#### **Chapter 7. Inventory Management: Items** with Independent Demand

Basic references:

- Heizer, J. & Render, B. (2009): Operations Management. New Jersey: Pearson Prentice Hall



#### **Chapter 7. Inventory Management: Items** with Independent Demand

7.1. Functions and types of inventory. Pros and cons of inventory

- 7.2. Nature of inventories
- 7.3. Inventory models for independent demand items

#### Amazon.com

Amazon.com started as a 'virtual' retailer – no inventory, no warehouses, no overhead; just computers taking orders to be filled by others

Growth has forced Amazon.com to become a world leader in warehousing and inventory management

#### Amazon.com

 Each order is assigned by computer to the closest distribution center that has the product(s)

- 2. A 'flow meister' at each distribution center assigns work crews
- 3. Lights indicate products that are to be picked and the light is reset
- 4. Items are placed in crates on a conveyor. Bar code scanners scan each item 15 times to virtually eliminate errors.

#### Amazon.com

- 5. Crates arrive at a central point where items are boxed and labeled with new bar code
- 6. Gift wrapping is done by hand at 30 packages per hour
- Completed boxes are packed, taped, weighed and labeled before leaving warehouse in a truck
- 8. Order arrives at customer within a week

# 7.1. Functions and types of inventory. Pros and cons of inventory

- Inventory: items piled waiting for use (other productive or comercial use)
- Function of inventory: To decouple or separate various parts of the production process

Other functions:

-To decouple the firm from fluctuations in demand and provide a stock of goods that will provide a selection for customers

- -To take advantage of quantity discounts
- -To hedge against inflation

VNIVERSITAT DOVALÈNCIA Departament de Direcció d'Empreses . Juan José Renau Piqueras Departament de Direcció d'Empreses . Juan José Renau Piqueras

#### Inventory

- ☑ One of the most expensive assets of many companies and representing as much as 50% of total invested capital
- Operations managers must balance inventory investment and customer service



### Types of inventory

- ☑ Raw material
  - $\ensuremath{\boxdot}$  Purchased but not processed
- ☑ Work-in-process
  - ☑ Undergone some change but not completed
  - $\ensuremath{\boxtimes}$  A function of cycle time for a product
- ☑ Maintenance/repair/operating (MRO)
  - ☑ Necessary to keep machinery and processes productive
- ☑ Finished goods

VNIVERSITAT Completed product awaiting shipment





VNIVERSITAT DÖVALÈNCIA Departament de Direcció d'Empreses. Juan José Renau Piqueras Figure 12.1

### **Functions of inventory**

- ☑ Cycle inventory
- ☑ Safety inventory
- Seasonal inventories
- ☑ In-transit inventories

#### Pros and cons of inventory



Departament de Direcció d'Empreses . Juan José Renau Piqueras

#### 7.2. Nature of inventories

Nature of demand





the firm.

7.3. Inventory models for independent demand items

Inventory management

- ☑ How inventory items can be classified
- ☑ How accurate inventory records can be maintained





- ☑ Divides inventory into three classes based on annual dollar volume
  - ☑ Class A high annual dollar volume
  - ☑ Class B medium annual dollar volume
  - ☑ Class C low annual dollar volume
- ☑ Used to establish policies that focus on the few critical parts and not the many trivial ones

## ABC analysis

| Item<br>stock<br>number | Percent of<br>number of<br>items<br>stocked | Annual<br>volume<br>(units) | x | Unit<br>cost | = | Annual<br>dollar<br>volume | Percent of<br>annual<br>dollar<br>volume |       | Class |
|-------------------------|---------------------------------------------|-----------------------------|---|--------------|---|----------------------------|------------------------------------------|-------|-------|
| #10286                  | 20%                                         | 1,000                       |   | \$90.00      |   | \$90,000                   | 38.8%                                    | - 72% | А     |
| #11526                  |                                             | 500                         |   | 154.00       |   | 77,000                     | 33.2%                                    | 1270  | А     |
| #12760                  |                                             | 1,550                       |   | 17.00        |   | 26,350                     | 11.3%                                    |       | В     |
| #10867                  | 30%                                         | 350                         |   | 42.86        |   | 15,001                     | 6.4%                                     | 23%   | В     |
| #10500                  |                                             | 1,000                       |   | 12.50        |   | 12,500                     | 5.4%                                     |       | В     |

## ABC analysis

| Item<br>stock<br>number | Percent of<br>number of<br>items<br>stocked | Annual<br>volume<br>(units) | x | Unit<br>cost | = | Annual<br>dollar<br>volume | Percent of<br>annual<br>dollar<br>volume |    | Class |
|-------------------------|---------------------------------------------|-----------------------------|---|--------------|---|----------------------------|------------------------------------------|----|-------|
| #12572                  |                                             | 600                         |   | \$14.17      |   | \$8,502                    | 3.7%                                     |    | С     |
| #14075                  |                                             | 2,000                       |   | .60          |   | 1,200                      | .5%                                      |    | С     |
| #01036                  | 50%                                         | 100                         |   | 8.50         |   | 850                        | .4%                                      | 5% | С     |
| #01307                  |                                             | 1,200                       |   | .42          |   | 504                        | .2%                                      |    | С     |
| #10572                  |                                             | 250                         |   | .60          |   | 150                        | .1% )                                    |    | С     |
|                         |                                             | 8,550                       |   |              |   | \$232,057                  | 100.0%                                   |    |       |

## ABC analysis





- ☑ Other criteria than annual dollar volume may be used
  - ☑ Anticipated engineering changes
  - ☑ Delivery problems
  - ☑ Quality problems
  - ☑ High unit cost



#### ☑ Policies employed may include

- ☑ More emphasis on supplier development for A items
- It Tighter physical inventory control for A items
- ☑ More care in forecasting A items



#### **Record accuracy**

- ☑ Accurate records are a critical ingredient in production and inventory systems
- ☑ Allows organisation to focus on what is needed
- ☑ Necessary to make precise decisions about ordering, scheduling, and shipping
- ☑ Incoming and outgoing record keeping must be accurate
- ☑ Stockrooms should be secure



### Control of service inventories

- ☑ Can be a critical component of profitability
- Losses may come from shrinkage or pilferage



- ☑ Applicable techniques include
  - 1. Good personnel selection, training, and discipline
  - 2. Tight control on incoming shipments
  - 3. Effective control on all goods leaving facility

VNIVERSITAT

ALÈNCIA

#### Independent versus dependent demand

- ☑ Independent demand the demand for an item is independent of the demand for any other item in inventory
- Dependent demand the demand for item is dependent on the demand for some other item in the inventory

### Holding, ordering, and setup costs

- ☑ Holding costs the costs of holding or `carrying' inventory over time
- ☑ Ordering costs the costs of placing an order and receiving goods
- Setup costs cost to prepare a machine or process for manufacturing an order

## Holding costs

| Category                                                                         | Cost (and range)<br>as a percent of<br>inventory value |  |  |  |
|----------------------------------------------------------------------------------|--------------------------------------------------------|--|--|--|
| Housing costs (building rent or depreciation, operating costs, taxes, insurance) | 6% (3 - 10%)                                           |  |  |  |
| Material handling costs (equipment lease or depreciation, power, operating cost) | 3% (1 - 3.5%)                                          |  |  |  |
| Labour cost                                                                      | 3% (3 - 5%)                                            |  |  |  |
| Investment costs (borrowing costs, taxes, and insurance on inventory)            | 11% (6 - 24%)                                          |  |  |  |
| Pilferage, space, and obsolescence                                               | 3% (2 - 5%)                                            |  |  |  |
| Overall carrying cost                                                            | 26%                                                    |  |  |  |
| Vniversitat<br>DöValència                                                        | 24                                                     |  |  |  |

Departament de Direcció d'Empreses . Juan José Renau Piqueras

### Holding Costs



Departament de Direcció d'Empreses. Juan José Renau Piqueras

#### Basic EOQ model

#### Important assumptions

- 1. Demand is known, constant, and independent
- 2. Lead time is known and constant
- 3. Receipt of inventory is instantaneous and complete
- 4. Quantity discounts are not possible
- 5. Only variable costs are setup and holding
- 6. Stockouts can be completely avoided





#### Minimising costs

#### Objective is to minimise total costs



Departament de Direcció d'Empreses. Juan José Renau Piqueras

#### The EOQ model



- **Q** = Number of pieces per order
- Q\* = Optimal number of pieces per order (EOQ)
  - D = Annual demand in units for the inventory item
  - **S** = Setup or ordering cost for each order
  - *H* = Holding or carrying cost per unit per year

Annual setup cost = (Number of orders placed per year) x (Setup or order cost per order)

$$= \left(\frac{Annual \, demand}{Number \, of \, units \, in \, each \, order}\right) \left(\begin{array}{c} \text{Setup or order} \\ \text{cost per order} \end{array}\right)$$
$$= \left(\frac{D}{Q}\right)(S)$$

Departament de Direcció d'Empreses. Juan José Renau Piqueras

VALÊNCIA

#### The EOQ model

Annual setup cost =  $\frac{D}{Q}S$ Annual holding cost =  $\frac{Q}{2}H$ 

- **Q** = Number of pieces per order
- Q\* = Optimal number of pieces per order (EOQ)
  - D = Annual demand in units for the inventory item
  - **S** = Setup or ordering cost for each order
  - *H* = Holding or carrying cost per unit per year

Annual holding cost = (Average inventory level) x (Holding cost per unit per year)

$$= \left(\frac{Order \ quantity}{2}\right) (Holding \ cost \ per \ unit \ per \ year)$$
$$= \left(\frac{Q}{2}\right) (H)$$

Departament de Direcció d'Empreses. Juan José Renau Piqueras

VALÊNCIA

#### The EOQ model

Annual setup cost =  $\frac{D}{Q}S$ Annual holding cost =  $\frac{Q}{2}H$ 

- **Q** = Number of pieces per order
- $Q^* = Optimal number of pieces per order (EOQ)$ 
  - D = Annual demand in units for the inventory item
  - S = Setup or ordering cost for each order
  - *H* = Holding or carrying cost per unit per year

Optimal order quantity is found when annual setup cost equals annual holding cost

| $\frac{D}{Q}S = \frac{Q}{2}H$ |
|-------------------------------|
| $2DS = Q^2H$                  |
| $Q^2 = 2DS/H$                 |
| $Q^* = \sqrt{2DS/H}$          |
|                               |

València

Determine optimal number of needles to order D = 1,000 units S = \$10 per order H = \$.50 per unit per year

$$Q^* = \sqrt{\frac{2DS}{H}}$$
$$Q^* = \sqrt{\frac{2(1,000)(10)}{0.50}} = \sqrt{40,000} = 200 \text{ units}$$

VNIVERSITAT DÖVALÈNCIA Departament de Direcció d'Empreses . Juan José Renau Piqueras

Determine optimal number of needles to orderD = 1,000 units $Q^* = 200$  unitsS = \$10 per orderH = \$.50 per unit per year

Expected number of = N =  $\frac{demand}{order quantity} = \frac{D}{Q^*}$ orders  $N = \frac{1,000}{200} = 5$  orders per year

Determine optimal number of needles to orderD = 1,000 units $Q^* = 200$  unitsS = \$10 per orderN = 5 orders per yearH = \$.50 per unit per year

Expected  
time between = 
$$T = \frac{Number of working}{days per year}$$
  
orders  
 $T = \frac{250}{5} = 50$  days between orders

Determine optimal number of needles to order

D = 1,000 units $Q^* = 200$  unitsS = \$10 per orderN = 5 orders per yearH = \$.50 per unit per yearT = 50 days

Total annual cost = setup cost + holding cost

$$TC = \frac{D}{Q}S + \frac{Q}{2}H$$
$$TC = \frac{1,000}{200}(\$10) + \frac{200}{2}(\$.50)$$

TC = (5)(\$10) + (100)(\$.50) = \$50 + \$50 = \$100

VNIVERSITAT DÖVALÈNCIA Departament de Direcció d'Empreses . Juan José Renau Piqueras

### **Robust model**

- ☑ The EOQ model is robust
- ☑ It works even if all parameters and assumptions are not met
- ☑ The total cost curve is relatively flat in the area of the EOQ



Management underestimated demand by 50%D = 1,000 units1,500 units $Q^* = 200$  unitsS = \$10 per orderN = 5 orders per yearH = \$.50 per unit per yearT = 50 days

$$TC = \frac{D}{Q}S + \frac{Q}{2}H$$
$$TC = \frac{1,500}{200}(\$10) + \frac{200}{2}(\$.50) = \$75 + \$50 = \$125$$

Total annual cost increases by only 25%

VNIVERSITAT DÖVALÈNCIA Departament de Direcció d'Empreses . Juan José Renau Piqueras

Actual EOQ for new demand is 244.9 unitsD = 1,000 units1,500 units $Q^* = 244.9$  unitsS = \$10 per orderN = 5 orders per yearH = \$.50 per unit per yearT = 50 days

$$TC = \frac{D}{Q}S + \frac{Q}{2}H$$
$$TC = \frac{1,500}{244.9}(\$10) + \frac{244.9}{2}(\$.50)$$

*TC* = \$61.24 + \$61.24 = \$122.48

Only 2% less than the total cost of \$125 when the order quantity was 200

DOVALÈNCIA Departament de Direcció d'Empreses . Juan José Renau Piqueras

VNIVERSITAT

### **Reorder points**

- EOQ answers the 'how much' question
- ☑ The reorder point (ROP) tells when to order

$$ROP = \begin{pmatrix} Demand \\ per day \end{pmatrix} \begin{pmatrix} Lead time for a \\ new order in days \end{pmatrix}$$
$$= d x L$$

 $a = \overline{Number of working days in a year}$ 

#### Reorder point curve



#### Reorder point example

*Demand* = 8,000 *iPods per year* 250 *working day year Lead time for orders is* 3 *working days* 

 $d = \frac{D}{Number of working days in a year}$ 

= 8,000/250 = 32 units

ROP = d x L

= 32 units per day x 3 days = 96 units

- ☑ Used when inventory builds up over a period of time after an order is placed
- ☑ Used when units are produced and sold simultaneously



Q = Number of pieces per orderp = Daily production rateH = Holding cost per unit per yeard = Daily demand/usage ratet = Length of the production run in days

(Annual inventory) = (Average inventory level) x (Holding cost holding cost

$$\begin{pmatrix}
Maximum \\
inventory level
\end{pmatrix} = 
\begin{pmatrix}
Total produced during \\
the production run
\end{pmatrix} - 
\begin{pmatrix}
Total used during \\
the production run
\end{pmatrix}$$

$$= pt - dt$$
VALÈNCIA

Departament de Direcció d'Empreses. Juan José Renau Piqueras

Vnive

Q = Number of pieces per orderp = Daily production rateH = Holding cost per unit per yeard = Daily demand/usage ratet = Length of the production run in days

 $\begin{pmatrix} Maximum \\ inventory \ level \end{pmatrix} = \begin{pmatrix} Total \ produced \ during \\ the \ production \ run \end{pmatrix} - \begin{pmatrix} Total \ used \ during \\ the \ production \ run \end{pmatrix}$ = pt - dt

However, Q = total produced = pt; thus t = Q/p

VNIN

$$\begin{pmatrix} Maximum\\ inventory \ level \end{pmatrix} = p \left( \frac{Q}{p} \right) - d \left( \frac{Q}{p} \right) = Q \left( 1 - \frac{d}{p} \right)$$

$$Holding \ cost = \frac{Maximum \ inventory \ level}{2} \ (H) = \frac{Q}{2} \left[ 1 - \left( \frac{d}{p} \right) \right] H$$

$$Holding \ cost = \frac{Maximum \ inventory \ level}{2} \ (H) = \frac{Q}{2} \left[ 1 - \left( \frac{d}{p} \right) \right] H$$

Q = Number of pieces per order H = Holding cost per unit per year D = Annual demand p = Daily production rate
d = Daily demand/usage rate

Setup cost = 
$$(D/Q)S$$
  
Holding cost =  $\frac{1}{2}HQ[1 - (d/p)]$   
 $(D/Q)S = \frac{1}{2}HQ[1 - (d/p)]$   
 $Q^2 = \frac{2DS}{H[1 - (d/p)]}$   
 $Q_p^* = \sqrt{\frac{2DS}{H[1 - (d/p)]}}$ 

Departament de Direcció d'Empreses. Juan José Renau Piqueras

Vniver§itat DöValència

#### Production order quantity example

- *D* = 1,000 *units* S = \$10 *H* = \$0.50 *per unit per year*
- *p* = 8 *units* per day d = 4 units per day

$$Q^* = \sqrt{\frac{2DS}{H[1 - (d/p)]}}$$

$$Q^* = \sqrt{\frac{2(1,000)(10)}{0.50[1-(4/8)]}} = \sqrt{80,000}$$

= 282.8 or 283 hubcaps

öValència Departament de Direcció d'Empreses. Juan José Renau Piqueras

VNIVERSITAT

Ð

#### Fixed-period (P) systems

- $\boxdot$  Orders placed at the end of a fixed period
- ☑ Inventory counted only at end of period
- ☑ Order brings inventory up to target level
  - ☑ Only relevant costs are ordering and holding
  - ☑ Lead times are known and constant
  - ☑ Items are independent from one another

### Fixed-period (P) systems



### Fixed-period (P) example

3 jackets are back ordered It is time to place an order *No jackets are in stock Target value* = 50

#### Order amount (Q) = Target (T) - Onhand inventory - Earlier orders not yet received + back orders

$$Q = 50 - 0 - 0 + 3 = 53$$
 jackets



#### **Fixed-period systems**

- ☑ Inventory is only counted at each review period
- ☑ Can be scheduled at convenient times
- ☑ Appropriate in routine situations
- ☑ May result in stockouts between periods
- ☑ May require increased safety stock