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La siguiente disertación supone un trabajo de largo alcance con el propósito de encontrar 

un nuevo biomarcador de tipo macro que podría ser determinado de forma objetiva y no 

invasiva como indicador de ojo seco (DED), específicamente en su estado temprano.  

Para lograr este objetivo, se proponen nuevas métricas de cuantificación de la dinámica 

lagrimal y se explora el papel fisiopatológico de biomarcadores potenciales en el DED 

incipiente, mediante el seguimiento visita a visita de tendencias longitudinales de estas 

medidas durante un periodo de tiempo de un año, en sujetos con sintomatología 

incipiente. 

La hipótesis tras el desarrollo de nuevos biomarcadores de tipo macro de DED es que la 

pérdida de homeostasis de la película lagrimal, que describe el mecanismo 

fisiopatológico esencial del DED, puede ser expresada no solo como una morfología 

alterada de la película lagrimal, sino también por una falta de equilibrio entre los procesos 

hidrodinámicos que ocurren en fluido lagrimal o meniscos lagrimales.  

Estos fenómenos están en un estado de equilibrio regulado por la unidad funcional 

lagrimal. Una disrupción en este sutil equilibrio llevará en último término a DED. 

Basándose en la observación anteriormente mencionada, la tasa de eliminación lagrimal 

(TCR) fue seleccionada como un potencial macro-biomarcador de DED. La naturaleza 

multifactorial del DED puede ser expresada por la TCR, dado que considera todos los 

fenómenos hidrodinámicos que ocurren en el fluido lagrimal y ha mostrado funcionar 

bien en el diagnóstico diferencial de DED. 

En este trabajo, varias medidas oculares y protocolos que podrían ser interpretados  

y utilizados como potenciales cuantificadores de TCR han sido desarrollados.  

Es más, algunas de las medidas oculares ya existentes han sido identificadas como 
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biomarcadores potenciales de DED. Estas medidas y cuantificadores, que pueden ser 

determinados de forma no invasiva y analizados objetivamente, son apropiados para 

completar la definición de DED y, lo que resulta de mayor importancia, pueden ser 

evaluados en un contexto clínico.  

Esta tesis doctoral ha sido dividida en dos partes principales: Parte experimental  

y Estudio de tendencia de biomarcadores. El capítulo experimental (Capítulo II),  

en forma de tres experimentos separados, propone nuevas metodologías para la 

cuantificación dinámica de la lágrima. La segunda parte (Capítulo III) describe el estudio 

longitudinal de un año de duración, que fue diseñado para seguir las tendencias visita a 

visita de los biomarcadores anteriormente mencionados. Es de interés desarrollar 

metodologías más simples y, por extensión, más aplicables clínicamente para la 

cuantificación de la eliminación lagrimal.  

Las técnicas descritas en el capítulo experimental pueden ser utilizadas para seguir, 

analizar y cuantificar diferentes aspectos de la dinámica del fluido lagrimal. Las medidas 

temporales de eliminación y renovación lagrimal fueron referidas en varios estudios como 

marcadores de la integridad de la unidad funcional lagrimal (LFU) e intercambio lagrimal 

sobre la superficie ocular. Dichas medidas tienen el potencial de convertirse en los nuevos 

macro-biomarcadores de DED. Considerando la probable aplicabilidad de las medidas de 

TCR en el apoyo al diagnóstico de DED, esta disertación propone tales nuevas soluciones 

en forma de tres experimentos separados. Describe dos metodologías alternativas para la 

determinación de TCR – una que emplea el instrumento recientemente desarrollado para 

la determinación de topografía corneo-escleral para seguir el decrecimiento de intensidad 

de fluorescencia lagrimal tras instilación de fluoresceína (Experimento 1) y el último, 
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que permite la estimación de TCR en fase temprana (Experimento 3) con el uso de un 

algoritmo de meniscometría dinámica basada en tomografía óptica de coherencia (OCT) 

propuesto en el Experimento 2, en el que tres métodos diferentes para medir los 

parámetros de menisco son comparados. Los métodos para evaluar la dinámica lagrimal 

han demostrado ser procedimientos de corta duración, fáciles de llevar a cabo, 

y clínicamente aplicables.  

La perfilometría con fluoresceína (Experimento 1) puede ser utilizada para seguir 

cambios sutiles, dinámicos que ocurren en la película lagrimal en toda la superficie 

corneo-escleral expuesta y no está limitada por la permeabilidad corneal a la fluoresceína. 

El método ha mostrado también ser repetible. 

Un software personalizado para determinar meniscometría dinámica (Experimento 2) fue 

propuesto como un modo de mejorar la precisión de las medidas de morfología de 

menisco lagrimal con OCT, minimizando el efecto de la no-confluencia tras cada 

parpadeo en las estimaciones referidas. La OCT puede ser utilizada como un método 

rápido, cualitativo y cuantitativo para la determinación de parámetros del menisco 

lagrimal y tasa de eliminación lagrimal. Con este nuevo algoritmo, los parámetros de 

menisco lagrimal pueden ser calculados de forma más precisa tras cada parpadeo. 

También se ha observado que la meniscometría dinámica proporciona al clínico con 

información diferente que la meniscometría basada en un único corte tomográfico tipo-B 

estático. 

Las medidas basadas en OCT de la tasa de eliminación temprana (Experimento 3) son  

no-invasivas, relativamente rápidas y más simples de llevar a cabo que las pruebas 

lagrimales tradicionalmente utilizadas. La OCT permite una visualización de los 
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meniscos lagrimales y de la eliminación lagrimal en mayor profundidad.  

Básicamente, el estudio longitudinal fue organizado para seguir las tendencias de los 

biomarcadores de acuerdo con el principal objetivo de la presente disertación, con el TCR 

incluido en el protocolo. 

Para observar los cambios temporales, longitudinales, en la fisiología ocular (estudio de 

tendencia de biomarcadores), se adaptaron lentes de contacto actuales a los voluntarios, 

desechables diarias de silicona hidrogel (SiHy, Delefilcon A) o hidrogel (Hy, Omafilcon 

A). El protocolo fue diseñado considerando las limitaciones de tiempo y costes. 

El suministro gratuito de lentes favoreció los resultados de asistencia, siguiendo un 

calendario sistemático, que hizo el diseño del estudio más robusto y minimizó el número 

de abandonos. La parte clínica del estudio duró 12 meses. La hipótesis que orientó este 

estudio longitudinal fue que el porte de lentes de contacto tendría impacto de alguna 

forma en la fisiología ocular en el transcurso del periodo de 12 meses, de modo que las 

tendencias de los biomarcadores podrías ser observadas.  

El protocolo del estudio longitudinal consistió en una visita de cualificación (basal),  

la visita de adaptación de lentes de contacto (día siguiente – visita del día 2), una visita 

de adaptación de lente de contacto a las dos semanas y visitas de seguimiento a los tres 

meses, seis meses y doce meses tras la adaptación, seguidas por la visita de evaluación 

post-estudio tras tres días (Control). La temperatura (°C) y humedad (%RH) del 

laboratorio fueron monitorizados.  

Las medidas más adecuadas para completar la definición de DED y sus subclasificaciones 

fueron seleccionadas a partir de aquellas que podrían ser determinadas en un entorno 

clínico. Por ello, el protocolo de medidas incluyó cronológicamente: índice de 
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enfermedad de superficie ocular (OSDI) y Cuestionario de Ojo Seco de 5-items, altura de 

menisco lagrimal (TMH) medida con Keratograph 5M (K5M), medidas de osmolaridad 

lagrimal adquiridas a partir del menisco lagrimal inferior con el TearLab Osmolarity 

System®, tiempo de rotura lagrimal no invasiva con el Keratograph® (NIKBUT)  

y exploración de segmento anterior con lámpara de hendidura, siguiendo un protocolo 

estricto. Posteriormente, las medidas oculares propuestas en la parte experimental del 

proyecto fueron utilizadas como biomarcadores adicionales de DED. Ello incluyó 

meniscometría dinámica (estimación de altura, profundidad y área de menisco lagrimal) 

y determinación de TCR basado en la morfología dinámica del menisco lagrimal inferior 

adquirida con OCT. La cuantificación de TCR fue seguida por tinción palpebral con verde 

de lisamina y meibografía infrarroja obtenida con K5M. Las medidas fueron 

determinadas utilizando los métodos más objetivos, automatizados y clínicamente 

aplicables, utilizando radiación infrarroja y alternativas no invasivas a las medidas 

tradicionales, siempre que fue posible. 

Cincuenta y cinco sujetos participaron durante toda la duración del estudio.  

La edad promedio del grupo fue de (media ± desviación estándar) 26 ± 4 años en un rango 

que comprendía desde los 20 a los 37 años. Basado en los criterios de adaptación de lentes 

de contacto llevado a cabo en el día 2, a 38 sujetos (25 mujeres/13 hombres) y a 17 sujetos 

(11 mujeres/6 hombres) se les adaptó lentes de contacto desechables diarias de hidrogel 

de silicona (SiHy) e hidrogel (Hy), respectivamente. Dado que no hubo diferencias 

estadísticamente significativas entre ojos derecho e izquierdo, adaptados con SiHy y Hy, 

hombres y mujeres, en ninguno de las métricas oculares medidas y las lentes tenían 

características de borde similares, el grupo de sujetos fue unificado en una única cohorte 

y los cambios temporales en tendencia de biomarcadores fueron analizados para el grupo 
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de estudio en conjunto. La limitación para este estudio fue la falta de control en las 

condiciones ambientales del estudio. Los cambios en las condiciones ambientales pueden 

ser debidos a cambios estacionales y no pudieron ser evitados en este estudio. Sin 

embargo, no se encontró correlación estadísticamente significativa entre la temperatura 

del laboratorio y humedad con ninguna de las medidas oculares evaluadas, excepto para 

la valoración de epiteliopatía palpebral. El análisis no paramétrico ANOVA mostró 

tendencias temporales estadísticamente significativas en OSDI y DEQ-5 en sujetos con 

sintomatología incipiente, en osmolaridad lagrimal, tiempos de rotura lagrimal objetiva 

no invasiva M-NIKBUT y F-NIKBUT, altura de menisco lagrimal evaluada mediante 

meniscometría dinámica y medidas de eliminación lagrimal y tinción con tinciones 

vitales, puntuaciones de epiteliopatía palpebral, espesor corneal y cuantificación de 

alteración de glándulas de Meibomio.  

No se encontraron diferencias estadísticamente significativas entre las visitas basal 

y control en algunas de estas medidas, sugiriendo que los cambios temporales inducidos 

por las lentes de contacto y evaluadas con este método, podrían ser a corto plazo. 

Tampoco se encontraron diferencias estadísticamente significativas en los valores de 

enrojecimiento bulbar y limbal, lo que podría sugerir que los cambios observados en el 

estudio no son de naturaleza inflamatoria. En el transcurso del estudio, un decrecimiento 

gradual de la eliminación lagrimal fue probablemente debido a cambios en la morfología 

del saco conjuntival. El área de menisco lagrimal está significativa y negativamente 

correlacionada linealmente con la osmolaridad lagrimal. Adicionalmente, el método de 

meniscometría dinámica ha probado ser lo suficientemente sensible para revelar cambios 

potenciales en la forma de la superficie ocular. 
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En resumen, la presente tesis propone nuevas métricas de cuantificación de la dinámica 

lagrimal y explora el papel fisiopatológico de varios biomarcadores oculares de la 

homeostasis lagrimal. A través de las tendencias visita a visita de varios biomarcadores 

potenciales durante un periodo de un año, se muestra que la osmolaridad lagrimal puede 

ser utilizada para seguir cambios sutiles en la homeostasis de la película lagrimal.  

Los cambios en la osmolaridad lagrimal se correspondieron con el efecto beneficioso del 

porte de lentes de contacto sobre la película lagrimal tanto en portadores habituales de 

lentes de contacto sintomáticos, como en sujetos inicialmente clasificados como 

asintomáticos. Todos los cambios en la osmolaridad lagrimal durante el periodo de un 

año fueron estadísticamente significativos. Adicionalmente, la meniscometría basada en 

cambios dinámicos en la altura de menisco lagrimal parecía responder a cambios muy 

sutiles en los parámetros de menisco lagrimal durante el tiempo de desarrollo del estudio. 

Estos cambios fueron expresados adicionalmente como cambios en la eliminación 

lagrimal basada en OCT. En resumen, este estudio propone nuevos métodos de 

evaluación de la eliminación y reemplazo lagrimal y muestra como la osmolaridad 

lagrimal, eliminación lagrimal y meniscometría dinámica podrían ser utilizados como 

potenciales biomarcadores para apoyar el diagnostico de DED, y son lo suficientemente 

sensibles para seguir la progresión de cambios sutiles con el tiempo y la respuesta  

a terapia efectiva. 
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The following dissertation is a far-reaching work with the purpose to find a new macro-

type biomarker that could be objectively and non-invasively measured as an indicator of 

DED, specifically at its early stage. Attempting to achieve this goal, it proposes new 

metrics of tear dynamics quantification. By tracking visit-to-visit longitudinal trends  

of these measures over a period of one year, it explores their role in supporting DED 

diagnosis in subjects reported with incipient symptomatology. 

The hypothesis behind developing the new macro-type biomarkers of DED is that  

the loss of homeostasis of the tear film, which describes the core pathophysiological 

mechanism of DED, may not only be expressed as disturbed tear film morphology,  

but also by a lack of equilibrium between hydro-dynamic processes occurring in the tear 

fluid or tear menisci. These phenomena are in a state of equilibrium regulated by the 

lacrimal functional unit (LFU). A disturbance of this subtle balance may ultimately lead 

to DED. Based on the abovementioned observation, the tear clearance rate (TCR) and 

tear turnover rate (TTR) were chosen as the potential macro-type biomarkers of DED.  

The multifactorial nature of the disease can be expressed by TCR or TTR, as they consider 

all the hydrodynamic phenomena occurring in the tear fluid and were shown to perform 

well in DED differential diagnosis. 

Several ocular measures that could be interpreted as potential quantifiers of TCR or TTR, 

have been developed. Further, several existing ocular measures have been identified as 

potential DED biomarkers. These measures and quantifiers can be non-invasively 

assessed and objectively analysed and thus are appropriate to fulfil DED definition and, 

what is most important, can be assessed in a clinical setting. This includes tear osmolarity, 
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meniscometry, tear film stability assessment with non-invasive, objective technique and 

TCR estimation with optical coherence tomography (OCT). 

This dissertation is divided into two major parts: Experimental part and the longitudinal 

study of biomarkers’ trends. The experimental chapter (Chapter II), in a form of three 

separate experiments, proposes new methodologies for tear dynamic quantification.  

The second part (Chapter III) describes the one-year-long longitudinal study, which was 

arranged to follow the above-mentioned visit-to-visit biomarkers’ trends. 

It is of interest to develop simpler and, by extension, more clinically applicable 

methodologies for TCR quantification. Techniques described in Chapter II can be used 

to follow, analyse and quantify different aspects of tear fluid dynamics.  

Temporal measures of TCR and TTR were reported in several studies as markers of the 

integrity of the LFU and tear exchange on the ocular surface. These measures have the 

potential to become the new macro-type biomarkers of DED. Considering the probable 

applicability of TCR measurements in supporting DED diagnosis, this dissertation 

proposes such new solutions. It describes two alternative methodologies for TCR 

assessment - one that utilizes the newly-developed device for corneo-scleral topography 

to follow tear fluorescence intensity decay after fluorescein instillation (Experiment 1) 

and the latter, which allows estimation of an early-phase TCR (Experiment 3) with the 

use of spectral-domain OCT-based dynamic meniscometry algorithm proposed in the 

Experiment 2. 

To observe temporal, longitudinal changes in ocular physiology (Chapter III), subjects 

were fitted with modern, daily disposable Silicon Hydrogel (SiHy, Delefilcon A) or 

Hydrogel (Hy, Omafilcon A) soft contact lenses. Free supply of lenses aided attendance 
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outcomes and ensuing a systematic schedule, which made the study design more robust 

and has minimized the number of drop-outs. The clinical part of the study lasted for 12 

months. The hypothesis driving this longitudinal study was that contact lens wear will 

somehow impact ocular physiology over the period of 12 months, so the biomarkers’ 

trends can be observed. The longitudinal study protocol consisted of: 

• qualifying visit (Baseline visit);  

• contact lens fitting visit (following day - ‘Day 2’ visit); 

• contact lens fit control at two weeks after refitting; 

• follow-up visits at three months, six months and 12 months post-refitting; 

• post-study assessment after three days (Control visit).  

Laboratory temperature (°C) and humidity (%RH) were monitored. The most appropriate 

ocular measures to fulfil the definition of DED and its sub-classifications were chosen 

from the ones that could be estimated in a clinical setting. Thus, the protocol of 

measurement included chronologically:  

• Ocular Surface Disease Index (OSDI) evaluation and calculation; 

• 5-Item Dry Eye Disease Questionnaire (DEQ-5); 

• tear meniscus height (TMH) measurements with Oculus Keratograph 5M (K5M); 

• tear osmolarity measurements acquired from the inferior tear meniscus with 

TearLab Osmolarity System;  

• non-invasive tear film break-up times (NIKBUT) assessment with K5M; 

• slit lamp anterior eye examination.  

Subsequently, ocular measures proposed in the experimental part were used as additional 

DED biomarkers, including: 
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• dynamic meniscometry (tear meniscus height, depth and area estimation) assessed 

with OCT; 

• TCR assessment based on dynamic tear meniscus morphology 

and was followed by: 

• ocular surface and lid wiper staining with lissamine green and fluorescein; 

• infrared meibography recording with K5M. 

Measurements were performed with objective, automated and clinically applicable 

methods, using infrared radiation and non-invasive alternatives to traditional measures, 

whenever possible. 

The methods for assessing tear dynamics were proven to be not time-consuming, 

easy to perform and clinically applicable. Fluorescein profilometry (Experiment 1) can 

be used to follow subtle, dynamic changes occurring in the tear film on the whole exposed 

corneo-scleral surface and the measurements are not limited by corneal permeability to 

fluorescein. The method was also reported repeatable. A custom-written software 

allowing dynamic meniscometry (Experiment 2) was proposed to enhance the precision 

of tear meniscus morphology measurements with OCT, by minimizing the effect of tear 

meniscus nonconfluence after each blink on the reported estimations. OCT can be used 

as a rapid, qualitative and quantitative method of determining tear meniscus parameters 

and TCR. With this new algorithm, tear meniscus parameters can be calculated more 

precisely. It was also observed that the dynamic meniscometry method may provide 

clinicians with different information than the meniscometry performed based on static, 

single OCT B-scan. 



Summary (English) 

xxxii 

OCT-based measurements of early-phase TCR (Experiment 3) are non-invasive, 

relatively rapid and simpler to perform than the traditionally used tear exchange tests. 

OCT allows more in-depth visualization of tear menisci and TCR observation. 

Fifty-five subjects participated for the whole duration of the longitudinal study.  

The group mean age was (mean ± standard deviation) 26 ± 4 y/o and was ranging from 

20 to 37 y/o. Based on the contact lens fitting procedure, 38 subjects (25 females and  

3 males) were fitted with Silicone-Hydrogel (SiHy) and 17 subjects (11 females and  

6 males) were fitted with Hydrogel (Hy) daily disposable soft contact lenses.  

Since there were no statistically significant differences noted between right and left eye 

of each subjects and between SiHy and Hy-fitted group or the group of males and females 

in any of the assessed ocular measures, the group of subjects was unified into one cohort 

and temporal changes of biomarkers’ trends were analysed for the whole study group. 

Non-parametric two-way ANOVA showed statistically significant temporal trends in 

OSDI and DEQ-5 in subjects with incipient symptomatology and temporal changes in 

tear osmolarity, non-invasive objective measures of tear film break-up time (M-NIKBUT 

and F-NIKBUT), tear meniscus height assessed with dynamic meniscometry, TCR and 

in staining with vital dyes, lid wiper epitheliopathy (LWE) scores, corneal thickness and 

quantification of Meibomian gland drop-out.  

Statistically significant difference between Baseline and Control visit was not noted in 

some of these measures, suggesting that the temporal changes induced by contact lenses 

could be short-term. No statistically significant differences were noted in bulbar and 

limbal redness scores, which may suggest that changes observed in the study are not of 

inflammatory nature.  
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Over the time-course of the study, a gradual decrease of tear clearance and tear osmolarity 

was observed. Tear meniscus area significantly negatively linearly correlated with tear 

osmolarity. Additionally, dynamic meniscometry method was proven to be sensitive 

enough to reveal potential changes in ocular surface shape. 

This dissertation proposes new metrics of tear dynamics quantification and explores the 

pathophysiological role of several ocular biomarkers of tear homeostasis. By tracking 

visit-to-visit trends of several potential biomarkers over the period of one year, it shows 

that tear osmolarity may be used to track slight changes in tear film physiology.  

Changes in tear osmolarity corresponded with the beneficial effect of contact lens wear 

on the tear film both in habitual, symptomatic contact lens wearers and in subjects initially 

reported as asymptomatic. All changes in tear osmolarity over a period of one year were 

statistically significant. Additionally, meniscometry based on dynamic changes of tear 

meniscus height seemed to respond to very subtle changes in tear meniscus parameters 

over the time-course of the study. These changes were additionally expressed as changes 

in OCT-based TCR.  

Summarizing, this dissertation proposes new methods of tear clearance and turnover 

assessment and shows that tear osmolarity, TCR and dynamic meniscometry measures 

could be used as potential biomarkers for supporting DED diagnosis, that are sensitive 

enough to follow the progression of subtle ocular changes in time and response to 

effective therapy. 
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Niniejsza praca doktorska została wykonana zgodnie z założeniami projektu EDEN 

(European Dry Eye Network), finansowanego z programu Horyzont2020, w grancie 

Marii Skłodowskiej-Curie o numerze 6462760. Praca opisuje szeroko zakrojone badania 

mające na celu zidentyfikowanie lub wynalezienie nowych makro-biomarkerów,  

które zmierzone w sposób obiektywny i nieinwazyjny posłużą jako wskaźniki zespołu 

suchego oka (ZSO), w szczególności, w jego początkowej fazie.  

W tym celu, niniejsza praca proponuje nowe miary dynamiki filmu łzowego w serii 

eksperymentów oraz dogłębnie śledzi jaką rolę odgrywają te nowe i inne, 

ustandaryzowane, miary w patofizjologii ZSO, poprzez śledzenie trendów tych markerów 

przez okres jednego roku u pacjentów z początkowymi lub umiarkowanymi objawami 

ZSO. 

Główną hipotezą kierującą niniejszymi badaniami, jest stwierdzenie, że spadek 

homeostazy filmu łzowego, który to jest w literaturze opisany jako kluczowy patologiczny 

mechanizm u podstaw ZSO, może być wyrażony nie tylko jako zaburzenie proporcji 

poszczególnych składników, czy też objętości poszczególnych komponentów filmu 

łzowego, lecz także jako brak równowagi pomiędzy hydrodynamicznymi procesami 

zachodzącymi w filmie łzowym lub meniskach łzowych.  

Wspomniane hydrodynamiczne procesy w zdrowym oku zachodzą w równowadze 

odpowiednej dla zachowania homeostazy filmu łzowego i adekwatnie do warunków 

środowiskowych, zdrowotnych i psychofizycznych, zaś regulowane są przez 

funkcjonalną jednostkę łzową (and. lacrimal functional unit, LFU). Zaburzenie 

któregokolwiek z tych procesów może trwale upośledzić tę równowagę i zapoczątkować 

rozwój ZSO.  
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Na podstawie powyższego założenia, współczynnik wymiany filmu łzowego (ang. tear 

clearance rate, TCR lub tear turnover rate, TTR) został wybrany jako potencjalny makro-

biomarker ZSO. TCR i TTR tak jak i ZSO cechuje wieloczynnikowa natura. Wskaźniki 

te są proporcjonalne do wszystkich hydrodynamicznych procesów zachodzących w 

filmie łzowym i meniskach oraz wykazują potencjalne zastosowanie w diagnostyce 

różnicowej ZSO. 

W niniejszej pracy badawczej zostało opracowanych kilka miar i protokołów 

pomiarowych, które mogą zostać zinterpretowane i użyte jako kwantyfikatory wymiany 

łez. Co więcej, kilka istniejących już miar zostało zidentyfikowanych jako potencjalne 

biomarkery ZSO. Te kwantyfikatory mogą być nieinwazyjnie zmierzone, obiektywnie 

przeanalizowane i mogą być stosowane w warunkach klinicznych. Tymi markerami są,  

w szczególności, osmolarność łez, parametry geometryczne menisku łzowego mierzone 

dynamicznie, stabilność filmu łzowego określona obiektywnie oraz TCR.  

Niniejsza praca została podzielona na dwie główne części: Eksperymentalną i Studium 

trendów biomarkerów. W części eksperymentalnej (Rozdział II) zaproponowano nowe 

metody ilościowej analizy dynamiki filmu łzowego. Część druga (Rozdział III), opisuje 

proces przygotowania, przebieg oraz wyniki rocznej obserwacji trendów biomarkerów u 

osób noszących soczewki kontaktowe. 

Ważnym jest, by opracować prostsze, przez co także, łatwiejsze w zastosowaniu 

klinicznym, metody ilościowej oceny dynamiki filmu łzowego, takie jak czynnik TCR. 

Techniki opisane w rozdziale eksperymentalnym mogą zostać użyte do śledzenia, analizy 

i ilościowego opisu różnego rodzaju aspektów dynamiki łez. TCR i TTR w literaturze 

zostały opisane jako miary integralności LFU oraz wymiany łez na powierzchni oka.  
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Te parametry mogą stać się potencjalnymi makro-biomarkerami ZSO. Kładąc nacisk na 

kliniczną przydatność metod opisanych powyżej, niniejsza praca proponuje nowe, 

alternatywne metody pomiaru dynamiki łez w formie trzech niezależnych 

eksperymentów. Opisuje ona dwie alternatywy dla tradycyjnych skomplikowanych i 

laboratoryjnych pomiarów TCR i TTR. Pierwsza z proponowanych metod polega na 

śledzeniu spadku intensywności fluorescencji fluoresceiny w filmie łzowym przy 

pomocy profilometrii rogówkowo-skleralnej (Eksperyment 1), druga zaś umożliwia 

estymację wczesnofazowej wymiany łez przy użyciu spektralnej optycznej koherentnej 

tomografii (ang. Optical coherence tomography, OCT) (Eksperyment 3), w oparciu o 

algorytm meniskometrii dynamicznej zaproponowany w Eksperymencie 2.  

Eksperyment 2 porównuje trzy różne metody pomiaru geometrycznych parametrów 

menisku łzowego: metodę standardową en face, metodę opartą na statycznym, 

pojedynczym B-skanie OCT oraz nową metodę opartą na serii takich B-skanów 

(meniskometria dynamiczna). 

Aby zaobserwować widoczne zmiany na powierzchni oka i w filmie łzowym w czasie, 

uczestnikom badań trendów biomarkerów zostały dobrane jednodniowe soczewki 

kontaktowe wykonane z materiału silikonowo-hydrożelowego (Delefilcon A) lub 

hydrożelowego (Omafilcon A), które uczestnicy nosili przez okres 12 miesięcy.  

Protokół badań podłużnych został przygotowany z uwzględnieniem ram czasowych  

i finansowych projektu EDEN. Darmowy zapas soczewek kontaktowych, który został 

przydzielony każdemu z uczestników, wpłynął na niezwykle mały współczynnik ich 

rezygnacji z udziału w badaniach, zaś stała kontrola przez specjalistę pozytywnie 

przyczyniła się do przestrzegania przez uczestników zaleceń względem pielęgnacji 

soczewek oraz czasu i częstotliwości ich noszenia. W związku z powyższymi 
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czynnikami, u większości uczestników zaobserwowaną pozytywne zmiany w fizjologii 

powierzchni oka oraz filmu łzowego. Główną hipotezą leżącą u podstaw powyższej 

metodologii, było założenie, że noszenie soczewek kontaktowych zaburzy w choćby 

minimalnym stopniu fizjologię powierzchni oka i filmu łzowego na przestrzeni jednego 

roku, dzięki czemu możliwe będzie zaobserwowanie trendów zaproponowanych 

biomarkerów. 

Na protokół rocznych badań składało się 7 wizyt: wizyta bazowa wykonana na oczach 

bez soczewek, wizyta z dopasowaniem soczewek następnego dnia, wizyta kontrolna po 

dwóch tygodniach noszenia soczewek oraz właściwe wizyty pomiarowe po trzech, 

sześciu i 12 miesiącach noszenia soczewek kontaktowych, po których wykonano kolejne 

pomiary, po 3-dniowej przerwie w noszeniu soczewek. Temperatura i wilgotność 

powietrza w laboratorium pomiarowym była notowana osobno dla każdego uczestnika. 

Na pomiary składał się zestaw metod, które pozwalają na ilościowe i obiektywne 

określenie wszystkich procesów fizjologicznych wymienionych jako objawy ZSO, 

a które można zmierzyć w klinice i przy pomocy ogólnodostępnych urządzeń.  

Protokół zawierał zatem pomiary takie jak: kwestionariusz oceny chorób powierzchni 

oka (ang. Ocular Surface Disease Index, OSDI), skrócony kwestionariusz oceny zespołu 

suchego oka (5-item Dry Eye Questionnaire, DEQ-5), pomiar menisku łzowego w 

obserwacji en face przy pomocy Keratografu Oculus 5M® (K5M), pomiar osmolarności 

łez przy pomocy osmometru TearLab Osmolarity System®, nieinwazyjny pomiar czasu 

przerwania filmu łzowego przy pomocy K5M i ocena przedniego odcinka oka pod 

biomikroskopem z lampą szczelinową oraz pomiar grubości rogówki przy pomocy OCT. 

Kolejno wykonane zostały pomiary niestandardowe, zaproponowane w części 

eksperymentalnej niniejszej pracy, takie jak dynamiczna meniskometria z użyciem OCT 
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i estymacja TCR w oparciu o dynamiczną meniskometrię, by następnie ocenić 

uszkodzenie powierzchni oka na bazie pomiarów barwienia spojówki i rogówki zielenią 

lizaminową i fluoresceiną, oraz na bazie barwienia wycieraczki powiekowej i meibografii 

wykonanej w podczerwieni przy pomocy K5M. 

Nacisk kładziono na to, aby, gdy to tylko możliwe, powyższe pomiary wykonać 

metodami gwarantującymi maksymalne zautomatyzowanie, powtarzalność, minimalną 

inwazyjność i obiektywność oceny oraz łatwość zastosowania w warunkach kliniczny. 

Roczne pomiary trendów biomarkerów ukończyło 55 uczestników. Grupa składała się 

z młodych, zdrowych osób, których średni wiek to (średnia ± odchylenie standardowe) 

26 ± 4 lata, w przedziale od 20 do 37 lat. Na podstawie procedury dopasowania soczewek, 

38 osobom (w tym 25 kobietom i 13 mężczyznom) dopasowano jednodniowe, miękkie 

soczewki silikonowo-hydrożelowe, a pozostałym 17 osobom (w tym 11 kobietom i  

6 mężczyznom) soczewki hydrożelowe.  

Ponieważ nie było statystycznie znaczącej różnicy w żadnym z mierzonych parametrów 

pomiędzy grupami noszącymi różne soczewki lub też grupami rożnej płci, grupę 

badawczą ujednolicono i rozpatrywano całościowo w funkcji czasu.  

Nieparametryczna dwuczynnikowa ANOVA wykazała statystycznie znaczące trendy 

czasowe w OSDI, DEQ-5, osmolarności łez, nieinwazyjnych czasach przerwania filmu 

łzowego, dynamicznie mierzonej wysokości menisku łzowego, TCR oraz barwieniu 

powierzchni oka i tarczki powiekowej, a także w grubości centralnej rogówki i w 

meibografii. Brak zaobserwowanych statystycznie znaczących różnic pomiędzy pierwszą 

i ostatnią wizytą (które to zostały wykonane po przerwie w noszeniu soczewek) wskazuje 

na to, iż część zaobserwowanych zmian ma charakter przejściowy. Brak różnicy w 
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stopniu przekrwienia rąbka rogówki i spojówki gałkowej może sugerować, iż 

obserwowane zmiany nie mają charakteru zapalnego. 

W trakcie trwania badań widoczny był stopniowy spadek TCR. Pole powierzchni 

przekroju menisku łzowego było negatywnie skorelowane z osmolarnością.  

Dodatkowo, dynamiczna meniskometria okazała się być metodą na tyle dokładną,  

by wykazać potencjalne zmiany w kształcie powierzchni oka i wpływ tych zmian 

na kształt menisku łzowego. 

Metody pomiaru wymiany łez proponowane w niniejszej pracy są łatwe w wykonaniu, 

nieczasochłonne i obiektywne, przez co potencjalne mogą być stosowalne w środowisku 

klinicznym. Profilometr fluoresceinowy może zostać użyty do śledzenia subtelnych, 

dynamicznych zmian w filmie łzowym na całej powierzchni oka w granicy szpary 

powiekowej. Metoda ta nie jest ograniczona przez przepuszczalność rogówki dla 

fluoresceiny i cechuje ją relatywnie duża powtarzalność. 

Algorytm postępowania i program komputerowy napisany w celu dynamicznego pomiaru 

menisku łzowego przyczyniły się do zwiększenia precyzji pomiaru parametrów 

geometrycznych menisku i dokładniejszej ich estymacji, odpornej na dynamiczne zmiany 

tych parametrów po każdym mrugnięciu. OCT może zostać użyte jako szybka i dokładna, 

jakościowa oraz ilościowa metoda oceny menisku łzowego oraz TCR.  

Dzięki zastosowanemu algorytmowi, parametry menisku obliczane są dokładniej, 

szybciej i automatycznie. W niniejszej pracy zaobserwowano także, że dynamiczna 

meniskometria dostarcza nowych informacji na temat subtelnych zmian zachodzących w 

menisku łzowym, które są poza zasięgiem standardowej metody pomiaru statycznego lub 

pomiaru en face. Ocena TCR przy pomocy OCT jest nieinwazyjna, relatywnie szybka i 
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dużo łatwiejsza w wykonaniu niż tradycyjnie metody używane do oceny wymiany i 

dynamiki filmu łzowego. OCT umożliwia bardziej wnikliwą wizualizację menisku oraz 

wymiany łez. 

Niniejsza praca proponuje nowe miary homeostazy i dynamiki filmu łzowego oraz za ich 

pomocą eksploruje patofizjologiczny mechanizm ZSO. Śledząc trendy kilku 

potencjalnych biomarkerów na przestrzeni jednego roku wykazuje, że osmolarność łez 

może być używana jako wskaźnik subtelnych zmian w fizjologii filmu łzowego.  

Zmiany osmolarności łez korelują z wyindukowanym u pacjentów pozytywnym efektem 

zmiany soczewek kontaktowych na jednodniowe i bardziej nowoczesne.  

Pozytywne zmiany zostały zaobserwowane zarówno u osób symptomatycznych,  

jak i u tych bez objawów ZSO. Wszystkie zmiany w osmolarności na przestrzeni roku 

były statystycznie znaczące. Dodatkowo, meniskometria oparta na zaproponowanym 

algorytmie na bazie dynamicznych pomiarów zdaje się być dobrym wyznacznikiem 

subtelnych zmian parametrów menisku łzowego w czasie. Obserwowalne zmiany 

wyrażały się także jako spowolniony czas wypłukiwania łez, czyli obniżony TCR.  

Podsumowując, niniejsza praca doktorska proponuje nowe metody pomiaru filmu 

łzowego oraz wykazuje, że osmolarność, TCR oraz dynamiczna meniskometria mogą być 

użyte jako potencjalne biomarkery wspierające diagnozę ZSO. Markery te są wrażliwe 

na subtelne zmiany fizjologii powierzchni oka u młodych, zdrowych osób, zatem z 

pewnością pozwolą na analizę owych zmian u osób z bardziej zaawansowaną 

manifestacją ZSO.
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Dry eye disease (DED) is increasingly recognized as a worldwide public health concern1. 

Considering its growing incidence and morbidity, it is a matter of high importance to 

improve its timely diagnosis, to provide better treatment and prevention.  

By finding ocular biomarkers able to predict and assess DED progression, this diagnosis 

could be improved. 

Biomarker can be defined as: a characteristic that is objectively measured  

and evaluated as an indicator of a normal biological process, pathogenic process  

or pharmacologic response to a therapeutic intervention2 or as any substance, structure 

or process that can be measured in the body or its products and influence  

or predict the incidence of outcome or a disease3.  

This chapter provides a theoretical background on ocular measures used in DED 

diagnosis and management, limited to those markers that presumably have the highest 

potential to be used for supporting early DED diagnosis in clinical setting.  

Several ocular measures can be interpreted as such indications of DED, as they can be 

non-invasively assessed, objectively analysed and are appropriate to fulfil the DED 

definition. However, despite the interest to improve timely diagnosis of DED and several 

attempts, no one has yet found a singular objectively-measured macro-type marker that 

has the predictive value for DED diagnosis. This task has proven to be highly challenging, 

as the ocular measures used in DED assessment are generally characterized by lack of 

apparent correlation with each other and with subject-reported symptoms4-6.  

A battery of tests is usually performed to provide a reliable diagnosis7.  

Particularly at early stages of DED this diagnosis can be impeded by poor diagnostic test 

repeatability8, significant portion of false-positive or false-negative rates9, broad range of 
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variability, sensitivity and specificity10 and by the dependence of these measures on 

environmental conditions11 among many other factors. 

Moreover, the commonly applied three-layered model of the tear film, proposed  

by Wolff12 is a considerable simplification of tear film’s true morphology13,14.  

Continual return to this model by researchers has limited the novel perspectives  

on understanding the complexity, dynamics, structure and function of the tear film,  

thus in the last decade only few researchers have aimed to identify the pathophysiological 

changes that occur in the tear film and ocular surface to cause DED14.  

Yet additional challenge lies in the multifactorial nature of the disease. 

Recently, the Tear Film and Ocular Surface Society Dry Eye Workshop II report  

(DEWS II, 2017), has defined DED as a multifactorial disease of the ocular surface 

characterized by a loss of homeostasis of the tear film, and accompanied by ocular 

symptoms, in which tear film instability and hyperosmolarity, ocular surface 

inflammation and damage, and neurosensory abnormalities play etiological role15. 

Regardless of the abovementioned difficulties, this dissertation attempts to identify 

biomarkers that can support DED diagnosis. The hypothesis driving the development of 

a new macro-type biomarker of DED is that the abovementioned loss of homeostasis of 

the tear film, describing the core pathophysiological mechanism of DED, may not only 

be expressed by disrupted tear film morphology, but also by a lack of equilibrium between 

hydrodynamic processes occurring in the tear fluid or tear menisci. 

In a healthy eye, these hydrodynamic phenomena are in a state of equilibrium regulated 

by the lacrimal functional unit (LFU) composed of the ocular surface tissues, tear 
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secreting apparatus and their neural connections. Disruption of any of these 

hydrodynamic processes (e.g., increased evaporation or decreased tear secretion) will 

disturb this subtle balance and can lead to DED. 

Based on the abovementioned observations, the tear clearance rate (TCR) was chosen as 

a potential macro-type biomarker of DED. It is multifactorial in nature;  

it considers all the hydrodynamic phenomena occurring in the tear fluid and was shown 

to perform well in DED diagnosis and classification16.  

A sufficient theoretical background on tear clearance and tear turnover rates is provided 

at the end of Chapter I. Primarily, a point-by-point review of the ocular measures most 

promising as DED biomarkers is given. The order in which these measures are presented 

corresponds with their order of appearance in the recent definition of DED. 

To summarize, this project is a far-reaching work attempting to find a new macro-type 

biomarker that could be objectively and non-invasively measured as an indicator of DED 

progression, specifically at its early stage. Trying to achieve this goal, it proposes new 

metrics of tear dynamics and explores the pathophysiological role of tear dynamics 

temporal characteristics in early DED aetiology and diagnosis. Ultimately, it explores the 

propensity to develop DED and tries to anticipate its evolution by tracking visit-to-visit 

trends of several proposed ocular biomarkers in a population with incipient 

symptomatology.  

The initial hypotheses of this dissertation were that: 

• DED is caused by a loss of homeostasis between the dynamic processes occurring 

in the tear film and menisci. By developing methods for objective, non-invasive 
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assessment of tear fluid dynamics, it will be possible to create new macro-type 

biomarker(s) for supporting early diagnosis of DED; 

• By analysing trends of those several known or newly-developed ocular measures, 

it would be possible to predict the incidence of DED; 

Based on these hypotheses, the study aims to address the following: 

• To understand the role of some ocular biomarkers, particularly tear turnover rate, 

tear meniscus morphology and tear osmolarity in DED aetiology; 

• to develop a non-invasive mode for objective tear film dynamics assessment and 

to propose a new marker of LFU’s integrity, while showing whether these new 

measures: 

o can provide clinically valuable information; 

o can aid predicting DED; 

o correlate with other signs or symptoms of DED. 

In accordance with the aim of this dissertation, it is divided into two major parts: 

Experimental part (Chapter II), where new solutions are tested and new methodologies 

for biomarkers assessment were proposed in a form of three, separate experiments, and 

the second part - the longitudinal study of biomarkers’ trends (Chapter III) - describing 

the longitudinal protocol performed to follow the visit-to-visit biomarkers’ trends and 

their role in supporting DED diagnosis. 

The scope of the thesis is as follows: Chapter I serves as a theoretical background on the 

ocular measures used for DED diagnosis that could potentially be used as biomarkers. 

Techniques described in the experimental chapter (Chapter II, three separate 
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experiments) provide a mode for tracking, analysing and quantifying different aspects of 

tear dynamics. Further, Chapter III provides a comprehensive description of the study 

protocol, methodology and the results obtained over the time-course of the longitudinal 

study of biomarkers’ trends in contact lens wearers. Ocular measures proposed in 

Chapter II were used as additional DED biomarkers in the longitudinal study.  

Finally, Chapter IV contains a detailed, comprehensive discussion of all the experiments 

performed and the biomarkers’ trends reported in the longitudinal study.
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1.1. Tear film instability 

The tear film instability is defined as a major factor in DED aetiology15.  Tear film break-

up time (TBUT) - a temporal, indirect measure of tear film stability is the most commonly 

employed method for tear instability and tear film evaluation used in clinical practice17. 

TBUT is defined as the time interval between the last complete blink and the appearance 

of the first break in the tear film18. Fluorescein can be instilled to enhance visibility of 

break-ups, however, the dye may reduce tear film stability leading to decrease of 

measurements’ accuracy19,20. For this reason, this method of assessment was not 

recommended as the first-choice method in DEWS II report.  

Following the standardized methodology of tear film break-up time estimation  

is crucial. Generally, subject is asked to blink naturally three times and then to cease 

blinking until instructed. The reference value for DED diagnosis when fluorescein  

is used (FBUT) ranges from a cut-off time of less than 10 seconds21,22 to less than five 

seconds when smaller, more controlled volumes of dye are instilled20. Mild and moderate 

DED subjects have a broad range of FBUT values and the diagnostic value of FBUT is 

less certain for these DED sufferers8. Despite the drawbacks of using fluorescein to assess 

tear film stability, inherent large variability of break-up times among subjects23,24 and its 

dependence on environmental conditions, FBUT still remains one of the most commonly 

used diagnostic tests for DED in clinical practice25. Many different approaches have been 

proposed to improve repeatability of TBUT estimation, including taking multiple 

readings and averaging or selecting a subset of values26,27, minimizing the amount of 

instilled fluorescein volume28,29 or fully eliminating the use of fluorescein.  

The most common non-invasive approach is to project different patterns onto the tear film 
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surface and follow their distortion in time after the last natural blink30-33.  

These disturbances are related to changes in tear film surface quality34,35, pre-lens tear 

film quality36,37, tear film stability38 and tear film break-ups39. Based on DEWS II report, 

the non-invasive technique (NIBUT) for tear stability assessment is considered preferable 

to FBUT20,40. Whenever possible, automated measurements are recommended25 and the 

NIBUT cut-off value of ≤ 10s has been reported to be indicative of DED. 

NIBUT measurements have become more popular in both clinical practice and research, 

so that automated assessment of tear film stability is now possible. For example, the 

Keratograph 5M (K5M; Oculus Optikgerate Gmbh, Wetzlar, Germany), will be used in 

this project to provide objective and automatized method of tear stability assessment. 

It has three main advantages in assessing tear film break-up: the method does not require 

fluorescein instillation, it is almost fully automatic and utilizes infrared radiation, which 

minimizes the effect of reflex tearing and light scattering. K5M detects and maps 

locations of tear breakup over time41,42 and can automatically detect and localize breaks 

and disturbances in the Placido disk pattern projected on the tear film surface.  

This method of assessment is objective, non-invasive and clinically applicable. 

The link between hyperosmolarity and tear instability was reported, suggesting that 

transient increases in tear osmolarity may be observed under conditions of tear 

instability43. Increases in evaporation rates, resulting from prolonged interblink periods 

or as a result of environmental factors, can drive tear film break-up, and predict the 

increases in tear osmolarity at the centre of areas of rupture of the tear film44. 
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1.2. Tear hyperosmolarity 

Tear osmolarity has been described as a single clinical measure giving insight into  

the balance between tear production, evaporation, drainage and absorption45.  

Several studies support its use as a metric to diagnose and classify DED14,25,46.  

Tear osmolarity was reported as the least variable of all the common signs of DED across 

a clinically relevant timeframe and was the one to reduce its variation upon application 

of effective therapy8,10. 

Tear osmolarity refers to the amount of osmotically active particles in tears  

and is defined as the number of osmoles per litre of solution (mOsm/L)47.  

It is determined mostly by the electrolytes of the aqueous component of tears and less 

significantly by proteins and sugars48. Increased tear osmolarity (hyperosmolarity) is one 

of the core pathophysiological mechanisms of DED9,15,49-51, that can cause damage of the 

ocular surface or initiate a chain of inflammatory responses leading to ocular surface  

damage49,52, thus it was included in DED definition. Tear hyperosmolarity leads to 

increase of interferon gamma in the tear film, in the absence of corresponding increases 

of other Th1, Th2 and Th17 cytokines, which can induce epithelial cell apoptosis53.  

Its clinical evaluation was facilitated after introducing a chip-based osmometer 

(TearLab® Osmolarity System, TearLab Corp, San Diego, CA, USA)54, which allows 

collection of a relatively small sample of 50nL from the inferior tear meniscus and 

automatic determination of tear osmolarity, based on the sample’s electrical impedance. 

Before the introduction of an impedance-based osmometry, the method required 

relatively large volume of tears to be collected from the inferior tear meniscus and 

specialized laboratory osmometer to perform the analysis. Because of their invasiveness, 
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the difficulty to properly handle tear samples, the tear osmolarity measurements were 

rarely performed in a clinical environment. Its popularity as a standard clinical test for 

DED has grown significantly over the last decade. 

The presumed difference in osmolarity between the tear film and tear menisci is fairly 

small, but it is predicted to increase for DED subjects, particularly when the evaporation 

rate increases together with reduced tear meniscus55.  Tear osmolarity seems not to be 

related to aging46,56-58, race57,59,60 or hormonal fluctuation in women with a regular 

menstrual cycle61,62. However, data on the effect of gender on tear osmolarity46,57,63,64 and 

its diurnal variations56,59,65-67 remain equivocal. The average tear osmolarity among 

healthy adults was estimated to be around 302 ± 9.7 mOsm/L25,46,61,63,65,66,68-72. Jacobi et 

al.71 using TearLab® osmometer reported values of around 301 mOsm/L, ranging from 

298 to 304 mOsm/L. Tear osmolarity generally increases in DED and correlates with its 

severity score9,14, from normal (302.2 ± 8.3 mOsm/L), through mild-to-moderate (315.0 

± 11.4 mOsm/L) to severe cases (336.4 ± 22.3 mOsm/L). Tear osmolarity of 308 mOsm/L 

is the most sensitive threshold to distinguish normal from mild/moderate forms of DED 

and 315 mOsm/L is the most specific cut-off value9,46,71. 

Additionally, the increasing inter-eye difference in osmolarity is considered an indication 

for the loss of tear film homeostasis in DED10,46. DED subjects report higher inter-eye 

variations of tear osmolarity compared to control groups46,49,71,73. In normal subjects the 

inter-eye variation of tear osmolarity is estimated to be around 6.9 ± 5.9 mOsm/L.  

An inter-eye difference in tear osmolarity was reported to decrease in response to 

successful DED treatment8. Inter-eye and intra-eye differences in tear osmolarity are the 
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additional factors aiding DED diagnosis as markers of the tear film’s ability to maintain 

its homeostasis.  

All these factors and characteristics prove great potential of tear osmolarity as a biomarker 

of DED. It seems to be utterly justified to include this marker in the study protocol and 

test its trends in subjects with incipient DED symptomatology and verify whether it can 

support diagnosis. However, some studies suggest high variability of the readings coming 

from mild/moderate DED or healthy subjects74. A relatively large overlap of values 

coming from such subjects is observed, which may ultimately lead to redefinition of the 

DED osmolarity thresholds. The output may depend on the sampling method or on the 

instrument67. Moreover, the sample’s electrical impedance is temperature-dependent, 

thus impedance-based osmometry can be biased if the temperature is not controlled.   

This measure, assessed with the impedance-based osmometer was added to the protocol 

of the longitudinal study of biomarkers’ trends in Chapter III of this dissertation and 

was compared with the ocular measures assessed with the proposed experimental 

techniques, with emphasis put on its potential correlation with tear volume, tear clearance 

and tear stability.  
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1.3. Ocular surface inflammation 

Ocular surface inflammation is included in the definition of DED. The quantifiers of 

ocular inflammation, recognized in a research settings, are not specific for DED and the 

protein level method and multiplex cytokine systems analysis, recently more commonly 

used, bare multiple technical difficulties, that impede their clinical application75.  

Currently, most practitioners do not include tests for inflammation as a clinical marker of 

DED. Development of more clinically utile techniques to assess tear film protein level is 

beyond the scope of this dissertation. The most commonly measured clinical sign that is 

suggestive of ocular surface inflammation and could be easily assessed in a clinical setting 

is the severity of conjunctival redness76-78. It is a consistent sign of conjunctival vascular 

dilatation and reactive change to pathological stimuli. It can occur in any disease with 

inflammation, including DED. It can be observed and graded during slit-lamp 

examination.  

In this dissertation, an objective measure of ocular redness was used. Bulbar and limbal 

redness were measured based on images automatically scored with K5M. The ocular 

redness index within the K5M software makes measuring bulbar redness easy to perform 

in a clinical setting and provides additional measure of ocular surface inflammation78.  
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1.4. Ocular surface damage  

Other ocular dysfunction that has been identified as one of the core ocular sings of DED 

and was included in its definition, is the ocular surface damage. Punctate staining of the 

ocular surface is characteristic to many ocular diseases and its distribution, pattern and 

severity may provide a clue on the aetiology of these diseases79. Fluorescein staining 

occurs whenever viable cells experience a compromise, e.g., a disruption in superficial 

cell tight junctions or defective glycocalyx79,80, while lissamine green stains epithelial 

cells only if the cell membrane is damaged81-83. Sequential staining or using more than 

one paper strip increases the likelihood of observing ocular surface damage in a form of 

ocular surface staining84,85, thus, several studies using mixtures of two dyes for 

simultaneous staining of the cornea and conjunctiva have been proposed84,86,87.  

The mixture of 2% fluorescein and 1% lissamine green found to be optimal in terms of 

comfort and staining efficacy86.  

A battery of grading systems is used for the recording of staining severity51,88-92.  

In this dissertation, the Efron’s scale was used to score staining of the cornea and 

conjunctiva93 and Korb’s scale94,95 was used to grade the level of lid wiper epitheliopathy 

(LWE). Corneal and conjunctival staining have been shown to be informative markers of 

the disease in severe manifestation of DED, however they showed poor correlation with 

the disease severity in mild/moderate cases9. In this dissertation, grading of the corneal 

and conjunctival staining was used mostly for sanity check, rather than as a potential 

biomarker. In order to disengage from the study the subjects, who had experienced 

adverse effects of contact lens wear, it was necessary to use some screening criteria which 

would effectively highlight corneal, conjunctival and eyelid tissue damage84,87,96,97. 
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The most recommended method, which was also used in this dissertation, is to combine 

fluorescein and lissamine green-based staining with the use of moistened florets. 

1.5. Tear turnover rate 

As hypothesized in the introduction, the loss of homeostasis of the tear film, which 

describes the fundamental process in DED pathogenesis, may be expressed by a lack of 

equilibrium between hydrodynamic processes occurring in the tear fluid.  

Tear turnover has been described as a global physiological measure of the integrity of the 

lacrimal system and tear exchange on the ocular surface45,98,99. The tear turnover rate 

(TTR), a temporal measure of tear turnover is proportional to the summation of effects of 

tear secretion by the glands (denoted by S), tear fluid transudation through the conjunctiva 

(C), tear drainage through the nasolacrimal duct (D), tear evaporation (E) and 

conjunctival (PC) and corneal (PK) permeability to tears, hence it can be described as: 

 TTR ~ (S +  C) – (D +  E +  PC +  PK) (1) 

Where ‘~’ denotes proportionality. In normal circumstances D > E > PC > PK. 

One can see that TTR considers most of the hydrodynamic processes that occur in the 

tear fluid, thus it is multifactorial in nature. Balance between components constituting 

equation (1) may be disrupted in a variety of ways, leading to loss of tear film’s 

homeostasis. DED can manifest itself, e.g. as an increase in tear film evaporation, 

decrease in aqueous tear production or as an increase in the ocular surface permeability 

to various substances by compromised surface epithelium. Moreover, DED is sometimes 

diagnosed as a mixture of both evaporative and aqueous deficient in aetiology or can have 

iatrogenic or neuropathic nature. Thus, it was hypothesized that the ocular measure that 
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considers all hydrodynamic processes occurring in the tear fluid may prove to be a good 

singular macro-type biomarker of DED. The delay in tear turnover is used as a sign of 

impaired LFU’s integrity. The marker is multifactorial and has been shown to correlate 

with many DED-related ocular pathologies. Figure 1 schematizes the literature review on 

the factors associated with delayed tear turnover. 

 

Figure 1. The overview of factors associated with decreased tear turnover or tear clearance 

TTR has been extensively studied after the development of commercially available 

fluorophotometer in the 80’s and has shown its potential in DED diagnosis. However, 

because of its sophistication, the most popular technique of TTR assessment - 

fluorophotometry, was mostly confined to research settings and was overlooked  

as a clinical measure of DED16. In addition, simple alternatives to TTR, developed to be 
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used in clinical settings, are, at best, semi-quantitative, qualitative or subjective and do 

not allow observation of temporal tear film characteristics.  

In Chapter II, two clinically applicable alternatives for TTR estimation were proposed.  

As the motivation behind development of these two techniques cannot be fully 

appreciated without an introduction of the state-of-the-art methodologies and their 

limitations, the paragraphs below are to summarize the literature review on tear turnover 

assessment and quantification. 

Originally, tear turnover was described as a physiological measure of the integrity of the 

lacrimal system45,98,99. Tear clearance rate (TCR) refers to the same phenomena observed 

by other means than fluorophotometry. TTR is described in literature as an indirect 

measure of DED-associated ocular surface irritation100-103 and is reduced in symptomatic 

DED subjects45,99,104-106. It correlates with the severity of ocular epithelial disease 

assessed with fluorescein staining102,103,107 rather than with the reduced aqueous tear 

production assessed with Schirmer test107. Tear clearance delay was associated with 

Meibomian glands dysfunction (MGD)102,103 and ocular surface hypoesthesia98,101-103,108-

111. Additionally, age and age-related factors, e.g. conjunctivochalasis, lid laxity, 

functional obstruction to tear flow and blink abnormalities may all impair tear 

turnover101,102,112-114, however, some studies showed no relation of TTR with age115-117. 

Reduced tear clearance promotes ocular surface inflammation101, as it leads to 

accumulation of cytokine interleukin-1α and the activity of matrix metalloproteinase and 

gelatinase B in tears101-103,108,109,118. TCR was shown to improve with topical 

methylprednisolone treatment, together with decrease in ocular irritation symptoms, in 

conjunctival redness and the level of surface epithelial disease101,102. Additionally, delay 
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in tear turnover may lead to prolonged exposure to topical medications and their 

preservatives (like benzalkonium chloride) on the ocular surface compared with healthy 

subjects, therefore the affected individuals have a higher chance to develop ocular surface 

medication toxicity99,101,102,119. Tear clearance is also reduced in subjects with contact lens 

associated papillary conjunctivitis120. 

Delayed tear clearance could become one of the best measures for identifying patients 

with tear film disorders that respond to anti-inflammatory therapy98. TTR values reported 

for DED groups are two to five times lower than the ones reported for controls105,117. 

The meta-analysis conducted by Tomlinson et al. has shown a 50% reduction in TTR in 

aqueous deficient DED and 25% reduction in evaporative manifestation of DED with 

respect to healthy subjects121, thus TTR may potentially be used to aid distinguishing 

between DED subtypes68. Large variability of the reported results can be due to different 

groups of subjects and different diagnostic criteria used to classify them10. 

Reported group means of TTRs have also relatively large reported standard deviations, 

suggesting large variability among subjects. 

Generally, TTR and TCR are estimated based on direct or indirect observation  

of the elution of dye in the tear fluid over time post-instillation and with the production 

and elimination of new tear fluid. The general approach is to follow the elution of a tracer 

molecule from the tear film or tear menisci with the use of electromagnetic spectrum 

detectors45,99,105,116,117,122-130. This family of methods include: the most popular – 

fluorophotometry and lacrimal gamma scintigraphy (or scintillography)45,131-136.  

TTR assessment with fluorophotometry was described as one of the additional measures 

that could be used to diagnose and monitor DED and addressed the need to develop 
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cheaper, shorter and simpler methodologies for its quantification. Since the publication 

of DEWS I, no studies have been conducted to address this issue. Thus, fluorophotometry 

is still considered the gold standard in TTR and tear flow assessment. 

In Figure 2 a schematic representation of a basic fluorophotometer is shown.  

 

Figure 2. Schematic diagram of a basic fluorophotometer for in vivo assessment of TTR16 

Fluorophotometer utilizes a beam of light that passes through an excitation filter 

(transmittance: 430-490 nm) to excite the transparent layers of the eye. The light emitted 

from these ocular tissues passes through the barrier filter (transmittance: 510-630 nm) 

and the level of fluorescence is measured by a photomultiplier, where the excitation and 

emission beams reach, passing through the same lens system, coming from the area called 

the focal diamond. The anterior segment attachment must be used to reach the area of 

interest. This is possible because the focal diamond can be moved along the optical axis 

of the eye, by moving the lens system with a stepped motor. Disodium fluorescein is the 

most commonly used fluorophore in TTR assessment. It is a hydrophilic molecule 

characterised by low topical toxicity and with excitation wavelengths of 475490 nm and 

emission of 510520 nm99.  
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Studies report several attempts to standardize the procedure of TTR assessment and the 

development of a custom-written software for data processing116. The standardized 

procedure lasts up to 30 minutes110,116 during which fluorophotometric scans are 

performed every two minutes with a commercially available fluorophotometer designed 

for in vivo analysis (Fluorotron Master, Coherent Radiation Inc. Mountain View, CA, 

USA). This is performed following an instillation of 1µL of 2% sodium fluorescein into 

the subject’s conjunctival sac with a micropipette. There is a variation among studies in 

terms of used fluorescein volume (from 1 to 5 µL), fluorescein concentration of the 

solution (up to 10%), sampling rate of the device and the duration of the measuring part 

of the procedure (10 – 30 min). In vivo fluorophotometric measurements can be 

performed on the tear meniscus or pre-corneal tear film, however they are always 

restricted to a small area within the focal diamond. Continuous fluorophotometric 

measurements have also been performed122.  

Kinetic studies of TTR with fluorophotometry illustrate the biphasic nature of tear 

dynamics45,99,116,122,137,138. Two phases of tear turnover can be distinguished based on the 

observation of fluorescence intensity decay in the tear film after topical instillation.  

An incipient, rapid phase of tear clearance is presumed to be caused by reflex lacrimation 

in response to topical instillation45,99,101,112,136,138. This ‘reflex’ phase lasts approximately 

five minutes post-instillation and varies from subject to subject. It is characterized by a 

rapid decay in fluorescence intensity over time. The scientific observations related to this 

phenomenon suggest its ‘reflex’ nature. The rate of this rapid phase is correlated with 

subjective signs of irritation at the time of instillation138 and can be suppressed with 

anesthetics101,112. Its level is also highly dependent on blinking rate112,122,136,139. 
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Elderly subjects, especially women, tend to lose this initial phase of tear clearance and 

were reported to have generally lower TTRs114,138,140.  

The second, slower phase of tear turnover presumably represents basal conditions of 

secretion and is used to calculate TTR99,116,123. This basal part of the fluorescence intensity 

curve is fitted with an appropriate software116 and the decay in fluorescence is calculated 

from the logarithm of the curve obtained from the formula below: 

 TTR(T0) =  
100 [CT(TO)− CT(TO+1)]

CT(TO)
 [

%

Min
], (2) 

where CT(T) Represents the fluorescein concentration in the tear film at time T (min), 

while T0 represents any given moment after instillation. Assuming a monophasic decay 

of fluorescence after initial five minutes with a decay time constant β(min-1), the 

fluorescein concentration can be described with the following formula: 

 CT(T) =  CT(T0)eΒt  [
Ng

Ml
].  (3) 

The tear turnover rate TTR(T0), which is described as percentage drop in fluorescein 

intensity decay per minute is then described as: 

 TTR(T0) =  100 ( 1 − eΒt) [
%

min
]. (4) 

Table 1 provides several TTRs assessed by means of in vivo fluorophotometry that were 

reported in literature. 
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Table 1. Group values (means ± standard deviations) of tear turnover rates measured in vivo with 

fluorophotometry, reported in literature 

Year Report Type (number of subjects) 
Reported TTR  

(Mean ± SD) 

2001 Tomlinson et al.141 Normal (20) 21.4 ± 11.1 

2001 Tomlinson et al.62 Normal (9) 16.6 ± 6.7 

2001 Sorbara et al.104 
Normal (10) 

Symptomatic DED (10) 

11.85 ± 3.31 

4.89 ± 2.75 

2001 Pearce et al.126 
Normal (56) 

Normal (49) 

12.65 ± 6.64 

17.78 ± 6.34  

(New method) 

2002 Keijser et al.142 Normal (16) 14.3 ± 6.5 

2003 Mcculley et al.143 
Normal (22) 

DED (35) 

16.3 ± 7.3 

13.5 ± 9.3 

2004 Sorbara et al.104 
Symptomatic DED (10) 

Asymptomatic DED (10) 

4.89 ± 2.74 

11.85 ± 3.31 

2005 Khanal, Tomlinson45 
DED (8) 

MGD (6) 

8 ± 3 

11 ± 6 

2008 Mccann et al.144 Normal (15) 20.6 ± 9.3 

2009 

Tomlinson et al.121 

 (Meta-analysis) 

 

Normal (187) 

DED (197) 

Aqueous deficient DE (83) 

Evaporative DED (94) 

16.19 ± 5.1 

9.26 ± 5.08 

7.71 ± 1.02 

11.95 ± 4.25 

2010 Khanal et al.68 

Normal 

Aqueous deficient DED 

Evaporative DED 

15.24 ± 5.69 

5.74 ± 3.69 

12.61 ± 7.56 

DED – Dry eye disease; MGD – Meibomian Gland Dysfunction; SD - standard deviation.  

Source: Garaszczuk et al.16 
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Large variations in tear film production in DED subjects and differences between DED 

and normal subjects in basal tear volume145,146 have been reported. The tear turnover rate 

was found to increase suddenly due to a variety of stimuli like coughing, sneezing, wind 

or even psychological factors like an effort to keep the eyes open138 or variations in 

blinking rate in some individuals123. Additionally, some researchers suggest that TTR 

follows a circadian rhythm. This claim is strongly supported by the fact that TTR values 

reported in the morning are significantly higher compared to those reported later 

throughout the day66,122,124,147.  

Methods used to asses TTR and TCR have their well-studied limitations. Golden standard 

fluorophotometry-based method requires considerable skill and extensive period of time 

to obtain results (from 10 up to 30 minutes116,126). Methodologies that allow dynamic, 

quantitative measurements require expensive, specialized equipment. Lacrimal 

scintigraphy provides a visual evidence for tear drainage; however, it is a technique that 

is invasive and relatively expensive. Moreover, it requires radioactive substances to be 

used. Moreover, the focal diamond of a basic fluorophotometer is 50 µm wide, 1.9 mm 

high and around 0.5 mm deep. Its depth approximates tear film and corneal thickness, 

making it difficult to determine whether the readings are coming from the tear film or the 

substantial portion of corneal tissue. This limits the spatial resolution of the device. In 

some individuals, especially DED subjects, the precorneal tear film may break-up rapidly, 

exposing the cornea. Additionally, compromised corneal epithelium of these subjects can 

be excessively permeable to sodium fluorescein, increasing inhibited corneal 

fluorescence over time99. Hence, it is sometimes desirable to perform the assessment of 

TTR on the collected tear samples (in vitro)66,102,103,109,110.  
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Fluorescein tear clearance tests (FCTs) are simpler and less time-consuming alternatives 

to fluorophotometry and scintigraphy. They were developed to facilitate clinical 

application of TCR assessment. FCT rates or scores can be estimated based on the 

observation of how quickly the dye appears in the nasal cavity148,149, based on direct 

visualization of fluorescein drainage with an endoscope150 or by comparing the colour of 

the dye with visual semi-quantitative scale151-153. Until recently, only few FCTs were 

developed98,100,101,107,109,110,123,154. Two main limitations of these methods are evident: 

they are most commonly based on subjective assessment and fail to follow dynamic 

changes occurring in the tear fluid. 

Corneal permeability to sodium fluorescein, especially in subjects with compromised 

corneal epithelium may influence fluorophotometric assessment of TTR99,122,130,137,155-157. 

After 30-40 minutes post instillation the corneal fluorescence starts to influence the 

results and the readings show significantly lower rate of decay than the one characteristic 

to basal tear flow99,122,137. To address this limitation, Joshi et al. Reported a novel 

technique for sequential measurements of TTR and corneal epithelial permeability to 

fluorescein155. They have determined that 2 µL of 0.75% fluorescein concentration 

provides the most reproducible estimates. Studies suggest that corneal permeability to 

fluorescein decreases in DED subjects undergoing treatment with unpreserved artificial 

tears, because of the corneal epithelium restoration156-158. This effect is counteracted by 

preservatives157-159. Additionally, the inherent auto-fluorescence of the cornea must be 

considered by subtracting its rate from the measured fluorescence intensity. Corneal auto-

fluorescence was shown to increase with age160.  
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Attempts have been made to improve the precision and speed of basal TTR assessment.  

Pearce et al. were investigating a minimum time required for TTR estimation, while using 

their improved automatic fluorophotometry-based method. This technique incorporates 

six measurements in a total of 10 minutes to obtain reliable TTR estimation126. 

Also, the time necessary to take a single measurement may contribute to inaccurate TTR 

estimations and reflex tearing. Scans of the tear film, anterior eye, anterior chamber and 

crystalline lens last approximately 20 seconds, however research suggests that this time 

can be shortened to 8 seconds161-163 for TTR measurements. Fluorophotometric scans 

must be made at a consistent and fixed time after the blink. On the other hand,  

 fixed blinking rate would ultimately lead to errors in TTR estimation, since the natural 

blinks differ in characteristic from the forced ones164,165. Doane showed that a significant 

portion of the Bell’s movement can be observed during a forced blink, while during 

normal, spontaneous bink no rotation of the globe occurs164. The voluntary blinks are 

usually more complete and more uniform in quality than the spontaneous ones166. Due to 

these factors, the TTR assessment has been mostly confined to research settings. 

Although simpler alternatives developed for clinical application are inexpensive and less 

time-consuming, they are not direct, often subjective153 and neither they allow following 

temporal tear film characteristics nor quantify fluorescein concentration. It was also 

reported that in more than 20% of normal subjects the topically instilled dye cannot be 

recovered in the nasal cavity151. Maurice167 and Doane168 showed that low volumes of 

tears drawn into the drainage system during normal, non-reflex tear exchange can be 

absorbed by mucosal surface of the nasolacrimal duct.  
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Summarizing, new studies show that there is still room for improvement in the field of 

TTR assessment and the need to develop more clinically applicable, objective and less 

time-consuming methodologies. New approaches that were proposed in Chapter II 

include measuring tear meniscus morphology dynamics with OCT169-171 and the analysis 

of tear exchange by means of fluorescein profilometry172. 

1.6. Tear meniscus morphology 

The major part of the tear fluid is contained within the two menisci173, therefore they 

serve as reservoirs of tears174. Tear menisci are formed by the tears lying at the junctions  

of the bulbar conjunctiva and the margins of both the upper and lower eyelids.  

The quantitative assessment of tear menisci (meniscometry) is used for tear volume 

estimation as the most preferred method. Inferior tear meniscus height (TMH) is used as 

a marker of muco-aqueous tear volume175,176 and was shown to be linearly proportional 

to the lacrimal secretory rate138. Meniscometry have a wide range of applications176-179 

and can be used to aid DED diagnosis176,180-182. The average normal TMH ranges from 

about 100 to 600 µm with the mean value of approximately 250 µm174,180,183,184.  

Both superior and inferior menisci were estimated to have roughly equal size under 

normal conditions174, however in some circumstances, e.g. after topical instillation the 

inferior TMH is significantly larger than the superior TMH185. 

It is worth noting, that none of the geometrical parameters describing the tear menisci 

corresponds to the central pre-corneal tear film thickness174. It is well established, that 

shortly after each blink, the pre-corneal tear film becomes physically isolated from the 

tear menisci, such that the diffusion between these two tear compartments does not 
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occur186,187. This can be observed as a black line at the ocular margins in fluorescein-

stained tears, as shown in the Figure 3. 

 

Figure 3. Black-line formation between tear menisci and tear film in fluorescein-stained tears.  

Image obtained for one of the subjects with K5M. Arrows delineate the location of the thin black lines 

separating the tear film from the tear menisci 

Meniscometry can be performed with the use of a slit-lamp biomicroscopy188,189 or with 

OCT177,185,190,191. The simplest, en face method of tear meniscus visualization is by far the 

most commonly applied in clinical setting. Meniscometry measures correlate with other 

DED tests and have relatively good accuracy180,192. However, the slit lamp approach is 

operator-dependent and has important limitations related to rapid changes of tear 

meniscus parameters after the blink. Additionally, this method is characterized by a poor 

inter-visit repeatability26. Additionally, meniscometry can be influenced by locus along 

the lid margin, time of day, temperature, humidity, air speed, and illumination193-195.  

The OCT-based assessment of the tear meniscus has been extensively studied in the last 

decade176,177,190,196-212 with the upper and lower TMH, tear meniscus area (TMA), tear 



Chapter I. Theoretical background 

74 

meniscus radius of curvature and tear meniscus depth (TMD) being the most commonly 

studied parameters. Spectral-domain OCT-based meniscometry has shown good intra-

observer and inter-observer repeatability201,206,210, superior to the ones characteristic to 

time-domain OCT-based meniscometry202,212. OCT ensures relatively good repeatability 

and allows observation of dynamic changes of tear meniscus morphology during 

blinking185 and after topical instillation184,213-215. The OCT-based measurements are 

instrument-dependent177,202, and can be influenced by conjunctivochalasis, disorders of 

lid margin congruity, and apposition between the lid and ocular surface190,216.  

The main advantage of the OCT-based meniscometry is that it provides a non-invasive, 

rapid, simple and more in-depth visualization of both superior and inferior tear 

menisci177,185,190,191. However, the analysis of the acquired images may be complex, time-

consuming and operator-dependent210. Thus, the software allowing dynamic image 

analysis is needed to minimize interfering factors related to eye movements.  

Such software was developed by Bartuzel et al.200 in MATBLAB and was used in this 

dissertation to study the OCT-based meniscometry (Experiment 2). Results of the 

experiments showing the performance of the implemented algorithm are reported in 

Chapter II. Additionally, this algorithm was used to calculate TMH, TMD, TMA and 

TCR in the longitudinal study of biomarkers’ trends.
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CHAPTER II. NEWLY DEVELOPED EXPERIMENTAL 

TECHNIQUES 

Following chapter describes the experimental techniques that can be used to follow, analyse 

and quantify different aspects of tear dynamics. Temporal measures of these dynamic 

changes were proposed as new markers of LFUs integrity and tear exchange on the ocular 

surface and could become the new macro-type biomarkers to support DED diagnosis. 

Considering the potential applicability of TTR and TCR measurements in DED diagnosis, 

summarized in Chapter I, it is of interest to develop clinically applicable methodologies 

for their quantification. Chapter II proposes such new methods and algorithms in a form 

of three separate experiments.  



Chapter II. Newly developed experimental techniques 

76 

EXPERIMENT 1. QUALITATIVE ASSESSMENT OF TEAR EXCHANGE 

ON THE OCULAR SURFACE BY MEANS OF FLUORESCEIN 

PROFILOMETRY 

The main goal of this experiment was to introduce new, clinically applicable method for 

TTR estimation by means of corneo-scleral fluorescein profilometry. The principal focus 

was put on making the method objective and free from aforementioned limitations of other 

devices used for TTR assessment. The methodology described below was inspired by 

fluorophotometry, however, as it differs in terms of the utilized device and temporal 

characteristics of the observed phenomena, phrase TTR was substituted with the Tear 

Fluorescein Washout Rate (TFWR) when referring to the results of profilometry-based 

technique analysis. The fluorescein profilometer - Eye Surface Profiler (ESP, Eaglet Eye 

B.V., The Netherlands) was developed for topographical measurements of the whole 

exposed corneo-scleral surface. This device projects two grids with blue light at two 

different angles to create a diffusely emitted pattern on the ocular surface. Fluorescein must 

be added to the tear film to visualise this pattern. Radiation emitted by the excited 

fluorescent marker passes through a built-in yellow filter and is subsequently captured by 

a fast CMOS camera. A single image of the diffused pattern obtained with the ESP for one 

of the subjects is shown in Figure 4. Unlike the standard methodologies for TTR analysis, 

fluorescein profilometry is not limited to a small portion of the ocular surface and allows 

following tear fluorescence decay on the entire exposed ocular surface. Additionally, it 

seems to be unaffected by the corneal permeability to sodium fluorescein, as the diffused 

image cannot be observed without fluorescein being instilled or after being washed away 

from the ocular surface. 
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Figure 4. An exemplary image of the diffused pattern acquired with ESP for one of the subjects 

E1.1. Methodology 

Study adhered to the tenets of the Declaration of Helsinki. Informed consent was obtained 

from all participants after the nature and possible consequences of the study were 

explained. Young, healthy subjects were recruited. Exclusion criteria were consistent with 

the study reported in Chapter III, including signs and symptoms of severe eye dryness or 

inflammation, recovery after general or ocular surgery, refractive procedure or any 

observable tear flow impairment, systemic disease and the use of medications known to 

influence the ocular surface or tear film quality. Subjects were advised to cease instilling 

any topical solutions at least a day and refrain from wearing their habitual contact lenses at 

least three days before commencing the study. For precaution, to minimize the risk 

connected with the use of vital dyes, all subject prone to any type of allergic reaction or 

with reported adverse reaction to topically or intravenously administered fluorescein were 

excluded from participation in the experiments. 

Forty subjects (24F/16M) aged (mean ± standard deviation) 32 ± 14 y/o (ranged from 21 

to 70 y/o) were chosen from the group of volunteers. The study protocol consisted of the 

review of medical history, McMonnies questionnaire (McMQ)217 (see Appendix 1) and slit 
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lamp examination, including the assessment of eyelids, ocular adnexa and anterior eye 

surface for signs of irritation, tear flow impairment and lid-parallel conjunctival folds, 

TMH, blinking rate estimation and FBUT. The image intensity video recording by means 

of fluorescein profilometry was performed before FBUT estimation and was followed by a 

10-minute break. The temperature and relative humidity in the laboratory were stable and 

monitored with a thermo-hygrometry device (C3121, Comet, Czech Republic).  

Data on the circadian rhythm of TTR are equivocal, however following the evidence that 

tear exchange rate may vary with the daytime124, measurements were performed in the 

morning. 

E1.2. Image acquisition and data analysis 

Only one out of two projecting ESP diodes was used in order to minimize the effect of 

reflex tearing caused by excessive radiation218. ESP was used in an unconventional way to 

observe dynamic changes occurring in the tear film on the exposed ocular surface after 

fluorescein instillation. Instead of acquiring an single image, as the topographical 

measurement usually requires, the projected pattern was recorded in a series of images 

captured with a fast CMOS camera. The best measurement practice to assess corneo-scleral 

topography with the ESP has been previously described218. Summarizing, for the device to 

deliver accurate and repeatable measurements of the anterior eye surface, two important 

factors must be considered: 

• the instrument must be situated at the optimal acquisition position with fixation 

spots and illumination spots aligned;  



Chapter II. Newly developed experimental techniques 

79 

• the anterior eye surface must be uniformly covered with a mixture of tear film and 

fluorescein. 

The optimal position for ESP image acquisition corresponds to the near (to the operator) 

end of the instrument’s depth of focus. ESP is equipped with three focus aiding tools to 

guide the operator to this location. Thus, the measuring procedure to capture the intensity 

decay video consists of: 

• positioning the subjects and adjusting the chinrest, 

• aligning the instrument’s centration cross with the geometrical centre of the cornea 

with the help of the centration tool, 

• bringing the instrument to the range of depth of focus with the help of the optical 

focusing tool, 

• setting the instrument at the near end of the depth of focus range, 

• blocking the instrument in the obtained position, to prevent defocus, 

• instilling fluorescein without subjects moving their head away from the device,  

(Subject should be asked to blink gently three times to evenly distribute the dye 

and fixate on a target cross until advised otherwise), 

• if necessary, small adjustments of focus can be performed post-instillation, 

• subsequently, the blue light is being turned on, recording started and continued 

until the projected image is barely visible in the tear film. 

The acquisition is performed in mesopic conditions for increased image contrast. 

While using ESP to acquire images of the diffused pattern, care should be taken to instil 

enough fluorescein to achieve good contrast of the diffused image. It is also crucial to avoid 

the nonconfluent distribution of the dye in the tear film, because it may distort the pattern, 
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ultimately leading to errors in TFWR estimation. An exemplary image of the proper 

distribution pattern, acquired for one of the subjects was displayed in the Figure 5A.  

On the other hand, the eye should not be flooded with fluid and care should be taken to not 

to induce reflex lacrimation, as this will lead to tear pooling and uneven distribution of dye 

in the tear film, as shown in the Figure 5B. 

 

 Figure 5. Exemplary images acquired with ESP with A: well distributed fluorescent dye on the ocular 

surface or B: with visible tear pooling and the flow of tears observed after blink (marked with blue arrows) 

As the fluorescein solution designed for topical instillation is poorly accessible in some 

European countries, including Spain and Poland, the method of fluorescein application with 

a sterile fluorescein strip was employed in this experiment. Considering this, care should 

be taken to maintain the amount of fluid as constant as possible and to maintain the method 

of application standardized. Without standardization, this experimental method cannot be 

considered quantitative. The proposed methodology would be the one adapted for FBUT 

estimation, where several measurements are performed, and the results are averaged to 

obtain a reliable estimate. 

A drop of lubricating ophthalmic solution of 0.1% sodium hyaluronate (Hylo-Parin, Ursa 

Pharm, Germany) was applied from a dedicated container. This drop was used to moisten 
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the fluorescein sodium 1 mg ophthalmic sterile strips (Bioglo, HUB Pharmaceuticals, CA).  

The strip was applied lightly to subjects’ lower bulbar conjunctiva. The container allows 

the application of repeatable volume of the ophthalmic solution (3 µL) with each 

instillation. The method of fluorescein application with the strip provides superior sterility 

over the topically instilled solutions. 

A drop of fluid was dropped under the force of gravity, without additional shaking of the 

container or the strip. This way the fluorescein was applied in the most standardized manner 

possible in this laboratory setting, so that repeatability of the measurements was 

maximized. The diffused image intensity is proportional to the amount of fluorescent dye 

in the tear film. The projection is visible for as long as the fluorescein is present in the 

subjects’ tear film. While subjects were instructed to focus on the instrument’s fixating 

cross and to blink freely, the recording of the pattern through an in-built yellow filter with 

a CMOS camera allowed observation of the fluorescein image intensity decay. As can be 

seen in the Figure 6, the dye was gradually replaced with new tears and the image intensity 

was decreasing post instillation. Since the recording was acquired with extremely high-

resolution and a 20-second acquisition was consuming as much as 2 GB of computer 

memory, the recording was kept as short as possible and stopped when projected image 

was barely visible or, in cases where the tear wash-out was delayed, when an apparent 

difference in image intensity was observed. The approximate acquisition time was up to 

one minute. The recordings, considering their quality and size, could not be viewed with 

any conventional computer video software. 
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Figure 6. Stages of the diffused image fluorescence intensity decay,  

acquired for one of the subjects with ESP 

The fluorescence intensity decay curve was obtained using a custom-written MATLAB 

software, which calculates the mean intensity of the image within the area that corresponds 

to the exposed anterior eye surface for every frame of the captured video (as shown in the 

Figure 7). 

 

Figure 7. Left: An illustrative frame from the ESP video sequence acquired for one of the subjects; right: 

Demarcated area of analysis corresponding to this image 

The two main steps to estimate the fluorescence intensity decay curve are as follows: 

• generation and application of the mask (Figure 7) that defines the area of analysis; 
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• calculation of mean image intensity in the determined area of analysis 

The shape and position of the mask can be changed, however in this experiment the whole 

exposed ocular surface was covered. The monophasic exponential model of the image 

intensity I(T) decay in time T was assumed,  

 I(T) = Ae−βT . (5) 

After removal of the signal artefact due to blinks, the amplitude A and the decay constant 

β were estimated using the linear least-squares procedure by taking first the logarithm of 

the model, that is: 

 log(I (T)) = log(A) − βT.  (6) 

Then, a time varying TFWR was defined as:  

 TFWR(T) =
I(T)

I(0) ×  T
100 [

%

min
]. (7) 

The TFWR is expressed as a percentage drop of the mean masked image intensity after 

time T = 0.5 min. The period needed to record the video and assess TFWR was set 

arbitrarily reflecting the pragmatic aspects of the data acquisition. The 30-second margin 

was chosen, considering the duration of the shortest recording. However, the exponential 

decay profiles can be provided for the entire phase of the observation. An exemplary 

intensity decay curve acquired for one of the subjects and processed with the software is 
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displayed in the Figure 8. Additionally, OCT-based estimation of TCR (as proposed in     

Experiment 2) uses the same margin, so that these two methods are easier to compare. 

 

Figure 8. An exemplary curve of mean masked image fluorescence intensity decay acquired for one of the 

subjects (black line), with 30 seconds margin marked (grey dashed line) and fitted curve (red line), t - time 
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E1.3. Results 

It should be noted that the sample size was not estimated before commencing the study, as 

no reasonable information regarding parameter variability was available.  

However, post-hoc analysis, conducted for 90% power at the 5% significance level, found 

that the chosen sample could assess differences of about 11% for profilometry-based 

TFWR at 30-second margin. The temperature and relative humidity in the laboratory were 

stable and monitored and averaged around (mean ± standard deviation) 24.6 ± 1.4 ºC and 

26.1 ± 4.4 %RH, respectively. For all subjects, the mean TFWR was estimated as 39  23% 

at 30-second margin, ranging from 2% to 83%. The TFWR distribution was tested for 

normality and the null hypothesis was not rejected (Lilliefors test, P = 0.310).  

Figure 9 shows correlation plots between TFWR and other ocular measures for which the 

statistically significant linear correlations with TFWR were noted. 

 

Figure 9. Statistically significant correlations reported in the Experiment 1; TFWR - Tear fluorescein 

wash-out rate; McMQ- McMonnies Questionnaire score; FBUT - fluorescein tear film break-up time 
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Low, however statistically significant correlations were reported between TFWR and 

McMQ (R2 = 0.214, P = 0.001) and between TFWR and FBUT (R2 = 0.136, P = 0.009). 

The summary of the data collected (mean values, standard deviations, ranges)  

and correlation coefficients between TFWR and other ocular measures acquired in the 

experiment, including McMQ, FBUT, inferior TMH and blink rate (BR) are displayed 

below in Table 2. 

Table 2. A summary of the data acquired in Experiment 1 

SD- standard deviation; McMQ – McMonnies Questionnaire score; FBUT – fluorescein tear film break-up time;  

TMH – tear meniscus height; BR - blinking rate; TFWR – Tear Fluorescein Wash-out Rate, TCR - tear clearance rate; 

* denotes statistical significance 

E1.4. Repeatability 

The repeatability of the proposed TFWR technique was assessed. Ten randomly selected 

volunteers from the group of subjects were measured several times. All measurements were 

performed at the same time of the day. Firstly, TFWR was assessed in the same manner, as 

described in the Methodology section. Subsequently, the eye was carefully rinsed with 

saline solution to wash out the remaining fluorescent dye and a 10-minute break was 

Ocular measure Mean ± SD Range Correlation with TFWR 

Age [y/o] 32 ± 14 [21, 70] R2 = 0.004, P = 0.348 

McMQ [-] 7.6 ± 5.2 [1.0, 20.0] R2 = 0.214, P = 0.001* 

FBUT [s] 14.1 ± 8.0 [5.0, 30.0] R2 = 0.136; P = 0.009* 

TMH [mm] 0.22 ± 0.07 [0.10, 0.40] R2 = 0.015; P = 0.225 

BR [min-1] 17 ± 7 [6, 30] R2 = 0.006; P = 0.311 

TCR [%/30s] 

TFWR [%/30s] 

28 ± 20 

39 ± 23 

[5, 67] 

[2, 83] 

R2 = 0.001; P = 0.817 

- 
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followed before taking another measurement. Following this, a short measurement of the 

remaining fluorescence intensity was performed for a period of 10 seconds. In all cases no 

fluorescence was observed in the tear film before recording the subsequent ESP video.  

A total of 8 measurements of the image intensity decay were performed per subject.  

There was a statistically significant positive correlation between the mean value of TFWR 

and its standard deviation (R2 = 0.806, P < 0.001) indicating that the repeatability suffers 

with greater mean TFWR. Repeatability ranged from 2% to 42%, which all indicates that 

TFWR is highly subject-dependent. 

E1.5. Observations 

This experiment provided a mode for the clinically applicable TTR observation. 

Profilometry-based measurements of TFWR can track subtle changes in tear film 

dynamics. This technique is not time-consuming, it is easy to perform, utilizes low 

concentration of fluorescent dye and is performed with a commercially available clinical 

instrument. These characteristics make it more clinically applicable than the standardized 

technique used for TTR estimation. It can be used to analyse changes occurring in the tear 

film as a manifestation of the early phase tear film dynamics and, due to high spatial 

resolution of the device, it is not limited by the effect of corneal permeability to fluorescein. 

Fluorescein profilometry follows tear dynamics not only on the restricted area of the focal 

diamond, but on the entire exposed corneo-scleral surface. With the custom-written 

MATLAB software one can choose the area of analysis. The main limitation is that the tear 

clearance followed with this method cannot be considered quantitative, until fluorescein is 

instilled with the strip and thus its volume and concentration cannot be predicted.  

This should be addressed in the future studies. After improving the blinking mechanism 
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control and choosing the optimal volume and concentration of the dye to observe the best 

image and quantify the TFWRs, the repeatability and applicability of this method should 

visibly increase. Future studies should guarantee standardizing the protocol of 

measurements. The differences between values of TFWR and those reported in the 

literature for TTR assessed with fluorophotometry are evident, hence, possible correlations 

between measures of tear film dynamics assessed with fluorescein profilometry and 

fluorophotometry require further investigation.  
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E2. EXPERIMENT 2. OCT-BASED DYNAMIC MENISCOMETRY 

As mentioned in Chapter I, geometrical parameters of the tear menisci may depend on 

many biophysical and external factors and while the environmental impact can be 

controlled and maintained, the subject-related aspects are difficult to regulate. 

Methodology for automatic quantitative extraction of tear meniscus parameters is needed 

and such automatic protocol has been proposed by Bartuzel et al.200 from the Biomedical 

Signal Processing Group of Wroclaw University of Science and Technology 1 . 

This software implements an image-processing algorithm designed for quantitative 

assessment of tear meniscus parameters based on dynamic image acquisition with OCT.  

This algorithm performs well for different types of conjunctival sac morphologies, wide 

range of post blink dynamics and varied size of tear menisci.  

A modified version of this software was used to extract the tear meniscus parameters 

assessed during the longitudinal study of contact lens wearers. Firstly, performance of this 

method was tested, and the results of this testing were reported in the following sub-chapter. 

In this experimental study, three different methodologies for inferior tear meniscus 

parameters evaluation are compared. One, that is based on the K5M Tear Meniscus Height 

built-in software and allows manual measurements of the tear meniscus height based on a 

                                                 

1 The author would like to acknowledge Maciej Bartuzel, MSc from Biomedical Signal Processing Group of Wroclaw 

University of Science and Technology in Poland for developing the MATLAB software for tear meniscus morphology 

assessment with optical coherence tomography, which modified version was used to perform the image analysis in the 

following experiment. 



Chapter II. Newly developed experimental techniques 

90 

single infra-red en face static image of the subjects’ lower tear meniscus. This method is 

the simplest and, by far, the most commonly applied in clinical setting. 

The second method was used to evaluate TMH, TMD and TMA based on a single, static 

acquisition performed with OCT at a 2-second margin after the blink. This technique 

corresponds with the one used by Zheng et al. to assess tear meniscus height for TCR 

analysis. This is the most commonly applied OCT-based type of meniscometry. Static tear 

meniscus height (S-TMH), static tear meniscus depth (S-TMD) and static tear meniscus 

area (S-TMA) were acquired with this technique.  

Lastly, the third method utilizes the abovementioned software to perform dynamic 

meniscometry. Dynamic tear meniscus height (D-TMH), dynamic tear meniscus depth  

(D-TMD) and dynamic tear meniscus area (D-TMA) will be assessed on the basis of 

dynamic sequence of B-scans recorded after the blink with spectral-domain OCT. Bartuzel 

indicates that any observable changes in the early post-blink meniscus parameters are most 

likely related to the longitudinal movement of the eye219 rather than to the tear meniscus 

formation occurring immediately after each blink, that corresponds to the phase of tear film 

build-up220,221. Therefore, a single static acquisition-based assessment of tear meniscus 

parameters acquired at a random moment after the blink should be viewed with caution. 

Tear meniscus undergoes dynamic changes after each blink and thus the dynamic 

meniscometry should provide a more reliable and in-depth estimate of the geometrical 

parameters of tear meniscus, including TMH, TMD and TMA.  
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E2.1. Methodology  

The study recruited fifty-five healthy, young subjects (39F and 17M), aged 

(mean ± standard deviation) 26 ± 4 y/o, ranging from 20 to 37 y/o. The exclusion criteria 

and protocol of measurements was consistent with the Baseline visit of the longitudinal 

study of biomarkers’ trends (Chapter III). Figure 10 shows an exemplary B-scan of the 

lower central eyelid margin and the inferior tear meniscus; it was acquired for one of the 

subjects with spectral-domain OCT (Copernicus, Optopol, Poland). Additionally, the 

exemplary tear meniscus measures, which can be assessed with the custom-written 

MATLAB software, are encircled and enlarged in Figure 10. 

 

Figure 10. Exemplary B-scan of the inferior tear meniscus obtained for one of the subjects with OCT and 

measurements that can be performed automatically with the proposed MATLAB software 
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E2.1.1. OCT-based dynamic meniscometry 

Additional lens was attached to the device to visualise the anterior segment of the eye. 

The Animation mode of the device was selected to acquire images of the central inferior 

tear meniscus in a form of multiple B-scans. The scanning angle and width were set to 90° 

and 4 mm, respectively. The maximum possible number of B-scans (which is 90) was 

chosen in this setting. The B-scan plane, with a maximum of 1800 A-scans was central 

(with respect to the iris outline) to the posterior region of the eye-eyelid junction and normal 

to the eyelid. The maximum possible number of 90 B-scans allowed in that setting was 

chosen. The subjects were asked to look straight ahead in the mirror, which simulates 

distant gaze, and to blink freely until advised, while refraining from head and eye 

movements. To make sure that the sequence captures the blink period right after the  

B-scans sequence was initialised, the subjects were asked to blink once and to refrain from 

blinking. Each sequence comprised of 90 frames, which corresponded to total recording 

time of 3.75 seconds and could be easily divided into three intervals. After each blink, the 

tear meniscus parameters stabilise, thereby it is possible to distinguish frames that 

correspond to the post-blink phase, when the longitudinal movements of the eye play a 

major role, and those which correspond to the interblink phase, when the tear meniscus 

parameters are slightly fluctuating. The mean values of the inferior TMH, TMD and TMA 

from all the frames constituting the interblink interval are automatically assessed and 

calculated with the custom-written software. Figure 11 shows values of TMH calculated 

with the software from B-scan sequence. When using the proposed algorithm, one can 

avoid the post-blink tear meniscus non-confluence, which affects the estimation, resulting 

in more precise estimate of tear meniscus geometrical parameters. 
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Figure 11. An exemplary result of TMH dynamics calculation post-blink. Dashed grey line indicates an 

arbitrary division of the TMH temporal changes into a blink and post-blink phase 

The use of the custom-written software allows more control over the tear meniscus 

parameters following each blink and to delete the outlying values from the final estimation. 

This approach considers small movements of the eye, longitudinal movements of the globe 

after each blink and continuous changes of tear menisci, which cannot be observed based 

on a single, static B-scan acquired at a random moment after the blink. The inferior TMH 

is not constant and increases with time after the blink222. Right after the blink, the rate of 

change is very rapid, resulting in a relatively stable TMH after a short time and small 

standard deviation, which could be observed with the proposed algorithm. 

Additionally, this software provides the time of tear meniscus build-up after the blink.  

The algorithm described above was used to acquire D-TMH, D-TMD and D-TMA, which 

are the dynamic analogues of static measures of tear meniscus (S-TMH, S-TMD and 

S-TMA), described in the subsection below. 
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E2.1.2. OCT-based static meniscometry 

In this method, one B-scan from the sequence acquired with OCT was chosen.  

This B-scan corresponds to the tear meniscus after approximately 2 seconds post-blink. 

Tear meniscus parameters (S-TMH, S-TMD and S-TMA) were measured manually with 

use of ImageJ software (US National Institutes of Health, Bethesda, MD). 

To perform the measurements, images needed to be resized, as OCT software compensates 

for optical aberrations when displaying the images on the screen (Figure 12). 

After this procedure, if the configuration of scanning angle of 90° and scan width of 4 mm 

was set, then each pixel of the acquired image corresponds to approximately 4 µm. 

RESIZING 

 
MANUAL MEASUREMENT 

 
Figure 12. Two main steps to perform when analysing the OCT B-scan with ImageJ; Step 1 - resizing the 

image in MATLAB with ‘resize’ function; Step -2 measuring tear meniscus parameters 
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E2.1.3. K5M-based tear meniscus height 

K5M allows measurements of the TMH based on a single infra-red en face image of the 

inferior tear meniscus. Lower central TMH of each subject was recorded with the use of 

TF-Scan function of K5M called Tear Meniscus Height. Default settings were used.  

To assess TMH of both eyes of each subject, subjects were asked to fixate on the central 

target. They could blink naturally during the entire procedure. The tear meniscus images 

were captured at around two seconds after the subject’s natural blink. K5M allows 

measurements of TMH in infra-red spectrum, which is invisible to human subjects.  

This minimizes the effect of reflex tearing caused by excessive illumination. The infra-red 

illumination mode was switched-on, and measurements were performed in a dimly lit room 

to increase contrast of the images by limiting background illumination. The camera was 

positioned on the central lower eyelid of the subject and the reflected rings were brought 

into focus. 

 

Figure 13. An exemplary image of the inferior tear meniscus height acquired with K5M 
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After the image is acquired, the K5M automatically opens the image analysis window and 

enables manual TMH measurements with the use of built-in callipers. The length of a line 

(in millimetres) along the chosen dimension is displayed when clicking on both parallel 

edges of the central tear meniscus. Single assessment was performed for each eye and the 

images were stored automatically. Figure 13 presents an exemplary image of the eye, 

acquired for one of the subjects with Oculus K5M Tear Meniscus Height imaging tool.  

A close-up of the tear meniscus section, on which the measurements were performed, is 

also displayed. 

E2.2. Results 

Table 3. Tear meniscus height measures assessed with different methods 

SD - standard deviation; TMH - tear meniscus height; TMD - tear meniscus depth; TMA - tear meniscus area 

Table 3 shows the mean and median values, ranges and standard deviations of the tear 

meniscus geometrical measures reported in the experiment. Additionally, the statistical 

agreement between the dynamic and static OCT-based method of tear meniscus evaluation 

OCT-based static method 

Ocular measure TMH [mm] TMD [mm] TMA [mm2] 

Mean ± SD 0.21 ± 0.05 0.18 ± 0.06 0.015 ± 0.010 

Median 0.21 0.18 0.025 

Range [0.09, 0.30] [0.08, 0.36] [0.051, 0.070] 

OCT-based dynamic method 

Mean ± SD 0.27 ± 0.12 0.16 ± 0.02 0.012 ± 0.005 

Median 0.26 0.16 0.012 

Range [0.05, 0.54] [0.11, 0.20] [0.004, 0.022] 

K5M-based method 

Mean ± SD 0.24 ± 0.06 - - 

Median 0.24 - - 

Range [0.15, 0.46] - - 
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was further inspected. Figure 14 shows a scatter plot with the line of equality between left 

eye TMH assessed during the baseline visit with static OCT-based meniscometry (x-axis) 

and dynamic OCT-based meniscometry (y-axis). Figure 15 represents the Bland-Altman 

plot of these two OCT-based meniscometry methods. 

 

Figure 14. Scatter plot with line of equality between S-static and D-dynamic OCT-based left eye central 

inferior tear meniscus height (TMH) 

 

Figure 15. Bland-Altman plot (difference plot - average of two methods against the difference) comparing 

the two OCT-based measurements of tear meniscus height; S-TMH - static method based on a single scan; 

D-TMH - dynamic method based on 90 B-scans; CI - confidence interval; SD - standard deviation 
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Table 4 shows the linear correlation coefficients between different measures of tear 

meniscus geometrical parameters assessed during this experiment and their corresponding 

P-values. 

Table 4. The linear correlation coefficients and corresponding P-values between different geometrical 

measures of tear meniscus morphology 

Meniscus  

measure 
S-TMH S-TMD S-TMA D-TMH D-TMD D-TMA 

TMHK5M 
R = 0.813 

P = 0.324 

R = -0.001 

P = 0.626 

R = 0.016 

P = 0.477 

R = 0.176 

P = 0.127 

R = -0.049 

P = 0.978 

R = -0.123 

P = 0.693 

 

S-TMH - 
R = 0.893 

P < 0.001* 

R = 0.879 

P < 0.001* 

R = -0.035 

P = 0.693 

R = 0.400 

P <0.001* 

R = 0.100 

P = 0.254 

 

S-TMD - - 
R = 0.937 

P < 0.001* 

R = -0.051 

P = 0.561 

R = 0.424 

P < 0.001* 

R = 0.211 

P = 0.015 

 

S-TMA - - - 
R = -0.061 

P = 0.491 

R = 0.402 

P < 0.001* 

R = 0.165 

P = 0.058 

 

D-TMH - - - - 
R = -0.465 

P < 0.001* 

R = -0.617 

P < 0.001* 

 

D-TMD - - - - - 
R = 0.707 

P < 0.001* 

 

S - static, D-dynamic; TMH -tear meniscus height; TMD - tear meniscus depth; TMA - tear meniscus area;  

TMHK5M - KM5-based tear meniscus height 

E2.3. Observations 

Considering the combination of interfering factors related to head, eye and eyelid 

movements, static acquisition of tear meniscus with OCT may not provide reliable 

estimates of tear meniscus geometrical parameters. The clinical utility of dynamic OCT-

based tear meniscus measurement lies in the necessity of continuous acquisition of post-

blink tear meniscus geometry. This is to provide precise estimate of its parameters such as 

height, depth, and area of the cross-section calculated as mean values over a few seconds 
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post blink. Statically significant linear correlation was not noted between OCT-based and 

K5M-based tear meniscus height, which may suggest that these two methods give different 

insight into tear meniscus parameters. OCT-based method allows more in-depth 

visualization of tear menisci. Apart from that, the tear meniscus measures assessed with 

OCT-based method correlate with each other. 

When analysing the scatter plot, one can see that these two methods of OCT-based 

assessment - the dynamic and the static one - are not entirely in agreement, with dynamic 

meniscometry-based values tending to be higher. Most values in the Bland-Altman graph 

are within the 95% confidence interval. Visible linear trend was observed in the Bland-

Altman graph, which may suggest that the two methods of tear meniscus assessment are 

not in agreement. Based on the analysis presented above one can conclude that the different 

methods of tear meniscus evaluation provide different insight into ocular physiology and 

different tear meniscus geometrical parameters.  
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E3. EXPERIMENT 3. OCT-BASED ASSESSMENT OF EARLY PHASE 

TEAR CLEARANCE 

In 2014 Zheng et al.169 attempted to exploit the effect of Krehbiel flow to study an early-

phase tear clearance by means of OCT. This technique was used to study the decrease in 

TCR as a function of age169 and its performance was compared with the Schirmer-based 

FCT. The abovementioned procedure is based on changes of tear meniscus parameters after 

application of 5 µL of 0.9% buffered saline solution. Temporal changes of TMH and TMA 

over time were followed169. The OCT-based method of TCR evaluation is less invasive and 

relatively shorter in comparison with other methods of tear clearance assessment. 

Additionally, it does not require topically applied fluorescein, which is poorly accessible 

in some European countries and utilizes the device which is more commonly used in 

clinical setting than fluorophotometry or scintigraphy. In contrast to FCTs, OCT-based 

method does not only define tear flow in a form of a single value, but also allows tracking 

temporal changes in tear fluid characteristics objectively and qualitatively.  

In the study of Zheng et al. the OCT-based TCR was correlated positively with FCT scores 

and negatively correlated with the distance between the lacrimal punctum and Marx’s line 

and with ocular conditions known to interrupt tear flow and often accompanied by DED 

symptoms, like the degree of conjunctivochalasis and the degree of lacrimal punctum 

protrusion. In the following experiment, further development in the OCT-based assessment 

of TCR169,171 was made. Since 2014, when the technique was proposed by Zheng, a second 

study was conducted by the same team, utilizing Polymethylmethacrylate particles to study 

the phenomenon of Krehbiel flow. In the study of Zheng et al. The temporal changes in tear 

meniscus morphology, including TMH and TMA were assessed based on single, static 
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acquisition, after 30 seconds, 1 minute and every consecutive minute up to 5 minutes post 

instillation. Dynamic changes in these parameters were followed to calculate TCR. 

Measurements were repeated 3 times in intervals of at least 15 minutes between them. 

The experimental method for TCR assessment proposed here is based on the observation 

of the tear meniscus morphology changes post-saline instillation with a spectral domain 

OCT. What differentiates this method from the one proposed by Zheng et al., is the 

application of the dynamic meniscometry algorithm proposed in Experiment 2 for tear 

meniscus estimation. The dynamic acquisition comprising of 90 B-scans was performed 

for each meniscometry. Automatic estimation of tear meniscus parameters post-blink, 

simplifies the procedure and enhances the precision of the measurement by allowing an 

objective assessment200. An additional aim was to compare the TCR estimates with the tear 

film measures commonly used in a clinical setting for DED diagnosis. This experiment 

presents the first stage of testing of the OCT-based TCR and shows its potential to become 

a clinical diagnostic test for DED. 

E3.1. Study protocol 

Fifty-five healthy, young subjects (36F and 19M) aged (mean ± standard deviation)  

26 ± 4 y/o ranging from 20 to 37 y/o volunteered for this study. The group comprised of 

the subjects taking part in the longitudinal study of biomarkers’ trends (Chapter III) and 

the data were collected in parallel with the baseline, preliminary visit of this study, thus the 

protocol of measurements and inclusion/exclusion criteria were the same. The evaluation 

sheet for the Baseline visit was attached at the end of this dissertation (see Appendix 5). 

Summarizing, the protocol of measurement consisted of: 
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• OSDI and DEQ-5 questionnaires (see Appendix 2);  

• the review of medical history (see Appendix 3);  

• TMH measurement with K5M (as shown in the Figure 13 and described in the 

Experiment 2);  

• tear osmolarity measurements acquired from the inferior temporal tear meniscus 

with TearLab Osmolarity System (Tear Lab Corp., San Diego, CA, US);  

• Non-invasive Keratograph® Tear Film Break-up Time (NIKBUT) automatic 

measurements with K5M;  

• slit lamp biomicroscope anterior eye examination protocol (see Appendix 4).  

• The TCR estimation based on dynamic inferior tear meniscus morphology acquired 

with spectral domain OCT (Copernicus, Optopol Ltd., Poland) as proposed in the 

previous experiment. After a short break, TCR assessment was followed by: 

• fluorescein tear film break-up time (FBUT) estimation; 

• LWE scoring with lissamine green and infrared meibography recording with K5M.  

E3.2. Methodology 

Dedicated lens system was attached to the OCT probe to visualize the anterior segment of 

the eye. Spectral domain OCT (SOCT Copernicus, Optopol Ltd., Poland) was used to 

acquire B-scans of subject’s lower central eyelid morphology and inferior tear meniscus. 

Measurements were performed in mesopic conditions (Figure 16) to increase contrast of  

B-scans. To minimize the effect of fluid viscosity and density on the tear film and tear 

meniscus retention times, saline solution was used. Following the evidence that TCR and 

TMH could vary with the time of the day65,124 measurements were performed in the 

morning and not more than 4 hours since the subjects awakening time. 
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Figure 16. OCT-based TCR assessment; Left: measuring station with the subject in position;  

Right: OCT built-in software’s interface 

Additionally, changes in tear volume and TCR with age were noted in the previous 

studies169,204, so the age distribution of the participants for this experiment was kept as 

narrow as possible in order to prevent their age from affecting the results. Temperature and 

relative humidity in the laboratory were stable and monitored with a thermo-hygrometry 

device (C3121, Comet, Czech Republic) because tear meniscus parameters vary highly 

under the influence of environmental conditions. 

Each subject was instructed to sit comfortably, place the chin on the chinrest and press the 

forehead against the bar of the instrument and do not move away from the device for the 

whole duration of the procedure, unless clearly instructed to do so. Subjects were instructed 

to look at the reflection of their eye in a dedicated mirror, which simulates a primary gaze 

position. 

Based on the procedure presented by Zheng et al.169, spectral domain OCT was used to 

record the dynamic changes of the inferior tear meniscus. Firstly, three consecutive 



Chapter II. Newly developed experimental techniques 

104 

dynamic acquisitions of the central inferior tear meniscus image of each subject were 

performed. The baseline tear meniscus morphology measurements were averaged. Baseline 

values of the OCT-based measurements of D-TMH, D-TMD and D-TMA were used in the 

longitudinal study of biomarkers’ trends as a separate ocular measure and potential 

biomarker (Chapter III). The basal tear meniscus morphology will be later referred to as 

the Baseline (BL) value. Subsequently, subjects were instructed to tilt their head 

backwards, look up and away from the practitioner and, subsequently, the application  

of 5 µL of room-temperature 0.9% buffered saline solution was performed with an 

automatic micropipette (Topscien S, Biosens Ltd, Poland) into the subject’s conjunctival 

sac. All measurements were performed on the left eye of each subject to facilitate fluid 

instillation by a right-handed practitioner. The method of application was performed close 

to the tarsal side of the left eye of each subject and was not associated with any observable 

or reported discomfort.  

Right after the instillation the subjects had to return to their originally adopted position. 

This was to ensure quick image acquisition after instillation. If necessary, small adjustment 

of the probe position were performed and consecutive B-scans sequence was acquired.  

This B-scan sequence will be later referred to as a ‘0’ minute acquisition. After this 

acquisition, stopwatch was turned on and the 3-minute period of measurements was 

initiated. Consecutive measurements were performed at 30 seconds, one minute, two and 

three minutes post-instillation to follow tear parameters decay with time.  

Subjects could blink naturally during the entire time and they only had to refrain from 

blinking for 90-B-scan sequences to be acquired. The 3-minute period of observation was 

adapted, as this amount of time was proven to be sufficient for the tear meniscus of young, 

healthy subject to come back to its basal form after instillation. one-minute break between 
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measurements was kept, allowing to save the sequence in the OCT’s database and to adjust 

the OCT probe position if necessary. As mentioned before, the animation sequence contains 

90 B-scans, thus the time the subjects must keep their eyes open is less than 3.75 seconds.  

The aim of this 3-minute assessment was to follow the dynamic decay of TMH, TMD and 

TMA post instillation with time. The TCRTMH, TCRTMD and TCRTMA were estimated as a 

percentage decrease in D-TMH, D-TMD or D-TMA at 30-sceond margin post-instillation, 

as proposed by Zheng et al. Each B-scan sequence was analysed with the use of the custom-

written MATLAB software described in the Experiment 2. 

E3.3. Reproducibility 

To test the reproducibility of OCT-based measurements of TCR, multiple measurements of 

TMH post-instillation dynamics have been performed and TCR calculated for one, 

randomly chosen subject at each day of seven days period. This subject was not a contact 

lens wearer and was required not to use any topically applied substances at least the day 

before and for the six-day period of measurements. Each measurement was performed at 

the same time of the day and the time of measurement was set to 5 minutes post instillation.  

Figure 17 shows all curves of dynamic changes in tear meniscus height acquired for that 

subject. The coefficient of variation of the OCT-based TCRTMH estimates was reported to 

be around 14.9%. The mean reported TCRTMH throughout the time-course of one week for 

this subject was estimated to be 24 ± 4% at a 30-second margin post-instillation. 
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Figure 17. The dynamic changes of tear meniscus height reported for one of the subjects measured once per 

day in the morning for a period of one week. 

E3.4. Results 

Mean temperature and mean relative humidity in the laboratory were estimated to be  

(mean ± standard deviation) 24.5 ± 1.2 °C and 32.2 ± 4.7 %RH, respectively. The group’s 

mean and median values, standard deviations and ranges of the measures reported in the 

experimental study are shown in Table 5. 

Table 5. A summary of tear clearance rates acquired in the Experiment 3 

TCR - Tear clearance rate based on: TMH - tear meniscus height, TMD - tear meniscus depth and TMA - tear meniscus 

area 

Ocular measure TCRTMH [%/30s] TCRTMD [%/30s] TCRTMA [%/30s] 

Mean 22 ± 21 18 ± 19 29 ± 31 

Median 21 18 31 

Range [-14, 74] [-29, 69] [-88, 95] 
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The TCRs were tested for normality with Lilliefors test and the null hypothesis was not 

rejected for TCRTMH (P = 0.129), TCRTMD (P = 0.479) nor TCRTMA (P = 0.144). 

Estimated time required for tear meniscus to come back to its basal level after the 

instillation of 5 µL of saline solution was estimated to be around two minutes in young, 

healthy subjects, which agrees with the study of Zheng et al. The reduction of TMH, TMD 

and TMA at 30 seconds post-instillation was significant. Figure 18, Figure 19 and Figure 

20 show the group mean of TMH, TMD and TMA dynamics, respectively. These dynamic 

changes were used to calculate the corresponding TCRs. 

 

Figure 18. The group mean TMH dynamics post saline instillation. Error bars indicate ± one standard 

deviation 

The baseline value of TMH was estimated to be (mean ± standard deviation)  

0.21 ± 0.05 mm. Right after the instillation, the increase in TMH was statistically 
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significant (P < 0.001) and TMH was estimated to be around 0.37 ± 0.08 mm. 30 seconds 

after instillation TMH decreased significantly (P < 0.001) and was on average (mean ± 

standard deviation) 0.27 ± 0.05 mm. TMH also changed significantly between 30 seconds 

and one-minute post instillation (P < 0.001), decreasing to 0.24 ± 0.05 mm and between 

one and two minutes (P < 0.01), decreasing to 0.21 ± 0.03 mm. TMH change between 

second and third minute post-instillation was not statistically significant (P = 0.357). 

 

Figure 19. The group mean TMD dynamics post saline instillation.   

Error bars indicate ± one standard deviation 

The baseline value of TMD was estimated to be (mean ± standard deviation)  

0.16 ± 0.02 mm. The increase of TMD measured immediately after instillation was 

statistically significant (P < 0.001) and TMD was estimated to be around 0.26 ± 0.05 mm. 

Following 30 seconds of natural blinking, TMD decreased significantly (P < 0.001) and 

was on average 0.21 ± 0.03 mm. TMD also changed significantly between 30 seconds and 
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one-minute (P = 0.032), decreasing to 0.19 ± 0.03 mm and between one and two minutes 

(P = 0.005), decreasing to 0.18 ± 0.03 mm and reaching its basal (pre-instillation) level. 

Change in TMD between second and third minute post-instillation was not statistically 

significant (P = 0.264). 

 

Figure 20. The group mean TMA dynamics post saline instillation.  

Error bars indicate ± one standard deviation 

The baseline value of TMA was estimated to be (mean ± standard deviation)  

0.03 ± 0.02 mm2. After instillation TMA increased significantly (P < 0.001) to  

0.08 ± 0.04 mm2. Following 30 seconds of natural blinking, TMA decreased significantly 

(P < 0.001) and was on average 0.05 ± 0.01 mm2. TMA also changed significantly between 

30 seconds and one minute (P = 0.008), decreasing to (mean ± standard deviation) 0.04 ± 

0.02 mm2 and between one and two minutes (P = 0.009) after instillation. 

Change in TMA between second and third minute post-instillation was not statistically 
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significant (P = 0.357). Statistically significant linear correlations were evaluated between 

different measures of TCR (see Table 6). 

Table 6. The linear correlation coefficients and corresponding P-values between different measures of 

OCT-based TCR 

Ocular measure TCRTMD TCRTMA 

TCRTMH 
R = 0.843 

P < 0.001* 

R = 0.843 

P < 0.001* 

TCRTMD - 
R = 0.872 

P < 0.001* 

TCR - tear clearance rate base on: TMH - tear meniscus height, TMD - tear meniscus depth and TMA - tear meniscus 

area; * denotes statistical significance 

E3.5. Correlation with Fluorescein Wash-out Rate 

To test whether two methods of tear clearance estimation: the profilometry-based 

(Experiment 1) and OCT-based (Experiment 3) correlate with each other, 30 subjects 

underwent both procedures. Subjects aged (mean ± standard deviation) 26 ± 5 y/o ranging 

from 22 to 45 y/o participated in this part of the study. The TMH-based TCR for this group 

of subjects was estimated as (mean ± standard deviation) 29.7% ± 21.4%, ranging from 5% 

to 67% at 30-second margin and TWFR as (mean ± standard deviation) 32.5% ± 19.7%, 

ranging from 2% to 61% at 30-second margin. Figure 21 shows correlation between two 

methods of tear dynamic assessment presented in Chapter II. Statistically significant linear 

correlation was not observed between these ocular measures of tear dynamics (R = 0.022, 

P = 0.433). 
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Figure 21. Correlation between profilometry-based assessment (TFWR) and OCT meniscometry-based 

(TCR) assessment of tear dynamics temporal rates 

E3.6. Observations 

Generally, findings of Zheng et al. and the results of the Experiment 3 suggest that 

geometrical parameters of the inferior tear meniscus decrease most significantly early after 

instillation. Zheng suggested possible impact of Krehbiel flow on OCT-based TCR 

measurements and showed that TCR may rather be a manifestation of an early-phase tear 

turnover rather than the basal, slow tear turnover assessed with fluorophotometry169,171.  

Experiment 3 further contributes to these developments. TCR reported in the experiment 

was characterized by large variation among subjects and by relatively good reproducibility. 

The software helped to enhance precision of tear meniscus morphology measurements with 

OCT and to monitor and minimize the effect of tear meniscus nonconfluence after each 

blink on reported estimations200. OCT can be used as a rapid, qualitative and quantitative 

method of determining TCR. With the new algorithm developed, tear meniscus parameters 

can be calculated considering the nonconfluence of tear meniscus morphology after each 
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blink, that is, most presumably, connected to the longitudinal eye movements.  

Traditional clearance tests are either invasive or laborious, and the use of fluorescein has 

its limitation, because the clearance of tears is not directly measured. Tear clearance 

measured with OCT is non-invasive and relatively more rapid and simpler to perform than 

traditionally used tear exchange tests. 

It was estimated that for healthy, young subjects the tear meniscus height comes back to its 

basal state after approximately two to three minutes from fluid instillation. This technique 

can be additionally used in testing artificial tears retention times214,215. TCR was shown to 

be lower in elderly subjects and symptomatic subjects. The presented correlations between 

measures assessed in this experiment and TCR can lead to better understanding of the 

complexity of tear film dynamics and the role of tear clearance in the pathogenesis of DED. 

Some guidance on this topic has been provided in Chapter IV in a form of comprehensive 

discussion of all the parameters reported in this dissertation. 
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SUMMARY 

Measures of tear exchange obtained as results of the aforementioned experimental studies 

were shown in Table 7, together with the results obtained by Zheng et al.169 and the mean 

value of the fluorophotometry-based TTR reported based on comprehensive meta-

analysis121. TCR assessed with both OCT and fluorescein profilometry is presumed to be 

the manifestation of an early-phase tear turnover. The rates of profilometry-based TFWR 

are much higher that the OCT-based TCRs. They are also much more subject-dependent 

and hence - more variable. 

Table 7. A summary of tear turnover measures obtained as the result of the experimental studies presented 

in this thesis compared with values reported in literature. 

Year Report 
Type (number  

of subjects) 
Method 

Reported  

TTR [%] 

2009 Tomlinson et al.121 Normal (187) Fluorophotometry 16.2 ± 5.1 

2014 Zheng et al.169 Young group (30) 

Elderly group (30) 

OCT- TMH-based; 

OCT -TMA-based; 

OCT- TMH-based; 

OCT -TMA-based 

35.2 ± 11.0 

28.1 ± 12.4 

12.4 ± 7.3 

6.2 ± 9.1 

2017 Experiment 1 Normal (40) Fluorescein; 

Profilometry 

39 ± 23 

2017 Experiment 3 Normal (56) OCT- TMH-based; 

OCT- TMD-based; 

OCT - TMA-based 

21 ± 20 

18 ± 18 

28 ± 30 

TMH – Tear meniscus height; TMA – tear meniscus cross-section area 

Summarizing, the fluorophotometry-based evaluation of TTR, its limitations and TTR’s 

impact on the ocular surface health were widely studied, however TTR measurements were 
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not performed in the clinical setting due to the complexity of the applied methodology and 

the need for specialized equipment. Proposed simpler alternatives - FCTs are either 

invasive or based on subjective assessment and fail to follow dynamic changes naturally 

occurring in the tear film. 

Two experimental studies were proposed to investigate tear turnover in a more clinical, 

simpler manner which allows tracking dynamic changes occurring in the tear film or tear 

meniscus. Further investigation is needed to standardize the procedures proposed in the 

experimental chapter and to enable quantitative, automatic measurements and image 

processing. The key issues are to make the methodology simple and automatic, without 

decreasing its ability to follow dynamic changes occurring in the tear fluid. 

The development of a new image-processing software, standardization of the amount of 

fluid to be instilled and automatization of measurements should facilitate the clinical 

application of TCR assessment. Future studies should focus on development of 

standardized methodology to assess TTR as a clinical test. Correlations of OCT-based TCR 

with other tear film measures and fluorophotometric technique can lead to better 

understanding of the complexity of tear film dynamics and the role of tear clearance in 

supporting DED diagnosis. 
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CHAPTER III. LONGITUDINAL STUDY OF 

BIOMARKERS’ TRENDS2 

The following chapter provides a comprehensive description of the study protocol, 

methodology and results obtained over the time-course of the longitudinal prospective 

study of biomarkers’ trends in contact lens wearers. In this longitudinal study the aim was 

to track the trends of the proposed measures of ocular physiology. The measures proposed 

in Chapter II were used as additional DED biomarkers and were followed parallelly with 

other ocular measures used commonly for supporting DED diagnosis. 

3.1. ACKNOWLEDGEMENTS  

Part of this longitudinal study regarding tear osmolarity changes in contact lens wearers 
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3.2. METHODOLOGY 

3.2.1. Study protocol development 

Study adhered to the tenets of the Declaration of Helsinki. Informed consent was obtained 

from all participants after the nature and possible consequences of the study were 

explained. 

Some important aspects and constraints have been considered while developing the study 

protocol for this longitudinal study. Based on the comprehensive literature review, practical 

experience, guidelines and consultations with eye care professionals, the most appropriate 

ocular measures to fulfil the definition of DED and its sub-classifications were chosen, 

considering the devices available in the laboratory and having in mind their clinical 

applicability. These ocular measures were described in sufficient details in Chapter I.  

To observe changes in ocular physiology subjects were fitted or re-fitted with soft contact 

lenses. The protocol was prepared considering the time and cost limits of the EDEN project.  

Free supply of lenses aided attendance outcomes, following a systematic schedule and 

minimized the number of drop-outs. The number of visits and the duration of the whole 

longitudinal study had to be balanced with the allocated funds. The executive part of the 

EDEN project was time-limited, hence the longitudinal study, including literature review, 

data analysis, protocol designing, experimental phase, practice, recruitment and scheduling, 

together with conducting the experiments and measurements were fitted within the allowed 

timeframe. A period of 13 months was estimated as the maximum period that gives the best 

balance between cost, subjects’ availability and structure and timeframe of the EDEN 

project. It was hypothesized that this period of contact lens wear will somehow observably 
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impact ocular physiology. Daily disposable contact lenses were supplied to minimize the 

risk of inflammation, simplify contact lens care and increase subjects’ adherence to the 

strict wearing protocol. By the time the measurements started, there were no data available 

on the long-term effect of modern daily disposable contact lens wear on ocular physiology. 

This study was the first independent investigation of the effect of daily disposable soft 

contact lenses on ocular physiology. The author is aware that the contact lens-induced DED 

differs in aetiology and pathophysiology from the typical multifactorial DED, however, 

supplying subjects with contact lenses seem to be the best available way to observe visible 

changes in the available timeframe and simultaneously increasing subjects’ adherence to 

the study, without putting them at risk. At first, supplying subjects with artificial tears to 

observe changes in ocular physiology was considered, however this approach could 

probably meet with much lower rate of subjects’ adherence and could have induced only a 

short-term effect. Additionally, the choice of artificial tears solution could be problematic, 

considering that there was no available gold standard in prescribing and choosing optimal 

topical solution for the subjects, at the time when this study protocol was being developed. 

In contrary, while fitting contact lenses, one can follow a protocol and choose the optimal 

lens from the available options. 

Having in mind that even the non-invasive tests used for DED management require some 

alternation of blinking or bright illumination, it is important to proceed from the least to the 

most invasive measurements223. Evaluation sheets have been prepared following this rule. 

Therefore, each visit starts from filling-in the questionnaires, tear meniscus height en face 

evaluation and impedance-based measurements of tear osmolarity. These are followed by 

less invasive tests which utilize infrared radiation (NIKBUT) or do not require dye 

instillation (lipid layer thickness and bulbar redness scoring). Ultimately, measurements 
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utilizing topically applied solutions (TCR calculation) or vital dyes (ocular surface staining 

and FBUT estimation) are performed and the whole procedure is finished with the most 

invasive tests, which require eyelid inversion (LWE grading and infrared meibography).  

The evaluation sheets for each of the visits are provided in the Appendices. 

Each evaluation sheet describes the chronological order in which the measurements were 

performed. Figure 22 schematically represents the established timeline of the longitudinal 

study. As can be seen, this study can be divided into two phases - the longitudinal study 

and experimental phase.  

The experimental phase was the time-frame during which all the experiments described in 

Chapter II were performed. This phase was partially coinciding with the Baseline part of 

the longitudinal study and partially comprised of the subjects participating in it. 

 

Figure 22. The schematic timeframe of the longitudinal study of biomarkers’ trends 
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The longitudinal study comprised of two parts - the contact lens fitting part and the follow-

up period. During the contact lens fitting part (marked in yellow) subjects were refitted 

with daily disposable soft contact lenses and the contact lens performance was assessed 

after four hours and two weeks of contact lens wear. The follow-up period (marked in 

purple) consisted of three follow-up visits at three, six and 12 months post-refitting. 

In the beginning of the longitudinal study, the Baseline visit was performed on subjects, 

who refrained from wearing their habitual contact lenses for at least 3 days prior to 

attending. After the study, subjects were advised to refrain from wearing contact lenses 

again for a period of 3 days and the post-study Control visit was performed.  

This was to compare the bare eye Baseline results with the Control bare eye results and to 

test whether changes potentially occurring during the 12-month follow-up period will 

lessen after refraining from contact lens wear.  

The duration of each visit was time-limited. Subjects at Baseline visit were tested in the 

morning, which allows only two to three such visits per day, considering the time for the 

subjects to wake up and the overlapping schedules of the subjects attending the following 

visits for contact lens fit. The time of each visit was estimated and limited to one hour. 

Availability of the laboratory, national and academic holidays and weekends also were 

considered, when developing the study schedule. For the first phase of the measurements 

(marked in yellow) not to overlap with other follow-up visits (marked in purple), the second 

follow-up phase was scheduled three months post contact lens refitting. It allowed a break 

between visits to be as short as possible for a given sample size and some additional time 

for the data analysis.  

Table 8 summarizes the study protocol. 
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Table 8. Summary of the longitudinal study protocol 

Ocular measure Baseline Day 2 2-week 3-month 6-month 12-month Control 

Contact lens fit  ✓      

Contact lens fit control  ✓ ✓ ✓ ✓ ✓  

Medical history ✓       

OSDI, DEQ-5 ✓  ✓ ✓ ✓ ✓ ✓ 

TMHK5M ✓  ✓ ✓ ✓ ✓ ✓ 

D-TMH, D-TMD 

and D-TMA 
✓  ✓ ✓ ✓ ✓ ✓ 

Tear osmolarity ✓   ✓ ✓ ✓ ✓ 

NIKBUT ✓ (PC) ✓(PL)  ✓ (PL) ✓ (PL) ✓ (PL) ✓ (PC) 

Ocular redness ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

LLT ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

Ocular surface staining  

with vital dyes 
✓ ✓ ✓ ✓ ✓ ✓ ✓ 

CCT ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

TCR ✓   ✓ ✓ ✓ ✓ 

Meibography ✓   ✓ ✓ ✓ ✓ 

LWE scoring ✓   ✓ ✓ ✓ ✓ 

NIKBUT – non-invasive Keratograph tear film break-up time; LLT – lipid layer thickness; CCT – central corneal 

thickness; TMHK5M - tear meniscus height assessed with K5M; D-TMH - dynamic tear meniscus height, D-TMD - 

dynamic tear meniscus depth, D-TMA - dynamic tear meniscus area;  LWE – lid wiper epitheliopathy score; TCR – tear 

clearance rate; PC - measurements performed on pre-corneal tear film; PL - measurements performed on the pre-lens 

tear film 

Summarizing, the longitudinal study protocol consisted of qualifying visit (Baseline), 

contact lens fitting visit (following day - Day 2 visit), control visit at two weeks and follow-

up visits at three months, six months and 12 months post-refitting, followed by the visit for 

the post-study assessment after three days (Control).  

Laboratory temperature (°C) and humidity (%RH) were monitored with a thermo-

hygrometry device (C3121, Comet, Czech Republic) and noted for each of the subjects. 

Subjects had an environmental adjusting period if they arrived at the laboratory directly 
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from outdoors. At each of the visits (except of Day 2) OSDI questionnaire was filled-in by 

the participants to distinguish symptomatic subjects and score ocular symptoms 

experienced during the last week preceding each visit.  

3.2.2. Sample size calculation 

Clinical differences to detect for the most common DED measures were based on the 

DEWS II - Diagnostic Methodology Report25 and the resulting sample size calculations 

were based on 2-sample T-test comparison with 80% power and P < 0.05 significance 

level. The minimum sample sizes to detect the clinical difference in ocular measures were 

estimated. In more complex experiments, that require repeated measures analysis of 

variance (ANOVA), it is better to consider the number of degrees of freedom (based on 

both the number of treatments/visits and the number of replicates), having in mind that it 

is recommended to have at least 15 such degrees. Additionally, as DED measures often 

deviate from a normal distribution, it is advised to increase the sample size by 10% in order 

to compensate for this deviation25. Considering all the criteria mentioned above, and when 

sufficient data was available in literature regarding the data variability, the minimum 

necessary sample size was estimated for each of the considered measures. 

The minimum sample size was estimated as 40 subjects. Considering potential drop-outs 

and the time and cost limit, the maximum sample size was estimated to be around 60 for a 

12-month period of observation. However, increasing the number of the recruited subjects 

from 40 to 60 would only have a small impact on the power of the statistical analysis, as 

the number of degrees of freedom is already substantial when sample size equals 40. 
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3.2.3. Contact lens fit 

Several studies have been conveyed to investigate a long-term impact of soft contact lens 

wear on ocular physiology224-228. They were generally focused on different lens designs, 

oxygen permeability228 and their impact on the ocular surface morphology224,226,229, tear 

stability or ocular surface sensory function225. Day 2 visit of the longitudinal study was 

dedicated to fitting subject with contact lenses. This visit was divided into morning and 

afternoon sessions. In the morning subjects were fitted with two different types of daily 

disposable contact lenses: Silicon Hydrogel (SiHy, Delefilcon A) on the right eye and 

Hydrogel (Hy, Omafilcon A) on the left eye. After four hours of wear, further assessment 

was performed, including: subjective comfort assessment, contact lens fit, pre-lens 

NIKBUT measurements with K5M and ocular surface staining with fluorescein after lens 

removal. Contact lens fit was recorded on the corresponding evaluation sheet (see 

Appendix 6). Newly-fitted lens was chosen based on the contact lens fit, reported subjective 

comfort after 4 hours of wear and pre-lens tear film surface quality. Tear film surface 

quality measurements were based on the quality of reflected Placido rings, as described in 

the study of Mousavi et al.39. Contact lens fit assessment included contact lens centration 

(decentration not greater than 0.2 mm in any direction), corneal coverage, horizontal lag 

(within 0.5–1.0 mm), blink movement (within 0.25–0.50 mm), push-up test (within 2–4 

mm/s) and the binocular corrected visual acuity rating for distance and near vision230,231. 

Lenses were inserted straight from their blister packs and were worn for approximately four 

hours before fit assessment. Based on these criteria, one lens was chosen for the subject to 

wear it for the whole duration of the study. Subjects were given written instructions on 

contact lens care and hygiene, which they were obliged to follow (see Appendix 7). 

Moreover, all contact lens novices and some other volunteers were scheduled for an 
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additional individual visit with an eye-care professional, when they were introduced to 

contact lens handling, putting the lenses on and taking them off properly, contact lens 

hygiene and adverse effects of contact lens misuse. 

3.2.4. Ocular symptoms assessment  

Ocular symptoms usually accompany DED thus, they were adapted in its most recent 

definition as one of the fundamental characteristics of DED. While in severe cases of the 

disease, ocular symptoms are evident, it is not always the case for its mild and early 

manifestations. It was estimated, that more than one-third of contact lens wearers 

experience DED symptoms with contact lens wear232,233 and that discomfort accounts for 

around 51% of contact lens dropouts234. 

DED symptoms were assessed with DEQ-5235, while OSDI236 was used to assess general 

ocular surface disease symptoms over the time-course of the longitudinal study.  

OSDI is the most widely used questionnaire for the assessment of ocular symptoms in 

clinical trials. It measures the frequency of symptoms, environmental triggers, visual 

disturbance and vision related quality of life237. Recently, many other questionnaires have 

established concurrent validity against the OSDI. The consensus is to use the OSDI238-243 

due to its strong establishment in the field or the DEQ-5243 due to its short length  

and discriminative ability25,235. Distributions of currently available metrics, including signs 

and symptoms of DED fluctuate over time and vary significantly within different levels  

of disease severity8,9,25. In this study, a combination of OSDI and DEQ-5 questionnaires 

(see Appendix 2) was used to assess ocular symptoms throughout the time-course of the 

study. Questionnaires were self-administered by the subjects. Since the assessment  
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of contact lens-related discomfort was not in the scope of this study, a standard CLDEQ-8 

questionnaire was not used to assess contact lens-related dry eye symptoms244. 

3.2.5. Tear osmolarity 

Tear osmolarity was measured from the inferior lateral tear meniscus in both eyes of each 

subject with use of the chip-based osmometer (TearLab® Osmolarity System, TearLab 

Corp, San Diego, CA, USA). Electronic check cards calibration of the instrument was 

performed daily, based on the manufacturer's guidelines. The control solution calibration 

was performed every time a new box of test cards was opened. The device was powered 

for the whole duration of the study and was kept fully charged. The device and the test 

cards were stored in the laboratory in which the measurements were conducted, to ensure 

them being in the same temperature as the environment. The same diagnostic pen was used 

for all the measurements. The tear osmolarity of the right eye of each subject was always 

measured first. Subjects were asked to sit with their chin tilted slightly upward and eyes 

directed toward the ceiling. The tip of the pen was positioned just above the lower eyelid 

and gently applied to the lower tear meniscus. Care was taken not to induce reflex tearing, 

not to touch the globe or pressing the eyelid during collection. After the successful sampling 

and docking of the diagnostic pen, values were displayed on the device and then recorded 

on the corresponding evaluation sheet (see Appendix 5, 8, 9 and 10). Two measurements 

for each eye were performed and the obtained results were averaged74. If the intra-eye 

results differed by more than 9 mOsm/L, the tear osmolarity was assessed three times per 

eye to obtain more reliable averaged estimate of tear osmolarity for that eye. The tear 

osmolarity was assessed during the Baseline visit and followed at 3-month, 6-month,  

12-month and Control visit. 
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3.2.6. Non-invasive Keratograph tear film break-up time 

Measurements of non-invasive Keratograph 5M tear film break-up time (NIKBUT) were 

performed according to the manufacturer’s instructions. The measurements were 

performed in mesopic conditions. As mentioned before, measurements of NIKBUT with 

K5M are performed under infrared (880 nm) Placido disk illumination. Subjects were asked 

to blink twice naturally to reconstitute the tear film, while fixating on the central target and 

keeping their eyes open for as much time as they felt comfortable. The video-recording of 

the pattern starts automatically after two blinks and the pattern can be observed in real time. 

Break-ups are automatically detected by K5M and appear on a polar-type grid representing 

the corneal area, as shown in the Figure 23. The video recording with K5M lasts until 

subject next blink. The K5M algorithm for estimating tear film quality is proprietary. 

Therefore, two numerical values are provided at the end of each assessment:  

• First-NIKBUT (F-NIKBUT), which is the time in seconds taken from the last blink 

to the first appearance of a substantial deformation of the Placido rings; 

• Mean-NIKBUT (M-NIKBUT), which is the average of the time taken from the last 

blink to the Placido ring deformations in all the regions monitored over the duration 

of the recording. Three measurements per eye were acquired, starting always from 

the right eye and alternated.  

F-NIKBUT and M-NIKBUT were noted on the corresponding evaluation sheet. NIKBUT 

was measured at Baseline, Day 2, 3-month, 6-month, 12-month and Control visit (see 

Appendix 5, 6, 8, 9 and 10). It is important to notice that pre-corneal NIKBUT and pre-

lens NIKBUT were assessed at different days/times. The pre-corneal NIBKUT was 

inspected during the Baseline and Control visit, whereas the pre-lens NIKBUT at follow-
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up visits. NIKBUT estimates measured at Day 2 were used for contact lens fitting 

assessment, as proposed by Mousavi et al.39. Figure 24 shows exemplary acquisitions with 

K5M, corresponding to different subjects with two different levels of tear film surface 

quality. 

 

Figure 23. Interface of the K5M for NIKBUT measurements. Left panel shows an image of the eye with the 

superimposed Placido rings from a 25-second sequence, whereas the right panel shows the distortion map 

of the rings and the respective estimated break-up times 

 

Figure 24. Exemplary images of the Placido disks reflection observed with K5M on the eyes without contact 

lenses. Left: good tear film surface quality - no distorted Placido rings; Right: visible tear film break-ups, 

low tear film surface quality and distorted Placido rings 
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3.2.7. Lipid layer thickness 

Tear film lipid layer can be investigated with thin layer interferometry-based techniques.  

Colour and brightness of the interference images are analysed to yield lipid layer 

thickness245-249.  The thickness of the lipid layer has been reported to be from 15 to 157 nm,  

with a mean of approximately 42 nm245. Lipid layer has been found to play an important 

role in tear film stability17,250. The evaluation of lipid layer thickness (LLT) with K5M is 

achieved based on the phenomena of thin-film interference. It is a physical phenomenon in 

which light waves reflected by the upper and lower boundaries of the thin 

layer interfere with one another, either enhancing or reducing the reflected light. When the 

thickness of the film is an odd multiple of one quarter-wavelength of the light projected on 

it, the reflected waves from both surfaces interferometrically cancel each other. Since the 

wave in not reflected, it is transmitted instead. When the thickness is a multiple of a half-

wavelength of the light, the two reflected waves reinforce each other, increasing the 

reflection and reducing the transmission. Therefore, when white light consisting of a range 

of wavelengths is being projected on the thin lipid layer of the tear film, certain wavelengths 

(colours) are intensified while others are attenuated. The colour pattern depends on the 

regional LLT. It has been suggested that these interference patterns could be used to 

observe the fluidity and thickness of the lipid layer between blinks251,252.  

The Lipid Layer function of K5M’s software was utilized to assess LLT based on the 

abovementioned phenomenon. To do so, the magnification was switched to ×1.4, which 

enables an observation of subtle changes in the interference pattern and the debris floating 

over the surface of the tear film. K5M head was being moved in small increments to focus 

on the upper thin layer of the tear film. The most effective way to achieve this is to bring 
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the Placido rings into focus on the corneal surface and subsequently to slowly pull the 

camera away to slightly defocus the Placido rings, bringing the lipid layer into depth of 

focus. Once it is achieved, the colourful thin-film interference pattern and small particles 

floating in the lipid layer can be observed and be recorded. Subjects were advised to look 

at the central focusing spot of the device and blink freely. After pressing the Rec button, 

the video of the lipid layer movement after the blink was recorded for a duration of three 

non-forceful consecutive blinks. The images were stored automatically, then exported and 

saved on a portable device for further analysis. This procedure was performed for each eye 

of the subject at Baseline, 3-month, 6-month, 12-month and Control visit. Successfully 

done procedure was noted on the evaluation sheet (see Appendices 5, 8, 9, 10). Lipid layer 

thickness based on these recordings was evaluated qualitatively by masked practitioner. 

Based on the observed pattern it was scored as ‘0’ when lipid layer was normal, ‘-1’ when 

the colourless reflections were suggesting a thin lipid layer and ‘+1’ when the lipid layer 

was reported as thicker than normal and an evident increase in colourful spots in the lipid 

layer could be observed. Examples of different lipid layers acquired for two of the subjects 

and their scores are displayed in the Figure 25. 

 

Figure 25. Exemplary frames from the video of the lipid layer acquired for two of the subjects with K5M. 

Left:  score ‘-1’ - colourless reflections suggesting a thin lipid layer; Right: score ‘+1’ - an increase in 

colourful fringes indicating thicker lipid layer 
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3.2.8. Ocular redness 

Bulbar and limbal redness were recorded by R-Scan function of the K5M’s software called 

Bulbar redness. Default settings were used. The images were stored and analysed 

automatically. To monitor the ocular surface redness, the camera was aligned so that the 

grey focusing disc covered the iris of the subject. Subsequently subjects were asked to open 

their eyes as wide as possible and the image was captured. Figure 26 shows an exemplary 

image of the eye assessed with the Bulbar redness function. 

 

Figure 26. An exemplary image acquired for one of the subjects with K5M for automatic assessment of 

bulbar and limbal redness  

The device automatically grades bulbar and limbal redness of the temporal and nasal area 

of the exposed ocular surface. This procedure was performed at Baseline, 3-month,  

6-month, 12-month and Control visit. The nasal and temporal values of the bulbar and 

limbal redness of both eyes were noted on the corresponding evaluation sheet (see 

Appendix 5,9 and 10) and averaged for each eye as bulbar and limbal redness, respectively. 
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3.2.9. Ocular surface staining with fluorescein 

Corneal and conjunctival staining with fluorescein was performed to assess ocular surface 

damage and to ensure no adverse effects of contact lens wear over the time-course of the 

longitudinal study. Staining was examined with a slit lamp biomicroscope, with ×16 

magnification, cobalt blue illumination and a Wratten 12 yellow-barrier filter.  

Efron’s grading scheme was utilized to assess the severity of staining of the cornea and 

conjunctiva93 and the corresponding scores were noted on the evaluation sheet  

(see Appendix 5, 6, 8, 9 and 10).  

After grading the ocular staining by an optometrist with the slit-lamp, images of the staining 

were captured with the K5M’s tool called Fluo-Imaging and stored automatically for 

further inspection. Default settings were used. Figure 27 demonstrates two exemplary 

images of the ocular surface stained with fluorescein, acquired for one of the subjects with 

the use of the Fluo-imaging tool of K5M. 

 

Figure 27. Staining with fluorescein of the ocular surface, acquired for one of the subjects with Fluo-

imaging built-in software of K5M 

Subjects were asked to look at the red central dot of the device. One image of the central 

ocular surface was captured per eye, to visualise corneal staining. To do so, the reflection 
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of the red target on the ocular surface must be put into focus. Subsequently, to assess 

conjunctival staining, subjects were asked to look up and then alternately to their left and 

right side. For each of the gaze positions, one image of the conjunctival staining was 

captured. The procedure was applied to both eyes of each subject. 

3.2.10. Ocular surface staining and lid wiper staining with 

lissamine green 

To perform LWE scoring and asses conjunctival staining, 1.5 mg lissamine green strip 

(HUB Pharmaceuticals, LLC, Scottsdale, Arizona) was moistened with 0.9% buffered 

saline solution. Excess liquid was not shaken from the strip. After advising the subject to 

look away and after gently pulling down his/her lower eyelid, the lissamine green strip was 

gently inserted into the lower conjunctival sac, with care taken not to touch the bulbar 

conjunctiva with the strip. After instillation, the retracted lower eyelid was slowly released, 

and this procedure was repeated for the other eye. Subsequently, subjects were advised to 

keep their eyes closed for one minute. Next, the staining was recorded by Imaging tool of 

K5M’s software. Magnification was switched to ×0.5, which enabled simultaneous 

observation of both tarsal and nasal bulbar conjunctiva. While subjects were asked to fixate 

on a central target, the K5M camera was focused, and one static image of the whole exposed 

ocular surface was obtained. When deep conjunctival staining was apparent on a relatively 

small area, the camera was switched to higher magnification to closely investigate the 

staining in that area. Figure 28 shows an exemplary image of lissamine green staining of 

the conjunctiva acquired for one of the subjects and the corresponding magnified image. 
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Figure 28. Lissamine green staining of the conjunctiva (left) and the corresponding close-up (right) 

acquired for one of the subjects with K5M 

For each subject, at least one image of the exposed anterior eye surface was recorded, while 

the eye was kept in a primary gaze position. The images were stored automatically and 

Efron’s grading scale was used to assess the severity of staining.  

Subsequently, right after careful eyelid inversion, an image of the lid wiper staining was 

captured. Since the lid inversion can be uncomfortable to the subjects, the Meibography 

image was acquired right after the image of the lid wiper was taken, while the subject’s 

eyelid was still inverted. Figures below show exemplary images of the inverted upper 

(Figure 29) and lower (Figure 30) eyelid - one, with no staining (or with Marx’s line only) 

and one with visible lid wiper staining, suggestive of LWE. Staining scores were assessed 

independently by two practitioners and graded in accordance with the scheme proposed by 

Korb et al.95 based on the horizontal length and sagittal width of the staining. When only 

the Marx’s line or no staining was observed, the corresponding score was marked as ‘0’, 

suggesting the eye without LWE.  
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Figure 29. Upper eyelid lid wiper staining suggestive of LWE (left, score 3) and Marx’s line (right, score 

0), acquired with K5M for two different subjects 

Lid inversion for LWE scoring, as well as for Meibomian glands drop-out scoring (Meibo-

score) were performed at Baseline, 3-month, 6-month, 12-month and Control visit  

(see Appendices 5, 9 and 10). 

 

Figure 30. Lower eyelid lid wiper staining suggestive of LWE (left, score 3) and Marx’s line (right, score 

0), acquired with K5M for two different subjects 
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3.2.11. Infrared meibography 

Meibomian glands were visualised in infrared with Meibo-Scan K5M tool called 

Meibography Single Image. Default settings were used, with ×0.5 magnification.  

Images were acquired for both upper and lower eyelid of both eyes of each subject.  

As mentioned before, the Meibography infrared image was acquired right after the white 

light image of the lid wiper was taken. To do so, the device was quickly switched to 

Meibography mode. Successful acquisition was reported on the corresponding evaluation 

sheet at Baseline, 3-month, 6-month, 12-month and Control visit (see Appendices 5, 9 and 

10). The images were stored automatically for further processing. One of the acquired 

images is displayed below in Figure 31. 

 

Figure 31.  An exemplary meibography infrared image of the upper eyelid acquired for one of the subjects 

with K5M Meibography Single Image tool 

ImageJ (US National Institutes of Health, Bethesda, MD, USA) image processing software 

was used to perform the image processing and to calculate the Meibo-score based on 

acquired infrared meibography. The Polygon selection tool of the software was used as 

shown in Figure 32. Firstly, the whole exposed tarsal area of the eyelid was outlined and 
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the surface area of that outline (in pixels) was assessed. Subsequently, this surface area was 

compared with the surface area (in pixels) of the zone devoid of Meibomian glands, which 

was also marked and calculated with the Polygon selection tool. 

 
 

Figure 32. Meibomian glands image analysis performed with the Polygon selection tool of ImageJ;  

Left: Selection of the entire eyelid area; Right: selection of the area devoid of Meibomian glands;  

The lines of the outline were thickened and marked with bright colour for better visibility 

Thus, the Meibo-score was calculated as a percentage of the Meibomian glands loss 

compared with the whole surface of the eyelid and scored by a masked evaluator.  

Originally, to score the Meibomian gland loss, the Meiboscale, designed by Heiko Pult was 

utilized253. Each score of the Meiboscale is a natural number from 0 (no loss) to 4 

(substantial loss) that corresponds to the percentage drop-out of Meibomian glands. 

Table 9 shows examples of different levels of Meibomian glands loss acquired with K5M 

as if they were scored based on the Meiboscale. 
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Table 9. Exemplary images of the upper eyelid acquired with K5M infrared Meibography tool and their 

corresponding scores developed by Pult et al. 

Meiboscale Exemplary images of the upper eyelid acquired with K5M 

Score 0 

(≈0% loss) 

 

Score 1 

(≤25% loss) 

 

Score 2 

(26-50% loss) 

 

Score 3 

(51 - 75% loss) 

 

Score 4 

(>75% loss) 
No subjects reported with this level of Meibomian glands drop-out 

Images were acquired for subjects taking part in the longitudinal study. The scale was proposed by Pult et al.254 

3.2.12. Corneal thickness 

Studies show that changes in corneal thickness may occur during contact lens wear. 

In this study central corneal thickness (CCT) was measured based on the scans acquired 

with OCT (Copernicus, Optopol, Poland) with the use of built-in software. Dedicated lens 

system was attached to the OCT to visualize the anterior segment of the eye. The anterior 

segment module of the device allows corneal and anterior imaging with a resolution of 3 

microns. ‘Asterisk’ anterior eye scan protocol was used and the number of cross-sections 
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of the cornea was put on maximum value. CCTs were displayed automatically and noted 

on the corresponding evaluation sheet at Baseline, 2-weeks, 3-month, 6-month, 12-month 

and Control visit (see Appendices 5, 8, 9 and 10). 

3.2.13. Statistical Analysis 

Group mean, median values, standard deviations and ranges of the ocular biomarkers 

assessed over the time-course of the longitudinal study are displayed in the Results sub-

section of this chapter, together with the reported statistically significant differences 

between different groups of subjects. Non-parametric two-way ANOVA (Friedman test) 

was used to assess statistically significant changes between Baseline and 12-month visit. 

Subsequently, post-hoc comparisons for each pair of visits was conducted, followed by 

comparing Baseline and Control visit (bare eye) results. The post-hoc analysis was 

conducted with the Wilcoxon signed rank test. Additionally, linear correlations between all 

the measures collected over the time-course of the longitudinal study were tested. There is 

also a question whether to correct the P-values obtained for the number of tests made (to 

use ‘Bonferroni correction’). Armstrong et al.255 argued that the use of the Bonferroni 

correction should depend on the circumstances of the study. It should not be used routinely 

and should be considered if: 

• a single test of the ‘universal null hypothesis’ (H0) that all tests are not significant is 

required; 

• it is imperative to avoid a type I error, i.e. claiming a significant result when it is absent; 

• many tests are carried out without pre-planned hypotheses.  

None of these circumstances were characteristic to this study and therefore the Bonferroni 

correction was not applied. 
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3.3. RESULTS 

This section summarizes the results obtained throughout the time-course of the longitudinal 

study and the results of the performed statistical analysis, together with the description of 

the subjects and the criteria based on which the subjects were divided into groups. 

3.3.1. Subjects and contact lens fit 

Fifty-five subjects (36 females and 19 males) participated in the study for its whole 

duration. Before commencing the study, six subjects were contact lens neophytes, 30 wore 

monthly, 13 wore fortnightly and six wore daily disposable soft contact lenses habitually. 

A clear majority of the subjects (N = 48) wore SiHy lenses before commencing the study. 

The group mean age was (mean ± standard deviation) 26 ± 4 y/o and was ranging from 20 

to 37 y/o. Corrected visual acuity of all subjects was stable over the time-course of the 

study and was ranging from 0.0 to 0.1 logMAR. Subjects were fitted with contact lenses 

based on the procedure performed at Day 2 and described by Mousavi et al.39. Thirty-eight 

subjects were fitted with SiHy (25 females and 13 males) and 17 subjects (11 females and 

6 males) were fitted with Hy daily disposable soft contact lenses (see Figure 33).  
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Figure 33. Habitual contact lenses used by the subjects before participating in the study (left) and post-

refitting subjects’ demographics (right)  

There was no statistically significant difference in age (P = 0.978) and gender distribution 

(P = 0.797) between the SiHy and Hy-fitted group, as reported with Mann-Whitney test. 

Statistical significance (P-values) of the differences between right and left eye during 

Baseline visit is shown in Table 10. 

Table 10. Inter-eye differences in the ocular measures assessed during the baseline visit 

Ocular measure 

Difference  

between 

OD and OS 

Ocular measure 

Difference  

between 

OD and OS 

M-NIKBUT P = 0.469 Corneal staining P = 0.313 

F-NIKBUT P = 0.331 Conjunctival staining P = 0.736 

TMHK5M P = 0.900 FBUT P = 0.437 

Tear osmolarity P = 0.600 Upper LWE score P = 0.598 

Ocular Redness – Bulbar P = 0.923 Lower LWE score P = 0.556 

Ocular Redness – Limbal P = 0.758 Upper lid Meibo-score P = 0.888 

Lipid layer thickness P = 0.907 Low lid Meibo-score P = 0. 379 

M-NIKBUT - Mean non-invasive tear film break-up time; F-NIKBUT - First non-invasive tear film break-up time; 

TMHK5M - K5M-based tear meniscus height, FBUT - fluorescein tear film break-up time; OD - right eye, OS - left eye; 

LWE - lid wiper epitheliopathy 
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Wolffsohn et al. demonstrated that soft contact lens movement and ocular surface 

indentation can be influenced by both lens edge design and midperipheral lens profile224. 

Two lenses used in the longitudinal study share comparable midperipheral characteristics. 

Images of the lens peripheral shapes and edge profiles, acquired with OCT for the lenses 

of the same refractive power were displayed in the Figure 34. The images were resized and 

cropped to show the area of interest. 

 

Figure 34. Lens edge of hydrogel lens (left part) and silicone-hydrogel lens (right part) used in the study. 

Images acquired with OCT. Images were resized and cropped. Lenses presented here were of the same 

refractive power 

Differences (P-values) in ocular measures between SiHy and Hy-fitted group are displayed 

in Table 11. Except for one ocular measure (TMH-based TCR at Control visit), there were 

no statistically significant differences noted between SiHy-fitted and Hy-fitted group over 

the time-course of the study. This may indicate that both lenses achieved similar 

performance and had comparable impact on ocular physiology.   
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Table 11. Statistical significance (P-values) of differences between SiHy and Hy-fitted group in ocular 

measures reported over the time-course of the longitudinal study 

Ocular measure Baseline 3-month 6-month 12-month Control 

Temperature P = 0.654 P = 0.252 P = 0.553 P = 0.441 P = 0.139 

Humidity P = 0.662 P = 0.071 P = 0.524 P = 0.668 P = 0.207 

OSDI  P = 0.964 P = 0.547 P = 0.622 P = 0.396 P = 0.376 

DEQ-5 P = 0.380 P = 0.905 P = 0.207 P = 0.621 P = 0.778 

M-NIKBUT P = 0.222 P = 0.629 P = 0.348 P = 0.629 P = 0.909 

F-NIKBUT P = 0.566 P = 0.695 P = 0.848 P = 0.689 P = 0.810 

Tear osmolarity P = 0.282 P = 0.080 P = 0.702 P = 0.433 P = 0.688 

TMHK5M P = 0.074 P = 0.110 P = 0.137 P = 0.160 P = 0.056 

TCRTMH P = 0.051 P = 0.991 P = 0.138 P = 0.989 P = 0.026* 

TCRTMD P = 0.058 P = 0.620 P = 0.339 P = 0.779 P = 0.719 

TCRTMA P = 0.068 P = 0.294 P = 0.108 P = 0.401 P = 0.133 

D-TMH P = 0.588 P = 0.184 P = 0.653 P = 0.604 P = 0.984 

D-TMD P = 0.949 P = 0.157 P = 0.887 P = 0.636 P = 0.535 

D-TMA P = 0.582 P = 0.814 P = 0.887 P = 0.825 P = 0.366 

Bulbar Redness P = 0.406  P = 0.742 P = 0.315 P = 0.547 P = 0.825 

Limbal Redness  P = 0.891 P = 0.453 P = 0.085 P = 0.898 P = 0.879 

Lipid layer thickness P = 0.120 P = 0.214 P = 0.744 P = 0.694 P = 0.900 

Corneal staining  P = 0.977 P = 0.218 P = 0.181 P = 0.655 P = 0.682 

Conjunctival staining P = 0.598 P = 0.422 P = 0.649 P = 0.244 P = 0.695 

FBUT P = 0.688 P = 0.137 P = 0.949 P = 0.152 P = 0.984 

Upper LWE score  P = 0.779 P = 0.132 P = 0.453 P = 0.574 P = 0.796 

Lower LWE score P = 0.294 P = 0.872 P = 0.668 P = 0.350 P = 0.979 

Upper lid Meibo-score P = 0.906 P = 0.133 P = 0.494 P = 0.646 P = 0.248 

Lower lid Meibo-score P = 0.662 P = 0.848 P = 0.466 P = 0.523 P = 0.642 

CCT P = 0.721 P = 0.440 P = 0.344 P = 0.549 P = 0.442 

OSDI - ocular surface disease index; DEQ-5 - 5-item dry eye questionnaire; M-NIKBUT - mean non-invasive tear film 

break-up time; F-NIKBUT - first non-invasive tear film break-up time; TCR - tear clearance rate; D-TMH - tear 

meniscus height; D-TMD - tear meniscus depth; D-TMA - tear meniscus area; LWE - lid wiper epitheliopathy; CCT - 

central corneal thickness; * denotes statistically significant difference 
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Additionally, as there were no statistically significant differences in any of the assessed 

ocular measures between right and left bare eye and between SiHy and Hy-fitted group,  

all subjects were unified and analysed as one cohort of re-fitted contact lens wearers.  

In some cases, the division of subjects into groups was performed with respect to the 

reported signs or symptoms of DED and their recommended thresholds. 

3.3.2. Study environment 

The group mean and median values, standard deviations and ranges of the laboratory 

temperature [°C] and relative humidity [%RH] over the time-course of the study were 

displayed in Table 12 and Table 13, respectively. Non-parametric two-way ANOVA 

showed statistically significant difference in temperature since baseline visit until 

12 months (χ2 = 63.66, P < 0.001). 

Table 12. Temperature in the laboratory during each of the sessions 

Temperature [°C] 

Visit Baseline 2-week 3-month 6-month 12-month Control 

Mean ± SD 24.3 ± 1.0 24.9 ± 1.0 24.1 ± 1.5 25.2 ± 1.0 23.5 ± 0.7 23.7 ± 1.2 

Median 24.5 25.0 24.1 25.2 23.4 23.2 

Range [21.8, 26.3] [22.5, 26.8] [21.5, 26.6] [22.1, 26.6] [22.1, 24.9] [21.8, 26.2] 

SD- standard deviation 

Post-hoc comparisons conducted for each pair of visits showed statistically significant 

differences in temperature between Baseline and other visits (P = 0.005, P < 0.001 and  

P < 0.001 for 2-week and 6-month and 12-month, respectively), 2-week and 3-month  

(P = 0.025), 2-week and 12-month (P < 0.001), 3-month and 6-month (P < 0.001), 

3-month and 12-month (P = 0.015) and 6-month and 12-month visit (P < 0.001). 
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Additionally, Wilcoxon test showed statistically significant difference in temperature 

between Baseline and Control visit (P < 0.001). Non-parametric two-way ANOVA 

(Friedman test) showed statistically significant difference in relative humidity in the 

laboratory since Baseline until 12-month visit (χ2 = 78.08, P < 0.001). 

Table 13. Relative humidity in the laboratory during each of the sessions 

Relative humidity [%RH] 

Visit Baseline 2-week 3-month 6-month 12-month Control 

Mean ± SD 32.1 ± 4.7 31.4 ± 4.9 25.4 ± 3.4 31.9 ± 7.9 34.8 ± 3.4 32.6 ± 3.5 

Median 32.0 30.3 24.4 32.6 34.6 32.0 

Range [23.3, 44.4] [22.3, 39.8] [20.3, 33.2] [18.5, 47.7] [26.6, 45.1] [28.7, 45.0] 

SD - standard deviation; Relative humidity is the ratio of the partial pressure of water vapor to the equilibrium vapor 

pressure of water at a given temperature. Relative humidity depends on temperature and the pressure of the system 

Statistically significant differences in relative humidity of the environment were noted 

between Baseline and 3-month (P < 0.001), Baseline and 12-month (P < 0.001), 2-week 

and 3-month (P <0.001), 2-week and 12-month (P < 0.001), 3-month and 6-month 

(P < 0.001), 3-month and 12-month (P < 0.001) and 6-month and 12-month visit 

(P = 0.021). Additionally, Wilcoxon test showed statistically significant difference in 

relative humidity between Baseline and Control visit (P < 0.001).  
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3.3.3. Reported symptoms - OSDI 

The group mean, median values, standard deviations and ranges of OSDI reported over the 

time-course of the study were shown in Table 14. Friedman test showed statistically 

significant differences in OSDI over the time-course of the study, since Baseline until 

12-month visit (χ2 = 9.53, P = 0.049). Subsequently, post-hoc comparisons for each pair of 

visits showed statistically significant difference in OSDI between Baseline and 2-week 

(P = 0.006), and 2-week and 6-month visit (P = 0.045). Additionally, statistically 

significant differences between Baseline and Control visit in OSDI were noted (P = 0.002).  

Table 14. OSDI scores reported over the time-course of the study 

OSDI [-] 

Visit Baseline 2-week 3-month 6-month 12-month Control 

Mean ± SD 13.9 ± 11.9 11.0 ± 12.8 11.3 ± 10.7 11.9 ± 9.1  12.6 ± 11.5  6.2 ± 9.5 

Median 10.4 6.3 8.3 8.3 9.1 2.1 

Range [0.0, 47.7] [0.0, 61.1] [0.0, 52.1] [0.0, 37.5] [0.0, 59.1] [0.0, 37.5] 

OSDI – Ocular Surface Disease Index; Mild 13-22; Moderate 23-32; Severe ≥ 33 25; SD – standard deviation 

Subsequently, subjects were divided into groups based on ocular symptoms reported at 

initial visit. This division was based on the OSDI cut-off value recommended by DEWS II 

in its Diagnostic Methodology report25. Subjects were divided into asymptomatic and 

symptomatic group, with OSDI of 13 considered as the threshold between no DED and 

mild DED symptoms. OSDI mean values, medians, ranges and standard deviations resulted 

from this division are shown in Table 15. 
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Table 15. OSDI reported over the time-course of the study in subjects divided into groups based on their 

OSDI score reported at initial visit 

OSDI in subjects initially reported as asymptomatic (OSDI < 13) 

Visit Baseline 2-week 3-month 6-month 12-month Control 

Mean ± SD 4.9 ± 4.0 5.6 ± 4.5 7.5 ± 8.0 10.3 ± 8.5 11.4 ± 13.2 2.2 ± 3.7 

Median 4.6 4.4 5.2 8.3 8.3 0.0 

Range [0, 10] [0, 15] [0, 35] [0, 38] [0, 59] [0, 13] 

OSDI in subjects initially reported as symptomatic (OSDI ≥ 13) 

Mean ± SD 23.3 ± 10.1  16.6 ± 16.0 15.3 ± 11.8 13.6 ± 9.6 13.6 ± 9.8 10.2 ± 12.1 

Median 21 11 13 9 11 4 

Range [13, 48] [0, 61] [0, 52] [2, 35] [2, 40] [0, 38] 

N – number of subjects; M – number of novices; SD – standard deviation; OSDI – Ocular Surface Disease Index; 

Asymptomatic < 13; Mild 13-22; Moderate 23-32; Severe ≥ 33 25; 

For initially asymptomatic subjects, statistically significant changes in OSDI were 

observed over the time-course of the study (χ2 = 20.89, P < 0.001). Post-hoc comparison 

between each pair of visits showed statistically significant differences between Baseline 

and 6-month (P = 0.002), Baseline and 12-month (P = 0.011), 2-week and 6-month 

(P = 0.002), 2-week and 12-month (P = 0.010), 3-month and 6-month (P = 0.023) and 

3-month and 12-month visit (P = 0.024). Additionally, significant difference was noted in 

OSDI between Baseline and Control visit (P = 0.018). 

For initially symptomatic subjects, statistically significant downward trend in OSDI was 

observed over the time-course of the study (χ2 = 18.28, P = 0.001), particularly between 

Baseline and any other visit (P = 0.004, P = 0.005, P < 0.001, P = 0.002 for 2-week, 

3-month, 6-month and 12-month, respectively). Additionally, significant difference was 

noted between Baseline and Control visit (P < 0.001). 
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3.3.4. Reported symptoms - DEQ-5 

The group mean and median values, standard deviations and ranges of DEQ-5 reported 

over the time-course of the study were shown in Table 16. There were no statistically 

significant differences in DEQ-5 since Baseline to 12-month visit (χ2 = 7.31, P = 0.121), 

however Wilcoxon test showed statistically significant difference in DEQ-5 between 

Baseline and Control visit (P = 0.022). 

Table 16. DEQ-5 questionnaire scores reported over the time-course of the study 

DEQ- 5 score [-] 

Visit Baseline 2-week 3-month 6-month 12-month Control 

Mean ± SD 8 ± 6 6 ± 4 7 ± 4 7 ± 4 6 ± 4 5 ± 4 

Median 7 6 6 6 6 6 

Range [0, 22] [0, 15] [0, 17] [0, 21] [0, 19] [0, 12] 

SD - standard deviation; DEQ-5 score > 5 - dry eye; DEQ-5 score > 12 - severe dry eye symptoms25 

Subsequently, subjects were divided into groups based on ocular symptoms reported with 

DEQ-5 at initial visit25. Thus, subjects were divided into asymptomatic and symptomatic 

group, with DEQ-5 of 6 [-] being the threshold between DED and non-DED.  

DEQ-5 scores resulting from this division were displayed in Table 17.  
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Table 17. DEQ-5 scores reported over the time-course of the study in subjects divided into groups based on 

their initial DEQ-5 score 

DEQ-5 in subjects initially reported as asymptomatic (DEQ-5 < 6) 

Visit Baseline 2-week 3-month 6-month 12-month Control 

Mean ± SD 2 ± 2 5 ± 3 6 ± 3 6 ± 5 7 ± 5 5 ± 4 

Median 2 5 6 6 7 4 

Range [0, 5] [0, 12] [0, 13] [0, 21] [0, 19] [0, 12] 

DEQ-5 in subjects initially reported as symptomatic (OSDI ≥ 6) 

Mean ± SD 11 ± 4  7 ± 4 7 ± 4. 7 ± 4 6 ± 3 5 ± 3 

Median 11 6 6. 6 6 4 

Range [6, 22] [0, 15] [0, 17] [0, 19] [0, 12] [0, 12] 

DEQ-5 score > 5 - dry eye, DEQ-5 score > 12 - severe dry eye symptoms 25 

For asymptomatic subjects, statistically significant differences in DEQ-5 were recorded  

(χ2 = 23.21, P < 0.001). Post-hoc analysis showed statistically significant differences  

in DEQ-5 between Baseline and all other visits (P < 0.001, P < 0.001, P < 0.001 and  

P = 0.001, for 2-week, 3-month, 6-month and 12-month, respectively). No statistically 

significant difference was noted between Baseline and Control visit (P = 0.064). 

Also, for the symptomatic group changes were observed since Baseline until 12-month visit 

(χ2 = 42.49, P < 0.001), with a significant drop of DEQ-5 noted between Baseline and any 

other visit (P < 0.001, P < 0.001, P < 0.001 and P < 0.001, for 2-week, 3-month,  

6-month and 12-month, respectively). Additionally, statistically significant difference was 

noted between Baseline and Control visit (P < 0.001). 
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3.3.5. Tear osmolarity 

Sample size n, for which the difference of 2 mOsm/L in tear osmolarity could be 

discriminated at 5% level of significance and 90% power was estimated to be at n ≥ 50.  

The group mean and median values, standard deviations and ranges of tear osmolarity over 

the time-course of the study are shown in Table 18.  

Table 18. Tear osmolarity measures reported over the time-course of the study 

Tear osmolarity [mOsm/L] 

OD 

Visit Baseline 3-month 6-month 12-month Control 

Mean ± SD 304 ± 9 300 ± 9 297 ± 7 296 ± 8 293 ± 8 

Median 302 299 297 296 293 

Range [289, 333] [284, 330] [284, 325] [282, 313] [281, 314] 

OS 

Mean ± SD 302 ± 7 299 ± 9 296 ± 8 296 ± 7 292 ± 9 

Median 300 298 297 296 291 

Range [291, 330] [283, 321] [282, 317] [282, 310] [279, 315] 

Difference  

between  

OD and OS 

P = 0.576 P = 0.723 P = 0.592 P = 0.867 P = 0.579 

OD - right eye; OS - left eye; SD- Standard deviation, * denotes statistical significance 

Statistically significant differences in tear osmolarity over the time-course of the study were 

noted for right (P < 0.001, χ2 = 22.91) and left eye (P = 0.001, χ2 = 15.54). Post-hoc analysis 

showed statistically significant differences in right eye tear osmolarity between Baseline 

and 3-month, Baseline and 6-month, Baseline and 12-month and 3-month and 12-month 

visit (P = 0.024, P < 0.001, P < 0.001 and P = 0.003, respectively) and for the left eye tear 

osmolarity between Baseline and 3-month, Baseline and 6-month, Baseline and 12-month 

and 3-month and 12-month visit (P = 0.034, P = 0.002, P < 0.001, P = 0.009, respectively). 
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Evident downward trend of tear osmolarity was observed over the time-course of the study, 

even after subject refraining from wearing contact lenses for three days. 

Additionally, Wilcoxon test showed statistically significant differences in right eye  

(P < 0.001) and left eye (P < 0.001) tear osmolarity between Baseline and Control visit. 

Further investigation of the data revealed that subjects who initially reported increased 

osmolarity (hyperosmolarity, specifically ≥ 308 mOsm/L for at least one eye) exhibited its 

most apparent decrease. This decrease was observed as a steady decay in tear osmolarity 

for up to six months after the Baseline visit.  

Statistically significant differences in tear osmolarity for subject reported with initially 

hyperosmotic tears were noted over the time-course of the study for right (χ2 = 27.59, 

P < 0.001) and left eye (χ2 = 25.83, P < 0.001) and particularly for the right eye between 

Baseline and other visits (P = 0.005, P < 0.001, P < 0.001 for 3-month, 6-month and 

12-month visit, respectively) and between 3-month and 6-month visit (P = 0.005) and for 

the left eye between Baseline and other visits (P = 0.002, P = 0.001, P < 0.001 for  

3-month, 6-month and 12-month visit, respectively) and between 3-month and 6-month 

visit (P = 0.028). Table 19 shows tear osmolarity measures assessed over the time-course 

of the study with respect to initially reported or not reported hyperosmolarity  

(≥ 308 mOsm\L) in at least one eye. 
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Table 19. Tear osmolarity values over the time-course of the study for two groups of subjects 

Tear osmolarity in subjects with initially hyperosmotic tears 

OD 

Visit Baseline 3-month 6-month 12-month Control 

Mean ± SD 316 ± 6 306 ± 10 297 ± 5 299 ± 7 290 ± 8 

Median 316 305 296 299 288 

Range [309, 333] [292, 330] [291, 308] [289, 313] [282, 306] 

OS 

Mean ± SD 312 ± 6 303 ± 9 297 ± 10 296 ± 5 292 ± 8 

Median 311 302 297 295 292 

Range [306, 330] [286, 321] [282, 317] [288, 304] [279, 305] 

Tear osmolarity in subjects with initially normal tear osmolarity 

OD 

Mean ± SD 299 ± 5 298 ± 9 297 ± 8 295 ± 8  294 ± 7 

Median 299 298 298 294 294 

Range [289, 307] [284, 317] [284, 325] [282, 311] [281, 314] 

OS 

Mean ± SD 299 ± 5 298 ± 9 297 ± 8 296 ± 8  292 ± 7  

Median 299 297 297 296 291 

Range [291, 305] [283, 320] [285, 315] [282, 310] [279, 315] 

N – number of subjects; M – number of novices; OD – right eye; OS – left eye; SD – standard deviation; high 

osmolarity in at least one eye ≥ 308 mOsm/L corresponds to the threshold between healthy eyes and mild DED 

symptoms 

In subjects initially presented with lower tear osmolarity (< 308 mOsm/L) the decrease  

in tear osmolarity was also observed, however it was not reported to be statistically 

significant (χ2 = 6.86, P = 0.077 and χ2 = 2.58, P = 0.461 for left and right eye, 

respectively).  The tear osmolarity readings for these subjects over the time-course of the 

study were within the range reported for healthy non-wearers. Singular subjects reported  

a temporary increase in tear osmolarity over the threshold of 308 mOsm/L, however these 
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values were not accompanied by any other signs of DED used as screening criteria in the 

study, as defined in the previous sub-section of this chapter. 

No statistically significant difference was observed in the inter-eye difference in tear 

osmolarity over the time-course of the study (χ2 = 3.11, P = 0.375). Wilcoxon test showed 

no statistically significant difference between Baseline and Control visit (P = 0.971) in this 

ocular measure. 

3.3.6. Non-invasive Keratograph tear film break-up time 

Table 20. Reported M-NIKBUT values measured with K5M  

M-NIKBUT [s] 

OD 

Visit 
Baseline 

(PC) 

Day 2 

(PL) 

3-month  

(PL) 

6-month 

(PL) 

12-month 

(PL) 

Control 

(PC) 

Mean ± SD 17.6 ± 4.3 15.4 ± 3.0 14.6 ± 2.6 14.4 ± 3.1 14.7 ± 3.7 15.0 ± 5.2 

Median 18.3 15.2 14.7 14.6 14.9 15.9 

Range [8.8, 24.9] [11.2, 24.5] [4.9, 20.0] [8.6, 21.5] [7.2, 23.1] [7.4, 24.9] 

OS 

Mean ± SD 16.9 ± 5.1 14.9 ± 3.2 16.1 ± 2.6 14.9 ± 3.1 15.6 ± 3.6 14.7 ± 4.9 

Median 17.3 15.1 15.6 15.5 15.5 12.9  

Range [6.5, 24.9] [3.5, 22.7] [11.5, 22.9] [5.8, 20.1] [3.6, 23.7] [8.9, 24.9] 

Difference 

between  

OD and OS 

P =0.469 P =0.605 P = 0.012* P = 0.254 P = 0.416 - 

M-NIKBUT - Mean non-invasive keratography tear film break-up time; PC – pre-corneal tear film;  

PL – pre-lens tear film; * denotes statistical significance 

Statistically significant differences in right eye M-NIKBUT were noted since Baseline until 

12-month visit (χ2 = 23.72, P < 0.001) particularly between Baseline and other visits  

(P = 0.004, P < 0.001, P < 0.001, P < 0.001 for Day 2, 3-month, 6-month and 12-month 
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visit, respectively). These differences were not statistically significant for the left eye  

(χ2 = 6.54, P = 0.162). Corresponding M-NIKBUT measures are shown in Table 20. 

Additionally, Wilcoxon test showed statistically significant difference in M-NIKBUT 

between Baseline and Control visit for right eye (P = 0.048), however not for the left eye 

(P = 0.187).  

Table 21. F-NIKBUT values measured with K5M reported over the time-course of the study 

F-NIKBUT [s] 

OD 

Visit 
Baseline 

(PC) 

Day 2 

(PL) 

3-month 

(PL) 

6-month 

(PL) 

12-month 

(PL) 

Control 

(PC) 

Mean ± SD 14.8 ± 5.4 9.6 ± 4.1 7.9 ± 3.3 8.7 ± 4.5 8.9 ± 4.3 12.4 ± 5.44 

Median 14.5 8.7 7.5 7.7 7.5 12.3 

Range [2.5, 24.9] [4.5, 24.5] [2.1, 16.5] [2.4, 24.0] [3.1, 22.9] [5.6, 24.9] 

OS 

Mean ± SD 14.0 ± 6.3 8.5 ± 3.9 9.4 ± 4.2 8.4 ± 3.8 9.1 ± 4.8 12.2 ± 6.3 

Median 12.3 7.7 8.4 7.3 7.9 10.2 

Range [3.3, 24.9] [2.3, 20.1] [3.8, 21.9] [3.9, 19.7] [3.51, 23.5] [3.5, 24.9] 

Difference 

between  

OD and OS 

P = 0.331 P = 0.181 P = 0.050 P = 0.839 P = 0.862 - 

PC – pre-corneal tear film; PL – pre-lens tear film; * denotes statistical significance; OS - left eye 

Statistically significant differences were noted for right eye F-NIKBUT (χ2 = 55.52,  

P < 0.001), particularly between Baseline and other visits (P < 0.001 for Day 2, 3-month, 

6-month and 12-month visit, respectively). For the left eye the same statistical dependence 

was noted (χ2 = 41.12, P < 0.001), with statistically significant differences noted 

particularly between Baseline and other visits (P < 0.001 for Day 2, 3-month, 6-month and 

12-month visit, respectively). Additionally, no statistically significant difference in 

F-NIKBUT was noted between Baseline and Control visit for the right eye (P = 0.074) and 
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left eye (P = 0.289). F-NIKBUT values reported over the time-course of the study are 

shown in Table 21. Linear correlations between different measures of tear stability assessed 

in the study, including FBUT, F-NIKBUT and M-NIKBUT are shown in Table 22. 

Table 22. Linear correlations reported between different measures of tear film stability reported in the 

longitudinal study 

Ocular measure 

M-NIKBUT 

OS 

F-NIKBUT 

OD 

F-NIKBUT 

OS 

FBUT 

OD 

FBUT 

OS 

M-NIKBUT OD 

R = 0.294 

P = 0.001* 

R = 0.522 

P < 0.001* 

R = 0.347 

P < 0.001* 

R = 0.276 

P = 0.001* 

R = 0.334 

P < 0.001* 

M-NIKBUT OS 

 R = 0.292 

P = 0.001* 

R = 0.818 

P < 0.001* 

R = 0.329 

P < 0.001* 

R = 0.360 

P < 0.001* 

F-NIKBUT OD 

  R = 0.501 

P < 0.001* 

R = 0.250 

P = 0.004* 

R = 0.333 

P < 0.001* 

F-NIKBUT OS 

   R = 0.403 

P < 0.001* 

R = 0.464 

P < 0.001* 

FBUT OD 

    R = 0.863 

P < 0.001* 

OD - right eye, OS - left eye, M-NIKBUT - mean non-invasive keratography tear film break-up time, F-NIKBUT - first 

non-invasive keratography tear film break-up time, FBUT - fluorescein tear film break-up time 
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3.3.7. Meniscometry 

Table 23 shows TMH values assessed with K5M-based en face method over the time-

course of the study. Friedman test showed no statistically significant differences in lower 

central TMH measured with Oculus K5M since Baseline until 12-month visit, for neither 

right (χ2 = 0.84, P = 0.839), nor the left eye (χ2 = 4.12, P = 0.249). Additionally, Wilcoxon 

test showed no statistically significant difference between Baseline and Control visit for 

right (P = 0.139) and left eye (P = 0.220). 

Table 23. Inferior central tear meniscus height measured with K5M 

TMHKFM [mm] 

OD 

Visit Baseline 3-month 6-month 12-month Control  

Mean ± SD 0.25 ± 0.06 0.24 ± 0.07 0.24 ± 0.07 0.25 ± 0.07 0.23 ± 0.07  

Median 0.24 0.24 0.24 0.23 0.23  

Range [0.13, 0.36] [0.15, 0.58] [0.14, 0.48] [0.12, 0.43] [0.16, 0.39]  

OS 
 

Mean ± SD 0.25 ± 0.07 0.24 ± 0.06 0.25 ± 0.07 0.24 ± 0.06 0.23 ± 0.06  

Median 0.25 0.22 0.24 0.23 0.23  

Range [0.15, 0.46] [0.13, 0.44] [0.14, 0.52] [0.15, 0.38] [0.12, 0.36]  

Difference  

between  

OD and OS 

P = 0.940 P = 0.978 P = 0.760 P = 0.742 -  

TMHKFM - Keratograph 5M-based tear meniscus height; OD - right eye, OS-left eye; SD-standard deviation 

Tables below show group mean, median values, ranges and standard deviation of different 

geometrical parameters of tear meniscus assessed with dynamic OCT method, as presented 

in the Experiment 3. D-TMH values are shown in Table 24, D-TMD in Table 25 and 

D-TMA in Table 26. 
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Table 24. Tear meniscus height based on OCT B-scan sequence, reported in the study 

D-TMH [mm] 

OS 

Visit Baseline 2-weeks 3-month 6-month 12-month Control 

Mean ± SD 0.27 ± 0.12 0.24 ± 0.14 0.20 ± 0.12 0.22 ± 0.12 0.20 ± 0.11 0.21 ± 0.11 

Median 0.26 0.23 0.17 0.20 0.17 0.22 

Range [0.05, 0.54] [0.02, 0.59] [0.01, 0.50] [0.01, 0.47] [0.01, 0.47] [0.04, 0.43] 

SD - standard deviation, D-TMH - tear meniscus height based on dynamic meniscometry; OS - left eye 

Table 25. Tear meniscus depth based on OCT B-scan sequence, reported in the study 

D-TMD [mm] 

OS 

Visit Baseline 2-weeks 3-month 6-month 12-month Control 

Mean ± SD 0.16 ± 0.02 0.15 ± 0.02 0.16 ± 0.03 0.16 ± 0.02 0.16 ± 0.03 0.17 ± 0.03 

Median 0.16 0.15 0.16 0.16 0.16 0.16 

Range [0.11, 0.20] [0.09, 0.21] [0.09, 0.20] [0.09, 0.21] [0.09, 0.23] [0.12, 0.23] 

SD - standard deviation, D-TMD - tear meniscus depth-based on dynamic meniscometry; OS - left eye 

Table 26. Tear meniscus area based on OCT B-scan sequence, reported in the study 

D-TMA [mm2] 

OS 

Visit Baseline 2-weeks 3-month 6-month 12-month Control 

Mean ± SD 0.012 ± 0.004 0.012 ± 0.004 0.013 ± 0.004 0.013 ± 0.004 0.014 ± 0.005 0.015 ± 0.005 

Median 0.012 0.013 0.014 0.013 0.015 0.015 

Range [0.004, 0.023] [0.004, 0.021] [0.003, 0.020] [0.002, 0.020] [0.003, 0.023] [0.004, 0.023] 

SD - standard deviation, TMA - tear meniscus area; OS - left eye 

Statistically significant differences were noted in D-TMH (χ2 = 12.86, P = 0.012), 

particularly between Baseline and 3-month (P = 0.003), Baseline and 12-month 

(P = 0.008), 2-week and 3-month (P = 0.085) and 2-week and 12-month (P = 0.077).  
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Additionally, statistically significant difference was noted between Baseline and Control 

visit (P = 0.031).   

Statistically significant differences were not noted in D-TMD (χ2 = 5.40, P = 0.246) since 

Baseline until 12-month visit and between Baseline and Control visit (P = 0.218). 

Statistically significant differences were noted in D-TMA (χ2 = 12.56, P = 0.014), 

particularly between Baseline and 12-month (P = 0.003), 3-month and 12-month  

(P = 0.023) and 6-month and 12-month (P = 0.022). Statistically significant difference was 

noted in D-TMA between Baseline and Control visit (P = 0.010). 
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3.3.8. Tear Clearance Rate 

Mean, median values, ranges and standard deviations of TCRTMH (Table 27), TCRTMD 

(Table 28) and TCRTMA (Table 29) are shown below. Corresponding tear meniscus 

dynamics based on which the TCR was calculated is shown in Figure 35.  

Table 27. TMH-based tear clearance rates reported over the time-course of the study 

TCRTMH [%/30s] 

OS 

Visit Baseline 3-month 6-month 12-month Control 

Mean ± SD 21.6 ± 20.1 20.1 ± 24.8 15.7 ± 15.4 15.8 ± 22.2 22.0 ± 15.1 

Median 20.9 24.5 18.7 18.6 18.8 

Range [-13.9, 73.8] [-55.9, 83.7] [-15.1, 42.7] [-57.6, 57.7] [1.9, 59.3] 

SD- standard deviation; OS - left eye; TCR - tear clearance rate based on TMH - tear meniscus height 

 

Figure 35. Reported dynamic changes of tear meniscus height after saline instillation 
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Statistically significant differences were noted in TCRTMH (χ2 = 9.95, P = 0.019), 

particularly between Baseline and 12-month (P = 0.030). Significant difference was not 

noted in TCRTMH between Baseline and Control visit (P = 0.828).  

Table 28. TMD-based tear clearance rates reported over the time-course of the study 

TCRTMD [%/30s] 

OS 

Visit Baseline 3-month 6-month 12-month Control 

Mean ± SD 18.0 ± 18.4 15.1 ± 19.1 12.1 ± 15.7 8.3 ± 20.6 18.6 ± 15.4 

Median 19.0 16.8 12.4 11.8 14.5 

Range [-29.4, 68.6] [-45.8, 74.6] [-19.1, 41.9] [-79.1, 34.5] [1.3, 56.7] 

TCR - tear clearance rate based on: TMD - tear meniscus depth; SD- standard deviation; OS - left eye 

Statistically significant differences were noted in TCRTMD (χ2 = 8.92, P = 0.030), 

particularly between Baseline and 12-month (P = 0.005). Statistically significant difference 

was not noted between Baseline and Control visit (P = 0.785).  

 

Figure 36. Mean reported dynamic changes of tear meniscus depth after saline instillation 
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Figure 37. Mean reported dynamic changes of tear meniscus area after saline instillation 

Statistically significant differences were noted in TCRTMA (χ2 = 9.95, P = 0.019), 

particularly between Baseline and 12-month (P = 0.005). Statistically significant difference 

was not noted in TCRTMA between Baseline and Control visit (P = 0.751). 

Table 29. TMA-based tear clearance rates reported over the time-course of the study 

TCRTMA [%/30s] 

OS 

Visit Baseline 3-month 6-month 12-month Control 

Mean ± SD 28.8 ± 31.1 24.3 ± 35.7 24.0 ± 21.0 19.8 ± 24.0 35.1 ± 20.3 

Median 31.0 31.3 23.2 22.3 29.1 

Range [-88.2, 95.1] [-87.9, 93.6] [-18.6 56.8] [-51.5, 61.2] [6.1, 82.4] 

TCR - tear clearance rate based on: TMD - tear meniscus depth; SD- standard deviation; OS - left eye 
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3.3.9. Bulbar and limbal redness 

Mean and median values, ranges and standard deviation of bulbar and limbal ocular redness 

are shown in Table 30. 

Table 30. Bulbar and limbal redness scores reported over the time-course of the study 

Bulbar redness [-] 

OD 

 

 Baseline 3-month 6-month 12-month Control  

Mean ± SD 0.77 ± 0.31  0.73 ± 0.32  0.73 ± 0.29  0.72 ± 0.35  0.74 ± 0.31  

Median 0.75 0.65 0.65 0.60 0.68  

Range [0.15, 1.75] [0.20, 1.65] [0.30, 1.45] [0.20, 1.80] [0.25, 1.30]  

OS 

Mean ± SD 0.77 ± 0.27 0.79 ± 0.35  0.76 ± 0.33  0.72 ± 0.32  0.75 ± 0.26  

Median 0.70 0.75 0.70 0.65 0.80  

Range [0.30, 1.45] [0.25, 1.75] [0.30, 1.70] [0.25, 1.85] [0.45, 1.30]  

Difference  

between  

OD and OS 

P = 0.924 P = 0.375 P = 0.679 P = 0.651 P = 0.300  

Limbal redness [-] 

OD 

Mean ± SD 0.53 ± 0.27 0.51 ± 0.27   0.54 ± 0.29  0.55 ± 0.33  0.52 ± 0.20  

Median 0.50 0.50 0.45 0.45 0.53  

Range [0.20, 1.35] [0.10, 1.15] [0.10, 1.40] [0.05, 1.40] [0.15, 0.90]  

OS 

Mean ± SD 0.52 ± 0.25 0.52 ± 0.28  0.53 ± 0.28  0.48 ± 0.26   0.49 ± 0.25  

Median 0.50 0.45 0.50 0.45 0.55  

Range [0.10, 1.10] [0.10, 1.35] [0.10, 1.50] [0.03, 1.30] [0.00, 0.85]  

Difference  

between  

OD and OS 

P = 0.758 P = 0.710 P = 0.993 P = 0.565 P = 0.879  

SD – Standard deviation, * denotes statistical significance; OD - right eye; OS - left eye 

No statistically significant differences over the time-course of the study were noted in 

bulbar for neither right (χ2 = 2.36, P = 0.501) nor for the left eye (χ2 = 2.69, P = 0.441) and 
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in limbal redness for neither right (χ2 = 2.40, P = 0.413) nor for the left eye (χ2 = 4.25,  

P = 0.236). Additionally, no statistically significant differences were noted with Wilcoxon 

test between Baseline and Control visit in bulbar redness score (P = 0.668, P = 0.863 for 

right and left eye, respectively) and in limbal redness score (P = 0.594, P = 0.950 for right 

and left eye, respectively). 

3.3.10. Ocular staining scores with vital dyes - conjunctiva 

Mean and median values, ranges and standard deviation of conjunctival fluorescein staining 

score reported in the time-course of the study are shown in Table 31. 

Table 31. Conjunctival fluorescein staining scores reported over the time-course of the study 

Conjunctival staining score [-] 

OD 

Visit Baseline 2-week 3-month 6-month 12-month Control 

Mean ± SD 0.8 ± 0.5 0.8 ± 0.4 0.9 ± 0.5 1.0 ± 0.4 1.0 ± 0.6 0.7 ± 0.5 

Median 1.0 1.0 1.0 1.0 1.0 1.0 

Range [0.0, 1.5] [0.0 1.5] [0.0, 2.5] [0.0. 2.0] [0.0, 2.0] [0.0, 1.5] 

OS 

Mean ± SD 0.8 ± 0.5 0.8 ± 0.4 0.9 ± 0.5 1.0 ± 0.4 1.0 ± 0.5 0.6 ± 0.6 

Median 1.0 1.0 1.0 1.0 1.0 1.0 

Range [0.0, 2.5] [0.0, 1.5] [0.0, 2.5] [0.0, 2.0] [0.0, 2.0] [0.0, 1.5] 

Difference 

Between 

OD and OS 

P = 0.736 P = 0.429 P = 0.753 P = 0.760 P = 0.714 - 

SD- standard deviation; OD - right eye, OS - left eye 

Statistically significant changes were observed in conjunctival staining score over the time-

course of the study, for right eye only (χ2 = 12.32, P = 0.015), but not for the left eye  

(χ2 = 7.12, P = 0.130). Post-hoc analysis showed statistically significant differences in 
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conjunctival staining between Baseline and 6-month (P = 0.023), Baseline and 12-month 

(P = 0.033) and 2-week and 6-month visit (P = 0.013) for the right eye. Additionally, 

Wilcoxon test showed no statistically significant difference in conjunctival staining 

between Baseline and Control visit for neither right (P = 0.636), nor for the left eye 

(P = 0.272). 

3.3.10. Ocular staining scores with vital dyes - cornea 

Mean and median values, ranges and standard deviation of corneal fluorescein staining 

score reported in the time-course of the study are shown in Table 32. 

Table 32. Corneal fluorescein staining scores reported in the study 

Corneal staining score [-] 

OD 

Visit Baseline 2-week 3-month 6-month 12-month Control 

Mean ± SD 0.5 ± 0.3 0.4 ± 0.4 0.3 ± 0.3 0.3 ± 0.3 0.2 ± 0.3 0.1 ± 0.2 

Median 0.5 0.5 0.0 0.5 0.0 0.0 

Range [0.0, 1.5] [0.0, 1.5] [0.0, 1.0] [0.0, 1.0] [0.0, 1.0] [0.0, 0.5] 

OS 

Mean ± SD 0.5 ± 0.5 0.4 ± 0.4 0.3 ± 0.3 0.4 ± 0.3 0.3 ± 0.4 0.1 ± 0.2 

Median 0.5 0.0 0.0 0.5 0.0 0.0 

Range [0.0, 2.5] [0.0, 1.5] [0.0, 1.0] [0.0, 1.0] [0.0, 1.5] [0.0, 0.5] 

Difference 

Between 

OD and OS 

P = 0.313 P = 0.744 P = 0.989 P = 0.509 P = 0.240 - 

SD- standard deviation; OD - right eye, OS - left eye  

Statistically significant changes were observed in the right eye corneal staining score over 

the time-course of the study for right (χ2 = 23.66, P < 0.001), however not for the left eye 

(χ2 = 9.29, P = 0.054). Post-hoc analysis showed statistically significant differences in right 



Chapter III. Longitudinal study of biomarkers’ trends 

163 

eye corneal staining score between Baseline and 3-month (P = 0.001), Baseline and  

6-month (P = 0.032), Baseline and 12-month (P < 0.001) and 6-month and 12-month visit 

(P = 0.028). Additionally, statistically significant changes were noted between Baseline 

and Control visit in corneal staining score for the right eye (P < 0.001) and for the left eye 

(P = 0.018). 

3.3.11. Lid wiper epitheliopathy score  

Statistically significant changes were noted in LWE scores over the time-course of the 

study. Reported values of LWE are summarized in Table 33. Changes were noted for the 

right eye upper LWE score (χ2 = 20.94, P < 0.001), particularly between 3-month and  

12-month (P = 0.001) and 6-month and 12-month visit (P < 0.001), for the right eye lower 

LWE score (χ2 = 29.79, P < 0.001) between Baseline and 12-month (P = 0.002), 3-month 

and 6-month (P = 0.032), 3-month and 12-month (P < 0.001), 6-month and 12-month  

(P < 0.001), for the left eye LWE score (χ2 = 13.57, P = 0.004), particularly between  

3-month and 12-month visit (P = 0.001) and 6-month and 12-month visit (P < 0.001) and 

for the left eye lower LWE score (χ2 = 31.50, P < 0.001), particularly between 3-month 

and 6-month visit (P < 0.001), 3-month and 12-month (P < 0.001) and 6-month and  

12-month visit (P < 0.001).  
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Table 33. Upper and lower lid wiper epitheliopathy scores reported in the study 

Upper LWE score [-] 

OD 

Visit Baseline 3-month 6-month 12-month Control 

Mean ± SD 0.7 ± 1.0 0.5 ± 0.7 0.4 ± 0.5 0.9 ± 0.6 0.8 ± 0.7 

Median 0.0 0.0 0.0 1.0 1.0 

Range [0.0, 3.0] [0.0, 2.0] [0.0, 2.0] [0.0, 3.0] [0.0, 2.0] 

OS 

Mean ± SD 0.7 ± 0.9 0.4 ± 0.7 0.4 ± 0.5 0.8 ± 0.7 0.8 ± 0.5 

Median 0.0 0.0 0.0 1.0 1.0 

Range [0.0, 3.0] [0.0, 3.0] [0.0, 2.0] [0.0, 3.0] [0.0, 1.0] 

Difference  

between  

OD and OS 

P = 0.544 P = 0.665 P = 0.705 P = 0.443 - 

Lower LWE score [-] 

OD 

Visit Baseline 3-month 6-month 12-month Control 

Mean ± SD 0.7 ± 0.7 0.7 ± 0.7 0.5 ± 0.6 1.1 ± 0.6 1.1 ± 0.6 

Median 1.0 1.0 0.0 1.0 1.0 

Range [1.0, 3.0] [0.0, 3.0] [0.0, 2.0] [0.0, 3.0] [0.0, 3.0] 

OS 

Mean ± SD 0.6 ± 0.7 0.7 ± 0.7 0.6 ± 0.6 1.1 ± 0.5 1.0 ± 0.6 

Median 0.0 1.0 1.0 1.0 1.0 

Range [0.0, 2.0] [0.0, 2.0] [0.0, 2.0] [0.0, 2.0] [0.0, 2.0] 

Difference  

between  

OD and OS 

P = 0.556 P = 0.763 P = 0.292 P = 0.542 - 

SD – standard deviation, * denotes statistical significance; OD - right eye; OS - left eye 

Additionally, Wilcoxon test showed no statistically significant differences in LWE scores 

between Baseline and Control visit (P = 0.518, P = 0.708, P = 0.666 for right eye upper, 

left eye upper and right eye lower lid wiper, respectively), except for the lower left eyelid 

LWE score (P = 0.048).  
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3.3.12. Corneal thickness  

Statistically significant changes in central corneal thickness (CCT) were found over the 

time-course of the study (χ2 = 13.33, P = 0.010), particularly between Baseline and  

12-month (P = 0.005), 2-week and 12-month visit (P = 0.002) and 3-month and 12-month 

visit (P = 0.003). Additionally, no statistically significant difference was noted between 

Baseline and Control visit (P = 0.173). CCT values reported over the time-course of the 

study are shown in Table 34. 

Table 34. Central corneal thickness reported over the time-course of the study 

CCT [µm] 

OS 

Visit Baseline 2-week 3-month 6-month 12-month Control 

Mean ± SD 571 ± 35 571 ± 34 571 ± 34 568 ± 34 569 ± 33 557 ± 34  

Median 574 573 575 573 573 560 

Range [492, 640] [496, 635] [493, 633] [492, 637] [492, 630] [494, 616] 

SD – standard deviation; CCT - central corneal thickness; OS - left eye 

3.3.13. Meibomian glands drop-out  

Statistically significant differences were noted in the right upper lid Meibomian drop-out  

(χ2 = 10.72, P = 0.013), particularly between Baseline and 3-month (P = 0.040), Baseline 

and 6-month (P = 0.034), 3-month and 12-month (P = 0.015) and 6-month and 12-month 

(P = 0.016) and for the left lower lid Meibomian gland drop-out (χ2 = 10.57, P = 0.014), 

particularly between Baseline and 12-month (P = 0.017), 3-month and 12-month  

(P = 0.006) and 6-month and 12-month visit (P = 0.044). No statistically significant 

difference was noted in upper left (χ2 = 5.81, P = 0.121) and lower right (χ2 = 6.81, 

P = 0.121) Meibomian glands drop-out. 
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Additionally, Wilcoxon test showed no statistically significant difference between Meibo-

scores of any of the eyelids (P = 0.942, P = 0.800, P = 0.396 and P = 0.314 for upper right, 

upper left, lower right and lower left, respectively) between Baseline and Control visit. 

Meibo-scores reported over the time-course of the study are shown in Table 35. 

Table 35. Upper and lower eyelid meibography scores reported in the study 

Upper eyelid Meibomian gland drop-out [%] 

OD 

Visit Baseline 3-month 6-month 12-month Control 

Mean ± SD 29 ± 15 27 ± 12 27 ± 12 31 ± 12 31 ± 11 

Median 30 27 25 28 28 

Range [0, 63] [0, 62] [0, 60] [0, 62] [16, 65] 

OS 

Mean ± SD 30 ± 15 29 ± 12 30 ± 12 29 ± 10 35 ± 10 

Median 29 27 29 28 30 

Range [0, 63] [0, 58] [0, 54] [0, 55] [22, 53] 

Difference  

between  

OD and OS 

P = 0.888 P = 0.528 P = 0.279 P = 0.423 - 

Lower lid Meibomian gland drop-out [%] 

OD 

Mean ± SD 34 ± 17 34 ± 15 32 ± 15 31 ± 14 32 ± 16 

Median 36 33 32 32 33 

Range [0, 81] [0, 81] [0, 81] [0, 72] [0, 75] 

OS 

Mean ± SD 37 ± 17 37 ± 15 35 ± 15 31 ± 17 33 ± 18 

Median 36 37 34 33 35 

Range [0, 85] [0, 63] [0, 63] [0, 67] [0, 68] 

Difference  

between  

OD and OS 

P = 0.379 P = 0.134 P = 0.202 P = 0.811 - 

* denotes statistical significance; SD – standard deviation; OD - right eye; OS - left eye  
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3.3.14. Lipid layer thickness 

Figure 38 shows the percentage distribution of 3 different types of LLT scores assessed by 

a masked evaluator based on the recorded thin-layers interference patterns. Substantial 

increase in the quantity of ‘thin’ lipid layers was observed at 6-month visit and 12-month 

visit.  

 

Figure 38. Reported proportions of 3 different types of lipid layers 

Statistically significant differences were noted in LLT score over the time-course of the 

study (χ2 = 14.94, P = 0.002). Post-hoc analysis showed statistically significant differences 

between Baseline and 6-month (P = 0.004) and Baseline and 12-month (P = 0.012),  

3-month and 6-month visit (P = 0.005) and 3-month and 12-month visit (P =0.030). 

Statistically significant difference was not observed between Baseline and Control visit  

(P =0.713). 
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3.3.15. Correlations between signs and symptoms 

Tables 36-38 show the linear coefficient matrix between all the ocular measures assessed 

in the study and corresponding P-values. Coefficients are color-coded from the lowest 

negative (red) to highest positive value (green). P-values denoting statistically significant 

correlations (P < 0.05) were highlighted in light green.  
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Table 36. Linear correlation coefficients matrix between all the considered ocular measures reported in the 

longitudinal study and their corresponding P-values 
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Temperature   0.285 0.997 0.708 0.619 0.822 0.842 0.538 0.894 0.660 

Relative humidity 0.094   0.592 0.452 0.727 0.194 0.318 0.104 0.877 0.079 

OSDI 0.000 -0.047   <.001 0.984 0.494 0.738 0.686 0.218 0.153 

DEQ-5 0.033 -0.066 0.601   0.646 0.512 0.405 0.652 0.277 0.297 

TMHK5M -0.044 0.031 0.002 0.040   0.324 0.626 0.577 0.127 0.978 

S-TMH 0.020 0.114 0.060 0.058 -0.087   <.001 <.001 0.693 <.001 

S-TMD 0.017 0.088 0.029 0.073 -0.043 0.893   <.001 0.561 <.001 

S-TMA 0.054 0.142 0.035 0.040 -0.049 0.879 0.937   0.491 <.001 

D-TMH 0.012 -0.014 -0.108 -0.095 0.133 -0.035 -0.051 -0.061   <.001 

D-TMD -0.039 0.153 0.125 0.091 0.002 0.400 0.424 0.402 -0.465   

D-TMA -0.017 0.065 0.037 0.045 -0.035 0.100 0.211 0.165 -0.617 0.707 

Tear osmolarity -0.030 -0.003 -0.046 0.015 0.018 -0.169 -0.131 -0.129 0.244 -0.066 

M-NIKBUT -0.018 0.130 0.111 0.053 -0.004 0.200 0.182 0.231 -0.096 0.114 

F-NIKBUT -0.021 0.114 0.101 0.070 0.006 0.170 0.190 0.227 -0.015 0.047 

Bulbar redness 0.029 0.018 0.054 0.065 0.053 0.297 0.287 0.245 -0.041 0.119 

Limbal redness 0.017 0.037 0.001 0.090 0.122 0.226 0.193 0.179 -0.090 0.106 

FBUT 0.028 0.006 0.195 0.104 0.208 0.137 0.173 0.159 0.073 -0.009 

Corneal staining 0.058 -0.080 0.064 0.025 0.023 -0.095 -0.087 -0.104 -0.118 -0.023 

Conjunctival 

staining -0.019 -0.008 -0.008 0.042 0.107 -0.010 0.033 -0.013 -0.152 0.062 

CCT 0.031 0.026 0.049 0.072 0.206 0.121 0.042 0.105 0.059 -0.056 

TCRTMH 0.051 -0.034 0.011 -0.049 0.133 -0.173 -0.167 -0.096 0.030 -0.036 

TCRTMD 0.052 -0.034 -0.021 -0.015 0.119 -0.174 -0.190 -0.101 0.021 -0.076 

TCRTMA 0.075 -0.014 -0.048 -0.068 0.083 -0.213 -0.214 -0.125 -0.030 -0.117 

Upper MG  

drop-out 0.088 -0.035 0.158 0.195 -0.024 0.037 0.059 0.071 -0.029 0.061 

Lower MG  

drop-out 0.038 -0.102 -0.183 0.005 -0.100 0.165 0.255 0.215 -0.055 0.156 

Upper LWE score -0.102 0.252 -0.028 -0.056 0.076 -0.012 0.003 0.030 -0.021 0.102 

Lower LWE score -0.259 0.133 -0.155 -0.048 -0.082 -0.067 0.031 0.044 -0.167 0.078 

 

OSDI - Ocular Surface Disease Index; TMHK5M - K5M-based tear Meniscus height; S-TMH - OCT-based static tear 

meniscus height; S-TMD - OCT-based static tear meniscus depth; S-TMA- OCT based static tear meniscus area; D-TMH 

- OCT-based dynamic tear meniscus height; D-TMD - OCT-based dynamic tear meniscus depth; D-TMA - OCT based 

dynamic tear meniscus area; MG - Meibomian glands; FBUT - fluorescein tear film break -up time; CCT - central corneal 

thickness; LWE - lid wiper epitheliopathy score; TCR - tear clearance rate (TMH-based, TMD-based or TMA-based) 
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Table 37. Linear correlation coefficients matrix between all the considered ocular measures reported in the 

longitudinal study and their corresponding P-values 
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Temperature 0.851 0.731 0.839 0.813 0.738 0.848 0.754 0.508 0.826 

Relative humidity 0.457 0.968 0.138 0.195 0.840 0.671 0.947 0.362 0.932 

OSDI 0.670 0.598 0.206 0.248 0.535 0.989 0.025 0.469 0.928 

DEQ-5 0.608 0.868 0.547 0.424 0.456 0.304 0.236 0.773 0.635 

TMHK5M 0.693 0.837 0.963 0.948 0.549 0.162 0.017 0.796 0.220 

S-TMH 0.254 0.053 0.022 0.051 0.001 0.009 0.117 0.277 0.910 

S-TMD 0.015 0.133 0.037 0.029 0.001 0.026 0.048 0.319 0.711 

S-TMA 0.058 0.141 0.008 0.009 0.005 0.040 0.069 0.235 0.880 

D-TMH <.001 0.005 0.273 0.867 0.637 0.307 0.408 0.177 0.082 

D-TMD <.001 0.454 0.191 0.594 0.174 0.226 0.917 0.793 0.481 

D-TMA   0.203 0.872 0.933 0.686 0.854 0.421 0.326 0.030 

Tear osmolarity -0.112   0.093 0.805 0.180 0.213 0.046 0.919 0.297 

M-NIKBUT 0.014 -0.147   <.001 0.041 0.068 <.001 0.054 0.483 

F-NIKBUT -0.007 0.022 0.818   0.033 0.195 <.001 0.561 0.976 

Bulbar redness 0.035 -0.117 0.178 0.185   <.001 0.013 0.209 0.006 

Limbal redness 0.016 -0.109 0.159 0.113 0.811   0.147 0.041 0.013 

FBUT -0.071 -0.174 0.360 0.464 0.215 0.127   0.522 0.101 

Corneal staining 0.086 -0.009 -0.168 -0.051 -0.110 -0.178 -0.056   0.028 

Conjunctival staining 0.189 -0.091 -0.062 -0.003 0.240 0.217 0.143 0.191   

CCT -0.197 0.002 0.021 0.004 0.042 0.127 0.106 -0.123 -0.050 

TCRTMH -0.046 0.050 0.017 -0.012 -0.087 -0.084 0.003 0.101 -0.089 

TCRTMD -0.030 0.074 0.036 0.035 -0.105 -0.100 0.018 0.072 -0.091 

TCRTMA -0.058 -0.064 0.049 0.025 -0.102 -0.095 0.045 0.111 0.020 

Upper MG drop-out 0.102 0.081 0.049 0.062 0.160 -0.006 0.007 0.070 -0.002 

Lower MG drop-out 0.135 -0.161 0.041 0.049 0.184 0.094 0.053 -0.111 -0.029 

Upper LWE score 0.067 -0.023 0.002 0.015 0.002 -0.013 -0.017 0.023 0.150 

Lower LWE score 0.179 0.019 -0.028 0.011 -0.056 -0.148 -0.105 0.010 0.163 

 

OSDI - Ocular Surface Disease Index; TMHK5M - K5M-based tear Meniscus height; S-TMH - OCT-based static tear 

meniscus height; S-TMD - OCT-based static tear meniscus depth; S-TMA- OCT based static tear meniscus area; D-TMH 

- OCT-based dynamic tear meniscus height; D-TMD - OCT-based dynamic tear meniscus depth; D-TMA - OCT based 

dynamic tear meniscus area; MG - Meibomian glands; FBUT - fluorescein tear film break -up time; CCT - central corneal 

thickness; LWE - lid wiper epitheliopathy score; TCR - tear clearance rate (TMH-based, TMD-based or TMA-based) 
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Table 38. Linear correlation coefficients matrix between all the considered ocular measures reported in the 

longitudinal study and their corresponding P-values 
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Temperature 0.726 0.564 0.552 0.393 0.317 0.668 0.246 0.003 

Relative humidity 0.765 0.696 0.698 0.872 0.687 0.244 0.004 0.129 

OSDI 0.575 0.905 0.815 0.586 0.070 0.036 0.753 0.076 

DEQ-5 0.414 0.575 0.863 0.438 0.025 0.959 0.524 0.585 

TMHK5M 0.018 0.128 0.173 0.343 0.787 0.255 0.386 0.352 

S-TMH 0.166 0.048 0.047 0.014 0.671 0.059 0.892 0.446 

S-TMD 0.636 0.056 0.029 0.014 0.498 0.003 0.973 0.723 

S-TMA 0.232 0.274 0.249 0.154 0.419 0.014 0.736 0.620 

D-TMH 0.500 0.731 0.812 0.736 0.744 0.529 0.807 0.055 

D-TMD 0.523 0.680 0.386 0.182 0.487 0.074 0.244 0.376 

D-TMA 0.023 0.601 0.731 0.508 0.245 0.123 0.443 0.039 

Tear osmolarity 0.986 0.568 0.399 0.462 0.355 0.065 0.797 0.828 

M-NIKBUT 0.815 0.846 0.685 0.574 0.576 0.643 0.984 0.749 

F-NIKBUT 0.959 0.894 0.694 0.776 0.481 0.576 0.860 0.898 

Bulbar redness 0.633 0.322 0.233 0.247 0.067 0.034 0.979 0.527 

Limbal redness 0.145 0.339 0.255 0.280 0.942 0.283 0.887 0.091 

FBUT 0.227 0.974 0.837 0.607 0.941 0.548 0.848 0.229 

Corneal staining 0.159 0.248 0.409 0.205 0.424 0.206 0.797 0.909 

Conjunctival staining 0.572 0.308 0.298 0.821 0.986 0.744 0.087 0.062 

CCT   0.573 0.472 0.435 0.139 0.788 0.409 0.835 

TCRTMH 0.050   <.001 <.001 0.433 0.937 0.331 0.275 

TCRTMD 0.063 0.843   <.001 0.141 0.849 0.605 0.333 

TCRTMA 0.069 0.843 0.872   0.801 0.753 0.290 0.994 

Upper MG drop-out 0.129 0.069 0.129 0.022   0.029 0.930 0.562 

Lower MG drop-out 0.024 -0.007 0.017 0.028 0.190   0.115 0.531 

Upper LWE score 0.072 0.085 0.045 0.093 -0.008 -0.138   <.001 

Lower LWE score -0.018 -0.096 -0.085 -0.001 -0.051 0.055 0.311   

 

OSDI - Ocular Surface Disease Index; TMHK5M - K5M-based tear Meniscus height; S-TMH - OCT-based static tear 

meniscus height; S-TMD - OCT-based static tear meniscus depth; S-TMA- OCT based static tear meniscus area; D-TMH 

- OCT-based dynamic tear meniscus height; D-TMD - OCT-based dynamic tear meniscus depth; D-TMA - OCT based 

dynamic tear meniscus area; MG - Meibomian glands; FBUT - fluorescein tear film break -up time; CCT - central corneal 

thickness; LWE - lid wiper epitheliopathy score; TCR - tear clearance rate (TMH-based, TMD-based or TMA-based) 
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The aim of this dissertation is to develop a new macro-type biomarker for supporting early 

DED diagnosis. The main hypothesis driving this research is that the loss of homeostasis of 

the tear film, describing the core pathophysiological mechanism of DED, may be expressed 

by the lack of equilibrium between hydrodynamic processes occurring in the tear fluid and 

tear menisci. Considering the multifactorial nature of DED it was hypothesized that the 

ocular measure summarizing all the hydrodynamic phenomena occurring in the tear fluid, 

could potentially become a new macro-type biomarker for supporting DED diagnosis. 

TTR and TCR are proportional to the sum of all the hydrodynamic phenomena occurring 

in the tear fluid. Like DED, these markers are multifactorial in nature and have shown their 

potential in supporting DED differential diagnosis. Several attempts have been made to 

standardize the procedure and image analysis for TTR assessment after the development of 

commercially available fluorophotometer. Nevertheless, the prolonged, sophisticated 

methodology and the requirement for a specialized tool and skills to perform TTR 

estimation have made the method confined mostly to research setting, with only few 

clinically applicable alternatives. Therefore, TTR was overlooked as a clinical measure for 

supporting DED diagnosis. This study introduces new approaches to TTR analysis with 

emphasis put on their potential clinical application. 
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4.1. Tear fluorescein wash-out rate estimation - Experiment I 

The proposed profilometry-based method of TFWR estimation could be used in a clinical 

setting as a simple, rapid and easy-to-perform alternative to fluorophotometry. Proposed 

methodology and algorithm for ESP image analysis can be used to analyse changes 

occurring in the tear fluid on the whole exposed corneo-scleral surface of the eye. The area 

of analysis is therefore not restricted to a relatively small area, as it is characteristic of 

fluorophotometric measurements of TTR. Additionally, due to high spatial resolution of 

the device, ESP-based estimations of TTR are not biased by the corneal permeability to 

fluorescein. As the vast part of the image observed with the ESP does not reflect light, the 

hypothetical situation, where the fluorescent dye is fully absorbed by the cornea, would 

result in no image being observed. This method is also relatively short and lasts up to 

approximately one minute, which is much less, even in comparison with the simplified 

procedure of TTR assessment with fluorophotometry. 

Despite being statistically significant, correlation coefficients between TFWR and reported 

ocular measures are quite low. It is however not an uncommon feature of the ocular 

measures used for supporting DED diagnosis8, that are commonly characterized by very 

low or no correlation between each other. The reported correlations of TFWR with FBUT 

and DED symptoms assessed with the comprehensive McMonnies questionnaire show its 

potential as a clinically applicable tool for ocular surface disease diagnosis. The fact that 

TFWR was correlated with FBUT does not necessarily mean that these two methods are 

equivalent and could be substituted. Tear dynamics consists of several factors and while 

FBUT mostly concerns tear film retention on the surface and tear film stability, TFWR 

relates to tear film distribution, turnover and tear elimination through the nasolacrimal 
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system. TFWR was not correlated with any other considered measure, including age, tear 

meniscus height and blink frequency, however because of the tear film being separated 

from the tear menisci after the blink, it is not a conflicting result. Low correlations may 

also suggest that TFWR is an independent tear film measure and cannot be directly 

compared with any of the measures assessed in the Experiment 1. 

The use of moistened florets to observe TFWR with fluorescein profilometry ensures 

sterility and safety. In general practice it is desirable to minimize the instilled volume of 

fluorescein when assessing tear film parameters. However, even a well-standardized 

method of fluorescein application with the strip, as performed in this experiment, does not 

ensure constant concentration and volume of the instilled solution and thus the method of 

TFWR estimation cannot be considered quantitative. As the introduction of the precise 

volume of fluorescein could increase repeatability, decrease variability and make the 

measurements quantitative, it is of interest for the future studies to investigate the 

performance of the ESP-based method using the standardized volume and concentration of 

fluorescein used in fluorophotometry-based studies of TTR (1 µL of 2% fluorescein sodium 

solution). Study aiming to estimate the volume and concentration of the instilled fluorescein 

solution, while using moistened strips of different surface areas, has shown, that the method 

of application utilized in the Experiment 1 corresponds to approximately 3 µL of 2% 

fluorescein topical solution256. Additionally, one needs to have in mind that topically 

applied fluorescein, because of its increased risk of contamination with Pseudomonas 

aeruginosa, has limited availability to optometrists in several European countries, 

including Poland and Spain. This limitation was mainly the reason why the ESP-based 

estimation of TFWR was considered qualitative and was not adapted in the protocol of the 

longitudinal study of biomarkers’ trends. 
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A pilot study performed independently by Biomedical Signal Processing Group at Wroclaw 

University of Science and Technology has shown that the combination of dye and solute 

used in this experiment provides optimal coverage without significantly thickening the tear 

film and allows the observation of stable and undisturbed projection of the ESP diffused 

pattern. The hyaluronate-based artificial tears are known to be more viscous than the saline-

based solutions used to assess TTR, FCT or FBUT, thus they are expected to have different 

retention times on the ocular surface. During the ESP measurements it is very important 

for the subject to blink few times to evenly distribute the dye on the ocular surface.  

If not done so, the nonconfluence of the fluorescent pattern may occur and distort the 

results. The optimal combination of the fluorescein strips and the eye physiological 

solution, that results in the best quality of recorded images, is still a matter of investigation 

and was chosen and tested only for corneo-scleral topography measurements. 

The combination of fluorescein sodium 1 mg strips with 0.1% sodium hyaluronate should 

only be taken as some guidance for acquiring good measurements with the ESP, but by no 

means as a standard procedure. 

The repeatability of this method was estimated to be around 14%. TFWR was reported as 

highly subject-dependent, however it is not a conflicting observation, as this measure 

potentially considers many factors of tear dynamics like distribution, retention, 

evaporation, turnover and perhaps also the tear film stability, considering its previously 

mentioned correlation with FBUT.  

Only one out of the two illuminating diodes was illuminated during the measurements to 

decrease reflex lacrimation in response to excessive radiation. The device was developed 

for quick measurements with a single flash, thus the intensity of the light coming out from 
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the two illuminating diodes could be too intense to maintain subject’s ocular comfort, even 

during a relatively short exposure. Reflex tearing could cause the fluorescent dye to spread 

non-uniformly on the ocular surface, which could impact TFWR estimation. 

TFWR values seem to be similar in temporal characteristics to TCRs observed with  

OCT-based method. Both are presumably a manifestations of an early-phase tear dynamics, 

as defined in Chapter I. However, values calculated with these two methods were not 

correlating with each other. Nevertheless,  is not a conflicting result, which comes from the 

fact  that shortly after each blink, the pre-corneal tear film becomes physically isolated from 

the tear menisci and the diffusion between these two tear compartments does not 

occur186,187. Thus, even though these two methods share temporal exponential 

characteristics, they may be following different hydrodynamic phenomena. Therefore, the 

group mean of TCR and TFWR obtained with these experiments are not comparable. 

Artificial tears-based solution used in the ESP-based method is more viscous than the saline 

solution used in TCR-based measurements with OCT and thus it has different temporal 

wash-out characteristics. Both curves of tears exchange: the ESP-based fluorescein 

intensity decay curve and the OCT-based tear meniscus height decay curve, are 

exponential. Perhaps an indication for the future studies of tear exchange would be to 

investigate changes in TFWR and TMH dynamics simultaneously, to observe TFWR and 

TCR as a single measure of tear exchange. Firstly, a study on large cohort should be 

performed to define mean values and thresholds between symptomatic and asymptomatic 

subjects and specify the strict amount and concentration of the fluorescent dye necessary 

to perform quantitative assessment of TFWR.  



Chapter IV. Conclusions and discussion 

179 

Summarizing, the profilometry-based measurement of TFWR provides a mode for 

assessing subtle changes in tear film dynamics. Future studies should investigate 

applicability of this technique on more severe cases of DED and standardizing the method 

of fluorescein instillation for quantitative assessment. 

4.2. Limitations of the longitudinal study 

This study was the first independent study of the long-term effects of modern daily 

disposable contact lens wear. The idea behind choosing daily disposable contact lenses for 

this experiment was to induce and observe changes in ocular physiology, without putting 

subjects at risks associated with long-term contact lens wear. Simplified lens care and 

hygiene alleviate the risk of infection whereas daily disposable modality facilitates 

subjects’ adherence to wearing schedules.  

However, some may say that the limitation of the study is that the lens type was not masked 

from the observer fitting the lens, which could result in some potential bias in choosing the 

appropriate contact lens for the subjects. The author of this thesis agrees that randomization 

is a very important aspect of clinical trial design. However, contact lens fit assessment was 

performed by two skilled professionals and following a strict protocol for contact lens fit, 

to provide subjects with the best lens possible from the available options. Choice of the 

lens was based on quantitative measures of contact lens fit and objective measures, like 

NIKBUT. Applied interventions could not be randomized, in a sense that half of the group 

could be fitted with one lens, and the other half with the other lens. Contact lens assessment 

was double-checked by two practitioners, who agreed on the lenses, additionally 

considering subjects’ comfort. The practitioners did not have any interest in choosing any 

of the lenses over the other, that could go beyond this protocol and the subject were masked 
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from the lens type while they were comparing the comfort of the contact lenses. In the case 

of this study, randomly chosen lenses increase the odds of wrong fit, which may result in 

potential risks to participants. 

It could be of interest to increase the number of Hy wearers to match the number of SiHy 

wearers, however it was not possible, due to the time limitation of the EDEN project and 

non-randomized nature of contact lens fit. Nevertheless, comparing two types of contact 

lenses was not the aim of this investigation and, since there was no statistically significant 

difference noted in any of the ocular measures assessed in the study between SiHy and Hy-

fitted group, it was concluded that lenses have achieved similar performance and have 

affected ocular physiology in a similar manner. Additionally, for all the ocular measures, 

which were assessed binocularly, there was no statistically significant difference observed 

between right and left eye during the initial Baseline visit. Therefore, all subjects were 

unified and analysed as one cohort of refitted contact lens wearers. 

Second limitation was related to statistically significant differences in environmental 

conditions (temperature and relative humidity in the laboratory) reported between different 

sessions of the longitudinal study. These differences may be due to changes of the seasons 

and could not be avoided. The environmental triggers could possibly influence tear 

osmolarity measurements, as the impedance-based osmometer measurements are 

temperature-dependent. However, for each subject, the minimum and maximum difference 

in temperatures across the time-course of the study were only 1.9°C and 5.0°C, 

respectively. Corresponding differences in relative humidity were 9.7 %RH and 27.6 %RH, 

respectively. Additionally, changes in tear osmolarity do not seem to correspond to changes 

in temperature and humidity, since osmolarity trends are characterized by a steady decay, 
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while the temperature and relative humidity fluctuate around the year. Subjects had an 

environmental adjusting period if they arrived in the laboratory from the outdoors. 

Almost none of the ocular measures considered in the study was shown to correlate linearly 

with environmental characteristics, except statistically significant, low negative correlation 

between the lower LWE score and temperature and positive correlation between the upper 

LWE score and relative humidity (see Tables 36-38). No subjects have been excluded from 

participation in the study because of reported adverse effects of contact lens wear. 

Few subjects have resigned for health-unrelated reasons (lack of time) and one because of 

pregnancy. 

4.3. Reported symptoms 

The compliance of subject is an important factor that should be considered when analysing 

the reported symptoms. Free supply of lenses aided attendance outcomes and following 

wearing schedules, which made the study design more robust, however providing free 

contact lenses could bias the results of OSDI and DEQ-5 questionnaires as inadvertently 

the Hawthorne effect might have been introduced257. Hawthorne effect describes the 

situation in which subjects modify an aspect of their behaviour, in this case, their answers 

to the questionnaires, in response to their awareness of being observed, in this case, being 

regularly checked by an eye care professional. This may be the reason for the statistically 

significant decrease in OSDI after Baseline visit. Subjects were responding well above 

average for newly-fitted contact lenses. Further investigation of subjects-reported 

symptoms has shown that two distinctive groups of subjects can be observed - one, which 

was initially reported as symptomatic and the other, that was asymptomatic at the Baseline 

visit. This division was based on a standardized threshold between non -and mild DED 
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reported with OSDI and DEQ-5. For subjects initially reported as symptomatic, a 

substantial decrease in symptoms was reported after Baseline. Perhaps, these subjects were 

more prone to Hawthorne effect, being extra motivated to wear contact lenses that were 

well-fitted and more comfortable than their habitual lenses. For the initially asymptomatic 

group OSDI was slowly increasing and reached statistical significance at 6-month visit. 

Thus, changes in symptoms may suggest, that while contact lens wear induces slight 

worsening of symptoms in asymptomatic subjects, at the same time, it has the potential to 

alleviate symptoms in symptomatic contact lens wearers, considering that lenses are 

properly fitted, and the subjects are following a systematic schedule. 

Major drop of OSDI was reported at the Control visit, which may suggest that symptoms 

reported with OSDI later in the study were caused by contact lens wear.  

Statistically significant change in symptoms was not reported with the DEQ-5 

questionnaire, which additionally suggests, that these symptoms where not DED-specific. 

DEQ-5 score of more than 5 may be an indicator of DED, thus from results reported in the 

study, it seems that the subjects started the study with generally mild DED symptoms and 

most of them had finished the study without any DED symptoms. 

OSDI returned to the baseline value after six months. This drop in OSDI could be attributed 

to difference between current and previous lens wear modalities as well as the difference 

between lens material or perhaps, in subjects’ adherence to wearing schedule.  

Most likely, it was a positive effect of lens refitting that has been observed. Some studies 

report the positive effect of contact lens refitting across different materials and 

modalities258-260. This assumption will be discussed later in this Chapter, while reporting 

tear osmolarity measures. 
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Additionally, this research provides a typical example of a very common problem in DED 

diagnosis, which is the general lack of correlation between ocular sings and reported 

symptoms. Statistically significant linear correlations with reported symptoms were 

observed between OSDI and lower eyelid Meibo-score, OSDI and FBUT and between 

DEQ-5 and upper Meibo-score (see Tables 36-38). Most of these values were relatively 

constant over the time-course of the study. These correlations, however, are very low, even 

though statistically significant. Naturally, the scores obtained from two questionnaires were 

positively, linearly correlated with each other. Other objective measures of ocular 

physiology described below should be unaffected by the Hawthorne effect. 

4.4. Non-invasive Keratograph tear film break-up time 

Tear film, which is divided by the contact lens into two layers, undergoes biophysical and 

biochemical changes, thus contact lenses can influence tear function and impact wearer’s 

comfort. The use of an automated, objective protocol to acquire NIKBUT alleviates the 

risk of bias of tear film break-up time estimation. The use of infrared radiation minimizes 

the risk of reflex tearing. The reported measures of NIKBUT have shown, that the estimates 

of the pre-lens tear film surface quality acquired at Day 2 visit were not significantly 

different to those recorded at following visits. This may suggest that modern daily 

disposable lenses have reached such a level of performance, that allows them to minimally 

impact tear film surface quality and tear film break-up. Thus, as it was pointed out by 

Mousavi et al.39, measurement of the pre-lens tear film surface quality reflect tear film 

stability reported after longer periods of wear261,262.  

Statistically significant changes in NIKBUT were noted between Baseline and other visits. 

The differences in NIKBUT recorded between Baseline and Control visit were most likely 
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spurious, since they were reported only for one eye and with low statistical significance  

(P = 0.048). Difference between pre-corneal and pre-lens NIKBUT was observed at the 

beginning of the study, however modern daily disposable lenses, when properly fitted and 

worn with adherence to more moderate schedule, do not seem to further disturb the pre-

lens tear film surface quality. There was no clinically important difference in tear film 

surface quality attributed to the lens surface treatment or material, as there was no 

statistically significant difference reported between two types of fitted lenses in any of the 

assessed ocular measures. 

4.5. Tear osmolarity and healthier contact lens wearing habits 

The hypothesis was that wear of modern daily disposable soft contact lenses will maintain 

or increase tear osmolarity over the time-course of the longitudinal study.  

DED in contact lens wearers may be explained by increased tear film thinning resulting in 

increased tear osmolarity263 or by the loss of corneal sensation particularly associated with 

long-standing wear of hard and extended-wear contact lenses50,264. Lowered corneal 

sensitivity leads to decreased tear secretion in response to reflex stimuli, presumably 

causing an increase in tear osmolarity264. Extended-wear soft contact lenses can decrease 

corneal sensitivity more than daily-wear soft contact lenses264. Generally, it has been 

suggested that contact lens wear increases tear osmolarity, particularly in changing 

environmental conditions263,265. Contrarily to those works, this study reported statistically 

significant decrease in tear osmolarity with contact lens wear. As could be observed based 

on subject-reported symptoms, modern daily disposable contact lenses may not necessarily 

lead to typically known adverse effects, such as ocular discomfort or inflammation of the 

ocular surface64,266.  
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The observed decrease in tear osmolarity is probably not associated with seasonal changes 

in temperature. As noted earlier, those environmental changes, although significantly 

different among visits, were not substantial for each of the subjects. Khanal and Millar 

found no correlation between tear osmolarity measurements and temperature or humidity67. 

Hence, these two environmental factors do not have such high influence on tear osmolarity 

measurements and most probably could not cause such substantial changes in this 

parameter, as the ones reported in the Results section of Chapter III. The temporal 

differences in tear osmolarity are likely a function of the subjects’ ability to maintain tear 

film homeostasis, overcoming the drying effect of contact lenses46. Nevertheless, tear 

osmolarity was never shown to decrease in contact lens wearers in any of the studies 

reported in relevant scientific literature. Tear hyperosmolarity has been reported in daily 

and extended wear of both soft and hard contact lens wearers267-269, especially in 

symptomatic subjects263,268.  

All participants were refitted based on three main criteria – contact lens fit, subjective 

comfort and tear film surface quality, as reported in the study of Mousavi et al.39.  

This way of refitting, additionally including a control visit after 2-weeks, ensures good lens 

performance. Newly-fitted lenses decreased tear osmolarity in all participant, regardless of 

the contact lens material. One major aspect that should be taken into consideration is that 

in Poland where this research was conducted there are practically no restrictions put on 

contact lens choice. Lenses are available without prescription and easily accessible from 

multiple sources, offering competitive prices. Many other countries have similar contact 

lens market. This leads to increased number of self-fitting with more affordable options, 

with subjects usually choosing monthly, extended-wear economic solutions over daily 

disposable lenses. This is supported by the fact that 54% of the study participants had worn 
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monthly and 25% of them had worn fortnightly soft contact lenses before commencing the 

study. The abovementioned behaviours may lead to poor fitting decisions, lack of follow-

up by an eye care professional and perpetuating risky habits. Additionally, most of the 

subjects taking part in the study were initially reported with visible shortage of Meibomian 

glands, which may suggest long-term contact lens wear270. Additionally, the mean value of 

OSDI reported at Baseline visit of the longitudinal study (13.9 ± 11.9 [-]) was higher than 

the threshold reported for healthy individuals (OSDI < 13 [-]), which also can be due to 

prolonged contact lens wear in the past.  

Thus, the effect of contact lens wear on tear osmolarity may not be attributed entirely to 

the lens modality, but also to generally healthier (than habitual) contact lens wearing habits, 

more moderate wearing schedule and appropriate contact lens fit and control. Moreover, 

subjects were becoming more responsible for their ocular health knowing that they will be 

regularly checked by an eye care professional and that the lack of adherence could get them 

excluded. This may have caused a subtle bias in reported symptoms (the abovementioned 

Hawthorne effect), however could not possibly impact objectively-measured ocular sings, 

including tear osmolarity. Subjects with high initially reported symptoms were not 

excluded from participation, since no accompanying signs of severe dry eye was reported, 

and no adverse effect of contact lens wear was observed over the time-course of the study. 

Subjects could wear their newly-fitted lenses only five days a week and not more than 12 

hours per day, thus the effect of the lens itself may be modified by changing to a more 

moderate wearing schedule. Two days of break in contact lens wear and simplified contact 

lens hygiene may have added to the total decrease in signs and symptoms, including tear 

osmolarity. Moreover, no statistically significant difference between SiHy and Hy-fitted 
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group in any of the ocular measures assessed in the study may suggest that the lens material 

may be adding to this decrease less than the lens modality and subjects’ adherence to 

guidelines. This study shows that the longitudinal effect of modern daily disposable soft 

contact lens wear, and moderate wearing schedule may prove beneficial to some subjects, 

especially those who were initially reported with hyperosmotic tears or ocular surface 

disease symptoms. Statistically significant difference in tear osmolarity between Baseline 

and Control visit shows that low osmolarity was maintained after the study. Even subjects 

who exhibited highly osmotic tears returned to tear osmolarity values reported for non-

wearers269. Studies show that some ocular signs of DED are less prevalent among wearers 

of daily disposable lenses271 and subjects may benefit from changing their conventional 

reusable daily wear lenses to daily disposables272. A positive effect of refitting with modern 

daily disposable contact lenses on tear osmolarity was independently assessed in this 

dissertation. Moreover, tear osmolarity proved to be sensitive enough to track subtle 

changes in ocular physiology in healthy, young subjects, thus it is expected to show more 

pronounced differences in DED subjects. Tear osmolarity may prove to be a good macro-

type biomarker in supporting ocular surface disease diagnosis and a marker of response to 

an effective therapy. 
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4.6. Meniscometry and meniscus dynamics  

Spectral-domain OCT-based meniscometry has shown good intra-observer and inter-

observer repeatability and allows following changes of tear meniscus morphology during 

blinking and after topical instillation. However, Bartuzel et al. indicated that any observed 

changes in the early post-blink phase meniscus parameters must be viewed with caution, 

as they are most likely related to the longitudinal movement of the eye rather than to the 

post-blink tear meniscus formation, corresponding to tear film build-up, as commonly 

stated in the past. Additionally, the geometrical parameters of the tear menisci may depend 

on many biophysical and external factors and while the environmental impact on 

meniscometry can be controlled and maintained, the subject-related aspects are difficult to 

control. OCT-based meniscometry provides non-invasive and more in-depth visualization 

of tear menisci and the image acquisition is rapid and simple. However, the analysis of the 

acquired images may be complex, time-consuming and operator-dependent. Thus, the 

computer program allowing dynamic image analysis to minimize interfering factors related 

to head, eye and eyelid movements was developed200 and used in the Experiment II and 

III to assess the OCT-based meniscometry and temporal changes of tear meniscus 

parameters after topical instillation for TCR estimation. 

The experimental study of dynamic meniscometry aims to follow morphological changes 

in the OCT-based image of the eyelid junction. The Bland-Altman and scatter graph shows 

that the automatic method of meniscometry based on 90 OCT B-scans gives relatively 

higher TMH estimations than the meniscometry assessed based on a static OCT image, 

especially for higher values of TMH. However, TCR estimates assessed with OCT are 

generally higher than the TTR values assessed with fluorophotometry. It is probably 



Chapter IV. Conclusions and discussion 

189 

because of fluorophotometry being a highly sensitive device, that can detect fractions of 

fluorescein in the tear film.  Additionally, the OCT-based TCR is most likely related to an 

early-phase, rather than to the basal, slow phase of tear turnover. 

One can observe, that while the D-TMH decreases significantly in the beginning of the 

study, the other geometrical parameters of tear meniscus do not. D-TMD and D-TMA were 

observed to stay constant or increase insignificantly. This may imply several different 

conclusions. One is that the tear meniscus or the conjunctival sac has changed its shape 

over the time-course of the study, or the depth of the eyelid junction had increased.  

As it was shown by Wolffsohn et al., contact lens wear may cause indentation of the ocular 

surface, which depends on midperipheral contact lens shape and edge characteristics273. 

Therefore, it is possible that contact lens wear had induced changes in tear meniscus and 

conjunctival sac morphology. A careful observer can notice, that the increase of tear 

meniscus height after saline solution instillation during the OCT-based assessment of TCR 

is decreasing over the time-course of the study. To better visualize this ‘change in increase’, 

tear meniscus height dynamics, presented earlier were normalized and provided in the 

Figure 39. As one can see, even if the amount of fluid instilled into the conjunctival sac 

was kept constant over time, the potential amount of fluid that can enter the subjects’ tear 

meniscus (which is expressed as the increase in D-TMH at ‘0’ minutes post-instillation) is 

decreasing over the time-course of the study. (See figure 39) 
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Figure 39. Normalized tear meniscus height dynamics 

The same characteristics were observed for two other geometrical measures of tear 

meniscus (D-TMD and D-TMA). This decrease occurs when contact lenses are fitted, to 

slightly moving toward its basal form at Control visit, suggesting a short-term effect 

induced by contact lens wear. The question is whether this decrease was caused by changes 

in tear dynamics and delay of the Krehbiel flow or by changes in the conjunctival sac or 

anterior surface morphology. 

Changes in the corneo-scleral topography were beyond the scope of this research and 

changes in the tarsal conjunctival thickness cannot be observed with available devices. 

The corneal thickness however could provide an etiological clue to whether any changes in 

the anterior eye surface morphology occurred. Statistically significant changes in CCT 

were reported, particularly between 12-month and any other visit, except at 6-month visit. 

CCT was shown to slightly decrease. These changes in CCT correspond with the jump in 
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tear meniscus parameters. Moreover, D-TMA was reported to negatively linearly correlate 

with CCT, conjunctival staining and lower LWE scores (see Tables 36-38). This may all 

suggest that morphological changes of the anterior surface and tarsal eyelid could have 

caused the tear meniscus to change its shape. 

There is no direct proof that these changes had occurred due to a slight shift in tear meniscus 

dynamics, or changes in anterior surface morphology or both, however considering changes 

in tear film physiology measures observed throughout the whole duration of the study one 

can conclude that the shape of the anterior ocular surface may have occurred and may have 

influenced the central TMH. If the tear volume was constant over the time-course of the 

study and has been redistributed from the central to the temporal and nasal compartments 

of the tear menisci, then it could cause a steady decrease in tear osmolarity in the absence 

of increasing central tear meniscus and the delay of tear clearance. Samples for tear 

osmolarity measurements were collected from the temporal part of the tear menisci, where 

the tear fluid was accumulating due to ocular surface indentation.  This observation also 

opens the possibility for future exploration of corneal shape parameters and their effect on 

the tear meniscus morphology. Whatever the reason, this seems to affect the TCR.  

This study shows the importance of visualizing tear meniscus with in-depth OCT-method 

and using a sensitive, automatic, objective protocol. The practitioner was not masked on 

subjects, thus the use of objective, automatic protocol guarantees unbiased image analysis. 

Development of an automated image processing software to detect and measure tear 

meniscus, removes the potential bias and errors in judgment, making this dynamic method 

of tear meniscus assessment objective, simple and clinically applicable. 
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The impact of soft contact lens wear on the cornea and its physiology is well-studied, 

however little is known about the potential changes in the tarsal conjunctiva due to contact 

lens wear. Contact lens alternates the tear film layer, decreasing its thickness and stability. 

It limits the ability to maintain adequate lubrication and minimize friction between two 

ocular surfaces during blinking. Increased number of giant papillary conjunctivitis274 was 

noted among contact lens wearers. Additionally, contact lens wear was associated with lid 

parallel conjunctival folds275 and Meibomian glands dropout270,276. Few studies have 

investigated lid wiper staining during lens wear or examined specifically the links between 

signs and symptoms of contact lens discomfort. 

Additional reason why the D-TMH was shown to decrease, without substantial change 

observed in D-TMD and D-TMA, is that the contact lens had somehow influenced the 

composition of the tear meniscus, causing it to change its refractive properties. While this 

change in the refractive index does not influence the tear meniscus height, it can influence 

the way in which the air-tear meniscus interface refracts light coming from the OCT, and 

thus it could influence the tear meniscus depth and area in a way that cannot be 

compensated by the OCT’s built-in software. Hence, future studies should investigate the 

potential impact of contact lens wear on tear composition and the refractive index of the 

tear film and menisci. 

Summarizing, a downward trend of tear meniscus height was observed. This could be 

caused by corneal or conjunctival deswelling, by changes in tear meniscus shape due to 

ocular surface indentation by the contact lens, by changes in the lid wiper, or changes in 

the refractive index of the tear meniscus fluid. Corneal swelling was not reported in this 

study, contradictory, the central corneal thicknesses was reported to decrease over time. 
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4.7. Tear Clearance Rate 

This study shows that the OCT-based TCR is decreasing during contact lens wear, probably 

due to lower baseline tear meniscus values and decreased lower conjunctival sac volume in 

its central part. Here, unlike in any other studies of TCR, the tear meniscus parameters were 

assessed based on dynamic meniscometry. D-TMH, D-TMD and D-TMA measurements 

were taken into consideration when calculating TCRs. All observed images were clear 

enough to be analysed with the provided software. As explained in Introduction, in most 

of the kinetic studies of TTR with fluorophotometry, the biphasic characteristics of 

fluorescein intensity decay can be observed, with faster phase occurring just after 

fluorescein instillation and slower, basal phase, occurring after 5 minutes post-instillation. 

Findings of Zheng et al., as well as the findings presented in the experiment suggest that 

TMH decreases most significantly at the early phase post-instillation. Zheng et al. 

suggested the effect of Krehbiel flow on TCR estimations and showed that TCR assessed 

with OCT is likely the manifestation of an early-phase tear dynamics. Contributing to these 

developments, presented research has shown that the estimated time for the tear meniscus 

to come back to its basal level after the instillation of 5 µL of saline solution was about  

2-3 minutes in young healthy subjects. The mean TCR was estimated as (mean ± standard 

deviation) 29 ± 13 %/30s compared to 35 ± 11 %/30s for younger group reported by Zheng 

et al. and showed large variation between subjects, with relatively good reproducibility.  

In both studies of Zheng et al. the age-related differences in TCR were evident, noting a 

wide age gap between tested groups of subjects (with TCR estimated as 35.2 ± 11%/30s 

versus 12.4 ± 7.3%/30s for younger [29.6 ± 7.2 y/o] and older group [71.4 ± 10.8 y/o], 

respectively). This study attempted to test the improved OCT methodology in a group of 

subjects with narrower age range. 
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An additional functionality that should be considered in the future studies of tear clearance 

with OCT is to control the amount of blinks between each measurement or to assess the 

TMH in a continuous manner, as it was observed by Wu et al.277. In various studies it was 

shown, that the blink rate influences TTR122. This study shows statistically significant 

linear correlation between TCR and blink frequency. It could be also of interest to 

differentiate blinks of different temporal characteristics and quality, e.g. full blinks form 

partial ones. The author of this dissertation believes that controlled blinking frequency 

could disturb the natural process of tear exchange. However, taking into consideration the 

expected impact of blink frequency on the results, it could be of interest to measure it 

simultaneously with TCR. Future studies should investigate both the applicability of these 

techniques on DED subject and the qualitative differences in early-phase tear dynamics in 

subjects with symptomatic DED104. 

Summarizing, using OCT can be rapid, qualitative and quantitative method of determining 

TCR. With the new software developed, tear meniscus parameters can be calculated more 

precisely, considering the nonconfluence of tear meniscus morphology following each 

blink and small eye movements. Traditional clearance tests are either invasive, laborious 

or indirect and fail to follow dynamic changes occurring in the tear film and menisci.  

OCT-based method of TCR estimation is non-invasive, relatively shorter and simpler to 

perform, than the traditionally used tear clearance tests. Additionally, this or similar 

technique could be used in testing artificial tears performance214,215. TCR is proven to 

decrease in both elderly and symptomatic subjects. TCR also correlates with age. Apparent, 

statistically significant, yet small correlation reported in the Experiment 3 with age is the 

result of a narrow age group. It comprised mostly of young, healthy individuals. Newly 

developed software allows precise, automatic estimation of tear meniscus parameters. 



Chapter IV. Conclusions and discussion 

195 

It is worth noting, that most of the subjects taking part in the experiments and in the 

longitudinal study were habitual contact lens wearers, thus their eyes were exposed to 

contact lens-related changes on the ocular surface. This might have decreased their TCRs 

and tear meniscus parameters, which makes the reported Baseline value lower than the one 

reported by Zheng. Also, the use of an automatic analysis protocol instead of measuring 

tear meniscus based on singular static images, might have contributed to this difference. 

TCRs reported in the experiment are still higher than the ones reported by Zheng for older 

subjects. TCR estimates assessed with OCT are generally higher than the TTR values 

assessed with fluorophotometry. At 30 second margin after instillation, D-TMH decreases 

in a larger rate compared with D-TMD (21 ± 20%/30s compared with 18 ± 18%/30s). 

As mentioned, the animation sequence contains 90 B-scans and the time when the subjects 

must keep their eyes open is usually less than 3.75 seconds. In all subjects this amount of 

time was not associated with any observable or reported effort. Severely affected DED 

subjects could have a problem to keep their eyes open for this period. However, one should 

take note that the number of B-scans can be reduced. A pilot study testing the new algorithm 

of dynamic meniscometry revealed that as little as 20 B-scans was shown to be enough for 

providing a reliable estimate of tear meniscus parameters. 

In some subjects the negative values of TCR were reported, suggesting that in some cases 

the tear meniscus parameters were increasing after instillation. This may suggest the delay 

in Krehbiel flow in these subjects and was the main reason why the TCR values were 

variable. However, it was not accompanied by reflex tearing, since the tear meniscus was 

not constant and was decreasing with time in a pace characteristic to tear clearance.  
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Perhaps, it would be of interest to identify the moment of this delay as a potential marker 

of tear clearance or consider changing the time margin from 30 seconds to one minute. 

As one of the very few measures assessed, TCR was not reported to correlate with any other 

sing or symptom, except for the dynamic changes in tear meniscus parameters and, 

naturally, other measures of TCR. These several correlations were expected, as the tear 

clearance rate is calculated based on dynamic changes of tear meniscus geometrical 

parameters. Therefore, measurements of the inferior tear meniscus may provide insight into 

tear meniscus dynamics. TCR may provide an additional measure of tear fluid dynamics, 

which cannot be expressed by any other ocular measure used in this study.  

Singular statistically significant difference was noted between SiHy and Hy-fitted group at 

Control visit in TMH-based TCR. This may suggest that changes induced by two different 

lenses were diminishing in different rates after refraining from contact lens wear. 

The values of TMH-based TCR noted at the Control visit are higher for Hy-fitted group, 

Therefore, one can assume that Hy-fitted group’s TCRTMH was recovering faster than the 

one reported for SiHy-fitted subjects. However, considering the general lack of statistically 

significant difference between SiHy and Hy-fitted group in any of the reported ocular 

measures over the time course of the study, this singular difference may be spurious. Lenses 

had similar edge characteristics, however Hy lenses are generally thicker than SiHy lenses, 

which may have added to this difference. 
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4.8. Changes induced in the ocular surface 

Statistically significant changes in Meibomian gland drop-out, LWE score of both eyelids 

and ocular surface staining may suggest that changes in the anterior eyelid morphology and 

tarsal eyelid have occurred over the duration of the study. Lack of statistically significant 

differences in bulbar and limbal redness suggest that these changes were not inflammatory. 

This may further contribute to the hypothesis that observed changes in tear osmolarity, 

TMH and TCRs are due to changes in the anterior surface of the eye and the tarsal area, 

which could be potentially induced by contact lens wear. 

Statistically significant changes were observed in conjunctival staining score over the time-

course of the study, but only for the right eye. A slight increase in conjunctival staining was 

noted, however reported values were below the clinical levels reported for healthy subjects. 

These changes were subtle and most likely caused by contact lens handling while taking 

the lenses off before each session. Visible fingerprints and localized staining provided a 

visual clue to whether these changes were induced by the subjects. Additionally, 

conjunctival staining came back to its basal level at Control visit, which suggests that these 

changes were short term and most likely related to contact lens wear. Ocular surface 

staining in this study was mostly used for sanity check and the adverse effect of contact 

lens wear was not observed in any of the subjects. Increase in ocular surface staining with 

contact lens wear is a well-known phenomenon, however, when lenses are properly fitted, 

subjects adhere to wearing schedules and are not allergic to contact lens materials or 

solutions and the properly handle their lenses, there risk of ocular surface staining is 

minimized radically. Modern, daily-disposable soft lenses should not induce any adverse 

surface reactions on the ocular surface. Ocular staining was mainly caused by subjects 
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touching the globe while taking off or putting on their lenses. The same statistical 

dependence was noted for corneal staining with fluorescein, however the values of corneal 

staining were way below the clinical levels reported for healthy individuals. 

The Meibomian gland drop-out slightly increased over the time-course of one year. 

This may suggest that one year of contact lens wear, even accompanied by healthier contact 

lens wearing habits and adherence to moderate wearing schedule can still induce changes 

in Meibomian glands structure and statistically significant shortage of the glands. Contact 

lens wearers are most likely to report with visible shortage of Meibomian glands, 

accompanied by changes in lipid layer thickness. This should be taken into consideration 

when fitting contact lenses to subjects with visible shortage of Meibomian glands, since 

changes induced in Meibomian glands by the contact lens are, up to date, considered 

irreversible and the functionally of the existing glands can be only partially restored e.g. 

with thermodynamic treatment.  
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4.9. Summary 

Even though not expected, an evident beneficial long-term effect of changing the contact 

lens wearing scheme and modality on the tear film and ocular physiology was induced. 

Biomarkers’ trends followed the opposite trend than it was initially projected. This gave 

the opportunity to observe and identify biomarkers sensitive enough to follow the trends in 

ocular physiology, that could potentially be indicative of the effective refitting. As these 

parameters can be objectively, non-invasively and automatically measured, they fulfil the 

definition of a biomarker, provided in Chapter I. 

It has been shown that tear osmolarity may bare potential in supporting DED diagnosis. 

Tear osmolarity corresponds with changes in ocular physiology because of contact lens re-

fitting. It was decreasing for the whole duration of the study and all changes were 

statistically significant. Even though the reported trends in tear osmolarity were different 

from initially expected, they were expressing the generally observed positive trends in most 

of the other ocular measures assessed in the study. Thus, a positive effect of refitting with 

modern daily disposable contact lenses was independently assessed in this dissertation. 

Moreover, chosen biomarkers of DED were proven to be sensitive enough to track subtle 

changes in ocular physiology in healthy, young subjects, thus they are expected to show 

more pronounced differences in DED sufferers. Tear osmolarity, TCR and TMH may all 

prove to be good macro-type biomarker in supporting ocular surface disease diagnosis and 

markers responding to effective therapy. 

The OCT-based dynamic meniscometry was shown to respond to very subtle changes in 

tear meniscus parameters over the time-course of the study, that could not be observed with 

traditionally used methods of tear meniscus evaluation. These changes could not be 
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observed with the static technique, based on a single B-scan or with the traditional en face 

measurements. As the desiccating effect expressed by decreased tear volume was not 

observed in this study, these changes were most probably corresponding to changes in 

eyelid junction morphology, indentation of the ocular surface area with the contact lens, or 

by changes in the tear meniscus refractive index. Additionally, the decrease in TCR 

provided a clue to why the tear meniscus volume seems to decrease in contact lens wearers 

in the absence of any other negative changes, except for the slight ocular surface staining 

(connected with contact lens handling) and increase in Meibomian glands drop-out. 

Based on the hypotheses of this dissertation, the study aid to understand the role of some 

ocular biomarkers, particularly tear clearance rate, tear meniscus morphology and tear 

osmolarity in DED aetiology and had introduced new ways for non-invasive, objective tear 

film dynamics assessment, that can provide practitioners with clinically valuable 

information, which can aid DED diagnosis. These biomarkers are sensitive enough to 

follow subtle changes occurring in the tear film in healthy subjects and hence, in the future, 

could be utilised for supporting DED diagnosis to follow and predict the progression of the 

disease.
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Appendix 1. McMonnies questionnaire 
 

Please answer the following by underlining the response most appropriate to you. 

Age: under 25 years   25-45 years   over 45 years 

 

Currently wearing:  no contact lenses       hard contact lenses soft contact lenses 

 

Have you ever had drops prescribed or other treatment for dry eye? 

Yes (2)   No (0)   Uncertain (1) 

Do you ever experience any of the following symptoms? (Underline) 

 

Soreness (1) 2. Scratchiness (1) 3. Dryness (1) 4. Grittiness (1) 5. Burning (1) 

 

How often do your eyes have these symptoms? (Underline any that apply to you) 

Never (0)  Sometimes (1)  Often (2)  Constantly (3) 

 

Do you regard your eyes as being unusually sensitive to cigarette smoke, smog, air 

conditioning, central heating? 

Yes (2)   No (0)   Sometimes (1) 

Do your eyes easily become very red and irritated when swimming in chlorinated fresh 

water? 

Not applicable  Yes (2)  No (0)   Sometimes (1) 

 

Are your eyes dry and irritated the day after drinking alcohol? 

Not applicable  Yes (2)  No (0)   Sometimes (1) 

 

Do you take (please underline): antihistamine tablets (1), antihistamine eye drops (1). 

Diuretics (fluid tablets) (1), sleeping tablets (1), tranquilizers (1), oral contraceptives 

(1), medication for duodenal ulcer (1) or digestive problems (1) or for high blood 

pressure (1) or_____________ (1) 

 

Do you suffer from arthritis?     

Yes (2)   No (0)   Uncertain (1) 

 

Do you experience dryness of the nose, mouth, throat, chest or vagina? 

Never (0)  Sometimes (1)  Often (2)  Constantly (3) 

 

Do you suffer from thyroid abnormality?        

Yes (2)      No (0)  Uncertain (1) 

 

Are you known to sleep with your eyes partly open?       

Yes (2)     No (0)  Uncertain (1) 

 

Do you have eye irritation as you wake from sleep?        

Yes (2)      No (0)     Uncertain (1) 
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Appendix 2. Dry eye symptoms questionnaires 

Have you experienced any of the following during the last week: 

 All of 

the 

time 

Most of 

the time 

Half of 

the 

time 

Some of the 

time 

None of the 

time 

 

1. Eyes that are 

sensitive to light? 

4 3 2 1 0 N/A 

2. Eye that feel 

gritty? 

4 3 2 1 0 N/A 

3. Painful or sore 

eyes? 

4 3 2 1 0 N/A 

4. Blurred vision? 4 3 2 1 0 N/A 

5. Poor vision? 4 3 2 1 0 N/A 

Have problems with your eyes limited you in performing any of the 

following during the last week:  

6. Reading? 4 3 2 1 0 N/A 

7. Driving at night? 4 3 2 1 0 N/A 

8. Working with a 

computer or a bank 

machine (ATM) 

4 3 2 1 0 N/A 

9. Watching TV? 4 3 2 1 0 N/A 

Have your eyes felt uncomfortable in any of the following situations 

during the last week:  

10. Windy 

conditions? 

4 3 2 1 0 N/A 

11. Places or areas 

with low humidity 

(very dry)? 

4 3 2 1 0 N/A 

12. Areas that are 

air conditioned? 

4 3 2 1 0 N/A 

1 Questions about EYE DISCOMFORT: 

A. During a typical day in the 

past month, how often did 

your eyes feel discomfort? 

 

0   

Never 

1 

Rarely 

2  

Sometimes 

3    

Frequently 

4  

Constantly 

B. When your eyes felt 

discomfort, how intense was 

this feeling of discomfort at 

the end of the day, within two 

hours of going to bed 

Never 

Have 

it 

Not at 

All 

Intense 

   
Very 

Intense 

0 1 2 3 4 5 
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2 Questions about EYE DRYNESS: 

A. During a typical day in the 

past month, how often did 

your eyes feel dry? 

 

0    

Never 

1   

Rarely 

2   

Sometimes 

    3   

Frequently 

4   

Constantly 

B. When your eyes felt 

discomfort, how intense was 

this feeling of dryness at the 

end of the day, within two 

hours of going to bed 

Never 

Have 

it 

Not at 

All 

Intense 

   
Very 

Intense 

0 

 

1 

 

2 

 

3 

 

4 

 

5 

 
 

3 Questions about WATERY EYES: 

During a typical day in the 

past month, how often did 

your eyes feel dry? 

0    

Never 

1   

Rarely 

2   

Sometimes 

3  

Frequently 

4  

Constantly 

4 Questions about IRRITATED EYES: 

During a typical day in the 

past month, how often did 

your eyes feel irritated? 

0     

Never 

1    

Rarely 

2    

Sometimes 

3    

Frequently 

4   

Constantly 

 

Have you ever had a previous clinical diagnosis of dry eye?  Yes   No   
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Appendix 3. Medical history chart 

Date (First visit):                                              Time: 

Occupation:                                                     Px ID: 

Surname: 

Forename: 

Date of Birth: 

Telephone number: 

Refracting Correction: OD                  VA                     OS                     VA                                                 

Distant Vision: 

Near Vision: 

General Health: 

Ocular Health: 

Medication: 

Allergies: 

Last Eye Examination: 

Last Medical Examination: 

Family Ocular History: 

Family Medical History: 

Driver: 

Visual Display Unit (TV, computer…) (how many hours per day): 

Hobbies: 

 

Smoker: 

Current Contact Lens history:                                                                  

OD:                                                                   OS: 

How often:                                                      How long: 

Comments 
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Appendix 4. Slit lamp examination protocol 

ID: ………………………    Date:……………………… 

TEAR FILM  

Qualitative 

assessment 

OCULUS DEXTER OCULUS SINISTER 

Good / polluted / excessive lipid / 

watery / reflex tearing / artefacts / no 

artefacts / foam / other: 

Good / polluted / excessive lipid / 

watery / reflex tearing / artefacts / no 

artefacts / foam / other: 

 

TEAR  

MENISCI 

 

Even / uneven / reflex tearing / low 

volume/ other: 

Even / uneven / reflex tearing / low 

volume/ other: 

BLINKING Complete  / forced / tic / lid inversion / 

other: 

…………………………………… 

INCOMPELTE BLINKING: 

Complete  / forced / tic / lid inversion / 

other: 

…………………………………… 

INCOMPELTE BLINKING: 

LIDS  

AND LASHES 

LIDS: no abnormalities / scaling / 

mucus / hyperaemia / redness / puss / 

oedema / frothy tear film / entropion / 

ectropion / pigmented lesions / 

thickening / other:  

 

EYELASHES: no abnormalities / 

ingrown / multiple / deposits / 

discharge / other:  

LIDS: no abnormalities / scaling / 

mucus / hyperaemia / redness / puss / 

oedema / frothy tear film / entropion / 

ectropion / pigmented lesions / 

thickening / other:  

 

EYELASHES: no abnormalities / 

ingrown / multiple / deposits / 

discharge / other:  

LID MARGIN  

 (normal: up to 6 

glands 

obstructed with 

clear discharge) 

Lid margin: glands unobstructed / pus / 

oedema / frothy tear film / even / 

uneven / Meibomian glands obstruction 

/ discharge / notched lid margin / other: 

MGD: 0 / 1 / 2 / 3 / 4 

Lid margin: glands unobstructed / pus / 

oedema / frothy tear film / even / 

uneven / Meibomian glands obstruction 

/ discharge / notched lid margin / other: 

MGD: 0 / 1 / 2 / 3 / 4 

 

CORNEA  

AND LIMBUS 

Clear / transparent / limbal 

vascularization / micro cists / vacuole / 

scars / oedema/ other: 

…………………………………..…… 

LIMBAL REDNESS: 0/1/2/3/4 

LIMBAL VASCULARIZATION:  

0/1/2/3/4 

Clear / transparent / limbal 

vascularization / micro cists / ulcers / 

vacuole / scars / oedema/ other: 

………………………………………... 

LIMBAL REDNESS: 0/1/2/3/4 

LIMBAL VASCULARIZATION:  

0/1/2/3/4 

FBUT .............[s] …..........[s] …..........[s]         .............[s] …..........[s] …..........[s]  

FLOURESCEIN 

STAINING 

SCORE  
 

DED  

DIAGNOSIS 

At least two out of the following: 

⬜ OSDI  25 

⬜ Conjunctival staining score  2   

⬜ Corneal staining score  2  

⬜ FBUT  7 s 

NOTES: 
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Appendix 5. Baseline visit evaluation sheet 

Contact lenses to be removed and eye drops not used at least 3 days prior to evaluation  

Subject code  Date:  /  /   TIME:                       

At what time did the subject wake up?   :    

Room Temperature:  .  [°C/F]              Relative Humidity: .  

[% RH] 

Number of blinks /30s;  Incomplete blinking noted? Yes / No; 

WHICH EYE (OD if SiHy was worn, OS if Hy was worn):  

DED Questionnaires: DEQ-5 score      OSDI  Score   /  /    

Answers  

TMH with OCULUS:  .  [mm] 

Tear Osmolarity: , ,   

M-NIKBUT 1)  2) .  3)  

F-NIKBUT 1) .  2) . 3)  

Lipid Layer (video):   

Ocular Redness:  Bulbar (Efron Scale):  Limbal (Efron Scale):  

Temporal    Nasal    Temporal  Nasal 

SLIT LAMP EXAMINATION OD  (Use the slit lamp protocol) 

Fluorescein Tear Film Break-up Time  1) 2) 3) Fluo imaging  

Corneal Thickness:   OCT Tear Meniscus Baseline Morphology:    

 
Tear meniscus measurements for Tear Clearance Rate assessment: 

0s, 30s, 1min,  2 min,  3 min,  4 min,  5 min 

Ocular Staining (slit lamp protocol) 

Fluo Image, FBUT: .............[s] …..........[s] …..........[s] 

  

Conjunctival staining with LG     Lid wiper staining: Upper Lower  

Meibomian gland imaging  Upper lid, Lower lid  
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Appendix 6. Contact lens fit - evaluation sheet 

Newly-fitted contact lens should be worn at least for 4 hours prior to afternoon visit 

Subject code Date:    /      /      /     Time  

Room Temperature  [°C]                       Relative Humidity   [%RH] 

Instruction about CL’S usage and hygiene signed, explained and understood  

Contact Lens Fit (morning visit) - Px will be fit with SiHy in OD and hydrogel in OS 

FITTED LENSES    

          AFTER 4 HOURS of CLS wear 

Time: 

Choose the CL based on the fit, subjective rating comfort, slit lamp, TFSQ assessment 

and vision. 

 

Fit:                       OD                                                                               OS 

Centration:                                                 

Horizontal Lag:  

On Blink 

PU Test 

Vision                                                                                                                                                                      

             Better fit  Better comfort   Better fit Better comfort  

 

CONTACT LENS ASSESSMENT – VIDEO OCULUS 

Assess and capture the subjective CL fit of the chosen lens 

Primary gaze 3s. Temporally 3s, Nasally 3s 

Blink in up gaze x3 waiting 3s after each; Push-up to mid cornea with lower lid and pull 

lid down as release x 3 waiting 5s after each.  

 

NIKBUT Oculus   

M-NIKBUT  OD:  1)   .2)    3) 

OS:  1)   .2)    3) 

F-NIKBUT  OD:  1)   .2)    3) 

OS:  1)   .2)    3) 

Ocular Staining (slit lamp) 

  
OD FBUT: .............[s] …..........[s] …..........[s] 

OS:FBUT:.............[s]…..........[s]..........[s]  

OD OS 
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Appendix 7. Instructions on contact lens care and wear 

CONTACT LENS ADVICE 

DO: 

 

• Always wash your hand thoroughly before inserting, removing or handling your 

lenses and ensure hands are dry 

• Remove lenses in the event of persistent irritation and contact us 

 

DON’T: 

 

• Sleep in your contact lenses, 

• Lick your lenses or put them in your mouth, 

• Use tissues or handkerchiefs to rub your lenses, 

• Wear your lenses longer than advised, 

• Wear your lenses if you think you may have an eye injury, infection or the lens 

might be damaged, 

• Share your lenses with anyone else, 

• Swim in your contact lenses, 

• Wear for long plane journeys -they may dry out or you may want to sleep. 

•  

NEVER USE TAP WATER TO CLEAN YOUR LENSES! 

 

Make-up advice: 

 

• Apply make-up on after inserting contact lenses, 

• Do not use mascara that flakes, 

• When using hair spray, close your eyes to prevent it getting onto your lenses, or 

spray before inserting contact lenses, 

• Do not share make-up tools with anyone and ensure they are not expired, as this 

could result in an infection. 

 

With my signature I declare that I understand the abovementioned instructions and I am 

obliged to wear my newly-fitted contact lenses 5 days per week and not exceed 12 hours 

of daily contact lens wear 

 

DATE: 

Patients signature: ……………………………………………….. 

 

 (one signed copy for the subjects and one copy for the ESR) 
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Appendix 8. 2-week follow-up - evaluation sheet 

Subject code  Date:     /      /    TIME     

At what time did the patient woke up?   :  

Room Temperature   °C          Relative Humidity  %RH 

DED Questionnaire: 

OSDI  Score / / ,         DEQ-5  Score  

 

SLIT LAMP CONTACT LENS SURFACE QUALITY ASSESSMENT  

 
 

AFTER LENS REMOVAL: 

TEAR MENISCUS HEIGHT Oculus OD  OS  

Lipid Layer thickness (video): OD  OS  

Corneal Thickness OD  OS   

OCT: TEAR MENISCUS HEIGHT Baseline OS:    

 

Instil fluorescein  - Ocular health examination (slit lamp)              

 

Ocular Staining (slit lamp) 

 

  
OD, FBUT: .............[s] …..........[s] …..........[s]  

 

OS, FBUT: ...........[s] …..........[s] …..........[s] 

 

 

Observations: 

  

Observations:      Clean/ Debris Yes / No /Oily / Protein deposit 

Other artefacts: 
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Appendix 9. 3-month, 6-month and 12-month visit evaluation 

sheet 

Subject code    Date:   Time:          Patient woke up at:      

and put the lenses on at:          

Room Temperature   °C/F        Relative Humidity  [%RH] 

OSDI  Answers:          DEQ-5   Score  

 

WITH the contact lens on 

NIKBUT Oculus   

M-NIKBUT  OD:  1)   .2)    3) 

OS:  1)   .2)    3) 

F-NIKBUT  OD:  1)   .2)    3) 

OS:  1)   .2)    3)  

LENS REMOVAL 

TMH with OCULUS:  OD  mm    OS   mm 

Tear Osmolarity: OD  1)   .2)    3) 

OS 1)   .2)    3) 

Lipid Layer (video) OD  OS  

OCT CORNEAL TICKNESS:  OD      OS          

OCT: TMH 3x  0s 30s 1min 2 min 3 min  

Ocular Redness OD:   

Bulbar (Efron Scale): Limbal (Efron Scale):      

Temporal Nasal Temporal  Nasa 

Ocular Redness OD:   

Bulbar (Efron Scale): Limbal (Efron Scale):      

Temporal Nasal Temporal  Nasal 

 

Ocular Staining (slit lamp) 

OD + Fluo Image, FBUT: .............[s] …..........[s] …..........[s] 

  
 

OS + Fluo Image, FBUT: .............[s] …..........[s] …..........[s] 

Conjunctival staining with LG (primary gaze)  

Lid wiper staining:  Upper Marx’s line  Lower Marx’s line  

Meibomian gland imaging  Upper lid,  Lower lid  
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Appendix 10. Control visit evaluation sheet 

Contact lenses to be removed and eye drops not used at least 3 days prior to visit 

Subject code  Date:  TIME:     At what time did the subject wake up?  

Room Temperature:   [°C/F]              Relative Humidity:  [% RH] 

Incomplete blinking noted? Yes / No; 

WHICH EYE (OD if SiHy was worn, OS if Hy was worn):  

DED Questionnaires: DEQ-5     Score      OSDI   Answers  

TMH with OCULUS:  .  [mm] 

Tear Osmolarity: , ,   

M-NIKBUT    1)   .2)    3) 

F-NIKBUT    1)   .2)    3) 

Lipid Layer (video):   

Ocular Redness:  Bulbar (Efron Scale):   Limbal (Efron Scale):  

   Temporal    Nasal    Temporal  Nasal 

SLIT LAMP EXAMINATION OD  (Use the slit lamp protocol) 

Fluorescein Tear Film Break-up Time  1)  2)  3) 

Fluo imaging OCULUS:  

Corneal Thickness:  

OCT Tear Meniscus Baseline Morphology:     

Tear meniscus measurements for Tear Clearance Rate assessment 

Ocular Staining (slit lamp protocol) 

Fluo Image, FBUT: .............[s] …..........[s] …..........[s] 

   

Conjunctival staining with LG (primary gaze)  

Lid wiper staining:  Upper Marx’s line  Lower Marx’s line  

Meibomian gland imaging: Upper lid,  Lower lid
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