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Abstract

Abstract

The present Thesis entitled Identification of omic profiles for diagnosis and
monitoring of bladder cancer is focused on identifying non-invasive urinary
metabolomic biomarkers of diagnosis and monitoring of bladder cancer (BC). In
order to achieve this objective, two analytical strategies based on Nuclear
Magnetic Resonance (*H NMR) and Ultraperformance Liquid Chromatography—
Mass Spectrometry (UPLC-MS) have been used for the analysis of urine samples.
Besides, bladder tissue samples have been analyzed by High-Resolution Magic
Angle Spinning NMR (HRMAS NMR) technique to get further insight into altered
metabolic pathways in BC and assess their link with altered urinary metabolomic
profiles. On the other hand, transcriptomic analysis has been carried out in
bladder tissues to identify key metabolic genes in BC. Additionally, integrative
studies using metabolomic and transcriptomic data have been performed to study
the gene-metabolite networks in BC and its association with the altered urinary

metabolome.

Initially, a metabolic profile able to distinguish BC tissues from non-tumor
tissues with a sensitivity and specificity of 100%, independently of stage and grade
of the tumor, is presented in chapter four. Moreover, the metabolites that take
part of this profile are showed, as well as, the disturbed metabolic pathways
linked to BC carcinogenesis. On the other hand, the transcriptomic analysis
performed in these same tissues is described, indicating principally that metabolic
genes are downregulated in bladder tumors and that transcriptional repressors,
histone marks, and alternatively splicing processes may be regulating those genes.
Additionally, an integrative analysis between metabolomic and transcriptomic
data is detailed, showing concordance between the results obtained through

these two techniques that represent different levels of molecular regulation.
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Finally, a *H NMR-based urinary metabolic profile capable of distinguishing BC
urines from control urines (collected after surgery) with significant sensitivity
(90.9%) and specificity (76.9%) is shown. Urine and tissue samples were collected
from the same patients, so at the end of chapter, the connections between the

perturbed metabolic pathways in tissues and urines are described.

The following two chapters of the thesis are focused principally on
searching non-invasive biomarkers of BC in urine samples for monitoring this

disease by means of two analytical techniques.

In order to validate the urinary profile as a biomarker for monitoring, a
study with additional urinary samples collected from patients with NMIBC was
carried out. Urinary samples were collected monthly during a follow-up period.
The urinary 'H NMR metabolic profile showed a sensitivity and specificity around
85% classifying BC urines. Moreover, tumor recurrences were detected by the
metabolic profile in an early stage of disease, anticipating in some cases to the BC
visualization by cystoscopy. The altered metabolic pathways in the urinary

metabolome were also identified.

Finally, the sixth chapter of the thesis exhibits the results of an
investigative clinical study carried out in a large number or urinary samples
collected from NMIBC patients before and after surgery, as well as during the
subsequent surveillance. In this case, the urine samples were analyzed through
UPLC-MS and perturbed metabolic pathways were assessed. Some urinary
samples were common to those analyzed by 'H NMR, and data were in
agreement. The analysis of the longitudinal trajectories of the metabolic

biomarker discriminating between BC and control samples allowed a preliminary
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evaluation of its potential utility to monitor NMIBC relapse in patients undergoing

surveillance for tumor recurrence.

On the whole, the results presented in this thesis give support to the
hypothesis of the existence of a urinary metabolic signature linked with tumor
alterations in BC tissues able to detect and predict recurrences during the
surveillance period of patients with NMIBC. Moreover, the good results obtained
and the concordance between the urinary analyses by *H NMR and UPLC-MS
highlight the metabolomics as a competitive omic for searching biomarkers, since

offers robust and dynamic information about the biology of the tumor.






Resumen

Resumen

La presente Tesis titulada Identificacion de perfiles dmicos para el
diagndstico y la monitorizacion del cdncer de vejiga se centra en la identificacion
de biomarcadores metabolémicos urinarios no invasivos para el diagndstico y la
monitorizacién del cancer de vejiga (CaV). Con este fin, se han utilizado dos
plataformas analiticas: la Resonancia Magnética Nuclear (Nuclear Magnetic
Resonance, 'H NMR) y la Cromatografia Liquida de alta resolucion acoplada a la
Espectrometria de Masas (Ultraperformance Liquid Chromatography—Mass
Spectrometry, UPLC-MS). Ademas, se han analizado tejidos vesicales mediante la
técnica de Resonancia Magnética Nuclear de Alta Resolucién con Giro de Angulo
Magico (High-Resolution Magic Angle Spinning NMR, HRMAS NMR) para obtener
mas informacién sobre las vias metabdlicas alteradas en el CaV y evaluar su
relacién con los perfiles metabdlicos urinarios alterados. Por otro lado, se han
realizado analisis transcriptémicos en tejidos vesicales para identificar genes
metabdlicos clave en el CaV. Finalmente, se han llevado a cabo estudios
integradores con los datos metabolémicos y transcriptomicos para estudiar las
conexiones entre genes y metabolitos y establecer su asociacién con el

metaboloma urinario.

Inicialmente, en el capitulo cuarto se presenta un perfil metabdlico capaz
de distinguir los tejidos tumorales de los tejidos no tumorales con una
sensibilidad y especificidad del 100%, independientemente del estadio y el grado
del tumor. Ademds, se muestran los metabolitos que forman parte de este perfil,
asi como las vias metabdlicas alteradas asociadas a la carcinogénesis vesical. Por
otro lado, tras la realizacion de analisis transcriptdmicos en esos mismos tejidos,
se detalla como los genes metabdlicos estan siendo regulados a la baja en los

tumores de vejiga mediante la accidn de represores transcripcionales, marcas de
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histonas y procesos de splicing alternativo. Ademds, mediante un andlisis
integrativo entre los datos metaboldmicos y transcriptomicos, se muestra la
concordancia entre los resultados obtenidos a través de estas dos técnicas que
representan diferentes niveles de regulacion molecular. Finalmente, se muestra
un perfil metabdlico urinario identificado mediante !H NMR capaz de distinguir
orinas con CaV de orinas control (recogidas después de la cirugia) con una
significativa sensibilidad (90,9%) y especificidad (76,9%). Como las muestras de

orina y de tejido se recogieron de los mismos pacientes, al final del capitulo se

describen las conexiones encontradas entre las rutas metabdlicas alteradas en

tejidos y orinas

Los siguientes dos capitulos de la tesis se centran principalmente en la
busqueda de biomarcadores no invasivos de CaV en muestras de orina para el

seguimiento de esta enfermedad a través de dos técnicas analiticas.

Con el objetivo de validar el perfil urinario como biomarcador de
monitorizaciéon de CaV, se llevd a cabo un estudio con muestras urinarias
adicionales de pacientes con CaV no musculo-invasivo (CVNMI). Las muestras
urinarias se recogieron mensualmente durante un periodo de seguimiento activo.
El perfil metaboldmico urinario detectado mediante H NMR presenté
sensibilidades y especificidades alrededor del 85% en la clasificacién de las orinas
tumorales, e incluso detectd las recidivas tumorales en un estado temprano de su
desarrollo, anticipandose en algunos casos a la visualizacion de éstas mediante
cistoscopia. Este quinto capitulo también detalla los metabolitos discriminantes
que forman parte de este perfil metabolémico y su relacién con las rutas

bioquimicas alteradas en el CaV.
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Finalmente, el sexto capitulo de la tesis muestra los resultados de un
estudio clinico llevado a cabo con un gran ndmero de muestras de orina
recolectadas de pacientes con CVNMI antes y después de la cirugia, asi como
durante un periodo de seguimiento posterior. En este caso, las muestras urinarias
se analizaron mediante UPLC-MS y se estudiaron las vias metabdlicas perturbadas
vinculadas al CaV. Algunas muestras de orina fueron comunes a las analizadas por
IH NMR, y en general, los datos de los dos estudios fueron concordantes. El
anadlisis de las trayectorias longitudinales del biomarcador metabdlico urinario
capaz de discriminar las muestras tumorales de las controles permitié una
evaluacion preliminar de su utilidad como biomarcador de seguimiento para la

deteccién de las recurrencias en pacientes con CVNMI.

En general, los resultados presentados en esta tesis respaldan la hipétesis
de la existencia de una huella metabdlica urinaria vinculada a las alteraciones
tumorales presentes en los tejidos vesicales, capaz de detectar y predecir las
recurrencias durante el periodo de vigilancia en pacientes con CVNMI. Ademas,
los buenos resultados obtenidos y la concordancia entre ambos estudios urinarios
(*H NMR y UPLC-MS) posicionan la metaboldmica al frente de las técnicas dmicas
para la busqueda de biomarcadores robustos y dinamicos que reflejen la biologia

del tumor.
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Resum

La present Tesi titulada /dentificacid de perfils omics per al diagnostic i el
seguiment del cancer de bufeta es centra en la identificacié de biomarcadors
metabolomics urinaris no invasius per al diagnostic i el seguiment del cancer de
bufeta (CB). Amb aquesta finalitat, s'han utilitzat dues plataformes analitiques: la
Ressonancia Magnética Nuclear (Nuclear Magnetic Resonance, *H NMR) i la
Cromatografia Liquida d'Alta Resolucié acoblada a I'Espectrometria de Masses
(Ultraperformance Liquid Chromatography—Mass Spectrometry, UPLC-MS). D'altra
banda, teixits vesicals s'han analitzat mitjancant la técnica de Ressonancia
Magnética Nuclear d'Alta Resolucié amb Gir d'Angle Magic (High-Resolution
Magic Angle Spinning NMR, HRMAS NMR) per tal de coneixer les vies
metaboliques que estan alterades en els tumors de bufeta i la seva relaciéo amb el
metaboloma urinari. A més s'han realitzat analisis transcriptomics en teixits
vesicals per coneixer quins gens metabolics estan alterats i quins processos
moleculars estarien regulant-los. Finalment, s'han realitzat estudis integradors
amb les dades derivades dels estudis metabolomics i transcriptomics realitzats en
teixits, per estudiar les connexions entre gens i metabolits i establir la seva

vinculacié amb el metaboloma urinari.

Inicialment, en el quart capitol es presenta un perfil metabolic capag de
distingir els teixits tumorals dels teixits no tumorals amb una sensibilitat i
especificitat del 100%, independentment de I'estadi i el grau del tumor. A més, es
mostren els metabolits que formen part d'aquest perfil, aixi com les vies
metaboliques alterades associades a la carcinogenesi vesical. D'altra banda, es
descriu I'analisi transcriptomic realitzat amb aquests mateixos teixits, indicant que
principalment els gens metabolics estan sent regulats a la baixa en els tumors de
bufeta i que els repressors transcripcionals, les marques d'histones i els processos

de splicing alternatiu podrien estar regulant aquests gens. A més, es detalla un
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analisi integratiu entre les dades metabolomiques i transcriptdmiques que mostra
la concordancga entre els resultats obtinguts a través d'aquestes dues técniques,
qgue representen diferents nivells de regulacié molecular. Finalment, es mostra un
perfil metabolic urinari identificat mitjancant H NMR capag de distingir orines
tumorals d'orines control (recollides després de la cirurgia) amb una significativa
sensibilitat (90,9%) i especificitat (76,9%). Com les mostres d'orina i de teixit es
van recollir dels mateixos pacients, al final del capitol es descriuen les connexions

trobades entre les rutes metaboliques alterades en teixits i orines.

Els seglients dos capitols de la tesi es centren principalment en la recerca
de biomarcadors no muscul-invasius de CB (CBNMI) en mostres d'orina per a la

monitoritzacié d'aquesta malaltia a través de dues técniques analitiques.

Amb l'objectiu de validar el perfil urinari com a biomarcador de
seguiment de CB, es va dur a terme un estudi amb mostres urinaries de pacients
amb CBNMI. Les mostres urinaries es van recol-lectar mensualment durant un
periode de seguiment actiu. El perfil metaboldmic urinari identificat mitjancant H
NMR, va mostrar sensibilitats i especificitats al voltant del 85% per a la
classificacio de les orines tumorals, i fins i tot va detectar les recidives tumorals en
un estat primerenc del seu desenvolupament, anticipant-se en alguns casos a la
visualitzacié d'aquestes mitjancant cistoscopia. Aquest cinque capitol també
detalla els metabolits discriminants que formen part d'aquest perfil metabolomic i

la seva relacié amb les rutes bioquimiques alterades en el CB.

Finalment, el sisé capitol de la tesi mostra els resultats d'un estudi clinic
dut a terme amb un gran nombre de mostres d'orina recollides de pacients amb
CBNMI abans i després de la cirurgia, aixi com durant un periode de seguiment

posterior. En aquest cas, les mostres urinaries es van analitzar mitjancant UPLC-
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MS i es van estudiar les vies metaboliques vinculades al CB. Algunes mostres
d'orina van ser comunes a les analitzades per H NMR, i en general, les dades dels
dos estudis van ser concordants. L'analisi de les trajectories longitudinals del
biomarcador metabolic urinari discriminaren les mostres tumorals de les control i
van permetre una avaluacié preliminar de la seva utilitat com a biomarcador de

seguiment per a la deteccid de les recurréncies en pacients amb CBNMI.

En general, els resultats presentats en aquesta tesi donen suport a la
hipotesi de l'existencia d'una signatura metabolica urinaria relacionada amb les
alteracions tumorals en teixits vesicals, capac de detectar i predir les recurrencies
durant el periode de vigilancia en pacients amb CBNMI. A més, els bons resultats
obtinguts i la concordanca entre els dos estudis urinaris (*H NMR y UPLC-MS)
posicionen la metabolomica al capdavant de les tecniques Omiques per a la

recerca de biomarcadors robusts i dinamics que reflexen la biologia del tumor.
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Resumen ampliado de la tesis

La presente Tesis titulada Identificacion de perfiles émicos para el
diagndstico y la monitorizacion del cdncer de vejiga se centra en la identificacion
de biomarcadores metabolémicos urinarios no invasivos para el diagnéstico vy la
monitorizacion del CaV, y pretende esclarecer que genes y rutas metabdlicas
podrian ser claves en este tipo de tumores. Para esto se realizaron estudios
metabolédmicos basados en !H NMR y UPLC-MS en muestras urinarias; y estudios
de HRMAS 'H NMR y transcriptémicos (microarrays) en muestras tisulares
vesicales. También se llevaron a cabo estudios integradores con los datos
metaboldmicos y transcriptdmicos para estudiar las conexiones entre genes y
metabolitos en los tejidos tumorales y establecer su asociacién con el
metaboloma urinario.

Los primeros tres capitulos de la tesis engloban la introduccién, los
objetivos y el planteamiento del problema, y los capitulos 4, 5 y 6 los diferentes

estudios realizados.

Capitulo 4

La primera parte de la tesis se centré en la identificacidn de perfiles
metabolémicos de 'H NMR, tanto tisulares como urinarios, para utilizarse como
biomarcadores de CaV. Ademds pretendid identificar metabolitos y genes
metabdlicos clave en los tumores vesicales con el fin de comprender mejor la
biologia del CaV y las conexiones entre genes y metabolitos. Finalmente se
focalizé en el estudio de las conexiones entre las via metabdlicas alteradas en los

tejidos tumorales y el metaboloma urinario perturbado.

Metodologia

En este estudio se incluyeron 21 pacientes diagnosticados de CaV (14

hombres and 7 mujeres) que estaban en lista de espera para ser intervenidos. De
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cada paciente se recogieron muestras de tejido y orina. Las muestras de tejido
tumorales (n=22) y no tumorales (n=22) se tomaron durante la reseccidn
transuretral (RTU) y la clasificacidn de los tumores en CVNMI o canceres de vejiga
musculo invasivos (CVMI) se realizd segln criterios anatomopatoldgicos. Las
muestras de orina se recolectaron antes de la RTU “tumorales” (n=22) y un mes
después de la RTU “controles” (n=13) solamente en pacientes en los que la RTU
fue completa, el diagndstico CVNMI y el resultado de la cistoscopia tras la cirugia
negativo. Las orinas y los tejidos se analizaron en un espectrometro Bruker
Avance 600 MHz. En el caso de los tejidos, se utilizd una sonda de HRMAS. Tras la
adquisicién de los espectros monodimensionales (1D) *H NOESY y bidimensionales
(2D), las muestras de tejido se volvieron a congelar y se descongelaron de nuevo
para la realizacidn de los andlisis transcriptémicos.

Tras la adquisicidn de los espectros metaboldmicos, tanto en tejidos como
orinas, estos fueron pre-procesados utilizando MestReNova (versién 6.0.2). En
tejidos se corrigid la fase, la linea base, y el desplazamiento quimico se referencié
al singlete de la creatina (3.03 ppm) y al doblete de la alanina (1.48 ppm). A
continuacién, se asignaron los principales metabolitos en la regién de 0,8 a 9,5
ppm del espectro. Para ello se utilizaron bases de datos como Human
Metabolome Database (HMDB) o Metabolomics: main. Antes de realizar los
anadlisis estadisticos las sefales de los espectros fueron alineadas utilizando el
algoritmo (Icoshift) y los datos se normalizaron respecto a los mg de tejido y se
autoescalaron. En los tejidos, la intensidad de las resonancias asignadas a cada
metabolito se transfirié a la plataforma online MetaboAnalyst 3.0. La prueba U-
Mann Whitney determind las diferencias significativas entre los valores medios de
intensidad entre los tejidos tumorales y controles. El andlisis de la varianza
(ANOVA) vy las pruebas posthoc de Tukey evaluaron las diferencias entre los
CVNMI, CVMI y los tejidos no tumorales; y entre los estadios Ta, T1, T2 y los

tejidos no tumorales. Por otro lado, se realizaron analisis estadisticos

iv
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multivariantes de tipo Partial Least Square-Discriminant Analysis (PLS-DA)
utilizando el software PLS_Toolbox Solo 8.0 (Eigenvector Research, Inc., Manson,
WA, EE. UU.). Se incluyeron las regiones de 0.5-4.8 y 5.2-9.5 ppm. La region
espectral del agua (4.79-5.2 ppm) se excluyé. Para la realizacién del modelo PLS-
DA, las muestras se separaron aleatoriamente en dos grupos: calibracion (n=34) y
validacién (n=10) y se calcularon dos modelos. El primero considerd el conjunto
inicial de caracteristicas espectrales (11698); y el segundo se cred tras una
seleccion de las variables mas importantes del modelo (Variable Importance in
Projection (VIP>1)) (4800 caracteristicas retenidas). La seleccién de caracteristicas
durante la optimizacion del modelo se realizd con el fin de mejorar el rendimiento
predictivo y facilitar su interpretacién. La identificacion de las senales de
metabolitos altamente discriminantes se llevé a cabo en el modelo VIP>1. La lista
de metabolitos obtenida se usd luego para realizar analisis de rutas de
enriquecimiento en la plataforma MetaboAnalyst 3.0.

Para la realizacion de los anadlisis transcriptdmicos los tejidos se
descongelaron y a continuacién se llevd a cabo la extraccién del ARN. Tras
comprobar la integridad del ARN en un Bioanalyzer, se seleccionaron 18 muestras
(10 no tumorales y 8 tumorales) para analizarse en los chips “Human
Transcriptome Array 2.0 (HTA 2.0)”. La expresion de los datos se normalizé y el
efecto Bach se corrigio utilizando el analisis robusto de transformacién de espacio
de sefal (SST-RMA, por sus siglas en inglés) implementado en el software TAC 4.0.
Se llevé a cabo un Andlisis de Componentes Principales (PCA) y un Headmap para
observar las diferencias entre los tejidos tumorales y no tumorales sobre la base
de todo el transcriptoma. Se considerd como criterio de seleccidn un Fold-Change
de al menos 2 o0 -2 y una tasa de descubrimiento falso (FDR) de 0,05. Analisis de
Gene Ontology Biological Processes (GOBP), ChEA y Encode Histone Roadmap se
realizaron in silico utilizando la herramienta web Enrich. Los genes metabdlicos

con una expresion diferencial significativa entre muestras tumorales y no

iv
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tumorales se seleccionaron desde las plataformas GOBP y GeneCards. Se
realizaron analisis de ChEA y Encode Histone Roadmap para identificar la supuesta
union de los factores de transcripcién y las marcas de histonas a esos genes
metabdlicos. Ademads, los genes identificados se utilizaron para realizar un
agrupamiento jerdrquico no supervisado usando los datos del Atlas del Genoma
del Cancer (TCGA) utilizando como herramienta MeV. Los analisis integradores
entre los resultados metaboldmicos y transcriptdmicos en tejidos se realizaron
utilizando: MetaboAnalyst, Wikipathways y la base de datos Small Molecule
Pathway Database (SMPDB).

En las orinas, tras la adquisicion de los espectros 1D *H NOESY y 2D se
corrigié la fase, la linea base, y el desplazamiento quimico, que en este caso se
referenciéd a la sefial del DSS (0,00). Antes de la realizacién de los andlisis
estadisticos multivariantes realizé un binning de 0.003 en los espectros 1D y los
datos se normalizaron (1-norm) y autoescalaron. A continuacién, se asignaron los
principales metabolitos en la region de 0,8 a 9,5 ppm del desplazamiento quimico.
Para ello se utilizaron bases de datos como HMDB o Metabolomics: main. Se
realizd un modelo PLS-DA considerando las regiones espectrales de 0,8-4,5 y 6,5-
9,0 ppm (2068 caracteristicas). Las orinas se clasificaron como control (orina
recolectada después de la RTU) o tumor (orina recolectada antes de la RTU). La
validacién cruzada (Cross Validation (CV)) se realizd6 en el nivel mas alto de
jerarquia de muestreo, que en este caso fue el voluntario, para estimar el
rendimiento predictivo del modelo. La significacion estadistica del modelo
estimada por CV se evalué mediante la prueba de permutacion con 100
interacciones. Los metabolitos mas importantes en el modelo estadistico (VIP>1)
se identificaron y se utilizaron para realizar un analisis de enriquecimiento de las

vias metabdlicas en la plataforma MetaboAnalyst.
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Resultados

Estudios metabolémicos en tejidos

Los espectros de tejidos no tumorales mostraron una gran presencia de
lipidos en la region alifatica practicamente ausente en las muestras de tumor. Por
el contrario, en los espectros tumorales destacaron las sefiales de pequefios
metabolitos como el glutation (GSH), la tirosina (Tyr) y la citidina difosfato (CDP)
en la region aromadtica.

La comparaciéon de medias de intensidad entre las muestras tumorales y
no tumorales mostré mayores niveles de colina (Cho), CDP, mioinositol (ml),
uridina difosfato (UDP) y GSH en los tejidos tumorales. La intensidad para el
fragmento lipidico -(n)CH,-CH,-CH,-COOH (denominado lipido (c)) fue mayor en
las muestras de control. La mayoria de los metabolitos que mostraron diferencias
significativas entre los tumores y los tejidos control (valor de p <0,05) también
presentaron mayores intensidades en los CVNMI y CVMI en comparacién con las
muestras control. Teniendo en cuenta las diferencias entre los diversos estadios
tumorales y las muestras no tumorales, los fragmentos lipidicos —CH»-CH,-CH,-CHj3
(lipido (a)) y =CH=CH-CH,-CH=CH-CH,-CH»-(n)-CH>- (lipido (b), Tyr, Cho, CDP, ml,
UDP y GSH mostraron cambios significativos entre todos los grupos.
Concretamente, los tumores T2 (los mas agresivos considerados en este estudio)
presentaron la mayor intensidad de Cho y GSH; y junto con los T1 mostraron
niveles elevados de ml y Tyr. Por otro lado, los tumores Ta (los tumores menos
agresivos) mostraron un incremento significativo de UDP y CDP. En el caso del
lactato, las sefiales a 1,33 ppm y 4,1 ppm estaban solapadas con las sefiales de
lipidos en las muestras no tumorales. Por lo tanto, la intensidad de lactato se
compard solamente entre los diferentes estadios tumorales. Se observd una
mayor intensidad de lactato en los tumores invasivos (T2) que en los tumores con

estadios T1 o Ta.
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El modelo PLS-DA inicial (n=44, variables latentes (LVs)=2) proporciond
una sensibilidad del 82,4% y una especificidad del 88,2% para el set de calibracidn.
El analisis de las muestras incluidas en el conjunto de validacién externa presenté
valores de sensibilidad y selectividad del 100% para los dos modelos (conjunto
original de variables y VIP>1). Los metabolitos mds discriminantes identificados en
el modelo (VIP>1) fueron: lipidos (fragmentos a, b y c), treonina (Thr), lactato,
alanina (Ala), glutamato (Glu), prolina (Pro), glutamina (GIn), GSH, creatina, Cho,
fosfocolina (PCho), glicerofosfocolina (GPCho), taurina, metanol, ml, glicina,
glicerol, UDP, Tyr y CDP. Este conjunto de metabolitos reflejé alteraciones en las
vias metabdlicas relacionadas con el metabolismo de aminoacidos, GSH, taurina e

hipotaurina, y glicerolipidos.

Estudios transcriptémicos en tejidos

El PCA explico el 66% de la varianza de los datos y mostré claras
diferencias entre las muestras tumorales y no tumorales considerando todo el
transcriptoma. Un total de 4409 transcritos diferenciaron las muestras tumorales
y las no tumorales, estando predominantemente down-regulados en los tumores
(3112 transcritos). El analisis de GOBP reveld que esos genes down-regulados en
tumores estaban asociados con la regulaciéon del metabolismo de aminodacidos y
aminas, los procesos biosintéticos de purinas y en genes vinculados a la
fosforilacién oxidativa (OXPHQOS) y a la cadena de transporte mitocondrial. Por el
contrario, entre los genes up-regulados en los tumores, no se encontraron
categorias significativas relacionadas con el metabolismo.

Utilizando la informacion proporcionada por las bases de datos GOBP y
GeneCards se identificaron un total de 364 genes codificantes vinculados con
procesos metabdlicos, de los cuales solamente 20 estaban up-regulados.
Curiosamente, algunos de los genes up-regulados ya se habian relacionado con el
cancer como: el factor de transcripcién PPARG involucrado en la regulaciéon de la

biogénesis de los lipidos; la hexoquinasa (HK2) y el transportador de glucosa
iv
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SLC2A1, ambos relacionados con la glucdlisis; la ribosa 5 fosfato isomerasa A
(RPIA) vinculada a la ruta de las pentosas fosfato; y genes que pertenecen al
citocromo P450 (CYP450) (CYP2J2, CYP2C9, CYP4F11). Por otro lado, se
encontraron genes metabdlicos clave down-regulados en tejidos tumorales
vinculados al: 1) metabolismo del piruvato: piruvato deshidrogenasas (PDHAL,
PDHB, PDHX) y piruvato deshidrogenasa quinasa 4 (PDK4); 2) ciclo de los acidos
tricarboxilicos (TCA): FH, IDH3A, IDH3B, MDH1, MDH2, ACO1, OGDH y SUCLG1; 3)
metabolismo de las poliaminas: AMD1, SMS, ODC1, SAT2, AOC3; 4) metabolismo
de aminoacidos: GLS, GOT2, MUT, ASS1, MAOA, MAOB; 5) estado redox: GPX3 y
GPX4, catalasa, SOD1 y glutaredoxina (GLRX3). Es importante destacar que,
aungue nuestra serie estuvo enriquecida con CVNMI, la expresion de los genes
relacionados con el metabolismo up- and down-regulados mostré un
comportamiento similar en multiples muestras de tumores presentes en la
cohorte TCGA (enriquecida en CVMI) sin discriminacién de estadio, grado de
tumor o diferentes subtipos tumorales identificados.

Por otra parte, los andlisis in silico en la plataforma Enrich revelaron que
varios factores de transcripciéon, actualmente relacionados con el CaV, se unian a
multiples genes metabdlicos y podrian actuar como represores transcripcionales:
ETS1, TTF2, E2F1, YY1, FLI1, ASH2L, E2F4, VDR, GABP, JARID1A, CTCF, KLF4 y CHD1.
Se conoce que algunos de estos factores modulan la expresidén génica a través de
la remodelacién directa de la cromatina, como GABP, JARID1A, CTCF y CHD1.
Consecuentemente, utilizamos Encode Histone Roadmap para determinar si los
genes metabdlicos down-regulados estaban asociados con marcas de histonas
particulares y encontramos marcas activadoras como H3K79me2, H3K79me3 o
H3K27acy marcas represoras como H3K36me3, H4K20mel o H3K9me3.

Respecto a los andlisis de empalme alternativo, se encontraron variantes
significativas de splicing entre los tejidos tumorales y los controles en los

siguientes genes metabdlicos: ASS1, GOT2, RARS, OAT, AOC3, HIBADH, DLD, FH,
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AUH, MUT, GLS, MAOA, ADH1C, ADH5, OGDH, SUCLG1, MDH1, MDH2, SMS,
ODC1, FARSB, ACADM, PPM1L, PDK4, PDHX, PDHA1.

Finalmente, el analisis integrativo de los datos metaboldmicos vy
transcriptémicos reveld alteraciones en multiples rutas bioquimicas, tales como:
el ciclo TCA, la OXPHOS y el metabolismo de aminodcidos y poliaminas, entre

otros.

Estudios metaboldmicos en orinas

El modelo PLS-DA (n=35, LVs=5) proporciond una sensibilidad del 90,9%,
una especificidad del 76,9%, un valor predictivo negativo (VPN) del 83,0%, un
valor predictivo positivo (VPP) del 86,9% y un area bajo la curva Roc (AUROC)=
0,9. La prueba de permutacién (100 permutaciones) proporciond un valor de p
valor<0,05 y evalud la significacién estadistica del rendimiento predictivo del
modelo mediante CV. Los metabolitos urinarios discriminantes identificados en el
modelo (VIP>1) incluyeron: Val, acido metilsuccinico, lactato, Ala, lisina, acido N-
acetilneuraminico, Gln, acido succinico, citrato, creatinina, trimetilamina-N-dxido,
metanol, taurina, sacarosa, acido hipurico, fenilalanina (Phe), pseudouridina y
trigonelina. Estos metabolitos se vincularon con el metabolismo perturbado de la
Ala, aspartato (Asp) y Glu, taurina e hipotaurina, ciclo TCA y biosintesis de ARNt en
los CaV. Algunas de las rutas metabdlicas alteradas en orinas fueron comunes a

aquellas alteradas en los tejidos.

Conclusiones

La integracion de los datos metaboldmicos y transcriptémicos indicd que
la reprogramacién metabdlica en los tumores vesicales se produce principalmente
a través de una regulacidn a la baja de los genes metabdlicos relacionados con el
ciclo TCA, la OXPHOS y el metabolismo de aminodcidos, entre otros. Estas
alteraciones producidas en los tejidos tumorales se reflejan en el metaboloma

urinario del mismo paciente y proporcionan un perfil metabdlico especifico capaz
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de detectar el CaV con una elevada sensibilidad y especificidad mediante una

aproximacién no invasiva.

Capitulo 5

Con el objetivo de validar el perfil urinario encontrado en el capitulo 4
como un biomarcador de monitorizacién de CaV, se llevd a cabo un estudio con
muestras urinarias adicionales de pacientes CVNMI. Se observd si el biomarcador
urinario basado en perfiles de !H NMR permitia la deteccién de recurrencias

durante el periodo de seguimiento activo.

Metodologia

En este estudio, se incluyeron 20 hombres y 8 mujeres con diagndstico de
CaV y en lista de espera para ser intervenidos. Los criterios de inclusidn para la
seleccion de pacientes fueron: hombres y mujeres de 20 a 90 afios diagnosticados
de CVNMI, tumores uUnicos o multiples, tumores primarios o recurrentes. Los
criterios de exclusion fueron: pacientes con catéter urinario, CVMI (T2-T4),
diagndstico patoldgico de papiloma, diagndstico unico de carcinoma in situ (CIS)
determinado mediante anatomia patolégica (AP).

Los pacientes se clasificaron segun los criterios de la EORTC en diferentes
grupos de riesgo de recurrencia, y de forma mensual a todos se les recogié una
muestra de orina durante un periodo de 18 meses. En total se recogieron 153
orinas, que fueron procesadas y almacenadas a -80 °C. Las muestras se
clasificaron como CaV (n=70) cuando la cistoscopia fue positiva y la AP confirm¢ la
presencia de un tumor tras la RTU; y un mes antes de la cistoscopia positiva con
tumores 23 cm. Las muestras no tumorales recogidas después de la RTU del
tumor se dividieron en dos grupos: CTRL (n=29) y MONITOR (n=38). El grupo CTRL
incluyd las orinas recolectadas dentro de las 2-4 semanas después de la RTU; y el
grupo MONITOR incluyé las orinas recolectadas durante el periodo de

monitorizacion de los pacientes, considerando aquellas con AP negativas (T0),
iv
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orinas con cistoscopia negativa en el momento del muestreo y orinas recolectadas
durante el periodo de monitorizacién entre cistoscopias negativas. Si no se
disponia de cistoscopia en el momento del muestreo o después, las orinas se

clasificaron como "evaluacién cistoscépica no disponible" (NA) (n=16).

Las orinas se analizaron en un espectrémetro Bruker Avance Il 500 MHz y
se adquirieron espectros 1D de presaturacion de agua y espectros 2D *H-3CHSQC.
Los espectros urinarios y los datos fueron pre-procesados de la misma forma que
se indicd en el capitulo 4.

La intensidad de las resonancias asignadas se transfirié a MetaboAnalyst
3.0. La prueba de U-Mann Whitney determiné las diferencias significativas entre
las orinas control y las CaV. Kruskal-Wallis evalué las diferencias entre el control,
los tumores primarios y las recurrencias; y comparé la media entre las muestras
tumorales con estadios Ta, T1 y las muestras control.

Para el desarrollo del modelo PLS-DA se consideré la regién 0.8-4.5 y 6.5-
9.0 ppm del desplazamiento quimico del espectro, y el conjunto de datos se
dividié en dos subconjuntos: calibracidn y validacion. El conjunto de calibracidn se
utilizé para desarrollar el modelo e incluyé 69 muestras de 24 pacientes (48 CaV y
21 CTRL). El conjunto de validacidon se utilizd para evaluar el rendimiento
predictivo del modelo e incluyé orinas de 7 pacientes con diferentes evoluciones
clinicas. En primer lugar, el conjunto de validacion se realizé considerando 22 CaV
y 8 orinas CTRL. Después, se afiadieron al conjunto de validacién las muestras
MONITOR (n=38) y NA (n=16) para evaluar el rendimiento del modelo en la
deteccion de recurrencias durante un periodo de vigilancia. Al agregar las
muestras MONITOR, el nimero de muestras de control aumenté a 46. Los
metabolitos mas importantes en el modelo estadistico (VIP>1) se identificaron y
se utilizaron para realizar un analisis de enriquecimiento de las vias metabdlicas

en la plataforma MetaboAnalyst 3.0.
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Resultados

Los niveles de acido hipurico y Ala mostraron diferencias significativas
entre los grupos CaV y control (p valor <0,05). Ambos metabolitos presentaron
mayores intensidades en las muestras control. El 4cido hipurico también presenté
diferencias significativas entre los tumores primarios y las recidivas, y entre los
estadios Ta, T1y las muestras control.

Para el conjunto de validacién (CaV vs CTRL), el modelo PLS-DA
proporciond una sensibilidad del 86,4%, una especificidad del 87,5% y un
AUROC=0,96. Cuando se consideraron las muestras MONITOR dentro del
subconjunto de validacion, el valor de sensibilidad se mantuvo, pero la
especificidad fue del 80,4%. Aun asi, la AUROC fue de 0,89 y el VPN 92.7%. Los
metabolitos urinarios discriminantes identificados en el modelo (VIP>1)
incluyeron: Val, Ala, Lys, GIn, citrato, dimetilamina, creatinina, trimetilamina N-
Oxido, taurina, sacarosa, creatina, acido hippurico, histidina, Phe y trigonelina. El
anadlisis de las vias realizado en MetaboAnalyst, vinculd estos metabolitos con
alteraciones en el metabolismo de la taurina e hipotaurina y diferentes vias
relacionadas con el metabolismo de aminodacidos: Ala, Asp, Glu, Argy Pro, y Phe.

Los analisis longitudinales del perfil metabolémico urinario se evaluaron
considerando las evoluciones clinicas de 7 de los 28 pacientes incluidos en el
estudio. La trayectoria longitudinal del perfil metabolémico de estos pacientes
permitid evaluar su utilidad en la deteccién de recidivas tumorales durante el
periodo de seguimiento activo, dado que su comportamiento concordé con los
resultados de la cistoscopia y la AP tras la RTU. Ademas, el perfil metabdlico no se
vio afectado por procesos inflamatorios como la cistitis, ya que el modelo clasificé

correctamente las orinas recolectadas durante estas circunstancias.

Conclusiones
El presente estudio muestra por primera vez un perfil metabdlico urinario,

altamente dindmico, y basado en H NMR, que cambia de un fenotipo tumoral a
iv
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uno control después de la extirpacién del CVNMI y regresa a la condicién maligna
cuando ocurre una recurrencia. Este hecho potencia la metabolémica como
herramienta para identificar biomarcadores no invasivos, que podrian aplicarse en
la clinica para mejorar el manejo de los pacientes con CVNMI, ya sea:
disminuyendo el nimero de cistoscopias durante el periodo de seguimiento;
detectando lesiones no visibles por cistoscopia (displasias, hiperplasias, CIS); o
detectando recurrencias tempranas, RTU incompletas o quizds tumores en el

tracto urinario superior.

Capitulo 6

El ultimo capitulo de la tesis tuvo como objetivo la identificacion de un
perfil metabolémico urinario basado en UPLC-MS que permitiese detectar los
cambios metabolémicos producidos tras la extirpacion del CVNMI, y que
consecuentemente permitiese la deteccién de recurrencias en pacientes con
CVNMI sometidos a un periodo de seguimiento activo. Dado que parte de las
muestras analizadas en este estudio fueron comunes a aquellas inlcuidas en el
estudio presentado en el capitulo 5, también se pretendié aumentar la cobertura
de los metabolitos vinculados al CVNMI y determinar si los resultados obtenidos

mediante ambas técnicas eran similares.

Metodologia

En este estudio se incluyeron 31 pacientes con diagndstico de CaV y en
lista de espera para ser operados. Los criterios de inclusidon y exclusidn, y la
codificacion de las muestras fue la misma que la explicada en el capitulo 5, pero
en este caso el numero de muestras analizadas fue mayor con 316 orinas
(Cav=68, CTRL=29, MONITOR=166, NA=53).

A 100 pL de orina y se agregaron 200 uL de HCOOH 0,1% v/v en H,0. La
muestra se homogeneizod y se centrifugd a 10000 x g (4 °C, 10 min). 100 pL del

sobrenadante se transfirieron a una placa de 96 pocillos donde a cada muestra se
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le afladieron 5 uL de los siguientes patrones internos: fenilalanina-Ds, cafeina-Ds,
leucina encefalina, y reserpina en H,O:CH3OH (1:1, 0.1% v/v HCOOH) en una
concentracion final de 1 uM. Los blancos se prepararon reemplazando la orina por
H,0. Se prepararon muestras de control de calidad (QC) mezclando 5 uL de cada
muestra. Todas muestras de analizaron mediante UPLC-QTOF-MS en dos tandas
(bach 1 y bach 2) para reducir el tiempo en que las muestras permanecian el
inyector.

Los datos de UPLC-TOF-MS sin procesar se convirtieron a formato mzXML
utilizando ProteoWizard antes de generar las tablas de picos usando el software
XCMS. El método centWave se utilizé para la deteccidn de picos con los siguientes
parametros: ppm: 15, ancho de picos: (5, 20), umbral de la sefial de ruido: 6. Se
selecciond una diferencia minima en m/z de 5 mDa para picos con tiempos de
retencidn (RT) superpuestos. Los valores m/z ponderados por intensidad de cada
caracteristica se calcularon utilizando la funcion wMean. La agrupacion de picos
se llevd a cabo usando el método "mas cercano" considerando RT=1 y tolerancias
de RTy m/z de 6 s y 5 mDa, respectivamente. Después de la agrupacion de picos,
se aplico el método fillPeaks con los pardmetros predeterminados para completar
los datos de picos faltantes. Las tolerancias de RT y m/z utilizadas para la
generacion de la tabla de picos y la alineacién de las caracteristicas en los baches
se basaron en la variacion observada en cinco metabolitos seleccionados (Phe,
Trp, kynurenine, hydroxykynurenine y phenylacetylglutamine) y los estandares
internos indicados anteriormente. La precision de integraciéon se evalud
comparando los resultados de integracidon manual y automatizada para los
estandares internos. Se encontraron un total de 4299 caracteristicas en el batch 1
y 4416 caracteristicas en el batch 2 después de la deteccidn de picos. Los blancos
se utilizaron para identificar y eliminar las caracteristicas de fondo que surgen de
la presencia de contaminantes, plastificantes, o impurezas en los solventes. La

eliminacion de efectos dentro del batch se realizé ajustando funciones no lineales
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dependientes del tiempo a los QC inyectados, seguido de una normalizacidn de
los datos utilizando la funcién QC-Suport Vector Regresidon (SVRC) y la funcidn
“radial basis function kernel” .

Los efectos entre batches se eliminaron al escalar la intensidad de cada
caracteristica metabdlica en cada muestra utilizando un factor definido como la
relacién entre la intensidad mediana en QC en el batch correspondiente y la
intensidad mediana entre batches. Finalmente, las caracteristicas metabdlicas que
mostraron una desviacidon estandar relativa (RSD%)>15 en las muestras QC se
consideraron no confiables y se eliminaron, lo que dejé 2006 caracteristicas para
el analisis de datos.

Para la creacion de los diferentes modelos PLS-DA, el conjunto inicial de
muestras se dividid en los subconjuntos: calibracién y validacién. El conjunto de
calibracion se utilizé para el desarrollo del modelo PLS-DA y la seleccidn de
caracteristicas. El conjunto de validacién se utilizd exclusivamente para la
evaluacién del rendimiento predictivo del modelo. El escalado de datos incluyé la
correccion de dispersién multiplicativa con las medianas de los QC como
referencia, seguido de un escalado Pareto.

La identificacidn de los metabolitos se realizé comparando los valores m/z
con las bases de datos HMDB y METLIN considerando una precision de 5. Las
formulas moleculares se estimaron por MassHunter Workstation Software-
Qualitative Analysis (Agilent). La adquisicidon de datos y la integracién manual de
los picos de los estandares internos y los metabolitos seleccionados se realizaré
utilizando MassHunter (Agilent). Los analisis de tipo PLS-DA se llevaron a cabo
utilizando PLS_Toolbox 8.0. y MATLAB (Mathworks Inc., Natick, MA, EE. UU.) Para

el andlisis de rutas metabdlicas se utiliz6 MetaboAnalyst 3.0.

Resultados
Para facilitar los analisis de las diferencias en los perfiles metabdlicos

entre las muestras CaV, CTRL y MONITOR se consideraron tres modelos PLS-DA
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independientes en los que los grupos se compararon por pares (es decir, CaV vs
CTRL, BC vs MONITOR y CTRL vs MONITOR). El modelo CaV vs CTRL proporciond
una clasificacion precisa de 27/33 CaV y 10/11 muestras CTRL (sensibilidad: 82% y
especificidad: 91%). El segundo modelo, CaV vs MONITOR, se comportd peor en la
clasificacidon de las muestras tumorales (sensibilidad: 70% vy especificidad: 75%).
Finalmente, el analisis de las diferencias entre los grupos CTRL y MONITOR
proporciond rendimientos predictivos no significativos, menor sensibilidad (45%)
y especificidad (76%), de acuerdo con una mayor superposicién de las muestras
CTRL.

Vistos los resultados previos, el modelo CaV vs CTRL se optimizd
seleccionando un conjunto de 128 caracteristicas discriminantes considerando
una VIP>3. Este modelo clasificd correctamente 29/33 CaV y 11/11 orinas CTRL en
el conjunto de validacion, lo que proporcioné una AUROC=0.96 y una sensibilidad
ligeramente mejorada (87.9%, especificidad 100%). Ajustando por probabilidad
previa de recurrencia (15%, 24%, 28% y 61%) los VPN para los grupos de riesgo
bajo, intermedio bajo, intermedio alto, y alto fueron 96,5%, 94,0%, 92,9% y 76,1%
respectivamente. Los metabolitos discriminantes identificados en el modelo CaV
vs CTRL con una VIP>1 reflejaron alteraciones en las rutas metabdlicas de la Arg,
Pro, los acidos grasos, la Phe, las purinas y pirimidinas y el Trp, entre otras.

Por otro lado, el andlisis de las trayectorias longitudinales del biomarcador
metabdlico desarrollado para la discriminacién entre las muestras CaV y CTRL
permitio evaluar su utilidad en la deteccidn de recurrencias. Estas trayectorias se
observaron en 6 pacientes diferentes con evoluciones clinicas. De la misma forma
qgue en capitulo 5, la trayectoria longitudinal del perfil metabolémico durante el
periodo de seguimiento activo mostré un cambio gradual de un fenotipo control a
uno tumoral asociado a la aparicién de la recurrencia. Este hecho fue consistente
con los resultados confirmatorios de cistoscopia y la AP positiva tras la RTU del

tumor. Sin embargo, en algunos pacientes, los resultados mostraron trayectorias
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inconsistentes debido a un ndmero reducido de muestras mal clasificadas. El
analisis de orina es un reto debido a la variacidn en la composicién quimica y la
amplia variedad de factores de confusidon que pueden afectar al metaboloma
urinario (dieta, consumo de agua, exposicion ambiental, ingesta de
medicamentos). Por lo tanto, se necesitan mas estudios que evalten las fuentes

de variabilidad en la orina y permitan aumentar la robustez de las pruebas para

gue los analisis metabolémicos puedan trasladarse a la practica clinica.

Conclusiones

Los resultados de este estudio clinico revelaron un cambio
estadisticamente significativo en el perfil metabdlico urinario antes y después de
la RTU, y respaldaron la hipdtesis de un perfil metabdlico basado UPLC-MS capaz

de detectar recurrencias en pacientes bajo seguimiento activo.

En general, los resultados presentados en esta tesis respaldan la hipdtesis
de la existencia de una huella metabdlica urinaria vinculada a las alteraciones
tumorales presentes en los tejidos vesicales, capaz de detectar y predecir las
recurrencias durante el periodo de vigilancia en pacientes con CVNMI. Ademas,
los buenos resultados obtenidos y la concordancia entre ambos estudios urinarios
(*H NMR y UPLC-MS) posicionan la metaboldmica al frente de las técnicas dmicas
para la busqueda de biomarcadores robustos y dinamicos que reflejen la biologia

del tumor.
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Introduction

1.1 Epidemiology of bladder cancer and risk factors

Bladder cancer (BC) is the most common cancer of the urinary tract and
represents an unsolved clinical, social and economic problem¥?, BC is more
frequent in men than women with a ratio of 3:1. Specifically in men, it is the 7"
most common cancer worldwide with 330380 new cases per year and it is among
the top 10 most deadly cancers®. In women, BC presents a lower incidence rate
with 99413 cases per year®.

The highest rates of incidence and prevalence of this tumor are observed in
developed countries. Each year in the European Union approximately 110500 men
and 70000 women are diagnosed and 38200 patients die from BC2. Spain has one
of the highest incidences in Europe. According to both sexes, the incidence of BC
rank 5" and the mortality 7" in Spain® (Figure 1.1), but considering only men,
Spain shows the highest BC incidence rates among European countries and this

tumor occupies 2" place in terms of mortality®.

Colorectum

Other cancers Breast

b)

Other cancers

Figure 1.1 Estimated number of cancer cases (a) and deaths (b) in Spain considering

both sexes®.
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The gender discrepancy and the high incidence rates in Spain have been
associated with BC risk factors including chronic exposure to carcinogens (both,
environmental and associated to life habits such as smoking), age, sex, and
genetic susceptibility related to altered metabolic enzymes involved in the

detoxification of xenobiotics®®1%.

1.2 Clinical management of bladder cancer

1.2.1 Pathological criteria for BC diagnosis

BCs are diagnosed as NMIBC or muscle-invasive (MIBC) according to their
stage, which is determined by Tumor-Node-Metastasis (TNM) system!?. TNM
system considers the extent of tumor invasion (Tis-T4) in base on pathological
criteria (Figure 1.2). NMIBCs include papillary tumors confined to the mucosa (Ta)
or invading the lamina propria (T1) and flat high-grade lesions confined to the
mucosa classified as carcinoma in situ (CIS)*3. MIBCs include the stage of tumors
>T2. The stage designations Tx indicate that the primary tumor could not be
assessed, while Ty indicates that there was no evidence of a tumor. The tumor

stage is the most important factor for treatment selection.

Bladder

lumen
Urothelium

Lamina
propria
Inner

muscle

Outer
muscle

Tumour invades Tumour invades Tumour invades
subepithelial superficial muscle| | deep muscle oo vadts
connective tissue perivesical tissue!

Carcinoma| | Non-invasive
insitu papillary

djacent tissues D)
carcinoma 2

Grade 1 5 Grade 2 . Grade 3
t

T { 1973 WHO
PUNLMP " Low grade i High grade
+

{ 2004 WHO/ISUP

Figure 1.2 Bladder cancer staging according to TNM sytem and grading according to 1973
WHO; and 2004 WHO and International Society of Urological Pathology (ISUP). Note:

PUNLMP: Papillary urothelial neoplasm of low malignant potential.
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The grade of tumors is determined according to the degree of cellular atypia,
growth pattern, and mitotic activity. The grade is also considered an important
prognostic indicator because it reflects the inherent aggressiveness of the tumor.
Particularly in NMIBC, where a high histological grade is associated with a higher
risk of recurrence or progression to MIBC**15,

In clinical practice, two parallel systems are used for grading tumors: the
“World Health Organisation (WHO) 1973” and the “WHO/ISUP 2004/2016”
systems. While the WHO 1973 grading system uses a three-tiered system (Grade
1-3) where increasing grade reflects the degree of cellular abnormality, the
“WHO/ISUP 2004/2016” separate tumors into only two categories: low grade (LG)
and high grade (HG), considering as HG both grade 2 and 3 in the WHO 1973
system (Figure 1.2). The purpose of the “WHO/ISUP 2004/2016" system is to
reduce the inter-observer variability that was seen in 1973 system, which was
criticized for ambiguous and poorly defined separation criteria, due to only very
low-risk cases were classified as grade 1 and only those with huge cellular

abnormality as grade 3, being the majority classified as grade 2117,

» Carcinoma in situ

At diagnosis, approximately 10% of patients with BC present CIS*®. CIS is a flat
high grade urothelial carcinoma that increases the risk of recurrence and
progression. Between 40%-83% of patients with CIS develop muscle invasion if
untreated, especially if it is associated with papillary tumors®®. Often it is not
visible by cystoscopy, so a biopsy is needed for its diagnosis. Even so, CIS diagnosis
varies significantly according to the pathologist, showing concordance in 70-78%
of cases®.

At the same way that other types of bladder tumors, CIS can be multifocal and
to be present either in the bladder as in the upper urinary tract, prostatic ducts or

7
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prostatic urethra®®. This characteristic is known as pan-urothelial disease and

makes more difficult the management of the BC.

» Non muscle-invasive bladder cancer

Approximately 75-85% of tumors are NMIBC, being Ta tumors the most
frequent with 70% of cases. The rest of them are high grade T1 tumors (5-20%).

21-23 of

The staging and grading between Ta and T1 tumors present a 50%-60%
concordance between specialists. Usually, NMIBCs are associated with good
prognosis. However, they present elevated rates of recurrence (50-70%) and
moderate rates of progression (10-15%), being the 5-year survival ~90%?°.

Ta tumors are confined to the urothelium, have a papillary appearance and are
usually of LG. Recurrence is common when there is multiplicity but progression is
rare. The most important factor for progression is the grade of tumor®.

Many T1 tumors are understated, so tumor extension is greater than the
transurethral resection (TUR) specimen. Specifically, 33% of patients diagnosed
with NMIBC presented muscle invasion during cystectomy®®. This fact is important
and should be controlled because T1 HG tumor has been definite as an aggressive

and potentially lethal disease?*. In fact, T1 HG cancer has a 69% to 80% recurrence

rate and a probability of progression of 33% to 48% after the first TUR?.

» Muscle-invasive bladder cancer

MIBC is a complex disease. About 15% of patients diagnosed present
previously a non-invasive carcinoma. However, 80-90% of the MIBCs are primary
and approximately 5% of those present metastasis at diagnosis. MIBCs have less
favorable prognosis than NMIBC with 5-year survival <50% and common

progression to metastasis®.
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1.2.2 Diagnostic techniques

One of the most prevalent symptoms of BC is macroscopic or microscopic
blood in the urine (hematuria). However, several inflammatory benign conditions
that affect the bladder can be associated with this symptom. Therefore,
hematuria only has a 5% specificity in its diagnostic role?.

Urinary cytology is one of the principal method used for BC diagnosis for more
than 50 years. It presents advantages such as: is a non-invasive method, is not
affected by hematuria or chemical confounders such as pH or salt concentrations;
has reasonable in-house cost, and its preparation is relatively simple. However,
urinary cytology presents the following drawbacks: cytological interpretation is
user-dependent® and a normal cytology outcome does not exclude the existence
of a tumor. In fact, urinary cytology has a high sensitivity in HG tumors (84%) but
low sensitivity in LG and early tumors (16%)'. Hence, cystoscopy is still the
standard method for BC diagnosis and monitoring. Nevertheless, this not means
that cystoscopy is an ideal technique since it has limitations. Cystoscopy is an
invasive approach that requires specialized personnel and equipment, making BC
one of the most expensive tumors for health systems?®. Moreover, the sensitivity
and specificity of cystoscopy are operator-dependent (62-84%, 43-98%,
respectively)?’; pre-neoplasic lesions (dysplasias and hyperplasia), as well as, CIS
are imperceptible, and areas of inflammation can be confused with tumors. These
limitations are important, especially the overlooking of CIS at diagnosis since this
type of tumors are related to high risk of progression.

Fluorescence cystoscopy has been performed using violet light after
intravesical instillation of 5-aminolevulinic acid or hexaminolevulinic acid to
improve the detection of malignant tumors, specifically CIS?. But the value of

fluorescence cystoscopy for improvement of outcome in relation to progression
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rate and survival has not been demonstrated yet. Therefore, currently, CIS is
diagnosed by a combination of cystoscopy, urine cytology, and histologic

evaluation of multiple bladder biopsies.

1.2.3 Risk prediction models for non-muscle invasive bladder cancer

The European Organisation for the Research and Treatment of Cancer (EORTC)
and Club Urologico Espafiol de Tratamiento Oncologico (CUETO)® are two well-
studied risk assessment models that are used for prognostication of NMIBC.

Both systems incorporate the WHO 1973 tumor grade together with multiple
clinical variables in order to predict the recurrence and progression risk of a
patient'®. Each variable has a weight based on its predictive value, and by
summing the score of all variables the patients are categorized into low,
intermediate and high-risk groups, which present different probabilities of
recurrence and progression'4.

The EORTC criteria have been well established in the urological context and
are used to know the prognosis of patients with NMIBC and to select the optimal

treatment for each one.

1.2.4 Bladder cancer treatment

» Transurethral resection of bladder tumor

In patients with BC diagnosis, a TUR of bladder tumor followed by pathology
examination of the obtained specimen is recommended as a diagnostic procedure
and initial treatment step. In NMIBC the TUR allows to know the pathological
diagnosis and extirpate all visible lesions. A second TUR is necessary after

incomplete initial TUR if there is no muscle in the specimen after initial resection
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(with exception of Ta G1 tumors and primary CIS) and in all T1 tumors or tumors

with HG (except primary CIS)®.

» Treatment for non-muscle-invasive bladder cancers

Low-risk bladder cancer

Ta LG papillary tumors have the most favorable oncologic outcomes. In these
tumors, an immediate single postoperative instillation of chemotherapy within 6-
24h after complete TUR reduces the risk of recurrence for the first 2 years®.
Mitomycin C, epirubicin and doxorubicin are used as chemotherapeutic drugs®.
The instillation intends to destroy circulating tumor cells after TUR and residual
tumor cells at the resection site that could lead to future recurrences. High
variability in the 3-month recurrence rate has been observed, which could

indicate that the prior TUR was incomplete®.

Intermediate- and high-risk bladder cancer

Intravesical Bacillus Calmette—Guérin (BCG) immunotherapy is indicated in
intermediate and high-risk BC. BCG is an attenuated mycobacterium developed as
a vaccine for tuberculosis. Its mechanism of action remains unknown but involves
immune activation. BCG is internalized by urothelial cells and unchains a cascade
of cytokine production, including interleukins, tumor necrosis factor, interferon,
and granulocyte macrophage colony-stimulating factor. Subsequently,
neutrophils, macrophages, dendritic cells, and CD4* lymphocytes are recruited to
the site, resulting in cytotoxicity to BC cells®.

Although the complete response rate to BCG therapy in high-risk NMIBC
patients is high (80%), some patients have recurrences?*. When this occurs, other
conservative secondary treatments!® or early radical cystectomy (RC) can be
applied?.
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In the histological diagnosis of CIS, no consensus exists about whether
conservative therapy (intravesical BCG instillations) or aggressive therapy by RC

should be done, especially in combination with concurrent HG papillary tumors?®.

» Treatment for muscle-invasive bladder cancers

MIBC requires radical management, often in older patients with comorbid
conditions. RC with bilateral pelvic lymph node dissection is the standard
procedure, which increases overall survival in non-metastatic patients across all
tumor stages®.. In some cases, neoadjuvant chemotherapy with cisplatin can be
administered before RC. Timely diagnosis and early surgery are crucial to

improving patient outcomes.

1.3 Biomarkers of cancer

In 1998, the National Institutes of Health Biomarkers Definitions Working
Group defined a biomarker as “a characteristic that is objectively measured and
evaluated as an indicator of normal biological processes, pathogenic processes, or
pharmacologic responses to a therapeutic intervention”. In the specific context of
cancer, several types of biological samples coming from patients (blood, urine,
saliva, semen) are being used with the purpose of identifying dynamic and non-
invasive biomarkers of disease3*33, The TNM staging provides a basis to predict
survival, choice initial treatment, stratification of patients in clinical trials, and
uniform reporting of the end result of cancer management34. However, these data
offer static information about a disease and require a piece of the tumor to be
evaluated pathologically. Consequently, the use of biomarkers could be useful in
clinical practice, both to complement information about cancer staging or grading,

as for non-invasive diagnosis and monitoring of the disease. Besides, molecular
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target therapies are becoming more common and they need their associated
biomarkers to inform about the clinical response, independently of initial TNM
stage®. For all this, the field of biomarker research is booming and different
approaches have been developed considering different levels of molecular
regulation (genome, epigenome, transcriptome, proteome, and metabolome,
among others).

In the last years, the development of high-throughput techniques has evidence
that novel biomarkers can be discovered through several emerging technologies.
The analyses of biologic samples by technologies such as MS, NMR, microarrays
and next-generation sequencing (NGS), among others, have provided
opportunities to identify discriminant profiles (signatures), to be used as
biomarkers of diagnosis, prognosis, and monitoring. Nevertheless, limitations
related to study design, inter- and intraindividual variability and low diagnostic
sensitivity and specificity have prevented the translation of the biomarker to the
clinical routine. The ideal biomarker assay should be sensitive, specific, cost-
effective, fast, preferably non-invasive, and robust against inter-operator

variability.

1.3.1 Biomarkers of bladder cancer

In the last decade, advanced technology has utilized mostly urine of patients
with BC to identify non-invasive biomarkers for screening, early diagnosis,
surveillance, staging, and prognosis®. To date, many candidate biomarkers based
on proteins, circulating tumor cells (CTCs), circulating tumor DNA (ctDNA),
microRNAs (miRNAs), histone marks, exosomes, and metabolic profiles have been
reported in the context of BC, but only six urinary diagnostic tests have been

approved by the FDA for clinical use: BTA-STAT, BTA-TRAK and immunocytology
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(uCyt+) for BC surveillance, and NMP22 BC test kit, NMP22 BladderChek and
UroVysion for BC diagnosis and surveillance®%’. Other two tests based on mRNA
profiles (CxBladder, and Xpert Bladder Cancer) are also commercially available for
BC diagnosis and monitoring®3°. Even so, none of them outperforms cystoscopy

and have been implemented into the clinic.

1.4 Biology of cancer

1.4.1 Hallmarks of cancer

The definition of cancer encompasses a set of very complex diseases
characterized principally by an uncontrolled cell proliferation that leads to tumor
development. During this sequential process, the cells acquire capacities that
allow them to survive in a hostile environment. These capabilities represent the
hallmarks of cancer and are related to sustaining proliferative signaling,
insensitivity to antigrowth signals, resisting apoptosis, enabling replicative
immortality, inducing angiogenesis, and enhancing invasion and metastasis®.
Underlying these capabilities different cellular processes are involving such as
genome instability, inflammation, reprogramming of energy metabolism and

evading immune®,

1.4.2 Cancer metabolism

The studies performed in the last years have indicated that metabolic
reprogramming not only maintains the proliferation and growth of tumors
through supplying nutrients but also affects the tumor microenvironment and has

effect in immune system?!. This reprogramming of cellular metabolism can be
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dependent on oncogenic mutations but epigenetic and environmental processes
can influence.

Aided by emerging molecular tools, studies in cancer cell metabolism have
increased the knowledge about tumor-associated metabolic alterations in
different stages of its development. In particular, these metabolic alterations have
been grouped in several hallmarks that consider: the deregulated uptake of
glucose and amino acids (AA); the use of glycolysis/tricarboxylic acid (TCA) cycle
intermediates for biosynthesis and nicotinamide adenine dinucleotide phosphate
(NADPH) production; the increased demand for nitrogen; metabolic interactions
with the microenvironment and immune system; the altered fatty acid

metabolism; and the redox status*2.

» Metabolic hallmarks of cancer

Glucose metabolism

Cancer cells have to increase the uptake of nutrients from the environment to
supply bioenergetic and biosynthetic demands of proliferation and growth. The
two main molecules to support survival are glucose and glutamine (Gln), since
their carbon skeletons can be oxidated allowing capture reducing power in the
form of nicotinamide adenine dinucleotide (NADH) and flavin adenine
dinucleotide (FADH) that is used in electron transport chain in the mitochondria
as fuel to ATP generation; or in the form of NADPH, which is used in biosynthetic
reactions but also to maintain cellular redox state®2.

Glycolysis is an oxygen-independent metabolic pathway that uses glucose as
initial substrate to create pyruvate and other carbon intermediates, which can be
used in a wide variety of metabolic pathways. For example, the intermediate
dihydroxyacetone phosphate that serves as a backbone precursor for diverse
phospholipids (PLs), or the glucose 6-phosphate that is used into pentose
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phosphate pathway (PPP) to generate reducing power, pentoses but also ribose-
5-phosphate a precursor for nucleotide synthesis*2.

On the other hand, the pyruvate obtained in glycolysis can be derivated
towards two processes: one anaerobic (lactic fermentation), and other aerobic,
which involves the generation of acetyl-Coenzyme A (acetyl CoA), its oxidation in
TCA cycle and the use of the reducing power obtained to create ATP in the
electron transport chain (oxidative phosphorylation (OXPHOS)). Although OXPHOS
offers a higher energy performance than lactic fermentation (36 ATP versus 2
ATP), in 1927 Otto Warburg observed that cancer cells preferred to oxidize
glucose through anaerobic respiration, even in oxidative conditions* (Figure 1.3).
Why proliferative cancer cells would prefer a pathway less beneficial? Tumor cells
require energy but also precursor molecules and reducing equivalents coming
from glucose catabolism. Although TCA cycle offers these two demands, it is the
major negative regulator of glucose metabolism*. Therefore, by deriving the
excess of pyruvate to lactate production, the tumor cells would prevent the
accumulation of NADH and ATP, promoting the metabolism of cytosolic glucose
free of repressive feedback.

Regarding glucose regulation, this metabolic pathway is controlled by itself
through the activity of three key allosteric enzymes; hexokinase (HK),
phosphofructokinase (PFK) and pyruvate kinase (PK), which converts
phosphoenolpyruvate (PEP) in pyruvate in the last step of glycolysis*. Moreover,
signaling pathways such as phosphatidylinositol 3-kinase pathway (P13K/Akt) also
acts as a master regulator of glucose uptake. Genetic alterations of PFK isoforms
has been related with an invasive and more aggressive state of the disease
(MIBC)*#®; and the upexpression of the variant PKM2 (an oncogene) with poor
prognosis for BC patients’’. Unlike PKM1 that is more efficient promoting

glycolysis, PKM2 is ineffective promoting glycolysis but provides an advantage to
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tumor cells since allows carbohydrate metabolites to enter other subsidiary
pathways, including the hexosamine pathway, uridine diphosphate (UDP)-glucose
and glycerol synthesis, and PPP*® (Figure 1.3). Its high expression in various solid

tumors renders it a potential biomarker of tumor development and invasion.

Amino acid metabolism

Moreover to the well-established role for altered glucose metabolism in
tumors, recent investigations highlight the involvement of AA metabolism in
cancer, especially GIn. GIn plays important functions in cells due to they can use it
for energy production, as a source of reducing power, but also as a source of
carbon and nitrogen needed to generate nucleotides and other non-essential AAs.
Besides, GIn maintains the pool of intermediate metabolites such as acetyl CoA or
a-ketoglutarate (a-KG), both important for the anaplerotic reactions of TCA cycle
and is the substrate for the generation of glutathione (GSH). Glutaminase (GLS) is
the enzyme that converts GIn to glutamate (Glu), which is used by alanine
aminotrasferase (GPT2) to produce a-KG (Figure 1.3). GLS has been demonstrated
to be regulated by oncogenes and to support tumor cell growth*.

NORMAL CELL TUMOR CELL

glucose glucose

Glycolysis

lactate ’'d

o a-ketoglutarate

TCA cycle T GPT2
glutamate

Glycolysis pyruvate

pyruvate

glutamine

Figure 1.3 Metabolic changes in cancer cells.
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Serine (Ser) can be synthesized through a glycolytic intermediate, the 3-
phosphoglycerate. Ser has a unique metabolic role in the cell as a major substrate
for one-carbon metabolism, which is involved in several cell processes:
epigenetics, redox status, genome maintenance, protein translation, and
biosynthesis of lipids and nucleotides for cell proliferation®®. The role of one-
carbon as a driver of tumor pathogenesis and tumor maintenance, including

genome integrity and epigenetic maintenance, has also been described®.

On the other hand, many AA, enzymes, and metabolites have been
described as immunosuppressive in the tumor microenvironment and have been
postulated for cancer therapy®l. For example, the enzymes related to tryptophan

(Trp) and arginine (Arg) metabolism.

Arg is a nonessential AA for healthy humans, but under certain conditions
of disease, it becomes essential. Arg is an important precursor for protein, urea
and creatine synthesis, as well as for the synthesis of important molecules (e.g.
Glu, nitric oxide (NO) and agmatine) related with signaling processes®! (Figure
1.4). Moreover, Arg plays an important role in immune regulation by affecting the
immune response and inflammation®2,

Trp is another nonessential AA related to the regulation of immune tolerance
and anti-tumor immune responses. Trp is catabolized to kynurenine by the action
of two enzymes, indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-
dioxygenase (TDO)>! (Figure 1.4). Several studies have suggested the potential
role of these metabolites and enzymes in cancer and their link with an

immunosuppressive microenvironment>*>*,
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Figure 1.4 Integrated representation of amino acid metabolic pathways in cancer cells.
Note: ASL: Argininosuccinate lyase; ASS1: Argininosuccinate synthetase 1; BCATc: Cytosolic
branched chain aminotransferase; a-KIC: alpha-ketoisocaproate; 5-HTP: 5-
hydroxytryptophan;, mTHF: Methyltetrahydrofolate; OAA: Oxaloacetate; 3-PG: 3-
phosphoglycerate; PHGDH: Phosphoglycerate dehydrogenase; 3-PHP: 3-phosphohydroxy
pyruvate; THF: Tetrahydrofolate; TPH1: Tryptophan hydroxylase-1.

The role of the branched chain AAs (BCAAs) such as leucine (Leu),
isoleucine (lle) and valine (Val)) has also been studied in cancer. BCAAs constitute
~40% of the essential AAs requirements of healthy individuals and they have an
important role for protein synthesis but also as nitrogen donors for alanine (Ala)
and GIn production. In addition, the role of Leu has been related to with the
regulation of the signaling pathway mTOR, which regulates protein translation,
cell growth, proliferation, and autophagy (Figure 1.4). T cells are very sensitive to
mTOR pathway to develop correctly their functions. Therefore, Leu is presented
as an important nutrient signal that is sensed by the immune cells via mTOR

pathway and it is critical for their proliferation.
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Fatty acid metabolism

The fatty acid (FA) metabolism is required for essential cellular processes such
as energy storage, membrane proliferation, generation of signaling molecules,
redox balance and oxidative stress balance>>® (Figure 1.5). Then, understanding
how cancer cells modulate it could be useful in the development of target

therapies but also in biomarker discovery approaches.

Lipids include a diverse group of molecules such as triacylglycerides (TG),
PLs, lyso-PLs, sterols, and sphingolipids. FAs are the main building blocks for the
synthesis of TG that are used for energy storage. PLs include phosphatidylcholine
(PtdCho) and phosphatidylethanolamine (PtdE) and together with sterols, lyso-PLs
and sphingolipids, are the major structural components of biological
membranes®>>®, Other several lipids can also have important roles in signaling,
functioning as second messengers and as hormones>®(Figure 1.5).

Diet mobilisation from de novo synthesis of FA
adipose tissue

\/

Fatty acids
|
[ |
Membrane Membrane Lipid doplet NADPH Cholesterol
synthesis saturation formation formation lipid hormones
Cellgrowth and Oxidative stress Survival under Redox balance Proliferation
proliferation resistance energy stress and invasion

Figure 1.5 Roles of lipids in cancer cells.

Citrate is an intermediate in the TCA cycle that together with the enzyme
ATP citrate lyase (ACLY) act as a nexus between glucose and FA metabolism.

When citrate is in mitochondria is lead into the TCA cycle, and when it is in
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cytoplasm it is converted to acetyl CoA by ACLY. Then, acetyl CoA is used by fatty
acid synthase (FASN) and acyl-CoA synthetases (ACS) to produce FA CoA> (Figure
1.6). FA CoA can be driven to different destinations: can lead to the formation of
reserve molecules such as TG; can be lead to diacylglycerol synthesis, which is the
precursor of PLs; or can be imported back into the mitochondria to obtain energy
in the B-oxidation process. B-oxidation is the metabolic pathway where the FA are
degraded producing acetyl CoA, which can be derived towards the TCA cycle to
produce reducing equivalents for OXPHOS. The FA CoAs are transported from the
cytosol across the outer mitochondrial membrane and afterward, they are
converted to FA carnitines by carnitine palmitoyl transferase 1 (CPT1). Currently, it
is unclear if high rates of FA degradation block proliferation or contrary provide

increasing ATP levels for cellular division®.

Redox status

Oxidative stress is produced from an imbalance in the production of
reactive oxygen species (ROS) and the cell's own antioxidant defenses.
Mitochondrial OXPHOS is the major cellular source of ROS production®®. ROS
deregulate the redox homeostasis and promote tumor development through
initiating an aberrant induction of signaling networks that cause tumorigenesis.
Cells have several defense systems that comprise detoxification enzymes such as
glutathione-S-transferases, NADP(H) quinone oxidoreductases, glutathione
peroxidases (GPx), catalase, superoxide dismutases (SODs), uridine 5'-diphospho-
glucuronosyltransferases (UGTs), among many others®, but also the tripeptide
GSH. GSH is an important cellular antioxidant that cells synthesize from glycine
(Gly), cysteine (Cys) and Glu. In cells, GSH appears mainly in its reduced state due

to the enzyme glutathione reductase (GSR), which is constitutively active. GSH
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reduces the presence of ROS, but also play a role in processes of innate and

adaptive immune system>®,

» Oncometabolites as a cancer biomarkers

Mutations or deregulated expression of genes encoding enzymes with key
functions in cellular metabolism produce the abnormal accumulation of
metabolites that can trigger metabolic dysregulation and a potential
transformation to malignancy. These metabolites have been termed
“oncometabolites”. The main oncometabolites that have been postulated as
biomarkers of cancer and have been linked with oncogenesis, come from loss-of-
mutations in genes encoding TCA cycle enzymes such as fumarate hydratase (FH)
and succinate dehydrogenase (SDH). These mutations cause the accumulation of
fumarate and succinate, respectively. On the other hand, the gain-of-function
isocitrate dehydrogenase (IDH) mutations increase levels of 2-hydroxyglutarate
(2-HG)*%°, The accumulation of succinate, fumarate, and 2-HG promote cancer
progression and position TCA cycle as mitochondrial custodian of the
methylome®’. Recent data suggest that both oncogenic mutations as
microenvironmental successes (e.g. hypoxia) could affect the metabolism

reprogramming of cells and then, the abundance of oncometabolites*!.

1.4.3 Genetic and epigenetic regulation of cancer

In the last years, there has been a rise in the study of metabolism and gene
expression, two bidirectionally connected and tightly coordinated cell processes
that allow tumors to adapt to the dynamic and changing environment through the
acquisition of pro-survival traits®’. Concerning genes regulation, several cellular

mechanisms can act to determine the expression or inhibition of genes: packing of
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DNA and histones in chromatin or epigenetic remodeling, transcription factors

(TFs) and alternative splicing (AS)®%2,

» DNA and histone methylation and acetylation

One of the main cellular regulatory processes that determines which genes
are activated is the post-translational modification of histones (predominantly
acetylation and methylation). These modifications alter the chromatin structure,
helping or preventing the recruitment of TF complexes that will ultimately

regulate gene expression.

Cancers usually display global DNA hypomethylation but hypermethylation of
CpG islands in genomic regions where tumor suppressor genes are located®.
These histone methyl marks can either activate or repress gene expression,
although hypermethylation is more related to repression. Methylation is linked to
the intermediate metabolism by means of S-adenosyl methionine synthetase
(SAM), an essential substrate involved in the transfer of methyl groups generated
in the folate and methionine (Met) cycles. The intracellular levels of SAM depend
on Ser and Met availability and control the activity of histone methyltransferases
(HMT) and DNA methyltransferases (DNMT) (Figure 1.6). Consequently, the
deprivation of these essential AAs induces reversible and rapid changes in histone
and DNA methylation, affecting the transcriptional landscape of cancer cells. Is for
this that Met cycle and one-carbon metabolism gene networks has been
postulated as the major determinants of DNA methylation status in human
cancer®l, Indeed, dysregulation of histone methylation in concrete chromatin
regions is a principal selective force for tumor progression and metastatic

potential®.
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On the other hand, the enzymatic removal of methyl groups by histone
demethylases (HDM) should also be considered. HDMs are modulated by the
oncometabolites a-KG, fumarate, and succinate®®. The levels of these
oncometabolites depend on the TCA cycle enzymes, so mutations in FH, SDH or
IDH would produce the accumulation of them. a-KG is a positive co-factor of the
HDM activity, unlike fumarate and succinate that are competitive inhibitors of
several HDM®! (Figure 1.6). The contribution of fumarate to tumorigenesis has
been shown in the context of FH loss. Fumarate accumulation triggers epigenetic
changes in a regulatory region of the antimetastatic miRNA cluster mir-200ba429.
The repression of miR-200 family leads to the expression of epithelial-
mesenchymal transition (EMT)-related TFs and the enhancement of migratory and
metastatic processes®. The deficient activity of SDH is also associated with global
DNA methylation changes and a migratory phenotype, and mutations in IDH
genes have been linked with oncogenic properties because they favor the
formation of 2-HG®!. 2-HG accumulation inhibits DNA demethylation and primes
cancer cells for transformation. 2-HG has been presented as an
immunometabolite that links the environmental with the immune system through
a metabolic—epigenetic network®’. Finally, acetyl CoA levels affect histone
acetyltransferases (HAT) and therefore, to global levels of nuclear histone

acetylation (Figure 1.6)°%.

Fumarate
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Figure 1.6 Crosstalk beween metabolism and chromatin.
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In brief, chromatin-associated enzymes detect levels of intermediary
metabolites and create dynamic chromatin modifications that ultimately regulate

adaptive transcriptional programs associated with oncogenic pathways.

» Transcriptional regulation of metabolic pathways

The changes in gene expression can also be derived from TFs activity. TFs are
proteins that control the rate of transcription of genes to mRNA through binding
to a specific DNA sequence (promoter or gene's enhancer response element). TFs
are downstream of signal transduction pathways and after signal reception, they
up- or down-regulate the expression of specific genes in order to make sure that
they are expressed in the right cell at the right time and in the right amount

according to cell needs®® (Figure 1.7).

Endogenous or exogenous signals

4

Oncogenic signaling

2

Transcription factors

1 r\
Gene expression
Up-, down-regulation

Z n Target proteins
of metabolic

pathways U

Figure 1.7 Scheme of the mechanism of transduction of signals.

Cellular processes
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In the context of cancer, several TFs have been related to oncogenic signaling
pathways. They include: Tp53, c-Myc, TWIST, E2F, GATA, PPARs, SREBP, Nrf2, FOS,
JUN, GABP, CTCF, HIF-1, among many others®>®4 However, the role of PPARs,
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HIF-1, Tp53, and c-Myc has been linked with metabolic processes such as: lipid

sensing, glucose homeostasis and glucose metabolism (glycolysis)®%97°,

Peroxisome-proliferator-activated receptors (PPARa, PPARB, PPARy) are
nuclear receptors that respond to specific ligands by altering gene expression’.
PPARs control the intracellular FA levels, acting as biological sensors of altered
lipid metabolism but also regulate gene expression programs that impact on

proliferation, differentiation, and survival in several tumor tissues®’.

The effect of hypoxia-inducible factor-1 (HIF-1), MYC, and p53 in cancer cells
is depicted in Table 1.1:

Table 1.1 TFs related to anaerobic glycolysis in cancer cells.

Molecule Function Activity in cancer Effect

Adaptative or . .
Up-expression of glycolytic genes, vascular

H . - :
HIF-1 . yp0).(|a COﬂStItL!tlve . endothelial growth factor (VEGF) and other
inducible; TF expression; gain . . . .
) proteins involved in hypoxic adaptation®?
of function.
Constitutive
- i fol h
MYC Oncogene; TF expression; gain pp expression o. actate de ydroger?ase,
. increases glycolysis and lactate production®®
of function
Tumor Mutated; loss of Represses lactate (MCT) and glucose (GLU'!')
p53 transporters and  enhances  aerobic

suppressor; TF function glycolysis and OXPHOS”

» The role of RNA alternatively splicing in gene regulation

Approximately 95% of the human genes coding for proteins undergo AS, a
regulated process of gene expression that greatly diversifies the proteome by
creating multiple proteins from a single gene through the use of alternative
promoters or the inclusion or exclusion of different exons or parts of exons in
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mRNA®2, This process is essential for normal biological processes but an
unbalanced of AS can drive to tumorigenesis by means of increasing the
production pro-carcinogenic isoforms and the reduction of anti-carcinogenic
isoforms. Aberrations in AS are produced by mutations or deletions of regulatory
sequences or by dysregulated expression of RNA-binding proteins participating in

splicing®2.

In the context of cancer cells metabolism, several metabolic enzymes present
AS as a mechanism of regulation of metabolic pathways but few have been well

studied (e.g. PKM2, GLS, and oxoglutarate dehydrogenase (OGDH)*6273,

1.5 Metabolomics

Metabolomics evaluates, identifies and quantifies endogenous and exogenous
metabolites that are present in a biological sample. Fiehn defined this term as a
“comprehensive and quantitative analysis of all metabolites in a system”3:,
Another term liked with metabolomics is metabonomics. Nicholson et al. defined
metabonomics as “quantitative measurement of the dynamic multiparametric
metabolic response of living systems to pathophysiological stimuli or genetic
modification”33. Nevertheless, both terms are commonly used interchangeably.

The metabolome includes the complete set of small molecular weight organic
molecules (<1500 Da) within a biological system. The metabolome is highly
dynamic and reflects the perturbations of genome, transcriptome, and proteome
(Figure 1.8), but it is also influenced by environment and "in-vironment" (i.e. gut

microbiota’). Therefore, metabolome is considered the closest representation of

the phenotype”. The nearness of the metabolism to an organism’s phenotypes
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indicates that it will be affected by a pathology and therefore, its metabolites or

metabolic profiles can be used as biomarkers of a disease’.
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Figure 1.8 The “omics” cascade

Nowadays, there are several public metabolomics databases available. One of
the largest organism-specific database is the Human Metabolome Database
(HMDB)”’. HMDB contains detailed information about metabolites in several
samples collected from the human body (urine, tissue, blood...). Specifically, it
contains more than 41000 metabolites that include both water-soluble and lipid-

soluble molecules as well as abundant and relatively rare metabolites”’.

1.5.1 Basic structure of a metabolomic study

Currently, three approaches are used for metabolomic studies: untargeted,
targeted and semi-targeted’® 8%, On the one hand, targeted and semi-targeted
metabolomics studies focus on accurate identification and quantitation of a
previously defined set of metabolites in biological samples, so they may not be
considered as a true 'omic' approaches”™. On the other hand, untargeted
metabolomics aims to characterize the maximum number of metabolites in a

given biological sample. It aims at the unbiased profiling of the metabolome to
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link specific patterns of metabolites to a given treatment or condition (e.g. healthy

vs diseased)®!. This approach is usually linked with biomarker discovery.

A basic workflow of a untargeted metabolomic study is depicted in Figure 1.9.
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Figure 1.9 Analysis workflow in untargeted metabolomic studies.

In an untargeted metabolomics study, the first step is to establish the
hypothesis of work and define the objectives. According to this, the study is
designed, and the samples of interest, the sample size and additional
experimental conditions including: the analytical platform for the analysis of
samples (e.g. NMR, HRMAS NMR, MS), the pre-processing of samples, data
acquisition parameters, and quality analysis and quality control (QC) criteria.

After data acquisition, spectral processing and data analysis, metabolite
identification has to be performed. This step is indispensable to give a biological
meaning to the associated features in a metabolomic study®’. The use of
reference spectral databases is usual. Once identified the principal metabolites of
the study, a pathway analysis can be interesting to know the relationship between
metabolites and metabolic pathways (Figure 1.9). Biological databases such as
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Kyoto Encyclopedia of Genes and Genomes (KEGG)®, small molecule pathway
database (SMPDB)®, WikiPathways®>, and MetaCyc® offer exhaustive information
of a large number of metabolic pathways. The availability of this data is essential
in metabolomics studies to understand cell metabolism. These methods are
referred to as metabolite set enrichment analysis (MSEA) and are
methodologically based on the gene set enrichment analysis (GSEA) approach,

designed for pathway analysis of gene-expression data®?.

1.5.2 Techniques for the study of metabolome

In order to acquire reliable and valid metabolomic data, it is critical the use of
comprehensive techniques to provide a high metabolomic coverage in biological
samples, in a reproducible way and preferably at a low cost. The comprehensive
analysis of the complete set of metabolites in biological samples is a technological
challenge due to the wide range in physicochemical properties and concentration
ranges of the metabolites. Current analytical platforms, including gas
chromatography (GC), liquid chromatography (LC), capillary electrophoresis
coupled to MS, and NMR spectroscopy present advantages and limitations, but
none of them enables a complete qualitative or quantitative detection of the
whole metabolome. Therefore, the combined use of different analytical
approaches is required to increase the coverage of obtained metabolomic profiles
that otherwise cannot be achieved by single-analysis techniques®’. Although a
comprehensive comparison of the main characteristics of each technique is out of
the scope of the Ph.D. Thesis, it is worth to review their main advantages and

disadvantages.
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1.5.2.1 Nuclear Magnetic Resonance

NMR spectroscopy was developed in the late 1940s to study atomic nuclei and
is described as “...the study of molecular structure through measurement of the
interaction of an oscillating radiofrequency electromagnetic field with a collection
of nuclei immersed in a strong external magnetic field”®’. Its use in metabolomics
is based on the study of nuclei magnetically active such as 'H, 3C, °F, and 3'P.
Usually, in NMR metabolomics studies, the nucleus most used is the proton (*H),
since it is present in 99.9% of biomolecules.

In presence of an external magnetic field, these atomic nuclei undergo a
splitting of energy levels: low (a) and high (B). The application of a radiofrequency
pulse, perpendicular to the direction of magnetic field, causes energetic
transitions. The energy of radiation necessary to produce this shift depends on the
type of nucleus, its chemical environment, the type of nuclei present on its vicinity
and the strength of the applied magnetic field. When the radiofrequency pulse
ends, the excited nuclei release the excess energy returning to the state of
equilibrium (relaxation). In this process, the magnetization disappears giving rise
to what is known as Free Induction Decay (FID), which provides information about
the irradiated sample. The FID is a time-dependent function that can be
transformed into a signal spectrum dependent on the frequency by using the

Fourier-Transform (Figure 1.10)
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Figure 1.10 Scheme of NMR spectra adcquisition

NMR spectroscopy provides both, quantitative and qualitative information.
On the one hand, the area under each peak can be related to the concentration of
a given metabolite in the sample. On the other hand, metabolite annotation may
also be carried out based on chemical shifts observed in an NMR spectrum. The
position of each peak in the NMR spectrum is defined by the chemical shift. It is
expressed in parts per million (ppm) relative to an added reference compound,
usually 3-trimethylsilyl propionate (TSP) or 4,4-dimethyl-4-silapentane-1-sulfonic
acid (DSS) or relative to internal metabolites (e.g. Ala, creatine), whose signals
appear well defined in all samples and their chemical shift is insensitive to their

specific characteristics.

NMR-based experiments

The spectral data obtained with NMR techniques can be referenced to
one or two frequency axes. To date, one-dimensional (1D) *H NMR spectra is the
most commonly used method in high-throughput metabolomics studies,
especially in disease diagnosis, prognosis or monitoring. However, other nuclei

that take part of important biomolecules such as 3'P or >N have been considered
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for the study of PLs or the study of proteins, RNA or DNA, repectively®”. The most
used pulse sequences in 'H NMR experiment are 1D NOESY and CPMG.

1D NOESY sequence contains a small mixing period that improves the
suppression of the water signal, the phase, and the baseline. This experiment
provides a simple, highly reproducible and robust method for the acquisition of
high-quality NMR spectra in aqueous solutions. This technique is undoubtedly the
most widely used in terms of water suppression® and is applied in a sequence of
pulses known as noesy-presat®®, where the water signal is saturated through
selective irradiation.

CPMG (Carr Purcell Meiboom and Gill) sequence is based on the
relaxation proprieties of the nuclei and is the most used in the analysis of plasma
and serum samples since these samples have a high level of proteins. This
sequence allows the elimination of the wide signals in the spectrum coming from
these biomolecules, thus improving the resolution of low molecular weight
signals.

'H NMR provides the most sensitive signal but, due to its small chemical
shift range, an overlapping of peaks results from a mixture of biochemical species
(e.g. proteins, lipids, and low-molecular-weight metabolites) making the spectral
assignment a challenging task. To solve this problem two-dimensional (2D) NMR
spectroscopy is applied. The second dimension allows to separate otherwise
overlapping spectral peaks and, therefore, offers additional information on the
chemical properties of the metabolite. Globally, 2D NMR spectra can be classified
into homonuclear (i.e., *H-'H-NMR) and heteronuclear (i.e., *H-3C or *H-*°N)®,
Most commonly used 2D NMR experiments include the homonuclear through-
bond correlation methods correlation spectroscopy (COSY), the total correlation

spectroscopy (TOCSY) and nuclear overhauser effect spectroscopy (NOESY); and
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the heteronuclear single-quantum correlation spectroscopy (HSQC)”*. The choice

of the type of experiment will depend on the requirements of the study.

Finally, NMR-based metabolomics analysis in semisolid biospecimens such
as tissue biopsies, cells, and organisms has been possible by the use of HRMAS
NMR spectroscopy®®°2. The molecules within the tissue have restricted mobility
and their nuclei are subject to static anisotropic NMR interactions, resulting in
broad lines of the NMR spectra. The use of rapid spinning of the sample (typically
5 kHz) around an axis inclined 54.7° (the magic angle) to the direction of the static
magnetic field reduce line broadening. Consequently, HRMAS mimics a liquid
solution state, yielding spectral resolutions close to that of extracts’*. HRMAS
NMR provides an efficient way to identify the metabolites present in tissue
without pre-preparation steps such as extraction. Specifically, HRMAS NMR
spectroscopy is the only technique available for the analysis of intact tissue®.
Besides this, HRMAS NMR does not destroy the samples, so they can be used in

posterior studies (e.g. MS-based metabolomics, transcriptomics, and proteomics).

NMR-based studies: advantages and drawbacks

Compared with other analytical platforms NMR spectroscopy may be
considered as a fast and reproducible method in metabolomics research® since
through flow-injection NMR probes is possible to screen hundreds of samples in a
day. Moreover, this techniqgue has an unequaled cross-laboratory
reproducibility®*®; allows the analysis of samples collected from non-invasive way
(e.g. urine, blood, and seminal fluid)®”%; requires small sample amounts and
minimal or no sample preparation®; and it is no destructive®™, which make

possible further analyses with the same samples (Table 1.2). This is also true for

HRMAS NMR spectroscopy’. Additionally, the non-invasive nature of NMR
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spectroscopy makes it an ideal technique to be used for in vivo studies, referred

to as magnetic resonance spectroscopy or magnetic resonance imaging.

Its low sensitivity is the main disadvantage of NMR spectroscopy since
only metabolites in mM range concentrations will be detected®”*3, Nonetheless, if
NMR can identify a biomarker by the analysis of a relatively small number
metabolites, this may be considered an advantage, due to profiling thousands of

metabolites would be a complicated task.

1.5.2.2 Mass Spectrometry

Ultraperformance Liquid Chromatography—Mass Spectrometry (UPLC-MS)
is one of the most powerful and widely used technique for untargeted
metabolomic analysis in biomedical research. Recent developments in
chromatographic instrumentation such as core-shell particles, narrow bore
columns packed with sub-2 pum particles and LC instruments operating at
pressures up to ~1400 bar have dramatically enhanced the chromatographic
efficiency enabling higher separation performances in less analysis time®.
Besides, the availability of high-resolution MS instrumentation such as time of
flight (TOF) and the development of improved interfaced for the online
hyphenation of chromatographic separations and MS ionization has extended its
application to almost every area of biomedical research®’.

The main advantages of MS-based metabolomics include its high
sensitivity, several orders of magnitude lower than NMR; its high resolution and
selectivity; and the possibility of performing fragmentation analysis thus
confirming the identity of the detected metabolites and the identification of
unknown and unexpected compounds®. All the strengths and weakness of this

technique respect to NMR are detailed in the following table:
35



Table 1.2 Strengths and drawbacks of NMR and MS

Introduction

Strengths Weakness
MS -High sensitivity (detection limit reach  -Destructive
nano-picomolar) -More demanding sample
- Can be wused for selective and preparation: optimization of
nonselective analysis (targeted, ionization conditions
untargeted analysis) -Tissue analysis require extraction
-Wide detection range
-Easy metabolite identification-databases
availability
-Possibility to couple with separation
techniques
- Need a small amount of sample
NMR  -Rapid -Limited sensitivity
-Non-destructible -Low specificity
-High-throughput -High sample volume requirements

-Minimal sample manipulation

-Using HRMAS NMR tissue samples are
analyzed directly

-Very high reproducibility

-All metabolites at NMR concentration
level can be detected in one
measurement

- Allows in vivo studies

In this context, UPLC-MS was selected in this Thesis as a complementary

analytical technique to NMR spectroscopy, using electrospray (ESI) for the

ionization of analytes prior to MS detection.

In ESI a high voltage is applied to a liquid sample to assist the transfer of

ions from solution into the gaseous phase before MS analysis. This process is

carried out through three steps that include: dispersal of a fine spray of charged

droplets, followed by solvent evaporation and ion ejection from

the highly

charged droplets. These ions are passing down towards the mass analyzer, in our

case a TOF, where they are accelerated by an electric field and separated and

subsequently detected according to their m/z ratio®.
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Metabolite annotation in UPLC-MS can be based on accurate mass (i.e.
m/z), retention times (RT) and MS/MS fragmentation patterns (see Figure 1.11).
Depending on the type of information employed for the annotation, several
confidence levels can be defined. Level 0 includes stereochemistry discrimination;
Level 1 requires the analysis of a standard in the same instrumental conditions
and at least two orthogonal techniques such as m/z and RT; Level 2 involved the
identification supported by the analysis of a class-specific standard; Level 3 is
based on a single parameter, typically m/z and finally, Level 4 is feature level
without annotation (i.e. m/z-RT)%.

So, tandem MS (MS/MS) analysis improves the identification of
compounds and facilitates the determination of the structure of unknown
compounds based on MS/MS fragments originating from the same molecule.
However, MS/MS analysis in untargeted metabolomics also presents several
limitations. Each molecule presents optimal fragmentation energy which is
unknown in advance. Small molecules may generate a few characteristic
fragments hindering the interpretation of MS/MS spectra. Also, a high percentage
of molecules in metabolomics UPLC-MS data sets are of low abundance, reducing
the quality of acquired MS/MS spectra. On top of that, the MS/MS analysis
reduces the sensitivity of UPLC-MS and because of that, the analysis is normally
repeated a number of times. This strategy increases the amount and quality of

MS/MS data but also the sample requirements.

ESI

*i%{*%i :

Figure 1.11 Scheme of UPLC-MS/MS analysis
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Quality control procedures in UPLC-MS analysis

UPLC-MS generates information-rich data sets. However, data must be
appropriately handled to generate consistent, meaningful and reproducible
results. A crucial aspect to increase the reproducibility of metabolomic studies
and to report the quality requirements after data acquisition is the
implementation of QC procedures during design and analysis, typically supported

by the injection of blanks and pooled QC samples.

The analysis of biological extracts (e.g. diluted urines) by UPLC-MS leads to a
cumulative build-up of matrix components and metabolites in the analytical
system that causes non-linear drifts in chromatographic and MS performances
affecting the RT, signal intensity, and mass accuracy. To overcome this potential
pitfall, UPLC-MS metabolomic experiments are normally designed including an
initial system pre-conditioning by repeated injections of a pooled QC samples to
reach a system steady state. Therefore, the use of QC samples allows conditioning
the analytical platform, performing intra-study reproducibility measurements (QC)
and to correct mathematically systematic errors®®. The data pre-processing
pipeline also must include the elimination of background and contaminant
features in the data set arising from non-biological sources (e.g. solvents
impurities and stabilizers, plasticizers, reagents used during sample clean-up,

cumulative carryover contamination)®.

1.5.3 Data analysis in metabolomics

After careful data pre-treatment, the resulting UPLC-MS or NMR peak tables
are high-dimensional data matrices with relatively few observations (samples)
compared to variables (peaks). Multivariate analytical tools reduce the complexity

or dimensionality of the data sets into a more manageable number of dimensions,
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considering all the metabolomic features simultaneously and thereby identifying
relationship patterns between them are required!®. These pattern-recognition
methods may be classified into two groups: unsupervised and supervised
methods®2. Unsupervised techniques do not require foreknowledge of the classes
of the samples included in the data. Supervised techniques aim at getting insight
into underlying biochemical differences associated with previous information

about the considered samples (e.g. collected from healthy or disease volunteers).

» Unsupervised data analysis

Principal component analysis (PCA) is the most commonly used unsupervised
analysis for detecting trends or patterns in the data, such as subgroups or
outliers’#!%2, PCA is based on the linear transformation of the features into a set
of linearly uncorrelated variables that are called Principal Components (PCs). This
transformation maximizes the variance explained by the first component while
the subsequent components explain increasingly reduced amounts of variance®,
The results of a PCA are shown graphically in terms of ‘scores’ and 'loadings'. The
scores plot contains the information about the samples of the original matrix,
where each point corresponds to an observation and summarizes the relationship
between them; while the loading plot contains the information about the
variables. In this case, each point represents one point of the spectrum and its
distribution explains the relationship between them. The loading plot allows to
interpret the spatial distribution of the samples in the score plot and identify the
variables responsible for the observed patterns. The information from both plots

can be jointly analyzed®,
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> Supervised data analysis

Unlike unsupervised methods, supervised strategies exploit previous
information to identify metabolomic profiles associated with a phenotype of
interest’*82, Several methods have been applied in metabolomics to achieve this
purpose including univariate (e.g. t-test, one-way ANOVA, Wilcoxon rank sum
test), fold changes or on multivariate strategies such as linear discriminant
analysis, principal component discriminant analysis, support vector machines,
random forests, artificial neural networks or partial least squares discriminant
analysis (PLS-DA). Among them, PLS-DA is arguably the most popular'®,

PLS-DA is able to find the fundamental relations between two matrices: an X
matrix containing independent variables (e.g. spectral intensity values) from the
samples and a Y matrix containing dependent variables (i.e. class, gender, stage of
the tumor, grade). Therefore, PLS-DA is used to identify profiles able to
discriminate two groups of samples (e.g healthy vs diseased) with predictive
capacity®.

Unlike PCA, PLS components do not maximize the explained dataset variance
but the covariance between the variable of interest and the metabolomic data.
Hence, the feature coefficients (loadings) of PLS components represent a measure

of the relative contribution of a given feature to the observed discrimination

between the sample groups®?.

When a classifier is developed, its performance should be assessed to provide
an estimate of its prediction accuracy beyond the training data set and ensure the
lack of model overfitting. The ideal design would include the split of initial data
into three independent subsets that were representative of the whole population
and considered the different sources of variation. These sets would include a
calibration set to adjust the model, a validation set to select the optimal model
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parameters such as the number of latent variables (LVs) in PLS-DA, and a
validation set to estimate its predictive accuracy. Nevertheless, when the sample
size is small another feasible strategy should be applied. In these cases, internal
validation using resampling methods such as cross-validation (CV) is often
applied®,

CV approaches estimate the predictive performance of a classifier using an
iterative approach. At each round of CV, samples are split into exclusive subsets.
Then, a single subset (validation set) is used to evaluate the model performance,
which has been created using the remaining sets of samples. This procedure is
repeated several times so that all the samples have been used once as a validation
group. Averaging these results, an unbiased estimate of the performance of the
predictor is obtained®. Then, a permutation test is carried out to assess the
significance of CV.

In a permutation test, the class labels are randomly assigned to samples and a
new classifier is trained and CV using the relabeled data set. This process is
repeated hundreds or thousands of times and the accuracy estimates got using
random class labels is contrasted to the accuracy estimate got using true class
labels. After this, a p-value is calculated considering the fraction of values where
the classifier showed better classification performance in the random than in the
initial set. Considering that the null distribution assumpts that no differences exist
between sample groups, if the p-value is lower than a user-selected threshold
(e.g. 0.05) the null hypothesis would be dismissed and it would be assumed that

the classifier is significant®,
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1.6 Transcriptomics

Transcriptomics is the study of the whole transcriptome, which includes
the complete set of RNA transcripts that are produced by the genome under
specific circumstances or in a specific cell. Transcriptomics uses high-throughput
methods to identify genes that are differentially expressed, but also informs
about other characteristics linked with alterations or modifications in DNA
sequence. At the same way that metabolome, the information provided by RNA
transcripts is highly dynamic and reflects the cellular phenotype associated with

molecular alterations in genes (e.g. cancer).

Cancer cells are characterized by altered protein function and aberrant
transcriptional patterns, which are the consequence of somatic mutations and
epigenetic alterations. Therefore, the transcriptomic analysis allows analyzing the
heterogeneity of tumors to discover new biomarkers or therapeutic strategies®°.
Although the capacity to describe the molecular alterations of cancer was
historically one of the primary applications of transcriptomics, the development of
techniques for whole-transcriptome sequencing has provided data about chemical
modifications, interactions, somatic mutations including single nucleotide
variants, gene fusions and amplification of the transcripts studied. Hence, the
study of alternative splicing, RNA editing, post-transcriptional modifications, and

various non-coding RNAs (ncRNAs) is currently a crucial aspect of

transcriptomics®.
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1.6.1 Techniques for the study of transcriptome

Continued advances in transcript profiling over the last four decades have
increased our understanding of the genetics and molecular biology of cancer. The
development of new experimental methodologies, together with advances in
bioinformatics, have led to important discoveries in cancer. Behind that progress
was the constant push for an increase in the breadth, depth or fidelity of

measuring cellular RNA®,

The study of the transcriptome was initiated in 1977 with the
development of the northern blot and the first sequences of cloned
complementary DNAs (cDNAs). The later development of reverse transcription
polymerase chain reaction (RT-PCR) made possible to identify cellular mRNAs in
an unbiased way. However, these low-performance techniques only allowed the
qualitative or semiquantitative analysis of a few candidate genes for each analysis.
Subsequently, the development of the quantitative technique RT-qPCR improved
the methodology in many aspects and increased the performance, since several
transcripts could be analyzed at the same time, although this was still far from a
large-scale coverage of the whole transcriptome. With the appearance of the
microarrays, the characterization of expression levels of thousands of transcripts
could be achieved simultaneously and a cost-effective way, and more recently the
development of NGS techniques have revolutionized the world of research due to
their applications in molecular diagnostics. NGS makes possible the sequencing of
DNA but also the sequencing of all RNA molecules present in a sample (i.e.
complete transcriptome). This technology is called RNA-Sequencing (RNA-Seq)%.
Recently, NanoString, another technique that allows the measurement of gene
expression with high levels of precision and sensitivity, is being applied in clinical
practice for disease diagnosis. Although this technology is still in the early stages
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of clinical use, it is expected that in the future it may have important functions in
the context of cancer, both in patients’ stratification as in predicting the response

to therapy'?’.

1.6.1.1 RT-qPCR

When the starting material is RNA, either total RNA or mRNA, the RT-qPCR
transcribes this into cDNA by reverse transcription. Reverse transcriptase is the
enzyme that makes DNA from RNA. The cDNA is then used as the template for the
PCR reaction. Some reverse transcriptases have RNase activity to degrade the RNA
strand in the RNA-DNA hybrid during the first cycles of PCR. If an enzyme does not
possess RNase activity, an RNaseH may be added for better qPCR efficiency®,

The quality control of RT-qPCR process is performed at first time by
primer design. The optimum primers are those that reduce the risk of false
positives from the amplification of any contaminating genomic. Hence, internal
control of genomic DNA or PCR product from a previous run can be used as

negative control to observe if there is amplification.

Applications of RT-gPCR

RT-gPCR is used in several applications including gene expression analysis,
microarray validation, pathogen detection, genetic testing, biomarker analysis,

and disease research'1°,

1.6.1.2 Microarrays

Microarrays have been applied most intensively to the field of cancer
research. The basic premise behind a microarray is that thousands of fragments of
DNA (the probes) representing various genes (or their fragments such as exons or

exon junctions) are attached to a small surface of an inert material (often referred
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to as a “chip”), which provides a genome-wide view of gene expression!'’. Since
the location of the gene probes is predetermined, the relative or absolute amount
of RNA for each of the genes on the chip can be calculated!'?. The workflow in

microarrays experiments is depicted in Figure 1.12.

Target preparation Image acquisition Databases and Statistical analysis Biological interpretation
and hybridation and quantification normalization and Data mining (bioinformatics)

Figure 1.12 Workflow in microarrays experiments

Previous to perform microarray analysis, the quality and quantity RNA is
assessed by the use of microcapillary-based devices such as the Agilent
Bioanalyzer (Agilent Technologies)'!3. After, the RNA is converted into a more
stable cDNA form by a reverse transcriptase. cDNA is labeled by fluorescent dyes,
and by complementarity, it hybridizes to the DNA probes attached to the array.
After removal of non-selectively bound fluorescent material, the microarray is
scanned by passing a laser beam. Microarray image is then analyzed to identify
the spots, calculate their associated signal intensities, and assess local background
noise. The ratio of the fluorescence intensity for each spot represents the relative
abundance of the corresponding DNA sequencel®3,

Most image acquisition software packages also have basic filtering tools to mark
extremely low-intensity or damaged spots. The image acquisition provides TIFF
image pairing and a quantified but not normalized data file. Therefore, data have
to be normalized in order to remove some sources of variation (e.g. differences in
labeling efficiencies, amounts of starting RNA materials, fluctuating hybridization
conditions), which affect the measured gene expression levels!'*. After data
normalization, statistical analyses are carried out to find genes differentially

expressed. Among others, Limma package has proven a popular choice for the
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analysis of gene expression data from microarray experiments®®, Limma provides
the ability to analyze comparisons between many RNA targets simultaneously,
and it has especially been designed for analyzing complex experiments with a
variety of experimental conditions and predictors. Recently, the capabilities of
limma have expanded significantly because the package allows to carry out both
differential expression and differential splicing analyses of RNA-seq data. These
capabilities allow users to analyze both RNA-seq and microarray data with very
similar pipelines. On the other hand, limma is now able to go past the traditional
gene-wise expression analyses in a variety of ways, analyzing expression profiles
in terms of co-regulated sets of genes or in terms of higher-order expression
signatures. This provides enhanced possibilities for biological interpretation of
gene expression differences!?®,

Finally, bioinformatic processes are crucial to facilitate the manipulation
and interpretation of biological data. Open access databases as The Cancer
Genome Atlas (TCGA), which include the characterization over 20000 primary
cancer and matched normal samples spanning 33 cancer types can be used to
compare the obtained results with the available information about a specific
tumor'?’; and cloud-based applications such as MeV4 (Multiple Experiment
Viewer) are used for the analysis, visualization, and stratification of large genomic
data, particularly for RNA-Seq and microarray data'!®, Besides this, other web
tools allow performing enrichment analysis such as GSEA, which determines if a
set of genes is enriched between two biological groups of samples (e.g., tumor vs
control)}®; or Chip Enrichment Analysis (ChEA) a web-based interactive
application where the users can input lists of gene symbols for which the
program computes over-representation of TF targets from the chip database!®.
Finally, Gene Ontology Biological Processes (GOBP) allows to relate deregulated

genes to biological processes?..
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Applications of microarrays in cancer

Microarrays have been used in the field of cancer for the identification of
SNPs, ncRNAs, miRNAs, differential splicing isoforms, mutations; identification of
cancer biomarkers, such as gene signatures; identification of genes associated

with chemoresistance, and in processes of drug discoveryt+112,

1.6.1.3 RNA-sequencing

RNA-seq makes possible to completely quantify the total RNA molecules
with high resolution and reproducibility, including coding and ncRNAs, miRNAs or
long-ncRNAs. RNA-Seq has overcome some drawbacks of previously used
technologies. Among its strengths spotlight: the ability to detect new transcripts,
wide dynamic range, high specificity and sensitivity and simple detection of rare

and low-abundance transcripts?*1%7,

At the same way that microarrays,
processes of quality control, alignment, quantification, and differential expression

have to be performed after sample analysis.

The advantages and disadvantages of RNA-seq versus microarrays are

summarized in Table 1.3.
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Table 1.3 Comparative advantages and disadvantages of microarrays versus RNA-seq

Advantages Disadvantages
Microarray  -Well-defined protocols for  -Analysis only for pre-defined
hybridization sequences
-Well-defined analysis pipelines -Dynamic range limited by scanner
-Standardized approaches for data  -Relies on hybridization
submission -Hybridization potentially non-specific
-Relatively low cost -Might not give paralogue
-Allows the study of samples with  information
poor RNA quality (e.g. formalin- -High variance for low expressed
fixed paraffin-embedded samples) genes
-Requires technical replication to
increase statistical robustness
RNA-seq -Not reliant on previous sequence -Protocols still not fully optimized

information

-High dynamic range

-Direct sequence alignment, no
hybridization

-AS detected if aligned to the

genome
-Paralogous genes can be defined
-Can be used for  SNPs

identification
-Has lower technical variation and
higher levels of reproducibility.

-High cost
-Requires
facilities
-High step-up costs if carried out in-
house

-Complex analysis of splice variants
-Requires high RNA quality to perform
the analysis

high power computer

Applications of RNA-Seq in cancer

RNA-Seq has been used extensively in cancer research. It has emerged as

a powerful transcriptomics technique for gene expression profiling, to study of AS

events associated with cancer, identification of allele-specific expression, disease-

associated SNPs and gene fusions contributing to our understanding about

disease causal variants in cancer

128-131
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BCs are the most common tumors of urinary and include two groups, MIBC
and MIBC, which have different management and clinical outcomes. NMIBCs
represent the 75-85% of diagnosed cases and due to its recurrent nature, lifelong
surveillance is recommended after TUR of the primary tumor, leading to frequent
cystoscopies for an early recurrence detection to avoid progression to invasive
disease. Although urinary cytology and cystoscopy are the goal standards
techniques for diagnosis and monitoring of BC, both have limitations. Cystoscopy
is expensive, operator-dependent, invasive and overlooks CIS. Urine cytology is
considered the most important non-invasive method in the detection of BC and
has demonstrated utility adjunct to cystoscopy when HG tumors or CIS are
present. Nevertheless, cytological interpretation is user-dependent and a normal
cytology outcome does not exclude the existence of a tumor, specifically in LG
tumors where the sensitivity decreases to 16%. Consequently, to reduce
morbidity and costs associated with cystoscopy, improved monitoring is
necessary, ideally via non-invasive urinary analysis.

To date, several urinary biomarkers have been approved by the FDA for
diagnosis or BC surveillance with sensitivities and specificities in the 50-80% range
but poor accuracy for low stage and LG tumors, so none of them have been
implemented in the clinical routine. Therefore, the non-invasive detection of BC
through urine analysis remains a challenge.

Metabolism reprogramming represents a hallmark of cancer. Tumors
reprogram pathways of nutrient acquisition and metabolism to supply their
bioenergetic, biosynthetic and redox demands. Then, metabolic profiles or single
metabolites can be used as biomarkers. Previous studies performed by MS and
NMR have identified metabolic profiles associated with colon, stomach, lung,
prostate but also BC, opening the possibility to identify novel non-invasive urinary

biomarkers. In the context of BC, prior studies have shown limitations in the use
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of a small sample size, lack of external validation, a limited reproducibility among
the compounds identified as potential metabolic biomarkers and inadequate
experimental design to identify biomarkers for monitoring disease progression.
Besides, previous metabolic studies have been focused mainly on identifying BC
diagnostic biomarkers comparing differences between urinary metabolome of
healthy versus BC patients. However, this experimental design might not be
adequate to identify biomarkers for BC monitoring, which should be highly
dynamic and should consider that after TUR some metabolites may not
necessarily return to normality as it would be the case in healthy patientes. Add to
this, the normal appearance urothelium can contain not observable pre-neoplasic
lesions by cystoscopy, such as hyperplasia or dysplasia, which may be responsible
of metabolic changes.

On the whole, these facts show the current lack of new dynamic and non-
invasive biomarkers for BC diagnosis and follow-up and give support to the use of

metabolomics as a technique for biomarker discovery.
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Hypotesis and objectives

The hypotheses underlying this doctoral Thesis are:

X3

%

The metabolic reprogramming of bladder tumors triggers

alterations in metabolic pathways.

The tissue metabolome can be used to identify biomarkers of

diagnosis and aggressiveness of BC.

The urinary metabolome reflects the genomic and metabolic

alterations produced in bladder tumors.

Urinary metabolome provides dynamic information about

tumor biology.

The urinary metabolome can be used to identify biomarkers

for diagnosis and monitoring of patients with NMIBC.
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Hypotesis and objectives

The general objective of this Thesis is to identify a non-invasive urinary

metabolomic profile for the diagnosis and monitoring of BC, which in turn is

related to the metabolic and transcriptomic alterations found in bladder

tumor tissues. This objective can be summarized in five general goals:

To identify by HRMAS H NMR analysis and chemometric analyses a tissue
metabolic signature to be used as a biomarker of diagnosis and

aggressiveness of BC.

To identify by HRMAS *H NMR and pathway analysis the main disturbed

metabolic pathways in BC tissues.

To know what metabolic genes are being involved in BC and the processes

that are responsible for their regulation.

To integrate metabolomics and transcriptomics data coming from tissue
analysis with the purpose of understanding better the biology of the

bladder tumor and the genes-metabolites networks.

To identify by 'H NMR and UPLC-MS and chemometric analysis urinary
metabolomic profiles to be used as a biomarker of diagnosis and

monitoring of NMIBC.

To analyze the link between the altered metabolic pathways in BC tissues

and the perturbed urinary metabolome.
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Introduction

The limitations of diagnostic tools for the correct management of BC
patients have driven to the search of non-invasive approaches to find new
biomarkers within the field of “omics” (i.e. genomics, transcriptomics, proteomics,
metabolomics). Nevertheless, in the context of BC none biomarker have been
implemented into clinic routine®2. Alterations in genes and metabolic pathways
have been considered hallmarks of cancer. Bearing this in mind, integrative
transcriptomic and metabolomic studies show high potential in biomarker
research for the implementation of precision medicine.

In this line, technological developments in MS and NMR have fostered the
study of cancer metabolism. Several metabolomic studies have been performed in
tissues or biofluids, such as urine or serum to identify BC biomarkers for diagnosis
or monitoring of patients®*3%, However, further research and validation are
required to demonstrate their clinical usefulness. Additionally, although several
genomic analyses have been carried out in BC showing altered expression or
mutations in metabolic enzymes, there are no reported integrative transcriptomic
and metabolomic studies in BC tissues or liquid biopsies as far as we know.

Here, we report tissue and urinary metabolic signatures as biomarkers of BC
through the study of gene-metabolite networks and the integration of

metabolomics and transcriptomics data.
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Material and Methods

Patient selection and sample collection

This study was approved by the Ethics Committee for Biomedical Research
of the Instituto de Investigacidn Sanitaria Hospital Universitario y Politécnico La Fe
(Valencia, Spain).

21 BC patients (14 males and 7 females) were recruited in the Urology
Service of the Hospital Universitario y Politécnico La Fe (Valencia, Spain). All the
patients underwent TUR. Tissues and urines were collected from each patient.
The samples were stored by the Biobanco La Fe (PT13/0010/0026) and processed
following standard operating procedures.

Tumor (n=22) and adjacent non-tumor tissues (n=22) were collected
during TUR, and were immediately placed into cryo-vials, immersed in liquid N>
and stored at -80°C. Adjacent pieces of the tumor tissues underwent routine
histopathological examination. BC presence, grade and tumor stage were
determined and tumors were classified as NMIBC (Ta-T1) or MIBC (2T2). Two
tumor episodes (primary tumor and recurrence) were studied from one patient.
Therefore, 22 tumor samples were collected from 21 patients.

Urines were collected before TUR (pre-TUR: BC, n=22) and one month
after TUR (post-TUR: control, n=13) and were stored at -80°C. Nine urines post-
TUR, from MIBC patients that underwent RC and NMIBC with incomplete TUR or
taking antibiotics at the time of urine collection, were discarded. BC absence in

post-TUR samples was confirmed by cystoscopy.

The clinical and demographic data are shown in Table 4.1, and the scheme

of sample collection is shown in Figure 4.1.
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Table 4.1 Clinical and demographic data of patients included in this study.

TISSUES URINES
PLS-DA models (BC vs Control) Calibration (CV)  Validation Calibration (CV)

Male/female patients 17 (10/7) 5 (4/1) 21(14/7)
Mean age (standard deviation) 71(9) 63 (11) 69 (10)
Total samples (male/female) 34 (20/14) 10 (8/2) 35(23/11)
Tumor samples (BC) 17 5 22
Non-tumor samples (Control) 17 5 13
Primary/Recurrent BC 15/2 4/1 19/3
Tumor stage (Ta,T1,T2) 7/6/4 3/0/2 10/6/6
Tumor grade (High/Low) 13/4 5/0 18/4
[(/efj;r::;eHrlsk group 5 yr (EORTC)?: 2/4/6/1 0/0/3/0 2/4/9/1
IT_r/T__g|;T_|S_S|I/T_|n risk group 5 yr (EORTC)?: 4/2/5/2 0/1/2/0 4/3/7/2

Note: ®Probability of recurrence and progression in NMIBC (n=16) according to the EORTC
risk tables total score; L: Low risk, L-I: Low-Intermediate risk, H-I: High-Intermediate risk,

H: High risk.

Drop out Inclusion criteria

Urine sample collection (pre-TUR) | —> Stored-802C

Same day ‘
Non-Tumor tissue I\
Tissue sample collection N;——>  Stored-80eC
| Tumor tissue

Only Ta-T1 and complete TUR

Urine sample collection (post-TUR) |

Figure 4.1 Sample collection scheme.
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Tissue NMR experiments

Tissues were prepared for measurements according to already published
data®™. Briefly, 8-40 mg tissue sample was weighted and introduced into a
disposable KelF insert (external diameter: 3 mm, internal diameter: 2.6 mm, total
internal volume: 30 pL, Bruker, Billerica, MA, USA). 10 uL of D,O were added to
each insert and them it was sealed with a small screw cap. The insert containing
the bladder tissue was placed in a standard 4mm ZrO; rotor, and this was
transferred to the precooled at 0°C NMR probe.

Experiments were acquired at a real temperature of 277°K. NMR spectra
were acquired using a Bruker Avance DRX 600 spectrometer (Bruker GmbH,
Rheinstetten, Germany) operating at a H frequency of 600.13 MHz. The
instrument was equipped with a 4 mm triple resonance *H/3C/**N HRMAS probe
with magnetic field gradients aligned with the magic angle axis. A Bruker cooling
unit was used to control the temperature by cooling down the bearing air flowing
into the probe. For all NMR experiments, samples were spun at 5 kHz in order to
keep the rotation sidebands out of the acquisition window. For each tissue
sample, 1D 'H NOESY spectrum with water presaturation was acquired in 5 min
using a 1.14 s acquisition time, 128 transients, a 12 ppm (7211 Hz) spectral width,
a mixing time of 100 ms and a relaxation delay of 1 s. In addition, 2D *H-'H TOCSY
using a DIPSI2 sequence for mixing were acquired with a 142 ms acquisition time,
50 ms spin lock duration, 7211 Hz spectral width, and a 1.5 s relaxation delay.
Sixteen transients were averaged for each of the 256 increments during ti,
corresponding to a total acquisition time of 2 h 33 min. After NMR study, the
disposable inserts containing the tissues were frozen and preserved at -80°C until

the transcriptomic analysis.
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Tissue transcriptomic experiments

Frozen tissues after 'H HRMAS NMR experiments were thawed and
underwent microarray experiments. Total RNA was extracted with the miRNeasy
Mini Kit, DNA was digested and RNA integrity checked on an Agilent 2100
Bioanalyzer. After quality filtering, 8 primary tumors (Ta n=3; T1 n=2; T2 n=3) and
10 non-tumor tissues were analyzed. cDNAs from total RNA (30 ng) were
generated, fragmented, biotinylated, and hybridized to the GeneChip Human
Transcriptome Array 2.0 (HTA 2.0) (Affymetrix, Thermofisher, Watham,
Massachusetts, USA). The arrays were washed and stained on a GeneChip Fluidics
Station 450 (Affymetrix); scanning was carried out with the GeneChip Scanner
3000 7G; and image analysis with the AffymetrixGeneChip Command Console

software.

Urine NMR experiments

Urine samples were thawed at room temperature and were prepared
following the established procedures for urine samples'**. Phosphate buffer (pH
7.4) was prepared by weighing Na;HPO, (28.85 g), NaH,PO, (5.25 g), NaN; (0.195
g) and DSS (0.218 g) into a 1 L volumetric flask. 200 mL of D,O were added and the
flask was filled to 1 L with water. To 500 pL of urine 200 pL of phosphate buffer
were added. This mix was centrifuged at 10000 rpm for 5 min at 5°C. After this,
550 plL of the supernatant were transferred to a 5 mm NMR tube for analysis.

The experiments were recorded at 298°K. Spectra were acquired using a
Bruker Avance DRX 600 spectrometer (Bruker GmbH, Rheinstetten, Germany)
operating at a 'H frequency of 600.13 MHz. The instrument was equipped with a 5
mm triple resonance H/*3C/3'P probe. For each urine sample, 1D *H NOESY
spectra using water presaturation were acquired in 3 min using a 3.91 s

acquisition time, 32 transients, a 14 ppm (8370 Hz) spectral width, a mixing time
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of 100 ms and a relaxation delay of 1 s. Moreover, 2D *H-1*CHSQC spectra were

acquired, to assess the assignments of the overlapped signals in 1D 'H spectra.

Tissue NMR data pre-processing and analysis

Spectra processing and handling were performed with MestReNova
(version 6.0.2). Spectra were Fourier-transformed, baseline, and phase corrected,
and chemical shift referenced to the creatine singlet (3.03 ppm) and Ala doublet
(1.48 ppm). The main metabolites in the region from 0.8 to 9.5 ppm were
assigned, according to the bibliography and NMR databases (i.e HMDB and
Metabolomics: main)’7/2%135-137,

Mean metabolite intensities were compared between groups. The
intensity of the assigned resonances was transferred to MetaboAnalyst 3.0'%. U-
Mann Whitney test determined the significant differences between control and
BC tissues. ANOVA (Tukey’s posthoc test) evaluated the differences between
NMIBC, MIBC, and control tissue, and the changes between Ta, T1, T2 stages and
control tissue.

Data analysis was performed on 1D spectra. Regions from 0.5-4.8 and 5.2-
9.5 ppm were included. Spectral region of water (4.79-5.2 ppm) was excluded.
PLS-DA was performed using the software PLS Toolbox Solo 8.0 (Eigenvector
Research, Inc., Manson, WA, USA). Previously, the spectra were peak aligned
using the icoshift'>® algorithm to correct for minor changes in chemical shift due
to differences in pH. Finally, the spectra were normalized using the sample weight
as normalization factor and autoscaled. The set of tissue spectra was split into
calibration (n=34) and validation (n=10) subsets randomly selected. Two PLS-DA
models were calculated including the original set of 11698 spectral features and
after a feature selection based on the variable importance in projection (VIP)

score using VIP=1 (4800 features retained) as threshold value. Features selection
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during model optimization aimed at improving the predictive model performance
and facilitating its interpretation. The selection of the VIP threshold values was
based on the analysis of the evolution of CV-figures of merit (dQ? and mean
classification error of CV) as a function of the threshold value.

Metabolite identification was carried out on the selected subset of highly
discriminant features (i.e. VIP>1 in the PLS-DA model). The obtained metabolite
list was then used to perform a pathway enrichment and topology analysis using a

global test and a relative betweenness centrality measure in MetaboAnalyst.

Tissue transcriptomic data analysis

The expression of data was normalized and background and batch
corrected using the Signal Space Transformation-Robust Multi-Chip Analysis (SST-
RMA) implemented in the Transcriptome Analysis Console software version 4.0
(TAC 4.0). Data were deposited in Gene Expression Omnibus (GEO) (GSE121711).
A PCA and a heatmap analysis were carried out to observe differences between
BC and non-tumor tissues on the basis of the whole transcriptome. A fold change
of at least 2 or -2 and a false discovery rate of 0.05 was considered as selection
criteria. Gene Ontology of Biological processes (GOBP), ChEA, and Encode Histone
Roadmap were performed in silico using Enrich webtool*. Metabolism related
genes showing deregulation between tumors and non-tumor samples were
selected from GOBP and GeneCards. ChEA and Encode Histone Roadmap analysis
were performed to identify the putative TFs binding and histone marks in these
metabolic genes. Moreover, the identified genes were used to perform non-
supervised hierarchical clustering of the Cancer Genome Atlas (TCGA) data
according to stage, grade, and mRNA subtypes® using MeV*,

Integrated metabolic pathway analysis on results obtained from combined

metabolomics and transcriptomics analyses in tissues was carried out using the
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information of: joint pathway analysis of platform MetaboAnalyst, the tool

Wikipathways®, and the SMPDB#*,

Urine NMR data pre-processing and analysis

Spectra were Fourier-transformed, baseline, and phase corrected, and the
chemical shift was referenced to the DSS singlet (0.0 ppm). The main metabolites
in the region from 0.8 to 9.5 ppm were identified, according to already published
data and NMR databases’’9>13>137 The spectra were binned into 0.003 ppm
buckets using MestReNova.

A PLS-DA analysis was performed considering the spectral regions from
0.8-4.5 and 6.5-9.0 ppm (2068 features). Water (4.5-5.1 ppm), urea (6.1-5.55
ppm) and regions lower 0.8 ppm and greater 9.00 ppm were excluded from the
analysis to avoid interferences arising from differences in water suppression and
variability from urea and DSS signals. Prior to data analysis, urinary spectra were
normalized to the sum of all variables (1-norm) and autoscaled. Urines were
classified as control (urines collected post-TUR) or BC (urines collected pre-TUR).
CV data splitting was performed at the highest level of sampling hierarchy, which
in this case was the volunteer. The statistical significance of PLS-DA figures of
merit estimated by CV was assessed by permutation test with 100 iterations. The
most important metabolites in the statistical model (VIP>1) were identified and
used to perform a pathway enrichment and topology analysis using

MetaboAnalyst.
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Results

Tissue NMR profile

Representative tissue spectra from a non-tumor sample and three
different stages of BC (Ta, T1, and T2) are displayed in Figure 4.2. Non-tumor
tissues spectra are dominated by intense lipid signals in the aliphatic region that
were practically absent in tumors. By contrast, in tumor spectra highlight the
signals of small metabolites such as GSH, Tyr and cytidine diphosphate (CDP) in
the aromatic region. Assighment of signals in a 1D *H NMR spectra of bladder

tissues is displayed in Table 4.2.

69



Chapter 4

A
|
19 49 1516 4 111213
£\ i Ligg '-’\ - ™N
A - =~ 1L
/. e T A § )\ a
21
|
\ 19 20
}(} I\ /78 \ \
MmN
U\P | s
/ L\' " _'_\_‘«»/\' \J\X,J M
T sz 30 s ez s | s

G —*
= s

S
~3

-
~ e

~8
e
® /™
~
} = "

»
N s
@
PS :
5

s
e
T
) = o
( s
—

>

—

—

W
3
@

/ -
— /,
/,%:.Jv
75
|

A | ‘ |
-u‘ A,N-»\_‘\XN)"J» A u“l a PR E u . " c
19 t T
|
/
| | \- A | -, I
4 U A ! e d
P Y B YA O Y S R AR ;l}(a : /S e P Y S AR RVl
ppen
12
/
,‘
\3‘5
|
all
Vi a
|
10 It
’~ 25
P 8 24 23 2 I
R L l [
P A | W
o A\ ' i
St s sl TR AN R M e s/ b
[ . A
= Moy A A A rr i\, I, P NP, S G
A
A J\
i T O ATt O S d
%0 8% 46 84 &2 %0 73 26 74 7270 64 66 64 62 65 B S8 34 32

Figure 4.2 Assignment of the main signals in 1D 'H NMR spectra of tissue samples.
Representative NMR spectra of non-tumor tissue (a), and various BC pathologic stages
Ta/T1 (c and d) and T2 (b). NMR spectra were shifted along the Y-axis and the spectral

region of water was removed from the figure for a better visualization.
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Table 4.2. Assignment of the metabolites and metabolic signals identified in 1D 'H NMR

tissue spectra.

Chemical

Ne Metabolite Group shift
(ppm)

1.1 Lipid fragment —(n)CH2-CH2-CH2-CHs (a) CHs 0.90
Leucine 6CH;3 0.93
Valine yCH3 0.98
Valine yCH3 1.04

1.1  Lipid fragment —(n)CH2-CH2-CH2-CHs (a) (n) CH2 1.29
1.1 Lipid fragment —(n)CH2-CH2-CH2-CHs (a) (2) CH2 1.29
1.2 Lipid fragment —CH=CH-CH>-CH=CH-CH2-CH2-(n)CH2 (b) (n) CH2 1.29
1.3  Lipid fragment —(n)CH2-CH2-CH2-COOH (c) (n) CH2 1.29
1.1  Lipid fragment —(n)CH2-CH2-CH>-CHs (a) (1) CH2 1.33
1.2 Lipid fragment —CH=CH-CH>-CH=CH-CH2-CH2-(n)CH2 (b) (1) CH2 1.33
4 Lactate CHs 1.33
5 Threonine yCH3 1.33
6  Alanine BCH3 1.46
1.3  Lipid fragment —(n)CH2-CH2-CH2-COOH (c) (2) CH2 1.59
8 Arginine yCH:2 1.68
2 Leucine BCH2 1.70
2 Leucine yCH 1.70
7 Lysine BCH: 1.71
8 Arginine BCH2 1.90
1.2 Lipid fragment —CH=CH-CH>-CH=CH-CH>-CH»-(n)CH2 (b) (2) CH2 2.03
9 Glutamate BCH2 2.05
11 Proline BCH2 2.06
12  Glutamine BCH: 2.13
10  Glutathione CH: 2.15
1.3 Lipid fragment —(n)CH2-CH2-CH2-COOH (c) (1) CH2 2.26
9 Glutamate yCH2 2.33
11 Proline BCH2 2.34
12 Glutamine yCH2 2.44
10  Glutathione CH: 2.54
13 Creatine CHs 3.03
14  Choline -N*- (CH3s)3 3.18
15  Phosphocholine -N*- (CHs)3 3.20
16  Glycerophosphocholine -CH2-NH3* 3.21

71



Chapter 4

17  Taurine -CH2-NHs* 3.25
18  Methanol CHs 3.34
17  Taurine -CH2-SOs3 3.42
19 Myo-inositol C1',3’H 3.52
20  Glycine aCH 3.55
19  Myo-inositol C4'6'H 3.62
7 Lysine aCH 3.74
21  Glycerol -CH-(OH)- 3.78
13  Creatine CH: 3.92
4 Lactate CH 4.10
1.2 Lipid fragment —CH=CH-CH2-CH=CH-CH2-CH2-(n)CH2 (b) =CH- 5.30
22  UDP-sugars _ 5.99
23 Tyrosine C3',5H 6.89
23 Tyrosine C2',6'H 7.17
24 Phenylalanine C2’,6'H 7.32
24 Phenylalanine C3',5'H 7.42
25  Cytidine diphosphate CH 7.97
10  Glutathione NH 8.15

Mean comparison of metabolites detected in tissue

From the mean comparison of metabolites intensities from HRMAS in
tumor and control samples, a higher intensity of choline (Cho), CDP, myo-inositol
(ml), UDP-sugars, and GSH was found in tumors tissues (Figure 4.3; Table
annexed 4.3A). Intensity for lipid fragment —(n)CH>-CH>-CH»-COOH (named lipid
(c) as in%) was higher in control samples. Most of the metabolites showing
significant differences between tumor and control tissues (p-value<0.05) were
also elevated in both tumor groups (NMIBC and MIBC) compared to control
samples (Figure 4.3; Table annexed 4.3B).

Considering the differences among the diverse tumors stages and
controls, lipid fragments —CH,-CH,-CH,-CHs (lipid (a) as in®?) and—CH=CH-CH,-
CH=CH-CH,-CHy-(n)CH>- (lipid (b) as in®), Tyr, Cho, CDP, ml, UDP-sugars and GSH
showed significant changes between all groups. Specifically, T2 tumors (the most
aggressive here considered) presented the highest intensity of Cho and GSH. T2

72



W

Normalized intensity

(mg tissue)

Chapter 4

and T1 stages showed elevated ml and Tyr. On the other hand, Ta tumors (the
least aggressive tumors) showed a significant increment of UDP-sugars and CDP
(Figure 4.3; Table annexed 4.3C). Lactate signals at 1.33 ppm and 4.1 ppm
overlapped with lipid signals. The overlap hinders the discrimination between
lactate and lipid signals in control samples. Therefore, the lactate intensity was
compared only between the different tumor stages and not respect to the control

group. Higher intensity of lactate in T2 than in T1 or Ta was observed.
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Figure 4.3 Box and whisker plots illustrating discrimination between: A, tumor and non-
tumor tissues; B, controls, NMIBC and MIBC; C, different stages of BC and control

tissues.
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Figure 4.3 Box and whisker plots illustrating discrimination between: A, tumor and non-
tumor tissues; B, controls, NMIBC and MIBC; C, different stages of BC and control

tissues.

PLS-DA analysis in NMR tissue data

A chemometric analysis was performed on 1D HRMAS tissue spectra
including the original set of variables, and after a feature selection (VIP>1). A VIP
threshold of 1 was selected as a compromise between the model complexity and
the predictive performance of the PLS-DA model (Figure 4.4). The predictive
performance of the initial PLS-DA model (n=44, LV=2) was assessed by CV
providing a sensitivity of 82.4% and a specificity of 88.2% (confidence intervals are
provided in Table 4.4). Permutation test (100 permutations) provided a p-
value<0.05. The analysis of the samples included in the external validation set
presented sensitivity and selectivity values of 100% for the two PLS-DA models

(original set of variables and VIP>1) (Table 4.4).

74



Chapter 4

0.25

0.2 ‘f
’l‘
015 |bl

‘gﬂ )

0.1 0 J
2 4 6 8 0 2 4 6
VIP threshold VIP threshold

0
8000 [

0.4

4000

Mean CV error

0.05
2000

Number of retained variables

0

8

0

2 4 6
VIP threshold

Figure 4.4 Evolution of three indicators (number of features, discriminant Q? and mean CV-
classification error) of the discriminant performance of the PLS-DA model as a function of the

VIP cutoff value used for the elimination of features in an initial PLS-DA model.

Table 4.4 Indices of test validity estimated for the evaluation of predictive performance

of PLS-DA models between tumor and non-tumor tissue samples with LVs=2.

Validation set
Estimation (95% Cls)

Calibration set (CV)
Estimation (95% Cls)

Indices test Validiy

Sensitivity 82.4 (62.3-97.9)% 100 (46.3-98.1)%
Specificity 88.2 (55.8-95.3)% 100 (46.3-98.1)%
PPV? 87.5 (60.4-97.8)% 100 (46.3-98.1)%
NPV® 83.3(57.7-95.6)% 100 (46.3-98.1)%
ACCe 85.3% 100%
mcc? 0.707 1
PT¢ (p-value) - 0.015
AUROC' - 1

Note: ?Positive predictive value; °Negative predictive value; °Diagnostic accuracy;

9Matthew’s correlation coefficient; ®Permutation test; fArea Under the Receiver Operating

Characteristic.
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Predicted “y values” for calibration and validation subsets considering the
PLS-DA model performed in bladder tissues after an initial feature selection
(VIP>1) are showed in Figure 4.5. The most discriminant metabolites between
tumor and non-tumor tissues identified in this PLS-DA model included: lipids (a, b
and c fragments), threonine (Thr), lactate, Ala, Glu, proline (Pro), Gln, GSH,
creatine, Cho, phosphocholine (PCho), glycerophosphocholine (GPCho), taurine,
methanol, ml, Gly, glycerol, UDP-sugars, Tyr, and CDP. This set of metabolites
reflected alterations in metabolic pathways related to the metabolism of several
AA pathways and also with GSH, taurine and hypotaurine or glycerolipids (Table
4.5; Figure 4.6;).
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Figure 4.5 Predicted y values for calibration and validation subsets considering the PLS-

DA model performed in bladder tissues after an initial feature selection (VIP>1).
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Table 4.5. Identified metabolites and associated altered metabolic pathways in bladder

tissues.
Altered pathways in BC Metabolites p-value Impact
Alanine, aspartate, glutamate Ala, Glu, GIn 6.5E-4 0.44
Taurine and hypotaurine Taurine, Ala 9.0E-3 0.36
Aminoacyl-tRNA biosynthesis Pro, Gly, Ala, GIn, Thr, Glu 1.0E-5 0.06
Methane G|y’ methanol 2.6E-2 0.02
Glycine, serine, threonine Gly, creatine, Cho, Thr 3.5E-4 0.29
Glutathione GSH, Gly, Glu 2.0E-3 0.25
Glycerolipid FAs, g|ycero| 2.3E-2 0.19
Arginine and proline Glu, GIn, Pro, creatine 2.0E-3 0.17
Glutamine and glutamate Glu, GIn 3.0E-3 0.14
Glycerophospholipid Cho, GPCho, PCho 3.0E-3 0.08
@® Aminoacyl -RNA biosynthesis
2 Glyc-ine,
: serine and !
® threonine i Alanine, aspartate
PO I S SR . and glutamate
Arginine and
= prolme 3 .
=3 ; Glutathlone
Gluramate and
glutamine .
= _0 """""""" . """"" Taurine and hypotaurine
?2%! Gly cerolipit? metabolism
i T I T 1
0.0 0.1 0.2 0.3 04

Pathway impact

Figure 4.6 Analysis of altered metabolic pathways in bladder tissues.

Note: the color and the size of each circle indicate its p-value and pathway impact value,

respectively.
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Transcriptomic analysis in tissues

PCA and heatmap analyses were performed to search transcriptomic
differences between BC tissues and non-tumor tissues. A 3 principal component
model explaining 66% of the data variance showed clear differences between
tumor and non-tumor samples on the basis of the whole transcriptome (Figure
4.7A). Following a fold change of at least 2 or -2 and a false discovery rate of 0.05
as selection criteria, a total of 4409 transcripts differentiated tumor and non-

tumor samples, being predominantly downregulated in tumors (3112 transcripts)

(Figure 4.7B).
A B
[ ]
[ ]
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. . §

Figure 4.7 A, PCA using the overall transcriptome; B, Heatmap showing the hierarchical
clustering of tumor and non-tumor samples, as well as the number of downregulated

and upregulated transcripts. Note: In PCA, tumors are shown in red and non-tumors in

blue.

78



Chapter 4

The GOBP analysis revealed that different metabolism-related genes were
significantly downregulated in tumors (Figure 4.8), including various
mitochondrial RNAs and genes related with the regulation of AAs and amine
metabolism, purine biosynthetic processes and OXPHOS. On the contrary, among
the upregulated transcripts in tumors, no significant metabolism-related

categories were found.
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Figure 4.8 Summary of GOBP analysis: main metabolism-related biological processes

altered in tumor samples are shown.

A total of 364 unique genes were identified considering only protein-
coding genes linked to metabolic processes from GOBP and GeneCards databases
(Table annexed 4.6), from which 20 genes were overregulated. Interestingly,
some of the overregulated genes have already been linked to cancer such as:
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PPARG involved in lipid biogenesis regulation®'; HK2 and solute carrier family 2
facilitated glucose transporter member 1 (SLC2A1)**?, both them related to
glycolysis; the ribose-5-phosphate isomerase A (RPIA) linked to PPP; and genes
belonging to cytochrome P4502 (CYP450) (CYP2J2, CYP2C9, CYP4F11). On the
other hand, key metabolic genes were found downregulated in BC tissues,
including genes related to: 1) pyruvate metabolism: pyruvate dehydrogenases
(PDHA1, PDHB, PDHX) and pyruvate dehydrogenase kinase 4 (PDK4); 2) TCA cycle:
FH, IDH3A, IDH3B, MDH1, MDH2, ACO1, OGDH, and SUCLGI; 3) polyamine
metabolism: AMDI1, SMS, ODC1, SAT2, AOC3; 4) AA metabolism: GLS, GOT2 ,
MUT, ASS1, MAOA, MAOB; 5) redox status: GPX3 and GPX4, catalase, SOD1, and
glutaredoxin (GLRX3). Importantly, although our series is enriched in NMIBC, the
expression of the upregulated and downregulated metabolism-related genes also
showed similar behavior in multiple tumor samples present in the TCGA cohort
(enriched in MIBC) without discrimination of stage, grade of previously identified

MRNA tumor subtypes (Figure 4.9).
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Figure 4.9. Comparison between upregulated and downregulated metabolism-related

genes with gene expression of tumor samples present in the TCGA cohort.
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In silico analysis revealed that multiple genes were bound by TFs currently
known as potentially involved in BC pathogenesis (Table annexed 4.7).
Remarkably, these could also act as transcriptional repressors, such as ETS1, TTF2,
E2F1, YY1, FLI1, ASH2L, E2F4, VDR, GABP, JARID1A, CTCF, KLF4, and CHD1 (Figure
4.10). Besides, some of these factors are known to modulate gene expression

through direct chromatin remodeling, such as GABP, JARID1A, CTCF, and CHD1.

Transcription Factor
.l
Al
M
m

“‘WH“[ J“”[ T Moot

1 og pValue

Figure 4.10. Summary of putative binding motif enrichment analysis using the Enrich

webtool, showing the relative relevance of various transcription factors
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Accordingly, we used the Encode Histone Roadmap!*® to determine
whether the downregulated metabolism-related genes were specifically
associated with particular histone marks. This analysis revealed that active histone
marks such as H3K79me2, H3K79me3, or H3K27ac, as well as repressive marks
such as H3K36me3, H4K20mel or H3K9me3, were present in the downregulated

metabolic genes (Figure 4.11; Table annexed 4.8).

HakaTmea{ ]
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Figure 4.11. Summary of putative binding motif enrichment analysis using the Enrich
webtool, showing the relative relevance of various histone marks associated with the

differentially expressed transcripts in BC tissues.

On the other hand, the transcriptome analysis revealed the presence of
specific splicing variants of some metabolic genes (ASS1, GOT2, RARS, OAT, AOC3,
HIBADH, DLD, FH, AUH, MUT, GLS, MAOA, ADH1C, ADH5, OGDH, SUCLG1, MDH]1,
MDH2, SMS, ODC1, FARSB, ACADM, PPM1L, PDK4, PDHX, PDHA1) in tumors

compared to non-tumor samples. Some of them are shown in Figure 4.12.
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Figure 4.12 Splicing variant analyses in some metabolic genes.
Note: FARSB: Phenylalanyl-tRNA Synthetase Subunit Beta; GLS: Glutaminase; MAOA:

Monoamine Oxidase A; OGDH: Oxoglutarate Dehydrogenase.
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Figure 4.12 Splicing variant analyses in some metabolic genes.
Note: FARSB: Phenylalanyl-tRNA Synthetase Subunit Beta; GLS: Glutaminase; MAOA:

Monoamine Oxidase A; OGDH: Oxoglutarate Dehydrogenase.

Finally, the integrative analysis using metabolomics and transcriptomics
data revealed the deregulated activity of multiple biochemical pathways such as:
TCA cycle, OXPHOS and polyamine, and AA metabolism, among others (Figure
4.13).
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Figure 4.13 Integrated altered metabolic pathways in bladder tumors according to our
metabolomics and transcriptomics data. Enzymes shown in red indicate significant
overexpression in BC tissue; enzymes shown in blue indicate significant downexpression;
metabolites shown in orange indicate that they were identified in our studies; ” Indicate
that these genes presented a differential alternative splicing in our tumor tissues; Dashed
lines indicate that the reaction is not direct. ADP: adenosine diphosphate; Asn: asparagine;
Asp: aspartate; 1;3 biPG: 1,3-bisphosphoglycerate; DG: diacylglycerides; DHAP:
dihydroxyacetone phosphate; F1,6biP: fructose-1,6-bisphosphate; GA3P: glyceraldehyde
3-phosphate; His: histidine; Lys: lysine; MAG: monoacylglycerols ; NO: nitric oxide; PA:
phosphatidic acid ; PEP: phosphoenolpyruvate; 2PG: 2-bisphosphoglycerate; 3PG: 3-
bisphosphoglycerate; Phe: phenylalanine; tRNA: transfer ribonucleic acid. The names of

the significant metabolic genes are detailed in the (Table annexed 4.6).
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Urine NMR profile
Assignment of metabolites identified in BC urines and controls is displayed
in Figure 4.14 and in Table 4.9. In all samples the resonances of urea, creatinine,

trimethylamine-N-oxide, hippuric acid, and citrate were the most predominant.
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Figure 4.14 Assignment of the main signals in 1D 'H NMR spectra in a BC urine sample.
The vertical scale of all the spectra was kept constant and the spectral region of water was
removed from the figure. The intensity of peaks in the chemical shift region 5.0 — 9.0 ppm

was scaled equally in all the spectra to show lower abundant metabolites
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Table 4.9. Assignment of the metabolites identified in 1D *H NMR urine spectra.

Chemical
N° Metabolite Group shift
(ppm)
3 Valine vCHj3 0.98
3 Valine vCHs 1.04
4 Methylsuccinic acid aCHs 1.08
5 Lactate CHs 1.33
6 Alanine BCH3 1.46
7 Lysine BCH; 1.71
8 Acetic acid CH;s 1.97
7 Lysine BCH> 1.91
9 N-acetylneuraminic acid CHs 2.04
10  Glutamine BCH2 2.13
11 Succinic acid 2,3CH; 2.39
10 Glutamine vCH; 244
12 Citrate CH; 2.52
12 Citrate CH; 2.66
13 Dimethylamine CHs 2.71
14 Trimethylamine CH;s 2.93
15  Dimethylglycine CHs 2.96
16 Creatinine CH;s 3.03
19 Taurine -CH2-NHs* 3.25
17 Trimethylamine N-oxide CHs 3.28
18 Methanol CHjs 3.34
19 Taurine -CH,-SO3 3.42
20  Glycine aCH 3.55
21  Sucrose C6’ H 3.82
21 Sucrose C5’H 3.87
22 Creatine CH; 3.92
23 Hippuric acid aCH: 3.97
16 Creatinine CH; 4.05
5 Lactate CH 4.10
24 Trigonelline CHjs 4.43
25 Urea -NH; 5.80
26 3-(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA) C4H 6.93
26 3-(3-hydroxyphenyl)-3-hydroxypropionic acid (HPHPA) Co’H 6.97
27 Phenylalanine C2,6’H 7.32
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27 Phenylalanine C3,5’H 7.42
23 Hippuric acid C3,5’H 7.60
28  Pseudouridine CH 7.66
23 Hippuric acid C2,6’H 7.82
29 Hypoxanthine C7T’H 8.20
30 Formic acid CH 8.45
24 Trigonelline C3,5’H 8.82
24 Trigonelline CI’H 9.10

Sensitivity Y2 (T)

PLS-DA analysis in NMR urine data

A PLS-DA analysis was performed using urine NMR data to classify BC and
control urines. The PLS-DA model (n=35, LV=5) provided a sensitivity of 90.9%,
specificity of 76.9%, a NPV of 83.0% and a PPV of 86.9% and an AUROC=0.9
(Figure 4.15A). Permutation test (100 permutations) provided a p-value<0.05 and
assessed the statistical significance of the CV-predictive performance estimates of
the model. Predicted y values for CV in the PLS-DA model performed in bladder

urines are shown in Figure 4.15B.
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Figure 4.15 A, AUROC calculated for CV through a PLS-DA model performed in urine
samples. B, Predicted y values for CV considering the PLS-DA model performed in

bladder urines.
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The most discriminant metabolites identified in urine (VIP>1) included:
Val, methylsuccinic acid, lactate, Ala, Lys, N-acetylneuraminic acid, Gln, succinic
acid, citrate, creatinine, trimethylamine-N-oxide, methanol, taurine, sucrose,
hippuric acid, Phe, pseudouridine and trigonelline. These metabolites were linked
with the following disturbed metabolic pathways: Ala, Asp and Glu metabolism,
taurine and hypotaurine, TCA cycle, and aminoacyl tRNA biosynthesis. Some of
them were common to tissue altered metabolic pathways (Figure 4.16; Table

4.10).
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Figure 4.16 Analysis of altered metabolic pathways in bladder urines.
Note: the color and the size of each circle indicate its p-value and pathway impact value,

respectively.
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Table 4.10. Identified metabolites and associated metabolic pathways in urines and

tissues.

Altered pathways in BC Metabolites p_value Impact

Tissue Ala, Glu, Gln 6.5E-4 0.44
Alanine, aspartate, glutamate )

Urine - Ala Gin, succinate 6.5-4  0.26

Tissue Taurine, Ala 9.0E-3 0.36
Taurine and hypotaurine

Urine Taurine, A|a 9.0E-3 0.36

. . . Tissue pro, Gly, Ala, Gln, Thr,Glu 10e-5 0.06

Aminoacyl-tRNA biosynthesis )

Urine Phe, GIn, VaI, AIa, L\/S 1.6E-4 0.56

Tissue G| thanol 2.6E-2 0.02
Methane ) ¥, methano

Urine  Trimethylamine N-oxide, methanol ~ 2-5E-2  0.02
Glycine, serine, threonine Tissue Gly, creatine, Cho, Thr 3.5e-4 0.29
Glutathione Tissue GSH, Gly, Glu 2.0E-3 0.25
Glycerolipid Tissue FAs, glycerol 2.3E-2 0.19
Arginine and proline Tissue Glu, Gln, Pro, creatine 2.0e-3 0.17
Glutamine and glutamate Tissue G|y, GIn 3.0E-3 0.14
Glycerophospholipid Tissue Cho, GPCho, PCho 3.0E-3 0.08
Citrate cycle (TCA cycle) Urine Citrate, succinate 9.0E-3 0.08
Phenylalanine Urine Succinate, Phe, hippuric acid 4.0E-3 0.07
Nitrogen metabolism Urine Phe, taurine, GIn 2.7E-3  0.05
Propanoate Urine Succinate, lactic acid, Val 2.0E-3 0.05
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Discussion

Cancer cells undergo genetic reprogramming of their metabolism to fulfill
the increased energetic and biosynthetic demands for cell proliferation.
Therefore, a better understanding of altered genetic basis of the metabolic
pathways and some altered metabolites could be useful to find non-invasive
diagnostic, prognostic and surveillance biomarkers but also to develop new
therapeutic strategies in the context of BC. With this aim, a comprehensive study
focused on knowing better the relationship between the metabolome and
transcriptome of BC, and its link with urinary metabolome has been here carried
out.

Integrated metabolomic and transcriptomic data showed perturbations in
several tissue metabolic pathways, reflecting how the activity of metabolic genes
and enzymes would be regulating the demands of BC. Moreover, the upregulated
and downregulated metabolism-related genes found in our series enriched in
NMIBC showed similar behavior in multiple tumor samples present in the TCGA
cohort (enriched in MIBC), indicating that the deregulation of these genes is
probably a common feature of BC pathogenesis.

According to our data, BC cancer cells would increase the uptake of
glucose and AAs from the environment, especially Glu, GIn, and Tyr. The signals of
these AAs were found important in our statistical model to classify BC but also
high levels of Tyr were observed in T1 and T2 tumors compared to Ta or control
tissues. These data would suggest that the more invasive tumors could consume
Tyr and GIn for energy generation, as a source of reducing power (NADH, FADH,,
NADPH), as a donor of carbon and nitrogen for generating nucleotides and other
AAs, and also to maintain the pool of intermediate metabolites such as acetyl CoA
and a-KG, both of them important for the anaplerotic reactions of TCA cycle, but

also for epigenetic processes due to effect that they have in HAT and HDM.
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Besides, we found a downregulation in all TCA cycle genes, in addition to GLS
gene. GLS converts GIn to Glu, which is used by GPT2 to produce a-KG. These
findings are in concordance with previous studies in which frequently mutated or
deregulated TCA cycle genes are described in human tumors'**. Moreover, our
data support a downregulation of OXPHOS process and the overexpression of
glucose metabolic genes (SLC2A1, HK2, and RPIA) linked to high levels of lactate,
mostly in T2 BC. These data agree with the Warburg effect, which describes that
tumor cells oxidize glucose to obtain energy and precursor molecules through
anaerobic respiration (lactic fermentation) instead of obtaining ATP through a
more efficient process in the mitochondria (i.e. OXPHOS)*; and show a
mechanism by which tumor cells avoid the repressive feedback of TCA about

glucose metabolism in presence of high levels of NADH and ATP*2,

On the other hand, they are in concordance with previous studies about BC,
that showed a correlation between the expression of SLC2A1 with disease
progression and poor survival’* and high levels of HK2 with an acceleration in

146 and lactic fermentation. The

glucose flux through glycolysis towards pyruvate
high levels of lactate in aggressive tumors were also observed in previous studies
where the progression of BC from a less to a highly invasive stage was associated
with increased production of lactate!*. It has been reported that lactate
accumulation is essential for the promotion of angiogenesis by means of VEGF
from tumor-associated stromal cells, but it also contributes to tumor invasiveness
due to stimulating hyaluronic acid production by fibroblasts. Tumor invasion also
is enhanced through the action of matrix metalloproteinases and cathepsins that
degrade the extracellular matrix. The action of these proteins is stimulated by the

extracellular acidification, which is caused by the secretion of lactate into

extracellular space coupled to the co-transport of proton*2.

93



Chapter 4

Finally, we found PDK4 downregulated in BC tissues and several genes
encoding for pyruvate dehydrogenases (PDH). The downexpression of PDH
pyruvate would be in concordance with high levels of lactate since pyruvate could
be used by LDH producing lactate but would be in discordance with the
downregulation of PDK4. PDK4 mediates the activity of the pyruvate
dehydrogenases through inhibitory phosphorylation and has been presented as a
potential regulator of BC tumorigenesis and chemoresistance*®. Therefore, more
studies in this field are necessary to knowing better the regulation of these
metabolic pathways in BC.

The nexus between glucose and fatty acid metabolism is carried out by
the transcriptional factor PPARG. PPARG regulates PDK4 and is involved in the
regulation of adipogenesis, cell proliferation, angiogenesis, and immune

surveillance®®

. We found an overexpression of PPARG, as occurs in other tumors
(colon, lung, prostate)®-1>? and elevated levels of lipid (b) in T2 tumors and lipid (c)
in control samples. Glycerol also was identified as important in our statistical
model. Glycerol and FAs are released during the degradation of TG. These data
suggests a key role of lipid metabolism in BC*'2, which could use glycerol to
obtain glucose through gluconeogenesis in the liver; and FA to obtain energy (B-
oxidation), produce signaling molecules, but also for the biosynthesis of PLs, the
most abundant lipids of cell membranes.

Regarding choline and inositol metabolism, the signals of Cho, PCho,
GPCho, CDP, and ml were relevant in our statistical model. Besides, significant
high intensities of Cho, CDP, and ml were found in BC tissues, specifically in
invasive and T1 tumors. These data agree with previous studies, which present
the abnormal cholinic phenotype as a hallmark of tumor development and

153

progression™>. Cho and PCho are precursors of PtdCho, one of the main

constituents of the lipid bilayers of cell membranes together with PtdE. CDP also

94



Chapter 4

participates in PtdCho biosynthesis, at the same way that ml, which has been
associated with PtdCho turnover and modulation of PLs. De novo synthesis of
PtdCho and PtdE is referred as Kennedy pathway and it has been proposed as a
chemotherapeutic target against cancer!®. On whole, data obtained indicate that
bladder tumors overexpress pathways that enable a higher synthesis of
metabolites related with lipids that take part in cell membranes, what would be
related to high rates of cell proliferation.

155 and is

Polyamine metabolism is frequently deregulated in tumors
related to AA metabolism through Arg, Met, and ornithine. Arg participates in
urea cycle, at the same way that Arginosuccinate Synthase 1 (ASS1). We found
downexpressed ASS1 in BC tissues, what is in agreement with previous studies
that present this enzyme as a tumor suppressor. In fact, the lack of ASS1 in tumors
has been related to an aggressive phenotype and negative prognostic impact in
patients®. On the other hand, we observed a downregulation in polyamine
enzymes, either biosynthetic (ODC1, AMD1, SMS) or catabolic (SAT2, AOC3), but
we have not identified any metabolite as discriminant related to this pathway.
However, studies performed by MS in urines and BC cell lines have found higher
levels of spermidine, Arg, Met and ornithine in BC compared to control
samples!33. Polyamines can act in the regulation of gene expression through
altering chromatin structure, signal transduction pathways and interactions
between DNA-protein or protein-protein?®,

Maintaining the redox status is key for cancer cells. At low levels, ROS
increase cell proliferation and survival but at high levels ROS cause DNA damage
and trigger apoptosis®®. Therefore, the role of antioxidant molecules is essential.
In our study, BC tissues presented high levels of GSH (specifically MIBC), but a
downregulated expression of other antioxidant enzymes involved in ROS

detoxification. High levels of ROS have been related to apoptosis® and in the
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context of BC, these have been linked with chemotherapy resistance and bladder
tumorigenesis'>. On the other hand, some genes of CYP450 family were found
upregulated in our BC tissues (CYP2C9, CYP2J2, CYP4F11), but another
downregulated (CYP1B1) like in the study performed by Putluri et al.’®® These
authors confirmed the role of methylation as an alternate mechanism in
regulating CYP1A1l and CYP1B1 expression in BC tumors. CYP450-dependent
monooxygenases have an essential function in the metabolism of chemical
carcinogens. Polymorphisms in CYP450 genes correlate with cancer susceptibility,
including BC'*. Therefore, during carcinogenesis BC cells could enhance
antioxidant and detoxifying pathways to control the redox state and to modulate
the immune system with the purpose of avoiding apoptosis and enhancing
proliferation.

Immunotherapy is currently an area of great interest in BC. In this sense,
more insight into the connection between immune system and metabolism could
be interesting to understand how BC cells modulate local levels of nutrients to
alter immune cell function. Metabolites and TFs identified as important in our
study such as: AAs, lactate, FA, GSH, and PPARG, would have an
immunometabolic role in the BC tumor microenvironment. The relationship
among extracellular lactate coming from cancer cells, tumor microenvironment
and immune cell action has been widely studied. Increased lactate levels
attenuate dendritic and T cells and the migration of monocyte leading to
immunosuppression®?. Gln uptake is critical for various T-cell metabolic processes
(TCA cycle, nucleotide synthesis, and detoxification of ROS)'*°, Therefore, in an
often hostile tumor microenvironment, GIn may be limited and could induce
immunosuppression in BC. On the other hand, the role of GSH as anti-
inflammatory molecule and its role in processes of innate and adaptive immune

system have been also reported®®. Finally, the function of PPARG has also been
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linked to the mechanism of action by which BCG inhibits bladder tumor growth#,
PPARG would repress T-cell effects by means of transrepression of pro-
inflammatory processes that result in cytokine production. For all this, PPARG has
been proposed as a promising therapeutical target for cancer treatment?®,

In silico analysis of transcriptome data indicated that metabolic genes are
mostly downregulated in BC by the action of transcriptional repressors and
histone marks. Two examples are GABP and E2F1, already related to bladder
carcinogenesis but not with its metabolism. GABP modulates gene expression of
housekeeping genes'®® but also would regulate the expression of respiratory
chain genes, so it could be a key regulator of energy metabolism in BC. E2F1 has
been related to progression of NMIBC to MIBC 2 but according to our results, it
could regulate several metabolic pathways such as: OXPHOS, TCA cycle, pyruvate,
polyamine, and AA metabolism. Particular active and repressive transcription
histone marks were also associated with downregulated metabolism-related
genes, indicating that epigenetic processes are important in BC regulation. On the
other hand, the role of disturbed AS promoting pro-tumorigenic isoforms of
metabolic enzymes® should be considered. We found a significant AS in several
metabolic genes in BC tissues that may contribute to the observed metabolic
changes. Nevertheless, the impact of these isoforms on tumor progression and
cancer metabolism has not well studied. Only the role of AS in the gene OGDH has
been reported in colorectal cancer, where an upregulation of OGDH alternative

mMRNA transcript has linked with GIn metabolism®3

and an increase in energy.
Regarding urines as a non-invasive alternative to detect BC, our study
revealed the presence of several common altered pathways in BC mainly related
with the metabolism of taurine and AA, and also showed their own urinary
metabolic pathways, different to those found in the tissue study. The

metabolization of some tissue metabolites in other derivatives and a large
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number of substances present in urine coming from other sources could explain
these results. Even so, our data reinforce the idea that some tumor metabolic
alterations (disturbed metabolic pathways for Ala, Asp and Glu metabolism,
taurine and hypotaurine, TCA cycle and aminoacyl t-RNA biosynthesis) are
reflected in the urinary metabolome (changes in Val, methylsuccinic acid, lactate,
Ala, Lys, N-acetylneuraminic acid, GIn, succinic acid, citrate, creatinine,
trimethylamine-N-oxide, methanol, taurine, sucrose, hippuric acid, Phe,
pseudouridine and trigonelline), suggesting that urine can be used to find a non-
invasive approach for BC diagnosis and follow-up. Although our tissue metabolic
profile distinguished BC from non-tumor tissues even at early pathologic stage
(Ta) with a sensibility and specificity of 100%, our metabolic urinary signature also
showed a high sensitivity (91%) and a good specificity (77%) classifying BC and
control urines. Considering the limitations of cystoscopy (being expensive,
operator-dependent, invasive, and overlooking CIS) and the urinary cytology (low
sensitivity in LG tumors) the metabolic urinary signature could be used to detect
and monitor the dynamic changes in the disease, and for diagnosis and maybe
follow-up of BC patients, reducing the number of cystoscopies in NMIBC patients

and identifying early tumor development or recurrences.

Conclusions

In summary, our integrated metabolomic and transcriptomic study indicated
that metabolic reprogramming in BC is produced mainly through the
downregulation of metabolic genes related with TCA cycle, OXPHQOS, and AAs
metabolic pathways. These tumor tissue metabolic alterations are reflected in the
urinary metabolome of the same patient and provide a specific NMR-metabolic
profile able to detect BC with a significant sensitivity and specificity from a non-

invasive approach.
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Table 4.3 Significant metabolites in bladder tissues using U-Mann-Whitney test between

tumor and non-tumor tissues (Table A); ANOVA test among NMIBC, MIBC and CTRL

tissues (Table B); and ANOVA test among Ta, T1, T2 and CTRL tissues (Table C).

Table A
Mol. Fmla. Metabolites HMDB p-val T/NT
- UDP-sugars - <0.05 >1
CoH15N3011P2 cobp HMDB01546  <0.05 >1
C10H17N306S GSH HMDB00125  <0.05 >1
CsH1aNO Cho HMDB00097  <0.05 >1
CeH1206 ml HMDB00211  <0.05 >1
_éi't'z():o(é“; Lipid ( c) - <0.05 <1
Table B
Mol. Fmla. Metabolites HMDB p-val Tukey’s Post-hoc tests
-- UDP-sugars - <0.05 MIBC:CTRL NMIBC:CTRL
CoH15sN3011P CDP HMDB01546  <0.05 MIBC:CTRL NMIBC:CTRL
C10H17N306S GSH HMDBO00125 <0.05 MIBC:CTRL NMIBC:CTRL
CsH14NO Cho HMDBO00097 <0.05 MIBC:CTRL NMIBC:CTRL
CeH1206 ml HMDB00211  <0.05 NMIBC:CTRL
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Table C

Mol. Fmla. Metabolites HMDB p-val Tukey'’s Post-hoc tests
CsH1aNO Cho HMDB0097 <0.05 T2:T1;T2:Ta;T1:Ta;T2:CTRL;T1:CTRL;Ta:CTRL
CoH11NO3 L-Tyr HMDB00158 <0.05 T2:T1;T2:Ta;T1:Ta;T2:CTRL;T1:CTRL;Ta:CTRL
CeH1206 ml HMDB00211 <0.05 T2:T1T2:TaT1:Ta T2:CTRL T1:CTRL Ta:CTRL
C1oH17N306S GSH HMDB00125 <0.05 T2:T1T2:Ta T1:Ta T2:CTRL T1:CTRL Ta:CTRL
_(r::)HC:Iél_(I::IZ Lipid (a) - <0.05 T2:T1T2:TaT1:Ta T2:CTRL T1:CTRL Ta:CTRL
UDP-sugars - <0.05 T2:T1T2:TaT1:Ta T2:CTRL T1:CTRL Ta:CTRL
CoH15N3011P2 CDP HMDB01546 <0.05 T2:T1T2:TaT1:Ta T2:CTRL T1:CTRL Ta:CTRL

—CH=CH-CH-
CH=CH-CH2-CH>-  Lipid (b) - <0.05 T2:T1T2:Ta T1:Ta T2:CTRL T1:CTRL Ta:CTRL
(CH2)n-
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Gene Description Regulation FC p-val FDR p-val

AASS aminoadipate-semialdehyde synthase DOWN -2.55 | 2.00E-03 | 8.90E-03

ABL1 ABL proto-oncogene 1, non-receptor | o\ | 580 | 6.636-06 | 2.00E-04

tyrosinekinase

ACAA2 acetyl-CoA acyltransferase 2 DOWN -5.13 | 2.10E-06 | 6.80E-05

ACACB acetyl-CoA carboxylase beta DOWN -8.43 | 5.27E-07 | 2.36E-05

Acapm | 2¢v-CoAdehydrogenase, C-4to C-12 | oy | 537 | 105607 | 1.126-05
straightchain

ACAT1 acetyl-CoA acetyltransferase 1 DOWN -2.60 | 4.68E-06 | 1.00E-04

ACO1 aconitase 1, soluble DOWN -4.27 | 1.38E-08 | 1.54E-06

ACSL3 acyl-CoA synthetase long-chain family DOWN 209 | 8.00E-04 | 4.70E-03

member 3

ADARB1 adenosinedeaminase, RNA-specific, B1 DOWN -14.27 | 1.67E-07 | 9.90E-06

ADH1B alcohol dehydrogenase.lB (class 1), beta DOWN 973 | 4.94E-06 | 1.00E-04
polypeptide

ADH1C alcohol dehydrogenase 1C (class 1), DOWN | -3.84 | 7.78E-06 | 2.00E-04

gamma polypeptide

ADHS alcohol dehydrogenasg 5 (class Il1), chi DOWN 358 | 1.656-10 | 9.70E-08
polypeptide

AK2 adenylatekinase 2 DOWN -2.40 | 1.00E-04 | 1.30E-03

AK4 adenylatekinase 4 DOWN -12.83 | 1.25E-06 | 4.61E-05

ALDH1B1 Aldehyde dehydrogenase 1 family, DOWN | -7.33 | 3.33E-08 | 2.85E-06
member B1

ALDH2 Aldehyde dehydrogenase 2 family DOWN | -5.62 | 1.19-07 | 7.65E-06

(mitochondrial)

AlDHea1 | Aldehyde dehydrogenase 6 family, DOWN | -2.39 | 2.47€6-07 | 1.32E-05
member Al

ALDHoa1 | Aldehyde dehydrogenase S family, DOWN | -2.04 | 1.31E-09 | 3.21E-07
member Al

AMD1 Adenosylmethionine decarboxylase 1 DOWN -2.13 | 4.00E-04 | 3.10E-03

AOC3 amineoxidase, copper containing 3 DOWN -6.48 | 7.01E-07 | 2.98E-05

APLP2 amyloid beta (A4) pzrecursor-llkeprotem DOWN 567 | 9.076-05 | 1.10E-03

APP amyloid beta (A4) precursor protein DOWN -4.43 | 7.61E-07 | 3.15E-05

ASS1 Argininosuccinate synthase 1 DOWN -2.07 | 2.23E-05 | 4.00E-04

5-aminoimidazole-4-carboxamide
ATIC ribonucleotideformyl transferase/IMP DOWN -2.48 | 4.57E-06 | 1.00E-04

cyclohydrolase
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ATP synthase, H+ transporting,

ATP5A1 mitochondrial F1 complex, DOWN -2.18 | 1.84E-05 | 3.00E-04
alphasubunit 1, cardiac muscle
ATP synthase, H+ transporting,
ATP5B mitochondrial F1 complex, beta DOWN -9.72 | 4.72E-09 | 7.48E-07
polypeptide
ATP synthase, H+ transporting,
ATP5C1 mitochondrial F1 complex, gamma DOWN -3.83 | 2.29E-07 | 1.26E-05
polypeptide 1
ATP synthase, H+ transporting,
ATP5D mitochondrial F1 complex, delta DOWN -2.95 | 2.39E-09 | 4.62E-07
subunit
ATP synthase, H+ transporting,
ATP5E mitochondrial F1 complex, DOWN -4.53 | 1.55E-06 | 5.43E-05
epsilonsubunit
ATPSF1 ATP synthase, H+ transporting, DOWN | -205 | 3.196-08 | 2.77E-06
mitochondrial Fo complex subunit B1
ATP synthase, H+ transporting,
ATP5G2 mitochondrial Fo complex subunit C2 DOWN -41.60 | 4.29E-10 | 1.63E-07
(subunit 9)
ATP synthase, H+ transporting,
ATP5G3 mitochondrial Fo complex subunit C3 DOWN -19.75 | 1.29E-08 | 1.48E-06
(subunit 9)
ATPSH ATP synthase, H+ transporting, DOWN | -4.29 | 7.01E-06 | 2.00E-04
mitochondrial Fo complex subunit D
ATPSI ATP synthase, H+ transporting, DOWN | -10.48 | 3.33E-08 | 2.85E-06
mitochondrial Fo complex subunit E
ATPS) ATP synthase, Hr transporting, DOWN | -206 | 1.20E-08 | 1.40E-06
mitochondrial Fo complex subunit F6
ATP5L ATP synthase, H+ transporting, DOWN | -2.31 | 1.00E-04 | 1.30E-03
mitochondrial Fo complex subunit G
ATP50 _ATP synthase, H+ transporting, DOWN | -17.06 | 2.97E-08 | 2.62E-06
mitochondrial F1 complex, O subunit
ATPase, H+ transporting,
ATP6AP1 - DOWN -6.97 | 6.39E-05 | 8.00E-04
lysosomalaccessoryprotein 1
ATP6VOA1 | ATPase Htransporting, lysosomal VO | o\ | 5 78 | 2.80E-05 | 5.00€-04
subunit al
ATPeVOE1 | ATPase H transporting lysosomal | poyy | 695 | 473608 | 3.71€-06
9kDa, VO subunit el
ATPase, H+ transporting, lysosomal
ATP6V1E1 31kDa, V1 subunit E1 DOWN -2.32 | 1.82E-07 | 1.06E-05
ATPase, H+ transporting, lysosomal
ATP6V1F 14kDa, V1 subunit F DOWN -3.98 | 3.16E-06 | 9.25E-05
ATP8B2 ATPase, aminophospholipid DOWN -2.10 | 5.04E-05 | 7.00E-04
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transporter, class |, type 88, member 2

AU RNA binding protein/enoyl-CoA

AUH DOWN -2.39 | 7.82E-05 | 1.00E-03
hydratase
B2M beta-2-microglobulin DOWN -2.36 | 3.30E-02 | 6.82E-02
BACE1 beta-site APP-cleavingenzyme 1 DOWN -2.58 | 5.00E-04 | 3.30E-03
BCHE butyrylcholinesterase DOWN -3.66 | 7.93E-06 | 2.00E-04
c3 complement component 3 DOWN -2.35 | 6.20E-03 | 1.94E-02
CaA complement component 44 DOWN | -4.18 | 1.30E-03 | 6.50E-03
(Rodgersbloodgroup)
calmodulin 2 (phosphorylasekinase,
CALM?2 delta) DOWN -9.27 | 1.25E-10 | 8.38E-08
CALM3,2,1 calmodulin 3); calmodulin 1); DOWN | -7.15 | 2.87E-09 | 5.23E-07
calmodulin 2
CALU calumenin DOWN -5.32 | 2.83E-07 | 1.47E-05
CAT catalase DOWN -3.44 | 1.88E-05 | 4.00E-04
cDcazgpa | CDC42 binding proteinkinase alpha DOWN | -5.89 | 3.74E-09 | 6.25E-07
(DMPK-like)
CHPT1 cholinephosphotransferase 1 DOWN -22.00 | 7.78E-11 | 6.49E-08
CHRDL1 chordin-like 1 DOWN -3.73 | 1.00E-04 | 1.40E-03
CHRM2 cholinergic receptor, muscarinic 2 DOWN -4,70 | 3.00E-06 | 8.90E-05
CHRM3 cholinergic receptor, muscarinic 3 DOWN -12.79 | 1.47E-06 | 5.21E-05
CIT; citron rho-interacting serine/threonine
MIR1178 kinase; microRNA 1178 uP 245 | 2.70E05 | 5.00E-04
CKB creatinekinase, brain DOWN -2.95 | 4.32E-06 | 1.00E-04
CKMT1A; creatinekinase, mitochondrial 1A;
CKMT1B creatinekinase, mitochondrial 1B up 2.77 | 8.00E-04 | 4.60E-03
COAS5 cytochrome c oxidase assembly factor 5 DOWN -2.09 | 6.00E-04 | 4.00E-03
COX10 COX10 heme A.:farnesyltransferase DOWN 257 | 5226-07 | 2.35E-05
cytochrome c oxidase assembly factor
cox11 COX11 cytochrome ¢ oxidase copper | oy | 549 | 6.726-09 | 9.62E-07
chaperone
COX15 cytochrome c oxidase assembly DOWN | -2.67 | 3.25E-08 | 2.81E-06
homolog 15 (yeast)
COX20 COX20 cytochrome c oxidase assembly DOWN 440 | 1.456-08 | 1.58E-06
factor
cox4i1 cytochrome c oxidase subunit IV DOWN | -4.84 | 3.14E-11 | 5.04E-08
isoform 1
COX5A cytochrome c oxidase subunit Va DOWN -3.13 | 1.50E-07 | 9.14E-06
COX5B cytochrome c oxidase subunitVb DOWN -5.14 | 1.28E-07 | 8.10E-06
COX6A1 cytochrome c oxidase subunit VI DOWN -4.01 | 2.00E-04 | 2.00E-03
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apolypeptide 1

COXe6C cytochrome c oxidase subunit Vic DOWN -2.31 | 1.51E-08 | 1.63E-06
COX7A1 cytochrome ¢ oxidase subunit VI DOWN | -8.45 | 3.59E-10 | 1.52E-07
apolypeptide 1 (muscle)
cytochrome c oxidase subunit VII
COX7A2 . ] DOWN -5.00 | 2.93E-08 | 2.61E-06
apolypeptide 2 (liver)
COX7B cytochrome c oxidase subunit Vilb DOWN -4.85 | 1.94E-07 | 1.12E-05
COX7¢C; cytochrome c oxidase subunit Vlic;
MIR3607 microRNA 3607 DOWN -3.74 | 9.68E-10 | 2.71E-07
COX8A cytochrome ¢ oxidase subunit VIIIA DOWN | -82.96 | 5.73E-11 | 5.92E-08
(ubiquitous)
CRYM crystallinmu DOWN -2.56 | 8.16E-07 | 3.33E-05
CSRP2 Cysteine and glycine-richprotein 2 DOWN -8.27 | 4.03E-08 | 3.32E-06
CST3 cystatin C DOWN -2.44 | 2.07E-07 | 1.16E-05
CYCS cytochrome c, somatic DOWN -2.44 | 1.20E-03 | 6.10E-03
cypigy | Cvtochrome PASO, family 1, subfamily B, [ 1o s | 5 10 | 4.108-03 | 1.456-02
polypeptide 1
cypacg | Cvtochrome P40, family 2, subfamily C, uP 2.18 | 2.00E-04 | 1.60E-03
polypeptide 9
CYP2)2 cytochrome P450, famlly 2, subfamily J, UP 798 | 1.506-02 | 3.856-02
polypeptide 2
Cypap1y | CVtochrome P4s0, family 4, subfamily F, up 2.03 | 2.526-02 | 5.44E-02
polypeptide 11
Cypay | Cvtochrome P40, family 4, subfamily V. [y | 68 | 4.616-08 | 3.65E-06
polypeptide 2
CYR61 cysteine-rich, angiogenicinducer, 61 DOWN -4.12 | 1.27E-02 | 3.25E-02
DARS aspartyl-tRNA synthetase DOWN -2.27 | 1.18E-05 | 3.00E-04
DGKB diacylglycerolkinase, beta 90kDa DOWN -2.95 | 3.00E-04 | 2.30E-03
DGKG diacylglycerolkinase gamma DOWN -3.82 | 1.65E-06 | 5.69E-05
DGKH diacylglycerolkinase, eta upP -2.12 | 3.14E-02 | 6.45E-02
DLAT dihydrolipoamide S-acetyltransferase DOWN -2.03 | 1.01E-06 | 3.92E-05
DLD Dihydrolipoamide dehydrogenase DOWN -3.22 | 1.31E-05 | 3.00E-04
pnaicz | Dnal (Hspd0) homolog, subfamily C, DOWN | -11.87 | 1.51E-07 | 9.20E-06
member 3
DPYD Dihydropyrimidine dehydrogenase DOWN -2.67 | 2.00E-04 | 1.90E-03
ECH1 enoyl-CoAhydratase 1, peroxisomal DOWN -5.42 | 6.34E-07 | 2.74E-05
ECI2 enoyl-CoA delta isomerase 2 DOWN -3.14 | 1.12E-08 | 1.34E-06
EEF1A1 Eukaryotic translation elongation factor DOWN 404 | 433607 | 2.03E-05
1lalphal
EEF1G Eukaryotic translation elongation factor DOWN -4.68 | 1.95E-05 | 4.00E-04
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1 gamma; microRNA 3654

Eukaryotic translation initiation factor

EIFAEBP2 4 bindingprotein 2 DOWN -2.19 | 8.25E-05 | 1.00E-03
ENTPD1 E°t°?p“;lig;'gﬁ;;'ﬁ:;:gate‘j DOWN | -9.40 | 6.96E-09 | 9.80E-07
ESD esterase D DOWN -8.14 | 4.76E-10 | 1.73E-07
FARSB phenylalanyl-tRNA synthetase beta DOWN | -291 | 5.27E-07 | 2.36E-05
subunit
FAXDC2 Fzgz]:fr']‘i:r:’t‘lﬁ’l‘:;f DOWN | -5.15 | 3.24E-12 | 1.37E-08
FBN1 fibrillin 1 DOWN -3.44 | 1.00E-04 | 1.40E-03
FH fumaratehydratase DOWN -2.79 | 4.34E-09 | 7.01E-07
FN1 fibronectin 1 DOWN -55.97 | 7.47E-08 | 5.30E-06
FNBP1 formin bindingprotein 1 DOWN -11.83 | 1.62E-09 | 3.68E-07
FSTL1 Follistatinlike 1; microRNA 198 DOWN -3.21 | 3.89E-06 | 1.00E-04
GAPDH glyceraldehyde-3-phosphate DOWN | -3.10 | 1.326-05 | 3.00E-04
dehydrogenase
GAS6 growth arrest-specific 6 DOWN -2.80 | 7.92E-08 | 5.56E-06
GATA6 GATA bindingprotein 6 DOWN -3.50 | 1.20E-05 | 3.00E-04
| e | DO | 637 | Loncos | 130503
GLRX3 glutaredoxin 3 DOWN -2.09 | 9.45E-05 | 1.10E-03
GLS glutaminase DOWN -2.08 | 1.03E-06 | 3.94E-05
GMPS Guaninemonophosphate synthase DOWN -2.67 | 2.48E-05 | 4.00E-04
GNPDA2 glucosamine-6-phosphate deaminase 2 DOWN -2.41 | 9.93E-07 | 3.86E-05
GOT2 glutamic-oxalf)acetic tra.nsaminase 2, DOWN 315 | 5.586-06 | 1.00E-04
mitochondrial
GPX3 glutathioneperoxidase 3 DOWN -2.77 | 7.20E-07 | 3.03E-05
GPX4 glutathioneperoxidase 4 DOWN -2.83 | 2.77E-08 | 2.50E-06
GSN gelsolin DOWN -3.52 | 2.88E-07 | 1.49E-05
GSTA4 glutathione S-transferasealpha 4 DOWN -2.60 | 8.28E-07 | 3.37E-05
GSTO1 glutathione S-transferase omega 1 DOWN -2.20 | 2.32E-08 | 2.19E-06
GSTO2 glutathione S-transferase omega 2 upP 2.38 | 5.20E-03 | 1.71E-02
GSTT1 glutathione S-transferase theta 1 DOWN -3.00 | 2.20E-03 | 9.50E-03
H3F3A H3 histone, family 3A DOWN -3.60 | 1.00E-04 | 1.20E-03
hydroxyacyl-CoAdehydrogenase/3-
HADHA ketoacyl-CoA thiolase/enoyl- DOWN -2.46 | 1.78E-05 | 3.00E-04
CoAhydratase , alphasubunit
HADHB hydroxyacyl-CoAdehydrogenase/3- DOWN -2.49 | 3.00E-04 | 2.60E-03
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ketoacyl-CoA thiolase/enoyl-
CoAhydratase , beta subunit

HIBADH 3-hydroxyisobutyrate dehydrogenase DOWN -2.89 | 1.52E-07 | 9.23E-06
HK2 hexokinase 2 up 2.25 2.57E-05 | 4.00E-04
IDH2 isocitratedehydrogenase 2 (NADP+), |y | 556 | 5.006-04 | 3.506-03

mitochondrial
IDH3A 'Soc'tratEdEhyglr;’ﬁ:”ase 3 (NAD+) DOWN | -2.20 | 3.44E-06 | 9.89E-05
IDH3B isocitratedehydrogenase 3 (NAD+) beta DOWN -2.53 | 6.93E-05 | 9.00E-04
IGF1 insulin-likegrowth factor 1 receptor DOWN -2.20 | 3.20E-03 | 1.22E-02
IGFBPS Insulinlike growth factor binding DOWN | -12.84 | 2.06E-06 | 6.70E-05
protein 5
IGFBP6 Insulin like growth factor binding DOWN | -2.28 | 5.61E-07 | 2.48E-05
protein 6
IGFBP7 Insulin like growth factor binding DOWN | -20.02 | 2.26E-10 | 1.14E-07
protein 7
IMPA2 inositol(myo)-1(or 42)—monophosphatase DOWN 267 | 5.416:06 | 1.006-04
INPP4B inositol polyphosphate-4-phosphatase uP 211 6.00E-03 | 1.90E-02
type ll B
IP6K2 inositol hexakisphosphatekinase 2 up 2.37 2.33E-02 | 5.14E-02
ITM2B integral membraneprotein 2B DOWN -7.06 | 6.36E-07 | 2.74E-05
ITPK1 inositol-tetrakisphosphate 1-kinase DOWN -2.49 | 1.74E-06 | 5.93E-05
ITPKB inositol-trisphosphate 3-kinase B DOWN -5.52 | 1.79E-06 | 6.05E-05
ITPR1 inositol 1,4,5-trisphosphate receptor, DOWN 527 | 4.356-05 | 6.00E-04
type 1
ITPR3 inositol 1,4,5-trisphosphate receptor, uP 231 | 3.00E-04 | 2.60E-03
type 3
TpRipL2 | mositol 14,5 trisphosphate receptor |y |5 01 | 130603 | 6.50€-03
interactingprotein-like 2
KDSR 3-ketodihydrosphingosine reductase DOWN -13.58 | 7.27E-09 | 1.00E-06

LAMB2 laminin, beta 2 (laminin S) DOWN -2.83 | 1.22E-06 | 4.54E-05

LAMC1 laminin, gamma 1 (formerly LAMB2) DOWN -2.39 | 1.15E-05 | 2.00E-04

LGALS1 lectin, galactoside-binding, soluble, 1 DOWN -20.98 | 1.03E-07 | 6.85E-06

LMCD1 LIM andcysteine-richdomains 1 DOWN -3.98 | 1.50E-08 | 1.62E-06

(Tgpy | 'atenttransforminggrowth factorbeta | 5oy | g 63 | 1.89E-09 | 4.02€-07
bindingprotein 1

MAOA monoamineoxidase A DOWN -3.26 | 2.94E-06 | 8.79E-05

MAOB monoamineoxidase B DOWN -9.60 | 4.75E-10 | 1.73E-07

MDH1 malatedehydrogenase 1 DOWN -2.44 | 1.11E-07 | 7.24E-06
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MDH2 malatedehydrogenase 2 DOWN -2.42 | 2.12E-07 | 1.18E-05
MFGES8 milk fat globule-EGF factor 8 protein DOWN -2.07 | 2.68E-05 | 5.00E-04
MGST1 microsomalglutathione S-transferase 1 upP 5.90 | 2.50E-03 | 1.01E-02
MGST3 microsomalglutathione S-transferase 3 DOWN -2.46 | 1.78E-06 | 6.03E-05
MIA3 melanoma inhibitoryactivityfamily, DOWN 229 | 3.876-07 | 1.86E-05
member 3
MMP2 matrixmetallopeptidase 2 DOWN -3.14 | 2.00E-04 | 1.50E-03
MPC1 Mitochondrial pyruvate carrier 1 DOWN -3.19 | 4.94E-11 | 5.64E-08
MPC2 Mitochondria Ipyruvate carrier 2 DOWN -2.08 | 5.12E-07 | 2.31E-05
MRPL11 Mitochondrial ribosomal protein L11 DOWN -5.02 | 2.31E-05 | 4.00E-04
MRPL24 Mitochondrial ribosomal protein L24 DOWN -2.52 | 9.58E-09 | 1.21E-06
MRPL3 Mitochondria Iribosomal protein L3 DOWN -2.60 | 8.28E-05 | 1.00E-03
MRPL35 Mitochondrial ribosomal protein L35 DOWN -3.08 | 2.85E-05 | 5.00E-04
MRPL42 Mitochondrial ribosomal protein L42 DOWN -2.56 | 4.97E-05 | 7.00E-04
MRPS14 Mitochondrial ribosomal protein S14 DOWN -6.50 | 4.00E-10 | 1.59E-07
MRPS18A | Mitochondrial ribosomal protein S18A DOWN -2.40 | 2.00E-04 | 2.00E-03
MRPS18C Mitochondrial ribosomal protein S18C DOWN -2.20 | 6.90E-06 | 2.00E-04
MRPS21 Mitochondrial ribosomal protein S21 DOWN -3.18 | 1.95E-05 | 4.00E-04
MRPS36 Mitochondrial ribosomal protein S36 DOWN -2.07 | 2.81E-05 | 5.00E-04
MRPS7 Mitochondrial ribosomal protein S7 DOWN -3.55 | 5.58E-06 | 1.00E-04
MSRB1 Methioninesulfoxide reductase B1 DOWN -2.42 | 1.34E-07 | 8.40E-06
MSRB2 Methioninesulfoxide reductase B2 DOWN -4.80 | 3.39E-10 | 1.50E-07
MSRB3 Methioninesulfoxide reductase B3 DOWN -5.39 | 6.34E-08 | 4.69E-06
MTR | omocystome metyransterase | DOWN | 239 | 300504 | 270503
MUT methylmalonyl-CoAmutase DOWN -2.30 | 4.24E-06 | 1.00E-04
NDUFA1 NAD:Is:ahZngi:SIZe)(,(lf);q.lsjikn;ane) 1| pown | 238 | 26902 | 573602
NDUFA11 NAZE::?:szgifglaef i‘ff:;"k";:) 1| pown | 623 | 1.326-10 | 8.68E-08
NDUFA12 | NVADH d:f;ﬁ?ﬁﬁ:g;fp‘;i'qluz'"°”e) 1| pown | -533 | 3.40£-09 | 5.85E-07
NDUFA2 NADgE}i:y;tgfs:qa:leeif;”'qsll‘('g:”e) 1| bown | -5.29 | 6.40E-06 | 2.00€-04
NDUFA4 NDUFA4, mitochondrial complex DOWN | -18.25 | 1.07E-08 | 1.30E-06
associated
NDUFag | VADH dehydrogenase (ubiquinone) 1 | o\ | 761 | 774611 | 6.49E-08

alphasubcomplex, 6, 14kDa

107




Chapter 4

NADH dehydrogenase (ubiquinone) 1

NDUFA9 alphasubcomplex, 9, 39kDa DOWN -2.03 | 2.00E-04 | 1.80E-03
NADH dehydrogenase (ubiquinone) 1,
NDUFAB1 DOWN -9.44 1.48E-07 .05E-
v alpha/beta subcomplex, 1, 8kDa 0 9 8E-0 9.05E-06
NDUFAF1 | VADH dehydrogenase (ubiquinone) DOWN | -2.07 | 4.11E-07 | 1.95E-05
complex |, assembly factor 1
NDUFAF2 | VADH dehydrogenase (ubiquinone) DOWN | -10.19 | 6.06E-11 | 5.92E-08
complex |, assembly factor 2
NDUFAF2 | VADH dehydrogenase (ubiquinone) DOWN | -436 | 1.39E-08 | 1.55E-06
complex |, assembly factor 2
NDUFAF4 | VADH dehydrogenase (ubiquinone) DOWN | -2.40 | 1.47E-05 | 3.00E-04
complex |, assembly factor 4
NADH dehydrogenase (ubiquinone) 1
NDUFB10 beta subcomplex, 10, 22kDa DOWN -3.46 | 2.16E-08 | 2.08E-06
NDUFp3 | VADH dehydrogenase (ubiguinone) 1 DOWN | -2.81 | 2.93E-06 | 8.77E-05
beta subcomplex, 3, 12kDa
NDurss | VADH dehydrogenase (ubiquinone) 1 |\ 340 | 238E-06 | 7.476-05
beta subcomplex, 5, 16kDa
NpUFB | VADH dehydrogenase (ubiquinone) 1 DOWN | -5.17 | 4.87E-07 | 2.22E-05
beta subcomplex, 6, 17kDa
npurgy | VADH dehydrogenase (ubiquinone) 1 DOWN | -4.61 | 2.20E-06 | 7.03E-05
beta subcomplex, 7, 18kDa
NDUFgy | VADH dehydrogenase (ubiquinone) 1 DOWN | -2.73 | 1.98E-06 | 6.53E-05
beta subcomplex, 9, 22kDa
NADH dehydrogenase (ubiquinone) Fe-
NDUFS3 S protein 3, 30kDa (NADH-coenzyme Q DOWN -2.35 | 5.04E-07 | 2.28E-05
reductase)
NADH dehydrogenase (ubiquinone) Fe-
NDUFS4 S protein 4, 18kDa (NADH-coenzyme Q DOWN -3.95 | 8.79E-08 | 6.03E-06
reductase)
NADH dehydrogenase (ubiquinone) Fe-
NDUFS5 S protein 5, 15kDa (NADH-coenzyme Q DOWN -12.64 | 4.16E-09 | 6.78E-07
reductase)
NDUFv2 | VADH dehydrogenase (ubiguinone) DOWN | -2.15 | 2.13€-06 | 6.88E-05
flavoprotein 2, 24kDa
NEDDS neural precursor cell expressed, DOWN | -2.05 | 2.71E-06 | 8.26E-05
developmentallydown-regulated 8
Nmes | NME/NM23 nucleoside diphosphate | oy | 09 | 59709 | 8.79E-07
kinase 4
OAT Ornithine aminotransferase DOWN -2.47 | 2.92E-05 | 5.00E-04
OAZ1 Ornithine decarboxylase antizyme 1 DOWN -3.37 | 2.05E-06 | 6.68E-05
oDc1 Ornithine decarboxylase 1 DOWN -2.21 | 1.50E-03 | 7.20E-03
OGDH oxoglutarate (alpha-ketoglutarate) DOWN -2.97 | 1.99E-07 | 1.13E-05
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dehydrogenase (lipoamide)

OXCT1 3-oxoacid CoA-transferase 1 DOWN -2.22 | 8.00E-04 | 4.90E-03
PAM peptidylglycinealpha- DOWN | -4.59 | 1.22E-06 | 4.54E-05
amidatingmonooxygenase
PCMTL protein-L-isoaspartate (D-aspartate) O- DOWN 251 | 2.466-07 | 1.32E-05
methyltransferase
PDE10A phosphodiesterase 10A upP 2.38 | 1.86E-02 | 4.34E-02
PDELC phosphodiesterase 1C, calmodulin- DOWN 591 | 1.24E-06 | 4.58E-05
dependent 70kDa
PDGFC Platelet derived growth factor C DOWN -2.13 | 1.64E-05 | 3.00E-04
ppHA1 | Yruvatedehydrogenase (lipoamide) DOWN | -2.52 | 2.47E-08 | 2.27E-06
alpha 1
PDHB Pyruvate dehyd rg’eg;"ase (lipoamide) DOWN | -3.46 | 4.74E-08 | 3.71E-06
PDHX Pyruvate dehydrogenase complex, DOWN | -2.13 | 4.69E-08 | 3.70E-06
component X
PDK4 Pyruvate dehydrogenasekinase, DOWN | -11.76 | 9.57E-07 | 3.75E-05
isozyme 4
PELO pelotahomolog (Drosophila); integrin DOWN 250 | 2.41E-07 | 1.30E-05
alpha 1
PFAS Phosphoribosyl formylglycinamidine uP 509 1.01E-05 | 2.00E-04
synthase
PGAM1 Phosphoglycerate mutase 1 (brain) DOWN -3.62 | 1.53E-06 | 5.36E-05
PGM2L1 Phosphogluco mutase 2-like 1 DOWN -2.73 | 4.74E-05 | 7.00E-04
PGM5 phosphoglucomutase 5 DOWN -28.42 | 1.63E-09 | 3.69E-07
PHKB Phosphorylasekinase, beta DOWN -2.77 | 1.63E-06 | 5.65E-05
PICALM Phosphatidyl inositol b|n¢ng clathrin DOWN 263 | 5.676-07 | 2.50E-05
assembly protein
PIGP Phosphatidyl inositol glycan anchor DOWN | -4.09 | 3.61E-07 | 1.76E-05
biosynthesis class P
PIGT Phosphatidyl inositol glycan anchor DOWN | -2.26 | 8.46E-05 | 1.00E-03
biosynthesis class T
PIGY: Phosphatidyl inositol glycan anchor
PYUR’F biosynthesis class Y; PIGY upstream DOWN -2.10 | 4.06E-06 | 1.00E-04
reading frame
pikacoa | Phosphatidylinositol-4-phosphate 3- DOWN | -2.32 | 3.07E-06 | 9.07E-05
kinase, catalytic subunittype 2 alpha
piksca | Phosphatidylinositol-4,5-bisphosphate | o\ 4 45 | 1 356.08 | 1.51E-06
3-kinase, catalytic subunitalpha
pipakaa | Phosphatidylinositol--phosphate 4- DOWN | -4.14 | 2.12E-11 | 4.33E-08
kinase, type Il, alpha
PITPNC1 Phosphatidyl inositol transfer protein, DOWN -2.44 | 8.00E-03 | 2.33E-02
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cytoplasmic 1

PLA2G12A phospholipase A2, group XIIA DOWN -2.08 | 2.21E-05 | 4.00E-04
PLA2G16 phospholipase A2, group XVI DOWN -2.08 | 7.30E-03 | 2.18E-02
PLA2G2F phospholipase A2, group IIF upP 2.18 | 1.47E-02 | 3.62E-02
pLA2Gaa | Phospholipase A2, group VA (eytosolic, |y | 353 | 211607 | 1.176-05

calcium-dependent)

PLB1 phospholipase B1 UpP 2.29 8.10E-03 | 2.34E-02
PLCB4 phospholipase C, beta 4 DOWN -7.50 | 7.80E-09 | 1.06E-06
PLCD4 phospholipase C, delta 4 DOWN -2.42 | 8.40E-05 | 1.00E-03
PLCL1 phospholipase C-like 1 DOWN -2.23 | 6.32E-06 | 2.00E-04
plopy | Procollagen-ysine, 2-oxoglutarate 5- | o\ | 511 | 264602 | 5.656-02

dioxygenase 2

PLPP1 phospholipidphosphatase 1 DOWN -3.81 | 5.14E-05 | 7.00E-04
PLPP3 phospholipidphosphatase 3 DOWN -4.09 | 4.72E-07 | 2.17E-05
PLSCR4 phospholipidscramblase 4 DOWN -4.43 | 1.00E-08 | 1.24E-06
pmpcg | Peptidase (m'toc;;r;d”a' processing) DOWN | -3.52 | 1.18E-08 | 1.39E-06
PPA1 pyrophosphatase (inorganic) 1 DOWN -2.77 | 3.00E-04 | 2.40E-03
PPARG Peroxisome proliferator-activated up 6.47 | 6.72E+00 | 4.50E-03

receptor gamma
PPM1K Protein phosphatase, Mg2+/Mn2+ DOWN | -8.62 | 2.92E-09 | 5.26E-07
dependent, 1K
PPML Protein phosphatase, Mg2+/Mn2+ DOWN | -17.00 | 2.36E-09 | 4.60E-07
dependent, 1L
PPP2CA Protein phosphatase 2, catalytic DOWN | -2.27 | 2.95-06 | 8.81E-05
subunit, alphaisozyme
PPP2CB Protein phosphatase 2, catalytic DOWN | -3.28 | 6.336-09 | 9.17E-07
subunit, beta isozyme
pppor1A | Froteinphosphatase 2, regulatory DOWN | -3.06 | 5.00E-04 | 3.50E-03
subunit A, alpha
prRKkaaz | Proteinkinase, AMP-activated, alpha2 | o\ N | 1676 | 3.28607 | 1.64E-05
catalytic subunit
PRKACB Protein kinase, CAMP-dependent, DOWN | -2.08 | 5.236-07 | 2.35E-05
catalytic, beta
PRKCA Protein kinase C, alpha DOWN -5.10 | 2.00E-03 | 8.60E-03
PRKCB Protein kinase C, beta DOWN -2.31 | 8.20E-06 | 2.00E-04
PRPS1 Phosphoribosyl pyrophosphate DOWN | -2.59 | 3.84E-08 | 3.21E-06
synthetase 1
PRSS23 protease, serine, 23 DOWN -2.46 | 2.00E-04 | 1.60E-03
PTEN Phosphatase and tensin homolog DOWN -2.12 | 7.24E-06 | 2.00E-04
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PWP1 PWP1 homolog, endonuclein DOWN -2.09 | 2.73E-07 | 1.43E-05
PYGB phosphorylase, glycogen; brain DOWN -33.99 | 1.55E-08 | 1.65E-06
PYGM phosphorylase, glycogen, muscle DOWN -8.47 | 1.42E-07 | 8.78E-06
RARS arginyl-tRNA synthetase DOWN -2.00 | 1.00E-04 | 1.40E-03

RPIA ribose 5-phosphate isomerase A upP 2.95 | 3.00E-04 | 2.20E-03
RPL12 Ribosomal protein L12 DOWN -3.44 | 1.71E-09 | 3.82E-07
RPL13 Ribosomal protein L13 DOWN -6.57 | 2.22E-10 | 1.14E-07
RPL13A Ribosomal protein L13a DOWN -22.61 | 1.62E-08 | 1.71E-06
RPL14 Ribosomal protein L14 DOWN -3.07 | 1.52E-07 | 9.20E-06
RPL15 Ribosomal protein L15 DOWN -2.05 | 5.24E-06 | 1.00E-04
RPL17 Ribosomal protein L17 DOWN -2.03 | 7.29E-06 | 2.00E-04
RPL18 Ribosomal protein L18 DOWN -4.18 | 9.53E-08 | 6.41E-06
RPL18A Ribosomal protein L18a DOWN -10.32 | 1.38E-08 | 1.54E-06
RPL19 Ribosomal protein L19 DOWN -2.53 | 1.25E-07 | 7.94E-06
RPL21 Ribosomal protein L21 DOWN -23.51 | 4.55E-08 | 3.61E-06
RPL24 Ribosomal protein L24 DOWN -4.48 | 1.13E-06 | 4.24E-05
RPL26 Ribosomal protein L26 DOWN -4.31 | 2.30E-07 | 1.26E-05
RPL27 Ribosomal protein L27 DOWN -6.93 | 3.60E-06 | 1.00E-04
RPL30 Ribosomal protein L30 DOWN -2.60 | 8.22E-07 | 3.35E-05
RPL35 Ribosomal protein L35 DOWN -2.36 | 1.63E-06 | 5.65E-05
RPL35A Ribosomal protein L35a DOWN -2.11 | 1.23E-08 | 1.42E-06
RPL36 Ribosomal protein L36 DOWN -2.06 | 2.41E-06 | 7.54E-05
RPL37 Ribosomal protein L37 DOWN -5.54 | 1.35E-05 | 3.00E-04
RPL38 Ribosomal protein L38 DOWN -2.40 | 3.78E-08 | 3.17E-06
RPL4 Ribosomal protein L4 DOWN -8.15 | 9.61E-07 | 3.76E-05
RPL41 Ribosomal protein L41 DOWN -2.38 | 2.73E-07 | 1.43E-05
RPL5 Ribosomal protein L5 DOWN -3.09 | 4.50E-11 | 5.43E-08
RPL6 Ribosomal protein L6 DOWN -9.13 | 4.72E-09 | 7.48E-07
RPL8 Ribosomal protein L8 DOWN -6.80 | 4.51E-09 | 7.24E-07
RPL9 Ribosomal protein L9 DOWN -2.40 | 4.17E-08 | 3.40E-06
RPLPO Ribosomal protein, large, PO DOWN -2.76 | 2.02E-06 | 6.62E-05
RPLP1 Ribosomal protein, large, P1 DOWN -3.80 | 5.20E-12 | 1.95E-08
RPS10 Ribosomal protein S10 DOWN -2.08 | 1.25E-06 | 4.61E-05
RPS11 Ribosomal protein S11 DOWN -10.30 | 6.91E-07 | 2.94E-05
RPS13 Ribosomal protein S13 DOWN -51.68 | 7.28E-11 | 6.49E-08
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RPS14 Ribosomal protein S14 DOWN -2.41 | 1.36E-07 | 8.50E-06
RPS15 Ribosomal protein S15 DOWN -10.26 | 1.68E-08 | 1.76E-06
RPS15A Ribosomal protein S15a DOWN -5.23 | 8.35E-10 | 2.49€E-07
RPS16 Ribosomal protein S16 DOWN -25.84 | 3.33E-08 | 2.85E-06
RPS18 Ribosomal protein S18 DOWN -3.28 | 1.34E-05 | 3.00E-04
RPS19 Ribosomal protein S19 DOWN -7.24 | 6.01E-09 | 8.82E-07
RPS2 Ribosomal protein S2 DOWN -4.29 | 1.08E-10 | 7.95E-08
RPS20 Ribosomal protein S20 DOWN -2.58 | 2.99€-07 | 1.53E-05
RPS21 Ribosomal protein S21 DOWN -3.32 | 1.08E-06 | 4.10E-05
RPS23 Ribosomal protein S23 DOWN -2.94 | 4.00E-10 | 1.59€E-07
RPS25 Ribosomal protein S25 DOWN -5.52 | 1.95E-07 | 1.12E-05
RPS26 Ribosomal protein S26 DOWN -2.48 | 2.35E-05 | 4.00E-04
RPS27 Ribosomal protein S27 DOWN -2.14 | 9.87E-09 | 1.23E-06
RPS28 Ribosomal protein S28 DOWN -2.14 | 7.60E-08 | 5.37E-06
RPS29 Ribosomal protein $29 DOWN -2.50 | 2.43E-07 | 1.31E-05
RPS3 Ribosomal protein S3 DOWN -3.68 | 9.09E-09 | 1.16E-06
RPS3A Ribosomal protein S3a DOWN -4.37 | 6.14E-10 | 2.02E-07
RPS4X Ribosomal protein S4, X-linked DOWN -3.90 | 2.04E-08 | 2.00E-06
RPS5 Ribosomal protein S5 DOWN -12.72 | 5.37E-09 | 8.21E-07
RPS9 Ribosomal protein S9 DOWN -34.45 | 1.10E-09 | 2.91E-07
RSL1D1 Ribosomal L1 domain containing 1 DOWN -2.35 | 3.91E-07 | 1.87E-05
RSL24D1 Ribosomal L24 domain containing 1 DOWN -4.60 | 2.77E-08 | 2.50E-06
S1PR3 sphingosine-1-phosphate receptor 3 DOWN -2.73 | 9.14E-07 | 3.64E-05
SARS seryl-tRNA synthetase DOWN -3.05 | 8.97E-08 | 6.12E-06
SAT2 acet;‘t’g:l'f‘i'r";/e S?:;T;”;g;'ber , DOWN | -2.43 | 2.686-07 | 1.41E-05
SDC2 syndecan 2 DOWN -3.34 | 1.70E-09 | 3.82E-07
Succinate dehydrogenase complex,
SDHC subunit C, integral membrane protein, DOWN -2.31 | 2.10E-03 | 9.00E-03
15kDa
SDHD Succinate dehydrogenase complex DOWN | -5.21 | 7.62E-08 | 5.38E-06
subunit D, integral membrane protein
SDPR Serum deprivation response DOWN -13.78 | 7.14E-09 | 9.94E-07
SERINC1 Serine incorporator 1 DOWN -3.61 | 2.78E-09 | 5.18E-07
SIAH1 siah E3 ubiquitin prote inligase 1 DOWN -3.23 | 2.00E-04 | 2.00E-03
SLC16A7 solute carrier family 16 DOWN | -2.01 | 1.93E-05 | 4.00E-04

(monocarboxylate transporter),
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member 7

Solute carrier family 25 (mitochondrial

SLC25A5 carrier; adenine nucleotide DOWN -2.62 | 2.67E-06 | 8.16E-05
translocator), member 5
solute carrier family 25 (mitochondrial
SLC25A6 carrier; adenine nucleotide DOWN -2.08 | 3.76E-06 | 1.00E-04
translocator), member 6
SLC2A1 solute carrier family 2 (facilitated UP 266 | 4.306-03 | 1.49E-02
glucose transporter), member 1
SLCIAL2 solute carrier family 2 (facilitated DOWN 296 | 1.426-05 | 3.00E-04
glucose transporter), member 12
SLCIA3 solute carrier family 2 (facilitated DOWN 322 | 1.916-06 | 4.51E-05
glucose transporter), member 3
SLCIAL solute carrier family 2 (facilitated DOWN 213 | 912E-06 | 2.00E-04
glucose transporter), member 4
SLC35A1 solute carrier family 35 (CMP-sialicacid DOWN 355 | 5.556-07 | 2.46E-05
transporter), member Al
sphingomyelinphosphodiesterase 2,
SMPD2 neutral membrane (neutral upP 2.29 | 7.68E-05 | 1.00E-03
sphingomyelinase)
SMS Spermine synthase DOWN -2.57 | 1.04E-05 | 2.00E-04
SOD1 Superoxide dismutase 1, soluble DOWN -40.66 | 8.52E-11 | 6.77E-08
SPARCL1 SPARC like 1 DOWN 127.65 1.30E-08 | 1.48E-06
SPCS2 signalpeptidase complex subunit 2 DOWN -3.68 | 1.85E-05 | 3.00E-04
SPCS3 signalpeptidase complex subunit 3 DOWN -2.32 | 1.00E-04 | 1.20E-03
SPPL2A signalpeptidepeptidaselike 2A DOWN -3.20 | 3.97E-05 | 6.00E-04
SUCLG1 succinate-CoAligase, alphasubunit DOWN -3.09 | 2.42E-08 | 2.24E-06
TALDO1 transaldolase 1 DOWN -5.41 | 2.09E-08 | 2.04E-06
TMEM208 transmembraneprotein 208 DOWN -3.65 | 6.90E-07 | 2.94E-05
TNC tenascin C DOWN -2.33 | 3.10E-02 | 6.39E-02
TXN thioredoxin DOWN -13.15 | 1.96E-07 | 1.12E-05
TXNRD1 thioredoxinreductase 1 DOWN -2.77 | 1.88E-06 | 6.29E-05
UBAS2 ubiquitin A-52. residueribosomalprot. DOWN 537 | 223607 | 1.236-05
fusionproduct 1
UBB ubiquitin B DOWN -2.68 | 5.99E-11 | 5.92E-08
UBE2L3 Ubiquitin-conjugating enzyme E2L 3 DOWN -2.48 | 1.26E-05 | 3.00E-04
UBE2M ubiquitin-conjugating enzyme E2M DOWN -3.21 | 2.00E-04 | 1.60E-03
UBL5 ubiquitin-like 5 DOWN -7.60 | 1.46E-08 | 1.59E-06
UGDH UDP-glucose 6-dehydrogenase DOWN -2.14 | 5.94E-07 | 2.60E-05
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UGP2 UDP-glucosepyrophosphorylase 2 DOWN -2.57 | 2.23E-09 | 4.45E-07
uqcrig | UPiauinol-cytochrome c reductase, DOWN | -2.30 | 1.17E-02 | 3.06E-02
complex Il subunit X
uqerin | Ubiauinokeytochrome c reductase, | poyy | g5 | 856E-07 | 3.46E-05
complex Ill subunit XI
UQCRB ubiquinol-cytochrome ¢ reductase DOWN | -2.80 | 3.01E-10 | 1.38E-07
binding protein
UQCRC2 ubqu|noI-cytochrome c reductase core DOWN 287 | 9.14E-07 | 3.64E-05
protein Il
ubiquinol-cytochrome c reductase,
UQCRFS1 . . . DOWN -3.45 | 6.00E-07 | 2.62E-05
Rieskeiron-sulfur polypeptide 1
UQCRH ubiquinol-cytochrome c reductase DOWN | -248 | 1.54E-05 | 3.00E-04
hingeprotein
uqerHL | UPiauinolcytochrome c reductase DOWN | -320 | 2.00E-04 | 2.00E-03
hingeprotein like
USP25 Ubiquitin specific peptidase 25 DOWN -2.18 | 3.07E-05 | 5.00E-04
USP9X Ubiquitin specific peptidase 9, X-linked DOWN -2.42 | 7.18E-08 | 5.13E-06
WFS1 Wolfram syndrome 1 (wolframin) DOWN -3.02 | 7.59E-07 | 3.15E-05
YME1L1 YME1-like 1 ATPase DOWN -2.56 | 1.64E-07 | 9.76E-06
tyrosine 3-monooxygenase/tryptophan
YWHAB 5-monooxygenase activation protein, DOWN -2.58 | 1.00E-04 | 1.20E-03
beta
tyrosine 3-monooxygenase/tryptophan
YWHAE 5-monooxygenase activation protein, DOWN -3.71 | 8.10E-06 | 2.00E-04

epsilon

NOTE: FC= Fold Change; p-val= p-value; FDR p-val= FDR p-value.
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Table 4.7 Putative binding motif enrichment analysis using the Enrich webtool and
showing the relative relevance of various transcription factors in the deregulated
transcripts.

Term

p-val

Adj. p-
val

Genes

E2F1

6.3E-22

4.0E-19

RPL4,RPL30,ACAA2,NDUFA12,ATP5C1,ADARB1,RPL8,PWP1,RPL6,
UBE2L3,RPS15,RPS14,RPS16,RPL18A,RPS18,PPP2R1A,PMPCB,RPL3
5,RPL37,RPS11,ATP6V1E1,RPS10,PELO,B2M,PDHX,RPS9,RPL21,FN
BP1,RPS5,APLP2,SARS,MRPS18A,SDHC,EEF1A1,SMS,RPL24,RPL27,
SUCLG1,RPL26,UQCRC2,UQCRB,NDUFB10,COX15,MAOA,GMPS,AK
2,ITPR1,COX7A2,ATP50,0AZ1,UQCRH,MRPL11,ATP5L,ATP5B,ATP5
E,ATP5D,COX11,IGFBP7,NDUFV2,ATP6V1F,DARS,RPL41,PDHAL,ID
H2,GOT2,H3F3A,FN1,MRPL24,RPS28,RPS27,CALU,0GDH,RPS20,SE
RINC1,CALM1,RPS21,CALM2,ITM2B,RPS23,FARSB,PICALM,YWHAE
,COX7B,MRPS14,RPLP1,PIGP,PTEN,SLC2A1,MTR,SLC2A3,LAMC1,A
TP5G3,ATP5G2,COX7C,MRPL35,PITPNC1,CYR61,HK2,PIGY,MRPL3,
ATIC,CSRP2,ALDH2,RARS,ACADM,DLAT,IDH3A,COX8A,ATP6AP1,IT
PK1,RPL13A,RPS3A,NME4,ATP5F1,EEF1G,HADHB,PLCB4,CAT,NDU
FS3,SLC25A5,ALDHO9AL,PRPS1,0AT,NDUFB7,MRPS36,RPL12,ATP5
A1,0DC1,NDUFB3,COX5B,COX5A,FSTL1,PPP2CA,CST3,PPP2CB,RPS
15A,RPS3,CKB,RPL15,RPS2,RPL18,RPL17,RPL19,BCHE,NDUFA6,MD
H1,MDH2,USP9X,NDUFA4,NDUFA2,NDUFA1,COX6C,ASS1,50D1,SP

CS3,RSL1D1,SPCS2,MSRB2

EKLF

2.9E-20

9.3E-18

RPL4,HIBADH,MRPS14,NDUFA12,RPLP1,SLC2A1,SLC2A4,ATP5G2,P
FAS,PWP1,RPL6,RPS4X,MRPL3,RPS14,ATIC,LGALS1,RPS16,ALDH2,
RPS18,IDH3B,PMPCB,RPL35,RPS11,COX8A,RPS9,GSTO1,ECH1,SAR
S,RPL13A,SDHC,NME4,EEF1A1,EEF1G,CAT,RPL24,RPL27,SUCLG1,S
LC25A5,ALDH9A1,0AT,UQCRB,NDUFB10,MGST3,NDUFB3,GMPS,A
TP5J,NEDDS8,ATP50,MRPL11,ACAT1,PPP2CA,CST3,0XCT1,RPS3,EIF
4EBP2,RPL15,RPL19,MDH1,MDH2,NDUFA4,
TXNRD1,GOT2,H3F3A,IDH2,RPIA,RPS26,RPS25,RSL1D1,RPS28,SPC
S2,NDUFAB1,CALM3,ITM2B,UBE2M,RPS23

MYC

7.8E-20

1.7e-17

YWHAE,RPL4,RPL5,COX7B,RPL30,RPLP1,ATP5C1,RPL8,ATP5G2,CO
X7C,PWP1,PIGY,RPL6,GLS,RPS15,MRPL3,RPS14,ATIC,RPS19,RPL18
A,RPS18,RARS,RPL36,RPL35,RPL38,RPL37,RPS13,COX8A,RPS9,RPL
21,RPS5,5ARS,NME4,RPS3A,ATP5F1,EEF1AL,EEF1G,NDUFS4,NDUF
S3,YME1L1,RPL27,RPL26,NDUFB5,RPL12,ATP5A1,0DC1,MRPL11,A
TP5B,RPS15A,ATP5E,RPS3,EIF4EBP2,RPL13,RPL15,RPS2,RPL18,RPL
17,COX10,ATP6V1F,DARS,NDUFA4,GOT2,H3F3A,MRPL24,SOD1,RP
S25,RSL1D1,RPS27,RPS29,RPS20,RPS21,FARSB,RPS23

ESRRB

2.5E-18

3.1E-16

HIBADH,YWHAB,NDUFA12,COX411,ATP5C1,PYGM,ATP5G3,COX6A
1,ATP5G2,COX7C,PIGY,GLS,RPS15,CSRP2,AUH,IDH3B,UQCRFS1,DL
AT,AASS,IDH3A,COX8A,PLA2G12A,GPX4,PGAM1,APLP2,SDHC,SDH
D,NDUFS5,NDUFS4,NDUFS3,SUCLG1,UQCRC2,GAS6,DLD,NDUFBS9,
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PRKAA2,UQCRB,NDUFB10,NDUFB5,MRPS36,MGST3,ATP5A1,0DC
1,GMPS,AK2,COX7A2,PPM1K,PDHB,ATP50,COX5B,COX5A,COX7A
1,LTBP1,UQCRH,ACAT1,ATP5B,0XCT1,ATP5E,PDGFC,ATP5D,COX1
1,CKB,NDUFV2,COX10,NDUFA9,NDUFA6,MDH1,MDH2,NDUFA2,C
OX6C,NDUFAB1,0GDH,ACO1,CALM3,CHPT1,CALM2,ITM2B,
UBE2M

XRN2

8.1E-18

8.5E-16

YWHAE,RPL4,RPL5,NDUFA11,MRPS14,RPLPO,AMD1,RPL8,MRPL35
,RPLY,RPL6,UBE2L3,RPS4X,RPS14,RPS19,RPS18,RPL36,IDH3B,RPL3
5,RPL38,RPL37,B2M,RPS10,RPS9,RPS5,SARS,MRPS21,RPL13A,SDH
C,MRPS7,EEF1A1,NDUFS5,NDUFS3,RPL24,RPL27,RPL26,GAPDH,FH
,OAT,NDUFB6,RPL12,ITPR1,ATP5J,TXN,0AZ1,ACAT1,ATP5B,UGP2,
RPS15A,UBB,RPL14,COX11,RPL13,RPL15,CKB,RPS2,RPL18,RPL17,IP
6K2,RPL19,RPL41,MDH1,NDUFA2,RPL35A,MRPL24,50D1,RPS26,R
PS28,RPS27,GSTA4,RPS29,CYCS,CALM3,SERINC1,RPS20,CALM1,CA
LM2,RPS21,UBE2M,FARSB

NELFA

3.5E-13

2.5E-11

YWHAE,PYGB,ACAA2,HIBADH,NDUFA12,AMD1,PTEN,SLC2A1,ATP
5C1,MTR,SLC2A3,ATP5G3,PIK3C2A,RPL8,RPL6,GLS,RPS15,PCMT1,
CSRP2,ALDH2,RPS18,IMPA2,ACADM,RPL37,DLAT,RPS11,RPS13,PD
HX,RPS9,RPL21,GPX4,FNBP1,APLP2,RPL13A,SDHC,NME4,SDHD,CIT
,EEF1A1L,ITPKB,UGDH,PPA1,CAT,UQCRC2,RPL26,GAPDH,UQCRB,N
DUFB6,RPL12,ATP5A1,GMPS,ITPR1,ACACB,ADH5,PPP2CA,ATP5B,
UGP2,UBB,RPS3,EIF4EBP2,RPL13,CKB,RPS2,ATP6VOAL,RPL19,SLC3
5A1,DARS,RPL41,NDUFA6,NDUFA4,H3F3A,FN1,SO0D1,RPS26,RSL1
D1,RPS28,SPCS2,RPS27,CALU,0GDH,RPS20,CALM1,RPS21,CALM?2

TTF2

5.8E-13

3.7E-11

YWHAE,RPL4,RPL5,MRPS14,RPLP1,RPLPO,AMD1,COX7C,RPLS,RPL
6,RPS15,RPS4X,MRPL3,RPS14,RPS18,RPL36,RPL35,RPL38,RPL37,R
PS11,PRKACB,RPS13,RPS9,RPS3A,ACSL3,MRPS7,EEF1AL1,EEF1G,ND
UFS4,NDUFS3,RPL24,UQCRC2,RPL26,GAPDH,UQCRB,NDUFB10,RP
L12,MGST3,ITPR1,COX7A2,PDHB,RPS15A,UBB,RPL14,RPS3,RPL13,
RPL15,RPS2,RPL18,RPL17,RPL19,RPL41,NDUFA4,H3F3A,MRPL24,S
OD1,RSL1D1,RPS28,RPS27,NDUFAF4,CYCS,CALM3,CHPT1,SERINC1
,RPS20,CALM1,CALM2,PAM,UBE2M,RPS23

ETS1

1.2E-12

7.1E-11

RPL5,COX7B,COX411,RPLPO,MTR,RPL8,COX7C,RPL9,RPL6,RPS15,U
BL5,RPS14,MRPL42,MRPL3,RPS16,RPS19,RARS,IDH3B,RPL36,UQC
RFS1,RPL38,RPL37,ATP6V1E1,RPS11,RPS13,RPS9,RPL21,RPS5,RPL
13A,RPS3A,SDHD,PGM2L1,MRPS18C,RPL24,YME1L1,SUCLG1,RPL2
7,UQCRC2,RPL26,UBA52,NDUFB7,NDUFB10,RPL12,MGST3,NDUFB
3,ITPR1,COX7A2,ATP50,MRPL11,RPS15A,ATP5D,RPL14,RPS3,TME
M208,RPL13,ATP6V1F,NDUFA9,SLC35A1,NDUFA4,PHKB,MRPL24,
RPS26,RPIA,RPS25,RPS27,NDUFAB1,CYCS,RPS20,CALM1,RPS21,FA
RSB,RPS23

ZFX

8.6E-11

4.6E-09

RPL30,NDUFA12,ATP5C1,ADARB1,RPL8,PWP1,RPL6,UBE2L3,RPS1
4,PCMT1,RPS16,RPS19,RPL18A,RPS18,PPP2R1A,RPL36,RPL37,RPS
11,PDHX,FNBP1,RPS5,MRPS18A,SDHD,EEF1A1,RPL24,RPL27,RPL2
6,UQCRC2,UBA52,NDUFB10,GMPS,AK2,0AZ1,LTBP1,COX7A1,ADH
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5,ACAT1,MRPL11,ATP5L,ATP5B,UBB,ATP5E,ESD,ATP5D,ABL1,NDU
FV2,DARS,RPS27,RPS29,0GDH,RPS20,ACO1,CALM1,RPS21,ITM2B,
RPS23,UBE2M,HIBADH,YWHAB,RPLP1,PIGP,PTEN,MTR,ATP5G2,C
OX7C,MRPL3,ATIC,AUH,IMPA2,RARS,UQCRFS1,DLAT,IDH3A,COX8
A,GSTO1,ITPK1,NME4,UGDH,NDUFS3,SLC25A5,DLD,RPL12,ATP5A
1,PDHB,COX5B,COX5A,PPP2CA,PPP2CB,RPS15A,RPL14,RPS3,RPL1
3,RPL15,RPS2,RPL18,SLC35A1,NDUFA6,MDH1,LAMB2,USP9X,NDU
FA4,TXNRD1,COX6C,SOD1,RPIA,RSL1D1,GNPDA2,NDUFAB1,
MSRB2

VDR

1.5E-09

7.1E-08

YWHAE,RPL5,COX7B,NDUFA11,MRPS14,NDUFA12,AMD1,RPLPO,P
TEN,SLC2A3,MRPL35,PFAS,UBE2L3,RPS15,RPS14,MRPL3,RPS19,A
UH,RPL36,PMPCB,RPL38,RPL37,RPS11,RPS9,GSTO2,RPS5,ECH1,M
RPS21,RPL13A,RPS3A,MRPS18C,HADHB,RPL24,YME1L1,SUCLG1,R
PL27,UQCRC2,RPL26,UBA52,NDUFB7,NDUFB6,NDUFB5,0DC1,ND
UFB3,ATP5I,NEDDS8,COX7A2,PPM1K,COX5B,ACAT1,ATP5L,PPP2CA
,UBB,OXCT1,ATP5E,TMEM208,RPL13,RPL19,ATP6V1F,NDUFA9,RP
L41,NDUFA6,MDH1,RPL35A,COX6C,MRPL24,RPS26,RPIA,SPCS3,RP
$27,NDUFAB1,CALU,CYCS,RPS20,CALM3,NDUFAF1,RSL24D1,
RPS21,CALM2,FARSB,RPS23

HOXC9

2.3E-09

1.1E-07

COX7B,RPL30,PIGT,HIBADH,MRPS14,NDUFA12,RPLP1,SLC2A3,ATP
5G3,COX7C,MRPL35,PIGY,RPS15,UBL5,MRPL3,ATIC,LGALS1,RPS16
,RPS19,IDH3B,RPL38,RPL37,ATP6V1E1,B2M,RPS9,APLP2,MRPS21,
MRPS18A,RPS3A,SDHD,ACSL3,MUT,COX6B1,HADHA,CAT,NDUFS4,
RPL24,YME1L1,UQCRC2,RPL26,MFGES8,DLD,OAT,NDUFB7,MRPS36
,NDUFB5,ITPR1,ATP5I,PPM1K,COX5B,UQCRH,RPS15A,UBB,ATP5E,
ATP5D,ESD,TMEM208,RPL15,RPS2,RPL17,IP6K2,NDUFA9,NDUFAS®,
MDH2,COX6C,RPS26,RPS25,RSL1D1,RPS28,RPS29,NDUFAF4,
NDUFAB1,NDUFAF2,CALU,NDUFAF1

SPI1

1.1E-07

4.7E-06

YWHAE,RPL30,PIGT,ACAA2,MRPS14,YWHAB,ATP5C1,SLC2A3,ATP
5G3,COX6A1,RPL8,PITPNC1,RPL6,GLS,RPS15,RPS14,ATIC,RPS16,RP
S19,RPL18A,IMPA2,RARS,IDH3B,RPL35,RPL38,RPS11,IDH3A,GSTO
2,RPL21,PGAM1,RPL13A,PLA2G4A,MRPS18A,RPS3A,EEF1G,ITPKB,
NDUFS4,SUCLG1,RPL27,GAPDH,NDUFB9,NDUFB5,AK2,ITPR1,NED
D8,PDHB,COX5B,COX7A1,ACAT1,PPP2CA,CST3,ITPRIPL2,RPL14,RP
S3,EIFAEBP2,RPL13,RPL17,COX10,NDUFA9,DARS,ATP8B2,GOT2,
RPS26,RPS27,SERINC1,RSL24D1,RPS21,CALM2,UBE2M

YY1

3.7E-07

1.5E-05

YWHAE,RPL4,APP,COX7B,RPL30,MRPS14,AMD1,LAMC1,ATP5G2,
MRPL35,COX7C,UBE2L3,MRPL42,RPL36,IDH3B,RPS11,COX8A,PDH
X,ECH1,RPL13A,MRPS18A,SDHC,MRPS7,MRPS18C,EEF1A1,INPP4B
,DPYD,NDUFS4,YME1L1,UBA52,DGKH,UQCRB,RPL12,ATP5A1,PDH
B,0OAZ1,LTBP1,UQCRH,MRPL11,ATP5L,UBB,RPS3,RPL18,COX10,AT
P6VOA1,NDUFA9,NDUFA2,RPL35A,MRPL24,RPS26,RPS28,SPCS2,
RPS27,0GDH,ITM2B

CEBPB

1.0E-06

3.9E-05

COX7B,NDUFA11,PIGP,SAT2,ATP5G3,PIK3C2A,CYR61,RPL6,RPS15,
RPS4X,UBL5,RPS14,LGALS1,CSRP2,RPS19,UQCRFS1,RPL38,ATP6V1
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E1,RPS10,PELO,COX8A,PDHX,RPS9,GSTO2,FNBP1,ECH1,MRPS21,S
DHD,DNAJC3,SUCLG1,RPL27,SLC25A5,UQCRB,ATP5A1,0DC1,ITPR
1,ATP5H,UQCR10,COX5B,ATP50,COX7A1,MRPL11,ITPRIPL2,PPP2C
B,UBB,RPL14,RPL15,COX10,IP6K2,RPL19,USP25,ATP8B2,NDUFA4,
WEFS1,NDUFA2,H3F3A,NDUFA1,PHKB,RPS26,RPIA,RPS25,RPS27,
RPS29,NDUFAF4,CYCS,RPS20,PICALM

GABP

1.6E-06

5.5E-05

RPL30,PIGT,NDUFB7,NDUFB5,NDUFB3,COX5B,COX6A1,COX7C,UQ
CRH,RPL6,MRPL3,UBL5,RPS14,RPS18,RARS,IDH3B,PMPCB,ATP6EV1
E1,COX10,COX8A,RPL41,MDH1,RPS5,MRPS21,RPL35A,MRPS18A,S
DHC,RPS3A,SDHD,MRPL24,MRPS18C,RPS25,RPS27,CALU,NDUFS3,
YME1L1,RPL27,SERINC1,RPS20,RPL26,UBE2M

CREM

2.0E-06

6.8E-05

RPL5,RPL30,ACAA2,ATP5C1,COX6A1,RPL8,PWP1,RPL6,GLS,RPS14,
PCMT1,RPS16,RPS19,RPL18A,RPS18,PPP2R1A,RPL36,SLC16A7,CYP
1B1,RPL38,RPS11,PRKACB,PELO,RPS13,RPS9,RPL21,IGFBP5,RPSS5,
APLP2,SDHC,ACSL3,EEF1A1,RPL24,RPL27,SUCLG1,RPL26,UBA52,N
DUFB10,MAOA,GMPS,AK2,ATPS5J,COX7A2,ATP50,0AZ1,ADH5,AC
AT1,ATP5B,UBB,ATP5D,ABL1,COX11,EIFAEBP2,NDUFV2,ATP6EV1F,
ATP6VOA1,DARS,RPL41,H3F3A,FN1,RPS26,RPS27,RPS29,NDUFAF4
,NDUFAF2,CALU,0GDH,RPS20,CALM3,SERINC1,CALM1,CALM2,UB
E2M,FARSB,PICALM,YWHAE,COX411,RPLPO,AMD1,PTEN,MTR,LAM
C1,PIK3C2A,ATP5G2,PFAS,PRSS23,CYR61,AUH,IMPA2,RARS,IDH3B
,UQCRFS1,DLAT,IDH3A,COX8A,PLA2G12A,GSTO2,GPX4,PGAM1,RP
L13A,RPS3A,PGM2L1,CIT,EEF1G,DNAJC3,HADHB,ITPKB,HADHA,UG
DH,NDUFS3,PPARG,GAPDH,DLD,OAT,NDUFB6,PPM1L,MRPS36,AT
P5A1,0DC1,PDHB,COX5B,COX5A,PPP2CA,PPP2CB,UGP2,RPL14,RP
S3,RPL13,TMEM208,CKB,RPL18,SLC35A1,USP25,NDUFA6,MDH1,
MDH2,USP9X,TXNRD1,RPL35A,COX6C,CDC42BPA,SOD1,SPCS3,
RSL1D1,SPCS2,PDE10A,MSRB3,CHPT1

PPARG

3.4E-06

1.0E-04

ACAA2,COX15,YWHAB,ECH1,MGST1,AK2,SDHC,ATP5G3,COX5A,
SOD1,C3,HADHB,RPS19,SDPR,CYCS,PPARG,CHPT1,ACADM

FLI1

3.7E-06

1.1E-04

RPL4,CHRM3,RPL30,NDUFA12,TNC,ATP5C1,COX6A1,PWP1,PLB1,R
PL6,UBE2L3,RPS15,RPS14,PCMT1,LGALS1,RPS16,RPS19,RPL18A,R
PL36,RPL38,RPL37,RPS11,ATP6V1E1,RPL21,IGFBP5,FNBP1,PRKCB,
RPS5,APLP2,SARS,SDHC,PRKCA,SDHD,COX6B1,MRPS18C,PLA2G16,
INPP4B,SDPR,RPL24,SPARCL1,YME1L1,RPL27,RPL26,UBA52,ITPR1,
ATP5J,ATPS5I,ITPR3,ATP5H,ATP50,LTBP1,UQCRH,ADH5,ATP5L,C3,E
IFAEBP2,IGFBP7,NDUFV2,COX10,DARS,RPL41,GOT2,H3F3A,PHKB,I
GF1,MRPL24,RPS26,RPS25,RPS27,RPS29,CALU,0GDH,CALM3,SERI
NC1,NDUFAF1,CALM1,RPS21,RSL24D1,RPS23,UBE2M,PICALM,YW
HAE,PIGT,MRPS14,YWHAB,RPLP1,COX411,AMD1,PIGP,SLC2A1,MI
A3,SLC2A3,ATP5G2,COX7C,UBL5,MRPL3,ATIC,IMPA2,RARS,CYP4V
2,IDH3B,UQCRFS1,COX8A,GSTO2,GLRX3,GPX4,GSTO1,MRPS21,RP
S3A,MUT,EEF1G,ITPKB,HADHA,UGDH,PIK3CA,NDUFS5,NDUFS3,M
FGE8,GAPDH,DLD,ALDH9A1,SLC25A6,NDUFB9,NDUFB6,NDUFB5,R
PL12,NDUFB3,COX5B,PPP2CA,CST3,RPS3,TMEM208,RPL15,RPL19,
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GSN,NDUFA6,MDH1,MDH2,PLCL1,TXNRD1,NDUFA2,CDC42BPA,
ASS1,RPIA,RSL1D1,PDE10A,GNPDA2,NDUFAB1

SOX2

7.4E-06

2.1E-04

YWHAE,COX78B,COX411,AMD1,PTEN,SLC2A3,ATP5G2,COX7C,PITPN
C1,CYR61,HK2,UBL5,RPS14,RPS19,ALDH2,RPS18,PMPCB,RPS11,ID
H3A,COX8A,ENTPD1,RPL21,FNBP1,RPS5,RPL13A,SARS,SDHC,RPS3
A,PGM2L1,CIT,EEF1A1,EEF1G,BACE1,UGDH,SMS,RPL27,GAPDH,PR
PS1,ITPR1,PDHB,ATP5H,COX5A,0AZ1,FSTL1,COX7A1,CST3,UBB,PD
GFC,ATP5D,CKB,NDUFV2,RPL18,ATP8B2,FN1,IGF1,COX6C,MRPL24
,RPS26,RPIA,GSTA4,CALM1,RPS21,PLCD4,RPS23

oCT4

7.5E-06

2.1E-04

RPL5,SLC2A1,SLC2A3,RPL8,RPL9,CYR61,HK2,GLS,RPS4X,RPS14,RPS
16,RPS19,ALDH2,RPS18,RPS11,PRKACB,ENTPD1,RPL21,FNBP1,RPS
5,RPL13A,SARS,RPS3A,CIT,EEF1A1,BACE1,UGDH,PLCB4,SMS,SPAR
CL1,RPL27,GAPDH,PRPS1,ITPR1,NEDD8,COX7A2,COX5B,COX5A,0
AZ1,COX7A1,CST3,ATP5B,UBB,PDGFC,RPS3,ABL1,CKB,RPS2,RPL1S,
ATP6V1F,AOC3,ATP8B2,GOT2,FN1,COX6C,ASS1,RPS26,RPIA,
GSTA4,RPS20,CALM1,RPS21,UBE2M,FARSB

CHD1

8.5E-06

2.5E-04

YWHAE,RPL5,APP,MRPS14,SPPL2A,SLC2A1,ATP5C1,MIA3,LAMC1,
ATP5G2,COX7C,MRPL35,CYR61,GLS,UBL5,CSRP2,IMPA2,CKMT1B,
ACADM,RPS13,COX8A,GSTO2,GLRX3,PGAM1,SARS,MRPS18A,RPS
3A,ACSL3,ITPKB,PPA1,UQCRC2,ALDHSAL,PPM1L,COX15,5SDC2,MG
ST3,AK2,UQCR11,UQCRH,ATP5L,UBB,CKB,NDUFV2,IP6K2,USP25,A
TP8B2,USP9X,LAMB2,CKMT1A,TXNRD1,GOT2,CDC42BPA,RPS26,R
PS25,RPS28,RPS27,RPS29,0GDH,MSRB2,CHPT1,CALM1,RPS21,
CALM2,PICALM

BCL3

1.0E-05

2.6E-04

YWHAE,RPL5,NDUFB10,NDUFB5,ATP5A1,PIGP,AMD1,ATP5J,PYGM
,UQCR11,LAMC1,RPL8,COX5A,CYR61,HK2,MRPL11,ATP5B,PCMT1,
UGP2,RPL18A,UBB,ATP5D,IDH3B,PELO,RPL17,PDHX,RPL41,RPS5,
ECH1,MRPS18A,50D1,SPCS2,CYCS,RPS21,ITM2B

TAL1

1.3E-05

3.1E-04

RPL4,NDUFA11,MRPS14,COX4I1,RPLPO,PTEN,SLC2A1,ATP5G3,RPL
8,RPL6,RPS15,RPS14,ATIC,RPS19,PPP2R1A,RPS18,RPL36,RPS10,B2
M,RPS9,GLRX3,GPX4,RPS5,MRPS7,EEF1A1,RPL27,RPL26,UBA52,AL
DHSA1,NDUFB9,NDUFB10,NDUFB6,RPL12,ATP5A1,0DC1,NDUFB3
,ITPR1,UQCR11,COX5A,PPP2CA,ATP5B,UBB,RPL14,RPS3,COX11,RP
L13,RPL18,RPL17,RPL19,DARS,RPL41,NDUFA6,MDH2,TXNRD1,RPL
35A,PHKB,RPS26,RPS25,RPS27,PDE10A,RPS20,CALM1,RPS21,
UBE2M,RPS23

RUNX2

1.7E-05

3.9E-04

PIGT, TNC,ATP5C1,PITPNC1,CYR61,HK2,GLS,LGALS1,RPS19,RPL18A
,ALDH2,CYP1B1,DLAT,RPS10,PELO,LMCD1,IGFBP5,FNBP1,GSTO1,P
GAM1,MMP2,APLP2,ITPK1,MRPS18A,NME4,MRPS7,CIT,EEF1A1,E
EF1G,BACE1,UGDH,PLA2G16,PLCB4,RPL26,GAS6,PRKAA2,0AT,CO
X15,AK2,ATP5H,UQCR10,ACACB,LTBP1,ADH5,MRPL11,UGP2,PDGF
C,ATP6VOA1,RPL19,SLC35A1,DARS,GSN,MDH1,ATP8B2,LAMB2,
TXNRD1,GOT2,FN1,CDC42BPA,RSL1D1,RPS28,RPS20,CALM1

ASH2L

1.7E-05

3.9E-04

RPL5,COX7B,HIBADH,MRPS14,NDUFA12,PTEN,LAMC1,COX6A1,RP
L8,MRPL35,RPL9,PITPNC1,RPL6,RPS15,RPS4X,UBL5,RPS14,SMPD2,
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RPS16,CSRP2,RPS18,RPL36,IDH3B,UQCRFS1,RPL38,DLAT,RPS10,L
MCD1,RPS13,FNBP1,RPS5,ITPK1,TALDO1,SDHC,RPS3A,SDHD,PGM
2L1,DNAIJC3,EEF1A1,HADHA,PLCB4,NDUFS4,RPL24,SPARCL1,SUCL
G1,GAS6,PRPS1,0AT,NDUFB7,UQCRB,NDUFB6,ATP5A1,COX7A2,P
DHB,ATP5H,ATP50,UQCRH,ADH5,ATP5L,RPS15A,ALDH1B1,PDGFC
,ABL1,COX10,ATP6V1F,ATP6VOA1,NDUFA9,BCHE,DARS,RPL41,MD
H1,NDUFA4,IDH2,NDUFA2,H3F3A,RPL35A,COX6C,MRPL24,SOD1,R

PS26,RPS25,RSL1D1,GSTA4,MSRB2,CALU,RPS20,CHPT1,SERINC1,

NDUFAF1,CALM1,CALM2,ITM2B,FARSB

EST1

2.1E-05

4.7E-04

NDUFB5,NDUFB3,ITPR1,NEDD8,MTR,ATP50,COX7C,RPLY,UQCRH,
RPL6,MRPL11,ATP5L,MRPL42,RPS14,RPS18,IDH3B,COX10,RPL41,R
PS9,MDH1,RPS5,ECH1,MRPS21,RPL35A,COX6C,MRPL24,PGM2L1,
RPIA,RPS26,RPS25,5PCS2,RPS27,RPS29,NDUFS5,YME1L1,RPL27,
SERINC1,UQCRC2

NROB1

2.6E-05

5.3E-04

NDUFA12,ATP5C1,PYGM,SLC2A3,ATP5G3,CYR61,RPS14,IMPA2,RP
L36,ACADM,RPS10,PGAM1,ITPK1,SARS,SDHC,SDHD,HADHB,HADH
A,SMS,SLC25A5,GAPDH,PRPS1,0AT,NDUFB6,MGST3,ATP5A1,GAT
A6,ATP5J,PDHB,PPM1K,COX5B,ATP50,COX5A,ATP5L,CST3,ATP5B,
ALDH1B1,ATP5E,PDGFC,CKB,NDUFV2,RPL17,COX10,RPL19,GOT?2,
FN1,COX6C,ASS1,RPS26,GSTA4,CALU,O0GDH,MSRB2,ACO1,CHPT1

ELK1

4.0E-05

8.0E-04

RPL30,MRPS14,NDUFB3,MGST1,COX7A2,UQCRH,CYR61,GLS,RPS1
4,CSRP2,RPS19,PPP2R1A,RPS18,RPL38,PRKACB,RPL19,COX8A,PDH
X,DARS,RPL41,NDUFA4,ECH1,SIAH1,MRPS21,RPL35A,HADHB,DNA
JC3,RPS27,NDUFS5,RPL24,MSRB3,PPARG,SUCLG1,RPS20,
NDUFAF1

CTCF

5.3E-05

9.9E-04

RPL5,APP,HIBADH,MRPS14,SLC2A1,SLC2A3,SLC2A4,ATP5G2,RPS1
5,RPS14,RPS19,RPL18A,RARS,RPL36,PMPCB,CYP1B1,RPL35,RPL38S,
RPL37,FNBP1,RPS5,ITPK1,RPL13A,MRPS18A,RPS3A,ATP5F1,RPL27,
RPL26,NDUFB7,UQCRB,NDUFB10,PDE1C,COX15,MGST3,GATAS6,C
OX5A,LTBP1,UQCRH,MRPL11,PPP2CB,0OXCT1,ATP5D,NDUFV2,
NDUFA6,USP9X,GOT2,ASS1,RPS26,RPS29,NDUFAB1,RPS20

SOX17

5.1E-05

9.9E-04

APP,COX7B,MRPS14,COX411,SLC2A1,LAMC1,SLC2A4,PIK3C2A,ATP
5G2,MRPL35,CYR61,HK2,UBL5,RPS16,RARS,PMPCB,RPL38,ACADM
,RPL37,RPS11,COX8A,GSTO1,GPX3,RPS5,APLP2,ECH1,RPL13A,PLA
2G4A,SDHC,MRPS18C,EEF1A1,DPYD,NDUFS4,PRPS1,PPM1L,0DC1,
GATAG,ITPR3,COX7A2,PDHB,PPM1K,ATP50,UQCRH,MRPL11,CST3
,UBB,RPS3,ATP6V1F,RPL41,NDUFA6,USPOX,IGF1,SOD1,RPS26,
RPS25,RPS27,GSTA4,MSRB3,RPS20,CALM1

FOXO03

5.9E-05

1.1E-03

PIGT,YWHAB,ATP5G3,LAMC1,PIK3C2A,RPL9,RPL6,RPL18A,AUH,AL
DH2,UQCRFS1,RPL37,COA5,RPS9,GSTO2,GSTO1,MRPS18A,SDHC,S
DHD,EEF1A1,YME1L1,UQCRC2,RPL26,0AT,NDUFB7,NDUFB6,MRP
$36,COX15,NDUFB5,COX5B,ADH5,MRPL11,ACAT1,ATP5L,RPL14,T
MEM208,RPL15,RPS2,NDUFV2,COX10,ATP6V1F,NDUFAS,USP25,N
DUFA6,MDH2,NDUFA4,IDH2,RPL35A,GATM,SPCS2,RPS27,GNPDA

120




Chapter 4

2,CYCS,ACO1,CALM3,SERINC1,RPS21,CALM2,ITM2B,FARSB,RPS23

TAF7L

8.4E-05

1.5E-03

ACAA2,NDUFB10,COX15,PTEN,MGST1,ATP5J,PDHB,ATP5G3,COX5
A,CST3,SMPD2,LGALS1,RPS19,UBB,PDK4,RPL38,ACADM,DLAT,LM
CD1,A0C3,GSTO1,NDUFA2,ECH1,RPS3A,MRPS7,ALDH6A1,SDPR,
CAT,CALU,CYCS,RPL27,CALM1,CALM2,ALDH9A1

CREB1

9.6E-05

1.7E-03

PRPS1,RPL5,UQCRB,NDUFB6,MRPS14,RPL12,AK2,MTR,PWP1,ATP
5B,RPS14,RPS19,RPL18A,RPS18,RPL37,RPL18,AASS,RPS13,NDUFA
6,PDHA1,MDH1,RPS5,MRPS21,SDHC,MRPL24,MUT,MRPS18C,
RPS28,RPS29,CALU,0GDH,RPS20,DLD,CALM2,RPS21

HOXB4

1.0E-04

1.7E-03

COX78B,RPLP1,AMD1,PTEN,COX6A1,PITPNC1,UBE2L3,UBL5,MRPL3
,PCMT1,RPS19,RPL18A,PPP2R1A,RPS18,RPL38,PRKACB,ECH1,MRP
S21,RPL13A,PLA2G4A,ACSL3,EEF1G,HADHB,NDUFS3,RPL24,SUCLG
1,MFGE8,NDUFB9,UQCRB,PPM1L,NDUFB3,COX7A2,PDHB,PPM1K,
COX5B,0AZ1,COX7A1,UQCRH,ATP5L,PPP2CA,ATP5B,UBB,EIFAEBP
2,RPL13,ATP6VOA1,NDUFA9,NDUFA4,GOT2,PHKB,MRPL24,RPS26,
RPIA,CALU,MSRB2,RPS21,PICALM

JARID1A

1.0E-04

1.7E-03

RPL4,PIGT,COX4I1,RPLPO,ATP5C1,MRPL35,RPLY,PWP1,UBL5,MRPL
3,RPS16,RPL18A,AUH,RPS18,IDH3B,UQCRFS1,DLAT,PRKACB,COX8
A,RPS5,MRPS21,MRPS18A,SDHC,SDHD,COX6B1,MRPS18C,NDUFS
4,NDUFS3,YME1L1,RPL27,DLD,NDUFB9,NDUFB10,NDUFB6,COX15
,NDUFB5,MGST3,NDUFB3,NEDD8,COX7A2,ATP5H,COX5B,ATP5D,R
PL14,TMEM208,RPS2,RPL18,COX10,ATP6VOA1,RPL19,NDUFAS,LA
MB2,NDUFA2,NDUFA1,COX6C,RSL1D1,ALDH6A1,RPS28,SPCS2,
NDUFAF2,SERINC1,NDUFAF1,RPS21,FARSB

FOXP3

1.0E-04

1.7E-03

NDUFB6,MRPS36,RPL12,MGST3,RPLPO,NDUFB3,PTEN,ATP5J,MIA3
,SLC2A3,ATP5G3,UQCRH,MRPL11,MRPL3,RPS14,RPS15A,RPS19,U
BB,RARS,TMEM208,RPL38,RPL15,RPL37,RPS2,RPL18,NDUFA9,MD
H1,RPL21,NDUFA4,ECH1,COX6C,MRPL24,MRPS18C,EEF1A1,RPIA,I
TPKB,RPS26,NDUFS4,NDUFS3,RPL24,SUCLG1,RPS20,UQCRC2,
NDUFAF1,RPL26,FARSB

KLF4

1.4E-04

2.1E-03

RPL4,RPL5,COX7B,NDUFB7,RPL12,GATA6,PTEN,ITPR3,SLC2A3,RPL
8,ADH5,RPS15A,RPL18A,UBB,PPP2R1A,RPS18,ATP5E,PDGFC,ABL1,
RPL38,ACADM,RPL15,RPL37,RPS11,RPL17,RPL19,RPL41,RPSO,RPL2
1,IGFBP5,RPS5,ECH1,ITPK1,FN1,RPL13A,MUT,ITPKB,RPS25,SPCS2,
PDE10A,NDUFS4,SMS,RPL27,RPS20,GAPDH,UBA52,PICALM,RPS23

GATA4

1.8E-04

2.7E-03

ACAA2,MRPS14,NDUFA12,COX411,COX6A1,MRPL35,PRSS23,PITPN
C1,HK2,RPS14,CSRP2,PDK4,PELO,IGFBP5,GPX4,FNBP1,RPS5,ITPK1,
RPL13A,PGM2L1,COX6B1,HADHB,HADHA,PLCB4,SDPR,PLSCR4,UQ
CRC2,GAS6,ALDH9A1,0AT,0DC1,GMPS,PPM1K,COX7A1,LTBP1,UQ
CRH,ADHS5,ACAT1,CST3,ATP5B,UBB,ATP6VOAL,ATP6V1F,NDUFAS9,
SLC35A1,DARS,H3F3A,IGF1,AS51,SOD1,RPIA,SPCS3,RSL1D1,CYCS,
CALM3,CALM1,PAM,CALM2,FARSB,PICALM

DCP1A

1.9E-04

2.7E-03

UQCRB,RPLPO,SLC2A1,RPL8,0AZ1,ATP5L,RPS16,LGALS1,CYP4V2,R
PL37,RPL21,MDH1,NDUFA4,PGAM1,GOT2,RPL13A,RPL35A,MRPS7
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,MRPL24,RPS26,NDUFS3,CYCS,CALM3,RPS20,CALM1,MFGES,
CALM2,UBE2M,PICALM

ZFP42

1.9E-04

2.7E-03

YWHAE,RPL4,RPL5,PIGT,UQCRB,NDUFB5,MAOA,RPL12,UQCRH,AT
P5L,UBE2L3,ATP5B,RPS14,UBB,ALDH2,PPP2R1A,RPS18,RPL36,ACA
DM,RPL15,CKB,RPS11,PELO,NDUFA9,PDHX,RPS9,NDUFA6,GSTO2,
PGAM1,NDUFA2,ECH1,MRPS21,RPL13A,RPL35A,MRPS18A,PHKB,
MRPS7,MRPL24,ASS1,EEF1A1,HADHB,HADHA,GSTA4,RPL24,
YME1L1,ITM2B,RPS23

HCFC1

6.0E-04

7.4E-03

MRPS14,MDH2,NDUFB5,ATP5F1,UQCRH,MRPL11,RPIA,RPS28,
RPS19,RPS18,COX11,RPL27,SUCLG1,RPL26,RPS23

ESR1

6.4E-04

7.8E-03

PRKAA2,PDHA1,ACAA2,NDUFA4,GOT2,GATA6,MGST1,ASS1,ATP5L
,50D1,C3,PCMT1,UBB,ALDH2,PDK4,RPL15,B2M,PELO,PICALM

PPARD

9.9E-04

1.1E-02

ITPKB,HADHB,HADHA,CSRP2,0XCT1,ITPR1,PLA2G4A,PRKCA,SDHD,
MFGES8,ALDH9A1

RARG

1.0E-03

1.1E-02

PIGT,PPM1L,NDUFB10,NDUFA4,MMP2,FN1,RPL13A,LAMC1,FSTL1
,LTBP1,PIGY,PITPNC1,ESD,IDH3B,CALU,ACADM,RPL19

CEBPD

1.0E-03

1.2E-02

CHRMZ2,HIBADH,RPLPO,PTEN,PRSS23,CYR61,HK2,RPS14,LGALS1,A

UH,PDK4,CYP1B1,RPS13,RPS9,GSTO2,GSTO1,MMP2,MRPS18A,RP

S3A,NME4,PLCB4,CAT,NDUFS4,PPARG,GAS6,SLC25A5,UBA52,MGS

T3,ITPR1,MGST1,ATP50,FSTL1,LTBP1,ATP5L,UGP2,UBB,PDGFC,AB

L1,COX10,ATP6VOA1,ATP6V1F,USP25,FN1,COX6C,ASS1,RPIA,CALU
,CALM2,ITM2B,FBN1

NFE2L2

1.2E-03

1.2E-02

RPL5,PYGB,CHRM3,0AT,MAOA,NDUFB3,TNC,LAMC1,ATP5G3,ACA
CB,RPS15A,PDGFC,ESD,CYP1B1,IGFBP7,S1PR3,LMCD1,FNBP1,TXN
RD1,FN1,PLA2G4A, TALDO1,MRPS18A,IGF1,COX6C,CDCA2BPA,
SPCS3,PIK3CA,GSTA4,SDPR,DPYD,CAT,CHPT1,PAM

NRF2

1.2E-03

1.2E-02

RPL5,PYGB,CHRM3,0AT,MAOA,NDUFB3,TNC,LAMC1,ATP5G3,ACA
CB,RPS15A,PDGFC,ESD,CYP1B1,IGFBP7,S1PR3,LMCD1,FNBP1,TXN
RD1,FN1,PLA2G4A, TALDO1,MRPS18A,IGF1,COX6C,CDC42BPA,
SPCS3,PIK3CA,GSTA4,SDPR,DPYD,CAT,CHPT1,PAM

YAP1

1.2E-03

1.2E-02

YWHAE,DGKG,CHRM3,APP,TNC,SLC2A1,SLC2A3,ATP5G3,RPL8,CO
X7C,CHRDL1,PITPNC1,RPL6,GLS,PCMT1,AUH,PDK4,PGM5,RPL38,R
PL37,RPS9,GLRX3,PRKCB,RPS5,APLP2,RPL13A,PLA2G4A,PRKCA,EE
F1A1,ITPKB,INPP4B,DPYD,NDUFS4,SPARCL1,PPARG,SUCLG1,DLD,P
PM1L,PDE1C,COX5A,ACACB,PPP2CA,ATP5B,UGP2,UBB,RPS3,IGFB
P7,51PR3,COX10,LAMB2,IDH2,GOT2,FN1,PHKB,COX6C,SOD1,
SPCS3,PDE10A,GNPDA2,NDUFAB1,0GDH,ACO1,CALM2

TCFAP2C

1.3E-03

1.4E-02

PYGB,PIGT,YWHAB,RPLP1,COX411,AMD1,SLC2A1,LAMC1,COX6A1,
PIK3C2A,RPL8,PRSS23,PITPNC1,CYR61,HK2,RPL6,UBL5,PCMT1,LG
ALS1,RPS18,CYP1B1,RPL35,RPL38,ACADM,RPS11,LMCD1,IGFBPS,
GPX4,FNBP1,APLP2,ECH1,ITPK1,SDHC,RPS3A,SDHD,EEF1G,HADHB
,UGDH,MFGES8,PRPS1,0AT,PPM1L,ATP5A1,0DC1,GATASG,ITPR1,NE
DDS8,ITPR3,COX7A2,COX5A,ATP5L,PPP2CA,UGP2,UBB,OXCT1,ATP6
VOA1,ATP6V1F,LAMB2,TXNRD1,IDH2,H3F3A,FN1,SOD1,RPIA,CALU
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,MSRB3,CALM1,PAM,RPS21,PICALM

NANOG

2.0E-03

2.0E-02

PRPS1,RPL30,YWHAB,SLC2A3,ATP5G2,RPL9,CYR61,HK2,MRPL11,C
ST3,CSRP2,RPS19,UBB,ALDH1B1,PMPCB,PIP4K2A,RPL15,RPL18,ND
UFA9,PDHA1,APLP2,IDH2,PHKB,IGF1,GSTA4,SMS,CALM3,RPS23

CUX1

2.2E-03

2.2E-02

CHRM2,AMD1,SLC2A1,MTR,SLC2A3,ATP5G3,COX7C,HK2,RPS4X,C
4A,UBL5,MRPL42,PCMT1,RPS16,RPS19,RPS18,RARS,PMPCB,RPL37
,DLAT,RPS11,B2M,RPS13,PDHX,RPL21,MRPS21,SARS,MRPS18A,SD
HC,SDHD,MUT,EEF1A1,HADHB,DNAJC3,HADHA,SDPR,PPARG,SUCL
G1,RPL27,UQCRC2,PRPS1,NDUFBS,FH,O0AT,UQCRB,PPM1L,MGST3
,GATA6,GSTT1,TXN,LTBP1,UQCRH,MRPL11,PPP2CA,ATP5B,ESD,RP
L14,RPL15,RPL18,RPL17,RPL19,ATP6V1F,USP25,GSN,MDH1,NDUF

A2,H3F3A,COX6C,SOD1,RPIA,RPS28,PDE10A,GSTA4,RPS29,PAM,

CALM2,UBE2M

ESR2

2.4E-03

2.3E-02

PRPS1,ATP6VOE1,WFS1,MAOA,SLC2A1,PLOD2,LAMC1,PITPNC1,BA
CE1,UGDH,PLA2G16,RPL13,PIP4K2A,CYP1B1,51PR3,CHPT1,LMCD1

CCND1

2.8E-03

2.4E-02

YWHAE,RPL4,APP,PIGT,MRPS14,RPLP1,PTEN,LAMC1,SLC2A4,ATP5
G2,PITPNC1,CYR61,UBL5,PCMT1,RPS16,RPS19,ALDH2,PPP2R1A,R
PL36,PMPCB,ATP6V1E1,PELO,PLA2G12A,RPS9,IGFBP5,RPS5,TALD
01,SARS,MUT,PGM2L1,HADHB,HADHA,OAT,NDUFB10,NDUFB6,M
GST3,AK2,ITPR1,PPM1K,ATP50,0AZ1,ATP5L,ATP5B,UBB,ATP5D,R
PL18,RPL19,ATP6V1F,WFS1,GOT2,NDUFA2,FN1,RPS25,ALDH6A1,

OGDH,MSRB2,SERINC1

OLIG2

2.7E-03

2.4E-02

CHRM3,APP,PIGT,PTEN,PLOD2,MTR,PRSS23,PLB1,AUH,RARS,PDK4
,SLC16A7,RPL38,DLAT,PRKACB,LMCD1,COAS5,PDHX,ATP6VOE1,GLR
X3,SARS,PRKCA,HADHA,INPP4B,PLCB4,SDPR,NDUFS5,PLSCR4,DPY
D,NDUFS4,PRPS1,PDE1C,MAOB,MAOA,GATASG,ITPR3,0XCT1,IGFBP
7,DARS,USP25,NDUFA4,PLCL1,PHKB,CDC42BPA,ASS1,SOD1,RPIA,
GATM,RPS27,GNPDA2,RPS29,CALU,MSRB2,PAM,PLCD4

FOXM1

2.8E-03

2.4E-02

HIBADH,COX4I1,RPLPO,TNC,SLC2A1,PLOD2,ATP5G3,LAMC1,ATP5G

2,PITPNC1,CYR61,GLS,MRPL42,ATIC,SLC16A7,PIP4K2A,CYP1B1,AC

ADM,COX8A,PDHX,IGFBP5,SLC2A12,PLA2G4A,ACSL3,PGM2L1,CIT,

EEF1G,UGDH,INPP4B,PLCB4,SDPR,NDUFS4,SMS,SPARCL1,PPARG,S

UCLG1,NDUFB9,PPM1L,PDE1C,0DC1,ITPR1,MGST1,PPM1K,COX5B

,LTBP1,PPP2CA,RPS15A,UGP2,BCHE,MDH1,PLCL1,TXNRD1,CDC42
BPA,CALM2

TBX20

2.8E-03

2.4E-02

YWHAE,DGKG,PYGB,RPLPO,SLC2A1,MTR,ATP5G2,RPL8,RPL9,CYR6
1,HK2,ATIC,IMPA2,PDK4,LMCD1,GSTO2,GPX3,PRKCA,CIT,EEF1A1,
DNAIJC3,PLCB4,PIK3CA,PPARG,RPL27,GAS6,SLC25A5,PRKAA2,NDU
FB7,PDE1C,SDC2,MGST3,ATP5A1,GATA6,ITPR1,PDHB,ATP5H,COX
5B,ACACB,ACAT1,CST3,RPS15A,UGP2,ABL1,EIFAEBP2,IGFBP7,
KDSR,IP6K2,GSN,MDH1,IDH2,GOT2,FN1,FBN1

FOXA1

2.8E-03

2.4E-02

PYGB,RPL5,MRPS14,RPLP1,SPPL2A,LAMC1,PRSS23,CYR61,MRPL42
,ATIC,ACADM,LMCD1,COX8A,GLRX3,GPX4,GSTO1,PGAM1,APLP2, T
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ALDO1,MRPS21,ATP5F1,PGM2L1,UGDH,PLA2G16,PPA1,NDUFS5,D
PYD,RPL26,GAPDH,ALDH9A1,PRKAA2,ADH1C,MGST3,AK2,UQCR1
1,PPM1K,UQCRH,ATP5L,UGP2,COX11,KDSR,IGFBP6,ATP6VOA1,CY

P2J2,SLC35A1,RPL41,H3F3A,CDC42BPA,RPS26,CYP2C9,RPS27,
NDUFAF1,CALM2,PICALM

ERG

3.3E-03

2.8E-02

YWHAE,RPL4,RPL5,PIGT,NDUFA11,RPLPO,RPS15,ATIC,RPS16,IMPA
2,IDH3B,PMPCB,IDH3A,RPL21,GPX4,GSTO1,RPS5,TALDO1,PGM2L
1,EEF1G,PLSCR4,RPL24,YME1L1,SUCLG1,RPL26,ALDH9A1,PRPS1,A
TP5A1,0DC1,GMPS,AK2,ITPR1,ITPR3,COX5B,UBB,OXCT1,ATP5D,R
PL14,COX11,TMEM208,RPL13,RPL17,ATP6V1F,MDH2,TXNRD1,
RPL35A,50D1,CALU,0GDH,MSRB2,ACO1,RPS21,RPS23

MYCN

3.8E-03

3.2E-02

YWHAE,ACAA2,HIBADH,PIGP,LAMC1,RPL9,PITPNC1,GLS,RPS4X,PC
MT1,RPS16,RPL38,RPS11,PGAM1,RPL13A,MRPS18A,PGM2L1,PPA
1,UBA52,PPM1L,COX15,NDUFB5,MAOA,ODC1,ITPR1,ITPR3,PDHB,
COX5A,UQCRH,ADHS5,ATP5L,PPP2CB,UGP2,UBB,ATP5D,RPL14,RPL
19,RPL41,WFS1,TXNRD1,H3F3A,FN1,RPL35A,PHKB,ASS1,50D1,RP
526,ALDH6A1,RPS28,RPS29,NDUFAB1,RPS20,CALM3,NDUFAF1,
CALM1,PAM,RPS21,CALM2,PICALM

PPAR

4.1E-03

3.4E-02

PYGB,FH,MAOA,MGST3,GATA6,AK2,PLOD2,ATP50,FSTL1,LTBP1,H
K2,MRPL3,AUH,PDGFC,RPS3,PDK4,CYP1B1,BCHE, TXNRD1,ECHL,SI
AH1,SARS,MRPS18A,ACSL3,UQCRHL,EEF1A1,HADHB,HADHA,
INPP4B,NDUFS5,CAT,ACO1,RPL26,PICALM,FBN1

SALL4

4.9E-03

4.0E-02

NDUFB6,NDUFB5,MRPS14,MGST3,AMD1,PTEN,ATP5I,SLC2A3,ATP
5G3,PRSS23,PCMT1,RPS15A,RPS16,UBB,ABL1,IDH3B,IGFBP7,IGFB
P6,NDUFV2,RPS11,PELO,B2M,SLC35A1,ENTPD1,RPL41,RPS9,MDH
1,NDUFA4,MMP2,RPS5,H3F3A,SARS,PLA2G4A,HADHA,PLSCR4,
CYCS,RPL27,RPS20,RPL26,RPS23

EGR1

5.4E-03

4.3E-02

HADHB,NDUFB9,H3F3A,ITPK1,GMPS,PIP4K2A,ATP51,KDSR,ATP5H,
CYP4F11,CRYM,PRSS23

FOXP2

5.5E-03

4.3E-02

APP,HIBADH,YWHAB,PIGP,ADARB1,PLB1,PCMT1,UGP2,AUH,UBB,
RARS,PDGFC,PDK4,EIFAEBP2,PIP4K2A,NDUFV2,USP25,ATP6VOE],
GOT2,H3F3A,PLA2G4A,MUT,RPIA,ITPKB,SPCS2,GSTA4,CYCS

THAP11

5.5E-03

4.4E-02

YWHAE,NDUFB7,ITPR1,ATP5J,NEDD8,MTR,ATP50,ATP5G2,COX7C,
RPS18,ATP5E,RPL36,RPS3,RPL15,RPL18,ATP6V1F,MDH1,GOT2,PG
M2L1,RPIA,BACE1,RPS26,SPCS2,SUCLG1,RPS20,RPL26,RPS23

FUS

6.1E-03

4.7E-02

PRKAA2,MAOA,PLA2G4A,PHKB,MTR,ATP5G3,RPL9,FSTL1,COX7C,
MUT,CYR61,ACAT1,EEF1A1,RPS4X,RARS,ATP5E,RPL15,PAM,
GAPDH

NOTE: FC= Fold Change; p-val= p-value; FDR p-val= FDR p-value.
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Table 4.8 Putative binding motif enrichment analysis using the Enrich webtool and

showing the relative relevance of various histone marks in the deregulated transcripts.

Term

p-val

Adj. p-
val

Genes

H3K79
me2

7.2E-24

3.0E-21

NDUFA11;NDUFA12;ATP5C1;COX6A1;RPL9;RPL6;RPS15;LGALS1;R
PS16;RPL18A;RPS18;RPL35;PMPCB;RPL37;RPS11;RPS10;RPS13;P
DHX;RPS9;IGFBP5;RPL21;SDHC;SDHD;MRPS18C;COX6B1;EEF1AL;
RPL27;RPL26;UBA52;UQCRB;SDC2;ITPR3;ATP50;0AZ1;UQCRH;A
DH5;ATP5B;UBB;ESD;NDUFV2;COX10;ATP6VOA1;DARS;RPLAL;AT
P8B2;MRPL24;RPS26;RPS25;RPS28;NDUFAF4;CALU;CYCS;RPS20;
ACO1;RPS21;RSL24D1;RPS23;COX20;MRPS14;RPLP1;RPLPO;ATPS
G3;PFAS;CYR61;RPS4X;UBL5;MRPL3;CSRP2;ATIC;IDH3B;COAS;GP
X4,GSTO1;MRPS21;RPS3A;ATP5F1;MRPS7;CIT,EEF1G;NDUFS5;ND
UFS4;DLD;NDUFB7;NDUFB6;RPL12;ATP5A1;NDUFB3;UQCR10;PD
HB;COX5B;FSTL1;PPP2CB;RPS3;TMEM208;RPL15;RPS2;RPL18;RPL
17;USP25;NDUFA6;LAMB2;NDUFA2;RPL35A;RSL1D1;NDUFAB1

H3K36
me3

6.4E-18

6.5E-16

COX7B;RPL30;MRPS14;YWHAB;NDUFA12;RPLP1;COX4I1;ECI2;SP
PL2A;RPLPO;ATP5G3;COX7C;CYR61;RPS15;MRPL3;RPS14;ATIC;RP
S16;ALDH2;RPS19;RPS18;RPL36;RPL35;RPL38;ACADM;RPL37;DLA
T;RPS11;PELO;RPS10;RPS13;COAS5;COX8A;RPL21;GSTO2;GPX4;AT
P6AP1;ECH1;MRPS21;SDHD;ATP5F1;MRPS18C;EEF1AL;EEF1G;PIK
3CA;RPL24;RPL27;RPL26;UQCRC2;SLC25A5;GAPDH;UBA52;NDUF
B10;COX15;RPL12;ATP5A1;MGST1;ITPR1;ATP5J;PDHB;ATP5H;AT
P50;COX5B;ACACB;ADH5;C3;ATP5B;ATPSE;ATP5D;RPL14;EIFAEB
P2;RPL13;TMEM208;RPL15;RPL18;RPL17;RPL19;FN1;IGF1;COX6C
;SOD1;RPS26;SPCS3;RPS25;RPS28;RPS27;RPS29;NDUFAB1;CYCS;
CHPT1;RPS20;RSL24D1;COX20;RPS23

H3K79
me3

6.4E-18

6.5E-16

MRPS14;NDUFA12;RPLP1;COX411;ATP5C1;PLOD2;COX6A1;COX7
C;RPL9;RPL6;RPS4X;RPS15;MRPLA2;PCMT1;LGALS1;RPS16;RPS19
;RPL18A;RPS18;RPL36;PMPCB;ATP6V1E1;RPS11;RPS10;RPS13;RP
S9;GPX4;GLRX3;RPS5;RPS3A;SDHC;SDHD;MRPS7;CIT;COX6B1;EEF
1G;EEF1A1;PPAL1;NDUFS5;NDUFS4;NDUFS3;RPL27;RPL26;SLC25A
5;DLD;UBA52;GAPDH;OAT;NDUFB6;UQCRB;NDUFB5;NDUFB3;CO
X7A2;COX5B;ATP50;0AZ1;ADHS5;UBB;ATP5E;ESD;RPS3; TMEM20
8;IGFBP7;RPL15;RPS2;NDUFV2;RPL18;RPL17;RPL19;NDUFA9;RPL
41;NDUFA6;MDH1;LAMB2;NDUFA2;H3F3A;RPL35A;RPS25;RSL1D
1;RPS28;SPCS2;RPS29;NDUFAF4;NDUFAB1;NDUFAF2;CALU;CYCS;
RPS20;CALM3;NDUFAF1;CALM1;RSL24D1;RPS21;RPS23

H4K20
mel

4.0E-09

7.5E-08

RPL4;RPL5;ACAA2;RPLP1;ECI2;RPLPO;ATP5C1;SLC2A3;ADARBL;AT
P5G3;RPL8;CYR61;UBE2L3;RPS15;RPS14;RPL18A;RPL36;RPL35;SL
C16A7;RPL38;RPL37;RPS11;RPS9;RPL21;FNBP1;RPS5;MMP2;RPL1
3A;RPS3A;PRKCA;MRPS7;EEF1A1;UGDH;PPA1;YME1L1;RPL24;SU
CLG1;RPL27;UQCRC2;RPL26;UBA52;GAPDH;OAT;MAOB;PPM1L;R
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PL12;ATP5J;UQCR10;PPM1K;O0AZ1;ADH5;ITPRIPL2;ATP5B;UGP2;

UBB;ABL1;RPL13;RPS2;RPL15;NDUFV2;RPL18;RPL17;ATP6VOA1L;I

P6K2;RPL19;MDH2;GOT2;RPS26;RPS28;MSRB3;RPS20;CALM3;AC
01;FBN1

H3K27
ac

3.0E-07

4.0E-06

CHRM2;ACAA2;NDUFA11;NDUFA12;SPPL2A;COX6A1;PWP1;PCM
T1;RPS19;RPL36;PDK4;ATP6V1EL;PELO;PRKACB;RPS10;RPS9;RPL
21;1GFBP5;RPS5;MRPS18A;SDHC;ACSL3;SUCLG1;UQCRC2;DGKH;
COX15;ITPR1;GSTT1;ITPR3;COX7A2;UQCRH;ITPRIPL2;UBB;ATPS5E;
ESD;COX11;IGFBP7;COX10;SIAH1;PHKB;RPS26;RPS25;RPS27;RPS2
9;NDUFAF4;0GDH;SERINC1;NDUFAF1;CALM1;PAM;FBN1;RPS23;
FARSB;PYGB;YWHAB;RPLP1;AMD1;SLC2A1;MIA3;MRPL35;PITPNC
1,SMPD2;IDH3B;PGM5;AASS;IDH3A;PLA2G12A;GSTO2;SLC2A12;
PLA2G4A;MRPS21;MRPS7;CIT;HADHB;HADHA;UGDH;CAT;NDUFS
3;NDUFB9;NDUFB5;NDUFB3;0DC1;UQCR10;COX5B;PPP2CB;RPS1
5A;0XCT1;,TMEM208;RPL13;RPL15;RPS2;RPL19;NDUFAS;BCHE;N
DUFA6;MDH1;USP9X;NDUFA4;TXNRD1;NDUFA2;RPL35A;RPIA;RS
L1D1;SPCS2;MSRB3;PLCD4

H2AFZ

1.1E-04

9.8E-04

YWHAE;DGKG;PIGT;HIBADH;NDUFA12;MRPS14;PIGP;SLC2A1;MlI
A3;ATP5G3;ATP5G2;RPL6;RPS14;CSRP2;ATIC;ALDH2;PPP2R1A;CY
P4V2;RPL36;PMPCB;UQCRFS1;PGM5;RPL37;PELO;RPS10;COX8A;
PLA2G12A;GPX3;SDHC;ACSL3;MRPS7;ATP5F1;CIT;INPP4B;UGDH,;
PPA1;SMS;SUCLG1;UBA52;PRPS1;NDUFB9;NDUFB7;NDUFB5;ND
UFB3;AK2;COX7A2;PDHB;ATP5L;RPS15A;ATP5D;RPL14;EIFAEBP2;
COX10;MDH2;PLCL1;NDUFA2;RSL1D1;RPS20;SERINC1;RSL24D1

H3K4
me3

6.1E-04

4.3E-03

CHRM2;RPL4;PYGB;SPPL2A;ECI2;SAT2;ATP5G2;CHRDL1;PCMT1;
MRPL3;MRPL42;ATIC;ALDH2;PDK4;UQCRFS1;ACADM;DLAT;ATP6
V1E1;B2M;AASS;IDH3A;RPS9;GSTO2;ITPK1;ECH1;MRPS7;DPYD;N
DUFS4;MFGES8;GAPDH;DLD;PDE1C;NDUFB6;MAOB;NDUFB10;CO
X15;SDC2;MGST3;ITPR1;FSTL1;ESD;TMEM208;IP6K2;PDHA1;NDU
FA4;FN1;NDUFA1;RPS26;RSL1D1;ALDH6A1;RPS27;GSTA4;ACO1;N

DUFAF1;PLCD4;FARSB;MSRB1

H3K9
mel

1.0E-03

6.3E-03

RPL4;RPL30;NDUFA11;RPLP1;RPLPO;ATP5C1;ATP5G3;ATP5G2;GL
S;LGALS1;ATIC;RPL36;PMPCB;RPL35;RPL37;RPS11;RPL21;ATP5F1;
COX6B1;PPA1;UQCRC2;RPL26;MFGES8;UBA52;SLC25A6;FH; MAOB
;COX15;MAOA;RPL12;ACACB;ACAT1;ITPRIPL2;RPS15A;UGP2;ALD
H1B1;ATP5E;RPL14,TMEM208;EIFAEBP2;RPL13;RPS2;RPL15;RPL1
8;RPL17;ATP6VOAL;GSN;ATP8B2;MDH1;MDH2;FN1;UQCRHL;RPS
28,GNPDA2;CHPT1;FARSB

H3ac

2.8E-03

1.4E-02

NDUFA11;NDUFA12;COX411;RPLP1;SLC2A1;ATP5C1;PLOD2;PRSS
23;MRPL35;CSRP2;MPC1;IDH3B;ACADM;PRKACB;PELO;RPS10;RP
S13;PLA2G12A;GSTO1;APLP2;ITPK1;RPS3A;NME4;SDHD;MRPS7;
HADHB;PPA1;NDUFS5;NDUFS3;UQCRC2;PRKAA2;PPM1L;NDUFB5
;UQCR11;NEDDS;COX7A2;FSTL1;MRPL11;COX11;TMEM208;NDU
FV2;SLC35A1;DARS;USP25;NDUFA6;NDUFA4;RSL1D1;NDUFAF4;N
DUFAF2;CYCS;MSRB3;ACO1;PICALM;COX20
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H3K9
me3

1.1E-02

4.5E-02

RPL5;PIGT;NDUFA12;YWHAB;RPLP1;RPLPO;ATP5C1;ATP5G2;RPL6
;RPS14;RPS16;AUH;RPL18A;ALDH2;RPS19;RPL35;ACADM;RPS10;
RPS13;RPL21;RPL13A;RPS3A;SDHD;MRPS7;EEF1A1;HADHB;HADH
A;CAT;NDUFS4;RPL27;UQCRC2;UBA52;MAOA;AK2;COX7A2;TXN;
ATP5B;RPS3;RPL13;RPS2;RPL18;ATP6VOAL;RPL41;NDUFA6;COX6
C;RSL1D1;MSRB2;RPS20;CALM3;RPS21;FBN1

Note: FC= Fold Change; p-val= p-value; FDR p-val= FDR p-value.
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Chapter 5: Search of non-invasive metabolic
biomarkers for diagnosis and monitoring of
BC by 'H NMR
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Chapter 5
Introduction

Due to the recurrent nature and the risk of progression towards invasive
stages, NMIBC requires long-term surveillance by cystoscopy, an invasive,
unspecific and expensive technique!*!®*. Could the patients be monitored by the
use of non-invasive and dynamic urinary biomarkers, thus avoiding the use of
cystoscopies?

In recent years the use of non-invasive approaches is gaining significant
attention in the biomarker discovery field'®*~!%’_ Its application to BC management
would allow reducing the morbidity and the costs associated with cystoscopy, but
also could provide information about tumor phenotype, which cystoscopy does
not.

The direct contact between the tumor and the urine is a major
characteristic of the urological cancers, since molecules released from bladder
cancer cells may be enriched in urine samples!®®, Besides, urine can be obtained
non-invasively, so it could be used in active BC surveillance programs without
causing patient discomfort.

'H NMR analysis requires minimal sample preparation, are rapid and non-
destructive, reproducible and cost-effective. Therefore, considering the
advantages of 'H NMR studies and the current lack of biomarkers for the follow-
up of patients with NMIBC, we developed an experimental design pre-TUR (BC) vs
post-TUR (control) with the purpose of searching a non-invasive biomarker
capable to detect recurrences in NMIBC patients undergoing a surveillance

program.
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Material and Methods
Patient selection and sample collection

In this study 20 males and 8 females diagnosed with BC undergoing
planned TUR were included from the Urology Service of the Hospital Universitario
y Politécnico La Fe (Valencia, Spain). The study was approved by the Ethics
Committee for Biomedical Research of the Instituto de Investigacion Sanitaria La
Fe (Valencia, Spain) and all patients gave written informed consent to participate
in it. Inclusion criteria for patient selection were: male or female from 20-90 years
old with NMIBC diagnosed, single or multiple tumors and primary or recurrent
tumors. Exclusion criteria were: patients with a urinary catheter, invasive tumor
diagnosed (T2-T4), papilloma pathological diagnosis or only CIS diagnosis by
pathological anatomy (PA).

After recurrent risk group classification according to the EORTC criteria,
patients were included in a monthly monitoring group to collect urine samples in
case of a new recurrence. Patients were followed for a period of 18 months in
which a total of 153 urine samples were collected. Urines were processed and
stored at -80°C by the Biobanco La Fe. Samples were considered as BC (n=70)
when cystoscopy was positive and PA confirmed the presence of a tumor; and one
month before positive cystoscopy with tumors >3 cm. Non-tumor samples
collected after TUR of tumor were split into two groups: CTRL (n=29) and
MONITOR (n=38). CTRL group included urines collected from NMIBC patients
within 2-4 weeks after TUR; and MONITOR group included urines collected during
monitoring period with negative PA (TO), urines with negative cystoscopy at the
time of sampling, and urines collected during monitoring period between negative
cystoscopies. If no cystoscopy was available at the time of sampling or after,

urines were classified as ‘non available cystoscopic evaluation’ (NA) (n=16).
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Table 5.1 summarizes clinical-pathological and demographic data of patients and

samples included in the study.

Table 5.1 Clinical-pathological and demographic data of patients with NMIBC included

in this study.
PLS-DA model Calibration (CV) CT;’LT;;‘Z';,'\:; oR

Male/ female patients 24 (18/6) 7 (5/2)
Mean age (standard deviation) 70 (11.15) 63 (5.13)
Total samples 69 84
CTRL 21 8
MONITOR 0 38
NA 0 16
BC 48 22
Primary/Recurrent BC 13/35 4/18
Tumor stage (Ta,T1,Tx) 33/13/2 17/4/1
Tumor grade (High/Low) 32/15 (UK:1) 20/1 (UK:1)
Tumor size (>3/<3) 11/35 (UK:2) 7/15
Tumor number (1/2-7/>8) 18/28/0 (UK:2) 14/8/0

Note: In the validation set 16 NA samples were included for view the trajectory of urinary
profile but not were considerate to create the PLS-DA model. 10 MONITOR samples from

3 patients included in the calibration set were included in the validation set. UK: unknown.

Sample preparation and H! NMR acquisition

Urine samples were thawed at room temperature and were processed in
the same way that was described above (Chapter 4)34, Briefly, 200 pL phosphate
buffer (pH 7.4) were added to 500 L urine. The mixture was then homogenized
(vortex) and centrifuged at 10000 rpm for 5 min at 5°C and transferred to an NMR
tube. For each urine sample, 1D 'H water presaturation spectra were acquired at
300° K using a Bruker Avance Il 500 MHz spectrometer in 16 min: 46 s and the

following spectral acquisition parameters: acquisition time: 2.72 s; transients: 128;
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spectral width: 12 ppm (6000 Hz) and relaxation delay: 5 s. Moreover, 2D 'H-
13CHSQC spectra were acquired, to assess the assignments of the overlapped

signals in 1D 'H spectra.

IH NMR spectra pre-processing and metabolite assighment

After 1D 'H water presaturation spectra acquisition, the FID was Fourier-
transformed, phase and baseline corrected and chemical shift referenced to DSS
at 0.0 ppm using MestReNova version 6.0.2 (Mestrelab Research SL, Santiago de
Compostela, Spain). Metabolites were identified and assigned according to the
published data®%13>136169 gnd open NMR databases’”'®” considering a peak
tolerance +0.02 ppm. The spectra were binned into 0.003 ppm buckets using
MestReNova. For the statistical analysis, the 0.8-4.5 and 6.5-9.0 ppm chemical
shift spectral regions were considered, excluding thus the regions containing

water and urea resonances.

Data analysis

The intensity of the assigned resonances was transferred to
MetaboAnalyst 3.0'%. Mean metabolite intensities were normalized by the sum
(1-norm) and compared between groups. U-Mann Whitney test determined the
significant differences between control and BC urines. Kruskal-Wallis evaluated
differences among control, primary tumors and recurrence tumors; and compared
the mean among Ta, T1 and control samples.

Multivariate statistical analysis was carried out in first-derivative row-wise
normalized 1D spectra using autoscaling as data pre-processing. This was
performed using the PLS Toolbox Solo 8.0 (Eigenvector Research Inc., Manson,
WA, USA). A PCA of the set of BC, CTRL, MONITOR and NA samples was carried

out to detect potential outliers. After, the data set was split into a calibration and
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validation subsets. 69 samples from 24 patients were included in the calibration

set (48 BC and 21 CTRL) and were used to develop a PLS-DA model. The validation

set was used to evaluate the model predictive performance of the PLS-DA model,

and included urines from 7 patients with different clinical evolutions. Firstly, the

validation set was performed considering (22 BC and 8 CTRL). After, MONITOR

(n=38) and NA (n=16) samples (not included in the calibration set) were added to

the validation set to evaluate the performance of the model to diagnose BC

recurrence during a surveillance period (See table 5.2). Adding MONITOR samples

the number of control samples was increased to 46.

Table 5.2. Patients and samples used in the

model.
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23 -- - 8 5 6
24 6 2 2 0 5
25 2 2 0 0 5
26 -- -- 1 2 9
27 2 0 - - -
28 -- -- 9 1 3

The optimal number of latent variables (LVs=3) was selected according to
the RMSECV. A permutation test (100 permutations) was carried out to assess the
statistical significance of PLS-DA figures of merit and the probability of a chance
correlation. The relative importance of each metabolic feature in the PLS-DA
model was determined using the VIP scores vector. The most important
metabolites in the statistical model (VIP>1) were identified and used to perform a

pathway enrichment and topology analysis using MetaboAnalyst.

Results

Urinary metabolomic profile in BC patients

Figure 5.1 displays a representative urine *H NMR spectrum from a BC
patient and Table 5.3 summarizes the assignment of the most relevant identified
metabolites. Among them, amino acids (Ala, Phe, Gly, Lys), benzenoids (hippuric
acid), organic nitrogen compounds (trimethylamine-N-oxide) and organic acids

(lactate, citrate), creatinine and urea are highlighted.
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Figure 5.1 Representative 1D *H NMR spectrum and assignment of a urine sample from a
NMIBC patient. The vertical scale of the entire spectrum was kept constant and spectral
region of water and urea was removed from the figure. The intensity of peaks in the
chemical shift region 6.6 — 9.1 ppm was enhanced to show the low abundant metabolites.
Assigned metabolites: 1.Leu, 2.Val, 3.Lactate, 4.Ala, 5.DSS, 6.Lys, 7.Acetic acid, 8.Gln,
9.Citrate, 10.Dimethylamine, 11.Creatinine, 12.Trimethylamine N-oxide, 13.Taurine,

14.Gly, 15.Sucrose, 16.Creatine, 17.Hippuric acid, 18.His, 19.Phe, 20.Pseudouridine,

21.Formic acid, 22.Trigonelline.
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Table 5.3 Assignment of the metabolites identified in 1D *H NMR urine spectra.

Chemical shift

N2 Metabolite Chemical Formula

PPmM
1 Leucine CHs 0.94
2 Valine yCH3 0.98
2 Valine yCH3 1.03
3 Lactate CHs 1.32
6 Lysine yCH2 1.43
4 Alanine BCHs 1.47
6 Lysine BCH2 1.71
7 Acetic acid CHs 1.97
6 Lysine BCH2 1.91
8 Glutamine BCH2 2.13
8 Glutamine yCH2 244
9 Citrate CH> 2.51
9 Citrate CH> 2.65
10 Dimethylamine CHs 2.71
11 Creatinine CHs 3.03
13 Taurine -CH2-NH3* 3.25
12 Trimethylamine N-oxide CHs 3.29
13 Taurine -CH2-SO3" 3.42
14 Glycine aCH 3.55
15 Sucrose C6’ H 3.81
15 Sucrose C5'H 3.87
16 Creatine CH2 3.92
17 Hippuric acid oCH2 3.96
11 Creatinine CH2 4.05
18 Histidine CH 7.09
19 Phenylalanine C2’6 H 7.33
19 Phenylalanine C3’'5H 7.41
17 Hippuric acid C3'5H 7.63
20 Pseudouridine CH 7.66
17 Hippuric acid C2’6H 7.82
18 Histidine CH 7.93
21 Formic acid CH 8.45
22 Trigonelline C3'5H 8.82
22 Trigonelline C1'H 9.11
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Mean comparison of metabolites detected in urine

Hippuric acid and alanine levels showed significant differences between
BC and control groups (p-value<0.05). Both metabolites presented higher
intensities in control samples. Hippuric acid also presented significant differences
between primary tumors and recurrent tumors and between the Ta and T1 stages

of tumors and control samples (Figure 5.2).

Hippuric acid Hippuric acid Hippuric acid Alanine
gl — T - - - -— |®T s T
D ' d 2 4 ! - ! 24 : H 2.0 !
< : | ! i ' : : N :
Be+09 | ’ : : H i H H :
2 ' i : ' 15 : :
£ ' [ A H H H
o Se09 o : 19 R | 1 ; 10 :
5 : 0s | i
= de+09 H
o 04 04 00
£
o 2e+09 o ' ' E 05 .
2 : : 14 : : EE I : Lo 4 ! :
oero0 ] —— N . - = ‘ = : :
BC Control Control T.P Rec. Control T1 Ta BC Control

Figure 5.2 Box and whisker plots illustrating discrimination between: BC and control
urines; control, tumor primary (T.P) and recurrences (Rec); and differences among
stages (Ta and T1) of BC and control urines. The vertical axis shows the normalized

intensity (1-norm).

Comparisons between BC and CTRL samples

Figure 5.3 depicts the PC1 vs PC2 scores of a PCA build for the
unsupervised analysis of the initial data set. No significant clustering of BC and

CTRL samples was observed in the PC1-PC2 scores space.
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Figure 5.3 PCA of samples included in the validation set.

PCA provides an unbiased overview of the data structure but it might not
reveal a significant between-groups clustering if the class is not among the main
sources of variance in the data set. To overcome this potential limitation, a PLS-
DA model was developed. Figure 5.4 shows PLS-DA scores for the calibration set
(LVs=3). Although PLS-DA scores should not be used to assess a difference

between classes, this plot showed no sub-clustering neither in BC or CTRL sub-

groups.
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Figure 5.4 Scores plot for calibration set (BC vs CTRL).
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For validation sets, PLS-DA scores plots and predicted values are shown in
Figure 5.5 and all statistical parameters evaluated are summarized in Table 5.4.
Confusion tables obtained from the evaluation of the predictive performance of

PLS-DA are depicted in Table 5.5.
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Figure 5.5 Discriminant analysis of BC, CTRL and MONITOR samples. (Left) Scores plot,
PLS-DA predicted y values and AUROC for the first validation set (BC vs CTRL); (Right)
Scores plot, PLS-DA predicted y values and AUROC for the second validation set (BC vs
CTRL+MONITOR as control samples). Number of LVs: 3.
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Table 5.4 PLS-DA figures of merit for the discrimination between BC and control samples

in the calibration and validation sets.

Indices Test Validity

True prevalence
Sensitivity
Specificity

PPV2

NPV®

ACCe

PLRd
NLR®

Calibration set
(BC vs CTRL)

Validation set
(BC vs CTRL)

Validation set

(BC vs MONITOR+CTRL)

Estimation (95% Cls)

Estimation (95% Cls)

Estimation (95% Cls)

69.6%
81.3% (68.1%-89.8%)
66.7% (45.4%-82.8%)
84.8% (71.8%-92.4%)
60.9% (40.8%-77.8%)
76.8 % (65.6%-5.2%)

2.44(1.31-4.53)
0.28 (0.15-0.52)

73.3%
86.4% (66.7%-95.3%)
87.5% (52.9%-97.8%)
95.0% (76.4% -9.1%)
70.0 % (39.7%-9.2%)
86.7 % (70.3%-4.7%)

6.91(1.10-43.54)
0.16 (0.05-0.45)

31.9%

86.4% (66.7%-95.3%)
80.4% (67.5%-89.6%)

67.9% (49.3% -2.1%)

92.7% (80.6%-97.5%)

82.6 % (72.0%-9.8%)
4.51(2.45-8.3)
0.17 (0.06-0.49)

Note: ?Positive predictive value; PNegative predictive value; ‘Diagnostic accuracy; YPositive

Likelihood Ratio; *Negative Likelihood Ratio. PLS-DA model: LVs=3.

Considering only BC and CTRL samples in the validation set, the PLS-DA

model provided a sensitivity of 86.4%, a specificity of 87.5% and an AUROC=0.96

with an ACC of 86.7%. When also were considered MONITOR samples, the

sensitivity value was maintained but the specificity was 80.4%. Even so, AUROC

was 0.89 and the NPV and NLR were 92.7% and 0.17 respectively. Permutation

test (100 permutations) showed a statistically significant p-value<0.05.
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Table 5.5 Confusion tables obtained from the evaluation of the predictive performance of

PLS-DA models between BC vs CTRL and BC vs CTRL and MONITOR samples in the

calibration and validation sets.

Calibration (CV) Validation
BC CTRL BC CTRL CTRL+MONITOR
Predicted as BC 39 7 19 1 )
Predicted as CTRL 9 14 3 7 37

The VIP>1 scores of this PLS-DA model identified, among the selected

NMR features, the following discriminant metabolites: Val, Ala, Lys, Gln, citrate,

dimethylamine, creatinine, trimethylamine N-oxide, taurine, sucrose, creatine,

hippuric acid, histidine, Phe and trigonelline. The pathways analysis performed in

MetaboAnalyst, linked these metabolites with alterations in taurine and

hypotaurine; Ala, Asp, Glu; Arg and Pro; and Phe metabolic pathways (p-value

<0.05) (see Figure 5.6; Table 5.6).
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Figure 5.6 Analysis of altered metabolic pathways in bladder urines.
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Table 5.6 Identified metabolites and associated metabolic altered pathways in urines.

Altered pathways in BC Metabolites p_value Impact
Alanine, Aspartate and Glutamate Ala, G, succinate 6.5E-4 0.26
Taurine and hypotaurine Taurine, Ala 9.0E-3 0.36
Aminoacyl-tRNA biosynthesis Phe, Gln, Val, Ala, Lys 1.6E-4 0.56
Methane Trimethylamine N-oxide, methanol ~ 2-5E-2  0.02
Arginine and Proline Citrate, succinate 9.0E-3 0.08
Phenylalanine Succinate, Phe, hippuric acid 4.0E-3 0.07
Nitrogen metabolism Phe, taurine, GIn 2.7E-3 0.05

Metabolic changes occurred during the follow-up period of patients with NMIBC

The PLS-DA model correctly classified 19/22 BC and 37/46 as non-BC (i.e.
CTRL or MONITOR) samples. Out of the total patients (n=28), 7 undergoing active
follow-up had different clinical evolutions. The longitudinal trajectory of the
metabolomic profile of these patients allowed assessing its utility to detect tumor
recurrences during a surveillance period (e.g. patients 23*, 24*, 25*, 28* in Figure
5.7) given that its behavior was in agreement with the results of cystoscopy and
PA after TUR. In the patients 23*, 24%*, 25%, 28* a shift in the metabolomic profile,
from control to tumor, was observed along with its detection by positive
cystoscopy and it was confirmed by PA. The phenotype returned to control
phenotype after the tumor removal. In patients who did not develop many
recurrences the metabolic profile remained in a non-tumor phenotype after TUR
during a monitoring period, and tumor absence was confirmed through negative
cystoscopies (see patients 22*, 26* 25* in Figure 5.7). Besides, the metabolic
profile was not affected by inflammatory processes (i.e. cystitis), since classified
correctly non-tumor urines collected during these circumstances (see patient 23*)
(Figure 5.7). In patient 27* most of urinary samples were coded as NA due to the

lack of clinical information associated with these.
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Figure 5.7 Analysis of longitudinal trajectories after TUR of BC. Predicted y PLS-DA values

in 7 patients during the follow-up period. Note:(*) indicates a MONITOR sample showing

an inconsistent trajectory; (Cys+ or Cys-) indicates a positive and negative cystoscopy;

(TUR) mean transurethral resection; (T0) indicates tumor absence by PA evaluation; (Tx)

indicates that pathologist did not confirm the presence of a tumor; (INF) indicates cystitis

and (UTUC) means upper tract urothelial carcinoma.
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Discussion

NMIBCs require complex clinical management due to the high
heterogeneity of tumors. Patients with equal PA have completely different
evolutions, indicating a unique biology for each tumor. Tumors represent dynamic
entities that are constantly changing their molecular programs to adapt to the
microenvironment conditions. That ability to adapt depends, in part, on metabolic
reprogramming, a phenomenon recognized as an emerging hallmark of cancer'’®,

Therefore, to analyze the metabolic changes produced in biological samples can

offer opportunities for biomarker discovery.

With an experimental design pre-TUR (BC) vs post-TUR (control), we
developed a PLS-DA model that provided an elevated sensitivity (86.4%),
specificity (80.9%) and NPV (92.7%) classifying BC from control samples collected
during the NMIBC surveillance after TUR. These results indicated that our
metabolic profile could be very useful in clinical practice to detect recurrences
since it would ensure a very low probability of having false negatives during a
monitoring period. This fact was assessed observing the trajectories of the
metabolic profile in 7 different clinical cases of patients with NMIBC undergoing
active follow-up. The metabolic profile of patient 25* changed from BC towards
control phenotype after tumor removal by TUR in the two developed tumor
episodes. Negative cystoscopies confirmed the absence of recurrences in
agreement with the metabolic profile trajectories. A similar profile was observed
in patients 26* and 22%*; although, in these cases 4 MONITOR samples were
misclassified. Probably confounding factors (e.g. drugs, diet, treatment) affected
the correct classification of urinary samples. The metabolic profile of patient 24*
remained in a BC phenotype between the first complete TUR and a re-TUR

performed 5 months later. The re-TUR was programmed due to the size of the
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tumor (5-7cm) and the AP (Ta G3) of the previous tumor. During re-TUR three
tumors were found with a PA (T1 G2). The metabolic signature was in agreement
with an early detection of the recurrence. The patient 23* had a large number of
recurrences since the diagnosis of the primary tumor. The classification of BC
samples was in concordance with positive cystoscopy and PA of tumor after TUR
(see samples collected in the months 9, 10 and 22). The correct classification of
CTRL and MONITOR samples was in concordance with the negative results of PA
(TO) (see samples in months 5 and 19). In these cases, the patient had been
operated on suspicion of tumor (positive cystoscopy). However, the diagnosis of
tumor specimen was cystitis. Remarkably, the patient 28* had a recurrence in the
bladder (see month 0) and another in the upper tract (UTUC) with the same PA
(see month 7). Lately, the metabolic signature detected the UTUC development,
which was confirmed by PA in 7" month. Negative cystoscopies performed in the
month 4 and 7 showed the absence of tumor in bladder epithelium.

In general, the obtained results indicated that the metabolic profile could
be useful in very diverse clinical situations linked with NMIBC. The profile proved
to be highly dynamic and sensitive in the detection of bladder recurrences not
only in very early stages of their development but also in the detection of
recurrences in the upper urinary tract. This fact has relevance considering the BC
as a pan-urothelial disease. Moreover, in some cases, the metabolic profile was
able to detect incipient tumors not detected by cystoscopy. From the clinical point
of view, if these results were confirmed in further studies, they would be
important since would allow personalizing the follow-up schemes to each patient,
controlling better the disease and avoiding possible future progressions to MIBC.
Besides, the application of this metabolic profile in the detection of incomplete
TUR would be essential since would allow choosing the best option of treatment
for each patient: a strict control by urinary cytology or cystoscopy, a re-TUR or a

new regimen of chemo- immuno-therapy. By contrast, if the urinary signature
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would indicate a control phenotype after TUR, a re-TUR could be avoided in
patients who for clinical routine have to be operated again. Surgeries could be
also prevented in those cases where cystoscopy confounds cystitis with tumors,
but after TUR the PA shows tumor absence (i.e. TO). In brief, these data reinforce
the idea that urinary metabolome reflects tumor biology and can be used to study
tumor development. Nevertheless, although the obtained results are hopeful, a
better understanding of how several intrinsic and extrinsic factors such as
chemotherapy or BCG, drugs, and inflammatory processes affect the urinary
metabolome is essential to improve the robustness of metabolic tests so they can

be implemented into clinical routine.

On the other hand, knowing which metabolites take part in this profile is
important to establish the link between altered metabolic pathways and the
tumor phenotype, which indirectly reflects the events developed at genomic and
transcriptomic levels. A better knowledge of metabolic regulation would allow
detecting key metabolic enzymes that could be a target for the development of
new BC therapies.

Among the metabolites identified as discriminants between BC and
control urines (VIP>1) we spotlight the Gln, Glu, citrate, hippuric acid, and taurine.
These metabolites have been described as relevant in several tumors (e.g.
prostate, breast, ovarian) and their roles in cellular metabolism are quite
known'*"173, Gln and Glu have been described as two important metabolites in
BC!3, Cancer cells used GIn as a source of energy but also for nucleotide
biosynthesis or the synthesis of other AAs*2. GLS converts GIn to Glu, which can be
used by GLT2 to produce intermediates of TCA cycle or be used for the synthesis
of GSH, a tripeptide that acts as an important antioxidant in cells'’®. GIn uptake
also links with the immune system, since several T cell metabolic processes

require it Citrate is a key intermediate of the TCA cycle and has been closely
148



Chapter 5

related to an increase in fatty acids B-oxidation to support cancer cell
proliferation. Although we did not find significant levels of citrate between tumor
and non-tumor urines, low concentrations of this metabolite have been reported
in bladder tumors, suggesting the role of B-oxidation as source of energy>.
Additionally, alterations in taurine metabolism have been showed in NMIBC!7>76,
what is in concordance with our results. The lower levels of hippuric acid found in
our BC urines compared to control samples are in agreement with other
works**17>, However, we also identified differences in the levels of hippuric acid
among urines collected from controls and patients with primary and recurrent
tumors, suggesting that the metabolism of both types of tumors is not equal.
Overall, our results are supported by prior references that describe the
importance of AA metabolism in BC'”” and are in concordance with the study that
will be presented in the Chapter 6, in which a great part of the same set of urinary
samples were analyzed by UPLC-MS®3. Nevertheless, NMR-based metabolic
profiling has advantages respect MS that include: minimal sample preparation,

non-destructive analysis, higher reproducibility, and cost-effectiveness.

Conclusion

In summary, the present study shows for the first time a dynamic *H NMR-
based urinary metabolic profile associated with NMIBC that changes from a tumor
to a control phenotype after tumor removal and return to the malignant condition
when a recurrence occurs. This fact highlights metabolomics as tool for searching
non-invasive biomarkers, which could be applied in clinic to improve the
management of BC patients by: 1) decreasing the performance of unnecessary
cystoscopies during the follow-up period; 2) detecting lesions not visible by
cystoscopy such as dysplasias, hyperplasias, CIS but also 3) detecting early

recurrences, incomplete TUR or maybe UTUC.
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Chapter 6: Search of non-invasive metabolic
biomarkers for diagnosis and monitoring of
BC by UPLC-MS
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Introduction

Given the high rate of recurrence of NMIBC, the limitations of cystoscopy
and cytology and the lack of non-invasive approaches applied intro clinical routine
for diagnosis, but especially, for the follow-up of patients with this type of tumors,
the identification of a surveillance biomarker is crucial.

Since the metabolome provides a direct meaningful readout of the
dynamic biochemical status of a biological system, metabolomics is now
considered as a highly relevant approach to explore individual phenotypes in
systems biology of cancer'’®, NMR and LC-MS have been widely used to detect the
majority of metabolites in a given biological sample. Each analytical technique has
its advantages and disadvantages. However, its combined use allows attaining a
coverage of detected metabolites that can not be achieved by single-analysis
techniques®’

Bearing this in mind, we conducted an investigative study for the analysis
of urinary metabolome changes in NMIBC patients before and after TUR, as well
as in a monitoring period, using ultraperformance liquid chromatography
combined with time of flight mass spectrometry (UPLC-TOFMS). One of the
purposes was to expand the study presented in Chapter 5 increasing the number
of samples and using UPLC-MS as analytical technique, in order to increase the
coverage of detected metabolites linked with NMIBC and detect surveillance

biomarkers.
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Material and Methods

Patient selection and sample collection

The study was approved by the Ethics Committee for Biomedical Research
of the Instituto de Investigacidén Sanitaria Hospital Universitario y Politécnico La Fe
(Valencia, Spain) (2012/0186). Urine samples were prospectively collected from
patients that gave written informed consent to participate in the study. Patients
with bladder tumor diagnosed and TUR surgery planned were invited to
participate in the study. Inclusion criteria for patient selection were: male or
female from 20-90 years old with NMIBC diagnosed, single or multiple tumors and
primary or recurrent tumors. Exclusion criteria were: patients with a urinary
catheter, invasive tumor diagnosed (T2-T4), papilloma pathological diagnosis or
only CIS diagnosis by pathological anatomy (PA).

After recurrent risk group classification according to the EORTC criteria,
some patients were included in a monthly monitoring group to collect urine
samples in case of a new recurrence. In this study, we analyzed metabolomic
profiles of 316 urine samples collected from 31 patients. Table 6.1 summarizes
the main features and pathological data of patients included in the study. Urine
samples collected from patients diagnosed of BC by cystoscopy and tissue
pathology were coded as BC. Those collected from NMIBC patients within 2-4
weeks after TUR were coded as CTRL. Urines collected after TUR with negative
cystoscopy at the time of sampling and those collected in the course of regular
visits to the urologist between negative cystoscopies were classified as MONITOR.
If no cystoscopy was available at the time of sampling or after, samples were
classified as NA cystoscopic evaluation and were not included in the estimation of

figures of merit.
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Table 6.1 Clinical-pathological overview of recruited patients.

Chapter 6

Calibration Validation
Patients (male / female) 18(13/5) 28(23/6)
Samples (male / female) 53 (38/15) 210(169/41)
PLS-DA model BC vs CTRL
Samples pre-TURBT (BC) 35 33
Samples post-TURBT (CTRL) 18 11
Samples surveillance (MONITOR) 0 166*
Primary / Recurrent BC 8/27 7 /23 (3: UK)
Tumor stage (Tx, Ta, T1) 1/21/13 0/21/3(9: UK)
Tumor grade (1 / 11/ 111) 9/20/6 7/14/3(9: UK)
PLS-DA model BC vs MONITOR
Samples pre-TURBT (BC) 35 33
Samples post-TURBT (CTRL) 0 29%*
Samples surveillance (MONITOR) 82 84
Primary / Recurrent BC 8/27 7/23(3: UK)
Tumor stage (Tx, Ta, T1) 1/21/13 0/21/3(9:UK)
Tumor grade (1 /11 /1) 9/20/6 7/14/3(9: UK)
PLS-DA model CTRL vs MONITOR
Samples pre-TURBT (BC) 0 68*
Samples post-TURBT (CTRL) 18 11
Samples surveillance (MONITOR) 82 84
Primary / Recurrent BC 0 15 /50 (3:UK)
Tumor stage (Tx, Ta, T1) 0 1/42 /16 (9: UK)
Tumor grade (I / 11/ 111) 0 16 /34 /9 (9: UK)

Note: * indicates that these samples were not used for the estimation of the discriminant

performance in that particular model. UK: unknown.

Sample preparation

Urine samples stored at -80°C were thaw at room temperature on ice,

homogenized (vortex, 10 s) and centrifuged at 10000 x g (4°C, 10 min). Then, 100
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uL of supernatant were withdrawn and 200 uL of HCOOH 0.1% v/v in H,0 were
added. Sample was homogeneized (vortex, 10 s) and centrifuged at 10000 x g
(4°C, 10 min). 100 pL of the supernatant was transferred to a 96 well plate where
each sample was spiked with 5 pL of a solution of Phenylalanine- Ds (Cambridge
Isotopes Laboratory Inc., Andover, MA, USA), caffeine-Ds (Toronto Research
Chemicals, Toronto, Ontario, Canada), leukine enkephalin (Sigma-Aldrich Quimica
SA, Madrid, Spain) and reserpine (Sigma-Aldrich Quimica) in H,0:CH30H (1:1, 0.1%
v/v HCOOH) providing a final concentration of 1 uM. Blanks were prepared by
replacing urine by H,0. A QC sample was prepared by mixing 5 uL of each sample.
All solvents were of LC-MS grade and were purchased from Scharlau (Barcelona,
Spain). Ultra-pure water was generated with a Milli-Q water purification system
(Merck Millipore, Darmstadt, Germany). Formic acid (295%) was obtained from

Sigma-Aldrich Quimica.

UPLC-TOF-MS sample analysis

Chromatographic analysis was performed on an Agilent 1290 Infinity UPLC
chromatograph using an UPLC BEH Cis (100 x 2.1 mm, 1.7 um, Waters, Wexford,
Ireland) column. Autosampler and column temperatures were set to 4°C and 55°C,
respectively and the injection volume was 4 uL. A gradient elution was performed
at a flow rate of 400 uL min as follows: initial conditions of 98% of mobile phase
A (0.1% HCOOH in H;0, v/v) were kept for 0.5 min, followed by a linear gradient
from 2% to 20% of mobile phase B (CHsCN (0.1% v/v HCOOH)) in 3.5 min and from
20% to 95% B in 4 min. 95% B was held for 1 min and then, a 0.25 min gradient
was used to return to the initial conditions, which were held for 2.75 min. Full
scan MS data from 70 to 1700 m/z with a scan frequency of 6 Hz (1274
transients/spectrum) was collected on a QTOF Agilent 6550 spectrometer (Agilent

Technologies, CA, USA) in the TOF-MS mode. The following positive ESI
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parameters were selected: gas T, 200°C; drying gas, 14 |/min; nebulizer, 37 psig;
sheath gas T, 350°C; sheath gas flow, 11 I/min. Automatic MS spectra recalibration
during analysis was carried out introducing a mass reference standard into the
source via a reference sprayer valve using the 149.02332 (background
contaminant), 121.050873 (Purine) and 922.009798 (HP-0921) m/z as references.
Sample acquisition was randomized and the QC sample was analyzed every 5
injections to monitor and correct changes in the instrument response. Eight
replicates of the QC were injected at the beginning of each batch for column
conditioning. Data acquired during conditioning was excluded from the analysis.
The sample set included 316 urine samples, 56 QCs and 4 blanks. Sample analysis
was carried out in two batches to reduce the time that samples are kept in the
autosampler during analysis. Batch 1 included 224 injections of 187 urine samples
(35 BC, 19 CTRL, 105 MONITOR, 28 NA), 4 Blanks and 33 QCs. Batch 2 included
152 injections of 129 urine samples (33 BC, 10 CTRL, 61 MONITOR, 23 NA) and 23
QCs. All samples from the same patient were analyzed in the same batch. Patient

distribution between batches was randomized.

Peak table generation and data quality assessment

Centroid raw UPLC-TOF-MS data was converted into mzXML format using
ProteoWizard (http://proteowizard.sourceforge.net/) before generating peak

tables using XCMS softwarel”.

The centWave method was used for peak
detection with the following parameters: ppm: 15, peak width: (5, 20), signal to
noise threshold: 6. A minimum difference in m/z of 5 mDa was selected for peaks
with overlapping RTs. Intensity weighted m/z values of each feature were
calculated using the wMean function. Peak limits used for integration were found

through descent on the Mexican hat filtered data. Peak grouping was carried out

using the ‘nearest’ method using mzVs RT=1 and RT and m/z tolerances of 6 s and
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5 mDa, respectively. After peak grouping, the fillPeaks method with the default
parameters was applied to fill missing peak data. RT and m/z tolerances used for
peak table generation and alignment of features across batches was based on the
observed variation in five selected metabolites (Phe, Trp, kynurenine,
hydroxykynurenine and phenylacetylglutamine) and spiked internal standards
(ISs) (phenylalanine-Ds, caffeine-Do, leukine enkephalin and reserpine) (see in
results Figure 6.1). Peak integration accuracy was assessed by comparing
automated and manual integration results for internal standards (see in results
Figure 6.1). A total of 4299 and 4416 features found after peak detection,
integration chromatographic de-convolution in batches 1 and 2, respectively.
Alignment of features detected across batches lead to 3226 metabolic features.
Blank samples were used to identify and remove background features arising from
e.g. source contaminants, plasticizers, or solvent impurities. Within-batch effect
elimination was performed by fitting time dependent non-linear functions to the
injected QCs followed by a normalization of the data to this function using QC-
Suport Vector Regresion (SVRC) and a radial basis function kernel, as described
elsewhere®, The e-insensitive loss parameter, the error penalty C and the kernel
parameter y used for the fitting of the SVR functions were selected using the 10-
fold RMSECV as estimates of the expected generalization error. The €-insensitive
loss parameter for each metabolic feature was selected as the expected
instrumental precision (i.e. £2.5% of the median value observed in QCs). The error
penalty C was calculated as the median value of the responses in QCs'°. The
kernel parameter p providing the lowest RMSECV for each variable in the [273, 2
2,..., 2°] range was selected. Between-batch effects were eliminated by scaling the
intensity of each metabolic feature in each sample using a factor defined as the
ratio between the median intensity in QCs in the corresponding batch and the

median intensity across batches. Finally, metabolic features showing relative
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standard deviation (RSD%)>15 in QCs were considered unreliable and removed,
leaving 2006 features for data analysis. Batch effects affecting the number of
missing values due to e.g. instability of the chromatographic separation or wrong

feature alignments were not considered in this work.

A) B) Phe

. « T - Kyn
5 206.2 i e aspl rp 1 y 5
“ a3 = 3 o
. -, e §": . o . : #
'::' [m) @ & f
& ) 205.8 = Ts g,
..q_) E 5 as z
L] = 2056
5} 3 . — —
3 205 4 MazzHuntsno" MazsHunteno® MazzHuntans®
2 q & _-OHTm - PAGN
B = Cl H
5 B 20523 - s "
= — o
5 -, 7] o w B
2 = 209 =" = .
= T Qa o 3]
204810 1 “
@ 2
204.6 : ]
o 200

D)

) Kyn
L] =
@ s [T W
g ga g -
e [t =
g g’ : g’
T s E el < =
° b o
L 00 400 a &
Injsction order Injsction order
_OHTmp
4 =
= e QC — o Qc
g 2 o Blank g'q o Blank
[ Doa
= = [ -
- . § o
.
4, - o
§: g 4
: - o z \‘l — a
o oo o o = [ [] 200 am o =0 o
Injsction arder Injsction order Injsction ordsr Injsction order

Figure 6.1 Quality control of instrument performance and metabolomic data
pretreatment. A, Variation of the m/z accuracy and RT of a spiked internal standard
(Caffeine-Dg) as a function of the injection order; B, peak area values of five selected
metabolites: phenylalanine (Phe), tryptophan (Trp), kynurenine (Kyn), hydroxykynurenine
(OHKyn) and phenylacetylglutamine (PAGN) using manual (MassHunter) and automated
(XCMS) integration; C, intensity of peak area values of five selected metabolites as a
function of the injection order in raw data; D, intensity of peak area values of five selected

metabolites as a function of the injection order after batch effect correction.
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Chemometric and statistical analysis

The data set was initially split into a calibration and validation subsets.
The calibration set was used for PLS-DA model development and feature
selection. The validation set was exclusively used for the evaluation of the model
predictive performance. Data scaling included multiplicative scatter correction
with the median QC as reference followed by pareto scaling. The selection of the
optimal number of PLS-DA LVs was carried out using the RMSECV and a leave-one
patient-out CV strategy. The classification accuracy, the AUROC as well as the
sensitivity, selectivity and NLR, PLR were employed as PLS-DA figures of merit.

Identification of metabolites was carried out by matching m/z values
against the HMDB (http://www.hmdb.ca) and METLIN databases
(http://metlin.scripps.edu/) with 5 accuracy. Molecular formulae were estimated
by MassHunter Workstation Software-Qualitative Analysis (Agilent). Data
acquisition and manual integration of peaks of IS and selected metabolites were
carried out using MassHunter workstation (Agilent). PLS-DA was carried out using
PLS Toolbox 8.0 (Eigenvector Research Inc., Wenatchee, USA) and in-house
written MATLAB (Mathworks Inc., Natick, MA, USA) scripts. Support Vector

Regression was carried out in MATLAB using the LIBSVM library®8!

. Pathway
analysis and topology analysis were carried out using a global test and a relative

betweenness centrality measure using MetaboAnalyst 3.02,
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Results and Discussion
Data overview and quality assessment

The replicate analysis of a QC sample throughout the batch enables a
straight forward evaluation of the instrument performance!®. Under optimal
conditions, technical variation should lead to random variation in intensities
across QC replicates. However, the plot of the peak areas in QCs as a function of
the injection order showed trends both within and between batches, as well as
heterocedastic variance across batches (see Figure 6.1). Likewise, cumulative
distribution functions of the relative standard deviations in QCs (RSDqc) in raw
data depicted in Figure 6.2 showed a significantly better instrument performance
in terms of repeatability (i.e. lower RSDqc) in batch 2. Figure 6.2 depicts PC1-PC3
scores of a PCA model for QC replicates as a function of the injection order,
showing a significant between-batch effect in PC1 and within-batch effects in PC2
and PC3. Batch effects difficult the identification of underlying trends in the data
and so, an initial batch effect correction was carried out as described above. After,
within- and between-batch effect correction, the number of metabolic features
showing RSDqc<15% increased from 652 up to 2006, and the median RSDqc
decreased from 20.2% down to 8.7%. PCA scores after batch effect correction
depicted in Figure 6.2 showed no association with the injection or batch order in
agreement with results depicted in Figure 6.1 where the corrected intensities of

the previous set of 5 metabolites as a function of the injection order are depicted.
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Figure 6.2 Distribution of RSD (QCs)% in batches 1 and 2 (left) and PCA scores as a
function of injection order (right) in raw data (top) and after batch effect correction

(bottom).

A PCA model of the set of BC, MONITOR and CTRL samples was calculated.
The PC1 vs PC2 scores plots obtained from the PCA models of the set of BC,
MONITOR and CTRL samples after batch effect correction showed a high overlap
of BC, MONITOR and CTRL samples (see Figure 6.3). No clustering among the
groups was observed using higher PCs (data not shown). PCA did not reveal a
specific structure related to BC progression. Nonetheless, the PCA model was
used to assess the absence of outlying samples based on their relative position to

the 95% confidence limit.
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Figure 6.3 PCA scores plot using the set of QC, BC, CTRL and MONITOR samples.

Discriminant analysis among BC, CTRL and MONITOR samples

To facilitate the analysis of the differences in the metabolic profiles
among BC, CTRL and MONITOR samples, three independent PLS-DA models were
considered in which the groups were compared pairwise (i.e. BC vs CTRL, BC vs
MONITOR and CTRL vs MONITOR). Calibration and validation sets selected for the
three models are summarized in Table 6.1. PLS-DA scores plots and predicted
values for the three models depicted in Figure 6.4 and the figures of merit
calculated for the validation sets summarized in Table 6.2 showed a statistically
significant shift in the urinary metabolic profiles after TUR. The BC vs CTRL model
provided an accurate classification of 27/33 BC and 10/11 CTRL samples
(sensitivity: 82% and specificity: 91%). The second model build for the
discrimination between BC vs MONITOR samples performed worse in classifying
BC samples (sensitivity: 70% and specificity: 75%). Finally, the analysis of the
differences between CTRL vs MONITOR groups provided non-significant predictive
performances, lower sensitivity (45%) and specificity (76%) values, in agreement

with the higher overlapping of CTRL and MONITOR samples depicted in Figure 6.4.
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Table 6.2 Indices of test validity estimated for the evaluation of the predictive
performance of PLS-DA models between BC vs CTRL, BC vs MONITOR and MONITOR vs

CTRL samples in the validation set.

PLS-DA model
BC vs CTRL BC vs MONITOR CTRL vs MONITOR
LVs 3 3 3
AUROC 0.94 0.75 0.53
Sensitivity 81.8 (64.5-93.0)% 69.7 (51.3-84.4)% 45.4 (16.7-76.6)%
Specificity 90.9 (58.7-99.8)% 75.0 (64.4-83.8)% 76.0 (66.6-83.8)%
PLR 9.0 (1-4-58.7) 2.8(1.8-4.3) 1.9(0.9-3.9)
NLR 0.2 (0.00-0.42) 0.4 (0.2-0.7) 0.7 (0.4-1.2)

The relative importance of each metabolic feature in the projection used
in PLS-DA models was evaluated using the VIP scores estimate!®®. The BC vs CTRL
model was used to screen an initial set of 128 discriminant features using a VIP>3
as threshold (Figure 6.5). This set of metabolic features associated to the effect of
tumor removal by TUR in NMBIC patients, was used to build an optimized model
(3 LVs), which correctly classified 29/33 BC and 11/11 CTRL samples of the
validation set, providing an AUROC= 0.96 and slightly improved sensitivity (87.9
(71.8-96.6)%), specificity (100 (71.5-100)%) and the NLR 0.1 (0.05-0.3). Adjusting
by prior probability of recurrence per risk grouping at 15%, 24%, 28% and 61%,
the negative predictive values for low, low-intermediate and high-intermediate

and high-risk groups were 96.5%, 94.0%, 92.9% and 76.1% respectively.
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Figure 6.5 Discriminant metabolites between BC and CTRL samples. VIP scores as a
function of the value in the PLS-DA regression vector in a model build using 128 selected

metabolic features.

On the other hand, putatively identified discriminant metabolites showing
a VIP>1 in the BC vs CTRL model summarized in Table annexed 6.3 reflected
alterations in the metabolic pathways of Arg, Pro, FAs, Phe, purine, pyrimidine

and Trp, among others (see Table 6.4).
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Table 6.4 Putatively identified metabolites and associated pathways.

Metabolic Pathways

Metabolites

Aminobenzoate degradation;

microbial metabolism

quinone

Arg and Pro metabolism

Creatine, creatinine, guanidinobutanoic acid, oxoarginine,

gamma-glutamyl-putrescine, spermine, citrulline

Arg, purine, pyrimidinel8>-187 Ala,

Asp86, Glul88 metabolism

n-acetylglutamine, thymine, dihydrothymine

Biosynthesis of secondary

metabolites18

methylxanthine, hydroxyphenylalanine

Citrate cycle 175.185187,189,190

citric acid 175185187

Energy metabolism

Carnitine'®®, acetylcarnitine®!, o-isobutyryl-carnitine, 3-

methylglutarylcarnitine, propionylcarnitine

FAs metabolism?186,189,191

Carnitine'®®,  furoylglycine, aminohippuric acid,

hydroxyhippuric acid

GSH metabolism

pyroglutamic acid

Phe metabolism?°!

hydroxyhippuric acid, hippuric acig175191,192

phenylacetylglutamine®®l, phenyllactic, hydrocinnamic

acid, homophenylalanine, phenylacetylglycine,

aminosalicyluric acid, phenylglyoxylic acid, Tyr!88

Primary degradation product of tRNA

dimethylguanosine

Purine metabolism186,188,190

Hypoxanthine88,  methylhypoxanthine,  adenosine!®3,

xanthine, uric acid88

Trp metabolism185188,189

Tyr!8s, hydroxyindole, hydroxyanthranilic acid,

anthranilic acid!®>, indolelactic acid, methyltryptamine,
Trplse, hydroxyindoleacetic

acid, kynurenine,

hydroxyindolepyruvic acid, hydroxytryptophan

Note: References indicate previous clinical urinary metabolomic studies of BC in which the

metabolites were selected as discriminant and/or dysregulated pathways reviewed in%.

Note: Metabolites found at higher levels before TUR are highlighted in bold. Pathways

highlighted in bold were found dysregulated (p-value<0.05).
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Pathway analysis was used to extract biological information within relevant
networks of metabolic pathways integrating MSEA and pathway topology analysis
of BC and CTRL profiles. These analyses were carried out excluding unidentified or
without matching HMDB ID metabolic features (VIP>1). Results obtained are
depicted in Figure 6.6, where the color and the size of each circle indicate its p-
value and pathway impact value, respectively. Phe, Arg, Pro and Trp pathways
were found significantly altered (p-value<0.05), which is in concordance with the

results obtained in Chapter 5.

& -+ Phenylalanine metabolism -

» - Arginine and proline metabolism

Trvp_tophan metabolism

o0

T T T T T d
0.00 0.05 0.10 0.15 020 0.25

Pathway Impact

Figure 6.6 Pathway analysis of the urinary metabolic shift after TUR.

Moreover, this observation was in agreement with recent results
reporting increased levels of four Trp metabolites (kynurenine, acetyl-N-formyl-5-
methoxykynurenamine, indoleacetic acid and indolelactic acid) in serum samples
of BC patients compared to healthy controls, and previous studies in BC tissue!®®
and urine®® that suggested the potential role of kynurenine in the malignancy BC
associated to IDO and IDO2, two Trp-metabolizing enzymes that control the Trp
catabolism-signaling pathway. The generation of kynurenine and other Trp
metabolites can modulate T-cell immunity via activation of suppressive regulatory
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T-cells and activation of aryl hydrocarbon receptor, thus promoting cancer cell
survival'®. Higher levels of pyroglutamic acid and lower levels of hippuric acid
before TUR were in also agreement with previous studies reporting results from
the analysis of urine samples collected from BC patients and reference healthy
groups!’>177191 byt also were in concordance with our study performed by NMR
(Chapter 5). Phenylacetylglutamine is synthesized in the liver from GIn and
phenylacetyl-CoA and it is also a known microbial metabolite®®. Altered levels of
phenylacetylglutamine might indicate a deregulation of the Phe or Gin
metabolism, observed in a previous urinary metabolomic study involving BC
patients and healthy controls, that attributed this deregulation to the increased
energy demands of cancer cells for growing and proliferation!’. Citrate was found
at lower concentrations before TUR. This metabolite is a key intermediate in TCA
cycle and its deregulation has been repeatedly associated with an increased
conversion into FAs required for R-oxidation to support cancer cell proliferation.
Carnitine and several carnitine metabolites were also among the most
discriminant metabolites. Carnitine is an essential metabolite for the transport of
long-chain FAs into the mitochondria and for the regulation of the
intramitochondrial ratio of acetyl-CoA to free CoA. Hence, results may support
higher levels of fatty acids R-oxidation deregulation associated to the BC
tumorl8188190 Ajtered pyrimidine and purine metabolism has been previously
attributed to enhanced cancer cells cycle activity®87,

In summary, results support the hypothesis of a urinary metabolic profile
associated with a macroscopic NMIBC tumor. Besides, the observed metabolic
shift after TUR is well aligned with previous studies aiming at the identification of
metabolic biomarkers carried out in BC patients and healthy controls, thereby
supporting the hypothesis that the metabolic shift might be useful for the

surveillance of cancer recurrence after TUR in NMIBC patients.
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Longitudinal analysis of metabolic changes during surveillance for recurrence

The analysis of longitudinal trajectories of the metabolic biomarker
developed for the discrimination between BC and CTRL samples, in patients
undergoing surveillance for recurrence allowed a preliminary evaluation of its
utility as a monitoring system to diagnose NMIBC recurrence in a pre-clinical stage
or to adjust follow-up protocols according to NMIBC risk. Figure 6.7 shows the
predicted y PLS-DA values in 6 patients with multiple episodes of BC recurrence.
Results show CTRL and BC samples were accurately classified (90.1% overall
accuracy) and, for some patients (see patients *23, *28, and *29), the longitudinal
trajectory during surveillance indicated a gradual shift of the metabolic profile
towards a BC profile. This fact, was in agreement with the depelopment of new
recurrences in the bladder or in the upper urinary tract (see patient *28), and was
consistent with the confirmatory results of cystoscopy and PA. Nevertheless, in
some patients, results showed inconsistent trajectories due to a reduced number
of misclassified samples (see e.g. MONITOR samples from patients *23 and *24 in
Figure 6.7). The fact that urine samples can be easily obtained, and that they are
in contact with the tumor in NMIBC patients are two a priori advantageous
features for the development of a non-invasive metabolomic analysis. However,
urine analysis is challenging due to the variation in chemical composition and
concentrations across and within individuals. A wide range of potential
confounding factors such as individual genotype, diet, water consumption,
environmental exposure or drug intake that affect urine metabolome may be
responsible for these sample misclassification. Further research is needed to
assess the sources of short-term variability in urine and increase the robustness of
metabolic tests in exploratory studies to facilitate the validation and translation of

biomarker discoveries into clinical practice.
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Figure 6.7 Analysis of longitudinal trajectories after TUR. Predicted y PLS-DA values in 6
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(Cys+ or Cys-) indicates a positive and negative cystoscopy; (TUR) mean transurethral

resection; and (UTUC) means upper tract urothelial carcinoma. BC and CTRL samples from

patients *24 and *29 were included in the calibration set.
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Conclusions

Results from this exploratory clinical study disclosed a statistically
significant shift in the urinary metabolic profile in NMIBC before and after TUR
and support the hypothesis of a specific urinary metabolic profile associated to
the occurrence of a NMIBC tumor. Moreover, follow-up of the urine metabolome
of those patients undergoing surveillance for risk of recurrence indicated a
gradual shift in the metabolic profile towards the BC profile that was further
confirmed by cystoscopy. Taken together, these results provide a strong basis for
the development of a metabolomic biomarker analysis as a non-invasive
monitoring system to detect NMIBC recurrence in an early stage and eventually
adjust follow-up protocols according to NMIBC risk. However, larger population

sizes need to be studied for the clinical validation of the proposed biomarkers.
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Table 6.3. Urinary metabolites putatively identified among the set of metabolic

features with VIP>1 in the initial BC vs CTRL PLSDA model.

Error
ID Mol. Formula Score Putative ID HMDB/KEGG | t-test | BC/CTRL
(ppm)
109.0285-3.37 [C6H502]* -3 99 Quinone HMDBO03364 <0.05 >1
115.0693-0.67 [C4H8N3O]* 2 98 Creatinine HMDBO00562 >0.05 <1
Guanidino-
146.0921-0.83 [C5H12N303]* 2 90 HMDBO03464 >0.05 >1
butanoic
174.0873-0.76 [C6BH12N303]* 0.9 85 Oxoarginine HMDBO04225 >0.05 <1
g-glutamyl-
182.1291-1.12 [C9H16N30]* 0.9 87 HMDB12230 <0.05 <1
putrescine
203.2231-052 [C10H27N4]+ -1 87 Spermine HMDB01256 <0.05 <1
176.1033-0.78 [C6H14N303]* 0.1 90 Citrulline HMDB00904 >0.05 >1
171.0761-0.70 [C7H11N203]* -3 83 Acetylglutamine | HMDB06029 >0.05 <1
127.0488-1.95 [C5H7N202]+* -0.1 NA Thymine HMDB00262 <0.05 >1
129.0655-0.67 [C5H9N202]* -3 87 Hydrouracil HMDBO00079 | <0.05 <1
167.0567-1.77 [C6H7N402] * -4 92 Methylxanthine HMDB01991 >0.05 <1
Hydroxy-
182.0817-3.89 [CO9H12NO3]+ -4 82 C19712 <0.05 >1
phenylalanine
215.0167-0.86 [C6H80O7Na]* -5 85 Citric acid HMDB00094 >0.05 <1
Hydroxyindole-
220.0642 -1.55 [C11H11NO4]+ -6 83 C05646 >0.05 <1
pyruvate
162.1123-0.66 [C7H16NO3]* 0.6 82 Carnitine HMDB00062 | >0.05 <1
204.1239-0.91 [CO9H18NO4] * -8 86 Acetylcarnitine HMDB00201 >0.05 <1
Isobutyryl
232.1551-2.75 [C11H22NOA4]+* -3 93 HMDB62606 >0.05 <1
carnitine
Methyl-
290.1613-2.50 [C13H24NO6] * -5 92 HMDB00052 | >0.05 <1

glutarylcarnitine
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170.0452-2.19 [C7H8NO4] * -5 93 Furoylglycine HMDB00439 | <0.05 >1
Aminohippuric
245.0928-5.19 [C11H14N203Na]* -3 95 HMDB01867 <0.05 >1
acid
Hydroxyhippuric
218.0430-2.29 [C9HIONO4Na] * -4 86 HMDBO06116 >0.05 <1
acid
180.0660-3.51 [C9HIO0NO3]+ -4 97 Hippuric acid HMDB00714 <0.05 <1
Phenylacetyl-
265.1185-3.67 [C13H17N204]* 1 98 HMDBO06344 >0.05 <1
glutamine
Pyroglutamic
130.0506-1.31 [C5H8NO3] * 6 97 HMDB00267 >0.05 >1
acid
Hydrocinnamic
151.0753-5.60 [COH1102]* -2 86 HMDBO00764 | >0.05 >1
acid
Homophenyl-
180.1017-6.09 [C10H14NO2]* 0.1 88 NA <0.05 <1
alanine
Phenylacetyl-
194.0812-4.04 [C10H11NO3]* 0.9 75 HMDB00821 <0.05 <1
glycine
Aminosalicyluric
211.0718-1.90 [COH11N204]+* -2 97 HMDB61683 >0.05 <1
acid
Phenylglyoxylic
151.0393-2.85 [C8H703]+ -4 96 HMDB60026 <0.05 >1
acid
182.0790-2.23 [C9H12NO3]+ -4 95 Tyrosine HMDB00158 >0.05 >1
Dimethyl-
312.1306-2.44 [C12H18N505] * -3 96 HMDB04824 >0.05 <1
guanosine
137.0460-0.88 [C5H5N40] * -3 91 Hypoxanthine HMDBO00157 >0.05 >1
Methyl-
151.0618-1.89 [C6H7N4O] * -4 88 HMDB13141 >0.05 <1
hypoxanthine
268.1044-1.07 [C10H14B504] * -2 91 Adenosine HMDBO00050 >0.05 <1
153.0407-0.89 [C5H4N402]+ -6 85 Xanthine HMDB00292 >0.05 >1
169.0360-0.80 [C5H4N503]+ -5 82 Uric acid HMDB00289 >0.05 >1
134.0600-3.33 [C8H8NO] * -2 87 Hydroxyindole HMDB59805 >0.05 >1
Hydrox-
154.0501-1.13 [C7HBNO3] * -4 83 HMDB01476 >0.05 <1
yanthranilic
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138.0549-0.67 [C7H8NO2]* -6 94 Anhranillic acid HMDB01123 | >0.05 >1
Methyltryptami
175.1237-2.65 [C11H15N2]+ -5 93 HMDB04370 | <0.05 <1
ne
205.0980-2.86 [C11H13N202]* -5 96 Tryptophan HMDB00929 | >0.05 >1
Hydroxyindole-
192.0659-1.99 [C10H10NO3]* -3 85 HMDB00763 | >0.05 <1
acetic acid
209.0925-1.99 [C10H13N203]* -2 87 Kynurenine HMDBO00684 | >0.05 >1
Hydroxy-
221.0925-1.50 [C11H13N203]* -3 83 HMDBO00472 | >0.05 >1
tryptophan
132.0765-0.68 [C6H14N20]* -2 86 Creatine HMDB00687 | >0.05 >1
Propionyl-
200.1281-2.41 [C10H18NO3]* -4 82 HMDB00824 | <0.05 >1
carnitine
129.0655-0.67 [C5H9N202]* -2 87 Dihydrothymine | HMDB00079 | <0.05 <1
126.0657-0.88 [C5H8N30]* -6 83 Methylcytosine | HMDB02894 | <0.05 <1

Note: t-test: t-test p-value; BC/CTRL: ratio mean value in BC over CTRL samples.
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Conclusions and future perspectives

This Ph.D. Thesis has tried to improve the knowledge about BC biology

through metabolomic and transcriptomic studies but has also provided non-

invasive approaches for the detection of this tumor. The conclusions obtained are

detailed following:

HRMAS H NMR-based metabolomic analyses are able to classify correctly
BC tissues independently of tumor stage and grade, and they provide

information about tumor aggressiveness.

Metabolism of AAs, Cho, and GSH would be especially important in more
aggressive bladder tumors (T1-T2), since they presented the highest levels

of these metabolites.

Metabolic reprogramming of bladder tumors would be producing mainly
through the downregulation of metabolic genes. Transcription factors,
histone marks, and alternative splicing processes would be regulating

these metabolic genes.

Anaerobic metabolism could be essential in BC since tumor tissues
showed an overexpression of glycolytic genes (e.g. HK2 and SLC21A),
elevated levels of lactate and a downexpression of genes related to TCA

cycle and OXPHOS.

The regulation of metabolic pathways related with glycolysis, polyamines,
OXPHOS, AAs and TCA cycle would play essential roles in bladder
carcinogenesis since integrated metabolomics and transcriptomics studies
showed perturbation in metabolites and genes coding for enzymes that

take part of these pathways.
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Conclusions and future perspectives

Molecular alterations of tumor tissues are reflexed in the urinary
metabolome of the same patient, so the urine would be the ideal sample

to search non-invasive BC biomarkers based on metabolomics analysis.

Our 'H NMR-based urinary metabolic profile showed a better sensitivity
and specificity than standard urinary cytology in the detection of NMIBC
and MIBC (91%, 77% respectively). Therefore, its transference to clinical
practice would improve the management of BC by means of a non-

aggressive approach.

Urinary metabolomic profiles could be implemented for BC diagnosis but
also for the monitoring of NMIBC patients since our *H NMR- and UPLC-
MS-based metabolomic studies showed high values of sensitivity and
specificity in the detection of tumor recurrences in patients undergo a

surveillance period.

Several of the metabolic alterations found in BC urines through *H NMR
and UPLC-MS studies were common (e.g. disturbed Phe, Arg, and Pro
metabolism). The robustness obtained from both studies enhances the
use of metabolomic techniques in the field of biomarker discovery and

supports their transfer to clinical practice.

Urinary-based metabolomic analyses are highly dynamic and represent
tumor biology. Its transference into clinical routine could improve the
management of BC and consequently the quality of life of patients,

especially in those included in the high risk of progression group.
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Conclusions and future perspectives

In summary, these conclusions have opened new horizons of study in the
field of BC, so in the coming years we will focus on: 1) validating the results
obtained in larger patient cohorts; 2) studying in detail the effect that
confounding factors (i.e. treatments, drugs, inflammatory processes, hematuria)
can have on the urinary metabolome; 3) studying the role of certain metabolic
enzymes in tumor metabolism and the possibility of developing future target
therapies against them; 4) studying if the obtained metabolic profiles could be

applied for UTUC diagnosis.
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