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Foreword

This document contains teaching materials that have been developed as part of the set
of didactic resources and learning activities employed in Psychometrics, a nine-credit
compulsory subject taught in the second year of the Psychology degree at the University
of Valencia.

Although we already use an extensive set of classroom materials -in the form of detailed
PowerPoint-like presentations developed in the past five years of teaching in English in
the ‘Academic High Performance’ group of the Psychology degree- in this document I
provide more detailed explanations for a selection of topics that usually require more
thorough treatment. Examining several of the more sensitive points in psychological
measurement, these ancillary notes are intended to contribute to resolving some of the
most frequently asked questions and encourage critical thinking by suggesting new
issues and inquiries.

Psychometrics is a particular case within psychology because it is a technical subject.
Based on mathematics and especially statistics, it involves a special need for formulas,
Greek symbols, and specific vocabulary. In fact, it is possible to write a psychometrics
paper or a psychometrics handbook using hardly any natural language at all and using
only the language of mathematics. Psychology students do not have to be afraid of this
possibility. Here, my purpose is to explain things in a didactic way, without hiding
certain natural complexities, but avoiding a formal presentation. However, as a technical
field based on mathematical symbols and statistical concepts, psychometrics has
developed its own set of psychometric conventions about how to refer to psychometric
concepts, how to symbolize them, and how to express particular psychometric
properties or relationships. These implicit conventions have been developed in more
than a century of research papers, specialized scientific journals, and many outstanding
psychometric handbooks. Although I have tried to reduce the formulas to a minimum,
they are certainly unavoidable when writing psychometrics.
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Part I. Psychometrics and the Scientific Knowledge

The concept of psychometrics

Psychometrics, as the name suggests, is about psychological measurement. As in any
other empirical science, Psychology tries to “measure all that can be measured and
render measurable all that defies measurement”, to follow the old adage attributed to
Galileo Galilei.

The advantages of measurement -when proper and available- are so evident that
scientists rarely take the time to explain them. For now, it would suffice to say that
psychological measurement is a main pillar of psychological assessment and
psychological intervention.

From a theoretical point of view, Psychometrics is a technical subject that provides
mathematical models for psychological measurement, supports the measurement of all
kinds of psychological constructs, and contributes procedures to estimate and interpret
psychological scales.

From a practical point of view, psychometrics is mainly devoted to developing the
methodologies for creating and checking the quality of tests and questionnaires, and by
doing so it provides a more solid base for advancing psychology as an empirical science.

There is a complex route from a psychological construct to a psychological measurement
-ultimately represented by a nude number- and back again from the number to the
psychology through psychological interpretations. Psychometrics is there, behind any
psychological interpretation of all psychological measures.

Before discussing how psychometrics helps psychology to be a science and professional
psychological practice to be soundly based on scientific knowledge, it would be useful to
set off on a short journey starting with reviewing the idea of science and how to
differentiate scientific knowledge from other types of discourses. You may think that
this path has been previously travelled, but let me show you why these epistemological
bases are so important in your psychological training.

One step back: a brief epistemological background.

All sciences are made of propositions. Theories are merely complex structures of
propositions arranged in ways that allow an internal deductive consistency and some
empirical coherence. Propositions, and so theories, are statements or ordered sets of
statements that must be tested or proven to be true or false.
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Formal and empirical sciences

Based on the criteria for truth they use to accept or reject propositions, sciences can be
classified into two main groups: formal sciences and empirical sciences.

Formal sciences -such as mathematics and involving main branches such as logic or
geometry- are based on a criterion of internal consistency; i.e., given certain
assumptions, deductions are true if they correctly follow from the assumptions, given
the rules of the system. Theorems -not diamonds! - are forever. Even if this universe
finally collapses —as many cosmologists predict today- theorems will remain true. In
some way, mathematics does not speak about this world, though it certainly helps us to
create the most useful models for this world. Therefore, formal sciences do not need to
test their propositions based on the real world: a logic or mathematical deduction can be
demonstrated to be true -or rejected as false- in the darkness of a solitary desk without
any data coming from the real world.

Empirical sciences encompass astronomy, geology, meteorology, marine sciences,
biology, paleontology, physics, and chemistry, but also archeology, history, sociology,
physiology, histology, medicine, and psychology, and many others. All these sciences
speak about different areas or levels of the real world.

Speaking of the real world, all empirical sciences must be based on facts. They all need
data from the real world to decide whether a proposition is true or false. They all need
the support of empirical pieces of evidence. And this is the crucial point: empirical
scientific knowledge requires empirical evidence, i.e., checking whether real world data
support -or reject- the theories and propositions.

Therefore, what characterizes an empirical science as a science is not its object -the
subject matter or level of the real world it researches- but the method it uses, i.e., the
use of any of the multiple science methodologies, all of which are always based on
checking through empirical evidence whether hypothetical propositions can be
sustained. All empirical sciences share this core of the scientific methodologies as the
common characteristic that defines them as sciences. Thus, the resource of empirical
evidence as the criterion of truth is not what differentiates between empirical sciences.
The subject, -i.e., the part, level, or perspective of the real world they analyze- is what
does differentiate them.

The scientific method adopts many forms to adapt to the particular requirements of the
subject under study -because, clearly, it is not the same thing to research galaxies as it is
to research cells, memory, societies, or human organizations. However, any scientific
methodology is always ultimately based on empirical evidence. Do we have facts that
can reject the theory -usually through its observable consequences? Do these facts
support the observable consequences of this theory? As far as we know, does this
theory, with all its propositions and observable consequences, agree with the available
facts?
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The kernel of the scientific method hinges on testing whether the proposed explanations
and their consequences fit the facts, usually registered as data. Of course, there is no
dogmatism in this. If a careful account of the facts that could reject a proposed theory
does not refute it, we provisionally accept this theory, but without any abiding
attachment. All accepted theories are just provisionally accepted theories; science is
always looking for new ways to explain as much evidence as possible in the simplest
form.

Other kinds of valuable knowledge that are not empirical science

Before introducing the various levels on which a proposition that claims to be empirical
science can lie,  would mention that empirical science does not comprise all kinds of
acceptable, useful, or valuable human knowledge. As previously suggested, some
sources of valuable knowledge are not empirical scientific knowledge, cannot be
empirical scientific knowledge, and should not try to be. Philosophical knowledge and its
many branches are outstanding examples.

For instance, think of ethics. Ethics plays a major role in human life, even in the control
of scientific activities. Even though according to some ethical theories, ethical and non-
ethical acts can also be judged by their consequences, ethics itself is not scientific
knowledge and probably cannot be. At first glance, this seems somewhat paradoxical
because today ethical principles and the decision-making of ethics committees rule
many choices about the acceptance, rejection, or modification of scientific research
programs for all kinds of empirical sciences. The empirical science that can or cannot be
performed hinges on ethics, but the ethical ideas underlying these decisions are not a
matter of empirical science.

A second example of valuable knowledge that is not empirical science is epistemology,
also known as gnoseology (or gnosiology), theory of knowledge or theory of science.
Because epistemology discusses the bases and methodologies of scientific knowledge, it
plays a founding and developing role in any science but, again, by itself, it is not
empirical science.

Something similar happens with symbolic logic and logic in general as a principal and
decisive branch of human knowledge. Logic can be incarnated into philosophical
knowledge but it can also be included in the formal sciences. The principles and
contributions of logic support any correct deduction and any kind of acceptable
reasoning. Therefore, there is no science or empirical science without logic and,
furthermore, it is hard to imagine any kind of science without logic. However, again logic
itself is not a matter of empirical science.

In a time when empirical sciences and technology (based on and closely related to
empirical sciences) have displaced philosophy as the main type of acknowledged
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knowledge, the strong dependence of empirical sciences on ethics, epistemology, and
logic seems to be the revenge of philosophy, to the delight of philosophers and
enthusiastic admirers.

As mentioned above, perhaps the most notorious form of valuable knowledge that is not
empirical science are the formal sciences, particularly mathematics. Mathematics is a
nearly magical class of knowledge whose criterion of truth does not depend on empirical
facts but many times provides the best models and the best intellectual instruments for
understanding empirical facts -i.e., our scientific representation of the universe- and
always the tools for calculations, the matter of precise deduction, and the concrete basis
of many scientific laws.

The dependence of empirical sciences on mathematics is so strong that without
mathematics a vast part of these sciences would be inconceivable. Without mathematics,
physics, astronomy, chemistry, and vast parts of medicine, sociology, or psychology
would not exist. What is worse, without mathematics, there would be no statistics, and
without statistics there would be no way to test hypotheses under probabilistic
conditions -which are the usual conditions.

In general, there is no conflict between these types of knowledge and empirical sciences.
In some way, in the twenty-first century, after several centuries of discussion, each
branch knows its position in the tree of human knowledge, and, as I intentionally
mentioned, some of this non-empirical-science knowledge is not only useful but, in some
way, a prerequisite and foundation for the empirical sciences.

The 5 levels at which a proposition that claims to be empirical science may lie

In the realm of empirical sciences, every effort must be made to distinguish the different
levels at which a proposition -or a set of propositions articulated as a theory- may lie
from an epistemological point of view. This may be especially important in disciplines
such as medicine and psychology where the consequences of assuming untestable,
untested, or rejected propositions to be true may have serious effects on public health
(Melia, 1990).

Class I. Propositions that cannot be tested using empirical evidence

Not all propositions or theories are eligible for empirical science, even if their
proponents wish to incorporate them into the knowledge of empirical science. Science
does not judge intentions, purposes, or goals.

Some propositions just cannot be tested with empirical evidence and so are beyond the
realm of empirical science. There are some supposed “theories” that cannot be tested at
all because they do not clearly refer to an empirical object, i.e., they do not speak about
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the empirical world in a well-defined way. Others exhibit a lack of clear definitions or do
not connect their statements with observable consequences. Theories that are not
precise enough, use ambiguous language, allow many interpretations, or cannot be
rejected by empirical facts cannot be a matter of scientific discussion. By definition,
untestable propositions cannot be possible objects for empirical science unless they
define terms, establish operative definitions, and are able to be rejected by the empirical
evidence. Those theories whose ambiguity allows them to explain everything, leading
both to a fact and its contrary, and all facts that can be nicely explained or interpreted
without the possibility of being shown to be wrong are therefore untestable and so
outside the range of empirical science.

Class II. Propositions suitable for empirical science but not yet tested

Second, there are theories that might be tested and may or may not be true but have not
yet been put to the test. These theories might be reasonably well-defined and able to be
contrasted with the facts through empirical research (and so able to be rejected by the
facts), but a lack of research keeps them from being admitted as current science.

These theories must be checked empirically by the usual procedures of the empirical
sciences before we can admit them as scientific knowledge. Until then, they cannot be
accepted as part of the scientific corpus and should not be used as a basis for
interventions or professional treatments no matter how interesting, attractive, or
verisimilar they seem.

Class III. Propositions that are currently under testing procedures

A third group consists of all those theories that are being empirically tested now.
Commonly, these theories present some aspects that seem to be supported by the facts
while others are not. The evidence might be complex, incomplete, and inconclusive. It is
often necessary to test a theory several times from different perspectives, perhaps using
several methodologies and by several research teams, to start to figure out how it fits
the facts if it fits the facts. These theories being tested would need a good deal of
research involving many empirical tests before they could be accepted as suitable
contributions. Again, it may be inappropriate or unacceptable to use them as a basis for
methods for intervention or treatment in the professional field, and only under
exceptional circumstances and under a special patient agreement could experimental
treatments whose testing has been advanced through previous trials be introduced into
professional practice.

Class IV. Propositions currently accepted
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The fourth group consists of all those theories that have been empirically tested many
times and survived these tests. These theories constitute the available scientific
knowledge. Strictly speaking, we will never completely know if they are true but, based
on the available evidence, they may be upheld. They are our best available explanations
up to now.

All tests of scientific hypotheses explicitly involve the possibility of rejecting the
proposition being tested although, in fact, this is usually done the other way around, -
i.e., by establishing a threshold with a known probability for the rejection of a null
hypothesis.

As any student of statistics in any scientific discipline knows, the technical details of how
scientific hypotheses are translated into statistical hypotheses, and how these statistical
hypotheses are submitted to statistical tests is rather complex —and beyond the scope of
this chapter. These really sophisticated (though not infallible) tests are the bridge
between facts and theories, provisionally accepting those propositions that best fit the
available evidence.

The ways of testing some empirical hypotheses are really specific, and some require
specific types of research with specific mechanisms to prevent many of the errors or
artifacts that challenge any research. There are many types of research designs that are
useful for different kinds of hypotheses in different research settings.

Some hypotheses have to be tested using the best available research designs to
guarantee the validity of the results as much as possible, especially the internal validity
which is related to our primary confidence about the effects of one or more factors
(independent variables) on one or more responses (dependent variables).

Outstanding examples of propositions requiring a special type of research design are
those of the type “treatment X is useful for the disorder/illness/syndrome Y under
circumstances C in population type P”.

In the case of research related to human health, especially studies involved in testing
health-related treatments such as pharmacological or psychological treatments, an
especially demanding kind of research design called a randomized clinical trial is
required. For instance, only after a complex research process involving many steps and
including at least one randomized clinical trial, all with enough acceptable positive
results, can a new pharmacological principle be approved for a specific indication by the
health authorities. In the case of pharmacological substances, this process usually takes
about ten years and its estimated financial cost is around €1,170,000,000 -a really
impressive figure partially due to the fact that only 1.1% of research processes are
successful.
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Class V. Propositions already rejected by research

Finally, a fifth group is made up of a variety of theories, many of which are really
appealing and fascinating, that were tested and rejected many times because they were
not supported by the facts. Note that, one day, these theories were proposed, explained,
and defended because somebody -often an important figure in the scientific
community- believed they were plausible explanations or even brilliant solutions to the
problem being researched.

This cemetery of hypotheses is not at all negligible or unimportant and should be
studied in any field because it may help researchers to avoid making the same mistakes,
and professionals to avoid harming or causing side effects to their patients. It is
deplorable that misinformed professionals treat their patients with obsolete remedies
that are known to be useless or even harmful, or simply less effective than other
available treatments backed by serious research.

Not everything that seems to be a plausible explanation is true. Not everything that has
an attractive, well-argued explanation is right. Instead, the opposite is true. It is common
to find several interesting theories that strive to explain the same phenomenon. After a
certain time, many such theories will not find the necessary support or, due to
contradictory results after research, will join the cemetery of ideas that do not fit the
facts.

A strongly advisable critical exercise when reading about a theory with claims of
empirical science is to ask from time to time:

o Where are your data? What are the empirical pieces of evidence that support
your theory?

o What real world studies have been performed to test the ideas presented?

o Which types of research designs have been used?

o Which kinds of statistical tests have been performed on data coming from

which populations?

These simple questions may help us to discern the status of a theory or a proposition in
empirical science. It is not that speculative thinking has no value, but it should be
established to which of the abovementioned five groups each theory or main
proposition belongs. The field of work of empirical science does not go beyond the
empirically testable. The field of established scientific knowledge refers to already-
tested propositions that have been repeatedly put to the test and not rejected by
empirical evidence.
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Therapeutic interventions as hypotheses

When researchers or practitioners propose a new treatment based on their knowledge
and expertise, they are proposing a set of hypotheses that involve at least the following
classes of propositions:

a. Disorder definition: There is a disorder/syndrome/illness/disease/condition that can
be described by the following symptoms/indicators/measures/clinical characteristics;

b. Treatment definition: The treatment/therapy/intervention consists of the following
therapeutic actions/steps/procedures involved/composition and should be
administered in the following way/posology;

¢. Indication statement: This treatment/therapy/intervention fits this
disorder/syndrome/illness/disease/condition;

d. Success forecast: This treatment/therapy/intervention will provide better/at least the
same therapeutic success as the best-established one/the commonly accepted one/a
placebo;

e. Adverse effects. This treatment/therapy/intervention will produce acceptable/less
adverse effects/secondary effects/contraindications compared to the best-established
treatment/the commonly accepted treatment.

f- Restrictive indications: The proposed treatment/therapy/intervention will provide
such results under the following general circumstances/patient properties or patient
circumstances. In some cases, specific treatment instructions/posology instructions are
required for different restrictive indications, such as disorder severity/age/patient
condition, etc.

Type a propositions may be pre-assumed or commonly accepted in the field, thus
making the disorder definition easier. However, in the case of psychological treatments,
it is strongly advisable that type a propositions explicitly define how to identify the
disorder, based on which standards or psychological assessment procedures and
criteria. It is particularly important for treatments to clearly define the scope of their
indications. This involves explicitly establishing the disorder in question (type a
propositions) but also delimiting the circumstances under which the treatment is
expected to be useful for this disorder (type f propositions): the patient’s personal
characteristics, disorder characteristics, and other general aspects such as comorbidity,
contraindications, etc. that might affect the treatment indication.

The possible adverse effects of any treatment should also be studied. This is clear for all
pharmacological treatments but it should also be taken into account in any research into
psychological therapeutic treatments.
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As with any other hypothesis, propositions about therapeutic interventions must be
tested before they are accepted. Only therapeutic procedures, such as psychological
interventions or psychological therapies, supported by empirical evidence obtained
through special types of research designs specially indicated for this kind of research
can be applied in common professional practice and satisfy ethical principles.

In some areas, for example, there is no conclusive evidence about some of the available
interventions, so additional research is required. For instance, Barlow, Johnston,
Kendrick, Polnay, and Stewart-Brown (2006), after reviewing the efficacy of group-
based or one-to-one parenting programs in addressing child physical abuse or neglect,
concluded that “further research is urgently needed” and “there is an urgent need for
further rigorous evaluation of the effectiveness of parenting programs that are
specifically designed to treat physical abuse and neglect, either independently or as part
of broader packages of care”. This conclusion comes from the “insufficient evidence to
support the use of parenting programs to treat physical abuse or neglect”, although the
authors also identify that there is “limited evidence [...] that some parenting programs
may be effective in improving some outcomes that are associated with physically
abusive parenting”. A look at systematic reviews on the effects of psychological
therapies (see, for example, the Cochrane reviews) highlights the diversity in the degree
of available evidence and often the need for research programs that apply randomized,
controlled clinical trials.

In psychology, the dodo bird perspective! for psychological therapies is a popular, well-
accepted stereotype (Beutler, 2006). It may come in different formats but basically it

1 The dodo bird (Raphus cucullatus) is an extinct species of a large and heavy non-flying
bird (up to 25 kg) that lived on the island of Mauritius until it was hunted for food to the
point of extinction by Dutch colonization in the mid-17th century. Lewis Carroll, in his
famous Alice's Adventures in Wonderland (chapter 3: "A Caucus-Race and a Long Tale"),
introduced a dodo bird as a fictional character who organizes a Caucus-race in order to
get dry. “What is a Caucus-race?” Alice asked. “The best way to explain it is to do it,” said
the Dodo. Participants have to run in a sort of a circle (“the exact shape does not matter”
said the Dodo), but “they began running when they liked, and left off when they liked, so
that it was not easy to know when the race was over”. “But who has won”? The Dodo
could not answer this question without a great deal of thought, and it sat for a long time.
[...] Atlast the Dodo said: “Everybody has won, and all must have a prize”. [...] Alice
thought the whole thing very absurd, but they all looked so grave that she did not dare
to laugh”. [Highlights, omitting many interesting details, from Alice’s Adventures in
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establishes that all psychological therapies are more or less the same because all of them
are equally effective or their efficacy is not related to the therapy itself but to the
therapist’s characteristics or abilities. Additionally, in the worst case, a psychological
therapy may be ineffective, but never harmful. Both ideas have proven to be wrong. Not
all therapies are equally effective, as can be seen by just reading review papers on
almost any psychological condition. For example, “many of the earliest psychological
treatments ultimately showed only limited efficacy in the clinic. Included in this group
are early treatments for anxiety disorders, particularly phobias, such as Wolpe’s
systematic desensitization, and even early in vivo exposure-based procedures” (Barlow,
Bullis, Comer, and Ametaj, 2013).

Some therapies have shown their efficacy whereas others remain untested, some are
undergoing testing, and others have been shown to be ineffective. Finally, what is worse,
some therapies have shown their effectiveness in harming patients, increasing their
probability of suffering from what they are trying to solve or prevent, or producing
adverse effects (Lilienfeld, 2007).

Because this kind of information does not seem to be very popular in some
psychological training, some psychologists tend to believe that there is no evidence
against any psychological therapy. Some even live in a happy wonderland where all
therapies are always good and what the patient needs is just a good clinician. While
many psychologists are prone to pointing out the well-known harmful and secondary
effects of many psychopharmacological treatments, it appears that some of them have
turned a blind eye to the possibility of secondary adverse effects from some
psychological therapies.

However, it is easy to find reviews in which some therapies are backed by the evidence,
whereas others are not; see, for instance, Becofia and Lorenzo’s review (2001) on
bipolar disorder. There are also reviews in which some therapies appear to be harmful
or probably harmful. For example, after reviewing the efficacy of a single-session
psychological debriefing in reducing psychological distress and preventing the
development of post-traumatic stress disorder (PTSD) after traumatic events, Rose,
Bisson, Churchill, and Wessely (2002) concluded: “Psychological debriefing is either
equivalent to, or worse than, control or educational interventions in preventing or
reducing the severity of PTSD, depression, anxiety and general psychological morbidity.
There is some suggestion that it may increase the risk of PTSD and depression. The
routine use of single session debriefing given to non-selected trauma victims is not

Wonderland by Lewis Carroll, first published in 1865 - A Book Virtual Digital Edition,
2000)
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supported. No evidence has been found that this procedure is effective”; and also, “there
is no evidence that single session individual psychological debriefing is a useful
treatment for the prevention of post-traumatic stress disorder after traumatic incidents.
Compulsory debriefing of victims of trauma should cease.”

There are many other examples. For instance, “there is now a substantial body of
empirical research demonstrating that efforts to avoid (or suppress) thoughts, emotions,
or physiological responses actually result in increased physiological arousal, greater
autonomic instability, and more stress-related symptoms, despite the desire to down-
regulate arousal” (Barlow et al., 2013).

The conclusion on this point is straightforward: psychological treatments should be
tested using proper research designs and the appropriate measures of the variables
involved when required. A scientifically based perspective is the proper base for
psychological interventions.

Operational definitions

Obtaining evidence and testing theories is often a hard job requiring many trials, the
collection and analysis of field data, or the design of experiments.

To distinguish the status of a theory or hypothesis, it is imperative to differentiate the
propositions of empirical content and the operational definitions of the terms they
contain. As Grinnell (2018) clearly stated, an operational definition “identifies one or
more specific, observable events or conditions such that any other researcher can
independently measure and/or test for them.” In an empirical science, the terms must
be operationally defined, and the way of providing an operational definition of many
psychological constructs passes through psychological measurement. For this reason,
like any other empirical science, psychology has a compelling need for good
psychological measurement.

Psychological measurement is one of the fundamental bases for psychological
assessment and the register, analysis, and identification of therapeutic success.
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Part ll. Tests and Questionnaires: Some Problems Related to
Classical Test Theory

Tests and questionnaires: optimal and typical performance

Most psychological measurement is carried out through the use of tests and
questionnaires, a classic and well-developed way of objectively comprehending
subjective variables. Tests and questionnaires are standardized ways of knowing about
people, essentially by asking them questions.

The word test is more frequently used for measurement instruments that ask people
questions that allow the tester, through test performance, to find out what people are
able to do. This means that tests are primarily devoted to cognitive abilities, intelligence,
attention, and so on; all of these are psychological variables on which examinees can
pass or fail. The characteristic item on these tests can be either right or wrong, and
examinees should do their best to solve them. These tests are therefore called optimal
performance tests.

Educational exams also try to determine what people can remember or do in relation to
a certain subject. Therefore, these exams are also optimal performance measures and
share most of the properties and all types of psychometric analyses proposed for
optimal performance tests.

When an optimal performance test is applied to determine what examinees know or are
able to do, the test items do not ask them their opinion about what they know or are
able to do. Instead of asking for the examinees’ opinion about their knowledge, skill, or
ability, an optimal performance test presents a sample of problems or questions related
to the topic under measurement and encourages the examinees to solve them. That is,
optimal performance tests do not yield a self-report or a self-description of knowledge,
ability, or skill, but rather a test, a real test, of the matter under consideration.

It is easy to guess that, in circumstances such as an academic or work assessment where
the consequences are valuable to the examinees, if we ask them whether they are the
correct candidate for the job or if they have mastered an academic or job-related subject,
many of them would answer affirmatively, regardless of their real opinion or their actual
level of knowledge or ability.

This is a simple, rather obvious, but important and sometimes ignored lesson for any
kind of psychological assessment: what is reported to the examiner by the examinee is
not the same as what the examinee thinks, and what s/he thinks, based on inner self-
perception, self-experience, and memory processes, is not necessarily the real state of
things. Hence, in many circumstances, a self-report can be seen more as a sample of
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actual behavior than as an accurate report describing real thoughts and memories or a
trustworthy account of the examinee’s behavior.

On the optimal performance tests, examinees could deceive the tester by intentionally
producing fewer correct answers than they can actually solve but, if the test is well-
designed, the probability of the examinee doing so by showing an improved result that is
better than their real ability is quite small, and, in many cases, this probability can be
known, estimated, and somehow controlled. If, as is usually the case in optimal
performance assessment, examinees are interested in doing their best, the probability of
intentionally deceiving by intentionally reducing the test score is presumed to be
negligible.

Knowledge, abilities, and skills are fortunate areas. We can ask people about them in a
way that avoids the blurring and distorting filters of self-perception, self-opinion, and
memory bias, interested or manipulative self-descriptions, and the always misleading
expectation of social desirability.

The other way to ask people is through self-report, which involves asking about
opinions, preferences, attitudes, and even personality. Unfortunately, we generally do
not have any way of really testing a person’s true attitude. There is no way of knowing
how somebody would think when faced with a certain situation, brand, service,
problem, or social group. Thus, we ask for a self-report: “Do you like...?” “Which do you
prefer...?” “How often do you...?”

It would probably be better if we could substitute or at least complement all these
questions with direct observation of human behavior in real life situations but direct
observation is almost always impossible. In many cases it would also affect actual
behavior, and it is always very costly in terms of effort, time, and money. Therefore, so-
called self-report questionnaires have become the universal approach for examining
personality, attitudes, or opinions, and describing experiences, social situations, or
social interactions.

Self-reports are susceptible to the many distortions introduced by memory, self-
knowledge, and self-perception filters, as well as to intentional (and even planned)
distortion introduced by the communication of self-reports to others as a deliberate act.
Human communication is in itself a teleological activity. We communicate because we
pursue a social goal, a purpose, or an interest. Thus, communication is rarely a pure
description of our inner perception of a behavior, fact, or social situation. Instead, we
build on our own experience, taking into account what we can expect from the other,
what our perspective, purposes, or interests are, and how we can get the expected or
desired behavior from our partners. Even many of the filters, accommodations, and
distortions that we perform in everyday communication may remain unknown to us.
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Tests and exams are called optimal performance because it is expected that motivated
examinees show us their best performance. All kinds of personality, attitudes, opinions,
and preference questionnaires are called typical performance because it is expected that
a naive examinee -in some way well trained to observe him/herself, to remember
his/her own opinions or behaviors, to average different thoughts, feelings, or behaviors
within a period, and to tell us the truth- reports this mean, average, or typical aspect of
his/her life in the matter under consideration. Of course, there is no hope of finding
people like this under any circumstances, even though the types and intensity of bias
may vary greatly. Therefore, typical performance is more a kind of intentionally
reported image measurement than a representation of the examinees’ typical thinking
or behavior in their real lives. However, if these self-descriptions are useful in some
psychological assessment practices, why not use them?

Despite the sharp differences between optimal performance tests and typical
performance questionnaires from a psychological point of view, both share a substantial
part of the psychometric core because many psychometric methodologies related to the
determination of the test structure, the item and test analysis, the obtaining of norms,
and many other psychometric procedures can be applied or easily adapted to both types
of psychometric measures.

Although a more careful use of the word would differentiate between optimal
measurement tests and typical measurement questionnaires, ‘test’ is sometimes used in
a generic way to refer to any kind of psychological measurement. Thus, it is not unusual
to speak about personality tests, or even use the term “test” as a generic class that also
includes other psychological measurements that are quite different from optimal
performance tests.

A test is essentially a set of questions (symbolic, worded, or manipulative) —-a group of
tasks to do in order to show how the person solves them or what his/her choices are.

Although in many cases manipulative or situational tests would probably provide a
more like-life way of measuring, for many decades paper-and-pencil tests, and later
computer-administered tests have been the dominant way of testing. All the classical
and prominent tests in the areas of aptitudes or personality were developed as paper-
and-pencil tests designed to be administered in a classroom-like setting —or in an office
setting for those individually administered for clinical or educational purposes. This fact
in itself means that tests have been developed as a symbolic representation of real life,
where formal questions expressed in some kind of language try to capture real-life
scenes.
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Unfortunately, although many tests claim to measure cognitive or affective processes -
like solving problems or emotional experiences- most focus on the final answers. Little
or no reference to the cognitive or affective processes involved in the act of creating a
new answer or selecting a preconfigured answer can be identified when reviewing
traditional aptitude or personality tests.

An individual’s answers, graded in the way the test describes, is what we call his/her
test performance. Usually, the cognitive and affective processes are implicit, assumed, or
inferred from the test performance by examining the scores, but they are rarely directly
addressed. The common tradition of psychological test measurement is based on these
kinds of psychometric inferences drawn from the test performance and referring to the
underlying constructs, such as aptitudinal, attitudinal, or personality factors, which are
the main objective of most psychological measurements.

Any test requires an effort to define the domain being measured, the concept and
meaning of a defined construct or latent variable, and the factor or trait we are trying to
measure. Additionally, most tests use closed questions -that is, questions with a limited
set of answer options, predefined and offered to the examinee, whose task will be to
choose the correct answer (optimal performance) or select the most representative or
favorite answer (typical performance). This is a way to keep things easy that is suitable
for professional purposes and appropriate for psychometric or psychological research.
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Answer patterns and total scores on dichotomously scored items

Although on any psychological measurement, the set of questions focuses on a specific
and relatively well-delimited area -such as a personality trait, a facet of social
relationships, work-related order and safety, or a particular mental ability- and the
possible answers are severely restricted to a closed format -such as multiple-choice,
true-false, or Likert-like questions- the set of answers provided by any test is in itself
difficult to manage.

Tests are made up of many questions, and even a short test with a dichotomous answer
scheme can produce a large number of possibilities. For example, for a test made up of
just 20 dichotomous questions, such as true/false, yes/no, or accept/reject, the number
of possible answer patterns is astonishing. There is only one way to answer 20 noes and
only one way to answer 20 yeses, and so things are easy at the extremes of the scale.
However, as we approach a more balanced number of yes and no answers, the number
of possible ways of answering a 20-item test increases substantially. There are 20 ways
of answering one yes and 19 noes, 190 ways of answering 2 yeses and 18 noes, 1,140 of
answering 3 yeses and 17 noes, 4,845 of answering 4 yeses and 16 noes, ..., 167,960
ways of answering 9 yeses and 11 noes, and 184,754 ways of answering 10 yeses and 10
noes. The other side of the possible patterns, involving more yeses than noes, shows a
symmetrical structure: 167,960 ways of answering 11 yeses and 9 noes, ..., 4,845 of
answering 16 yeses and 4 noes, ..., 20 ways of answering 19 yeses and 1 no, and 1 way of
answering 20 yeses and 0 noes. To sum up, amazingly, for a simple 20-item yes/no test,
there are 1,048,576 possible ways of answering, that is, 1,048,576 possible patterns of
response —definitely a huge degree of complexity for a simple instrument.

For this reason, answers should be summarized (which in some way also means
simplified) and what better way to sum up than by adding up? If every and all answers
can be represented using numbers, these numbers can be summarized through a simple
mathematical function, that is, by adding them.

In the simplest but most common case, this process involves two steps. First, each
correct answer is represented by the number 1 -that is, a right answer on an optimal
measurement test or an acceptance answer on any typical performance questionnaire is
represented as “one point”. Second, the total test score is reduced to the counting or
addition of points. This applies to many aptitude or knowledge tests, as well as some
personality, attitude or experience tests.
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After summarizing scores through the addition of points, the complexity around the
answer patterns is drastically reduced. The original 1,048,576 possible ways of
answering a 20-item test are reduced to 21 possible scores, from 0 (no yes answer) to
20 (all yes answers). However, it should be noted that the number of possible patterns
represented by each of these 21 possible scores is quite different. Whereas scores 0 and
20 represent a unique state of answers, a score of 10 represents 184,754 possible
patterns of responses, so a score of ten is really ambiguous in terms of which pattern of
answers is being represented. Although rarely done in test theory handbooks, it is worth
exploring the relationship between the limited number of possible total test scores -just
21 for a dichotomously scored 20 item test- and the possible patterns of answers
behind these 21 scores -that is, the 1,048,576 possible response patterns for the same
dichotomously scored 20-item test.

The total number of scores on this 20-item dichotomously scored test is 220=1,048,576,
that is, two possible scores for each item to the power of 20 items. This number is based
on the following reasoning: for the first item there are 2 possibilities, i.e., yes/no,
pass/fail, accept/reject. Because the item answers are independent -that is, it is
assumed that an item answer does not affect any other- for the second item there are
also 2 possibilities, and the same for the third item, and for the fourth, and so on. Taking
into account only two items, the number of combined possibilities is 2 x 2, that is, 4
possible answer patterns {pass, pass} {pass, fail} {fail, pass} {fail, fail}. Taking into
account three items, the number of possibilities is 2 x 2 x 2 = 8. Thus, taking into account
20 items, the possibilities are 220=1,048,576. This is the number of different possible
answer patterns, regardless of the likelihood of any of them.

The number of possible patterns for each total test score is obtained by applying the
formula for combinations: C(m;n)=m!/[n! (m-n)!]. That is, the number of possible
combinations of m elements taken in groups of n is m factorial divided by ((n factorial)
times ((m minus n) factorial)).

For example, the number of patterns for a total score of 5 on a 20-item test is the
number of combinations of 5 yes answers within 20 items; that is, the question can be
understood as calculating how many ways we can get 5 yes or correct answers within a
total number of 20 questions. This number is exactly the number of combinations of 20
elements taken in groups of 5, that is C(20;5)=20!/[5! (20-5)!)=15,540.

As the total number of possible answer patterns for a 20-item dichotomously scored test
is 1,048,576, then, if all answer patterns are equally probable, a total test score equal to
5 would have a probability of 15,540/1,048,576 = 0.014786.

If all patterns are equally probable, (that is, if there is the same probability of a 1 score
or a "yes" answer as a 0 score or a "no" answer to any item, and if this probability for
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each item is independent of what happens to any other item), then column p in table 1
represents the probability of every total test score.

It should be pointed out that the “number of patterns” column represents the number of
possible patterns with the same total test score, regardless of the probability of any of
these patterns. However, column p represents the probability of each total test score,
assuming that all patterns have the same probability, that is, that the 1,048,576 possible
patterns are equiprobable. Of course, this is a restrictive assumption that might not be
true, but it provides a simple way of modeling the simplest scenario for examinees’
behavior.
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Table 1. Number of response patterns for each total test score and probability of each
total test score, assuming that all response patterns are equally probable, for a test of 20
dichotomously scored items.

Total Test |Number of |Probability of the
Score patterns |total score

0 1| 0.00000095367
1 20( 0.00001907349
2 190| 0.00018119812
3 1140 0.00108718872
4 4845| 0.00462055206
5 15504| 0.01478576660
6 38760| 0.03696441650
7 77520| 0.07392883301
8 125970| 0.12013435364
9 167960| 0.16017913818
10 184756| 0.17619705200
11 167960| 0.16017913818
12 125970| 0.12013435364
13 77520 0.07392883301

14 38760| 0.03696441650
15 15504| 0.01478576660

16 4845| 0.00462055206
17 1140 0.00108718872
18 190| 0.00018119812
19 20( 0.00001907349
20 1| 0.00000095367
Sum= 1048576 1

This table suggests the kind of distributions we can expect for total test scores in many
circumstances. Of course, (maximum total score)/2 (=10 in this example) would not
necessarily always be the most popular score, but the gradient of popularity of the
various total test scores around a central value depicts the typical result for many tests.
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Looking at the table, this gradient seems very clear. For example, the probability of a
score of 5 is (a bit more than) 0.01; that is, more or less one test out of 100 would be
expected to present a score of 5. A total score of 10 is much more likely (p=0.1762); in
fact, the probability of a total score dramatically increases as it approaches the
(maximum score)/2 point -that is, as it approaches a score of 10 on this 20-item test.

This table contributes some convenient uses, such as the estimation of a certain kind of
confidence interval. For example, the five central categories accumulate 73.68% of the
possible response patterns. This means that the probability of getting a score within the
8-12 interval is around .74. In other words, less than a quarter of the possible total test
scores (i.e.,, 5/21) represent around three-quarters of the total possible answer patterns
(i.e.,.74) and, assuming equiprobable patterns, the scores from 8 to 12 would represent
approximately 3/4 of the total examinees’ scores.

[t is easy to guess that the figures in table 1, with this nice symmetry around the center
and ruled by the equiprobability of the 0 and 1 answers for each item, follow a definite
law. For any independent item, the probability of a correct answer may be represented

by p:
pi=P(i=1)

That is, p stands for the probability P of any correct/acceptance answer (ij=1) to item
number i -that is, any item on the test.

Conversely, q represents the probability of any non-correct/rejection answer:

qi=P(i=0)

That is, q stands for the probability P of a non-correct/rejection answer (ii=0) to item
number i -that is, any item on the test.

Because the number of possible correct answers (usually only one) plus the number of
possible non-correct answers (usually only one for true/false items but some more,
usually two, three or four, for multiple-choice items) exhausts the sample space (that s,
all the item answers can be classified as either correct or incorrect) then the probability
of a correct answer plus the probability of an incorrect answer is 1.

pi+qgi =1

which means that pi may be defined by qgi, and qi may be defined by pi.

pi=1-qi
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gi=1-pi

For these dichotomously scored items -also called binary items- the mean or expected
value is just p

Xi = E(ll) =P
and the variance is the product of piand g

S =p;q,

The probability mass function f of this distribution, over possible outcomes
k={1=correct/accept, O=incorrect/reject}, is

fk, p) = pkq(tK) =kp + q(1-k)

When speaking about dichotomously scored {1, 0} optimal response items, p represents
the proportion of correct answers, that is, the item difficulty.

If the probability of a correct/acceptance response is p=0.5, then q=0.5, the expected
value or mean is 0.5, the variance is 0.25, and the standard deviation is 0.5. This would
be the case for a random guessing response, assuming that there are only two possible
answers, and both seem equally attractive to the examinee. This would also be the case
for a medium-difficulty item, the kind of item that is passed by half of the cases.

An item correctly answered by half of the cases is a maximum discriminant item because
its variance (0.25) reaches the maximum possible variance for a dichotomously scored
item and then produces the maximum number of differences between the cases when
compared in pairs. This is one reason why items with p=q=0.5 are a favorite class of
items for many tests and questionnaires from a psychometric point of view.

For a two-item test, both with a 0.5 probability of a correct answer ij={1}

p1=p2=0.5

the probability for the pattern i;={1} and i2={1} summarized as P{1,1} would be
P{1,1}=p1p2=0.5°0.5=0.25.

For a three-item test, with p1=p2=p3=0.5 the probability of {1,1,1} would be
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P{1,1,1}=p1p2p3=0.5‘0.5‘0.5=0.53=0.125.

Then, for a 20-item test, all items with p=.5, the probability of 20 correct answers is

0.520=0.00000095367

so, exactly 1/1,084,576. This is the probability of the only pattern with all correct
responses. But what happens with all the other patterns where correct and incorrect
answers are combined in a certain proportion?

In fact, when pi=q; for all the items (which necessarily involves pi=q;=0.5 for each item),
this is also the probability for any individual pattern of answers. For example, what
would be the probability of {1,0} for a two-item test if p1=p2=0.5?

In this case, qi1=q2=0.5, so the probability of a correct answer for the first item and an
incorrect answer for the second one would be

P{1,0}=p1q2=0.5°0.5=0.52=0.25

For a three-item test, with p1=p2=p3=0.5, the probability of, for example, {1,0,0} would
be

P{1,0,0}=p1q2q3=0.50.50.5=0.53=0.125.

The same rule can be applied to any combination of correct and incorrect responses for
an n-item test. Thus, for a 20-item test with all items accomplishing pi=q;, the probability
of any pattern is

0.520=0.00000095367

And, in general, for an n-item test with pi=q; for any item, it follows that

pi =q; =05"

So, if all items have the same mean or p; value, the probability of any pattern of answers
depends only on the test length n (or the number of items) and the constant pi.

Of course, in the real world, dichotomously scored items do not always have a common
and constant pi. As pi represents the proportion of correct answers for item i, it may be
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calculated in any item as the number of correct answers A divided by the total number
of cases N:

pi=A/N

Because pi is a proportion, it goes from p;=0, which means that item i is so difficult that
nobody has been able to answer it correctly, to pi=1, which means that item i is so easy
that everybody has answered it correctly. For this reason, pi is known as the index of
difficulty, or difficulty index -although the greater the p; is, the easier the item is.

Because pi is the index of difficulty, the classical optimal performance test, after one or
two starting items designed to be solved by anybody, tends to arrange its items in such a
way that it starts with easy items. In other words, it starts with the highest pj values, has
amore or less extended plateau where the items show pi values around 0.5, and, after
that, more or less in the last third of the test, the pi indexes decrease steadily again to
the minimum (though they never reach 0).

For example, an optimal performance 12-item test would ideally show a p profile like the
following:

{1090.80.70.60.50.50.50.40.30.20.1}

The first item in this p profile for a 12-item test is a starting item designed to be
answered correctly by all examinees. It is useless as a measurement device because it
does not help us to discriminate or differentiate the degree of an examinee’s aptitude,
but it may be necessary in order to show examinees that they have understood the
instructions and encourage them to continue. It also helps the tester to check that
everybody has understood the test instructions and is giving the answer in the correct
way in the correct place.

After the starting item, the second item is a very easy one that is correctly answered by
90% of the examinees. The third, fourth, and fifth items gradually increase pi -
progressively increasing the difficulty. The following three items represent the zone
where the test shows its maximum discriminant power. Each of these three central
items is correctly answered by half of the cases, and so they fit the middle level of
aptitude in the sample under measurement and produce the maximum number of
possible discriminations or differentiations if we compare all the examinees in pairs.
These three items also show the maximum possible variance for a dichotomously scored
item: 0.25. After these three middle difficulty items, the rest of the test progressively
increases the item difficulty. The last item shows p12=0.1, which means that only 10% of
the examinees, hopefully the best performers on the measured variable, are able to solve
them.



José L. Melid. (2019). Selected topics in Psychometrics. 29

The difficulty profile is a vector of p values, following the test order, usually represented
in graphic form. Each p profile involves a q profile. For example, the 12-item p profile

{1090.80.70.60.50.50.50.40.30.20.1}

involves the q profile:

{00.10.20.30.40.50.50.50.60.7 0.8 0.9}

Now it would be clear that the q index directly represents the item difficulty: as q
increases, so does the item difficulty.

The p profile for a test can be determined after applying it to a sample. If the sample is
big enough and can be considered representative of a certain population, then the
sample p profile may be considered an estimator of the population p profile. This means
that we can reasonably expect that this vector of p values represents the items’ p values
in this population.

Once the p profile is known, it can be used to estimate the probability of any pattern of
answers. When p; changes through the test items, the probability of the different
response patterns also changes, as does the probability of the different possible total
test scores based on these response patterns.

Imagine that we have a two-item test with a p profile {0.8 0.3}. With only two ordered
items, the four possible response patterns are

{pass, pass} {pass, fail} {fail, pass} {fail, fail}

that is

{113{10}{01}{00}

and their probabilities are, respectively
P{1 1}=0.8+0.3=0.24
P{1 0}=0.8¢0.7=0.56
P{0 1}=0.2¢0.3=0.06
P{0 0}=0.2¢0.7=0.14
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As the four events {1 1} {1 0} {0 1} {0 0} represent the whole sample space, then
0.24+0.56+0.06+0.14=1

to satisfy one of the basic axioms of probability.

These four possible events allow three possible total scores: 0, 1 and 2. In general, for a
test of length n made of dichotomously (0 or 1) scored items, there are n+1 possible
total test scores.

In this example, the probabilities of these three possible total test scores are:
P(X=0) = P{0 0} = 0.14
P(X=1) = P{1 0} + P{0 1} = 0.56+0.06=0.62
P(X=2) = P{11} = 0.24

Different p profiles would provide different distributions of the whole probability
(always equal to 1) among the different total scores.

For example, a 5-item test shows the following p profile:

{0.90.7 0.5 0.4 0.2}.

What would the probability of 5 correct answers be?
The probability of the response pattern
{11111}

would be:

P{11111}=0.9¢0.720.520.4°0.2=0.0252

Now, as the p values are not constant across the items, not all response patterns are
equally probable. The probability of the response pattern

{11100}
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is

P{11100}=0.9¢0.7¢0.5¢0.6°0.8=0.1512

In fact, this is one of the two most probable patterns —the other is {1 1 0 0 0}, and both
are equally probable because item 3 has the same probability of receiving a correct
answer as an incorrect one.

Of course, the most probable patterns would be those where the easy items are passed
and the difficult ones are failed. Where

P{11100}=P{11000}=0.1512

that is, the easy items are correctly answered, the difficult ones are failed, and the
middle difficulty item (with p=0.5) is the same if it is passed or failed, the most
improbable patterns are

{00111}and {0001 1}

where the two easy items are failed, the two difficult ones are passed, and the middle
difficulty item with p=0.5 is the same if it is passed or failed.

If the p profile is {0.9 0.7 0.5 0.4 0.2}, then
P{00111}=0.120.3°0.5°0.4°0.2= 0.0012
P{00011}=0.120.320.520.4¢0.2= 0.0012

P{00111}=P{00011}=0.0012

The items with p=0.5 do not affect the probability of a response pattern because they
always contribute 0.5 to the product of probabilities. However, easy or difficult items
with extreme p values make a difference if we consider them as passed or failed in a
response pattern.

The pattern {1 1 1 0 0} is just one of the 10 ways of getting a total test score of 3 on a 5-
item dichotomously scored test.

C(5,3)=5!/(3!(5-3)!)=10
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Because the p value changes from item to item, the probabilities of each of the 9
remaining response patterns that also produce 3 as the total test score should be
separately identified.

The case of graded response items

For a Likert scale, the procedure is not much more sophisticated. Likert scales constrain
the possible answer to a limited set of graded states represented by short coined
statements -for example, from "strongly agree" to "strongly disagree." Every statement
is then coded with an ordinal number.

Hence, every examinee’s answer showing a degree of acceptation or agreement is
translated into an ordinal score. The total test score is just the addition or the average
(that is, the addition divided by the number of answered items) of those item ordinal
scores associated with the respondent’s answers.

Because the procedure is very flexible and can be easily applied to very different
psychological settings —always under the umbrella of typical performance
measurements that are easy to understand and cheap to use- Likert scaling has become
the most common way to measure psychological variables in some areas. It is
omnipresent in social and organizational psychology for measuring attitudes, opinions,
and experiences, and very frequent in other realms of psychology, such as educational
psychology or clinical psychology, for obtaining student, patient or professional ratings
on all kinds of assessments and self-assessments.

Likert presented his methodology as a kind of easy approach to the well-established
scaling methods, though he was not against those methods. "It is feared that some will
mistakenly interpret this article as an "attack" on Thurstone's methods. I, therefore,
wish to emphasize in the strongest terms that [ am simply endeavoring to call attention
to certain problems of method, and that I am very far from convinced that the present
data close the question" (Likert, 1932).

Although Likert explicitly recognizes the value of the Thurstonian scales -based on
elaborate procedures imported from psychophysics- in reality, the Likert procedure
implied a regressive step, abandoning all the progress in scaling methods that preceded
Likert’s contribution. At best, a Likert scale is a fast atheoretical method to roughly
approach a scaling-based measure.

The original Likert scale has five options, including a central neutral category labeled
“undecided.” This original Likert scale works on a two-wing “disapproval-approval”
scale, with two levels in each direction. The words following the ordinal number and
describing the meaning of this possible answer are called anchors, and the numbers that
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precede the anchors are called anchor numbers. The original 5-point Likert scale was: 1.
Strongly disapprove; 2. Disapprove; 3. Undecided; 4. Approve; and 5. Strongly approve.

After Likert, the number of graded answers offered as response options varies from 3 to
11, but would typically be 3 to 5. An odd number of answer options usually involves the
presence of a central category, defined as a neutral point and worded using anchors
such as “neutral” or “middle”, as well as those based on the idea of indecision. An even
number usually represents an attempt to avoid undecided or evasive answers, forcing
examinees to choose an answer in the positive or negative wings of the answer scale -or,
perhaps in the worst case, to omit the answer.

Moreover, the original dimension “from strong disapproval to strong approval, passing
through indecision as a central category” has been muted in a plethora of supposed
scales designed to represent approval, frequency, degree, amount, satisfaction,
preference, likelihood, etc.

It should be noted that any of these scales assumes symmetry and other convenient
properties based more on lay intuition than on a sound empirical foundation. For
example, the original answer scale assumes that approval and disapproval are
symmetrical sides of a single dimension. This assumption involves at least three
particular hypotheses: that there is the same number of degrees in each direction, that
the approval and disapproval can be added on the same scale, and that the position and
ordinal value of the stages preceded by the suffix “dis” are the same as those of these
words without the prefix.

The presence of the central “undecided” category hinges on even more improbable
assumptions. The category was originally named “undecided,” but it is hard to accept
that somebody who is “undecided” about how to rate an object or event occupies a
category right in the center between the approval wing and the disapproval wing. It
should be recognized at least that there are many ways of being undecided, some of
which are related to a lack of knowledge, interest, or judgment about the evaluated
object. Others may be undecided because they have a set of positive reasons and a set of
negative reasons for all kinds of decisional situations, which probably means different
types of thoughts and feelings about the evaluated object. Of course, after the
respondent has chosen option “3”, nobody knows without further inquiry what the real
meaning of this convenient answer is.

The problem, of course, is not the presence of implicit assumptions that are in some way
unavoidable but the lack of explicit procedures to test them. None of these assumptions
is tested in the standard Likert procedure, and no testing methodology is provided or
encouraged by the so-called Likert scaling. This is not surprising because the success of
the Likert scale is based more on its simplicity in comparison with the Thurstonian-like
scaling procedures than on a sound improvement in psychological measurement.
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Likert scales are also called “summative scales” or “summated scales” because the total
score for each respondent is usually obtained as the simple sum of the selected anchor
numbers. A variant returns the total questionnaire score to the original anchor scale just
by dividing the sum of points by the number of answered items. The latter will work if
you divide by the number of items effectively answered -that is, not counting the
missing responses.

If, in order to obtain the total questionnaire score as an average, the addition of points
through the set of items is systematically divided by the test length -that is, by the total
number of items- the result will be misleading for all the cases showing one or more
missing answers, and the degree of the mistake will increase as the number of missing
items increases and the test length decreases. This principle may not be valid for some
optimal performance tests but it will be true for most typical performance
questionnaires.

Obviously, the mean solution is a linear function of the summative solution except that,
in the presence of missing answers, the denominator of the mean changes from case to
case, subtly introducing into the total score the problem of the inappropriate items for
the respondent under measurement, a different and undesired way of reflecting
indecision, or the presence of several response sets and circumstances that stimulate the
non-response behavior.

One of the most appreciated properties of graded item scales is the fact that they
multiply the number of possible points on the final total questionnaire scale. Whereas a
traditional yes/no 10-item scale that is dichotomously and binary scored {0, 1} produces
an 11-point scale from 0 to 10, a 3-option scale with items scored from 0 to 2 will
produce a 21-point scale from 0 to 20. If this three-option scale were scored as usual
from 1 to 3, then the number of scale points for the total questionnaire score would also
be 21, but from 10 to 30 (both included). A 4-point item scale would produce a 31-point
total questionnaire score from 0 to 30 or from 10 to 40. The traditional 5-point item
Likert scale produces, for a 10-item questionnaire, a 41-point total questionnaire score
scale, whereas a 6-point item scale produces a 51-point total questionnaire score scale.

Therefore, in general, each point, anchor, or degree added to the item scale will produce
an increase in the number of points on the total questionnaire scale equal to the test
length. Increasing the total questionnaire’s theoretical range -that is, the number of
points on the total questionnaire scale- increases the possibility of a wider empirical
range -that is, the difference between the maximum total questionnaire score and the
minimum total questionnaire test score. The empirical range is a dispersion statistic
associated with the variance. Therefore, increasing the empirical range increases the
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possibility of a larger variance, which is usually considered a suitable property to show
variability and further estimate co-variabilities between the total questionnaire score
and other variables. The opportunity to enhance a 10-item questionnaire from a 21-
point scale to a 41- or 51-point scale by increasing the number of anchors on each item
scale is quite tempting since it is an easy and cheap way to increase the variance in the
total questionnaire score.

The number of items on a test or questionnaire may be denoted as n. Scoring each item
from 0 to v-1, with v being the number of anchors, and defining the total questionnaire

score X as the addition of the item scores [,

and the number of points on the total questionnaire scale or theoretical range is

n(v-1)+1.

Table 2. Number of points on the total questionnaire score scale for test lengths from 2
to 20 items and with 2 to 5 anchors.

number of anchors
test length: 2 3 4 5
2 3 5 7 9
3 4 7 10 13
4 5 9 13 17
5 6 11 16 21
6 7 13 19 25
7 8 15 22 29
8 9 17 25 33
9 10 19 28 37
10 11 21 31 41
11 12 23 34 45
12 13 25 37 49
13 14 27 40 53
14 15 29 43 57
15 16 31 46 61
16 17 33 49 65
17 18 35 52 69
18 19 37 55 73
19 20 39 58 77
20 21 41 61 81
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The number of possible patterns of answers depends on the test length n -that is, the

number of items- and the number of anchors v. It is exactly v".

For a given number of anchors v, this is an exponential function where the exponent is
the number of items and the base is a constant v.

For a given test length, this is a power function where the variable number of anchors v
is raised to a constant number of items n.

Table 3. Number of possible patterns of response for test lengths from 2 to 20 and with
2 to 5 anchors.

number of anchors
test length: 2 3 4 5
2 4 9 16 25
3 8 27 64 125
4 16 81 256 625
5 32 243 1024 3125
6 64 729 4096 15625
7 128 2187 16384 78125
8 256 6561 65536 390625
9 512 19683 262144 1953125
10 1024 59049 1048576 9765625
11 2048 177147 4194304 48828125
12 4096 531441 16777216 244140625
13 8192 1594323 67108864 1220703125
14 16384 4782969 268435456 6103515625
15 32768 14348907 1073741824 30517578125
16 65536 43046721 4294967296 1.52588E+11
17 131072 129140163 17179869184 7.62939E+11
18 262144 387420489 68719476736 3.8147E+12
19 524288| 1162261467 2.74878E+11 1.90735E+13
20 1048576| 3486784401 1.09951E+12 9.53674E+13

As can be expected, the number of response patterns that are able to produce each
possible total questionnaire score is not the same for all total scores.

For example, analyzing a very simple case, for a 2-item questionnaire (n=2) with a 3-
point answer scale (v=3) from 0 to 2 -i.e., [0 1 2]- the number of points on the total
questionnaire scale is n(v-1)+1=2(3-1)+1=5 -i.e.,, [0 1 2 3 4]- and the total number of
possible answer patterns is v?=32=9. However, these 9 response patterns are not
equally distributed on the 5 possible total scores. In other words, the number of patterns
for each total score is not the same.

Table 4. Patterns of response for a 2-item questionnaire (n=2) with a 3-point answer
scale (v=3) and total questionnaire score produced by each pattern.
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item 1:

item 2: 0 1 2
0 {00}=0 [{10}=1 [{20}=2
1 {01}=1 [{11}=2 |{21}=3
2 {02}=2 ({12}=3 |{22}=4

Whereas some total scores can be produced only by one response pattern, others can be
obtained from many of them.

Table 5. Total questionnaire scores for a 2-item questionnaire (n=2) with a 3-point
answer scale (v=3) from 0 to 2 and the set of patterns of response that produce each
total score.

number of
Total: patterns:

= {00} 1
= {10}=1 |{01}=1 2
= {20)=2 [{11}=2 [{02}=2 | 3
= {21}=3 |{12}=3 2
= {2 2} 1

Total number of patterns = 9

The number of patterns that may produce a total score dramatically changes from the
extremes of the distribution to the center. The table 5 presents the number of patterns
of response for a 2-item questionnaire (n=2) with a 3-point answer scale (v=3) from 0 to
1, In the this example, from the extreme scores 0 and 4 to the middle score 2 the number
of patters increases from 1 to 3.

In any scale, there is only one way to produce either of the two extreme scores. For
example, if the total questionnaire score equals 0, then necessarily all the items have to
be scored 0. In the example of the table 5, to score 0 an examinee only can answer the
pattern {0 0}.

For a 2-item questionnaire (n=2) with a 3-point answer scale (v=3) from 0 to 1, the only
way to get the maximum score 4 is by scoring both items with the maximum anchor
score, i.e., 2 showing the pattern {2 2}.

The next sub-extreme total scores, approaching the center from each wing of the
distribution are in this example the total scores 1 and 3. For the sub-extreme total
scores the number of patterns equals the number of items n.

For example, here there are 2 ways of getting a total score of 1. Why? Because a total
score of 1 means that only one item can score 1, while the rest remain 0, and so, in this
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case, with only two items, there are only two ways of producing a pattern that generates
a total questionnaire score equal to 1.

The same thing happens on the other side of the distribution, for the sub-maximum
score 3. Because 3 is the sub-maximum score, that is, the maximum questionnaire score
of 4 minus 1, all the patterns producing this maximum minus one score must be made
using the maximum anchor score for all items except one. In this case, all the response
patterns that are able to produce 3 as the total questionnaire score have to be composed
of the maximum anchor score vmax=2 for all the items except one. This exceptional item
non-scoring the maximum anchor, must score the maximum anchor score minus 1, in
this case

Vmax'1=2-1=1.

Then, as this only “maximum score minus one” answer can move from item to item
occupying only one position, the number of patterns that can produce the submaximal
total questionnaire score of 3 also equals the number of items n, that is, 2 in this
example.

For this simple 2-item questionnaire (n=2) with a 3-point answer scale (v=3) from 0 to
1, the central possible total questionnaire score is 2. With two items, there are three
ways to obtain this total. First, either of the two items can be equal to 1, and so the
pattern {1 1} produces a total equal to 2. Second, we might place a maximum anchor
score of 2 on only one of the two items, letting the other be 0, that is, the patterns {2 0}
or {0 2} also produce a total questionnaire score equal to 2.

Although the example is rather simple -researchers or practitioners rarely use a 2-item
measure (though there are exceptions)- it shows the dynamic of the relationship
between the total questionnaire score and the number of patterns associated with each
total questionnaire score.

The distribution of the number of response arrangements that can produce a certain
total questionnaire score is always symmetrical and grows fast from a frequency of 1 at
both extremes to the highest frequency for the central total questionnaire score.

This means that, if all response patterns were equally probable, the probability of a total
questionnaire score T would increase quickly as we approach the center of the total
questionnaire scores T/2.

Although the detailed analysis becomes exponentially more complex as we increase the
number of items, these general principles remain.

The following tables present the detailed analysis of a 3-item questionnaire (n=3),
where each item has 3 anchors, that is v=3, scored [0 1 2]. A questionnaire of this type
would have a total questionnaire score with 7 different possible values -i.e., n(v-
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1)+1=3(3-1)+1=7-ranging from 0 to 6 -i.e. [0 1 2 3 4 5 6]- and a total number of

possible answer patterns equal to v?=33=27.

Table 6. The 27 patterns of response for a 3-item questionnaire (n=3) with a 3-point
answer scale (v=3) and the total questionnaire score produced by each pattern.

When item 1 scores 0 When item 1 scores 1 When item 1 scores 2
item 2: item 2: item 2:
item 3: 0 1 2 item 3: 0 1 2 item 3: 0 1 2

0 {000}=0{{0 1 0}=1({02 0}=2 0 {100}=1{{110}=2|{120}=3 0 {200}=2 ({2 10}=3|{2 2 0}=4
1 {001}=1{{011}=2({021}=3 1 {101}=2({111}=3({121}=4 1 {201}=3({211}=4 ({2 2 1}=5
2 {002}=2{{012}=3({022}=4 2 {102}=3({112}=4({122}=5 2 {202}=4({212}=5|{2 2 2}=6

Table 7. The 7 possible total questionnaire scores for a 3-item questionnaire (n=3) with
a 3-point answer scale (v=3, from 0 to 2), and the set and number of patterns of
response that produce each total score.

patterns patterns patterns total

Total when  when when number of
score Patterns when item 1=0 Patterns when item 1=1 Patterns whenitem1=2  i1=0 il=1 i1=2 patterns
0= ({000}=0 1 1
1= [{010}=1]{001}=1 100}=1 2 1 3
2= ({020}=2|{011}=2|{002}=2|{110}=2|{101}=2 {200}=2 3 2 1 6
3= |{021}=3|{012}=3 120}=3[{111}=3(|{102}=3|{210}=3|{201}=3 2 3 2 7
4= [{022}=4 121}=4[{112}=4 {220}=4[{211}=4[{202}=4] 1 2 3 6
5= {122}=5 {221}=5|{212}=5 1 2 3
6= {222}=6 1 1
|Tota| number of patterns = 9 9 9 27

Again, it is clear that the number of patterns that are able to produce a certain total
questionnaire score dramatically changes from the extremes of the distribution of the
total questionnaire score to the center.

In this example, the central score is Tmax/2=6/2=3, and this total questionnaire score
T=3 is the score with the highest number of patterns associated -this total score 3, may
be produced by 7 response patterns.

If all anchors were equally probable on every item, then all 27 patterns would be equally
probable. If all anchors were equally probable on every item, then for this 3-item
questionnaire, the expected total questionnaire score would be 3 because the
distribution of patterns is symmetrical around 3 -with the total score 3 being the central
value and showing the large number of response patterns.
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The discussion of how a limited set of discrete positive integers produces a certain sum
is a nice mathematical problem analyzed under the topic of compositions, which is
related to combinatorics.

Following Eger (2013), an integer composition of a nonnegative integer T
with v summands, or parts, is a way of writing n as a sum of v nonnegative
integers, where the order of the parts is significant. We call the integer
composition S-restricted if all the parts lie within a subset S of the nonnegative
integers. In classical combinatorics, the number of S-restricted integer
compositions of T with v parts is given by the coefficient of xT of the polynomial
or power series (Eger, 2013). However, these procedures, such as the generalized
results and mathematical proofs provided by Eger and others, are beyond the
scope of this introductory text.

In general, when a variable Xr —as a total questionnaire score or a total test score- is the

sum of a set of variables Xj,

X=X+ X, +..+ X, +..+ X,

then the mean of the sum is equal to the sum of the means:
X, =X+ X, +..+ X, +..+ X,

X, =YX,

i=1

And the variance of the sum can be obtained as the sum of all the variances of the
variables involved as addends plus all their covariances:

n n n
SRS
i=1

i=l j=1

This last term is subject to the restriction:

1# ]
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That is, the variance of the composite Xt equals the sum of all the n2 terms of the
variance-covariance matrix.

When Xr is just the sum of two addends, as a total questionnaire score or a total test
score composed of two items

X=X, +X,

the general formulas simplify to the following expressions:
X, =X +X,

2 2 2
Sx =8y +s5+2s,,

because the covariance of X1 with Xz is the same as the covariance of X2 with X1:

812 =8y

If for a single item all anchors were equally probable, the item score distribution would
be a discrete uniform distribution defined in the interval

[Imin, Imax]

where Imin means the minimum anchor number and Imax means the maximum anchor
number. For example, for an item with a 3-point answer scale (v=3), scored [0 1 2], Imin
=0 and Imax =2.

If the item shows a discrete uniform distribution, then

PI=0)=P(0=1)=P(I1=2)=1/3=0.3

A discrete uniform distribution is a symmetric probability distribution where the
several discrete values of the variable are equally likely to happen, and each of the v
values has an equal probability 1/v.

In these distributions, Imin and Imax define the interval [Imin, Imax] and are considered the
main parameters.

For such a distribution, the mean is:
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Imin + Imax
2

1=

The median has the same value as the mean:

Imin + Imax

Md() = 5

The variance is:

SZ _ (Imax B Imin+ 1)2 -1

! 12

And the cumulative distribution function (CDF):

. _ kol
Kl low) =11
max min

for any k, such that

ke[I

min *~ max ]

This distribution has the particularity that, if it is known that an item shows a discrete
uniform distribution defined in the interval [Imin, Imax], then its mean and variance may
be calculated without knowing the empirical distribution.

For example, for a discrete uniform distributed item with a 3-point answer scale (v=3),
defined in the interval [0, 2], the mean (and also the median) is (0+2)/2=1.

The variance is (((2-0+1)"2)-1)/12=0.66667 and the standard deviation is 0.81649658.
For a 3-item questionnaire whose total questionnaire score is the sum of its items, the
mean of the total questionnaire score would be 3, because 3 is the sum of the means of
the 3 items.

If we modify the test length by adding more and more uniform distributed items [0 2],
the expected total questionnaire score is just the test length because the expected mean
for each item is 1.
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As can be intuitively deduced from our detailed analysis of the response patterns for a 3-
item test, the addition of two discrete uniform distributions is no longer a discrete
uniform distribution because not all the sums have equal probability.

The sum of a few discrete uniform random variables -such as the items with v=3 and
equiprobable anchors- does not produce a new uniform random variable or a normal
distribution. The distribution is asymptotically normal -that is, it tends toward a normal
distribution when the number of independent uniform random variables defined over
the same interval tends to infinity- otherwise, it can be described by a normalized
extended binomial coefficient (Grinstead and Snell, 1997).

In more practical terms, this means that if we add a large enough number of uniform
random answered items, the expected result is a one-peaked symmetric distribution
that increasingly resembles a normal distribution as the test length increases.

Note that to obtain this normal-like distribution for the total questionnaire score, we are
adding independent uniform random answered items (that is, items where all anchors
have the same probability of being chosen and items that are statistically uncorrelated)
to form a questionnaire where all response patterns have the same probability. Given
these results, the common psychological conjecture assuming that many attitudes,
personality traits, and other variables measured using this type of questionnaire have a
normal distribution, or at least a normal-like distribution, might well be an artifact
resulting from the way of measuring.

Reverse-worded items

It should be noted that on Likert scales, it is not unusual to introduce some items -
sometimes half of them- reverse-worded, that is, measuring the other way around. For
example, on a psychological health scale, if on most of the items a high anchor means a
healthy state or behavior, a reverse-worded item measures in such a way that a high
anchor means an unhealthy state or behavior. These intentionally reverse-worded items
should be reverse-scored before they are added to the total questionnaire score. If they
were not reverse-scored, their correlations with the mainstream items would be
negative, whereas after reversing the score, their correlations with the mainstream
items become positive. Score reversion is an easy process based on a linear
transformation.

For a reverse-worded item I with anchors scored in the interval [Imin, Imax], the reverse-
scored item or unreversed worded item I, would be:

lu= (Imin + Imax)‘ I
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The role and positive and negative properties of the reverse-worded items have been a
matter of research and discussion. Originally, introducing a combination of positively
and negatively worded items within the same Likert scale was proposed as a way to
reduce or eliminate some response bias, especially acquiescence and disacquiescence, as
well as some forms of random guessing. However, some research does not support the
contribution of reverse-worded items to the reduction or elimination of response bias,
while confusion is often introduced in respondents’ answers.

Item homogeneity

When item answers are the result of random guessing, with all the anchors having the
same probability, we can expect the previously described results. However, items can be
added to a total questionnaire score because it is expected that they all measure the
same psychological construct or represent the same type of behavior. If a set of items
does not measure the same thing, why add or average them to form a unique composite?

Because all the items making up the same total questionnaire score are designed to
measure the same psychological variable, it is expected that they will all positively
correlate with each other. As different items often represent different facts, aspects,
nuances, occasions, versions, or details of the same construct, a perfect correlation or a
quasi-perfect correlation is not expected but, in general, a moderate positive correlation
is.

The relationships between the set of items that belong to the same total questionnaire
score can be analyzed using correlations. The item matrix of correlations represents a
first approach to understanding the patterns of relationships among several subsets of
items. In general, items belonging to the same total questionnaire score are expected to
show positive and moderate correlations.

From the point of view of item consistency, the scrutiny of the item correlation matrix
might be complex and inconclusive. If the test length is n, then the item correlation
matrix will show n(n-1)/2 relevant correlations to interpret. This number [(n(n-1))/2]
is the result of n2 - (n + n(n-1)/2) where n? is the total number of correlations in a
correlation matrix, n is the number of correlations on the main diagonal, all of which are
equal to 1, and n(n-1)/2 is the number of correlations in the upper triangle matrix or in
the lower triangle matrix. The upper triangle matrix and in the lower triangle matrix will
always show the same results because rj; = 1ji. For example, if n=5 then n? - (n + n(n-
1)/2) =52 - (5 + 5(5-1)/2))=10, i.e., [(n(n-1))/2] =5(5-1)/2=10.

Any particular item presents n-1 correlations with the rest of the items but none of these
n-1 correlations are unique indicators for a particular item. All the elements of this
vector of correlations are shared systematically with the n-1 vectors of each n-1
correlation that belongs to the other n-1 items.
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From the point of view of its magnitude, some of these item correlations may seem
acceptable but others may not and it is rather arbitrary to consider that a correlation
has an adequate size, thus showing adequate item consistency, or an inadequate size,
thus not showing enough item consistency.

The level of statistical significance may not be helpful because, if for some reason the
sample size is small, it might be difficult to find statistically significant correlations.
However, if the sample is large enough -the usual case in questionnaire analysis- many
of the correlations appear to be statistically significant. Roughly speaking, a correlation
under .2 becomes significant if the sample size is greater than 100. Most of the time our
samples are going to be greater than 100, so we expect positive item correlations larger
than .2.

A second way to study item consistency hinges on the relationship between the item
scores and the total questionnaire scores. When Likert-like scales are analyzed, it is
usually assumed that both variables (the item scores and the total questionnaire scores)
can be treated as quantitative variables, and so the Pearson correlation coefficient is the
usual statistic of choice. The Pearson correlation between an item and the total
questionnaire (or test) score is known as the item coefficient of homogeneity. Of course,
the value of the coefficient of homogeneity may be different for every item that makes
up a scale. Although there is no strict rule to interpret these correlations, a moderate
and positive correlation is expected between the item and the total scale score that the
item contributes to configuring.

Item homogeneity has a foundational flaw. Because it is the correlation between the
item and the total scale score, given that the total scale score is created by adding all the
items, this correlation contains the item information on both sides of the Pearson
coefficient, first as an isolated item, and second as part of the total test score. This
problem is not serious if the scale is made up of a large number of items but it may be
considered a serious contamination when the questionnaire (or test) length is short. In
practical terms, this redundancy becomes less important as the number of items
increases. For example, it is unimportant for scales with over 20 items but quite
important for scales with only a few items (e.g., 4, 6 or 8), which are very popular in
numerous areas of research or professional practice.

If a scale is made up of 4 items, all of which are equally scored with the same v anchors,
in general it may be presumed that any of its 4 items contributes 1/4 to the total scale
score. This means that 25% of what happens in the total scale score may depend on a
certain item. The conclusion is that an item homogeneity coefficient for any item on this
scale may be inflated by 25%.

The so-called corrected homogeneity coefficient is an attempt to solve the statistical
contamination of the homogeneity coefficient. The bases for this new item coefficient are
straightforward. If the problem comes from the presence of the correlated item again in
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the total scale score, let us remove the item from the total scale score; that is, why not
correlate the item with a total scale score where all the items are added except the item
under analysis?

There are two practical ways of obtaining this “total scale score without a given item”.
The first is simply by creating a new total score by adding the rest of the items but not
the item under consideration. The second is by subtracting the item under consideration
from the regular total scale score. Of course, both should give exactly the same result.
The second is perhaps less tedious if you are performing calculations with a calculator
and perhaps a bit easier to set up if you are using a spreadsheet such as EXCEL or
Numbers. Statistical packages such as SPSS and Stata have predefined procedures for
item analysis so that you do not need to pay attention to the details of calculation but
only understand the psychometric implications of the two coefficients -homogeneity
and corrected homogeneity- in order to interpret the results correctly.

In any case, the index of corrected homogeneity for item 1 is obtained from the
correlation of the item 1 score with a total test score made up of the addition of items 2
to n -but not item 1. The index of corrected homogeneity for item 2 is obtained from the
correlation of the item 2 score with a total test score made up of the addition of items 1
and 3 to n -but not item 2. And the same is true for any item on the questionnaire or
test.

[t is true that the corrected item homogeneity solves the problem of statistical inflation
due to the presence of the item on both sides of the Pearson coefficient. But it is also true
that the corrected homogeneity coefficient returns the correlation with a fictitious scale,
one made up of all the other items but not the item under consideration and, even
worse, this fictitious total scale score of reference changes from item to item.

Again, if the number of items is large, the difference between the real total scale score
containing all the items and any of these n total scale scores, each consisting of a
different set of n-1 items, may be negligible. However, the effect of subtracting an item
from the total scale score becomes more and more important as the test length becomes
more and more reduced.

For instance, a short questionnaire made up of 4 items requires calculating four
different total scores to calculate the corrected homogeneity coefficient of its 4 items.
Any of these 4 different total scores is composed of only 3 items, and so any of these 4
different total scores contains a different subset with a different 75% of the scale
information.

As either of the two coefficients (homogeneity or corrected homogeneity) is a perfect
indicator of item homogeneity, a practical compromise solution is to estimate both for
every item and interpret any difference. For example, if an item from a short scale shows
a coefficient of homogeneity equal to .4, whereas its corrected coefficient of
homogeneity is .1, this means that the contribution of this item to the total score is really
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important, and its relationship with the total scale score is mainly a result of the
statistical inflation produced by having the item on both sides of the Pearson coefficient.
This item is hardly related to a simple composite made up of the other three items, so
perhaps the scale composition or the role of this item within this scale should be
reviewed. Perhaps the item is not part of this set. Maybe more items measuring the same
psychological facet of the intended construct should be added. Perhaps there are other
kinds of problems, from mistakes in the wording of the item stem to several types of
response sets —e.g., acquiescence, random answering, etc.— that may distort the item
answers. In any case, a more thorough qualitative and quantitative analysis of this item
is required.

Item homogeneity is not the only way to study item consistency. Another approach is to
estimate the item’s multiple correlations with the rest of the items. Perhaps with less
psychometric tradition -maybe due to the difficulty of estimating multiple correlations
without the assistance of a computer when the test length is moderate to long - the
multiple correlation between an item and the rest of the items is a natural solution for
studying whether a single item is consistent with the rest of the scale.

Although this statistic does not require the calculation of any total scale score, as in the
case of the corrected homogeneity, the main flaw is that, in fact, the set of correlated
items changes from item to item. Because the item multiple correlation involves the item
and the rest of the items, this “rest of the items” is a different set for each item. Again,
this statistic is not expected to provide very high results. Because items often represent
different facets or aspects of the same construct -but not exactly the same content-
items are expected to show moderate multiple correlations with the rest of the items.

The alpha coefficient

All these solutions -the coefficient of homogeneity, the corrected coefficient of
homogeneity, and the item multiple correlation- address the issue of homogeneity from
the point of view of each individual item and they are considered part of the item
analysis process. As important as they may be in developing a reliable and valid
measurement instrument, they cannot be compared to the global approach for testing
consistency based on the joint consideration of the whole set of items simultaneously.

This latter approach is well represented by the alpha coefficient, which is perhaps the
most successful and popular psychometric index. From the point of view of
psychological research, alpha is the most widely used way to estimate test reliability
(using the general meaning of the word test, that is, a test, questionnaire, or scale) and is
reported for any test applied, for any dataset, as a general test quality indicator. From
the point of view of the practitioner, alpha is probably the most common way to indicate
the amount of reliability necessary to make all types of patient- or client-related
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decisions. From a psychometric point of view, alpha is a crossroads, a key formula that
has been deduced under different assumptions with different purposes.

Here we will omit all of this rather technical information to concentrate on a view of
alpha as a global indicator of test consistency for a set of items. As the set of items added
together to make up a total scale score is supposed to measure the same construct, it is
expected that, as a set, they are consistent, that is, that they show a combined
consistency.

The coefficient alpha can be expressed as

o=— '[1—251

n—1 Sy

In this formula, n is the test length -that is, the number of items. The second numerator
is the sum of the item variances -there is one variance for each item- and the second
denominator is the variance of the total scale score.

This is the most popular form of presenting the alpha coefficient, which is also called
Cronbach’s alpha.

The result is a number that ranges (when everything is correct) between 0 and 1.

Alpha is less than or equal to (in most cases, less than) the coefficient of reliability and
for this reason is taken as an estimator of test reliability. If alpha equals 1 (a really
improbable result), the test is perfectly reliable; that is, the test measures without any
error of measurement. An alpha of 0 indicates an absolutely unreliable test.

In practical terms, alpha coefficients such as 0 or 1 are never observed in real practice.
In general, alpha is less than the coefficient of reliability but reaches the value of the
coefficient of reliability when items are at least congeneric measures.

In general, the higher the alpha coefficient, the more reliable the test is. For research
purposes, an alpha larger than 0.6 or 0.7 is required. For professional practice, when the
psychologist is to make decisions based on test scores, an alpha close to 1 may be
required, while a threshold of 0.9 or even 0.95 is the usual rule of thumb.

Alpha is basically a global indicator of the consistency of the items. Roughly speaking, it
shows whether the items work together, whether they run in the same direction, and
whether their scores are mutually consistent. This is one of the bases of any reliability
procedure, i.e., testing whether different measures -in this case, different items- that are
trying to measure the same variable contribute consistent results.
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The alpha coefficient and the standard error of measurement

To understand alpha as an indicator of reliability, it is worth introducing the simple
absolute indicator of test reliability, the standard error of measurement. The classical
test model assumes that each observed score, the simple result of an act of measurement
(such as a total test score), which is usually represented as X, is an approximation to the
true score, represented by T. The difference is called an error of measurement and is
represented by E. An E is the realization of a random process. It may take positive or
negative values, and its expectation is 0; that is, there is the same probability of random
positive errors (where X overestimates the true score T) as of random negative errors
(where X underestimates the true score T).

As the sum of positive errors tends to be the same as the sum of negative errors (that is,
the mean of E is 0), if the sample is large enough, the expected error cannot be used as a
statistic to summarize the global amount of measurement error. Rather than the mean of
the error, the standard deviation of the measurement errors is used for this purpose.

The standard deviation of the measurement errors is represented as sg and called the
standard error of measurement. Roughly speaking, the standard error of measurement
is a kind of estimation of the typical amount of error behind the test measurement for
the standard or typical case. It is stated in the same units of measurement. For example,
if we measured in meters, the standard error of measurement would also be in meters,
thus making it easy to use and interpret.

The standard error of measurement is a really important contribution to the classical
test model, especially because it helps us to understand that the whole score is not the
true measurement, that there is always a certain error expected behind each
measurement, and that we really need reliable tests to reduce the amount of error.

Although conceptually important, the formula of the standard error of measurement as
the standard deviation of the errors of measurement is far from practical. It would
require estimating the true scores for the entire sample and then calculating the
measurement errors and their standard deviation. Fortunately, psychometricians have
developed a simple formula for the standard error of measurement based on the
standard deviation of the test sx and the coefficient of reliability rxx -both observable
statistics readily available for any psychological measure.

Sg = Sya/l—Ixx

Because the coefficient of reliability is a positive number between 0 and 1, that is,
0<rxx<1, the square root term of the standard error of measurement formula also ranges
between 0 and 1. The square root term of the standard error of measurement formula is
0 when the coefficient of reliability is 1, and the square root term of the standard error
of measurement formula is 1 when the coefficient of reliability is 0. Then, the standard
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error of measurement is equal to the standard deviation of the total scale score when
the coefficient of reliability is 0, and the standard error of measurement is equal to 0
when the coefficient of reliability is 1, regardless of the value of the standard deviation
of the total scale scores.

This interpretation of the standard error of measurement as related to the coefficient of
reliability is theoretically interesting because it shows both ways of estimating the test
reliability (called the absolute way for the standard error of measurement and the
relative way for the coefficient of reliability) and the limits of the standard error of
measurement.

From this theoretical analysis we can conclude that the standard error of measurement
is an absolute indicator of test reliability, expressed in the units of the total scale score,
that ranges from 0 (when the reliability is perfect, that is, when the coefficient of
reliability equals 1) to the standard deviation of the total scale score. The standard error
of measurement reaches its maximum (the standard deviation of the total scale scores)
when the measure is absolutely lacking reliability, that is, when the coefficient of
reliability is equal to 0.

Of course, in practical terms there is no such thing as a perfectly reliable test or an
absolutely unreliable test. These two extremes of the standard error of measurement
scale are of theoretical interest only. However, this analysis shows a really important
property: that the standard error of measurement is a fraction of the standard deviation
of the test. In other words, the standard error of measurement can be interpreted as the
part of the standard deviation of the test that is due to unreliability.

Because the coefficient of reliability is a positive number in the closed interval [0 1], the
term “square root of (one minus the coefficient of reliability)” is also a positive number
defined in the closed interval [0 1]. This square root term is multiplied by the standard
deviation of the total scale score to obtain the standard error of measurement. This
means that this square root term may be interpreted as a proportion; that is, the square
root term expresses which proportion of the standard deviation of the total scale score
is the standard error of measurement. This is a rather unusual but nice and revealing
interpretation.

\ll_rxx :S_

Sx

This view of the standard error of measurement as the proportion of the standard
deviation of the total scale score that is due to unreliability is parallel to the formal
definition of the coefficient of reliability as the proportion of the variance of the
observed scores due to the variance in the true scores
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often used to express the coefficient of reliability as a function of the variance in the
errors of measurement

as a result of the basic decomposition of the variance in the total score variance

2 _ 2 2
SX_ST+SE

dividing both sides by the variance of the total scale scores

2 2
1=51, 5

2 2
SX SX

In fact, if
S
JI-1 ==
SX
then, squaring both terms:
2
SE
1- Iy = -
SX

which also defines the coefficient of reliability as

2
_1_5%

Iyx 2
Sx

Although the alpha coefficient is a lower bound of the test coefficient of reliability, it is
commonly used as the estimation of the test coefficient of reliability. Using the alpha

coefficient as an estimation of the coefficient of reliability means that we can substitute
it in the standard of error formula
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and so, the term

expresses the proportion of the total scale score’s standard deviation explained by the
error of measurement:

S
l—-a=-—"+
SX

Interpreting alpha as an indicator of homogeneity between test halves

Although alpha is commonly used as an estimator of the coefficient of reliability, it
should be borne in mind that there are several approaches to the estimation of test
reliability, and that each of them assesses a different facet of test reliability.

Classical test theory identifies three procedures for estimating the coefficient of
reliability based on the cornerstone definition of parallel measurements (two
measurements are parallel if they provide the same true score for every case and the
same standard error of measurement for both measurements). Each of these three
procedures also involves a different type of reliability.

The first, called parallel tests or parallel forms, evaluates the equivalence between
forms, and the coefficients of reliability provided are called coefficients of equivalence.
The parallel test procedure is based on the Pearson correlation between the total test
scores of two forms of a test under the assumption that these forms satisfy the definition
of parallel measurements.

The second procedure, called the test-retest method, provides coefficients of reliability
called coefficients of time stability. This method is based on the Pearson correlation
between the total scores on the same test applied twice.

The third classic procedure for estimating the test reliability defined according to the
concept of parallel measurements is based on the relationship between halves of the test
and provides coefficients of reliability identified as coefficients of homogeneity.

The two halves of a test can be identified by many procedures, the three most common
of which are “first part versus second part”, even-odd items, and the ad hoc method.
Whichever procedure is used to identify the two halves within the test items, there are
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three methods for obtaining the test reliability in this situation. That is, the test
coefficient of reliability under the split-half situation can be estimated using three
methods: first, the Pearson correlation between the two halves of the test, followed by a
Spearman-Brown correction for the case of double length -that is, R=2r/(1+r), where R
is the coefficient of reliability of the test and r is the Pearson correlation between the
total scores of two separated halves. The second method involves applying the Rulon
formula and the third method involves using one of the Guttman or Guttman-Flanagan
formulas for the split-half situation.

The alpha coefficient can be considered a development and a better estimation of the
homogeneity coefficient of reliability but homogeneity does not necessarily involve
equivalence with other forms of the test or stability through many measurement
attempts.

More specifically, the alpha coefficient can be demonstrated as the average of the Rulon
formula applied to all the forms of splitting a test into two halves.

There are

C’_
2 2-(n/2)!(n—(n/2))!

ways of splitting a test of test length n into two parts of equal lengths. For example, there
are 126 ways of splitting a 10-item questionnaire into two halves, and any of these ways
of splitting the test into two halves would produce a different Rulon result (usually
slightly different, but different).

This simple fact shows how the alpha coefficient, which provides only one result for the
evaluation of the homogeneity between parts, implies a big advantage. The alpha
coefficient as the average of the Rulon estimations of all the ways to split the test into
two halves therefore best summarizes this approach to test reliability.

Interpreting the alpha coefficient as an indicator of internal consistency

The alpha coefficient is a lower bound of the test coefficient of reliability and also the
mean of all possible estimations using the split-half methodology, but it is especially
known as the main indicator of internal consistency. The internal consistency, roughly
speaking, is the degree to which all the items work together and are more or less closely
related.

To fully understand this key concept of the alpha coefficient, we need to go two steps
back to remember how the total test variance -that is, the variance of the total test
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scores— can be decomposed into the sum of the item variances plus the sum of all the
item covariances

2 2
Sx = Zsi +Zsa

It should be noted that the variance in the total test score is an outstanding statistic that
summarizes people’s variability on the psychological variable of interest. Intuitively, it is
easy to see that explaining a variable -for example, a psychological trait- means
explaining how some people score high, whereas others score low. That is, explaining a
variable —any variable- means explaining how it varies, and explaining how a variable
varies means explaining its variance because the variance just summarizes the variable’s
variation. For this reason, methodologists and scientists in general, and psychologists
and psychometricians in particular, are so obsessed with explaining variances —for
example, by decomposing a whole variance into the parts that make it up.

Following this line of reasoning, to interpret the last two terms of the decomposition of
the variance in the total test score into variance due to the items’ variances and variance
due to the items’ covariances, we will transform all the expressions into proportions.

To interpret the last two terms as proportions of the variance in the total test score, we
divide both terms by the variance in the total test score

2 2
S 2SS
2 T 2
SX SX
and operate in the following way
2 2
Sx Zsl Zsu
2 =2 T3
SX sX SX

The latter expression shows that the total test variance can be split into two
proportions: the proportion of the test variance due to the item covariances and the
proportion of the test variance due to the item variances.

In this formula, the proportion of the variance in the total test scores due to the
covariances among the items is the part that summarizes the idea of item consistency. A
set of items is consistent if they consistently and positively covariate. The covariance is
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just one of the statistics indicated to assess the degree of linear relationships between
two variables.

If we isolate the term that expresses the proportion of the test variance due to the items’
covariance, we get

This expression makes it clear that the second term in the usual formula for the alpha
coefficient is just a proportion -the proportion of the covariance in the total test scores
due to the whole set of item covariances.

The coefficient alpha evaluates the internal consistency of the test and it is now a little
clearer how this is reflected in the usual coefficient alpha formula.

However, to fully understand the isolated contribution of the items’ consistency to the
alpha coefficient formula, it is better to transform the alpha coefficient into a less
frequently used form that would nevertheless be essential for a sound interpretation of
the results of the coefficient alpha. This new form of alpha is called the Hoyt formula.

As alpha is defined as

and

The second numerator, that is, the sum of the item covariances, may be written as a
function of the average of the item covariances

Zsij =n(n- l)s_ij
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which allows us to again rewrite the alpha coefficient based on the mean of the item
covariances:

n n(n—l)s_ij

n-1 s}

o=

This form of alpha can be simplified into

This latter formula is an elegant expression of the alpha coefficient and is known as the
Hoyt formula.

The Hoyt formula is not really useful for a practical estimation of the alpha coefficient -it
would require estimating all the n(n-1) covariances to get their average, as well as
calculating the variance in the total test score.

However, the Hoyt formula is valuable for understanding how the alpha coefficient may
be interpreted. It decomposes the alpha coefficient into two parts, revealing the two
main factors that affect it.

The first term is the test length squared, that is, the number of test items squared. This
term reveals the great importance of test length in the estimation of the test reliability.
This term is always an integer number that grows as the square of the number of items -
for instance, if we have a 4-item test, this factor is 16. Similarly, it is 100 for a 10-item
test, 400 for a 20-item test, and 1,600 for a 40-item test. It should be noted that the
influence of test length on the alpha coefficient comes through the square of the number
of items, which has a really strong influence. This term has no maximum.

The second term is much more modest in its amount. In fact, the second term is a
proportion, that is, a number in the interval [0 1]. This second term expresses what
proportion of the variance in the total test scores is due to the average of the item
covariances. That is, the second term expresses the contribution of the item consistency
to the total test variance. If the items are closely related, showing high covariances, then
the average of the item covariances is large, and the resulting proportion is also large.
But this number, since it is a proportion, can never be greater than 1.

In fact, the proportion of the variance in the total test scores due to the mean of the item
covariances must always be considerably less than 1 because the alpha coefficient is also
a number in the interval [0 1], and this second term has the role of reducing the first
term -an integer (usually a big one)- to the [0 1] scale of alpha. It seems a bit
paradoxical at first sight but the second term of Hoyt’s formula has to be increasingly
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smaller as the test length increases. For example, for a 4-item test with an alpha
coefficient equal to .9, the second term of the Hoyt formula is 0.05625. However, for a
10-item test with the same alpha coefficient, the second term is 0.009. In general, the
proportion of the variance in the total test score due to the average of the item
covariances is

S; o

Why does the proportion of the variance in the total test scores due to the average of the
item covariances decrease so fast as the test length increases? If we recall that the total
variance can be decomposed into the proportion due to the sum of the item variances
and the proportion due to the sum of the item covariances

2 2
Sx _ Zsi + Esij

2 T T 2 2
Sx Sx Sx

there are two reasons. First, as the number of items increases, the number of item
variances increases, and so the term

2
Zsi

increases in a way that is approximately proportional to the number of items (assuming
the items have similar variances) because this term can also be decomposed into

2 _ . 2
Zsi =n-s;

Second, as the number of items increases, so does the sum of the item covariances
precisely by a n(n-1) factor because

Zsij =n(n-1Ds;

The proportion of the total test variance due to the item covariances can be represented
by the term

Zsu

2
SX
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which is equal to

Zsij n(n—1)s;
2 2
SX SX
But, in the form
2
SX

the influence of the number of items n(n-1) has been removed. Thus, while the number
of items increases according to n2, the proportion of variance of the total test score due
to the average of the item covariances must reduce its value to accommodate its
contribution to the alpha coefficient.

Incidentally, the Hoyt formula is an easy way to obtain the average of the item
covariances

|m
><l\.>

S}
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=

and from this expression it is fast and easy to obtain the sum of the item covariances,
again

Y sy =nn-1D)s;

To summarize this point, the alpha coefficient may be interpreted as an indicator of the
internal consistency of the measurement under analysis. Looking at the usual formula
for the alpha coefficient, we can see that alpha depends on the proportion of the total
test variance due to the sum of the items’ covariance -the term that expresses item
consistency- and the test length, under the form n/(n-1).

Looking at Hoyt’'s formula, we can see alpha as the product of a first factor associated
with the test length —exactly n2- and a second factor that expresses what proportion of
the variance in the total test score can be attributed to the mean of the item covariances
(this second term expresses a purer form of absolute internal consistency with no
influence from test length). In any case, the influence of test length on the alpha
coefficient and, hence, on the test reliability, is substantial.
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Test length and reliability: the Spearman-Brown prophecy

Based on the assumption that all test items are parallel measures, the relationship
between the item statistics and the total test score statistics allows us to deduce the
exact relationship between the coefficient of reliability and the test length. This
relationship is summarized in the Spearman-Brown formula:

Ro_ T
1+(n—1D)r

where R is the coefficient of reliability of a test with f items, r is the coefficient of
reliability of the same test with i items, and n is the relationship between the final and
initial number of items, exactly n=f/i.

This formula allows us to estimate the coefficient of reliability of a test after increasing
or reducing the test length. For example, if a 20-item test has a coefficient of reliability
equal to 0.8, then if we introduce 10 additional items (all of which are parallel measures,
as the original 20 items are assumed to be), the expected coefficient of reliability R is be
estimated as follows:

n:£: 20+IO:1'5
1 20
nr 15-0.8

=0.857142

R: =
l+(n=Dr 1+(15-1)-08

Therefore, if we increase the test length by a factor of 1.5, the coefficient of reliability
increases from 0.8 to 0.857.

The formula also works for those cases where we may be interested in reducing test
length —usually for practical reasons associated with the time and cost of the
measurement process in large group assessments- or when we try to estimate the
change in test length required to achieve a predefined coefficient of reliability.

As a particular case, when the Spearman-Brown formula is applied to the case of the

split-half method, the formula is conveniently simplified. Thus, in this case

_f_2_
i1

n 2
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then

R= nr B 2r _2r
I+(n—-Dr 1+Q2-Dr 1+r

Response patterns and test consistency

Items may show homogeneity and tests may show internal consistency because
respondents answer the tests in a coherent way. Usually, all the items that belong to a
total scale score are assumed to measure the same construct, that is, the same
psychological variable, although there are also some small differences related to the
aspect, facet, or perspective of the questions. It can be said that all items measure the
same construct, but introduce some slight particularities.

Based on this assumption, not all response patterns are equally probable. Some patterns
are highly probable, whereas others are difficult to accept as a coherent way of
answering the test or questionnaire.

Some response patterns can be considered consistent with the expected results,
whereas others can be considered inconsistent response patterns because their meaning
goes against the design of the measure.

For example, let X be the total test score on a simple 4-item questionnaire, worded as a
Likert scale with 5 anchors from 1 to 5. All items measure in the same direction -that is,
there are no reverse-worded items- so that a score of 5 for any item means “strongly
agree” and shows the maximum acceptance or agreement of the object under
measurement, whereas an anchor number of 1 means “strongly disagree” and
represents the maximum disagreement or rejection. The 4 items have been defined
following the original 5-point Likert scale -that is, 1. Strongly disapprove; 2. Disapprove;
3. Undecided; 4. Approve; and 5. Strongly approve. The purpose of the items may be to
measure a certain social object, such as, for example, the mobile phone application X for
keeping in touch with friends and relatives. The basic stem for the 4 items is “Do you like
application X?” All four items are variants of this basic question related to different
facets of the topic. All respondents are users of these kinds of applications and have had
at least a fixed number of experiences using application X. The responses of case 1 to the
4 items are respectively {1 1 2 1}, and so it is clear that respondent 1 strongly
disapproves or disapproves of application X. Respondent 2’s answers are {4 5 5 4}, and
so it is clear that respondent 2 approves or strongly approves of application X.
Respondent 3’s answers are {2 3 4 3}. In this case there is a lot more indecision;
respondent 3 chooses “3. Undecided” for items 2 and 4, disapproves of item 1, and
approves of item 3. The response pattern of respondent 3 is more complex, around the
neutral point, but is still reasonable. The first three respondents show coherent answers,
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compatible with the meaning of the questions. Now, respondent 4 presents the following
set of answers {1 5 1 5}. This may be a rather contradictory set of answers. Given that all
questions are different ways of asking the degree of acceptance of application X, this
may be an unexpected set of answers. These answers may be identified as incoherent or
contradictory and probably require a detailed analysis of case 4’s answers to the rest of
the test -if there are other questions- or may even require an individualized interview
to understand the reasons for this set of answers.

Detailed analysis of the response patterns may provide a great deal of clinical or
qualitative information that may be useful to psychologists in many ways, from data
control quality to the identification of unusual ways of thinking or clinical symptomes.
Hence, in general, do not analyze your test scores mechanically just by creating
aggregates without carefully studying the possibilities of the analysis of the response
patterns.

Of course, composites are a way of summarizing the complex information of dozens or
hundreds of possible response patterns but these composites should be based on item
homogeneities and test consistency as well as on the analysis of response patterns from
the point of view of the respondent’s coherence.

Some questions on implicit assumptions and the complexity of human behavior

The basic and traditional way of approaching psychometric analysis involves scoring
item anchors in a simple way and summarizing these item scores into a composite score
-the total test or questionnaire score- by adding or averaging the item scores.

Many questions arise immediately from these well-accepted, simple, almost universal
ways of coding and scoring.

A first concern is the degree of equivalence between answers that are scored equally.
Are the answers to different items really equivalent or at least equivalent enough to be
coded with the same values? For example, should the correct answer to item 1 be graded
the same as the correct answer to item 207

Bear in mind that, when, for example, we score 1 for every correct answer to any item
on an aptitude test, we are assuming that all of the answers represent the same amount
of whatever we are measuring -a psychological trait, a cognitive process, etc.

This assumption of “equal anchoring values” might be seen as an empirical question,
that is, something that can be checked in a dataset.

Even more complex might be the question of how to score the incorrect answers. Are the
wrong or missing answers simply showing a lack of aptitude or are they a valuable
indication of other ways of processing or thinking?
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In traditional psychological measures, the incorrect answers -no matter how rich they
may be from a psychological point of view- tend to be ignored.

Tests and questionnaires are usually correct-answer-focused, and so all kinds of
incorrect answers tend to be scored as 0 or ignored as missing data. However, should an
incorrect answer to item 1 be graded the same as an incorrect answer to item 207 Or,
looking in more detail at a set of distractors (the possible wrong answers inside one
item) are all the possible types of incorrect answers equivalent enough to be scored
using the same value? The use of mistakes, incorrect answers, and not-focused-on-the-
trait answers should be enhanced as a source of relevant psychological information.

These questions might be seen as forms or facets of the content validity process. Do the
items elicit the kind of psychological processes intended? Even in the simplest cases, this
is not warranted. For example, if a simple mathematical question may be solved by
guessing, then the correct answer (and many possible forms of incorrect guessing) may
not represent the mathematical reasoning we are trying to measure.

These questions and many others of the same kind that can be formulated concern the
relationship between the numbers and the functions we use to represent samples of
human behavior (usually under the form of test or questionnaire answers) and their
psychological meaning. These kinds of questions are mainly related to the process of
scaling (how to assign numbers to facts in order to create a psychological scale) and the
process of content validation (does every item/answer represent properly what we
intend to measure? Is this set of answers -as a whole- representative enough of the full
domain or construct we are trying to measure?).

Measuring is when we isolate a property in order to obtain a number representing only
the amount of this property in the object under measurement, and not a mixture of this
property with other properties from either the object, the setting, or the act or
instrument of measurement. It may seem easy for some properties but in fact it is not.
Even for a single apparently simple property such as physical length, for a precise
measurement we should take into account other properties such as temperature
because the temperature of the object and the temperature of the measurement
instrument may affect a precise measure of length for some objects. Although isolating
physical properties may be difficult and require special techniques or apparatus,
isolating psychological properties might be a challenging task.

Because the second variable or intrusive factor can rarely, if ever, be eliminated from the
object or from the setting, isolating the measured property from the effect of an
intrusive factor (that is, for example, isolating the length measurement from the
temperature effect) might be done by keeping the intrusive factor constant (for example,
by performing the measure at a certain conventional temperature) or knowing the
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precise function relating the main variable and the intrusive factor, registering the
intrusive factor, and considering its effect from the known relationship. Unfortunately,
many times, none of these options is available for all the possible intrusive factors that
can affect a psychological measurement.

[t is true that tests and questionnaires are applied under standardized conditions and
scored using objective functions. At best, these standardized conditions seriously
applied to the testing process are able to maintain constant the factors that stem from
the act of measurement and many that come from the psychological tester. At best, the
standardized test using closed stimuli and -optionally but usually- closed answers
keeps constant all the possible intrusive factors coming from the test itself. And finally,
at best, the well-defined objective procedures used for scoring the answers maintain
constant any factors stemming from the processes of translating behaviors into
numbers.

However, less effort has been made to avoid the possible influence of intrusive factors
coming from the individual under assessment. It is known that measurement results are
affected by health, stress, fatigue, motivation, and many other factors such as certain
personality traits. Although it is obvious to recommend not measuring people under
heavy stress, illness, or fatigue, some stress and fatigue are inherent to answering tests,
especially if the results might be relevant for admittance, selection, classification,
promotion, or similar situations. Being assessed is actually a stressful situation. This
should be taken into account when interpreting test results. Incidentally, these
limitations could be even worse for other kinds of assessment procedures, such as direct
observation or interviews. In the case of direct observation and interview, not only is it
impossible to isolate some individual factors but many other uncontrolled factors
stemming from the psychologist or the situation can also appear.

Human behavior is a complex flow where even defining some temporal cutoffs,
separating the notion of act, is a somewhat difficult task with no easy criteria.

Even if we are able to separate simple acts —-as we try to do with the answer to a single
item- it is easy to understand that even the simplest act is the result of a complex chain
of psychological processes influenced necessarily by many different human properties -
some under the umbrella of what we call traits, human traits, or psychological traits.
Hence, acts are slices of the human-behavior-flow created under convenient but
somewhat arbitrary time periods, resulting in complex sequences of simultaneous,
sequential, or interconnected processes, each of which is influenced by a set of traits and
other factors.

To further complicate the scenario, the way these traits and factors affect the processes
underlying the acts may be quite different. Some properties might be a precondition of
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the act -for example, do I feel healthy enough to start/continue with this test? Am I open
enough (as opposed to too shy) to answer this question or too shy to skip it? Other
factors may affect the ability to find an answer or the quality of the answer. For example,
are the examinees intelligent enough to understand the instructions, follow them, and
solve the problem? Do they have enough knowledge or enough motivation? Also, many
kinds of social factors related to the examinee and related to the situation as interpreted
by the examinee may affect the answer positively or negatively. It is clear, therefore, that
virtually any individual act -and hence, any test answer- might be affected at the same
time by intelligence, motivation, state of health and numerous personality traits, to
mention only some of the most obvious factors involved. There is no way to measure
without having these factors in play. There is no act of psychological measurement
without all these factors affecting the measure to a certain degree -just as there is no
length measurement without temperature. However, in psychology, we do not know the
function that connects these factors to the variable we are trying to measure and we
may suspect that different configurations of the situation may introduce huge changes in
the relative importance of many of these intrusive factors.

Trait-related assumptions

Traits and states have a long tradition in Psychology. Traits are usually described as
stable characteristics of individuals conceived in such a way that all individuals from a
population share the presence of the same set of traits but differ in their amount or
intensity. This is a convenient way to describe individuals: once the set of relevant traits
is described and workable tests are available for them, the categorization of human
behavior or human beings becomes relatively easy.

States are understood as temporary feelings, thoughts or experiences, not necessarily
based on a sensorial or social experience or necessarily connected to traits. Thus, based
on this distinction, an individual may experience anxiety (state) without being anxious
(trait), although if you are anxious (trait), you are more likely to experience anxiety
(state) when dealing with a certain situation.

This relationship between states and traits might not be obvious, especially taking into
account that dozens of traits have been seriously proposed but only a few have a state
counterpart.

Although it is clear that our mind changes its ability to solve difficult problems from
time to time and sometimes we feel clever and sometimes dumb, as far as [ know,
nobody has used the term “brilliant” to describe a positive state of the “intelligence”
trait. For some reason, researchers have been very conservative about proposing new
states but very generous in proposing new traits.
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On the other hand, an individual can be described by dozens of traits but only by one or
a few states. That is, somehow the nature of the state means that the state, as a prevalent
variable, tends to cover the whole situation, whereas traits, as silent properties of
individuals, might be together, sharing the individual description.

The question “when does a state become a trait?” reveals that perhaps the main
difference between states and traits is simply the temporal horizon of the test question -
assuming that the test takers are able to correctly memorize and recall when they have
experienced the content of the item.

Viewing human behavior as a continuous flow where feelings, thoughts, and experiences
interconnect and continuously change, the trait-state difference may be conceived as a
matter of degree.

In practical terms, a trait is a result of applying a factor analysis-like technique to a set of
related answers from a large enough sample. Any set of related (usually correlated)
variables will provide a set of factors. Regarding human behavior, a set of related
variables appears each time we produce a group of related questions.

Questions might be related for many reasons. In general, similar questions produce
similar or correlated answers. Questions may be similar due to their contents, that is,
because they present similar problems or ask for similar things. But questions can also
be similar because they share the same form. Of course, question similarity is a matter of
degree. Some personality questionnaires present questions that are so closely related
that they may be understood as formal variations of the same question. Some aptitude
tests might present a delicate variation of the same contents and processes, exploring a
certain domain in detail. It is easy to produce similar questions. What is not so easy is to
produce a set of questions that is sufficient to sample a full pre-defined domain (usually
the problem starts with the very definition of the domain).

Because it is easy to generate similar questions, both in form and content, it is easy to
get new traits using any factor analysis-like technique. In fact, it is not only easy, but also
economical: just one test application is enough. Simplicity and economic reasons often
go hand in hand with the success of a methodological procedure. For decades, some
areas of psychology seemed to be in a rush to produce more and more a la carte factor-
analysis-based constructs. Why not if it is that easy? However, factor analysis techniques
cannot identify substantive traits from a psychological point of view. As a “blind”
methodological procedure, factor analysis techniques simply combine the items whose
answers show correlations. This has many important consequences.

First, from the point of view of factor analysis techniques, there is no difference between
causes, consequences, or covariates. If two variables are correlated enough, they tend to
appear in the same factor, even if they refer to separate entities. The match, the oven,
and the roasted chicken might appear in the same factor just because they appear to be
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associated. Because the correlations are by themselves unable to differentiate causes,
effects, and covariates, the factor analysis techniques -based on correlations— mix them
up inside the same factors. For this reason, factor analysis techniques might be useless
for disentangling sets of closely related causes, consequences, and covariates. [tems or
tests measuring different things might appear to be part of the same factor just because
these things tend to be associated.

Second, the amount of correlation necessary to include two variables -or items- in the
same factor is a relative matter.

Many theories based on the idea of looking for a simple structure for the human mind
describe traits as orthogonal variables (that is, separate and uncorrelated). However,
some theories describe a complex scenario of oblique variables, sometimes with second-
order orthogonal or oblique traits, more as the result of oblique rotations to try to
improve the fit of the factor structure than as the result of a sound psychological theory.

Nonetheless, both views of traits, as orthogonal or oblique entities, and also the common
view of states, envisage them as additive structures where item answers describing
particular pieces of behavior are summed up. Using a geometrical metaphor, all these
theories conceive traits and states as straight lines where items are equal unit segments
available for concatenation in any order. In other words, all of the various items are
considered the same size bricks that can be put together in any order. Trait theories
presume a simple straight-line geometry. Inspired in the measurement of physical
properties such as weight or height, where each gram or centimeter is worth the same
as any other, trait measurements assume that different complex behaviors and
processes associated with the different items can be concatenated. No matter how
simple it seems, it has been a good try. Often, the best theories have to start by making
simple assumptions.

[t should be noted that there is no way to come up with a psychological theory without
making underlying assumptions, and translating behavior into numbers is no exception.
“All numerical analysis of test scores rest on assumptions. The assumptions generally
are false to some degree, because they treat the world as simpler than it is. ‘Violation of
assumptions’ sounds bad, but we live with violations much of the time. We plan a trip for
example, with a map that assumes the world to be flat. That could cause trouble on a
long voyage, but not otherwise.” (Cronbach, 1990). Remember the now classic George
Box aphorism: all models are false, but some are useful. Explained in Box’s words: “Now it
would be very remarkable if any system existing in the real world could be exactly
represented by any simple model. However, cunningly chosen parsimonious models
often do provide remarkably useful approximations. For example, the law PV = RT
relating pressure P, volume V and temperature T of an ‘ideal’ gas via a constant R is not
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exactly true for any real gas, but it frequently provides a useful approximation and
furthermore its structure is informative since it springs from a physical view of the
behavior of gas molecules. For such a model there is no need to ask the question ‘Is the
model true?’. If ‘truth’ is to be the ‘whole truth’ the answer must be ‘No’. The only
question of interest is ‘Is the model illuminating and useful?”” (Box, 1979). Simplicity,
following Occam’s razor, is not necessarily a bad thing. On the contrary, it should be
pursued in any science. And how well do the psychological trait models do? Well, that is
not an easy question to answer because there are multiple psychological trait theories,
and there is a huge body of research that is difficult to summarize. All these trait
theories share a common body of psychometric assumptions, but they present
considerable differences in their psychological knowledge. Some of these theories can be
contradictory or partially contradictory in their psychological assets. However, all in all,
“the assumptions common in psychometrics work well enough most of the time. The
more one knows of the assumptions, the more aware she will be of the circumstances
where they lead to seriously wrong conclusions.” (Cronbach, 1990)

Why should we take item difficulty into account when scoring tests?

Thurstone developed a series of methods based on psychophysical procedures to scale
psychological variables without a physical counterpart, such as opinions and attitudes.
These methods usually assume that a set of items represents a factor or dimension, but
different items with different content could be located along the dimension, expressing
different degrees or amounts of the same dimension. In some way, this methodology is
fully congruent with the idea of the psychological dimension, where individuals may be
identified as showing more or less of it. Regardless of whether the dimension is
conceived as monopole (that is, from 0 to a positive number greater than 0, for example,
from 0 to 100) or bipolar (that is, with negative and positive poles, for example from -3
to +3), the same idea of dimension involves at least a rank of states, behaviors,
experiences, ideas, abilities, or feelings where different points or levels represented by
different numbers are associated with different positions in these ranks. Thurstone and
many others working from the psychological scaling perspective fully identify this idea
that test or questionnaire items are properly scaled -namely, the position of each item
on the scale is identified- and, lately, this is taken into account when measuring people.

The case for traditional aptitude or intelligence tests is paradoxical. These tests are also
predicated on the idea of dimension, which certainly involves a rank of progression,
usually expressed through a monopole scale —for example, from 0 to 100- and they also
recognize that different items represent different points on this scale, from very easy
(the class of items most people are able to solve) to very difficult. However, for classical
tests that are classically scored, the usual procedures used for scoring tests ignore the
item difficulties and score all items as if they represented the same point on the
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dimension. As a general rule, regardless of their difficulty, all optimal measurement
items are scored 1 for the correct answer.

When all the items have similar difficulty, or when the difficulty profile shows great
variation (as is usually the case) but all the cases answered show patterns compatible
with the difficulty scale, this way of scaling may be a reasonable approach. However, if
some examinees show special patterns of answers, especially regarding the items they
choose to respond to or leave unanswered, producing missing values, then taking item
difficulty into account would make a difference.

In the following example, we will see how the item difficulty contributes to better
scoring just by using a simple weighting scheme. Let us assume that we have a test with
four optimal performance items whose p values or indexes of difficulty are, respectively,
(0.9 0.8 0.2 0.1). The index of difficulty or p value is a representative statistic of classical
test theory that expresses the proportion of cases that correctly answer an item.
Therefore, items 1 and 2 are very easy (most people answer them correctly) whereas
the last two items are difficult (most people fail them). These four items do not have the
same value in terms of the aptitude under measurement but when scoring them in the
traditional undifferentiated way, the total test score does not reflect these differences. If
all items are scored [0 1], where 0 is the score for a wrong answer and 1 is the score for
a correct answer, and the total test score is just the sum of points, then two examinees,
the first with the response pattern {1 1 0 0} and the second with the response pattern {0
0 1 1}, would have the same total score of 2. However, if they are scored using a
weighting scheme based on the p

X = ZpiXi
i1

their scores would be 0.9+0.8 and 0.2+01, respectively, with both scores on the p scale.
The index of difficulty may provide a simple way of scaling optimal performance tests.

Validity and validation

Many old and renewed psychological theories are based on creative and imaginative
thinking built from amazing in-depth interpretations of one or a few client reports -
often from vague or ambiguous oral expressions generated in more or less open or
unstructured interviews. Of course, many of these theories seem to be captivating, nice,
and interesting psychological explanations covering the emptiness of our ignorance.
They are the kind of thing lay people are prone to identify as good psychology. If the
analytic discourse seems coherent because it provides a mesmeric view of the inner
psychology, that seems to be enough to accept the theory. In fact, some of these theories
implicitly defend coherence as a criterion for truth -as if they were mathematics!
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Coherence may indeed be the true criterion in mathematics or symbolic logic, but it
cannot be the only criterion in empirical sciences.

These psychological theorists do not feel the need to base their theories and
interpretations on serious research. From time to time, these theories provide a valuable
hypothesis for scientific inquiry. However, we should remember that there are many
captivating hypotheses but only a few have been tested and reasonably non-rejected. As
Cronbach (1990) said, sometimes “deeper interpretations rest on complex theories
about the wellsprings of behavior, and few such theories have been substantiated.”

Faced with these pseudo-scientific views of psychology -pseudoscientific means not
scientific, let us be clear- psychometrics defends the humble validation of the test
interpretations. That is, we cannot believe a test interpretation just because it is deep,
captivating, or coherent. Test inferences must be validated ~which means that test
interpretations must be substantiated in previous research. Test interpretations must be
empirically tested, verified in the court of empirical research, and based on real-world
data.

Selecting appropriate tests

Psychologists have the main responsibility for the tests they apply to their clients.
Knowing the available tests, carefully reading test reviews and test manuals before test
selection, and carefully following test instructions are some of their main duties.

There are many lists of do’s and don’ts for psychological testers. One of the most well-
known is the list for selecting appropriate tests as a responsibility of test users from the
Code of Fair Testing Practices in Education (Joint Committee on Testing Practices, 1988),
published in the Lee J. Cronbach handbook Essentials of Psychological Testing (1990).
The main general idea is that test users should select tests that meet the intended
purpose and are appropriate for the intended test-taking group. Appropriate means that
the test instructions, the level of difficulty (if it applies), the validation evidence, and the
score interpretation tables (such as percentile tables) correspond to the language, age,
educational level, and other main characteristics of the group being measured.

According to the Code of Fair Testing Practices in Education, test users should:

-Define the purpose of testing and the main characteristics of the group to be
tested (mother language, age, gender, educational level, special needs or
special characteristics, etc.)
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-Review the available information about tests for that purpose and population
and select the test or tests that fit best. Read independent evaluations of the
tests. Examine specimen sets, disclosed tests, or samples of questions,
directions, answer sheets, manuals, and score reports before selecting a test.
Look for evidence supporting the claims of test developers -especially those
related to the kind of score interpretation intended for the group under
measurement.

-Ascertain whether the test content and normative group(s) or comparison
group(s) are appropriate for the intended test takers.

-Carefully study the test manuals and other materials provided by the test
developers or the test publishers. Sometimes, after these readings,
psychological testers should discard a preselected test -for lack of
concordance with the intended group, incomplete information, or other
possible issues.
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Part lll. Basic issues of ltem Response Theory

Item response theory and test theory

Psychometrics, the field related to psychological measurement, has developed into two
main branches: the theory of measurement and psychological scaling, on the one hand,
and test theory, on the other.

Test theory can be subdivided into two large theoretical bodies: classical test theory and
item response theory. The latter family of models is representative of a more general
class of models called analysis of the latent structure.

Classical test theory can be seen as a historical antecedent of item response theory,
contributing a common background on test scoring and analysis and many of the issues
that item response theory tries to solve. However, classical test theory cannot be
considered obsolete or surpassed by item response theory. Although item response
theory hardly makes use of the results of classical test theory, it does not contradict or
invalidate them (Lord, 1980). On the contrary, under certain assumptions, there are
clear connections between the statistics and parameters of classical test theory and
those of item response theory.

As Steinberg and Thissen (1996) point out, item response theory “is not really a theory;
it should be called a collection of statistical models and methods to make sense of data in
the context of psychological measurement” (p. 832).

A model is a representation of a real system that represents how we believe that a set of
factors or variables involved in this real system interact. A mathematical model
translates these beliefs into a mathematical form, usually using mathematical functions
(Lawson and Marion, 2008).

All models involve assumptions. [tem response theory, as a collection of models and
related methods, involves a series of basic general assumptions, mostly common to
other test theories:

(1) Any test is a standardized device that attempts to measure individual differences in
an unobservable construct, generally symbolized by the Greek letter 6 in the realm of
item response theory.

(2) This underlying unobservable latent variable 6 that we intend to measure can be
inferred from the covariation of the responses to the items.

(3) The purpose of item response theory is the elaboration of an item response model
that statistically accounts for the likelihood of the subjects' responses given 6 (for
example, the probability of a correct answer given the respondent’s position in the trait).
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Before introducing the item response models, it is convenient to frame them in a more
general class of models called latent structure models.

Latent structure models: concept and classes

Statistical models in which the dependence between a set of observed variables can be
explained (and, therefore, suppressed statistically) by introducing one or more
unobserved variables are called latent structure models (Andersen, 1980).

If the dependency structure among a set of variables can be described by their common
dependence on an unobservable variable 6, we say that 0 is a latent variable. Given 6, the
observable variables are independent of each other. In this way, the concept of local
independence defines the concept of latent variable.

In practice, most latent structure models imply that the latent variable 6 represents a
parameter of the cases, so that for each individual in the sample there is an associated
value of the latent variable 6; that must be estimated. This latent variable (for
unidimensional models) or these latent variables (for multidimensional models) express
individual differences that are used to explain the dependencies between response
variables under certain conditions that characterize each model.

The statistical analysis of a latent structure model is called latent structure analysis and
can present two forms depending on whether the latent variable (or variables) is
considered discrete or continuous. If the latent variable is assumed to be discrete, the
model is called a latent class model. If the latent variable is assumed to be continuous, it
is a continuous latent structure model, known in the framework of psychometrics as an
item response model.

Measurement models, that is, those statistical models that allow functional relationships
between their parameters and include measurement error, can be classified according
to the continuous or discrete nature of the observed variable (or variables) and the
latent variable (or variables), producing two axes that give rise to four large families of
models, according to the following classification by Hershberger (1994).
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Table 8. Hershberger’s classification of measurement models by the discrete or
continuous nature of the observed and latent variables.

Manifest Variables
Latent Variables Continuous Discrete
Continuous Factor Analysis Analysis of latent trait
Discrete Analysis of latent profile | Analysis of latent class

Assuming that the concept of "latent structure" refers to any measurement model with
latent, continuous, or discrete variables -that is, virtually any measurement model- then
the four cells in the previous classification represent several types of latent structure
analysis.

According to Traub and Lam (1985), the objective of latent structure analysis is to
obtain from the observed response patterns of a sample of examinees:

(a) estimates of the quantities that characterize the items on the test or
(b) estimates of the quantities that characterize the examinees or

(c) estimates of both.

The estimates of the quantities that characterize the items are called item parameters.
The estimates of the quantities that characterize the examinees are the latent traits; only
one latent trait for unidimensional models is expressed as 6.

All these quantities are the parameters of the function to estimate the conditional
probabilities

P,(x;=x16,).

These conditional probabilities are what the item response functions intend to estimate.
The graphic representation of these functions is the item operative curve (Samejima,
1998) or item characteristic curve.

In fact, these conditional probabilities or their operative curves are more obvious
concepts than they may seem. The item operative curves can be defined as the
conditional expectations of the item score E(X;| 0) (Sijtsma and Junker, 1996).
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For binary items, the conditional probability can be written as

E(X| 8)=P(X,=1] 0)

i.e,, the probability of a correct answer to a certain item i given the 6 level of the
respondent.

For polytomous items, the conditional probability can be written as

E(X,| 0)=P(X, =x| 0)

which has a similar interpretation, i.e., the probability of a certain answer x to the item i
given the 0 level of the respondent.

The expected score is an ‘excellent option’ for describing the respondent’s behavior due
to the trait (Sijtsma and Hemker, 1998). Thus, it is clear that item response models can
be understood as regression models (non-linear, usually, though not necessarily logistic)
with one (one-dimensional models) or more (multidimensional models) latent variables.

It was precisely the verification that the factorial analysis was inadequate for observable
binary responses that led Lazarsfeld (1950) to consider other options for analyzing
latent structure. However, whereas the traditional objective of linear factorial analysis
has been to establish the structure and number of factors, latent trait theory, generally
non-linear, pursues the measurement of a predefined number of traits.

McDonald (1989) drew the connections between the factor analysis models and the item
response models: "the oldest and best known latent trait model is the linear analysis of
common factors, and there is no reason to distinguish between latent and common
factors [...] The common linear factor model is, however, appropriate for quantitative
test scores rather than responses to discrete items" (McDonald, 1989, p.206). All these
models are characterized by referring to latent variables, and the concept of a latent
variable is necessary and sufficiently defined by the local independence.

However, it is common to classify the latent structure models by considering only those
with discrete manifest variables, so that latent structure analysis is considered a
broader set of models that includes item response theory and latent class analysis. This
convention is the most widespread in the literature (Langeheine and Rost, 1988).

Because item response theory assumes a latent, underlying, and continuous feature of
an unobservable nature, item response theory can be classified as one of the two major
branches of the latent structure models or latent structure analysis for discrete
observable variables. According to Traub and Lam (1985), "a distinction can be drawn
between two types of latent structure models, those of the item response theory and
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those of the latent class analysis. The distinction lies in the assumed nature of the
distribution of 0 in the population of examinees. This distribution is taken to be
continuous for the item response theory and discrete for the latent class analysis. Thus,
the item response theory is considered appropriate for the psychological tests of ability
or attitude, in which the examinees of a population are seen as continuously distributed
over the underlying latent variable. The latent class analysis, on the other hand, is
appropriate for those situations in which the examinees are viewed as belonging to only
two, or at least very few, different groups.” The latter might be the case, for example, on
mastery tests. This distinction has been implicitly recognized by Lord and Stocking
(1988), who stated that “the item response theory falls within the general class of latent
trait models”.

Item response theory refers to the set of models that relate one or more continuous
latent traits 6 to the probability of a certain response to an item

P(X, = x|0)

maintaining the assumption of local independence and describing this relationship as a
function, usually logistic, of one or more parameters. The item response model accounts
for the observed covariation, which can be expressed by the fundamental principle of
local independence (Steinberg and Thissen, 1996).

For a long period, from the work of Lazarsfeld (1950) to the beginning of the 1980s,
what we now know as item response theory was called latent trait models or latent trait
theory. These are more descriptive labels from a taxonomic point of view and were
included in the classification by Hershberger (1994). The current label, item response
theory, emerged with force after the publication of the book by Lord (1980)
"Applications of Item Response Theory to Practical Testing Problems”. Now it is more
common to keep the term latent structure models for the general case, and to
distinguish latent class analysis when 0 is discrete and use item response theory or
latent trait analysis when 6 is continuous.

In turn, within item response theory, the one-dimensional and multidimensional models
can be distinguished according to whether they consider a single latent trait 0 or
multiple latent traits. Within each of these categories, it is still possible to distinguish
models designed for dichotomous items and models designed for polytomous items.
Additional distinctions can be made depending on the type of function described by the
item characteristic curve and the number of parameters considered in the model.

Most of the traditional work in item response theory has been carried out with one-
dimensional models for dichotomously scored items in a parametric frame and with
logistic functions. However, in recent decades, item response theory has experienced a
process of expansion and generalization towards other types of items and classes of
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models, developing models for polytomous items, multidimensional models, and non-
parametric models, which have received growing interest (Samejima, 1998).

Latent class analysis

Latent class models are closely linked to item response theory, with which they share
not only the concept of explaining discrete variables with latent variables under the
principle of local independence but also similarities in some estimation methods.

Latent class models were introduced by Lazarsfeld (1950) and Lazarsfeld and Henry
(1968). In these models, the sample can be grouped according to a finite discrete
number M of latent classes, under the basic assumption of the conditional independence
of the variables observed, given the latent variable.

The analysis of latent class assumes the existence of a latent categorical variable that
explains the relations between a set of categorical manifest variables (Langeheine,
1988). Once the level of this unknown latent variable is given, the manifest variables are
independent. A set of conditional probabilities describes the relationship between the
manifest variables and the latent class, expressing the probability of belonging to an
observable class given the latent class. The probabilities of the latent class specify the
probability that an observation will fall on each level of the latent variable (van der
Heijden, Dessens and Bockenholt, 1996).

Latent class analysis is a general class of models in which different subclasses can be
distinguished. For example, Clogg and Goodman (1984) developed the so-called
simultaneous latent class analysis, which consists of the application of latent class
analysis to a set of multidimensional contingency tables, defined by a grouping variable.
The model admits constrictions of homogeneity between the different groups to look for
simpler solutions. Dayton and Macready (1988) and van der Heijden, Dessens and
Bockenholt (1996) extended this class of models, allowing the estimation of explanatory
variables that are continuous, quantitative, and possibly different for each observation
class. This extension of the simultaneous latent class analysis models that reincorporate
continuous variables exemplifies how the development of the models frequently leads to
mixed models that in some way do not fit the general introductory schemes.

Latent class analysis is usually solved by one of these two methods, either by the
Newton-Raphson algorithm or by the EM (Expectation Maximization) algorithm
(Mooijaart and van der Heijden, 1992). The former is used, for example, by Haberman in
his LAT programs (Haberman, 1978) and NEWTON (Haberman, 1988), where latent
class analysis is conceived as a log-linear model. The latter is applied in the so-called
iterative proportional scaling of Goodman (1974; 1979), programmed in MLLSA
(Eliason, 1988) or PANMARK (van de Pol, Langeheine and De Jong, 1989) and LEM
(Vermunt, 1997).
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A general outline of the position of item response theory

Considering various contributions, the following figure shows a scheme identifying the
position of item response theory in the more general framework of models of latent
structure analysis.

Latent structure analysis is the general name for a set of psychometric models designed
to deal with test scores under two interrelated assumptions: the existence of one or
more latent variables and the statistical independence of the subjects’ responses to the
items conditioned by the latent variables.

Latent structure models can be classified into latent class models if the latent variable is
considered discrete (nominal or ordinal), forming classes and latent trait models when
the latent variable is assumed to be continuous (Langeheine and Rost, 1988).

In the latent trait models, the observable variables can be continuous or discrete but
always related to latent variables, which are considered continuous, such that the latent
variables explain the covariation between the observed variables. In other words, if the
effect of the latent variables on the observable variables is removed, then the observed
variables are no longer correlated. Thus, the observable variables, usually subjects’
responses to items or sets of items, show local independence if the effect of the latent
variables is partialized.
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Figure 1. General classification of the latent structure models.
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If the observable variables are continuous and the relationship between observable and
latent variables is linear, we are dealing with a class of models traditionally known as
factor analysis.
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The models of item response theory are latent trait models where, in general, the
observable responses are considered discrete and the relationship between observable
and latent variables is non-linear.

Item response theory models are a class of latent trait models where the observed
variables are discrete, the latent variable or variables are continuous, the relationship
between the two is non-linear, and the principle of local independence rules this
relationship. In fact, the principle of local independence is what allows the definition of
these latent variables.

Given that local independence is a property inherent to this class of models, these are
the three elements that define them: the class of observable responses, the number of
continuous latent variables (traits, aptitudes, or abilities), and the kind of relationship
between observable and latent variables.

Regarding the class of observable responses, traditional item response models have
been developed for binary items, that is, items dichotomously scored. There are also
models for polytomous items -discrete observable variables with more than two
possible answers, either nominal or ordinal- and for continuous variables. In this third
case, both the observable variables and the latent variable are considered continuous,
but the relationship between the two and the estimation methods are those of item
response theory.

Regarding the number of latent variables, the models can be classified into
unidimensional models, a category in which all the traditional models can be included,
and multidimensional models, where 2 or more latent variables are considered
simultaneously.

The kind of relationship established between the latent and observable variables can be
(1) parametric when its description can be exhausted by a set of parameters that
determine a function, or (2) non-parametric when the relationship between the
observed variables and the latent variables cannot be reduced to a set of parameters.

If a parametric function is determined, the class of function that relates the continuous
latent variables and the observable variables, generally discrete, can be classified by
adopting three criteria: (1) the mathematical form of the function, (2) the number and
class of parameters, and (3) the restrictions that are imposed.

The main classes of the mathematical form of the function are: (1) the normal
cumulative ogive function, (2) the logistic function, and (3) the modifications of the
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logistic class that no longer belong mathematically to the logistic class, such as
Birnbaum's popular function with three parameters.

With regard to the number and class of parameters, it should be noted that the
dimensionality of the item response models always operates on the axis of the cases and
not on the axis of the items. However, item response theory is interested in modeling
some functional qualities of the items that, together with the latent dimensions of the
cases, account for the observable responses. To do this, the models introduce one, two,
or more parameters that describe the properties of the items into the functions that
relate the observed and latent variables. The most important parameters are the "b"
parameter, which expresses a similar concept to the classic concept of difficulty, the "a"
parameter, which expresses an item property related to the classic concept of
discrimination, and the "c" parameter, which refers to the concept of probability of
success by random guessing. The restrictions of the functions are specific to various
models, especially models for polytomous items and, due to their specificity, they will
not be presented here.

Although this framework describes the main theoretical lines, some models and
approximations are difficult to classify. For example, the so-called factor analysis of
items has been described as referring to factorial analysis models where the observable
variables are discrete variables rather than continuous variables, which are generally of
a binary nature. Additionally, some types of factor analysis, known as nonlinear factor
analysis, have been developed in close connection with the multidimensional models of
item response theory.

Item response theory general assumptions

As well as their own particular ones, all item response theory models share some
general assumptions.

These general assumptions of item response theory models include:
- The existence of a common latent trait, called 0, underlying the observed variables.

- The inclusion of the set of items or observed variables that make up a test in the
estimation of the same latent trait is based on the mathematical dependence of these
variables.

- The latent trait explains the mathematical dependence of the observed variables in
such a way that if the latent trait is partialized -that is, if the effect of the latent trait is
statistically removed from the observed variables, then the observed variables are
mathematically independent. This is called the principle of local independence.
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- If only one latent trait is sufficient to explain all the mathematical dependence among
the items, the test is called unidimensional. If two or more latent traits need to be
considered to exhaust the items’ dependence, the model is multidimensional.

A comparison of the factor analysis model and the item response theory models

These assumptions lead to certain similarities and differences between the factor
analysis model and classical test theory.

Like the factor analysis model, item response theory hinges on the idea of one or more
latent traits. Unlike factor analysis, item response models do not provide a way to
estimate the number of latent traits. However, any application of item response theory
begins by assuming a certain dimensionality (generally, assuming a unidimensional
model, that is, only one latent trait) although the estimation procedures may provide a
way to evaluate the model fit.

Like the factor analysis model, item response theory models assume that the presence of
a latent trait (or more than one for the multidimensional models) may be deduced from
the interrelationship among the set of observed variables —-(generally, the set of items
from a test). Because the items are statistically related, there should be a latent variable
that can explain all these interrelationships.

The factor analysis model generally assumes that the relationships among the items are
of a linear nature and so can be summarized using covariances, Pearson correlations, or
estimations of Pearson for dichotomized variables such as the tetrachoric coefficient.
Unlike factor analysis, item response theory models are not based on linear
relationships; for this reason, item response models hinge on the more general concept
of mathematical dependence.

Moreover, the relationship between the observed variables and the latent factors is also
linear for the mainstream factor analytical procedures. In contrast, the relationship
between each item and the latent trait in the item response theory models is non-linear;
specifically, such a relationship can be described by a logistic function.

This logistic function is particularly well suited to predicting a dichotomous output (for
example, a pass/fail behavior) from a continuous variable (the latent trait). This is the
main reason why item response models are immediately appropriate for the typical
binary scored optimal performance test items, whereas the original factor analysis
techniques are not.

Factor analysis uses only one parameter to relate each item to each factor. This one
parameter expresses the relationship between the item and the latent trait and makes it
possible to identify the relative importance of every item in defining the factor. In factor
analysis, items may have strong or weak relationships with a given factor, and this is a
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key feature in interpreting the psychological meaning of the factor. Conversely, item
response models do not allow different degrees of relationships between each item and
the latent trait but they establish a complex relationship based on one, two, or three
parameters that characterize the item. Because the different items do not make different
contributions to the definition of the latent trait, in item response theory models there is
nothing like the psychological factor interpretation that we find in factor analysis.

In item response theory models, the psychological interpretation of the latent trait is a
simple issue. As in a simple total score from classical test theory, there is no opportunity
to figure out the differences in the contributions from the several items to the formation
of the composite. An item response theory model simply assumes that the latent trait is
made up of all the test items under analysis but differentiated contributions from
different items cannot be identified.

Item dependence and local independence

In both classical test theory and factor analysis models, the linear relationships that
characterize the item-item relationships and the item-test or item-latent trait
relationships are a really restrictive class of relationships. Two variables may be
demonstrated to be related through an infinite number of possible functions and
through endless possibilities that cannot be easily described using functions.

The linear relationship is just one of these infinite possibilities, though it is particularly
interesting for several reasons. First, it is one of the simplest ways; second, it is an
effective way that has been found to be useful for describing many phenomena and
relationships throughout the sciences; third, there are very well known, easy to use, and
convenient statistics for estimating linear relationships. Not surprisingly, linear
relationships are one of the most popular solutions for relating two variables in an
atheoretical setting, that is, without a well-developed theory that explains the kind of
law or relationship expected.

[t is true that, most of the time in psychology and social sciences, linear relationships
show only a moderate-to-low capability to explain the data but this is often the best
option when lacking a well-developed theory and more precise measurements.

Classical test theory and the mainstream factor analysis models rely on linear
relationships, for which we do have very well-known statistics. For this reason, classical
test theory and factor analysis models work with covariances, all kinds of correlations,
and linear regressions. For example, if we look at classical test theory, the reliability
index is the correlation between the true scores and the observed scores. Its square, the
coefficient of reliability, is also defined as the Pearson correlation between two parallel
measurements. The alpha coefficient is based on the items’ correlations or covariances.
The item coefficient of homogeneity is the correlation between the item and the total
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test score, and the test coefficient of validity is defined as the Pearson correlation
between the total test scores and externally measured criteria. If we look at factor
analysis, most of the procedures work on the variances-covariances matrix, the
unrotated factor matrix is based on linear relationships between the observed variables
and the latent traits, and the factor loadings after an orthogonal rotation can be
interpreted as correlations between the observed variables and the underlying factors.
In the realm of validity, linear regressions (simple or multiple) are the main tools for
identifying relationships between several tests and between tests and other factors.
Even many procedures classified as construct validity, such as the multitrait-
multimethod matrix, are fully based on linear relationships.

Classical test theory and the factor analysis model are fully consistent in this regard:
they assume and expect linear relationships and subsequently analyze the relationships
among the items and between the items and the latent variables using statistics for
linear relationships.

The case for item response theory is somewhat more complex. Everything starts when
the analysis of the relationship between the continuous variable that represents the
position on the construct (that is, the total test score, the total true score, or the latent
trait measured by a factor coming from factor analysis) and the binary variable that
represents the success in solving an optimal performance test discovers that linear
regression is not a suitable statistical function to represent this relationship. This is
clear: the probability of a correct answer ranges from 0 to 1, but any attempt to predict
this probability from a continuous variable using linear regression will produce values
outside the [0 1] interval. This is a bad result, especially after taking into account that
any formal definition of probability always restricts it to a number within the interval [0
1].

After this discovery, authors such as Thurstone, Lazarsfeld, and Lord identified the
cumulative normal ogive -the popular function that provides the even more popular
tables of left-hand cumulative probabilities for a Gauss distribution- as a function that
solves the problem. Based on a continuous metric, the z-score probabilities never cross
the limits. Moreover, the s-shaped form of this cumulative function resembles and
somehow fits the empirical item response curves -that is, the values of the index of
difficulty p plotted along the several values of the total test score or the latent trait score.
The discovery of this use of the cumulative ogive is not surprising given the familiarity
of any well-educated psychologist with the Gaussian distribution and its various uses in
statistics and psychological scaling.

The cumulative normal distribution is theoretically plausible as a model of the trait-
binary item response relationship, but it comes from a definite integral of a rather
complex function. This means that some problems in handling the model and estimating
parameters may arise. Therefore, is there not a simpler function that can represent this
s-shape relationship? The solution comes when several authors introduce the logistic
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function as a natural solution for this problem. The logistic function is well known in
several areas, is the basis of logistic regression, is easier to handle than cumulative
logistics, does not involve any integral, makes it possible to integrate several parameters
describing the item properties, and produces the same type of s-shaped curves as the
cumulative logistic. In fact, the kingdom of logistic functions to describe the item-test or
the item-latent trait relationships seems to have all the wind behind it. It began the reign
of item response theory and, through successive and impressive advances in diversity,
methods of estimation and feasibility for applications, has ruled the psychometrics
arena since the final few decades of the last century. It is clear that the logistic function
is much better qualified to describe and estimate the item-latent trait relationship for
any optimal test measurement binary item. However, this advance involves the need to
estimate the latent trait by assuming these logistic relationships and not the linear ones
used by factor analysis. Also, once we have a latent trait, we need to base it on the
relationships among the items. What other justification could there be for extracting a
factor from a set of items? If the items were not related to each other, why would a
common factor be assumed for all of them?

The classic ideas of factor analysis come to mind: we extract a factor because there is
common variance to explain, because the items are related. If the items were not related,
they would not share a common factor. Therefore, what we extract is based on these
relationships; hence, after the factor has been extracted -partialized- from a pair of
items, its relationship should vanish. If item response theory is to be an alternative test
theory, it has to be able to extract the latent traits from the relationships between items.
And after partializing the factor influence, the items should remain unrelated.

Thus far, all this seems okay. However, what would the class of relationships be among
items that support logistic relationships with the latent trait? Well, because items are
conceived as binary entities, how do we establish and why do we defend a logistic
relationship between two binary entities? There is no need to do so. Assuming a logistic
relationship between the latent trait and each of the binary items does not mean that we
should expect the same kind of relationship between the observed variables. The
relationship between one binary entity and another binary entity defines a four-point
space that in a certain sense may well be defined by a linear relationship but these data
do not seem to be easily or naturally defined by a logistic relationship. Item test theory
becomes rather unspecific on this point. Clearly, items should be related -or there is no
way of supporting the idea of a common factor- but the kind of relationship among the
items is unspecific and open to any mathematical form. This is exactly the idea of
mathematical or statistical dependence?.

2 Wermuth and Cox (2005) provide a more thorough description of several kinds of
dependence: “If two variables are statistically independent, then the distribution of one
of them is the same no matter at which fixed levels the other variable is considered and
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Following Crocker and Algina (2008), for two dichotomously scored items, these
concepts can be defined as follows. Let

Pi(k=1) = P(1)

denote the probability of answering the kth item correctly, and

Px(k=0) = Px(0)

represent the probability of answering the kth item incorrectly. Let

Pj(1) and P;(0)

denote the corresponding probabilities for the jth item.

These four probabilities are obtained independently for any item -that is, without taking
into account the responses to the other item- and, because they are frequently obtained
from the marginal distributions of a cross-tabulation table, they are also called marginal
probabilities.

Further, let
P(1,1), P(0,0), P(1,0) and P(0,0)

indicate the probabilities of the response patterns defined in parentheses.

For example, P(1,1) denotes the probability of answering the kth and jth items correctly.

observations for such variables will lead correspondingly to nearly equal frequency
distributions. If there is deterministic dependence, then the levels of one of the variables
vary in an exactly determined way with changing levels of the other. In other words,
under independence, knowledge about one feature remains unaffected by information
provided about the other, while under deterministic dependence it follows with
certainty which level of one variable occurs as soon as the level of the other variable is
known” (pages 4260-4261).
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Taking these definitions into account, the scores on two items are statistically
independent if:

P(1,1) = P(1)*P(1)
P(1,0) = Pi(1)*P;(0)
P(0,1) = Pi(0)*P;(1)
P(0,0) = Pi(0)*P;(0)

and are statistically dependent if any of the four equalities is not met.

For example, if Px(1)=.7, Px(0)=.3, Pj(1)=.8 and Pj(0)=.2, then the scores on the two items
are independent if and only if:

P(1,1)=.7*.8=.56,
P(1,0)=.7*2=.32,
P(0,1)=.3*8=.24,
P(0,0)=.3*.2=.06.

These latter probabilities are called the expected probabilities for the four cells of a
cross tabulation.

How can we find out whether a pair of items empirically satisfies this definition? First,
we should obtain the cross tabulation of both items, thus enabling the marginal
distributions to be calculated.

The marginal frequencies divided by the total number of cases provide the probabilities
of answering each item correctly or incorrectly without taking into account the results
of the other item. These are called the marginal probabilities. There is one marginal
probability for every value of each variable involved. In the case of the cross tabulation
of two binary items, there are two possible results {0 1} for each item, so we have four
marginal probabilities.

The product of these marginal probabilities then provides the expected proportions or
expected probabilities for the four cells.

The frequency for each cell divided by the total number of cases then provides the
observed proportion or observed probability for each cell.

Finally, for each cell, we compare the observed probability to the expected probability. If
these two numbers are equal for the four cells, we can say that the two items are
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mathematically independent -that is, the distribution for each level of each item is not
affected by the other item. If, for any of the four cells, the expected probability is not
equal to the observed proportion, there is some kind of dependence.

Each of the four cells of a cross tabulation for a pair of binary items defines a response
pattern: (11) (10) (01) and (00). Item scores are independent if the probability of each
response pattern to both items, that is, the probability of the observed answers, can be
calculated by knowing only the probabilities of the correct and incorrect responses to
each item -that is, only the marginal probabilities.

Any situation in which one or more of the conditions for mathematical independence is
not met produces statistical dependence. Mathematical dependence involves some kind
of relationship between the variables because one or more of the conditional
distributions of at least one variable shows one or more changes associated with the
level of the other variable.

Correlation and linear regression involve a specific kind of relationship -specifically, a
linear relationship- but two variables may be related in many other ways. Thus, two
variables can be dependent but not correlated. If two variables show dependency but
not a linear correlation, this means that there is some kind of non-linear relationship
between them. However, if two variables are correlated, this necessarily involves
mathematical dependence. Like correlation, statistical dependence does not necessarily
involve a causal relationship. Two variables may present dependency because one
affects the other or because another -a third variable not included in the analysis-
affects both. There are many ways a set of variables may affect or be affected by others.
These include some paradoxical effects.

Although classical test theory and the factor analysis model are based on linear
relationships, which involve the use of covariances, correlations, and lineal regression,
item response theory models involve non-linear logistic relationships between the
observed items and the latent traits. For this reason, item response theory requires the
analysis of statistical dependence rather than the use of correlations.

However, if item dependence is the basis for estimating a common factor, item
independence -called local independence- after the effect of the factor is partialized is
the basis of the definition of unidimensionality.

If a particular item response model fits the data, then the items should show
dependence before the consideration of the latent trait. However, once the level of the
latent trait is taken into account, the items should be locally independent, which means
independent at each level of the latent trait.

This idea is similar to the foundations of factor analysis. However, to understand why
this independence after the effect of the latent dimension is removed is called ‘local
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independence’, it is worth understanding how the independence is tested after the latent
trait is extracted.

Let us suppose that the latent trait can be divided into 10 homogeneous levels. These 10
latent trait levels allow us to classify the sample into 10 groups. All the cases within one
level show the same aptitude, so they are assumed not to present any differences due to
the latent trait. If we cross tabulate any pair of items, including the full set of cases (that
is, the entire sample), with people from any of the 10 latent trait levels, then any pair of
items should show dependency because this dependence is due to the latent trait.
However, if we select any of the 10 latent trait levels and we cross tabulate the same two
items for the subsample of this specific trait level again, then the two items should yield
local independence -that is, independence at the local level of the trait we selected.

If the model fits the data and all the item dependence can be explained by only one
latent trait, then all relationships or dependence between the items will disappear when
we drop the latent trait variability by choosing homogeneous samples on the latent trait.
If, for example, all the people come from level one and there is therefore no variability in
the latent trait, then the two cross-tabulated items cannot show any dependence
because, if the model is unidimensional and fits the data, all the dependency between
items is explained by the latent trait differences.

Practical and theoretical drawbacks when checking the local independence
assumption

To test the assumption of local independence -which involves checking the
dimensionality of the model (i.e., that only one latent trait explains all the dependency
for the unidimensional case)- all possible pairs of items should yield independent
relationships when cross tabulated within any level of the latent trait.

This formal way of checking local independence is quite demanding because it involves a
large number of checks by cross tabulating all the pairs of items.

For example, if we have an optimal performance test made up of 20 binary items that
may be either correct or false and the continuous scale of the latent trait is simplified to
just 10 levels of aptitude, we have to perform n(n-1)/2 cross tabulations at each of the
10 levels of the latent trait and in each cross tabulation we have to check 4 equalities
(one per cell). That is, we have to perform

[20(20-1)/2]*10%4 = 7,600.

checks.
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This is really an enormous number of checks for a common test of binary scored items,
especially if we bear in mind that classifying the sample into only 10 levels may be the
result of a balanced decision.

For a large sample, 10 levels may seem to be a suitable partition if we consider the
number of cases in each level and especially the number of cases in the levels at the
extremes of the scale. Because many traits (whether for psychologically based reasons
or methodological artifacts —as discussed earlier- or for both) tend to have a more or
less Gaussian distribution, the intervals close to the center of the distribution often have
the highest frequencies, while the intervals at the extremes of the distribution have low
frequencies.

The problem is that we need a reasonable sample size in each interval, not only in those
around the mean of the latent trait.

This requirement of a suitable sample size becomes more challenging if we consider that
the local independence must be tested for any pair of items. This means that, for
example, a pair of difficult items also has to show their local independence at the low
levels of the latent trait. However, few cases if any would have correctly solved a difficult
item at a low level of the latent trait. This means that, given the meaning of the latent
trait, we expect some or many zero or close to zero observed frequencies at the
extremes of the scale. In turn, this is a serious drawback for any test of dependency.

This kind of problem suggests that wider intervals are required in the latent trait in
order to classify the sample in aptitude groups with a large enough sample size.
However, the latent trait is, by definition, a continuous variable that is theoretically
defined in the interval (-2, +o°), though in practical terms this interval might be [-3, +3]
on a standardized metric around a 0 mean. The problem is that the wider the intervals,
the greater the latent trait differences within each interval. If there are differences in the
latent trait score within the interval, checking local independence become useless
because this check is based on the idea that all cases within an interval share the same
level of the latent trait. Only if all the cases that enter in a cross tabulation between two
items have the same level of latent trait can we claim that the latent trait effect has been
removed and thus expect local independence.

Theoretically speaking, the fact that, as a distinctive feature of the item response theory,
the latent trait has been defined as a continuous variable suggests that the latent trait
values estimated for a sample of cases would rarely, if ever, produce exactly the same
latent trait score for two examinees.

If there are no examinees with exactly the same latent trait score, the idea of checking
local independence (and therefore the unidimensionality or, in general, the
dimensionality of the model) by identifying subsamples of cases with the same latent
trait score, though theoretically appealing, is also theoretically contradictory.
Theoretically, it can in no case be expected that a sample, even a huge one, will produce
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enough examinees with the same latent trait score at each level of latent trait score to
allow a cross tabulation check for any pair of items.

Empirically, this brilliant idea of checking local independence -and therefore
unidimensionality or, in general, the model dimensionality- requires the formation of
groups of homogeneous latent trait scores, i.e., subsamples in which the differences in
the latent trait score within the group would be negligible.

The idea of negligible latent trait differences is appealing but contradictory. There is no
theoretical support for such a concept, which involves differences in the latent trait -
ultimately, the important result of any measurement- that are not real differences or at
least can be treated as non-real differences. It would be fun to try to define an epsilon
value g, such that

0j-Ok<e

is a no measure value, i.e,, it identifies the threshold at which a measure difference loses
its measurement value to become meaningless.

Of course, in some way, this idea is implicit in the use of any measure -there is a point of
precision below which there is no particular practical advantage. However, somehow it
is intrinsically contradictory with the same idea of the latent trait as a continuous
meaningful measure. Unless an external criterion of usefulness is declared, searching for
this embarrassing € would be entirely contradictory because it involves:

0<|ej—ek\<a

but also:

6,-6,|=0

If € is 0, then such a point exists, which means that no difference can be defined between
two latent trait values that, although greater than 0, is at the same time meaningless.
However, if € appeals to a difference greater than 0, it has no meaning simply because it
tries to define a difference that works like a 0 difference.

The solution comes from the external criterion. In real life, such epsilon values are
implicit for many measures. If we intend to measure the length of a wall, we might be
interested in meters and centimeters, and perhaps millimeters for some particular tasks,
but we are probably not interested in microns. Of course, though millimeters and even
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kilometers are made up of microns, for practical reasons, microns are useless in most
everyday situations.

Given this example, someone may suggest a practical rule of thumb for negligible latent
trait differences when forming groups to check local independence: two latent trait
scores are reasonably equal (and so can be mixed in the same interval) if, when items
within this interval are cross tabulated, they show local independence. This would be a
nice suggestion with practical effects. In fact, this is more or less the idea when the
number of levels of the latent trait is determined for checking local independence. It may
run and (though laborious) may be enough to solve the practical problem. From a
theoretical point of view, however, this is a good example of a tautological definition: the
interval size is defined in such a way that the condition of local independence -which is
precisely what we are trying to verify- is satisfied.

Other drawbacks stem from the fact that any sample is exposed to sampling error, and
any act of measurement is exposed to measurement error. These two factors imply that
even if all the items in a population have local independence, any sampling of them,
subject to measurement error, may show some deviance from the expected patterns of
local independence. The mathematical definition of independence does not allow the
presence of deviance due to sampling error due to or measurement error.

Given a dataset for a certain test obtained in a certain sample and subject to some error
of measurement, if the cross tabulation of two items for a given level of the latent trait
does not satisfy the rule of independence, the items are dependent for whatever reason.
The rule of dependence comes from the realm of mathematical probabilities and does
not take into account sources of error for statistical reasons such as sampling or for
psychological measurement reasons such as measurement error. It may sound
somewhat paradoxical but if the independence rule were a scaling model, we would call
it a deterministic model instead of a probabilistic one.

That is, there is no model such that:

P(1,1) = P(1)*Pj(1)+ A
P(1,0) = Pi(1)*P;(0)+ A
P(0,1) = P(0)*Pj(1)+ A
P(0,0) = PK(0)*Pj(0)+ A

where capital lambda A means a mixture of sampling error S and error of measurement
E:

A=S+E
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where both random variations have either positive or negative signs.

For any cross tabulation, this would imply developing a metric defined within the
probability scale, which in turn would involve developing a probabilistic definition of
the amount of sampling error and a probabilistic definition of the amount of
measurement error for any bivariate binary distribution.

As this A parameter has not been proposed, the definition of local independence relies
on a deterministic approach, which means that, from a mathematical point of view, any
deviance from the basic rule of products of marginal proportions involves some
dependence.

However, such a harsh rule would not be helpful for any real sample. It is hard to believe
that even one of the

(n(n-1)/2)(0 levels)

cross tabulation tests of dependence, each of which is based on

(vj*vK)

equalities (where vj is the number of possible scores for the item j, and vk is the number
of possible scores for the item k, -2¢2 for binary scored items) would yield a result of
independence. Somehow, the A terms, even though they are not formally defined, have
to be taken into account for real cases.

A standard solution for these drawbacks is to apply standard statistical tests of
independence, e.g., a chi-square test. Of course, chi-square is a test with some
assumptions that are difficult to fulfill in some situations for the local independence case
we are discussing. Fortunately, however, many other statistical tests have been
developed to cover some or many of these situations in which the assumptions of chi-
square are hard to fulfill. However, all these statistical tests follow the logic of a
statistical test of hypothesis based on the probability of the given result when the null
hypothesis happens to be true. I will discuss this topic now and, for this discussion, will
use the well-known chi-square test as a model.

Let us suppose that all the assumptions for a chi-square test are fully satisfied for a given
test of local dependence. We test the local independence for a couple of binary scored
items at a certain latent trait level. Of course, the result does not tell us that the four
equalities are exactly true -if it did, we would have perfect mathematical independence,
and no hypothesis testing would be needed. We then apply the chi-square test, whose
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assumptions have been fully justified. Imagine that the result is that the chi-square test
has a p=0.2. If we apply the standard interpretation for a statistical test of independence,
because this p is greater than the conventional level of 0.05, we cannot reject the null
hypothesis and therefore do not have enough evidence to claim that there is dependence
in the population. That is, we cannot say that the dependence that in fact both items
show in the sample is big enough to claim that there is a dependency relationship in the
population. But is this proof of statistical independence? Note that if we increase our
alpha level to 0.01 to reject a null hypothesis, it would be even harder to identify
dependent items and more pairs of items could then be declared statistically
independent. If we increase our alpha level to the rather compulsive (in psychology and
the social sciences but not in physics or other natural sciences) threshold of 0.001, then
nearly all our items will be declared statistically independent and the item response
assumption of local independence (and therefore the unidimensionality property) will
be warranted. Of course, something is wrong with this way of reasoning.

Statistical tests of independence such as chi-square were designed to seek statistical
dependence. That is, these tests try to ensure that when we say that two variables are
related, this is true in the population and not an accidental result that stems from
sampling error. They are not intended to test the equality of the expected frequencies
and the observed frequencies for each cell as they are not designed to prove
mathematical dependence. Of course, not rejecting the hypothesis of independence
when applying such statistical tests of independence is a basic prerequisite for accepting
mathematical independence. But this is not enough. This does not prove mathematical
independence.

If we were to use a test such as chi-square to test the statistical independence except for
sampling error, the region of acceptance of the null hypothesis ~-what we are trying to
prove in this case- should be reduced to 5% of the distribution around the null
hypothesis value, so a bidirectional alpha level would have to be 0.95. This would accept
only small variations around the equalities that define the mathematical independence
that may be attributed to sampling error. The chi-square test and many other tests of
independence were not designed for this task and it is hard to think of them as tests for
proving statistical independence -except for sampling error- rather than tests for
showing dependence when it is improbable that this would only occur due to sampling
error.

Logistic models to represent the probability of a correct answer

Item test theory is a general family of mathematical models that represent the
relationship between the item answers and a latent trait, called 6, using a set of
mathematical functions (mainly logistic functions).
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In general, a logistic function adopts the form

0.

e’ exp@®,)
1+e*%  1+exp(d,)

P,(x;=x16,)=

and can also be expressed as

1 1

P(x.=x10.)= =
(% =x19) 1+e™®  1+exp(-9,)
or
1 64 _
Pj(Xij:X|6i): 1+e_9i :[1+e 9,] ]:[1+exp(—ei)] 1

All these equivalent ways of expressing the logistic function say that the probability P of
obtaining a certain answer x to the item j by the respondent i is a function of the location
of this respondent 6; on the trait 6. The e in the equations is the number e, i.e., the
mathematical constant e=2.71828, which is the base of the natural logarithm.

The first part of any of these equalities, i.e., the expression

Pi(x;=x16,)

can be read as the probability P that the answer to item j by the case i would be equal to
a certain value x, given his/her level on the trait 6. Generally, for most models the
answer the model tries to explain is the response of interest, which is usually the correct
answer to an item on an optimal performance test. The expression “given the 0 level” is
really important and shows one of the changes in perspective introduced by item
response theory compared to classical test theory.

The item response theory approach versus classical test theory

In classical test theory, the relationship between the item score and the position in the
trait, represented by the total test score (or the true total test score under the observed
total test score) is analyzed by the coefficients of homogeneity. Since the coefficient of
homogeneity is a correlation, the implicit assumption is a linear model. However, when
the purpose is to explain a binary item response model (such as a pass/fail item), the
linear regression is not a good solution because its output -that is, the predicted answer
for the item- is not going to be in the interval [0 1] for all abscissae. This is a main
advantage of the logistic function for this purpose: the logistic function is able to show
the relationship between an independent continuous variable (the latent trait) and a
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binary output (the presence or absence of a correct answer) producing an output in the
interval [0 1].

In classical test theory, the probability of a correct answer was originally analyzed for
each item as the proportion of respondents who pass the item. This approach gives a
global value pj for the item j. For example, p=.5 means that half of the cases have passed
the item j. If the sample is good enough, this p may also be interpreted as a probability: if
we randomly choose a new case from the same population, there would be a .5
probability that this new case is able to answer the item correctly. However, this
probability clearly depends heavily on the position of the respondent on the trait. If, for
example, this trait is an aptitude and the respondent belongs to the best performers, the
general p probability, as a prediction of the respondent’s performance, may be clearly
improved. That is, for a high-level performer, it is natural to expect a high probability of
giving the correct answer, whereas for a respondent on the lowest levels of the aptitude
scale, a low probability of answering the item correctly may be expected. The probability
p depends on the examinee’s ability.

The traditional focus of classical test theory has been to provide this p value for each
item and summarize the proportion of cases that answer the item correctly, instead of
providing a different p for the different levels of aptitude of the examinees.

However, classical test theory has also developed some analyses that provide p values
based on the stratification of the respondents by their level on the total test score. The
index of discrimination based on p is a good example.

This index of discrimination based on p, sometimes called the Dj index, is a
discrimination index; i.e., it reports the ability of item j to discriminate the total test
score value. To calculate Dj, the sample is ordered by the total test score. The total
sample is then divided into groups determined by the total test scores. The classical way
of applying the Dj index takes into account two extreme groups. Thus, 27% of the cases
with the highest total test scores form the group of highest performers, whereas 27% of
the cases with the lowest total test scores form the group of lowest performers. The
proportion of cases that pass item j is calculated separately for these two groups. That is,

ph represents the proportion of cases that pass the item for the high performers,
whereas pi represents the proportion of cases that pass the item for the low performers.

Dj is just the difference:

Dj=pn - pi

If this difference Dj is large enough, the item is considered discriminant because the item
answers reflect the position of the examinees on the total test score.
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This idea of a separate and different probability of answering an item correctly for
examinees belonging to the extreme opposite levels on the measured variable can be
generalized to a more detailed definition of levels. This is the objective of the empirical
item response curve.

The empirical item response curve or p profile

Although the empirical item response curve is not an item response theory concept, it is
key to understanding item response theory concepts. It may be seen as a generalization

of the separate p values for the extreme groups used in the Djindex.

With a large enough sample, the cases may be classified by their position on the total
test score. For example, if we have a test whose total score ranges from 1 to 10, the cases
can be classified into 10 groups. These ten groups represent the ten levels of aptitude
that this test is able to distinguish.

Now, for a certain item j, a separate p value can be calculated for each aptitude level. If
pv represents the p value for the group of examinees that score v on the total test score,
then p1, p2, p3 ... pv... P9, p1o represent the p values for the ten groups of aptitude. The
ordered vector {p1, p2, p3 .- pv..- P9, P10} is the profile of difficulty for item j.

If the item works as expected, the proportion of cases giving a correct answer to the
item should increase as the level of aptitude increases. That is

{pl <Pz2<pP3<..Pv.. <P9< p10}

If the sample is large enough and representative of a certain population, these
proportions may well be interpreted as probabilities. Examinees with a high level of
aptitude are expected to show a higher probability of answering the item correctly than
examinees with a low level of aptitude.

In some ways, this p profile for each item, also known as the empirical item response
curve, is what item response theory models try to explain. The output of the item
response theory functions is just the probability of a certain response -generally, the
correct one- given the level of aptitude.

There are three main differences between, on the one hand, the empirical item response
curves or p profiles throughout the total test score levels and, on the other hand, the
item response theory functions -or their graphical representations, which are called
item response curves or item characteristic curves:

First, the empirical p profiles classify the observed total test scores into
discrete levels, whereas the item response functions work on the continuous
latent trait 6, which is also estimated from the item answers.
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Second, the empirical p profiles do not provide any function to estimate
the probability of success from the aptitude levels, whereas the item response
theory functions do provide such a function, usually a logistic function.

Third, whereas the empirical p profiles do not parameterize the item
characteristics that influence the probability of a correct answer, the item
response theory functions include the item parameters that allow us to
understand which item properties -such as item difficulty, item discrimination,
or response guessing- influence the form and location of the item characteristic
curve on the scale of aptitude provided by the latent trait 6. These item
parameters describe the items, provide the model with flexibility, and improve
the estimation of 6, thus allowing a better fit between the model predictions and
the real answers.

The classic item response logistic models for binary items and their item
parameters

The classic item response theory functions express the probability of a correct answer to
an optimal measurement test as a logistic function of the position of the respondent on
the latent trait 6.

All the logistic models give the probability of an observed answer as a function of the 6
value, i.e.,, as a function of the location of the respondent on the latent trait. The logistic
function may be more or less complex depending on the number of parameters it
includes.

There are three classic item-response models: the one-parameter, two-parameter, and
three-parameter logistic models.

The one-parameter logistic model

The one-parameter logistic model is the simplest. In this model, the probability of a
correct answer to the item depends on the respondent’s level on the latent trait and the
item difficulty. So, in this model, all items are assumed to be equal on any item property
except difficulty. Item difficulty is usually represented by the so-called b parameter.
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The one-parameter logistic function adopts the form:

Da(8,-b))
P(x;=116,)= T )
or, alternatively, the equivalent form:
P(x. =110)=— 1
j ij i 1+ efDa(e,fbj)

The left-hand side can be read as “the probability of a correct answer to item j, given that

the examinee i has level 8; on the latent trait”.

In the formula, e is the number e, i.e., the mathematical constant that is the base of the
natural logarithm, which is approximately equal to 2.71828.

The parameter “a” expresses the item discrimination. For the one-parameter logistic
model, this parameter is constant for all items belonging to the same test; i.e., all the
items under analysis have the same parameter “a”. For this reason, “a” appears in the
formula without the subscript j. When the one-parameter logistic model is applied to a
set of items, some item response theory software estimates a unique parameter “a”
value for all the items, whereas others may yield results for the parameters 0i and bj that
somehow integrate “a” in such a way that the results do not produce a separate

parameter value for the test.

In the function, 0 is the latent trait value of examinee i. For a certain item, once the item
parameters have been estimated, all the item parameters in the formula are fixed values,
whereas 0; varies. Hence, 6i plays the role of the independent variable in this function:
the probability of a correct answer -the dependent or response variable- will change as

the value of the individuals on the latent trait 6; changes.

The latent trait 6i is usually measured on a scale from -©° to +°°, with a mean of 0. This
metric resembles the standardized z-scores on the horizontal axes of a standardized
normal distribution. Although the 6 variable goes from -2° to +°°, when the metric is
adjusted to the classical normal distribution, most cases are assumed to be between -3
to +3.

D is a scaling constant usually set at 1.7. If D=1.7, the values of P; for the logistic models
and the values of P; for the cumulative ogive model differ absolutely by less than .01 for
all values of 0. D remains the same for all items and does not affect the nature of the

model. As a scaling constant, D is not a substantive part of the logistic model and can be
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eliminated from the function. Given that D multiplies the term a(0i-bj), eliminating the D
constant from the model is the same as fixing its value to 1, i.e., the same as assuming
D=1.

In the one-parameter logistic model, parameter bj is the only item parameter that is

allowed to vary from item to item. Parameter bj expresses the item difficulty. It is the
only real item parameter for the one-parameter logistic model and in some ways the
most important item parameter for any classic logistic model.

For the one-parameter logistic model, the item difficulty b; is what differentiates one
item from another. It allows us to identify the different levels of item difficulty from very
easy to very difficult just by looking at the b value associated with each item. When the 0
for a sample are transformed to a normal metric, so that their mean is 0 and the
standard deviation is 1, the values of bj typically vary from -2.0 to +2.0. Values of bjclose
to -2.0 correspond to very easy items, and values of bj close to 2.0 correspond to very
difficult items.

An interesting and valuable property of the b parameter is that it is expressed on the
same scale as the latent trait 6. This allows us to compare items and examinees on the
same scale. If an item j shows a difficulty b parameter greater than the 6 value for an
examinee i, we can write

bj>0;

which means that it is probable that examinee i will fail item j. This statement allows us
to examine the stochastic -that is, probabilistic- nature of the item response theory
models. If bj>6;, this does not mean that examinee i has a probability equal to 1 of failing
item j but that this probability is greater than the probability of passing the item. In fact,
for any item, parameter b means the point where the probability of answering the item
correctly is 0.5, Therefore, if an examinee i has a trait level 6; equal to the parameter b
value of an item j, the interpretation is that this examinee has a 0.5 probability of
answering this item correctly. Therefore, if an examinee has 6; > bj, this means that
his/her probability of passing the item is greater than 0.5 but not equal to 1.

The item characteristic curves of all the items on a test analyzed under the one-
parameter logistic model show the same form but different locations on the horizontal
axis, because b changes the location of the curve over the 0 axis. Thus, when the set of
item characteristic curves corresponding to a set of items of the same test analyzed
using the one-parameter logistic model is represented on the same graph over the same
latent trait axis, the result is a set of parallel logistic s-shaped curves, all of which have
the same slope (determined by the parameter a) but different locations on the latent
trait 0 (determined by the parameter b, which is different from item to item).
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The two-parameter logistic model
The second parameter introduced in the two-parameter logistic model is the parameter

aj. The two-parameter logistic model removes the restriction of equal item

discrimination for all the items. In the two-parameter logistic model, there is one aj
value for each item. For this reason, we now write parameter “a” with the subscript j
because it changes for each item j.

This model adopts the function:
Da;(6;-b;)

Pj(xij =x10,)= "

If the numerator and the denominator are multiplied by

e—Da(Gi—bj )

this function can also be expressed as:

1+ e—Daj(ei—bj)

The only change from the previous one-parameter logistic model is the subscript j for
the “a” parameter. The rest of the terms have exactly the same meaning.

Parameter aj expresses the capability of the item characteristic curve to discriminate
around point bj. For this reason, aj is called the discrimination parameter and is closely
related to the slope of the curve at point b;. In a two-parameter logistic model, the values

of parameters bj and aj will vary across the items on a test.

Hambleton and Swaminathan (1985) pointed out that the item discrimination
parameter aj is defined, theoretically, on the scale (- ©, + o). However, negative values
of ajhave no meaning because they imply that the probability of a correct answer will

decrease as the latent trait score increases. Negatively discriminating items are
therefore discarded from ability tests. Although possible, it is unusual to identify items

with aj values larger than 2. Hence, the usual range for item discrimination parameters
is approximately from 0.1 to 2.
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When aj is high, there is a strong and fast change in the probabilities of a correct answer
between the zone of 0 values below the item bj value and the zone of 6 values above the
bj value. Conversely, when aj is low, there is little change in the probabilities of a correct
answer between the zone of 8 values below the item bj value and the zone of 8 values

above the bj value.

High values of aj result in item characteristic curves that are very ‘steep’ around the b
value, whereas low values of aj lead to item characteristic curves that increase the

probability of a correct answer gradually as a function of 8 around the bj value.

It should be noted that parameter aj represents the slope of the logistic curve around the
bj value but in some way represents the slope or discriminant power on the rest of the
curve. Because the logistic curves are s-shaped along the 8 axis, those items with high a;
parameters show steep slopes around bj, i.e., in the central zone of the s-curve, while the
tails of the curve are left relatively horizontal. In other words, items with a high aj value
are especially discriminant around bj and especially non-discriminant on the parts of the
curve (usually at the beginning and the end) that are far from bj. In contrast, items with
a low aj value are not especially discriminant around bj, but may show a certain slope in

the parts of the curve (usually at the beginning and the end) that are far from b;.

The three-parameter logistic model

The one-parameter logistic model allows the items to differ in difficulty but not in
discriminative power. The two-parameter logistic model allows the items to differ in
difficulty as well as in discriminative power. The three-parameter logistic model allows
the items to differ in difficulty, discriminative power, and the probability of a correct
answer due to guessing.

The form of the three-parameter logistic model is:

1
Pi(x;=x18)=c;+(-c)) 1+ o Do)

where cj is called the pseudo-guessing parameter and represents the probability of a

correct answer for an examinee completely lacking in ability, i.e., an examinee with 6; = -
cO
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The other terms are the same as those presented for the two-parameter logistic model,

the only difference being that the difficulty parameter bj no longer represents the 6 level
where the probability of a correct answer is 0.5 but rather the 6 level where the

probability of a correct answer is (¢j +1)/2.

Strictly speaking, the introduction of the terms €; + (I-c j) breaks the logistic nature of

the function, so this is a logistic-based function rather than a proper logistic function.

The cj parameter represents the probability of a correct answer when the respondents
do not know the correct answer and guess.

The importance of this parameter lies in the presence of circumstances that allow and
encourage respondents to guess answers. The circumstances that allow random
guessing are mainly related to the use of multiple-choice formats for educational or
aptitude tests. All multiple-choice tests allow the respondents to choose the correct
answer for items they do not master. The respondents are encouraged to use random
guessing on those items that they are unable to solve in cases where they are eager to
get a good score, such as exams, personnel selection processes, and other kinds of
evaluative assessments.

Selecting an item response model

How should we select an item response model for a test? On this point, we will assume
that our test is a multiple-choice optimal performance measure that scores 1 for the
correct answer and 0 otherwise.

A general scientific principle known as Ockham's razor or the law of parsimony fits here.
This principle says that we should choose the simplest model with the same explanatory
power. Translated to this case, this means that if two models fit the data similarly, the
best choice is the simplest one, i.e., the model with the fewest parameters.

Some psychometricians have defended the simplicity of the one-parameter logistic
model, mainly on account of its exceptional properties from a methodological and
theoretical point of view. The one-parameter logistic model can be shown to be a way of
expressing the Rasch model -a measurement model with convenient mathematical
properties introduced by George Rasch (1960) and based only on item difficulty and the
respondent’s aptitude. Following this principle, some Rasch psychometricians think a
test should follow this theoretical simplicity, so they look for items that fit the Rasch
model rather than looking for the model that best fits the items.

It should be accepted that a model rarely, if ever, perfectly fits the characteristics of a
test and the data obtained in real circumstances. More often than not, one or more item
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response assumptions are not fully satisfied by the data, which means that assumptions
have to be relaxed in some way in order to apply the models. The robustness of the
model to the violation of the item response theory assumptions is therefore an
additional consideration to take into account when selecting a model. A model is said to
be robust if it yields reasonably accurate results, even if one or more of its assumptions
is violated.

For most psychometricians, the most important considerations when selecting an item
response model stem from the model’s ability to fit the circumstances of the
measurement and the properties of the dataset of interest. This involves making it clear
whether the assumptions of the model are realistic for the test analyzed. Because
different models with a different set of parameters involve different assumptions, these
differences provide some guidance for choosing an item response theory model.

If the test is multiple-choice and the examinees are motivated to answer the items by
random guessing -as in many educational or organizational situations- then our dataset
probably requires a three-parameter logistic model.

If the type of test items does not allow guessing (for example, when the test is made up
of open-answer items) or the examinees are not motivated to answer the test by
guessing (as in some clinical situations), then we probably do not need a three-
parameter logistic model and can use either of the other two solutions, i.e., a two-
parameter model or a one-parameter model.

Sometimes the items are exposed to possible guessing but the actual impact of guessing
on the scores may be negligible, which allows the psychometrician to avoid the three-
parameter logistic model. If, after applying a three-parameter model all items seem to
have similar and really low cj values (close to 0), we may try a two-parameter logistic
model. If both models show a similar fit, then the simpler of the two should be the
general case choice.

In fact, the items on a test may or may not show different discriminations. If, after
applying a two-parameter logistic model, all items show a similar aj parameter, i.e.,
similar discrimination, this result suggests that a one-parameter logistic model may fit
the data reasonably well.

If a pair of items depicts a similar aj parameter, then these two items should show a
similar slope when the item characteristic curve is drawn. A set of items with similar
discrimination aj will show a set of parallel item characteristic curves when these curves
are drawn on the same graph over the same latent trait 6 dimension.

If the parameters aj of a set of items are similar enough, perhaps they can be
summarized by estimating a common parameter a, thus simplifying the model to a one-
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parameter logistic model. If the items on a test suggest the possible fit of the one-
parameter logistic model, we might estimate it and compare the model fit for both
models.

As a general rule, a model tends to fit the data better as it introduces more and more
parameters. Therefore, the psychologist has to balance the attractiveness of simplicity
with the improvement in fit that a more complex model produces in order to make a
better decision. In general, improvements of scarce magnitude for a more complex
model lead to choosing the simplest model, whereas substantial improvements in model
fit strongly suggest allowing more parameters.

Sample size requirements

Another factor to consider when choosing an item response theory model is sample size.
As a general rule for any statistical model, estimating more parameters requires more
cases. This means that small samples may suggest simpler models (such as the one-
parameter logistic model), whereas large samples make it possible to choose the model
while taking into account other considerations that are only related to the test
characteristics and model fit.

As a rule of thumb, a simple model such as the one-parameter logistic model requires at
least roughly 100 cases. The more complex three-parameter logistic model requires at
least roughly 500 cases. Other more complex models, apart from the three basic ones
discussed here, would probably require even more cases.

Therefore, even if you are analyzing a multiple-choice test in which there is an obvious
tendency to guess the unknown answers, you cannot apply a three-parameter logistic
model if your sample size is rather small, e.g., around 100 cases. You can fairly argue
that a more complex model such as the three-parameter logistic model suits the tests
and sample characteristics. In this case, however, the solution would be to increase the
sample size.

After all, item response theory models not only involve more parameters and stronger
assumptions than classical test theory but they also impose harder sample size
requirements. These sample size requirements are based not only on the simultaneous
presence of several item parameters but also on the demands of the computational
methods required to estimate the parameters.
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