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RESUMEN

Introduccion

La obesidad es una enfermedad multifactorial caracterizada por una sobrecarga
metabdlica de los tejidos asociada a inflamacion crénica de bajo grado, alteracién del
metabolismo lipidico e insulin resistencia (IR), entre otras alteraciones metabdlicas.
Ademas es un factor de riesgo para la aparicién de otras patologias como la diabetes tipo 2
(T2D, del inglés type 2 diabetes), dislipemia, hipertension arterial, aterosclerosis y ciertos
tipos de céncer, lo cual hace que se multiplique hasta por tres el riesgo de muerte en
comparacién con el de las personas no obesas. Todas estas circunstancias junto con un
aumento drastico de su prevalencia en los Ultimos afios, sobre todo en los paises
desarrollados, confieren a esta enfermedad una especial atencion. Ademas de estas
comorbilidades, la obesidad se ha asociado recientemente con un incremento en la
prevalencia de periodontitis cronica, una enfermedad inflamatoria y destructiva de los
tejidos de soporte de los dientes exacerbada por un aumento en la expresion de citoquinas
proinflamatorias y hormonas derivadas del tejido adiposo. De hecho, se sabe que los
pacientes con obesidad tienen hasta cinco veces mas riesgo de sufrir periodontitis cronica
gue los sujetos sanos, aungue los mecanismos de asociacion entre ambas patologias no
son del todo conocidos.

Los trastornos metabdlicos asociados a la obesidad estan intimamente
relacionados con el desarrollo de disfuncion endotelial y aterosclerosis, aunque incluso los
pacientes obesos sin signos clinicos de deterioro metabdlico se encuentran ante un mayor
riesgo de sufrir complicaciones cardiovasculares (CV). De manera similar, la periodontitis
cronica se ha convertido en un factor de riesgo potencial para el desarrollo de disfuncién
endotelial, y comparte con la obesidad algunos de los mecanismos implicados en la
apariciéon de esta alteracién vascular, como la inflamacidén y el estrés oxidativo.

La inflamacion sistémica es una de las caracteristicas mas relevantes de la obesidad
gue subyace a gran parte de los procesos fisiopatoldgicos de la enfermedad. El excesivo
almacenamiento de triglicéridos (TG) en el adipocito como consecuencia del elevado input
de nutrientes conlleva a la hipertrofia y disfuncion del tejido adiposo, caracterizada por un
aumento en la secreciéon de citoquinas, adipoquinas y factores protrombaoticos como la IL6
(del inglés interleukin 6), TNFa (del inglés tumour necrosis factor o), RBP4 (del inglés retinol

binding protein 4), MCP-1 (del inglés monocyte chemoattractant protein-1) o PAI-1 (del
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RESUMEN

inglés plasminogen activator inhibitor-1) que contribuyen a la inflamacién sistémica vy la
activacion cronica de las células del sistema inmune, que son reclutadas hacia el tejido
adiposo donde participan en el remodelado del mismo. Los macrdfagos infiltrados ademas
amplifican la sefial inflamatoria y desencadenan IR en los adipocitos. El subsecuente
bloqueo de la accion antilipolitica de la insulina promueve la liberacion de acidos grasos
desde el adipocito al torrente sanguineo, donde inician mecanismos de lipotoxicidad y
disposiciéon ectdpica de lipidos, contribuyendo al desarrollo de IR sistémica. Este proceso
esta especialmente acentuado en el tejido adiposo visceral, que drena acidos grasos vy
citoquinas directamente al higado donde contribuye a la IR local y la alteracion del
metabolismo lipidico, desencadenando la dislipemia aterogénica. Esta se caracteriza por el
descenso de los niveles de lipoproteinas de alta densidad (HDL, del inglés high-density
lipoprotein) y el incremento de TG y lipoproteinas de baja densidad (LDL, del inglés low-
density lipoprotein), especialmente de LDL pequefias y densas (sdLDL, del inglés small and
dense low-density lipoprotein), incrementandose el riesgo de eventos CV adversos vy la
morbimortalidad.

Como resultado de estos procesos fisiopatolégicos se produce una alteracién
metabdlica generalizada con elevados niveles circulantes de citoquinas inflamatorias,
resistencia a la insulina que favorece el incremento de los niveles circulantes de glucosa, y
acidos grasos, todos ellos factores que contribuyen a la disfuncion endotelial. Este proceso
se caracteriza, entre otros, por alteraciones en la actividad de la enzima eNOS (del inglés
endotelial nitric oxide synthase enzyme) y la reduccion de la biodisponibilidad de éxido
nitrico (NO, del inglés nitric oxide), encargado del mantenimiento del tono y la homeostasis
del sistema vascular. En este sentido, la alteracién de la barrera endotelial favorece la
migracion de las sdLDL hacia la regién subendotelial, donde el ambiente prooxidante
favorece su oxidacién que, junto con otros estimulos proinflamatorios y la hiperglicemia,
conduce a la activacion de las células endoteliales, que secretan factores quimioatrayentes
y moléculas de adhesion como selectinas, ICAM-1 (del inglés intercellular adhesion
molecule-1) y VCAM-1 (del inglés vascular cell adhesion molecule-1) favoreciendo el
reclutamiento de leucocitos hacia la pared del vaso. Durante la activacion de la cascada de
adhesion los leucocitos disminuyen su velocidad y comienzan a rodar sobre el endotelio,
tras lo cual se adhieren firmemente al mismo y comienzan el proceso de transmigracion

hacia la zona subendotelial en su mecanismo habitual de migracion hacia el foco
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inflamatorio. Sin embargo, en el contexto proaterogénico de la obesidad este proceso
también constituye una etapa temprana del proceso aterosclerdtico, puesto que los
macrofagos infiltrados fagocitan avidamente las moléculas oxidadas de sdLDL
transformandose en células espumosas que contribuyen al remodelado de la zona
subendotelial y la formacidn de la placa de ateroma en la regién de la intima media, cuya
evolucién puede llevar a complicaciones vasculares mayores como isquemia o los
accidentes aterotromboticos. Estas evidencias ponen de manifiesto la relevancia del
estudio de los mecanismos subyacentes a la alteracidon de la dindmica entre los leucocitos
y el endotelio vascular que permitan apuntar a nuevas dianas terapéuticas para disminuir
el riesgo CV en esta poblacion.

El estrés oxidativo es otro de los mecanismos fisiopatoldgicos asociados a la
disfuncion endotelial y el proceso aterogénico en las enfermedades metabdlicas, donde el
incremento de la produccién de especies reactivas de oxigeno (ROS, del inglés reactive
oxygen species) se suma a un sistema antioxidante defectuoso, produciéndose un
desequilibrio generalizado del estado redox. Entre las mayores fuentes de ROS en la célula
se encuentra la mitocondria, especialmente la cadena de transporte de electrones cuya
funcion se encuentra sobrecargada en la obesidad debido al excesivo input de sustratos
energéticos provenientes del metabolismo, produciendo un exceso de ROS durante la
formacién de ATP por fosforilacién oxidativa. Este exceso de radicales libres produce dafios
oxidativos en las macromoléculas que pierden funcionalidad, como las que conforman la
mitocondria que por proximidad a la cadena de transporte de electrones son
especialmente vulnerables al dafio oxidativo, produciéndose disfuncion mitocondrial. La
disfuncion mitocondrial y el estrés oxidativo ocurren en la obesidad mediados por
estimulos como la hiperglicemia o la inflamacidén sistémica y se han relacionado
ampliamente con el desarrollo de enfermedad CV, pues interfieren notablemente en la
funcion de la eNOS vy la disponibilidad de NO en el endotelio. Sin embargo, ademas de la
produccion de ROS mitocondriales, existen otras fuentes de especies oxidantes relevantes
para la disfuncion endotelial, como la mieloperoxidasa (MPO) o la NOX (del inglés
nicotinamide adenine dinucleotide phosphate [NADPH] oxidase), cuya actividad esta
incrementada en la obesidad.

intimamente ligado al estrés oxidativo y la disfuncién mitocondrial se encuentra la

induccion de estrés de reticulo endoplasmatico (ER, del inglés endoplasmic reticulum),
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pues son mecanismos que convergen en las enfermedades metabdlicas como la obesidad
y la T2D. El ER es el organulo celular encargado de la traduccion y el procesamiento de las
proteinas, ademas de actuar como almacén de Ca”, el cual es necesario para el correcto
plegamiento de estas biomoléculas. A nivel sistémico actia como un sensor de nutrientes,
lo que es especialmente relevante en la obesidad en la que, como ya hemos mencionado
anteriromente, se produce un incremento de los niveles circulantes de citoquinas
inflamatorias, acidos grasos libres, glucosa, y también exceso de produccion de ROS, que a
su vez contribuyen al desarrollo de estrés de ER, caracterizado por la acumulacion de
proteinas mal plegadas en el lumen. En consecuencia se activa la respuesta al mal
plegamiento proteico o UPR (del inglés unfolded protein response) conformada por tres
cascadas de sefializacion iniciadas por ATF6 (del inglés activating transcription factor 6),
IRE1a (del inglés inositol requiring enzyme 1 o) y PERK (del inglés double-stranded RNA-
activated protein kinase-like kinase), cuyos factores de transcripcion finales promueven en
primer lugar respuestas adaptativas con el objetivo de recuperar la homeostasis celular,
como la expresion de chaperonas, antioxidantes, rutas de degradacion de proteinas o
autofagia. Sin embargo, ante situaciones de estrés persistente como en la obesidad se
desencadenan respuestas crénicas tales como la expresién de factores proapoptoéticos
como CHOP (del inglés CCAAT/enhancer binding protein [C/EBP] homologous protein), la
activacion de sefiales inflamatorias o la liberacién excesiva de Ca**. Se sabe que el estrés
de ER tiene un papel relevante en la fisiopatologia de la obesidad, puesto que su presencia
en tejidos altamente metabdlicos como el higado, pancreas y tejido adiposo se ha
relacionado con la inflamacién sistémica, el desarrollo de IR e incluso el fallo pancreatico,
siendo un mecanismo importante en la evolucién hacia la T2D. Sin embargo, el papel del
ER en otros tipos celulares como las células inmunes ha sido menos estudiado, aunque
recientes estudios apuntan a que la activacién de esta respuesta en los leucocitos podria
estar influenciando su capacidad de interaccionar con el endotelio vascular. En base a las
evidencias del papel del estrés oxidativo y el estrés de ER en la fisiopatologia de la
obesidad y la T2D ambos mecanismos se postulan como potenciales dianas terapéuticas
para abordar las alteraciones metabdlicas asociadas a estas patologias.

Los diferentes factores bioldgicos, psicolégicos y sociales implicados en la obesidad
hacen de ésta una enfermedad de dificil abordaje. Entre las intervenciones terapéuticas se

incluyen los cambios en el estilo de vida y la alimentacion, la cirugia baridtrica y el
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tratamiento farmacoldgico. Los cambios nutricionales constituyen el tratamiento de
primera eleccion para hacer frente a la obesidad, por su menor coste econdmico vy sus
potenciales beneficios sobre la salud. De hecho, una pérdida de peso moderada de entre
un 5-10 % ha demostrado ser efectiva para la mejora de la sensibilidad a la insulina y el
perfil de riesgo CV. Entre las diferentes aproximaciones, las dietas de muy bajo contenido
caldrico o VLCD (del inglés very-low-calorie diets) junto con los cambios en el estilo de vida
constituyen una de las mejores herramientas para tratar la obesidad, sin embargo, no se
conoce con exactitud los mecanismos mediante los cuales la pérdida de peso ejerceria su
papel protector. Por otro lado, el uso de inositoles vegetales como tratamiento adyuvante
en las enfermedades metabdlicas ha cobrado especial interés en los ultimos afios. En este
sentido, el pinitol es un inositol vegetal al que se le atribuye propiedades sensibilizadoras
de la accion de la insulina, antiinflamatorias y antioxidantes, como se ha demostrado en
varios modelos de enfermedad metabdlica, aunque sus dianas principales y mecanismos

de accion son en gran parte desconocidos.

Hipdtesis y objetivos

La obesidad es una enfermedad compleja donde una gran variedad de alteraciones
metabdlicas incluyendo inflamacién cronica de bajo grado, IR, estrés oxidativo vy
alteraciones en el perfil lipidico convergen en el desarrollo de disfuncién endotelial y
enfermedad CV. La persistencia de un riesgo CV residual incluso en sujetos obesos
metabdlicamente sanos sugiere que otros factores de riesgo ademads de clasicos como la
hipertension o la hiperlipemia pueden estar actuando de una manera subclinica. En este
contexto, las células del sistema inmune se encuentran en un estado de hiperactivacién
como consecuencia de la inflamacién crénica y desempefian un papel relevante en el
desarrollo de complicaciones vasculares, ya que su atraccién hacia a la pared vascular es
un proceso clave en el inicio de la formacion de la placa de ateroma. Sin embargo, poco se
sabe sobre los mecanismos intracelulares que podrian estar mediando esta interaccion.
Hasta el momento se ha descrito que los leucocitos activados presentan una mayor
produccion de ROS, sin embargo, el estado de hiperactivacion en el que se encuentran
podria desencadenar una excesiva produccién de especies oxidantes, dando lugar a una

situacidon de estrés oxidativo, un mecanismo implicado en la disfuncién endotelial. Por lo
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tanto, es probable que el estrés oxidativo en los leucocitos esté alterando la dindamica
entre éstos vy el endotelio vascular en el contexto de la obesidad, donde el aumento de la
adiposidad podria estar agravando el proceso. De manera similar, la periodontitis
comparte varios mecanismos fisopatoldgicos con la obesidad, incluido la inflamacion
crénica, la hiperactivacién del sistema inmune y el estrés oxidativo. De esta manera, la
presencia concomitante de obesidad y periodontitis podria estar acrecentando la
inflamacion sistémica y el desequilibrio redox en los leucocitos, aumentando asi sus
interacciones con el endotelio.

En este desequilibrio redox de los leucocitos podria estar implicada la mitocondria,
puesto que es el mayor productor de radicales libres en la célula. A su vez, dada la
conexion entre la mitocondria y el ER, la alteracién en la funcionalidad de estos organulos
podria generar un estado de estrés que comprometeria la homeostasis celular, y podria
ser, en parte, responsable de la alteracion de la dinamica entre leucocitos y endotelio,
como se ha demostrado previamente en enfermedades metabdlicas como la T2D. Por el
contrario, las estrategias dietéticas para la pérdida de peso podrian estar mejorando estas
situaciones patoldgicas al disminuir la carga metabdlica del sistema. De hecho, la pérdida
de peso moderada ha demostrado ser efectiva para redudir las complicaciones
metabdlicas y el riesgo CV, aungue los mecanismos que median estos efectos son en gran
parte desconocidos. Por tanto, los estudios que profundicen en la modulaciéon de los
mecanismos de estrés intracelular y homeostasis metabdlica tras la pérdida de peso serian
relevantes para ampliar el conocimiento sobre la fisiopatologia de la obesidad vy el
descubrimiento de nuevas dianas terapéuticas que pudieran mimetizar los beneficios de la
pérdida de peso. Finalmente, el uso de inositoles como el pinitol ha demostrado mejorar la
sensibilidad a la insulina y mejorar el perfil inflamatorio en el contexto de la enfermedad

metabdlica, aunque las dianas moleculares del pinitol son en gran parte desconocidas.

En base a lo expuesto anteriormente, se propusieron los siguientes objetivos para

la presente tesis doctoral:

1. Evaluar la relacion entre la funcién mitocondrial y la produccién de ROS en los

leucocitos y sus interacciones con el endotelio segln el grado de obesidad.
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2. Determinar si la presencia y el grado de severidad de la periodontitis cronica en una
poblacion con obesidad podria estar alterando la dinamica entre los leucocitos vy las
células endoteliales vasculares a través de mecanismos que involucren una

induccion de estrés oxidativo.

3. Evaluar si una intervencién dietética para la pérdida moderada de peso mejora el
equilibrio redox y los marcadores de aterosclerosis subclinica en una poblacién con

obesidad modrbida.

4. Investigar cdmo el estrés de RE, la disfuncion mitocondrial y las vias inflamatorias
pueden estar moduladas por la pérdida de peso en los leucocitos de pacientes con

obesidad.

5. Explorar la posible funcidon protectora del pinitol como un chaperona molecular
capaz de mejorar el estrés de RE cronico y la sefializacién inflamatoria en el tejido

adiposo y los leucocitos de pacientes con obesidad.

Material y Métodos

Sujetos de estudio

Se reclutaron varias cohortes de pacientes de mediana edad con normopeso,
sobrepeso u obesidad que acudieron al Servicio de Endocrinologia y Nutricion y/o al
Servicio de Estomatologia del Hospital Universitario Doctor Peset (Valencia). De forma
general se incluyeron sujetos con edad > 18 afios que se diagnosticaron en funcién de su
indice de masa corporal (BMI, del inglés body mass index). De forma especifica para los
estudios de intervencion se seleccionaron pacientes con un BMI > 35 kg/m? que hubieran
mantenido un peso estable en los 2 meses previos al programa dietético. Los criterios
generales de exclusion fueron embarazo o lactancia, enfermedades severas incluida la
oncoldgica, renal, hepatica, inflamatoria crénica o historia de enfermedad CV, tratamiento
con antiinflamatorios, abuso de alcohol o drogas y obesidad secundaria (hipotiroidismo,
sindrome de Cushing). De forma especifica en los estudios transversales se excluyeron
ademas los pacientes con diabetes mellitus diagnosticada segun los criterios de la

American Diabetes Association (ADA). Para el estudio de periodontitis crénica se
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excluyeron ademas pacientes con menos de 14 dientes, con otras enfermedades
infecciosas o inflamatorias orales y aguellos bajo tratamiento con antibidticos.

Tras firmar el consentimiento informado, los pacientes se sometieron a un examen
fisico consistente en la evaluacién del peso, talla, BMI, presion arterial y perimetro de
cintura y cadera. En paralelo, se les realizé una extraccion sanguinea en ayunas para la
determinacion de parametros bioquimicos clinicos como el perfil lipidico — colesterol total,
LDL, HDL, TG, apolipoproteinas Al y B —, parametros de metabolismo hidrocarbonado —
glucosa, insulina, hemoglobina glicosilada (Alc), HOMA-IR —, marcadores inflamatorios y
de riesgo CV emergentes — proteina C reactiva (CRP, del inglés C-reactive protein), C3c (del
inglés component complement 3) y RBP4 —y hemograma. El suero remanente se conservo
a -80 C para posteriores determinaciones.

Para el estudio transversal de los diferentes grados de obesidad los pacientes se
clasificaron seglin el BMI en no obesos (< 30 kg/m?), obesos de grado I-1l (30 - 40 kg/m?) y
obesos mérbidos (> 40 kg/m?). Para el estudio transversal de la periodontitis crénica los
pacientes pasaron una evaluacién periodontal completa con determinaciéon de la
profundidad de sondaje (PD), pérdida de insercién clinica (CAL) asi como el indice de
sangrado y el indice de placa. Con estos parametros los pacientes fueron diagnosticados y
clasificados segln el grado de enfermedad periodontal en sujetos sin periodontitis cronica
o con periodontitis crénica leve, moderada o severa, seglin los criterios del Center of

Disease Control and Prevention/American Academy of Periodontology (CDC/AAP).

Intervencion dietética

Pacientes con BMI = 35 kg/m? fueron sometidos a un tratamiento dietético con una
duracién total de 6 meses consistente en 6 semanas de una dieta VLCD de
aproximadamente 654 kcal/dia seguida de 18 semanas de dieta de bajo contenido caldrico
de entre 1200-1800 kcal/dia ajustada a los requerimientos nutricionales individuales. Los
examenes fisicos y las extracciones sanguineas se llevaron a cabo a nivel basal y 6 meses
tras el tratamiento dietético, sin que se pautaran cambios en la medicacién ni en patrones

de actividad fisica durante el periodo de estudio.
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Evaluaciones séricas de moléculas de inflamacion, adhesion, estrés oxidativo y

subfracciones de LDL

Diversas metodologias fueron utilizadas para el andlisis sérico de parametros no
incluidos en la analitica de referencia. Por un lado, se utilizaron kits Milliplex para el analisis
simultdneo de paneles de moléculas mediante tecnologia X-MAP de Luminex, con el que
evaluamos los niveles de IL6, TNFa, P-selectina, ICAM-1, VCAM-1 y MPO. En paralelo se
analizaron los niveles de PSGL-1 (del inglés P-selectin glycoprotein ligand-1), el receptor de
P-selectina en los leucocitos, mediante la técnica ELISA. La actividad catalasa se midié
mediante kits enzimaticos comerciales especificos. El contenido de glutation se analizd en
lisado de eritrocitos mediante un kit comercial. Ademas, la carbonilacion de proteinas
séricas se evalud con un test colorimétrico basado en la reaccion de derivatizacion. Por
ultimo, las subfracciones de LDL se evaluaron mediante el andlisis del perfil electroforético

especifico con el sistema Lipoprint®.

Aislamiento de leucocitos de sangre periférica

Las muestras de sangre se incubaron con dextrano al 3 % durante 45 minutos vy se
sometieron a centrifugacién (650 g durante 25 minutos a temperatura ambiente) en un
gradiente de densidad de Ficoll-Hypaque para aislar la fraccién de leucocitos. Después de
la centrifugacion, los eritrocitos remanentes se lisaron vy el precipitado celular se lavo con

HBSS.

Ensayos de interaccion leucocito-endotelio

Los ensayos de adhesion se llevaron a cabo mediante el uso de un sistema de
camara de flujo paralelo acoplado a un microscopio invertido de contraste de fases, a
través del cual se perfundid una suspension de leucocitos ex vivo sobre una monocapa de
células endoteliales humanas (aisladas de cordén umbilical mediante colagenasa) en
condiciones que simulan las del flujo sanguineo. Se registraron videos de 5 minutos en
tiempo real donde se evaluaron tres parametros de interaccion leucocito-endotelio: la
velocidad de rodamiento (tiempo que tardan 20 leucocitos consecutivos en recorrer una
distancia de 100 um dentro del campo de enfoque), el flujo de rodamiento (nUmero de

leucocitos que ruedan en una superficie de 100 um? de células endoteliales durante un
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minuto) y la adhesion (nimero de leucocitos que mantienen un contacto estable con las

células endoteliales durante al menos 30 segundos).

Ensayos de estrés oxidativo y funcidon mitocondrial

Los leucocitos se sembraron por duplicado en placas de 48 pocillos y se incubaron
ex vivo durante 30 minutos a 372C en HBSS con diferentes sondas fluorescentes: DCFH-DA
(del inglés 2' 7'-dichlorodihydrofluorescein diacetate), indicativo de la produccién total de
ROS; Fluo-4, que mide Ca”" intracelular; CMFDA (del inglés 5-chloromethylfluorescein
diacetate), que mide contenido de glutation; Mitosox-Red, indicativo de la produccion de
superoxido mitocondrial; DHE (del inglés dihydroethidium), que evalla los niveles de
superoxido total; TMRM (del inglés tetramethylrhodamine, methyl ester), indicativo del
potencial de membrana (AW) mitocondrial; y Hoescht, indicativo de la morfologia nuclear.
Las imagenes de fluorescencia emitida fueron captadas y analizadas con un microscopio de

fluorescencia IX81 de Olympus acoplado al software de citometria estatica “ScanR”.

Ensayos de suplementacion con pinitol y tratamiento ex vivo de adipocitos

Para el ensayo de suplementacion se reclutaron sujetos con obesidad (BMI > 30
kg/m?) cuyas pautas dietéticas fueron normalizadas previo al inicio del estudio. A
continuacion, se les pautd el consumo de una bebida enriquecida en pinitol (4 g/dia)
durante 12 semanas. Por otro lado, en otra cohorte de pacientes obesos que fueron
sometidos a cirugia de bypass gastrico se obtuvieron biopsias de tejido adiposo visceral y

subcutaneo, que se trataron con pinitol (30 uM) durante 48h.

Andlisis de expresion de marcadores intracelulares

Se procedid a la extraccion, purificacion y cuantificacién de proteina y mRNA de
leucocitos y tejido adiposo segun procedimientos estandar y/o mediante kits comerciales
especificos. El analisis de expresion de proteinas se llevd a cabo tras la separacién de las
mismas por electroforesis SDS-PAGE, transferencia y posterior inmunoblot de las
membranas de nitrocelulosa con anticuerpos especificos. La sefial se detecté mediante
guimioluminiscencia con reveladores especificos y se analizd por densitometria éptica. Por
otro lado, la evaluacion de los niveles de mRNA se realizé mediante RT-PCR cuantitativa
con primers especificos. Con estas técnicas evaluamos marcadores de estrés de ER —

GRP78 (del inglés 78-kDa glucose-requlated protein), sXBP1 (del inglés spliced X box
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protein-1), elF2a (del inglés eukaryotic initiation factor 2a), ATF6 y CHOP — mediadores
inflamatorios — NFkB (del inglés nuclear factor kB), SIRT1 (del inglés sirtuin 1), JNK (del
inglés c-Jun N-terminal kinase) —, mediadores de la ruta de la insulina — GLUT4 (del inglés
glucose transporter type 4), IR (del inglés insulin receptor), PPARy (del inglés peroxisome
proliferator-activated receptor y) —y la enzima antioxidante GPX1 (del inglés glutathione

peroxidase 1).

Andlisis estadistico

El programa SPSS 19.0 se utilizd para el andlisis estadistico de los resultados. Las
variables continuas se expresaron como media y desviacién estandar (SD, del inglés
standard deviation), o como mediana y percentiles 25 y 75 para datos paramétricos y no
parameétricos, respectivamente. Los datos cualitativos se expresaron como porcentajes.
Los datos se compararon utilizando la prueba t de Student para muestras paramétricas
para dos grupos, o el andlisis de varianza de una via (ANOVA) y una prueba
post-hoc de Student-Newmann-Keuls para tres o mas grupos. Para la comparacion de
proporciones se utilizd la prueba del Chi-cuadrado. Para evaluar la fuerza de asociacion
entre variables se llevé a cabo el calculo del coeficiente de correlacién de Pearson. En el
modelo de regresién multivariante, la relacion entre dos o mas variables explicativas
(variables independientes) y una variable de respuesta (variable dependiente) se evalud
ajustando una ecuacidn lineal a los datos obtenidos. Todas las pruebas tuvieron un
intervalo de confianza del 95 % vy las diferencias se consideraron significativas cuando el

p < 0.05.

Resultados y discusion

En cuanto a las caracteristicas generales de la poblacién de estudio, el incremento
de BMI se asocid con mayor perimetro de cintura y un aumento de la presion arterial y del
indice HOMA-IR de resistencia a la insulina, si bien los niveles de Alc y glucosa en ayunas
no reflejan alteraciones relevantes del control glicémico en general. Con respecto al perfil
lipidico los niveles de colesterol LDL se mantuvieron dentro de los valores de referencia en
todas las cohortes sin diferencias significativas entre los grupos, probablemente debido al
uso de tratamientos hipolipemiantes. Por el contrario, el colesterol HDL se redujo de forma

caracteristica y los niveles de TG aumentaron en paralelo con el grado de obesidad,
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mostrando caracteristicas tipicas de dislipemia aterogénica. De hecho, algunos de los
pacientes presentaron comorbilidades metabodlicas asociadas de forma comun a la
obesidad, como la hipertension (19-27 %), la hiperlipemia (10-30 %) y la T2D (18 %),
excepto en los estudios transversales en los que se excluyod a los pacientes diabéticos.

En linea con hallazgos anteriores, nuestros resultados describen un estado de
inflamacion crénica en nuestros pacientes obesos, en los que los niveles circulantes de
CRP, IL6 y TNFa aumentaron en paralelo con el grado creciente de adiposidad, lo que
podria estar alterando la funciéon endotelial. Concretamente la CRP, cuya sintesis est3
promovida en el higado por IL6, es un reactante de fase aguda que se ha asociado a la
obesidad y la T2D y al que se le ha conferido un papel predictor de eventos CV. Esta
proteina promueve la activacion del endotelio y la expresion de moléculas de adhesion y
factores quimioatrayentes. De forma similar, TNFa se sobreexpresa en tejido adiposo y
células inmunes de pacientes obesos y es un potente promotor no sélo de resistencia a la
insulina, sino también de disfuncién endotelial, especialmente a través de la reduccion de
la biodisponibilidad de NO, lo que conlleva un mayor riesgo de eventos coronarios. Al
explorar la respuesta de las células endoteliales a esta inflamacion sistémica encontramos
un aumento paralelo de los niveles circulantes de ICAM-1 y P-selectina con el grado de
obesidad. Estas moléculas de adhesion son consideradas marcadores de activacion
endotelial y participan en el reclutamiento de leucocitos hacia la pared vascular durante
los procesos inflamatorios; sin embargo, la elevacion de sus niveles en pacientes con
obesidad o T2D se considera un marcador de riesgo CV. De hecho, cuando analizamos las
interacciones leucocito-endotelio observamos un descenso progresivo de la velocidad de
rodamiento de los leucocitos y un flujo de rodamiento mayor, lo que indica que los
leucocitos estan frenando sobre el endotelio vascular. Ademas, se observd un mayor
numero de leucocitos que se adherian firmemente al endotelio, el paso previo a la
transmigracion hacia el espacio subendotelial. El andlisis de correlacion bivariada reveld la
asociacion entre los parametros de interaccién leucocito-endotelio con BMI, citoquinas
inflamatorias y moléculas de adhesién. Estos resultados sugieren que el grado creciente de
obesidad produce disfuncion endotelial, inflamacién y promueve las interacciones entre
los leucocitos vy la vasculatura.

Por otro lado, la inflamacion sistémica también causa alteraciones en la respuesta

inmune del huésped, lo que aumenta la susceptibilidad a la infeccién bacteriana y se
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presenta como un posible mecanismo de conexidn entre la obesidad y la periodontitis
cronica. De hecho, en una cohorte de pacientes obesos ajustados por BMI encontramos un
mayor recuento leucocitario en aquellos con periodontitis crénica, lo que sugiere la
hiperactivacion del sistema inmunoldgico en presencia de esta enfermedad periodontal.
Ademas, la periodontitis crénica parece exacerbar alin mas la reaccion inflamatoria en
pacientes con obesidad, puesto que observamos un incremento progresivo de los niveles
de TNFa, CRP y RBP4 a medida que aumentaba el grado de severidad de la periodontitis. A
la luz de estos hallazgos y de los muchos vinculos establecidos entre la periodontitis
cronica, la obesidad y la enfermedad CV, evaluamos el efecto de esta alteraciéon
periodontal en las interacciones entre leucocitos y células endoteliales. Asi, observamos
que la presencia de periodontitis cronica promuevio el flujo de rodamiento y la adhesion, y
gue estos parametros se correlacionaron no sélo con los marcadores periodontales
clinicos sino también con TNFa y RBP4, lo que sugiere una asociacion dinamica entre
periodontitis cronica, inflamacién y aterogénesis.

Ademas de la inflamacion sistémica, la resistencia a la insulina y la hiperglicemia se
han asociado previamente con la disfuncion endotelial, en parte a través de la induccion
de estrés oxidativo. Previamente en nuestro laboratorio hemos descrito que la IR podria
ser un desencadenante del incremento de la produccion de ROS también en los leucocitos
circulantes, en base a estudios realizados en pacientes con T2D y con sindrome de ovario
poliquistico (PCOS, del inglés polycystic ovary syndrome), donde un peor control glicémico
o un mayor grado de IR respectivamente se correspondieron con mayor estrés oxidativo
en estas células inmunes, lo que promovié un incremento de sus interacciones con el
endotelio vascular. De forma similar, nuestros resultados describen un aumento de la
produccion de ROS totales y anidn superdxido en los leucocitos de pacientes obesos no
diabéticos, especialmente en el grupo con mayor grado de obesidad e IR. Ademads, tanto
los marcadores de IR como el anidn superdxido se correlacionaron con los parametros de
adhesion de los leucocitos, emergiendo como predictores independientes en el modelo de
regresion multivariante. Estos resultados sugirieron que, de forma similar a otras
enfermedades metabdlicas, en la obesidad la IR podria estar alterando el estado redox
intracelular de los leucocitos promoviendo su interaccién con el endotelio en las primeras

etapas del proceso aterosclerdtico.
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Dada la gran contribucion de la disfuncién mitocondrial al desequilibrio redox, es
probable que el aumento de superoxido detectado pueda estar relacionado con una
actividad mitocondrial dafiada. La disfuncion mitocondrial en la obesidad es una respuesta
fisiolégica maladaptativa al exceso de suministro de nutrientes, que aumenta el flujo de
electrones hacia la cadena de transporte de electrones, incrementandose la produccion de
ROS vy el AW mitocondrial. De hecho, de forma similar a lo descrito por algunos autores en
leucocitos de pacientes con T2D, en este estudio observamos una elevacion del AW
mitocondrial en paralelo con el grado de adiposidad, lo que asociado a una presencia
elevada de superdxido, indica una afectacion de la funcién mitocondrial asociada a la
obesidad. La sobreproduccion de ROS también es una caracteristica relevante de los
leucocitos hiperreactivos en la periodontitis crénica. De hecho, en el estudio periodontal
encontramos que, en los leucocitos de pacientes con el mismo grado de obesidad, la
produccion de superdxido se incrementd progresivamente con el grado de severidad de la
periodontitis cronica y se correlaciond con el aumento de las interacciones de los
leucocitos sobre el endotelio, similar a lo que encontramos con el grado creciente de
adiposidad. Sin embargo, no hubo cambios en el AW mitocondrial, lo que podria indicar
otras fuentes mayoritarias de produccién de ROS no mitocondriales. Estas evidencias
sugieren de nuevo que la produccién de especies oxidantes en los leucocitos es un
mecanismo potencial de alteraciéon de su dinamica con el endotelio. En conjunto, los
resultados de este estudio apuntan a que la presencia concomitante de obesidad y
periodontitis crénica podria estar aumentando el riesgo de desarrollar aterosclerosis en
estos pacientes, entre otros, a través de la exacerbacion de la respuesta inflamatoria y
oxidativa.

Los datos transversales discutidos anteriormente contribuyen al conocimiento de
los mecanismos y factores involucrados en las primeras etapas del proceso aterosclerético
en la obesidad. En el presente proyecto fuimos un paso mas alla, investigando el efecto de
la pérdida de peso en estos procesos. Previamente, la pérdida de peso ha demostrado ser
una estrategia efectiva para mejorar la funcién cardiometabdlica ejerciendo también un
papel protector sobre el avance de la enfermedad aterosclerética; sin embargo, los
mecanismos que median este efecto beneficioso son en gran parte desconocidos. En
nuestra poblacion, una pérdida de peso moderada de alrededor de un 9 % mejord la

sensibilidad a la insulina, como indican los niveles de glucosa en ayunas, insulina, HOMA-IR
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y Alc, y redujo los niveles circulantes de TNFa, PCR, RBP4 y P-selectina, junto con un
aumento de PSGL-1 (el receptor de P-selectina en leucocitos), que podria indicar una
mayor escision del mismo de la superficie de los leucocitos. Esta disminucién notable de
los marcadores de resistencia a la insulina, inflamacion crénica y activaciéon endotelial se
tradujo en una menor adherencia de los leucocitos al endotelio vascular. En base a los
resultados del estudio transversal quisimos saber si este proceso podria estar relacionado
con cambios en el estado redox de los leucocitos y en la funcién mitocondrial. Observamos
asi una reduccion del AW mitocondrial tras la pérdida de peso, que se acompafidé con una
reduccion en la produccion de ROS totales y mitocondriales en los leucocitos. De forma
paralela, se incrementd la expresion de la enzima GPX1 en los leucocitos, una enzima
antioxidante que puede encontrarse tanto en el citosol como en la mitocondria y que se
considera uno de los mayores neutralizadores de ROS celulares, lo que podria estar
contribuyendo a reducir el estrés oxidativo en los leucocitos. La producciéon de ROS
también estd relacionada de forma bidireccional con la activacion del NFkB, un regulador
clave de la respuesta inflamatoria cuya expresion en leucocitos de pacientes obesos se ha
visto aumentada junto con la produccién de TNFa, contribuyendo a la hiperactivacion
permanente que presentan las células inmunes de estos pacientes. En el presente estudio,
la expresion de NFkB en los leucocitos se redujo tras la pérdida de peso junto con el estrés
oxidativo, lo que podria indicar una disminucién de la activacion leucocitaria. También
observamos una regulacion positiva de la expresion de SIRT1, cuya expresion se induce
tras la restriccion caldrica y estd implicada en mecanismos de supervivencia celular y
regulacion antiinflamatoria, ya que promueve la degradacion de NFkB. En un estudio
previo en nuestro laboratorio, el uso del antioxidante SS-31 redujo la produccién de ROS
en leucocitos de pacientes con T2D, a la vez que indujo la expresion de SIRT1 vy redujo la
activacion de NFkB. Todo esto se tradujo en una disminucion de las interacciones
leucocito-endotelio, lo que refuerza la relacion entre estas rutas intracelulares de estrés y
la activacion de un fenotipo adherente en los leucocitos. En su conjunto estos resultados
revelan que la pérdida moderada de peso mediada por dieta es capaz de reducir la
inflamacion sistémica y el grado de IR en pacientes con obesidad, reduciendo la disfuncion
endotelial. Ademas, esto se asocia con una disminucion de la produccion de ROS en los
leucocitos y de la activacion intracelular, lo que podria estar disminuyendo su interaccion

con el endotelio vascular.
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Ademas de las mitocondrias, en los leucocitos existen otras fuentes de especies
oxidantes relevantes como la MPO, una enzima crucial para la defensa frente a patégenos;
sin embargo, la liberacion sistémica excesiva de MPO desde los leucocitos en un contexto
inflamatorio como la obesidad puede contribuir al estrés oxidativo y la lesidn vascular. De
hecho, los niveles séricos elevados de MPO, caracteristicos de la obesidad y la T2D, son
considerados como un biomarcador temprano del riesgo CV. Estudios previos han descrito
la capacidad de la MPO de adherirse a las células endoteliales favoreciendo el dafio
oxidativo y el reclutamiento de leucocitos. En el presente estudio observamos un descenso
de los niveles séricos de MPO tras la pérdida de peso, que se correlacionaron con los de
P-selectina. De forma paralela, observamos una mejora del equilibrio redox sistémico,
puesto que disminuyeron los niveles de carbonilacion de proteinas séricas (un
biomarcador de estrés oxidativo sistémico), mientras que aumenté la actividad catalasa
sérica y el contenido de glutatién en los eritrocitos tras la pérdida de peso, dos potentes
sistemas antioxidantes. En conjunto, los resultados sugieren una recuperacién parcial del
equilibrio redox después de la pérdida de peso, que podria contribuir a la mejora de la
funcion endotelial.

Otro de los factores que contribuyen a la disfuncién endotelial y el proceso
aterogénico es la alteracion del metabolismo hepatico de lipidos, promovido en la
obesidad por la inflamacién sistémica y la IR. El exceso de sintesis de lipoproteinas de muy
baja densidad (VLDL, del inglés very low-density lipoprotein) en el higado se asocia con el
incremento de LDL y un cambio en el tamafio del pool de LDL hacia las sdLDL, que tienen
mayor capacidad para atravesar el endotelio y son mas susceptibles a la oxidaciéon. Por su
parte, las sdLDL oxidadas contribuyen a la activacion endotelial y son mas facilmente
captadas por macrofagos en el espacio subendotelial, lo que confirma su gran potencial
aterogénico. En nuestro analisis de subfracciones de LDL observamos que a pesar de que
los niveles de colesterol LDL total se mantuvieron estables tras la pérdida de peso, si se
produjo un descenso de las particulas sdLDL y esto se correlaciond con los niveles de MPO,
gue contribuye a su oxidacion, sugiriendo que a falta de evidencias clinicas la pérdida de
peso mejora el perfil de las LDL hacia uno menos aterogénico. En paralelo los niveles de TG
se redujeron de forma significativa, mientras que el colesterol HDL aumento, lo que indica
qgue de forma general la pérdida moderada de peso inducida por dieta es capaz de mejorar

el perfil lipidico en los pacientes con obesidad modrbida, reduciendo asi el riesgo CV.
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Ademas, otros hallazgos del presente estudio refuerzan este papel protector. Tras la
intervencion se redujo la presion arterial de los pacientes, un predictor clasico de riesgo
CV. El ambiente prooxidante e inflamatorio caracteristico de la obesidad contribuye al
endurecimiento de las arterias por interferencia con la funcion endotelial y la modulacién
del tono vascular, lo que podria estar contribuyendo a reducir los valores de tensién
arterial en nuestra poblacion. Ademds, observamos una disminucion de los niveles
circulantes de C3c, un predictor de fallo cardiaco considerado un biomarcador de riesgo CV
emergente.

A la luz de la relacidon observada entre la produccion de ROS, la funcién
mitocondrial de los leucocitos y su capacidad de interaccion con el endotelio vascular
quisimos analizar qué otros mecanismos intracelulares de estrés podrian estar siendo
modulados tras la pérdida de peso. Recientemente, hemos descrito que la presencia de
alteraciones metabdlicas como el sindrome metabdlico o la T2D, comUnmente asociadas a
la obesidad, incrementa la activacién del estrés de ER en los leucocitos de pacientes
obesos; ademas hemos descrito la relacién entre la activacién de las vias de estrés de ER
crénico, la disfuncién mitocondrial y las interacciones leucocito-endotelio en pacientes con
T2D. En el presente estudio cuando analizamos los cambios en la activacion de la UPR tras
la pérdida de peso encontramos una disminucién de la expresion de ATF6, que se
correlaciond con un descenso marcado de la proteina proapoptodtica CHOP. También
detectamos un descenso significativo de la activacion de JNK, que puede estar modulada a
través de la actividad quinasa de IREla. Sin embargo, no se encontraron cambios en
mediadores de otras rutas de la UPR (elF2a o sXBP1). Tanto CHOP como JNK son
considerados marcadores de estrés de ER crénico, y de hecho la activacion de JNK es el
mecanismo mas conocido que relaciona el estrés de ER con la inflamacion y el desarrollo
de IR. Por el contrario, se incrementd la expresion de GRP78, una chaperona que
promueve el plegamiento de proteinas aliviando el estrés de ER y que es considerada un
factor clave de la respuesta adaptativa de la UPR. Curiosamente, los niveles de GRP78
correlacionaron con la activacién de SIRT1 en los leucocitos, de la que previamente
habiamos descrito su potencial antiinflamatorio y antienvejecimiento. En conjunto, el
aumento de GRP78 y SIRT1 y la disminucién de ATF6-CHOP y JNK indican una recesién de
las vias apoptodticas de la UPR a favor de respuestas de supervivencia celular. La

disminucion del estrés de ER tras la pérdida de peso se habia descrito previamente en

27



RESUMEN

otros tejidos humanos tras cirugia bariadtrica, y en modelos murinos tras dieta, lo que
refuerza nuestros resultados que describen este efecto por primera vez en leucocitos de
pacientes obesos tras una intervencion dietética.

Estudios previos han encontrado una asociacién entre los marcadores de estrés de
ER cronico en los leucocitos y pardmetros de IR sistémica. De forma similar, en nuestro
estudio el descenso de HOMA-IR después de la pérdida de peso se correlaciond con los
marcadores de estrés de ER cronicos ATF6 y INK, lo que apoya la conexion entre la funcion
del ER y la homeostasis de la glucosa. Por otro lado, el estrés del ER en los leucocitos
también podria estar implicado en su capacidad de adherencia y transmigracion en el
endotelio vascular. Previamente en nuestro laboratorio hemos descrito la asociacion entre
los marcadores de estrés de ER en los leucocitos de pacientes con T2D y mayores
interacciones leucocito-endotelio. Otros autores encontraron marcadores elevados de
activacion de UPR en macrofagos aislados de placas ateroscleréticas. En nuestro estudio
los marcadores de estrés de ER crénico vy las interacciones de los leucocitos en el endotelio
disminuyeron en paralelo, lo que reforzaria la asociacion entre la disfuncién en el ER y |a
activacioén de los leucocitos.

Por otro lado, las uniones intimas entre ER y mitocondria favorecen el intercambio
de sefiales de estrés como el Ca®", ROS y citoquinas inflamatorias entre otros, que actéan
como mecanismos reguladores comunes en los programas celulares de
muerte/supervivencia. En situaciones de estrés cronico como la obesidad se produce un
bombeo excesivo de Ca?* desde el ER hacia la mitocondria, donde puede incrementar el
AW, la produccion de ROS mitocondriales y culminar en disfunciéon mitocondrial. A su vez
estos ROS mitocondriales, al ser transferidos al lumen del ER, pueden interferir con el
plegamiento oxidativo de proteinas cronificando la situacion de estrés. Si este mecanismo
de retroalimentacion se prolonga, ambos orgdnulos inician rutas de apoptosis conjuntas
gue pueden llevar a la muerte celular. Nuestros resultados sugieren que la pérdida de peso
podria estar mejorando la homeostasis celular y la funcionalidad del ER y la mitocondria,
puesto que un descenso de los marcadores de estrés de ER crénico se acompafid de un
descenso de los niveles de Ca®*, AW mitocondrial y produccién de ROS mitocondriales.

En base a éstas y otras evidencias previas, el estrés de ER se postula como una
diana terapéutica relevante dentro de la fisiopatologia de la obesidad, puesto que se

asocia con la mejora de otras respuestas al estrés celular y alteraciones metabdlicas como
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la IR y la inflamacién sistémica. El uso de chaperonas quimicas como TUDCA y 4-PBA para
facilitar el plegamiento de proteinas ha sido ampliamente estudiado en tejidos
metabdlicos como el adiposo o el hepatico, donde reducen el estrés de ER vy la sefializacion
inflamatoria. En este sentido, los efectos antiinflamatorios del pinitol, un inositol vegetal,
se han descrito previamente en la poblacién con obesidad, aunque los mecanismos
subyacentes son en gran parte desconocidos. Para evaluar si el pinitol actuaria como una
chaperona aliviando el estrés de ER, y por lo tanto la inflamacion, enyasamos los efectos
del tratamiento con pinitol en dos de las principales fuentes de citoquinas inflamatorias,
como son las células inmunes vy el tejido adiposo. El consumo de una bebida enriquecida
en pinitol durante 12 semanas redujo la inflamacion sistémica en pacientes con obesidad,
concretamente los niveles de TNFa e IL6. Sin embargo, no detectamos cambios en
marcadores de la UPR (GRP78, CHOP) en leucocitos aislados. Por otro lado, tras realizar un
tratamiento ex vivo de adipocitos de tejido adiposo visceral y subcutaneo con pinitol
encontramos un descenso de la expresion de ATF6-CHOP acompafiado de una disminucién
de la expresion de TNFa e IL6 de forma especifica en el tejido subcutaneo, lo que podria
contribuir a la reduccién de la inflamacion sistémica que habiamos observado
previamente. Sin embargo, el tejido adiposo visceral no parecid responder al tratamiento
con pinitol. Esta regulacion diferencial podria explicarse atendiendo a las diferencias
metabdlicas entre ambos depdsitos. Por ejemplo, los adipocitos del depdsito visceral son
mas insulin resistentes que los del subcutaneo, y de hecho al analizar la expresion de
mediadores de la ruta de la insulina (GLUT4, IR, PPARy) en ambos tejidos observamos una
menor expresion en visceral respecto al subcutaneo. Sin embargo, a pesar de la expresion
diferencial entre ambos tejidos, el tratamiento con pinitol no modificd la expresidon de los
marcadores en ninguno de los tejidos, ni tampoco mejord la sensibilidad a la insulina tras
su consumo, por lo que parece que los efectos insulinomiméticos del pinitol observados en
otros grupos de pacientes no se reproducen en pacientes con obesidad. Por otro lado,
dado el potencial antiinflamatorio de SIRT1 y su relacion con el estrés de ER evaluamos si
se produjeron cambios en los niveles de expresion de este mediador, y observamos una
regulacion positiva de SIRT1 en los leucocitos de pacientes obesos después de consumir la
bebida enriquecida con pinitol, lo que podria explicar en parte el efecto antiinflamatorio

gue se le atribuye a este inositol vegetal.
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En resumen, la presente tesis doctoral comenzd con un estudio transversal donde
demostramos que el patron de interaccion entre los leucocitos y el endotelio vascular esta
alterado en la obesidad y se incrementa en paralelo con el grado de adiposidad, los niveles
crecientes de inflamacion sistémica y de IR. Estas observaciones se asociaron con un
mayor AW mitocondrial y mayor produccién de ROS en los leucocitos de estos pacientes,
gue podrian estar relacionados con el incremento de su adherencia al endotelio.
Paralelamente, demostramos que el empeoramiento de la condicidon periodontal en una
cohorte de pacientes obesos ajustados por BMI se asocié con el aumento de la inflamacidn
sistémica vy la produccién de ROS en los leucocitos, promoviendo asi su interaccion con el
endotelio. Estos resultados amplian nuestro conocimiento sobre los mecanismos
subyacentes a la relacion entre la obesidad, la periodontitis y la enfermedad CV. Cuando
los pacientes fueron sometidos a una intervencion dietética para la pérdida de peso
observamos una disminucion de factores proaterogénicos como la inflamacion sistémica,
el estrés oxidativo, la resistencia a la insulina y el perfil de la dislipemia aterogénica,
reduciéndose la disfuncién endotelial y la adherencia de los leucocitos al endotelio. Mas
tarde profundizamos en la modulacion de respuestas de estrés intracelular en los
leucocitos tras de la pérdida de peso y encontramos una reduccion del estrés del ER, la
produccion de ROS y el AW mitocondrial, asociados con un aumento en la expresion de
chaperonas, mediadores antiinflamatorios y antioxidantes. En conjunto, nuestros
resultados arrojan luz sobre los posibles mecanismos que subyacen en el papel protector
de la pérdida de peso en el control metabdlico y la homeostasis celular. Finalmente,
demostramos que el pinitol alivia el estrés del ER y modula la respuesta inflamatoria en el
tejido adiposo subcutdneo y los leucocitos de pacientes obesos reduciendo la inflamacion
sistémica, lo que demuestra el potencial efecto protector de este inositol vegetal sobre

algunos de los mecanismos fisiopatoldgicos que subyacen a la obesidad.
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Conclusiones

El incremento en el grado de obesidad y el nivel de resistencia a la insulina se
acompafian de un aumento progresivo de la produccién de especies reactivas de
oxigeno (ROS) y el potencial de membrana (AW) mitocondrial en los leucocitos
circulantes. Ademads, se asocia con un aumento de marcadores de inflamacion
sistémica, disfuncion endotelial y mayor adherencia de los leucocitos al endotelio,

lo que podria aumentar el riesgo de aterogénesis.

La presencia y el grado de severidad de periodontitis cronica en una poblacidén con
obesidad se asocia con una mayor inflamacién sistémica, un incremento en la
produccion de anién superdxido por los leucocitos y un aumento de las
propiedades adherentes de estos a las células endoteliales, respecto a los pacientes
sin enfermedad periodontal. Estas observaciones sugieren que la periodontitis

crénica podria ejercer como un factor de riesgo cardiovascular en la obesidad.

La pérdida de peso inducida por dieta mejora el estado cardiometabdlico y reduce
mecanismos proaterogénicos como la sefalizacién inflamatoria, el estrés oxidativo
y la disfuncién endotelial. En este contexto, se reduce la adherencia de los
leucocitos a las células del endotelio vascular, lo que sugiere un papel protector de

la pérdida de peso en las etapas tempranas del proceso aterosclerético.

La pérdida de peso moderada reduce el estrés de reticulo endoplasmatico (ER)
cronico favoreciendo las respuestas adaptativas en leucocitos de pacientes obesos,
gue se asocian con una reduccion en el AW mitocondrial. En consecuencia, las
sefiales de estrés entre la mitocondria y el ER — Ca*" y ROS — se reducen, mejorando

de esta manera la homeostasis celular.

El pinitol modula el estrés de ER cronico en el tejido adiposo subcutdneo de
pacientes obesos, lo que conlleva una disminucién en la expresién de citoquinas
inflamatorias y un aumento de expresion del mediador antiinflamatorio SIRT1 en

los leucocitos, reduciéndose asi la inflamacidén sistémica.
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1. BACKGROUND

1.1 Obesity overview

1.1.1 Definition, diagnosis and classification

Obesity is a chronic metabolic disease characterized by an excessive accumulation
of fat. The increase in lipid storage produces adipose tissue dysfunction, which is usually
accompanied by a cascade of systemic deleterious effects, such as chronic low-grade
inflammation, dyslipidemia and impaired response to insulin, among other metabolic
abnormalities, and is associated with an impairment of health-related quality of life and/or
reduced life expectancy.

Several methods have been designed to determine the presence and extent of
obesity, including specific determinations of the fat mass of an individual, such as DEXA
(dual energy X-ray absorptiometry), bioelectrical impedance or body scanners, and
evaluations based on anthropometry, such as body mass index (BMI), waist circumference
(WC), waist-to-hip ratio (WHR) or skin-fold assessment. Of all these parameters, BMI is the
most commonly used to diagnose and classify obesity in daily practice worldwide (Javed
et al. 2015) for its simplicity and reproducibility. BMI is an indirect measurement of
adiposity, obtained by dividing weight in kilograms by height in square meters (kg/m?). The
classification of obesity based on BMI was established by the World Health Organization
(WHO) and adopted by other organizations including the Spanish Society for the Study of
Obesity (SEEDO), and defines undernutrition as BMI < 18.5 kg/m?, normal weight as BMI
18.5-24.9 kg/m?, overweight as BMI 25-29.9 kg/m?, obesity grade | as BMI 30-34.9 kg/m?,
obesity grade Il as BMI 35-39.9 kg/m?, and obesity grade Ill or morbid obesity as BMI > 40
kg/m? in adulthood (Lecube et al. 2017).

Nevertheless, BMI is considered a gross measure of the degree of adiposity and in
some circumstances is not precise enough to reflect the amount and distribution of the
body fat in an individual (Blundell et al. 2014). In this sense, the pattern of accumulation of
body fat has special relevance in the development of comorbidities, and determines
obesity as abdominal, where the accumulation of fat is predominantly mesenteric and
visceral, or peripheral, in which case the fat accumulation is predominantly subcutaneous.
The presence of abdominal obesity, more frequent in men, has been related to the
development of metabolic complications including metabolic syndrome, which particularly

affects cardiovascular (CV) risk (Despres 2012). Hence, anthropometric measurements
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such as WC and WHR have been proposed to define more accurately the obesity-
associated risk. Indeed, WC is the most used of the two parameters due to its strong
correlation with visceral fat deposits (Despres 2012). Consensus reference values are
WC > 102 cm for men and > 88 cm for women, both indicating abdominal obesity and

increased risk of morbidity and mortality (Grundy et al. 2005).

1.1.2 Epidemiology and risk factors

Obesity is the most prevalent metabolic disease in developed countries. According
to the WHO database, in 2016 more than 1,900 million adults worldwide were overweight
(39 %), of which more than 600 million were obese (13 %) (World Health Organization
2017). Moreover, the prevalence of obesity has increased drastically in the last three
decades, and estimations suggest it could reach 20 % by the year 2025, which is why
obesity is currently considered the 21° century epidemic (NCD Risk Factor Collaboration
(NCD-RisC) 2016). The cost of the Health Services derived from obesity in developed
countries ranges from 2-8 % of the total healthcare budget (Pereira J.L. 2005), and the
average annual cost is estimated to be 44 % higher for an individual with BMI > 35 kg/m?
with respect to a subject with normal weight.

From a simplistic point of view, increased fat deposition in obesity is the result of
an imbalance between energy intake and caloric expenditure; i.e., overconsumption of
high-caloric foods accompanied by a sedentary lifestyle. However, the aetiology of obesity
has proven to be more complex, integrating a range of factors, from physiological, genetic
and behavioural to environmental, social and economic aspects (Martinez 2000, Williams
et al. 2015). Indeed, several epidemiological studies and meta-analyses have shown that
obesity is associated with the shift towards increasing obesogenic environments in terms
of eating choices, leisure and physical activity patterns, especially in developed countries

(Bhupathiraju et al. 2016, Newton et al. 2017).

1.1.3 Physiopathology
Adipose tissue dysfunction and detrimental systemic effects

Obesity is characterized by a metabolic overload resulting from an excess nutrient

supply. In this sense, adipose tissue plays a crucial role in the regulation of the whole-body
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energy balance. Of the two main types of adipose tissue, white adipose tissue (WAT) is the
most abundant in humans and has traditionally been considered the organ responsible for
storage and mobilization of energy substrates in the form of triglycerides (TG) and fatty
acids (FA), respectively. In addition, advances in the field have demonstrated that WAT is
not only a fat store, but is capable of releasing a great variety of cytokines and adipokines
that exert endocrine, paracrine and autocrine functions, thus ensuring a systemic
regulation of the metabolism. On the other hand, brown adipose tissue adipocytes are rich
in mitochondria, contributing to energy expenditure through activation of uncoupling
protein 1 (UCP1)-mediated thermogenesis (Vazquez-Vela et al. 2008).

The excess of energy sources during obesity is channelled towards increasing lipid
storage in the subcutaneous adipose tissue (SAT), a specific WAT depot located
underneath the skin. SAT expansion capacity is challenged during obesity, triggering
mechanisms of hyperplasia and hypertrophy to accommodate the excess energy supply
over time (Gonzalez-Muniesa et al. 2017). In this context, adipocytes are exposed to a
hypoxic and metabolically stressful environment that leads to failure of cellular function,
including endoplasmic reticulum (ER) stress and mitochondrial dysfunction. As a result,
several intracellular stress responses are induced, including the unfolded protein response
(UPR), an inflammatory cascade mediated by c-Jun N-terminal kinase (JNK) and inhibitory
kB kinase (IKK)/nuclear factor kB (NFkB) pathways, and production of reactive oxygen
species (ROS) (Hotamisligil et al. 2008). The eventual consequence of all of this is adipose

tissue dysfunction, characterized by a shift towards a more pro-inflammatory profile of

secreted adipokine and cytokine and oxidative stress (Sun et al. 2013, Meijer et al. 2011).
For instance, increased adipocyte MCP-1 (monocyte chemoattractant protein-1)
expression enhances immune cell recruitment towards adipose tissue, where they
contribute to tissue remodelling and amplification of the inflammatory response (Sun et al.
2013, Lolmede et al. 2011). In addition, dysfunctional adipocytes secrete higher amounts
of tumour necrosis factor alpha (TNFa), interleukin 6 (IL6), leptin, plasminogen activator
inhibitor-1 (PAI-1) and retinol binding protein 4 (RBP4) and lower levels of adiponectin into

the systemic circulation, leading to a chronic, low-grade inflammatory response, amplified

and perpetuated by the activation of other tissues, including liver and circulating

leukocytes (Vazquez-Vela et al. 2008, Schmidt et al. 2015).
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This systemic inflammation is considered to play a central role in the development

of the metabolic complications of obesity, including insulin resistance (IR), endothelial

dysfunction and altered lipid management (Hotamisligil 2006). In this sense, TNFa is
considered a major contributor to the development of IR in obesity, mediated by activation
of INK/IKK-NFkB pathways, which in turn leads to the phosphorylation of insulin receptor
substrates 1 and 2 (IRS1/IRS2) (Yazdani-Biuki et al. 2004, Hotamisligil et al. 1995). In fact,
TNFa resulting from the crosstalk between adipocytes and activated macrophages triggers
IR in fat cells, which become more lipolytic and begin to release excess FA into the
systemic circulation when saturated. Subsequently, free FA (FFA) initiate mechanisms of

lipotoxicity and ectopic lipid depostion in other organs, including liver, muscle and

pancreas, and in the visceral adipose tissue (VAT) depot, including mesenteric, perirenal
and perivascular spaces (Taira et al. 2013). These mechanisms, together with the aberrant
adipocytokine profile, contribute to an atherogenic and inflammatory systemic milieu,
leading to the development of IR and impaired vascular function (Hotamisligil 2006). For
instance, IR induces gluconeogenesis in the liver and reduces glucose uptake in skeletal
muscle, thus resulting in systemic hyperglycaemia. Overproduction of insulin by B-cells is a
compensatory mechanism that precedes hyperinsulinemia, and is characteristic of
IR-obese subjects. Finally, if declining glycaemic control is not restored, the situation may
progress to non-reversible B-cell failure, impaired glucose tolerance and eventually the

development of type 2 diabetes (T2D) (Cusi 2010) (Figure 1).

Differences between VAT and SAT

Accumulating evidence shows that an abdominal obesity phenotype resulting from
predominance of fat storage in the VAT depot correlates with the appearance of a
constellation of metabolic disturbances including dyslipidemia, IR and CV alterations
(Despres 2012), whereas, in peripheral obesity, SAT seems to act as a “metabolic sink” that
protects against the development of cardiometabolic comorbidities (Karpe et al. 2015).
This could be partly explained by the several morphological and metabolic differences
between VAT and SAT (Misra et al. 2003). For instance, VAT expands predominantly by
hypertrophying adipocytes and has a lower hyperplasia capacity. Higher numbers of
infiltrated immune cells release increased amounts of proinflammatory cytokines in VAT
than in SAT (Fontana et al. 2007, Ibrahim 2010). In addition, larger VAT adipocytes are
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more IR and metabolically active, resulting in higher lipolytic activity, driving FFA and
inflammatory cytokines directly to the liver via portal circulation (Ilbrahim 2010). These
molecules exert a detrimental effect on liver function, leading to local IR, expression of
hepatic acute phase response mediators such as C-reactive protein (CRP) and fibrinogen,

and altered lipid metabolism, including excess VLDL (very low-density lipoprotein)

production and a rise in circulating sdLDL (small dense low-density lipoprotein) particles, all

hallmarks of atherothrombotic disease (Misra et al. 2003).

Healthy adipose tissue Hypertrophic/dysfunctional Macrophage activation
adipose tissue IAdipocyte-macrophage crosstalk

/i (TNFa, IL8, others)
2o
N ~ ‘ @ @

g

1 Infiltration

\_I Adipocytokines |

Energy
imbalance

| Lipotoxicity | |Inf|ammation|

Systemic effects

'

1
G

1 1
Vv -

\\_/
I Insulin resistance I Insulin resistance I Insulin secretion Endothelial dysfunction
VLDL->LDL 1 Glucose uptake B-cell failure > T2D  Pro-atherogenic events

NAFLD ~ ~
Hyperglycaemia

Figure 1. Adipose tissue dysfunction and pathological consequences. A persistent positive energy balance
leads to excessive accumulation of fat in the adipocyte, which in turn leads to hypertrophia, hypoxia and
subsequent alterations of the cell metabolism. As part of this process, stress pathways are initiated, such as
inflammatory responses, oxidative stress, endoplasmic reticulum (ER) stress, and, eventually, necrosis and
cell death. The crosstalk between adipocytes and macrophages is enhanced in the form of increased cytokine
release from both cell types, which further undermines the adipocyte metabolism, leading to insulin
resistance (IR). Finally, dysfunctional adipose tissue releases excess free fatty acids (FFA) and adipokines into
the circulation, leading to systemic effects such us lipotoxicity and chronic inflammation in distal tissues such
as liver, muscle, pancreas and vascular beds, resulting in metabolic complications that are characteristic of
obesity, including non-alcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D) and atherosclerosis.

(Adapted from Cusi 2010).
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1.1.4 Comorbidities, cardiovascular risk and mortality

Numerous studies have clearly demonstrated that obese subjects are at greater
risk of developing several metabolic complications that significantly contribute to
deterioration in health-related quality of life and an increased mortality rate (Cornier et al.
2011). These complications include alterations in lipid management and metabolism, IR
and an aberrant inflammatory profile, key contributors to the development of obesity-
related metabolic comorbidities, including metabolic syndrome, T2D, dyslipidemia, non-
alcoholic fatty liver disease (NAFLD) and CV complications, such as hypertension and
atherosclerosis. As mentioned above, the appearance of this cluster of damaging
coexisting illnesses occurs predominantly in abdominal obesity and has been related to the
increased CV risk in obese populations (Misra et al. 2003). Furthermore, obesity increases
the likelihood and worsens the prognosis of several non-metabolic pathologies, including
sleep apnoea, osteoarthritis and cancer (Lecube et al. 2017, Gonzalez-Muniesa et al.
2017).

Accumulating evidence is consistently demonstrating a positive correlation
between BMI and mortality risk, and confirms that obesity is a major risk factor for
all-cause mortality (Berrington de Gonzalez et al. 2010, Global BMI Mortality et al. 2016),
contributing to 2.8 million deaths per year (World Health Organization 2017). Moreover, a
rising BMI has been related to increased risk of CV disease-associated morbimortality, as
shown by large prospective studies of both European (SCORE) and American cohorts
(Dudina et al. 2011, Khan et al. 2018). In fact, although there is no clear consensus on the
BMI cut-off points alert of the development of comorbidities such as hypertension or T2D,
BMI itself (as a continuous variable) is independently associated with an increased risk of
coronary heart disease, stroke and CV disease-related deaths (Lecube et al. 2017).

Obesity-related CV disease manifests itself through several mechanisms, including
the formation of atherosclerotic plagues in the vascular beds, and an increase in arterial
stiffening resulting in a rise in blood pressure. Dysfunctional adipose tissue release several
factors leading to peripheral vasculature defects such as endothelial dysfunction and

arterial stiffening, thus promoting the development of hypertension and atherosclerosis in

obesity, two associated conditions that evolve during the development of CV disease.
Highlights from the epidemiological Framingham Heart Study and other studies clearly
establish a link between increased adiposity and a rise in blood pressure (Tanamas et al.
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2015, Field et al. 2001) and other risk factors directly related with the development of
coronary atherosclerotic disease, including diabetes and atherogenic dyslipidemia (Altman
2003).

The association between obesity and CV risk appears to be especially evident in
those who accumulate fat predominantly in the abdominal area (Despres 2012), a feature

considered a core component of metabolic syndrome; defined as the presence of > 3 of

the following metabolic disturbances: central obesity, high blood pressure, impaired
fasting glucose and altered lipid profile (that is, elevated TG and/or low high-density
lipoprotein cholesterol (HDLc)) (Alberti et al. 2009). In addition, when the disturbed lipid
profile also includes the presence of sdLDL particles — which are proven to display

enhanced atherogenic properties — the condition is known as atherogenic dyslipidemia

(Ascaso et al. 2017). This lipid triad worsens as BMI and the degree of IR rise, and is the
best-characterized driver of obesity-associated CV risk (Franssen et al. 2008). Closely linked
to metabolic syndrome and dyslipidemia, the presence of T2D combined with obesity is a
major risk factor for the development of CV complications in the overweight population.
Excess adiposity is a key contributor to the systemic impairment of insulin signalling,
leading to hyperinsulinemia, glucose intolerance and eventually B-cell failure and T2D
development (Kahn et al. 2006), which explains why trends in the prevalence and
incidence of diabetes closely mirror those in obesity (Menke et al. 2015). Several
pathophysiological mechanisms in T2D, such as glucotoxicity and oxidative stress, exert
deleterious effects on vascular function, leading to the development of macro and
microvascular complications, including nephropathy, retinopathy, stroke and heart attack
(Aronson et al. 2002).

On the contrary, some obese individuals seem to be cardiometabolically protected,
a feature known as the metabolically healthy obese phenotype, characterized by the lack
of clinical metabolic syndrome traits and typically associated with peripheral obesity
(Teixeira et al. 2015). However, the existence and definition of a subpopulation of putative
metabolically healthy obese subjects has been a major point of controversy in the last few
years among experts in the field, with recent studies suggesting that these subjects are
actually in a transitional state associated with a higher subclinical CV risk compared to lean

subjects (Eckel et al. 2018).
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Other emerging risk factors commonly accompanying obesity are worthy of
mention. Excess adiposity drives the release of pro-inflammatory and pro-thrombotic

molecules, leading to a chronic low-grade inflammation and pro-thrombotic state that may

predispose obese subjects to suffer acute coronary syndromes, especially those with
central obesity (Ellulu et al. 2017). In this sense, it is noteworthy to mention that serum
levels of CRP are elevated in obesity and have consistently been demonstrated as an
independent predictor of coronary heart disease, stroke, and mortality risk (Emerging Risk

Factors Collaboration et al. 2010, Danesh et al. 2004).

1.1.5 Obesity, chronic periodontitis and cardiovascular risk

Besides the aforementioned metabolic comorbidities, accumulating evidence from
the last decade has pointed to an association between obesity and the risk of developing
chronic periodontitis (Chaffee et al. 2010, Jimenez et al. 2012, Martinez-Herrera et al.
2017). Periodontal disease results from the interaction between pathogenic periodontal
bacteria and the host’'s immune response, and is characterized by an exacerbated
inflammatory response and ROS production, which affects the supporting structures of the
teeth and whose progression results in alveolar bone degeneration and, eventually, loss of
the tooth (Gurav 2014). Similarly to obesity, periodontitis is considered an inflammatory-
based disease, thus underlining its relevance not only as an oral health alteration, but as a
systemic health problem. Several epidemiological studies have reported a higher
prevalence of chronic periodontitis in obese populations, where it affects over 75 % of
subjects, who are at a 5-6-times greater risk compared to lean subjects (Martinez-Herrera
et al. 2017, Nishida et al. 2005), as well as highlighting the interfering role of obesity in
non-surgical periodontal therapy (Martinez-Herrera et al. 2018, Suvan et al. 2014).

Although the causality and directionality of this relationship is not clear, systemic
metabolic disturbances in obesity presumably exert an underlying role in the onset and
progression of periodontal disease (Chaffee et al. 2010). In fact, systemic inflammation and
oxidative stress share similar pathological features in both diseases, and it is likely that the
concomitant presence of obesity and chronic periodontitis exacerbates the extent of these
responses (Boesing et al. 2009). Furthermore, previous results obtained by our group and
other researchers have illustrated the obesity-associated IR as a potential underlying
mechanism of chronic periodontitis development (Martinez-Herrera et al. 2017, Song et al.
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2016). In this sense, excess of adiposity seems to be responsible for the increased
presence of chronic periodontitis, whereas IR may be involved in the extent of periodontal
disease (Martinez-Herrera et al. 2017, Saito et al. 2005). However, despite there exist
numerous data supporting the implication of inflammation, oxidative stress and IR in the
relationship between obesity and chronic periodontitis, further studies are required to
determine the molecular mechanisms underlying this association.

On the other hand, chronic periodontitis is thought to be implicated in the onset of
subclinical atherosclerosis and CV disease. This association was first described by Mattila
et al. (Mattila et al. 1989) and later confirmed by several epidemiological reports
(Southerland et al. 2012, Tonetti 2009), all of which suggested that periodontitis precedes
the atherosclerotic process (Haynes et al. 2003). The mechanisms linking periodontitis and
atherosclerosis have not been fully elucidated, although exacerbated inflammatory
response and ROS production in chronic periodontitis seem to trigger vascular injury and
endothelial dysfunction, leading to atherosclerosis and CV complications (Gurav 2014). In
this sense, chronic periodontitis shares many of the traits linking obesity and
atherosclerotic disease; not surprising, since chronic periodontitis and obesity have been
demonstrated to be closely related pathophysiologically (Figure 2). In the light of this
evidence and the high prevalence of chronic periodontitis among obese individuals,
periodontal disease would appear to be an emerging additional risk factor for CV disease in
the obese population, although further prospective studies are needed to confirm this

notion.
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Figure 2. Model of association between obesity, chronic periodontitis and endothelial dysfunction. Obesity

Insulin
resistance

increases the risk of developing chronic periodontitis, which tends to be more pronounced in the presence of
associated insulin resistance. In addition, systemic inflammation and oxidative stress converge in both

pathologies, leading to endothelial dysfunction and, eventually, the development of atherosclerosis.
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1.1.6 Obesity management

The growth in rates of obesity and its morbimortality around the world fuel the
need to develop strategies for the prevention and management of excess adiposity, which
could reduce the global burden of the disease.

From this point of view, current trends in obesity management are aimed at weight
loss, and so lifestyle interventions including nutritional changes, promotion of physical
activity and behavioural modification strategies are first-line approaches. Beyond this
point, a limited number of drugs have been approved for us as adjuncts to diet and
exercise for weight loss purposes (Apovian et al. 2015). Indeed, pharmacological
approaches to obesity are mostly focused on alleviating associated metabolic
complications, rather than reducing weight. Finally, bariatric surgery has become the most
effective treatment for excess adiposity to achieve short- and long-term weight loss and
improve cardiometabolic function. In particular, gastric bypass is considered the gold
standard surgical procedure, since its effectiveness in T2D remission and reducing
metabolic complications compared to lifestyle interventions thus increasing survival
(Sjostrom et al. 2014, lkramuddin et al. 2013). However, gastric bypass is commonly
reserved for patients with severe obesity (BMI > 40 kg/m?) or metabolic complications,
which accounts for only a tiny percentage of the obese population, and is a relatively
invasive and expensive procedure. In this sense, given the limitations of pharmacotherapy
and bariatric surgery use and the absence of contra-indications, lifestyle interventions still

prevail as the most common strategies of obesity management and weight loss.

Lifestyle modifications and weight loss benefits

Weight loss can improve CV risk factors and the metabolic complications associated
with obesity, prevent the progression of severe disease and increase health-related quality
of life, among other benefits that can be achieved as long as the weight loss is maintained.
For this reason, endocrine practical guidelines strongly recommend weight loss strategies
based on lifestyle changes as the treatment of choice to reduce obesity burden (Lecube
et al. 2017, Apovian et al. 2015). These guidelines report that sustained weight loss of only
3-5 % enhance metabolic outcomes including TG, fasting glycaemia, and reduce the risk of

developing T2D. Furthermore, weight loss of 5-10 % has been shown to confer additional
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benefits in terms of blood pressure levels, dyslipidemia and by reducing the need for
medication for metabolic syndrome traits and T2D (Jensen et al. 2014). In line with this,
the Finnish Diabetes Prevention Study reported long-term benefits on CV risk mediated by
lifestyle interventions (llanne-Parikka et al. 2008). Among these strategies, hypocaloric
diets and physical exercise are the most commonly used weight loss approaches, since
their effectiveness in improving several health outcomes has been proved, especially when
both strategies are prescribed as combination therapy (Clark 2015, Wu et al. 2009b).
However, moderate levels of physical activity induce health benefits independently of
weight loss, including lower risk of developing T2D and CV disease (Sadarangani et al.
2014), presumably by reduction of VAT depot size. Interestingly, improving overall
nutrition patterns (such as adherence to a Mediterranean diet) can also induce weight loss
and health improvements without explicit energy restriction (Gonzalez-Muniesa et al.
2017). However, the specific mechanisms through which diet-induced weight loss
improves metabolic parameters are not completely understood. In this sense, further
research in this field would be of great value to determine potential therapeutic targets
and expanding our knowledge about the physiopathology of obesity and its metabolic

disorders.

Hypocaloric diets

Caloric restriction provokes a negative energy balance that induces weight loss. In
this sense, hypocaloric diets have proven to be with very effective in body weight
reduction and in producing general health benefits (Lecube et al. 2017, Jensen et al. 2014).
Among the wide range of diets used for the treatment of obesity, very-low-calorie diets
(VLCD) decrease the weight of obese patients on average 2 kg per week during the first 4-6
weeks (Hernandez-Mijares et al. 2012, Sola et al. 2009). A VLCD consists of a caloric intake
of under 800 kcal per day, usually prescribed in the form of commercially available
substitutive meals to ensure subjects receive the minimal nutritional requirements. An
adequate medical follow-up is required, although their safety has been largely proven
when the treatment period does not exceed the maximum recommendation of 16 weeks
(Gargallo Fernandez et al. 2012, National Task Force on the Prevention and Treatment of
Obesity, NIH 1993). Nevertheless, replacement of VLCD with low-calorie diets (LCD) is
recommended when there are potentially compromising effects on the subject’s
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nutritional status (Hernandez Mijares et al. 2004). General recommendations suggest that
LCD should be individualized to -30 % energy restriction, or at least be prescribed
according to sex differences; typically 1200 kcal per day for women and 1500 kcal for men
(Gonzalez-Muniesa et al. 2017). However, correct adherence to the dietary program and
weight loss maintenance are essential for maintaining the benefits achieved with the

reduction of adiposity degree.

Pharmacotherapy and complementary therapies

In order to reinforce the effects of LCDs, some drugs have been developed and
prescribed as adjuvant medication for patients who are struggling to lose and/or maintain
body weight. For instance, liraglutide and naltrexone/bupropion have been shown to
produce an average drop in body weight of 5-8 % with additional cardiometabolic benefits
(Pi-Sunyer et al. 2015, Greenway et al. 2010). Standardized protocols largely depend on
the respective country; in this sense, elevated costs, some low-level side effects and
difficulties in dosage and administration have limited the extension of the treatment in
Spain (Lecube et al. 2017). A more widespread use is that of treatments against the
comorbidity burden of obesity; that is, drugs that combat the wide range of obesity-
associated metabolic complications; i.e. hyperlipidemia, hypertension and T2D. For
instance, the statins are remarkably effective in reducing LDL levels, which lowers the risk
of adverse CV events in patients with hyperlipidemia. On the other hand, metformin is a
widely prescribed oral antidiabetic drug that is considered the first-line medication for pre-
diabetes or early stages of T2D. Both families of drugs have displayed additional synergic
anti-inflammatory and atheroprotective activities that may play a relevant role in the
prevention and treatment of CV disease in obese population (Krysiak et al. 2012).
However, some studies have shown that even patients within normal LDL ranges —
achieved with cholesterol-lowering medications — still have a residual CV risk (Bayturan
et al. 2010, Lim et al. 2013), although the causal relationship is not understood.

On the other hand, the growing need for new therapies to diminish the metabolic
burden of diseases such as obesity and T2D has fuelled research efforts to identify and
develop bioactive dietary molecules, including carbohydrates such as polyols, fibre and
related carbohydrates. In this sense, inositols are glucose derivatives obtained mainly from
legumes, citrus fruits, whole grains and nuts that have shown several health-promoting
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properties in different conditions such as T2D, obesity, polycystic ovary syndrome (PCOS)
and some types of cancer (Owczarczyk-Saczonek et al. 2018).

For instance, D-chiro-inositol and its methylated form 3-O-methyl-D-chiro-inositol
(D-pinitol or pinitol) is a botanical compound present in carob-pod fruit, soybeans and
other legumes, and has been well documented as a sensitizer of insulin’s actions in both
animals and humans (Owczarczyk-Saczonek et al. 2018). It is thought to act downstream in
the insulin-signalling pathway to mimic the effects of insulin in adipocytes and,
hepatocytes (Shen et al. 2012). The precise mechanism is poorly understood, but seems to
be mediated through activation of the PI3K/Akt axis (Gao et al. 2015). In this sense, we
have previously demonstrated that both acute doses and chronic intake of a pinitol-
enriched beverage improve glucose tolerance and insulin sensitivity in healthy subjects
(Hernandez-Mijares et al. 2013, Bafuls et al. 2016). Furthermore, several studies have
largely demonstrated the ability of pinitol to reduce systemic IR and improve overall
glucose tolerance, not only in susceptible populations, such as T2D patients (Hernandez-
Mijares et al. 2015, Pintaudi et al. 2016), but also in prediabetic subjects (Davis et al. 2000,
Bafiuls et al. 2016) and women with PCOS or gestacional diabetes (Owczarczyk-Saczonek et
al. 2018). In addition to its insulinomimmetic activity, pinitol seems to stimulate B-cell-
production of insulin, thus contributing to the antidiabetic effect (Lazarenko et al. 2014,
Lambert et al. 2018). Pinitol consumption has also been described to diminish oxidative
stress, systemic inflammation and endothelium dysfunction in both human and murine
models of diabetes (Hernandez-Mijares et al. 2015, Sivakumar et al. 2010), thus displaying
a potential atheroprotective role (Choi et al. 2007). Our group has also reported anti-
inflammatory activity in obese subjects consuming pinitol (Bafiuls et al. 2016), although the
underlying mechanism was not determined. Altogether, collected data confirm the
potential therapeutic use of inositols as prophylaxis for diseases associated with IR and
systemic inflammation, including obesity and T2D, although further studies are required to
identify the potential targets of pinitol and describe the mechanisms implicated in the

beneficial effects observed.
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1.2 Pathophysiological mechanisms underlying atherosclerosis in obesity

Atherosclerosis is a CV disorder characterized by progressive accumulation of lipids,
immune cells and fibrotic components in the arterial wall that causes a progressive
occlusion of blood vessels. In the early stages, symptoms of ischaemia appear, with the
situation worsening as the atheromatous plague develops, ending in plague rupture and
increasing the risk of atherothrombotic events, including myocardial infarction and stroke
(Bentzon et al. 2014).

Classic risk factors for the appearance of atherosclerosis are age, sex, hypertension,
diabetes, dyslipidemia and lack of physical exercise, among others. Many of these factors
converge in obesity, along with systemic inflammation, which is considered a crucial
mechanism of the atherogenic process in obesity (Altman 2003, Ross 1999, Jacobs et al.
2009). However, its aetiology is complex, and the interaction between the different
pathophysiological processes at play is not completely understood. In addition, plague
formation is a slow process, often constituting a subclinical CV risk condition in obesity,
even in patients without associated comorbidities (Kim et al. 2017). The study of the
mechanisms involved in the early asymptomatic stages of atherosclerosis, namely
subclinical atherosclerosis, may open up new perspectives in the prevention and treatment

of CV complications and associated morbimortality.

1.2.1 Endothelial activation and dysfunction

The endothelium is the innermost layer of the vascular wall, and is responsible for
vascular tone regulation, inflammatory response, coagulation and overall vascular
homeostasis. Under pathological situations such as obesity, there is an alteration of
endothelial function characterized by reduced bioavailability of nitric oxide (NO), a
biomolecule produced by the endothelial NO synthase enzyme (eNOS), which is involved in
the relaxation of vascular tone and has additional anti-thrombotic and anti-inflammatory
effects (Tousoulis et al. 2012). In the context of obesity, vasculature is challenged by an
exacerbated pro-inflammatory state, lipotoxicity, hyperglicaemia and excess production of
ROS and vasoconstrictor factors that alter endothelial homeostasis (Guzik et al. 2006, Reho
et al. 2017). These mechanisms promote endothelial cell activation and stimulate the

expression of chemoattractant factors, such as MCP-1, and cell adhesion molecules
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(CAMs), including vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion
molecule-1 (ICAM-1) and E/P-selectins, which are mainly mediated through the activation
of the NFkB pathway in the endothelial cells (Pierce et al. 2009, Zhong et al. 2012). These
molecules further enhance leukocyte recruitment to the vessel wall and increase their
infiltration in the intima space, where they contribute to the growth of the atherosclerotic
plague in a pro-oxidant and inflammatory environment (Krinninger et al. 2014).

The aberrant profile of cytokines and adipokines in obesity plays a key role in this
process (Guzik et al. 2006, Chen et al. 2012). Studies of large cohorts of patients have
demonstrated a clear association between the imbalance in pro-inflammatory (e.g., TNFa,
IL6 and CRP) and anti-inflammatory (e.g., adiponectin) mediators in obesity and several CV
complications, including hypertension, coronary disease, atherosclerosis and associated
morbidity (Emerging Risk Factors Collaboration et al. 2010, Danesh et al. 2004, Jacobs et al.
2009, Bermudez et al. 2002, Sesso et al. 2003, Luc et al. 2003). Cytokines seem to promote
a drop in the NO/ROS ratio in the vasculature, which induces oxidative stress, endothelial
dysfunction and subsequent enhanced CAMs expression (Reho et al. 2017, Zhong et al.
2012, Venugopal et al. 2002).

On the other hand, the presence of IR and/or hyperglycaemia contributes in a large
way to endothelium dysfunction (Dudina et al. 2011). In fact, impaired insulin sensitivity
interrupts insulin vasodilatory function and stimulates the proliferation of smooth muscle
cells (Wu et al. 2009a, Wang et al. 2003). Furthermore, hyperglycaemia induces the
production of ROS, thus contributing to oxidative stress, apoptosis and vascular
permeability (Brownlee 2005). A damaged vasculature is highly susceptible to LDL (low-
density lipoprotein) infiltration in the intima zone, especially by atherogenic sdLDL
particles. In the pro-oxidant subendothelial space sdLDL become oxidized, thereby acting
as stimuli of an amplified inflammatory response and eNOS uncoupling and contributing to
oxidative stress and endothelium dysfunction (Liao et al. 1995, Fleming et al. 2005,

Gebuhrer et al. 1995).

1.2.2 Leukocyte activation and adhesion cascade

On the other side of the coin of the atherosclerotic process, immune cells and
platelets became activated under the pro-inflammatory and pro-thrombotic status, further
potentiating the inflammatory response and contributing to their adherence and
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aggregation during the atherothrombotic process (Devaraj et al. 2003). In fact, several
studies have reported that circulating leukocytes in obese patients are in a pro-
inflammatory and pro-oxidant state, which in turn promotes their interaction and
migration across the endothelium layer (Krinninger et al. 2014, Ghanim et al. 2004). The
activation of leukocytes is usually integrated via classic inflammatory pathways such as
NFkB/JNK and by enhanced production of ROS (Nguyen et al. 2007, Aljada et al. 2004). In
this continuously pro-activated state, interactions between CAMs in endothelial and
immune cells and chemoattractant molecules promote the recruitment of leukocytes

towards the vascular endothelium and initiation of the adhesion cascade, a sequential

mechanism ending in transmigration of leukocytes to the subendothelial space (Cejkova
et al. 2016, Muller 2002). Initially, leukocytes are attracted towards the endothelium,
which reduces their flow velocity and allows them to establish initial contacts mediated
mainly by the interaction between selectins and their respective ligands. These

low-intensity transient interactions favour the rolling of leukocytes along the endothelium,

although many leukocytes dissociate due to the reversible nature of the contact (Muller
2002). Later on, selectins-clustering triggers activation of high affinity unions mediated
mainly by integrins, VCAM-1 and ICAM-1 (Ma et al. 2004). Subsequently, these high affinity
unions lead leukocytes to stop rolling and firmly adhere to the endothelial surface (Tan
et al. 2000). Finally, other molecules, including integrins, ICAM-1 and PECAM (platelet-

endothelial cell adhesion molecule) promote extravasation and migration of the

leukocytes, leading them to conformational changes that facilitate diapedesis and the
transmigration process through endothelial cell junctions (Muller 2002). Under normal
conditions leukocyte extravasation can occur as part of the physiological response against
infection. However, in the context of metabolic diseases, it leads to the development of

atherosclerosis and CV disease (Cejkova et al. 2016).

1.2.3 Atheromatous plaque formation

Once in the intima, monocytes transform into macrophages, which can avidly
internalize oxidized sdLDL particles by binding to specialized receptors, with the
contribution of CRP cytokine (Obradovic et al. 2015). In this way, the macrophages
transform into foam cells with a high lipid load which they cannot manage, triggering
inflammatory mediators that perpetuate local vascular damage and inducing the
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proliferation and migration of smooth muscle cells. If this situation persists over the time
the foam cells initiate apoptotic pathways to release their lipid-filled contents and
antigenic and thrombogenic residues into the necrotic core of the lesion, thereby
contributing to the evolution of the atheromatous plagque (Rocha et al. 2009). Growing
plagues tend to expand outwards and encroach on the lumen. Finally, destabilization of
the plague can lead to the rupture and release of fibrous lipidogenic deposits into the

circulation, thus increasing the risk of an atherothrombotic event (Figure 3).
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Figure 3. Leukocyte adhesion cascade and formation of the atherosclerotic plaque. A compromised
endothelial barrier allows small and dense low-density lipoproteins (sdLDL) to accumulate in the
subendothelial region, where they become oxidized in the pro-oxidant environtment, rendering it particularly
inmunogenic. Oxidized sdLDL and inflammatory cytokines activate endothelial cells, leading to the expression
of cellular adhesion molecules (CAMs), which attracts leukocytes to the endothelium and promotes initiation
of the adhesion cascade. After the initial contact and rolling over the endothelium, the leukocytes firmly
adhere and begin transmigration to the subendothelial space, where they differentiate into macrophages
and avidly phagocyte oxidized sdLDL, thus transforming into foam cells. Lipid-filled foam cells enhance the
inflammatory response, leading to proliferation and migration of smooth muscle cells and fibrotic
components, thus producing a thickening of the vessel wall. Eventually, activated platelets and fibrotic
components also accumulate on the luminal side of the atheroscletoric plaque, thus encroaching even more

on the lumen of the vessel wall and increasing the risk of atherothrombotic events.
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The abovementioned body of evidence reinforces the inflammatory basis of the
atherosclerotic process, exacerbated by the status of IR, oxidative stress, lipid alteration in
obesity, and highlights the relevant role of immune cells in the formation of atheromatous
plague. However, further mechanisms and factors involved are not completely

determined, and thus represent potential targets to reduce CV risk in obese population.
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1.3 Oxidative stress

Oxidative stress is characterized by an imbalance of the redox state, when the
production of free radicals — including both ROS and reactive nitrogen species (RNS) —
exceed the antioxidant capacity of the system and alter redox homeostasis. In this context,
oxidation of macromolecules such as lipids, proteins and DNA is promoted, which alters
their functionality, manifesting as oxidative damage to cells and tissues. These deleterious
reactions contribute significantly to the aging process and are known to play a relevant

role in the pathophysiology of metabolic disorders.

1.3.1 ROS production
Mitochondria

Mitochondria are the organelles responsible for the production of cellular energy
from energy substrates in the form of ATP in a process known as oxidative
phosphorylation, but they are also considered the main source of ROS in the cell. Initially,
metabolic intermediaries originate during oxidative metabolism of carbohydrates, and
lipids shed their electrons to the electron transport chain (ETC) embedded in the inner
membrane of the mitochondria. Sequential redox reactions follow the pumping of protons
towards the intermembrane space by several electron carriers of the ETC (complexes -1V,
coenzyme Q, cytochrome c¢). As a result, the proton gradient increases and the
mitochondrial membrane potential (AW) is reduced by ATP synthase producing ATP from
ADP during oxidative phosphorylation (Dimroth et al. 2000). In parallel, the ETC reduces O,
to H,0; but some leaking electrons do not traverse the ETC, which leads to a reduction of
up to 2 % of the total O, to superoxide anion. This highly reactive molecule is rapidly
detoxified by superoxide dismutase (SOD) into hydrogen peroxide (H,0,), which in turn can
be reduced to the hydroxyl radical. Complexes | and Ill of the ETC are the main producers
of superoxide, although there are other mitochondrial proteins involved whose level of
contribution is not completely determined (Quinlan et al. 2013, Murphy 2009). Finally,
mitochondrial ROS (mROS) could diffuse from mitochondria to cytosol, especially H,0,,

where it reacts with macromolecules and affects redox balance (Turrens 2003).
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Other ROS sources

In addition to the mitochondria, oxidants can also be produced in the cytosol,
though to a lesser extent. One of the most relevant producers is the enzyme NADPH
oxidase (nicotinamide adenine dinucleotide phosphate oxidase) or NOX, a transmembrane
multiprotein complex that produces different ROS in response to changes in Ca’'
concentration. NOX is expressed in various cell types, such as immune cells, where ROS
contribute to the elimination of pathogens after phagocytosis, or in endothelial cells,

where it acts as an O, sensor and modulator of vascular tone.

Similarly, myeloperoxidase (MPO) is an enzyme that also contributes to the

formation of oxidizing agents, especially in polymorphonuclear cells (PMNs) such as
neutrophils, where it is stored in granules and released from the cell during degranulation
as part of the host immune defence system. It catalyzes the peroxidation of chloride into
hypochlorite (HOCI), which acts as a powerful destroyer of phagocytosed pathogens (van
der Veen et al. 2009). Despite the beneficial role of MPO in immunity, an excessive activity
of the enzyme contributes to local and systemic oxidative stress, inflammation and
endothelial dysfunction, and has been related with the onset and progression of CV
disease with a marked pro-atherogenic effect (van der Veen et al. 2009, Brennan et al.
2003).

Other sources of cytoplasmic ROS are enzymes such as xanthine oxidase,
lipoxygenase and NO synthase, which in turn promotes formation of RNS. Furthermore,
special conditions lead to the generation of ROS by some other organelles, including
peroxisomes during the long-chain FA oxidation, or ER during oxidative protein folding
and/or as downstream effectors of chronic UPR pathways in the context of inflammatory

diseases (Holmstrom et al. 2014, Cao et al. 2014).

1.3.2 Antioxidant systems

Production of free radicals occurs naturally during cell metabolisms, allowing
several antioxidant defence systems to cooperate to maintain redox balance and prevent
oxidizing damage in healthy tissues. These defences can be distinguished in non-enzymatic
molecules, including dietary antioxidants (vitamins, B-carotene, glutathione (GSH), uric

acid, transferrin, albumin) and antioxidant enzymes. With regard to antioxidant enzymes,
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SOD, catalase and glutathione peroxidase (GPx) are considered the most powerful ROS
scavengers (Holmstrom et al. 2014). In this sense, GPx — expressed both in mitochondria
and cytosol — and catalase — found in peroxisomes and mitochondria — are major H,0,
detoxifying enzymes, whereas SOD avidly targets superoxide radicals present in
mitochondrial matrix and intermembrane space. Particularly in this organelle, GSH, a thiol-
containing molecule with high oxidant buffering capacity, glutaredoxin and thioredoxin
systems are the main ROS buffering mechanisms (McMurray et al. 2016). These
antioxidant systems can be found in several tissues, including liver, brain, muscle, and even
in blood (Vincent et al. 2006). Some pathologies, including obesity, are associated with a
lower presence of antioxidants or inadequate antioxidant response to the rise in free

radicals, ending in oxidative stress and detrimental systemic effects.

1.3.3 Redox imbalance in obesity

Low amounts of ROS are essential in some physiological processes, including
immune defences, adaptive responses, cell proliferation and differentiation, and even
insulin secretion by B-cells (Holmstrom et al. 2014, Leloup et al. 2009). However, excessive
ROS production has deleterious effects on cell function and overall homeostasis. In fact,
oxidative stress is considered a unifying mechanism underlying metabolic disturbances in
obesity and other metabolic disorders. In this context, several potential contributors to
redox imbalance have been described; namely, hyperglycaemia, hyperlipidemia and
chronic inflammation which enhances ROS production, but also an impaired antioxidant
response (Vincent et al. 2006); however, the degree of contribution of each of these

factors depends on the metabolic status of the individual.

Hyperglycaemia and hyperlipidemia

The excess input of energetic substrates in obesity —especially from glucose and
lipid metabolism — oversupplies the ETC with electrons, leading to an increase of
mitochondrial AW (hyperpolarization) and an enhanced probability of electrons spinning
off the ETC carriers to form disproportionate amounts of mROS (Murphy 2009). In parallel,
the lipotoxic effect of elevated FFA and derivates directly interrupts correct ETC function

and leads to excessive mROS and/or enzymatic ROS generation (Inoguchi et al. 2000,
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Lambertucci et al. 2008). Furthermore, hyperglycaemia-mediated oxidative stress is
initiated in the mitochondria and subsequently amplified by several other mechanisms.
Mitochondrial superoxide inhibits enzyme glyceraldehyde 3-phosphate dehydrogenase
(GAPDH), a glycolytic enzyme whose lack of function propagates intracellular
hyperglycaemia and activates additional non-mitochondrial ROS-producing pathways.
Most publications describe four major mechanisms: (1) glucose leak into the polyol
pathway; (2) overactivity of the hexosamine pathway; and activation of ROS-producing
enzymes such as NOX or uncoupled eNOS mediated by (3) accumulation of advanced
glycation end products (AGE) and (4) protein kinase C (PKC) signalling. These four
mechanisms exponentially increase ROS production under high glucose conditions,
although lipid excess also seems to be involved in PKC activation. Thus, it is not surprising
that hyperglycaemia is considered the main driver of oxidative stress among glucose
intolerant obese subjects and T2D individuals, exerting an affect on CV function (Giacco

et al. 2010).

Impaired antioxidant capacity

Obese patients are even more prone to oxidative damage due to undermined
antioxidant capacity. For instance, lower consumption of fruits and vegetables among
obese subjects leads to a lack of protective antioxidants such as vitamins, minerals,
B-carotene and some phytochemicals, aggravated by higher detoxification demand in
obesity (Vincent et al. 2006). Furthermore, a defective activity of SOD, catalase and GPx
has been associated with obesity (Furukawa et al. 2004, Ozata et al. 2002). Globally, total
antioxidant capacity has been inversely associated with the degree of adiposity, and is
specially pronounced with the presence of metabolic syndrome traits (Chrysohoou et al.
2007, Tabur et al. 2010). On the contrary, strategies to strengthen antioxidant activity,
including antioxidant supplementation, physical activity and dietary interventions, seem to
partially restore redox balance and protect obese patients from oxidative damage (Vincent

et al. 2007).
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1.3.4 Pathophysiological consequences of oxidative stress in obesity

Excessive ROS levels contribute to the oxidation of biomolecules such as DNA,
proteins and lipids, whose accumulation can compromise cell function in a similar way to
an accelerated ageing process. Accumulating data over the past years have demonstrated
that obesity-induced oxidative stress in humans is associated with the development of
related comorbidities (Furukawa et al. 2004). Progressive elevation of circulating
biomarkers of oxidative stress, including lipid peroxides and carbonyl proteins, occurs in
parallel to increased BMI (Keaney et al. 2003), and is associated with the onset of CV
disturbances, especially atherosclerosis. Moreover, oxidative stress status is especially
aggravated in IR-obese subjects and when obesity and diabetes exist concomitantly, which

increases the likelihood of CV complications (Giacco et al. 2010).

Mitochondrial dysfunction

One of the most relevant targets of pro-oxidants is, precisely, mitochondria.
Proximity to the ROS-overproducing ETC makes mitochondrial structures more prone to
oxidation and damaging. Mitochondrial DNA and membranes are particularly affected by
mROS, which produces impaired mitochondrial function, a key process during ageing but
one that also accounts for the development of IR, T2D and associated CV complications
(Dos Santos et al. 2018, Madsen-Bouterse et al. 2010). An excessive supply of nutrients in
obesity may excessively hyperpolarize the mitochondrial membrane and overwhelm
mitochondrial activity, increasing mROS production in a vicious cycle that can lead to
mitochondrial dysfunction and even apoptotic pathways (Liesa et al. 2013). In this context,
research shows that mitochondrial dysfunction is related to obesity and aggravated by
several processes: an inherent redox imbalance status; alterations in mitochondrial
dynamics, required for adequate mitochondrial network elongation and function; and
disrupted autophagic flux, a crucial mechanism for the recycling of damaged structures,
molecules and organelles, which leads to the accumulation of damaged mitochondria and
exacerbates the vicious cycle of ROS production (Liesa et al. 2013, Sarparanta et al. 2017).

Mitochondrial dysfunction is defined as impaired ATP production capacity and
lower O, consumption rate, but is also characterized by perturbations in Ca** homeostasis,

catabolism and mROS production and has profound effects on global energy metabolism
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(de Mello et al. 2018). For instance, mitochondrial dysfunction in adipocytes of obese
patients has been shown to produce alterations in adipogenesis and lipid metabolism, and
was associated with IR and low-grade inflammation (Heinonen et al. 2015). In parallel,
decreased B-oxidant capacity, uncoupling of ETC and lower ATP content in muscle resulting
from mitochondrial dysfunction in obesity has a profound impact on aerobic capacity and
global energy expenditure (Liesa et al. 2013) that can be reversed by physical exercise.
Apart from bioenergetic control, mitochondria play a key role in apoptosis, and extended
mitochondrial dysfunction may lead to activation of programmed cell death, which usually
involves cytochrome c release and caspase pathways (de Mello et al. 2018).

Accumulating data suggest that mitochondrial dysfunction impairs endothelial
function/viability and induces vascular smooth muscle cell proliferation and/or apoptosis,
which precedes the development of atherosclerosis and other CV alterations such as
hypertension (Dos Santos et al. 2018). Impaired mitochondrial oxidative capacity has also
been involved in cardiac dysfunction associated with obesity (Boudina et al. 2005).
Although the underlying mechanisms of mitochondrial-mediated diseases are uncertain,
ROS overproduction seems to be primordial in certain cases. Indeed, targeting mROS with
specialized scavengers such as MitoQ or SS31 has proved to have antioxidant and

cardiometabolic protective effects on obese and T2D populations (Apostolova et al. 2014).

Role of oxidative stress in IR and adipose tissue dysfunction

Mitochondrial damage plays a key role in IR and the further development of T2D
and related CV complications though increased generation of pro-oxidants (Dos Santos et
al. 2018, Holmstrom et al. 2012). Paradoxically, whereas physiological ROS levels may play
a relevant role in adequate insulin release and sensitivity (Loh et al. 2009), excessive
oxidative stress in metabolic diseases disturbs insulin transduction signalling, especially in
liver, muscle and adipose tissue. Inhibition of insulin receptors and IRS1 mediated by
activation of NFkB/JNK pathways (notably regulated by ROS) or decreased GLUT4 (glucose
transporter type 4) expression in muscle is the best characterized mediators of ROS-
induced IR.

Furthermore, oxidative stress also plays a key role in adipose tissue dysfunction.
During adipose tissue hypertrophy NOX4 hyperactivation greatly contributes to excess ROS

production, which dysregulates the profile of expression of adipocytes and enhances the
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recruitment and activation of immune cells (Han et al. 2012). These activated
macrophages amplify the pro-inflammatory and pro-oxidant response in part through
activation of NOX2 (Coats et al. 2017), and they crosstalk back to adipocytes in a vicious
cycle (Jankovic et al. 2015). In addition, the NLRP3 (NLR family pyrin domain containing 3)
inflammasome complex is assembled in both cell types, integrating ROS and inflammatory
signalling and exerting a profound impact on adipose tissue function and insulin sensitivity
(Jankovic et al. 2015). In contrast, inhibition of NOX activity in adipocytes improves insulin
sensitivity and the inflammatory profile (Furukawa et al. 2004, Den Hartigh et al. 2017). As
a whole, accumulating data suggest that a vicious cycle of cytokine/ROS production by
macrophages and adipocytes is involved in adipose tissue dysfunction in obesity leading to
systemic deleterious effects such as IR, low-grade inflammation and oxidative damage,

which may be affecting vascular function (Jankovic et al. 2015)

1.3.5 Oxidative stress and atherosclerosis in obesity

As stated above, oxidative stress, hyperglicaemia and systemic inflammation are
considered major drivers of endothelial dysfunction in metabolic disorders such as obesity
and diabetes. In this context, endothelial cells respond by overproduction of ROS, derived
in part from NOX hyperactivation (Inoguchi et al. 2000). In addition, uncoupling of eNOS
activity promotes a shift from NO formation towards superoxide production in the
endothelium, contributing to an increased ROS pool while reducing NO bioavailability.
Excessive superoxide radicals rapidly react with NO to form RNS such as peroxynitrite,
further reducing NO availability, which is especially relevant in the regulation of vascular
function. Locally, ROS and inflammatory molecules from hypertrophied perivascular
adipose tissue also results in impaired vasodilatation of small arteries in obese subjects and
endothelium activation. At an intracellular level, cytokines and ROS signalling induce NFkB-
mediated CAM expression and further inflammatory response in endothelial cells, thus
promoting the accumulation of leukocytes in the vessel wall, a crucial step in the onset of
atherosclerotic processes.

In line with this, chronically activated immune cells in obesity also display a pro-
oxidant phenotype, with elevated NOX and MPO activity, which can contribute to a rise in
oxidized serum macromolecules and leukocyte-induced vascular injury (Nijhuis et al. 2009,
Olza et al. 2012). In fact, MPO serum levels are reported to be a powerful predictor of CV
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events, later mortality and progression of carotid atheromatous plaque, with several
mechanisms seeming to mediate this association. For instance, MPO-derived HOCI directly
oxidizes LDL particles and enhances their affinity for macrophages and the endothelium,
thereby leading to the development of vascular inflammation (Lau et al. 2006) and
formation of foam cells in the subendothelial space. In addition, MPO modifies
apolipoprotein Al in HDLc, impairing HDLc-mediated cholesterol efflux and reducing NO
availability, further contributing to endothelial dysfunction (Brennan et al. 2003). Hence,
data from human studies confirm the potential role of leukocyte-mediated oxidative
stress, and particularly MPO activity in endothelial dysfunction and CV risk among the
obese population. However, whether this leukocyte-induced oxidative stress could be
interfering in the interaction between immune cells and the endothelium is a topic that
has been explored little, though it is promising insofar as the extent to which it may

prevent major CV complications in obesity.

1.3.6 Oxidative stress, inflammation and atherosclerosis in chronic periodontitis

As stated at the outset, obesity encompasses several risk factors for the
development of atherosclerosis and may be a systemic condition whose underlying
inflammatory state promotes periodontitis onset and progression. Together with systemic
inflammation, oxidative stress is another relevant hallmark of periodontal disease
produced as a result of the interaction of the host immune response and periodontal

microbes.

In the pathophysiology of chronic periodontitis bacteria present in the growing
subgingival plague release immunogenic products such as lipopolysaccharide (LPS), leading
to the release of cytokines from surrounding host cells. The inflammatory response
promotes formation of the periodontal pocket between the gingiva and the teeth, with
accumulation of crevicular fluid (Marsh et al. 2017). Subsequently, inflammatory and
bacterial immunogenic factors are spilled into the circulation from the periodontal pocket,
priming a systemic inflammatory immune response characteristic of periodontal disease
(Williams et al. 2008). In fact, increased levels of inflammatory cytokines including IL1B
(interleukin 1 B), TNFa and CRP have been associated with periodontal disease (Loos

2005). In response to periodontal inflammation, PMNs — especially neutrophils — are
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activated and recruited to the crevicular pocket, where they produce high levels of ROS
during the oxidative burst to facilitate the killing and destruction of microbes (Chapple
et al. 2007). In this sense, raised levels of MPO have been found in gingival crevicular fluid
in several periodontal diseases, including chronic periodontitis, and have been associated
with clinical measures of the pathology (Buchmann et al. 2002, Wei et al. 2004). To a lesser
extent, other cell types have been reported to locally produce ROS, including fibroblast and
epithelial cells which are in front-line contact with bacteria and react to them by

overproducing cytokines and oxidizing molecules (Chamulitrat et al. 2004).

In addition, hyperreactiveness of neutrophils in chronic periodontitis is
accompanied by undermined antioxidant capacity leading to imbalanced redox status
(Chapple et al. 2007, Buchmann et al. 2002, Wei et al. 2004). In line with this, elevated
oxidative stress markers have been found in the gingiva, crevicular fluid and saliva, but also
systemically, as increased lipid peroxidation and protein carbonyls levels were detected in
serum from patients with chronic periodontitis (Wang et al. 2017). Despite activation of
inflammatory and ROS-producing responses by immune cells being key mechanisms in the
first barrier against an infectious challenge, in chronic periodontitis overproduction of ROS
and cytokines, presence of LPS and even bacterial invasion (bacteremia) from the
periodontal pocket into the circulation, resulting in systemic response (Williams et al.
2008). This state has several detrimental effects: locally, oxidative stress and inflammation
in the pocket promote tissue damage and progressive periodontum destruction, whereas
at a systemic level chronic periodontal disease leads to endothelial dysfunction promoting

the development of atherosclerosis.

Several studies have reported compromised endothelial function in subjects with
periodontitis (Gurav 2014). Immunogenic and inflammatory mediators such as TNFa and
LPS can promote endothelial cell activation and vascular permeabilization, leading to
expression of adherent molecules and decreased NO production (Gurav 2014). In addition,
other studies have highlighted a more atherogenic lipid profile (Rufail et al. 2005, Ramirez-
Tortosa et al. 2010) associated with markers of endothelial dysfunction and CV risk
(Ramirez-Tortosa et al. 2010) in patients with chronic periodontitis, with one reporting a
greater peroxidation of lipids in the descending aorta of a murine model of periodontitis

(Ekuni et al. 2009a). In contrast, periodontal treatment has been proven to have beneficial
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effects, not only on periodontal parameters, but also by alleviating systemic inflammatory
and oxidative markers and exerting a protective role against endothelial dysfunction
(Chapple et al. 2007, Higashi et al. 2009). In addition, antioxidant therapy attenuates the

progression of atherosclerosis in induced periodontitis in rats (Ekuni et al. 2009b).

This accumulated evidence points to a potential role of chronic periodontitis in the
early stages of the atherosclerotic process through a mechanism involving oxidative stress
and inflammation, similarly to obesity which in turn increases the susceptibility to develop
periodontal disease. However, the relationship between chronic periodontitis, obesity and
atherosclerosis is still an emerging area of study that requires joint efforts from

multidisciplinary teams working together to refine the disease’s pathobiology.
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1.4 Endoplasmic reticulum stress

1.4.1 Endoplasmic reticulum

The ER is a vast membranous organelle responsible for the synthesis, folding and
trafficking of proteins, especially of those of the secretory pathway. The ER lumen provides
optimum conditions for protein folding and post-translational maturation. For instance,
formation of disulfide bonds is enhanced in the luminal oxidizing environment, the
presence of chaperones in the lumen contributes to protein folding, and quality control of
newly synthesized peptides is provided before secretion by several ER regulatory proteins.
The ER also participates in lipid synthesis and trafficking, and is the primary storage site for
Ca’*, which is essential for the activity of Ca**-dependent chaperones in the ER lumen and

for intracellular signaling (Xu et al. 2005).

1.4.2 Unfolded protein response

Several pathological mechanisms can challenge ER function resulting in the
accumulation of misfolded proteins in the lumen, an adverse condition known as ER stress,
which presents a threat to overall cell homeostasis. In response to this, the UPR is
triggered, acting as an adaptive pathway designed to recover normal ER function. The UPR
comprises three canonical branches initiated by three ER-transmembrane proteins:
double-stranded RNA-activated protein kinase-like kinase (PERK), activating transcription
factor 6 (ATF6) and inositol requiring enzyme 1 a (IREla). In addition, the chaperone
GRP78 (78-kDa glucose-regulated protein) binds the three UPR sensors by their luminal
domain and keeps them inactive. Accumulation of misfolded proteins and aggregates
increases chaperone-activity demand, thus leading to the recruitment of GRP78 away from
UPR leaders and stimulating their activation in different ways: PERK and IREla kinase
activation results from autophosphorylation and dimerization of their subunits, whereas
ATF6 migrates to the Golgi, where the small subunit ATF6 (p50) is cleaved by specific
proteases (Hotamisligil 2010)

Subsequently, PERK phosphorylates and inactivates elF2a (eukaryotic initiation
factor 2a), thus attenuating global protein translation for a few hours in order to reduce
misfolded-protein cargo in the ER lumen. Activation of PERK also promotes the expression

of ATF4 (activating transcription factor 4) and NRF2 (nuclear factor (erythroid-derived 2)-
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like 2). Furthermore, two different enzymatic activities have been described for IRE1a: on
the one hand, IREla acts as an endoribonuclease, splicing the X box protein-1 (XBP1)
MmRNA and rendering it competent for translation, while also phosphorylating several
targets (e.g., IKK and JNK) by means of kinase activity. Finally, the three resulting
transcriptional factors — ATF4, XBP1 and ATF6 (p50) — migrate into the nucleus, where they
regulate the transcription of a constellation of genes downstream of the UPR pathway with
the primary aim of alleviating ER stress and reestablishing organelle homeostasis (Xu et al.
2005).

Among the most relevant UPR-adaptive responses, ATF4 and NRF2 induce the
expression of an array of antioxidant response elements to counterbalance ER and cellular
ROS excess. Moreover, the ER-associated protein degradation (ERAD) pathway and
autophagic machinery are promoted by XBP1 and ATF6, and the IRE1a-JNK axis,
respectively, to facilitate protein clearance (Ogata et al. 2006). In addition, the three UPR
branches trigger the expression of chaperones such as GRP78 and quality-control proteins
to enhance protein folding and ensure proper trafficking. However, failure of these
coordinately adaptive actions or chronicity of the stress can lead UPR mediators to express
pro-apoptotic factors such as CHOP (CCAAT/enhancer binding protein [C/EBP] homologous
protein), caspases or by modulating B-cell lymphoma 2 (Bcl-2) family proteins, triggering

programmed cell death (Xu et al. 2005, Hotamisligil 2010) (Figure 4).

1.4.3 Activation of the unfolded protein response in obesity

The ER has been described as a systemic nutrient sensor in several tissues;
therefore, metabolic overload in obesity can induce ER stress and accumulation of
misfolded proteins. The organelle faces different metabolic challenges in the context of
obesity according to cell type, with secretory cells such as adipocytes, hepatocytes and
B-cells being particularly affected due to the increased demand in protein synthesis
(Hotamisligil 2010). Within adipocytes, hypertrophy and increased synthesis of adipokines
can represent a stressful situation for the ER. In the liver, altered lipid metabolism,
enhanced gluconeogenesis and protein synthesis can trigger ER stress (Fu et al. 2011). A
high demand of insulin in response to developing IR can cause the ER to be overwhelmed

in B-cells. However, higher protein synthesis cannot totally explain obesity-induced ER
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stress. Although upstream regulation of the UPR in obesity is not completely understood, a
combination of in vitro findings, animal experimental data and human studies have painted
a picture of a role of FA, inflammatory cytokines, ROS and glucose in the development of

ER stress (Cnop et al. 2012).
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Figure 4. Activation of the unfolded protein response (UPR). Accumulation of misfolded proteins in the
endoplasmic reticulum (ER) lumen leads to disassociation of GRP78 (78-kDa glucose-regulated protein) from
the three leaders of the UPR: IRE1la (inositol requiring enzyme 1 a), PERK (double-stranded RNA-activated
protein kinase-like kinase) and ATF6 (activating transcription factor 6) in order to address Ca’*-mediated
protein folding. This leads to activation of three parallel pathways ending in the translocation of the three
resulting transcriptional factors into the nucleus, where they promote the expression of gens related to
pro-survival responses (antioxidants, ERAD (endoplasmic reticulum-associated protein degradation),
chaperones). However, chronic activation of UPR triggers the activation of inflammatory mediators such as
INK (c-Jun N-terminal kinase) or NFkB (nuclear factor kB) and the expression of proapoptotic factors such as

CHOP (CCAAT/enhancer binding protein [C/EBP] homologous protein).
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Insulin also seems to activate the UPR, since induced hyperinsulinemia increases
GRP78, ATF4, ATF6 and XBP1 expression in adipose tissue from normoglycaemic humans
(Boden et al. 2008). That said, insulin is unlikely to be the main stimulus of ER stress in IR
individuals.

The mediators described above seem to provoke significant alterations in ER-
luminal conditions, including Ca** depletion and redox imbalance, and severely interfere
with ER-folding capacity and functionality (Mekahli et al. 2011). Deficiencies in proteasome
function and autophagy in obesity may also accentuate ER stress due to an inability to
process undesirable proteins and organelles, and may contribute to IR (Otoda et al. 2013,
Yang et al. 2010). However, there are still important gaps in the knowledge of how specific
UPR leaders are regulated by different ER stressors, with evidence suggesting this may
occur differently depending on the tissue and the cluster of factors competing in a precise

moment, due to the highly dynamic nature of the UPR.

1.4.4 Role in inflammation and insulin resistance

At an intracellular level, the ER integrates several intrinsic and extrinsic signals to
align cell function with metabolic demand. UPR pathways intersect with a constellation of
molecular processes, such as inflammation, insulin signalling, Ca** homeostasis, oxidative
stress and mitochondrial function, all of which are themselves mechanisms closely related
with metabolic disturbances. For this reason, ER stress is considered to play a central role
in metabolic diseases, including T2D and obesity.

The interplay between UPR and inflammatory signals is thought to be the major
contribution of ER stress to the physiopathology of obesity, along with the impairment of
insulin signalling. It is known that UPR and inflammatory pathways converge in several
stages in a bidirectional way. For instance, ATF6 and kinase activities of IRE1la and PERK are
able to activate the IKK-NFkB pathway, implicated in the transcription of several
inflammatory mediators and with the development of IR. Conversely, resulting
inflammatory cytokines may affect ER function in some cell types, thus promoting ER stress
even further. On the other hand, the activation of JNK via IREla kinase implies an
additional ER-induced inflammatory pathway, and is also involved in the interruption of

insulin signalling by means of IRS1 phosphorylation (Hotamisligil 2010) (Figure 4).
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Moreover, IRE1a also triggers NLRP3 inflammasome assembly via thioredoxin-interacting
protein (TXNIP) activation and ER-mitochondria crosstalk (Bronner et al. 2015).

The role of ER stress in inflammatory and insulin signalling in obesity and T2D has
been largely described in adipose, pancreatic and hepatic tissues. Activation of UPR has
been associated with increased expression of inflammatory cytokines and disturbed insulin
signalling in adipocytes and hepatocytes (Boden et al. 2008, Kawasaki et al. 2012, Ozcan et
al. 2004, Nakatani et al. 2005), and has also been implicated in B-cell apoptosis and
necrosis of pancreatic islets (Laybutt et al. 2007), which further contributes to systemic IR
and progression towards T2D. Treatments with chemical chaperones such as
4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) have been tested
extensively in these tissues, demonstrating the ability to reduce UPR activation and to thus
protect against IR development and inflammation (Engin et al. 2010). These findings largely
explain why ER stress is considered a major contributor to IR in obesity and to the further

development of T2D.

Sirtuin 1

An emerging body of evidence supports a connection between ER stress and
Sirtuin 1 (SIRT1), a NAD'-dependent protein deacetylase highly sensible to variations in
nutrient availability that has been implicated in the regulation of energy homeostasis and
systemic inflammatory responses. The ability of nuclear SIRT1 to target NFkB transcription
factor to induce its proteasome-mediated degradation exerts a protective anti-
inflammatory effect by reducing the expression of NFkB inflammatory effectors (Yang et al.
2012). However, in obesity, SIRT1 levels are diminished in several tissues, including
adipocytes and immune cells, and this has been related with the presence of metabolic
disturbances, including inflammation and IR, thus highlighting the role of SIRT1 as a
relevant mediator linking metabolic homeostasis and inflammation (Vachharajani et al.
2016). Once again, the relationship between SIRT1 and ER stress seems to be bidirectional,
since some reports have shown that SIRT1 negatively regulates UPR activation and ER-
stress-dependent inflammatory responses, while others described a potential role of UPR
in modulating SIRT1 expression (Koga et al. 2015). As the largest amount of data has been

collected in cellular or animal models, further studies in humans are required to throw
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light on the complex mechanisms of regulation of SIRT1 and ER stress in the setting of

metabolic disorders.

Evidence of ER stress in atherosclerosis

Besides classic secretory cells, accumulating evidence suggests ER stress in the
context of metabolic diseases is present in many other cell types, including neurons,
leukocytes, endothelial and even skeletal muscle cells, which results in additional
metabolic disturbances. For instance, ER stress also seems to contribute to the
atherosclerotic process. In an in vitro model of advanced atherosclerosis UPR-CHOP was
required for cholesterol-load-mediated expression of inflammatory cytokines such as IL6,
TNFa and IL8 via IKK/NFkB in macrophages (Li et al. 2005). Increased markers of ER stress
were also found in macrophages and smooth muscle cells isolated from atherosclerotic
plaques of patients with acute coronary syndrome (Myoishi et al. 2007). In addition, our
group has previously described a correlation between up-regulated UPR markers in
leukocytes from T2D patients and enhanced leukocyte-endothelium cell interactions
(Rovira-Llopis et al. 2014), highlighting the potential role of ER in the early stages of the

atherosclerotic process.

1.4.5 Contribution to oxidative stress and mitochondrial dysfunction

The role of ER stress in metabolic diseases goes beyond inflammation and IR.
Oxidative stress also results from an incorrect ER function, either because of inner ROS

production or by interfering with mitochondrial function.

Oxidative protein-folding in the ER as a potential source of ROS

The ER lumen is a unigue oxidizing environment where formation of disulfide bonds
is enhanced during the oxidative protein-folding process. To prevent and correct
illegitimate disulfide bonds, resident protein disulfide isomerases (PDI), endoplasmic
reticulum oxidoreductin 1 (Erol) and GSH cooperate. This oxidative folding machinery
generates large amounts of ROS and depletes the GSH pool, thus contributing to oxidative
stress. Indeed, a high percentage of the total ROS generated in the cell is estimated to

arise from this process, which may be further exacerbated in obesity due to an elevated ER
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folding activity. Furthermore, CHOP factor derived from UPR activation promotes greater
ROS production via Erol. Subsequently, a hyperoxidizing environment interrupts PDI
function, leading to accumulation of misfolded proteins and ER stress (Malhotra et al.

2007).

Calcium depletion during ER

Besides optimum redox balance, the maintenance of high levels of Ca®" in the ER
lumen is critical for protein-folding mediated by chaperones. These levels are highly
regulated by two complexes located in the ER membrane: the sarco/endoplasmic
reticulum Ca2*-ATPase (SERCA) pumps, which promote Ca®" entry from the cytosol, and
the IPsR (inositol triphosphate receptors), which channels Ca®* into the cytosol or the
mitochondria. In obesity, several stimuli (e.g., FFA intermediates) can disrupt SERCA
activity, thus impairing Ca** refilling (Fu et al. 2011). In addition, a rise in luminal ROS can
activate IPsR, which increases Ca’* depletion. The consequent drop in ER-Ca** content
further deteriorates protein-folding capacity and enhances ROS production in a positive
feedback via oxidative folding machinery. Furthermore it also disturbs mitochondrial
function and Ca®" distribution within the cell. The blocking of RE-Ca®" leakage alleviates ER
stress and restores cell homeostasis in numerous experimental models, which highlights

the crucial role of Ca* distribution.

ER and mitochondrial dysfunction

Mitochondrial and ER are closely related functionally, and an emerging body of
evidence demonstrates the converging role of ER stress and mitochondrial dysfunction in
the course of metabolic diseases (Arruda et al. 2015). In this context, ER stress has been
demonstrated to promote mROS production by further increasing oxidative stress and
mitochondrial dysfunction, and this mROS also feedbacks to ER stress dysfunction.

In regard to this relationship, it is worthy mentioning the existence of
mitochondria-associated ER membrane (MAM), physical contacts enriched in [P3R
channels, specialized metabolite exchangers and other regulatory proteins that maintain
an optimal contact between the two organelles and control Ca’" transporters. Under

physiological conditions, mitochondrial-ER Ca®" exchange is crucial for proper organelle
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function, including ATP synthesis in the mitochondria (Mekahli et al. 2011). However,
during ER stress, excessive amounts of Ca®" are pumped into the mitochondrial matrix,
where Ca®* overload accelerates mROS production in the ETC by several mechanisms:
tricarboxylic acid cycle activity is promoted, thus increasing the flow of energetic
mediators into the ETC; initially the rise in Ca®" levels hyperpolarizes the mitochondrial
inner membrane, which enhances ETC activity; and finally prolonged Ca®* entry ends in
membrane depolarization, which induces a leak of cytochrome c¢ via the permeability
transition pore, thus increasing ROS production in the ETC and even leading to cell death
(Malhotra et al. 2007). In what is a vicious cycle, mROS promotes a larger Ca** load by
sensitizing Ca**-release channels at the MAM and hyperoxidizing the ER lumen, thus
altering protein-folding and perpetuating ER stress (Malhotra et al. 2007, Arruda et al.
2015). Finally, unresolved ER stress and prolonged Ca** overload into the mitochondria or
the cytosol present a threat to cell viability. In this sense, mitochondria-dependent and -
independent apoptotic programs involving caspase cascades are triggered (Mekahli et al.
2011).

In summary, mounting evidence suggests ER dysfunction is integrated in several
vicious cycles of inflammation, oxidative stress and mitochondrial dysfunction, and plays a
key role in the pathophysiology of obesity and its metabolic alterations. However, further
detailed studies, especially in humans, are vital to increase our understanding of the way
and the extent to which ER stress and related pathways are involved in these metabolic
disturbances, which may provide the basis for the development of new therapeutic

strategies.
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Obesity is a complex disease involving a huge range of metabolic alterations,
including chronic low-grade inflammation, IR, oxidative stress and altered lipid profile,
which converge to promote the development of endothelial dysfunction and CV disease.
The persistence of a residual risk, even in metabolically healthy or medically controlled
obese subjects, suggests that factors other than those traditionally associated with CV risk
exert an influence in a subclinical way. In this context, immune cells, which become
activated in obesity, play a relevant role, since their attraction to the vascular wall is a key
process in the formation of the atheromatous plaque. However, little is known about the
intracellular mechanisms in leukocytes that may underlie this effect. Leukocytes are more
capable of producing ROS for immune defence when activated; hence, it is likely that
oxidative stress within leukocytes alters the dynamics between immune cells and the
vascular endothelium in the context of obesity, where increased adiposity can aggravate
the process. Chronic periodontitis shares several pathological mechanisms with obesity,
including a hyperactivated immune system and oxidative stress. Therefore, it is feasible
that the concomitant presence of obesity and periodontitis accelerates redox imbalance in
leukocytes, thus leading to increased CV risk.

The main factor responsible for oxidative stress and ROS production in the cell are
the mitochondria, whose functionality is altered under metabolic overload in obesity, in
parallel with the development of ER stress, all of which leads to metabolic disturbances.
Targeting excess fat accumulation exerts benefits by protecting against cardiometabolic
alterations, although the precise mechanisms implicated are poorly understood. In this
sense, weight loss interventional studies in humans that further explore the modulation of
intracellular stress responses are crucial for the discovery of new therapeutic targets that
mimic the benefits of weight loss. Finally, the use of inositols such us pinitol has been
demonstrated to enhance insulin sensitivity and improve inflammatory profile in the
context of metabolic disease, although the molecular targets of pinitol are largely
unknown. In this context, we believe there is a potential role of pinitol in the modulation of
ER stress and SIRT1, two pathways whose altered profile of expression is proven to

contribute to increased inflammation in obesity.
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On the basis of the above knowledge, the following objectives were proposed for

the present PhD research project:
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To evaluate the relationship between mitochondrial function and ROS production
in leukocytes and the interaction of leukocytes with the endothelium according to

the degree of obesity.

To determine whether the presence and degree of severity of chronic periodontitis
alters the dynamics between leukocytes and vascular endothelial cells by a

mechanism involving oxidative stress in human obesity.

To assess whether dietary weight-loss intervention improves redox balance and

subclinical atherosclerotic markers in an obese population.

To investigate how ER stress, mitochondrial dysfunction and inflammatory

pathways in leukocytes of obese patients can be modulated by weight loss.

To explore the potential protective role of pinitol as a molecular chaperone capable
of ameliorating chronic ER stress and inflammatory signalling in adipose tissue and

leukocytes of patients with obesity.
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The alarming rise in the prevalence of obesity worldwide and the associated heavy
burden of the disease has generated a growing demand for strategies for slowing down
the epidemic and/or mitigating the damaging effects of obesity on health. A massive
commitment by social forces, including the international scientific community, is required
not only to develop preventive strategies but to further increase understanding of the
pathological events and mechanisms involved, from both basic and clinical points of view.

Indeed, the main aim of this thesis is to delve into the underlying mechanisms of
obesity, especially those related to the increased risk of developing atherosclerosis, with a
special focus on leukocyte activation and margination in the vessel wall and the role of
certain mechanisms, including inflammation, oxidative stress, mitochondrial dysfunction
and ER stress. We also address whether several therapeutic approaches can modulate
these pathways and protect against metabolic disturbances.

We recruited several cohorts of middle-aged overweight and obese patients, and
normoweight volunteers — all classified according to their BMI — that were attending the
Department of Endocrinology and Nutrition and/or the Department of Stomatology of the
University Hospital Doctor Peset (Valencia, Spain). In the first cross-sectional study non-
diabetic subjects were categorized as non-obese (< 30 kg/m?), obese grade I-Il (30-40
kg/m?) and morbid obese (> 40 kg/m?), and measurements of WC revealed increasing
visceral adiposity and blood pressure as the degree of obesity incremented. As is common
among obese populations, some of the subjects in our studies presented associated
metabolic comorbidities, including hypertension, hyperlipidemia and T2D (except for the
cross-sectional studies, in which patients with T2D diagnosed according to ADA criteria
were excluded (American Diabetes Association 2016). On average, 10 % and 19 % of the
non-diabetic obese subjects were estimated to be on lipid-lowering or antihypertensive
medication, respectively. However, these percentages rose to 27 % and 30 % in the cohort
of the weight-loss interventional study, probably due to the presence of patients with T2D.
In fact, the incidence of metabolic syndrome traits tends to be higher among T2D-obese
patients when compared to non-diabetic obese subjects (Anari et al. 2017). In parallel,
obese patients clearly presented impaired insulin sensitivity, as revealed by HOMA-IR
levels above 2.5 among the different cohorts, along with an increase in fasting glucose,
insulin and glycated haemoglobin (Alc) as rates of BMI rose. Nevertheless, fasting glucose

and Alc remained within the normal range, thus indicating a general preservation of
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glycaemic control. Regarding lipid profile, levels of LDLc were within reference values in all
the cohorts, with no significant between-group differences, probably due to the use of
lipid-lowering medication. In contrast, HDLc was characteristically reduced and TG levels
rose as the degree of obesity increased, with typical features of atherogenic dyslipidaemia

being observed.

These metabolic comorbidities — hypertension, dyslipidemia and T2D — are closely
related with the development of endothelial dysfunction and atherosclerosis, although
even obese patients with no clinical signs of metabolic impairment are at a higher risk of
subclinical atherosclerosis (Kim et al. 2017). Endothelial dysfunction is one of the early
events in the development of atherosclerosis and CV disease, and it has been documented
that obesity per se causes endothelial dysfunction in several vascular beds (Grassi et al.
2010), a situation that worsens with higher BMI (van der Heijden et al. 2017). Similarly,
chronic periodontitis, a highly prevalent pathology among obese patients, has emerged as
a putative risk factor for the development of endothelial dysfunction and atherosclerosis,

and shares with obesity many traits that lead to CV disease.

Systemic low-grade inflammation is a relevant hallmark of obesity that also
underlies the atherosclerotic process resulting mainly from adipose tissue dysfunction,
which overstimulate immune cells and impair vascular function. For instance, IL6 is a
cytokine with pleiotropic effects produced by several tissues, especially expanding VAT,
which drives large amounts of this cytokine directly to the liver via portal circulation,
thereby increasing the production of CRP, an acute phase reactant widely interpreted as a
predictor of CV disease risk (Ridker 2007) and promoter of a pro-atherosclerotic
phenotype in the vasculature (Devaraj et al. 2003, lkeda et al. 2003). Likewise, TNFa is
overproduced by perivascular adipose tissue and immune cells and has been associated
not only with IR, but also with impaired endothelial function, especially through reduced
NO availability, leading to an increased risk of coronary events (Virdis et al. 2019, Ridker
et al. 2000). In line with previous findings (Park et al. 2005), we confirmed a pro-
inflammatory state in our obese patients, as revealed by increasing circulating levels of
CRP, IL6 and TNFa in parallel with growing adiposity, which may alter vascular function. In
this sense, it has been proposed that this inflammatory state also causes alterations in the

host immune response, which increases susceptibility to bacterial infection, thus emerging
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as a potential mechanism linking obesity and chronic periodontitis. Conversely, once
periodontitis has developed, it also promotes systemic inflammation, thereby contributing
to CV risk (D'Aiuto et al. 2004). We actually observed higher leukocyte count in the
presence of chronic periodontitis, which suggests hyperactivation of the immune system.
Subsequently, we confirmed that chronic periodontitis further exacerbates the
inflammatory response in patients with obesity, as revealed by progressive increases in
circulating levels of TNFa, CRP and RBP4 as periodontal disease became more severe. RBP4
is an adipokine involved in systemic IR and also in vascular oxidative damage (Yang et al.
2005, Wang et al. 2015) which has been recently associated with periodontal disease
(Martinez-Herrera et al. 2018), reinforcing the putative link between chronic periodontitis

and endothelial dysfunction.

In the presence of systemic inflammation, endothelial cells, leukocytes and
platelets become activated and the expression of CAMs, including selectins, ICAM-1 and
VCAM-1, is promoted. This enhances the attraction of leukocytes to the endothelium, the
first step of the transmigration process in the early stages of atherogenesis. Our findings
show that obesity progressively increases circulating levels of ICAM-1 and P-selectin, in
accordance with previous studies showing them to be markers of endothelial activation
and predictors of CV disease in obesity and T2D (Leinonen et al. 2003, Bielinski et al. 2015).
To explore whether interactions between leukocytes and the endothelium are affected by
escalating rates of obesity, we used a flow-chamber in vitro model in which a suspension of
patient’s leukocytes is drawn across a monolayer of human endothelial cells under
conditions similar to in vivo blood flow. We observed a progressive reduction of leukocyte
rolling velocity and enhanced rolling flux, which led to a slowing down of leukocyte flux and
enhanced tethering and rolling along the vascular endothelium, in which P-selectin is a key
mediator. Firm adhesion was also promoted as the grade of obesity increased, in which
ICAM-1 plays a relevant role. Further correlations confirmed the association between
parameters of adiposity, inflammation and CAMs with leukocyte-endothelial cell markers,
with BMI proving to be a major predictor of rolling flux, which strengthens the notion that
obesity impairs endothelial function and promotes interactions between the leukocytes
and the vasculature. In the light of these findings and the many established links between
chronic periodontitis, obesity and CV disease, we evaluated the effect of chronic
periodontitis on leukocyte-endothelial cell interactions. We have observed that the
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presence of this periodontal alteration promotes leukocytes rolling flux and adhesion, and
that these parameters correlate, not only with clinical periodontal markers, but also with
TNFa and RBP4, thus suggesting a mechanistic association between chronic periodontitis,

inflammation and atherogenesis, in line with that proposed in the context of obesity.

Besides inflammatory cytokines, obesity-associated IR is a major contributor to
endothelial dysfunction — as described first by Steinberg et al.(Steinberg et al. 1996) — in
part through a mechanism involving oxidative stress. In this sense, hyperglycaemia seems
to stimulate ROS production by endothelial cells, thus contributing to impaired
vasodilatation and permeability (Brownlee 2005). On the other hand, recent reports by our
group suggest that IR also triggers ROS production in leukocytes, thus promoting contacts
with the vascular wall. In relation to this, the leukocytes of T2D patients showed elevated
ROS production and a more pronounced adherence phenotype, especially among those
with poorly glycaemic control (Rovira-Llopis et al. 2014). Similarly, further IR in woman
with PCOS was associated with increased ROS production in leukocytes and elevated
markers of endothelial dysfunction, which enhanced leukocyte-endothelium cell
interactions (Bafiuls et al. 2017). In accordance with the results of these previous studies,
our present findings show rising production of ROS in leukocytes from non-diabetic obese
patients that peaked in those with higher degrees of obesity and impaired insulin
sensitivity. Besides BMI, markers of IR and total superoxide correlated with leukocyte
adhesion parameters and showed themselves to be independent predictors in the

multivariable regression model.

Given the extent of the contribution of mitochondrial dysfunction to redox
imbalance, it is likely that the increased superoxide detected is linked with impaired
mitochondrial activity. Mitochondrial dysfunction in obesity is a maladaptive physiological
response to excess nutrient supply, which increases electron input into the ETC, thus
leading to increased ROS production and imbalance of proton flux. In a previous study,
hyperpolarisation of the mitochondrial membrane and enhanced superoxide production
has been reported in the leukocytes of T2D (Widlansky et al. 2010). In the same way, we
found that mitochondrial AW in leukocytes gradually increased with the degree of obesity,
in parallel with superoxide production. Moreover, accumulating evidence points to the

contribution of mitochondrial dysfunction and oxidative stress to vascular damage, altered
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leukocyte dynamics and progression of CV complications in metabolic disorders, all of
which are particularly pronounced in patients with T2D (Madsen-Bouterse et al. 2010,
Bafiuls et al. 2017, Hernandez-Mijares et al. 2013), which is in accordance with our
observations in obese patients. Altogether, these findings point to a role of IR,
mitochondrial dysfunction and oxidative stress within leukocytes in the activation of the

adhesion cascade.

Overproduction of oxidizing species is also a relevant characteristic of
hyperreactive leukocytes in chronic periodontitis, however, how this state can be
modulating their interactions with the endothelium is a mechanism largely unknow. In this
study, we found that, in leukocytes from patients with the same degree of obesity,
superoxide production increased progressively with the degree of severity of periodontitis
and correlated with increased rolling of leukocytes over the endothelium, similar to what
we found in the study of obesity degrees. Furthermore, it is likely that concomitant
presence of obesity and chronic periodontitis exacerbates the oxidative response. In this
regard, obesity has been shown to be a predictive factor of enhanced oxidative response in
humans with chronic periodontitis compared to lean subjects (Atabay et al. 2017),
conversely, among obese subjects those with chronic periodontitis displayed higher
systemic markers of oxidative stress (Suresh et al. 2016). In addition, obese rats showed
higher basal levels of oxidative stress than lean rats; when periodontal disease was
induced both groups displayed an oxidative stress response, which was more severe in the
obese group, with enhanced infiltration of PMNs in the periodontal lesion (Tomofuji et al.
2009). Although none of these evidences confirm causality, they highlight a novel and
significant connection between chronic periodontitis, obesity and CV disease, and also
suggests that the presence and deterioration of periodontal condition in obese subjects

may be an additional risk factor for CV disease.

The benefits for cardiometabolic function on targeting excess weight have been
largely demonstrated, and a potential protective role of weight loss on the progression of
carotid atherosclerosis has been proposed (Shai et al. 2010), although the mechanisms by
which these benefits are achieved remain largely unknown. The above discussed cross-
sectional data and prior studies have contributed to our understanding of some

mechanisms involved in the early stages of the atherosclerotic process in obesity, such as
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changes in leukocytes activation. In the present project, we went a step further by
investigating the effect of weight reduction on these and other pro-atherogenic processes.
For this purpose, a cohort of morbid obese patients was enrolled in a 6-month dietary
weight-loss program. A weight loss of ~9 % improved insulin sensitivity in our obese
population, as revealed by decreased levels of fasting glucose, insulin, Alc and HOMA-IR.
These data were accompanied by favourable changes in serum TNFa — a potent activator
of endothelial cells—, P-selectin and its receptor on the surface of leukocytes PSGL-1
(P-selectin glycoprotein ligand-1). As expected, adherence of leukocytes to the
endothelium was reduced, thus suggesting an amelioration of endothelial dysfunction and
recruitment of leukocytes to the vessel wall, which our previous findings suggest are
associated with improved insulin sensitivity.

When we explored the potential intracellular changes underlying these
observations, we confirmed a fall in mitochondrial AW associated with reductions in total
superoxide and mROS production, thus suggesting that weight loss is an effective strategy
to diminish mitochondrial dysfunction and subsequent excess ROS production in
leukocytes. The wide range of pathophysiological implications of mitochondrial dysfunction
and oxidative stress has given rise to an intense field of research into therapeutic
strategies against the spectrum of metabolic disturbances in obesity, a body of work to
which our findings about the role of lifestyle interventions may contribute significantly. In
this sense, targeting mROS in leukocytes with specific mitochondrial antioxidant molecules,
such as SS-31 or MitoQ, has been proven to exert benefits by diminishing oxidative stress,
inflammation and leukocyte-endothelium cell interactions (Escribano-Lopez et al. 2018,
Escribano-Lopez et al. 2016), reinforcing the role of mitochondrial function and ROS
production in leukocytes in the initiation of the adhesion cascade. Interestingly, the GPX1
(glutathione peroxidase 1) antioxidant enzyme was up-regulated after weight loss, and was
likely to be contributing to the drop in ROS signalling within the leukocytes. In addition, the
expression of NFkB in leukocytes was reduced in parallel with intracellular ROS content.
The transcriptional NFkB cascade integrates several cell stress pathways (including ROS
signalling) in a bidirectional way, and is considered a master regulator of cell activation and
inflammatory response. Circulating mononuclear cells in obesity are known to be in a pro-
activated state, displaying higher levels of NFkB and TNFa (Ghanim et al. 2004), which may

enhance their adherence to the endothelium; conversely, weight loss diminished NFkB
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regulatory pathways (de Mello et al. 2008), in line with our findings. As a whole, our results
show that diet-induced weight loss exerts beneficial effects on leukocyte homeostasis by

improving redox balance and preventing the activation of intracellular stress pathways.

Besides mitochondria, other sources of oxidizing species play relevant roles in
immune cells. Of note, the pro-oxidant activity of MPO in leukocytes is vital for cells to
defend themselves against pathogens; however, excess release of MPO from leukocytes
into the circulation in an inflammatory context such us obesity, can contribute to oxidative
stress and vascular injury. Previously, our group has shown an association between
elevated serum MPO levels and the presence of nephropathy in T2D patients, as well as
significant correlations with leukocyte-endothelial cell interaction parameters (Rovira-
Llopis et al. 2013), while Kinkle and cols. have also described a potential role of MPO in the
interaction of leukocytes with the vessel wall by means of electrostatic forces (Klinke et al.
2011), athought mechanistic data are inconclusive. Serum analysis after 6 months of
dietary treatment revealed a decline in MPO levels, which may have protected against
leukocyte adhesion and endothelial dysfunction. In fact, changes in MPO positively
correlated with soluble P-selectin, a marker of endothelial dysfunction. MPO is known to
impair eNOS function, leading to activation of immune and endothelial cells, impaired
vascular function and the subsequent expression of inflammatory cytokines and CAMs
(Vita et al. 2004). Therefore, decreased levels of MPO, TNFa and P-selectin after weight
loss may be indicative of enhanced endothelial function in our obese population.

Systemic oxidative stress result of an imbalance of pro-oxidant and antioxidant
systems, and is reflected by the presence of oxidised circulating macromolecules. Thus,
lipid peroxidation and protein carbonylation in serum are considered relevant biomarkers
of systemic oxidative damage, whose levels are elevated in obesity as a result of excessive
ROS production and undermined activity of the serum detoxifying systems, which can be
found in plasma, circulating immune cells and erythrocytes (Vincent et al. 2006). In our
study, moderate weight loss displayed a systemic antioxidant effect, as revealed by
enhanced serum antioxidant capacity and diminished systemic markers of oxidative stress.
In this sense, catalase activity was stimulated and erythrocyte glutathione content
increased after weight loss. In addition, we observed a decline of carbonyl groups in serum
proteins, as well as reduced ROS production and enhanced GPX1 expression in leukocytes,
which is in accordance with previously published data (Dandona et al. 2001). In relation to
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this issue, other authors have demonstrated that the use of antioxidants to target
leukocytes ameliorates ROS production and systemic markers of oxidative stress, resulting
in improved vascular function in obese individuals (Garg et al. 2000). As a whole, given the
known role of oxidative stress in eNOS uncoupling and reduced NO availability in the
endothelium (Matsuda et al. 2013), a partial recovery of redox balance after weight loss
may contribute to the enhancement of endothelial function described in the present PhD
project.

Altered hepatic lipid metabolism is another mechanism contributing to CV risk in
metabolic diseases. In obesity, elevated FFA and IR are involved in excess synthesis and
failed processing of VLDL, which in turn leads to increases in LDLc levels and a shift of the
LDL pool towards sdLDL particles. Elevated serum LDLc concentration is considered a
classic CV risk factor; however, the qualitative characteristics of these particles with
respect to the atherosclerotic process are also relevant. In this sense, the smallest and
densest LDL — known as phenotype B — have a higher capacity of penetration through the
vascular endothelium. In addition, sdLDL particles are more prone to oxidation in which
MPO plays a relevant role, which further promotes endothelial dysfunction and increases
the immunogenic power of sdLDL (Liao et al. 1995, Fleming et al. 2005, Gebuhrer et al.
1995). This phenomenon could partly explain the presence of residual CV risk in patients
with adequate LDL control (Bayturan et al. 2010). In this context, as we stated at the
outset, the average LDLc in our obese population did not reveal a notable CV risk derived
from clinical LDLc levels, which were similar among the different BMI groups and remained
surprisingly constant after weight loss. However, qualitative assays of LDL particles
revealed a significant reduction of the percentage of sdLDL particles and a beneficial
change in LDL size pattern, thus endorsing the protective role of moderate weight loss on
subclinical LDL profile. Interestingly, these changes correlated with the decrease of MPO,
which may be indicating not only a decrease in the number of sdLDL particles, but also
lower oxidation. Atherogenic process is aggravated by the decrease in HDLc associated
with obesity, since this lipoprotein exerts an atheroprotective role through the uptake of
lipids from macrophages, the reverse transport of cholesterol and its anti-oxidant, anti-
inflammatory and anti-thrombotic function (Tall 2008, Badrnya et al. 2013). Typically, HDLc
levels in our study population decreased with as the degree of obesity escalated, and were

partially restored by weight loss. Conversely, TG levels rose with BMI and fell after dietary
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intervention, thus leading to an overall improvement in lipid profile that may have
protected against CV risk.

Other remarkable findings from the present interventional study give credence to
the cardiometabolic protective role of moderate weight loss in middle-aged morbid obese
populations. The elevated blood pressure observed initially with growing rates of obesity —
a big contributor to endothelial dysfunction — was reduced after weight loss, along with
circulating inflammatory CRP, C3c (complement component 3), RBP4 and TNFa. On the
other hand, there is some controversy about the role of weight loss in systemic
inflammation in obesity, and the extent of this effect. While some authors have failed to
observe significant changes in inflammatory markers (Sola et al. 2009), other studies have
reported marked reductions in plasma CRP, C3c, RBP4 and TNFa following moderate
weight loss (Hermsdorff et al. 2009, Hernandez-Mijares et al. 2012), which is in accordance
with our findings. This discrepancy could be explained by the amount of weight loss
achieved or different therapeutic approaches, both of which would impede the
comparison between studies.

On the whole, there is a broad consensus on the considerable benefits of caloric-
restriction-mediated weight loss and subsequent maintenance of weight-loss on
cardiometabolic function and CV risk in obese and T2D populations, even with moderate
weight reduction of 5-10 % (Cornier et al. 2011), although less is known about the
mechanisms involved in the observed benefits. Our findings confirm this notion and
provide new insights on the processes underlying protective effects of weight loss, namely,
modulation of pro-atherogenic factors and intracellular mechanisms involved in activation
of leukocytes and their subsequent arrest on the endothelium.

Among the molecular mechanisms involved in the pathophysiology of obesity, ER
stress is activated in several tissues such us the pancreas, liver and adipose tissue, where
protein trafficking and secretory pathways play a significant part in cell function,
contributing to the impairment of insulin sensitivity, B-cell apoptosis and inflammation
(Cnop et al. 2012). In addition, several in vitro studies have investigated the activation of
UPR pathways under individual stimuli such as FFA and glucose (Hotamisligil 2010).
However, there are still many gaps in our knowledge of how UPR and ER stress are
modulated in obesity in vivo, where a cluster of activating mechanisms occur

simultaneously, and beyond metabolic tissues. Herein, we have explored the modulation
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of ER stress responses in leukocytes and WAT of obese patients by means of two
interventional approaches: a dietary weight-loss intervention and the use of pinitol, a
bioactive plant compound with insulin-like and anti-inflammatory properties.

The role and modulation of ER stress in immune cells is much less clear than that in
metabolic tissues and has been the focus of a growing research field over the last decade
owing to the discovery that immune cells also contribute to the pathophysiology of
obesity, T2D and associated CV complications. In this context, previous studies have
reported elevated ER stress in leukocytes of T2D patients, and have associated it with the
activation of cell-death pathways and impaired immune function (Rovira-Llopis et al. 2014,
Komura et al. 2010). In addition, markers of ER stress have been detected in peripheral
mononuclear cells of patients with obesity and metabolic syndrome (Sage et al. 2012,
Degasperi et al. 2009, Bafiuls et al. 2017), and, recently, in woman with PCOS (Bafiuls et al.
2017). This accumulating evidence confirms alterations of ER function in circulating
immune cells of patients with IR-related metabolic diseases. Part of the present research
aimed to explore whether weight loss can reverse this intracellular stress response in
obesity.

When ER function is challenged, early adaptive UPR pathways are promoted in
order to restore cell homeostasis. However, under severe or persistent imbalances, pro-
survival efforts are abandoned in favor of pro-death responses. To determine how weight
loss could be modulating this dichotomy, we evaluated several mediators of the three
branches of the UPR and several downstream effectors. We observed a marked down-
regulation of the activated ATF6 (p50) transcriptional factor, whereas no changes were
detected in either phosphorylated elF2a or spliced XBP1, both considered to be mediators
of the PERK and IREla-endoribonuclease pathways, respectively. When we analyzed
downstream targets of the UPR after weight loss, we observed decreased JNK activation
and CHOP expression, both of which are markers of chronic ER stress (Schonthal 2012). In
fact, pro-apoptotic factor CHOP —regulated by ATF6 and/or other UPR leaders— is a crucial
executor of cell-death decisions under chronic ER stress (Nishitoh 2012). The strong
correlation between changes in ATF6 and CHOP may indicate, predominantly, an ATF6-
mediated CHOP regulation. Conversely, GRP78 expression was up-regulated after weight
loss in our patients. This chaperone is a master regulator of ER stress through its role in

protein-folding, by which the ER lumen is relieved of misfolded proteins; therefore, it is
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considered a major contributor to the pro-survival response (Schonthal 2012). Together,
increasing GRP78 and a drop in ATF6-CHOP and JNK indicate an amelioration of apoptotic
pathways of UPR in favor of adaptive responses, as suggested previously (Rutkowski et al.
2006). The only two previous studies that have explored the effect of weight loss on ER
stress also reported a decrease in UPR activation in WAT and liver from humans after
bariatric surgery and from rats after diet-induced weight reduction, which in accordance
with our findings and underline the important role of body weight in ER function (Gregor
et al. 2009, Tsutsumi et al. 2011).

As outlined above, ER stress has been widely described as a mechanism underlying
IR and inflammation in obesity and T2D. For instance, IRE1la-kinase activity triggers NFkB
and JNK signaling pathways, which are key mediators of ER-induced inflammation
(Hotamisligil 2010); both markers decrease after weight loss, thus indicating reduced
inflammatory activation within leukocytes. Stimulation of JNK is also considered a major
contributor to ER-mediated impairment of insulin signaling. Previous studies have found
associations between chronic ER stress markers in leukocytes and indicators of systemic IR
and metabolic disturbances (Bafiuls et al. 2017). In line with this, we found that a drop in
HOMA-IR after weight loss correlated with a decrease in chronic ER stress markers ATF6
and JNK, thus supporting the connection between ER function and glucose homeostasis. In
addition, ER stress may also be involved in leukocyte activation and transmigration thought
the endothelium. In this sense, the presence of ER stress in leukocytes has previously been
associated with enhanced properties of leukocyte adherence to the vessel wall (Bafiuls
et al. 2017). In addition, elevated markers of UPR activation have been found in
macrophages isolated from atherosclerotic plaques (Myoishi et al. 2007), while targeting
ER stress with chaperones seems to protect against the development of atherosclerosis
(Erbay et al. 2009). In the present PhD project changes in ER stress activation after weight
loss occurred in parallel with decreased interactions of leukocytes with the endothelium,
which may have reinforce this association.

Stress signals, including Ca®*, ROS and inflammatory cytokines traveling from ER to
mitochondria and viceversa, play a key role in determining cellular viability (Cao et al.
2014). In this context, previous studies have shown synergistic activation of ER stress,
mitochondrial dysfunction and ROS production in leukocytes from patients with T2D and

obesity (Rovira-Llopis et al. 2014, Degasperi et al. 2009, Bafiuls et al. 2017). In contrast,
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targeting ER with chemical chaperones diminished ROS production within leukocytes,
which highlights the close interplay between ER and oxidative stress (Degasperi et al.
2009). Similarly, we now demonstrate concomitant improvements in ER and mitochondrial
function and reduced ROS production in immune cells of obese patients after weight loss.
By way of explaining these findings, a drop in cytosolic Ca** suggests a partial restoration of
ER-intraluminal Ca®" depots, which may in turn be associated with a decrease in
mitochondrial AW and mROS production since excess of Ca** pumping during ER stress is a
key mediator of disturbances in the ETC of mitochondria (Mekahli et al. 2011). Excess Ca®t
depletion from the ER lumen also has far-reaching effects, since Ca®* is required for
adequate protein-folding by several chaperones (Fu et al. 2011). Up-regulation of
chaperone GRP78 and partial restoration of ER Ca®" depots after weight loss indicate an
enhanced protein-folding capacity, which would ameliorate misfolded protein aggregates
and ER stress.

Based on the accumulating findings of the present interventional study, in which ER
stress relief was associated with amelioration of several other cell stress responses and
metabolic disturbances, targeting ER stress emerges as a potential therapeutic strategy to
diminish and/or slow down the progression of maladaptive responses underlying obesity
and T2D. In this sense, the use of chemical chaperones such as TUDCA and 4-PBA for ER
stress amelioration in the context of metabolic disorders is extensively documented in the
literature (Engin et al. 2010). For instance, administration of these chemical chaperones to
a mouse model of obesity decreased several markers of ER stress in WAT, together with
inflammatory mediators such as TNFa and IL6 (Chen et al. 2016). In this regard, the anti-
inflammatory effects of pinitol have been previously described in obese populations
(Bafiuls et al. 2016, Sivakumar et al. 2010), although the underlying mechanisms are largely
unknown. To assess whether pinitol acts as a chemical chaperone by alleviating ER stress
and hence inflammation, we tested the effects of pinitol treatment on two of the major
sources of inflammatory cytokines: immune cells and WAT. Our findings showed that
pinitol exerts an anti-inflammatory systemic effect, as revealed by decreased levels of
TNFa and IL6 in serum of patients after consuming a pinitol-enriched beverage for 12
weeks. However, we did not detect changes in the ER stress markers GRP78 or CHOP in
isolated leukocytes. Intriguingly, further ex vivo culture of human VAT and SAT with pinitol

revealed differential responses; whereas VAT did not show changes in either inflammatory
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or ER stress markers, pinitol exerted a beneficial effect on SAT by down-regulating the
ATF6-CHOP chronic pathway, a response that was associated with reduced expression of
TNFa and IL6 in the tissue, similarly to that reported by Chen et al. after treatment with
chemical chaperones (Chen et al. 2016). Thus, targeting ER stress and production of
cytokines in SAT may be a potential mechanism behind the anti-inflammatory properties
displayed by pinitol.

Differential responses between VAT and SAT could be explained by the alternative
metabolic-activity patterns displayed by both tissues (Misra et al. 2003). For instance,
adipocytes from VAT are more IR than those from SAT. In fact, VAT exhibited undermined
expression of mediators of the insulin-signalling pathway in our comparative analysis,
further confirming this belief. Despite this, incubation of VAT and SAT with pinitol did not
modify the insulin-signalling pathway — GLUT4, IR (insulin receptor) and PPARy
(peroxisome proliferator-activated receptor y). In fact we did not find either changes in
systemic insulin sensitivity after oral consumption of pinitol for 12 weeks in our obese
population, indicating that insulinomimetic activity of pinitol described in other
populations (Owczarczyk-Saczonek et al. 2018) is not occurring within obese subjects.

On the other hand, SIRT1 is a powerful nutrient-sensing regulator of a wide range
of cellular processes, including cell survival, whose expression is undermined in obesity,
with harmful effects on overall energy balance and metabolic control. For instance, down-
regulation of SIRT1 expression was found in macrophages of patients with metabolic
syndrome and was related with impaired insulin sensitivity and atherosclerotic plaque
formation (de Kreutzenberg et al. 2010). Moreover, SIRT1 physically interacts with NFkB,
and mediates its degradation, thus exerting anti-inflammatory properties. In fact,
stimulation of SIRT1 in immune cells led to inhibition of pro-inflammatory pathways and
improved insulin sensitivity (Yoshizaki et al. 2010). Our results revealed SIRT1 up-regulation
in leukocytes from obese patients after consuming the pinitol-enriched beverage, which
may have contributed to the anti-inflammatory effect of the inositol. Caloric restriction is
another powerful inducer of SIRT1 expression (Bordone et al. 2005). Interestingly, we
observed up-regulation of SIRT1 in the leukocytes of obese patients after weight-loss in the
dietary interventional study, in association with a drop in NFkB signaling, ROS production
and leukocyte-endothelial cell interactions. Additionally, our research group has previously

reported similar findings after stimulation with SS-31 — an antioxidant targeting to

91



3. RESULTS & DISCUSSION

mitochondria — in leukocytes of T2D patients (Escribano-Lopez et al. 2018). Finally, SIRT1
has been described as a sensor of ER function, as it participates in a UPR-SIRT1-UPR
regulatory loop. In fact, increased expression of SIRT1 after weight loss correlated with
enhanced adaptive GRP78. In the light of this accumulating evidence of the converging role
of SIRT1, cellular stress responses and metabolic homeostasis in obesity, SIRT1 emerges as
a potential therapeutic target. In this sense, here we described two promising strategies to
achieve SIRT1 stimulation, namely weight loss and pinitol supplementation.

In summary, by means of a cross-sectional study, we show that adherence between
leukocytes and the vascular endothelium is enhanced in obesity in parallel with the rising
degree of adiposity, with morbidly obese patients being particularly affected. This
response is associated with systemic conditions such as inflammation, IR and endothelial
dysfunction, but also with increased ROS production and mitochondrial dysfunction in
leukocytes, suggesting a role of altered redox balance within leukocytes in the onset of the
atherosclerotic process. At the same time, we demonstrate that a worsening of the
periodontal condition in a cohort of obese patients adjusted by BMI was associated with
increasing systemic inflammation and ROS production in leukocytes, thus promoting their
interaction with the endothelium. These results are an important contribution to our
knowledge of the potential mechanisms underlying the relationship between obesity,
chronic periodontitis and CV disease. Interestingly, when morbid obese patients
underwent dietary weight-loss intervention we found that moderate weight loss partially
reversed this situation by improving lipid profile, insulin sensitivity and reducing
inflammatory and oxidative response both in leukocytes and at systemic level, resulting in
a better profile of endothelial function and lesser interactions between leukocytes and the
endothelium. Further analysis of the modulation of intracellular stress responses in
leukocytes after weight loss revealed ameliorated ER stress and mitochondrial dysfunction,
which were associated with increased expression of chaperones and anti-inflammatory
and antioxidant mediators. Altogether, these results shed light on the potential
mechanisms underlying the protective role of weight loss on metabolic control and cellular
homeostasis. Finally, we demonstrate that pinitol targets ER stress and inflammatory
pathways in adipose tissue and leukocytes of obese patients and may represent a novel

adjunctive treatment to reduce metabolic complications in this pathology.
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Oxidative stress and mitochondrial dysfunction are progressively promoted in
leukocytes in parallel with a growing degree of obesity and state of insulin
resistance. Furthermore, rising obesity is associated with markers of systemic
inflammation, endothelial dysfunction and enhanced adherence of leukocytes to

the endothelium, which can increase the risk of atherogenesis.

The presence and degree of severity of chronic periodontitis in an obese population
is associated with further systemic inflammation, superoxide production in
leukocytes and enhanced properties of leukocyte adherence to the vessel wall with
respect to those without periodontal disease. These observations suggest that

chronic periodontitis may be an added risk factor for CV disease in obesity.

Diet-induced weight loss improves several cardiometabolic outcomes and reduces
pro-atherogenic mechanisms including inflammation, oxidative stress and
endothelial dysfunction. In this context, the adherence between less activated
leukocytes and endothelial cells is reduced, thus suggesting a protective role of

weight loss in the early stages of the atherosclerotic process.

Moderate weight loss provokes a switch from endoplasmic reticulum (ER)
chronic/apoptotic pathways to more adaptive responses in the leukocytes of obese
patients, which are in turn associated with a reduction in mitochondrial membrane
potential. Therefore, ER-mitochondria crosstalk signals — namely, Ca®* and reactive
oxygen species (ROS) — are undermined, which improves cellular homeostasis and

reduces leukocyte activation.

Pinitol modulates chronic ER stress specifically in subcutaneous adipose tissue of
obese patients, leading to a drop in inflammatory cytokine expression and
up-regulation of anti-inflammatory SIRT1 in leukocytes, thus reducing systemic

inflammation.
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Abstract

Background: To evaluate the relationship between leukocyte-endothelial cell
interactions and oxidative stress parameters in non-diabetic patients with different
grades of obesity.

Material and methods: For this cross-sectional study, 225 subjects were
recruited from January 1, 2014 to December 31, 2016 and divided into groups
according to BMI (<30 kg/m®, 30-40 kg/m” and >40 kg/m?). We determined clin-
ical parameters, systemic inflammatory markers, soluble cellular adhesion mole-
cules, leukocyte-endothelium cell interactions—rolling flux, velocity and adhesion
—, oxidative stress parameters—total ROS, total superoxide, glutathione—and
mitochondrial membrane potential in leukocytes.

Results: We verified that HOMA-IR and hsCRP increased progressively as obe-
sity developed, whereas Alc, IL6 and TNFa were augmented in the BMI > 40
kg/m? group. The cellular adhesion molecule sP-selectin was increased in patients
with obesity, while SICAM, total ROS, total superoxide and mitochondrial mem-
brane potential were selectively higher in the BMI > 40 kg/m? group. Obesity
induced a progressive decrease in rolling velocity and an enhancement of rolling
flux and leukocyte adhesion.

Conclusion: Our findings reveal that endothelial dysfunction markers are altered
in human obesity and are associated with proinflammatory cytokines and

increased oxidative stress parameters.
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1 | INTRODUCTION

Obesity is a low-degree chronic inflammatory disease asso-
ciated with a variety of metabolic disorders, including the
development of insulin resistance (IR), dyslipidemia, arte-
rial hypertension, atherosclerosis and diabetes mellitus.

Mitochondrial dysfunction and high reactive oxygen
species (ROS) production are considered adverse cellular
responses to nutrient excess in obesity, which are generated
during glucose or free fatty acid (FFAs) oxidation, mainly
by mitochondria. When ROS production increases, the bal-
ance between oxidant and antioxidant factors is disturbed
and oxidative stress occurs. These conditions can damage
cellular structures and trigger an inflammatory response.’
Several studies have shown that an increase in ROS pro-
duction in adipose tissue of experimental animal models of
diabetes and obesity or in cultured adipocytes can cause
altered synthesis and secretion of adipokines and promote
cell senescence, IR and an inflammatory resp()nse:.3'6 More
recently, human adipose tissue has not only been associated
with mitochondrial activity and enhanced ROS production
in the context of 0besity,7’8 but has also been related with
downregulation of the mitochondria-related transcriptional
signature.9

Proinflammatory adipokines and elevated levels of FFAs,
in particular those released by visceral adipose tissue, cause
IR and are pathogenic factors that can induce endothelial
dysfunction in the earlier stages of obesity, which further
deteriorates insulin signalling pathways in endothelial cells,
thus leading to initiation of the atherosclerotic process.'’
This process is initiated by an interaction between the adhe-
sion molecules expressed on white blood and/or endothelial
cells. Different cellular adhesion molecules (CAMs) have
been implicated in atherogenesis, including selectins, vascu-
lar cell adhesion molecule-1 (VCAM-1) and intercellular
adhesion molecule-1 (ICAM-1)."!

Peripheral polymorphonuclear leukocytes (PMNs) are
one of the main inflammatory cell types. Once activated,
PMNs release ROS, which contributes to oxidative stress,
the inflammation and endothelial damage that follow.'*> We
have previously described that oxidative stress occurs in the
PMNs of insulin resistant patients—type 2 diabetes and
polycystic ovary syndrome—and is related to an impairment
of mitochondrial function and endothelial dysfunction.'**?
Although several studies have shown that the presence of IR
is determinant for the endothelial dysfunction associated
with obesity,lﬁ’17 little is known about how the redox status
and mitochondrial function of PMNs influence this process.

Therefore, the current study was performed to throw
light on the relationship between leukocyte activation,
mitochondrial ~dysfunction and enhanced leukocyte-
endothelium cell interactions according to BMI, in addition
to exploring a possible correlation between these factors.

132

The primary endpoint was leukocyte-endothelium cell inter-
actions in a population of non-diabetic subjects with differ-
ent grades of obesity. Secondary endpoints were the redox
status and mitochondrial function of leukocytes, and a pos-
sible relationship between these parameters.

2 | MATERIAL AND METHODS

2.1 | Subjects

The participants in this cross-sectional study were recruited
at the Outpatient's Department of the Endocrinology and
Nutrition Service of the University Hospital Dr. Peset
(Valencia, Spain) between January 2014 and December
2016. Subjects between the ages of 18-68 years (inclusive)
were eligible for inclusion in the study and were clustered
in three groups depending on their body mass index
(BMI): Non-obese condition group (BMI < 30 kg/m?), sub-
jects with grade I and II of obesity (BMI = 30-40 kg/m?)
and group with morbid and extreme obesity (BMI > 40
kg/m?), defined according to the criterion of the Spanish
Society for the Study of Obesity.'® Exclusion criteria were
pregnancy or lactation, severe disease including malignan-
cies, severe renal or hepatic disease, alcohol or drug abuse,
psychiatric disorders, history of cardiovascular or chronic
inflammatory disease, diabetes mellitus with fasting gly-
caemia >126 mg/dL on at least two occasions or glycated
haemoglobin (Alc) >6.5% and pharmacological treatment
for diabetes, and secondary obesity (hypothyroidism, Cush-
ing's syndrome).

The study—a human observational study structured
according to STROBE (Strengthening the Reporting of
Observational Studies in Epidemiology) and the broader
EQUATOR guidelines'*—was conducted according to the
ethical principles stated in the Declaration of Helsinki, and
all procedures were approved by the Ethics Committee of
the Hospital. Written informed consent was obtained from
all subjects.

Anthropometrical parameters including weight (kg),
height (m), body mass index (BMI; kg/mz), waist circum-
ference (cm), hip circumference (cm), waist-hip ratio
(WHR) and systolic and diastolic blood pressure (SBP/
DBP mm Hg) were obtained from all the participants.

2.2 | Blood sampling

Venous blood samples were collected from subjects after
12 hours overnight fasting. Serum and plasma were
obtained after centrifugation (1500 g, 10 minutes) at 4°C.
Fresh samples were used to measure biochemical parame-
ters and the remaining aliquots were stored at —80°C for
subsequent measurement of inflammatory parameters and
soluble CAMs.
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2.3 | Biochemical determinations

All biochemical determinations were carried out in our hos-
pital's Clinical Analysis Service. Levels of glucose, total
cholesterol (TC) and triglycerides (TG) in serum were
determined by means of an enzymatic method. HDL
cholesterol (HDLc) levels were obtained with a Beckman
LX20 analyzer (Beckman Coulter, Inc., Brea, CA, USA)
using a direct method. The intraserial variation coefficient
was <3.5% for all determinations. LDL cholesterol (LDLc)
concentration was calculated using the method of Friede-
wald when TG were lower than 300 mg/dL. Insulin was
determined by an immunochemiluminescence assay and IR
was estimated using the homeostasis model of assessment
(HOMA-IR = (fasting insulin (pU/mL) X fasting glucose
(mg/dL)/405)). Obese patients were classified as IR obese
when the HOMA index was >2.5 and non-IR obese when
the HOMA index was <2.5, as in a previously published
study.”® Percentage of Alc was measured with an auto-
matic glycohemoglobin analyzer (Arkray Inc., Kyoto,
Japan), and high-sensitive C-reactive protein (hsCRP)
levels were quantified by an immunonephelometric assay.

2.4 | Measurement of proinflammatory
cytokines and soluble CAMs

Serum levels of interleukin 6 (IL6) and tumor necrosis fac-
tor alpha (TNFa) and soluble CAMs—sP-selectin, SICAM-
1 and sVCAM-1—were analysed with a Luminex 200 ana-
lyzer system (Austin, TX, USA). Both kits were purchased
from Millipore Corporation (Billerica, MA, USA). The
intraserial and interserial variation coefficients were <5.0%
and <15.0%, respectively, for all determinations.

2.5 | Leukocyte isolation

Human PMNs were isolated from citrated blood samples
and incubated with dextran (3%) for 45 minutes. The
supernatant was collected, released over Ficoll-Hypaque
(GE Healthcare, Uppsala, Sweden) and centrifuged (650 g,
25 minutes) to isolate leukocytes. The pellet was treated
with lysis buffer and centrifuged at room temperature
(240 g, 5 minutes) to remove the remaining erythrocytes.
After being washed and resuspended in Hanks’ balanced
salt solution (HBSS) (Sigma-Aldrich, Inc., St. Louis, MO,
USA), cells were counted with a Scepter 2.0 cell counter
(Millipore Corporation, Billerica, MA, USA).

2.6 | Leukocyte-endothelial interaction assay

A flow-condition adhesion assay based on an in vitro
model of leukocyte-endothelial cell interactions was carried
out. In short, human umbilical vein endothelial cells

(HUVEC) were seeded on coverslips until confluent and
inserted in the bottom plate of a flow chamber. One million
leukocytes were resuspended in 1 mL of RPMI medium
(Gibco; Thermo Fisher Scientific, Waltham, MA, USA)
and drawn across the HUVEC monolayer at a flow rate of
0.36 mL/min. A 5 X 25 mm portion of the endothelial cells
was recorded during a S5-minute period of flow with a
video camera (Sony Exware HAD; Koeln, Germany) con-
nected to an inverted microscope (Nikon Eclipse TE 2000-
S, Nikon Corporation, Tokio, Japan) to evaluate different
leukocyte parameters: rolling velocity was calculated by
measuring the time it took 20 consecutive leukocytes to
travel a distance of 100 pm within the field of focus; roll-
ing flux was calculated by counting the number of leuko-
cytes rolling over 100 um® of the HUVEC monolayer
during a 1-minute period; and adhesion was evaluated by
counting the number of leukocytes that maintained stable
contact with endothelial cells for 30 seconds. Platelet-acti-
vating factor (1 pmol/L, 1 h) was used as a positive control
for leukocytes, and tumoral necrosis factor (10 ng/mL, 4 h)
for HUVEC. Both reagents were purchased from Sigma-
Aldrich, Inc. (St. Louis, MO, USA).

2.7 | Evaluation of oxidative stress
parameters

Leukocytes were seeded in a 48-well plate and incubated
with different fluorescence probes diluted in HBSS for
30 minutes at 37°C. The plate was read in a fluorescence
microscope (IX81; Olympus Corporation, Tokio, Japan)
coupled with the static cytometry software “ScanR” (Olym-
pus Corporation, Tokio, Japan) to evaluate oxidative stress
parameters: total ROS production was assessed with the
2'7’-dichlorodihydrofluorescein diacetate (DCFH-DA) fluo-
rochrome (5 X 1076 mol/L), glutathione (GSH) content was
measured with the 5-chloromethylfluorescein diacetate
(CMFDA,) probe (1 X 107° mol/L), tetramethylrhodamine
methylester (TMRM) at 5 X 107% mol/L was used to assess
mitochondrial membrane potential (AWm), and total super-
oxide was detected with 5 x 107° mol/L of dihydroethid-
ium (DHE) dye. All fluorescent probes were purchased

from Life Technologies (Thermo Fisher Scientific,
Waltham, MA, USA).
2.8 | Statistical analysis

12,15

The study was designed based on preliminary data to
detect a 20% and 80% difference in the variation of leuko-
cyte-endothelium interactions (measured by rolling veloc-
ity, rolling flux and adhesion of PMNs) between and
within groups, respectively, with a power of 90% and an o
risk of 0.05. Under these premises, at least 26 subjects per

group were considered.
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The statistics programme spss 19.0 (SPSS Statistics Inc.,
Chicago, IL, USA) was employed for statistical analysis.
All experiments were performed in duplicated with the
exception of anthropometric and biochemical determina-
tions. Continuous variables were expressed as mean and
standard deviation (SD), or as median and 25th and 75th
percentiles for parametric and non-parametric data, respec-
tively. Qualitative data was expressed as percentages. Data
were compared with a one-way analysis of variance
(ANOVA) by a Student-Newmann-Keuls post-hoc test.
Pearson's correlation coefficient was employed to measure
the strength of the association between variables. A Chi-
square test was employed to compare proportions. In the
multivariable regression model, the relationship between
two or more explanatory variables (independent variables)
and a response variable (dependent variable) was evaluated
by fitting a linear equation to the data obtained. All the tests
had a confidence interval of 95% and differences were con-
sidered significant when P < 0.05.

3 | RESULTS

This study analysed a total of 225 subjects (62 men and
163 women) with a BMI < 30 kg/m? (106 subjects),

BMI = 30-40 kg/m? (45 subjects) or BMI > 40 kg/m? (74
subjects).

Anthropometric and biochemical parameters are shown
in Table 1. As the rate of obesity augmented, waist circum-
ference, DBP, insulin, HOMA-IR and TG increased signifi-
cantly, whereas HDLc decreased. WHR, SBP and glucose
increased to the same extent in subjects with obesity inde-
pendently of grade of obesity, while Alc, a determination
of average blood glucose level for previous 2-3 months,
was significantly increased in the higher BMI group.

3.1 | Measurement of proinflammatory
molecules and soluble CAMs

Acute phase reactants, such as hsCRP, was associated with
BMI, increasing with grade of obesity (Figure la)
(P < 0.001). Other systemic inflammatory markers were
also altered, though only in the group with the highest grade
of obesity, in which there was an increase in IL6 (Figure 1b)
(P = 0.008) and TNFa« (Figure 1c) (P < 0.001). In line with
this, soluble CAMs levels showed a rise as BMI increased,
which was evident in sP-selectin (Figure 2a) and sSICAM-1
levels, the latter of the two occurring only among subjects
with the highest grade of obesity (BMI > 40 kg/m?) (Fig-
ure 2b) (P = 0.023 and P = 0.008, respectively).

TABLE 1 Anthropometric and biochemical parameters in subjects according to BMI

BMI < 30
n (females) 106 (73)
Age (years) 379 + 14.5
BMI (kg/m?) 234 +2.9*
Waist circunference (cm) 78.9 + 12.2°*
WHR 0.798 + 0.097*
SBP (mm Hg) 120 + 18*
DBP (mm Hg) 72 + 117
Glucose (mg/dL) 86 + 11°
Alc (%) 5.20 + 0.30*
Insulin (pU/mL)) 7.1 +2.7*
HOMA-IR 1.52 + 0.73"
TC (mg/dL) 189 + 35
HDLc (mg/dL) 58 + 13%
LDLc (mg/dL) 112 + 29

TG (mg/dL)

Treatment

70 (57,106)"

Lipid-lowering drugs (%) —
Hypotensive drugs (%) —

BMI 30-40 BMI > 40 P-value
45 (34) 74 (56) 0.35
422 + 11.9 41.5 £ 9.6 0.08
357 +32° 452 + 4.7¢ <0.001
109.5 + 13.5° 1273 + 13.1° <0.001
0.895 =+ 0.090° 0.892 + 0.093" <0.001
130 + 17° 135 + 16° <0.001
80 + 11° 86 + 12¢ <0.001
93 + 11° 96 + 14° <0.001
5.33 + 0.44° 5.51 + 0.44° <0.001
12.8 + 5.0° 21.3 + 15.7¢ <0.001
298 + 1.27° 5.19 + 4.12¢ <0.001
187 + 40 185 + 31 0.80
47 + 10° 40 + 9° <0.001
118 + 35 118 + 28 0.36
101 (76,141)° 125 (90,168)° <0.001
9.8 6.8 0.72
7.7 243 0.04

Alc, glycated haemoglobin; BMI, body mass index; DBP, diastolic blood pressure; HDLc, HDL cholesterol; LDLc, LDL cholesterol; SBP, systolic blood pressure;

TC, total cholesterol; TG, triglycerides; WHR, waist-to-hip ratio.

Data are expressed as mean + SD. Values of serum triglycerides were normalized using a log transformation. Different superscript letters indicate significant differences
among groups (P < 0.05) when compared by means of one-way ANOVA followed by a Student-Newman-Keuls as post-hoc test. Hence, means with the same super-
script are not significantly different from each other (P > 0.05), while means that have no superscript in common are significantly different from each other (P < 0.05).
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3.2 | Leukocyte-endothelial cell interaction
assay

These variations were associated with an impairment in
adhesion under flow conditions; ie, a progressive reduction
in rolling velocity as obesity developed (Figure 2d) and an
increase in PMN rolling flux in all the obese groups (Fig-
ure 2e) (P < 0.001 for both) and cellular adhesion only in
the highest grade of obesity (BMI > 40 kg/m?) (Figure 2f)
(P = 0.046).

3.3 | Evaluation of oxidative stress
parameters

To investigate whether obesity impairs leukocyte-endothe-
lial interactions by altering oxidative stress and mitochon-
drial function, we employed static cytometry to determine
total ROS production, total superoxide, GSH levels and
mitochondrial membrane potential in PMNs. As shown in
Figure 3, total ROS production (Figure 3a; P < 0.001 and
Figure 3e (representative images) and total superoxide (Fig-
ure 3b; P = 0.027) were increased in patients with obesity
with higher BMI, whereas GSH levels were unchanged
(Figure 3c; P = 0.82). These variations were associated
with an increase in mitochondrial membrane potential, as
shown in Figure 3d (P < 0.001) and Figure 3f (representa-
tive images).

3.4 | Correlation analysis

Pearson's correlation coefficients between leukocyte-
endothelium cell interactions and different clinical are
shown in Table 2. Summing up, BMI and hsCRP were cor-
related with rolling velocity, rolling flux and adhesion.
Waist circumference, WHR, Alc, insulin, HOMA-IR and
TNFa were associated to rolling velocity and rolling flux
whereas total superoxide, SICAM, HDLc and mitochondrial
membrane potential were specifically associated with veloc-
ity, rolling and adhesion, respectively. The multivariable
regression model showed that total superoxide
(B = —0.373) and HOMA-IR (f = —0.370) were indepen-
dent predictors of rolling velocity, explaining 31% of the
dependent variable. BMI (f = 0.288) and Alc (f = 0.216)
were independently associated with rolling flux and mito-
chondrial membrane potential (f = —0.383) was indepen-
dently associated with adhesion, explaining 15% and 14%
of the dependent variable, respectively.

Finally, since BMI and HOMA-IR are closely related,
we investigated the effect of IR on leukocyte-endothelial
cell interactions and mitochondrial function, and catego-
rized the results according to HOMA. For this purpose, we
divided the population into normoweight subjects (Control
group) and obese subjects without (HOMA-IR < 2.5) or
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FIGURE 1 Inflammatory Parameters in Subjects According to
BMI. Levels of hsCRP (a) in subjects with BMI < 30 kg/m2 (n = 89),
BMI = 30-40 kg/m” (n = 33) and BMI > 40 kg/m* (n = 65), IL6 (b)
in subjects with BMI < 30 kg/m* (n = 38), BMI = 30-40 kg/m”

(n = 22) and BMI > 40 kg/m* (n = 22) and TNFa (C) in subjects
with BMI < 30 kg/m® (n = 38), BMI = 30-40 kg/m” (n = 22) and
BMI > 40 kg/m? (n = 22). Data are represented as mean + standard
error. Different superscript letters indicate significant differences
among groups (P < 0.05) when compared by means of one-way
ANOVA followed by a Student-Newman-Keuls as post-hoc test.
Hence, means with the same superscript are not significantly different
from each other (P > 0.05), while means that have no superscript in
common are significantly different from each other (P < 0.05). BMI,
body mass index; hsCRP, high-sensitive C-reactive protein; IL6,
Interleukine 6; TNFa, Tumor necrosis factor alpha

with (HOMA-IR > 2.5) IR. As shown in Figure S1, sP-
selectin and sICAM levels rose in the obese population
with IR. In addition, these changes were associated with
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FIGURE 2 Endothelial Function According to BMI, Determined by Cellular Adhesion Molecules and Leukocyte-Endothelial Interactions.
Levels of cellular adhesion molecules represented by sP-selectin (a) in subjects with BMI < 30 kg/m2 (n = 38), BMI = 30-40 kg/m2 (n=22)
and BMI > 40 kg/m2 (n = 22), sICAM-1 (b) in subjects with BMI < 30 kg/m2 (n = 38), BMI = 30-40 kg/m2 (n = 22) and BMI > 40 kg/m2

(n = 22) and sVCAM-1 (c) in subjects with BMI < 30 kg/m2 (n = 38), BMI = 30-40 kg/m2 (n = 22) and BMI > 40 kg/m2 (n = 22).
Leukocyte-endothelial interactions were evaluated by leukocyte rolling velocity (d) in subjects with BMI < 30 kg/m* (n = 45), BMI = 30-40 kg/
m? (n = 26) and BMI > 40 kg/m2 (n = 36), leukocyte rolling flux (e) in subjects with BMI < 30 kg/m2 (n = 45), BMI = 30-40 kg/m2 (n = 26)
and BMI > 40 kg/m2 (n = 36) and leukocyte adhesion (f) in subjects with BMI < 30 kg/m2 (n = 45), BMI = 30-40 kg/m2 (n = 26) and

BMI > 40 kg/m?* (n = 36). Data are represented as mean + standard error. Different superscript letters indicate significant differences among
groups (P < 0.05) when compared by means of one-way ANOVA followed by a Student-Newman-Keuls as post-hoc test. Hence, means with the
same superscript are not significantly different from each other (P > 0.05), while means that have no superscript in common are significantly
different from each other (P < 0.05). BMI, body mass index; sICAM, soluble intercellular adhesion molecule; sVCAM, soluble vascular cell
adhesion molecule; PMNs, polymorphonuclear leukocytes

impairment of leukocyte-endothelial cell interactions; we systemic release of proinflammatory cytokines, and is more
detected a slowing of rolling flux velocity and an increase evident in patients with higher grades of obesity.

in rolling flux in the obese population, and enhanced Obesity, IR and cardiovascular disease are closely
leukocyte adhesion to the endothelium in the insulin-resis- related. Recently, it has been published that even in a
tant obese group. Leukocyte function was also altered; cohort of metabolically healthy subjects, increasing BMI
total ROS production and mitochondrial membrane poten- reported a positive association with the incidence of sub-
tial were increased in both obese groups and total superox- clinical carotid atherosclerosis, suggesting that visceral obe-
ide was selectively augmented in obese subjects with IR sity favours the development of this pathology.?’** In
(Figure S2), which is in line with the results obtained fol- regards to the involvement of IR on the development of
lowing stratification of the population by different grades endothelial dysfunction, several studies revealed its deter-
of BML minant role on impaired endothelium-dependent vasodilata-

tion in patients suffering morbid obesity.'”* Even small
changes in insulin can have a significant effect on endothe-

4 | DISCUSSION lial function in populations with obesity that are not yet

classified as insulin resistant.”* In accordance with such
In the present study, we demonstrate an alteration in leuko- reports, we have shown that IR and BMI are main predic-
cyte-endothelium cell interactions in subjects with obesity, tors of leukocyte-endothelial cell interactions; namely roll-
with rising impairment as adiposity increases. This ing velocity and rolling flux, respectively. Insulin could be
response is also associated with altered mitochondrial func- involved in endothelial dysfunction through several mecha-

tion and increased oxidative stress in PMNs and with nisms. In in vitro experiments, insulin stimulates the
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FIGURE 3 Mitochondrial Function Parameters in Subjects According to BMI. Mean of fluorescence intensity of DCFH-DA (a) in subjects
with BMI < 30 kg/m? (n = 56), BMI = 30-40 kg/m? (n = 26) and BMI > 40 kg/m” (n = 38), DHE (b) in subjects with BMI < 30 kg/m*

(n = 38), BMI = 30-40 kg/m* (n = 27) and BMI > 40 kg/m? (n = 35), CMFDA (c) in subjects with BMI < 30 kg/m* (n = 32), BMI = 30-

40 kg/m2 (n = 26) and BMI > 40 kg/m2 (n = 38) and TMRM (d) in subjects with BMI < 30 kg/m2 (n = 55), BMI = 30-40 kg/m2 (n = 25) and
BMI>40 kg/m® (n = 27). Representative fluorescent images depicting DCFH-DA and TMRM intensities (green and red signals) are shown in
panels (e) and (f), respectively. The nuclei were visualized using the specific nuclear stain Hoechst 33342 (blue). Data are represented as mean =+
standard error. Different superscript letters indicate significant differences among groups (P < 0.05) when compared by means of one-way
ANOVA followed by a Student-Newman-Keuls as post-hoc test. Hence, means with the same superscript are not significantly different from each
other (P > 0.05), while means that have no superscript in common are significantly different from each other (P < 0.05). BMI, body mass index;
DCFH-DA, 2',7'-dichlorodihydrofluorescein diacetate; DHE, dihydroethidium; CMFDA, 5-chloromethyl fluorescein diacetate; TMRM,
Tetramethylrhodamine methyl ester; RFU, relative fluorescent units

leukocyte-endothelial cell interactions were activated in the
PMNs of our subjects with obesity, and an increase in

expression of VCAM-1 and E-selectin in the endothelium
and increases both rolling interaction and adhesion of

monocytes,” suggesting a central role of insulin in
endothelial dysfunction. Indeed, we have previously estab-
lished a relationship between endothelial dysfunction and
IR-related pathologies, such as type 2 diabetes
polycystic ovary syndrome.'*!'? with

and

In line this,

CAMs—sP-selectin and SICAM—was observed among
those with the highest grade of obesity, insulin and
HOMA-IR index. Although the adhesive strength of P-
selectin was low, became stronger with the induction of
ICAM-1. Noticeably, SICAM-1 was markedly upregulated
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TABLE 2 Pearson's correlation coefficients between leukocyte-endothelium cell interactions and biochemical, inflammation, cellular adhesion

molecules and oxidative stress parameters

Rolling velocity

Rolling velocity

Rolling flux

BMI r = —0.505 P < 0.001
Waist circumference r=—-0.433 P < 0.001
WHR r=-0.219 P =0.041
HDLc - -
TG - _
Alc r = —0.307 P = 0.004
Insulin r=-0.425 P < 0.001
HOMA-IR r = —0.406 P < 0.001
hsCRP r=-0.275 P =0.010
TNFa r = —0.340 P =0.021
DHE r = —0.405 P =0.002
sICAM - -
TMRM - -

Rolling flux Adhesion

r = —0.639 P < 0.001 r=—0.527 P < 0.001
- - r=0.362 P < 0.001
r = 0.400 P < 0.001 r=0.301 P = 0.004
r=0417 P < 0.001 = -
r=0.284 P = 0.007 - -
r=—0.230 P =0.022 - -
r=0.336 P = 0.001 - -

r = 0.359 P =0.001 - -

r = 0.375 P < 0.001 - -
r=0.469 P < 0.001 r=0.360 P < 0.001
r = 0.484 P < 0.001 - -
r=0.341 P =0.039 - -

- - r = —0.339 P = 0.009

Alc, glycated haemoglobin; BMI, Body mass index; DHE, dihydroethidium; HDLc, HDL cholesterol; hsCRP, high-sensitive C-reactive protein; sICAM, soluble
intercellular adhesion molecule; TG, triglycerides; TMRM, Tetramethylrhodamine methyl ester.; TNFa, Tumor necrosis factor alpha; WHR, waist-hip ratio.

in the group with the highest grade of obesity, suggesting
stronger adhesion and slower rolling velocity, which
would, in turn, promote diapedesis, plaque formation and
atherosclerosis.

In addition to insulin, glucotoxicity also contributes to
endothelial dysfunction through a mechanism that impairs
blood-flow, vascular permeability, angiogenesis, vascular
and capillary occlusion and induces an increase in proin-
flammatory gene expression and in ROS production, result-
ing in endothelial dysfunction.”® In this sense, we have
previously shown that endothelial function is worsened in
patients with type 2 diabetes whose glycaemia is poorly
controlled.?” Although type 2 diabetic patients
excluded from our study, we have shown that Alc is
involved in leukocyte-endothelium cell interactions, which
suggests that small changes in long-term glycaemia have a
significant effect on endothelial function and consequently
in cardiovascular diseases. In keeping with this, it has been
shown that glucose metabolism is the main predictor of
carotid intima media thickness in morbid obesity.?®

The increased levels of CRP and proinflammatory
cytokines—IL6 and TNFa—indicate the presence of a
chronic low-grade inflammation associated with obesity
"' In fact,
TNFa has been reported to be an independent predictor of
coronary endothelial function.”* More recently, it has been
shown that pharmacological blockade of TNFa improves
endothelial function in mesenteric and omental vessels of

were

and which can be involved in atherosclerosis.

subjects with obesity.'”*° Our results reveal a correlation
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between inflammatory markers—TNFoa and hsCRP—and
leukocyte-endothelium cell interactions, although the multi-
variable regression model showed they were not significant
predictors. These results are in accordance with a previous
study in which, despite the presence of inflammation in
morbid obesity, endothelial dysfunction was observed only
in insulin resistant subjects.'’

It has been suggested that oxidative stress is a major
pathophysiological mechanism involved in endothelial dys-
function associated with obesity. The underlying mecha-
nism seems to involve an increased secretion of ROS and
adipokines by adipose tissue, which impairs bioavailability
of nitric oxide.®" Mitochondrial membrane potential is criti-
cal for maintaining the physiological function of the respi-
ratory chain. In fact, a significant loss of mitochondrial
membrane potential results in the death of cells with
depleted energy levels, whereas a surplus nutrient supply
can hyperpolarize mitochondria, leading to the accumula-
tion of incompletely oxidized substrates or intermediates
(eg, FFAs and diacylglycerol) and overproduction of
ROS,** especially superoxide under hyperglycaemic con-
ditions.?® This is in line with the association between glu-
cose and superoxide and ROS demonstrated by the present
study.

The present study has some limitations, including the
size of the study population, which, although relatively
small, was supported by sample size calculation. In addi-
tion, although we did not determine the presence of the
atherosclerotic plaque in our patients, we did evaluate the
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onset of the atherosclerotic process; in other words, the
first stages of endothelial dysfunction, which is heralded by
the movement and accumulation of leukocytes in the vessel
wall and enhanced levels of CAMs in a proinflammatory
environment. Our results point to an association between
higher BMI and enhanced endothelial dysfunction, mani-
fested in leukocyte-endothelium cell interactions, adhesion
molecules and inflammation. Whether changes in intracel-
lular signalling in PMNs are related to the interaction of
these cells with the endothelium and the subsequent risk of
developing atherosclerosis and cardiovascular disease is a
question that needs to be explored.

In conclusion, our data reveal that obesity is charac-
terised by an increase in endothelial dysfunction markers
and proinflammatory cytokines, which is associated with
altered mitochondrial function and increased oxidative
stress in PMNs. Moreover, these characteristics are more
evident in patients with higher grades of obesity. These
findings help to explain the link between obesity, IR,
oxidative stress and atherosclerosis and point to new targets
for specific interventions to prevent the development of
cardiovascular disease although further studies are needed
to throw light on the mechanisms involved in these
processes.
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FIGURE S1 Endothelial function according to BMI and HOMA-IR, determined by cellular adhesion
molecules and leukocyte-endothelial interactions. Levels of cellular adhesion molecules represented by
sP-selectin (A), sSICAM-1 (B) and sVCAM-1 (C); leukocyte-endothelial interactions were evaluated by
leukocyte rolling velocity (D), leukocyte rolling flux (E) and leukocyte adhesion (F) in non-obese
(normoweight subjects), non-IR obese (obese subjects without IR (HOMA-IR < 2.5)) and IR obese (obese
subjects with IR (HOMA-IR > 2.5)). BMI, body mass index; IR, insulin resistance: PMN,
polymorphonuclear leukocytes; SICAM-1, soluble intercellular adhesion molecule-1; sVCAM-1, soluble
vascular adhesion molecule-1;
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FIGURE S2 Mitochondrial function parameters in subjects according to BMI and HOMA-IR. Mean of
fluorescence intensity of DCFH-DA (A), DHE (B), CMFDA (C) and TMRM in non-obese (normoweight
subjects), non-IR obese (obese subjects without IR (HOMA-IR<2.5)) and IR obese (obese subjects with IR
(HOMA-IR > 2.5)). BMI, body mass index; DCFH-DA, 2“7°-dichlorodihydrofluorescein diacetate; DHE,
dihydroethidium; CMFDA, 5-cholomethyl fluorescein diacetate; IR, insulin resistance; ROS, reactive oxygen
species; RFU, relative fluorescence units; TMRM, tetramethylrhodamine methyl ester.
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1 | INTRODUCTION

Periodontitis is a multifactorial chronic inflammatory disease
characterized by breakdown of the tooth-supporting tissues. It

results from a complex interaction between periodontopathogens

Abstract

Aim: To evaluate the relationship between oxidative stress parameters in polymor-
phonuclear leucocytes (PMNs) and PMN-endothelial cell interactions in patients
with chronic periodontitis (CP) according to different degrees of severity of the
disease.

Materials and methods: For this cross-sectional study, 182 subjects were divided
into four groups according to degree of CP: without CP (n = 37), mild CP (n = 59),
moderate CP (n = 51), and severe CP (n = 35). We determined anthropometric and
biochemical variables, periodontal parameters, inflammatory markers, oxidative
stress parameters (superoxide and mitochondrial membrane potential), and PMN-
endothelium cell interactions (rolling flux, velocity, and adhesion).

Results: Systemic inflammatory markers—C-reactive protein, leucocyte count, TNFa,
and retinol-binding protein 4—were altered in the group with CP. Total superoxide
was augmented in patients with moderate and severe periodontitis, whereas mito-
chondrial membrane potential did not change. Furthermore, PMNs adhesion and roll-
ing flux were increased in subjects with CP.

Conclusion: In a systemic proinflammatory environment, PMNs from patients with
CP exhibit hyperactivity and produce higher amounts of superoxide. In parallel with
this, an increase in PMNs rolling flux and cell adhesion to the endothelium suggests
the presence of alterations of PMN-endothelium interactions in patients with CP

that can lead to atherosclerosis and cardiovascular complications.

KEYWORDS

endothelial dysfunction, humans, oxidative stress, periodontitis, reactive oxygen species

and the host immune system caused by dysregulation of the host
inflammatory response to bacterial infection (Page & Kornman,
1997).

In periodontitis, host cells release proinflammatory cytokines

against pathogens in the gingival sulcus which stimulate infiltration

*These authors contributed equally to this work
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of polymorphonuclear leucocytes (PMNs), the first line of cellular

Periodontology

host defences. An exacerbated inflammatory response to bacterial
plaque leads to the release of reactive oxygen species (ROS) such as
hydrogen peroxide and superoxide from leucocytes that, together
with an imbalance of antioxidant defences, results in oxidative stress
and apoptosis of connective periodontal tissue (Chapple & Matthews,
2007; Kanzaki et al., 2017). Previous studies have reported oxida-
tive stress in periodontitis, both locally (periodontal tissues, gingival
crevicular fluid [GCF], and saliva) and peripherally (serum and plasma)
(for review see Wang, Andrukhov, & Rausch-Fan, 2017), pointing
to potential mechanistic links between periodontitis and systemic
inflammatory diseases. However, only few studies have focused on
the production of ROS by PMNs and most have been carried out in
stimulated conditions (Fredriksson, Gustafsson, Bergstrém, & Asman,
2003; Gustafsson, Ito, Asman, & Bergstrom, 2006; Matthews, Wright,
Roberts, Cooper, & Chapple, 2007 and Matthews, Wright, Roberts,
Ling-Mountford, et al., 2007; Ling, Chapple, & Matthews, 2016).

On the other hand, epidemiological studies have shown that
periodontitis may play a role in subclinical atherosclerotic cardiovas-
cular diseases in humans (Tonetti, 2009; Southerland et al., 2012).
In fact, systemic inflammation caused by periodontitis contributes
to the development and maintenance of atherosclerosis, which is
preceded by endothelial dysfunction (Gurav, 2014). In brief, the first
stage of endothelial dysfunction is heralded by the movement and
accumulation of leucocytes in the vessel wall, which are mediated by
an interaction between the adhesion molecules expressed on white
blood and/or endothelial cells. We have previously demonstrated an
association between oxidative stress in PMNs and endothelial dys-
function in type 2 diabetes and obesity (Herndndez-Mijares et al.,
2013; Lopez- Doménech et al., 2018). Although there have been re-
cent reports of a significant connection between chronic periodon-
titis (CP) and endothelial dysfunction (Orlandi et al., 2014; Moura
etal., 2017), to the best of our knowledge, no previous study has
evaluated the association between oxidative stress and endothelial
dysfunction in PMNs of patients with CP.

Therefore, since leucocytes play a critical role in mediating oxi-
dative stress and the destruction of connective periodontal tissues,
and given the strong evidence of an association between periodon-
titis and subclinical atherosclerosis markers, the primary outcome
of the present study was to evaluate the relationship between ox-
idative stress parameters in PMNs and PMN-endothelial cell inter-
actions in patients with CP, according to degree of severity of the
disease. A second aim was to explore a possible correlation between

these factors and different clinical periodontal parameters.

2 | MATERIALS AND METHODS

2.1 | Subjects

Patients between the ages of 20 and 65 years attending the
Outpatient’s Department of the Stomatology Service of the
University Hospital Dr. Peset (Valencia, Spain) from June 2015 to

144

Clinical Relevance

Scientific rationale for the study: Recent studies have re-
ported a significant association among chronic periodonti-
tis (CP), oxidative stress, and endothelial dysfunction, but
no previous study has evaluated the redox status and
PMN-endothelial cell interactions in PMNs of patients
with CP.

Principal findings: PMNs from patients with CP showed
higher adhesion to the endothelium and rolling flux associ-
ated with the presence of impaired redox status and a pro-
inflammatory profile augmented, being more evident in
patients with severe periodontitis.

Practical implications: Special importance should be given
to the diagnosis and treatment of periodontitis in patients
cardiovascular

with  cardiovascular risk to avoid

complications.

March 2017 were recruited for the present cross-sectional study.
Exclusion criteria were fewer than 14 teeth, infectious or other oral
inflammatory diseases, to have received periodontal or antibiotic
treatment in the previous 6 or 3 months, respectively, to be under
systemic anti-inflammatory treatment, pregnancy or lactation, se-
vere disease including malignancies, alcohol or drug abuse, psychiat-
ric disorders, and a history of cardiovascular or chronic inflammatory
disease or diabetes mellitus according to the American Diabetes
Association criteria. Data concerning current medication and smok-
ing habit (yes or no) were recorded.

Study subjects were clustered in four groups depending on the
degree of CP: without CP, mild CP, moderate CP, and severe CP, de-
fined according to the Centers for Disease Control and Prevention/
American Academy of Periodontology (CDC/AAP) (Eke, Page,
Wei, Thornton-Evans, & Genco, 2012). Subjects without CP were
matched by sex, age, and BMI.

Mild periodontitis was defined as the existence of at least two
interproximal sites with clinical attachment loss (CAL) 23 mm and at
least two interproximal sites with probing depth (PD) 2 4 mm (not in
the same tooth) or one site with PD =2 5 mm. Moderate periodontitis
was defined as at least two interproximal sites with CAL = 4 mm (not
in the same tooth) or at least two interproximal sites with PD 2 5 mm
(in different teeth). Severe periodontitis was defined as at least two
interproximal sites with CAL = 6 mm (not in the same tooth) and at
least one interproximal site with PD = 5 mm.

This  human observational study—reported according
to Strengthening the Reporting of Observational Studies in
Epidemiology (STROBE) guidelines—followed the ethical principles
stated in the Declaration of Helsinki. All procedures involving hu-
mans were approved by the hospital’s Ethics Committee, and all the
participants, as well as umbilical cord donors, gave their written in-

formed consent.
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2.2 | Clinical periodontal determinations

A full-mouth periodontal examination was performed to measure
PD, CAL, and gingival bleeding on probing (BOP) at six sites per tooth
for all teeth, excluding third molars, and the Silness and Loe simpli-
fied Plague Index was employed to score six representative Ramfjérd
teeth as described previously (Martinez-Herrera et al., 2017). All
periodontal assessments were recorded using a conventional manual
periodontal probe PCP UNC-15 (Hu-Friedy, Chicago, IL, USA).

2.3 | Anthropometric and biochemical
determinations

The following data were collected for all the participants: weight (kg),
height (m), body mass index (BMI; kg/m?), and systolic and diastolic
blood pressure (SBP/DBP mmHg). Weight was determined by an elec-
tronic scale (with an approximation of 0.1 kg), height was measured with
a stadiometer with an approximation of 0.5 cm, BMI was calculated by
dividing the weight in kilograms by the square of the height in metres
(kg/mz), and blood pressure was measured using an automatic sphyg-
momanometer following a 5-min rest period (Omron M3, Kyoto, Japan).

Blood samples were drawn from the antecubital vein after 12 hr
overnight fasting. Glucose, total cholesterol (TC), and triglycerides
(TG) levels were evaluated in serum using an enzymatic method.
HDL cholesterol (HDLc) was determined by a direct method in a
Beckman LX20 analyser (Beckman Corp., CA, USA). The Friedewald
formula was used to calculate LDL cholesterol (LDLc) when TG were
below 300 mg/dl. Insulin levels were measured by immunoassay, and
insulin resistance was calculated (HOMA-IR = (fasting insulin (pU/
ml) x fasting glucose (mg/dl)/405)).

Immunonephelometric assay (Dade Behring BNII, Marburg,
Germany) was used to quantify circulating high-sensitive C-reactive
protein (hsCRP), serum levels of tumour necrosis factor alpha (TNFa)
were determined with a Luminex® 200 analyser system (Austin, TX,
USA), retinol-binding protein four (RBP4) systemic levels were as-
sessed by means of nephelometry assay (Dade Behring, Marburg,
Germany), and leucocytes count was determined using a Sysmex
ME-8000 autoanalyser.

2.4 | Cellisolation

Citrated blood samples were incubated with dextran 3% for 45 min.
The resulting supernatant was centrifuged by density gradient in
Ficoll-Hypaque (GE Healthcare, Uppsala, Sweden) for 25 min at
650 g in order to isolate PMNs. Erythrocyte lysis was performed,
and the pellet was then washed and resuspended in HBSS (Sigma
Aldrich, MO, USA). Finally, cells were counted using a Scepter 2.0
cell counter (Millipore Corporation, Billerica, MA, USA).

2.5 | Evaluation of oxidative stress parameters

In order to evaluate oxidative stress parameters, we employed a life
cell imaging method to detect fluorescent markers in which cells

Periodontology

remain adherent and vital during the whole procedure. PMNs were
seeded in a 48-well plate at 1.5 x 10° cells/well for fluorescence
determinations. Dihydroethidium dye (DHE) and tetramethylrhoda-
mine methyl ester (TMRM) working solutions were prepared at 5 pM
in HBSS immediately before use, and cells were incubated for 30 min
at 37°C to detect cytoplasmic superoxide (DHE) and mitochondrial
membrane potential (TMRM). The nuclei were visualized using the
specific nuclear stain Hoechst 33342. Fluorescence was detected
with an IX81 Olympus fluorescence microscope, and CellR software
(Olympus, Shinjuku, Tokyo, Japan) was employed to capture indi-
vidual images. The fluorescent signal was quantified individually (20
live cell images/well) by static cytometry software “ScanR” version
2.03.2 (Olympus). Fluorescence arbitrary units of DHE and TMRM
from each subject were normalized with the values of an external
cell line, Hep3B because of their fast growing ratio and metabolic
stability and competence (Zhu, Wang, & Tong, 2007). FCCP 10 mM
(uncoupler of oxidative phosphorylation) and rotenone 25 uM (com-
plex | inhibitor) were used as positive controls (Labbe, Pessayre, &
Fromenty, 2008).

2.6 | Adhesion assay

Polymorphonuclear leucocytes interaction with the human en-
dothelium was assessed in vitro using a parallel plate flow chamber.
Previously, human umbilical vein endothelial cells (HUVECs) had
been harvested from fresh umbilical cords of healthy donors and
seeded on coverslips at 1 x 10° cells/mm?. Cells were grown in com-
plete EMB-2 culture medium (Lonza, Basel, Switzerland) until conflu-
ent and the coverslips were then inserted in the bottom plate of a
flow chamber. A PMN suspension (1 x 10° cell/ml) in RPMI medium
(Gibco; Thermo Fisher Scientific, Waltham, MA, USA) was drawn
across a monolayer of HUVECs (flow rate 0.36 ml/min) and visual-
ized by an inverted microscope (Nikon Eclipse TE 2000-S; Minato,
Tokyo, Japan) coupled to a video camera (Sony Exware HAD; Koeln,
Germany). A five-minute period of flow across a 5 x 25 mm por-
tion of the coverslip was recorded and then used to evaluate rolling
velocity, rolling flux, and adhesion, as described previously (Lépez-
Domeénech et al., 2018).

No agonists were added in the course of the experiments to pro-
mote expression of adhesion molecules. However, platelet-activating
factor (1 pM, 1 hr) and TNFa« (10 ng/ml, 4 hr; Sigma Aldrich) were
used in parallel to the main experiments as positive controls for acti-
vation of PMNs and HUVECs, respectively.

2.7 | Statistical analysis

The study was designed based on preliminary data (Hernandez-
Mijares et al., 2013) to detect a 20% and 80% difference in the
variation of PMN-endothelium interactions (measured by roll-
ing velocity, rolling flux, and adhesion of PMNs) between and
within groups, respectively, with a power of 90% and an « risk of
0.05. Under these premises, at least 26 subjects per group were
considered.
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The statistics software SPSS 19.0 (SPSS Statistics Inc., Chicago,
IL, USA) was employed for data analysis. Continuous variables were
expressed as mean and standard deviation (SD) for parametric data,
whereas non-parametric data were expressed as median and 25th
and 75th percentiles. When data did not show normal distribution,
values were normalized using a log transformation. Qualitative data
were expressed as percentages, and proportions were compared by
means of a chi-square test. Data were compared using a Student’s
t test for parametric samples or one-way ANOVA followed by a
Student-Newman-Keuls post hoc test. Pearson’s correlation coef-
ficient was used to evaluate the strength of linear association be-
tween two variables. A confidence interval of 95% was determined
for all the tests, and differences were considered statistically signif-
icant when p < 0.05.

3 | RESULTS

This study analysed a total of 182 subjects (66 men and 116 women)
classified according to CP diagnosis: 37 subjects without CP and
145 subjects with CP, of which 59 had mild periodontitis, 51 had
moderate periodontitis, and 35 had severe periodontitis. Most of
the patients in the present cohort were obese with BMI = 30 kg/m2
(63.7%), which is in line with the fact that a high prevalence of peri-
odontitis has been described in obese population (Martinez-Herrera
et al., 2017).

Anthropometric, biochemical, and periodontal parameters of
the study population are outlined in Table 1. Severe periodontitis
was associated with ageing, and moderate and severe periodontitis
were associated with alterations in the lipid profile showing higher

TABLE 1 Anthropometric, biochemical, and representative periodontal parameters of the study population according to the presence or

absence of chronic periodontitis

With CP
Without CP Mild Moderate Severe All

Anthropometric variables

n (% females) 37 (56.8) 59 (71.2) 51 (70.6) 35 (48.6) 145 (65.5)

Age 40.0 £ 11.4° 42.3+11.3° 43.7 +10.2° 48.6+9.2° 44.3 +10.7

BMI (kg/m?) 32.5+£98 35.3+11.7 35.7+8.7 37+94 36.2+10.2

SBP (mmHg) 125+ 14 127 £ 17 131+ 20 135+ 16 130+ 17

DBP (mmHg) 77 =10 79 £ 11 82+13 83+ 12 81+12
Biochemical parameters

Glucose(mg/dl) 90+ 11 93+12 93+13 96 £ 13 93+£12

Insulin (pU/ml) 12.0+10.3 14.9 +14.9 14.7 £ 8.6 19.3+154 159 +13

HOMA-IR 2.78 £2.69 3.51+3.78 3.42+212 4.75+4.02 3.77 £3.37

TC (mg/dl) 188 + 34 189 + 31 181+ 33 190 £ 34 187 £ 32

HDLc (mg/dl) 50+ 14° 50+ 13? 44 +13° 43+ 9° 46.4+12

LDLc (mg/dl) 120 + 28 119 £ 25 112+ 26 120 £ 32 116 £ 27

TG (mg/dl) 73 (55,125) 101 (62,133)*P 116 (82,163)° 139 (86,172)° 111 (71,159) *
Medication and life style habits

Antihypertensive (%) (n) 16.0 (4) 11.9 (7) 25.5(13) 28.6 (10) 20.7 (30)

Statin medication (%) (n) 4.0(1) 11.9(7) 11.8 (6) 20.0(7) 13.8 (20)

Current smokers (%) (n) 24.0 (6) 27.1(16) 25.5813) 22.9(8) 25.5(37)
Periodontal parameters

PD (mm) 246 +0.21° 2.76 +0.20° 2.97 £0.30° 3.55+0.51¢ 3.02 £ 0.45***

CAL (mm) 246 +0.22° 2.76 £0.21° 2.99 £0.31° 3.66 +0.62° 3.06 £ 0.52***

BOP (%) 11.4 + 6.5% 20.7 +11.3° 26.6 +11.7° 38.1+15.0¢ 27.0 £ 14.1***

Plague index (A.U) 0.587 £0.473° 0.916 +0.542° 1.02 £0.64° 1.31+0.66° 1.05 £ 0.62**

Notes. A.U: arbitrary units; BMI: body mass index; BOP: bleeding of probing; CAL: clinical attachment loss; CP: chronic periodontitis; DBP: diastolic
blood pressure; HDLc: HDL cholesterol; HOMA-IR: homoeostasis model assessment of insulin resistance; LDLc: LDL cholesterol; PD: probing depth;
SBP: systolic blood pressure; TC: total cholesterol; TG: triglycerides.

Data are presented as mean + SD or percentage (n). For TG are represented as median and 1Q range. *p < 0.05; **p < 0.01; ***p < 0.001 when patients
with CP and individuals without CP were compared with an unpaired Student’s t test. Values with different superscript letters (a,b,c,d) were signifi-
cantly different when the four groups were compared by one-way ANOVA followed by a Student-Newman-Keuls post hoc test. Hence, means with
the same superscript are not significantly different from each other (p > 0.05), while means that have no superscript in common are significantly differ-
ent from each other (p < 0.05).
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TG levels and lower levels of HDLc. However, no differences were
found in sex, BMI, SBP, DBP, glucose, insulin, HOMA-IR, TC, LDLc,
medical treatment, or smoking habit among the groups. Periodontal
clinical parameters that indicate disease—PD, CAL, and BOP—
worsened progressively as the severity of periodontitis increased,
whereas plaque index was higher in subjects with CP and peaked in
the severe CP group.

Inflammatory parameters, such as TNFax and RBP4, were as-
sociated with CP and increased with the severity of periodontitis
(p < 0.001 and p = 0.025, respectively), even after adjustment for
age (Figure 1a,d). Other systemic inflammatory markers were also
altered in the group with CP, in which there was an increase in hsCRP

levels (p =0.033) and leucocytes count (p = 0.020), although no

ournal of . . 1433
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differences were observed according to the degree of periodontitis
(Figure 1b,c).

3.1 | Evaluation of oxidative stress parameters

To investigate whether periodontitis promotes oxidative stress and alters
mitochondrial function, we employed static cytometry to determine total
superoxide and mitochondrial membrane potential in PMNs. As shown in
Figure 2, total cytoplasmic superoxide (Figure 2a and representative im-
ages in Figure 2c) was increased in patients with CP (p = 0.038), particu-
larly so in subjects with moderate and severe periodontitis (p = 0.040),
whereas mitochondrial membrane potential (Figure 2b) was unaltered by

the presence/absence of CP or grade of the disease.
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FIGURE 2 Oxidative stress parameters of the study population according to the presence or absence of chronic periodontitis. Mean

of fluorescence intensity of DHE (a) and TMRM (b) dyes measuring superoxide and mitochondrial membrane potential, respectively.
Representative fluorescence images showing DHE (c) intensity (red signal). The nuclei were visualized using the specific nuclear stain
Hoechst 33342 (blue). Data are presented as mean + standard error. * p < 0.05 when data of patients with CP and individuals without CP
were compared with an unpaired Student’s t test. Values with different superscript letters @bl \ere significantly different when the four
groups were compared by one-way ANOVA followed by a Student-Newman-Keuls post hoc test. Hence, means with the same superscript
are not significantly different from each other (p > 0.05), while means that have no superscript in common are significantly different

from each other (p < 0.05). CP: chronic periodontitis, DHE: dihydroethidium, TMRM: tetramethylrhodamine methyl ester, RFU: relative
fluorescent units
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3.2 | PMN-endothelial cell interaction assay

We also evaluated PMN-endothelium interactions under flow con-
ditions, observing a slight and progressive reduction in PMN rolling
velocity as severity of periodontitis increased, though this was not sig-
nificant (Figure 3a). As a whole, PMN rolling flux (Figure 3b; p = 0.026)
and cellular adhesion (Figure 3c; p = 0.038) increased in subjects with
CP. Moreover, we observed that PMN rolling flux increased with the
degree of severity of periodontitis (p = 0.037) and that these differ-
ences were maintained even after adjusting for age (Figure 3b).

3.3 | Correlation analysis

Correlation coefficients between periodontal, inflammatory, oxida-
tive stress, and PMN-endothelium cell interactions parameters are
shown in Table 2. All periodontal parameters were positively corre-
lated with leucocytes count, suggesting a main inflammatory com-
ponent of CP. In addition, PD and CAL correlated with PMN rolling

Periodontology

flux (r=0.273, p=0.040 and r=0.285, p =0.032, respectively)
and plaque positively correlated with cellular adhesion of PMNs
(r=0.271, p = 0.042). In reference to oxidative stress parameters,
superoxide positively correlated with inflammatory parameters—
TNFa (r = 0.448, p = 0.025), hsCRP (r = 0.344, p = 0.007 and RBP4
(r=0.284, p = 0.024), mitochondrial membrane potential (r = 0.360,
p = 0.011), and cellular adhesion of PMNs (r = 0.313, p = 0.045), and
negatively with rolling velocity of PMNs (r = -0.290, p = 0.047). In
addition, TNFa and RBP4 correlated positively with PMN rolling flux
(r=0.464,p =0.022;r =0.301, p = 0.032, respectively).

4 | DISCUSSION

In the present study, we demonstrate an alteration of PMN-en-
dothelium cell interactions in subjects with CP, in whom PMN ad-
hesion and rolling flux increase with the presence of periodontitis.

Moreover, this response is associated with the presence of impaired
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FIGURE 3 Endothelial function of the study population according to the presence or absence of chronic periodontitis determined by
PMN-endothelial interactions evaluated by PMN rolling velocity (a), PMN rolling flux (b), and PMN adhesion (c). Data are presented as
mean + standard error. * p < 0.05 when data of patients with CP and individuals without CP were compared with an unpaired Student’s t

test. Values with different superscript letters (a.b)

were significantly different when the four groups were compared by one-way ANOVA

followed by a Student-Newman-Keuls post hoc test. Hence, means with the same superscript are not significantly different from each other
(p > 0.05), while means that have no superscript in common are significantly different from each other (p < 0.05). CP: chronic periodontitis,

PMN: polymorphonuclear leucocytes
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redox status in PMNs and a pronounced proinflammatory profile,
being more evident in patients with severe periodontitis.

Oxidative stress is associated with the pathogenesis of many
systemic diseases, including CP. Increased ROS levels are a hallmark
of the inflammation induced by neutrophils when they combat in-
vading bacteria, and are involved both directly and indirectly in
periodontal tissue destruction (Chapple & Matthews, 2007; Kanzaki
et al., 2017). However, oxidative damage is not exclusive to gingival
tissues, saliva, and GCF; several studies demonstrate an increase in
oxidant status and oxidative damage in the systemic circulation of
individuals with periodontitis compared with periodontally healthy
controls, as well as a generalized imbalance of antioxidant capacity
(Akalin, Baltacioglu, Alver, & Karabulut, 2007; D’Aiuto et al., 2010;
Baltacioglu etal.,, 2014; Ahmadi-Motamayel, Goodarzi, Jamshidi,
& Kebriaei, 2017). Nonetheless, studies of ROS generation by pe-
ripheral blood neutrophils in periodontal disease are scarce. While
the most consistent evidence for neutrophil hyper-reactivity in CP
has been provided by a series of reports by a Swedish research
group that have observed higher levels of ROS generation by Fcy-
receptor-stimulated peripheral neutrophils (Fredriksson et al., 2003;
Gustafsson et al., 2006), only two studies have shown that neutro-
phils of periodontitis patients release more extracellular ROS and
superoxide than neutrophils of healthy controls, even in the absence
of any stimulation (Matthews, Wright, Roberts, Cooper, et al., 2007,
Ling et al., 2016). In accordance with this, we now report animbalance
in redox status in subjects with CP due to higher cytoplasmic levels
of total superoxide that rise as the severity of periodontal disease
increases. However, superoxide assessment with DHE involves some
limitations; namely, instability of the probe and its products, complex
chemistry, and potential interference with heme enzymes (Zielonka
et al., 2008; Dikalov & Harrison, 2014), which could have interfered
with our findings. Therefore, superoxide determinations must be in-
terpreted carefully. As far as we know, this is the first research to
be performed in which superoxide and mitochondrial membrane
potential have been determined in PMNs of patients with different
grades of CP. In this context, mitochondrial membrane potential is
critical for maintaining the physiological function, as it mediates the
cell’'s capacity to generate ATP by oxidative phosphorylation. In fact,
a decrease in the mitochondrial membrane potential may be linked to
apoptosis (Lemasters et al., 2002), as has been shown in type 2 dia-
betes patients (Herndndez-Mijares et al., 2013), whereas an increase
has been associated to a surplus nutrient supply, as we have recently
demonstrated in obese patients (Lépez- Doménech et al., 2018).
However, in the present study we have not observed changes in mi-
tochondrial membrane potential, suggesting that different underly-
ing molecular mechanisms are involved in the PMNs dysfunction that
characterizes different inflammatory-related pathologies.

Despite mitochondrial membrane potential levels remaining un-
changed and limitations of DHE to determine cytoplasmic superox-
ide, our results suggest an imbalance in oxidant status and PMNs
dysfunction that could promote the hyperactive PMN phenotype
seen in CP. Recently, it has been shown that superoxide release by

neutrophils significantly correlates with hsCRP in plasma (Ling et al.,
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2016), which is in line with our findings. This association could be
partially explained by the fact that hsCRP enhances TLR-mediated
superoxide release from neutrophils, potentially increasing oxidative
stress (Ling, Chapple, Creese, & Matthews, 2014). Nevertheless, in
our study population no significant association between severity of
periodontitis and hsCRP levels was found, which is in accordance
with the findings of a recent study (Delange et al., 2018).

In this line, other inflammatory molecules, including TNF«
(Nishimura et al., 2003; Goncalves et al., 2015) and RBP4 (Martinez-
Herrera et al., 2018), have generally been found to be higher in peri-
odontitis patients than in healthy controls and have been related
with atherosclerosis. It has been shown that TNFa activates endo-
thelial cells at the site of inflammation, leading to oxidative stress
via escalating ROS production by endothelial cells (Yan et al., 2015).
This, in turn, mediates local leucocyte accumulation, adherence, and
subsequent transmigration into the subendothelial space, which is
an early phase of the atherosclerotic process. In addition, a previ-
ous study showed that RBP4 induced vascular oxidative damage and
endothelial dysfunction, thus accelerating the development of ath-
erosclerosis in periodontal disease (Wang et al., 2015), which is in
accordance with the positive correlation between PMN rolling flux
and inflammatory markers—TNFa and RBP4—we report herein.

Previous studies have revealed compromised endothelial function
in subjects with periodontitis (Amar et al., 2003; Higashi et al., 2008;
Moura et al., 2017) and an improvement after periodontal treatment
(Mercanogluet al.,2004; Tonetti et al.,2007; Higashi et al.,2008; Piconi
et al.,, 2009). In the current study, evaluation of PMN-endothelium cell
interactions revealed impaired endothelial function—enhanced PMN
rolling flux and cell adhesion to the endothelium—in subjects with CP.
Moreover, when we divided the population into groups according to
severity of periodontitis we observed that the rolling flux of PMNs
was greater in subjects with moderate and severe periodontitis. In
accordance with our results, a previous study found that, when com-
pared to controls, endothelial function was significantly worsened
in patients with severe periodontitis, but not in those with mild peri-
odontitis (Amar et al., 2003). Chronic systemic inflammation caused by
periodontitis is likely to culminate in endothelial dysfunction through
a decrease in nitric oxide (NO) bioavailability, a decrease in NO pro-
duction, and/or an increase in NO inactivation, which in turn promotes
inflammation of the vascular wall, contributing to a vicious circle of en-
dothelial dysfunction and low-grade inflammation (Higashi et al., 2008;
Gurav, 2014). The underlying mechanism of this process seems to in-
volve increased oxidative stress in the cardiovascular system (Cai &
Harrison, 2000). In fact, in a rodent model, it has recently been shown
that local periodontal inflammation induces systemic endothelial dys-
function caused by overproduction of ROS in the systemic artery
(Yamamoto et al., 2016), which is in line with our findings. In addition,
our data reveal an association among inflammatory markers (TNFa and
RBP4), superoxide production, and PMN-endothelium cell interaction,
suggesting a role of oxidative stress and inflammation as underlying
mechanisms associated to the atherosclerotic process in CP.

To the best of our knowledge, previous studies reporting im-

paired endothelial function in patients with periodontitis have
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employed flow-mediated dilatation of the brachial artery and vas-
cular ultrasound to obtain measurements. In this sense, our study
is the first to evaluate endothelial dysfunction by means a flow-
condition adhesion assay based on an in vitro model of PMN-en-
dothelial cell interactions and PMNs function and assessment of
oxidative stress parameters. However, the present study has some
limitations, including the relatively small size of the study popula-
tion, although it has been supported by sample size calculation. In
addition, we did not determine cellular adhesion molecules or the
presence of the atherosclerotic plaque in our patients, parameters
which we will evaluate in the future. Furthermore, despite being
widely used for superoxide detection, the DHE fluorescence probe
has some limitations, since other nonspecific redox reactions could
act as confounders of DHE-superoxide determinations. More spe-
cific techniques, such as HPLC, should be carried out to corroborate
our findings. On the other hand, whether changes in intracellular
signalling in PMNs are related to the interaction of these cells with
the endothelium and the subsequent risk of atherosclerosis and
cardiovascular disease in patients with CP is a question that needs
exploring. Finally, the cross-sectional nature of this study limits its
interpretability.

To sum up, the data in the current study demonstrate that, in
a systemic proinflammatory environment, PMNs from CP patients
exhibit hyperactivity by increasing cytoplasmic production of ROS
(such as superoxide), which alters PMN-endothelium interactions by
promoting an increase in PMN rolling flux and cell adhesion to the
endothelium. This can lead to atherosclerosis, resulting in cardiovas-
cular complications. Therefore, special importance should be given
to the presence and treatment of periodontitis in patients with risk
of cardiovascular disease.
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Abstract

Background The relationship between caloric restriction-mediated weight loss and the generation of ROS and its effects on
atherosclerotic markers in obesity is not fully understood. Therefore, we set out to investigate whether dietary weight loss
intervention improves markers of oxidative stress in leukocytes and subclinical parameters of atherosclerosis.

Subjects and Methods This was an interventional study of 59 obese subjects (BMI > 35 kg/m*) who underwent 6 months of
dietary therapy, including a 6-week very-low-calorie diet (VLCD) followed by an 18-week low-calorie diet (LCD). We
determined clinical parameters, inflammatory markers—hsCRP, TNFa and NFxB —, oxidative stress parameters—total
superoxide, glutathione, catalase activity and protein carbonyl groups—, soluble cellular adhesion molecules—sICAM, sP-
selectin, sSPSGL-1 —, myeloperoxidase (MPO), leukocyte-endothelium cell interactions—rolling flux, velocity and adhesion
—and LDL subfractions, before and after the dietary intervention.

Results After losing weight, an improvement was observed in the patients’ anthropometric, blood pressure and metabolic
parameters, and was associated with reduced inflammatory response (hsCRP, TNFa and NFxB). Oxidative stress parameters
improved, since superoxide production and protein carbonyl content were reduced and antioxidant systems were enhanced.
In addition, a significant reduction of subclinical markers of atherosclerosis—small and dense LDL particles, MPO, sP-
selectin and leukocyte adhesion—and an increase in soluble PSGL-1 were reported.

Conclusions Our findings reveal that the improvement of subclinical atherosclerotic markers after dietary weight loss
intervention is associated with a reduction of oxidative stress in leukocytes and inflammatory pathways, suggesting that these
are the underlying mechanisms responsible for the reduced risk of cardiovascular disease in obese subjects after losing
weight.

Introduction metabolic disorders, including insulin resistance, dyslipide-
mia, arterial hypertension, diabetes mellitus, coronary heart
disease and stroke, as well as some types of cancers [1].
Mitochondrial dysfunction and high reactive oxygen
species (ROS) production are considered adverse cellular
responses to nutrient excess. In fact, mitochondrial dys-
function and enhanced ROS production have been observed
in leukocytes and adipocytes of omental and subcutaneous

tissues from obese subjects [2—4]. Therefore, an increase in

Obesity is a low-degree chronic inflammatory disease
associated with an increased risk of developing a variety of
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ROS production favors an imbalance between oxidant and
antioxidant factors, which can lead to oxidative stress.
Oxidative stress and inflammation are closely interrelated
and play a key role in the pathogenesis of atherosclerosis [5,
6]. Atherosclerosis is triggered by endothelial dysfunction
and induction of inflammation, which is accompanied by an
increased expression of cell adhesion molecules (CAMs)
such as intercellular adhesion molecule-1 (ICAM-1),
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vascular cell adhesion molecule-1 (VCAM-1) and P-selec-
tin, which stimulates the adhesion of leukocytes and their
transmigration into the vascular subendothelial space [7, 8].

Myeloperoxidase (MPO) is a heme enzyme derived
mainly from neutrophils and monocytes, and plays a key
role in leukocyte-mediated vascular injury responses. Such
responses include oxidation of LDL, rendering it athero-
genic and HDL, impairing its capacity to promote choles-
terol efflux [9].They also lead to a reduction in nitric oxide
(NO) bioavailability, which leads to endothelial dysfunction
[10]. This series of detrimental effects has promoted the
idea that MPO is an active mediator of atherogenesis [11].

We have previously reported that a proinflammatory
state can stimulate the release of ROS from leukocytes,
which contributes to the oxidative stress, mitochondrial
impairment and endothelial dysfunction that follow insulin
resistance in pathologies such as type 2 diabetes, polycystic
ovary syndrome and obesity [4, 12—-15].

However, the effect of dietary weight loss intervention
on the generation of ROS and its consequences on athero-
sclerotic markers in obesity has been poorly studied. It is
possible that dietary modifications help to ameliorate the
inflammatory response, to reduce leukocyte ROS generation
and/or to enhance the antioxidant system, consequently
improving leukocyte function and cardiometabolic risk
factors.

Therefore, the current study was performed to throw light
on the effect of dietary therapy on leukocyte activation,
oxidative stress and endothelial dysfunction. The primary
endpoint was the effect of dietary weight loss intervention
on leukocyte-endothelium cell interactions. Clarifying
whether weight loss improves markers of oxidative stress in
leukocytes and exploring its association with subclinical
markers of atherosclerosis were secondary endpoints.

Subjects And Methods
Subjects

The study was an interventional study carried out in fifty-
nine patients with a BMI> 35 kg/m? who were referred to
the outpatient department of the Endocrinology and Nutri-
tion Service at the Dr. Peset University Hospital in Valencia
(Spain) to be treated for their obesity. The study was con-
ducted according to the guidelines laid down in the
Declaration of Helsinki, and all procedures involving human
subjects were approved by the hospital’s Ethics Committee.
Written informed consent was obtained from all patients.

Exclusion criteria were pregnancy or lactation, severe
disease, history of cardiovascular disease or chronic
inflammatory disease and secondary obesity (hypothyroid-
ism, Cushing’s syndrome).
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After an initial evaluation, patients underwent treatment
consisting of a 6-week VLCD (very-low-calorie diet) in a
liquid formula (Optisource Plus’, Nestlé S.A., Vevey,
Switzerland) containing 52.8 g protein, 75 g carbohydrates,
13.5 g fat and 11.4 g of fibre. The energy provided by this
formula was 2738 kJ per day (654 kcal per day). The for-
mula provided the vitamins, minerals and trace elements
that are essential according to Recommended Dietary
Allowances. After this period, patients were submitted to a
low-calorie diet (LCD) for 18 weeks with an average daily
energy intake of 5023-7535kJ (1200-1800 kcal) (recom-
mended according to caloric requirements), of which 15—
20% was proteins, 50-55% was carbohydrates and 28-33%
was fats. A daily ingestion of more than two litres of
calorie-free liquids was recommended.

Anthropometric parameters were evaluated as follows:
weight was determined using electronic scales with an
approximation of 0.1kg and a capacity of up to 200 kg;
height was measured with a stadiometer with an approx-
imation of 0.5 cm; BMI was calculated by dividing the
weight in kilograms by the square of the height in meters;
blood pressure was measured twice consecutively using a
sphygmomanometer; waist circumference was measured at
the natural indentation between the 10" rib and the iliac
crest using a metric tape with approximations of 0.5 cm.

Venous blood samples were collected from patients after
12 h overnight fasting at baseline and after 6 months of the
dietary treatment.

Biochemical determinations

Levels of glucose, total cholesterol and triglycerides were
determined in serum by an enzymatic method. HDL levels
were obtained with a Beckman LX20 analyzer (Beckman
Corp., Brea, CA, US) using a direct method. The intraserial
variation coefficient was <3.5% for all determinations.
LDLc concentration was calculated using the Friedewald
method. Insulin was determined by an immunochemilumi-
nescence assay and insulin resistance was estimated using
the Homeostasis Model of Assessment (HOMA-IR =
(fasting insulin (uU/ml) x fasting glucose (mg/dl)/405)).
Percentage of glycated hemoglobin (Alc) was measured
with an automatic glycohemoglobin analyzer (Arkray Inc.,
Kyoto, Japan) and high-sensitive C-reactive protein
(hsCRP) levels were quantified by an immunonephelo-
metric assay (intra-assay CV <4%). Leukocytes and neu-
trophils were determined in a COULTER® LH 500
Hematology Blood Analyzer from Beckman Coulter (Brea,
CA, US).

Serum levels of TNFa and MPO, and the adhesion
molecules soluble ICAM (sICAM-1) and soluble P-selectin
(sP-selectin) were measured with a Luminex 200 analyzer
system (Austin, TX, USA). Soluble P-selectin glycoprotein
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ligand-1 (sPSGL-1) was also determined in serum samples
according to the manufacturer’s instructions (Human
PSGL-1 Platinum ELISA, Invitrogen, Thermo Fisher Sci-
entific, Waltham, MA, USA). All samples were tested in
duplicate.

Oxidative stress parameters
Cell isolation

Leukocytes were isolated by incubating peripheral blood
samples with 3% dextran for 45 min followed by a Ficoll-
Paque Plus (GE Healthcare, Uppsala, Sweden) density
gradient separation. After an erythrocyte-removing step, the
pellet was washed and resuspended in Hank’s Balanced Salt
Solution (Capricorn, Ebsdorfergrund, Germany).

Superoxide production

Aliquots of 10° cells were seeded in duplicate in 48-well
plates and incubated with 5pM dyhidroethidium (DHE,
Thermo Scientific, Rockford, USA) and Hoechst 33342
nucleic acid stain (4 uM, Sigma-Aldrich, MO, USA) fluor-
escence dyes for 30 min at 37 °C. Images were obtained
with an IX81 Olympus microscope coupled with the static
cytometry software “ScanR” (Olympus, Hamburg, Ger-
many) and analyzed to assess leukocyte superoxide
production.

Total glutathione, catalase activity, and protein carbonyl
content

Antioxidant status was determined based on total glu-
tathione content in erythrocyte lysates, since they contain
the highest concentrations of glutathione. This was done
using a commercially available test kit (Glutathione Assay
Kit, Cayman Chemical, MI, USA), according to the man-
ufacturer’s instructions. In addition, we determined serum
catalase (CAT) activity and protein carbonyl content, again
according to the manufacturer’s instructions (Catalase
Assay Kit, Cayman Chemical, MI, USA and Protein Car-
bonyl Content Assay Kit, Sigma-Aldrich, MO, USA,
respectively). Experiments were performed in duplicate.

Western blotting

Total protein extraction from leukocytes was performed on
ice. Cells were lysed for 15 min with an extraction buffer
(20 mM HEPES pH 7.5, 400 mM sodium chloride, 20%
Glycerol, 0.1 mM EDTA, 10 uM Na,MoQOy, 0.5% NP-40)
containing protease inhibitors (10 mM NaF, 1 mM NaVOs;,
10 mM PNP, 10 mM f-glycerolphosphate). The supernatant
was collected after centrifugation for 15 min at 16,000 x g.

The total concentration of proteins was quantified in both
cases using a bicinchoninic acid (BCA) protein assay
(Thermo Fisher Scientific, Waltham, MA, USA). Twenty-
five ug of protein were resolved by SDS-PAGE and trans-
ferred to nitrocellulose membranes. Target proteins were
detected by incubating the membranes with mouse mono-
clonal anti-NFxB p65 antibody #33-9900, Invitrogen,
Thermo Fisher Scientific, Waltham, MA, USA), and rabbit
anti-actin antibody (Sigma-Aldrich, MO, USA) was used to
assess loading protein control. HRP goat anti-mouse
(Thermo Fisher Scientific, Waltham, MA, USA) and HRP
goat anti-rabbit (Merck Millipore, MA, US) were employed
as secondary antibodies. ECL plus reagent (GE Healthcare,
Uppsala, Sweden) was used to detect the protein signal by
chemiluminiscence, visualized by means of the Fusion FX5
acquisition system (Vilbert Lourmat, Marne La Vallée,
France). Data were analyzed by densitometry with the
BiolD software (Vilbert Lourmat, Marne La Vallée,
France).

Flow-chamber assay

An in vitro model of leukocyte-endothelial cell interactions
was designed using a flow chamber coupled to an inverted
microscope (Nikon Eclipse TE 2000-S). In short, coverslips
with confluent monolayers of human umbilical vein endo-
thelial cells (HUVEC) were inserted in the bottom plate of
the flow chamber. One million leukocytes in 1 ml of RPMI
medium (Gibco; Thermo Fisher Scientific, Waltham, MA,
USA) were drawn across the HUVEC at a flow rate of
0.36 ml/min. A video camera (Sony Exware HAD; Koeln,
Germany) connected to the microscope was used to record a
5x 25 mm portion of the endothelial cells during a 5-min
period to evaluate different leukocyte parameters: rolling
velocity was calculated by measuring the time it took 20
consecutive leukocytes to travel a distance of 100 pm within
the field of focus; rolling flux was calculated by counting
the number of leukocytes rolling over 100um? of the
HUVEC monolayer during a 1-min period; and adhesion
was evaluated by counting the number of leukocytes that
maintained stable contact with endothelial cells for 30s.
Platelet-activating factor (1 uM, 1h) and tumoral necrosis
factor (10 ng/ml, 4 h) were used as a positive control for
leukocytes and HUVEC, respectively.

LDL subfractions

LDL subfractions were separated using the Quantimetrix
Lipoprint® system (Redondo Beach, CA,USA) and were
then identified and quantified using a computerized
method developed for the Quantimetrix Lipoprint® system
and NIH image program version 1.62 (Bethesda, MD,
USA) for research purposes. The Liposure® (Quantimetrix
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Table 1 Anthropometric and biochemical parameters of the study
population before and after weight loss

Before After
n (females %) 59 (72.9)
Age (years) 45.1£9.3
BMI (Kg/m?) 443+5.6 40.4 £4.77%%*
Weight (Kg) 120.3+18.0 109.4 + 15.5%**
Waist (cm) 123+ 15 115 £]13%**
SBP (mmHg) 133+17 127 + 15**
DBP (mmHg) 8511 78 + 9k
Glucose (mg/dl) 101 =21 97 £22%*
Insulin (uU/ml) 18.2+10.3 15.8+£9.2*
HOMA-IR 4.63 +3.06 3.94 £3.03*
Alc (%) 5.75+0.72 5.61£0.78*
TC (mg/dl) 184 +34 182 £36
HDLc (mg/dl) 40.8+8.2 43.1 £9.5%*
LDLc (mg/dl) 115+31 115+33

TG (mg/dl)
hsCRP (mg/l)

125 (97,177)
6.99 (4.63,13.00)

109 (83,146)%*
6.20 (3.07,11.48)%

TNFa (pg/ml) 18.0 +8.89 14.6 +5.9*
Leukocytes (cellsx 7.53+2.18 7.60 +2.02
10%/u)
Neutrophils (cellsx 4.51+1.61 4.66 £1.59
10%/ul)
Neutrophils 59.3+7.95 60.3+7.64
(percentage)
Type 2 diabetes (%) (n) 22 (13)
Treatment

Hypertension (%) (n) 30.0 (18)

Hyperlipidemia (%) 26.7 (16)

Data are presented as mean+SD or percentage (n). TG data are
represented as median and IQ range. *p<0.05; **p<0.01; ***p<0.001
when compared with a paired Student’s t-test or Wilcoxon test.

BMI: body mass index, SBP: systolic blood pressure, DBP: diastolic
blood pressure, Alc: glycated haemoglobin, TC: total cholesterol;
LDLc: LDL cholesterol, HDLc: HDL cholesterol, TG: triglycerides,
Apo: Apolipoprotein

Corporation, Redondo Beach, CA, USA) was used for
quality control. VLDL, 3 intermediate-density lipoprotein
(IDL) and 7 LDL were quantified. The LDL electrophoretic
profile allows 3 patterns to be defined: pattern A / large and
buoyant LDL (cut-off size of over 268 A); an intermediate
pattern (cutoff size over 265 and equal to or less than 268
A); and pattern B / small and dense LDL (sdLDL) (cut-off
size less than or equal to 265 A). All samples were tested in
duplicate.

Statistical analysis

The study was designed based on preliminary data [13, 15]
in order to have a power of 80% and to detect differences

SPRINGERNATURE

158

between two paired means in relation to the primary effi-
cacy criterion (minimum expected difference in leukocyte
adhesion) > 5 cells/mmz, assuming a common standard
deviation of 10 units. Under these premises, at least
32 subjects were considered.

For the statistical analysis of the data we employed the
statistics program SPSS 19.0 software (SPSS Statistics Inc.,
Chicago, IL, USA). Continuous variables in the tables are
expressed as mean + SD, or as median and 25th and 75th
percentiles for parametric and non-parametric data, respec-
tively, whereas qualitative data are expressed as percen-
tages. Data in the figures are represented as mean + SE. The
data were analyzed using a paired Student’s 7 test or a
Wilcoxon test for parametric and non-parametric data,
respectively. A X test was employed to compare propor-
tions. The correlation between variables was determined
using Pearson’s correlation coefficients. All the tests used a
confidence interval of 95% and differences were considered
significant when p < 0.05.

Results

This study analyzed a total of 59 patients (16 men and 43
women) with an average BMI of 44.3 +5.6 kg/m>. After
6 month adherence to a VLCD + LCD, anthropometric
parameters—body weight, BMI, and waist circumference,
systolic and diastolic blood pressure —, tryglicerides and
hydrocarbonated metabolism parameters—glucose, insulin,
HOMA-IR and Al%—all decreased significantly (p<
0.05), whereas HDLc increased (p <0.01) (Table 1). Total
cholesterol and LDLc remained unchanged, probably due to
the antihyperlipidemic treatment in 26.7% of patients. In
addition, the leukocyte defence system did not seem to be
altered, since the number of total leukocytes or neutrophils
remained within their normal range after weight loss
(Table 1). However, systemic inflammatory markers were
altered by weight loss. Specifically, acute phase reactants,
such as hsCRP—which is known to be associated with BMI
—and TNFa decreased after dietary therapy (Table 1).
Furthermore, the nuclear factor NFkB p65, which has long
been considered a prototypical proinflammatory signaling
pathway, was also markedly reduced after weight loss
(Fig. 1a) (p<0.01).

To investigate whether weight loss improved oxidative
stress, we employed static cytometry to determine ROS
production. Total superoxide (Fig. 1b and Supplementary
Figure 1) was significantly lower in leukocytes after dietary
weight loss intervention (p <0.001). Furthermore, an
increase in antioxidant defences was confirmed, as
glutathione levels were significantly higher in erythrocyte
lysates (Fig. lc) (p<0.001), while a significant increa-
se in serum catalase activity (Fig, 1d) (p<0.05) was
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also observed. However, superoxide generation, total glu-
tathione levels and catalase activity are not strictly markers
of oxidative stress, as they only reflect either pro-oxidant
agents or antioxidant agents. Thus, we determined protein
carbonyl content in serum samples, detecting a reduction
after dietary weight loss intervention (Fig. le) (p <0.01).
These findings suggest an undermining of oxidative stress
parameters in blood cells. We next investigated whether or
not these changes in oxidative stress parameters were
associated with an improvement in adhesion under flow
conditions. Dietary weight loss intervention induced a sig-
nificant reduction in serum levels of soluble P-selectin
(Fig. 2a) (p <0.05), which binds to PSGL-1 on leukocytes.
Strikingly, we observed an increase in soluble serum PSGL-
1 (p <0.05) after dietary weight loss intervention (Fig. 2b),
suggesting that cleavage of the protein from the cell surface
is one of the mechanisms involved in the deactivation
process. These changes were associated with a reduced

cellular adhesion of leukocytes to the endothelium (Fig. 2g)
(p<0.001). Since MPO is a potent pro-oxidant derived
mainly from neutrophils that mediate vascular damage, and
is involved in the formation of proatherogenic LDL parti-
cles, we evaluated circulating MPO and LDL subfractions.
Our results showed that MPO was markedly reduced after
weight loss (Fig. 2d) (p < 0.001), despite the total leukocyte
or neutrophil count remaining unchanged (Table 1), sug-
gesting a reduced MPO expression by the leukocyte defence
system. In addition, the percentage of small LDL particles
decreased (Fig. 3a), while LDL particle size increased
(Fig. 3b). As a consequence, the LDL electrophoretic pat-
tern became less atherogenic, changing from a profile of
64% pattern A, 21% intermediate pattern and 15% pattern B
to one of 85% pattern A, 6% intermediate pattern and 9%
pattern B (p <0.05). Finally, a negative correlation was
observed between MPO levels and LDL particle size, both
at baseline and after 6 months (r = —0.523 and r = —0.542,
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Fig. 2 Serum levels of atherosclerotic markers determined by com-
mercial kits and leukocyte-endothelium cell interactions in obese
patients before and after dietary weight loss intervention. Serum levels
of (a) sP-selectin (n =20), (b) sSPSGL-1 (n=20), (¢) SICAM-1 (n=
20) and (d) MPO (n = 20). e Leukocyte rolling velocity expressed as
um/s (n = 34). f Leukocyte rolling flux measured as cells/min (n = 34).

respectively) (Fig. 4a, b), and a positive correlation existed
between MPO and sP-selectin (r=0.545 and r=0.415,
respectively) (Fig. 4c, d), suggesting an involvement of
MPO in the atherosclerotic process.

Discussion

In our population of middle-aged morbid obese subjects, the
moderate weight loss achieved by adherence to a 6-week
VLCD followed by LCD for 18 weeks improved the main
anthropometric and biochemical parameters and amelio-
rated the inflammatory response. In addition, pro-oxidant
agents such as total superoxide and MPO were reduced and
antioxidant capacity increased by higher production of
glutathione and strengthened enzymatic antioxidant systems
such as catalase activity: This contributed to a reduction of
oxidative stress, as determined by protein carbonylation.
These responses were associated with an increase of LDL
particle size, a reduction of cellular adhesion molecules and
less adherence of leukocytes to the endothelium, suggesting
that these molecular mechanisms are involved in the
diminished cardiovascular risk factor associated with diet-
ary therapy in obese populations.

Cardiovascular disease and obesity are closely linked
and take a substantial toll on the health of individuals
when both are present. High-calorie diets and the resulting
obesity are major risk factors for hypertension and cor-
onary artery diseases. Modest weight loss of 5-10%
ameliorates cardiometabolic risk factors, including
hypertension and dyslipidemia, and improves health
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g Leukocyte adhesion expressed as cells/mm? (n=34). Data are
represented as mean + SE. *p<0.05 and ***p <0.001 when com-
pared using a paired Student’s 7 test. sP-Selectin soluble P-selectin and
SPSGL-1 soluble P-selectin glycoprotein ligand-1, MPO Myeloper-
oxidase, SICAM-1 soluble intercellular adhesion molecule 1

outcomes [16—18]. The role of lipids in the formation and
evolution of the atheromatous plaque has been well
documented. Numerous studies have demonstrated that
the predominance of sdLDL particles correlated with the
development and progression of atherosclerosis and ear-
lier and more severe cardiovascular disease, even when
LDL cholesterol is low [19-21]. As expected, our results
showed a clear improvement in blood pressure and
atherogenic dyslipidemia, including HDL cholesterol,
triglycerides and LDL particle size, although total and
LDL cholesterol remain unchanged, probably due to
antihyperlipidemic treatment.

Similarly, we have observed that dietary weight loss
intervention also produces a drop in blood glucose
levels and insulin, resulting in a reduction of insulin resis-
tance, which is in accordance with the results of previous
research [22].

Growing evidence has highlighted an important role for
oxidative stress in obesity, mainly in organs involved in
energy metabolism, such as the pancreas, liver, skeletal
muscle, white adipose tissue and heart. However, only a
few studies have focused on leukocytes as the main med-
iators of the inflammatory response and atherogenesis.
Previous studies have shown that circulating mononuclear
cells in obese patients are in a proinflammatory state char-
acterized by an increase in intranuclear NFxB and tran-
scription of proinflammatory cytokines [23, 24]. Dietary
weight loss intervention in overweight and obese indivi-
duals was shown to result in a decreased expression of
genes involved in the activation of NFxB [25], which is in
line with the results of the present study.
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Fig. 3 LDL subfractions in A
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Regarding endothelial dysfunction, recent studies have
demonstrated impaired brachial artery endothelial function
and microvascular endothelial dysfunction in obese sub-
jects, which was associated with an increase in the activity
of NADPH oxidase [26, 27], one of the main enzymes
producing superoxide. However, since vascular dysfunction
may occur differentially in vascular beds, and endothelial
cells differ in phenotype and structure depending on vessel
type [28], we have focused on how the activation of leu-
kocytes is involved in the atherosclerotic process. In this
context, obesity has recently been associated with chronic
oxidative and inflammatory stress, which leads to mito-
chondrial dysfunction, increased vascular damage and
enhanced endothelial dysfunction markers [4, 27].

The findings of the present study represent a step further,
since we have assessed the influence of dietary weight loss
intervention. Previously, Dandona et al. showed that
superoxide generation by polymorphonuclear leukocytes
and peripheral blood mononuclear cells falls markedly after
4-week dietary restriction and the resulting weight loss [29].
Similarly, exercise has been shown to reduce ROS levels
and to restore microvascular endothelial function to levels
similar to those found in lean subjects [27], suggesting that
the negative energy balance in obesity reduces oxidative
stress and improves endothelial function. In the present
study, we report that dietary weight loss intervention
reduces total superoxide and strengthens antioxidant sys-
tems such as glutathione and catalase activity, leading to an
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improvement in oxidative damage, manifested by a reduc-
tion in protein carbonylation. It is widely known that
superoxide is a highly reactive molecule with well-
documented detrimental effects on vascular function, such
as increased endothelial cell permeability, limited NO
bioavailability and apoptosis [30, 31].

In line with this, our findings show that the improve-
ment in redox status was associated with a reduction in
systemic P-selectin levels and TNFa, which may have
mediated the reduction in leukocyte recruitment. Since P-
Selectin binds to PSGL-1 on leukocytes, it is likely that
PSGL-1 expression in leukocytes decreases after dietary
intervention, and therefore less leukocytes adhere to the
vessel wall. Strikingly, we report an increase in soluble
serum PSGL-1 after dietary weight loss intervention.
Although there is little information available about the
regulation of PSGL-1, previous studies have shown that
stimulation of human neutrophils decreases the surface
expression of PSGL-1 and increases its release from the
surface, suggesting that cleavage of the protein from the
cell surface is one of the mechanisms involved in the
deactivation process. In addition, a decrease in surface
expression of PSGL-1 on neutrophils has been shown to
correlate with a decrease in neutrophil adhesion to P-
selectin under both static and dynamic conditions [32],
which is in line with the present findings. Regarding
TNFa, there is a large body of evidence of TNFa-induced
adhesion of leukocytes to endothelial cells [33, 34], and it
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has also been shown that raised plasma levels of P-
selectin can influence the early progression of vascular
disease by promoting leukocyte adhesion to the endo-
thelium [35].

Vascular damage may also be mediated by MPO, which
binds to the surface of LDL [36], promoting the formation
of oxidized lipoproteins that are not recognized by the LDL
receptor, which in turn leads to the activation of endothelial
cells and monocyte/macrophages and induces the release of
proinflammatory cytokines such as TNFa [37]. In fact,
clinical studies have highlighted elevated serum levels of
MPO as a prognosis factor in patients with acute coronary
syndromes [38] or chest pain [39], or in apparently healthy
individuals with an increased risk of coronary artery disease
[40]. This would suggest that leukocyte activation is sti-
mulated many years before the onset of overt coronary
artery disease, thus supporting the use of leukocytes to
evaluate cardiovascular risk. The present study’s demon-
stration of a parallel drop in reactive oxygen species gen-
eration and MPO activity in leukocytes, together with an
enhancement of antioxidant defences, has important impli-
cations with respect to atherosclerosis; namely, leukocyte-
mediated oxidative stress could be the mechanism under-
lying oxidative damage to LDL. In fact, we have observed a
significant association between MPO and sdLDL and levels
of soluble P-selectin.

Our data show clearly, to our knowledgr, for the first
time, that generation of reactive oxygen species by leuko-
cytes is undermined markedly and antioxidant systems are
improved by dietary restriction, suggesting an amelioration
of oxidative stress parameters. In addition, the reduction of

SPRINGERNATURE

162

MPO (ng/ml )

subclinical markers of atherosclerosis that we report—
sdLDL, MPO, sP-selectin and leukocyte adhesion —may
improve endothelial function. However, the present study
has some limitations, including the size of the study
population, which, although relatively small, was supported
by sample size calculation. In addition, although we did not
determine the presence of the atherosclerotic plaque in our
patients, we did evaluate the onset of the atherosclerotic
process; in other words, the first stages of endothelial dys-
function, which is heralded by the movement and accu-
mulation of leukocytes in the vessel wall and enhanced
levels of cellular adhesion molecules in a proinflammatory
environment. Whether changes in intracellular signaling in
leukocytes are related to the interaction of these cells with
the endothelium and the subsequent risk of developing
atherosclerosis and cardiovascular disease is a question that
needs to be explored further.

To sum up, dietary weight loss intervention in obese
patients is effective in diminishing cardiometabolic risk
factors. Leukocytes could be largely responsible for this
response, since they are one of the main mediators of
inflammatory response and atherogenesis. The underlying
mechanism appears to involve an improvement in oxidative
stress status and leukocyte function that causes LDL parti-
cles to increase in size and undermines adhesion of leuko-
cytes to the endothelium, thereby reducing the risk of
cardiovascular events. Future exploration of this oxidative
stress may help to clarify the nature of the molecular
mechanisms involved and the physiological significance of
weight loss as an effective therapy to reduce cardiovascular
risk. Such knowledge would no doubt help to develop
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strategies to reduce the risk of the development of cardio-
vascular disease in obese populations.
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Moderate weight loss attenuates chronic
endoplasmic reticulum stress and mitochondrial
dysfunction in human obhesity
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ABSTRACT

Objective: In obese patients undergoing caloric restriction, there are several potential mechanisms involved in the improvement of metabolic
outcomes. The present study further explores whether caloric restriction can modulate endoplasmic reticulum (ER) stress and mitochondrial
function, as both are known to be mechanisms underlying inflammation and insulin resistance (IR) during obesity.

Methods: A total of 64 obese patients with BMI >35 kg/m2 underwent a dietary program consisting of 6 weeks of a very-low-calorie diet
followed by 18 weeks of low-calorie diet. We evaluated changes in the metabolic and inflammatory markers -TNFa, hsCRP, complement
component 3 (C3c), and retinol binding protein 4 (RBP4)-, in the ER stress markers and modulators -elF2a.-P, sXBP1, ATF6, JNK-P, CHOP, GRP78,
and SIRT1-, and in mitochondrial function parameters -mitochondrial reactive oxygen species (mROS), glutathione peroxidase 1 (GPX1), cytosolic
Ca2+, and mitochondrial membrane potential.

Results: The dietary intervention produced an 8.85% weight loss associated with enhanced insulin sensitivity, a less marked atherogenic lipid
profile, and a decrease in systemic inflammation (TNFet, hsCRP) and adipokine levels (RBP4 and C3c). Chronic ER stress was significantly reduced
(ATF6-CHOP, JNK-P) and expression levels of SIRT1 and GRP78 — a Caz+—dependent chaperone — were increased and accompanied by the
restoration of Ca®* depots. Furthermore, mROS production and mitochondrial membrane potential improvement were associated with the up-
regulation of the antioxidant enzyme GPX1.

Conclusions: Our data provide evidence that moderate weight loss attenuates systemic inflammation and IR and promotes the amelioration of

ER stress and mitochondrial dysfunction, increasing the expression of chaperones, SIRT1 and antioxidant GPX1.
© 2018 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords Diet; Inflammation; Endoplasmic reticulum; Oxidative stress; Mitochondria

1. INTRODUCTION the development of insulin resistance (IR) and other metabolic ab-

normalities [2]. Despite the emerging body of evidence supporting the

Obesity is a multifactorial disease associated with the appearance of
several comorbidities, such as dyslipidemia, hypertension, and type 2
diabetes (T2D), the prevalence of which has risen significantly in the
past decades in parallel with the rise in the obesity rate worldwide [1].
Metabolic overload and increase in fat accumulation during obesity
favors the release of several adipokines and cytokines, contributing to
systemic chronic low-grade inflammation, which is closely related to

role of inflammatory and stress responses in the context of obesity, the
molecular pathways and mechanisms underlying these processes
remain unclear.

It is known that the endoplasmic reticulum (ER) acts as a systemic
nutrient sensor in peripheral tissues during obesity, in which elevated
circulating levels of free fatty acids, glucose, or inflammatory cytokines
may act as stress signals for the organelle [3]. The accumulation of
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misfolded proteins during ER stress triggers the activation of the
unfolded protein response (UPR) through three different leaders: the
inositol requiring enzyme 1 o (IRE1at), activating transcription factor 6
(ATF6), and protein kinase RNA-like endoplasmic reticulum kinase
(PERK). However, the failure of the adaptive response and the chro-
nicity of the stress lead the UPR to generate the expression of pro-
apoptotic factors such as CCAAT/enhancer binding protein [C/EBP]
homologous protein (CHOP). Previous findings have described the role
of CHOP in the cytokine-ER-stress-mediated apoptosis of pancreatic
B-cells [4]. On the other hand, IRE1a. kinase activity has been asso-
ciated with IR through the cJun NH,-terminal kinase (JNK) inflam-
matory pathway, partly as a result of serine phosphorylation of insulin
receptor substrates (IRS1) [5]. In addition, JNK activation in macro-
phages has been related to increased tissue infiltration [6] and is
known to play a key role in chronic inflammation in obesity [7]. In
contrast, it has been reported that chemical chaperones that reduce ER
stress improve insulin sensitivity in ob/ob mice [8] and $-cell function
in humans [9], and we have recently described an improvement in ER
stress and inflammatory markers in subcutaneous adipose tissue that
was mediated by an insulin sensitizer [10]. This accumulated evidence
of the adaptive capacity of ER supports a role for ER stress in human
metabolic disease and points to potential novel therapeutic targets for
the treatment of obesity and related disorders. However, how ER stress
is modulated in vivo is a question yet to be answered.

Sirtuin 1 (SIRT1), a NAD™-dependent protein deacetylase, is an
important regulator of energy homeostasis in response to nutrient
availability; its expression is down-regulated in adipose tissue [11] and
peripheral blood mononuclear cells in obese populations and has been
related with IR and metabolic syndrome [12]. Accumulating evidence
shows that SIRT1 helps to regulate inflammatory [13] and ER stress
responses in obesity, since both endogenous induction and over-
expression of SIRT1 exert a protective role by alleviating ER stress and
inflammatory markers in the liver [14,15] and adipose tissue [10,16].
Furthermore, an excess of energy substrates in obesity is believed to
lead to increased mitochondrial dysfunction and reactive oxygen
species (ROS) signaling, which may underlie IR [17,18], metabolic
syndrome [19] and impaired endothelium function [20]. In fact,
enhanced oxidative stress is reported to be increased in leukocytes and
adipose tissue from obese patients and has been correlated with body
mass index (BMI) [20,21].

Caloric restriction displays several metabolic benefits in the obese
population, improving insulin signaling and reducing cardiovascular
risk [22]. The molecular mechanisms implicated in these effects could
be targeted to decelerate the progressive deterioration in the health of
obese subjects, but, unfortunately, they are poorly understood. Since
nutrient overload has been related to ER stress and mitochondrial
dysfunction [23], the aim of the present study was to explore whether
caloric restriction modulates UPR pathways during ER stress and im-
proves redox status and mitochondrial function in human obesity, and
to determine the role of inflammatory mediators such as SIRT1 and
JNK.

2. MATERIALS AND METHODS

2.1. Subjects

Patients attending the Endocrinology and Nutrition Department at the
University Hospital Dr. Peset (Valencia, Spain) were consecutively
recruited as they were referred for treatment for their obesity.
Eligible participants were obese patients between 18 and 60 years of
age that had maintained a stable weight (+-2 kg) over the 3 months
prior to the study and whose disease duration was at least five years.

The inclusion criteria were BMI >35 kg/mz, with or without associated
comorbidities, including T2D diagnosed according to the American
Diabetes Association Guidelines [24]. Exclusion criteria were preg-
nancy or lactation, severe disease, history of cardiovascular disease or
chronic inflammatory disease and secondary obesity (hypothyroidism,
Cushing’s syndrome).

The study protocol was approved by the Ethics Committee of the
Hospital (Code: 96/16) and was conducted according to the guidelines
laid down in the Declaration of Helsinki. The dietary weight loss
intervention was designed in accordance with the guidelines of the
Spanish Society for the Study of Obesity (SEEDO) [25]. Written
informed consent was signed by all the participants.

After an initial evaluation, patients underwent treatment consisting of a
6-week very-low-calorie diet (VLCD) in liquid formula (Optisource
Plus®, Nestlé S.A., Vevey, Switzerland), containing 52.8 g protein,
75.0 g carbohydrates, 13.5 g fat and 11.4 g of fiber and the vitamins,
minerals and trace elements that are essential according to Recom-
mended Dietary Allowances (RDA). The energy provided by this for-
mula was 2738 kJ/day (654 kcal/day). Participants replaced their
usual 3 meals a day with the commercially available meal replacement
provided by the National Healthcare System, under prescription from
the endocrinologist. After this period, patients met the dietician for
dietary counseling. During the appointment, the patient was inter-
viewed, weighed, and prescribed a further 18 weeks of low-calorie diet
(LCD) following an estimate of the caloric requirements of each indi-
vidual according to sex, height, weight, and physical activity level. This
diet consisted of an average daily energy intake of 5023—7535 kJ
(1200—1800 kcal) in accordance with the recommended caloric
requirement: 15—20% proteins, 50—55% carbohydrates and 28—
33% fats. After the experimental period, patients were re-evaluated by
the dietician.

Throughout the study, subjects were given detailed written and oral
instructions about their diet, including precise amounts to be eaten,
and cooking methods. A daily ingestion of more than two litres of
calorie-free liquids was recommended. Patients were encouraged to
maintain their normal pattern of activity and to ask for dietary coun-
seling if necessary. No modifications were made to drug prescriptions
during the course of the study.

Anthropometrical parameters, including weight (kg), height (m), BMI
(kg/mz), waist circumference, and systolic and diastolic blood pressure
(SBP and DBP) (mmHg) were measured in all the participants both at
baseline and 6 months after dietary weight loss intervention. Blood
samples of the patients were drawn from the antecubital vein during
both appointments, after a 12 h fasting period.

2.2. Biochemical parameters

Biochemical determinations were performed at the Hospital’s Clinical
Analysis Service. An enzymatic method was used to determine serum
levels of glucose, total cholesterol (TC) and triglycerides (TG). HDL
cholesterol (HDLc) levels were obtained with a Beckman LX20 analyzer
(Beckman Corp., Brea, CA, US) using a direct method. The intra-serial
variation coefficient was <3.5% for all determinations. The Friedewald
method was used to calculate levels of LDL cholesterol (LDLc) when
triglycerides were under 300 mg/dl. Insulin was measured by a
chemiluminescence immunoassay, and IR was estimated with the
Homeostasis Model of Assessment (HOMA-IR = (fasting insulin (pU/
ml) x fasting glucose (mg/dl)/405)). Percentage of glycated hemo-
globin (A1c) was measured using an automatic glycohemoglobin
analyzer. Levels of apolipoprotein (Apo) Al and B, high-sensitive C-
reactive protein (hsCRP) and complement component 3 (C3c) were
determined with an immunonephelometric assay whose intra-assay
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variation coefficient was <5.5%. Serum retinol binding protein 4
(RBP4) concentrations were measured by nephelometry with intra- and
inter-assay coefficients of variation of 3.1% and 2.2%, respectively.

2.3. TNFa levels

Levels of TNFe in the serum were measured with a Luminex 200
analyzer system (Austin, TX, USA) by means of a Milliplex® MAP Kit
(Merck Millipore, Burlington, MA, USA). The intra-serial and inter-serial
variation coefficients were <5.0% and <15.0% respectively.

2.4. Cell isolation

Blood samples were incubated with dextran 3% for 45 min and sub-
jected to centrifugation (650 g for 25 min at room temperature) in a
Ficoll-Hypaque density gradient to isolate leukocyte fraction. After
centrifugation, remnant erythrocytes were lysed and the pellet was
washed with HBSS (Capricorn Scientific, Ebsdorfergrund, Germany).

2.5. Protein expression

Proteins were extracted by incubating leukocytes on ice for 15 min
with lysis buffer (20 mM HEPES pH 7.5, 400 mM NaCl, 20% Glycerol,
0.1 mM EDTA, 10 uM Na MoO4, 0.5% NP-40, 10 mM NaF, 1 mM
NaVv03, 10 mM PNP, 10 mM B-glycerolphosphate, 1 mM dithiothreitol).
BCA protein Assay Kit (Thermo Scientific, Waltham, MA, USA) was
used to quantify total protein content of the samples. 25 g of protein
were resolved in a SDS-PAGE, transferred onto nitrocellulose mem-
branes and blotted with the following primary antibodies: monoclonal
anti-SAPK/JNK-P (Thr183/Tyr185) from Cell Signaling (Danvers, MA,
USA), polyclonal anti-SIRT1 from Merck Millipore (Burlington, MA,
USA), monoclonal anti-GPX1, polyclonal anti-elF2a.-P (Ser52) and
monoclonal anti-CHOP from Thermo Scientific (Waltham, MA, USA),
monoclonal anti-ATF6 and polyclonal anti-GRP78 (BiP) from Abcam
(Cambridge, UK). HRP-goat anti-mouse (Thermo Scientific, Waltham,
MA, USA) and HRP-goat anti-rabbit (Sigma Aldrich, Kawasaki, Kana-
gawa, Japan) were used as secondary antibodies. A chem-
iluminescence signal was detected after incubation of the membrane
with ECL plus reagent (GE Healthcare, Little Chalfont, UK) or Super-
signal West Femto (Thermo Scientific, Waltham, MA, USA). Images
were acquired and bands densitometrically analyzed with the Fusion
FX5 system coupled to the Bio1D software (VilbertLourmat, Marne
LaVallée, France).

2.6. Fluorescence microscopy

Leukocytes were seeded in duplicate in 48-well plates and incubated
for 30 min at 37 °C with the following fluorogenic dyes: MitoSOX Red
(5 uM) was used to assess mitochondrial ROS (mROS) production,
Fluo-4 (1 pM) indicated levels of cytosolic Ca’*, and tetrame-
thylrhodamine methyl ester (TMRM, 5 pM) was used to evaluate
changes in mitochondrial membrane potential. All the fluorescent
probes were purchased from Invitrogen (Life Technologies, Carlshad,
CA, USA). Imaging was performed with an IX81 Olympus inverted
fluorescence microscope and 20 images/well were analyzed with the
static cytometry ScanR software 2.03.2 (Olympus, Hamburg,
Germany).

2.7. Gene expression

Total RNA was extracted from leukocytes using the GeneAllR Ribo-
spinT'\’I total RNA extraction kit (Geneall Biotechnology, Seoul, Korea)
according to the manufacturer’s instructions. A total of 1 pg of RNA
samples were reverse-transcribed using the RevertAid first-strand
cDNA synthesis kit (Thermo Scientific, Waltham, MA, USA). Quantita-
tive RT-PCR analysis was then performed using the FastStart Universal

SYBR Green Master (Roche Applied Science, Penzberg, Germany) and
a 7500 Fast RT-gPCR system (Life technologies, Carlsbad, CA, USA),
as described previously [26]. Spliced X-box binding protein 1 gene (s-
xbp1; 103 pb) was amplified using the following primers: Forward 5’'-
CTGAGTCCGCAGCAGGTG-3' and Reverse 5'-AACAGGATATCA-
GACTCTGAATCTGAA-3'. The internal control gene gapdh (168 pb) was
amplified  using the following  primers: Forward 5'-
CGCATCTTCTTTTGCGTCG-3' and Reverse  5'-TTGAGGTCAAT-
GAAGGGGTCA-3'.

2.8. Statistical analysis

The study was designed based on preliminary data [22] in order to
have a power of 80% and to detect differences between two paired
means in relation to the primary efficacy criterion (minimum expected
difference in mROS) >50 relative fluorescence units (RFU), assuming a
common standard deviation of 100 units. Under these premises, at
least 32 subjects were considered.

Statistical differences between variables before and after the dietary
treatment were analyzed using the paired Student’s t-test or the Mann
Whitney U-test for non-parametric variables with SPSS 19.0 statistics
software (SPSS Statistics Inc., Chicago, IL, USA). The strength of the
association between variables was measured by means of Pearson’s
correlation coefficient. Continuous variables in tables are expressed as
mean =+ standard deviation (SD) for parametric data or as median and
25th and 75th percentiles for non-parametric data. Qualitative data are
expressed as percentages. In the figures, data are represented as
mean +standard error (SE). All the tests used a confidence interval of
95% and the threshold of significance for all the analyses was set at
p < 0.05.

3. RESULTS

In the present study, we analyzed a total of 64 obese patients of middle
age (43.5 £+ 9.9 years) — mainly females of reproductive-age
(n = 14), pre-menopausal (n = 16) and menopausal status
(n = 16) — with an average BMI of 44.0 + 5.7 kg/mz. The 6-month
VLCD + LCD treatment resulted in a significant reduction of body
weight and BMI (p < 0.001), with an average weight loss of
8.85 + 4.16%. Waist circumference, SBP and DBP (p < 0.01), as well
as hydrocarbonated metabolic parameters such as insulin, HOMA-IR
and Alc, decreased significantly (p < 0.05), whereas fasting
glucose levels did not change. Regarding blood lipid profile, tri-
glycerides were significantly decreased and HDLc increased after
weight loss (p < 0.01), although we did not observe changes in either
total cholesterol or LDLc (Table 1).

The dietary weight loss intervention induced significant changes in
systemic inflammatory markers and adipokines. Serum levels of TNFa.,
(Figure 1A) and hsCRP (Figure 1B) were lower after weight loss
(p < 0.05). In addition, reductions in the adipokine RBP4 (Figure 1C)
(p < 0.05) and in the cardiovascular risk marker C3c (Figure 1D)
(p < 0.01) were detected at the end of the experimental period
(p < 0.05).

The effect of dietary intervention on ER stress was evaluated by
assessing differential expression of markers among the three branches
of the UPR, as represented in Figure 2. No changes were observed in
the activity of the PERK-elF2a.-P branch (Figure 2A) or in the endor-
ibonuclease activity of IRE1a, determined as mRNA levels of spliced
XBP1 (Figure 2B). On the contrary, the dietary weight loss intervention
seemed to have a profound effect on the ATF6-UPR branch, since we
observed a marked decrease of p50/cleaved ATF6 levels (Figure 2C)
that was associated with a down-regulation of the proapoptotic
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www.molecularmetabolism.com

167



ANNEX I: Articles

I

MOLECULAR
METABOLISM

Table 1 — Anthropometric and biochemical parameters of the study

population before and after dietary weight loss intervention.

Before After

n (females %) 64 (71.9) 64 (71.9)
Age (years) 435+ 9.9 =
Weight (kg) 120 + 18 109 + 15
BMI (Kg/m?) 440 + 5.7 40.0 + 4.8
Waist (cm) 122 + 14 114 + 13
SBP (mmHg) 134 + 17 127 + 15
DBP (mmHg) 85 + 11 78 + 10**
Glucose (mg/dl) 100 + 21 97 + 22
Insulin (nU/ml) 17.5 +10.2 15.3 £ 9.1*
HOMA-IR 4.43 + 3.02 3.79 + 2.95*
Alc (%) 573 £ 0.70 5.60 + 0.75*
TC (mg/di) 184 + 34 183 + 41
HDLc (mg/dl) 414+ 94 43.7 +10.8**
LDLc (mg/dl) 115 + 30 116 + 36
TG (mg/dl) 120 (89,174) 103 (83,143
Apo Al (mg/dl) 139 + 25 143 + 28
Apo B (mg/dl) 99 + 25 96 + 26
Treatment

Oral antidiabetic drugs (%) 141

Antihypertensive drugs (%) 29.7

Lipid-lowering drugs (%) 26.6

Data are presented as mean + SD or percentage (n). For TG are represented as
median and 1Q range. *p < 0.05; **p < 0.01; ***p < 0.001 when compared with a
paired Student’s t-test or Wilcoxon test.

Apo, Apolipoprotein; Alc, glycated hemoglobin; DBP, diastolic blood pressure; HDLc,
HDL cholesterol; LDLc, LDL cholesterol; SBP, systolic blood pressure; TC, total
cholesterol; TG, triglycerides.

molecule CHOP (Figure 2D). In addition, we detected a drop in levels of
phosphorylated JNK (Figure 2E), a major regulator of the inflammatory

A.
20 1

15 A T

10

TNFa (pg/ml)

Before After

RBP4 (mg/dl)
N

Before After

process in leukocytes, which can be activated through IRE1a kinase
activity during ER stress.

Based on the enhanced UPR expression profile, we decided to assess
changes in ER stress modulators. Chaperones are major regulators of
protein trafficking and processing in the ER. In line with this, protein
expression of the chaperone 78-kDa glucose regulated protein
(GRP78) was significantly up-regulated after dietary weight loss
intervention (Figure 2F). In addition, increased expression of the anti-
inflammatory mediator SIRT1 was observed in parallel with ER stress
alleviation (Figure 2G).

The known link between ER and mitochondrial function led us to
explore whether the dietary weight loss intervention modulated mito-
chondrial function in our obese population. We found that ER stress
relief was associated with an improvement in oxidative stress and
mitochondrial function parameters. In fact, glutathione peroxidase 1
(GPX1) expression was induced after dietary treatment (Figure 3A)
(p < 0.05), and was accompanied by a significant decrease in mROS
production of leukocytes after dietary treatment (Figure 3B). Simulta-
neously, leukocytes showed a significant drop off in cytosolic ca?t
content (p < 0.05) (Figure 3C), which was indicative of reduced ER
ca?t depletion and a marked decrease of mitochondrial membrane
potential (p < 0.001) (Figure 3D), pointing to a restoration of mito-
chondrial function and cellular homeostasis following the dietary
weight loss intervention.

Finally, when we explored possible associations among variations in
molecular markers and clinical metabolic outcomes after dietary
weight loss intervention, we found that percentage of change of
HOMA-IR was correlated significantly with that of ATF6 (r = 0.478,
p=0.018, n = 24), JNK-P (r = 0.442, p = 0.016, n = 24) and CHOP
— although in this latter case it did not reach statistical significance
(r = 0.371, p = 0.075, n = 24) — pointing out to a relationship
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Figure 1: Systemic inflammatory markers and adipokines of obese patients before and after dietary weight loss intervention. Serum levels of TNFa (A), hsCRP (B), RBP4 (C), and
C3c (D). Data are represented as mean -+standard error. *p < 0.05; **p < 0.01, when compared using a paired Student’s t-test. TNFa., tumor necrosis factor o; hsCRP, high
sensitivity C-reactive protein; RBP4, retinol binding protein 4; C3c, complement component 3.
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Figure 2: Evaluation of UPR markers and ER stress modulators in obese patients before and after dietary weight loss intervention. Relative protein expression of elF20.-P (n = 14)
(A) in the PERK-UPR pathway and representative western blot images. Endoribonuclease activity of IRE1a expressed in mRNA levels of sXBP1 (n = 11) (B). Protein levels of p50/
activated ATF6 (n = 21) (C) and representative western blot images. Regulation of chronic downstream targets of the UPR, proapoptotic molecule CHOP (n = 21) (D) and
phosphorylated JNK (n = 28) (E). Protein levels of major UPR chaperone GRP78 (n = 21) (F) and SIRT1 (n = 23) (G) and representative western blot images. Data are represented
as mean -+standard error. **p < 0.01; **p < 0.001 when compared using a paired Student’s t-test. UPR, unfolded protein response; ER, endoplasmic reticulum; elF2a.-P,
phosphorylated eukaryotic translation initiation factor 2 subunit 1; PERK, protein kinase RNA-like endoplasmic reticulum kinase; IRE1a., inositol requiring enzyme 1 a; sXBP1,
spliced X-box binding protein 1; ATF6, activating transcription factor 6; JNK, cJun NH2-terminal kinase; CHOP, CCAAT/enhancer binding protein [C/EBP] homologous protein;

GRP78, 78-kDa glucose regulated protein; SIRT1, Sirtuin 1.

between changes in IR, ER stress and proinflammatory signals. There
were also correlations among ER stress markers: percentage of
change of GRP78 correlated positively with that of spliced XBP1
(r = 0.883, p = 0.001, n = 10); percentage of change of elF2a-P
correlated with that of ATF6 (r = 0.656, p = 0.003, n = 18) and JNK-P
(r = 0.666, p = 0.003, n = 18); and percentage of change of CHOP
correlated with that of ATF6 (r = 0.963, p < 0.001, n = 26), elF2a.-P
(r = 0.691, p = 0.001, n = 18) and JNK-P (r = 0.850, p < 0.001,
n = 26). In addition, a positive correlation between the percentages of
change of GRP78 and SIRT1 was observed (r = 0.548, p = 0.018,
n = 18), suggesting a relationship between the UPR adaptive response
and SIRT1 expression (Table 2).

4. DISCUSSION

In this interventional study a population of middle-aged obese subjects
underwent a dietary weight loss intervention consisting of 6 weeks of

VLCD diet followed by 18 weeks of LCD. After this dietary program, we
confirmed a moderate weight loss, which was associated with the
improvement of anthropometric and cardiometabolic parameters and
was accompanied by a reduction in the inflammatory response. When
we examined the effect of the intervention on ER homeostasis we
found that apoptotic pathways of the UPR were ameliorated and
chaperone expression up-regulated. In parallel to this, we observed an
improvement in oxidative stress and mitochondrial function in leuko-
cytes. Altogether, these results suggest that the dietary weight loss
intervention induced a partial recovery of cellular homeostasis medi-
ated by better ER function and mitochondrial redox status, which were
associated with an enhanced metabolic profile.

Several studies have described the benefits of caloric restriction and
moderate weight loss for the metabolic profile of patients with obesity
and related disorders. In fact, both obese and T2D patients have been
shown to display improved insulin sensitivity and cardiovascular risk
factor profiles when weight loss of 5—10% is achieved [22,27]. In line
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Figure 3: Oxidative stress and mitochondrial function parameters in obese patients before and after dietary weight loss intervention. Expression of the antioxidant enzyme GPX1
(n = 16) and protein representative images (A) and levels of mROS production measured as arbitrary units of MitoSOX fluorescence dye (n = 31) (B), cytosolic Ca?* measured as
arbitrary units of Fluo-4 fluorescence dye (n = 18) (C) and mitochondrial membrane potential measured as arbitrary units of TMRM fluorescence dye (n = 30) (D). Data are
represented as mean -+standard error. *p < 0.05; ***p < 0.001 when compared using a paired Student’s t-test. RFU, relative fluorescence units; GPX1, glutathione peroxidase 1;
mROS, mitochondrial reactive oxygen species; TMRM, tetramethylrhodamine methyl ester.

with this, VLCDs have been shown to be an effective strategy for
weight loss in obese patients, although the reported long-term effect of
malnutrition has led to them being replaced by LCDs [28]. In our study
population, the dietary weight loss intervention reduced BMI and
abdominal fat accumulation, which was associated with the reduction
of classic cardiovascular risk factors and circulating C3c levels. An
association between C3c and metabolic syndrome [29] and IR in
obesity has previously been described, and weight loss is reported to
reduce levels of this adipokine, which is in accordance with the results
published by our group and other researchers [30,31]. In parallel,

caloric restriction improved the lipid profile of our patients, including
increased HDLc and lower circulating triglycerides.

Increased levels of adiposity in obesity are known to be responsible for
the aberrant profile of circulating inflammatory markers and adipo-
kines that may underlie IR in these patients. TNFo is overproduced by
adipocytes and macrophages during obesity [32], triggering an
impairment in insulin signaling at a systemic level. In the present
study, reduced circulating levels of TNFo. and hsCRP were detected
after dietary weight loss intervention. In addition, lower levels of RBP4,
an adipokine contributing to systemic IR and recently associated with

Table 2 — Pearson correlation coefficients of percentage of changes between insulin resistance and UPR markers and ER stress modulators in obese patients.

HOMA-IR GRP78 elF2a-P ATF6 sXBP1 CHOP JNK-P SIRT1
HOMA-IR = n.s n.s. 0.478* n.s. n.s. 0.442¢ n.s.
GRP78 — — ns. n.s 0.883** n.s n.s 0.548*
elF2a-P — — — 0.656** ns. 0.691** 0.666™* ns.
ATF6 — — — — n.s. 0.963*** 0.842** n.s.
SXBP1 = = = = = ns. n.s. n.s.
CHOP — — — — — — 0.850*** n.s.
JNK-P = = = = = = n.s.
SIRT1 — — — — — — —

Data are expressed as Pearson’s correlation and statistical significance *p < 0.05; **p < 0.01; ***p < 0.001 for each pair of variables. When correlation is not significant, it is

represented as n.s.
Percentage of change was calculated following the formula: ((after-before)/before)*100.

GRP78, 78-kDa glucose regulated protein; elF2a.-P, phosphorylated eukaryotic translation initiation factor 2 subunit 1; ATF6, activating transcription factor 6; sXBP1, spliced X-box
binding protein 1; CHOP, CCAAT/enhancer binding protein [C/EBP] homologous protein; JNK, cJun NH,-terminal kinase; SIRT1, Sirtuin 1.
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hsCRP in the progression of metabolic syndrome [33], were detected.
As a whole, inflammatory parameters were reduced after weight loss,
suggesting a reduction in systemic inflammation mediated by caloric
restriction.

It is interesting to speculate about the molecular mechanisms asso-
ciated with metabolic improvements in obese populations following
caloric restriction and moderate weight loss. In this context, ER stress
has been reported to be activated in several tissues under conditions
related to obesity and T2D, contributing to the development of IR and
inflammation. In response to this, the UPR, a highly dynamic pathway,
is activated to align ER functional capacity with demand according to
external and intrinsic stress signals, such as alterations in metabolism
and body weight. In the present study, our findings highlight a
decrease in CHOP expression and in JNK activation in leukocytes from
obese patients after weight loss, pointing to an alleviation of chronic ER
stress, in accordance with previous findings [34].

It is known that all three UPR-branches, IRE1a, PERK, and ATF6,
trigger adaptive and apoptotic responses and are involved in CHOP
regulation. Our results suggest that dietary weight loss intervention
modulates this apoptotic pathway, mainly by a decrease in ATF6
activation, since we found lower levels of p50-activated ATF6 to be
correlated with a drop in CHOP expression. However, despite no
significant changes in PERK-elF2a.-P being detected after the
intervention, a positive correlation was observed between alterations
in CHOP and elF2a-P, suggesting a role of this branch in the
regulation of CHOP. Finally, bearing in mind the role of the IRE1a-
JNK axis in obesity-induced ER stress [7,35,36], it is likely that
changes in JNK-P after dietary weight loss are mediated by a
reduction in IRE1e kinase activity, although further analyses are
required to confirm this hypothesis. Previous studies have shown
reduced ER stress upon weight loss in murine models [34] and
patients undergoing bariatric surgery [36], thus highlighting the
relevance of body weight in ER homeostasis. However, to our
knowledge, this is the first report of UPR modulation by dietary
weight loss intervention in humans with obesity.

When exploring the mechanisms involved in ER restoration we have
observed increased levels of GRP78, a chaperone that is a major
regulator of the UPR. In previous studies, GRP78 upregulation was
associated with a decrease in hepatic UPR markers and the IRE1a-
JNK activation axis, and an improvement of insulin action and lipid
profile in a murine model of obesity [37] and in hepatic cells [38],
which is in line with the results of the present study. On the other
hand, a growing body of evidence suggests an important role of
SIRT1 in ER stress regulation and IR in metabolic disorders. More-
over, several authors have shown that caloric restriction and weight
loss are powerful inducers of SIRT1 [39,40] and have demonstrated
a role for SIRT1 as an anti-inflammatory molecule in obesity [10,41],
which once again is compatible with our results. Interestingly, we
found a positive correlation between changes in SIRT1 and GRP78
after the dietary weight loss intervention. These findings provide new
insights into the association between ER stress adaptive response
and SIRT1. However, since causality cannot be inferred from our
data, further analyses are required to elucidate how these two
intracellular signaling pathways are interrelated in the context of
dietary weight loss in obesity.

Recent studies have provided new insight into the contribution of
leukocyte-ER homeostasis to metabolic disease. In this sense, we have
previously reported higher ER stress levels in leukocytes from obese
subjects with metabolic disturbances when compared with healthy
counterparts [19] and also in immune cells from T2D patients, espe-
cially in those with poor glycemic control [26]. In line with this, Sage

et al., 2012 [42] demonstrated that induced UPR markers in mono-
nuclear cells correlated with indicators of impaired glucose tolerance in
metabolic syndrome. In accordance, we show here that changes in
ATF6 and JNK-P in leukocytes from obese patients after dietary
intervention correlate with changes in HOMA-IR, supporting a
connection between ER homeostasis, glucose management and
development of IR.

UPR pathways in immune cells have also been implicated in the
progression of cardiovascular disease. Increased ER siress markers
have been found in peripheral blood mononuclear cells, as well as in
smooth muscle cells and infiltrated macrophages isolated from
atherosclerotic plaques of patients with coronary disease [43,44]. In
another study, treatment with chaperones that reduce ER stress in
macrophages was associated with a delay in the progression of
atherosclerosis [45]. In line with this, when we previously explored the
association between UPR activation and leukocyte-endothelium cell
interactions, an enhancement of the GRP78 adaptive response in
leukocytes was found to correlate with a lower level of interaction with
the endothelium, whereas increased expression of CHOP seemed to
promote adherence [26], which is the first step of the atherosclerotic
process. In the present study, increasing levels of GRP78 and a drop in
CHOP expression were observed in leukocytes of obese patients after
dietary intervention, in parallel with the improvement of some car-
diovascular risk factors. Nevertheless, how these changes are related
to the interaction of these cells with the endothelium and the subse-
quent risk of developing cardiovascular disease remains to be
confirmed.

Mitochondria are closely linked to the ER by physical contact and ca?t
interchange, and accumulating evidence suggests a converging role of
the two organelles in the progression of metabolic disorders [46].
During ER stress, mitochondrial Ca®* overload, among other stress
signals, disturbs mitochondrial membrane potential and causes excess
ROS production. The imbalance between pro- and anti-oxidants leads
to oxidative stress and mitochondrial dysfunction, a mechanism that
has been related to the appearance of obesity-related comorbidities
and IR [17,47]. In fact, decreased levels of GPX1, an antioxidant
enzyme located both in the cytosol and the mitochondria, have been
reported in adipose tissue from a genetic murine model and related to
impaired insulin signaling [48] and endothelial dysfunction [49]. Our
present data demonstrate that caloric restriction reduces abnormal
Ca2* distribution and mitochondrial membrane potential, pointing to a
restoration of cell homeostasis and mitochondrial function. Further-
more, redox balance was improved in our patients, since lower levels
of mROS molecules and higher GPX1 expression were found in their
leukocytes after dietary treatment. These results demonstrate that
dietary weight loss intervention can modulate mitochondrial function
and oxidative stress. However, further analyses are required to assess
the degree of implication of these changes in the enhancement of
metabolic status in obese patients under caloric restriction.

Finally, most of the literature supports an orchestrated response
among leukocytes, adipocytes, and muscle cells in obesity. In fact, we
have recently published results showing that total ROS, total super-
oxide, and mitochondrial membrane potential are selectively higher in
obese patients [20], which is in line with impaired mitochondrial ac-
tivity and enhanced ROS production in subcutaneous adipocytes and
white adipose tissue [21,50,51]. In reference to oxidative stress and
mitochondrial function in human skeletal muscle, considerable debate
exists about whether alterations in mitochondrial respiratory capacity
and/or content play a causal role in the development of IR during
obesity. Previous reports have shown that mitochondrial content is
significantly lower in muscle samples of obese individuals [52—54],
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whereas others have not reported such results [55], despite that el-
evations in H,0, emission rates and reductions in cellular glutathione
[52,55,56] are correlate with those measured in leukocytes and
adipocytes.

This study presents some limitations. Firstly, it does not clarify whether
the main findings were mediated by weight loss or caloric restriction
per se, since no period of eucaloric stability was programmed after
weight loss intervention. In addition, further analyses are required to
elucidate the directionality of changes in ER and mitochondrial function
and metabolic improvements in obese patients after dietary weight
loss intervention. Nevertheless, the present results provide vital new
insight into the modulation of ER stress and mitochondrial function
in vivo that could have important implications for the treatment or
prevention of obesity and T2D.

5. CONCLUSIONS

In summary, the results of the present study extend our understanding
of the molecular changes and metabolic improvements that obese
patients display when moderate weight loss is achieved by caloric
restriction. Interestingly, the improvement in systemic inflammation
and glucose tolerance was mirrored by an attenuation of chronic ER
stress and mitochondrial dysfunction after dietary weight loss inter-
vention, and was accompanied by enhanced expression of chaper-
ones, SIRT1 and antioxidants. These findings highlight the relevance of
restoration of ER homeostasis and mitochondrial function as potential
targets for treating metabolic complications in obesity.
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Background & aims: It is known that pinitol acts as a mediator of the insulin-signaling pathway, though
little is known about its anti-inflammatory effect in human obesity. Therefore, this study aimed to
evaluate the effect of pinitol on peripheral blood mononuclear cells (PBMCs) and visceral (VAT) and
subcutaneous adipose tissues (SAT), focusing on the involvement of endoplasmic reticulum (ER) stress

Keywords: ) ) and sirtuin 1 (SIRT1).
f{“dOPlasmlc reticulum stress Methods: In the intervention study, thirteen obese subjects consumed a pinitol-enriched beverage (PEB)
uman

for 12 weeks. In the ex vivo study, a biopsy of VAT and SAT was removed from thirty-four obese patients
and incubated with D-pinitol for 48 h.
Results: The consumption of a PEB reduced circulating levels of IL6 and TNFa. and increased SIRT1 protein
expression in PBMCs. Ex vivo experiments showed a decline in gene expression and protein levels of IL6
and TNFa in SAT and a reduction in ER stress parameters (ATF6 and CHOP), while VAT markers remained
unaltered. Differential gene expression profiles revealed an up-regulation of SIRT1 and insulin-signaling
pathways in SAT with respect to VAT.
Conclusions: Our results suggests that pinitol down-regulates the inflammatory pathway which may lead
to novel treatment options for obesity and its metabolic disorders.

© 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

Inflammation
White adipose tissue
Obesity

1. Introduction

Obesity is a highly prevalent condition characterized by sys-
temic low-grade inflammation and is related to a wide variety of
metabolic disturbances, including insulin resistance, dyslipidemia,
hypertension and, eventually, development of diabetes mellitus [1].

Abbreviations: PBMCs, peripheral blood mononuclear cells; VAT, visceral adi-
pose tissue; SAT, subcutaneous adipose tissue; ER, endoplasmic reticulum; SIRT1,
sirtuin 1; PEB, pinitol-enriched beverage; TNFo, tumor necrosis factor o; IL6,

interleukin-6; WAT, white adipose tissue; UPR, unfolded protein response; LRYGB,
laparoscopic Roux-en-Y gastric bypass; Alc, glycated hemoglobin; hsCRP, high
sensitivity C-reactive protein; HOMA-IR, homeostasis model assessment; FBS, fetal
bovine serum; GLUT4, glucose transporter 4; IR, insulin receptor.
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Chronic inflammation in obese subjects is manifested by increased
circulating levels of proinflammatory cytokines, such as tumor
necrosis factor o (TNFa) and interleukin-6 (IL6) [2,3]. Although
adipose tissue inflammation is well characterized in obese patients,
the molecular mechanisms that trigger the chronic inflammatory
response are not completely understood.

0261-5614/© 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
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Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide
(NAD")-dependent protein deacetylase that regulates energy ho-
meostasis in response to nutrient availability and whose levels and
activity are reduced in obesity [4,5]. Mounting evidence shows that
SIRT1 participates in the regulation of inflammatory responses in
several tissues. Since nuclear SIRT1 deacetylates p65 subunit of NF-
kB and support its proteasome degradation, decreased nuclear
SIRT1 levels amplify proinflammatory gene expression during
chronic inflammation [6,7]. NF-kB is also reported to be activated
in vitro and in white adipose tissue (WAT) of obese mice under
endoplasmic reticulum (ER) stress conditions [8,9]. Moreover,
previous studies have reported increased ER stress in WAT of obese
mice and humans [10,11], highlighting a causal relation between ER
stress and chronic inflammation [12]. Chaperones are a group of
multifunctional proteins responsible for the proper folding and
conformation of newly synthesized proteins in the ER. They also
facilitate the trafficking of mutant proteins to restore ER homeo-
stasis. Theoretically, chaperones may alleviate WAT inflammation
in obesity by reducing ER stress and improving tissular function-
ality. When the folding capacity of the ER cannot be restored, the
unfolded protein response (UPR) promotes the expression of pro-
apoptotic factors, such as CHOP [10].

The growing interest in medicinal plants used to fight meta-
bolic disorders including obesity and diabetes has led to the
development of dietary bioactive compounds, such as polyols and
related carbohydrates. Among these compounds, a potential
mediator of the insulin-signaling pathway, known as pinitol (3-O-
methyl-D-chiro-inositol), has been developed [13]. Interestingly,
we have previously reported that chronic consumption of a
pinitol-enriched beverage (PEB) influences parameters of sys-
temic glucose tolerance and insulin sensitivity, not only in healthy
subjects, but also in prediabetic and diabetic patients [14—16]. In
addition, pinitol and its derivatives are thought to have other
properties, including anti-inflammatory activity [17]. In this
sense, we have recently reported a systemic anti-inflammatory
effect of an inositol-enriched beverage in obese patients [16]
and a protective role in diabetic patients that prevented the in-
crease of IL6 associated with consumption of a sweetened
beverage in a diabetic population [15], although the underlying
mechanism remained unclear.

Therefore, the aim of this study was to assess the mechanism by
which pinitol mediates the anti-inflammatory effect on the main
producers of cytokines; that is, peripheral blood mononuclear cells
(PBMCs) and visceral (VAT) and subcutaneous adipose tissues (SAT)
in in vivo and ex vivo models of human obesity. In particular, we
have focused on the involvement of UPR and the role of SIRT1 as an
inflammatory mediator.

2. Materials and methods
2.1. Subjects

All the study's subjects were recruited at the Outpatient's Clinic
of the Endocrinology and Nutrition Department of the University
Hospital Dr. Peset. In the intervention study, a subpopulation of
thirteen obese patients was recruited from a larger population
previously registered in clinicaltrials.gov under study number
NCT01754792.

In the ex vivo study, thirty-four subjects underwent a laparos-
copy according to the Roux-en-Y gastric bypass (LRYGB) technique.
During surgery, a biopsy of VAT and SAT white adipose tissue was
performed.

The inclusion criteria were BMI >30 kg/m2, absence of kidney,
liver or heart dysfunction and normal protein and hematological
clinical status. The patients were excluded from the study in the

176

following cases: severe diseases, malignancies, chronic diseases
affecting kidney or cardiovascular function, psychiatric disorders,
inflammatory disease or treatment with systemic anti-
inflammatory drugs, alcohol or drug abuse, subjects with dia-
betes mellitus (more than two episodes with fasting glucose

We evaluated anthropometrical parameters as follows: weight
and height were determined using a electronic scale and a stadi-
ometer with an approximation of 0.1 kg and 0.5 cm, respectively.
BMI was calculated by dividing weight in kg by height in m?;
brachial artery blood pressure was measured twice consecutively in
the upper arm of sitting patients after a 5-min resting period, using
a sphygmomanometer.

2.2. Intervention study design

For stabilizing subjects' dietary patterns before intervention,
they initiated a 1-month run-up period of a normocaloric diet. After
this period, subjects received a PEB and followed the dietary rec-
ommendations throughout the 12-week study period. The PEB
beverage was consumed as a snack between main meals (mid-
morning and mid-afternoon).

The PEB consisted of a natural mixture of soluble carbohydrates
(with mono-di, oligosaccharides, polyalcohols and soluble fiber)
and lower concentrations of other nutrients such as organic acids,
aminoacids and minerals obtained from carob fruit.

The PEB (prepared with the commercially available natural food
ingredient Fruit Up®) was produced by Wild-Valencia SAU (Spain).
The drink was packaged in cans of 250 ml. Each can contained
2.29 g of inositols (2.00 g of pinitol, 0.23 g of myoinositols plus D-
chiro-inositol and 0.08 g of other polyols). Detailed information
about the intervention drink has been previously published [15].
The recommendation was to ensure a daily energy intake of
7118—9630 KJ (1700—2300 Kcal), of which 50—55% were carbohy-
drates, 28—33% fats and 15—20% proteins.

2.3. Blood sampling and biochemical determinations

Extraction of the venous blood samples was performed after
12 h overnight fasting at baseline (t = 0) and after 12 weeks for the
intervention study and in a preoperative state for the ex vivo model.
We obtained freshly separated serum by centrifuging at 2000g for
15 min at 4 °C. An aliquot of the serum was employed to determine
lipid and hydrocarbonated parameters. The remaining serum was
stored at —80 °C for subsequent determinations of proin-
flammatory cytokines.

HDL, total cholesterol, and triglycerides were measured with a
Beckman LX-20 autoanalyzer (Beckman Coulter, La Brea, CA, USA).
LDL-cholesterol levels were assessed by the Friedewald formula
only when triglycerides were lower than 300 mg/dl. Carbohydrate
metabolism parameters (glucose and insulin) were measured by
employing enzymatic assays. The homeostatic model assessment
(HOMA-IR) formula was calculated as follows: fasting insulin (pU/
mL) x fasting glucose (mg/dl)/405. For all the measurements, the
intraserial variation coefficient was <3.5%. Serum levels of proin-
flammatory cytokines IL6 and TNFa were analyzed with a Lumi-
nex® 200 analyzer system (Austin, TX, USA) following the
Milliplex-Kit manufacturer's procedure (Millipore Corporation,
Billerica, MA, USA).
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2.4. Leukocyte isolation

Blood samples were incubated for 45 min with 3% dextran at
room temperature. The supernatant was placed over Ficoll-
Hypaque (GE Healthcare, Uppsala, Sweden) and centrifuged for
25 min at 650g. Erythrocytes were removed by 5-min incubation in
lysis buffer followed by 5-min centrifugation at 240g. Hank's
Balanced Salt Solution (HBSS; Sigma Aldrich, St. Louis, MO) was
added to the isolated leukocytes (pellet) in order to wash and
resuspend the cells.

2.5. Ex vivo experiments

Explants of VAT and SAT from obese patients were obtained by
splicing samples into 5-mg portions and washing them with PBS.
After 30-min preincubation with PBS supplemented with 5% BSA,
explants were incubated in DMEM-F12 medium (Biowest, Nuaillé,
France) with 10% fetal bovine serum (FBS), 3% penicillin/strepto-
mycin (Capricorn, Portland, Maine, USA), 1% Amphotericin B (Bio-
west, Nuaillé, France) and 10 nM insulin with the addition, or not, of
30 pM p-pinitol (Sigma Aldrich, St. Louis, MO). After 48 h at 37 °C
explants were collected, washed twice with PBS and subsequently
frozen and stored at —80 °C for later use.

2.6. mRNA expression

Explants were processed with an Ultra-Turrax® homogenizer
(IKA, Staufen, Germany) and a RNAse Free DNAse kit (Qiagen, Hil-
den, Alemania) was added later. The RNeasy Lipid Tissue Mini Kit
(Qiagen, Hilden, Alemania) was used to extract total RNA from VAT
and SAT explants following the manufacturer's procedure. Nano-
drop 2000c (Thermo Fisher Scientific, Waltham, MA, USA) was
employed to quantify the total amount of RNA, and the 260/280
ratio was calculated to assess the purity of these samples (a ratio
between 1.8 and 2 was considered optimal).

The Revert Aid cDNA First-Strand Synthesis Kit (Thermo Fisher
Scientific, Waltham, MA, USA) was used to synthesize first-strand
cDNA from 1 pg of RNA. One microliter of this cDNA was used to
assess TNFa, IL6, SIRT1,GRP78, sXBP1, CHOP, glucose transporter 4
(GLUT4), insulin receptor (IR) and PPARy expression by real-time RT-
PCR using SYBR green (Roche Applied Science, Basilea, Sweden) in a
7500 Fast RT-PCR system (Life Technologies, Thermo Fisher Scien-
tific, Waltham, MA, USA).

In Supplementary Table 1, the primer sequences and details of
the procedure are specified. All samples were referred to GAPDH
gene expression, and the relative quantification was calculated
with the comparative 2724t formula using Expression Suite Soft-
ware (Thermo Fisher Scientific, Waltham, MA, USA).

2.7. Western blotting

Total protein extraction from leukocytes was performed on ice
lysing cells with an extraction buffer (20 mM HEPES pH 7.5,
400 mM sodium chloride, 20% Glycerol, 0.1 mM EDTA, 10 uM
Na;MoOy, 0.5% NP-40) containing protease inhibitors (10 mM NaF,
1 mM NaV0s3, 10 mM PNP, 10 mM B-glycerolphosphate) for 15 min.
The supernatant was collected after centrifugation for 15 min at
13,000g. Explants were homogenized with Ultra-Turrax® in the
protein lysis buffer provided by Ne-Per® Kit (Thermo Fisher Sci-
entificc Waltham, MA, USA) and in the presence of phosphatase
inhibitors (Sigma Aldrich, St. Louis, MO, USA). After following the
manufacture's protocol, explants were centrifuged twice for 20 min
at 4 °C to remove superficial fat. The total concentration of proteins
was quantified in both cases using a bicinchoninic acid (BCA) pro-
tein assay (Thermo Fisher Scientific, Waltham, MA, USA). Twenty-

five ug of protein were resolved by SDS-PAGE and proteins were
transferred to nitrocellulose membranes. Detection of target pro-
teins was performed by incubating the membranes with anti-SIRT1
polyclonal rabbit antibody (Millipore, MA, USA), anti-TNFa poly-
clonal rabbit antibody (Abcam, Cambridge, UK), anti-GRP78 poly-
clonal rabbit antibody (Abcam, Cambridge, UK), anti-IL6
monoclonal rabbit antibody (Millipore Corporation, Billerica, MA,
USA), anti-CHOP monoclonal mouse antibody (Thermo Fisher Sci-
entific, Waltham, MA, USA), anti-ATF6 monoclonal mouse antibody
(Abcam, Cambridge, UK), anti-EIF2a-P polyclonal rabbit antibody
(Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA), and anti-
actin rabbit polyclonal antibody (Sigma Aldrich, St. Louis, MO, USA).
The secondary antibodies employed were goat anti-rabbit IgG
(Abcam, Cambridge, UK) and goat anti-mouse IgG (Thermo Fisher
Scientific, Waltham, MA, USA). ECL plus reagent (GE Healthcare,
Uppsala, Sweden) or Supersignal West Femto (Thermo Fisher Sci-
entific, Waltham, MA, USA) were used to detect the protein signal
by chemiluminescence, visualized by means of the Fusion FX5
acquisition system (Vilbert Lourmat, Marne La Vallée, France). Data
were analyzed by densitometry with the Bio1D software (Vilbert
Lourmat, Marne La Vallée, France).

2.8. Statistical analysis

For the statistical analysis of the data we employed the statistics
program SPSS 19.0 software (SPSS Statistics Inc., Chicago, IL, USA). In
the tables continuous variables are expressed as mean + standard
deviation (SD), or as median and 25th and 75th percentiles for
parametric and non-parametric data, respectively, whereas quali-
tative data are expressed as percentages. In figures, data are repre-
sented as mean + standard error (SE). Data were analyzed using a
paired Student's t-test or a Mann Whitney U-test for non-parametric
samples when comparing baseline conditions vs pinitol treatment.
Differential gene expression analysis between visceral and subcu-
taneous adipose tissues was compared using an unpaired Student's
t-test. The confidence interval was 95% for all the tests and signifi-
cance was established when the difference between variables was
p < 0.05.

3. Results

In the intervention study, we analyzed a total of 13 obese pa-
tients — mainly females in pre-menopausal (n = 3) and menopausal
status (n = 7) with a mean age of 53.0 + 14.0 years — who received a
PEB for 12 weeks. The intervention did not modify any of the
anthropometric or metabolic parameters assessed, with the
exception of a significant reduction in systemic inflammatory cy-
tokines such as IL6 and TNFa (p < 0.05 for both) (Table 1).

In order to clarify the origin of this reduction, we evaluated the
protein expression of ER stress markers and SIRT1 in PBMCs — one
of the main inflammatory cell types — at the beginning and at the
end of the experimental period. GRP78 — the chaperone respon-
sible for initiation of UPR — and CHOP — a proapoptotic marker
whose expression is increased when ER stress is maintained for a
long period of time — were not altered by consumption of the PBE,
whereas SIRT1 levels increased significantly (Fig. 1).

We also wished to explore the effect of pinitol on other cell types
that also play a central role in inflammatory response; thus, we
evaluated the expression of VAT and SAT after treating ex vivo ex-
plants with pinitol for 48 h. Subjects participating in this study
were submitted to LRYGB, during which biopsies were collected.
This study analyzed a total of 34 middle-aged subjects of which 24
were females (8 were reproductive-aged woman, 10 were pre-
menopausal, and 6 were at menopausal status) with a BMI of
38.0 + 4.7 and a mean age of 43.6 + 11.7 years. Analysis of gene
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Table 1
Anthropometric and metabolic parameters in obese subjects at baseline and after
consumption of an inositol-enriched beverage (IEB).

Baseline 12 weeks
n (% females) 13 (92.3) 13 (92.3)
Age (years) 53.0 + 14.0 53.0 + 14.0
BMI (Kg/m?) 349 +3.2 351+33
Systolic BP (mmHg) 144 + 15 139+9
Diastolic BP (mmHg) 87.0 + 6.9 852 +74
Total cholesterol (mg/dl) 179 + 29 187 + 38
LDLc (mg/dl) 109 + 28 116 + 33
HDLc (mg/dl) 442 + 55 453 + 69
Triglycerides (mg/dl) 121 (92, 144) 130 (78, 155)
Glucose (mg/dl) 107 +9 106 + 8
Insulin (uU/ml) 153 + 8.1 152 + 8.0
HOMA-IR 4.12 + 245 4.07 + 2.36
hsCRP (mg/l1) 4.43 (2.01,7.21) 4.77 (2.89, 7.02)
IL6 (pg/ml) 731 +9.23 4.68 + 6.39*
TNFo. (pg/ml) 8.14 + 3.38 578 + 2.34*

Data are expressed as mean + SD. *p < 0.05 when compared by a paired Student's t-
test.
hsCRP: high sensitivity C-reactive protein.

expression and protein levels of inflammatory markers showed
that VAT explants did not respond to pinitol treatment, since none
of the mRNAs — TNFa, IL6 and SIRT1 — or proteins — TNFa and IL6 —
were modified (Fig. 2A). On the contrary, SAT explants showed a
significant decrease in IL6 (gene and protein expression; both
p < 0.05) and TNFa, although statistical differences were found only
at the protein level (p < 0.05) (Fig. 2B), which could partly explain
the drop of IL6 and TNFa serum levels observed in the intervention
study. However, unlike that observed with PBMCs, SIRT1 was un-
altered after treatment of explants with pinitol in both VAT and SAT
(Fig. 2B), suggesting that other pathways were involved in the anti-
inflammatory response. An alleviation of ER stress or a potentiation
of the insulin-signaling pathway could be involved in this process.
To analyze the effect of pinitol on ER stress markers, we evaluated
GRP78, the three pathways involved in the UPR — ATF6, IRE1 and
PERK — and CHOP. Since we did not detect changes in inflammatory
markers in VAT after pinitol treatment, we did not expect, a priori,
to observe differences in the expression of ER stress markers or
the insulin-signaling pathway. Indeed, mRNA — GRP78, sXBP1, or
CHOP — or protein — ATF6, elF2a or CHOP — expression was not
altered by treatment of explants with pinitol (Fig. 3A). Furthermore,

gene expression of GLUT4, IR or PPARy was also unaltered in VAT
(Fig. 4A). However, incubation of SAT with pinitol produced a se-
lective down-regulation of the ATF6 pathway and CHOP (both gene
and protein expression (p < 0.01)) and a downward trend in GRP78
and sXBP1 (p < 0.100) (Fig. 3B), thus pointing to pinitol as a possible
mediator in the mitigation of ER stress. Finally, treatment with
pinitol did not modify the expression of GLUT4, IR or PPARY
(Fig. 4B), suggesting that it does not exert its beneficial effect on the
inflammatory response by enhancing the insulin-signaling
pathway. In fact, these results are in accordance with the inter-
ventional study (Table 1), since chronic consumption of the PEB for
12 weeks did not modify hydrocarbonated metabolism parameters.

Differential gene expression analysis revealed a generally higher
expression level in SAT than in VAT. In particular, we observed a
significant increase in SIRT1, GLUT4, IR and PPARy, whereas ER
stress markers and proinflammatory cytokines showed similar
levels of mRNA expression in both tissues (Table 2).

4. Discussion

The present study is the first to provide experimental evidence
for the anti-inflammatory effects of pinitol on the main producers
of cytokine in obesity. Thus, in PBMCs of obese patients that
consumed a PEB over 12 weeks we witnessed an increase in SIRT1
protein levels that was associated with a drop in circulating levels
of IL6 and TNFa. On the other hand, in ex vivo adipose tissue ex-
plants incubated with pinitol we observed a decrease in gene
expression and protein levels of these proinflammatory cytokines
in SAT, which could have been mediated, at least in part, by a
reduction in ER stress parameters, while markers of VAT remained
unaltered throughout the experimental period. In addition, gene
expression profiles varied between the two types of adipose tissues.
Specifically, SIRT1 and insulin-signaling pathway genes were up-
regulated in SAT. Thus, our findings suggest that the underlying
mechanism mediating the anti-inflammatory effects of pinitol
differs depending on the nature of the cytokine producers and their
depot-specific location.

Although most previous studies have focused on evaluating the
effect of pinitol supplementation on glycemic control, only a few
have evaluated its anti-inflammatory effects. To date, the effects of
pinitol on proinflammatory cytokines have been evaluated mainly
in rodent models and have proved to be mostly beneficial and
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Fig. 1. Effect of chronic consumption of a pinitol-enriched beverage on PBMCs of obese subjects. (A) Protein levels of GRP78 and representative western blot images of GRP78 and
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protective in several inflammatory diseases, such us diabetes,
asthma and paw edema, in both chronic and subchronic conditions
[18—20]. Recently, pinitol has been shown to have an inhibitory
effect on tumor growth by decreasing interleukins — TNFo and
IL6 — and inducing apoptosis through inhibition of NF-«kB, which
could mediate the anti-inflammatory response [21,22].

As far as we know, only two previous studies in humans have
explored the effects of pinitol as an inhibitor of TNFa activity in
whole blood and neutrophils after stimulation with LPS [23,24]. In
both studies, pinitol displayed an average inhibition of the activity
or expression of TNFa of 30%, which is in the line with the systemic
drop of TNFa. we have observed after chronic consumption of the
PEB in the present study. In this context, we have previously re-
ported that consumption of a PEB prevents the increase of systemic
IL6 associated with consumption of a sweetened beverage in a
diabetic population [15] and exerts a marked anti-inflammatory
effect in obese subjects [16], thereby reinforcing its role as an
anti-inflammatory agent.

Since adipocytes are one of the main sources of synthesis of
proinflammatory cytokines in obesity [2,3], we aimed to evaluate

Table 2
Differential gene expression analysis in visceral and subcutaneous white adipose
tissues in baseline conditions.

Visceral Subcutaneous p
TNFa 0.106 + 0.056 0.192 + 0.262 0.300
IL6 4.26 + 4.07 3.69 + 5.08 0.748
SIRT1 0.032 + 0.027 0.057 + 0.028 0.022
sXBP1 0.209 + 0.194 0.227 + 0.171 0.802
GRP78 0.844 + 0.496 1.040 + 0.647 0.432
CHOP 0.263 + 0.194 0.449 + 0473 0.168
GLUT4 0.043 + 0.053 0.123 + 0.127 0.026
IR 0.248 + 0.121 1.863 + 1.134 <0.001
PPARY 0.061 + 0.058 0.176 + 0.197 0.021

Data are expressed as mean + SD of 12 samples and normalized with an external
sample. *p < 0.05 when compared by a paired Student's t-test.

the influence of pinitol on the synthesis of IL6 and TNFa by white
adipose tissues. Our results show that there was a depot-specific
response in SAT. The incubation of explants with pinitol induced
a reduction of TNFa and IL6 in both gene expression and protein
levels, suggesting that pinitol alleviates the up-regulation of IL6 and
TNFa in SAT and systemically, though the molecular mechanism
involved in its anti-inflammatory effect in obesity was not eluci-
dated. To our knowledge, this is the first study to delve deeply into
this matter. ER stress has previously been reported to be enhanced
in SAT of obese human subjects [11]. Under this metabolic condi-
tion, we have shown that incubation of SAT explants with pinitol
down-regulates the gene expression and protein content of in-
flammatory cytokines and ER stress markers, suggesting that its
beneficial effect on the inflammatory response is mediated by an
alleviation of ER stress acting as chemical chaperone. Several
studies have shown that the chemical chaperones TUDCA and 4-
PBA decrease levels of TNFa and IL6 in epididymal WAT of obese
mice by reducing ER stress markers such as GRP78, sXBP1, CHOP
and ATF4 [9,12]. Our results are in accordance with these findings,
as we show that pinitol inhibits ER stress markers (sXBP1, ATF6 and
CHOP) that may mediate the down-regulation of proinflammatory
cytokines, probably involving the down-regulation of the NF-kB
signaling pathway [9]. However, we did not detect alterations to
VAT after incubation of explants with pinitol, which is in the line
with the existence of inherently different progenitor cells that
mediate different patterns of gene expression [25].

While VAT has been associated with metabolic dysfunction
mainly due to greater lipolytic potential and to the release of free
fatty acids into the portal circulation, SAT has a protective role and
responds better to the antilipolytic effects of insulin, shared by
other molecules or drugs involved in signal transduction [26]. In
effect, we have shown that SAT responds differentially to pinitol
and has an alternative gene expression profile by which it up-
regulates genes involved in insulin signal transduction and
SIRT1. Previous studies have reported that SIRT1 is undermined in
endothelial cells isolated from VAT and in the whole visceral VAT
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of obese subjects when compared with those from SAT [27,28]. In
reference to PPARY, higher mRNA levels have been detected in SAT
than in VAT in obese subjects [29,30]. Furthermore, thiazolidine-
dione — an agonist of PPARy — is more responsive to the differ-
entiation in subcutaneous than in visceral preadipocytes, which
would lead to an improvement in insulin sensitivity [31]. In
addition, the capacity of adipocytes to respond to insulin stimu-
lation may be reflected indirectly by the expression of IR and
GLUT4. In this sense, it has been reported that the mRNA
expression levels of GLUT4 and insulin receptor substrate 1 (IRS-1)
are significantly higher in SAT than in VAT in a population of
overweight women [32], which is in accordance with our findings.
This divergent pattern of expression could be responsible for a
reduced capacity of VAT to respond to insulin stimulation, sug-
gesting a role in the development of obesity-related complications.
Despite this, incubation of VAT and SAT with pinitol did not
modify the insulin-signaling pathway, which is in the line with the
results of our intervention study, in which we found no differences
in hydrocarbonated metabolism parameters after chronic con-
sumption of a PEB. This response is specifically associated with the
obese state, since we have previously reported that consumption
of a PEB clearly improves hydrocarbonated metabolism parame-
ters in non-obese subjects [14,16], suggesting that insulin resis-
tance associated with obesity impairs the insulin-signaling
pathway and that the effectiveness of pinitol supplementation is
likely to be higher in individuals without an underlying defect of
insulin action.

PBMCs are also involved in chronic low-grade inflammation,
which confers a proinflammatory phenotype and contributes to
endothelial dysfunction and atherosclerosis. This inflammatory
process may be repressed by SIRT1, since it has been shown to
regulate acetylation of several lysine residues of the p65 subunit of
NF-kB [7]. In fact, SIRT1 is reported to inhibit inflammatory path-
ways in macrophages [33]. In addition, SIRT1 is reduced in PBMCs
from patients with insulin resistance [34] and up-regulated after
weight loss in obese patients, thus decreasing the expression of IL6
[35]. Further support of a role of SIRT1 in chronic inflammation is
provided by evidence that increasing the activity of SIRT1 with the
polyphenol resveratrol reduces chronic inflammation and reba-
lances metabolism and bioenergetics towards homeostasis [36]. In
accordance with this, we now report that chronic consumption of
pinitol by obese subjects induces an evident increase of SIRT1 in
PBMCs, suggesting its involvement in the systemic down-
regulation of the inflammatory response.

One of the strengths of this study is that we have evaluated the
anti-inflammatory effect of pinitol on the main producers of cyto-
kines in in vivo and ex vivo models of human obesity. On the other
hand, the main limitation of the present study was the reduced
although homogeneous sample size. Further interventional studies
involving larger patient samples are necessary to corroborate these
findings and to better understand the underlying molecular
mechanisms responsible for this effect on different tissues and
pathologies.

5. Conclusions

To sum up, as far as we know this is the first study in humans in
which pinitol has been demonstrated to reduce the inflammatory
response. The underlying mechanism appears to involve an
alleviation of ER stress — which is likely to act as a chaperone —
in SAT and an increase in SIRT1 in PBMCs. Although further efforts
are necessary to explore these signaling pathways in obesity,
our data point to the potential of inhibition of ER stress and an
increase in SIRT1 as novel therapeutic strategies in the down-
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regulation of inflammation associated with obesity and its meta-
bolic disorders.
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