymer surface. Nevertheless, the hybrid nanoparticles 

present an irregular shape as a consequence of the incorporation of the inorganic components.  

 
 
Figure 4.11. SEM and TEM micrographs of the multifunctional nanoparticles SF1 (a, b), SF2 (c, d),  
MF1 (e, f), and MF2 (g, h). 
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4.5 Conclusions	

The versatility of miniemulsion polymerization for the synthesis of polymer–metal oxide hybrid 

nanoparticles with controlled morphology was proven for different polymer matrices, inorganic 

supports, and hybrid structures. The relevance of the surface chemistry between the polymer and 

the inorganic species was highlighted over other miniemulsion parameters (i.e., the type of 

initiator) governing the energy balance of the hybrid structure. Therefore, inorganic surface 

functionalization was identified as the driving force of morphology development. The use of 

silanes with inert alkyl chains (e.g., ODTMS and PTMS) leads to the agglomeration or the 

deposition of the inorganic components on the polymer surface, and formation of Janus-like 

structures. The presence of vinyl copolymerizable end groups in the functionalizing agent (e.g., 

MPS) compatibilizes the inorganic surface with the surrounding monomer (e.g., MMA). In the 

absence of shape or size hindrance, the copolymerization between the monomer and the coupling 

agent results into the inorganic distribution or embedment within the polymer matrix. The 

purification of the dispersion of nanoparticles allowed the fractioning of the sample. The fraction of 

the particles recovered showed an increased inorganic load homogeneously distributed within the 

sample, at expenses of the decrease of the solid content and production efficiency. The strategy was 

extended towards the preparation of multifunctional hybrid combining two metal oxides with 

catalytic and magnetic properties. The specific surface functionalization of inorganic species was 

addressed in order to control the accessibility of their functionalities. The synthesis of PMMA with 

a magnetic component distributed within the polymer matrix and catalytic species agglomerated on 

one side of the hybrid was achieved by combining the functionalization of magnetite and ceria 

nanoparticles with MPS and ODTMS, respectively. The synthetic strategy could be useful for the 

preparation of magnetically recoverable particles with applicability in catalysis and photocatalysis. 

The asymmetry of the particles could be interesting to achieve a self-assembly of the hybrid 

between two reactive media or to guarantee the accessibility to substrates of specific polarity. 
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 Magnetically	 Enhanced	 Polymer-Supported	 Ceria	5

Nanocatalysts	
This chapter presents the preparation of two types of polystyrene-supported ceria nanoparticles 

specifically designed for heterogeneous catalysis, taking the hydration reaction of 2-cyanopyridine 

to 2-picolinamide in aqueous media as a model reaction.  

The control achieved in the development of hybrid morphologies described in Chapter 4 is applied 

for the simultaneous incorporation of magnetoresponsive and catalytic species with a controlled 

accessibility on a polymer support. The presence of magnetite allows the recyclability of the 

catalyst with the application of an external magnetic field. The performances of the catalysts 

prepared by multi-step processes of miniemulsion polymerization and in-situ crystallization 

(described in section 2.6.3) is compared with the efficiencies offered by easily scalable and 

straightforward Pickering miniemulsion polymerization processes (from section 2.6.2). 

 

5.1 State	 of	 the	 Art	 of	 the	 Preparation	 of	Magnetoresponsive	 Polymer-

Supported	Nanoparticles	for	Heterogeneous	Catalysis	

The production of amides via the hydrolysis of nitriles has a great relevance due to the high value 

of the product for pharmacological and other chemical industrial processes.145-146 The hydrolysis of 

nitriles has been traditionally performed under harsh acidic and basic conditions, which often 

resulted into the over-hydrolysis of the amides to carboxylic acids and the requirement of 

purification due to the great amount of salt generated during a final neutralization step.147  

The homogenous catalysis of the hydration of nitriles under neutral conditions has been reported 

using Pt(II),148 Ru(II),147 Co(III),149 or Mo(IV)150 complexes. The strategies commonly deal with 

difficulties related to the recovery of the catalyst, purity of the product, high prizes, use of organic 

solvents, or low conversions due to the strong coordination of heteroaromatic nitriles to the metal 

centers. The selective hydration of nitriles in water under mild conditions was also reached using 

recoverable heterogeneous catalyst such as Ru(OH)3 supported in alumina,151 MnO2,152-10or  

CeO2.10, 153 

Metals and metal oxides are well-known heterogeneous catalysts. Among them, cerium(IV) oxide 

(also referred to as ceria) presents an interesting combination of acid–base properties and redox 
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activity between the couple Ce(IV)/Ce(III),154 which makes it suitable for the catalysis of a wide 

range of organic reactions.155 Substitution reactions, such as alkylation of aromatic compounds,156 

dehydration and dehydrogenation of alcohols,157 ketonization of esters,158 aldehydes,159 and 

carboxylic acids;160 reduction of carboxylic acids53 or oxidation of organic components,161-162 and 

hydrolysis reactions163 are catalyzed by ceria nanoparticles. Furthermore, the application of the 

metal oxide is being extended to other energy-related and green chemistry applications (e.g., fuel 

cells, reforming of hydrocarbons or oxygenated compounds, water splitting and photocatalysis, or 

oxidation of volatile compounds).164 The scope of the reactions catalyzed by ceria can be enlarged 

with the incorporation of other noble metals (e.g., Au)161 or metal oxides (e.g., ZnO, MnOx, MoO4, 

or ZrO2),164 or with the modification of the reaction media and the subsequent alteration of the 

acid–base and redox properties. Specifically for the case of the hydration of nitriles with a 

heteroatom (N or O) adjacent to the α-carbon of the CN group, cerium(IV)	 oxide nanoparticles 

present an outstanding catalytic efficiency.153 Nevertheless, as other metal oxides, nanocatalysts 

suffer from problems of dispersion and tendency to aggregation, with the subsequent reduction of 

the active surface, and difficult recovery and recyclability. In this context, polymer-supported metal 

or metal oxide hybrid catalysts emerged as a solution that provides chemical and mechanical 

stability to the inorganic catalytic species.  

Supported catalytic structures favor the recoverability and recycling of the catalysts by physical 

methods (for instance by centrifugation).6,164-166 In this fashion, hybrid nanocatalysts with high 

efficiencies in the hydration reaction of 2-cyanopyridine6,164 were prepared by in-situ crystallization 

of ceria on the functional surface of polymer nanoparticles preformed by miniemulsion 

copolymerization of styrene with commercial monomers or synthetic surfmers.148 Similarly, 

polystyrene–cadmium sulfide hybrid nanoparticles were prepared incorporating magnetite 

nanoparticles, which were homogeneously encapsulated within the organic matrix during the 

polymerization process.47 Although the last case aimed no catalytic purposes, it provides a 

promising strategy for the preparation of magnetoresponsive catalysts. Compared to the separation 

of the catalyst by centrifugation, a magnetic recovery presents a great advance in terms of 

simplicity, energy consumption and softness of the treatment. For this reason, the development of 

magnetically separable catalysts has been spotlighted during the last decade.165-169  

The in-situ crystallization method offers high efficiency in terms of surface functionalization and 

inorganic deposition,7 but it requires two or three steps for the synthesis of the inorganic and the 

polymer nanoparticles, and in certain cases, the surfmer. Multistep processes present greater 

drawbacks in the scale-up of the process to industrial levels. In contrast, the so-called all in-situ 
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strategies2 are promising and challenging alternatives for the straightforward preparation of 

magnetically recoverable nanocatalysts. Furthermore, colloidal polymerization processes in 

Pickering miniemulsions (described in section 2.6.2) allow the immobilization of catalytic species 

on a polymer support without the requirement of conventional surfactants. The Pickering 

miniemulsion polymerization strategy was used for the preparation of polymer-supported catalysts 

using multiple inorganic stabilizers (e.g., TiO2,170 Fe3O4,171 Pd and Pd on metal frameworks,172 

Au173, Ag, or Pt174). Ceria nanoparticles were proven to be efficient inorganic stabilizers for the 

miniemulsion polymerization of different acrylic monomers (MMA and BA co-polymerized with 

MA),121 demonstrating the potential of the strategy for the preparation of polymer-supported ceria 

catalysts. The strategy allows the selective incorporation of different inorganic functionalities  

(i.e., magnetic components in the core and catalytic species accessible on the polymer surface), 

whose accessibility can be controlled by tuning the hydrophobicity and the surface chemistry of the 

metal oxide nanoparticles.98-95 Bonnefond et al.120 combined the immobilization of titania via 

Pickering stabilization on the surface of polystyrene nanoparticles with the simultaneous 

encapsulation of magnetite nanoparticles for the preparation of magnetically recoverable 

photocatalyst.  

The following sections describe the synthesis of two types of magnetoresponsive polystyrene-

supported ceria nanoparticles. The hybrids were used for the heterogeneous catalysis of the 

hydration reaction hydration of 2-cyanopyridine to 2-picolinamide.  

  

5.2 Synthesis	and	Functionalization	of	Inorganic	Nanoparticles	

Both the catalytically active (ceria) and the magnetic (magnetite) nanoparticles were synthetized by 

(co)precipitation methods using the corresponding metal precursor salts and a base (ammonia or 

sodium hydroxide) as a precipitating agent. The control of the accessibility of the inorganic 

functionalities within the supporting polymer (i.e., the magnetic component within the polymer 

core and the catalytic species at the surface) was addressed via the surface functionalization of 

either the polymer or the inorganic nanoparticles. Ceria nanoparticles required no further post-

functionalization for their effective migration to the polymer surface. As reported by Schoth et al.,98 

an alkoxysilane component with a short alkyl chain and a copolymerizable end group (MPS) 

allowed the homogeneous encapsulation of magnetite nanoparticles within the polymer matrix. Not 

only the hydrophobicity but also the surface chemistry of the magnetic nanoparticles has a great 

influence on the migration of the inorganic component within the supporting polymer. In this sense, 
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the copolymerization of the methyacrylate group of MPS with styrene allowed the entrapment of 

the magnetite within the forming polymer matrix during a miniemulsion polymerization process.  

  

5.3 Preparation	of	Polystyrene-Supported	Ceria	Nanoparticles	

Polystyrene-supported ceria nanocatalysts incorporating a magnetic core were synthetized by two 

alternative routes labeled as P1 and P2: 

• Route P1 is based on Pickering miniemulsion polymerization processes, described in 

section 2.6.2, using ceria nanoparticles as an inorganic stabilizer. 

• Route P2 is a multi-step route consisting of miniemulsion polymerization and further in-

situ crystallization of ceria nanoparticles on the preformed polymer surface, as described in 

section 2.6.3. 
  

From a synthetic point of view, the in-situ crystallization strategy is not trivial; it has many 

parameters to be controlled, it involves multiple steps (i.e., miniemulsion polymerization, dialysis, 

and inorganic crystallization), and it demands a high consumption of time and resources. In 

comparison, the Pickering miniemulsion process is straightforward, and it minimizes the use of 

resources and time. The main features of the different types of nanoparticles prepared by routes P1 

and P2 are listed in Table 5.1. The table includes polystyrene-supported ceria nanoparticles (C1 

and C5), magnetically active polystyrene-supported ceria nanoparticles (C2 and C6), non-catalytic 

polymer nanoparticles with (C4) and without (C3) a magnetic core, and unsupported ceria 

nanoparticles (C0), which were crystallized in bulk for comparison purposes. 

Table 5.1. Characteristics of the nanoparticles prepared by different synthetic strategies: material 
composition, particle diameter (d ), and inorganic (ceria and magnetite) content. 

Catalyst Synthetic 
Route 

Polymer 
Matrixa 

Inorganic 
Components db / nm 

 Inorganic Contentc / wt.%  

CeO2 Fe3O4 
C0 – – CeO2  – 100 – 
C1 P1 PS CeO2 480 ± 150 11.5c – 
C2 P1 PS CeO2 and Fe3O4  360 ± 150 10.6c 9.0c 
C3 P2 P(S/AA) –  80 ± 20  – – 
C4 P2 P(S/AA) Fe3O4 260 ± 70  – 23.5 
C5 P2 P(S/AA) CeO2  90 ± 20   18.9 – 
C6 P2 P(S/AA) CeO2 and Fe3O4 260 ± 90 17.1 15.5 

a S: Styrene, AA: Acrylic acid. 
b Determined by statistical treatment of TEM images accounting at least 200 nanoparticles. 
c Determined by TGA or ICP-MS. Refer to Chapter 9 for details. 
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The Pickering miniemulsion strategy (P1) allows the substitution of conventional organic 

surfactants by functional inorganic nanoparticles that remain irreversible adsorbed at the droplet 

interface. The inorganic stabilization ability is determined by the relative wettability of the particles 

between the liquid phases of the miniemulsion. In this case, the hydrophilic ceria nanoparticles 

were directly used after being crystallized in bulk solution, and allowed the colloidal stabilization 

of a direct miniemulsion with styrene and magnetite in the disperse phase. After a free-radical 

miniemulsion polymerization process using a combination of an oil-soluble (AIBN) and a water-

soluble (KPS) initiator, the catalytically active nanoparticles remained at the surface of polystyrene 

nanoparticles with (C2) and without (C1) a magnetic core.  

The in-situ crystallization strategy (P2) has been previously employed for the preparation of 

polymer-supported hybrid catalysts with great inorganic coverage and catalytic performances.1,98 In 

this case, the methodology was extended towards the encapsulation of MPS-functionalized 

magnetite nanoparticles for purification purposes. The efficiency of the crystallization process 

relies on the affinity between the surface-functionalized polystyrene nanoparticles and the cerium 

ions introduced by the addition of a precursor salt. For this aim, styrene (S) was copolymerized 

with a hydrophilic comonomer, acrylic acid (AA), which led to the incorporation of carboxylic 

groups accessible on the surface of the polymer nanoparticles.175 The resulting poly(styrene-co-

acrylic acid) (P(S–AA)) nanoparticles, with (C4) and without (C3) magnetite, were used as 

polymer supports for the preparation of samples C6 and C5, respectively. 

Particle suspensions were dialyzed to eliminate the excess of surfactant, which may affect the 

complexation of cerium ions, the crystallization of ceria, and the adsorption of the substrates during 

catalytic applications. The presence of charged groups at the surface was confirmed by 

polyelectrolyte titration with an oppositely charged polyelectrolyte (poly-DADMAC) reaching a 

value of 1.6 groups/nm2 for sample C4 after dialysis. This result is close to the value of  

1.2 groups/nm2 reported by Mari et al.6 for nanoparticles similar to system C3, and it reveals the 

success of the copolymerization process despite the incorporation of magnetite. The presence of 

carboxylic groups at the surface of the polymer particles allows the complexation of the cerium 

cations. The controlled addition of a precipitating base (sodium hydroxide) results into the 

crystallization of ceria nanoparticles on the polymer surface. The presence of crystalline ceria 

nanoparticles on sample C5 and the integrity of the MPS-functionalized magnetite within the 

multifunctional nanoparticles C6 were proven by XRD (diffractograms shown in Figure 5.1). The 

diffraction patterns observed in the ceria nanoparticles prepared by bulk crystallization, as well as 

in the samples C5 and C6, corresponds with the cerium oxide cerianite, whose reference pattern 
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(ICDD card no. 00-043-1002) is presented with the turquoise dashed lines in vertical. In addition, 

the catalyst C6 presents the diffractions related to the experimental pattern of MPS-functionalized 

magnetite (blue dashed lines). The presence of the polymer (in C5 and C6) and the functionalizing 

agent (i.e., MPS) attached to the magnetic particles justifies the amorphous halo shown in the 

diffractograms. 

 

Figure 5.1. X-ray diffraction (XRD) patterns of ceria and MPS-functionalized magnetite nanoparticles, and 
catalysts C5 and C6. 

The specific surface area determined using Brunauer–Emmett–Teller (BET) isotherms obtained by 

nitrogen adsorption measurements revealed values of around 117 and 90 for C0 and C2, 

respectively. 

The TGA thermographs corresponding to samples C3, C4, C5 and C6, from Figure 5.2, were used 

to determine the catalytic and the magnetic loads, reported in Table 5.1. In addition, the figure 

shows the TGA traces of MPS-functionalized magnetite nanoparticles (Fe3O4/MPS, green line), 

after several washing operations. The mass loss (25 wt.%) is related to the amount of coupling 

agent covalently attached to the magnetite nanoparticles. The fraction (2 wt.%) of mass from the 

polymer sample C3 remaining after the thermal treatment (the residual C) was used for correction 
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purposes. The inorganic incorporation is compared with the corresponding results achieved in 

Pickering miniemulsions (i.e., route P1). The general trend indicates better efficiencies of 

encapsulation of magnetite and deposition of ceria nanoparticles allowed by the in-situ 

crystallization strategy (i.e., route P2).  

 

Figure 5.2. Thermographs of MPS-functionalized magnetite nanoparticles (green line), catalysts C3 
(magenta dashed line), C4 (blue dashed line), C5 (magenta line), and C6 (blue line). 

The hybrid catalysts C1, C2, C5, and C6 present differences on polydispersity, particle size, and 

catalytic coverage. Particle size increases when magnetite is encapsulated and when ceria 

nanoparticles are used to promote the colloidal stabilization instead of SDS. As observed in the 

SEM and TEM images of Figure 5.3, the specific characteristics of the hybrids are related to the 

routes P1 and P2 used for their preparation. In general, the surface deposition of the inorganic 

species is observed by TEM in the form of a darker corona surrounding the polymer nanoparticles. 

Figure 5.3(c) proves the distribution of the ceria nanoparticles forming tinny aggregates on the 

polymer surface of sample C1. The similarity in size and morphology between the particles of 

magnetite and ceria makes very difficult the observation of the specific arrangement of each 

species in the case of the catalysts C2 prepared by Pickering miniemulsion polymerization  

(Figure 5.3(f)). 
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Figure 5.3. SEM micrographs at two different magnifications (a, d, g, j) and (b, e, h, k), and TEM (c, f, i, l) 
images of the polystyrene-supported ceria catalysts C1 (a, b, c) and C5 (g, h, i) prepared via routes P1 and 
P2, respectively. Analogue images of the corresponding samples C2 (d, e, f) and C6 (g, h, i), incorporating a 
magnetic core. 

The arrangement of the catalytic and magnetic species in the catalysts prepared by the route P1 was 

identified by comparison of TEM and SEM images of samples C4 and C6 shown in Figure 5.4 and  

5.3(j–l). respectively. Although the encapsulation of magnetite cannot be confirmed nor excluded 

from the SEM images of sample C4, the dark spots observed in the corresponding TEM 

micrograph (Figure 5.4(a)) reveal the presence of magnetite within the polymer matrix. Thus, a 

“quasi-encapsulation” of magnetite in samples C4 and C6 was assumed. 

C1. a b c

C2. d e f

C5. g ih

lkC6. j



5. Polymer-Supported Ceria Nanocatalyst 
      

 

 67 

The characterization of samples C5 and C6 by electronic microscopy, shown in Figure 5.3(g–l), 

highlights the homogeneous coverage of the polymer surface with fine and crystalline ceria 

nanoparticles achieved after the crystallization step of route P2.  

 

 Figure 5.4. TEM (a) and SEM (b) micrographs of sample C4. 

 

5.4 Catalysis	of	the	Hydration	of	2-Cyanopyridine	to	2-Picolinamide	

The reaction of hydrolysis of 2-cyanopyridine to 2-picolinamide, presented in Scheme 5.2, was 

chosen to study the catalytic performance of the magnetoresponsive polystyrene-supported ceria 

nanoparticles. The catalysis of the reaction by ceria nanoparticles is a well-established process, in 

which both non-supported and supported ceria nanoparticles have shown outstanding catalytic 

efficiencies and recyclability via centrifugation.6, 179 

 

Scheme 5.2. Hydration of 2-cyanopyridine to 2-picolinamide. 

The kinetics of the reaction was independently studied by using the magnetoresponsive catalytic 

nanoparticles prepared with the two routes (i.e., samples C2 and C6). The effect of the 

concentration of catalyst on the reaction rate was analyzed for concentrations of ceria of 0.003, 

0.006, 0.009, 0.012, and 0.024 mol·L–1. The evolution of the conversion was followed by high 

performance liquid chromatography (HPLC) for each concentration of the catalyst as a function  

(1–α(t)) of time (t), where α is the remains fraction (Cs(t)/Cs(t0)) of the limiting substrate (s)  

(2-cyanopyridine).  

a b
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In agreement with the mechanism of the reaction reported by Tamura et al.153, 176-177 and shown in 

Scheme 5.2, the evolution of the conversion depended exclusively on the concentration of  

2-cyanopyridine, whereas the contribution of water, which was clearly in excess, can be neglected.  

 

Scheme 5.2. Reaction mechanism of the hydrolysis of 2-cyanopyridine to 2-picolinamide catalyzed by ceria 
nanoparticles. (Based on refs. 153, 176, and 177) 

Thus, the hydrolysis of 2-cyanopyridine catalyzed by polystyrene-supported ceria is a first order 

reaction (n = 1) whose the reaction rate (k) depends linearly of the concentration of the catalyst (C). 

The linearization of the corresponding expression of the first order kinetics allows the calculation 

of the kinetic parameters according to: 

𝐶s 𝑡
𝐶s 𝑡!

= 𝑒!!" → −ln
𝐶s 𝑡
𝐶! 𝑡!

=  −ln 𝛼 𝑡 = 𝑘 𝐶CeO2 𝑡 (5.1) 

Figure 5.5 presents –ln(α) as a function of time for the different concentrations of catalyst. The 

correlation of the experimental data to eq. (5.1) confirms the first order reaction and allowed the 

calculation of the kinetic constants (k), whose values are presented in Table 5.2. 

Optimum concentrations of cerium of 0.012 and 0.009 mol·L–1 were defined for catalysts C2 and 

C6, respectively. The selection of those concentrations was based on the highest achievable 

reaction rate and the partial aggregation with the subsequent reduction of the active surface of the 

catalysts, which occurred when the concentration of C6 was increased. The catalytic system C2 

allowed us to work at higher concentrations to compensate its catalytic deficiencies. Nevertheless, 

the amount of sample C2 required for a concentration of ceria of 0.024 mol·L–1 was considered 

excessive. Therefore, 0.012 mol·L–1 was chosen as a good compromise between the catalytic 

efficiencies and the amount of hybrid catalysts used. 
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Figure 5.5. Influence of the concentration of CeO2 on the kinetics of the hydration of 2-cyanopyridine 
catalyzed by C2 (a, c) and C6 (b, d). Evolution of the conversion (1–α) (a, b) and –ln(α) (c, d) of the reaction 
achieved with different concentrations of each catalyst. 

Table 5.2. Conversion after 7 h and reaction rate (k) achieved with different catalysts and concentrations. 

Synthetic 
Route Catalyst 𝐶CeO2  / mol∙L−1 Conversiona / % kb∙105 / s−1 

– C0 0.009 88 20.4 

– C0 0.012 100 29.2 

P1 C1 0.012 56 3.2 

P1 C2 0.006 52 3.0 

P1 C2 0.012 72 4.1 

P1 C2 0.024 86 6.7 

P2 C5 0.009 86 9.3 

P2 C6 0.003 65 5.0 

P2 C6 0.006 83 10.6 

P2 C6 0.009 93 14.5 

P2 C6 0.012 96 14.9 
a Determined by HPLC at 7 h of reaction time. 
b Determined by linear adjustment of the experimental data. 
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Figure 5.6 compares the evolution of the conversion (1–α) and the reaction rate –ln(α) for for each 

optimum concentration of the magnetoresponsive catalysts (C2 and C6) with the analogous 

supported catalyst without the magnetic component (C1 and C5, respectively) and the inorganic 

reference (C0). The performance of the magnetoresponsive hybrid catalyst C6 prepared by in-situ 

crystallization showed similar catalytic efficiencies to the unsupported ceria nanoparticles (C0). As 

predicted from the SEM observations, C2 presented lower catalytic performances, which was 

explained by the less efficient inorganic coverage and the reduction of the active surface of the 

catalyst prepared by the Pickering miniemulsion strategy. Nevertheless, the final conversion of the 

substrate achieved after 24 h of reaction using catalyst C2 was comparable to the performances 

reached with catalysts C0 and C6. The conversion achieved after 7 h and the values of the kinetic 

constant (k) for each catalyst are summarized in Table 5.2. 

 
Figure 5.6. Comparison of the catalytic efficiency of hybrid catalysts prepared via P1 and P2 strategies, and 
the non-supported ceria nanoparticles. Kinetics of the hydration of 2-cyanopyridine catalyzed by C1, C2 (a, 
c) and C5, C6 (b, d). Evolution of the conversion (1–α) (a, b) and –ln(α) (c, d) of the reaction achieved with 
each catalyst. 

Interestingly, regardless of the synthetic method, the catalytic performance of both hybrid systems 

was significantly enhanced with the incorporation of magnetite. The hydration of nitriles to amides 

is susceptible of being catalyzed by a wide range of metal oxides. If magnetite was only partially 

encapsulated, the remaining fraction accessible on the surface of the polymer support could then 
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contribute to the catalysis together with ceria. However, as shown in Figure 5.7, no significant 

conversion of 2-cyanopyridine was observed when polystyrene (C3) or polystyrene–magnetite 

nanoparticles (C4) were used as the sole catalyst. Therefore, the enhanced activity of the 

matnetoresponsive nanocatalysts C2 and C6 could not be explained by a direct contribution of the 

magnetite nanoparticles in the catalytic mechanism. 

Magnetic particles under oscillating magnetic fields act as hot spots that heat the surrounding 

environment via hysteresis or relaxation mechanisms.178 This behavior of magnetite has been 

widely exploited for hyperthermia and biomedical applications,179 but up to now, it has been barely 

explored in chemical reactions180 and catalysis. In this work, the catalytic enhancement achieved 

with the incorporation of a magnetoresponsive component is assumed to be likely related with the 

increase of the local temperature promoted by the vibration of the magnetite particles while being 

submitted to an intense orbital shaking. 

 

Figure 5.7. Kinetic study of the hydration of 2-cyanopyridine in the presence of polymer (C3) and polymer–
magnetite hybrid nanoparticles (C4). 

The presence of the magnetic nanoparticles allowed the recovery and recycling of the catalyst by 

application of an external magnetic field. The magnetoresponsive nanocatalysts (C2 and C6) were 

recycled, washed, and reused in four cycles of 24 h of reaction. Figure 5.8 presents the conversion 

achieved after each reaction cycle and proves the stability of both catalytic systems, which 

maintained the catalytic activity without degradation during at least four cycles.  

0 200 400 600 800 1000 1200 1400
0

20

40

60

80

100 	C 3
	C 4

C
on

ve
rs
io
n	
/	%

T ime	/	min



5. Polymer-Supported Ceria Nanocatalyst  
   

 72 

 

Figure 5.8. Recycling study of the magnetically recoverable catalysts C2 and C6. 

 

5.5 Conclusions	

This chapter demonstrates the suitability of Pickering miniemulsions for a straightforward 

preparation of magnetoresponsive polystyrene-supported ceria nanoparticles, avoiding the use of 

molecular surfactants and the requirement of multi-step processes. The material was compared with 

the achieved by two-step strategies based on the encapsulation of MPS-functionalized magnetite 

nanoparticles by miniemulsion polymerization and further in-situ crystallization of ceria on the 

preformed polymer surface. The advantages of the traditional multi-step crystallization strategies 

were confirmed in terms of inorganic incorporation and efficient deposition of the catalyst. 

However, the use of Pickering miniemulsions as a synthetic platform offers great synthetic 

advantages related to the reduction of the consumption of time, resources, and the complexity of 

the scalability of the process. 

The resulting materials showed high performances in the heterogeneous catalysis of the hydration 

of 2-cyanopyridine to 2-picolinamide in aqueous media. The conversion achieved using the 

catalysts prepared by the Pickering miniemulsion strategy was comparable with the great 

performance of the catalysts produced via an in-situ crystallization process. The incorporation of 

magnetite in the core of the nanoparticles allowed the recovery and the recycling of the catalyst 

with the application of an external magnetic field and guaranteed the maintenance of its activity 

after four cycles of reaction. In addition, magnetite offered a synergic effect in the catalysis, which 

was assumed to be related to the local heat produced as a consequence of the oscillating magnetic 

fields created by orbital shaking of the nanocatalysts.  
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 Proline-Functionalized	 Polymer	 Nanoparticles	 for	6

Enantioselective	Catalysis	in	Aqueous	Media	
This chapter describes the synthesis of magnetoresponsive chiral nanoparticles highly efficient for 

asymmetric catalysis in aqueous media. Miniemulsion polymerization is used for the 

immobilization of chiral units of proline on the surface of PMMA nanoparticles and other 

additional inorganic functionalities (e.g., magnetite) with a controlled accessibility within the 

catalytic system. Three different molecules, labeled as S1, S2, and S3 were synthetized for the 

incorporation of chiral moieties of hydroxy-L/D-proline on the surface of polymer nanoparticles. 

The chemical structure of the proline-based molecules, shown in Scheme 6.1, guarantees the role of 

S1, S2, and S3 as surfmer, only comonomer, and only surfactant, respectively. 

 

Scheme 6.1. Chemical structure of the proline-based chiral molecules: L/D-S1, L/D-S2, and L-S3. 

The use of the methacrylic comonomer45, 181 (S2) requires the addition of conventional surfactants 

(e.g., SDS) that need to be removed for catalytic applications. The proline-based surfactant (S3) is 

subjected to adsorption–desorption equilibrium. The surfmer structure (S1) offers the colloidal 

stabilization of the miniemulsion and the covalent incorporation of proline via the 

copolymerization with MMA as the main monomer forming the polymer support. In addition, the 

presence of the long alkyl chains with proline in the hydrophilic head and the absence of additional 

surfactants provide a great accessibility of the chiral units for catalytic applications. The 

encapsulation of magnetite nanoparticles within the polymer core offers the key for the 

Surfmer (S1): 10-undecenoyl-trans-4-hydroxy-L/D-proline

Monomer (S2): O-methacryloyl-trans-4-hydroxy-L/D-proline

L-S2 D-S2

L-S1 D-S1

Surfactant (S3): undecanoyl-trans-4-hydroxy-L/D-proline

L-S3
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purification, recovery, and recyclability of the catalyst under mild conditions. The 

magnetoresponsive chiral nanoparticles were used for the asymmetric catalysis of an intermolecular 

aldol reaction in water. 

 

6.1 State	of	the	Art	of	the	Preparation	of	Chiral	Hybrid	Nanoparticles	for	

Asymmetric	Catalysis	

In the last decades, asymmetric organocatalysis has been exploited for the synthesis of chiral 

molecules and complex structures with controlled enantioselectivity.182 In this context, amino acids 

and amino acid derivatives have been used in the homogeneous catalysis of a wide range of organic 

reactions and synthesis of chiral products with high additional value (e.g., for pharmaceutical 

applications).183 Amino acid–based organocatalysts are spotlighted because of their great 

availability, low toxicity, and the simplicity of their application. Many organic reactions (e.g., aldol 

reactions,184 Michael additions,185-187 Mannich reactions,188-190 cycloadditions,191 C–C bond 

formations,192,193 α-amination,194-195 sulfenylation,196 or halogenation reactions197) have been 

traditionally catalyzed using L-proline and its derivatives.198 Aldol reactions are one of the most 

important reactions in chemistry and biology in which proline-based catalysts have shown a great 

efficiency and selectivity,184 providing intramolecular,199 intermolecular,200-201 or cross-aldol C–C 

backbones.202-203  

The structure of proline-based catalysts, such as oxyprolines,204 prolinamides205 or proline-like 

catalysts (i.e., pyrrolidine conjugated catalysts protonated with nitrogen heterocycles206 or with 

organophilic chains207 substituting the carboxylic acid) was designed to enhance the efficiency and 

enantioselectivity of homogeneous catalysis of aldol reactions in organic solvents. The solvent and 

the availibility of protons have a crucial role for the selectivity of proline-catalyzed aldol reactions. 

The enhancement of the enantioselectivity was achieved under controlled conditions with the 

incorporation of water, or even solvent-free strategies.208 In the presence of water, proline-

functionalized surfactants allowed great selectivities and yields via the creation of miniemulsion-

like environments, in which the organic molecules assemble via hydrophobic interactions.204 

However, the use of water as sole solvent dealed with problems of solubility and inefficient contact 

between the substrate and the catalysts.209 In this context, heterogeneous catalysts were developed 

as an attempt to overcome the drawbacks of homogeneous catalysis related to the purification of 

the product, recovery, and recycling of the catalyst.  
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Molecules of trans-4-hydroxy-L-proline were for the first time immobilized in a Merrifield resin, 

which allowed the catalysis of aldol reactions with poor selectivity.210 This derivate of L-proline is 

still nowadays one of the most widespread starting materials used in the preparation of supported 

catalysts. Both trans-4-hydroxy-L-proline and L-proline units have been used for the preparation of 

functional monomers via the attachment of lipophilic functionalities on the side chain of the  

4-hydroxy group. The corresponding chiral linear polymers or co-polymers (i.e., 

polyethylenglycol,211 methacrylic polybetaines,212 linear polystyrene,213 poly(styrene-co-proline-

methacrylate),214 poly(acryloyl-proline)215) were obtained via solution polymerization processes. 

The catalytic load of the linear support was not as high as the expected with cross-linked polymer 

resins and suffered from the rapid loss of activity and selectivity during the recycling. Polymer-

scaffolds were also used for the immobilization of L-proline via grafting modification reactions, but 

the tendency of twinning of the polymer chains reduced the accessibility of the chiral units and 

drastically worsened the catalytic efficiency. For those reasons, the research community turned into 

the development of polymer-supported organocatalysts.216  

One of the most critical aspects in the design of polymer-supported catalysts is related to the 

availability of the active sites on the surface of the polymer support. Kirstensen et al.217 published a 

detailed revision about the immobilization of hydroxy-proline units on polystyrene beads via post-

modification218-220 or cross-polymerization strategies.213, 221 Acrylic and methacrylic proline-based 

monomers have also been synthetized via the activation (e.g., O-acylation)222 of the 4-hydroxy 

group to allow their copolymerization with commercial monomers.223 Suspension, dispersion,223 or 

reversible addition–fragmentation chain transfer (RAFT)224 polymerization strategies were used for 

the preparation of polymer beads with a controlled load of supported proline. RAFT polymerization 

was also used for the incorporation of proline moieties in core–shell micelles of block copolymers 

of poly(acrylic acid) with styrenic or methacrylic backbones.225 In an aqueous environment, the 

micellar structure promoted the concentration of the reagents in the catalytically active core. The 

reactive environment resulted into the increase of the reaction rate of an intermolecular aldol 

reaction between p-nitrobenzaldehyde and cyclohexanone in water. In another work, miniemulsion 

was used for the in-situ polymerization of chiral N-oleoyl-D/L-proline monomers, leading to 

recyclable polymer-supported proline catalysts with poor selectivity for the same reaction.226 

Proline-based moieties were also supported on functional inorganic nanoparticles (e.g., gold227-228, 

magnetite nanoparticles,229-230 core–shell magnetite–silica231 nanoparticles, or platinum 

nanoparticles supported on Al2O3
232). Yacob et al.233 prepared proline-functionalized 

polyacrylamide and PMMA nanoparticles encapsulating a magnetic core via solution 
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polymerization processes in dimethylformamide (DMF). The catalysts presented high yields, and 

cycling stabilities but limited selectivities for the aldolization of aromatic aldehydes in the presence 

of benzoic acid, and an excess of ketone as main solvent. 

In this chapter, magnetoresponsive proline-functionalized PMMA nanoparticles were prepared by 

the miniemulsion polymerization process presented in Figure 6.1. The chiral nanoparticles were 

applied for the asymmetric catalysis of the intermolecular aldol reaction of p-nitrobendaldehyde 

and cyclohexanone in water. 

 

Figure 6.1. Schematic representation of the synthesis of magnetoresponsive proline-functionalized PMMA 
chiral nanoparticles via miniemulsion polymerization using a proline-based surfmer. 

 

6.2 Synthesis	of	Proline-Based	Building	Blocks	

The three different compounds with specific chirality and functional end groups (i.e., a 

copolymerizable acrylic or alternatively a methacrylic group, and/or a chiral proline unit) presented 

in Scheme 6.1 were conceived to incorporate accessible proline units on a polymer support. 
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The proline-functionalized polymerizable surfactant (10-undecenoyl-trans-4-hydroxy-L-proline, 

shorten as L-S1) was synthetized by attachment of a long alkyl chain to the 4-hydroxy group of 

trans-4-hydroxy-L-proline. The resulting structure, which was confirmed by 1H-NMR and  
13C-NMR spectroscopies (see spectra in Figure 6.2) presented a desirable amphiphilicity to act as a 

surfactant.  

 

Figure 6.2. 1H-NMR and 13C-NMR spectra of the surfmer (L-S1). 

A second chiral structure with the role of comonomer, O-methacryloyl-trans-4-hydroxy-L-proline, 

abbreviated as L-S2, was prepared by incorporation of a short alkyl chain and a methacrylic group 

to the starting molecule trans-4-hydroxy-L-proline. 1H-NMR and 13C-NMR spectra, shown in 

Figure 6.3, confirm the chemical structure. The use of L-S2 had already been reported234 for the 

preparation of proline-supported polymer nanoparticles or gels with high efficiency in asymmetric 

catalysis.  

da b c e f
g&h

i j

k l

da b
c

e
f

k
l

h

i

g

j

DMSO-d6

da b c e f g hij

km
n

d
abc e f

g

h

i

j

l

m k

nm

m
DMSO-d6

TFA

TFA



6. Proline-Functionalized Polymer Nanoparticles  
   

 78 

 

Figure 6.3. 1H-NMR and 13C-NMR spectra of the monomer (L-S2).  

The enantiomers 10-undecenoyl-trans-4-hydroxy-D-proline (D-S1), and O-methacryloyl-trans-4-

hydroxy-D-proline (D-S2) were also prepared to address the control of the enantioselectivity of the 

asymmetric catalysis through the specific chirality of the catalyst. 

A third type of proline-based molecule with the typical structure of a surfactant, undecanoyl-trans-

4-hydroxy-L-proline (L-S3) was also synthetized. This third compound, whose 1H-NMR and 13C-

NMR spectra are shown in Figure 6.4, presents a long alkyl chain with analogous structure to the 

surfmer L-S1 but without the copolymerizable vinyl end group. As a consequence, the role of 

L-S3 is restricted to guarantee the colloidal stabilization of the miniemulsion while incorporating 

the catalytically active chiral units.  
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Figure 6.4. 1H-NMR and 13C-NMR spectra of the surfactant (L-S3).  

The synthesis of the proline-based molecules (S1–S3) was performed by selective O-acylation of 

trans-4-hydroxy-L/D-proline in trifluoroacetic acid (TFA). The acylation capacity of the reaction 

media was increased with the controlled addition of trifluoromethanesulfonic acid, which offered a 

good compromise between the purity of the product and the reaction yield. The strategy, reported 

by Kirstensen et al.,222-223 avoids the protection and deprotection of the reactive groups of proline 

required in traditional synthetic pathways. In addition, a crystalline hydrochloride product was 

straightforward crystallized with the simple addition of diethyl ether. No further purification steps 

are required for the catalytic purposes aimed in this chapter. 
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6.3 Preparation	of	Magnetoresponsive	Chiral	Nanoparticles	

The proline-based molecules L/D-S1 and L/D-S2 were supported on PMMA nanoparticles by 

miniemulsion polymerization, as shown in Figure 6.1. The acrylic or methacrylic groups of the 

amphiphilic chiral molecules were used for the copolymerization with a main monomer with low 

prize and great chemical stability. On the one hand, the acrylic group of L/D-S1 copolymerizes with 

MMA at the droplet interface in the direct miniemulsion. The proline units are oriented towards the 

aqueous phase, and offer colloidal stabilization avoiding the use of extra surfactants. On the other 

hand, the high hydrophilicity and the affinity of the monomers (L/D-S2) to MMA let to an efficient 

copolymerization process occurring mostly at the droplet interface. In this case, SDS was used as a 

surfactant to stabilize the miniemulsion.  

The proline-based surfactant (L-S3) does not allow a stable fixation of the active sites of proline to 

the polymer support due to the adsorption and desorption equilibrium typical from surfactants. In 

the application field (e.g, the use of the chiral nanoparticles as heterogeneous nanocatalysts), the 

desorption of the surfactant would lead to a homogeneous catalysis directly promoted by the free 

molecules in solution which would falsify the efficiency from the nanocatalyst (the nanoparticle) 

itself. Beyond the scope of any catalytic application, the surfactant was used to prove the viability 

of the stabilization of the miniemulsion as a substitute of SDS. In this fashion, L-S3 was 

successfully used for the miniemulsion polymerization of MMA and the copolymerization of 

MMA and L-S2. 

Regarding the formulation of the miniemulsion, L/D-S2 was used as a comonomer (5 wt.% of the 

whole monomer content) and MMA as the main monomer. The surfmer (L/D-S1) was introduced at 

a concentration of 6 wt.% with respect to the continuous phase, acting as a surfactant that stabilizes 

the MMA droplets. For those nanoparticles synthetized using L-S3 molecules, the concentration of 

the comonomer and the surfactant were both maintained. The concentration of  

L-S1 and L-S2 was optimized to maximize the incorporation of proline. The increase of the content 

of L-S2 from 5 to 10 wt.% resulted into the complete destabilization of the miniemulsion. The 

copolymerization strategy did not stand the excess of the proline-building blocks, increasing the 

contribution of homogeneous polymerization in the aqueous phase. The stability of the 

miniemulsion decreased when the amount of surfmer was reduced from 6 to 3 wt.%, and the solid 

content of the final dispersion dropped from 8 to 5 wt.% (with respect to a theoretical value of  

10 wt.%). The proline content (0.23–0.28 wt.% after the purification) of the particles prepared at 

higher concentrations of the surfmer (9 or 12 wt.%) was similar to the values (0.28 wt.%) achieved 
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with 6 wt.% of L-S1. Our study revealed that a significant fraction of the surfmer was required for 

stabilization purposes, but it was not covalently incorporated to the nanoparticles structure. 

The solubility of both the surfmer and the surfactant in the aqueous phase was critical to provide an 

efficient stabilization of the direct miniemulsion, which justified the requirement of a strong basic 

media in the continuous phase. The basicity of the continuous phase was less restrictive in the case 

of the comonomer because the role of L/D-S2 was not directly related to the colloidal stability. 

Nevertheless, the presence of OH¯ groups in the aqueous phase increased the hydrophilicity of the 

proline-based molecules, improving the copolymerization process at the droplet interface and the 

accessibility of the active moieties of the catalyst. The purification of the dispersion of 

nanoparticles allowed us to minimize the presence of surfactant (SDS) and the excess of the 

surfmer, which did not copolymerize with MMA. In addition, the rising step with TFA was 

essential to protonate the carboxylic group of proline, which was deprotonated during the 

preparation of the miniemulsion with the addition of NaOH in the aqueous phase. The protonation 

of the proline-supported catalysts will have a crucial effect in the enantiomeric selectivity of the 

reactions whose mechanism of catalysis requires a direct participation of the carboxylic group. 

The magnetic functionality was achieved with the incorporation of magnetite nanoparticles in the 

miniemulsion (10 wt.% with respect to the disperse phase). The self-assembly of the inorganic 

system within the forming polymer matrix during the miniemulsion polymerization process was 

controlled via the surface functionalization of magnetite. According to the results presented in 

Chapter 4, MPS was used as a coupling agent with relative hydrophobicity, short alkyl chains, and 

a methacrylic copolymerizable group, which guaranteed the encapsulation of the magnetic 

nanoparticles.  

Analogous strategies were used for the preparation of different types of chiral nanoparticles with 

and without magnetic core. The description and characterization of the nanostructures in terms of 

material composition, proline load, magnetite concentration, and particle size are presented in 

Table 6.1. The polymer catalysts prepared using L-S1 and L-S2 are named as AC1 and AC4, 

respectively. The corresponding chiral nanoparticles incorporating magnetite are designed as AC2 

and AC5, or AC3 and AC6 if D-S1 and D-S2 molecules were used for the immobilization of 

proline. As a general trend, the comonomer (L/D-S2) allowed a slightly higher incorporation of 

catalytic and magnetic functionalities within smaller and more monodisperse nanoparticles in the 

case of AC5 and AC6, compared to AC2 and AC3. This latter feature (particle size and size 

polydispersity) is directly related to the stabilization ability of the surfmer (L/D-S1), which seems to 

be less effective than SDS. Similar information was revealed by the characterization of the chiral 
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catalysts AC2, AC3, AC5, and AC6 by SEM and TEM (Figure 6.5). Nevertheless, the order of 

magnitude of the differences between both materials is negligible. 

 

Figure 6.5. SEM and TEM micrographs of the magnetoresponsive chiral particles AC2 (a, e), AC3 

(b, f), AC5 (c, g), and AC6 (d, h). 

A second group of chiral nanoparticles (AC7–AC10) presented in Table 6.2 was synthetized by 

miniemulsion polymerization using the proline-based surfactant (L-S3). Although only the materials 

presented in Table 6.1 were considered for the application as chiral nanocatalysts, the preparation 
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of nanoparticles AC8 and AC7 (with and without magnetite) proves the possibility of achieving the 

colloidal stabilization with amino acid-based molecular surfactants. The strategy was extended to 

the combining two functional chiral structures (L-S2 and L-S3) for the synthesis of AC10 and AC9, 

respectively.  

Table 6.1. Main features of the different polymer-supported proline nanocatalysts. 

a S1: 10-undecenoyl-trans-4-hydroxy-L/D-proline. 
b S2: O-methacryloyl-trans-4-hydroxy-L/D-proline. 
c Determined by polyelectrolyte titration of the nanoparticles after purification. 
d Determined by TGA. 
e Determined by DLS. 
f PDI: Polydispersity index.  
 

Table 6.2. Characterization of the dispersion of polymer and hybrid nanoparticles synthetized by 
minienulsion polymerization using L-S3 as a surfactant. 

a S2: O-methacryloyl-trans-4-hydroxy-L-proline. 
b S3: Undecanoyl-trans-4-hydroxy-L-proline. 
c Determined by TGA. 
d Determined by DLS. 
e PDI: Polydispersity index.  

 
In comparison with the samples prepared using proline-based surfactant L-S3 (AC7 and AC9), 

bigger polymer particles with a narrow size distribution were achieved using the surfmer, as shown 

in the SEM micrographs of Figure 6.6(a, b, and c). Similar particle size and polydispersity was 

achieved in the encapsulation of magnetite using L-S3 alone (AC8) or combined with L-S2 

incorporating polymerizable units of proline (AC10). The stability of the final latexes validates the 

application of L-S3 as a surfactant for the stabilization of direct miniemulsions. The use of SDS 

results in a decrease of both the size and the polydispersity of the sample AC4 incorporating a 

magnetic core, as observed in Figure 6.6(d, e, and f). 

 
Catalyst 

 
Monomer Co-

monomer Surfactant Surfmerb Prolinec   
/ wt. % 

Fe3O4
d

  
/  wt% 

de / nm PDIf  

AC1 MMA – – L-S1 0.5 – 190 ± 80 0.07± 0.04 

AC2 MMA – – L-S1 0.3 9 180 ± 80 0.13 ± 0.02 

AC3 MMA – – D-S1 0.3 8 210 ± 70 0.12 ± 0.02 

AC4 MMA L-S2 SDS – 0.7 – 120 ± 60 0.14 ± 0.02 

AC5 MMA L-S2 SDS – 0.5 12 200 ± 40 0.47 ± 0.13 

AC6 MMA D-S2 SDS – 0.4 14 160 ± 30 0.88 ± 0.12 

 Catalyst Monomer  Co-monomera  Surfactantb   Fe3O4
c / % dd / nm  PDIe 

AC7 MMA – L-S3 – 150 ± 40  0.04 ± 0.03 

AC8 MMA – L-S3 9  150 ± 60  0.09 ± 0.03 

AC9 MMA L-S2 L-S3 – 170 ± 60   0.08 ± 0.03 

AC10 MMA L-S2 L-S3 14  240 ± 120  0.19 ± 0.02 
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Figure 6.6. SEM micrographs of the polymer nanoparticles AC7 (a) and AC9 (b) synthetized using L-S3, 
compared with the corresponding particles AC1 (c) prepared with L-S1. Analogue comparison established 
between the hybrid (with a magnetic core) nanoparticles AC8 (d) and AC10 (e) with the use of SDS in  
AC4 (g). 

 

6.4 Asymmetric	Catalysis	of	an	Intermolecular	Aldol	Reaction	in	Water	

The catalytic efficiency of the nanoparticles was studied for the asymmetric catalysis of the 

intermolecular aldol reaction between p-nitrobenzaldehyde and cyclohexanone in water shown in 

Scheme 6.2. The mechanism of the reaction presented the Scheme 6.3 reveals the crucial role of the 

carboxylic acid of the proline in the enantioselectiviy of the reaction. Therefore, the purification of 

the chiral nanoparticles with TFA will influence the chirality of the product of the reaction. 

 

 Scheme 6.2. Aldol reaction between p-nitrobenzaldehyde and cyclohexanone catalyzed by proline. 
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Scheme 6.3. Mechanism proposed for the aldol reaction between p-nitrobendaldehyde and cyclohexanone in 
water catalyzed by proline units. (Based on ref. 212) 

The conversion and the enantiomeric selectivity after 6 h for reactions in the presence of different 

proline-supported catalysts, evaluated by NMR spectroscopy, are listed in Table 6.3. The 

magnetoresponsive surfmer-based nanoparticles (AC2) showed conversions over 97% and great 

enantiomeric selectivites (anti/syn ratio 92:8), comparable with the values achieved with the 

monomer-based particles (AC5). The evolution of the conversion and the selectivity achieved with 

the magnetoresponsive chiral catalysts AC2 and AC5 was achieved by comparison of the 

intensities of specific signals of the 1H-NMR spectra, as shown in Figures 6.7 and 6.8. The 

conversion of the aldehyde with the advance of the respective reactions is followed with the 

disappearance of the signal at 10.09 ppm and the chemical shift at 8.00 and 8.32 ppm characteristic 

from the structure of p-nitrobenzaldehyde resulting into new signals at 7.45, and 8.13 ppm 

respectively. The appearance of signals at 4.82 and 5.41 ppm reveals the formation of 2-hydroxy-

(4-nitrophenyl)methyl)-cyclohexanone and the anti or syn conformation of the chiral bond created 

between p-nitrobenxaldehyde and cyclohexanone. The ratio of the intensities of the latest signals 

determined the enantioselectivity of the reaction.  
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Figure 6.7. Evolution of the conversion and enantioselectivity of aldol reaction between p-nitrobenzaldehyde 
(0.1 mmol) and cyclohexanone (1 mmol) in water, catalyzed with the magnetoresponsive chiral nanoparticles 
AC2 (10 mol.% with respect to the aldehyde).  

 

Figure 6.8. Evolution of the conversion and enantioselectivity of aldol reaction between p-nitrobenzaldehyde 
(0.1 mmol) and cyclohexanone (1 mmol) in water, catalyzed with the magnetoresponsive chiral nanoparticles 
AC5 (10 mol.% with respect to the aldehyde). 
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Table 6.3. Conversion and enantioselectivity of the aldol reaction using different proline-based chiral 
catalysts. 

 

 

 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a The reaction was performed using 520 µL of solvent. Refer to section 9.5.3 for  
specific details. 
b Determined by NMR as explained below for Figures 6.7 and 6.8. 

To elucidate the effect of the solvent in the reaction, the water was substituted with aqueous 

solutions of NaOH (1 M), TFA (1 M), or DMSO (2:1 vol.) while keeping constant the rest of the 

reaction conditions. The high conversion achieved with the different solvents was accompanied 

with a reduction of the selectivity, the inversion of the anti/syn ratio, and the achievement of 

racemic mixtures. The acidity or basicity of the aqueous media has a direct influence on the 

reaction mechanism via the protonation or deprotonation of the carboxylic group of the proline and 

the availability of protons. The aldol reaction catalyzed with proline has been traditionally carried 

out in organic solvents, and the presence of a small amount of water has been demonstrated to 

increase the selectivity of the reaction. This work highlights the great efficiency and enantiomeric 

selectivity reached using water as a sole solvent, whose concentration needs to be carefully 

 
Catalyst 

 
Solventa Conversionb 

/ % 
antib  

/ % 
synb  
/ % 

Heterogeneous catalysis 
AC1   Water 99 91 9 
AC2   Water 97 92 8 
AC2   DMSO/Water (2:1) 97 84 16 
AC2   NaOH (1M) 99 36 64 
AC2   TFA (1M) 83 47 56 
AC3   Water 87   92 8 
AC4   Water 94 94  6   
AC5   Water 96 93 7 
AC5   DMSO/Water (2:1) 100 37 63 
AC5   NaOH (1M) 98 41 59 
AC5   TFA (1M) 95 40 60 
AC6   Water 70 91 9 

Homogeneous catalysis 
L-S1   Water 99 94 6 
L-S1   DMSO/Water (2:1) 80  76 24 
L-S1   NaOH (1M) 93  36 64 
L-S1   TFA (1M) 28  45 55 
D-S1   Water 98  96 4 
L-S2   Water 11 74 26 
D-S2   Water 8  75 25 



6. Proline-Functionalized Polymer Nanoparticles  
   

 88 

controlled. On the one hand, an excess of water would let to low conversions due to the high 

polarity of the substrates. On the other hand, the water content needs to be optimized for the 

efficient dispersion of the catalyst, which otherwise would remain agglomerated and deprived of 

the support of protons from the solvent. 

Similar efficiencies were achieved when the surfmer L-S1 was used for the homogeneous catalysts 

of the reaction under the same experimental conditions. The amphiphilic molecule located at the 

water/cyclohexanone interface offered an excellent contact between the substrates, the catalyst, and 

the solvent. However, the short alkyl chain and the high hydrophilicity of the monomer L-S2 

hindered the efficient contact between the small molecules in the aqueous phase and the reactants. 

Thus, no significant conversion was observed even after 24 h of reaction. 

The control of the selectivity of the reaction was also addressed with the modification of the 

chirality of the catalyst. According to theoretical predictions, the use of polymer–supported or 

unsupported molecules based in hydroxy-D-proline should promote the D-configuration of the 

product235-237 The enantiomeric selectivity achieved with non-supported D-proline-based molecules 

(D-S1 and D-S2) or with the polymer-supported nanocatalyts AC3 and AC6 was similar to 

homologues L-catalysts (L-S1, L-S2, AC2, and AC5).  

The magnetoresponsive catalysts AC2 and AC5 were magnetically separated from the product, 

extracted with diethyl ether, washed, and reused during four cycles of reaction. The conversion and 

the enantioselectivity of the reaction were maintained after each cycle of reaction, as shown in 

Figure 6.9, which reveals the consistency of the activity of the catalyst.  

 

Figure 6.9. Recycling study: conversion (left) and enantioselectivity (right) of the aldol reaction catalyzed by 
the magnetoresponsive chiral catalysts AC2 and AC5 during four cycles of reaction.  
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6.5 Conclusions	

This work highlights the use of chiral surfmers in miniemulsion polymerization processes for the 

incorporation of units of hydroxy-L/D-proline accessible on the surface of PMMA nanoparticles 

with additional magnetic functionalities. The magnetoresponsive chiral nanoparticles showed high 

performances for the asymmetric catalysis of the intermolecular aldol reaction between  

p-nitrobenzaldehyde and cyclohexanone in water. The high conversion, enantioselectivity, stability, 

and recyclability of the surfmer-based nanocatalyst were comparable to the results obtained using a 

traditional proline-based comonomer. The surfmer structure avoids the use of conventional 

surfactants, which need to be typically removed before the application. In addition, this work 

highlights the high enantioselectivity achieved for the organocatalysis of an intermolecular aldol 

reaction using water as a sole solvent. 
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 Magnetic	 Polyurethane	 Microcarriers	 from	7

Nanoparticle-Stabilized	 Emulsions	 for	 Thermal	

Energy	Storage		
This chapter is focused on the development of multifunctional polyurethane–metal oxide hybrid 

microcapsules via interfacial polymerization processes in nanoparticle-stabilized emulsions. 

Different metal oxide nanoparticles with magnetic (i.e., magnetite) and catalytic (i.e., titania or 

ceria) properties were used as inorganic stabilizers for the encapsulation of sodium sulfate 

decahydrate salt, taken as a model of an inorganic hydrated salt. The aqueous core and the capsule 

microstructure offered a hermetic confinement for the protection of hydrated salts to be potentially 

used as phase change materials (PCM) in thermal energy storage applications. The thermal and 

chemical stability of the salt was guaranteed by its encapsulation. The magnetic polyurethane 

microcarriers were optimized for thermal energy storage applications at mild temperatures with 

reduced supercooling. In addition, the high thermal conductivity of the magnetite nanoparticles 

contributed to an efficient heat transfer through the polyurethane shell. 

 

7.1 State	of	the	Art:	Phase	Change	Materials	 for	Thermal	Energy	Storage	

Applications	

The rapid advance of industrialization in our society has driven to the uncontrolled increase of the 

energy consumption, the acceleration of the depletion of fossil fuels, and an important 

environmental pollution. In this context, competitive clean renewable energies, which still 

nowadays face low efficiency and intermittence problems, are highly demanded for the 

sustainability of our economies and our planet. For these reasons, the optimization of the 

production, the use, the management, the recovery, and the recycling of energy via storage 

technologies (i.e., thermal, mechanical, electromagnetic, hydrogen and electrochemical energy 

storage)238-239 is highly required. In the last decades, the development of energy storage materials 

has been on the scope of diverse research communities and industrial sectors. In particular, thermal 

energy offers a simple way of energy storage, either as the sensible heat (SH) related to the thermal 

capacity of a fluid, as the latent heat (LH) associated to phase transitions, as thermochemical 

reactions (TCE), or as a combination of those.239 Latent heat storage systems provide the highest 
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density of energy storage via isothermal processes of change of phase (i.e., solid–solid, liquid–solid 

or liquid–gas). The energy involved in such phase transitions is related to the number of bonds 

broken; thus, the liquid–gas transformations would theoretically provide the best energetic 

contribution. However, the great changes in volume occurring during liquid–gas transformations 

make the strategy unpractical. Solid–solid transitions are long processes related to changes in the 

crystalline structure, which often require high temperatures. Therefore, the most promising 

candidates for energy storage are the so-called phase change materials (PCMs), which store the 

latent heat of solid–liquid transitions (i.e., the energy is stored during a melting process and further 

recovered during the recrystallization of the system occurred with a decrease of the 

temperature).240-241 Nowadays, PCMs are being commercially applied in a wide range of sectors 

(e.g., off-peak electricity storage, solar technologies, thermo-regulated textiles and buildings, 

refrigeration and cold storage,242 or industrial waste heat recovery).239, 243-246 The most recent lines 

of research are moving towards the development of other cutting-edge systems (e.g., heat-transfer 

fluids, energy harvesting, vectors for biomedicine with controlled diffusivity and drug delivery, 

sensing, or storage of optical information). Such applications require the optimization of the storage 

efficiencies and stability of the materials.240-241  

According to their nature, PCMs are classified into organic (paraffin waxes, fatty acids, alcohols, 

and glycols), inorganic (i.e., hydrated salts, and metallic compounds) or eutectic mixtures (i.e., 

inorganic–organic, organic–organic, and inorganic–inorganic). Inorganic phase change materials, 

and more precisely hydrated salts, present attractive high energy storage capacities per mass and 

per volume and small changes of volume, which are clear advantages with respect to the low 

densities of traditional organic PCMs. Hydrated salts are inorganic salts with the typical formula 

AB·nH2O, containing water of crystallization. During the phase change, the dehydration of the salt 

occurs, leading to the formation of either the anhydrous form of the salt (AB) or another stable 

phase with fewer molecules of water (AB·mH2O, with m<n). These crystallohydrates are 

commercially available at low prices for a wide range of operational temperatures.246-247 However, 

this type of PCMs often suffers from problems of chemical and thermal instability (i.e., incongruent 

melting, and phase segregation with a progressive loss of their hydration level and storage capacity 

during the recycling), or corrosion of the surrounding media.243-244, 248 In addition, the low 

nucleating ability of hydrated salts commonly results in the supercooling of the system (i.e., the 

material recrystallizes at a temperature much lower than the melting point), which hinders their 

application.249 The enhancement of their energy storage capacity and stability has been addressed 

by incorporation of elements with high thermal conductivity or via encapsulation techniques. 
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The so-called core–shell encapsulation (micro-246 and nano-encapsulation241) strategies have been 

commonly used to overcome the instability problems of the crystallohydrates. Capsules offer a 

confined space with higher heat transfer area, reduced reactivity with the outer environment and 

controlled changes of volume during the phase transition.250 Diverse chemical (e.g., 

emulsion/miniemulsion polymerization,251-252 phase separation, solvent evaporation,253-255 in-situ 

polymerization and solvent evaporation,256-257 interfacial polymerization,9 or surface-thiol Michael 

addition polymerization258), physicochemical (e.g., sol–gel and inorganic precipitation 

processes),259-260 and mechanical (e.g., mechanical packaging with or without electroplating 

methods)261 techniques have been successfully used for the encapsulation of salts and hydrated 

salts.250 Sodium phosphate dodecahydrate, sodium sulfate decahydrate, magnesium nitrate 

hexahydrate, and mixtures of two different salts were commonly encapsulated within different 

polymer (e.g., PMMA256-257 or poly(ethyl-2-cyanoacrylate)251-252), inorganic (e.g., silica),255, 260 or 

polymer–inorganic (e.g., polyurethane–silica)9 hybrid capsules. The high encapsulation rates 

achieved (up to 94.65 wt.%)254 in most of the cases did not guarantee the stability of the 

crystallohydrate and problems related with the lack of thermal cycling stability, phase segregation, 

or supercooling were still present. Figure 7.1 presents the cycles of thermal energy storage and 

release achieved via the melting/recrystallization process of microencapsulated PCMs. 

 

Figure 7.1. Schematic representation of the energy storage and release in microencapsulated PCMs. (Based 
on refs. 251 and 250. Image credit: Black Thumb Gardener and Sunflowes at night by Jason Squyres) 

Regarding the functionalization of capsules, the techniques of layer-by-layer deposition262-264 or 

electroless platting265 have been widely used for the embedment of magnetic nanoparticles in a 

polymer shell. Also, superparamagnetic polyamide microcapsules with a controllable release via 

thermo-responsive gates of poly(N-isopropylacrylamide) were prepared by interfacial 

polymerization and further plasma-induced grafting polymerization.266 The combination of 

Energy storage

Energy release

Liquid Solid
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catalytic and magnetic functionalities in the protecting shell of inorganic capsules (magnetite–

silica267 and magnetite–titania268) was reported for the encapsulation of organic phase change 

materials (n-docosane267 and eicosane268) via interfacial polycondensation processes in direct 

Pickering emulsions. The multifunctional capsules were used in bioapplications as 

thermoregulatory enzyme carriers268 or biocatalytic enzyme enhancers.267  

This chapter describes the encapsulation of sodium sulfate decahydrate salt (Na2SO4·10H2O) as a 

PCM with a sharp melting process at 32.4 ºC and high melting enthalpy (254 kJ·kg−1),243, 269-271 

within the aqueous core of polyurethane–metal oxide hybrid capsules. Hybrid carriers combine the 

stability and thermal efficiency of hydrated salts for thermal energy storage, with the synergic 

combination of a polymer confinement (i.e., polyurethane shell) tuned with specific inorganic 

functionalities (i.e., magnetic and catalytic). The special interest on the preparation of magnetic 

microcapsules, besides the advantages in terms of purification, is related to the controllable 

application (both for storage and release) in specific target locations/moments using an external 

magnetic field. 

 

7.2 Preparation	of	Nanoparticle-Stabilized	Inverse	Emulsions	

The preparation of inverse Pickering emulsions was addressed by using magnetic (i.e., magnetite), 

and catalytic (i.e., titania and ceria) nanoparticles as inorganic stabilizers. In addition, silica 

nanoparticles were also used as a model for comparison with the other functional systems. As 

explained in section 2.4.2, the relative wettability and the contact angle of the inorganic 

nanoparticles between two immiscible liquid phases (e.g., water and cyclohexane) needs to be 

suited to promote the formation of an adsorbed layer of inorganic nanoparticles at the droplet 

interface. In general, hydrophilic nanoparticles stabilize direct emulsions, whereas hydrophobic 

nanoparticles promote the formation of inverse emulsions. Metal oxide nanoparticles, either 

commercial or synthetized by precipitation methods, commonly present charged groups (e.g., OH− 

groups) on their surface creating a hydrophilic environment. The required hydrophobization was 

reached by surface functionalization of the metal oxides nanoparticles using three alkoxysilane 

components (i.e., MPS, PTMS, and ODTMS) with different polarity and chemical structure. The 

successful performance of the functionalization strategy was proven by thermogravimetric analysis 

(TGA) of the inorganic nanoparticles before and after silanization, as already shown in Chapter 4. 

The mass loss determined with the TGA curves (shown in Figure 7.2) for the ODTMS-

functionalized and the pristine nanoparticles without functionalization allows us to determine the 
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amount of ODTMS that remained covalently attached to the inorganic species after several washing 

operations.  

 

Figure 7.2. TGA curves of ODTMS-functionalized ceria (magenta line), magnetite (green line), and titania 
(blue line) nanoparticles and the corresponding pristine particles without functionalization (dashed lines). 

Ceria and magnetite present an equivalent incorporation of the functionalizing agent (20 wt.%), 

whereas the amount of ODTMS attached to the titania nanoparticles is lower. This difference is 

explained by the pre-functionalization and the rod-like shape of the commercial titania 

nanoparticles, which hinders the attachment of silane to the inorganic surface. 

Differently from the results reported in a previous work dedicated to the incorporation of silica,9 

the long alkyl chains and the absence of polymerizable units in the structure of ODTMS offered the 

best ability to promote the Pickering stabilization in the pure magnetic, catalytic, or multifunctional 

system, as shown in Figure 7.3. 

 

Figure 7.3. Colloidal stability of the dispersion polyurethane-metal oxides hybrid capsules prepared in 
inverse Pickering emulsion using (a) magnetite (b) titania, and (c) magnetite–titania nanoparticles with 
different surface functionalization (with MPS, PTMS or ODTMS) as inorganic stabilizers. 
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7.3 Preparation	 of	 Polyurethane–Metal	 Oxide	 Hybrid	 Capsules	 by	

Interfacial	Polymerization	in	Inverse	Pickering	Emulsion	

Hermetic polyurethane capsules9, 272-273 have been traditionally prepared via interfacial 

polymerization processes, as described in section 2.6.5. In this chapter, the synthesis was carried 

out in Pickering-stabilized inverse emulsions aiming the development of multifunctional materials 

for encapsulation purposes. Inverse emulsions were prepared with an aqueous solution of a water-

soluble monomer (1,6-hexanediol) and the substances to be encapsulated, dispersed in a continuous 

phase of cyclohexane and the ODTMS-functionalized metal oxide nanoparticles. Both phases were 

mixed, homogenized and the Pickering emulsion was finally achieved by ultrasonication. The 

diffusion of second monomer soluble in cyclohexane (i.e., toluene-2,4-diisocyanate, TDI), which 

was externally added resulted into an interfacial polyaddition process driven by the contact with the 

diol from the droplets. Therefore, a polyurethane shell protecting an aqueous core with the 

hydrophilic species was formed. The metal oxide nanoparticles remained incorporated on the outer 

surface or partially embedded within the polymer shell, providing the capsule with the aimed 

functionality. 

The performance of the preparation method was proven by observation of the samples by electron 

microscopy. As proof-of-concept, the TEM micrograph in Figure 7.4 shows the integrity of the 

polyurethane capsules prepared using ODTMS-functionalized silica nanoparticles as a model 

inorganic system.  

 

Figure 7.4. TEM micrographs of polyurethane capsules prepared using ODTMS-functionalized silica 
nanoparticles. 

Octadecyl trimethoxysilane

(ODTMS)

Silica Nanoparticles
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The size, shape, and hydrophobicity of the inorganic species explain the different stabilization 

ability of each inorganic system, and consequently, the size of the droplets and the capsules 

achieved. The capsules prepared using magnetite, titania, and ceria nanoparticles as inorganic 

stabilizers presented significant differences in the size. The size distribution diagrams obtained 

from statistical treatment of TEM images in Figure 7.5 reveal average values of (2.1 ± 1.4),  

(2.0 ± 1.3), and (1.7 ± 0.8) µm for the systems containing titania, magnetite, and ceria 

nanoparticles, respectively. The difference on hydrophobicity of the nanoparticles is highlighted as 

the governing parameter determining the inorganic migration within the polymer shell. SEM 

images from Figure 7.6(a) show the partial engulfment of magnetite nanoparticles within the 

polymer shell, whereas titania and ceria remain mostly accessible on the surface of the capsule, as 

observed in Figure 7.6(b–c). 

The incorporation of two different inorganic species with complementary (i.e., magnetic and 

catalytic) functionalities allowed the preparation of a second generation of multifunctional 

polyurethane–magnetite–titania and polyurethane–magnetite–ceria hybrid microcapsules. The 

integrity of the capsules and the reduction of size and polydispersity from (1.8 ± 0.8) to  

(1.0 ± 0.6) µm were achieved when ceria was used as catalytic species instead of titania, as proven 

by the TEM images in Figure 7.7. SEM images in Figure 7.8 reveal the absence of any apparent 

competition in the migration and self-assembly of the catalytic and the magnetoresponsive 

nanoparticles within the polymer shell. Accordingly, the multifunctional materials are similar with 

regard to the surface level. 
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Figure 7.5. TEM micrographs and size distribution diagrams of polyurethane capsules incorporating 
magnetite (a), titania (b), and ceria (c) nanoparticles. 

 

 

Figure 7.6. SEM micrographs of polyurethane capsules incorporating magnetite (a), titania (b), and ceria (c) 
nanoparticles. 

 

0 1 2 3 4 5 6

Fr
eq

ue
nc

e

Diameter / µm

 PU-CeO2

Fr
eq

ue
nc

e  PU-TiO2

Fr
eq

ue
nc

e  PU-Fe3O4

a

b

c

a b c



7. Magnetic Microcarriers for Thermal Energy Storage 
      

 

 99 

 

Figure 7.7. TEM micrographs and size distribution of multifunctional polyurethane capsules incorporating 
two inorganic species: magnetite–titania (a) and magnetite–ceria (b). 

 

Figure 7.8. SEM micrographs of multifunctional microcapsules of polyurethane–magnetite–titania (a–c) and 
polyurethane–magnetite–ceria (d–f) at different magnifications. 
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7.4 Study	 of	 the	 Suitability	 of	 the	 Hybrid	 Structures	 for	 Encapsulation	

Purposes	

The encapsulation of phase change materials for thermal energy storage applications requires 

highly hermetic systems (without leakages) that provide an efficient interface for heat exchange 

with ability to support pressure–volume changes. The suitability of the capsules as encapsulating 

systems was studied by an indirect method of dialysis that allowed us to track the release of a 

hydrophilic dye occurred when the capsules were placed in an aqueous environment.274 Brilliant 

Blue FCF, whose chemical structure and absorption spectra are shown in Figure 7.9 was chosen as a 

commercial dye to be encapsulated.  

Figure 7.9. Chemical structure (a) and absorption spectra (b) of the dye Brilliant Blue FCF. 

The triarylmethane structure of the dye guarantees the chemical stability in the presence of the 

starting monomers (i.e., the diol and the isocyanate). The concentration of the dye released from the 

capsules placed in an aqueous environment was followed by an indirect method of dialysis. For this 

aim, aqueous dispersions of the capsules with the dye were introduced in dialysis membranes 

immersed within aqueous solutions. The concentration of the dye released and diffused through the 

dialysis membrane was followed via determination of the absorbance of the outer solution by UV-

Vis spectroscopy (Figure 7.10). 
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Figure 7.10. Study of the release of the dye Brilliant Blue FCF encapsulated (5 wt.%) within the hybrid 
polyurethane-based microcapsules incorporating different inorganic nanoparticles or mixtures of them. 

The experimental values of absorbance (A) were fitted to the following empiric expression, as a 

function of time (t): 

𝐴 = 𝐴!"#
𝑡

𝑘 + 𝑡
 (7.1) 

The empiric values of the absorbance at time infinite (Amax) and a constant (k) associated to the 

diffusion rate of the dye of each type of sample are listed in Table 7.1.  

Table 7.1. Empiric values of the parameters Amax and k calculated for each experiment of release. 

Sample Amax  k (h−1) 

Brilliant Blue FCF 1.17 4.80 

PU–SiO2 0.13 3.63 

PU–Fe3O4 0.20 4.23 

PU–CeO2 0.65 11.97 

PU–TiO2 0.46 3.76 

PU–Fe3O4–CeO2 0.28 13.38 

PU–Fe3O4–TiO2 0.27 4.49 

  
The percentage of dye released was estimated by comparison between the absorbance measured at 

the equilibrium of the corresponding sample and the reference experiment associated to a complete 

release (dark blue line). The relevance of the average release of the dye observed (with minimum 

values of10–20 wt.%) was played down based on the evidences of breakage of the polyurethane 

shell during the last sonication step (for the redispersion of the capsules). Thus, we assume that a 
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significant fraction of the dye that diffuses through the dialysis membrane came from the broken 

capsules. The polyurethane capsules incorporating magnetite (green, turquoise, and violet lines in 

Figure 7.10) offer the most hermetic functional confinement, so that they are considered as suitable 

systems for encapsulating purposes. 

7.4.1 Encapsulation	of	Phase	Change	Materials	for	Thermal	Energy	Storage	

Sodium sulfate decahydrate salt (Na2SO4·10H2O), also known as Glauber salt, was chosen as a 

phase change material (PCM) with promising features for thermal energy storage applications close 

to room temperature.243, 269-270 Different microencapsulation techniques have been used to 

minimize/avoid the inherent problems of thermal and chemical instability of the hydrated salt. 

Biswas et al.275 established that the use of extra water prevents the formation and precipitation of 

heavy anhydrous forms of the salt at expenses of reducing the storage density and broadening the 

range of the temperature transition. Thus, an aqueous solution of Na2SO4·10H2O (20 wt.%) was 

encapsulated within the magnetoresponsive microcapsules (i.e., polyurethane capsules with 

magnetite, magnetite and titania, or magnetite and ceria, designed as PC1, PC2, and PC3 

respectively). Higher concentrations of incorporation of the salt were not allowed by the technique, 

as a consequence of the problems of solubility reported by Schoth et al.9 Table 7.2 presents the 

composition of the capsules containing the phase change material (i.e., the incorporation of the 

inorganic species and the encapsulation of the salt) determined by ICP-MS. The PCM was 

successfully encapsulated and homogeneously distributed within the population of magnetic 

carriers as observed in the TEM (dark areas within the capsules) images of Figure 7.11.  

 

Figure 7.11. TEM micrographs of polyurethane capsules with magnetite (a), magnetite–titania (b), and 
magnetite–ceria (c) nanoparticles, encapsulating Na2SO4·10H2O salt. 
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Table 7.2. Main features of the magnetoresponsive polyurethane capsules for thermal energy storage. 

Material Fe3O4
a /wt. % TiO2

a  / wt. % CeO2
a/ wt. % PCMa / wt.% db (µm) 

PC1 25.81 ± 0.15   24.9 ± 0.2 1.0 ± 0.4 

PC2 15.40 ± 0.12 25.5 ± 0.5  13.89 ± 0.12 0.6 ± 0.3 

PC3 20.64 ± 0.16  10.07 ± 0.37 20.46 ± 0.12 0.7 ± 0.4 

PC4 31.03 ± 0.17   32.2 ± 0.3 0.8 ± 0.4 
a Determined by ICP-MS. 
b Determined by statistical treatment of TEM images accounting at least 200 capsules. 

 
The comparison of the size distribution between the polyurethane–magnetite capsules with and 

without salt in Figure 7.12 confirms the role of the salt as an osmotic pressure agent. The salt 

minimizes the Ostwald ripening phenomena and increases the stability of the Pickering emulsion, 

which results in a reduction from (2.0 ± 1.3) to (0.9 ± 0.4) µm of the capsule size and 

polydispersity. A similar trend was observed for the magnetoresponsive and catalytically active 

hybrid microcapsules. 

 

Figure 7.12. Size distribution of the polyurethane–magnetite hybrid capsules with (magenta) and without 
(blue) 20 wt. % of Na2SO4·10H2O salt. 

The thermal behavior of the thermosensitive and magnetoresponsive carriers was studied by 

differential scanning calorimetry (DSC). The study of the salt in bulk shown Figure 7.13(a) 

confirmed a high melting enthalpy (210 J·g−1) and a low melting temperature (36 ºC), close to the 

theoretical values (250 J·g−1 and 36 ºC, respectively). Problems of cycling instability, incongruent 

melting with a loss of thermal storage capacity to 130 J·g−1 after the second thermal cycle, phase 

segregation, and supercooling were patent and justified the encapsulation of the salt. The 

magnetoresponsive capsules (PC1, PC2 and PC3) were subjected to four cycles of heating and 
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cooling around the melting and crystallization temperatures (−50 to 60/90 ºC) determined for the 

salt in bulk. The corresponding DSC diagrams are shown in Figure 7.13(b–d).  

 

Figure 7.13. Thermal analysis by differential scanning calorimetry of Na2SO4·10H2O salt in bulk (a), and 
encapsulated (20 wt. %) within the magnetoresponsive polyurethane hybrid microcapsules PC1 (b), PC2 (c), 
and PC3 (d). 

Similarly to the results from a previous work based on polyurethane–silica capsules,9 when solely 

magnetite was used as an inorganic component, the system PC1 presented a melting enthalpy of 

(50.0 ± 1.0) J·g−1 at 36 ºC. However, a noticeable reduction of the enthalpy values of (10.0 ± 0.2) 

and (15.0 ± 0.3) J·g−1 were obtained for PC2 and PC3, respectively. These values are in agreement 

with the encapsulation efficiency of each system shown in Table 7.2. Despite the efficient storage 

capacity of the salt during the melting process offered by the magnetite-based capsules, neither the 

formation of the metastable phase (i.e., sodium sulfate heptahydrate) during the recrystallization 

nor the supercooling of the system below –20 ºC were corrected. 

The combination of thickening (e.g., bentonite clay) and nucleating agents (e.g., borax, or sodium 

dihydrogen phosphate dihydrate) has been used to overcome the phase segregation and 
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supercooling problems of sodium sulfate decahydrate salt, respectively.276 However, the thermal 

conductivity of the resulting mixtures was reduced and the crystallization rate and heat transfer 

consequently decreased. A small amount of sodium dihydrogen phosphate dihydrate (2 wt.% 

Na2HPO4·2H2O with respect to Na2SO4·10H2O) was incorporated as a nucleating agent within the 

aqueous core of the polyurethane–magnetite microcapsules PC4. The integrity of the 

magnetoresponsive capsules was altered neither by the slightly higher concentration of salt in the 

aqueous core nor by the presence of different hydrated systems, as observed in the TEM and SEM 

images from Figure 7.14. 

 

Figure 7.14. TEM (a) and SEM (b) micrographs of the capsules PC4. 

The incorporation of the second salt results in an average capsule diameter of (0.8 ± 0.4) µm for the 

magnetoresponsive capsules PC4, which is close to the value previously determined for sample 

PC1 (without nucleating agent), as shown in Figure 7.15. 

 
Figure 7.15. Size-distribution diagrams of the capsules PC4. 

The DSC thermogram for the Na2HPO4·2H2O salt in bulk depicted in Figure 7.16(a) allows us to 

discard the existence of any possible thermal process related to this salt within the range of 
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temperatures of the thermal study. The contribution of the phosphate salt is only attributed to the 

increase of the nucleating ability of the sodium sulfate decahydrate, which experiments a 

heterogeneous nucleation process, and overcomes both phase segregation, and supercooling 

problems. The results obtained by DSC for PC4 (Figure 7.16(b)) reveal a sharp recrystallization at 

10 ºC leading to the most stable, the decahydrated state of the salt within the operational 

temperatures. During four thermal cycles, the Na2HPO4·2H2O salt maintained a melting enthalpy of 

(60 ± 1.2) J·g−1 associated to the melting process occurring at 35 ºC. 

 

Figure 7.16. Thermal analysis by differential scanning calorimetry of Na2HPO4·2H2O salt in bulk (a) and the 
PC4 capsules (b). 

 

7.5 Conclusions	

Versatile interfacial polymerization processes have been developed in inverse Pickering emulsions 

for the preparation of polyurethane–metal oxide hybrid submicron capsules with an aqueous core. 

Pickering emulsions offer synthetic advantages and allow the incorporation of specific 

functionalities while avoiding the use molecular surfactants. The synthetic platform has been 

applied for the encapsulation of hydrated salts, as phase change materials with promising properties 

for energy storage applications that in bulk suffer from severe problems of instability. The 

confinement and the thermal conductivity offered by the polyurethane shell with the magnetite 

nanoparticles embedded in it offered a protective environment to promote the chemical and thermal 

stability of sodium sulfate decahydrate salt, a PCM with high energy storage capacity. The 

incorporation of a second salt (i.e., disodium hydrogen phosphate dihydrate) as a nucleating agent 

allowed us to solve the phase segregation and supercooling problems intrinsic from the sulfate salt 
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in bulk. The resulting magnetoresponsive polyurethane-based microcarriers showed high 

performance and stability for thermal energy storage applications close to room temperature. 

The use of a magnetoresponsive component as inorganic emulsifier for the synthesis of the hybrid 

microcapsules provided an added value to the final product, apart from the synthetic advantages in 

terms of purification. The controlled application of an external magnetic field could potentially 

allow the storage of thermal energy in specific locations and the control over the charge and 

discharge operations by redirection of the magnetic microcarriers between two points at different 

temperatures. This ability would be especially attractive for the preparation of semicontinuous 

cycles of energy storage and release, in which the heating of some units of a chemical process 

occurred at expenses of the cooling of others. In addition, the compatibility of the capsules with 

aqueous media makes them suitable for the formulation of dispersions of thermo- and 

magneroresponsive carriers for thermal energy storage. 
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 Summary	and	Outlook	8
This thesis offers a toolbox for the preparation of multifunctional polymer–metal oxide hybrid 

nanoparticles and capsules with controlled structure via synthetic methods in miniemulsion. The 

morphologic development of the nanohybrids is controlled by modification of the hydrophobicity 

and surface chemistry of the inorganic species. Different materials with a specific arrangement and 

accessibility of the inorganic/organic functionalities are developed according to the requirements of 

the aimed application. 

The control of the migration of individual inorganic species within a polymer matrix was first 

addressed in Chapter 4 by tuning the polarity of the inorganic surface via silane chemistry. 

Magnetoresponsive (magnetite) or catalytically active (ceria and titania) metal oxides 

functionalized with silane components were incorporated within nanoparticles of polystyrene or 

poly(methyl methacrylate) (PMMA) by miniemulsion polymerization processes. The chemical 

structure of the coupling agent (a silane derivative) was proven to be the major parameter 

governing the hybrid morphology, overtaking the effect of the type initiator, the polymer, or the 

inorganic species. In this fashion, the long alkyl chain of octadecyl trimethoxysilane (ODTMS) and 

the absence of a polymerizable group as in the case of propyl trimethoxysilane (PTMS) lead to 

phase segregation and deposition of the inorganic nanoparticles at the polymer/water interface or to 

the formation of Janus-like structures. The presence of a copolymerizable vinyl group in the case of  

3-(methacryloyloxy)propyl trimethoxysilane (MPS) resulted into its copolymerization with the 

surrounding monomer. Therefore, the encapsulation of inorganic species (magnetite and ceria) 

within PMMA-based nanoparticles was achieved via controlled mechanisms. The shape and the 

size of the inorganic components also influenced the hybrid morphology. The strategy was further 

extended to the incorporation of two complementary functionalities for the preparation of 

magnetoresponsive and catalytically active nanomaterials. The desired accessibility of the 

inorganic functionalities (e.g., the formation of a magnetic core and a catalytic surface) was again 

guaranteed by specific surface functionalization of each inorganic species.  

Once the bases of morphology control were established in Chapter 4, the following chapters (5–7) 

have been highlighted the use of Pickering stabilization and surfmers as synthetic alternatives that 

avoid the use of traditional surfactants and introduce a surface functionality on the polymer support 

via copolymerization of the colloidal stabilizer. 

In Chapter 5, the preparation of magnetoresponsive polystyrene-supported ceria catalysts was 

approached through two synthetic strategies. On the one hand, a heterogeneous nanocatalyst with 
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great inorganic coverage was prepared via in-situ crystallization of ceria on the surface of 

polystyrene–magnetite nanoparticles previously synthetized by miniemulsion polymerization. On 

the other hand, the catalyst was prepared by straightforward processes using catalytic (ceria) 

nanoparticles to allow the so-called Pickering stabilization of miniemulsions. This second strategy 

offers synthetic advantages related to the minimization of the consumption of resources (e.g., the 

use of a comonomer and surfactants is avoided), production steps, and time. The magnetically 

recoverable nanoparticles were used for the heterogeneous catalysis of the hydration of 2-

cyanopyridine to 2-picolinamide. The in-situ crystallization route was related to high catalytic 

efficiencies, whereas Pickering stabilization offered comparable conversion of the reaction by 

increasing the concentration of catalyst. The incorporation of a magnetoresponsive component 

allowed the recovery and recycling of the catalyst. Furthermore, it offered a synergic effect on the 

performance of the catalytic reaction probably due to the local heat produced by the vibration of 

magnetite nanoparticles. 

Chapter 6 reported the preparation of magnetoresponsive proline-functionalized PMMA 

nanoparticles for asymmetric catalysis. Two types amino acid-based molecules with the role of 

surfmer and comonomer were used for the immobilization of chiral units of proline on the surface 

of PMMA nanoparticles with a magnetic core. Both chiral structures provided the polymer support 

with similar immobilization rate and accessibility of the catalytically active amino acid moieties. 

The chiral nanocatalysts showed great conversion, enantioselectivity, and recyclability for the 

asymmetric catalysis of an intermolecular aldol reaction in water. 

Finally, Chapter 7 presented the preparation of polyurethane-based hybrid capsules via interfacial 

polyaddition processes in inverse Pickering emulsions stabilized with different metal oxide 

nanoparticles. Systems using magnetite nanoparticles and their combination with catalytic species 

(ceria or titania) were proposed for the encapsulation of a hydrated salt as a phase change material 

(PCM) with attractive properties for thermal energy storage applications. The problems of chemical 

and thermal instability inherent to the salt in bulk were corrected with the encapsulation. The 

incorporation of a second salt as a nucleating agent allowed us to overcome the supercooling of the 

PCM. The prepared magnetically recoverable carriers (i.e., polyurethane capsules with magnetite 

embedded within the polymer shell and an aqueous core with the pair of salts) showed a great 

performance for thermal energy storage applications. 

The results achieved in this thesis set up a promising scenario for the potential use of the 

miniemulsion technique for the incorporation of other functionalities (e.g., optical properties) or 

species (e.g., noble metals), allowing thereby the enhancement and the diversification of the 
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applications. In addition, the complete understanding of the synthesis and the control of the 

morphology of basic systems will allow the development of complex structures. 

Regarding the synthetic strategy, future research could move further towards multistep and all-in-

situ synthesis. The reduction of time and the number of steps in the processes is valuable, 

especially at industrial scale. The control of challenging colloidal methods, which involve both the 

synthesis of the inorganic functionalities and the polymer species in-situ, would lead to great 

advances of scalability and economy of chemical processes. 

In terms of application, the development of recyclable nanoparticles with high efficiency in 

heterogeneous catalysis could be enlarged to other complex chemical reactions, photocatalysis, or 

for the generation of H2 via water splitting. The enantiomer resolution of chemical synthesis based 

on the use chiral nanocatalyts could be applied for the preparation of different amino acid-based 

catalysts with applicability in asymmetric synthesis. A deep study of the mechanistic formation of 

the chiral bonds, supported by the characterization of the pure products by techniques like chiral 

high performance liquid chromatography (HPLC), would allow us to identify the patterns of the 

control of chirality. We propose the preparation of mixtures of PCMs with different temperatures of 

phase transitions for the development of thermal energy storage materials. These complex systems 

could store and release the thermal energy in a wider range of temperatures, which would enlarge 

the spectrum of application of the material. 

This work has demonstrated the suitability of miniemulsions as a synthetic platform that allows the 

control of the morphology of multifunctional polymer–inorganic hybrid nanoparticles according to 

the expected application in catalysis or energy sectors. 
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 Experimental	Section	9

9.1 Materials	and	Methods	

Chemical Abbreviation CAS Purity Suplier 
Styrene c S 100-42-5 ≥99% Sigma-Aldrich 
Methyl methacrylate c MMA 80-62-6 99% Sigma-Aldrich 
Acrylic acid AA 79-10-7 99% Sigma-Aldrich 
1,6-Hexanediol  Hdol 629-11-8 99% Sigma-Aldrich 
Toluene-2,4-diisocyanate TDI 584-84-9 95% Sigma-Aldrich 
Hexadecane  544-76-3 99% Sigma-Aldrich 
2,2′-Azobis(2-methylpropionitrile)  AIBN 78-67-1 ≥98% Sigma-Aldrich 
2,2’-Azobis-(2-methyl butyro nitrile) AMBN, V59 13472-08-7  ≥98% Sigma-Aldrich 
Potassium peroxodisulfate KPS 7727-21-1 ≥99% Sigma-Aldrich 
Sodium dodecyl sulfate  SDS 151-21-3 99% Sigma-Aldrich 
Sodium hydroxide  1310-73-2 99% Probus  
Sodium chloride  7647-14-5 98% Fluka 
Potassium chloride  7447-40-7  Merck 
Aluminum oxide  1344-28-1  Sigma-Aldrich 
Sodium sulfate decahydrate  7727-73-3 98% Sigma-Aldrich 
Di-sodium hydrogenphosphate 
dihydrate  10028-24-7 98% Sigma-Aldrich 

Iron(III) chloride hexahydrate   10025-77-1 98% Sigma-Aldrich 
Iron(II) chloride tetrahydrate   13478-10-9 ≥99% Sigma-Aldrich 
Ludox TMA (22 nm) a   7631-86-9 34 wt% Sigma-Aldrich 
Titanium dioxide, rutile (15 nm) a   13463-67-7 20 wt% GNM 
Cerium nitrate hexahydrate  10294-41-4 99% Sigma-Aldrich 
3-(Methacryloyloxy)propyl 
trimethoxysilane MPS 2530-85-0 98% Sigma-Aldrich 

Octadecyl trimethoxysilane ODTMS 3069-42-9 90% Sigma-Aldrich 
Propyl trimethoxysilane PTMS 1067-25-0 97% Sigma-Aldrich 
4-Hydroxy-L-proline  51-35-4 99% Acros Organics 
4-Hydroxy-D-proline  3398-22-9 97% Sigma-Aldrich 
Methacryloyl chloride   920-46-7 97% Sigma-Aldrich 
Undecanoyl chloride  17746-05-3 99% Sigma-Aldrich 
10-Undecenoyl chloride   38460-95-6 98% Fischer Scientific 
2-Cyanopyridine  100-70-9 99 Sigma-Aldrich 
2-Picolinamide  1452-77-3 98% Fischer Scientific 
4-Nitrobenzaldehyde  555-16-8 ≥98% Fischer Scientific 
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a Aqueous dispersion. 
b Aqueous solution. 
c Purified chromatographically with an alumina plug before use. 

 

9.2 Synthesis	and	Functionalization	of	Inorganic	Nanoparticles	

9.2.1 Synthesis	of	Magnetite	Nanoparticles	

Magnetite nanoparticles were synthetized and functionalized by a coprecipitation and silanization 

method previously reported.98 A pair of iron-based precursor salts (iron(II) chloride hexahydrate 

(FeCl2·4H2O, 3 g, 15 mmol) and iron(III) chloride hexahydrate (FeCl3·6H2O, 6 g, 22.5 mmol)) 

were dissolved in water (20 mL). An aqueous solution of concentrated ammonia (10 mL) diluted 

with water (5 mL) was added dropwise (5 min) under vigorous mechanical stirring. The reaction 

proceeded under reflux at 70 °C (1 h) and 130 °C (2 h). The nanoparticles were magnetically 

recovered, rinsed twice with a mixture of ethanol/water (50 mL, 1:1 vol.), and dried overnight in an 

oven (under vacuum, 35 °C). 

9.2.2 Synthesis	of	Ceria	Nanoparticles	

The synthesis of ceria nanoparticles in bulk was inspired in a previous process reported for in the 

in-situ crystallization of CeO2 on the surface of preformed polymer particles.6 Cerium nitrate 

hexahydrate salt (8 g, 18.4 mmol) was dissolved in water (50 mL). An aqueous solution of NaOH 

(1 M) was dosed with an addition pump (1h, 20 mL·h−1) under magnetic stirring (750 rpm). The 

system was left under vigorous stirring (room temperature (RT), 20 h). A change of color of the 

reaction volume from white, to purple, brown, and pale white was observed when the 

Chemical Abbreviation CAS Purity Suplier 
Cyclohexanone   108-94-1 ≥99.5% Sigma-Aldrich 
Brilliant Blue FCF BB 3844-45-9  Acros Organics 
Trifluoroacetic acid TFA 76-05-1 ≥99% Carl Roth 
Trifluoromethane sulfonic acid  1493-13-6 99% Acros Organics 
Hydrochloric acid  76-47-01-0 37-38%  b J. T. Baker 
Ethanol EtOH 64-17-5 ≥99. Acros Organics 
Diethyl ether Et2O 60-29-7  Fischer Scientific 
Ammonia  7664-41-7 25% b Scharlau 
Acetonitrile  75-05-8 ≥99.8% J. T. Baker 
Cyclohexane  100-42-5 99% Acros Organics 
Dimethyl sulfoxide DMSO 67-68-5 extra dry Acros Organics 
Dimethyl sulfoxide-d6 DMSO-d6 926-09-0 99.5 at% D Sigma-Aldrich 
Deuterium oxide-d2  7789-20-0 99.8 at% D Carl Roth 
Chloroform-d  865-49-6 99.8 at% D Sigma-Aldrich 
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crystallization of ceria was completed. The product was recovered by centrifugation with a Heraeus 

Megafugue 16 Centrifuge (20 min, 7000 rpm), it was rinsed with water, and dried overnight in an 

oven (under vacuum, 35 °C). 

9.2.3 Functionalization	of	Ceria	and	Magnetite	Nanoparticles	

The hydrophobization of ceria nanoparticles was adapted from a functionalization strategy 

previously reported for magnetite nanoparticles.98 The pristine inorganic particles (ceria or 

magnetite) were redispersed in a mixture water/ethanol (15 mL·g−1 of nanoparticles, 2:1 vol.) with 

sodium dodecyl sulfate (SDS, 3 mg·g−1 of ceria and 10 mg·g−1 of magnetite) using an ultrasonic 

bath (15 min). The pH value of the sample was fixed at 9.5 with a concentrated solution of 

ammonia. The functionalizing agent (ODTMS, PTMS, or MPS; 2 mmol·g−1 of nanoparticles) was 

added dropwise (RT, 30 min) under vigorous stirring. The reaction mixture was stirred 

mechanically (for magnetite) or magnetically (for ceria) at room temperature (RT, 1 h) and under 

reflux (105 °C, 1.5 h). Functionalized magnetite and ceria nanoparticles were recovered from the 

solution with a magnet or by centrifugation (20 min, 7000 rpm), respectively. The products were 

rinsed (once with a mixture of ethanol/water (50 mL, 1:1 vol.) and twice with ethanol) and dried 

overnight in an oven (under vacuum, 35 °C). 

9.2.4 Functionalization	of	Titania	and	Silica	Nanoparticles	

The silanization of silica and titania nanoparticles was performed using a method9, 13 adapted from 

of Bourgéat-Lami et al.277 The pH value of a mixture of the commercial aqueous suspensions of 

GNM TiO2 nanoparticles or Ludox TMA (50 mL) with ethanol (50 mL) and SDS (50 mg) was set 

at 9.5 with concentrated ammonia. The functionalizing agent (ODTMS, PTMS, or MPS, 20 mmol) 

was added dropwise under intense magnetic stirring. The silanization reaction was left to proceed at 

room temperature (RT, 24 h) and under reflux (105 °C, 2 h) for equilibration purposes. The 

hydrophobized nanoparticles were collected by centrifugation (30 min, 10000 rpm), rinsed (once 

with a mixture of ethanol/water (1:1 vol.) and twice with ethanol) and dried overnight in an oven 

(under vacuum, 35 °C). 
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9.3 Experimental	Section	Specific	for	the	Chapter	4	

9.3.1 Preparation	 of	 Polymer–Metal	 Oxide	 Hybrid	 Nanoparticles	 with	 Controlled	

Morphology	by	Miniemulsion	Polymerization	

Ceria and titania nanoparticles specifically functionalized with ODTMS, PTMS, or MPS were 

incorporated within polystyrene or PMMA matrices using an adaptation of a miniemulsion 

polymerization process reported for silica.75 Hydrophobic metal oxide nanoparticles (300 mg) were 

dispersed within the monomer (S or MMA, 3 g) and hexadecane (120 mg) with the aid of an 

ultrasonic bath (15 min). Then, the free-radical initiator (AIBN, AMBN, or KPS, 0.36 mmol) was 

added and the dispersion was homogenized in an orbital thermoshaker (Kühl-Heiz-Thermomixer 

MKR23) (RT, 15 min, 700 rpm). The continuous phase consisted on an aqueous solution (12 mL) 

of SDS (12 mg) prepared under mild magnetic stirring (250 rpm). The organic and the aqueous 

phase were mixed, homogenized, and pre-emulsified in the orbital thermoshaker (RT, 45 min,  

700 rpm). The pre-emulsion was ultrasonified in a Branson Digital Sonifier W-450D (½” tip, 360 s, 

70% amplitude, and (1.0:0.1) s pulse–pause sequence) using an ice bath. The miniemulsion was 

polymerized in the orbital thermoshaker (65 °C for AIBN and KPS, and 72 °C for AMBN,  

16 h, 500 rpm). The resulting dispersion of nanoparticles was filtered using Kimberly-Clark 

professional Kimtech Science precision wipes, and it was lyophilized in a Christ Alpha 24 LD plus 

lyophilizer for determination of the solid content and the inorganic load before purification. 

The fraction of the dispersion charged with higher load of inorganic nanoparticles was recovered 

by centrifugation (20 min, 8500 rpm). The particles were redispersed first in an aqueous solution of 

SDS (0.1 wt.%) and then in water. The mass of the aqueous dispersion between the purification 

steps was maintained constant. Therefore, the efficiency of the global synthesis can be evaluated in 

terms of the solid content achieved after polymerization and after purification. The dispersion was 

lyophilized for characterization of the final material.  

9.3.2 Preparation	of	Multifunctional	Nanoparticles	

Magnetoresponsive and catalytically active nanoparticles were prepared using an adaptation of the 

miniemulsion polymerization developed for the incorporation of magnetite in different polymer 

supports.98 ODTMS-functionalized ceria or titania nanoparticles, and MPS–functionalized 

magnetite nanoparticles (100 mg) were redispersed within MMA or S (1. 65 g) and hexadecane  

(78 mg) in an ultrasonic bath (15 min). The initiator AIBN (30 mmol, 50 mg) was added, and the 

dispersion was homogenized in the thermoshaker (RT, 15 min, 700 rpm). The organic phase was 
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mixed with an aqueous solution (18 mL) of SDS (36 mg) and pre-emulsified by orbital shaking 

(RT, 45 min, 700 rpm). The miniemulsion was prepared by ultrasonication (½” tip, 360 s, 70% 

amplitude, and (1.0:0.1) s pulse–pause sequence) and the system was polymerized in the 

thermoshaker (60 °C, 16 h, 500 rpm). The dispersion of nanoparticles was filtered and submitted to 

three cycles of magnetic purification. The fraction of the nanoparticles with higher magnetic load 

was recovered with a magnet (30 min). The supernatant was discarded and the recovered particles 

were redispersed in an aqueous solution of SDS (0.1 wt.%). The operation was repeated twice 

using water for the redispersion of the particles. The mass of the product was kept constant to get 

representative solid contents, which were determined after lyophilization. 

 

9.4 Experimental	Section	Specific	for	Chapter	5	

9.4.1 Preparation	 of	 Polystyrene-Supported	 Ceria	 Nanoparticles	 (C1	 and	 C2)	 by	

Pickering	Miniemulsion	Polymerization	(Route	P1)	

Polystyrene–ceria and polystyrene–magnetite–ceria nanoparticles, named as C1 and C2,  were 

synthetized via Pickering miniemulsion polymerization. The oil phase was prepared by mixing S 

(1.8 g) with hexadecane (89 mg) and AIBN (60 mg) by orbital shaking (RT, 15 min, 700 rpm) in 

the thermoshaker. In the case of the magnetic catalyst C2, MPS-functionalized magnetite 

nanoparticles (100 mg) were redispersed within the monomer in the ultrasonic bath  

(15 min). The aqueous phase consisting into a stable dispersion of ceria nanoparticles (450 mg) in 

water (16 mL) was prepared by ultrasonication (360 s, ½” tip, 90% amplitude, and (1.0:0.1) s 

pulse–pause sequence).  The two phases were mixed, pre-emulsified by orbital shaking (RT, 

45 min, 700 rpm), and ultrasonified (½” tip, 360 s, 90% amplitude, and (1.0:0.1) s pulse–pause 

sequence) in an ice bath. The Pickering miniemulsion placed in 40 mL vial was polymerized in the 

orbital thermoshaker (60 °C, 16 h, 450 rpm). After 30 min of the initiation of the polymerization, a 

second initiator  KPS (35 mg) dissolved in water (1 mL) was added. The resulting dispersion was 

filtered and lyophilized. 

9.4.2 Preparation	 of	 Polystyrene-Supported	 Ceria	 Nanoparticles	 (C5	 and	 C6)	 by	

Miniemulsion	Polymerization	and	In-situ	Crystallization	(Route	P2)	

Poly(styrene-co-acrylic acid) (P(S–AA)) and P(S–AA)–magnetite nanoparticles, labeled as samples 

C3 and C4 respectively, were synthetized by a miniemulsion copolymerization process adapted 

from Mari et al.6 In the case of C4, the dispersion of magnetite nanoparticles within the monomers 
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was achieved in an ultrasonic bath (15 min). The organic phase was prepared by orbital shaking 

(RT, 15 min, 700 rpm) of a mixture of S (5.76 g), AA  (240 mg), hexadecane (250 mg), AMBN 

(100 mg); and MPS-functionalized magnetite (400 mg) for C4. The aqueous phase, a surfactant 

solution of SDS (100 mg) in water (24 g) was prepared by magnetic stirring (15 min, 250 rpm). 

The phases were mixed and pre-emulsified under orbital shaking (45 min). The miniemulsion was 

prepared by ultrasonication (180 s, ½” tip, 90% amplitude, and a (1.0: 0.1) s pulse:pause sequence). 

The polymerization proceeded (72 °C, 16 h, 500 rpm) in a 100 mL round-bottom flask equipped 

with a reflux column and mechanical stirring for the magnetic nanoparticles. The final latex 

dispersions were filtered and dialyzed using Microsep Advance centrifuge tubes (100kDa MWCO, 

Pall Corporation) filled with 3 mL of sample and 8 mL of water. The samples were centrifuged 

(30 min, at 10000 rpm for C3 and 3000 rpm for C4), the water was replaced and the process was 

repeated up to three times. The polymer and inorganic content of sample C4 was determined by 

TGA of the sample after lyophilization. 

P(S–AA)–ceria and P(S–AA)–magnetite–ceria catalysts, named as C5 and C6, were prepared by 

the controlled crystallization of ceria on the surface of preformed C3 and C4 nanoparticles.6 The 

corresponding amount of samples C3 and C4 to 30 mg of polymer content was redispersed in an 

aqueous solution (25 mL) of cerium nitrate hexahydrate (0.065 g, 0.15 mmol) under orbital shaking 

(1 h). Then, the precipitation of ceria was driven by controlled addition with a syringe pump  

(1 h, 5 mL·h−1) of a solution of sodium hydroxide (5 mL, 30 mM). Once the whole crystallization 

was completed (after 20 h), the hybrid nanoparticles were recovered by centrifugation (30 min,  

10000 rpm). The final product was dried overnight in an oven (under vacuum, 35 °C). 

9.4.3 Catalysis	of	the	Hydrolysis	Reaction	of	2-Cyanopyridine	to	2-Picolinamide	

The equivalent amounts of the hybrid catalyst to contents of CeO2 of 5, 10, 15, 20, or 40 mg were 

dispersed in water (5 mL) in the ultrasonic bath (15 min). The dispersion was mixed in a Vortex 

with a stock solution of 2-cyanopyridine in ethanol (5 mL, 0.02 M). The reaction volume was 

divided into 12 vials (500 µL) corresponding to the different reaction/sampling times. The vials 

were placed in the orbital thermoshaker and the reaction was performed (80 °C, 24 h, 600 rpm).  

At each reaction time (0, 5, 15, 30, and 45 min; once per hour until 7 h; and once after 24 h of 

reaction), aliquots (100 µL) were taken from the corresponding vial, diluted with acetonitrile  

(900 µL), and kept in the freezer (−20 °C) to quench the reaction. A filter (0.02 µm) was used to 

remove the catalyst from the sample, which was then injected into a high performance liquid 

chromatography (JASCO HPLC) unit to determine the reactant/product concentrations. 
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9.4.4 Recycling	Study		

The recyclability of the magnetoresponsive catalysts C2 and C6 was studied during 4 cycles of  

24 h of reaction. After each cycle, the particles were magnetically collected, washed three times 

with ethanol/water (1:1 vol.), and dried overnight in an oven (under vacuum, 35 °C). 

 

9.5 Experimental	Section	Specific	for	Chapter	6	

9.5.1 Synthesis	 of	 10-undecenoyl-trans-4-hydroxy-L/D-proline	 (L/D-S1)		

O-methacryloyl-trans-4-hydroxy-L/D-proline	 (L/D-S2),	 and	 Decanoyl-trans-4-hydroxy-L-

proline	(L-S3)	

The synthesis of the surfmer L/D-S1, the monomer L/D-S2, and the surfactant L-S3 was performed 

according with an adaptation of a procedure for the preparation of O-methacryloyl-trans-4-

hydroxy-L-proline (L-S2),215, 234 as shown in Schemes 9.1, 9.2, and  9.3. The starting compound, 

trans-4-hydroxy-L-proline (3.4 g), was dissolved in TFA (12 mL) in a flask immersed in an ice-

bath. The proline-based precursor was added in small portions under vigorous magnetic stirring  

(5 min, 900 rpm). The system was fluxed with nitrogen, the ice bath was removed and 

trifluoromethanesulfonic acid (500 µL) was added dropwise at room temperature, leading  

trans-4-hydroxy-L-proline completely dissolved. After 5 min, 10-undecenoyl chloride (12 mL) for 

S1, methacryloyl chloride (5.5 mL) for S2, or undecanoyl chloride (12 mL) for S3 was added and 

the acylation proceeded at room temperature (4 h, 500 rpm). The reaction was quenched in an ice 

bath, diethyl ether (Et2O, 36 mL for S1 and S3, or 18 mL for S2) was added (5 min, 500 rpm) and 

the system was left for precipitation under mild stirring conditions (15 min, 250 rpm). The product 

was precipitated as a white solid, recovered by filtration, washed several times with Et2O, and dried 

overnight in an oven (under vacuum, 35 °C). A scale down of the procedure in a factor of ten was 

used for the synthesis of complementary enantiomers of the surfmer (D-S1) 10-undecenoyl-trans-4-

hydroxy-D-proline and the monomer (D-S2) O-methacryloyl-trans-4-hydroxy-L-proline, 

respectively. The yield and the structure of the chiral molecules (determined by NMR) is presented 

below the scheme of the corresponding synthesis. 
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Scheme 9.1. Acylation reaction used for the synthesis of the surfmer 10-undecenoyl-trans-4-hydroxy-L-
proline (L-S1). D-S1 was synthetized analogously using trans-4-hydroxy-D-proline.  

• L-S1: Yield: 39 % 
 

1H-NMR (300 MHz, DMSO-d6) [δ/ ppm] = 5.78 (m, 1H), 5.28 (s, 1H), 4.95(m, 2H), 4.40(t, 1H), 

3.56 (d, 1H), 3.27 (d, 1H), 2.31 (t, 4H), 1.99 (m, 2H), 1.52 (s, 2H), 1.33 (s, 2H), 1.25 (s, 8H). 

13C NMR (75 MHz, DMSO-d6) [δ/ ppm] = 172.32, 169.50, 138.78, 114.62, 72.06, 57.58, 50.31, 

34.12, 33.13, 28.65, 28.42, 28.20, 24.07. 

• D-S1: Yield: 38 % 
  

1H-NMR (300 MHz, DMSO-d6) [δ/ ppm] = 5.78 (s, 1H), 5.28 (s, 1H), 4.95(m, 2H), 4.40(t, 1H), 

3.56 (d, 1H), 3.27 (d, 1H), 2.31 (t, 4H), 1.99 (m, 2H), 1.52 (s, 2H), 1.30 (s, 2H), 1.24 (s, 8H). 

13C-NMR (75 MHz, DMSO-d6) [δ/ ppm] = 172.32, 169.50, 138.78, 114.62, 72.06, 57.58, 50.31, 

34.12, 33.13, 28.65, 28.42, 28.20, 24.07. 

              

Scheme 9.2. Acylation reaction used for the synthesis of the monomer O-methacryloyl-trans-4-hydroxy-L-
proline (L-S2). D-S2 was synthetized analogously using trans-4-hydroxy-D-proline. (Based on refs. 215 and 
234)  

• L-S2: Yield: 58 % 
 
1H-NMR (300 MHz, D2O) [δ/ ppm] = 6.17 (s, 1H), 5.76 (s, 1H), 5.55 (s, 1H), 4.65 (t, 1H), 3.70 

(m, 2H), 2.58 (m, 2H), 1.91 (s, 3H). 

13C-NMR (75 MHz, D2O) [δ/ ppm] = 171.20, 168.19, 135.26, 127.72, 73.56, 58.66, 50.97, 34.47, 

17.13. 
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• D-S2: Yield: 52 % 
 

1H-NMR (300 MHz, D2O) [δ/ ppm] = 6.17(s, 1H), 5.76(s, 1H), 5.56(s, 1H), 4.61(t, 1H), 3.72(m, 

1H), 3.67(m, 1H), 2.71(m, 1H), 2.46(m, 1H), 1.92(s, 3H). 

13C-NMR (75 MHz, D2O) [δ/ ppm] = 171.57, 168.22, 135.28, 127.68, 73.65, 58.88, 50.92, 34.54, 

17.12.  

 

Scheme 9.3. Acylation reaction used for the synthesis of decanoyl-trans-4-hydroxy-L-proline (L-S3). 

 
• L-S3: Yield: 88 % 

  
1H NMR (300 MHz, DMSO-d6) [δ/ ppm] = 5.27 (s, 1H), 4.37 (t, 1H), 3.61 (m, 1H), 3.25 (m, 1H), 

2.30 (t, 4H), 1.52 (s, 2H), 1.24 (s, 14H), 0.85 (t, 3H). 

13C NMR (75 MHz, DMSO-d6) [δ/ ppm] = 172.39, 169.49, 117.71, 72.11, 57.61, 50.26, 34.19, 

33.41, 31.31, 28.71, 28.45, 24.13, 22.11, 13.97. 

 

9.5.2 Preparation	 of	 Proline-Functionalized	 PMMA	 Nanocatalysts	 AC1–AC10	 by	

Miniemulsion	Polymerization		

Proline-functionalzied PMMA nanoparticles corresponding to samples AC1–AC2 and AC7–AC8 

were prepared using L-S1 as a surfmer or L-S3 as a surfactant, respectively, and MMA (1.35 g) as 

the sole monomer. The monomer content used for samples containing the proline-based 

comonomer (AC4, AC5, AC9, and AC10) was constituted by 1.28 g of MMA and 68 mg of L-S2. 

The organic phase was always prepared by mixing hexadecane (78 µL) and AIBN (30 mg) with the 

monomer/s, and magnetite in the case of the mangetoresponsive nanocatalysts. The MPS-

functionalized magnetite nanoparticles (150 mg) were dispersed within the corresponding amount 

of MMA using an ultrasonic bath (15 min). The incorporation of L-S2 required also a previous step 

of ultrasonication for being properly mixed with MMA. The continuous phase consisted into an 

aqueous solution (12 mL) of the emulsifier (72 mg), which corresponded to L-S1 for samples AC1–

AC2, SDS for AC4–AC5, or L-S3 for AC7–AC10. The aqueous phase was basified to dissolve the 
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proline-based molecules by adding a solution of sodium hydroxyde (1 M, 500 µL for systems using 

L-S1 and L-S3, or 2 drops for L-S2). Both phases were homogenized separately by orbital shaking 

(15 min), then mixed, pre-emulsified in the thermoshaker (RT, 45 min, 700 rpm), and emulsified 

by ultrasonication  (½” tip, 360 s, 70% amplitude, and (1.0:0.1) s pulse–pause sequence) in an ice 

bath. The polymerization was driven by thermal activation in the orbital thermoshaker (60 °C, 16 h, 

500 rpm). The chiral nanoparticles were magnetically or kinetically (i.e., by centrifugation) 

purified, washed once with a solution of TFA to reprotonate the carboxylic acid of the proline, 

rinsed with water until the recovery of the neutral pH, and lyophilized. 

Analogous procedures were applied for the preparation of the catalysts AC3 (with the surfmer 

D-S1), or AC3 (with the monomer D-S2) using a scale-down of the miniemulsion formulation in a 

factor of three, and a ¼ ” tip for the emulsification process. 

9.5.3 Aldol	Reaction		

The intermolecular aldol reaction between p-nitrobenzhaldehyde (0.1 mmol) and cyclohexanone  

(1 mmol) was performed using a concentration of the catalyst corresponding to 10 mol.% of proline 

with respect to the aldehyde. The chiral catalysts were either dissolved or dispersed by 

ultrasonication in water (520 µL), which was used as sole solvent. The substrates were added, and 

the reaction was performed in the thermoshaker (25 °C, 6–24 h, 600 rpm). To study the effect of 

the solvent, water was replaced by a mixture of DMSO/water (2:1 vol, 520 µL), or aqueous 

solutions of TFA (1 M) or sodium hydroxide (NaOH, 1 M), while the rest of conditions were 

maintained. The reaction was quenched with Et2O (2 mL) and the catalyst was magnetically or 

chemically isolated while the product was filtered using a silica plug. The catalyst was rinsed with 

Et2O and the extraction of the product was repeated three times. The organic phase was dried and 

the solvent was removed by solvent evaporation. The product was dried overnight in an oven 

(under vacuum, 35 °C) and analyzed by 1H-NMR without further purification. The formation of  

2-hydroxy-(4-nitrophenyl)methyl)-cyclohexanone was revealed, as shown below: 
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• Product extracted after 6 h of the reaction catalyzed by sample AC2. 
 

 
 

1H-NMR (300 MHz, Chloroform-d) [δ/ ppm] = 8.22 – 8.10 (m, 4H), 7.45 (d, J = 1.8 Hz, 2H), 7.20 

(s, 1H), 4.83 (d, J = 8.3 Hz, 2H), 3.97 (s, 1H), 3.68 (d, J = 7.6 Hz, 1H), 3.56 (d, J = 17.3 Hz, 1H), 

2.60 – 2.37 (m, 4H), 2.30 (td, J = 13.2, 6.1 Hz, 2H), 2.05 (ddt, J = 11.8, 5.6, 2.8 Hz, 2H), 1.83 – 

1.71 (m, 2H), 1.64 (tt, J = 8.9, 4.7 Hz, 1H), 1.61 – 1.48 (m, 3H), 1.53 – 1.40 (m, 2H), 1.40 – 1.16 

(m, 3H), 1.25 (s, 1H), 1.15 (s, 2H), 0.79 (q, J = 7.7, 6.8 Hz, 1H). 

 
• Product extracted after 6 h of the reaction catalyzed by sample AC5. 
 

 
 

1H-NMR (300 MHz, Chloroform-d) [δ/ ppm] = 8.14 (d, J = 8.7 Hz, 2H), 7.44 (d, J = 8.7 Hz, 2H), 

4.83 (d, J = 8.3 Hz, 1H), 2.60 – 2.30 (m, 2H), 2.27 (ddd, J = 9.7, 6.4, 2.4 Hz, 1H), 2.05 

(ddt, J = 11.9, 5.6, 2.8 Hz, 1H), 1.77 (dq, J = 12.5, 4.5, 3.6 Hz, 1H), 1.71 – 1.56 (m, 1H), 1.55 (s, 

1H), 1.56 – 1.41 (m, 2H), 1.45 – 1.27 (m, 1H), 1.25 (s, 2H), 1.21 (d, J = 14.8 Hz, 3H), 1.15 (s, 1H), 

0.79 (q, J = 8.5, 7.3 Hz, 0H). 

The conversion of the aldehyde is observed with the disappearance of the characteristic signals at 

10.09 ppm and the chemical shift at 8.00 and 8.32 ppm. The relative intensity of the latter and the 

new signals (at 7.45, and 8.13 ppm) are used to calculate the reaction conversion. In addition, the 

intensity of signals at 4.82 and 5.41 ppm allowed us to determine the anti/syn ratio. 

9.5.4 Recycling	Study	

The magnetoresponsive catalysts were magnetically recovered from the product of the aldol 

reaction, washed twice with water (2 mL) and Et2O (2 mL) with the aid of the ultrasonic bath  

(15 min). The chiral nanoparticles were dried overnight in an oven (under vacuum, 35 °C) and 

reused for the next cycle of the aldol reaction. The strategy was repeated up to four cycles. 
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9.6 Experimental	Section	Specific	for	Chapter	7	

9.6.1 Synthesis	 of	 Polyurethane-Based	 Hybrid	 Capsules	 Incorporating	 Metal	 Oxide	

Nanoparticles	by	Interfacial	Polymerization	in	an	Inverse	Pickering	Miniemulsion	

The preparation of polyurethane capsules incorporating different metal oxides (titania, ceria, 

magnetite and silica) was adapted from a previous process developed for silica nanoparticles.9 

ODTMS-functionalized metal oxide nanoparticles (225 mg) were dispersed in cyclohexane (9 mL) 

with the aid of the ultrasonic bath (15 min). The disperse phase was prepared by dissolving  

1, 6-hexanediol (45 mg) in either water (850 µL) or an aqueous solution with hydrophilic 

substances (i.e., Brilliant Blue FCF dye (5 wt. %) or Na2SO4·10H2O (20 wt%) with or without 

Na2HPO4·2H2O (0.4wt. %)). The phases were mixed, pre-emulsified with a Vortex (2 min), and 

emulsified by ultrasonication in a Sonics Vibra-Cell V130 Sonifier from Sonics & Materials Inc. 

(1/4” tip, 6 min, 70% amplitude, and (1.0:0.1) s pulse–pause sequence). A solution of TDI (90 mg) 

in cyclohexane (2 mL) was added dropwise and the interfacial polymerization was driven in the 

orbital thermoshaker  (25 °C, 24 h, 450 rpm¡). The capsules containing the Na2SO4·10H2O were 

dried by evaporation of cyclohexane overnight (RT, atmospheric pressure) for thermal 

characterization by DSC. 

9.6.2 Release	Study	

An aqueous solution of the dye Brilliant Blue FCF (5 wt.%) was encapsulated within the 

polyurethane–metal oxide microcapsules. The cyclohexane of the final dispersion was evaporated 

overnight (RT, atmospheric pressure). The dried capsules were redispersed in an aqueous solution 

of SDS (30 mL, 1 wt.%) in the ultrasonic bath (15 min). An aliquot of the aqueous dispersion  

(10 mL) was placed in a dialysis membrane (14 kDa) from Carl Roth, and immersed in water  

(500 mL) under mild magnetic stirring (120 rpm). An indirect method was used to study the 

concentration of the dye that was released from the capsules and diffused through the membrane. 

For this aim, aliquots (1 mL) were taken during 72 h from the outer solution and the absorbance of 

the samples was measured by UV-Vis. A patron experiment was also performed using an aqueous 

solution of the dye at the concentration equivalent of a total release. 
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9.7 Analytic	Techniques	

9.7.1 Dynamic	Light	Scattering	(DLS)	

The average particle size (d) was determined by dynamic light scattering (DLS at 107°) with a 

Zetasizer Malvern Zen 1960 equipment in Mainz and a Zetasizer Nano ZS in Valencia. The 

aqueous dispersions were diluted (0.1 vol.%) previous determination.  

9.7.2 Polyelectrolyte	Titration	(PCD)	

The surface charge density was quantified by polyelectrolyte titration using a particle charge 

detector (Mütek PCD-04, BTG Mütek GmbH). The pH value of the aqueous dispersion of particles 

with a solid content of 0.1 wt.% was fixed at 9.0 with a solution of sodium hydroxide (0.05 M). 

Poly(dimethyl diallyl ammonium chloride) (polyDADMAC, 1 N) was used as polyelectrolyte for 

the determination. 

9.7.3 Thermogravimetric	Analysis	(TGA)		

The inorganic load of the hybrid samples containing individual inorganic species was determined 

by thermogravimetric analysis using a Mettler Toledo ThermoSTAR TGA/SDTA 851 

thermobalance (Mettler-Toledo, Switzerland) in Mainz, and a thermobalance SETARAM Setsys in 

Valencia. The same technique with analogue operating conditions was used to quantify the amount 

of coupling agent (silane) attached to the inorganic nanoparticles. The samples were previously 

dried in an oven (under vacuum) or by lyophilization. About 20 mg of sample were heated under 

controlled atmosphere with nitrogen at 10 ºC·min−1 from 30 to 600 ºC.  

9.7.4 Inductively	Coupled	Plasma-Mass	Spectrometry	(ICP-MS)	

The inorganic load of the multifunctional samples incorporating simultaneously at least two 

inorganic species was determined by inductively coupled plasma mass spectrometry (ICP-MS) 

using a mass detector Agilent 7900. The samples were digested with acid previous determination. 

9.7.5 Transmission	Electron	Microscopy	(TEM)	

A JEOL 1400 Electron Microscope (JEOL Ltd., Japan) with a LAB6 cathode at 120 kV and a 

GATAN Ultrascan 1000 CCD camera (Gatan Inc., USA) and a JEOL JEM 1010 with 100kV and a 

AMT RX80 digital camera were used for transmission electron microscopy (TEM) analysis in 

Mainz and Valencia, respectively. The samples (10 µL, with a dilution of 0.1 vol.%) were dropped 

onto a 300 mesh carbon coated copper grid which further was coated with a second carbon layer  
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(5 nm) using a Leica EM Med020 Vacuum Coating System (Leica Micro Systems, Germany) to 

avoid the degradation of PMMA. Particle (and capsule) size was determined by statistical treatment 

of TEM images accounting at least 200 particles. 

9.7.6 Scanning	Electron	Microscopy	(SEM)	

A Leo Gemini Zeiss 1530 field emission Microscope (Carl Zeiss, Germany) and a Hitachi SU-8000 

scanning electron microscope were used for SEM analysis at different voltages. The samples  

(10 µL, with a dilution of 0.1 vol.%)) were dropcasted on a silicon wafer and dried before 

observation. 

9.7.7 X-Ray	Diffraction	(XRD)	

The X-Ray diffraction patterns were determined using an X-Ray diffractometer D8 Advance A25 

(Bruker). 

9.7.8 Brunauer–Emmett–Teller	(BET)	Surface	Area	Analysis	

The specific surface area of the catalysts was determined by nitrogen adsorption measurements 

performed at 120 °C in a Qantachrome Autosorbe-1 equipment, according to the Brunauer–

Emmett–Teller (BET) model. 

9.7.9 High	Performance	Liquid	Chromatography	(HPLC)	

High performance liquid chromatography was performed in a JASCO HPLC equipped with an 

analogic-digital conversion unit (Jasco LC-Net II), a refraction index detector  (RI-2031), a 

quaternary gradient pump (PU-2089), and a column chamber (Jasco co-2065 Plus) with a manual 

injector (Reodhyne 720i). A reverse phase column C-18 (Kinetex of 2.6 µm fused-core silica 

particles with 100 × 4.6 mm C18 and 100 Å) was used for the determination. A mixture of 

acetonitrile/water acidified with HCl (0.1 wt.%) (30:70) was used as mobile phase. 

9.7.10 Nuclear	Magnetic	Resonance	Spectroscopy	

1H-NMR and 13C-NMR spectra of the samples containing (10–20 mg) of the organic product 

dissolved in a deuterated solvent (chloroform-d, D2O or DMSO-d6) were obtained with a Bruker 

DRX spectrometer (300 MHz). 
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9.7.11 Ultraviolet-Visible	Spectroscopy	or	Spectrophotometry	(UV-Vis)	

The absorbance of the samples was measured by UV-Visible Spectroscopy using a UV-2501 PC 

Shimazdu spectrophotometer. No dilution nor pretreatment of the samples was required before the 

determination. 

9.7.12 Differential	Scanning	Calorimetry	(DSC)		

The thermal behavior of polyurethane-based capsules (after evaporation of cyclohexane) was 

characterized by differential scanning calorimetry using a DSC Q20 TA instrument. The samples 

were submitted to a thermal treatment of four cycles of heating and cooling (from −50°C up to  

60 °C or 90 °C, at 10 K·min−1). 
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