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 According to the regulations approved by the Doctoral School and the Academic 

Committee of the PhD Programme in Biomedicine and Biotechnology of the University of 

Valencia: 

 

1. The present PhD thesis has been structured in the form of a compendium of 

publications: 

 The core of the thesis is composed of five original first-author (or co-first-author) 

papers published in Q1 journals according to the Journal Citation Reports database 

(Annex I: Articles). 

 The thesis also includes a global summary consisting of an introductory chapter 

explaining the consistency in the theme of the papers, a chapter containing the 

main results and discussion, and a chapter setting out the general conclusions.  

2. Based on the present PhD thesis Ms. Sandra López Domènech would like to apply  for 

the International Doctorate Mention: 

 During the training period the PhD candidate has spent six months in a prestigious 

research centre outside Spain (Cleveland Clinic/Pennington Biomedical Research 

Center, USA). 

 The thesis has been written in its entirety English and will be defended in English.  

 

3. A summary in Spanish (Resumen) has been included, since it is one of the official 

languages of the University of Valencia. 
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CRP C-reactive protein 
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eIF2α eukaryotic initiation factor 2α 

eNOS endothelial nitric oxide synthase enzyme 

ER endoplasmic reticulum / retículo endoplasmático 

ERAD endoplasmic reticulum-associated protein degradation 
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GRP78 78-kDa glucose-regulated protein 

GSH glutathione 

GLUT4 glucose transporter type 4 
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JNK c-Jun N-terminal kinase 
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MCP-1 monocyte chemoattractant protein-1 

MPO myeloperoxidase / mieloperoxidasa 

mROS mitochondrial reactive oxygen species 
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NOX nicotinamide adenine dinucleotide phosphate [NADPH] oxidase 
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TNFα tumour necrosis factor α 
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Introducción 

La obesidad es una enfermedad multifactorial caracterizada por una sobrecarga 

metabólica de los tejidos asociada a inflamación crónica de bajo grado, alteración del 

metabolismo lipídico e insulín resistencia (IR), entre otras alteraciones metabólicas. 

Además es un factor de riesgo para la aparición de otras patologías como la diabetes tipo 2 

(T2D, del inglés type 2 diabetes), dislipemia, hipertensión arterial, aterosclerosis y ciertos 

tipos de cáncer, lo cual hace que se multiplique hasta por tres el riesgo de muerte en 

comparación con el de las personas no obesas. Todas estas circunstancias junto con un 

aumento drástico de su prevalencia en los últimos años, sobre todo en los países 

desarrollados, confieren a esta enfermedad una especial atención. Además de estas 

comorbilidades, la obesidad se ha asociado recientemente con un incremento en la 

prevalencia de periodontitis crónica, una enfermedad inflamatoria y destructiva de los 

tejidos de soporte de los dientes exacerbada por un aumento en la expresión de citoquinas 

proinflamatorias y hormonas derivadas del tejido adiposo. De hecho, se sabe que los 

pacientes con obesidad tienen hasta cinco veces más riesgo de sufrir periodontitis crónica 

que los sujetos sanos, aunque los mecanismos de asociación entre ambas patologías no 

son del todo conocidos. 

Los trastornos metabólicos asociados a la obesidad están íntimamente 

relacionados con el desarrollo de disfunción endotelial y aterosclerosis, aunque incluso los 

pacientes obesos sin signos clínicos de deterioro metabólico se encuentran ante un mayor 

riesgo de sufrir complicaciones cardiovasculares (CV). De manera similar, la periodontitis 

crónica se ha convertido en un factor de riesgo potencial para el desarrollo de disfunción 

endotelial, y comparte con la obesidad algunos de los mecanismos implicados en la 

aparición de esta alteración vascular, como la inflamación y el estrés oxidativo. 

La inflamación sistémica es una de las características más relevantes de la obesidad 

que subyace a gran parte de los procesos fisiopatológicos de la enfermedad. El excesivo 

almacenamiento de triglicéridos (TG) en el adipocito como consecuencia del elevado input 

de nutrientes conlleva a la hipertrofia y disfunción del tejido adiposo, caracterizada por un 

aumento en la secreción de citoquinas, adipoquinas y factores protrombóticos como la IL6 

(del inglés interleukin 6), TNFα (del inglés tumour necrosis factor α), RBP4 (del inglés retinol 

binding protein 4), MCP-1 (del inglés monocyte chemoattractant protein-1) o PAI-1 (del 
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inglés plasminogen activator inhibitor-1) que contribuyen a la inflamación sistémica y la 

activación crónica de las células del sistema inmune, que son reclutadas hacia el tejido 

adiposo donde participan en el remodelado del mismo. Los macrófagos infiltrados además 

amplifican la señal inflamatoria y desencadenan IR en los adipocitos. El subsecuente 

bloqueo de la acción antilipolítica de la insulina promueve la liberación de ácidos grasos 

desde el adipocito al torrente sanguíneo, donde inician mecanismos de lipotoxicidad y 

disposición ectópica de lípidos, contribuyendo al desarrollo de IR sistémica. Este proceso 

está especialmente acentuado en el tejido adiposo visceral, que drena ácidos grasos y 

citoquinas directamente al hígado donde contribuye a la IR local y la alteración del 

metabolismo lipídico, desencadenando la dislipemia aterogénica. Ésta se caracteriza por el 

descenso de los niveles de lipoproteínas de alta densidad (HDL, del inglés high-density 

lipoprotein) y el incremento de TG y lipoproteínas de baja densidad (LDL, del inglés low-

density lipoprotein), especialmente de LDL pequeñas y densas (sdLDL, del inglés small and 

dense low-density lipoprotein), incrementándose el riesgo de eventos CV adversos y la 

morbimortalidad. 

Como resultado de estos procesos fisiopatológicos se produce una alteración 

metabólica generalizada con elevados niveles circulantes de citoquinas inflamatorias, 

resistencia a la insulina que favorece el incremento de los niveles circulantes de glucosa, y 

ácidos grasos, todos ellos factores que contribuyen a la disfunción endotelial. Este proceso 

se caracteriza, entre otros, por alteraciones en la actividad de la enzima eNOS (del inglés 

endotelial nitric oxide synthase enzyme) y la reducción de la biodisponibilidad de óxido 

nítrico (NO, del inglés nitric oxide), encargado del mantenimiento del tono y la homeostasis 

del sistema vascular. En este sentido, la alteración de la barrera endotelial favorece la 

migración de las sdLDL hacia la región subendotelial, donde el ambiente prooxidante 

favorece su oxidación que, junto con otros estímulos proinflamatorios y la hiperglicemia, 

conduce a la activación de las células endoteliales, que secretan factores quimioatrayentes 

y moléculas de adhesión como selectinas, ICAM-1 (del inglés intercellular adhesion 

molecule-1) y VCAM-1 (del inglés vascular cell adhesion molecule-1) favoreciendo el 

reclutamiento de leucocitos hacia la pared del vaso. Durante la activación de la cascada de 

adhesión los leucocitos disminuyen su velocidad y comienzan a rodar sobre el endotelio, 

tras lo cual se adhieren firmemente al mismo y comienzan el proceso de transmigración 

hacia la zona subendotelial en su mecanismo habitual de migración hacia el foco 
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inflamatorio. Sin embargo, en el contexto proaterogénico de la obesidad este proceso 

también constituye una etapa temprana del proceso aterosclerótico, puesto que los 

macrófagos infiltrados fagocitan ávidamente las moléculas oxidadas de sdLDL 

transformándose en células espumosas que contribuyen al remodelado de la zona 

subendotelial y la formación de la placa de ateroma en la región de la íntima media, cuya 

evolución puede llevar a complicaciones vasculares mayores como isquemia o los 

accidentes aterotrombóticos. Estas evidencias ponen de manifiesto la relevancia del 

estudio de los mecanismos subyacentes a la alteración de la dinámica entre los leucocitos 

y el endotelio vascular que permitan apuntar a nuevas dianas terapéuticas para disminuir 

el riesgo CV en esta población.  

El estrés oxidativo es otro de los mecanismos fisiopatológicos asociados a la 

disfunción endotelial y el proceso aterogénico en las enfermedades metabólicas, donde el 

incremento de la producción de especies reactivas de oxígeno (ROS, del inglés reactive 

oxygen species) se suma a un sistema antioxidante defectuoso, produciéndose un 

desequilibrio generalizado del estado redox. Entre las mayores fuentes de ROS en la célula 

se encuentra la mitocondria, especialmente la cadena de transporte de electrones cuya 

función se encuentra sobrecargada en la obesidad debido al excesivo input de sustratos 

energéticos provenientes del metabolismo, produciendo un exceso de ROS durante la 

formación de ATP por fosforilación oxidativa. Este exceso de radicales libres produce daños 

oxidativos en las macromoléculas que pierden funcionalidad, como las que conforman la 

mitocondria que por proximidad a la cadena de transporte de electrones son 

especialmente vulnerables al daño oxidativo, produciéndose disfunción mitocondrial. La 

disfunción mitocondrial y el estrés oxidativo ocurren en la obesidad mediados por 

estímulos como la hiperglicemia o la inflamación sistémica y se han relacionado 

ampliamente con el desarrollo de enfermedad CV, pues interfieren notablemente en la 

función de la eNOS y la disponibilidad de NO en el endotelio. Sin embargo, además de la 

producción de ROS mitocondriales, existen otras fuentes de especies oxidantes relevantes 

para la disfunción endotelial, como la mieloperoxidasa (MPO) o la NOX (del inglés 

nicotinamide adenine dinucleotide phosphate [NADPH] oxidase), cuya actividad está 

incrementada en la obesidad. 

Íntimamente ligado al estrés oxidativo y la disfunción mitocondrial se encuentra la 

inducción de estrés de retículo endoplasmático (ER, del inglés endoplasmic reticulum), 
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pues son mecanismos que convergen en las enfermedades metabólicas como la obesidad 

y la T2D. El ER es el orgánulo celular encargado de la traducción y el procesamiento de las 

proteínas, además de actuar como almacén de Ca2+, el cual es necesario para el correcto 

plegamiento de estas biomoléculas. A nivel sistémico actúa como un sensor de nutrientes, 

lo que es especialmente relevante en la obesidad en la que, como ya hemos mencionado 

anteriromente, se produce un incremento de los niveles circulantes de citoquinas 

inflamatorias, ácidos grasos libres, glucosa, y también exceso de producción de ROS, que a 

su vez contribuyen al desarrollo de estrés de ER, caracterizado por la acumulación de 

proteínas mal plegadas en el lumen. En consecuencia se activa la respuesta al mal 

plegamiento proteico o UPR (del inglés unfolded protein response) conformada por tres 

cascadas de señalización iniciadas por ATF6 (del inglés activating transcription factor 6), 

IRE1α (del inglés inositol requiring enzyme 1 α) y PERK (del inglés double-stranded RNA-

activated protein kinase-like kinase), cuyos factores de transcripción finales promueven en 

primer lugar respuestas adaptativas con el objetivo de recuperar la homeostasis celular, 

como la expresión de chaperonas, antioxidantes, rutas de degradación de proteínas o 

autofagia. Sin embargo, ante situaciones de estrés persistente como en la obesidad se 

desencadenan respuestas crónicas tales como la expresión de factores proapoptóticos 

como CHOP (del inglés CCAAT/enhancer binding protein [C/EBP] homologous protein), la 

activación de señales inflamatorias o la liberación excesiva de Ca2+. Se sabe que el estrés 

de ER tiene un papel relevante en la fisiopatología de la obesidad, puesto que su presencia 

en tejidos altamente metabólicos como el hígado, páncreas y tejido adiposo se ha 

relacionado con la inflamación sistémica, el desarrollo de IR e incluso el fallo pancreático, 

siendo un mecanismo importante en la evolución hacia la T2D. Sin embargo, el papel del 

ER en otros tipos celulares como las células inmunes ha sido menos estudiado, aunque 

recientes estudios apuntan a que la activación de esta respuesta en los leucocitos podría 

estar influenciando su capacidad de interaccionar con el endotelio vascular. En base a las 

evidencias del papel del estrés oxidativo y el estrés de ER en la fisiopatología de la 

obesidad y la T2D ambos mecanismos se postulan como potenciales dianas terapéuticas 

para abordar las alteraciones metabólicas asociadas a estas patologías. 

Los diferentes factores biológicos, psicológicos y sociales implicados en la obesidad 

hacen de ésta una enfermedad de difícil abordaje. Entre las intervenciones terapéuticas se 

incluyen los cambios en el estilo de vida y la alimentación, la cirugía bariátrica y el 
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tratamiento farmacológico. Los cambios nutricionales constituyen el tratamiento de 

primera elección para hacer frente a la obesidad, por su menor coste económico y sus 

potenciales beneficios sobre la salud. De hecho, una pérdida de peso moderada de entre 

un 5-10 % ha demostrado ser efectiva para la mejora de la sensibilidad a la insulina y el 

perfil de riesgo CV. Entre las diferentes aproximaciones, las dietas de muy bajo contenido 

calórico o VLCD (del inglés very-low-calorie diets) junto con los cambios en el estilo de vida 

constituyen una de las mejores herramientas para tratar la obesidad, sin embargo, no se 

conoce con exactitud los mecanismos mediante los cuales la pérdida de peso ejercería su 

papel protector. Por otro lado, el uso de inositoles vegetales como tratamiento adyuvante 

en las enfermedades metabólicas ha cobrado especial interés en los últimos años. En este 

sentido, el pinitol es un inositol vegetal al que se le atribuye propiedades sensibilizadoras 

de la acción de la insulina, antiinflamatorias y antioxidantes, como se ha demostrado en 

varios modelos de enfermedad metabólica, aunque sus dianas principales y mecanismos 

de acción son en gran parte desconocidos. 

 

Hipótesis y objetivos 

La obesidad es una enfermedad compleja donde una gran variedad de alteraciones 

metabólicas incluyendo inflamación crónica de bajo grado, IR, estrés oxidativo y 

alteraciones en el perfil lipídico convergen en el desarrollo de disfunción endotelial y 

enfermedad CV. La persistencia de un riesgo CV residual incluso en sujetos obesos 

metabólicamente sanos sugiere que otros factores de riesgo además de clásicos como la 

hipertensión o la hiperlipemia pueden estar actuando de una manera subclínica. En este 

contexto, las células del sistema inmune se encuentran en un estado de hiperactivación 

como consecuencia de la inflamación crónica y desempeñan un papel relevante en el 

desarrollo de complicaciones vasculares, ya que su atracción hacia a la pared vascular es 

un proceso clave en el inicio de la formación de la placa de ateroma. Sin embargo, poco se 

sabe sobre los mecanismos intracelulares que podrían estar mediando esta interacción. 

Hasta el momento se ha descrito que los leucocitos activados presentan una mayor 

producción de ROS, sin embargo, el estado de hiperactivación en el que se encuentran 

podría desencadenar una excesiva producción de especies oxidantes, dando lugar a una 

situación de estrés oxidativo, un mecanismo implicado en la disfunción endotelial. Por lo 
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tanto, es probable que el estrés oxidativo en los leucocitos esté alterando la dinámica 

entre éstos y el endotelio vascular en el contexto de la obesidad, donde el aumento de la 

adiposidad podría estar agravando el proceso. De manera similar, la periodontitis 

comparte varios mecanismos fisopatológicos con la obesidad, incluido la inflamación 

crónica, la hiperactivación del sistema inmune y el estrés oxidativo. De esta manera, la 

presencia concomitante de obesidad y periodontitis podría estar acrecentando la 

inflamación sistémica y el desequilibrio redox en los leucocitos, aumentando así sus 

interacciones con el endotelio.  

En este desequilibrio redox de los leucocitos podría estar implicada la mitocondria, 

puesto que es el mayor productor de radicales libres en la célula. A su vez, dada la 

conexión entre la mitocondria y el ER, la alteración en la funcionalidad de estos orgánulos 

podría generar un estado de estrés que comprometería la homeostasis celular, y podría 

ser, en parte, responsable de la alteración de la dinámica entre leucocitos y endotelio, 

como se ha demostrado previamente en enfermedades metabólicas como la T2D. Por el 

contrario, las estrategias dietéticas para la pérdida de peso podrían estar mejorando estas 

situaciones patológicas al disminuir la carga metabólica del sistema. De hecho, la pérdida 

de peso moderada ha demostrado ser efectiva para redudir las complicaciones 

metabólicas y el riesgo CV, aunque los mecanismos que median estos efectos son en gran 

parte desconocidos. Por tanto, los estudios que profundicen en la modulación de los 

mecanismos de estrés intracelular y homeostasis metabólica tras la pérdida de peso serían 

relevantes para ampliar el conocimiento sobre la fisiopatología de la obesidad y el 

descubrimiento de nuevas dianas terapéuticas que pudieran mimetizar los beneficios de la 

pérdida de peso. Finalmente, el uso de inositoles como el pinitol ha demostrado mejorar la 

sensibilidad a la insulina y mejorar el perfil inflamatorio en el contexto de la enfermedad 

metabólica, aunque las dianas moleculares del pinitol son en gran parte desconocidas.  

 

En base a lo expuesto anteriormente, se propusieron los siguientes objetivos para 

la presente tesis doctoral: 

1. Evaluar la relación entre la función mitocondrial y la producción de ROS en los 

leucocitos y sus interacciones con el endotelio según el grado de obesidad. 
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2. Determinar si la presencia y el grado de severidad de la periodontitis crónica en una 

población con obesidad podría estar alterando la dinámica entre los leucocitos y las 

células endoteliales vasculares a través de mecanismos que involucren una 

inducción de estrés oxidativo. 

3. Evaluar si una intervención dietética para la pérdida moderada de peso mejora el 

equilibrio redox y los marcadores de aterosclerosis subclínica en una población con 

obesidad mórbida. 

4. Investigar cómo el estrés de RE, la disfunción mitocondrial y las vías inflamatorias 

pueden estar moduladas por la pérdida de peso en los leucocitos de pacientes con 

obesidad. 

5. Explorar la posible función protectora del pinitol como un chaperona molecular 

capaz de mejorar el estrés de RE crónico y la señalización inflamatoria en el tejido 

adiposo y los leucocitos de pacientes con obesidad. 

 

Material y Métodos 

Sujetos de estudio 

Se reclutaron varias cohortes de pacientes de mediana edad con normopeso, 

sobrepeso u obesidad que acudieron al Servicio de Endocrinología y Nutrición y/o al 

Servicio de Estomatología del Hospital Universitario Doctor Peset (València). De forma 

general se incluyeron sujetos con edad ≥ 18 años que se diagnosticaron en función de su 

índice de masa corporal (BMI, del inglés body mass index). De forma específica para los 

estudios de intervención se seleccionaron pacientes con un BMI ≥ 35 kg/m2
 que hubieran 

mantenido un peso estable en los 2 meses previos al programa dietético. Los criterios 

generales de exclusión fueron embarazo o lactancia, enfermedades severas incluida la 

oncológica, renal, hepática, inflamatoria crónica o historia de enfermedad CV, tratamiento 

con antiinflamatorios, abuso de alcohol o drogas y obesidad secundaria (hipotiroidismo, 

síndrome de Cushing). De forma específica en los estudios transversales se excluyeron 

además los pacientes con diabetes mellitus diagnosticada según los criterios de la 

American Diabetes Association (ADA). Para el estudio de periodontitis crónica se 
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excluyeron además pacientes con menos de 14 dientes, con otras enfermedades 

infecciosas o inflamatorias orales y aquellos bajo tratamiento con antibióticos. 

Tras firmar el consentimiento informado, los pacientes se sometieron a un examen 

físico consistente en la evaluación del peso, talla, BMI, presión arterial y perímetro de 

cintura y cadera. En paralelo, se les realizó una extracción sanguínea en ayunas para la 

determinación de parámetros bioquímicos clínicos como el perfil lipídico – colesterol total, 

LDL, HDL, TG, apolipoproteinas AI y B –, parámetros de metabolismo hidrocarbonado – 

glucosa, insulina, hemoglobina glicosilada (A1c), HOMA-IR –, marcadores inflamatorios y 

de riesgo CV emergentes – proteína C reactiva (CRP, del inglés C-reactive protein), C3c (del 

inglés component complement 3) y RBP4 – y hemograma. El suero remanente se conservó 

a -80 ºC para posteriores determinaciones. 

Para el estudio transversal de los diferentes grados de obesidad los pacientes se 

clasificaron según el BMI en no obesos (< 30 kg/m2), obesos de grado I-II (30 - 40 kg/m2) y 

obesos mórbidos (> 40 kg/m2). Para el estudio transversal de la periodontitis crónica los 

pacientes pasaron una evaluación periodontal completa con determinación de la 

profundidad de sondaje (PD), pérdida de inserción clínica (CAL) así como el índice de 

sangrado y el índice de placa. Con estos parámetros los pacientes fueron diagnosticados y 

clasificados según el grado de enfermedad periodontal en sujetos sin periodontitis crónica 

o con periodontitis crónica leve, moderada o severa, según los criterios del Center of 

Disease Control and Prevention/American Academy of Periodontology (CDC/AAP). 

Intervención dietética 

Pacientes con BMI ≥ 35 kg/m2 fueron sometidos a un tratamiento dietético con una 

duración total de 6 meses consistente en 6 semanas de una dieta VLCD de 

aproximadamente 654 kcal/día seguida de 18 semanas de dieta de bajo contenido calórico 

de entre 1200-1800 kcal/día ajustada a los requerimientos nutricionales individuales. Los 

exámenes físicos y las extracciones sanguíneas se llevaron a cabo a nivel basal y 6 meses 

tras el tratamiento dietético, sin que se pautaran cambios en la medicación ni en patrones 

de actividad física durante el periodo de estudio. 
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Evaluaciones séricas de moléculas de inflamación, adhesión, estrés oxidativo y 

subfracciones de LDL 

Diversas metodologías fueron utilizadas para el análisis sérico de parámetros no 

incluidos en la analítica de referencia. Por un lado, se utilizaron kits Milliplex para el análisis 

simultáneo de paneles de moléculas mediante tecnología X-MAP de Luminex, con el que 

evaluamos los niveles de IL6, TNFα, P-selectina, ICAM-1, VCAM-1 y MPO. En paralelo se 

analizaron los niveles de PSGL-1 (del inglés P-selectin glycoprotein ligand-1), el receptor de  

P-selectina en los leucocitos, mediante la técnica ELISA. La actividad catalasa se midió 

mediante kits enzimáticos comerciales específicos. El contenido de glutatión se analizó en 

lisado de eritrocitos mediante un kit comercial. Además, la carbonilación de proteínas 

séricas se evaluó con un test colorimétrico basado en la reacción de derivatización. Por 

último, las subfracciones de LDL se evaluaron mediante el análisis del perfil electroforético 

específico con el sistema Lipoprint®. 

Aislamiento de leucocitos de sangre periférica 

Las muestras de sangre se incubaron con dextrano al 3 % durante 45 minutos y se 

sometieron a centrifugación (650 g durante 25 minutos a temperatura ambiente) en un 

gradiente de densidad de Ficoll-Hypaque para aislar la fracción de leucocitos. Después de 

la centrifugación, los eritrocitos remanentes se lisaron y el precipitado celular se lavó con 

HBSS. 

Ensayos de interacción leucocito-endotelio 

Los ensayos de adhesión se llevaron a cabo mediante el uso de un sistema de 

cámara de flujo paralelo acoplado a un microscopio invertido de contraste de fases, a 

través del cual se perfundió una suspensión de leucocitos ex vivo sobre una monocapa de 

células endoteliales humanas (aisladas de cordón umbilical mediante colagenasa) en 

condiciones que simulan las del flujo sanguíneo. Se registraron videos de 5 minutos en 

tiempo real donde se evaluaron tres parámetros de interacción leucocito-endotelio: la 

velocidad de rodamiento (tiempo que tardan 20 leucocitos consecutivos en recorrer una 

distancia de 100 μm dentro del campo de enfoque), el flujo de rodamiento (número de 

leucocitos que ruedan en una superficie de 100 μm2 de células endoteliales durante un 
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minuto) y la adhesión (número de leucocitos que mantienen un contacto estable con las 

células endoteliales durante al menos 30 segundos). 

Ensayos de estrés oxidativo y función mitocondrial 

Los leucocitos se sembraron por duplicado en placas de 48 pocillos y se incubaron 

ex vivo durante 30 minutos a 37ºC en HBSS con diferentes sondas fluorescentes: DCFH-DA 

(del inglés 2',7'-dichlorodihydrofluorescein diacetate), indicativo de la producción total de 

ROS; Fluo-4, que mide Ca2+ intracelular; CMFDA (del inglés 5-chloromethylfluorescein 

diacetate), que mide contenido de glutatión; Mitosox-Red, indicativo de la producción de 

superóxido mitocondrial; DHE (del inglés dihydroethidium), que evalúa los niveles de 

superóxido total; TMRM (del inglés tetramethylrhodamine, methyl ester), indicativo del 

potencial de membrana (ΔѰ) mitocondrial; y Hoescht, indicativo de la morfología nuclear. 

Las imágenes de fluorescencia emitida fueron captadas y analizadas con un microscopio de 

fluorescencia IX81 de Olympus acoplado al software de citometría estática “ScanR”. 

Ensayos de suplementación con pinitol y tratamiento ex vivo de adipocitos 

Para el ensayo de suplementación se reclutaron sujetos con obesidad (BMI ≥ 30 

kg/m2) cuyas pautas dietéticas fueron normalizadas previo al inicio del estudio. A 

continuación, se les pautó el consumo de una bebida enriquecida en pinitol (4 g/día) 

durante 12 semanas. Por otro lado, en otra cohorte de pacientes obesos que fueron 

sometidos a cirugía de bypass gástrico se obtuvieron biopsias de tejido adiposo visceral y 

subcutáneo, que se trataron con pinitol (30 µM) durante 48h. 

Análisis de expresión de marcadores intracelulares 

Se procedió a la extracción, purificación y cuantificación de proteína y mRNA de 

leucocitos y tejido adiposo según procedimientos estándar y/o mediante kits comerciales 

específicos. El análisis de expresión de proteínas se llevó a cabo tras la separación de las 

mismas por electroforesis SDS-PAGE, transferencia y posterior inmunoblot de las 

membranas de nitrocelulosa con anticuerpos específicos. La señal se detectó mediante 

quimioluminiscencia con reveladores específicos y se analizó por densitometría óptica. Por 

otro lado, la evaluación de los niveles de mRNA se realizó mediante RT-PCR cuantitativa 

con primers específicos. Con estas técnicas evaluamos marcadores de estrés de ER – 

GRP78 (del inglés 78-kDa glucose-regulated protein), sXBP1 (del inglés spliced X box 
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protein-1), eIF2α (del inglés eukaryotic initiation factor 2α), ATF6 y CHOP – mediadores 

inflamatorios – NFκB (del inglés nuclear factor κΒ), SIRT1 (del inglés sirtuin 1), JNK (del 

inglés c-Jun N-terminal kinase) –, mediadores de la ruta de la insulina – GLUT4 (del inglés 

glucose transporter type 4), IR (del inglés insulin receptor), PPARγ (del inglés peroxisome 

proliferator-activated receptor γ) – y la enzima antioxidante GPX1 (del inglés glutathione 

peroxidase 1). 

Análisis estadístico 

 El programa SPSS 19.0 se utilizó para el análisis estadístico de los resultados. Las 

variables continuas se expresaron como media y desviación estándar (SD, del inglés 

standard deviation), o como mediana y percentiles 25 y 75 para datos paramétricos y no 

paramétricos, respectivamente. Los datos cualitativos se expresaron como porcentajes. 

Los datos se compararon utilizando la prueba t de Student para muestras paramétricas 

para dos grupos, o el análisis de varianza de una vía (ANOVA) y una prueba  

post-hoc de Student-Newmann-Keuls para tres o más grupos. Para la comparación de 

proporciones se utilizó la prueba del Chi-cuadrado. Para evaluar la fuerza de asociación 

entre variables se llevó a cabo el cálculo del coeficiente de correlación de Pearson. En el 

modelo de regresión multivariante, la relación entre dos o más variables explicativas 

(variables independientes) y una variable de respuesta (variable dependiente) se evaluó 

ajustando una ecuación lineal a los datos obtenidos. Todas las pruebas tuvieron un 

intervalo de confianza del 95 % y las diferencias se consideraron significativas cuando el  

p < 0.05. 

 

Resultados y discusión 

En cuanto a las características generales de la población de estudio, el incremento 

de BMI se asoció con mayor perímetro de cintura y un aumento de la presión arterial y del 

índice HOMA-IR de resistencia a la insulina, si bien los niveles de A1c y glucosa en ayunas 

no reflejan alteraciones relevantes del control glicémico en general. Con respecto al perfil 

lipídico los niveles de colesterol LDL se mantuvieron dentro de los valores de referencia en 

todas las cohortes sin diferencias significativas entre los grupos, probablemente debido al 

uso de tratamientos hipolipemiantes. Por el contrario, el colesterol HDL se redujo de forma 

característica y los niveles de TG aumentaron en paralelo con el grado de obesidad, 
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mostrando características típicas de dislipemia aterogénica. De hecho, algunos de los 

pacientes presentaron comorbilidades metabólicas asociadas de forma común a la 

obesidad, como la hipertensión (19-27 %), la hiperlipemia (10-30 %) y la T2D (18 %), 

excepto en los estudios transversales en los que se excluyó a los pacientes diabéticos. 

En línea con hallazgos anteriores, nuestros resultados describen un estado de 

inflamación crónica en nuestros pacientes obesos, en los que los niveles circulantes de 

CRP, IL6 y TNFα aumentaron en paralelo con el grado creciente de adiposidad, lo que 

podría estar alterando la función endotelial. Concretamente la CRP, cuya síntesis está 

promovida en el hígado por IL6, es un reactante de fase aguda que se ha asociado a la 

obesidad y la T2D y al que se le ha conferido un papel predictor de eventos CV. Esta 

proteína promueve la activación del endotelio y la expresión de moléculas de adhesión y 

factores quimioatrayentes. De forma similar, TNFα se sobreexpresa en tejido adiposo y 

células inmunes de pacientes obesos y es un potente promotor no sólo de resistencia a la 

insulina, sino también de disfunción endotelial, especialmente a través de la reducción de 

la biodisponibilidad de NO, lo que conlleva un mayor riesgo de eventos coronarios. Al 

explorar la respuesta de las células endoteliales a esta inflamación sistémica encontramos 

un aumento paralelo de los niveles circulantes de ICAM-1 y P-selectina con el grado de 

obesidad. Estas moléculas de adhesión son consideradas marcadores de activación 

endotelial y participan en el reclutamiento de leucocitos hacia la pared vascular durante 

los procesos inflamatorios; sin embargo, la elevación de sus niveles en pacientes con 

obesidad o T2D se considera un marcador de riesgo CV. De hecho, cuando analizamos las 

interacciones leucocito-endotelio observamos un descenso progresivo de la velocidad de 

rodamiento de los leucocitos y un flujo de rodamiento mayor, lo que indica que los 

leucocitos están frenando sobre el endotelio vascular. Además, se observó un mayor 

número de leucocitos que se adherían firmemente al endotelio, el paso previo a la 

transmigración hacia el espacio subendotelial. El análisis de correlación bivariada reveló la 

asociación entre los parámetros de interacción leucocito-endotelio con BMI, citoquinas 

inflamatorias y moléculas de adhesión. Estos resultados sugieren que el grado creciente de 

obesidad produce disfunción endotelial, inflamación y promueve las interacciones entre 

los leucocitos y la vasculatura.  

Por otro lado, la inflamación sistémica también causa alteraciones en la respuesta 

inmune del huésped, lo que aumenta la susceptibilidad a la infección bacteriana y se 
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presenta como un posible mecanismo de conexión entre la obesidad y la periodontitis 

crónica. De hecho, en una cohorte de pacientes obesos ajustados por BMI encontramos un 

mayor recuento leucocitario en aquellos con periodontitis crónica, lo que sugiere la 

hiperactivación del sistema inmunológico en presencia de esta enfermedad periodontal. 

Además, la periodontitis crónica parece exacerbar aún más la reacción inflamatoria en 

pacientes con obesidad, puesto que observamos un incremento progresivo de los niveles 

de TNFα, CRP y RBP4 a medida que aumentaba el grado de severidad de la periodontitis. A 

la luz de estos hallazgos y de los muchos vínculos establecidos entre la periodontitis 

crónica, la obesidad y la enfermedad CV, evaluamos el efecto de esta alteración 

periodontal en las interacciones entre leucocitos y células endoteliales. Así, observamos 

que la presencia de periodontitis crónica promuevió el flujo de rodamiento y la adhesión, y 

que estos parámetros se correlacionaron no sólo con los marcadores periodontales 

clínicos sino también con TNFα y RBP4, lo que sugiere una asociación dinámica entre 

periodontitis crónica, inflamación y aterogénesis. 

Además de la inflamación sistémica, la resistencia a la insulina y la hiperglicemia se 

han asociado previamente con la disfunción endotelial, en parte a través de la inducción 

de estrés oxidativo. Previamente en nuestro laboratorio hemos descrito que la IR podría 

ser un desencadenante del incremento de la producción de ROS también en los leucocitos 

circulantes, en base a estudios realizados en pacientes con T2D y con síndrome de ovario 

poliquístico (PCOS, del inglés polycystic ovary syndrome), donde un peor control glicémico 

o un mayor grado de IR respectivamente se correspondieron con mayor estrés oxidativo 

en estas células inmunes, lo que promovió un incremento de sus interacciones con el 

endotelio vascular. De forma similar, nuestros resultados describen un aumento de la 

producción de ROS totales y anión superóxido en los leucocitos de pacientes obesos no 

diabéticos, especialmente en el grupo con mayor grado de obesidad e IR. Además, tanto 

los marcadores de IR como el anión superóxido se correlacionaron con los parámetros de 

adhesión de los leucocitos, emergiendo como predictores independientes en el modelo de 

regresión multivariante. Estos resultados sugirieron que, de forma similar a otras 

enfermedades metabólicas, en la obesidad la IR podría estar alterando el estado redox 

intracelular de los leucocitos promoviendo su interacción con el endotelio en las primeras 

etapas del proceso aterosclerótico.  
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Dada la gran contribución de la disfunción mitocondrial al desequilibrio redox, es 

probable que el aumento de superóxido detectado pueda estar relacionado con una 

actividad mitocondrial dañada. La disfunción mitocondrial en la obesidad es una respuesta 

fisiológica maladaptativa al exceso de suministro de nutrientes, que aumenta el flujo de 

electrones hacia la cadena de transporte de electrones, incrementándose la producción de 

ROS y el ΔѰ mitocondrial. De hecho, de forma similar a lo descrito por algunos autores en 

leucocitos de pacientes con T2D, en este estudio observamos una elevación del ΔѰ 

mitocondrial en paralelo con el grado de adiposidad, lo que asociado a una presencia 

elevada de superóxido, indica una afectación de la función mitocondrial asociada a la 

obesidad. La sobreproducción de ROS también es una característica relevante de los 

leucocitos hiperreactivos en la periodontitis crónica. De hecho, en el estudio periodontal 

encontramos que, en los leucocitos de pacientes con el mismo grado de obesidad, la 

producción de superóxido se incrementó progresivamente con el grado de severidad de la 

periodontitis crónica y se correlacionó con el aumento de las interacciones de los 

leucocitos sobre el endotelio, similar a lo que encontramos con el grado creciente de 

adiposidad. Sin embargo, no hubo cambios en el ΔѰ mitocondrial, lo que podría indicar 

otras fuentes mayoritarias de producción de ROS no mitocondriales. Estas evidencias 

sugieren de nuevo que la producción de especies oxidantes en los leucocitos es un 

mecanismo potencial de alteración de su dinámica con el endotelio. En conjunto, los 

resultados de este estudio apuntan a que la presencia concomitante de obesidad y 

periodontitis crónica podría estar aumentando el riesgo de desarrollar aterosclerosis en 

estos pacientes, entre otros, a través de la exacerbación de la respuesta inflamatoria y 

oxidativa. 

Los datos transversales discutidos anteriormente contribuyen al conocimiento de 

los mecanismos y factores involucrados en las primeras etapas del proceso aterosclerótico 

en la obesidad. En el presente proyecto fuimos un paso más allá, investigando el efecto de 

la pérdida de peso en estos procesos. Previamente, la pérdida de peso ha demostrado ser 

una estrategia efectiva para mejorar la función cardiometabólica ejerciendo también un 

papel protector sobre el avance de la enfermedad aterosclerótica; sin embargo, los 

mecanismos que median este efecto beneficioso son en gran parte desconocidos. En 

nuestra población, una pérdida de peso moderada de alrededor de un 9 % mejoró la 

sensibilidad a la insulina, como indican los niveles de glucosa en ayunas, insulina, HOMA-IR 
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y A1c, y redujo los niveles circulantes de TNFα, PCR, RBP4 y P-selectina, junto con un 

aumento de PSGL-1 (el receptor de P-selectina en leucocitos), que podría indicar una 

mayor escisión del mismo de la superficie de los leucocitos. Esta disminución notable de 

los marcadores de resistencia a la insulina, inflamación crónica y activación endotelial se 

tradujo en una menor adherencia de los leucocitos al endotelio vascular. En base a los 

resultados del estudio transversal quisimos saber si este proceso podría estar relacionado 

con cambios en el estado redox de los leucocitos y en la función mitocondrial. Observamos 

así una reducción del ΔѰ mitocondrial tras la pérdida de peso, que se acompañó con una 

reducción en la producción de ROS totales y mitocondriales en los leucocitos. De forma 

paralela, se incrementó la expresión de la enzima GPX1 en los leucocitos, una enzima 

antioxidante que puede encontrarse tanto en el citosol como en la mitocondria y que se 

considera uno de los mayores neutralizadores de ROS celulares, lo que podría estar 

contribuyendo a reducir el estrés oxidativo en los leucocitos. La producción de ROS 

también está relacionada de forma bidireccional con la activación del NFκB, un regulador 

clave de la respuesta inflamatoria cuya expresión en leucocitos de pacientes obesos se ha 

visto aumentada junto con la producción de TNFα, contribuyendo a la hiperactivación 

permanente que presentan las células inmunes de estos pacientes. En el presente estudio, 

la expresión de NFκB en los leucocitos se redujo tras la pérdida de peso junto con el estrés 

oxidativo, lo que podría indicar una disminución de la activación leucocitaria. También 

observamos una regulación positiva de la expresión de SIRT1, cuya expresión se induce 

tras la restricción calórica y está implicada en mecanismos de supervivencia celular y 

regulación antiinflamatoria, ya que promueve la degradación de NFκB. En un estudio 

previo en nuestro laboratorio, el uso del antioxidante SS-31 redujo la producción de ROS 

en leucocitos de pacientes con T2D, a la vez que indujo la expresión de SIRT1 y redujo la 

activación de NFκB. Todo esto se tradujo en una disminución de las interacciones 

leucocito-endotelio, lo que refuerza la relación entre estas rutas intracelulares de estrés y 

la activación de un fenotipo adherente en los leucocitos. En su conjunto estos resultados 

revelan que la pérdida moderada de peso mediada por dieta es capaz de reducir la 

inflamación sistémica y el grado de IR en pacientes con obesidad, reduciendo la disfunción 

endotelial. Además, esto se asocia con una disminución de la producción de ROS en los 

leucocitos y de la activación intracelular, lo que podría estar disminuyendo su interacción 

con el endotelio vascular. 
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Además de las mitocondrias, en los leucocitos existen otras fuentes de especies 

oxidantes relevantes como la MPO, una enzima crucial para la defensa frente a patógenos; 

sin embargo, la liberación sistémica excesiva de MPO desde los leucocitos en un contexto 

inflamatorio como la obesidad puede contribuir al estrés oxidativo y la lesión vascular. De 

hecho, los niveles séricos elevados de MPO, característicos de la obesidad y la T2D, son 

considerados como un biomarcador temprano del riesgo CV. Estudios previos han descrito 

la capacidad de la MPO de adherirse a las células endoteliales favoreciendo el daño 

oxidativo y el reclutamiento de leucocitos. En el presente estudio observamos un descenso 

de los niveles séricos de MPO tras la pérdida de peso, que se correlacionaron con los de  

P-selectina. De forma paralela, observamos una mejora del equilibrio redox sistémico, 

puesto que disminuyeron los niveles de carbonilación de proteínas séricas (un 

biomarcador de estrés oxidativo sistémico), mientras que aumentó la actividad catalasa 

sérica y el contenido de glutatión en los eritrocitos tras la pérdida de peso, dos potentes 

sistemas antioxidantes. En conjunto, los resultados sugieren una recuperación parcial del 

equilibrio redox después de la pérdida de peso, que podría contribuir a la mejora de la 

función endotelial. 

Otro de los factores que contribuyen a la disfunción endotelial y el proceso 

aterogénico es la alteración del metabolismo hepático de lípidos, promovido en la 

obesidad por la inflamación sistémica y la IR. El exceso de síntesis de lipoproteínas de muy 

baja densidad (VLDL, del inglés very low-density lipoprotein) en el hígado se asocia con el 

incremento de LDL y un cambio en el tamaño del pool de LDL hacia las sdLDL, que tienen 

mayor capacidad para atravesar el endotelio y son más susceptibles a la oxidación. Por su 

parte, las sdLDL oxidadas contribuyen a la activación endotelial y son más fácilmente 

captadas por macrófagos en el espacio subendotelial, lo que confirma su gran potencial 

aterogénico. En nuestro análisis de subfracciones de LDL observamos que a pesar de que 

los niveles de colesterol LDL total se mantuvieron estables tras la pérdida de peso, sí se 

produjo un descenso de las partículas sdLDL y esto se correlacionó con los niveles de MPO, 

que contribuye a su oxidación, sugiriendo que a falta de evidencias clínicas la pérdida de 

peso mejora el perfil de las LDL hacia uno menos aterogénico. En paralelo los niveles de TG 

se redujeron de forma significativa, mientras que el colesterol HDL aumentó, lo que indica 

que de forma general la pérdida moderada de peso inducida por dieta es capaz de mejorar 

el perfil lipídico en los pacientes con obesidad mórbida, reduciendo así el riesgo CV. 
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Además, otros hallazgos del presente estudio refuerzan este papel protector. Tras la 

intervención se redujo la presión arterial de los pacientes, un predictor clásico de riesgo 

CV. El ambiente prooxidante e inflamatorio característico de la obesidad contribuye al 

endurecimiento de las arterias por interferencia con la función endotelial y la modulación 

del tono vascular, lo que podría estar contribuyendo a reducir los valores de tensión 

arterial en nuestra población. Además, observamos una disminución de los niveles 

circulantes de C3c, un predictor de fallo cardiaco considerado un biomarcador de riesgo CV 

emergente. 

A la luz de la relación observada entre la producción de ROS, la función 

mitocondrial de los leucocitos y su capacidad de interacción con el endotelio vascular 

quisimos analizar qué otros mecanismos intracelulares de estrés podrían estar siendo 

modulados tras la pérdida de peso. Recientemente, hemos descrito que la presencia de 

alteraciones metabólicas como el síndrome metabólico o la T2D, comúnmente asociadas a 

la obesidad, incrementa la activación del estrés de ER en los leucocitos de pacientes 

obesos; además hemos descrito la relación entre la activación de las vías de estrés de ER 

crónico, la disfunción mitocondrial y las interacciones leucocito-endotelio en pacientes con 

T2D. En el presente estudio cuando analizamos los cambios en la activación de la UPR tras 

la pérdida de peso encontramos una disminución de la expresión de ATF6, que se 

correlacionó con un descenso marcado de la proteína proapoptótica CHOP. También 

detectamos un descenso significativo de la activación de JNK, que puede estar modulada a 

través de la actividad quinasa de IRE1α. Sin embargo, no se encontraron cambios en 

mediadores de otras rutas de la UPR (eIF2α o sXBP1). Tanto CHOP como JNK son 

considerados marcadores de estrés de ER crónico, y de hecho la activación de JNK es el 

mecanismo más conocido que relaciona el estrés de ER con la inflamación y el desarrollo 

de IR. Por el contrario, se incrementó la expresión de GRP78, una chaperona que 

promueve el plegamiento de proteínas aliviando el estrés de ER y que es considerada un 

factor clave de la respuesta adaptativa de la UPR. Curiosamente, los niveles de GRP78 

correlacionaron con la activación de SIRT1 en los leucocitos, de la que previamente 

habíamos descrito su potencial antiinflamatorio y antienvejecimiento. En conjunto, el 

aumento de GRP78 y SIRT1 y la disminución de ATF6-CHOP y JNK indican una recesión de 

las vías apoptóticas de la UPR a favor de respuestas de supervivencia celular. La 

disminución del estrés de ER tras la pérdida de peso se había descrito previamente en 
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otros tejidos humanos tras cirugía bariátrica, y en modelos murinos tras dieta, lo que 

refuerza nuestros resultados que describen este efecto por primera vez en leucocitos de 

pacientes obesos tras una intervención dietética.  

Estudios previos han encontrado una asociación entre los marcadores de estrés de 

ER crónico en los leucocitos y parámetros de IR sistémica. De forma similar, en nuestro 

estudio el descenso de HOMA-IR después de la pérdida de peso se correlacionó con los 

marcadores de estrés de ER crónicos ATF6 y JNK, lo que apoya la conexión entre la función 

del ER y la homeostasis de la glucosa. Por otro lado, el estrés del ER en los leucocitos 

también podría estar implicado en su capacidad de adherencia y transmigración en el 

endotelio vascular. Previamente en nuestro laboratorio hemos descrito la asociación entre 

los marcadores de estrés de ER en los leucocitos de pacientes con T2D y mayores 

interacciones leucocito-endotelio. Otros autores encontraron marcadores elevados de 

activación de UPR en macrófagos aislados de placas ateroscleróticas. En nuestro estudio 

los marcadores de estrés de ER crónico y las interacciones de los leucocitos en el endotelio 

disminuyeron en paralelo, lo que reforzaría la asociación entre la disfunción en el ER y la 

activación de los leucocitos. 

Por otro lado, las uniones íntimas entre ER y mitocondria favorecen el intercambio 

de señales de estrés como el Ca2+, ROS y citoquinas inflamatorias entre otros, que actúan 

como mecanismos reguladores comunes en los programas celulares de 

muerte/supervivencia. En situaciones de estrés crónico como la obesidad se produce un 

bombeo excesivo de Ca2+ desde el ER hacia la mitocondria, donde puede incrementar el 

ΔѰ, la producción de ROS mitocondriales y culminar en disfunción mitocondrial. A su vez 

estos ROS mitocondriales, al ser transferidos al lumen del ER, pueden interferir con el 

plegamiento oxidativo de proteínas cronificando la situación de estrés. Si este mecanismo 

de retroalimentación se prolonga, ambos orgánulos inician rutas de apoptosis conjuntas 

que pueden llevar a la muerte celular. Nuestros resultados sugieren que la pérdida de peso 

podría estar mejorando la homeostasis celular y la funcionalidad del ER y la mitocondria, 

puesto que un descenso de los marcadores de estrés de ER crónico se acompañó de un 

descenso de los niveles de Ca2+, ΔѰ mitocondrial y producción de ROS mitocondriales. 

En base a éstas y otras evidencias previas, el estrés de ER se postula como una 

diana terapéutica relevante dentro de la fisiopatología de la obesidad, puesto que se 

asocia con la mejora de otras respuestas al estrés celular y alteraciones metabólicas como 
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la IR y la inflamación sistémica. El uso de chaperonas químicas como TUDCA y 4-PBA para 

facilitar el plegamiento de proteínas ha sido ampliamente estudiado en tejidos 

metabólicos como el adiposo o el hepático, donde reducen el estrés de ER y la señalización 

inflamatoria. En este sentido, los efectos antiinflamatorios del pinitol, un inositol vegetal, 

se han descrito previamente en la población con obesidad, aunque los mecanismos 

subyacentes son en gran parte desconocidos. Para evaluar si el pinitol actuaría como una 

chaperona aliviando el estrés de ER, y por lo tanto la inflamación, enyasamos los efectos 

del tratamiento con pinitol en dos de las principales fuentes de citoquinas inflamatorias, 

como son las células inmunes y el tejido adiposo. El consumo de una bebida enriquecida 

en pinitol durante 12 semanas redujo la inflamación sistémica en pacientes con obesidad, 

concretamente los niveles de TNFα e IL6. Sin embargo, no detectamos cambios en 

marcadores de la UPR (GRP78, CHOP) en leucocitos aislados. Por otro lado, tras realizar un 

tratamiento ex vivo de adipocitos de tejido adiposo visceral y subcutáneo con pinitol 

encontramos un descenso de la expresión de ATF6-CHOP acompañado de una disminución 

de la expresión de TNFα e IL6 de forma específica en el tejido subcutáneo, lo que podría 

contribuir a la reducción de la inflamación sistémica que habíamos observado 

previamente. Sin embargo, el tejido adiposo visceral no pareció responder al tratamiento 

con pinitol. Esta regulación diferencial podría explicarse atendiendo a las diferencias 

metabólicas entre ambos depósitos. Por ejemplo, los adipocitos del depósito visceral son 

más insulín resistentes que los del subcutáneo, y de hecho al analizar la expresión de 

mediadores de la ruta de la insulina (GLUT4, IR, PPARγ) en ambos tejidos observamos una 

menor expresión en visceral respecto al subcutáneo. Sin embargo, a pesar de la expresión 

diferencial entre ambos tejidos, el tratamiento con pinitol no modificó la expresión de los 

marcadores en ninguno de los tejidos, ni tampoco mejoró la sensibilidad a la insulina tras 

su consumo, por lo que parece que los efectos insulinomiméticos del pinitol observados en 

otros grupos de pacientes no se reproducen en pacientes con obesidad. Por otro lado, 

dado el potencial antiinflamatorio de SIRT1 y su relación con el estrés de ER evaluamos si 

se produjeron cambios en los niveles de expresión de este mediador, y observamos una 

regulación positiva de SIRT1 en los leucocitos de pacientes obesos después de consumir la 

bebida enriquecida con pinitol, lo que podría explicar en parte el efecto antiinflamatorio 

que se le atribuye a este inositol vegetal. 
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En resumen, la presente tesis doctoral comenzó con un estudio transversal donde 

demostramos que el patrón de interacción entre los leucocitos y el endotelio vascular está 

alterado en la obesidad y se incrementa en paralelo con el grado de adiposidad, los niveles 

crecientes de inflamación sistémica y de IR. Estas observaciones se asociaron con un 

mayor ΔѰ mitocondrial y mayor producción de ROS en los leucocitos de estos pacientes, 

que podrían estar relacionados con el incremento de su adherencia al endotelio. 

Paralelamente, demostramos que el empeoramiento de la condición periodontal en una 

cohorte de pacientes obesos ajustados por BMI se asoció con el aumento de la inflamación 

sistémica y la producción de ROS en los leucocitos, promoviendo así su interacción con el 

endotelio. Estos resultados amplían nuestro conocimiento sobre los mecanismos 

subyacentes a la relación entre la obesidad, la periodontitis y la enfermedad CV. Cuando 

los pacientes fueron sometidos a una intervención dietética para la pérdida de peso 

observamos una disminución de factores proaterogénicos como la inflamación sistémica, 

el estrés oxidativo, la resistencia a la insulina y el perfil de la dislipemia aterogénica, 

reduciéndose la disfunción endotelial y la adherencia de los leucocitos al endotelio. Más 

tarde profundizamos en la modulación de respuestas de estrés intracelular en los 

leucocitos tras de la pérdida de peso y encontramos una reducción del estrés del ER, la 

producción de ROS y el ΔѰ mitocondrial, asociados con un aumento en la expresión de 

chaperonas, mediadores antiinflamatorios y antioxidantes. En conjunto, nuestros 

resultados arrojan luz sobre los posibles mecanismos que subyacen en el papel protector 

de la pérdida de peso en el control metabólico y la homeostasis celular. Finalmente, 

demostramos que el pinitol alivia el estrés del ER y modula la respuesta inflamatoria en el 

tejido adiposo subcutáneo y los leucocitos de pacientes obesos reduciendo la inflamación 

sistémica, lo que demuestra el potencial efecto protector de este inositol vegetal sobre 

algunos de los mecanismos fisiopatológicos que subyacen a la obesidad. 
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Conclusiones 

1. El incremento en el grado de obesidad y el nivel de resistencia a la insulina se 

acompañan de un aumento progresivo de la producción de especies reactivas de 

oxígeno (ROS) y el potencial de membrana (ΔѰ) mitocondrial en los leucocitos 

circulantes. Además, se asocia con un aumento de marcadores de inflamación 

sistémica, disfunción endotelial y mayor adherencia de los leucocitos al endotelio, 

lo que podría aumentar el riesgo de aterogénesis. 

2. La presencia y el grado de severidad de periodontitis crónica en una población con 

obesidad se asocia con una mayor inflamación sistémica, un incremento en la 

producción de anión superóxido por los leucocitos y un aumento de las 

propiedades adherentes de estos a las células endoteliales, respecto a los pacientes 

sin enfermedad periodontal. Estas observaciones sugieren que la periodontitis 

crónica podría ejercer como un factor de riesgo cardiovascular en la obesidad. 

3. La pérdida de peso inducida por dieta mejora el estado cardiometabólico y reduce 

mecanismos proaterogénicos como la señalización inflamatoria, el estrés oxidativo 

y la disfunción endotelial. En este contexto, se reduce la adherencia de los 

leucocitos a las células del endotelio vascular, lo que sugiere un papel protector de 

la pérdida de peso en las etapas tempranas del proceso aterosclerótico. 

4. La pérdida de peso moderada reduce el estrés de retículo endoplasmático (ER) 

crónico favoreciendo las respuestas adaptativas en leucocitos de pacientes obesos, 

que se asocian con una reducción en el ΔѰ mitocondrial. En consecuencia, las 

señales de estrés entre la mitocondria y el ER – Ca2+ y ROS – se reducen, mejorando 

de esta manera la homeostasis celular. 

5. El pinitol modula el estrés de ER crónico en el tejido adiposo subcutáneo de 

pacientes obesos, lo que conlleva una disminución en la expresión de citoquinas 

inflamatorias y un aumento de expresión del mediador antiinflamatorio SIRT1 en 

los leucocitos, reduciéndose así la inflamación sistémica. 
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1.1 Obesity overview 

1.1.1 Definition, diagnosis and classification 

Obesity is a chronic metabolic disease characterized by an excessive accumulation 

of fat. The increase in lipid storage produces adipose tissue dysfunction, which is usually 

accompanied by a cascade of systemic deleterious effects, such as chronic low-grade 

inflammation, dyslipidemia and impaired response to insulin, among other metabolic 

abnormalities, and is associated with an impairment of health-related quality of life and/or 

reduced life expectancy. 

Several methods have been designed to determine the presence and extent of 

obesity, including specific determinations of the fat mass of an individual, such as DEXA 

(dual energy X-ray absorptiometry), bioelectrical impedance or body scanners, and 

evaluations based on anthropometry, such as body mass index (BMI), waist circumference 

(WC), waist-to-hip ratio (WHR) or skin-fold assessment. Of all these parameters, BMI is the 

most commonly used to diagnose and classify obesity in daily practice worldwide (Javed  

et al. 2015) for its simplicity and reproducibility. BMI is an indirect measurement of 

adiposity, obtained by dividing weight in kilograms by height in square meters (kg/m2). The 

classification of obesity based on BMI was established by the World Health Organization 

(WHO) and adopted by other organizations including the Spanish Society for the Study of 

Obesity (SEEDO), and defines undernutrition as BMI < 18.5 kg/m2, normal weight as BMI 

18.5-24.9 kg/m2, overweight as BMI 25-29.9 kg/m2, obesity grade I as BMI 30-34.9 kg/m2, 

obesity grade II as BMI 35-39.9 kg/m2, and obesity grade III or morbid obesity as BMI ≥ 40 

kg/m2 in adulthood (Lecube et al. 2017). 

Nevertheless, BMI is considered a gross measure of the degree of adiposity and in 

some circumstances is not precise enough to reflect the amount and distribution of the 

body fat in an individual (Blundell et al. 2014). In this sense, the pattern of accumulation of 

body fat has special relevance in the development of comorbidities, and determines 

obesity as abdominal, where the accumulation of fat is predominantly mesenteric and 

visceral, or peripheral, in which case the fat accumulation is predominantly subcutaneous. 

The presence of abdominal obesity, more frequent in men, has been related to the 

development of metabolic complications including metabolic syndrome, which particularly 

affects cardiovascular (CV) risk (Despres 2012). Hence, anthropometric measurements 
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such as WC and WHR have been proposed to define more accurately the obesity-

associated risk. Indeed, WC is the most used of the two parameters due to its strong 

correlation with visceral fat deposits (Despres 2012). Consensus reference values are  

WC ≥ 102 cm for men and ≥ 88 cm for women, both indicating abdominal obesity and 

increased risk of morbidity and mortality (Grundy et al. 2005). 

 

1.1.2 Epidemiology and risk factors 

Obesity is the most prevalent metabolic disease in developed countries. According 

to the WHO database, in 2016 more than 1,900 million adults worldwide were overweight 

(39 %), of which more than 600 million were obese (13 %) (World Health Organization 

2017). Moreover, the prevalence of obesity has increased drastically in the last three 

decades, and estimations suggest it could reach 20 % by the year 2025, which is why 

obesity is currently considered the 21st century epidemic (NCD Risk Factor Collaboration 

(NCD-RisC) 2016). The cost of the Health Services derived from obesity in developed 

countries ranges from 2-8 % of the total healthcare budget (Pereira J.L. 2005), and the 

average annual cost is estimated to be 44 % higher for an individual with BMI > 35 kg/m2 

with respect to a subject with normal weight. 

From a simplistic point of view, increased fat deposition in obesity is the result of 

an imbalance between energy intake and caloric expenditure; i.e., overconsumption of 

high-caloric foods accompanied by a sedentary lifestyle. However, the aetiology of obesity 

has proven to be more complex, integrating a range of factors, from physiological, genetic 

and behavioural to environmental, social and economic aspects (Martinez 2000, Williams 

et al. 2015). Indeed, several epidemiological studies and meta-analyses have shown that 

obesity is associated with the shift towards increasing obesogenic environments in terms 

of eating choices, leisure and physical activity patterns, especially in developed countries 

(Bhupathiraju et al. 2016, Newton et al. 2017). 

 

1.1.3 Physiopathology 

Adipose tissue dysfunction and detrimental systemic effects 

Obesity is characterized by a metabolic overload resulting from an excess nutrient 

supply. In this sense, adipose tissue plays a crucial role in the regulation of the whole-body 
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energy balance. Of the two main types of adipose tissue, white adipose tissue (WAT) is the 

most abundant in humans and has traditionally been considered the organ responsible for 

storage and mobilization of energy substrates in the form of triglycerides (TG) and fatty 

acids (FA), respectively. In addition, advances in the field have demonstrated that WAT is 

not only a fat store, but is capable of releasing a great variety of cytokines and adipokines 

that exert endocrine, paracrine and autocrine functions, thus ensuring a systemic 

regulation of the metabolism. On the other hand, brown adipose tissue adipocytes are rich 

in mitochondria, contributing to energy expenditure through activation of uncoupling 

protein 1 (UCP1)-mediated thermogenesis (Vázquez-Vela et al. 2008). 

The excess of energy sources during obesity is channelled towards increasing lipid 

storage in the subcutaneous adipose tissue (SAT), a specific WAT depot located 

underneath the skin. SAT expansion capacity is challenged during obesity, triggering 

mechanisms of hyperplasia and hypertrophy to accommodate the excess energy supply 

over time (Gonzalez-Muniesa et al. 2017). In this context, adipocytes are exposed to a 

hypoxic and metabolically stressful environment that leads to failure of cellular function, 

including endoplasmic reticulum (ER) stress and mitochondrial dysfunction. As a result, 

several intracellular stress responses are induced, including the unfolded protein response 

(UPR), an inflammatory cascade mediated by c-Jun N-terminal kinase (JNK) and inhibitory 

κB kinase (IKK)/nuclear factor κΒ (NFκΒ) pathways, and production of reactive oxygen 

species (ROS) (Hotamisligil et al. 2008). The eventual consequence of all of this is adipose 

tissue dysfunction, characterized by a shift towards a more pro-inflammatory profile of 

secreted adipokine and cytokine and oxidative stress (Sun et al. 2013, Meijer et al. 2011). 

For instance, increased adipocyte MCP-1 (monocyte chemoattractant protein-1) 

expression enhances immune cell recruitment towards adipose tissue, where they 

contribute to tissue remodelling and amplification of the inflammatory response (Sun et al. 

2013, Lolmede et al. 2011). In addition, dysfunctional adipocytes secrete higher amounts 

of tumour necrosis factor alpha (TNFα), interleukin 6 (IL6), leptin, plasminogen activator 

inhibitor-1 (PAI-1) and retinol binding protein 4 (RBP4) and lower levels of adiponectin into 

the systemic circulation, leading to a chronic, low-grade inflammatory response, amplified 

and perpetuated by the activation of other tissues, including liver and circulating 

leukocytes (Vázquez-Vela et al. 2008, Schmidt et al. 2015). 
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This systemic inflammation is considered to play a central role in the development 

of the metabolic complications of obesity, including insulin resistance (IR), endothelial 

dysfunction and altered lipid management (Hotamisligil 2006). In this sense, TNFα is 

considered a major contributor to the development of IR in obesity, mediated by activation 

of JNK/IKK-NFκΒ pathways, which in turn leads to the phosphorylation of insulin receptor 

substrates 1 and 2 (IRS1/IRS2) (Yazdani-Biuki et al. 2004, Hotamisligil et al. 1995). In fact, 

TNFα resulting from the crosstalk between adipocytes and activated macrophages triggers 

IR in fat cells, which become more lipolytic and begin to release excess FA into the 

systemic circulation when saturated. Subsequently, free FA (FFA) initiate mechanisms of 

lipotoxicity and ectopic lipid depostion in other organs, including liver, muscle and 

pancreas, and in the visceral adipose tissue (VAT) depot, including mesenteric, perirenal 

and perivascular spaces (Taira et al. 2013). These mechanisms, together with the aberrant 

adipocytokine profile, contribute to an atherogenic and inflammatory systemic milieu, 

leading to the development of IR and impaired vascular function (Hotamisligil 2006). For 

instance, IR induces gluconeogenesis in the liver and reduces glucose uptake in skeletal 

muscle, thus resulting in systemic hyperglycaemia. Overproduction of insulin by β-cells is a 

compensatory mechanism that precedes hyperinsulinemia, and is characteristic of  

IR-obese subjects. Finally, if declining glycaemic control is not restored, the situation may 

progress to non-reversible β-cell failure, impaired glucose tolerance and eventually the 

development of type 2 diabetes (T2D) (Cusi 2010) (Figure 1). 

 

Differences between VAT and SAT 

Accumulating evidence shows that an abdominal obesity phenotype resulting from 

predominance of fat storage in the VAT depot correlates with the appearance of a 

constellation of metabolic disturbances including dyslipidemia, IR and CV alterations 

(Despres 2012), whereas, in peripheral obesity, SAT seems to act as a “metabolic sink” that 

protects against the development of cardiometabolic comorbidities (Karpe et al. 2015). 

This could be partly explained by the several morphological and metabolic differences 

between VAT and SAT (Misra et al. 2003). For instance, VAT expands predominantly by 

hypertrophying adipocytes and has a lower hyperplasia capacity. Higher numbers of 

infiltrated immune cells release increased amounts of proinflammatory cytokines in VAT 

than in SAT (Fontana et al. 2007, Ibrahim 2010). In addition, larger VAT adipocytes are 
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more IR and metabolically active, resulting in higher lipolytic activity, driving FFA and 

inflammatory cytokines directly to the liver via portal circulation (Ibrahim 2010). These 

molecules exert a detrimental effect on liver function, leading to local IR, expression of 

hepatic acute phase response mediators such as C-reactive protein (CRP) and fibrinogen, 

and altered lipid metabolism, including excess VLDL (very low-density lipoprotein) 

production and a rise in circulating sdLDL (small dense low-density lipoprotein) particles, all 

hallmarks of atherothrombotic disease (Misra et al. 2003). 

 

Figure 1. Adipose tissue dysfunction and pathological consequences. A persistent positive energy balance 

leads to excessive accumulation of fat in the adipocyte, which in turn leads to hypertrophia, hypoxia and 

subsequent alterations of the cell metabolism. As part of this process, stress pathways are initiated, such as 

inflammatory responses, oxidative stress, endoplasmic reticulum (ER) stress, and, eventually, necrosis and 

cell death. The crosstalk between adipocytes and macrophages is enhanced in the form of increased cytokine 

release from both cell types, which further undermines the adipocyte metabolism, leading to insulin 

resistance (IR). Finally, dysfunctional adipose tissue releases excess free fatty acids (FFA) and adipokines into 

the circulation, leading to systemic effects such us lipotoxicity and chronic inflammation in distal tissues such 

as liver, muscle, pancreas and vascular beds, resulting in metabolic complications that are characteristic of 

obesity, including non-alcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D) and atherosclerosis. 

(Adapted from Cusi 2010). 
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1.1.4 Comorbidities, cardiovascular risk and mortality 

Numerous studies have clearly demonstrated that obese subjects are at greater 

risk of developing several metabolic complications that significantly contribute to 

deterioration in health-related quality of life and an increased mortality rate (Cornier et al. 

2011). These complications include alterations in lipid management and metabolism, IR 

and an aberrant inflammatory profile, key contributors to the development of obesity-

related metabolic comorbidities, including metabolic syndrome, T2D, dyslipidemia, non-

alcoholic fatty liver disease (NAFLD) and CV complications, such as hypertension and 

atherosclerosis. As mentioned above, the appearance of this cluster of damaging 

coexisting illnesses occurs predominantly in abdominal obesity and has been related to the 

increased CV risk in obese populations (Misra et al. 2003). Furthermore, obesity increases 

the likelihood and worsens the prognosis of several non-metabolic pathologies, including 

sleep apnoea, osteoarthritis and cancer (Lecube et al. 2017, Gonzalez-Muniesa et al. 

2017). 

Accumulating evidence is consistently demonstrating a positive correlation 

between BMI and mortality risk, and confirms that obesity is a major risk factor for  

all-cause mortality (Berrington de Gonzalez et al. 2010, Global BMI Mortality et al. 2016), 

contributing to 2.8 million deaths per year (World Health Organization 2017). Moreover, a 

rising BMI has been related to increased risk of CV disease-associated morbimortality, as 

shown by large prospective studies of both European (SCORE) and American cohorts 

(Dudina et al. 2011, Khan et al. 2018). In fact, although there is no clear consensus on the 

BMI cut-off points alert of the development of comorbidities such as hypertension or T2D, 

BMI itself (as a continuous variable) is independently associated with an increased risk of 

coronary heart disease, stroke and CV disease-related deaths (Lecube et al. 2017). 

Obesity-related CV disease manifests itself through several mechanisms, including 

the formation of atherosclerotic plaques in the vascular beds, and an increase in arterial 

stiffening resulting in a rise in blood pressure. Dysfunctional adipose tissue release several 

factors leading to peripheral vasculature defects such as endothelial dysfunction and 

arterial stiffening, thus promoting the development of hypertension and atherosclerosis in 

obesity, two associated conditions that evolve during the development of CV disease. 

Highlights from the epidemiological Framingham Heart Study and other studies clearly 

establish a link between increased adiposity and a rise in blood pressure (Tanamas et al. 
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2015, Field et al. 2001) and other risk factors directly related with the development of 

coronary atherosclerotic disease, including diabetes and atherogenic dyslipidemia (Altman 

2003). 

The association between obesity and CV risk appears to be especially evident in 

those who accumulate fat predominantly in the abdominal area (Despres 2012), a feature 

considered a core component of metabolic syndrome; defined as the presence of ≥ 3 of 

the following metabolic disturbances: central obesity, high blood pressure, impaired 

fasting glucose and altered lipid profile (that is, elevated TG and/or low high-density 

lipoprotein cholesterol (HDLc)) (Alberti et al. 2009). In addition, when the disturbed lipid 

profile also includes the presence of sdLDL particles – which are proven to display 

enhanced atherogenic properties – the condition is known as atherogenic dyslipidemia 

(Ascaso et al. 2017). This lipid triad worsens as BMI and the degree of IR rise, and is the 

best-characterized driver of obesity-associated CV risk (Franssen et al. 2008). Closely linked 

to metabolic syndrome and dyslipidemia, the presence of T2D combined with obesity is a 

major risk factor for the development of CV complications in the overweight population. 

Excess adiposity is a key contributor to the systemic impairment of insulin signalling, 

leading to hyperinsulinemia, glucose intolerance and eventually β-cell failure and T2D 

development (Kahn et al. 2006), which explains why trends in the prevalence and 

incidence of diabetes closely mirror those in obesity (Menke et al. 2015). Several 

pathophysiological mechanisms in T2D, such as glucotoxicity and oxidative stress, exert 

deleterious effects on vascular function, leading to the development of macro and 

microvascular complications, including nephropathy, retinopathy, stroke and heart attack 

(Aronson et al. 2002). 

On the contrary, some obese individuals seem to be cardiometabolically protected, 

a feature known as the metabolically healthy obese phenotype, characterized by the lack 

of clinical metabolic syndrome traits and typically associated with peripheral obesity 

(Teixeira et al. 2015). However, the existence and definition of a subpopulation of putative 

metabolically healthy obese subjects has been a major point of controversy in the last few 

years among experts in the field, with recent studies suggesting that these subjects are 

actually in a transitional state associated with a higher subclinical CV risk compared to lean 

subjects (Eckel et al. 2018). 
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Other emerging risk factors commonly accompanying obesity are worthy of 

mention. Excess adiposity drives the release of pro-inflammatory and pro-thrombotic 

molecules, leading to a chronic low-grade inflammation and pro-thrombotic state that may 

predispose obese subjects to suffer acute coronary syndromes, especially those with 

central obesity (Ellulu et al. 2017). In this sense, it is noteworthy to mention that serum 

levels of CRP are elevated in obesity and have consistently been demonstrated as an 

independent predictor of coronary heart disease, stroke, and mortality risk (Emerging Risk 

Factors Collaboration et al. 2010, Danesh et al. 2004). 

 

1.1.5 Obesity, chronic periodontitis and cardiovascular risk 

Besides the aforementioned metabolic comorbidities, accumulating evidence from 

the last decade has pointed to an association between obesity and the risk of developing 

chronic periodontitis (Chaffee et al. 2010, Jimenez et al. 2012, Martinez-Herrera et al. 

2017). Periodontal disease results from the interaction between pathogenic periodontal 

bacteria and the host’s immune response, and is characterized by an exacerbated 

inflammatory response and ROS production, which affects the supporting structures of the 

teeth and whose progression results in alveolar bone degeneration and, eventually, loss of 

the tooth (Gurav 2014). Similarly to obesity, periodontitis is considered an inflammatory-

based disease, thus underlining its relevance not only as an oral health alteration, but as a 

systemic health problem. Several epidemiological studies have reported a higher 

prevalence of chronic periodontitis in obese populations, where it affects over 75 % of 

subjects, who are at a 5-6-times greater risk compared to lean subjects (Martinez-Herrera 

et al. 2017, Nishida et al. 2005), as well as highlighting the interfering role of obesity in 

non-surgical periodontal therapy (Martinez-Herrera et al. 2018, Suvan et al. 2014). 

Although the causality and directionality of this relationship is not clear, systemic 

metabolic disturbances in obesity presumably exert an underlying role in the onset and 

progression of periodontal disease (Chaffee et al. 2010). In fact, systemic inflammation and 

oxidative stress share similar pathological features in both diseases, and it is likely that the 

concomitant presence of obesity and chronic periodontitis exacerbates the extent of these 

responses (Boesing et al. 2009). Furthermore, previous results obtained by our group and 

other researchers have illustrated the obesity-associated IR as a potential underlying 

mechanism of chronic periodontitis development (Martinez-Herrera et al. 2017, Song et al. 



1. BACKGROUND 

45 
 

2016). In this sense, excess of adiposity seems to be responsible for the increased 

presence of chronic periodontitis, whereas IR may be involved in the extent of periodontal 

disease (Martinez-Herrera et al. 2017, Saito et al. 2005). However, despite there exist 

numerous data supporting the implication of inflammation, oxidative stress and IR in the 

relationship between obesity and chronic periodontitis, further studies are required to 

determine the molecular mechanisms underlying this association. 

On the other hand, chronic periodontitis is thought to be implicated in the onset of 

subclinical atherosclerosis and CV disease. This association was first described by Mattila  

et al. (Mattila et al. 1989) and later confirmed by several epidemiological reports 

(Southerland et al. 2012, Tonetti 2009), all of which suggested that periodontitis precedes 

the atherosclerotic process (Haynes et al. 2003). The mechanisms linking periodontitis and 

atherosclerosis have not been fully elucidated, although exacerbated inflammatory 

response and ROS production in chronic periodontitis seem to trigger vascular injury and 

endothelial dysfunction, leading to atherosclerosis and CV complications (Gurav 2014). In 

this sense, chronic periodontitis shares many of the traits linking obesity and 

atherosclerotic disease; not surprising, since chronic periodontitis and obesity have been 

demonstrated to be closely related pathophysiologically (Figure 2). In the light of this 

evidence and the high prevalence of chronic periodontitis among obese individuals, 

periodontal disease would appear to be an emerging additional risk factor for CV disease in 

the obese population, although further prospective studies are needed to confirm this 

notion. 

 

 

 

 

 

 

 

 

Figure 2. Model of association between obesity, chronic periodontitis and endothelial dysfunction. Obesity 

increases the risk of developing chronic periodontitis, which tends to be more pronounced in the presence of 

associated insulin resistance. In addition, systemic inflammation and oxidative stress converge in both 

pathologies, leading to endothelial dysfunction and, eventually, the development of atherosclerosis. 
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1.1.6 Obesity management 

The growth in rates of obesity and its morbimortality around the world fuel the 

need to develop strategies for the prevention and management of excess adiposity, which 

could reduce the global burden of the disease. 

From this point of view, current trends in obesity management are aimed at weight 

loss, and so lifestyle interventions including nutritional changes, promotion of physical 

activity and behavioural modification strategies are first-line approaches. Beyond this 

point, a limited number of drugs have been approved for us as adjuncts to diet and 

exercise for weight loss purposes (Apovian et al. 2015). Indeed, pharmacological 

approaches to obesity are mostly focused on alleviating associated metabolic 

complications, rather than reducing weight. Finally, bariatric surgery has become the most 

effective treatment for excess adiposity to achieve short- and long-term weight loss and 

improve cardiometabolic function. In particular, gastric bypass is considered the gold 

standard surgical procedure, since its effectiveness in T2D remission and reducing 

metabolic complications compared to lifestyle interventions thus increasing survival 

(Sjostrom et al. 2014, Ikramuddin et al. 2013). However, gastric bypass is commonly 

reserved for patients with severe obesity (BMI > 40 kg/m2) or metabolic complications, 

which accounts for only a tiny percentage of the obese population, and is a relatively 

invasive and expensive procedure. In this sense, given the limitations of pharmacotherapy 

and bariatric surgery use and the absence of contra-indications, lifestyle interventions still 

prevail as the most common strategies of obesity management and weight loss. 

 

Lifestyle modifications and weight loss benefits 

Weight loss can improve CV risk factors and the metabolic complications associated 

with obesity, prevent the progression of severe disease and increase health-related quality 

of life, among other benefits that can be achieved as long as the weight loss is maintained. 

For this reason, endocrine practical guidelines strongly recommend weight loss strategies 

based on lifestyle changes as the treatment of choice to reduce obesity burden (Lecube 

 et al. 2017, Apovian et al. 2015). These guidelines report that sustained weight loss of only  

3-5 % enhance metabolic outcomes including TG, fasting glycaemia, and reduce the risk of 

developing T2D. Furthermore, weight loss of 5-10 % has been shown to confer additional 
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benefits in terms of blood pressure levels, dyslipidemia and by reducing the need for 

medication for metabolic syndrome traits and T2D (Jensen et al. 2014). In line with this, 

the Finnish Diabetes Prevention Study reported long-term benefits on CV risk mediated by 

lifestyle interventions (Ilanne-Parikka et al. 2008). Among these strategies, hypocaloric 

diets and physical exercise are the most commonly used weight loss approaches, since 

their effectiveness in improving several health outcomes has been proved, especially when 

both strategies are prescribed as combination therapy (Clark 2015, Wu et al. 2009b). 

However, moderate levels of physical activity induce health benefits independently of 

weight loss, including lower risk of developing T2D and CV disease (Sadarangani et al. 

2014), presumably by reduction of VAT depot size. Interestingly, improving overall 

nutrition patterns (such as adherence to a Mediterranean diet) can also induce weight loss 

and health improvements without explicit energy restriction (Gonzalez-Muniesa et al. 

2017). However, the specific mechanisms through which diet-induced weight loss 

improves metabolic parameters are not completely understood. In this sense, further 

research in this field would be of great value to determine potential therapeutic targets 

and expanding our knowledge about the physiopathology of obesity and its metabolic 

disorders. 

 

Hypocaloric diets 

Caloric restriction provokes a negative energy balance that induces weight loss. In 

this sense, hypocaloric diets have proven to be with very effective in body weight 

reduction and in producing general health benefits (Lecube et al. 2017, Jensen et al. 2014). 

Among the wide range of diets used for the treatment of obesity, very-low-calorie diets 

(VLCD) decrease the weight of obese patients on average 2 kg per week during the first 4-6 

weeks (Hernandez-Mijares et al. 2012, Sola et al. 2009). A VLCD consists of a caloric intake 

of under 800 kcal per day, usually prescribed in the form of commercially available 

substitutive meals to ensure subjects receive the minimal nutritional requirements. An 

adequate medical follow-up is required, although their safety has been largely proven 

when the treatment period does not exceed the maximum recommendation of 16 weeks 

(Gargallo Fernandez et al. 2012, National Task Force on the Prevention and Treatment of 

Obesity, NIH 1993). Nevertheless, replacement of VLCD with low-calorie diets (LCD) is 

recommended when there are potentially compromising effects on the subject’s 
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nutritional status (Hernandez Mijares et al. 2004). General recommendations suggest that 

LCD should be individualized to -30 % energy restriction, or at least be prescribed 

according to sex differences; typically 1200 kcal per day for women and 1500 kcal for men 

(Gonzalez-Muniesa et al. 2017). However, correct adherence to the dietary program and 

weight loss maintenance are essential for maintaining the benefits achieved with the 

reduction of adiposity degree. 

 

Pharmacotherapy and complementary therapies 

In order to reinforce the effects of LCDs, some drugs have been developed and 

prescribed as adjuvant medication for patients who are struggling to lose and/or maintain 

body weight. For instance, liraglutide and naltrexone/bupropion have been shown to 

produce an average drop in body weight of 5-8 % with additional cardiometabolic benefits 

(Pi-Sunyer et al. 2015, Greenway et al. 2010). Standardized protocols largely depend on 

the respective country; in this sense, elevated costs, some low-level side effects and 

difficulties in dosage and administration have limited the extension of the treatment in 

Spain (Lecube et al. 2017). A more widespread use is that of treatments against the 

comorbidity burden of obesity; that is, drugs that combat the wide range of obesity-

associated metabolic complications; i.e. hyperlipidemia, hypertension and T2D. For 

instance, the statins are remarkably effective in reducing LDL levels, which lowers the risk 

of adverse CV events in patients with hyperlipidemia. On the other hand, metformin is a 

widely prescribed oral antidiabetic drug that is considered the first-line medication for pre-

diabetes or early stages of T2D. Both families of drugs have displayed additional synergic 

anti-inflammatory and atheroprotective activities that may play a relevant role in the 

prevention and treatment of CV disease in obese population (Krysiak et al. 2012). 

However, some studies have shown that even patients within normal LDL ranges – 

achieved with cholesterol-lowering medications – still have a residual CV risk (Bayturan  

et al. 2010, Lim et al. 2013), although the causal relationship is not understood. 

On the other hand, the growing need for new therapies to diminish the metabolic 

burden of diseases such as obesity and T2D has fuelled research efforts to identify and 

develop bioactive dietary molecules, including carbohydrates such as polyols, fibre and 

related carbohydrates. In this sense, inositols are glucose derivatives obtained mainly from 

legumes, citrus fruits, whole grains and nuts that have shown several health-promoting 
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properties in different conditions such as T2D, obesity, polycystic ovary syndrome (PCOS) 

and some types of cancer (Owczarczyk-Saczonek et al. 2018). 

For instance, D-chiro-inositol and its methylated form 3-O-methyl-D-chiro-inositol 

(D-pinitol or pinitol) is a botanical compound present in carob-pod fruit, soybeans and 

other legumes, and has been well documented as a sensitizer of insulin’s actions in both 

animals and humans (Owczarczyk-Saczonek et al. 2018). It is thought to act downstream in 

the insulin-signalling pathway to mimic the effects of insulin in adipocytes and, 

hepatocytes (Shen et al. 2012). The precise mechanism is poorly understood, but seems to 

be mediated through activation of the PI3K/Akt axis (Gao et al. 2015). In this sense, we 

have previously demonstrated that both acute doses and chronic intake of a pinitol-

enriched beverage improve glucose tolerance and insulin sensitivity in healthy subjects 

(Hernandez-Mijares et al. 2013, Bañuls et al. 2016). Furthermore, several studies have 

largely demonstrated the ability of pinitol to reduce systemic IR and improve overall 

glucose tolerance, not only in susceptible populations, such as T2D patients (Hernández-

Mijares et al. 2015, Pintaudi et al. 2016), but also in prediabetic subjects (Davis et al. 2000, 

Bañuls et al. 2016) and women with PCOS or gestacional diabetes (Owczarczyk-Saczonek et 

al. 2018). In addition to its insulinomimmetic activity, pinitol seems to stimulate β-cell- 

production of insulin, thus contributing to the antidiabetic effect (Lazarenko et al. 2014, 

Lambert et al. 2018). Pinitol consumption has also been described to diminish oxidative 

stress, systemic inflammation and endothelium dysfunction in both human and murine 

models of diabetes (Hernandez-Mijares et al. 2015, Sivakumar et al. 2010), thus displaying  

a potential atheroprotective role (Choi et al. 2007). Our group has also reported anti-

inflammatory activity in obese subjects consuming pinitol (Bañuls et al. 2016), although the 

underlying mechanism was not determined. Altogether, collected data confirm the 

potential therapeutic use of inositols as prophylaxis for diseases associated with IR and 

systemic inflammation, including obesity and T2D, although further studies are required to 

identify the potential targets of pinitol and describe the mechanisms implicated in the 

beneficial effects observed. 
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1.2 Pathophysiological mechanisms underlying atherosclerosis in obesity 

Atherosclerosis is a CV disorder characterized by progressive accumulation of lipids, 

immune cells and fibrotic components in the arterial wall that causes a progressive 

occlusion of blood vessels. In the early stages, symptoms of ischaemia appear, with the 

situation worsening as the atheromatous plaque develops, ending in plaque rupture and 

increasing the risk of atherothrombotic events, including myocardial infarction and stroke 

(Bentzon et al. 2014). 

Classic risk factors for the appearance of atherosclerosis are age, sex, hypertension, 

diabetes, dyslipidemia and lack of physical exercise, among others. Many of these factors 

converge in obesity, along with systemic inflammation, which is considered a crucial 

mechanism of the atherogenic process in obesity (Altman 2003, Ross 1999, Jacobs et al. 

2009). However, its aetiology is complex, and the interaction between the different 

pathophysiological processes at play is not completely understood. In addition, plaque 

formation is a slow process, often constituting a subclinical CV risk condition in obesity, 

even in patients without associated comorbidities (Kim et al. 2017). The study of the 

mechanisms involved in the early asymptomatic stages of atherosclerosis, namely 

subclinical atherosclerosis, may open up new perspectives in the prevention and treatment 

of CV complications and associated morbimortality. 

 

1.2.1 Endothelial activation and dysfunction 

The endothelium is the innermost layer of the vascular wall, and is responsible for 

vascular tone regulation, inflammatory response, coagulation and overall vascular 

homeostasis. Under pathological situations such as obesity, there is an alteration of 

endothelial function characterized by reduced bioavailability of nitric oxide (NO), a 

biomolecule produced by the endothelial NO synthase enzyme (eNOS), which is involved in 

the relaxation of vascular tone and has additional anti-thrombotic and anti-inflammatory 

effects (Tousoulis et al. 2012). In the context of obesity, vasculature is challenged by an 

exacerbated pro-inflammatory state, lipotoxicity, hyperglicaemia and excess production of 

ROS and vasoconstrictor factors that alter endothelial homeostasis (Guzik et al. 2006, Reho 

et al. 2017). These mechanisms promote endothelial cell activation and stimulate the 

expression of chemoattractant factors, such as MCP-1, and cell adhesion molecules 
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(CAMs), including vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion 

molecule-1 (ICAM-1) and E/P-selectins, which are mainly mediated through the activation 

of the NFκB pathway in the endothelial cells (Pierce et al. 2009, Zhong et al. 2012). These 

molecules further enhance leukocyte recruitment to the vessel wall and increase their 

infiltration in the intima space, where they contribute to the growth of the atherosclerotic 

plaque in a pro-oxidant and inflammatory environment (Krinninger et al. 2014). 

The aberrant profile of cytokines and adipokines in obesity plays a key role in this 

process (Guzik et al. 2006, Chen et al. 2012). Studies of large cohorts of patients have 

demonstrated a clear association between the imbalance in pro-inflammatory (e.g., TNFα, 

IL6 and CRP) and anti-inflammatory (e.g., adiponectin) mediators in obesity and several CV 

complications, including hypertension, coronary disease, atherosclerosis and associated 

morbidity (Emerging Risk Factors Collaboration et al. 2010, Danesh et al. 2004, Jacobs et al. 

2009, Bermudez et al. 2002, Sesso et al. 2003, Luc et al. 2003). Cytokines seem to promote 

a drop in the NO/ROS ratio in the vasculature, which induces oxidative stress, endothelial 

dysfunction and subsequent enhanced CAMs expression (Reho et al. 2017, Zhong et al. 

2012, Venugopal et al. 2002). 

On the other hand, the presence of IR and/or hyperglycaemia contributes in a large 

way to endothelium dysfunction (Dudina et al. 2011). In fact, impaired insulin sensitivity 

interrupts insulin vasodilatory function and stimulates the proliferation of smooth muscle 

cells (Wu et al. 2009a, Wang et al. 2003). Furthermore, hyperglycaemia induces the 

production of ROS, thus contributing to oxidative stress, apoptosis and vascular 

permeability (Brownlee 2005). A damaged vasculature is highly susceptible to LDL (low-

density lipoprotein) infiltration in the intima zone, especially by atherogenic sdLDL 

particles. In the pro-oxidant subendothelial space sdLDL become oxidized, thereby acting 

as stimuli of an amplified inflammatory response and eNOS uncoupling and contributing to 

oxidative stress and endothelium dysfunction (Liao et al. 1995, Fleming et al. 2005, 

Gebuhrer et al. 1995). 

 

1.2.2 Leukocyte activation and adhesion cascade 

On the other side of the coin of the atherosclerotic process, immune cells and 

platelets became activated under the pro-inflammatory and pro-thrombotic status, further 

potentiating the inflammatory response and contributing to their adherence and 
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aggregation during the atherothrombotic process (Devaraj et al. 2003). In fact, several 

studies have reported that circulating leukocytes in obese patients are in a pro-

inflammatory and pro-oxidant state, which in turn promotes their interaction and 

migration across the endothelium layer (Krinninger et al. 2014, Ghanim et al. 2004). The 

activation of leukocytes is usually integrated via classic inflammatory pathways such as 

NFκB/JNK and by enhanced production of ROS (Nguyen et al. 2007, Aljada et al. 2004). In 

this continuously pro-activated state, interactions between CAMs in endothelial and 

immune cells and chemoattractant molecules promote the recruitment of leukocytes 

towards the vascular endothelium and initiation of the adhesion cascade, a sequential 

mechanism ending in transmigration of leukocytes to the subendothelial space (Čejková  

et al. 2016, Muller 2002). Initially, leukocytes are attracted towards the endothelium, 

which reduces their flow velocity and allows them to establish initial contacts mediated 

mainly by the interaction between selectins and their respective ligands. These  

low-intensity transient interactions favour the rolling of leukocytes along the endothelium, 

although many leukocytes dissociate due to the reversible nature of the contact (Muller 

2002). Later on, selectins-clustering triggers activation of high affinity unions mediated 

mainly by integrins, VCAM-1 and ICAM-1 (Ma et al. 2004). Subsequently, these high affinity 

unions lead leukocytes to stop rolling and firmly adhere to the endothelial surface (Tan  

et al. 2000). Finally, other molecules, including integrins, ICAM-1 and PECAM (platelet-

endothelial cell adhesion molecule) promote extravasation and migration of the 

leukocytes, leading them to conformational changes that facilitate diapedesis and the 

transmigration process through endothelial cell junctions (Muller 2002). Under normal 

conditions leukocyte extravasation can occur as part of the physiological response against 

infection. However, in the context of metabolic diseases, it leads to the development of 

atherosclerosis and CV disease (Čejková et al. 2016). 

 

1.2.3 Atheromatous plaque formation 

Once in the intima, monocytes transform into macrophages, which can avidly 

internalize oxidized sdLDL particles by binding to specialized receptors, with the 

contribution of CRP cytokine (Obradovic et al. 2015). In this way, the macrophages 

transform into foam cells with a high lipid load which they cannot manage, triggering 

inflammatory mediators that perpetuate local vascular damage and inducing the 
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proliferation and migration of smooth muscle cells. If this situation persists over the time 

the foam cells initiate apoptotic pathways to release their lipid-filled contents and 

antigenic and thrombogenic residues into the necrotic core of the lesion, thereby 

contributing to the evolution of the atheromatous plaque (Rocha et al. 2009). Growing 

plaques tend to expand outwards and encroach on the lumen. Finally, destabilization of 

the plaque can lead to the rupture and release of fibrous lipidogenic deposits into the 

circulation, thus increasing the risk of an atherothrombotic event (Figure 3). 

 

Figure 3. Leukocyte adhesion cascade and formation of the atherosclerotic plaque. A compromised 

endothelial barrier allows small and dense low-density lipoproteins (sdLDL) to accumulate in the 

subendothelial region, where they become oxidized in the pro-oxidant environtment, rendering it particularly 

inmunogenic. Oxidized sdLDL and inflammatory cytokines activate endothelial cells, leading to the expression 

of cellular adhesion molecules (CAMs), which attracts leukocytes to the endothelium and promotes initiation 

of the adhesion cascade. After the initial contact and rolling over the endothelium, the leukocytes firmly 

adhere and begin transmigration to the subendothelial space, where they differentiate into macrophages 

and avidly phagocyte oxidized sdLDL, thus transforming into foam cells. Lipid-filled foam cells enhance the 

inflammatory response, leading to proliferation and migration of smooth muscle cells and fibrotic 

components, thus producing a thickening of the vessel wall. Eventually, activated platelets and fibrotic 

components also accumulate on the luminal side of the atheroscletoric plaque, thus encroaching even more 

on the lumen of the vessel wall and increasing the risk of atherothrombotic events. 
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The abovementioned body of evidence reinforces the inflammatory basis of the 

atherosclerotic process, exacerbated by the status of IR, oxidative stress, lipid alteration in 

obesity, and highlights the relevant role of immune cells in the formation of atheromatous 

plaque. However, further mechanisms and factors involved are not completely 

determined, and thus represent potential targets to reduce CV risk in obese population. 
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1.3 Oxidative stress 

Oxidative stress is characterized by an imbalance of the redox state, when the 

production of free radicals – including both ROS and reactive nitrogen species (RNS) – 

exceed the antioxidant capacity of the system and alter redox homeostasis. In this context, 

oxidation of macromolecules such as lipids, proteins and DNA is promoted, which alters 

their functionality, manifesting as oxidative damage to cells and tissues. These deleterious 

reactions contribute significantly to the aging process and are known to play a relevant 

role in the pathophysiology of metabolic disorders. 

 

1.3.1 ROS production 

Mitochondria 

Mitochondria are the organelles responsible for the production of cellular energy 

from energy substrates in the form of ATP in a process known as oxidative 

phosphorylation, but they are also considered the main source of ROS in the cell. Initially, 

metabolic intermediaries originate during oxidative metabolism of carbohydrates, and 

lipids shed their electrons to the electron transport chain (ETC) embedded in the inner 

membrane of the mitochondria. Sequential redox reactions follow the pumping of protons 

towards the intermembrane space by several electron carriers of the ETC (complexes I-IV, 

coenzyme Q, cytochrome c). As a result, the proton gradient increases and the 

mitochondrial membrane potential (ΔѰ) is reduced by ATP synthase producing ATP from 

ADP during oxidative phosphorylation (Dimroth et al. 2000). In parallel, the ETC reduces O2 

to H2O; but some leaking electrons do not traverse the ETC, which leads to a reduction of 

up to 2 % of the total O2 to superoxide anion. This highly reactive molecule is rapidly 

detoxified by superoxide dismutase (SOD) into hydrogen peroxide (H2O2), which in turn can 

be reduced to the hydroxyl radical. Complexes I and III of the ETC are the main producers 

of superoxide, although there are other mitochondrial proteins involved whose level of 

contribution is not completely determined (Quinlan et al. 2013, Murphy 2009). Finally, 

mitochondrial ROS (mROS) could diffuse from mitochondria to cytosol, especially H2O2, 

where it reacts with macromolecules and affects redox balance (Turrens 2003). 

 

 



1. BACKGROUND 
 

56 
 

Other ROS sources 

In addition to the mitochondria, oxidants can also be produced in the cytosol, 

though to a lesser extent. One of the most relevant producers is the enzyme NADPH 

oxidase (nicotinamide adenine dinucleotide phosphate oxidase) or NOX, a transmembrane 

multiprotein complex that produces different ROS in response to changes in Ca2+ 

concentration. NOX is expressed in various cell types, such as immune cells, where ROS 

contribute to the elimination of pathogens after phagocytosis, or in endothelial cells, 

where it acts as an O2 sensor and modulator of vascular tone.  

Similarly, myeloperoxidase (MPO) is an enzyme that also contributes to the 

formation of oxidizing agents, especially in polymorphonuclear cells (PMNs) such as 

neutrophils, where it is stored in granules and released from the cell during degranulation 

as part of the host immune defence system. It catalyzes the peroxidation of chloride into 

hypochlorite (HOCl), which acts as a powerful destroyer of phagocytosed pathogens (van 

der Veen et al. 2009). Despite the beneficial role of MPO in immunity, an excessive activity 

of the enzyme contributes to local and systemic oxidative stress, inflammation and 

endothelial dysfunction, and has been related with the onset and progression of CV 

disease with a marked pro-atherogenic effect (van der Veen et al. 2009, Brennan et al. 

2003).  

Other sources of cytoplasmic ROS are enzymes such as xanthine oxidase, 

lipoxygenase and NO synthase, which in turn promotes formation of RNS. Furthermore, 

special conditions lead to the generation of ROS by some other organelles, including 

peroxisomes during the long-chain FA oxidation, or ER during oxidative protein folding 

and/or as downstream effectors of chronic UPR pathways in the context of inflammatory 

diseases (Holmstrom et al. 2014, Cao et al. 2014). 

 

1.3.2 Antioxidant systems 

Production of free radicals occurs naturally during cell metabolisms, allowing 

several antioxidant defence systems to cooperate to maintain redox balance and prevent 

oxidizing damage in healthy tissues. These defences can be distinguished in non-enzymatic 

molecules, including dietary antioxidants (vitamins, β-carotene, glutathione (GSH), uric 

acid, transferrin, albumin) and antioxidant enzymes. With regard to antioxidant enzymes, 
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SOD, catalase and glutathione peroxidase (GPx) are considered the most powerful ROS 

scavengers (Holmstrom et al. 2014). In this sense, GPx – expressed both in mitochondria 

and cytosol – and catalase – found in peroxisomes and mitochondria – are major H2O2 

detoxifying enzymes, whereas SOD avidly targets superoxide radicals present in 

mitochondrial matrix and intermembrane space. Particularly in this organelle, GSH, a thiol-

containing molecule with high oxidant buffering capacity, glutaredoxin and thioredoxin 

systems are the main ROS buffering mechanisms (McMurray et al. 2016). These 

antioxidant systems can be found in several tissues, including liver, brain, muscle, and even 

in blood (Vincent et al. 2006). Some pathologies, including obesity, are associated with a 

lower presence of antioxidants or inadequate antioxidant response to the rise in free 

radicals, ending in oxidative stress and detrimental systemic effects. 

 

1.3.3 Redox imbalance in obesity 

Low amounts of ROS are essential in some physiological processes, including 

immune defences, adaptive responses, cell proliferation and differentiation, and even 

insulin secretion by β-cells (Holmstrom et al. 2014, Leloup et al. 2009). However, excessive 

ROS production has deleterious effects on cell function and overall homeostasis. In fact, 

oxidative stress is considered a unifying mechanism underlying metabolic disturbances in 

obesity and other metabolic disorders. In this context, several potential contributors to 

redox imbalance have been described; namely, hyperglycaemia, hyperlipidemia and 

chronic inflammation which enhances ROS production, but also an impaired antioxidant 

response (Vincent et al. 2006); however, the degree of contribution of each of these 

factors depends on the metabolic status of the individual. 

 

Hyperglycaemia and hyperlipidemia 

The excess input of energetic substrates in obesity –especially from glucose and 

lipid metabolism – oversupplies the ETC with electrons, leading to an increase of 

mitochondrial ΔѰ (hyperpolarization) and an enhanced probability of electrons spinning 

off the ETC carriers to form disproportionate amounts of mROS (Murphy 2009). In parallel, 

the lipotoxic effect of elevated FFA and derivates directly interrupts correct ETC function 

and leads to excessive mROS and/or enzymatic ROS generation (Inoguchi et al. 2000, 
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Lambertucci et al. 2008). Furthermore, hyperglycaemia-mediated oxidative stress is 

initiated in the mitochondria and subsequently amplified by several other mechanisms. 

Mitochondrial superoxide inhibits enzyme glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH), a glycolytic enzyme whose lack of function propagates intracellular 

hyperglycaemia and activates additional non-mitochondrial ROS-producing pathways. 

Most publications describe four major mechanisms: (1) glucose leak into the polyol 

pathway; (2) overactivity of the hexosamine pathway; and activation of ROS-producing 

enzymes such as NOX or uncoupled eNOS mediated by (3) accumulation of advanced 

glycation end products (AGE) and (4) protein kinase C (PKC) signalling. These four 

mechanisms exponentially increase ROS production under high glucose conditions, 

although lipid excess also seems to be involved in PKC activation. Thus, it is not surprising 

that hyperglycaemia is considered the main driver of oxidative stress among glucose 

intolerant obese subjects and T2D individuals, exerting an affect on CV function (Giacco  

et al. 2010). 

 

Impaired antioxidant capacity 

Obese patients are even more prone to oxidative damage due to undermined 

antioxidant capacity. For instance, lower consumption of fruits and vegetables among 

obese subjects leads to a lack of protective antioxidants such as vitamins, minerals,  

β-carotene and some phytochemicals, aggravated by higher detoxification demand in 

obesity (Vincent et al. 2006). Furthermore, a defective activity of SOD, catalase and GPx 

has been associated with obesity (Furukawa et al. 2004, Ozata et al. 2002). Globally, total 

antioxidant capacity has been inversely associated with the degree of adiposity, and is 

specially pronounced with the presence of metabolic syndrome traits (Chrysohoou et al. 

2007, Tabur et al. 2010). On the contrary, strategies to strengthen antioxidant activity, 

including antioxidant supplementation, physical activity and dietary interventions, seem to 

partially restore redox balance and protect obese patients from oxidative damage (Vincent 

et al. 2007). 
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1.3.4 Pathophysiological consequences of oxidative stress in obesity 

Excessive ROS levels contribute to the oxidation of biomolecules such as DNA, 

proteins and lipids, whose accumulation can compromise cell function in a similar way to 

an accelerated ageing process. Accumulating data over the past years have demonstrated 

that obesity-induced oxidative stress in humans is associated with the development of 

related comorbidities (Furukawa et al. 2004). Progressive elevation of circulating 

biomarkers of oxidative stress, including lipid peroxides and carbonyl proteins, occurs in 

parallel to increased BMI (Keaney et al. 2003), and is associated with the onset of CV 

disturbances, especially atherosclerosis. Moreover, oxidative stress status is especially 

aggravated in IR-obese subjects and when obesity and diabetes exist concomitantly, which 

increases the likelihood of CV complications (Giacco et al. 2010). 

 

Mitochondrial dysfunction 

One of the most relevant targets of pro-oxidants is, precisely, mitochondria. 

Proximity to the ROS-overproducing ETC makes mitochondrial structures more prone to 

oxidation and damaging. Mitochondrial DNA and membranes are particularly affected by 

mROS, which produces impaired mitochondrial function, a key process during ageing but 

one that also accounts for the development of IR, T2D and associated CV complications 

(Dos Santos et al. 2018, Madsen-Bouterse et al. 2010). An excessive supply of nutrients in 

obesity may excessively hyperpolarize the mitochondrial membrane and overwhelm 

mitochondrial activity, increasing mROS production in a vicious cycle that can lead to 

mitochondrial dysfunction and even apoptotic pathways (Liesa et al. 2013). In this context, 

research shows that mitochondrial dysfunction is related to obesity and aggravated by 

several processes: an inherent redox imbalance status; alterations in mitochondrial 

dynamics, required for adequate mitochondrial network elongation and function; and 

disrupted autophagic flux, a crucial mechanism for the recycling of damaged structures, 

molecules and organelles, which leads to the accumulation of damaged mitochondria and 

exacerbates the vicious cycle of ROS production (Liesa et al. 2013, Sarparanta et al. 2017). 

Mitochondrial dysfunction is defined as impaired ATP production capacity and 

lower O2 consumption rate, but is also characterized by perturbations in Ca2+ homeostasis, 

catabolism and mROS production and has profound effects on global energy metabolism 
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(de Mello et al. 2018). For instance, mitochondrial dysfunction in adipocytes of obese 

patients has been shown to produce alterations in adipogenesis and lipid metabolism, and 

was associated with IR and low-grade inflammation (Heinonen et al. 2015). In parallel, 

decreased β-oxidant capacity, uncoupling of ETC and lower ATP content in muscle resulting 

from mitochondrial dysfunction in obesity has a profound impact on aerobic capacity and 

global energy expenditure (Liesa et al. 2013) that can be reversed by physical exercise. 

Apart from bioenergetic control, mitochondria play a key role in apoptosis, and extended 

mitochondrial dysfunction may lead to activation of programmed cell death, which usually 

involves cytochrome c release and caspase pathways (de Mello et al. 2018).  

Accumulating data suggest that mitochondrial dysfunction impairs endothelial 

function/viability and induces vascular smooth muscle cell proliferation and/or apoptosis, 

which precedes the development of atherosclerosis and other CV alterations such as 

hypertension (Dos Santos et al. 2018). Impaired mitochondrial oxidative capacity has also 

been involved in cardiac dysfunction associated with obesity (Boudina et al. 2005). 

Although the underlying mechanisms of mitochondrial-mediated diseases are uncertain, 

ROS overproduction seems to be primordial in certain cases. Indeed, targeting mROS with 

specialized scavengers such as MitoQ or SS31 has proved to have antioxidant and 

cardiometabolic protective effects on obese and T2D populations (Apostolova et al. 2014). 

 

Role of oxidative stress in IR and adipose tissue dysfunction 

Mitochondrial damage plays a key role in IR and the further development of T2D 

and related CV complications though increased generation of pro-oxidants (Dos Santos et 

al. 2018, Holmstrom et al. 2012). Paradoxically, whereas physiological ROS levels may play 

a relevant role in adequate insulin release and sensitivity (Loh et al. 2009), excessive 

oxidative stress in metabolic diseases disturbs insulin transduction signalling, especially in 

liver, muscle and adipose tissue. Inhibition of insulin receptors and IRS1 mediated by 

activation of NFκB/JNK pathways (notably regulated by ROS) or decreased GLUT4 (glucose 

transporter type 4) expression in muscle is the best characterized mediators of ROS-

induced IR. 

Furthermore, oxidative stress also plays a key role in adipose tissue dysfunction. 

During adipose tissue hypertrophy NOX4 hyperactivation greatly contributes to excess ROS 

production, which dysregulates the profile of expression of adipocytes and enhances the 
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recruitment and activation of immune cells (Han et al. 2012). These activated 

macrophages amplify the pro-inflammatory and pro-oxidant response in part through 

activation of NOX2 (Coats et al. 2017), and they crosstalk back to adipocytes in a vicious 

cycle (Jankovic et al. 2015). In addition, the NLRP3 (NLR family pyrin domain containing 3) 

inflammasome complex is assembled in both cell types, integrating ROS and inflammatory 

signalling and exerting a profound impact on adipose tissue function and insulin sensitivity 

(Jankovic et al. 2015). In contrast, inhibition of NOX activity in adipocytes improves insulin 

sensitivity and the inflammatory profile (Furukawa et al. 2004, Den Hartigh et al. 2017). As 

a whole, accumulating data suggest that a vicious cycle of cytokine/ROS production by 

macrophages and adipocytes is involved in adipose tissue dysfunction in obesity leading to 

systemic deleterious effects such as IR, low-grade inflammation and oxidative damage, 

which may be affecting vascular function (Jankovic et al. 2015) 

 

1.3.5 Oxidative stress and atherosclerosis in obesity 

As stated above, oxidative stress, hyperglicaemia and systemic inflammation are 

considered major drivers of endothelial dysfunction in metabolic disorders such as obesity 

and diabetes. In this context, endothelial cells respond by overproduction of ROS, derived 

in part from NOX hyperactivation (Inoguchi et al. 2000). In addition, uncoupling of eNOS 

activity promotes a shift from NO formation towards superoxide production in the 

endothelium, contributing to an increased ROS pool while reducing NO bioavailability. 

Excessive superoxide radicals rapidly react with NO to form RNS such as peroxynitrite, 

further reducing NO availability, which is especially relevant in the regulation of vascular 

function. Locally, ROS and inflammatory molecules from hypertrophied perivascular 

adipose tissue also results in impaired vasodilatation of small arteries in obese subjects and 

endothelium activation. At an intracellular level, cytokines and ROS signalling induce NFκB-

mediated CAM expression and further inflammatory response in endothelial cells, thus 

promoting the accumulation of leukocytes in the vessel wall, a crucial step in the onset of 

atherosclerotic processes. 

In line with this, chronically activated immune cells in obesity also display a pro-

oxidant phenotype, with elevated NOX and MPO activity, which can contribute to a rise in 

oxidized serum macromolecules and leukocyte-induced vascular injury (Nijhuis et al. 2009, 

Olza et al. 2012). In fact, MPO serum levels are reported to be a powerful predictor of CV 
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events, later mortality and progression of carotid atheromatous plaque, with several 

mechanisms seeming to mediate this association. For instance, MPO-derived HOCl directly 

oxidizes LDL particles and enhances their affinity for macrophages and the endothelium, 

thereby leading to the development of vascular inflammation (Lau et al. 2006) and 

formation of foam cells in the subendothelial space. In addition, MPO modifies 

apolipoprotein A1 in HDLc, impairing HDLc-mediated cholesterol efflux and reducing NO 

availability, further contributing to endothelial dysfunction (Brennan et al. 2003). Hence, 

data from human studies confirm the potential role of leukocyte-mediated oxidative 

stress, and particularly MPO activity in endothelial dysfunction and CV risk among the 

obese population. However, whether this leukocyte-induced oxidative stress could be 

interfering in the interaction between immune cells and the endothelium is a topic that 

has been explored little, though it is promising insofar as the extent to which it may 

prevent major CV complications in obesity. 

 

1.3.6 Oxidative stress, inflammation and atherosclerosis in chronic periodontitis 

As stated at the outset, obesity encompasses several risk factors for the 

development of atherosclerosis and may be a systemic condition whose underlying 

inflammatory state promotes periodontitis onset and progression. Together with systemic 

inflammation, oxidative stress is another relevant hallmark of periodontal disease 

produced as a result of the interaction of the host immune response and periodontal 

microbes.  

In the pathophysiology of chronic periodontitis bacteria present in the growing 

subgingival plaque release immunogenic products such as lipopolysaccharide (LPS), leading 

to the release of cytokines from surrounding host cells. The inflammatory response 

promotes formation of the periodontal pocket between the gingiva and the teeth, with 

accumulation of crevicular fluid (Marsh et al. 2017). Subsequently, inflammatory and 

bacterial immunogenic factors are spilled into the circulation from the periodontal pocket, 

priming a systemic inflammatory immune response characteristic of periodontal disease 

(Williams et al. 2008). In fact, increased levels of inflammatory cytokines including IL1β 

(interleukin 1 β), TNFα and CRP have been associated with periodontal disease (Loos 

2005). In response to periodontal inflammation, PMNs – especially neutrophils – are 
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activated and recruited to the crevicular pocket, where they produce high levels of ROS 

during the oxidative burst to facilitate the killing and destruction of microbes (Chapple  

et al. 2007). In this sense, raised levels of MPO have been found in gingival crevicular fluid 

in several periodontal diseases, including chronic periodontitis, and have been associated 

with clinical measures of the pathology (Buchmann et al. 2002, Wei et al. 2004). To a lesser 

extent, other cell types have been reported to locally produce ROS, including fibroblast and 

epithelial cells which are in front-line contact with bacteria and react to them by 

overproducing cytokines and oxidizing molecules (Chamulitrat et al. 2004). 

In addition, hyperreactiveness of neutrophils in chronic periodontitis is 

accompanied by undermined antioxidant capacity leading to imbalanced redox status 

(Chapple et al. 2007, Buchmann et al. 2002, Wei et al. 2004). In line with this, elevated 

oxidative stress markers have been found in the gingiva, crevicular fluid and saliva, but also 

systemically, as increased lipid peroxidation and protein carbonyls levels were detected in 

serum from patients with chronic periodontitis (Wang et al. 2017). Despite activation of 

inflammatory and ROS-producing responses by immune cells being key mechanisms in the 

first barrier against an infectious challenge, in chronic periodontitis overproduction of ROS 

and cytokines, presence of LPS and even bacterial invasion (bacteremia) from the 

periodontal pocket into the circulation, resulting in systemic response (Williams et al. 

2008). This state has several detrimental effects: locally, oxidative stress and inflammation 

in the pocket promote tissue damage and progressive periodontum destruction, whereas 

at a systemic level chronic periodontal disease leads to endothelial dysfunction promoting 

the development of atherosclerosis. 

Several studies have reported compromised endothelial function in subjects with 

periodontitis (Gurav 2014). Immunogenic and inflammatory mediators such as TNFα and 

LPS can promote endothelial cell activation and vascular permeabilization, leading to 

expression of adherent molecules and decreased NO production (Gurav 2014). In addition, 

other studies have highlighted a more atherogenic lipid profile (Rufail et al. 2005, Ramirez-

Tortosa et al. 2010) associated with markers of endothelial dysfunction and CV risk 

(Ramirez-Tortosa et al. 2010) in patients with chronic periodontitis, with one reporting a 

greater peroxidation of lipids in the descending aorta of a murine model of periodontitis 

(Ekuni et al. 2009a). In contrast, periodontal treatment has been proven to have beneficial 
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effects, not only on periodontal parameters, but also by alleviating systemic inflammatory 

and oxidative markers and exerting a protective role against endothelial dysfunction 

(Chapple et al. 2007, Higashi et al. 2009). In addition, antioxidant therapy attenuates the 

progression of atherosclerosis in induced periodontitis in rats (Ekuni et al. 2009b). 

This accumulated evidence points to a potential role of chronic periodontitis in the 

early stages of the atherosclerotic process through a mechanism involving oxidative stress 

and inflammation, similarly to obesity which in turn increases the susceptibility to develop 

periodontal disease. However, the relationship between chronic periodontitis, obesity and 

atherosclerosis is still an emerging area of study that requires joint efforts from 

multidisciplinary teams working together to refine the disease’s pathobiology. 
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1.4 Endoplasmic reticulum stress 

1.4.1 Endoplasmic reticulum 

The ER is a vast membranous organelle responsible for the synthesis, folding and 

trafficking of proteins, especially of those of the secretory pathway. The ER lumen provides 

optimum conditions for protein folding and post-translational maturation. For instance, 

formation of disulfide bonds is enhanced in the luminal oxidizing environment, the 

presence of chaperones in the lumen contributes to protein folding, and quality control of 

newly synthesized peptides is provided before secretion by several ER regulatory proteins. 

The ER also participates in lipid synthesis and trafficking, and is the primary storage site for 

Ca2+, which is essential for the activity of Ca2+-dependent chaperones in the ER lumen and 

for intracellular signaling (Xu et al. 2005). 

 

1.4.2 Unfolded protein response 

Several pathological mechanisms can challenge ER function resulting in the 

accumulation of misfolded proteins in the lumen, an adverse condition known as ER stress, 

which presents a threat to overall cell homeostasis. In response to this, the UPR is 

triggered, acting as an adaptive pathway designed to recover normal ER function. The UPR 

comprises three canonical branches initiated by three ER-transmembrane proteins: 

double-stranded RNA-activated protein kinase-like kinase (PERK), activating transcription 

factor 6 (ATF6) and inositol requiring enzyme 1 α (IRE1α). In addition, the chaperone 

GRP78 (78-kDa glucose-regulated protein) binds the three UPR sensors by their luminal 

domain and keeps them inactive. Accumulation of misfolded proteins and aggregates 

increases chaperone-activity demand, thus leading to the recruitment of GRP78 away from 

UPR leaders and stimulating their activation in different ways: PERK and IRE1α kinase 

activation results from autophosphorylation and dimerization of their subunits, whereas 

ATF6 migrates to the Golgi, where the small subunit ATF6 (p50) is cleaved by specific 

proteases (Hotamisligil 2010)  

Subsequently, PERK phosphorylates and inactivates eIF2α (eukaryotic initiation 

factor 2α), thus attenuating global protein translation for a few hours in order to reduce 

misfolded-protein cargo in the ER lumen. Activation of PERK also promotes the expression 

of ATF4 (activating transcription factor 4) and NRF2 (nuclear factor (erythroid-derived 2)-
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like 2). Furthermore, two different enzymatic activities have been described for IRE1α: on 

the one hand, IRE1α acts as an endoribonuclease, splicing the X box protein-1 (XBP1) 

mRNA and rendering it competent for translation, while also phosphorylating several 

targets (e.g., IKK and JNK) by means of kinase activity. Finally, the three resulting 

transcriptional factors – ATF4, XBP1 and ATF6 (p50) – migrate into the nucleus, where they 

regulate the transcription of a constellation of genes downstream of the UPR pathway with 

the primary aim of alleviating ER stress and reestablishing organelle homeostasis (Xu et al. 

2005). 

Among the most relevant UPR-adaptive responses, ATF4 and NRF2 induce the 

expression of an array of antioxidant response elements to counterbalance ER and cellular 

ROS excess. Moreover, the ER-associated protein degradation (ERAD) pathway and 

autophagic machinery are promoted by XBP1 and ATF6, and the IRE1α-JNK axis, 

respectively, to facilitate protein clearance (Ogata et al. 2006). In addition, the three UPR 

branches trigger the expression of chaperones such as GRP78 and quality-control proteins 

to enhance protein folding and ensure proper trafficking. However, failure of these 

coordinately adaptive actions or chronicity of the stress can lead UPR mediators to express 

pro-apoptotic factors such as CHOP (CCAAT/enhancer binding protein [C/EBP] homologous 

protein), caspases or by modulating B-cell lymphoma 2 (Bcl-2) family proteins, triggering 

programmed cell death (Xu et al. 2005, Hotamisligil 2010) (Figure 4). 

 

1.4.3 Activation of the unfolded protein response in obesity 

The ER has been described as a systemic nutrient sensor in several tissues; 

therefore, metabolic overload in obesity can induce ER stress and accumulation of 

misfolded proteins. The organelle faces different metabolic challenges in the context of 

obesity according to cell type, with secretory cells such as adipocytes, hepatocytes and  

β-cells being particularly affected due to the increased demand in protein synthesis 

(Hotamisligil 2010). Within adipocytes, hypertrophy and increased synthesis of adipokines 

can represent a stressful situation for the ER. In the liver, altered lipid metabolism, 

enhanced gluconeogenesis and protein synthesis can trigger ER stress (Fu et al. 2011). A 

high demand of insulin in response to developing IR can cause the ER to be overwhelmed 

in β-cells. However, higher protein synthesis cannot totally explain obesity-induced ER 
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stress. Although upstream regulation of the UPR in obesity is not completely understood, a 

combination of in vitro findings, animal experimental data and human studies have painted 

a picture of a role of FA, inflammatory cytokines, ROS and glucose in the development of 

ER stress (Cnop et al. 2012). 

 

Figure 4. Activation of the unfolded protein response (UPR). Accumulation of misfolded proteins in the 

endoplasmic reticulum (ER) lumen leads to disassociation of GRP78 (78-kDa glucose-regulated protein) from 

the three leaders of the UPR: IRE1α (inositol requiring enzyme 1 α), PERK (double-stranded RNA-activated 

protein kinase-like kinase) and ATF6 (activating transcription factor 6) in order to address Ca
2+

-mediated 

protein folding. This leads to activation of three parallel pathways ending in the translocation of the three 

resulting transcriptional factors into the nucleus, where they promote the expression of gens related to  

pro-survival responses (antioxidants, ERAD (endoplasmic reticulum-associated protein degradation), 

chaperones). However, chronic activation of UPR triggers the activation of inflammatory mediators such as 

JNK (c-Jun N-terminal kinase) or NFκB (nuclear factor κΒ) and the expression of proapoptotic factors such as 

CHOP (CCAAT/enhancer binding protein [C/EBP] homologous protein). 
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Insulin also seems to activate the UPR, since induced hyperinsulinemia increases 

GRP78, ATF4, ATF6 and XBP1 expression in adipose tissue from normoglycaemic humans 

(Boden et al. 2008). That said, insulin is unlikely to be the main stimulus of ER stress in IR 

individuals. 

The mediators described above seem to provoke significant alterations in ER-

luminal conditions, including Ca2+ depletion and redox imbalance, and severely interfere 

with ER-folding capacity and functionality (Mekahli et al. 2011). Deficiencies in proteasome 

function and autophagy in obesity may also accentuate ER stress due to an inability to 

process undesirable proteins and organelles, and may contribute to IR (Otoda et al. 2013, 

Yang et al. 2010). However, there are still important gaps in the knowledge of how specific 

UPR leaders are regulated by different ER stressors, with evidence suggesting this may 

occur differently depending on the tissue and the cluster of factors competing in a precise 

moment, due to the highly dynamic nature of the UPR. 

 

1.4.4 Role in inflammation and insulin resistance 

At an intracellular level, the ER integrates several intrinsic and extrinsic signals to 

align cell function with metabolic demand. UPR pathways intersect with a constellation of 

molecular processes, such as inflammation, insulin signalling, Ca2+ homeostasis, oxidative 

stress and mitochondrial function, all of which are themselves mechanisms closely related 

with metabolic disturbances. For this reason, ER stress is considered to play a central role 

in metabolic diseases, including T2D and obesity. 

The interplay between UPR and inflammatory signals is thought to be the major 

contribution of ER stress to the physiopathology of obesity, along with the impairment of 

insulin signalling. It is known that UPR and inflammatory pathways converge in several 

stages in a bidirectional way. For instance, ATF6 and kinase activities of IRE1α and PERK are 

able to activate the IKK-NFκB pathway, implicated in the transcription of several 

inflammatory mediators and with the development of IR. Conversely, resulting 

inflammatory cytokines may affect ER function in some cell types, thus promoting ER stress 

even further. On the other hand, the activation of JNK via IRE1α kinase implies an 

additional ER-induced inflammatory pathway, and is also involved in the interruption of 

insulin signalling by means of IRS1 phosphorylation (Hotamisligil 2010) (Figure 4). 
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Moreover, IRE1α also triggers NLRP3 inflammasome assembly via thioredoxin-interacting 

protein (TXNIP) activation and ER-mitochondria crosstalk (Bronner et al. 2015). 

The role of ER stress in inflammatory and insulin signalling in obesity and T2D has 

been largely described in adipose, pancreatic and hepatic tissues. Activation of UPR has 

been associated with increased expression of inflammatory cytokines and disturbed insulin 

signalling in adipocytes and hepatocytes (Boden et al. 2008, Kawasaki et al. 2012, Ozcan et 

al. 2004, Nakatani et al. 2005), and has also been implicated in β-cell apoptosis and 

necrosis of pancreatic islets (Laybutt et al. 2007), which further contributes to systemic IR 

and progression towards T2D. Treatments with chemical chaperones such as 

4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) have been tested 

extensively in these tissues, demonstrating the ability to reduce UPR activation and to thus 

protect against IR development and inflammation (Engin et al. 2010). These findings largely 

explain why ER stress is considered a major contributor to IR in obesity and to the further 

development of T2D.  

 

Sirtuin 1 

An emerging body of evidence supports a connection between ER stress and  

Sirtuin 1 (SIRT1), a NAD+-dependent protein deacetylase highly sensible to variations in 

nutrient availability that has been implicated in the regulation of energy homeostasis and 

systemic inflammatory responses. The ability of nuclear SIRT1 to target NFκB transcription 

factor to induce its proteasome-mediated degradation exerts a protective anti-

inflammatory effect by reducing the expression of NFκB inflammatory effectors (Yang et al. 

2012). However, in obesity, SIRT1 levels are diminished in several tissues, including 

adipocytes and immune cells, and this has been related with the presence of metabolic 

disturbances, including inflammation and IR, thus highlighting the role of SIRT1 as a 

relevant mediator linking metabolic homeostasis and inflammation (Vachharajani et al. 

2016). Once again, the relationship between SIRT1 and ER stress seems to be bidirectional, 

since some reports have shown that SIRT1 negatively regulates UPR activation and ER-

stress-dependent inflammatory responses, while others described a potential role of UPR 

in modulating SIRT1 expression (Koga et al. 2015). As the largest amount of data has been 

collected in cellular or animal models, further studies in humans are required to throw 
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light on the complex mechanisms of regulation of SIRT1 and ER stress in the setting of 

metabolic disorders. 

 

Evidence of ER stress in atherosclerosis 

Besides classic secretory cells, accumulating evidence suggests ER stress in the 

context of metabolic diseases is present in many other cell types, including neurons, 

leukocytes, endothelial and even skeletal muscle cells, which results in additional 

metabolic disturbances. For instance, ER stress also seems to contribute to the 

atherosclerotic process. In an in vitro model of advanced atherosclerosis UPR-CHOP was 

required for cholesterol-load-mediated expression of inflammatory cytokines such as IL6, 

TNFα and IL8 via IKK/NFκB in macrophages (Li et al. 2005). Increased markers of ER stress 

were also found in macrophages and smooth muscle cells isolated from atherosclerotic 

plaques of patients with acute coronary syndrome (Myoishi et al. 2007). In addition, our 

group has previously described a correlation between up-regulated UPR markers in 

leukocytes from T2D patients and enhanced leukocyte-endothelium cell interactions 

(Rovira-Llopis et al. 2014), highlighting the potential role of ER in the early stages of the 

atherosclerotic process. 

 

1.4.5 Contribution to oxidative stress and mitochondrial dysfunction 

The role of ER stress in metabolic diseases goes beyond inflammation and IR. 

Oxidative stress also results from an incorrect ER function, either because of inner ROS 

production or by interfering with mitochondrial function. 

 

Oxidative protein-folding in the ER as a potential source of ROS 

The ER lumen is a unique oxidizing environment where formation of disulfide bonds 

is enhanced during the oxidative protein-folding process. To prevent and correct 

illegitimate disulfide bonds, resident protein disulfide isomerases (PDI), endoplasmic 

reticulum oxidoreductin 1 (Ero1) and GSH cooperate. This oxidative folding machinery 

generates large amounts of ROS and depletes the GSH pool, thus contributing to oxidative 

stress. Indeed, a high percentage of the total ROS generated in the cell is estimated to 

arise from this process, which may be further exacerbated in obesity due to an elevated ER 
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folding activity. Furthermore, CHOP factor derived from UPR activation promotes greater 

ROS production via Ero1. Subsequently, a hyperoxidizing environment interrupts PDI 

function, leading to accumulation of misfolded proteins and ER stress (Malhotra et al. 

2007). 

 

Calcium depletion during ER 

Besides optimum redox balance, the maintenance of high levels of Ca2+ in the ER 

lumen is critical for protein-folding mediated by chaperones. These levels are highly 

regulated by two complexes located in the ER membrane: the sarco/endoplasmic 

reticulum Ca2+-ATPase (SERCA) pumps, which promote Ca2+ entry from the cytosol, and 

the IP3R (inositol triphosphate receptors), which channels Ca2+ into the cytosol or the 

mitochondria. In obesity, several stimuli (e.g., FFA intermediates) can disrupt SERCA 

activity, thus impairing Ca2+ refilling (Fu et al. 2011). In addition, a rise in luminal ROS can 

activate IP3R, which increases Ca2+ depletion. The consequent drop in ER-Ca2+ content 

further deteriorates protein-folding capacity and enhances ROS production in a positive 

feedback via oxidative folding machinery. Furthermore it also disturbs mitochondrial 

function and Ca2+ distribution within the cell. The blocking of RE-Ca2+ leakage alleviates ER 

stress and restores cell homeostasis in numerous experimental models, which highlights 

the crucial role of Ca2+ distribution. 

 

ER and mitochondrial dysfunction 

Mitochondrial and ER are closely related functionally, and an emerging body of 

evidence demonstrates the converging role of ER stress and mitochondrial dysfunction in 

the course of metabolic diseases (Arruda et al. 2015). In this context, ER stress has been 

demonstrated to promote mROS production by further increasing oxidative stress and 

mitochondrial dysfunction, and this mROS also feedbacks to ER stress dysfunction. 

In regard to this relationship, it is worthy mentioning the existence of 

mitochondria-associated ER membrane (MAM), physical contacts enriched in IP3R 

channels, specialized metabolite exchangers and other regulatory proteins that maintain 

an optimal contact between the two organelles and control Ca2+ transporters. Under 

physiological conditions, mitochondrial-ER Ca2+ exchange is crucial for proper organelle 
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function, including ATP synthesis in the mitochondria (Mekahli et al. 2011). However, 

during ER stress, excessive amounts of Ca2+ are pumped into the mitochondrial matrix, 

where Ca2+ overload accelerates mROS production in the ETC by several mechanisms: 

tricarboxylic acid cycle activity is promoted, thus increasing the flow of energetic 

mediators into the ETC; initially the rise in Ca2+ levels hyperpolarizes the mitochondrial 

inner membrane, which enhances ETC activity; and finally prolonged Ca2+ entry ends in 

membrane depolarization, which induces a leak of cytochrome c via the permeability 

transition pore, thus increasing ROS production in the ETC and even leading to cell death 

(Malhotra et al. 2007). In what is a vicious cycle, mROS promotes a larger Ca2+ load by 

sensitizing Ca2+-release channels at the MAM and hyperoxidizing the ER lumen, thus 

altering protein-folding and perpetuating ER stress (Malhotra et al. 2007, Arruda et al. 

2015). Finally, unresolved ER stress and prolonged Ca2+ overload into the mitochondria or 

the cytosol present a threat to cell viability. In this sense, mitochondria-dependent and -

independent apoptotic programs involving caspase cascades are triggered (Mekahli et al. 

2011). 

In summary, mounting evidence suggests ER dysfunction is integrated in several 

vicious cycles of inflammation, oxidative stress and mitochondrial dysfunction, and plays a 

key role in the pathophysiology of obesity and its metabolic alterations. However, further 

detailed studies, especially in humans, are vital to increase our understanding of the way 

and the extent to which ER stress and related pathways are involved in these metabolic 

disturbances, which may provide the basis for the development of new therapeutic 

strategies. 
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Obesity is a complex disease involving a huge range of metabolic alterations, 

including chronic low-grade inflammation, IR, oxidative stress and altered lipid profile, 

which converge to promote the development of endothelial dysfunction and CV disease. 

The persistence of a residual risk, even in metabolically healthy or medically controlled 

obese subjects, suggests that factors other than those traditionally associated with CV risk 

exert an influence in a subclinical way. In this context, immune cells, which become 

activated in obesity, play a relevant role, since their attraction to the vascular wall is a key 

process in the formation of the atheromatous plaque. However, little is known about the 

intracellular mechanisms in leukocytes that may underlie this effect. Leukocytes are more 

capable of producing ROS for immune defence when activated; hence, it is likely that 

oxidative stress within leukocytes alters the dynamics between immune cells and the 

vascular endothelium in the context of obesity, where increased adiposity can aggravate 

the process. Chronic periodontitis shares several pathological mechanisms with obesity, 

including a hyperactivated immune system and oxidative stress. Therefore, it is feasible 

that the concomitant presence of obesity and periodontitis accelerates redox imbalance in 

leukocytes, thus leading to increased CV risk. 

The main factor responsible for oxidative stress and ROS production in the cell are 

the mitochondria, whose functionality is altered under metabolic overload in obesity, in 

parallel with the development of ER stress, all of which leads to metabolic disturbances. 

Targeting excess fat accumulation exerts benefits by protecting against cardiometabolic 

alterations, although the precise mechanisms implicated are poorly understood. In this 

sense, weight loss interventional studies in humans that further explore the modulation of 

intracellular stress responses are crucial for the discovery of new therapeutic targets that 

mimic the benefits of weight loss. Finally, the use of inositols such us pinitol has been 

demonstrated to enhance insulin sensitivity and improve inflammatory profile in the 

context of metabolic disease, although the molecular targets of pinitol are largely 

unknown. In this context, we believe there is a potential role of pinitol in the modulation of 

ER stress and SIRT1, two pathways whose altered profile of expression is proven to 

contribute to increased inflammation in obesity. 
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On the basis of the above knowledge, the following objectives were proposed for 

the present PhD research project: 

 

1. To evaluate the relationship between mitochondrial function and ROS production 

in leukocytes and the interaction of leukocytes with the endothelium according to 

the degree of obesity. 

 

2. To determine whether the presence and degree of severity of chronic periodontitis 

alters the dynamics between leukocytes and vascular endothelial cells by a 

mechanism involving oxidative stress in human obesity. 

 

3. To assess whether dietary weight-loss intervention improves redox balance and 

subclinical atherosclerotic markers in an obese population. 

 

4. To investigate how ER stress, mitochondrial dysfunction and inflammatory 

pathways in leukocytes of obese patients can be modulated by weight loss. 

 

5. To explore the potential protective role of pinitol as a molecular chaperone capable 

of ameliorating chronic ER stress and inflammatory signalling in adipose tissue and 

leukocytes of patients with obesity. 
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The alarming rise in the prevalence of obesity worldwide and the associated heavy 

burden of the disease has generated a growing demand for strategies for slowing down 

the epidemic and/or mitigating the damaging effects of obesity on health. A massive 

commitment by social forces, including the international scientific community, is required 

not only to develop preventive strategies but to further increase understanding of the 

pathological events and mechanisms involved, from both basic and clinical points of view. 

Indeed, the main aim of this thesis is to delve into the underlying mechanisms of 

obesity, especially those related to the increased risk of developing atherosclerosis, with a 

special focus on leukocyte activation and margination in the vessel wall and the role of 

certain mechanisms, including inflammation, oxidative stress, mitochondrial dysfunction 

and ER stress. We also address whether several therapeutic approaches can modulate 

these pathways and protect against metabolic disturbances. 

We recruited several cohorts of middle-aged overweight and obese patients, and 

normoweight volunteers – all classified according to their BMI – that were attending the 

Department of Endocrinology and Nutrition and/or the Department of Stomatology of the 

University Hospital Doctor Peset (Valencia, Spain). In the first cross-sectional study non-

diabetic subjects were categorized as non-obese (< 30 kg/m2), obese grade I-II (30-40 

kg/m2) and morbid obese (> 40 kg/m2), and measurements of WC revealed increasing 

visceral adiposity and blood pressure as the degree of obesity incremented. As is common 

among obese populations, some of the subjects in our studies presented associated 

metabolic comorbidities, including hypertension, hyperlipidemia and T2D (except for the 

cross-sectional studies, in which patients with T2D diagnosed according to ADA criteria 

were excluded (American Diabetes Association 2016). On average, 10 % and 19 % of the 

non-diabetic obese subjects were estimated to be on lipid-lowering or antihypertensive 

medication, respectively. However, these percentages rose to 27 % and 30 % in the cohort 

of the weight-loss interventional study, probably due to the presence of patients with T2D. 

In fact, the incidence of metabolic syndrome traits tends to be higher among T2D-obese 

patients when compared to non-diabetic obese subjects (Anari et al. 2017). In parallel, 

obese patients clearly presented impaired insulin sensitivity, as revealed by HOMA-IR 

levels above 2.5 among the different cohorts, along with an increase in fasting glucose, 

insulin and glycated haemoglobin (A1c) as rates of BMI rose. Nevertheless, fasting glucose 

and A1c remained within the normal range, thus indicating a general preservation of 
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glycaemic control. Regarding lipid profile, levels of LDLc were within reference values in all 

the cohorts, with no significant between-group differences, probably due to the use of 

lipid-lowering medication. In contrast, HDLc was characteristically reduced and TG levels 

rose as the degree of obesity increased, with typical features of atherogenic dyslipidaemia 

being observed. 

These metabolic comorbidities – hypertension, dyslipidemia and T2D – are closely 

related with the development of endothelial dysfunction and atherosclerosis, although 

even obese patients with no clinical signs of metabolic impairment are at a higher risk of 

subclinical atherosclerosis (Kim et al. 2017). Endothelial dysfunction is one of the early 

events in the development of atherosclerosis and CV disease, and it has been documented 

that obesity per se causes endothelial dysfunction in several vascular beds (Grassi et al. 

2010), a situation that worsens with higher BMI (van der Heijden et al. 2017). Similarly, 

chronic periodontitis, a highly prevalent pathology among obese patients, has emerged as 

a putative risk factor for the development of endothelial dysfunction and atherosclerosis, 

and shares with obesity many traits that lead to CV disease. 

Systemic low-grade inflammation is a relevant hallmark of obesity that also 

underlies the atherosclerotic process resulting mainly from adipose tissue dysfunction, 

which overstimulate immune cells and impair vascular function. For instance, IL6 is a 

cytokine with pleiotropic effects produced by several tissues, especially expanding VAT, 

which drives large amounts of this cytokine directly to the liver via portal circulation, 

thereby increasing the production of CRP, an acute phase reactant widely interpreted as a 

predictor of CV disease risk (Ridker 2007) and promoter of a pro-atherosclerotic 

phenotype in the vasculature (Devaraj et al. 2003, Ikeda et al. 2003). Likewise, TNFα is 

overproduced by perivascular adipose tissue and immune cells and has been associated 

not only with IR, but also with impaired endothelial function, especially through reduced 

NO availability, leading to an increased risk of coronary events (Virdis et al. 2019, Ridker  

et al. 2000). In line with previous findings (Park et al. 2005), we confirmed a pro-

inflammatory state in our obese patients, as revealed by increasing circulating levels of 

CRP, IL6 and TNFα in parallel with growing adiposity, which may alter vascular function. In 

this sense, it has been proposed that this inflammatory state also causes alterations in the 

host immune response, which increases susceptibility to bacterial infection, thus emerging 
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as a potential mechanism linking obesity and chronic periodontitis. Conversely, once 

periodontitis has developed, it also promotes systemic inflammation, thereby contributing 

to CV risk (D'Aiuto et al. 2004). We actually observed higher leukocyte count in the 

presence of chronic periodontitis, which suggests hyperactivation of the immune system. 

Subsequently, we confirmed that chronic periodontitis further exacerbates the 

inflammatory response in patients with obesity, as revealed by progressive increases in 

circulating levels of TNFα, CRP and RBP4 as periodontal disease became more severe. RBP4 

is an adipokine involved in systemic IR and also in vascular oxidative damage (Yang et al. 

2005, Wang et al. 2015) which has been recently associated with periodontal disease 

(Martinez-Herrera et al. 2018), reinforcing the putative link between chronic periodontitis 

and endothelial dysfunction. 

In the presence of systemic inflammation, endothelial cells, leukocytes and 

platelets become activated and the expression of CAMs, including selectins, ICAM-1 and 

VCAM-1, is promoted. This enhances the attraction of leukocytes to the endothelium, the 

first step of the transmigration process in the early stages of atherogenesis.  Our findings 

show that obesity progressively increases circulating levels of ICAM-1 and P-selectin, in 

accordance with previous studies showing them to be markers of endothelial activation 

and predictors of CV disease in obesity and T2D (Leinonen et al. 2003, Bielinski et al. 2015). 

To explore whether interactions between leukocytes and the endothelium are affected by 

escalating rates of obesity, we used a flow-chamber in vitro model in which a suspension of 

patient’s leukocytes is drawn across a monolayer of human endothelial cells under 

conditions similar to in vivo blood flow. We observed a progressive reduction of leukocyte 

rolling velocity and enhanced rolling flux, which led to a slowing down of leukocyte flux and 

enhanced tethering and rolling along the vascular endothelium, in which P-selectin is a key 

mediator. Firm adhesion was also promoted as the grade of obesity increased, in which 

ICAM-1 plays a relevant role. Further correlations confirmed the association between 

parameters of adiposity, inflammation and CAMs with leukocyte-endothelial cell markers, 

with BMI proving to be a major predictor of rolling flux, which strengthens the notion that 

obesity impairs endothelial function and promotes interactions between the leukocytes 

and the vasculature. In the light of these findings and the many established links between 

chronic periodontitis, obesity and CV disease, we evaluated the effect of chronic 

periodontitis on leukocyte-endothelial cell interactions. We have observed that the 
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presence of this periodontal alteration promotes leukocytes rolling flux and adhesion, and 

that these parameters correlate, not only with clinical periodontal markers, but also with 

TNFα and RBP4, thus suggesting a mechanistic association between chronic periodontitis, 

inflammation and atherogenesis, in line with that proposed in the context of obesity. 

Besides inflammatory cytokines, obesity-associated IR is a major contributor to 

endothelial dysfunction – as described first by Steinberg et al.(Steinberg et al. 1996) – in 

part through a mechanism involving oxidative stress. In this sense, hyperglycaemia seems 

to stimulate ROS production by endothelial cells, thus contributing to impaired 

vasodilatation and permeability (Brownlee 2005). On the other hand, recent reports by our 

group suggest that IR also triggers ROS production in leukocytes, thus promoting contacts 

with the vascular wall. In relation to this, the leukocytes of T2D patients showed elevated 

ROS production and a more pronounced adherence phenotype, especially among those 

with poorly glycaemic control (Rovira-Llopis et al. 2014). Similarly, further IR in woman 

with PCOS was associated with increased ROS production in leukocytes and elevated 

markers of endothelial dysfunction, which enhanced leukocyte-endothelium cell 

interactions (Bañuls et al. 2017). In accordance with the results of these previous studies, 

our present findings show rising production of ROS in leukocytes from non-diabetic obese 

patients that peaked in those with higher degrees of obesity and impaired insulin 

sensitivity. Besides BMI, markers of IR and total superoxide correlated with leukocyte 

adhesion parameters and showed themselves to be independent predictors in the 

multivariable regression model. 

Given the extent of the contribution of mitochondrial dysfunction to redox 

imbalance, it is likely that the increased superoxide detected is linked with impaired 

mitochondrial activity. Mitochondrial dysfunction in obesity is a maladaptive physiological 

response to excess nutrient supply, which increases electron input into the ETC, thus 

leading to increased ROS production and imbalance of proton flux. In a previous study, 

hyperpolarisation of the mitochondrial membrane and enhanced superoxide production 

has been reported in the leukocytes of T2D (Widlansky et al. 2010). In the same way, we 

found that mitochondrial ΔѰ in leukocytes gradually increased with the degree of obesity, 

in parallel with superoxide production. Moreover, accumulating evidence points to the 

contribution of mitochondrial dysfunction and oxidative stress to vascular damage, altered 
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leukocyte dynamics and progression of CV complications in metabolic disorders, all of 

which are particularly pronounced in patients with T2D (Madsen-Bouterse et al. 2010, 

Bañuls et al. 2017, Hernandez-Mijares et al. 2013), which is in accordance with our 

observations in obese patients. Altogether, these findings point to a role of IR, 

mitochondrial dysfunction and oxidative stress within leukocytes in the activation of the 

adhesion cascade. 

Overproduction of oxidizing species is also a relevant characteristic of 

hyperreactive leukocytes in chronic periodontitis, however, how this state can be 

modulating their interactions with the endothelium is a mechanism largely unknow. In this 

study, we found that, in leukocytes from patients with the same degree of obesity, 

superoxide production increased progressively with the degree of severity of periodontitis 

and correlated with increased rolling of leukocytes over the endothelium, similar to what 

we found in the study of obesity degrees. Furthermore, it is likely that concomitant 

presence of obesity and chronic periodontitis exacerbates the oxidative response. In this 

regard, obesity has been shown to be a predictive factor of enhanced oxidative response in 

humans with chronic periodontitis compared to lean subjects (Atabay et al. 2017), 

conversely, among obese subjects those with chronic periodontitis displayed higher 

systemic markers of oxidative stress (Suresh et al. 2016). In addition, obese rats showed 

higher basal levels of oxidative stress than lean rats; when periodontal disease was 

induced both groups displayed an oxidative stress response, which was more severe in the 

obese group, with enhanced infiltration of PMNs in the periodontal lesion (Tomofuji et al. 

2009). Although none of these evidences confirm causality, they highlight a novel and 

significant connection between chronic periodontitis, obesity and CV disease, and also 

suggests that the presence and deterioration of periodontal condition in obese subjects 

may be an additional risk factor for CV disease. 

The benefits for cardiometabolic function on targeting excess weight have been 

largely demonstrated, and a potential protective role of weight loss on the progression of 

carotid atherosclerosis has been proposed (Shai et al. 2010), although the mechanisms by 

which these benefits are achieved remain largely unknown. The above discussed cross-

sectional data and prior studies have contributed to our understanding of some 

mechanisms involved in the early stages of the atherosclerotic process in obesity, such as 
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changes in leukocytes activation. In the present project, we went a step further by 

investigating the effect of weight reduction on these and other pro-atherogenic processes. 

For this purpose, a cohort of morbid obese patients was enrolled in a 6-month dietary 

weight-loss program. A weight loss of ~9 % improved insulin sensitivity in our obese 

population, as revealed by decreased levels of fasting glucose, insulin, A1c and HOMA-IR. 

These data were accompanied by favourable changes in serum TNFα – a potent activator 

of endothelial cells–, P-selectin and its receptor on the surface of leukocytes PSGL-1  

(P-selectin glycoprotein ligand-1). As expected, adherence of leukocytes to the 

endothelium was reduced, thus suggesting an amelioration of endothelial dysfunction and 

recruitment of leukocytes to the vessel wall, which our previous findings suggest are 

associated with improved insulin sensitivity. 

When we explored the potential intracellular changes underlying these 

observations, we confirmed a fall in mitochondrial ΔѰ associated with reductions in total 

superoxide and mROS production, thus suggesting that weight loss is an effective strategy 

to diminish mitochondrial dysfunction and subsequent excess ROS production in 

leukocytes. The wide range of pathophysiological implications of mitochondrial dysfunction 

and oxidative stress has given rise to an intense field of research into therapeutic 

strategies against the spectrum of metabolic disturbances in obesity, a body of work to 

which our findings about the role of lifestyle interventions may contribute significantly. In 

this sense, targeting mROS in leukocytes with specific mitochondrial antioxidant molecules, 

such as SS-31 or MitoQ, has been proven to exert benefits by diminishing oxidative stress, 

inflammation and leukocyte-endothelium cell interactions (Escribano-Lopez et al. 2018, 

Escribano-Lopez et al. 2016), reinforcing the role of mitochondrial function and ROS 

production in leukocytes in the initiation of the adhesion cascade. Interestingly, the GPX1 

(glutathione peroxidase 1) antioxidant enzyme was up-regulated after weight loss, and was 

likely to be contributing to the drop in ROS signalling within the leukocytes. In addition, the 

expression of NFκB in leukocytes was reduced in parallel with intracellular ROS content. 

The transcriptional NFκB cascade integrates several cell stress pathways (including ROS 

signalling) in a bidirectional way, and is considered a master regulator of cell activation and 

inflammatory response. Circulating mononuclear cells in obesity are known to be in a pro-

activated state, displaying higher levels of NFκB and TNFα (Ghanim et al. 2004), which may 

enhance their adherence to the endothelium; conversely, weight loss diminished NFκB 
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regulatory pathways (de Mello et al. 2008), in line with our findings. As a whole, our results 

show that diet-induced weight loss exerts beneficial effects on leukocyte homeostasis by 

improving redox balance and preventing the activation of intracellular stress pathways. 

Besides mitochondria, other sources of oxidizing species play relevant roles in 

immune cells. Of note, the pro-oxidant activity of MPO in leukocytes is vital for cells to 

defend themselves against pathogens; however, excess release of MPO from leukocytes 

into the circulation in an inflammatory context such us obesity, can contribute to oxidative 

stress and vascular injury. Previously, our group has shown an association between 

elevated serum MPO levels and the presence of nephropathy in T2D patients, as well as 

significant correlations with leukocyte-endothelial cell interaction parameters (Rovira-

Llopis et al. 2013), while Kinkle and cols. have also described a potential role of MPO in the 

interaction of leukocytes with the vessel wall by means of electrostatic forces (Klinke et al. 

2011), athought mechanistic data are inconclusive. Serum analysis after 6 months of 

dietary treatment revealed a decline in MPO levels, which may have protected against 

leukocyte adhesion and endothelial dysfunction. In fact, changes in MPO positively 

correlated with soluble P-selectin, a marker of endothelial dysfunction. MPO is known to 

impair eNOS function, leading to activation of immune and endothelial cells, impaired 

vascular function and the subsequent expression of inflammatory cytokines and CAMs 

(Vita et al. 2004). Therefore, decreased levels of MPO, TNFα and P-selectin after weight 

loss may be indicative of enhanced endothelial function in our obese population. 

Systemic oxidative stress result of an imbalance of pro-oxidant and antioxidant 

systems, and is reflected by the presence of oxidised circulating macromolecules. Thus, 

lipid peroxidation and protein carbonylation in serum are considered relevant biomarkers 

of systemic oxidative damage, whose levels are elevated in obesity as a result of excessive 

ROS production and undermined activity of the serum detoxifying systems, which can be 

found in plasma, circulating immune cells and erythrocytes (Vincent et al. 2006). In our 

study, moderate weight loss displayed a systemic antioxidant effect, as revealed by 

enhanced serum antioxidant capacity and diminished systemic markers of oxidative stress. 

In this sense, catalase activity was stimulated and erythrocyte glutathione content 

increased after weight loss. In addition, we observed a decline of carbonyl groups in serum 

proteins, as well as reduced ROS production and enhanced GPX1 expression in leukocytes, 

which is in accordance with previously published data (Dandona et al. 2001). In relation to 
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this issue, other authors have demonstrated that the use of antioxidants to target 

leukocytes ameliorates ROS production and systemic markers of oxidative stress, resulting 

in improved vascular function in obese individuals (Garg et al. 2000). As a whole, given the 

known role of oxidative stress in eNOS uncoupling and reduced NO availability in the 

endothelium (Matsuda et al. 2013), a partial recovery of redox balance after weight loss 

may contribute to the enhancement of endothelial function described in the present PhD 

project. 

Altered hepatic lipid metabolism is another mechanism contributing to CV risk in 

metabolic diseases. In obesity, elevated FFA and IR are involved in excess synthesis and 

failed processing of VLDL, which in turn leads to increases in LDLc levels and a shift of the 

LDL pool towards sdLDL particles. Elevated serum LDLc concentration is considered a 

classic CV risk factor; however, the qualitative characteristics of these particles with 

respect to the atherosclerotic process are also relevant. In this sense, the smallest and 

densest LDL – known as phenotype B – have a higher capacity of penetration through the 

vascular endothelium. In addition, sdLDL particles are more prone to oxidation in which 

MPO plays a relevant role, which further promotes endothelial dysfunction and increases 

the immunogenic power of sdLDL (Liao et al. 1995, Fleming et al. 2005, Gebuhrer et al. 

1995). This phenomenon could partly explain the presence of residual CV risk in patients 

with adequate LDL control (Bayturan et al. 2010). In this context, as we stated at the 

outset, the average LDLc in our obese population did not reveal a notable CV risk derived 

from clinical LDLc levels, which were similar among the different BMI groups and remained 

surprisingly constant after weight loss. However, qualitative assays of LDL particles 

revealed a significant reduction of the percentage of sdLDL particles and a beneficial 

change in LDL size pattern, thus endorsing the protective role of moderate weight loss on 

subclinical LDL profile. Interestingly, these changes correlated with the decrease of MPO, 

which may be indicating not only a decrease in the number of sdLDL particles, but also 

lower oxidation. Atherogenic process is aggravated by the decrease in HDLc associated 

with obesity, since this lipoprotein exerts an atheroprotective role through the uptake of 

lipids from macrophages, the reverse transport of cholesterol and its anti-oxidant, anti-

inflammatory and anti-thrombotic function (Tall 2008, Badrnya et al. 2013). Typically, HDLc 

levels in our study population decreased with as the degree of obesity escalated, and were 

partially restored by weight loss. Conversely, TG levels rose with BMI and fell after dietary 
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intervention, thus leading to an overall improvement in lipid profile that may have 

protected against CV risk. 

Other remarkable findings from the present interventional study give credence to 

the cardiometabolic protective role of moderate weight loss in middle-aged morbid obese 

populations. The elevated blood pressure observed initially with growing rates of obesity –

a big contributor to endothelial dysfunction – was reduced after weight loss, along with 

circulating inflammatory CRP, C3c (complement component 3), RBP4 and TNFα. On the 

other hand, there is some controversy about the role of weight loss in systemic 

inflammation in obesity, and the extent of this effect. While some authors have failed to 

observe significant changes in inflammatory markers (Sola et al. 2009), other studies have 

reported marked reductions in plasma CRP, C3c, RBP4 and TNFα following moderate 

weight loss (Hermsdorff et al. 2009, Hernandez-Mijares et al. 2012), which is in accordance 

with our findings. This discrepancy could be explained by the amount of weight loss 

achieved or different therapeutic approaches, both of which would impede the 

comparison between studies. 

On the whole, there is a broad consensus on the considerable benefits of caloric-

restriction-mediated weight loss and subsequent maintenance of weight-loss on 

cardiometabolic function and CV risk in obese and T2D populations, even with moderate 

weight reduction of 5-10 % (Cornier et al. 2011), although less is known about the 

mechanisms involved in the observed benefits. Our findings confirm this notion and 

provide new insights on the processes underlying protective effects of weight loss, namely, 

modulation of pro-atherogenic factors and intracellular mechanisms involved in activation 

of leukocytes and their subsequent arrest on the endothelium. 

Among the molecular mechanisms involved in the pathophysiology of obesity, ER 

stress is activated in several tissues such us the pancreas, liver and adipose tissue, where 

protein trafficking and secretory pathways play a significant part in cell function, 

contributing to the impairment of insulin sensitivity, β-cell apoptosis and inflammation 

(Cnop et al. 2012). In addition, several in vitro studies have investigated the activation of 

UPR pathways under individual stimuli such as FFA and glucose (Hotamisligil 2010). 

However, there are still many gaps in our knowledge of how UPR and ER stress are 

modulated in obesity in vivo, where a cluster of activating mechanisms occur 

simultaneously, and beyond metabolic tissues. Herein, we have explored the modulation 
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of ER stress responses in leukocytes and WAT of obese patients by means of two 

interventional approaches: a dietary weight-loss intervention and the use of pinitol, a 

bioactive plant compound with insulin-like and anti-inflammatory properties. 

The role and modulation of ER stress in immune cells is much less clear than that in 

metabolic tissues and has been the focus of a growing research field over the last decade 

owing to the discovery that immune cells also contribute to the pathophysiology of 

obesity, T2D and associated CV complications. In this context, previous studies have 

reported elevated ER stress in leukocytes of T2D patients, and have associated it with the 

activation of cell-death pathways and impaired immune function (Rovira-Llopis et al. 2014, 

Komura et al. 2010). In addition, markers of ER stress have been detected in peripheral 

mononuclear cells of patients with obesity and metabolic syndrome (Sage et al. 2012, 

Degasperi et al. 2009, Bañuls et al. 2017), and, recently, in woman with PCOS (Bañuls et al. 

2017). This accumulating evidence confirms alterations of ER function in circulating 

immune cells of patients with IR-related metabolic diseases. Part of the present research 

aimed to explore whether weight loss can reverse this intracellular stress response in 

obesity. 

When ER function is challenged, early adaptive UPR pathways are promoted in 

order to restore cell homeostasis. However, under severe or persistent imbalances, pro-

survival efforts are abandoned in favor of pro-death responses. To determine how weight 

loss could be modulating this dichotomy, we evaluated several mediators of the three 

branches of the UPR and several downstream effectors. We observed a marked down-

regulation of the activated ATF6 (p50) transcriptional factor, whereas no changes were 

detected in either phosphorylated eIF2α or spliced XBP1, both considered to be mediators 

of the PERK and IRE1α-endoribonuclease pathways, respectively. When we analyzed 

downstream targets of the UPR after weight loss, we observed decreased JNK activation 

and CHOP expression, both of which are markers of chronic ER stress (Schonthal 2012). In 

fact, pro-apoptotic factor CHOP –regulated by ATF6 and/or other UPR leaders– is a crucial 

executor of cell-death decisions under chronic ER stress (Nishitoh 2012). The strong 

correlation between changes in ATF6 and CHOP may indicate, predominantly, an ATF6-

mediated CHOP regulation. Conversely, GRP78 expression was up-regulated after weight 

loss in our patients. This chaperone is a master regulator of ER stress through its role in 

protein-folding, by which the ER lumen is relieved of misfolded proteins; therefore, it is 
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considered a major contributor to the pro-survival response (Schonthal 2012). Together, 

increasing GRP78 and a drop in ATF6-CHOP and JNK indicate an amelioration of apoptotic 

pathways of UPR in favor of adaptive responses, as suggested previously (Rutkowski et al. 

2006). The only two previous studies that have explored the effect of weight loss on ER 

stress also reported a decrease in UPR activation in WAT and liver from humans after 

bariatric surgery and from rats after diet-induced weight reduction, which in accordance 

with our findings and underline the important role of body weight in ER function (Gregor  

et al. 2009, Tsutsumi et al. 2011). 

As outlined above, ER stress has been widely described as a mechanism underlying 

IR and inflammation in obesity and T2D. For instance, IRE1α-kinase activity triggers NFκB 

and JNK signaling pathways, which are key mediators of ER-induced inflammation 

(Hotamisligil 2010); both markers decrease after weight loss, thus indicating reduced 

inflammatory activation within leukocytes. Stimulation of JNK is also considered a major 

contributor to ER-mediated impairment of insulin signaling. Previous studies have found 

associations between chronic ER stress markers in leukocytes and indicators of systemic IR 

and metabolic disturbances (Bañuls et al. 2017). In line with this, we found that a drop in 

HOMA-IR after weight loss correlated with a decrease in chronic ER stress markers ATF6 

and JNK, thus supporting the connection between ER function and glucose homeostasis. In 

addition, ER stress may also be involved in leukocyte activation and transmigration thought 

the endothelium. In this sense, the presence of ER stress in leukocytes has previously been 

associated with enhanced properties of leukocyte adherence to the vessel wall (Bañuls  

et al. 2017). In addition, elevated markers of UPR activation have been found in 

macrophages isolated from atherosclerotic plaques (Myoishi et al. 2007), while targeting 

ER stress with chaperones seems to protect against the development of atherosclerosis 

(Erbay et al. 2009). In the present PhD project changes in ER stress activation after weight 

loss occurred in parallel with decreased interactions of leukocytes with the endothelium, 

which may have reinforce this association. 

Stress signals, including Ca2+, ROS and inflammatory cytokines traveling from ER to 

mitochondria and viceversa, play a key role in determining cellular viability (Cao et al. 

2014). In this context, previous studies have shown synergistic activation of ER stress, 

mitochondrial dysfunction and ROS production in leukocytes from patients with T2D and 

obesity (Rovira-Llopis et al. 2014, Degasperi et al. 2009, Bañuls et al. 2017). In contrast, 
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targeting ER with chemical chaperones diminished ROS production within leukocytes, 

which highlights the close interplay between ER and oxidative stress (Degasperi et al. 

2009). Similarly, we now demonstrate concomitant improvements in ER and mitochondrial 

function and reduced ROS production in immune cells of obese patients after weight loss. 

By way of explaining these findings, a drop in cytosolic Ca2+ suggests a partial restoration of 

ER-intraluminal Ca2+ depots, which may in turn be associated with a decrease in 

mitochondrial ΔѰ and mROS production since excess of Ca2+ pumping during ER stress is a 

key mediator of disturbances in the ETC of mitochondria (Mekahli et al. 2011). Excess Ca2+ 

depletion from the ER lumen also has far-reaching effects, since Ca2+ is required for 

adequate protein-folding by several chaperones (Fu et al. 2011). Up-regulation of 

chaperone GRP78 and partial restoration of ER Ca2+ depots after weight loss indicate an 

enhanced protein-folding capacity, which would ameliorate misfolded protein aggregates 

and ER stress. 

Based on the accumulating findings of the present interventional study, in which ER 

stress relief was associated with amelioration of several other cell stress responses and 

metabolic disturbances, targeting ER stress emerges as a potential therapeutic strategy to 

diminish and/or slow down the progression of maladaptive responses underlying obesity 

and T2D. In this sense, the use of chemical chaperones such as TUDCA and 4-PBA for ER 

stress amelioration in the context of metabolic disorders is extensively documented in the 

literature (Engin et al. 2010). For instance, administration of these chemical chaperones to 

a mouse model of obesity decreased several markers of ER stress in WAT, together with 

inflammatory mediators such as TNFα and IL6 (Chen et al. 2016). In this regard, the anti-

inflammatory effects of pinitol have been previously described in obese populations 

(Bañuls et al. 2016, Sivakumar et al. 2010), although the underlying mechanisms are largely 

unknown. To assess whether pinitol acts as a chemical chaperone by alleviating ER stress 

and hence inflammation, we tested the effects of pinitol treatment on two of the major 

sources of inflammatory cytokines: immune cells and WAT. Our findings showed that 

pinitol exerts an anti-inflammatory systemic effect, as revealed by decreased levels of 

TNFα and IL6 in serum of patients after consuming a pinitol-enriched beverage for 12 

weeks. However, we did not detect changes in the ER stress markers GRP78 or CHOP in 

isolated leukocytes. Intriguingly, further ex vivo culture of human VAT and SAT with pinitol 

revealed differential responses; whereas VAT did not show changes in either inflammatory 
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or ER stress markers, pinitol exerted a beneficial effect on SAT by down-regulating the 

ATF6-CHOP chronic pathway, a response that was associated with reduced expression of 

TNFα and IL6 in the tissue, similarly to that reported by Chen et al. after treatment with 

chemical chaperones (Chen et al. 2016). Thus, targeting ER stress and production of 

cytokines in SAT may be a potential mechanism behind the anti-inflammatory properties 

displayed by pinitol. 

Differential responses between VAT and SAT could be explained by the alternative 

metabolic-activity patterns displayed by both tissues (Misra et al. 2003). For instance, 

adipocytes from VAT are more IR than those from SAT. In fact, VAT exhibited undermined 

expression of mediators of the insulin-signalling pathway in our comparative analysis, 

further confirming this belief. Despite this, incubation of VAT and SAT with pinitol did not 

modify the insulin-signalling pathway – GLUT4, IR (insulin receptor) and PPARγ 

(peroxisome proliferator-activated receptor γ). In fact we did not find either changes in 

systemic insulin sensitivity after oral consumption of pinitol for 12 weeks in our obese 

population, indicating that insulinomimetic activity of pinitol described in other 

populations (Owczarczyk-Saczonek et al. 2018) is not occurring within obese subjects. 

On the other hand, SIRT1 is a powerful nutrient-sensing regulator of a wide range 

of cellular processes, including cell survival, whose expression is undermined in obesity, 

with harmful effects on overall energy balance and metabolic control. For instance, down-

regulation of SIRT1 expression was found in macrophages of patients with metabolic 

syndrome and was related with impaired insulin sensitivity and atherosclerotic plaque 

formation (de Kreutzenberg et al. 2010). Moreover, SIRT1 physically interacts with NFκB, 

and mediates its degradation, thus exerting anti-inflammatory properties. In fact, 

stimulation of SIRT1 in immune cells led to inhibition of pro-inflammatory pathways and 

improved insulin sensitivity (Yoshizaki et al. 2010). Our results revealed SIRT1 up-regulation 

in leukocytes from obese patients after consuming the pinitol-enriched beverage, which 

may have contributed to the anti-inflammatory effect of the inositol. Caloric restriction is 

another powerful inducer of SIRT1 expression (Bordone et al. 2005). Interestingly, we 

observed up-regulation of SIRT1 in the leukocytes of obese patients after weight-loss in the 

dietary interventional study, in association with a drop in NFκB signaling, ROS production 

and leukocyte-endothelial cell interactions. Additionally, our research group has previously 

reported similar findings after stimulation with SS-31 – an antioxidant targeting to 
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mitochondria – in leukocytes of T2D patients (Escribano-Lopez et al. 2018). Finally, SIRT1 

has been described as a sensor of ER function, as it participates in a UPR-SIRT1-UPR 

regulatory loop. In fact, increased expression of SIRT1 after weight loss correlated with 

enhanced adaptive GRP78. In the light of this accumulating evidence of the converging role 

of SIRT1, cellular stress responses and metabolic homeostasis in obesity, SIRT1 emerges as 

a potential therapeutic target. In this sense, here we described two promising strategies to 

achieve SIRT1 stimulation, namely weight loss and pinitol supplementation. 

In summary, by means of a cross-sectional study, we show that adherence between 

leukocytes and the vascular endothelium is enhanced in obesity in parallel with the rising 

degree of adiposity, with morbidly obese patients being particularly affected. This 

response is associated with systemic conditions such as inflammation, IR and endothelial 

dysfunction, but also with increased ROS production and mitochondrial dysfunction in 

leukocytes, suggesting a role of altered redox balance within leukocytes in the onset of the 

atherosclerotic process. At the same time, we demonstrate that a worsening of the 

periodontal condition in a cohort of obese patients adjusted by BMI was associated with 

increasing systemic inflammation and ROS production in leukocytes, thus promoting their 

interaction with the endothelium. These results are an important contribution to our 

knowledge of the potential mechanisms underlying the relationship between obesity, 

chronic periodontitis and CV disease. Interestingly, when morbid obese patients 

underwent dietary weight-loss intervention we found that moderate weight loss partially 

reversed this situation by improving lipid profile, insulin sensitivity and reducing 

inflammatory and oxidative response both in leukocytes and at systemic level, resulting in 

a better profile of endothelial function and lesser interactions between leukocytes and the 

endothelium. Further analysis of the modulation of intracellular stress responses in 

leukocytes after weight loss revealed ameliorated ER stress and mitochondrial dysfunction, 

which were associated with increased expression of chaperones and anti-inflammatory 

and antioxidant mediators. Altogether, these results shed light on the potential 

mechanisms underlying the protective role of weight loss on metabolic control and cellular 

homeostasis. Finally, we demonstrate that pinitol targets ER stress and inflammatory 

pathways in adipose tissue and leukocytes of obese patients and may represent a novel 

adjunctive treatment to reduce metabolic complications in this pathology. 
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1. Oxidative stress and mitochondrial dysfunction are progressively promoted in 

leukocytes in parallel with a growing degree of obesity and state of insulin 

resistance. Furthermore, rising obesity is associated with markers of systemic 

inflammation, endothelial dysfunction and enhanced adherence of leukocytes to 

the endothelium, which can increase the risk of atherogenesis. 

2. The presence and degree of severity of chronic periodontitis in an obese population 

is associated with further systemic inflammation, superoxide production in 

leukocytes and enhanced properties of leukocyte adherence to the vessel wall with 

respect to those without periodontal disease. These observations suggest that 

chronic periodontitis may be an added risk factor for CV disease in obesity. 

3. Diet-induced weight loss improves several cardiometabolic outcomes and reduces 

pro-atherogenic mechanisms including inflammation, oxidative stress and 

endothelial dysfunction. In this context, the adherence between less activated 

leukocytes and endothelial cells is reduced, thus suggesting a protective role of 

weight loss in the early stages of the atherosclerotic process. 

4. Moderate weight loss provokes a switch from endoplasmic reticulum (ER) 

chronic/apoptotic pathways to more adaptive responses in the leukocytes of obese 

patients, which are in turn associated with a reduction in mitochondrial membrane 

potential. Therefore, ER-mitochondria crosstalk signals – namely, Ca2+ and reactive 

oxygen species (ROS) – are undermined, which improves cellular homeostasis and 

reduces leukocyte activation. 

5. Pinitol modulates chronic ER stress specifically in subcutaneous adipose tissue of 

obese patients, leading to a drop in inflammatory cytokine expression and  

up-regulation of anti-inflammatory SIRT1 in leukocytes, thus reducing systemic 

inflammation. 
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Abstract
Background: To evaluate the relationship between leukocyte‐endothelial cell

interactions and oxidative stress parameters in non‐diabetic patients with different

grades of obesity.

Material and methods: For this cross‐sectional study, 225 subjects were

recruited from January 1, 2014 to December 31, 2016 and divided into groups

according to BMI (<30 kg/m2, 30‐40 kg/m2 and >40 kg/m²). We determined clin-

ical parameters, systemic inflammatory markers, soluble cellular adhesion mole-

cules, leukocyte‐endothelium cell interactions—rolling flux, velocity and adhesion

—, oxidative stress parameters—total ROS, total superoxide, glutathione—and

mitochondrial membrane potential in leukocytes.

Results: We verified that HOMA‐IR and hsCRP increased progressively as obe-

sity developed, whereas A1c, IL6 and TNFα were augmented in the BMI > 40

kg/m² group. The cellular adhesion molecule sP‐selectin was increased in patients

with obesity, while sICAM, total ROS, total superoxide and mitochondrial mem-

brane potential were selectively higher in the BMI > 40 kg/m² group. Obesity

induced a progressive decrease in rolling velocity and an enhancement of rolling

flux and leukocyte adhesion.

Conclusion: Our findings reveal that endothelial dysfunction markers are altered

in human obesity and are associated with proinflammatory cytokines and

increased oxidative stress parameters.
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1 | INTRODUCTION

Obesity is a low‐degree chronic inflammatory disease asso-
ciated with a variety of metabolic disorders, including the
development of insulin resistance (IR), dyslipidemia, arte-
rial hypertension, atherosclerosis and diabetes mellitus.1

Mitochondrial dysfunction and high reactive oxygen
species (ROS) production are considered adverse cellular
responses to nutrient excess in obesity, which are generated
during glucose or free fatty acid (FFAs) oxidation, mainly
by mitochondria. When ROS production increases, the bal-
ance between oxidant and antioxidant factors is disturbed
and oxidative stress occurs. These conditions can damage
cellular structures and trigger an inflammatory response.2

Several studies have shown that an increase in ROS pro-
duction in adipose tissue of experimental animal models of
diabetes and obesity or in cultured adipocytes can cause
altered synthesis and secretion of adipokines and promote
cell senescence, IR and an inflammatory response.3-6 More
recently, human adipose tissue has not only been associated
with mitochondrial activity and enhanced ROS production
in the context of obesity,7,8 but has also been related with
downregulation of the mitochondria‐related transcriptional
signature.9

Proinflammatory adipokines and elevated levels of FFAs,
in particular those released by visceral adipose tissue, cause
IR and are pathogenic factors that can induce endothelial
dysfunction in the earlier stages of obesity, which further
deteriorates insulin signalling pathways in endothelial cells,
thus leading to initiation of the atherosclerotic process.10

This process is initiated by an interaction between the adhe-
sion molecules expressed on white blood and/or endothelial
cells. Different cellular adhesion molecules (CAMs) have
been implicated in atherogenesis, including selectins, vascu-
lar cell adhesion molecule‐1 (VCAM‐1) and intercellular
adhesion molecule‐1 (ICAM‐1).11

Peripheral polymorphonuclear leukocytes (PMNs) are
one of the main inflammatory cell types. Once activated,
PMNs release ROS, which contributes to oxidative stress,
the inflammation and endothelial damage that follow.12 We
have previously described that oxidative stress occurs in the
PMNs of insulin resistant patients—type 2 diabetes and
polycystic ovary syndrome—and is related to an impairment
of mitochondrial function and endothelial dysfunction.12-15

Although several studies have shown that the presence of IR
is determinant for the endothelial dysfunction associated
with obesity,16,17 little is known about how the redox status
and mitochondrial function of PMNs influence this process.

Therefore, the current study was performed to throw
light on the relationship between leukocyte activation,
mitochondrial dysfunction and enhanced leukocyte‐
endothelium cell interactions according to BMI, in addition
to exploring a possible correlation between these factors.

The primary endpoint was leukocyte‐endothelium cell inter-
actions in a population of non‐diabetic subjects with differ-
ent grades of obesity. Secondary endpoints were the redox
status and mitochondrial function of leukocytes, and a pos-
sible relationship between these parameters.

2 | MATERIAL AND METHODS

2.1 | Subjects

The participants in this cross‐sectional study were recruited
at the Outpatient's Department of the Endocrinology and
Nutrition Service of the University Hospital Dr. Peset
(Valencia, Spain) between January 2014 and December
2016. Subjects between the ages of 18‐68 years (inclusive)
were eligible for inclusion in the study and were clustered
in three groups depending on their body mass index
(BMI): Non‐obese condition group (BMI < 30 kg/m²), sub-
jects with grade I and II of obesity (BMI = 30‐40 kg/m²)
and group with morbid and extreme obesity (BMI > 40
kg/m²), defined according to the criterion of the Spanish
Society for the Study of Obesity.18 Exclusion criteria were
pregnancy or lactation, severe disease including malignan-
cies, severe renal or hepatic disease, alcohol or drug abuse,
psychiatric disorders, history of cardiovascular or chronic
inflammatory disease, diabetes mellitus with fasting gly-
caemia ≥126 mg/dL on at least two occasions or glycated
haemoglobin (A1c) ≥6.5% and pharmacological treatment
for diabetes, and secondary obesity (hypothyroidism, Cush-
ing's syndrome).

The study—a human observational study structured
according to STROBE (Strengthening the Reporting of
Observational Studies in Epidemiology) and the broader
EQUATOR guidelines19—was conducted according to the
ethical principles stated in the Declaration of Helsinki, and
all procedures were approved by the Ethics Committee of
the Hospital. Written informed consent was obtained from
all subjects.

Anthropometrical parameters including weight (kg),
height (m), body mass index (BMI; kg/m2), waist circum-
ference (cm), hip circumference (cm), waist‐hip ratio
(WHR) and systolic and diastolic blood pressure (SBP/
DBP mm Hg) were obtained from all the participants.

2.2 | Blood sampling

Venous blood samples were collected from subjects after
12 hours overnight fasting. Serum and plasma were
obtained after centrifugation (1500 g, 10 minutes) at 4°C.
Fresh samples were used to measure biochemical parame-
ters and the remaining aliquots were stored at −80°C for
subsequent measurement of inflammatory parameters and
soluble CAMs.
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2.3 | Biochemical determinations

All biochemical determinations were carried out in our hos-
pital's Clinical Analysis Service. Levels of glucose, total
cholesterol (TC) and triglycerides (TG) in serum were
determined by means of an enzymatic method. HDL
cholesterol (HDLc) levels were obtained with a Beckman
LX20 analyzer (Beckman Coulter, Inc., Brea, CA, USA)
using a direct method. The intraserial variation coefficient
was <3.5% for all determinations. LDL cholesterol (LDLc)
concentration was calculated using the method of Friede-
wald when TG were lower than 300 mg/dL. Insulin was
determined by an immunochemiluminescence assay and IR
was estimated using the homeostasis model of assessment
(HOMA‐IR = (fasting insulin (μU/mL) × fasting glucose
(mg/dL)/405)). Obese patients were classified as IR obese
when the HOMA index was >2.5 and non‐IR obese when
the HOMA index was <2.5, as in a previously published
study.20 Percentage of A1c was measured with an auto-
matic glycohemoglobin analyzer (Arkray Inc., Kyoto,
Japan), and high‐sensitive C‐reactive protein (hsCRP)
levels were quantified by an immunonephelometric assay.

2.4 | Measurement of proinflammatory
cytokines and soluble CAMs

Serum levels of interleukin 6 (IL6) and tumor necrosis fac-
tor alpha (TNFα) and soluble CAMs—sP‐selectin, sICAM‐
1 and sVCAM‐1—were analysed with a Luminex 200 ana-
lyzer system (Austin, TX, USA). Both kits were purchased
from Millipore Corporation (Billerica, MA, USA). The
intraserial and interserial variation coefficients were <5.0%
and <15.0%, respectively, for all determinations.

2.5 | Leukocyte isolation

Human PMNs were isolated from citrated blood samples
and incubated with dextran (3%) for 45 minutes. The
supernatant was collected, released over Ficoll‐Hypaque
(GE Healthcare, Uppsala, Sweden) and centrifuged (650 g,
25 minutes) to isolate leukocytes. The pellet was treated
with lysis buffer and centrifuged at room temperature
(240 g, 5 minutes) to remove the remaining erythrocytes.
After being washed and resuspended in Hanks’ balanced
salt solution (HBSS) (Sigma-Aldrich, Inc., St. Louis, MO,
USA), cells were counted with a Scepter 2.0 cell counter
(Millipore Corporation, Billerica, MA, USA).

2.6 | Leukocyte‐endothelial interaction assay

A flow‐condition adhesion assay based on an in vitro
model of leukocyte‐endothelial cell interactions was carried
out. In short, human umbilical vein endothelial cells

(HUVEC) were seeded on coverslips until confluent and
inserted in the bottom plate of a flow chamber. One million
leukocytes were resuspended in 1 mL of RPMI medium
(Gibco; Thermo Fisher Scientific, Waltham, MA, USA)
and drawn across the HUVEC monolayer at a flow rate of
0.36 mL/min. A 5 × 25 mm portion of the endothelial cells
was recorded during a 5‐minute period of flow with a
video camera (Sony Exware HAD; Koeln, Germany) con-
nected to an inverted microscope (Nikon Eclipse TE 2000‐
S, Nikon Corporation, Tokio, Japan) to evaluate different
leukocyte parameters: rolling velocity was calculated by
measuring the time it took 20 consecutive leukocytes to
travel a distance of 100 μm within the field of focus; roll-
ing flux was calculated by counting the number of leuko-
cytes rolling over 100 μm2 of the HUVEC monolayer
during a 1‐minute period; and adhesion was evaluated by
counting the number of leukocytes that maintained stable
contact with endothelial cells for 30 seconds. Platelet‐acti-
vating factor (1 μmol/L, 1 h) was used as a positive control
for leukocytes, and tumoral necrosis factor (10 ng/mL, 4 h)
for HUVEC. Both reagents were purchased from Sigma-
Aldrich, Inc. (St. Louis, MO, USA).

2.7 | Evaluation of oxidative stress
parameters

Leukocytes were seeded in a 48‐well plate and incubated
with different fluorescence probes diluted in HBSS for
30 minutes at 37°C. The plate was read in a fluorescence
microscope (IX81; Olympus Corporation, Tokio, Japan)
coupled with the static cytometry software “ScanR” (Olym-
pus Corporation, Tokio, Japan) to evaluate oxidative stress
parameters: total ROS production was assessed with the
2′,7′‐dichlorodihydrofluorescein diacetate (DCFH‐DA) fluo-
rochrome (5 × 10−6 mol/L), glutathione (GSH) content was
measured with the 5‐chloromethylfluorescein diacetate
(CMFDA,) probe (1 × 10−6 mol/L), tetramethylrhodamine
methylester (TMRM) at 5 × 10−6 mol/L was used to assess
mitochondrial membrane potential (ΔΨm), and total super-
oxide was detected with 5 × 10−6 mol/L of dihydroethid-
ium (DHE) dye. All fluorescent probes were purchased
from Life Technologies (Thermo Fisher Scientific,
Waltham, MA, USA).

2.8 | Statistical analysis

The study was designed based on preliminary data12,15 to
detect a 20% and 80% difference in the variation of leuko-
cyte‐endothelium interactions (measured by rolling veloc-
ity, rolling flux and adhesion of PMNs) between and
within groups, respectively, with a power of 90% and an α
risk of 0.05. Under these premises, at least 26 subjects per
group were considered.
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The statistics programme SPSS 19.0 (SPSS Statistics Inc.,
Chicago, IL, USA) was employed for statistical analysis.
All experiments were performed in duplicated with the
exception of anthropometric and biochemical determina-
tions. Continuous variables were expressed as mean and
standard deviation (SD), or as median and 25th and 75th
percentiles for parametric and non‐parametric data, respec-
tively. Qualitative data was expressed as percentages. Data
were compared with a one‐way analysis of variance
(ANOVA) by a Student‐Newmann‐Keuls post‐hoc test.
Pearson's correlation coefficient was employed to measure
the strength of the association between variables. A Chi‐
square test was employed to compare proportions. In the
multivariable regression model, the relationship between
two or more explanatory variables (independent variables)
and a response variable (dependent variable) was evaluated
by fitting a linear equation to the data obtained. All the tests
had a confidence interval of 95% and differences were con-
sidered significant when P < 0.05.

3 | RESULTS

This study analysed a total of 225 subjects (62 men and
163 women) with a BMI < 30 kg/m² (106 subjects),

BMI = 30‐40 kg/m² (45 subjects) or BMI > 40 kg/m² (74
subjects).

Anthropometric and biochemical parameters are shown
in Table 1. As the rate of obesity augmented, waist circum-
ference, DBP, insulin, HOMA‐IR and TG increased signifi-
cantly, whereas HDLc decreased. WHR, SBP and glucose
increased to the same extent in subjects with obesity inde-
pendently of grade of obesity, while A1c, a determination
of average blood glucose level for previous 2‐3 months,
was significantly increased in the higher BMI group.

3.1 | Measurement of proinflammatory
molecules and soluble CAMs

Acute phase reactants, such as hsCRP, was associated with
BMI, increasing with grade of obesity (Figure 1a)
(P < 0.001). Other systemic inflammatory markers were
also altered, though only in the group with the highest grade
of obesity, in which there was an increase in IL6 (Figure 1b)
(P = 0.008) and TNFα (Figure 1c) (P < 0.001). In line with
this, soluble CAMs levels showed a rise as BMI increased,
which was evident in sP‐selectin (Figure 2a) and sICAM‐1
levels, the latter of the two occurring only among subjects
with the highest grade of obesity (BMI > 40 kg/m²) (Fig-
ure 2b) (P = 0.023 and P = 0.008, respectively).

TABLE 1 Anthropometric and biochemical parameters in subjects according to BMI

BMI < 30 BMI 30‐40 BMI > 40 P‐value
n (females) 106 (73) 45 (34) 74 (56) 0.35

Age (years) 37.9 ± 14.5 42.2 ± 11.9 41.5 ± 9.6 0.08

BMI (kg/m2) 23.4 ± 2.9a 35.7 ± 3.2 b 45.2 ± 4.7c <0.001

Waist circunference (cm) 78.9 ± 12.2a 109.5 ± 13.5b 127.3 ± 13.1c <0.001

WHR 0.798 ± 0.097a 0.895 ± 0.090b 0.892 ± 0.093b <0.001

SBP (mm Hg) 120 ± 18a 130 ± 17b 135 ± 16b <0.001

DBP (mm Hg) 72 ± 11a 80 ± 11b 86 ± 12c <0.001

Glucose (mg/dL) 86 ± 11a 93 ± 11b 96 ± 14b <0.001

A1c (%) 5.20 ± 0.30a 5.33 ± 0.44a 5.51 ± 0.44b <0.001

Insulin (μU/mL)) 7.1 ± 2.7a 12.8 ± 5.0b 21.3 ± 15.7c <0.001

HOMA‐IR 1.52 ± 0.73a 2.98 ± 1.27b 5.19 ± 4.12c <0.001

TC (mg/dL) 189 ± 35 187 ± 40 185 ± 31 0.80

HDLc (mg/dL) 58 ± 13a 47 ± 10b 40 ± 9c <0.001

LDLc (mg/dL) 112 ± 29 118 ± 35 118 ± 28 0.36

TG (mg/dL) 70 (57,106)a 101 (76,141)b 125 (90,168)c <0.001

Treatment

Lipid‐lowering drugs (%) — 9.8 6.8 0.72

Hypotensive drugs (%) — 7.7 24.3 0.04

A1c, glycated haemoglobin; BMI, body mass index; DBP, diastolic blood pressure; HDLc, HDL cholesterol; LDLc, LDL cholesterol; SBP, systolic blood pressure;
TC, total cholesterol; TG, triglycerides; WHR, waist‐to‐hip ratio.
Data are expressed as mean ± SD. Values of serum triglycerides were normalized using a log transformation. Different superscript letters indicate significant differences
among groups (P < 0.05) when compared by means of one‐way ANOVA followed by a Student‐Newman‐Keuls as post‐hoc test. Hence, means with the same super-
script are not significantly different from each other (P > 0.05), while means that have no superscript in common are significantly different from each other (P < 0.05).
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3.2 | Leukocyte‐endothelial cell interaction
assay

These variations were associated with an impairment in
adhesion under flow conditions; ie, a progressive reduction
in rolling velocity as obesity developed (Figure 2d) and an
increase in PMN rolling flux in all the obese groups (Fig-
ure 2e) (P < 0.001 for both) and cellular adhesion only in
the highest grade of obesity (BMI > 40 kg/m²) (Figure 2f)
(P = 0.046).

3.3 | Evaluation of oxidative stress
parameters

To investigate whether obesity impairs leukocyte‐endothe-
lial interactions by altering oxidative stress and mitochon-
drial function, we employed static cytometry to determine
total ROS production, total superoxide, GSH levels and
mitochondrial membrane potential in PMNs. As shown in
Figure 3, total ROS production (Figure 3a; P < 0.001 and
Figure 3e (representative images) and total superoxide (Fig-
ure 3b; P = 0.027) were increased in patients with obesity
with higher BMI, whereas GSH levels were unchanged
(Figure 3c; P = 0.82). These variations were associated
with an increase in mitochondrial membrane potential, as
shown in Figure 3d (P < 0.001) and Figure 3f (representa-
tive images).

3.4 | Correlation analysis

Pearson's correlation coefficients between leukocyte‐
endothelium cell interactions and different clinical are
shown in Table 2. Summing up, BMI and hsCRP were cor-
related with rolling velocity, rolling flux and adhesion.
Waist circumference, WHR, A1c, insulin, HOMA‐IR and
TNFα were associated to rolling velocity and rolling flux
whereas total superoxide, sICAM, HDLc and mitochondrial
membrane potential were specifically associated with veloc-
ity, rolling and adhesion, respectively. The multivariable
regression model showed that total superoxide
(β = −0.373) and HOMA‐IR (β = −0.370) were indepen-
dent predictors of rolling velocity, explaining 31% of the
dependent variable. BMI (β = 0.288) and A1c (β = 0.216)
were independently associated with rolling flux and mito-
chondrial membrane potential (β = −0.383) was indepen-
dently associated with adhesion, explaining 15% and 14%
of the dependent variable, respectively.

Finally, since BMI and HOMA‐IR are closely related,
we investigated the effect of IR on leukocyte‐endothelial
cell interactions and mitochondrial function, and catego-
rized the results according to HOMA. For this purpose, we
divided the population into normoweight subjects (Control
group) and obese subjects without (HOMA‐IR < 2.5) or

LÓPEZ‐DOMÈNECH ET AL.

FIGURE 1 Inflammatory Parameters in Subjects According to
BMI. Levels of hsCRP (a) in subjects with BMI < 30 kg/m2 (n = 89),
BMI = 30‐40 kg/m2 (n = 33) and BMI > 40 kg/m2 (n = 65), IL6 (b)
in subjects with BMI < 30 kg/m2 (n = 38), BMI = 30‐40 kg/m2

(n = 22) and BMI > 40 kg/m2 (n = 22) and TNFα (C) in subjects
with BMI < 30 kg/m2 (n = 38), BMI = 30‐40 kg/m2 (n = 22) and
BMI > 40 kg/m2 (n = 22). Data are represented as mean + standard
error. Different superscript letters indicate significant differences
among groups (P < 0.05) when compared by means of one‐way
ANOVA followed by a Student‐Newman‐Keuls as post‐hoc test.
Hence, means with the same superscript are not significantly different
from each other (P > 0.05), while means that have no superscript in
common are significantly different from each other (P < 0.05). BMI,
body mass index; hsCRP, high‐sensitive C‐reactive protein; IL6,
Interleukine 6; TNFα, Tumor necrosis factor alpha

with (HOMA‐IR > 2.5) IR. As shown in Figure S1, sP‐
selectin and sICAM levels rose in the obese population
with IR. In addition, these changes were associated with
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impairment of leukocyte‐endothelial cell interactions; we
detected a slowing of rolling flux velocity and an increase
in rolling flux in the obese population, and enhanced
leukocyte adhesion to the endothelium in the insulin‐resis-
tant obese group. Leukocyte function was also altered;
total ROS production and mitochondrial membrane poten-
tial were increased in both obese groups and total superox-
ide was selectively augmented in obese subjects with IR
(Figure S2), which is in line with the results obtained fol-
lowing stratification of the population by different grades
of BMI.

4 | DISCUSSION

In the present study, we demonstrate an alteration in leuko-
cyte‐endothelium cell interactions in subjects with obesity,
with rising impairment as adiposity increases. This
response is also associated with altered mitochondrial func-
tion and increased oxidative stress in PMNs and with

systemic release of proinflammatory cytokines, and is more
evident in patients with higher grades of obesity.

Obesity, IR and cardiovascular disease are closely
related. Recently, it has been published that even in a
cohort of metabolically healthy subjects, increasing BMI
reported a positive association with the incidence of sub-
clinical carotid atherosclerosis, suggesting that visceral obe-
sity favours the development of this pathology.21,22 In
regards to the involvement of IR on the development of
endothelial dysfunction, several studies revealed its deter-
minant role on impaired endothelium‐dependent vasodilata-
tion in patients suffering morbid obesity.17,23 Even small
changes in insulin can have a significant effect on endothe-
lial function in populations with obesity that are not yet
classified as insulin resistant.24 In accordance with such
reports, we have shown that IR and BMI are main predic-
tors of leukocyte‐endothelial cell interactions; namely roll-
ing velocity and rolling flux, respectively. Insulin could be
involved in endothelial dysfunction through several mecha-
nisms. In in vitro experiments, insulin stimulates the

FIGURE 2 Endothelial Function According to BMI, Determined by Cellular Adhesion Molecules and Leukocyte‐Endothelial Interactions.
Levels of cellular adhesion molecules represented by sP‐selectin (a) in subjects with BMI < 30 kg/m2 (n = 38), BMI = 30‐40 kg/m2 (n = 22)
and BMI > 40 kg/m2 (n = 22), sICAM‐1 (b) in subjects with BMI < 30 kg/m2 (n = 38), BMI = 30‐40 kg/m2 (n = 22) and BMI > 40 kg/m2

(n = 22) and sVCAM‐1 (c) in subjects with BMI < 30 kg/m2 (n = 38), BMI = 30‐40 kg/m2 (n = 22) and BMI > 40 kg/m2 (n = 22).
Leukocyte‐endothelial interactions were evaluated by leukocyte rolling velocity (d) in subjects with BMI < 30 kg/m2 (n = 45), BMI = 30‐40 kg/
m2 (n = 26) and BMI > 40 kg/m2 (n = 36), leukocyte rolling flux (e) in subjects with BMI < 30 kg/m2 (n = 45), BMI = 30‐40 kg/m2 (n = 26)
and BMI > 40 kg/m2 (n = 36) and leukocyte adhesion (f) in subjects with BMI < 30 kg/m2 (n = 45), BMI = 30‐40 kg/m2 (n = 26) and
BMI > 40 kg/m2 (n = 36). Data are represented as mean + standard error. Different superscript letters indicate significant differences among
groups (P < 0.05) when compared by means of one‐way ANOVA followed by a Student‐Newman‐Keuls as post‐hoc test. Hence, means with the
same superscript are not significantly different from each other (P > 0.05), while means that have no superscript in common are significantly
different from each other (P < 0.05). BMI, body mass index; sICAM, soluble intercellular adhesion molecule; sVCAM, soluble vascular cell
adhesion molecule; PMNs, polymorphonuclear leukocytes
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expression of VCAM‐1 and E‐selectin in the endothelium
and increases both rolling interaction and adhesion of
monocytes,25 suggesting a central role of insulin in
endothelial dysfunction. Indeed, we have previously estab-
lished a relationship between endothelial dysfunction and
IR‐related pathologies, such as type 2 diabetes and
polycystic ovary syndrome.12,15 In line with this,

leukocyte‐endothelial cell interactions were activated in the
PMNs of our subjects with obesity, and an increase in
CAMs—sP‐selectin and sICAM—was observed among
those with the highest grade of obesity, insulin and
HOMA‐IR index. Although the adhesive strength of P‐
selectin was low, became stronger with the induction of
ICAM‐1. Noticeably, sICAM‐1 was markedly upregulated

FIGURE 3 Mitochondrial Function Parameters in Subjects According to BMI. Mean of fluorescence intensity of DCFH‐DA (a) in subjects
with BMI < 30 kg/m2 (n = 56), BMI = 30‐40 kg/m2 (n = 26) and BMI > 40 kg/m2 (n = 38), DHE (b) in subjects with BMI < 30 kg/m2

(n = 38), BMI = 30‐40 kg/m2 (n = 27) and BMI > 40 kg/m2 (n = 35), CMFDA (c) in subjects with BMI < 30 kg/m2 (n = 32), BMI = 30‐
40 kg/m2 (n = 26) and BMI > 40 kg/m2 (n = 38) and TMRM (d) in subjects with BMI < 30 kg/m2 (n = 55), BMI = 30‐40 kg/m2 (n = 25) and
BMI>40 kg/m2 (n = 27). Representative fluorescent images depicting DCFH‐DA and TMRM intensities (green and red signals) are shown in
panels (e) and (f), respectively. The nuclei were visualized using the specific nuclear stain Hoechst 33342 (blue). Data are represented as mean ±
standard error. Different superscript letters indicate significant differences among groups (P < 0.05) when compared by means of one‐way
ANOVA followed by a Student‐Newman‐Keuls as post‐hoc test. Hence, means with the same superscript are not significantly different from each
other (P > 0.05), while means that have no superscript in common are significantly different from each other (P < 0.05). BMI, body mass index;
DCFH‐DA, 2′,7′‐dichlorodihydrofluorescein diacetate; DHE, dihydroethidium; CMFDA, 5‐chloromethyl fluorescein diacetate; TMRM,
Tetramethylrhodamine methyl ester; RFU, relative fluorescent units
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in the group with the highest grade of obesity, suggesting
stronger adhesion and slower rolling velocity, which
would, in turn, promote diapedesis, plaque formation and
atherosclerosis.

In addition to insulin, glucotoxicity also contributes to
endothelial dysfunction through a mechanism that impairs
blood‐flow, vascular permeability, angiogenesis, vascular
and capillary occlusion and induces an increase in proin-
flammatory gene expression and in ROS production, result-
ing in endothelial dysfunction.26 In this sense, we have
previously shown that endothelial function is worsened in
patients with type 2 diabetes whose glycaemia is poorly
controlled.27 Although type 2 diabetic patients were
excluded from our study, we have shown that A1c is
involved in leukocyte‐endothelium cell interactions, which
suggests that small changes in long‐term glycaemia have a
significant effect on endothelial function and consequently
in cardiovascular diseases. In keeping with this, it has been
shown that glucose metabolism is the main predictor of
carotid intima media thickness in morbid obesity.28

The increased levels of CRP and proinflammatory
cytokines—IL6 and TNFα—indicate the presence of a
chronic low‐grade inflammation associated with obesity
and which can be involved in atherosclerosis.1 In fact,
TNFα has been reported to be an independent predictor of
coronary endothelial function.29 More recently, it has been
shown that pharmacological blockade of TNFα improves
endothelial function in mesenteric and omental vessels of
subjects with obesity.17,30 Our results reveal a correlation

between inflammatory markers—TNFα and hsCRP—and
leukocyte‐endothelium cell interactions, although the multi-
variable regression model showed they were not significant
predictors. These results are in accordance with a previous
study in which, despite the presence of inflammation in
morbid obesity, endothelial dysfunction was observed only
in insulin resistant subjects.17

It has been suggested that oxidative stress is a major
pathophysiological mechanism involved in endothelial dys-
function associated with obesity. The underlying mecha-
nism seems to involve an increased secretion of ROS and
adipokines by adipose tissue, which impairs bioavailability
of nitric oxide.31 Mitochondrial membrane potential is criti-
cal for maintaining the physiological function of the respi-
ratory chain. In fact, a significant loss of mitochondrial
membrane potential results in the death of cells with
depleted energy levels, whereas a surplus nutrient supply
can hyperpolarize mitochondria, leading to the accumula-
tion of incompletely oxidized substrates or intermediates
(eg, FFAs and diacylglycerol) and overproduction of
ROS,32-34 especially superoxide under hyperglycaemic con-
ditions.26 This is in line with the association between glu-
cose and superoxide and ROS demonstrated by the present
study.

The present study has some limitations, including the
size of the study population, which, although relatively
small, was supported by sample size calculation. In addi-
tion, although we did not determine the presence of the
atherosclerotic plaque in our patients, we did evaluate the

TABLE 2 Pearson's correlation coefficients between leukocyte‐endothelium cell interactions and biochemical, inflammation, cellular adhesion
molecules and oxidative stress parameters

Rolling velocity Rolling flux Adhesion

Rolling velocity – – r = −0.639 P < 0.001 r = −0.527 P < 0.001

Rolling flux – – – – r = 0.362

BMI r = −0.505 P < 0.001 r = 0.400 P < 0.001 r = 0.301

Waist circumference r = −0.433 P < 0.001 r = 0.417 P < 0.001 –

WHR r = −0.219 P = 0.041 r = 0.284 P = 0.007 –

HDLc – – r = −0.230 P = 0.022 –

TG – – – – –

A1c r = −0.307 P = 0.004 r = 0.336 P = 0.001 –

Insulin r = −0.425 P < 0.001 r = 0.359 P = 0.001 –

HOMA‐IR r = −0.406 P < 0.001 r = 0.375 P < 0.001 –

hsCRP r = −0.275 P = 0.010 r = 0.469 P < 0.001 r = 0.360

TNFα r = −0.340 P = 0.021 r = 0.484 P < 0.001 –

DHE r = −0.405 P = 0.002 – – –

sICAM – – r = 0.341 P = 0.039

P < 0.001

–

TMRM – – – – r = −0.339

P = 0.004

–

–

–

–

–

–

–

P < 0.001

–

–

–

P = 0.009

A1c, glycated haemoglobin; BMI, Body mass index; DHE, dihydroethidium; HDLc, HDL cholesterol; hsCRP, high‐sensitive C‐reactive protein; sICAM, soluble
intercellular adhesion molecule; TG, triglycerides; TMRM, Tetramethylrhodamine methyl ester.; TNFα, Tumor necrosis factor alpha; WHR, waist‐hip ratio.
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onset of the atherosclerotic process; in other words, the
first stages of endothelial dysfunction, which is heralded by
the movement and accumulation of leukocytes in the vessel
wall and enhanced levels of CAMs in a proinflammatory
environment. Our results point to an association between
higher BMI and enhanced endothelial dysfunction, mani-
fested in leukocyte‐endothelium cell interactions, adhesion
molecules and inflammation. Whether changes in intracel-
lular signalling in PMNs are related to the interaction of
these cells with the endothelium and the subsequent risk of
developing atherosclerosis and cardiovascular disease is a
question that needs to be explored.

In conclusion, our data reveal that obesity is charac-
terised by an increase in endothelial dysfunction markers
and proinflammatory cytokines, which is associated with
altered mitochondrial function and increased oxidative
stress in PMNs. Moreover, these characteristics are more
evident in patients with higher grades of obesity. These
findings help to explain the link between obesity, IR,
oxidative stress and atherosclerosis and point to new targets
for specific interventions to prevent the development of
cardiovascular disease although further studies are needed
to throw light on the mechanisms involved in these
processes.
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FIGURE S1 Endothelial function according to BMI and HOMA-IR, determined by cellular adhesion 
molecules and leukocyte‐endothelial interactions. Levels of cellular adhesion molecules represented by 
sP‐selectin (A), sICAM‐1 (B) and sVCAM‐1 (C); leukocyte‐endothelial interactions were evaluated by 
leukocyte rolling velocity (D), leukocyte rolling flux (E) and leukocyte adhesion (F) in non-obese 
(normoweight subjects), non-IR obese (obese subjects without IR (HOMA-IR < 2.5)) and IR obese (obese 
subjects with IR (HOMA-IR > 2.5)). BMI, body mass index; IR, insulin resistance: PMN, 
polymorphonuclear leukocytes; sICAM‐1, soluble intercellular adhesion molecule-1; sVCAM‐1, soluble 
vascular adhesion molecule-1;  
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LÓPEZ-DOMÈNECH ET AL. Supporting information 

FIGURE S2 Mitochondrial function parameters in subjects according to BMI and HOMA-IR. Mean of 
fluorescence intensity of DCFH-DA (A), DHE (B), CMFDA (C) and TMRM in non-obese (normoweight 
subjects), non-IR obese (obese subjects without IR (HOMA-IR<2.5)) and IR obese (obese subjects with IR 
(HOMA-IR > 2.5)). BMI, body mass index; DCFH-DA, 2´7´-dichlorodihydrofluorescein diacetate; DHE, 
dihydroethidium; CMFDA, 5-cholomethyl fluorescein diacetate; IR, insulin resistance; ROS, reactive oxygen 
species; RFU, relative fluorescence units; TMRM, tetramethylrhodamine methyl ester. 
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1  | INTRODUC TION

Periodontitis is a multifactorial chronic inflammatory disease 
characterized by breakdown of the tooth- supporting tissues. It 
results from a complex interaction between periodontopathogens 

and the host immune system caused by dysregulation of the host 
inflammatory response to bacterial infection (Page & Kornman, 
1997).

In periodontitis, host cells release proinflammatory cytokines 
against pathogens in the gingival sulcus which stimulate infiltration 
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endothelium cell interactions and oxidative stress in humans
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Abstract
Aim: To evaluate the relationship between oxidative stress parameters in polymor-
phonuclear leucocytes (PMNs) and PMN–endothelial cell interactions in patients 
with chronic periodontitis (CP) according to different degrees of severity of the 
disease.
Materials and methods: For this cross- sectional study, 182 subjects were divided 
into four groups according to degree of CP: without CP (n = 37), mild CP (n = 59), 
moderate CP (n = 51), and severe CP (n = 35). We determined anthropometric and 
biochemical variables, periodontal parameters, inflammatory markers, oxidative 
stress parameters (superoxide and mitochondrial membrane potential), and PMN–
endothelium cell interactions (rolling flux, velocity, and adhesion).
Results: Systemic inflammatory markers—C- reactive protein, leucocyte count, TNFα, 
and retinol- binding protein 4—were altered in the group with CP. Total superoxide 
was augmented in patients with moderate and severe periodontitis, whereas mito-
chondrial membrane potential did not change. Furthermore, PMNs adhesion and roll-
ing flux were increased in subjects with CP.
Conclusion: In a systemic proinflammatory environment, PMNs from patients with 
CP exhibit hyperactivity and produce higher amounts of superoxide. In parallel with 
this, an increase in PMNs rolling flux and cell adhesion to the endothelium suggests 
the presence of alterations of PMN–endothelium interactions in patients with CP 
that can lead to atherosclerosis and cardiovascular complications.
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endothelial dysfunction, humans, oxidative stress, periodontitis, reactive oxygen species
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of polymorphonuclear leucocytes (PMNs), the first line of cellular 
host	 defences.	An	 exacerbated	 inflammatory	 response	 to	 bacterial	
plaque	leads	to	the	release	of	reactive	oxygen	species	(ROS)	such	as	
hydrogen peroxide and superoxide from leucocytes that, together 
with an imbalance of antioxidant defences, results in oxidative stress 
and apoptosis of connective periodontal tissue (Chapple & Matthews, 
2007; Kanzaki et al., 2017). Previous studies have reported oxida-
tive stress in periodontitis, both locally (periodontal tissues, gingival 
crevicular fluid [GCF], and saliva) and peripherally (serum and plasma) 
(for	 review	 see	 Wang,	 Andrukhov,	 &	 Rausch-	Fan,	 2017),	 pointing	
to potential mechanistic links between periodontitis and systemic 
inflammatory diseases. However, only few studies have focused on 
the	production	of	ROS	by	PMNs	and	most	have	been	carried	out	in	
stimulated	conditions	(Fredriksson,	Gustafsson,	Bergström,	&	Asman,	
2003;	Gustafsson,	Ito,	Asman,	&	Bergström,	2006;	Matthews,	Wright,	
Roberts, Cooper, & Chapple, 2007 and Matthews, Wright, Roberts, 
Ling-	Mountford,	et	al.,	2007;	Ling,	Chapple,	&	Matthews,	2016).

On	 the	 other	 hand,	 epidemiological	 studies	 have	 shown	 that	
periodontitis may play a role in subclinical atherosclerotic cardiovas-
cular diseases in humans (Tonetti, 2009; Southerland et al., 2012). 
In fact, systemic inflammation caused by periodontitis contributes 
to the development and maintenance of atherosclerosis, which is 
preceded by endothelial dysfunction (Gurav, 2014). In brief, the first 
stage of endothelial dysfunction is heralded by the movement and 
accumulation of leucocytes in the vessel wall, which are mediated by 
an interaction between the adhesion molecules expressed on white 
blood and/or endothelial cells. We have previously demonstrated an 
association between oxidative stress in PMNs and endothelial dys-
function in type 2 diabetes and obesity (Hernández- Mijares et al., 
2013;	López-		Domènech	et	al.,	2018).	Although	there	have	been	re-
cent reports of a significant connection between chronic periodon-
titis	 (CP)	 and	 endothelial	 dysfunction	 (Orlandi	 et	al.,	 2014;	Moura	
et al., 2017), to the best of our knowledge, no previous study has 
evaluated the association between oxidative stress and endothelial 
dysfunction in PMNs of patients with CP.

Therefore, since leucocytes play a critical role in mediating oxi-
dative stress and the destruction of connective periodontal tissues, 
and given the strong evidence of an association between periodon-
titis and subclinical atherosclerosis markers, the primary outcome 
of the present study was to evaluate the relationship between ox-
idative stress parameters in PMNs and PMN–endothelial cell inter-
actions in patients with CP, according to degree of severity of the 
disease.	A	second	aim	was	to	explore	a	possible	correlation	between	
these factors and different clinical periodontal parameters.

2  | MATERIAL S AND METHODS

2.1 | Subjects

Patients	 between	 the	 ages	 of	 20	 and	 65	years	 attending	 the	
Outpatient’s	 Department	 of	 the	 Stomatology	 Service	 of	 the	
University	Hospital	Dr.	 Peset	 (Valencia,	 Spain)	 from	 June	2015	 to	

March 2017 were recruited for the present cross- sectional study. 
Exclusion criteria were fewer than 14 teeth, infectious or other oral 
inflammatory diseases, to have received periodontal or antibiotic 
treatment	in	the	previous	6	or	3	months,	respectively,	to	be	under	
systemic anti- inflammatory treatment, pregnancy or lactation, se-
vere disease including malignancies, alcohol or drug abuse, psychiat-
ric disorders, and a history of cardiovascular or chronic inflammatory 
disease	 or	 diabetes	 mellitus	 according	 to	 the	 American	 Diabetes	
Association	criteria.	Data	concerning	current	medication	and	smok-
ing habit (yes or no) were recorded.

Study subjects were clustered in four groups depending on the 
degree of CP: without CP, mild CP, moderate CP, and severe CP, de-
fined according to the Centers for Disease Control and Prevention/
American	 Academy	 of	 Periodontology	 (CDC/AAP)	 (Eke,	 Page,	
Wei, Thornton- Evans, & Genco, 2012). Subjects without CP were 
matched	by	sex,	age,	and	BMI.

Mild periodontitis was defined as the existence of at least two 
interproximal	sites	with	clinical	attachment	loss	(CAL)	≥3	mm	and	at	
least	two	interproximal	sites	with	probing	depth	(PD)	≥	4	mm	(not	in	
the	same	tooth)	or	one	site	with	PD	≥	5	mm.	Moderate	periodontitis	
was	defined	as	at	least	two	interproximal	sites	with	CAL	≥	4	mm	(not	
in	the	same	tooth)	or	at	least	two	interproximal	sites	with	PD	≥	5	mm	
(in different teeth). Severe periodontitis was defined as at least two 
interproximal	sites	with	CAL	≥	6	mm	(not	in	the	same	tooth)	and	at	
least	one	interproximal	site	with	PD	≥	5	mm.

This human observational study—reported according 
to	 Strengthening	 the	 Reporting	 of	 Observational	 Studies	 in	
Epidemiology	 (STROBE)	guidelines—followed	the	ethical	principles	
stated	 in	 the	Declaration	of	Helsinki.	All	 procedures	 involving	hu-
mans were approved by the hospital’s Ethics Committee, and all the 
participants, as well as umbilical cord donors, gave their written in-
formed consent.

Clinical Relevance

Scientific rationale for the study: Recent studies have re-
ported a significant association among chronic periodonti-
tis (CP), oxidative stress, and endothelial dysfunction, but 
no previous study has evaluated the redox status and 
PMN–endothelial cell interactions in PMNs of patients 
with CP.
Principal findings: PMNs from patients with CP showed 
higher adhesion to the endothelium and rolling flux associ-
ated with the presence of impaired redox status and a pro-
inflammatory profile augmented, being more evident in 
patients with severe periodontitis.
Practical implications: Special importance should be given 
to the diagnosis and treatment of periodontitis in patients 
with cardiovascular risk to avoid cardiovascular 
complications.



ANNEX I: Articles 

145 

|  1431MARTINEZ- HERRERA ET Al.

2.2 | Clinical periodontal determinations

A	 full-	mouth	 periodontal	 examination	 was	 performed	 to	 measure	
PD,	CAL,	and	gingival	bleeding	on	probing	(BOP)	at	six	sites	per	tooth	
for	all	teeth,	excluding	third	molars,	and	the	Silness	and	Löe	simpli-
fied	Plaque	Index	was	employed	to	score	six	representative	Ramfjörd	
teeth	 as	 described	 previously	 (Martinez-	Herrera	 et	al.,	 2017).	 All	
periodontal assessments were recorded using a conventional manual 
periodontal	probe	PCP	UNC-	15	(Hu-	Friedy,	Chicago,	IL,	USA).

2.3 | Anthropometric and biochemical 
determinations

The following data were collected for all the participants: weight (kg), 
height	 (m),	 body	mass	 index	 (BMI;	 kg/m2), and systolic and diastolic 
blood	pressure	(SBP/DBP	mmHg).	Weight	was	determined	by	an	elec-
tronic scale (with an approximation of 0.1 kg), height was measured with 
a	stadiometer	with	an	approximation	of	0.5	cm,	BMI	was	calculated	by	
dividing the weight in kilograms by the square of the height in metres 
(kg/m2), and blood pressure was measured using an automatic sphyg-
momanometer	following	a	5-	min	rest	period	(Omron	M3,	Kyoto,	Japan).

Blood	samples	were	drawn	from	the	antecubital	vein	after	12	hr	
overnight fasting. Glucose, total cholesterol (TC), and triglycerides 
(TG) levels were evaluated in serum using an enzymatic method. 
HDL cholesterol (HDLc) was determined by a direct method in a 
Beckman	LX20	analyser	(Beckman	Corp.,	CA,	USA).	The	Friedewald	
formula was used to calculate LDL cholesterol (LDLc) when TG were 
below 300 mg/dl. Insulin levels were measured by immunoassay, and 
insulin	 resistance	 was	 calculated	 (HOMA-	IR	=	(fasting	 insulin	 (μU/
ml) × fasting glucose (mg/dl)/405)).

Immunonephelometric	 assay	 (Dade	 Behring	 BNII,	 Marburg,
Germany) was used to quantify circulating high- sensitive C- reactive 
protein (hsCRP), serum levels of tumour necrosis factor alpha (TNFα) 
were determined with a Luminex®	200	analyser	system	(Austin,	TX,	
USA),	 retinol-	binding	protein	 four	 (RBP4)	 systemic	 levels	were	 as-
sessed	by	means	 of	 nephelometry	 assay	 (Dade	Behring,	Marburg,	
Germany), and leucocytes count was determined using a Sysmex 
ME- 8000 autoanalyser.

2.4 | Cell isolation

Citrated blood samples were incubated with dextran 3% for 45 min. 
The resulting supernatant was centrifuged by density gradient in 
Ficoll- Hypaque (GE Healthcare, Uppsala, Sweden) for 25 min at 
650	g in order to isolate PMNs. Erythrocyte lysis was performed, 
and	 the	pellet	was	 then	washed	and	 resuspended	 in	HBSS	 (Sigma	
Aldrich,	MO,	USA).	Finally,	 cells	were	counted	using	a	Scepter	2.0	
cell	counter	(Millipore	Corporation,	Billerica,	MA,	USA).

2.5 | Evaluation of oxidative stress parameters

In order to evaluate oxidative stress parameters, we employed a life 
cell imaging method to detect fluorescent markers in which cells 

remain adherent and vital during the whole procedure. PMNs were 
seeded in a 48- well plate at 1.5 × 105 cells/well for fluorescence 
determinations. Dihydroethidium dye (DHE) and tetramethylrhoda-
mine methyl ester (TMRM) working solutions were prepared at 5 μM 
in	HBSS	immediately	before	use,	and	cells	were	incubated	for	30	min	
at 37°C to detect cytoplasmic superoxide (DHE) and mitochondrial 
membrane potential (TMRM). The nuclei were visualized using the 
specific nuclear stain Hoechst 33342. Fluorescence was detected 
with	an	IX81	Olympus	fluorescence	microscope,	and	CellR	software	
(Olympus,	 Shinjuku,	 Tokyo,	 Japan)	 was	 employed	 to	 capture	 indi-
vidual images. The fluorescent signal was quantified individually (20 
live	cell	images/well)	by	static	cytometry	software	“ScanR”	version	
2.03.2	(Olympus).	Fluorescence	arbitrary	units	of	DHE	and	TMRM	
from each subject were normalized with the values of an external 
cell	 line,	Hep3B	because	of	 their	 fast	growing	 ratio	and	metabolic	
stability and competence (Zhu, Wang, & Tong, 2007). FCCP 10 mM 
(uncoupler of oxidative phosphorylation) and rotenone 25 μM (com-
plex I inhibitor) were used as positive controls (Labbe, Pessayre, & 
Fromenty, 2008).

2.6 | Adhesion assay

Polymorphonuclear leucocytes interaction with the human en-
dothelium was assessed in vitro using a parallel plate flow chamber. 
Previously,	 human	 umbilical	 vein	 endothelial	 cells	 (HUVECs)	 had	
been harvested from fresh umbilical cords of healthy donors and 
seeded on coverslips at 1 × 103 cells/mm2. Cells were grown in com-
plete	EMB-	2	culture	medium	(Lonza,	Basel,	Switzerland)	until	conflu-
ent and the coverslips were then inserted in the bottom plate of a 
flow	chamber.	A	PMN	suspension	(1	×	106 cell/ml) in RPMI medium 
(Gibco;	 Thermo	 Fisher	 Scientific,	Waltham,	MA,	 USA)	 was	 drawn	
across	a	monolayer	of	HUVECs	(flow	rate	0.36	ml/min)	and	visual-
ized by an inverted microscope (Nikon Eclipse TE 2000- S; Minato, 
Tokyo,	Japan)	coupled	to	a	video	camera	(Sony	Exware	HAD;	Koeln,	
Germany).	 A	 five-	minute	 period	 of	 flow	 across	 a	 5	×	25	mm	 por-
tion of the coverslip was recorded and then used to evaluate rolling 
velocity, rolling flux, and adhesion, as described previously (López-  
Domènech et al., 2018).

No agonists were added in the course of the experiments to pro-
mote expression of adhesion molecules. However, platelet- activating 
factor (1 μM, 1 hr) and TNFα	 (10	ng/ml,	 4	hr;	 Sigma	Aldrich)	were	
used in parallel to the main experiments as positive controls for acti-
vation	of	PMNs	and	HUVECs,	respectively.

2.7 | Statistical analysis

The study was designed based on preliminary data (Hernández- 
Mijares et al., 2013) to detect a 20% and 80% difference in the 
variation of PMN–endothelium interactions (measured by roll-
ing velocity, rolling flux, and adhesion of PMNs) between and 
within groups, respectively, with a power of 90% and an α risk of 
0.05.	Under	 these	premises,	at	 least	26	subjects	per	group	were	
considered.
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The statistics software SPSS 19.0 (SPSS Statistics Inc., Chicago, 
IL,	USA)	was	employed	for	data	analysis.	Continuous	variables	were	
expressed as mean and standard deviation (SD) for parametric data, 
whereas non- parametric data were expressed as median and 25th 
and 75th percentiles. When data did not show normal distribution, 
values were normalized using a log transformation. Qualitative data 
were expressed as percentages, and proportions were compared by 
means of a chi- square test. Data were compared using a Student’s 
t	 test	 for	 parametric	 samples	 or	 one-	way	 ANOVA	 followed	 by	 a	
Student–Newman–Keuls post hoc test. Pearson’s correlation coef-
ficient was used to evaluate the strength of linear association be-
tween	two	variables.	A	confidence	interval	of	95%	was	determined	
for all the tests, and differences were considered statistically signif-
icant when p < 0.05.

3  | RESULTS

This	study	analysed	a	total	of	182	subjects	(66	men	and	116	women)	
classified according to CP diagnosis: 37 subjects without CP and 
145 subjects with CP, of which 59 had mild periodontitis, 51 had 
moderate periodontitis, and 35 had severe periodontitis. Most of 
the	patients	in	the	present	cohort	were	obese	with	BMI	≥	30	kg/m2 
(63.7%),	which	is	in	line	with	the	fact	that	a	high	prevalence	of	peri-
odontitis has been described in obese population (Martinez- Herrera 
et al., 2017).

Anthropometric,	 biochemical,	 and	 periodontal	 parameters	 of	
the study population are outlined in Table 1. Severe periodontitis 
was associated with ageing, and moderate and severe periodontitis 
were associated with alterations in the lipid profile showing higher 

TA B L E  1  Anthropometric,	biochemical,	and	representative	periodontal	parameters	of	the	study	population	according	to	the	presence	or	
absence of chronic periodontitis

Without CP

With CP

AllMild Moderate Severe

Anthropometric	variables

n (% females) 37	(56.8) 59 (71.2) 51	(70.6) 35	(48.6) 145	(65.5)

Age 40.0 ± 11.4a 42.3 ± 11.3a 43.7 ± 10.2a 48.6	±	9.2b 44.3 ± 10.7

BMI	(kg/m2) 32.5 ± 9.8 35.3 ± 11.7 35.7 ± 8.7 37 ± 9.4 36.2	±	10.2

SBP	(mmHg) 125 ± 14 127 ± 17 131 ± 20 135	±	16 130 ± 17

DBP	(mmHg) 77 ± 10 79 ± 11 82 ± 13 83 ± 12 81 ± 12

Biochemical	parameters

Glucose(mg/dl) 90 ± 11 93 ± 12 93 ± 13 96	±	13 93 ± 12

Insulin (μU/ml) 12.0 ± 10.3 14.9 ± 14.9 14.7	±	8.6 19.3 ± 15.4 15.9 ± 13

HOMA-	IR 2.78	±	2.69 3.51 ± 3.78 3.42 ± 2.12 4.75 ± 4.02 3.77 ± 3.37

TC (mg/dl) 188 ± 34 189 ± 31 181 ± 33 190 ± 34 187 ± 32

HDLc (mg/dl) 50 ± 14a 50 ± 13a 44 ± 13b 43 ± 9b 46.4	±	12

LDLc (mg/dl) 120 ± 28 119 ± 25 112	±	26 120 ± 32 116	±	27

TG (mg/dl) 73 (55,125)a 101	(62,133)a,b 116	(82,163)b 139	(86,172)b 111 (71,159) *

Medication and life style habits

Antihypertensive	(%)	(n) 16.0	(4) 11.9 (7) 25.5 (13) 28.6	(10) 20.7 (30)

Statin medication (%) (n) 4.0 (1) 11.9 (7) 11.8	(6) 20.0 (7) 13.8 (20)

Current smokers (%) (n) 24.0	(6) 27.1	(16) 25.5 813) 22.9 (8) 25.5 (37)

Periodontal parameters

PD (mm) 2.46	±	0.21a 2.76	±	0.20b 2.97 ± 0.30c 3.55 ± 0.51d 3.02 ± 0.45***

CAL	(mm) 2.46	±	0.22a 2.76	±	0.21b 2.99 ± 0.31c 3.66	±	0.62d 3.06	±	0.52***

BOP	(%) 11.4	±	6.5a 20.7 ± 11.3b 26.6	±	11.7c 38.1 ± 15.0d 27.0 ± 14.1***

Plaque	index	(A.U) 0.587 ± 0.473a 0.916	±	0.542b 1.02	±	0.64b 1.31	±	0.66c 1.05	±	0.62**

Notes.	A.U:	arbitrary	units;	BMI:	body	mass	index;	BOP:	bleeding	of	probing;	CAL:	clinical	attachment	loss;	CP:	chronic	periodontitis;	DBP:	diastolic	
blood	pressure;	HDLc:	HDL	cholesterol;	HOMA-	IR:	homoeostasis	model	assessment	of	insulin	resistance;	LDLc:	LDL	cholesterol;	PD:	probing	depth;	
SBP:	systolic	blood	pressure;	TC:	total	cholesterol;	TG:	triglycerides.
Data are presented as mean ± SD or percentage (n). For TG are represented as median and IQ range. *p < 0.05; **p < 0.01; ***p < 0.001 when patients 
with CP and individuals without CP were compared with an unpaired Student’s t	test.	Values	with	different	superscript	letters	(a,b,c,d)	were	signifi-
cantly	different	when	the	four	groups	were	compared	by	one-	way	ANOVA	followed	by	a	Student–Newman–Keuls	post	hoc	test.	Hence,	means	with	
the same superscript are not significantly different from each other (p > 0.05), while means that have no superscript in common are significantly differ-
ent from each other (p < 0.05).
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TG levels and lower levels of HDLc. However, no differences were 
found	in	sex,	BMI,	SBP,	DBP,	glucose,	insulin,	HOMA-	IR,	TC,	LDLc,	
medical treatment, or smoking habit among the groups. Periodontal 
clinical	 parameters	 that	 indicate	 disease—PD,	 CAL,	 and	 BOP—
worsened progressively as the severity of periodontitis increased, 
whereas plaque index was higher in subjects with CP and peaked in 
the severe CP group.

Inflammatory parameters, such as TNFα	 and	 RBP4,	 were	 as-
sociated with CP and increased with the severity of periodontitis 
(p < 0.001 and p = 0.025, respectively), even after adjustment for 
age	 (Figure	1a,d).	Other	 systemic	 inflammatory	markers	were	 also	
altered in the group with CP, in which there was an increase in hsCRP 
levels (p = 0.033) and leucocytes count (p = 0.020), although no 

differences were observed according to the degree of periodontitis 
(Figure 1b,c).

3.1 | Evaluation of oxidative stress parameters

To investigate whether periodontitis promotes oxidative stress and alters 
mitochondrial function, we employed static cytometry to determine total 
superoxide	and	mitochondrial	membrane	potential	in	PMNs.	As	shown	in	
Figure 2, total cytoplasmic superoxide (Figure 2a and representative im-
ages in Figure 2c) was increased in patients with CP (p = 0.038), particu-
larly so in subjects with moderate and severe periodontitis (p = 0.040), 
whereas mitochondrial membrane potential (Figure 2b) was unaltered by 
the presence/absence of CP or grade of the disease.

F I G U R E  1   Inflammatory parameters 
of the study population according to 
the presence or absence of chronic 
periodontitis. Levels of TNFα (a) and 
hsCRP (b), leucocytes cell count (c) and 
RBP4	levels	(d).	Data	are	presented	as	
mean + standard error. * p < 0.05; *** 
p < 0.001 when data of patients with 
CP and individuals without CP were 
compared with an unpaired Student’s t 
test.	Values	with	different	superscript	
letters (a,b,c) were significantly different 
(p < 0.05) when the four groups were 
compared	by	one-	way	ANOVA	followed	
by a Student–Newman–Keuls post 
hoc test. Hence, means with the same 
superscript are not significantly different 
from each other (p > 0.05), while means 
that have no superscript in common are 
significantly different from each other 
(p < 0.05). CP: chronic periodontitis; 
hsCRP: high-sensitive C- reactive protein; 
RBP4:	retinol-	binding	protein	4;	TNFα: 
tumour necrosis factor alpha
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F I G U R E  2  Oxidative	stress	parameters	of	the	study	population	according	to	the	presence	or	absence	of	chronic	periodontitis.	Mean	
of fluorescence intensity of DHE (a) and TMRM (b) dyes measuring superoxide and mitochondrial membrane potential, respectively. 
Representative fluorescence images showing DHE (c) intensity (red signal). The nuclei were visualized using the specific nuclear stain 
Hoechst 33342 (blue). Data are presented as mean + standard error. * p < 0.05 when data of patients with CP and individuals without CP 
were compared with an unpaired Student’s t	test.	Values	with	different	superscript	letters	(a,b) were significantly different when the four 
groups	were	compared	by	one-	way	ANOVA	followed	by	a	Student–Newman–Keuls	post	hoc	test.	Hence,	means	with	the	same	superscript	
are not significantly different from each other (p > 0.05), while means that have no superscript in common are significantly different 
from each other (p < 0.05). CP: chronic periodontitis, DHE: dihydroethidium, TMRM: tetramethylrhodamine methyl ester, RFU: relative 
fluorescent units
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3.2 | PMN–endothelial cell interaction assay

We also evaluated PMN–endothelium interactions under flow con-
ditions, observing a slight and progressive reduction in PMN rolling 
velocity as severity of periodontitis increased, though this was not sig-
nificant	(Figure	3a).	As	a	whole,	PMN	rolling	flux	(Figure	3b;	p	=	0.026)	
and cellular adhesion (Figure 3c; p = 0.038) increased in subjects with 
CP. Moreover, we observed that PMN rolling flux increased with the 
degree of severity of periodontitis (p = 0.037) and that these differ-
ences were maintained even after adjusting for age (Figure 3b).

3.3 | Correlation analysis

Correlation coefficients between periodontal, inflammatory, oxida-
tive stress, and PMN–endothelium cell interactions parameters are 
shown	in	Table	2.	All	periodontal	parameters	were	positively	corre-
lated with leucocytes count, suggesting a main inflammatory com-
ponent	of	CP.	In	addition,	PD	and	CAL	correlated	with	PMN	rolling	

flux (r = 0.273, p = 0.040 and r = 0.285, p = 0.032, respectively) 
and plaque positively correlated with cellular adhesion of PMNs 
(r = 0.271, p = 0.042). In reference to oxidative stress parameters, 
superoxide positively correlated with inflammatory parameters—
TNFα (r = 0.448, p = 0.025), hsCRP (r = 0.344, p	=	0.007	and	RBP4	
(r = 0.284, p = 0.024), mitochondrial membrane potential (r	=	0.360,	
p = 0.011), and cellular adhesion of PMNs (r = 0.313, p = 0.045), and 
negatively with rolling velocity of PMNs (r = - 0.290, p = 0.047). In 
addition, TNFα	and	RBP4	correlated	positively	with	PMN	rolling	flux	
(r	=	0.464,	p = 0.022; r = 0.301, p = 0.032, respectively).

4  | DISCUSSION

In the present study, we demonstrate an alteration of PMN–en-
dothelium cell interactions in subjects with CP, in whom PMN ad-
hesion and rolling flux increase with the presence of periodontitis. 
Moreover, this response is associated with the presence of impaired 

F I G U R E  3   Endothelial function of the study population according to the presence or absence of chronic periodontitis determined by 
PMN–endothelial interactions evaluated by PMN rolling velocity (a), PMN rolling flux (b), and PMN adhesion (c). Data are presented as 
mean + standard error. * p < 0.05 when data of patients with CP and individuals without CP were compared with an unpaired Student’s t 
test.	Values	with	different	superscript	letters	(a,b)	were	significantly	different	when	the	four	groups	were	compared	by	one-	way	ANOVA	
followed by a Student–Newman–Keuls post hoc test. Hence, means with the same superscript are not significantly different from each other 
(p > 0.05), while means that have no superscript in common are significantly different from each other (p < 0.05). CP: chronic periodontitis, 
PMN: polymorphonuclear leucocytes
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redox status in PMNs and a pronounced proinflammatory profile, 
being more evident in patients with severe periodontitis.

Oxidative	 stress	 is	 associated	 with	 the	 pathogenesis	 of	 many	
systemic	diseases,	including	CP.	Increased	ROS	levels	are	a	hallmark	
of the inflammation induced by neutrophils when they combat in-
vading bacteria, and are involved both directly and indirectly in 
periodontal tissue destruction (Chapple & Matthews, 2007; Kanzaki 
et al., 2017). However, oxidative damage is not exclusive to gingival 
tissues, saliva, and GCF; several studies demonstrate an increase in 
oxidant status and oxidative damage in the systemic circulation of 
individuals with periodontitis compared with periodontally healthy 
controls, as well as a generalized imbalance of antioxidant capacity 
(Akalin,	Baltacıoğlu,	Alver,	&	Karabulut,	2007;	D’Aiuto	et	al.,	2010;	
Baltacıoğlu	 et	al.,	 2014;	 Ahmadi-	Motamayel,	 Goodarzi,	 Jamshidi,	
&	Kebriaei,	 2017).	Nonetheless,	 studies	 of	 ROS	 generation	 by	 pe-
ripheral blood neutrophils in periodontal disease are scarce. While 
the most consistent evidence for neutrophil hyper- reactivity in CP 
has been provided by a series of reports by a Swedish research 
group	 that	have	observed	higher	 levels	of	ROS	generation	by	Fcγ- 
receptor- stimulated peripheral neutrophils (Fredriksson et al., 2003; 
Gustafsson	et	al.,	2006),	only	two	studies	have	shown	that	neutro-
phils	 of	 periodontitis	 patients	 release	more	 extracellular	 ROS	 and	
superoxide than neutrophils of healthy controls, even in the absence 
of any stimulation (Matthews, Wright, Roberts, Cooper, et al., 2007; 
Ling	et	al.,	2016).	In	accordance	with	this,	we	now	report	an	imbalance	
in redox status in subjects with CP due to higher cytoplasmic levels 
of total superoxide that rise as the severity of periodontal disease 
increases. However, superoxide assessment with DHE involves some 
limitations; namely, instability of the probe and its products, complex 
chemistry, and potential interference with heme enzymes (Zielonka 
et al., 2008; Dikalov & Harrison, 2014), which could have interfered 
with our findings. Therefore, superoxide determinations must be in-
terpreted	carefully.	As	 far	as	we	know,	 this	 is	 the	 first	 research	 to	
be performed in which superoxide and mitochondrial membrane 
potential have been determined in PMNs of patients with different 
grades of CP. In this context, mitochondrial membrane potential is 
critical for maintaining the physiological function, as it mediates the 
cell’s	capacity	to	generate	ATP	by	oxidative	phosphorylation.	In	fact,	
a decrease in the mitochondrial membrane potential may be linked to 
apoptosis (Lemasters et al., 2002), as has been shown in type 2 dia-
betes patients (Hernández- Mijares et al., 2013), whereas an increase 
has been associated to a surplus nutrient supply, as we have recently 
demonstrated in obese patients (López-  Domènech et al., 2018). 
However, in the present study we have not observed changes in mi-
tochondrial membrane potential, suggesting that different underly-
ing molecular mechanisms are involved in the PMNs dysfunction that 
characterizes different inflammatory- related pathologies.

Despite mitochondrial membrane potential levels remaining un-
changed and limitations of DHE to determine cytoplasmic superox-
ide, our results suggest an imbalance in oxidant status and PMNs 
dysfunction that could promote the hyperactive PMN phenotype 
seen in CP. Recently, it has been shown that superoxide release by 
neutrophils significantly correlates with hsCRP in plasma (Ling et al., 

2016),	which	 is	 in	 line	with	our	 findings.	This	association	could	be	
partially explained by the fact that hsCRP enhances TLR- mediated 
superoxide release from neutrophils, potentially increasing oxidative 
stress (Ling, Chapple, Creese, & Matthews, 2014). Nevertheless, in 
our study population no significant association between severity of 
periodontitis and hsCRP levels was found, which is in accordance 
with the findings of a recent study (Delange et al., 2018).

In this line, other inflammatory molecules, including TNFα 
(Nishimura	et	al.,	2003;	Gonçalves	et	al.,	2015)	and	RBP4	(Martinez-	
Herrera et al., 2018), have generally been found to be higher in peri-
odontitis patients than in healthy controls and have been related 
with atherosclerosis. It has been shown that TNFα activates endo-
thelial cells at the site of inflammation, leading to oxidative stress 
via	escalating	ROS	production	by	endothelial	cells	(Yan	et	al.,	2015).	
This, in turn, mediates local leucocyte accumulation, adherence, and 
subsequent transmigration into the subendothelial space, which is 
an early phase of the atherosclerotic process. In addition, a previ-
ous	study	showed	that	RBP4	induced	vascular	oxidative	damage	and	
endothelial dysfunction, thus accelerating the development of ath-
erosclerosis in periodontal disease (Wang et al., 2015), which is in 
accordance with the positive correlation between PMN rolling flux 
and inflammatory markers—TNFα	and	RBP4—we	report	herein.

Previous studies have revealed compromised endothelial function 
in	subjects	with	periodontitis	(Amar	et	al.,	2003;	Higashi	et	al.,	2008;	
Moura et al., 2017) and an improvement after periodontal treatment 
(Mercanoglu et al., 2004; Tonetti et al., 2007; Higashi et al., 2008; Piconi 
et al., 2009). In the current study, evaluation of PMN–endothelium cell 
interactions revealed impaired endothelial function—enhanced PMN 
rolling flux and cell adhesion to the endothelium—in subjects with CP. 
Moreover, when we divided the population into groups according to 
severity of periodontitis we observed that the rolling flux of PMNs 
was greater in subjects with moderate and severe periodontitis. In 
accordance with our results, a previous study found that, when com-
pared to controls, endothelial function was significantly worsened 
in patients with severe periodontitis, but not in those with mild peri-
odontitis	(Amar	et	al.,	2003).	Chronic	systemic	inflammation	caused	by	
periodontitis is likely to culminate in endothelial dysfunction through 
a	decrease	 in	nitric	oxide	 (NO)	bioavailability,	a	decrease	 in	NO	pro-
duction,	and/or	an	increase	in	NO	inactivation,	which	in	turn	promotes	
inflammation of the vascular wall, contributing to a vicious circle of en-
dothelial dysfunction and low- grade inflammation (Higashi et al., 2008; 
Gurav, 2014). The underlying mechanism of this process seems to in-
volve increased oxidative stress in the cardiovascular system (Cai & 
Harrison, 2000). In fact, in a rodent model, it has recently been shown 
that local periodontal inflammation induces systemic endothelial dys-
function	 caused	 by	 overproduction	 of	 ROS	 in	 the	 systemic	 artery	
(Yamamoto	et	al.,	2016),	which	is	in	line	with	our	findings.	In	addition,	
our data reveal an association among inflammatory markers (TNFα and 
RBP4),	superoxide	production,	and	PMN–endothelium	cell	interaction,	
suggesting a role of oxidative stress and inflammation as underlying 
mechanisms associated to the atherosclerotic process in CP.

To the best of our knowledge, previous studies reporting im-
paired endothelial function in patients with periodontitis have 
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employed flow- mediated dilatation of the brachial artery and vas-
cular ultrasound to obtain measurements. In this sense, our study 
is the first to evaluate endothelial dysfunction by means a flow- 
condition adhesion assay based on an in vitro model of PMN–en-
dothelial cell interactions and PMNs function and assessment of 
oxidative stress parameters. However, the present study has some 
limitations, including the relatively small size of the study popula-
tion, although it has been supported by sample size calculation. In 
addition, we did not determine cellular adhesion molecules or the 
presence of the atherosclerotic plaque in our patients, parameters 
which we will evaluate in the future. Furthermore, despite being 
widely used for superoxide detection, the DHE fluorescence probe 
has some limitations, since other nonspecific redox reactions could 
act as confounders of DHE- superoxide determinations. More spe-
cific techniques, such as HPLC, should be carried out to corroborate 
our	 findings.	On	 the	other	 hand,	whether	 changes	 in	 intracellular	
signalling in PMNs are related to the interaction of these cells with 
the endothelium and the subsequent risk of atherosclerosis and 
cardiovascular disease in patients with CP is a question that needs 
exploring. Finally, the cross- sectional nature of this study limits its 
interpretability.

To sum up, the data in the current study demonstrate that, in 
a systemic proinflammatory environment, PMNs from CP patients 
exhibit	hyperactivity	by	 increasing	cytoplasmic	production	of	ROS	
(such as superoxide), which alters PMN–endothelium interactions by 
promoting an increase in PMN rolling flux and cell adhesion to the 
endothelium. This can lead to atherosclerosis, resulting in cardiovas-
cular complications. Therefore, special importance should be given 
to the presence and treatment of periodontitis in patients with risk 
of cardiovascular disease.
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Abstract
Background The relationship between caloric restriction-mediated weight loss and the generation of ROS and its effects on
atherosclerotic markers in obesity is not fully understood. Therefore, we set out to investigate whether dietary weight loss
intervention improves markers of oxidative stress in leukocytes and subclinical parameters of atherosclerosis.
Subjects and Methods This was an interventional study of 59 obese subjects (BMI > 35 kg/m2) who underwent 6 months of
dietary therapy, including a 6-week very-low-calorie diet (VLCD) followed by an 18-week low-calorie diet (LCD). We
determined clinical parameters, inflammatory markers—hsCRP, TNFα and NFκB –, oxidative stress parameters—total
superoxide, glutathione, catalase activity and protein carbonyl groups–, soluble cellular adhesion molecules—sICAM, sP-
selectin, sPSGL-1 –, myeloperoxidase (MPO), leukocyte-endothelium cell interactions—rolling flux, velocity and adhesion
—and LDL subfractions, before and after the dietary intervention.
Results After losing weight, an improvement was observed in the patients’ anthropometric, blood pressure and metabolic
parameters, and was associated with reduced inflammatory response (hsCRP, TNFα and NFκB). Oxidative stress parameters
improved, since superoxide production and protein carbonyl content were reduced and antioxidant systems were enhanced.
In addition, a significant reduction of subclinical markers of atherosclerosis—small and dense LDL particles, MPO, sP-
selectin and leukocyte adhesion—and an increase in soluble PSGL-1 were reported.
Conclusions Our findings reveal that the improvement of subclinical atherosclerotic markers after dietary weight loss
intervention is associated with a reduction of oxidative stress in leukocytes and inflammatory pathways, suggesting that these
are the underlying mechanisms responsible for the reduced risk of cardiovascular disease in obese subjects after losing
weight.

Introduction

Obesity is a low-degree chronic inflammatory disease
associated with an increased risk of developing a variety of

metabolic disorders, including insulin resistance, dyslipide-
mia, arterial hypertension, diabetes mellitus, coronary heart
disease and stroke, as well as some types of cancers [1].

Mitochondrial dysfunction and high reactive oxygen
species (ROS) production are considered adverse cellular
responses to nutrient excess. In fact, mitochondrial dys-
function and enhanced ROS production have been observed
in leukocytes and adipocytes of omental and subcutaneous
tissues from obese subjects [2–4]. Therefore, an increase in
ROS production favors an imbalance between oxidant and
antioxidant factors, which can lead to oxidative stress.

Oxidative stress and inflammation are closely interrelated
and play a key role in the pathogenesis of atherosclerosis [5,
6]. Atherosclerosis is triggered by endothelial dysfunction
and induction of inflammation, which is accompanied by an
increased expression of cell adhesion molecules (CAMs)
such as intercellular adhesion molecule-1 (ICAM-1),
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vascular cell adhesion molecule-1 (VCAM-1) and P-selec-
tin, which stimulates the adhesion of leukocytes and their
transmigration into the vascular subendothelial space [7, 8].

Myeloperoxidase (MPO) is a heme enzyme derived
mainly from neutrophils and monocytes, and plays a key
role in leukocyte-mediated vascular injury responses. Such
responses include oxidation of LDL, rendering it athero-
genic and HDL, impairing its capacity to promote choles-
terol efflux [9].They also lead to a reduction in nitric oxide
(NO) bioavailability, which leads to endothelial dysfunction
[10]. This series of detrimental effects has promoted the
idea that MPO is an active mediator of atherogenesis [11].

We have previously reported that a proinflammatory
state can stimulate the release of ROS from leukocytes,
which contributes to the oxidative stress, mitochondrial
impairment and endothelial dysfunction that follow insulin
resistance in pathologies such as type 2 diabetes, polycystic
ovary syndrome and obesity [4, 12–15].

However, the effect of dietary weight loss intervention
on the generation of ROS and its consequences on athero-
sclerotic markers in obesity has been poorly studied. It is
possible that dietary modifications help to ameliorate the
inflammatory response, to reduce leukocyte ROS generation
and/or to enhance the antioxidant system, consequently
improving leukocyte function and cardiometabolic risk
factors.

Therefore, the current study was performed to throw light
on the effect of dietary therapy on leukocyte activation,
oxidative stress and endothelial dysfunction. The primary
endpoint was the effect of dietary weight loss intervention
on leukocyte-endothelium cell interactions. Clarifying
whether weight loss improves markers of oxidative stress in
leukocytes and exploring its association with subclinical
markers of atherosclerosis were secondary endpoints.

Subjects And Methods

Subjects

The study was an interventional study carried out in fifty-
nine patients with a BMI > 35 kg/m² who were referred to
the outpatient department of the Endocrinology and Nutri-
tion Service at the Dr. Peset University Hospital in Valencia
(Spain) to be treated for their obesity. The study was con-
ducted according to the guidelines laid down in the
Declaration of Helsinki, and all procedures involving human
subjects were approved by the hospital’s Ethics Committee.
Written informed consent was obtained from all patients.

Exclusion criteria were pregnancy or lactation, severe
disease, history of cardiovascular disease or chronic
inflammatory disease and secondary obesity (hypothyroid-
ism, Cushing’s syndrome).

After an initial evaluation, patients underwent treatment
consisting of a 6-week VLCD (very-low-calorie diet) in a
liquid formula (Optisource Plus®, Nestlé S.A., Vevey,
Switzerland) containing 52.8 g protein, 75 g carbohydrates,
13.5 g fat and 11.4 g of fibre. The energy provided by this
formula was 2738 kJ per day (654 kcal per day). The for-
mula provided the vitamins, minerals and trace elements
that are essential according to Recommended Dietary
Allowances. After this period, patients were submitted to a
low-calorie diet (LCD) for 18 weeks with an average daily
energy intake of 5023–7535 kJ (1200–1800 kcal) (recom-
mended according to caloric requirements), of which 15–
20% was proteins, 50–55% was carbohydrates and 28–33%
was fats. A daily ingestion of more than two litres of
calorie-free liquids was recommended.

Anthropometric parameters were evaluated as follows:
weight was determined using electronic scales with an
approximation of 0.1 kg and a capacity of up to 200 kg;
height was measured with a stadiometer with an approx-
imation of 0.5 cm; BMI was calculated by dividing the
weight in kilograms by the square of the height in meters;
blood pressure was measured twice consecutively using a
sphygmomanometer; waist circumference was measured at
the natural indentation between the 10th rib and the iliac
crest using a metric tape with approximations of 0.5 cm.

Venous blood samples were collected from patients after
12 h overnight fasting at baseline and after 6 months of the
dietary treatment.

Biochemical determinations

Levels of glucose, total cholesterol and triglycerides were
determined in serum by an enzymatic method. HDL levels
were obtained with a Beckman LX20 analyzer (Beckman
Corp., Brea, CA, US) using a direct method. The intraserial
variation coefficient was < 3.5% for all determinations.
LDLc concentration was calculated using the Friedewald
method. Insulin was determined by an immunochemilumi-
nescence assay and insulin resistance was estimated using
the Homeostasis Model of Assessment (HOMA-IR=
(fasting insulin (μU/ml) x fasting glucose (mg/dl)/405)).
Percentage of glycated hemoglobin (A1c) was measured
with an automatic glycohemoglobin analyzer (Arkray Inc.,
Kyoto, Japan) and high-sensitive C-reactive protein
(hsCRP) levels were quantified by an immunonephelo-
metric assay (intra-assay CV < 4%). Leukocytes and neu-
trophils were determined in a COULTER® LH 500
Hematology Blood Analyzer from Beckman Coulter (Brea,
CA, US).

Serum levels of TNFα and MPO, and the adhesion
molecules soluble ICAM (sICAM-1) and soluble P-selectin
(sP-selectin) were measured with a Luminex 200 analyzer
system (Austin, TX, USA). Soluble P-selectin glycoprotein
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ligand-1 (sPSGL-1) was also determined in serum samples
according to the manufacturer’s instructions (Human
PSGL-1 Platinum ELISA, Invitrogen, Thermo Fisher Sci-
entific, Waltham, MA, USA). All samples were tested in
duplicate.

Oxidative stress parameters

Cell isolation

Leukocytes were isolated by incubating peripheral blood
samples with 3% dextran for 45 min followed by a Ficoll-
Paque Plus (GE Healthcare, Uppsala, Sweden) density
gradient separation. After an erythrocyte-removing step, the
pellet was washed and resuspended in Hank’s Balanced Salt
Solution (Capricorn, Ebsdorfergrund, Germany).

Superoxide production

Aliquots of 105 cells were seeded in duplicate in 48-well
plates and incubated with 5 μM dyhidroethidium (DHE,
Thermo Scientific, Rockford, USA) and Hoechst 33342
nucleic acid stain (4 μM, Sigma-Aldrich, MO, USA) fluor-
escence dyes for 30 min at 37 °C. Images were obtained
with an IX81 Olympus microscope coupled with the static
cytometry software “ScanR” (Olympus, Hamburg, Ger-
many) and analyzed to assess leukocyte superoxide
production.

Total glutathione, catalase activity, and protein carbonyl
content

Antioxidant status was determined based on total glu-
tathione content in erythrocyte lysates, since they contain
the highest concentrations of glutathione. This was done
using a commercially available test kit (Glutathione Assay
Kit, Cayman Chemical, MI, USA), according to the man-
ufacturer’s instructions. In addition, we determined serum
catalase (CAT) activity and protein carbonyl content, again
according to the manufacturer’s instructions (Catalase
Assay Kit, Cayman Chemical, MI, USA and Protein Car-
bonyl Content Assay Kit, Sigma-Aldrich, MO, USA,
respectively). Experiments were performed in duplicate.

Western blotting

Total protein extraction from leukocytes was performed on
ice. Cells were lysed for 15 min with an extraction buffer
(20 mM HEPES pH 7.5, 400 mM sodium chloride, 20%
Glycerol, 0.1 mM EDTA, 10 μM Na2MoO4, 0.5%NP-40)
containing protease inhibitors (10 mM NaF, 1 mM NaVO3,
10 mM PNP, 10 mM β-glycerolphosphate). The supernatant
was collected after centrifugation for 15 min at 16,000 × g.

The total concentration of proteins was quantified in both
cases using a bicinchoninic acid (BCA) protein assay
(Thermo Fisher Scientific, Waltham, MA, USA). Twenty-
five μg of protein were resolved by SDS-PAGE and trans-
ferred to nitrocellulose membranes. Target proteins were
detected by incubating the membranes with mouse mono-
clonal anti-NFκB p65 antibody (#33–9900, Invitrogen,
Thermo Fisher Scientific, Waltham, MA, USA), and rabbit
anti-actin antibody (Sigma-Aldrich, MO, USA) was used to
assess loading protein control. HRP goat anti-mouse
(Thermo Fisher Scientific, Waltham, MA, USA) and HRP
goat anti-rabbit (Merck Millipore, MA, US) were employed
as secondary antibodies. ECL plus reagent (GE Healthcare,
Uppsala, Sweden) was used to detect the protein signal by
chemiluminiscence, visualized by means of the Fusion FX5
acquisition system (Vilbert Lourmat, Marne La Vallée,
France). Data were analyzed by densitometry with the
Bio1D software (Vilbert Lourmat, Marne La Vallée,
France).

Flow-chamber assay

An in vitro model of leukocyte-endothelial cell interactions
was designed using a flow chamber coupled to an inverted
microscope (Nikon Eclipse TE 2000-S). In short, coverslips
with confluent monolayers of human umbilical vein endo-
thelial cells (HUVEC) were inserted in the bottom plate of
the flow chamber. One million leukocytes in 1 ml of RPMI
medium (Gibco; Thermo Fisher Scientific, Waltham, MA,
USA) were drawn across the HUVEC at a flow rate of
0.36 ml/min. A video camera (Sony Exware HAD; Koeln,
Germany) connected to the microscope was used to record a
5 × 25 mm portion of the endothelial cells during a 5-min
period to evaluate different leukocyte parameters: rolling
velocity was calculated by measuring the time it took 20
consecutive leukocytes to travel a distance of 100 μm within
the field of focus; rolling flux was calculated by counting
the number of leukocytes rolling over 100 μm2 of the
HUVEC monolayer during a 1-min period; and adhesion
was evaluated by counting the number of leukocytes that
maintained stable contact with endothelial cells for 30 s.
Platelet-activating factor (1 μM, 1 h) and tumoral necrosis
factor (10 ng/ml, 4 h) were used as a positive control for
leukocytes and HUVEC, respectively.

LDL subfractions

LDL subfractions were separated using the Quantimetrix
Lipoprint® system (Redondo Beach, CA,USA) and were
then identified and quantified using a computerized
method developed for the Quantimetrix Lipoprint® system
and NIH image program version 1.62 (Bethesda, MD,
USA) for research purposes. The Liposure® (Quantimetrix
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Data are presented as mean ± SD or percentage (n). TG data are
represented as median and IQ range. *p<0.05; **p<0.01; ***p<0.001
when compared with a paired Student’s t-test or Wilcoxon test.

BMI: body mass index, SBP: systolic blood pressure, DBP: diastolic
blood pressure, A1c: glycated haemoglobin, TC: total cholesterol;
LDLc: LDL cholesterol, HDLc: HDL cholesterol, TG: triglycerides,
Apo: Apolipoprotein

Corporation, Redondo Beach, CA, USA) was used for
quality control. VLDL, 3 intermediate-density lipoprotein
(IDL) and 7 LDL were quantified. The LDL electrophoretic
profile allows 3 patterns to be defined: pattern A / large and
buoyant LDL (cut-off size of over 268 Å); an intermediate
pattern (cutoff size over 265 and equal to or less than 268
Å); and pattern B / small and dense LDL (sdLDL) (cut-off
size less than or equal to 265 Å). All samples were tested in
duplicate.

Statistical analysis

The study was designed based on preliminary data [13, 15]
in order to have a power of 80% and to detect differences

between two paired means in relation to the primary effi-
cacy criterion (minimum expected difference in leukocyte
adhesion) ≥ 5 cells/mm2, assuming a common standard
deviation of 10 units. Under these premises, at least
32 subjects were considered.

For the statistical analysis of the data we employed the
statistics program SPSS 19.0 software (SPSS Statistics Inc.,
Chicago, IL, USA). Continuous variables in the tables are
expressed as mean ± SD, or as median and 25th and 75th
percentiles for parametric and non-parametric data, respec-
tively, whereas qualitative data are expressed as percen-
tages. Data in the figures are represented as mean+ SE. The
data were analyzed using a paired Student’s t test or a
Wilcoxon test for parametric and non-parametric data,
respectively. A Χ2 test was employed to compare propor-
tions. The correlation between variables was determined
using Pearson’s correlation coefficients. All the tests used a
confidence interval of 95% and differences were considered
significant when p < 0.05.

Results

This study analyzed a total of 59 patients (16 men and 43
women) with an average BMI of 44.3 ± 5.6 kg/m2. After
6 month adherence to a VLCD+ LCD, anthropometric
parameters—body weight, BMI, and waist circumference,
systolic and diastolic blood pressure –, tryglicerides and
hydrocarbonated metabolism parameters—glucose, insulin,
HOMA-IR and A1%—all decreased significantly (p <
0.05), whereas HDLc increased (p < 0.01) (Table 1). Total
cholesterol and LDLc remained unchanged, probably due to
the antihyperlipidemic treatment in 26.7% of patients. In
addition, the leukocyte defence system did not seem to be
altered, since the number of total leukocytes or neutrophils
remained within their normal range after weight loss
(Table 1). However, systemic inflammatory markers were
altered by weight loss. Specifically, acute phase reactants,
such as hsCRP—which is known to be associated with BMI
—and TNFα decreased after dietary therapy (Table 1).
Furthermore, the nuclear factor NFκB p65, which has long
been considered a prototypical proinflammatory signaling
pathway, was also markedly reduced after weight loss
(Fig. 1a) (p < 0.01).

To investigate whether weight loss improved oxidative
stress, we employed static cytometry to determine ROS
production. Total superoxide (Fig. 1b and Supplementary
Figure 1) was significantly lower in leukocytes after dietary
weight loss intervention (p < 0.001). Furthermore, an
increase in antioxidant defences was confirmed, as
glutathione levels were significantly higher in erythrocyte
lysates (Fig. 1c) (p < 0.001), while a significant increa-
se in serum catalase activity (Fig, 1d) (p < 0.05) was

Table 1 Anthropometric and biochemical parameters of the study
population before and after weight loss

Before After

n (females %) 59 (72.9)

Age (years) 45.1 ± 9.3

BMI (Kg/m2) 44.3 ± 5.6

Weight (Kg) 120.3 ± 18.0

Waist (cm) 123 ± 15

SBP (mmHg) 133 ± 17

DBP (mmHg) 85 ± 11

Glucose (mg/dl) 101 ± 21

Insulin (μU/ml) 18.2 ± 10.3

HOMA-IR 4.63 ± 3.06

A1c (%) 5.75 ± 0.72

TC (mg/dl) 184 ± 34

HDLc (mg/dl) 40.8 ± 8.2

LDLc (mg/dl) 115 ± 31

TG (mg/dl) 125 (97,177)

hsCRP (mg/l) 6.99 (4.63,13.00)

18.0 ± 8.89TNFα (pg/ml)

Leukocytes (cellsx
103/μl)

7.53 ± 2.18

40.4 ± 4.7***

109.4 ± 15.5***

115 ±13***

127 ± 15**

78 ± 9***

97 ± 22*

15.8 ± 9.2*

3.94 ± 3.03*

5.61 ± 0.78*

182 ± 36

43.1 ± 9.5**

115 ± 33

109 (83,146)**

6.20 (3.07,11.48)*

14.6 ± 5.9*

7.60 ± 2.02

Neutrophils (cellsx
103/μl)

4.51 ± 1.61 4.66 ± 1.59

59.3 ± 7.95 60.3 ± 7.64

22 (13)

Neutrophils
(percentage)

Type 2 diabetes (%) (n)

Treatment

30.0 (18)Hypertension (%) (n)

Hyperlipidemia (%) 26.7 (16)

S. López-Domènech et al.



ANNEX I: Articles 

159 

also observed. However, superoxide generation, total glu-
tathione levels and catalase activity are not strictly markers
of oxidative stress, as they only reflect either pro-oxidant
agents or antioxidant agents. Thus, we determined protein
carbonyl content in serum samples, detecting a reduction
after dietary weight loss intervention (Fig. 1e) (p < 0.01).
These findings suggest an undermining of oxidative stress
parameters in blood cells. We next investigated whether or
not these changes in oxidative stress parameters were
associated with an improvement in adhesion under flow
conditions. Dietary weight loss intervention induced a sig-
nificant reduction in serum levels of soluble P-selectin
(Fig. 2a) (p < 0.05), which binds to PSGL-1 on leukocytes.
Strikingly, we observed an increase in soluble serum PSGL-
1 (p < 0.05) after dietary weight loss intervention (Fig. 2b),
suggesting that cleavage of the protein from the cell surface
is one of the mechanisms involved in the deactivation
process. These changes were associated with a reduced

cellular adhesion of leukocytes to the endothelium (Fig. 2g)
(p < 0.001). Since MPO is a potent pro-oxidant derived
mainly from neutrophils that mediate vascular damage, and
is involved in the formation of proatherogenic LDL parti-
cles, we evaluated circulating MPO and LDL subfractions.
Our results showed that MPO was markedly reduced after
weight loss (Fig. 2d) (p < 0.001), despite the total leukocyte
or neutrophil count remaining unchanged (Table 1), sug-
gesting a reduced MPO expression by the leukocyte defence
system. In addition, the percentage of small LDL particles
decreased (Fig. 3a), while LDL particle size increased
(Fig. 3b). As a consequence, the LDL electrophoretic pat-
tern became less atherogenic, changing from a profile of
64% pattern A, 21% intermediate pattern and 15% pattern B
to one of 85% pattern A, 6% intermediate pattern and 9%
pattern B (p < 0.05). Finally, a negative correlation was
observed between MPO levels and LDL particle size, both
at baseline and after 6 months (r=−0.523 and r=−0.542,

Fig. 1 Inflammatory and
oxidative stress parameters in
obese patients before and after
dietary weight loss intervention.
a Levels of NFκB p65 protein
expression and representative
western blot images (n= 15).
b Total superoxide production,
measured as arbitrary units of
DHE fluorescence (n= 33). c
Erythrocytes glutathione content
(n= 36). d Catalase activity (n
= 38) and (e) protein carbonyl
content (n= 29) in serum. Data
are represented as mean+ SE.
*p < 0.05; **p < 0.01; ***p <
0.001 when compared using a
paired Student’s t test. DHE
dihydroethidium, NFκB p65
nuclear factor κB p65, RFU
relative fluorescence units
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Fig. 2 Serum levels of atherosclerotic markers determined by com-
mercial kits and leukocyte-endothelium cell interactions in obese
patients before and after dietary weight loss intervention. Serum levels
of (a) sP-selectin (n= 20), (b) sPSGL-1 (n= 20), (c) sICAM-1 (n=
20) and (d) MPO (n= 20). e Leukocyte rolling velocity expressed as
μm/s (n= 34). f Leukocyte rolling flux measured as cells/min (n= 34).

respectively) (Fig. 4a, b), and a positive correlation existed
between MPO and sP-selectin (r= 0.545 and r= 0.415,
respectively) (Fig. 4c, d), suggesting an involvement of
MPO in the atherosclerotic process.

Discussion

In our population of middle-aged morbid obese subjects, the
moderate weight loss achieved by adherence to a 6-week
VLCD followed by LCD for 18 weeks improved the main
anthropometric and biochemical parameters and amelio-
rated the inflammatory response. In addition, pro-oxidant
agents such as total superoxide and MPO were reduced and
antioxidant capacity increased by higher production of
glutathione and strengthened enzymatic antioxidant systems
such as catalase activity: This contributed to a reduction of
oxidative stress, as determined by protein carbonylation.
These responses were associated with an increase of LDL
particle size, a reduction of cellular adhesion molecules and
less adherence of leukocytes to the endothelium, suggesting
that these molecular mechanisms are involved in the
diminished cardiovascular risk factor associated with diet-
ary therapy in obese populations.

Cardiovascular disease and obesity are closely linked
and take a substantial toll on the health of individuals
when both are present. High-calorie diets and the resulting
obesity are major risk factors for hypertension and cor-
onary artery diseases. Modest weight loss of 5–10%
ameliorates cardiometabolic risk factors, including
hypertension and dyslipidemia, and improves health

g Leukocyte adhesion expressed as cells/mm2 (n= 34). Data are
represented as mean+ SE. *p < 0.05 and ***p < 0.001 when com-
pared using a paired Student’s t test. sP-Selectin soluble P-selectin and
sPSGL-1 soluble P-selectin glycoprotein ligand-1, MPO Myeloper-
oxidase, sICAM-1 soluble intercellular adhesion molecule 1

outcomes [16–18]. The role of lipids in the formation and
evolution of the atheromatous plaque has been well
documented. Numerous studies have demonstrated that
the predominance of sdLDL particles correlated with the
development and progression of atherosclerosis and ear-
lier and more severe cardiovascular disease, even when
LDL cholesterol is low [19–21]. As expected, our results
showed a clear improvement in blood pressure and
atherogenic dyslipidemia, including HDL cholesterol,
triglycerides and LDL particle size, although total and
LDL cholesterol remain unchanged, probably due to
antihyperlipidemic treatment.

Similarly, we have observed that dietary weight loss
intervention also produces a drop in blood glucose
levels and insulin, resulting in a reduction of insulin resis-
tance, which is in accordance with the results of previous
research [22].

Growing evidence has highlighted an important role for
oxidative stress in obesity, mainly in organs involved in
energy metabolism, such as the pancreas, liver, skeletal
muscle, white adipose tissue and heart. However, only a
few studies have focused on leukocytes as the main med-
iators of the inflammatory response and atherogenesis.
Previous studies have shown that circulating mononuclear
cells in obese patients are in a proinflammatory state char-
acterized by an increase in intranuclear NFκB and tran-
scription of proinflammatory cytokines [23, 24]. Dietary
weight loss intervention in overweight and obese indivi-
duals was shown to result in a decreased expression of
genes involved in the activation of NFκB [25], which is in
line with the results of the present study.
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Regarding endothelial dysfunction, recent studies have
demonstrated impaired brachial artery endothelial function
and microvascular endothelial dysfunction in obese sub-
jects, which was associated with an increase in the activity
of NADPH oxidase [26, 27], one of the main enzymes
producing superoxide. However, since vascular dysfunction
may occur differentially in vascular beds, and endothelial
cells differ in phenotype and structure depending on vessel
type [28], we have focused on how the activation of leu-
kocytes is involved in the atherosclerotic process. In this
context, obesity has recently been associated with chronic
oxidative and inflammatory stress, which leads to mito-
chondrial dysfunction, increased vascular damage and
enhanced endothelial dysfunction markers [4, 27].

The findings of the present study represent a step further,
since we have assessed the influence of dietary weight loss
intervention. Previously, Dandona et al. showed that
superoxide generation by polymorphonuclear leukocytes
and peripheral blood mononuclear cells falls markedly after
4-week dietary restriction and the resulting weight loss [29].
Similarly, exercise has been shown to reduce ROS levels
and to restore microvascular endothelial function to levels
similar to those found in lean subjects [27], suggesting that
the negative energy balance in obesity reduces oxidative
stress and improves endothelial function. In the present
study, we report that dietary weight loss intervention
reduces total superoxide and strengthens antioxidant sys-
tems such as glutathione and catalase activity, leading to an

improvement in oxidative damage, manifested by a reduc-
tion in protein carbonylation. It is widely known that
superoxide is a highly reactive molecule with well-
documented detrimental effects on vascular function, such
as increased endothelial cell permeability, limited NO
bioavailability and apoptosis [30, 31].

In line with this, our findings show that the improve-
ment in redox status was associated with a reduction in
systemic P-selectin levels and TNFα, which may have
mediated the reduction in leukocyte recruitment. Since P-
Selectin binds to PSGL-1 on leukocytes, it is likely that
PSGL-1 expression in leukocytes decreases after dietary
intervention, and therefore less leukocytes adhere to the
vessel wall. Strikingly, we report an increase in soluble
serum PSGL-1 after dietary weight loss intervention.
Although there is little information available about the
regulation of PSGL-1, previous studies have shown that
stimulation of human neutrophils decreases the surface
expression of PSGL-1 and increases its release from the
surface, suggesting that cleavage of the protein from the
cell surface is one of the mechanisms involved in the
deactivation process. In addition, a decrease in surface
expression of PSGL-1 on neutrophils has been shown to
correlate with a decrease in neutrophil adhesion to P-
selectin under both static and dynamic conditions [32],
which is in line with the present findings. Regarding
TNFα, there is a large body of evidence of TNFα-induced
adhesion of leukocytes to endothelial cells [33, 34], and it

Fig. 3 LDL subfractions in
obese patients before and after
dietary weight loss intervention
determined by the Quantimetrix
Lipoprint® system. a Percentage
of small LDL particles from total
lipoproteins containing
cholesterol. b Mean LDL
particle size, and (c) Changes in
LDL electrophoretic profile are
expressed as a percentage of
sample size. Data are
represented as mean+ SE or as
a percentage of LDL patterns of
35 patients. *p < 0.05 when
compared using a paired
Student’s t test or a Χ2 test. The
LDL patterns A, intermediate
and B refer to the size of LDL
cholesterol particles in the
blood. Pattern A (cut-off size of
over 268 Å); intermediate
pattern (cut-off size over 265
and equal to or less than 268 Å);
and pattern B (cut-off size less
than or equal to 265 Å). LDL
low-density lipoproteins
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has also been shown that raised plasma levels of P-
selectin can influence the early progression of vascular
disease by promoting leukocyte adhesion to the endo-
thelium [35].

Vascular damage may also be mediated by MPO, which
binds to the surface of LDL [36], promoting the formation
of oxidized lipoproteins that are not recognized by the LDL
receptor, which in turn leads to the activation of endothelial
cells and monocyte/macrophages and induces the release of
proinflammatory cytokines such as TNFα [37]. In fact,
clinical studies have highlighted elevated serum levels of
MPO as a prognosis factor in patients with acute coronary
syndromes [38] or chest pain [39], or in apparently healthy
individuals with an increased risk of coronary artery disease
[40]. This would suggest that leukocyte activation is sti-
mulated many years before the onset of overt coronary
artery disease, thus supporting the use of leukocytes to
evaluate cardiovascular risk. The present study’s demon-
stration of a parallel drop in reactive oxygen species gen-
eration and MPO activity in leukocytes, together with an
enhancement of antioxidant defences, has important impli-
cations with respect to atherosclerosis; namely, leukocyte-
mediated oxidative stress could be the mechanism under-
lying oxidative damage to LDL. In fact, we have observed a
significant association between MPO and sdLDL and levels
of soluble P-selectin.

Our data show clearly, to our knowledgr, for the first
time, that generation of reactive oxygen species by leuko-
cytes is undermined markedly and antioxidant systems are
improved by dietary restriction, suggesting an amelioration
of oxidative stress parameters. In addition, the reduction of

subclinical markers of atherosclerosis that we report—
sdLDL, MPO, sP-selectin and leukocyte adhesion –may
improve endothelial function. However, the present study
has some limitations, including the size of the study
population, which, although relatively small, was supported
by sample size calculation. In addition, although we did not
determine the presence of the atherosclerotic plaque in our
patients, we did evaluate the onset of the atherosclerotic
process; in other words, the first stages of endothelial dys-
function, which is heralded by the movement and accu-
mulation of leukocytes in the vessel wall and enhanced
levels of cellular adhesion molecules in a proinflammatory
environment. Whether changes in intracellular signaling in
leukocytes are related to the interaction of these cells with
the endothelium and the subsequent risk of developing
atherosclerosis and cardiovascular disease is a question that
needs to be explored further.

To sum up, dietary weight loss intervention in obese
patients is effective in diminishing cardiometabolic risk
factors. Leukocytes could be largely responsible for this
response, since they are one of the main mediators of
inflammatory response and atherogenesis. The underlying
mechanism appears to involve an improvement in oxidative
stress status and leukocyte function that causes LDL parti-
cles to increase in size and undermines adhesion of leuko-
cytes to the endothelium, thereby reducing the risk of
cardiovascular events. Future exploration of this oxidative
stress may help to clarify the nature of the molecular
mechanisms involved and the physiological significance of
weight loss as an effective therapy to reduce cardiovascular
risk. Such knowledge would no doubt help to develop

Fig. 4 Correlation coefficients
between circulating MPO levels
and atherosclerotic markers in
obese patients before and after
dietary weight loss intervention.
Graphs represent correlations
between MPO and LDL particle
size (a) before and (b) after
treatment and between MPO and
serum levels of soluble P-
selectin (c) before and (d) after
weight loss. The data are shown
as r correlation coefficient, p
value and sample size.
Correlation coefficients were
estimated by Pearson’s
correlation for all parameters.
MPO mieloperoxidase, LDL
low-density lipoprotein
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strategies to reduce the risk of the development of cardio-
vascular disease in obese populations.
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Moderate weight loss attenuates chronic 
endoplasmic reticulum stress and mitochondrial 
dysfunction in human obesity
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ABSTRACT
Objective: In obese patients undergoing caloric restriction, there are several potential mechanisms involved in the improvement of metabolic
outcomes. The present study further explores whether caloric restriction can modulate endoplasmic reticulum (ER) stress and mitochondrial
function, as both are known to be mechanisms underlying inflammation and insulin resistance (IR) during obesity.
Methods: A total of 64 obese patients with BMI �35 kg/m2 underwent a dietary program consisting of 6 weeks of a very-low-calorie diet
followed by 18 weeks of low-calorie diet. We evaluated changes in the metabolic and inflammatory markers -TNFa, hsCRP, complement
component 3 (C3c), and retinol binding protein 4 (RBP4)-, in the ER stress markers and modulators -eIF2a-P, sXBP1, ATF6, JNK-P, CHOP, GRP78,
and SIRT1-, and in mitochondrial function parameters -mitochondrial reactive oxygen species (mROS), glutathione peroxidase 1 (GPX1), cytosolic
Ca2þ, and mitochondrial membrane potential.
Results: The dietary intervention produced an 8.85% weight loss associated with enhanced insulin sensitivity, a less marked atherogenic lipid
profile, and a decrease in systemic inflammation (TNFa, hsCRP) and adipokine levels (RBP4 and C3c). Chronic ER stress was significantly reduced
(ATF6-CHOP, JNK-P) and expression levels of SIRT1 and GRP78 e a Ca2þ-dependent chaperone e were increased and accompanied by the
restoration of Ca2þ depots. Furthermore, mROS production and mitochondrial membrane potential improvement were associated with the up-
regulation of the antioxidant enzyme GPX1.
Conclusions: Our data provide evidence that moderate weight loss attenuates systemic inflammation and IR and promotes the amelioration of
ER stress and mitochondrial dysfunction, increasing the expression of chaperones, SIRT1 and antioxidant GPX1.

� 2018 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Obesity is a multifactorial disease associated with the appearance of
several comorbidities, such as dyslipidemia, hypertension, and type 2
diabetes (T2D), the prevalence of which has risen significantly in the
past decades in parallel with the rise in the obesity rate worldwide [1].
Metabolic overload and increase in fat accumulation during obesity
favors the release of several adipokines and cytokines, contributing to
systemic chronic low-grade inflammation, which is closely related to

the development of insulin resistance (IR) and other metabolic ab-
normalities [2]. Despite the emerging body of evidence supporting the
role of inflammatory and stress responses in the context of obesity, the
molecular pathways and mechanisms underlying these processes
remain unclear.
It is known that the endoplasmic reticulum (ER) acts as a systemic
nutrient sensor in peripheral tissues during obesity, in which elevated
circulating levels of free fatty acids, glucose, or inflammatory cytokines
may act as stress signals for the organelle [3]. The accumulation of
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misfolded proteins during ER stress triggers the activation of the
unfolded protein response (UPR) through three different leaders: the
inositol requiring enzyme 1 a (IRE1a), activating transcription factor 6
(ATF6), and protein kinase RNA-like endoplasmic reticulum kinase
(PERK). However, the failure of the adaptive response and the chro-
nicity of the stress lead the UPR to generate the expression of pro-
apoptotic factors such as CCAAT/enhancer binding protein [C/EBP]
homologous protein (CHOP). Previous findings have described the role
of CHOP in the cytokine-ER-stress-mediated apoptosis of pancreatic
b-cells [4]. On the other hand, IRE1a kinase activity has been asso-
ciated with IR through the cJun NH2-terminal kinase (JNK) inflam-
matory pathway, partly as a result of serine phosphorylation of insulin
receptor substrates (IRS1) [5]. In addition, JNK activation in macro-
phages has been related to increased tissue infiltration [6] and is
known to play a key role in chronic inflammation in obesity [7]. In
contrast, it has been reported that chemical chaperones that reduce ER
stress improve insulin sensitivity in ob/ob mice [8] and b-cell function
in humans [9], and we have recently described an improvement in ER
stress and inflammatory markers in subcutaneous adipose tissue that
was mediated by an insulin sensitizer [10]. This accumulated evidence
of the adaptive capacity of ER supports a role for ER stress in human
metabolic disease and points to potential novel therapeutic targets for
the treatment of obesity and related disorders. However, how ER stress
is modulated in vivo is a question yet to be answered.
Sirtuin 1 (SIRT1), a NADþ-dependent protein deacetylase, is an
important regulator of energy homeostasis in response to nutrient
availability; its expression is down-regulated in adipose tissue [11] and
peripheral blood mononuclear cells in obese populations and has been
related with IR and metabolic syndrome [12]. Accumulating evidence
shows that SIRT1 helps to regulate inflammatory [13] and ER stress
responses in obesity, since both endogenous induction and over-
expression of SIRT1 exert a protective role by alleviating ER stress and
inflammatory markers in the liver [14,15] and adipose tissue [10,16].
Furthermore, an excess of energy substrates in obesity is believed to
lead to increased mitochondrial dysfunction and reactive oxygen
species (ROS) signaling, which may underlie IR [17,18], metabolic
syndrome [19] and impaired endothelium function [20]. In fact,
enhanced oxidative stress is reported to be increased in leukocytes and
adipose tissue from obese patients and has been correlated with body
mass index (BMI) [20,21].
Caloric restriction displays several metabolic benefits in the obese
population, improving insulin signaling and reducing cardiovascular
risk [22]. The molecular mechanisms implicated in these effects could
be targeted to decelerate the progressive deterioration in the health of
obese subjects, but, unfortunately, they are poorly understood. Since
nutrient overload has been related to ER stress and mitochondrial
dysfunction [23], the aim of the present study was to explore whether
caloric restriction modulates UPR pathways during ER stress and im-
proves redox status and mitochondrial function in human obesity, and
to determine the role of inflammatory mediators such as SIRT1 and
JNK.

2. MATERIALS AND METHODS

2.1. Subjects
Patients attending the Endocrinology and Nutrition Department at the
University Hospital Dr. Peset (Valencia, Spain) were consecutively
recruited as they were referred for treatment for their obesity.
Eligible participants were obese patients between 18 and 60 years of
age that had maintained a stable weight (�2 kg) over the 3 months
prior to the study and whose disease duration was at least five years.

The inclusion criteria were BMI �35 kg/m2, with or without associated
comorbidities, including T2D diagnosed according to the American
Diabetes Association Guidelines [24]. Exclusion criteria were preg-
nancy or lactation, severe disease, history of cardiovascular disease or
chronic inflammatory disease and secondary obesity (hypothyroidism,
Cushing’s syndrome).
The study protocol was approved by the Ethics Committee of the
Hospital (Code: 96/16) and was conducted according to the guidelines
laid down in the Declaration of Helsinki. The dietary weight loss
intervention was designed in accordance with the guidelines of the
Spanish Society for the Study of Obesity (SEEDO) [25]. Written
informed consent was signed by all the participants.
After an initial evaluation, patients underwent treatment consisting of a
6-week very-low-calorie diet (VLCD) in liquid formula (Optisource
Plus�, Nestlé S.A., Vevey, Switzerland), containing 52.8 g protein,
75.0 g carbohydrates, 13.5 g fat and 11.4 g of fiber and the vitamins,
minerals and trace elements that are essential according to Recom-
mended Dietary Allowances (RDA). The energy provided by this for-
mula was 2738 kJ/day (654 kcal/day). Participants replaced their
usual 3 meals a day with the commercially available meal replacement
provided by the National Healthcare System, under prescription from
the endocrinologist. After this period, patients met the dietician for
dietary counseling. During the appointment, the patient was inter-
viewed, weighed, and prescribed a further 18 weeks of low-calorie diet
(LCD) following an estimate of the caloric requirements of each indi-
vidual according to sex, height, weight, and physical activity level. This
diet consisted of an average daily energy intake of 5023e7535 kJ
(1200e1800 kcal) in accordance with the recommended caloric
requirement: 15e20% proteins, 50e55% carbohydrates and 28e
33% fats. After the experimental period, patients were re-evaluated by
the dietician.
Throughout the study, subjects were given detailed written and oral
instructions about their diet, including precise amounts to be eaten,
and cooking methods. A daily ingestion of more than two litres of
calorie-free liquids was recommended. Patients were encouraged to
maintain their normal pattern of activity and to ask for dietary coun-
seling if necessary. No modifications were made to drug prescriptions
during the course of the study.
Anthropometrical parameters, including weight (kg), height (m), BMI
(kg/m2), waist circumference, and systolic and diastolic blood pressure
(SBP and DBP) (mmHg) were measured in all the participants both at
baseline and 6 months after dietary weight loss intervention. Blood
samples of the patients were drawn from the antecubital vein during
both appointments, after a 12 h fasting period.

2.2. Biochemical parameters
Biochemical determinations were performed at the Hospital’s Clinical
Analysis Service. An enzymatic method was used to determine serum
levels of glucose, total cholesterol (TC) and triglycerides (TG). HDL
cholesterol (HDLc) levels were obtained with a Beckman LX20 analyzer
(Beckman Corp., Brea, CA, US) using a direct method. The intra-serial
variation coefficient was<3.5% for all determinations. The Friedewald
method was used to calculate levels of LDL cholesterol (LDLc) when
triglycerides were under 300 mg/dl. Insulin was measured by a
chemiluminescence immunoassay, and IR was estimated with the
Homeostasis Model of Assessment (HOMA-IR ¼ (fasting insulin (mU/
ml) � fasting glucose (mg/dl)/405)). Percentage of glycated hemo-
globin (A1c) was measured using an automatic glycohemoglobin
analyzer. Levels of apolipoprotein (Apo) AI and B, high-sensitive C-
reactive protein (hsCRP) and complement component 3 (C3c) were
determined with an immunonephelometric assay whose intra-assay
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variation coefficient was <5.5%. Serum retinol binding protein 4
(RBP4) concentrations were measured by nephelometry with intra- and
inter-assay coefficients of variation of 3.1% and 2.2%, respectively.

2.3. TNFa levels
Levels of TNFa in the serum were measured with a Luminex 200
analyzer system (Austin, TX, USA) by means of a Milliplex� MAP Kit
(Merck Millipore, Burlington, MA, USA). The intra-serial and inter-serial
variation coefficients were <5.0% and <15.0% respectively.

2.4. Cell isolation
Blood samples were incubated with dextran 3% for 45 min and sub-
jected to centrifugation (650 g for 25 min at room temperature) in a
Ficoll-Hypaque density gradient to isolate leukocyte fraction. After
centrifugation, remnant erythrocytes were lysed and the pellet was
washed with HBSS (Capricorn Scientific, Ebsdorfergrund, Germany).

2.5. Protein expression
Proteins were extracted by incubating leukocytes on ice for 15 min
with lysis buffer (20 mM HEPES pH 7.5, 400 mM NaCl, 20% Glycerol,
0.1 mM EDTA, 10 mM Na MoO4, 0.5% NP-40, 10 mM NaF, 1 mM
NaVO3, 10 mM PNP, 10 mM b-glycerolphosphate, 1 mM dithiothreitol).
BCA protein Assay Kit (Thermo Scientific, Waltham, MA, USA) was
used to quantify total protein content of the samples. 25 mg of protein
were resolved in a SDS-PAGE, transferred onto nitrocellulose mem-
branes and blotted with the following primary antibodies: monoclonal
anti-SAPK/JNK-P (Thr183/Tyr185) from Cell Signaling (Danvers, MA,
USA), polyclonal anti-SIRT1 from Merck Millipore (Burlington, MA,
USA), monoclonal anti-GPX1, polyclonal anti-eIF2a-P (Ser52) and
monoclonal anti-CHOP from Thermo Scientific (Waltham, MA, USA),
monoclonal anti-ATF6 and polyclonal anti-GRP78 (BiP) from Abcam
(Cambridge, UK). HRP-goat anti-mouse (Thermo Scientific, Waltham,
MA, USA) and HRP-goat anti-rabbit (Sigma Aldrich, Kawasaki, Kana-
gawa, Japan) were used as secondary antibodies. A chem-
iluminescence signal was detected after incubation of the membrane
with ECL plus reagent (GE Healthcare, Little Chalfont, UK) or Super-
signal West Femto (Thermo Scientific, Waltham, MA, USA). Images
were acquired and bands densitometrically analyzed with the Fusion
FX5 system coupled to the Bio1D software (VilbertLourmat, Marne
LaVallée, France).

2.6. Fluorescence microscopy
Leukocytes were seeded in duplicate in 48-well plates and incubated
for 30 min at 37 �C with the following fluorogenic dyes: MitoSOX Red
(5 mM) was used to assess mitochondrial ROS (mROS) production,
Fluo-4 (1 mM) indicated levels of cytosolic Ca2þ, and tetrame-
thylrhodamine methyl ester (TMRM, 5 mM) was used to evaluate
changes in mitochondrial membrane potential. All the fluorescent
probes were purchased from Invitrogen (Life Technologies, Carlsbad,
CA, USA). Imaging was performed with an IX81 Olympus inverted
fluorescence microscope and 20 images/well were analyzed with the
static cytometry ScanR software 2.03.2 (Olympus, Hamburg,
Germany).

2.7. Gene expression
Total RNA was extracted from leukocytes using the GeneAllR Ribo-
spinTM total RNA extraction kit (Geneall Biotechnology, Seoul, Korea)
according to the manufacturer’s instructions. A total of 1 mg of RNA
samples were reverse-transcribed using the RevertAid first-strand
cDNA synthesis kit (Thermo Scientific, Waltham, MA, USA). Quantita-
tive RT-PCR analysis was then performed using the FastStart Universal

SYBR Green Master (Roche Applied Science, Penzberg, Germany) and
a 7500 Fast RT-qPCR system (Life technologies, Carlsbad, CA, USA),
as described previously [26]. Spliced X-box binding protein 1 gene (s-
xbp1; 103 pb) was amplified using the following primers: Forward 50-
CTGAGTCCGCAGCAGGTG-30 and Reverse 50-AACAGGATATCA-
GACTCTGAATCTGAA-30. The internal control gene gapdh (168 pb) was
amplified using the following primers: Forward 50-
CGCATCTTCTTTTGCGTCG-30 and Reverse 50-TTGAGGTCAAT-
GAAGGGGTCA-30.

2.8. Statistical analysis
The study was designed based on preliminary data [22] in order to
have a power of 80% and to detect differences between two paired
means in relation to the primary efficacy criterion (minimum expected
difference in mROS)�50 relative fluorescence units (RFU), assuming a
common standard deviation of 100 units. Under these premises, at
least 32 subjects were considered.
Statistical differences between variables before and after the dietary
treatment were analyzed using the paired Student’s t-test or the Mann
Whitney U-test for non-parametric variables with SPSS 19.0 statistics
software (SPSS Statistics Inc., Chicago, IL, USA). The strength of the
association between variables was measured by means of Pearson’s
correlation coefficient. Continuous variables in tables are expressed as
mean � standard deviation (SD) for parametric data or as median and
25th and 75th percentiles for non-parametric data. Qualitative data are
expressed as percentages. In the figures, data are represented as
mean þstandard error (SE). All the tests used a confidence interval of
95% and the threshold of significance for all the analyses was set at
p < 0.05.

3. RESULTS

In the present study, we analyzed a total of 64 obese patients of middle
age (43.5 � 9.9 years) e mainly females of reproductive-age
(n ¼ 14), pre-menopausal (n ¼ 16) and menopausal status
(n ¼ 16) e with an average BMI of 44.0 � 5.7 kg/m2. The 6-month
VLCD þ LCD treatment resulted in a significant reduction of body
weight and BMI (p < 0.001), with an average weight loss of
8.85� 4.16%. Waist circumference, SBP and DBP (p< 0.01), as well
as hydrocarbonated metabolic parameters such as insulin, HOMA-IR
and A1c, decreased significantly (p < 0.05), whereas fasting
glucose levels did not change. Regarding blood lipid profile, tri-
glycerides were significantly decreased and HDLc increased after
weight loss (p < 0.01), although we did not observe changes in either
total cholesterol or LDLc (Table 1).
The dietary weight loss intervention induced significant changes in
systemic inflammatory markers and adipokines. Serum levels of TNFa
(Figure 1A) and hsCRP (Figure 1B) were lower after weight loss
(p < 0.05). In addition, reductions in the adipokine RBP4 (Figure 1C)
(p < 0.05) and in the cardiovascular risk marker C3c (Figure 1D)
(p < 0.01) were detected at the end of the experimental period
(p < 0.05).
The effect of dietary intervention on ER stress was evaluated by
assessing differential expression of markers among the three branches
of the UPR, as represented in Figure 2. No changes were observed in
the activity of the PERK-eIF2a-P branch (Figure 2A) or in the endor-
ibonuclease activity of IRE1a, determined as mRNA levels of spliced
XBP1 (Figure 2B). On the contrary, the dietary weight loss intervention
seemed to have a profound effect on the ATF6-UPR branch, since we
observed a marked decrease of p50/cleaved ATF6 levels (Figure 2C)
that was associated with a down-regulation of the proapoptotic

26 MOLECULAR METABOLISM 19 (2019) 24e33 � 2018 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com



ANNEX I: Articles 

168 

molecule CHOP (Figure 2D). In addition, we detected a drop in levels of
phosphorylated JNK (Figure 2E), a major regulator of the inflammatory

process in leukocytes, which can be activated through IRE1a kinase
activity during ER stress.
Based on the enhanced UPR expression profile, we decided to assess
changes in ER stress modulators. Chaperones are major regulators of
protein trafficking and processing in the ER. In line with this, protein
expression of the chaperone 78-kDa glucose regulated protein
(GRP78) was significantly up-regulated after dietary weight loss
intervention (Figure 2F). In addition, increased expression of the anti-
inflammatory mediator SIRT1 was observed in parallel with ER stress
alleviation (Figure 2G).
The known link between ER and mitochondrial function led us to
explore whether the dietary weight loss intervention modulated mito-
chondrial function in our obese population. We found that ER stress
relief was associated with an improvement in oxidative stress and
mitochondrial function parameters. In fact, glutathione peroxidase 1
(GPX1) expression was induced after dietary treatment (Figure 3A)
(p < 0.05), and was accompanied by a significant decrease in mROS
production of leukocytes after dietary treatment (Figure 3B). Simulta-
neously, leukocytes showed a significant drop off in cytosolic Ca2þ

content (p < 0.05) (Figure 3C), which was indicative of reduced ER
Ca2þ depletion and a marked decrease of mitochondrial membrane
potential (p < 0.001) (Figure 3D), pointing to a restoration of mito-
chondrial function and cellular homeostasis following the dietary
weight loss intervention.
Finally, when we explored possible associations among variations in
molecular markers and clinical metabolic outcomes after dietary
weight loss intervention, we found that percentage of change of
HOMA-IR was correlated significantly with that of ATF6 (r ¼ 0.478,
p¼ 0.018, n¼ 24), JNK-P (r¼ 0.442, p¼ 0.016, n¼ 24) and CHOP
e although in this latter case it did not reach statistical significance
(r ¼ 0.371, p ¼ 0.075, n ¼ 24) e pointing out to a relationship

Figure 1: Systemic inflammatory markers and adipokines of obese patients before and after dietary weight loss intervention. Serum levels of TNFa (A), hsCRP (B), RBP4 (C), and
C3c (D). Data are represented as mean þstandard error. *p < 0.05; **p < 0.01, when compared using a paired Student’s t-test. TNFa, tumor necrosis factor a; hsCRP, high
sensitivity C-reactive protein; RBP4, retinol binding protein 4; C3c, complement component 3.

Table 1 e Anthropometric and biochemical parameters of the study
population before and after dietary weight loss intervention.

Before After

n (females %) 64 (71.9) 64 (71.9)
Age (years) 43.5 � 9.9 e

Weight (kg) 120 � 18 109 � 15
BMI (Kg/m2) 44.0 � 5.7 40.0 � 4.8***
Waist (cm) 122 � 14 114 � 13***
SBP (mmHg) 134 � 17 127 � 15**
DBP (mmHg) 85 � 11 78 � 10***
Glucose (mg/dl) 100 � 21 97 � 22

17.5 � 10.2 15.3 � 9.1*
4.43 � 3.02 3.79 � 2.95*
5.73 � 0.70 5.60 � 0.75*
184 � 34 183 � 41
41.4 � 9.4 43.7 � 10.8**
115 � 30 116 � 36
120 (89,174) 103 (83,143)**
139 � 25 143 � 28
99 � 25 96 � 26

Insulin (mU/ml)
HOMA-IR
A1c (%)
TC (mg/dl)
HDLc (mg/dl)
LDLc (mg/dl)
TG (mg/dl)
Apo AI (mg/dl)
Apo B (mg/dl)
Treatment

14.1
29.7

Oral antidiabetic drugs (%)
Antihypertensive drugs (%)
Lipid-lowering drugs (%) 26.6

Data are presented as mean � SD or percentage (n). For TG are represented as
median and IQ range. *p < 0.05; **p < 0.01; ***p < 0.001 when compared with a
paired Student’s t-test or Wilcoxon test.
Apo, Apolipoprotein; A1c, glycated hemoglobin; DBP, diastolic blood pressure; HDLc,
HDL cholesterol; LDLc, LDL cholesterol; SBP, systolic blood pressure; TC, total
cholesterol; TG, triglycerides.
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between changes in IR, ER stress and proinflammatory signals. There
were also correlations among ER stress markers: percentage of
change of GRP78 correlated positively with that of spliced XBP1
(r ¼ 0.883, p ¼ 0.001, n ¼ 10); percentage of change of eIF2a-P
correlated with that of ATF6 (r¼ 0.656, p¼ 0.003, n¼ 18) and JNK-P
(r ¼ 0.666, p ¼ 0.003, n ¼ 18); and percentage of change of CHOP
correlated with that of ATF6 (r ¼ 0.963, p < 0.001, n ¼ 26), eIF2a-P
(r ¼ 0.691, p ¼ 0.001, n ¼ 18) and JNK-P (r ¼ 0.850, p < 0.001,
n ¼ 26). In addition, a positive correlation between the percentages of
change of GRP78 and SIRT1 was observed (r ¼ 0.548, p ¼ 0.018,
n¼ 18), suggesting a relationship between the UPR adaptive response
and SIRT1 expression (Table 2).

4. DISCUSSION

In this interventional study a population of middle-aged obese subjects
underwent a dietary weight loss intervention consisting of 6 weeks of

VLCD diet followed by 18 weeks of LCD. After this dietary program, we
confirmed a moderate weight loss, which was associated with the
improvement of anthropometric and cardiometabolic parameters and
was accompanied by a reduction in the inflammatory response. When
we examined the effect of the intervention on ER homeostasis we
found that apoptotic pathways of the UPR were ameliorated and
chaperone expression up-regulated. In parallel to this, we observed an
improvement in oxidative stress and mitochondrial function in leuko-
cytes. Altogether, these results suggest that the dietary weight loss
intervention induced a partial recovery of cellular homeostasis medi-
ated by better ER function and mitochondrial redox status, which were
associated with an enhanced metabolic profile.
Several studies have described the benefits of caloric restriction and
moderate weight loss for the metabolic profile of patients with obesity
and related disorders. In fact, both obese and T2D patients have been
shown to display improved insulin sensitivity and cardiovascular risk
factor profiles when weight loss of 5e10% is achieved [22,27]. In line

Figure 2: Evaluation of UPR markers and ER stress modulators in obese patients before and after dietary weight loss intervention. Relative protein expression of eIF2a-P (n ¼ 14)
(A) in the PERK-UPR pathway and representative western blot images. Endoribonuclease activity of IRE1a expressed in mRNA levels of sXBP1 (n ¼ 11) (B). Protein levels of p50/
activated ATF6 (n ¼ 21) (C) and representative western blot images. Regulation of chronic downstream targets of the UPR, proapoptotic molecule CHOP (n ¼ 21) (D) and
phosphorylated JNK (n ¼ 28) (E). Protein levels of major UPR chaperone GRP78 (n ¼ 21) (F) and SIRT1 (n ¼ 23) (G) and representative western blot images. Data are represented
as mean þstandard error. **p < 0.01; ***p < 0.001 when compared using a paired Student’s t-test. UPR, unfolded protein response; ER, endoplasmic reticulum; eIF2a-P,
phosphorylated eukaryotic translation initiation factor 2 subunit 1; PERK, protein kinase RNA-like endoplasmic reticulum kinase; IRE1a, inositol requiring enzyme 1 a; sXBP1,
spliced X-box binding protein 1; ATF6, activating transcription factor 6; JNK, cJun NH2-terminal kinase; CHOP, CCAAT/enhancer binding protein [C/EBP] homologous protein;
GRP78, 78-kDa glucose regulated protein; SIRT1, Sirtuin 1.
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with this, VLCDs have been shown to be an effective strategy for
weight loss in obese patients, although the reported long-term effect of
malnutrition has led to them being replaced by LCDs [28]. In our study
population, the dietary weight loss intervention reduced BMI and
abdominal fat accumulation, which was associated with the reduction
of classic cardiovascular risk factors and circulating C3c levels. An
association between C3c and metabolic syndrome [29] and IR in
obesity has previously been described, and weight loss is reported to
reduce levels of this adipokine, which is in accordance with the results
published by our group and other researchers [30,31]. In parallel,

caloric restriction improved the lipid profile of our patients, including
increased HDLc and lower circulating triglycerides.
Increased levels of adiposity in obesity are known to be responsible for
the aberrant profile of circulating inflammatory markers and adipo-
kines that may underlie IR in these patients. TNFa is overproduced by
adipocytes and macrophages during obesity [32], triggering an
impairment in insulin signaling at a systemic level. In the present
study, reduced circulating levels of TNFa and hsCRP were detected
after dietary weight loss intervention. In addition, lower levels of RBP4,
an adipokine contributing to systemic IR and recently associated with

Figure 3: Oxidative stress and mitochondrial function parameters in obese patients before and after dietary weight loss intervention. Expression of the antioxidant enzyme GPX1
(n ¼ 16) and protein representative images (A) and levels of mROS production measured as arbitrary units of MitoSOX fluorescence dye (n ¼ 31) (B), cytosolic Ca2þ measured as
arbitrary units of Fluo-4 fluorescence dye (n ¼ 18) (C) and mitochondrial membrane potential measured as arbitrary units of TMRM fluorescence dye (n ¼ 30) (D). Data are
represented as mean þstandard error. *p < 0.05; ***p < 0.001 when compared using a paired Student’s t-test. RFU, relative fluorescence units; GPX1, glutathione peroxidase 1;
mROS, mitochondrial reactive oxygen species; TMRM, tetramethylrhodamine methyl ester.

Table 2 e Pearson correlation coefficients of percentage of changes between insulin resistance and UPR markers and ER stress modulators in obese patients.

HOMA-IR GRP78 eIF2a-P ATF6 sXBP1 CHOP JNK-P SIRT1

HOMA-IR e n.s n.s. 0.478* n.s. 0.442*
GRP78 e n.s.

n.s.
0.883***

n.s.
0.548*

eIF2a-P e

n.s
0.656** n.s. n.s.

ATF6 e e n.s.

n.s
0.691***
0.963***

n.s
0.666**
0.842*** n.s.

sXBP1 e e n.s. n.s.
CHOP e e

n.s.
0.850*** n.s.

JNK-P e e e n.s.
SIRT1 e

e

e

e

e

e

e

e

e

e

e

e

e

e e

e

e

e

e

e

e

e e e

Data are expressed as Pearson’s correlation and statistical significance *p < 0.05; **p < 0.01; ***p < 0.001 for each pair of variables. When correlation is not significant, it is
represented as n.s.
Percentage of change was calculated following the formula: ((after-before)/before)*100.
GRP78, 78-kDa glucose regulated protein; eIF2a-P, phosphorylated eukaryotic translation initiation factor 2 subunit 1; ATF6, activating transcription factor 6; sXBP1, spliced X-box
binding protein 1; CHOP, CCAAT/enhancer binding protein [C/EBP] homologous protein; JNK, cJun NH2-terminal kinase; SIRT1, Sirtuin 1.
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hsCRP in the progression of metabolic syndrome [33], were detected.
As a whole, inflammatory parameters were reduced after weight loss,
suggesting a reduction in systemic inflammation mediated by caloric
restriction.
It is interesting to speculate about the molecular mechanisms asso-
ciated with metabolic improvements in obese populations following
caloric restriction and moderate weight loss. In this context, ER stress
has been reported to be activated in several tissues under conditions
related to obesity and T2D, contributing to the development of IR and
inflammation. In response to this, the UPR, a highly dynamic pathway,
is activated to align ER functional capacity with demand according to
external and intrinsic stress signals, such as alterations in metabolism
and body weight. In the present study, our findings highlight a
decrease in CHOP expression and in JNK activation in leukocytes from
obese patients after weight loss, pointing to an alleviation of chronic ER
stress, in accordance with previous findings [34].
It is known that all three UPR-branches, IRE1a, PERK, and ATF6,
trigger adaptive and apoptotic responses and are involved in CHOP
regulation. Our results suggest that dietary weight loss intervention
modulates this apoptotic pathway, mainly by a decrease in ATF6
activation, since we found lower levels of p50-activated ATF6 to be
correlated with a drop in CHOP expression. However, despite no
significant changes in PERK-eIF2a-P being detected after the
intervention, a positive correlation was observed between alterations
in CHOP and eIF2a-P, suggesting a role of this branch in the
regulation of CHOP. Finally, bearing in mind the role of the IRE1a-
JNK axis in obesity-induced ER stress [7,35,36], it is likely that
changes in JNK-P after dietary weight loss are mediated by a
reduction in IRE1a kinase activity, although further analyses are
required to confirm this hypothesis. Previous studies have shown
reduced ER stress upon weight loss in murine models [34] and
patients undergoing bariatric surgery [36], thus highlighting the
relevance of body weight in ER homeostasis. However, to our
knowledge, this is the first report of UPR modulation by dietary
weight loss intervention in humans with obesity.
When exploring the mechanisms involved in ER restoration we have
observed increased levels of GRP78, a chaperone that is a major
regulator of the UPR. In previous studies, GRP78 upregulation was
associated with a decrease in hepatic UPR markers and the IRE1a-
JNK activation axis, and an improvement of insulin action and lipid
profile in a murine model of obesity [37] and in hepatic cells [38],
which is in line with the results of the present study. On the other
hand, a growing body of evidence suggests an important role of
SIRT1 in ER stress regulation and IR in metabolic disorders. More-
over, several authors have shown that caloric restriction and weight
loss are powerful inducers of SIRT1 [39,40] and have demonstrated
a role for SIRT1 as an anti-inflammatory molecule in obesity [10,41],
which once again is compatible with our results. Interestingly, we
found a positive correlation between changes in SIRT1 and GRP78
after the dietary weight loss intervention. These findings provide new
insights into the association between ER stress adaptive response
and SIRT1. However, since causality cannot be inferred from our
data, further analyses are required to elucidate how these two
intracellular signaling pathways are interrelated in the context of
dietary weight loss in obesity.
Recent studies have provided new insight into the contribution of
leukocyte-ER homeostasis to metabolic disease. In this sense, we have
previously reported higher ER stress levels in leukocytes from obese
subjects with metabolic disturbances when compared with healthy
counterparts [19] and also in immune cells from T2D patients, espe-
cially in those with poor glycemic control [26]. In line with this, Sage

et al., 2012 [42] demonstrated that induced UPR markers in mono-
nuclear cells correlated with indicators of impaired glucose tolerance in
metabolic syndrome. In accordance, we show here that changes in
ATF6 and JNK-P in leukocytes from obese patients after dietary
intervention correlate with changes in HOMA-IR, supporting a
connection between ER homeostasis, glucose management and
development of IR.
UPR pathways in immune cells have also been implicated in the
progression of cardiovascular disease. Increased ER stress markers
have been found in peripheral blood mononuclear cells, as well as in
smooth muscle cells and infiltrated macrophages isolated from
atherosclerotic plaques of patients with coronary disease [43,44]. In
another study, treatment with chaperones that reduce ER stress in
macrophages was associated with a delay in the progression of
atherosclerosis [45]. In line with this, when we previously explored the
association between UPR activation and leukocyte-endothelium cell
interactions, an enhancement of the GRP78 adaptive response in
leukocytes was found to correlate with a lower level of interaction with
the endothelium, whereas increased expression of CHOP seemed to
promote adherence [26], which is the first step of the atherosclerotic
process. In the present study, increasing levels of GRP78 and a drop in
CHOP expression were observed in leukocytes of obese patients after
dietary intervention, in parallel with the improvement of some car-
diovascular risk factors. Nevertheless, how these changes are related
to the interaction of these cells with the endothelium and the subse-
quent risk of developing cardiovascular disease remains to be
confirmed.
Mitochondria are closely linked to the ER by physical contact and Ca2þ

interchange, and accumulating evidence suggests a converging role of
the two organelles in the progression of metabolic disorders [46].
During ER stress, mitochondrial Ca2þ overload, among other stress
signals, disturbs mitochondrial membrane potential and causes excess
ROS production. The imbalance between pro- and anti-oxidants leads
to oxidative stress and mitochondrial dysfunction, a mechanism that
has been related to the appearance of obesity-related comorbidities
and IR [17,47]. In fact, decreased levels of GPX1, an antioxidant
enzyme located both in the cytosol and the mitochondria, have been
reported in adipose tissue from a genetic murine model and related to
impaired insulin signaling [48] and endothelial dysfunction [49]. Our
present data demonstrate that caloric restriction reduces abnormal
Ca2þ distribution and mitochondrial membrane potential, pointing to a
restoration of cell homeostasis and mitochondrial function. Further-
more, redox balance was improved in our patients, since lower levels
of mROS molecules and higher GPX1 expression were found in their
leukocytes after dietary treatment. These results demonstrate that
dietary weight loss intervention can modulate mitochondrial function
and oxidative stress. However, further analyses are required to assess
the degree of implication of these changes in the enhancement of
metabolic status in obese patients under caloric restriction.
Finally, most of the literature supports an orchestrated response
among leukocytes, adipocytes, and muscle cells in obesity. In fact, we
have recently published results showing that total ROS, total super-
oxide, and mitochondrial membrane potential are selectively higher in
obese patients [20], which is in line with impaired mitochondrial ac-
tivity and enhanced ROS production in subcutaneous adipocytes and
white adipose tissue [21,50,51]. In reference to oxidative stress and
mitochondrial function in human skeletal muscle, considerable debate
exists about whether alterations in mitochondrial respiratory capacity
and/or content play a causal role in the development of IR during
obesity. Previous reports have shown that mitochondrial content is
significantly lower in muscle samples of obese individuals [52e54],
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whereas others have not reported such results [55], despite that el-
evations in H2O2 emission rates and reductions in cellular glutathione
[52,55,56] are correlate with those measured in leukocytes and
adipocytes.
This study presents some limitations. Firstly, it does not clarify whether
the main findings were mediated by weight loss or caloric restriction
per se, since no period of eucaloric stability was programmed after
weight loss intervention. In addition, further analyses are required to
elucidate the directionality of changes in ER and mitochondrial function
and metabolic improvements in obese patients after dietary weight
loss intervention. Nevertheless, the present results provide vital new
insight into the modulation of ER stress and mitochondrial function
in vivo that could have important implications for the treatment or
prevention of obesity and T2D.

5. CONCLUSIONS

In summary, the results of the present study extend our understanding
of the molecular changes and metabolic improvements that obese
patients display when moderate weight loss is achieved by caloric
restriction. Interestingly, the improvement in systemic inflammation
and glucose tolerance was mirrored by an attenuation of chronic ER
stress and mitochondrial dysfunction after dietary weight loss inter-
vention, and was accompanied by enhanced expression of chaper-
ones, SIRT1 and antioxidants. These findings highlight the relevance of
restoration of ER homeostasis and mitochondrial function as potential
targets for treating metabolic complications in obesity.
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s u m m a r y

Background & aims: It is known that pinitol acts as a mediator of the insulin-signaling pathway, though
little is known about its anti-inflammatory effect in human obesity. Therefore, this study aimed to
evaluate the effect of pinitol on peripheral blood mononuclear cells (PBMCs) and visceral (VAT) and
subcutaneous adipose tissues (SAT), focusing on the involvement of endoplasmic reticulum (ER) stress
and sirtuin 1 (SIRT1).
Methods: In the intervention study, thirteen obese subjects consumed a pinitol-enriched beverage (PEB)
for 12 weeks. In the ex vivo study, a biopsy of VAT and SAT was removed from thirty-four obese patients
and incubated with D-pinitol for 48 h.
Results: The consumption of a PEB reduced circulating levels of IL6 and TNFa and increased SIRT1 protein
expression in PBMCs. Ex vivo experiments showed a decline in gene expression and protein levels of IL6
and TNFa in SAT and a reduction in ER stress parameters (ATF6 and CHOP), while VAT markers remained
unaltered. Differential gene expression profiles revealed an up-regulation of SIRT1 and insulin-signaling
pathways in SAT with respect to VAT.
Conclusions: Our results suggests that pinitol down-regulates the inflammatory pathway which may lead
to novel treatment options for obesity and its metabolic disorders.

© 2017 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

1. Introduction

Obesity is a highly prevalent condition characterized by sys-
temic low-grade inflammation and is related to a wide variety of
metabolic disturbances, including insulin resistance, dyslipidemia,
hypertension and, eventually, development of diabetes mellitus [1].
Chronic inflammation in obese subjects is manifested by increased
circulating levels of proinflammatory cytokines, such as tumor
necrosis factor a (TNFa) and interleukin-6 (IL6) [2,3]. Although
adipose tissue inflammation is well characterized in obese patients,
the molecular mechanisms that trigger the chronic inflammatory
response are not completely understood.

Abbreviations: PBMCs, peripheral blood mononuclear cells; VAT, visceral adi-
pose tissue; SAT, subcutaneous adipose tissue; ER, endoplasmic reticulum; SIRT1,
sirtuin 1; PEB, pinitol-enriched beverage; TNFa, tumor necrosis factor a; IL6,
interleukin-6; WAT, white adipose tissue; UPR, unfolded protein response; LRYGB,
laparoscopic Roux-en-Y gastric bypass; A1c, glycated hemoglobin; hsCRP, high
sensitivity C-reactive protein; HOMA-IR, homeostasis model assessment; FBS, fetal
bovine serum; GLUT4, glucose transporter 4; IR, insulin receptor.
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Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide
(NADþ)-dependent protein deacetylase that regulates energy ho-
meostasis in response to nutrient availability and whose levels and
activity are reduced in obesity [4,5]. Mounting evidence shows that
SIRT1 participates in the regulation of inflammatory responses in
several tissues. Since nuclear SIRT1 deacetylates p65 subunit of NF-
kB and support its proteasome degradation, decreased nuclear
SIRT1 levels amplify proinflammatory gene expression during
chronic inflammation [6,7]. NF-kB is also reported to be activated
in vitro and in white adipose tissue (WAT) of obese mice under
endoplasmic reticulum (ER) stress conditions [8,9]. Moreover,
previous studies have reported increased ER stress in WAT of obese
mice and humans [10,11], highlighting a causal relation between ER
stress and chronic inflammation [12]. Chaperones are a group of
multifunctional proteins responsible for the proper folding and
conformation of newly synthesized proteins in the ER. They also
facilitate the trafficking of mutant proteins to restore ER homeo-
stasis. Theoretically, chaperones may alleviate WAT inflammation
in obesity by reducing ER stress and improving tissular function-
ality. When the folding capacity of the ER cannot be restored, the
unfolded protein response (UPR) promotes the expression of pro-
apoptotic factors, such as CHOP [10].

The growing interest in medicinal plants used to fight meta-
bolic disorders including obesity and diabetes has led to the
development of dietary bioactive compounds, such as polyols and
related carbohydrates. Among these compounds, a potential
mediator of the insulin-signaling pathway, known as pinitol (3-O-
methyl-D-chiro-inositol), has been developed [13]. Interestingly,
we have previously reported that chronic consumption of a
pinitol-enriched beverage (PEB) influences parameters of sys-
temic glucose tolerance and insulin sensitivity, not only in healthy
subjects, but also in prediabetic and diabetic patients [14e16]. In
addition, pinitol and its derivatives are thought to have other
properties, including anti-inflammatory activity [17]. In this
sense, we have recently reported a systemic anti-inflammatory
effect of an inositol-enriched beverage in obese patients [16]
and a protective role in diabetic patients that prevented the in-
crease of IL6 associated with consumption of a sweetened
beverage in a diabetic population [15], although the underlying
mechanism remained unclear.

Therefore, the aim of this study was to assess the mechanism by
which pinitol mediates the anti-inflammatory effect on the main
producers of cytokines; that is, peripheral blood mononuclear cells
(PBMCs) and visceral (VAT) and subcutaneous adipose tissues (SAT)
in in vivo and ex vivo models of human obesity. In particular, we
have focused on the involvement of UPR and the role of SIRT1 as an
inflammatory mediator.

2. Materials and methods

2.1. Subjects

All the study's subjects were recruited at the Outpatient's Clinic
of the Endocrinology and Nutrition Department of the University
Hospital Dr. Peset. In the intervention study, a subpopulation of
thirteen obese patients was recruited from a larger population
previously registered in clinicaltrials.gov under study number
NCT01754792.

In the ex vivo study, thirty-four subjects underwent a laparos-
copy according to the Roux-en-Y gastric bypass (LRYGB) technique.
During surgery, a biopsy of VAT and SAT white adipose tissue was
performed.

The inclusion criteria were BMI >30 kg/m2, absence of kidney,
liver or heart dysfunction and normal protein and hematological
clinical status. The patients were excluded from the study in the

following cases: severe diseases, malignancies, chronic diseases
affecting kidney or cardiovascular function, psychiatric disorders,
inflammatory disease or treatment with systemic anti-
inflammatory drugs, alcohol or drug abuse, subjects with dia-
betes mellitus (more than two episodes with fasting glucose

We evaluated anthropometrical parameters as follows: weight
and height were determined using a electronic scale and a stadi-
ometer with an approximation of 0.1 kg and 0.5 cm, respectively.
BMI was calculated by dividing weight in kg by height in m2;
brachial artery blood pressurewasmeasured twice consecutively in
the upper arm of sitting patients after a 5-min resting period, using
a sphygmomanometer.

2.2. Intervention study design

For stabilizing subjects' dietary patterns before intervention,
they initiated a 1-month run-up period of a normocaloric diet. After
this period, subjects received a PEB and followed the dietary rec-
ommendations throughout the 12-week study period. The PEB
beverage was consumed as a snack between main meals (mid-
morning and mid-afternoon).

The PEB consisted of a natural mixture of soluble carbohydrates
(with mono-di, oligosaccharides, polyalcohols and soluble fiber)
and lower concentrations of other nutrients such as organic acids,
aminoacids and minerals obtained from carob fruit.

The PEB (prepared with the commercially available natural food
ingredient Fruit Up®) was produced by Wild-Valencia SAU (Spain).
The drink was packaged in cans of 250 ml. Each can contained
2.29 g of inositols (2.00 g of pinitol, 0.23 g of myoinositols plus D-
chiro-inositol and 0.08 g of other polyols). Detailed information
about the intervention drink has been previously published [15].
The recommendation was to ensure a daily energy intake of
7118e9630 KJ (1700e2300 Kcal), of which 50e55% were carbohy-
drates, 28e33% fats and 15e20% proteins.

2.3. Blood sampling and biochemical determinations

Extraction of the venous blood samples was performed after
12 h overnight fasting at baseline (t ¼ 0) and after 12 weeks for the
intervention study and in a preoperative state for the ex vivomodel.
We obtained freshly separated serum by centrifuging at 2000g for
15 min at 4 �C. An aliquot of the serumwas employed to determine
lipid and hydrocarbonated parameters. The remaining serum was
stored at �80 �C for subsequent determinations of proin-
flammatory cytokines.

HDL, total cholesterol, and triglycerides were measured with a
Beckman LX-20 autoanalyzer (Beckman Coulter, La Brea, CA, USA).
LDL-cholesterol levels were assessed by the Friedewald formula
only when triglycerides were lower than 300 mg/dl. Carbohydrate
metabolism parameters (glucose and insulin) were measured by
employing enzymatic assays. The homeostatic model assessment
(HOMA-IR) formula was calculated as follows: fasting insulin (mU/
mL) � fasting glucose (mg/dl)/405. For all the measurements, the
intraserial variation coefficient was <3.5%. Serum levels of proin-
flammatory cytokines IL6 and TNFa were analyzed with a Lumi-
nex® 200 analyzer system (Austin, TX, USA) following the
Milliplex-Kit manufacturer's procedure (Millipore Corporation,
Billerica, MA, USA).

S. L�opez-Dom�enech et al. / Clinical Nutrition 37 (2018) 2036e2044 2037
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2.4. Leukocyte isolation

Blood samples were incubated for 45 min with 3% dextran at
room temperature. The supernatant was placed over Ficoll-
Hypaque (GE Healthcare, Uppsala, Sweden) and centrifuged for
25 min at 650g. Erythrocytes were removed by 5-min incubation in
lysis buffer followed by 5-min centrifugation at 240g. Hank's
Balanced Salt Solution (HBSS; Sigma Aldrich, St. Louis, MO) was
added to the isolated leukocytes (pellet) in order to wash and
resuspend the cells.

2.5. Ex vivo experiments

Explants of VAT and SAT from obese patients were obtained by
splicing samples into 5-mg portions and washing them with PBS.
After 30-min preincubation with PBS supplemented with 5% BSA,
explants were incubated in DMEM-F12 medium (Biowest, Nuaill�e,
France) with 10% fetal bovine serum (FBS), 3% penicillin/strepto-
mycin (Capricorn, Portland, Maine, USA), 1% Amphotericin B (Bio-
west, Nuaill�e, France) and 10 nM insulinwith the addition, or not, of
30 mM D-pinitol (Sigma Aldrich, St. Louis, MO). After 48 h at 37 �C
explants were collected, washed twice with PBS and subsequently
frozen and stored at �80 �C for later use.

2.6. mRNA expression

Explants were processed with an Ultra-Turrax® homogenizer
(IKA, Staufen, Germany) and a RNAse Free DNAse kit (Qiagen, Hil-
den, Alemania) was added later. The RNeasy Lipid Tissue Mini Kit
(Qiagen, Hilden, Alemania) was used to extract total RNA from VAT
and SAT explants following the manufacturer's procedure. Nano-
drop 2000c (Thermo Fisher Scientific, Waltham, MA, USA) was
employed to quantify the total amount of RNA, and the 260/280
ratio was calculated to assess the purity of these samples (a ratio
between 1.8 and 2 was considered optimal).

The Revert Aid cDNA First-Strand Synthesis Kit (Thermo Fisher
Scientific, Waltham, MA, USA) was used to synthesize first-strand
cDNA from 1 mg of RNA. One microliter of this cDNA was used to
assess TNFa, IL6, SIRT1,GRP78, sXBP1, CHOP, glucose transporter 4
(GLUT4), insulin receptor (IR) and PPARg expression by real-time RT-
PCR using SYBR green (Roche Applied Science, Basilea, Sweden) in a
7500 Fast RT-PCR system (Life Technologies, Thermo Fisher Scien-
tific, Waltham, MA, USA).

In Supplementary Table 1, the primer sequences and details of
the procedure are specified. All samples were referred to GAPDH
gene expression, and the relative quantification was calculated
with the comparative 2�DDCt formula using Expression Suite Soft-
ware (Thermo Fisher Scientific, Waltham, MA, USA).

2.7. Western blotting

Total protein extraction from leukocytes was performed on ice
lysing cells with an extraction buffer (20 mM HEPES pH 7.5,
400 mM sodium chloride, 20% Glycerol, 0.1 mM EDTA, 10 mM
Na2MoO4, 0.5% NP-40) containing protease inhibitors (10 mM NaF,
1 mM NaVO3, 10 mM PNP, 10 mM b-glycerolphosphate) for 15 min.
The supernatant was collected after centrifugation for 15 min at
13,000g. Explants were homogenized with Ultra-Turrax® in the
protein lysis buffer provided by Ne-Per® Kit (Thermo Fisher Sci-
entific, Waltham, MA, USA) and in the presence of phosphatase
inhibitors (Sigma Aldrich, St. Louis, MO, USA). After following the
manufacture's protocol, explants were centrifuged twice for 20 min
at 4 �C to remove superficial fat. The total concentration of proteins
was quantified in both cases using a bicinchoninic acid (BCA) pro-
tein assay (Thermo Fisher Scientific, Waltham, MA, USA). Twenty-

five mg of protein were resolved by SDS-PAGE and proteins were
transferred to nitrocellulose membranes. Detection of target pro-
teins was performed by incubating the membranes with anti-SIRT1
polyclonal rabbit antibody (Millipore, MA, USA), anti-TNFa poly-
clonal rabbit antibody (Abcam, Cambridge, UK), anti-GRP78 poly-
clonal rabbit antibody (Abcam, Cambridge, UK), anti-IL6
monoclonal rabbit antibody (Millipore Corporation, Billerica, MA,
USA), anti-CHOP monoclonal mouse antibody (Thermo Fisher Sci-
entific, Waltham, MA, USA), anti-ATF6 monoclonal mouse antibody
(Abcam, Cambridge, UK), anti-EIF2a-P polyclonal rabbit antibody
(Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA), and anti-
actin rabbit polyclonal antibody (Sigma Aldrich, St. Louis, MO, USA).
The secondary antibodies employed were goat anti-rabbit IgG
(Abcam, Cambridge, UK) and goat anti-mouse IgG (Thermo Fisher
Scientific, Waltham, MA, USA). ECL plus reagent (GE Healthcare,
Uppsala, Sweden) or Supersignal West Femto (Thermo Fisher Sci-
entific, Waltham, MA, USA) were used to detect the protein signal
by chemiluminescence, visualized by means of the Fusion FX5
acquisition system (Vilbert Lourmat, Marne La Vall�ee, France). Data
were analyzed by densitometry with the Bio1D software (Vilbert
Lourmat, Marne La Vall�ee, France).

2.8. Statistical analysis

For the statistical analysis of the data we employed the statistics
program SPSS 19.0 software (SPSS Statistics Inc., Chicago, IL, USA). In
the tables continuous variables are expressed as mean ± standard
deviation (SD), or as median and 25th and 75th percentiles for
parametric and non-parametric data, respectively, whereas quali-
tative data are expressed as percentages. In figures, data are repre-
sented as mean þ standard error (SE). Data were analyzed using a
paired Student's t-test or aMannWhitneyU-test for non-parametric
samples when comparing baseline conditions vs pinitol treatment.
Differential gene expression analysis between visceral and subcu-
taneous adipose tissues was compared using an unpaired Student's
t-test. The confidence interval was 95% for all the tests and signifi-
cance was established when the difference between variables was
p < 0.05.

3. Results

In the intervention study, we analyzed a total of 13 obese pa-
tientsemainly females in pre-menopausal (n¼ 3) andmenopausal
status (n¼ 7) with amean age of 53.0 ± 14.0 yearsewho received a
PEB for 12 weeks. The intervention did not modify any of the
anthropometric or metabolic parameters assessed, with the
exception of a significant reduction in systemic inflammatory cy-
tokines such as IL6 and TNFa (p < 0.05 for both) (Table 1).

In order to clarify the origin of this reduction, we evaluated the
protein expression of ER stress markers and SIRT1 in PBMCs e one
of the main inflammatory cell types e at the beginning and at the
end of the experimental period. GRP78 e the chaperone respon-
sible for initiation of UPR e and CHOP e a proapoptotic marker
whose expression is increased when ER stress is maintained for a
long period of time e were not altered by consumption of the PBE,
whereas SIRT1 levels increased significantly (Fig. 1).

We alsowished to explore the effect of pinitol on other cell types
that also play a central role in inflammatory response; thus, we
evaluated the expression of VAT and SAT after treating ex vivo ex-
plants with pinitol for 48 h. Subjects participating in this study
were submitted to LRYGB, during which biopsies were collected.
This study analyzed a total of 34 middle-aged subjects of which 24
were females (8 were reproductive-aged woman, 10 were pre-
menopausal, and 6 were at menopausal status) with a BMI of
38.0 ± 4.7 and a mean age of 43.6 ± 11.7 years. Analysis of gene

S. L�opez-Dom�enech et al. / Clinical Nutrition 37 (2018) 2036e20442038



ANNEX I: Articles 

178 

Data are expressed as mean ± SD. *p < 0.05 when compared by a paired Student's t-
test.
hsCRP: high sensitivity C-reactive protein.

expression and protein levels of inflammatory markers showed
that VAT explants did not respond to pinitol treatment, since none
of the mRNAse TNFa, IL6 and SIRT1e or proteinse TNFa and IL6e

were modified (Fig. 2A). On the contrary, SAT explants showed a
significant decrease in IL6 (gene and protein expression; both
p < 0.05) and TNFa, although statistical differences were found only
at the protein level (p < 0.05) (Fig. 2B), which could partly explain
the drop of IL6 and TNFa serum levels observed in the intervention
study. However, unlike that observed with PBMCs, SIRT1 was un-
altered after treatment of explants with pinitol in both VAT and SAT
(Fig. 2B), suggesting that other pathways were involved in the anti-
inflammatory response. An alleviation of ER stress or a potentiation
of the insulin-signaling pathway could be involved in this process.
To analyze the effect of pinitol on ER stress markers, we evaluated
GRP78, the three pathways involved in the UPR e ATF6, IRE1 and
PERKe and CHOP. Sincewe did not detect changes in inflammatory
markers in VAT after pinitol treatment, we did not expect, a priori,
to observe differences in the expression of ER stress markers or
the insulin-signaling pathway. Indeed, mRNA e GRP78, sXBP1, or
CHOP e or protein e ATF6, eIF2a or CHOP e expression was not
altered by treatment of explants with pinitol (Fig. 3A). Furthermore,

gene expression of GLUT4, IR or PPARg was also unaltered in VAT
(Fig. 4A). However, incubation of SAT with pinitol produced a se-
lective down-regulation of the ATF6 pathway and CHOP (both gene
and protein expression (p < 0.01)) and a downward trend in GRP78
and sXBP1 (p < 0.100) (Fig. 3B), thus pointing to pinitol as a possible
mediator in the mitigation of ER stress. Finally, treatment with
pinitol did not modify the expression of GLUT4, IR or PPARg
(Fig. 4B), suggesting that it does not exert its beneficial effect on the
inflammatory response by enhancing the insulin-signaling
pathway. In fact, these results are in accordance with the inter-
ventional study (Table 1), since chronic consumption of the PEB for
12 weeks did not modify hydrocarbonated metabolism parameters.

Differential gene expression analysis revealed a generally higher
expression level in SAT than in VAT. In particular, we observed a
significant increase in SIRT1, GLUT4, IR and PPARg, whereas ER
stress markers and proinflammatory cytokines showed similar
levels of mRNA expression in both tissues (Table 2).

4. Discussion

The present study is the first to provide experimental evidence
for the anti-inflammatory effects of pinitol on the main producers
of cytokine in obesity. Thus, in PBMCs of obese patients that
consumed a PEB over 12 weeks we witnessed an increase in SIRT1
protein levels that was associated with a drop in circulating levels
of IL6 and TNFa. On the other hand, in ex vivo adipose tissue ex-
plants incubated with pinitol we observed a decrease in gene
expression and protein levels of these proinflammatory cytokines
in SAT, which could have been mediated, at least in part, by a
reduction in ER stress parameters, while markers of VAT remained
unaltered throughout the experimental period. In addition, gene
expression profiles varied between the two types of adipose tissues.
Specifically, SIRT1 and insulin-signaling pathway genes were up-
regulated in SAT. Thus, our findings suggest that the underlying
mechanism mediating the anti-inflammatory effects of pinitol
differs depending on the nature of the cytokine producers and their
depot-specific location.

Although most previous studies have focused on evaluating the
effect of pinitol supplementation on glycemic control, only a few
have evaluated its anti-inflammatory effects. To date, the effects of
pinitol on proinflammatory cytokines have been evaluated mainly
in rodent models and have proved to be mostly beneficial and

Table 1
Anthropometric and metabolic parameters in obese subjects at baseline and after
consumption of an inositol-enriched beverage (IEB).

Baseline 12 weeks

13 (92.3) 13 (92.3)
53.0 ± 14.0 53.0 ± 14.0
34.9 ± 3.2 35.1 ± 3.3
144 ± 15 139 ± 9
87.0 ± 6.9 85.2 ± 7.4
179 ± 29 187 ± 38
109 ± 28 116 ± 33
44.2 ± 5.5 45.3 ± 6.9
121 (92, 144) 130 (78, 155)
107 ± 9 106 ± 8
15.3 ± 8.1 15.2 ± 8.0
4.12 ± 2.45 4.07 ± 2.36
4.43 (2.01, 7.21) 4.77 (2.89, 7.02)
7.31 ± 9.23 4.68 ± 6.39*

n (% females)
Age (years)
BMI (Kg/m2)
Systolic BP (mmHg)
Diastolic BP (mmHg)
Total cholesterol (mg/dl)
LDLc (mg/dl)
HDLc (mg/dl)
Triglycerides (mg/dl)
Glucose (mg/dl)
Insulin (mU/ml)
HOMA-IR
hsCRP (mg/l)
IL6 (pg/ml)
TNFa (pg/ml) 8.14 ± 3.38 5.78 ± 2.34*

Fig. 1. Effect of chronic consumption of a pinitol-enriched beverage on PBMCs of obese subjects. (A) Protein levels of GRP78 and representative western blot images of GRP78 and
actin at baseline and after 12 weeks. (B) Protein levels of CHOP and representative western blot images of CHOP and actin at baseline and after 12 weeks. (C) Protein levels of SIRT1
and representative western blot images of SIRT1 and actin at baseline and after 12 weeks. Data are represented as mean þ SE.*p < 0.05 when compared with baseline using a paired
Student's t-test. SIRT1: sirtuin 1.
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Fig. 2. Effect of pinitol on inflammatory parameters in (A) visceral white adipose tissues and (B) subcutaneous white adipose tissue in controls and patients treated with pinitol
explants. (A1 and B1): mRNA expression of TNFa, (A2 and B2): mRNA expression of IL6, (A3 and B3): mRNA expression of SIRT1, (A4 and B4): Protein levels of TNFa and repre-
sentative western blot images of TNFa and actin and (A5 and B5): Protein levels of IL6 and representative western blot images of IL6 and actin. Data are represented as
mean þ SE.*p < 0.05 when compared with controls using a paired Student's t-test. TNFa: tumor necrosis factor a; IL6: interleukin 6; SIRT1: sirtuin 1.
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Fig. 3. Effect of pinitol on endoplasmic reticulum stress parameters in (A) visceral white adipose tissues and (B) subcutaneous white adipose tissue in controls and patients treated
with pinitol explants. (A1 and B1): mRNA expression of GRP78, (A2 and B2): mRNA expression of sXBP1, (A3 and B3): mRNA expression of CHOP, (A4 and B4): Protein levels of ATF6
and representative western blot images of ATF6 and actin (A5 and B5): Protein levels of eIF2a and representative western blot images of eIF2a and actin and (A6 and B6): Protein
levels of CHOP and representative western blot images of CHOP and actin. Data are represented as mean þ SE.*p < 0.05 when compared with controls using a paired Student's t-test.
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protective in several inflammatory diseases, such us diabetes,
asthma and paw edema, in both chronic and subchronic conditions
[18e20]. Recently, pinitol has been shown to have an inhibitory
effect on tumor growth by decreasing interleukins e TNFa and
IL6 e and inducing apoptosis through inhibition of NF-kB, which
could mediate the anti-inflammatory response [21,22].

As far as we know, only two previous studies in humans have
explored the effects of pinitol as an inhibitor of TNFa activity in
whole blood and neutrophils after stimulation with LPS [23,24]. In
both studies, pinitol displayed an average inhibition of the activity
or expression of TNFa of 30%, which is in the line with the systemic
drop of TNFa we have observed after chronic consumption of the
PEB in the present study. In this context, we have previously re-
ported that consumption of a PEB prevents the increase of systemic
IL6 associated with consumption of a sweetened beverage in a
diabetic population [15] and exerts a marked anti-inflammatory
effect in obese subjects [16], thereby reinforcing its role as an
anti-inflammatory agent.

Since adipocytes are one of the main sources of synthesis of
proinflammatory cytokines in obesity [2,3], we aimed to evaluate

Table 2
Differential gene expression analysis in visceral and subcutaneous white adipose
tissues in baseline conditions.

Visceral Subcutaneous p

TNFa 0.106 ± 0.056 0.192 ± 0.262 0.300
IL6 4.26 ± 4.07 3.69 ± 5.08 0.748
SIRT1 0.032 ± 0.027 0.057 ± 0.028 0.022
sXBP1 0.209 ± 0.194 0.227 ± 0.171 0.802
GRP78 0.844 ± 0.496 1.040 ± 0.647 0.432
CHOP 0.263 ± 0.194 0.449 ± 0.473 0.168
GLUT4 0.043 ± 0.053 0.123 ± 0.127 0.026
IR 0.248 ± 0.121 1.863 ± 1.134 <0.001
PPARg 0.061 ± 0.058 0.176 ± 0.197 0.021

Data are expressed as mean ± SD of 12 samples and normalized with an external
sample. *p < 0.05 when compared by a paired Student's t-test.

S. L�opez-Dom�enech et al. / Clinical Nutrition 37 (2018) 2036e20442042

the influence of pinitol on the synthesis of IL6 and TNFa by white
adipose tissues. Our results show that there was a depot-specific
response in SAT. The incubation of explants with pinitol induced
a reduction of TNFa and IL6 in both gene expression and protein
levels, suggesting that pinitol alleviates the up-regulation of IL6 and
TNFa in SAT and systemically, though the molecular mechanism
involved in its anti-inflammatory effect in obesity was not eluci-
dated. To our knowledge, this is the first study to delve deeply into
this matter. ER stress has previously been reported to be enhanced
in SAT of obese human subjects [11]. Under this metabolic condi-
tion, we have shown that incubation of SAT explants with pinitol
down-regulates the gene expression and protein content of in-
flammatory cytokines and ER stress markers, suggesting that its
beneficial effect on the inflammatory response is mediated by an
alleviation of ER stress acting as chemical chaperone. Several
studies have shown that the chemical chaperones TUDCA and 4-
PBA decrease levels of TNFa and IL6 in epididymal WAT of obese
mice by reducing ER stress markers such as GRP78, sXBP1, CHOP
and ATF4 [9,12]. Our results are in accordance with these findings,
as we show that pinitol inhibits ER stress markers (sXBP1, ATF6 and
CHOP) that may mediate the down-regulation of proinflammatory
cytokines, probably involving the down-regulation of the NF-kB
signaling pathway [9]. However, we did not detect alterations to
VAT after incubation of explants with pinitol, which is in the line
with the existence of inherently different progenitor cells that
mediate different patterns of gene expression [25].

While VAT has been associated with metabolic dysfunction
mainly due to greater lipolytic potential and to the release of free
fatty acids into the portal circulation, SAT has a protective role and
responds better to the antilipolytic effects of insulin, shared by
other molecules or drugs involved in signal transduction [26]. In
effect, we have shown that SAT responds differentially to pinitol
and has an alternative gene expression profile by which it up-
regulates genes involved in insulin signal transduction and
SIRT1. Previous studies have reported that SIRT1 is undermined in
endothelial cells isolated from VAT and in the whole visceral VAT

Fig. 4. Effect of pinitol on insulin-signaling pathway parameters in (A) visceral white adipose tissues and (B) subcutaneous white adipose tissue in controls and patients treated
with pinitol explants. (A1 and B1): mRNA expression of GLUT4, (A2 and B2): mRNA expression of IR, (A3 and B3): mRNA expression of PPARg. Data are represented as mean þ SE. IR:
insulin receptor.
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of obese subjects when compared with those from SAT [27,28]. In
reference to PPARg, higher mRNA levels have been detected in SAT
than in VAT in obese subjects [29,30]. Furthermore, thiazolidine-
dione e an agonist of PPARg e is more responsive to the differ-
entiation in subcutaneous than in visceral preadipocytes, which
would lead to an improvement in insulin sensitivity [31]. In
addition, the capacity of adipocytes to respond to insulin stimu-
lation may be reflected indirectly by the expression of IR and
GLUT4. In this sense, it has been reported that the mRNA
expression levels of GLUT4 and insulin receptor substrate 1 (IRS-1)
are significantly higher in SAT than in VAT in a population of
overweight women [32], which is in accordance with our findings.
This divergent pattern of expression could be responsible for a
reduced capacity of VAT to respond to insulin stimulation, sug-
gesting a role in the development of obesity-related complications.
Despite this, incubation of VAT and SAT with pinitol did not
modify the insulin-signaling pathway, which is in the line with the
results of our intervention study, in which we found no differences
in hydrocarbonated metabolism parameters after chronic con-
sumption of a PEB. This response is specifically associated with the
obese state, since we have previously reported that consumption
of a PEB clearly improves hydrocarbonated metabolism parame-
ters in non-obese subjects [14,16], suggesting that insulin resis-
tance associated with obesity impairs the insulin-signaling
pathway and that the effectiveness of pinitol supplementation is
likely to be higher in individuals without an underlying defect of
insulin action.

PBMCs are also involved in chronic low-grade inflammation,
which confers a proinflammatory phenotype and contributes to
endothelial dysfunction and atherosclerosis. This inflammatory
process may be repressed by SIRT1, since it has been shown to
regulate acetylation of several lysine residues of the p65 subunit of
NF-kB [7]. In fact, SIRT1 is reported to inhibit inflammatory path-
ways in macrophages [33]. In addition, SIRT1 is reduced in PBMCs
from patients with insulin resistance [34] and up-regulated after
weight loss in obese patients, thus decreasing the expression of IL6
[35]. Further support of a role of SIRT1 in chronic inflammation is
provided by evidence that increasing the activity of SIRT1 with the
polyphenol resveratrol reduces chronic inflammation and reba-
lances metabolism and bioenergetics towards homeostasis [36]. In
accordance with this, we now report that chronic consumption of
pinitol by obese subjects induces an evident increase of SIRT1 in
PBMCs, suggesting its involvement in the systemic down-
regulation of the inflammatory response.

One of the strengths of this study is that we have evaluated the
anti-inflammatory effect of pinitol on the main producers of cyto-
kines in in vivo and ex vivo models of human obesity. On the other
hand, the main limitation of the present study was the reduced
although homogeneous sample size. Further interventional studies
involving larger patient samples are necessary to corroborate these
findings and to better understand the underlying molecular
mechanisms responsible for this effect on different tissues and
pathologies.

5. Conclusions

To sum up, as far as we know this is the first study in humans in
which pinitol has been demonstrated to reduce the inflammatory
response. The underlying mechanism appears to involve an
alleviation of ER stress e which is likely to act as a chaperone e

in SAT and an increase in SIRT1 in PBMCs. Although further efforts
are necessary to explore these signaling pathways in obesity,
our data point to the potential of inhibition of ER stress and an
increase in SIRT1 as novel therapeutic strategies in the down-

regulation of inflammation associated with obesity and its meta-
bolic disorders.
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