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Universitat de València Noelia Rizo Carrión





Declaro que esta disertación titulada Representations of Finite Groups:
Blocks Relative to a Normal Subgroup y el trabajo presentado en ella son
mı́os. Lo confirmo:
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Resumen

Algunas de las principales conjeturas en Teoŕıa de Representaciones de
Grupos Finitos admiten refinamientos en términos de p-bloques de Brauer.
Un ejemplo paradigmático de esto es la conjetura de Alperin-McKay pro-
puesta por J. L. Alperin en [Alp75], que brinda una visión bloque-teórica
a la afamada conjetura de McKay. Además, en general, los bloques dotan
de más estructura a estos problemas.

Actualmente solo se vislumbra un camino para atacar este tipo de conje-
turas: reducirlas a problemas de grupos simples y utilizar la Clasificación de
los Grupos Finitos Simples para resolverlas. Entendemos por reducir a un
problema de grupos simples que el problema tiene solución siempre que se
comprueben una serie de condiciones para todos los grupos finitos simples.
Por supuesto, los subgrupos normales (y sus caracteres irreducibles) juegan
un papel fundamental en este proceso.

Una de las técnicas principales utilizadas en la reducción de ciertos pro-
blemas de teoŕıa de caracteres a problemas de grupos simples es estudiar
una versión proyectiva de los mismos. Con esto queremos decir lo siguiente:
sea N un subgrupo normal de G, sea θ un caracter irreducible de N y sea
IrrpG|θq el conjunto de constituyentes irreducibles del caracter inducido θG.
Hacer una versión proyectiva de un problema es reformularlo en términos
de IrrpG|θq en lugar de IrrpGq, el grupo cociente G{N en lugar de G, clases
de conjugación θ-buenas, en lugar de clases de conjugación, etc. En otras
palabras, necesitamos entender totalmente la teoŕıa de caracteres sobre el
caracter θ. Un ejemplo de aplicación de este método es la reducción de la
conjetura de McKay en [IMN07]. Además, cuando N “ 1 debemos recu-
perar la conjetura o problema original. ¿Cuál es la ventaja de esta filosof́ıa?
En primer lugar, podemos proponer (y solucionar) problemas mucho más
generales. En segundo lugar, de esta manera podemos utilizar una poderosa
herramienta: inducción sobre |G : N |, que es una manera natural de intro-
ducir grupos simples en este tipo de problemas.

Siguiendo esta filosof́ıa, si queremos atacar algunas conjeturas que in-
volucran p-bloques, no solo necesitamos entender la teoŕıa de caracteres so-
bre θ, sino también la teoŕıa de bloques sobre θ. Esta es la motivación detrás
de gran parte de esta tesis: definimos un conjunto de bloques canónicamente
construidos sobre un caracter de un subgrupo normal. Estos bloques es-
tarán definidos con respecto a un primo p y un caracter irreducible θ de
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un subgrupo normal, y les llamaremos θ-bloques (no haremos referencia al
primo p en la notación porque lo matendremos fijo). Definimos los θ-bloques
utilizando representaciones proyectivas y la teoŕıa de character triples intro-
ducida por I. M. Isaacs. Los θ-bloques están relacionados con los bloques de
las twisted group algebras, pero nuestro acercamiento es totalmente caracter-
teórico. Una parte no trivial de este trabajo es probar que los θ-bloques son
una partición canónica del conjunto IrrpG|θq, es decir, los θ-bloques son in-
dependientes de cualquier elección tomada a la hora de definirlos. Además, a
cada θ-bloque le asociaremos una única clase de conjugación de p-subgrupos
de G{N . A cada uno de estos grupos le llamaremos θ-grupo defecto. Ve-
remos que, en general, los θ-grupos defecto se comportan como los grupos
defecto de los p-bloques de Brauer clásicos.

Pero ¿por qué esta generalización? Primero, desde el punto de vista del
subgrupo normal N y su caracter irreducible θ, en general los p-bloques de
Brauer son demasiado grandes y por ello no captan por completo las sutilezas
de la teoŕıa de caracteres de G sobre θ. Probaremos que cada θ-bloque Bθ
está contenido en IrrpBqX IrrpG|θq, donde B es un p-bloque de Brauer, pero
en general, Bθ es mucho más pequeño, con lo que la partición en θ-bloques
es más fina. La segunda razón es que usando nuestros θ-bloques podemos
unificar resultados como no se hab́ıa hecho antes en la literatura: por ejem-
plo, en nuestra Conjetura B, el teorema de Gluck-Wolf-Navarro-Tiep y la
Brauer’s Height Zero Conjecture (BHZC) aparecen unificados por primera
vez. Este problema inspiró a G. Malle y G. Navarro quienes propusieron una
versión proyectiva de la BHZC [MN17]. Más tarde, B. Sambale probó, uti-
lizando la teoŕıa de los sistemas de fusión, que esta conjetura es equivalente
a la BHZC ([Sam19]). Con todo esto, hemos obtenido nueva información
de los p-bloques de Brauer clásicos utilizando la idea de los θ-bloques. Pero
esta no es la única ocasión en la que los θ-bloques nos han arrojado luz sobre
los p-bloques clásicos. También probamos en el Teorema F que la matriz de
descomposición clásica de un p-bloque de Brauer no se puede descomponer
de cierta forma. La esperanza es que los θ-bloques puedan inspirar más
resultados de este tipo.

En la primera parte de esta tesis probamos que la conjetura kpBq de
Brauer también admite una θ-versión. Esta conjetura es otro de los pro-
blemas abiertos fundamentales de R. Brauer de los 50, y no solo no se ha
resuelto sino que ni siquiera se ha reducido a grupos finitos simples. Quizás
nuestra θ-versión pueda ayudar a divisar tal reducción.

Otra parte importante del Caṕıtulo 2 es la introducción de θ-caracteres
de Brauer. En [Nav00], Navarro da una versión de los caracteres de Brauer
relativos a un p-subgrupo normal N de G. Estos forman una base IBrpG|Nq
del espacio de funciones de clase definidas en G0 “ tx P G|xp P Nu. Esto
le permitió definir números de descomposición dχϕ para χ P IrrpGq y ϕ P
IBrpG|Nq. La importancia de esto es que los caracteres
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Φϕ “
ÿ

χPIrrpGq

dχϕχ

eran los caracteres relativos indescomponibles N -proyectivos descubiertos
previamente por B. Külshammer y G. R. Robinson en [KR87]. Aunque
Navarro también dio una versión de este resultado para un subgrupo nor-
mal N arbitrario (es decir, no necesariamente un p-grupo) en [Nav12], no
probó que la nueva N -base IBrpG|Nq era canónica (tan canónica como lo
son los caracteres de Brauer, es decir, salvo elección de un ideal maximal
conteniendo p en el anillo de los enteros algebraicos). En esta tesis damos
una base canónica para el espacio de funciones de clase definidas en G˝ con
N arbitrario y demostramos que esta base coincide con la base canónica
dada por Navarro en [Nav00].

A d́ıa de hoy, aún tenemos muchas preguntas sin contestar acerca de
los θ-bloques. Por ejemplo, ¿pueden ser determinados a partir de la tabla
de caracteres? ¿Podemos caracterizar los θ-bloques con un único caracter?
No tenemos una respuesta completa a estas preguntas, y en otras seguimos
trabajando.

Todos los resultados arriba mencionados son el Teorema A, la Conjetura
B, el Teorema C, la Conjetura D, el Teorema E, el Teorema F y el Teorema
G del Caṕıtulo 2 de este trabajo. Excepto el Teorema G, todos aparecen en
[Riz18]. El Teorema G aparecerá en [Riz19].

En el Caṕıtulo 3 seguimos estudiando el conjunto IrrpG|θq y damos una
generalización del conocido teorema de Howlett-Isaacs. En 1964, N. Iwa-
hori y H. Matsumoto conjeturaron en [IM64] que si θ es G-invariante y
|IrrpG|θq| “ 1, entonces G{N es resoluble (en este caso decimos que θ es to-
talmente ramificado en G{N). Este tipo de caracteres, como cualquier otra
situación minimal en teoŕıa de grupos, aparece con frecuencia en teoŕıa de
representaciones ordinarias (sobre cuerpos de caracteŕıstica 0) y modulares
(sobre cuerpos de caracteŕıstica p). Por ejemplo, en la teoŕıa de caracteres
de los chief factors abelianos o en bloques con exactamente un caracter
de Brauer. Fueron Isaacs y R. Howlett quienes resolvieron finalmente esta
conjetura en [HI82], siendo este teorema una de las primeras aplicaciones
de la Clasificación de los Grupos Finitos Simples a la teoŕıa de caracteres.
Cuando θ es totalmente ramificado en G{N y N Ď M �G, por el teorema
de Clifford tenemos que las constituyentes irreducibles de θM son todas G-
conjugadas. Este hecho nos inspiró el siguiente resultado principal de esta
tesis. El Teorema H es una generalización del aclamado teorema de Howlett
y Isaacs, y de una manera un tanto más débil podemos enunciarlo aśı: si
A actúa por automorfismos sobre G fijando N y algún caracter θ P IrrpNq
G-invariante, y A permuta transitivamente los elementos de IrrpG|θq, en-
tonces G{N es resoluble. Es importante señalar que para la prueba de este
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teorema no utilizamos el teorema de Howlett y Isaacs. De hecho, creemos
que nuestra prueba simplifica parte de la suya.

Nuestro siguiente resultado principal del Caṕıtulo 3 versa de nuevo sobre
el conjunto IrrpG|θq, pero también sobre teoŕıa de bloques. J. F. Humphreys
conjeturó que si todos los caracteres en IrrpG|θq tienen el mismo grado,
entonces G{N es resoluble. Esto, evidentemente, es una ampĺısima ge-
neralización del teorema de Howlett y Isaacs, aśı como del nuestro. En el
momento de escritura de esta tesis no hay resultados parciales para esta con-
jetura. Nuestro resultado (Teorema I), es una caracterización grupo-teórica
de qué ocurre cuando N “ OπpGq y G es π-separable (si π es un conjunto
de primos, decimos que G es π-separable si sus factores de composición son
bien π-grupos o bien π1-grupos). Como hemos dicho, este resultado está
relacionado con la teoŕıa de bloques y ahora explicamos por qué. Si π es el
complemento de un primo p, un resultado muy conocido de P. Fong asegura
que IrrpG|θq son los caracteres irreducibles de un p-bloque de Brauer (ver
el Teorema 10.20 de [Nav98a], por ejemplo). Si todos los caracteres irre-
ducibles de IrrpG|θq tienen el mismo grado, entonces estamos en la situación
en que todos los caracteres irreducibles de un p-bloque tienen el mismo
grado. Esta situación, sin la hipótesis de p-resolubilidad, fue caracterizada
por T. Okuyama y Y. Tsushima en [OT83]. Podemos considerar, por tanto,
nuestro teorema I como una π-versión de este resultado. Los Teoremas H e
I aparecen en [NR17].

La parte final de este trabajo es de naturaleza un tanto distina. En esta
última parte ya no trabajamos en términos de teoŕıa de caracteres sobre un
caracter de un subgrupo normal, sino que trabajamos con el conjunto com-
pleto de todos los caracteres irreducibles de G, IrrpGq. La tabla de caracteres
de G, XpGq, es una matriz cuadrada cuyas columnas están indexadas por las
clases de conjugación de G, y cuyas filas están indexadas por los caracteres
irreducibles de G. Uno de los problemas clásicos en teoŕıa de caracteres es
determinar qué propiedades de un grupo finito G podemos conocer a partir
de su tabla de caracteres. Por ejemplo, la tabla de caracteres detecta si
G es abeliano, nilpotente, superresoluble, resoluble o simple. En esta tesis,
estamos interesados en qué sabe XpGq sobre la p-estructura local de G, para
un primo dado p, un problema mucho más complejo. En particular, nuestra
motivación es la Pregunta 7 de [Nav04]: ¿determina la tabla de caracteres
de G cuántos p-subgrupos de Sylow tiene G? En este trabajo damos una
respuesta afirmativa a esta pregunta en algunos casos (Teorema J).

No obstante, más interesante que el resultado en śı, es quizás la manera
de demostrarlo. Para probar este teorema necesitamos calcular el número
de puntos fijos de la acción de un p-grupo sobre un grupo de orden coprimo
con p. Para ello damos una fórmula (Teorema K) que permite calcular este
número en términos de información que se puede obtener de la tabla de
caracteres. Nuestra fórmula generaliza un resultado clásico de Brauer (y H.
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Wielandt) para contar el número de puntos fijos de la acción de un 4-grupo
de Klein sobre un grupo de orden impar. Los resultados del Caṕıtulo 4,
Teorema J y Teorema K, aparecen en [NR16].

Después de leer nuestra prueba de la fórmula del Teorema K, Isaacs y
R. Lyons encontraron dos pruebas alternativas muy elegantes de la misma.
Las reproducimos en este trabajo con su permiso.

Guión de la tesis

El Caṕıtulo 1 brinda un breve repaso a la teoŕıa de caracteres ordinarios
y modulares (Secciones 1.1 y 1.3), cubriendo aśı los prerrequisitos para el
resto de la tesis. Las referencias para la parte concerniente a caracteres
ordinarios serán [Isa76] y [Nav18], mientras que para la parte relativa a
caracteres de Brauer será [Nav98a]. Asimismo, hemos créıdo oportuno
introducir brevemente resultados relativos a la teoŕıa de character triples
de Isaacs y representaciones proyectivas (Sección 1.2), pues constituyen la
herramienta fundamental para definir los θ-bloques en el Caṕıtulo 2.

En el Caṕıtulo 2 empieza nuestro trabajo original. Si G es un grupo
finito, N es un subgrupo normal de G, θ es un caracter irreducible de N
G-invariante y p es un primo dado, definimos una partición del conjunto
IrrpG|θq con respecto al primo p. A los elementos de esta partición los lla-
mamos θ-bloques. Como hemos dicho, para definir los θ-bloques utilizamos
representaciones proyectivas y la teoŕıa de las character triples. Concre-
tamente, asociamos a pG,N, θq una representación proyectiva P que satis-
face ciertas propiedades y, utilizando esta representación proyectiva P, cons-
truimos una standard character triple pG˚, N˚, θ˚q isomorfa a pG,N, θq, con
N˚ central en G˚. Que estas character triples sean isomorfas nos dice, en-
tre otras cosas, que existe una biyección ˚ : IrrpG|θq Ñ IrrpG˚|θ˚q, a la
que llamaremos standard bijection. Decimos que un subconjunto no vaćıo
Bθ Ď IrrpG|θq es un θ-bloque si existe un p-bloque de G˚, B˚, tal que
pBθq

˚ “ tχ˚ | χ P Bθu “ IrrpB˚|θ˚q. A cada θ-bloque le asociamos una
única clase de conjugación de p-subgrupos de G{N , y a cada uno de es-
tos subgrupos le llamamos θ-grupo defecto. Como acabamos de ver, para
la construcción de los θ-bloques (y la de los θ-grupos defecto) hacemos
una elección de una representación proyectiva asociada a pG,N, θq. En la
Sección 2.4 probamos que tanto los θ-bloques como los θ-grupos defecto están
canónicamente definidos (Teorema A), es decir, son independientes de dicha
elección. En la Sección 2.5 damos algunas propiedades de los θ-bloques.
Probamos, por ejemplo, que para todo θ-bloque Bθ existe un p-bloque de
G, B, tal que Bθ Ď IrrpB|θq “ IrrpBq X IrrpG|θq. También probamos que si
el subgrupo N es central, entonces los θ-bloques son exactamente los con-
juntos IrrpB|θq, donde B recorre los p-bloques de G, o que si G{N es un
p-grupo, entonces solo hay un θ-bloque y un θ-grupo defecto, G (esto es el
Teorema 2.10). Además, damos θ-versiones de algunos resultados conocidos
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de teoŕıa de bloques. Por ejemplo, probamos que si χ P IrrpG|θq, Bθ es el
θ-bloque que contiene a χ y pgNqp no pertenece a ningún θ-grupo defecto de
Bθ para algún g P G, entonces χpgq “ 0 (esto es el Teorema 2.12). También
probamos que si Bθ es un θ-bloque y Dθ{N es un θ-grupo defecto de Bθ,
entonces existe xN P G{N tal que Dθ{N P SylppCG{N pxNqq (Proposición
2.15). En la Sección 2.6, damos θ-versiones de las conocidas conjeturas
Brauer’s Height Zero Conjecture y Brauer’s kpBq Conjeture (Conjeturas
B y D). Además probamos que nuestras θ-versiones son equivalentes a las
conjeturas originales (Teoremas C y E). Como hemos dicho, para probar el
Teorema C, necesitamos el resultado de Sambale en [Sam19]; mientras que
para probar el Teorema E necesitamos un resultado nada trivial de Navarro
en [Nav17]. En la Sección 2.7 probamos que la matriz de descomposición
de un bloque no puede tener cierta forma (Teorema F). El ingrediente prin-
cipal para probar este resultado es un teorema de R. Knörr. En la Sección
2.8, siguiendo las ideas de Navarro en [Nav12], damos una base canónica,
IBrpG|Nq, del espacio de las funciones de clase definidas en G˝ y probamos
que esta base coincide con la base canónica de Navarro en [Nav00] cuando
N es un p-grupo. Si cfpG˝q es el espacio de las funciones de clase definidas
en G˝ y Θ es un conjunto de representantes de las órbitas de la acción de G
sobre IrrpNq, Navarro prueba en [Nav00] que

cfpG˝q “
à

θPΘ

cfpG˝|θq.

Lo que hacemos es dar una base, IBrpG|θq de cada uno de estos espacios
cfpG˝|θq. A los elementos de esta base les llamamos θ-caracteres de Brauer.
Por tanto, si χ P IrrpG|θq y χ˝ es la restricción de χ a G˝, entonces podemos
escribir

χ˝ “
ÿ

ϕPIBrpG|θq

dχϕϕ,

para ciertos enteros no-negativos dχϕ, uńıvocamente definidos. Llamamos
a estos enteros θ-números de descomposición. Utilizando estos θ-números
de descomposición se obtiene una partición del conjunto IrrpG|θq (esta par-
tición ya fue estudiada por Navarro en [Nav00] y [Nav12]). Utilizando el
Teorema F probamos que la partición de IrrpG|θq dada por los θ-números
de descomposición y la partición de IrrpG|θq dada por los θ-bloques coincide
(Teorema 2.30), relacionando aśı nuestro trabajo con el trabajo desarrollado
por Külshammer y Robinson en [KR87]. En la Sección 2.9 definimos un
θ-linking de la siguiente manera. Si χ, ψ P IrrpG|θq, decimos que χ y ψ están
θ-linked si

ÿ

xPG˝

χpxqψpxq ‰ 0.

Probamos que si C es una componente conexa del grafo definido en IrrpG|θq
mediante este nuevo θ-linking, entonces existe un θ-bloque Bθ tal que C Ď
Bθ. Sin embargo, la igualdad no se da en general, aunque śı bajo ciertas
hipótesis de extendibilidad sobre θ (Teorema 2.35).
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En el Caṕıtulo 3 probamos una generalización del teorema de Howlett-
Isaacs tomando en cuenta la acción de AutpGqpN,θq sobre IrrpG|θq (donde
AutpGqpN,θq denota el subgrupo de AutpGq que fija N y θ). Concretamente,
probamos que si IrrpG|θq es una AutpGqpN,θq-órbita, entonces G{N es reso-
luble. La prueba del teorema de Howlett y Isaacs tiene tres ingredientes prin-
cipales: un teorema de DeMeyer y Janusz (ver el Teorema 8.3 de [Nav18],
por ejemplo) que dice que si θ P IrrpNq es totalmente ramificado en G con
χ P IrrpGq tal que θG “ eχ, y P {N es un p-subgrupo de Sylow de G{N ,
entonces θP “ epη para algún η P IrrpP q; la correspondencia de Glauber-
man, que afirma que si un grupo resoluble S actúa coprimamente sobre un
grupo G, entonces existe una biyección natural de IrrSpGq (los caracteres
irreducibles de G fijados por la acción de S) en IrrpCGpSqq; y la Clasificación
de los Grupos Finitos Simples. Para demostrar nuestra generalización nece-
sitamos demostrar ciertas versiones de estos resultados.

En primer lugar, en la Sección 3.2 damos algunos resultados sobre ac-
ciones transitivas y p-subgrupos de Sylow. En particular, probamos que si
P {N es un p-subgrupo de Sylow de G{N y A es un grupo que actúa sobre
IrrpG|θq transitivamente y sobre IrrpP |θq satisfaciendo ciertas condiciones de
compatibilidad, entonces B P SylppAq actúa transitivamente sobre IrrpP |θq
(Teorema 3.2).

En segundo lugar, también necesitaremos propiedades no triviales de la
correspondencia de Glauberman. Como hemos dicho, esta correspondencia
afirma que si un grupo resoluble S actúa sobre un grupo G de orden coprimo
con |S|, entonces existe una biyección natural de IrrSpGq en IrrpCGpSqq. En
particular necesitaremos un refinamiento bastante técnico de esta biyección,
el cual probaremos en la Sección 3.4 utilizando resultados de A. Turull pu-
blicados en [Tur08], [Tur09] y [Tur17].

Por último, como hemos dicho anteriormente, el teorema de Howlett-
Isaacs utiliza la Clasificación de los Grupos Finitos Simples (CGFS). También
nosotros la necesitaremos para probar nuestra generalización. De hecho,
necesitaremos el mismo resultado sobre grupos simples utilizado en [HI82]:
si X es un grupo simple no abeliano, entonces existe un primo p tal que p
divide a |X|, p no divide a |MpXq| (el orden del Schur multiplier de X) y
no existe un subgrupo de X resoluble con ı́ndice potencia de p.

En la parte final de este caṕıtulo, en la Sección 3.6, probamos el Teorema
I que caracteriza cuando todos los caracteres irreducibles sobre un caracter
irreducible de un subgrupo normal tienen el mismo grado, en una situación
espećıfica. Para la prueba de este teorema necesitaremos tres resultados
nada triviales: un teorema de U. Riese sobre inducción de caracteres ir-
reducibles desde un subgrupo abeliano, un resultado profundo de S. Dolfi
sobre órbitas regulares, y el teorema de Howlett-Isaacs.
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Finalmente, en el Caṕıtulo 4, contestamos parcialmente a la pregunta
¿sabe la tabla de caracteres de G cuántos p-subgrupos de Sylow tiene G?
Como el número de p-subgrupos de Sylow de G es exactamente |G : NGpP q|,
donde P es un p-subgrupo de Sylow de G, lo que nos estamos preguntando
es si podemos calcular el orden del normalizador del p-subgrupo de Sylow
a partir de la información que nos da la tabla de caracteres. Pensemos en
el caso más simple, cuando G tiene un p-complemento normal N (un p-
complemento normal de G es un subgrupo de G de orden coprimo con p e
ı́ndice una potencia de p). En este caso G “ NP y N XP “ 1, y puesto que
NN pP q “ CN pP q, tenemos que |NGpP q| “ |CN pP q||P |. Por tanto, en esta
situación minimal, para calcular |NGpP q| nos bastaŕıa calcular |CN pP q|.
Resulta que el caso general (cuando G es p-resoluble) también reduce a una
situación de este tipo. Como N es un subgrupo normal, tenemos que P
actúa sobre N por conjugación y |CN pP q| es precisamente el número de
puntos fijos de esta acción.

En la Sección 4.2 damos una fórmula para calcular, en general, el número
de puntos fijos por la acción de un p-grupo sobre un grupo de orden coprimo
con p (Teorema K). La fórmula es la siguiente

|CN pP q| “

˜

ź

xPP

|CN pxq|

|CN pxpq|1{p

¸

p
pp´1q|P |

.

Hemos llamado a esta fórmula la fórmula de Brauer-Wielandt porque fue
Brauer el primero en obtener una fórmula de este tipo (en su caso, el grupo
que actúa es un 4-grupo de Klein) y más tarde Wielandt dio la fórmula para
el caso general. Sin embargo, no podemos utilizar la fórmula de Wielandt
para nuestros propósitos, pues involucra términos que no se pueden leer de
la tabla de caracteres. Esto es precisamente lo que hace más interesante
nuestra fórmula: solo involucra los órdenes de los centralizadores de algunos
elementos, y podemos encontrar esta información en la tabla de caracteres
en algunos casos. En particular, en la Sección 4.3 aplicamos nuestra fórmula
para obtener el orden del normalizador de un p-subgrupo de Sylow de un
grupo p-resoluble, G, a partir de su tabla de caracteres, siempre que el p-
subgrupo de Sylow sea abeliano o de exponente p (Teorema J). La prueba del
caso en que el p-subgrupo de Sylow tiene exponente p es elemental, mientras
que en el caso en que el p-subgrupo de Sylow es abeliano es mucho más
complicada. En este último caso, la clave está en lo siguiente: si ty1, . . . , yru
son representantes de las clases de conjugación de los p-elementos de G
(detectables en la tabla de caracteres gracias a un teorema de G. Higman),
tenemos que determinar cuáles de estos elementos pertenecen a algún G-
conjugado del subgrupo de Frattini de P , ΦpP q (el subgrupo de Frattini de
P es la intersección de todos los subgrupos maximales de P ). Para ello la
clave es la utilización de cierto elemento del grupo de Galois GalpQn{Qq,
donde Qn es la extensión de Q por una ráız n-ésima primitiva de la unidad.
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A veces, cuando la tabla de caracteres parece no ser suficiente para resolver
un problema, nos preguntamos si la tabla de caracteres más el p-power
map lo es. Si tx1, . . . , xku son representantes de las clases de conjugación
de G, el p-power map es la aplicación f : t1, . . . , ku Ñ t1, . . . , ku tal que
xpj pertenece a la clase de xfpjq. Resulta que, utilizando nuestra fórmula,

podemos determinar |NGpP q| a partir de la tabla de caracteres y el p-power
map, sin ninguna asunción sobre los p-subgrupos de Sylow de G (aunque
manteniendo la hipótesis de p-resolubilidad sobre G).

Por último concluimos este caṕıtulo con las pruebas de Isaacs y Lyons
del Teorema K en la Sección 4.4.
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Resum

Algunes de les principals conjectures en Teoria de Representacions de
Grups Finits admeten refinaments en termes de p-blocs de Brauer. Un
exemple paradigmàtic d’aquest fet és la conjectura d’Alperin-McKay pro-
posada per J. L. Alperin en [Alp75], que dóna una visió bloc-teòrica a la
coneguda conjectura de McKay. A més a més, en general, els blocs donen
més estructura a aquests problemes.

Actualment la forma d’atacar aquest tipus de conjectures és la següent:
reduir-les a problemes de grups simples i utilitzar la Classificació dels Grups
Finits Simples per a resoldre-les. Entenem per reduir a un problema de grups
simples que el problema té solució sempre que es verifiquen una sèrie de
condicions per a tots els grups finits simples. Per descomptat, els subgrups
normals (i els seus caracters irreductibles) juguen un paper fonamental en
aquest procés.

Una de les tècniques principals utilitzades en la reducció de certs pro-
blemes de teoria de caracters a problemes de grups simples és estudiar una
versió projectiva d’aquests problemes. Què volem dir amb açò? Siga N un
subgrup normal de G, siga θ un caracter irreductible de N i siga IrrpG|θq el
conjunt de constituents irreductibles del caracter indüıt θG. Fer una versió
projectiva d’un problema és reformular-lo en termes de IrrpG|θq en lloc de
IrrpGq, el grup quocient G{N en lloc de G, classes de conjugació θ-bones, en
lloc de classes de conjugació, etc. En altres paraules, necessitem entendre
totalment la teoria de caracters sobre el caracter θ. Un exemple d’aplicació
d’aquest mètode és la reducció de la conjectura de McKay en [IMN07]. A
més a més, quan N “ 1 hem de recuperar la conjectura o problema original.
Però, quin és l’avantatge d’aquesta filosofia? En primer lloc, podem proposar
(i resoldre) problemes molt més generals. En segon lloc, d’aquesta manera
podem utilitzar una poderosa ferramenta: inducció sobre |G : N |, que és
una manera natural d’introduir grups simples en aquest tipus de problemes.

Seguint aquesta filosofia, si volem atacar algunes conjectures que involu-
cren p-blocs, no només necessitem entendre la teoria de caracters sobre θ,
sinó també la teoria de blocs sobre θ. Aquesta és la motivació darrere de gran
part d’aquesta tesi: definim un conjunt de blocs canònicament constrüıts
sobre un caracter d’un subgrup normal. Aquests blocs estaran definits res-
pecte d’un primer p i un caracter irreductible θ d’un subgrup normal, i els
anomenarem θ-blocs (no farem referència al primer p en la notació perquè
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romandrà fix). Definim els θ-blocs utilitzant representacions projectives i
la teoria de character triples introdüıda per I. M. Isaacs. Els θ-blocs estan
relacionats amb els blocs de les twisted group algebras, però la nostra pers-
pectiva és totalment caracter-teòrica. Una part no trivial d’aquest treball
és provar que els θ-blocs són una partició canònica del conjunt IrrpG|θq, és a
dir, els θ-blocs són independents de qualsevol elecció feta a l’hora de definir-
los. A més a més, a cada θ-bloc l’associarem una única classe de conjugació
de p-subgrups de G{N . A cadascun d’aquests grups l’anomenarem θ-grup
defecte. Veurem que, en general, els θ-grups defecte es comporten com els
grups defecte dels p-blocs de Brauer clàssics.

Però, per què aquesta generalització? Primer, des del punt de vista del
subgrup normal N i del seu caracter irreductible θ, en general els p-blocs
de Brauer són massa grans i per aquesta raó no capten per complet les
subtileses de la teoria de caracters de G sobre θ. Provarem que cada θ-bloc
Bθ està contingut en IrrpBq X IrrpG|θq, on B és un p-bloc de Brauer, però
en general, Bθ és molt més xicotet, per la qual cosa la partició en θ-blocs és
més fina. La segona raó és que emprant els nostres θ-blocs podem unificar
resultats i problemes com mai s’havien relacionat abans en la literatura:
per exemple, en la nostra Conjectura B, el teorema de Gluck-Wolf-Navarro-
Tiep i la Brauer’s Height Zero Conjecture (BHZC) apareixen unificats per
primera vegada. Aquest problema va inspirar G. Malle i G. Navarro per
proposar una versió projectiva de la BHZC [MN17]. Més tard, B. Sambale
va provar, utilitzant la teoria dels sistemes de fusió, que aquesta conjectura
era equivalent a la BHZC ([Sam19]). Amb tot açò, per tant, hem obtingut
nova informació dels p-blocs de Brauer clàssics utilitzant la idea dels θ-blocs.
Però aquesta no és l’única ocasió en la que els θ-blocs ens han donat resultats
sobre els p-blocs clàssics. També provem al Teorema F que la matriu de
descomposició clàssica d’un p-bloc de Brauer no es pot descompondre de
certa forma. L’esperança és que els θ-blocs puguen inspirar més resultats
d’aquest estil.

En la primera part d’aquesta tesi provem que la Conjectura kpBq de
Brauer també admet una θ-versió. Aquesta conjectura és altre dels pro-
blemes oberts fonamentals de R. Brauer dels anys 50, i no només no s’ha
resolt sinó que ni tan sols s’ha redüıt a grups finits simples. Tal vegada la
nostra θ-versió puga ajudar a divisar una reducció.

Altra part important del Caṕıtol 2 és la introducció de θ-caracters de
Brauer. En [Nav00], Navarro dóna una versió dels caracters de Brauer
relatius a un p-subgrup normal N de G. Aquests formen una base IBrpG|Nq
de l’espai de funcions de classe definides en G0 “ tx P G|xp P Nu. Açò
li va permetre definir nombres de descomposició dχϕ per a χ P IrrpGq i
ϕ P IBrpG|Nq. La importància d’açò és que els caracters

Φϕ “
ÿ

χPIrrpGq

dχϕχ
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eren els caracters relatius indescomponibles N -projectius descoberts prè-
viament per B. Külshammer y G. R. Robinson en [KR87]. Tot i que Navarro
també va donar una versió d’aquest resultat per a un subgrup normal N
arbitrari (és a dir, no necessàriament un p-grup) en [Nav12], no va provar
que la nova N -base IBrpG|Nq era canònica (tan canònica com ho són els
caracters de Brauer, és a dir, llevat de l’elecció d’un ideal maximal que
continga p a l’anell dels enters algebraics). En aquesta tesi donem una base
canònica per a l’espai de funcions de classe definides en G˝ amb N arbitrari
i demostrem que aquesta base coincideix amb la base canònica donada per
Navarro en [Nav00].

Encara tenim moltes preguntes sense contestar sobre els θ-blocs. Per
exemple, els podem determinar mitjançant la taula de caracters? Podem
caracteriztar els θ-blocs amb un únic caracter? No tenim una resposta com-
pleta a aquestes preguntes, en altres seguim treballant.

Tots els resultats fins ara mencionats són el Teorema A, la Conjectura
B, el Teorema C, la Conjectura D, el Teorema E, el Teorema F i el Teorema
G del Caṕıtol 2 d’aquest treball. Excepte el Teorema G, tots apareixen a
[Riz18]. El Teorema G apareixerà a [Riz19].

Al Caṕıtol 3 seguim estudiant el conjunt IrrpG|θq i donem una gene-
ralització del conegut teorema de Howlett-Isaacs. Al 1964, N. Iwahori i H.
Matsumoto conjecturaren a [IM64] que si θ és G-invariant i |IrrpG|θq| “ 1,
aleshores G{N és resoluble (en aquest cas diguem que θ és totalment ra-
mificat en G{N). Aquest tipus de caracters, com qualsevol altra situació
minimal en teoria de grups, apareixen amb freqüència en teoria de repre-
sentacions ordinàries (sobre cossos de caracteŕıstica 0) i modulars (sobre
cossos de caracteŕıstica p). Per exemple, en la teoria de caracters dels chief
factors abelians o en blocs amb exactament un caracter de Brauer. Van ser
Isaacs i R. Howlett qui resolgueren finalment aquesta conjectura en [HI82],
en el que va ser una de les primeres aplicacions de la Classificació dels Grups
Finits Simples a la teoria de caracters. Quan θ és totalment ramificat en
G{N i N Ď M � G, pel teorema de Clifford tenim que les constituents
irreductibles de θM són totes G-conjugades. Aquest fet ens va inspirar el
següent resultat principal d’aquesta tesi. El Teorema H és una generalització
del famós teorema de Howlett i Isaacs, i d’una manera un tant més dèbil
podem enunciar-lo aix́ı: si A actua per automorfismes sobre G fixant N i
algun caracter θ P IrrpNq G-invariant, i A permuta transitivament els ele-

ments de IrrpG|θq, aleshores G{N és resoluble. És important destacar que
per a la prova d’aquest teorema no utilizem el teorema de Howlett i Isaacs.
De fet, creem que la nostra prova simplifica part de la seua.

El següent resultat principal del Caṕıtol 3 versa de nou sobre el conjunt
IrrpG|θq, però també involucra teoria de blocs. J. F. Humphreys va conjec-
turar que si tots els caracters en IrrpG|θq tenen el mateix grau, aleshores
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G{N és resoluble. Açò, evidentment, és una ampla generalització del teo-
rema de Howlett i Isaacs, aix́ı com del nostre. En el moment d’escriptura
d’aquesta tesi no hi ha resultats parcials per a aquesta conjectura. El nostre
resultat (Teorema I), és una caracterització en termes de teoria de grups
de què ocorre quan N “ OπpGq i G és π-separable (si π és un conjunt de
primers, diem que G és π-separable si els seus factors de composició són
bé π-grups o bé π1-grups). Com hem dit, aquest resultat està relacionat
amb la teoria de blocs i ara expliquem per què. Si π és el complement d’un
primer p, un resultat molt conegut de P. Fong assegura que IrrpG|θq són
els caracters irreductibles d’un p-bloc de Brauer (veure el Teorema 10.20
de [Nav98a], per exemple). Si tots els caracters irreductibles de IrrpG|θq
tenen el mateix grau, aleshores estem en la situació en que tots els carac-
ters irreductibles d’un p-bloc tenen el mateix grau. Aquesta situació, sense
la hipòtesi de p-resolubilitat, va ser caracteritzada per T. Okuyama i Y.
Tsushima en [OT83]. Podem considerar, per tant, el nostre Teorema I com
una π-versió d’aquest resultat. Els Teoremes H i I apareixen en [NR17].

La part final d’aquest treball és de natura un tant distina. En aquesta
darrera part ja no treballem en termes de teoria de caracters sobre un ca-
racter d’un subgrup normal, sinó que treballem amb el conjunt complet de
tots els caracters irreductibles de G, IrrpGq. La taula de caracters de G,
XpGq, és una matriu quadrada amb les columnes indexades per les classes
de conjugació de G, i les files indexades pels caracters irreductibles de G. Un
dels problemes clàssics en teoria de caracters és determinar quines propie-
tats d’un grup finit G podem conèixer a partir de la seua taula de caracters.
Per exemple, la taula de caracters detecta si G és abelià, nilpotent, super-
resoluble, resoluble o simple. En aquesta tesi, estem interessats en què sap
XpGq sobre la p-estructura local de G, per a un primer donat p, un problema
molt més complicat. En particular, la nostra motivació és la Pregunta 7 de
[Nav04]: determina la taula de caracters de G quants p-subgrups de Sylow
té G? En aquest treball donem una resposta afirmativa a aquesta pregunta
en alguns casos (Teorema J).

No obstant això, més interessant que el resultat en si mateix, es tal
vegada la manera de demostrar-lo. Per tal de provar aquest teorema ne-
cessitem calcular el nombre de punts fixats per l’acció d’un p-grup sobre
un grup d’ordre coprimer amb p. Per a això donem una fórmula (Teorema
K) que permet calcular aquest nombre en termes de informació que pot ser
obtinguda de la taula de caracters. La nostra fórmula generalitza un resultat
clàssic de Brauer (i H. Wielandt) per a contar el nombre de punts fixats per
l’acció d’un 4-grup de Klein sobre un grup d’ordre senar. Els resultats del
Caṕıtol 4, Teorema J i Teorema K, apareixen en [NR16].

Després de llegir la nostra prova de la fórmula del Teorema K, Isaacs i
R. Lyons trobaren dos proves alternatives molt elegants d’aquesta fórmula.
Les reprodüım en aquest treball amb el seu permı́s.
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Guió de la tesi

El Caṕıtol 1 és un breu repàs a la teoria de caracters ordinaris i modulars
(Seccions 1.1 i 1.3), cobrint d’aquesta manera els prerrequisits per a la resta
de la tesi. Les referències per a la part concernent a caracters ordinaris seran
[Isa76] i [Nav18], mentre que per a la part relativa a caracters de Brauer
serà [Nav98a]. D’altra banda, hem cregut oportú introduir breument re-
sultats relatius a la teoria de character triples de Isaacs i representacions
projectives (Secció 1.2), doncs constitueixen la ferramenta fonamental per a
definir els θ-blocs al Caṕıtol 2.

Al Caṕıtol 2 comença el nostre treball original. Si G és un grup finit,
N és un subgrup normal de G, θ és un caracter irreductible de N G-
invariant i p és un primer donat, definim una partició del conjunt IrrpG|θq
respecte del primer p. Als elements d’aquesta partició els anomenem θ-
blocs. Com hem dit, per a definir els θ-blocs utilitzem representacions
projectives i la teoria de les character triples. Concretament, associem a
pG,N, θq una representació projectiva P que satisfà certes propietats i, em-
prant aquesta representació projectiva P, construim una standard character
triple pG˚, N˚, θ˚q isomorfa a pG,N, θq, ambN˚ central enG˚. Que aquestes
character triples siguen isomorfes ens diu, entre altres coses, que existeix una
bijecció ˚ : IrrpG|θq Ñ IrrpG˚|θ˚q, a la qual anomenarem standard bijection.
Diem que un subconjunt no buit Bθ Ď IrrpG|θq és un θ-bloc si existeix un p-
bloc de G˚, B˚, tal que pBθq

˚ “ tχ˚ |χ P Bθu “ IrrpB˚|θ˚q. A cada θ-bloc li
associem una única classe de conjugació de p-subgrups de G{N , i a cadascun
d’aquests subgrups l’anomenem θ-grup defecte. Com acabem de veure, per
a la construcció dels θ-blocs (i la dels θ-grups defecte) fem una elecció d’una
representació projectiva associada a pG,N, θq. En la Secció 2.4 provem que
tant els θ-blocs com els θ-grups defecte estan canònicament definits (Teo-
rema A), és a dir, són independents d’aquesta elecció. A la Secció 2.5 donem
algunes propietats dels θ-blocs. Provem, per exemple, que per a tot θ-bloc
Bθ existeix un p-bloc de G, B, tal que Bθ Ď IrrpB|θq “ IrrpBq X IrrpG|θq.
També provem que si el subgrup N és central, aleshores els θ-blocs són exac-
tament els conjunts IrrpB|θq, on B recorre els p-blocs de G, o que si G{N és
un p-grup, aleshores només hi ha un θ-bloc i un θ-grup defecte, G (açò es el
Teorema 2.10). A més a més, donem θ-versions d’alguns resultats coneguts
de la teoria de blocs. Per exemple, provem que si χ P IrrpG|θq, Bθ és el
θ-bloc que conté a χ i pgNqp no pertany a cap θ-grup defecte de Bθ per a
algun g P G, aleshores χpgq “ 0 (açò és el Teorema 2.12). També provem
que si Bθ és un θ-bloc i Dθ{N és un θ-grup defecte de Bθ, aleshores existeix
xN P G{N tal que Dθ{N P SylppCG{N pxNqq (Proposició 2.15). A la Secció
2.6, donem θ-versions de les conegudes conjectures Brauer’s Height Zero
Conjecture i Brauer’s kpBq Conjeture (Conjectures B i D). A més a més,
provem que les nostres θ-versions són equivalents a les conjectures originals
(Teoremes C i E). Com hem dit, per a provar el Teorema C, necessitem
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el resultat de Sambale en [Sam19]; mentre que per a provar el Teorema
E necessitem un resultat gens trivial de Navarro en [Nav17]. A la Secció
2.7 provem que la matriu de descomposició d’un bloc no pot tindre certa
forma (Teorema F). L’ingredient principal per a provar aquest resultat és
un teorema de R. Knörr. A la Sección 2.8, seguint les idees de Navarro en
[Nav12], donem una base canònica, IBrpG|Nq, de l’espai de les funcions
de classe definides en G˝ i provem que aquesta base coincideix amb la base
canònica de Navarro en [Nav00] quan N és un p-grup. Si cfpG˝q és l’espai
de les funcions de classe definides en G˝ i Θ és un conjunt de representants
de les òrbites de l’acció de G sobre IrrpNq, Navarro prova en [Nav00] que

cfpG˝q “
à

θPΘ

cfpG˝|θq.

El que fem és donar una base, IBrpG|θq de cadascun d’aquests espais cfpG˝|θq.
Als elements d’aquesta base els anomenem θ-caracters de Brauer. Per tant,
si χ P IrrpG|θq i χ˝ és la restricció de χ a G˝, aleshores podem escriure

χ˝ “
ÿ

ϕPIBrpG|θq

dχϕϕ,

per a certs enters no-negatius dχϕ, uńıvocament definits. Anomenem a a-
quests enters θ-nombres de descomposició. Utilitzant aquests θ-nombres de
descomposició s’obté una partició del conjunt IrrpG|θq (aquesta partició ja
fou estudiada per Navarro en [Nav00] i [Nav12]). Utilitzant el Teorema F
provem que la partició de IrrpG|θq donada pels θ-nombres de descomposició
i la partició de IrrpG|θq donada pels θ-blocs coincideix (Teorema 2.30), rela-
cionant aix́ı el nostre treball amb el treball desenvolupat per Külshammer
i Robinson en [KR87]. A la Secció 2.9 definim un θ-linking de la següent
manera. Si χ, ψ P IrrpG|θq, diem que χ i ψ estan θ-linked si

ÿ

xPG˝

χpxqψpxq ‰ 0.

Provem que si C és una component connexa del graf definit en IrrpG|θq
mitjançant aquest nou θ-linking, aleshores existeix un θ-bloc Bθ tal que
C Ď Bθ. No obstant això, la igualtat no es dóna en general, tot i que śı sota
certes hipòtesis d’extendibilitat sobre θ (Teorema 2.35).

Al Caṕıtol 3 provem una generalització del teorema de Howlett-Isaacs
considerant l’acció de AutpGqpN,θq sobre IrrpG|θq (on AutpGqpN,θq denota
l’estabilitzador de N i θ sota l’acció de AutpGq sobre IrrpNq). La prova
del teorema de Howlett i Isaacs té tres ingredients principals: un teorema
de DeMeyer i Janusz (veure el Teorema 8.3 de [Nav18], per exemple) que
diu que si θ P IrrpNq és totalment ramificat en G amb χ P IrrpGq tal que
θG “ eχ, i P {N és un p-subgrup de Sylow de G{N , aleshores θP “ epη per
a algun η P IrrpP q; la correspondència de Glauberman, que afirma que si un
grup resoluble S actua coprimerament sobre un grup G, aleshores existeix
una bijección natural de IrrSpGq (els caracters irreductibles de G fixats per
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l’acció de S) en IrrpCGpSqq; i la Classificació dels Grups Finits Simples. Per
a demostrar la nostra generalització necessitem demostrar certes versions
d’aquests resultats.

En primer lloc, a la Secció 3.2 donem alguns resultats sobre accions
transitives i p-subgrups de Sylow. En particular, provem que si P {N és
un p-subgrup de Sylow de G{N i A és un grup que actua sobre IrrpG|θq
transitivament i sobre IrrpP |θq satisfent certes condicions de compatibilitat,
aleshores B P SylppAq actua transitivament sobre IrrpP |θq (Teorema 3.2).

En segon lloc, també necessitarem propietats no trivials de la corres-
pondència de Glauberman. Com hem dit abans, aquesta correspondència
afirma que si un grup resoluble S actua sobre un grup G d’ordre coprimer
amb |S|, aleshores existeix una bijecció de IrrSpGq en IrrpCGpSqq. En par-
ticular necessitarem un refinament prou tècnic d’aquesta bijecció, el qual
provarem a la Seccin 3.4 fent ús de resultats de A. Turull publicats en
[Tur08], [Tur09] i [Tur17].

Com hem dit anteriorment, el teorema de Howlett-Isaacs empra la Classi-
ficació dels Grups Finits Simples (CGFS). També nosaltres la necessitarem
per a provar la nostra generalització. De fet, necessitarem el mateix re-
sultat sobre grups simples utilitzat en [HI82]: si X és un grup simple no
abelià, aleshores existeix un primer p tal que p divideix a |X|, p no divideix
a |MpXq| (l’ordre del Schur multiplier de X) i no existeix un subgrup de X
resoluble amb ı́ndex potència de p.

En la darrera part d’aquest caṕıtol, provem el Teorema I que caracte-
ritza quan tots els caracters irreductibles sobre un caracter irreductible d’un
subgrup normal tenen el mateix grau, en una situació espećıfica. Per a la
prova d’aquest teorema necessitarem tres resultats gens trivials: un teo-
rema de U. Riese sobre inducció de caracters irreductibles des d’un subgrup
abelià, un resultat profund de S. Dolfi sobre òrbites regulars, i el teorema
de Howlett-Isaacs.

Finalment, al Caṕıtol 4, contestem parcialment a la pregunta: sap la
taula de caracters de G quants p-subgrups de Sylow té G? Com el nombre
de p-subgrups de Sylow de G és exactament |G : NGpP q|, on P és un p-
subgrup de Sylow de G, el que ens estem preguntant és si podem calcular
l’ordre del normalitzador del p-subgrup de Sylow a partir de la informació
que ens dóna la taula de caracters. Pensem en el cas més simple, quan
G té un p-complement normal N (un p-complement normal de G és un
subgrup de G d’ordre coprimer amb p i ı́ndex una potència de p). En
aquest cas G “ NP y N X P “ 1, i com que NN pP q “ CN pP q, tenim que
|NGpP q| “ |CN pP q||P |. Per tant, en aquesta situació minimal, per tal de
calcular |NGpP q| ens bastaria calcular |CN pP q|. Resulta que el cas general
(quan G és p-resoluble) també redueix a una situació d’aquest tipus. Com N
és un subgrup normal, tenim que P actua sobre N per conjugació i |CN pP q|
és precisament el nombre de punts fixes d’aquesta acció.
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A la Sección 4.2 donem una fórmula per a calcular, en general, el nombre
de punts fixes per l’acció d’un p-grup sobre un grup d’ordre coprimer amb
p (Teorema K). La fórmula és la següent

|CN pP q| “

˜

ź

xPP

|CN pxq|

|CN pxpq|1{p

¸

p
pp´1q|P |

.

Hem anomenat a aquesta fórmula la fórmula de Brauer-Wielandt perquè
fou Brauer el primer en obtindre una fórmula d’aquest tipus (al seu cas, el
grup que actua és un 4-grup de Klein) i més tard Wielandt va donar la
fórmula per al cas general. No obstant això, no podem emprar la fórmula de
Wielandt per als nostres propòsits, doncs involucra termes que no es poden
llegir de la taula de caracters. Açò és precisament el que fa més interessant
la nostra fórmula: només involucra els ordres dels centralitzadors d’alguns
elements, i podem trobar aquesta informació en la taula de caracters en
alguns casos. En particular, a la Sección 4.3 apliquem la nostra fórmula per
a obtindre l’ordre del normalitzador d’un p-subgrup de Sylow d’un grup p-
resoluble, G, a partir de la seua taula de caracters, sempre que el p-subgrup
de Sylow siga abelià o d’exponent p (Teorema J). La prova del cas en que
el p-subgrup de Sylow té exponent p és elemental, mentre que al cas en
que el p-subgrup de Sylow és abelià és molt més complicada. En aquest
últim cas, la clau està en açò: si ty1, . . . , yru són representants de les classes
de conjugació dels p-elements de G (detectables en la taula de caracters
gràcies a un teorema de G. Higman), tenim que determinar quins d’aquests
elements pertanyen a algun G-conjugat del subgrup de Frattini de P , ΦpP q
(el subgrup de Frattini de P és la intersecció de tots els subgrups maximals
de P ). Per a açò la clau és la utilització de cert element del grup de Galois
GalpQn{Qq, on Qn és l’extensió de Q per una arrel n-èssima primitiva de la
unitat. Quan la taula de caracters pareix no ser suficient per a resoldre un
problema, ens preguntem si la taula de caracteres més el p-power map ho és.
Si tx1, . . . , xku són representants de les classes de conjugació de G, el p-power
map és l’aplicació f : t1, . . . , ku Ñ t1, . . . , ku tal que xpj pertany a la classe de

xfpjq. Resulta que, utilitzant la nostra fórmula, podem determinar |NGpP q|
a partir de la taula de caracters i el p-power map, sense cap assumpció
sobre els p-subgrups de Sylow de G (tot i que mantenint la hipòtesi de
p-resolubilitat sobre G).

Per últim, concloem aquest caṕıtol amb les proves alternatives de Isaacs
i Lyons del Teorema K a la Sección 4.4.

Universitat de València Noelia Rizo Carrión



Acknowledgements

First of all, I would like to thank Gabriel Navarro for his invaluable help,
not only in writing this thesis, but during all the years since we have known
each other. Thank you for all the exhaustive reviews of this manuscript (and
others), for being always available for me, for your trust, and for encouraging
me when I have most needed it. But, above all, thank you for introducing
me to the amazing character theory of finite groups which you have taught
me so much about.
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Introduction

Some of the main conjectures in the Representation Theory of Finite
Groups admit refinements in terms of Brauer p-blocks. A paradigmatic
example of this is the Alperin-McKay conjecture proposed by J. L. Alperin
in [Alp75], which gives a block-version of the acclaimed McKay-conjecture.
Blocks bring more structure into these problems.

It is a general belief today that the way to approach these conjectures is
through a reduction of them to problems on simple groups, and then use the
Classification of Finite Simple Groups to solve them. By reducing a problem
to simple groups we mean that the problem has a positive solution provided
that a specific set of conditions is checked for every simple group. Of course,
normal subgroups (and their irreducible characters) play a fundamental role
in this process.

One of the main techniques used in the reduction of character theory
problems to simple groups is the study of projective versions of these con-
jectures. By a projective version we mean the following: let N be a normal
subgroup of G, let θ be an irreducible character of N , and write IrrpG|θq
for the set of the irreducible constituents of the induced character θG. We
want to formulate the statement of our problem in terms of IrrpG|θq instead
of IrrpGq, the quotient group G{N instead of G, θ-good conjugacy classes
instead of conjugacy classes of G, etc. In other words, we need to fully un-
derstand the character theory over the character of a normal subgroup. For
instance, this is the idea behind the reduction theorem of the McKay con-
jecture in [IMN07]. When N “ 1, we should recover our original problem.
What is the advantage? First, not only are far more general results pro-
posed (and proved), but also, a powerful tool is introduced in the problems:
induction on |G : N | usually brings simple groups into the picture.

Following this philosophy, if one wants to attack some of the conjectures
involving blocks, one needs to understand not only the character theory over
a character of a normal subgroup, but also the block theory. This motivates
the main part of this thesis: we shall define a set of canonical blocks that
are constructed over a character of a normal subgroup. These blocks are
defined with respect to an irreducible character of a normal subgroup θ and
a prime p, and we will call them θ-blocks (we are holding fixed our prime p
for the rest of this thesis). The θ-blocks are defined by means of projective
representations, using the theory of the character triples introduced by I.
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M. Isaacs. They are related to blocks of twisted group algebras, but our
approach is entirely character-theoretic. A non-trivial part of this work is
to prove that they constitute a canonical partition of the set IrrpG|θq, that is:
θ-blocks are canonical and independent of any choice made in order to define
them. Also, associated to every θ-block there is a uniquely defined G{N -
conjugacy class of p-subgroups of G{N which we call the θ-defect groups.
They behave as the defect groups of the classical Brauer p-blocks.

One can ask: why this generalization? First of all, from the point of
view of the normal subgroup N and its irreducible character θ, it seems
that Brauer p-blocks are in general too big and do not capture some of the
subtleties of the character theory of G over θ. We do prove that each θ-
block Bθ is contained in IrrpBq X IrrpG|θq, for some Brauer p-block B, but
Bθ is in general much smaller. The second reason is that using θ-blocks we
can unify statements that appear separated in the literature: for instance,
in our Conjecture B, the Gluck-Wolf-Navarro-Tiep theorem and Brauer’s
Height Zero Conjecture (BHZC) are put together in a single statement for
the first time. This statement inspired G. Malle and G. Navarro to propose
a projective version of the BHZC [MN17]. This projective version was
proved to be equivalent to the original BHZC by B. Sambale in [Sam19]
by using fusion systems. Hence new information on classical Brauer blocks
has been obtained by using the θ-blocks idea. This is not the only one. We
shall also prove in Theorem F that the classical decomposition matrix of
a Brauer p-block cannot be decomposed in a certain way. We hope that
θ-blocks might inspire further results of this type.

In the first part of this thesis we shall prove that Brauer’s kpBq con-
jecture also admits a θ-version. Brauer’s kpBq-conjecture is another of the
famous open problems of R. Brauer from the 1950’s, and remains unre-
duced to simple groups. Perhaps our θ-version might help to devise such a
reduction.

Another important part of Chapter 2 is the introduction of θ-Brauer
characters. In [Nav00], Navarro gave a version of Brauer characters relative
to a normal p-subgroup N of G. These constituted a basis IBrpG,Nq of the
space of class functions defined on G0 “ tx P G|xp P Nu, and allowed him to
define decomposition numbers dχϕ for χ P IrrpGq and ϕ P IBrpG,Nq. The
significance of this was that the characters

Φϕ “
ÿ

χPIrrpGq

dχϕχ

were the relative N -projective indecomposable characters discovered previ-
ously by B. Külshammer and G. R. Robinson in [KR87]. Navarro also gave
a version of this for an arbitrary normal subgroup N of G (not necessarily
a p-group) in [Nav12], but he did not prove that this N -basis IBrpG,Nq
was canonical (as canonical as Brauer characters are, that is, up to a choice
of a maximal ideal containing p in the ring of algebraic integers). We shall
provide such a canonical basis.
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Many questions remain open about θ-blocks. For instance, can θ-blocks
be determined by the character table? How to characterize θ-blocks with
a unique character? We do not have a full answer to these questions. On
some others, we are currently working.

All the results mentioned above constitute Theorem A, Conjecture B,
Theorem C, Conjecture D, Theorem E, Theorem F and Theorem G of Chap-
ter 2 in this work. Except for Theorem G, they appear in [Riz18]. Theorem
G will appear in [Riz19].

Continuing with the study of the set IrrpG|θq, we give a generalization of
the renowned Howlett-Isaacs theorem in Chapter 3. In 1964, N. Iwahori and
H. Matsumoto conjectured in [IM64] that if θ isG-invariant and |IrrpG|θq| “
1, then G{N is solvable (in this case, it is said that θ is fully ramified in
G{N). Fully ramified characters, as any other minimal situation in group
theory, appear quite often in character and modular representation theory
(for instance, in the character theory of abelian chief factors, or in blocks
with exactly one modular character). This conjecture was proven to be true
by Isaacs and R. Howlett, in one of the first applications of the Classification
of Finite Simple Groups to character theory. When θ is fully ramified in
G{N and N Ď M Ÿ G, by Clifford’s theorem we have that the irreducible
constituents of θM are all G-conjugate. This is what inspired the next main
result of this thesis. Theorem H below is a generalization of the Howlett-
Isaacs theorem, and in a weak form can be stated as this: if A acts via
automorphisms on G fixing N and some G-invariant θ P IrrpNq, and A
transitively permutes IrrpG|θq, then G{N is solvable. It is important to
remark, that we do not use the Howlett-Isaacs theorem. We believe that
our proof simplifies some parts of theirs.

Our next main result, also in Chapter 3, deals again with the set IrrpG|θq,
but also with block theory. J. F. Humphreys conjectured that if all char-
acters in IrrpG|θq have the same degree, then G{N is solvable. This would
be a far reaching generalization of the Howlett-Isaacs theorem (and of our
Theorem H). There are no partial results for this conjecture. Our result,
Theorem I, is a group characterization of when this happens if N “ OπpGq,
and G is a π-separable group (recall that if π is a set of primes, then a group
is π-separable if its composition factors are either π-groups or π1-groups).
We wrote that this is also related to block theory, and it really is. If π
is the complement of a prime p, it is a well-known result of P. Fong that
IrrpG|θq constitutes the irreducible ordinary characters of a Brauer p-block
(see Theorem 10.20 of [Nav98a], for instance). If all the irreducible charac-
ters in IrrpG|θq have the same degree, then we have a situation of a p-block
in which all characters have the same degree. This situation, with no p-
solvability hypothesis, was characterized by T. Okuyama and Y. Tsushima
in [OT83]. Our Theorem I can therefore be seen as a π-version of their
result. Theorems H and I appear in [NR17].
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The final part of this thesis has a different nature. In this part we do
not work in terms of the character theory over a normal subgroup, but
instead we work with IrrpGq, the entire set of irreducible characters of G.
The character table of G, XpGq, is the (square) matrix whose columns are
indexed by the conjugacy classes of the group and whose rows are indexed
by its irreducible characters. One of the classical problems in character
theory is to determine which properties of a finite group G are encapsulated
in its character table. For example, it is well-known that the character table
detects if G is abelian, nilpotent, supersolvable, solvable, or simple. In this
thesis we are interested in what XpGq knows about the local p-structure of
G for a given prime p, a much more complicated problem. In particular we
aim to answer Question 7 in [Nav04], where it is asked if XpGq determines
the number of Sylow p-subgroups of G. We give a positive answer to this
question in some specific cases (Theorem J).

Perhaps even more interesting than the result itself is the way it is ob-
tained. It turns out that we need to compute the number of fixed points
under the action of a p-group on a group of order coprime to p, and we give a
formula (Theorem K) to compute this number in terms of information that
can be collected from the character table. This result generalizes a classical
result of Brauer (and H. Wielandt) on counting the number of fixed points
of the action of a Klein 4-group on a group of odd order. The results of
Chapter 4, Theorems J and K, appear in [NR16].

After reading the proof of our counting formula in Theorem K, Isaacs
and R. Lyons wrote to us with two very nice different proofs of that. We
reproduce them here with their kind permission.

Structure of the work

Chapter 1 is an expository chapter containing the background on ordi-
nary and modular character theory needed for the rest of the work. Our ref-
erences for the part concerning ordinary characters are [Isa76] and [Nav18],
and for the part concerning modular (Brauer) characters is [Nav98a]. We
also include a brief exposition of Isaacs’ theory of character triples since this
is the main tool needed to define the θ-blocks in Chapter 2.

In Chapter 2 we start our original work. If G is a finite group, N is a
normal subgroup of G, θ is a G-invariant irreducible character of N , and
p is a prime, we define a partition of the set IrrpG|θq with respect to the
prime p. We call the elements of this partition the θ-blocks. To each θ-
block we associate a unique conjugacy class of p-subgroups of G{N , and
we call the elements of this conjugacy class the θ-defect groups. We prove
here that both the θ-blocks and the θ-defect groups are canonically defined
(Theorem A) and we give a θ-version of some results in block theory. For
instance, we prove that if χ P IrrpG|θq, Bθ is the θ-block containing χ,
and pgNqp does not lie in a θ-defect group of Bθ for some g P G, then
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χpgq “ 0 (this is Theorem 2.12). We also give θ-versions of the well-known
Brauer’s Height Zero conjecture and Brauer’s kpBq-conjecture (Conjectures
B and D), and in both cases we prove that our θ-version is equivalent to
the original one (Theorems C and E). In this Chapter, we next introduce
θ-Brauer characters, θ-decomposition numbers and θ-linking in Sections 2.8
and 2.9. Finally, we prove that our θ-blocks coincide with the blocks defined
by Navarro in [Nav00] and [Nav12] (Theorem 2.30), relating our work with
the work of Külshammer and Robinson in [KR87].

In Chapter 3 we give a generalization of the Howlett-Isaacs theorem
taking into account the action of AutpGqpN,θq on IrrpG|θq (here AutpGqpN,θq
is the subgroup of AutpGq that fixes N and θ). In particular, we prove
that if IrrpG|θq is an AutpGqpN,θq-orbit, then G{N is solvable. To prove this
we need some results on transitive actions which we prove in Section 3.2.
We also need non-trivial properties of the Glauberman correspondence. The
Glauberman correspondence asserts that if a solvable group S acts coprimely
on a group G, there exists a natural bijection from IrrSpGq, the irreducible
characters of G fixed by the action of S, onto IrrpCGpSqq. In particular we
need a rather technical refinement of this bijection, that we prove in Section
3.4 using results of A. Turull in [Tur08], [Tur09] and [Tur17].

As we have mentioned before, the Howlett-Isaacs theorem uses the Clas-
sification of Finite Simple Groups (CFSG). We also need the CFSG to prove
our generalization. In fact, we need the same result on simple groups that
is used in [HI82]: if X is a non-abelian simple group, then there exists
a prime p such that p divides |X|, p does not divide |MpXq| (the size of
the Schur multiplier of X) and there is no solvable subgroup of X having
p-power index.

In the final part of this Chapter, we prove Theorem I on the character-
ization of when the irreducible characters over an irreducible character of
a normal subgroup have the same degree in a specific situation. This the-
orem uses three non-trivial results: a theorem of U. Riese about inducing
irreducible characters from an abelian subgroup, a deep result of S. Dolfi on
regular orbits, and finally the Howlett-Isaacs theorem.

Finally, in Chapter 4, we give a formula to compute the number of fixed
points of the action of a p-group on a group of order coprime to p (Theorem
K), and we apply this formula to obtain the size of the normalizer of a Sylow
p-subgroup of a finite p-solvable group G from its character table, provided
that the Sylow p-subgroups of G are abelian or have exponent p (Theorem
J). We call this formula a Brauer-Wielandt formula. Richard Brauer was
the first to give a formula of this type in the case the group acting was
a Klein 4-group and later Wielandt gave a formula for the general case.
However, Wielandt’s formula can not be used to obtain information from
the character table, and this is what makes our formula interesting: it only
involves centralizers of some elements and we can obtain that information
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from the character table in the cases we have just mentioned. We finish
this Chapter with the alternative proofs of our formula given by Isaacs and
Lyons.
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CHAPTER 1

Preliminaries

In general, we follow the notation of [Isa76] and [Nav18] for characters,
and the notation of [Nav98a] for blocks.

1.1. Preliminaries on ordinary characters

Let G be a finite group and let F be a field. Write F rGs for the set of
formal sums

F rGs “ t
ÿ

gPG

agg | ag P F u.

If c P F and
ř

gPG bgg, define

c ¨
ÿ

gPG

agg “
ÿ

gPG

pcagqg

and
ÿ

gPG

bgg `
ÿ

gPG

agg “
ÿ

gPG

pag ` bgqg.

It is easy to see that F rGs has structure of F -vector space. Moreover,
we can identify g with the element of F rGs such that ag “ 1 and ah “ 0
for all h ‰ g. This identification embeds G into F rGs and in fact G is a
basis for F rGs under this identification. Now we can define a multiplication
in F rGs by extending linearly the multiplication in G. This makes F rGs an
F -algebra.

An F -representation of F rGs is an F -algebra homomorphism X : F rGs Ñ
MatnpF q. The integer n is the degree of X. Two representations X, Y are
similar if there exists a non-singular matrix P such that Xpaq “ P´1YpaqP
for all a P F rGs. If we restrict X to G we obtain a group homomorphism
GÑ GLpn, F q.

An F -representation of G is a group homomorphism G Ñ GLpn, F q.
Hence an F -representation of F rGs determines an F -representation of G
via restriction. The converse is also true, if X : G Ñ GLpn, F q is an F -

representation of G, then X determines an F -representation of F rGs, X̃,
via

X̃p
ÿ

gPG

aggq “
ÿ

gPG

agXpgq.

1



2 1.1. Preliminaries on ordinary characters

If X : G Ñ GLpn, F q is an F -representation of G, we say that X is
irreducible if it is not similar to a representation of G in block form

„

˚ ˚

0 ˚



.

An F -representation of G of degree n, consists of n2|G| elements of F ,
and it is clear that this is too much information (since we do not wish to
distinguish between similar representations). In order to reduce this amount
of information, we use characters, that is, traces of the representations. Over
certain fields, characters essentially determine the representations.

Definition 1.1 (Character). If X : GÑ GLpn, F q is an F -representation
of G, the character afforded by X is the function χ : G Ñ F given by
χpgq “ trpXpgqq.

If χ is a character of G, the degree of χ is χp1q (note that this is the
degree of any F -representation affording χ). If χp1q “ 1 it is said that χ is
linear. We denote the set formed by linear characters of G as LinF pGq.

Since the trace is invariant on similar matrices, we have that similar F -
representations afford equal characters and that characters are class func-
tions, that is, constant on the conjugacy classes of a group.

If X and Y are representations of G of degrees n and m affording χ and
ψ respectively, then the map Z : GÑ GLpn, F q defined by

Zpgq “

„

Xpgq 0
0 Ypgq



is also an F -representation of G. Since trpZpgqq “ trpXpgqq ` trpYpgqq, we
have that sum of characters are characters.

If χ, ψ are characters of G, we may define a new class function χψ on G
by setting

pχψqpgq “ χpgqψpgq.

Now, if X is an F -representation affording χ and Y is an F -representation
affording ψ, then XbY : GÑ GLpnm,F q, where n “ χp1q and m “ ψp1q,
defined by

pXbYqpgq “ Xpgq bYpgq “

»

—

–

a11Ypgq ¨ ¨ ¨ a1nYpgq
...

. . .
...

an1Ypgq ¨ ¨ ¨ annYpgq

fi

ffi

fl

,

where Xpgq “ paijq, is an F -representation ofG affording χψ. Hence profucts
of characters are also characters (see Theorem 4.1 of [Isa76]). Moreover,
LinF pGq is a group with this product.

We say that a character is irreducible if it is not the sum of two charac-
ters. We denote by IrrF pGq the set of irreducible characters of G afforded
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by F -representations. Irreducible characters are afforded by irreducible F -
representations.

From now on, we let F “ C, and we write IrrpGq for the set IrrCpGq,
LinpGq for the set LinCpGq, etc. The following is called the Fundamental
Theorem of Character Theory.

Theorem 1.2 (Fundamental Theorem of Character Theory). If G is
a finite group, then IrrpGq is a basis of the vector space of complex class
functions of G. In particular, |IrrpGq| is the number of conjugacy classes of
G.

Proof. See Theorem 2.8 of [Isa76]. �

Hence if ψ is a complex class function of G, then we can write

ψ “
ÿ

χPIrrpGq

aψχχ,

for some uniquely determined complex numbers aψχ. It is also clear that
ψ is a complex character of G if all aψχ are non-negative integers (not all
zero). If ψ is a character of G and aψχ ‰ 0, we say that χ is an irreducible
constituent of ψ.

The irreducible characters of G are usually presented in a table whose
columns are indexed by the conjugacy classes of G and whose rows are
indexed by its irreducible characters. This table is called the character table
of G (which of course is uniquely determined up to permutation of rows and
columns) and one of the main questions in character theory is to know how
much information the character table of G contains about G.

There are two fundamental relations when we try to construct the char-
acter table of a group G.

Theorem 1.3 (First Orthogonality Relation). Suppose that χ, ψ P IrrpGq.
Then

1

|G|

ÿ

gPG

χpgqψpgq “ δχψ.

Proof. See Corollary 2.14 of [Isa76]. �

Theorem 1.4 (Second Orthogonality Relation). Let g, h P G, then
ÿ

χPIrrpGq

χpgqχphq “ 0

if g is not G-conjugate to h. Otherwise, the sum is equal to |CGpgq|.

Proof. See Theorem 2.18 of [Isa76]. �

As a consequence of the Second Orthogonality Relation, notice that

|G| “
ÿ

χPIrrpGq

χp1q2,
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4 1.1. Preliminaries on ordinary characters

and hence the character table of G knows the order of G.

We can define an inner product in cfpGq (the complex vector space of
the class functions) as follows:

Definition 1.5. Let ϕ and η be class functions on a group G. Then

rϕ, ηs “
1

|G|

ÿ

gPG

ϕpgqηpgq

is the inner product of ϕ and η. In fact, this makes cfpGq into a finite
dimensional Hilbert space.

As a consequence of the First Orthogonality Relation we have that
rχi, χjs “ δij for χi, χj P IrrpGq. Hence, if ϕ P cfpGq, we have that

ϕ “
ÿ

χPIrrpGq

rχ, ϕsχ.

Moreover, if χ, ψ are characters then rχ, ψs “ rψ, χs is a non-negative
integer and χ is irreducible if and only if rχ, χs “ 1.

Definition 1.6 (Kernel of a character). Let χ be a character of G. Then
the kernel of χ is kerpχq “ tg P G | χpgq “ χp1qu. If kerpχq “ 1, we say that
χ is faithful.

If X is a representation of G affording χ, we have that g P kerpXq if and
only if g P kerpχq (see Lemma 2.19 of [Isa76]), and hence kerpχq is a normal
subgroup of G. Also, we have the following.

Lemma 1.7. Let IrrpGq “ tχ1, . . . , χku and let χ be a character of G with

χ “
řk
i“1 niχi. Then kerpχq “

Ş

tkerpχiq |ni ą 0u. Also
Ş

tkerpχiq |1 ď i ď
ku “ 1.

Proof. See Lemma 2.21 of [Isa76]. �

If N is a normal subgroup of G, one can prove that N is the inter-
section of the kernels of the irreducible characters of G that contain N in
its kernel. It turns out that we can calculate |N | from the character ta-
ble: if tK1, . . . ,Kru are the conjugacy classes of G contained in N , then
|N | “

řr
i“1 |Ki| “

řr
i“1 |G : CGpxiq|, where xi P Ki. Therefore simplicity,

nilpotency or solvability can be easily read from the character table of G.

We have said that the character table of G knows the sizes of the normal
subgroups of G. However, we can not construct the character table of N
from the character table of G. What we can do, instead, is to obtain the
character table of G{N .

Lemma 1.8. Let N �G.

(a) If χ is a character of G and N Ď kerpχq, then χ is constant on cosets
of N in G and the function χ̂ on G{N defined by χ̂pNgq “ χpgq is
a character of G{N .
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(b) If χ̂ is a character of G{N , then the function χ defined by χpgq “
χ̂pNgq is a character of G.

(c) In both (a) and (b), χ P IrrpGq iff χ̂ P IrrpG{Nq.

Proof. See Lemma 2.22 of [Isa76]. �

Usually, we shall identify χ and χ̂ and see IrrpG{Nq as a subset of IrrpGq.

Let H be a subgroup of G. If χ is a character of G, then its restriction
to H is a character of H. The dual process is called induction.

Definition 1.9 (Induction of characters). Let H Ď G and let ϕ be a
class function of H. Then ϕG, the induced class function on G, is given by

ϕGpgq “
1

|H|

ÿ

xPG

ϕ˝pxgx´1q,

where ϕ˝phq “ ϕphq if h P H and ϕ˝pyq “ 0 if y R H.

The following is quite elementary but fundamental.

Theorem 1.10 (Frobenius reciprocity). Let H Ď G and suppose that ϕ
is a class function on H and that θ is a class function on G. Then

rϕ, θHs “ rϕ
G, θs.

Proof. See Lemma 5.2 of [Isa76]. �

As a consequence of Theorem 1.10, we can see that if ϕ is a character of
H, then ϕG is a character of G.

If N �G, θ is a class function of N and g P G, we define θg : N Ñ C by
θgpnq “ θpgng´1q. It is easy to see that if θ P IrrpNq, then θg P IrrpNq.

Theorem 1.11 (Clifford). Let N � G and let χ P IrrpGq. Let θ be
an irreducible constituent of χN and suppose that θ “ θ1, θ2, . . . , θt are the
distinct G-conjugates of θ in G. Then

χN “ e
t
ÿ

i“1

θi,

where e “ rχN , θs.

Proof. See Theorem 6.2 of [Isa76]. �

As a consequence of Theorem 1.11 we have that if χ P IrrpGq and θ P
IrrpNq is an irreducible constituent of χN , then θp1q divides χp1q. The
following is a much deeper result.

Theorem 1.12. Let N � G and χ P IrrpGq. Let θ be a constituent of
χN , then χp1q{θp1q divides |G : N |.
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6 1.1. Preliminaries on ordinary characters

Proof. See Corollary 11.29 of [Isa76]. �

Definition 1.13 (Stabilizer). Let N �G and let θ P IrrpNq. Then

IGpθq “ tg P G | θ
g “ θu

is the stabilizer of θ in G. It is also known as the inertia group of θ in G.
We say that θ is G-invariant if IGpθq “ G.

It is obvious that N Ď IGpθq for all θ P IrrpNq. Also, |G : IGpθq| is the
size of the G-orbit of θ in IrrpNq and hence t “ |G : IGpθq| in Theorem 1.11.

If N is a normal subgroup of G and θ P IrrpNq, we write IrrpG|θq to
denote the set of the irreducible characters of G having θ as an irreducible
constituent of its restriction to N , that is

IrrpG|θq “ tχ P IrrpGq | rχN , θs ‰ 0u.

Note that, using Frobenius reciprocity, we have that the elements of IrrpG|θq
are exactly the irreducible constituents of the induced character θG.

The following is a key result in the character theory of normal subgroups.

Theorem 1.14 (Clifford correspondence). Let NŸ G and let θ P IrrpNq.
Write I “ IGpθq. Then

(a) If ψ P IrrpI|θq, then ψG is irreducible.
(b) The map ψ ÞÑ ψG from IrrpI|θq onto IrrpG|θq is a bijection.
(c) Let χ “ ψG where ψ P IrrpI|θq. Then ψ is the unique irreducible

constituent of χI which lies over θ.
(d) Let ψG “ χ where ψ P IrrpI|θq. Then rψN , θs “ rχN , θs.

Proof. See Theorem 6.11 of [Isa76]. �

We have said before that if χ is a character of G, then its restriction to
H, χH is also a character. If χ is irreducible, χH need not be irreducible.
When χH “ θ for some θ P IrrpHq we say that θ extends to G or that χ
extends θ. Note that if θ extends to G, and θ is the character of a normal
subgroup of G, then θ is G-invariant.

The following result, and its corollary (known as Gallagher’s corollary)
are frequently used when certain characters extend.

Theorem 1.15. Let N � G and let ϕ, θ P IrrpNq be invariant in G.
Assume ϕθ is irreducible and that θ extends to χ P IrrpGq. Then β ÞÑ βχ
defines a bijection of IrrpG|ϕq onto IrrpG|ϕθq.

Proof. See Theorem 6.16 of [Isa76]. �

Corollary 1.16 (Gallagher). Let N�G and let χ P IrrpGq be such that
χN “ θ P IrrpNq. Then the characters βχ for β P IrrpG{Nq are irreducible,
distinct for distinct β and are all of the irreducible constituents of θG.

Proof. See Corollary 6.17 of [Isa76]. �
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1. Preliminaries 7

Many times we need to know when an irreducible character of a normal
subgroup extends to the whole group, and sometimes we need to know what
the extension looks like. The following results are standard and quite useful
in that sense.

If χ is a character of G, χ uniquely determines a linear character of
G, called the determinant of χ, as follows: let X be a representation of G
affording χ and define detχ : GÑ C as

pdetχqpgq “ detpXpgqq.

The order of detχ in the group of linear characters of G is known as the
determinantal order of χ and it is denoted by opχq.

Theorem 1.17. Let N �G and θ P IrrpNq with θ invariant in G. Sup-
pose that p|G : N |, opθqθp1qq “ 1. Then θ has a unique extension, χ P IrrpGq
with p|G : N |, opχqq “ 1. In fact, opχq “ opθq. In particular this holds if
p|G : N |, |N |q “ 1.

Proof. See Corollary 8.16 of [Isa76]. �

1.2. Character triples and projective representations

Let N � G and let θ P IrrpNq be G-invariant. In Chapter 2, we intro-
duce a canonical partition of the set IrrpG|θq into some subsets that we call
θ-blocks. To define the θ-blocks we need some background on projective
representations. We give that background now.

A complex projective representation of a finite group G is a map

P : GÑ GLpn,Cq
such that for every x, y P G there is some αpx, yq P Cˆ satisfying

PpxqPpyq “ αpx, yqPpxyq.
The function α : GˆGÑ Cˆ is called the factor set of P.

If G is a finite group, N Ÿ G, and θ P IrrpNq is G-invariant, then we say
that pG,N, θq is a character triple. The theory of character triples and their
isomorphisms was developed by Isaacs, and we refer the reader to Chapter
11 of [Isa76] for a further insight of this theory. It turns out that character
triples are associated to projective representations.

If pG,N, θq is a character triple, we say that a projective representation
of G is associated with θ if

(a) PN is an ordinary representation of N affording θ, and
(b) Ppngq “ PpnqPpgq and Ppgnq “ PpgqPpnq for g P G and n P N .

Theorem 1.18. Let pG,N, θq be a character triple. There exists a pro-
jective representation of G associated with θ. Furthermore, if P0 is another
projective representation of G associated with θ, then P0pgq “ Ppgqξpgq for
some function ξ : GÑ Cˆ, which is constant on cosets of N .
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8 1.2. Character triples and projective representations

Proof. See Theorem 11.2 of [Isa76]. �

Lemma 1.19. Suppose that pG,N, θq is a character triple, and let P be
a projective representation of G associated with θ with factor set α. Then

(a) αp1, 1q “ αpg, nq “ αpn, gq “ 1 for n P N , g P G.
(b) αpxn, ymq “ αpx, yq for x, y P G, n,m P N .

Proof. This is Lemma 11.5 and Theorem 11.7 of [Isa76]. See also
Lemma 5.3 of [Nav18]. �

An important fact about projective representations is that given a char-
acter triple pG,N, θq, there always exists a projective representation associ-
ated with θ such that its factor set has roots of unity values.

Theorem 1.20. Let pG,N, θq be a character triple. Then there exists a
projective representation P associated with θ with factor set α such that

αpx, yq|G|θp1q “ 1

for all x, y P G.

Proof. See for instance Theorem 8.2 of [Isa73] or Theorem 5.5 of
[Nav18]. �

Using such a projective representation P, it is possible to associate to
each character triple pG,N, θq a new finite group Ĝ, a finite central extension

of G which only depends on P. This finite group Ĝ contains N as a normal
subgroup, and an irreducible character τ P IrrpĜq that extends θ. The next
theorem explains exactly how to do this.

Theorem 1.21. Let pG,N, θq be a character triple and let P be a pro-
jective representation of G associated with θ such that the factor set α of P
only takes roots of unity values. Let Z ď Cˆ be the subgroup generated by
the values of α. Let Ĝ “ tpg, zq | g P G, z P Zu with the multiplication given
as follows:

px, aqpy, bq “ pxy, αpx, yqabq.

Then Ĝ is a finite group. Besides, if we identify N with Nˆ1, Z with 1ˆZ,
and we let N̂ “ N ˆ Z, then we have that the following hold.

(a) N � Ĝ, Z Ď ZpĜq, and N̂ � Ĝ. Moreover, if π : ĜÑ G is given by
pg, zq ÞÑ g, then π is an onto homomorphism with kernel Z. Also,

if N Ď ZpGq, then N̂ Ď ZpĜq.

(b) The function P̂pg, zq “ zPpgq defines an irreducible linear represen-

tation of Ĝ whose character τ P IrrpĜq extends θ. In fact, τpn, zq “

zθpnq for n P N and z P Z. In particular, if θ̂ “ θˆ1Z P IrrpN̂q, and

λ̂ P IrrpN̂q is defined by λ̂pn, zq “ z´1, then λ̂ is a linear Ĝ-invariant

character with N “ kerpλ̂q and λ̂´1θ̂ extends to τ P IrrpĜq.
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Proof. See Theorem 11.28 of [Isa76] or Theorem 5.6 of [Nav18]. The
properties of the factor set α that we have listed in Lemma 1.19 are essential
to prove (a). �

We will call the group Ĝ a representation group for pG,N, θq associated
with P.

In order to define the θ-blocks the notion of character triple isomor-
phism is essential. As we said before, this was first introduced by Isaacs
(see Definition 11.23 of [Isa76]). However, for character triples, we shall
frequently use the notation in [Nav18], so we reproduce here the definition
of character triple isomorphism given there (see Definition 5.7 of [Nav18]).

Definition 1.22. Let pG,N, θq and pG˚, N˚, θ˚q be character triples
and let ˚ : G{N Ñ G˚{N˚ be an isomorphism of groups. If N ď U ď G,
then we denote by U˚ the unique subgroup N˚ ď U˚ ď G˚ such that
pU{Nq˚ “ U˚{N˚. Also, if β is a character of U{N , then β˚ denotes the
corresponding character of U˚{N˚ via the isomorphism ˚. That is, β˚ is the
unique character of U˚{N˚ satisfying β˚px˚q “ βpxq for x P U{N . Assume
now that for every subgroup N ď U ď G, there is a bijection ˚ : IrrpU |θq Ñ
IrrpU˚|θ˚q (which we extend linearly to ˚ : CharpU |θq Ñ CharpU˚|θ˚q). It
is said that ˚ is a character triple isomorphism if for every N ď V ď U ď G,
χ P IrrpU |θq and β P IrrpU{Nq, the following conditions hold:

(a) pχV q
˚ “ pχ˚qV ˚ , and

(b) pχβq˚ “ χ˚β˚.

Notice that if pG,N, θq and pG˚, N˚, θ˚q are isomorphic character triples,
then |IrrpU |θq| “ |IrrpU˚|θ˚q| for all N ď U ď G. Also, since pχN q

˚ “

pχ˚qN˚ we have that

χp1q

θp1q
“
χ˚p1q

θ˚p1q

for all χ P IrrpU |θq. That is, character triple isomorphisms respect character
degree ratios.

Theorem 1.23. Let pG,N, θq be a character triple and let P be a projec-
tive representation of G associated with θ such that its factor set has roots of
unity values. Let Ĝ be a representation group for pG,N, θq associated with P,

and let N̂ and λ̂ be as in Theorem 1.21. Then pG,N, θq and pĜ{N, N̂{N, λ̂q
are isomorphic character triples.

Proof. See Theorem 11.28 of [Isa76] or Corollary 5.9 of [Nav18]. �

We shall frequently use how this character triple isomorphism is con-
structed. Let χ P IrrpG|θq. We show how to construct χ˚ P IrrpĜ{N |λ̂q. Let

π : Ĝ Ñ G be the onto group homomorphism pg, zq ÞÑ g, which has kernel

Z. Since π induces an isomorphism Ĝ{Z Ñ G, there is a unique χπ P IrrpĜq
such that χπpg, zq “ χpgq for all g P G, z P Z. Since χ lies over θ notice that
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10 1.3. Preliminaries on blocks

χπ lies over θ̂ “ θ ˆ 1Z , and in particular over θ. Now by Theorem 1.21(b),
the character τ extends θ. By Gallagher’s Corollary (Corollary 1.16), there

exists a unique χ˚ P IrrpĜ{Nq such that χπ “ χ˚τ . (Recall that we view the
characters of H{N as characters of H that contain N in its kernel.) Now,

evaluating in p1, zq for z P Z, we easily check that χ˚ P IrrpĜ{N |λ̂q. The
fact that χ ÞÑ χ˚ defines an isomorphism of character triples is the content
of the proof of Theorem 1.23. (The same construction can be done for every
subgroup N ď U ď G instead of G.)

1.3. Preliminaries on blocks

Representation theory over a field of characteristic p is known as modular
representation theory. The earliest work on modular representation theory is
due to L. E. Dickson ([Dic02]) who showed that the representation theory
of a finite group G over a field of characteristic p is quite similar to the
representation theory over a field of characteristic 0 when the prime p does
not divide |G|. The study of modular representations when the characteristic
divides the order of the group was started by Richard Brauer ([Bra35]). He
by himself essentially established modular representation theory as a main
area in mathematics.

We denote by R the ring of algebraic integers in C, and we choose a
maximal ideal M of R containing pR. Let F “ R{M , an algebraically
closed field of characteristic p, and let ˚ : R Ñ F be the canonical ring
homomorphism. Let

S “ trs´1 | r P R, s P R´Mu.

Notice that the map ˚ can be extended to S in a natural way. If r P R and
s P R´M , then

prs´1q˚ “ r˚ps˚q´1.

Richard Brauer introduced the notion of Brauer characters to under-
stand the interplay between the representation theory in characteristic p
and ordinary character theory. Let U Ď R be the multiplicative group of
roots of unity of order not divisible by p, so that

U “ tξ P C | ξk “ 1 for some integer k not divisible by p u.

Lemma 1.24. The restriction of ˚ to U defines an isomorphism U Ñ Fˆ

of multiplicative groups. Also F is an algebraically closed field of character-
istic p.

Proof. See Lemma 2.1 of [Nav98a]. �

We say that g P G is p-regular if p does not divide the order of g. We
denote by Gp

1

the set formed by the p-regular elements of G.
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Definition 1.25 (Brauer character). Suppose that X : G Ñ GLnpF q is

an F -representation of the group G. If g P Gp
1

, then by Lemma 1.24, the
eigenvalues of the matrix Xpgq are ξ˚1 , . . . , ξ

˚
n P F

ˆ for uniquely determined

ξ1, . . . , ξn P U (because F is algebraically closed). Then ϕ : Gp
1

Ñ C defined
by ϕpgq “ ξ1 ` ¨ ¨ ¨ ` ξn is the Brauer character afforded by X. Notice that
ϕ is uniquely determined (once the maximal ideal M has been chosen) by
the equivalence class of the representation X.

As for ordinary characters, sums and products of Brauer characters are
Brauer characters and we say that ϕ is an irreducible Brauer character if it
is not the sum of two Brauer characters. We denote by IBrpGq the set of
irreducible Brauer characters of G.

If ϕ P IBrpGq, we define the kernel of ϕ as kerpϕq “ tg P G |Xpgq “ Inu,
where X : G Ñ GLpn, F q is an irreducible F -representation affording ϕ.
Since X is uniquely determined by ϕ up to similarity, this is well-defined.

The degree of ϕ is ϕp1q, which is the degree of any F -representation af-
fording ϕ and Brauer characters are constant on conjugacy classes. However,
unlike ordinary characters, the degrees of the irreducible Brauer characters
do not divide, in general, the order of the group (PSL2p7q for p “ 7 has an
irreducible Brauer character of degree 5).

If H ď G and ϕ is a Brauer character of G, then we denote by ϕH the
restriction of ϕ to Hp1 . The function ϕH is a Brauer character of H.

Write cfpGp
1

q to denote the C-vector space of class functions on Gp
1

(functions θ : Gp
1

Ñ C constant on the conjugacy classes contained in Gp
1

).

Of course the dimension of cfpGp
1

q is equal to the number of conjugacy
classes of p-regular elements of G.

As happens with ordinary characters, Brauer characters are non-negative
integer linear combination of irreducible Brauer characters.

Theorem 1.26. Let G be a group. Then IBrpGq is a basis of cfpGp
1

q.

Moreover, ψ P cfpGp
1

q is a Brauer character of G if and only if

ψ “
ÿ

ϕPIBrpGq

aϕϕ,

where aϕ P N, and not all aϕ are zero.

Proof. See Corollary 2.10 and Theorem 2.3 of [Nav98a]. �

The non-negative integer aϕ in the decomposition of ψ in Theorem 1.26
is called the multiplicity of ϕ in ψ. If aϕ ‰ 0, then we call ϕ an irreducible
constituent of ψ.

If χ P IrrpGq, we denote by χp
1

the restriction of χ to Gp
1

.

Theorem 1.27. If χ is an ordinary character of G, then χp
1

is a Brauer
character of G.
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12 1.3. Preliminaries on blocks

Proof. See Corollary 2.9 of [Nav98a]. �

Definition 1.28 (Decomposition numbers). Let χ P IrrpGq, by Theorem

1.27, χp
1

is a Brauer character of G. Hence

χp
1

“
ÿ

ϕPIBrpGq

dχϕϕ,

for suitable non-negative integers dχϕ. The non-negative integers dχϕ in the
above decomposition are called the decomposition numbers of χ.

One of Brauer’s ideas was to distribute the irreducible characters and
the irreducible Brauer characters into p-blocks. There are different ways to
understand the p-blocks, but we follow a character theoretical approach.

Let K be a conjugacy class of G and let K̂ be the class sum, that is

K̂ “
ÿ

xPK

x.

If clpGq is the set formed by the conjugacy classes of G, the set tK̂ | K P

clpGqu is a C-basis of ZpCGq (in fact, the set tK̂ |K P clpGqu is an R-basis
of ZpRGq for any ring R). Now, if χ P IrrpGq, χ uniquely determines an
algebra homomorphism ωχ : ZpCGq Ñ C, given by

ωχpK̂q “
|K|χpxKq

χp1q
,

where xK P K. It is well known that ωχpK̂q is an algebraic integer (see
Theorem 3.7 of [Isa76]) and hence we can construct a map λχ : ZpFGq Ñ F
by setting

λχpK̂q “ pωχpK̂qq
˚

In fact the map λχ is also an algebra homomorphism.

In the same way, if ϕ P IBrpGq, we can associate to ϕ an algebra homo-
morphism λϕ : ZpFGq Ñ F . Let X : FG Ñ Matpn, F q be an irreducible

F -representation of G affording ϕ, then XpK̂q is a scalar matrix for every
K P clpGq, and this scalar only depends on ϕ. Hence, the equality

XpK̂q “ λϕpK̂qIn

defines an algebra homomorphism λϕ : ZpFGq Ñ F .

Definition 1.29 (Brauer p-block). Let χ, ψ P IrrpGq Y IBrpGq. Then χ
and ψ lie in the same p-block B of G if

λχpK̂q “ λψpK̂q

for every conjugacy class K of G. In this case we write λB “ λχ.
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The set formed by all the Brauer p-blocks of G is denoted by BlpGq. If
B P BlpGq, IrrpBq denotes the set of irreducible characters lying in B and
IBrpBq denotes the set of irreducible Brauer characters lying in B. It turns
out that

IrrpGq “
ď

BPBlpGq

IrrpBq,

and

IBrpGq “
ď

BPBlpGq

IBrpBq,

where the unions are disjoint.

Another way to understand the p-blocks is through the decomposition
numbers.

Theorem 1.30. If χ P IrrpGq and ϕ P IBrpGq, are such that dχϕ ‰ 0,
then λχ “ λϕ.

Proof. See Theorem 3.3 of [Nav98a]. �

If χ, ψ P IrrpGq, we say that χ and ψ are connected if there exists ϕ P
IBrpGq such that

dχϕ ‰ 0 ‰ dψϕ.

The graph defined by connexion in IrrpGq is called the Brauer graph. It
turns out that the connected components of the Brauer graph are exactly the
sets IrrpBq such that B is a p-block of G (this is Theorem 3.9 of [Nav98a]).

There is a way to visualize the sets IrrpBq directly from the character
table, without the need to choose a maximal ideal of R and computing in
F .

Definition 1.31. Let χ, ψ P IrrpGq. We say that χ and ψ are linked if

ÿ

xPGp1

χpxqψpxq ‰ 0.

Theorem 1.32. The connected components of the graph in IrrpGq defined
by linking are exactly the sets IrrpBq for B P BlpGq.

Proof. See Theorem 3.19 of [Nav98a]. �

To each p-block, a unique conjugacy class of p-subgroups of G is asso-
ciated, namely the defect groups of B. There are different ways to define
them, but the approach we follow needs the concept of defect class. We need
to talk about central idempotents in order to define a defect class.
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14 1.3. Preliminaries on blocks

Let χ P IrrpGq and let

eχ “
χp1q

|G|

ÿ

gPG

χpgqg P CG.

Then eχ is a primitive idempotent of ZpCGq (see Theorem 2.12 of [Isa76]).

Theorem 1.33. Let

fB “
ÿ

χPIrrpBq

eχ.

Then

(a) fB P ZpSGq.

(b) fBpK̂q “ 0 if K does not consist on p-regular elements.

Proof. See Corollary 3.8 of [Nav98a]. �

The ring homomorphism ˚ : S Ñ F extends to a ring homomorphism
˚ : SGÑ FG by setting

˜

ÿ

gPG

sgg

¸˚

“
ÿ

gPG

s˚gg.

Notice that ˚ maps ZpSGq onto ZpFGq. Since fB P ZpSGq, we have that
f˚B P ZpFGq. Write

eB “ f˚B,

eB is the block idempotent of B.

Theorem 1.34. Let B,B1 P BlpGq, then

(a) eBeB1 “ δBB1eB.
(b) 1 “

ř

BPBlpGq eB.

(c) λBpeB1q “ δBB1.

Proof. Since ˚ : ZpSGq Ñ ZpFGq is a ring homomorphism, (a) easily
follows. Since 1 “

ř

χPIrrpGq eχ, we have (b). For (c) see Theorem 3.11 of

[Nav98a]. �

Using (a) and (b) of Theorem 1.34 we have that

FG “
à

BPBlpGq

eBFG.

It turns out that eBFG is an algebra with identity eB. For many authors
B “ eBFG is the natural definition of p-block.

Since eB P ZpFGq, we can write

eB “
ÿ

KPclpGq

aBpK̂qK̂,

with aBpK̂q P F . Now, since λBpeBq “ 1, there exists K P clpGq such that
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aBpK̂q ‰ 0 ‰ λBpK̂q.

If this happens, we say that K is a defect class of B.

Proposition 1.35. If B is a p-block and K is a defect class of B, K
consists of p-regular elements.

Proof. This follows from Corollary 3.8 of [Nav98a]. �

Definition 1.36 (Defect group of a class). Let K P clpGq be a conjugacy
class of G. Let xK P K and let DK P SylppCGpxKqq. The defect groups of
K are

tDg
K | g P Gu.

The set of defect groups of K is denoted by δpKq.

Theorem 1.37. If K and L are defect classes for B, then δpKq “ δpLq.

Proof. See Corollary 4.5 of [Nav98a]. �

Definition 1.38 (Defect group of a block). Let B be a p-block of G and
let K P clpGq be a defect class of B. The defect groups of the block B are
the defect groups of the class K. The set of defect groups of B is denoted
by δpBq.

Recall that np is the largest power of p that divides the integer n. If

|D| “ pdpBq and |G|p “ pa, it turns out that

pa´dpBq “ mintχp1qp | χ P IrrpBqu.

The integer dpBq is called the defect of B. It is clear that if ψ P IrrpBq, then

ψp1qp “ pa´dpBq`h for some non-negative integer h. The integer h is called
the height of ψ, and if h “ 0 it is said that ψ is a height zero character. The
set of height-zero characters in a block B is usually denoted by Irr0pBq.

Two of the main conjectures in modular representation theory are due to
Brauer in the 1950s ([Bra56] and [Bra57]). They are still open, although
some spectacular advances have been achieved.

Conjecture 1.39 (Brauer’s height zero conjecture). Let B be a p-block
of G and let D be a defect group of B, then all the characters in B have
height zero if and only if D is abelian.

The “if” direction was solved by R. Kessar and Malle in [KM13]. The
“only if” direction is still open, but it was reduced to a question on simple
groups by Navarro and B. Späth in [NS14].

Conjecture 1.40 (Brauer’s kpBq-conjecture). Let B be a p-block of G
and let D be a defect group of B, then

|IrrpBq| ď |D|.
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The integer |IrrpBq| is usually referred as kpBq. This conjecture is not
just open but also unreduced to simple groups. The solvable case of this con-
jecture is known, and its proof is very complicated ([Nag62] and [GMRS]).
Brauer’s Height Zero Conjecture is also known to be true for solvable groups,
again, with a very complicated proof ([GW84]).

To end this brief introduction to blocks of finite groups we recall some
results concerning normal subgroups. If N�G, b is a block of N , and g P G,
the set tψg | ψ P Irrpbq Y IBrpbqu is a block of N , namely bg. Hence G acts
on BlpNq by conjugation. If tb1, . . . , btu is the G-orbit of b, we have that

the idempotent
řt
i“1 fbi lies in ZpCGq and there exist uniquely determined

blocks B1, B2, . . . , Bs P BlpGq such that

t
ÿ

i“1

fbi “
s
ÿ

i“1

fBi

(for more details see discussion preceding Theorem 9.1 of [Nav98a]). In
this case, we say that the block Bi covers b.

Theorem 1.41. Suppose that N �G. Let b P BlpNq and let B P BlpGq.
The following conditions are equivalent.

(a) B covers b.
(b) If χ P B, then every irreducible constituent of χN lies in a G-

conjugate of b.
(c) There is a χ P B such that χN has an irreducible constituent in b.

Proof. See Theorem 9.2 of [Nav98a]. �

Theorem 1.42. Suppose that N �G with G{N a p-group. If b P BlpNq,
then there is a unique B P BlpGq covering b.

Proof. See Corollary 9.6 of [Nav98a]. �

Recall that we write Gp
1

for the set of p-regular elements of G, and
if χ P cfpGq, we write χp

1

to denote the restriction of χ to Gp
1

. If N is
normal in G and η P IBrpG{Nq, then one can see that the class function

ϕ P cfpGp
1

q defined by ϕpgq “ ηpgNq is an irreducible Brauer character of
G with N Ď kerpϕq. Indeed, if X : G{N Ñ GLpn, F q affords η, then the
irreducible representation Y : G Ñ GLpn, F q defined by Ypgq “ XpgNq
affords ϕ.

On the other hand, if ϕ P IBrpGq and N Ď kerpϕq, then we can define η

on pG{Nqp
1

by ηpgNq “ ϕpgp1q, and it is easy to see that η is an irreducible
Brauer character of G{N . Hence, as happens with ordinary characters,
we shall identify the functions ϕ and η and view IBrpG{Nq as the set of
irreducible Brauer characters of G having N in its kernel.

Now, if χ P IrrpG{Nq and χ P IrrpGq is the corresponding character of

G (that is, χpgq “ χpgNq for g P G), then, for x P Gp
1

, we have
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χpxq “ χpxNq “
ÿ

ϕPIBrpG{Nq

dχϕϕpxNq “
ÿ

ϕPIBrpG{Nq

dχϕϕpxq,

and hence
dχϕ “ dχϕ.

It follows that if B is a block of G{N and χ, ψ P IrrpBq are connected,
then χ, ψ are also connected as characters of G. Then, there is a unique block
B of G such that IrrpBq Ď IrrpBq. Moreover, since ϕ P IBrpBq if and only
if there exists χ P IrrpBq such that dχϕ ‰ 0, we have that IBrpBq Ď IBrpBq.

Theorem 1.43. Let N �G and write G “ G{N .

(a) Suppose that B Ď B, where B is a block of G and B is a block of
G. If D is a defect group of B, then there is a defect group P of B
such that D Ď PN{N .

(b) If N is a p-group, then every block B P BlpGq contains a block
B P BlpGq such that δpBq “ tP {N | P P δpBqu.

(c) If N is a p1-group and B Ď B, where B is a block of G and B is
a block of G, then IrrpBq “ IrrpBq, IBrpBq “ IBrpBq and δpBq “
tPN{N | P P δpBqu.

Proof. See Theorem 9.9 of [Nav98a]. �

The following ends the preliminaries of this thesis.

Theorem 1.44. Suppose that G has a normal p-subgroup P such that
G{CGpP q is a p-group. Write G “ G{P . If B P BlpGq and B P BlpGq
is the unique block of G containing B, then the map B ÞÑ B is a bijection
BlpGq Ñ BlpGq. Also, IBrpBq “ IBrpBq, δpBq “ tD{P |D P δpBqu and the
Cartan matrices of B and B are related by CB “ |P |CB.

Proof. See Theorem 9.10 of [Nav98a]. �
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CHAPTER 2

p-blocks relative to a character of a normal
subgroup

2.1. Introduction

As we said in the Introduction of this thesis, an important part of this
work is devoted to the study of the set IrrpG|θq of irreducible constituents
of the induced character θG, where θ is a G-invariant character of a normal
subgroup N of G. In this Chapter we look at this set from a block-theoretical
point of view. In particular, if p is our fixed prime number, we partition the
set IrrpG|θq into smaller sets relative to the prime p, which look like Brauer
p-blocks.

One of the motivations of the work in this Chapter comes from the Gluck-
Wolf-Navarro-Tiep theorem ([GW84] and [NT13]), and the fact that its
converse is not true. This result, quite deep, and crucial in the reduction of
Brauer’s Height Zero Conjecture (Conjecture 1.39) to a problem on simple
groups, asserts the following.

Theorem 2.1 (Gluck-Wolf, Navarro-Tiep). Let G be a finite group, let
N be a normal subgroup of G and let θ P IrrpNq. Let p be a prime number
and suppose that for all χ P IrrpG|θq, p does not divide χp1q{θp1q. Then
G{N has abelian Sylow p-subgroups.

Proof. See Theorem A of [NT13]. �

Of course, the converse is not true. For instance, if we let G “ S3, the
symmetric group on three letters, p “ 2 and N “ 1, then we have that G
has abelian Sylow 2-subgroups and there is χ P IrrpGq with χp1q “ 2. The
reason why the converse of this theorem is not true is that the set IrrpG|θq is
too big. We want to reformulate this result, replacing IrrpG|θq by a smaller
set, in order to have an if and only if.

To do so, we introduce a partition of IrrpG|θq, associated to the prime
number p which we have fixed, closely related to the classical partition of
IrrpGq into Brauer p-blocks. We will call the members of this partition θ-
blocks, and to each θ-block we will associate a conjugacy class of p-subgroups
of G{N that we will call θ-defect groups. We will usually write Bθ to denote
a θ-block and Dθ{N to denote a θ-defect group.

Of course, a natural candidate for a θ-block would be IrrpB|θq “ IrrpBqX
IrrpG|θq, where B is any p-block. This would be the set of the irreducible

19
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characters in B lying over θ. Unfortunately, this set is, in general, too big.
For instance, if G is a p-constrained group (that is, if CGpOppGqq Ď OppGq),
then mimicking the proof of Corollary 15.40 of [Isa76], we have that G has
only one p-block B and hence IrrpB|θq “ IrrpG|θq for any normal subgroup
N of G and any θ P IrrpNq. We want a finer partition.

Both the θ-blocks and their θ-defect groups are going to be defined in
terms of some convenient central extensions of G and some projective rep-
resentations of G associated with θ. In the first main result of this Chapter
(and this thesis) we will show that the θ-blocks are independent of any choice
that has been made in order to define them, as are their θ-defect groups. In
other words, the partition given by θ-blocks and their θ-defect groups are
canonical.

Theorem A. Suppose that NŸ G, and θ P IrrpNq is G-invariant. Then
the θ-blocks of G are well defined. Furthermore, the set of θ-defect groups is
a G{N -conjugacy class of p-subgroups of G{N .

Using θ-blocks, we unify in the following statement both Brauer’s Height
Zero Conjecture and the Gluck-Wolf-Navarro-Tiep theorem. Recall that np
is the largest power of p that divides the integer n.

Conjecture B. Let pG,N, θq be a character triple. Suppose that Bθ Ď
IrrpG|θq is a θ-block with θ-defect group Dθ{N . Assume that θ extends to
Dθ. Then pχp1q{θp1qqp “ |G : Dθ|p for all χ P Bθ if and only if Dθ{N is
abelian.

If B is a p-block of G, recall that we denote by IrrpB|θq the subset of
IrrpBq consisting on those characters lying over θ. As we shall show, for each
θ-block Bθ there exists a unique p-block B of G such that IrrpBθq Ď IrrpB|θq,
and if Dθ{N is a θ-defect group of Bθ, we will see that there exists D,
a defect group of B, such that Dθ{N ď DN{N . In the important case
where N is central we have even more. In this case, we will prove that
IrrpBθq “ IrrpB|θq and Dθ{N “ DN{N . Using this, Conjecture B is then
equivalent to a projective version of the Height Zero conjecture, noticed by
Malle and Navarro in [MN17]. After being proposed, this projective version
of the Brauer’s Height Zero Conjecture has been proved to be equivalent to
the original Brauer’s conjecture by Sambale in [Sam19]. Using his work,
we prove the following.

Theorem C. Conjecture B and Brauer’s Height Zero conjecture are
equivalent.

As we said, our definition of θ-blocks is related to projective representa-
tions, and therefore with blocks of twisted group algebras. Of course, these
have been studied before by many authors (including S. B. Conlon [Con64],
W. F. Reynolds [Rey66], J. F. Humphreys [Hum77], E. C. Dade [Dad94],
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and A. Laradji [Lar15] in the p-solvable case). However, our character the-
oretical approach is new and is specifically tailored to be used in the recent
developments of the global-local counting conjectures.

Our second motivation to introduce θ-blocks is to have a better under-
standing of the celebrated Brauer’s kpBq-conjecture (Conjecture 1.40). As
it is well-known, this deep conjecture, that asserts that the number of ordi-
nary characters in a block is less than or equal the size of its defect groups,
remains not only unsolved but also unreduced to simple groups. We propose
the following projective version.

Conjecture D. Let pG,N, θq be a character triple. Let Bθ be a θ-block
and let Dθ{N be a θ-defect group of Bθ. Then

|IrrpBθq| ď |Dθ{N |.

It is clear that Conjecture D implies Brauer’s kpBq-conjecture (we just
need to take N “ 1). Using a result of Navarro in [Nav17] we can prove
more.

Theorem E. The kpBq-conjecture is true for every finite group if and
only if Conjecture D is true for every character triple pG,N, θq.

Let cfpG|θq be the C-span of IrrpG|θq and let G˝ “ tx P G | xp P Nu. If
δ P cfpG|θq, write δ˝ for the restriction of δ to G˝. Write cfpG|θq˝ for the
space consisting of the functions δ˝, where δ P cfpG|θq. It turns out that
cfpG|θq˝ is a C-vector space and in [Nav00] and [Nav12], Navarro gives
a basis (a priori not canonical) of cfpG|θq˝. Using this basis, he gives a
partition of IrrpG|θq. The second part of this Chapter is devoted to proving
that the partition given by Navarro and our partition into θ-blocks coincide.
As a consequence of this, in the case that N is a p-group, we have that there
is a direct relationship between our θ-blocks and the Külshammer-Robinson
N -projective characters defined in [KR87].

In order to prove that our θ-blocks coincide with those found by Navarro,
a certain new understanding of Brauer p-blocks is required. Specifically, we
shall need to prove certain projective results like the following one.

Theorem F. Suppose that Z is a central subgroup of G, and let θ P
IrrpZq. Let B be a Brauer p-block of G. For χ P IrrpGq and ϕ P IBrpGq,
denote by dχϕ the classical decomposition number. Then the decomposition
matrix Dθ “ pdχϕq, where χ P IrrpB|θq and ϕ P IBrpBq is not of the form

ˆ

˚ 0
0 ˚

˙

for any ordering of the rows and columns.
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22 2.2. Results on ordinary blocks

Moreover, using the θ-blocks, we will prove that the basis given by
Navarro is canonical (up to choice of the maximal ideal M containing p
in the ring of algebraic integers R of the complex numbers). This is the last
main theorem of this Chapter.

Theorem G. Let pG,N, θq be a character triple, then there exists a
canonical basis (up to choice of the maximal ideal M) of cfpG|θq˝.

This Chapter is structured as follows. In Section 2.2, we give some
results on ordinary blocks that we will use later on. In Section 2.3 we fix
some notation. In Section 2.4 we give the definitions of θ-blocks and θ-defect
groups and we prove Theorem A. In Section 2.5 we present some properties
of the θ-blocks. In particular, we prove a θ-version of a classical theorem on
blocks: if Bθ is a θ-block, Dθ{N is a θ-defect group of Bθ and χ P IrrpBθq,
then χpgq “ 0 if gpN is not G{N -conjugate to any element of Dθ{N . In
Section 2.6, we prove Theorems C and E, and we prove that Conjecture
B implies the Gluck-Wolf Navarro-Tiep theorem. In Section 2.7, we prove
Theorem F and in Section 2.8 we define canonical θ-Brauer characters, we
prove Theorem G and we prove that our θ-blocks and the blocks defined
by Navarro in [Nav00] and [Nav12] coincide. In Section 2.9, we define a
θ-linking and we give some properties of it.

Part of the results in this Chapter appear in [Riz18].

2.2. Results on ordinary blocks

We shall need some basic facts on Brauer p-blocks which we prove in
this section.

Lemma 2.2. Let B be a p-block of G and let µ be a linear character of
G. Then

tµχ | χ P IrrpBqu

is the set of irreducible ordinary characters lying in a p-block µB. Also, B
and µB have the same defect groups.

Proof. Since µpxq is a root of unity for x P G, then µpxqµpx´1q “

1. Hence, it is clear that if χ, ψ P IrrpGq, then λχ “ λψ if and only if
λµχ “ λµψ, and the first part follows. Now, let K be a defect class of B.

Then λBpK̂q ‰ 0 and aBpK̂q ‰ 0. Notice that λµBpK̂q “ µpxKqλBpK̂q,

and aµBpK̂q “ µpx´1
K qaBpK̂q, where xK P K. Since µpxKq ‰ 0, the result

follows from Theorem 1.37. �

If N is normal in G, recall that we view the (Brauer) characters of G{N
as (Brauer) characters of G containing N in their kernel. We also know that
every block of G{N is contained in a block of G. If χ P IrrpGq, then we
denote by Blpχq the block of G containing χ.
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Lemma 2.3. Let Z ď G, with Z “ Zp ˆ K, where K is a normal p1-
subgroup of G and Zp is a central p-subgroup of G. Let α P IrrpGq with
Z Ď kerpαq and write α for the character α viewed as a character of G{Z.

(a) Let β P IrrpGq with Z Ď kerpβq. Then Blpαq “ Blpβq if and only if
Blpαq “ Blpβq, where β is the character β viewed as a character of
G{Z.

(b) We have that

δpBlpαqq “ tPZ{Z | P P δpBlpαqqu “ tP {Zp | P P δpBlpαqqu.

Proof. (a) It is clear that if Blpαq “ Blpβq, then Blpαq “ Blpβq. We
need to prove the converse. We proceed by induction on |G|. By Theorem
1.43 we may assume that Z is a central p-group. The result follows by
Theorem 1.44.

For (b), we proceed by induction on |G|. Let α̂ be the character α viewed
as a character of G{K. By Theorem 1.43(c), we have that

δpBlpα̂qq “ tPK{K | P P δpBlpαqqu.

If K ą 1, since G{Z – G{K
Z{K , using induction we are done. Hence, we may

assume that K “ 1. In this case, Z is a central p-group. The result now
follows by Theorem 1.44. �

Suppose α : Ĝ Ñ G is a surjective group homomorphism with kernel
Z. If ψ P IrrpGq, whenever is convenient, we denote by ψα the unique

irreducible character of Ĝ such that ψαpxq “ ψpαpxqq for x P Ĝ. Notice that
Z Ď kerpψαq.

Corollary 2.4. Suppose that α : Ĝ Ñ G is an onto group homomor-
phism with kerpαq “ Z Ď ZpĜq.

(a) If χi P IrrpGq, then χ1, χ2 lie in the same block of G if and only if

χα1 and χα2 lie in the same block of Ĝ.

(b) Suppose that L ď G and let γ P IrrpLq. If L̂ “ α´1pLq, let γ̂ “

γαL̂ P IrrpL̂q. Then rpχαqL̂, γ̂s “ rχL, γs for χ P IrrpGq.

(c) Suppose that χ P IrrpGq, let B “ Blpχq, and let B̂ “ Blpχαq. If D̂

is a defect group of B̂, then αpD̂q is a defect group of B.

Proof. Part (a) is a direct consequence of Lemma 2.3(a). Part (b) is

straightforward. To prove part (c), define ᾱ : Ĝ{Z Ñ G to be the associated

isomorphism. Since Z Ď kerpχαq, by Lemma 2.3(b), we have that D̂Z{Z

is a defect group of the block of χα viewed as a character of Ĝ{Z. Since

αpD̂q “ ᾱpD̂Z{Zq, the result follows. �

We need the following result of [NS14].
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Lemma 2.5. Let N � G, let θ P IrrpNq and suppose that θ̃ P IrrpGq is
an extension of θ. Write G “ G{N . Let η P IrrpGq and let η P IrrpGq
the corresponding character of G satisfying ηpgq “ ηpgNq for all g P G. If
x P G, let H{N “ CGpxq, where x “ xN . Let K “ xG, L “ xH and

S “ xG. Then,

λθ̃ηpK̂q “ λθ̃H pL̂qληpŜq.

Moreover, some defect group of Blpηq is contained in DN{N , where D is a

defect group of Blpθ̃ηq.

Proof. See Lemma 2.2 of [NS14] and Proposition 2.5(b) of [NS14].
�

Lemma 2.6. Let N � G and let χ P IrrpGq. Suppose that χN “ θ P
IrrpNq. Let χ1, χ2 P IrrpG|θq and write χi “ βiχ, for i “ 1, 2, where βi P
IrrpG{Nq. Suppose that β1 and β2 lie in the same p-block of G{N . Then χ1

and χ2 lie in the same p-block of G. Also, if β P IrrpG{Nq and P {N is a
defect group of Blpβq, then P Ď DN , for some defect group D of Blpβχq.

Proof. Let K be a conjugacy class of G and let x P K. Write H{N “

CG{N pxNq, let L be the conjugacy class of H containing x, and let S be the
conjugacy class of G{N containing xN . Then, by Lemma 2.5, we have that

λχ1pK̂q “ λχβ1pK̂q “ λχH pL̂qλβ1pŜq.

Since β1 and β2 lie in the same p-block of G{N , we have that

λβ1pŜq “ λβ2pŜq,

and hence, again by Lemma 2.5 we have that

λχ1pK̂q “ λχH pL̂qλβ1pŜq “ λχH pL̂qλβ2pŜq “ λχβ2pK̂q “ λχ2pK̂q.

Hence χ1 and χ2 lie in the same p-block of G. The second part follows
straightforwardly from the second part of Lemma 2.5. �

2.3. The Notation

In this Section we give some notation that we will keep throughout this
Chapter.

To define the θ-blocks and the θ-defect groups we need some background
on projective representations and character triples. That background can
be found in Section 1.2. In particular we are going to need Theorem 1.21.
We recall here some of the notation and definitions needed.

Theorem 1.21 asserts that given a character triple pG,N, θq, there exists
a projective representation P of G such that its factor set only takes roots
of unity values, and a character triple pĜ{N, N̂{N, λ̂q (depending on P)

isomorphic to pG,N, θq, with N̂{N central in Ĝ{N . We say that Ĝ is a

Universitat de València Noelia Rizo Carrión



2. p-blocks relative to a character of a normal subgroup 25

representation group for pG,N, θq, pĜ{N, N̂{N, λ̂q is a standard isomorphic

character triple given by P, and the bijection ˚ : IrrpG|θq ÞÑ IrrpĜ{N |λ̂q is
the standard bijection. Notice that this bijection just depends on the choice
of the projective representation P (see discussion after Theorem 1.23). We

also say that τ P IrrpĜq is the character of Ĝ associated with P. By Theorem
1.21(b), we have that τN “ θ.

If α is the factor set of P, recall that we write Z for the subgroup of
Cˆ generated by the values of α (which are roots of unity values). Then

Ĝ “ tpg, zq |g P G, z P Zu, with a suitable product involving α, and the map

π : Ĝ ÞÑ G given by pg, zq ÞÑ g is the canonical homomorphism with kernel
Z.

2.4. θ-blocks and θ-defect groups

We are finally ready to define θ-blocks and their θ-defect groups.

Definition 2.7. Let pG,N, θq be a character triple. Let Ĝ be a represen-

tation group for pG,N, θq and let π : ĜÑ G be the canonical homomorphism

pg, zq ÞÑ g with kernel Z. Let ˚ : IrrpG|θq Ñ IrrpĜ{N |λ̂q be the associated
standard bijection. We say that a non-empty subset Bθ Ď IrrpG|θq is a

θ-block of G if there exists a p-block B̂ of Ĝ{N such that

B˚θ “ tχ
˚ | χ P Bθu “ IrrpB̂|λ̂q .

If D̂{N is a defect group of B̂, then we say that πpD̂q{N is a θ-defect group
of Bθ.

In the situation of Definition 2.7 we say that the θ-block Bθ is afforded
by the p-block B̂.

Of course, note that the definition of θ-blocks depends on the choice of
the standard isomorphic character triple and therefore on the choice of the
projective representation associated with θ. The same happens with the
θ-defect groups. Our main result in this section is that the θ-blocks are in
fact canonically defined, and that all the θ-defect groups are G{N -conjugate.
The following result is key to proving that.

Theorem 2.8. Let pG,N, θq be a character triple. Let P1,P2 be pro-
jective representations of G associated with θ, with factor sets α1 and α2,
respectively, whose values are roots of unity. Let Ĝi be the representation
group associated with Pi. Let pĜ1{N, N̂1{N, λ̂1q and pĜ2{N, N̂2{N, λ̂2q be
the standard isomorphic character triples given by P1 and P2, respectively.
As usual, let Zi be the subgroup of the multiplicative group Cˆ generated by
the values of αi. Let Ĝ “ Gˆ Z1 ˆ Z2 and define the product

pg, z1, z2qph, z
1
1, z

1
2q “ pgh, α1pg, hqz1z

1
1, α2pg, hqz2z

1
2q.

Then the following hold.
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(a) Ĝ is a finite group, N ˆ 1ˆ 1 is a normal subgroup of Ĝ (which we

identify with N), and 1ˆZ1ˆZ2 is a central subgroup of Ĝ (which

we identify with Z1 ˆ Z2). Also, N̂ “ N ˆ Z1 ˆ Z2 is a normal

subgroup of Ĝ and N̂{N is central in Ĝ{N .

(b) The maps ρ1 : Ĝ Ñ Ĝ1 and ρ2 : Ĝ Ñ Ĝ2 given by pg, z1, z2q ÞÑ

pg, z1q and pg, z1, z2q ÞÑ pg, z2q are surjective group homomorphisms
with kernels Z2 and Z1, respectively.

(c) Suppose that τi P IrrpĜiq is the character associated with Pi, and let

τρii P IrrpĜq be the corresponding character of Ĝ. Then there exists

a linear character β P IrrpĜ{Nq such that

τρ11 “ βτρ22 .

(d) Let χ P IrrpG|θq and let χ˚i P IrrpĜi{N |λ̂iq be the image of χ under

the standard bijection. Let χ̂i “ pχ
˚
i q
ρi P IrrpĜ{Nq. Then βχ̂1 “

χ̂2. As a consequence, if B̂i is the block of Ĝ{N containing χ̂i, then

B̂2 “ βB̂1.
(e) Let B˚i be the block of Ĝi{N containing χ˚i . Then the map ψ ÞÑ ψρi

is a bijection from IrrpB˚i |λ̂iq to IrrpB̂i|λ̃iq, where λ̃1pn, z1, z2q “

λ̂1p1, z1q “ z´1
1 and λ̃2pn, z1, z2q “ λ̂2p1, z2q “ z´1

2 are linear char-

acters of N̂{N .

(f) The map ψ ÞÑ βψ is a bijection from IrrpB̂1|λ̃1q to IrrpB̂2|λ̃2q. In

particular, |IrrpB˚1 |λ̂1q| “ |IrrpB
˚
2 |λ̂2q|.

(g) Let πi : Ĝi Ñ G be the canonical homomorphism pg, ziq ÞÑ g with

kernel Zi. If D̂i{N is defect group of B˚i , then π1pD̂1q and π2pD̂2q

are G-conjugate.

Proof. Using Lemma 1.19, parts (a) and (b) are straightforward. We
prove (c). Since P1 and P2 are projective representations of G associated to
θ, by Theorem 1.18 we know that there exists ξ : G Ñ Cˆ with ξp1q “ 1,
constant on the cosets of N , such that P2 “ ξP1, and the factor sets α1 and
α2 are related in this way

α2pg, hq “ α1pg, hqξpgqξphqξpghq
´1,

for all g, h P G.
Now τi P IrrpĜiq is the character afforded by the irreducible representa-

tion P̂i, which is defined by P̂ipg, ziq “ ziPipgq, for zi P Zi and g P G. Then,
using that P2 “ ξP1, we have that

τ1pg, z1q “ z1z
´1
2 ξpgq´1τ2pg, z2q

for g P G and zi P Zi. It is straightforward to prove that the function
β : ĜÑ Cˆ defined by

βpg, z1, z2q “ z1z
´1
2 ξpgq´1
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is a linear character of Ĝ that contains N in its kernel.
By definition, we have that τρ11 pg, z1, z2q “ τ1pg, z1q and τρ22 pg, z1, z2q “

τ2pg, z2q. Therefore τρ11 “ βτρ22 , as desired. This proves (c).

Let us denote by πi : Ĝi Ñ G the homomorphism pg, ziq ÞÑ g. Recall

that, by definition, χ˚i P IrrpĜi{Nq is the unique character satisfying χπi “
χ˚i τi. That is

χpgq “ χπipg, ziq “ χ˚i pg, ziqτipg, ziq

for g P G and zi P Zi. By definition, we have that χ̂1pg, z1, z2q “ χ˚1pg, z1q

and χ̂2pg, z1, z2q “ χ˚2pg, z2q. In particular, χ̂i P IrrpĜq contains N in its
kernel. Notice that we have τρ11 χ̂1 “ τρ22 χ̂2. Hence,

βχ̂1τ
ρ2
2 “ χ̂2τ

ρ2
2 .

Since τρ22 extends θ P IrrpNq and βχ̂1, χ̂2 P IrrpĜ{Nq, by Gallagher’s Corol-
lary (Corollary 1.16), we have that

βχ̂1 “ χ̂2 .

Using Lemma 2.2, part (d) easily follows.
Next we prove part (e). Since ρ1pNq “ N , then ρ1 uniquely defines an

onto homomorphism ρ̃1 : Ĝ{N Ñ Ĝ1{N with kernel NZ2{N Ď ZpĜ{Nq.
Since N Ď kerpχ˚1q, then notice that χ̂1 “ pχ˚1q

ρ̃1 . Now NZ1{N is a sub-

group of Ĝ1{N , and its inverse image under ρ̃1 is N̂{N . Also, the character

corresponding to λ̂1 under ρ̃1 is λ̃1. By Corollary 2.4 (a) and (b), we have

that ψ ÞÑ ψρi is a bijection from IrrpB˚i |λ̂iq to IrrpB̂i|λ̃iq. (Notice that
ψρi “ ψρ̃i because all of our characters have N in their kernel).

Now we prove part (f). By using their definitions (and the fact that

ξpnq “ 1 for n P N), we check that βN̂ λ̃1 “ λ̃2 . Therefore, multiplication

by the linear character β sends bijectively IrrpB̂1|λ̃1q Ñ IrrpB̂2|λ̃2q.

Finally, we prove part (g). As in part (e), we have that ρ̃i : Ĝ{N Ñ Ĝi{N
is an onto homomorphism, with central kernel, such that the map ψ ÞÑ ψρ̃i

is a bijection from IrrpB˚i |λiq to IrrpB̂i|λ̃iq. Let Ei{N be a defect group of

B̂i. Since B̂2 “ βB̂1, we may assume that Ei “ E for i “ 1, 2. by Lemma
2.2. By Corollary 2.4(c), we have that ρ̃ipE{Nq is a defect group of B˚i .

Hence ρ̃ipE{Nq “ pD̂i{Nq
pgi,1q for some gi P G (using that Zi is central in

Ĝi). Now, since πipNq “ N , we have that πi uniquely determines an onto

homomorphism π̃i : Ĝi{N Ñ G{N . We easily check that π̃1 ˝ ρ̃1 “ π̃2 ˝ ρ̃2.
Then

π1pD̂1q
g1 “ π2pD̂2q

g2 ,

as desired. �

We can now prove the main result of this section. The following is
Theorem A of the Introduction.
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Theorem 2.9. Suppose that N Ÿ G, and θ P IrrpNq is G-invariant.
Then the θ-blocks of G are well defined. Furthermore, the set of θ-defect
groups is a G{N -conjugacy class of p-subgroups of G{N .

Proof. Let pG,N, θq be a character triple and let P1 and P2 be pro-

jective representations associated with θ. Let Ĝ1 and Ĝ2 be representa-
tion groups for pG,N, θq given by P1 and P2, and let pĜ1{N, N̂1{N, λ̂1q

and pĜ2{N, N̂2{N, λ̂2q be the standard isomorphic character triples. Let

πi : Ĝi Ñ G be the homomorphism πipg, ziq “ g, and let τi P IrrpĜiq be the
character associated with Pi. Recall that if χ P IrrpG|θq, then χπi “ χ˚i τi,

for some uniquely defined χ˚i P IrrpĜi{Nq. The map χ ÞÑ χ˚i from IrrpG|θq

to IrrpĜi{N |λ̂iq is the standard bijection.

Let A1, A2 Ď IrrpG|θq be such that A˚1 “ tϕ
˚
1 | ϕ P A1u “ IrrpB˚1 |λ̂1q and

A˚2 “ tϕ
˚
2 | ϕ P A2u “ IrrpB˚2 |λ̂2q, where B˚i is a block of Ĝi{N . Suppose

that χ P A1 XA2. We wish to to prove that A1 “ A2.
In order to do so, we construct the group Ĝ as in Theorem 2.8, and

consider the group homomorphisms ρi : Ĝ Ñ Ĝi, in Theorem 2.8(b). By

Theorem 2.8(c), there is a linear character β P IrrpĜ{Nq satisfying

τρ11 “ βτρ22 .

As in Theorem 2.8(d), let χ̂i “ pχ
˚
i q
ρi P IrrpĜ{Nq, and let B̂i be the block

of Ĝ{N containing χ̂i. By Theorem 2.8(d), we have that B̂2 “ βB̂1. By
Theorem 2.8(f), |A˚1 | “ |A˚2 |, and therefore |A1| “ |A2|. We only need to
prove that A1 Ď A2, for instance.

Let ϕ1 P A1. Now, ϕ˚1 P A
˚
1 “ IrrpB˚1 |λ̂1q, and by Theorem 2.8(e) we

have that ϕ̂1 “ pϕ
˚
1q
ρ1 P IrrpB̂1|λ̃1q. By Theorem 2.8(f), βϕ̂1 P IrrpB̂2|λ̃2q.

By Theorem 2.8(e), let ϕ2 P A2 be such that βϕ̂1 “ pϕ
˚
2q
ρ2 . We claim that

ϕ1 “ ϕ2. Recall that τiϕ
˚
i “ ϕπii and that τρ11 “ βτρ22 . If g P G, then we

have that

ϕ1pgq “ ϕπ11 pg, 1q “ τ1pg, 1qϕ
˚
1pg, 1q

“ τρ11 pg, 1, 1qϕ̂1pg, 1, 1q

“ βpg, 1, 1qτρ22 pg, 1, 1qϕ̂1pg, 1, 1q

“ τ2pg, 1qpβϕ̂1qpg, 1, 1q

“ τ2pg, 1qpϕ
˚
2q
ρ2pg, 1, 1q

“ τ2pg, 1qϕ
˚
2pg, 1q

“ ϕπ22 pg, 1q

“ ϕ2pgq,

as desired. This completes the proof of the first part of the theorem. The
second part easily follows from Theorem 2.8(g). It is elementary to show
that the θ-defect groups are p-subgroups of G{N . �
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2.5. Some properties of the θ-blocks

We collect in this Section some basic properties of the θ-blocks and its
θ-defect groups.

Theorem 2.10. Let pG,N, θq be a character triple. Let Bθ be a θ-block
of G, and let Dθ{N be a θ-defect group of Bθ.

(a) There is a p-block B of G such that Bθ is contained in the set
IrrpB|θq. Also, there is a defect group D of B such that Dθ Ď DN .

(b) If N Ď ZpGq, then there is a p-block B of G and a defect group D
of B such that Bθ “ IrrpB|θq, and Dθ “ DN .

(c) If θ has an extension χ P IrrpGq, then there is a p-block B̄ of G{N
and a defect group D̄ of B̄ such that Bθ “ tγχ | γ P IrrpB̄qu and
Dθ{N “ D̄.

(d) If G{N is a p-group, then Bθ “ IrrpG|θq and Dθ “ G.

Proof. Let Ĝ be a representation group associated with pG,N, θq, with

associated character τ P IrrpĜq. Recall that τN “ θ. Let ˚ : IrrpG|θq Ñ

IrrpĜ{N |λ̂q be the standard bijection. Let π : ĜÑ G be the homomorphism

pg, zq ÞÑ g. Since πpNq “ N , let π̂ : Ĝ{N Ñ G{N be the corresponding onto

homomorphism. Notice that Ĝ{N is a central extension of G{N .

By definition, there is a Brauer p-block B̂ of Ĝ{N such that pBθq
˚ “

IrrpB̂|λ̂q. Recall that χπ “ χ˚τ for χ P IrrpG|θq.
Now, fix χ P Bθ and let B be the p-block of G containing χ. We claim

that Bθ Ď IrrpB|θq. Indeed, let ψ P Bθ. Then χ˚, ψ˚ P B̂. Since τN “ θ
and χπ “ τχ˚, ψπ “ τψ˚, by Lemma 2.6 we have that χπ and ψπ lie in the
same p-block of Ĝ. By Corollary 2.4, χ, ψ lie in the same p-block of G. This
proves the first part of (a). If D̂{N is a defect group of B̂, by Lemma 2.6 we

have that D̂ Ď EN for some defect group E of the block of χπ. Now, πpEq

is a defect group of the block of χ by Corollary 2.4(c), and πpD̂q Ď πpEqN .
This proves the second part of (a). Notice now that if N is central, then τ is
linear and the defect groups of the block of χπ “ τχ˚ are the defect groups
of the block of χ˚ (multiplying by τ´1 and using Lemma 2.2). Since N is

central in Ĝ by Theorem 1.21(a), we have that D̂ “ EN by Lemma 2.3(b).
Next, we complete the proof of part (b). Suppose that N is central and

that γ P IrrpB|θq. In particular, τ is linear. Write γπ “ γ˚τ , for some

γ˚ P IrrpĜ{N |λ̂q. Now, since γ and χ lie in the same p-block of G, we have

that γπ and χπ lie in the same p-block of Ĝ by Corollary 2.4. Therefore γ˚τ
and χ˚τ lie in the same p-block of Ĝ. By Lemma 2.2, multiplying by τ´1,
we have that γ˚ and χ˚ lie in the same p-block of Ĝ. Now, N Ď ZpĜq, by

Theorem 1.21(a). Thus γ˚ and χ˚ lie in the same p-block of Ĝ{N by Lemma

2.3 (a). Hence γ˚ P IrrpB̂|λ̂q, and therefore γ P Bθ. This proves (b). (The
part on the defect groups follows from the previous paragraph.)

For part (c), notice that if P is a representation affording χ, then P
is a projective representation associated with pG,N, θq with trivial factor
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set. Hence Ĝ “ G is a representation group for pG,N, θq with associated
character τ “ χ. In this case the standard bijection is the map βχ ÞÑ β
from IrrpG|θq Ñ IrrpG{Nq given by Gallagher’s Corollary (Corollary 1.16),
and part (c) easily follows.

Next we prove part (d). Let pĜ{N, N̂{N, λ̂q be a standard isomorphic

character triple and let ˚ : IrrpG|θq Ñ IrrpĜ{N |λ̂q be the standard bijection.

Let B̂ be the p-block of Ĝ{N such that pBθq
˚ “ IrrpB̂|λ̂q. By Theorem

1.41 and Theorem 1.42 we have that IrrpB̂|λ̂q “ IrrpĜ{N |λ̂q. Therefore

|Bθ| “ |pBθq
˚| “ |IrrpB̂|λ̂q| “ |IrrpĜ{N |λ̂q| “ |IrrpG|θq|, and the first part of

(d) is proved. Let Dθ{N be a θ-defect group of Bθ and let D̂{N ď Ĝ{N be a

defect group of B̂ such that πpD̂q{N “ Dθ{N . Recall that π̂ : Ĝ{N Ñ G{N

defined by pg, zqN ÞÑ gN is an onto homomorphism with kerpπ̂q “ N̂{N .

WriteG˚ “ Ĝ{N , N˚ “ N̂{N andD˚ “ D̂{N , and write π̃ : G˚{N˚ Ñ G{N
for the induced isomorphism. Then π̃pD˚N˚{N˚q “ Dθ{N . LetK˚ P clpG˚q

be a defect class for B̂. By Proposition 1.35, we know that K˚ consists of
p-regular elements. Since G˚{N˚ is a p-group, we have that K˚ Ď N˚ Ď
ZpG˚q. Let x˚ P K˚ be such that D˚ P SylppCG˚px

˚qq. Since K˚ is central,
we have that D˚ P SylppG

˚q. Then D˚N˚{N˚ P SylppG
˚{N˚q and, since

π̃pD˚N˚{N˚q “ Dθ{N we have that Dθ{N P SylppG{Nq. Since G{N is
p-group, Dθ{N “ G{N .

�

Notice that in the proof of this Theorem we have seen that

π̃pD˚N˚{N˚q “ Dθ{N.

We will use this fact many times in this Chapter.

If pG,N, θq is a character triple and Bθ Ď IrrpG|θq is a θ-block, then, in
general, Bθ is much smaller than the set IrrpB|θq, where B is the Brauer p-
block containing Bθ. For instance, suppose that G is a p-constrained group,
that is, CGpOppGqq Ď OppGq. Then, as we have said in the Introduction of
this Chapter, mimicking the proof of Corollary 15.40 of [Isa76], we have that
G has only one p-block B and hence IBrpB|θq “ IBrpG|θq for any normal
subgroup N of G and θ P IrrpNq. Now, let N Ÿ G be such that p does not
divide |G{N |, and let θ P IrrpNq such that θ extends to G. By Theorem
2.10(c), we have that the θ-blocks have size 1.

The following is a clasical result on blocks that explains further zeros in
the character table.

Theorem 2.11. Let χ P IrrpGq and let g P G. If gp is not contained in
any defect group of the block of χ, then χpgq “ 0.

Proof. See Corollary 5.9 of [Nav98a]. �

The following is an analogue result for θ-blocks.
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Theorem 2.12. Let pG,N, θq be a character triple, let χ P IrrpG|θq and
let Bθ be the θ-block containing χ. Let g P G and suppose that pgNqp is not
G{N -conjugate to any element of Dθ{N , where Dθ{N is a θ-defect group of
Bθ. Then χpgq “ 0.

Proof. Let pĜ{N, N̂{N, λ̂q be a standard isomorphic character triple

of pG,N, θq. Write π : Ĝ Ñ G for the canonical onto homomorphism.

Since πpNq “ N , π induces a group homomorphism π̂ : Ĝ{N Ñ G{N with

kerpπ̂q “ N̂{N . Write G˚ “ Ĝ{N and N˚ “ N̂{N and write π̃ : G˚{N˚ Ñ
G{N for the induced isomorphism.

Let gN P G{N and let g˚N˚ P G˚{N˚ such that π̃pg˚N˚q “ gN . Let

B̂ be the p-block of G˚ such that pBθq
˚ “ IrrpB̂|λ̂q, where ˚ : IrrpG|θq Ñ

IrrpG˚|λ̂q is the standard bijection. Let D˚ “ D̂{N be the defect group of

B̂ such that πpD̂q{N “ Dθ{N . Notice that π̃pD˚N˚{N˚q “ Dθ{N .
Since pgNqp is not G{N -conjugate to any element of Dθ{N , we have that

pg˚qpN
˚ is not G˚{N˚-conjugate to any element of D˚N˚{N˚. Hence pg˚qp

is not contained in any defect group of the block of χ˚. By Theorem 2.11
we have that χ˚pg˚q “ 0. Recall that χπ “ τχ˚, where τ P IrrpĜq is the

character associated to P. Since π̃pppg, 1qNqpN̂{Nqq “ π̂ppg, 1qNq “ gN , we
have that g˚ “ pg, 1qN and then

χpgq “ χπpg, 1q “ τpg, 1qχ˚ppg, 1qNq “ τpg, 1qχ˚pg˚q “ 0.

�

If B is a p-block of G, D is a defect group of B, and K is a defect class
of B, we know that D P SylppCGpxKqq, for some xK P K. Next, we give an
analogue for θ-blocks. To do so, we need the following lemma. Recall that
we say that x P G is θ-good if every extension of θ to Nxxy is S-invariant,
where S{N “ CG{N pNxq. It is not hard to see that if x is θ-good, then so
is every G-conjugate to x. In this case, we say that the conjugacy class of x
is θ-good.

Lemma 2.13. Let N �G and let θ P IrrpNq be G-invariant. If g P G is
not θ-good, then χpgq “ 0 for all χ P IrrpG|θq. Moreover, if θ is linear and
faithful, then g is θ-good if and only if CG{N pNgq “ CGpgq{N .

Proof. See Lemma 5.13 of [Nav18]. �

Lemma 2.14. Let pG,N, θq be a character triple and let B be a block of
G such that IrrpB|θq is non-empty. Let K be a defect class of B. Then K
is θ-good.

Proof. Let xK P K and χ P IrrpB|θq. Since K is a defect class of B we
have that

0 ‰ λBpK̂q “ ωχpK̂q
˚ “

ˆ

χpxKq|K|

χp1q

˙˚

.

Then, χpxKq ‰ 0 and xK is θ-good by Lemma 2.13. �
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Proposition 2.15. Let pG,N, θq be a character triple, let Bθ be a θ-
block and let Dθ{N be a θ-defect group of Bθ. Then there is xN P G{N such
that Dθ{N P SylppCG{N pxNqq.

Proof. Let D̂{N ď Ĝ{N be a defect group of B̂ such that π̂pD̂{Nq “

Dθ{N . Write G˚ “ Ĝ{N and N˚ “ N̂{N . We know that kerpπ̂q “ N̂{N “

N˚. Denote by π̃ : G˚{N˚ Ñ G{N the isomorphism induced by π̂. Write

D˚ “ D̂{N . Then we know that π̃pD˚N˚{N˚q “ Dθ{N .

Since D˚ is a defect group of B̂ and K is a defect class of B̂, we know that
there exists xK P K such that D˚ P SylppCG˚pxKqq. Since N˚ Ď ZpG˚q, we
have that N˚ Ď CG˚pxKq and hence D˚N˚{N˚ P SylppCG˚pxKq{N

˚q. By
Lemma 2.14 and Lemma 2.13 we have that CG˚pxKq{N

˚ “ CG˚{N˚pN
˚xKq.

Hence

Dθ{N “ π̃pD˚N˚{N˚q P Sylppπ̃pCG˚{N˚pN
˚xKqqq “ SylppCG{N pπ̂pxKqqq.

�

2.6. Projective conjectures

We start this Section by proving Theorem E of the introduction. Recall
that Brauer’s kpBq-conjecture asserts that if B is a block with defect group
D, then kpBq “ |IrrpBq| ď |D|.

The key is the following result of Navarro.

Theorem 2.16. Suppose that Z is a central p-subgroup of G, and let
λ P IrrpZq. Let B be a p-block of G, and let B be the unique p-block of G{Z
contained in B. Then

kpB|λq ď kpBq

where kpB|λq is the number of irreducible characters in B lying over λ.

Proof. See Theorem C of [Nav17]. �

The following is Theorem E of the Introduction.

Theorem 2.17. The kpBq-conjecture is true for every finite group if and
only if for every character triple pG,N, θq, we have that every θ-block Bθ has
size less than or equal the size of any of its θ-defect groups.

Proof. Let pG,N, θq be a character triple and let pĜ{N, N̂{N, λ̂q be a

standard isomorphic character triple. Write G˚ “ Ĝ{N , N˚ “ N̂{N and

θ˚ “ λ̂. Let Bθ be a θ-block and let Dθ{N be a θ-defect group of Bθ.
Suppose first that the kpBq-conjecture holds for every finite group. Write
N˚ “ N˚p ˆ N˚p1 where N˚p P SylppN

˚q, and write θ˚ “ θ˚p ˆ θ˚p1 , with

θ˚p P IrrpN˚p q and θ˚p1 P IrrpN˚p1q. From the definition of the θ-blocks, we

have that there exists a p-block B˚ of G˚ such that B˚θ “ IrrpB˚|θ˚q, where
˚ : IrrpG|θq Ñ IrrpG˚|θ˚q is the standard bijection. Thus

|Bθ| “ |IrrpB
˚|θ˚q| .
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Now by Theorem 1.41, and using that IrrpB˚|θ˚q is not empty (by the
definition of θ-blocks), we have that IrrpB˚|θ˚q “ IrrpB˚|θ˚p q. By Theo-

rem 2.16 we have that |IrrpB˚|θ˚p q| ď |IrrpB˚q|, where B˚ is the unique
p-block of G˚{N˚p contained in B˚. Let D˚ be a defect group of B˚. By

Theorem 1.44 we have that D˚{N˚p is a defect group of B˚. Since the

kpBq conjecture holds for G˚{N˚p we have that |IrrpB˚q| ď |D˚{N˚p | “

|D˚N˚{N˚|. Now, write D˚ “ D̂{N , for some subgroup D̂ of Ĝ, and by

definition, recall that πpD̂q{N “ Dθ{N is a θ-defect group of Bθ, where

π : Ĝ Ñ G is the onto homomorphism pg, zq ÞÑ g. It is then enough to
show that |D˚N˚{N˚| “ |Dθ{N |. Notice that π̂ : G˚ Ñ G{N defined by
pg, zqN ÞÑ gN is an onto group homomorphism with kernel N˚. Write
π̃ : G˚{N˚ Ñ G{N for the isomorphism induced by π̂, and notice that

π̃pD˚N˚{N˚q “ π̂pD˚q “ πpD̂q{N “ Dθ{N . Then Dθ{N and D˚N˚{N˚

are isomorphic, and |Dθ{N | “ |D
˚N˚{N˚|, as desired.

For the converse, simply take N “ 1 and apply Theorem 2.10(b). �

As we said in Chapter 1, the kpBq-conjecture is known to be true for p-
solvable groups (it was reduce to the so-called “kpGV q-problem” in [Nag62]
and it was finally proved in [GMRS]). Notice that if pG,N, θq is a character
triple and G{N is p-solvable, then we have that the θ-version of the kpBq-
conjecture holds, that is, we have that |Bθ| ď |Dθ{N | for any θ-block Bθ
and θ-defect group of Bθ, Dθ{N . Indeed, let pG˚, N˚, θ˚q be a standard
isomorphic character triple, let ˚ : IrrpG|θq Ñ IrrpG˚|θ˚q be the standard
bijection, let B˚ be the p-block of G˚ such that pBθq

˚ “ IrrpB˚|θ˚q and
let D˚ be a defect group of B˚. Then G˚{N˚ is isomorphic to G{N and
hence, since N˚ Ď ZpG˚q, we have that G˚ is p-solvable. Then G˚{N˚p is
p-solvable, where N˚p P SylppN

˚q and hence the kpBq-conjecture holds for

G˚{N˚p . Now, if B˚ is the unique p-block of G˚{N˚p contained in B˚, arguing
as in the proof of Theorem 2.17, we have that

|Bθ| “ |IrrpB
˚|θ˚q| “ |IrrpB˚|θ˚p q| ď |IrrpB

˚q| ď |D˚N˚{N˚| “ |Dθ{N |.

Next we prove Theorem C of the introduction. To do so we first intro-
duce the projective version of the Height Zero conjecture due to Malle and
Navarro (see [MN17]). Recall that if B is a p-block, Irr0pBq denotes the
set of irreducible characters of B of height zero. Analogously, if N �G and
θ P IrrpNq, then Irr0pB|θq denotes the set of characters in IrrpB|θq of height
0.

Conjecture 2.18 (Projective version of BHZC). Let G be a finite group,
let p be a prime, and let B be a p-block of G with defect group D. Suppose
that Z ď G is a central p-subgroup of G, and let λ P IrrpZq. Then the
following are equivalent:

(a) IrrpB|λq “ Irr0pB|λq.
(b) D{Z is abelian and λ extends to D.
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We first prove that Conjecture B is equivalent to Conjecture 2.18. Recall
that Conjecture B asserts the following: if Bθ Ď IrrpG|θq is a θ-block with
θ-defect group Dθ{N and θ extends to Dθ, then pχp1q{θp1qqp “ |G : Dθ|p
for all χ P Bθ if and only if Dθ{N is abelian.

We need the following well-known result.

Theorem 2.19. If B is a p-block of G, then OppGq is contained in every
defect group of B.

Proof. See Theorem 4.8 of [Nav98a]. �

Theorem 2.20. Conjecture B and Conjecture 2.18 are equivalent.

Proof. Let pG,N, θq be a character triple, and let Bθ be a θ-block with
θ-defect group Dθ{N . As in the proof of Theorem 2.17, let pG˚, N˚, θ˚q
be a standard isomorphic triple, with standard bijection ˚ : IrrpG|θq Ñ
IrrpG˚|θ˚q, and suppose that B˚ is the block of G˚ such that pBθq

˚ “

IrrpB˚|θ˚q. Recall that N˚ Ď ZpG˚q. We have shown above that Dθ{N is
isomorphic to D˚N˚{N˚, where D˚ is a defect group of B˚. (In fact, we
have shown that if π̃ : G˚{N˚ Ñ G{N is the group isomorphism induced by

π : ĜÑ G, then π̃pD˚N˚{N˚q “ Dθ{N .) Notice that, since N˚ is central in
G˚, we have that the Sylow p-subgroup of N˚ is contained in D˚ (Theorem
2.19), and therefore |D˚N˚ : D˚|p “ 1. Then

|G : Dθ|p “ |G{N : Dθ{N |p “ |G
˚ : D˚N˚|p “ |G

˚ : D˚|p .

Now, as is well-known, character triple isomorphisms preserve ratios of char-
acter degrees (see Definition 1.22), that is χp1q{θp1q “ χ˚p1q{θ˚p1q “ χ˚p1q
for χ P IrrpG|θq. In particular, if χ P Bθ, then

pχp1q{θp1qqp “ χ˚p1qp “ |G
˚ : D˚|pp

hpχ˚q “ |G : Dθ|pp
hpχ˚q ,

where 0 ď hpχ˚q is the height of χ˚ in B˚.
By the properties of character triple isomorphisms, notice that θ extends

to Dθ if and only if θ˚ extends to D˚N˚. �

As a Corollary we obtain Theorem C. The key is Theorem 3 of [Sam19]
that asserts that Brauer’s Height Zero conjecture and Conjecture 2.18 are
equivalent. We should point out that Sambale’s theorem uses the theory of
fusion systems. We have not been able to find a proof of this without this
theory.

Corollary 2.21. Conjecture B and Brauer’s Height Zero conjecture
are equivalent.

We have said in the Introduction of this Chapter that Conjecture B
generalizes the Gluck-Wolf-Navarro-Tiep theorem. We prove that now.

Proposition 2.22. Conjecture B implies the Gluck-Wolf-Navarro-Tiep
theorem.
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Proof. Suppose that for all χ P IrrpG|θq, p does not divide χp1q{θp1q.

Let Bθ be a θ-block and let χ P Bθ. Since pχp1q{θp1qqp “ |G : Dθ|pp
hpχ˚q, we

have that |G : Dθ| is not divisible by p. Hence Dθ{N is a Sylow p-subgroup of
G{N . Since p does not divide χp1q{θp1q, and all the irreducible constituents
of χDθ lie over θ, it follows that there is some irreducible constituent γ P
IrrpDθ|θq such that p does not divide γp1q{θp1q. By Theorem 1.12, we have
that γN “ θ. Since we are assuming that Conjecture B holds, we have that
Dθ{N is abelian. Since Dθ{N P SylppG{Nq, we have that G{N has abelian
Sylow p-subgroups. �

2.7. Theorem F

In this section we prove Theorem F of the introduction. We will need
the following result, which is essentially a result of R. Knörr. Recall that if
pG,N, θq is a character triple, then xN P G{N is θ-good if θ has aD-invariant
extension to Nxxy, where D{N “ CG{N pxNq. The θ-good conjugacy classes
of G{N (those consisting of θ-good elements) play the role of the conjugacy
classes of G when we are working with characters of G over θ. For instance,
it is a theorem of P. X. Gallagher that |IrrpG|θq| is the number of conjugacy
classes of G{N consisting of θ-good elements (see Theorem 5.16 of [Nav18]).

Theorem 2.23. Suppose that Z Ď ZpGq and let θ P IrrpZq. Suppose
that gZ and hZ are not G{Z-conjugate. Then

ÿ

χPIrrpG|θq

χpgqχph´1q “ 0.

Also
ÿ

χPIrrpG|θq

|χpgq|2 “ |CG{ZpgZq|

if g is θ-good.

Proof. The first part is a special case of Corollary 7 of [Kno06]. The
second part is an unpublished result of Isaacs. For a proof see Theorem 5.21
of [Nav18]. �

Recall that we write Gp
1

for the set of p-regular elements of the finite
group G, that is, those elements whose order is not divisible by p. If χ P
IrrpGq, we denote by χp

1

the restriction of χ to Gp
1

. We know that we can
write

χp
1

“
ÿ

ϕPIBrpGq

dχϕϕ

for uniquely determined non-negative integers dχϕ called the decomposition
numbers. The matrix D “ pdχϕq is called the decomposition matrix of G.
The following is Theorem F of the introduction.
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Theorem 2.24. Suppose that Z is a central subgroup of G, and let θ P
IrrpZq. Let B be a Brauer p-block of G such that IrrpB|θq is not empty. Let
DB,θ “ pdχϕq, where χ P IrrpB|θq and ϕ P IBrpBq. Then DB,θ is not of the
form

ˆ

˚ 0
0 ˚

˙

,

for any ordering of the rows and columns.

Proof. Let D “ pdχϕq be the decomposition matrix of G and let Mθ be
the submatrix of D whose rows are indexed by the characters in IrrpG|θq “
tχ1, . . . , χku. Let tx1, x2, . . . , xlu be a set of representatives of the p-regular
conjugacy classes of G. Let Xθ “ pχipxjqq be the submatrix of the character
table of G with rows indexed by elements in IrrpG|θq and columns indexed by
the representatives of the p-regular conjugacy classes of G. Let Y “ pϕipxjqq
be the Brauer character table of G, where IBrpGq “ tϕ1, . . . , ϕlu. Then we
have that Xθ “MθY .

We first assume that Z is a p-group. Suppose that g P G is p-regular. We
claim that g is θ-good. First we prove that CG{ZpgZq “ CGpgq{Z. Indeed,
let xZ P CG{ZpgZq. Then,

gZ “ pgZqxZ “ gxZ,

and therefore gx “ gz for some z P Z. Since z is a central p-element and gx

and g are p-regular elements, we have that z “ 1 and therefore x P CGpgq.
Now let η be an extension of θ to xZ, gy. We need to prove that η is CGpgq-
invariant. But this is clear since CGpgq Ď CGpxq for all x P xZ, gy. Hence g
is θ-good and the claim is proven.

Note that if xi and xj are not G-conjugate p-regular elements, then xiZ
and xjZ are not G{Z-conjugate. Indeed, suppose that there exists gZ P G{Z
such that xiZ “ pxjZq

gZ “ xgjZ, hence xi “ xgjz for some z P Z. Again,

since Z is a central p-group and xi and xgj are p-regular elements, we have

that z “ 1 and hence xi “ xgj . Let E P MatlpCq be the diagonal matrix with

diagonal entries |CG{ZpxiZq|. By Theorem 2.23 we have that

E “ Xt
θXθ “ Y tpMθq

tMθY .

What we have done until now holds for every θ P IrrpZq. If θ “ 1Z is
the trivial character of Z, notice that M1Z is the decomposition matrix of
G{Z, since IrrpG|1Zq “ IrrpG{Zq and IBrpG{Zq “ IBrpGq by Theorem 1.44.
By the previous equation, for θ “ 1Z , we have

E “ Xt
1Z
X1Z “ Y tpM1Z q

tM1ZY ,

and since Y is a regular matrix, we conclude that

C “M t
1Z
M1Z “M t

θMθ,

where C is the Cartan matrix of G{Z. Until now, our ordering of IrrpG|θq “
tχ1, . . . , χku and IBrpGq “ tϕ1, . . . , ϕlu was arbitrary. Now let B1, . . . , Br
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be the different p-blocks of G, and order IrrpG|θq and IBrpGq by blocks
(so that the first characters are in B1, and so on). Since Z is a central
p-group, by Theorem 1.44 we have that there exists a unique p-block Bi

of G{Z contained in Bi. Let CBi be the Cartan matrix of Bi. We have

that C “ diagpCB1
, . . . , CBrq and Mθ “ diagpMB1,θ, . . . ,MBr,θq are block

diagonal matrices. Then,

M t
θMθ “ diagpM t

B1,θMB1,θ, . . . ,M
t
Br,θMBr,θq.

Since C “M t
θMθ, we necessarily have that CBi “M t

Bi,θ
MBi,θ for every

i. Now if MB,θ is of the form

ˆ

˚ 0
0 ˚

˙

,

so is CB. By Problem 3.4 of [Nav98a] this is a contradiction.

This ends the proof of the case where Z is a p-group. We prove now the
general case. Write Z “ Zp ˆ Zp1 , where Zp is the Sylow p-subgroup of Z
and write θ “ θp ˆ θp1 , with θp P IrrpZpq and θp1 P IrrpZp1q. By assumption,
there is χ P IrrpBq over θ, and therefore over θp1 . Now, B covers the block
tθp1u, and by Theorem 1.41, we have that IrrpB|θp1q “ IrrpBq. We conclude
that DB,θ “ DB,θp , and we are done by the central p-group case. �

Easy examples show that in Theorem F, we cannot replace Z central by
a G-invariant character of an abelian ZŸ G. For instance, if G “ A4, p “ 2,
ZŸ G is the Klein subgroup, and θ “ 1Z , then G has a unique 2-block, and
the matrix DB,θ is the identity.

2.8. θ-Brauer characters

Suppose again thatN is a normal subgroup ofG. It is natural to consider
the normal set G0 “ tx P G |xp P Nu and the complex space cfpG0q of
complex class functions defined on G0. If δ P cfpGq, we denote by δ0 the
restriction of δ to G0. The space cfpG0q can naturally be decomposed as a
direct sum of subspaces. Indeed, for a given θ P IrrpNq, we define cfpG|θq
to be the C-span of IrrpG|θq, and we let

cfpG0|θq “ cfpG|θq0 “ tδ0| δ P cfpG|θqu .

Of course, cfpG0|θq “ cfpG0|θgq for g P G. It is easy to prove (see Lemma
2.1 of [Nav00]) that if Θ is a complete set of representatives of the G-action
on IrrpNq, we have that

cfpG0q “
à

θPΘ

cfpG0|θq .

Hence, the strategy is now to fix θ P IrrpNq and focus on cfpG0|θq. The
next natural step is to prove that if T “ Gθ is the stabilizer of θ in G, then
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induction ψ ÞÑ ψG defines a linear isomorphism

cfpT 0|θq Ñ cfpG0|θq .

This is done in Lemma 2.2 of [Nav00]. So, using induction, we are left with
a G-invariant θ, that is, with a character triple pG,N, θq.

Suppose now that a set IBrpGq of irreducible Brauer characters of G is
given. (Or that we have chosen a maximal ideal M containing p in the ring
of algebraic integers R of the complex numbers.) If N is a p-group, Navarro
constructed in [Nav00] a natural basis of cfpG0q only depending on IBrpGq
(or M). Let us review Navarro’s construction.

Suppose that θ P IrrpNq is G-invariant. We define θ̂ P cfpG0|θq as
follows. If x P G0, then xp P N and Nxxy{N is a p1-group. Since N is

a p-group, there is a canonical extension θ̂x P IrrpNxxyq by Theorem 1.17.
This is the unique extension of θ to Nxxy whose determinantal order is a

power of p. Now we define θ̂pxq “ θ̂xpxq. If η is any class function defined
on the p-regular elements of G, we define

pθ ‹ ηqpxq “ θ̂pxqηpxp1q

for x P G0. We are finally ready to define Navarro’s N -Brauer characters.
These are

IBrpG|θq “ tθ ‹ η | η P IBrpGqu .

One of the main results in [Nav00] (Theorem 4.3) is that IBrpG|θq is a
basis of cfpG0|θq and that if χ P IrrpG|θq, then

χ0 “
ÿ

ϕPIBrpG|θq

dχϕϕ

for some (uniquely defined) non-negative integers dχϕ. This integers are
closely related to the work of Külshammer and Robinson on N -projective
modules in [KR87]. To understand this relation we need a bit more. As we
said before, using Lemma 2.1 and Lemma 2.2 of [Nav00], we can construct
a basis

IBrpG,Nq “ tϕG | ϕ P IBrpG|θq, θ P Θu

of cfpG˝q such that if χ P IrrpGq then

χ0 “
ÿ

ϕPIBrpG,Nq

dχϕϕ

(this is Theorem A of [Nav00]). Now, if we let

Φϕ “
ÿ

χPIrrpGq

dχϕχ,

where ϕ P IBrpG,Nq, then Theorem B of [Nav00] asserts that the set
tΦϕ | ϕ P IBrpG,Nqu is the Külshammer-Robinson Z-basis of the Z-module
Mp1pG,Nq generated by the characters of all the N -projective RG-modules
for certain complete discrete valuation ring R.
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What happens when N is not necessarily a p-group? This case is solved
(in a non-canonical way) in [Nav12]. Let us explain how. Suppose first
that N is central. Hence N “ Np ˆ Np1 , where Np P SylppNq. Therefore
we can write θ “ α ˆ β, where α P IrrpNpq and β P IrrpNp1q. If η is a class
function defined on the p-regular elements of G, let us define now

pθ ‹ ηqpxq “ θpxpqηpxp1q “ pα ‹ ηqpxq

for x P G0. (Notice that the last equation makes sense, since xp P N if and
only if xp P Np). Now, in [Nav12] it is proved that

IBrpG|θq “ tα ‹ η | η P IBrpG|βqu

is a basis of cfpG0|θq, and that if χ P IrrpG|θq, then

χ0 “
ÿ

ϕPIBrpG|θq

dχϕϕ

for some (uniquely defined) non-negative integers dχϕ. (One might think
that the notation is quite confusing, since if ϕ P IBrpNq, IBrpG|ϕq usually
denotes the set of irreducible Brauer characters of G lying over ϕ. But there
is no such confusion: if θ P IBrpNq (that is, if N is a p1-group), then β “ θ,

G˝ “ Gp
1

, and θ ‹ η “ η for all η P IBrpGq).

Finally, it is shown in Lemma 2.1 of [Nav12], that if pG,N, θq and
pG˚, N˚, θ˚q are isomorphic character triples then there is a natural isomor-
phism of the vector spaces

˚ : cfpG0|θq Ñ cfppG˚q0|θ˚q

such that

pχ˚q0 “ pχ0q˚

for χ P cfpG|θq. This easily shows that, if N˚ is central in G˚, then the
inverse image of

IBrpG˚|θ˚q “ tθ˚p ‹ η
˚ | η P IBrpG˚|θ˚p1qu

where θ˚ “ θ˚p ˆ θ˚p1 , is a basis of cfpG0|θq. Since this basis depends on the

choice of the isomorphic character triple pG˚, N˚, θ˚q, we will denote it by
BpG˚,N˚,θ˚q. Hence, whenever χ P IrrpG|θq, we can write

χ0 “
ÿ

ϕPBpG˚,N˚,θ˚q

dχϕϕ

for some uniquely determined non-negative integers dχϕ. The problem with
this construction is that there is no known way of choosing a canonical
pG˚, N˚, θ˚q with N˚ central that is isomorphic to pG,N, θq.

Our main theorem in this section asserts that if we choose two standard
isomorphic triples, then the corresponding basis that is obtained through
this process does not change.
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Assume that pG˚, N˚, θ˚q is any character triple isomorphic to pG,N, θq,
with N˚ central, and again write N˚ “ N˚p ˆ N˚p1 , where N˚p P SylppN

˚q

and θ˚ “ θ˚p ˆ θ
˚
p1 , with θ˚p P IrrpN˚p q and θ˚p1 P IrrpN˚p1q. By Theorem 2.4 of

[Nav12], the set

IBrpG˚|θ˚q “ tθ˚ ‹ ϕ˚ | ϕ˚ P IBrpG˚|θ˚p1qu

is a basis of cfppG˚q0|θ˚q.

Since cfpG˚|θ˚q is the C-span of IrrpG˚|θ˚q, for each ϕ˚ P IBrpG˚|θ˚p1q
we can write

θ˚ ‹ ϕ˚ “
ÿ

χ˚PIrrpG˚|θ˚q

aϕ˚χ˚pχ
˚q˝

for some complex numbers aϕ˚χ˚ P C. (Notice that these numbers are not
necessarily unique, but for our purposes this is not going to matter.) Since
pG,N, θq and pG˚, N˚, θ˚q are isomorphic character triples, we know that
there exists a bijection ˚ : IrrpG|θq Ñ IrrpG˚|θ˚q and by Lemma 2.1 of
[Nav12], the map Ψ˝ ÞÑ pΨ˚q˝ from cfpG|θq˝ Ñ cfpG˚|θ˚q˝ is an isomor-
phism of vector spaces. Hence the basis of cfpG|θq˝ described in [Nav12]
is

BpG˚,N˚,θ˚q “ t
ÿ

χPIrrpG|θq

aϕ˚χ˚χ
˝ | ϕ˚ P IBrpG˚|θ˚p1qu.

Our goal now is to prove Theorem G. To do so, we need to prove that
BpG1,N1,θ1q “ BpG2,N2,θ2q whenever pG1, N1, θ1q and pG2, N2, θ2q are standard
isomorphic character triples. We need the following easy observation.

Lemma 2.25. Let N �G, θ P IrrpNq linear, and α, β P cfpGp
1

q, then

(a) θ ‹ pα` βq “ θ ‹ α` θ ‹ β,
(b) if θ ‹ α “ θ ‹ β then α “ β.

Proof. Let x P G˝, then

pθ ‹ pα` βqqpxq “ θpxpqpα` βqpxp1q “ θpxpqpαpxp1q ` βpxp1qq

“ θpxpqαpxp1q ` θpxpqβpxp1q “ pθ ‹ αqpxq ` pθ ‹ βqpxq,

and (a) is proven. Now suppose that θ ‹α “ θ ‹ β, and take y P Gp
1

. Notice
that y P G˝. Since θ is linear, we have that αpyq “ θp1qαpyq “ pθ ‹ αqpyq “
pθ ‹ βqpyq “ θp1qβpyq “ βpyq and (b) follows. �

We will use also the following non-trivial result of [Nav12]. If χ P

cfpGq Y cfpGqp
1

, we define χp1 P cfpGq as χp1pgq “ χpgp1q for all g P G.

Theorem 2.26. Suppose that N Ď ZpGq, and let θ “ αβ P IrrpNq, where
α P IrrpNq has p-power order and β P IrrpNq has p1-order. Let χ P cfpG|θq,
then χ˝ “ α ‹ χp1.

Proof. See Theorem 2.4 of [Nav12]. �
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Recall that if α : Ĝ Ñ G is a surjective group homomorphism with
kernel Z and ψ P IrrpGq, we denote by ψα the unique irreducible character

of Ĝ such that ψαpxq “ ψpαpxqq for x P Ĝ. Now, note that if x P Ĝp
1

, then

αpxq P Gp
1

. Hence, if ϕ P IBrpGq, we denote by ϕα the unique irreducible

Brauer character of Ĝ such that ϕαpxq “ ϕpαpxqq for x P Ĝp
1

. Notice that
Z Ď kerpϕαq.

Theorem 2.27. Let pG,N, θq be a character triple and let pG1, N1, θ1q

and pG2, N2, θ2q be standard isomorphic character triples. Then

BpG1,N1,θ1q “ BpG2,N2,θ2q.

Proof. Let P1 and P2 be projective representations associated with
θ arising pG1, N1, θ1q and pG2, N2, θ2q respectively (that is, Gi “ Ĝi{N ,

Ni “ N̂i{N , and θi “ λ̂i in the notation of Theorem 1.23). If χ P IrrpG|θq,
we write χi P IrrpGi|θiq for the image of χ through the respective standard
bijections. Now,

IBrpG1|θ1q “ tθ1 ‹ ϕ1 | ϕ1 P IBrpG1|pθ1qp1qu

“ t
ÿ

χPIrrpG|θq

aϕ1χ1χ
˝
1 | ϕ1 P IBrpG1|pθ1qp1qu.

and

IBrpG2|θ2q “ tθ2 ‹ ϕ2 | ϕ2 P IBrpG2|pθ2qp1qu

“ t
ÿ

χPIrrpG|θq

aϕ2χ2χ
˝
2 | ϕ2 P IBrpG2|pθ2qp1qu.

Hence, in the notation we have just introduced,

BpG1,N1,θ1q “ t
ÿ

χPIrrpG|θq

aϕ1χ1χ
˝ | ϕ1 P IBrpG1|pθ1qp1qu

and

BpG2,N2,θ2q “ t
ÿ

χPIrrpG|θq

aϕ2χ2χ
˝ | ϕ2 P IBrpG2|pθ2qp1qu

Since BpG1,N1,θ1q and BpG2,N2,θ2q are basis of cfpG|θq˝, we have that
|BpG1,N1,θ1q| “ |BpG2,N2,θ2q|. Therefore we just need to prove that

BpG1,N1,θ1q Ď BpG2,N2,θ2q.

Let

ψ “
ÿ

χPIrrpG|θq

aϕ1χ1χ
˝ P BpG1,N1,θ1q.
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In order to prove that ψ P BpG2,N2,θ2q we need to show that
ÿ

χPIrrpG|θq

aϕ1χ1χ
˝
2 P IBrpG2|θ2q.

In other words we need to prove that
ÿ

χPIrrpG|θq

aϕ1χ1χ
˝
2 “ θ2 ‹ ϕ2

for some ϕ2 P IBrpG2|pθ2qp1q. By Theorem 2.26 we have that χ˝2 “ θ2‹pχ2qp1 .
Then, by Lemma 2.25 (a),

ÿ

χPIrrpG|θq

aϕ1χ1χ
˝
2 “ θ2 ‹

¨

˝

ÿ

χPIrrpG|θq

aϕ1χ1pχ2qp1

˛

‚.

Write

ϕ2 “
ÿ

χPIrrpG|θq

aϕ1χ1ppχ2qp1q
p1 .

Then ϕ2 P cfpGp
1

2 q and since ppχ2qp1q
p1pxq “ pχ2qp1pxq for all x P Gp

1

2 and for
all χ2 P IrrpG2q, we have for g P G˝2 that

pθ2 ‹ ϕ2qpgq “ θ2pgpqϕ2pgp1q “
ÿ

χPIrrpG|θq

aϕ1χ1χ
˝
2pgq.

To end we just need to prove that ϕ2 P IBrpG2|pθ2qp1q.

Write Ĝ “ G ˆ Z1 ˆ Z2 as in Theorem 2.8, and let ρ1 : Ĝ Ñ Ĝ1 and
ρ2 : ĜÑ Ĝ2 be the maps defined in Theorem 2.8(b). Write ηi “ χρii P IrrpĜq

and let β be the linear character of Ĝ{N such that βη1 “ η2 (Theorem

2.8(c)). Since β is linear and N Ď kerpβq we have that pβp1q
p1 “ βp

1

P

IBrpĜ{Nq. If ϕ P IBrpG1|pθ1qp1q, we have that ϕρ1 P IBrpĜ{Nq and then

pβp1q
p1ϕρ1 P IBrpĜ{Nq by Problem 2.13 of [Nav98a]. Since ψ P BpG1,N1,θ1q

we have that
ÿ

χPIrrpG|θq

aϕ1χ1χ
˝
1 P IBrpG1|θ1q,

and hence
ÿ

χPIrrpG|θq

aϕ1χ1χ
˝
1 “ θ1 ‹ ϕ1

for some ϕ1 P IBrpG1|pθ1qp1q. Now, again by Theorem 2.26 and Lemma
2.25(a) we have that

θ1 ‹ ϕ1 “
ÿ

χPIrrpG|θq

aϕ1χ1χ
˝
1 “ θ1 ‹

ÿ

χPIrrpG|θq

aϕ1χ1pχ1qp1 .
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Since θ1 is linear, by Lemma 2.25(b) we have that

ϕ1 “
ÿ

χPIrrpG|θq

aϕ1χ1ppχ1qp1q
p1 .

Hence

ϕρ11 “
ÿ

χPIrrpG|θq

aϕ1χ1ppχ
ρ1
1 qp1q

p1 “
ÿ

χPIrrpG|θq

aϕ1χ1ppη1qp1q
p1 .

Now, since βη1 “ η2, we have that

ÿ

χPIrrpG|θq

aϕ1χ1ppη2qp1q
p1 “

ÿ

χPIrrpG|θq

aϕ1χ1pβp1pη1qp1q
p1

“ pβp1q
p1ϕρ11 P IBrpĜ{Nq.

Hence ϕ2 “
ř

χPIrrpG|θq aϕ1χ1ppχ2qp1q
p1 P IBrpG2|pθ2qp1q and the proof is

concluded. �

From now on, if pG,N, θq is a character triple we define IBrpG|θq “
BpG˚,N˚,θ˚q, where pG˚, N˚, θ˚q is a standard isomorphic character triple.
What we have just proved is that this basis is independent of the choice of
isomorphic character triples and hence it is canonical, once we have fixed
IBrpG˚q. This is exactly Theorem G of the introduction.

We call θ-Brauer characters the elements of this basis.

If χ P IrrpG|θq and ϕ P IBrpG|θq, we denote the coefficient of ϕ in χ˝ by
dχϕ. In this thesis we call the numbers dχϕ the θ-decomposition numbers.

First, we prove that these θ-decomposition numbers are the same that
Navarro gives in [Nav00]. But this is easy. First, it is proved in Theorem
3.1 of [Nav00] that if pG,N, θq is a character triple and N is a p-group, then
there exists a standard isomorphic character triple pG˚, N˚, θ˚q with N˚ a
p-group. Now, it is proved in Theorem 4.3 of [Nav00] that in this case,

θ̂˚pxqη˚pxp1q “ θ˚pxpqη
˚pxp1q,

for all x P pG˚q˝, η˚ P IBrpG˚q (this follows from the fact that N˚xxy “
N˚ˆxxp1y and in this case the unique extension of θ˚ to N˚xxy with p-power
order is θ˚ ˆ 1xxp1y).

Let χ, ψ P IrrpG|θq. We say that χ and ψ are θ-connected if there exists
ϕ P IBrpG|θq such that

dχϕ ‰ 0 ‰ dψϕ.

The connected components of the graph defined by θ-connection define a
partition in IrrpG|θq. We call the elements of this partition the blocks defined
by θ-decomposition numbers. We shall prove that these blocks are, in fact,
the θ-blocks.
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Recall that if χ and ψ are irreducible characters of G, we say that χ and
ψ are connected if there exists ϕ P IBrpGq such that

dχϕ ‰ 0 ‰ dψϕ,

where dχϕ and dψϕ are the classical decomposition numbers. (We hope this
notation does not confuse the reader. As before, if N is a p1-group, then θ P
IBrpNq and the classical decomposition numbers and the θ-decomposition
numbers coincide).

Lemma 2.28. Let pG,N, θq be a character triple with N Ď ZpGq. Let
χ, ψ P IrrpG|θq. Then χ and ψ are connected if and only if they are θ-
connected.

Proof. As before, write N “ Np ˆ Np1 , with Np P SylppNq, and θ “

θp ˆ θp1 , with θp P IrrpNpq and θp1 P IrrpNp1q. Since pχp1q
p1 “ χp

1

, we have

by Theorem 2.26 that χ˝ “ θ ‹ χp1 “ θ ‹ χp
1

. Since χ P IrrpG|θp1q, it is clear

that all the Brauer irreducible constituents of χp
1

lie over θp1 . Now, using
Lemma 2.25 we have that

χp
1

“
ÿ

ϕPIBrpG|θp1 q

dχϕϕ,

if and only if

χ˝ “
ÿ

ϕPIBrpG|θp1 q

dχϕpθ ‹ ϕq.

�

Note that from Lemma 2.28 we deduce that in the case that N is cen-
tral, the θ-decomposition numbers and the classical decomposition numbers
coincide. This agrees with the results obtained by J. Zeng in [Zen03].

Using Lemma 2.28 and Theorem F we easily obtain the following.

Theorem 2.29. Let pG,N, θq be a character triple with N Ď ZpGq. Then
the blocks defined by θ-decomposition numbers are exactly the sets IrrpB|θq
where B runs over the p-blocks of G.

Proof. Let Bθ be a block defined by θ-decomposition numbers. By
Lemma 2.28 we know that Bθ Ď IrrpB|θq for some p-block B. We prove now
that IrrpB|θq Ď Bθ.

Let D “ pdχϕq be the decomposition matrix of G and write Dθ for the
submatrix of D whose rows and columns are indexed by elements in IrrpB|θq
and IBrpBq respectively. By Theorem F, we know that D is not of the form

ˆ

˚ 0
0 ˚

˙
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for any ordering of the rows and columns. Hence if χ, ψ P IrrpB|θq there
exist χ “ χ1, χ2, . . . , χk “ ψ and ϕ1, ϕ2, . . . , ϕk´1 with χi P IrrpB|θq and
ϕi P IBrpBq such that

dχiϕi ‰ 0 ‰ dχi`1ϕi .

By Lemma 2.28, the θ-decomposition numbers are the classical decomposi-
tion numbers. This completes the proof. �

Theorem 2.30. Let pG,N, θq be a character triple. The blocks defined
by θ-decomposition numbers are exactly the θ-blocks of G.

Proof. Let pG˚, N˚, θ˚q be a standard isomorphic character triple and
let ˚ : IrrpG|θq Ñ IrrpG˚|θ˚q be the standard bijection. Let χ, ψ P IrrpG|θq.
By Lemma 2.1 of [Nav12] we have that the map Ξ˝ ÞÑ pΞ˚q˝ from cfpG|θq˝ Ñ
cfpG˚|θ˚q˝ is an isomorphism of vector spaces (see discussion preceding
Lemma 2.25). Therefore, χ, ψ P IrrpG|θq lie in the same block defined by
θ-decomposition numbers if and only if χ˚, ψ˚ lie in the same block defined
by θ˚-decomposition numbers. Since N˚ Ď ZpG˚q, using Theorem 2.29 we
have that χ˚, ψ˚ lie in the same block defined by θ˚-decomposition numbers
if and only if χ˚, ψ˚ lie in the same p-block of G˚, that is, if and only if χ
and ψ lie in the same θ-block. �

2.9. θ -linking

One of the ways to define the Brauer classical p-blocks is through a
linking (see Definition 1.31). We aim to do the same with the θ-blocks.

Definition 2.31 (θ-linking). Let χ, ψ P IrrpG|θq. We say that χ and ψ
are θ-linked if

ÿ

xPG˝

χpxqψpxq ‰ 0,

where G˝ “ tx P G | xp P Nu.

We would like to say, as in the classical theory, that the connected com-
ponents of the graph defined by θ-linking in IrrpG|θq are the θ-blocks. Un-
fortunately, we will see that this is not true in general, unless we impose
some extendibility condition on θ. On the other hand, it is always true that
each connected component of the graph defined by θ-linking is contained in
a unique θ-block. To prove it, we need the following.

Proposition 2.32. Let pG,N, θq and pG˚, N˚, θ˚q be isomorphic char-
acter triples, and write ˚ : IrrpG|θq Ñ IrrpG˚|θ˚q for the associated bijection.
Then, χ1, χ2 P IrrpG|θq are θ-linked if and only if χ˚1 , χ

˚
2 are θ˚-linked.

Proof. Write
G˝ “ Nx1 Y . . .YNxt

and
pG˚q˝ “ N˚x˚1 Y . . .YN

˚x˚t ,
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as disjoint unions, where pNxq˚ “ N˚x˚.

Since Nxxjy{N is cyclic, θ extends to Nxxjy. Let θ̃j P IrrpNxxjyq ex-
tending θ. Now, by Gallagher’s Corollary (Corollary 1.16), every irreducible

constituent of θNxxjy is of the form ψθ̃j with ψ P IrrpNxxjy{Nq. Then

pχ1qNxxjy “
ÿ

ψPIrrpNxxjy{Nq

eψψθ̃j “ ψ1,j θ̃j .

In the same way, we can write pχ2qNxxjy “ ψ2,j θ̃j , with ψ2,j a character

of Nxxjy{N . Now,

ÿ

xPG˝

χ1pxqχ2pxq “
t
ÿ

j“1

ÿ

nPN

χ1pxjnqχ2pxjnq

“

t
ÿ

j“1

ÿ

nPN

ψ1,jpxjnqθ̃jpxjnqψ2,jpxjnqθ̃jpxjnq

“

t
ÿ

j“1

ψ1,jpxjqψ2,jpxjq
ÿ

nPN

θ̃jpxjnqθ̃jpxjnq

“ |N |
t
ÿ

j“1

ψ1,jpxjqψ2,jpxjq.

where the last equality holds by Lemma 8.14 of [Isa76].
Now, for all N Ď H Ď G and β P CharpH{Nq, define βτ P CharpH˚{N˚q

by βτ px˚N˚q “ βpxNq, where pxNq˚ “ x˚N˚. Then, ppχiqNxxjyq
˚ “ ψτi,j θ̃j

˚
,

for i “ 1, 2. Reasoning as above,

ÿ

x˚PpG˚q˝

χ˚1px
˚qχ˚2px

˚q “ |N˚|
t
ÿ

j“1

ψτ1,jpx
˚
j qψ

τ
2,jpx

˚
j q

“ |N˚|
t
ÿ

j“1

ψτ1,jpx
˚
jN

˚qψτ2,jpx
˚
jN

˚q

“ |N˚|
t
ÿ

j“1

ψ1,jpxjNqψ2,jpxjNq

“ |N˚|
t
ÿ

j“1

ψ1,jpxjqψ2,jpxjq.

This completes the proof. �

Proposition 2.33. Let N � G with N Ď ZpGq. Let θ P IrrpNq be G-
invariant and let χ1, χ2 P IrrpG|θq. Then, χ1 and χ2 are θ-linked if and only
if they are linked in the sense of the Definition 1.31.
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Proof. Write N “ Np ˆ Np1 , where Np P SylppNq, and θ “ θp ˆ θp1 ,
where θp P IrrpNpq and θp1 P IrrpNp1q. Now, G˝ “ tx P G | xp P Nu “ tx P

G | xp P Npu. Write Gp
1

“ tx P G | p - opxqu. Since N Ď ZpGq, if n P Np,
y P G and χ P IrrpG|θq, we have that χpnyq “ θppnqχpyq. Now,

ÿ

xPG˝

χ1pxqχ2pxq “
ÿ

nPNp

ÿ

yPGp1

χ1pnyqχ2pnyq

“
ÿ

nPNp

ÿ

yPGp1

θppnqχ1pyqθppnqχ2pyq

“
ÿ

nPNp

ÿ

yPGp1

χ1pyqχ2pyq

“ |Np|
ÿ

yPGp1

χ1pyqχ2pyq.

This completes the proof. �

As an immediate corollary we obtain the following.

Corollary 2.34. Let N � G, let θ P IrrpNq be G-invariant and let
χ, ψ P IrrpG|θq. If χ and ψ are θ-linked then they lie in the same θ-block.

Proof. Let pG˚, N˚, θ˚q be a standard isomorphic character triple and
write ˚ : IrrpG|θq Ñ IrrpG˚|θ˚q for the standard bijection. By Proposition
2.32, we have that χ˚ and θ˚ are θ˚-linked and hence, by Proposition 2.33
we have that they are linked in the sense of Definition 1.31. Therefore χ˚

and ψ˚ lie in the same p-block and hence χ, ψ lie in the same θ-block. �

It is clear now that if C is a connected component of the graph defined by
θ-linking in IrrpG|θq, then there exists a θ-block Bθ such that C Ď IrrpBθq.
However, it is possible for a θ-block to contain more than one connected
component of this graph, as the following example illustrates.

Example. Take p “ 2, G “ SLp2, 3q and N “ ZpGq. Let θ be the
non-trivial character of N . Then, IrrpG|θq “ tχ1, χ2, χ3u, where the values
of χ1, χ2, χ3 are given in the following table:

Class: 1 2 4 31 32 61 62

|CGpgq|: 24 24 4 6 6 6 6
|Clpgq|: 1 1 6 4 4 4 4
χ1 2 -2 0 -1 -1 1 1
χ2 2 -2 0 -ω -ω2 ω ω2

χ3 2 -2 0 -ω2 -ω ω2 ω
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where ω “ e2πi{3 is a primitive 3th root of unity.

Now, if G˝ “ tx P G | xp P Nu, we have that G˝ contains all of the
conjugacy classes of G except for the class consisting of the elements of
order 4. Since χ1pyq “ χ2pyq “ χ3pyq “ 0 for all y P G of order 4, we have
that

ÿ

xPG˝

χipxqχjpxq “
ÿ

xPG

χipxqχjpxq “ 0, i, j P t1, 2, 3u, i ‰ j.

Hence χ1, χ2, χ3 lie in distinct connected components of the graph defined by
θ-linking in IrrpG|θq. Now, G has just one p-block B and hence χ1, χ2, χ3 P

IrrpB|θq. Since N is central in G, by Theorem 2.10(b), we have that
χ1, χ2, χ3 belong to the same θ-block.

However, as we said before, if we add some extendibility hypothesis on
θ, we can see the θ-blocks in terms of θ-linking.

Theorem 2.35. Let pG,N, θq be a character triple, and let P {N P

SylppG{Nq. Suppose that θ extends to P . Then the θ-blocks are the con-
nected components of the graph defined by θ-linking in IrrpG|θq.

To prove this we need the following.

Lemma 2.36. Let B be a p-block of G and let χ P IrrpBq be of height
zero. Let ψ P IrrpBq. Then

ÿ

xPGp1

χpxqψpxq ‰ 0.

Proof. See Corollary 3.25 of [Nav98a]. �

Proposition 2.37. Let pG,N, θq be a character triple, let Bθ be a θ-
block and let Dθ{N be a θ-defect group for Bθ. Suppose that there exists
χ P IrrpBθq with pχp1q{θp1qqp “ |G : Dθ|p. Let ψ P IrrpBθq. Then, χ and ψ
are θ-linked.

Proof. Let pG˚, N˚, θ˚q be a standard isomorphic character triple and
let ˚ : IrrpG|θq Ñ IrrpG˚|θ˚q be the standard bijection. As always, let χ˚

denote the image of χ through ˚. Let B be the p-block of G˚ containing χ˚.
In the proof of Theorem 2.20, we show that

pχp1q{θp1qqp “ |G : Dθ|pp
hpχ˚q,

where hpχ˚q is the height of χ˚ in B. By hypothesis, we have that

pχp1q{θp1qqp “ |G : Dθ|p

and hence χ˚ has height zero in B. Since χ˚ and ψ˚ lie in B˚, by Lemma 2.36
and Proposition 2.33, we have that χ˚ and ψ˚ are θ˚-linked. By Proposition
2.32, we have that χ and ψ are θ-linked. �
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The key to proving Theorem 2.35 is the following result of M. Murai.

Theorem 2.38. Let pG,N, θq be a character triple. Let b be the p-block
of N containing θ and suppose that θ has height zero in b. Let B be a p-block
of G covering b and let D be a defect group of B. Suppose that θ extends to
DN , then there exists χ P IrrpB|θq of height zero.

Proof. See Theorem 4.4 of [Mur94]. �

Theorem 2.39. Let pG,N, θq be a character triple, let Bθ be a θ-block
and let Dθ{N be a θ-defect group of Bθ. Suppose that θ extends to Dθ. Let
χ, ψ P Bθ. Then, χ and ψ lie in the same connected component of the graph
defined by θ-linking in IrrpG|θq.

Proof. Let pG˚, N˚, θ˚q be a standard isomorphic character triple, with
standard bijection ˚ : IrrpG|θq Ñ IrrpG˚|θ˚q, and suppose that B˚ is the
block of G˚ such that pBθq

˚ “ IrrpB˚|θ˚q. Recall that we have shown in
Theorem 2.10 that Dθ{N is isomorphic to D˚N˚{N˚, where D˚ is a defect
group of B˚.

Since θ extends to Dθ, we have that θ˚ extends to D˚N˚, by the prop-
erties of character triple isomorphisms. Since θ˚ is linear, we have that θ˚

has height zero and hence by Theorem 2.38 applied to pG˚, N˚, θ˚q, we have
that there exists ξ˚ P IBrpB˚|θ˚q of height zero. Now, let ξ P IrrpG|θq be
the pre-image of ξ˚ under ˚ (notice that ξ P IrrpBθq). As in the proof of
Theorem 2.20, using that N˚ is central in G˚ and ξ˚ has height zero, we
have that

pξp1q{θp1qqp “ ξ˚p1qp “ |G
˚ : D˚|pp

hpξ˚q “ |G : Dθ|p .

By Proposition 2.37 we have that χ and ξ are θ-linked, and ψ and ξ are
θ-linked. �

Notice that if P {N is a Sylow p-subgroup of G{N and θ P IrrpNq is
G-invariant and extends to P , then θ extends to every p-subgroup of G{N .
Therefore, as a direct consequence of Theorem 2.39, we get Theorem 2.35.
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CHAPTER 3

On the Howlett-Isaacs theorem

3.1. Introduction

Let N be a normal subgroup of G and let θ P IrrpNq be G-invariant.
In Chapter 2, we were interested in the study of IrrpG|θq in terms of what
we defined as θ-blocks. In this Chapter our interest in IrrpG|θq continues
but from a different point of view. In particular, we are interested in the
case where the elements of IrrpG|θq form an orbit under the action of certain
elements of AutpGq.

Suppose that there is just one irreducible character of G lying over θ,
that is IrrpG|θq “ tχu. In this case it is easy to see that χN “ eθ where
e2 “ |G : N |. (See Lemma 8.2 in [Nav18].) In this situation, we say that
χ and θ are fully ramified with respect to G{N . Fully ramified characters
are essential in both ordinary and modular representation theory, and they
appear naturally. For instance, if K{L is an abelian chief factor of G and ψ P
IrrpKq is invariant in G, then one of the following holds: ψL is irreducible,

ψL “
řt
i“1 ϕi, where ϕi P IrrpLq are distinct and t “ |K : L|, or ψL “ eϕ

for some ϕ P IrrpLq and e2 “ |K : L|, that is ψ and ϕ are fully ramified with
respect to K{L. (See Theorem 6.18 of [Isa76]).

If χ and θ are fully ramified with respect to G{N and N “ ZpGq, we say
that G is of central type. In 1964, Iwahori and Matsumoto [IM64] proposed
a conjecture: if G is of central type, then G is solvable. This conjecture was
claimed to be solved by R. Liebler and J. Yellen in [LY79], but there was
a gap in their proof. Later, Howlett and Isaacs filled that gap and proved
the conjecture in their celebrated paper [HI82]. Now, this is known as the
Howlett-Isaacs theorem. This theorem is one of the first applications of the
Classification of Finite Simple Groups to Representation Theory.

Our first main result in this Chapter is the following generalization of the
Howlett-Isaacs theorem where we weaken the hypothesis of IrrpG|θq having
just one element by introducing the action of AutpGq.

Theorem H. Suppose that Z Ÿ G, and let λ P IrrpZq. Assume that if
χ, ψ P IrrpGq are irreducible constituents of the induced character λG, then
there exists a P AutpGq stabilizing Z, such that χa “ ψ. If T is the stabilizer
of λ in G, then T {Z is solvable.

In a different language of projective representations, Theorem H was
obtained by R. J. Higgs under some solvability conditions in [Hig88]. His
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proof is mostly sketched, among other reasons because he uses some of the
arguments in [HI82] or [LY79] or in some other papers by the author.
Here, we choose to present a complete proof of Theorem H, in the language
of character theory, and by doing so we shall adapt several arguments in all
these papers. We would like to acknowledge this now.

Theorem H is one case of a more general problem, which seems in-
tractable for now: if all the irreducible characters of G over some G-invariant
λ P IrrpZq have the same degree, then G{Z is solvable. (See Conjecture 11.1
of [Nav10].)

In the second main result of this Chapter, we study this latter situation
under some special hypothesis.

Theorem I. Suppose G is π-separable and let N “ OπpGq. Let θ P
IrrpNq be G-invariant. Then all members of IrrpG|θq have equal degrees if
and only if G{N is an abelian π1-group.

Theorem I has a block theory flavour, as we shall explain now. Suppose
that π is the set of primes different from a prime p, and assume the hypoth-
esis of Theorem I. By Theorem 10.20 of [Nav98a], we have that there is a
unique Brauer p-block B such that IrrpBq “ IrrpG|θq. Hence we are study-
ing blocks all of whose irreducible characters have the same degree. These
were studied by Okuyama and Tsushima in [OT83]. They showed that
these blocks were exactly the blocks with abelian defect group and inertial
index one. (See Proposition 1 and Theorem 3 of [OT83].) Our Theorem I
can be seen as a π-separable version of the Okuyama-Tsushima theorem.

All the results in this section are published in [NR17]. The proof of
Theorem I that we presented there was an improvement by Isaacs of an
earlier version. We reproduce this improved version of the proof here with
his kind permission.

3.2. Transitive Actions

If Z�G, λ P IrrpZq is G-invariant and P {Z P SylppG{Zq, in this Section
we explore the connection between IrrpG|λq and IrrpP |λq.

Lemma 3.1. Suppose that Z Ÿ G, and let λ P IrrpZq be G-invariant.
Assume that all characters in IrrpG|λq have the same degree dλp1q. Let
P {Z P SylppG{Zq. Then dpλp1q is the minimum of tδp1q | δ P IrrpP |λqu and
|IrrpP |λq| ď |IrrpG|λq|p.

Proof. Notice that pG,Z, λq is a character triple. By Theorem 1.23, we
can construct an isomorphic character triple pG˚, Z˚, λ˚q with Z˚ central
in G˚. Notice that |IrrpG|λq| “ |IrrpG˚|λ˚q| and if P {Z P SylppG{Zq, then
P ˚{Z˚ P SylppG

˚{Z˚q and |IrrpP |λq| “ |IrrpP ˚|λ˚q|. Recall that if χ P
IrrpG|λq and χ˚ P IrrpG˚|λ˚q is the image of χ under the isomorphism
of character triples, then χp1q{λp1q “ χ˚p1q. Hence if all the irreducible
characters in IrrpG|λq have degree dλp1q, then all the irreducible characters
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in IrrpG˚|λ˚q have degree d “ dλ˚p1q. Finally, if dp is the minimum of
tδ˚p1q |δ˚ P IrrpP ˚|λ˚qu, then dpλp1q is the minimum of tδp1q |δ P IrrpP |λqu.
Therefore, we may assume that λ is linear and Z is central.

Write IrrpG |λq “ tχj | 1 ď j ď su, and observe that the multiplicity
of χj in λG is χjp1q by Frobenius reciprocity (Theorem 1.10). Since by
hypothesis, all of the degrees χjp1q are equal, we can write λG “ d

ř

j χj ,

where d “ χjp1q for all j. Also, since λGp1q “ |G : Z|λp1q “ |G : Z|, we have
that sd2 “ |G : Z|. Write IrrpP |λq “ tδi | 1 ď i ď tu. Then pδiqZ “ δip1qλ
and hence, again by Frobenius reciprocity, λP “

ř

i diδi, where di “ δip1q

and
ř

di
2 “ |P : Z|. Note that if χ P IrrpG|δiq, then χ P IrrpG|λq and hence

we can write

δGi “
s
ÿ

j“1

dijχj ,

where we allow dij to be zero. It follows that d divides δGi p1q “ |G : P |di for
all i “ 1, . . . , t, and since |G : P | is a p1-number, the p-part dp of d divides
di for all i. If e is the greatest common divisor of tδip1q | i “ 1, . . . , tu, then
we conclude that dp divides e.

Since pχjqZ “ χjp1qλ for all j “ 1, . . . , s, if δ P IrrpP q lies under χj , then
δ P IrrpP |λq. Then, by Frobenius reciprocity, we also have that

pχjqP “
t
ÿ

i“1

dijδi,

and thus e divides χjp1q “ d. Since e is a p-power, we see that e divides dp,
and thus e “ dp. Then we have that

|P : Z| “
t
ÿ

i“1

di
2 ě e2t “ pdpq

2t .

Taking p-parts in sd2 “ |G : Z|, we obtain that sp ě t. Finally, since
di is p-power for all i “ 1, . . . , t, we have that e “ dp is the minimum of
tδip1q | i “ 1, . . . , tu, and we are done. �

The following result is a character-theoretical version of Theorem 1.2 of
[Hig88].

Theorem 3.2. Suppose that Z Ÿ G, λ P IrrpZq is G-invariant, p is a
prime and P {Z P SylppG{Zq. Let A “ IrrpG|λq and B “ IrrpP |λq. Suppose
that A is a finite group acting on A and B in such a way that

rpχaqP , δ
as “ rχP , δs

for all χ P A, δ P B and a P A. Assume further that χap1q “ χp1q for all
χ P A and a P A. Let B P SylppAq. If A acts transitively on A, then B acts
transitively on B and |A|p “ |B|.

Universitat de València Noelia Rizo Carrión



54 3.2. Transitive Actions

Proof. Write A “ tχ1, . . . , χsu and B “ tδ1, . . . , δtu. By hypothesis,
we have that all the characters in A have the same degree dλp1q and we can
write pχiqZ “ dλ for all i “ 1, . . . , s. By Frobenius reciprocity (Theorem
1.10), we have that λG “ d

řs
i“1 χi and therefore

|G : Z| “ d2s .

By Lemma 3.1, we have that dpλp1q is the minimum of the degrees in B and
that t ď sp. Write

pχiqP “
t
ÿ

j“1

dijδj

so that

pδjq
G “

s
ÿ

i“1

dijχi

by Frobenius reciprocity. Let B be a Sylow p-subgroup of A. Let δj be such
that δjp1q “ dpλp1q.

Now, let S “ IBpδjq be the stabilizer of δj in B. Since

rpχaqP , δ
as “ rχP , δs

for all a P A, we have that S Ď A acts on the set IrrpG|δjq of irreducible
constituents of δGj . Let O1, . . . ,Or be the set of S-orbits. Let ψi P Oi. We
may write

pδjq
G “

r
ÿ

k“1

bkp
ÿ

ξPOk

ξq .

If ξ P Ok, then there exists a P S such that ξ “ ψsk and hence ξp1q “ ψkp1q
by hypothesis. Then,

|G : P |dpλp1q “ pδjq
Gp1q “

r
ÿ

k“1

bk|Ok|ψkp1q “ dλp1q
r
ÿ

k“1

bk|Ok|

and therefore p does not divide

r
ÿ

k“1

bk|Ok| .

Therefore there is k such that |Ok| is not divisible by p. Since

|Ok| “ |S : ISpψkq|

is a power of p, we have that |Ok| “ 1. Hence ψk is S-fixed and then
S Ď IBpψkq Ď B. Also IBpψkq Ď R for some Sylow p-subgroup R of IApψkq.
Since A acts transitively on IrrpG|λq, we have s “ |A : IApψkq|. Thus
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sp “
|A|p

|IApψkq|p
“
|A|p
|R|

“
|B|

|R|
ď

|B|

|IBpψkq|

ď
|B|

|S|
“ |B : IBpδjq| ď t ď sp

Thus t “ sp, |B : IBpδjq| “ t and everything follows. �

3.3. Auxiliary results

Of course, if A acts by automorphisms on G, then A also acts on IrrpGq.
If χ P IrrpGq and a P A, then χa P IrrpGq is the unique character satisfying
that χapgaq “ χpgq for g P G.

We are frequently using the following hypotheses, so we state them sep-
arately:

Hypotheses 3.3. Suppose that Z Ď N Ÿ G, where Z Ÿ G. Let λ P
IrrpZq. Suppose that if τi P IrrpN |λq for i “ 1, 2, then there exists g P G
such that τ g1 “ τ2.

We say in this case that pG,N,Z, λq satisfies Hypothesis 3.3. We need
the following technical lemma.

Lemma 3.4. Suppose that pG,N,Z, λq satisfies Hypotheses 3.3. Let Z Ď
K Ď N , where K Ÿ G. Then the following holds.

(a) Let τi P IrrpK|λq for i “ 1, 2. Then there exists g P G such that
τ g1 “ τ2. That is, pG,K,Z, λq satisfies Hypotheses 3.3.

(b) Suppose that LŸ G is contained in K. Let ε P IrrpLq. Suppose that
γi P IrrpIKpεq|εq are such that γKi lie over λ for i “ 1, 2. Then there
is g P IGpεq such that γg1 “ γ2.

(c) Let τ P IrrpK|λq. Let γi P IrrpIN pτq|τq for i “ 1, 2. Then there
exists g P IGpτq such that γg1 “ γ2. That is, pIGpτq, IN pτq,K, τq
satisfies Hypotheses 3.3.

Proof. (a) Let γi P IrrpNq over τi. By hypothesis, we have that
γx1 “ γ2 for some x P G. We have that τx1 and τ2 are under γ2, so by
Clifford’s theorem (Theorem 1.11) there is n P N such that τxn1 “ τ2. Set
g “ xn.

(b) By Clifford’s correspondence (Theorem 1.14), γKi P IrrpK|εq and
hence, by hypothesis, γKi P IrrpK|λq. By part (a), there is x P G such
that pγK1 q

x “ γK2 . Now, εx and ε are under pγ2q
K , so again by Clifford’s

theorem, there exists k P K such that εxk “ ε. Then g “ xk P IGpεq. Now,
γg1 , γ2 P IrrpIKpεq|εq and pγg1q

K “ pγK1 q
g “ pγK1 q

x “ γK2 . By the uniqueness
in the Clifford correspondence, we deduce that γg1 “ γ2.
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(c) By the Clifford correspondence, we have that γNi P IrrpNq lies over
λ. By hypotheses, there is g P G such that pγN1 q

g “ γN2 . Now, τ g and τ are
N -conjugate by Clifford’s theorem, so by replacing g by gn, for some n P N ,
we may assume that τ g “ τ . Notice now that g P IGpτq. Also, γg1 “ γ2, by
the uniqueness in the Clifford correspondence. �

We are going to need the following result of Isaacs.

Theorem 3.5. Let N �G and K ď G with G “ NK and N XK “M .
Let θ P IrrpNq be invariant in G and assume θM “ ϕ is irreducible. Then
restriction defines a bijection IrrpG|θq Ñ IrrpK|ϕq.

Proof. See Corollary 4.2 of [Isa84]. �

Theorem 3.6. Assume that pG,N,Z, λq satisfies Hypotheses 3.3, with
Z Ď ZpNq. Let U Ď N , with U Ÿ G. Suppose that q is a prime dividing
|U |. Then q divides |Z X U |.

Proof. Let K “ UZ Ÿ G. If q does not divide |K : Z| “ |U : U X Z|
then we are done. Let 1 ‰ Q{Z P SylqpK{Zq. Since Z Ď ZpNq and K Ď N ,
we have that λ is K-invariant and hence IKpλq “ K. By Lemma 3.4(b)
(taking L “ Z and ε “ λ), we know that Gλ “ IGpλq acts transitively
on IrrpK|λq. By the Frattini argument, we have that Gλ “ KNGλpQq.
Notice then that A “ NGλpQq acts transitively on IrrpK|λq. Also A acts on
IrrpQ|λq and rpχaqQ, δ

as “ rχQ, δs for a P A, χ P IrrpK|λq and δ P IrrpQ|λq.
By Theorem 3.2, we have that A acts transitively on IrrpQ|λq.

Suppose now that q does not divide |Z X U |. Let ν “ λZXU . Then opνq
is a q1-number. Since |pQ X Uq{pZ X Uq| is a power of q, we have that ν
has a canonical extension ν̂ P IrrpQ X Uq of q1-order, by Theorem 1.17. By
Theorem 3.5, we know that restriction defines a natural bijection

IrrpQ|λq Ñ IrrpQX U |νq .

Let ρ P IrrpQ|λq be such that ρQXU “ ν̂. In particular, ρ is linear. Also ρZ “
λ. Let a P A. Then a fixes λ, and therefore ν. Now, a normalizes Q and U ,
so a normalizes UXQ. By the uniqueness of the extension in Theorem 1.17,
we have that pν̂qa “ ν̂. Thus ρa “ ρ. Since A acts transitively on IrrpQ|λq, it
follows that IrrpQ|λq “ tρu. Since ρZ “ λ, by Gallagher Corollary (Corollary
1.16), we know that |IrrpQ|λq| “ |IrrpQ{Zq|. We conclude that Q “ Z. This
contradiction shows that q divides |Z X U |. �

3.4. The Glauberman Correspondence

If a solvable group S acts coprimely on a group G, then there exists a
bijection from IrrSpGq, the irreducible characters of G fixed by the action of
S, onto IrrpCGpSqq. This map is known as the Glauberman correspondence
(see Definition 13.20 of [Isa76] for more details).

In the particular case where the group acting is a p-group, the Glauber-
man correspondence has a very nice and easy expression. If Q is a p-group
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that acts by automorphisms on a p1-group L, and C “ CLpQq then the
Glauberman correspondence is a bijection ˚ : IrrQpLq Ñ IrrpCq, such that
for every χ P IrrQpLq, we have that

χC “ eχ˚ ` p∆ ,

where p does not divide the integer e and ∆ is a character of C (or zero).
That is, the Glauberman correspondent χ˚ of χ is the unique irreducible
constituent of χC with rχC , χ

˚s ı 0 mod p (in fact, rχC , χ
˚s ” ˘1 mod

p, see Theorem 13.14 of [Isa76]). In particular, we easily check that the
Glauberman correspondence ˚ commutes with the action of GalpQ|G|{Qq,
where Q|G| “ Qpξq, where ξ is a primitive |G|-th root of unity, and with the
action of the group of automorphisms of the semidirect product LQ that fix
Q. In particular, we have that Qpχq “ Qpχ˚q. (We give more details of the
action of GalpQ|G|{Qq on IrrpGq in Chapter 4).

The idea to introduce the Glauberman correspondence in the Iwahori-
Matsumoto conjecture (page 145 of [IM64]) appears in [HI82]. As we shall
see in the proof of our main theorem, we need to do the same here, in a
more sophisticated way.

The next deep result is key in character theory. Its proof, in the case
where Z “ 1, is due to Dade ([Dad80]). (Other proofs are due to L. Puig
[Pui86], see also Section 7.9 of [Lin18]). The following useful strengthening
is due to Turull, who we thank for useful conversations on this subject.

Theorem 3.7. Suppose that G is a finite group, LQŸ G, where LŸ G,
p|L|, |Q|q “ 1, and Q is a p-group for some prime p. Suppose that LQ Ď

N Ÿ G, and Z Ÿ G, is contained in Q and in ZpNq. Let λ P IrrpZq. Let
H “ NGpQq and C “ CLpQq. Then for every τ P IrrQpLq there is a bijection

πpN, τq : IrrpN |τq Ñ IrrpN XH|τ˚q ,

where τ˚ P IrrpCq is the Glauberman correspondent of τ , such that:

(a) For γ P IrrpN |τq, h P H we have that

πpN, τhqpγhq “ pπpN, τqpγqqh .

(b) ρ P IrrpN |τq lies over λ if and only if πpN, τqpρq lies over λ.

Proof. The theorem follows from the proofs of Theorem 7.12 of [Tur09]
and Theorem 6.5 of [Tur08]. Specifically, we make ψ “ θ in Theorem 7.12
of [Tur09], and G, H, θ in Theorem 7.12 of [Tur09], correspond to G, L,
τ ; while G1, H 1, θ1 correspond to H, C and τ˚, respectively. Now, Theorem
7.12 of [Tur09] (1) and (2) predicts a bijection

1 :
ď

xPH

IrrpN |τxq Ñ
ď

xPH

IrrpN XH|pτ˚qxq ,

which commutes with the action of H by part (7) of this Theorem. By parts
(4), (1) and (2) of the same theorem, writing R “ L and S “ N , we have
that γ P IrrpN |τq if and only if γ1 P IrrpN X H|τ˚q. We call πpN, τq the
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restriction of the map 1 to IrrpN |τq. Part (b) follows from Theorem 10.1 of
[Tur17]. �

Let Q be a p-group acting on a p1-group L and write ˚ : IrrQpLq Ñ
IrrpCLpQqq for the Glauberman correspondence. If N is a normal subgroup
of L and N is Q-invariant, then Q acts on IrrpNq and there is a Glauberman
correspondence p˚, Nq : IrrQpNq Ñ IrrpCN pQqq.

We need the following property of the Glauberman correspondence.

Theorem 3.8. Let Q be a p-group acting on a p1-group L, let C “

CLpQq and let ˚ : IrrQpLq Ñ IrrpCq be the Glauberman correspondence. Let

N � L be Q-invariant. Let χ P IrrQpLq, let θ P IrrQpNq, and write θp˚,Nq

for the Glauberman correspondent of θ under the Glauberman map p˚, Nq :

IrrQpNq Ñ IrrpC XNq. Then rθG, χs ‰ 0 if and only if rθp˚,NqqC , χ˚s ‰ 0.

Proof. See Theorem 13.29 of [Isa76]. �

We also need the following easy observation.

Lemma 3.9. Suppose that LQŸ G, where LŸ G, p|L|, |Q|q “ 1, and Q
is a p-group for some prime p. Suppose that τ P IrrQpLq, and let τ˚ P IrrpCq
be the Glauberman correspondent, where C “ CLpQq. Suppose that Z Ÿ G
is contained in C. Let λ P IrrpZq be L-invariant. Let H “ NGpQq. Suppose
that

λL “ fpτh1 ` ¨ ¨ ¨ ` τhsq ,

for some hi P H, and some integer f . Then

λC “ f˚ppτ˚qh1 ` ¨ ¨ ¨ ` pτ˚qhsq ,

for some integer f˚.

Proof. We know by Theorem 3.8 that if ν P IrrQpLq, then ν˚ lies above
λ if and only if ν lies above λ. Let ρ P IrrpC|λq. Then ρ “ ν˚ for some
ν P IrrpL|λq. Thus ν “ τh for some h P H, by hypothesis. Then

ρ “ ν˚ “ pτhq˚ “ pτ˚qh ,

because H commutes with Glauberman correspondence. Since λ is C-
invariant, then we easily conclude the proof of the lemma. �
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3.5. Theorem H

It is well-known that each finite simple group S uniquely determines
(up to isomorphism) a perfect finite group S̃ with S̃{ZpS̃q – S, such that

whenever G is perfect and G{ZpGq – S then G – S̃{Z, for some Z Ď ZpS̃q.

ZpS̃q is called the Schur multiplier of S and it is usually written as MpSq
(see discussion after Corollary 5.4 of [Isa08] or Appendix B of [Nav18] for
further details, or for a character theoretical approach see Chapter 11 of
[Isa76]).

We have mentioned before that the Howlett-Isaacs Theorem was one of
the first applications of the Classification of Finite Simple Groups (CFSG)
to representation theory. In particular, the CFSG is needed in the following
result of [HI82], which we shall use later on.

Theorem 3.10. Let X be a non-abelian simple group. Then there exists
a prime p such that p divides |X|, p does not divide |MpXq|, and there is
no solvable subgroup of X having p-power index.

Proof. This is Theorem (2.1) of [HI82]. �

Theorem 3.11. Suppose that H{ZpHq “ S1ˆS2ˆ¨ ¨ ¨ˆSk, where Si is
simple and there exists a prime p such that, for all i, p does not divide the
order of the Schur multiplier MpSiq. Then p does not divide |H 1 X ZpHq|.

Proof. See Corollary 7.2 of [HI82]. �

Theorem 3.12. Assume pG,N,Z, λq satisfies Hypothesis 3.3. Then
IN pλq{Z is solvable.

Proof. We argue by induction on |N : Z|. Let S{Z be the largest
solvable normal subgroup of N{Z. Let T “ IGpλq be the stabilizer of λ in
G.

Step 1. We may assume that λ is G-invariant.

By Lemma 3.4(c) (with K “ Z), we have that pIGpλq, IN pλq, Z, λq sat-
isfies Hypothesis 3.3. Hence, by working in IGpλq, we see that it is no loss
to assume that λ is invariant in G. Hence, we wish to prove that N{Z is
solvable, that is, that S “ N .

Step 2. If Z ď K ă N , with K Ÿ G, then K{Z is solvable. Also N{S is
isomorphic to a direct product of a non-abelian simple group X.

By Lemma 3.4 (a) and induction, we have that if Z ď K ă N , with
K Ÿ G, then K{Z is solvable. Then N{S is a chief factor of G{Z, and it is
isomorphic to a direct product of a non-abelian simple group X by Lemma
9.6 of [Isa08].

Step 3. We may assume that Z is central and that λ is faithful. Hence we
may assume that Z is cyclic.
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Since λ is G-invariant by Step 1, we have that pG,Z, λq is a character
triple. Now, let pG˚, Z˚, λ˚q be an isomorphic character triple with Z˚

central in G˚ and λ˚ faithful. Let N˚{Z˚ “ pN{Zq˚. It is easy to see that
pG˚, N˚, Z˚, λ˚q satisfies Hypothesis 3.3. Hence we may assume that Z is
central and λ is faithful. Now, by Theorem 2.32 of [Isa76] we have that we
may assume that Z is cyclic.

Step 4. If Z ă K Ď N is a normal subgroup of G, and τ P IrrpK|λq, then
IN pτq{K is solvable. Also S ą Z.

The first part is a direct consequence of Lemma 3.4(c) and induction. If
S “ Z, then by Step 2, we have that N{Z is a minimal normal non-abelian
subgroup of G{Z. Then N{Z is a direct product of non-abelian simple
groups isomorphic to X, and Z “ ZpNq. Also, N 1Z “ N . By Theorem
3.10, there is a prime p dividing |X| such that p does not divide |MpXq|.
By Theorem 3.11, we have that p does not divide |N 1 X Z|. Since p divides
|N 1|, this contradicts Theorem 3.6 with U “ N 1.

Step 5. FpNq “ S.

Let F “ FpNq. It is clear that F Ď S. Suppose that F ă S and let R{F
be a solvable chief factor of G inside N . Thus R{F is a q-group for some
prime q. Let L be the Sylow q-complement of F . Let Zq1 “ L X Z. Let
Q be a Sylow q-subgroup of R, so that R “ LQ. Let Zq “ Q X Z, so that
Z “ Zq1 ˆ Zq. We have that G “ LH, where H “ NGpQq, by the Frattini
argument. Let C “ CLpQq.

Write λ “ λq1 ˆ λq, where λq1 “ λZq1 , and λq “ λZq . By coprime action

and counting, we see that Q fixes some τq1 P IrrpL|λq1q. Let τ “ τq1 ˆ λq P
IrrpLZq. By hypothesis and Lemma 3.4(a), we can write

λLZ “ fpτh1 ` ¨ ¨ ¨ ` τhsq ,

where hi P H, and λhi “ λ, because λ is G-invariant. Hence

λLq1 “ fpτh1q1 ` ¨ ¨ ¨ ` τ
hs
q1 q .

By Lemma 3.9, we have that

λCq1 “ f˚ppτ˚q1q
h1 ` ¨ ¨ ¨ ` pτ˚q1q

hsq .

By Theorem 3.7, we know that there is a bijection

πpN, τq1q : IrrpN |τq1q Ñ IrrpNN pQq|τ
˚
q1qq

that commutes with H-action.
We claim that NN pQq ă N . If NN pQq “ N , we would have that

N Ď NGpQq and hence Q Ď F . But then R “ LQ Ď LF “ F and therefore
R “ F , which implies that S “ F , a contradiction. Hence the claim is
proven.

Next we claim that pNGpQq,NN pQq, λq satisfies Hypothesis 3.3. If this
is the case, since NN pQq ă N , we will have that |NN pQq : Z| ă |N : Z|, and
by induction, we will conclude that NN pQq{Z is solvable. This implies that
N{Z is solvable, and the proof of the theorem would be complete. Suppose
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now that ψi P IrrpNN pQq|λq for i “ 1, 2. We are going to show that there
exists x P H such that ψx1 “ ψ2. Since ψi lies over λq1 , then we have that

ψ1 lies over some pτ˚q1q
hj , and ψ2 lies over some pτ˚q1q

hk for some hj , hk P H.

Conjugating by h´1
j and by h´1

k , we may assume that ψ1 and ψ2 lie over τ˚q1 .

Now, we know that there exists µi P IrrpN |τq1q such that πpN, τq1qpµiq “
ψi. In fact, since ψi lies over λq, we have that µi P IrrpN |λqq by Theorem
3.7(b) (with the role of λ in that theorem being played now here by λq), and
therefore µi P IrrpN |τq Ď IrrpN |λq. By hypothesis, there is h P H such that
µh1 “ µ2. Now, τhq1 and τq1 are below µ2, so there is h1 P N XH such that

τhh1q1 “ τq1 . Replacing h by hh1, we may assume that pτq1q
h “ τq1 . Now

ψh1 “ πpN, τq1qpµ1q
h “ πpN, τhq1qpµ

h
1q “ πpN, τq1qpµ2q “ ψ2 ,

as desired. By induction, N XH is solvable, so N is solvable. This proves
Step 5.

Step 6. If p divides |F : Z|, then N has a solvable subgroup of p-power
index. Therefore, so do the simple groups factors in the direct product of
N{S.

Suppose that Q{Z is a non-trivial normal p-subgroup of G{Z, where Q
is contained in N . Then the irreducible constituents of λQ all have the same
degree by Lemma 3.4(a), for instance. So we can write

λQ “ fpτ1 ` ¨ ¨ ¨ ` τkq ,

where τi P IrrpQ|λq are all the different constituents. Write τ “ τ1. Notice
that f “ τp1q. Thus we deduce that k is a power of p. Now, since G acts
on Ω “ tτ1, . . . , τku transitively by conjugation by Lemma 3.2(a), we have
that |G : IGpτq| “ k is a power of p. Hence, |N : IN pτq| is a power of p. If
Q ą Z, then we know by induction that IN pτq{Q is solvable. In this case,
we deduce that that N has a solvable subgroup with p-power index. The
same happens for factors of N .

Step 7. Final contradiction.

We know by Step 2 that N{S is isomorphic to a direct product of a non-
abelian simple group X. By Theorem 3.10, there exists a prime q dividing
|X|, such that q does not divide the order of the Schur multiplier of X,
and such that no solvable subgroup of X has q-power index. By Step 6, we
have that q does not divide |F : Z|. Let W be the normal q-complement
of F . Hence F “ WZ. Also F {W “ ZpN{W q. By Corollary 7.2 of [HI],
we have that q does not divide |pN{W q1 X F {W |. But F {W is a q-group,
so pN{W q1 X F {W “ W {W . In particular, N 1 X F Ď W . Thus q does not
divide |N 1 X F |. Thus q does not divide |N 1 X Z|. Since N{F is perfect, we
have that N 1F “ N , so that q divides |N 1|. But this contradicts Theorem
3.6 with U “ N 1. �

Next is Theorem H.

Universitat de València Noelia Rizo Carrión



62 3.6. Theorem I

Corollary 3.13. Suppose that Z Ÿ G, and let λ P IrrpZq. Assume
that if χ, ψ P IrrpG|λq, then there exists a P AutpGq stabilizing Z such that
χa “ ψ. If T is the stabilizer of λ in G, then T {Z is solvable.

Proof. Let A “ AutpGqZ be the group of automorphisms of G that
stabilize Z. Let Γ “ GA be the semidirect product. We have that Z Ÿ Γ.
By hypothesis, pΓ, G, Z, λq satisfies Hypothesis 3.3. By Theorem 3.12, we
have that T {Z is solvable. �

3.6. Theorem I

The main theorem of this Section uses several non-trivial results on
character theory and regular orbits. First, we are going to review these
results.

We start with the following elementary observation.

Lemma 3.14. Let H Ď G and α P IrrpHq. Suppose that αG “ χ P IrrpGq
and that every irreducible constituent of χH has degree equal to αp1q. Then
χ vanishes on G´H.

Proof. By hypothesis, χH is the sum of χp1q{αp1q “ |G : H| irreducible
characters, and thus rχH , χHs ě |G : H|. Then |H|rχH , χHs ě |G|rχ, χs,
and so χ vanishes on G´H, as claimed. �

We shall use the following theorem of Riese ([Rie98]).

Theorem 3.15. Let A Ď G, where A is abelian, and assume that λG is
irreducible, where λ P IrrpAq. Then AŸ ŸG.

Proof. See Theorem 6.15 of [Nav18]. �

Corollary 3.16. Let θ P IrrpNq, where N Ÿ G and θ is G-invariant.
Let N Ď A Ď G, where A{N is abelian, and suppose that θ has an extension
ϕ P IrrpAq such that ϕG is irreducible. Then A is subnormal in G.

Proof. By using character triple isomorphisms we can assume that θ
is linear and faithful. Then ϕ is linear and A1 Ď N X kerpϕq “ kerpθq “ 1.
Then A is abelian, and since ϕG is irreducible, Theorem 3.15 yields the
result. �

We need the well-known Hall-Higman Lemma 1.2.3.

Theorem 3.17 (Hall-Higman 1.2.3). Let G be a π-separable group, and
assume that Oπ1pGq “ 1. Then CGpOπpGqq Ď OπpGq.

Proof. See Theorem 3.21 of [Isa08], for instance. �
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A deep result on regular orbits is also needed.

Theorem 3.18. Let G be a solvable group acting coprimely and faithfully
on a finite group K. Then there exist x, y P K such that CGpxqXCGpyq “ 1.

Proof. This is Theorem 1.1 of [Dol08]. �

We shall also need a “large orbit” result.

Theorem 3.19. Let P be a non-trivial p-group that acts faithfully on
group H of order not divisible by p. Then there is an element x P H such
that

|CP pxq| ď p|P |{pq
1
p .

Proof. This is Theorem A of [Isa99]. �

Finally, we are ready to prove an extension of Theorem I (which is
recovered by setting N “ OπpGq). Since the proof of this Theorem uses
the Howlett-Isaacs theorem, the Classification of Finite Simple Groups is
implicitely used.

Theorem 3.20. Let N Ÿ G. Suppose that θ P IrrpNq is G-invariant
and that opθqθp1q is a π-number. Assume that G{N is π-separable and that
OπpG{Nq “ 1. Then all members of IrrpG|θq have equal degrees if and only
if G{N is an abelian π1-group.

Proof. If G{N is an abelian π1-group, then θ extends to G by Theorem
1.17, and we are done by Gallagher’s Corollary (Corollary 1.16). To prove
the converse, we argue by induction on |G{N | and assume that |G{N | ą 1.
We argue first that the common degree d of the characters in IrrpG|θq is a
π-number. To see this, let q P π1 and let Q{N P SylqpG{Nq. Then θ extends
to Q, and the induction to G of such an extension has degree θp1q|G : Q|,
which is a q1-number. Since this degree is a multiple of d, it follows that d
is a q1-number, and since q P π1 was arbitrary, we see that d is a π-number.

Let U{N “ Oπ1pG{Nq and note that U ą N . All degrees of characters
in IrrpU |θq divide d, and so are π-numbers. But since U{N is a π1-number,
it follows that all degrees of characters in IrrpU |θq equal θp1q, and so all
of these characters extend θ. It follows that U{N is abelian by Gallagher
Corollary (Corollary 1.16). If U “ G, we are done, and so we suppose that
U ă G and we let V {U “ OπpG{Uq. Note that V ą U . By Theorem 1.17,

there exists a unique extension θ̂ P IrrpUq of θ with determinantal π-order.

By uniqueness, θ̂ is G-invariant. Now, let ϕ P IrrpV |θ̂q. Since V {U is a

π-group, ϕU is a multiple of θ̂ and opθ̂q is a π-number, we easily have that
opϕq is a π-number. Write T “ Gϕ for the stabilizer of ϕ in G. Then all
members of IrrpT |ϕq induce irreducibly to G, yielding characters of degree
d, and thus these characters all have degree d{|G : T |. We claim that T
satisfies the hypotheses of the theorem with respect to the character ϕ and
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the normal subgroup V . To see this, we need to check that OπpT {V q is
trivial.

Let W {V “ Oπ1pG{V q. We argue that W stabilizes ϕ. This is because
the G{V -orbit of ϕ has size dividing d, and so is a π-number, and W {V
is a normal π1-subgroup of G{V . Thus W Ď T and OπpT {V q centralizes
the normal π1-subgroup W {V “ Oπ1pG{V q. But OπpG{V q is trivial, and
Hall-Higman Lemma 1.2.3 (3.17) applies to show that OπpT {V q “ 1, as
wanted.

By the inductive hypothesis, we conclude that T {V is a π1-group. Also,
by the Clifford correspondence (Theorem 1.14), |G : T | divides d, which
we know is a π-number. Thus T {V is a full Hall π1-subgroup of G{V .
Also, ϕ extends to T , and so ϕp1q “ d{|G : T | “ d{|G{V |π is constant for
ϕ P IrrpV |θq. It follows that the hypotheses are satisfied in the group V
with respect to θ. If V ă G, the inductive hypothesis yields that V {N is a
π1-group, and this is a contradiction.

It follows that V “ G and G{U is a π-group. Also, G{U acts faithfully
on U{N because OπpG{Nq is trivial. Now let λ P IrrpU{Nq, so that λ is
linear. Let S “ Gλ, and note that λ extends to S since S{U is a π-group.
Write a “ |G : S|.

Note that S is the stabilizer of λθ̂ in G, and thus all characters in
IrrpS|λθ̂q have degree d{a. If r is the number of such characters, this yields
rpd{aq2 “ |S : U |θp1q2. Also, since λ extends to S, by Theorem 1.15 there

is a degree-preserving bijection between IrrpS|λθ̂q and IrrpS|θ̂q, and hence
the latter set contains exactly r characters, and each one has degree d{a.
Each of these must therefore induce irreducibly to G, and it follows that
each member of IrrpG|θ̂q is induced from a member of IrrpS|θ̂q.

Note that the number of different members of IrrpS|θ̂q that can have the
same induction to G is at most |G : S| “ a.

Now let t “ |IrrpG|θ̂q| so that td2 “ |G : U |θp1q. If we divide this
equation by our previous one, we get ta2{r “ |G : S| “ a, and so t “ r{a.

It follows that each of the t members of IrrpG|θ̂q is induced from exactly a

characters in IrrpS|θ̂q. In other words, if χ P IrrpG|θ̂q, then χS has exactly
a distinct irreducible constituents, each with degree d{a, and so by Lemma
3.14, it follows that χ vanishes on G´S. In other words, the only elements
of G on which χ can have a nonzero value lie in the stabilizer of λ for every
linear character λ of U{N . But G{U acts faithfully on this set of linear

chararacters, and thus χ vanishes on G ´ U . In other words, θ̂ is fully
ramified in G. It follows that d “ θp1q|G : U |1{2.

Also, aθp1q divides d, and so a must divide |G : U |1{2. Write s “ |S : U |,
so that as “ |G : U |. Then a2 divides as, and thus a divides s. In particular,
we have a ď s, so |G : S| ď |S : U |. Thus

|G : U | “ |G : S||S : U | ď |S : U |2 .
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Now, by the Howlett-Isaacs theorem we have that G{U is solvable. This
group acts faithfully on the group of linear characters of U{N , and so by
Theorem 3.18, there exist character stabilizers T and R such that TXR “ U .
By the result of the previous paragraph, each of T {U and R{U has order at

least |G : U |1{2. Now

|G : U | “ |G : T ||T : U | ě |R : U ||T : U | ě |G : U | .

Then TR “ G, and then each of |T : U | and |R : U | has order |G : U |1{2.

Therefore all characters in IrrpT |θ̂q are extensions of θ̂ and induce irreducibly
to G. In particular, T {U is abelian, and similarly R{U is abelian.

By Corollary 3.16, it follows that R is subnormal in G, and since R{U is
abelian, R{U Ď FpG{Uq. Similarly, T {U Ď FpG{Uq and thus G{U is nilpo-
tent. But then, since G{U acts faithfully on the group of linear characters of
U{N , it follows that if G{U is non-trivial, then some character λ P IrrpU{Nq
has a stabilizer S in G such that

|S : U | ă |G : U |1{2

by Theorem 3.19. But then |G : U | “ |G : S||S : U | ď |S : U |2 ă |G : U |.
This contradiction completes the proof. �
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CHAPTER 4

A Brauer-Wielandt formula

4.1. Introduction

One of the classical problems in character theory is to determine which
properties of a finite group G are encapsulated by its character table. For
example, we know that

|G| “
ÿ

χPIrrpGq

χp1q2,

and hence the character table of G (XpGq from now on) determines the order
of G. We also know that G is abelian if and only if all of its irreducible
characters are linear. We can also determine the normal subgroups of G
from its character table (they are the kernels of the irreducible characters
of G and their intersections), and hence XpGq determines if G is nilpotent
or solvable, for instance. Furthermore, if N is a normal subgroup of G, we
can construct XpG{Nq from XpGq.

In this chapter we are interested in what XpGq knows about the p- local
structure of G, for a given prime p. We are specially interested in Question 7
in [Nav04], where it is asked if the character table of G determines |NGpP q|,
where P is a Sylow p-subgroup of G. Note that this is the same as asking if
XpGq “knows” the number of Sylow p-subgroups of G.

So far, some partial answers to this Question have been given. For
instance, a positive answer has been found in the cases that P is cyclic
([Nav04]), or if G is nilpotent-by-nilpotent([KK15]). Although for solvable
groups no answer is known yet, it is shown in [IN02] that in this case XpGq
determines the set of primes dividing |NGpP q|.

Our aim in this section is to prove some more cases.

Theorem J. Let p be a prime and let G be a finite p-solvable group.
If P P SylppGq is abelian or has exponent p, then the character table of G
determines |NGpP q|.

Notice that XpGq knows if G has abelian Sylow p-subgroups (in [NT14]
and [NST15] an easy algorithm is given, although it was previously proved
in [KS95] indirectly and an algorithm was given in [CH80] for the prime
p “ 2.) However, XpGq fails to determine whether a Sylow p-subgroup of G
has exponent p (the smallest counterexamples are of order 27).
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It turns out that the key to prove Theorem J is to be able to compute
|CN pP q| from the character table of G, when N “ Op1pGq. To do so, we
need to generalize a classical result of Brauer. If P is a Klein 4-group acting
on a group of odd order N , Brauer’s celebrated formula to count the number
of fixed points of the action of P on N is the following:

|CN pP q| “

d

|CN pxq||CN pyq||CN pxyq|

|N |
,

where P “ xxyˆxyy. Brauer stated this formula at a conference in Tübingen
in 1958, but it first appeared in the literature in [Wie60].

Wielandt generalized this result in [Wie60], giving a formula for the
number of fixed points of a p-group P acting on a p1-group N . If |P | “ pα,
the formula of Wielandt is the following:

|CN pP q|
pα´1

“

ź

SPS
|CN pSq|

|N |
pα´1´1
p´1

,

where S is the set formed by all the non-trivial cyclic subgroups of P . Since
we can not distinguish between elements generating different groups from
the character table, we can not use this formula for our purposes. Instead,
we give an alternative formula.

Theorem K. Suppose that P is a p-group acting via automorphisms on
a p1-group G. Then

|CGpP q| “

˜

ź

xPP

|CGpxq|

|CGpxpq|1{p

¸

p
pp´1q|P |

.

As we have mentioned before, Theorem K is used in the proof of Theorem
J. A complete answer to Question 7 of [Nav04] seems still far from being
given. When the character table does not seem sufficient to determine a
group theoretical invariant, it is common to ask if the character table plus
the p-power maps are. (See the Brauer’s survey [Bra63].) If tx1, . . . , xcu
are representatives of the conjugacy classes of G, then the p-power map is
the function f : t1, . . . , cu Ñ t1, . . . , cu such that xpj lies in the class of xfpjq.
After reading our proof of Theorem J, Lyons and R. Solomon pointed out
the following.

Theorem 4.1. Let p be a prime and let G be a finite p-solvable group.
Then the character table of G together with the p-power map determine
|NGpP q|.

The main results of this Chapter have been published in [NR16].
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4.2. Proof of the formula

In this Section, we give a proof of Theorem K which is independent of
Wielandt’s proof. We need some well-known results on coprime action. The
first of them is due to Hartley and Turull.

Theorem 4.2 (Hartley-Turull). Let A act via automorphisms on G,
where A and G are finite groups, and suppose that p|A|, |G|q “ 1. Then A
acts via automorphisms on some abelian group H in such a way that every
subgroup B Ď A has equal numbers of fixed points on G and on H. Also,
there is a size-preserving bijection from the set of A-orbits on G to the set
of A-orbits on H.

Proof. See Theorem 3.31 of [Isa08], for instance. �

Next is the so-called “fixed points come from fixed points” theorem.

Theorem 4.3. Let A act via automorphisms on G, where A and G are
finite groups, and let N � G be A-invariant. Assume that p|A|, |N |q “ 1.
Then,

CG{N pAq “ CGpAqN{N.

Proof. See Corollary 3.28 of [Isa08]. �

We also need the following well-known fact. Recall that if q is a prime,
we say that a q-group H is an elementary abelian q-group if it is abelian
and all the non-trivial elements of H have order q. In other words, H –

Cq ˆ Cq ˆ ¨ ¨ ¨ ˆ Cq. If H is an elementary abelian q-group and |H| “ qn,
then we can view H as an n-dimensional vector space over the field GF pqq
of q elements by simply writing the group operation in H as addition.

Now, if P is a group acting via automorphisms on H, it is easy to see
that H is a GF pqqrP s-module. Notice that the subgroups of H are exactly
its subspaces, and hence, the P -invariant subgroups of H are exactly its
GF pqq-submodules.

Finally, recall that if A is an algebra and V is an A-module, we say that
V is completely reducible if for every A-submodule W of V , there exists an
A-submodule U of V such that V “ W ` U , where the sum is direct. We
say that V is irreducible if it has no proper A-submodules.

We need the following classical result of Maschke.

Theorem 4.4 (Maschke). Let P be a finite group and F be a field whose
characteristic does not divide |P |. Then every F rP s-module is completely
reducible.

Proof. See Theorem 1.9 of [Isa76]. �
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Theorem 4.5. Suppose that P is a p-group acting via automorphisms
on a p1-group G. Then

|CGpP q| “

˜

ź

xPP

|CGpxq|

|CGpxpq|1{p

¸

p
pp´1q|P |

.

Proof. By Theorem 4.2, there exists an abelian group H on which P
acts such that |CGpRq| “ |CHpRq| for every subgroup R of P . In particular,
|H| = |G|, whence H is a p1-group and it suffices to prove the theorem for
H. So, we may and shall assume henceforth that G is abelian. We prove
the theorem by induction on |G||P |.

Step 1. We may assume that P acts faithfully.

Let Q “ tx P P | g ¨ x “ g for all g P Gu, that is, the kernel of the
action of P on G, which is normal in P . Let x P P and y P Q. Since
g ¨ pxyq “ pg ¨ xq ¨ y “ g ¨ x, we have that CGpxyq “ CGpxq. Moreover, since
Q acts trivially on G, we have that P {Q acts on G and CGpP q “ CGpP {Qq.
If we write P “ Qx1 Y . . .YQxt as a disjoint union, we have that

ź

xPP

|CGpxq|

|CGpxpq|1{p
“

t
ź

j“1

ź

xPQ

|CGpxxjq|

|CGppxxjqpq|1{p
“

˜

t
ź

j“1

|CGpQxjq|

|CGppQxjqpq|1{p

¸|Q|

.

Now, if 1 ă Q, by induction we have that

˜

t
ź

j“1

|CGpQxjq|

|CGppQxjqpq|1{p

¸|Q|

“ |CGpP {Qq|
|Q|pp´1q|P :Q|

p “ |CGpP q|
pp´1q|P |

p

and the result follows. Hence we may assume that Q “ 1.

Step 2. We may assume that G is an irreducible GF pqqrP s-module.

If N is a P -invariant subgroup of G and R ď P , we have that R acts on
G{N . Since p|R|, |N |q “ 1, by Theorem 4.3 we have that

CG{N pRq “ CGpRqN{N – CGpRq{CN pRq,

and hence

|CGpRq| “ |CG{N pRq||CN pRq|.

If 1 ă N , the theorem again follows by induction. Thus we may assume
that G has not proper P -invariant normal subgroups. In particular, if q is
a prime dividing G, since G is abelian we have that G is a q-group. Since
the Frattini subgroup of G, ΦpGq, is a characteristic subgroup, we have that
ΦpGq “ 1 and hence G is an elementary abelian q-group.

Universitat de València Noelia Rizo Carrión



4. A Brauer-Wielandt formula 71

By the discussion preceding this proof, G is a GF pqqrP s-module and,
since charpGF pqqq “ q does not divide |P |, by Maschke’s Theorem 4.4 we
have that it is irreducible.

Step 3. We may assume that P is not abelian.

Suppose that P is abelian and let x P P . Then CGpxq is P -invariant
and by Step 2, we have that either CGpxq “ G or CGpxq “ 1. If x ‰ 1,
by Step 1 we have that CGpxq “ 1. This means that P acts as a Frobenius
complement on G. By Theorem 6.21 of [Isa08] we have that P is cyclic.
Then there are just p elements in P satisfying xp “ 1 and therefore,

ź

xPP

|CGpxq|

|CGpxpq|1{p
“ 1 “ |CGpP q| ,

and the result follows. Thus we may assume that P is not abelian.

Step 4. Final Step.

Since CGpP q is a P -invariant subgroup of G we have that CGpP q “ 1
by Steps 1 and 2. Our goal now is to prove that

ź

xPP

|CGpxq|
p “

ź

xPP

|CGpx
pq| .

If 1 ă N is a proper normal subgroup of P , again we know that CGpNq is
a P -invariant subgroup of G and hence CGpNq “ 1 by Steps 1 and 2. By
induction, we have that

ź

xPN

|CGpxq|
p “

ź

xPN

|CGpx
pq| .

Let R “ ΦpP q. Since P is not abelian by Step 3, we know that ΦpP q ą 1
and hence we have that CGpRq “ 1. Hence CGpJq “ 1 for R Ď J Ď P .
Write

pP {Rq# “ xRx1y
# Y . . .Y xRxky

#

as a disjoint union, where X# is the set of the non-identity elements of the
group X.

Suppose that P {R is cyclic. Since P {R is an elementary abelian p-group,
we have that P {R “ xRxy with opRxq “ p. Since |P : R| “ p, we have that
P “ Rxxy. If xxy ă P , let M be a maximal subgroup of P such that
xxy ď M ă P . Then R ď M and hence P “ Rxxy ď Mxxy “ M . This
contradiction shows that P “ xxy, and hence P is cyclic. But this is not
possible by Step 3 and hence P {R is not cyclic. Thus, xR, xjy is proper in

P . Also, xR, xjy “ R Y Rxj Y Rx2
j Y ¨ ¨ ¨ Y Rxp´1

j , because R has index p

in xR, xjy. By induction and using that |CGpRq| “ |CGpxR, xjyq| “ 1 for
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j ě 1, we obtain

ź

xPxR,xjy

|CGpxq|
p “

ź

xPxR,xjy

|CGpx
pq| “

ź

uPR

|CGpu
pq|

ź

uPR

p´1
ź

i“1

|CGppux
i
jq
pq|

“
ź

uPR

|CGpuq|
p
ź

uPR

p´1
ź

i“1

|CGppux
i
jq
pq| .

Now, since

P “ RYRx1 YRx
2
1 Y . . .YRx

p´1
1 Y . . .YRxk YRx

2
k Y . . .YRx

p´1
k

is a disjoint union, we have that

ź

gPP

|CGpgq|
p “

śk
j“1

´

ś

xPxR,xjy
|CGpxq|

p
¯

p
ś

xPR |CGpxq|pq
k´1

“

śk
j“1

´

ś

uPR |CGpuq|
p
ś

uPR

śp´1
i“1 |CGppux

i
jq
pq|

¯

p
ś

xPR |CGpxq|pq
k´1

“

˜

ź

xPR

|CGpxq|
p

¸

k
ź

j“1

˜

ź

uPR

p´1
ź

i“1

|CGppux
i
jq
pq|

¸

“

˜

ź

xPR

|CGpx
pq|

¸

k
ź

j“1

˜

ź

uPR

p´1
ź

i“1

|CGppux
i
jq
pq|

¸

“
ź

gPP

|CGpg
pq| ,

and this proves the theorem. �

4.3. Proof of Theorem J

As we said before, the main ingredient for the proof of Theorem J is
our Brauer-Wielandt formula. The one other ingredient we require is the
following result of Navarro, which was proved using Isaacs π-character theory
in [Nav98b]. In [NR16] we give an alternative elementary proof provided
by Gordon Keller, which we reproduce here for the reader’s convenience.
We need the following well-known result of G. Higman.

Theorem 4.6 (Higman). Let K1, . . . ,Kk be the conjugacy classes of G.
Then the character table of G determines the set of primes dividing opgiq
for gGi “ K.

Proof. See 8.21 of [Isa76]. �

Note that, as a consequence of Theorem 4.6, it is easy to see that the
conjugacy classes of p-elements are detectable in the character table of G.
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Theorem 4.7. Let p be a prime, G a finite p-solvable group, P a Sylow
p-subgroup of G, and K “ xG the G-conjugacy class of x P G. Then the
character table of G determines |K X P |.

Proof. If N is a normal subgroup of G, then let P and K denote the
images of P and K respectively in G “ G{N .

First, by Theorem 4.6, we know that the character table of G determines
the set of primes that divide the common order of the elements in K, and
hence, we may assume that K consists of p-elements (otherwise, |K X P | is
zero).

Let N “ Op1pGq and suppose that N ą 1. We claim that

|P XK| “ |P XK| .

Since N is a p1-group, we have that the map g Ñ Ng is a bijection from P
to P̄ . Hence, the map g Ñ Ng defines a one-to-one map from P XK into
P XK. Next we show that it is surjective. Suppose that Ny P P XK. We
may assume that y P P . Let z P K X Ny. As z P K, z is a p-element of
G. Now, Nxyy “ Nxzy. It follows that xyy and xzy are Sylow p-subgroups
of Nxyy, and hence are N -conjugate. Hence there exists n P N such that
yn “ zi for some integer i. Since Nz “ Ny “ Nyn “ Nzi we deduce that
zi´1 “ ziz´1 P N . Since z is a p-element, we have that i “ 1 and hence
yn “ z. In particular, y P P XK. Hence the map g Ñ Ng defines a bijection
between P XK and P XK, as desired. Since we can obtain the character
table of G{N from the character table of G, we are done by induction.

Thus, we may assume that Op1pGq “ 1, and then, since G is p-solvable,
we have that OppGq ą 1. Let N “ OppGq.We claim that

|P XK| “
|P XK||N ||CḠpx̄q|

|CGpxq|
.

To prove this, we compute the value of the induced character p1P q
G on x.

If Ω “ ty P G |xy P K X P u, by the definition of the induced character, we
have that

p1P q
Gpxq “

|Ω|

|P |
.

Now, write G “ CGpxqy1 Y . . . Y CGpxqyn as a disjoint union, where n “
|G : CGpxq| “ |K|. Let ty1, . . . , yru “ ty1, . . . , ynu X Ω. Then it is easy to
see that the map CGpxqyi Ñ xyi is a bijection from tCGpxqy1, . . . ,CGpxqyru
to K X P . Then r “ |K X P | and Ω is the disjoint union of |P XK| right
cosets of CGpxq in G. It follows that

p1P q
Gpxq “

|P XK||CGpxq|

|P |
.
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Now, since N is a normal p-subgroup of G, we have that N is contained in
the kernel of p1P q

G, and therefore

p1P q
Gpxq “ p1P̄ q

Ḡpx̄q “
|P̄ X K̄||CḠpx̄q|

|P̄ |
,

from which the desired equality easily follows.
By induction, |P̄ X K̄| can be read off from the character table of G{N

which can be read off from the character table of G. Since the character
table of G detects the normal subgroups of G we can also obtain |N | from
the character table. Finally, the size of the centralizers of elements can also
be found from the character table by means of the second orthogonality
relation. This ends the theorem. �

The proof of Theorem J is far more complicated in the case P abelian
than in the case P of exponent p. When P is abelian we need the following
auxiliary results in order to prove it. The first of them is a very elementary
fact.

Lemma 4.8. If P is an abelian p-group, then the map ϕ : P Ñ ΦpP q
given by x ÞÑ xp is an onto group homomorphism with kernel Ω1pP q “ tx P
P |xp “ 1u.

Proof. Let x P P , since P {ΦpP q is elementary abelian, pΦpP qxpq “
pΦpP qxqp “ ΦpP q and then xp P ΦpP q, which proves that ϕ is well defined.
Since P is abelian, it is clear that ϕ is an homomorphism. We just need
to prove that it is onto. Note that if x P P , we have that pϕpP qxqp “
ϕpP qxp “ ϕpP q and hence P {ϕpP q is elementary abelian. Since P is a
p-group, the Frattini subgroup of P is the unique normal subgroup of P
minimal with the property that the factor group is elementary abelian, and
hence ΦpP q Ď ϕpP q Ď ΦpP q. Therefore ϕ is onto. �

Before stating the second auxiliary result we need to introduce the notion
of Galois conjugate of a character. Let χ P IrrpGq, the field of values of χ is

Qpχq “ Qpχpgq | g P Gq,
that is, the smallest subfield of C containing the values of χ. If n is the
exponent of G, then we know that χpgq is a sum of n-th roots of unity for all
g P G and therefore Qpχq Ď Qn, where Qn is the n-th cyclotomic field, that is
Qn “ Qpξq, where ξ is a primitive n-th root of unity. In particular, Qpχq{Q
is a normal extension. Now, if Qpχq Ď F Ď C is any field and σ : F Ñ F
is a field automorphism, then σpQpχqq “ Qpχq by elementary Galois theory.
Thus we may define the Galois conjugate function χσ : GÑ C by letting

χσpxq “ σpχpgqq.

The following are basic properties of the Galois action:

Proposition 4.9. Let G be a finite group and let χ P CharpGq. Let
Qpχq Ď F Ď C be any field. Let σ P GalpF {Qq. Then,
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(a) χσ P CharpGq and Qpχσq “ Qpχq. Moreover, χ is irreducible if and
only if χσ is irreducible.

(b) If ψ P CharpGq and Qpψq Ď F , we can define ψσ and

rχσ, ψσs “ rχ, ψs.

Proof. Part (a) is Theorem 3.1 of [Nav18]. Part (b) follow easily since

rχσ, ψσs “
1

|G|

ÿ

gPG

χσpgqψσpgq “

˜

1

|G|

ÿ

gPG

χpgqψpgq

¸σ

“ rχ, ψsσ “ rχ, ψs

�

Now we can prove the following, which is essential in the proof of The-
orem J for P abelian.

Lemma 4.10. Let G be a finite group, N �G a p1-group and let P be a
Sylow p-subgroup of G. Suppose that P is abelian and NP � G. Let n be
the exponent of G and let σ P GalpQn{Qq be the Galois automorphism that
fixes p1-roots of unity and sends p-power roots of unity ξ to ξp`1. Then

NΦpP q “
č

χPIrrpG{Nq
χσ“χ

kerpχq.

Proof. First of all it is straightforward to check that σ has p-power
order. Let χ P IrrpG{Nq be σ-fixed, and let λ be an irreducible constituent
of χNP . Since λ P IrrpNP {Nq and NP {N is abelian, we have that λ is
linear. Since χ is σ-fixed, by Proposition 4.9 we have that

0 ‰ rχNP , λs “ rχ
σ
NP , λ

σs “ rχNP , λ
σs

and hence λσ is an irreducible constituent of χNP . Then, there exists g P G
such that λσ “ λg. It is easy to see that λσ

m
“ λg

m
for all m P Z and

hence λg
opσq

“ λ. Then gopσqNP P IGpλq{NP . Since G{NP is a p1-group

and opσq is a power of p, we have that xgNP y “ xgopσqNP y. Therefore,
gNP P IGpλq{NP and λσ “ λg “ λ.

Since NP {N is a p-group and λ is linear, λpxNq is a p-power root of
unity for all x P NP , and

λpxNq “ λσpxNq “ σpλpxNqq “ pλpxNqqp`1 “ λpxNqpλpxNqqp.

Then the order of λ divides p. Let z P ΦpP q. By Lemma 4.8, we know that
z “ xp for some x P P and then

λpzq “ λpxpq “ λpxqp “ 1,

and ΦpP q Ď kerpλq. Therefore NΦpP q Ď kerpλqx for all x P G. Hence
NΦpP q is contained in kerpχq by Lemma 1.7.

It remains to prove that if χ P IrrpGq has NΦpP q in its kernel, then
χ is σ-fixed. Let λ P IrrpNP q be an irreducible constituent of χNP , then
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NΦpP q Ď kerpλq and λ P IrrpNP {NΦpP qq. Since NP {NΦpP q is a p-group,
again we have that, for every x P NP ,

λσpxq “ λσpxNΦpP qq “ λp`1pxNΦpP qq “ λpxNΦpP qq “ λpxq,

and λ is σ-fixed. By Theorem 1.17, λ has a canonical extension λ̂ P

IrrpIGpλqq. This canonical extension satisfies that it is the unique exten-

sion of λ with the property that p|IGpλq : NP |, opλ̂qq “ 1, and in fact,

opλ̂q “ opλq, which divides p. Since λ is σ-fixed, again by Proposition 4.9,
we have that

rpλ̂σqNP , λs “ rpλ̂
σqNP , λ

σs “ rλ̂NP , λs ‰ 0,

and λσ lies over λ. Moreover, λ̂σp1q “ σpλ̂p1qq “ σp1q “ 1 and therefore λ̂σ

extends λ. Now, for all x P IGpλq, we have

pλ̂σqopλqpxq “ pλ̂σpxqqopλq “ pσpλ̂pxqqopλq “ σpλ̂opλqpxqq “ 1.

Thus opλ̂σq divides p and p|IGpλq : NP |, opλ̂σqq “ 1 and by the uniqueness

of λ̂ we have that λ̂ is σ-fixed.
Now, let ψ P IrrpIGpλq|λq be the Clifford correspondent of χ (Theorem

1.14), that is, χ “ ψG. By Gallagher’s Corollary (Corollary 1.16) we have

that ψ “ βλ̂ for some β P IrrpIGpλq{NP q. Since IGpλq{NP is a p1-group,
βpxq is a sum of βp1q p1-roots of unity, and hence it is σ-fixed. Therefore, ψ
is σ-fixed and χ “ ψG is σ-fixed. �

The following includes Theorems J and 4.1.

Theorem 4.11. Let p be a prime and G a finite p-solvable group. Let
P P SylppGq. If P is abelian or has exponent p, then the character table of
G determines |NGpP q|. Otherwise, the character table of G and the p-power
map (on the conjugacy classes of p-elements of G) determines |NGpP q|.

Proof. Recall that to know the p-power map of a character table is
to know the following. If tx1, . . . , xcu are representatives of the conjugacy
classes of G (columns in the character table), then the p-power map is the
function f : t1, . . . , cu Ñ t1, . . . , cu such that xpj lies in the class of xfpjq. (In
fact, we shall only need to know this function on the classes of p-elements
of G.) We’ve already said that the character table of G determines the
character table of G{N . It is also true that the p-power map of G determines
the p-power map of G{N . Both the conditions that P is abelian or has
exponent P are inherited by quotients of G.

As usual, XpHq will denote the character table of the group H. We
argue by induction on |G| that if P is abelian or has exponent p, then
XpGq determines |NGpP q|. (Essentially the same proof is going to show
the assertion about character tables and p-power maps, until the very end.
Then we will make a comment.)
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If OppGq ą 1, then XpGq determines XpG{OppGqq, and hence by induc-
tion, we know

|NG{OppGqpP {OppGqq| “
|NGpP q|

|OppGq|
.

Since |OppGq| can also be determined by XpGq, we are done. Then we may
assume that OppGq “ 1.

Let N “ Op1pGq ą 1. By induction, we know that XpGq determines

|NGpP qN{N | “
|NGpP q|

|CN pP q|
.

Hence, in order to prove the theorem, we need to show that the character
table of G determines |CN pP q|.

Now, let x P P , and K “ xG. By Theorem 4.7, we know that the
character table of G determines |K X P |. Moreover, by Theorem 4.3 (since
N is normal in G, P acts via automorphism by conjugation on N), we have
that

CG{N pNxq “ CGpxqN{N.

Since XpGq determines XpG{Nq, we have that the character table of G
determines

|CG{N pNxq| “ |CGpxqN{N | “ |CGpxq|{|CN pxq| ,

by the second orthogonality relation. Since the character table of G deter-
mines |CGpxq|, we deduce that the character table of G determines |CN pxq|.

If P is abelian, then the map ϕ : P Ñ ΦpP q given by x ÞÑ xp is an onto
group homomorphism with kernel Ω1pP q “ tx P P | x

p “ 1u by Lemma 4.8.
We can restate the formula in Theorem K in the following ways:

|CN pP q| “

˜

ś

xPP |CN pxq|
ś

xPΦpP q |CN pxq||P :ΦpP q|{p

¸

p
pp´1q|P |

,

if P is abelian, or

|CN pP q| “

ˆś

xPP |CN pxq|

|N ||P |{p

˙

p
pp´1q|P |

,

if P has exponent p. (This latter formula was known to Wielandt, see
[Wie60].)

Now, let ty1, . . . , yku be representatives of the G-conjugacy classes of the
p-elements of G (which are detectable in the character table by Theorem
4.6), and write Li “ P X pyiq

G. Then

P “ L1 Y . . .Y Lk

is a disjoint union.
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By Theorem 4.7, we know how to compute |Li| in the character table.
Furthermore |CN pzq| is constant in Li. This shows that

ź

xPP

|CN pxq| “
k
ź

j“1

|CN pyjq|
|Lj |

is always computable from the character table of G. In particular, |CN pP q|
is computable from the character table of G if the exponent of P is p, and
the Theorem is proven for groups with exponent p.

If P is abelian, then we need to calculate |P : ΦpP q|, and determine
which yj lie on some G-conjugate of ΦpP q.

First we claim that NP �G. Indeed, since Op1pG{Nq “ 1, by the Hall-
Higman Lemma 1.2.3 (Theorem 3.17), we have that CG{N pOppG{Nqq Ď
OppG{Nq. Since P is abelian, PN{N is abelian and then OppG{Nq Ď
PN{N Ď CG{N pOppG{Nqq Ď OppG{Nq. Then, PN{N is normal in G{N
and the claim follows.

By Lemma 4.10 we know that NΦpP q is the intersection of the kernels
of the σ-fixed irreducible characters of G having N in its kernel, where σ
is the Galois automorphism sending p-power roots of unity ξ to ξp`1 and
fixing p1-roots of unity. We deduce that yj lies in some G-conjugate of ΦpP q
if and only if yj is in the kernel of the σ-invariant irreducible characters that
contain N in their kernel. Indeed, if yj P ΦpP qx for some x P G, then

yj P NΦpP qx “ pNΦpP qqx “ NΦpP q “
č

χPIrrpG{Nq
χσ“χ

kerpχq.

On the other hand, if yj is in the kernel of the σ-invariant irreducible char-
acters of G{N , then yj P NΦpP q. Since yj is a p-element and ΦpP q is a
Sylow p-subgroup of NΦpP q, we have that yj P ΦpP qx for some x P NΦpP q.
This ends the case P abelian.

In order to show that the character table and the p-power map determine
|NGpP q|, the same arguments of this proof show that we only need to be
able to calculate

ź

xPP

|CN px
pq|

from the character table and then use Theorem K. If we know the p-power
map, then we know the integers 1 ď f1, . . . , fk ď k such that ypi is G-
conjugate to yfi . Then

ź

xPP

|CN px
pq| “

k
ź

j“1

|CN pyfj q|
|Lj | ,

and the proof of the theorem is complete. �
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4.4. Alternative proofs

To end this Chapter, we give alternative proofs of Theorem K. These
nice proofs were given to us by Isaacs and Lyons, and the author would like
to thank them for sharing them with her.

We need the following well-known results. The first of them is the mod-
ule theoretic version of Clifford’s theorem (Theorem 1.11).

Theorem 4.12 (Clifford). Let F be an arbitrary field, P a finite group,
Q � P and let V be an irreducible F rP s-module. Let W be any irreducible
F rQs-submodule of V . Then

(a) V “ W1 ‘ ¨ ¨ ¨ ‘Wk, where the Wi are irreducible F rQs-modules,
and Wi –W .

(b) P acts transitively on tW1, . . . ,Wku.
(c) Viewed as an F rQs-module, V is completely reducible.

Proof. See Theorem 6.5 and Corollary 6.6 of [Isa76]. �

Lemma 4.13. Let A be an abelian group and suppose that there exists a
faithful irreducible module W of F rAs, where F is an arbitrary field. Then
A is cyclic.

Proof. See Lemma 0.5 of [MW93]. �

Lemma 4.14. Let P be a p-group in which every normal abelian subgroup
is cyclic. Then:

(a) If p ą 2, then P is cyclic.
(b) If p “ 2, P is dihedral, generalized quaternion or semidihedral.

In both cases, P has a cyclic normal subgroup of index p.

Proof. See Theorem 6.12 of [Isa08] or Theorem III.7.6 of [Hup67]. �

We also need the notion of primitive module. Let F be a field, G a finite
group and V an F rGs-module. Suppose that

V “W1 ‘W2 ‘ ¨ ¨ ¨ ‘Wk,

where the sum is direct and the Wi are subspaces of V which are transitively
permuted by G. Then V “W1‘W2‘¨ ¨ ¨‘Wk is a imprimitive decomposition
of V . If V is irreducible and there is no such decomposition with k ą 1,
then V is a primitive F rGs-module. See Definition 5.7 of [Isa76] for more
details.

Isaacs’ proof. Isaacs’ approach is similar to ours. As in our proof, we
can reduce to the case where G is an elementary abelian q-group for some
prime q ‰ p, and CGpP q “ 1 “ CP pGq. In this case, we must show that

ź

xPP

|CGpxq|
p

|CGpxpq|
“ 1.
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If G is not irreducible as a P -module, the result follows easily as in our
proof, so we can assume the action is irreducible, that is, G has no proper
P -invariant normal subgroups. Also, the result follows easily if |P | “ p, so
we can assume |P | ą p.

Suppose first that G is a primitive GF pqqrP s-module and let Q be an
abelian normal subgroup of P . Then Q acts on G and the action is faithful.
We claim that G is irreducible as GF pqqrQs-module. If not, we can write
G “ G1‘G2‘¨ ¨ ¨‘Gk with k ą 1, Gi irreducible GF pqqrQs-submodules of
G and P acts transitively on tG1, G2, . . . , Gku by Theorem 4.12. Hence G
is not primitive, a contradiction. Thus G is a faithful irreducible GF pqqrQs-
module and by Lemma 4.13 we have that Q is cyclic. By Lemma 4.14, P
has a cyclic normal subgroup N of index p. Since N is abelian, the action
of N on G is Frobenius. Then, since N is cyclic we have that

ź

xPN

|CGpxq|
p

|CGpxpq|
“ 1.

Let x P P ´ N , so xp P N . If xp ‰ 1, since N acts Frobenius on G,
we have that CGpxq “ 1 “ CGpx

pq. Hence we may assume that xp “ 1.
If p ą 2, by Lemma 4.14 we know that P is cyclic and hence x P N , a
contradiction. Hence we may assume that p “ 2 and x2 “ 1. Since in a
generalized quaternion group there is just one involution, we have that P
is either dihedral or semidihedral. Let |P | “ 2n and write N “ xay. Since

|P | “ 2n, we have that |N | “ 2n´1. Now, write y “ a2n´2
so ZpP q “ xyy,

and let K “ xx, yy. Then K is a 4-Klein group acting on G and we can
apply Brauer’s classical formula.

|CGpKq| “

d

|CGpxq||CGpyq||CGpxyq|

|G|
.

Since y P N and the action of N on G is Frobenius, we have that CGpyq “ 1,
and hence CGpKq Ď CGpyq “ 1. Hence

|CGpxq||CGpxyq| “ |G|

and it follows that

ź

xPP´N

|CGpxq|
p

|CGpxpq|
“ 1.

We now assume that the action is imprimitive. Then

G “ G1 ‘G2 ‘ ¨ ¨ ¨ ‘Gp,

and the stabilizer of all the Gi is a subgroup N with index p in P . Also
CGpNq “ 1, so

ź

xPN

|CGpxq|
p

|CGpxpq|
“ 1.
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Let x P P ´ N . We have that pGiq
x “ Gi`1, and Gxp “ G1. Let g P G

and write g “ g1g2 ¨ ¨ ¨ gp with gi P Gi. Note that g is fixed by x if and only
if gxi “ gi`1 and gxp “ g1. Hence gx

p

1 “ g1 and

|CGpxq| “ |CG1px
pq|.

Also, CGpx
pq is the product of CGipx

pq, and these are conjugate under x.
Thus

|CGpx
pq| “

p
ź

i“1

|CGipx
pq| “ |CG1px

pq|p “ |CGpxq|
p.

It follows that

ź

xPP´N

|CGpxq|
p

|CGpxpq|
“ 1.

and the theorem is proven. �

Lyons’ proof follows a character theoretical approach, entirely different
from ours. The key is the following result, kindly provided to us by Lyons.

Theorem 4.15 (Lyons). Let F “ GF pqq, let P be a p-group with p ‰ q,
and let V be an F rP s-module. Then

dimF pCV pP qq “
p

pp´ 1q|P |

ÿ

xPP

ˆ

dimF pCV pxqq ´
1

p
dimF pCV px

pqq

˙

.

Proof. Let Ṽ “ V bF F , where F is the algebraic closure of F .
Then Ṽ is an F rP s-module and it is easy to check that dimF pCV pHqq “
dimF pCṼ pHqq, for all H ď P . Hence we may assume that F “ F .

Let χ be the Brauer character of P afforded by V . By Theorem 2.12
of [Nav98a], we have that χ is an ordinary character of P . We claim that
dimF pCV pHqq “ r1H , χHs for all H ď P . Indeed, let H ď P and notice
that V is an F rHs-module. Since charpF q “ q does not divide |H|, we have
by Maschke’s Theorem (Theorem 4.4) that V is completely reducible. Write
V “ pV1 ‘ V2 ‘ ¨ ¨ ¨ ‘ Vrq ‘ pVr`1 ‘ ¨ ¨ ¨ ‘ Vkq, with Vi is an irreducible FH-
module, and W “ CV pHq “ V1‘V2‘¨ ¨ ¨‘Vr. Now if v P Vi for i “ 1, . . . , r,
we have that v ¨ h “ v for all h P H, and hence Vi affords 1H . Conversely, if
Vi affords 1H , then v ¨ h “ v for all v P Vi, and hence Vi ď W . Therefore,
dimF pW q “ r1H , χHs and the claim follows.

Now let ν : P Ñ C be the function defined as follows

ν “
ÿ

xPP´t1u

1

|xxy|
p1xxy ´ 1xxpyq `

p´ 1

p
µt1u,
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where µt1u is the characteristic function of the singleton t1u. We claim that

ν “
p´ 1

p
1P .

First note that νp1q “ p´1
p and if 1 ‰ y P P , it is easy to see that

νpyq “
ÿ

xPP´t1u
yPxxy´xxpy

1

|xxy|
.

Now note that y P xxy´xxpy if and only if xyy “ xxy. Indeed, if opyq ă opxq,
we would have that opyq | opxpq since opxpq “ opxq{p, and then y P xxpy, a
contradiction. Therefore opyq “ opxq and xxy “ xyy. The converse is trivial.
Then, if opyq “ pα, we have that

νpyq “
ÿ

xPP´t1u
xyy“xxy

1

|xxy|
“
pp´ 1qpα´1

pα
“
p´ 1

p
,

where the second equality follows from the fact that the number of generators
of xyy is pp´ 1qpα´1. Hence

ν “
p´ 1

p
1P

and the claim is proven. Hence,

dimF pCV pP qq “ r1P , χs “
p

pp´ 1q
rν, χs.

On the other hand, since |xxy| “ p|xxpy|, we have that

|P |rν, χs “
ÿ

xPP´t1u

ˆ

r1xxy, χxxys ´
1

p
r1xxpy, χxxpys

˙

`
p´ 1

p
χp1q

“
ÿ

xPP´t1u

ˆ

dimF pCV pxqq ´
1

p
dimF pCV px

pqq

˙

`
p´ 1

p
χp1q

Since χp1q “ dimF pV q “ dimF pCV p1qq, we have that

p´ 1

p
χp1q “ χp1q ´

1

p
χp1q “ dimF pCV p1qq ´

1

p
dimF pCV p1qq

and therefore

rν, χs “
1

|P |

ÿ

xPP

ˆ

dimF pCV pxqq ´
1

p
dimF pCV px

pqq

˙

.

This concludes the proof. �
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As a consequence we obtain Theorem K.

Lyons’ proof. As in our proof, we can reduce to the case where G
is an elementary abelian q-subgroup for some prime q ‰ p. Hence G is a
GF pqqrP s-module and then using Theorem 4.15 we have that

|CGpP q| “ qdimGF pqqpCGpP qq

“ q
p

pp´1q|P |

ř

xPP

´

dimF pCGpxqq´
1
p

dimF pCGpx
pqq

¯

“

˜

ź

xPP

qdimF pCGpxqq

q
1
p

dimF pCGpxpqq

¸

p
pp´1q|P |

“

˜

ź

xPP

|CGpxq|

|CGpxpq|
1
p

¸

p
pp´1q|P |

,

as desired. �
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