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Resumen

Algunas de las principales conjeturas en Teoria de Representaciones de
Grupos Finitos admiten refinamientos en términos de p-bloques de Brauer.
Un ejemplo paradigmatico de esto es la conjetura de Alperin-McKay pro-
puesta por J. L. Alperin en [Alp75], que brinda una visién bloque-tedrica
a la afamada conjetura de McKay. Ademés, en general, los bloques dotan
de mas estructura a estos problemas.

Actualmente solo se vislumbra un camino para atacar este tipo de conje-
turas: reducirlas a problemas de grupos simples y utilizar la Clasificacion de
los Grupos Finitos Simples para resolverlas. Entendemos por reducir a un
problema de grupos simples que el problema tiene solucién siempre que se
comprueben una serie de condiciones para todos los grupos finitos simples.
Por supuesto, los subgrupos normales (y sus caracteres irreducibles) juegan
un papel fundamental en este proceso.

Una de las técnicas principales utilizadas en la reduccién de ciertos pro-
blemas de teoria de caracteres a problemas de grupos simples es estudiar
una version proyectiva de los mismos. Con esto queremos decir lo siguiente:
sea N un subgrupo normal de G, sea 6 un caracter irreducible de N y sea
Irr(G|6) el conjunto de constituyentes irreducibles del caracter inducido 6.
Hacer una version proyectiva de un problema es reformularlo en términos
de Irr(G|6) en lugar de Irr(G), el grupo cociente G/N en lugar de G, clases
de conjugacién B-buenas, en lugar de clases de conjugacién, etc. En otras
palabras, necesitamos entender totalmente la teoria de caracteres sobre el
caracter 8. Un ejemplo de aplicacién de este método es la reduccion de la
conjetura de McKay en [IMNO7]|. Ademés, cuando N = 1 debemos recu-
perar la conjetura o problema original. ;Cudl es la ventaja de esta filosofia?
En primer lugar, podemos proponer (y solucionar) problemas mucho més
generales. En segundo lugar, de esta manera podemos utilizar una poderosa
herramienta: induccién sobre |G : N|, que es una manera natural de intro-
ducir grupos simples en este tipo de problemas.

Siguiendo esta filosofia, si queremos atacar algunas conjeturas que in-
volucran p-bloques, no solo necesitamos entender la teoria de caracteres so-
bre 6, sino también la teoria de bloques sobre 8. Esta es la motivacién detrés
de gran parte de esta tesis: definimos un conjunto de bloques canénicamente
construidos sobre un caracter de un subgrupo normal. Estos bloques es-
tardn definidos con respecto a un primo p y un caracter irreducible 6 de
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un subgrupo normal, y les llamaremos 6-blogues (no haremos referencia al
primo p en la notacién porque lo matendremos fijo). Definimos los #-bloques
utilizando representaciones proyectivas y la teoria de character triples intro-
ducida por I. M. Isaacs. Los #-bloques estan relacionados con los bloques de
las twisted group algebras, pero nuestro acercamiento es totalmente caracter-
tedrico. Una parte no trivial de este trabajo es probar que los 8-bloques son
una particién candnica del conjunto Irr(G|6), es decir, los #-bloques son in-
dependientes de cualquier eleccién tomada a la hora de definirlos. Ademas, a
cada 0-bloque le asociaremos una tnica clase de conjugacién de p-subgrupos
de G/N. A cada uno de estos grupos le llamaremos 6-grupo defecto. Ve-
remos que, en general, los f-grupos defecto se comportan como los grupos
defecto de los p-bloques de Brauer clésicos.

Pero jpor qué esta generalizacién? Primero, desde el punto de vista del
subgrupo normal N y su caracter irreducible 6, en general los p-bloques de
Brauer son demasiado grandes y por ello no captan por completo las sutilezas
de la teoria de caracteres de G sobre 6. Probaremos que cada 6-bloque By
esta contenido en Irr(B) nIrr(G|6), donde B es un p-bloque de Brauer, pero
en general, By es mucho mas pequeno, con lo que la particién en 6-bloques
es mas fina. La segunda razdén es que usando nuestros #-bloques podemos
unificar resultados como no se habia hecho antes en la literatura: por ejem-
plo, en nuestra Conjetura B, el teorema de Gluck-Wolf-Navarro-Tiep y la
Brauer’s Height Zero Conjecture (BHZC) aparecen unificados por primera
vez. Este problema inspiré a G. Malle y G. Navarro quienes propusieron una
versién proyectiva de la BHZC [MIN17]. Mas tarde, B. Sambale probd, uti-
lizando la teoria de los sistemas de fusién, que esta conjetura es equivalente
a la BHZC ([Sam19]). Con todo esto, hemos obtenido nueva informacién
de los p-bloques de Brauer clasicos utilizando la idea de los #-bloques. Pero
esta no es la inica ocasién en la que los 6-bloques nos han arrojado luz sobre
los p-bloques clasicos. También probamos en el Teorema F que la matriz de
descomposicién clasica de un p-bloque de Brauer no se puede descomponer
de cierta forma. La esperanza es que los 6-bloques puedan inspirar més
resultados de este tipo.

En la primera parte de esta tesis probamos que la conjetura k(B) de
Brauer también admite una 6-versiéon. Esta conjetura es otro de los pro-
blemas abiertos fundamentales de R. Brauer de los 50, y no solo no se ha
resuelto sino que ni siquiera se ha reducido a grupos finitos simples. Quizés
nuestra 6-version pueda ayudar a divisar tal reduccién.

Otra parte importante del Capitulo 2 es la introduccién de #-caracteres
de Brauer. En [Nav00], Navarro da una versién de los caracteres de Brauer
relativos a un p-subgrupo normal N de G. Estos forman una base IBr(G|N)
del espacio de funciones de clase definidas en G° = {z € G|z, € N}. Esto
le permitié definir nimeros de descomposicién d,, para x € Irr(G) y ¢ €
IBr(G|N). La importancia de esto es que los caracteres
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0. Resumen xvii

P, = Z dypX
xelrr(G)

eran los caracteres relativos indescomponibles N-proyectivos descubiertos
previamente por B. Kiilshammer y G. R. Robinson en [KR87]. Aunque
Navarro también dio una versién de este resultado para un subgrupo nor-
mal N arbitrario (es decir, no necesariamente un p-grupo) en [Nav12], no
probé6 que la nueva N-base IBr(G|N) era canénica (tan canénica como lo
son los caracteres de Brauer, es decir, salvo eleccién de un ideal maximal
conteniendo p en el anillo de los enteros algebraicos). En esta tesis damos
una base candnica para el espacio de funciones de clase definidas en G° con
N arbitrario y demostramos que esta base coincide con la base candnica
dada por Navarro en [Nav00].

A dia de hoy, atn tenemos muchas preguntas sin contestar acerca de
los 6-bloques. Por ejemplo, ;pueden ser determinados a partir de la tabla
de caracteres? ;Podemos caracterizar los #-bloques con un tinico caracter?
No tenemos una respuesta completa a estas preguntas, y en otras seguimos
trabajando.

Todos los resultados arriba mencionados son el Teorema A, la Conjetura
B, el Teorema C, la Conjetura D, el Teorema E, el Teorema F y el Teorema
G del Capitulo 2 de este trabajo. Excepto el Teorema G, todos aparecen en
[Riz18]. El Teorema G aparecera en [Riz19].

En el Capitulo 3 seguimos estudiando el conjunto Irr(G|6) y damos una
generalizacion del conocido teorema de Howlett-Isaacs. En 1964, N. Iwa-
hori y H. Matsumoto conjeturaron en [IM64] que si 6 es G-invariante y
|Irr(G|6)| = 1, entonces G/N es resoluble (en este caso decimos que 6 es to-
talmente ramificado en G/N). Este tipo de caracteres, como cualquier otra
situacion minimal en teoria de grupos, aparece con frecuencia en teoria de
representaciones ordinarias (sobre cuerpos de caracteristica 0) y modulares
(sobre cuerpos de caracteristica p). Por ejemplo, en la teoria de caracteres
de los chief factors abelianos o en bloques con exactamente un caracter
de Brauer. Fueron Isaacs y R. Howlett quienes resolvieron finalmente esta
conjetura en [HI82], siendo este teorema una de las primeras aplicaciones
de la Clasificacion de los Grupos Finitos Simples a la teoria de caracteres.
Cuando 6 es totalmente ramificado en G/N y N € M < G, por el teorema
de Clifford tenemos que las constituyentes irreducibles de #¥ son todas G-
conjugadas. Este hecho nos inspiré el siguiente resultado principal de esta
tesis. El Teorema H es una generalizacién del aclamado teorema de Howlett
y Isaacs, y de una manera un tanto més débil podemos enunciarlo asi: si
A actia por automorfismos sobre G fijando N y algin caracter 6 € Irr(N)
G-invariante, y A permuta transitivamente los elementos de Irr(G|6), en-
tonces G/N es resoluble. Es importante sefialar que para la prueba de este
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teorema no utilizamos el teorema de Howlett y Isaacs. De hecho, creemos
que nuestra prueba simplifica parte de la suya.

Nuestro siguiente resultado principal del Capitulo 3 versa de nuevo sobre
el conjunto Irr(G|@), pero también sobre teoria de bloques. J. F. Humphreys
conjetur6é que si todos los caracteres en Irr(G|f) tienen el mismo grado,
entonces G/N es resoluble. Esto, evidentemente, es una amplisima ge-
neralizacién del teorema de Howlett y Isaacs, asi como del nuestro. En el
momento de escritura de esta tesis no hay resultados parciales para esta con-
jetura. Nuestro resultado (Teorema I), es una caracterizacion grupo-tedrica
de qué ocurre cuando N = O-(G) y G es m-separable (si 7 es un conjunto
de primos, decimos que G es w-separable si sus factores de composicién son
bien m-grupos o bien 7’-grupos). Como hemos dicho, este resultado estd
relacionado con la teoria de bloques y ahora explicamos por qué. Si 7 es el
complemento de un primo p, un resultado muy conocido de P. Fong asegura
que Irr(G|6) son los caracteres irreducibles de un p-bloque de Brauer (ver
el Teorema 10.20 de [Nav98a], por ejemplo). Si todos los caracteres irre-
ducibles de Irr(G|6) tienen el mismo grado, entonces estamos en la situacién
en que todos los caracteres irreducibles de un p-bloque tienen el mismo
grado. Esta situacion, sin la hipdtesis de p-resolubilidad, fue caracterizada
por T. Okuyama y Y. Tsushima en [OT83]. Podemos considerar, por tanto,
nuestro teorema I como una 7-versién de este resultado. Los Teoremas H e
I aparecen en [NR17].

La parte final de este trabajo es de naturaleza un tanto distina. En esta
ultima parte ya no trabajamos en términos de teoria de caracteres sobre un
caracter de un subgrupo normal, sino que trabajamos con el conjunto com-
pleto de todos los caracteres irreducibles de G, Irr(G). La tabla de caracteres
de G, X(G), es una matriz cuadrada cuyas columnas estéan indexadas por las
clases de conjugacién de G, y cuyas filas estan indexadas por los caracteres
irreducibles de GG. Uno de los problemas clésicos en teoria de caracteres es
determinar qué propiedades de un grupo finito G podemos conocer a partir
de su tabla de caracteres. Por ejemplo, la tabla de caracteres detecta si
G es abeliano, nilpotente, superresoluble, resoluble o simple. En esta tesis,
estamos interesados en qué sabe X (G) sobre la p-estructura local de G, para
un primo dado p, un problema mucho més complejo. En particular, nuestra
motivacion es la Pregunta 7 de [Nav04]: ;determina la tabla de caracteres
de G cuantos p-subgrupos de Sylow tiene G7 En este trabajo damos una
respuesta afirmativa a esta pregunta en algunos casos (Teorema J).

No obstante, mas interesante que el resultado en si, es quizas la manera
de demostrarlo. Para probar este teorema necesitamos calcular el niimero
de puntos fijos de la accién de un p-grupo sobre un grupo de orden coprimo
con p. Para ello damos una férmula (Teorema K) que permite calcular este
nimero en términos de informacién que se puede obtener de la tabla de
caracteres. Nuestra férmula generaliza un resultado clasico de Brauer (y H.

Universitat de Valencia Noelia Rizo Carrién



0. Resumen xix

Wielandt) para contar el nimero de puntos fijos de la accién de un 4-grupo
de Klein sobre un grupo de orden impar. Los resultados del Capitulo 4,
Teorema J y Teorema K, aparecen en [NR16].

Después de leer nuestra prueba de la formula del Teorema K, Isaacs y
R. Lyons encontraron dos pruebas alternativas muy elegantes de la misma.
Las reproducimos en este trabajo con su permiso.

Guion de la tesis

El Capitulo 1 brinda un breve repaso a la teoria de caracteres ordinarios
y modulares (Secciones 1.1 y 1.3), cubriendo asi los prerrequisitos para el
resto de la tesis. Las referencias para la parte concerniente a caracteres
ordinarios serdn [Isa76] y [Nav18], mientras que para la parte relativa a
caracteres de Brauer serd [Nav98a]. Asimismo, hemos creido oportuno
introducir brevemente resultados relativos a la teoria de character triples
de Isaacs y representaciones proyectivas (Seccién 1.2), pues constituyen la
herramienta fundamental para definir los 6-bloques en el Capitulo 2.

En el Capitulo 2 empieza nuestro trabajo original. Si G es un grupo
finito, N es un subgrupo normal de G, 6 es un caracter irreducible de N
G-invariante y p es un primo dado, definimos una particion del conjunto
Irr(G|6) con respecto al primo p. A los elementos de esta particién los lla-
mamos #-bloques. Como hemos dicho, para definir los #-bloques utilizamos
representaciones proyectivas y la teoria de las character triples. Concre-
tamente, asociamos a (G, N, #) una representaciéon proyectiva P que satis-
face ciertas propiedades y, utilizando esta representaciéon proyectiva P, cons-
truimos una standard character triple (G*, N*,6*) isomorfa a (G, N, 0), con
N* central en G*. Que estas character triples sean isomorfas nos dice, en-
tre otras cosas, que existe una biyeccién * : Irr(G|6) — Irr(G*|6*), a la
que llamaremos standard bijection. Decimos que un subconjunto no vacio
By < Irr(G|6) es un 6-bloque si existe un p-bloque de G*, B*, tal que
(Bg)* = {x* | x € By} = Irr(B*|6*). A cada 6-bloque le asociamos una
unica clase de conjugacién de p-subgrupos de G/N, y a cada uno de es-
tos subgrupos le llamamos 6-grupo defecto. Como acabamos de ver, para
la construccién de los 6-bloques (y la de los -grupos defecto) hacemos
una eleccién de una representacién proyectiva asociada a (G, N,0). En la
Seccién 2.4 probamos que tanto los #-bloques como los #-grupos defecto estan
canénicamente definidos (Teorema A), es decir, son independientes de dicha
eleccién. En la Seccién 2.5 damos algunas propiedades de los #-bloques.
Probamos, por ejemplo, que para todo 6-bloque By existe un p-bloque de
G, B, tal que By < Irr(B|f) = Irr(B) n Irr(G|6). También probamos que si
el subgrupo N es central, entonces los #-bloques son exactamente los con-
juntos Irr(Bl@), donde B recorre los p-bloques de G, o que si G/N es un
p-grupo, entonces solo hay un #-bloque y un 6-grupo defecto, G (esto es el
Teorema 2.10). Ademads, damos 0-versiones de algunos resultados conocidos
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de teoria de bloques. Por ejemplo, probamos que si x € Irr(G|0), By es el
-bloque que contiene a x y (¢/N), no pertenece a ningtin #-grupo defecto de
By para algin g € G, entonces x(g) = 0 (esto es el Teorema 2.12). También
probamos que si By es un #-bloque y Dy/N es un 6-grupo defecto de By,
entonces existe N € G/N tal que Dy/N € Syl,(Cg/n(zN)) (Proposicién
2.15). En la Seccién 2.6, damos 6-versiones de las conocidas conjeturas
Brauer’s Height Zero Conjecture y Brauer’s k(B) Conjeture (Conjeturas
B y D). Ademds probamos que nuestras #-versiones son equivalentes a las
conjeturas originales (Teoremas C y E). Como hemos dicho, para probar el
Teorema C, necesitamos el resultado de Sambale en [Sam19]; mientras que
para probar el Teorema E necesitamos un resultado nada trivial de Navarro
en [Nav17]. En la Seccién 2.7 probamos que la matriz de descomposicién
de un bloque no puede tener cierta forma (Teorema F). El ingrediente prin-
cipal para probar este resultado es un teorema de R. Knorr. En la Seccién
2.8, siguiendo las ideas de Navarro en [Nav12], damos una base candnica,
IBr(G|N), del espacio de las funciones de clase definidas en G° y probamos
que esta base coincide con la base canénica de Navarro en [Nav00] cuando
N es un p-grupo. Si cf(G°) es el espacio de las funciones de clase definidas
en G° y © es un conjunto de representantes de las érbitas de la accién de G
sobre Irr(N), Navarro prueba en [Nav00] que

cf(G°) = P cf(G°9).
0O
Lo que hacemos es dar una base, IBr(G|0) de cada uno de estos espacios
cf(G°]0). A los elementos de esta base les llamamos #-caracteres de Brauer.
Por tanto, si x € Irr(G|6) y x° es la restriccién de x a G°, entonces podemos

escribir

XO = Z dxtpSOa

pelBr(G|0)
para ciertos enteros no-negativos d,,, univocamente definidos. Llamamos
a estos enteros f-nuimeros de descomposicion. Utilizando estos #-ntimeros
de descomposicién se obtiene una particién del conjunto Irr(G|) (esta par-
ticién ya fue estudiada por Navarro en [Nav00] y [Nav12]). Utilizando el
Teorema F probamos que la particién de Irr(G|6) dada por los §-ntimeros
de descomposicién y la particién de Irr(G|6) dada por los #-bloques coincide
(Teorema 2.30), relacionando asi nuestro trabajo con el trabajo desarrollado
por Kiilshammer y Robinson en [KR87]. En la Seccién 2.9 definimos un
0-linking de la siguiente manera. Si x, 1 € Irr(G|6), decimos que x y ¢ estan
0-linked si
D x(@)d(z) #0.

zeG°
Probamos que si C' es una componente conexa del grafo definido en Irr(G|0)
mediante este nuevo 0-linking, entonces existe un #-bloque By tal que C' <
By. Sin embargo, la igualdad no se da en general, aunque si bajo ciertas
hipétesis de extendibilidad sobre 6 (Teorema 2.35).
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En el Capitulo 3 probamos una generalizacién del teorema de Howlett-
Isaacs tomando en cuenta la acciéon de Aut(G)y,g) sobre Irr(G|6) (donde
Aut(G)(n,9) denota el subgrupo de Aut(G) que fija N y 0). Concretamente,
probamos que si Irr(G|6) es una Aut(G)(y g)-6rbita, entonces G/N es reso-
luble. La prueba del teorema de Howlett y Isaacs tiene tres ingredientes prin-
cipales: un teorema de DeMeyer y Janusz (ver el Teorema 8.3 de [Nav18],
por ejemplo) que dice que si § € Irr(N) es totalmente ramificado en G con
x € Irr(G) tal que ¢ = ex, y P/N es un p-subgrupo de Sylow de G/N,
entonces 0 = epn para algin n € Irr(P); la correspondencia de Glauber-
man, que afirma que si un grupo resoluble S actia coprimamente sobre un
grupo G, entonces existe una biyeccién natural de Irrg(G) (los caracteres
irreducibles de G fijados por la accién de ) en Irr(Cg(S)); y la Clasificacion
de los Grupos Finitos Simples. Para demostrar nuestra generalizacién nece-
sitamos demostrar ciertas versiones de estos resultados.

En primer lugar, en la Seccién 3.2 damos algunos resultados sobre ac-
ciones transitivas y p-subgrupos de Sylow. En particular, probamos que si
P/N es un p-subgrupo de Sylow de G/N y A es un grupo que actia sobre
Irr(G|0) transitivamente y sobre Irr(P|0) satisfaciendo ciertas condiciones de
compatibilidad, entonces B € Syl,(A) actiia transitivamente sobre Irr(P|0)
(Teorema 3.2).

En segundo lugar, también necesitaremos propiedades no triviales de la
correspondencia de Glauberman. Como hemos dicho, esta correspondencia
afirma que si un grupo resoluble S actiia sobre un grupo G de orden coprimo
con | S|, entonces existe una biyeccién natural de Irrg(G) en Irr(Cg(S)). En
particular necesitaremos un refinamiento bastante técnico de esta biyeccidn,
el cual probaremos en la Seccién 3.4 utilizando resultados de A. Turull pu-
blicados en [Tur08], [Tur09] y [Turl7].

Por 1ltimo, como hemos dicho anteriormente, el teorema de Howlett-
Isaacs utiliza la Clasificacién de los Grupos Finitos Simples (CGFS). También
nosotros la necesitaremos para probar nuestra generalizacién. De hecho,
necesitaremos el mismo resultado sobre grupos simples utilizado en [HI82]:
si X es un grupo simple no abeliano, entonces existe un primo p tal que p
divide a |X|, p no divide a |M(X)| (el orden del Schur multiplier de X) y
no existe un subgrupo de X resoluble con indice potencia de p.

En la parte final de este capitulo, en la Seccién 3.6, probamos el Teorema
I que caracteriza cuando todos los caracteres irreducibles sobre un caracter
irreducible de un subgrupo normal tienen el mismo grado, en una situacién
especifica. Para la prueba de este teorema necesitaremos tres resultados
nada triviales: un teorema de U. Riese sobre induccién de caracteres ir-
reducibles desde un subgrupo abeliano, un resultado profundo de S. Dolfi
sobre orbitas regulares, y el teorema de Howlett-Isaacs.
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Finalmente, en el Capitulo 4, contestamos parcialmente a la pregunta
jsabe la tabla de caracteres de G cuantos p-subgrupos de Sylow tiene G?
Como el nimero de p-subgrupos de Sylow de G es exactamente |G : Ng(P)],
donde P es un p-subgrupo de Sylow de G, lo que nos estamos preguntando
es si podemos calcular el orden del normalizador del p-subgrupo de Sylow
a partir de la informacién que nos da la tabla de caracteres. Pensemos en
el caso més simple, cuando G tiene un p-complemento normal N (un p-
complemento normal de G es un subgrupo de G de orden coprimo con p e
indice una potencia de p). En este caso G = NPy N n P = 1, y puesto que
Ny (P) = Cy(P), tenemos que |Ng(P)| = |Cn(P)||P|. Por tanto, en esta
situacién minimal, para calcular |N¢g(P)| nos bastaria calcular |Cy(P)].
Resulta que el caso general (cuando G es p-resoluble) también reduce a una
situacion de este tipo. Como N es un subgrupo normal, tenemos que P
actia sobre N por conjugacién y |Cy(P)| es precisamente el nimero de
puntos fijos de esta accién.

En la Secciéon 4.2 damos una férmula para calcular, en general, el niimero
de puntos fijos por la accién de un p-grupo sobre un grupo de orden coprimo
con p (Teorema K). La férmula es la siguiente

p
‘CN (p—DIP]
‘CN | - (H m.p ’1/p ’

;teP

Hemos llamado a esta férmula la férmula de Brauer- Wielandt porque fue
Brauer el primero en obtener una férmula de este tipo (en su caso, el grupo
que actia es un 4-grupo de Klein) y més tarde Wielandt dio la férmula para
el caso general. Sin embargo, no podemos utilizar la férmula de Wielandt
para nuestros propésitos, pues involucra términos que no se pueden leer de
la tabla de caracteres. Esto es precisamente lo que hace mas interesante
nuestra férmula: solo involucra los érdenes de los centralizadores de algunos
elementos, y podemos encontrar esta informacién en la tabla de caracteres
en algunos casos. En particular, en la Seccién 4.3 aplicamos nuestra férmula
para obtener el orden del normalizador de un p-subgrupo de Sylow de un
grupo p-resoluble, G, a partir de su tabla de caracteres, siempre que el p-
subgrupo de Sylow sea abeliano o de exponente p (Teorema J). La prueba del
caso en que el p-subgrupo de Sylow tiene exponente p es elemental, mientras
que en el caso en que el p-subgrupo de Sylow es abeliano es mucho mas
complicada. En este tltimo caso, la clave esta en lo siguiente: si {y1,...,yr}
son representantes de las clases de conjugacién de los p-elementos de G
(detectables en la tabla de caracteres gracias a un teorema de G. Higman),
tenemos que determinar cudles de estos elementos pertenecen a algin G-
conjugado del subgrupo de Frattini de P, ®(P) (el subgrupo de Frattini de
P es la interseccién de todos los subgrupos maximales de P). Para ello la
clave es la utilizacién de cierto elemento del grupo de Galois Gal(Q,/Q),
donde Q,, es la extensién de Q por una raiz n-ésima primitiva de la unidad.
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A veces, cuando la tabla de caracteres parece no ser suficiente para resolver
un problema, nos preguntamos si la tabla de caracteres mas el p-power
map lo es. Si {z1,...,x} son representantes de las clases de conjugacién
de G, el p-power map es la aplicacion f : {1,...,k} — {1,...,k} tal que
x? pertenece a la clase de ;). Resulta que, utilizando nuestra férmula,
podemos determinar [N (P)| a partir de la tabla de caracteres y el p-power
map, sin ninguna asuncién sobre los p-subgrupos de Sylow de G (aunque

manteniendo la hipdtesis de p-resolubilidad sobre G).

Por dltimo concluimos este capitulo con las pruebas de Isaacs y Lyons
del Teorema K en la Seccién 4.4.
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Resum

Algunes de les principals conjectures en Teoria de Representacions de
Grups Finits admeten refinaments en termes de p-blocs de Brauer. Un
exemple paradigmatic d’aquest fet és la conjectura d’Alperin-McKay pro-
posada per J. L. Alperin en [Alp75], que déna una visié bloc-teorica a la
coneguda conjectura de McKay. A més a més, en general, els blocs donen
més estructura a aquests problemes.

Actualment la forma d’atacar aquest tipus de conjectures és la segiient:
reduir-les a problemes de grups simples i utilitzar la Classificacié dels Grups
Finits Simples per a resoldre-les. Entenem per reduir a un problema de grups
simples que el problema té solucié sempre que es verifiquen una serie de
condicions per a tots els grups finits simples. Per descomptat, els subgrups
normals (i els seus caracters irreductibles) juguen un paper fonamental en
aquest procés.

Una de les tecniques principals utilitzades en la reduccié de certs pro-
blemes de teoria de caracters a problemes de grups simples és estudiar una
versio projectiva d’aquests problemes. Que volem dir amb aco? Siga N un
subgrup normal de G, siga 6 un caracter irreductible de N i siga Irr(G|6) el
conjunt de constituents irreductibles del caracter induit 8. Fer una versi6
projectiva d’un problema és reformular-lo en termes de Irr(G|0) en lloc de
Irr(G), el grup quocient G/N en lloc de G, classes de conjugacié 6-bones, en
lloc de classes de conjugacio, etc. En altres paraules, necessitem entendre
totalment la teoria de caracters sobre el caracter §. Un exemple d’aplicacié
d’aquest metode és la reduccié de la conjectura de McKay en [IMNO7]. A
més a més, quan N = 1 hem de recuperar la conjectura o problema original.
Pero, quin és ’avantatge d’aquesta filosofia? En primer lloc, podem proposar
(i resoldre) problemes molt més generals. En segon lloc, d’aquesta manera
podem utilitzar una poderosa ferramenta: induccié sobre |G : N|, que és
una manera natural d’introduir grups simples en aquest tipus de problemes.

Seguint aquesta filosofia, si volem atacar algunes conjectures que involu-
cren p-blocs, no només necessitem entendre la teoria de caracters sobre 6,
siné també la teoria de blocs sobre . Aquesta és la motivacié darrere de gran
part d’aquesta tesi: definim un conjunt de blocs canonicament construits
sobre un caracter d’un subgrup normal. Aquests blocs estaran definits res-
pecte d’un primer p i un caracter irreductible § d’un subgrup normal, i els
anomenarem 6-blocs (no farem referéncia al primer p en la notacié perque
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romandra fix). Definim els 6-blocs utilitzant representacions projectives i
la teoria de character triples introduida per I. M. Isaacs. Els #-blocs estan
relacionats amb els blocs de les twisted group algebras, pero la nostra pers-
pectiva és totalment caracter-teorica. Una part no trivial d’aquest treball
és provar que els f-blocs sén una particié canonica del conjunt Irr(G|0), és a
dir, els 6-blocs sén independents de qualsevol eleccid feta a ’hora de definir-
los. A més a més, a cada 6-bloc ’associarem una tnica classe de conjugacid
de p-subgrups de G/N. A cadascun d’aquests grups I’anomenarem 6-grup
defecte. Veurem que, en general, els 6-grups defecte es comporten com els
grups defecte dels p-blocs de Brauer classics.

Pero, per que aquesta generalitzacié? Primer, des del punt de vista del
subgrup normal N i del seu caracter irreductible 6, en general els p-blocs
de Brauer sén massa grans i per aquesta radé no capten per complet les
subtileses de la teoria de caracters de G sobre 6. Provarem que cada 6-bloc
By esta contingut en Irr(B) n Irr(G|6), on B és un p-bloc de Brauer, pero
en general, By és molt més xicotet, per la qual cosa la particié en 6-blocs és
més fina. La segona rad és que emprant els nostres #-blocs podem unificar
resultats i problemes com mai s’havien relacionat abans en la literatura:
per exemple, en la nostra Conjectura B, el teorema de Gluck-Wolf-Navarro-
Tiep i la Brauer’s Height Zero Conjecture (BHZC) apareixen unificats per
primera vegada. Aquest problema va inspirar G. Malle i G. Navarro per
proposar una versié projectiva de la BHZC [MIN17]. Més tard, B. Sambale
va provar, utilitzant la teoria dels sistemes de fusid, que aquesta conjectura
era equivalent a la BHZC ([Sam19]). Amb tot ago, per tant, hem obtingut
nova informacié dels p-blocs de Brauer classics utilitzant la idea dels 6-blocs.
Pero aquesta no és I'inica ocasio en la que els 6-blocs ens han donat resultats
sobre els p-blocs classics. També provem al Teorema F que la matriu de
descomposicié classica d’'un p-bloc de Brauer no es pot descompondre de
certa forma. L’esperanca és que els 6-blocs puguen inspirar més resultats
d’aquest estil.

En la primera part d’aquesta tesi provem que la Conjectura k(B) de
Brauer també admet una 6-versié. Aquesta conjectura és altre dels pro-
blemes oberts fonamentals de R. Brauer dels anys 50, i no només no s’ha
resolt sind que ni tan sols s’ha reduit a grups finits simples. Tal vegada la
nostra 6-versié puga ajudar a divisar una reduccié.

Altra part important del Capitol 2 és la introduccié de #-caracters de
Brauer. En [Nav00], Navarro déna una versié dels caracters de Brauer
relatius a un p-subgrup normal N de G. Aquests formen una base IBr(G|N)
de l'espai de funcions de classe definides en G° = {z € G|z, € N}. Agd
li va permetre definir nombres de descomposicié dy, per a x € Irr(G) i
¢ € IBr(G|N). La importancia d’aco és que els caracters

P, = Z dypX
xelrr(Q)
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eren els caracters relatius indescomponibles N-projectius descoberts pre-
viament per B. Kiilshammer y G. R. Robinson en [KR87|. Tot i que Navarro
també va donar una versié d’aquest resultat per a un subgrup normal N
arbitrari (és a dir, no necessariament un p-grup) en [Nav12|, no va provar
que la nova N-base IBr(G|N) era canonica (tan canonica com ho sén els
caracters de Brauer, és a dir, llevat de l’eleccié d’un ideal maximal que
continga p a ’anell dels enters algebraics). En aquesta tesi donem una base
canonica per a ’espai de funcions de classe definides en G° amb N arbitrari
i demostrem que aquesta base coincideix amb la base canonica donada per
Navarro en [Nav00].

Encara tenim moltes preguntes sense contestar sobre els 6-blocs. Per
exemple, els podem determinar mitjangant la taula de caracters? Podem
caracteriztar els 6-blocs amb un tnic caracter? No tenim una resposta com-
pleta a aquestes preguntes, en altres seguim treballant.

Tots els resultats fins ara mencionats sén el Teorema A, la Conjectura
B, el Teorema C, la Conjectura D, el Teorema E, el Teorema F i el Teorema
G del Capitol 2 d’aquest treball. Excepte el Teorema G, tots apareixen a
[Riz18]. El Teorema G apareixera a [Riz19].

Al Capitol 3 seguim estudiant el conjunt Irr(G|0) i donem una gene-
ralitzacié del conegut teorema de Howlett-Isaacs. Al 1964, N. Iwahori i H.
Matsumoto conjecturaren a [IM64] que si 6 és G-invariant i |Irr(G|0)| = 1,
aleshores G/N és resoluble (en aquest cas diguem que 6 és totalment ra-
mificat en G/N). Aquest tipus de caracters, com qualsevol altra situacié
minimal en teoria de grups, apareixen amb freqiiencia en teoria de repre-
sentacions ordinaries (sobre cossos de caracteristica 0) i modulars (sobre
cossos de caracteristica p). Per exemple, en la teoria de caracters dels chief
factors abelians o en blocs amb exactament un caracter de Brauer. Van ser
Isaacs i R. Howlett qui resolgueren finalment aquesta conjectura en [HI82],
en el que va ser una de les primeres aplicacions de la Classificacié dels Grups
Finits Simples a la teoria de caracters. Quan 6 és totalment ramificat en
G/N i N € M <G, pel teorema de Clifford tenim que les constituents
irreductibles de 8™ sén totes G-conjugades. Aquest fet ens va inspirar el
segiient resultat principal d’aquesta tesi. El Teorema H és una generalitzacié
del famos teorema de Howlett i Isaacs, i d’'una manera un tant més debil
podem enunciar-lo aixi: si A actua per automorfismes sobre G fixant N i
algun caracter 6 € Irr(N) G-invariant, i A permuta transitivament els ele-
ments de Irr(G|6), aleshores G/N és resoluble. Es important destacar que
per a la prova d’aquest teorema no utilizem el teorema de Howlett i Isaacs.
De fet, creem que la nostra prova simplifica part de la seua.

El segiient resultat principal del Capitol 3 versa de nou sobre el conjunt
Irr(G|6), perd també involucra teoria de blocs. J. F. Humphreys va conjec-
turar que si tots els caracters en Irr(G|A) tenen el mateix grau, aleshores
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G/N és resoluble. Ago, evidentment, és una ampla generalitzacié del teo-
rema de Howlett i Isaacs, aixi com del nostre. En el moment d’escriptura
d’aquesta tesi no hi ha resultats parcials per a aquesta conjectura. El nostre
resultat (Teorema I), és una caracteritzacié en termes de teoria de grups
de que ocorre quan N = O, (G) i G és m-separable (si m és un conjunt de
primers, diem que G és m-separable si els seus factors de composicié sén
bé m-grups o bé n'-grups). Com hem dit, aquest resultat esta relacionat
amb la teoria de blocs i ara expliquem per quée. Si w és el complement d’un
primer p, un resultat molt conegut de P. Fong assegura que Irr(G|f) sén
els caracters irreductibles d’un p-bloc de Brauer (veure el Teorema 10.20
de [Nav98a], per exemple). Si tots els caracters irreductibles de Irr(G|0)
tenen el mateix grau, aleshores estem en la situacié en que tots els carac-
ters irreductibles d’un p-bloc tenen el mateix grau. Aquesta situacid, sense
la hipotesi de p-resolubilitat, va ser caracteritzada per T. Okuyama i Y.
Tsushima en [OT83]. Podem considerar, per tant, el nostre Teorema I com
una m-versié d’aquest resultat. Els Teoremes H i I apareixen en [NR17].

La part final d’aquest treball és de natura un tant distina. En aquesta
darrera part ja no treballem en termes de teoria de caracters sobre un ca-
racter d’un subgrup normal, siné que treballem amb el conjunt complet de
tots els caracters irreductibles de G, Irr(G). La taula de caracters de G,
X (G), és una matriu quadrada amb les columnes indexades per les classes
de conjugaci6 de G, i les files indexades pels caracters irreductibles de G. Un
dels problemes classics en teoria de caracters és determinar quines propie-
tats d’'un grup finit G podem coneixer a partir de la seua taula de caracters.
Per exemple, la taula de caracters detecta si GG és abelia, nilpotent, super-
resoluble, resoluble o simple. En aquesta tesi, estem interessats en que sap
X (G) sobre la p-estructura local de G, per a un primer donat p, un problema
molt més complicat. En particular, la nostra motivacié és la Pregunta 7 de
[Nav04]: determina la taula de caracters de G quants p-subgrups de Sylow
té G7 En aquest treball donem una resposta afirmativa a aquesta pregunta
en alguns casos (Teorema J).

No obstant aix0, més interessant que el resultat en si mateix, es tal
vegada la manera de demostrar-lo. Per tal de provar aquest teorema ne-
cessitem calcular el nombre de punts fixats per l'accié d’un p-grup sobre
un grup d’ordre coprimer amb p. Per a aixd donem una férmula (Teorema
K) que permet calcular aquest nombre en termes de informacié que pot ser
obtinguda de la taula de caracters. La nostra férmula generalitza un resultat
classic de Brauer (i H. Wielandt) per a contar el nombre de punts fixats per
I’accié d’'un 4-grup de Klein sobre un grup d’ordre senar. Els resultats del
Capitol 4, Teorema J i Teorema K, apareixen en [NR16].

Després de llegir la nostra prova de la formula del Teorema K, Isaacs i
R. Lyons trobaren dos proves alternatives molt elegants d’aquesta férmula.
Les reproduim en aquest treball amb el seu permis.
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Guié de la tesi

El Capitol 1 és un breu repas a la teoria de caracters ordinaris i modulars
(Seccions 1.11 1.3), cobrint d’aquesta manera els prerrequisits per a la resta
de la tesi. Les referencies per a la part concernent a caracters ordinaris seran
[Isa76] i [Nav18], mentre que per a la part relativa a caracters de Brauer
sera [Nav98a|. D’altra banda, hem cregut oportd introduir breument re-
sultats relatius a la teoria de character triples de Isaacs i representacions
projectives (Seccié 1.2), doncs constitueixen la ferramenta fonamental per a
definir els #-blocs al Capitol 2.

Al Capitol 2 comenga el nostre treball original. Si G és un grup finit,
N és un subgrup normal de G, 6 és un caracter irreductible de N G-
invariant i p és un primer donat, definim una particié del conjunt Irr(G|0)
respecte del primer p. Als elements d’aquesta particié els anomenem 6-
blocs. Com hem dit, per a definir els 6-blocs utilitzem representacions
projectives i la teoria de les character triples. Concretament, associem a
(G, N, 0) una representaci6 projectiva P que satisfa certes propietats i, em-
prant aquesta representacié projectiva P, construim una standard character
triple (G*, N*,0*) isomorfa a (G, N, 0), amb N* central en G*. Que aquestes
character triples siguen isomorfes ens diu, entre altres coses, que existeix una
bijeccié * : Irr(G|0) — Irr(G*|0*), a la qual anomenarem standard bijection.
Diem que un subconjunt no buit By < Irr(G|€) és un #-bloc si existeix un p-
bloc de G*, B*, tal que (Byg)* = {x*|x € By} = Irr(B*|0*). A cada 6-bloc li
associem una unica classe de conjugacié de p-subgrups de G/N, i a cadascun
d’aquests subgrups I'anomenem 6-grup defecte. Com acabem de veure, per
a la construcci6 dels 6-blocs (i la dels 6-grups defecte) fem una eleccié d’una
representacié projectiva associada a (G, N, ). En la Secci6 2.4 provem que
tant els 6-blocs com els f-grups defecte estan canonicament definits (Teo-
rema A), és a dir, s6n independents d’aquesta eleccié. A la Seccié 2.5 donem
algunes propietats dels #-blocs. Provem, per exemple, que per a tot 6-bloc
By existeix un p-bloc de G, B, tal que By < Irr(B|0) = Irr(B) n Irr(G|0).
També provem que si el subgrup IV és central, aleshores els #-blocs sén exac-
tament els conjunts Irr(B|#), on B recorre els p-blocs de G, o que si G/N és
un p-grup, aleshores només hi ha un #-bloc i un #-grup defecte, G (ago es el
Teorema 2.10). A més a més, donem 6-versions d’alguns resultats coneguts
de la teoria de blocs. Per exemple, provem que si x € Irr(G|0), By és el
-bloc que conté a x i (¢/N), no pertany a cap 6-grup defecte de By per a
algun g € G, aleshores x(g) = 0 (ag0 és el Teorema 2.12). També provem
que si By és un 6-bloc i Dy/N és un 0-grup defecte de By, aleshores existeix
xN € G/N tal que Dy/N € Syl,(Cg/n(N)) (Proposicié 2.15). A la Seccié
2.6, donem #-versions de les conegudes conjectures Brauer’s Height Zero
Congecture 1 Brauer’s k(B) Conjeture (Conjectures B i D). A més a més,
provem que les nostres #-versions sén equivalents a les conjectures originals
(Teoremes C i E). Com hem dit, per a provar el Teorema C, necessitem
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el resultat de Sambale en [Sam19]; mentre que per a provar el Teorema
E necessitem un resultat gens trivial de Navarro en [Nav17]. A la Seccié
2.7 provem que la matriu de descomposicié d’un bloc no pot tindre certa
forma (Teorema F). L’ingredient principal per a provar aquest resultat és
un teorema de R. Knorr. A la Seccién 2.8, seguint les idees de Navarro en
[Nav12], donem una base canonica, IBr(G|N), de lespai de les funcions
de classe definides en G° i provem que aquesta base coincideix amb la base
canonica de Navarro en [Nav00] quan N és un p-grup. Si cf(G°) és l'espai
de les funcions de classe definides en G° i © és un conjunt de representants
de les orbites de I’accié de G sobre Irr(N), Navarro prova en [Nav00] que

cf(G°) = P cf(G°9).
0cO
El que fem és donar una base, IBr(G|0) de cadascun d’aquests espais cf(G°|6).
Als elements d’aquesta base els anomenem 6-caracters de Brauer. Per tant,
si x € Irr(G|6) 1 x° és la restriccié de x a G°, aleshores podem escriure

X" = Z dyp$s
pelBr(G|0)

per a certs enters no-negatius d,,, univocament definits. Anomenem a a-
quests enters 8-nombres de descomposicié. Utilitzant aquests 8-nombres de
descomposicié s’obté una particié del conjunt Irr(G|0) (aquesta particié ja
fou estudiada per Navarro en [Nav00] i [Nav12]). Utilitzant el Teorema F
provem que la particié de Irr(G|6) donada pels f-nombres de descomposici6
i la partici6 de Irr(G|€) donada pels 6-blocs coincideix (Teorema 2.30), rela-
cionant aixi el nostre treball amb el treball desenvolupat per Kiilshammer
i Robinson en [KR87]. A la Seccié 2.9 definim un 6-linking de la segiient
manera. Si x, v € Irr(G|6), diem que x i 9 estan 0-linked si

>, x(@)e(@) # 0.

zeG°
Provem que si C' és una component connexa del graf definit en Irr(G|0)
mitjancant aquest nou 6-linking, aleshores existeix un 6-bloc By tal que
C < By. No obstant aixo, la igualtat no es déna en general, tot i que si sota
certes hipotesis d’extendibilitat sobre 6 (Teorema 2.35).

Al Capitol 3 provem una generalitzacié del teorema de Howlett-Isaacs
considerant I'accié de Aut(G)(y,g) sobre Irr(G|0) (on Aut(G)yg) denota
Pestabilitzador de N i 6 sota l'accié de Aut(G) sobre Irr(N)). La prova
del teorema de Howlett i Isaacs té tres ingredients principals: un teorema
de DeMeyer i Janusz (veure el Teorema 8.3 de [Nav18], per exemple) que
diu que si 0 € Irr(V) és totalment ramificat en G amb x € Irr(G) tal que
0% = ex, i P/N és un p-subgrup de Sylow de G/N, aleshores 67 = ep1) per
a algun n € Irr(P); la correspondéncia de Glauberman, que afirma que si un
grup resoluble S actua coprimerament sobre un grup G, aleshores existeix
una bijeccién natural de Irrg(G) (els caracters irreductibles de G fixats per
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Paccié de S) en Irr(Cg(S)); i la Classificacié dels Grups Finits Simples. Per
a demostrar la nostra generalitzacié necessitem demostrar certes versions
d’aquests resultats.

En primer lloc, a la Seccié 3.2 donem alguns resultats sobre accions
transitives i p-subgrups de Sylow. En particular, provem que si P/N és
un p-subgrup de Sylow de G/N i A és un grup que actua sobre Irr(G|6)
transitivament i sobre Irr(P|0) satisfent certes condicions de compatibilitat,
aleshores B € Syl,(A) actua transitivament sobre Irr(P[f) (Teorema 3.2).

En segon lloc, també necessitarem propietats no trivials de la corres-
pondeéncia de Glauberman. Com hem dit abans, aquesta correspondeéncia
afirma que si un grup resoluble S actua sobre un grup G d’ordre coprimer
amb |S], aleshores existeix una bijeccié de Irrg(G) en Irr(Ci(S)). En par-
ticular necessitarem un refinament prou tecnic d’aquesta bijeccid, el qual
provarem a la Seccin 3.4 fent us de resultats de A. Turull publicats en
[Tur08], [Tur09] i [Turl?].

Com hem dit anteriorment, el teorema de Howlett-Isaacs empra la Classi-
ficaci6é dels Grups Finits Simples (CGFS). També nosaltres la necessitarem
per a provar la nostra generalitzacié. De fet, necessitarem el mateix re-
sultat sobre grups simples utilitzat en [HI82]: si X és un grup simple no
abelia, aleshores existeix un primer p tal que p divideix a |X|, p no divideix
a |M(X)| (Lordre del Schur multiplier de X)) i no existeix un subgrup de X
resoluble amb index potencia de p.

En la darrera part d’aquest capitol, provem el Teorema I que caracte-
ritza quan tots els caracters irreductibles sobre un caracter irreductible d’un
subgrup normal tenen el mateix grau, en una situacié especifica. Per a la
prova d’aquest teorema necessitarem tres resultats gens trivials: un teo-
rema de U. Riese sobre induccié de caracters irreductibles des d’un subgrup
abelia, un resultat profund de S. Dolfi sobre orbites regulars, i el teorema
de Howlett-Isaacs.

Finalment, al Capitol 4, contestem parcialment a la pregunta: sap la
taula de caracters de G quants p-subgrups de Sylow té G? Com el nombre
de p-subgrups de Sylow de G és exactament |G : Ng(P)|, on P és un p-
subgrup de Sylow de G, el que ens estem preguntant és si podem calcular
lordre del normalitzador del p-subgrup de Sylow a partir de la informacid
que ens dona la taula de caracters. Pensem en el cas més simple, quan
G té un p-complement normal N (un p-complement normal de G és un
subgrup de G d’ordre coprimer amb p i index una potencia de p). En
aquest cas G = NPy Nn P =1,icom que Ny(P) = Cy(P), tenim que
INg(P)| = |Cn(P)||P|. Per tant, en aquesta situacié minimal, per tal de
calcular [N (P)| ens bastaria calcular |[Cn(P)|. Resulta que el cas general
(quan G és p-resoluble) també redueix a una situacié d’aquest tipus. Com N
és un subgrup normal, tenim que P actua sobre N per conjugacié i |Cy(P)|
és precisament el nombre de punts fixes d’aquesta accié.
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A la Seccién 4.2 donem una férmula per a calcular, en general, el nombre
de punts fixes per 'accié d’un p-grup sobre un grup d’ordre coprimer amb
p (Teorema K). La férmula és la segiient

‘CN ) (p—1)IP|
‘CN (H xp |1/p ’

a:eP

Hem anomenat a aquesta férmula la formula de Brauer- Wielandt perque
fou Brauer el primer en obtindre una férmula d’aquest tipus (al seu cas, el
grup que actua és un 4-grup de Klein) i més tard Wielandt va donar la
férmula per al cas general. No obstant aixo, no podem emprar la formula de
Wielandt per als nostres proposits, doncs involucra termes que no es poden
llegir de la taula de caracters. Aco és precisament el que fa més interessant
la nostra féormula: només involucra els ordres dels centralitzadors d’alguns
elements, i podem trobar aquesta informacié en la taula de caracters en
alguns casos. En particular, a la Seccién 4.3 apliquem la nostra férmula per
a obtindre I'ordre del normalitzador d’un p-subgrup de Sylow d’un grup p-
resoluble, GG, a partir de la seua taula de caracters, sempre que el p-subgrup
de Sylow siga abelia o d’exponent p (Teorema J). La prova del cas en que
el p-subgrup de Sylow té exponent p és elemental, mentre que al cas en
que el p-subgrup de Sylow és abelia és molt més complicada. En aquest
ultim cas, la clau esta en aco: si {y1,...,y,} son representants de les classes
de conjugaci6 dels p-elements de G (detectables en la taula de caracters
gracies a un teorema de G. Higman), tenim que determinar quins d’aquests
elements pertanyen a algun G-conjugat del subgrup de Frattini de P, ®(P)
(el subgrup de Frattini de P és la interseccié de tots els subgrups maximals
de P). Per a a¢o la clau és la utilitzacié de cert element del grup de Galois
Gal(Q,/Q), on Q, és l'extensié de Q per una arrel n-éssima primitiva de la
unitat. Quan la taula de caracters pareix no ser suficient per a resoldre un
problema, ens preguntem si la taula de caracteres més el p-power map ho és.
Si{z1,...,z} sén representants de les classes de conjugacié de G, el p-power
map és Vaplicacié f : {1,...,k} — {1,...,k} tal que :L‘? pertany a la classe de
Ty(j)- Resulta que, utilitzant la nostra férmula, podem determinar [Ng(P)|
a partir de la taula de caracters i el p-power map, sense cap assumpcid
sobre els p-subgrups de Sylow de G (tot i que mantenint la hipotesi de
p-resolubilitat sobre G).

Per 1ltim, concloem aquest capitol amb les proves alternatives de Isaacs
i Lyons del Teorema K a la Seccién 4.4.
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Introduction

Some of the main conjectures in the Representation Theory of Finite
Groups admit refinements in terms of Brauer p-blocks. A paradigmatic
example of this is the Alperin-McKay conjecture proposed by J. L. Alperin
in [Alp75], which gives a block-version of the acclaimed McKay-conjecture.
Blocks bring more structure into these problems.

It is a general belief today that the way to approach these conjectures is
through a reduction of them to problems on simple groups, and then use the
Classification of Finite Simple Groups to solve them. By reducing a problem
to simple groups we mean that the problem has a positive solution provided
that a specific set of conditions is checked for every simple group. Of course,
normal subgroups (and their irreducible characters) play a fundamental role
in this process.

One of the main techniques used in the reduction of character theory
problems to simple groups is the study of projective versions of these con-
jectures. By a projective version we mean the following: let N be a normal
subgroup of G, let 6 be an irreducible character of N, and write Irr(G|0)
for the set of the irreducible constituents of the induced character §9. We
want to formulate the statement of our problem in terms of Irr(G|0) instead
of Irr(G), the quotient group G/N instead of G, 6-good conjugacy classes
instead of conjugacy classes of GG, etc. In other words, we need to fully un-
derstand the character theory over the character of a normal subgroup. For
instance, this is the idea behind the reduction theorem of the McKay con-
jecture in [IMINO7]. When N = 1, we should recover our original problem.
What is the advantage? First, not only are far more general results pro-
posed (and proved), but also, a powerful tool is introduced in the problems:
induction on |G : N| usually brings simple groups into the picture.

Following this philosophy, if one wants to attack some of the conjectures
involving blocks, one needs to understand not only the character theory over
a character of a normal subgroup, but also the block theory. This motivates
the main part of this thesis: we shall define a set of canonical blocks that
are constructed over a character of a normal subgroup. These blocks are
defined with respect to an irreducible character of a normal subgroup 6 and
a prime p, and we will call them 6-blocks (we are holding fixed our prime p
for the rest of this thesis). The 6-blocks are defined by means of projective
representations, using the theory of the character triples introduced by I.
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M. Isaacs. They are related to blocks of twisted group algebras, but our
approach is entirely character-theoretic. A non-trivial part of this work is
to prove that they constitute a canonical partition of the set Irr(G|#), that is:
#-blocks are canonical and independent of any choice made in order to define
them. Also, associated to every 6-block there is a uniquely defined G/N-
conjugacy class of p-subgroups of G/N which we call the 6-defect groups.
They behave as the defect groups of the classical Brauer p-blocks.

One can ask: why this generalization? First of all, from the point of
view of the normal subgroup N and its irreducible character 6, it seems
that Brauer p-blocks are in general too big and do not capture some of the
subtleties of the character theory of G over . We do prove that each 0-
block By is contained in Irr(B) n Irr(G|6), for some Brauer p-block B, but
By is in general much smaller. The second reason is that using #-blocks we
can unify statements that appear separated in the literature: for instance,
in our Conjecture B, the Gluck-Wolf-Navarro-Tiep theorem and Brauer’s
Height Zero Conjecture (BHZC) are put together in a single statement for
the first time. This statement inspired G. Malle and G. Navarro to propose
a projective version of the BHZC [MN17]. This projective version was
proved to be equivalent to the original BHZC by B. Sambale in [Sam19]
by using fusion systems. Hence new information on classical Brauer blocks
has been obtained by using the 6-blocks idea. This is not the only one. We
shall also prove in Theorem F that the classical decomposition matrix of
a Brauer p-block cannot be decomposed in a certain way. We hope that
f-blocks might inspire further results of this type.

In the first part of this thesis we shall prove that Brauer’s k(B) con-
jecture also admits a #-version. Brauer’s k(B)-conjecture is another of the
famous open problems of R. Brauer from the 1950’s, and remains unre-
duced to simple groups. Perhaps our #-version might help to devise such a
reduction.

Another important part of Chapter 2 is the introduction of #-Brauer
characters. In [Nav0O0], Navarro gave a version of Brauer characters relative
to a normal p-subgroup N of G. These constituted a basis IBr(G, N) of the
space of class functions defined on G° = {x € G|z, € N}, and allowed him to
define decomposition numbers d,,, for x € Irr(G) and ¢ € IBr(G,N). The
significance of this was that the characters

, = Z dypX
Xx€lrr(G)

were the relative N-projective indecomposable characters discovered previ-
ously by B. Kiilshammer and G. R. Robinson in [KR&87]. Navarro also gave
a version of this for an arbitrary normal subgroup N of G (not necessarily
a p-group) in [Nav12], but he did not prove that this N-basis IBr(G, N)
was canonical (as canonical as Brauer characters are, that is, up to a choice
of a maximal ideal containing p in the ring of algebraic integers). We shall
provide such a canonical basis.
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Many questions remain open about #-blocks. For instance, can 6-blocks
be determined by the character table? How to characterize 6-blocks with
a unique character? We do not have a full answer to these questions. On
some others, we are currently working.

All the results mentioned above constitute Theorem A, Conjecture B,
Theorem C, Conjecture D, Theorem E, Theorem F and Theorem G of Chap-
ter 2 in this work. Except for Theorem G, they appear in [Riz18]. Theorem
G will appear in [Riz19].

Continuing with the study of the set Irr(G|0), we give a generalization of
the renowned Howlett-Isaacs theorem in Chapter 3. In 1964, N. Iwahori and
H. Matsumoto conjectured in [IM64] that if 6 is G-invariant and |Irr(G|0)| =
1, then G/N is solvable (in this case, it is said that 6 is fully ramified in
G/N). Fully ramified characters, as any other minimal situation in group
theory, appear quite often in character and modular representation theory
(for instance, in the character theory of abelian chief factors, or in blocks
with exactly one modular character). This conjecture was proven to be true
by Isaacs and R. Howlett, in one of the first applications of the Classification
of Finite Simple Groups to character theory. When 6 is fully ramified in
G/N and N € M < G, by Clifford’s theorem we have that the irreducible
constituents of 8™ are all G-conjugate. This is what inspired the next main
result of this thesis. Theorem H below is a generalization of the Howlett-
Isaacs theorem, and in a weak form can be stated as this: if A acts via
automorphisms on G fixing N and some G-invariant 6 € Irr(N), and A
transitively permutes Irr(G|6), then G/N is solvable. It is important to
remark, that we do not use the Howlett-Isaacs theorem. We believe that
our proof simplifies some parts of theirs.

Our next main result, also in Chapter 3, deals again with the set Irr(G|0),
but also with block theory. J. F. Humphreys conjectured that if all char-
acters in Irr(G|6) have the same degree, then G/N is solvable. This would
be a far reaching generalization of the Howlett-Isaacs theorem (and of our
Theorem H). There are no partial results for this conjecture. Our result,
Theorem I, is a group characterization of when this happens if N = O (G),
and G is a w-separable group (recall that if 7 is a set of primes, then a group
is m-separable if its composition factors are either mw-groups or ©’-groups).
We wrote that this is also related to block theory, and it really is. If «
is the complement of a prime p, it is a well-known result of P. Fong that
Irr(G|#) constitutes the irreducible ordinary characters of a Brauer p-block
(see Theorem 10.20 of [Nav98a], for instance). If all the irreducible charac-
ters in Irr(G|0) have the same degree, then we have a situation of a p-block
in which all characters have the same degree. This situation, with no p-
solvability hypothesis, was characterized by T. Okuyama and Y. Tsushima
in [OT83]. Our Theorem I can therefore be seen as a m-version of their
result. Theorems H and I appear in [NR17].
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The final part of this thesis has a different nature. In this part we do
not work in terms of the character theory over a normal subgroup, but
instead we work with Irr(G), the entire set of irreducible characters of G.
The character table of G, X(G), is the (square) matrix whose columns are
indexed by the conjugacy classes of the group and whose rows are indexed
by its irreducible characters. One of the classical problems in character
theory is to determine which properties of a finite group G are encapsulated
in its character table. For example, it is well-known that the character table
detects if G is abelian, nilpotent, supersolvable, solvable, or simple. In this
thesis we are interested in what X (G) knows about the local p-structure of
G for a given prime p, a much more complicated problem. In particular we
aim to answer Question 7 in [Nav04], where it is asked if X (G) determines
the number of Sylow p-subgroups of G. We give a positive answer to this
question in some specific cases (Theorem J).

Perhaps even more interesting than the result itself is the way it is ob-
tained. It turns out that we need to compute the number of fixed points
under the action of a p-group on a group of order coprime to p, and we give a
formula (Theorem K) to compute this number in terms of information that
can be collected from the character table. This result generalizes a classical
result of Brauer (and H. Wielandt) on counting the number of fixed points
of the action of a Klein 4-group on a group of odd order. The results of
Chapter 4, Theorems J and K, appear in [NR16].

After reading the proof of our counting formula in Theorem K, Isaacs
and R. Lyons wrote to us with two very nice different proofs of that. We
reproduce them here with their kind permission.

Structure of the work

Chapter 1 is an expository chapter containing the background on ordi-
nary and modular character theory needed for the rest of the work. Our ref-
erences for the part concerning ordinary characters are [Isa76] and [Nav18],
and for the part concerning modular (Brauer) characters is [Nav98a]. We
also include a brief exposition of Isaacs’ theory of character triples since this
is the main tool needed to define the #-blocks in Chapter 2.

In Chapter 2 we start our original work. If G is a finite group, N is a
normal subgroup of G, 0 is a G-invariant irreducible character of N, and
p is a prime, we define a partition of the set Irr(G|f) with respect to the
prime p. We call the elements of this partition the #-blocks. To each 6-
block we associate a unique conjugacy class of p-subgroups of G/N, and
we call the elements of this conjugacy class the #-defect groups. We prove
here that both the #-blocks and the 6-defect groups are canonically defined
(Theorem A) and we give a #-version of some results in block theory. For
instance, we prove that if x € Irr(G|6), By is the 6-block containing Y,
and (gN), does not lie in a #-defect group of By for some g € G, then
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x(g) = 0 (this is Theorem 2.12). We also give f-versions of the well-known
Brauer’s Height Zero conjecture and Brauer’s k(B)-conjecture (Conjectures
B and D), and in both cases we prove that our #-version is equivalent to
the original one (Theorems C and E). In this Chapter, we next introduce
f-Brauer characters, -decomposition numbers and #-linking in Sections 2.8
and 2.9. Finally, we prove that our 8-blocks coincide with the blocks defined
by Navarro in [Nav00] and [Nav12] (Theorem 2.30), relating our work with
the work of Kiilshammer and Robinson in [KR87].

In Chapter 3 we give a generalization of the Howlett-Isaacs theorem
taking into account the action of Aut(G) v ) on Irr(G0) (here Aut(G) g
is the subgroup of Aut(G) that fixes N and #). In particular, we prove
that if Irr(G10) is an Aut(G) (v g)-orbit, then G//N is solvable. To prove this
we need some results on transitive actions which we prove in Section 3.2.
We also need non-trivial properties of the Glauberman correspondence. The
Glauberman correspondence asserts that if a solvable group .S acts coprimely
on a group G, there exists a natural bijection from Irrg(G), the irreducible
characters of G fixed by the action of S, onto Irr(Cg(S)). In particular we
need a rather technical refinement of this bijection, that we prove in Section
3.4 using results of A. Turull in [Tur08], [Tur09] and [Turl7].

As we have mentioned before, the Howlett-Isaacs theorem uses the Clas-
sification of Finite Simple Groups (CFSG). We also need the CFSG to prove
our generalization. In fact, we need the same result on simple groups that
is used in [HI82]: if X is a non-abelian simple group, then there exists
a prime p such that p divides | X|, p does not divide |M(X)| (the size of
the Schur multiplier of X) and there is no solvable subgroup of X having
p-power index.

In the final part of this Chapter, we prove Theorem I on the character-
ization of when the irreducible characters over an irreducible character of
a normal subgroup have the same degree in a specific situation. This the-
orem uses three non-trivial results: a theorem of U. Riese about inducing
irreducible characters from an abelian subgroup, a deep result of S. Dolfi on
regular orbits, and finally the Howlett-Isaacs theorem.

Finally, in Chapter 4, we give a formula to compute the number of fixed
points of the action of a p-group on a group of order coprime to p (Theorem
K), and we apply this formula to obtain the size of the normalizer of a Sylow
p-subgroup of a finite p-solvable group G from its character table, provided
that the Sylow p-subgroups of G are abelian or have exponent p (Theorem
J). We call this formula a Brauer- Wielandt formula. Richard Brauer was
the first to give a formula of this type in the case the group acting was
a Klein 4-group and later Wielandt gave a formula for the general case.
However, Wielandt’s formula can not be used to obtain information from
the character table, and this is what makes our formula interesting: it only
involves centralizers of some elements and we can obtain that information
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from the character table in the cases we have just mentioned. We finish
this Chapter with the alternative proofs of our formula given by Isaacs and
Lyons.
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CHAPTER 1

Preliminaries

In general, we follow the notation of [Isa76] and [Nav18] for characters,
and the notation of [Nav98a] for blocks.

1.1. Preliminaries on ordinary characters

Let G be a finite group and let F' be a field. Write F[G] for the set of
formal sums

FIG] ={)_ agg|ag € F}.
geG

If ce Fand Y, bgg, define

¢ Y agg =Y (cag)g

geG geG
and
Dibgg+ D agg = (ag+by)g.
geG geG geG

It is easy to see that F[G] has structure of F-vector space. Moreover,
we can identify g with the element of F'[G] such that a; = 1 and ap, = 0
for all h # g. This identification embeds G into F[G] and in fact G is a
basis for F[G] under this identification. Now we can define a multiplication
in F[G] by extending linearly the multiplication in G. This makes F[G] an
F-algebra.

An F-representation of F|G] is an F-algebra homomorphism X : F[G] —
Mat, (F). The integer n is the degree of X. Two representations X, Q) are
similar if there exists a non-singular matrix P such that X(a) = P79 (a)P
for all a € F[G]. If we restrict X to G we obtain a group homomorphism
G — GL(n, F).

An F-representation of G is a group homomorphism G — GL(n, F).
Hence an F-representation of F[G] determines an F-representation of G
via restriction. The converse is also true, if X : G — GL(n, F) is an F-
representation of G, then X determines an F-representation of F[G], X,
via

56(2 agg) = Z agX(g).

geG geG
1



2 1.1. Preliminaries on ordinary characters

If X: G — GL(n,F) is an F-representation of G, we say that X is
irreducible if it is not similar to a representation of G in block form

r

An F-representation of G of degree n, consists of n?|G| elements of F,
and it is clear that this is too much information (since we do not wish to
distinguish between similar representations). In order to reduce this amount
of information, we use characters, that is, traces of the representations. Over
certain fields, characters essentially determine the representations.

DEFINITION 1.1 (Character). If X : G — GL(n, F') is an F-representation
of GG, the character afforded by X is the function xy : G — F given by

x(g) = tr(X(g))-

If x is a character of GG, the degree of x is x(1) (note that this is the
degree of any F-representation affording x). If x(1) = 1 it is said that y is
linear. We denote the set formed by linear characters of G as Ling(G).

Since the trace is invariant on similar matrices, we have that similar F-
representations afford equal characters and that characters are class func-
tions, that is, constant on the conjugacy classes of a group.

If X and %) are representations of G of degrees n and m affording x and
1 respectively, then the map 3 : G — GL(n, F') defined by

3(9) = { 36[()9) @(()9) ]

is also an F-representation of G. Since tr(3(g)) = tr(X(g)) + tr(V(g)), we
have that sum of characters are characters.

If x, ¢ are characters of G, we may define a new class function x¢ on G
by setting
(x¥)(9) = x(9)¥(9)-
Now, if X is an F-representation affording y and ) is an F-representation
affording ¢, then X® %) : G — GL(nm, F'), where n = x(1) and m = ¢(1),
defined by
an(g) - and(9)
(X®)(9) = X(9) ®D(9) = : ‘ : ,

(0 - amD()

where X(g) = (aij;), is an F-representation of G affording x1. Hence profucts
of characters are also characters (see Theorem 4.1 of [Isa76]). Moreover,
Ling(G) is a group with this product.

We say that a character is irreducible if it is not the sum of two charac-
ters. We denote by Irrp(G) the set of irreducible characters of G afforded
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by F'-representations. Irreducible characters are afforded by irreducible F-
representations.

From now on, we let F' = C, and we write Irr(G) for the set Irrc(G),
Lin(G) for the set Linc(G), etc. The following is called the Fundamental
Theorem of Character Theory.

THEOREM 1.2 (Fundamental Theorem of Character Theory). If G is
a finite group, then Irr(G) is a basis of the vector space of complex class
functions of G. In particular, |Irt(G)| is the number of conjugacy classes of

G.
PROOF. See Theorem 2.8 of [Isa76]. O

Hence if ¢ is a complex class function of G, then we can write

w = Z Aoy X5
x€elrr(G)
for some uniquely determined complex numbers ay,. It is also clear that
1 is a complex character of G if all ay, are non-negative integers (not all
zero). If ¢ is a character of G and ay, # 0, we say that x is an irreducible
constituent of .

The irreducible characters of G are usually presented in a table whose
columns are indexed by the conjugacy classes of G and whose rows are
indexed by its irreducible characters. This table is called the character table
of G (which of course is uniquely determined up to permutation of rows and
columns) and one of the main questions in character theory is to know how
much information the character table of G contains about G.

There are two fundamental relations when we try to construct the char-
acter table of a group G.

THEOREM 1.3 (First Orthogonality Relation). Suppose that x, v € Irr(G).

Then )
@ Z X(Q)W = 5x¢-

gelG

PRrROOF. See Corollary 2.14 of [Isa76]. O
THEOREM 1.4 (Second Orthogonality Relation). Let g,h € G, then

> xl(g)x(h) =0

xelre(G)
if g is not G-conjugate to h. Otherwise, the sum is equal to |Cg(g)|.
PROOF. See Theorem 2.18 of [Isa76]. O
As a consequence of the Second Orthogonality Relation, notice that

Gl= > x@)7

xelrr(G)
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4 1.1. Preliminaries on ordinary characters

and hence the character table of G knows the order of G.

We can define an inner product in cf(G) (the complex vector space of
the class functions) as follows:

DEFINITION 1.5. Let ¢ and 7 be class functions on a group G. Then

[p,m] = ,1G| > wlg)n(g)

geG
is the inner product of ¢ and 7. In fact, this makes cf(G) into a finite
dimensional Hilbert space.

As a consequence of the First Orthogonality Relation we have that
[xi xj] = 0i; for xi, x; € Irr(G). Hence, if ¢ € cf(G), we have that

p= >, Dboelx
x€lrr(G)
Moreover, if x,1 are characters then [x,v¥] = [¢, x] is a non-negative
integer and x is irreducible if and only if [y, x] = 1.

DEFINITION 1.6 (Kernel of a character). Let x be a character of G. Then
the kernel of x is ker(x) = {g € G| x(9) = x(1)}. If ker(x) = 1, we say that
X is faithful.

If X is a representation of G affording x, we have that g € ker(X) if and
only if g € ker(x) (see Lemma 2.19 of [Isa76]), and hence ker(y) is a normal
subgroup of G. Also, we have the following.

LEMMA 1.7. Let Irr(G) = {x1,.-., Xk} and let x be a character of G with

X = 3% nixi. Thenker(x) = N{ker(x;)|ni > 0}. Also N{ker(x;)|1 < i<
k} =1.

PROOF. See Lemma 2.21 of [Isa76]. O

If N is a normal subgroup of G, one can prove that N is the inter-
section of the kernels of the irreducible characters of G that contain N in
its kernel. It turns out that we can calculate |N| from the character ta-
ble: if {Ki,...,K,} are the conjugacy classes of G contained in N, then
IN| = >0 |Ki| = >3, |G : Cg(z;)|, where z; € K;. Therefore simplicity,
nilpotency or solvability can be easily read from the character table of G.

We have said that the character table of G knows the sizes of the normal
subgroups of G. However, we can not construct the character table of N
from the character table of G. What we can do, instead, is to obtain the
character table of G/N.

LEMMA 1.8. Let N < G.

(a) If x is a character of G and N < ker(x), then x is constant on cosets
of N in G and the function X on G/N defined by X(Ng) = x(g) is
a character of G/N.
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1. Preliminaries 5

(b) If X is a character of G/N, then the function x defined by x(g) =
X(Ng) is a character of G.
(¢) In both (a) and (b), x € Irr(G) iff x € Irr(G/N).
PROOF. See Lemma 2.22 of [Isa76]. O
Usually, we shall identify x and y and see Irr(G/N) as a subset of Irr(G).
Let H be a subgroup of G. If x is a character of (G, then its restriction

to H is a character of H. The dual process is called induction.

DEFINITION 1.9 (Induction of characters). Let H € G and let ¢ be a
class function of H. Then ¢%, the induced class function on G, is given by

1 o
0(9) = g 2, #°(xga™h),

’ ’xeG
where ¢°(h) = p(h) if he H and ¢°(y) =0if y ¢ H.

The following is quite elementary but fundamental.

THEOREM 1.10 (Frobenius reciprocity). Let H € G and suppose that ¢
is a class function on H and that 0 is a class function on G. Then

[QO, QH] = [SDG7 9]

PROOF. See Lemma 5.2 of [Isa76]. O

As a consequence of Theorem 1.10, we can see that if ¢ is a character of
H, then ¢% is a character of G.

If N <G, 0is a class function of N and g € GG, we define #9 : N — C by
09(n) = O(gng™'). Tt is easy to see that if § € Irr(N), then §9 € Trr(N).

THEOREM 1.11 (Clifford). Let N < G and let x € Irr(G). Let 6 be
an irreducible constituent of xn and suppose that 0 = 01,0s,...,0, are the
distinct G-conjugates of 0 in G. Then

t
XN = 629i7
i=1
where e = [xn,0].

PROOF. See Theorem 6.2 of [Isa76]. O

As a consequence of Theorem 1.11 we have that if x € Irr(G) and 0 €
Irr(N) is an irreducible constituent of yn, then 6(1) divides x(1). The
following is a much deeper result.

THEOREM 1.12. Let N << G and x € Irr(G). Let 0 be a constituent of
XN, then x(1)/0(1) divides |G : N|.
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6 1.1. Preliminaries on ordinary characters

PROOF. See Corollary 11.29 of [Isa76]. O

DEFINITION 1.13 (Stabilizer). Let N < G and let 6 € Irr(IN). Then
Ia(0) = {ge G |07 =0}

is the stabilizer of 8 in G. It is also known as the inertia group of 6 in G.
We say that 6 is G-invariant if I(0) = G.

It is obvious that N < I5(0) for all 6 € Irr(N). Also, |G : Ig(0)] is the
size of the G-orbit of 6 in Irr(/V) and hence ¢t = |G : I¢(0)| in Theorem 1.11.

If N is a normal subgroup of G and 6 € Irr(N), we write Irr(G|6) to
denote the set of the irreducible characters of G having 6 as an irreducible
constituent of its restriction to IV, that is

Irr(G|0) = {x € Irr(G) | [xw, 0] # 0}.
Note that, using Frobenius reciprocity, we have that the elements of Irr(G|6)
are exactly the irreducible constituents of the induced character 6.

The following is a key result in the character theory of normal subgroups.

THEOREM 1.14 (Clifford correspondence). Let N<t G and let 6 € Irr(N).
Write I = I(0). Then

(a) If ¢ € Trr(I]6), then ¥C is irreducible.

(b) The map v — < from Irr(1]0) onto Trr(G|6) is a bijection.

(c) Let x = ¥ where ¢ € Trr(I|0). Then v is the unique irreducible

constituent of x5 which lies over 6.
(d) Let & = x where v € Irr(I|0). Then [¢n, 0] = [xn,0].

PROOF. See Theorem 6.11 of [Isa76]. O

We have said before that if y is a character of GG, then its restriction to
H, xpg is also a character. If x is irreducible, xg need not be irreducible.
When xpg = 6 for some 0 € Irr(H) we say that 6 extends to G or that x
extends 0. Note that if 6 extends to GG, and 0 is the character of a normal
subgroup of G, then 0 is G-invariant.

The following result, and its corollary (known as Gallagher’s corollary)
are frequently used when certain characters extend.

THEOREM 1.15. Let N < G and let ¢,0 € Irr(N) be invariant in G.
Assume @B is irreducible and that 6 extends to x € Irr(G). Then 8 — fBx
defines a bijection of Irr(G|p) onto Irr(G|pf).

PROOF. See Theorem 6.16 of [Isa76]. O

COROLLARY 1.16 (Gallagher). Let N <G and let x € Irr(G) be such that
xn = 0 € Irt(N). Then the characters Bx for 8 € Irr(G/N) are irreducible,
distinct for distinct f and are all of the irreducible constituents of 0.

PRrROOF. See Corollary 6.17 of [Isa76]. O
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1. Preliminaries 7

Many times we need to know when an irreducible character of a normal
subgroup extends to the whole group, and sometimes we need to know what
the extension looks like. The following results are standard and quite useful
in that sense.

If x is a character of GG, x uniquely determines a linear character of
G, called the determinant of x, as follows: let X be a representation of G
affording x and define dety : G — C as

(detx)(g) = det(X(g))-

The order of dety in the group of linear characters of G is known as the
determinantal order of x and it is denoted by o(x).

THEOREM 1.17. Let N <G and 6 € Irr(N) with 0 invariant in G. Sup-
pose that (|G : N|,0(0)0(1)) = 1. Then 0 has a unique extension, x € Irr(G)
with (|G : Nl|,0(x)) = 1. In fact, o(x) = o(0). In particular this holds if
(IG: N[,IN|) = 1.

PRrROOF. See Corollary 8.16 of [Isa76]. O

1.2. Character triples and projective representations

Let N <G and let 6 € Irr(IN) be G-invariant. In Chapter 2, we intro-
duce a canonical partition of the set Irr(G|f) into some subsets that we call
f-blocks. To define the 6-blocks we need some background on projective
representations. We give that background now.

A complex projective representation of a finite group G is a map
P :G — GL(n,C)
such that for every z,y € G there is some «(x,y) € C* satisfying

P(z)P(y) = a(z,y)P(zy).
The function o : G x G — C* is called the factor set of P.

If G is a finite group, N < G, and 0 € Irr(N) is G-invariant, then we say
that (G, N, 0) is a character triple. The theory of character triples and their
isomorphisms was developed by Isaacs, and we refer the reader to Chapter
11 of [Isa76] for a further insight of this theory. It turns out that character
triples are associated to projective representations.

If (G, N, 0) is a character triple, we say that a projective representation
of GG is associated with 0 if

(a) Py is an ordinary representation of N affording 6, and

(b) P(ng) = P(n)P(g) and P(gn) = P(g)P(n) for ge G and n € N.

THEOREM 1.18. Let (G, N, 0) be a character triple. There ezists a pro-
jective representation of G associated with 6. Furthermore, if Py is another
projective representation of G associated with 0, then Py(g) = P(g9)&(g) for
some function & : G — C*, which is constant on cosets of N.
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8 1.2. Character triples and projective representations

PROOF. See Theorem 11.2 of [Isa76]. O

LEMMA 1.19. Suppose that (G, N, 0) is a character triple, and let P be
a projective representation of G associated with 0 with factor set a. Then
(a) a(1,1) = a(g,n) = a(n,g) =1 forne N, ge G.
(b) a(xn,ym) = a(z,y) for z,y € G, n,me N.

PRrROOF. This is Lemma 11.5 and Theorem 11.7 of [Isa76]. See also
Lemma 5.3 of [Nav18]. O

An important fact about projective representations is that given a char-
acter triple (G, N, #), there always exists a projective representation associ-
ated with 0 such that its factor set has roots of unity values.

THEOREM 1.20. Let (G, N,0) be a character triple. Then there exists a
projective representation P associated with 6 with factor set o such that
alz,) 0 =1
forall x,y e G.

PROOF. See for instance Theorem 8.2 of [Isa73] or Theorem 5.5 of
[Nav18]. O

Using such a projective representation P, it is possible to associate to
each character triple (G, N, 6) a new finite group G, a finite central extension
of G which only depends on P. This finite group G contains N as a normal
subgroup, and an irreducible character 7 € Irr(é) that extends 6. The next
theorem explains exactly how to do this.

THEOREM 1.21. Let (G, N,0) be a character triple and let P be a pro-
jective representation of G associated with 0 such that the factor set o of P
only takes roots of unity values. Let Z < C* be the subgroup generated by
the values of o. Let G = {(g,2) | g € G,z € Z} with the multiplication given
as follows:

(l’, a)(y’ b) = (:‘Cyv OL(ZL‘, y)ab)
Then G is a finite group. Besides, if we identify N with N x1, Z with 1x Z,
and we let N = N x Z, then we have that the following hold.
(o) NG, Z < Z(G), and N <G. Moreover, if m: G — G is given by
(g,2) — g, then 7 is an onto homomorphism with kernel Z. Also,
if N < Z(@), then N < Z(Q).
(b) The function P(g,z) = zP(g) defines an irreducible linear represen-
tation of G whose character T € Irr(G) extends 0. In fact, T(n, z) =
20(n) forne N and z € Z. In particular, if§ = Ox15 € Irr(N), and
A e Irr(N) is defined by A(n, z) = 21, then X is a linear G-invariant
character with N = ker(\) and A0 extends to 7 € Irr(G).
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1. Preliminaries 9

PROOF. See Theorem 11.28 of [Isa76] or Theorem 5.6 of [Nav18]. The
properties of the factor set a that we have listed in Lemma 1.19 are essential
to prove (a). O

We will call the group G a representation group for (G, N, 0) associated
with P.

In order to define the #-blocks the notion of character triple isomor-
phism is essential. As we said before, this was first introduced by Isaacs
(see Definition 11.23 of [Isa76]). However, for character triples, we shall
frequently use the notation in [Nav18]|, so we reproduce here the definition
of character triple isomorphism given there (see Definition 5.7 of [Nav18]).

DEFINITION 1.22. Let (G, N,0) and (G*, N*,0*) be character triples
and let * : G/N — G*/N* be an isomorphism of groups. If N < U < G,
then we denote by U* the unique subgroup N* < U* < G* such that
(U/N)* = U*/N*. Also, if 8 is a character of U/N, then §* denotes the
corresponding character of U*/N* via the isomorphism *. That is, 8* is the
unique character of U*/N* satisfying 8*(z*) = (x) for € U/N. Assume
now that for every subgroup N < U < G, there is a bijection * : Irr(U|0) —
Irr(U*|0*) (which we extend linearly to * : Char(U|0) — Char(U*|0%)). It
is said that * is a character triple isomorphism if for every N <V < U < G,
x € Irr(U16) and f € Irr(U/N), the following conditions hold:

(a) (xv)* = (x*)v#, and
(b) (xB)* = x*B*.

Notice that if (G, N, 0) and (G*, N*, *) are isomorphic character triples,
then |[Irr(U]0)| = |Irr(U*[0*)| for all N < U < G. Also, since (xn)* =
(x*)n* we have that

x(1)  x*(@)

0(1)  6%(1)
for all x € Irr(U#). That is, character triple isomorphisms respect character
degree ratios.

THEOREM 1.23. Let (G, N, 0) be a character triple and let P be a projec-
tive representation of G associated with 0 such that its factor set has roots of
unity values. Let G be a representation group for (G, N, 0) associated with P,
and let N and X be as in Theorem 1.21. Then (G, N.,0) and (G/N, N/N,))
are isomorphic character triples.

PROOF. See Theorem 11.28 of [Isa76] or Corollary 5.9 of [Nav18]. [

We shall frequently use how this character triple isomorphism is con-
structed. Let x € Irr(G|6). We show how to construct x* € Irr(G/N|X). Let
7 : G — G be the onto group homomorphism (g,2) — g, which has kernel
Z. Since 7 induces an isomorphism G/ Z — @, there is a unique x™ € Irr(é)
such that x™ (g, 2) = x(g) for all g € G,z € Z. Since x lies over # notice that
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10 1.3. Preliminaries on blocks

Y™ lies over 6 = 6 x 15, and in particular over §. Now by Theorem 1.21(b),
the character 7 extends #. By Gallagher’s Corollary (Corollary 1.16), there
exists a unique x* € Irr(G/N) such that x™ = x*7. (Recall that we view the
characters of H/N as characters of H that contain N in its kernel.) Now,
evaluating in (1, 2) for z € Z, we easily check that x* € Irr(G/N|)). The
fact that xy — x* defines an isomorphism of character triples is the content
of the proof of Theorem 1.23. (The same construction can be done for every
subgroup N < U < G instead of G.)

1.3. Preliminaries on blocks

Representation theory over a field of characteristic p is known as modular
representation theory. The earliest work on modular representation theory is
due to L. E. Dickson ([Dic02]) who showed that the representation theory
of a finite group G over a field of characteristic p is quite similar to the
representation theory over a field of characteristic 0 when the prime p does
not divide |G|. The study of modular representations when the characteristic
divides the order of the group was started by Richard Brauer ([Bra35]). He
by himself essentially established modular representation theory as a main
area in mathematics.

We denote by R the ring of algebraic integers in C, and we choose a
maximal ideal M of R containing pR. Let F' = R/M, an algebraically
closed field of characteristic p, and let *: R — F be the canonical ring
homomorphism. Let

S={rs'|reR,se R— M}.

Notice that the map * can be extended to S in a natural way. If r € R and
se R — M, then

(TSil)* _ T*(S*)il.

Richard Brauer introduced the notion of Brauer characters to under-
stand the interplay between the representation theory in characteristic p
and ordinary character theory. Let U € R be the multiplicative group of
roots of unity of order not divisible by p, so that

U = {£eC | & =1 for some integer k not divisible by p}.

LEMMA 1.24. The restriction of * to U defines an isomorphism U — F'*
of multiplicative groups. Also F' is an algebraically closed field of character-
1stic p.

PROOF. See Lemma 2.1 of [Nav98a]. O

We say that g € G is p-regular if p does not divide the order of g. We
denote by G’ the set formed by the p-regular elements of G.
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1. Preliminaries 11

DEFINITION 1.25 (Brauer character). Suppose that X: G — GL,(F) is
an F-representation of the group G. If g € G¥, then by Lemma 1.24, the
eigenvalues of the matrix X(g) are &, ..., € F* for uniquely determined
£1,...,&n € U (because F is algebraically closed). Then ¢: G¥ — C defined
by ©(g9) =& + -+ + &, is the Brauer character afforded by X. Notice that
¢ is uniquely determined (once the maximal ideal M has been chosen) by
the equivalence class of the representation X.

As for ordinary characters, sums and products of Brauer characters are
Brauer characters and we say that ¢ is an irreducible Brauer character if it
is not the sum of two Brauer characters. We denote by IBr(G) the set of
irreducible Brauer characters of G.

If ¢ € IBr(G), we define the kernel of ¢ as ker(yp) = {g € G| X(g) = I.},
where X : G — GL(n, F) is an irreducible F-representation affording .
Since X is uniquely determined by ¢ up to similarity, this is well-defined.

The degree of ¢ is ¢(1), which is the degree of any F-representation af-
fording ¢ and Brauer characters are constant on conjugacy classes. However,
unlike ordinary characters, the degrees of the irreducible Brauer characters
do not divide, in general, the order of the group (PSL2(7) for p = 7 has an
irreducible Brauer character of degree 5).

If H < G and p is a Brauer character of GG, then we denote by ¢y the
restriction of ¢ to H?. The function ¢y is a Brauer character of H.

Write c¢f(G?') to denote the C-vector space of class functions on G’
(functions #: G? — C constant on the conjugacy classes contained in G?').
Of course the dimension of cf(Gp/) is equal to the number of conjugacy
classes of p-regular elements of G.

As happens with ordinary characters, Brauer characters are non-negative
integer linear combination of irreducible Brauer characters.

THEOREM 1.26. Let G be a group. Then IBr(G) is a basis of cf(G?').
Moreover, ¢ € cf(Gp/) is a Brauer character of G if and only if

77[} = Z AP,
elBr(G)
where a, € N, and not all a, are zero.

PROOF. See Corollary 2.10 and Theorem 2.3 of [Nav98a]. O

The non-negative integer a,, in the decomposition of 1 in Theorem 1.26
is called the multiplicity of ¢ in 9. If a, # 0, then we call ¢ an irreducible
constituent of 1.

If x € Irr(G), we denote by 7 the restriction of y to GP'.

THEOREM 1.27. If x is an ordinary character of G, then x? is a Brauer
character of G.
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12 1.3. Preliminaries on blocks

PROOF. See Corollary 2.9 of [Nav98al]. O

DEFINITION 1.28 (Decomposition numbers). Let x € Irr(G), by Theorem
1.27, x*" is a Brauer character of G. Hence

Xp = Z dxcp‘;07
p€eIBr(G)

for suitable non-negative integers d,,,. The non-negative integers d,., in the
above decomposition are called the decomposition numbers of .

One of Brauer’s ideas was to distribute the irreducible characters and
the irreducible Brauer characters into p-blocks. There are different ways to
understand the p-blocks, but we follow a character theoretical approach.

Let K be a conjugacy class of G and let K be the class sum, that is

zeK

If cl(G) is the set formed by the conjugacy classes of G, the set {K | K €
cl(G)} is a C-basis of Z(CG) (in fact, the set {K | K € cl(G)} is an R-basis
of Z(RG) for any ring R). Now, if x € Irr(G), x uniquely determines an
algebra homomorphism w, : Z(CG) — C, given by

o | K|x(7k)
WX(K) = 7){(1) )

where zx € K. It is well known that wx(f( ) is an algebraic integer (see
Theorem 3.7 of [Isa76]) and hence we can construct a map A, : Z(FG) — F
by setting

M(K) = (wy (K))*
In fact the map A, is also an algebra homomorphism.

In the same way, if ¢ € IBr(G), we can associate to ¢ an algebra homo-
morphism A, : Z(FG) — F. Let X : FG — Mat(n, F') be an irreducible

F-representation of G affording ¢, then X(K) is a scalar matrix for every
K € cl(G), and this scalar only depends on ¢. Hence, the equality

defines an algebra homomorphism A, : Z(FG) — F.

DEFINITION 1.29 (Brauer p-block). Let x, € Irr(G) u IBr(G). Then x
and 1 lie in the same p-block B of G if

M (K) = Ay(K)

for every conjugacy class K of G. In this case we write Ap = A,.
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The set formed by all the Brauer p-blocks of G is denoted by BI(G). If
B € Bl(G), Irr(B) denotes the set of irreducible characters lying in B and
IBr(B) denotes the set of irreducible Brauer characters lying in B. It turns
out that

Irr(G) = U Irr(B),

BeBI(G)
and
Br(G)= (] IBr(B),
BeBI(G)
where the unions are disjoint.

Another way to understand the p-blocks is through the decomposition
numbers.

THEOREM 1.30. If x € Irr(G) and ¢ € IBr(G), are such that dy, # 0,
then Ay = A,.
PRrROOF. See Theorem 3.3 of [Nav98al]. O

If x,v € Irr(G), we say that x and 1) are connected if there exists ¢ €
IBr(G) such that

dXSO #0 # d’lw‘

The graph defined by connexion in Irr(G) is called the Brauer graph. It
turns out that the connected components of the Brauer graph are exactly the
sets Irr(B) such that B is a p-block of G (this is Theorem 3.9 of [Nav98a]).

There is a way to visualize the sets Irr(B) directly from the character
table, without the need to choose a maximal ideal of R and computing in
F.

DEFINITION 1.31. Let x, v € Irr(G). We say that x and v are linked if

2, x(@)g(z) # 0.

/
eGP

THEOREM 1.32. The connected components of the graph in Irr(G) defined
by linking are exactly the sets Irr(B) for B € BI(QG).

PROOF. See Theorem 3.19 of [Nav98al]. O

To each p-block, a unique conjugacy class of p-subgroups of G is asso-
ciated, namely the defect groups of B. There are different ways to define
them, but the approach we follow needs the concept of defect class. We need
to talk about central idempotents in order to define a defect class.
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14 1.3. Preliminaries on blocks

Let x € Irr(G) and let

x(1)

R ATE > x(9)g € CG.

geG
Then e, is a primitive idempotent of Z(CG) (see Theorem 2.12 of [Isa76]).

THEOREM 1.33. Let

Then

(a) fB € Z(SG).
(b) fB(K) =0 if K does not consist on p-reqular elements.

PROOF. See Corollary 3.8 of [Nav98al]. O

*

The ring homomorphism * : S — F extends to a ring homomorphism

*: SG — FG by setting

*
(Z 399> = 2,59
geG geG
Notice that * maps Z(SG) onto Z(FG). Since fp € Z(SG), we have that
f5 € Z(FG). Write

es =[5,
ep is the block idempotent of B.

THEOREM 1.34. Let B, B’ € BI(G), then
(a) epep = dpprep.
(b) 1= ZBeBl(G) €B-
(C) )\B(eB’) = (533/.

PROOF. Since * : Z(SG) — Z(F@G) is a ring homomorphism, (a) easily
follows. Since 1 = 3, (1, () €x, We have (b). For (c) see Theorem 3.11 of
[Nav98a). O

Using (a) and (b) of Theorem 1.34 we have that

FG= @ epFG.
BeBIl(G)
It turns out that epF'G is an algebra with identity ep. For many authors
B = epF G is the natural definition of p-block.

Since ep € Z(FG), we can write
ep= Y, ap(K)K,
Kecl(G)

with ap(K) € F. Now, since Ag(ep) = 1, there exists K € cl(G) such that
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ap(K) # 0 # Ap(K).
If this happens, we say that K is a defect class of B.

ProrosiTiON 1.35. If B is a p-block and K is a defect class of B, K
consists of p-reqular elements.

ProOF. This follows from Corollary 3.8 of [Nav98al]. O

DEFINITION 1.36 (Defect group of a class). Let K € cl(G) be a conjugacy
class of G. Let xx € K and let Dy € Syl,(Ca(rk)). The defect groups of
K are

{D% lgeG}.
The set of defect groups of K is denoted by 6(K).

THEOREM 1.37. If K and L are defect classes for B, then §(K) = 6(L).
PROOF. See Corollary 4.5 of [Nav98al]. O

DEFINITION 1.38 (Defect group of a block). Let B be a p-block of G and
let K € cl(G) be a defect class of B. The defect groups of the block B are
the defect groups of the class K. The set of defect groups of B is denoted

by §(B).

Recall that n, is the largest power of p that divides the integer n. If
|D| = p¥B) and |G|, = p?, it turns out that

P~ 4B = min{x(1), | x € Irr(B)}.

The integer d(B) is called the defect of B. Tt is clear that if ¢ € Irr(B), then
P(1)p = p?~UB)+h for some non-negative integer h. The integer h is called
the height of ¢, and if h = 0 it is said that v is a height zero character. The
set of height-zero characters in a block B is usually denoted by Irrg(B).

Two of the main conjectures in modular representation theory are due to
Brauer in the 1950s ([Bra56] and [Bra57]). They are still open, although
some spectacular advances have been achieved.

CONJECTURE 1.39 (Brauer’s height zero conjecture). Let B be a p-block
of G and let D be a defect group of B, then all the characters in B have
height zero if and only if D is abelian.

The “if” direction was solved by R. Kessar and Malle in [KM13]. The
“only if” direction is still open, but it was reduced to a question on simple
groups by Navarro and B. Spéath in [NS14].

CONJECTURE 1.40 (Brauer’s k(B)-conjecture). Let B be a p-block of G
and let D be a defect group of B, then

lIrr(B)| < |D|.
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16 1.3. Preliminaries on blocks

The integer |Irr(B)| is usually referred as k(B). This conjecture is not
just open but also unreduced to simple groups. The solvable case of this con-
jecture is known, and its proof is very complicated ([Nag62] and [GMRS]).
Brauer’s Height Zero Conjecture is also known to be true for solvable groups,
again, with a very complicated proof (([GW84)).

To end this brief introduction to blocks of finite groups we recall some
results concerning normal subgroups. If N <G, b is a block of V, and g € G,
the set {19 | ¢ € Irr(b) U IBr(b)} is a block of N, namely b9. Hence G acts
on BI(N) by conjugation. If {by,...,b} is the G-orbit of b, we have that
the idempotent Zle fv, lies in Z(CG) and there exist uniquely determined
blocks By, Ba, ..., Bs € BI(G) such that

t s
Dif=> 15
i=1 i=1

(for more details see discussion preceding Theorem 9.1 of [Nav98al). In
this case, we say that the block B; covers b.

THEOREM 1.41. Suppose that N < G. Let b e BI(N) and let B € BI(G).
The following conditions are equivalent.

(a) B covers b.

(b) If x € B, then every irreducible constituent of xn lies in a G-
conjugate of b.

(¢) There is a x € B such that xn has an irreducible constituent in b.

PROOF. See Theorem 9.2 of [Nav98al]. O

THEOREM 1.42. Suppose that N <G with G/N a p-group. If b € BI(IV),
then there is a unique B € BI(G) covering b.

PROOF. See Corollary 9.6 of [Nav98al]. O

Recall that we write GP' for the set of p-regular elements of G, and
if x € cf(G), we write x*' to denote the restriction of x to GP. If N is
normal in G and n € IBr(G/N), then one can see that the class function
¢ € cf(GP") defined by ¢(g) = n(¢gN) is an irreducible Brauer character of
G with N < ker(y). Indeed, if X : G/N — GL(n, F) affords 7, then the
irreducible representation ) : G — GL(n, F)) defined by 9(g) = X(gN)
affords .

On the other hand, if ¢ € IBr(G) and N < ker(p), then we can define n
on (G/N) by n(gN) = ¢(gy), and it is easy to see that 7 is an irreducible
Brauer character of G/N. Hence, as happens with ordinary characters,
we shall identify the functions ¢ and 7 and view IBr(G/N) as the set of
irreducible Brauer characters of G having N in its kernel.

Now, if ¥ € Irt(G/N) and x € Irr(G) is the corresponding character of
G (that is, x(g) = X(gN) for g € @), then, for z € G¥ | we have
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1. Preliminaries 17

X@) =X(@N)= >, dgpaN)= > dye(),
BelBr(G/N) BelBr(G/N)

and hence
dyg = dyp-
It follows that if B is a block of G/N and ¥, € Irr(B) are connected,
then x, ¥ are also connected as characters of G. Then, there is a unique block

B of G such that Irr(B) < Irr(B). Moreover, since g € IBr(B) if and only

if there exists X € Irr(B) such that dyg # 0, we have that IBr(B) < IBr(B).

THEOREM 1.43. Let N <G and write G = G/N.

(a) Suppose that B < B, where B is a block of G and B is a block of
G. If D is a defect group of B, then there is a defect group P of B
such that D < PN/N.

(b) If N is a p-group, then every block B € BI(G) contains a block
B e BI(G) such that §(B) = {P/N | P € §(B)}.

(c) If N is a p'-group and B < B, where B is a block of G and B is
a block of G, then Irr(B) = Irr(B), IBr(B) = IBr(B) and 6(B) =
{PN/N | Pe€é(B)}.

PROOF. See Theorem 9.9 of [Nav98al]. O
The following ends the preliminaries of this thesis.

THEOREM 1.44. Suppose that G has a normal p-subgroup P such that
G/Cq(P) is a p-group. Write G = G/P. If B € BI(G) and B € BI(G)
is the unique block of G containing B, then the map B — B is a bijection
BI(G) — BI(G). Also, IBr(B) = IBr(B), §(B) = {D/P | D € §(B)} and the
Cartan matrices of B and B are related by Cp = |P|C5.

PROOF. See Theorem 9.10 of [Nav98al]. O
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CHAPTER 2

p-blocks relative to a character of a normal
subgroup

2.1. Introduction

As we said in the Introduction of this thesis, an important part of this
work is devoted to the study of the set Irr(G|f) of irreducible constituents
of the induced character ¢, where 0 is a G-invariant character of a normal
subgroup N of G. In this Chapter we look at this set from a block-theoretical
point of view. In particular, if p is our fixed prime number, we partition the
set Irr(G|0) into smaller sets relative to the prime p, which look like Brauer
p-blocks.

One of the motivations of the work in this Chapter comes from the Gluck-
Wolf-Navarro-Tiep theorem ([GW84] and [NT13]), and the fact that its
converse is not true. This result, quite deep, and crucial in the reduction of
Brauer’s Height Zero Conjecture (Conjecture 1.39) to a problem on simple
groups, asserts the following.

THEOREM 2.1 (Gluck-Wolf, Navarro-Tiep). Let G be a finite group, let
N be a normal subgroup of G and let 6 € Irr(N). Let p be a prime number
and suppose that for all x € Irr(G|0), p does not divide x(1)/6(1). Then
G/N has abelian Sylow p-subgroups.

PRrROOF. See Theorem A of [NT13]. O

Of course, the converse is not true. For instance, if we let G = S3, the
symmetric group on three letters, p = 2 and N = 1, then we have that G
has abelian Sylow 2-subgroups and there is x € Irr(G) with x(1) = 2. The
reason why the converse of this theorem is not true is that the set Irr(G|6) is
too big. We want to reformulate this result, replacing Irr(G|0) by a smaller
set, in order to have an if and only if.

To do so, we introduce a partition of Irr(G|@), associated to the prime
number p which we have fixed, closely related to the classical partition of
Irr(G) into Brauer p-blocks. We will call the members of this partition 6-
blocks, and to each #-block we will associate a conjugacy class of p-subgroups
of G/N that we will call §-defect groups. We will usually write By to denote
a @-block and Dy/N to denote a 6-defect group.

Of course, a natural candidate for a #-block would be Irr(B|0) = Irr(B)n
Irr(G|6), where B is any p-block. This would be the set of the irreducible
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20 2.1. Introduction

characters in B lying over 6. Unfortunately, this set is, in general, too big.
For instance, if G is a p-constrained group (that is, if C¢(0,(G)) € O,(G)),
then mimicking the proof of Corollary 15.40 of [Isa76], we have that G has
only one p-block B and hence Irr(B|6) = Irr(G|#) for any normal subgroup
N of G and any 6 € Irr(/N). We want a finer partition.

Both the #-blocks and their #-defect groups are going to be defined in
terms of some convenient central extensions of G and some projective rep-
resentations of G associated with #. In the first main result of this Chapter
(and this thesis) we will show that the 6-blocks are independent of any choice
that has been made in order to define them, as are their 6-defect groups. In
other words, the partition given by 6-blocks and their #-defect groups are
canonical.

THEOREM A. Suppose that N<t G, and 0 € Irr(N) is G-invariant. Then
the 0-blocks of G are well defined. Furthermore, the set of 0-defect groups is
a G/N-conjugacy class of p-subgroups of G/N.

Using #-blocks, we unify in the following statement both Brauer’s Height
Zero Conjecture and the Gluck-Wolf-Navarro-Tiep theorem. Recall that n,
is the largest power of p that divides the integer n.

CONJECTURE B. Let (G, N, ) be a character triple. Suppose that By <
Irr(G|0) is a O-block with 0-defect group Do/N. Assume that 6 extends to
Dy. Then (x(1)/6(1)), = |G : Dglp for all x € By if and only if Dg/N is
abelian.

If B is a p-block of G, recall that we denote by Irr(B|6) the subset of
Irr(B) consisting on those characters lying over 6. As we shall show, for each
6-block By there exists a unique p-block B of G such that Irr(By) < Irr(B|0),
and if Dy/N is a 6-defect group of By, we will see that there exists D,
a defect group of B, such that Dy/N < DN/N. In the important case
where N is central we have even more. In this case, we will prove that
Irr(Bg) = Irr(B|#) and Dg/N = DN/N. Using this, Conjecture B is then
equivalent to a projective version of the Height Zero conjecture, noticed by
Malle and Navarro in [MIN17]. After being proposed, this projective version
of the Brauer’s Height Zero Conjecture has been proved to be equivalent to
the original Brauer’s conjecture by Sambale in [Sam19]. Using his work,
we prove the following.

THEOREM C. Conjecture B and Brauer’s Height Zero conjecture are
equivalent.

As we said, our definition of #-blocks is related to projective representa-
tions, and therefore with blocks of twisted group algebras. Of course, these
have been studied before by many authors (including S. B. Conlon [Con64],
W. F. Reynolds [Rey66], J. F. Humphreys [Hum?77], E. C. Dade [Dad94],
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2. p-blocks relative to a character of a normal subgroup 21

and A. Laradji [Lar15] in the p-solvable case). However, our character the-
oretical approach is new and is specifically tailored to be used in the recent
developments of the global-local counting conjectures.

Our second motivation to introduce #-blocks is to have a better under-
standing of the celebrated Brauer’s k(B)-conjecture (Conjecture 1.40). As
it is well-known, this deep conjecture, that asserts that the number of ordi-
nary characters in a block is less than or equal the size of its defect groups,
remains not only unsolved but also unreduced to simple groups. We propose
the following projective version.

CONJECTURE D. Let (G, N, ) be a character triple. Let By be a 0-block
and let Dg/N be a 0-defect group of By. Then

|lrr(Bg)| < [Do/N.

It is clear that Conjecture D implies Brauer’s k(B)-conjecture (we just
need to take N = 1). Using a result of Navarro in [Nav17]| we can prove
more.

THEOREM E. The k(B)-conjecture is true for every finite group if and
only if Conjecture D is true for every character triple (G, N, 6).

Let cf(G|0) be the C-span of Irr(G|) and let G° = {z € G |z, € N}. If
d € cf(G10), write 6° for the restriction of 6 to G°. Write cf(G|6)° for the
space consisting of the functions §°, where 0 € cf(G|f). It turns out that
cf(G|A)° is a C-vector space and in [Nav00] and [Nav12]|, Navarro gives
a basis (a priori not canonical) of cf(G|#)°. Using this basis, he gives a
partition of Irr(G|6). The second part of this Chapter is devoted to proving
that the partition given by Navarro and our partition into 8-blocks coincide.
As a consequence of this, in the case that N is a p-group, we have that there
is a direct relationship between our #-blocks and the Kiilshammer-Robinson
N-projective characters defined in [KR&87].

In order to prove that our #-blocks coincide with those found by Navarro,
a certain new understanding of Brauer p-blocks is required. Specifically, we
shall need to prove certain projective results like the following one.

THEOREM F. Suppose that Z is a central subgroup of G, and let 0 €
Irr(Z). Let B be a Brauer p-block of G. For x € Irr(G) and ¢ € IBr(G),
denote by dy, the classical decomposition number. Then the decomposition
matriz Dy = (dy,), where x € Irr(B|6) and ¢ € IBr(B) is not of the form

(57)

for any ordering of the rows and columns.
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22 2.2. Results on ordinary blocks

Moreover, using the 6-blocks, we will prove that the basis given by
Navarro is canonical (up to choice of the maximal ideal M containing p
in the ring of algebraic integers R of the complex numbers). This is the last
main theorem of this Chapter.

THEOREM G. Let (G,N,0) be a character triple, then there exists a
canonical basis (up to choice of the mazimal ideal M) of cf(G|0)°.

This Chapter is structured as follows. In Section 2.2, we give some
results on ordinary blocks that we will use later on. In Section 2.3 we fix
some notation. In Section 2.4 we give the definitions of #-blocks and 6-defect
groups and we prove Theorem A. In Section 2.5 we present some properties
of the #-blocks. In particular, we prove a #-version of a classical theorem on
blocks: if By is a 6-block, Dy/N is a #-defect group of By and x € Irr(By),
then x(g) = 0 if g,V is not G/N-conjugate to any element of Dyp/N. In
Section 2.6, we prove Theorems C and E, and we prove that Conjecture
B implies the Gluck-Wolf Navarro-Tiep theorem. In Section 2.7, we prove
Theorem F and in Section 2.8 we define canonical #-Brauer characters, we
prove Theorem G and we prove that our #-blocks and the blocks defined
by Navarro in [Nav00] and [Nav12] coincide. In Section 2.9, we define a
f-linking and we give some properties of it.

Part of the results in this Chapter appear in [Riz18].

2.2. Results on ordinary blocks

We shall need some basic facts on Brauer p-blocks which we prove in
this section.

LEMMA 2.2. Let B be a p-block of G and let v be a linear character of
G. Then

{ux | x € Ir(B)}

is the set of irreducible ordinary characters lying in a p-block uB. Also, B
and pB have the same defect groups.

PROOF. Since u(z) is a root of unity for z € G, then u(z)u(z!) =
1. Hence, it is clear that if x,¢ € Irr(G), then A\, = Ay if and only if
Aux = Ay, and the first part follows. Now, let K be a defect class of B.

Then Ap(K) # 0 and ap(K) # 0. Notice that A\,p(K) = p(xk)Ap(K),

and aMB(K') = u(x[_(l)aB(K'), where zx € K. Since p(xg) # 0, the result
follows from Theorem 1.37. 0

If N is normal in G, recall that we view the (Brauer) characters of G/N
as (Brauer) characters of G containing IV in their kernel. We also know that
every block of G/N is contained in a block of G. If x € Irr(G), then we
denote by Bl() the block of G containing x.

Universitat de Valencia Noelia Rizo Carrién



2. p-blocks relative to a character of a normal subgroup 23

LEMMA 2.3. Let Z < G, with Z = Z, x K, where K is a normal p'-
subgroup of G and Z, is a central p-subgroup of G. Let a € Irr(G) with
Z < ker(a) and write @ for the character a viewed as a character of G/Z.

(a) Let 8 € Irr(G) with Z < ker(3). Then Bl(a) = BI(B) if and only if
Bl(a) = BI(B), where B is the character 3 viewed as a character of
G/Z.

(b) We have that

dBl(@)) ={PZ/Z|PedBla)}={P/Z,| PedBla))}.
PROOF. (a) It is clear that if Bl(@) = BI(5), then Bl(a) = BI(3). We
need to prove the converse. We proceed by induction on |G|. By Theorem
1.43 we may assume that Z is a central p-group. The result follows by
Theorem 1.44.
For (b), we proceed by induction on |G|. Let & be the character a viewed
as a character of G/K. By Theorem 1.43(c), we have that

§5(Bl(&)) = {PK/K | P € §(Bl(a))}.

If K > 1, since G/Z = %, using induction we are done. Hence, we may
assume that K = 1. In this case, Z is a central p-group. The result now

follows by Theorem 1.44. O

Suppose a : G — G is a surjective group homomorphism with kernel
Z. If ¥ € TIrr(G), whenever is convenient, we denote by % the unique
irreducible character of G such that ¢*(z) = 1 (a(z)) for z € G. Notice that
Z < ker(¢®).

COROLLARY 2.4. Suppose that o : G — G is an onto group homomor-

~

phism with ker(a) = Z < Z(G).
(a) If x; € Irt(G), then x1, x2 lie in the same block of G if and only if
x{ and x5 lie in the same block of G.
(b) Suppose that L < G and let v € Trr(L). If L = o= (L), let 4 =
vi € Irr(L). Then [(X);,7] = [xz,7] for x € Inx(G).
(¢) Suppose that x € Trr(G), let B = Bl(x), and let B = Bl(x®). If D
is a defect group of B, then a(lj) is a defect group of B.

PROOF. Part (a) is a direct consequence of Lemma 2.3(a). Part (b) is
straightforward. To prove part (c), define & : G/Z — G to be the associated
isomorphism. Since Z < ker(x®), by Lemma 2.3(b), we have that DZ/Z
is a defect group of the block of xy* viewed as a character of G’/ Z. Since
(D) = a(DZ/Z), the result follows. O

We need the following result of [NS14].
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LEMMA 2.5. Let N < G, let 0 € Irr(N) and suppose that 6 € Trr(G) is
an extension of 0. Write G = G/N. Let 5 € Irr(G) and let n € Irr(G)
the corresponding character of G satisfying n(g) = T(gN) for all g € G. If
z € G, let H/N = Cg(T), where T = aN. Let K = 2%, L = 2l and

S =%%. Then,

Xin(K) = Ag, (L)Ag(S).
Moreover, some defect group of BL(7) is contained in DN /N, where D is a
defect group of Bl(6n).

PROOF. See Lemma 2.2 of [NS14] and Proposition 2.5(b) of [NS14].
O

LEMMA 2.6. Let N < G and let x € Irr(G). Suppose that xny = 0 €
Irr(N). Let x1,x2 € Irt(G|0) and write x; = Bix, for i = 1,2, where 3; €
Irr(G/N). Suppose that B1 and Po lie in the same p-block of G/N. Then x1
and X2 lie in the same p-block of G. Also, if B € Irr(G/N) and P/N is a
defect group of B1(B), then P < DN, for some defect group D of BI(Bx).

PROOF. Let K be a conjugacy class of G and let x € K. Write H/N =
C(;/N(acN), let L be the conjugacy class of H containing x, and let S be the
conjugacy class of G/N containing N. Then, by Lemma 2.5, we have that

M (K) = My (K) = My (£)2s,(9)-
Since 1 and (3 lie in the same p-block of G/N, we have that

N N

)‘Bl(s) = )‘52(5),
and hence, again by Lemma 2.5 we have that
Aa (K) = )\XH(‘E)Aﬁl (S) = AXH(ﬁ))‘Bz(S) = /\Xﬁz(f{) = Ao (K)

Hence x1 and x2 lie in the same p-block of G. The second part follows
straightforwardly from the second part of Lemma 2.5. (]

2.3. The Notation

In this Section we give some notation that we will keep throughout this
Chapter.

To define the #-blocks and the #-defect groups we need some background
on projective representations and character triples. That background can
be found in Section 1.2. In particular we are going to need Theorem 1.21.
We recall here some of the notation and definitions needed.

Theorem 1.21 asserts that given a character triple (G, N, 6), there exists
a projective representation P of G such that its factor set only takes roots
of unity values, and a character triple (G/N, N/N,)) (depending on P)
isomorphic to (G, N,#), with N/N central in G/N. We say that G is a
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representation group for (G, N, ), (G/N,N/N,\) is a standard isomorphic
character triple given by P, and the bijection * : Irr(G|0) — Irr(G/N|A) is
the standard bijection. Notice that this bijection just depends on the choice
of the projective representation P (see discussion after Theorem 1.23). We
also say that 7 € Irr(@) is the character of G associated with P. By Theorem
1.21(b), we have that 7y = 6.

If « is the factor set of P, recall that we write Z for the subgroup of
C* generated by the values of a (which are roots of unity values). Then
G = {(9,2)| g € G,z € Z}, with a suitable product involving «, and the map
7 : G G given by (g, z) — g is the canonical homomorphism with kernel

N

2.4. 0-blocks and 6-defect groups
We are finally ready to define 6-blocks and their 6-defect groups.

DEFINITION 2.7. Let (G, N, 0) be a character triple. Let G be a represen-
tation group for (G, N, 0) and let 7 : G — G be the canonical homomorphism
(9,2) — g with kernel Z. Let * : Irr(G|0) — Irr(G/N|)) be the associated
standard bijection. We say that a non-empty subset By < Irr(G|0) is a
0-block of G if there exists a p-block B of G/N such that

Bj = {x*|x € By} = Irr(B€|/A\).

If ﬁ/N is a defect group of B, then we say that W(D)/N is a 0-defect group
of By.

In the situation of Definition 2.7 we say that the 6-block By is afforded
by the p-block B.

Of course, note that the definition of #-blocks depends on the choice of
the standard isomorphic character triple and therefore on the choice of the
projective representation associated with 6. The same happens with the
f-defect groups. Our main result in this section is that the -blocks are in
fact canonically defined, and that all the 6-defect groups are G/N-conjugate.
The following result is key to proving that.

THEOREM 2.8. Let (G, N,0) be a character triple. Let Py, P2 be pro-
jective representations of G associated with 6, with factor sets a1 and s,
respectively, whose values are roots of unity. Let G be the representation
group associated with P;. Let (G1/N,Ni/N, A1) and (Ga/N, Ny/N,\y) be
the standard isomorphic character triples given by P1 and Po, respectively.
As usual, let Z; be the subgroup of the multiplicative group C* generated by
the values of a;. Let G = G x Zy x Zo and define the product

(ga 21, 22)(h7 Zia Zé) = (gha aq (ga h)zlzllv Oég(g, h)ZQZé).
Then the following hold.
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(a) G is a finite group, N x 1 x 1 is a normal subgroup of G (which we
identify with N ), and 1 x Z1 x Zs is a central subgroup of G (which
we identify with Zy x Zy). Also, N = N x Z1 X Zoy 1s a normal
subgroup of G and N/N s central in G/N

(b) The maps py : G — Gy and py : G — Go given by (g,21,22) —
(g9,21) and (g, 21, 22) — (g, 22) are surjective group homomorphisms
with kernels Zs and Zl, respectively.

(c) Suppose that 7; € Trr(Gy) is the character associated with P;, and let

‘e Irr(G) be the correspondmg character of G. Then there exists
a lmear character € Irr(G/N) such that
= Brf?

(d) Let x € Irr(G|0) and let x* € Trr(G;/N|\;) be the image of x under
the standard bijection. Let x; = (x7)P € Irr(é/N) Then Bx1 =
X2 As a consequence, sz 1s the block of G/N containing X;, then
By = BBy. R

(e) Let B} be the block of Gi/N containing x;. Then the map ¢ — )P
is a bijection from Trr(BF|\;) to Trr(By|X;), where Ai(n,z1,22) =
5\1(1,21) = zl_l and S\Q(n, 21,22) = ;\2(1,22) = 22_1 are linear char-
acters of N/N.

(f) The map o — B is a bijection from Irr(Bi|A1) to Irr(Ba|As). In
particular, Irr(B#|A1)| = [Trr(BE|\2)|.

(9) Let m; : Gy — G be the canonical homomorphism (9,2i) — g with
kernel Z;. If D;/N is defect group of B, then (D) and mo(Ds)
are G-conjugate.

PRrOOF. Using Lemma 1.19, parts (a) and (b) are straightforward. We
prove (c). Since P; and P, are projective representations of G associated to
0, by Theorem 1.18 we know that there exists £ : G — C* with £(1) =
constant on the cosets of IV, such that Py = £P;, and the factor sets oy and
ag are related in this way

az(g, h) = a1(g, h)E(9)E(h)E(gh) ™",
for all g,h € G.
Now 7; € Irr(G) is the character afforded by the irreducible representa-
tion P;, which is defined by P;(g, z;) = ziPi(g), for z; € Z; and g € G. Then,
using that Py = £P1, we have that

T1(g9,21) = 2123 '£(9) ' 72(g, 22)

for g € G and z; € Z;. It is straightforward to prove that the function
B : G — C* defined by

/B(gv 21, 22) - 2122_15(9)71
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is a linear character of G that contains N in its kernel.

By definition, we have that 7' (g, 21, 22) = 711(9, 21) and 757 (g, 21, 22) =
72(g, 22). Therefore 77 ,37'2 , as desired. This proves (c).

Let us denote by 7; : G; — G the homomorphism (g, z;) — g. Recall
that, by definition, x; € Irr(éi /N) is the unique character satisfying x™ =
X;7i. That is

x(9) = X" (9, 2) = xi (9, z)7i(9, 2)
for g € G and z; € Z;. By definition, we have that x1(g, z1,22) = x5 (g, 21)
and X2(g, 21, 22) = x5(g, 22). In particular %i € Irr(G) contains N in its
kernel. Notice that we have 7' Y1 = 752 X2. Hence,

/BXITQ = )227'2[)2 .

Since 752 extends # € Irr(N) and X1, X2 € Irr(G/N), by Gallagher’s Corol-
lary (Corollary 1.16), we have that

Bx1 =
Using Lemma 2.2, part (d) easily follows.

Next we prove part (e). Since p1(N) = N, then p; uniquely defines an
onto homomorphism g, : G/N — G1/N with kernel NZy/N < Z(G/N).
Since N € ker(x}), then notice that x; = (Xl)f’l. Now NZi/N is a sub-
group of G1 /N, and its inverse 1mage under p is N /N. Also, the character
corresponding to A; under j; is A;. By Corollary 2.4 (a) and (b), we have
that 1 — 9 is a bijection from Trr(B#¥|\;) to Trr(By|);). (Notice that
PP = 1Pt because all of our characters have N in their kernel).

Now we prove part (f). By using their definitions (and the fact that
&(n) =1 for n € N), we check that N)q — Xy . Therefore, multiplication
by the linear character 8 sends bijectively Irr(Bi|A;) — Irr(B2])\2)

Finally, we prove part (g). As in part (e), we have that g; : G/N — G;/N
is an onto homomorphism, with central kernel, such that the map ¢ —
is a bijection from Irr(B*|)\ ) to Irr(B;|Ai). Let E;j/N be a defect group of
B;. Since By = BB;, we may assume that E; = E for i = 1,2. by Lemma
2.2. By Corollary 2.4(c), we have that p;(E/N) is a defect group of B}.
Hence j;(E/N) = (D;/N)@Y) for some g; € G (using that Z; is central in
CAT‘Z) Now, since m;(N) = N, we have that m; uniquely determines an onto
homomorphism 7; : G, /N — G/N. We easily check that 71 o p; = 79 0 po.
Then

as desired. O

We can now prove the main result of this section. The following is
Theorem A of the Introduction.
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THEOREM 2.9. Suppose that N < G, and 6 € Irr(N) is G-invariant.
Then the 0-blocks of G are well defined. Furthermore, the set of 0-defect
groups is a G/ N -conjugacy class of p-subgroups of G/N.

PrOOF. Let (G, N,0) be a character triple and let P; and P2 be pro-
jective representations associated with 6. Let G1 and Gs be representa-
tion groups for (G,N,0) given by P, and Py, and let (G1/N,Ni/N,\;)
and (GQ/N Na/N, X2) be the standard isomorphic character triples. Let

: G; — G be the homomorphism 7;(g, z;) = g, and let 7; € Irr(G;) be the
character associated with P;. Recall that if x € Irr(G|6), then x™ = xjn;,
for some uniquely defined x* € Irr(G;/N). The map x — x from Irr(G|6)
to Irr(Gi/N|)) is the standard bijection.

Let Aj, Ay < Irr(G|0) be such that A7 = {¢oF | o€ A1} = Irr(B*|)\1) and
A% = {@5 | p € Ay} = Irr(B3|Ag), where B¥ is a block of G;/N. Suppose
that x € A1 n Ay. We wish to to prove that A1 As.

In order to do so, we construct the group G as in Theorem 2.8, and

consider the group homomorphisms p; : G — Gi, in Theorem 2.8(b). By
Theorem 2.8(c), there is a linear character § € Irr(G/N) satisfying

— P
= Bre>

As in Theorem 2.8(d), let X; = (x*)? € Irr(G/N), and let B; be the block
of @/N containing x;. By Theorem 2.8(d), we have that B, = 8B;. By
Theorem 2.8(f), |Af| = |A5|, and therefore |A;| = |A2|. We only need to
prove that A; € As, for instance.

Let ¢ € A;. Now, ¢* € A% = Irr(B¥|\1), and by Theorem 2.8(e) we
have that ¢; = (¢%)? € Trr(By|A1). By Theorem 2.8(f), 8¢ € Irr(Ba|As).
By Theorem 2.8(e), let 2 € Az be such that S = (¢3)P2. We claim that
©1 = 2. Recall that 7,0F = 'and that 7' = 8742, If g € G, then we
have that

e1(9) = 1" (9,1) = 11(g, )i (g, 1)
=1{"(9,1,1)¢1(g,1,1)
= 6(g,1,1)75°(g,1,1)¢1(g, 1, 1)
= 12(9,1)(B¥1)(9,1,1)
= 72(g, 1)(¥3)*(9,1,1)
= 72(g, )¥3(g,1)
=¢5°(9,1)
= ¢2(9),

as desired. This completes the proof of the first part of the theorem. The
second part easily follows from Theorem 2.8(g). It is elementary to show
that the #-defect groups are p-subgroups of G/N. O
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2.5. Some properties of the 6-blocks

We collect in this Section some basic properties of the 6-blocks and its
f-defect groups.

THEOREM 2.10. Let (G, N, ) be a character triple. Let By be a 0-block
of G, and let Dy/N be a 0-defect group of By.

(a) There is a p-block B of G such that By is contained in the set
Irr(B|0). Also, there is a defect group D of B such that Dy < DN.

(b) If N € Z(QG), then there is a p-block B of G and a defect group D
of B such that By = Irr(B|0), and Dy = DN.

(¢) If 0 has an extension x € Irr(G), then there is a p-block B of G/N
and a defect group D of B such that By = {yx | v € Irr(B)} and
Dy/N = D.

(d) If G/N is a p-group, then By = Irr(G|6) and Dy = G.

PROOF. Let G be a representation group associated with (G, N, 6), with
associated character 7 € Irr(G). Recall that 7N = 0. Let * : Irr(GlO) —
Irr(G/N|X) be the standard bijection. Let m : G — G be the homomorphism
(9,2) — g. Since 7(N) = N, let # : G/N — G/N be the corresponding onto
homomorphism. Notice that G/N is a central extension of G/N.

By definition, there is a Brauer p-block B of G/N such that (Bp)* =
Irr(B|)). Recall that x™ = y*7 for x € Irr(G|6).

Now, fix x € Bg and let B be the p-block of G containing x. We claim
that By < Irr(B|#). Indeed, let 1) € By. Then x*,¢* € B. Since 7y = 0
and x™ = 7x*, Y™ = 7¢*, by Lemma 2.6 we have that x™ and 1™ lie in the
same p-block of G. By Corollary 2.4, x, ¢ lie in the same p-block of G. This
proves the first part of (a). If 15/ N is a defect group of B, by Lemma 2.6 we
have that D < EN for some defect group E of the block of y™. Now, m(E)
is a defect group of the block of x by Corollary 2.4(c), and w(D) < n(E)N.
This proves the second part of (a). Notice now that if NV is central, then 7 is
linear and the defect groups of the block of x™ = 7x™ are the defect groups
of the block of x* (multiplying by 7! and using Lemma 2.2). Since N is
central in G by Theorem 1.21(a), we have that D = EN by Lemma 2.3(b).

Next, we complete the proof of part (b). Suppose that N is central and
that v € Irr(Bl|#). In particular, 7 is linear. Write v = ~*r, for some
~* € Irr(G/N|A). Now, since 4 and y lie in the same p-block of G, we have
that 7 and x” lie in the same p-block of G by Corollary 2.4. Therefore y*7
and x*7 lie in the same p-block of G. By Lemma 2.2, multiplying by 1,
we have that v* and y* lie in the same p-block of G. Now, N < Z(G) by
Theorem 1.21(a). Thus v* and x* lie in the same p-block of G/N by Lemma
2.3 (a). Hence v* € Irr(B|)), and therefore v € By. This proves (b). (The
part on the defect groups follows from the previous paragraph.)

For part (c), notice that if P is a representation affording y, then P
is a projective representation associated with (G, N, ) with trivial factor
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set. Hence G = G is a representation group for (G, N, ) with associated
character 7 = x. In this case the standard bijection is the map Sy — [
from Irr(G|0) — Irr(G/N) given by Gallagher’s Corollary (Corollary 1.16),
and part (c) easily follows.

Next we prove part (d). Let (G/N,N/N,\) be a standard isomorphic
character triple and let * : Irr(G|@) — Irr(G/N|)) be the standard bijection.
Let B be the p-block of G/N such that (Bg)* = Irr(B|)\). By Theorem
1.41 and Theorem 1.42 we have that Irr(B|A) = Irr(G/N|)). Therefore
|Bg| = |(Bg)*| = [Irr(BJA)| = |Irr(G/N|A)| = |Irr(G|6)|, and the first part of
(d) is proved. Let Dg/N be a f-defect group of By and let D/N < G/N be a
defect group of B such that 7(D)/N = Dy/N. Recall that # : G/N — G/N
defined by (g, z)N — gN is an onto homomorphism with ker(#) = N/N.
Write G* = G/N, N* = N/N and D* = D/N, and write 7 : G*/N* — G/N
for the induced isomorphism. Then 7(D*N*/N*) = Dy/N. Let K* € cl(G*)
be a defect class for B. By Proposition 1.35, we know that K™ consists of
p-regular elements. Since G*/N* is a p-group, we have that K* € N* <
Z(G*). Let x* € K* be such that D* € Syl (Cgs=(z*)). Since K* is central,
we have that D* € Syl,(G*). Then D*N*/N* e Syl,(G*/N*) and, since
7T(D*N*/N*) = Dg/N we have that Dy/N € Syl,(G/N). Since G/N is
p-group, Dy/N = G/N.

U

Notice that in the proof of this Theorem we have seen that
7(D*N*/N*) = Dy/N.
We will use this fact many times in this Chapter.

If (G,N,0) is a character triple and By < Irr(G|6) is a 6-block, then, in
general, By is much smaller than the set Irr(B|#), where B is the Brauer p-
block containing By. For instance, suppose that G is a p-constrained group,
that is, Cg(Op(G)) € O,(G). Then, as we have said in the Introduction of
this Chapter, mimicking the proof of Corollary 15.40 of [Isa76], we have that
G has only one p-block B and hence IBr(B|f) = IBr(G|#) for any normal
subgroup N of G and 0 € Irr(N). Now, let N < G be such that p does not
divide |G/N|, and let 6 € Irr(N) such that 6 extends to G. By Theorem
2.10(c), we have that the §-blocks have size 1.

The following is a clasical result on blocks that explains further zeros in
the character table.

THEOREM 2.11. Let x € Irr(G) and let g € G. If g, is not contained in
any defect group of the block of x, then x(g) = 0.

PROOF. See Corollary 5.9 of [Nav98al]. O

The following is an analogue result for #-blocks.
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THEOREM 2.12. Let (G, N, 0) be a character triple, let x € Irr(G|6) and
let By be the 8-block containing x. Let g € G and suppose that (gN), is not
G/N -conjugate to any element of Dg/N, where Dg/N is a 0-defect group of
By. Then x(g) = 0.

PROOF. Let (G/N,N/N,)) be a standard isomorphic character triple
of (G,N,). Write 7 : G — G for the canonical onto homomorphism.
Since 7(N) = N, 7 induces a group homomorphism # : G/N — G/N with
ker(#) = N/N. Write G* = G/N and N* = N/N and write 7 : G*/N* —
G/N for the induced isomorphism.

Let gN € G/N and let g*N* € G*/N* such that 7(¢g*N*) = gN. Let
B be the p-block of G* such that (Bg)* = Irr(B|)), where * : Irr(G|0) —
Irr(G*|)) is the standard bijection. Let D* = D/N be the defect group of
B such that 7(D)/N = Dy/N. Notice that 7#(D*N*/N*) = Dy/N.

Since (9N ), is not G/N-conjugate to any element of Dy/NN, we have that
(g%)pN* is not G*/N*-conjugate to any element of D*N*/N*. Hence (¢g*),
is not contained in any defect group of the block of x*. By Theorem 2.11
we have that x*(¢*) = 0. Recall that x™ = 7x*, where 7 € Irr(G) is the
character associated to P. Since 7(((g,1)N)(N/N)) = #((g,1)N) = gN, we
have that ¢* = (g, 1) N and then

x(9) = x"(g9,1) = 7(g, )x*((g, YN) = 7(g9,1)x*(g") = 0.
0

If B is a p-block of G, D is a defect group of B, and K is a defect class
of B, we know that D € Syl,(Cg(zk)), for some z € K. Next, we give an
analogue for #-blocks. To do so, we need the following lemma. Recall that
we say that x € G is 6-good if every extension of § to N{(x) is S-invariant,
where S/N = Cg/n(Nz). It is not hard to see that if z is 6-good, then so
is every G-conjugate to x. In this case, we say that the conjugacy class of x
is #-good.

LEMMA 2.13. Let N < G and let 0 € Irr(N) be G-invariant. If g € G is
not 0-good, then x(g) = 0 for all x € Irr(G|0). Moreover, if 0 is linear and
faithful, then g is 6-good if and only if Cq/n(Ng) = Cal(g)/N.

PROOF. See Lemma 5.13 of [Nav18]. O

LEMMA 2.14. Let (G, N,0) be a character triple and let B be a block of
G such that Irr(B|0) is non-empty. Let K be a defect class of B. Then K
is 0-good.

PROOF. Let i € K and x € Irr(B|#). Since K is a defect class of B we

have that .
. . X(UUK)’K|>
0# Ag(K) = wy(K)* = ( .
Then, x(zx) # 0 and zk is #-good by Lemma 2.13. O
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PROPOSITION 2.15. Let (G, N,0) be a character triple, let By be a 0-
block and let Dyg/N be a 0-defect group of By. Then there is N € G/N such
that Dg/N € Syl,(Cg/n(TN)).

PROOF. Let D/N < G/N be a defect group of B such that #(D/N) =
Dy/N. Write G* = G/N and N* = N/N. We know that ker(#) = N/N =
N*. Denote by 7 : G*/N* — G/N the isomorphism induced by 7. Write
D* = D/N. Then we know that #(D*N*/N*) = Dg/N.

Since D* is a defect group of B and K is a defect class of B, we know that
there exists zjc € K such that D* € Syl,(Cgx(7k)). Since N* € Z(G*), we
have that N* € Cg«(vx) and hence D*N*/N* € Syl,(Cg=(zx)/N*). By
Lemma 2.14 and Lemma 2.13 we have that Cg=(zx)/N* = Cgx /n+ (N* 2k ).
Hence

Dy/N = #(D*N*/N*) & Sy1,(F(Cg e (N*2x0))) = S1,(Cayyn (7 (210)).
U

2.6. Projective conjectures

We start this Section by proving Theorem E of the introduction. Recall
that Brauer’s k(B)-conjecture asserts that if B is a block with defect group
D, then k(B) = |Irr(B)| < |D|.

The key is the following result of Navarro.

THEOREM 2.16. Suppose that Z is a central p-subgroup of G, and let
AeIrr(Z). Let B be a p-block of G, and let B be the unique p-block of G/Z
contained in B. Then

k(BI\) < k(B)

where k(B|\) is the number of irreducible characters in B lying over A.
PRrROOF. See Theorem C of [Nav17]. O
The following is Theorem E of the Introduction.

THEOREM 2.17. The k(B)-conjecture is true for every finite group if and
only if for every character triple (G, N, 0), we have that every 0-block By has
size less than or equal the size of any of its 0-defect groups.

PROOF. Let (G, N,6) be a character triple and let (G/N, N/N, }) be a
standard isomorphic character triple. Write G* = G/N, N* = N/N and
0* = \. Let By be a #-block and let Dy/N be a O-defect group of By.
Suppose first that the k(B)-conjecture holds for every finite group. Write
N* = Nj x N where N € Syl,(N*), and write 6* = 67 x 67, with
0, € Irr(N,;) and 6, € Irr(N;). From the definition of the 6-blocks, we
have that there exists a p-block B* of G* such that Bj = Irr(B*|0*), where
*: Irr(G|0) — Irr(G*]0*) is the standard bijection. Thus

|Bg| = |Irr(B*|6%)] .
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Now by Theorem 1.41, and using that Irr(B*|6*) is not empty (by the
definition of ¢-blocks), we have that Irr(B*[0*) = Irr(B*|¢;). By Theo-
rem 2.16 we have that |Irr(B*|6%)| < |Irr(B*)|, where B* is the unique
p-block of G*/N} contained in B*. Let D* be a defect group of B*. By
Theorem 1.44 we have that D*/Ny; is a defect group of B*. Since the
k(B) conjecture holds for G*/N} we have that |Irr(B*)| < |[D*/N}| =
|D*N*/N*|. Now, write D* = D/N, for some subgroup D of G, and by
definition, recall that w(D)/N = Dy/N is a 0-defect group of By, where
7 : G — G is the onto homomorphism (g,2) — g. It is then enough to
show that |D*N*/N*| = |Dg/N|. Notice that 7 : G* — G/N defined by
(9,2)N — gN is an onto group homomorphism with kernel N*. Write
7 : G*/N* — G/N for the isomorphism induced by @, and notice that
#(D*N*/N*) = #(D*) = n(D)/N = Dy/N. Then Dy/N and D*N*/N*
are isomorphic, and |Dy/N| = |[D*N*/N*|, as desired.

For the converse, simply take N = 1 and apply Theorem 2.10(b). O

As we said in Chapter 1, the k(B)-conjecture is known to be true for p-
solvable groups (it was reduce to the so-called “k(GV')-problem” in [Nag62]
and it was finally proved in [GMRS]). Notice that if (G, N, 0) is a character
triple and G/N is p-solvable, then we have that the #-version of the k(B)-
conjecture holds, that is, we have that |By| < |Dy/N| for any 6-block By
and 6-defect group of By, Dy/N. Indeed, let (G*, N* 6*) be a standard
isomorphic character triple, let * : Irr(G|6) — Irr(G*|0*) be the standard
bijection, let B* be the p-block of G* such that (By)* = Irr(B*|6*) and
let D* be a defect group of B*. Then G*/N* is isomorphic to G/N and
hence, since N* € Z(G*), we have that G* is p-solvable. Then G*/N; is
p-solvable, where N € Syl (N*) and hence the k(B)-conjecture holds for
G*/Ny. Now, if B* is the unique p-block of G* /Ny contained in B*, arguing
as in the proof of Theorem 2.17, we have that

| Bo| = [rr(B*[0%)| = [Irr(B*|0;)| < [Irr(B*)| < |[D*N*/N*| = | Dg/N|.

Next we prove Theorem C of the introduction. To do so we first intro-
duce the projective version of the Height Zero conjecture due to Malle and
Navarro (see [MIN17]). Recall that if B is a p-block, Irrg(B) denotes the
set of irreducible characters of B of height zero. Analogously, if N <t G and
0 € Irr(N), then Irrg(B|#) denotes the set of characters in Irr(B|6) of height
0.

CONJECTURE 2.18 (Projective version of BHZC). Let G be a finite group,
let p be a prime, and let B be a p-block of G with defect group D. Suppose
that Z < G is a central p-subgroup of G, and let X € Irr(Z). Then the
following are equivalent:

(a) Irr(BIN) = Irrg(B|A).

(b) D/Z is abelian and A extends to D.
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We first prove that Conjecture B is equivalent to Conjecture 2.18. Recall
that Conjecture B asserts the following: if By < Irr(G|0) is a #-block with
f-defect group Dy/N and 6 extends to Dy, then (x(1)/0(1)), = |G : Dylp
for all x € By if and only if Dy/N is abelian.

We need the following well-known result.

THEOREM 2.19. If B is a p-block of G, then O,(G) is contained in every
defect group of B.

PROOF. See Theorem 4.8 of [Nav98al]. O
THEOREM 2.20. Conjecture B and Conjecture 2.18 are equivalent.

PROOF. Let (G, N, 0) be a character triple, and let By be a 6-block with
O-defect group Dg/N. As in the proof of Theorem 2.17, let (G*, N*,6%)
be a standard isomorphic triple, with standard bijection * : Irr(G|0) —
Irr(G*|0*), and suppose that B* is the block of G* such that (By)* =
Irr(B*[60*). Recall that N* < Z(G*). We have shown above that Dy/N is
isomorphic to D*N*/N* where D* is a defect group of B*. (In fact, we
have shown that if 7 : G*/N* — G/N is the group isomorphism induced by
7: G — @G, then 7(D*N*/N*) = Dy/N.) Notice that, since N* is central in
G*, we have that the Sylow p-subgroup of N* is contained in D* (Theorem
2.19), and therefore |[D*N* : D*|, = 1. Then

|G : Dglp = |G/N : Dy/N|, = |G* : D*N*|, = |G* : D*|,.
Now, as is well-known, character triple isomorphisms preserve ratios of char-

acter degrees (see Definition 1.22), that is x(1)/0(1) = x*(1)/0*(1) = x*(1)
for x € Irr(G|0). In particular, if x € By, then

(x(1)/6(1))p = x*(1)p = |G* : D*|,p"X*) = |G : Dyl,p" ),

where 0 < h(x*) is the height of x* in B*.
By the properties of character triple isomorphisms, notice that 6 extends
to Dy if and only if 8* extends to D*N*. ([

As a Corollary we obtain Theorem C. The key is Theorem 3 of [Sam19]
that asserts that Brauer’s Height Zero conjecture and Conjecture 2.18 are
equivalent. We should point out that Sambale’s theorem uses the theory of
fusion systems. We have not been able to find a proof of this without this
theory.

COROLLARY 2.21. Conjecture B and Brauer’s Height Zero conjecture
are equivalent.

We have said in the Introduction of this Chapter that Conjecture B
generalizes the Gluck-Wolf-Navarro-Tiep theorem. We prove that now.

PROPOSITION 2.22. Conjecture B implies the Gluck-Wolf-Navarro-Tiep
theorem.
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PROOF. Suppose that for all x € Irr(G|0), p does not divide x(1)/6(1).
Let By be a f-block and let x € By. Since (x(1)/6(1)), = |G : Dglpp"*™), we
have that |G : Dyl is not divisible by p. Hence Dy/N is a Sylow p-subgroup of
G/N. Since p does not divide x(1)/6(1), and all the irreducible constituents
of xp, lie over 0, it follows that there is some irreducible constituent v €
Irr(Dy|f) such that p does not divide v(1)/6(1). By Theorem 1.12, we have
that vy = 0. Since we are assuming that Conjecture B holds, we have that
Dgy/N is abelian. Since Dy/N € Syl,(G/N), we have that G//N has abelian
Sylow p-subgroups. O

2.7. Theorem F

In this section we prove Theorem F of the introduction. We will need
the following result, which is essentially a result of R. Knorr. Recall that if
(G, N, 0) is a character triple, then x N € G/N is 6-good if § has a D-invariant
extension to N{x), where D/N = Cg/y(xN). The 6-good conjugacy classes
of G/N (those consisting of 6-good elements) play the role of the conjugacy
classes of G when we are working with characters of G over 6. For instance,
it is a theorem of P. X. Gallagher that |[Irr(G|0)| is the number of conjugacy
classes of G/N consisting of #-good elements (see Theorem 5.16 of [Nav18]).

THEOREM 2.23. Suppose that Z < Z(G) and let § € Trr(Z). Suppose
that gZ and hZ are not G/Z-conjugate. Then

D1 x(gx(hh =o0.

xelrr(G|0)
Also
> Ix@)P =1Ceqz(92)]
x€elrr(G|0)
if g is 6-good.

PRrOOF. The first part is a special case of Corollary 7 of [Kno06]. The

second part is an unpublished result of Isaacs. For a proof see Theorem 5.21
of [Nav18]. O

Recall that we write G¥' for the set of p-regular elements of the finite
group G, that is, those elements whose order is not divisible by p. If x €
Irr(G), we denote by X' the restriction of x to G*. We know that we can
write

X = Z dxapSO
€elBr(G)
for uniquely determined non-negative integers d,,, called the decomposition
numbers. The matrix D = (d,,) is called the decomposition matrix of G.
The following is Theorem F of the introduction.
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THEOREM 2.24. Suppose that Z is a central subgroup of G, and let 0 €
Irr(Z). Let B be a Brauer p-block of G such that Irr(B|6) is not empty. Let
Dpg = (dyy), where x € Irr(B|0) and ¢ € IBr(B). Then Dpgg is not of the

form
* 0
0 = J’

for any ordering of the rows and columns.

PROOF. Let D = (dy,) be the decomposition matrix of G and let My be
the submatrix of D whose rows are indexed by the characters in Irr(G|6) =
{X1,---s Xk} Let {x1,z9,..., 27} be a set of representatives of the p-regular
conjugacy classes of G. Let Xy = (xi(z;)) be the submatrix of the character
table of G with rows indexed by elements in Irr(G|6) and columns indexed by
the representatives of the p-regular conjugacy classes of G. Let Y = (¢;(x;))
be the Brauer character table of G, where IBr(G) = {¢1,...,¢;}. Then we
have that Xy = MyY.

We first assume that Z is a p-group. Suppose that g € G is p-regular. We
claim that g is 6-good. First we prove that Cg;(92) = Ca(g)/Z. Indeed,
let vZ € Cgyz(9Z). Then,

92 = (92)*% = 4" Z,
and therefore g* = gz for some z € Z. Since z is a central p-element and ¢*
and g are p-regular elements, we have that z = 1 and therefore z € Cg(g).
Now let 1 be an extension of 6 to (Z, g). We need to prove that n is Cg(g)-
invariant. But this is clear since Cg(g) € Cg(x) for all z € (Z, g). Hence g
is #-good and the claim is proven.

Note that if z; and x; are not G-conjugate p-regular elements, then x; 2
and z;Z are not G/Z-conjugate. Indeed, suppose that there exists gZ € G/Z
such that ;2 = (2;2)9” = 297, hence x; = 2}z for some z € Z. Again,
since Z is a central p-group and z; and :c? are p-regular elements, we have
that z = 1 and hence z; = x?. Let E € Mat;(C) be the diagonal matrix with
diagonal entries |Cg/z(7;Z)|. By Theorem 2.23 we have that

E=X}Xg=Y"(My)'MpY.

What we have done until now holds for every 6 € Irr(Z). If 6 = 15 is
the trivial character of Z, notice that M, is the decomposition matrix of
G/Z, since Irt(G|1z) = Irr(G/Z) and IBr(G/Z) = IBr(G) by Theorem 1.44.
By the previous equation, for § = 1, we have

E=X{,X1,=Y"(M,)'M,Y,
and since Y is a regular matrix, we conclude that
C = M{, My, = M§My,

where C' is the Cartan matrix of G/Z. Until now, our ordering of Irr(G|0) =
{x1,---,xx} and IBr(G) = {¢1,...,¢} was arbitrary. Now let By,..., B,
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be the different p-blocks of G, and order Irr(G|f) and IBr(G) by blocks
(so that the first characters are in Bj, and so on). Since Z is a central
p-group, by Theorem 1.44 we have that there exists a unique p-block B;
of G/Z contained in B;. Let Cp, be the Cartan matrix of B;. We have
that C = diag(Cg,,...,Cp,) and My = diag(Mp, ¢,..., Mp, ¢) are block
diagonal matrices. Then,

MMy = diag(Mp, gMp, o, ..., My oMp, o).
Since C = MgMg, we necessarily have that CE = tBi oMp, ¢ for every
i. Now if Mp g is of the form
* 0
0 = )’

so is C'z. By Problem 3.4 of [Nav98a] this is a contradiction.

This ends the proof of the case where Z is a p-group. We prove now the
general case. Write Z = Z, x Z,y, where Z, is the Sylow p-subgroup of Z
and write § = ), x 0y, with 0, € Irr(Z,) and 0,y € Irr(Z,y). By assumption,
there is x € Irr(B) over 6, and therefore over 6,,. Now, B covers the block
{0,y}, and by Theorem 1.41, we have that Irr(B|6,/) = Irr(B). We conclude
that Dpg = Dpy,, and we are done by the central p-group case. U

Easy examples show that in Theorem F, we cannot replace Z central by
a G-invariant character of an abelian Z < G. For instance, if G = A4, p = 2,
Z <1 G is the Klein subgroup, and 8 = 1z, then G has a unique 2-block, and
the matrix Dp g is the identity.

2.8. 0-Brauer characters

Suppose again that N is a normal subgroup of G. It is natural to consider
the normal set G® = {x € G|z, € N} and the complex space cf(G?) of
complex class functions defined on G°. If § € cf(G), we denote by §° the
restriction of § to G°. The space cf(G°) can naturally be decomposed as a
direct sum of subspaces. Indeed, for a given 0 € Irr(N), we define cf(G|0)
to be the C-span of Irr(G|6), and we let

cf(GY)0) = cf(G|0)° = {5°) 6 € cf(G|6)} .

Of course, cf(GY)0) = cf(G°|#9) for g € G. It is easy to prove (see Lemma
2.1 of [Nav00]) that if © is a complete set of representatives of the G-action
on Irr(N), we have that

cf(G°) = @ cf(GY)0).
0e©

Hence, the strategy is now to fix 6 € Irr(N) and focus on cf(G°|#). The
next natural step is to prove that if T = Gy is the stabilizer of 6 in G, then
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induction 1 — ¥ defines a linear isomorphism
cf(T°)0) — cf(G°)9).

This is done in Lemma 2.2 of [Nav00]. So, using induction, we are left with
a G-invariant 6, that is, with a character triple (G, N, ).

Suppose now that a set IBr(G) of irreducible Brauer characters of G is
given. (Or that we have chosen a maximal ideal M containing p in the ring
of algebraic integers R of the complex numbers.) If N is a p-group, Navarro
constructed in [Nav00] a natural basis of cf(G?) only depending on IBr(G)
(or M). Let us review Navarro’s construction.

Suppose that 6 € Irr(N) is G-invariant. We define € cf(G°)) as
follows. If x € G, then x, € N and N{z)/N is a p’-group. Since N is
a p-group, there is a canonical extension 6, € Irr(N{x)) by Theorem 1.17.
This is the unique extension of # to N{z) whose determinantal order is a
power of p. Now we define 6(z) = 6,(z). If n is any class function defined
on the p-regular elements of G, we define

(6% n)(z) = O(x)n(zy)

for x € G%. We are finally ready to define Navarro’s N-Brauer characters.
These are

IBr(G|6) = {6 xn|n e IBr(G)}.

One of the main results in [Nav00] (Theorem 4.3) is that IBr(G|0) is a
basis of cf(G°|#) and that if x € Irr(G|0), then

XO = Z dypp
¢elBr(G|0)

for some (uniquely defined) non-negative integers d,,. This integers are
closely related to the work of Kiilshammer and Robinson on N-projective
modules in [KR87]. To understand this relation we need a bit more. As we
said before, using Lemma 2.1 and Lemma 2.2 of [Nav00], we can construct
a basis
IBr(G,N) = {0 | ¢ € IBr(G|6), 0 € ©}

of ¢f(G®) such that if y € Irr(G) then

XO = Z dyo®

elBr(G,N)

(this is Theorem A of [Nav00]). Now, if we let

@, = Z dxpX;

x€lrr(Q)

where ¢ € IBr(G,N), then Theorem B of [Nav00] asserts that the set
{®, | ¢ € IBr(G, N)} is the Kiilshammer-Robinson Z-basis of the Z-module
M, (G, N) generated by the characters of all the N-projective RG-modules
for certain complete discrete valuation ring R.
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What happens when N is not necessarily a p-group? This case is solved
(in a non-canonical way) in [Nav12]. Let us explain how. Suppose first
that NV is central. Hence N = N, x N, where N, € Syl,(N). Therefore
we can write § = a x 8, where o € Irr(N,,)) and § € Irr(Npy). If 1 is a class
function defined on the p-regular elements of GG, let us define now

(0 n)(x) = 0(xp)n(zy) = (axn)(z)

for z € G°. (Notice that the last equation makes sense, since xp € N if and
only if 2, € Np). Now, in [Nav12] it is proved that

IBr(GI6) = {a* 1|0 € IBx(G|B)}
is a basis of cf(G°|#), and that if x € Irr(G|6), then
XO = Z dxgo@
elBr(G|0)

for some (uniquely defined) non-negative integers d,,. (One might think
that the notation is quite confusing, since if ¢ € IBr(N), IBr(G|p) usually
denotes the set of irreducible Brauer characters of G lying over ¢. But there
is no such confusion: if 6 € IBr(N) (that is, if N is a p’-group), then 5 =6,
G° =G, and @ »n=nforallne IBr(G)).

Finally, it is shown in Lemma 2.1 of [Nav12], that if (G, N,0) and
(G*, N*,0*) are isomorphic character triples then there is a natural isomor-
phism of the vector spaces

* 1 cf(G10) — cf((G*)°]6%)
such that
()" =)
for x € cf(G|6). This easily shows that, if N* is central in G*, then the
inverse image of

IBr(G*|0%) = {0, »n* |1 € IBr(G*|0},)}

where 6* = 67 x 07, is a basis of cf(G|6). Since this basis depends on the
choice of the isomorphic character triple (G*, N*,0*), we will denote it by
B(g+ N+ g+). Hence, whenever x € Irr(G6), we can write

XO = Z dypp

PEB (G Nk g

for some uniquely determined non-negative integers d,. The problem with
this construction is that there is no known way of choosing a canonical
(G*,N*,0*) with N* central that is isomorphic to (G, N, 0).

Our main theorem in this section asserts that if we choose two standard
isomorphic triples, then the corresponding basis that is obtained through
this process does not change.
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Assume that (G*, N*, 0*) is any character triple isomorphic to (G, N, §),
with N* central, and again write N* = N x N7, where N € Syl (N*)
and 0* = 07 x 65,, with 67 € Irr(N;;) and 67, € Irr(N ;). By Theorem 2.4 of
[Nav12], the set

IBr(G*|0%) = {0% x ¢ | ¢* € IBr(G™|0,,)}
is a basis of cf((G*)°]0*).
Since cf(G*[0%) is the C-span of Irr(G*[6*), for each ¢* € IBr(G*|6))

we can write
0% x o* = Z Ay (X¥)°
x*elrr(G*[0%*)

for some complex numbers a,x,x € C. (Notice that these numbers are not
necessarily unique, but for our purposes this is not going to matter.) Since
(G,N,0) and (G*, N* 6*) are isomorphic character triples, we know that
there exists a bijection * : Irr(G|#) — Irr(G*|60*) and by Lemma 2.1 of
[Nav12], the map ¥° — (¥*)° from cf(G|6)° — cf(G*|0*)° is an isomor-
phism of vector spaces. Hence the basis of cf(G|0)° described in [Nav12]
is

B(G*,N*,@*) = { Z a¢*X*XO ‘ QO* € IBI‘(G*W;/)}
xelrr(G|0)

Our goal now is to prove Theorem G. To do so, we need to prove that
B n1,61) = B(Ga,No,0,) Whenever (G, N1, 61) and (Ga, Na, 02) are standard
isomorphic character triples. We need the following easy observation.
LEMMA 2.25. Let N < G, 0 € Irr(N) linear, and «, 3 € cf(Gp’), then
(a) O (a+B)=0xa+0x[,
(b) if 0 xa=0x[ then a = f3.

PROOF. Let z € G°, then
(0% (o + B))(@) = 0(xp)(a + B)(wy) = O(zp)(a(zy) + B(zp))
= 0(zp)o(zy) + 0(xp)B(zy) = (0 % ) () + (0 % B)(2),

and (a) is proven. Now suppose that 6 x « = 6 x 8, and take y € GP'. Notice
that y € G°. Since @ is linear, we have that a(y) = 0(1)a(y) = (6 x a)(y) =

0+ 5)(y) = 0(1)B(y) = B(y) and (b) follows. 0

We will use also the following non-trivial result of [Nav12]. If x €
cf(G) U cf(G)P', we define x, € cf(G) as x,(g9) = x(gy) for all g € G.

THEOREM 2.26. Suppose that N € Z(G), and let 0 = af € Irr(N), where
a € Irr(N) has p-power order and 3 € Irr(N) has p'-order. Let x € c¢f(G|0),
then xX° = ax xpr.

PROOF. See Theorem 2.4 of [Nav12]. O
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Recall that if & : G — G is a surjective group homomorphism with
kernel Z and v € Irr(G), we denote by ¥ the unique irreducible character
of G such that ¢¥(x) = ¢(a(z)) for z € G. Now, note that if z € G, then
a(z) € GP'. Hence, if ¢ € IBr(G), we denote by ¢® the unique irreducible
Brauer character of G such that ¢®(z) = ¢(a(x)) for z € GP'. Notice that
Z < ker(p®).

THEOREM 2.27. Let (G, N,0) be a character triple and let (G1, N1, 61)
and (Ga, Na, 62) be standard isomorphic character triples. Then
B(G17N1,91) = B(G2,N2,92)'

PROOF. Let P; and P, be projective representations associated with
0 arising (G1,Ni1,01) and (Gg, Na,03) respectively (that is, G; = Gi/N,
N; = N;/N, and 6; = A; in the notation of Theorem 1.23). If x € Irr(G|6),
we write x; € Irr(G;|0;) for the image of x through the respective standard
bijections. Now,

IBr(G1|61) = {61 * 1 | 01 € IBr(G1|(01),)}

= { Z am)mXT | o1 € IBT(GII(QI)IJ’)}-
x€lrr(G|0)

and

IBI'(GQ‘QQ) = {92 * (P2 | ©2 € IBI‘(G2|(02)p/)}

= { Z %mxg | Y2 € IBr(G2|(62)p’)}'
x€lrr(G|0)

Hence, in the notation we have just introduced,

B(G1,N1,91) = { Z a¢1X1XO | 801 € IBr(G1|(01)p’)}
xelrr(G|0)

and

BGynao) =1 D) GomaX” | 92 € IBr(Ga|(62) )}
xelrr(G|0)

Since B, ny,0,) and B, n,,0,) are basis of cf(G|0)°, we have that
|B(cy,n1,00)| = |1B(Go, N 05)|- Therefore we just need to prove that
B(G17N1791) < B(G2,N2,92)'
Let

P = Z a’501X1XO € B(G17N1791)'
xelrr(G|0)
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In order to prove that ¢ € B(g, n,,0,) We need to show that

D1 Geaxs € IBr(Golf).
x€elrr(G|0)

In other words we need to prove that

2 a%xlxg =02 % o
x€elrr(G|0)

for some ¢ € IBr(G2|(02),/). By Theorem 2.26 we have that x5 = fa%(x2),-
Then, by Lemma 2.25 (a),

Z Aprxi Xz = 02 * Z aprxs (X2)p
xelrr(G|0) xelrr(G|0)

Write

/

o= S ap ().
xelrr(G|9)
Then 9 € cf(Ggl) and since ((x2)y)? () = (x2)p (z) for all x € G‘g/ and for
all x2 € Irr(G2), we have for g € G that

(02 % ©2)(9) = O2(gp)p2(gp) = D o X5(9)-
xelrr(G|0)

To end we just need to prove that ¢y € IBr(G2|(62),).
Write G =G x Z1 X Zo as in Theorem 2.8, and let p; : G — él and

p2 : G — Gy be the maps defined in Theorem 2.8(b). Write 7; = X € Irr(G)
and let 8 be the linear character of G’/N such that 8 = 72 (Theorem
2.8(c)). Since B is linear and N C ker(3) we have that (8,)? = 7 €
IBr(G/N). If ¢ € IBr(G1|(61),), we have that ¢”* € IBr(G/N) and then
(By )¢t € IBr(G/N) by Problem 2.13 of [Nav98a). Since ¥ € B(g, v, 4,
we have that

Y gt € IBr(Galy),

x€lrr(G|0)
and hence
2 apixa X1 = 01 * @1
x€lrr(G|0)

for some ¢; € IBr(Gi|(f1),). Now, again by Theorem 2.26 and Lemma
2.25(a) we have that

0 * Y1 = Z a«P1X1X(1) =01 % Z A1 x1 (Xl)p/'
x€lrr(G|0) x€lrr(G|0)
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Since 6 is linear, by Lemma 2.25(b) we have that
Y1 = Z a<p1x1((X1)p')p :
xelrr(G|9)

Hence

ot = Z %1X1((X?)p’)p/: Z asma((??l)p’)p/-

x€elrr(G|0) x€lrr(G|0)

Now, since 811 = 12, we have that

/

Z a<p1><1((772)p’)p/: Z Ay xy (B (M) )"

xelrr(G|9) xelrr(G|0)
(By)? ¢t € IBr(G/N).

Hence 2 = X civico) gy (x2)p)? € IBr(Ga|(2),) and the proof is
concluded. g

From now on, if (G, N,0) is a character triple we define IBr(G|f) =
Bgx n# g%y, where (G*, N*,0*) is a standard isomorphic character triple.
What we have just proved is that this basis is independent of the choice of
isomorphic character triples and hence it is canonical, once we have fixed
IBr(G*). This is exactly Theorem G of the introduction.

We call 0-Brauer characters the elements of this basis.

If x € Irr(G|0) and ¢ € IBr(G|6), we denote the coefficient of ¢ in x° by
dy,. In this thesis we call the numbers d,,, the 0-decomposition numbers.

First, we prove that these #-decomposition numbers are the same that
Navarro gives in [Nav00]. But this is easy. First, it is proved in Theorem
3.1 of [Nav00] that if (G, N, 0) is a character triple and N is a p-group, then
there exists a standard isomorphic character triple (G*, N*,6*) with N* a
p-group. Now, it is proved in Theorem 4.3 of [Nav00] that in this case,

0" (2)n* () = 0% (p)0* (2y1),
for all x € (G*)°, n* € IBr(G*) (this follows from the fact that N*(x) =

N* x{x,y) and in this case the unique extension of #* to N*(x) with p-power
order is 0* x 1<m,,/>)'

Let x,v € Irt(G|0). We say that x and ¢ are 0-connected if there exists
¢ € IBr(G|0) such that
dyp # 0 # dyy.
The connected components of the graph defined by 6-connection define a
partition in Irr(G|6). We call the elements of this partition the blocks defined

by 0-decomposition numbers. We shall prove that these blocks are, in fact,
the #-blocks.
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Recall that if x and v are irreducible characters of G, we say that y and
1 are connected if there exists ¢ € IBr(G) such that

dyp # 0 # dyg,

where d,, and dy, are the classical decomposition numbers. (We hope this
notation does not confuse the reader. As before, if N is a p’-group, then 6 €
IBr(N) and the classical decomposition numbers and the #-decomposition
numbers coincide).

LEMMA 2.28. Let (G, N,0) be a character triple with N < Z(G). Let
X,¥ € Irr(G|A). Then x and ¢ are connected if and only if they are 6-
connected.

PROOF. As before, write N = N, x Ny, with N}, € Syl,(N), and 6 =
0, x 0y, with 6, € Trr(N,,) and 6,y € Trr(Ny). Since (x,)” = x*, we have
by Theorem 2.26 that x° = 6 % x,y = 0 » x”'. Since x € Irr(G|6,), it is clear
that all the Brauer irreducible constituents of x?' lie over 6. Now, using
Lemma 2.25 we have that

Xp = Z dw%
welBr(G|0,,)

if and only if
X" = Z dyp (0 % ).
elBr(G|0,,)
O

Note that from Lemma 2.28 we deduce that in the case that IV is cen-
tral, the #-decomposition numbers and the classical decomposition numbers
coincide. This agrees with the results obtained by J. Zeng in [Zen03].

Using Lemma 2.28 and Theorem F we easily obtain the following.

THEOREM 2.29. Let (G, N, ) be a character triple with N < Z(G). Then
the blocks defined by 0-decomposition numbers are exactly the sets Irr(B|6)
where B runs over the p-blocks of G.

Proor. Let By be a block defined by #-decomposition numbers. By
Lemma 2.28 we know that By < Irr(B|6) for some p-block B. We prove now
that Irr(B|0) < By.

Let D = (dy,) be the decomposition matrix of G and write Dy for the
submatrix of D whose rows and columns are indexed by elements in Irr(B|60)
and IBr(B) respectively. By Theorem F, we know that D is not of the form

(6 2)
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for any ordering of the rows and columns. Hence if x,1 € Irr(B|#) there
exist x = X1,X2,---, Xt = ¥ and ¢1,92,..., k1 with x; € Irr(B|f) and
@i € IBr(B) such that

By Lemma 2.28, the #-decomposition numbers are the classical decomposi-
tion numbers. This completes the proof. [l

THEOREM 2.30. Let (G, N,0) be a character triple. The blocks defined
by 0-decomposition numbers are exactly the 0-blocks of G.

PROOF. Let (G*, N* 0*) be a standard isomorphic character triple and
let * : Irr(G|0) — Irr(G*|6*) be the standard bijection. Let x, v € Irr(G|0).
By Lemma 2.1 of [Nav12] we have that the map Z° — (£*)° from cf(G|0)° —
cf(G*|0*)° is an isomorphism of vector spaces (see discussion preceding
Lemma 2.25). Therefore, x,v € Irr(G|A) lie in the same block defined by
f-decomposition numbers if and only if x*,¢* lie in the same block defined
by 6*-decomposition numbers. Since N* < Z(G*), using Theorem 2.29 we
have that x*,4¥™* lie in the same block defined by 6*-decomposition numbers
if and only if x*,9* lie in the same p-block of G*, that is, if and only if x
and % lie in the same 6-block. U

2.9. 0 -linking

One of the ways to define the Brauer classical p-blocks is through a
linking (see Definition 1.31). We aim to do the same with the 6-blocks.

DEFINITION 2.31 (f-linking). Let x, % € Irr(G|0). We say that y and
are 0-linked if

D7 x(@)(x) # 0,
zeG°

where G° = {vr € G| zp € N}.

We would like to say, as in the classical theory, that the connected com-
ponents of the graph defined by #-linking in Irr(G|6) are the #-blocks. Un-
fortunately, we will see that this is not true in general, unless we impose
some extendibility condition on €. On the other hand, it is always true that
each connected component of the graph defined by #-linking is contained in
a unique 6-block. To prove it, we need the following.

PROPOSITION 2.32. Let (G, N,0) and (G*, N*,0%) be isomorphic char-
acter triples, and write * : Irr(G|6) — Irr(G*|60*) for the associated bijection.
Then, x1,x2 € Irr(G|0) are §-linked if and only if x7, x5 are 0*-linked.

Proor. Write
G°=Nziu...uNx
and
(G*)° = N*z7 u...u N*af,
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as disjoint unions, where (Nz)* = N*z*.

Since N{z;)/N is cyclic, § extends to N(z;>. Let 6; € Trr(N{z;)) ex-
tending 6. Now, by Gallagher’s Corollary (Corollary 1.16), every irreducible
constituent of #N3 is of the form 8, with ¢ € Irr(N(x;)/N). Then

(X1)N¢ayy = > epp; = 130,

Velrr(Nz;)/N)

In the same way, we can write (x2)n¢z,) = 1/)27j9~j, with 1 ; a character
of N(xzj)/N. Now,

> )

reG°

Z 1(zn zin)
neN

U1, (2m)0;(zm) s j(2m)0;(zm)

'M“ I M“

T
=

ne

Y1,5(x5) 7/’24 5) Z 9 (x;n ( n)

neN

t
= IN| D (e ().
j=1
where the last equality holds by Lemma 8.14 of [Isa76].
Now, forall N € H < G and $ € Char(H/N), define 87 € Char(H*/N*)

*

by B7(z*N*) = B(xN), where (zN)* = 2*N*. Then, ((xXi)n¢z;))* = ¢7;0; ,
for i = 1,2. Reasoning as above,

I
MH

<.
Il
—_

Z X1 (z%)x ( IN*IZ%J 71’2,3( %)

o*e(G*)° j=1

t
= IN*| D07 (2f N* )5 ; (a5 N¥)

j:1
= [N7| Z Y15 (@ N ) (2 N)
7=1
t —
= |N* . b () ba g ().
j=1
This completes the proof. O

PROPOSITION 2.33. Let N < G with N < Z(G). Let 6 € Irr(N) be G-
invariant and let x1, x2 € Irr(G|0). Then, x1 and x2 are 6-linked if and only
if they are linked in the sense of the Definition 1.51.
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2. p-blocks relative to a character of a normal subgroup 47

PrOOF. Write N = N, x Ny, where N, € Syl (N), and 6 = 0, x 0,
where 6, € Irr(N},) and 6,y € Irr(Ny). Now, G° = {r e G |zpe N} = {z €
G|z, e Ny}. Write G = {z € G |pto(x)}. Since N € Z(G), if n € N,
y € G and x € Irr(G|0), we have that x(ny) = 0,(n)x(y). Now,

D xa@xa(@) = Y, Y] xa(ny)xa(ny)

reG° neNp yeGr’

3NN bpn)xi () 8p(n)xa(y)

neNp yeGr’

DD xawxe(y)

neNp yeGr’

[ Np| Z Xl(y)XT(?J)-

yeGr’

This completes the proof. O
As an immediate corollary we obtain the following.

COROLLARY 2.34. Let N < G, let 8 € Irr(N) be G-invariant and let
X, ¥ € Irr(G|0). If x and ¢ are O-linked then they lie in the same 6-block.

PROOF. Let (G*, N* 0*) be a standard isomorphic character triple and
write * : Irr(G|0) — Irr(G*|0*) for the standard bijection. By Proposition
2.32, we have that x* and #* are 6*-linked and hence, by Proposition 2.33
we have that they are linked in the sense of Definition 1.31. Therefore x*
and ¢* lie in the same p-block and hence Y, 1 lie in the same 6-block. [

It is clear now that if C' is a connected component of the graph defined by
f-linking in Irr(G|6), then there exists a 6-block By such that C' < Irr(By).
However, it is possible for a 6-block to contain more than one connected
component of this graph, as the following example illustrates.

EXAMPLE. Take p = 2, G = SL(2,3) and N = Z(G). Let 6 be the
non-trivial character of N. Then, Irr(G|0) = {x1, x2, X3}, where the values
of x1, x2, x3 are given in the following table:

Class: 1 2 4 31 32 61 62
ICc(g)]: 24 24 4 6 6 6 6
|Cl(g)] 1 1 6 4 4 4 4

X1 2 -2 0 -1 -1 1 1
X2 2 2 0 w w w W
X3 2 2 0 w -w W ow
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48 2.9. 0 -linking

27i/3

where w = e is a primitive 3th root of unity.

Now, if G° = {z € G|z, € N}, we have that G° contains all of the
conjugacy classes of G except for the class consisting of the elements of
order 4. Since x1(y) = x2(y) = x3(y) = 0 for all y € G of order 4, we have
that

D xi(@)xi(r) = D xile)xg(x) =0, d,jef{1,2,3}4i#

eGP zelG

Hence x1, x2, X3 lie in distinct connected components of the graph defined by
f-linking in Irr(G|#). Now, G has just one p-block B and hence x1, x2, X3 €
Irr(B|#). Since N is central in G, by Theorem 2.10(b), we have that
X1, X2, X3 belong to the same 6-block.

However, as we said before, if we add some extendibility hypothesis on
f, we can see the #-blocks in terms of #-linking.

THEOREM 2.35. Let (G,N,0) be a character triple, and let P/N €
Syl,(G/N). Suppose that 6 extends to P. Then the 0-blocks are the con-
nected components of the graph defined by 0-linking in Irr(G|0).

To prove this we need the following.

LEMMA 2.36. Let B be a p-block of G and let x € Irr(B) be of height
zero. Let 1) € Irr(B). Then

> x(@)v(z) # 0.

/
eGP

PROOF. See Corollary 3.25 of [Nav98al]. O

PROPOSITION 2.37. Let (G, N,0) be a character triple, let By be a 0-
block and let Dy/N be a 0-defect group for By. Suppose that there exists
x € Irr(By) with (x(1)/6(1)), = |G : Dglp. Let ¢ € Irr(By). Then, x and v
are 0-linked.

PRrOOF. Let (G*, N*,60*) be a standard isomorphic character triple and
let * : Irr(G|6) — Irr(G*[0*) be the standard bijection. As always, let x*
denote the image of x through *. Let B be the p-block of G* containing x*.
In the proof of Theorem 2.20, we show that

(x(1)/6(1)), = |G : Dylpp" ™™,
where h(x*) is the height of x* in B. By hypothesis, we have that
(x(1)/6(1))p = |G = Delp
and hence x* has height zero in B. Since x* and ¢* lie in B*, by Lemma 2.36

and Proposition 2.33, we have that x* and ¥* are 8*-linked. By Proposition
2.32, we have that x and v are 6-linked. ]
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The key to proving Theorem 2.35 is the following result of M. Murai.

THEOREM 2.38. Let (G, N, ) be a character triple. Let b be the p-block
of N containing 0 and suppose that 6 has height zero in b. Let B be a p-block
of G covering b and let D be a defect group of B. Suppose that 0 extends to
DN, then there exists x € Irr(B|6) of height zero.

PROOF. See Theorem 4.4 of [Mur94]. O

THEOREM 2.39. Let (G, N,0) be a character triple, let By be a 0-block
and let Dy/N be a 0-defect group of By. Suppose that 6 extends to Dy. Let
X, € By. Then, x and ¢ lie in the same connected component of the graph
defined by 0-linking in Irr(G|6).

PROOF. Let (G*, N*,0*) be a standard isomorphic character triple, with
standard bijection * : Irr(G|6) — Irr(G*|60*), and suppose that B* is the
block of G* such that (Bp)* = Irr(B*|0*). Recall that we have shown in
Theorem 2.10 that Dy/N is isomorphic to D*N*/N* where D* is a defect
group of B*.

Since 6 extends to Dy, we have that * extends to D*N*, by the prop-
erties of character triple isomorphisms. Since 6* is linear, we have that 6*
has height zero and hence by Theorem 2.38 applied to (G*, N*, 6*), we have
that there exists £* € IBr(B*|0*) of height zero. Now, let £ € Irr(G|6) be
the pre-image of £* under * (notice that £ € Irr(By)). As in the proof of
Theorem 2.20, using that N* is central in G* and £* has height zero, we
have that

(E(1)/0(1))p = £*(1), = |G* : D*|,p"E) = |G : Dyl .

By Proposition 2.37 we have that x and £ are f-linked, and ¢ and & are
f-linked. O

Notice that if P/N is a Sylow p-subgroup of G/N and 6 € Irr(N) is
G-invariant and extends to P, then 6 extends to every p-subgroup of G/N.
Therefore, as a direct consequence of Theorem 2.39, we get Theorem 2.35.
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CHAPTER 3

On the Howlett-Isaacs theorem

3.1. Introduction

Let N be a normal subgroup of G and let 6 € Irr(NN) be G-invariant.
In Chapter 2, we were interested in the study of Irr(G|#) in terms of what
we defined as #-blocks. In this Chapter our interest in Irr(G|f) continues
but from a different point of view. In particular, we are interested in the
case where the elements of Irr(G|6) form an orbit under the action of certain
elements of Aut(G).

Suppose that there is just one irreducible character of G lying over 0,
that is Irr(G|6) = {x}. In this case it is easy to see that yy = ef where
e? = |G : N|. (See Lemma 8.2 in [Nav18].) In this situation, we say that
x and 6 are fully ramified with respect to G/N. Fully ramified characters
are essential in both ordinary and modular representation theory, and they
appear naturally. For instance, if K /L is an abelian chief factor of G and ¢ €
Irr(K) is invariant in G, then one of the following holds: vy, is irreducible,
V1 = S_, @i, where ¢; € Irr(L) are distinct and t = |K : L|, or ¢, = ep
for some ¢ € Irr(L) and e? = |K : L|, that is 1) and ¢ are fully ramified with
respect to K /L. (See Theorem 6.18 of [Isa76]).

If x and 6 are fully ramified with respect to G/N and N = Z(G), we say
that G is of central type. In 1964, Iwahori and Matsumoto [IM64] proposed
a conjecture: if G is of central type, then G is solvable. This conjecture was
claimed to be solved by R. Liebler and J. Yellen in [LY79], but there was
a gap in their proof. Later, Howlett and Isaacs filled that gap and proved
the conjecture in their celebrated paper [HI82]. Now, this is known as the
Howlett-Isaacs theorem. This theorem is one of the first applications of the
Classification of Finite Simple Groups to Representation Theory.

Our first main result in this Chapter is the following generalization of the
Howlett-Isaacs theorem where we weaken the hypothesis of Irr(G|0) having
just one element by introducing the action of Aut(G).

THEOREM H. Suppose that Z < G, and let X € Irr(Z). Assume that if
X, ¥ € Irt(Q) are irreducible constituents of the induced character MG, then
there exists a € Aut(QG) stabilizing Z, such that x* = . If T is the stabilizer
of X in G, then T'/Z is solvable.

In a different language of projective representations, Theorem H was
obtained by R. J. Higgs under some solvability conditions in [Hig88]. His
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proof is mostly sketched, among other reasons because he uses some of the
arguments in [HI82] or [LY79] or in some other papers by the author.
Here, we choose to present a complete proof of Theorem H, in the language
of character theory, and by doing so we shall adapt several arguments in all
these papers. We would like to acknowledge this now.

Theorem H is one case of a more general problem, which seems in-
tractable for now: if all the irreducible characters of G over some G-invariant
A € Irr(Z) have the same degree, then G/Z is solvable. (See Conjecture 11.1
of [Nav10].)

In the second main result of this Chapter, we study this latter situation
under some special hypothesis.

THEOREM 1. Suppose G is w-separable and let N = O, (G). Let 0 €
Irr(N) be G-invariant. Then all members of Irr(G|6) have equal degrees if
and only if G/N is an abelian 7'-group.

Theorem I has a block theory flavour, as we shall explain now. Suppose
that 7 is the set of primes different from a prime p, and assume the hypoth-
esis of Theorem I. By Theorem 10.20 of [Nav98a|, we have that there is a
unique Brauer p-block B such that Irr(B) = Irr(G|#). Hence we are study-
ing blocks all of whose irreducible characters have the same degree. These
were studied by Okuyama and Tsushima in [OT83]. They showed that
these blocks were exactly the blocks with abelian defect group and inertial
index one. (See Proposition 1 and Theorem 3 of [OT83].) Our Theorem I
can be seen as a m-separable version of the Okuyama-Tsushima theorem.

All the results in this section are published in [NR17]. The proof of
Theorem I that we presented there was an improvement by Isaacs of an
earlier version. We reproduce this improved version of the proof here with
his kind permission.

3.2. Transitive Actions

If Z<G, X e Irr(Z) is G-invariant and P/Z € Syl,(G/Z), in this Section
we explore the connection between Irr(G|A) and Irr(P|A).

LEMMA 3.1. Suppose that Z < G, and let A € Irr(Z) be G-invariant.
Assume that all characters in Irr(G|\) have the same degree d\(1). Let
P/Z € Syl,(G/Z). Then dyA(1) is the minimum of {0(1) |0 € Irr(P|\)} and
[Irr(P|A)| < [Irr(GIA) |-

PRrOOF. Notice that (G, Z, \) is a character triple. By Theorem 1.23, we
can construct an isomorphic character triple (G*, Z*, A\*) with Z* central
in G*. Notice that |Irr(G|A)| = [Irr(G*|A*)| and if P/Z € Syl,(G/Z), then
P*/Z* € Syl,(G*/Z*) and |[lir(P|\)| = [Irr(P*[A*)[. Recall that if x €
Irr(G|A) and x* € Irr(G*|\*) is the image of x under the isomorphism
of character triples, then x(1)/A(1) = x*(1). Hence if all the irreducible
characters in Irr(G|\) have degree dA(1), then all the irreducible characters
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3. On the Howlett-Isaacs theorem 53

in Irr(G*|\*) have degree d = dA*(1). Finally, if d, is the minimum of
{6%(1) | 6% € Irr(P*|A*)}, then d,A(1) is the minimum of {§(1) |6 € Irr(P|\)}.
Therefore, we may assume that A is linear and Z is central.

Write Irr(G'|A) = {x; | 1 < j < s}, and observe that the multiplicity
of x; in A% is x;(1) by Frobenius reciprocity (Theorem 1.10). Since by
hypothesis, all of the degrees x;(1) are equal, we can write NG = de X
where d = (1) for all j. Also, since A“(1) = |G : Z|\(1) = |G : Z|, we have
that sd?> = |G : Z|. Write Irr(P|\) = {6; | 1 <i < t}. Then (§;)z = &;(1)A
and hence, again by Frobenius reciprocity, A\’ = Y. d;6;, where d; = 6;(1)
and Y d;? = |P: Z|. Note that if y € Irr(G|6;), then x € Irr(G|)\) and hence

we can write
S
G
67 = Y dijx;
j=1

where we allow d;; to be zero. It follows that d divides 67 (1) = |G : P|d; for
all = 1,...,¢t, and since |G : P| is a p’-number, the p-part d,, of d divides
d; for all 4. If e is the greatest common divisor of {4;(1) |7 =1,...,t}, then
we conclude that d, divides e.
Since (xj)z = xj()Aforall j = 1,...,s, if § € Irr(P) lies under x;, then
d € Irr(P|A). Then, by Frobenius reciprocity, we also have that
t

(Xj)p = Z dij s,

i=1
and thus e divides x;(1) = d. Since e is a p-power, we see that e divides d,,,
and thus e = d,,. Then we have that

t
1P Z) =) di? = et = (dy)’t.
i=1

Taking p-parts in sd> = |G : Z|, we obtain that s, > t. Finally, since
d; is p-power for all ¢ = 1,...,t, we have that e = d), is the minimum of
{6;(1) |1 =1,...,t}, and we are done. O

The following result is a character-theoretical version of Theorem 1.2 of
[Hig88].

THEOREM 3.2. Suppose that Z < G, X € Irr(Z) is G-invariant, p is a
prime and P/Z € Syl,,(G/Z). Let A = Irr(G|\) and B = Irr(P|)\). Suppose
that A is a finite group acting on A and B in such a way that

[(x*)p,6°] = [xp, 9]

forall x € A, 6 € B and a € A. Assume further that x*(1) = x(1) for all
x€Aandae A. Let B e Syl,(A). If A acts transitively on A, then B acts
transitively on B and |A|, = |B|.
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Proor. Write A = {x1,...,xs} and B = {01,...,0;}. By hypothesis,
we have that all the characters in A have the same degree d\(1) and we can
write (x;)z = dA for all i = 1,...,s. By Frobenius reciprocity (Theorem
1.10), we have that NG = d>.’_; xi and therefore

|G : Z| = d’s.

By Lemma 3.1, we have that dyA(1) is the minimum of the degrees in B and
that t < s,. Write

t
(xi)p = Z dijo;
j=1
so that
(6,)% = > dijxi
i=1

by Frobenius reciprocity. Let B be a Sylow p-subgroup of A. Let §; be such
that 0;(1) = d,A(1).
Now, let S = Ig(d;) be the stabilizer of ¢; in B. Since

[(x*)p, 0] = [xp, ]

for all a € A, we have that S < A acts on the set Irr(G|d;) of irreducible
constituents of (SjG. Let O1,...,0O, be the set of S-orbits. Let v; € O;. We
may write

6% =D b( D &),
k=1 €Oy,

If £ € Oy, then there exists a € S such that & = ¢} and hence £(1) = 9 (1)
by hypothesis. Then,

G PlaA) = (6)0() = 3 belOslse(1) = dAD) Y byl
k=1 k=1

and therefore p does not divide

> bl Ol.
k=1

Therefore there is k such that |Ok| is not divisible by p. Since
Okl =[S Is(¥p)]

is a power of p, we have that |Or| = 1. Hence ¢y, is S-fixed and then
S < Ip(y) < B. Also Ip(¢x) < R for some Sylow p-subgroup R of 14 (vx).
Since A acts transitively on Irr(G|\), we have s = |A : T4(¢)|. Thus

Universitat de Valencia Noelia Rizo Carrién



3. On the Howlett-Isaacs theorem 55

Ay 1A, 1Bl _ 1B
T L)l IR R [ Ie(vr)]
<||l;||=B:IB(6j)|<t<sp

Thus t = sp, |B : Ip(0;)| = t and everything follows. O

3.3. Auxiliary results

Of course, if A acts by automorphisms on G, then A also acts on Irr(G).
If x € Irr(G) and a € A, then x* € Irr(G) is the unique character satisfying
that x%(g%*) = x(g) for g € G.

We are frequently using the following hypotheses, so we state them sep-
arately:

HYPOTHESES 3.3. Suppose that Z < N < GG, where Z < G. Let X €
Irr(Z). Suppose that if 7; € Irr(N|X) for i = 1,2, then there exists g € G
such that 7{ = 7.

We say in this case that (G, N, Z, \) satisfies Hypothesis 3.3. We need
the following technical lemma.

LEMMA 3.4. Suppose that (G, N, Z, \) satisfies Hypotheses 3.3. Let Z <
K c N, where K< G. Then the following holds.

(a) Let 7; € Irr(K|N) for i = 1,2. Then there exists g € G such that
1 = 79. That is, (G, K, Z,\) satisfies Hypotheses 3.5.

(b) Suppose that L< G is contained in K. Let e € Irr(L). Suppose that
7; € Irr(Ik (€)|€) are such that v lie over X fori = 1,2. Then there
is g € I(€) such that v = 2.

(c) Let 7 € Irr(K|\). Let v; € Irr(In(7)|7) for i = 1,2. Then there
exists g € Ig(7) such that v{ = vo. That is, (Ig(7), In(T), K,T)
satisfies Hypotheses 3.3.

PrOOF. (a) Let ; € Irr(IN) over 7. By hypothesis, we have that
v{ = 72 for some z € G. We have that 7{ and 7 are under 2, so by
Clifford’s theorem (Theorem 1.11) there is n € N such that 7{" = m. Set
g =zn.

(b) By Clifford’s correspondence (Theorem 1.14), 4% € Irr(K|e) and
hence, by hypothesis, v/ € Irr(K|\). By part (a), there is € G such
that (77)” = 4X. Now, €® and ¢ are under (12)¥, so again by Clifford’s
theorem, there exists k € K such that ¢** = e¢. Then g = 2k € I5(¢). Now,
7], 79 € Trr(Ik (€)]e) and (v{)% = (vF)9 = (vf)* = 4L, By the uniqueness
in the Clifford correspondence, we deduce that 7/ = ~s.
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(c) By the Clifford correspondence, we have that 7Y € Irr(NN) lies over
A. By hypotheses, there is g € G such that (vi¥)9 = v5'. Now, 79 and 7 are
N-conjugate by Clifford’s theorem, so by replacing g by gn, for some n e N,
we may assume that 79 = 7. Notice now that g € Ig(7). Also, 7] = 72, by
the uniqueness in the Clifford correspondence. O

We are going to need the following result of Isaacs.

THEOREM 3.5. Let N <G and K < G with G = NK and N n K = M.
Let 0 € Irr(N) be invariant in G and assume 0y = ¢ is irreducible. Then
restriction defines a bijection Irr(G|0) — Irr(K|p).

PROOF. See Corollary 4.2 of [Isa84]. O

THEOREM 3.6. Assume that (G, N, Z,\) satisfies Hypotheses 3.3, with
Z € Z(N). Let U € N, with U< G. Suppose that q is a prime dividing
|U|. Then q divides |Z n U]|.

PRrROOF. Let K =UZ < G. If ¢ does not divide |K : Z| = |U : U n Z|
then we are done. Let 1 # Q/Z € Syl (K/Z). Since Z € Z(N) and K € N,
we have that A is K-invariant and hence Ix(\) = K. By Lemma 3.4(b)
(taking L = Z and € = \), we know that G = Ig()\) acts transitively
on Irr(K|A). By the Frattini argument, we have that Gy = KNg, (Q).
Notice then that A = Ng, (Q) acts transitively on Irr(K|X). Also A acts on
Irr(Q|A) and [(x*)@,0%] = [x@, 0] for a € A, x € Irr(K|A) and § € Irr(Q|N).
By Theorem 3.2, we have that A acts transitively on Irr(Q|\).

Suppose now that ¢ does not divide |Z n U|. Let v = Az~y. Then o(v)
is a ¢-number. Since |(Q N U)/(Z n U)| is a power of ¢, we have that v
has a canonical extension ¥ € Irr(Q n U) of ¢’-order, by Theorem 1.17. By
Theorem 3.5, we know that restriction defines a natural bijection

Irr(QI\) - Irr(Q N Ulv) .

Let p € Irr(Q|A) be such that pg~y = . In particular, p is linear. Also py =
A. Let a € A. Then a fixes A, and therefore v. Now, a normalizes ) and U,
so a normalizes U N Q). By the uniqueness of the extension in Theorem 1.17,
we have that (#)® = . Thus p® = p. Since A acts transitively on Irr(Q|)), it
follows that Irr(Q|\) = {p}. Since pz = A, by Gallagher Corollary (Corollary
1.16), we know that |Irr(Q|A)| = |Irr(Q/Z)|. We conclude that @ = Z. This
contradiction shows that ¢ divides |Z n U]. ]

3.4. The Glauberman Correspondence

If a solvable group S acts coprimely on a group G, then there exists a
bijection from Irrg(G), the irreducible characters of G fixed by the action of
S, onto Irr(Cg(S)). This map is known as the Glauberman correspondence
(see Definition 13.20 of [Isa76] for more details).

In the particular case where the group acting is a p-group, the Glauber-
man correspondence has a very nice and easy expression. If ) is a p-group
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that acts by automorphisms on a p’-group L, and C' = Cp(Q) then the
Glauberman correspondence is a bijection * : Irrg(L) — Irr(C), such that
for every x € Irrg(L), we have that
xc =ex" +pA,

where p does not divide the integer e and A is a character of C' (or zero).
That is, the Glauberman correspondent x* of x is the unique irreducible
constituent of x¢o with [xc, x*] # 0 mod p (in fact, [xc, x*] = £1 mod
p, see Theorem 13.14 of [Isa76]). In particular, we easily check that the
Glauberman correspondence * commutes with the action of Gal(Q)q/Q),
where Q|| = Q(€), where { is a primitive |G|-th root of unity, and with the
action of the group of automorphisms of the semidirect product L@ that fix
Q. In particular, we have that Q(x) = Q(x*). (We give more details of the
action of Gal(Q||/Q) on Irr(G) in Chapter 4).

The idea to introduce the Glauberman correspondence in the Iwahori-
Matsumoto conjecture (page 145 of [IM64]) appears in [HI82]. As we shall
see in the proof of our main theorem, we need to do the same here, in a
more sophisticated way.

The next deep result is key in character theory. Its proof, in the case
where Z = 1, is due to Dade ([Dad80]). (Other proofs are due to L. Puig
[Pui86], see also Section 7.9 of [Lin18]). The following useful strengthening
is due to Turull, who we thank for useful conversations on this subject.

THEOREM 3.7. Suppose that G is a finite group, LQ < G, where L< G,
(IL],|1Q]) = 1, and Q is a p-group for some prime p. Suppose that LQ <
N < G, and Z < G, is contained in Q and in Z(N). Let A € Irr(Z). Let
H =Ng(Q) and C = Cr(Q). Then for every T € Irrg(L) there is a bijection

7(N,7): Irr(N|7) - Irr(N » H|7¥),
where 7* € Irr(C') is the Glauberman correspondent of T, such that:
(a) For v € Irr(N|7), h € H we have that

T(N, ) (") = (m(N,7)(7)".
(b) p€Irr(N|r) lies over X\ if and only if m(N,7)(p) lies over A.

PROOF. The theorem follows from the proofs of Theorem 7.12 of [Tur09]
and Theorem 6.5 of [Tur08]. Specifically, we make 1) = 6 in Theorem 7.12
of [Tur09], and G, H, 0 in Theorem 7.12 of [Tur09], correspond to G, L,
7; while G’, H', 8" correspond to H, C and 7%, respectively. Now, Theorem
7.12 of [Tur09] (1) and (2) predicts a bijection

o (W) = | Tr(N A HI(74)),
xeH reH

which commutes with the action of H by part (7) of this Theorem. By parts
(4), (1) and (2) of the same theorem, writing R = L and S = N, we have
that v € Irr(N|7) if and only if ' € Irr(N n H|7*). We call (N, 1) the
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restriction of the map ' to Irr(N|7). Part (b) follows from Theorem 10.1 of
[TurlT7]. O

Let @ be a p-group acting on a p’-group L and write * : Irrg(L) —
Irr(CL(Q)) for the Glauberman correspondence. If N is a normal subgroup
of L and N is Q-invariant, then @ acts on Irr(/V) and there is a Glauberman
correspondence (*, N) : Irrg(N) — Irr(Cn(Q)).

We need the following property of the Glauberman correspondence.

THEOREM 3.8. Let Q be a p-group acting on a p'-group L, let C' =
CrL(Q) and let * : Irrg(L) — Irr(C) be the Glauberman correspondence. Let
N < L be Q-invariant. Let x € Trrg(L), let 0 € Trrg(N), and write 05N
for the Glauberman correspondent of 6 under the Glauberman map (*, N) :
Irrg(N) — Trr(C n N). Then [0%,x] # 0 if and only if [0%™)C x*] # 0.

PROOF. See Theorem 13.29 of [Isa76]. O

We also need the following easy observation.

LEMMA 3.9. Suppose that LQ < G, where L< G, (|L|,|Q]) =1, and Q
is a p-group for some prime p. Suppose that T € Irrg(L), and let 7* € Irr(C)
be the Glauberman correspondent, where C = Cr(Q). Suppose that Z < G
is contained in C. Let X\ € Irr(Z) be L-invariant. Let H = Ng(Q). Suppose
that

A= f e
for some h; € H, and some integer f. Then

NG = [T e (7)),

for some integer f*.

ProoF. We know by Theorem 3.8 that if v € Irrg(L), then v* lies above
A if and only if v lies above A. Let p € Irr(C|A\). Then p = v* for some
v e Irr(L|\). Thus v = 7" for some h € H, by hypothesis. Then

p=v= (") = ()

because H commutes with Glauberman correspondence. Since A is C-
invariant, then we easily conclude the proof of the lemma. O
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3.5. Theorem H

It is well-known that each finite simple group S uniquely determines
(up to isomorphism) a perfect finite group S with S/Z(S) = S, such that
whenever G is perfect and G/Z(G) = S then G =~ S/Z, for some Z < Z(59).
Z(S) is called the Schur multiplier of S and it is usually written as M (S)
(see discussion after Corollary 5.4 of [Isa08] or Appendix B of [Nav18] for
further details, or for a character theoretical approach see Chapter 11 of
[Isa76]).

We have mentioned before that the Howlett-Isaacs Theorem was one of
the first applications of the Classification of Finite Simple Groups (CFSG)
to representation theory. In particular, the CFSG is needed in the following
result of [HI82], which we shall use later on.

THEOREM 3.10. Let X be a non-abelian simple group. Then there exists
a prime p such that p divides | X|, p does not divide |M(X)|, and there is
no solvable subgroup of X having p-power index.

PrOOF. This is Theorem (2.1) of [HI82]. O

THEOREM 3.11. Suppose that H/Z(H) = S1 x Sg X - - x S, where S; is
simple and there exists a prime p such that, for all i, p does not divide the
order of the Schur multiplier M (S;). Then p does not divide |H' ~ Z(H)]|.

PROOF. See Corollary 7.2 of [HI82]. O

THEOREM 3.12. Assume (G,N,Z,\) satisfies Hypothesis 3.3. Then
In(N)/Z is solvable.

PROOF. We argue by induction on |N : Z|. Let S/Z be the largest
solvable normal subgroup of N/Z. Let T = Iz(\) be the stabilizer of A in
G.

Step 1. We may assume that X\ is G-invariant.

By Lemma 3.4(c) (with K = Z), we have that (Ig(\), In()), Z, ) sat-
isfies Hypothesis 3.3. Hence, by working in I (), we see that it is no loss
to assume that A is invariant in G. Hence, we wish to prove that N/Z is
solvable, that is, that S = N.

Step 2. If Z < K < N, with K < G, then K/Z is solvable. Also N/S is
isomorphic to a direct product of a non-abelian simple group X.

By Lemma 3.4 (a) and induction, we have that if Z < K < N, with
K < G, then K/Z is solvable. Then N/S is a chief factor of G/Z, and it is
isomorphic to a direct product of a non-abelian simple group X by Lemma
9.6 of [Isa08].

Step 3. We may assume that Z is central and that A is faithful. Hence we
may assume that Z is cyclic.
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Since A is G-invariant by Step 1, we have that (G, Z, \) is a character
triple. Now, let (G*, Z*,A*) be an isomorphic character triple with Z*
central in G* and \* faithful. Let N*/Z* = (N/Z)*. It is easy to see that
(G*,N*, Z*  \*) satisfies Hypothesis 3.3. Hence we may assume that Z is
central and A is faithful. Now, by Theorem 2.32 of [Isa76] we have that we
may assume that Z is cyclic.

Step 4. If Z < K < N is a normal subgroup of G, and 7 € Irr(K|\), then
In(7)/K is solvable. Also S > Z.

The first part is a direct consequence of Lemma 3.4(c) and induction. If
S = Z, then by Step 2, we have that N/Z is a minimal normal non-abelian
subgroup of G/Z. Then N/Z is a direct product of non-abelian simple
groups isomorphic to X, and Z = Z(N). Also, N'Z = N. By Theorem
3.10, there is a prime p dividing |X| such that p does not divide |M(X)|.
By Theorem 3.11, we have that p does not divide |N' n Z|. Since p divides
|N’|, this contradicts Theorem 3.6 with U = N’.

Step 5. F(N) = S.

Let FF = F(N). It is clear that F* < S. Suppose that F' < S and let R/F
be a solvable chief factor of G inside N. Thus R/F is a g-group for some
prime q. Let L be the Sylow g-complement of F'. Let Z, = L n Z. Let
@ be a Sylow g-subgroup of R, so that R = LQ. Let Z, = Q n Z, so that
Z = Zy x Zy. We have that G = LH, where H = N¢(Q), by the Frattini
argument. Let C' = C(Q).

Write A = Ay X Ag, where Ay = A Zys and Ay = Az, . By coprime action
and counting, we see that @ fixes some 7, € Irr(L|A\y). Let 7 = 74 x \j €
Irr(LZ). By hypothesis and Lemma 3.4(a), we can write

AZ = f(rh g ey
where h; € H, and M = \, because \ is G-invariant. Hence
L = hl . e hs
Ag = [l + 4 7,).
By Lemma 3.9, we have that

Mg = FHEM e ()"

By Theorem 3.7, we know that there is a bijection
7(N,7q) : Irr(N|7y) — Irr(NN(Q)|7';,))

that commutes with H-action.

We claim that Ny(Q) < N. If Ny(Q) = N, we would have that
N < N¢g(Q) and hence @ < F. But then R = LQ < LF = F and therefore
R = F, which implies that S = F, a contradiction. Hence the claim is
proven.

Next we claim that (Ng(Q), Ny (Q), \) satisfies Hypothesis 3.3. If this
is the case, since Ny (Q) < N, we will have that |[Ny(Q) : Z| < [N : Z|, and
by induction, we will conclude that N (Q)/Z is solvable. This implies that
N/Z is solvable, and the proof of the theorem would be complete. Suppose
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now that v; € Irr(Nx(Q)|\) for i = 1,2. We are going to show that there
exists x € H such that ¢ = 1o. Since 1); lies over Ay, then we have that
1 lies over some (T;,)hj , and 19 lies over some (T;,)hk for some hj, hy € H.
Conjugating by h;l and by h,;l, we may assume that ¢; and 9 lie over 7';,.

Now, we know that there exists j; € Irr(IN|7,) such that 7(N, 7)) (1) =
;. In fact, since 1); lies over )y, we have that p; € Irr(N|);) by Theorem
3.7(b) (with the role of A in that theorem being played now here by \;), and
therefore u; € Irr(N|7) € Irr(N|A). By hypothesis, there is h € H such that

uh = po. Now, 7% and T4 are below pg, so there is hy € N n H such that

q
rhh 7. Replacing h by hhi, we may assume that (Tq/)h = 74. Now

q
W = m(N, ) ()" = m(N, 1) (1)) = m(N, 7¢) (2) = 2,

as desired. By induction, N n H is solvable, so N is solvable. This proves
Step 5.

Step 6. If p divides |F : Z|, then N has a solvable subgroup of p-power
index. Therefore, so do the simple groups factors in the direct product of
N/S.

Suppose that @}/Z is a non-trivial normal p-subgroup of G/Z, where @
is contained in N. Then the irreducible constituents of A¢ all have the same
degree by Lemma 3.4(a), for instance. So we can write

A= flrt ),

where 7; € Irr(Q|)) are all the different constituents. Write 7 = 71. Notice
that f = 7(1). Thus we deduce that k is a power of p. Now, since G acts
on Q = {r,..., 7} transitively by conjugation by Lemma 3.2(a), we have
that |G : Ig(7)| = k is a power of p. Hence, |N : In(7)| is a power of p. If
Q@ > Z, then we know by induction that Iy (7)/Q is solvable. In this case,
we deduce that that N has a solvable subgroup with p-power index. The
same happens for factors of V.

Step 7. Final contradiction.

We know by Step 2 that N/S is isomorphic to a direct product of a non-
abelian simple group X. By Theorem 3.10, there exists a prime ¢ dividing
|X|, such that ¢ does not divide the order of the Schur multiplier of X,
and such that no solvable subgroup of X has g-power index. By Step 6, we
have that ¢ does not divide |F' : Z|. Let W be the normal g-complement
of F. Hence FF = WZ. Also F/W = Z(N/W). By Corollary 7.2 of [HI],
we have that ¢ does not divide |[(N/W) n F/W|. But F/W is a g-group,
so (N/ W) n F/W = W /W. In particular, N' n FF < W. Thus ¢ does not
divide |[N" n F|. Thus ¢ does not divide |[N" n Z|. Since N/F is perfect, we
have that N'F = N, so that ¢ divides |N’|. But this contradicts Theorem
3.6 with U = N'. O

Next is Theorem H.

Universitat de Valencia Noelia Rizo Carrién



62 3.6. Theorem I

COROLLARY 3.13. Suppose that Z < G, and let X\ € Irr(Z). Assume
that if x,v € Irr(G|\), then there exists a € Aut(G) stabilizing Z such that
X =. If T is the stabilizer of X in G, then T/Z is solvable.

PROOF. Let A = Aut(G)z be the group of automorphisms of G that
stabilize Z. Let I' = GA be the semidirect product. We have that Z < T.
By hypothesis, (I',G, Z, \) satisfies Hypothesis 3.3. By Theorem 3.12, we
have that T'/Z is solvable. O

3.6. Theorem 1

The main theorem of this Section uses several non-trivial results on
character theory and regular orbits. First, we are going to review these
results.

We start with the following elementary observation.
LEMMA 3.14. Let H € G and o € Trr(H). Suppose that o = x € Irr(G)

and that every irreducible constituent of xg has degree equal to a(1). Then
x vanishes on G — H.

PROOF. By hypothesis, x is the sum of x(1)/a(1) = |G : H| irreducible
characters, and thus [y, xu] > |G : H|. Then [H|[xu,xu] > |Gl[x. x],
and so y vanishes on G — H, as claimed. (I

We shall use the following theorem of Riese ([Rie98]).

THEOREM 3.15. Let A < G, where A is abelian, and assume that \C is
irreducible, where X € Irr(A). Then A< <G.

PROOF. See Theorem 6.15 of [Nav18]. O

COROLLARY 3.16. Let 6 € Irr(N), where N < G and 6 is G-invariant.
Let N € A < G, where A/N is abelian, and suppose that 6 has an extension
@ € Irr(A) such that ©© is irreducible. Then A is subnormal in G.

PRrROOF. By using character triple isomorphisms we can assume that 6
is linear and faithful. Then ¢ is linear and A" € N n ker(¢) = ker(f) = 1.
Then A is abelian, and since ¢ is irreducible, Theorem 3.15 yields the
result. (]

We need the well-known Hall-Higman Lemma 1.2.3.

THEOREM 3.17 (Hall-Higman 1.2.3). Let G be a m-separable group, and
assume that O (G) = 1. Then Cg(0-(G)) € O-(G).

PROOF. See Theorem 3.21 of [Isa08], for instance. O
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A deep result on regular orbits is also needed.

THEOREM 3.18. Let G be a solvable group acting coprimely and faithfully
on a finite group K. Then there exist x,y € K such that Cg(z)nCg(y) = 1.

PROOF. This is Theorem 1.1 of [Dol08|. O
We shall also need a “large orbit” result.

THEOREM 3.19. Let P be a non-trivial p-group that acts faithfully on
group H of order not divisible by p. Then there is an element x € H such
that

3=

[Cr(2)| < (|Pl/p)7 .
PRrROOF. This is Theorem A of [Isa99]. O

Finally, we are ready to prove an extension of Theorem I (which is
recovered by setting N = O,(G)). Since the proof of this Theorem uses
the Howlett-Isaacs theorem, the Classification of Finite Simple Groups is
implicitely used.

THEOREM 3.20. Let N < G. Suppose that 0 € Irr(N) is G-invariant
and that 0(0)0(1) is a w-number. Assume that G/N is m-separable and that
O.(G/N) = 1. Then all members of Irr(G|0) have equal degrees if and only
if G/N is an abelian 7' -group.

PROOF. If G/N is an abelian 7’-group, then 6 extends to G by Theorem
1.17, and we are done by Gallagher’s Corollary (Corollary 1.16). To prove
the converse, we argue by induction on |G/N| and assume that |G/N| > 1.
We argue first that the common degree d of the characters in Irr(G|0) is a
m-number. To see this, let ¢ € 7’ and let Q/N € Syl (G/N). Then 6 extends
to @, and the induction to G of such an extension has degree 6(1)|G : @),
which is a ¢-number. Since this degree is a multiple of d, it follows that d
is a ¢’-number, and since q € ©’ was arbitrary, we see that d is a m-number.

Let U/N = O(G/N) and note that U > N. All degrees of characters
in Irr(U10) divide d, and so are m-numbers. But since U/N is a 7’-number,
it follows that all degrees of characters in Irr(U|6) equal 6(1), and so all
of these characters extend 6. It follows that U/N is abelian by Gallagher
Corollary (Corollary 1.16). If U = G, we are done, and so we suppose that
U < G and we let V/U = O,(G/U). Note that V' > U. By Theorem 1.17,
there exists a unique extension € Irr(U) of 6 with determinantal m-order.
By uniqueness, 6 is G-invariant. Now, let ¢ € Irr(V|§). Since V/U is a
m-group, @y is a multiple of 6 and o(é) is a m-number, we easily have that
o(p) is a m-number. Write T' = G, for the stabilizer of ¢ in G. Then all
members of Irr(7T'|¢) induce irreducibly to G, yielding characters of degree
d, and thus these characters all have degree d/|G : T|. We claim that T'
satisfies the hypotheses of the theorem with respect to the character ¢ and
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the normal subgroup V. To see this, we need to check that O, (T/V) is
trivial.

Let W/V = O(G/V). We argue that W stabilizes ¢. This is because
the G/V-orbit of ¢ has size dividing d, and so is a m-number, and W /V
is a normal 7’-subgroup of G/V. Thus W < T and O,(T/V) centralizes
the normal 7'-subgroup W/V = O (G/V). But Or(G/V) is trivial, and
Hall-Higman Lemma 1.2.3 (3.17) applies to show that O,(T/V) = 1, as
wanted.

By the inductive hypothesis, we conclude that T'/V is a 7’-group. Also,
by the Clifford correspondence (Theorem 1.14), |G : T| divides d, which
we know is a m-number. Thus T/V is a full Hall 7’-subgroup of G/V.
Also, ¢ extends to T, and so ¢(1) = d/|G : T| = d/|G/V |, is constant for
¢ € Irr(V|A). It follows that the hypotheses are satisfied in the group V
with respect to 6. If V' < G, the inductive hypothesis yields that V/N is a
7’-group, and this is a contradiction.

It follows that V = G and G/U is a m-group. Also, G/U acts faithfully
on U/N because Or(G/N) is trivial. Now let A € Irr(U/N), so that X is
linear. Let S = G, and note that A\ extends to S since S/U is a mw-group.
Write a = |G : 5.

Note that S is the stabilizer of A\ in G, and thus all characters in
Irr(S|AQ) have degree d/a. If r is the number of such characters, this yields
r(d/a)? = |S : U|#(1)2. Also, since A extends to S, by Theorem 1.15 there
is a degree-preserving bijection between Irr(S|A0) and Irr(S|0), and hence
the latter set contains exactly r characters, and each one has degree d/a.
Each of these must therefore induce irreducibly to G, and it follows that
each member of Irr(G|6) is induced from a member of Irr(S|6).

Note that the number of different members of Irr(S|0) that can have the
same induction to G is at most |G : S| = a.

Now let t = |Irr(G|6)| so that td? = |G : U|A(1). If we divide this
equation by our previous one, we get ta?/r = |G : S| = a, and so t = r/a.
It follows that each of the ¢ members of Irr(G|A) is induced from exactly a
characters in Irr(S]6). In other words, if x € Irr(G|A), then g has exactly
a distinct irreducible constituents, each with degree d/a, and so by Lemma
3.14, it follows that y vanishes on G — S. In other words, the only elements
of G on which x can have a nonzero value lie in the stabilizer of A for every
linear character A of U/N. But G/U acts faithfully on this set of linear
chararacters, and thus x vanishes on G — U. In other words, 0 is fully
ramified in G. Tt follows that d = 6(1)|G : U|Y2.

Also, af(1) divides d, and so a must divide |G : U|"/2. Write s = |S : U],
so that as = |G : U|. Then a? divides as, and thus a divides s. In particular,
we have a < s,s0 |G : S| < |5 : U|. Thus

|G:U|=|G:S||S:U|<|S:U].
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Now, by the Howlett-Isaacs theorem we have that G/U is solvable. This
group acts faithfully on the group of linear characters of U/N, and so by
Theorem 3.18, there exist character stabilizers T" and R such that Tn R = U.
By the result of the previous paragraph, each of 7'/U and R/U has order at
least |G : U|'/2. Now

IG:U|=|G:T||IT:U|=|R:U||T:U|>|G:U]|.
Then TR = G, and then each of [T": U| and |R : U| has order |G : U2
Therefore all characters in Irr(T)§) are extensions of § and induce irreducibly
to G. In particular, T'/U is abelian, and similarly R/U is abelian.

By Corollary 3.16, it follows that R is subnormal in G, and since R/U is
abelian, R/U < F(G/U). Similarly, T/U < F(G/U) and thus G/U is nilpo-
tent. But then, since G/U acts faithfully on the group of linear characters of
U/N, it follows that if G/U is non-trivial, then some character A € Irr(U/N)
has a stabilizer S in G such that

1S:U| < |G:UY?

by Theorem 3.19. But then |G : U| = |G : S||S: U| < |S:U?> < |G : U|.
This contradiction completes the proof. O
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CHAPTER 4

A Brauer-Wielandt formula

4.1. Introduction

One of the classical problems in character theory is to determine which
properties of a finite group G are encapsulated by its character table. For
example, we know that

al= 3 X

x€elrr(G)

and hence the character table of G (X (G) from now on) determines the order
of G. We also know that G is abelian if and only if all of its irreducible
characters are linear. We can also determine the normal subgroups of G
from its character table (they are the kernels of the irreducible characters
of G and their intersections), and hence X (G) determines if G is nilpotent
or solvable, for instance. Furthermore, if IV is a normal subgroup of G, we
can construct X(G/N) from X (G).

In this chapter we are interested in what X (G) knows about the p- local
structure of GG, for a given prime p. We are specially interested in Question 7
in [Nav04], where it is asked if the character table of G determines |N¢g(P)|,
where P is a Sylow p-subgroup of GG. Note that this is the same as asking if
X(G) “knows” the number of Sylow p-subgroups of G.

So far, some partial answers to this Question have been given. For
instance, a positive answer has been found in the cases that P is cyclic
([Nav04]), or if G is nilpotent-by-nilpotent ([KK15]). Although for solvable
groups no answer is known yet, it is shown in [IN02] that in this case X (G)
determines the set of primes dividing |Ng(P)|.

Our aim in this section is to prove some more cases.

THEOREM J. Let p be a prime and let G be a finite p-solvable group.
If P € Syl,(G) is abelian or has exponent p, then the character table of G
determines |[Ng(P)|.

Notice that X (G) knows if G has abelian Sylow p-subgroups (in [NT'14]
and [NST15] an easy algorithm is given, although it was previously proved
in [KS95] indirectly and an algorithm was given in [CHS80] for the prime
p = 2.) However, X (G) fails to determine whether a Sylow p-subgroup of G
has exponent p (the smallest counterexamples are of order 27).
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It turns out that the key to prove Theorem J is to be able to compute
|Cn(P)| from the character table of G, when N = Oy (G). To do so, we
need to generalize a classical result of Brauer. If P is a Klein 4-group acting
on a group of odd order N, Brauer’s celebrated formula to count the number
of fixed points of the action of P on N is the following:

|Cn (2)]|[Cn (y)|Cn (zy)]

where P = (x) x{y). Brauer stated this formula at a conference in Tiibingen
in 1958, but it first appeared in the literature in [Wie60).

Wielandt generalized this result in [Wie60], giving a formula for the
number of fixed points of a p-group P acting on a p/-group N. If |P| = p®,
the formula of Wielandt is the following:

[TIcn()
-1 SeS
Cn(P)" = =,
|N| =T
where S is the set formed by all the non-trivial cyclic subgroups of P. Since
we can not distinguish between elements generating different groups from
the character table, we can not use this formula for our purposes. Instead,

we give an alternative formula.

THEOREM K. Suppose that P is a p-group acting via automorphisms on
a p'-group G. Then

j2
|CG )| (p—1)[P]
|CG | - (H |CG mp |1/p ’

zeP

As we have mentioned before, Theorem K is used in the proof of Theorem
J. A complete answer to Question 7 of [Nav04] seems still far from being
given. When the character table does not seem sufficient to determine a
group theoretical invariant, it is common to ask if the character table plus
the p-power maps are. (See the Brauer’s survey [Bra63].) If {zi,...,z.}
are representatives of the conjugacy classes of GG, then the p-power map is
the function f : {1,...,¢} — {1,...,c} such that :L'§7 lies in the class of ;).
After reading our proof of Theorem J, Lyons and R. Solomon pointed out
the following.

THEOREM 4.1. Let p be a prime and let G be a finite p-solvable group.
Then the character table of G together with the p-power map determine

NG (P)].
The main results of this Chapter have been published in [NR16].
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4.2. Proof of the formula

In this Section, we give a proof of Theorem K which is independent of
Wielandt’s proof. We need some well-known results on coprime action. The
first of them is due to Hartley and Turull.

THEOREM 4.2 (Hartley-Turull). Let A act via automorphisms on G,
where A and G are finite groups, and suppose that (|A|,|G|) = 1. Then A
acts via automorphisms on some abelian group H in such a way that every
subgroup B € A has equal numbers of fixed points on G and on H. Also,
there is a size-preserving bijection from the set of A-orbits on G to the set
of A-orbits on H.

PROOF. See Theorem 3.31 of [Isa08], for instance. O

Next is the so-called “fixed points come from fixed points” theorem.

THEOREM 4.3. Let A act via automorphisms on G, where A and G are
finite groups, and let N < G be A-invariant. Assume that (|A],|N|) = 1.
Then,

Ca/n(A) = C(A)N/N.

PROOF. See Corollary 3.28 of [Isa08]. O

We also need the following well-known fact. Recall that if ¢ is a prime,
we say that a g-group H is an elementary abelian g-group if it is abelian
and all the non-trivial elements of H have order g. In other words, H =~
Cyx Cyx---x Cy If His an elementary abelian g-group and |[H| = ¢",
then we can view H as an n-dimensional vector space over the field GF(q)
of ¢ elements by simply writing the group operation in H as addition.

Now, if P is a group acting via automorphisms on H, it is easy to see
that H is a GF(q)[P]-module. Notice that the subgroups of H are exactly
its subspaces, and hence, the P-invariant subgroups of H are exactly its
GF(q)-submodules.

Finally, recall that if A is an algebra and V' is an A-module, we say that
V' is completely reducible if for every A-submodule W of V', there exists an
A-submodule U of V such that V = W + U, where the sum is direct. We
say that V is irreducible if it has no proper A-submodules.

We need the following classical result of Maschke.

THEOREM 4.4 (Maschke). Let P be a finite group and F' be a field whose
characteristic does not divide |P|. Then every F[P]-module is completely
reducible.

PROOF. See Theorem 1.9 of [Isa76]. O
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THEOREM 4.5. Suppose that P is a p-group acting via automorphisms
on a p'-group G. Then

P
‘CG )’ (r—1)|P]
‘CG ‘ - (H ’CG xp ’1/p ’

zeP

ProOF. By Theorem 4.2, there exists an abelian group H on which P
acts such that |Cg(R)| = |Cr(R)| for every subgroup R of P. In particular,
|H| = |G|, whence H is a p’-group and it suffices to prove the theorem for
H. So, we may and shall assume henceforth that G is abelian. We prove
the theorem by induction on |G||P|.

Step 1. We may assume that P acts faithfully.

Let @ = {x € P|g-x = gforall g € G}, that is, the kernel of the
action of P on G, which is normal in P. Let x € P and y € (. Since
g-(zy) = (g9-x) -y = g-x, we have that Cg(zy) = Cg(z). Moreover, since
@ acts trivially on G, we have that P/Q acts on G and Cq(P) = Cq(P/Q).
If we write P = Qx1 u ... U Qx as a disjoint union, we have that

QI
|Cq (= [Ca( 1733] |Cc(Qz;)|
H |Cq(zP) l/p H H |Cq((wx; 1/p a H \CG (Qx;)P )P)|/p )

zeP j=1lze@

Now, if 1 < @, by induction we have that

a((Qx;)P

and the result follows. Hence we may assume that @ = 1.

<l —1)|P: p—1)|P
(H |C!CG ij)|,1/p> _ Co(P/Q) LR _ 6y R

Step 2. We may assume that G is an irreducible GF(q)[P]-module.

If N is a P-invariant subgroup of G and R < P, we have that R acts on
G/N. Since (|R|,|N|) = 1, by Theorem 4.3 we have that

Cg/n(R) = Cg(R)N/N = C(R)/Cn(R),

and hence

|Ca(R)| = |Cq/n(R)||[CN(R)|.
If 1 < N, the theorem again follows by induction. Thus we may assume
that G has not proper P-invariant normal subgroups. In particular, if ¢ is
a prime dividing G, since G is abelian we have that G is a ¢-group. Since
the Frattini subgroup of G, ®(G), is a characteristic subgroup, we have that
®(G) =1 and hence G is an elementary abelian g-group.

Universitat de Valencia Noelia Rizo Carrién



4. A Brauer-Wielandt formula 71

By the discussion preceding this proof, G is a GF(q)[P]-module and,
since char(GF(q)) = g does not divide |P|, by Maschke’s Theorem 4.4 we
have that it is irreducible.

Step 3. We may assume that P is not abelian.

Suppose that P is abelian and let z € P. Then Cg(x) is P-invariant
and by Step 2, we have that either Cg(z) = G or Cg(x) = 1. If z # 1,
by Step 1 we have that Cg(z) = 1. This means that P acts as a Frobenius
complement on G. By Theorem 6.21 of [Isa08] we have that P is cyclic.
Then there are just p elements in P satisfying P = 1 and therefore,

[ St _|ca(P),

o |Cq (zP yl/p
and the result follows. Thus we may assume that P is not abelian.

Step 4. Final Step.

Since Cg(P) is a P-invariant subgroup of G we have that Cg(P) = 1
by Steps 1 and 2. Our goal now is to prove that

[[ICc@)” =] ]ICa(=").

zeP zeP

If 1 < N is a proper normal subgroup of P, again we know that Cg (V) is
a P-invariant subgroup of G and hence C;(N) = 1 by Steps 1 and 2. By
induction, we have that

[]ICe@)P =]]ICa(=") -

zeN zeN

Let R = ®(P). Since P is not abelian by Step 3, we know that ®(P) > 1
and hence we have that Cg(R) = 1. Hence Cg(J) = 1for R < J < P.
Write

(P/R)* = (Rx )™ U ... U (Rap)"

as a disjoint union, where X# is the set of the non-identity elements of the
group X.

Suppose that P/R is cyclic. Since P/R is an elementary abelian p-group,
we have that P/R = (Rx) with o(Rz) = p. Since |P : R| = p, we have that
P = R{(z). If () < P, let M be a maximal subgroup of P such that
{x)y < M < P. Then R < M and hence P = R(x) < M{x) = M. This
contradiction shows that P = (z), and hence P is cyclic. But this is not
possible by Step 3 and hence P/R is not cyclic. Thus, (R, z;) is proper in
P. Also, (R,zj) = Ru Rxj U Rx? UREERV R.I‘?_l, because R has index p
in (R,z;). By induction and using that |Cg(R)| = |Ca((R,z;))| = 1 for
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j = 1, we obtain

p—1
[T ICc@P= T] ICat")|=]]ICc)]]]]ICa((uz))?)

ze(R,x;) xe(R,x;) ueR ueR i=1
p—1 '
= [TICc@P [T TICa((uzh?).
ueR ueR i=1
Now, since

—1 —1
P=RUR$1URZL‘%U...UR$II) u...uRazkuR:ﬁzu...qui

is a disjoint union, we have that

151 (Maecray ICo@)P)
Ca(g)P =
et = cetwr

T (Taer [Co@)P TTer T2 ICa((uat)?))
(Ioer|Calw) )

= (H ICc(w)Ip> ﬁ (Hﬁ |CG((U~T§)p)|>

zeR 7=1 \ueRi=1
k p—1 '
- (Teo ) 11 (T ot
zeR j=1 \ueRi=1
= []ICa(e"),
geP
and this proves the theorem. O

4.3. Proof of Theorem J

As we said before, the main ingredient for the proof of Theorem J is
our Brauer-Wielandt formula. The one other ingredient we require is the
following result of Navarro, which was proved using Isaacs m-character theory
in [Nav98b]. In [NR16] we give an alternative elementary proof provided
by Gordon Keller, which we reproduce here for the reader’s convenience.
We need the following well-known result of G. Higman.

THEOREM 4.6 (Higman). Let K, ..., Ky be the conjugacy classes of G.
Then the character table of G determines the set of primes dividing o(g;)
for giG =K.

PROOF. See 8.21 of [Isa76]. O

Note that, as a consequence of Theorem 4.6, it is easy to see that the
conjugacy classes of p-elements are detectable in the character table of G.
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THEOREM 4.7. Let p be a prime, G a finite p-solvable group, P a Sylow
p-subgroup of G, and K = 2 the G-conjugacy class of © € G. Then the
character table of G determines |K n P)|.

PRrROOF. If N is a normal subgroup of G, then let P and K denote the
images of P and K respectively in G = G/N.

First, by Theorem 4.6, we know that the character table of G determines
the set of primes that divide the common order of the elements in K, and
hence, we may assume that K consists of p-elements (otherwise, |K n P is
7Z€ero).

Let N = O, (G) and suppose that N > 1. We claim that

|IPNnK|=|PnK]|.

Since N is a p/-group, we have that the map g — Ng is a bijection from P
to P. Hence, the map g — Ng defines a one-to-one map from P n K into
P n K. Next we show that it is surjective. Suppose that Ny e P n K. We
may assume that y € P. Let z € K n Ny. As z € K, z is a p-element of
G. Now, N{y) = N{z). It follows that (y) and (z) are Sylow p-subgroups
of N{y), and hence are N-conjugate. Hence there exists n € N such that
y" = 2* for some integer i. Since Nz = Ny = Ny™ = Nz* we deduce that
271 = 2271 € N. Since z is a p-element, we have that i = 1 and hence
y"™ = z. In particular, y € Pn K. Hence the map g — Ng defines a bijection
between P n K and P n K, as desired. Since we can obtain the character
table of G/N from the character table of G, we are done by induction.

Thus, we may assume that O, (G) = 1, and then, since G is p-solvable,
we have that O,(G) > 1. Let N = O,(G).We claim that

[P n K||N||Cg(2)]
[Ca(z)]
To prove this, we compute the value of the induced character (1 p)G on .

If Q ={yeGl|a¥ e K n P}, by the definition of the induced character, we
have that

|IPn K| =

_

(1P)G(33) = ﬁ

Now, write G = Cg(z)y1 U ... U Cg(z)y, as a disjoint union, where n =
|G : Cq(z)| = |K|. Let {y1,...,9r} = {y1,...,yn} N Q. Then it is easy to
see that the map Cg(z)y; — ¥ is a bijection from {Cg(x)y1,...,Cq(z)y,}
to K n P. Then r = |[K n P| and Q is the disjoint union of |P n K| right
cosets of Cg(z) in G. It follows that

_|P 1 K|Co()
[P
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Now, since N is a normal p-subgroup of GG, we have that N is contained in
the kernel of (1p)%, and therefore

(1p)%(2) = (1p)%(2)

from which the desired equality easily follows.

By induction, |P n K| can be read off from the character table of G/N
which can be read off from the character table of G. Since the character
table of G detects the normal subgroups of G we can also obtain |N| from
the character table. Finally, the size of the centralizers of elements can also
be found from the character table by means of the second orthogonality
relation. This ends the theorem. (]

_ P~ K|[Cq(2)
P

The proof of Theorem J is far more complicated in the case P abelian
than in the case P of exponent p. When P is abelian we need the following
auxiliary results in order to prove it. The first of them is a very elementary
fact.

LEMMA 4.8. If P is an abelian p-group, then the map ¢ : P — ®(P)
given by x — xP is an onto group homomorphism with kernel Qq(P) = {x €
P|zP = 1}.

PROOF. Let x € P, since P/®(P) is elementary abelian, (®(P)zP) =
(®(P)z)P = ®(P) and then aP € ®(P), which proves that ¢ is well defined.
Since P is abelian, it is clear that ¢ is an homomorphism. We just need
to prove that it is onto. Note that if x € P, we have that (¢(P)x)P =
@(P)zP = ¢(P) and hence P/¢(P) is elementary abelian. Since P is a
p-group, the Frattini subgroup of P is the unique normal subgroup of P
minimal with the property that the factor group is elementary abelian, and
hence ®(P) < ¢(P) < ®(P). Therefore ¢ is onto. O

Before stating the second auxiliary result we need to introduce the notion
of Galois conjugate of a character. Let x € Irr(G), the field of values of x is

Q(x) = Qx(9) | g € G),

that is, the smallest subfield of C containing the values of x. If n is the
exponent of G, then we know that y(g) is a sum of n-th roots of unity for all
g € G and therefore Q(x) < Q,,, where Q,, is the n-th cyclotomic field, that is
Qn = Q(&), where ¢ is a primitive n-th root of unity. In particular, Q(x)/Q
is a normal extension. Now, if Q(x) € F < C is any field and ¢ : F — F
is a field automorphism, then o(Q(x)) = Q(x) by elementary Galois theory.
Thus we may define the Galois conjugate function x? : G — C by letting

X7 (x) = o (x(9))-
The following are basic properties of the Galois action:

PROPOSITION 4.9. Let G be a finite group and let x € Char(G). Let
Q(x) € F < C be any field. Let o € Gal(F/Q). Then,
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(a) x° € Char(G) and Q(x?) = Q(x). Moreover, x is irreducible if and
only if x° is irreducible.

(b) If ¢ € Char(G) and Q(v) < F, we can define 7 and
[x7, 471 = D 9]

PROOF. Part (a) is Theorem 3.1 of [Nav18]. Part (b) follow easily since

X7, ¢7] = ‘G| DXy <|G > ixl(g ) =[] =[x, ¥]

geG geG
O

Now we can prove the following, which is essential in the proof of The-
orem J for P abelian.

LEMMA 4.10. Let G be a finite group, N < G a p'-group and let P be a
Sylow p-subgroup of G. Suppose that P is abelian and NP <1 G. Let n be
the exponent of G and let o € Gal(Q,/Q) be the Galois automorphism that
fizes p'-roots of unity and sends p-power roots of unity & to &P, Then

Ne(P)= (] ker(x).

xelrr(G/N)
X7 =x

ProoF. First of all it is straightforward to check that ¢ has p-power
order. Let x € Irr(G/N) be o-fixed, and let A be an irreducible constituent

of xyp. Since A € Irr(NP/N) and NP/N is abelian, we have that A is
linear. Since x is o-fixed, by Proposition 4.9 we have that

0 # [xnp, Al = X{p, A7] = [xwvp, A7)

and hence A7 is an irreducible constituent of yyp. Then, there exists g € G
such that A2 = M. It is easy to see that A% = X" for all m € Z and
hence A9”” = A. Then ¢°©)NP € I¢(X)/NP. Since G/NP is a p/-group
and o(c) is a power of p, we have that (gNP) = (g°(?) NP). Therefore,
gNPelg(N)/NP and \7 = \9 = \.

Since NP/N is a p-group and A is linear, A(zN) is a p-power root of
unity for all x € NP, and

MzN) = X (zN) = o(MxN)) = (M aN))PT = \zN)(A(zN))P.

Then the order of A divides p. Let z € ®(P). By Lemma 4.8, we know that
z = 2P for some = € P and then

A(z) = AaP) = Az)? = 1,
and ®(P) < ker(\). Therefore N®(P) < ker(A\)* for all x € G. Hence
N®(P) is contained in ker(y) by Lemma 1.7.
It remains to prove that if x € Irr(G) has N®(P) in its kernel, then
X is o-fixed. Let A € Irr(NP) be an irreducible constituent of xnp, then
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N®(P) < ker(\) and A € Irr(NP/N®(P)). Since NP/N®(P) is a p-group,
again we have that, for every z € NP,

M (z) = A9 (zN®(P)) = T aN®(P)) = MzN®(P)) = Az),

and A is o-fixed. By Theorem 1.17, A has a canonical extension A e
Irr(Ig(A)). This canonical extension satisfies that it is the unique exten-
sion of A\ with the property that ([Ig(\) : NP|,0(\)) = 1, and in fact,
o(A) = o()\), which divides p. Since X is o-fixed, again by Proposition 4.9,
we have that

(A7) vp, Al = [(A)np, AT = [Anp, Al # 0,
and A7 lies over A. Moreover, \?(1) = o(A(1)) = (1) = 1 and therefore A%
extends A. Now, for all x € Iz(\), we have

(A7) (z) = (A7(2))"Y = (0(A@)*™ = o(A"V (@) = 1.

Thus 0(A\?) divides p and (|Ig()\) : NP|,0(A\?)) = 1 and by the uniqueness
of A we have that X is o-fixed.

Now, let ¢ € Irr(Ig(A\)|A) be the Clifford correspondent of x (Theorem
1.14), that is, x = ¥“. By Gallagher’s Corollary (Corollary 1.16) we have
that ¢ = B for some 3 € Irr(Ig(\)/NP). Since Ig()\)/NP is a p/-group,
B(x) is a sum of B(1) p/-roots of unity, and hence it is o-fixed. Therefore, 1
is o-fixed and x = % is o-fixed. U

The following includes Theorems J and 4.1.

THEOREM 4.11. Let p be a prime and G a finite p-solvable group. Let
P € Syl,(G). If P is abelian or has exponent p, then the character table of
G determines |[Ng(P)|. Otherwise, the character table of G and the p-power
map (on the conjugacy classes of p-elements of G) determines |Ng(P)|.

PROOF. Recall that to know the p-power map of a character table is
to know the following. If {x1,...,z.} are representatives of the conjugacy
classes of G (columns in the character table), then the p-power map is the
function f: {1,...,c¢} — {1,..., ¢} such that $§ lies in the class of z4(;). (In
fact, we shall only need to know this function on the classes of p-elements
of G.) We've already said that the character table of G determines the
character table of G/N. It is also true that the p-power map of G determines
the p-power map of G/N. Both the conditions that P is abelian or has
exponent P are inherited by quotients of G.

As usual, X(H) will denote the character table of the group H. We
argue by induction on |G| that if P is abelian or has exponent p, then
X(G) determines |[Ng(P)|. (Essentially the same proof is going to show
the assertion about character tables and p-power maps, until the very end.
Then we will make a comment.)
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If O,(G) > 1, then X(G) determines X (G/0,(G)), and hence by induc-

tion, we know
[Ng(P)|
Nejo, @) (P/Op(G)] = 7577
[T 0,(G)]
Since |O,(G)| can also be determined by X (G), we are done. Then we may
assume that O,(G) = 1.
Let N = Oy(G) > 1. By induction, we know that X (G) determines
[Ne(P)|
ING(P)N/N| = 5=
[Cn (P
Hence, in order to prove the theorem, we need to show that the character
table of G determines |Cy(P)].

Now, let € P, and K = 2% By Theorem 4.7, we know that the
character table of G determines |K n P|. Moreover, by Theorem 4.3 (since
N is normal in G, P acts via automorphism by conjugation on N), we have
that

Since X (G) determines X (G/N), we have that the character table of G
determines

[Ca/n(Nz)| = |Co(z)N/N| = |Ca(2)|/|Cn ()],

by the second orthogonality relation. Since the character table of G deter-
mines |Cg(x)|, we deduce that the character table of G determines |Cy(x)|.

If P is abelian, then the map ¢ : P — ®(P) given by = — 2P is an onto
group homomorphism with kernel Q;(P) = {x € P| 2P = 1} by Lemma 4.8.
We can restate the formula in Theorem K in the following ways:

p
Cn(z (p—1)|P|
‘CN(P)‘ = ]._[xeP| N(‘p)L)(p)V )
[Lecacp) [Cn ()| P

if P is abelian, or

rhgﬂcwuN)wfw>

|CN(P)|: < ’N“PVP

if P has exponent p. (This latter formula was known to Wielandt, see
[Wie60].)

Now, let {y1,...,yxr} be representatives of the G-conjugacy classes of the
p-elements of G (which are detectable in the character table by Theorem
4.6), and write L; = P n (y;)“. Then

P=Livu...ulL

is a disjoint union.
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By Theorem 4.7, we know how to compute |L;| in the character table.
Furthermore |Cx(z)| is constant in L;. This shows that

k
[TICn@)] =] ]ICn ()"
j=1

zeP

is always computable from the character table of G. In particular, |Cx(P)|
is computable from the character table of G if the exponent of P is p, and
the Theorem is proven for groups with exponent p.

If P is abelian, then we need to calculate |P : ®(P)|, and determine
which y; lie on some G-conjugate of ®(P).

First we claim that NP < G. Indeed, since O, (G/N) = 1, by the Hall-
Higman Lemma 1.2.3 (Theorem 3.17), we have that Cq/n(0,(G/N)) <
O,(G/N). Since P is abelian, PN/N is abelian and then O,(G/N) <
PN/N < Cg/n(0,(G/N)) < Op(G/N). Then, PN/N is normal in G/N
and the claim follows.

By Lemma 4.10 we know that N®(P) is the intersection of the kernels
of the o-fixed irreducible characters of G having N in its kernel, where o
is the Galois automorphism sending p-power roots of unity ¢ to P! and
fixing p’-roots of unity. We deduce that y; lies in some G-conjugate of ®(P)
if and only if y; is in the kernel of the o-invariant irreducible characters that
contain N in their kernel. Indeed, if y; € ®(P)" for some = € G, then

yj € NO(P)" = (NO(P))" = N®(P) =[]  ker(x).
xelrr(G/N)
X7=Xx
On the other hand, if y; is in the kernel of the o-invariant irreducible char-
acters of G/N, then y; € N®(P). Since y; is a p-element and ®(P) is a
Sylow p-subgroup of N®(P), we have that y; € ®(P)” for some x € N®(P).
This ends the case P abelian.

In order to show that the character table and the p-power map determine
NG (P)|, the same arguments of this proof show that we only need to be
able to calculate

[TICn(@)]

zeP
from the character table and then use Theorem K. If we know the p-power
map, then we know the integers 1 < fi,...,fi < k such that y? is G-
conjugate to yyr,. Then

k
zeP 7j=1
and the proof of the theorem is complete. O
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4.4. Alternative proofs

To end this Chapter, we give alternative proofs of Theorem K. These
nice proofs were given to us by Isaacs and Lyons, and the author would like
to thank them for sharing them with her.

We need the following well-known results. The first of them is the mod-
ule theoretic version of Clifford’s theorem (Theorem 1.11).

THEOREM 4.12 (Clifford). Let F' be an arbitrary field, P a finite group,
Q < P and let V' be an irreducible F[P]-module. Let W be any irreducible
F[Q]-submodule of V.. Then

(a) V=W, @@ Wy, where the W; are irreducible F[Q]-modules,
and W; = W.

(b) P acts transitively on {Wy,..., Wi}.

(c) Viewed as an F|Q]-module, V is completely reducible.

PROOF. See Theorem 6.5 and Corollary 6.6 of [Isa76]. O

LEMMA 4.13. Let A be an abelian group and suppose that there exists a
faithful irreducible module W of F[A], where F is an arbitrary field. Then
A is cyclic.

PROOF. See Lemma 0.5 of [MW93]. O

LEMMA 4.14. Let P be a p-group in which every normal abelian subgroup
s cyclic. Then:

(a) If p > 2, then P is cyclic.
(b) If p =2, P is dihedral, generalized quaternion or semidihedral.

In both cases, P has a cyclic normal subgroup of index p.
PROOF. See Theorem 6.12 of [Isa08] or Theorem II1.7.6 of [Hup67]. O

We also need the notion of primitive module. Let F be a field, G a finite
group and V an F[G]-module. Suppose that

V=W oW ®@---®Wj,

where the sum is direct and the W; are subspaces of V' which are transitively
permuted by G. Then V = Wi@Wo®- - - @Wj is a imprimitive decomposition
of V. If V is irreducible and there is no such decomposition with k£ > 1,
then V' is a primitive F'[G]-module. See Definition 5.7 of [Isa76] for more
details.

IsAAcs’ PROOF. Isaacs’ approach is similar to ours. As in our proof, we
can reduce to the case where G is an elementary abelian g-group for some
prime ¢ # p, and Cg(P) = 1 = Cp(G). In this case, we must show that

Cel@)P
[ e ="

zeP
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If G is not irreducible as a P-module, the result follows easily as in our
proof, so we can assume the action is irreducible, that is, G has no proper
P-invariant normal subgroups. Also, the result follows easily if |P| = p, so
we can assume |P| > p.

Suppose first that G is a primitive GF(q)[P]-module and let @ be an
abelian normal subgroup of P. Then @) acts on G and the action is faithful.
We claim that G is irreducible as GF(q)[Q]-module. If not, we can write
G=G1®G® - ®G) with k > 1, G; irreducible GF(¢q)[Q]-submodules of
G and P acts transitively on {G1,Go,...,Gk} by Theorem 4.12. Hence G
is not primitive, a contradiction. Thus G is a faithful irreducible GF(q)[Q]-
module and by Lemma 4.13 we have that @ is cyclic. By Lemma 4.14, P
has a cyclic normal subgroup N of index p. Since N is abelian, the action
of N on G is Frobenius. Then, since IV is cyclic we have that

I |Cq(z) P
zeN |CG xp

Let z € P— N, so 2P € N. If 2P # 1, since N acts Frobenius on G,
we have that Cg(z) = 1 = Cg(2P). Hence we may assume that zP = 1.
If p > 2, by Lemma 4.14 we know that P is cyclic and hence z € N, a
contradiction. Hence we may assume that p = 2 and 22 = 1. Since in a
generalized quaternion group there is just one involution, we have that P
is either dihedral or semidihedral. Let |P| = 2" and write N = {(a). Since
|P| = 2", we have that |N| = 2"~L. Now, write y = a2~ so Z(P) = (y),
and let K = (x,y). Then K is a 4-Klein group acting on G and we can
apply Brauer’s classical formula.

|G|

Since y € N and the action of N on G is Frobenius, we have that Cg(y) = 1,
and hence Cg(K) < Cg(y) = 1. Hence

[Ca(@)||Cq(ay)| = |G

_\/|CG 2)||CeICalwy)|

and it follows that
[ Setr _,
AL iCar)
We now assume that the action is imprimitive. Then

G=GiDG2D - DGy,

and the stabilizer of all the G; is a subgroup N with index p in P. Also
Ca(N)=1,so

H |CG

xEN
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4. A Brauer-Wielandt formula 81

Let x € P — N. We have that (G;)* = G;41, and Gy =Gi. Let ge G
and write g = g192 - - - gp with g; € G;. Note that g is fixed by x if and only
if g7 = gi+1 and g, = g1. Hence gt = g1 and

[Ca(z)] = [Ca, (27)].

Also, Cg(aP) is the product of Cg,(2P), and these are conjugate under z.
Thus

bS]

[Ca (2P)] 1_[ (@) = Cq, (2")P = |Ca(2)".

It follows that

[ Cetl _,
wep-n |Cala?)]
and the theorem is proven. O

Lyons’ proof follows a character theoretical approach, entirely different
from ours. The key is the following result, kindly provided to us by Lyons.

THEOREM 4.15 (Lyons). Let F' = GF(q), let P be a p-group with p # q,
and let V' be an F[P]-module. Then

dimp(Cy (P)) = oo DIE )| | > <d1mF(CV( ))—;dimF(CV(a:p))>.

zeP

PRQOF. Lei V =V RF f, where F is the algebraic closure of F.
Then V is an F[P]-module and it is easy to check that dimp(Cy(H)) =
dimz(Cy-(H)), for all H < P. Hence we may assume that F' = F.

Let x be the Brauer character of P afforded by V. By Theorem 2.12
of [Nav98a|, we have that x is an ordinary character of P. We claim that
dimp(Cy(H)) = [1m, xu] for all H < P. Indeed, let H < P and notice
that V' is an F[H]-module. Since char(F') = ¢ does not divide |H|, we have
by Maschke’s Theorem (Theorem 4.4) that V' is completely reducible. Write
V=WVeVde  -dV,)® Vi ® - @®Vy), with V; is an irreducible F H-
module, and W = Cy (H) = V1@Vo®---@V,. Nowifve Vifori=1,...,r,
we have that v-h = v for all h € H, and hence V; affords 15. Conversely, if
V; affords 1g, then v-h = v for all v € V;, and hence V; < W. Therefore,
dimp (W) = [1g, xu] and the claim follows.

Now let v : P — C be the function defined as follows

1 p—1
V= Z T Ly = Leary) + ———pq1y,
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82 4.4. Alternative proofs

where f141y is the characteristic function of the singleton {1}. We claim that
p—1
p
First note that v(1) = pp%l and if 1 # y € P, it is easy to see that

1
v(y) = VN
A T
ye(xy—(a?)
Now note that y € (x)—(aP) if and only if (y) = (x). Indeed, if o(y) < o(z),
we would have that o(y) | o(aP) since o(zP) = o(x)/p, and then y € (zP), a
contradiction. Therefore o(y) = o(x) and {(z) = (y). The converse is trivial.
Then, if o(y) = p®, we have that

V= 1p.

)

a—1
= B gt
zeP—{1}

{yy=<z)

where the second equality follows from the fact that the number of generators
of {3y is (p — 1)p®~!. Hence

Pl

p

and the claim is proven. Hence,

dimF(Cv(P)) = [1P,X] = (p — 1) [V7 X]'

On the other hand, since |[(x)| = p|{zP)|, we have that

1 p—1
‘P‘[Va X] = Z <[1<x>7 X(x)] - [1<xp>7x<xp>]> + 7)((1)
weP—{1} b p

> (dimF<cv<m>> - ;dimF(Cv(l‘”))> + ()

zeP—{1}

Since x(1) = dimp (V) = dimp(Cy (1)), we have that

-1 1 . 1 ..
%x(l) = X(1) = (1) = dimp(Cy (1)) — - dimp(Cr(1))
and therefore
1 . 1.
voxl = 1y 3 (amr(Cr ()~ Lame(cr o) )
|P| xzeP p
This concludes the proof. [l
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4. A Brauer-Wielandt formula 83

As a consequence we obtain Theorem K.

LyoNS’ PROOF. As in our proof, we can reduce to the case where G
is an elementary abelian g-subgroup for some prime g # p. Hence G is a
GF(q)[P]-module and then using Theorem 4.15 we have that
|ICq(P)| = qdimcF<q)(Cc(P))
_ o Shaer (dimp (Ca (@)~ Ldimp (Ca (7)) )

44 (Co(@) G-Il
- I dimp(C (P))

zeP QP
(H ICa(2)] )(psz
= s ,
vep |Ca(aP)|P
as desired. O
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