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Preface

The Universe is some 13,800,000,000 years old. From its first moments
to its current stage, the Universe has undergone several different thermo-
dynamical processes that transformed and deformed it, going between hot
and cold, and from dark to bright. Despite the immense complexity of these
transformations, when we look at the sky, we can gain access to its story.
It is a story written in the stars and in the galaxies that we observe, and in
the light coming from distant corners of the Universe. Thus, when we look
at the sky, we are able to look into the past, and even into the far past,
back in time to what cosmologists call the early universe. There, the tale
of Inflation is drafted—as an incomplete account of events that theoretical
physicists are eager to fulfill. These events took place at some instant dur-
ing the first’ 0.000000000000000000000000000000000001 seconds after the
big bang. At that moment, the Universe is believed to have undergone an
accelerated expansion and how was that so? is the question we, theoretical
physicists, wish to answer.

In this thesis we attempt to address a part of this fundamental question.
We cover both phenomenological and theoretical approaches to the study
of inflation: from model-independent parametrizations to modifications of
the laws of gravity. It is divided in four parts. The first one, containing five
chapters, consists of an introduction to the research carried out during the
PhD: Chapter §1 provides a short introduction to the standard cosmological
model, in particular focusing on the epochs and the observables which mo-
tivate the need for the inflationary paradigm. In Chapter §2, we review the
dynamics of the canonical single-field inflationary scenario, showing that

IThere are 35 zeros there to the right of the decimal mark.
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a scalar quantum field can produce an accelerated expansion of the Uni-
verse which effectively solves the problems identified in §1. Furthermore,
we review the dynamics and the evolution of the primordial quantum fluc-
tuations and their signatures on current observations. In Chapter §3, we
discuss the Mukhanov parametrization, a model-independent approach to
study the allowed parameter space of the canonical inflationary scenario.
An alternative approach, using modified gravity, is proposed in Chapter
§4. There, we review the construction of the most general scalar-tensor
and scalar-vector-tensor theories of gravity yielding second-order equations
of motion. Additionally, we discuss the main models of inflation devel-
oped within these frameworks. Finally, in Chapter §5, we demonstrate new
techniques that move beyond the slow-roll approximation to compute the
inflationary observables more accurately, in both canonical and noncanon-
ical scenarios. These chapters are complemented with detailed appendices
on the cosmological perturbation theory and useful expressions for the main
chapters.

Part 11 is based on the most relevant peer-reviewed publications for this
thesis. There, the reader can find the main results obtained during the
Ph.D. In Part III we summarize these results and draw our conclusions.

Finalmente, en la Parte IV se ofrece un resumen detallado en espanol de
la Tesis donde se discuten los objetivos, motivacién, metodologia, resultados
y conclusiones.
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Part 1

The Inflationary Universe

“The reader may well be surprised that scientists dare to study processes
that took place so early in the history of the universe. On the basis of
present observations, in a universe that is some 10 to 20 billion years old,
cosmologists are claiming that they can extrapolate backward in time to
learn the conditions in the universe just one second after the beginning! If
cosmologists are so smart, you might ask, why can’t they predict the
weather? The answer, I would argue, is not that cosmologists are so smart,
but that the early universe is much simpler than the weather!”

— Alan H. Guth, The Inflationary Universe






CHAPTER 1

An introduction to ACDM

At the beginning of the past century, the common belief was that the
Universe we live in was static in nature, a space-time with infinite volume
which would neither expand nor contract. When Albert Einstein was formu-
lating the General Theory of Relativity (GR), during the second decade of
the century, the equations he obtained would predict a scenario in which the
Universe would collapse due to the gravitational force pulling on galaxies
and clusters of galaxies. In order to counteract this effect, in 1917, Ein-
stein introduced a cosmological constant, A, into his equations, a term that
induces a repulsive force, counterbalancing the attractive force of gravity,
leading to a static universe.

Soon after, and during the course of the last and current centuries, as-
tronomers obtained an enormous amount of information about the origin
and evolution of the Universe. First, in 1929, Edwin Hubble observed that
galaxies were receding from us at a rate proportional to their distances [§]
(see Fig. 1.1). The Hubble law—as it is now called—was then a clear evi-
dence that the Universe was not only evolving but that it was dynamical!
Einstein was forced to remove the cosmological constant from his equations

in what he called his “biggest blunder”.!

After the groundbreaking observations made by E. Hubble on the ex-
panding state of the Universe, the equations of GR still suggested that the
Universe could come to a halt and eventually start to contract due to the
effects of gravity; the question was when? or, relatedly, how fast the most

T strongly suggest the reader Ref. [9] for an amazing exposition of the history of the Gen-
eral Theory of Relativity, from its developments to its latests cosmological consequences
through the contributions of some of the greatest minds from the last century.
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Figure 1.1: Hubble diagram: Velocity-distance relation among galaxies as observed
by Edwin Hubble in 1929. The black circles and the solid line give the estimation for
individual galaxies whereas white circles and the broken line give the estimation for
combined galaxies into groups. The vertical axis is given in units of km/s whereas the
horizontal axis is shown in parsecs (1 pc=3.08 x 10'6 m). This plot is the original from

Ref. [8].

distant galaxies are receding from us. Unexpectedly however, further ob-
servations during the last decade of the past century made by the High-Z
Supernova Search Team [10] and, independently, by the Supernova Cos-
mology Project [11], revealed that the Universe was not decelerating, but
all the contrary, galaxies are actually receeding from one another at an ac-
celerated rate. Both teams looked at distant Supernovae whose (apparent)
luminosity is well-known (this type of supernovae are called Type Ia). These
supernovae are standard candles: by measuring their flux and knowing their
luminosity, we can determine the luminosity distance to these objects and
compare to what we expect from the theory. Indeed, the luminosity dis-
tance is directly related to the expansion rate of the Universe and its energy
content [12,13]. The two aforementioned independent groups observed that
the Type Ia Supernovae were much fainter than what one would expect in
a universe with only matter. Consequently, an additional ingredient was
mandatory to make our Universe to expand in an accelerated way.

The accelerated nature of the expansion of the Universe has been con-
firmed by several experiments during the following years, however, its nature
remains a mystery. The simplest explanation relies on an intrinsic source
of energy of space itself which would act in the same way as the cosmologi-
cal constant Einstein introduced 100 years ago. Even though the observed
value for this vacuum energy density and the value computed from quan-
tum field theory (QFT) calculations differ in many orders of magnitude, the
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cosmological constant A is now a fundamental part of the standard model
of Cosmology and it is referred to as the dark energy.

This Chapter provides a brief introduction to the standard model of
Cosmology—the so-called ACDM—by accounting for the evolution of the
Universe from the big bang to the current observations of the late-time
accelerated expansion. We shall then review the basic equations for the
dynamics of an expanding universe and the main problems of the ACDM
model, which indicate the strong need for an explanation of the initial con-
ditions of the early universe.

1.1 The expanding universe

In an expanding universe, where each galaxy is receding from one an-
other, one could perform the thought experiment of reversing the time flow.
An expanding universe would become a collapsing one where all galaxies get
closer and closer to each other. When we then look further back in time, we
can see that all the matter and energy content fuse together in a very small
and, hence, highly dense and energetic patch of space and time. At this
point—dubbed as the hot big bang—the equations of GR break down and
a new formulation of gravity which includes the laws of quantum mechan-
ics needs to be found. As we currently do not know the principles of such
a theory, a given cosmological model must assume some initial conditions
which otherwise should come up from a good quantum gravity candidate.
As we shall see, these initial conditions need to account for the right amount
of initial density perturbations as well as for the observed homogeneity and
isotropy of the largest structures of the Universe.

The Universe started to expand soon after the Big Bang, cooling down
and following several proceses for a period of approximately 14 billion
years®>—the current age of the Universe. During each of these proceses, the
matter and energy content of the Universe went through different phases,
each of which left imprints in different direct and indirect cosmological ob-
servations we measure nowadays. These indeed have helped us to uncover
the history of the Universe we are about to briefly summarize [12,14-17].
Figure 1.2 shows a schematic summary of the different stages the Universe
has gone through.

1.1.1 Cosmological phase transitions

As already pointed out, our starting point is the hot big bang—we will
see that the event previously described as the big bang is not the expected

2As in English: 1 billion = 1 thousand million.
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Figure 1.2: Stages of the evolution of the Universe. Adapted from Introduction to the
Theory of the Early Universe [17] (page 20).

beginning of the Universe, but the residual of the inflationary epoch. We
call the hot ‘Big Bang’ to the epoch where all the elementary particles,
described in the Standard Model of Particle Physics [18-20], were in thermal
equilibrium—they were moving freely in the primordial plasma—at energies
of a few hundreds of GeV, approximately 10'® degrees Kelvin.?

As the Universe started to cool down, it experimented phase transitions
characterized by the change in the nature of the cosmic fluid. The first
one resulted in the spontaneous breaking of the electroweak (EW) symme-
try [21-23]:* at energies above approximately 100 GeV—the energy-scale

31 GeV=1.16 x 10'® K. Given this equivalence, we shall sometimes refer to a given
temperature in eV units.

4Let us emphasize that there is a reasonable expectation for a Grand Unification epoch,
where the QCD and the EW interactions are unified into a single force. Therefore the
first phase transition would be at the energy-scale of the Grand Unified Theories (GUT)
corresponding to temperatures of around T ~ 10'6 K. However, even though the idea
was proposed in 1974 [24], there are no experimental hints yet that confirm the theory
and, furthermore, we will see that inflation is expected to take place at slightly lower
energies. Therefore we will ignore the hypothesis of the GUT epoch in this thesis.
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of the EW interaction—the EW SU(2) ® U(1) gauge symmetry remained
unbroken and, consequently, particles in the primordial fluid were massless.
Once the temperature dropped, the Higgs field acquired a nonzero vacuum
expectation value (vev) which, in turn, breaks the EW symmetry down to
the U(1) gauge electromagnetic group. The interaction of particles with the
Higgs field provides them with mass (except for the photon which belongs
to the unbroken U(1) group) [25,26]. As a result, the new massive particles,
as the W* and Z gauge bosons, mediate only short-distance interactions.

Another phase transition, the QCD—Quantum Chromodynamics—tran-
sition, occurred at energies around Aqgcp ~ 200 MeV. The QCD theory
describes the strong force between quarks and gluons, which are subject to
an internal charge called colour [27-29]. The strong force has the peculiar
characteristic of being weaker at shorter (rather than at larger) distances as
opposed to the well-known electromagnetic force. This distinctive feature,
called asymptotic freedom [30,31], allows the fluid of quarks and gluons
to interact only weakly above this energy scale. Once the energy drops
below Aqcep, quarks and gluons get confined into colourless states, called
‘hadrons’, of regions with size of AééD ~ 10715 m. Consequently, isolated
quarks cannot exist below the confinement energy scale.

1.1.2 Neutrino decoupling

Neutrinos are weakly interacting particles. As such, they stopped inter-
acting soon in the early universe, exactly when their interaction rate falls
below the rate of the expansion of the Universe, at an approximate temper-
ature of 2-3 MeV [14,17,32]. Below this temperature, these relic neutrinos
can travel freely through the Universe as they do today. Their tempera-
ture and number density are indeed of the same order as the measured relic
photons that we shall describe later. However, although direct detection of
the relic neutrinos is an extremely difficult task given their feeble interac-
tion with matter [33], their energy density plays an important role on the
Universe’s evolution [34-36] and thus we are confident of their existence.

1.1.3 Big Bang Nucleosynthesis

Light elements form when freely streaming neutrons bind together with
protons into nuclei. These processes happened at energies of a few MeV, cor-
responding to the binding energy of nuclei and, as a consequence, there was
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a production of hydrogen and helium-4, in large amounts, and deuterium,
helium-3 and lithium-7 in smaller abundances.”

The calculation of the amount of light elements produced during this
epoch requires the physics of the previous phase transitions—namely nu-
clear physics and weak interactions—as well as the use of the equations of
GR [37,38]. Consequently, the measurement of the primordial abundances
of such elements and its agreement with the Big Bang Nucleosynthesis
(BBN) theory is one of the greatest achievements of the ACDM model.
This, furthermore, makes the BBN epoch the earliest epoch probed with
observations [20] (see however [39,40] for a discussion on the controversial
observed amount of Lithium and the theoretical expectations).

1.1.4 Recombination

We have reached an epoch where the constituents of the primordial
fluid were nuclei, electrons and photons. During BBN, the photons were
still energetic enough to excite electrons out of atoms. However, once the
temperature of the Universe drops at energies around 0.26 eV (~3000 K),
electrons are finally trapped by the nuclei, forming the first stable atoms.
This made the remnant of the primordial fluid to become a neutral gas
made mostly of hydrogen [41,42].

It is at this point where a crucial event takes place: photons stopped
being actively scattered by the electrons and were able to propagate freely
through the Universe, forming a relic radiation which has been freely prop-
agating since then. This radiation is in fact the first light of the Universe
and, furthermore, it can be measured today with antennas and satellites as
some type of noise coming from all parts of the sky. This photon radia-
tion is the so-called Cosmic Microwave Background (CMB) and, as we will
see, it plays a crucial role in the understanding of the inflationary epoch
because it contains information about the primordial density perturbations
and also about the degree of homogeneity and isotropy present during the
recombination epoch.

1.1.5 The Cosmic Microwave Background

The energy spectrum of the CMB, as measured today, is precisely that
of a black body [43] with a mean temperature of Ty = 2.726 £ 0.001 K [44].
It was first detected in 1965 by Arno Penzias and Robert Wilson using their
antenna from Bell Laboratories [45]. Once they ruled out any known source

SHeavier elements need higher densities to form. Carbon and other elements synthesized
from it, are the result of thermonuclear reactions in stars once after they have burned
out their concentrations of hydrogen and helium.
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Figure 1.3: Temperature anisotropies and polarization in the Cosmic Microwave Back-
ground. Variations in color indicate variations in temperature: the bluer (redder) regions
correspond to colder (hotter) temperatures. On the other hand, the texture pattern rep-
resents the direction of polarized light. The illustration shows the anisotropies at an an-
gular resolution of 5°, however, the Planck satellite has reached a resolution as accurate
as ~ 0.16° [47]. Image Credit: European Space Agency (ESA) and Planck Collaboration.

of noise, Dicke, Peebles, Roll and Wilkinson reported, in the same year,
that the source of this radiation could be attributed to the relic photons
that decoupled at the recombiation era [46].

The CMB spectrum with mean Ty temperature is not, however, per-
fectly isotropic. There are small variations in temperature across the celes-
tial sphere. A map of the CMB is shown in Fig. 1.3 where the changes
around the mean temperature—quantified by the differences in color—
manifest as anisotropies across the angular scales observed in the sky. These
anisotropies are of order of 107> and are consequence of the slight difference
in density across the particle fluid at the time of recombination. Therefore,
the CMB is indeed a map of the Universe when it was about 380000 years
old.

The differences in temperature across the sphere can be conveniently
expanded in spherical harmonics as

(ST oo m=/{

Z Z anggm s (11)

(=1 m=—/4

where 0T (7)) = T(7) — Ty quantifies the deviation between the tempera-
ture T'(n) coming from the direction 7 and the mean temperature Ty. The
coefficients a;, are themselves related to the amplitud of temperature fluc-
tuations, whereas their ensemble average (as,) contains all the statistical
information about an average of universes like ours.

One important measurement of the CMB is that the primordial density
perturbations must have been close to Gaussian. Given that the a;,, coef-



10 Chapter 1. An introduction to ACDM

ficients are linear functions of the primordial perturbations, then they are
also Gaussian random variables. Hence, the spectrum Cj of the two-point
correlation function {(agy,a},,) completely determines the CMB anisotropies.

Furthermore, as we have only one universe to experiment with, the en-
semble average can be translated to an average over the single sky we can
observe. For higher multipoles ¢, with a large number of different values
for m = —/, ..., ¢, this is a good approximation and indeed observations are
consistent with the Gaussian hypothesis. For lower multipoles, however,
the statistical analyses are limited by the cosmic variance. Specifically, the
spectrum is defined as

m=~
TT 1

0 me (Aemay,) (1.2)

=—¢

where the statistical error is 1/4/¢ + 1/2, which is clearly larger for a smaller
value of /.

Another important type of information contained in the CMB spectrum
is its polarization. Figure 1.3 also shows the pattern of polarized light mea-
sured in the CMB. The photons decoupled during the recombination era
come with polarization states due to the Thompson scattering they experi-
mented before decoupling [48-50]; however, their polarization can be further
affected during their subsequent travel by scattering with free electrons dur-
ing the reionization era’® or by lensing effects due to massive structures.”

As for the temperature anisotropies, we can define two different scalar
quantities of polarization in terms of the polarization factors af, and af, as

E(n) =§ mg_eafmnmm) 10 =§ ”i_eafmnm<ﬁ> )

With these two different types of polarization, we can now define three differ-
ent types of correlations—7T"T, EE and B B—plus three cross-correlations—
TE, TB and EB,— however, the last two vanish due to symmetry under
parity [12,17].

Measurements of the CMB can then determine the spectra CIT, CTE,
CFE and CPB. The shape shown in Fig. 1.3 is characteristic of the E-
mode polarization, the predominant type of polarization observed, whereas

6At late times, star formation processes lead to a reionization period in the Universe.
CMB photons can therefore interact with the new free electrons, changing their polar-
ization.

"Massive structures bend the light that travels close to them. On one hand, stars, galaxies
and galaxy clusters can act as enormous lenses for distant light passing through them,
deforming it into Einstein rings [51]. On the other hand, light rays traveling long
distances during the early universe are also affected by mass sources surrounding their
path but in a smaller amount. The statistical account for this effect is commonly known
as weak lensing and it can also modify the polarization state of the CMB photons.
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measurements of the B-mode polarization have only placed upper bounds on
the BB spectrum. The B-mode polarization on degree scales is produced by
tensor modes present during inflation, thereby a measurement of this type
of polarization would extremely help to understand the physics of inflation
(see, e.g., Refs. [52-55]).

1.1.6 Structure formation

The starting point of structure formation is the assumption of initial
regions of overdensities. During the epoch of radiation domination (be-
fore recombination), the amplitude of the density perturbations was small.
However, at some point, the Universe becomes matter dominated and then
matter starts to get trapped into overdensed regions due to the gravitational
potentials.

The way galaxies and clusters of galaxies are currently distributed in
space depends crucially on the primordial overdensity. The existence of
these initial overdensities is indeed assumed, in the same way as the initial
homogeneity and isotropy, as no mechanism within the ACDM model is able
to produce it. We will see later that inflation, in fact, is exactly a mechanism
that provides us with these initial perturbations, with predictions that are
amazingly consistent with the data.

Furthermore, the theory of structure formation gives strong hints for the
existence of an unknown type of matter which does not have electromagnetic
interaction, 7.e. does not emit light. This dark matter is indeed needed to
understand the rotation curves of galaxies and to account for the rate of
formation of the structures: without dark matter, structures would not have
been formed yet! Consequently, the dark matter must be non-relativistic—
it must cluster—and therefore it is said that dark matter is cold. Current
observations show that the dark matter accounts for the 85% of the matter
content in the Universe and therefore it is a key element in the development
of the ACDM (lambda-cold dark matter) model, together with the dark
energy component.®

As the evolution of the structure formation links the current state of the
large structures with the initial conditions of the early universe, the obser-
vations of the Large Scale Structure (LSS) and their statistical signatures
have the power of constraining inflation apart from those from the CMB.
The first important observation we note is that the Universe, as already
stated, is highly homogeneous, i.e., at relatively large scales, it looks the
same wherever we look. Figure 1.4 is an example of this fact: it shows the

8We shall not further discuss the nature of dark matter as it is not the main topic of this
work, see however Refs. [56-58] for reviews on the subject.
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Figure 1.4: N-body simulation of the dark matter density distribution at ¢ = 13.6
Gyr (today) using the ACDM model [59]. It is shown the scale distance of 500 Mpc/h
(see §1.2 for details) above which the distribution of matter is clearly homogeneous and
isotropic as assumed by the ACDM model.

N-body simulation of 10'° particles of a dark matter field evolved following
the ACDM model [59].

1.2 Dynamics of an expanding universe

So far we have briefly reviewed the evolution of the Universe which is
consistent with observations. It can be summarized as a primordial fluid
made by elementary particles filling the spacetime. Across this fluid, there
must have existed density perturbations in order to lead to structure for-
mation processes due to the gravitational potential wells. As the Universe
expanded, this fluid cooled down experiencing several processes which left
their imprint both indirectly and directly in the CMB photons and in the
structures we measure today. From observations of these two, we can in-
fer the required level of homogeneity and anisotropy the primordial fluid
should have had. Let us now set the mathematical grounds upon which the
theory is built (see Refs. [12,15-17,60,61] for comprehensive studies in the
literature).
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1.2.1 Geometry

The geometry of an expanding homogenous and isotropic universe is sim-
ply described by the Friedmann-Lemaitre-Robertson-Walker metric (FLRW)

ds? =g datdz”

o 1.4
= — dt* + a*(t)gi;da’da’ | (14)

where g;; is the metric of a unit 3-sphere given by
di? = dy? + ®(x?) (d6? + sin® 6d¢?) . (1.5)

Depending on the spatial curvature of the universe, the value of ®(x?) is
given by
sinh? y k=—1
o0 ={ ¥ k=0 | (1.6)
sin? y k=+1

where the curvature parameter k£ is +1, 0 and -1 for a positive-curvature,
flat and negative-curvature universe respectively.

The function a(t), called scale factor, grows with time and thus charac-
terizes the distance between two distant objects in space at a given time.
We can therefore define the rate of cosmological expansion characterized by
the change of the scale factor in time as’

H() - 2O (1.7)

which is another function of time, and is called the Hubble rate. The present
value of the Hubble parameter, denoted by Hy, is currently being con-
strained by the Planck satellite. Its measured value is Hy = (67.27 £ 0.6)
km s™*Mpc™t = h - 100 km s~ Mpc=t.!'Y However, local estimates from
distance ladders find a value of Hy = (73.8 & 2.4) km s~'Mpc~!, showing a
discrepancy of around 3.50 level (see [47] for details).

To understand the value of the intrinsic curvature, i.e. the value of k
in Eq. (1.6), we again assume a homogeneous and isotropic universe filled
with a perfect fluid (i.e. with vanishing viscous shear and vanishing heat
flux) characterized only by an energy density p and an isotropic pressure p.
With these ingredients we can define the ratio of energy density relative to

9Here and throughout this thesis, dots imply derivatives with respect to cosmic time ¢.

10 A megaparsec (Mpc) is a standard cosmological unit of length given by 1 Mpc = 3.1 x
1024 cm. Also, h ~ 0.66 is a dimensionless parameter sometimes used to parametrize
the value of Hy (as in Fig. 1.4).
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Figure 1.5: Left: Planck 2015 constraints in the Q,, — Qa plane [64]. Right: Planck
2018 constraints in the Qj — €, plane [47]. Both constraints are color-coded by the
measurement of Hy and are obtained by using CMB (TT, TE and EE), LSS (weak
lensing) and BAO observations.

the critical one, p.,'' as Q = p/p., and the equation of state as w = p/p.

The curvature parameter is related to 2 as

k
(aH)*

1-Q=— (1.8)

Therefore the intrinsic curvature of the Universe today depends on its total
energy density. Current CMB, LSS and BAO'? combined observations [47]
estimate a present value of €, = 1—Qy = 0.0007£0.0019 at 68% confidence
level, implying that, to a very good approximation, we are living in a flat
universe (k = 0).

In the same way, we can define a ratio for both the total matter content,
Q,,, and the contribution due to the dark energy, 25, the sum of which
equals the total energy content of the Universe. Figure 1.5 shows the current
constraints on the three ratios (€ = 1 — Q,,, — Q) using CMB, LSS and
BAO observations. We see that around the 70% of the Universe is filled
with the mysterious dark energy.

HWhere p,, the energy density of an exactly flat spacetime, is to be carefully defined in
§1.2.2.

12Baryon acoustic oscillations (BAQ) are pressure waves in the coupled baryon-photon
fluid, similar to sound waves, which had visible effects on the CMB and LSS spectra [62,
63].
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1.2.2 Evolution

The evolution of the Universe is governed by the Einstein’s field equa-
tions of General Relativity written as

1
R;w - ig,uuR = 87TGT;U/ ’ (19)
where G is Newton’s gravitational constant, R = g"” RR,,, is the scalar curva-
ture, and the Ricci tensor R, is defined in terms of the Christoffel symbols
as

RMV = Pf\w,)\ - Fz)\/)\,,u, + qu io - P});O' Kl/ : (110)

Here and throughout this thesis, commas denote partial derivatives , =
0/0x“. The symbols themselves are affine connections defined in GR as

1
F,ﬁy = 59}@ (gua,u + g,ua,u - QW,U) . (111)

The energy-momentum tensor 7, in Eq. (1.9), reads as
T} = (p+ p)u"u, — pdy (1.12)

for a perfect, homogeneous and isotropic, and in a local reference frame
fluid, where u* is its 4-velocity satisfying the condition g, u*u” = —1. In
cosmology one usually chooses a reference frame which is comoving with the
fluid. In this case, u* = (1,0,0,0) and then the energy-momentum tensor
can be written as a diagonal matrix T# =diag(p, —p, —p, —p). Furthermore,
the energy-momentum tensor is conserved, 7.e.

T, =0, (1.13)

where semicolons denote covariant derivatives ., =V, T} =T} + I 1,7 —
[9,T¥. Equation (1.13) leads to the continuity equation

dlnp
dlna

-3(14+w) , (1.14)

where we used the definition of the equation of state w = p/p.

One needs to compute all the components of Eq. (1.9) considering the
FLRW spacetime by means of the metric given by Eq. (1.4). The 00-
component of the Einstein equations relates the rate of cosmological ex-
pansion given by H to the total energy density as'?

(@)2 = ; _ k. (1.15)

a a?

13Here and from now on, we will work in units given by Mp; = (87G)~1/2 = 1, where
Mp; is the Planck mass scale.
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This is called the first Friedmann equation. Notice that for a flat (k = 0)
universe, the energy density reads as p, = 3H? which we had defined before
as the critical density, and therefore Eq. (1.15) can be written as Eq. (1.8).

Taking the derivative of Eq. (1.15) and using the continuity equation (1.14),
one obtains the second Friedmann equation:

i 1
S - 3 1.16
. 6(p+ D) (1.16)

which gives the acceleration of the scale factor in terms of p and p.

The continuity equations (1.14) can also be integrated for w = const. to
find the behavior of the total energy density as

poca 30 (1.17)

and thus, by plugging it into Eq. (1.16), we could find the behavior of the
scale factor for a universe dominated for different components (depending
on the value of the equation of state w):

t2/3(1+w) w -1
a(t) o { SHE " i L (1.18)

Notice that an equation of state given by w = p/p = —1 implies that the
universe is filled with a fluid with negative pressure. This is exactly the
case of a universe dominated by a cosmological constant or by a scalar field
driving an accelerated expansion.

1.2.3 Horizons

Information across space can only travel with finite speed, as stated by
the Special Theory of Relativity. This defines the causal structure of the
Universe: an event originated at some point in spacetime will propagate
with a speed which cannot surpass the speed of light. Photons, for instance,
—traveling at the speed of light—follow null (light-like) geodesics obeying
ds? = 0. To better understand the consequences of this simple fact, we
define a standard function of time, called conformal time 7, given by

dt
a(t)

In terms of 7, the FLRW line element, Eq. (1.4), with the spatially flat
metric g;; = d;;, can be written as

dr = (1.19)

ds? = a*(7) <—d7’2 + 5Z~jdxida:j> : (1.20)
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Figure 1.6: Light cone. The information coming from an event produced at a given
point in spacetime can only travel with finite speed in time-like worldlines. Light-like
curves then enclose all the regions that are and will be causally-connected to that event.

i.e. a static Minkowski metric (g),™ = diag (—1,1,1,1)) rescaled by a(7).
It is simple to see then that null geodesics are described by straight lines of
45°:

|dZ| = dr . (1.21)

Figure 1.6 sketches causally connected and disconnected regions of space-
time: null geodesics given by ds? = 0 enclose regions causally connected to
a given event in a [ight cone; regions outside the light cone do not have ac-
cess to the event. The light cone grows with time, 7.e. causally disconnected
regions will be reached by the cone at some future time.

Imagine then a photon emitted during the Big Bang; there is a finite
physical distance this photon has traveled since then given by

dy(t) = a(t)7(t) . (1.22)

This distance, in fact, defines the radius of a sphere called cosmological
horizon or comoving particle horizon which, for an observer at present time,
represents the size of the observable universe.

Now imagine an observer lying at some position & = 0. For this observer,
there will be a future event which will never reach her. For an arbitrary
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future time, Eq. (1.21) reads

oo dt!

7t = 00) — 7(t) :/t pok (1.23)

which allows us to define the physical size

d, = a(t) /too ac(lz:) - ; (1.24)

This result implies that such an observer will never know about an event
that happens at a distance larger than d.. This distance is called the event
horizon.

As we shall see, the event horizon allows us to understand how, without
an accelerated expansion during the early universe, most of the observable
cosmological scales would have never been in causal contact, which is the
core of the ACDM problems we are about to discuss.

1.3 Problems of the standard cosmological
model

The ACDM model just described, consisting on different phases, each
driven by very different physical processes, is able to explain with incredible
accuracy a large amount of direct and indirect observations. However, as
we have already stated several times, it does not provide neither the initial
conditions for the primordial fluid in the very early universe—its assumed
homogeneity and isotropy—mnor the required density perturbations which
are the seeds for the structures we observe today in our Universe; these
ingredients are just assumed to be there.

On the one hand, it is indeed a puzzle the homogeneity observed in
the Universe. Take for instance the CMB anisotropies. The differences
in temperature are of order of 107°, however, the CMB at the time of
decoupling consisted of 10* causally disconnected patches which should have
never been in thermal equilibrium. How is it that they have the same
temperature then? (This is the so-called Horizon problem). On the other
hand, for our universe to be flat now, it must have been flat to an incredibly
degree in the far past, a value uncomfortably small to take as an initial
condition. (This is the so-called flatness problem). These two issues are
among the main problems of the standard model of Cosmology.



Problems of the standard cosmological model 19

1.3.1 Horizon problem

The particle horizon presented in Eq. (1.19) can be rewritten as

“ dlna
= . 1.2
g /0 aH ( 5)

Furthermore, from Eq. (1.18) one can use the definition dt = adr and find
that the combination (aH)~! grows, for a matter (with w = 0)- or radiation
(with w = —1/3)-dominated universe, as

(aH) ™" oc a2(43) (1.26)

and therefore the particle horizon (1.25) grows in a similar way.

The quantity defined as (aH)™! is called the comoving Hubble radius,
and its implications are quite important: as the comoving Hubble radius has
been growing monotonically with time during the evolution of the Universe,
observable scales are now entering the particle horizon and, therefore, they
were outside causal contact in the far past, at the CMB decoupling for
instance. Consequently, the homogeneity problem is manifest: two points
with an angular separation exceeding 2 degrees over the observable sky
should have never been in thermal equilibrium and yet they have almost
exactly the same temperature!

1.3.2 Flatness problem

We have now defined the comoving Hubble radius, which clearly is a
function of time that monotonically grows during the evolution of the Uni-
verse. Evidently, Eq. (1.8) is therefore a function of time too. It can be
then explicitly written as

k
(aH)?

Q(a) — 1| = , (1.27)

where we recall that Q(a) = p(a)/p.(a). Because (aH)™' grows with time,
|Q2(a) — 1| must diverge and therefore the value Q(a) = 1 is an unstable
fixed point, as seen from the differential equation [60]

dln
dlna

= (1+3w)(Q—1) . (1.28)

For the observed value (a) ~ 1, the initial conditions for € then require an
extreme fine tuning. For instance, to account for the flatness level observed
today, |Q(agen) — 1] < O (1071%) or |Q(acur) — 1| < O (10751). Setting
these orders of magnitude as initial conditions imply a huge fine-tuning
problem.
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1.3.3 Initial perturbations problem

Finally, as we have already stated, even though the homogeneity and
isotropy are evident, they are not perfect. There exist structures like galax-
ies, cluster of galaxies and cosmic voids which back in time were seeded by
small density perturbations which differed in amplitude by dp/p ~ 1072,
according to the level of anisotropy observed in the CMB. These pertur-
bations are, again, assumed and put by hand, as the ACDM model has no
mechanism which can produce them. To that end, a theory providing a
mechanism for the generation of these primordial seeds is very appealing.

In the following, we shall see that both the horizon and flatness problems
are trivially solved if we account for an epoch in which the comoving Hubble
radius decreases before starting to increase again, and that this epoch must
consist in an accelerated expansion of the Universe. Furthermore, in the
quantum regime, vacuum fluctuations subject to this accelerated expansion
could be stretched to classical scales, becoming into the primordial seeds
we are looking for. Such a mechanism is now conceived as inflation (for
reasons we are about to discuss) and it is not only an artifact to solve the
horizon and flatness problems, but a theory where the laws of GR and those
of quantum mechanics are put to work together, converting inflation in the
theory of the primordial quantum fluctuations.



CHAPTER 2

The Physics of Inflation

The inflationary paradigm provides the Standard Model of Cosmology
with a mechanism which easily solves the horizon and flatness problems and,
at the same time, produces the primordial seeds that became the structures
we see today in the sky. Independently of the precise nature of the mecha-
nism, it consists on an accelerating stage during the early universe (similar
to the current one driven by the dark energy component) which happened
only for a brief period, soon after the big bang. During this time, the Uni-
verse should have exponentially increased—inflated—by a factor of 10%* in
order to fit the current observational constraints. As we shall see, the co-
moving Hubble radius decreases during this stage and, therefore, observable
scales were inside the horizon at the beginning, i.e. in causally-connected
regions. Hence, this solves the horizon problem. A similar analysis shows
that the flatness problem is solved too.

Different mechanisms to inflate the universe have been proposed—the
standard picture being that of a new field driving the accelerated expansion.
The original one,’ due to Alan Guth [65], consisted in a new scalar field
trapped in a false vacuum state which energy density drives the accelerated
expansion. The false vacuum is unstable and decays into a true vacuum
by means of a process called quantum bubble nucleation. The hot big bang
was then generated by bubble collisions whose kinetic energy is obtained
from the energy of the false vacuum. A deep analysis of this mechanism,
however, showed that this method does not work for our Universe: for

! Alan Guth was the first one who proposed a scalar field for the inflationary mechanism
and who coined the term ‘inflation” However, historically, the first successful model of
inflation is due to Alexei Starobinsky (1979). See §2.3 for a discussion on this model.

21
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sufficiently long inflation to solve the horizon problem, the bubble collision
rate is not even small but it does not happen at all as the bubbles get pushed
to causally disconnected regions due to the expansion [66-68]. Even though
Guth’s mechanism did not work, he showed that an accelerated expanding
universe could be able to solve the horizon and flatness problems.

Soon after, Andrei Linde [69] and, independently, Andreas Albrecht and
Paul Steinhardt [70] introduced a new mechanism in which the new scalar
field, instead of being trapped in a false vacuum, is rolling down a smooth
potential. Inflation then takes place while the field rolls slowly compared
to the expansion rate of the Universe. Once the potential becomes steeper,
the field rolls towards the vacuum state, oscillates around the minimum and
reheats the Universe. This new mechanism has prevailed up to now and it
is the so-called Slow-Roll inflation.

In 1981, Viatcheslav Mukhanov and Gennady Chibisov showed an amaz-
ing consequence of an accelerated stage of the primordial universe [71]:
quantum fluctuations present during this epoch are able to generate the
primordial density perturbations and their spectra amplitude are consis-
tent with observations. Later, during the 1982 Nuffield Workshop on the
Very Farly Universe, four different working groups, led by Stephen Hawk-
ing [72], Alexei Starobinsky [73], Alan Guth and So-Young Pi [74], and
James Bardeen, Paul Steinhardt and Michael Turner [75], computed the
primordial density perturbations generated due to quantum fluctuations by
the slow-roll mechanism. These calculations made inflation not only an ar-
tifact to solve the horizon and flatness problems, but a fully testable theory
able to generate the initial conditions of the ACDM model.?

The simplified picture of inflation consists then in an accelerated epoch
driven by the energy density of a new scalar field, dubbed the inflaton,
which slowly rolls down its potential. Once the inflaton acquires a large
velocity, inflation ends and the inflaton oscillates around the minimum of
the potential, reheating the Universe i.e. giving birth to the hot big bang
universe we described in the previous chapter. During the inflaton’s evo-
lution, vacuum fluctuations of the inflaton field are continuously created
everywhere in space. These fluctuations, which were in causal contact, get
stretched to classical levels, exiting the horizon and originating overdensity
fluctuations that seeded the structure formation of the Universe.

Along this Chapter, we firstly focus on the classical dynamics of slow-roll
inflation: the solution to the ACDM problems and the dynamics of a scalar
field coupled to Einstein’s gravity (GR). Secondly, we shall introduce the

2Alan Guth himself is the author of a book on the history of inflation— The Inflationary
Universe: The quest for a new theory of cosmic origins [76]. I suggest the interested
reader to take a look at the book for an extraordinary account of the development of
the Inflationary Theory.
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theory of cosmological perturbations and follow the quantization prescrip-
tion for a scalar field in order to compute the predictions for the primordial
perturbations. Finally, we shall describe the cosmological observations able
to test and discern between different realizations of inflation.

2.1 The horizon and flatness problems revis-
ited

As already pointed out, the core of the ACDM problems is the growing
nature of the comoving Hubble radius (aH) '—a region enclosing events
that are causally-connected at a given time—during the evolution of the
Universe. As a consequence, most of the observable scales must have been
disconnected in the past. The intuitive solution is then a mechanism which
makes the comoving Hubble radius decrease during the early times. This
would imply that observable scales were causally-connected at some initial
time and then exited the horizon when it decreased. The horizon problem
would then be solved as currently disconnected regions across space would
have been allowed to be causally-connected in the past.

As we shall see in §2.1.1, during inflation, the Hubble parameter H is ap-
proximately constant. Therefore, the particle horizon 7, given by Eq. (1.25),
can be integrated explicitly as

1

- (2.1)

T o
So one can see that a large past Hubble horizon (aH) " would make 7
fairly large today, larger than the present Hubble horizon (agHy) ™, i.e. two
largely-separated points in the CMB would not communicate today but
would have done so in the past if they were inside the particle horizon 7.
Figure 2.1 sketches this reasoning.

Furthermore, it is evident from Eq. (1.8) that a decreasing Hubble ra-
dius drives the Universe towards flatness, and just deviating from it at
present times. Thereby 2 = 1, which previously was an unstable fix point
(see Eq. (1.28)), became an attractor solution thanks to inflation, thus also
solving the flatness problem.

2.1.1 Conditions for inflation

The shrinking Hubble radius entails important consequences for the evo-
lution of the scale factor a, i.e. for the evolution of the Universe. First, lets
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Figure 2.1: Evolution of the comoving Hubble radius (aH)fl. At early times, the

horizon was large enough so that observable scales were in causal contact. As inflation
took place, the horizon shrank and scales came out to disconnected regions. Inflation then
finished and the horizon started to grow to the present size. Two casually-disconnected
regions, P and @, were then in causal contact at some point in the past, thus resolving
the horizon problem.

note that the change of the decreasing (aH) ™" over time is

(i <a§{> — —(GZ)Q <0, (2.2)

and therefore, from the inequality,
a>0, (2.3)

is a necessary condition for the shrinking of the Hubble radius. It is evident
then that we require an accelerated expansion to solve the horizon and
flatness problems.

Furthermore, Eq. (2.3) has implications on the evolution of the Hubble
parameter due to the relation H = (i/a) — H?, and hence

L) (2.4)
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where we have implicitly defined the first slow-roll parameter as

H
€H = T <1. (2.5)
As we shall see, ey is one of the most important parameters in inflation, as
it quantifies its duration and, equivalently, determines when it ends.

Furthermore, from the second Friedmann equation (1.16),

S = B (1— ) = —5 o+ 3p)
o (2.6)
=5 (1+3w) ,

where, for ey — 0 and a flat Universe with p = p. = 3H?, we find that
Eq. (2.6) leads to

w——1, “— a o et (2.7)
as already obtained from Eq. (1.18). This means that the expansion in-
creases exponentially or, in other words, the universe inflates! In a general
case, Eq. (2.6) suggests a more general condition for an accelerated expan-
sion:

1
P<—3p, (2.8)

which, as discussed in §1.2.2, implies that the accelerated expansion is driven
by a fluid with negative pressure.

Finally, notice that Eq. (2.5) shows that during this accelerated expan-
sion, the rate of change of the Hubble parameter is required to be small,
meaning that H is approximately constant during inflation. This has im-
portant consequences on the conformal time, namely (see Eq. (2.1))

1 1
T=—— > a=

_ 2.9
aH '’ Hr'’ (2.9)

and therefore a singularity a = 0 corresponds to 7 — —oo . Consequently,
at 7 = 0 the scale factor is not well defined and inflation must end before
reaching this epoch (that is, H ~ const. stops being a good approximation).
The spacetime defined with these characteristics is called de Sitter space and
it is exactly the spacetime of inflation. To see the consequences of this in the
evolution of two CMB points, let us take Fig. 2.1 and put it in perspective
as a function of the conformal time 7, shown in Fig. 2.2. If we take only
the period containing the hot big bang (from 7 = 0 to 79), two CMB points
could have never been in contact, whereas once we assume inflation took
place, the light cones of these two points intersect in the far past, during
inflation, allowing them to be causally connected.
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Conformal time

A

today
To g JEA

hot Big Bang

9
Il

o
1

i flation

causal contact

initial singularity

T = —00 <« > Space

Figure 2.2: Conformal diagram including the inflationary epoch. Inflation shifts the
initial singularity to 7 = —oo (see Egs. (2.9)) allowing the light cones of two CMB points,
P and @, which are causally disconnected now, to be causally connected at some point
in the past, thus solving the horizon problem.

Before continuing, and to summarize, let us emphasize that whatever the
mechanism for inflation is, the simple fact that the comoving Hubble radius
shrinks implies that the following conditions must be (mutually) satisfied:

H 1
a>0 =———<1 < —=p. 2.10
) € H?2 ) p 310 ( )
Now, let us discuss how the energy density of a scalar field driving inflation,
subject to the slow-roll approximation, effectively satisfies these conditions.

2.2 Canonical single-field inflation

At the background level, we consider a single scalar and homogeneous
field ¢(t,z") = ¢(t), which we shall name the ‘inflaton’, minimally coupled
to Einstein’s gravity. The action is then given by the sum of the Einstein-
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Hilbert action and the action for the scalar field. It reads as
1 1
S = Spn + Sy — /dm/——g [23 Fog0u0,-V(O)| . @)

where g =det(g,,), and V(¢) is the potential energy of the inflaton ¢. As
we shall see, the predictions for a given inflationary model are, in general,
highly dependent on the form of V(¢).

The variation of the Einstein-Hilbert action leads to the Einstein equa-
tions in the vacuum R, — %gw,R = 0. On the other hand, the variation of
S, defines the energy-momentum tensor for the scalar field:

08y = ;/dA‘:m/—gTWégW , (2.12)

which can be solved for T),, as

1
Tuu = ¢,u¢,u - guu |:2gpg¢,p¢,a - V((b) . (2'13>

Using the FLRW metric (1.4), the 00- and éi-components of Eq. (2.13) can
be related to those in Eq. (1.12) for a perfect fluid. Consequently, the energy
density and pressure for a homogeneous minimally coupled scalar field are
given by:

=3+ V(9), (214
p=3d—V(6). (215)

If we now take the continuity equation (1.14) and substitute Eqgs. (2.14)-
(2.15) into it, we obtain the Klein-Gordon equation for a scalar field in the
gravitational background:

¢+3Hd+V'(¢)=0. (2.16)

Here primes denote derivatives with respect to the field, as ' = d/d¢. Fur-
thermore, it is possible to do the same for the Friedmann equations (1.15)
and (1.16) to obtain the evolution equation for the Hubble parameter and
the constraint equation respectively as

H? = ; Bq’ﬁ + V(qﬁ)] : (2.17)
0=¢*~V(¢)+3(H*+H) . (2.18)

Together with the Klein-Gordon equation (2.16), Eqgs. (2.17)-(2.18) com-
pletely determine the dynamics of the scalar field in the gravitational backgr-
ound—and hence are the so-called background equations of motion. Now,
we shall discuss how this set of equations behaves under the conditions for
inflation obtained in §2.1.1.
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2.2.1 Conditions for inflation revisited

Recall the conditions for inflation in Egs. (2.10). The third equation,
for the energy density and pressure of ¢, can be written as

172
_pe_30°—V(9) 1
Y IR Ve) (219

which the last inequality can be recast as ¢ < V(¢) . The same can be
noticed from the second equation in (2.10), where the slow-roll parameter
can be written, using Eqgs. (2.17)-(2.18), as

1 2
LA 2.2
ANy T (2:20)

In this case, the inflationary limit ez — 0 places the even stronger condition

o< V(p). (2.21)

In addition, the second derivative, i.e. the acceleration of ¢, must be negli-
gible compared to the rate of expansion. This places the second condition

6] < 3H3],[V'(9)] . (2.22)

This inequality allows us to introduce the second slow-roll parameter 7y,
defined as

dlney
NH =€H — S773.
2Hdt
é (2.23)
p— ¢7H .
Then, the condition
Ing| <1, (2.24)

ensures that the fractional change of ey is small. We shall sometimes use
the slow-roll parameter 0; = —ny which will help us to better define a
hierarchy of slow-roll parameters ¢; (see §5).

Therefore, the conditions for inflation Eqs. (2.10) were recast as the
slow-roll conditions {ep, |ny|} < 1 which place constraints for the velocity
of the field ¢. Namely, the potential energy V' (¢) should dominate over the
kinetic energy ¢? /2 or, in other words, the field should roll slowly down its
potential. This is sketched in Fig. 2.3, where a sufficiently flat potential
would make the field roll slowly towards the minimum: once the potential
gets steeper, the field acquires a large velocity, breaking the condition (2.20);
finally, the field oscillates around the minimum and reheats the Universe. In
addition, we illustrate, in Fig. 2.4, the solution for the field ¢ and the first
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<— — — — inflation — — = —> reheating

¢’i ¢e

Figure 2.3: Evolution of the inflaton. The inflaton rolls down the potential, inflating
the Universe. Once it acquires a large velocity, the slow-roll conditions break and inflation
finishes. Afterwards, the inflaton oscillates around the potential’s minimum and reheats
the Universe. Note that, in general, ¢; > ¢, so the field decreases towards the right in
this sketch.

slow-roll parameter ey computed by solving numerically the background
equations (2.16)-(2.18) for the a-attractor potential given in Eq. (2.38) with
a. = 1. Notice that ¢ and ey evolve slowly during most of the evolution,
parametrized by the number of efolds N = [ Hdt (quantity that we shall
carefully describe in §2.2.4) and that the field enters the oscillatory stage
when inflation finishes at ey = 1, as expected.

2.2.2 Slow-roll approximation

The conditions obtained in §2.2.1 allow us to simplify the Einstein equa-
tions for the inflaton, Egs. (2.16)-(2.18). In particular,

L V(o)
¢~ VAR (2.25)
H? ~ 1I/(¢>) , (2.26)

3
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Figure 2.4: Evolution for the field ¢ and the first slow-roll parameters ey for the
model given in Eq. (2.38) with a, = 1, by solving the background equations (2.16)-(2.18)
numerically. The plot is normalized such as the end of inflation ez = 1 coincides with
N =55 (gray vertical dashed line).

which is the so-called slow-roll approximation (SR).? Notice that the second
equation also implies that H? is approximately constant as expected. Also,
from Eqs. (2.25)-(2.26), one can see that the conditions for inflation in terms
of the field velocity can be once more recast as conditions for the shape of the
potential V(¢). This allows us to define the potential slow-roll parameters

B _1 (V@Y _V"(9)
veilvi) - v 20

which are related to the Hubble slow-roll parameters as ey ~ ey and 1y ~
ny — €y, respectively, as long as the SR approximation (Egs. (2.25)-(2.26))

3Along this thesis, ‘SR’ shall refer to the (slow-roll) approximation only, which helps to
differentiate it from other approximations discussed in §5.
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holds. They are also subject to the slow-roll conditions, 7.e. inflation finishes
when ey, ny ~ 1.

2.2.3 Reheating

After inflation has finished, the inflaton rolls to the global minimum of
the potential where it oscillates. There will be energy losses due to oscilla-
tions, corresponding to the decay of individual ¢-particles. The equation of
motion of ¢ then becomes

G+3Hp+Top+V'(p) =0, (2.28)

after having expanded the potential around the minimum value and where
[' is the decay rate of ¢, which acts as an additional friction term and
depends on how the inflaton couples to the Standard Model particles. One
important feature is that reheating occurs at t ~ H~' ~ I'"! j.e. the
reheating temperature is given by Trep ~ v Mp L.

As we shall discuss, an important and surprising feature of inflation is
that the primordial perturbations freeze after inflation has finished, i.e. their
subsequent evolution is not affected by the physics of reheating (see Refs. [15,
17,77-79] for more details on the reheating processes in the early universe).

2.2.4 Duration of inflation

As the expansion is exponentially accelerated, the duration of inflation
is parametrized by means of the number of efolds AN = In (aend/dinitial)-
Therefore, the number of efolds elapsed from a particular epoch to the end
of inflation is given by

tend
N:/ Hdt'
t

~ V(') A = ¢ d¢f
 Jena V(@) Sena V/ 26y

where in the second line we assumed the SR approximation, and thus we
can approximate the duration of inflation by means of the field excursion
A¢.

The precise value of N, needed to solve the horizon and flatness prob-
lems, depends then on the energy scale of inflation and also on the physics
of reheating. The latter in fact provides the following relation [14,79]:

(2.29)

16 9
N:56_§1n10 Gov 1, 10° GeV

, 2.30
pi/4 3 Treh ( )
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where p, is the energy density at the end of inflation. Thus, we can esti-
mate N for some well-motivated values of T,.,. In particular, to solve the
aforementioned problems, it is found that AN > 60 [14,79]. Furthermore,
CMB scales should have exited the horizon around 55 efolds before inflation
ended (see references in §2.2.3):

N, /MB 49 55 (2.31)
CMB — Sena \/E = . .

Before moving on, a comment is in order. Introducing units back, the
first slow-roll condition tells us that |V'(¢)/V(¢)| < v/2/Mp;, for which
N > (¢p—bend)/V2Mpy in Eq. (2.29). This means that we will get a sufficient
amount of inflation as long as the excursion A¢ changes at least as large
as v/2Mp,. These super-Planckian values (encountered in many inflationary
models as the one used in Fig. 2.4) do not represent a breakdown of the
classical theory. In fact, the condition for neglecting quantum gravitational
effects is that the field energy density is much smaller than the Planck energy
density: |V (¢)| < 2M3, [16,55]. This condition can be simply satisfied by
supposing that V' (¢) is proportional to a small coupling constant which, in
turn, does not affect the slow-roll conditions nor the value of V.

2.3 Models of inflation

So far we have not made any prediction but just found that, under the
assumption that there exists a single field minimally coupled to Einstein’s
gravity, the conditions for inflation require that the potential energy domi-
nates over the kinetic one. Then, in order to exploit the theory, we need to
choose a particular function for V(¢) and solve the background equations.
Their computation is often performed analytically given the simplifications
one can do using the SR approximation. However, there exist numerous
potentials proposed in the literature which break per se the slow-roll con-
ditions and hence the background equations must be solved numerically.
In the following we discuss the usual approximations to choose a model in
which we include noncanonical models, which are a central part of this the-
sis. We do not attempt to give a full list of models but only a taste of the
most popular and phenomenologically well-behaved ones. For a well-known
and exhaustive classification see Ref. [80].

Single-field canonical models

A general and historical classification of single-field models relies on
whether the field in a particular model takes super- or sub-Planckian values.
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The former class is dubbed large-field inflation whereas small-field inflation
the latter. The requirement of the flatness of the potential V' (¢) is the same
for both and therefore we do not discuss their further conceptual differences
but the interested reader is referred to Refs. [55,79].

Chaotic inflation

Unarguably, the simplest model is given by the potential energy V(¢) =
m?2¢?/2 which belongs to the class of models called chaotic inflation [81],
generally written as

V(p) = Ao . (2.32)
In the next section we shall see that this class of models, in the canonical
framework, are in tension with CMB observations [82], however we will often
use it as a working example given its simplicity. For instance, the potential
slow-roll parameters for this model are simply given by e = ny = 2/¢* .
Furthermore, the end of inflation— €, = 1 —sets the final value for the field
as ¢, = V2Mp,, where we recovered the units for illustration. Then the field
value at which CMB fluctuations must have been created can be computed
by solving Eq. (2.31). This gives us ¢cvp = 24/ Noms — 1/2 >~ 15Mp for
Ncews =~ 55. Notice that this model takes super-Planckian values, i.e. A¢ >
Mpy; models with this characteristic produce in general a large amplitud of
primordial tensor modes and thus they are in tension with observations [82].

Small-field inflation

A model of inflation with super-Planckian values might be subject to
quantum effects which affect the evolution of ¢ in a way we currently
do not know. Therefore, models with short excursions A¢ are attractive.
Among the most popular ones, Hiltop inflation—similar to that sketched in
Fig. 2.3—given by the potential [83]

V(6) =V [1 - <¢)] , (2.33)

1L

is able to fit observations for p = 4 [82].

High-energy physics models

Other class of models are inspired from high-energy theories. Histori-
cally, from GUT, the Coleman-Weinberg potential [69, 70]

V(o) = Vo{(jj>4 [ln (ﬁ) - ﬂ * } ’ (23
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was used when inflation was first being studied. However, calculations of
the primordial perturbations were incompatible with the phenomenological
values of V) and i coming from particle physics. The same problem arises
from the widely studied Higgs potential [81,84].

Along of the lines of GUT theories, supersymmetric realizations provide
the potential
V() = A*[1 + aplog (¢/Mp1)] (2.35)
where «j > 0. In this scenario, inflation is driven by loop corrections in
spontaneously broken supersymmetric (SB SUSY) GUT theories [85].

Another widely studied model comes from axion physics, called natural
inflation [86-89], and is given by a periodic potential of the form

V(g) =V [cos (?) + 1] . (2.36)

However, this model is becoming disfavored by the latest measurements [82].

From string theory, brane inflation—driven by a D-brane—is character-
ized by the effective potential

p
V(¢) = M*Mpy ll - (g) + - 1 : (2.37)
where p and p are positive constants. In general, one assumes that inflation
ends around ¢ ~ pu, before the additional terms denoted by the ellipsis
contribute to the potential. The models arising from the setup of D-brane
and anti D-brane configuration have the power p = 2 [90] or p = 4 [91,92].

More recently, from supergravity theories, the a-attractors with the po-
tential energy [82,93,94]

2
3 2 ¢
V(¢) = . M*Mp, |1 — — — 2.38
0= Soarat 1-eo (/20 e
have been used mainly due to their flexibility to fit observational predic-
tions, depending on the value of a, (which, interestingly, coincides with
Starobinsky inflation, Eq. (2.41), in the limit o, = 1 and with the ¢ model
of chaotic inflation in the limit o, — 00).

Multifield models

It would be very natural that different species of particles were present
during inflation. They may have not played any role in the evolution of the
Universe, but any interaction between the inflaton field and other particles
will inevitably lead to new phenomenology and to different mechanisms for
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the production of perturbations. The study of multifield inflation deserves
a thesis of its own, but the interested reader is encouraged to look at the
comprehensive review by D. Wands [95] or in [17,79].

Noncanonical models

Here we consider cases in which we do not only choose a potential energy
V(¢) but also modify either the kinetic energy of the field, the gravitational
interaction, or both.

k-inflation

Instead of taking L4 = % g ¢ .0, —V(¢), one can consider more general
kinetic terms proportional to ¢ and its velocity ¢ as

Ly=K(,X)—V(e), (2.39)

where X = %g’“’gbjugb’l,. These kind of models are called k-inflation and it
can be shown that inflation can indeed be driven by the kinetic term and
take place even for a steep potential [96,97].

Nonminimal couplings

Equation (2.11) assumes a minimal coupling between ¢ and R, how-
ever, a term like £¢R, where ¢ is a coupling constant, is also allowed and
introduces new phenomenology for different values of the coupling. In this
configuration, simple potentials can be reconciled with observations for a
range of values of £. Furthermore, it can be shown that the theory can
be recast as one with a minimal coupling with an effective potential if one
performs a conformal transformation of the metric as [2,84,98-108]

G — (D) G - (2.40)

Scalar-tensor theories

The two approaches described above can be extended to general theo-
ries of modified gravity. In general, any modification of GR will introduce
new degrees of freedom, from which a scalar field can be identified as the
inflaton. Currently, the most general scalar-tensor theories are the so-called
Horndeski [109-112] and beyond Horndeski [113-120] theories of gravity.
These are fully characterized by a few functions, G;(¢, X), coupled to the
Ricci and Einstein tensors and to derivatives of the field. Therefore, any
choice of these functions will inevitably introduce new phenomenology to
the inflationary evolution.
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Historically, the first successful model of inflation was due to Starobin-
sky [121]. He realized that an early exponential acceleration comes as a
solution of the Einstein equations with quantum corrections, due to the
conformal anomaly of free scalar fields interacting with the classical gravita-
tional background.* This conformal anomaly contributes with higher-order
terms, in the scalar curvature R, to the Einstein-Hilbert action. The action
then reads

6M?

where, in the absence of a quantum-gravity description of the theory, M
is a phenomenological parameter with dimensions of mass. This model be-
longs to the class of theories called f(R), where suitable functions of R can
be written. Furthermore, these classes allow the same conformal transfor-
mation, Eq. (2.40), as the nonminimal-coupling models and, in particular,
Eq. (2.41) can be recast as a canonical action of a scalar field with the po-
tential given in Eq. (2.38) (with a, = 1), i.e. the Starobinsky model is a
limit case of the a-attractors [123-126].

The first models of inflation in the framework of general Horndeski-like
theories were called G-inflation and have been studied for very different
potentials. In particular, one can show that simple potentials as those of
chaotic inflation can be reconciled with observations for simple choices of
Gi(¢, X) [4,127-130].

The study of this class of theories for inflation is one of the main goals
of this thesis. Consequently, they are fully discussed in §4.

S:/d4x\/—_g]\/gm <R+ U ) , (2.41)

2.4 The theory of primordial quantum fluc-
tuations

We have thus far discussed the classical physics of the inflationary the-
ory: a mechanism able to drive the expansion of the early universe in an
accelerated way, solving the horizon and flatness problems. Furthermore,
we showed that a scalar field, evolving slowly compared to the expansion
rate, satisfies the requirements for the inflationary mechanism.

Yet we are halfway into the story inflation has to tell. As already stated,
inflation is also able to provide with the initial conditions for the hot big
bang model, i.e. with the primordial density perturbations that led to the

4In the classical theory, a conformally-invariant free scalar field (m = 0), i.e. respecting

the symmetry given in Eq. (2.40), satisfies 7%, = 0. However, the quantum expecta-
tion value (0|7%,|0) differs from 0, contributing with linear combinations of the scalar
curvature R. This is called in the literature a conformal (or trace) anomaly (see, e.g.,
Ref. [122] for details).



The theory of primordial quantum fluctuations 37

CMB anisotropies and the large scale structure. The origin of these lies
on the vacuum fluctuations of the inflaton field itself, which is subject to
quantum effects.

The inflaton fluctuations backreact on the spacetime geometry, leading
to metric perturbations. The full set of quantum perturbations then get
stretched to cosmological scales due to the accelerated expansion. As we
shall see, these fluctuations in the inflaton field lead to time differences in
the evolution of different patches of the Universe, i.e. inflation finishes at
different times in different places across space. Each of these patches will
then evolve as independent causally-disconnected universes, each one with
different energy density, and it is once these patches come back inside the
horizon, during recent times, when they become causally-connected again.

In Appendix A we review the Cosmological Perturbation Theory, useful
for this chapter. There we compute the primordial curvature perturbation
which power spectrum is related to current CMB measurements. One im-
portant feature of this perturbation is that it freezes when it comes out
the horizon during inflation. Consequently, its evolution is not modified by
reheating processes and, in this way, we can connect the physics at the end
of inflation with the density perturbations during the latter epochs, includ-
ing the CMB anisotropies. We shall study the statistical properties of the
primordial curvature and tensor perturbations that inflation creates and, in
the next section, compare them to current observations.

We will start by finding the second-order action for scalar and tensor
perturbations. Then we will quantize the field perturbations and find their
equations of motion. Their solutions are not trivial in general so we will
explain different approaches to solve them. Finally we shall give the exact
formula for the power spectra of these primordial perturbations.

2.4.1 Scalar and tensor perturbations

To compute the second-order action for perturbations, we first adopt the
Arnowitt-Deser-Misner (ADM) formalism which allows us to split the metric
in such a useful way that the constraint equations clearly manifest [131].
The line element, following this splitting, then reads

ds® = —N?d#? + g;j (da’ + N'dt) (da? + N7dt) (2.42)

where g;; is the three-dimensional metric on slices of constant ¢, N(z*) is
called the lapse function and N;(x;) is called the shift function. As we shall
see, both N and N; are Lagrange multipliers and, furthermore, they contain
the same information as the metric perturbations ® and B introduced in
Appendix A.
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By inserting Eq. (2.42) into Eq. (2.11), the action becomes

S = ; / d'zy/=g [N®)R — 2NV + N~ (E;E7 — E?)

) (2.43)
1 i ij
N7 (6= Nig) = Noo6, -2V ] |
where @) R is the three-dimensional curvature and
L. i ij
Ez‘j = - (gU — Ni;j — Nj;i) s E = EZ = gJEij . (244)

2

One can see that neither NV nor N; have temporal derivatives and therefore
they are subject to dynamical constraints (the only dynamical variables are
then ¢ and g¢;;). Consequently, by varying the action (2.43) with respect to
N and N?, we get the following constraint equations

R 2V — g6, — N2 {EMEU — B+ (4 - Nigb,ﬂ —0, (245)

[N (B~ E})| =0. (246)
Now that the splitting, i.e. the foliation of the spacetime is evident, we
introduce the metric and inflaton perturbations defined in Appendix A. For
this, it is customary to choose the comoving gauge to fix time and spatial
reparametrizations.” In this gauge, the inflaton perturbation d¢ and E
vanish, and thus we adopt a coordinate system which moves with the cosmic
fluid; furthermore, most of the energy density is driven by the inflaton field
during inflation, i.e. 0p ~ d¢. A consequence of this is that the curvature
perturbation on density hypersurfaces, (4, and the spatial curvature ¥ relate
as (p >~ —V (see Eq. (A.50)) and, therefore, the perturbed spatial metric
gij in the comoving gauge reads as (see Eq. (A.10))°

gij = a” [(1+2¢) 655 + hyj] (2.47)

where we assumed that the vector perturbation F; is subdominant. Also,
h;; is the only tensor perturbation and obeys the equation of a gravitational
wave (see Eq. (A.55)), i.e. the generation of a background of primordial ten-
sor modes h;; is equivalent to the generation of a background of primordial
gravitational waves (primordial GW). This waves could polarize the CMB,
as discussed in §1.1.5.

We then expand the lapse and shift into background and perturbed
quantities. Furthermore, the shift admits a helicity decomposition (see Ap-
pendix A for details) in such a way that we can write N and N° as

N=N+ Ny , N; =N, + X(1),i T Wi) (2.48)

°See, e.g., Refs. [15,60,132] for relations in this and other gauges.
6We drop the subscript ‘¢’ as the distinction between ¢ and ¢, is not further neccesary.
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to first order in perturbations.

Plugging Eqgs. (2.48) into the constraint equations (2.45)-(2.46) we find
to zero order the Friedmann equation (2.17), which means that it is a con-
straint equation and not an equation of motion. On the other hand, to first
order in perturbations, we find that [133]

Ny = > d — £ 2ﬁ -2/
L = an X1 =—7 ta 07 °C, (2.49)

H 2H?

where 972 is defined through the relation 972 (0%¢) = ¢.

Finally, by expanding the action Eq. (2.43) to first order in scalar per-
turbations and substituting Eqgs. (2.49) into it, we arrive to the quadratic
action for scalar perturbations’

S? = ; / d4xa3§2 ¢ —a7?(00)%] . (2.50)

For tensor perturbations, the computation of the quadratic action is
much simpler, given that we only have h;;. The tensor perturbation can be
decomposed into its polarization states as

hij = e + V<€ (2.51)

and thus we only study the evolution of the scalar components v, and 7.
The quadratic action for tensor perturbations then reads as

1 : ,
SP = /\Z g/d4a:a3 {’yi —a 2(8%\)2} : (2.52)
:+’><

where the sum is over the two polarization states.

2.4.2 Quantization

We define the scalar and tensor Mukhanov variables, us = z,( and u; =
2y with

12 2
22 = aQZQ = 2a’ey 22 = % : (2.53)
In terms of these variables, the quadratic actions become
1 Z”
S® = 3 / drd®z [(%)2 — (Ouy)* + Z—Pug , (2.54)
P

"This equation is popularly identified with the ‘(2)’ superscript and called ‘quadratic’,
although it is composed with first-order perturbations identified in this thesis with the
‘(1)’ subscript.
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where p = s,t stands for either scalars or tensors. Also, we changed to
conformal time and, therefore, from now on primes refer to derivatives with
respect to 7, unless otherwise stated.

In order to quantize the field u,, we define its Fourier expansion as

() = [ TE (e (2.59)
u(t,x') = | —=ug, (7)e"™ | :
(2m)2 "
where we omit here the subscript ‘p’ in both u(7, z") and wuy, (7) to simplify
the notation. By varying the quadratic action Eq. (2.54) with respect to u,
one obtains the Mukhanov-Sasaki equation in Fourier space as

Z//
uy + <k2 — p) u, =0, (2.56)
Zp

where here u, = ug(7), from Eq. (2.55), after removing the vector subscript
i for the wavenumbers k, given that equation (2.56) depends only on their
magnitude.

To specify the solutions of the evolution equation (2.56) we first need to
promote u, to a quantum operator in the standard way as

~ dk? ~ ikt * PN —ik;xt
u:/<27r)3 [uk(T)akie ki —I—uk(T)azie i ] , (2.57)

where the creation and annihilation operators satisfy the usual commutation
relation

lan,, aly| = (2m)% (ki — k) (2.58)
only if the following normalization condition of u; and its conjugate mo-
menta ™ = u), is satisfied:

Uy — upuy =1 . (2.59)

Secondly, we need to choose a vacuum state. In the far past, ¢.e. for
T — —oo (or, equivalently k£ > aH), Eq. (2.56) becomes

uy + k*u, =0, (2.60)

which is the equation of a (quantum) simple harmonic oscillator with time-
independent frequency. It can thus be shown that the requirement of the
vacuum state to be the state with minimum energy implies that [15]

1
V2k

which defines a unique physical vacuum—the Bunch-Davies vacuum—and,
along with Eq. (2.59), completely fixes the mode functions.

Uy (T — —00) = e kT (2.61)
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2.4.3 Solutions to the Mukhanov-Sasaki equation

The Mukhanov-Sasaki equation (2.56) is not simple to solve in general,
as it depends on the specific inflationary background, encoded in z,. For
canonical inflation, 7.e. a background with a smooth inflaton evolution, one
can simplify the 2 /2, factor by assuming that the evolution is close to a de
Sitter phase and find analytic solutions by means of the SR approximation.
Conversely, the background could not be smooth—features in the inflaton
potential can be present—or can be given by a scalar-tensor theory different
than GR. In these cases, different techniques must be used or numerical
integration must be performed.

Quasi-de Sitter solution

In de Sitter space where de Hubble parameter H is constant, Eq. (2.56)
reduces to

2
uy + (k2 - 72) u, =0, (2.62)

which, using the initial condition Eq. (2.61), has as solution

we(7) = 6;2_’; (1 - ];) | (2.63)

which is the same solution for either scalars or tensors, so we dropped the
subscript p.

Observations are to be compared with the spectrum of the primordial
quantum fluctuations. In this case, the spectrum of w, is defined as

(i, (7). gy = (27)° 5 (k + k) P (K) (2.64)

where Py, (k) = |u(7)[? is the power spectrum of the variable w,, while the
dimensionless power spectrum, A?(k), reads as

AL (k) = K P, (k) . (2.65)

~on?
Notice that on superhorizon scales, |k7| < 1,

1 a’H?
2 2,2\ ~
() = 57575 (1+ Kr%) ~ ST (2.66)

where, in the approximation, we took the de Sitter condition on the con-
formal time Eq. (2.9). Furthermore, using the relations ( = us/zs and
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v = uy/z;, we can compute the dimensionless power spectrum for the pri-

mordial scalar and tensor perturbations in quasi-de Sitter space, using there-
fore the solution given in Eq. (2.63), as

k3 uy(T) ? H?
A%(k) = L = 2.
C( ) 272 2 87T2€H _ ) ( 67)
K |u,(r)[F H?
AZ(k) = Pl = : 2.68
2 (k) 2m2| 2 2m2 |, oy ( )
crossing k = aH.

where it has been explicitly stated that they must be evaluated at horizon

First-order in slow-roll solution

We can take weaker restrictions for the 27/z, factor in Eq. (2.56) if we
expand it in slow-roll parameters. On the one hand, the tensor sector is

not modified as z2 = a/2 does not contain any slow-roll parameter. On the
other hand, the scalar factor z”/z; can be expanded as

1

=l (24 2en + € + 30, + 4016 + 62)

(2.69)
where we dropped the subscript s to make the notation simpler, and we
employed the Hubble slow-roll parameter convention:

1dIn €y d51
0o = - — 09 = — + 61 (01 — ) 2.70
1 5 AN €H , 2 dN+ 1 (61 — €mr) ( )
Equation (2.69) is exact, i.e. no slow-roll hierarchy approximation has been
used at that point (namely, we kept O(e%;) terms).®
To first order in SR approximation, where the quasi-de Sitter condition
reads as )
aH=——(1+¢€p), (first order in SR) (2.71)
T
Eq. (2.69) is reduced to
2" 1 21
= (2+ 6ey +301) = = 4 (first order in SR) (2.72)
where
1/2514—66}1—1—3(51, “ V2§—|—26H+51 (2.73)
8See §5 for details on the hierarchy of slow-roll parameters.
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Hence, to first order in slow-roll parameters, the scalar Mukhanov-Sasaki
equation (2.56),

21
uj + <k2 - 4) up =0, (2.74)

-2
can be recast as a Bessel equation and thus it has an exact solution given
by

ug(r) = V=7 [aHY (=k7) + BHP (=k7)| (2.75)
where H(Y and H(® are the Hankel functions of the first and second kind,

respectively. These functions are equal, H("(z) = H?(z), for a real argu-
ment z and have the following asymptotic limits:

2 . .
HO (2 = 00) o~ | —eil==(r+3)3] | (2.76)
T

HY (2 — 0) >~ —i (v ; L' (i)y = 72r (2”_%> Fr(é)) zveTE L (2.77)

Therefore, in the far past |k7| — —oo, Eq. (2.75) is written as

—ikT eikT

up(T — —00) = \/z [O‘e\/g + 5\@] ’ (2.78)
_ \/Z\/__THS)(—M :

where we dropped the factors eﬂ%(”%) and, in the second line, we took
a = m and 5 = 0 by comparison with Eq. (2.61), i.e. Eq. (2.78) fixes
the Bunch-Davies mode functions to first order in the slow-roll parameters.

Finally, the dimensionless power spectrum, computed in the limit k7 <
1, reads as

2

k3 uk(r — 0)
A2(k) =
() 27 z

2 2.79
2 T(v) H \’ 3-20 279)

= 5 5 - (—k7) :

(2m) F<§> —ar¢ k=aH
where one can notice that in the limit ey = §; — 0 (or, equivalently,

v — 3/2), Eq. (2.79) reduces to Eq. (2.67) as expected.

Integral solutions

In the previous approximate solutions, the validity of the slow-roll con-
ditions, Eqs. (2.20) and (2.24), was assumed. The first condition, ey < 1, is
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required to not terminate inflation prematurely, whereas |0;| < 1 Y enforces
that ey evolves slowly and thus the only deviation from quasi-de Sitter
is due to the end of inflation, which ensures that the SR approximation
remains valid. However, in canonical inflation, the evolution of these pa-
rameters depends on the shape of the potential, meaning that an irregular
potential—with features of some sort—would make one of the parameters
increase before the end of inflation, violating the slow-roll conditions. This
does not necessarily mean that inflation is terminated, but that the SR ap-
proximation cannot be trusted. This has become an issue as more models
with features in the potential have become popular due to their particular
signatures in the power spectrum. For such cases, numerical integration of
Eq. (2.56) has been usually performed.

Alternatively, new techniques to solve the Mukhanov-Sasaki equation in
a semi-analytical way have been developed to overcome the deficiencies of
the SR approximation. In §5 we will carefully review two powerful meth-
ods: the Generilized slow-roll (GSR) [134-143], and the Optimized slow-roll
(OSR) [144,145] approximations. The former relies on an integral, iterative
solution of Eq. (2.56), whereas the latter relies on analytical formulas in
terms of the slow-roll parameters as in the standard SR approximation, but
with a different and more accurate order counting of slow-roll parameters.
In both cases, ey is still required to be small in amplitude, so inflation is
not terminated, but its evolution can be as fast as the efolding scale. As
we shall see in §5, both techniques were recently extended to include the
full Horndeski background described in §2.3 and to be detailed in §4.1.1.1,
making these methods even more powerful.

In the case in which neither the conditions for the SR approximation
nor those for the GSR/OSR techniques are satisfied, direct numerical inte-
gration of Eq. (2.56) is required, for each wavenumber k& and with the initial
condition given by Eq. (2.63).

2.4.4 Scale dependence, the amplitude of gravitational
waves and current observational bounds

The scale dependence of the primordial spectra of scalar and tensor
perturbations is quantified through the spectral indices
dln Ag dln A?
ng— 1= , ng = it
dink dink

(2.80)

Equations (2.67) and (2.68) allow to relate the spectral indices (sometimes
called ‘primordial tilts’) with the slow-roll parameters and thus, working to

9Recall that ng = —d;.
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linear order, we can write them as

ns — 1= —4dey — 207 , (first order in SR) (2.81)
ny = —2€ey (first order in SR) (2.82)

where the slow-roll parameters should be evaluated at some fixed scale k,—
usually being when CMB scales left the horizon, in order to compare the
spectral indices with CMB observations.

Moreover, another parameters obtained from a further quantification of
the scale-dependence of the scalar spectral index have been proved to be
useful while testing models of inflation against observations [3,146,147]. In
particular, the running of the scalar spectral index and its own running can
be written, respectively, as

dns das

U= Ak 5= Tmr (2.83)

and analogously for tensors. Notice that, by taking Eq. (2.81), o and 35 can
also be written in terms of the slow-roll parameters, and that the hierarchy
of these parameters implies that a, = O(€%) and 8, = O(€3;). Therefore,
it is customary to parametrize the scalar spectrum in a power-law form, in
terms of the scalar parameters, as

I ns—14+2 o In(k/kx)+ 3 8s In? (k/ k)
> , (2.84)

A2(R) = A, (k

where A, = Ag (ki). Planck 2018 measurements take a pivot scale of k, =
0.05 Mpc1, for which the scalar power spectrum amplitude A, is measured
as

A, = (2.0989 £ 0.014) x 1077 | (2.85)

at 68% confidence level (CL), using the Planck TT,TE,EE+lowE+lensing!”
constraints [82] (we shall take the same constraints throughout this thesis
unless otherwise stated). At this k., the measurements on the scalar pa-
rameters then read

n, = 0.9625 + 0.0048 |, (2.86)
o, = 0.002 + 0.010 (2.87)
B, = 0.010 +0.013 , (2.88)

0Here, ‘TT’, ‘TE’ and ‘EE’ stand for the combined likelihood using TT, TE, and EE
spectra, introduced in §1.1.5, at £ > 30; ‘lowE’ stands for the low-¢ temperature-only
likelihood plus the low-¢ EE-only likelihood in the range 2< ¢ < 29; and ‘lensing’ stands
for the Planck 2018 lensing likelihood which uses the lensing trispectrum to estimate
the power spectrum of the lensing potential [82].
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Figure 2.5: Planck 2018 constraints on the scalar spectral index ny and the tensor-to-
scalar ratio r at k. = 0.002 Mpc*1 from Planck measurements alone and in combination
with BK14 or BK144+BAO data. The 68% and 95% CL regions are shown and compared
to the theoretical predictions of selected inflationary models. Adapted from [82].

at 68% CL, which is consistent with the expectations of the slow-roll hier-
archy.

Additionally, the amplitude of tensor perturbations is parametrized through
the tensor-to-scalar ratio as
2
4AZ
2
AC

(2.89)

r=

where the factor 4 comes after taking into account the two different polar-
izations of tensor modes. Using Eqs. (2.67) and (2.68), one can see that the
tensor-to-scalar ratio can be related to the slow-roll parameters, in which
case, using the quasi-de Sitter approximation, it reads as r = 16ey. By
using Eq. (2.82), it is straightforward to see that the tensor-to-scalar ratio
is related to the tensor tilt as

r=—8n;, (2.90)

which is called the consistency relation. Any deviation from Eq. (2.90)
would be a signature of noncanonical inflationary physics.

Figure 2.5, adapted from [82], shows the 68% and 95% CL constraints
coming from Planck TT, TE,EE+lowE+lensing measurements alone and
also from the combined BICEP2/Keck Array 2014 polarization data [148].
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Figure 2.6: Gravitational-wave sensitivity curves for different detectors: Advanced
LIGO [152,153]—showing the first (O1) and second (O2) runs and at designed sensitivity
(O5)—, LISA [154], IPTA [155], and SKA [156]; along with the GW energy density, given
by Eq. (2.92), of three different inflationary scenarios: canonical inflation given by the
consistency relation (solid black), a blue-tilted model (dashed gray) and a flat spectrum
(orange), all of them by taking the saturated bound r = 0.064.

Superimposed are several inflationary models, all of them reviewed in §2.3,'*
and the theoretical line separating concave- and convex-shaped potentials
where one can see that the latter are in tension with observations. Notice
that all the predictions for the theoretical models are shown for a window
of values of the number of efolds Noyg = 50 — 60, this given the uncer-
tainty in Eq. (2.30). Furthermore, notice that the tensor-to-scalar ratio is
consistent with a negligible amplitude of primordial GW, being the current
upper bound

r < 0.064 , (2.91)

at k, = 0.002 Mpc™?, using Planck TT,TE,EE+lowE+lensing+BK14 con-
straints. This comes from the fact that no signal of B-mode polarization
generated by the primordial GW has yet been detected. Future experiments
as, e.g., CORE (a CMB space satellite [149-151]), could be able to improve
the current sensitivity to r.

Additionally, current GW experiments, as the ground-based interferom-
eter alLIGO [152,153], have proved their efficacy in measuring GW coming

' Notice that the monomial potentials ¢P fall into the class of chaotic inflation given by
Eq. (2.32).
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from astrophysical processes [157-166]. Even though the main goal of these
interferometers is to measure astrophysically-sourced GW, a detection of
primordial GW is potentially viable. Figure 2.6 shows the gravitational
wave-sensitivity curves of several experiments able to detect GW [167,168].
Theoretically, for primordial GW, the GW spectrum is given in terms of
the primordial scalar spectrum and the tensor-to-scalar ratio as [168]

Qaw(f) = (128) Qraa A (J{)n [; (ff‘*)z + 3 (v2- 1)] r,o (2.92)

where f, = k./(27 ag) is the pivot frequency related to the pivot scale k, and
feq = HoQ/ (W\/Zde) is the frequency entering the horizon at matter-
radiation equality. Using Eq. (2.92), one can compute the predictions of a
given inflationary model in terms of the tensor tilt n; as shown in Fig. 2.6.
By taking the bound in Eq. (2.91) as a true value for r, it is shown the
theoretical predictions for three different scenarios: the consistency relation
in canonical inflation, Eq. (2.90), a blue-tilted scenario with n, = 0.2 and a
flat spectrum (n; = 0). In particular, some inflationary scenarios, belonging
to the classes discussed in §2.3, predict a large-enough blue tilt of tensor
perturbations which could reach future interferometer sensitivities [169-
171].

To finish this section, let us notice that although we do not yet know
the true nature of inflation, we can still estimate the energy scale at which
it took place given the bound (2.91). Recall that A? oc H? and, because of
the SR approximation, H? oc V(¢). Hence, from Eq. (2.89), the energy at
CMB scales was approximately

_y/1/4 3m° i -3
E=V ~ TTAC Mp) <7 x 107°Mp , (293)

i.e. the final stages of inflation occurred at sub-Planckian energy densities
(if Nature chose canonical slow-roll inflation).
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Model-independent approaches

Whenever a new well-motivated model of inflation is found, its dynamics
must be tested against observations, as discussed in §2.4.4. While this is the
standard approach in testing inflation, not much information (if any) about
the inflationary period is gained. For instance, on the one side, it may be
argued that canonical chaotic inflation is in tension with the data and that
this particular class of models could be ruled-out in the near future (see
Fig. 2.5). On the other side, it would be a strong claim to say that inflation
is noncanonical.

Furthermore, from the observational side, the consistency relation of
canonical inflation, Eq. (2.90), may be more challenging to test than ex-
pected. With the final results of the Planck satellite already released [82],
a new generation of experiments is required for an improvement on the
measurement (or, in the absence of a signal, on the upper limit) on the
amplitude of primordial gravitational waves through the tensor-to-scalar
ratio r. Moreover, the subsequent measurement of its scale dependence, n;,
entails an additional experimental challenge.

With all these considerations, it is desirable to look for more robust ways
to formulate inflation by capturing its generic features without committing
to a specific model. Such features may be simply given by the conditions
for inflation, Egs. (2.10), and the required amount of inflation to solve
the inflationary problems, Eq. (2.31), consistent with CMB and LSS data.
Indeed, a model independent approach, developed by V. Mukhanov [172],
relies on these conditions by parametrizing the equation of state w during
inflation.

49
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3.1 Mukhanov parametrization

As discussed in §2.1.1, the equation of state during inflation is given by
(see Eq. (2.6))

P 2
==-=—-14—¢ey, 3.1
w ; + S (3.1)
i.e. well before the end of inflation, ez — 0, the Universe is driven by a
fluid with negative pressure, p = —p. On the other hand, w approaches to

—1/3 when ey — 1.

This behavior can be instead parametrized in terms of the number of
(remaining) efolds of inflation A'."! One can thus propose the ansatz [1,172,
173]

w=—-1+ _p (3.2)

N +1)*7

which reproduces the same aforementioned behavior for the positive and
order-unity parameters o and . However, more interesting is the fact that
we can further parametrize the scalar tilt n, and the tensor-to-scalar ratio
r with the same parameters. Indeed, recall that ny, — 1 = —4ey — 207 =
—2ey —dIney/dN to first order in slow-roll parameters, and in single-field
canonical inflation (see §2.4.4). Then, substituting Eq. (3.1), the scalar tilt
can be written as

ns—1:—3(w+1)—d(]iv[ln(w+1)]

o 36 .«
N+ NFL

(3.3)

where the ansatz (3.2) was applied in the second line. In the same manner,
the canonical-inflation consistency relation, Eq. (2.90), written as r = 16ey
to first order in slow-roll parameters, can be parametrized as

24
r= Nt (3.4)

Notice then that Eqgs. (3.3) and (3.4) provide generic, model-independent
predictions for canonical single-field inflation. For instance, notice that for
a > 1, the second term in Eq. (3.3) dominates and n, approximates to
ns — 1 ~ —a/N, at CMB scales. Then, taking the central value of n, in
Eq. (2.86) and N, ~ 55, it follows that & < 2. This in turn places a lower
bound on 7:

r> (6 X 10*3) 3, (3.5)

Y4.e. N approaches to 0 as e — 1.
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where, again, 5 = O(1). Consequently, we were allowed to predict a lower
bound on the tensor-to-scalar ratio—assuming that inflation is driven by
a canonical single field and for a given measured value of n,—just by fol-
lowing the conditions for inflation provided the ansatz (3.2). Notice that
the bound in Eq. (3.5) is one order of magnitude smaller than the current
observational upper bound (2.91) and thus it could be reached with future
CMB experiments [174].

In addition, the behavior of the majority of single-field scenarios can
be recovered for specific values of a and [ as discussed in Ref. [172]. To
mention a few examples, chaotic inflation corresponds to o = 1 for which
the observables read ny — 1 = —(36 4+ 1)/(N + 1) and r = 243/(N + 1);
fora=2and §=1/2,n,— 1~ —2/N and r ~ 12/N? which corresponds
to the Starobisnky model, Eq. (2.41). For further examples and details, see
Ref. [172].

Finally, let us mention that this hydrodynamical approach can be eas-
ily extended to k-inflation (see §2.3) where another two phenomenological
parameters are required in order to parametrize the nontrivial sound speed
of primordial perturbations as

o= — 1L (3.6)

(N +1)°

Here, 6 > 0 but v is an arbitrary positive number i.e. the sound speed
grows towards the end of inflation. With this addition, the scalar tilt and
the tensor-to-scalar ratio change to

35 _a+5 . 24~
N+1D)* N+1° SN+

ng—1=— (3.7)

Notice then that the lower bound (3.5) can be further suppressed. On the
other hand, it is well known that a too small sound speed induces large non-
Gaussianities, for which ¢, cannot be much lower than 0.1 [6,172]. In this
case, the lower bound on r would be further pushed one order of magnitude
at maximum.






CHAPTER 4

Inflation beyond General Relativity

We have seen that the simplest scenarios of inflation, i.e. monomial
potentials, are in tension with current CMB observations (see §2.4.4). In
this regard, the straightforward model-building approach is to consider more
complicated potential functions V' (¢) for the inflaton field ¢ which fit obser-
vations. Currently, our corresponding approach relies on finding inflation-
ary models that come from well-motivated high-energy theories of particle
physics. However, one drawback of considering these models is the lack of
simpler (and perhaps more natural) predictions of such a high-energy theory
or, even worst, their failure on experimental confirmation.’

Canonical inflation, being driven by a (new) quantum field, is also a
theory of gravity based on General Relativity. Einstein’s theory of GR is
perhaps one of the most successful theories in physics. It has passed the
most stringent solar-system tests and predicted several observations over the
course of the last century, being one of its most amazing confirmations just
achieved in 2015 with the measurement of the gravitational waves produced
by a two black-hole merger [157-166].

Yet, there are huge hints on the incompleteness of GR, the most in-
triguing one being posed by the dark energy (DE) issue. As discussed in
§1, there is no natural explanation for the DE, although several proposals
have been studied. In a similar way that for inflation, a new scalar field

!Take for instance supersymmetry (SUSY), a very elegant solution to many problems in
the Standard Model. It was developed in the 1970’s and it is actively searched for mainly
in accelerators. Hints of a minimal supersymmetric theory were already expected at the
current working energies of the Large Hadron Collider (LHC) (see, e.g., Ref. [175]); yet,
many inflationary models based on SUSY are still being considered.

23
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could be able to drive the current expansion, however, due to the low energy
scale of the current acceleration, new difficulties arise when one tries to con-
struct consistent particle physics models for this new field [13]. A second
approach relies on modifying GR at large scales such that these modifica-
tions are able to explain the accelerated expansion without modifying the
local dynamics, where GR has been tested to be highly accurate. In fact,
this approach is one of the most active research lines in Cosmology and has
provided numerous kinds of modifications of GR to explain the nature of
the DE.?

The same modifications of GR proposed to explain the DE, if realized
during the early universe, are able to produce different predictions for the
same inflationary potentials V' (¢) previously studied. Indeed, there exist
simple modifications of GR which lead to a better agreement of the mono-
mial potentials, previously ruled-out, with the current CMB observations.
This is in fact one common approach: instead of proposing complicated
potential functions V(¢), we could keep the simplest realizations and just
find well-motivated modifications of GR which predict observables satisfy-
ing current constraints. While this well-motivated modifications were orig-
inally kept simple too—as in the noncanonical models of inflation reviewed
in §2.3—in the recent years several classes and, as we shall see, frameworks
of generalizations of GR have been worked out. Their study started with
a simple question: what is the most general modification of GR, respecting
its symmetries and principles, and which propagates only physical degrees

of freedom?

Indeed, the construction of such frameworks became itself a research line
in the fields of gravitation and also of cosmology, where new terms and inter-
actions between the inflaton and the gravity sector have been considered.
In this chapter, we shall review the most popular frameworks of general
modifications of GR involving new fields (scalars and vectors) coupled to
the gravity sector. Indeed, by keeping its symmetries and constraints—
namely Lorentz invariance, unitarity, locality and a (pseudo-)Riemannian
spacetime—any modification of GR will inevitably introduce new degrees
of freedom which could either be in the form of new scalar, vector or tensor
fields [176].%

We shall follow a bottom-up approach: we start by reviewing the mo-
tivations for the construction of the aforementioned frameworks and the
considerations one should take. Then, first, we shall review the scalar-
tensor interactions which lead to the so-called Horndeski theory; second, we

2The interested reader is referred to Ref. [13] for a pedagogical review of the different
approaches to DE.

3In other words, GR is the only Lorentz-invariant theory of gravity for a massless spin-2
particle.
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move into the discussion of vector-tensor interactions which, in turn, lead
to the generalized Proca theories; third, we shall discuss the more general
framework which aims to join the first two into the most general class of
scalar-vector-tensor (SVT) interactions. In a second part, we shall review
some of the most popular models of cosmological inflation that are devel-
oped within these general frameworks.?

4.1 Towards the most general SVT frame-
work

General Relativity describes a theory of a massless spin-2 particle which
propagates only two degrees of freedom as a result of constraints com-
ing from the invariance under differentiable coordinate transformations—
diffeomorphism invariance. As already stated, any modification of GR will
introduce new degrees of freedom in the form of scalar, vector or tensor
fields. Take for instance the addition of a mass term for a gravitational field
h,.: Lorentz invariance restricts the metric combinations allowed for the
mass term to be proportional to’

m? (h2, = h?) (4.1)

where h,, is a symmetric tensor field. The presence of this mass term makes
the theory no longer diffeomorphism invariant and thus more degrees of free-
dom, apart of the two tensor polarizations, must propagate. This symmetry,
however, can be restored by means of the Stueckelberg trick, a field redefi-
nition hy, — hyu + 2X () Which introduces additional Stueckelberg fields
X%, and which transforms the mass term into®

m? [(hw +2u) — (R+ 2xaya)2} . (4.2)

Furthermore, the Stueckelberg field can be split into its transverse and
longitudinal parts x* — A® + 0% in order to make the degrees of freedom
explicitly shown. In this way, the mass term becomes

m? (hfw - h2) —m?F?, —2m? (h A" — hd,A*) — 2m® (hy, ™" — hd,0"T) |
(4.3)

4We would like to emphasize that these are mathematical frameworks rather than phys-
ical theories (as the name may suggests), i.e. they only provide us with a full set of
modifications of GR allowed by physical symmetries and other constraints, and not
with a fixed set of fundamental laws of gravity.

®Only scalar combinations of the metric are allowed. In this regard, h2, = hy, h*" and
h? = hiihy.

Xy = Ouxv + 0uxu) /2 -
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i.e. the Stueckelberg trick produced the kinetic terms proportional to A, m""
and F, = (A, — AW)2 for the scalar field m and the vector field A, re-
spectively.” Therefore, a fully consistent theory of massive gravity—where
diffeomorphism invariance is broken—propagates five degrees of freedom
(compared to the two of GR): two tensor (helicity-2) modes from h,,,, two
vector (helicity-1) modes from A, ® and the scalar (helicity-0) mode 7, the
last two coming from the Stueckelberg field y*.

Also interesting, apart from the kinetic terms for the Stueckelberg fields,
the mass term further produces interaction terms of the form

m? (hy, ™" — hd,0'n) . m?(h, A" — hd,A") | (4.4)

i.e. mixing terms between different helicity modes. Phenomenologically, it
has been shown that the helicity-0 mode present in a consistent theory of
massive gravity provides a self-accelerating solution and thus it could poten-
tially explain DE [178]; therefore, one would expect interesting cosmological
implications from several different mixing combinations coming from more
general modifications of GR.

These mixings can be classified as scalar-tensor, vector-tensor or scalar-
vector interactions. In this sense, one could follow the theory-independent
approach of constructing all the different possible combinations allowed by
Lorentz invariance and further restrictions as locality and unitarity, and
write down all the possible combinations between scalar and tensor modes,
vector and tensor modes, and scalar and vector modes coupled to gravity.
In doing so, one would notice that combinations of arbitrarily high-order
derivatives are allowed; however, it is well known that a nondegenerate
Lagrangian, with temporal derivatives higher than order one, yields equa-
tions of motion (EoM) higher than order two. This fact incorporates new
pathologies: in the Hamiltonian picture, a Lagrangian of this kind yields
a Hamiltonian which is unbounded from below and thus the energy of the
system in consideration can take either positive or negative values, i.e. it
can excite either positive or negative degrees of freedom. A negative degree
of freedom of this type is known as Ostrogradsky instability or, colloquially,
Ostrogradsky’s ghost.” We can therefore state Ostrogradsky’s theorem as:
‘Higher-derivative theories contain extra degrees of freedom, and are usu-
ally plagued by negative energies and related instabilities’. Consequently,
and in order to maintain a pathologically-free theory of gravity, any mod-
ification of GR, involving higher derivatives, must still yield second-order

"This happens after performing a canonical normalization A4, — A, /m and © — m/m?.
See [176,177] for details.

8The other two degrees of freedom from A,, are removed by means of the gauge invariance.

9See Footnote 2 in Ref. [179] for a discussion on the terminology of the instability and
the associated theorem.
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EoM.!Y We shall see that this is achieved by imposing constraints which
allow us to remove the ghostly terms from the EoM.

4.1.1 Scalar-tensor interactions

The simplest terms allowed in a scalar-tensor theory are given in the La-
grangian for a scalar field minimally coupled to GR (shown in Eq. (2.11)),
namely those of a canonical kinetic energy, X = —% 9" ¢, and a po-
tential energy, V(¢)—this term being already a generalization of the even
simpler m2?¢? mass term. This theory is of first order in derivatives and
thus it propagates only real (positive-energy) fields.

In order to construct more general terms, the first natural step relies
in combining the canonical kinetic and potential terms into a general func-
tion of the field, f(X,¢). Theories of this type, known as k-essence, have
been widely considered in the context of both DE and inflation (named as k-
inflation in the latter context). In particular, terms such as f(¢) X +G(¢)X?
or G(¢)y/1 — f(¢)X show up naturally in models inspired from string the-
ory and supersymmetry realizations (see Ref. [13] and references therein
for details). Indeed, several new interactions have been discovered in the
context of higher-dimensional theories. Another example comes from the
Dvali-Gabadadze-Porrati (DGP) model of brane cosmology where in a 3+1
spacetime, embedded in a 441 dimensional Minkowski space, the gravi-
ton helicity-0 mode appears with a self-interaction term, ¢ (8¢)2 1 able
to drive an accelerated expansion [180]. Notice that this term contains two
derivatives acting on the scalar field ¢, however, its EoM, (¢? — (Qb,uu)Q =0,
are still second-order and thus the model avoids the Ostrogradsky instabil-
ity. Following this spirit, one could carefully construct higher-order deriva-
tive terms which, by means of some particular constraints which remove the
higher-order terms, yield second-order equations of motion. This task led
to the development of the Galileon theories—a general scalar-tensor the-
ory in flat spacetime, with second-order EoM, which is invariant under the
Galilean transformations ¢ — ¢ + z,b* 4+ ¢ [110]. The generalization to

10This condition is in fact respected in Nature, as no higher order EoM describe physical
phenomena—for instance, Newton’s, Maxwell’s and, again, Einstein’s equations are all
of them of second-order.

'We define the d’Alambertian operator in the standard way: O¢ = V#V,¢ = o,
Notice however that the interaction present in the DGP model comes from a theory in
flat spacetime and, moreover, a covariant derivative acting on a scalar quantity is just
a partial differentiation, i.e. we are still writing partial derivatives.
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a nonflat spacetime was named covariant Galileons [112], now known as
Horndeski theory [109]."2

4.1.1.1 Horndeski theory

It is possible to construct a theory order by order in derivatives follow-
ing the generalization procedure mentioned above. We can write the La-
grangians Lo = Go(¢, X) and L3 = G3(¢, X )¢ where the subscript makes
reference to the number of times the field ¢ appears. The fourth Lagrangian
allows two types of interactions: a;Gy(¢, X) (0¢)* and aaGy(¢, X) (¢)%;
however, by inspection of the EoM, one notices that in order to maintain
only second-order terms, the constraint a; = —as must be satisfied—this
then fixes the form of £4. Following this procedure, one finds that as long
as we restrict ourselves to second-order EoM in four dimensions, only four
Lagrangians can be written down, 7.e. up to L5. Next, we shall promote the
partial derivatives to covariant derivatives and thus covariantize the theory.
In doing so, the number of derivatives increases and therefore the order of
the EoM changes accordingly. The correct order is recovered by introducing
nonminimal couplings to gravity into the Lagrangians at the desired order
(see [176] for details).

The application of the previous algorithm leads to the full Lagrangian
of the Horndeski theory which is then given by four Lagrangians, £y =
S5, L;, each of them proportional to an arbitrary function G;(¢, X):

E’H - G2
+ G3Uo
+ GuR + Gax[(06)? — 0¥ ¢, (4.5)
G . ) .
+ GG b — —22[(06)° — 3(00) by ™™ + 26,67 6%, |

where G; x = 0G;/0X, R is the scalar curvature and G, = R, — %g#,,R
the Einstein tensor. Notice that the canonical Lagrangian, Eq. (2.11), is
recovered for the choice Go = X — V(¢), G4 = 1/2, and G5 = G5 =
0. Equation (4.5) represents therefore the most general theory of gravity
involving scalar and tensor fields which yields second-order EoM and is free
of Ostrogradsky ghosts.

Horndeski gravity is not however the most general theory of gravity
free from instabilities. It is now known that having second-order EoM as
a condition for the avoidance of Ostrogradsky instabilities is actually not
necessary as long as there exists an additional constraint equation which

12In 1974, Gregory Horndeski precisely studied the most general four-dimensional scalar-
tensor theory of gravity which yield second-order EoM. His work was rather unnoticed
until its rediscovery as the covariant Galileons.
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helps to remove the higher-order terms. This inspired the construction of the
Degenerate Higher-Order Scalar-Tensor (DHOST) theories of gravity which
are now the most general theories of gravity, at cubic order in second-order
derivatives, with additional primary constraints ensuring the propagation
of only three physical degrees of freedom [114,118,119,181]. In the rest of
this thesis, we shall however restrict ourselves to the phenomenology of the
Horndeski theory for simplicity.

4.1.2 Vector-tensor interactions

We are now in the pursuit of the most general theory of a spin-1 field
A, coupled to gravity, yielding second-order EoM, i.e. propagating only
real vector and tensor modes. As we shall see, the total number or physical
degrees of freedom will depend on whether we restrict ourselves to maintain
the gauge symmetry or not—equivalently, whether we allow the field to be
massive. Both theories provide new interesting phenomenology and thus one
has the freedom to choose either one. Nevertheless, each case is constructed
in the same spirit as the covariant Galileons were obtained: we need to write
down all possible combinations order by order by respecting the second-
order EoM condition, then covariantize the theory by promoting the partial
derivatives to covariant ones and reduce to the correct order by introducing
nonminimal couplings to the gravity sector.

4.1.2.1 Maxwell theory

For a massless U(1) field A, the allowed interactions linear in deriva-
tives have the form 0y0,A4,0"A" + ®20,A,0"A*. The number of propa-
gating degrees of freedom is fixed by the existence of a primary constraint
that imposes a3 = —as which makes the temporal mode Ay nondynam-
ical. Furthermore, a; < 0 must be satisfied in order to ensure that the
Hamiltonian is bounded from below (see [176] for details). These condi-
tions generate a gauge symmetry which further removes the longitudinal
mode. Consequently, we obtain a Lorentz invariant theory of a massless
spin-1 field invariant under gauge transformations, A, — A, + 0,0 (where ¢
is a real arbitrary constant) which guarantees that only two vector degrees
of freedom propagate. This theory is nothing but the Maxwell’s theory of
electromagnetism (in absence of external currents)

1
Lol — —ZFil, : F, =0,A,—0,A,, (4.6)
after canonically normalizing the vector field by setting a; = —1/2. Simi-

lar to the Galileons case, one might look for higher-order self-interactions;
however, a no-go theorem states that it is the Maxwell kinetic term the only
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possible combination yielding second-order EoM for an Abelian vector field
as long as we restrict ourselves to keep the gauge symmetry [182-185].

By promoting the partial derivatives to covariant ones, nonminimal cou-
plings are required as in the scalar-tensor case. Additionally, in order to
preserve gauge invariance, only couplings of the field strength F),,, and not
direct couplings of the vector field, must be considered. In this case, it
can be shown that [, can only couple to the double dual Riemann tensor
LmwabB — %5“1’”‘75&575]%/,075, where £#*8 is the antisymmetric Levi-Civita
tensor satisfying the normalization EM*PE,,,s = —4!. Consequently, the
most general Lagrangian for a massless vector field on curved spacetime
yielding second-order EoM is given by [186-188]

1 1 1

EMaxwell = §R - ZFEV + mLaﬂv(sFaﬂFyg s (47)

where M is the relevant mass scale.

4.1.2.2 Proca theory

The Proca theory describes a massive U(1) vector field. The mass term
proportional to A*A,, breaks the gauge symmetry and therefore one degree
of freedom more is allowed to propagate—three in total. Nevertheless, as
in the massive gravity case, the gauge symmetry can be restored using the
Stueckelberg trick by means of the change of variables A, — A, + 0¢,
where ¢ is a scalar Stueckelberg field. Under this change, the Proca theory
becomes

roca 1 1
choe = Lpe L 42

=5 (0¢)° —maAd"¢ (4.8)

1
2
where we have canonically normalized the scalar field as ¢ — ¢/m 4. Now,
Eq. (4.8) in invariant under simultaneous gauge, A4, — A, + 0,¢, and
shift, ¢ — ¢ — 0, symmetries and, more interestingly, the Stueckelberg
trick produced an interaction term between the vector field and the scalar
Stueckelberg field, where the latter comes with a kinetic term. Therefore,
associating ¢ to the longitudinal vector mode, the third degree of freedom
is explicitly shown—indeed, the change of variables A, — A, + 0¢ can be
seen as a helicity decomposition of the vector field.

Unlike the massless case, the Proca theory allows for more general inter-
actions made by higher-order derivatives and thus avoiding the aforemen-
tioned no-go theorem. Then, to construct Galileon vector theories, called
generalized Proca in the Literature, we keep the second-order EoM restric-
tion and add a second restriction: the temporal mode A, most remain
nondynamical, otherwise it would unavoidably be a ghost mode. The al-
gorithm is similar to the one previously discussed for scalar Galileons and
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therefore we shall focus on the covariantized version (see [176,189-191] for
details). By replacing partial derivatives with covariant ones and introduc-
ing the corresponding nonminimal couplings, the generalized Proca theories
in curved space become:

£Proca = GZ (Xa F7 Y)
+ G3(X) A",
+Ga(X)R + Gux(X) [(A",)? = A, A77]

L1 N
+ G5(X)G W A" — 6G5’X(X) [(A“W)g — 3A" Ay AP
+ 2Ap;o'AO.WA,Y;p:| — é5 (X)FQ'UJFA"’BMA[%D[

1 o
+ G6(X)L“”°‘BAVWA5;Q + §G67X(X)F°‘BF“"AM;QA,,;B , (4.9)

where Frv = grvel F,5/2 is the dual of the strength tensor, and we explicitly
showed the dependence of the GG; functions in terms of the quantities

X = —lA A* F = 1 i Y = A*AYF “F, (4.10)

2 4= ’ pooves '

Consequently, Eq. (4.9) is the most general theory of gravity with a vec-
tor field A, yielding second-order EoM, ¢.e. propagating only real fields—
two tensor modes, two transverse vector modes and the longitudinal mode.
These theories have brought important new phenomenology in the study of
DE [192-196] and compact objects as black holes and neutron stars [197-
204].

Beyond Generalized Proca theories have been constructed in the same
spirit as beyond Horndeski theories. We shall not discuss them in this thesis
but the interested reader is referred to Refs. [176,205].

4.1.3 Scalar-vector-tensor interactions

Recall that the Stueckelberg trick performed to the Proca theory, Eq. (4.8),
produced a kinetic term for the scalar field ¢ and a genuine new interaction
between ¢ and A,. Nothing has been said about this scalar field, however
it can lead to interesting dynamics while being coupled to the Proca vector
field in a gravitational background. Bearing this in mind, it is interesting
to consider different kind of combinations between these two helicity modes
and to construct a general theory of gravity with both scalar and tensor
fields. As in the case of the Proca theories, one can construct interactions
depending on whether the gauge symmetry is kept or not. As we shall see,
both theories contain new interesting phenomenology that can be applied
to different physical scenarios.
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4.1.3.1 Gauge-invariant theory

On the one hand, it is possible to allow independent self-interactions of
the scalar field via derivative terms—such as the third term in Eq. (4.8)—
which, restricting to second-order EoM, lead to shift-symmetric Horndeski
interactions £4,°M®. On the other hand, it is also possible to construct order
by order interactions between the vectorial combinations in Egs. (4.10) and
the V¢ term and its derivatives. By restricting to gauge-invariant combi-
nations and explicitly breaking the shift symmetry to allow more general
ones, one obtains the most general gauge-invariant scalar-vector-tensor the-
ory yielding second-order EoM [206]:

L= Ly
+ fo(F,FY)
+ M5
+ MZVOCBQWQVB + f4(¢, X)LMWBFMVFaﬂ )

(4.11)

where Ly, is given in Eq. (4.5) and here Y = V¢V, ¢F**F" . We also
defined the rank-2 and rank-4 tensors, M4” and M4’ respectively, as
M = [1y(6 X) g + Fo(6 X000 FPF . (412)
va 1 s [V T
M =[S Fux(@,X) + Fulo)| B E7 (4.13)

where we note that the function f4 depends on ¢ alone. Notice that in the
limit of constant ¢ and f; one recovers the Maxwell theory in Eq. (4.7).

4.1.3.2 Broken gauge-invariant theory

Abandoning the gauge invariance, the vector field cannot only enter
via the terms in Egs. (4.10) but also via S,, = V,A, + V,A,. In this
regard, we can introduce an effective metric tensor constructed from possible
combinations of g,,, A,, and V,¢, given as [206]

gZLL = hnl <¢7 Xi)g,tw + hn2(¢7 Xi)¢;u¢;u + hn3<¢7 Xz)A,uAy + hn4(¢; Xi)Ay¢;y

where the X; are defined below. Then, following the same procedure as
before, the most general broken gauge-invariant scalar-vector-tensor theories
yielding second-order EoM are written as
Lsvr = fo(¢, X1, X2, Xp, F FL Y1, Ya, Y3)

+ f3(¢7 X3)gMVS;u/ + f3(¢7 X3)AMAVS;U/

+ f4<¢7 X3>R + f4,X3 (¢7 X3) [(Au;u)2 - A#;VA'LLW} (414)
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1 .
+ f5(¢7 X3)GMVAM;V - 6f5,X3 (¢7 X3) [(AM;M)3 - 3AM;MAP;UAU7/)
+ 24,5 ATTA| + ME Gy + NE¥ Sy
+ fo(d, X0) L Fuy Fap + ME Saths + fo(d, Xs) Py Fag
+ N SaSus

where we now use the notation

1 , 1 1
X1 — _igb?ﬂgb”u 5 XQ - —§AM¢;M 5 X3 - _iAﬂAM 3 (415)
and
Vi = ¢upo FPOFY | Yy = ¢ A FFY Yy = A A FPOFY
(4.16)

the latter of which corresponds to the interactions arising from pure vec-
tor modes. Furthermore, the rank-2 tensors ML” and N, which encode
intrinsic vector interactions, are given by

MY = GlsFvFve | NE¥ = Gha e (4.17)

where the functions hs; and hs; (j = 1,2,3,4) appearing in Gl and g}}g
are functions of ¢ and X, X5, X3. On the other hand, the rank-4 tensors
ME"P and NP are defined as

vo U2 nlet vo 1; [ fra
ME? = 2f5 x, (6, X0)F* F NEre? = §f6,X3(¢;X3)FM Fer
(4.18)

Notice that the functions fs, fs, fu, fs, f¢ depend on ¢ and X5, whereas fq
has dependence on ¢ and X;. Furthermore, the Generalized Proca theories,
Eq. (4.9), are recovered by using the correspondence

¢_>07 X1,2_>07 X3_>X7 }/1,2_>07 }/3_>Y7

f2_>G2(X7F7Y)7 2f3_>G3(X)7 f3_>0a f4_>G4(X>7
- 1. -

fs = G5(X) hs; — 0, hs — —§G5(X), hsa, hss, hsy — 0,

f6—)0, 4f6—>G6(X)

Finally, we note that the full scalar-vector-tensor theory with second-
order EoM is completed by adding the Horndeski interactions Ly, in Eq. (4.5),
to Lsyr, Eq. (4.14). Therefore, we end up with a theory with six propa-
gating degrees of freedom: two tensor modes, two vector modes and two
scalar modes. This general theory has been developed just recently, but
applications for DE [207], black holes [208] and inflation [5] (to be discussed
in §4.3.1) have already been performed.
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4.2 Inflation in scalar-tensor theories

Our goal here is to apply the Horndeski theory and the SVT theories to
the physics of inflation. To that end, one needs to consider a background
FLRW spacetime and compute the EoM for the background and for the pri-
mordial perturbations, the latter of which will lead us to compute the power
spectra of these perturbations and to make predictions from the theory (see
§2.4.4).

The background EoM and the quadratic actions of primordial scalar
and tensor perturbations for the Horndeski theory, Eq. (4.5), were com-
puted in Ref. [209] and are shown in Appendix §B. Here, we shall focus on
the novel phenomenology coming from specific models of inflation already
tested, some of which constitute a part of the original results presented in
this thesis. We shall firstly discuss the addition of nonminimal couplings
between the scalar field and the scalar curvature R to the canonical ac-
tion, mediated by some coupling & which alleviates the tension between the
canonical model and the data. Secondly, we shall discuss the class of mod-
els named as G-inflation, derived from taking into account a nonvanishing
function G3 in Eq. (4.5)—this class of models has been studied due to its
ability to reconciling simple inflationary potentials V' (¢) with the data.

4.2.1 Nonminimal coupling to gravity

The Horndeski theory has become a rich framework to construct phe-
nomenological models of both early- and late-time cosmology. The most
common modification of the canonical action, Eq. (2.11), comes from ac-
counting for a nonminimal coupling between the scalar field and the gravity
sector via the term f(¢)R. From Eq. (4.5), notice that this term can be
obtained by setting G4(¢, X) = f(¢). However, nonminimal couplings of
this form have been considered long before the Galileon theories were for-
mulated [98-102,106], and reconsidered when such coupling was found in
the framework of supergravity theories [210-215]. In particular, the simple
function f(¢) = (1 + £¢*)/2 has been extensively studied, where £ is a di-
mensionless coupling expected to be small in this model in order for ¢ to
successfully reheat the Universe. Indeed, Planck places the lower bound on
this parameter to be log;o¢ > —1.6 at 95% CL for the quartic potential ¢*
which is highly disfavored in the canonical picture [82].

By introducing the nonminimal coupling, the action of such a theory is
given by

Sow= [ dav=g[5 (14667 R—2¢"0,0,-U©)| . (419)
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where U(¢) is the potential function in the Jordan frame. Indeed, it can be
shown that the theory in Eq. (4.19) can be recast as a canonical action (the
Finstein frame) by means of a conformal transformation of the form

Gow = UD)Gpw (4.20)
where, in this case,
Qo) =1+ 4% . (4.21)
Under this transformation, the action (4.19) becomes
1 1.
St = [d'av=gs (35— 3o eupn ~VIe@]) . (422)

where the index ‘E’ emphasizes that the action is written in the Einstein
frame, 7.e. in canonical form, with an effective potential function

(4.23)

of the rescaled field

dp\* 1 3[04\
()=o) 2

As already stated, for a range of values of &, several canonical models
of inflation can be reconciled with CMB observations, among which the
chaotic model m?¢? and the quartic potential A¢* have been exhaustively
studied [2,107,108,216-219]. The explanation for this is quite simple, as
seen in the Einstein frame: any different value of £ changes the shape of the
effective potential and consequently its inflationary predictions; namely, the
ability of £ to make the potential V(y) flatter will induce a suppression in
the tensor-to-scalar ratio r and thus make the potentials U(¢) more favored
with respect to CMB observations (see Fig. 4.1).

4.2.2 G-inflation

Notice from Eq. (4.5) that the simplest nontrivial modification of the
canonical action, Eq. (2.11), beyond linear order, comes from the third-
order Lagrangian proportional to G3. With this term, the action becomes

Sg = /d4x\/—_g BR + Ga(¢, X) + G3(0, X)Oo| (4.25)

where we have set G4(¢, X) = 1/2 in order to account for the Einstein-
Hilbert term. This class of models is called ‘G-inflation’ in the litera-
ture, and its cosmological implications have been extensively explored—it
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larger

¢

Figure 4.1: Schematic representation of the effective potential (4.23) for U(¢) oc ¢2.
The different lines represent different values of the coupling constant £ in the function
Q = 1+ £¢?, where a larger ¢ corresponds to a flatter potential (a less concave one).
From the observationally point of view, a flatter potential gives rise to a suppression of
the tensor-to-scalar ratio r and, consequently, a larger value of £ drives the canonical
model to be in a better agreement with observations (see §2.4.4).

was first studied in Ref. [220] as a kinetically-driven model of inflation,
i.e. Ga(¢, X)) = G5(X) and thus no potential term was introduced. How-
ever, potential-driven versions, considered in subsequent works, realized
that simple potentials as the ones of chaotic inflation, Eq. (2.32), could be
reconciled with CMB observations in the same spirit as in the presence of
a nonminimal coupling (see Ref. [129]). Further extensions as, for instance,
a Higgs boson driving inflation in this framework [128,130], and studies on
potential signatures on higher correlation functions [221] or reheating [222],
have also been carried out.

The equations of motion, for the full theory in Eq. (4.5) were computed
in Ref. [209] (also shown in Appendix §B) assuming a homogeneous field ¢ =
o(t) and the flat FLRW spacetime metric ds? = —N?(¢)d¢* + a*(t)g;;da*da?
(where the lapse function N(t) is introduced for convenience and later set
to one). Particularly, for the G-inflation model in Eq. (4.25), the variation
of the action with respect to N(t) yields the Friedmann equation

3H? + Gy — 2XGyx —2X G4 +6XOHGs x =0 . (4.26)
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On the other hand, variation with respect to the scale factor a(t) gives the
evolution equation

BH? + 2H + G+ 2X (Gag + ¢Gsx) =0 . (4.27)

Finally, the variation with respect to ¢(t) gives the scalar-field equation of
motion

BH$—Gr—6 (3H? + H) Gs+(1 — 2G5 49) X+(1 + 4G54 — 6HdGsx ) 6 = 0.

(4.28)

Furthermore, the quadratic actions for scalar and tensor perturbations,

from the full Horndeski background, were also computed in Ref. [209] and
are given by

adbser [y PR
8¥ = / dlz——" <c2— = <2> : (4.29)
adby (., Ek?
852) — /\Z /d4a:40%t <7§ — ';2 ’yf\) , (4.30)
:-‘r,X

where cit and b,; are normalization factors which depend on the back-
ground, i.e. on the G;(¢, X)) functions, as it is shown in §B.1.1. Particularly,
for the model in Eq. (4.25), they read as

_ 2u H — 2411 — pif

bs ’ by =1 )
€H
o 3(2mH =2 —13) 2
= 5 , =1, (4.31)
dpig + 9

where
= 2H +2¢Gs
) 3 ,. )
p2 = —9H* +66° G+ (6 — 24HGs) 6. (4.32)

Notice that the tensor normalization factors correspond to those of the
canonical tensor quadratic action, meaning that the choice G4 = 1/2 and
G's = 0 does not modify the tensor sector.'?

In order to compute the Mukhanov-Sasaki equations for the quadratic
actions (4.29)-(4.30), in terms of the Mukhanov variables us = z,( and
ur = 27y, we need to redefine the z, variables, Eqs. (2.53), as

2b, b
. — hen - aﬁ | (4.33)

Cs Cs

13This statement holds for any choice of G and G, see Refs. [129,209].
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for which the evolution equations read

Z”
2,2 _
uy, + <cpk — ZZ) u, =0 (4.34)

As already stated, for the model in Eq. (4.25), the tensor sector is not
modified and thus the evolution equations and their solutions remain as in
canonical inflation. On the other hand, for scalar perturbations, the solu-
tion of Eq. (4.34) is not trivial—one should study carefully the background
evolution for a given choice of the G;(¢, X) functions and, from there, de-
termine whether the SR approximation is suitable or numerical integration
must be performed. Furthermore, closer attention needs to be devoted to
the evolution of the normalization factors b, and cf, as they may develop
instabilities; namely, 012J represent the sound speeds of primordial pertur-
bations that need to be positive defined in order to avoid for Laplacian
instabilities, whereas the factors b, are required with the same condition
so they do not contribute with a wrong sign to the kinetic term, otherwise
they would represent a ghost instability.

Until recently, the avoidance of instabilities at the perturbations level
represented a severe problem on the construction of G-inflation models.
Reference [129], for instance, studied a potential driven-version based on
the function G3(¢, X) = —X/(2M?3) and found that they could reconcile
the quadratic potential m?¢? (among others) with CMB observations for
small values of the mass scale M compared to Mp;, however with a lower
bound of M = 4.2 x 10~*Mp;. Although the tension between the model and
the data is recovered when we consider the most recent Planck data (see
Ref. [4]), the issue with smaller values of M remained interesting as it was
due to the appearance of Laplacian instabilities during reheating. Indeed,
the G3 term still affects the dynamics of the inflaton field after the end
of inflation, which translates into the lack of coherent oscillations during
the reheating epoch. Nevertheless, it has been shown that these instabil-
ities can be avoided by terminating the influence of G3 before the end of
inflation; this mechanism can be simply achieved by a transition from a
G-inflation domain to a canonical inflationary era able to properly reheat
the Universe. Furthermore, this transition should be carefully introduced
after CMB scales in order to contrast with the canonical predictions of a
given potential V(¢). This can be seen from Fig. 4.2, where the slow-roll
parameter €y, Eq. (2.5), is shown for a transient model which was carefully
constructed in order to be placed after CMB scales (N = 0) and before the
end of inflation (N = 55). In addition, recall that under the SR approxi-
mation, the tensor-to-scalar-ratio at CMB scales reads as r = 16¢ey, i.e. a
suppression of r is expected for the Transient model in comparison with the
canonical quadratic scenario for the same value of n,. Consequently, such a
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Figure 4.2:  Slow-roll parameter e = —H/H? for three different models: the
canonical quadratic potential V(¢) = m?¢?/2 (dotted, orange), the quadratic po-
tential plus G3(¢, X) = —X/(2M3) (dash-dotted, green), and a transient model
given by Gy(é,X) = —X[1-+tanh((é—6,)/d)] /M%) with {M,m,é,d} =

{1.303 x 1074,2.58 x 107%,13.87, 0.086}. The hyperbolic tangent provides a mechanism
to switch off the contribution of the G3 term and thus to transition to the canonical
regime. As a consequence, the transient model safely reheats the Universe and suppresses
the tensor to scalar ratio, r = 16ey, at CMB scales (N = 0)—the plot is normalized
such as in both canonical and transient models inflation ends at N = 55. However, CMB
scales for the model in green lie at N ~ 500, i.e. the suppression of 7 in such a model is
small. See Ref. [4] for details.

transient model is able to reconcile chaotic inflation with observations and
avoid Laplacian instabilities (see [4] for details).

4.3 Inflation in scalar-vector-tensor theories

The background EoM and the quadratic actions of primordial scalar,
vector and tensor perturbations for the SVT theories, Eq. (4.14), were fully
computed in Ref. [223] and are shown in Appendix §B. Here, we shall review
their consequences on inflation by constructing a simple model, yet with
phenomenological implications, with a scalar-vector coupling of the form
APV 0. As we shall see, the longitudinal vector is able to affect the cosmic
expansion during inflation which will be translated into a suppression of the
tensor-to-scalar ratio for large-field models [5].
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4.3.1 Inflation with mixed helicities

The scalar-vector-tensor theories allow for extra interactions in the form
of scalar-vector mixings. In the context of inflation, the vector field is able
to modify the dynamics of the expansion driven by the scalar field and,
consequently, the predictions for a given potential function V(¢). As it can
be noticed from Eq. (4.14), a scalar-vector mixing can be included in several
different forms. Among these possible forms, the simplest one is given by
Xy = —A'V ,¢/2, already present in fo. This term is genuine, coming from
the helicity decomposition provided by the Stueckelberg trick and therefore
it is interesting to study the dynamics it offers when added to a canonical
model of inflation.

We then focus here on a model of inflation driven by a helicity-0 mode,
¢, mixed with a helicity-1 mode, A, where both fields are allowed to prop-
agate, i.e. the vector kinetic and self-interaction terms are included. * The
action then reads as

1
Su = [ dav=g [QR FF 4+ Xy — V() + BnMXs + BaM2Xs| | (4.35)
where we recall that
1 1 1
Xi=— ViV,  Xo=--A'V,0,  Xg=-_AA", (4.30)

and where M is the positive, constant vector mass, and f3,, and (4 are
dimensionless constants. The equations of motion, computed on a FLRW
spacetime metric (1.4), with a compatible vector profile A, = (Ay(¢),0,0,0)
and a homogeneous scalar field ¢(t), read as

1. 1
3H? — §¢>2 — V(o) + §6AM2A3 =0, (4.37)
. . 1 )
2H + ¢* + 5ﬁmMgzsAo =0, (4.38)
. ) 1 .
O+3HG +Vy+ oMby (AO + BHAO) =0, (4.39)
264 M Ag + B =0 . (4.40)

Notice that we now have a fourth EoM corresponding to the variation of the
action with respect to Ay. Interestingly enough, Eq. (4.40) tells us that the
ratio Ag/ ¢ remains constant during the evolution, as depicted in Fig. 4.3.
This fact allows us to substitute ¢ oc Ay into Eqs. (4.37)-(4.39) and to
introduce the parameter ,

ﬁm

4B’

14Recall, however, that F = —F,,, F"* /4 does not contribute to the dynamics on a FLRW
spacetime due to the conformal invariance of the Maxwell Lagrangian.

B=1- (4.41)
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Figure 4.3: Background evolution of the temporal mode Ay and the scalar-field velocity
é, by the end of inflation (N = 55) and during reheating, computed for the model given
in Eq. (4.35) and for the potential given in Eq. (2.38) with a. = v/6/3. Notice that, as
expected from Eq. (4.40), the ratio Ag/ é remains constant during the whole evolution.

for convenience, as we shall see. Furthermore, we can define a rescaled field
@ in terms of [ as

dp =1/pds , (4.42)
and rewrite the EoM as
1
3H? — §¢2 —V(p)=0, (4.43)
2H +¢* =0, (4.44)
CG+3Ho+V,=0, (4.45)

i.e. the proportionality between A, and ¢ leads to an effective single-field
dynamics driven by the ¢ field—therefore the computation of the power
spectra can be easily performed using the standard SR approximation.

The conditions for the avoidance of scalar ghosts, worked out in Ref. [223]
for the full Lagrangian, trivially provide the constraint 434 > % > 0 for
this model and, consequently, 3 lies in the range 0 < 5 < 1 (see Eq. (4.41)).
The deviation of £ from unity, induced by a nonvanishing scalar-vector mix-
ing, makes the rescaled field ¢ to evolve slower compared to the inflaton
field ¢, which in turns makes the expansion shorter—there are fewer efolds
N for the same field excursion—as seen from Fig. 4.4. This has impor-
tant consequences on the inflationary observables. Namely, in order to have
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Figure 4.4: Number of efolds of inflation dN = Hdt, as a function of time rescaled by
the vector mass M, for the same specifications than those in Fig. 4.3. Notice that for a
nonvanishing scalar-vector mixing, mediated by (,,, the expansion is shorter; regarding
the inflationary observables, a shorter expansion would require to start the inflaton’s
evolution from a flatter part of the potential in order to have enough inflation which, in
turn, translates into a suppression of the tensor-to-scalar ratio r (see [5]).

enough inflation, the field ¢ needs to evolve from a flatter part of the po-
tential V(¢) which will produce a suppression on the tensor-to-scalar ratio
r specially noticeable for small-field models—while small-field models cur-
rently satisfy the CMB bounds on 7, they could be in tension in the near
future and thus a scalar-vector-mixing model may reconcile such potential
with observations (see Ref. [5] for details).

The complete, general quadratic actions for scalar, vector and tensor per-
turbations, along with the conditions for the avoidance of ghosts and Lapla-
cian instabilities for the theory in Eq. (4.14), were computed in Ref. [223]
(which we omit to show here for brevity), whereas their particularizations
for the model in Eq. (4.35) were computed in Ref. [5], as well as the power
spectra for the three helicity modes and the predictions for several infla-
tionary potentials; and thus we refer the interested reader to these works
for details. Further studies concerning the epoch of reheating, imprints on
higher correlation functions and more complicated mixings with potential
new phenomenology as, for instance, a non-negligible amplitude of vector
perturbations, are expected to be carried out in the near future.



CHAPTER b

Generalized Slow-Roll Approximation

In §2.1.1 we discussed the conditions required for a successful period
of inflation—in doing so, we defined the slow-roll parameters €5 and 7y,
Egs. (2.5) and (2.23). The condition ey < 1 is required so the evolution
remains close to de Sitter and inflation does not end earlier than expected;
whereas |ng(= —01)] < 1 ensures that the evolution of ey is slow, which
is usually understood as a requirement for the inflaton’s slow evolution,
needed for a sufficient amount of inflation.

Satisfying the slow-roll conditions unwittingly defines a hierarchy of the
so-called Hubble slow-roll parameters

1 d p+1

where a given parameter ¢, is of order O(ef};). This hierarchy is helpful to
obtain approximative solutions of the Mukhanov-Sasaki equation (2.56), as
discussed in §2.4.3. Furthermore, a consequential hierarchy of inflationary
observables, n, — 1 = O(ey), a, = O(e%), Bs = O(€};), ete., is implicitly
defined (see Egs. (2.83)). As discussed in §2.4.4, this hierarchy of obser-
vational parameters is compatible with the current data (given the large
uncertainties on both «a and (), however, it is not really required by the
observations. Furthermore, it is not a consequence of the slow-roll (SR) ap-
proximation either. Interpretations of the aforementioned CMB constraints
in terms of the slow-roll parameters could then provide misleading results,
even so at second-order in the SR approximation which is usually assumed
to be more accurate.
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Features in the inflationary potential V' (¢) translate into oscillations or
other type of glitches in the primordial power spectra. These features leave
the spectra nearly scale-invariant although no longer scale-free [224-229].
Consequently, treating models of this sort with the standard SR approxi-
mation is known to fail, even in canonical inflation, due to large local® tilt
and running of the tilt (being equivalently to a large [d1]), i.e. numerical
integration of the mode-function equation is usually performed.

In this chapter, we review the Generalized Slow-Roll (GSR) approxi-
mation, which was developed to overcome the deficiencies of the standard
SR approximation. Here, the evolution of the first slow-roll parameter €,
sourced by features, is only assumed to be small in amplitude, .e. noth-
ing is assumed for its frequency. Conversely, if their frequency is of order
AN > 1, a Taylor expansion of the sources around an optimized horizon
exit epoch leads to analytical expressions for the power spectra observables
with a correct order counting of the slow-roll parameters. This approach is
named Optimized Slow-Roll (OSR). In addition, we shall assume a general
scalar-tensor background given by the Horndeski framework, Eq. (4.5), for
which the mode-function evolution equations are given by Eq. (4.34).?

For convenience, we define several new variables: a rescaling of the mode

functions
Yy = /2¢skusy (5.2)

a horizon epoch z, in terms of the sound horizons s,

. . Ny Cst
v = ks, se4(N) = /N LN (5.3)

and the source functions

bsergcs aH s,
s = 2 s $9s — 872 )
f T 254/ CsS \/ 87 0 o
[ b H
ft = QWZt\/CtSt = 271'2;]_70;@ s (54)
Ct

for scalars and tensors, respectively. In terms of these variables, the Mukhanov-
Sasaki equation (4.34), can be written as

d2y+(1_2>y:f”;3fj2, (5.5)

dz? 2

LAt a specific scale k.

2The original GSR approximation was developed by E. Stewart [230] in the framework
of canonical inflation to remove the assumptions yielding to the hierarchy of the in-
flationary observables. However, this approximation still required |ng| < 1 and thus
only applied for small deviations from scale-invariance. The techniques reviewed in this
chapter were developed to improve the original GSR and later extended to noncanonical
models.
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where primes will represent derivatives with respect to In z along this chap-
ter. As it can be noticed, Eq. (5.5) resembles the mode-function equation
in de Sitter space, Eq. (2.62), with an extra term sourced by the function

" !/
o) = =220 (5.6
f
Therefore, g(x) encodes all the deviations from the de Sitter solution due
to excitations of the source functions f. Bear in mind that so far we have
not made any assumption for the evolution of ey or the other slow-roll pa-
rameters and therefore, in these variables, the dimensionless power spectra,

<(ij> t
S

)

2
A?2 = lim

Sal x—0

(5.7)

Notice now that in the case where the source function f remains nearly con-
stant, the scalar and tensor power spectra, to the lowest order in excitations,
approximate to [145]

1 H? 1 H?

~ — 5 ~ ~ o) )
f2 8m2eycsbs fi 2m2c,b,

2
AC

which correspond to the de Sitter results for the spectra in the Horndeski
background [231].

5.1 Generalized Slow-Roll

Equation (5.5) can be solved using Green function techniques provided
that the amplitude of f remains small, i.e. the solution does not deviate
considerably from the de Sitter solution, the Bunch-Davies vacuum,

yo(z) = (1 + ;) e . (5.9)

Again, this requirement only assumes small deviations of scale invariance
over an average of time, but nothing on the local tilt. The formal solution
to Eq. (5.5) then reads as

mdﬁf/,—gf/
u? f

from which we can replace y — yo on the right-hand side and iteratively
improve the solution order by order in deviations from de Sitter. To first

y(@) = wola) - [ v g@w()] . (510
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order we obtain,®

o dx

InAZ (k) ~ G(ln,) + / W (@)6 )

o de (5.11)
~ —/ —W'(2)G (Inx) ,

0o

where z, < 1 and integration by parts was performed in the second line.
Furthermore, G(In ) is a source function that now encodes all the deviations
from the de Sitter solution, written as

=—2Inf+ ; (Inf)", (5.12)

and W(z) is a window function given by

3sin(2z)  3cos(2x)  3sin(2x)
W(z) = T N P (5.13)

which determines the freezout of the mode functions [134].

Equation (5.11) is known as the Generalized Slow-Roll formula. It still
requires numerical integration, though it is more computationally efficient
than solving Eq. (4.34). Moreover, the source function G can be used as
a model-independent mean to connect observational constraints with any
inflationary model that belongs to the effective field theory class [232,233].
In addition, the tilts n,; and the higher-order running parameters can also
be efficiently computed by taking derivatives of Eq. (5.11) with respect to
the scale k, whereas the tensor-to-scalar ratio is computed in the standard
way, using Eq. (2.89).

5.2 Optimized Slow-Roll

In the GSR expansion, Eq. (5.11), local scale-dependence of the power
spectra is encoded in a nonvanishing G'(Inz). The condition for small
departures from the de Sitter solution then implies that the average of G,
over several efolds, is of order O(1/N), which is consistent with CMB and
LSS observations where N ~ 55. On the other hand, as previously stated,
the sources are allowed to vary on a shorter scale AN and, consequently,
G" = O(1/AN)G'. In general, there exists a hierarchy of G® functions

given by
dPG 1
() — — -
G = dlnzr © (NANP—1> ’ (5.14)

3See, e.g., Refs. [134,144] for details and the formulas to second order in deviations from
the de Sitter background.
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which therefore can be distinguished from the standard O(1/N?) slow-roll
hierarchy.

It can be shown that the source in the GSR formula can be expanded
in Taylor series around the horizon exit epoch, provided that 1 S AN < N
[144]. Compared with the usual SR approximation, this expansion creates
a hierarchy of parameters separated by 1/AN rather than 1/N.* For the
first-order GSR formula, the expansion reads as [144, 145]

In Agﬁ ~G(nzp) + Y g(lnzp)GP (Inzy) , (5.15)

p=1

where the ¢,(Inxf) coefficients are given by

¢(lnzy) =Inz; —Inzy lnxlzg—ln2—7E : (5.16)
and
P
Gp(nzy) = ¢t (Inzy), (5.17)
1 d? 7_ mz\ 3I'(2+ z)
lim +(3-m) () S AT
@=L a [e BNl R G s T (5.18)

Here, g is the Euler-Mascheroni constant. The coefficients g, depend only
on the evaluation epoch x; and thus they do not depend on the inflationary
model and are equal for scalars and tensors.

5.2.1 Optimization

The sound horizon exit epoch corresponds to Inz; = 0, for which the
standard slow-roll results are recovered by truncating Eq. (5.15) to leading
order, i.e. InA? ~ G(0). In this case, the next-to-leading (NLO) order
slow-roll (SR) correction (p = 1) is suppressed by ¢;(0)/AN.

However, we can improve the truncation of Eq. (5.15) by optimizing the
evaluation point z;. For instance, notice that ¢;(In ;) vanishes for x; = 24
and therefore the NLO order correction vanishes as well. The first correction
would then come from the next-to-next-to-leading (NNLO) order optimized
(OSR) correction go(Inxq)/AN?.

For large features, AN ~ N, both NLO SR and NNLO OSR corrections
are small and thus the leading-order solutions are accurate enough, as ex-
pected. On the other hand, if the sources vary, for instance, as AN ~ 3,

4For AN ~ 1 numerical integration is needed, either by exactly solving the Mukhanov-
Sasaki equation (4.34) or by performing the GSR approximation by means of Eq. (5.11).
On the other hand, if AN <« 1, the hierarchy is inverted and different techniques can
be performed (see [234]).
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the first SR correction (NLO) is expected to be of 35%, as usual, whereas
the first OSR correction (NNLO) is just about 4%. Consequently, more
accurate approximations for the observables are obtained by optimizing the
evaluation point xy. Since Inz; ~ 1.06, notice that the optimization cor-
responds to evaluate the observables at around ~ 1 efold before the sound
horizon exit.

We can therefore establish the p-th order optimization by fixing the
evaluation epoch to be Inzy = Inz,,;, so that the next-order correction
identically vanishes as a consequence of the ¢,1(Inx,;;) = 0 solution.

The tilts and the higher order running parameters can be obtained by
differentiating Eq. (5.15) and using the fact that [144, 145]

dG®) (Inz )
dnk

Therefore the first observables read, to leading order, as dIn A?/dInk ~
—G'(Inzy) and a = G"(Inxy). As previously stated, this implies a hierarchy
of the G functions defined by Eq. (5.14). However, it is more convenient
to relate the observables to the standard Hubble slow-roll parameters.

= —GP D (Inay) . (5.19)

5.2.2 Correspondence to the Hubble slow-roll param-
eters

In the context of a general scalar tensor theory, parametrized by eg =
—dIn H/dN and the normalization factors cit and b, ;, the Hubble slow-roll
parameter convention is given by the hierarchies’

ldIHEH do.

TR— 5 aN 5p+15d7]\2;+5p(51_p611) ’
dlng; do;
0;1 = AN Oiptl = d]\}p ) (520)
6, = dn b; €= d&ip
il = AN i,p+1l = dN

where here 1 = s,t and p > 1.
The previously stated assumptions, G’ = O(1/N) and G®*Y ~ O(1/AN)G®),
then fix the expectations for the slow-roll parameters as

, 1
{G 7EH751aO—i,la§i,1} =0 <N> ;

1
{G(pﬂ),5p+170i7p+1’£i7p+1} =0 <NANP) ‘

®Consistent with the Horndeski theory parametrization (§4.1.1.1), for which the normal-
ization factor are given in Egs. (B.16). However, the OSR approximation holds for more
general theories belonging to the effective field theory class, see Ref. [145] for details.

(5.21)
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Therefore, a relation between the G functions and the slow-roll parameters
can be established by means of Eq. (5.12), using Eqs. (5.4). In doing so,
a convention regarding the expansion in inverse powers of N and AN is
adopted, namely, expressions are expanded up to O(1/N?), i.e. terms of
order O(1/NAN?) are kept but not O(1/N?ANP) terms (see Refs. [144,145]
for details).

The first order optimized slow-roll formulas, in terms of the slow-roll
parameters, then read as [145]

H? 10 2 7 1
IHAE ~ In () — —€g — gél — s1 — 5651

87T2bSCSEH 3 50— T=x1 ’
2 7 1
ns— 1~ —deyg — 201 — 051 — &1 — 552 - 50s2 - gfsz ) (5'22)
r=x1
2 7 1 9 9
Qg > =209 — 050 — &g — 553 - 5053 - 5553 — 8ey — 10eg 01 + 207 I
for scalar, and
H? 8 7 1
InA? ~1 — —€g — — - =
na, n (27r217tct> 3€H 30t1 35}51 o )
7 1
ny ~ —2eg — oy — & — 50t2 - gfﬂ ) (5.23)
r=x1
7 1 9
ap = —0p — 2 — gUt:s - gft:s — e — dep oy o

for tensor perturbations. Notice then that the OSR approximation intro-
duces corrections to the standard slow-roll results, Eqs. (5.8), even at lead-
ing order, aided by the different and optimized evaluation point =z = z;.
Furthermore, the OSR expressions (5.22) can accurately relate inflationary
models to the standard power-law, Eq. (2.84), in cases when |as| is of order
|ns — 1|, unlike the traditional second-order SR approximation [4,144].

Finally, the tensor-to-scalar ratio can be computed in the standard way
through Eq. (2.89). Note however that it is taken at fixed scale k& which in
general corresponds to an evaluation point x = x; at two different epochs
N due to the different sound speeds ¢? and ¢? for scalars and tensors, re-
spectively.

The efficiencies of the GSR and OSR approximations have been tested
and compared to the standard leading and NLO SR approximation for mod-
els with features in the potential as well as for noncanonical models as G-
inflation (see, e.g., Refs. [4,138,139,142, 144,235]) and have been further
extended for the computation of the bispectrum [136,236-238].
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In the following, we present two appendices which complement some
of the topics discussed in this Part I: the Cosmological perturbation theory
(Appendix A) sets the basis for the calculations performed in §2.4, whereas
Appendix B provides the complete set of equations of motion for the theo-
ries discussed in §4.

After these appendices, Part I contains the publications where the main
original research developed during the realization of this thesis is presented.



APPENDIX A

Cosmological perturbation theory

In this appendix we review the cosmological perturbation theory for a
FLRW spacetime. We start by defining the group of gauge transformations—
coordinate changes—that a given perturbation is subject to. Then, start-
ing from the most general perturbed FLRW metric, we explicitly show the
scalar, vector and tensor perturbations composing the perturbed line ele-
ment, as well as the perturbations composing the energy-momentum tensor
of an ideal fluid, as the one described in §1. We later describe how these
perturbations transform under the gauge transformations and thus we com-
pute the gauge-invariant variables used in §2, relevant for the inflationary
theory. Here we mainly follow Refs. [15,60, 132] and, for the sake of sim-
plicity, we will work only to first-order in perturbations—which suffices for
the computation of the power spectrum of primordial perturbations (the
computation of the bispectrum requires going to second order, however we
do not discuss it in this thesis).

A.1 Gauge transformations

Now that we want to study perturbations living in a spacetime, the
choice of a coordinate system is not as straightforward as in an homoge-
neous universe. In the latter, we were used to define the threading—curves
of constant spatial coordinates z'—as curves corresponding to the motion
of free-falling observers with zero momentum density, and the slicing—
hypersurfaces of constant time t—corresponding to a homogeneous universe.
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When perturbations are present, there is no preferred coordinate system
anymore and, furthermore, the threading and slicing choice is not unique.
This implies that we would be defining the perturbations by specifying the
coordinates. It is then important for Cosmology to find how perturbations
transform under a change of coordinates—a gauge transformation—and to
study the evolution of gauge-invariant variables in order to avoid ambiguities
due to a given gauge choice.

In general, any quantity can be split in its background component and
its perturbations as

= T(t) + f:l <;;> 0T () (t,z") , (A1)

where overlines represent unperturbed background quantities and n repre-
sents the order of the perturbation. Furthermore, T'(¢, z") transforms under
a gauge transformation as

T =efsT (A.2)

where £ denotes a Lie derivative with respect to an auxiliary vector field
¢ generating the transformation. Under such a transformation, the right-
hand side of Eq. (A.1) transforms as

. | | - 1
- (1 L R 0(63)) [T + 6T + 0Ty + (9(63)]

=T + et ((5T(1) + ££1T) + € <;5T(2) + ££15T(1) + ;féT—F ;fng) + 0(63) .
(A.3)
Then, it is evident that background quantities are gauge invariant, whereas
first- and second-order perturbations transform as

5T(2) = 5T(2) + fng + fng + 2£51(5T(1) . (A5)

Notice that the specific form of the Lie-derivative terms depends on whether
the perturbation is a scalar, a vector or a tensor.

Lie derivatives

The Lie derivatives with respect to the vector field £# applied to a scalar
¢, a covariant vector v, and a covariant tensor t,, are given, respectively,
by [132]

Lep = pa®, (A.6)

'The gauge transformations form a Lie group with an associated Lie algebra of group
generators [132].
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£§Uu = U,u,aga + ,Uocgoi“ ) (A7)
£§t,uu = tuu,aga + t,uafoiy + tcwgofu ) (A8>

where we recall that the notation , = 0/0z* is used.

In the following, we shall define the cosmological perturbations and ap-
ply the transformation rules obtained here to them, where we will keep the
analyses to first-order in perturbations.

A.2 Metric perturbations

We start by reviewing the metric perturbations of a FLRW line element
given by
ds? = (gw + 5g,w) dztdx” | (A.9)

where g, (t) is the homogeneous FLRW metric given in Eq. (1.4) and
09, (t, z;) is composed by the perturbations. Therefore, the most general
first-order perturbed FLRW metric can be written as

ds* = — (14 2®) dt* + 2aB;dz'dt + a* [(1 — 2V) &;; + Ey] dz'dz? . (A.10)

Here ®—the lapse, which specifies the relation between t and the proper
time along the threading—and W—the spatial curvature perturbation—are
3-scalars, whereas the vector and tensor perturbations B;—the shift, which
specifies the velocity between the threading and the worldlines orthogonal
to the slicing—and E;;—the shear—can be further decomposed as”

B,=B;,—-S,;, where S;" =0, (A.11)

and
Ejj=2E;;+ Fj+Fj;+hy, where F,"=0, hi=0, hS=0.
(A.12)

Consequently, we have defined two more scalar perturbations, B and FE,
two vector perturbations, S; and Fj;, with zero divergence, and a 3-tensor
perturbation h;; that is traceless and transverse.

Gauge transformations of metric perturbations

Using the gauge transformation properties obtained in §A.1, we now
explicitly show how the scalar metric perturbations ®, B, ¥ and £ trans-
form to first order. Conversely, one can show that vector perturbations S;

2This is called the scalar-vector-tensor decomposition of perturbed quantities into differ-
ent helicity modes: scalar, vector and tensor perturbations have helicity 0, +1 and £2,
respectively. Perturbations of different helicity evolve independently and thus they can
be studied separately.
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and F; decay very quickly during the expansion and they are actually not
produced during inflation [16]. Furthermore, the tensor perturbation h;; is
gauge invariant— it does not change under coordinate transformations [15].

For scalar perturbations then, the perturbed metric components are
given as

0goo = —2®, (A.13)
0goi = aB;® (A.14)
0gij = —2a® (Uo; — E4j) (A.15)

which transform to first order, according to Eq. (A.4), as

300 = 0goo — 26t (A.16)
S\jgoi = 0goi — ;i + G2B,i ; (A.17)
SZ]U = 5gij + a2 [QH(I(S” + 2571']'] s (A18)

where we have decomposed the generating vector as £* = (£°,&%) = (a, B +
7%), and set 4" = 0. Equations (A.16)-(A.18) give the transformation of each
of the scalar perturbations respectively as

b= +a, (A.19)
B=B-a'a+as, (A.20)
U=V-Ha, (A.21)
E=E+p (A.22)

A.3 Matter perturbations

We consider perturbations present in an ideal fluid characterized by its
energy density p, pressure p, 4-velocity u* and anisotropic stress X*¥. Recall
that the 4-velocity obeys g, utu” = —1 and its only nonvanishing back-
ground components are u° = —%y = 1. Therefore we write the perturbed
4-velocity to first order in perturbations, using Eq. (A.10), as

W=u"+6"=1-9, Ug = TUg + 0ug = —1 — P, (A.23)

and 1
ut = out = = (Ui — Bi) , u; = ou; = av; , (A.24)

a

where the linear perturbation v is the physical velocity of the fluid (defined
with respect to its proper time).
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Furthermore, the energy density and pressure can be split in the stan-
dard way as

pt,a") =p(t) +op(t.a') . p(t,a") =p(t) +dp(t,z") . (A.25)

With these definitions, we can construct the perturbed energy momen-
tum tensor, TH = (p + p) utu, + pd + 3#. to first order, as

75 =—(p+0p) (A.26)
T} = (p+p) av; , (A.27)
0 1 — = % I

%=—5@+m0w—8), (A.28)
T = (p+0p) 0} + 3 . (A.29)

The anisotropic stress tensor X% vanishes for the homogeneous FLRW Uni-
verse and, furthermore, it is constrained by ¥**u, = 0 and 3§ = 0, i.e. only
its spatial components are nonzero and define a perturbation.

Gauge transformations of matter perturbations

In a very similar way as for the metric scalar perturbations, the energy
density, pressure and momentum density perturbations transform as

op = 0p+pa , (A.30)
op = 6p + par (A.31)
0g=0q— (p+p) o, (A.32)

where the momentum density perturbation was defined as (d¢) ; = (p + D) v;.
Furthermore, the anisotropic stress E} is gauge invariant.

Analogously, a scalar particle field decomposed as ¢ = ¢+ d¢ transforms
to first order as

6 =3+ 860 + por . (A.33)

Finally, we consider a vector field A* = (A% A?). This field could be
present during inflation and play some role in the evolution. We split its
temporal and spatial components as

AV = A4 A . A=, (A.34)

in which case, the new scalar perturbations transform according to Eq. (A.4)

as
SA =64 — Aga + Aor U =1+ Ager . (A.35)
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A.4 The primordial curvature perturbation

We have defined the transformation rules for metric and matter pertur-
bations. However, it is desirable to study the evolution of gauge-invariant
variables instead of keeping track of the full set of perturbations plus the
generators a and (3, once a particular threading and slicing is defined.
By studying only gauge-invariant combinations of these perturbations, we
can avoid fictitious perturbations or avoid to remove real ones—as James
Bardeen stated: ‘only quantities that are explicitly invariant under gauge
transformations should be considered’.

A.4.1 Gauge invariant variables

The first two gauge invariant combinations are called Bardeen potentials
and are written as [239]

d . B
Pp=P— — 2(E-> A
B dt|: a 9 ( 36)
U =V + a*H <E — B) : (A.37)
a

One can see that &g and Uy are invariant under gauge transformations,
i.e. a change of coordinates. Furthermore, if both are equal to zero, then
metric perturbations, if present, must be fictitious.

Regarding matter perturbations, we define the following gauge-invariant
combinations:

H
—( = \11—1—%5p, (A.38)
H
R=U—_—" 54, A.39
7377 (A.39)

where ( is the curvature perturbation on uniform density hypersurfaces,
whereas R is the comoving curvature perturbation. In the following, we
shall see that ( is conserved after inflation and, therefore, its power spec-
trum P, directly relates the CMB statistical properties with the physics of
inflation. ( is therefore called the primordial curvature perturbation.

A.4.2 Einstein equations

Matter perturbations in a curved spacetime backreact creating geometric
perturbations. Consequently, the Einstein equations (1.9), written as

1
6Ry = 509udR = 0T, (A.40)
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determine the evolution of the perturbations previously defined.

The evolution of a given perturbation is usually described in Fourier
space, where each perturbed quantity can be decomposed as

ST(t, k) = / BT (¢, )+ | (A.41)

where, due to translation invariance, different wavenumbers k£ evolve inde-
pendently at linear order [60].

Scalars

In Fourier space, the Einstein equations can then be written as [55, 60]
: k? 9 1

3H (¥ + HO) + [0+ H (a’E — aB)| = —500. (A.42)
- 1

U+ HO = —§5q : (A.43)

. . . : 1 2
b+ 3HY + HE + (3H +21T) @ = (5p - 31&52) (Ad4)
(U — ®p) = a?6% . (A.45)

In addition, the energy-momentum conservation gives the continuity equa-
tion and the Euler equation as

5p+ 3H (6p+ 6p) — Széq + (5+7p) [3111 e (E - f)] . (A.46)
Sq+ 3Hoq = —6p + gmz _(p+P)D. (A.47)
Using Eq. (A.38), Eq. (A.46) can be written as
2
¢ = —H;f:r;) + :fH [E - f t o (qur p)] , (A.48)
where we have introduced
OPen = Op — ];5p , (A.49)

which measures the non-adiabatic part of the pressure perturbation. In
inflation, perturbations are adiabatic in general, i.e. dp., vanishes; further-
more, on superhorizon scales where k/(aH) < 1, the second term vanishes
as well, i.e. the curvature perturbation ¢ remains constant after inflation
until scales enter the again the horizon. Consequently, and because the en-
ergy density during inflation is dp ~ d¢, we are interested in computing the
primordial power spectrum of

Ut gw , (A50)
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at horizon exit k ~ aH, and ignore the subsequent physics.

In the same way, one can define the curvature perturbation ¢, for the
scalar component of a vector field A; as

H

and, furthermore, define a total curvature perturbation in the case in which
both fields, ¢ and A*, are playing a role in the inflationary dynamics, as

H ($0¢ + Agt)
— — i ,
oF + A3

(A.52)
which is analogous to a two-field model of inflation [132].

Vectors

The evolution equations for vector perturbations are sourced by an
anisotropic stress perturbation 63; and are given by

6q; + 3Hdq; = k*6%; | (A.53)
k2 (F + S) = 20 . (A.54)
a

However, §Y; is not created by inflation and, in its absence, dg; decays with
the expansion, i.e. the perturbation F; + S;/a vanishes. Therefore, vector
perturbations are, in general, subdominant.

Tensors

The evolution equation for the tensor perturbation h;; is given by

2

hij + 3Hh;; + ?h =0, (A.55)

which is the equation for a gravitational wave. They are produced by in-
flation and, in the same way as vectors, they decay with the expansion;
however some models of inflation predict an observable amount of gravita-
tional waves during the recombination epoch, i.e. they can be distinguished
in the CMB polarization spectrum.



APPENDIX B

Equations of motion of general theories of gravity

In this appendix we show the equations of motion for the full Horndeski
and SVT theories in a FLRW spacetime. The former were first computed
in Ref. [209] whereas the latter can be found in Ref. [223].

B.1 Horndeski theory

We take a homogeneous scalar field ¢ = ¢(t) and assume a flat FLRW
background with the line element given as

ds® = —N*(t)dt* + a*(t)6;dr'da’ | (B.1)

to the action

Sy = / diz/ gL | (B.2)

where L4 is given by Eq. (4.5). The variation of Eq. (B.2) with respect to
N(t) gives the constraint equation

5
S& =0, (B.3)
=2
where
52 ZQXGQVX - G2 5 (B4)
53 :2XG37¢ - 6X¢HG3’X y (B5)

E4=— 6H?Gy + 24H?X (Gyx + XGuxx) — 12HX Gy sx

89
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— 6H¢Gyy (B.6)
Es =2H%X ¢ (5G5.x +2X G5 xx) — 6H?X (3G54 +2XGs4x) . (B.7)

The variation with respect to a(t) yields the evolution equation

> P=0, (B.8)
=2
where
Py =Gy (B.9)
Ps =2X (G4 + 6Gsx) (B.10)
Pa=2(3H+2H) Gy — 4 (3H*X + HX + 2HX) Gy x — 8SHX X G xx
+2($+ 2H) Gup + AX Gy +4X (6 — 2HP) G . (B.11)

Ps = —2X (2H3) + 2HH$ + 3H?)) Gsx — AH?X?$Gs5 xx + AH X §Gs g

+4HX (X =~ HX) Gsgx +2[2 (HX + HX) + 3H?X| Gs 4 .
(B.12)

Finally, the variation with respect to ¢(t) gives the scalar-field equation
of motion

13 (%) = Py, (B.13)

where

J :éGQ,X — 6HXG37X —|— 2¢G37¢ —|— 6H2¢ <G4,X —|— 2XG4,XX) — 12HXG4’¢X

+2H3X (3G5.x +2XGs xx) — 6H?) (G54 + XGsx) , (B.14)
Py =G +2X (Gago + 6Ggx ) +6 (2H? + H) Gap+ 6H (X + 2HX) Gipx
— 6H?X G5 4 + 2H> X ¢G5 5x - (B.15)

For the particular choice of G4 = 1/2 and G5 = 0, the above equations
reduce to the set of equations (4.26)-(4.28) corresponding to the G-inflation
model discussed in §4.2.2.

B.1.1 Normalization factors

Additionally, let us show the dependence on the G;(¢, X) functions of
the normalization factors cit and b,, appearing in the quadratic actions of
primordial perturbations, Eqgs. (4.29) and (4.30). As given in Ref. [209],
they read as

2 F s,t f s

Cat = gs,t ’ b= ; 7 b= 45, (B-lﬁ)
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where
1d /a by
‘7:8:57 ( t2>—-7:ta gs:@gf‘i‘?)gt ; (B.17)

and

Fi =2 [G4 - X (éGB,X + G5,¢>)] ;
Gi =2 G4 — 2XGux — X (HoGs.x — Gsg)]
Y =XGox +2X%Gyxx + 12HPX Gs x + 6HOX?Gsxx — 2X G4

— 2X%Gy4x — 6H?G4+ 6 lHQ (7XGax +16X7Gyxx + 4X3Gyxxx)

—H¢ (G4,<zs +5X Gapx + 2X2G4,¢XX)] +30H30X G5 x + 26H> X >G5 x x

+AHXGs xxx — 6H?X (6G5.6 + 9X Gsgx + 2X*Grpxx)
O =—¢XGyx +2HG, —8HXGyx — SHX?Gyxx + dGugp + 2X Gy px

— H? (5XGs.x +2X°Gs.xx ) + 2HX (3Gs4 + 2X Gs 4x) -
(B.18)

B.2 Scalar-vector-tensor theories

We assume the line element in Eq. (B.1) and consider homogeneous
scalar and vector field configurations, ¢(t) and A, (t), the latter of which is
given by

A,(t) = (Ao(t)N(¢),0,0,0) , (B.19)

where Ay(t) is a time-dependent temporal vector component. Furthermore,
the quantities {F, Y1, Y5, Y3}, the last row of Eq. (4.14), corresponding to
the sixth-order Lagrangian Lg, and the interactions proportional to ME”
and N do not affect the background cosmology. * Finally, the quantities
X1, Xo, X3 are given, respectively, by

¢ _ 04 A3

X = — Xo = X3 =—. B.2
1 2N27 2 2N7 3 9 ( O)

With the above considerations, varying the action

Sgyr = /d4$\/ —gLsvT , (B.21)

IFurthermore, the parity-violating term F in fo, Eq. (4.14), is not considered in this
chapter as it was originally not considered in Ref. [223] for simplicity.
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on the spacetime metric (B.1), with respect to N gives the constraint equa-
tion

) 1. )
63 + fo = 0 fox, = 50Aofoxy + 6H (0fas — HA fix,)
+2A0H? (30 f5.0 — AgH f5.x,) =0 . (B.22)

Varying the action (B.22) with respect to the scale factor a(t) yields the
evolution equation

2f4 (QH - 3H2) + fo + 240 A2 <f3,X3 + fs) + 20 A0 fa,5 + 2 <¢ + 2H¢) fae
—24, [AO (2H + 3H2) + 2A0H} faxs + 2¢A0A0f4,xg¢> + 2<Z32f4,¢¢

—4H A3 (AgAofsx,x, + dfaxye) + [240 (HO + H)

+6 (2H Ag + 3H?Ao)| fs.p — HAZ [2A0 (H + H?) + 340H| fs.x,

+HGAS (240 — HA) f5 x50 + HAg (26 f5.00 — AcAJH f.x,x,) =0 .
(B.23)

The variation with respect to ¢(t) gives the scalar-field equation of motion

. . 1 . .
(fz,xl + ¢ faxyx, + PAofoxix, + 4A3f2,X2X2) O+ 3Hfox,0— fo

. . 1 1.
+6” foxi0 = 6 (H +2H?) fug + [2f2,X2 + 50 foxixs + 259 = 3H fsg

2

. 1. A ~
+Ay <¢f2,X1X3 + Zgbe,Xng - 6Hf4,X3¢> + 70(f2,X2X3 —4f34
. 1. 3
—6H2f5,X3¢)] A + [2¢f2,X2¢ + inQ,XQ +6H f34 — 6A0H2f4,x3¢

—3H (2H + 3H?) f5. — A H® faml Ag=0,
(B.24)

whereas the variation with respect to Ay gives the temporal-vector equation
of motion

2 (fQ,Xg + 6H2f4,X3 - 6H¢f4,xg¢) Ao + 12H2f4,X3X3A8 + 2H3f5,X3X3Aé
—2 (GH fy,x, + 6H fs + 205 — 3H' f5 x, + 3H?¢ fs x5 ) A7

+ (foxa + 4fsp — 6H?f54) 6 =0 .
(B.25)

Notice from Egs. (B.24) and (B.24) that the scalar field ¢ and the tem-
poral vector component A, are coupled to each other in a non-trivial way
(see Ref. [223] for an exhaustive discussion on the implications of this fact).
For the particular model in Eq. (4.35), Eqs. (B.22)-(B.25) simplify to those
given by Eqs. (4.37)-(4.40).
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In this work, we analyze two possible alternative and model-independent approaches to describe the
inflationary period. The first one assumes a general equation of state during inflation due to Mukhanov,
while the second one is based on the slow-roll hierarchy suggested by Hoffman and Turner. We find that,
remarkably, the two approaches are equivalent from the observational viewpoint, as they single out the
same areas in the parameter space, and agree with the inflationary attractors where successful inflation
occurs. Rephrased in terms of the familiar picture of a slowly rolling, canonically normalized scalar field,
the resulting inflaton excursions in these two approaches are almost identical. Furthermore, once the
Galactic dust polarization data from Planck are included in the numerical fits, inflaton excursions can safely

take sub-Planckian values.

DOI: 10.1103/PhysRevD.91.083006

I. INTRODUCTION

Despite its impressive observational success, the infla-
tionary paradigm [1] is still lacking firm confirmation. The
crucial missing piece of evidence is the B-mode’s polari-
zation pattern imprinted in the cosmic microwave back-
ground (CMB) at recombination by the inflationary
stochastic gravitational waves (GWs). This observable is
usually parametrized through the tensor-to-scalar ratio
r=A,/A,, where A, and A, are the amplitudes of the
primordial tensor and scalar fluctuations,' respectively, at
some pivot scale. The measurement of r is extremely useful
because its magnitude directly determines the inflationary
energy scale, when the modes observed now were stretched
out of the horizon [2]. An additional piece of information is
given by the scale dependence of the power spectrum of
inflationary GWs. The accurate measurement of this last
value would allow us to test the so-called standard infla-
tionary consistency relation n, = —r/8 [3]. However, such
a measurement might turn out to be very challenging,
especially when the amplitude of the B-modes is small [4].
In view of that, the measurement of n, would entail an
additional experimental challenge that might or might not

"The scalar and tensor amplitudes are given by

k ng—141a, In(X)
A (k) = 4, (—) S
ko

a2’

where kj is the pivot scale, and n, and n, are the scalar and tensor
spectral indices, respectively, while a, =dn,/dInk is the
running of the scalar tilt.

)
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be met in the future generation of CMB observations.
One could be led to conclude that perhaps testing the
inflationary consistency relation is not the best way to test
the inflationary paradigm in its simplest realization, i.e.
single-field slow-roll inflation. An alternative and easier
way might be to test the consistency relation in each model
of inflation, i.e. the relationship between r and n, in each of
the possible scenarios. For instance, the quadratic model
V o« ¢ predicts r = —4(n, — 1) at first order in slow roll.
Such a consistency relation would be easier to test than the
former one [5], given the present and forecasted accuracy in
n, and r. However, despite this encouraging feature, this
approach is not model independent, as it assumes explicitly
an underlying scenario with a peculiar inflationary potential
to obtain results. On the other hand, more useful and robust
ways to formulate the tests of inflation should ideally be
model independent, capturing the generic features of
inflation, without committing to a specific scenario. Said
in other words, it would be more appealing to try to work
out the inflationary predictions in a model-independent
picture where the inflationary potential does not play a
crucial role. This will enable us to avoid treating inflation
on a case-by-case basis, but rather in a more general way. In
this work, we address this important issue by considering
two possible alternative model-independent approaches.
The recent BICEP2 claim of primordial GW detection
[6,7] underlined the difficulties faced when trying to extract
a primordial polarization signal from the ubiquitous
Galactic foregrounds. Despite the general excitement in
the community, soon after these results were released,
several studies carried out a reassessment of the level of
Galactic dust polarization in the BICEP2 field [8,9],
questioning the cosmological origin of the BICEP2 signal.

© 2015 American Physical Society
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Recently, the Planck Collaboration [10] has released the
results of the polarized Galactic dust emission measure-
ments at 353 GHz in the BICEP2 field. By extrapolating
these results to 150 GHz (the frequency where BICEP2
operates), they were able to test the level of dust contami-
nation in the BICEP2 signal. The Planck analysis suggests
that the BICEP2 signal could be, in principle, explained
fully in terms of a dust component. However, given the
large systematic uncertainties on the polarized dust signal, a
joint analysis of Planck and BICEP2 data is mandatory,
before giving a final interpretation of the BICEP2 signal.

In a previous study [11], we have shown that using a
purely phenomenological parametrization of the inflation-
ary period, the tension between the BICEP2 signal and
previous upper bounds on  can be reduced significantly. In
this work, and along the same lines, we explore two
alternative approaches to describe the inflationary para-
digm, confronting them with the most recent CMB temper-
ature and polarization data. The first approach, considered
in Ref. [11], is the Mukhanov parametrization of inflation
[12], while the second one is the so-called inflationary
Hubble flow formalism [13,14]. We will see that these two
approaches appear to be physically equivalent, because,
interestingly, both single out the same regions in the
inflationary parameter space. These results suggest that,
when analyzing inflationary predictions in a model-
independent way, one should restrict attention to these
regions in the parameter space, as they are the physical
ones, ensuring therefore meaningful and robust constraints.

The rest of the paper is organized as follows: In Sec. II, we
review the main features of the Mukhanov parametrization
and explain its branches. Next, in Sec. III, we introduce the
Hubble flow formalism and analyze its fixed points.
Section IV is dedicated to the inflaton excursion. In Sec. V,
we carry out the numerical analyses of both approaches. We
end up by drawing our conclusions in Sec. VI.

II. MUKHANOV PARAMETRIZATION

In Ref. [12], an alternative and model-independent
parametrization of the inflationary period was proposed
(see Refs. [15,16] for a similar treatment). Without refer-
ence to a specific potential, one can assume the ansatz

p/p=—1+p/(1+N,)" (1)

for the equation of state during inflation.” In the above
ansatz, a and f are phenomenological parameters and are
both positive and of O(1), and N, is the number of
remaining e-folds to end inflation. In this hydrodynamical
picture, the predictions for the scalar tilt and tensor-to-
scalar ratio are

’For an extension of the above ansatz, see e.g. Ref. [17].
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p a

nS—I:—3(N*+1)a—N*+1, (23)
24p
T .

where N, stands for the number of e-folds at horizon
crossing and it usually takes values around 60, depending
mildly on the reheating details and on r as well. A general
prediction of this ansatz is that the tilt is always negative,
regardless of the inflationary scenario, while the tensor-to-
scalar ratio can take any value depending on the parameters
a, B, and N,. Furthermore, the running of the tilt ; is also
always negative.

The Mukhanov parametrization captures a wide range
of models with completely different predictions [12].
Notice, however, that this phenomenological description
of the inflationary phase is not completely equivalent to the
slow-roll picture, as there is no more freedom in the signs of
both the tilt and the running.

A. Two branches

As noticed and explained in Ref. [11], the Mukhanov
parametrization exhibits two distinct branches:

BranchI: r~0 and n, <. (3a)
r
BranchIl: n, =1 ~3 (3b)

The first branch contains, for instance, Starobinsky models
[18], while the second one contains, among other models,
the chaotic scenarios’ V(¢) « ¢" [21]. Because of the
presence of these two branches, the observationally pre-
ferred value of the scalar spectral index n; = 0.96 will
correspond to two different possible values of the tensor-to-
scalar ratio, see Fig. 1. Coming back to the parametrization
in terms of a and f, these two branches are recovered
simply as the large- and small-a limits, i.e. > 1 and
a <1, respectively. Indeed, combining Eq. (2a) and
Eq. (2b), one gets

ng = 1- I - ¢

8 N,+1°

4)

From the above expression, and remembering that both r;
and r still depend on a, we can easily get the two branches
according to whether a is bigger or smaller than 1. In
principle, the value of the phenomenological parameters o
and f is unconstrained; however, as discussed in
Ref. [11], it is sufficient to consider the range 0 < f < 1

*The natural inflation scenario [19,20], V(¢)  [1 + cos(¢/f)],
is captured by the Mukhanov parametrization only for large
enough decay constants f 2 10Mp, which is indeed the regime
compatible with observations.
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FIG. 1 (color online). Confidence intervals (68% and
95% C.L.) for the derived parameters n; and r, using the
Mukhanov parametrization, from the various data combinations
considered in this work. The thick diagonal grey line represents
branch II of Eq. (3), while the light green area displays the region
covered by the Mukhanov parametrization for N, = 40-70.

and 0 < a < 3. Let us recall some interesting limits of the
parametrization Eq. (1). First, the chaotic scenarios V o ¢"
correspond to the limiting case @ = 1, regardless of . The
power n appearing in the potential is given by f = n/6.
Next, the other interesting limiting case is provided by
Starobinski models corresponding to « =2 and f = 1/2
in Eq. (1). Finally, the special case a = 0 corresponds to
power-law inflation where the scale factor evolves as

a(t) « 7 and V o e"VI/Mr Ty this scenario, inflation
has a graceful exit problem; i.e., it never ends, and most
probably the end of inflation is triggered by an addi-
tional field.

III. THE HUBBLE FLOW FORMALISM

In this picture, the basic parameter is the Hubble rate
H(¢), and the dynamics can be completely specified
without reference to a specific inflaton potential. In this
Hamilton-Jacobi formulation of inflation, starting from
H(¢) and its derivatives, one can construct a hierarchy of
slow-roll parameters [13,14]. Such parameters start at first
order with the usual slow-roll paurametelrs4

wea(s). o
m=2003 (). ©)

At higher orders, the slow-roll hierarchy is given by

*As usual, the reduced Planck mass is given by M, =
(87G )12 =243 x 10'® GeV.
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(H/)f—l d(f+1)H
Hf d¢(f+1) ’

‘n= (2M3)" £>2. (7

These slow-roll parameters obey the infinite system of
first-order differential equations:

de
a’—I\PJI = en(on + 2eq), ®)
do
TAI; = — Seyoy — 1264 + 2(%Ay). 9)
d(“2 £—1
(dNH) = |5 —ou+ (£ =2eu| A+, (10)

where the tilt of the scalar spectrum is defined as
oy = 2y — 4ey. Notice that these flow equations are
invariant under rescaling the Hubble rate. In principle,
they can be integrated to arbitrarily high order in slow roll
[22]. In practice, however, by truncating them at some order
M, imposing M*1);; = 0, they become a closed system of
differential equations that can be integrated once a set of
initial conditions is specified.

A. Two fixed points

By inspection, one can determine the fixed points of the
above inflationary flow equations. For instance, truncating
at first order, it is straightforward to notice that they exhibit
the following fixed points [13]:

Fixed pointl: r =0 and n,=const.  (I11)

Fixed pointIl: n, = 1 —g. (12)
Fixed point I can be either stable (n, — 1 > 1) or unstable
(ny — 1 < 0) according to the sign of the tilt. We call these
fixed points I-a and I-b, respectively. The Harrison-
Zel’dovich spectrum ny = 1 separates these two regions.
Remarkably, the fixed points I-b and II of the Hubble flow
equations overlap with the two different branches of the
Mukhanov parametrization in Eq. (3). This is the first main
result of this paper.
Considering the full set of equations, the fixed points are
given by

Fixed pointl: r =0 and n; =const.  (13)

Fixed pointIl: n, =1 — .

i<l 09

The first fixed point, Eq. (13), coincides with the first-order
one, and the stability analysis is the same. However, the
second fixed point Eq. (14) is slightly different and corre-
sponds to power-law scenarios [22], where a(f) o 1!/,
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7t «eee Branch IL: r = §(1 — ny)
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G Mukhanov parametrization

FIG. 2 (color online). The results of the Monte Carlo
reconstruction using FLOWCODE1.0 of 2 x 10® models with wider
priors than those shown in Eq. (15). The clustering around branch
I and branch 11 is clearly visible. The three different lines refer to
the two branches, together with the attractor for power-law
models.

Notice that in this case, 773 = ey, while “ ™14y = ey (“Ay) for
¢ > 2. Nevertheless, at small r, these fixed points coincide;
the difference shows only at large r; see Fig. 2.

In order to solve the flow equations, we use the publicly
available code Flowcodel.0 [22] that adopts a
Monte Carlo approach to reconstruct the inflationary
potential. For more details on the methodology, see
Refs. [22,23]. For related work using this methodology
to obtain cosmological constraints on inflationary models,
see also Ref. [24]. We generate a total of 6 x 10° infla-
tionary models by drawing randomly the initial conditions
of the slow-roll parameters from the following flat priorsS:

= [50,70],
[0.,0.8],
[~0.1,0.0],
-

= [~

—0.05,0.03],
0.025,0.025),

M+ =0. (15)

As in Refs. [23], the slow-roll hierarchy is truncated at
order M =8 and the equations are evolved using
Flowcodel.O. For illustration, we plot the results of

>For orders # > 2, the width of the interval is reduced by a
factor of 5 at each order.
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reconstructing 2 x 10° inflationary models with wider
priors in Fig. 2. As noticed in Ref. [13], models cluster
around the attractors given by the fixed points. Figure 2
clearly shows this feature: in the (7, ny) plane, the models
populate the regions I-b and II, while the areas outside these
regions are underpopulated.

IV. THE INFLATON EXCURSION

The Mukhanov parametrization is formulated independ-
ently of any scalar field; however, one can always recast the
dynamics in the inflaton picture [12], where inflation is
driven by a canonically normalized scalar field. In slow
roll p =1V, the distance traveled by the inflaton during
inflation, i.e. the inflaton excursion, can be written in terms
of the Mukhanov phenomenological parameters as

Ap [N | 3p
- M (16)

For a related recent appraisal of the inflaton excursion, see
e.g. Ref. [15]. The expression in Eq. (16) can be straight-
forwardly integrated, giving

for a = 2.
(17)

Ap V3FIn(N, + 1)
My~ ‘/_[(N Lo

for a # 2.

For a # 2, it is useful to consider the small-r limit of
Eq. (4). Recall that CMB data prefers a > 2 [11]. When
r < 8/N.,, we can expand around @ = 2, and get

z—f ~ %(1 +N,) [111(1 +N.)+ (“;2) In(1 +N,)?
(18)

Figure 3 shows the inflation excursion in this limit for the
range 40 < N, <70 and a = 2.6. Notice that the field
excursion in this limit is small, as expected, due to the
smaller r in this case. Meanwhile, for the opposite limit, i.e.
for large r such that r > 8/N,, @ =1 (see Ref. [11]), and
one gets

Ag r
M, 2 8N s (19)
well above the original Lyth bound [25] (see also
Refs. [26,27]) and in agreement with the predictions for
chaotic inflationary scenarios V(¢) « ¢". The predictions
for the field excursion as a function of r for this regime are
also shown in Fig. 3. Note that, in this case, large field
excursions are correlated with large tensor-to-scalar ratios,
as expected from the Lyth bound.
In Fig. 3, we show the derived inflaton excursion
A¢/Mp versus r in the Mukhanov parametrization arising
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FIG. 3 (color online). Confidence intervals (68% and
95% C.L.) on the inflaton excursion versus the tensor-to-scalar
ratio r from the various data combinations in the Mukhanov
parametrization. The light green area represents the theoretical
prediction of Eq. (21). The area between the dotted lines refers to
the large-r limit [Eq. (19)], while the one between the dashed
lines refers to the small-r limit [Eq. (18)]. Finally, the black line
stands for the original Lyth bound. All the regions are computed
for N, = 40-70.

from our numerical fits to cosmological data, as we shall
explain in the next section. The models cluster around the
empirical Efstathiou-Mack relationship6 [28] (see also
Ref. [29])

AP e, (20)
mpy
Such expression has been understood analytically [27]
as the prediction of the quartic hilltop inflation scenario
where V(¢) = V, — A¢p*/4. The general prediction for this
scenario reads

3/4
A9 N, (21)
mp 2\/mw

For N, = 60, Eq. (21) simply reduces to the Efstathiou-
Mack relationship, Eq. (20). Furthermore, Eq. (21) is a
special case of the more general hilltop potentials para-
metrized as V(¢) = Vo[l — 4,(¢/u)?], where p > 2 and
Mp > u> 0. It is straightforward to check that in the
Mukhanov parametrization, this corresponds to setting
a = 4. The light green areas in Figs. 3 and 4 stand for
the prediction given by Eq. (21), for N, between 40 and 70.

SNotice that here we are using the Planck mass mp =

V8aMp =122 x 10" GeV, instead of Mp, in order to compare
with the original literature.
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FIG. 4 (color online). The result of the Monte Carlo
reconstruction of 6 x 10° inflationary models using FLOW-
CODEL .0, represented in the (7, ny) plane. Here, the light green
area represents the theoretical prediction in Eq. (21) for
N, = 40-70.

V. NUMERICAL ANALYSIS

In the following, we will analyze numerically both
parametrizations using Markov Chain Monte Carlo
(MCMC) methods.

A. Mukhanov parameterization

The Mukhanov scenario is described by
{w,, ®,.,0;,7,10g[10°A], @, B, N, }, (22)

where @, = Q,h* and w, = Q_h? are the physical baryon
and cold dark matter energy densities, respectively, O, is
the ratio between the sound horizon and the angular
diameter distance at decoupling, 7 is the reionization optical
depth, A, is the amplitude of the primordial spectrum, and a
and f are the parameters governing the Mukhanov param-
eterization. For the sake of simplicity, we have assumed
that the dark energy component is described by a cosmo-
logical constant. Table I specifies the priors considered on
the cosmological parameters listed above. Notice that this
analysis is different from the ones presented in Ref. [11], as
we are also varying here the number of e-folds N, to
compute the inflaton excursion. The commonly used (r, r,)
parameters can be easily recovered using Egs. (2), and the
running for this inflationary scheme is completely fixed,
see e.g. Refs. [11,12]. The field excursion is computed
using Eq. (17). In our analysis, we also assume the so-
called inflation consistency relation (n, = —r/8), which
still holds in the Mukhanov phenomenological model.” In

"For recent cosmological analyses relaxing this condition, see
Ref. [30].
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TABLE I. Uniform priors on the cosmological parameters used in the CosMOMC analyses of the Mukhanov

parametrization.

Parameter Physical meaning Prior

Q,h? Present baryon density 0.005 — 0.1

Q.h? Present Cold dark matter density 0.001 — 0.99

0, Ratio between the sound horizon and the angular diameter 0.5 - 10
distance at decoupling

T Reionization optical depth 0.01 = 0.8

log (10'°4,) Amplitude of the primordial scalar spectrum 2.7 =4

a Phenomenological parameter of the Mukhanov parametrization Eq. (1) 0-25

s Phenomenological parameter of the Mukhanov parametrization Eq. (1) 0-1

N, Number of e-folds at horizon crossing 50 - 70

order to compute the allowed regions in the derived
parameter spaces (r,n,) and (r, Ag), we make use of
the CAMB Boltzmann code [31], deriving posterior dis-
tributions for the cosmological parameters by means of a
MCMC analysis, performed using CosmoMC [32].

The basic data set used for our numerical analyses includes
the Planck CMB temperature anisotropies data [33,34]
together with the WMAP 9-year polarization data [35].
The total likelihood for the former data is obtained
by means of the Planck Collaboration publicly available
likelihood code; see Ref. [34] for details. The Planck temper-
ature power spectrum reaches a maximum multipole number
max = 2500, while the WMAP 9-year polarization data are
analyzed up to a maximum multipole # = 23 [35]. We shall
refer to the basic data set in the following as CMB data.

We have also considered the BICEP2 measurements of
the tensor-to-scalar ratio r = O.2f8"857 [6,7]. These mea-
surements are included in our analysis by postprocessing
the chains that were previously generated, using the like-
lihood code released by the BICEP2 experiment, including
the nine bandpowers from multipoles £ ~ 45 to £ ~ 300.
The recent estimates of the Galactic dust polarized emis-
sion carried out by the Planck Collaboration in Ref. [10]
have also been included in our numerical fits. For the
former purpose, we have added the dust power spectrum
measured by Planck in the 40 < # < 120 multipole range,
DBB = ¢(¢+1)/27C88 = 1.32 x 1072 uK?, to the theo-
retical B-mode spectra in the same multipole range, in order
to evaluate the likelihood of the total signal resulting from
the addition of gravitational lensing, primordial B-modes,
and dust B-mode contributions. The statistical and the
interpolation-induced uncertainties of the Planck dust
analysis are accounted for by including them in the
BICEP2 covariance matrix. We then use this Planck-
dust-plus-BICEP2 likelihood to postprocess the chains
previously obtained by the Planck temperature and
WMAP?9 polarization likelihoods. We multiply the original
weight of each model by the Planck-dust-plus-BICEP2
likelihood, using the new weights to derive the allowed
cosmological parameter regions by Planck CMB data,
Planck dust polarization measurements and BICEP2.

In Fig. 1, we plot the 68% and 95% confidence regions in
the plane of the derived parameters n, and r. We also
superimpose the region covered by the Mukhanov para-
metrization for 40 < N, < 70; see Eqgs. (2a) and (2b). We
represent the MCMC results for the three possible data
combinations. Notice that CMB data alone shows a mild
preference for the branch I region (with a negligible tensor-
to-scalar ratio r), since there is no 68%-C.L.-allowed
contour in the branch II region. The inclusion of BICEP2
measurements to CMB data isolates the branch II region as
the allowed one at 95% C.L., favoring inflationary scenarios
with a relatively large tensor-to-scalar ratio, like for instance
chaotic inflationary models. However, once the Galactic
polarized dust emission from the Planck experiment is taken
into account in the BICEP2 likelihood, there is no difference
between the branch I and branch II regions, as both regions
are equally allowed by the data.

Figure 3 shows the 68%- and 95%-C.L.-allowed regions
in the plane of the derived parameters r and Ag¢. As
previously stated, to derive A¢, we have used Eq. (17). We
also plot the theoretical relationship in Eq. (21) for
40 < N, <70. Notice that the area covered by this relation-
ship perfectly agrees with the parameter regions preferred
by current cosmological data. Notice as well that CMB data
alone favours relatively small inflaton excursions, as this is
the expected behavior in scenarios in which r is tiny, like
for instance in Starobinsky models, belonging to branch I.
The inclusion of BICEP2 data favors instead large inflation
excursions, i.e. A¢/Mp~20, at 95% C.L. Such large
excursions have been argued to render the validity of
effective field theory questionable. In this regime, non-
renormalizable operators O, , 4 = ¢,¢""*/M", are expected
to dominate the inflationary potential, compromising its
flatness, even in the regime of validity of classical general
relativity V < M%. Suppressing such operators is only
possible if the shift symmetry ¢p — ¢ + ¢ is only broken
softly at the renormalizable level. However, since in general
this symmetry is a mere global symmetry, it is likely to be
badly broken by gravity, producing the nonrenormalizable
operators O, 4. Furthermore, embedding the theory in a
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framework where shift symmetry descends from a local
symmetry leads to inconsistencies [36].

However, for sub-Planckian inflaton excursions, the
problems discussed above are less severe. Fortunately,
once the Planck dust polarization measurements are included
in the analyses together with CMB and BICEP2 data, the
small excursion region becomes allowed at the 95% C.L.,
and therefore trans-Planckian field values are no longer
absolutely required to explain observations. This is the
second main result of this study.

B. The Hubble flow formalism

We have performed as well an analysis of the 6 x 10°
models resulting from integrating the Hubble flow equa-
tions, using the priors in Eq. (15). For each of these models,
we have computed the likelihood by means of the covari-
ance matrices resulting from three different MCMC runs
with flat priors in ng, r and as.s The former three runs
correspond to the three possible data combinations con-
sidered in this study, namely, CMB data alone, CMB plus
BICEP2 measurements, and finally, CMB plus BICEP2
plus Planck dust polarization measurements. The covari-
ance matrices were previously marginalized over the
remaining cosmological parameters that are irrelevant for
our purposes.

Figure 4 shows the analogue of Fig. 3 but for the Hubble
flow analysis in the (r, A¢) plane. The models depicted are
allowed at the 95% C.L. by the three different data sets. We
also include in Fig. 4 the theoretical prediction from
Eq. (21) for 40 < N, < 70. Notice that the allowed regions
for the inflationary Hubble flow approach almost coincide
with those arising from the Mukhanov parametrization, and
consequently these two approaches are equivalent from the
point of view of data analyses.

VI. DISCUSSION AND CONCLUSIONS

Unraveling the source of primordial curvature perturba-
tions is one of the key purposes of modern cosmology, both
from a theoretical and an observational viewpoint. The
inflationary paradigm is the leading mechanism that pro-
vides such initial conditions. In this regard, when testing
the inflationary predictions against cosmological measure-
ments, the approach used to describe inflation is crucial.
The most familiar picture is based on the dynamics of a
friction-dominated scalar field. However, this description,
although useful, is always model dependent, as the

The authors of Ref. [37] performed a MCMC analysis
considering the Hubble flow parameters as free parameters,
deriving constraints on ng, r and a,. However, the resulting
cosmological constraints on these derived parameters are not
significantly affected, and their bounds were similar to those
found in the case in which the parameters ng, r and a, are free
parameters in the Monte Carlo. Therefore, we shall use the
likelihood in terms of ng, r and a, rather than in terms of the
Hubble flow parameters.
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predictions for the cosmological observables will largely
depend on the inflationary potential. Furthermore, when
embedded in a consistent fundamental theory, the shape of
this latter is usually difficult to understand. In this work, we
focused on two model-independent approaches that might
alleviate the above problems. The first one is a pure
theoretical formulation, the Mukhanov parametrization,
in which inflation is described via an effective equation
of state. The second approach is a pure phenomenological
one, which deals with the reconstruction of the inflationary
trajectory via the slow-roll hierarchy. We showed that the
allowed parameter regions arising from fitting these two
approaches to current CMB data (temperature and polari-
zation) agree with the expected fixed-point solutions.
Remarkably, the parameter regions recovered from both
model-independent methods are almost identical. Our
results thus suggest that these two approaches are the most
suitable ones to constrain the inflationary parameters, as
they are independent of the inflaton potential details while
ensuring a successful inflationary period.

Another problem that we touched upon in this work is the
issue of super-Planckian inflaton field values. Such large
excursions have been argued to cause the breakdown of
effective theories (see e.g. Refs. [38,39]). At small inflaton
values, the effective theory approach makes sense, and no
additional fine-tuning is required to make the potential flat.
However, once the inflaton reaches super-Planckian values,
it is really difficult to justify the absence, or at most the
extreme suppression, of higher-order nonrenormalizable
terms in the inflaton potential, without the knowledge of
a UV-complete theory. The BICEP2 Collaboration [6] has
claimed the detection of B-modes on large scales. If the
primordial nature of this signal is confirmed, then it would
constitute an unmistakable smoking gun of inflation.
Furthermore, the amplitude of the detected signal suggests
that, if we insist on describing inflation as a scalar field
dynamics, then the regime of super-Planckian excursions
should be consistently understood. In this work, we have
reconstructed the inflaton excursion using the two
approaches described above. Our analyses indicate that
the inflaton excursions required to explain the BICEP2 data
can take sub-Planckian values once the Galactic dust
polarized signal measured by Planck is accounted for. As
a consequence, the validity of effective field theories to
describe inflation as a scalar field dynamics still holds.
The forthcoming polarization data release from the Planck
Collaboration will fortunately shed light on this crucial issue.

ACKNOWLEDGMENTS

O.M. is supported by Consolider Ingenio Project
No. CSD2007-00060, by PROMETEO/2009/116, by
Spanish Ministry Science Project No. FPA2011-29678
and by ITN Invisibles No. PITN-GA-2011-289442. We
also thank the Spanish MINECO (Centro de excelencia
Severo Ochoa Program) under Grant No. SEV-2012-0249.

083006-7



BOUBEKEUR et al.

[1] A. H. Guth, The inflationary universe: A possible solution to
the horizon and flatness problems, Phys. Rev. D 23, 347
(1981); A. Albrecht and P.J. Steinhardt, Cosmology for
Grand Unified Theories with Radiatively Induced Sym-
metry Breaking, Phys. Rev. Lett. 48, 1220 (1982).

[2] D. H. Lyth, A bound on inflationary energy density from the
isotropy of the microwave background, Phys. Lett. 147B,
403 (1984);

[3] A.R. Liddle and D. H. Lyth, COBE, gravitational waves,
inflation and extended inflation, Phys. Lett. B 291, 391
(1992).

[4] S. Dodelson, How Much Can We Learn about the Physics of
Inflation? Phys. Rev. Lett. 112, 191301 (2014).

[5] P. Creminelli, D. Lépez Nacir, M. Simonovi¢, G. Trevisan,
and M. Zaldarriaga, ¢ or Not ¢?: Testing the Simplest
Inflationary Potential, Phys. Rev. Lett. 112, 241303 (2014).

[6] P.A.R. Ade et al. (BICEP2 Collaboration), Detection of
B-Mode Polarization at Degree Angular Scales by BICEP2,
Phys. Rev. Lett. 112, 241101 (2014).

[7]1 P.A.R. Ade et al. (BICEP2 Collaboration), BICEP2 II:
Experiment and three-year data set, Astrophys. J. 792, 62
(2014).

[8] M.J. Mortonson and U. Seljak, A joint analysis of Planck
and BICEP2 B modes including dust polarization uncer-
tainty, J. Cosmol. Astropart. Phys. 10 (2014) 035.

[9] R. Flauger, J. C. Hill, and D. N. Spergel, Toward an under-
standing of foreground emission in the BICEP2 region, J.
Cosmol. Astropart. Phys. 08 (2014) 039.

[10] R. Adam er al. (Planck Collaboration), Planck intermediate
results. XXX. The angular power spectrum of polarized dust
emission at intermediate and high Galactic latitudes, arXiv:
1409.5738.

[11] L. Barranco, L. Boubekeur, and O. Mena, A model-
independent fit to Planck and BICEP2 data, Phys. Rev. D
90, 063007 (2014).

[12] V. Mukhanov, Quantum cosmological perturbations: Pre-
dictions and observations, Eur. Phys. J. C 73, 2486 (2013).

[13] M. B. Hoffman and M. S. Turner, Kinematic constraints to
the key inflationary observables, Phys. Rev. D 64, 023506
(2001).

[14] J.E. Lidsey, A.R. Liddle, E. W. Kolb, E.J. Copeland, T.
Barreiro, and M. Abney, Reconstructing the inflation
potential: An overview, Rev. Mod. Phys. 69, 373 (1997).

[15] J. Garcia-Bellido, D. Roest, M. Scalisi, and 1. Zavala, The
Lyth bound of inflation with a tilt, Phys. Rev. D 90, 123539
(2014).

[16] D. Roest, Universality classes of inflation, J. Cosmol.
Astropart. Phys. 01 (2014) 007.

[17] J. Garcia-Bellido and D. Roest, Large-N running of the
spectral index of inflation, Phys. Rev. D 89, 103527 (2014).

[18] A. A. Starobinsky, A new type of isotropic cosmological
models without singularity, Phys. Lett. 91B, 99 (1980).

[19] K. Freese, J. A. Frieman, and A. V. Olinto, Natural Inflation
with Pseudo-Nambu-Goldstone Bosons, Phys. Rev. Lett.
65, 3233 (1990).

[20] E. C. Adams, J. R. Bond, K. Freese, J. A. Frieman, and A. V.
Olinto, Natural inflation: Particle physics models, power

PHYSICAL REVIEW D 91, 083006 (2015)

law spectra for large scale structure, and constraints from
COBE, Phys. Rev. D 47, 426 (1993).

[21] A.D. Linde, Chaotic inflation, Phys. Lett. 129B, 177
(1983).

[22] W. H. Kinney, Inflation: Flow, fixed points and observables
to arbitrary order in slow roll, Phys. Rev. D 66, 083508
(2002).

[23] R. Easther and W. H. Kinney, Monte Carlo reconstruction
of the inflationary potential, Phys. Rev. D 67, 043511
(2003).

[24] W. H. Kinney, E. W. Kolb, A. Melchiorri, and A. Riotto,
Inflation model constraints from the Wilkinson Microwave
Anisotropy Probe three-year data, Phys. Rev. D 74, 023502
(2006); Latest inflation model constraints from cosmic
microwave background measurements, Phys. Rev. D 78,
087302 (2008).

[25] D. H. Lyth, What Would We Learn by Detecting a Gravi-
tational Wave Signal in the Cosmic Microwave Background
Anisotropy? Phys. Rev. Lett. 78, 1861 (1997).

[26] L. Boubekeur and D. H. Lyth, Hilltop inflation, J. Cosmol.
Astropart. Phys. 07 (2005) 010.

[27] L. Boubekeur, Theoretical bounds on the tensor-to-scalar
ratio in the cosmic microwave background, Phys. Rev. D 87,
061301 (2013).

[28] G. Efstathiou and K.J. Mack, The Lyth bound revisited, J.
Cosmol. Astropart. Phys. 05 (2005) 008.

[29] L. Verde, H. Peiris, and R. Jimenez, Optimizing CMB
polarization experiments to constrain inflationary physics, J.
Cosmol. Astropart. Phys. 01 (2006) 019.

[30] M. Cortés, A.R. Liddle, and D. Parkinson, Tensors,
BICEP2, prior dependence, and dust, arXiv:1409.6530.

[31] A. Lewis, A. Challinor, and A. Lasenby, Efficient compu-
tation of CMB anisotropies in closed FRW models,
Astrophys. J. 538, 473 (2000).

[32] A. Lewis and S. Bridle, Cosmological parameters from
CMB and other data: A Monte-Carlo approach, Phys. Rev.
D 66, 103511 (2002).

[33] P.A.R. Ade et al. (Planck Collaboration), Planck 2013
results. I. Overview of products and scientific results,
Astron. Astrophys. 571, Al (2014).

[34] P.A.R. Ade et al. (Planck Collaboration), Planck 2013
results. XV. CMB power spectra and likelihood, Astron.
Astrophys. 571, A15 (2014).

[35] C.L. Bennett et al. (WMAP Collaboration), Nine-year
Wilkinson Microwave Anisotropy Probe (WMAP) obser-
vations: Final maps and results, Astrophys. J. Suppl. Ser.
208, 20 (2013).

[36] T. Banks, M. Dine, P.J. Fox, and E. Gorbatov, On the
possibility of large axion decay constants, J. Cosmol.
Astropart. Phys. 06 (2003) 001.

[37] C.R. Contaldi and J. S. Horner, Planck and WMAP con-
straints on generalised Hubble flow inflationary trajectories,
J. Cosmol. Astropart. Phys. 08 (2014) 050.

[38] J.P. Conlon, Quantum gravity constraints on inflation, J.
Cosmol. Astropart. Phys. 09 (2012) 019.

[39] L. Boubekeur, On the scale of New Physics in inflation,
arXiv:1312.4768.

083006-8



PHYSICAL REVIEW D 91, 103004 (2015)
Do current data prefer a nonminimally coupled inflaton?

Lotfi Boubekeulr,l’2 Elena Giusarma,3 Olga Mena,1 and Héctor Ramirez'
Unstituto de Fisica Corpuscular (IFIC), CSIC-Universitat de Valencia,
Apartado de Correos 22085, E-46071 Valencia, Spain
’Laboratoire de Physique Mathématique et Subatomique (LPMS) Université de Constantine I,
Constantine 25000, Algeria
3Physics Department and INFN, Universita di Roma “La Sapienza,”
Ple Aldo Moro 2, 00185 Rome, Italy
(Received 23 February 2015; revised manuscript received 16 April 2015; published 19 May 2015)

We examine the impact of a nonminimal coupling of the inflaton to the Ricci scalar, %.quSz, on
the inflationary predictions. Such a nonminimal coupling is expected to be present in the inflaton
Lagrangian on fairly general grounds. As a case study, we focus on the simplest inflationary model
governed by the potential V « ¢?, using the latest combined 2015 analysis of Planck and the
BICEP2/Keck Array. We find that the presence of a coupling & is favored at a significance of
99% C.L., assuming that nature has chosen the potential V « ¢? to generate the primordial
perturbations and a number of e-foldings N = 60. Within the context of the same scenario, we find
that the value of ¢ is different from zero at the 20 level. When considering the cross-correlation
polarization spectra from the BICEP2/Keck Array and Planck, a value of r:0.038f8_'8§3 is
predicted in this particular nonminimally coupled scenario. Future cosmological observations
may therefore test these values of r and verify or falsify the nonminimally coupled model explored

here.

DOI: 10.1103/PhysRevD.91.103004

I. INTRODUCTION

Inflation provides the most theoretically attractive and
observationally successful cosmological scenario able to
generate the initial conditions of our Universe, while
solving the standard cosmological problems. Despite this
remarkable success, the inflationary paradigm is still
lacking firm observational confirmation. The picture that
emerges from the latest data from Planck, including also
the joint analysis of B-mode polarization measurements
from the BICEP2 Collaboration [1-4], is compatible with
the inflationary paradigm. According to these observa-
tions, structure grows from Gaussian and adiabatic
primordial perturbations. From the theoretical viewpoint,
this picture is usually understood as the dynamics of a
single new scalar degree of freedom, the inflaton, min-
imally coupled to Einstein gravity. However, the inflaton
¢ is expected to have a nonminimal coupling to the Ricci
scalar through the operator %§R¢2, where £ is a dimen-
sionless coupling. Indeed, successful reheating requires
that the inflaton is coupled to the light degrees of
freedom. Such couplings, though weak, will induce a
nontrivial running for & Thus, even starting from a
vanishing value of £ (away from the conformal fixed
point £ = —1/6) at some energy scale, a nontrivial non-
minimal coupling will be generated radiatively at some
other scale (see e.g. Ref. [5]). Therefore, it is important to
study the impact of such a coupling on the inflationary
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predictions, especially in view of the latest Planck
2015 data.

Generically, for successful inflation, the inflaton
should be very weakly coupled.1 It follows that the
magnitude of £ is expected to be small. Yet, even with
such a suppressed coupling, the inflationary predictions
are significantly altered [6—16]. For instance, and as we
will see, a small and positive £ can enlarge considerably
the space of phenomenologically acceptable scenarios
(see also [17]). In this paper, we will focus on the simplest
inflationary scenario with a potential V « ¢ [18], and a
nonzero nonminimal coupling. According to the very
recent Planck 2015 full mission results, the minimally
coupled version of this scenario (i.e. £ = 0) is ruled out at
more than 99% confidence level [2,4], for 50 e-folds of
inflation. Nevertheless, the N = 60 case is only moder-
ately disfavoured at 95% C.L. Thus, before discarding it
definitely from the range of theoretical possibilities, it is
worthwhile to explore this scenario in all generality
(considering as well different possibilities for the number
of e-folds), given that, as explained earlier, the presence
of nonminimal couplings in the inflaton Lagrangian is
quite generic.

"This requirement is also dictated by the nondetection of large
primordial non-Gaussianities [3] and the soft breaking of the shift
symmetry ¢ — ¢ + ¢, necessary to protect the flatness of the
potential.

© 2015 American Physical Society
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II. NONMINIMALLY COUPLED INFLATON

The dynamics of a nonminimally coupled scalar field ¢
with a potential U( ¢2 is governed, in the Jordan frame, by
the following action”:

R~ (09 -

/d“x\/_{ —LR+2 u@)l, (1)
where indices are contracted with the metric g,,, defined as
ds? = —d#*> + a?(¢)dx>. Inflation can be conveniently stud-
ied in the Einstein frame, after performing a conformal
transformation g%, = Q(¢)g,,, with Q = 1 + £¢* /M3 and
canonically normalizing the scalar field. Up to a total
derivative, the action takes the familiar form

M2
S:/d4x _gE(TPR

where now ¢ is the canonically normalized inflaton, related
to the original nonminimally coupled scalar field ¢ through

dp\2 1 3 (2
(o) —a+3(5)" ?

In terms of the original scalar field ¢, the physical potential
takes the simple form

00,0 Vb))
2

Vip(¢)] = U(g)/Q*(4). (4)
In the following, as previously stated, we shall focus on
the simplest inflationary model. A generalization to other
interesting inflationary scenarios, as for instance, the Higgs
inflation model [19], will be carried out elsewhere [20].
The simplest scenario is given by the quadratic potential
U(¢) = 3 m*¢?*, with a nonvanishing coupling &. In order
to derive the primordial scalar and tensor perturbation
spectra within the nonminimally coupled ¢” theory, we
shall make use of the slow-roll parametersS:

M3 (V2 Vo v,V
_rf_¥% M EM4 4 ¢f/"/"
) <V) s n= V ) &sr V2

(5)

It is straightforward to derive the expressions for the
spectral index of the primordial scalar perturbations

m
Il

’As usual, Mp = 1//87Gy =2.43 x 10'8 GeV is the re-
duced Planck mass.

*Here, we use the notation Esr (@) to refer to the usual slow-roll
parameter £, in order to avoid confusion with the nonminimal
coupling to gravity &
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FIG. 1 (color online). Theoretical predictions for the chaotic
model V « ¢? with a nonminimal coupling & in the (n,, r) plane
for N = 50 and N = 60. The red circles represent the £ = O case,
corresponding to the usual predictions of the chaotic inflationary
scenario. We show as well the 68% and 95% confidence level
regions arising from the usual analyses in the (ng, r) plane using
the various data combinations considered here.

ny =1+ 25— 6e, its running a = dn,/dInk = 24>+
16en — 2&gr, and the tensor-to-scalar ratio r = 16e from
the above slow-roll parameters.4

Within the slow-roll approximation, one can easily solve
numerically the inflationary dynamics governed by the
action Eq. (2). The number of e-folds is given by

N—L 0. dp 1 [e dg (d_(p) ()
a Mp Pend \/ 26((0) - Mp Pena \/ 2€(¢) dep ’

where e(¢) = "3 [V'(¢)/ V()]

The inflationary theoretical predictions for the N = 50
and N = 60 cases are depicted in Fig. 1, in the (n,, r) plane,
for both positive and negative values of the coupling &.
The case of £ = 0 corresponds to the usual predictions of
the chaotic inflationary scenario, with n;, =1—-2/N =
0.967 (n;, = 0.96) and r = 8§/N = 0.13 (r = 0.16) for N =
60 (N = 50), and it is represented by red circles. Notice that
negative values of ¢ lead to a larger tensor-to-scalar

*Notice that the expressions for both n; and r are first order in
slow roll, while a involves second order slow-roll terms. How-
ever, we have checked numerically that such second order
corrections in slow roll leave unchanged the constraints on the
inflationary observables (n;, r). Therefore, higher order slow-roll
corrections can be safely neglected.
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FIG. 2 (color online). The running a as a function of the
nonminimal coupling &. The red circle represents the minimal
coupling case & = 0.

ratio. Positive values of &, on the other hand, will reduce
the tensor contribution, while also pushing n; signifi-
cantly below scale invariance as £ increases. For instance,
for £ > 0.002 and N = 60, the scalar spectral index will
always be smaller than the observationally preferred
value n, = 0.96.

The predicted running of the spectral index a is shown
in Fig. 2 as a function of the nonminimal coupling . In
general, negative (positive) values of & lead to positive
(negative) values of the running. Although the large
positive values of the running shown in Fig. 2 are
compatible with the recent Planck 2015 constraints [2],
a = —0.0065 4+ 0.0076, they are nevertheless associated
with values of the tensor-to-scalar ratio r > 0.5, which are
excluded observationally. The red circle in Fig. 2 refers to
the & = 0 case, corresponding to a = —2/N? = —0.00056
for N = 60.

III. OBSERVATIONAL CONSTRAINTS ON € IN
THE QUADRATIC INFLATIONARY MODEL

In this paper, we restrict our numerical fits to cosmic
microwave background (CMB) measurements. The inclu-
sion of external data sets, such as baryon acoustic oscil-
lation measurements, or a Hubble constant prior from the
HST team will not affect the constraints presented in the
following. Our data sets are the Planck temperature data
(hereafter TT) [21-23], together with the low-£ WMAP
9-year polarization likelihood, that includes multipoles up
to £ = 23 (hereafter WP; see Ref. [24]), and the recent
multicomponent likelihood of the joint analysis of the
BICEP2/Keck Array and Planck polarization maps (here-
after BKP), following the data selection and foreground
parameters of the fiducial analysis presented in Ref. (1>

>This fiducial analysis assumes a tensor spectral index ny = 0,
the BB bandpowers of BICEP2/Keck Array and the 217 and
353 GHz bands of Planck, in the multipole range 20 < £ < 200.
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TABLE 1. Uniform priors for the cosmological parameters

considered in the present analysis.

Parameter Physical meaning Prior

w, = Q,h>  Present baryon density 0.005 — 0.1

o, =Q.h* Present cold dark 0.01 — 0.99
matter density

®s rs/DA (Zdec)a 05—-10

T Reionization optical depth 0.01 - 0.8

In (10'°4,)  Primordial scalar amplitude 27 -4

& Nonminimal coupling —0.002 — 0.0065

*The parameter O, is the ratio between the sound horizon r,
and the angular diameter distance Dy (zq4e.) at decoupling Zgec-

However, variations of this fiducial model will not change
significantly the results presented here.

These data sets are combined to constrain the
cosmological model explored here, and described by the
parameters

{wb’ W, ®sv T, log[]oloAs]’ f} (7)

In Table I, we summarize the definition as well as the priors
on these parameters. We use the Boltzmann code CAMB
[25] and the cosmological parameters are extracted from
the data described above by means of a Monte Carlo
Markov chain (MCMC) analysis based on the most recent
version of cosmomc [26]. The constraints obtained on the
nonminimal coupling £ are then translated into bounds on
the usual inflationary parameters ng, r and a.

Table II shows the 95% C.L. constraints on the parameter
& as well as on the derived inflationary parameters n, r and
the running « arising from our numerical analyses using the
two CMB data combinations used here and assuming that
n, and r are univocally determined by & (for a fixed number
of e-folds N, that we consider to be either 60 or 50). For
N = 60, the preferred value of the nonminimal coupling &
from Planck TT plus WP measurements is positive and
slightly larger than the mean value obtained when the cross-
correlated polarized maps from BICEP2/Keck and Planck
experiments are included in the numerical analyses. This
preference for a slightly larger £ (and consequently, smaller
r) is clear from the one-dimensional posterior probability
distribution of £ shown in the left panel of Fig. 4. The mean
value of £ = 0.0028 obtained from Planck TT plus WP data
is translated into a 95% C.L. constraint of the tensor-to-
scalar ratio r = 0.0387093/, as can be seen from the right
panel of Fig. 4. When considering BICEP2/Keck and
Planck cross-spectra polarization data, the former con-
straint on the tensor-to-scalar ratio is very similar to the one

SNotice that the inflationary cosmology under study contains
less parameters than the standard ACDM picture, as once the
nonminimal coupling ¢ is fixed, n;, r and « are fully determined,
and are thus derived parameters.
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BOUBEKEUR et al.
TABLE IL.
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Inflationary constraints in the context of nonminimally coupled chaotic potential ¢?: The upper block

of the table refers to the 95% C.L. limits on the nonminimal coupling ¢ (the parameter varied in the MCMC
analyses) from the two possible CMB data combinations used in this study, for both N = 60 and N = 50. The lower
block of the table contains the 95% C.L. derived ranges of the inflationary parameters ng, r and a from the limits of £
illustrated above, in the context of the nonminimally coupled chaotic potential ¢?, for both N = 60 and N = 50.

Planck TT + WP BK + Planck TT + WP
N 60 60 50
¢ 0.0028 00622 0.0024°938% 0.0027938% 0.0027+0078
2 0,958 0.95450%7 0.958°90 0.95359%7
r 0.038+443! 0.063 7915 0.038°9%% 0.05393
a=dn,/dInk —0.00057 99001 —0.000779:9001 —0.0005-3:900! —0.0007-35901

quoted above. Concerning the running of the spectral
index, the two data combinations seem to have a preference
for a small negative running a = —0.0005, associated to
small values of ||, as shown in Fig. 2.

Let us now comment on the sensitivity of our constraints
to changes in the number of e-folds N. Setting N = 50
leads to different, though almost insignificant, changes
in the constraints obtained using the two CMB data sets.
The theoretically allowed regions in the (ng, r) plane as a
function of ¢ for N = 50 are indeed slightly different from
those corresponding to the N = 60 case; see Fig. 1. The net
result is a smaller (larger) values of n; (r) than in the
N = 60 case. The BICEP2/Keck and Planck cross-spectra
polarization data yield a value r = 0.05370¢55 for the
tensor-to-scalar ratio in the context of the nonminimally
coupled ¢*> model. On the other hand, the resulting central
value for the scalar spectra index is only half a o away
(towards smaller values) from the corresponding one for
N =60, as expected from the theoretical predictions
illustrated in Fig. 1.

Figure 1 shows the 68% and 95% C.L. allowed regions
in the (ny, r) plane resulting from our MCMC analyses to
Planck TT plus WP data and to the combined BKP in the
usual (ng, r) plane, together with the theoretical predictions
for N = 50 and N = 60 for the nonminimally coupled ¢?
scenario.

To address the question of whether or not a nonminimal
coupling ¢ is favored by current CMB data, we compare the
x* test statistics function for the ¢»*> model in its minimally
and nonminimally coupled versions for N = 60, albeit
very similar results are obtained for N = 50. The y* for the
case of Planck TT plus WP data, evaluated at the best-fit
point of the ¢*> model minimally coupled to gravity, is
2*[¢ = 0] = 9812.8. On the other hand, the nonminimally
coupled version has a lower y? value at the best-fit point
due to the extra parameter £ introduced in the model, with
2°[€ # 0] = 9806.8. The difference between these two y?
values is A)(z = 6, which, for a distribution of 1 degree of
freedom, has a p-value of 0.014, and is considered
statistically significant. For the case of the combined

BKP likelihood, the difference between the test statistics
for the minimally coupled and nonminimally coupled ¢?
models is Ay> = 10, which, for 1 degree of freedom, has a
p-value of 0.0016, and is considered very statistically
significant. Therefore, according to the most recent
CMB data, the presence of a nonminimal coupling & within
the ¢* model is favored at a significance equal or larger
than ~99% C.L.

Let us now turn to future constraints on &£. Future
observations, as those expected from PIXIE [27], Euclid
[28], COrE [29] and PRISM [30], could be able to reach an
accuracy of o, =0, _| = 1073, With such precision, one
could hope to test deviations from the quadratic potential
[31], as the one studied here, by constructing quantities

Ap/Mp

] ° Vo<¢2,g=U,N:(so“

1‘1 1‘2 1‘3 1‘4 1‘5 16
A¢/Mp

0.08 016 024 032 040 048 056 064
r

FIG. 3 (color online). Excursion of the canonically normalized
inflaton ¢ versus the one of the original scalar ¢p. The magnitude
of the tensor-to-scalar ratio is encoded in the curve through the
color bar. Notice that, in both frames, large r correlates with large
excursions.
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The left (right) panel shows the one-dimensional posterior probability distributions of the nonminimal coupling

& (the tensor-to-scalar ratio r) in the context of a nonminimally coupled chaotic potential ¢?, with r a function of £, and therefore, a

prediction within the model.

independent of N, up to subleading O(1/N?) corrections. It
is straightforward to get for our case,

n—1+ 2 = —20¢, (8)

at leading order both in slow roll and &. If it turns out that
nature has chosen a very small value of r, future constraints
on & would be as strong as & < 1074, 1 order of magnitude
stronger than the ones obtained in this analysis. Concerning
the running «, it is interesting to note that futuristic
observations like SPHEREx [32], with a forecasted error
of 6, = 1073, will be able to falsify the present scenario.

Finally, it is also interesting to explore the impact of the
nonminimal coupling on the inflaton excursion. It is well
known that large values of the tensor-to-scalar ratio r, as
those found by previous BICEP2 measurements’ [33,34]
yield large inflaton excursions ¢ > M p [35-38], which are
hard to understand in the context of a consistent effective
field theory. In particular, successful inflation requires that
higher order nonrenormalizable operators, which are
expected to be naturally present in the inflationary poten-
tial, are sufficiently suppressed. A number of phenomeno-
logical studies have recently been devoted to address this
problem [39-42]. In Fig. 3, we plot the excursion of both ¢
and ¢, together with the corresponding tensor-to-scalar
ratio r. It is clear that the excursion of the canonically
normalized inflaton ¢ is lowered for positive values of &
i.e. Ap < A¢. However, this decrease is rather mild and
the excursion still takes on super-Planckian values for the
phenomenologically acceptable values of &£. Conversely,

"The joint BKP analysis finds however no evidence for
primordial B-modes, but a robust limit of r <0.12 at
95% C.L.; see Ref. [1].

negative values of £ lead to an increase of the excursion of
@. Figure 3 also shows that super-Planckian values of both
¢ and @ are still associated with large values of the tensor-
to-scalar ratio r, in agreement with the Lyth bound [35].
Thus, once a small nonzero and positive value of the
coupling ¢ is turned on, both the inflaton excursion and r
are slightly lowered, but without alleviating completely the
super-Planckian excursion problem.

IV. CONCLUSIONS

A small, nonminimal coupling 3 £R¢? is expected to be
present in the inflaton Lagrangian, and modifies the infla-
tionary predictions in an interesting way. Focusing on the
simplest quadratic potential scenario, and using the very
recent joint analysis of the BICEP2/Keck Array and
Planck polarization maps, we found that a small, positive
value of the coupling £ is favored at the 2¢ level, assuming
that nature has chosen the ¢ scenario for the generation of
primordial perturbations. If only Planck TT plus WP data
are used in the analyses, the significance is milder. These
conclusions have been obtained for a number of e-foldings
within the N = 50-60 range. It would be interesting to see
if upcoming B-mode measurements can reinforce or
weaken the statistical significance of these findings. In
particular, it would be crucial to discriminate between the
presence of a nonminimal coupling in the theory and other
departures from the quadratic approximation.

ACKNOWLEDGMENTS

O. M. is supported by PROMETEO 11/2014/050, by the
Spanish Grant No. FPA2011-29678 of the MINECO and
by PITN-GA-2011-289442-INVISIBLES. L. B. and H. R.
acknowledge financial support from PROMETEO II/
2014/050.

103004-5



BOUBEKEUR et al.

[1] P. A.R. Ade et al. (BICEP2 and Planck Collaborations), A
Joint Analysis of BICEP2/Keck Array and Planck Data,
Phys. Rev. Lett. 114, 101301 (2015).

[2] Planck Collaboration, Planck 2015 results. XIII. Cosmo-
logical parameters, arXiv:1502.01589.

[3] P.A.R. Ade et al. (Planck Collaboration), Planck 2015
results. XVII. Constraints on primordial non-Gaussianity,
arXiv:1502.01592.

[4] P. A.R. Ade et al. (Planck Collaboration), Planck 2015. XX.
Constraints on inflation, arXiv:1502.02114.

[5] L. L. Buchbinder, S. D. Odintsov, and I. L. Shapiro, Effective
Action in Quantum Gravity (IOP, Bristol, U.K., 1992),
p. 413.

[6] D.S. Salopek, J.R. Bond, and J. M. Bardeen, Designing
density fluctuation spectra in inflation, Phys. Rev. D 40,
1753 (1989).

[7] T. Futamase and K-i. Maeda, Chaotic inflationary scenario
in models having nonminimal coupling with curvature,
Phys. Rev. D 39, 399 (1989).

[8] R. Fakir and W. G. Unruh, Improvement on cosmological
chaotic inflation through nonminimal coupling, Phys. Rev.
D 41, 1783 (1990).

[9] D.I. Kaiser, Primordial spectral indices from generalized
Einstein theories, Phys. Rev. D 52, 4295 (1995).

[10] E. Komatsu and T. Futamase, Complete constraints on a
nonminimally coupled chaotic inflationary scenario from
the cosmic microwave background, Phys. Rev. D 59,
064029 (1999).

[11] M. P. Hertzberg, On inflation with non-minimal coupling, J.
High Energy Phys. 11 (2010) 023.

[12] N. Okada, M. U. Rehman, and Q. Shafi, Tensor to scalar ratio
in non-minimal ¢* inflation, Phys. Rev. D 82, 043502 (2010).

[13] A. Linde, M. Noorbala, and A. Westphal, Observational
consequences of chaotic inflation with nonminimal cou-
pling to gravity, J. Cosmol. Astropart. Phys. 03 (2011) 013.

[14] D.I. Kaiser and E. I. Sfakianakis, Multifield Inflation after
Planck: The Case for Nonminimal Couplings, Phys. Rev.
Lett. 112, 011302 (2014).

[15] T. Chiba and K. Kohri, Consistency relations for large field
inflation: Non-minimal coupling, Prog. Theor. Exp. Phys.
2015, 023E01.

[16] C. Pallis and Q. Shafi, Gravity waves from non-minimal
quadratic inflation, J. Cosmol. Astropart. Phys. 03 (2015) 023.

[17] S. Tsujikawa, J. Ohashi, S. Kuroyanagi, and A. De Felice,
Planck constraints on single-field inflation, Phys. Rev. D 88,
023529 (2013).

[18] A.D. Linde, Chaotic inflation, Phys. Lett. 129B, 177 (1983).

[19] E. L. Bezrukov and M. Shaposhnikov, The Standard Model
Higgs boson as the inflaton, Phys. Lett. B 659, 703 (2008).

[20] L. Boubekeur, E. Giusarma, O. Mena, and H. Ramirez (to be
published).

[21]1 P.A.R. Ade er al. (Planck Collaboration), Planck 2013
results. . Overview of products and scientific results,
Astron. Astrophys. 571, A1 (2014).

[22] P. A.R. Ade et al. (Planck Collaboration), Planck 2013
results. XV. CMB power spectra and likelihood, Astron.
Astrophys. 571, A15 (2014).

[23] P.A.R. Ade et al. (Planck Collaboration), Planck 2013
results. XVII. Gravitational lensing by large-scale structure,
Astron. Astrophys. 571, A17 (2014).

PHYSICAL REVIEW D 91, 103004 (2015)

[24] C.L. Bennett et al. (WMAP Collaboration), Nine-Year
Wilkinson Microwave Anisotropy Probe (WMAP) obser-
vations: Final maps and results, Astrophys. J. Suppl. Ser.
208, 20 (2013).

[25] A. Lewis, A. Challinor, and A. Lasenby, Efficient compu-
tation of CMB anisotropies in closed FRW models, As-
trophys. J. 538, 473 (2000).

[26] A. Lewis and S. Bridle, Cosmological parameters from
CMB and other data: A Monte-Carlo approach, Phys. Rev.
D 66, 103511 (2002).

[27] A. Kogut, D.J. Fixsen, D. T. Chuss, J. Dotson, E. Dwek, M.
Halpern, G. F. Hinshaw, S. M. Meyer ef al., The Primordial
Inflation Explorer (PIXIE): A nulling polarimeter for
cosmic microwave background observations, J. Cosmol.
Astropart. Phys. 07 (2011) 025.

[28] R. Laureijs et al. (EUCLID Collaboration), Euclid definition
study report, arXiv:1110.3193.

[29] F.R. Bouchet et al. (COrE Collaboration), COrE (Cosmic
Origins Explorer): A white paper, arXiv:1102.2181.

[30] P. Andre et al. (PRISM Collaboration), PRISM (Polarized
Radiation Imaging and Spectroscopy Mission): A white
paper on the ultimate polarimetric spectro-imaging of the
microwave and far-infrared sky, arXiv:1306.2259.

[31] P. Creminelli, D. L6épez Nacir, M. Simonovi¢, G. Trevisan,
and M. Zaldarriaga, ¢ or Not ¢?: Testing the Simplest
Inflationary Potential, Phys. Rev. Lett. 112, 241303
(2014).

[32] O. Doré, J. Bock, P. Capak, R. de Putter, T. Eifler, C. Hirata,
P. Korngut, E. Krause et al.,, SPHEREX: An all-sky spectral
survey, arXiv:1412.4872.

[33] P.A.R. Ade et al. (BICEP2 Collaboration), Detection of
B-Mode Polarization at Degree Angular Scales by BICEP2,
Phys. Rev. Lett. 112, 241101 (2014).

[34] P.A.R. Ade et al. (BICEP2 Collaboration), BICEP2 II:
Experiment and Three-Year Data Set, Astrophys. J. 792, 62
(2014).

[35] D. H. Lyth, What Would We Learn by Detecting a Gravi-
tational Wave Signal in the Cosmic Microwave Background
Anisotropy?, Phys. Rev. Lett. 78, 1861 (1997).

[36] L. Boubekeur, Theoretical bounds on the tensor-to-scalar
ratio in the cosmic microwave background, Phys. Rev. D 87,
061301 (2013).

[37] G. Efstathiou and K.J. Mack, The Lyth bound revisited, J.
Cosmol. Astropart. Phys. 05 (2005) 008.

[38] L. Verde, H. Peiris, and R. Jimenez, Considerations in
optimizing CMB polarization experiments to constrain
inflationary physics, J. Cosmol. Astropart. Phys. 01
(2006) 019.

[39] J. Garcia-Bellido, D. Roest, M. Scalisi, and I. Zavala, Can
CMB data constrain the inflationary field range?,
J. Cosmol. Astropart. Phys. 09 (2014) 006.

[40] G. Barenboim and O. Vives, Transplanckian inflation as
gravity echoes, arXiv:1405.6498.

[41] J. Garcia-Bellido, D. Roest, M. Scalisi, and 1. Zavala, Lyth
bound of inflation with a tilt, Phys. Rev. D 90, 123539
(2014).

[42] L. Boubekeur, E. Giusarma, O. Mena, and H. Ramirez,
Phenomenological approaches of inflation and their equiv-
alence, Phys. Rev. D 91, 083006 (2015).

103004-6



ournal of Cosmology and Astroparticle Physics

An IOP and SISSA journal

The present and future of the most

favoured inflationary models after
Planck 2015

Miguel Escudero,” Héctor Ramirez,” Lotfi Boubekeur,*’
Elena Giusarma® and Olga Mena“

“Instituto de Fisica Corpuscular (IFIC), CSIC-Universitat de Valencia,

Apartado de Correos 22085, E-46071, Spain

bUniversidad San Francisco de Quito USFQ, Colegio de Ciencias e Ingenierfas El Politécnico,
campus Cumbay4, calle Diego de Robles y Via Interocéanica, Quito EC170157, Ecuador
“Physics Department and INFN, Universita di Roma “La Sapienza”,

Piazzale Aldo Moro 2, 00185, Rome, Italy

E-mail: miguel.escudero@ific.uv.es, hector.ramirez@ific.uv.es,
Iboubekeur@usfq.edu.ec, elena.giusarma@romal.infn.it, olga.mena@ific.uv.es

Received September 24, 2015
Revised January 11, 2016
Accepted January 17, 2016
Published February 8, 2016

Abstract. The value of the tensor-to-scalar ratio r in the region allowed by the latest Planck
2015 measurements can be associated to a large variety of inflationary models. We discuss
here the potential of future Cosmic Microwave Background cosmological observations in
disentangling among the possible theoretical scenarios allowed by our analyses of current
Planck temperature and polarization data. Rather than focusing only on r, we focus as well
on the running of the primordial power spectrum, « and the running thereof, 8. If future
cosmological measurements, as those from the COrE mission, confirm the current best-fit

value for 35 > 1072 as the preferred one, it will be possible to rule-out the most favoured
inflationary models.

Keywords: inflation, cosmological parameters from CMBR, CMBR experiments

ArXiv ePrint: 1509.05419

© 2016 IOP Publishing Ltd and Sissa Medialab srl doi:10.1088/1475-7516/2016,/02/020



Contents

1 Motivations 1
2 Basic definitions 2
3 Most favoured inflationary scenarios 3
3.1 Quadratic scenarios 3
3.2 Higgs-like scenarios 5)
3.3 Hilltop scenarios 6

4 Current constraints 6
4.1 Cosmological data and methodology 6
4.2 Results 7

5 Forecasts 8
5.1 CMB likelihood 8
5.1.1 Instrumental noise 9

5.1.2  Foregrounds 9

5.1.3 Statistical method 10

5.1.4 Foreground removal 10

5.2 Results 11
5.2.1 Future satellite CMB missions 11

5.2.2 Future constraints on inflationary parameters 12

6 Conclusions 13
A Consistency of the Fisher method 16
B CMB mission specifications 16

1 DMotivations

The smoking-gun of inflation [1-3] is the detection of a stochastic background of gravita-
tional waves. Such primordial signature is characterized by its amplitude, parametrized via
the tensor-to-scalar ratio r. Recent analyses from Planck 2015 [4] have presented the tight-
est bounds to date on r using temperature and polarization measurements. Albeit current
Planck constraints are perfectly compatible with a vanishing tensor-to-scalar ratio, yet there
is still enough room for other theoretical possibilities besides the Starobinsky R2-gravity
scenario, which emerges as the best-fit model. Looking forward to the next generation of
CMB observations, and depending on the value of r that Nature has chosen, one can envision
two distinct possibilities: (a) either r turns out to be way too small to be measured by the
next generation of CMB observations, or (b) the value of r is large enough to be detected.
However, in this latter case, the measured tensor-to-scalar ratio will typically correspond to
several inflationary models. Given that measuring r (if 7 < few x 10~%) might be extremely
difficult [5-8], and disentangling between the various models that lie in the same regions in



the canonical (ns,r) plane might not be straightforward either, we explore here the possibility
of extending the analysis to other (complementary) inflationary observables.

For the scalar power spectrum of the primordial perturbations, we consider, as additional
observables, the running «, and the running of the running §s;. For the primordial tensor
power spectrum, we consider its running n;. The aim of this paper is to assess the potential
of future CMB observations in falsifying inflation (or unraveling the fundamental model
among the most favoured candidates after Planck 2015 data) by looking to these three
additional observables. For illustration, we will consider some well-motivated models that are
compatible with current data. The structure of the paper is as follows. Section 2 deals with
the basic definitions of the different cosmological observables and their current constraints.
Section 3 describes the theoretical predictions from the most favoured inflationary scenarios
after Planck 2015 CMB temperature and polarization measurements. In section 4 we perform
Markov Chain Monte Carlo (MCMC) analyses of the Planck 2015 data release. Our Fisher
matrix forecasts in section 5 show that, if the future preferred value of (s is close to the
current best-fit from Planck, future CMB probes may falsify the currently best inflationary
scenarios. We shall conclude in section 6.

2 Basic definitions

The power spectrum of the primordial curvature perturbation, ¢, seeding structure formation
in the universe is defined as

(GG) = 2m)38S) (5 + k) Pe (k) (2.1)
where the dimensionless amplitude of primordial perturbations As(k) is defined through

_27r

2
Pe(k) = =3 AZ(K). (2.2)

The scale dependence of Ag(k) is parametrized by the spectral index:

2
dlnAC

s:1
Y

(2.3)

Likewise, one can also define the scale dependence of the spectral index, which is called the
running, as

dng
= Ak’ (24)
as well as the running of the running, defined as
dag
Bs = TR (2.5)

In all these definitions, it is understood that quantities are evaluated at horizon exit k, = aH
(ks = 0.05 Mpc™! throughout this study). In terms of the above parameters, the primordial
power spectrum reads

L ns—1+2 o In(k/kx)+ 3 8s In? (k/ k)
) (2.6)

AZ(k) = AZ(k.) <k



In the context of slow-roll, one can have a general idea about the magnitude of the above
inflationary parameters in terms of the number of e-folds N. If we consider the empirical
relation [9-11] ny — 1 o< 1/N, one expects that

1 —4 1 -5
Og ™~ m S 10 and BS ~ ﬁ S 10 s (27)

for typical choices of the number of e-foldings N = 50 — 60. The latest Planck 2015 temper-
ature and polarization TT,TE,EE+lowP [4] data analyses with r» = 0 provide the following
constraints:

ns = 0.9586 % 0.0056 ,
s = 0.009 = 0.010,
Bs = 0.025 + 0.013 .

What is interesting to notice in these constraints, is a slight preference for a positive G5 ~
1072, while as we will explain shortly, slow-roll inflation predicts typically a smaller and
negative Bs.

The tensor contribution to the primordial power spectrum is parametrized by the tensor-
to-scalar ratio r

r = Py(k.)/Pe(ks), (2.8)

where P;(k) = %A%(lﬁ) is the tensor power spectrum, and it is parametrized at first order as

A2 (k) = A2(k,) (:) , 29)

in which ny is the spectral index of tensor modes. In the slow-roll regime, the magnitude of r
can vary within a large range, and this is the main difficulty in testing inflation through
the detection of B-modes. This can be understood in the context of phenomenological
parametrizations of inflation [9-11]. In such approaches, the (ns,r) plane appears to be
unevenly filled, and one can even argue on the existence of a “forbidden zone”,! in the r-
direction, depending on the precise value of ng, see figure 1. Future CMB missions aim to
reach the important theoretical milestone of r =2 x 1073 - (60/N)? [15], which would signal

super-Planckian inflaton excursions [16-18].

3 Most favoured inflationary scenarios

In the following, we shall review the most favoured models (including their predictions for
the different inflationary observables: r, n;, ns, as and (s) after Planck 2015 data release.

3.1 Quadratic scenarios

This class of scenarios represents the simplest theoretical possibility. It includes:

!This observation has been made previously in different contexts in [12-14].



The chaotic scenario, V o ¢?, both with minimal and non-minimal coupling to grav-
ity [19-25]. The former is disfavoured with respect to the latter so the non-minimally coupled
version is perfectly compatible with current data [26]. The predictions in the (ng, ), (ns, as),
(ns, Bs) and (ng,r) planes for these two models (¢? and £éR$?) are depicted in figures 1, 2, 3
and 4 for two possible choices for the number of e-folds, N = 50 and N = 60.?> Notice,
from figure 1, that the trajectories in the (ns,r) plane for the non-minimally coupled case
(6R@?) start always at the point corresponding to the ¢? model predictions,® and then, as the
coupling ¢ takes positive values, the tensor contribution is reduced, and the scalar spectral
index ng is pushed below scale invariance, see ref. [26]. Negative values of the coupling £ (not
illustrated here) are highly disfavoured by current CMB observations, since they will lead
to large values of the tensor-to-scalar ratio r. Concerning the running of the scalar spectral
index ag, the trajectories for the two quadratic scenarios considered here are depicted in
figure 2. Notice that positive values of the coupling £ will change the predicted value of aj
in the ¢? scenario (as = —2/N?, corresponding to as = —0.00056 for N = 60) to slightly
larger values, albeit the trajectories always stay in the as < 0 sub-plane. The running of
the running parameter, 35, barely changes with respect to its predicted value in the non-
minimally coupled case (i.e. & = 0, for which 3 = —4/N3, giving Bs ~ —1.8 x 1075 for
N = 60) as the coupling & gets positive values, see figure 3. Finally, in figure 4 we see that all
models follow the theoretical curve n; = —r/8. In particular, the chaotic ¢ model predicts
a tensor spectral index of n; ~ —0.019 (n; ~ —0.016) for N = 50 (N = 60); an increasing
positive value of £, within the non-minimally coupled model, diminishes the predicted value
to ng ~ —0.018 (ny ~ —0.010) for £ ~ 0.0059 and N = 50 (N = 60).

The Natural inflation scenario (minimally coupled to gravity), where the inflaton is a
Pseudo-Nambu-Goldstone-Boson (PNGB), which potential is invariant under the shift ¢ —
¢+ 2mf, and it is given by

V(¢) = Vo[l —cos(o/f)], (3.1)
with f the PNGB decay constant [27-29]. It is straightforward to perform the slow-roll anal-
ysis and obtain the analytical expressions of the spectral index and the tensor-to-scalar ratio:

N (1+a/2)+1
eN(1+a/2)—1]"
_ 8«

SN (1+a/2) -1

ng=1-—

(3.2)

where the parameter « is defined as? o = Mgl /f%. Notice that for small a (i.e. very large
values of f) the predictions of the natural inflation scenario coincide with those of the mini-
mally coupled chaotic inflation model V o< ¢2. Even if the flatness of the PNGB potential is
protected by the shift symmetry, it is not clear whether this structure can be UV completed.
For a recent discussion on the issue and some solutions see e.g. [30-34].

Figures 1, 2, 3 and 4 show the predicted trajectories in the (ns,7), (ns,as), (ns, Bs)
and (ng,7) planes for N = 50 and N = 60, and f varying from 3.45M,; to 100Mp;. For
the smallest value of f considered here, f = 3.45Mp), a very small value of ny ~ 0.9152 is
found. Agreement with Planck data implies that the decay constant satisfies f > 5.3My,

2The value of £ ranges from ¢ = 0 to £ = 0.0065 in figures 1, 2 and 3.

3The case of & = 0 is equivalent to the standard inflationary chaotic scenario in which the predictions are
ns =1—2/N and r = 8/N, corresponding to ns = 0.967 and r = 0.13, respectively, for N = 60.

4Mp1 =1/V/8mGn ~ 2.43 X 108 GeV is the reduced Planck mass.



for N = 50 — 60. Larger values of f increase the value of the tensor-to-scalar ratio, until the
prediction reaches the one of minimal chaotic inflation, as shown in figure 1. In figure 2, we
illustrate that large values of f lead to small values for the running of the spectral index,
which eventually will reach the predictions for the minimal chaotic scenario. In contrast,
the value of f3;, barely changes when f varies, remaining around in 35 ~ —3 x 107° and
Bs ~ —1.7 x 1075 for N = 50 and N = 60, respectively, see figure 3. Concerning the tensor
spectral index, for a value of f = 1000, the predictions coincide with those of the ¢? model.
Whereas lower value of f, corresponds to smaller values n;. For instance, n; ~ —0.0006
(n¢g ~ —0.0002) for f = 3.45Mp and N = 50 (N = 60), following the consistency relation
ny = —r/8, as expected (see figure 4).

3.2 Higgs-like scenarios

This class of scenarios is described by a symmetry breaking potential,

A )

V(o) = A (1 N f¢2/M§1)2 ;

(3.3)

alike to the one of the standard model Higgs particle, but with a non-minimal-coupling to
the Ricci scalar, £, see refs. [35-37]. It also includes, as a limiting case (for £ — o0), the
R2-gravity Starobinsky scenario [38]. Notice as well that the limiting case & — 0 corresponds
to the quartic potential scenario, V o< ¢*. One can find a suitable set of inflaton potentials
for different values of the inflaton vacuum expectation value v [25]. In this work we illustrate
the predictions of a Higgs-like scenario for v = 0 and for different positive values of £, as well
as for N = 50 and N = 60 e-folds.® Figure 1 clearly shows that the limiting case & — 0,
corresponding to the quartic potential ¢, is not in good agreement with Planck data, as its
predictions for the inflationary parameters (ngs ~ 0.941, r ~ 0.31 and ns ~ 0.951, r ~ 0.26 for
N =50 and N = 60, respectively) are highly disfavoured. When the non-minimal coupling to
gravity, £, is increased, the tensor contribution is reduced, while the predictions reach those
corresponding to the Starobinsky scenario, as long as £ > 10%. In this limit, n, ~ 0.961,
r ~ 0.0041 (ns ~ 0.968, r ~ 0.0023) for N = 50 (N = 60), values which are in excellent
agreement with current CMB data.

Concerning the running of the spectral index, increasing the value of £ will drive the
values of a; from the one corresponding to the quartic potential to slightly larger ones,
corresponding to the Starobinsky scenario, keeping always the trajectory in the ay < 0 sub-
plane (see figure 2). The predictions of the running of the spectral index for the quartic
(Starobinsky) scenarios are ag ~ —0.0011 (a5 ~ —0.00074) for N = 50, and ag ~ —0.0008
(as ~ —0.00052) for N = 60. As in the case of the previous models, the running of running
of the spectral index, (5, remains almost constant as £ is varied, as shown in figure 3. In
particular, in the Higgs-like scenario, s ~ —3.5 x 107> (s ~ —2.5 x 107°) for N = 50
(N = 60). This model allows for a wide range of values for the tensor spectral index, starting
from the predictions from the ¢* model around n; ~ —0.039 (n; ~ —0.039). Then, an
increasing value of ¢ pushes down the predictions for n; down to very small values around
ng ~ —0.0005 (ny ~ —0.0003) for N = 50 (N = 60), (and thus coinciding with the values
predicted from Starobinsky inflation), along the theoretical curve n, = —r/8 depicted in
figure 4.

5The coupling A cancels out in the slow-roll calculations.



3.3 Hilltop scenarios

For completeness, we should also consider this class of scenarios, described by potentials

V() =W [l - (o/u)], (3-4)

since its predictions in the (ng,r) plane lie very close to the ones associated to the models
discussed before [17]. Within these scenarios, we can distinguish two sub-cases:

1. p = 2, corresponding to the quadratic hilltop scenario, where inflation takes place close
to a local maximum; V/(¢) = 0 and V" (¢) < 0.

2. p > 2, corresponding to a generalization of the simplest quadratic case, where here
inflation happens close to a local maximum where additionally, higher derivatives of
the potential vanish, i.e. V/(¢) = V"(¢) = V/(¢) = --- = VP=D($) = 0 and, again,
VP () < 0.

We restrict our analysis to the first case, p = 2, in which the spectral index and the
tensor-to-scalar ratio read as

ns =1 — 4|no|

3.5
r=2(1—ng)? N po| 7L, e

with |no| = ;FZM}?I. In figure 1 we depict the predictions for this model in the plane (ng,r).
The parameter 7o varies from 19 = 10™% to 1y ~ 2 x 1072, pushing n, to smaller values as
n decreases. With 79 ~ 8 x 1073 we obtain a tensor-to-scalar ratio of r = 0.0375 for the
case N=60, and r ~ 0.0516 for NV = 50, both corresponding to a spectral index ns ~ 0.968.
Notice from figures 2 and 3 that for the same value of 79 ~ 8 x 1073 we obtain a running
of the spectral index of as; ~ —0.00107 and a running of the running B, ~ —0.000065
(s >~ —0.00073 and s ~ —0.0000386) for N = 50 (N = 60). In figure 4 we observe that
this scenario predicts almost negligible values of the tensor spectral index for the range of
values of 19 commented above. The predictions reach the smallest values of n; found in this
work: ny ~ —0.0003 (n; ~ —0.00006) for N =50 (N = 60) and np ~ 2 x 10~2.

4 Current constraints

4.1 Cosmological data and methodology

We consider the new data on CMB temperature and polarization measured by the Planck
satellite [39-41]. We use the Planck TT temperature-only likelihood (hereafter Planck TT)
and the Planck TT,TE, and EE power spectra data (hereafter Planck TTTEEE) up to
a maximum multipole number of £, = 2500 combined with the Planck low-¢ multipole
likelihood that extends from ¢ = 2 to £ = 29 (denoted as lowP). We use the Boltzmann code
CAMB [42] and generate MCMC chains using the publicly available package cosmomc [43].
We consider a ACDM extended model, described by the following set of parameters:

{wbvwcv6877—71n<1010AS>7n87T7 aSHBS} . (41)

In table 1, the uniform priors considered on the different cosmological parameters are spec-
ified. We do not consider the spectral index for tensor perturbations n; as an additional
parameter in our MCMC analyses, since, as recently shown in [44], the current and future
error bars on this parameter are considerably larger than the predictions of the different the-
oretical scenarios explored here. Therefore, the tensor spectral index is fixed in what follows
to the slow-roll consistency relation value, n; = —r/8.



Parameter Physical Meaning Prior

wp = Qph? Baryon density 0.005 — 0.1

we = Qh? Cold dark matter density 0.01 — 0.99
CH Angular scale of recombination 0.5 —10
T Reionization optical depth 0.01 — 0.8

In (10194,) Primordial scalar amplitude 2.7 —4
Ng Scalar spectral index 09—1.1
Qg Running of ng —0.04 — 0.06
Bs Running of a; —0.04 — 0.08
r Tensor-to-scalar ratio 0—2

Table 1. Uniform priors for the cosmological parameters considered in the present analysis.

4.2 Results

While the latest Planck data provide evidence against some of the models explored here [4],
these measurements can not single out the responsible mechanism for the inflationary process,
nor to falsify this theoretical scenario by themselves.

This can be noticed from the contours shown in figures 1 2 and 3, where it is clear
that all the models described above have some trajectories in the (ns,r), (ns, as) and (ns, 5s)
planes which lie within the current 68% and/or 95% CL allowed regions. Figure 1 depicts the
current 68% and 95% CL allowed contours in the (ng,r) plane from Planck TT plus lowP
data, as well as from Planck TT plus lowP data plus TTEETE measurements, together
with the predictions from Natural, Hilltop, Higgs-like, quartic, chaotic® and Starobinsky
inflationary scenarios, for both N = 50 and N = 60 e-folds. The addition of EE and TE
spectra to Planck TT plus lowP data helps in constraining the scalar spectral index ng,
however there is only a mild improvement in the tensor-to-scalar ratio upper bound. Notice,
as previously stated, that the predictions for the inflationary parameters ns and r from these
models are all well within the current 68% and/or 95% CL allowed regions and therefore all
of them (except for the case of the ¢* potential with N = 50) are still feasible. One could
ask if current measurements of other inflationary parameters, as the running of the scalar
spectral index a, and/or its running, (s, may help in disentangling among the plethora of
models still allowed by current data. Figure 2, illustrates, together with the trajectories in
the (ns, as) plane for the models explored here, the 68% and 95% CL allowed regions from
Planck TT plus lowP data as well as from TTEETE plus lowP measurements. Notice that
current bounds on «; are unable to discard any of the possible inflationary models. Figure 3
shows the equivalent but in the (ng, 3s) plane. Interestingly, Planck measurements of [
seem to exclude the value 85; = 0 at the ~ 20 level. The theoretical scenarios illustrated
here could be ruled out with a much higher significance if the value of 3, preferred by Planck
2015 measurements (i.e. 8 ~ 0.025) is confirmed by future CMB data. We shall explore this
possibility in the next section.

Table 2 shows the 95% CL bounds on the tensor-to-scalar-ratio r as well as the mean
values and 68% CL errors of the remaining inflationary parameters ns, as and (s obtained
with the two possible data combinations considered in this study. Notice that the limits

5The chaotic model is studied both in its minimally and non-minimally coupled versions.



Parameter  Planck TT+lowP  Planck TT, TE,EE+lowP
r (95% CL) < 0.27 < 0.23

Ng 0.959 £ 0.008 0.9591 £+ 0.0056

Qs 0.0081 +£0.014 0.0077 £ 0.011

Bs 0.034 £ 0.016 0.0313 £0.014

Table 2. 95% CL constraints on the tensor-to-scalar-ratio » and mean values (together with their
68% CL errors) of ng, as and S5 obtained with the two possible data combinations considered in this
study.

on r are considerably relaxed when adding the running and the running of the running as
additional parameters in the analyses. The mean values and the errors on ngs and [ are in
very good agreement with those found by the Planck collaboration and reported in ref. [4].

5 Forecasts

The aim of this section is to forecast the potential of future CMB satellites in constraining
the {r,ns, as, Bs} parameter space via the Fisher matrix formalism.

5.1 CMB likelihood

Assuming that the fraction of sky surveyed fq, is the same for CMB temperature and
polarization measurements, the likelihood associated to a single frequency CMB experiment

can be written as

N C i T W (/A C L B

CKBB CfB CETCKE’E . (CEE)Q

CITCFE + CTTCFE —2C0TECTE
CZTTCEE _ (CZTE)Q

—21In LB =) (204 1) fry
l

: (5.1)

where the CEXY (CA'EXY) refer to the theoretical (measured) power spectra for X, Y =T, E, B.
Due to the finite resolution of the spectra, there will be an induced noise in the map that
should be added to the Cy. In addition, following [45] we will also include the foreground
contribution to the map as a residual noise, and therefore

Cy=C"+ Ny + R, (5.2)

where Cgh will be our theoretical power spectra (computed by the Boltzmann solver codes
CAMB [42] or CLASS [46]), N, is the instrumental noise (which is a function of the frequency
channel, see below) and RgF refers to the residual foreground subtraction (which will also
depend on the frequency channel). This latter quantity reads as

Nrore

RE(V) N Z {O-l(y)Cé(V) * N@(V) Nchan(]\;ihan - 1) CC';((VVF)) } ’ (53)

i

where the first term corresponds to the uncertainty of a given foreground at a given fre-
quency v, CZ(V) and o;(v) represent the power spectra and the foreground subtraction level,



respectively. The second term in eq. (5.3) takes into account for the instrumental noise of
the channel at which the foreground model is constructed, and vg is the frequency at which
the foreground is modelled. In the case of a multifrequency experiment, as Planck or COrE,
the expression for the likelihood eq. (5.1) still holds. However, in such a scenario, the total
noise power that should be added to the Cy is written in terms of a weighted combination
of the noises from the different channels [45]. Therefore, for a multifrequency experiment,
eq. (5.2) reads as

Cy = O + N§Tt (5.4)
where the effective noise term is given by

Nchan -1
)2 = 3 | (R + Neo) (RE03) + M) 3 1 48) . 69

4,521

We focus here on the future satellite experiment COrE [15], covering 70% of the sky. In
the next sections we will describe the modelling of the experimental resolution and the main
foregrounds for this future CMB mission, and therefore in what follows the numbers quoted
will always refer to fg, = 0.7.

5.1.1 Instrumental noise

The sensitivity of the detectors of a given CMB experiment is finite; thus, a certain noise
will be induced in the map due to the deconvolution of a Gaussian beam, which reads as [47]

92
N =o0XoYsxyexp [£(£+1 5.6
¢ =0t dxyexp |[E(E+]) o) (5.6)
where o corresponds to the temperature and polarization sensitivity of the channel, respec-

tively (X = {T, P}), and @ is the Full Width at Half Maximum (FWHM) of the beam. We
follow here the specifications for the future COrE mission given in ref. [15], see table 7 of
appendix B.

5.1.2 Foregrounds

Foregrounds, consisting of radio emissions from the galaxy and/or other sources at the same
frequency to that of the CMB signature, will clearly be the dominant limiting factors in
extracting the cosmological information from the maps. In the case of the polarized signal,
foregrounds are critical as they are orders of magnitude higher than the primordial signal in
some cases. The usual strategy followed to deal with the foregrounds is to exploit their spec-
tral dependence. Several recent works [48-51] have shown that an accurate multifrequency
approach to correctly handle foregrounds is mandatory. Here we will briefly discuss the
physical origin of the main foregrounds relevant for the COrE mission” and their up-to-date
modelling, as provided by the Planck team.

"Other two sources of foregrounds are the Anomalous Microwave Emission and the Free-Free emission (see
ref. [54] for details related to their parametrized power spectra) not discussed here, as their impact at the
frequency range of interest is negligible.



Synchrotron emission. Synchrotron emission results from the interaction of high energy
electrons with the magnetic fields of the galaxy, and its signature will be present in both
temperature and polarization maps. Giving the dependence of the synchrotron optical depth
with frequency, the power of synchrotron emission C’f grows with decreasing frequency. It is
usually modelled using maps at 408 MHz [52] and with the WMAP K-band at 23 GHz [53].
The synchrotron power spectra is well fitted using a simple power law for both ¢ and v. The

latest Planck model [54] is
P\ [\ 2B
S
=Ag | — — .
Gy S(és) (VS> : (5.7)

where the values of the different parameters are shown in table 3.

Thermal dust. Contrarily to synchrotron emission, the power at which thermal dust ra-
diates grows with frequency. Planck has modelled the dust contamination using a Modified
Black Body for which Tp = 19.6 K. The intensity [54] and polarization [51] spectra can be

written as
eN\? [ v\ B(Tp) \?
ct-m(z) () ()
¢ b\ ip VD B,,(Tp) (58)

2
cp — b <£>a%+2 <V>m%_4 2k (5.9)
Poon \ A vy, By (Tp)

respectively, where B, (T) = 2hv3¢=2/ (e% —1). The values of the different parameters are
specified in table 3.

and

5.1.3 Statistical method

In order to forecast the errors of the different parameters we follow the widely used Fisher
matrix formalism [55]. The Fisher matrix is defined as the expectation value of the second
derivative around the maximum of the likelihood

02L
F,=—
: <ae,-aej>

where ¢; represent a cosmological parameter, and 0; 5q represents the fiducial value for the
parameter. The Cramér-Rao bound ensures that for unbiased estimators the best achievable
1o error for a given parameter marginalized over the other parameters is

(5.10)

0=05a

09; = FJI ) (5-11)
with F~! the inverse of the Fisher matrix.

5.1.4 Foreground removal

As argued in the previous section, the main limitation for future CMB observations is the
foreground contamination. Among the two polarized foregrounds specified above, the most
dangerous one when measuring the tensor-to-scalar ratio r is the galactic dust component,
as, in general, it gives the largest contribution at the Planck and COrE frequencies.

~10 -



Foreground Parameter Planck
As (uKZyp) (4.2+0.4) x 10°
vs (GHz) 0.408
Synchrotron ls 100
Bsyn —3.00 £ 0.05
asyn —2.5+0.02
Ap (WKZyp)  40+3°
vp (GHz) 353
Dust lp 100
Bp 1.51 £0.01
ap —2.44+0.02
App (nK2\m) 247 + 3P
vy, (GHz) 353
Dust Polarization o 80
By, 1.59 +0.17
QEE —0.42 +0.02
app —0.44 £ 0.03

8From ref. [54], after applying color corrections and conversion units.

PFrom table 1 of ref. [51], after applying the color corrections.

Table 3. Parameters for the different foregrounds considered in this study, for both the intensity and
polarized emissions. For the intensity signal the models are fitted for ¢ < 100 and, for polarization,
for 60 < ¢ < 500. As commonly carried out in the literature, we will extrapolate the models to higher
and lower multipoles for both the intensity and polarization spectra.

The issue of foreground removal is a delicate one. Many techniques like template clean-
ing, bayesian estimation, internal linear combination or independent component analysis are
used for this purpose (see [61] for a summary). For example, in ref. [62], a study forecasting
errors on 7 is performed, without any assumption of the properties of the foregrounds. In
refs. [60, 63] the errors on the different cosmological parameters are obtained after marginal-
ising over the foregrounds following some simple models for their spectra. Here, following
the approach of [45], we will assume a simple model for the foregrounds (see egs. (5.7), (5.8)
and (5.9)). We shall also assume in the following, for simplicity, that the foregrounds will be
subtracted by a constant amount. Given that the Planck mission has achieved a less than
10% foreground removal in power, for the COrE mission, due to the high number and the
high sensitivity of channels devoted to the study of the dust, one should expect that power
could be removed at the 1% level, which is equivalent to set in eq. (5.3) op(v) = 0.01.

5.2 Results
5.2.1 Future satellite CMB missions

In the following, we shall apply the Fisher matrix method to the future CMB mission COrE
(see appendix A for a consistency check of our method), although similar results could be
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Parameter Fiducial Planck 2015% Planck (Fisher forecast)® COrE or = 0.01¢ COrE op =09

Ouh?  0.02223 0.00017 0.00013 0.000065 0.000052
Qpmh?  0.1202 0.0015 0.0012 0.00076 0.00036
h 0.6762 0.0069 0.0054 0.0031 0.0014
Treio 0.079 0.019 0.018 0.0084 0.0024
In(10'°4,) 3.117 0.037 0.036 0.015 0.0044
N 0.9591 0.0056 0.0053 0.0034 0.0023

o 0.0077 0.011 0.0077 0.0040 0.0036

Bs 0.0313 0.014 0.019 0.0088 0.0065

T 0 <0.23 < 0.38 < 0.016 < 0.0001

2Using TTTEEE + lowP Planck 2015 data.

bUs.ing the Planck foreground specifications and the 100, 143 and 217 GHz channels.
¢Using or = 0.01 and the 105, 135 165 and 195 GHz channels.

dUsing only resolution noise and the 105, 135 165 and 195 GHz channels.

Table 4. Results for the Fisher Matrix Analysis, 68% CL for all parameters and for 7 at 95% CL.
The fiducial has been assumed to be the same for each run as given in the second column. We have
used (LT = 2000 and (BB = 500.

max max

obtained for other future CMB satellite experiment. We shall use the 105, 135, 165 and
195 GHz channels for all the runs, see table 7 in the appendix B.®

We perform two different analyses. The first one considers no foreground contamination.
The second one relies on a 1% foreground subtraction in power (op = 0.01). We assume no
delensing on the the B-mode signal. The results are shown in table 4. Comparison between
the fifth and sixth columns confirm, numerically, the very-well known fact that foregrounds
will be the major limitation for future CMB missions when extracting the tensor-to-scalar-
ratio 7.

5.2.2 Future constraints on inflationary parameters

Figures 1, 2 and 3 show, together with the theoretical predictions and the current constraints
from Planck measurements, the results of our COrE forecasts for two possible values of the
tensor-to-scalar ratio (r = 0.1 and 0.01) and two possible fiducial models. The values of
the inflationary parameters for the first fiducial model are ny = 0.9591, ay = 0.0077 and
Bs = 0.0313, which correspond to the best-fit to Planck data. For the second fiducial model,
which aims to lie within the region covered by the theoretical models explored here, the
values are n; = 0.9591, az, = —0.0005 and 85 = 0. Tables 5 and 6 show the 1o errors on
the inflationary parameters for these two fiducial models. Notice that the uncertainties on
the ng, ag, and Bs barely depend on the fiducial value of r, as the tensor-to-scalar ratio
is not strongly degenerate with these parameters. The quantity o, is the expected error
from the COrE experiment. Notice that the error is always larger than the COrE sensitivity
limit, ~ 8 x 1073 (higher than the target of ref. [56], which was the theoretical milestone of
2 x 1073). However, the parameter space, the treatment of the foreground removal and the
delensing assumptions of future CMB missions for the present study and those of ref. [56]
are different.

8For recent CMB forecasts see refs. [56, 57], where however the parameters o and 35 where not considered.
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r or On, Oas og,
0.1 0.0096 0.0034 0.0040 0.0086
0.01 0.0089 0.0034 0.0040 0.0085

Table 5. Results from the Fisher matrix analysis. The fiducial model corresponds to the Planck
2015 best-fit values (ns = 0.9591, as = 0.0077, S5 = 0.0313) and the forecasted errors are obtained
assuming a foreground removal op = 0.01 for the future COrE mission.

T or On, Oa. o8,
0.1 0.0096 0.0040 0.0042 0.011
0.01 0.0088 0.0041 0.0043 0.012

Table 6. As table 5 but for a fiducial model based on the values predicted by the theoretical models
explored here (ny, = 0.9591, ag, = —0.0005, 3, = 0).

From the forecasted errors in tables 5 and 6 and figure 1 we notice that the measurement
of r will not be enough to discriminate between the models on the (r,ns) plane. As figures 2
and 3 show, the forecasted errors on the additional parameters considered here, «y and
Bs, are wider by an order of magnitude or more than the region of values for which the
most favoured inflationary models explored in section 3 spread. Thus, there is no hope in
disentangling between the different models using these parameters when the data points to
their nominal values of a; ~ —0.0005 and 3, ~ —107°. However, notice from figure 3,
that if the best-fit value of the 35 parameter arising from future CMB data agrees with its
current best-fit from Planck measurements, then, this parameter could allow to exclude the
inflationary models explored here at a high confidence level (with the precise significance
level depending on the particular model under consideration). Finally (see also ref. [44]), the
error bars on n; expected from the CorE mission will be ~ 3 —4 times larger than the spread
of the slow-roll predicted values (as shown in figure 4) and therefore this parameter does not
help in disentangling among the possible theoretical schemes.

6 Conclusions

The recent 2015 Planck measurements still allow many of the possible theoretical scenarios
(as quadratic-like, Higgs-like and Hilltop models) as the underlying inflationary mechanism.
A firm confirmation of the inflationary paradigm would require a detection of the primordial
gravitational wave signal. However, in order to single out a theoretical model, the usual two
slow-roll parameters, that is, the scalar spectral index ns and the tensor-to-scalar ratio r, may
not be sufficient. The reason is due to the fact that the (ns,r) plane appears to be unevenly
filled, with a potentially forbidden zome and other highly populated regions in which mostly
all the theoretical predictions lie. In this regard, we have explored the discriminating power
of two other observables, the running «; and the running thereof 5. Our analyses of Planck
temperature and polarization data show that the current errors on the former two quantities
are large, and therefore they do not help in discarding some of the possibilities, even if
the present mean value of 3, lies 20 above its predictions in the most favoured inflationary
models explored here. However, future CMB measurements, such as the COrE mission,
have the potential to rule-out some theoretical possibilities at a much higher significance,
provided the best-fit values for these additional parameters do not change significantly from
their current estimates. Our forecasts (which rely on both a simple model for foregrounds
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Figure 1. 68% and 95% CL allowed contours from Planck TT and lowP and from Planck TTTEEE
plus lowP in the (ns,r) plane. We show as well the forecasted 68% and 95% CL contours from the
CMB mission COrE considering a 1% foreground removal in power (o = 0.01) and perfect foreground
subtraction (cr = 0). Notice that if the residual foreground emission is only removed to 1% level, the
future COrE mission may no disentangle among the different models in the (ns,r) plane. However,
the level at which the foregrounds could be removed may be lower than 1%, but this will only be
known once future measurements are performed.
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Figure 3. As figure 1 but in the (ng, 8s) plane, assuming a 1% foreground subtraction in power. If
nature has chosen a value of 5 close to the current best-fit value from Planck, then the inflationary
models considered here could be excluded by at a high confidence level by future CMB observations.
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among these theoretical possibilities (see the recent [44]).
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and assume an ad-hoc 1% foreground removal) show that COrE may help enormously in
unraveling the inflationary mechanism via its measurement of (s, especially if Nature has
chosen a value of r 2 0.005, which is close to the sensitivity limit found in this study. Other
complementary information concerning 35 and/or as, as those coming from future planned
galaxy surveys [58] (for instance, the SPHEREX project [59]), could significantly improve
the sensitivities forecasted here.
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A Consistency of the Fisher method

We test the validity of our method by computing our Fisher matrix forecast for the complete
Planck mission and comparing our results to those obtained by Planck measurements. For
that purpose, we shall use the 100, 143 and 217 GHz channels of Planck with its accounted
foreground removal as shown in table 3, and following the specifications detailed in table 7
of the appendix B. From the results depicted in table 4, notice that there is an excellent
agreement between the forecasted parameter errors and the errors quoted by the Planck
collaboration, with the differences always below the 20% level. In addition, we have verified
that the correlations between the cosmological parameters are well accounted for.

B CMB mission specifications

Table 7 shows the values used for the sensitivity of Planck and COrE missions, as in ref. [15].
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Mission Channel FWHM AT AP
(GHz) (arcmin) (uKcmp-arcmin) (uKconvp-arcmin)

30 32.7 203.2 287.4
44 279 239.6 338.9
70 13.0 221.2 298.7
100 9.9 31.3 44.2

Planck 143 7.2 20.1 33.3
217 4.9 28.5 49.4
353 4.7 107.0 185.3
935 4.7 1100 -
857 4.4 8300 -
45 23.3 5.25 9.07
75 14.0 2.73 4.72
105 10.0 2.68 4.63
135 7.8 2.63 4.55
165 6.4 2.67 4.61
195 5.4 2.63 4.54
225 4.7 2.64 4.57

CORE 255 4.1 6.08 10.5
285 3.7 10.1 174
315 3.3 26.9 46.6
375 2.8 68.6 119
435 24 149 258
955 1.9 227 626
675 1.6 1320 3640
795 1.3 8070 22200

Table 7. Specifications of the Planck and COrE experiments, from [15].
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Abstract. The simple m?¢? potential as an inflationary model is coming under increasing
tension with limits on the tensor-to-scalar ratio r and measurements of the scalar spectral
index ns. Cubic Galileon interactions in the context of the Horndeski action can potentially
reconcile the observables. However, we show that this cannot be achieved with only a constant
Galileon mass scale because the interactions turn off too slowly, leading also to gradient
instabilities after inflation ends. Allowing for a more rapid transition can reconcile the
observables but moderately breaks the slow-roll approximation leading to a relatively large
and negative running of the tilt o, that can be of order ny — 1. We show that the observables
on CMB and large scale structure scales can be predicted accurately using the optimized
slow-roll approach instead of the traditional slow-roll expansion. Upper limits on |ag| place
a lower bound of r 2 0.005 and, conversely, a given r places a lower bound on |as|, both of
which are potentially observable with next generation CMB and large scale structure surveys.
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1 Introduction

Inflation is a leading paradigm able to solve the main problems of the standard model of cos-
mology and, at the same time, able to generate the quantum seeds that could have given rise
to the structures we see today in the sky. The canonical picture consists of introducing a new
scalar field minimally coupled to Einstein gravity, the inflaton, which drives the expansion
of the Universe from quantum to cosmological scales at an exponential rate while it slowly
rolls towards the minimum of its potential. This potential is required to be sufficiently flat in
order to have enough time to form a Universe consistent with the isotropy and homogeneity
observed today. Although the paradigm itself is consistent with the latest observational con-
straints on the scalar and tensor power spectra (see e.g. [1]), simple quadratic and monomial
potentials are coming into increasing conflict with these constraints.

Inflationary models with noncanonical terms can arise naturally from particle physics
and allow more freedom to satisfy observational constraints [2-8]. Models with nonminimal
couplings, for instance, are able to reconcile with current measurements some of the earliest
and simplest realizations of inflation, such as those with power-law potentials [9-15].

General scalar-tensor theories of gravity provide a unified framework upon which one can
construct new models of inflation or embed known ones in a broader context. The most gen-
eral four-dimensional scalar-tensor theory in curved space-time which leads to second-order
equations of motion — thus free from ghosts and related instabilities — is the Horndeski [16],
or generalized Galileon [17-19], theory.! Recently there have been efforts to construct models
of so-called G-inflation using the Horndeski Lagrangian by explicitly choosing the form of
the independent functions of the scalar field and its derivatives. Such models must be care-
fully constructed to avoid instabilities, given that the Galilean symmetry should be broken
in order to have a successful inflation [19, 29-33].

When constructing phenomenologically viable models in the more general parameter
space, the usual slow-roll approximation may not always suffice to describe observables. While
numerically solving the scalar and tensor equations of motion is always possible, generalized
slow-roll (GSR)) techniques have been developed to overcome the deficiencies of the traditional

"While healthy theories beyond Horndeski have been developed to include higher derivatives in the equa-
tions of motion (see [20-28]), we will restrict our analysis to models within the Horndeski framework.



slow-roll approach [34—40]. In particular the optimized slow-roll (OSR) expansion of GSR
provides an improved way of evaluating scalar and tensor spectra for inflationary models with
slow-roll violation on a time scale of a few e-folds or larger [39]. Recently these approaches
have been extended to cover the full space of Horndeski models, allowing one to compute
the inflationary observables without imposing the slow-roll conditions [41]. Their efficacy
have been tested for large slow-roll violations such as those required by primordial black hole
(PBH) formation models [42].

In this paper we show that it is possible to reconcile the observational tension between
scalar and tensor observables in m?¢? inflation by introducing a transient G-inflation regime,
for which the GSR and OSR formulas provide a good description of inflationary observables.
In section 2 we review the Horndeski Lagrangian and show why simple models with a constant
Galileon interaction mass scale introduced in previous studies [32] can no longer satisfy the
latest observational constraints. In section 3 we show how to overcome these difficulties by
introducing a transition during inflation that transiently violates the slow-roll approximation.
In section 4 we show how the GSR and OSR techniques accurately relate the parameters of
these models to the scalar and tensor observables. Finally, we conclude in section 5.

2 Potential-driven G-inflation

Horndeski gravity is the most general scalar-tensor theory in four dimensions which leads to
second-order equations of motion. The full Lagrangian is given by

Ly = Ga+ G304+ G4R

— 2G4,X[(D¢)2 - ¢;#U¢;Mu] + GBGHV¢;MV (2.1)
o ((00)° — 3(00)0u 6™ + 260067°6", ],
where G, = Gp(¢, X) are arbitrary functions of ¢ and X = ¢"0,¢0,¢, Gn x = 0G,/0X,
¢ = V, V¢ and R and G, are the Ricci and Einstein tensors respectively. For G =
~X/2-V(¢), G4 = 1/2, and G5 = G5 = 0, we recover the Lagrangian for canonical inflation?.

From eq. (2.1) one can now choose the G,, functions to construct more general phe-
nomenological models of inflation given that the simplest realizations are being ruled out
by the latest cosmological measurements. For instance, the chaotic inflation model provides
a large value for the tensor-to-scalar ratio r» which is disfavored by current observations.
Ref. [32] showed that with the introduction of a G, term the relationship between the tensor
and scalar observables can be modified. However, we shall now see that under the slow-roll
approximation, this additional freedom is not sufficient to reconcile observations with the
predictions of chaotic inflation.

Concretely, ref. [32] considered a model of potential-driven G-inflation of the form

_l’_

Ga(9, X) =~ ~ V(9),

Ga(6X) = fu'y

Gaf9, X) = 5. 2.2
G5(¢7X) =0,

2Here and throughout we take units where Mp; = 1/vV/87G = 1.



with a chaotic inflation potential V(¢) = 2¢52 /2 and f3 = 3 where m and M are the
inflaton and Galileon mass scales respectively.?

Taking eqgs. (2.2), assuming the general case in which f3 = f3(¢), and working on the
flat Friedmann-Lemaitre-Robertson-Walker (FLRW) metric,

ds® = —dt* + a(t)?0;;da’ da?, (2.3)

the Einstein and Klein-Gordon equations can be written as

V—<3—;¢/2)H2+<Sf3d)/3 7¢¢4 H4:

V —2H'H — <3+ ¢’2> H? + fsH*H' ¢ + <f @2 + f3¢¢4> H*=0,
) H

Vi +HH'¢ + (3¢ + ¢") H> + (9f3H'¢* — 23 ,H'¢/ (2.4)
<9f3d),2 + 6f3(;5 ¢// 2f3 ¢/2¢// f37¢¢ (;5/4 H4 — O
where H is the Hubble parameter and derivatives are defined as ' = d/dN, being dN =
Hdt = (H/¢)d¢ the number of e-foldings of inflation, and 4 = d/dé.
In the slow-roll (SR) approach, egs. (2.4) may be approximated as [32]
3H? ~V,
3H?¢'(14+A)+V,y~0, (2.5)
and )
H' 1 Ve
=—— 8 —— : . 2.6
‘M= 2(1+A)<V> (26)
Here
A=3fsH?¢ (2.7)

measures the deviation from canonical inflation: for |A| < 1 the Galileon term produces
negligible effects. In section 3.1, we use this slow-roll approximation for ey, eq. (2.6), as a
test of the slow-roll approximation itself. For the chaotic inflation potential, ¢’ < 0 and thus
if f3 < 0 the combination of egs. (2.5) and (2.7) gives

V1—=4f3Vy—1
A=~ JsVeo . (2.8)

2

The original G-inflation model, hereafter called the “G-model,” took a constant f3 =
—M~3 so that far up the potential or at early times the Galileon term dominates, whereas
the canonical terms come to dominate as the field rolls down. The transition between the
two regimes is marked by A = 1 where V,, = —2/f3 = 2M?3 [32]. It is therefore interesting to
consider the relationship between the tensor and scalar observables as a function of A. The
scalar and tensor power spectra, under the slow-roll approximation, can be written as [32]

A26R) _ VP (1A’ (124

o 12mVE L (1444/3)%?
V
2(SR) _
ALBR = —, (2.9)

3G-inflation was originally introduced in [19, 29] as a model for inflation driven kinetically by the Galileon
field. The models discussed here, on the other hand, are potential-driven versions, first studied in [31].



where the tensor power spectrum is defined for each polarization state separately and is not
modified from its form in canonical inflation. Therefore for the same position on the potential
in field space, the G-model enhances scalar power over tensor power linearly in A for A > 1.

However, given the strong experimental constraints on the tilt, the tensor-to-scalar ratio
of the G-model should be compared to chaotic inflation at the same tilt rather than the same
field value. The scalar tilt and tensor-to-scalar ratio are defined as usual as

1_dlnAg
M T = Tk

(2.10)

=4-—1. (2.11)

For comparison to the CMB observables, these should be evaluated at k = k, = 0.05 Mpc~".
These evaluations require converting a given field value ¢ to a wavenumber k. Under slow-
roll, scalar fluctuations freeze out* when csk = aH, and therefore this relationship requires a
mapping between field values and the number of e-folds to the end of inflation AN = Ny —N.
From egs. (2.4) and (2.7),
@ Voo~
AN ~/ (14 A)7-dg. (2.12)
¢r R
Putting these relations together ref. [32] found for A > 1,

9 646 2

= _ Ve
s BAN+2° |~ 9 BAN+2°

where, by eliminating the e-folds to the end of inflation, we obtain the parametric relation

128 /2
=——/=(ns—1). 2.1
For the A <« 1 limit, one recovers the canonical chaotic predictions
1 4 16
ng—1=————-— r=_——-"

° 2AN +1°7 2AN +17

which combined give
r=—4(ns —1). (2.14)

ref. [32] noted that for a fixed e-fold, AN ~ 50 — 60, the A > 1 case has a lower r and
larger ns. However we see from egs. (2.13) and (2.14) that for the same ng, the A > 1 limit
lowers r only by a negligible factor of ~ 0.97. With recent improvements in the constraints
on both parameters, the G-model cannot cure the r-ng problem of the canonical ¢? model
given any choice of M or AN. Furthermore no smooth transition or interpolation between
these two very close forms can solve this problem either. Monomial potentials with steeper
indices than ¢? face a similar issue.

While this might seem like a no-go for simple ¢™ potentials, we will show in the following
sections that a more rapid transition between these two limits provides a solution where

4Note that the scalar sound speed is ¢s = y/2/3 for A> 1 and ¢; = 1 for A < 1 whereas the tensor sound
speed is ¢; = 1. Even in slow-roll, the freeze-out condition should in principle differ between the two as we
discuss below, but given slow variation of the expressions in (2.8) and (2.9), ref. [32] ignored these distinctions.



the scalar tilt is substantially but transiently lowered while A remains sufficiently large to
suppress r. Furthermore by allowing a more rapid transition, we automatically cure the
gradient instability problem for these models. This problem arises if the transition to A < 1
occurs after the end of inflation such that the scalar sound speed squared c? oscillates and
becomes negative during reheating. In the original G-inflation model, this restriction places a
lower limit on M [32] and an upper limit on the enhancements to the scalar power spectrum
through A. However, by making the transition more rapid, we can make it complete before
the end of inflation for any M.5

3 Potential-driven G-inflation with step

As discussed in the previous section, the phenomenological problems of the original version
of G-inflation arise because the transition to canonical inflation takes place too slowly. To
resolve these problems, we promote f3 in eq. (2.2) to be a step-like function of ¢, hereafter
called the “Step model”,

f3(¢p) = —M3 {1 + tanh (‘ﬁ_d‘bﬂ , (3.1)

where ¢, and d are new parameters of the model related to the position in field space and
the width of the step respectively. This allows us to control the epoch and the rapidity of the
transition from G-inflation to canonical inflation. By making this transition sufficiently rapid
we can evade the observational problems in the r-ns plane as well as eliminate the gradient
instabilities at the end of inflation.

3.1 Background transition

With f3(¢) given in eq. (3.1), we can numerically solve the background equations (2.4)
following the procedure explained in [32]. As discussed in section 2, the transition from G-
inflation to canonical inflation is controlled by A in eq. (2.7): namely, A evolves from A4 > 1
to A < 1, with the transition occuring at A ~ 1. For the model in eq. (3.1), the rapidity
of the transition is controlled by the step width d. Figure 1 shows the evolution of A for
different values of d with m, M and ¢, fixed to values which we will motivate below. One
can see that the transition takes fewer e-folds N for a sharp step, i.e. for a small d. In these
Step model examples IV is defined in such a way that at the end of inflation Ny = 55. We
then take N = 0 as the epoch when CMB scales or specifically k, = 0.05 Mpc™! left the
scalar sound horizon

55 cs
dN = 20 Mpc. 3.2
| S = 20npe (32)
Note that the wider the step is, the more the e-fold for which A = 1 lags N(¢,) (shown with
vertical lines), when the inflaton passes the center of the step.

With a rapid transition, we generically expect that the SR approximation will break
down. In figure 2 we show the evolution of ey for the same cases as figure 1 calculated
numerically and through the slow-roll approximation of eq. (2.6). In the slow-roll comparisons
here and below we use the numerical computation of ¢(/N) to avoid conflating errors in the
mapping of eq. (2.12) and local deviations from slow-roll at a given N. Before and after

°In [33], the addition of a kinetic X? term to the Lagrangian was proposed. This term adds a positive
contribution to ¢2, thus removing gradient instabilities. However, the effect of the Galileon term was weakened.
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Figure 1. G-inflation transition parameter A from eq. (2.7) as a function of e-folds N, for the model
given in eq. (3.1) and for the values M = 1.303 x 10™%, m = 2.58 x 1079, ¢, = 13.87 and four different
values of the step width d: d = {0.5,0.3,0.15,0.02}. Vertical lines denote N(¢,), the epoch at which
the inflaton crosses the center of the step.

the transition (but before the end of inflation), the slow-roll approximation is quite good.
Near the transition, however, fractional differences increase as d decreases (figure 2, middle
panel). Furthermore, for a rapid evolution of e, it is expected that the second SR parameter,
01 = %dg}ff — €p, be of order ~ 1, reaffirming the SR breakdown, as shown in the lower
panel of figure 2. In both cases, the SR deviations peak near the epoch when 4 =1 (vertical
lines). The rapid evolution of e and corresponding breakdown of the slow-roll approximation
requires going beyond the slow-roll approximation for the accurate calculation of scalar and

tensor observables as we shall see in the next section.

To finish the discussion on the background solutions, figure 3 shows the evolution of
the sound speed squared of scalar perturbations, c2, as a function of N (see eq. (3.4) for
details). The value M = 1.303 x 10~% of the Galileon mass scale used here is below the
lower limit obtained in [32] corresponding to the avoidance of gradient instabilities in the
G-model case. However, as expected for the Step model, we see that as long as the width
is not very large that the transition fails to complete by the end of inflation, the gradient
instabilities disappear — cg is always positive — and this holds independently of the value

of the Galileon mass scale M. Since inflation ends at ¢ ~ 1, this condition corresponds to
setting the transition ¢, sufficiently large given the width d.
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Figure 2. Exact solution for the slow-roll prediction of ey (r.h.s. of eq. (2.6)) (upper panel), fractional
difference between the solution employing the approximation in eq. (2.12) and the exact background
value (middle panel), and exact solution for the slow-roll parameter §; = %dg}f,” — e (lower panel).
All as a function of N and for the same models of figure 1. The vertical lines represent N (A = 1) for

each curve where the SR violation is nearly maximal.

3.2 Inflationary observables

In order to compute inflationary observables, we expand to quadratic order in scalar and
tensor perturbations the action for £ given in eq. (2.1):

3 .
Séz) :/d4$6l526H <<2 CQ)

a’by [ . k2
Z/fy(—;ﬂa 39
t

A=+,X



1 1 1 1
54.5 55.0 59.5 56.0

at
DL
ot
at
_\] -
(e}

e-foldings N

Figure 3. Scalar sound speed squared near the end of inflation Ny = 55 for the choice of values
M =1.303 x 1074, m = 2.58 x 1074, ¢, = 13.87 and four different values of the step parameter d:
d = {0.081,10,20,45}. Except for the widest case of d = 45, the step ensures that the transition
completes before the end of inflation, A(¢s) < 1, and eliminates the gradient instability, i.e. ¢2 > 0.

parametrized by the sound speeds c,; and normalization factors bs; for scalar and tensor
perturbations which contain all the information coming from the Horndeski framework [41].
For the choice given in egs. (2.2) these parameters can be computed as®

_ 2 H — 24 H — it

bs -
° A + 92 ’

by =1, =1,
where
p =2H — fsH¢”,

3
prg = —9H? — 3f3 yH ¢ + 5 (1+12H% f3¢') H?¢'. (3.5)

Notice that, for the choice of egs. (2.2), the tensor action is not modified from that of canonical
inflation.
Varying the quadratic actions given in egs. (3.3) we arrive at the Mukhanov-Sasaki

equation
02 + (cik T u; =0. (3.6)

Here and below 7 is the (positive, decreasing) conformal time until the end of inflation, and
i = s,t for the scalar and tensor perturbations respectively. We define the Mukhanov-Sasaki

SFor the general case in which none of the G, functions are taken to be equal to zero see [19, 32].



variable as us = 25¢ and u; = 2y with

vV 2bg b
zs:aieH, Zt:g\/gt’ (3.7)
t

Cs

for the quadratic actions in eq. (3.3).

As shown in figure 2, for the Step model with a small step width we cannot apply the
slow-roll approximation to solve eq. (3.6) due to the fact that the slow-roll conditions are
violated near the transition where A ~ 1. We instead solve this equation numerically from
Bunch-Davies initial conditions to compute the power spectra as

A2(k) = lim k—qu?
¢ k0 272 ’
K3 2
2 _ .
AL(k) = lelgo ﬁ"ﬁr,X‘ ’ (3.8)

which define the inflationary parameters ns(k) and r(k) through eq. (2.11).

We now construct a working example of transient G-inflation in order to examine its
observable phenomenology further. With the convention that the CMB mode exits the scalar
sound horizon 55 e-folds before the end of inflation, the Step model has four remaining free
parameters: the mass scales M and m, and the step parameters ¢, and d. The inflaton mass
scale m mainly controls the Hubble rate and hence the amplitude of the power spectra. We
choose it to satisfy the Planck 2015 TT+lowP measurement of the scalar amplitude As =
Ag(k*) = (2.198 £ 0.08) x 1077 [1]. For a fixed m, the Galileon mass scale M determines A
when the CMB mode leaves the horizon, which sets the tensor amplitude relative to the scalar
amplitude. We therefore fix it according to the desired suppression of 7, for example A(0) =~ 8.
Finally, the step parameters ¢, and d are determined by the Planck 2015 TT+lowP scalar tilt
ns = 0.9655+0.0062 and bounds on the running of the tilt oy = —0.0084+0.0082. With four
constraints for four parameters, we use slow-roll expressions to find initial parameter guesses
which satisfy these conditions and then iterate using numerical results for the background
and power spectrum (see section 4) to enforce the Planck constraints beyond slow-roll.

Our resulting fiducial model has the parameter values M = 1.303 x 1074, m = 2.58 x
1076, ¢, = 13.87, which are the choices in figures 1-3, and d = 0.086, which satisfies the
observational constraints on ns and as. Comparing to figures 1 and 2, we see that this model
has a relatively fast transition and a moderate violation of slow-roll at the transition. For this
set of parameters, we show the resultant scalar power spectrum in figure 4 as computed by
solving numerically the Mukhanov-Sasaki equation (3.6) and compare that to the SR formula
in egs. (2.9) using the numerical relationship for ¢(N) with kcs/aH = 1 (upper panel). The
discrepancy, which is quantified as the fractional difference between the solutions and shown
in the lower panel, is similar to the error in €p, as shown in figure 2, in that they both peak
near the transition where A =~ 1. On the other hand, the slow-roll approximation captures
the qualitative behavior of the power spectra and errs mainly in causing a shift in the scale k
at which the transition occurs. We shall see in the next section that the optimized evaluation
of slow-roll parameters can restore accuracy in the CMB regime by correctly fixing this shift.

We can now see how introducing a more rapid transition from G-inflation can solve
the observational problem of having too large r for the observed ns. Namely, the transition
mediates a suppression of the power spectrum or a larger red tilt 1 — ng than predicted by
the slow-roll formula in section 2.
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Figure 4. Scalar power spectrum for the Step model computed by solving numerically eq. (3.6)
(stars) and by computing eqgs. (2.9) with the exact background solutions (dashed orange) (upper
panel). Fractional difference between the two solutions (lower panel). The set of parameters used
here is M = 1.303 x 1074, m = 2.58 x 1075, ¢, = 13.87 and d = 0.086. The vertical thin line marks
the CMB scale k, = 0.05 Mpc—!.

In figure 5 we show the parametric relationship between r and the ns for same model.
The step model starts at the lower right on the G-model curve but deviates sharply to a
lower tilt at the transition before returning to the chaotic inflation curve. In this way, the
step solves the observational problem of having a low r and a relatively large red tilt ns, < 1.
Note that in figure 5 the wavenumber k varies along the curve and so only represents the
CMB pivot scale at a single point represented by the star. This model satisfies observational
bounds on r and ng, unlike the G-model and chaotic inflation.

Figure 6 depicts the same (ng,r) plane but now for the fixed pivot scale k.. For the
G-model and chaotic inflation we show the mapping at AN = 50, 60 to provide a reasonable
range of possibilities as in ref. [32], whereas for the Step model we keep AN = 55. The
Galileon mass scale M varies across the curves, where the black star marks the fiducial model
M = 1.303 x 10~%, and superimposed are the constraints from the 2015 release of the Planck
collaboration [1]: we separately consider the full temperature auto-correlation spectrum at
all multipoles with the polarization spectra at low multipoles only (Planck TT+lowP) plus
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Figure 5. (n,,r) plane for the three models studied here: chaotic inflation (2.14), G-model (2.13) and

the Step model with the values M = 1.303 x 1074, m = 2.58 x 1076, ¢, = 13.87 and d = 0.086. The

wavenumber k varies along the curve in which case the star marks the CMB scale k, = 0.05 Mpc—!.

the joint results of the Bicep2/Keck and Planck collaborations (BKP); as well as the Planck
TT+lowP + BKP combination with Baryon Acoustic Oscillation (BAO) measurements.

As previously discussed, one can see that while the canonical chaotic and G- models
are in tension with the latest measurements, the Step model allows for a parameter space
of values for M which are in good agreement with the data. Following the methodology
explained above, for a given value of M, the inflaton mass m is fixed to obtain the correct
scalar amplitude, while the step parameters ¢, and d are chosen to keep ns and «; fixed.
Here we have chosen ag =~ —0.01. Making M smaller allows the Step model to lower the
value of r while the transition keeps the CMB scales sufficiently red-tilted.

Furthermore, by varying M away from the fiducial value we encounter two endpoints.
As M, and hence r, decreases, the increasing value of A(0) combined with the requirement
that A < 1 at the end of inflation, places a lower limit on |o| for a given ng. This lower
limit exceeds |as| = 0.01 at r ~ 0.005 explaining the lower endpoint in figure 6. On the other
hand, for large M, CMB scales are no longer in a fully G-inflationary phase so that ¢, and
d can also no longer be adjusted to match ns; and, more importantly, as &= —0.01.

As one might expect, taking a smaller value of |ag|, which still satisfies the Planck
constraint, enables a less restrictive upper endpoint that eventually joins with the chaotic
or G-model curves. A smaller |as| also implies a wider step and increases the lower limit
on r from requiring the transition complete before the end of inflation. A larger |a| would
have the opposite effects but would begin to be in tension with Planck constraints. We thus
conclude that for the Step model r > 0.005, and at the lowest r-value |as| > 0.01, so that
tensors and potentially scalar running should be observable with next generation surveys.
We comment further on the latter in section 4.2.

For these observationally viable cases, perturbations on CMB scales were frozen in at
the very beginning of the transition. As we shall see next, this implies that CMB observables
can be accurately predicted by the OSR approximation which takes into account the variation
of the slow-roll parameters.

- 11 -
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Figure 6. 68% and 95% CL allowed contours from Planck TT + lowP+ BKP and from Planck TT +
lowP + BKP + BAO in the (ns,r) plane along with the predictions for the canonical chaotic inflation
model, the G-model (both for AN = 50 and AN = 60) and the Step model (AN = 55). In both
noncanonical cases, M is let to vary from 107 to 5 x 1073, where a smaller M value is associated
with a smaller value in 7. The black star marks the fiducial-model value M = 1.303 x 10~*, whereas
M =6.8x107* (M = 5x 107°) for the upper (lower) orange stars endpoints determined by requiring
the scalar running as =~ —0.01. Other Step model parameters are fixed by measurements of A; and
ns as described in the text.

4 Generalized slow-roll

In the previous section we have seen that, by introducing a rapid transition from G-inflation
to canonical inflation that completes shortly after the CMB scales leave the horizon, we can
avoid the observational problems associated with the original G-model. At the transition,
the breakdown of the slow-roll approximation requires numerical solutions for full accuracy,
especially for large and sharp steps. On the other hand, CMB scales in observationally viable
cases are associated with the very beginning of the transition where there is a much milder
breakdown of slow-roll. For CMB observables it is therefore possible to develop a better ver-
sion of slow-roll that is analytic or semi-analytic. This also helps clarify the phenomenology
of the Step model and assists in parameter estimation from the observational data.

Techniques to handle such cases have already been developed for the effective field
theory (EFT) of inflation [39, 41], including the Horndeski theory to which our Step model
belongs: first the GSR formalism [34-40] allows for formally solving the Mukhanov-Sasaki
equation (3.6), in which only the size, but not the evolution, of the slow-roll parameters is
required to be small. When the evolution is also slower than the e-folding scale, GSR itself
can be systematically expanded in the OSR approximation which fixes the evaluation point
of the slow-roll parameters to obtain fully analytic solutions. Since this is the case for the
Step model at the beginning of the transition, the OSR approximation is accurate for this
model at CMB scales.
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Figure 7. Approximations for the scalar power spectrum of the Step model compared with the exact
numerical solution as in figure 4: SR (2.9), GSR (4.6), and OSR (4.9). The thin red vertical line marks
the CMB pivot scale k, = 0.05 Mpc~! where GSR and OSR provide a highly accurate description.

4.1 GSR

We can rewrite the Mukhanov-Sasaki equation (3.6), as
d’y 2 fox =3fx ¥y
_ < 1 o — s XX sX < 41
T ( x) y=LoZdad (4.1)

by defining the new variables y = /2¢;ku;, * = ks;, x = Inz, for i = s,t with separate source

functions
bsegcs aHs
fs = 2mzgy/cs55 = 1/ 872 S;‘; & . <
tht (IHSt
= 272/ =4/2 2 4.2
Tt TZiN/ CtSt ™ H2 ¢ (4.2)

N) = Y ot AN 4.3
Ss,t( ):/N a7H ) ( : )

and sound horizons

for scalars and tensors, respectively.
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Notice that the left-hand side of eq. (4.1) corresponds to the evolution of the modefunc-
tions in a de Sitter background and thus the right-hand side encodes deviations from the de
Sitter solution into the function f. So far we have not made any assumption for the evolution
of ey or the other slow-roll parameters. In these variables the power spectra, egs. (3.8), are

J S,t

If deviations from de Sitter remain small in amplitude, eq. (4.1) can be solved iteratively
using Green function methods. Starting with the de Sitter solution of the left-hand side of
eq. (4.1), i.e. the Bunch-Davies vacuum,

Ag = lim

o z—0

(4.4)

yo(z) = (1 + ;) e (4.5)

we can take y — yo on the right-hand side of eq. (4.1) to obtain the first-order iterative
solution (see, e.g., [36] for details),

* dz
In A2(GSR) o _ /O S @G () (4.6)

where W (x) is a window function given by

3sin(2x)  3cos(2z) 3sin(2x)
W)= "F 5= — =5~ =5 (47)

and G(x) is a source function that now encodes all the deviations from the de Sitter solution
and it is written as

G=-2Inf+ % (Inf), - (4.8)

The GSR formula, eq. (4.6), still requires numerical integration, though it remains more
computationally efficient than solving eq. (3.6). Moreover, the source function G provides a
model-independent means to connect observational constraints with any inflationary model
in the EFT class [43, 44]. The scalar tilt ns and higher order running coefficients can also be
efficiently computed numerically by taking derivatives of eq. (4.6) with respect to the scale k.

In figure 7, we compare the GSR approximation to the numerical solution for the same
model as in figure 4. GSR provides accurate predictions for the scalar power spectrum along
all values of k and only deviates slightly at the transition due to its large amplitude, which
can be improved if desired by iterating to higher order. At CMB sales of k, = 0.05 Mpc~!,
the approximation is accurate at the ~ 0.01% level whereas SR deviations are at 7% level.

4.2 OSR

At CMB scales, the source function in eq. (4.8) evolves only over timescales greater than an e-
fold (AN > 1) as shown for €j in figure 2. In this case we can Taylor expand the GSR formula,
eq. (4.6), around a given evaluation epoch to write down approximate analytical formulas
for the power spectra, their tilts and runnings. For the traditional slow-roll expansion, the
evaluation epoch is chosen as the horizon exit epoch. However, we can optimize it to minimize
an error associated with truncation of the Taylor expansion (see [39, 41] for details). We
can then construct the hierarchy of running of power spectrum parameters out of slow-roll
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parameters associated with the functions H, bs; and ¢, ;. The OSR formulas which take into
account a general background given by eq. (2.1) can then be written to leading order as [39, 41]

H? 1 2 1
In A; 2(05R) 1y () - EGH — 501 — Zasl - 5551

Sm2bscsery 3 3 3 P—
2 7
nS(OSR) — 1~ —46H — 2(51 — O0g]1 — 651 — 52 — —0g9 — {SQ y (4.9)
3 3 r=1,
7 1
(OSR) ~ —209 — 042 — €0 — *(53 —E€s3 — 86%{ — 10egd1 + 2(5% ,
3 37873 =
for scalar, and
H? 8 7 1
In A2(OSR) ~ ) — ey — -0y — =
. v . 27‘(’2tht 36H 3Ut1 3£t1 T=x1 ’
7
O ~ ey —on — En — o — 6| (4.10)
3 37 =y
7
O ~ gy — & — zouy — §t3 — de}y — depy ;
3 =1
for tensor perturbations. Here Inz = Inz; = 1.06 is the optimized evaluation point,
a; = dn;/dInk is the running of the tilt, and the slow-roll parameters are defined as:
ldlneyg dé
5155 N —€H, 5p+15d—]\€+5p(61—p61{),
dIng; do;,
O-/L"l = dN 9 Ji,p‘f’l = d;\[p ) (411)
_dlnb; d&ip
§il =gy Siptl = N

where i = s,t and p > 1

Finally, the tensor-to-scalar ratio can be computed in the standard way through
eq. (2.11). Note however that the ratio is taken at fixed k which in general gives the = = z
evaluation point at two different NV for scalars and tensors, in which case the sound speeds ¢,
and ¢; differ. Figure 7 shows that although the OSR solution for the scalar power spectrum
is slightly less accurate than GSR, it is still a very good approximation with only ~ 0.6%
level deviations at k. = 0.05 Mpc~! (marked by the thin red line).

Furthermore the hierarchy of OSR coefficients A, = A (OSR)(k*), ns(ky) and as(ky)
define a local characterization of the scalar power spectrum in the usual way:

(4.12)

¢

ns—1+Las In(k/ks
A2(SRH)(k):AS<k> zasIn(k/ )‘

ke

In figure 8, we show that for the decade below or above the pivot scale k., this three-parameter
approximation works extremely well with errors less than 1%. This means that observational
data in this regime can be analyzed with the usual hierarchy parameterization so long as the
implications for inflationary model are extracted from the OSR relations. For example, in
the fiducial Step model, agOSR)(k*) = —0.011 can be compared with the Planck temperature
power spectrum constraint of a; = —0.0084 £ 0.0082 [1]. Unlike the traditional expansion of
the SR approximation to second order in parameters, OSR can accurately relate inflationary

models to the SRH observables in such cases when |as| is of order |ng — 1| [39].
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Figure 8. Slow-roll hierarchy (SRH) parameterization, eq.(4.12), of the scalar power spectrum with
amplitude A;, tilt ns and running of the tilt a; evaluated at k. (thin red line) using OSR compared
with the exact solution as in figure 4. The three hierarchy parameters provide a good description for
more than two decades around k..

Finally as discussed in section 3.2, the step model allows for a possible range of values
of the running a, for a given value of r. For |as| to be small, the transition must be
wide, and enforcing that the transition completes before the end of inflation places a lower
bound on |as|. For instance, for » = 0.02, this corresponds to the constraint |as| = 0.002.
Furthermore, this lower bound on |a;| increases as r decreases as the model must transition
from an increasingly enhanced scalar power spectrum within the ~ 55 e-folds to the end of
inflation; at r = 0.005, |as| 2 0.01.

5 Conclusions

G-inflation provides the possibility that inflation is driven by simple potentials, like the mass
term of chaotic inflation, but with more complex kinetic interactions, while still satisfying
observational constraints on the scalar and tensor power spectra. We show that this is not
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possible with just a cubic Galileon interaction with a constant mass scale since the transition
from G-inflation to canonical inflation is too slow, leading to a scalar power spectrum that is
either too small relative to the tensors or too close to scale invariant. In addition, failure to
complete the transition by the end of inflation leads to gradient instabilities during reheating.
By introducing a sufficiently rapid step-like transition, we simultaneously solve both the
phenomenological and instability problems of potential driven G-inflation. Although we
chose the m?¢? model of chaotic inflation, steeper monomial potentials also suffer from the
same problems which can be solved in the same way.

While a fast transition inevitably leads to a breakdown of the traditional slow-roll ap-
proximation at the peak of the transition, we show that for phenomenologically viable models,
fluctuations on CMB scales freeze out near the beginning of the transition. By comparing
exact numerical solutions with the generalized slow-roll approximation and its optimized
expansion, we show how to accurately relate the properties of the G-step model, such as
the position and width of the step and two mass scales, to the power spectrum observables
through the slow-roll parameters. In particular, across the scales that are currently pre-
cisely measured by the CMB and large-scale structure, the scalar power spectra can still be
described by an amplitude Ay, tilt ny; — 1 and running of the tilt «.

However the negative running of the tilt can be of order of ng — 1 itself unlike in the
traditional slow-roll approximation and necessitates the OSR approximation for its evalua-
tion. In fact for a given tensor-to-scalar ratio r, there is a lower bound on |ag| since the
transition must complete within the ~ 55 e-folds to the end of inflation to avoid gradient
instabilities. While the required relatively large running of the tilt can satisfy current con-
straints if r 2 0.005, it is potentially detectable with future high precision measurements and
also suppresses smaller scale structure in observable ways.
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In the framework of effective field theories with prominent helicity-O and helicity-1 fields coupled to
each other via a dimension-3 operator, we study the dynamics of inflation driven by the helicity-0 mode,
with a given potential energy, as well as the evolution of cosmological perturbations, influenced by the
presence of a mixing term between both helicities. In this scenario, the temporal component of the helicity-1
mode is an auxiliary field and can be integrated out in terms of the time derivative of the helicity-0 mode, so that
the background dynamics effectively reduces to that in single-field inflation modulated by a parameter
associated to the coupling between helicity-0 and helicity-1 modes. We discuss the evolution of a longitudinal
scalar perturbation y and an inflaton fluctuation 6¢, and we explicitly show that a particular combination of
these two, which corresponds to an isocurvature mode, is subject to exponential suppression by the vector
mass comparable to the Hubble expansion rate during inflation. Furthermore, we find that the effective single-
field description corrected by /3 also holds for the power spectrum of curvature perturbations generated during
inflation. We compute the standard inflationary observables such as the scalar spectral index n, and the tensor-
to-scalar ratio r and confront several inflaton potentials with the recent observational data provided by Planck
2018. Our results show that the coupling between helicity-0 and helicity-1 modes can lead to a smaller value of
the tensor-to-scalar ratio especially for small-field inflationary models, so our scenario exhibits even better

compatibility with the current observational data.

DOI: 10.1103/PhysRevD.99.023505

I. INTRODUCTION

Inflation [1,2] provides a causal mechanism for generating
primordial density perturbations responsible for large-scale
structures of the Universe [3]. Moreover, the temperature
anisotropies observed in the cosmic microwave background
(CMB) are overall consistent with the prediction of the
inflationary paradigm [4—6]. It is anticipated that the possible
detection of B-mode polarizations in the future will offer the
opportunity to identify the origin of inflation.

The simplest candidate for inflation is a new scalar field
¢ beyond the Standard Model subject to a particular
potential V(¢). As long as the field evolves slowly along
a nearly flat potential, the primordial power spectra of
scalar and tensor perturbations generated during inflation
are close to scale invariant [7]. The deviation from scale
invariance, characterized by the spectral index n; and the
tensor-to-scalar ratio r, depends strongly on the assumption
about the inflaton potential. Using the bounds of n, and r
constrained from the CMB data, one can distinguish
between different inflationary models [5,6,8—11].

A cosmological accelerated expansion can be driven not
only by a scalar field but also by a vector field. Indeed,
the accelerated solutions were found in Refs. [12,13] in

2470-0010/2019/99(2)/023505(14)

023505-1

traditional vector-tensor theories; however, they are generi-
cally plagued by instabilities [14—16]. In the so-called
generalized Proca theories where an Abelian vector field
with broken U(1) gauge symmetry has derivative self-
interactions and nonminimal couplings to gravity [17-19]
(see also Ref. [20]), the existence of a temporal vector
component A, can give rise to de Sitter solutions. Indeed,
the generalized Proca theories are very successful for
describing the late-time cosmic acceleration [21,22].

On the other hand, there are also mechanisms for
realizing the cosmic acceleration by using spacelike vector
fields [23,24]. Naively this configuration is not compatible
with an isotropic cosmological background, but the rota-
tional invariance can be preserved by considering three
orthogonal vector fields aligned with three spatial direc-
tions. Indeed, three vector fields Aj nonminimally coupled
to the Ricci scalar R in the form RAjA“ can lead to
inflation [25], but such accelerated solutions are plagued by
either ghosts or Laplacian instabilities [26]. Non-Abelian
gauge fields with SU(2) gauge symmetry can also be the
source for inflation without instabilities [27,28], but the
scalar spectral index n, and the tensor-to-scalar ratio r are
not compatible with the CMB data [29,30]. There exists an

© 2019 American Physical Society
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inflationary scenario driven by a nonminimally coupled
non-Abelian gauge field [31], but the tensor perturbation is
subject to ghost instabilities [32].

Efforts have also been made to construct well-behaved
inflationary models in the presence of vector fields but
where, as in the standard case, the main source for the
accelerated expansion is a scalar field ¢. It is of particular
interest in the case where this field is coupled to an Abelian
vector field A e It is known that, for this type of scenario, a
stable inflationary solution with an anisotropic hair exists
for the coupling of the form f2(¢)F,, F*, where F,, =
V,A, —V,A, is the field strength tensor with a covariant
derivative operator V,, [33]. The same coupling has often
been used for the generation of magnetic fields during
inflation [34,35], but in such cases the models need to be
carefully constructed to avoid the backreaction and strong-
coupling problems [36—40].

Moreover, in the presence of a real scalar field ¢ and a
vector field A, with derivative self-interactions and non-
minimal couplings to gravity, the general action of scalar-
vector-tensor (SVT) theories was recently constructed by
keeping the equations of motion up to second order [41]. In
particular, the massive vector field with broken U(1) gauge
symmetry is relevant to the cosmological application. In
this case, the vector perturbation is subject to exponential
suppression by the mass of A,,.

Among the possible interactions between scalar and
massive vector fields, and in particular for inflation, the
coupling A*V ¢ is the simplest one modifying the inflaton
velocity, g?), during the cosmic expansion. This interaction is
not only present in SVT theories but arises in many
effective field theories as one of the lowest-order operators,
once the involved broken gauge symmetries are compen-
sated by the introduction of appropriate Stiickelberg fields.
In addition, the vector-field contribution to the total energy
density during inflation is subdominant relative to the
scalar potential V(¢), yet the modification to the inflaton
velocity induced by the vector field can affect the primor-
dial power spectra of scalar and tensor perturbations. See
Ref. [42] for a recent review on the systematic construction
of modified gravity theories based on additional scalar,
vector, and tensor fields (see also [43]).

For the aforementioned type of interaction, A*V ﬂq’), there
exists a longitudinal scalar perturbation, y, arising from A ,,
besides the inflaton fluctuation 6¢ [44-46]. This longi-
tudinal perturbation contributes to the total curvature
perturbation R in a nontrivial way. Therefore, the compu-
tation of the primordial power spectrum, incorporating both
v and O¢, is not as straightforward as in the standard
canonical case. In this paper, we address this problem and
derive the standard inflationary observables such as n, and
r under the slow-roll approximation. We show that, as in
the canonical case, one can relate these observables with
slow-roll parameters but with a rescaling factor f coming

from the helicity-0 and helicity-1 mixing. Using these
general expressions, we then confront several different
inflaton potentials with the recent CMB data provided by
the 2018 results from the Planck Collaboration [6].

This paper is organized as follows. In Sec. II, we discuss
the background inflationary dynamics and show that the
system effectively reduces to that of a single-field inflation.
In Sec. III, we revisit the primordial tensor power spectrum
generated in our scenario and also study the evolution of
vector perturbations during inflation. In Sec. IV, we inves-
tigate how the perturbations y and d¢) evolve during inflation
and obtain the resulting power spectrum of total curvature
perturbations. In Sec. V, we compute inflationary observ-
ables and test several inflaton potentials with the latest
Planck 2018 data. Section VI is devoted to conclusions.

II. INFLATION WITH A SCALAR-VECTOR
COUPLING

In many effective field theories, mixings between differ-
ent helicity modes, even with derivative interactions, arise
in a natural way. In massive gravity and massive Proca
theories, the decomposition of helicities yields interesting
couplings among them [17,19,47]—this, in fact, motivated
the construction of SVT theories [41]. The particular
mixing of the form A#V ¢ arises quite naturally and is a
unique coupling that modifies the involved propagators of
scalar and vector fields. As we will see below, one possible
origin of this coupling is the standard Proca mass term,
which modifies the property of the propagator by the mass
parameter.

Let us consider, for instance, the Lagrangian of the
standard Proca field:

Ly = lF Fr 1MZA AF (2.1)

A, T T 4 Hv - 2 plt - .

The existence of the mass term M explicitly breaks the U(1)

gauge symmetry and therefore the massive spin-1 field

propagates 3 degrees of freedom. Since the gauge invariance

is just a redundancy, one can restore it by introducing a

Stiickelberg field ¢ via the field transformation

A, = A, +V,0. (2.2)

The initial Lagrangian for the massive spin-1 field (2.1) then
modifies to

1 1
,CA)‘ =——F,F"— EMZ(Aﬂ + V,0)(A* + Vi),

4w (23)

Notice that the kinetic term —F,, F** /4 is not modified under
this change of variables since it is gauge invariant. Here, the
helicity-0 field ¢ represents the longitudinal mode of the
massive vector field. Written in this form, the standard
Proca theory is now invariant under the simultaneous

023505-2



INFLATION WITH MIXED HELICITIES AND ITS ...

PHYS. REV. D 99, 023505 (2019)

transformations A, = A, +V,0 and ¢ — ¢ —0. After
canonically normalizing the Stiickelberg field ¢ — ¢/ M,
the Lagrangian becomes

1 1 1
L:A :—ZFW/F} _EMZAﬂA”_EVﬂqu”gb

p

— MA*V . (2.4)
The last term is exactly the coupling we are interested in. This
Lagrangian constitutes our low energy effective field theory.

In the following, we will consider a soft breaking of the
shift symmetry of the helicity-0 mode and introduce a
scalar potential V(¢) of the real scalar field ¢ for the
purpose of realizing a successful inflationary scenario. Bear
in mind that any UV completion will unavoidably intro-
duce the breaking of global symmetry anyway. Our setup
consists in an inflationary scenario in which the inflaton
field ¢ has a derivative interaction with a massive vector
field A* of the form A*V ¢, equivalent to that in Eq. (2.4).
The inflationary period is mostly driven by the scalar
potential V(¢), but the scalar-vector coupling modifies the
dynamics of inflation and the primordial power spectra of
cosmological perturbations. We then focus on the action’

2
S= /d4x\/:§{ﬁ/;mR+F+X1 -V(9)

+ puM X, + ﬂAM2X3], (2.5)

where ¢ is the determinant of a metric tensor g,,, M, is
the reduced Planck mass, R is the Ricci scalar, and
F =—(1/4)F,F*. The quantity X, is the scalar
kinetic energy X; = —(1/2)V,¢V¥¢p, while X, and X;
are defined by

1 1
X2 - —EAﬂvﬂdh X3 - —EAﬂA”. (26)

In the last two terms of Eq. (2.5), M is a positive constant
(mass of the vector field) relevant to the mass scale of
inflation, and f,, and f, are dimensionless constants

"It is worth emphasizing that this model propagates 6 degrees
of freedom: 2 as in standard GR, 3 from the massive vector field,
and 1 from the scalar field. The Proca Lagrangian in (2.1) written
as (2.4), on the other hand, propagates only 5 degrees of freedom
(including gravity). After introducing the Stiickelberg field, the
Proca vector field becomes gauge invariant and the longitudinal
mode of the initial Proca field is transformed into the Stiickelberg
field itself. By including a general potential term for the scalar
field, we explicitly break the previously restored gauge symmetry
(or the related shift symmetry of the scalar field) and the theory
propagates one more degree of freedom. This serves just for
illustrative purposes, namely, that the operator A*V,¢ is a
Hermitian operator.

associated with the scalar-vector mixing and the vector
mass, respectively.

To discuss the background dynamics of inflation, we
consider the flat Friedmann-Lemaitre-Robertson-Walker
(FLRW) spacetime described by the line element ds®> =
—d* 4 a*(1)5;;dx'dx’, where a(r) is a time-dependent
scale factor. The vector-field profile compatible with this
metric is of the form A, = (A((¢).0,0,0), with a time-
dependent scalar field ¢ = ¢(¢). The background equa-
tions of motion in full parity-invariant SVT theories were
already derived in Refs. [44,45]. For the action (2.5), they
are given by

1. 1
3M2H? = 5¢2 +V- 5ﬁAMZAg, (2.7)

| .
—2MLH = ¢ + 5 PnMpAo. (2.8)

. . 1 .
-+ 3H+V g+ 5 MP, (Ao +3HA) =0, (29)

AO - _ ﬂm
204M

b, (2.10)

where H = a/a is the Hubble expansion rate, a dot
represents a derivative with respect to cosmic time ¢, and
V 4 = dV/d¢. From Eq. (2.10), we notice that the temporal

vector component A, is simply proportional to qﬁ
Substituting Eq. (2.10) into Egs. (2.7)—(2.9), we obtain

1 .

3M2H? = 3 B’ +V, (2.11)
- 2M%4H = B’ (2.12)

.. -V
¢+3H¢+7=O, (2.13)

where we have defined

B

p=1-"-. 2.14

The coupling S is different from 1 due to the mixing term
B,,- This leads to the modified evolution of ¢ compared to
the standard case (f = 1).

In Refs. [44,45], the authors derived conditions for the
absence of ghost and Laplacian instabilities of linear
cosmological perturbations in the small-scale limit. The
propagation speeds of tensor, vector, and scalar perturba-
tions are all equivalent to that of light for the theory given
by the action (2.5). The no-ghost conditions of tensor and
vector perturbations are trivially satisfied, while the scalar
ghost is absent under the condition
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0= g - > @15
and hence 43, > f32, > 0. Then, the coupling (2.14) lies in
the range

0<p<l. (2.16)
From Eq. (2.13), the nonvanishing mixing term fj,, effec-

tively leads to a faster inflaton velocity.
Employing the slow-roll approximations ﬁ(}b /2<KV

and |¢| < |3H¢| in Egs. (2.11) and (2.13), it follows that

SMAH? =V, (2.17)
14
3Hp ~ —74’ (2.18)

The slow-roll parameter associated with the cosmic expan-
sion rate is given by

H €V
=— , 2.19
TTHTp (2.19)
where we used Eq. (2.12), and we define
M2 (V42
P
=— =) . 2.20
€y 2 < % ) ( )

The existence of the nonvanishing mixing term f,, breaks
the relation € ~ ¢y in standard inflation. The field value
¢ = ¢y at the end of inflation can be derived by the
condition e(¢p;) = 1, i.e.,

ev(gr) = P. (2.21)

The number of e-foldings counted to the end of inflation is

given by
o H -~
N= / "Ldp~

where, in the last approximate equality, we again used the
slow-roll approximation. For smaller f, the number of
e-foldings gets smaller with a given initial value of ¢.
This is attributed to the fact that the inflaton velocity is
effectively increased by the nonvanishing coupling f,,,.

If we introduce a rescaled field ¢ defined by

=B (2.23)

—dqb

(2.22)
¢f Vi b

then Egs. (2.11)—(2.13) reduce, respectively, to

1
3MLH? = E(bz +V, (2.24)

—2M%H = ¢, (2.25)
@+3Hp+V,=0. (2.26)

This means that the background dynamics in the presence
of ¢ and Ay x ¢ is equivalent to the effective single-field
dynamics driven by the scalar field ¢. From Eq. (2.23), we

have ¢ = ¢/+/P, so the inflaton ¢ evolves faster than the
rescaled field ¢ for f3,, # 0.

III. TENSOR AND VECTOR PERTURBATIONS

In this section, we revisit the tensor power spectrum
generated during inflation [44,45] and also discuss the
evolution of vector perturbations in SVT theories given by
the action (2.5).

A. Tensor perturbations
The perturbed line element containing intrinsic tensor
modes h;;(t,x') on the flat FLRW background is given by
ds} = —dt* + a*(1)(5;; + h;j)dx'dx’, (3.1)
where h;; obeys the transverse and traceless conditions
Vih;; =0 and h;' = 0. From Eq. (3.2) of Ref. [44], the

second order action of £;;, for the theory given by Eq. (2.5),
is the same as that in GR, i.e.,

3
S T
(3.2)

where the symbol J represents the spatial partial derivative.
In Fourier space with the coming wave number k, the
equation of motion of &;; is given by

2

. . k
hij+3Hhij+?hij:O~ (33)

Deep inside the Hubble radius (k/a > H), the tensor
perturbation is in a Bunch-Davies vacuum state, whereas
after the Hubble exit (k/a < H) during inflation, /;; soon
approaches a constant. Taking into account two polariza-
tion states, the primordial tensor power spectrum (per unit
logarithmic wave number interval) generated during infla-
tion yields [44]

2H?
Pi=r|

(3.4)
”2M12>1 k=aH
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which should be evaluated at the Hubble exit. By using the
slow-roll approximation (2.17), Eq. (3.4) can be expressed
in terms of V as

2V

~—— . (3.5)
' 377"2Mgl k=aH

B. Vector perturbations

For the vector sector, we choose the perturbed line
element in the flat gauge
ds% = —dlz + ZV,-dtdxi + az(t)éijdxidxj, (36)
where the vector perturbation V;(z, x') obeys the transverse
condition V'V; = 0. The spatial component of A 4 contains
the intrinsic vector mode Z; and the longitudinal scalar
perturbation v, such that
Ai=Z+Viy, (3.7)
where Z; obeys the condition V'Z; = 0. In this section, we
study the evolution of vector perturbations Z; during
inflation, leaving the analysis of scalar mode y for Sec. IV.
Without loss of generality, we can choose the compo-
nents of V; and Z; in the forms V; = (V(z,z), V,(t,2),0)
and Z; = (Z,(1.z), Z,(t.z),0). After integrating out the
nondynamical field V;, the second-order action of vector
perturbations reduces to [44]

2
§¢ = [aaxy 3|z tozp-parz]. os)
= a

Then, in Fourier space, the dynamical perturbation Z;
obeys

.. . k2
Z,+HZ,+ (;—.—ﬂAMZ)ZI :0, (39)
which can be written as
Z;, —|— <k2 + a2ﬂAM2)Z,- = 0, (3]0)

where a prime represents the derivative with respect to the
conformal time 7 = [ a~'dr. For the modes satisfying the
condition k* > a’f,M?, the perturbation is in a Bunch-
Davies vacuum state characterized by Z; = ¢~*7/1/2k. On
the other hand, after the mass term a8, M?* dominates over
k* during inflation, we solve Eq. (3.9) for Z; under the
conditions that H = constant and that k*/a? is negligible
relative to B,M?. We then obtain the following solution:

Z;=A, e +A_eM, (3.11)

where A, are integration constants, and

=1/
S

4ﬂAM2] . (3.12)

H2

Since 4 > 0, the vector mass term leads to the exponential
suppression of Z; after the perturbation enters the region
k*/a*> < f4M?. The term in the square root of Eq. (3.12)
becomes negative for 48, M?> > H>. Now, we would like to
consider the case in which M is of the same order as the
Hubble expansion rate H during inflation. Then, for the
coupling

(3.13)

the condition 48,M? > H? is satisfied. In this case, the
amplitude of Z; decreases as

|Z;| o e~H1/2, (3.14)
with damped oscillations. Then, the vector perturbation
decays very fast once it enters the region k*>/a> < p,M>.
Since B,M? is of the same order as H?, this exponential
suppression starts to occur around the same moment of the
Hubble exit (k*/a*> < H?).

In the following, we focus on the coupling 3, of order 1.
Then, the amplitude of vector perturbations at the end of
inflation is completely negligible relative to those of tensor
and scalar perturbations, so we can ignore the contributions

of vector perturbations to the total primordial power
spectrum.

IV. PRIMORDIAL SCALAR POWER SPECTRUM
GENERATED DURING INFLATION

Let us proceed to the derivation of the scalar power
spectrum generated in our model given by the action (2.5).
In doing so, we begin with the perturbed line element on the
FLRW background in the flat gauge:
ds? =—(142a)dr* +2V ydtdx' + a*(1)5;;dx'dx/, ~ (4.1)
where a and y are scalar metric perturbations. We decom-

pose the scalar field ¢ into the background and perturbed
parts as

¢ = go(t) + 8p(1. x). (4.2)
In the following, we omit the subscript “0” from the
background value of ¢. The temporal component of A
is expressed in the form

A = —A (1) + SA(1, x1), (4.3)
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whereas the spatial vector component A; contains the
longitudinal scalar perturbation y as Eq. (3.7).

The second-order action S5~ of scalar perturbations was
already computed in full parity-invariant SVT theories [44].
In our theories given by the action (2.5), we show the
explicit form of ng) in Eq. (A1) of the Appendix. Varying
the action S§v2> with respect to a,y,dA, we obtain the
equations of motion for these nondynamical perturbations;
see Eqs. (A4)-(A6). After integrating them out from the
action, we are finally left with two dynamical real fields, y
and &¢. In general, any real scalar field A" can be expanded
in Fourier series, as

Y= [ S et + Xy e ). (49

where k is a coming wave number and X(¢) is the mode
function in Fourier space. For a quantized field X, the
coefficient a(k) and its Hermitian conjugate a'(k) corre-
spond to annihilation and creation operators.

Thus, the second-order action for dynamical perturba-
tions X' = (yy, 6¢p;) in Fourier space can be written as

-
SP = / dtd’xa’® (XTKX——Zx’GX—X’MX) (4.5)
a

where K, G, and M are 2 x 2 matrices. The matrix M does not

contain the k2 term. We note that the term X'BX appearing in
Ref. [44] has been absorbed into M after the integration
by parts. The nonvanishing matrix components are given by2

Ko k*paM? Ko — Ko — Pm K
11 _2(k2+612/))AM2)7 12 — 2] _2/}AM 11>
1 @M
Kp=5—cma 5
27 8(k2 + a2B M)
BaM? BuM 1
G =" —, G =Gy = , Gy =3,
2 4
Ve (1=8)V2 (148,
My, = PP PP P (4.6)

2 OMAHP  32ABHOMY

where we used the background Egs. (2.11)—(2.13) to elimi-
nate H and ¢. We also introduced the dimensionless quantity

s _ PP _ 3PHP+V,
b =55 - x5 >

— 4.7
Ve Vs “.7

which is smaller than order 1 during inflation. The off-
diagonal components K, and G, do not vanish for f3,, # 0.

Unlike Ref. [44], the small-scale limit k2 — oo is not taken
here, so that the components of K contain k>-dependent terms.

To study the evolution of perturbations y; and ¢, in
Fourier space, we introduce the following combination:

Ok =y + ﬂ—m5¢k- (4.8)

2P M

Varying the action (4.5) with respect to y;, and using the
properties that both K|, /K| and G,/G, are equivalent to
B/ (24M), we obtain

1d . K2
—— (a*K116x) +?G115)(k =0.

4.9
a’ dt (4.9)

For k? /a* > p,M?, we have K|, — f,M?/2 = G, and
hence Eq. (4.9) reduces to

2
Syr +3HSy, + %(m =0. (4.10)
This equation is of the same form as Eq. (3.3) for tensor
perturbations, i.e., the equation of motion of a massless
field. For the modes deep inside the Hubble radius
(k*/a®> > H?), the canonically normalized field v; =
V2aby, is in a Bunch-Davies vacuum state characterized

by v = e_ikf difa /+/2k. Since we are considering the
coupling in Eq. (3.13) with M ~ H during inflation, the
transition to another regime k*>/a’> < f4M? occurs around
the exit of the Hubble radius.

For k*/a®> < p,M?, we have K, — k*/(24%), so
Eq. (4.9) yields

Sy + Hoyy + BaM*Sy, = 0, (4.11)
which is of the same form as Eq. (3.9) after taking the same
limit. On the quasi—de Sitter background (H =~ constant),
the solution to Eq. (4.11) is given by

Sy = A et +A_eH, (4.12)
where A, are equivalent to those given in Eq. (3.12).
Analogous to the intrinsic vector mode Z;, the perturbation
Oy starts to be exponentially suppressed after it enters the
region k%/a® < pyM>.

For the coupling 3, satisfying 48,M> > H?, the ampli-
tude of 8y, decreases as |y;| « e~"/2. Then, the pertur-
bation &y, is vanishing small at the end of inflation, so we
can set 8y, ~ 0 in Eq. (4.8) and hence

_ ﬁ m
2paM

Wy O¢y. (4.13)
One can notice that, from Eq. (2.10), the relation between
v and 6¢, is analogous to that between A, and ¢.

The only possibility for avoiding the above strong
suppression is to consider the small coupling f4 < 1.
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In this case, there is a period characterized by H?> > k>/a®> >
4 M? during which the perturbation 8y, is temporally frozen
with the value at the Hubble radius crossing. However, after
the perturbation enters the region k% /a®> < p,M?, 5y, starts
to decay according to Eq. (4.12). It is possible to derive the
solution to Eq. (4.11) even for the background where the
scale factor evolves as a « 7, where p is a positive constant.
In this case the resulting solution is given by |5y, | o 177/2, s0
the suppression of Jy; also occurs after inflation whenever
H? drops below the order of 5, M?>.

Varying the action (4.5) with respect to d¢,, it follows
that

. . k2
[a* (Kynbdy + Kioyri)] + ) (Gbdpy + Growy)

M225¢k - 0 (414)

1d
adt
_|_

Now, we employ Eq. (4.8) and its time derivative to
eliminate y; and yr; from Eq. (4.14). In doing so, we also
resort to the fact that dy; obeys Eq. (4.9). Then, the
contributions arising from &y, to Eq. (4.14) cancel out,
so that

1d, .. . k> .
S (a*Kpndpy) + <?G22 + M22> 5. =0, (4.15)
where
K22 = K22 Zﬁﬂ:MKlz g, (416)
Pm p
G22 = G22 ZﬂAM G12 = E (417)

Taking the limit f — 1 in Eq. (4.15) with Eqgs. (4.16)
and (4.17), we recover the perturbation equation of d¢;, in
standard single-field inflation.

We introduce the canonically normalized field o) as

o, = ar/Pédy. (4.18)

Then, we can express Eq. (4.15) in the form

oy + | k2 — @ + 2a"Mx
k a

)&;k =0. (4.19)

On the quasi—de Sitter background characterized by
H =~ constant, the conformal time 7 = [a~'dr is approx-
imately given by 7~ —(1 +¢)/(aH). Applying the slow-
roll approximation (2.17) to the mass term M», and picking
up next-to-leading order terms in slow roll in Eq. (4.19), we
obtain

5ey —3ny

50';(/ + [kz - 2((1[‘1)2 (1 + T

)}50,6 =0, (4.20)

where we used the relation (2.19) and introduced the
second slow-roll parameter

M4V

_ pl " P

=——. 4.21
v % ( )
Neglecting the time variations of ¢y, and 7y, the solution to
Eq. (4.20), which recovers the Bunch-Davies vacuum state
(66, = 7% /\/2k) in the asymptotic past (kt — —o0), is
given by

7T|T| e[(l+2b)ﬂ/4H£l> (k‘T

Soy = ). (422)

where H." (k|z|) is the Hankel function of the first kind,
and

3ey —ny

5 (4.23)

y—§+
)

Using the relations H£l>(k|r|) — —(i/m)T(v)(k|z|/2)™ for
kt — 0and I'(3/2) = \/7/2, the solution for 5¢;, long after
the Hubble exit during inflation is

H(1—¢€) T(v) [klz|\3/?¥
- iprmram(s) 4

In the de Sitter limit characterized by ¢, — 0 and 5y, — 0,
the solution (4.24) reduces to ¢, — iH/(k*>\/2p).

We introduce the curvature perturbation in a flat gauge
incorporating both the field perturbations 6¢; and v, as [46]

_H(@$ohy + M Agy)

R = -
¢’ + MAG

(4.25)

By using Eq. (2.10) and eliminating w;, on account of
Eq. (4.8), we can write Eq. (4.25) in the form

R=Ry+R,, (4.26)
where
H 2 HM
¢ 41+ Pn

Since oy, is exponentially suppressed by the end of inflation,
we only need to compute the power spectrum of R ;. Taking
Eq. (4.15) with the mass term M,, given in Eq. (4.6), the
perturbation R, obeys
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k2
a2

1 d .
——(@’eRy) +

— R, = 0.
aedt ¢

(4.28)

In the large-scale limit (k% /a®> — 0), we obtain the following

solution:

Ry=ci+tc /g (4.29)

a’e

where c¢; and ¢, are integration constants. In slow-roll
inflation, the second term on the right-hand side of
Eq. (4.29) can be identified as a decaying mode. Then,
‘R4 approaches the constant ¢; soon after the Hubble exit.
Then, the primordial power spectrum of Pr = per unit
logarithmic wave number interval can be computed at
k = aH as

K H*
2 |72’¢|2 = . ’
4n’ p*Blk=an

Ry =52 (4.30)

where we used the leading-order solution of Eq. (4.24).
Applying the slow-roll approximations (2.17)—(2.18) to
Eq. (4.30) and neglecting the contribution from dy; to the
total curvature perturbation R, the resulting primordial scalar
power spectrum is given by

pV?

~—— . (4.31)
1222 M V2 |

Pr

In comparison with the canonical picture of single-field
inflation, the coupling S induces different behavior for the
scalar power spectrum. Using the background field ¢ defined
by Eq. (2.23), the power spectrum (4.3 1) can be written in the
form Pr = V3/(122°M§V3,) |- This means that, as
long as the perturbation dy; is negligibly small compared to
¢, at the end of inflation, the effective single-field descrip-
tion in terms of ¢ also works for curvature perturbations.

V. OBSERVATIONAL SIGNATURES IN CMB

In this section, we compute inflationary observables to
confront our SVT theories with the CMB data of temper-
ature anisotropies and study how they are modified by the
presence of the coupling f.

A. Inflationary observables

In Sec. III, we showed that vector perturbations are
exponentially suppressed relative to scalar and tensor
perturbations at the end of inflation, so we neglect the
contribution of vector modes to the inflationary power
spectra. At the pivot wave number k, = 0.05 Mpc~!, the
amplitude of curvature perturbations constrained from
Planck 2018 observations is [6]

pV?

= =21x 107
2206 /2
122°M5V?,

Pr (5.1)

The spectral indices of tensor and scalar perturbations are
defined, respectively, by

dl
n, = n 7 , (5.2)
dink |,_,y
dlnPR
=1 . 5.3
=N Tk | (5:3)
From Egs. (3.5) and (4.31), we obtain
2e
n, = _TV’ (5.4)
1
ng=1 _B(6€V - 2ny), (5.5)

where we used the slow-roll approximations (2.17)—(2.18).
The tensor-to-scalar ratio is given by

Pt o 16€V
Pr P
From Egs. (5.4) and (5.6), the following consistency
relation holds:

= 16e.

(5.6)

r=-8n, (5.7)
which is of the same form as that in standard single-field
inflation. We study how the coupling f modifies the
observational prediction of n; and r. We show that this
modification generally depends on the form of inflaton
potentials.

B. Different inflaton potentials
and Planck 2018 constraints

In the following, we consider three different inflaton
potentials arising in (i) natural inflation, (ii) « attractors,
and (iii) brane inflation. We also discuss whether these
models can be consistent with the latest Planck 2018 data
[6] in the presence of the scalar-vector mixing.

1. Natural inflation
In natural inflation [48], the potential is given by

¢

V(g) = MM, [1 + cos <?>] , (5.8)

where f is a mass scale associated with the shift symmetry.
In this case, the observables (5.1), (5.5), and (5.6) reduce,
respectively, to
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M1+ )

=L _ _ ~ —21x107°, 5.9
Pr 1272M (1 - x) * (59)
3—x
”S_l_ij(wx)’ (5.10)

8(1—x)
= .11
' f(l+x) (5-11)

where f; = /Bf /My and x = cos(¢/f). From Eq. (2.22),
we obtain N = f3In[(1 = x;)/(1 = x)], so that
N

x=1-=(1-xf) (5.12)

where x; = (1 —2f3)/(1 4 2f}) is the value of x at the
end of inflation determined by the condition (2.21).
Substituting Eq. (5.12) into Egs. (5.10) and (5.11), it
follows that n, and r depend on f; and N. For a given
N, these observables are functions of f; alone. Hence the
theoretical curve in the (ny, r) plane is the same as that in
standard natural inflation. The only difference is that the
coupling f/M,, is now modified to f; = \/Bf /M. From
Planck 2015 data [5], the coupling is constrained to be
logy(fs) > 0.84 at 95% C.L., i..,

6.9M,,
NV

As in the standard case, the trans-Planckian problem about
the scale f also persists for f < 1. With given values of f, f,
and N, the mass scale M is known from the Planck
normalization (5.9).

The recent Planck 2018 data combined with the data of
B-mode polarizations available from the BICEP2/Keck
field (BK14) and baryon acoustic oscillations (BAO)
indicate that most of the theoretical values of n, and r
in natural inflation are outside of the 95% C.L. observa-
tional contour; see Fig. 8 of Ref. [6]. As shown above, this
situation is not improved by the mixing term f5,, between
the inflaton and vector fields.

f> (5.13)

2. « attractors

The a-attractor model [49] is given by the potential

2
V(g) = %acMsz)l {1 —exp (—1 /3i Mil)} . (5.14)
e Mp

where a. is a dimensionless constant.’ Starobinsky
inflation [1] characterized by the Lagrangian f(R) = R +
R?/(6M?) gives rise to the potential (5.14) with a. = 1

*We note that the same potential can be derived from Brans-
Dicke theory with the Lagrangian £L=M¢R/2—V,(¢p—M,)*
after a conformal transformation to the Einstein frame; see
Eq. (109) of Ref. [50]. The observational constraints on this
model were already performed in 2011; see Fig. 3 of Ref. [50].

after a conformal transformation to the Einstein frame. In
the limit that @, — oo, the potential (5.14) reduces to that in
chaotic inflation: V(¢) = M>¢?*/2.

For «a attractors, the inflationary observables are

_ 3a2pm?(1 —y)*

— =2.1x107, 5.15
Pr 12877 M2y ) 5.15)
8y(1
n.g=1—7y( +y)2, (5.16)
3“0:6(1_)))
64>
r=— (5.17)
3a.p(1-y)

where y = e~ V?/ (32:)#/Myi - The number of e-foldings is
given by

3 1 1
N= acﬁ<—+ lny>,
4 y s Vs

where y; = (3a.f — 2v/3a.B)/(3a.p — 4) is the value of y
at the end of inflation.

For a. < O(10), y is smaller than order 1 during
inflation. In this case, the dominant contribution to N is
the first term in the parentheses of Eq. (5.18), i.e.,
y=~3a./(4N) < 1. Substituting this expression into
Egs. (5.16) and (5.17), we obtain

(5.18)

2 12a.p
ng~1l——, 7 .
‘ N N?

(5.19)

While ng does not depend on f, the scalar-vector mixing
(B #0) leads to a smaller value for the tensor-to-scalar
ratio compared to the case = 1. The Planck normalization
(5.15) gives

M =13 x 10" M,/ <§v5> (5.20)

so that M decreases for smaller fS.

For a. > O(10), y approaches 1 with increasing a..
Expansion of Eq. (5.18) around y =1 shows that the
number of e-foldings long before the end of inflation is
approximately given by N ~3a.(1 —y)?/8 > 1. In this
regime, the observables (5.16) and (5.17) reduce to

2
ng~1-——, r

N

1R

S

(5.21)

which are equivalent to those in standard chaotic
inflation driven by the potential V(¢) = M>*¢?/2 [9].
From Eq. (5.21), the coupling # modifies neither n, nor r for
a. > O(10).

In Fig. 1, we plot the theoretical curves in the (n, r)
plane for # = 1 (red dashed) and = 0.1 (black thin solid)
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Planck 2018 + BK14 + BAO

1071 L

1072F
/ smaller a,

Tensor-to-scalar ratio (r)

—-——g=1

orif ——A=01

0.955 0.960 0.965 0.970 0.975

Spectral index (ny)

FIG. 1. Observational constraints on «a attractors in the (n, r)
plane. The green contours represent the 68% C.L. (inside) and
95% C.L. (outside) boundaries derived by the joint data analysis
of Planck 2018 + BK14 + BAO at k = 0.002 Mpc~! [6]. The
red dashed and black thin solid lines correspond to the cases
f = 1and f = 0.1, respectively, with N = 55 and 1 < a, < 10°.
The red and black circles represent Starobinsky inflation (a, = 1)
with f =1 and f = 0.1, respectively.

for N =55and 1 < @, < 10%. For a. > O(10), the observ-
ables converge to the values in (5.21) irrespective of the
coupling . With decreasing a.., the difference of r between
the two different values of f tends to be significant. In
Starobinsky inflation (a, = 1), e.g., we have r = 3.9 x
10~* for # = 0.1. As estimated from Eq. (5.19), this is by 1
order of magnitude smaller than the value r = 3.5 x 1073
for f = 1. In both cases, the models are inside a 68% C.L.
observational contour constrained from Planck 2018 +
BK14 4+ BAO data. Interestingly, even if future observa-
tions place the upper limit of » down to 1073, the model
with a@. = 1 can be still rescued by the coupling j.

As we observe in Fig. 1, the scalar spectral index n; for
p =0.1 and a. = 1 is slightly smaller than that for f =1
and a. = 1. This reflects the fact that, in the latter case, the
approximation y < 1 we used for the derivation of n;
in Eq. (5.19) is not completely accurate. As the product
a.f decreases toward 0, the observables approach
ng—1—-2/N and r — 0, which are favored in current
CMB observations.

Since the coupling £ smaller than 1 can reduce the value
of r, the bound on a.. is less stringent compared to the case
p = 1. For =1 the observational upper limit is a, <
44 x 10 (68% C.L.), while, for = 0.1, the bound is
loosened: a, < 4.2 x 10?> (68% C.L.). Unless a, is very
much larger than 1 to approach the asymptotic values of 7,

and r given by Eq. (5.21), the product a.f is constrained
to be

a.f <40, (5.22)
at 68% C.L. The main reason why r is reduced by the
mixing term f,, is that the coupling f leads to smaller y =~
3a.p/(4N) (i.e., larger ¢) for a. < O(10). This effect
overwhelms the coupling £ in the denominator of
Eq. (5.17), so that r has the dependence r o a.f3/N>.
In other words, for f < 1, we require that inflation occurs in
the region where the potential is flatter relative to the case
p =1 to acquire the same number of e-foldings. This
effectively reduces the value of r = 16¢ for a given N.

3. Brane inflation

Finally, we study brane inflation characterized by the
effective potential

V(g) = M2M?, {1 - (%)p + - ] (5.23)

where p and p are positive constants. The models arising
from the setup of a D-brane and anti-D-brane configuration
have the power p =2 [51] or p =4 [52,53]. For the
positivity of V(¢), we require that z=¢/u > 1. We
assume that inflation ends around ¢ = u before the addi-
tional terms denoted by the ellipsis in Eq. (5.23) contributes
to the potential.

The observables (5.1), (5.5), and (5.6) reduce, respec-
tively, to

MR (P - 1)

Pr="rr 2 —21x107, 5.24
R 2 M per? 5-24)
pMy2(p + 1)2P + p=2]
ng=1- T3 5 . (5.25)
uz2 (2P = 1)°p
8p2M2
_ pl
r= 22— 1) (5.26)
The number of e-foldings is given by
21,2 270 _p—_2

2Myp(p +2)

where we used the fact that the value of z at the end of
inflation is z, ~ 1.

Since inflation occurs in the region z” > 1, we pick up
the dominant contributions to Eqgs. (5.25)—(5.27). Then we
have 272 ~ M2, p(p + 2)N/pu?, and
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2(p+1)
T 2
" (p+2)N’ (528)
’ 2<ﬂ”2>piz[ : rﬁ;) (5.29)
re~8pc| —- — , .
M2 p(p+2)N

which show that the f dependence appears in r but not in
ny. From Eq. (5.28), we obtain n, = 1-3/(2N), for p = 2,
and n, = 1-5/(3N), for p = 4; therefore, one can notice
that the value of n, for these models is larger than the one
obtained from Eq. (5.19) for a attractors. From Eq. (5.29),
the tensor-to-scalar ratio has the dependence r « /2 /N3/?
for p =2 and r « *3/N°/3 for p = 4. In the limit that
p > 1, we have n, ~ 1-2/N and r « 3/N?, so they have
the same dependence of N and f as those in the a attractors
with a, < O(10). The scalar-vector mixing works to
reduce the tensor-to-scalar ratio compared to the case
f = 1. Unlike a attractors in which the dependence of r
with respect to  depends on a,, the reduction of r induced
by the coupling f occurs irrespective of the values of p.
In Fig. 2, we plot the theoretical curves in the (nj,r)
plane for the brane inflation scenario with f =1 and f =
0.1 for the mass range 102 < u/M,; < 10. We consider
the models with two different powers: p =2 and p = 4.

Planck 2018 + BK14 + BAO
10—1_
1072 L '
I ’
g
= 1073
Z
<
%
S 10
é smaller p=2
107
_-——=]
106 —3=0.1 p=4
0.955 0.960 0.965 0.970 0.975

Spectral index (n)

FIG. 2. Observational constraints on brane inflation in the
(ng, r) plane for p =2 and p = 4. The green contours are the
same as those in Fig. 1. The red dashed and black thin solid lines
represent the cases # = 1 and # = 0.1, respectively, with N = 55
and —1.5 <logo(u/Mp) < 1.0. The red and black circles
correspond to loglo(y/Mpl) =1.0 with f=1 and f=0.1,
respectively.

For smaller u, z gets larger and hence the approximate
results (5.28)—(5.29) tend to be more accurate. As estimated
from Eq. (5.28), the scalar spectral index is nearly constant,
ie., ny ~0.9727 for p =2 and n; ~0.9697 for p = 4.

The red circle plotted on the line for p = 2 of Fig. 2
corresponds to the model parameters # = 1 and u/ M, = 10,
in which case the model is inside the 95% C.L. observational
contour with r = 2.35 x 1072, From Eq. (5.29), the tensor-
to-scalar ratio decreases for smaller values of # and u. When
p=2,p=0.1,and u/M, = 10, the numerical value of r is
given by 9.53 x 10—3—see the black circle on the line for
p = 2 of Fig. 2. The models with § < 1 and u < 10M/; are
consistent with the current upper bound of r. For p = 2, the
scalar spectral index is between the 68% C.L. and 95% C.L.
observational boundaries.

The model with p = 4 gives rise to n, smaller than that
for p =2, so the former model enters the 68% C.L.
observational contour for y < 10M, and < 1. The red
circle shown on the line for p = 4 of Fig. 2 corresponds to
p = 1land u/M, = 10, in which case r = 1.25 x 1072, For
p = 0.1, this value is reduced to r = 3.41 x 1073, For
smaller f# and u, the tensor-to-scalar ratio approximately
decreases as r o (Bu®)*3 for p = 4.

We note that the increase of r induced by the coupling
B(< 1) in the denominator of Eq. (5.26) is switched to the
decrease of r by the other term z>*2P o p~(2+2p)/(2Hp),
Analogous to a attractors with a, < O(10), this behavior
occurs in small-field inflation in which the variation
of ¢ during inflation does not exceed the order of M.
In a attractors with a,. > O(10), which corresponds to
large-field inflation, the decrease of r induced by f is not
significant. In chaotic inflation (the limit @, - o in «a
attractors), both €y and 7y are inversely proportional to N,
in which case both n, and r solely depend on N but not on
pB. In small-field inflation, €y, and 7y, have different N
dependence with ey < |y, in which case the explicit
dependence appears in r.

VI. CONCLUSIONS

This work was devoted to the study of prominent
effective field theories with helicity-0 and helicity-1 fields
in the presence of a dimension-3 operator that couples the
two sectors. We have investigated the implications of this
coupling for inflation driven by the helicity-0 mode with a
given potential energy, paying particular attention to the
evolution of cosmological perturbations. At the back-
ground level, the temporal component of the helicity-1
mode, A, is just an auxiliary (nondynamical) field, so that
it can be directly integrated out in terms of the time
derivative of the helicity-0 mode. In this way, the back-
ground dynamics resembles that of a single-field inflation
modulated by a parameter f associated with the coupling
between the helicity-0 and helicity-1 modes.
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We studied the evolution of longitudinal scalar pertur-
bation y; in the presence of the inflaton fluctuation d¢y.
The perturbation corresponding to the isocurvature mode is
given by the combination Sy, = wy + f3,,/(264M )¢, The
existence of the vector-field mass M comparable to the
Hubble expansion rate during inflation leads to the expo-
nential suppression of dy, after the perturbation enters the
region k*/a* < ,M?. We then explicitly showed that the
power spectrum of the total curvature perturbation, R,
generated during inflation, corresponds to that of an
effective single-field description also corrected by p.
This is possible due to a similar relation between y; and

o¢, to that of Ay and d) at the background level, obtained in
fact by the suppression of Jy;.

After deriving the power spectra of the scalar and tensor
perturbations generated during inflation, we computed their
spectral indices n, and n, as well as the tensor-to-scalar
ratio r to confront our inflationary scenario with CMB
observations. The mixing between helicity-0 and helicity-1
modes leads to modifications on n, and r through the
parameter S, with the same consistency relation r = —8n,
as in the standard canonical case (f = 1).

We computed the observables Py, ng, and r for several
inflaton potentials to explore the effect of coupling f on
CMB. For natural inflation, these observables reduce to
those of the canonical case after the rescaling of the mass
scale f. In small-field inflation like « attractors and brane
inflation, however, the coupling (< 1) can lead to the
suppression of r = 16e compared to the canonical case.
This is attributed to the fact that, for smaller f, the total field
velocity gets larger and hence inflation needs to start from a
region in which the potential V(¢) is flatter to acquire the
sufficient amount of e-foldings. Then, the tensor-to-scalar
ratio decreases by the reduction of € on scales relevant to
observed CMB anisotropies.

In « attractors given by the potential (5.14), we showed
that n, and r are approximately given by n,~1-2/N
and r~12a.6/N? for a. < O(10). This includes the
Starobinsky inflation as a special case (a. = 1). The
coupling f smaller than 1 leads to the suppression of r,
so that the a-attractor model exhibits even better compat-
ibility with current CMB observations (see Fig. 1). For
a. < O(10), we obtained the observational bound a.f <
40 (68% C.L.) from the joint analysis based on the Planck

S? = /dtd3xa3(£f + LS,

where

(0s¢)* 1

1.
L0 =-s¢” -
2¢ 2a? 2

=5 Vb {92 = )op + V. yopya+ ppop-_5

2018 + BK14 + BAO data sets. The similar suppression of
r and the better compatibility with observations have been
also confirmed for brane inflation given by the potential
(5.23). For p < 1, the brane inflation models with p =2
and p =4 are inside the 95% C.L. and 68% C.L. obser-
vational contours, respectively, constrained from the
Planck 2018 + BK14 + BAO data; see Fig. 2.

In this work, we focused on the simple mixing term
A"V, ¢ as a first step for computing primordial power
spectra generated during inflation, but the further gener-
alization of couplings between ¢ and A* is possible along
the lines of Ref. [41]. It will also be of interest to study
potential signatures of such couplings in the CMB bispec-
trum as well as implications in the physics of reheating.
Another direct implication worth studying is the improve-
ment of standard inflationary models with respect to the de
Sitter swampland conjecture in the presence of this mixing
term [54]. These interesting issues are left for future works.
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APPENDIX: SECOND-ORDER ACTION
FOR SCALAR PERTURBATIONS (4.5)

In this Appendix, we show the details for the derivation
of Eq. (4.5). In Eq. (5.4) of Ref. [44], the second-order
action Sy~ of scalar perturbations was derived in general
SVT theories by choosing the flat gauge. For the specific
theories given in this work by Eq. (2.5), we have

(A1)

SPSA — 8¢ 6:—;”> . (A2)

Pr puM (
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8%¥ 2(&2
,CS'P = —2HM§IG? + m |:(8a)2 +

” W25
- [¢ ( +%> _3H2M§1] 86,

0?6A Py
—a + - —
Ay Ay 4A% 243 4A%

(96A)2 %A (D)

a—+

<5A2 » @) _ g, (&//)2. (A3)

Ao

Varying the action (A1) with respect to a, y, A, we obtain the three constraint equations in Fourier space, respectively, as

(B 35, B o
¢< 4ﬂA>5¢+V"’5¢ {4’5 (HE)%HZM‘%‘} 26, A
Bad® (v A\  pad’ B
i b (3 3) =i~ 20a] =0 (A‘”
X 2

¢(1 - 4ﬂA> 8¢ — 2HM? a0 = 0, (AS)

LR (20 SA\ KL [RG (v A\ B ]
pattaip+ o (S 00) L LB (15— P o (A9

We solve Egs. (A4)—(A6) for a, y, A and substitute them into Eq. (A1). Then, in Fourier space, we obtain the second-

order action (4.5) for dynamical perturbations X" =

(y, 8¢y ) with the matrix components given by Eq. (4.6).
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Inﬂation elegantly solves the main problems of the standard cosmological
model—the observed homogeneity, isotropy, and flatness of the Universe
are simple outcomes of an early accelerated epoch. Furthermore, quantum
fluctuations during this epoch are stretched by the expansion to classical
scales, becoming the seeds for the structures. Yet, the canonical inflationary
theory is becoming in worrisome tension with state-of-the-art cosmological
observations. Assuming a single-field picture, 7.e. a scalar field slowly rolling
down its sufficiently flat potential, the simplest monomial potential func-
tions and similar constructions are in the edge of being ruled out—indeed,
they predict large tensor power, meanwhile upper bounds on the tensor-to-
scalar ratio r have been significantly reduced by the latest Plank satellite’s
measurements. In general, models embedded in high-energy particle-physics
theories are in better shape, and therefore seeking new inflationary scenarios
within the framework of particle physics became a natural approach. How-
ever, given the lack of evidence of these theories, different approaches seem
more appealing: on the one hand, modeling-independent realizations have
the potential of unveiling allowed parameter regions for general classes of in-
flationary models. On the other hand, a different model-building approach
consists on keeping the simplest potentials but at the cost of modifying the
underlying theory of gravity. These two alternative approaches constituted
the main subject of this thesis.

In canonical single-field scenarios, the equation of state w can be parame-
trized with only two phenomenological parameters, a and 3, in addition to
the number of remaining efolds of inflation, as discussed in Chapter §3.
Also, w is related to the first slow-roll parameter ey. Consequently, it is
possible to relate the tilts n,; and the tensor-to-scalar ratio r to the pa-
rameters o and 3. In other words, predictions on n,, or r can be obtained
by constraining the Mukhanov phenomenological parameters without mak-
ing any reference to a specific potential function V(¢). Indeed, in §3.1 we
showed that a lower bound on r can be predicted only by taking the cur-
rent constraints on ng on account of this parametrization, in the case that
Nature has chosen canonical single-field inflation. Furthermore, in Ref. [1]
we have explicitly shown that this parametrization is in agreement with a
more familiar one based on a hierarchy of the slow-roll parameters as they
both single out the same parameter space when they are fitted to CMB
temperature and polarization data.

The dark energy issue points to the possibility that the laws of grav-
ity, i.e. General Relativity, may need to be modified at large scales. This
question brought up a large research area from which many theories of mod-

167



168 Summary & Conclusions.

ified gravity have been proposed. Theories based on scalar fields, similar
to inflation, led to the proposal of interesting couplings between a scalar
field ¢ and the gravity sector. When studied for inflation, nonminimal cou-
plings (expected indeed to be generated at some energy scale) are able to
modify the predictions of a canonical potential V(¢). In particular, we
showed in Ref. [2] that a coupling £¢*R is favored by present observations
for small—O(1073)—and positive values of the coupling parameter £ at the
20 level, when a simple quadratic potential function, m?¢? is considered.
Furthermore, in the presence of such a coupling, a nonzero value for the
tensor-to-scalar ratio is also favored at the same confidence level.

These phenomenological outcomes obtained by simple nonminimal cou-
plings of the inflaton field to the gravity sector lead to the search for phe-
nomenological signatures derived from different types of terms allowed to be
present in the theory. Keeping the symmetries and constraints of General
Relativity (such as Lorentz invariance, unitarity and locality), along with
the condition for second-order equations of motion (in order to avoid Ostro-
gradsky instabilities), only few combinations between self-derivative terms
of ¢ and the gravity sector are allowed. This led to the constructions of
general scalar-tensor theories of gravity, discussed in §4.1.1, and from which
the Horndeski framework stands out. This framework has become a play-
ground for the construction of well-behaved models of inflation from which
G-inflation, discussed in §4.2.2, is the simplest nontrivial one. Its action
differentiates from the canonical due to the addition of the self-derivative
term G3[¢, which introduces new phenomenology for a given choice of the
free function G3(¢, X), irrespectively of the potential function V' (¢). There-
fore, it allows inflation to be driven by monomial potentials and still satisfy
observational constraints. A basic (3 function with constant mass scale,
however, is not able to fit the latest Planck 2018 constraints due to their
prediction of small scalar power relative to the tensor one as a consequence
of a slow transition between the epoch when the mass scale is relevant to the
canonical epoch. Furthermore, failure to complete the transition before the
end of inflation leads to the appearance of instabilities during the reheating
epoch. In Ref. [4] we showed that a sufficiently fast, step-like transition
is able to reconcile the monomial potentials (special attention was taken
for the simplest m?¢?) with observations and, at the same time, to solve
the pathological issues presented in this class of models. Interestingly, by
assuming a scalar tilt of n, ~ 0.966, a lower bound on the tensor-to-scalar
ratio of 7 2 5 x 1072 (i.e. potentially observable with next-generation satel-
lites) is obtained for this transient model due to a nontrivial large running
o, originated by the sharp transition.

It is possible that vector fields were also present during the inflationary
era. Regardless of their interaction with the inflaton field, they can affect
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and modify the dynamics of the expansion. However, couplings between
the inflaton and the vector field, on top of the gravitational background,
are of special interest and can be tested against CMB observations. In this
regard, a general framework of scalar-vector-tensor theories of gravity was
recently developed in the same spirit as the scalar-tensor Horndeski theo-
ries. Indeed, in §4.1 we showed that any modification of general relativity
will introduce new degrees of freedom which can be in the form of new
scalar, vector or even tensor fields. The simplest nontrivial combination of
a scalar field ¢ and a U(1) vector A,, according to the scalar-vector-tensor
framework, is given by 3,,A"0,¢. In Ref. [5] we studied the inflationary
signatures of several potential functions in the presence of this coupling. At
the background level, inflation is still driven by the scalar field, whereas the
temporal component of the vector field, Ay, is nondynamical. As a conse-
quence, a single-field description of the background dynamics (modulated
by a parameter 3 = 1 — const. x %) arises due to a nontrivial relation
between Ao and the scalar-field velocity ¢. At the perturbations level, the
longitudinal vector mode contributes to an isocurvature perturbation along
with the standard inflaton fluctuation. This perturbation, however, is sup-
pressed for a vector-field mass scale comparable to the Hubble parameter
H, and, as a result, the power spectrum of the primordial curvature pertur-
bation follows the same single-field description corrected by 3. The spectral
indices and the tensor-to-scalar ratio are further modified by the presence
of 8 but, interestingly, the canonical consistency relation » = —8n; is left
unmodified. While confronting these results with CMB data, we showed
that small-field models of inflation are considerably affected by the pres-
ence of the vector coupling. In particular, we found that for a-attractors,
ne~1—2/N and r ~ 12a.3/N? for a. < O(10) (which includes Starobin-
sky inflation), i.e. there exists a suppression of the tensor-to-scalar ratio for
a small 8 compared to the canonical models (5 = 1). Similar results were
obtained for Brane inflation with p = 2 and p = 4 indices. These results fol-
low from the fact that a nonvanishing 3 increases ¢ and, therefore, inflation
needs to start from a flatter region of the potential, relevant for CMB scales,
where a small value of the slow-roll parameter ey is maintained compared
to the canonical cases.

The computation of the inflationary observables in noncanonical classes
of inflation is, in general, far from being trivial. As discussed in §2.4.3,
different methods can be used to solve the mode-function equation, from
where the slow-roll approximation (SR) usually stands out as the one which
leads to analytical results. However, for noncanonical models, the slow-
roll conditions are sometimes too restrictive and the use of the slow-roll
approximation is not always allowed. This comes from the fact that new
noncanonical terms affect the background dynamics of the inflaton field
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which usually depart from the standard smooth evolution. Furthermore,
the slow-roll approximation is based on an assumed hierarchy of Hubble
slow-roll parameters which, in turn, define a restrictive hierarchy of the pri-
mordial tilt and its running parameters (s, (s, etc.), as it was discussed at
the beginning of §5. To overcome these deficiencies, the generalized (GSR)
and optimized (OSR) slow-roll approximations were developed and tested
for several inflationary models with features in the potential. Additionally,
these techniques were recently promoted to cover inflationary models be-
longing to the Horndeski and beyond Horndeski classes. Indeed, in Ref. [4]
we showed that the predictions of the aforementioned transient G-inflation
model can be accurately computed using these techniques. On the one hand,
GSR provides accurate results at the ~ 10% level around the transition (of
size AN ~ 3) to the canonical epoch; OSR, on the other hand, provides
analytical results accurate at the ~ 20% level. Both being compared with
the standard SR approximation which deviates at the ~ 50% level. How-
ever, due to the properties of the model, it is worth mentioning that both
GSR and OSR give predictions at the percent level at CMB scales, whereas
SR still deviates at the ~ 10% level. We further showed that these results
imply that the scalar power spectrum can still be described in its power-law
form, around the relevant scales, as long as ng and a4 are computed using
OSR. This is due to the fact that a can be of the same order of ng and thus
the standard slow-roll hierarchy is not valid (in which case, OSR overcomes
this wrong order-counting).

Indeed, a correct computation of the inflationary parameters is needed
as further parameters, in particular the running of the running of the tilt,
Bs, will play an important role to discern between inflationary models of
inflation—this in addition to the possibility of a further unobservable am-
plitude of primordial gravitational waves—, as we showed in Ref. [3]. In
this work, a forecast for the CORE mission was carried out and confronted
to the most favored models of inflation. We showed that there exists the
possibility that the running «, will not be as important as its own running
Bs, as the latter may have the power to exclude all the models studied in the
case that the best-fit value of Planck, 35 ~ 0.01, prevails future observations.

To conclude, in this thesis we have developed a comprehensive novel ex-
ploration and a detailed study of the inflationary paradigm using different
nonstandard approaches. Firstly, we covered model-independent parametriza-
tions to clarify the allowed parameter space of canonical single-field infla-
tion. Secondly, we demonstrated the potential of nonstandard inflationary
parameters, the running of the running of the primordial tilt in particular,
which may have the potential of ruling out the vast majority of the cur-
rently favored inflationary models. And, finally, we explored the possibility
that the inflaton field coupled differently as in the canonical version by in-
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troducing self-derivative terms belonging to general scalar-tensor theories;
or the possibility that a gauge vector field, coupled to the inflaton, affected
the dynamics in an observable way.

Future satellites, interferometers and different ground-based experiments
will further guide us towards unveiling the true nature of the early universe.
And, whether Nature chose a canonical model embedded in a more funda-
mental quantum field theory or nontrivial gravitational dynamics, model-
building approaches along with a correct understanding of the observational
parameters will keep helping in showing us the correct theoretical path.
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1 Inflaciéon cosmolégica

1.1 El Modelo Cosmolégico Estandar

El Universo a gran escala es un sistema fisico que estd en constante
evolucién. Su estudio se basa en el Modelo Cosmoldgico Estandar (MCS),
es decir, en la teoria del Big Bang y en las leyes de la Relatividad General.
La primera se sustenta en varias observaciones realizadas a lo largo del
siglo pasado, y durante el transcurso del presente, sobre la expansion del
Universo. En 1929, Edwin Hubble observé que las galaxias se alejaban unas
de otras a una velocidad proporcional a la distancia que les separa (Ley
de Hubble), lo que implicaba que el Universo se expandia. En 1998, dos
grupos astronémicos dedicados a la observacion de supernovas del tipo Ila
dedujeron que las galaxias mas distantes no solo se alejaban unas de otras,
sino que lo hacian de forma acelerada, contrario a lo esperado debido a la
naturaleza atractiva de la gravedad.

Es intuitivo pensar que en un universo en expansion, toda la materia
y energia se encontraban mas proximas entre si en el pasado, a tal punto
que en un instante del pasado muy lejano, todo el contenido energético se
encontro agrupado en un punto infinitesimal del espacio de densidad infinita
denominado big bang. La Relatividad General, que describe el movimiento
de los planetas, galaxias y el Universo en su totalidad, a través de una refor-
mulacién geométrica de la gravedad, deja de ser valida cuando la expansion
se extrapola hacia atras en el tiempo a los instantes del big bang, y una
teoria fundamental de la gravedad, que incluya las leyes de la mecanica
cuantica, debe remplazarla. Como no conocemos los principios de dicha
teoria, el MCS asume ciertas condiciones iniciales, las cuales determinan la
subsecuente expansion.

El Universo se comenz6 a expander instantes después del big bang, en-
friandose y atravesando por varios procesos termodindmicos durante los,
aproximadamente, 14 mil millones de anos siguientes (equivalentes a la edad
del Universo). Durante cada uno de estos procesos, la materia y la energia
contenida en el Universo pasé por diferentes fases, cada una de las cuales
dejo huellas en las diferentes observaciones cosmologicas que directa o in-
directamente se llevan a cabo actualmente, ayudandonos de esta forma a
poder explicar de manera detallada la historia del Universo. Particular-
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mente relevante para el objeto de estudio de esta tesis, uno de los fenoé-
menos cosmoldgicos mas importantes es la radiacion de fondo de microon-
das (CMB, por sus siglas en inglés). Esta es una tenue radiacién que llena
el universo observable y que, por lo tanto, recibimos de todas direcciones.
Su origen se remonta a la época en la que el Universo estaba constituido por
nucleos elementales, electrones y fotones, llamada recombinacion. Cuando
la temperatura se redujo aproximadamente por debajo de los 13 eV,! corre-
spondientes a la energia de separacion del atomo de hidrégeno, los electrones
se combinaron con los ntucleos atémicos formando atomos neutros, dando
lugar a la libre propagacién de los fotones a través del Universo, formando el
CMB. Por consiguiente, el estudio del CMB nos proporciona las condiciones
del Universo en un momento tan lejano en el pasado como lo es la época de
la recombinacion.

Otra de las observaciones principales del universo actual, y que esta
sustentada en el CMB, es la isotropia del Universo. A gran escala, la materia
se distribuye de tal manera que es indistinguible independientemente del
lugar y la direccién en que se mire (como se ejemplifica en la figura 1.4,
seccion 1.1.6, correspondiente a una simulaciéon por ordenador asumiendo
el MCS, donde la escala sobre ella es equivalente a aproximadamente 23
mil trillones de kilémetros). Estas caracteristicas se encuentran presentes
también en la distribucion energética del CMB, por lo que se deduce que el
universo primitivo (como llamaremos a los primeros instantes después del
big bang) era también altamente homogéneo e isotrépico. En el MCS no
hay ningiin mecanismo que conduzca al Universo a este estado, por lo que
dichas caracteristicas se asumen como condiciones iniciales.

Sin embargo, esta isotropia no es perfecta, hay pequenas variaciones
que a escalas ordinarias estan dadas por la existencia de sistemas solares
y galaxias aleatoriamente distribuidas. La formacion de estas estructuras
se llevo a cabo gracias a la presencia de perturbaciones en la distribucion
de la materia y energia a través del espacio durante el universo primitivo,
y que también dieron lugar a la anisotropia observada en el CMB. Estas
perturbaciones se suelen asumir y poner a mano en las ecuaciones, ya que
el MCS no tiene mecanismo alguno que las cree.

Otra observacion sobre la cantidad de materia y energia observable con-
lleva a estimar la curvatura general del Universo. Como ya se menciond,
la Relatividad General es una teoria geométrica de la gravedad donde esta
se comporta de una forma u otra dependiendo de la cantidad de materia
y/o energia en una cierta regién del espacio. Por ello, una vez conocida la
cantidad de materia que existe en el Universo, se puede deducir la geometria
del mismo. Las observaciones actuales predicen que el Universo es plano.
Sin embargo, las mismas leyes dictan que esta geometria es altamente in-

11 eV=1.602x10"19 J.
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estable, por lo que el universo primitivo debié haber sido plano a un grado
de precision sumamente inexplicable para tener la planicie actual.

Asi, el MCS predice una gran cantidad de observaciones a través de una
detallada descripciéon de varios procesos cosmologicos que dieron lugar al
universo actual. Sin embargo, la falta de explicacién de las condiciones ini-
ciales que asume (el grado de homogeneidad, isotropia y planicie, asi como
la naturaleza de las perturbaciones iniciales) hacen del MCS un modelo in-
completo. Cualquier teoria que proporcione una explicaciéon natural a estas
condiciones iniciales conllevaria a un mejor entendimiento de la historia del
Universo. A dicha teoria se le conoce como inflacion cosmolégica.

1.2 El periodo inflacionario

La inflacion cosmoldgica provee al MCS de un mecanismo en el cual
las condiciones iniciales previamente asumidas encuentran una explicacion
natural, y que al mismo tiempo es capaz de producir las perturbaciones ini-
ciales una vez que las leyes de la mecénica cuantica son tomadas en cuenta.?
Independientemente del mecanismo, la inflacién consiste en una etapa de
aceleracion del Universo durante el universo primitivo, instantes después del
comienzo. Durante esta etapa, el Universo debié haberse expandido en un
factor de 10?* para lograr reproducir las observaciones actuales, como lo es
el grado de isotropia observado en el CMB.

El mecanismo inflacionario fue propuesto por Alan Guth en 1981. Guth
demostré que un periodo de expansiéon acelerada durante el universo primi-
tivo era capaz de resolver el problema de las condiciones iniciales del MCS,
aunque luego se comprobd que el modelo utilizado por él no podria fun-
cionar realmente. Sin embargo, poco después se introdujo un nuevo mecan-
ismo en el cual un campo escalar cuantico, sujeto al movimiento sobre un
potencial suficientemente plano (es decir, casi invariante), evolucionaba a un
ritmo lento comparado con la expansion misma del Universo. Este campo,
llamado inflaton, transportaria todo el contenido energético del Universo
hasta llegar al punto minimo del potencial donde se desintegraria en las
particulas fundamentales conocidas, dando asi lugar al big bang. Dicho
mecanismo ha prevalecido hasta el dia de hoy y se conoce como inflacion
del tipo slow-roll (‘rodamiento lento’ en espanol).

Ademas, en el espacio vacio se producen fluctuaciones cuanticas, creacién
y subsecuente aniquilaciéon de pares de particula-antiparticula, como conse-
cuencia del principio de incertidumbre de Heisenberg, uno de los principios
fundamentales de la mecanica cuantica. En un espacio en expansion acel-

2No obstante, la inflacionaria no es una teoria cuantica fundamental de la gravedad, sino
una teorfa en la que los dos regimenes (el cudntico y el gravitatorio) son igualmente
aplicables.
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erada, como el inflacionario, la aniquilacién de los pares creados en el vacio
no se llega a producir ya que el espacio mismo entre el par crece expo-
nencialmente, separando las particulas a una distancia lo suficientemente
grande como para ya no poder interaccionar y, por lo mismo, aniquilarse.
Estas fluctuaciones suceden a lo largo de todo el Universo y son las que se
convierten en las perturbaciones iniciales descritas en el MCS cuando la ex-
pansién las extiende a escalas cosmoldgicas. A su vez, estas perturbaciones
se convirtieron en diferencias de densidad de materia y energia a lo largo del
espacio que, después de 14 mil millones de anos, formaron las estructuras
que conforman el universo actual: galaxias, sistemas solares, nosotros.

Es asi como la teoria inflacionaria no solo resuelve el problema de las
condiciones iniciales, sino que también se presenta como la teoria de las
fluctuaciones cudnticas primordiales. Sin embargo, el hecho de que hubiera
un periodo de inflacién, asi como el modelo elegido por la naturaleza, es de-
sconocido. Diferentes tipos de potenciales inflacionarios de slow-roll (cada
uno perteneciente a un modelo distinto) dan lugar a ligeras diferencias en
las predicciones observacionales, algunas con una mejor concordancia que
otras al momento de probarlas con las restricciones experimentales actuales.
Una gran variedad de modelos inflacionarios se han propuesto, varios de los
cuales se han comprobado falsos dada la cada vez mejor precisiéon de los
datos cosmolégicos. Lamentablemente, los modelos méas simples (matemati-
camente hablando) estdn muy cerca de ser descartados. Por esta razon, el
campo de investigacion relacionado con la inflacion cosmolégica esta alta-
mente activo en lo que respecta a la construccion de nuevos modelos de
un modo mas complejo que el de simplemente modificar el potencial infla-
cionario.

Efectivamente, una modificacion del potencial inflacionario que conlleve
a mejores predicciones a costa de complicarlo matematicamente parece poco
natural. En esta tesis se opta por una estrategia alternativa: se asumen
los potenciales inflacionarios mas simples pero se modifican ligeramente las
leyes de la gravedad. Esta estrategia no es nueva, ya que ha sido utilizada
para estudiar otros problemas cosmolégicos que sugieren que la teoria de la
Relatividad General deberia ser ciertamente modificada, al menos a escalas
cosmoldgicas (a escalas del sistema solar, en cambio, la Relatividad Gen-
eral describe con alta precision los fendmenos observables). En el periodo
inflacionario, modificaciones de las leyes de la gravedad dan lugar a dis-
tintas predicciones observacionales para el mismo potencial inflacionario,
haciéndolas potencialmente mejores cuando se comparan con las mediciones
cosmologicas.

Finalmente, la tesis se complementa con un estudio fenomenolégico de
los parametros inflacionarios que es independiente del modelo inflacionario
que se escoja, asi como también con un estudio de pardmetros inflacionarios,
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distintos de los utilizados tipicamente, que podrian ayudar enormemente a
identificar el modelo mas probable de inflacién, dadas las mediciones ac-
tuales y futuras.

2 Objetivos

El objetivo general de esta tesis es el estudio del periodo inflacionario
de una manera no estidndar. Por un lado, se estudian aproximaciones
fenomenolégicas a la inflaciéon. Usualmente para estudiar este periodo se
parte de un potencial inflacionario a partir del cual se construyen las ecua-
ciones de movimiento del inflatén. En esta tesis, en cambio, se parte
de parametrizaciones alternativas motivadas por la fenomenologia de una
ecuacion de estado del universo en expansién propuesta en anos recientes.
Dicha parametrizacion involucra parametros libres que son acotados usando
los datos observacionales actuales.

Asimismo, se realiza un estudio de los parametros inflacionarios alterna-
tivos a los estandares que pudieran ser importantes para discernir entre los
modelos inflacionarios mas populares. Actualmente, las pruebas més im-
portantes del periodo inflacionario involucran el estudio de dos parametros:
la razon entre las amplitudes de los espectros de potencias de las pertur-
baciones escalares y tensoriales, r, y la razén del cambio en el espectro de
potencias escalar con respecto a la escala, ng. Sin embargo, observaciones
actuales y futuras no pueden discernir entre modelos usando solo estos dos
parametros. Por ello, se estudia la importancia de varios parametros que
no suelen tomarse en cuenta, y se discute su relevancia actual y en futuros
experimentos como lo es el futuro satélite CORE.

Por otro lado, se estudian modelos de inflaciéon no estandares. Usual-
mente se asume que el inflaton interacciona con la gravedad de forma
minima (o, equivalentemente, que el inflaton se encuentra minimamente
acoplado). En realidad, esta ‘simplicidad’ no es necesaria y, ademads, se ha
demostrado que para ciertos potenciales inflacionarios con interacciones mas
complejas conllevan a mejores resultados. En esta tesis se estudia un modelo
en el que el inflatén estd no minimamente acoplado a la gravedad a través
de un parametro adicional. En el estudio se ha acotado este parametro us-
ando los datos cosmoldgicos actuales y, también, se realiza una comparacion
estadistica entre los modelos minimamente y no minimamente acoplados,
encontrando el segundo caso como el mas favorecido.

Finalmente, también se estudian modelos no estandares que requieren de
una modificaciéon atin mas trascendental de la Relatividad General, perteneci-
entes al marco de teorfas generales escalar-tensor llamada Horndeski.> Di-

3En honor a Gregory Horndeski, quien en 1974 fue el primero en estudiar estas teorfas.
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chos modelos resuelven varios problemas que presentaban los modelos no es-
tandares propuestos anteriormente y también conllevan a predicciones de los
parametros inflacionarios que se encuentran en mejor concordancia con los
datos observacionales actuales. Se estudian ademéas modelos pertenecientes
a un nuevo marco del tipo escalar-vector-tensor en donde existe un campo
vectorial acoplado al inflatén capaz de afectar la expansién del Universo,
analizando las consecuencias de esta interaccion sobre las predicciones cos-
mologicas.

3 Metodologia

El trabajo de investigacion relativo al estudio del universo primitivo re-
quiere tanto de técnicas analiticas de estadistica y calculo matematico como
también de técnicas numéricas. Para ello se han empleado las herramientas
y técnicas de calculo y de computacion aprendidas durante los estudios de
grado y master.

En particular, desde la perspectiva tedrica de esta tesis, que requiere
un entendimiento adecuado del Modelo Cosmolégico Estandar (y por lo
tanto de la Relatividad General), se han empleado métodos de resolucion de
ecuaciones diferenciales lineales y de grados superiores, técnicas numéricas
de integracion, funciones de Green, expansiones en series numéricas, entre
otras. Estas técnicas son necesarias para calcular y resolver las ecuaciones
de movimiento clasicas y de perturbaciones en un modelo inflacionario es-
pecifico, asi como también para calcular los parametros inflacionarios. La
mayor parte de estos cdlculos se realizan o comprueban con ayuda de soft-
ware para calculo matematico.

Por otro lado, la perspectiva fenomenologica de la tesis requiere de
estudio y procesado de datos experimentales, provenientes de mediciones
cosmoldgicas, que se utilizan para contrastar los modelos tedricos con las
observaciones. Para ello son necesarias herramientas de probabilidad y es-
tadistica para la realizacién de diferentes analisis, como lo son la prueba de
hipétesis x2, el teorema de Bayes, la informacién de Fisher o técnicas de
Monte Carlo, por mencionar algunas.

4 Estructura de la tesis

La tesis estd dividida en tres partes. La primera, conteniendo cinco
capitulos, consiste en una introduccion al trabajo de investigacion llevado
a cabo durante el doctorado: el Capitulo 1 ofrece una corta introduccion al
Modelo Cosmolégico Estandar, prestando especial atencién a las épocas rel-
evantes para el estudio del periodo inflacionario (tal como lo es la época que
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da origen a la radiacién de fondo de microondas), asi como también a los
problemas principales que dan lugar a la propuesta de la inflacién cosmolég-
ica. En el Capitulo 2 se ofrece un resumen exhaustivo de la dindmica de la
inflacion cosmologica del tipo slow-roll estandar donde se muestra que una
expansion acelerada del Universo resuelve los problemas del MCS y cémo
un campo cuantico escalar satisface los requerimientos de dicha expansion.
También se explica la teoria de las fluctuaciones cuanticas primordiales, las
ecuaciones de movimiento de estas, su evolucion y las senales que dejan en
las observaciones actuales. En el Capitulo 3 se discute la parametrizacién
de Mukhanov, una aproximaciéon independiente de modelos para estudiar
el espacio de parametros permitido de la teoria inflacionaria estandar. Por
otro lado, la aproximacion de modificaciones de gravedad se estudia en el
Capitulo 4. Primero, discutimos la construccion de las teorias mas gen-
erales de gravedad de los tipos scalar-tensor y scalar-vector-tensor que dan
lugar a ecuaciones de movimiento de segundo orden; luego, se discuten los
principales modelos inflacionarios construidos a partir de estas teorias. Fi-
nalmente, en el Capitulo 5, demostramos las capacidades de técnicas mas
alld de slow-roll para calcular los parametros inflacionarios en modelos in-
flacionarios estandares y no estandares. Completamos esta primera parte
con un apéndice detallado sobre la Teoria de Perturbaciones Cosmoldgi-
cas, seguido de un segundo apéndice que contiene ecuaciones ttiles para los
capitulos principales.

En la Parte Il se muestran los articulos de investigacion publicados en
revistas peer-reviewed. Alli, el lector encontrard los resultados principales
obtenidos a lo largo del doctorado. En la Parte III se resumen estos resul-
tados y se concluye.

5 Resultados y Conclusiones

La inflacién cosmoldgica resuelve de una manera elegante los problemas
principales del MCS: la homogeneidad, isotropia y planicie del Universo son
simples resultados de una época de aceleracion temprana. Mas ain, fluc-
tuaciones cuanticas durante esta época son expandidas a escalas clasicas
por la expansiéon, transformandose en las perturbaciones iniciales que dan
lugar a las estructuras cosmoldgicas. Sin embargo, la teorfa inflacionaria
estandar esta en peligro de ser descartada por los datos experimentales. Es
por esto que nuevos métodos para estudiar la teoria deben ser consider-
ados: por un lado, aproximaciones independientes de modelos especificos
tienen el potencial de descifrar el espacio de parametros permitido segun
las mediciones cosmologicas. Por otro lado, la construccion de modelos in-
flacionarios puede realizarse manteniendo los potenciales inflacionarios mas
simples pero a costa de modificar las leyes de la gravedad. Estas dos aprox-
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imaciones alternativas constituyeron el objeto de estudio principal de esta
tesis.

En modelos de inflacion estandares, la ecuacion de estado puede ser
parametrizada con solo dos parametros fenomenoldgicos, con los que equiv-
alentemente se pueden escribir relaciones analiticas para los parametros
inflacionarios. De esta forma, se puede obtener un espacio de paramet-
ros inflacionarios permitido acotando los parametros fenomenoldgicos con
las mediciones experimentales. En [1] mostramos explicitamente que esta
parametrizaciéon esta en concordancia con parametrizaciones mas familiares,
y que cubren el mismo espacio de pardmetros permitido, cuando son con-
frontadas con datos del CMB.

Existe la posibilidad de que las leyes de la gravedad, descritas por la
Relatividad General, necesiten ser modificadas. Esta posibilidad trae con-
sigo un amplio campo de investigacién a partir del cual muchas teorias
de gravedad modificada has sido propuestas. Teorias basadas en campos
escalares como el inflatén conllevan al estudio de interesantes tipos de
acoplamientos entre el campo escalar y el sector gravitatorio. Cuando es-
tos acoplamientos se aplican para la inflaciéon cosmoldgica, acoplamientos
no minimos pueden modificar las predicciones de potenciales inflacionarios
estandares. En este aspecto, en [2] se demostrdé que un acoplamiento no
minimo especifico entre el inflatén y la gravedad es favorecido por las medi-
ciones observacionales cuando se mantiene un potencial inflacionario simple
que, de otra forma, estaria descartado.

Estos resultados fenomenolégicos obtenidos a partir de simples acoplamien-
tos entre el inflaton y el sector gravitatorio conllevaron a la busqueda de
nuevos resultados provenientes de términos diferentes y mas complejos per-
mitidos en la teoria. Manteniendo las simetrias y restricciones de la Relativi-
dad General (como lo es la invariancia Lorentz, la unitariedad y localidad),
asi como la restriccion de obtener una teoria que conlleve a ecuaciones de
movimiento de segundo orden (para evitar inestabilidades), solo unas pocas
combinaciones entre el inflatén y el sector gravitatorio son permitidas. Esto
en su momento conllevo a la construccion de teorias gravitatorias generales
del tipo escalar-tensor. El marco tedrico de Horndeski, representa un punto
de partida para la construccion de atractivos modelos inflacionarios, de los
cuales G-inflation es el mas sencillo. En este modelo, un término autoderiva-
tivo del inflaton es introducido que, al igual que en el caso de acoplamientos
no minimos, permite modificar las predicciones observacionales para un po-
tencial inflacionario especifico. Sin embargo, el modelo de G-inflation orig-
inal estaba también en tension con respecto a los datos actuales por lo que,
en [4], se propuso una modificacién de este modelo con la que se mejoran las
predicciones inflacionarias y se resuelven los problemas de inestabilidades
que el modelo original presentaba.
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Es posible también que campos cuanticos vectoriales hayan estado pre-
sentes durante el periodo inflacionario. Independientemente de su inter-
accion con el inflatén, estos campos pueden afectar y modificar la expan-
sion del Universo. De cualquier manera, acoplamientos entre el inflaton
y el campo vectorial, sobre el campo gravitatorio, son de especial interés
y pueden ser acotados de igual forma con mediciones del CMB. En este
respecto, un marco de teorias generales de gravedad del tipo escalar-vector-
tensor fue construido recientemente. En [5] se estudiaron las predicciones
observacionales del acoplamiento mas sencillo proveniente de este marco
de teorias. Se demostré que, aunque la inflacion cosmoldgica es llevada a
cabo por el campo escalar como en el caso estandar, la presencia del campo
vectorial produce una disminucién en el factor de expansién del Universo.
Con base en estos resultados, se demostrd que en ciertos modelos se pueden
obtener mejores predicciones con respecto a los datos experimentales de-
pendiendo de la intensidad del acoplamiento entre el inflatén y el campo
vectorial.

Por otro lado, el calculo de los parametros inflacionarios en modelos no
estandares como los descritos anteriormente es lejos de ser sencillo, en gen-
eral. Existen diferentes métodos para resolver la ecuacion de movimiento de
las perturbaciones primordiales, como la aproximacion slow-roll que provee
soluciones analiticas para los parametros inflacionarios. Sin embargo, en
modelos inflacionarios no estandares, esta aproximacioén no es siempre val-
ida. Para tratar estos modelos, nuevas técnicas han sido desarrolladas, entre
las cuales las técnicas slow-roll generalizado (GSR, por sus siglas en inglés)
y slow-roll optimizado (OSR) han sido probadas satisfactoriamente. Re-
cientemente, estas técnicas fueron extendidas para modelos provenientes de
marcos tedricos del tipo Horndeski y, en [4], se demostré que las predic-
ciones obtenidas para el modelo del tipo G-inflation propuesto podian ser
calculadas con estas técnicas y con una alta precision. Por ejemplo, en ca-
sos en los que la aproximacion slow-roll tiene una precision del 90% (no lo
suficientemente alta para las precisiones requeridas en Cosmologia), GSR
provee de resultados con una precisién de mds del 99% con un bajo coste
computacional.

Finalmente, en [3] se demostré la importancia de parametros inflacionar-
ios diferentes de los tipicos para discernir entre modelos inflacionarios con
futuras mediciones experimentales como lo serian aquellas dadas por futuros
satélites como CORE.

Para concluir, en esta tesis se desarrollé6 una exhaustiva exploracion y
un estudio detallado de la teoria de la inflaciéon cosmolégica usando difer-
entes aproximaciones no estandares. Primero, cubrimos parametrizaciones
independientes de modelos especificos. Luego, se demostré el potencial de
parametros diferentes de los tipicos para discernir entre modelos inflacionar-
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ios. Finalmente, se exploré la posibilidad de que el inflatén se haya acoplado
de una manera no estandar al sector gravitatorio o a campos vectoriales pre-
sentes durante el periodo inflacionario y que pueden afectar la expansion del
Universo.
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