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Introducción

A lo largo de esta tesis, todos los conjuntos, grupos, cuerpos y
módulos considerados se suponen finitos.

Consideremos un grupo G actuando sobre un conjunto no vacío Ω. Deci-
mos que la órbita de un w ∈ Ω es regular si CG(w) = {g ∈ G : wg = w} = 1;
en este caso, dicha órbita consta de |G| elementos. El estudio de órbitas regu-
lares de grupos lineales, es decir, órbitas regulares de acciones de subgrupos
de GL(V ), siendo V un espacio vectorial, es importante en el desarrollo de
muchas ramas de la teoría de grupos, incluendo los grupos resolubles, teo-
ría de representaciones y grupos de permutaciones. De hecho, la solución de
algunos problemas importantes en el área como el problema k(GV ) ([22])
depende de la existencia de este tipo de órbitas. De esta forma, el proble-
ma de la existencia de órbitas regulares es un área de investigación activa e
interesante de la teoría de grupos.

Espuelas ([7, Theorem 3.1]) demostró que si G es un grupo de orden
impar y V es un G-módulo fiel y completamente reducible de característica
impar, entonces G tiene una órbita regular en V ⊕ V . Dolfi y Jabara ([6,
Theorem 2]) extendieron el resultado de Espuelas al caso en el que los 2-
subgrupos de Sylow del producto semidirecto [V ]G de V y el grupo resoluble
G son abelianos, y Yang ([28]) demostró que el mismo resultado es cierto si 3
no divide el orden del grupo resoluble G. Wolf ([24, Theorem A]) demuestra
un resultado similar en el case de que G es superresoluble. En el caso de que
G sea nilpotente, dicho resultado se puede mejorar ([20]).

Dolfi ([5, Theorem 1.4]), utilizando técnicas de Seress ([23, Theorem 2.1]),
demostró que cualquier grupo resoluble G tiene una órbita regular en V ⊕
V ⊕ V y si (|V |, |G|) = 1 o G es de orden impar, entonces G también tiene
una órbita regular en V ⊕ V ([5, Theorems 1.1 , 1.5]).

Más recientemente, Yang ([29]) extiende algunos de estos resultados para
subgrupos H de un grupo resoluble G. Demuestra que si V es un G-módulo
fiel y completamente reducible (posiblemente de característica mixta) y si H
es nilpotente o 3 no divide el orden de H, entonces H tiene al menos tres
órbitas regulares en V ⊕ V . Si los 2-subgrupos de Sylow del producto semi-
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2 INTRODUCCIÓN

directo [V ]H son abelianos, entonces H tiene al menos dos órbitas regulares
en V ⊕ V .

El primer resultado importante de nuestro trabajo de tesis proporciona
condiciones suficientes más generales para la existencia de órbitas regulares.
La mayor parte de los resultados anteriores son consecuencias inmediatas del
mismo.

Teorema A. Consideremos un grupo resoluble G, y V un G-módulo fiel y
completamente reducible (posiblemente de característica mixta). Supongamos
que H es un subgrupo de G tal que el producto semidirecto [V ]H es S4-libre.
Entonces H tiene al menos dos órbitas regulares en V ⊕V . Además, si H es
Γ(23)-libre y SL(2, 3)-libre, entonces H tiene al menos tres órbitas regulares
en V ⊕ V .

Recordamos que si G y X son grupos, decimos que G es X-libre si X no
se puede obtener como un cociente de un subgrupo de G.

Desgraciadamente, la supersolubilidad de un subgrupo H no implica que
V H es S4-libre en general. Por lo tanto, el teorema A extiende todos los resul-
tados mencionados anteriormente, excepto el teorema de Wolf [24, Theorem
A]. En consecuencia, la pregunta de si el teorema de Wolf se verifica para ca-
da subgrupo superresoluble de un grupo resoluble completamente reducible
G de GL(V ) es pertinente e interesante.

El segundo resultado importante de nuestro trabajo responde afirmativa-
mente a dicha pregunta.

Teorema B. Consideremos un grupo resoluble G y V un G-módulo fiel y
completamente reducible (posiblemente de característica mixta). Supongamos
que H es un subgrupo superresoluble de G. Entonces H tiene al menos una
órbita regular en V ⊕ V .

La primera aplicación importante los resultados anteriores se sitúa en el
contexto de la conjetura de Gluck.

Consideremos un grupo G. Como es habitual, denotamos por Irr(G) el
conjunto de todos los caracteres irreducibles complejos de G y consideramos
b(G) = máx{χ(1) | χ ∈ Irr(G)}, el mayor grado de un carácter irreducible
de G.

Gluck [9] conjeturó que si G es resoluble, entonces

|G : F(G)| ≤ b(G)2,

siendo F(G) el subgrupo de Fitting de G.
La conjetura de Gluck aún permanece todavía sin resolver y ha sido objeto

de un muy exhaustivo estudio (ver [2, 6, 7, 24, 28]).
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Nuestro tercer resultado principal incluye casi todas las aportaciones co-
nocidas a la conjetura de Gluck como casos particulares, y podría ser muy
útil para resolver dicha conjetura en el futuro.

Teorema C. Consideremos un grupo resoluble que satisface una de las si-
guientes condiciones:

1. G es S4-libre;

2. G/F(G) es S4-libre y F(G) es de orden impar;

3. G/F(G) es S3-libre;

4. G/F(G) es superresoluble.

Entonces la conjetura de Gluck es cierta para G.

La segunda aplicación de nuestros teoremas sobre órbitas regulares se
localiza en el estudio de intersecciones de distinguidos subgrupos de grupos
resolubles.

Dolfi [5] demostró que si π es un conjunto de números primos, el mayor
grupo normal π-subgroup Oπ(G) de un grupo π-soluble G es la intersección
de tres G-conjugados de un π-subgrupo de Hall H de G.

Este resultado extiende los teoremas anteriores de Passman [21] (caso
|π| = 1) y Zenkov [30] (caso H es nilpotente). Por otra parte, como Mann
hizo notar en [17], los resultados de Passman implican que el subrupo de
Fitting de un grupo resoluble G es la intersección de tres G-conjugados de
un inyector nilpotente H de G.

Teniendo en cuenta los resultados anteriores, y dada la importancia de
los subgrupos de prefrattini y los normalizadores de sistemas en el estudio
estructural de los grupos resolubles, las siguientes preguntas son naturales e
interesantes:

Problema 1. [19, Kamornikov, Problem 17.55] ¿Existe una constante po-
sitiva k tal que el subgrupo Frattini Φ(G) de un grupo resoluble G es la
intersección de k G-conjugados de cualquier subgrupo prefrattini H de G?

Problema 2. [19, Shemetkov and Vasil’ev, Problem 17.39] ¿Existe una cons-
tante positiva k tal que el hipercentro de cualquier grupo resoluble G coincide
con la intersección de k G-conjugados de los normalizadores de de sistemas
de G? ¿Cuál es el número mínimo con esta propiedad?

Nuestro último resultado principal proporciona soluciones generales a los
problemas anteriores.
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Teorema D. Consideremos un grupo G y un subgrupo H de G. Supongamos
que se cumple una de las siguientes afirmaciones.

1. H es un subgrupo F-prefrattini de G para alguna formación saturada F;

2. Φ(G) = 1 y H es un normalizador de F de G para alguna formación
saturada F;

3. H es un inyector de F de G para alguna clase de Fitting F.

Entonces existen x, y, z ∈ G tal que H∩Hx∩Hy∩Hz = CoreG(H). Además,
si G es S4-libre o F está formada por grupos S3-libres, existen x, y ∈ G tales
que H ∩Hx ∩Hy = CoreG(H).

La tesis se organiza de la siguiente manera. En el capítulo 1, presentamos
notación, terminología y resultados preliminares. Las demostraciones de los
teoremas A y B fundamentan el capítulo 2. Nuestras aportaciones a la con-
jetura de Gluck se presentan en el capítulo 3, incluida la demostración del
teorema C y sus consecuencias. El estudio de las intersecciones de subgrupos
de prefrattini y normalizadores de sistemas (teorema D) se presenta en el
capítulo 4.



Introduction

Throughout this thesis, all groups, fields and modules to be
considered are finite, and we assume this without further comment.

Let G be a group and let Ω be a G-set. The element w in Ω is in a regular
orbit if CG(w) = {g ∈ G : wg = w} = 1, i. e., the orbit of w is as large as
possible and it has size |G|. The study of regular orbits of actions of linear
groups, that is, regular orbits of actions of subgroups of GL(V ) on a vector
space V plays an important role in many branches of group theory, including
the study of soluble groups, representation theory of finite groups and finite
permutation groups. In fact, the solution of some well-known problems such
as the so-called k(GV )-problem ([22]) depends on the existence of such orbits.
Consequently, the problem of the existence of regular orbits has attracted the
attention of several authors and it is an active and interesting research area
in group theory.

In order to understand and motivate what is to follow it is convenient to
use some previous results as a model.

Espuelas (see [7, Theorem 3.1]) proved that if G is a group of odd order
and V is a faithful and completely reducible G-module of odd characteristic,
then G has a regular orbit on V ⊕ V . Dolfi and Jabara ([6, Theorem 2])
extended Espuelas’ result to the case where the Sylow 2-subgroups of the
semidirect product [V ]G of V and the soluble group G are abelian, and Yang
([28]) proved that the same is true if 3 does not divide the order of the soluble
group G. A result of Wolf ([24, Theorem A]) shows that a similar result holds
if G is supersoluble (see also [20] for an improved result when G is nilpotent).

Dolfi ([5, Theorem 1.4]), reproving a result of Seress ([23, Theorem 2.1]),
proved that any soluble group G has a regular orbit on V ⊕ V ⊕ V and if
either (|V |, |G|) = 1 or G is of odd order, then G has also a regular orbit on
V ⊕ V ([5, Theorems 1.1, 1.5]).

More recently, Yang ([29]) extend some of these results to the case when
H is a subgroup of the soluble group G by proving that if V is a faithful
completely reducibleG-module (possibly of mixed characteristic) and if either
H is nilpotent or 3 does not divide the order of H, then H has at least three
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6 INTRODUCTION

regular orbits on V ⊕ V . If the Sylow 2-subgroups of the semidirect product
[V ]H are abelian, then H has at least two regular orbits on V ⊕ V .

We prove that almost all previous results are consequences of the following
surprising theorem.

Theorem A. Let G be a finite soluble group and V be a finite faithful com-
pletely reducible G-module (possibly of mixed characteristic). Suppose that
H is a subgroup of G such that the semidirect product V H is S4-free. Then
H has at least two regular orbits on V ⊕ V . Furthermore, if H is Γ(23)-free
and SL(2, 3)-free, then H has at least three regular orbits on V ⊕ V .

Recall that if G and X are groups, then G is said to be X-free if X cannot
be obtained as a quotient of a subgroup of G; Γ(23) denotes the semilinear
group of the Galois field of 23 elements.

The S4-free hypothesis in Theorem A is not superfluous (see [6, Exam-
ple 1]).

Note that the supersolubility of H does not imply that V H is S4-free
in general. Hence Theorem A covers all the aforementioned results except
the theorem of Wolf [24, Theorem A]. Thus the answer to the question of
whether or not Wolf’s theorem holds for every supersoluble subgroup of a
finite completely reducible soluble subgroup G of GL(V ), even if the super-
soluble subgroup is not completely reducible, is a natural next objective. Our
second main result gives a complete answer to this question.

Theorem B. Let G be a finite soluble group and V be a finite faithful com-
pletely reducible G-module (possibly of mixed characteristic). Suppose that
H is a supersoluble subgroup of G. Then H has at least one regular orbit on
V ⊕ V .

Our results have found an application to Gluck’s conjecture about large
character degrees. Let G be a finite group and let Irr(G) denote the set of
all irreducible complex characters of G and write b(G) = max{χ(1) | χ ∈
Irr(G)}, so that b(G) is the largest irreducible character degree of G.

Gluck [9] conjectured that if G is soluble, then

|G : F(G)| ≤ b(G)2,

where F(G) is the Fitting subgroup of G. Gluck’s conjecture is still open and
has been studied extensively (see [2, 6, 7, 24, 28]). Our third main result is
a significant step to the solution of Gluck’s conjecture subsuming the earlier
ones, and it could be very useful to solve Gluck’s conjecture in the future.

Theorem C. Let G be a soluble group satisfying one of the following condi-
tions:
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1. G is S4-free;

2. G/F(G) is S4-free and F(G) is of odd order;

3. G/F(G) is S3-free;

4. G/F(G) is supersoluble.

Then Gluck’s conjecture is true for G.

Another interesting problem where the regular orbits play an important
role is the study of intersections of canonical conjugate subgroups of finite
soluble groups.

Dolfi [5] proved that if π is a set of primes, the largest normal π-subgroup
Oπ(G) of a π-soluble group G is the intersection of three G-conjugates of
a given Hall π-subgroup H of G. This result extends earlier theorems of
Passman [21] (case |π| = 1) and Zenkov [30] (case H nilpotent). On the
other hand, as Mann pointed out in [17], the results of Passman imply that
the Fitting subgroup F(G) of a soluble group G is the intersection of three
G-conjugates of a nilpotent injector H of G.

Due to the above results and the important role played by the system nor-
malisers and prefrattini subgroups in the structural study of soluble groups,
the following questions turn out to be natural and interesting:

Problem 1. [19, Kamornikov, Problem 17.55] Does there exist an absolute
constant k such that the Frattini subgroup Φ(G) of a soluble group G is the
intersection of k G-conjugates of any prefrattini subgroup H of G?

Problem 2. [19, Shemetkov and Vasil’ev, Problem 17.39] Is there a positive
integer k such that the hypercentre of any finite soluble group coincides with
the intersection of k system normalisers of that group? What is the least
number with this property?

Our fourth main result provides general answers to the above two ques-
tions.

Theorem D. Let G be a finite soluble group and let H be a subgroup of G.
Assume that one of the following statements holds.

1. H is an F-prefrattini subgroup of G for some saturated formation F;

2. Φ(G) = 1 and H is a F-normaliser of G for some saturated forma-
tion F;

3. H is an F-injector of G for some Fitting class F.



8 INTRODUCTION

Then there exists x, y, z ∈ G such that H∩Hx∩Hy∩Hz = CoreG(H), the
largest normal subgroup of G contained in H. Furthermore, if G is S4-free or
F is composed of S3-free groups, there exists x, y ∈ G such that H∩Hx∩Hy =
CoreG(H).

Chapter 1 contains the basic material we need about finite groups and
their representations. In Chapter 2 we set the scence, giving the proofs of
Theorems A and B. Chapter 3 is about Gluck’s Conjecture and includes the
proof of Theorem C. The study of intersections of some canonical conjugate
subgroups and the proof of Theorem D are the main contents of Chapter 4.



Chapter 1

Preliminaries

In this chapter, we collect some definitions and basic results that are
needed to prove our main theorems. For further details, background and
undefined notation, we refer the reader to the books [1, 3, 11, 13, 12].

1.1 Actions and modules

We recall again that if a group G is acting on a non-empty set Ω, an
element w of Ω is in a regular orbit if CG(w) = {g ∈ G : wg = w} = 1, i.e.,
the orbit of w is as large as possible and it has size |G|.

Let G be a group and Ω be a transitive G-set. Recall a subset ∆ ⊆ Ω is
said to be a block if ∆g = ∆ or ∆g ∩∆ = ∅ holds for every g ∈ G. Clearly
every transitive G-set Ω has a block ∆ such that 1 ≤ |∆| < |Ω| if |Ω| ≥ 2. If
we take such block ∆ of the maximal size, then StabG(∆) is maximal in G.
(see [1, Definition 1.1.1 and Proposition 1.1.2.]).

Let F be a field and V be a vector space over a field F. Let G be a group
and φ a representation of G on V . Then we make V into a F G-module by
extending linearly to F G the following G-action: vg = vφ(g), where g ∈ G
and v ∈ V . In this case, we say that V is a G-module over F, or G-module
if F is understood.

We say that V is a G-module of mixed characteristic if V = V1⊕· · ·⊕Vn,
where for each i there exists a field Fi such that Vi is a G-module over Fi.

A G-module V is called irreducible if V 6= 0 and 0 and V are the only
G-submodules of V ; V is said completely reducible if it is the sum of some
irreducible modules. In this case, V is actually a direct sum of irreducible
modules.

9



10 CHAPTER 1. PRELIMINARIES

The following lemma is elementary and it will be used without further
reference.

Lemma 1. Suppose that a group G acts on a non-empty set Ω. Then:

1. If |Ω| − |
⋃

16=g∈G CΩ(g)| > k|G| for some non-negative integer k, then
G has at least k + 1 regular orbits on Ω. In particular, if k = 0, then
G has at least one regular orbit on Ω.

2. If G has k regular orbits on Ω, then a subgroup H of G has at least
|G : H|k regular orbits on Ω.

Let S be a permutation group on a set Ω. If K is a group, we denote by
K o S the wreath product of K with S with respect to the action of S on Ω,
that is,

K o S = {(f, σ) | f : Ω→ K, σ ∈ S}

with the product (f1, σ1)(f2, σ2) = (g, σ1σ2), where g(w) = f1(w)f2(wσ1) for
all w ∈ Ω.

If Y is a subgroup of K, we set Y \ = {(f, 1) ∈ K o S | f(w) ∈ Y for
all w ∈ Ω}. It is clear that Y \ is normalised by S and Y \S ∼= Y o S. In
particular, B = K\ is called the base group of K o S.

If W is a K-module, then we can consider G o S, where G = [W ]K is the
semidirect product of W with K. In this case, W \ is a K o S-module with
the action given by g(f,σ)(w) = g(wσ

−1
)f(wσ

−1
).

If H1 and H2 are permutation groups on the sets X1 and X2 respectively,
then H1 o H2 = {(f, σ) | f : X2 → H1;σ ∈ H2} is a permutation group on
X1 ×X2 with the action (i, j)(f,σ) = (if(j), jσ) (see [11, Satz I.15.3].)

We are interested here in regular orbits of a group G on completely re-
ducible G-modules V over finite fields. Note that if K is a subfield of the field
F and V is a completely reducible G-module over F, then V is a completely
reducible G-module over K. Therefore, in looking for regular orbits of G on
V , we can assume without loss of generality that F is a prime field.

An irreducible G-module V over F is called imprimitive if there is non-
trivial decomposition of V into a direct sum of subspaces V = V1 ⊕ · · · ⊕ Vn
(n > 1) such that the set {V1, . . . Vn} is permuted transitively by G; otherwise
it is called primitive. A linear group G ≤ GL(d, pk), p a prime, is said to be
primitive if the natural G-module is primitive.

Let G be a group and let V be a faithful G-module. Assume that V =
V1 ⊕ ...⊕ Vm(m ≥ 2) is a decomposition of V into a direct sum of subspaces



1.1. ACTIONS AND MODULES 11

{V1, ..., Vm} which are permuted transitively by G. Write L = NG(V1). Then
|G : L| = m. Let g1 = 1, ..., gm be a right transversal of L in G. If Ω =
{1, ...,m}, there exists a homomorphism σ : G→ SΩ such that Lgig = Lgiσ(g)
for any g ∈ G. Let K = L/CG(V1) and S = σ(G). Consider the map:

τ : G→ K o S; g 7→ (hg, σg),

where hg ∈ KΩ is defined by hg(i) = gigg
−1
iσ(g)

CG(V1) for all i ∈ Ω, and
σg = σ(g) for all g ∈ G. Write Ĝ = K o S. Then V Ω

1 = {f | f : Ω → V1 a
map} is a Ĝ-module. Moreover:

Lemma 2. 1. τ is a monomorphism.

2. The actions of G on V and τ(G) on V Ω
1 are equivalent.

3. Ĝ = K\τ(G).

4. If W1 = {f ∈ V Ω
1 | f(i) = 0,∀i 6= 1}, then Nτ(G)(W1)/Cτ(G)(W1) ∼= K.

Proof. 1. It is straightforward to verify that τ is a homomorphism. Let
g ∈ G such that τ(g) = (hg, σg) = 1. Then gi = giσ(g) . Since hg(i) = 1
for each i, it follows that gig = a(i, g)gi for some a(i, g) ∈ CG(V1).
Let v ∈ V and assume that v =

∑
iwigi, where wi ∈ V1, and vg =∑

iwi(gig) =
∑

iwia(i, g)gi =
∑

iwigi = v. This means that g ∈
CG(V ) = 1.

2. Let v =
∑

iwigi ∈ V , where wi ∈ V1. If we set ϕ : V −→ V Ω
1 , v 7−→ w,

where w(i) = wi for each i ∈ Ω, it follows that ϕ is an isomorphism
between the vector spaces V and V Ω

1 such that, for every g ∈ G,

ϕ(vg) = ϕ

(∑
i

wigig

)
= ϕ

(∑
i

wi(gigg
−1
iσ(g)

)giσ(g)

)
= w′,

where w′(i) = wiσ(g)−1 (giσ(g)−1gg−1
i ). Bearing in mind the natural action

of Ĝ on V Ω
1 , we have that ϕ(vg) = ϕ(v)τ(g) for all v ∈ V and g ∈ G.

3. Let (f, α) ∈ Ĝ, f ∈ K\, α ∈ S. Since S = σ(G), there exists g ∈ G such
that σg = α. Then (f, α) = (fh−1

g , 1)(hg, σg) ∈ K\τ(G), as desired.

4. This follows directly from 2.

Assume that V is a G-module as above. It is clear that if V = V1⊕· · ·⊕Vm
is a minimal decomposition of V into a direct sum of subspaces which are
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permuted transitively by G, it follows that L is a maximal subgroup of G
and so S is a non-trivial primitive permutation group on Ω.

If V is a faithful imprimitive G-module, then we may assume further that
V1 is an irreducible L-module. Therefore if we are interested in regular orbits
of the action of G on V , we may assume, by Lemma 2, that G is a subgroup
of a wreath product Ĝ = K o S, where K is a group, W is a faithful K-
module and S is a non-trivial primitive permutation group on a set Ω such
that Ĝ = K\G and V = WΩ. In this context, a result of Wolf [25] that
provides a formula to count the exact number of regular orbits Ĝ on WΩ is
extremely useful.

Let Πl(Ω, S) denote the set of all partitions of length l of Ω having the
property that the subgroup {s ∈ S | ∆s

i = ∆i for all i} of S is trivial. Let
k be the number of regular orbits of K on W . Then the number of regular
orbits of Ĝ on WΩ is

1

|S|
∑

2≤l≤m

P (k, l)|Πl(Ω, S)|,

where P (k, l) = k!/(k − l)! if k ≥ l and P (k, l) = 0 otherwise.

The following elementary result is also useful.

Lemma 3. Let G be a group and V be a faithful G-module such that V =
W1⊕ ...⊕Ws, where Wi is G-module, 1 ≤ i ≤ s. If G/CG(Wi) has ti regular
orbits on Wi ⊕Wi, then G has at least

∏s
i=1 ti regular orbits on V ⊕ V .

Let V be the Galois field GF(pn) for some prime p and integer n. Then V
is also a vector space over GF(p) of dimension n. Denote semi-linear group
of V ,

Γ(V )(or Γ(qn)) = {x→ axσ|a ∈ GF(pn)∗, σ ∈ Gal(GF(pn)/GF(p))}.

1.2 Soluble S4-free groups
Let X be a group and recall that a group G is said to be X-free if X

cannot be obtained as a quotient of a subgroup of G.
In this section, we show some useful characterizations of S3-free and S4-

free groups, and introduce some known notations, definitions and results
about classes of groups. Recall that a group G is said to be p-nilpotent, p a
prime, if G has a normal Hall p′-subgroup.

Lemma 4. Let G be a soluble group and let H be a Hall {2, 3}-subgroup of
G. Then G is S3-free if and only if H is 3-nilpotent.
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Proof. If H is 3-nilpotent, then every {2, 3}-subgroup of any section of G
is 3-nilpotent. Consequently, G is S3-free. Conversely, assume, arguing
by contradiction, that G is S3-free but H is not 3-nilpotent. Then H has
a non-3-nilpotent subgroup K of minimal order. Then every proper sub-
group of K is 3-nilpotent. Applying [11, Satz IV. 5.4], K has a normal
Sylow 3-subgroup P of exponent 3 and a Sylow 2-group Q of K is cyclic.
Moreover, Φ(K) = Φ(Q)×Φ(P ), P/Φ(P ) ∼= PΦ(K)/Φ(K) and, by [3, The-
orem VII.6.18], QΦ(K)/Φ(K) is a cyclic group of order 2 acting faithfully
and irreducibly on P/Φ(P ). It follows from [3, Theorem B.9.8] that P/Φ(P )
is cyclic of order 3. Therefore K/Φ(K) ∼= S3. This contradiction means that
H is 3-nilpotent, as desired.

Corollary 5. Let G be a soluble S3-free group such that O3′(G) = 1. Then
G is of odd order.

Proof. Let H be a Hall {2, 3}-subgroup of G and let X be a Hall 3′-subgroup
of G. Then H ∩ X is a Sylow 2-subgroup of G and G = HX by [3,
Lemma A.1.6]. Hence H ∩X EH by Lemma 4. Therefore

(H ∩X)G = (H ∩X)HX = (H ∩X)X ≤ X.

This implies that (H∩X)G is a 3′-subgroup of G and so H∩X ≤ (H∩X)G ≤
O3′(G) = 1. Thus G is of odd order.

Lemma 6. Let G be a soluble group with O2′(G) = 1. Then G is S3-free if
and only if G is S4-free.

Proof. If G is S3-free, then clearly G is S4-free. Now assume that the converse
is false and derive a contradiction. Let G be a counterexample of minimal
order. Then G is S4-free but not S3-free.

Denote X = O2(G). Then X = F(G) since O2′(G) = 1 and, by [3,
Theorem A.10.6], CG(X) ≤ X. Hence, for every subgroup S of G such that
X ≤ S, we have O2′(S) = 1 and so S satisfies the hypotheses of the lemma.
The minimal choice of G implies that S is S3-free provided that S is a proper
subgroup of G. In particular, by Lemma 4, G is a {2, 3}-group and every
proper subgroup of G/X is 3-nilpotent. If G/X were 3-nilpotent, then G
would be 3-nilpotent and so S3-free by Lemma 4. This would contradict our
assumption. Consequently, G/X is a minimal non-3-nilpotent group. Denote
with bars the images in G = G/X. Then, by [11, Satz IV. 5.4], G = PQ has a
normal Sylow 3-subgroup P of exponent 3 and a cyclic Sylow 2-subgroup Q.
Moreover, since Φ(Q) ≤ O2(G) = 1, we have Φ(G) = Φ(Q) × Φ(P ) = Φ(P )
and Q is of order 2. As in Lemma 4, P/Φ(P ) is of order 3. Thus P is of
order 3 and Φ(P ) = 1 since the exponent of P is 3. Therefore G/X ∼= S3.
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Note that O2′(G/Φ(G)) = 1 and so G/Φ(G) satisfies the hypotheses of
the lemma. Hence, if Φ(G) 6= 1, then G/Φ(G) is S3-free and so it is 3-
nilpotent by Lemma 4. Since Φ(G) is a 2-group, it follows that G is 3-
nilpotent and so it is S3-free by Lemma 4. This contradiction yields Φ(G) =
1. By [3, Theorem A.10.6], X = Soc(G) is an abelian subgroup of G and
there exists a subgroup M of G such that G = XM and X ∩ M = 1.
Assume that X1 and X2 are two different minimal normal subgroups of G.
Let Ti/Xi = O2′(G/Xi). Since G/Ti is 3-nilpotent by the minimal choice
of G, and T1 ∩ T2 ≤ O2′(G) = 1, it follows that G is 3-nilpotent. This
contradicts our assumption. Consequently, X can be regarded as a faithful
and irreducible M -module over the field of 2-elements. Recall that M ∼=
G/X ∼= S3, in this case, |X| = 4 and G ∼= S4. This final contradiction
completes the proof of the lemma.

Corollary 7. Let G be a soluble group and let V be a faithful G-module over
a field F of characteristic 2. Then the semidirect product V G is S4-free if
and only if G is S3-free.

Proof. Observe that O2′(V G) ≤ CG(V ) = 1. Thus if V G is S4-free, then G
is S3-free by Lemma 6. Assume that G is S3-free and there exist subgroups
A C B ≤ V G such that B/A ∼= S4. Then V B/V A ∼= B/A(B ∩ V ) has a
section isomorphic to S3 since A(B ∩ V )/A ≤ O2(B/A). This means that
G ∼= GV/V is not S3-free. This contradiction implies that V G is S4-free, as
desired.

Remark 8. The above lemma does not hold in general for non-soluble
groups. For example, G = A5 has a subgroup 〈(123)〉〈(12)(45)〉 ∼= S3. But G
is S4-free because clearly |S4| = 24 - |G| = 60.

Denote by lp(G) the p-length of a group G for some prime p.

Lemma 9. Let G be a soluble group and H is a Hall {2, 3}-subgroup of G.
Then G is S4-free if and only if l2(H) ≤ 1.

Proof. Firstly assume that G is S4-free. Then G/O2′(G) is S4-free, it follows
from Lemma 6 that G/O2′(G) is S3-free. By Lemma 4, the Hall {2, 3}-
subgroup H O2′(G)/O2′(G) of G/O2′(G) is 3-nilpotent. Observe that H ∩
O2′(G) ≤ O2′(H), thus H/O2′(H) is 3-nilpotent and clearly l2(H) ≤ 1.

Now assume that l2(H) ≤ 1. Assume that G has a section isomorphic to
S4. Then A/B ∼= S4 for some BCA ≤ G. Without loss of generality, we may
assume that A∩H is a Hall {2, 3}-subgroup of A. Then (A∩H)B = A since
|A : B| is {2, 3}-number. Then A/B = (A∩H)B/B ∼= (A∩H)/(B∩H) ∼= S4.
But l2(A ∩H/B ∩H) ≤ l2(H) ≤ 1, which is a contradiction. Thus we have
G is S4-free.
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Recall that a formation is a class of groups F which is closed under taking
epimorphic images and subdirect products. Therefore every group G has an
smallest normal subgroup with quotient in F. This subgroup is called the
F-residual of G and denoted by GF. We say that F is saturated if it is closed
under Frattini extensions.

A class of groups F is said to be a Fitting class if F is a class under taking
subnormal subgroups and normal products. Therefore every group G has a
largest normal F-subgroup called F-radical and denoted by GF.

Let Σ3 and Σ4 be the classes of soluble S3-free groups and S4-free groups
respectively. It is clear that they are closed under taking subgroups and
epimorphic images. In fact we have.

Lemma 10. Let Σ be the class of groups Σ3 or Σ4 and G a group. Then:

1. If G/O2′(G) ∈ Σ4, then G ∈ Σ4.

2. If G/O3′(G) ∈ Σ3, then G ∈ Σ3.

3. Suppose that L,K E G such that K ≤ Φ(G) and L/K ∈ Σ. Then
L ∈ Σ.

4. Σ is a saturated Fitting formation which is closed under taking sub-
groups.

Proof. 1. Assume that G/O2′(G) ∈ Σ4. Let H be a Hall {2, 3}-subgroup
of G. Then H O2′(G)/O2′(G) is a Hall {2, 3}-subgroup of G/O2′(G).
By Lemma 9, we have l2(H O2′(G)/O2′(G)) ≤ 1. Observe that O2′(G)∩
H ≤ O2′(H) and so l2(H/O2′(H)) ≤ 1. Thus l2(H) ≤ 1, which implies
that G ∈ Σ4 by Lemma 9.

2. Let H be a Hall {2, 3}-subgroup of G. Then H O3′(G)/O3′(G) is
a Hall {2, 3}-subgroup of G/O3′(G). Then H O3′(G)/O3′(G)) is 3-
nilpotent by Lemma 4, and so H/O3′(H)) is 3-nilpotent. Thus H is
3-nilpotent, which implies that G ∈ Σ3 by Lemma 4.

3. Suppose that L,K EG such that K ≤ Φ(G) and L/K ∈ Σ but L /∈ Σ3

(resp. Σ4). Choose such counterexample (G,L,K) such that |G|+ |L|+
|K| is minimal. Let H be a Hall {2, 3}-subgroup of L.

Write X = O3′(L) (resp. O2′(L)) and clearly X E G. Denote with
bars the images in G = G/X. We have that (G,L,K) satisfies the
hypotheses of the lemma. Hence, if X 6= 1, it follows that L ∈ Σ3
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(resp. Σ4). By Statement 1 (resp. Statement 2), it follows that L ∈ Σ3

(resp. Σ4), which is a contradiction. Consequently, X = 1.

Since K is nilpotent, we have that K is a 3-group (resp. 2-group). Let
T/K = O3′(L/K) (resp. O2′(L/K)). Then TEG, and T = KT1, where
T1 is a Hall 3′-subgroup (resp. Hall 2′-subgroup) of T . By Frattini
argument, we have that G = NG(T1)T = NG(T1)K = NG(T1) since
K ≤ Φ(G). Thus T1 E G and so T1 ≤ X = 1. Hence T = K. By
Corollary 5 (resp. Lemma 6), L/K is of odd order (resp. L/K ∈ Σ3).

If L/K is of odd order and K is 3-group, we have that L is of odd
order and so it is S3-free. Assume that L/K ∈ Σ3 and K is a 2-group.
Let H be the Hall {2, 3}-subgroup of L. Then H/K is the Hall {2, 3}-
subgroup of L/K. It follows from Lemma 4 that H/K is 3-nilpotent.
As K is a 2-group, H is 3-nilpotent. By Lemma 4, L ∈ Σ3 ⊆ Σ4. This
final contradiction proves Statement 3.

4. We prove first that Σ is closed under taking normal products. Assume
that G = N1N2 is the product of its normal subgroups N1 and N2.
Suppose that N1 and N2 belong to Σ. Let H be a Hall {2, 3}-subgroup
of N . Then Hi = Ni ∩H is a Hall {2, 3}-subgroup of Ni, i = 1, 2, and
H = H1H2 is the normal product of H1 and H2. Assume that Σ = Σ4.
By Lemma 9, l2(Hi) ≤ 1, i = 1, 2. Applying [11, Hilfssatz VI.6.4(c)], it
follows that l2(H) ≤ max{l2(H1), l2(H2)} ≤ 1. Therefore G ∈ Σ4.

If Σ = Σ3, then H1 and H2 are 3-nilpotent by Lemma 4. Then H is
3-nilpotent too, and so G is a Σ3-group by Lemma 4.

This proves that Σ is a subgroup closed Fitting class. In particular, Σ
is closed under direct products. Consequently, Σ is a formation as well.
Applying Statement 3, it follows that Σ is saturated.

1.3 Normalisers, prefrattini subgroups and in-
jectors

Let F be a formation. A maximal subgroup M of a group G containing
GF is called F-normal in G; otherwise, M is said to be F-abnormal.

Assume that F is saturated. Then, by a well-known theorem of Gaschütz-
Lubeseder-Schmid [3, Theorem IV.4.6], there exists a collection of formations
F(p) ⊆ F, one for each prime p, such that F coincides with the class of all
groups G such that if H/K is a chief factor of G, then G/CG(H/K) ∈ F(p)
for all primes p dividing |H/K|. In this case, we say that H/K is F-central
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in G and F is locally defined by the F(p). H/K is called F-eccentric if it is
not F-central.

Note that a chief factor H/K supplemented by a maximal subgroup M
is F-central in G if and only if M is F-normal in G.

Every group G has a largest normal subgroup such that every chief factor
of G below it is F-central in G. This subgroup is called the F-hypercentre of
G and it is denoted by ZF(G) (see [3, Section IV.6].)

Every soluble group G has a conjugacy class of subgroups, called F-
injectors, which are defined to be those subgroups I of G such that if S
is a subnormal subgroup of G, then I ∩ S is F-maximal subgroup of S ([3,
Theorem IX.1.4]). Note that, in this case, CoreG(I) = GF.

In the following, we shall give a review of the definitions of F-normaliser
and F-prefrattini subgroup of a soluble group and their cores.

Let Σ be a Hall system of the soluble group G (see [3, Chapter I, Sec-
tion 1.4]). Let Sp be the p-complement of G contained in Σ, and denote by
W p(G) the intersection of all F-abnormal maximal subgroups of G contain-
ing Sp (W p(G) = G, if the set of all F-abnormal maximal subgroups of G
containing Sp is empty). Then W (G,Σ,F) =

⋂
p∈π(G)W

p(G) is called the
F-prefrattini subgroup of G associated to Σ. The prefrattini subgroups of G
form a characteristic class of G-conjugate subgroups (see [1, Section 4.3] for
an exhaustive study of prefrattini subgroups).

The set all F-prefrattini subgroups of a group G is denoted by PrefF(G).
We recall some known properties about F-prefrattini subgroups. Recall that
a subgroup X of a group G covers the section A/B of G if A ≤ XB and
avoids A/B if X ∩ A ≤ B.

Lemma 11 ([1, 10]). Let G be a soluble group and N a normal subgroup
of G.

1. PrefF(G) is a G-conjugacy class of subgroups of G.

2. PrefF(G/N) = {HN/N : H ∈ PrefF(G)}.

3. If H ∈ PrefF(G), then H avoids every complemented F-eccentric chief
factor of G and covers the rest.

According to [1, Proposition 4.3.17], the intersection LF(G) of all F-
abnormal maximal subgroups of a soluble group G is the core of every F-
prefrattini subgroup of G and LF(G)/Φ(G) = ZF(G/Φ(G)) for every group
G.

The elementary properties of the subgroup LF(G) are collected in the
following.
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Lemma 12. If N is a normal subgroup of a group G, then the following
conditions hold:

1. LF(G)N/N ≤ LF(G/N).

2. If N ≤ LF(G), then LF(G/N) = LF(G)/N .

3. LF(G/LF(G)) = 1.

Let F(p) be a particular family of formations locally defining F and such
that F(p) ⊆ F for all primes p. Let π = {p : F(p) 6= ∅}. For an arbitrary
soluble group G and a Hall system Σ of G, choose for any prime p, the p-
complement Kp = Sp ∩ GF(p) of the F(p)-residual GF(p) of G, where Sp is
the p-complement of G in Σ. Then DF(Σ) = Gπ ∩ (

⋂
p∈π NG(Kp)), where Gπ

is the Hall π-subgroup of G in Σ, is the F-normaliser of G associated to Σ.
The F-normalisers of G are a characteristic class of G-conjugate subgroups.
There were introduced by Carter and Hawkes and coincide with the classical
system normalisers of Hall when F is the formation of all nilpotent groups
(see [3, Sections V.2 and V.3] for details).

According to [1, Proposition 4.2.6], if D is an F-normaliser of G, then
CoreG(D) = ZF(G).



Chapter 2

Main theorems

2.1 Primitive case
In attaining our objective, which is to prove Theorem A and Theorem B

for primitive modules, the following lemmas are crucial. The first one con-
cerns primitive soluble linear groups over a field of characteristic two.

Lemma 13. Let G be a soluble group and V be a faithful primitive G-module
over a field F of characteristic 2. Assume that V G is S4-free, then G has at
least three regular orbits on V ⊕ V unless |V | = 23 and G = Γ(V ). In this
case, G has exactly two regular orbits on V ⊕ V .

Proof. Let A be an abelian normal subgroup of G. Since V is a primitive
G-module and A is normal in G, then VA is a faithful and homogeneous A-
module by Clifford’s Theorem (see [18, Theorem 0.1]). By [18, Lemma 0.5],
A is cyclic. Then [18, Corollary 1.10] applies. Let F = F(G) be the Fitting
subgroup of G. Then F is of odd order since V is faithful for F , and it is a
central product F = ET of two normal subgroups E and T of G such that
Z = E ∩ T = Soc(Z(F )) and 1 6= T = CG(E) is cyclic. Hence Z = Z(E).
Moreover, the Sylow subgroups of E are cyclic of prime order or extraspecial
of prime exponent. Set e2 = |F/Z|. Then 2 does not divide e.

Applying [29, Theorem 2.3], we have that G has at least four regular
orbits on V ⊕ V unless e = 1, 3, 9.

Assume that e = 1. Then F is abelian. By [18, Corollary 2.3], G is
isomorphic to a subgroup of Γ(V ) = Γ(2n). If n > 3 and 0 6= v ∈ V , then
CG(v) has at least three regular orbits on V by [24, Proposition 9]. Hence G
has at least three regular orbits on V ⊕ V . If either n = 1 or G is of prime
order, then G has at least three regular orbits on V ⊕V . Suppose that 1 6= G
is not of prime order. Then n = 3 since G is S3-free and Γ(22) ∼= S3. In this
case, G ∼= Γ(23) and so G has just two regular orbits on V ⊕ V .

19
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Suppose that either e = 3 or e = 9. Then every Hall 3′-subgroup of E is
contained in Z. Therefore E/Z = LZ/Z, where L is the Sylow 3-subgroup
of E. Note that L is extra-especial since F is non-abelian.

Let A = CG(T ) ⊆ CG(Z). By [18, Corollary 1.10], E/Z is a completely
reducible G/F -module and a faithful A/F -module over GF(3), the finite field
of 3-elements. Hence O3(A/F ) = 1. Let Q be a Sylow 2-subgroup of A. By
Lemmas 4 and 6, every Hall {2, 3}-subgroup ofG is 3-nilpotent. In particular,
QE/Z = E/Z o QZ/Z is nilpotent. Since QF/F ≤ A/F acts faithfully on
E/Z, we have that Q ≤ F . Consequently, Q = 1 and A is a 2′-group.
Furthermore, A preserves the non-degenerated symplectic form with respect
to which E/Z is a symplectic space over GF(3) (see [11, Satz III.13.7]).
Therefore A/F is either isomorphic to a completely reducible subgroup of
Sp(2, 3) ∼= SL(2, 3) (e = 3) or a subgroup of Sp(4, 3) (e = 9). Applying [5,
Lemma 3.2], we conclude that |A/F | divides 3 or 5. In particular, |A : F | ≤ 5.

Let W be an irreducible submodule of VT . Then VT = sW for some
positive integer s and |G : A| divides dimW by [11, Hilfssatz II.3.11]. Since
W is faithful for T and T is cyclic, we have that |W | = 2a, where a is the
smallest positive integer such that |T | | 2a − 1 (see [18, Example 2.7]).

Applying [18, Corollary 2.6], we have that dimV is divisible by e ·dimW .
Therefore, |V | = 2eab for some b > 0.

Suppose that a ≤ 3. Then a = 2 since 3 | |T | and T is of order 3. If
|G/A| = 2, there exists an element g ∈ G \ A of order 2 such that G = A〈g〉
since A is 2′-group. Then T 〈g〉 ∼= S3, contrary to assumption. Hence G = A
is a 2′-group. By [4, Theorem 2.2], we have G has a regular orbit on V .
Hence G has at least |V | ≥ |W | = 4 regular orbits on V ⊕ V .

Assume that a ≥ 4. We next prove that F has at least a regular orbit on
V . It is enough to prove that

|V \
⋃
S∈P

CV (S)| > 0,

where P be the set of all subgroups of prime order of F .
Let S ∈ P . Note that T acts fixed point freely on V so that CV (S) = {0}

if S ≤ T . If S is not contained in T , then |CV (S)| ≤ 2
1
2
aeb by [27, Lemma 2.4].

Note that every subgroup in P not contained in T has order 3 and the number
of such subgroups is 12 if e = 3 and 120 if e = 9. Since 23ab − 12 · 2 3

2
ab > 0

and 29ab − 120 · 2 9
2
ab > 0 if a ≥ 4 and b ≥ 1, it follows that F has a regular

orbit on V . Hence CG(v) ∩ F = 1 for some v ∈ V .
Let C = CG(v). We may assume that C 6= 1. Note that |C| ≤ |G/F | =

|G : A||A : F | ≤ 5a. Since |(C ∩ A)| = |(C ∩ A)F/F | ≤ |A/F | and |A/F | is
of prime order, we can apply [27, Lemma 2.4] to conclude that there exists
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at most one subgroup S contained in C ∩ A such that |CV (S)| ≤ 2
3
4
aeb. For

a subgroup S ⊆ C \ A, we have |CV (S)| ≤ 2
1
2
aeb.

Since a ≥ 4, eb ≥ 3, we have that 2aeb−1 > (5a − 1)2
1
2
aeb, 2aeb−2 > 2

3
4
aeb

and 2aeb−2 > 10a. Therefore

|V | − (|C| − 1)2
1
2
aeb − 2

3
4
aeb > 2|C|,

and then
|V \

⋃
16=g∈C

CV (g)| > 2|C|.

Consequently, C = CG(v) has at least three regular orbits on V . This
completes the proof of the lemma.

Lemma 14. Let G be a soluble primitive group of GL(d, p), p a prime num-
ber, and let V be the natural G-module. Assume that H is a subgroup of G
such that the semidirect product V H is S4-free. Then H has at least three
regular orbits on V ⊕ V unless one of the following two cases occurs:

1. d = 2, p = 3 and H = SL(2, 3).

2. d = 3, p = 2 and H = Γ(V ) ∼= Γ(23).

In both exceptional cases, H has just two regular orbits on V ⊕ V .

Proof. Assume that p is odd. Then [5, Theorem 3.4] tells us that H ≤ G has
at least p ≥ 3 regular orbits on V ⊕ V unless one the following cases occurs:

1. G = GL(2, 3). Then G has just one regular orbit on V ⊕ V . Observe
that G/Z(G) ∼= PGL(2, 3) ∼= S4, thus H is a proper subgroup of G
since H is S4-free. If |G : H| ≥ 3, then H has at least three regular
orbits on V ⊕ V . Otherwise, H = SL(2, 3) and the exceptional case 1
appears.

2. G = SL(2, 3). Then G has just two regular orbits on V ⊕V . Hence if H
is proper in G, H has at least four regular orbits on V ⊕ V . Otherwise
H = G = SL(2, 3) and again the exceptional case 1 emerges.

3. G = (Q8 ∗ Q8)K ≤ GL(4, 3), where K is isomorphic to a subgroup of
index 1, 2 or 4 of O+(4, 2). If O2′(H) = 1, then H is 3-nilpotent by
Lemmas 4 and 6. Using GAP, one can check that H has at least three
regular orbits on V ⊕ V .
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If O2′(H) 6= 1, then O2′(H) is isomorphic to C3 or C3 × C3. Then H ≤
NG(O2′(H)). One checks by GAP that H has at least three regular orbits on
V ⊕ V .

Suppose that p = 2. If H = G, by Lemma 13, then H has at least
three regular orbits on V ⊕ V unless H = G = Γ(23) ≤ GL(3, 2). In this
exceptional case, H has just two regular orbits on V ⊕ V .

Thus we can assume that H is a proper subgroup of G. By [5, Theo-
rem 3.4], H has at least four regular orbits on V ⊕ V provided that G is not
isomorphic to GL(2, 2), 31+2.SL(2, 3) or 31+2.GL(2, 3).

If H is a proper subgroup of G = GL(2, 2), then H is of prime order
and there exists v ∈ V such that CH(v) = 1. Hence H has at least |V | = 4
regular orbits on V ⊕ V .

Suppose that G is isomorphic to 31+2.SL(2, 3) or 31+2.GL(2, 3) (as a sub-
group of GL(6, 2)). By Corollary 7, H is S3-free. In this case, one checks by
GAP that H has at least three regular orbits on V ⊕ V .

Lemma 15. Let G be a soluble primitive group of GL(d, p), p an odd prime,
and let V be the natural G-module. If H is a subgroup of G of odd order,
then H has at least five regular orbits on V ⊕ V .

Proof. If G is of odd order, then G has at least five regular orbits on V ⊕ V
by [6, Proposition 3 (a)] and so does H. Thus we may assume that 2 divides
|G|. Then |G : H| ≥ 2. By [5, Theorem 3.4] that G has at least p ≥ 3 regular
orbits on V ⊕ V , and so H has at least six regular orbits on V ⊕ V , unless
G is isomorphic to GL(2, 3), SL(2, 3) or (Q8 ∗Q8)K ≤ GL(4, 3), where K is
isomorphic to a subgroup of index 1, 2 or 4 of O+(4, 2).

Assume that G = GL(2, 3) or SL(2, 3). Then G has at least one regular
orbit on V ⊕ V and |G : H| ≥ 8. It follows that H has at least eight regular
orbits on V ⊕ V .

Assume that G = (Q8 ∗ Q8)K ≤ GL(4, 3), where K is isomorphic to a
subgroup of index 1, 2 or 4 of O+(4, 2). Then H is isomorphic to a subgroup
of C3 × C3. Using GAP, one can check that H has a regular orbit on V and
so H has at least |V | = 34 regular orbits on V ⊕ V .

The proof of the lemma is complete.

Now we deal with the supersoluble primitive cases.

Lemma 16. Let G be a supersoluble group and V be a faithful primitive G-
module over GF(2). Then G has at least four regular orbits on V ⊕V unless
G = Γ(V ) and |V | = 2n, 2 ≤ n ≤ 4, and in these cases, G has exactly n− 1
regular orbits on V ⊕ V .



2.1. PRIMITIVE CASE 23

Proof. Let A be the maximal abelian normal subgroup of G and clearly
A ≤ CG(A) EG. If A < CG(A), then we can take T/A is a chief factor of G
such that T ⊆ CG(A). Since G is supersoluble, T/A is cyclic and T = 〈A, x〉
for some x ∈ CG(A). Then T is an abelian normal subgroup of G, contrary
to the choice of A. Thus A = CG(A). Since V is a primitive G-module, VA
is homogeneous. By [18, Lemma 2.2], VA is irreducible. It follows from [18,
Theorem 2.1] that G ≤ Γ(V ). Write |V | = 2n for some integer n ≥ 1.

Firstly we assume that G = Γ(V ). Equivalently, if suffices to consider the
regular orbits of Γ(2n) acting on the additional group of the field GF(2n).
Take the field automorphism σ : GF(2n) → GF(2n);u 7→ u2, and the Galois
group Gal(GF(2n)/GF(2)) = 〈σ〉 is of order n. Take x = 1, the identity
element of the field GF(2n) and clearly CGF(2n)(x) = 〈σ〉, denote by C.

For each prime p dividing n, 〈σ
n
p 〉 is the unique subgroup of C with order

p since C is cyclic. Then we have CGF(2n)(σ
n
p ) = {u ∈ GF(2n)|u2

n
p

= u} is a
subfield of GF(2n), which is isomorphic to GF(2

n
p ). Thus |CGF(2n)(σ

n
p )| = 2

n
p .

In order to prove C has at least four regular orbits on GF(2n) when n ≥ 5,
it suffices to show that

2n −
∑
p|n

2
n
p > 3n

holds for n ≥ 5. Observe that
∑

p|n 2
n
p ≤ log2n · 2

n
2 . It is not difficult to

check that 2n −
∑

p|n 2
n
p > 2n − log2n · 2

n
2 > 3n for n ≥ 8 and it is easy to

find the inequality holds for n = 5, 6, 7.
Thus we have proved that G ≤ Γ(V ) has at least four regular orbits on

V ⊕ V when n ≥ 5. Now it suffice to discuss the following cases:
n = 1. |V | = 2 and G = 1. Then G has exactly four regular orbit on

V ⊕ V .
n = 2. |V | = 22 and G ≤ Γ(V ) ∼= S3. If G < Γ(V ), then G has a

regular orbit on V . Then G has at least |V | = 4 regular orbits on V ⊕ V . If
G = Γ(V ), in this case, G has exactly one regular orbit on V ⊕ V .

n = 3. |V | = 23 and G ≤ Γ(V ) ∼= [C7]C3. If G = Γ(V ), then G has
exactly two regular orbits on V ⊕ V . Thus, if G < Γ(V ), G has at least four
regular orbits on V ⊕ V .

n = 4. |V | = 24 and G ≤ Γ(V ) ∼= [C15]C4. If G = Γ(V ), then G has
exactly three regular orbits on V ⊕ V . Thus, if G < Γ(V ), G has at least six
regular orbits on V ⊕ V .

Thus the lemma is proved completely.

Lemma 17. Let G be a soluble primitive group of GL(d, 2), and let V be the
natural G-module. Assume that H is a supersoluble subgroup of G. Then
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H has at least three regular orbits on V ⊕ V unless one of the following two
cases occurs:

(a) d = 2 and H = Γ(V ) ∼= S3, has just one regular orbit on V ⊕ V ;
(b) d = 3 and H = Γ(V ) ∼= Γ(23), has just two regular orbits on V ⊕ V .
Furthermore if H is of odd order, then H has four regular orbits on V ⊕V

unless the case (b) occurs.

Proof. IfH = G, then G is a supersoluble. It follows from Lemma 16 that the
lemma is true. Now we may assume that H < G. Thus we can assume that
H is a proper subgroup of G. By [5, Theorem 3.4], H has at least four regular
orbits on V ⊕V provided that G is not isomorphic to GL(2, 2), 31+2. SL(2, 3)
or 31+2.GL(2, 3).

If H is a proper subgroup of G = GL(2, 2) ∼= S3, then H is of prime order
and there exists v ∈ V such that CH(v) = 1. Hence H has at least |V | = 4
regular orbits on V ⊕ V .

Suppose that G is isomorphic to 31+2. SL(2, 3) or 31+2.GL(2, 3) (as a
subgroup of GL(6, 2)). In this case, one checks by GAP that H has at least
three(four if |H| is odd) regular orbits on V ⊕ V .

2.2 Regular orbits on power sets

The main goal of this section is to establish some results on regular orbits
of permutation groups which play a crucial part in the proof of Theorem A.

Let S be a permutation group on a set Ω and consider the induced action
of S on the power set P(Ω) of Ω. Following [18, Chapter II, Section 5], we
say that a regular orbit of S on P(Ω) generated by ∆ ⊆ Ω is strong if the
setwise stabilizer StabS(∆) is trivial, and |∆| 6= |Ω|

2
.

It is clear that a subset ∆ of Ω generates a strong regular orbit of S on
P(Ω) if and only if so does Ω−∆. Then we conclude that the number of the
strong regular orbits of S on P(Ω) is even.

Gluck (see [18, Theorem 5.6]) proved that a primitive soluble permutation
group S acting on a set Ω has an strong regular orbit on P(Ω) if |Ω| > 9.
Zhang [31] proves that in this case S has at least 8 regular orbits on P(Ω).

As a consequence, if S is a group of odd order, then S has at least two
strong regular orbits on P(Ω). We can push these ideas a bit further to show
the following:

Lemma 18. Let S be a primitive soluble permutation group of odd order on
a set Ω. Then S has at least 18 strong regular orbits on P(Ω), unless one of
the following cases occurs:
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1. |Ω| = 3 and S ∼= A3;

2. |Ω| = 5 and S ∼= C5;

3. |Ω| = 7 and S ∼= Γ(23).

In the exceptional cases 1 and 3, S has exactly two strong regular orbits on
P(Ω) and, in case 2, S has exactly 6 strong regular orbits on P(Ω).

Proof. Assume that S is a primitive soluble permutation group of odd order
on Ω such that (S,Ω) 6= (A3, 3), (C5, 5), (Γ(23), 7). We shall prove that S has
at least 18 strong regular orbits on P(Ω).

Applying [11, Satz II.3.2], we conclude that S has a unique minimal
normal subgroup, V say; V = CS(V ) and V is transitive and regular on Ω.
Hence |V | = |Ω| = pm for a prime p and a positive integer m. Moreover, if H
is the stabilizer of an element of Ω, we have that S = NH and N ∩H = 1.
Furthermore, |S| ≤ 1

2
|Ω|13/4 by [18, Corollary 3.6]. Let n(g) be the number

of cycles of g ∈ S on Ω. Then n(g) ≤ 3|Ω|/4 by [18, Lemma 5.1] and g
stabilizes exactly 2n(g) subsets of Ω.

Next consider X = P(Ω). We prove that

2|Ω| − 1

2
|Ω|13/423|Ω|/4 ≥ 18 · 1

2
|Ω|13/4 ≥ 18|S|.

It is rather easy to see that the inequality holds if |Ω| ≥ 81. In this case,
S has at least 18 regular orbits on X. Hence we assume in the sequel that
|Ω| ≤ 80.

Suppose that |Ω| = p. Then S is isomorphic to a subgroup of [Cp]Cp−1.
If S is cyclic of order p, then p ≥ 7 because (S, |Ω|) 6= (A3, 3) and (C5, 5).
In this case, every non-empty proper subset of Ω generates a strong regular
orbit on P(Ω). Thus S has exactly (2p − 2)/p ≥ 18 strong regular orbits on
P(Ω). Assume that 1 6= |H| | p−1. Since |S| is odd, we have p ≥ 7. If p = 7,
then |H| = 3 and so G ∼= [C7]C3

∼= Γ(23), contrary to assumption. Therefore
p ≥ 11. Let q be a prime different from p and let T be a subgroup of S of order
q. Then T is contained in some conjugate of H, and T fixes exactly 21+(p−1)/q

subsets of Ω. Since S contains exactly p subgroups of order q, it follows that
the number of non-regular orbits of S is at most p

∑
q|(p−1) 21+(p−1)/q. Then

we have
2p − p

∑
3≤q|(p−1)

21+(p−1)/q > 17p(p− 1) ≥ 17|S|.

Therefore S has at least 18 regular orbits on X.
Suppose that |Ω| = p2. Then p = 5 or 7 since |S| is odd. Assume that

p = 5. Since V is a faithful H-module, H is isomorphic to a subgroup of
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GL(2, 5). Hence |H| ≤ 15 and so |S| ≤ 53 · 3. In this case, n(g) ≤ 15 for any
g ∈ S − {1}. Observe that

|X| − 215 · 53 · 3 = 225 − (215 · 53 · 3) ≥ 18 · 53 · 3 ≥ 18|S|.

Now we assume that p = 7. Then |S| ≤ 32 ·73, n(g) ≤ 28 for any g ∈ S−{1},
and

|X| − 228 · 32 · 73 = 249 − (228 · 32 · 73) ≥ 18 · 32 · 73 ≥ 18|S|.

In both cases, S has at least 18 regular orbits on X.
Suppose that |Ω| = p3 ≤ 80. Then p = 3 and H is isomorphic to an irre-

ducible subgroup of GL(3, 3). By [18, Corollary 2.13], H can be considered
as a subgroup of Γ(33) or C2 o S3. Since H is of order odd and irreducible,
the later case is impossible. Thus H is a subgroup of Γ(33) and |H| ≤ 3 · 13.
Then |S| ≤ 34 · 13. Let g ∈ S − {1}. Assume that g has not fixed points on
Ω. Then g is either a product of a 13-cycle and some 3-cycles or a product
of 3-cycles. Hence n(g) ≤ 27/3 = 9. Suppose that g has at least one fixed
point. Then g belongs to a conjugate of H. Since the action of H on Ω is
equivalent to the action of H on V by conjugation, we have that the num-
ber of fixed points of g is just |CV (g)|. If order of g is 3, then |CV (g)| and
n(g) ≤ (27−3)/3+3 = 11. If order of g is 13, then n(g) ≤ (27−1)/13+1 = 3.
Consequently, n(g) ≤ 11 for any g ∈ S − {1}. Note that

|X| − 211 · 34 · 13 = 227 − (211 · 34 · 13) ≥ 18 · 34 · 13 ≥ 18|S|.

Hence S has at least 18 regular orbits on X.
If |Ω| = 3 and S ∼= A3, then S has exactly two regular orbits on X. If

|Ω| = 7 and S ∼= Γ(23), each element of order 7 in S is a 7-cycle and each
element of order 3 in S is the product of two disjoint 3-cycles. Thus every two-
element subset and every five-element subset of Ω generate a strong regular
orbit on X and S has exactly two strong regular orbits on X. If |Ω| = 5 and
S ∼= C5, then S has exactly (25 − 2)/5 = 6 strong regular orbits on X. This
completes the proof of the lemma.

Lemma 19. Let S be a primitive soluble permutation group on a set Ω.
Assume that S∗ ≤ S and S∗ acts non-transitively on Ω. Then one of the
following occurs:

1. S∗ has at least four strong regular orbits on P(Ω); or

2. for each S∗-orbit ∆ on Ω with |∆| > 4, we have O2′(S∗) acts transi-
tively on ∆ and |Π3(∆, S∗)| ≥ |S∗∆|, where S∗∆ is the permutation group
induced by the action of S∗ on ∆.
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Proof. It is clear that we may assume that |Ω| ≥ 5 and 1 6= S∗ is a proper
subgroup of S.

Since S is a primitive soluble permutation group on Ω, we can apply [11,
Satz II.3.2] to conclude that S has a unique minimal normal subgroup, V
say; V = CS(V ) and V is transitive and regular on Ω. Moreover, if H is
the stabilizer of an element α ∈ Ω, we have that S = V H and V ∩ H = 1.
Moreover, the action of H on Ω is equivalent to the action of H on M by
conjugation. In particular, if β ∈ Ω, we have that CH(β) := StabH β =
CH(v) for some v ∈ V .

Assume that |V | = |Ω| is a prime number, p say. Then V is a Sylow
p-subgroup of S and so S∗ is a p′-group. Without loss of generality, we may
assume that S∗ is contained in H. Let β ∈ Ω \ {α}. Then CH(β) = CH(v)
for some 1 6= v ∈ V . Therefore, StabH β = 1. Then if ∆1 = {β} and
∆2 = {α, β}, it follows that StabS∗ ∆i = 1, i = 1, 2. Then ∆1, ∆2, Ω \ ∆1

and Ω\∆2 are in different regular orbits of S∗ on P(Ω). Thus S∗ has at least
four strong regular orbits on P(Ω).

Consequently, we may suppose that |Ω| is not a prime. If S has a strong
regular orbit on P(Ω), then S∗ has at least four strong regular orbits on P(Ω)
since |S : S∗| ≥ 2. Then we may assume that S has no strong regular orbit
on P(Ω).

Therefore we only have to consider the exceptional cases (5) and (6) of [18,
Theorem 5.6].

1. Suppose that (S, |Ω|) = (AΓ(23), 8).

Since S∗ is not transitive on Ω, the length of every orbit of S∗ on Ω is
at most 7.

Assume that S∗ has an orbit ∆ on Ω such that |∆| = 7. Without
loss of generality, we may suppose that α is fixed by all elements of
S∗ and so S∗ is contained in H. By Lemma 18, H ∼= Γ(23) has a
strong regular orbit on P(∆). Let ∆1 is a two-element subset of ∆.
Then StabS∗(∆1) ≤ StabH(∆1) = 1. Denote ∆2 = {α} ∪ ∆1. Since
StabS∗(∆i)=1 for i = 1, 2, it follows that ∆1, ∆2, Ω \∆1 and Ω \∆2

lie in different regular orbits of S∗ on P(Ω). Thus S∗ has at least four
strong regular orbits on P(Ω).

Assume that S∗ has an orbit ∆ on Ω such that |∆| = 6. Then there
exists β ∈ ∆ with |S∗ : CS∗(β)| = 6. Hence |CS∗(β)| divides 22 · 7. On
the other hand, CS∗(β) ≤ CS(β) ∼= Γ(23). Thus |CS∗(β)| divides 7. If
|CS∗(β)| = 7, then |S∗| = 2 ·3 ·7. This is a contradiction since S has no
subgroup of such order. Thus CS∗(β) = 1. Therefore if ∆1 = {β} and
∆2 = {γ, β} for some γ ∈ Ω \∆, it follows that StabS∗ ∆i = 1, i = 1, 2.
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Then ∆1, ∆2, Ω \ ∆1 and Ω \ ∆2 are in different regular orbits of S∗
on P(Ω). Thus S∗ has at least four strong regular orbits on P(Ω).

2. Suppose that |Ω| = 9 and S is the semidirect product of C3 × C3 with
D8, SD16, SL(2, 3) or GL(2, 3).

In this case, we may assume that V = C3 × C3 and S is a subgroup
of AGL(2, 3), the semidirect product of C3 × C3 with GL(2, 3). In
particular, H is a subgroup of A = GL(2, 3).

Since S∗ is a {2, 3}-group acting non-transitively on Ω and |Ω| = 9, we
have that the length of an orbit of S∗ on Ω with more than 4 elements
is either 6 or 8.

Suppose that S∗ has an orbit ∆ on Ω such that |∆| = 8. Without
loss of generality, we may suppose that α is fixed by all elements of
S∗ and so S∗ is contained in H. If β ∈ ∆, we have that CA(β) has
two fixed points, β, γ say, and a orbit Γ of length 6 on ∆. Let µ ∈ Γ
and let ∆1 = {β},∆2 = {γ, µ} and ∆3 = Γ \ {µ}. Observe that⋂
i StabS∗(∆i) ≤

⋂
i StabH(∆i) = 1. Thus |Π3(∆, S∗)| ≥ |S∗∆|. Since

|S∗ : CS∗(β)| = 8, we have O2′(S∗) acts transitively on ∆. In this case,
2 holds.

Suppose that S∗ has an orbit ∆ on Ω such that |∆| = 6. Put Γ = Ω\∆.
Then S∗ acts on Γ and S∗/CS∗(Γ) is isomorphic to a subgroup of S3.
Note that CS∗(Γ) is also isomorphic to a subgroup of S3. Thus |S∗| di-
vides 36. Since |∆| = 6 divides |S∗|, we have that |S∗| ∈ {6, 12, 18, 36}.
If |S∗| = 6 then S∗ has a strong regular orbit on ∆, and so S∗ has at
least four strong regular orbits on P(Ω). If |S∗| = 18, one can check by
GAP that S∗ has at least four strong regular orbits on P(Ω). If |S∗| = 12
or 36, one can check by GAP that S∗ satisfies Statement 2.

Lemma 20. Let S be a primitive soluble permutation group on a set Ω.
Assume that S∗ ≤ S, S∗ is transitive on Ω and S∗ is S4-free. Then either
S∗ has a strong regular orbit on P(Ω) or S∗ satisfies one of the following
statements:

1. |Ω| = 2 and S∗ ∼= S2;

2. O2′(S∗) acts transitively on the set Ω and there exists a 3-partition
{∆1,∆2,∆3} of Ω such that

⋂
i StabS∗ ∆i = 1.

Proof. We may assume that |Ω| > 2. If S has a strong regular orbit on P(Ω),
then so does S∗. Thus we may assume that (S, |Ω|) is one of the exceptional
cases of [18, Theorem 5.6].
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If |Ω| = 3 and S = S3, then either S∗ ∼= C3 or S∗ ∼= S3. If S∗ ∼= C3,
then S∗ has a strong regular orbit on P(Ω). If S∗ ∼= S3, then S∗ satisfies
Statement 2.

Assume that |Ω| = 4 and S = A4 or S4. Since S∗ is an S4-free transitive
subgroup of S, it follows that S∗ ∼= A4, D8 or C2 × C2. Then O2′(S∗) acts
transitively on Ω and there exists a 3-partition {∆1,∆2,∆3} of type (1, 1, 2)
of Ω such that

⋂
i StabS∗(∆i) = 1. Thus Statement 2 holds.

Assume that |Ω| ∈ {5, 7, 8, 9}. In this case, by [25, Theorem 3.1], there
exists a 3-partition {∆1,∆2,∆3} of Ω such that

⋂
i StabS∗ ∆i = 1.

Assume that |Ω| = 5 and S = F10 or F20. Then S∗ ∼= C5, F10 or F20. If
S∗ ∼= C5, then S∗ has a strong regular orbit on P(Ω). If S∗ ∼= F10, F20, then
S∗ satisfies Statement 2.

Assume that |Ω| = 7 and S = F42. Then S∗ ∼= C7, F21 or F42. If S∗ ∼= C7

or F21, then S∗ has a strong regular orbit on P(Ω). If S∗ ∼= F42, then S∗

satisfies Statement 2.
If |Ω| = 8 and S = AΓ(23), then one can check by GAP that O2′(S∗) acts

transitively on Ω. Therefore S∗ satisfies Statement 2.
Assume that |Ω| = 9 and S = AGL(2, 3). If O2′(S∗) is not transitive on Ω,

then one can check by GAP that S∗ has a strong regular orbit on P(Ω).

Corollary 21. Let S be a primitive soluble permutation group on a set Ω.
Assume that S∗ ≤ S is of odd order and S∗ is transitive on Ω. Then S∗ has
at least four strong regular orbits on P(Ω), unless one of the following cases
occurs:

1. |Ω| = 3 and S∗ ∼= A3;

2. |Ω| = 7 and S∗ ∼= Γ(23).

In the exceptional cases, S∗ has just two strong regular orbits on P(Ω).

Proof. Assume that S has a strong regular orbit on P(Ω). If S is of odd
order, then by Lemma 18, then S has at least four strong regular orbits on
P(Ω) unless (S, |Ω|) = (A3, 3) or (Γ(23), 7). Then S∗ has at least four strong
regular orbits on P(Ω) unless (S∗, |Ω|) = (A3, 3) or (Γ(23), 7). If S is of order
even, then |S : S∗| ≥ 2. Since S has at least two strong regular orbits on
P(Ω), S∗ has at least four strong regular orbits on P(Ω).

If S has no strong regular orbit on P(Ω), then (S, |Ω|) is one of exceptional
cases (2)–(9) of [18, Theorem 5.6].

If |Ω| = 3 and S = S3, then S∗ ∼= A3. We are in case (1). If |Ω| = 4 and
S = A4 or S4, then S has no odd order subgroups which are transitive on Ω.
If |Ω| = 5 and S = F10 or F20, then S∗ ∼= C5 and S∗ has at least four strong
regular orbits on P(Ω).
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Assume that |Ω| = 7 and S = F42. Then S∗ ∼= C7 or Γ(23). If S∗ ∼= C7,
then S∗ has at least four strong regular orbits on P(Ω). If S∗ ∼= Γ(23), we
are in case (2). If |Ω| = 8 and S = AΓ(23), then S has no subgroup of odd
order which is transitive on Ω.

Assume that |Ω| = 9 and S = AGL(2, 3). Then S∗ is a subgroup of a
Sylow 3-subgroup of S. It can be proved, using GAP, that S∗ has at least
four strong regular orbits on P(Ω).

Lemma 22. Let H1 and H2 be permutation groups on the sets X1 and X2

respectively. If H1 has 2s strong regular orbits on P(X1) and H2 has 2t strong
regular orbits on P(X2). Then H = H1 o H2 has at least 2st strong regular
orbits on P(X1 × X2). If s = 1, then H1 o H2 has exactly 2t strong regular
orbits on P(X1 ×X2).

Proof. Assume that ∆1, . . . , ∆s, X1 \ ∆1, . . . , X1 \ ∆s belong to different
strong regular orbits of H1 on P(X1) and that Γ1, . . . , Γt, X2\Γ1, . . . , X2\Γt
belong to different strong regular orbits of H2 on P(X2). Let us denote

Σij = ∆i × Γj
⋃

(X1 \∆i)× (X2 \ Γj),

for 1 ≤ i ≤ s, 1 ≤ j ≤ t.
We prove first that StabH(Σij) = 1. Let y ∈ X2, we denote ε(y) =

|{(x1, x2) ∈ Σij | x2 = y}|. Since |∆i| 6= |X1 \∆i|, it is clear that ε(y) = |∆i|
(respectively, |X1 \∆i|) if and only if y ∈ Γj (respectively, y ∈ X2 \ Γj).

Let (f, σ) ∈ StabH(Σij) and y ∈ Γj. Then (∆i×{y})(f,σ) = ∆
f(y)
i ×{yσ} ⊆

Σij. Observe that ε(yσ) = |∆f(y)
i | = |∆i|, which implies that yσ ∈ Γj. Thus

σ ∈ StabH2(Γj) = 1. We also have ∆
f(y)
i = ∆i and so f(y) ∈ StabH1(∆i) = 1.

Now we can argue similarly with y ∈ X2 \Γj and conclude that f = 1. Thus
StabH(Σij) = 1.

Observe that |Σij| 6= |X1||X2|
2

and so Σij generates a strong regular orbit
of H on P(X1 ×X2).

Assume that there exists (f, σ) ∈ H such that Σ
(f,σ)
ij = Σuv for some

indices 1 ≤ i, u ≤ s, 1 ≤ j, v ≤ t. If y ∈ X2, then (∆i × {y})(f,σ) =

∆
f(y)
i × yσ ∈ Σuv and ∆

f(y)
i = ∆u or X1 \ ∆u. This implies that i = u.

Analogously, j = v. By using a similar argument, we can prove Σij is not
H-conjugate to X1 × X2 \ Σuv. Thus Σij, X1 × X2 \ Σij belong to different
strong regular orbits of H on P(X1 ×X2). Then we conclude that H has at
least 2st strong regular orbits on P(X1 ×X2).

Assume that s = 1. We prove that the orbits generated by Σ1j, X1×X2 \
Σ1j are exactly the strong regular orbits of H on P(X1 ×X2).
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Let Φ ∈ P(X1×X2) such that StabH(Φ) = 1. Then Φ =
⋃
y∈X2

Φy×{y},
where Φy = {x ∈ X1 | (x, y) ∈ Φ}. Assume there exists y0 ∈ X2 such
that StabH1(Φy0) 6= 1. Take 1 6= u ∈ StabH1(Φy0) and let f ∈ HX2

1 such
that f(y) = u if y = y0 and f(y) = 1 otherwise. Then it follows that
1 6= (f, 1) ∈ StabH(Φ) = 1. This contradiction yields StabH1(Φy) = 1 for
each y ∈ X2.

Since all H1-regular orbits are generated by ∆1 and X1\∆, it follows that
Φy is H1-conjugate to ∆1 or X1 \∆1 for each y ∈ X2. Let B1 = {y ∈ X2 | Φy

is H1-conjugate to ∆1} and B2 = {y ∈ X2 | Φy is H1-conjugate to X1 \∆1}.
Observe that B1 ∩B2 = ∅ and B1 ∪B2 = X2.

For each y ∈ X2, there exists uy ∈ H1 such that Φ
uy
y = ∆1 (if y ∈ B1)

or = X1 \ ∆1 (if y ∈ B2). Let g ∈ HX2
1 such that g(y) = uy for each

y ∈ X2. Write Φ̃ = Φ(g,1) = (
⋃
y∈B1

Φ
g(y)
y × {y}) ∪ (

⋃
y∈B2

Φ
g(y)
y × {y}) =

(
⋃
y∈B1

∆1 × {y}) ∪ (
⋃
y∈B2

(X1 \∆1)× {y}) = ∆1 ×B1

⋃
(X1 \∆1)×B2.

Assume that StabH2(B1) 6= 1, and let 1 6= σ ∈ StabH2(B1). Since B2 =

X2 \B1, we have σ ∈ StabH2(B2). Thus 1 6= (1, σ) ∈ StabH(Φ̃) = 1, which is
a contradiction. Therefore B1 generates a regular orbit ofH2 onX2. Without
loss of generality, we may assume that Bα

1 = Γj for some α ∈ H2. Then Bα
2 =

(X2\B1)α = X2\Γj. So we have Φ̃(1,α) = ∆1×Γj
⋃

(X1\∆1)×(X2\Γj) = Σ1j.
Thus Φ is H-conjugate to Σ1j, as desired.

Remark 23. If s 6= 1, H = H1 o H2 has not exactly 2st strong regular
orbits on the power set of X1 × X2 in general. Let (H1 = 〈(1, 2, 3, 4, 5)〉,
X1 = {1, 2, 3, 4, 5}) and (H2 = 〈(1, 2, 3)〉, X2 = {1, 2, 3}).

Note that the regular orbits generated by ∆1 = {1}, ∆2 = {1, 2}, ∆3 =
{1, 3}, X1 \∆1, X1 \∆2, X1 \∆3 are exactly the strong regular orbits of H1

on P(X1). It is also clear that H2 has exactly two strong regular orbits on
P(X2), namely the ones generated by Γ1 = {1} and X2 \ Γ1.

According to Lemma 22, we have that the subsets Σi1 = ∆i × Γj ∪ (X1 \
∆i) × (X2 \ Γ1), for 1 ≤ i ≤ 3, generate 6 strong regular orbits of H on
P(X1 ×X2). The subset

Φ = ∆1 × {1}
⋃

∆2 × {2}
⋃

∆3 × {3}

also generates a strong regular orbit on P(X1 ×X2) and Φ does not belong
to the orbits generated by Σi1, 1 ≤ i ≤ 3.

Definition 24. Let K denote the class of all pairs (S, d(S)) satisfying the
following conditions:

1. S is a permutation group of degree d(S), and
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2. S ∼= H1o· · ·oHn, whereHi is eitherHi
∼= A3 (of degree d(Hi) = |Xi| = 3)

or Hi
∼= Γ(23) (of degree d(Hi) = |Xi| = 7) for each i, and n ≥ 1.

Applying Lemmas 18 and 22, we have:

Corollary 25. If S is a permutation group on Ω such that (S, |Ω|) ∈ K, then
S has exactly two regular orbits on P(Ω).

2.3 The imprimitive case
Lemma 26. Let K be a group and let W a faithful K-module over a field of
prime characteristic, p say. Let S be a primitive soluble permutation group
on an m-element set Ω, and assume that S∗ ≤ S is transitive on Ω. Let
Ĝ = K oS∗ and V = WΩ. Let G be a subgroup of Ĝ such that Ĝ = K\G and
V G is S4-free. Then:

1. If K has at least five regular orbits on W ⊕W , then G has at least five
regular orbits on V ⊕ V .

2. If K is of even order, K has at least three regular orbits on W ⊕W
and p 6= 2, then G has at least three regular orbits on V ⊕ V .

3. If K has at least three regular orbits on W ⊕W and p = 2, then G has
at least three regular orbits on V ⊕ V .

Proof. 1. It follows from [26, Proposition 3.2(3)] since G is a subgroups
of K o S.

2. By [26, Proposition 3.2(2)], we may assume that m ≤ 4. If S has a
regular orbit on the power set of Ω, then |Π2(Ω, S)| ≥ |S|/2. Thus, in
this case, K o S has at least three regular orbits on V ⊕ V by Wolf’s
formula and so does G. Therefore we may assume that S has not any
regular orbit on P(Ω) and so S is one of the first two exceptional cases
of [18, Theorem 5.6]. Note that S∗ ∼= Ĝ/K\ is isomorphic to a quotient
of G. Hence S∗ is S4-free.

Assume that |Ω| = 4 and S ∼= A4 or S4. Since S∗ is a transitive on Ω,
it follows that S∗ is either isomorphic to a subgroup of A4 or D8. It
suffices to consider that S∗ ∼= A4 or D8.

If S∗ ∼= A4, we have |Π3(Ω, S∗)| = 6. Thus Ĝ (and so G) has at least
three regular orbits on V ⊕ V .

If S∗ ∼= D8, we have |Π3(Ω, S∗)| = 4. Thus Ĝ (and so G) has at least
three regular orbits on V ⊕ V .
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Assume that |Ω| = 3 and S ∼= S3. Since S∗ is transitive on Ω, it follows
that S ∼= C3 or S3. If S∗ ∼= C3, we have |Π2(Ω, S∗)| = 3 and so H has
at least three regular orbits on V ⊕ V .

Assume that S∗ = S ∼= S3. In this case, we have that |Π2(Ω, S∗)| = 0

and |Π3(Ω, S∗)| = 1. Thus Ĝ has at least one regular orbit on V ⊕ V .

Since K is of even order, Ĝ has a subgroup isomorphic to C2 o S3 and
so Ĝ is not S4-free. Since G is S4-free, we have that G is a proper
subgroup of Ĝ. Suppose that |Ĝ : G| = 2. Then G C Ĝ and B = K\

is not contained in G. Let N = B ∩ G. Then N is normal in Ĝ and
|B : N | = 2. In particular, there exists a direct factor K1 of B which is
not contained in N . Then B = K1N and |K1 : K1∩N | = 2. Note that
C = (K1 ∩ N)\ is a normal subgroup of Ĝ contained in B such that
Ĝ/C ∼= C2oS3. Thus there exists a normal subgroup L of Ĝ contained in
B such that Ĝ/L ∼= S4. Therefore Ĝ = LG and G/G∩L ∼= Ĝ/L ∼= S4,
contrary to assumption. Consequently, |Ĝ : G| ≥ 3 and so G has at
least three regular orbits on V ⊕ V .

3. If p = 2, we have that G is S3-free by Corollary 7. Arguing as in case 2,
we conclude that G has at least three regular orbits on V ⊕ V .

Definition 27. Let G be a group and let V a G-module such that the action
of G on V is equivalent to the action of a subgroup X of U o S = U \X on
WΩ, where U is a group, W is a U -module and S is a permutation group on
a set Ω such that (S, |Ω|) ∈ K (see Definition 24) or (S, |Ω|) = (1, 1).

1. We say that V of type (I) if |W | = 23 and U = Γ(W ).

2. V is said to be of type (II) if |W | = 32 and U = SL(2, 3).

Lemma 28. Suppose that V is a G-module of type (I) or type (II) (see
Definition 27). There exist 0 6= x ∈ V and y1, y2, z1, z2 ∈ V lying in
different CG(x)-orbits satisfying the following conditions:

1. CG(x) ∩ CG(yi) = 1 for each i; and

2. CG(x) ∩ CG(zi) is a 3-group for each i.

Moreover, G has exactly two regular orbits on V ⊕ V .

Proof. Without loss of generality, we may suppose that G = U o S and V =
WΩ, U is a group, W is a U -module and S is a permutation group on a set Ω
such that (S, |Ω|) = (1, 1) or (S, |Ω|) ∈ K, and either |W | = 23 and U = Γ(W )
or |W | = 32 and U = SL(2, 3). Let 0 6= w ∈ W . Then CU(w) is a 3-group
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and has exactly two regular orbits onW . Then we assume that u1, u2 belong
to different regular orbits of CU(w) on W . In particular, CU(w)∩CU(ui) = 1
for each i. Write v1 = 0, v2 = w. Then CU(w)∩CU(vi) = CU(w) is a 3-group.
Observe that u1, u2, v1, v2 belong to four different CU(w)-orbits. Thus the
lemma holds when (S, |Ω|) = (1, 1).

Now we may assume that (S, |Ω|) ∈ K. Applying Corollary 25, we get
that S has exactly two strong regular orbits on P(Ω). Hence, by Wolf’s
formula, G has exactly two regular orbits on V ⊕ V . Let ∆ ⊆ Ω such that
StabS(∆) = 1 and x ∈ V = WΩ such that x(i) = w for all i ∈ Ω. Assume
that y1, y2, z1, z2 ∈ V satisfy

y1(i) = u1, i ∈ ∆; y1(i) = u2, i ∈ Ω \∆;

y2(i) = u2, i ∈ ∆; y2(i) = u1, i ∈ Ω \∆;

z1(i) = v1, i ∈ ∆; z1(i) = v2, i ∈ Ω \∆;

z2(i) = v2, i ∈ ∆; z2(i) = v1, i ∈ Ω \∆.

It is not difficult to see that y1, y2, z1, z2 belong to different regular orbits
of CG(x) on V . We first show that CG(x) ∩ CG(yj) = 1 for each j. Let
(f, σ) ∈ CG(x) ∩ CG(yj), where f ∈ UΩ and σ ∈ S. Then

x(iσ
−1

)f(iσ
−1

) = x(i); yj(i
σ−1

)f(iσ
−1

) = yj(i),∀i ∈ Ω.

Hence f(i) ∈ CU(w) for each i. Since u1, u2 lie in different orbits of CU(w) on
W , we have ∆σ = ∆ and thus σ ∈ StabS(∆) = 1. Then uf(i)

1 = u1 or uf(i)
2 =

u2 for each i and so f(i) ∈ CU(w)∩CU(u1) = 1 or f(i) ∈ CU(w)∩CU(u2) = 1.
In any case, f = 1, as desired.

Now take (f, σ) ∈ CG(x) ∩ CG(zj) for each j. Arguing in a similar way,
we have f(i) ∈ CU(w) for each i and σ = 1. Then vf(i)

1 = y or vf(i)
2 = z for

each i and so f(i) ∈ CU(w) ∩ CU(v1) or f(i) ∈ CU(w) ∩ CU(v2). Note that
CU(w) ∩ CU(v1) is a 3-group. Then (f, σ) = (f, 1) is a 3-element and thus
CG(x) ∩ CG(zj) is a 3-group for each j, as desired.

Let G be a group and let V a faithful G-module. Assume that there
V = V1 ⊕ · · · ⊕ Vm (m ≥ 2) is a direct sum of subspaces which are permuted
transitively by G. Write Ω = {1, . . . ,m}, L = NG(V1) and N = CoreG(L).
Then m = |G : L| and S = G/N is a permutation group on Ω induced by
the action of G on a right transversal of L in G. We have:

Lemma 29. Assume that G is soluble and V G is S4-free. Assume further
that V1, as a L/CG(V1)-module, is of type (I) or type (II) (see Definition 27).
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1. Suppose that O2′(S) acts transitively on Ω and there exists a 3-partition
{∆1,∆2,∆3} of Ω such that

⋂
i StabS ∆i = 1. Then G has at least three

regular orbits on V ⊕ V .

2. If m ≤ 4, then G has at least three regular orbits on V ⊕ V unless
m = 3 and G/N ∼= C3; in this case, G has at least two regular orbits
on V ⊕ V .

Proof. Applying Lemma 2, we may assume without loss of generality G is
a subgroup of Ĝ = U o S, where U = L/CG(V1). Moreover, we have that
Ĝ = U \G, N = G ∩ U \ and NG(Wj)/CG(Wj) ∼= U , where Wj = {f ∈ V |
f(i) = 0,∀i 6= j}, j ∈ Ω.

Applying Lemma 28 to the pair (U, V1) allows us to conclude that there
exists 0 6= x ∈ V1 such that CU(x) has four different orbits on V1 with
representatives y1, y2, z1, z2 satisfying CU(x)∩CU(yi) = 1 and CU(x)∩CU(zi)
is a 3-group for each i.

Assume that O2′(S) acts transitively on Ω and there exists 3-partition
{∆1,∆2,∆3} of Ω such that

⋂
i StabS ∆i = 1. Then 1 6= O2′(S).

Our first goal will be to prove the following statement:
(∗) Let (f, 1) be a 3-element of N for f ∈ U \. Suppose that f(i0) = 1 for

some i0 ∈ Ω. Then f = 1.
Let P ∈ Syl3(N) such that (f, 1) ∈ P . By the Frattini Argument, G =

N NG(P ). Let ρ ∈ S be a 2-element. Then ρ determines a 2-element (g, ρ) ∈
NG(P ). Let T = N〈(g, ρ)〉.

We show that T is S3-free. If U -module V1 is of type (I), then p = 2
and G is S3-free by Corollary 7. Hence T is S3-free. If U -module V1 is
of type (II), then p = 3 and O2′(U) = 1. Since N CG(Wj)/CG(Wj) E
NG(Wj)/CG(Wj) ∼= U , we have O2′(N) ≤ ∩j CG(Wj) = CG(V ) = 1. Then
we have O2′(T ) ≤ O2′(N) = 1 since T/N is a 2-group. By Lemma 6, T is
S3-free.

Since P 〈(g, ρ)〉 is {2, 3}-subgroup of T , we can apply Lemma 4 to conclude
that P 〈(g, ρ)〉 is 3-nilpotent. Hence (f, 1)(g, ρ) = (g, ρ)(f, 1), that is,

f(i)g(i) = g(i)f(iρ),∀i ∈ Ω,

Therefore f(i) = 1 if and only if f(iρ) = 1.
Since O2′(S) acts transitively on Ω, it follows that for each i ∈ Ω, there

exist 2-elements ρ1, . . . , ρs such that iρ1...ρs0 = i. Since f(i0) = 1, we have

1 = f(i0) = f(iρ10 ) = · · · = f(iρ1...ρs0 ) = f(i),

thus f(i) = 1 for each i ∈ Ω and the statement is proved.
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Let v ∈ V such that v(i) = x for each i ∈ Ω and consider the elements
u1, u2, u3 ∈ V defined by

u1(i) = z1, i ∈ ∆1; u1(i) = y1, i ∈ ∆2; u1(i) = y2, i ∈ ∆3;

u2(i) = z2, i ∈ ∆1; u2(i) = y1, i ∈ ∆2; u2(i) = y2, i ∈ ∆3;

u3(i) = z1, i ∈ ∆1; u3(i) = z2, i ∈ ∆2; u3(i) = y2, i ∈ ∆3.

Then we will show CG(v) ∩ CG(uj) = 1 for all j ∈ {1, 2, 3}, and u1, u2 and
u3 belong to different regular orbits of CG(v) on V .

Let (f, σ) ∈ CG(v) ∩ CG(uj), where f ∈ U \ and σ ∈ S. Then

v(iσ
−1

)f(iσ
−1

) = v(i);uj(i
σ−1

)f(iσ
−1

) = uj(i), ∀i ∈ Ω.

Hence f(i) ∈ CU(x) for each i. Then we have uj(iσ
−1

), uj(i) lie in the same
orbit of CU(x) on V1, ∀i ∈ Ω. Since y1, y2, z1, z2 lie in different orbits
of CU(x) on V1, it implies that σ ∈

⋂
i StabS(∆i) = 1. For each i ∈ Ω,

f(i) ∈ CU(x) ∩ CU(yi) or CU(x) ∩ CU(zi) for i = 1 or 2. Thus f(i) is a
3-element for each i and clearly (f, σ) = (f, 1) is a 3-element. Let i0 ∈ ∆3.
Then yf(i0)

2 = y2, and so f(i0) ∈ CU(x) ∩ CU(y2) = 1. Thus f(i0) = 1.
Since (f, σ) = (f, 1) is a 3-element of N and f(i0) = 1 for some i0 ∈ Ω,

it follows from Statement (∗) that f = 1. Thus CG(v) ∩ CG(uj) = 1, j = 1,
2, 3. Similar arguments allows us to conclude that u1, u2 and u3 belong to
different regular orbits of CG(v) on V . Consequently, G has at least three
regular orbits on V ⊕ V , and the Statement 1 holds.

Suppose that |Ω| ≤ 4. If |Ω| = 4, then S is isomorphic to A4, D8, C2×C2

since S is transitive and S4-free. In these cases, O2′(S) acts transitively
on Ω and S has a 3-partition {∆1,∆2,∆3} of type (1, 1, 2) of Ω such that⋂
i StabS ∆i = 1. By Statement 1, G has at least three regular orbits on

V ⊕ V .
If |Ω| = 3, we have that S is isomorphic to S3 or C3. Suppose that

S ∼= C3. Then S has exactly two regular orbits on P(Ω). Hence G has two
regular orbits on V ⊕ V . If S ∼= S3, it follows that O2′(S) acts transitively
on Ω and S has a 3-partition {∆1,∆2,∆3} of type (1, 1, 1) of Ω such that⋂
i StabS ∆i = 1. By Statement 1, G has at least three regular orbits on

V ⊕ V .
If |Ω| = 2, then S ∼= S2. Let v ∈ V such that v(i) = x for each i ∈ Ω and

consider the elements u1, u2, u3 ∈ V defined by

u1(1) = z1, u1(2) = y1;

u2(1) = z2, u2(2) = y1;

u3(1) = y2, u3(2) = y1.
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With similar arguments to those used above, one can show that u1, u2

and u3 belong to different regular orbits of CG(v) on V . Consequently, G has
at least three regular orbits on V ⊕ V .

In the following, we consider the imprimitive case of Theorem B.

Lemma 30. Let S be a supersoluble primitive permutation group on a finite
set Ω. Then we have

1. If |Ω| ≥ 3, then there exists a 3-partition {∆1,∆2,∆3} of Ω such that
∩i StabS ∆i = 1.

2. If |Ω| ≥ 5, then there exists a 3-partition {∆1,∆2,∆3} of Ω such that
|∆1| ≤ |∆2| < |∆3| and ∩i StabS ∆i = 1.

Proof. Since S is a supersoluble and primitive, we have that |Ω| is a prime,
p say, and S is a subgroup of [Cp]Cp−1. Now we may assume p ≥ 3. Observe
that S is a Frobenius group, that is, CS(x) ∩ CS(y) = 1 for any distinct
x, y ∈ Ω. Fix two distinct x, y ∈ Ω, and let ∆1 = {x}; ∆2 = {y} and
∆3 = Ω − {x, y}. Then clearly ∩i StabS ∆i = 1 and |∆1| ≤ |∆2| < |∆3| if
p ≥ 5. Thus the lemma is proved.

Lemma 31. Let H be a group and S be a primitive permutation group on the
finite set Ω with |Ω| ≥ p for some prime p. Assume that G is a supersoluble
group of Ĝ = H oS such that H\G = Ĝ. Write N = H\ ∩G and assume that
Op(N) = 1. If f is a p-element of H\ such that (f, 1) ∈ N and f(i0) = 1 for
some i0 ∈ Ω. Then f = 1.

Proof. Observe that S ∼= Ĝ/H\ ∼= G/N is supersoluble. Since S is a primitive
permutation group, we can conclude that S has the unique minimal normal
subgroup X such that |X| = |Ω| = q for some prime q.

Let P ∈ Sylp(N) such that (f, 1) ∈ P . By Frattini Argument, G =

N NG(P ) and consequently Ĝ = H\ NG(P ). For any ρ ∈ X, we have that
ρq = 1. Then it is not difficult to find a q-element (g, ρ) ∈ NG(P ). Let
T = P 〈(g, ρ)〉. Clearly T ≤ G is supersoluble and [(f, 1), (g, ρ)] ∈ P .

By hypothesis, q ≥ p. If q > p, then 〈(g, ρ)〉 C T since T has the super-
soluble type Sylow Tower. Thus [(f, 1), (g, ρ)] ∈ P ∩ 〈(g, ρ)〉 = 1. If p = q,
then T is a p-group. Observe that G′ ≤ F(G) since G is supersoluble. Thus
T ′ ≤ Op(G). Then [(f, 1), (g, ρ)] ∈ T ′ ∩N ≤ Op(G) ∩N = Op(N) = 1.

Thus we have (f, 1)(g, ρ) = (g, ρ)(f, 1), that is, f(i)g(i) = g(i)f(iρ),∀i ∈
Ω. Therefore f(i) = 1 if and only if f(iρ) = 1.

RecallX acts transitively on Ω. For each i ∈ Ω, there exists ρi( depending
on i) ∈ S such that iρi0 = i. Since f(i0) = 1, we have f(i) = f(iρi0 ) = 1. Thus
f(i) = 1 for each i ∈ Ω and the statement is proved.



38 CHAPTER 2. MAIN THEOREMS

Let G be a group and let V a faithful G-module.
We say G-module V satisfies that Property I if the following hypotheses

hold.
(1) G is an odd order group and O3(G) = 1.
(2) there exists 0 6= x ∈ V and CG(x) has at least four different orbits

on V with representatives y1, y2, z1, z2 satisfying CG(x) ∩ CG(yi) = 1 and
CG(x) ∩ CG(zi) is a 3-group for each i.

We say G-module V satisfies that Property II if the following hypothe-
ses hold.

(1) G is an even order group with O2(G) = 1.
(2) there exists 0 6= x ∈ V and CG(x) at least three different orbits on V

with representatives y, z1, z2 satisfying CG(x)∩CG(y) = 1 and CG(x)∩CG(zi)
is a 2-group for each 1 ≤ i ≤ 2.

Lemma 32. Let G be a supersoluble group and V be a faithful G-module
over GF(2). Assume that there V = V1 ⊕ ... ⊕ Vm(m ≥ 1) is a direct sum
of subspaces which are permuted transitively by G. Let K = NG(V1)/CG(V1)
and V1 is a faithful K-module. Then we have:

1. If K has at least four regular orbits on V1⊕V1, then G has at least four
regular orbits on V ⊕ V .

2. If K is of even order, K has at least three regular orbits on V1 ⊕ V1,
then G has at least three regular orbits on V ⊕ V .

3. If K-module V1 satisfies Property I and G is of odd order, then G has
at least four regular orbits on V ⊕ V or satisfies Property I.

4. If K-module V1 satisfies Property II, then either G has three regular
orbits on V ⊕ V or G-module V satisfies Property II.

5. If K-module V1 satisfies Property I, then either G has three regular
orbits on V ⊕ V or G-module V satisfies Property I or Property II.

Proof. Work by induction on m. Clearly (1) − (5) holds when m = 1. Now
we assume that m ≥ 2. Since G acts transitively on {V1, ..., Vm}, we can take
a block ∆ of {V1, ..., Vm} such that StabG(∆) is maximal in G. Without loss
of generality, we may assume that ∆ = {V1, ..., Vs}(s ≥ 1).

Let W1 =
∑s

i=1 Vi and L = NG(W1). Then L = StabG(∆) is maximal
in G. Assume that {g1 = 1, g2, ..., gt} is a right transversal of L in G with
t = |G : L| ≥ 2. Write Wi = W1gi for each i. Then V = W1 ⊕ ... ⊕Wt and
G/N acts faithfully and primitively on {W1, ...,Wt}, where N = CoreG(L).
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Write H = L/CG(W1). We argue that Op(N) = 1 if Op(H) = 1 for
some prime p. Observe that N E Lgj = NG(Wj) for each 1 ≤ j ≤ t. Then
N CG(Wj)/CG(Wj)ENG(Wj)/CG(Wj) ∼= H. Since Op(H) = 1, we have that
Op(N) ≤ ∩tj=1 CG(Wj) = 1 since V is a faithful G-module. This argument
will be useful below.

Then applying Lemma 2, we may assume thatG is a subgroup of Ĝ = HoS
such that Ĝ = H\G, N = H\ ∩ G and V = WΩ

1 , where S is a primitive
permutation group on Ω = {1, ..., t}. Observe that S ∼= Ĝ/H\ ∼= G/N is
supersoluble. Thus t is a prime.

Denote J = NH(V1)/CH(V1). Then W1 = V1 ⊕ ... ⊕ Vs is a faithful
H-module and by [1, Theorem 1.13], L(also H) acts transitively on ∆ =
{V1, ..., Vs}. Write J ′ = NL(V1) CG(V1)/CG(V1) ≤ K. It is not difficult to
find that the action of J on V1 is equivalent to the action of J ′ on V1.

Now we will prove (1)− (5) respectively. The main step is firstly to apply
induction on (W1, H, V1, J) and then to calculate the number of regular orbits
by Wolf’s formula.

(1) By hypothesis, J ′ ≤ K has at least four regular orbits on V1 ⊕ V1.
Thus J has at least four regular orbits on V1 ⊕ V1. Since s = m/t < m, by
induction, H has at least four regular orbits on W1 ⊕W1.

If S has a regular orbit on the power set of Ω, then |Π2(Ω, S)| ≥ |S|/2.
Thus, in this case, H o S has at least four regular orbits on V ⊕ V by Wolf’s
formula and so does G. Therefore we may assume that S has not any regular
orbit on P(Ω) and so S is one of exceptional cases of [18, Theorem II.5.6]
and 3 ≤ t ≤ 9. By [25, Theorem 3.1(iii)], we have |Π3(Ω, S)| ≥ |S| for
5 ≤ t ≤ 9, which implies G ≤ H oS has at least four regular orbits on V ⊕ V
by Wolf’s formula. Thus we may assume that t = 3 since t is a prime. In
this case, S ∼= S3. It is not difficult to calculate that |Π2(Ω, S∗)| = 0 and
|Π3(Ω, S∗)| = 1. Thus G(≤ Ĝ) has at least four regular orbit on V ⊕ V .

Thus the conclusion (1) is proved.
(2) If J is of order odd, then so is J ′. SinceK is of order even, |K : J ′| ≥ 2.

Thus J ′( also J) has at least six regular orbits on V1 ⊕ V1. Applying (a) on
(W1, H, V1, J), H has at least four regular orbits on W1 ⊕ W1. Applying
(a) on (V,G,W1, H) again, G has at least four regular orbits on V ⊕ V , as
desired.

Now we assume that J is of even order, by induction, H has at least three
regular orbits on W1 ⊕W1. By [26, Proposition 3.2(2)] and Wolf’s formula,
we may assume that t ≤ 4 and S has not any regular orbit on P(Ω). Note t
is a prime. Thus, by [18, Theorem II.5.6], we can conclude that |Ω| = 3 and
S ∼= S3. In this case, |Π2(Ω, S∗)| = 0 and |Π3(Ω, S∗)| = 1. Thus Ĝ has at
least one regular orbit on V ⊕ V .
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Observe that H is of even order since J is of even order. Then Ĝ has a
subgroup isomorphic to C2 o S3 and so Ĝ is not supersoluble. Thus we have
that G is a proper subgroup of Ĝ. Suppose that |Ĝ : G| = 2. Then G C Ĝ
and B = H\ is not contained in G. Let N = B ∩ G. Then N is normal in
Ĝ and |B : N | = 2. In particular, there exists a direct factor H1

∼= H of B
which is not contained in N . Then B = H1N and |H1 : H1 ∩N | = 2. Note
that C = (H1 ∩ N)\ is a normal subgroup of Ĝ contained in B such that
Ĝ/C ∼= C2 o S3. Thus there exists a normal subgroup X of Ĝ contained in
B such that Ĝ/X ∼= S4. Therefore Ĝ = XG and G/G ∩ X ∼= Ĝ/X ∼= S4,
contrary to supposition. Consequently, |Ĝ : G| ≥ 3 and so G has at least
three regular orbits on V ⊕ V . Thus the conclusion (2) is proved.

(3) Since K-module V1 satisfies Property I, K has at least two regular
orbits on V1⊕V1. If J ′ is proper in K, then J ′ has at least four regular orbits
on V1 ⊕ V1 and so does J . Applying (a) twice, G has at least four regular
orbits on V ⊕ V .

Then we may assume J ′ = K. Consequently J(J ′)-module V1 satisfies
Property I. By induction, H has at least four regular orbits on W1 ⊕W1

or H-module W1 satisfies Property I. If H has at least four regular orbits
on W1⊕W1, by (a), G has at least four regular orbits on V ⊕ V , as desired.

Now we assume that H-module W1 satisfies Property I. By hypothesis,
we have O3(H) = 1. Moreover, there exists there exists 0 6= x ∈ V1 and
CH(x) has at least four different orbits on V1 with representatives y1, y2, z1, z2

satisfying CH(x) ∩ CH(yi) = 1 and CH(x) ∩ CH(zi) is a 3-group for each i.
Since G is of odd order, we have S is of odd order. Consequently t is

an odd prime and t ≥ 3. By [18, Theorem II.5.6], S has a strong regular
orbit on P(Ω). We may assume that ∆ ⊆ Ω such that StabS(∆) = 1 and
|∆| 6= |Ω − ∆|. Take v ∈ V = WΩ

1 such that v(i) = x for each i ∈ Ω and
define uj, 1 ≤ j ≤ 4 as follow:

u1(i) = y1, i ∈ ∆;u1(i) = y2, i ∈ Ω−∆;

u2(i) = y2, i ∈ ∆;u2(i) = y1, i ∈ Ω−∆;

u3(i) = y1, i ∈ ∆;u3(i) = z1, i ∈ Ω−∆;

u4(i) = y2, i ∈ ∆;u4(i) = z2, i ∈ Ω−∆;

It is not difficult to find that uj, 1 ≤ j ≤ 4 lie different orbits of CG(v) on V .
Then we will show that uj, 1 ≤ j ≤ 4 can generate regular orbits of CG(v)
on V .
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Let (f, σ) ∈ CG(v) ∩ CG(uj) for 1 ≤ j ≤ 4, where f ∈ H\ and σ ∈ S.
Then

v(iσ
−1

)f(iσ
−1

) = v(i);uj(i
σ−1

)f(iσ
−1

) = uj(i),∀i ∈ Ω.

Hence we have that f(i) ∈ CH(x) for each i ∈ Ω. Since y1, y2, z1, z2 lie in
different CH(x)-orbit in V . Thus σ ∈ StabS(∆) = 1.

Thus we conclude that f(i) ∈ CH(x)∩CH(yj) or CH(x)∩CH(zk) for each
i ∈ Ω, where j, k = 1 or 2. Thus f(i) is a 3-element ofH for each i. Moreover,
take any i0 ∈ ∆, we have f(i0) ∈ CH(x)∩CH(y1) or CH(x)∩CH(y2) and we
can conclude that f(i0) = 1.

Thus (f, σ) = (f, 1) ∈ H\ ∩ G = N is a 3-element and f(i0) = 1 for
some i0 ∈ ∆. Recall that |Ω| = t ≥ 3 and we can argue O3(N) = 1 since
O3(H) = 1 by hypothesis. Applying Lemma 31(the case p = 3), we can
conclude that f = 1. It implies that CG(v) ∩ CG(uj) = 1 for 1 ≤ j ≤ 4, as
desired. Thus G has at least four regular orbits on V ⊕ V , as desired. Thus
the conclusion (3) is proved.

(4) Since K-module V1 satisfies Property II, we may assume that
• K is an even order group with O2(K) = 1.
• there exists 0 6= x′ ∈ V1 and three different CK(x′)-orbits with repre-

sentatives y′, z′1, z′2 satisfying CK(x′) ∩ CK(y′) = 1 and CK(x′) ∩ CK(z′i) is a
2-group for each i.

If J ′ is of odd order, then J ′ is proper in K. Then J ′ has at least two
regular orbits on V ⊕ V and CJ ′(x

′) ∩ CJ ′(z
′
i) is a 2-group for each i, which

implies that J ′ has at least four regular orbits on V1⊕V1 and so is J . Applying
(1) twice, G has at least four regular orbits on V ⊕ V .

Thus we may assume J ′ is of even order. If |K : J ′| ≥ 3, then J ′(also
J) has at least three regular orbits on V1 ⊕ V1. It follows from (2) that
H has at least three regular orbits on W1 ⊕W1. Observe that |H| is even
since |J | is even, applying (2) again, G has at least three regular orbits on
V ⊕ V . Now we may assume that |K : J ′| ≤ 2. Consequently J ′ C K and
O2(J ′) ≤ O2(K) = 1. Then J(J ′)-module V1 satisfies Property II.

By induction, H has at least three regular orbits onW1⊕W1 or H-module
W1 satisfies Property II. If H has at least three regular orbits on W1⊕W1,
since |H| is even, then G has at least three regular orbits on V ⊕ V by (2),
as desired.

Now we assume that H-module W1 satisfies Property II.
• H is an even order group with O2(H) = 1.
• Then there exists 0 6= x ∈ W1 and three different CH(x)-orbits with

representatives y, z1, z2 satisfying CH(x) ∩CH(y) = 1 and CH(x) ∩CH(zi) is
a 2-group for each i.

Firstly we consider the case |Ω| = t ≥ 5. By Lemma 30, there exists
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a 3-partition {∆1,∆2,∆3} of Ω such that
⋂3
i=1 StabS(∆i) = 1 and |∆1| ≤

|∆2| < |∆3|. Take v ∈ V = WΩ
1 such that v(i) = x for each i ∈ Ω. Consider

the elements uj ∈ V , where 1 ≤ j ≤ 3, defined by

u1(i) = y, i ∈ ∆1;u1(i) = z2, i ∈ ∆2;u1(i) = z1, i ∈ ∆3;

u2(i) = z1, i ∈ ∆1;u2(i) = y, i ∈ ∆2;u2(i) = z2, i ∈ ∆3;

u3(i) = z2, i ∈ ∆1;u3(i) = z1, i ∈ ∆2;u3(i) = y, i ∈ ∆3;

Since y, z1, z2 lie in different orbits of CH(x) on W1 and |∆1| ≤ |∆2| <
|∆3|, it is not difficult to find u1, u2 and u3 lie in different orbits of CG(v) on
V . Then we will show that uj, 1 ≤ j ≤ 3 can generate regular orbit of CG(v)
on V .

Let (f, σ) ∈ CG(v) ∩ CG(uj) for 1 ≤ j ≤ 3, where f ∈ H\ and σ ∈ S.
Then

v(iσ
−1

)f(iσ
−1

) = v(i);uj(i
σ−1

)f(iσ
−1

) = uj(i), ∀i ∈ Ω.

Hence we have that f(i) ∈ CH(x) for each i ∈ Ω. Since y, z1, z2 lie in different
CH(x)-orbit in V . Thus σ ∈ StabS(∆) = 1.

Thus we conclude that f(i) ∈ CH(x)∩CH(y) or CH(x)∩CH(zk) for each
i ∈ Ω, where k = 1 or 2. Thus f(i) is a 2-element of H for each i. Moreover,
Considering in uj for a fixed j, we can find i0(depending on j) ∈ ∆j such
that f(i0) ∈ CH(x) ∩ CH(y). we can conclude that f(i0) = 1.

Thus (f, σ) = (f, 1) ∈ H\ ∩ G = N is a 2-element and f(i0) = 1 for
some i0 ∈ Ω. Recall that |Ω| = t ≥ 5 and we can argue O2(N) = 1 since
O2(H) = 1 by hypothesis. Applying Lemma 31(the case p = 2), we can
conclude that f = 1. It implies that CG(v) ∩ CG(uj) = 1 for 1 ≤ j ≤ 3, as
desired. Thus G has at least three regular orbits on V ⊕ V , as desired.

Recall that |Ω| = t is a prime. Thus we only consider the case t = 2 or 3.
Assume that t = 3. In this case, S = S3 or 〈(123)〉. Take v ∈ V = WΩ

such that v(i) = x for each i ∈ Ω. Consider the elements uj ∈ V , where
1 ≤ j ≤ 3, defined by

u1(1) = y, u1(2) = z1, u1(3) = z2;

u2(1) = y, u2(2) = y, u2(3) = z1;

u3(1) = y, u3(2) = y, u3(3) = z2;

With similar arguments to those used above, one can show that u1, u2 and
u3 belong to different orbits of CG(v) on V and CG(v) ∩ CG(u1) = 1. Now
we will prove that CG(v) ∩ CG(uj) is 2-group for j = 2, 3.

Let (f, σ) ∈ CG(v)∩CG(uj) for j = 2, 3, where f ∈ H\ and σ ∈ S. Hence
we have that f(i) ∈ CH(x) for each i ∈ Ω. Since y, z1, z2 lie in different
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CH(x)-orbit in V . Thus 3σ = 3 and consequently σ ∈ 〈(12)〉. Moreover,
f(1), f(2) ∈ CH(x) ∩ CH(y) = 1 and f(3) ∈ CH(x) ∩ CH(zj) for some j is a
2-group. Thus (f, σ)2 = (g, 1), where g(1) = g(2) = 1 and g(3) = f(3)2 is a
2-element. Then we can conclude that (f, σ) is a 2-element, as desired.

Observe that O2(G/N) ∼= O2(S) = 1 and consequently O2(G) ≤ O2(N) =
1. Furthermore, G is of even order since H is of even order. Thus G-module
V satisfies Property II, as desired.

Finally we assume that |Ω| = 2 and S ∼= S2. Take v ∈ V such that
v(i) = x for each i ∈ Ω and consider the elements u1, u2, u3 ∈ V defined by

u1(1) = z1, u1(2) = y;

u2(1) = z2, u2(2) = y;

u3(1) = z1, u3(2) = z2;

With similar arguments to those used above, one can show that u1, u2 and u3

belong to different orbits of CG(v) on V and CG(v)∩CG(uj) = 1 for j = 1, 2,
CG(v) ∩ CG(u3) is 2-group.

We will discuss it in the following two cases: O2(G) = 1 or O2(G) 6= 1. If
O2(G) = 1, then, in addition that G is of even order, we can conclude that
G-module V satisfies Property II, as desired.

Now we assume that O2(G) 6= 1. Then O2(G) 
 N since O2(N) = 1.
Since now G/N ∼= S2, we have that G = N O2(G) and N∩O2(G) = O2(N) =

1. Consequently [N,O2(G)] = 1 and Ĝ = H\ O2(G).
Take v′ ∈ V such that v′(1) = 0 and v′(2) = x. Now we claim that

CG(v′)∩CG(u1) = 1. Let (f, σ) ∈ CG(v′)∩CG(u1), where f ∈ H\ and σ ∈ S.
Then σ = 1 and (f, σ) = (f, 1) ∈ G∩H\ = N . Consequently f(2) ∈ CH(x)∩
CH(y) = 1. Now take ρ = (12) ∈ S, we can find a element (g, ρ) ∈ O2(G)

for some g ∈ H\ since Ĝ = H\ O2(G). Since [N,O2(G)] = 1, we have that
(f, 1)(g, ρ) = (g, ρ)(f, 1). Consequently f(2ρ) = g(2)−1f(2)g(2) = 1, that is,
f(1) = 1. Thus we have that f = 1, as claimed.

We can observe that (v, u1), (v, u2) and (v′, u1) lie in different regular
orbits ofG on V ⊕V , as desired. Thus the conclusion (4) is proved completely.

(5) Since K-module V1 satisfies Property I, K has at least two regular
orbits on V1 ⊕ V1. If J ′ is proper in K, then J ′ has at least four regular
orbits on V1 ⊕ V1 and so does J . By (1), H has at least four regular orbits
on W1 ⊕ W1. Applying (1) again, G has at least four regular orbits on
V ⊕V .Thus we may assume J ′ = K. Consequently J(J ′)-module V1 satisfies
Property I.

When H is of even order, by induction, H has at least three regular orbits
on W1 ⊕W1 or H-module W1 satisfies Property I or Property II. Since
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H is of even order, clearly H-module W1 does not satisfy Property I. If H
has at least three regular orbits on W1 ⊕W1, then it follows from (b) that
G has at least three regular orbits on V ⊕ V , as desired. If H-module W1

satisfies Property II, then we can conclude that G has at least three regular
orbits on V ⊕ V or H-module W1 satisfies Property II, as desired. When
H is of odd order, applying (3) on (W1, H, V1, J), then we can conclude that
H-module W1 satisfies Property I or H has at least four regular orbits on
W1⊕W1. If the latter case holds, then it follows from (1) that G has at least
four regular orbits on V ⊕ V , as desired.

Thus we only consider the case that H-module W1 satisfies Property I.
Then we have
• H is an odd order group and O3(H) = 1.
• There exists 0 6= x ∈ W1 and three different CH(x)-orbits with repre-

sentatives y1, y2, z1, z2 satisfying CH(x) ∩ CH(yi) = 1 and CH(x) ∩ CH(zi) is
a 3-group for each i.

Firstly we consider the case |Ω| = t ≥ 3. By Lemma 30, there exists a
3-partition {∆1,∆2,∆3} of Ω such that

⋂3
i=1 StabS(∆i) = 1.

Take v ∈ V = WΩ
1 such that v(i) = x for each i ∈ Ω. Consider the

elements uj ∈ V , where 1 ≤ j ≤ 3, defined by

u1(i) = y1, i ∈ ∆1;u1(i) = y2, i ∈ ∆2;u1(i) = z1, i ∈ ∆3;

u2(i) = y1, i ∈ ∆1;u2(i) = y2, i ∈ ∆2;u2(i) = z2, i ∈ ∆3;

u3(i) = y1, i ∈ ∆1;u3(i) = z1, i ∈ ∆2;u3(i) = z2, i ∈ ∆3;

Since y1, y2, z1, z2 lie in different orbits of CH(x) on W1, it implies that
u1, u2 and u3 lie in different orbits of CG(v) on V . Then we will show that
uj, 1 ≤ j ≤ 3 can generate regular orbits of CG(v) on V . Let (f, σ) ∈
CG(v) ∩ CG(uj) for 1 ≤ j ≤ 3, where f ∈ H\ and σ ∈ S. Then we have that
f(i) ∈ CH(x) for each i ∈ Ω. Since y1, y2, z1, z2 lie in different CH(x)-orbit in
V , we have that σ ∈ StabS(∆) = 1.

Thus we conclude that f(i) ∈ CH(x)∩CH(yl) or CH(x)∩CH(zk) for each
i ∈ Ω, where k, l = 1 or 2. Thus f(i) is a 3-element of H for each i ∈ Ω.
Moreover, Take any element i0 ∈ ∆1 such that f(i0) ∈ CH(x) ∩ CH(y1) = 1.

Thus (f, σ) = (f, 1) ∈ H\ ∩ G = N is a 3-element and f(i0) = 1 for
some i0 ∈ Ω. Recall that |Ω| = t ≥ 3 and we can argue O3(N) = 1 since
O3(H) = 1 by hypothesis. Applying Lemma 31(the case p = 3), we can
conclude that f = 1. It implies that CG(v) ∩ CG(uj) = 1 for 1 ≤ j ≤ 3, as
desired. Thus G has at least three regular orbits on V ⊕ V , as desired.

Now we assume that |Ω| = 2 and S ∼= S2. Let v ∈ V such that v(i) = x
for each i ∈ Ω and consider the elements u1, u2, u3 ∈ V defined by

u1(1) = y1, u1(2) = y2;
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u2(1) = y1, u2(2) = y1;

u3(1) = y2, u3(2) = y2;

Clearly uj, 1 ≤ j ≤ 3 lie in different orbits of CG(v) on V . Then we will show
that CG(v) ∩ CG(u1) = 1 and CG(v) ∩ CG(uj) is 2-group for j = 2, 3.

Let (f, σ) ∈ CG(v) ∩ CG(uj), 1 ≤ j ≤ 3. We have that f(1), f(2) ∈
CH(x) ∩ CH(y1) or CH(x) ∩ CH(y2). Thus we can conclude that f(1) =
f(2) = 1 and consequently f = 1. When j = 1, σ = 1; and when j = 2, 3,
we have σ = (12). Thus CG(v) ∩ CG(u1) = 1 and CG(v) ∩ CG(uj) is 2-group
for j = 2, 3, as desired.

We will discuss it in the following two cases: O2(G) = 1 or O2(G) 6= 1.
If O2(G) = 1, then, in addition that G is of even order since G/N ∼= S2, we
can conclude that G-module V satisfies Property II, as desired.

Now we assume that O2(G) 6= 1. Clearly O2(H) = 1 since H is of odd
order. Thus we can argue that O2(N) = 1. Since G/N ∼= S2, we have
that G = N O2(G) and N ∩ O2(G) = 1. Consequently [N,O2(G)] = 1 and
Ĝ = H\ O2(G).

Take v′ ∈ V such that v′(1) = x and v′(2) = 0. Define u′j ∈ V, 1 ≤ j ≤ 2
as follows:

u′1(1) = y1, u
′
1(2) = z1;

u′2(1) = y1, u
′
2(2) = z2;

Now we claim that CG(v′) ∩ CG(u′j) = 1, 1 ≤ j ≤ 2. Let (f, σ) ∈
CG(v′) ∩ CG(uj), where f ∈ H\ and σ ∈ S.

Then σ = 1 and (f, σ) = (f, 1) ∈ G ∩ H\ = N . Consequently f(1) ∈
CH(x) ∩ CH(y1) = 1.

Now take ρ = (12) ∈ S, we can find a element (g, ρ) ∈ O2(G) for
some g ∈ H\ since Ĝ = H\ O2(G). Since [N,O2(G)] = 1, we have that
(f, 1)(g, ρ) = (g, ρ)(f, 1). Consequently f(1ρ) = g(1)−1f(1)g(1) = 1, that is,
f(2) = f(1ρ) = 1. Thus we have that f = 1, as claim.

We can observe that (v, u1), (v′, u′1) and (v′, u′2) lie in different regular
orbits ofG on V ⊕V , as desired. Thus the conclusion (5) is proved completely.

2.4 Proof of Theorem A
We prove:

Theorem 33 (Theorem A). Let G be a soluble group and let V be a faithful
completely reducible G-module, possibly of mixed characteristic. Suppose that
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H is a subgroup of G such that the semidirect product [V ]H is S4-free. Then
H has at least two regular orbits on V ⊕ V . Furthermore, if H is Γ(23)-free
and SL(2, 3)-free, then H has at least three regular orbits on V ⊕ V .

Our proof depends heavily on some results which are of independent in-
terest. The first one concerns the odd case.

Theorem 34. Let G be a soluble group and let V be an irreducible and
faithful G-module over GF(p), p an odd prime. If H ≤ G and H is of odd
order, then H has at least five regular orbits on V ⊕ V .

Proof. We argue by induction on |G|. By Lemma 15, we may assume that
V is an imprimitive G-module. Assume that V = V1 ⊕ · · · ⊕ Vm (m ≥ 2)
is a direct sum of subspaces which are permuted transitively by G. Write
Ω = {1, . . . ,m}, L = NG(V1) and N = CoreG(L). Then m = |G : L| and
S = G/N is a permutation group on Ω induced by the action of G on a right
transversal of L in G. By Lemma 2, we may assume without loss of generality
G is a subgroup of Ĝ = U o S, where U = NG(V1)/CG(V1) and L = NG(V1)
is a maximal subgroup of G and V = V Ω

1 . Since V is G-irreducible, we may
also assume that V1 is L-irreducible.

Let A = (L ∩H) CG(V1)/CG(V1). Then the triple (L,A, V1) satisfies the
hypotheses of the theorem. By induction, A has at least five regular orbits
on V1 ⊕ V1.

Assume that {V11, . . . , V1t} is the H-orbit of V1 in {V1, . . . , Vm}, t = |H :
L ∩ H|. Let W = V11 ⊕ · · · ⊕ V1t. It is clear that we may assume t ≥ 2.
Therefore, by Lemma 2, H/CH(V1) is isomorphic to a subgroup X of the
wreath product A o T = A\X, where T is a transitive permutation group on
Ω1 = {1, . . . , t} and the action H/CH(V1) on W is equivalent to the action
of X on V Ω1

1 . By [18, Corollary 5.7], T has an strong regular orbit on P(Ω1).
By Lemma 26, H has at least five regular orbits on W ⊕W . Thus H has at
least five regular orbits on V ⊕ V .

Lemma 35. Let G be a soluble group and V be an irreducible and faithful
G-module over GF(p), where p is a prime and p ≥ 5. Then G has at least
five regular orbits on V ⊕ V .

Proof. We suppose that the theorem is false and derive a contradiction. Let
G be a counterexample of minimal order. If V is a primitive G-module, it
follows from [5, Theorem 3.4] that eitherG has at least p ≥ 5 regular orbits on
V ⊕V . Now we assume V is an imprimitive G-module. Let V = V1⊕· · ·⊕Vm
(m ≥ 2) and G permutes {V1, . . . , Vm}. Without loss of generality, G is a
subgroup of Ĝ = U o S, where U = NG(V1)/CG(V1) and L = NG(V1) is
a maximal subgroup of G, S ∼= G/N is a primitive permutation group on
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Ω = {1, . . . ,m}, where N = CoreG(L), and V = V Ω
1 . Moreover, V1 is an

irreducible and faithful U -module. By induction, U has at least five regular
orbits on V1⊕V1. It follows from [26, Proposition 3.2(3)] that G has at least
five regular orbits on V ⊕ V .

The following important result provides the key to prove Theorem A.

Theorem 36. Let G be a soluble group and V be an irreducible and faithful,
G-module over GF(p). If H ≤ G and V H is S4-free, then either H has at
least three regular orbits on V ⊕ V or V , as H-module, is of type (I) or
type (II) (see Definition 27).

Proof. We suppose that the theorem is false and derive a contradiction. Let
G be a counterexample of minimal order. If V is a primitive G-module, it
follows from Lemma 14 that either H has at least three regular orbits on
V ⊕ V or the H-module V of type (I) or type (II). This contradicts the
choice of G. Consequently, V is an imprimitive G-module. Then, repeating
the arguments of the first part of the proof of Theorem 34 and using the
same notation, we may assume without loss of generality G is a subgroup
of Ĝ = U o S, where U = NG(V1)/CG(V1) and L = NG(V1) is a maximal
subgroup of G, S ∼= G/N , N = CoreG(L), and V = V Ω

1 . Moreover, V1 is an
irreducible L-module.

Let A = (L ∩H) CG(V1)/CG(V1). Then the triple (L,A, V1) satisfies the
hypotheses of the theorem. The minimal choice of G implies that either A
at least three regular orbits on V1 ⊕ V1 or V1, as A-module, is of type (I) or
type (II).

Let {V11, . . . , V1t} be the H-orbit of V1 in {V1, . . . , Vm}, t = |H : L ∩H|.
Let W = V11 ⊕ · · · ⊕ V1t. If we may assume t ≥ 2, then, by Lemma 2,
H/CH(W ) is isomorphic to a subgroup X of the wreath product AoT = A\X,
where T is a transitive permutation group on Ω1 = {1, . . . , t} and the action
H/CH(W ) on W is equivalent to the action of X on V Ω1

1 .
Write S∗ = HN/N ≤ S. Assume that S∗ is not transitive on Ω. Our

next aim is to prove that in this case S∗ has at least four strong regular
orbits on P(Ω). Suppose not. By Lemma 19, either |Ω1| ≤ 4 or O2′(S∗) acts
transitively on Ω1 and Π3(Ω1, T ) ≥ |T |.

If |Ω1| = 1, then W = V1 and H/CH(W ) has at least two regular orbits
on W ⊕W . Now we may assume that |Ω1| = t ≥ 2.

If the A-module V1 is of type (I) or type (II), then, by Lemma 29, we
have that H/CH(W ) has at least two regular orbits on W ⊕W .

Assume that A at least three regular orbits on V1⊕V1. If Π3(Ω1, T ) ≥ |T |,
thenH/CH(W ) has at least three regular orbits onW⊕W by Wolf’s formula.
Assume that |Ω1| ≤ 4. If p = 2 or, p 6= 2 and A is of order even, then
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H/CH(W ) has three regular orbits on W ⊕W by Lemma 26. If p 6= 2 and
A is of order odd, then H/CH(W ) has five regular orbits on W ⊕ W by
Lemma 34.

Consequently, in both cases, H/CH(W ) has at least two regular orbits
on W ⊕W . This implies that H has at least four regular orbits on V ⊕ V ,
contrary to assumption.

Thus S∗ has at least four regular orbits on P(Ω). Let Li = NG(Li) and
Hi = (Li ∩H)CG(Vi)/CG(Vi) for all i ∈ {1, . . . ,m}. Note that A = H1 and
L = L1. Arguing as before, we conclude that Hi has at least two regular
orbits on Vi ⊕ Vi for all i ∈ {1, . . . ,m}.

Choose ui, vi ∈ Vi⊕Vi generating two different regular Hi-orbits on Vi⊕Vi
for all i ∈ {1, . . . ,m}. Note that these elements can be chosen to satisfy the
following property: if Vi = V h

j for some h ∈ H, then ui = uhj and vi = vhj . In
particular, we have that ui, vj are not H-conjugate for all i, j ∈ {1, . . . ,m}.

Assume that ∆ ⊆ Ω lies in a regular orbit of S∗ on P(Ω). This means
that StabS∗(∆) = 1. We may assume that ∆ = {1, . . . , s}, s < m. Let
x = u1 + · · · + us + vs+1 + · · · + vn. Then CH(x) ≤ StabH(∆) ≤ N since
StabS∗(∆) = 1. This implies that CH(x) ≤ CN(ui) ≤ CH(Vi), 1 ≤ i ≤ s, and
CH(x) ≤ CN(vj) ≤ CH(Vj), s + 1 ≤ j ≤ m. Hence CH(x) ⊆

⋂
i CG(Vi) = 1

and x lies in an H-regular orbit on V ⊕ V .
Therefore every regular orbit of S∗ on P(Ω) determines a regular orbit

of H on V ⊕ V . In particular, H has at least four regular orbits on V ⊕ V .
This contradicts the choice of G.

Consequently, S∗ acts transitively on Ω. Then Ω = Ω1, S∗ = T , V = W .
We may assume that X = H and so H is a subgroup of Ĥ = A o T = A\H.

If A had at least three regular orbits on V1 ⊕ V1, then H would have
at least three regular orbits on V ⊕ V by Lemmas 26 and 34. This would
contradict the choice of G. Therefore, V1 is an A-module of type (I) or (II).

Assume that T has a strong regular orbit on P(Ω). Since, by Lemma 28,
A has two regular orbits on V1⊕V1, it follows that Ĥ has at least two regular
orbits on V ⊕ V by Wolf’s formula. If |Ĥ : H| ≥ 2, then H would have at
least four regular orbits on V ⊕ V , against the choice of G. Thus H = Ĥ.

Assume that T has even order. If V1 is of type (I), 3 divides |A| and
so H has a subgroup isomorphic to C3 o C2. In particular, H is not S3-free.
This contradicts our assumption since H is S3-free by Lemma 7. If V1 is of
type (II), then H has a subgroup isomorphic to SL(2, 3) o C2 which has a
section isomorphic to S4, which is not the case. Therefore |T | is odd. In this
case, we can apply Corollary 21 to conclude that T has at least four strong
regular orbits on P(Ω), and so H has at least four regular orbits on V ⊕ V
by Wolf’s formula, unless (T, d(T )) = (A3, 3) or (Γ(23), 7). In any case we
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have (T, d(T )) ∈ K and the H-module V is of type (I) or (II), a conclusion
which contradicts our choice of G.

Consequently, T has not strong regular orbits on P(Ω). By Lemma 20,
either |Ω| = 2, T ∼= S2 or O2′(S∗) acts transitively on Ω and there exists
3-partition {∆1,∆2,∆3} of Ω such that

⋂
i StabS ∆i = 1. We can then apply

Lemma 29 to conclude that H has at least three regular orbits on V ⊕ V .
This is the desired contradiction.

The Proof of Theorem A. We argue by induction on |G|+ |H|+ |V |.
Assume that V is not an irreducible G-module. Then there exist non-zero
G-submodules V1 and V2 such that V = V1 ⊕ V2. Clearly, Vi is a faithful,
completely reducible G/CG(Vi)-module, i = 1, 2. Since HCG(Vi)/CG(Vi)
satisfies the hypotheses of the theorem, we conclude that H CG(Vi)/CG(Vi)
has at least two regular orbits on Vi⊕Vi, i = 1, 2. Moreover, if H is Γ(23)-free
and SL(2, 3)-free, then HCG(Vi)/CG(Vi) has three regular orbits on Vi ⊕ Vi
for each i. Therefore we may assume that V is an irreducible G-module over
GF(p) for some prime p. Applying Theorem 36 we conclude that either H
has at least three regular orbits on V ⊕ V or V , as H-module, is of type (I)
or type (II). In the latter case, H has at least two regular orbits on V ⊕ V
by Lemma 28. Note that if H is Γ(23)-free and SL(2, 3)-free, then H-module
V is not of type (I) or type (II), and so H has at least three regular orbits
on V ⊕ V by Theorem 36.

We now draw a series of conclusions from Theorem A.

Corollary 37 ([29]). Let G be a soluble group acting completely reducibly
and faithfully on an odd order module V . Suppose that H is a subgroup of
G. If H is nilpotent or 3 - |H|, then H has at least three regular orbits on
V ⊕V . If the Sylow 2-subgroup of the semidirect product V H is abelian, then
H has at least two regular orbits on V ⊕ V .

Corollary 38 (see [5, Theorem 1.1]). Let G be a soluble group and V be a
faithful completely reducible G-module. Suppose that (|G|, |V |) = 1. Then G
has at least two regular orbits on V ⊕ V .

Proof. Arguing by induction on |V | + |G|, we may assume that V is an
irreducible and faithful G-module over GF(p) for some prime p.

Applying Lemma 35, we may assume that p = 2 or 3. In both cases, V G
is S4-free. From Theorem 36, G has at least two regular orbits on V ⊕ V
when p = 2, 3.

Our next corollary shows that Theorem A of [24] holds for supersoluble
subgroups of a soluble group provided that |V | is odd.
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Corollary 39. Let G be a soluble group acting completely reducibly and faith-
fully on an odd order module V . If H is a supersoluble subgroup of G, then
H has at least two regular orbits on V ⊕ V .

Proof. Note that H is S4-free. Since V is of odd order, HV is S4-free. By
Theorem A, H has at least two regular orbits on V ⊕ V .

2.5 Proof of Theorem B
We prove:

Theorem 40 (Theorem B). Let G be a finite soluble group and V be a fi-
nite faithful completely reducible G-module (possibly of mixed characteristic).
Suppose that H is a supersoluble subgroup of G. Then H has at least one
regular orbit on V ⊕ V .

The following theorem is crucial.

Theorem 41. Let G be a soluble group and let V be an irreducible and
faithful G-module over GF(2). If H is a odd order supersoluble group of G,
then H has at least four regular orbits on V ⊕ V or H-module V satisfies
Property I.

Proof. We argue by induction on |G|. By Lemma 17, H has four regular
orbits on V ⊕ V or |V | = 23, H = Γ(V ) ∼= [C7]C3. The later case satisfies
Property I, as desired. Now we may assume that V is an imprimitive G-
module. Assume that there V = V1 ⊕ ... ⊕ Vm(m ≥ 2) is a direct sum of
subspaces which are permuted transitively by G. If we do this so that m is
as small as possible, then we can assume that L = NG(V1) is maximal in G,
and we observe also that L acts irreducibly on V1. Write U = L/CG(V1) and
V1 is a faithful, irreducible U -module.

Assume that Ω1, ...,Ωs(s ≥ 1) are the all H-orbit in {V1, ..., Vm}. Write
Wj = ΣW∈ΩjW . Firstly We claim that H/CH(Wj) has at least four regular
orbits on Wj ⊕Wj or H/CH(Wj)-module Wj satisfies Property I for each
j.

Without loss of generality, we only consider the case j = 1 and assume
that Ω1 = {V1, ..., Vt}, t = |H : L ∩ H|. Write W = W1, K = H/CH(W1)
and J = NK(V1)/CK(V1).

Now we claim that K has at least four regular orbits on W ⊕ W or
K-module W satisfies Property I. Observe that the action of J on V1 is
equivalent to the action of (L ∩ H) CG(V1)/CG(V1)(denote by A) ≤ U on
V1. Then the triple (U,A, V1) satisfies the hypotheses of the theorem. By
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induction, A(also J) has at least four regular orbits on V1 ⊕ V1 or A(also
J) -module V1 satisfies Property I. If J has at least four regular orbits on
V1 ⊕ V1, then it follows from Lemma 32(a) that K has at least four regular
orbits on W ⊕W , as claim. If J-module V1 satisfies Property I, since |H|
is odd, then it follows from Lemma 32(c) that K has at least four regular
orbits on W ⊕W or K-module W satisfies Property I, as claim.

Thus H/CH(Wj) has at least two regular orbits on Wj ⊕ Wj for each
1 ≤ j ≤ s. If s ≥ 2, then H has at least four regular orbits on V ⊕ V
by Lemma 3, as desired. Now we may assume that s = 1, that is, H acts
transitively on {V1, ..., Vm}. Thus H = K and W = V , and consequently H
has at least four regular orbits on V ⊕V orH-module V satisfies Property I.
The theorem is proved.

Theorem 42. Let G be a soluble group and V be an irreducible and faithful,
G-module over GF(2). If H is a supersoluble subgroup of G, then either
H has at least three regular orbits on V ⊕ V or V , as H-module, satisfies
Property I or Property II.

Proof. Work by induction on |GV |. If V is a primitive G-module, it follows
from Lemma 16 that either H has at least three regular orbits on V ⊕ V or
H-module V satisfies

(1) |V | = 22 and H = Γ(V ) ∼= S3; or
(2) |V | = 23 and H = Γ(V ) ∼= [C7]C3.
It is not difficult to find that the case (1) satisfies Property II and the

case (2) satisfies Property I, as desired. Consequently, we assume that V is
an imprimitive G-module. Then there V = V1 ⊕ ...⊕ Vm(m ≥ 2) is a direct
sum of subspaces which are permuted transitively by G. If we do this so that
m is as small as possible, then we can assume that L = NG(V1) is maximal in
G, and we observe also that L acts irreducibly on V1. Write U = L/CG(V1)
and V1 is a faithful, irreducible U -module.

Assume that Ω1, ...,Ωs(s ≥ 1) are the all H-orbit in {V1, ..., Vm}. Write
Wj = ΣW∈ΩjW .

Firstly We claim that H/CH(Wj) has at least three regular orbits on
Wj⊕Wj or H/CH(Wj)-moduleWj satisfies Property I or Property II for
each j.

Without loss of generality, we only consider the case j = 1 and as-
sume that Ω1 = {V1, ..., Vt}, t = |H : L ∩ H|. Write W = W1, K =
H/CH(W1) and J = NK(V1)/CK(V1). Then W is a faithful H-module.
Observe that the action of J on V1 is equivalent to the action of (L ∩
H) CG(V1)/CG(V1)(denoted byA) ≤ U on V1. Then the triple (U,A, V1)
satisfies the hypotheses of the theorem. By induction, either A( also J)
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has at least three regular orbits on V1 ⊕ V1 or A( alsoJ)-module V1 satisfies
Property I or Property II.

If J-module V1 satisfies Property I, it follows from Lemma 32(5) that
our claim holds. If J-module V1 satisfies Property II, it follows from
Lemma 32(4) that our claim holds. Now we assume that J has at least
three regular orbits on V1 ⊕ V1. If J is of even order, then K has at least
three regular orbits on W ⊕W by Lemma 32(2). If J is of odd order, then
A is of odd order and the triple (U,A, V1) satisfies the hypotheses of Theo-
rem 41. Thus A(also J) has at least four regular orbits on V1 ⊕ V1 or A(also
J) -module V1 satisfies Property I. If J has at least four regular orbits on
V1⊕ V1, then K has at least four regular orbits on W ⊕W by Lemma 32(1),
as claim. If J-module V1 satisfies Property I, then, by Lemma 32(5) again,
our claim holds.

Now we have proven that H/CH(Wj) has at least three regular orbits on
Wj⊕Wj or H/CH(Wj)-moduleWj satisfies Property I or Property II for
each 1 ≤ j ≤ s. In particular, H/CH(Wj) has at least one regular orbits
on Wj ⊕ Wj for each 1 ≤ j ≤ s. If there exists some j ∈ {1, ..., s} such
that H/CH(Wj) has at least three regular orbits on Wj ⊕Wj, then we can
conclude that H has at least three regular orbits on V ⊕ V by Lemma 3, as
desired.

Now we can assume that H/CH(Wj)-module Wj satisfies Property I or
Property II for each 1 ≤ j ≤ s. Thus if s = 1, then V , as H-module,
satisfies Property I or Property II, as desired. Thus s ≥ 2.

Take C = {1 ≤ j ≤ s : H/CH(Wj)-module Wj satisfies Property II};
Firstly we assume that C = ∅. Then H/CH(Wj)-module Wj satisfies

Property I for each 1 ≤ j ≤ s. It implies that H/CH(Wj) has at least two
regular orbits on Wj ⊕Wj. Since s ≥ 2, then we can conclude that H has at
least four regular orbits on V ⊕ V by Corollary 3, as desired.

Now we assume that C 6= ∅, then, without loss of generality, we may
assume that C = {1, ..., l} for some 1 ≤ l ≤ s.

Write Kj = H/CH(Wj). For j = 1, we have
• K1 is an even order group and O2(K1) = 1.
• Then there exists 0 6= x1 ∈ V1 and CK1(x1) has three different orbits

on V1 with representations y1, z1, z2 such that CK1(x1) ∩ CK1(y1) = 1 and
CK1(x1) ∩ CK1(zi) is a 2-group for i = 1, 2.

Recall that Kj has at least one regular orbit on Vj⊕Vj for each 2 ≤ j ≤ s.
We can assume that CKj(xj) ∩ CKj(yj) = 1 for some xj, yj ∈ Vj.

Thus we can conclude that CH(xj)∩CH(yj) ⊆ CH(Wj) for each 1 ≤ j ≤ s
and Xi/CH(W1) is a 2-group, where Xi = CH(x1) ∩ CH(zi) for i = 1, 2.

Write v =
∑s

i=1 xi, u =
∑s

i=1 yi, w1 = z1 +
∑s

i=2 yi and w2 = z1 +
∑s

i=2 yi.
It is not difficult to find that u,w1, w2 lie in different orbits of CH(v) on V .
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Moreover, we have

CH(v) ∩ CH(u) =
s⋂
j=1

CH(xj) ∩ CH(yj) ⊆
s⋂
j=1

CH(Wj) = 1;

and

CH(v) ∩ CH(wi) ⊆ Xi ∩
s⋂
j=2

CH(Wj) ∼= (Xi ∩
s⋂
j=2

CH(Wj)) CH(W1)/CH(W1)

is a 2-group for i = 1, 2.
On the other hand, H is of even order since H/CH(Wj) is of even order.

Moreover, for each j ∈ C, we have that H/CH(Wj) is an even order group
and O2(H/CH(Wj)) = 1; and for each j ∈ {1, ..., s} − C, we have that
H/CH(Wj) is an odd order group. Thus O2(H) ≤ ∩si=1 CH(Wj) = 1. Thus
H-module V satisfies Property II, as desired. Thus the theorem is proved
completely.

The Proof of Theorem B. Assume that the theorem is false and let
(G,H, V ) be the counterexample such that |G|+|H|+|V |minimal. Firstly we
can claim that V is an irreducible G-module. Assume not; let V = V1 ⊕ V2,
where 0 6= Vi is a G-module. Then Vi is a faithful, completely reducible
G/CG(Vi)-module. Observe that H CG(Vi)/CG(Vi) satisfies the hypotheses.
Thus by the choice of (G,H, V ), H CG(Vi)/CG(Vi) has at least one regular
orbit on Vi ⊕ Vi. Thus H has at least one regular orbits on V ⊕ V , against
the choice of (G,H, V ). Thus V is an irreducible G-module over the field
of characteristic p for some prime p. Then V is a completely reducible G-
module over GF(p), the filed of p elements. Arguing as above, we may assume
that V is an irreducible, faithful G-module over GF(p). If p is odd, then it
follows from Corollary 39 that H has at least two regular orbits on V ⊕ V .
Thus we may assume that p = 2. It follows from Theorem 42 that H has at
least three regular orbits on V ⊕ V , or H-module V satisfies Property I or
Property II. In all these cases above, we can conclude that H has at least
one regular orbit on V ⊕ V and the main theorem is completely proved.
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Chapter 3

Application I: On Gluck’s
conjecture

Suppose that a group H acts on an abelian group A. Then H acts on the
set A? = Irr(A) of all complex characters of A: for any χ ∈ A? and h ∈ H,
χh is defined by setting χh(a) = χ(ah

−1
), a ∈ A.

Lemma 43. Suppose that a group H acts on an abelian group A. Then

1. CH(A) = CH(A?).

2. If A = A1 × · · · × An and Ai is H-invariant, then (A1)? × · · · × (An)?

i and A? are H-isomorphic.

3. If A is a completely reducible H-module, then A? is a completely re-
ducible H-module.

Proof. 1. Let h ∈ CH(A) and any χ ∈ A?. Then χh(a) = χ(ah
−1

) =
χ(a),∀a ∈ A. Thus χh = χ and so h ∈ CH(A?). On the other hand, for
any h ∈ CH(A?) and any a ∈ A, we have

χ(ah
−1

a−1) = χ(ah
−1

)χ(a)−1

= χh(a)χ(a)−1 = χ(a)χ(a)−1 = 1,∀χ ∈ A?.

Thus ah−1
a−1 ∈

⋂
χ∈A? Kerχ = 1 and so h ∈ CH(A).

2. Let

ϕ : (A1)? × · · · × (An)? −→ A∗; (χ1, . . . , χn) 7→ χ(a) = Πn
i=1χi(ai),

where a = Πn
i=1ai ∈ A and ai ∈ Ai. It is not difficult to verify that ϕ is

a group-isomorphism. Now we show that it is an H-isomorphism. For

55
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any (χ1, . . . , χn) ∈ (A1)? × · · · × (An)?, h ∈ H, a = Πn
i=1ai ∈ A and

ai ∈ Ai, we have

ϕ((χ1, . . . , χn)h)(a) =
n∏
i=1

χi(a
h−1

i ) = ϕ((χ1, . . . , χn))(ah
−1

)

= ϕ((χ1, . . . , χn))h(a).

Then we have ϕ((χ1, . . . , χn)h) = ϕ((χ1, . . . , χn))h, as desired.

3. Suppose that A = A1×· · ·×An for some irreducible H-modules Ai, for
each 1 ≤ i ≤ n. Then, by (2), (A1)? × · · · × (An)? ∼=H A?. Since Ai is
an irreducible H-module, we have (Ai)

? is an irreducible H-module by
[18, Proposition 12.1]. Thus A? is a completely reducible H-module.

Lemma 44. Assume that a group X acts on an abelian group U and let
G = [U ]X be the corresponding semidirect product. Then |X : CX(λ)| ≤ b(G)
for each λ ∈ U?.

Proof. For each λ ∈ U? = Irr(U), given χ ∈ Irr(G, λ) we have that χ(1) >
|G : CG(λ)| by Theorem [12, Theorem 19.3]. Since U is abelian, we have
U ⊆ CG(λ) and so CG(λ) = U CX(λ). Thus |X : CX(λ)| = |G : CG(λ)| ≤
χ(1) ≤ b(G), as desired.

We are now ready to prove our third main result.

Theorem 45 (Theorem C). Let G be a soluble group satisfying one of the
following conditions:

1. G is S4-free;

2. G/F(G) is S4-free and F(G) is of odd order;

3. G/F(G) is S3-free;

4. G/F(G) is supersoluble.

Then Gluck’s conjecture is true for G.

Proof. Set U = F(G)/Φ(G) and V = U? = Irr(U). According to [3, Theo-
rem A.10.6], there exists a subgroup X of G = G/Φ(G) such that G = UX
and U ∩ X = 1 and U is a faithful completely reducible X-module. By
Lemma 43, V is a faithful completely reducible X-module. Let U1 be the
Hall 2′-subgroup and let U2 be the Sylow 2-subgroup of U . Then U = U1×U2.
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Applying Lemma 43, we have that W = W1 ⊕W2, where Wi = (Ui)
?, is X-

isomorphic to V , and CX(Wi) = CX(Ui), i = 1, 2.
With the above observations in mind, the burden lies in proving that X

has a regular orbit on W ⊕W .
Assume that G is S4-free. Since U2X/CX(U2) is S4-free, we have that

X/CX(W2) = X/CX(U2) is S3-free by Corollary 7. Applying again this
corollary, we have that W2X/CX(W2) is S4-free. Since X/CX(W1) is S4-free,
we have W1X/CX(W1) is S4-free as W1 is 2′-group. By Theorem A that
X/CX(Wi) has at least two regular orbits on Wi⊕Wi, i = 1, 2. This implies
that X has a regular orbit on W ⊕W .

If G satisfies Statement (2), then W2 = 1 and W = W1. Since X is S4-
free, WX is S4-free. It follows from Theorem A that X has a regular orbit
on W ⊕W .

Assume that G satisfies Statement (3). Since X is S3-free, we have
X/CX(W2) is S3-free. It follows from Corollary 7 that W2X/CX(W2) is
S4-free. Since X/CX(W1) is S4-free, we have W1X/CX(W1) is S4-free since
W1 is 2′-group. Thus WiX/CX(Wi) is S4-free for both i = 1, 2. It follows
from Theorem A that X/CX(Wi) has at least two regular orbits on Wi⊕Wi,
i = 1, 2. Thus X has a regular orbit on W ⊕W .

Assume that G/F(G) is supersoluble. Then X is supersoluble and V is
a faithful, completely reducible X-module. By Theorem B, X has a regular
orbit on V ⊕ V .

Thus X has a regular orbit on V ⊕ V in all cases. Then there exists
λ ∈ V such that |CX(λ)| ≤ |X|1/2. Consequently |X|1/2 ≤ |X : CX(λ)|. By
Lemma 44, we have that |X|1/2 ≤ b(G/Φ(G)). Thus |G : F(G)| = |X| ≤
b(G)2.

We derive now some results related to Gluck’s conjecture. The first one
is part of [2, Theorem 7].

Corollary 46. Let G be a soluble group and let H be a π-Hall subgroup of
G, where π = π(F(G)). Then |G : H| ≤ b(G)2.

Proof. Let K be a Hall π′-subgroup of G. Since (|K|, |U |) = 1, we have
CK(U) ≤ CK(F(G)) ≤ K ∩F(G) = 1. Thus U and V are faithful completely
reducible K-modules. By Lemma 44, |G : H| = |K| ≤ b(G)2.

The second one is part of [2, Corollary 2].

Corollary 47. Let G be a soluble group. If |G/F(G)| is not divisible by 6,
then Gluck’s conjecture holds.

Corollary 48. [29, Theorem 4.6] Let G be a soluble group. Then |G :
F(G)|3′ ≤ b(G)2.
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Proof. Let K be a 3′-Hall subgroup of X. Clearly KV is S4-free, by Theo-
rem A, K has a regular orbit on V ⊕ V . Thus there exists λ ∈ V such that
|CK(λ)| ≤ |K| 12 . By Lemma 44,

|K|
1
2 ≤ |K : CK(λ)| ≤ |X : CX(λ)| ≤ b(G/Φ(G)).

Consequently |G : F(G)|3′ = |K| ≤ b(G)2.

Our last result of this chapter generalises a theorem of T. M. Keller and
Y. Yang [16, Theorem 1.2] by replacing the nilpotent residual by the residual
with respect to the saturated formation Σ3 of all S3-free groups.

Theorem 49. Let G be a soluble group and V a faithful completely reducible
G-module, possibly of mixed characteristic. Let M be the largest orbit size in
the action of G on V . Then

|G : GΣ3| ≤M2.

Proof. Let H be a Σ3-projector of G. Then GΣ3H = G and H ∈ Σ3. Then
H is S3-free and clearly HV is S4-free. By Theorem A, H has a regular orbit
on V ⊕ V . It implies that |CH(v)| ≤ |H|1/2 for some v ∈ V . Let MH be the
largest orbit size of H on V . Then it follows that |H| ≤ |H : CH(v)|2 ≤M2

H .
Hence clearly |G/GΣ3| ≤ |H| ≤M2

H ≤M2, as desired.



Chapter 4

Application II: Intersections of
subgroups

This chapter has as its main theme the study of intersections of normalis-
ers and prefrattini subgroups of finite soluble groups associated to saturated
formations and intersections of injectors associated to Fitting classes. It pro-
vides answers to two questions raised by Kamornikov and Shemetkov and
Vasil’ev in the Kourovka Notebook [19].

Problem 1. [19, Kamornikov, Problem 17.55] Does there exist an absolute
constant k such that the Frattini subgroup Φ(G) of a soluble group G is the
intersection of k G-conjugates of any prefrattini subgroup H of G?

Problem 2. [19, Shemetkov and Vasil’ev, Problem 17.39] Is there a positive
integer k such that the hypercentre of any finite soluble group coincides with
the intersection of k system normalisers of that group? What is the least
number with this property?

The main results of the chapter can be summarised in the following the-
orem.

Theorem 50 (Theorem D). Let G be a soluble group and let H be a subgroup
of G. Assume that one of the following statements holds.

1. H is an F-prefrattini subgroup of G for some saturated formation F;

2. Φ(G) = 1 and H is a F-normaliser of G for some saturated forma-
tion F;

3. H is an F-injector of G for some Fitting class F.
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Then there exists x, y, z ∈ G such that H∩Hx∩Hy∩Hz = CoreG(H), the
largest normal subgroup of G contained in H. Furthermore, if G is S4-free or
F is composed of S3-free groups, there exists x, y ∈ G such that H∩Hx∩Hy =
CoreG(H).

Corollary 51 ([17]). If I is a nilpotent injector of a soluble group G, then
(G, I,F(G)) is a 3-conjugate system.

4.1 Background results
In the sequel, F will be a saturated formation. We begin with an elemen-

tary observation which will be used throughout the chapter.

Lemma 52 ([3, Lemma A.16.3]). Let G = NH be a semidirect product of a
normal subgroup N with a subgroup H.

(a) If n ∈ N , then H ∩Hn = CH(n),
(b) CoreG(H) = CH(N).

Our next lemmas turn out to be crucial in the proof of our results about
prefrattini subgroups.

Lemma 53. Let N be a minimal normal subgroup of a soluble group G.
Assume that M is an F-abnormal maximal subgroup of G complementing N
in G. Then PrefF(G) =

⋃
g∈GPrefF(M g).

Proof. Since F-prefrattini subgroups of G are conjugate in G, it suffices to
show that PrefF(M) ⊆ PrefF(G).

Let H = W (M,ΣM ,F) be the F-prefrattini subgroup of M associated to
the Hall system ΣM of M . Let p be the prime dividing the order of N and
let P be the Sylow p-subgroup of M in Σ. Then Σ = ΣM ∪ {PN} is a Hall
system of G.

Let 1 = A0 ≤ A1 ≤ · · · ≤ An = M be a chief series of M , and let
{Ai/Ai−1 | i ∈ I} be the set of all complemented F-eccentric chief factors in
this series. By [1, Proposition 4.3.6], H = W (Σ) =

⋂
i∈IMi, where Mi is a

maximal subgroup of M , complementing Ai/Ai−1 in G, into which the Hall
system ΣM reduces, i ∈ I. Consider the following chief series of G:

1 ≤ N = A0N ≤ A1N ≤ · · · ≤ AnN = MN = G

Then AiN/Ai−1N is a complemented F-eccentric chief factor of G if and
only if Ai/Ai−1 is a complemented F-eccentric chief factor of M . Moreover,
N is an F-eccentric chief factor of G which is complemented by M , and Σ



4.2. MAIN RESULTS 61

reduces into M . Thus {N,Ai/Ai−1 | i ∈ I} is the set of all complemented
F-eccentric chief factors in the above chief series.

On the other hand, MiN is a maximal subgroup of G complementing
AiN/Ai−1N in G and Σ reduces into MiN for all i ∈ I. Applying [1, Propo-
sition 4.3.6], M ∩ (

⋂
i∈IMiN) =

⋂
i∈IMi(M ∩ N) =

⋂
i∈IMi = H is the

F-prefrattini subgroup of G associated to Σ.

Remark 54. Under the hypotheses of Lemma 53, (H∩Hm)N = HN∩HmN
for all m ∈M .

Proof. HN ∩HmN = (H ∩HmN)N = (H ∩M ∩HmN)N and M ∩HmN =
Hm(M ∩N) = Hm.

Lemma 55. Let N be a minimal normal subgroup of a soluble group G.
Assume that M is an F-abnormal maximal subgroup of G complementing N
in G. Then LF(G) = CLF(M)(N).

Proof. By Lemma 53, we have:

LF(G) =
⋂
{H : H ∈ PrefF(G)}

=
⋂
g∈G

⋂
{H : H ∈ PrefF(M g)}

=
⋂
g∈G

LF(M)g = CoreG(LF(M)).

Since LF(G)∩N ≤M∩N = 1, we have LF(G) ≤ CLF(M)(N). On the other
hand, since CLF(M)(N) is normalised by M and centralised by N , we have
that CLF(M)(N) is normal in G and hence CLF(M)(N) ≤ CoreG(LF(M)) =
LF(G).

Lemma 56 ([5, Theorem 1.4]). Let G be a soluble group and V a finite faith-
ful G-module. If V is completely reducible (possibly of mixed characteristic),
then there exist v1, v2, v3 ∈ V such that CG(v1) ∩ CG(v2) ∩ CG(v3) = 1.

4.2 Main results

We have considered convenient to give the following definition.

Definition 57. A 3-tuple (G,X, Y ) is said to be a k-conjugate system if G
is a group, X, Y are subgroups of G with Y = CoreG(X), and there exist k
elements g1, . . . , gk such that Y =

⋂k
i=1X

gi .
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Assume we are trying to prove a result of the following type: Let G
be a soluble group and let H be an F-prefrattini subgroup of G. Then
(G,H,LF(G)) is a k-conjugate system.

Assume the statement is false. Thus there would exist a counterexample
G of minimal order. Let H be an F-prefrattini subgroup of G such that
(G,H,LF(G)) is not a k-conjugate system. Then:

(i) LF(G) = 1. In particular, Φ(G) = 1.

For suppose that X is a minimal normal subgroup of G contained in
LF(G). Then H/X is an F-prefrattini subgroup of G by Lemma 11. There-
fore, because |G/X| < |G|, it follows that (G/X,H/X,LF(G/X)) is a k-
conjugate system. Since LF(G/X) = LF(G)/X by Lemma 12, we have that
(G,H,LF(G)) is a k-conjugate system, giving a contradiction. Thus State-
ment (i) must hold.

Also (ii) There exists a minimal normal subgroup N and an F-abnormal
maximal subgroupM containing H of G such that G = MN andM ∩N = 1
and (M,H,LF(M)) is a k-conjugate system.

Let N be the minimal normal subgroup of G. Then N is a p-group for
some prime p. By Statement (i), N is not contained in LF(G) = 1 and so
there exists an F-abnormal maximal subgroup of M such that G = NM
and N ∩M = 1. By Lemma 53, we may assume that H is an F-prefrattini
subgroup ofM . Again by choice of G, (M,H,LF(M)) is a k-conjugate system
and therefore there exist m1, . . . , mk ∈M such that

⋂k
i=1H

mi = LF(M).

(iii) Assume that N is a p-group for some prime p and L = LF(M). Then
N is a faithful completely reducible L-module over GF(p), the finite field of
p-elements.

Clearly N is an irreducibleM -module over GF(p). By [3, Theorem B.7.3],
N is a completely reducible L-module. By Lemma 55 and Statement (i),
CL(N) = 1 and so N is faithful for L.

Let T = LN . Then CoreT (L) = 1. Moreover:

(iv) (T, L, 1) is not a k-conjugate system.

Assume that (T, L, 1) is a k-conjugate system. Let n1, . . . , nk ∈ N such
that

⋂k
i=1 L

ni = 1. We consider the subgroup D =
⋂k
i=1H

mini . Then

D ≤
k⋂
i=1

HminiN =
k⋂
i=1

HmiN = (
k⋂
i=1

Hmi)N = LN



4.2. MAIN RESULTS 63

by Remark 54. Then

D = D ∩ LN =
k⋂
i=1

Hmini ∩ LN

=
k⋂
i=1

(Hmi ∩ LN)ni =
k⋂
i=1

Lni = 1 = LF(G).

Therefore (G,H,LF(G)) is a k-conjugate system, against our supposition.
The next two theorems subsume the main result of [15] and give a com-

plete answer to a general version of Question 1.

Theorem 58. Let H be an F-prefrattini subgroup of a soluble group G. Then
(G,H,LF(G)) is a 4-conjugate system.

Proof. Assume that the result is not true and let G be a counterexample of
minimal order such that (G,H,LF(G)) is not a 4-conjugate system. Then
Statements (i)–(iv) hold for k = 4. By Statement (iii), N is a faithful com-
pletely reducible L-module over GF(p) for some prime p. By Lemma 56,
there exist v1, v2, v3 ∈ N such that CL(v1) ∩ CL(v2) ∩ CL(v3) = 1. It implies
that L ∩ Lv1 ∩ Lv2 ∩ Lv3 = 1 by Lemma 52. Thus (T,L, 1) is a 4-conjugate
system, contrary to Step (iv).

Theorem 59. Let H be an F-prefrattini subgroup of a soluble group G.
Assume that either G is S4-free or F is composed of S3-free groups. Then
(G,H,LF(G)) is a 3-conjugate system.

Proof. Suppose, arguing by contradiction, that (G,H,LF(G)) is not a 3-
conjugate system. Let us choose G a counterexample of least order. Then
Statements (i)–(iv) hold for k = 3. By Statement (iii), L ∩ N = 1 and
N is a faithful completely reducible L-module over GF(p) for some prime
p. If G is S4-free, then LN is S4-free. Assume that F is composed of S3-
free groups. Recall that L = LF(M), by [1, Proposition 4.3.17], L/Φ(M) =
ZF(M/Φ(M)). Let X be the class of all soluble S3-free groups. By Lemma 10,
X is a subgroup-closed saturated formation. Since F ⊆ X by hypothesis,
it follows that ZF(M/Φ(M)) ≤ ZX(M/Φ(M)). By [3, Theorem IV.6.15],
ZX(M/Φ(M)) ∈ X. Thus L/Φ(M) = ZF(M/Φ(M)) is S3-free. Then, by
Lemma 10, L is S3-free. If p is odd, then LN is S4-free by Lemma 6 and if
p = 2, then LN is S4-free by Corollary 7. In both cases, we can apply Theo-
rem A to conclude that there exist v1, v2 ∈ N such that CL(v1)∩CL(v2) = 1.
Thus, by Lemma 52, (T, L, 1) is a 3-conjugate system, contrary to State-
ment (iv).
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If F = N, the formation of all nilpotent groups, then LF(G) = L(G)
is the intersection of all self-normalising maximal subgroups of G. It is a
characteristic nilpotent subgroup of G that was introduced by Gaschütz in
[8]. If F is the trivial formation, then LF(G) = Φ(G), the Frattini subgroup
of G. Hence:

Corollary 60 ([14]). If G is soluble and H is an N-prefrattini subgroup of
G, then (G,H,L(G)) is a 3-conjugate system.

Corollary 61 ([15]). If G is soluble and H is a prefrattini subgroup of G,
then (G,H,Φ(G)) is a 3-conjugate system.

The proof of our next theorem depends on a nice result about factori-
sations of prefrattini subgroups proved in [10, Theorem 4.1] (see [1, Theo-
rem 4.3.32]).

Lemma 62. If D is an F-normaliser and W is a prefrattini subgroup of a
soluble group G, both associated to the Hall system Σ of G, then D and W
permute and DW is the F-prefrattini subgroup of G associated to Σ.

Theorem 63. Let D be an F-normaliser of a soluble group G. If Φ(G) = 1,
then (G,D,ZF(G)) is a 4-conjugate system.

Proof. Let D be the F-normaliser of G associated to the Hall system Σ.
Assume that H is the F-prefrattini subgroup of G associated to Σ. Then,
by Lemma 62, we have D ≤ H. Since Φ(G) = 1, it follows by [1, Proposi-
tion 4.3.17] that LF(G) = ZF(G). By Theorem 58, we have that (G,H,ZF(G))
is a 4-conjugate system. Hence

ZF(G) ≤ D ∩Dx ∩Dy ∩Dz

≤ H ∩Hx ∩Hy ∩Hz

= ZF(G).

Thus (G,D,ZF(G)) is a 4-conjugate system.

Theorem 64. Let D be an F-normaliser of a soluble subgroup G such that
Φ(G) = 1. Assume that either G is S4-free or F is composed of S3-free groups.
Then (G,D,ZF(G)) is a 3-conjugate system.

Proof. Assume that Σ is the Hall system of G to which D is associated.
Let H be the F-prefrattini subgroup of G associated to Σ. By Theorem 59,
(G,H,LF(G)) is a 3-conjugate system. Since D ≤ H by Lemma 62 and
LF(G) = ZF(G) by [1, Proposition 4.3.17], it follows that (G,D,ZF(G)) is a
3-conjugate system.



4.2. MAIN RESULTS 65

Recall that if F = N is the formation of all nilpotent groups, then the N-
normalisers of a soluble group G are exactly the system normalisers of G and
ZN(G) = Z∞(G) is the hypercentre of G. Therefore the answer of Question 2
for groups with trivial Frattini subgroup is contained in the following:

Corollary 65. Let G be a soluble group with Φ(G) = 1. If D is a system
normaliser of G, then (G,D,Z∞(G)) is a 3-conjugate system.

Our next example shows that (G,D,Z∞(G)) is not a 2-conjugate system
in general.

Example 1. Let D be the dihedral group of order 8. Then D has an ir-
reducible and faithful module V of dimension 2 over the field of 3-elements
such that CD(v) 6= 1 for all v ∈ V . Let G = V o D be the corresponding
semidirect product. Then D is a system normaliser of G and Z∞(G) = 1. By
[3, Lemma A.16.3], D∩Dv = CD(v) 6= 1 for all v ∈ V . Hence (G,D,Z∞(G))
is not a 2-conjugate system.

Our last theorem has Mann’s result ([17]) as starting point and analyses
the intersections of injectors associated to Fitting classes of soluble groups.

Theorem 66. Let F be a Fitting class and let I be an F-injector of a soluble
group G. Then (G, I,GF) is a 4-conjugate system. Furthermore, if either G
is S4-free or F is composed of S3-free groups, then (G, I,GF) is a 3-conjugate
system.

Proof. Let R = CoreG(I) = GF. We prove that (G, I,R) is a 4-conjugate
system by induction on the order of G. Let F be the normal subgroup of
G such that F/R = F(G/R), the Fitting subgroup of G/R. Clearly, F ∩ I
is contained in R. Hence F ∩ I = R. On the other hand, by [3, Theo-
rem IX.1.5], I is an F-injector of FI. Thus R ≤ S = (FI)F is contained
in I. Assume that R is a proper subgroup of S and let N/R be a minimal
normal subgroup of FI/R contained in S/R. Then N belongs to F and so
N is contained in R. This is a contradiction yields S = R. If FI were
a proper subgroup of G, (FI, I, R) would be a 4-conjugate system. Hence
(G, I,R) would be a 4-conjugate system and the result would follow. There-
fore we may assume that G = FI. Let M be the normal subgroup of G such
that M/R = Φ(G/R). Then G/M = (IM/M)(F/M). Applying [3, The-
orem A.10.6], F/M = Soc(G/M) is a self-centralising normal subgroup of
G/M . In particular, F/M is a completely reducible G/M -module (possibly
of mixed characteristic). By Lemma 56, there exist v1M, v2M, v3M ∈ F/M
such that CIM/M(v1M) ∩ CIM/M(v2M) ∩ CIM/M(v3M) = 1. It implies that
I ∩ Iv1 ∩ Iv2 ∩ Iv3 ≤ R by Lemma 52. Thus (G, I,R) is a 4-conjugate system.
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Assume that either G is S4-free or F is composed of S3-free groups. If
G is S4-free, then G/M = (IM/M)(F/M) is S4-free. By Theorem A, there
exist v1M, v2M ∈ F/M such that CIM/M(v1M) ∩ CIM/M(v2M) = 1.

Suppose that F is composed of S3-free groups. Denote with bars the
images in G = G/M = IF . Since I ∈ F, I is S3-free. Let A be the Hall 2′-
subgroup of F . It follows that IA is S4-free. Let B be the Sylow 2-subgroup
of F . By Corollary 7, IB/CI(B) is S4-free. Then we can apply Theorem A
to conclude that there exist a1M,a2M ∈ A and b1M, b2M ∈ B such that
CI(a1M) ∩ CI(a2M) ⊆ CI(A) and CI(b1M) ∩ CI(b2M) ⊆ CI(B). Let vi =
ai + bi, i = 1, 2. Then CI(v1M) ∩ CI(v2M) ⊆ CI(A) ∩ CI(B) = CI(F ) = 1.

In both cases, we conclude that (G, I,R) is a 3-conjugate system by
Lemma 52. This completes the proof of the theorem.

Corollary 67 ([17]). If I is a nilpotent injector of a soluble group G, then
(G, I,F(G)) is a 3-conjugate system.
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