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Abstract
We study the capabilities of the short baseline neutrino program at Fermilab to probe the

unitarity of the lepton mixing matrix. We find the sensitivity to be slightly better than the current

one. Motivated by the future DUNE experiment, we have also analyzed the potential of an extra

liquid Argon near detector in the LBNF beamline. Adding such a near detector to the DUNE setup

will substantially improve the current sensitivity on non-unitarity. This would help to remove CP

degeneracies due to the new complex phase present in the neutrino mixing matrix. We also study

the sensitivity of our proposed setup to light sterile neutrinos for various configurations.
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I. INTRODUCTION

The preparation and execution of the DUNE program occupies a central position in the

agenda of neutrino physics experimentation over the coming decades [1, 2]. It is natural that

the first phases of the effort will focus on the short-baseline physics program at Fermilab.

So far the main goal of such an effort has been to confirm or definitely, rule out the sterile

neutrino hints observed in the muon neutrino beam experiments LSND and MiniBooNE [3].

While this indeed provides a strong motivation, there are others, of a more theoretical

nature [4], that can further justify the efforts of a comprehensive short-baseline physics

program at Fermilab [5, 6].

Amongst the strong motivations for such a dedicated neutrino program is the search for

short–distance effects associated to neutrino non-unitarity, as these could possibly shed light

on the underlying seesaw scale associated with neutrino mass generation [7, 8]. Current lim-

its, as well as future expected sensitivities, have been discussed in [9–12] 1. The parameters

describing nonunitary neutrino propagation have been introduced in [13, 14] for the effective

case of two-neutrino mixing. A systematic generalized formalism has been presented in [17],

which consistently covers all of the parameters needed to describe the case of non-unitary

three-neutrino evolution. One can show that current experiments, involving only electron

and muon neutrinos or anti-neutrinos can be effectively described in terms of just three new

real parameters and one new CP violation phase. It has also been shown that this new

phase from the seesaw mechanism brings in a new degeneracy that leads to an important

ambiguity in extracting the ”standard” three-neutrino phase δCP [18]. Similar ambiguities

in the determination of the oscillation parameters can also appear when considering the

possibility of having light sterile neutrinos [19, 20]. We discuss the potential of our proposed

experimental setup for probing this scenario as well.

Recently there has been a lot of interest on the phenomenological implications of non-

unitarity in laboratory searches for neutrino oscillations [9–12, 17, 18, 21–25]. In particular,

ways of mitigating the effects of the above discussed ambiguity for example, by having an

additional 20-ton detector in the TNT2K setup [26] has been addressed in Ref. [27]. In that

case, the main motivation was the use of a cyclotron to generate a neutrino flux coming

from the muon decay at rest (µDAR) with a neutrino energy spectrum peaked around 40-50

MeV, to be detected with a 20 ton target at 20 m from the source.

Our goal in this paper is to study how the short baseline neutrino program at Fermilab

could help DUNE to break the degeneracy in the measurement of the CP violation phase

associated with the non-unitarity of the lepton mixing matrix. Moreover, motivated by the

increased interest in Liquid Argon detectors, we have studied the perspectives of such a

1 Astrophysical implications associated with non-unitary evolution of solar and supernova neutrinos in

matter (and other, more general, non-standard interactions) have been widely discussed in the litera-

ture [13–16].
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detector as a second near detector for DUNE. We have found that this setup could substan-

tially improve the sensitivity to non-unitarity parameters. Indeed, non-unitarity manifests

itself mainly as a zero-distance effect characterizing the effective non-orthonormality of the

weak eigenstate neutrinos [13, 14]. As a result, improved constraints on the non-unitarity of

the neutrino mixing matrix from short distance measurements would be crucial for the Long

Baseline Neutrino program, as it will help to disentangle the confusion between the different

CP phases appearing in the neutrino mixing matrix in the non-unitary case [17, 18].

II. BASIC SETUP

In order to introduce the notation, we briefly describe the effective parameters describing

non-unitarity. The structure of the effective CC weak interaction mixing matrix is given as

N = NNPU (1)

where U is the standard unitary lepton mixing matrix [7] and the pre-factor matrix NNP is

given as [13, 14]

NNP =

 α11 0 0

α21 α22 0

α31 α32 α33

 (2)

where the diagonal αii terms are real numbers and the off-diagonal entries α21, α31, α32 are

in general complex. For a more detailed discussion see [17]. Constraints on the elements of

U arise from global neutrino oscillation fits [28]. Laboratory sources of neutrinos are of the

electron or muon-types, and these are described only by the top two rows of the new physics

NNP [29]. Hence the main parameter probed in our analysis is |α21|2.
Future short-baseline neutrino experiments aiming to observe light sterile neutrinos may

also be useful to obtain bounds on non-unitary parameters. In special, non-unitarity predicts

a zero distance transition νµ → νe [17]

Pµe(L = 0) = α11|α21|2 , (3)

which can be probed because the initial muon-neutrino fluxes, φ0
νµ , in such experiments

are much larger than the electron neutrino flux contamination, φ0
νe . Thus, at very short

distances from the neutrino source, the number of detected electron neutrinos Ne is given

by

Ne ∝ φ0
νe + |α21|2φ0

νµ . (4)

In this work we will consider two different sources of neutrinos: the Booster Neutrino Beam

(BNB) and the Long-Baseline Neutrino Facility (LBNF) beam, also referred to as NUMI

beam. In Fig. 1 we provide a comparison of the two Fermilab fluxes, in blue the BNB

flux [6], featuring an energy peak around 0.6 GeV, and in black the LBNF flux [2] which
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FIG. 1: Comparison between the normalized neutrino flux from the BNB (blue lines) and the

LBNF/NUMI beam designed for DUNE (black lines). In the upper panel solid (dashed) lines

correspond to muon (electron) neutrino fluxes.

peaks around 2 GeV. The ratio between the muon and electron neutrino fluxe is typically,

φ0
νµ/φ

0
νe ∼ 102 in both cases, which means that one can probe differences in the detected

neutrino spectrum caused by very small values of the non-unitarity parameter |α21|2.
The current oscillation-only bound on this parameter comes mainly from the NOMAD

experiment [30]

|α21|2 < 7.0× 10−4 at 90% C.L. (5)

More stringent constraints are obtained when considering charged current neutrino data.

However, one should keep in mind that these limits are somewhat model–dependent.

III. THE SHORT-BASELINE PROGRAM AT FERMILAB

The Fermilab Short Baseline Neutrino Experiment (SBNE) has been designed to resolve

the long-standing puzzle of light sterile neutrinos [31]. The experiment consists of three

detectors at different distances: the Short Baseline Neutrino Detector (SBND), located at

110 m from the neutrino source, the MicroBooNE detector, at 470 m, and the ICARUS

detector, at 600 m. Their size and characteristics are described in Table I, summarizing

the SBNE proposal [5]. The neutrino source for these three detectors will be the Booster
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Detector Total Size Active Size Distance Target POT

SBND 220 t 112 t 110 m Liq. Ar 6.6× 1020

MicroBooNE 170 t 89 t 470 m Liq. Ar 1.32× 1021

ICARUS 760 t 476 t 600 m Liq. Ar 6.6× 1020

TABLE I: Summary of the main features of the SBNE detectors [5].

Neutrino Beam (BNB) at Fermilab. Neutrino beams are generated mainly via by pion, muon

and kaon decay. The pion and kaons are produced by proton collisions and the muons are

generated by the pion decay. Thus, the muon neutrino flux is much bigger than the electron

neutrino flux, as commented above. The BNB has already operated for several years and

its flux is well understood [6]. The neutrino beam is obtained from protons extracted from

the Booster accelerator, with around 5 × 1012 protons per spill hitting a beryllium target

with a kinetic energy of 8 GeV [6]. This provides a neutrino flux mainly made of muon

neutrinos with energies below 3 GeV and an energy distribution peaked around 600 MeV.

In our analysis, the main background is the intrinsic electron neutrinos from the muon and

kaon decay. Of the experiments in Table I MicroBooNE is already running, its detector has

already recorded 3 years of data taking. Thus, our simulation assumes a total of 6.6× 1020

POT for ICARUS and SBND and 1.32× 1021 POT for MicroBooNE.

The Short Baseline Neutrino Experiment (SBNE) at Fermilab contains the necessary

ingredients to observe the non-unitary muon-electron neutrino transition at short distances.

It has an intense flux of muon neutrino and several detectors located at a short distance

that can be sensitive to zero distance transitions such as νµ → νe.

The simulation of the experiment was performed by using the GLoBES package [32, 33],

matching the neutrino fluxes and detector configurations to those reported in Ref. [5]. In or-

der to include non-unitarity into the GLoBES software we have modified the build-in numer-

ical calculation of the oscillation probability using the S-Matrix formalism described in [27].

The transition matrix Sαβ = 〈να|e−iHL|νβ〉 in the non-unitary case can be calculated by sub-

stituting the standard matter potential by VNU = (NN †)Diag[VCC + VNC , VNC , VNC ](NN †)

The conventional transition matrix SUnitary of the unitary case is given through the relation

S = NNP SUnitary
(
NNP

)†
, (6)

where NNP is the pre-factor describing non-unitarity defined in Eq. (2).

The expected non-unitarity signal to be searched for would appear as a change in the total

number of events detected with respect to that of the unitary case, and also a change in the

shape of the electron neutrino spectrum. Thus, the sensitivity to the parameter |α21|2 comes

from three factors, (i) the relative size between |α21|2φ0
νµ and φ0

νe , (ii) the normalization error

in the total flux and (iii) the error in the expected shape of the neutrino flux. Those are
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incorporated into the simulation through the χ2 function

χ2 =
3∑

O=1

Nbin∑
i=1

(
N exp
iO − (1− a− aiO)N th

iO − (1− b− biO)Nbg
iO√

N exp
iO

)2

+ χ2
SYS , (7)

with

χ2
SYS =

(
a

σa

)2

+

(
b

σb

)2

+
3∑

O=1

Nbin∑
i=1

(
aiO
σsa

)2

+

(
biO
σsb

)2

, (8)

where N exp
iO ≡ (N exp

iO )sig + (N exp
iO )bkg is the number of signal and background neutrinos at the

ith-bin expected within the standard unitary 3-neutrino scenario. The subscript O runs over

the three experiments (SBND, MicroBooNE and ICARUS). N th
iO is the expected number of

neutrinos for the transition νµ → νe in the non-unitary case and Nbg
iO the expected number

of background neutrinos, the intrinsic νe from the beam. Here σa (σb) is the total neutrino

signal (background) uncertainty and σsa (σsb) is the shape signal (background) uncertainty.

All the normalization/shape uncertainties are taken to be uncorrelated and are incorporated

to the simulation through the minimization of the free parameters a, b, aiO and biO for each

value of |α21|2.
The result of the simulation is presented in Fig. 2. In the left panel, we present the

expected number of electron neutrino events at the ICARUS detector from the contamination

of the original neutrino beam (green) and from the νµ → νe signal associated to non-unitary

for |α21| = 2.5% (dark yellow) and for |α21| = 1% (light yellow). The right panel shows

the expected sensitivity of the combined analysis of the SBNE experiment (combination of

ICARUS, MicroBooNE and SBND detectors) to the non-unitarity parameter |α21|. In our

calculations, we have assumed a 10% normalization error and a 1% shape error. With these

conditions, the SBNE experiment would lead to a sensitivity of |α21|2 at the 3× 10−4 level,

competitive with current results of non-universality searches.

IV. A SECOND NEAR DETECTOR IN THE LBNF BEAMLINE

We now consider another interesting possibility: the Fermilab Long-Baseline Neutrino

Facility (LBNF) and its near detector program. As part of the future DUNE experiment [2],

Fermilab’s Main Injector accelerator will be used to produce the LBNF beamline, providing

the highest-intensity neutrino beam in the world. In this section, we explore the potential

of this new neutrino beam as a probe of the non-unitarity of the lepton mixing matrix.

The DUNE experiment, supplied by the LBNF beam, will already contain a near detector,

located at a distance of approximately 600 meters.

On the other hand, the ICARUS detector was constructed at CERN and brought to

Fermilab to be assembled as part of the SBNE, as discussed above. Here we propose that,

after finishing its operation time at SBNE, the ICARUS detector is transported again so as

6
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FIG. 2: Left: Number of electron neutrino events (in arbitrary units) expected at the ICARUS

detector located at the BNB. The green histograms show events expected due to the contamination
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the non-unitarity signal are in dark yellow (|α21| = 2.5%) and light yellow (for |α21| = 1%). Right:

Expected Sensitivity of SBNE to the non-unitarity parameter |α21| assuming a 10% normalization

error and a 1% shape error.
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FIG. 3: Number of electron neutrino events (in arbitrary units) expected at the ICARUS detector

located at 600 m of the LBNF due to the contamination of the original neutrino beam (green). We

also show the expected events from a νµ → νe conversion due to a non-unitarity signal given by

|α21| = 2.5% (dark yellow) and for |α21| = 1% (light yellow).

to be used as a second near detector in DUNE, sitting at the LBNF neutrino beamline. As

we will now show, this would be very useful in order to probe non-standard physics.

In preparing Figs. 2 and 3 we have used the fluxes given in Fig. 1. The latter gives the

fluxes needed to estimate the expected event number at the ICARUS detector placed at

the LBNF beamline used as the neutrino source. Notice that the number of events is much

bigger at LBNF than in the BNB setup considered in Fig. 2. Nevertheless, the ICARUS

detector is not optimized for the LBNF beam, since it was designed for a less energetic beam,
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Detector Active Size Distance E range (GeV) Target

ICARUS 476 t 600 m 0 to 3 Liq. Argon

ICARUS+ 476 t 600 m 0 to 5 Liq. Argon

protoDUNE-SP 450 t 600 m 0 to 5 Liq. Argon

TABLE II: Proposals for a second near detector in DUNE.

like the BNB beam, with neutrino energies ranging from 0 to 3 GeV with a peak around

0.6 GeV. The LBNF beamline, on the other hand, contains neutrinos from 0 to 5 GeV and

peaks at 2 GeV.

In order to take into account the above features, we have considered three possible con-

figurations for the proposed second near detector at the LBNF beam:

1. ICARUS at LBNF: This is exactly the ICARUS detector of the SBNE, working with

energies between 0 to 3 GeV, located at the LBNF beamline.

2. ICARUS+ at LBNF: Again the same ICARUS detector of the SBNE, working with

an extended energy window between 0 and 5 GeV and located at the LBNF beamline.

In this case we have added an extra energy bin to the experiment simulation, corre-

sponding to energies from 3 to 5 GeV. For this extra bin, we have assumed the same

efficiency as in the previous energy bin.

3. A protoDUNE-like detector [34]: We have assumed the standard single phase DUNE

Liquid Argon far detector configuration, with the proposed efficiency, bin size, etc

and with an active mass corresponding to a 450 ton detector, as considered for the

ProtoDUNE-SP detector.

There is also a 300 ton detector possibility, the Dual-Phase protoDUNE detector. Although

has a smaller mass, this would employ a combination of liquid and gas Argon that may

present an advantage over the standard protoDUNE Single Phase detector described above.

Nevertheless, in our analysis, we will consider the simpler case of the single-phase detector,

as the expected performance and design for the dual phase detector are not yet settled. A

summary of these detectors can be found in Table II. Although the final design has not been

fixed yet, the protoDUNE configuration described above is much more similar to what the

DUNE near detector will be.

A. Sensitivity to Non-Unitarity at an LBNF near detector

The resulting sensitivity of each of the detectors proposed in Table II is plotted in Fig. 4.

Here we are assuming 10% normalization error and 1% shape error. One sees that thanks

to the high statistics of LBNF beam, the expected sensitivities in these cases are quite

8
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assumed to be located at 600 m from the neutrino source and running for 3.5 years in the neutrino

and 3.5 in the anti-neutrino mode.

promising. Indeed, these configurations result in a substantial improvement of one order of

magnitude of the sensitivity to |α21|2.
The biggest drawback of these experiments is the requirement of knowing precisely the

shape of the neutrino flux with high precision. The DUNE collaboration will predict the

neutrino flux by measuring the muons and hadron-production responsible for the neutrino

beam [1]. In Fig. 5 we present the sensitivity on |α21|2 at 90% C. L. for various combina-

tions of the baseline and the assumed uncertainty in the neutrino spectrum. Notice that

the spectrum error limits the maximum attainable sensitivity on |α21|2. For example, the

protoDUNE configuration cannot reach |α21|2 < 2.5× 10−5 if the spectrum is not known up

to a 1% precision.

The discussion of Fig. 5 can also be extended by considering the impact of the different

detector sizes and distances. The results of this analysis are displayed in Fig. 6. There we

have plotted the minimum requirements for obtaining a 90% C. L. bound for different values

of |α21|2 assuming a spectrum error of 1%. This figure clearly illustrates that, as expected,

the smaller the detector, the closer it should be put in order to obtain a good sensitivity.

Nevertheless, notice that even with a very large detector size, one can not improve the

“ultimate” precision on |α21|2 < 2.5× 10−5 for the assumed 1% spectrum precision.
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B. Sensitivity to light Sterile Neutrinos at an LBNF near detector

Here we focus on the short-baseline capabilities of Fermilab concerning the sensitivity to

light sterile neutrinos in the eV range. The LNBF near detector will be located at around 600

m from the beam source. This opens up a possibility to probe not only zero-distance effects,

but also effects that change with energy and distance, such as those associated with a light

sterile neutrino. In fact, one could use one (or several) near detector(s) at the LBNF beam-

line in conjunction with beamline spectrum measurement to probe light sterile neutrinos.

The possibility of probing sterile neutrino oscillations using a near detector in the DUNE

experiment has already been considered in Ref. [35]. Although the appearance channel is

in general the most sensitive, here we notice that the sensitivity to light sterile neutrinos in

the disappearance channel may be substantially improved provided the uncertainty in the

shape of the neutrino spectrum is good enough. To illustrate this point we consider differ-

ent values of the spectrum error, as well as the possibility of combining two different near

detectors in the LBNF beamline. We also pay especial attention to the effect of the distance

from the source to the detector. For definiteness, we assume a 3+1 neutrino scheme, since

the symmetric 2+2 schemes [36, 37] are ruled out by the solar and atmospheric neutrino

oscillation data [38–40]. In the usual framework, the standard oscillation paradigm contains

three active neutrinos that oscillate to one another. For a neutrino beam of energy around

2.5 GeV, a baseline of around 103 km would be required for the oscillation to take place.

Nevertheless, the existence of one (or several) sterile neutrinos with mass-squared differences

∆m2
n1 , with n > 3, around the eV2 scale would potentially give rise to oscillations in the

scale of hundreds of meters.

In Fig. 7 we illustrate the effect of the baseline on the sensitivity to the 3+1 neutrino
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scheme of the protoDUNE-SP detector located at the LBNF beamline as proposed previ-

ously. We plot the expected sensitivity in the sin2 θ14–∆m2
41, sin2 θ24–∆m2

41 and sin2 2θµe–

∆m2
41 planes, where sin2 2θµe = 4|Ue4|2|Uµ4|2. We consider different baselines and assume

a 1% spectrum error. The experiment is not sensitive to θ34. Fig. 8 shows the impact of

the spectrum error measurement for a 0.6 km baseline protoDUNE-SP detector. In contrast

to usual sterile neutrino searches, the DUNE experiment has a clear advantage, since it is

sensitive to three channels: νe → νe, νµ → νµ and νµ → νe. This allows one to constrain

the values of θ14 and θ24 separately. In order to see this quantitatively, we have estimated

the sensitivity of each disappearance channel in Figs. 7, 8 and 9. In the left panel of these

figures we have focused on the electron neutrino disappearance channel, setting θ24 = 0,

while the central panel assumes θ14 = 0 and shows the sensitivity to muon neutrino disap-

pearance alone. The combined sensitivity on the sterile neutrino parameters coming from

the disappearance channels and the appearance channel νµ → νe is shown at the right panel,

and has also been discussed in [35].

The usual configuration of a sterile neutrino experiment consists on a very near detector

that supplies the spectrum measurement of the beamline. This could be accomplished by

using the protoDUNE-like near detector at 0.6 km and the ICARUS detector at 2.4 km.

This configuration improves the sensitivity to probe the 3+1 parameter space as can be

seen on Fig. 9. The green line corresponds to the sensitivity curve of the protoDUNE-only

configuration located at 2.4 km from the neutrino source, while the black line corresponds

to the combination of ICARUS+ at 2.4 km and protoDUNE at 0.6 km. Notice that in

general the combination of detectors improves the sensitivity since protoDUNE would act

as a near detector for ICARUS+, providing a good estimate for the shape of the neutrino

flux. Nevertheless, at ∆m2 ∼ 1 eV2 the sensitivity of protoDUNE alone is slightly better, as
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FIG. 9: The LBNF near detectors at 90% C.L. sensitivity to the 3+1 neutrino scheme is given

in black for the combination of protoDUNE-SP at 0.6 km and ICARUS+ at 2.4 km. The Dashed-

Green curve shows the result for the protoDUNE-only case at 2.4 km from the LBNF. Left: sin2 θ14

versus ∆m2
41 Center: sin2 θ24 versus ∆m2

41 and Right: sin2 2θµe versus ∆m2
41. A 1% spectrum

error is assumed in all cases.

2.4 km is the optimal baseline for neutrino oscillations with mass squared splitting around

1eV2 and protoDUNE is a detector optimized for the LBNF flux.

Comparing these results with other sensitivity studies performed in the literature, for

experiments such as Hyper-Kamiokande [41, 42] or MINOS+ [43, 44], one can see that the

experimental setups proposed here look very promising indeed, especially for constraining

sin2 2θµe.

V. DISCUSSION AND CONCLUSION

We have studied the capabilities of the short baseline neutrino program at Fermilab as a

probe of the unitarity of the lepton mixing matrix. In particular, we have analyzed in this

case the sensitivity to the so-called zero distance effect. We have found that the sensitivity

is slightly better than the current one from oscillation experiments such as NOMAD,

especially when the analyses of the three upcoming detectors are combined, as shown in

Fig. 2. Motivated by the future DUNE experiment, we have also analyzed the potential of

different liquid Argon near detectors located in the LBNF beamline. We have found that

the addition of such a near detector to the DUNE setup can substantially improve the

current sensitivity on non-unitarity parameters. Fig. 4 illustrates the improvement in the

sensitivity to unitarity violation that can be achieved in this case. Such improvement would

help to remove the degeneracies associated with the search for CP violation at DUNE,

coming from the new complex phase present in the non-unitary neutrino mixing matrix [18].

For completeness, we have also analyzed in detail how the sensitivity changes for different

13



configurations of baseline, mass, and systematic errors, as summarized in Figs. 5 and 6.

We have also commented on the use of such a DUNE near detector, such as a probe for

light sterile neutrinos. We have studied the sensitivity of various configurations of baselines

and errors (see Figs. 7 and 8). We have also studied the case (Fig. 9) of an array of two

near detectors located at 0.6 and 2.4 km that could probe the ∆m2 ∼ 1 eV2 region both

for θ14 and θ24. The impact of having a second near detector is especially visible in the

expected sensitivity to sin2 2θµe, plotted in the right panel of Fig. 9.

Finally, an LBNF near detector can also probe neutrino non-standard interactions (NSI).

Such NSI are generically expected in neutrino mass generation schemes, not necessarily of

the seesaw type [45]. Indeed, the sensitivity to NSI in the DUNE far detector has already

been discussed in Refs. [46–49]. Here we stress that such interactions also lead to an effective

non-unitarity-like zero–distance effect, ideal to be probed at a near detector. For the case

of short–baseline neutrino experiments, matter effects in the neutrino propagation are irrel-

evant, and therefore the experiments are only sensitive to NSI at the neutrino production or

detection processes. One can parametrize the charged current NSI at the neutrino source (s)

and detection (d) in terms of two 3× 3 matrices: εs and εd [50] that modify the oscillation

probability to [12]

Pαβ = |[(1 + εd)S(1 + εs)]βα|2, (9)

where S is the propagation matrix. The limit εa → 0, with a = s, d, restores the standard

oscillation result. The analogue zero–distance effect corresponding to Eq. (4) becomes

Ne ∝ |(1 + εsee)(1 + εdee) + εdeµε
s
µe|2φνe + |(1 + εsee)ε

d
eµ + (1 + εdµµ)εseµ|2φνµ (10)

Therefore, all the analyses obtained before can be extended to cover this case as well, by

substituting |α21|2 by the quantity,

|α21|2 →
|(1 + εsee)ε

d
eµ + (1 + εdµµ)εseµ|2

|(1 + εsee)(1 + εdee) + εdeµε
s
µe|2
≈ |εdeµ + εseµ|2 (11)

Notice that the experiment becomes blind to NSI in the special case εdµe ≈ −εsµe.

In summary, our main point in this paper has been to stress the importance of probing

short distance physics through the use of near detectors in DUNE. We have illustrated the

physics that can be probed in several different configurations. In order to bring the issue

to the experimental agenda we have proposed idealized benchmarks and determined their

physics reach. Our results should trigger discussion in the community and help choose an

optimized and realistic option. Dedicated scrutiny will be needed in order to design the

ultimate setup to be chosen, in view of its physics interest as well as technical feasibility.
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