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Abstract 
 

Synthetic lethal approaches in identifying genetic determinants of drug response is a 

powerful method in selecting patents for targeted cancer therapies. Ataxia-

Telangiectasia Mutated (ATM) and Rad3-related protein kinase (ATR) is a valuable 

target to inhibit the DNA damage repair (DDR) pathway, that has been shown to be 

particularly effective in cancer cells harbouring other DDR defects, including truncating 

mutations in ARID1A, found in the 20% of gastric cancer (GC) patients. Although ATR 

inhibitors (ATRi) are emerging as promising cancer therapies, resistance mechanisms 

inevitably arise from these drugs as monotherapy, emphasising the importance of 

identifying genetic determinants of response and resistance to inform drug 

combinations that result in durable clinical responses. 

 

In this thesis, an integrated functional genomics approach was undertaken in order to 

identify genetic determinants to ATRi sensitivity and resistance in GC. First, I show 

that ARID1A defective GCs in vitro and in vivo models exhibit enhanced sensitivity to 

ATRi. Second, I have comprehensively identified and validated genetic determinants 

of ATRi-resistance by undertaking a genome-wide (GW) CRISPR/Cas9 screen and 

created ATRi resistant isogenic models, including CDC25B, HUWE1, CARD10, 

SMG8, SMG9, SMG1, HNRNPF, IRF9, and STAT2. Lastly, I have shown for the first 

time that mutations in the ATR FAT domain cause resistance to ATRi. 

 

These findings inform us about the biological mechanisms of ATRi sensitivity and 

resistance in GC. Furthermore, this data provides the preclinical rationale for 

assessing ATRi such as VX970, AZD6738 or M4344 in clinical trials, for patients with 

GC. 
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Introduction 
 
Gastric cancer (GC) incidence and mortality 
GC is the third leading cause of cancer-related deaths, accountable for over 1,000,000 

new cases in 2018 and an estimated number of 783,000 deaths (1 of every 12 deaths 

worldwide), which makes it the fifth most frequently diagnosed cancer, globally 

(Figure 1). GC is more common in men than in women (1:2) and incidence rates are 

especially high in Eastern Asia (Japan, Korea, Mongolia etc.), South America and 

Eastern Europe. The aetiology of GC is strongly linked to the environment (Kolonel, 

Hankin et al. 1985, Bertuccio, Chatenoud et al. 2009), as Helicobacter pylori (H. pylori) 

infection constitutes the main risk factor for GC (1994, Plummer, Franceschi et al. 

2015). Dietary factors (e.g. high salt content, low fruit intake), Epstein-Barr virus 

infection (EBV), smoking and alcohol consumption are also established risk factors 

(Humans 2012, Cancer Genome Atlas Research 2014, Mayne, Playdon et al. 2016). 

The incidence of GC is related to the location within the stomach; non-cardia GC 

(localised in a more distal region of the stomach) have decreased in prevalence over 

the past years largely due to H. pylori eradication, while GC arising from the cardia 

(gastro-oesophageal junction, GEJ) have increased especially in high-income 

countries. In part, this may be due to its association with obesity, gastroesophageal 

reflux disease (GERD) and a small percentage of Barrett’s oesophageal cases 

(Howson, Hiyama et al. 1986, Ngoan, Mizoue et al. 2002).  

 

Gastric cancer subtypes (clinical and molecular characterisation) 
The vast majority of GC are adenocarcinomas, which have been traditionally classified 

according to histopathological factors, using either Lauren classification, that divides 

GC into diffuse gastric and intestinal subgroups (Lauren 1965), or the world Health 

Organization classification, dividing it in papillary, tubular, mucinous and poorly 

cohesive carcinomas (WHO classification of Tumours of the Digestive System, 2010). 

However, these histological-based classification systems have demonstrated little 

prognostic or clinical utility in terms of treatment stratification (Cervantes, Roda et al. 

2013, Cancer Genome Atlas Research 2014). In contrast, molecular-based 
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classifications aim to identify disease-specific genetic alterations that are potential 

therapeutic targets (Kim, Barzi et al. 2018). 

 

 
 
Figure 1. Incidence and mortality of GC (data extracted from GLOBOCAN 2018). The 
incidence of GC (stomach) represents the 5.7% of the incidence of all cancers in the general 
population, being in the 5

th
 position in the ranking with over 1,000,000 new cases reported in 

2018. According to the mortality, GC is the 3
rd

 most common cause of cancer-related deaths, 
responsible of 1 of 12 deaths worldwide. 
 

The implementation of whole genome sequencing and high-throughput techniques in 

cancer research has enabled the development of molecular classifications, including 

the classification published in 2014 by the Cancer Genome Atlas Research Network, 

describing four distinct molecular subgroups (Figure 2). The most frequently occurring 

subgroup, the chromosomally instable GC (CIN, 50%) is characterised by 

chromosomal instability, where gene amplifications are very frequent and involve 

diverse tyrosine kinase receptors or associated pathways (Human Epidermal Growth 

Factor Receptor 2, ERBB2; Epidermal Growth Factor Receptor, EGFR, Epidermal 

Growth Factor Receptor 3, ERBB3; Janus Kinase 2, JAK2; Fibroblast Growth Factor 

Receptor 2, FGFR2; MET Proto-Oncogene, Receptor Tyrosine Kinase, MET; 

Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit, PIK3C; KRAS 

Proto-Oncogene GTPase, KRAS; and NRAS Proto-Oncogene GTPase, NRAS). The 

microsatellite instability group (MSI, 22% of the cases), is the second most frequent 

group and it is characterised by high genomic instability due to DNA mismatch repair 
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machinery deficiencies, resulting in a very high mutation rate with hotspot mutations 

within genes including ERBB2, EGFR, ERBB3, JAK2, Fibroblast Growth Factor 

Receptor 2 (FGFR), MET, AT-Rich Interactive Domain 1A (ARID1A), 

Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit  A (PIK3CA) and 

high levels of the Programmed Death-Ligand 1 (PD-L1) expression. Genomically 

stable (GS) GCs, that represent the 20% of the cases are associated with diffuse 

histology according to Lauren’s classification, and show a high frequency of E-

Cadherin (CDH1) mutations (26%) and Ras Homolog Family Member A (RHOA) 

(15%). Finally, the Epstein-Barr virus positive (EBV) related group comprises 9% of 

the cases of GC and these tumours are mainly located in the gastric fundus, showing 

a promoter hypermethylator phenotype and the highest frequency of PIK3CA 

mutations (80%), as well as amplification of JAK2 and PD-L1 genes. A similar 

classification was also determined by the Asian Cancer research group (ACRG), that 

took into account the Tumour Protein P53 (TP53) activity and epithelial-to-

Mesenchymal transition (EMT), thus dividing GC into four groups comprising the 

MSS/EMT, MSI, MSS/TP53WT, MSS/TP53-/- (Cristescu, Lee et al. 2015). These new 

molecular classifications have widened the view of gastric carcinogenesis and have 

focused research in the discovery of genetic actionable targets, that have the potential 

to improve the outcome of patients with GC (Hartgrink, Jansen et al. 2009). 

 

Current treatment of gastric cancer 

Surgical resection of GC is the best curative option, although the risk of relapse 

following resection remains high. For that reason, clinical trials such as MAGIC and 

FLOT4 have reported a benefit from adding perioperative or neoadjuvant 

chemotherapy to patients with operable oesophagogastric cancers, even when 

diagnosed at early stages of the disease (Cunningham, Allum et al. 2006, Al-Batran, 

Hofheinz et al. 2016). More specifically, the MAGIC trial revealed a survival benefit 

from the administration of perioperative epirubicin, cisplatin, and 5-FU (ECF) for 

patients with operable oesophagogastric cancer (Cunningham, Allum et al. 2006). 

Building on this data, the FLOT4 trial showed that the FLOT triplet regimen (oxaliplatin, 

infusional 5-FU, and docetaxel) improves the outcome of patients with localised 

oesophagogastric cancer compared with the ECF triplet (Al-Batran, Hofheinz et al. 

2016). Despite these advances in clinical research, the overall survival for patients 



	 20	

 

 

 
Figure 2. Molecular classification of GC. Comprehensive molecular characterisation of 
gastric adenocarcinoma done by the Cancer Genome Atlas Research in 2014 defined four 
major genomic subtypes of GC: The EBV-infected tumours, tumours presenting microsatellite 
instability (MSI), genomically stable tumours (GS) and chromosomally unstable tumours (CIN) 
(adapted from GC Genome Atlas, 2014).  
 
 
with GC remains poor. Due to the vague presenting symptomatology of GC, the 

majority of the cases are diagnosed at an advanced stage where treatment is mainly 

restricted to platinum based chemotherapy. However, platinum resistance is inevitable 

and new treatment options are required (Cunningham, Oliveira et al. 2008, 

Cunningham, Starling et al. 2008, Okines, Chau et al. 2008, Rao, Starling et al. 2008). 

Many clinical trials using targeted therapies have been undertaken in the last few 

years, but only a modest improvement in OS has been achieved.  Currently, there are 

only three approved targeted treatments in GC. The first targeted therapy in GC that 

was clinically implemented in 2010 was Trastuzumab, a monoclonal antibody targeting 

ERBB2, in ERBB2 amplified cases (HER2-positive). Up to 22 % of gastric 

adenocarcinomas and gastroesophageal tumours show an overexpression in HER2 

(Bang, Van Cutsem et al. 2010, Van Cutsem, Bang et al. 2015). Trastuzumab is given 

in the first-line treatment of HER2-positive advanced or metastatic GC 

Cardia 

Gastro-oesophageal 
junction 

Fundus 

Body 

Antrum 

Pylorus 

EBV	(9%)	
PIK3CA	mutation	
éPD-L1	and	JAK2	
Immune	cell	signaling	
Promoter	hypermetilator	phenotype	

MSI	(22%)	
Defective	MMR	machinery	
Genomic	instability	
éPIK3CA	and	ARID1A	mutations	

GS	(20%)	
Diffuse	histology	
é	CDH1	and	RHOA	mutations	

CIN	(50%)	
Intestinal	histology	
Chromosomal	instability	
éTP53	mutation	



	 21	

adenocarcinoma in combination with platinum-based chemotherapy. Trastuzumab 

binds to the extracellular domain of the HER2 receptor, inhibiting proliferation of 

tumour cells that overexpress HER2 by preventing the activation cell cycle progression 

pathways and has proved to prolongate survival in HER2-positive patients. However, 

the median OS advantage was observed to be no more than three months, due to the 

development of resistance (ToGA trial) (Bang, Van Cutsem et al. 2010, Croxtall and 

McKeage 2010). The anti-angiogenic, anti-VEGFR2 (Vascular Endotelial Growth 

Factor receptor 2) monoclonal antibody ramucirumab, has also been approved by the 

food and drug administration (FDA) to be used in the second-line setting as 

monotherapy or in combination with paclitaxel, as significant survival benefits in 

patients with advanced GC who had progressed on first-line chemotherapy have been 

observed in the RAINBOW and REGARD trials (Fuchs, Tomasek et al. 2014, Wilke, 

Muro et al. 2014). The last FDA approved targeted therapy in GC consists in the tight-

junction protein Claudin18.2 (CLDN18.2) antibody, IMAB352. Combined with 

chemotherapy, IMAB352 has shown to enhance T-cell infiltration and pro-

inflammatory cytokines (FAST study), increasing OS when used in first-line treatment 

of GC (Lordick, Mariette et al. 2016, Lordick and Terashima 2016).  

 

Additionally, promising phase III trials assessing the effectiveness of immunotherapy 

and immune checkpoint inhibitors in GC are being conducted (Sclafani, Brown et al. 

2016, Kang, Boku et al. 2017, Fuchs, Doi et al. 2018). For example,  pembrolizumab, 

a PD-L1 antibody has been approved by the FDA to be used in third line setting on 

advanced GC and is currently being evaluated in combination with chemotherapy 

(Fuchs, Doi et al. 2018), or nivolumab, a program death 1, PD-1 antibody that has 

been approved for its use in Japan and that is currently being tested in combination 

with an anti-CTLA4 (Cytotoxic T-Lymphocyte Associated Protein 4) antibody 

(Ipilimumab) in a phase I/II study, showing promising results so far (Kang, Boku et al. 

2017, Janjigian, Bendell et al. 2018).   

 

Despite the extensive efforts and the large number of clinical trials undertaken, 

effective targeted therapies, that can improve the OS in patients with resectable and 

non-resectable GC cancers are still urgently required (reviewed in (Kim, Barzi et al. 

2018). This underlines the importance of; firstly, assessing methods for accurate the 

selection of the candidate population; second, the need of further research into the 
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identification of reliable biomarkers for targeted therapies to be able to predict patients 

who will benefit from treatment, and; lastly exploiting the potential of new treatment 

approaches, such as immunotherapy treatments in monotherapy or combination with 

chemotherapy or other therapies. 

 
SWI/SNF complex and cancer 
The Switch/Sucrose non-fermentable chromatin remodelling complex (SWI/SNF), 

comprises a large protein complex, in charge of the activation of gene expression by 

modulating nucleosomes at gene promoters (Imbalzano, Kwon et al. 1994) (Liu, 

Balliano et al. 2011) and is found widely dysregulated in cancer (Shain and Pollack 

2013). The SWI/SNF complex is capable of unwinding the DNA around histone cores, 

providing access to DNA that regulates transcription, DNA repair and replication, in an 

ATP dependent way (Imbalzano, Kwon et al. 1994, Kwon, Imbalzano et al. 1994). This 

complex has been related to a variety of essential processes in eukaryotic cells, such 

as differentiation, proliferation, DNA repair and tumour suppression (Reisman, Glaros 

et al. 2009). In humans, the SWI/SNF complex can form two different configurations, 

denominated as BAF or polybromo-associated BAF (PBAF). This allows the complex  

to have a broad role of activities, depending on the genetic context (Shain and Pollack 

2013).  

 

SWI/SNF complex includes one of the two mutually exclusive ATPases, SMARCA2 

(BRM) and SMARCA4 (BRG1); and one of the three mutually exclusive functionality-

conferring proteins (i.e. DNA binding, histone binding), ARID1A (BAF250A), ARID1B 

(BAF250B) or PBRM1 (BAF180). Usually, ARID1A and ARID1B are associated with 

BAF complexes, which can work with either BRM, or BRG1 ATPases, while PBRM1, 

together with ARID2 (BAF200) and BRD7 are only found in pBAF complexes, which 

are associated to only BRG1. Additionally, there are some other core and accessory 

subunits that are associated with all versions of the complex (BAF or PBAF), like 

SMARCB1 (BAF47/SNF5), SMARCC1 (BAF155), SMARCC2 (BAF170), SMARCE1 

(BAF57); and SMARCD1 (BAF60A), SMARCD2 (BAF60B), SMARCD3 (BAF60C), 

PHF10 (BAF45A), DPF1 (BAF45B), DPF2 (BAF45D), DPF3 (BAF45C), ACTL6A 

(BAF53A) and ATL6B (BAF53B), respectively (Shain and Pollack 2013) (Figure 3). 
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SWI/SNF mutations are widely spread in several tumour types, occurring, most 

frequently in the subunits with enzymatic activity (SMARCA4 and SMARCA2) or in the 

ones that confer functionality to the complex (ARID1A, ARID1B, ARID1 and PBRM1). 

The fact of SWI/SNF mutations, being described across several units of the complex, 

indicates that the whole functional activity of it might be compromised, even when only 

one of the subunits its mutated, conferring a tumour suppressor role to the complex 

itself (Shain and Pollack 2013). This observation has been described in a 

comprehensive study of protein level variation in colorectal tumour cells, where when 

the downregulation of several proteins, either in the BAF o PBAF configuration of the 

SWI/SNF complex, resulted in the downregulation of other subunits of the complex 

(Roumeliotis, Williams et al. 2017). 

 

From all proteins of the complex, ARID1A (AT-rich interactive domain-containing 1A 

protein), is localised in chromosome 1p36.11, and it constitutes one of the most-

frequently altered proteins across all cancers (Wu, Wang et al. 2014). ARID1A 

encodes for a key DNA binding protein involved in a wide range of cellular processes, 

including gene expression regulation, cell development, differentiation, proliferation, 

apoptosis and DNA repair (Reisman, Glaros et al. 2009, Wu and Roberts 2013, Wu, 

Wang et al. 2014, Wu, Zhang et al. 2016, Sun, Wang et al. 2018).  

 
 
Figure 3. SWI/SNF complex. The SWI/SNF can form two different configurations, 
denominated as BAF and PBAF. SWI/SNF complex contains one of the two mutually exclusive 
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ATPases, SMARCA2 (BRM) and SMARCA4 (BRG1); and one of the three mutually exclusive 
functionality-conferring proteins, ARID1A (BAF250A), ARID1B (BAF250B) or PBRM1 
(BAF180). Additionally, the core and accessory subunits are SMARCB1 (BAF47/SNF5), 
SMARCC1 (BAF155), SMARCC2 (BAF170), SMARCE1 (BAF57); and SMARCD1 (BAF60A), 
SMARCD2 (BAF60B), SMARCD3 (BAF60C), PHF10 (BAF45A), DPF1 (BAF45B), DPF2 
(BAF45D), DPF3 (BAF45C), ACTL6A (BAF53A) and ATL6B (BAF53B), respectively.    
 
 
ARID1A and its significance in gastric cancer 
ARID1A is found to be mutated in around the 20% of all cancer cases, being highly 

mutated in ovarian clear cell carcinomas (Jones, Wang et al. 2010) (46-57%), uterine 

endometroid carcinomas (33-49%) (Guan, Mao et al. 2011, Liang, Cheung et al. 2012, 

Cancer Genome Atlas Research, Kandoth et al. 2013), ovarian endometroid 

carcinomas (30%) (Wiegand, Shah et al. 2010), gastric carcinomas (8-27%) (Wang, 

Kan et al. 2011, Jones, Li et al. 2012, Zang, Cutcutache et al. 2012) and oesophageal 

adenocarcinoma (9-19%) (Wang, Nagl et al. 2004, Chong, Cunningham et al. 2013, 

Streppel, Lata et al. 2014), amongst others (Figure 4).  

 
 
Figure 4. Frequency or ARID1A mutations amongst cancer types. ARID1A is one of the 
most frequent altered proteins across all cancers. Figure shows a histogram with the cancer 
types with highest rates in ARID1A mutations according to cBioPortal data (2018). 
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ARID1A mutations are mutually exclusive to p53 mutations and are highly prevalent 

in tumours with MSI. This observation has been reported in several histologies, 

including GC (Wang, Kan et al. 2011, Kim, Je et al. 2012, Allo, Bernardini et al. 2014, 

Cancer Genome Atlas Research 2014, Chou, Toon et al. 2014). Furthermore, ARID1A 

has recently been found to physically interact with the mismatch repair (MMR) protein 

MSH2, and it seems that ARID1A is involved in the recruitment of the latter to 

chromatin during replication, contributing to impaired MMR and a mutator phenotype 

in cancer (Shen, Ju et al. 2018). 

 

Additionally, ARID1A loss has been found to frequently coexist with activating 

mutations of PIK3CA (Yamamoto, Tsuda et al. 2012, Zang, Cutcutache et al. 2012, 

Cancer Genome Atlas Research 2014), loss of PTEN expression (Bosse, ter Haar et 

al. 2013), and an increase in the phosphorylation of AKT1 at Ser-473 (Liang, Cheung 

et al. 2012), all events leading to a downstream overactivation of the PI3K/AKT 

pathway. These observations strongly suggest an inter-dependency between ARID1A 

mutations and PI3K/AKT pathway activation, indicating that tumour cells with loss of 

ARID1A expression may be dependent on constitutive activation of the PI3K/AKT-

pathway and therefore may also be synthetically lethal to its inhibition (Samartzis, 

Noske et al. 2013). This could be of considerable clinical relevance since loss of 

ARID1A expression may be predictive for a favourable treatment response to small 

molecule inhibitors of the PI3K/AKT-pathway, which are currently under clinical 

investigation in GC (Samartzis, Gutsche et al. 2014, Zhang, Yan et al. 2016, Lee, Yu 

et al. 2017) 

 

In parallel, studies undertaken in ovarian cancer models have found the ARID1A 

deficiency to be synthetically lethal to the inhibition of the catalytic subunit of polycomb 

repressive complex 2, EZH2 due to its agonistic regulation of PI3K/AKT pathway, 

through the modulation of PIK3IP1 expression (Bitler, Aird et al. 2015). This indicates 

that inhibiting EZH2 methyltransferase activity through the use of EZH2 inhibitors in 

ARID1A-mutated cancers could potentially represent a novel synthetic lethal 

therapeutic strategy (Bitler, Aird et al. 2015). Furthermore, as ARID1A deficiency has 

been linked to an increase in the expression of HDAC6 protein which results on 

apoptotic suppression through the inactivation of p53, HDAC6 has been proposed to 

be an alternative synthetic lethal partner for ARID1A (Bitler, Wu et al. 2017). These 
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affirmations have been extended to the use of pan-HDAC inhibitors, in monotherapy 

or combination with EZH2 inhibitors, following the rationale that ARID1A loss confers 

sensitivity to HDAC inhibitors, due to co-repression of EZH2, supressing the 

expression of EZH2/ARID1A, as well as target tumour suppressor genes such as 

PIK3IP1, thereby inhibiting proliferation and promoting apoptosis in cancer cells 

(Fukumoto, Park et al. 2018). 

 

To the date, other ARID1A described synthetic lethalities resulting from the exposure 

to small molecule inhibitors comprise dasatinib and the ARID1A homolog in the 

SWI/SNF complex, ARID1B. Dasatinib, a multi-target kinase inhibitor was identified in 

a high throughput drug screen performed in 12 Ovarian clear tumour cell lines to 

enhance apoptosis in ARID1A mutant cells in a p21 and RB dependent manner (Miller, 

Brough et al. 2016). In the case of ARID1B, a large cohort of tumour cell lines used to 

discover essential genes, showed a mutually exclusivity of ARID1A and ARID1B, 

where at least one of the copies of ARID1B was necessary for ARID1A deficient cells 

to survive (Cheung, Cowley et al. 2011). This ARID1A-ARID1B synthetic lethality has 

been previously described by other authors, although its clinical utility has not yet been 

exploited (Helming, Wang et al. 2014). 

 

DNA damage repair (DDR) processes in cancer  
Eukaryotic cells have a complex machinery that allows them to maintain the DNA 

integrity through every round of replication. Genomic instability can arise from several 

agents and processes like the ultraviolet radiation, ionizing radiation, reactive oxygen 

species (ROS), environmental agents, and some chemicals and drugs (Lindahl and 

Barnes 2000, Hoeijmakers 2009). The non-efficient repair of these lesions increases 

the risk of mutagenesis in an exponential way, potentially leading to the development 

of tumours (Hoeijmakers 2009). The whole set of pathways involved in the repair of 

DNA lesions is known as the DNA Damage Response (DDR). The DDR machinery 

encompasses a large variety of proteins and pathways, that operate in one way or 

another, depending on the type of damage that needs to be repaired (Lord and 

Ashworth 2012).  

 

The main DDR pathways comprise nucleotide excision repair (NER), the base 

excision repair (BER), the mismatch repair (MMR), the trans lesion synthesis (TLS), 
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the inter-and intrastrand crosslink repair (ICL), DNA single strand break repair and 

DNA double strand break repair (Figure 5). Ultraviolet (UV) light from the sun, reactive 

ROS or numerous chemicals can cause lesions in nucleotides that lead to a distortion 

in the DNA helix. This kind of alterations are repaired by the NER pathway that enables 

unwinding of DNA around the lesion, DNA excision, removal of approximately 30 base 

pairs (bp) around the lesion, reassembling of nucleotides to the gap by the DNA 

polymerase and ligation of DNA strands (Masutani, Sugasawa et al. 1994, Wakasugi, 

Kawashima et al. 2002, Marteijn, Lans et al. 2014). BER enables the correction of 

bases damaged by oxidation, alkylation, deamination and 

depurination/depirimidination. The damaged bases are removed and single 

nucleotides or DNA stretches are cleaved and replaced by a DNA polymerase and a 

DNA ligase (Robertson, Klungland et al. 2009). MMR machinery is responsible for 

correcting the incorporation of inappropriate nucleotides during replication. 

Inactivation of this repair pathway (frequently due to germline mutations or promoter 

hypermethylation of the MLH1, MSH2, MSH6, or PMS2 genes) causes MSI and 

hypermutation in the genome. It has been widely studied and linked to Lynch 

syndrome and colorectal cancer predisposition, although it has also been studied in 

other histologies (Fishel, Lescoe et al. 1993, Leach, Nicolaides et al. 1993, Bak, 

Sakellariou et al. 2014, Cancer Genome Atlas Research 2014). TLS prevents forks 

stalling by bypassing damaged or missing bases, reassuring an efficient completion 

of DNA replication (Chang and Cimprich 2009). To accomplish this, TLS polymerases 

display with a lower fidelity than normal replicative polymerases, increasing the 

mutation frequency, although they only synthetize short stretches of DNA (Sale, 

Lehmann et al. 2012, Sharma, Helchowski et al. 2013). ICL are caused by the 

formation of covalent bonds of proteins or DNA due to the presence of two reactive 

groups in the two adjacent bases on the same strand (intrastrand crosslink) or 

between the two complementary DNA strands (interstrand crosslinks). To remove 

these undesired bonds, proteins involved in the Fanconi Anemia pathways are 

required, as well as homologous repair (HR), NER and TLS pathways (Clauson, 

Scharer et al. 2013). Single strand breaks (SSBs) can arise as a result of ionizing 

radiation or the ROS generation by the cellular metabolism. SSBs are efficiently 

recognized by the poly (ADP) ribose polymerase (PARP). PARP (mainly PARP1) 

binds to the SSB sites and synthetizes PAR-chains that binds to target proteins 

(including itself), activating its catalytic activity and resulting in the initiation of de DNA 
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repair cascade, mainly through the BER pathway. Although PARP1 plays a pivotal 

role in BER, it is also involved in other DDR processes, like the switch from non-

homologous end joining repair to homologous repair at stalled replication forks 

(explained below) (Schultz, Lopez et al. 2003, Hochegger, Dejsuphong et al. 2006, 

Fisher, Hochegger et al. 2007, Bryant, Petermann et al. 2009, Langelier, Planck et al. 

2012). Lastly, double strand break (DSB) repair is essential, as its inefficient reparation 

can lead to mutations and chromosomal rearrangements that can be lethal to cells. 

DSBs can arise as a result of ionizing radiation or from the collapse of replication forks, 

and it can be repaired by several specialised mechanisms. 

 

 
Figure 5. Mechanisms or DDR. Genomic instability can arise from several agents and 
processes like the ultraviolet radiation, ionizing radiation, reactive oxygen species (ROS), 
environmental agents, and some chemicals and drugs. The main DDR pathways include the 
nucleotide excision repair (NER), the base excision repair (BER), the mismatch repair (MMR), 
the trans lesion synthesis (TLS) the inter and intrastrand crosslink repair (ICL), the DNA single 
strand break (SSB) repair and the DNA double strand break (DSB) repair. 
 
 

Double Strand Break repair 
DSBs represent the most lethal type of DNA lesions and it is repaired by two main 

mechanisms; homologue recombination (HR) and non-homologous end joining 

(NHEJ), although alternative-NHEJ and single-strand annealing pathways have also 

been described. HR pathway relies on the intact sister chromatid as a template for 

accurate repair, resulting in faithful replication, and it is relatively error free (Hartlerode 

and Scully 2009, Brandsma and Gent 2012). Briefly, HR is triggered by Mre11-RAD50-

NSB1 (MRN) complex, which activates and recruits ataxia–telangiectasia, mutated 
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(ATM) to the DSB, which interacts with CtIP and other exonucleases, that generate a 

single strand DNA (ssDNA) tail (Wyman and Kanaar 2006, Heyer, Ehmsen et al. 2010, 

Stracker and Petrini 2011). Then, the ssDNA is coated by the Replication Protein A 

(RPA) to remove the secondary structures (Sugiyama, Zaitseva et al. 1997), while 

BRCA2 mediates the replacement of RPA by RAD51 to mediate a strand invasion of 

several proteins, including ATM and Rad3-related (ATR) and ATR interacting protein 

(ATRIP), to repair DNA using the correct strand as a template (Williams, Williams et 

al. 2007, Cimprich and Cortez 2008, Pardo, Gomez-Gonzalez et al. 2009). Finally, the 

junctions are resolved resulting in correctly repaired DNA (Pardo, Gomez-Gonzalez et 

al. 2009). Therefore, DNA lesions are detected by sensor proteins, where ATM and 

ATR play a central role, by phosphorylating several mediator proteins (like the cell 

cycle checkpoint kinases 1 and 2, CHK1 and CHK2), that amplify the DDR by 

recruiting several effector substrates (Zhou and Elledge 2000). Both pathways work 

in a orchestrated way and are required for NHEJ, HR, ICL and NER repair pathways, 

as well as for replication fork stability during replication (Ciccia and Elledge 2010) 

(Figure 6A). On the other hand, NHEJ is considered an error-prone pathway, as it 

consists of the ligation of the DNA ends without using the intact sister chromatid 

template (Mahaney, Meek et al. 2009, Brandsma and Gent 2012). NHEJ enables 

binding if Ku70/80 heterodimer to the DSB where it recruits and activates the catalytic 

subunit of the DNA dependent protein kinase (DNA-PK) to mediate the creation of 

compatible ends that can then be ligated (Ciccia and Elledge 2010, Lieber 2010) 

(Figure 6B).  
 

An improved understanding of how DDR contributes to tumourigenesis has informed 

the synthesis of DDR small molecular inhibitors that have had a large impact in the 

clinical practice, based upon the principal of the high–speed replication rate, genomic 

instability and inefficiency of cancer cells to repair DNA damage, making them 

sensitive to these DNA-defect causing drugs that can also be used in combination with 

chemotherapy or radiotherapy. 

 

ATR structure 
ATR is a large protein (2644 amino acids) and a member of the phopho-inositide 3-

kinase related kinases (PIKK) family which is essential for cell viability and embryonic 

development (Brown and Baltimore 2000, Cortez, Guntuku et al. 2001). ATR is in 
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charge of monitoring the progression of replication forks in S phase, maintaining 

genomic stability and promoting a complete and accurate replication of the genome 

by mediating the phosphorylation of a large number of substrates and preventing 

premature mitotic entry (Casper, Nghiem et al. 2002, Cimprich and Cortez 2008, 

McNees, Tejera et al. 2010, Flynn and Zou 2011). Structurally, it contains several 

HEAT (Huntington, Elongation factor 3, Protein phosphatase 2A, and PI3K TOR1) 

repeats, close to the N-terminal, (Ball, Myers et al. 2005, Chen, Zhao et al. 2007, 

Rubinson, Gowda et al. 2010), and a C-terminal catalytic kinase domain (PI3K/PI4K), 

 

 
 
Figure 6. Mechanisms of DSB repair. Double strand breaks are mainly repaired through 
homologous repair (HR) or by non-homologous end joining (NHEJ). A. In HR, ATM is mainly 
activated by the MRN complex in a DSB context, resulting in the activation of CHK2 ad p53 
that cause G1 cycle arrest through CDKN1A (p21). Alternatively, single stranded DNA 
(ssDNA) originated in SSB activates ATR, that forms a complex with ATRIP, that 
phosphorylates CHK1, among other targets, causing a G2/M arrest and also S phase 
progression control. B. NHEJ enables binding if Ku70/80 heterodimer to the DSB where it 
recruits and activates the catalytic subunit of the DNA dependent protein kinase (DNA-PK) to 
mediate the creation of compatible ends that can then be ligated. 
 
flanked by FAT (FRAP, ATM, TRRAP) and FATC (FAT-C) domains (Mordes and 

Cortez 2008, Mordes, Glick et al. 2008). An additional PIKK regulatory domain (PRD) 

DSB SSB

ATM

ATRCHK2

CHK1

ATRIP

RpA-ssDNA

p53

p21

S

G2M

G1

Cdc25	A/B/C

P

P

MRN

Homologous repair Non-Homologous end joining repair

DSB

DNA-PK

A B



	 31	

has been described by some authors, located in between the catalytic and FATC 

domains (residues from 2483 to 2597) (Mordes and Cortez 2008, Mordes, Glick et al. 

2008) (Figure 7). Some regions of the protein have been described to be implicated 

in important protein-protein interactions, such as the heterodimerisation with ATRIP 

(ATR-interacting protein) through its HEAT repeats (Ball, Myers et al. 2005, Chen, 

Zhao et al. 2007); or its activation by its autophosphorylation in the threonine 1989 

(located in the FAT domain) and the FATC/PRD C-terminal domains, mediated by its 

interaction with TopBP1 (Topoisomerase (DNA) II Binding Protein 1) and, to a lower 

extent with ETAA1 (Ewing tumor-associated antigen 1), which are stabilised by its 

heterodimerisation with ATRIP (Mordes and Cortez 2008, Mordes, Glick et al. 2008, 

Liu, Shiotani et al. 2011, Marechal and Zou 2013, Bass, Luzwick et al. 2016, Haahr, 

Hoffmann et al. 2016). Additionally, ATR its known to orchestrate the DDR cascade 

through its binding and phosphorylation to several proteins like CHK1 (Liu, Guntuku 

et al. 2000, Cortez, Guntuku et al. 2001, Ball, Myers et al. 2005, Mordes, Glick et al. 

2008, Bass, Luzwick et al. 2016, Haahr, Hoffmann et al. 2016), although little is known 

about the specific functions of each region of ATR protein in in this complex process. 

Furthermore, due its large size, ATR high-resolution structure has only been partially 

revealed (Rao, Liu et al. 2018).  

 

Mutations in ATR have been associated with Seckel syndrome, a rare condition 

characterised by growth retardation and microcephaly (O'Driscoll, Ruiz-Perez et al. 

2003). Interestingly, deletion of the FATC domain is known to abolish all kinase activity 

of ATR and this is thought to be due the impairment of ATR activation by its interaction 

with TopBP1, as well as a disruption of the adjacent kinase or FAT domain folding 

(Mordes and Cortez 2008, Mordes, Glick et al. 2008). In contrast, mutations in the 

PRD region do not abolish the PIK kinase activity but they cause impairment in kinase 

regulation (Mordes and Cortez 2008, Mordes, Glick et al. 2008). Mutations in the FAT 

domain have been described in an autosomal dominant oropharyngeal cancer 

(p.Gln2144Arg), which caused an inhibition of ATR-dependent responses to DNA 

damage (Tanaka, Weinel et al. 2012). Although FAT domain function has not yet been 

determined, it is possible that it could have a tumour suppressor role as well as 

mediate protein-protein interactions in the same way as other PIKKs (i.e. ATM), as 

looping of the FAT domain results in a direct physical interaction with the kinase 

domain, thereby stabilising the c-terminal end of the protein and being implicated in 
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downstream regulatory activities (Bosotti, Isacchi et al. 2000, Lempiainen and 

Halazonetis 2009).  

 
 
Figure 7. ATR structure. ATR is a phopho-inositide 3-kinase related kinase (PIKK) that 
contains several N-terminal HEAT (Huntington, Elongation factor 3, Protein phosphatase 2A, 
and PI3K TOR1) repeats, and a C-terminal catalytic kinase domain (PI3K/PI4K) (2322aa-
2567aa), flanked by a FAT (FRAP, ATM, TRRAP) (residues 1640-2185) and FATC (FAT-C) 
(residues 2612-2644) domains. An additional PIKK regulatory domain (PRD) has been 
described by some authors, located in between the catalytic and FATC domains (residues 
from 2483 to 2597). 
 
Synthetic lethality (SL) 
The concept of synthetic lethality has been widely used as an approach to target 

genetic deficiencies in tumours and it describes a context where the defect of one 

individual gene is compatible with cell viability, but the perturbation of a combination 

of genes results in cell death (Figure 8) (Brough, Frankum et al. 2011, Ryan, Bajrami 

et al. 2018), providing an approach that can be used to selectively target tumour cells 

(Ashworth and Lord 2018). The first clinical application of SL allowed the use of PARP 

inhibitors (PARPi) for the treatment of breast and ovarian cancers with BRCA1 and 

BRCA2 gene defects (Farmer, McCabe et al. 2005, Tutt, Lord et al. 2005). The recent 

advances in high-throughput screening techniques have enabled the extension of SL 

to other histologies, in order to find new actionable target genes that can specifically 

sensitize cancer cells to drugs that are genotype-specific (Ashworth and Lord 2018). 

Using the concept of SL as an approach to treat cancer is specifically useful in a 

tumour suppressor context (as the case of ARID1A), where the restoration of the 

protein loss is not usually possible, but, the detection of the specific tumour 

dependencies upon that loss can be targeted with a determined treatment, and this 

can constitute an effective alternative.  
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Figure 8. Synthetic lethality. SL described a context where the defect of one individual gene 
is compatible with cell viability, but the perturbation of a combination of genes results in cell 
death. 
 
ARID1A and DNA damage repair inhibitors 
One of the multiple roles of ARID1A, and the SWI/SNF complex itself, consists of the 

maintenance of genome integrity. ARID1A is known to participate in the DNA 

decatenation process, facilitating DDR of DSB by its interaction with Topoisomerase 

IIα (TOP2A) during mitosis, which is in charge of decatenating the sister chromatids 

to permit chromosome segregation (Lou, Minter-Dykhouse et al. 2005, Dykhuizen, 

Hargreaves et al. 2013, Williamson, Miller et al. 2016).  ARID1A has been reported to 

be recruited to DSBs through its interaction with ATR, facilitating DSB end processing 

to generate RPA-coated ssDNA, and sustaining ATR activity in response to DSB 

(Shen, Peng et al. 2015). Therefore, loss of ARID1A has been linked to an impaired 

checkpoint activation and a sensitization of cells to several DSB-inducing agents like 

PARPi and ATRi (Bitler, Aird et al. 2015, Bitler, Fatkhutdinov et al. 2015, Shen, Peng 

et al. 2015, Bitler, Aird et al. 2016, Williamson, Miller et al. 2016, Bitler, Wu et al. 2017, 

Jones, Fleuren et al. 2017, Fukumoto, Park et al. 2018). 

 

Although ARID1A is currently not being used as a biomarker in any on-going clinical 

trial, recent studies have demonstrated its clinical importance and suggested that 

should be taken into consideration as a biomarker for a number of small molecule 
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inhibitors including ATR, PARP, HDAC, EZH2 and PI3K inhibitors, amongst others 

(Bosse, ter Haar et al. 2013, Samartzis, Noske et al. 2013, Samartzis, Gutsche et al. 

2014, Bitler, Aird et al. 2015, Bitler, Fatkhutdinov et al. 2015, Shen, Peng et al. 2015, 

Wang, Li et al. 2016, Wang, Wang et al. 2016, Williamson, Miller et al. 2016, Bitler, 

Wu et al. 2017, Jones, Fleuren et al. 2017, Fukumoto, Park et al. 2018, Yang, Yang 

et al. 2018). Moreover, the use of antibodies to detect ARID1A expression by 

immunohistochemistry (IHC), has been carried out by Khalique and colleagues, which 

will allow patients to be stratified based on their ARID1A status into early phase clinical 

trials (Khalique, Naidoo et al. 2018). 

 

There are already three early phase studies retrospectively taking in account ARID1A 

mutational status and its association with therapy response. First, the OLAPCO trial 

takes in account ARID1A status to treat patients with a combination of olaparib 

(PARPi) and the AKT inhibitor AZD5363 (NCT02576444). Secondly, the randomised 

phase II study of nintedanib (Vascular Endothelial Growth Factor, VEGF, FGFR and 

Platelet Derived Growth Factor Receptor, PDGFR inhibitor) is being carried on in 

patients with ovarian or endometrium carcinoma, and will assess ARID1A status 

retrospectively (2013-002109-73). Finally, a trial due to start recruiting patients soon 

will assess the chemotherapeutic agent dasatinib in patients with recurrent or 

persistent ovarian, fallopian tube, endometrial or peritoneal carcinoma and will 

retrospectively compare ARID1A mutational and IHC status (NCT02059265) 

(Khalique, Naidoo et al. 2018). Moreover, a Phase II Proof of Concept Study is due to 

start in the Royal Marsden Hospital (NCRI) with the objective of assessing the Activity 

of the ATRi, AZD6738, as a single agent and in combination with the PARPi olaparib 

in ARID1A stratified gynaecological cancers (ATARi trial). The results of this trial will 

be highly informative and might encourage further stratification of patients taking in 

account ARID1A as biomarkers in other histologies if improvements in survival 

outcomes are seen. 

 

With regards to clinical trials assessing the effectivity of DDR inhibitors in GC, a 

translational phase II study using the PARPi olaparib or the ATRi AZD6738 will soon 

start recruiting patients with advanced oesophageal, gastro-oesophageal and GC 

(SOlAR trial), with one of the objectives of assessing ARID1A status as a candidate 

predictive biomarkers of both inhibitors response.   



	 35	

Although not many GC-specific studies have been carried out, the use of several DDR-

involved proteins inhibitors has been explored in other histologies before, and it is 

currently the focus of many investigations (Brandsma, Fleuren et al. 2017, Lord and 

Ashworth 2017). More specifically, because of the crucial role of ATR in the DDR 

process, and considering published preclinical data showing SL in particular molecular 

contexts, ATRi are being assessed in preclinical and clinical studies, in monotherapy 

or combination with other drugs (Sundar, Brown et al. 2017). 

 

Current clinical use of ATR inhibitors (ATRi) 
One of the first described ATRi was the selective and potent VE821 (Vertex 

pharmaceuticals), which showed significant synergistic effects in cell lines when 

combined with chemotherapeutic agents and radiation (Prevo, Fokas et al. 2012, 

Huntoon, Flatten et al. 2013, Josse, Martin et al. 2014, Abdel-Fatah, Middleton et al. 

2015). VE821 was demonstrated to have an enhanced effect in cell lines with p53 or 

ATM defects (Reaper, Griffiths et al. 2011). AZ20, and its improved oral version, 

AZD6738, were developed by AstraZeneca, showing similar features and compared 

with VE821 (Foote, Blades et al. 2013, Guichard, Brown et al. 2013, Sarris, Trantas et 

al. 2013). Both of these compounds are currently being tested in phase I clinical trials 

being VE821 now labelled as VX970/M6620. Preliminary data from the VX970 and 

AZD6738 clinical trials monotherapy and combination with several chemotherapy 

regimens reviewed in (Sundar, Brown et al. 2017) have revealed some good 

responses, especially in patients with tumours presenting defects in DDR (like for 

example loss of ATM) (O'Carrigan, Luken et al. 2016, Shapiro, Wesolowski et al. 2016, 

Yap, Krebs et al. 2016). AZD6738 is being evaluated in combination with PARPi in 

several trials (NCT03330847, NCT03682289, NCT03462342, NCT03428607, 

NCT02264678, NCT02576444) and partial responses have been reported (Yap, 

Krebs et al. 2016). Another trial studying the combination of VX970 with the PARPi 

veliparib and cisplatin is ongoing (NCT02723864). Additionally, a new oral version of 

the vertex ATRi (VX803/M4344) is currently undergoing a phase I dose escalation 

study in advanced solid tumours as monotherapy and in combination with carboplatin 

chemotherapy (NCT02278250).  

ATR is becoming a popular druggable target along the DDR pathway, and further 

clinical trials, evaluating these compounds in monotherapy or in combination with 

other therapies such as PARPi or immunotherapy, are needed to fully exploit the 
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potential of ATRi (Sundar, Brown et al. 2017). Additionally, the discovery of robust 

biomarkers that allow an effective stratification of the patients will help to achieve 

better results.  

 

High-throughput CRISPR/Cas9-based genetic screens to detect mechanisms of 
synthetic lethality 
Cas9 nuclease is a DNA endonuclease enzyme from the prokaryotic CRISPR immune 

system that is able to cleave DNA at a NGG sequence (also known as PAM site), to 

form DSBs (Deveau, Garneau et al. 2010, Garneau, Dupuis et al. 2010, Horvath and 

Barrangou 2010, Bhaya, Davison et al. 2011) (Figure 9). Cas9 can be recruited to 

PAM sites by a short 20 nucleotides guide RNA (gRNA) molecule, that specifically 

binds to a determined sequence of the genome (Mali, Yang et al. 2013). Once 

recruited to the gRNA sequence, Cas9 cleaves the DNA a few base pairs (bp) 5’ from 

the PAM site, generating a DSB. This mechanism has been exploited to precisely edit 

the genome, since the repair of the DSB can be carried out by HR, maintaining the 

original sequence or can alternatively be repaired using the NHEJ pathway, which is 

an error-prone pathway, that will cause the insertion or deletion of nucleotides in the 

area where the DNA has been cleaved, potentially resulting in a gene loss of function 

and defective protein expression (Mali, Yang et al. 2013). This approach is known as 

the Clustered Regularly Interspersed Short Palindromic Repeat Associated 9 

(CRISPR/Cas9) gene editing technology (Ran, Hsu et al. 2013). Genome-wide (GW) 

CRISPR/Cas9 screens represent the high-throughput application of the CRISPR/Cas9 

system, where thousands of mutations over the whole genome are caused in one 

reaction, in order to investigate potential synthetically lethal interactions. Nowadays, 

several approaches have been described to induce modifications in the DNA using 

CRISPR/Cas9 screens. CRISPRn (nuclease) libraries are available to induce 

knockout expression of genes, while CRISPRi (inhibition) libraries are used to induce 

repression of genes, and CRISPRa (activation) are used to cause gene activation 

(Miles, Garippa et al. 2016). Other further modifications of the CRISPR/Cas9 

methodology have been described, as for example, the use of dead Cas9 proteins that 

lack the catalytic activity to make DSB, but maintain the ability to bind the DNA and 

form single-stranded bubbling structure, where DNA modifying enzymes (i.e. 

deaminases) can be added to alter the DNA, typically causing point mutations (mostly 

missense mutations) around a 5-nucleotide window (CRISPRx approach)(Hess, 
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Fresard et al. 2016) (Figure 9). Screens can also be classified into positive or negative 

selection screens. Positive selection screens are useful to identify resistance-causing 

genes to a particular drug, where cells are exposed to high doses of drug (Surviving 

fraction of 0, SF0), and only cells with a resistance-conferring mutation are able to 

proliferate. One is able to detect an enriched population of certain sgRNA in the 

resistant population, compared with a time=0 sample. In contrast, negative selection 

screens are carried out using low drug concentrations (SF50-SF80), thus favouring the 

death of the cells with certain sensitivity-conferring mutations, consequently detecting 

a lack in certain sgRNAs representation in the final population, compared with T=0 

sample (Miles, Garippa et al. 2016). 

 

  

 
Figure 9. CRISPR/Cas9 mediated gene edition. Mechanism of Cas9-induced gene 
targeting. Cas9 interacts with a specific 20bp guide RNA that binds to the complementary 
genomic sequence adjacent to a NGG (PAM) site. Cas9 cleaves the DNA few base pairs from 
the PAM site, generating a double strand break (DSB). The repair of the DSB can be then 
carried out by HR, maintaining the original sequence or can alternatively be repaired 
using the NHEJ pathway, which is an error-prone pathway, that will cause the insertion 
or deletion of nucleotides in the area where the DNA has been cleaved, potentially 
resulting in a gene loss of function and defective protein expression. 
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Aims and approaches  
 
Due to the increasing number of studies confirming the high frequency of ARID1A 

mutations in GC, efforts to identify targeted therapies towards this genetic alteration 

are clinically relevant. Furthermore, preclinical data demonstrating synthetic lethality 

with DDR inhibitors such as ATRi or PARPi, that have already been approved or are 

being tested in clinical practice in other histologies, provides a rationale to test these 

compounds in ARID1A deficient GC models. Moreover, determining potential 

resistance mechanisms to these therapies will allow the design of effective 

combinatorial approaches to achieve improved responses in GC patients with who 

have extremely limited treatment options.  

 

Therefore, the aims of this project are: 

 

1. To identify genetic dependencies for ARID1A deficiency through monotherapy 

or combination drug testing experiments, in a panel of gastric tumour cell lines. 

2. To validate genetic dependencies for ARID1A deficiency in GC in vitro models 

(patient derived-xenografts). 

3. To identify mechanisms of resistance to ATRi in GC through the use of high 

throughput CRISPRn, CRISPRx screens and the characterisation of ATRi 

resistant models.  

 

As part of these work I have (i) demonstrated the previously described synthetic 

lethality involving ATR inhibitors in ARID1A deficient cancers can be extended to GC 

models, both in vitro and in vivo, (ii) identified and validated a list of genetic 

determinants to ATRi resistance, including HUWE1, SMG8, SMG9, SMG1, HNRNPF, 

IRF9, CARD10, CDC25B and STAT2 iii) created ATRi resistant models that have 

allowed me to validate previous hypothesis, and added additional information about 

the resistance mechanisms that can arise from ATRi treatment (iv) identified mutations 

localised in the FAT domain of ATR, that cause resistance to ATRi. 
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Materials and Methods 

 
Cell lines  
AGS, HEK 239T and NCI N87 cell lines were obtained from American Type Culture 

Collection (ATCC). SNU 1, SNU 5, SNU 484 and SNU 638 were purchased from 

Korean Cell Line Bank (KCLB). YCC6 cell line was a gift from Professor Sun Young 

Rha from the Yonsei Cancer Center in South Korea. ARID1A HCT 116 isogenic cell 

lines were obtained from Horizon Discovery. HCT 116 cells were grown in McCoys 

medium and DMEM was used for HEK2 39T cells. The rest of the cells were grown in 

regular RPMI 1640. All medium was supplemented with 10% FBS. No antibiotics were 

added to the media. Cell line identity was confirmed regularly by STR typing using the 

StemElite Kit (Promega), analysing eight ATR loci: vWA, TH01, CSF1PO, D16S539, 

D7S820, D13S317, D5S818 and amelogenin (for gender identification). Mycoplasma 

testing was carried out periodically using MycoAlert Mycoplasma Detection Kit 

(Lonza).  

 

Microsatellite instability determination 
Microsatellite instability determination was carried out by the Molecular Diagnostics 

Departments (The Centre for Molecular Pathology, The Royal Marsden NHS 

Foundation Trust, Sutton, UK). Briefly, the Type-it Microsatellite PCR kit (Qiagen, 

Hilden, Germany) was used to co-amplify five markers (NR27, NR21, NR24, BAT25 

and BAT26) in a standard multiplex PCR. The PCR conditions were: denaturation at 

95 °C for 5 minutes, 28 cycles of melting at 95 °C for 30 seconds, annealing at 60 °C 

for 90 seconds, and extension at 72 °C for 30 seconds, followed by a final extension 

phase at 60 °C for 3 minutes. The PCR products were denatured and separated by 

capillary electrophoresis using an ABI PRISM 310 DNA sequencer and were further 

analysed with the GeneMapper software (Applied Biosystems, Paisley, UK). MSI 

status was confirmed when two or more markers presented instability and 

microsatellite stable (MSS) status was confirmed when one or none of the markers 

presented instability. 
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In the case of the PDX in vivo experiment the studied markers were NR21, BAT26, 

BAT25, NR24 and MONO27, using penta-C and D as controls, which serve as internal 

controls.  

 

Genomic DNA extraction from cell lines 
Genomic DNA was extracted from cell lines using the QIAamp DNA Blood Mini Kit 

(Quiagen), according to the manufacturer’s instructions, eluted in 30 µl of nuclease-

free H2O and stored at -20°C. DNA concentrations were determined by measuring 

absorbance at 260nM using a the NanoDrop1000.  

 

Polymerase Chain Reaction (PCR) and gel electroforesis 
Generally, PCR Amplicons were generated using 100ng of DNA in 50 µl reactions, 

using the New England BioLabs Q5® High-Fidelity DNA Polymerase set, according to 

manufacturer’s protocol, using specific primers listed in Table 1. PCR was carried out 

on a thermocycler as follows: 98°C for 2’, followed by 30 cycles of 98°C for 30’’ 

(melting), 60°C for 30’’ (annealing) and 72°C for 20’’ (elongation), followed by a final 

72° for 2’ step.  Annealing temperature and elongation were adjusted for each reaction 

according to the primer requirements and length of the product, respectively.  All 

primers were ordered from Integrated DNA technologies (IDT) or Thermo Fisher 

scientific as lipolysed powder, which were resuspended in nuclease-free H2O 

(Ambion) to a concentration of 100 µM and stored at -20°C. Primers were then diluted 

to 10 µM for use in each PCR reaction.  PCR products were analysed by agarose gel 

electrophoresis by mixing with 6x loading dye (New England Biolabs) and separation 

by gel electrophoresis. Agarose gels were made as follows: 1-2% ultra-pure agarose 

(Life Technologies) dissolved in 1x TAE buffer + 1/10,000 GelRed nucleic acid stain 

(Biotium). Hyperlader 1 (Bioline) was used to estimate length of the PCR products. 

DNA was then visualised using an ultraviolet transiluminator (Syngene). 

 

TOPO cloning and sanger sequencing 
100ng PCR products from genomic DNA extracted from CRISPR-Cas9 targeted SNU 

484 cells or GW-CRISPR/Cas9 mutagenesis screen YCC6 resistant colonies were 

cloned into the pCR-Blunt II-TOPO vector, using the Zero Blunt TOPO PCR Cloning 

kit (Invitrogen) following manufacturer’s protocol. The final mix was incubated 1h at 

room temperature and prepared for transformation. For transformation, 150 µl of 
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competent cells were placed into a sharp-bottom Eppendorf and mixed gently with 5 

µl of cloned product. After 30 minutes of ice incubation, tubes were heated at 42ºC for 

45 seconds and cooled back on ice. 300 µl of outgrowth SOC media were added and 

the tubes were placed in the shaker for 1h at 37ºC. After incubation, tubes were 

spanned and plated in petry plates. Petry plates were then incubated upside down 

overnight at 37ºC. Next day; colonies were picked, expanded in antibiotic selective 

media and DNA was extracted after 18h of incubation, using the Qiaprep Spin 

Miniprep kit from Quiagen. PCR purification was carried out using the QIAquick PCR 

Purification Kit. 

 

Table 1. Summary of PCR and sanger sequencing primers used in this thesis 

 
 
For the sanger sequencing, 15 µl of purified DNA, was mixed with 2 µl of 10 µM forward 

or reverse primers for the target gene sequence and prepared at a final concentration 

of 100 ng/µl in the case of plasmidic DNA, or 10ng/µl for PCR purified DNA. Samples 

were outsourced to Eurofins Genomics (https://www.eurofinsgenomics.eu) and results 

were analysed using the sequence alignment tool of ApE Plasmid Editor free software.  

 

Chemicals  
Information about all chemicals used is listed in Table 2. 
 
Table 2. Drugs used in this thesis 

Drug Code Supplier 
VX970 (VE822) S7102 Selleckchem 
AZD6738 S7693 Selleckchem 
Olaparib S1060 Selleckchem 
Talazoparib S7048 Selleckchem 
BKM120 (buparisib) S2247 Selleckchem 
MK2206 (-2HCL) S1078 Selleckchem 

Reagent Sequence Supplier 
HUWE1 CRISPR Forward primer CCATGTAAACAGTCATAGCCAC IDT 
HUWE1 CIRSPR Reverse primer GGACAGGGCAGAGCTATAAG IDT 
IRF9 Forward primer CACGCCTGTAAAGCCAGTCC IDT 
IRF9 Reverse primer GGACAGGGCAGAGCTATAAG IDT 
U6-F GGCCTATTTCCCATGATTCCTTC IDT 
CRISPR-scaf-R ACTCGGTGCCACTTTTTCAA IDT 
ARID1A CRISPR Forward primer AGGGGGGGAGAAGACGAAGA Thermo Fisher 
ARID1A CRISPR Reverse primer AGGCCAGGGCTTTGTTGT Thermo Fisher 
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ACY1215 (ricolinostat) S8001 Selleckchem 
GSK126 S7061 Selleckchem 
Puromycin solution Ant-pr-1 Invitrogen 
Blasticidin solution And-bl-05 Invitrogen 
Doxycycline hyclate D9891 Sigma-Aldrich 
M4344 (PDX)  Merck 

 

Western blotting and antibodies  
Whole cell lysates were extracted using lysis buffer (1% Sodium deoxycholate, 1% 

TritonX-100, 1% Nonident P-40, 0.1% SDS, 150nM NaCl, 5mM EDTA, 50mM Tris, 

30mM NaF and water), supplemented with proteinase inhibitor (10X) and phosphatase 

inhibitor (100x), and separated using 3-8% Tris-Acetate gels (Invitrogen) or 4%–12% 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) Bis-Tris gel, 

transferred to nitrocellulose membrane, blocked in 5% milk or BCA and blotted with 

primary antibody in Milk or BCA overnight. Next day, a fluorescent secondary antibody 

was added, following 3 x 5 minutes’ washes with TBST. Membrane was again washed 

with 3 TBST x 5 minutes’ washes, and signal was then read using the Li-core 

(odyssey) system. Information about the antibodies used is shown in Table 3. All WB 

were performed by triplicate. Only the best result is represented in the figures. 
 
Table 3. Western Blot antibodies used in this thesis 
 

Gene Protein 
size 
(KDa) 

Primary 
antibody 
dilution 
(BSA/Milk) 

Secondary 
antibody 
dilution (Milk) 

Specie Company Product code 

ARID1A 242 1:1000 (BSA) 1:5000 Rabbit CST 12354 
ß-Actin 44 1:2000 (Milk) 1:10000 Mouse CST 3700 
IRF9 (ISGF3) 48 1:500 (BSA) 1:1000 Mouse SC sc-135953 
HUWE1 
(lasu/ureb1) 

490 1:500 (BSA) 1:1000 Rabbit Bethyl A300-486A-T 

SMG1 410 1:1000 (BSA) 1:2000 Rabbit CST 9149 
UPF1 141 1:5000 (BSA) 1:5000 Rabbit CST 12040 
Ezrin 81 1:1000 (Milk) 1:5000 Rabbit CST 3145 
CRISPR-Cas9 158 1:2000 (Milk) 1:5000 Mouse Diogenode C15200203-

100 
IRDye 800CW 
donkey anti-Rabbit 
IgG 

    Li-cor 926-32213 

IRDye 800CW 
Goat anti-Mouse 
IgG 

    Li-cor 925-32210 

Anti-Mouse IgG     CST 7076 
Anti-Rabbit IgG     CST 7074 
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Cellular viability assays 
5-days survival assays were performed in 384-well plates. Cells were plated at a 

concentration of 500 cells per well and drugged for 5 days, 24h after seeding. Viability 

was estimated using CellTitre-Glo luminescence reagent (Promega). Cell-based 

assays were performed by triplicate. Final number of cells was normalised to DMSO 

median and surviving fractions of cells were plotted in GraphPad Prism, where lines 

of best fit were drawn using a four-parameter nonlinear regression. SF50 (Surviving 

Fraction 50 = the concentration of drug required to cause a 50% inhibition of the cell 

population) or AUC (Area Under the Curve) values were calculated from these curves 

using GraphPad Prism software. Comparisons of dose-response curves were 

performed using two-way ANOVA testing. Comparisons of SF50 or AUC data were 

performed using the Mann-Whitney test for non-parametric samples.  

 

Cell proliferation experiment  
2000, 4000 and 6000 cells were seeded in a clear well 6-well plate and live-analysed 

for 7 days using the IncuCyte Zoom Live Cell Analysis System (Essenbio) at 37°C, 

5% CO2. Final number of cells was estimated through image analysis, and mean and 

standard deviation was calculated for each well and compared in between samples. 

Proliferating experiment was repeated more than three times, only the best result is 

shown in the figures.  

 

RNA extraction and Real time- PCR (RT-PCR) 
RNA was extracted using RNeasy Mini Kit (Quiagen) and RNA concentration was 

measured using the NanoDrop1000. cDNA conversion was carried out from 1 µg of 

RNA using iScript Kit (Bio-Rad). Quantitative PCR was first optimised carrying out a 

standard curve as an initial run, to determine the optimal primer concentration for 

ARID1A (Fw probe: 5'-TCATGCCCAACCTTCGTATC-3'; Reverse probe: 5'- 

GATGGCTGCTGGGAGTATG-3'), used at a final concentration of 900 nM. ß-Actin 

was used as an endogenous control, using a final primer concentration of 300 nM (Fw 

probe: 5’-CCCTGGCACCCAGCAC-3’: Rv Probe: 5’-GCCGATCCACACGGAGTAC-

3’). The experiment was done by triplicate in MicroAmp Optical 96-Well Reaction Plate 

from Thermo Fisher, and ran in the QuantStudio 6 Flex (Thermo Fisher), following the 

next temperature steps: 50ºC for 2’, 95ºC for 2min and 40 cycles of 15ºC for 15’’ and 

60ºC for 1’. 
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Raw data from the RT-PCR machine is presented as Cycle threshold (Ct), which 

indicates the number of PCR cycles required for fluorescence to reach a defined 

threshold. The difference in Ct values for the ARID1A (FAM) and ACTIN (VIC) signals 

were calculated to define the ∆Ct, which indicates the level of ARIDA expression 

relative to the endogenous control ACTIN. The fold-change for each replica well was 

used to define the median and standard deviation of the ARID1A expression levels in 

every cell line.  

 

Reverse siRNA transfection knockdown experiments  
Reverse transfections using the siRNA SMARTpool, siCON2 negative control (DE 

dharmacon) or the siAllstar negative control (Quiagen) were carried out in 6 well-plates 

using 5μl of the siRNA (20μM), mixed with 250μl of optiMEM and incubated at RT for 

10 minutes. 5 μl of RNAiMax (Invitrogen) were incubated with 250μl of optiMEM for 10 

minutes. Total volume of the transfection mix was added to the siRNA mix and 

incubated at RT for 30 minutes. Lysates were retrieved after 3 days, and proteins were 

extracted to test for protein expression by western blot. In the cases where a higher 

number of cells was needed experiments were performed in 10 cm plates, where 

quantities of the reagents were scaled to a final volume of 10 ml.  Viability assays were 

performed as described in cellular viability assays section. The de-convoluted siRNA 

target sequences used are as follows: siARID1A_1 GCAACGACAUGAUUCCUAU, 

siARID1A_2 GAAUAGGGCCUGAGGGAAA, siARID1A_3 

AGAUGUGGGUGGACCGUUA, siARID1A_4 UAGUAUGGCUGGCAUGAUC, 

siSMG1_1: GCAAAGAGCUGUUCAGGAA, siSMG1_2: 

GCGAAAGAUUGACAUCAUA, siSMG1_3: GUCAAGAGCUCUAUAGGAA, 

siSMG1_4: GUUAGAGCUUCGUUUAUUA. All siRNA experiments were done by 

triplicate. Only the best result is shown in the figures. 

Cells plated in wells transfected with the siRNA of interest were compared with cells 

in the wells transfected with the negative control siRNA (siCON2 or siAllstar). The 

surviving fraction was the calculated as follows: 

Surviving fraction = (Luminescence in siRNA of interest treated well)/(Luminescence 

in siAllstar treated wells).  
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In vivo assessment of ATRi efficacy in gastric cancer Patient-Derived 
Xenografts (PDX). 
In vivo efficacy study testing the M4344 oral ATRi (Merck) was carried out by 

CrownBio company, in an agreed academic collaboration with Merck Serono, in 

gastric adenocarcinoma PDX models (CrownBio HuPrime GC xenografts) implanted 

in female BALB/c Nude mice. Seven PDX were selected from CrownBio database, 

according to its ARID1A mutational status, which was provided by the company 

(exome sequencing and RNA sequencing information) and additionally validated in-

house. ARID1A protein expression testing was done by Saira Khalique and The Breast 

Cancer Now laboratory (The Institute of Cancer Research, London, UK) by IHC and 

ARID1A DNA sequencing was done the Tumour Profiling Unit (The Institute of Cancer 

Research, London, UK), using the PGM 318 Chip (IonTorrent) using a previously 

designed panel of genes, containing ARID1A, created by Saira Khalique as previously 

described (Khalique, Naidoo et al. 2018).  Briefly, ARID1A loss of protein expression 

was tested through IHC of Formalin-fixed paraffin-embedded (FFPE) sections across 

all the tumour samples, using the D2A8U ARID1A antibody at a 1:250 dilution, (Cell 

Signalling Technology) and the Dako-Autostainer Link 48 with the EnVision FLEX kit 

as per manufacturer’s instructions (Agilent Technologies). HCT 116 ARID1A WT and 

deficient cell pellets were used as positive and negative controls, respectively, and 

two independent pathologists’ who were blinded to the mutational status of the sample 

determined the results obtained. Additionally, microsatellite instability status was 

determined as described above.  

For the in vivo experiment, M4344, rather than VX970 has been used, as M4344 is an 

oral compound that has previously been observed in other tumour models to have 

superior in vivo efficacy and it is currently being assessed in phase I clinical trials in 

monotherapy or in combination with PARPi. Although single agent M4344 delivered at 

20mg/kg daily is largely well tolerated in other in vivo tumour models, an additional 

single agent M4344 arm at a reduced dose of 10mg/kg daily was included as a 

precaution in the event that tolerability issues are experienced in the mice. 

Therefore, to assess the sensitivity of the PDXs to M4344, six experimental arms were 

designed, where seven randomised distributed mice, bearing tumours with an 

approximate size of 100-200mm3, were treated with either: M4344 20mg/kg twice a 

day (BID), twice per week; M4344 10mg/kg once a day (SID), twice per week; ATRi 

M4344 3mg/kg daily, Talazoparib 0.1 mg/kg 2x daily and ATRi M4344 3mg/kg daily + 
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Talazoparib 0.1 mg/kg 2x daily, all treatments given by oral gavage. Model GA2148 

was used to escalate the doses, that were lessened in the rest of the models, due to 

severe body weight loss in mice receiving the highest doses of the ATRi. The other 

models were treated with 10mg/kg twice a week or 5 mg/kg M3433 daily instead of 20 

and 10 mg/kg. Sample sizes for treatment groups were calculated on Cohen principle 

(1998), considering the following basics: Effect on 75% are measured as significant, 

assuming normal distribution, p-value (α) <0.05 and a ß of 0.95. Calculation of the 

variance is assumed to be about 40% for a randomised population (tumours are 

randomised to have equally distributed standard variations within the treatment 

groups). Plasma samples were retrieved from each animal at 2 and 6 hours after 

treatment for pharmacokinetic studies. Furthermore, for the cases were reduced 

tumour growth has been observed, mice were continued to be treated until the tumour 

developed acquired resistance and re-grown. Those tumours were then harvested for 

further molecular characterisation through whole exome sequencing, RNA sequencing 

and mass spectroscopy-based proteomic profiling (Figure 10). 

 
YCC6 VX970 resistant cell lines 
To generate YCC6 VX970 resistant cells, two independent 20-30% confluent flasks 

were treated with increasing concentrations of VX970, starting from SF80 and steadily 

increasing dose every week, for a total of 5 consecutive months, until they became 

resistant to 5 or 8 times-fold the initial SF50 (from 54nM to 230nM and 460nM, 

respectively). Then, single cells where sorted in 96 well-plates by flow cytometry, using 

the FACS Aria (Becton Dickinson). 8 proliferating colonies (6 of them resistant to 460 

nM flask, and two of them resistant to 260nM VX970), where then expanded and 

treated, with same concentrations of drug for 2 weeks, before testing for ATRi (VX970 

and AZD6738) sensitivity, compared with parental YCC6 cell line. Cells were 

expanded and lysates were retrieved to simultaneously extract DNA, RNA and 

proteins for exome sequencing, RNA sequencing or Mass spectrometry, respectively.  

 

Proteomic analysis by mass spectrometry in ATRi resistant clones 
Protein extraction, preparation and mass spectrometry processing and analysis was 

carried out by the Proteomics & Metabolomics Laboratory (Institute of Cancer 

Research, London, UK). Briefly, cell pellets were lysed by probe sonication/boiling, 

and protein extracts were subjected to trypsin digestion. The tryptic peptides were 
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labelled with the Amine-reactive TMT10plex Isobaric Label reagent set (Thermo 

Fisher Scientific), which enables multiplexed protein identification (9,410 proteins) and 

quantitative analysis by tandem mass spectrometry (MS). Labelled products were then 

combined at equal amounts, and fractionated with high-pH C18 high-performance 

liquid chromatography (HPLC). LC-MS analysis was performed on the Dionex 

Ultimate 3000 system coupled with the Orbitrap Fusion Mass Spectrometer. Data 

analysis was carried out using online Perseus software (Marx Plank institute). 

 

Next Generation Sequencing (NGS) 
Exome sequencing was carried out by Tumour Profiling Unit (The Institute of Cancer 

Research, London, UK). Briefly, DNA extracted from cells from the GC panel was 

exome sequenced using the HiSeq2500 (v4, Illumina), after preparing the samples 

according to manufacturer’s instructions, using the Agilent SureSelectXT V6 exome 

library kit (Illumina) and using PE 100 cycles to a median depth of >100X for all 

samples. FastQ files were generated and further processed by the Breast Cancer 

Research Bioinformatics Group (The Institute of Cancer Research, London, UK). 

 

Analysis of cell cycle distribution by FACS 
For the cell cycle analysis, 60,000c/ml cells were seeded in 6-well plate and incubated 

48h before VX970 or DMSO control was added to the media in two different 

concentrations (75nM and 150nM). Cells were then exposed to the drug for 24 or 48h, 

stained with 20µM EdU (5-ethynyl-2´-deoxyuridine, a nucleoside analog to thymidine, 

incorporated into DNA during active DNA synthesis) for one hour, when they were 

harvested and fixed overnight with cold ethanol 70%. Staining was then carried out 

using the Click-IT EdU kit (Thermo Fisher Scientific). Next day, cells were 

permeabilised and Alexa647 was added to the media. Cells were then digested with 

RNAse A (Sigma Aldrich), before propidium iodide (PI, a DNA intercalating agent that 

allows us to measure cell viability or DNA content in the cells) was added to the cells 

(Sigma Aldrich). Detection of EdU or PI staining was analysed on a BD LSR II flow 

cytometer (BD Biosciences). EdU was measured with the red laser detecting Alexa647 

blue at 635 nm and using the 60/20 filter, while PI was measured at 488nM detecting 

PE/Texas red using the 610/20 filter. Debris and doublets were gated out from a 

FSC/SSC dot plot and DNA dye area/width dot plot, respectively and the selected 

population was analysed regarding its cell distribution on the cell cycle using the FACS 
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diva software. Flow cytometry analysis was supervised by Radhika Patel and the flow 

cytometry unit (The Institute of Cancer Research, UK). 

 

ARID1A CRISPR/Cas9 mutagenesis 
60% confluent cells were transfected in 6-well plates, following a standard forward 

transfection protocol using 2500ng Geneart Platinium Cas9 nuclease (Invitrogen) per 

well, 5µl of Lipofectamine Cas9 Plus Reagent, 7.5µl Lipofectamine CRIPRMAX 

Reagent (Invitrogen) and 650ng of ARID1A sgRNA, previously generated with the 

GeneArt Precision sgRNA Synthesis Kit (Invitrogen) (sgRNA sequence ARID1A.1: 

AAGAACTCGAACGGGAACGC: sgRNA sequence ARID1A.2: 

CGGACCTGAAGAACTCGAAC: sgRNA sequence ARID1A.3: 

GAAGAACTCGAACGGGAACG). A sgRNA with no homology to any known 

mammalian gene was used as a negative control. Single cells were sorted with FACS 

Aria (Becton Dickinson) in 96-well plates and left to proliferate. Colonies were 

harvested and tested for ARID1A protein expression by western blot, and for 

mutations, by PCR and Sanger sequencing using the following primer sequences, 

amplifying the region surrounding the gRNA target sequence (Forward: 

AGGGGGGGAGAAGACGAAGA; Reverse: AGGCCAGGGCTTTGTTGT). 

 

Positive selection genome-wide CRISPR/Cas9 screen  
Doxycycline (Dox) inducible-Cas9 expressing cells were generated by transduction of 

YCC6 cells with the Edit-R Inducible Lentiviral hEF1a-Blast-Cas9 Nuclease 

(Dharmacon) and selected in 7µg/ml blasticidin for five days (YCC6iCas9). Cas9 

catalytic activity was tested using a two-fluorescence protocol, transducing cells with 

a GFP (Green Fluorescent Protein)/RFP (Red Fluorescent Protein, Cherry) 

expressing construct (GFP/RFP/empty), or with the same construct carrying an 

additional gRNA sequence towards GFP protein (GFP/RFP/gfp-sgRNA). Cells where 

then treated with Dox for at least 2 days, retrieved, and green and red fluorescence 

was analysed by flow cytometry using the BD LSRII cell analyser. More than 50% of 

the cells showing a decrease in green fluorescence, in the cells infected with the 

GFP/RFP/gfp-sgRNA construct, compared with the empty one was considered as a 

positive result for Cas9 catalytic activity. 

Next, cells were seeded aiming a 1000x representation per sgRNA in the library, and 

infected at a multiplicity of infection (MOI) of 0.3, to avoid multiple sgRNA infections 
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per cell, with a previously published and validated GW human lentiviral CRISPR library 

(Kosuke Yusa, Human GW CRISPR guide RNA library V1)(Koike-Yusa, Li et al. 2014). 

Efficiently transduced cells were selected twice with 5 µg/ml puromycin for two and 

five days, consecutively, when a sample T=0 was taken (<1000x sgRNA 

representation number of cells). After the T=0 sample was taken, 1 million cells were 

plated per each 15-cm plate, maintaining the 1000x sgRNA representation, and 100 

nM VX970 (SF0) was added to the cells. Cells were fed and drugged twice a week for 

three weeks, before T=1 was taken.  Additionally, twenty-four surviving colonies were 

picked and analysed for the presence of sgRNA sequences by PCR and Sanger 

sequencing, as described above.  

DNA from sample T=0 and T=1 was extracted and PCR of the CRISPR guide regions 

were carried out. Guides in each sample were sequenced by the Tumour Profiling Unit 

(The Institute of Cancer Research, London, UK), using a U6 custom primer on the 

HiSeq (Illumina), which sequences the CRISPR sgRNA to generate gRNA count data. 

Bioinformatic analysis were performed by the Breast Cancer Research Bioinformatics 

Group (The Institute of Cancer Research, London, UK). MAGeCK (Model-based 

Analysis of GW CRISPR/Cas9 Knockout) software was used to generate sgRNA 

counts according to the sequences present in the GW CRISPR library. Using the 

normalised read count data from MAGeCK, quality checks (QC) were performed (read 

counts per guide, distribution of read counts), to confirm the robustness of the data. 

For downstream analysis of gRNA read count data, two approaches were used: Z-

score analysis and MAGeCK analysis. 

For the Z-score analysis (where Z=0 represents no effect on viability and positive Z 

scores represent gain of viability), the guides with a maximum read count of zero in 

the T=0 sample were firstly identified and removed from the analysis. Then, the raw 

read counts were converted to parts per ten million (pptm) counts to account for 

variation in the amounts of DNA sequenced. The raw pptm counts were further 

converted to pseudocounts by adding a factor of 0.5 and then were log2 transformed 

before calculating the viability effect (VE) and drug effect (DE) Z-scores (equation 1 

and 2). VE is defined as the rate of decrease in abundance of each gRNA in the 

population over time in the absence of drug treatment (DMSO) while DE is defined as 

the difference in abundance of each gRNA between VX970 and vehicle (DMSO) 

treated samples at a specified time point during the experiment. To remove variation 

in DE that can be attributed to VE, a linear model of DE~VE was fitted and then 
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adjusted DE using equation 3 to give corrected DE. I considered a threshold of Z-

score larger than 2 for resistant sgRNAs and Z-score ranks for positive selection were 

generated by sorting results based on their Z-score. 

Equation 1: 

Viability Effect (VE) = !"#$ %& '!"#$ %( ')*+,-.(!"#$ %& '!"#$ 0( )
"2!(!"#$ %& '!"#$ %( )

 

Equation 2: 

Drug Effect (DE) = !345 % '!"#$ % ')*+,-. 6789( '!"#$(%))
"2!(6789( % '!"#$ % )

 

Equation 3: 

𝐷𝐸< 𝐷𝐸	𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝐷𝐸 − 𝑐 − (𝑉𝐸	𝑥	𝑚) 

*Being DMSO: log2 PPTM count of DMSO samples at time points T=1 and T=0; Drug: 

log2 PPTM counts of drug samples at time point T; MAD: mean absolute deviation; C: 

intercept; m: slope.  

 

In addition to our Z-score analysis, MAGeCK analysis was also used for the analysis. 

Briefly, MAGeCK algorithm normalises read counts according to the median, in order 

to adjust for the effect of the library size and read count distribution. Then, the variance 

of read counts is estimated and a negative binomial model is used to test weather 

sgRNA abundance differs significantly between treatment and control arms. SgRNAs 

are ranked according to the p-values calculated from the negative binomial model, and 

used to identify positively or negatively selected genes, using modified robust ranking 

aggregation algorithm (RRA). Additionally, positively and negatively regulated 

pathways can be reported, by applying RRA algorithm to the rankings of genes in a 

particular pathway. 
A final rank list of hits was generated by consolidating results from both Z-scores and 

MAGeCK approach by calculating a single score using the product of their rank values 

(sqrt (Z-score rank)*(MAGeCK rank).  

An initial validation of the hits was carried out in single 96 well CRISPR/Cas9 arrayed 

reaction plate using 5 or more parallel crRNA per targeted gene, plus 2 negative 

control sgRNAs (with no homology towards any human gene). Cell growth after 

mutagenesis and treatment was monitored using the IncuCyte Zoom Live Cell 

Analysis System (Essenbio) along time, at 37°C, 5% CO2. In each well, 1500 

YCC6iCas9 cells were reversely transfected with 5 µl of 2µM sgRNa and 5 µl of 2uM 
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tracrRNA in 20 µl of OptiMEM, using 3.5µl of 1:10 diluted RNAiMAX (Invitrogen), and 

incubated for 24h. Next day, media was removed and fresh media, containing 80nM 

VX970 was added (dose high enough to kill all cells in a normal condition). Plates were 

left in the IncuCyte for two weeks, until negative control cells were all dead and cells 

were fed twice a week with fresh drug. Drug-free media was then added to the cells, 

that were left to recover for one week, prior IncuCyte growth graphs were generated. 

Additionally, CellTitre Glo (CTG) analysis was carried out to measure the number of 

living cells in each well, and these results were compared with the growth graphs to 

determine which crRNAs caused resistance to the lethal doses of VX970.  

In parallel, I sanger sequenced the DNA of the picked resistant colonies and 

determined the sgRNAs that were inserted in the cells. This was done by extracting 

DNA and PCR amplification, using the U6 forward primer 

(GGCCTATTTCCCATGATTCCTTC) and a Scaf modified reverse primer 

(ACTCGGTGCCACTTTTTCAA), which are located next to the sgRNA sequence in 

the constructs, using 10 µl of Q5 buffer, 1µl 10mM dNTPs, 2 µl 10µM U6 primer, 2µl 

10µM Scaf primer, 0.5µl Q5 polymerase, 32.5 µl Nuclease-free water and 100ng DNA. 

The program used comprised an initial incubation of 98°C for 2 minutes, 30 cycles of 

98°C for 20 seconds (melting), 60°C for 30 seconds (annealing), 72 °C for 30 seconds 

(elongation), and a final extension step of 72°C for two minutes. The PCR product was 

then purified using the QIAquick PCR Purification Kit (Quiagen) and sent for sanger 

sequencing (Eurofins). For the colonies with more than one sgRNA inserted, I did a 

TOPO cloning experiment to generate ssDNA copies (see above).  

Colonies with a single sgRNA insertion, validated in the previous experiment, were 

selected for further analysis. The resistant colonies where then tested for protein 

expression loss by WB (see above for protocol), using specific antibodies (Table 3). 

Then, ATR inhibition resistance of the colonies was checked by 5-days survival assays 

performed in 384-well plates (as described before). For the colonies presenting ATRi 

resistance, ssDNA was generated through TOPO cloning and bacterial transformation 

(see above) and final product was sent to sanger sequence surrounding the sgRNA 

targeting region, using specific primers listed in Supplementary Table 1. Additionally, 

cell cycle experiments were carried on (see section above), and siRNA or 

CRISPR/Cas9 mutated clones were generated to validate the hits that were not 

represented in the picked colonies.  
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Dense Tiling ATR CRISPRx Screen 
In order to find out which mutations along the ATR sequence confer resistance to the 

ATRi VX970, a two-arm CRISPRx screen was carried out. In these screen, I used 

base editors to generate point mutations by promoting the direct and irreversible 

conversion of one base pair to another at a target genomic locus (leaded by the 

sgRNA) without requiring double-stranded DNA breaks (DSBs), homology-directed 

repair (HDR) processes, or donor DNA templates (Komor, Kim et al. 2016, Nishida, 

Arazoe et al. 2016, Komor, Zhao et al. 2017).  
For the first arm, a dense CRISPR library comprising 552 guides targeting all ATR 

sequence was synthesised (Twist biosciences) and cloned into the BbsI site of pKLV5-

U6gRNA5-PGKPuroBFP. Ten million YCC6 cells were infected at a low MOI (to 

assure single guide insertion per cell) and selected in 5 µg/ml puromycin for 5 days. 

Afterwards, the cells were seeded in 10 cm plates and transfected when 80% confluent 

with 10µg of plasmidic DNA constructs carrying regular Cas9 (pCW-Cas9, Addgene 

#50661) or, the following base editors: SaBE4-Gam (Addgene, #100809) as a 

cytosine deaminase, and ABE7.10 (Addgene, #102919), an Adenine deaminase. GFP 

expressing plasmid, pEGFP-N1 (Clontech) was used as a negative control and 

forward transfection was carried out following the regular Lipofectamine 2000 protocol 

(Invitrogen) following the principal described by (Gaudelli, Komor et al. 2017). Media 

was changed after 5 hours and cells where left incubating for 48h, before they were 

seeded at a concentration of 50,000 cells/ml in a new 10-cm plate, the day before the 

VX970 treatment started. Cells were treated twice a week for 2 weeks with 100 nM 

VX970, until negative control cells were all dead. Resistant cells were then expanded 

and retrieved for further analysis. 

In the second approach, the same 552 sgRNA library was cloned into a 

pGH224_sgRNA_2xMS2_Puro (Addgene, #85413) construct, and transduced into 

deadCas9 (dCas9) expressing YCC6 cells (YCC6dCas9). To create YCC6dCas9 cells, 

YCC6 cells were transduced with a pGH125_dCas9-Blast lentiviral construct 

(Addgene, #85417), carrying a dead form of Cas9, with no catalytic activity to make 

DSB, but with the capacity to bind the DNA and form single-stranded bubbling 

structures described in (Hess, Fresard et al. 2016), where the base editors will 

deaminase a cytidine or adenosine, causing point mutations (mostly missense 

mutations) around a 5-nucleotide window. Then, cells were infected with the gRNA 

tiling library at a low MOI and selected in puromycin for 5 days, prior they were 
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transfected with 10µg of plasmidic constructs carrying the following base editors: 

pGH156_MS2-AID-Hygro (Addgene, #85415) and pGH183_MS2-AIDΔDead-Hygro 

(Addgene #85414), as a negative control. Transfection was carried out following the 

regular Lipofectamine 2000 protocol (Invitrogen) in 10 cm plates, and left 48 hours to 

cause mutations along the ATR gene. Next, cells were seeded at a concentration of 

50,000 cells/ml in new 10-cm plates and fed with 100 nM VX970 for two weeks. 

Resistant colonies were harvested and retrieved for further analysis. 

RNA was extracted from resistant cells of both arms, using the RNAeasy mini kit 

(Quiagen), and cDNA was prepared using three ATR specific primers and the 

SuperScript III Reverse transcriptase kit (Invitrogen) with the following conditions: 

Mixed in TUBE 1 (per sample): 1µg RNA, 1 µl of 10mM dNTPs, 1µl of 10µM primer 

(ATR specific) and 6µl of nuclease-free H2O, in a total volume of 10µl. Tube 1 was 

then incubated at 65°C for 5 minutes and immediately put on ice for 1-2 minutes. Mixed 

in TUBE 2 (per sample): 4µl of 5x buffer, 0.5µl of SSIII (reverse transcriptase), 1µl of 

1MDTT and 4.5 µl of H2O, in a total volume of 10 µl. I then added tube 2 to tube 1 and 

heated the mix at 25 °C for 10 minutes, 50°C for 50 minutes and 75°C for 15 minutes.  

Next, I carried out a tiling ATR PCR (PCR1), where I amplified the whole ATR 

sequence in amplicons no longer than 300bp. I used 36 primer pairs (listed in 

Supplementary Table 2) that included an PB3 sequence, used as a bridge to add a 

barcoded IonA sequence in the second PCR (Forward primer), and an IonP1 tail 

(reverse primer). All PCR1 reactions were checked on a 2% agarose gel and mixed 

for PCR purification, using the AMPure XP beads (Auto Q Biosciences) following 

manufacturer’s protocol. DNA resulting from PCR1 was then mixed in one reaction 

and amplified in PCR2, when the 5’ barcoded Ion torrent tail was added. Final product 

was purified again following the same beads protocol used before, and processed 

using the Ion Chef PGM Hi-View templating kit (IonTorrent). Samples were then 

sequenced using the PGM 318 Chip v2 at a 45pM molarity (IonTorrent). Sample 

processing from PCR purification 2 and sequencing was performed by the Tumour 

Profiling Unit (Institute of Cancer Research, London, UK). FastQ files were generated 

and aligned to ATR cDNA sequence by Steven Pettitt (The Breast Cancer Now 

laboratory, The Institute of Cancer Research, London, UK) using Novoalign (Novocraft 

technologies). Coverage was calculated per base using samtools pileup with a 

maximum depth of 50,000 (github.com/samtools). Bam files were then compared with 

consensus ATR cDNA sequence and mutations were listed and localised in the protein 
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structure of ATR using the Integrative Genome Viewer (Broad institute) and the 

Chimera software (UCSF), respectively.  

 

Statistical analysis: 
Statistical analysis was performed using Microsoft Excel or GraphPad Prism. All tests 

were two-sided unless otherwise stated Mann-Whitney tests were used to compare 

non-parametric datasets and Student’s t-tests used for parametric datasets. 

Additionally, GW CRISPR/Cas9 mutagenesis screen data and next-generation 

sequencing (NGS) data was analysed by the Breast Cancer Research Bioinformatics 

Group (The Institute of Cancer Research, London, UK), using R and following the 

above specifications. Venn-diagrams for the cross referencing with Wang et al was 

carried out using the online software described in (Heberle, Meirelles et al. 2015). See 

above for technique-specific analysis methodology. 
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Results  
 
 

1. ATR sensitivity in ARID1A deficient gastric cancer 

models 

 
Characterisation of ARID1A status and mutational signature in gastric tumour 
cell lines. 
Recent studies have demonstrated that defects in ARID1A sensitise tumour cells to 

ATRi, both in vivo and in vitro, by triggering premature mitotic entry, genomic instability 

and apoptosis (Williamson, Miller et al. 2016). This SL has been established in the 

context of ovarian clear carcinomas, where loss of ARID1A is a common event 

(Katagiri, Nakayama et al. 2012, Lowery, Schildkraut et al. 2012). One of the multiple 

functions attributed to ARID1A consists in its recruitment to double stand breaks 

(DSB), via its interaction with the upstream DNA damage checkpoint kinase ATR. 

ARID1A seems to facilitate efficient processing of DSB to single-strand ends and 

sustains DNA damage signalling (Shen, Peng et al. 2015). ARID1A mutations have 

been reported in around 20% of GCs (Wang, Kan et al. 2011, Cancer Genome Atlas 

Research 2014, Wu, Wang et al. 2014, Cristescu, Lee et al. 2015), being associated 

with MSI, upregulation of the PI3K pathway, and wild type TP53 status (Cancer 

Genome Atlas Research 2014, Cristescu, Lee et al. 2015, Kim, Jung et al. 2015, Han, 

Kim et al. 2016, Lee, Yu et al. 2017). Whether ARID1A, through its interaction with 

ATR, plays a role in maintaining genomic integrity that could be exploited as a 

therapeutic liability by the use of ATRi, remains unresolved in GC.  

 

To assess if the previously described synthetic lethal effect of ATR inhibition in 

ARID1A deficient models (Williamson, Miller et al. 2016), was also applicable to GC, I 

characterised a panel of six commonly available gastric tumour cell lines, as well as 

the isogenic HCT 116 ARID1A WT and null colorectal tumour cell lines, that represent 

controls for ARID1A expression and ATRi sensitivity.  

Additionally, I included the YCC6 gastric tumour cell line, as a gift from Professor Sun 

Young Rha from the Yonsei Cancer Center in South Korea. First, I undertook 
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microsatellite analysis of these tumour cell lines. Five microsatellite markers (NR27, 

NR21, NR24, BAT25 and BAT26) were assessed using a multiplex PCR assay system 

(Buhard, Cattaneo et al. 2006, Patil, Bronner et al. 2012, Pagin, Zerimech et al. 2013). 

This analysis revealed MSI in SNU 1, SNU 638 and HCT 116 cell lines (Table 4).  

Next, I performed whole-exome DNA sequencing to identify the mutational profile 

across this panel of tumour cells line (Table 4 and Table 5). Generally, MSI cells were 

found to harbour a larger number of mutations compared with the microsatellite stable 

ones (MSS), as expected from cells with the inability to repair mismatch defects that 

can arise from DNA duplication. Information about cancer genome census gene 

mutations of all cell lines can be found in Table 5. More specifically, our exome-

sequencing results confirmed the presence of ARID1A loss of function mutations in 

SNU 1, SNU 5, YCC6 and the HCT 116 ARID1A deficient cell line (ARID1A deficient 

group). SNU 638 possessed a heterozygous frameshift mutation in ARID1A, while no 

ARID1A mutations were detected in SNU 484, NCI N87, AGS and HCT 116 WT cells 

(ARID1A proficient group) (Table 6, Figure 1A). The ARID1A loss of function 

mutations detected in the GC tumour cell lines comprised truncating mutations; large 

deletions or frameshift indels that resulted in premature stop codons (Table 6). The 

variation of ARID1A expression was confirmed by qPCR mRNA measuring (Figure 
1B), and protein expression was determined by western blotting (Figure 1C). 

Reduced mRNA levels and loss of protein expression were found in the GC tumour 

cell lines harbouring homozygous loss of function ARID1A mutations, although these 

two features were not highly correlated in a quantitative way (Figure 1B and Figure 
1C), consistent with a model of post-transcriptional regulation of ARID1A previously 

reported by others (Wiegand, Shah et al. 2010, Wu, Wang et al. 2014, Kartha, Shen 

et al. 2016, Roumeliotis, Williams et al. 2017). Even though the SNU 638 GC tumour 

cell line showed to have a heterozygous frameshift deletion, I found normal ARID1A 

protein expression levels, as well of mRNA levels, compared with the ARID1A 

“Deficient” models and was thus included in the ARID1A proficient group.  
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Table 5. Exome sequencing mutations listed in the Cancer Genome Census found in our 
panel of cell lines. WT, Wild type: KO, Knock out. See table key for type of mutation. 
 
 

 

 

Gene SNU 5 SNU 484 NCI N87 AGS YCC6 SNU 1 SNU 638 
HCT 116 
WT 

HCT 116 
ARID1A KO 

ABL1                   
ACVR2A              
AFF1             
AFF3              
AFF4             
AKAP9               
ALK             
ANK1             
APC             
AR             
ARAF             
ARHGAP5             
ARHGEF10L             
ARID1A              
ARID1B               
ARID2             
ASPSCR1             
ASXL1              
ATIC             
ATM              
ATP1A1             
ATRX              
AXIN2             
BARD1              
BAX              
BCL10             

	

BCL11A             
BCL9               
BCL9L              
BCLAF1             
BCOR             
BCORL1               
BCR               
BIRC6              
BLM             
BMP5            
BRAF             
BRCA2              
BRD3             
BRIP1             
BUB1B             
C2orf44              
CACNA1D              
CALR              
CAMTA1             
CARD11             
CASP8             
CBLB            
CBLC             
CCND1             
CD79A             
CDH1              
CDH10             
CDH11              

	

CDK12             
CDKN2A             
CDX2             
CEBPA             
CHCHD7             
CHD2             
CHD4             
CHEK2             
CIC             
CLIP1              
CLP1             
CNBD1             
CNTNAP2             
COL1A1             
COL2A1             
COL3A1             
CPEB3             
CREB1             
CREBBP             
CRTC1              
CSF3R              
CSMD3              
CTNNA2             
CTNNB1             
CTNND2             
CUL3             
CUX1             
CXCR4              

Gene SNU 5 SNU 484 NCI N87 AGS YCC6 SNU 1 SNU 638 
HCT 116 
WT 

HCT 116 
ARID1A KO 

ABL1                   
ACVR2A              
AFF1             
AFF3              
AFF4             
AKAP9               
ALK             
ANK1             
APC             
AR             
ARAF             
ARHGAP5             
ARHGEF10L             
ARID1A              
ARID1B               
ARID2             
ASPSCR1             
ASXL1              
ATIC             
ATM              
ATP1A1             
ATRX              
AXIN2             
BARD1              
BAX              
BCL10             

	

BCL11A             
BCL9               
BCL9L              
BCLAF1             
BCOR             
BCORL1               
BCR               
BIRC6              
BLM             
BMP5            
BRAF             
BRCA2              
BRD3             
BRIP1             
BUB1B             
C2orf44              
CACNA1D              
CALR              
CAMTA1             
CARD11             
CASP8             
CBLB            
CBLC             
CCND1             
CD79A             
CDH1              
CDH10             
CDH11              

	

CDK12             
CDKN2A             
CDX2             
CEBPA             
CHCHD7             
CHD2             
CHD4             
CHEK2             
CIC             
CLIP1              
CLP1             
CNBD1             
CNTNAP2             
COL1A1             
COL2A1             
COL3A1             
CPEB3             
CREB1             
CREBBP             
CRTC1              
CSF3R              
CSMD3              
CTNNA2             
CTNNB1             
CTNND2             
CUL3             
CUX1             
CXCR4              

FRAMESHIFT NON-SYNONIMOUS CODON INSERTION/DELETION STOP GAINED



	 59	

  

 

Gene SNU 5 SNU 484 NCI N87 AGS YCC6 SNU 1 SNU 638 
HCT 116 
WT 

HCT 116 
ARID1A KO 

ABL1                   
ACVR2A              
AFF1             
AFF3              
AFF4             
AKAP9               
ALK             
ANK1             
APC             
AR             
ARAF             
ARHGAP5             
ARHGEF10L             
ARID1A              
ARID1B               
ARID2             
ASPSCR1             
ASXL1              
ATIC             
ATM              
ATP1A1             
ATRX              
AXIN2             
BARD1              
BAX              
BCL10             

	

BCL11A             
BCL9               
BCL9L              
BCLAF1             
BCOR             
BCORL1               
BCR               
BIRC6              
BLM             
BMP5            
BRAF             
BRCA2              
BRD3             
BRIP1             
BUB1B             
C2orf44              
CACNA1D              
CALR              
CAMTA1             
CARD11             
CASP8             
CBLB            
CBLC             
CCND1             
CD79A             
CDH1              
CDH10             
CDH11              

	

CDK12             
CDKN2A             
CDX2             
CEBPA             
CHCHD7             
CHD2             
CHD4             
CHEK2             
CIC             
CLIP1              
CLP1             
CNBD1             
CNTNAP2             
COL1A1             
COL2A1             
COL3A1             
CPEB3             
CREB1             
CREBBP             
CRTC1              
CSF3R              
CSMD3              
CTNNA2             
CTNNB1             
CTNND2             
CUL3             
CUX1             
CXCR4              

	

CYP2C8             
DCC            
DCTN1              
DDR2             
DDX10             
DDX3X             
DEK             
DICER1             
DNM2             
DROSHA             
EBF1              
EGFR             
EIF3E             
EIF4A2             
ELF3             
ELF4            
ELL             
ELN             
EP300               
EPHA7            
ERBB3             
ERBB4             
ERCC4              
ERCC5             
FAM131B             
FAM135B            
FAM46C             
FANCA             

	

FAT1              
FAT3                
FAT4                 
FBXW7             
FCRL4             
FGFR1             
FGFR2             
FIP1L1             
FLNA               
FLT3             
FLT4              
FNBP1             
FOXA1            
FOXL2             
FOXO3             
FOXP1             
FOXR1             
FUBP1             
GAS7             
GATA2             
GLI1             
GNAQ             
GNAS                
GPHN             
GRIN2A               
GRM3             
HLA-A              
HNF1A             

	

HSP90AA1            
IDH1             
IGF2BP2             
IL2             
IL21R             
IL7R             
IRS4              
JAK1              
KAT6A              
KAT6B              
KDM5A             
KDM6A            
KDSR             
KIAA1549              
KIF5B              
KIT             
KLF4             
KTN1             
LARP4B              
LCK             
LCP1             
LIFR            
LRIG3             
LRP1B              
LYL1            
MAML2             
MAP3K1                
MDM4             

FRAMESHIFT NON-SYNONIMOUS CODON INSERTION/DELETION STOP GAINED
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Gene SNU 5 SNU 484 NCI N87 AGS YCC6 SNU 1 SNU 638 
HCT 116 
WT 

HCT 116 
ARID1A KO 

ABL1                   
ACVR2A              
AFF1             
AFF3              
AFF4             
AKAP9               
ALK             
ANK1             
APC             
AR             
ARAF             
ARHGAP5             
ARHGEF10L             
ARID1A              
ARID1B               
ARID2             
ASPSCR1             
ASXL1              
ATIC             
ATM              
ATP1A1             
ATRX              
AXIN2             
BARD1              
BAX              
BCL10             

	

BCL11A             
BCL9               
BCL9L              
BCLAF1             
BCOR             
BCORL1               
BCR               
BIRC6              
BLM             
BMP5            
BRAF             
BRCA2              
BRD3             
BRIP1             
BUB1B             
C2orf44              
CACNA1D              
CALR              
CAMTA1             
CARD11             
CASP8             
CBLB            
CBLC             
CCND1             
CD79A             
CDH1              
CDH10             
CDH11              

	

CDK12             
CDKN2A             
CDX2             
CEBPA             
CHCHD7             
CHD2             
CHD4             
CHEK2             
CIC             
CLIP1              
CLP1             
CNBD1             
CNTNAP2             
COL1A1             
COL2A1             
COL3A1             
CPEB3             
CREB1             
CREBBP             
CRTC1              
CSF3R              
CSMD3              
CTNNA2             
CTNNB1             
CTNND2             
CUL3             
CUX1             
CXCR4              

	

MDS2                
MED12              
MET             
MKL1                
MLLT10            
MLLT4              
MN1              
MSH6              
MTOR             
MUC16                
MUC4               
MUTYH             
MYB             
MYH11             
MYH9             
MYO5A              
N4BP2             
NACA             
NBEA              
NCOA1             
NCOA2             
NCOR1             
NDRG1             
NF1              
NFATC2             
NFE2L2             
NFKB2             
NIN                

	

NOTCH1             
NOTCH2               
NR4A3             
NRG1              
NTRK3             
NUP214               
NUP98              
PALB2             
PAX3              
PAX7            
PBRM1              
PCM1              
PDGFB             
PDGFRB              
PICALM            
PIK3CA             
PLCG1             
PML              
PMS2              
POLD1             
POLG              
POLQ             
PPFIBP1             
PPM1D             
PPP2R1A             
PRDM1            
PREX2             

	

PRKCB             
PTCH1              
PTPN13              
PTPN6             
PTPRB            
PTPRD              
PTPRT              
RAD51B             
RANBP2               
RB1              
RBM10             
RBM15              
REL            
RET             
RGPD3               
RHOA             
RNF43               
ROBO2              
ROS1             
RPL5             
RUNX1              
RUNX1T1             
SALL4             
SDHA             
SETD1B             
SETD2              
SFPQ             
SIRPA              

FRAMESHIFT NON-SYNONIMOUS CODON INSERTION/DELETION STOP GAINED
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Gene SNU 5 SNU 484 NCI N87 AGS YCC6 SNU 1 SNU 638 
HCT 116 
WT 

HCT 116 
ARID1A KO 

ABL1                   
ACVR2A              
AFF1             
AFF3              
AFF4             
AKAP9               
ALK             
ANK1             
APC             
AR             
ARAF             
ARHGAP5             
ARHGEF10L             
ARID1A              
ARID1B               
ARID2             
ASPSCR1             
ASXL1              
ATIC             
ATM              
ATP1A1             
ATRX              
AXIN2             
BARD1              
BAX              
BCL10             

	

BCL11A             
BCL9               
BCL9L              
BCLAF1             
BCOR             
BCORL1               
BCR               
BIRC6              
BLM             
BMP5            
BRAF             
BRCA2              
BRD3             
BRIP1             
BUB1B             
C2orf44              
CACNA1D              
CALR              
CAMTA1             
CARD11             
CASP8             
CBLB            
CBLC             
CCND1             
CD79A             
CDH1              
CDH10             
CDH11              

	

CDK12             
CDKN2A             
CDX2             
CEBPA             
CHCHD7             
CHD2             
CHD4             
CHEK2             
CIC             
CLIP1              
CLP1             
CNBD1             
CNTNAP2             
COL1A1             
COL2A1             
COL3A1             
CPEB3             
CREB1             
CREBBP             
CRTC1              
CSF3R              
CSMD3              
CTNNA2             
CTNNB1             
CTNND2             
CUL3             
CUX1             
CXCR4              

	

SIX2             
SLC45A3              
SMAD3             
SMARCA4             
SMO              
SND1             
SOX2             
SPEN             
SRGAP3             
SS18             
STAG1             
STAT3             
STAT5B             
STAT6              
STIL             
TAF15             
TAL1             
TBX3             
TCF3             
TCF7L2              
TEC              
TERT              
TET2             
TFE3            
TFEB              
TFPT               
TGFBR2               
TLX1             

	

TMEM127             
TNC             
TNFRSF14             
TOP1             
TP53             
TP63             
TPR              
TRIM24              
TRIM33             
TRIP11             
TRRAP                
TSHR              
U2AF1             
UBR5              
USP6                
USP8             
WHSC1             
WNK2               
WT1             
WWTR1              
ZFHX3               
ZMYM3            
ZNF331             
ZNF429             
ZNF479              
ZNRF3             
ZRSR2                   

FRAMESHIFT NON-SYNONIMOUS CODON INSERTION/DELETION STOP GAINED
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Table 6. ARID1A mutations and characteristics identified from exome sequencing of gastric 
tumour cell lines and HCT 116 colorectal ARID1A isogenic pair. Large deletions in SNU 5 
and YCC6 were defined by the absolute lack of reads along the deleted area.  

 

 

Sensitivity to ATR inhibition in gastric tumour cell lines. 
To test if ARID1A deficient tumour cell lines showed an enhanced sensitivity to ATR 

inhibition, compared with the ARID1A proficient tumour cell lines, 5-day drug exposure 

dose-response sensitivity curves were carried out in 384-well plates. Cells were 

exposed to one of two different small molecule ATRi, VX970 and AZD6738. I found 

that the HCT 116 isogenic ARID1A deficient cell line was sensitive to both VX970 and 

AZD6738, compared with the HCT 116 ARID1A proficient cell line (two-way ANOVA 

p-value< 0.001 for both ATRi) (Figure 2A and 2B). Furthermore, YCC6 and SNU 5 

GC tumour cell lines, both of which harbour large homozygous ARID1A deletions and 

complete loss of protein expression, displayed profound sensitivity to both small 

molecule ATRi (SF50 = 0.054nM and 0.082nM respectively), whereas SNU 1, 

harbouring two frameshift ARID1A mutations, showed moderate sensitivity (SF50 = 

0.297nM). The ARID1A proficient cell lines were relatively resistant to ATRi compared 

	

ARID1A 
mutations 
(Cell line) 

MUTATION 
(genomic 
position) 

TYPE CHANGE ZYGOSITY PROTEIN 
CHANGE 

SNU 1 1:27101267 
1:27105930 

Frameshift 
deletion 
Frameshift 
insertion 

GC>G 
T>TG 

Heterozygous 
Heterozygous 

X1517X 
X1848X  

SNU 5 Complete 
deletion 

Deletion - Homozygous - 

SNU 484 - - - - - 

SNU 638 1:27092739 Frameshift 
del  

AG>A Heterozygous X921X 

NCI N87 - - - - - 

AGS - - - - - 

YCC6 Deletion 
from aa 
900 

Deletion - Homozygous - 

HCT 116 WT - - - - - 

HCT 116 
ARID1A KO 

1:27057658 Stop 
gained 

C>T Homozygous Gln456* 
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with the GC tumour cell lines with ARID1A deletions (AGS SF50 = 0.452nM, SNU 484 

SF50>1µM, NCI N87 SF50 = 260nM) (Figure 2C, Figure 2E). I also analysed the area 

under the curve (AUC) values for GC tumour cell lines with proficient ARID1A 

expression compared with those that are ARID1A deficient and noticed a trend to 

higher sensitivity levels in the ARID1A deficient models, although this difference was 

not statistically significant (VX970 Mann Whitney p-value = 0.057, AZD6738 Mann 

Whitney p-value = 0.114) (Figure 2D and Figure 2F). 

 

 

Figure 1. Characterisation of ARID1A status in GC tumour cell lines. A. Representation 
of protein coding sequences and major domains in ARID1A. ARID1A gene deletions in YCC6 
and SNU 5 GC tumour cell lines are illustrated in orange and blue, respectively. The ARID1A 
mutations in SNU 638 and SNU 1 GC tumour cell lines are shown in green and purple, 
respectively. The location of the ARID1A frameshift mutation in the ARID1A deficient HCT 116 
isogenic colorectal cell line in illustrated in red. B. Relative levels of ARID1A mRNA expression 
measured by quantitative PCR in GC tumour cell line panel. HCT 116 ARID1A WT (+/+) and 
ARID1A deficient (-/-) isogenic colorectal tumour cell lines are positive and negative controls. 
C. Western blot showing loss of ARID1A protein expression in the GC tumour cell lines 
harbouring truncating mutations or gene deletions in ARID1A. HCT 116 ARID1A +/+ and 
ARID1A -/- are positive and negative controls.  
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Figure 2. Sensitivity to ATR inhibition in ARID1A deficient GC tumour cell lines. A. Drug 
sensitivity curves showing increased sensitivity to ATR inhibition (VX970) in ARID1A deficient 
compared with ARID1A proficient HCT 116 isogenic colorectal tumour cell line (two-way 
ANOVA, p<0.001) B. Drug sensitivity curves showing increased sensitivity to ATR inhibition 
(AZD6738) in ARID1A deficient compared with ARID1A proficient HCT 116 isogenic colorectal 
tumour cell line (two-way ANOVA, p<0.001). C. Drug sensitivity curves for VX970 across the 
panel of gastric tumour cell lines. D. Box and whiskers plot showing no statistical difference in 
sensitivity to VX970 (AUC) in ARID1A deficient compared with ARID1A proficient GC tumour 
cell lines (Mann-Whitney U, p=0.057) E. Drug sensitivity curves for AZ6738 across the panel 
of gastric tumour cell lines. F. Box and whiskers plot showing no statistical difference in 
sensitivity to AZD6738 (AUC) in ARID1A deficient GC tumour cell lines compared with 
ARID1A proficient GC tumour cell lines (Mann-Whitney U, p=0.1143). Cells were seeded in 
384-well plates and exposed to a 5-days treatment across 8 different concentrations of drug, 
ranging between 0.0001μM to 1μM. Error bars represent standard deviation between reps 
(n=14). 
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PARP inhibitor sensitivity in gastric tumour cell lines. 
ARID1A deficiency has been shown to sensitise tumour cells to PARP inhibitors 

(PARPi) in vitro and in vivo, through the impairment of the checkpoint activation and 

repair of DNA DSBs, which could also provide a potential therapeutic strategy for 

patients with ARID1A-mutant tumours (Shen, Peng et al. 2015).   

In relation to this, I wanted to explore whether the ARID1A deficient GC tumour cell 

lines were also sensitive to the clinical PARPi, olaparib and talazoparib (BMN673). I 

generated PARPi sensitivity curves in a 5-day 384-well plates format and I found that 

there was a difference in the sensitivity to talazoparib in the HCT 116 ARID1A deficient 

cell line compared with HCT 116 WT (two-way ANOVA p-value <0.001) (Figure 3A), 

but no difference in sensitivity for olaparib (two-way ANOVA ns) (Figure 3B). This 

could be explained by the fact that talazoparib has a higher capacity to trap PARP into 

the DNA than olaparib (Murai, Huang et al. 2014), and this ability has been shown to 

be directly associated with the capacity of the PARPi to kill tumour cells (Shen, Aoyagi-

Scharber et al. 2015).  

In contrast, no difference in PARPi sensitivity relating to ARID1A status was seen 

when I tested these same inhibitors in the panel of GC tumour GC (AUC values 

comparison between the ARID1A proficient cell lines with the deficient ones for 

olaparib, Mann Whitney p-value = 0.999; talazoparib, Mann Whitney p-value = 0.628) 

(Figure 3C-3F), suggesting an independent or, at least non-exclusive ARID1A-

mediated response to PARPi in these GC models.  

 

Small molecule inhibition to PI3K, HDAC6 and EZH2 in GC tumour cell lines 
As mentioned earlier, ARID1A mutations often correlate with PI3K pathway 

upregulation in patient samples (Samartzis, Noske et al. 2013, Cancer Genome Atlas 

Research 2014, Huang, Lin et al. 2014, Cristescu, Lee et al. 2015). This phenomenon 

has been described in various histologies, including GC (Cancer Genome Atlas 

Research 2014, Cristescu, Lee et al. 2015, Zhang, Yan et al. 2016). It is therefore 

unsurprising that PI3K inhibitors (PI3Ki) have been reported to be especially potent in 

ARID1A deficient cells (Zhang, Yan et al. 2016, Lee, Yu et al. 2017, Yang, Yang et al. 

2018). Considering the published literature, I exposed the HCT 116 isogenic cell lines 

as well as the panel of GC tumour cell lines with the pan-PI3Ki BKM120 and AKT 

inhibitor MZ2206, in a 384-well plate format over 5 days, to assess whether the  
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Figure 3. PARP inhibition in GC tumour cell lines. A. Drug sensitivity curves showing 
increased sensitivity to PARPi (talazoparib) in ARID1A deficient HCT 116 compared with 
ARID1A proficient isogenic HCT 116 colorectal tumour cell line (two-way ANOVA p-
value<0.001). B. Drug sensitivity curves showing no difference in sensitivity to PARPi 
(olaparib) in ARID1A deficient HCT 116 compared with ARID1A proficient isogenic HCT 116 
colorectal tumour cell line. C. Drug sensitivity curves to olaparib in the panel of GC tumour cell 
lines. D. Box and whiskers plot showing no difference in sensitivity to olaparib in ARID1A 
deficient compared with ARID1A proficient GC tumour cell lines (Mann-Whitney U, p=0.999) 
E. Drug sensitivity curves to talazoparib in the panel of GC tumour cell lines. F. Box and 
whiskers plot showing no difference in sensitivity to talazoparib in ARID1A deficient compared 
with ARID1A proficient GC tumour cell lines (Mann-Whitney U, p=0.628). Cells were seeded 
in 384-well plates and exposed to a 5-days treatment across 8 different concentrations of drug, 
ranging between 0.0001μM to 1μM for talazoparib or from 0.001μM to 10μM for olaparib. Error 
bars represent standard deviation between reps (n=14). 

C D 

A B 

E F 

0.01 0.1 1 10
0.00

0.50

1.00

Olaparib [µM]

Su
rv

iv
in

g 
Fr

ac
tio

n

HCT116 ARID1A +/+
HCT116 ARID1A -/-

ANOVA ns

0.001 0.01 0.1 1
0.00

0.50

1.00

Talazoparib [µM]

S
ur

vi
vi

ng
 F

ra
ct

io
n

HCT116 ARID1A +/+
HCT116 ARID1A -/-

ANOVA<0.001

0.01 0.1 1 10
0.00

0.50

1.00

Olaparib [µM]

Su
rv

iv
in

g 
Fr

ac
tio

n

SNU1

SNU5

SNU484
SNU638

NCI N87
AGS

YCC6

ARID1A deficient

ARID1A proficient

0.001 0.01 0.1 1
0.00

0.50

1.00

Talazoparib [µM]

S
ur

vi
vi

ng
 F

ra
ct

io
n

SNU1

SNU5

SNU484
SNU638

NCI N87
AGS

YCC6

ARID1A deficient

ARID1A proficient

ARID
1A

 p
ro

fic
ien

t

ARID
1A

 d
ef

ici
en

t
0.0

0.2

0.4

0.6

0.8

1.0

P value = 0.628

Ta
la

zo
pa

ri
b 

A
U

C

ARID
1A

 pro
fic

ien
t

ARID
1A

 defi
cie

nt
5

6

7

8

9

10

P value = 0.999

O
la

pa
rib

 A
U

C



	 67	

ARID1A deficient genotype also conferred sensitivity to these inhibitors in our models. 

I found that the HCT 116 ARID1A deficient cells showed enhanced sensitivity to 

BKM120 compared with the HCT 116 ARID1A proficient (two-way ANOVA <0.001) 

(Figure 4A). However, I did not find any difference in sensitivity when I compared the 

both isogenic cells after exposing them to MK2206 (two-way ANOVA p-value = ns) 

(Figure 4B). Furthermore, ARID1A expression did not account for any differences in 

sensitivity to BKM120 or MK2206 in the panel of GC tumour cell lines (Figure 4C-4F).  

 

Due to the fact that PIK3IP1 is a negative regulator of PI3K/AKT pathway which has 

been identified as a direct ARID1A/EZH2 target, that seems to contribute to the EZH2 

inhibition synthetic lethal effect in ARID1A deficient cell lines (Bitler, Aird et al. 2015), 

I decided to test whether the ARID1A deficient cell lines were also sensitive to the 

GSK126 EZH2 inhibitor (EZH2i). I also undertook experiments using the HDAC6 

inhibitors, as ARID1A mutations have been shown to inactivate the apoptosis-

promoting function of p53 by upregulating HDAC6, indicating that pharmacological 

inhibition of HDAC6 could be a therapeutic strategy for ARID1A-mutated cancers 

(Bitler, Wu et al. 2017). 

 

Following these reports, I assessed HDAC6 (ACY1215) and EZH2i (GSK 126) 

sensitivity across the panel of GC tumour cell lines. Although these compounds have 

shown promising activity in ovarian ARID1A deficient models (Bitler, Aird et al. 2015, 

Bitler, Aird et al. 2016, Bitler, Wu et al. 2017, Fukumoto, Park et al. 2018), I did not 

detect any significant differences in sensitivity to ACY1215 inhibitor or GSK 126 

inhibitor associated with ARID1A expression in the HCT 116 ARID1A isogenic cell 

lines, nor across the panel of GC tumour cell lines (Figure 5A-5F), in a 5-day-38 well 

plate format. Taken together, this data suggested that the previously reported SL 

relationships between ARID1A and small molecule inhibitors of PI3K, EZH2 or HDAC6 

did not appear to be applicable in GC tumour cell line models when used as 

monotherapy.  
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Figure 4. PI3K inhibition in GC tumour cell lines. A. Drug sensitivity curves showing 
increased sensitivity to BKM120 (pan-PI3K inhibitor) in ARID1A deficient HCT 116 compared 
with ARID1A proficient isogenic HCT 116 colorectal tumour cell line (two-way ANOVA p-
value<0.001). B. Drug sensitivity curves showing no difference in sensitivity to MK2206 (AKT 
inhibitor) in ARID1A deficient HCT 116 compared with ARID1A proficient isogenic HCT 116 
colorectal tumour cell line. C. Drug sensitivity curves to BKM120 in the panel of GC tumour 
cell lines. D. Box and whiskers plot showing no difference in sensitivity to BKM120 in ARID1A 
deficient compared with ARID1A proficient GC tumour cell lines (Mann-Whitney U, p=0.857) 
E. Drug sensitivity curves to MK2206 in the panel of GC tumour cell lines. F. Box and whiskers 
plot showing no difference in sensitivity to MK2206 in ARID1A deficient compared with 
ARID1A proficient GC tumour cell lines (Mann-Whitney U, p=0.228).  Cells were seeded in 
384-well plates and exposed to a 5-days treatment across 8 different concentrations of drug, 
ranging between 0.001μM to 10μM for both inhibitors. Error bars represent standard deviation 
between reps (n=14). 
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Figure 5. HDAC6 and EZH2 inhibition in GC tumour cell lines. A. Drug sensitivity curves 
showing no difference in sensitivity to ACY1215 (HDAC6 inhibitor) in ARID1A deficient HCT 
116 compared with ARID1A proficient isogenic HCT 116 colorectal tumour cell line. B. Drug 
sensitivity curves showing no difference in sensitivity to GSK126 (EZH2 inhibitor) in ARID1A 
deficient HCT 116 compared with ARID1A proficient isogenic HCT 116 colorectal tumour cell 
line. C. Drug sensitivity curves to ACY1215 in the panel of GC tumour cell lines. D. Box and 
whiskers plot showing no difference in sensitivity to ACY1215 in ARID1A deficient compared 
with ARID1A proficient GC tumour cell lines (Mann-Whitney U, p=0.800) E. Drug sensitivity 
curves to GSK126 in the panel of GC tumour cell lines. F. Box and whiskers plot showing no 
difference in sensitivity to GSK1215 in ARID1A deficient compared with ARID1A proficient GC 
tumour cell lines (Mann-Whitney U, p=0.227).  Cells were seeded in 384-well plates and 
exposed to a 5-days treatment across 8 different concentrations of drug, ranging between 
0.0001μM to 1μM for both inhibitors. Error bars represent standard deviation between reps 
(n=14). 
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ATRi and PARPi combination screens 
Because ATRi and PARPi combination could represent a promising strategy for 

cancer patients with defects in DNA repair genes (Jones, Fleuren et al. 2017), and this 

strategy is currently being evaluated in the context of clinical trials (e.g. NCT03462342 

or NCT02264678), I wanted to see if the addition of PARPi to ATRi exposure could 

enhance the sensitivity in our models. The 5-day dose-response assays showed 

enhanced sensitivity to the ATRi + PARPi combination in all cases (VX970/AZD6738 

+ olaparib/talazoparib) in the ARID1A deficient cells, both in the gastric panel (Figure 
6A and 6B) and the HCT 116 isogenics (Figure 6C and 6D). Although the ARID1A 

proficient models were generally less sensitive to the combination treatment, some of 

them presented a good response, as in the case of NCI N87 (Figure 6A and 6B). 

Area under the curve (AUC) analysis of dose-response curves was performed for the 

HCT 116 isogenic pair, confirming a decrease in the surviving fraction of cells in the 

ARID1A deficient cells, compared with ARID1A WT cells, especially when I combined 

VX970 with both PARPi (Figure 6E). 

 

ATR and PI3K inhibitors combination screens 
Despite the modest described effect of PI3Ki in our panel of gastric cell lines, I decided 

to determine if the addition PI3Ki to ATRi increased the sensitivity of tumour cells in 

those cell lines that were deficient for ARID1A, as they might not operate together in 

the same pathway or not be effective in monotherapy, but could still have an impact 

in combination, through the impairment of a compensatory mechanism to ATR 

inhibition in ARID1A deficient models by the upregulation of PI3K pathway. 

Differences between ARID1A deficient group of cells and ARID1A WT cells, were less 

evident in the case of ATRi plus PI3Ki combinations, although significant cell kill was 

observed in the case of YCC6, SNU 5 and SNU 1 ARID1A deficient cell lines when I 

combined both ATRi with both PI3Ki (Figure 7A and 7B). A modest effect was also 

observed in the HCT 116 isogenics, both for the surviving fraction analysis (Figure 7 
C and 7D) and for the AUC analysis (Figure 7E). Generally, BKM120 seemed to have 

a high impact on cell survival, compared with MK2206 AKT inhibitor. 
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Figure 6. ATR and PARP inhibitor combination in GC tumour cell lines. A. Surviving 
fraction heatmap showing sensitivity to ATRi in combination with talazoparib in all GC tumour 
cell lines. Blue shading represents a high surviving cellular fraction and white represents a low 
surviving cellular fraction, The Y axis shows ATRi concentrations (µM) and the X axis shows 
concentrations of PARPi (µM). B. Surviving fraction heatmap showing sensitivity to ATRi in 
combination with olaparib in all GC tumour cell lines. C. Surviving fraction heatmap showing 
HCT 116 isogenic cells sensitivity to ATRi in combination with increasing doses of talazoparib. 
D. Surviving fraction heatmap showing HCT 116 isogenic cells sensitivity to ATRi in 
combination with increasing doses of olaparib.   
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Figure 6 (continuation). E. Histograms showing differences in AUC between HCT 116 WT 
and HCT 116 ARID1A deficient cell line among all ATRi and PARPi combinations. Cells were 
seeded in 384-well plates and exposed to a 5-days treatment across 8 different concentrations 
ranging between 0.0001μM to 1μM for VX970, AZD6738 and BMN673 or 0.001μM to 10μM 
for olaparib. Error bars represent standard deviation between reps (n=4). 
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Figure 7. ATR and PI3K inhibitors combination in GC tumour cell lines. A. Surviving 
fraction heatmap showing sensitivity to ATRi in combination with BKM120 in all GC tumour 
cell lines. Blue shading represents a high surviving cellular fraction and white represents a low 
surviving cellular fraction, The Y axis shows ATRi concentrations (µM) and the X axis shows 
concentrations of PARPi (µM). B. Surviving fraction heatmap showing sensitivity to ATRi in 
combination with MK2206 in all GC tumour cell lines. C. Surviving fraction heatmap showing 
HCT 116 isogenic cells sensitivity to ATRi in combination with increasing doses of BKM120. 
D. Surviving fraction heatmap showing HCT 116 isogenic cells sensitivity to ATRi in 
combination with increasing doses of MK2206.   
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Figure 7 (continuation). E. Histograms showing differences in AUC between HCT 116 WT 
and HCT 116 ARID1A deficient cell line among all ATR and PI3K inhibitor combinations. Cells 
were seeded in 384-well plates and exposed to a 5-days treatment across 8 different 
concentrations ranging between 0.0001μM to 1μM for VX970 and AZD6738 or 0.0001μM to 
10μM for BKM120 and MK2206. Error bars represent standard deviation between reps (n=4). 
 
Creation of ARID1A isogenic models to assess ARID1A-driven ATR inhibition 
sensitivity 
Given the limited number of cell lines in the GC cell line panel used in the experiments 

described above, I thought I might be underpowered to detect differences in drug 

sensitivity associated with ARID1A expression. Furthermore, every tumour cell line 

has a different mutational background (specially in the case of the MSI models), which 

can influence the outcome of the treatment sensitivity. Additionally, the isogenic model 

I used as a control, the HCT 116 cell line is a MSI colorectal cell line, which does not 

represent the gastric rumour genetic background. Consequently, I decided to create a 

new gastric isogenic model, using the CRISPR/Cas9 technique, selecting the MSS, 

ARID1A WT, and most ATRi resistant cell line of our panel, SNU 484, in order to 

evaluate the specific effect of ARID1A loss on ATR inhibition sensitivity. 
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After two consecutive rounds of CRISPR/Cas9 mutagenesis, using three different 

gRNAs, and following an extensive clone-screening, I came to the conclusion that 

SNU 484 cells were addicted to at least a basal ARID1A expression, as any of the 

surviving clones harboured a homozygous ARID1A mutation, and thus complete 

ARID1A loss. I then selected a clone with an 8-nucleotide heterozygous deletion (DNA 

change: g.687_694delAACGCGGG: protein change: N106Pfs*2) according to the 

Sanger sequencing results (Figure 8A). This clone, showed a significantly lower 

mRNA expression when compared with the ARID1A WT cells (CRISPR negative 

control) (Figure 8B), and undetectable ARID1A protein expression (Figure 8C), 

despite its heterozygosity (Figure 8A). Regardless of the remaining of the WT allele, 

I thought it was a valuable isogenic model, as haploinsufficiency phenomenon 

(phenotype is present even with a partial loss of the functional alleles with gene 

dosage effect) seems to operate within the ARID1A deficiency context (Wiegand, 

Shah et al. 2010, Wu, Wang et al. 2014, Kartha, Shen et al. 2016). I thought this could 

be relevant in our model, and thus it could mimic what happens in patients (Wu and 

Roberts 2013, Wu, Wang et al. 2014). When I tested for ATRi sensitivity response 

over five days, I saw that ARID1A deficient cells were significantly more sensitive to 

ATR inhibition compared with the wild type cells, both in the case of VX970 (Two-way 

ANOVA p-Value < 0.001) (Figure 8D) and in the case of AZD6738 (Two-way ANOVA 

< 0.001) (Figure 8E). Moreover, I found than ARID1A mutated cells had a higher 

proliferative rate, compared with the WT cells, which is consistent with a tumour 

suppressor gene role (Wu, Wang et al. 2014), although ARID1A appears to not be a 

pure tumour suppressor gene, being involved in gene expression regulation, genome 

maintenance and repair (Wu, Wang et al. 2014, Sun, Wang et al. 2018). I then 

validated these results using an orthogonal method, silencing ARID1A using siRNAs 

in SNU 484 and AGS cell lines. ARID1A silenced cells showed increased sensitive to 

both VX970 and AZD6738 inhibitors (SNU 484 and AGS two-way ANOVA p-value 

<0.001 for both inhibitors), although the effect was less profound than in the case of 

the CRISPR/Cas9 mutated isogenic cells (Figure 8H-8L).  

I finally tested for the ATRi and PARPi combination in the SNU 484 isogenic cell line, 

not finding a profound difference in the survival fraction nor in the AUC values of cells 

to any combination when I compared ARID1A deficient and proficient cells (Figure 9A 
and B), suggesting that ARID1A is not the only driver of the response to the 

combination. 
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Figure 8. Enhanced ATRi sensitivity in SNU 484 ARID1A deficient isogenic GC tumour 
cell lines. A. ARID1A sequence alignment by ApE software in 6 TOPO cloned colonies from 
SNU 484 ARID1A CRISPR/Cas9 mutated cell line, shows an 8-nucleotide deletion (DNA 
change: g.687_694delAACGCGGG: aminoacid change: N106Pfs*2) in 50% of the sequences 
(red), when compared with the consensus sequence (green). SNU 484 ARID1A isogenic 
tumour cells created using the CRISPR/Cas9 technique, using a gRNA towards ARID1A 
sequence or a gRNA no homology to any known mammalian gene as a negative control. All 
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cell lines where plated in 384-well plates and exposed to a 5-days treatment across 8 different 
concentrations ranging between 0.0001μM to 1μM of both drugs. Error bars represent 
standard deviation between reps (n=14). B. and C ARID1A relative quantitative PCR mRNA 
levels and western blot protein expression in SNU 484 isogenic cell line, respectively. D. 
VX970 dose response cell survival curves for the gastric SNU 484 ARID1A E. AZD6738 dose 
response cell survival curves for the gastric SNU 484 ARID1A isogenic tumour cells F. 16-
days proliferation curves generated using the IncuCyte Zoom Live Cell Analysis System 
(essenbio) comparing SNU 484 GC ARID1A isogenic cells G. WB showing a reduction in 
ARID1A protein in SNU 484 using lysates corresponding to siRNA Knockdown experiments 
H and I. H. Drug sensitivity curve to VX970 for SNU 484 GC cell line, after reverse transfection 
with siRNA targeting ARID1A (green) or with a siRNA control that has no homology to any 
known mammalian gene (siAllstar, black). I. Drug sensitivity curve to AZD6738 for SNU 484 
GC cell line, after reverse transfection with siRNA targeting ARID1A (green) or with a siRNA 
control that has no homology to any known mammalian gene (siAllstar, black). J. WB showing 
a reduction in ARID1A protein in AGS GC cell line using lysates corresponding to siRNA 
knockdown experiments 
 
 
 

 
 
Figure 8 (cont.) K and L. K. Drug sensitivity curve to VX970 for AGS GC cell line, after 
reverse transfection with siRNA targeting ARID1A (green) or with a siRNA control that has no 
homology to any known mammalian gene (siAllstar, black). L. Drug sensitivity curve to 
AZD6738 for AGS GC cell line, after reverse transfection with siRNA targeting ARID1A (green) 
or with a siRNA control that has no homology to any known mammalian gene (siAllstar, black). 
48h after transfection, cells were exposed to the ATRi across 8 different concentrations 
ranging between 0.0001μM to 1μM of drug for 4 days. Error bars represent standard deviation 
between reps (n=14). Survival curve siARID1A vs negative control p-value <0.0001, 2-way 
ANOVA.  
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Figure 9. Sensitivity to ATR inhibition in combination with PARP inhibition in ARID1A 
deficient isogenic GC tumour cell lines. A. Surviving fraction heatmap showing SNU 484 
ARID1A isogenic cell lines sensitivity to ATRi in combination with PARPi. Cells where seeded 
in 384-well plates by triplicate and exposed to a 5-days treatment of VX970 or AZD6738, in 
combination with talazoparib or olaparib. Y axis shows ATRi concentrations in an µM scale, 
while X axis shows PARPi concentrations in µM. B. Histograms showing differences in AUC 
between SNU 484 isogenic cell line among all ATRi and PARPi combinations.  
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2. In vivo assessment of ATRi Efficacy in Gastric Cancer 

Patient-Derived Xenografts 

 
Patient-derived xenografts (PDX) consist of tumour fragments originated in patients, 

that are directly implanted and cultured in immunodeficient mice. PDXs have become 

an important tool for translational cancer research, as they conserve the cellular and 

histological structure of the tumour originated in the patient, as well as the genetic 

profile present in the original tumour (Reyal, Guyader et al. 2012, Tentler, Tan et al. 

2012), which makes them optimal for the evaluation of therapeutic responses (Pompili, 

Porru et al. 2016). PDXs represent valuable models to predict the effect that a drug is 

going to have in a particular genetic context or an individual patient from which it has 

been derived, and their use has become common in translational cancer medicine, 

where the aim is to deliver treatments that are tailored according to the individual 

(Pompili, Porru et al. 2016). 

 

I selected several GC PDX from CROWNbio database, with the aim of validating the 

ARID1A and ATR SL found in the GC cell lines. 

Following statistical power calculations, assuming normal distribution, and considering 

an effect larger than 75%, an α lower than 0.05, and a ß higher than 0.95 as significant, 

I determined the number of animals were needed on each arm, to have the statistical 

power to detect true differences. Thus, the experiments were carried out in a total of 

7 mice per arm, in 6 arms. 

M4344, rather than VX970 was used, as M4344 is an oral compound that has 

previously been observed in other tumour models to have superior in vivo efficacy, 

and it is currently being assessed in phase I clinical trials in monotherapy or in 

combination with PARPi.  

I annotated ARID1A mutations detected by whole exome sequencing within the PDXs 

reported by CROWNbio, and validated these mutations using the Ion Torrent 

sequencing platform and a pre-designed panel of genes that included ARID1A. 

Furthermore, tumours were characterised for microsatellite instability status by 

sequencing a panel of five markers. Only one PDX presented MSI and it was the GC2 

ARID1A deficient model. Information about the PDX models is listed in Table 7.  
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Table 7. Information about the PDX models 

 
 

The design of the PDX experiment is shown in Figure 10. Briefly, four ARID1A 

deficient PDX models and 3 ARID1A proficient models were selected. Interestingly, 

some of the models with ARID1A mutations seemed to be heterozygous for the 

mutations (according to the frequency of sequencing reads), but they showed a 

complete loss of protein. This is consistent to what has previously been reported in 

the ARID1A SNU 484, where a heterozygous mutation of ARID1A showed a complete 

loss of protein expression. This has also been described in patients by IHC of tumours 

with mutations in ARID1A (Wiegand, Shah et al. 2010, Wu, Wang et al. 2014, Kartha, 

Shen et al. 2016). Tumours were then processed and implanted into mice and 

randomised into different arms, at a final number of 7 mice per arm, and treated with 

either vehicle; M4344 20mg/kg, M4344 10mg/kg, M4344 3mg/kg, talazoparib 0.1 

mg/kg and ATRi M4344 3mg/kg + talazoparib 0.1 mg/kg, all treatments given by oral 

gavage. Mice were treated for several weeks and tumour volume and body weigh was 

monitored twice a week. In the event of resistant tumour growth, tumours reaching 

1000mm3 were collected to be molecular characterised for further ATRi resistance 

prospective studies (Figure 10). Model GC1, the first PDX model to undergo drugging 

with M4344, was used to optimise the dose and scheduling for the remaining 

experiments. The subsequent experiments were treated with 10mg/kg twice a week 

or 5 mg/kg M3433 daily, as severe body weight loss was noted in mice receiving the 

highest doses of ATRi. Although the reduced dose and modified scheduling of M4344 

was better tolerated, the treatment duration required early cessation due to weight 

loss. 

 
 

Model	ID	(gastric	
adenocarcinoma)

Cachexia Ulceration Tumour	growth	
characteristics

ARID1A	mutation	
(%)

ARID1A	protein	
expression

Microsatellite	
instability

GC1 Yes Yes Very	slow 982del	(41),	
P1349Lfs*132	(64)

No No

GC2 No Yes Slow K1072Nfs*21	 (48) No Yes
GC3 Yes No Slow 982_982del	 (52),	

P2139fs	(40)
No No

GC4 Yes Yes Slow K1072Nfs*21	 (50) No No
GC5 Yes No Fast - Yes No
GC6 Slight	body	

weight	loss
Yes Moderate - Yes No

GC7 Yes No Slow - Yes No
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Figure 10. PDX experimental design. Four ARID1A deficient PDX models and 3 ARID1A 
proficient models were selected from CROWNbio database and validated for ARID1A 
mutations (Ion Torrent NGS) and protein expression by Next-Generation Sequencing (NGS) 
and IHC, respectively. Tumours were then processes and implanted into Balb/c nude mice 
with a body weight of approximately 20g. When tumours reached an approximate volume of 
100-200mm3, mice were randomised to different arms, at a final number of 7 mice per arm, 
and treated with either vehicle, M4344 20mg/kg daily, M4344 10mg/kg daily, ATRi M4344 
3mg/kg daily, talazoparib 0.1 mg/kg 2x daily and ATRi M4344 3mg/kg daily + talazoparib 0.1 
mg.kg 2x daily, all treatments given by oral gavage. Mice were treated for several weeks while 
tumour volume and body weigh was monitored twice a week. In the event of resistant tumour 
growth, tumours reaching 1000mm3 were collected to be molecular characterised for further 
ATRi resistance mechanism studies. All in vivo experiments were performed by CrownBio 
company. 
 

Despite this, all PDX models with an ARID1A deficiency (GC1-GC4) showed a 

significant growth inhibition to ATRi treatment when compared with the vehicle, in a 

dose-dependent way (Figures 11C-14C, two-way ANOVA p-values <0.0001). In the 

case of the ARID1A proficient models, two of them did not show a profound sensitivity 

to the ATRi monotherapy (GC5 and GC6) (Figures 15C-16C), although mild 

differences could be detected.  However, model GC7, also ARID1A proficient, showed 

a profound effect in terms of tumour inhibition in response to M4344, that was dose 

dependent (Figure 17C). Next, I wanted to see if the addition of PARPi could show an 

enhancement to the sensitivity to ATRi, as I had seen in the cell lines. Previous studies 

report a sensitisation to PARPi in ARID1A deficient models (Shen, Peng et al. 2015, 

Jones, Fleuren et al. 2017). Consistent to this, I observed that when the mice 

X7

X7

X7

X7

X7

X7

Consent patient 
with GC

Surgically 
removed tumour

Engrafment
and expansion

ARID1A mutation (NGS sequencing) �
ARID1A loss of protein expression �

Vehicle

Treatment phase

M4344 20mg/kg daily

M4344 10mg/kg daily

M4344 3mg/kg daily

Talazoparib 0.1mg/kg 2x daily

M4544 3mg/kg daily 
+Talazoparib 0.1mg/kg 2x daily

Propagation of 
resistant tumours

Identification of candidate genetic 
determinants of resistance to 
M4344 treatment through 
molecular characterisation of 
tumour
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belonging to the ARID1A deficient models were treated with the ATRi + PARPi 

combination, I could see a clear enhancement of the response for the combination 

arm, compared with the monotherapies or vehicle, suggesting a synergy between the 

two drugs (Figures 11D-14D, two-way ANOVA p-values < 0.0001). The effect seen in 

the GC5 and GC6 ARID1A proficient models was much less evident, showing a very 

modest separation in between the different treatments (Figures 15D-16D). Again, the 

GC7 model proved to be exquisitely sensitive to ATRi, although being ARID1A 

proficient (Figure 17D).  
 
Taken together, it is evident that a dose-dependent tumour inhibition to M4344 was 

elicited in ARID1A deficient PDX models. However, sensitivity is not restricted to the 

ARID1A deficient context, as marked tumour inhibition was also observed in the 

ARID1A proficient model GC7.  Comparison of data from whole exome sequencing, 

RNA sequencing and proteomics between the vehicle and ATRi treated tumours will 

allow us to identify potential biomarkers of sensitivity to ATRi in an ARID1A deficient 

context. 
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Figure 11. GC1 ARID1A deficient PDX is highly sensitive to ATR inhibition. A. HCT 116 
colorectal isogenic cell line was used as a positive control for the ARID1A expression testing 
by IHC, using the D2A8U ARID1A antibody (CST) at a 1:250 dilution. B. FFPE sections from 
the tumour was stained for ARID1A expression showing complete protein loss, according to 
the controls. C and D. Average of tumour volume measurements of all mice in each group 
along time and ATRi treatment (C) or ATR + talazoparib treatment (D). Error bars represent 
Standard error of the mean (n=7). Two-way ANOVA p-values of groups M4344 20mg/kg, 
10mg/kg, 3mg/kg and 3mg/kg + talazoparib were lower than 0.0001. Dotted line represents 
the end of the treatment due to body weight loss >25% in some of the groups. D.  Box and 
whiskers representation showing the differences between the final tumour volume in between 
treatment arms (Mann-Whitney p-values). 
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Figure 12. GC2 ARID1A deficient PDX is highly sensitive to ATR inhibition. A. HCT 116 
colorectal isogenic cell line was used as a positive control for the ARID1A expression testing 
by IHC, using the D2A8U ARID1A antibody (CST) at a 1:250 dilution. B. FFPE sections from 
the tumour was stained for ARID1A expression showing complete protein loss, according to 
the controls. C and D. Average of tumour volume measurements of all mice in each group 
along time and ATRi treatment (C) or ATR + talazoparib treatment (D). Error bars represent 
Standard error of the mean (n=7). Two-way ANOVA p-values of groups M4344 10mg/kg, 
5mg/kg, 3mg/kg and 3mg/kg + talazoparib were lower than 0.0001. Dotted line represents the 
end of the treatment due to body weight loss >25% in some of the groups. D.  Box and 
whiskers representation showing the differences between the final tumour volume in between 
treatment arms (Mann-Whitney p-values). 
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Figure 13. GC3 ARID1A deficient PDX is highly sensitive to ATR inhibition. A. HCT 116 
colorectal isogenic cell line was used as a positive control for the ARID1A expression testing 
by IHC, using the D2A8U ARID1A antibody (CST) at a 1:250 dilution. B. FFPE sections from 
the tumour was stained for ARID1A expression showing complete protein loss, according to 
the controls. C and D. Average of tumour volume measurements of all mice in each group 
along time and ATRi treatment (C) or ATR + talazoparib treatment (D). Error bars represent 
Standard error of the mean (n=7). Two-way ANOVA p-values of groups M4344 10mg/kg, 
5mg/kg and 3mg/kg + talazoparib were lower than 0.0001. Dotted line represents the end of 
the treatment due to body weight loss >25% in some of the groups. D.  Box and whiskers 
representation showing the differences between the final tumour volume in between treatment 
arms (Mann-Whitney p-values).  
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Figure 14. GC4 ARID1A deficient PDX is highly sensitive to ATR inhibition. A. HCT 116 
colorectal isogenic cell line was used as a positive control for the ARID1A expression testing 
by IHC, using the D2A8U ARID1A antibody (CST) at a 1:250 dilution. B. FFPE sections from 
the tumour was stained for ARID1A expression showing complete protein loss, according to 
the controls. C and D. Average of tumour volume measurements of all mice in each group 
along time and ATRi treatment (C) or ATR + talazoparib treatment (D). Error bars represent 
Standard error of the mean (n=7). Two-way ANOVA p-values of groups M4344 10mg/kg, 
5mg/kg and 3mg/kg + talazoparib were lower than 0.0001. Dotted line represents the end of 
the treatment due to body weight loss >25% in some of the groups. D.  Box and whiskers 
representation showing the differences between the final tumour volume in between treatment 
arms (Mann-Whitney p-values). 
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Figure 15. GC5 ARID1A proficient PDX is mildly sensitive to ATR inhibition. A. HCT 116 
colorectal isogenic cell line was used as a positive control for the ARID1A expression testing 
by IHC, using the D2A8U ARID1A antibody (CST) at a 1:250 dilution. B. FFPE sections from 
the tumour was stained for ARID1A expression showing complete protein loss, according to 
the controls. C and D. Average of tumour volume measurements of all mice in each group 
along time and ATRi treatment (C) or ATR + talazoparib treatment (D). Error bars represent 
Standard error of the mean (n=7). Only two-way ANOVA p-values of the M4344 10mg/kg 
group, were lower than 0.0001. Dotted line represents the end of the treatment due to body 
weight loss >25% in some of the groups. D.  Box and whiskers representation showing the 
differences between the final tumour volume in between treatment arms (Mann-Whitney p-
values). 

GC5
A B

C D

Positive ARID1A control
HCT116 WT

Negative ARID1A control
HCT116 ARID1A -/-

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Treatment (Days)

Tu
m

ou
r 

vo
lu

m
e 

(m
m

2 )

Vehicle

M4344 10mg/kg BID x twice per week p.o.
M4344 5mg/kg BID p.o.

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Treatment (Days)

Tu
m

ou
r 

vo
lu

m
e 

(m
m

2 )

Vehicle

M4344 3mg/kg p.o.
Talazoparib 0.1mg/kg bd p.o.

M4344 3mg/kg p.o. plus Talazoparib 0.1mg/kg bd p.o.

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Treatment (Days)

Tu
m

ou
r 

vo
lu

m
e 

(m
m

2 )

Vehicle

M4344 3mg/kg p.o.
Talazoparib 0.1mg/kg bd p.o.

M4344 3mg/kg p.o. plus Talazoparib 0.1mg/kg bd p.o.

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

Treatment (Days)

Tu
m

ou
r 

vo
lu

m
e 

(m
m

2 )

Vehicle

M4344 10mg/kg BID x twice per week p.o.
M4344 5mg/kg BID p.o.

ATRi ATRi +PARPi

ve
hi

cl
e

M
43

44
 1

0m
g/

kg
 tw

ic
e 

pe
r w

ee
k 

p.
o.

M
43

44
 5

m
g/

kg
 p

.o
.

M
43

44
 3

m
g/

kg
 p

.o
.

Ta
la

zo
pa

rib
 0

.1
m

g/
kg

 b
d 

p.
o.

M
43

44
 3

m
g/

kg
 p

.o
. p

lu
s 

Ta
la

zo
pa

rib
 0

.1
m

g/
kg

 b
d 

p.
o.

0

1000

2000

3000

4000

Tu
m

ou
r 

vo
lu

m
e 

(m
m

2 )

GA 6885 End of Experiment Tumour Volume 

*P=0.006

*P=0.0111E



	 88	

 

 

Figure 16. GC6 ARID1A proficient PDX is mildly sensitive to ATR inhibition. A. HCT 116 
colorectal isogenic cell line was used as a positive control for the ARID1A expression testing 
by IHC, using the D2A8U ARID1A antibody (CST) at a 1:250 dilution. B. FFPE sections from 
the tumour was stained for ARID1A expression showing complete protein loss, according to 
the controls. C and D. Average of tumour volume measurements of all mice in each group 
along time and ATRi treatment (C) or ATR + talazoparib treatment (D). Error bars represent 
Standard error of the mean (n=7). Only two-way ANOVA p-values of the M4344 10mg/kg 
group, were lower than 0.0001. Dotted line represents the end of the treatment due to body 
weight loss >25% in some of the groups. D.  Box and whiskers representation showing the 
differences between the final tumour volume in between treatment arms (Mann-Whitney p-
values). 
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Figure 17. GC7 ARID1A proficient PDX is highly sensitive to ATR inhibition. A. HCT 116 
colorectal isogenic cell line was used as a positive control for the ARID1A expression testing 
by IHC, using the D2A8U ARID1A antibody (CST) at a 1:250 dilution. B. FFPE sections from 
the tumour was stained for ARID1A expression showing complete protein loss, according to 
the controls. C and D. Average of tumour volume measurements of all mice in each group 
along time and ATRi treatment (C) or ATR + talazoparib treatment (D). Error bars represent 
Standard error of the mean (n=7). Two-way ANOVA p-values of groups M4344 10mg/kg, 
5mg/kg and 3mg/kg + talazoparib were lower than 0.0001. Dotted line represents the end of 
the treatment due to body weight loss >25% in some of the groups. D.  Box and whiskers 
representation showing the differences between the final tumour volume in between treatment 
arms (Mann-Whitney p-values). 
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3. VX970 positive selection Genome-Wide CRISPR/Cas9 

mutagenesis screen 

 
Although ATRi seem to be a promising therapy for DDR defective cancers, resistance 

mechanisms are likely to arise from monotherapy treatments. This can be illustrated 

with the example of Cell Division Cycle 25A gene (CDC25A), which has been 

demonstrated to cause ATRi resistance due to its failure to induce premature mitosis 

when CDC25A protein expression is lost (Ruiz, Mayor-Ruiz et al. 2016). Another 

relevant example of DDR inhibition resistance is the case of the appearance 

resistance-causing reverting mutations in BRCA1/2 deficient cancers in the context of 

PARPi-BRCA1/2 SL (Edwards, Brough et al. 2008, Barber, Sandhu et al. 2013, 

Weigelt, Comino-Mendez et al. 2017). 

To try to understand the mechanisms of resistance most likely to cause disease-

recurrence in GC patients, I carried out a positive selection GW CRISPR-Cas9 

mutagenesis screen (CRISPR screen) using the Kosuke Yusa, Human GW CRISPR 

guide RNA library, encompassing 87,897 single guide (sg)RNAs targeting more than 

17,000 genes) (Koike-Yusa, Li et al. 2014). Using this high-throughput technology, I 

was able to perform multiple pooled reactions of Cas9-mediated and sgRNA-targeted 

mutagenesis, aiming to cause independent protein loss of function (LOF) events. After 

mutagenesis, some of the cells can become resistant to the drug due to a specific 

protein loss, mediated by a particular sgRNA, that can be tracked and detected using 

NGS techniques (Wang, Wei et al. 2014, Aguirre, Meyers et al. 2016, Tzelepis, Koike-

Yusa et al. 2016, Pettitt, Krastev et al. 2018).  

Following this principal, I aimed to identify the genes that are responsible for ATRi 

resistance in YCC6 gastric tumour cell line, to identify novel mechanisms of resistance 

that could, potentially be translated into the clinical practice. A workflow including 

screen optimisation tests, experimental phase and computational analysis required to 

complete the GW CRISPR screen is illustrated in Figure 18.  
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Figure 18. Genome-wide SF0 positive selection CRISPR/Cas9 screen workflow. First, 
Dox inducible Cas9 YCC6 cells were created, sorted into individual clones and tested for Cas9 
expression. One of the clones was selected (clone 9) and Cas9 catalytic activity was assessed 
by the two-fluorescence allele method. Cell seeding density and drug dose was optimised in 
the same format used in the screen. For the screening experiment, Cas9 was induced 24 
hours before the cells were transduced with the lentiviral vectors containing the library of GW 
sgRNA at a low multiplicity of infection, to ensure no more than one sgRNA integration per 
cell. After 5 days of stringent puromycin selection, sample T=0 was taken and cells were 
harvested and re-seeded, 24 h before 100nM VX970 was added to the culture media. Cells 
were drugged twice a week for three weeks. They were then left in drug-free medium for two 
weeks, prior to the harvesting of the resistant cells for sgRNA sequencing (sample T=1). 
Additionally, some resistant colonies were picked and sgRNA inserted in them were sanger 
sequenced. For the computational analysis, FASTQ files were generated from the HiSeq 
sequencing and sgRNA read count data was calculated using MAGeCK algorithm. After 
normalisation of sgRNA counts and quality control check, Z-score and MAGeCK analysis was 
undertaken, comparing T1 to T0 counts, and results were consolidated using MAGeCK and 
Z-score ranking system. Top hits were taken in account for further validation and functional 
enrichment analysis.  
 

First, I transduced YCC6 gastric tumour cells with a Dox-inducible Cas9 expressing 

construct (YCC6iCas9), using the Edit-R Inducible Lentiviral hEF1a-Blast-Cas9 

Nuclease (Dharmacon). One of the Cas9 expressing clones was selected, after a 24h 

of Dox treatment (Clone 9) for further experiments (Western blot showing loss of 

protein expression in clone 9, compared with YCC6 parental cell line is shown in 

Figure 19.A). To determine the efficiency of the CRISPR-Cas9 editing (Cas9 catalytic 

activity) in this clone of cells, I co-infected the cells with lentiviral particles carrying 
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constructs for the green fluorescent protein (GFP) and red fluorescent protein (Cherry, 

RFP) (GFP/RFP/empty), or with lentiviruses carrying GFP, and a Gfp-targeting gRNA 

(GFP/RFP/Gfp-sgRNA). I then exposed the cells to Dox for 72 hours and changes in 

green and red fluorescence were quantified using flow cytometry. I detected a 

profound decrease in green fluorescence in the GFP/RFP/Gfp-sgRNA cells, 

demonstrating the ability of Cas9 to generate homozygous mutations in our YCC6iCas9 

cells, when induced by the Dox treatment (Figure 19B).  

 

Cell density and drug concentration was optimised before the actual experiment, using 

the same format plates and testing a range of VX970 concentrations in a variety of cell 

densities. A dose of 100nm VX970 in 1 million cells per 15cm plates was selected as 

the surviving fraction = 0 (SF0, or 100% lethal dose). 

 

Following optimisation experiments, I transduced YCC6iCas9 and non-Dox treated cells 

(negative control) with the GW sgRNA library at a low multiplicity of infection (MOI), to 

achieve no more than one sgRNA infection per cell (Figure 19C). After puromycin 

selection, I retrieved T=0 sample and harvested the cells, seeding one million cells per 

15 cm plate, following a final x1000 representation per sgRNA in the library, and 

exposed the cells to 100nM of VX970, a lethal dose for a non-mutated population 

(SF0), twice a week for a total of three weeks, until the negative control cells were 

dead. I left the surviving colonies for two weeks in drug-free media, then picked 24 

resistant colonies, that were expanded and retrieved for further analysis. The 

remaining resistant cells were harvested (T=1 sample) and DNA was extracted and 

prepared for sgRNA counts NGS.   

Following DNA sequencing, the resulting data have been analysed both, through 

determination of a Z-score statistic (where Z=0 represents no effect on viability and 

positive Z-scores represent gain of viability), as well as the Model-based Analysis of 

GW CRISPR/Cas9 Knockout (MAGeCK), method for prioritising sgRNAs, genes and 

pathways in genome-scale CRISPR/Cas9 knockout screens (Li, Xu et al. 2014), to 

provide robust normalisation of the sequenced reads (figure 20A). I observed that 

there was an excellent correlation of the data from our screen when the sgRNA log-

fold change determined by the MAGeCK method was compared with the median Z-

score for each gene (correlation=0.936, p-value<2.2 x 10-308) (Figure 20B). 
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Figure 19. Preparation of the models, dose optimisation and genome-wide 
CRISPR/Cas9 screen workflow. A. YCC6 cells transduced with Edit-R Inducible Lentiviral 
hEF1a-Blast-Cas9 Nuclease vector (Dharmacon) express Cas9 protein, shown by Western 
blot after 24h of 1µg/ml Dox treatment (clone 9). B. iCas9 cells have a catalytic active Cas9. 
Scheme illustrating the two-allele system used to generate inducible-Cas9 YCC6 cells. 
GFP/RFP/Empty cells where transduced with GFP and cherry lentiviral constructs, while 
GFP/RFP/gfp-sgRNA cells where additionally transduced with a sgRNA towards GFP, able to 
cleave GFP protein and thus decreasing green fluorescence when Cas9 active, detected by 
flow cytometry. C. CRISPR screen workflow. On day one, all cells except the Dox – (negative 
control) were treated with 1 µg/ml of Dox. On day two, cells were transduced with the GW 
sgRNA library at a MOI of 0.3. The following day, successfully transduced cells were selected 
in puromycin for 5 days, when they were harvested and seeded in 15 cm plates at a 
determined concentration. On day 9, 100nM VX970 was added to the media and cells were 
left in drug for three weeks, being fed with fresh drug, twice a week. Resistant colonies were 
then left to grow in drug-free media for two more weeks, when resistant colonies or cells where 
retrieved for sequencing. 
 
 
These analyses have allowed us to identify the genes that display the greatest sgRNA 

enrichment in ATRi resistant cells retrieved at T1 (after treatment), compared with cells 

retrieved at T0 (before treatment) (sgRNA fold change). These include, HECT-UBA 

and WWE domain containing 1-E3 ubiquitin protein ligase (HUWE1), SMG8, 

nonsense mediated mRNA decay factor (SMG8), heterogeneous nuclear 

ribonucleoprotein F (HNRNPF), interferon regulatory factor 9 (IRF9), cell division cycle 
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25B (CDC25B), signal transducer and activator of transcription 2 (STAT2), SMG9, 

nonsense mediated mRNA decay factor (SMG9), caspase recruitment domain family 

member 10 (CARD10), cleavage stimulation factor subunit 2 tau variant (CSTF2T), 

Rho GTPase activating protein 22 (ARHGAP22), coiled-coil domain containing 7 

(CCDC7), WDFY family member 4 (WDFY4), FXYD domain containing ion transport 

regulator 4 (FXYD4), tyrosine kinase 2 (TYK2), RIC8 guanine nucleotide exchange 

factor A  (RIC8A), myopalladin (MYPN), neuropeptide Y receptor Y4 (NPY4R), 

chromosome 11 open reading frame 86 (C11orf86), CCHC-type zinc finger nucleic 

acid binding protein (CNBP) and TRAF-type zinc finger domain containing 1 

(TRAFD1) (Figure 20C).  

 

The workflow that I used to further validate the hits I found in the NGS results is 

represented in Figure 21. The top 20 candidate genetic determinants of resistance to 

ATR inhibition in the YCC6 gastric tumour cell line were selected from the hits that had 

the highest rank product score (combination of MAGeCK and Z-Score value fold-

change between sample T=1 and sample T=0), and that had positive results for more 

than 2 independent sgRNAs for the targeted gene. 

Additionally, I sanger sequenced the DNA extracted from the picked colonies, to 

identify genes targeted by sgRNA in resistant clones (Table 8).  

 

To avoid any potential off-target effects of the sgRNA identified in the screen, I carried 

out a CRISPR/Cas9 mini-screen arrayed validation experiment. Drug dose was 

optimised by doing a two-weeks exposure drug curve in a 96 well-plate, testing 

different cell concentrations, and selecting the dose-cell concentration where all cells 

died after that time (SF0).  Additionally, transfection conditions (reagents and method) 

was optimised previous to the experiment commencement.  

 

First, infected YCC6iCas9 cells with all sgRNA targeting genes identified as candidate 

genetic determinants of ATR resistance (average of 5 sgRNA per gene), either in the 

picked colonies, or the sequenced resistant population, in a 96-well format, using the 

IncuCyte Zoom Live Cell Analysis System, that monitored cell growth in every well 

after CRISPR/Cas9 mutagenesis. Furthermore, I undertook CTG analysis (Promega) 

at the end of the screen, which is a luminescent cell viability assay where quantitation 

of the ATP present in metabolically active cells is used to determine the number of 
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viable cells in culture. Information regarding the sgRNA used for the validation 

experiment is present in Supplementary Table 2.  
CTG reads showed cell proliferation and hence, VX970 resistance for several wells, 

and this correlated with the growth graphs from the incucyte image analysis. All 5 

sgRNAs towards SMG8 and HNRNPF caused resistance to VX970. 4 out of 5 sgRNAs 

for CDC25B and for CARD10; 3 out of 5 for HUWE1, 2 of 5 for FOXM1 and one sgRNA 

out of 5 for SMG9, STAT2, ZNF592, FXYD4 and JAK1 caused resistance to the ATRi 

(Figure 22), while no proliferative living cells were found in the negative control wells. 

The sgRNA arrayed validation experiment was carried out three times, and an extra 

plate was used to further expand the mutated clones to have them as models for future 

experiments. 

Following the results from the arrayed CRISPR/Cas9 screen validation, GW clone 9 

and 10 picked colonies were used to validate IRF9 and HUWE1 hits as ATRi 

resistance-causing genes. Colony GW9 (IRF9 -/-), carried a sgRNA towards exon 1 of 

IRF9 (AAGAGTTCTGAATTTAAGG) and presented IRF9 protein loss (Figure 23A), 

and ATRi resistance to both, VX970 (Figure 23B) and AZD6738 (figure 23C) when 

compared with the parental YCC6iCas9 (both VX970 AND AZD6738 two-way ANOVA 

p-values <0.001). 

After TOPO cloning, sanger sequencing of the IRF9 region confirmed the presence of 

the c.266_284delACAAGAGTTCTGAATTTAA deletion (protein change in 

approximately half of the copies, and the deletion c.271_285delAGTTCTGAATTTAAG 

in the other half (Figure 23D), consistent with the absolute protein loss found in the 

western blot (Figure 23A). Both deletions were predicted to cause early truncated 

proteins, according to the online software MutationTaster 

(http://www.mutationtaster.org). Moreover, cell cycle analysis of EdU and PI double 

stained cells showed decrease in the percentage of cells stalled in inactive S phase in 

the IRF9 deficient cells, compared with the WT YCC6 (t-test p-value<0.001) (Figure 
23E and F), consistent with the arising of resistance to ATRi. 

Colony GW10 (HUWE1-/-) carried a HUWE1 targeting sgRNA 

(GCTCTGACGCGTAAGTGAC), and showed complete protein expression loss 

(Figure 24A) and resistance to both ATRi (two-way ANOVA p-value <0.001 for VX970 

and AZD6738) (figures 24B and C). After TOPO cloning, sanger sequencing revealed 

a deletion in approximately half of the reads (c.5976_5986delGTCACTTACGC), and 

an insertion (c.5979_5980insA) in the rest of them (Figure 24D). 
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Figure 20. Genome-wide CRISPR/Cas9 screen computational Analysis. A. Z-score and 
MAGeCK analysis workflow. B. Concordance of MAGeCK sgRNA mean log fold change (T1-
T0) with median Z-score. C. Box and whiskers plot showing the top 20 candidate genetic 
determinants of ATRi resistance (red) for the GW CRISPR/Cas9 screen in YCC6 cell line. 
Each red point represents the fold change (T1 compared with T0 sample) for an individual 
sgRNA, targeting a potential resistance gene. All top 20 show a p-value <0.00035 
according to MAGeCK analysis (RRA score – modified robust ranking aggregation 
algorithm). 
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Figure 21. Genome-wide CRISPR/Cas9 YCC6 screen validation pipeline. Top hits from 
the screen, including 20 top hits from the NGS results, genes listed in the gene cancer census 
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list present in the top 50 hits, plus gRNA inserted in the picked colonies were selected and 
transfected to the Cas9 expressing YCC6 cells in a arrayed 96-well plate format. Cells were 
analysed by the incucyte image analysis system over time, and by cell titre-glo proliferation 
analysis at a final time. Selected validated hits which had associated resistant picked colonies 
with no more than one sgRNA insertion, were further validated by sanger sequencing of DNA, 
protein expression testing (western blot), ATRi resistance checking and cell cycle analysis 
(FACS) (HUWE1 and IRF). For the validated genes that were not represented in the picked 
colonies, further validation models were created by siRNA transfection and knockdown or by 
single CRIPR/Cas9 mutagenesis and those models were then characterised and used for 
validation experiments. Future testing in parallel clones or orthogonal models will be 
performed for the strong candidate genes found. 
 
 
Table 8. sgRNA detected in the picked resistant colonies from the genome-wide 
CRISPR-Cas9 mutagenesis screen in YCC6 gastric tumour cell line. Highlighted in green 
the genes amongst the top-50 hits from the NGS-sgRNA count from the remaining resistant 
population. 
 
 

Colony 
number 

Gene 
targeted 

sgRNA sequence Position in 
rank on hit list 

GW1 ZNF592 TCTCCCAAAGCACCTGCGC 160 
GW2 GIMAP1 

ZNF599 
AGCTGCTGGGGATGGTCGA 
TCTCCCAAAGCACCTGCGC 

624 
328 

GW3 KLLN CGGAAAGTAGTTCCGACTG 157 
GW4 KLLN CGGAAAGTAGTTCCGACTG 157 
GW5 CECR6 AAGAACAGCCGGGGCCGTC 1009 
GW6 AMACR 

STAT2 
ACGTGAGCCGCTTGGGCCG 
TGCTTCCGATATAAGATCC 

569 
6 

GW7 CWF19L1 GCCACCCGGTTTATAGCTC 317 
GW8 FDFT1 TCTCCATGAACCGCCAGTC 82 
GW9 IRF9 AAGAGTTCTGAATTTAAGG 4 
GW10 HUWE1 GCTCTGACGCGTAAGTGAC 1 
GW11 LAMTOR2 

PTCHD3 
USP43 

CCATACCATGCAGTCCATG 
CGTCCAGCATCGACGGCCG 
CGTACCTCGTCTGGCGCAA 

169 
2347 
56 

GW12 THUMPD1 GTCGCCGTATTCGTTGAGG 298 
GW13 JAK1 CGGAAGTAGCCATCTACCA 48 
GW14 DUSP6 

POLDIP3 
GCGCTCTTCACGCGCGGCG 
ATGCCCGATTTCGAATCAA 

10990 
825 

GW15 TYK2 GTGCTGCCGGATATGCCGG 14 
 

 
 

 



	 100	

 

Figure 22. Validation CRISPR/Cas9 mini-screen. Results from the validation CRISPR/Cas9 
mini-screen according to the luminescence reads (cell titre-glo) per well, normalised to 
negative control wells (sgRNA- negative C sgRNA). 31 genes were studied, testing for a total 
of 159 sgRNAs. Two different negative control sgRNAs were additionally used. 1500 
YCC6iCas9 cells per well were seeded and reversely transfected with specific sgRNA before 
they were exposed to 80nM VX970 for two weeks, being fed twice week. Plates were then left 
to recover for one week with drug-free media. Log10 values of viability per well (sgRNA) are 
plotted (red dots) in the Y-axis for the top 20 validated genes (X-axis). Complete death is 
assumed from values equal or lower than log10 of 1 (=0). 
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Figure 23. Validation of IRF9 as a candidate for ATRi resistance mediator in IRF9 
isogenic cells. A. WB showing a loss in IRF9 protein in the resistant clone harbouring a gRNA 
towards IRF9, compared with the parental YCC6 cell line. B. Drug sensitivity curves showing 
decreased sensitivity to VX970 in IRF9 -/- cells compared with YCC6 IRF9 WT cells (two-way 
ANOVA, p<0.001) C. Drug sensitivity curves showing decreased sensitivity to AZD6738 in 
IRF9 -/- cells compared with YCC6 IRF9 WT cells (two-way ANOVA, p<0.001). Cells were 
seeded in 384-well plates and exposed to a 5-days treatment across 8 different concentrations 
of drug, ranging between 0.0001μM to 1μM. Error bars represent standard deviation between 
reps (n=14). D IRF9 sequence alignment by ApE software in 15 TOPO cloned colonies from 
YCC6 IRF9 -/- resistant clone shows two different mutations present in all copies 
(c.266_284del ACAAGAGTTCTGAATTTAA and c.271_285del AGTTCTGAATTTAAG). E. 
Cell cycle analysis done by FACS with a double EdU (Y-axis, APC-A) and PI (X-axis, TX-Red) 
staining revealed a decrease of the number of cells stalled in inactive S phase in the IRF9 -/- 
cells, compared with the YCC6 WT ones. F. Calculation of the fold chance of the percentage 
of cells in inactive S phase after 48h of 150nM VX970 treatment divided by the percentage of 
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cells in inactive S phase in the DMSO control as a quantitative measurement of figure E 
(difference between YCC6 WT and IRF9 -/- t-test p-value <0.001).  
 
 

Both alterations were predicted to cause early truncated proteins, according to 

MutationTaster. Similarly, to what I saw in the IRF9 -/- clone, EdU/PI cell cycle analysis 

showed a decrease of the cells in inactive S phase in the HUWE1-/- deficient clone, 

compared with the WT after 48h of VX970 treatment (Figure 24E). These differences 

are quantified in Figure 24F (t-test p-value >0.001). 

 

Due to the large list of potential ATRi resistance causing candidate genes I have 

described in this section, and with the aim of shortlisting the ones that are more 

relevant in cancer, I cross-referenced our data regarding to the YCC6 gastric tumour 

cell line to other available data from other screens. I had previously carried out a 

CRISPR screen in the ovarian clear cancer cell (OCCC) tumour cell line TOV21G, 

following the same format than the one carried out in the YCC6 screen (data not 

shown). Additionally, a recent publication carried out a SF50 CRISPR screen where 

they have described both, ATRi sensitivity and resistance causing genes in three cell 

lines, including the 239A (Kidney), HCT 116 (Colorectal) and MCF10A (Breast) tumour 

cell lines, using the AZD6738 ATRi. Selecting only the genes that had a Z-score >2 

from the resistance causing genes list, I was able to observe a surprisingly high 

overlap of genes in between the four cell lines and our YCC6 screen (Figure 25A, 
Supplementary Table 3). I found two genes that were currently represented in all five 

cell lines which were CDC25B and TRIT1. 24 of the genes found to be significant in 

YCC6, were also ATRi resistance-causing mediators in three of the four additional cell 

lines, and 249 genes were found in two out of four cell lines (Supplementary Table 
3).  
This analysis has allowed me to select the genes for further study, in order to define 

its implication in ATRi resistance from a mechanistic perspective. Therefore, I cross-

referenced the top 50 hits from our YCC6 screen and determined their effect in the 

other cell lines, defining a list of genes illustrated in Figure 25B. I observed that 

CDC25B is present in all five analysed cell lines; SMG8 in four cell lines; HUWE1, 

HNRNPF, SMG9, STAT2, KIF5B, IFNAR1 and RET in three out of five cell lines. As I 

have already been able to validate the implications of many of these genes in our 96 

well-plate arrayed screen, I had a strong rationale to generate isogenic models that 
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can represent these potential main drivers of ATRi resistance and will guarantee the 

generation of valuable information that can potentially be used in the clinical practice.  

 

 

Figure 24. Validation of HUWE1 as a candidate for ATRi resistance mediator in HUWE1 
isogenic cells. A. WB showing a loss in HUWE1 protein in the resistant clone harbouring a 
gRNA towards HUWE1, compared with the parental YCC6 cell line. B. Drug sensitivity curves 
showing decreased sensitivity to VX970 in HUWE1 -/- cells compared with YCC6 WT cells 
(two-way ANOVA, p<0.001) C. Drug sensitivity curves showing decreased sensitivity to 
AZD6738 in HUWE1 -/- cells compared with YCC6 WT cells (two-way ANOVA, p<0.001). Cells 
were seeded in 384-well plates and exposed to a 5-days treatment across 8 different 
concentrations of drug, ranging between 0.0001μM to 1μM. Error bars represent standard 
deviation between reps (n=14). D HUWE1 sequence alignment by ApE software in 15 TOPO 
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cloned colonies from YCC6 HUWE1 -/- resistant clone, shows two different mutations present 
in all copies (c.5976_5986del GTCACTTACGC and c.5979_5980ins A). E. Cell cycle analysis 
done by FACS with a double EdU (Y-axis, APC-A) and PI (X-axis, TX-Red) staining revealed 
a decrease of the number of cells stalled in inactive S phase in the HUWE1 -/- cells, compared 
with the YCC6 WT ones. F. Calculation of the fold chance of the percentage of cells in inactive 
S phase after 48h of 150nM VX970 treatment divided by the percentage of cells in inactive S 
phase in the DMSO control as a quantitative measurement of figure E (difference between 
YCC6 WT and HUWE1 -/- t-test p-value <0.001).  
 

 

Figure 25. Candidate ATRi resistance causing genes identified from GW CRISPR 
screens of 5 cell lines (including data from Wang et al., 2018). A. Venn diagram created 

A

B
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with http://www.interactivenn.net showing the overlapping candidate ATRi resistance causing 
genes with Z-score >2 identified from our GW CRISPR screens performed in YCC6 and 
TOV21G cell lines, and the 293A, HCT 116 and MFC10A available data extracted from Wang 
et al, 2018. B. Heatmap of overlapping candidate genes from figure A present in the top 50 
hits described the YCC6 GC tumour cell line.  
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4. Creation and characterisation of YCC6 ATR inhibitor 

resistant clones 

 
In order to discover genetic determinants to ATRi resistance in GC, I generated YCC6 

VX970 resistant cells by seeding them at a low density and exposing them to 

increasing doses of VX970 for approximately six months, in two parallel experiments 

(see Figure 26A). Cells from the first experiment reached a high level of resistance to 

VX970 (H), approximately 8-fold higher than the initial SF50 (54 nM), after being 

exposed to VX970 at a concentration of 430nM. Cells from the second experiment 

reached a medium resistance level (M) of approximately 5-fold increase, compared 

with the initial SF50 of VX970, proliferating at a concentration of 260nM VX970. Both 

Highly resistant (H) and Medium resistant (M) YCC6 populations proved to be resistant 

to ATR inhibition when exposed to a range of VX970 concentrations in a five-days 

exposure drugging experiment (Figure 26B) compared with the parental population in 

a dose-dependent fashion (two-way ANOVA p-values <0.001). These findings were 

validated by using another ATRi, AZD6738, which showed the same effect as VX970 

(all two-way ANOVA p-values <0.001) (Figure 26C), suggesting that these findings 

were not private to VX970, but to ATR inhibition, as a class effect.  

I then generated resistant clones by single cell sorting the resistant population by 

FACS. Pellets were retrieved from the 8-surviving independent clones (6 H clones and 

2 M clones) that demonstrated profound resistance to both, VX970 and AZD6738 

ATRi, compared with the parental cell line (all two-way ANOVA p-values <0.001) 

(Figures 26D and E). Next, I expanded the clones during exposure to VX970 to 

extract the protein fraction, for purposes of the proteomic mass spectrometry analysis 

(MS). Finally, clone M2 was discarded from the analysis due to its very slow growth 

rate.  

 

Interestingly, I visualised a change in the morphology of the clones as they became 

resistant to ATRi (Figure 27). Originally, YCC6 is an epithelial cell line, which is mainly 

constituted by small semi-rounded epithelial cells, although some larger and amoeboid 

cells can be observed. Conversely, clones H2, H3, H4 and H6 presented a pattern 

mesenchymal-like cells with a more elongated morphology. In the case lf H1 clone, I 
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could see large cells with an amoeboid structure, which might be a result of the 

selection of these cells from the parental population. In contrast, I did not see a change 

in morphology of the H5 and M1 clones compared with the parental population (Figure 
27). 
 

 
Figure 26. YCC6 ATRi resistant cell experiment design. YCC6 cells were exposed to 
increasing concentration of VX970 until they became resistant to ATR inhibition. After sorting 
single clones by FACS from the parental population, surviving colonies were tested for ATRi 
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resistance (VX970 and AZD6738) in comparison with the parental cell line. Colonies were 
expanded and pellets were retrieved to extract DNA, RNA and protein in order to perform 
exome sequencing, RNA sequencing and Mass Spectrometry, respectively. B and C Drug 
sensitivity curve for AZD6738 and VX970 in the generated ATRi resistant pool, compared with 
the parental population. Green curve shows dose-response to ATRi for cells resistant to 
430nM (H). Orange curve shows dose-response to ATRi for cells resistant to 260nM (M). All 
two-way ANOVA p-values for both groups were lower than 0.001. D and E. Drug sensitivity 
curve for AZD6738 and VX970 in the FACS sorted clones (H clones come from H resistant 
parental population while M clones come from M parental population. All two-way ANOVA p-
values for both groups were lower than 0.001. Cells were seeded in 384-well plates and 
exposed to a 5-days treatment across 8 different concentrations of drug, ranging between 
0.0001μM to 1μM. Error bars represent standard deviation between reps (n=14).  
 
 

 
Figure 27. Detection of morphological changes in YCC6 ATRi resistant clones. 
Pictures taken from the ATRi resistant clones (highly resistant H1, H2, H3, H4, H5 and H6 and 
medium resistant M1) using the EVOS imaging system (20x Objective, Invitrogen) show 
changes in cell shape, compared with the parental cells. 
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Principal components analysis (PCA) analysis was carried out with the proteomic data, 

comparing the expression profiles between the clones and the parental cell line, to 

check for the quality of the biological replicates in both experiments. PCA plots 

demonstrated a very high reproducibility of the results in between replicates (Figure 
28). Additionally, these analyses showed that clones H5 and M1 clustered separately 

to an H1, H2, H3, H4 and H6 cluster, and to the parental cell lines, which showed a 

completely different proteomic profile. This is consistent with the change to a 

mesenchymal cell morphology that was observed in the H1, H2, H3, H4 and H6 cluster 

but not in the H5 and M1 clones. According to these observations, I decided to do all 

the further statistical evaluations comparing the parental cells to i) all resistant clones 

grouped together; ii) H5 and M1 cluster; iii) H1, H2, H3, H4 and H6 cluster (Figure 
28).  
 

Proteomic mass spectrometry analysis was undertaken in seven ATRi resistant 

clones, compared with the parental YCC6 cell line, by measuring the expression of 

9,410 proteins in a mass spectrometry multiplexed reaction. After applying the Welch 

t-test analysis, comparing the protein expression levels in all the resistant clones with 

the parental cells, 204 proteins showed a consistent statistically significant differential 

expression in between the two groups, establishing a cut-off of FDR (multiple 

comparisons corrected p-value) lower than 0.05, plus an absolute log2 fold-change 

higher than 0.5 or lower than -0.5. Thus, I detected a significant under or over 

expression of a large list of proteins in the resistant clones represented in a volcano 

plot (Figure 29A). LGALS2 (Beta-Galactoside-Binding Lectin L-14-II), MUC13 (Mucin 

13, Cell Surface Associated), TSPAN8 (Tetraspanin 8), VIL1 (Vilin 1), ECM1 

(Extracellular matrix protein 1), KRT7 (Keratin 7) and RIC8 (RIC8 Guanine Nucleotide 

Exchange Factor A) were amongst the most significantly overexpressed in the 

resistant clones, compared with the parental cells (all p-values <0.05). MAP1B 

(Microtubule Associated Protein 1B), NCAM1 (Neural Cell Adhesion Molecule 1), 

CD44 (Extracellular Matrix Receptor III), CD70 (Tumour Necrosis Factor Ligand 

Superfamily Member 7), MT2A (Metallothionein 2A) and MTF1 (Transcription Factor 

MTF-1) were amongst the proteins that were downregulated. Protein-protein 

interaction networks using STRING online software and Cytoscape software revealed 

a large network of protein interactions in our hits (Figure 29B).  



	 111	

 
Figure 28. ATRi resistant clones’ data analysis workflow. Principal component analysis of 
proteomics data revealed 3 independent clusters of clones, dividing the parental cells from a 
M1/H5 group and a H1/H2/H3/H4/H6 group. Therefore, further analyses were done in 
comparison of the three clusters. First, upregulated and downregulated genes or pathways 
were determined and compared from the mass spectrometry and RNA sequencing data. 
Then, a description of new acquired mutations in the resistant clones, compared with the 
parental cell lines was determined using the exome sequencing data. After cross-referencing 
results from DNA and RNA/Protein results, I looked for common resistance-causing genes, 
comparing the results to the candidate resistance-causing genes from the GW CRISPR/Cas9 
screen data. For purposes of this thesis, I have only presented the proteomics data.  
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Figure 29. Mass spectrometry transcriptomic data reveals common differentially 
expressed proteins in all YCC6 ATRi resistant clones. A. Volcano plot representing Log10 

Log2 fold change
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multiple comparisons corrected Whelch’s test p-values against the Log2 fold-change of the 
differences between all resistant clones and the parental YCC6 cell line B. Protein interaction 
map generated by STRING online software showing protein interactions from the differentially 
up (Red) and downregulated (Blue) genes showed in figures A and B. Only proteins showing 
at least one interaction are included in the network. Statistical significance means differences 
in protein expression levels with a FDR corrected Whelch’s test p-value <0.01 and Log2 fold 
change differences lower than -0.5 or larger than 0.5. All experiments were performed in two 
biological replicates.  
 

Interestingly, several protein complexes were found to be represented by several of 

its components, where typically all units in a complex followed the same trend. 

Proteins that form part of the ATP complex (ATP11A, ATP5J, ATP5O, ATP5A1, 

ATP5I, ATP5B, MT-ATP6, ATP5C1), were found to be downregulated in the resistant 

cells, compared with the parentals. Also, conserved oligomeric Golgi (COG) complex, 

in charge of protein glycosylation (COG2 COG3 and COG6) were downregulated in 

the resistant cells. Proteins ALDH9A1, ALDH1A3, ALDH3A2, part of the Aldehyde 

Dehydrogenase (ALDH) complex, which plays a role in aldehyde metabolism, were 

found to be downregulated in the resistant clones, compared with the parentals. Of 

note, ALDH complex has been previously associated to cellular detoxification, DNA 

damage protection and cancer (Jelski, Zalewski et al. 2008, Orywal and Szmitkowski 

2017). Additionally, several potential mediators to ATRi resistance found were listed 

in the cancer genome census and thus related to carcinogenesis (present in the 

cancer genome census list) (Sondka, Bamford et al. 2018), including MLLT4 (Afadin, 

Adherens Junction Formation Factor), PIK3CB (Phosphatidylinositol-4,5-

Bisphosphate 3-Kinase Catalytic Subunit Beta), MGMT (O-6-Methylguanine-DNA 

Methyltransferase), STAT3 (Signal Transducer And Activator Of Transcription 3), 

STAT5B (Signal Transducer And Activator Of Transcription 5B) NF1 (Neurofibromin 

1), PCBP1 (Poly(RC) Binding Protein 1), DNM2 (Dynamin 2), PARP4 (Poly(ADP-

Ribose) Polymerase Family Member 4) and CRNKL1 (Crooked Neck Pre-MRNA 

Splicing Factor 1). I then cross-referenced the proteins that were expressed at a lower 

level in the resistant clones, compared with the parental cell line with the candidate 

ATRi resistance hits from the GW CRISPR screen data and found that ARHGAP21 

(Rho GTPase Activating Protein 21) and TYK2 (Tyrosine Kinase 2) were present in 

both datasets.  

When I compared the cluster containing clones H1, H2, H3, H4 and H6 to the parental 

cells (Figure 30), CDH1 (E-Cadherin), GNA (Guanine nucleotide-binding protein 

alpha-1 subunit), JAK1 (Janus Kinase 1), NOTCH1 and 2 (Notch 1 and 2), SMAD2  
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Figure 30. Mass spectrometry transcriptomic data reveals common differentially 
expressed proteins in H1/H2/H3/H4/H6 YCC6 ATRi resistant clones. A. Volcano plot 
representing Log10 multiple comparisons corrected Whelch’s test p-values against the Log2 

Log2 fold change
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fold-change of the differences between the H1/H2/H3/H4/H6 resistant cluster, compared with 
the parental YCC6 cell line. B. Protein interaction map generated by STRING online software 
showing protein interactions from the differentially up (Red) and downregulated (Blue) genes 
showed in figures A and B. Only proteins showing at least one interaction are included in the 
network. Statistical significance means differences in protein expression levels with a FDR 
corrected Whelch’s test p-value <0.01 and Log2 fold change differences lower than -0.5 or 
larger than 0.5. All experiments were performed in two biological replicates.  
 
 

and 4 (SMAD Family Member 2 and 4), KIAA1598 (Shootin 1) and MSI2 (Musashi 

RNA Binding Protein 2) were identified as candidates to ATRi resistance-causing 

proteins. Importantly, SMG1 (Nonsense Mediated MRNA Decay Associated PI3K 

Related Kinase), pivotal in regulating the nonsense-mediated mRNA decay pathway, 

that controls the degradation of mRNA transcript carrying premature stop codons 

(Azzalin and Lingner 2006, Azzalin and Lingner 2006, Fernandez, Yamashita et al. 

2011, Lee, Pratt et al. 2015), was found to be downregulated in the resistant cell lines 

when compared with the parental cell line (Welch t-test FDR = 0.0098). Upregulation 

of SMG1 as a mechanism of ATRi resistance is consistent with the GW CRISPR/Cas9 

screen results, where I found SMG8 and SMG9, negative regulators of SMG1 to cause 

resistance to ATRi when lost (positive selection GW CRISPR-Cas9 mutagenesis 

screen section, Figures 20C, 22 and 25). 

 
Finally, when I compared the H5-M1 cluster with the parental cell line, 40 differentially 

expressed proteins were identified, including VHL (Von Hippel-Lindau Tumor 

Suppressor), STAT5B Signal Transducer And Activator Of Transcription 5B and YAP1 

(Yes Associated Protein 1), previously being related to cancer. Additionally, VIL (Villin 

1), ANO1 (Anoctamin 1), MRAS (Muscle RAS Oncogene Homolog), ZADH2 (Zinc 

Binding Alcohol Dehydrogenase Domain Containing 2), RBP7 (Retinol Binding Protein 

7) and TSFM (Ts Translation Elongation Factor, Mitochondrial) were amongst the top 

deregulated proteins in the resistant clones, compared with the parental cell line 

(Figure 31). No interactions were detected amongst this list of proteins. 

 

The top one-hundred most upregulated and downregulated genes found in the 

resistant clones, comparing all clones and the two different clusters to the parental cell 

lines are represented in Supplementary Figures 1-3. 
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Figure 31. Mass spectrometry transcriptomic data reveals common differentially 
expressed proteins in H5/M1 YCC6 ATRi esistant clones. A. Volcano plot representing 
Log10 multiple comparisons corrected Whelch’s test p-values against the Log2 fold-change 
of the differences between the H5/M1 resistant cluster, compared with the parental YCC6 cell 
line. Statistical significance means differences in protein expression levels with a FDR 
corrected Whelch’s test p-value <0.05 and Log2 fold change differences lower than -0.5 or 
larger than 0.5. All experiments were performed in two biological replicates. No protein 
interactions were seen. 
 

Following the fact that SMG1 was one of the proteins found to be upregulated in the 

ATRi resistant clones, and because this finding correlates with our results from the 

GW CRISPR screen and the cross-referencing data with Wang et al. study, I decided 

to validate the overexpression of SMG1 and its downstream protein UPF1 in the 

resistant clones, compared with the parental YCC6 cells. The H2, H3, H4 and M1 

resistant clones but not the H2, H5 and H6 showed an increase of both proteins 

parental cell line (Figure 32A). I then wondered if the silencing of SMG1 would be 

enough to rescue the resistance to ATRi and thus performed a siRNA knockdown 

experiment in one of the clones expressing higher levels of SMG1 protein, H3. 

Although SMG1 was not completely silenced (Figure 32B), the moderate reduced 

levels of protein were enough to re-sensitise H3 cells to both, VX970 and AZD6738 

ATRi (Two-way ANOVA p-values <0.001), demonstrating that the overexpression of 

SMG1 mediates ATRi resistance in GC (Figure 32C and D). 
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Figure 32. Silencing of SMG1 re-sensitises the resistant clones H3 to VX970. A. Western 
blot showing that colonies H2, H3, H4 and M1 overexpress SMG1 and UPF1, compared with 
the YCC6 parental cell line. B. Western blot showing SMG1 and UPF1 expression in the H3 
siRNA knockdown cells, compared the the control H3 cells. C and D. Drug sensitivity curves 
for VX970 and AZD6738 in the silenced cells from B, compared with the parental H3 cells. All 
two-way ANOVA p-values for both groups were lower than 0.001. 
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5. Dense Tiling ATR CRISPRx Screen 
 
ATR is a member of the phopho-inositide 3-kinase related kinases family (PIKK), in 

charge of monitoring the progression of replication forks in S phase, maintaining 

genomic stability and promoting a complete and accurate replication of the genome 

by mediating the phosphorylation of a large number of substrates (Casper, Nghiem et 

al. 2002, Cimprich and Cortez 2008, McNees, Tejera et al. 2010, Flynn and Zou 2011). 

Structurally, it contains several HEAT (Huntington, Elongation factor 3, Protein 

phosphatase 2A, and PI3K TOR1) repeats in the N-terminal part, that are thought to 

be involved in protein-protein interactions (like the interaction with its partner ATRIP), 

as well as in DNA-Protein interactions (Ball, Myers et al. 2005, Chen, Zhao et al. 2007, 

Rubinson, Gowda et al. 2010), and a C-terminal catalytic kinase domain (PI3K/PI4K), 

flanked by a FAT (FRAP, ATM, TRRAP) and FATC (FAT-C) domains, that are known 

to mediate protein-protein interactions and ATR activation through 

autophosphorylation and TopBP1 stimulation (Mordes and Cortez 2008, Mordes, Glick 

et al. 2008).  

 

Traditionally, the genome editing techniques comprising the introduction of DSB at a 

determined genomic locus, selecting for the cells where the NHEJ error-prone DNA 

damage repair pathway had allowed the appearance of indels and disruption of the 

targeted gene (Komor, Badran et al. 2017). Techniques that facilitate targeted gene 

editing through the use of base editors without causing DSB in the genome have been 

developed, thanks to the use of base editors. Base editors consist of a hybrid of a 

cytidine deaminase enzyme and a catalytically inactive Cas9 protein, which binds to a 

determined locus of interest through its union to a specific guide RNA. When the base 

editor binds the DNA, a loop structure is formed, that exposes a region of around 5 

nucleotides of DNA where the deaminase carries out its function, resulting in the 

appearance of point mutations (Komor, Kim et al. 2016, Gaudelli, Komor et al. 2017, 

Kim, Komor et al. 2017).  

Following this principal, and to identify regions in the ATR protein that may be 

important for the development of ATRi resistance, due to either the impairment of ATR 

function or its role in modulating other DDR downstream effectors, I used a tiling 

CRISPR library comprising 552 guides designed to result in a dense coverage of 
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mutations across the entire ATR gene. Thus, I carried out a tiling CRISPRx screen in 

YCC6 cells that enabled us to mutagenize, select the ATRi resistant cells and 

sequence them to identify ATRi resistance-conferring mutations. In this experiment, I 

have used the fourth generation Staphylococcus aureus Cas9-derived BE4 (SaBE4-

Gam, BE4) cytidine deaminase (Komor, Zhao et al. 2017), and the newly described 

adenine deaminase ABE7.10 (ABE) in comparison with a regular nCas9, to cause 

missense mutations in YCC6 cells all along the ATR region, using the pKLV5-

U6gRNA5-PGKPuroBFP shRNA library. The YCC6 cells were also modified to 

constitutively express deadCas9 (dCas9) protein and then transfected with a modified 

cytidine deaminase, pGH156_MS2-AID-Hygro (AID), combined with the 

pGH224_sgRNA_2xMS2_Puro library of sgRNA bearing two MS2 hairpin-binding 

sites allowing specific mutagenesis with limited off-target damage (Hess, Fresard et 

al. 2016) permitting comparison of orthogonal methods (Figure 33). Finally, I used a 

catalytically inactive MS2-AID∆Dead as a negative control. After drugging the cells for 

two weeks with 100nM of VX970, resistant cells were harvested and RNA was 

extracted and converted to cDNA and prepared for sequencing (Figure 34). Briefly, 

the ATR sequence was amplified and purified in two sequential PCR reactions, were 

Ion Torrent adaptors where added for further sequencing of a panel of 36 amplicons, 

representing the whole ATR coding sequence, using the PGM 318 Chip (Ion Torrent). 

 
 
Figure 33. CRISPRx screen workflow. CRISPRx screens were carried out in two parallel 
arms. First (upper panel), YCC6 cells were transduced with the pKLV5-U6gRNA5-
PGKPuroBFP ATR dense tiling lentiviral sgRNA library and selected in puromycin for 5 days. 
Cells were then transfected with GFP control, Cas9 nuclease or constructs carrying BE4 or 
ABE base editor sequences. Cells were incubated for 2-3 days before being re-seeded in 
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10cm plates, at a 50,000 cells/ml concentration, 24 hours’ prior VX970 treatment started, at a 
dose of 100nM. Cells were drugged for two weeks, being fed with fresh drug twice a week. 
Resistant cells were left to expand for an extra week, and harvested to send for NGS. For the 
second approach (lower panel), YCC6 cells were transduced with a dCas9 expressing 
construct and selected in blasticidin. Once selected, they were transduced with the 
pGH224_sgRNA_2xMS2_Puro sgRNA library, and selected in puromycin. Cells were then 
transfected with dead AID, as a negative control, or the AID base editor construct, and left 
incubating for 2-3 days. Drugging and the following steps were the same than in the other 
arm.  
 

 

 

 

 
Figure 34. Ion Torrent CRISPRx Sample preparation. RNA was extracted from the resistant 
cells and was converted to cDNA in three independent reactions, using ATR specific primers, 
each of them complementary to one third of the protein sequence. The resulting cDNA was 
used to amplify all ATR sequence in 36 independent reactions, using 36 tiling primer pairs, to 
generate 250-300 bp amplicons. Primers used for PCR 1 included a PB3 sequence, used as 
a bridge to add a barcoded IonA sequence in the second PCR, and an Ion Torrent P1 
sequence used as reverse primer. All PCR1 reactions were checked on a 2% agarose gene 
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and mixed to purify DNA. DNA for PCR1 was mixed in one reaction per sample and amplified 
by PCR2, adding the 5’ barcoded tail. Final product was purified and sent for sequencing.  
 

Sequencing coverage was generated with a maximum depth of 50,000, and only 

sequences that perfectly matched to the barcodes, and with an average quality score 

greater than Q20 were selected for further analysis. After the alignment of sequencing 

reads to the version 19 of the human consensus sequence, the sequenced sequences 

were visualized with IGV tool to direct inspection of mutations. Only mutations that 

were present in any of the base editor samples, but not present in the negative control 

arm were selected and localised to the protein structure (Figure 35A and 35B). 
Although I have sequenced the whole resistant population of cells in one reaction, and 

therefore expect a low frequency of a determined mutation, only mutations that were 

detected in more than one read were considered for further analysis.  

 

A summary of all mutations detected by NGS is listed in Table 9. All base editors 

proved to be functional and caused point mutations in the targeted sequence. I did not 

see an association between the type of substitutions and the library or base editor 

used, although nCas9, BE4 and ABE were responsible for most of the mutations, 

compared with the more modest role of AID. 54% of the mutations localised in ATR 

coding sequence were found to cluster in the FAT domain. Two mutations, G2635G 

and E2419K were found in the catalytic (CAT) or FATC domains, respectively (Figure 
35A and 3B5), and the remaining mutations affected residues located in the area in 

between the HEAT repeats (residues 974-977) (32%). Additionally, I detected a cluster 

of mutations beyond the C-terminal part of ATR coding sequence, which do not directly 

affect the protein but could have an impact in the mRNA stability and protein 

expression (not included in the general count, data not shown). T974T, K2025N and 

D977V mutations were found in more than one sample, caused by both MS2 structure-

based AID and the cytidine and adenine deaminases BE4 and ABE, suggesting that 

these are less likely to be off-target effects specific to one base editor or method and 

adding robustness to these data.  
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Table 9. Mutations found in the CRISPRx screen VX970 resistant YCC6 cells. 

 
Base editor DNA change Coverage Number of reads Protein change 

ABE 8027G>A 210 2 G2635G 
AID 7377G>A 165 3 E2419K 

nCas9 6609A>T 7452 85 I2163L 
nCas9 6598T>G 7094 146 V2159G 
nCas9 6597G>T 8490 204 V2159F 
ABE 6545A>T 77 2 A2141A 
ABE 6532A>C 103 2 Q2137P 
ABE 6531C>T 102 2 Q2137* 
ABE 6522G>A 105 2 A2134T 
AID 6404G>C 27 2 W2094C 
BE4 6194A>T 1064 10 K2025N 
AID 6194A>T 1783 9 K2025N 

nCas9 6193A>T 9 8 K2025I 
ABE 5603A>G 427 3 R1827S 
AID 3071C>T 175 2 D984D 
BE4 3052A>T 2113 28 D977V 
AID 3052A>T 225 2 D977V 
ABE 3052A>T 4223 34 D977V 
BE4 3044G>A 2712 29 T974T 
AID 3044G>A 278 5 T974T 
ABE 3044G>A 5103 37 T974T 

nCas9 290A>G 36 3 V56V 
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Figure 35. The majority of the ATRi-resistance causing mutations locate in the FAT or 
catalytic domains. A. Mutational information obtained from Ion Torrent sequencing of ATRi-
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resistant cells cDNA revealed a cluster of mutations in the FAT, CAT (PI3K, PI4K catalytic) 
and FATC domains of ATR, and in a region located in between the two HEAT repeats. B. 
Location of the mutations from figure A associated with ATRi resistance on a model of the 
ATR protein structure. Mutations are represented in red. TopBP1 binding domain represented 
in blue, according to Mordes et al. (Mordes, Glick et al. 2008) and Liu et al. (Liu, Shiotani et 
al. 2011). VX970 binding pocket in the catalytic domain is represented in orange, according 
to Rao et al. (Rao, Liu et al. 2018). 
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Discussion 
 
Rationale of this thesis 
One of the current strategies in the understanding of cancer consists in the 

identification of driver DNA mutations or molecular mechanisms that contribute to the 

carcinogenic process. The main aim of this approach is to improve clinical practice, 

moving towards personalised medicine where a deeper understanding of the 

molecular profile of each patient leads to the appropriate selection of targeted 

therapies, that exploit the genetic vulnerabilities found within each tumour.  

 

Despite the recent advances in this field, including a comprehensive knowledge of the 

genome, only a small number of genetic targets are validated as predictive biomarkers 

to select for therapy, or to stratify patients into different treatment arms within the 

context of clinical trials. This is well illustrated in GC, where there is a lack of robust 

molecular biomarkers and limited treatment options, making it the third leading cause 

of cancer-related deaths worldwide. Therefore, the identification of robust synthetic 

lethal (SL) targets in GC, which can be exploited therapeutically, represents an urgent 

need.  

 

Summary of the work presented in this thesis 
1. ARID1A and ATR are synthetically lethal in vitro  
Alterations in the SWI/SNF complex are very common in cancer (Reisman, Glaros et 

al. 2009, Kadoch and Crabtree 2015), with more than 20% of human cancers bearing 

mutations in at least one subunit of the complex (Kadoch, Hargreaves et al. 2013, 

Shain and Pollack 2013). From all subunits in the SWI/SNF complex, ARID1A is the 

SWI/SNF subunit gene that is most frequently mutated in cancer, maintaining the 20% 

rate of mutations in the general cancer population (Jones, Wang et al. 2010, Jones, Li 

et al. 2012, Wu, Wang et al. 2014) including GC, where it results in a loss of protein 

expression in most cases (Wang, Kan et al. 2011, Jones, Li et al. 2012, Zang, 

Cutcutache et al. 2012). Despite the frequency and possible functional implications of 

ARID1A loss in GC, it is currently not being used as a biomarker, nor as a therapeutic 

target, and a deep understanding of the role of ARID1A in carcinogenesis and its 
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potentially SL with other genes, that can be therapeutically targeted, is required for 

maximal clinical benefit. 

 

In the first part of my thesis, I describe the characterisation of a panel of seven gastric 

tumour cell lines, plus the ARID1A isogenic HCT 116 colorectal tumour cell line, in 

terms of exome sequencing and ARID1A status determination (at a DNA, RNA and 

protein level). I have additionally tested their response to a collection of small molecule 

inhibitors, that had previously been reported to be preferentially sensitive in ARID1A 

deficient cell lines of other histologies (Bitler, Aird et al. 2015, Shen, Peng et al. 2015, 

Williamson, Miller et al. 2016, Bitler, Wu et al. 2017, Jones, Fleuren et al. 2017). These 

included ATRi (AZD6738 and VX970), PARPi (olaparib and talazoparib), PI3K 

pathway inhibitors (BKM120 and MK2206), HDAC6 inhibitors (ACY1215) and EZH2 

inhibitors (GSK126), and drug combinations including ATRi plus PARPi; and ATRi plus 

PI3Ki. I have shown how ARID1A deficient cell lines, especially those carrying large 

deletions or that predict for early protein frameshift mutations with complete loss of 

protein function (YCC6, SNU 5 and HCT 116 ARID1A -/-), show exquisite sensitivity 

to ATRi, compared with those with the models expressing ARID1A (SNU 638, AGS, 

NCI N87 and HCT 116 WT). In the case of the SNU 1 cell line, which has shown to 

have complete ARID1A loss of expression due to two frameshift mutations detected 

by exome sequencing, I only saw a moderate ATRi response. This could be explained 

by a residual expression of ARID1A protein, undetectable by WB. Alternatively, it is 

possible that ARID1A is not the only ATRi sensitising factor in these ARID1A deficient 

cell lines, thus not being a completely penetrant SL in GC. Further research using 

larger panels of GC cell lines and those of other histologies, that express different 

levels of ARID1A will be necessary to better describe the implications of ARID1A 

status in ATRi response.  

When I tested PARPi in our cell lines, I could only see a differential sensitivity in the 

HCT 116 isogenic cells, where the ARID1A -/- cell line was more sensitive compared 

with the ARID1A WT cell line. This difference was not detected in the panel of GC cell 

lines, showing that the ARID1A-PARP SL described by Shen and colleagues is not 

extensive to our GC models (Shen, Peng et al. 2015).  

Despite the promising results that ATRi have shown as monotherapy, they will more 

likely be used in combination treatment with other drugs that exploit its mechanism of 

action inducing replication stress and genomic instability. Combinations with other 
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drugs that can synergise in the induction of DNA damage, are more likely to increase 

the effect, thereby avoiding the development of resistance. This approach has already 

been used in several cancers combining ATRi with other DNA damaging agents, 

including a number of intra strand cross-linking inducing agents like cisplatin, 

carboplatin or mitomycin C (Reaper, Griffiths et al. 2011, Huntoon, Flatten et al. 2013, 

Hall, Newsome et al. 2014, Mohni, Thompson et al. 2015, Vendetti, Lau et al. 2015, 

Li, Yang et al. 2016, Liu, Ge et al. 2017, Min, Im et al. 2017), nucleoside analogues 

like gemcitabine (Hall, Newsome et al. 2014, Ma, Li et al. 2017)  and PARPi (Peasland, 

Wang et al. 2011, Huehls, Wagner et al. 2012, Ogiwara, Ui et al. 2013, Abu-Sanad, 

Wang et al. 2015, Mohni, Thompson et al. 2015, Kim, George et al. 2017), amongst 

others. Taking this into consideration, I set out to test the combination of ATRi with 

PARPi. Apart from the potential synergy of this drug combination in the treatment of 

DDR deficient cancers, ATR inhibition has been shown to overcome resistance to 

PARPi in patient-derived cell lines (Yazinski, Comaills et al. 2017), a promising 

therapeutic strategy that is being investigated in several clinical trials (NCT03330847, 

NCT03682289, NCT03462342, NCT03428607, NCT02264678, NCT02576444 and 

NCT02723864). In our GC models, cell growth inhibition was observed in both, 

ARID1A deficient and proficient cell lines when exposed to the combination of ATRi 

and PARPi, although a greater effect was seen in the ARID1A deficient ones.  

 

Since loss of ARID1A expression has been suggested to be predictive for the 

overactivation of PI3K pathway as a compensatory effect, and this could result in the 

sensitisation of tumour cells to PI3Ki (Samartzis, Gutsche et al. 2014, Zhang, Yan et 

al. 2016, Lee, Yu et al. 2017), I hypothesised that the combination with PI3Ki could be 

synergistic in our ARID1A deficient and proficient models. 

My data from PI3Ki monotherapy only showed ARID1A-associated vulnerability in the 

HCT 116 isogenic model and not in our GC panel of cell lines. However, the sensitivity 

to ATRi and PI3Ki combinations was more evident in selected ARID1A deficient cell 

lines such as YCC6, SNU 5 and SNU 1 than in the ARID1A WT cell lines, supporting 

the rationale for testing ATRi and PI3Ki combinations in an ARID1A deficient context 

 

In contrast to what Bitler and colleagues have published in several studies using 

ovarian cancer models (Bitler, Aird et al. 2015, Bitler, Wu et al. 2017), HDAC6 and 

EZH2 inhibitors did not show any ARID1A-associated sensitivity in our panel of cell 
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lines. This could be due to a histology specific effect of those inhibitors, or could also 

be related to experimental conditions as Bitler et al. prove these effects using 3D long-

term culture experiments, whilst my experiments have been performed in a 2D short-

term exposure format (Bitler, Aird et al. 2015, Bitler, Wu et al. 2017).  

 

From all the inhibitors I tested in these thesis, I observed that ATRi presented the 

largest ARID1A associated effect. In order to validate this effect, and to avoid the 

potential confounding factors of comparing cell lines with different genetic 

backgrounds, I generated a GC isogenic model using the CRISPR/Cas9 technology. 

Despite the extensive screening and the several CRISPR/Cas9 mutational rounds 

undertaken in the SNU 484 cell line, and in AGS cell line (results not shown for AGS), 

I was not able to generate ARID1A homozygously mutated clones, as the cells seem 

to be addicted to ARID1A expression and died when ARID1A expression was 

completely abrogated. However, because ARID1A levels are regulated post-

transcriptionally (Wiegand, Shah et al. 2010, Wu, Wang et al. 2014, Kartha, Shen et 

al. 2016, Roumeliotis, Williams et al. 2017), and a haploinsufficiency phenomenon (the 

loss of function phenotype is present even with a partial loss of the functional alleles) 

seems to operate in oncologic patients within the ARID1A deficiency context 

(Wiegand, Shah et al. 2010, Wu, Wang et al. 2014, Kartha, Shen et al. 2016), I think 

the SNU 484 ARID1A isogenic cell line is still a valid model to represent ARID1A 

deficiency and proficiency in GC (Wu and Roberts 2013, Wu, Wang et al. 2014).  

Finally, orthogonal validations carried out through the performance of an ARID1A-

siRNA transient silencing transfection experiment confirmed our observations, 

showing that the silencing of ARID1A sensitises the cells to ATRi.   

 

In conclusion, sensitivity to ATR inhibition has been observed in ARID1A deficient GC 

tumour cells and ARID1A isogenic models, which supports the previously identified 

hypothesis of ATR as a synthetically lethal partner to ARID1A deficiency. It is likely 

that this represents a partial penetrant effect where other proteins are involved in the 

sensitisation of the tumour cells to the inhibition of a pivotal protein in DDR cascade, 

such as ATR. However, this will need to be clarified by increasing the number of 

models of study and undertaking new mechanistic approaches which will inform us 

about the role of ARID1A in ATRi response. 
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2. In vivo assessment of ATR inhibitor efficacy in gastric cancer Patient-Derived 
Xenografts. 
For the in vivo experiments, a different ATRi has been used for this experiment 

(M4344). Despite this, our data is consistent in between experiments, as we are 

looking for an ATRi class effect, that is not private to any specific inhibitor. This was 

the rationale of performing all in vitro experiments using two parallel ATRi, VX970 and 

AZD6738. In addition, M4344 is an oral compound that has previously been observed 

in other tumour models to have superior in vivo efficacy than VX970 (now called 

M6620, which is not available in oral gavage), and it is currently being assessed in 

phase I clinical trials in monotherapy and in combination with PARPi, what makes it 

more likely to be used for the new starting clinical trials.  

 
The results presented through the use of in vitro gastric tumour cell lines showed a 

preferential effect for ARID1A in sensitising the cells to VX970 and AZD6738 ATRi. 

With the aim of testing this SL in vivo, I selected seven PDX models, which represent 

ARID1A deficiency and proficiency within the context of GC. Taking into consideration 

that the animals were only treated over a short time due to weight loss, I observed 

significant tumour inhibition in all four ARID1A deficient PDX models (GC1-4), that 

were administered with M4344, compared with vehicle controls in a dose-dependent 

manner. Moreover, the addition of the PARPi, talazoparib, enhanced this effect in two 

of the four ARID1A deficient PDX models, compared with the vehicle treated controls 

(all p-values <0.0001). In two out of the three ARID1A proficient tumours (GC5 and 

GC6), the effect seen with ATRi monotherapy or combination treatment was small. 

However, the remaining ARID1A proficient model, GC7, was highly sensitive to ATR 

inhibition, despite also being treated for a short time, strongly suggesting that ARID1A 

is not the only determinant of ATRi sensitivity. In order to identify candidate biomarkers 

of sensitivity, I will focus on molecularly characterising the PDX tumours derived from 

the GC7 model. Additionally, I will also molecularly characterise the remaining 

resistant tumours propagated, and compare to vehicle controls from the other PDX 

models, to identify determinants to ATRi resistance in GC.  

 

Considering our in vitro and in vivo data together, I have demonstrated a sensitisation 

of ARID1A deficient GC models to small molecule ATR inhibition. This has been 

previously reported in ovarian models, where defects in ARID1A sensitised tumour 



	 132	

cells to ATRi, both in vivo and in vitro, by triggering premature mitotic entry, genomic 

instability and apoptosis (Williamson, Miller et al. 2016). Although the effects described 

in our gastric tumour models were less profound than what described by Williamson 

et. al, which might be due to the involvement of other genetic factors such as MSI, that 

could contribute to the observed sensitivity, both studies suggest that ATR is a 

synthetically lethal partner to ARID1A. Thus, I believe it should be considered as a 

biomarker in an ATRi context, and could represent a promising therapeutic strategy, 

given that there is a high frequency of ARID1A mutations across all cancers and the 

promising results seen in clinical trials utilising DDR inhibitors. Further study of the 

collected resistant PDX tumours, along with additional mechanistic approaches is 

required to determine the exact role of ARIDA in the ATRi response and its implication 

in DDR.  

 

3. ATR inhibitor resistance mechanisms in gastric cancer 
Genomic instability constitutes one of the hallmarks of cancer. Genomic instability is 

characteristic of most of the tumours, and this seems to be related with the high 

proliferative rate of cancer cells, together with the inability of the DDR machinery to 

efficiently repair DNA damage (Lindahl and Barnes 2000, Hoeijmakers 2009, Lord and 

Ashworth 2012). Although genomic instability remains one of the main causes of 

cancer, it can also be exploited as a vulnerability in cancer cells that can be 

therapeutically targeted. Traditionally, this strategy has been exploited by the use of 

chemotherapeutical agents, or radiotherapy, which still remain the standard of care in 

many cancers, where no targeted therapies are available. In the last few decades, 

several drugs targeting DDR proteins have been developed. One of the most 

successful examples of this approach is the use of PARPi for the treatment of 

BRCA1/BRCA2-deficient tumours, which is currently being exploited for the treatment 

of several types of cancer (Farmer, McCabe et al. 2005, Lord and Ashworth 2012, 

Lord and Ashworth 2017, Ashworth and Lord 2018, Ferrara, Simionato et al. 2018). 

Following the example of PARPi, ATRi have also been tested in several clinical trials, 

and they seem to be a promising therapy for cancers with DDR defects due to the 

central role of ATR in regulating DDR processes and the development of specific and 

potent ATRi (Sundar, Brown et al. 2017). 

 

As in other monotherapies, clinical resistance to DDR inhibitors is inevitable. An 
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example of this is the appearance of resistance-causing reversion mutations in 

BRCA1/2 deficient cancers in the context of PARPi-BRCA1/2 SL (Edwards, Brough et 

al. 2008, Barber, Sandhu et al. 2013, Weigelt, Comino-Mendez et al. 2017). To the 

date, only two published studies have informed about ATRi resistance-causing genes. 

The first study demonstrated how CDC25A deficient mouse embryonic stem cells 

were able to resist high doses of ATRi due to their failure to prematurely enter mitosis 

in response to the drug-induced DNA damage (Ruiz, Mayor-Ruiz et al. 2016). The 

other manuscript published data validating the hypothesis of CDC25A as an ATRi-

resistance causing gene in a CRISPR/Cas9 screen undertaken in three different 

tumour cell lines, along with CDC25B, cyclin-dependant kinase 2 (CDK2), Kelch Like 

ECH Associated Protein 1 (KEAP1) and several genes involved in the cyclin C 

complex (Chen, Alexe et al. 2018).  

 

3.1. Positive selection genome-wide CRISPR/Cas9 mutagenesis screen reveals 
ATR inhibitor resistance-mediating genes 
In order to pinpoint the potential mechanisms of ATRi resistance, I have undertaken a 

positive selection GW CRISPR/Cas9 mutagenesis screen that has revealed a list of 

candidate genes causing ATRi resistance when gene function is lost. I have validated 

many of the top hits found to be relevant in the initial GW screen by undertaking an 

arrayed mini-CRISPR/Cas9 screen. This included the cell cycle regulators CDC25B 

and FOXM1, the apoptosis-related gene CARD10, the E3 ubiquitin ligase HUWE1, 

the nuclear ribonucleoprotein HNRNPF, the nonsense mediated decay pathway 

regulators SMG8 and SMG9, and genes coding for proteins involved in the 

Interferon/JAK/STAT pathway, such as STAT1, STAT2 and IRF9, amongst others. 

Given that HUWE1 and IRF9 were validated from my screen, I decided to study the 

role of these genes in ATRi resistance, through the use of these Isogenic HUWE1 -/-

/+/+ and IRF9 -/-/+/+ models, picked from the GW screen.  

 

I subsequently demonstrated that loss of function mutations in HUWE1 induced 

resistance to ATR inhibition (VX970 and AZD6738) in YCC6 gastric tumour cells. Cell 

cycle experiments, using these isogenic models have revealed a decrease of the 

number of cells in inactive S phase, an indicator of S phase arrest, after inducing DNA 

damage by ATRi treatment in HUWE1 -/- cells, in comparison to the WT parental cells. 

Which seems to indicate an enhancer ability of HUWE-/- cells to repair DNA damage 
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in a more efficient way in response to ATRi. HUWE1 is an E3 ubiquitin ligase part of 

the HECT (homologous to E6-associated protein C-terminus) family in charge of the 

ubiquitination and degradation of a high number of substrates, including p53 (Chen, 

Kon et al. 2005), MCL-1 (Zhong, Gao et al. 2005), c-MYC/n-MYC (Zhao, Heng et al. 

2008, Myant, Cammareri et al. 2017), CDC6 (Hall, Kow et al. 2007), TOPBP1 (Herold, 

Hock et al. 2008), POLβ/ϒ (Parsons, Tait et al. 2009, Markkanen, van Loon et al. 

2012) and BRCA1 (Wang, Lu et al. 2014). Apart from its interaction with BRCA1 and 

its known role in base excision repair (Parsons, Tait et al. 2009, Markkanen, van Loon 

et al. 2012), HUWE1 has also been described to participate in DNA damage response, 

by its direct association with replication forks, mediated by PCNA, and the activation 

of H2AX, a key recruiter of DDR proteins (Choe, Nicolae et al. 2016). Conversely, both 

oncogenic and tumour suppressor roles have been attributed to HUWE1, and both 

activating and silencing mutations have been found in different cancer types 

(Adhikary, Marinoni et al. 2005, Hall, Kow et al. 2007, Bernassola, Karin et al. 2008, 

Zhao, Heng et al. 2008, Zhao, D'Arca et al. 2009, Wang, Lu et al. 2014, Wang, Lu et 

al. 2014, Choe, Nicolae et al. 2016, Myant, Cammareri et al. 2017, Yang, Sun et al. 

2017, Yang, Cheng et al. 2018), demonstrating that HUWE1 plays a wide number of 

roles through the modulation of a large number of substrates. Loss of HUWE1, has 

been shown to lead to accelerated proliferation, repression of apoptosis and 

tumourigenesis through the increase of levels of MYC (Myant, Cammareri et al. 2017), 

and MCL-1 (Zhong, Gao et al. 2005), which results in increased proliferation, a failure 

of cells to enter apoptosis and thus, the ability to resist death after the ATRi treatment. 

Data published by other groups have shown that HUWE1 depleted cells demonstrate 

increased resistance to several DNA damaging agents, mediated by an increase of 

BRCA1 levels, and a decrease of p53 and MCL-1 roles in DDR, cell cycle regulation 

and apoptosis, leading to genomic instability and tumourigenesis in tumour cells 

(Wang, Lu et al. 2014).  

 

Contrary to what our data suggests, and to the previously described studies, Choe et 

al. reported a model where loss of HUWE1 expression was able to confer sensitivity 

to replication fork stalling agents such as hydroxyurea (HU) and UV light. They showed 

a reduction in the progression of replication forks by DNA fibre assays and an increase 

in the inactive S phase population when HUWE1 was lost in BrdU/PI stained cell cycle 

experiments. Considering this data, I hypothesise this conflicting results might be due 
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the ability HUWE1 to modulate different DDR proteins in a context-dependent manner, 

influencing the pathway of choice in the DDR (Wang, Lu et al. 2014). Furthermore, the 

effect of ATR inhibition in cancer cells could have different consequences than HU 

treatment of UV light induced mutagenesis. Going forward, I will test if the HUWE1 

deficient models are also resistant to other DNA damaging agents, including DSB 

causing agents such as carboplatin. In addition, I will also assess whether HUWE1 

depletion increases genomic instability in the YCC6 cells trough DNA fibre assay 

experiments and the determination of ϒ-H2AX levels, to better understand the effect 

of losing HUWE1 function in terms of DNA repair dynamics. Due to the wide range of 

HUWE1 substrates, further evaluation of protein levels modulation by western blot or 

mass spectrometry will be useful to determine which pathways are involved in the 

ATRi induced resistance in our models. Finally, given that YCC6 cell line is an ARID1A 

deficient cell line, and ARID1A has also been related to DNA damage processes 

(Shen, Peng et al. 2015, Williamson, Miller et al. 2016), it would be important to test 

this effect in other GC ARID1A deficient and proficient models, to further determine 

the role of ARID1A in this process. 

 

Similar to what I saw in the HUWE1 deficient cells, IRF9 deficient YCC6 cells followed 

the same trend in the cell cycle experiments, although the effect was less profound. 

IRF9 is the DNA binding domain of the IFN-stimulated gene factor 3 (ISGF3) complex, 

with is also constituted by the STAT1/2 heterodimer, downstream of the type I 

interferon pathway (IFN), in charge of mediating major innate immune responses to 

infectious agents through the modulation of the interferon stimulated genes (ISGs) 

(Platanias 2005). Although interferon regulatory factors (IRFs) have been associated 

with other signalling pathways, different from its well-known role in the immune 

response processes, the implications of IRF9 in tumourigenesis remain unclear, and 

it is possible association to DDR has not been studied yet. Nevertheless, some other 

IRF family members have previously been related to the tumourigenic processes. 

Studies carried out in human breast cancer tissues, revealed a downregulation of 

IRF5, which was associated with an increased metastatic potential of the cancer cells 

(Bi, Hameed et al. 2011, Pimenta and Barnes 2013). In addition, some other authors 

have defined a role of loss of IRF1 in the development of human leukaemia, 

oesophageal and GC, being considered as a tumour suppressor gene (Boultwood, 

Fidler et al. 1993, Willman, Sever et al. 1993, Ogasawara, Tamura et al. 1996, 
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Tamura, Ogasawara et al. 1996, Nozawa, Oda et al. 1998). Likewise, the other 

partners of IRF9 in the ISGF3 complex, STAT1 and STAT2 seem to have tumour 

suppressive functions and have been found to show reduced expression in melanoma 

and chronic myeloid leukaemia (Wong, Krauer et al. 1997, Landolfo, Guarini et al. 

2000). What it is interesting it is that I have found all three genes (IRF9, STAT1 and 

STAT2) as top ATR resistance candidates in our screen, which suggests a tumour 

suppressor role that can be extended to the whole ISGF3 complex. Nevertheless, the 

fact that our experiments have been done in vitro, in a model lacking an immune 

microenvironment, makes the interpretation of this data more complex, as there is a 

possibility for these results to be triggered by the lentiviral infection of the cells, part of 

the protocol of the CRISPR/Cas9 screen. Although we cannot entirely exclude the 

possibility of off target effects caused by the lentiviral infectious process, this is not 

likely to be the case as I have found dysregulation of this pathway in the YCC6 ATRi 

resistant clones which have not been infected with lentivirus, suggesting that the 

proposed resistance mechanism is real. Moreover, other studies have demonstrated 

IRF9 to be implicated in resistance to antimicrotubule agents’ and in the regulation of 

IL6 and PD-L1, both related with the carcinogenic process, using cell lines as a model 

(Luker, Pica et al. 2001, Morimoto, Kishida et al. 2018, Nan, Wang et al. 2018). Despite 

of this, it would be interesting to validate these results using in vivo models with a 

competent immune system, as well as undertaking further experiments that can inform 

us about the role of IRF9, STAT1/2 in the DDR response, through the modulation of 

its target genes (ISGs). Finally, an abstract presented in ESMO 2018 (Annals of 

Oncology, Volume 29, Issue suppl_8, 1 October 2018, mdy303.019), Dillon et al. 

reported an IFN-mediated response in vivo cancer models when treated with a 

combination of the ATRi, AZD6738 and radiotherapy, that caused an increase in the 

number of several immune cell types. Considering this, it is possible that within the 

context of ATR inhibition, the loss of IRF9 or other factors involved in the IFN pathway 

could impair the recruitment of immune cells, favouring resistance. Further in vivo 

experiments will be necessary to evaluate this hypothesis in GC. 

 

The use of high-throughput genetic CRISPR/Cas9 screens has allowed us to identify 

potential candidate genes that are relevant to the acquired resistance to ATRi. 

Because this screen has been performed on a GW scale, I have defined a long list of 

genes that are potential candidates implicated in this process. One challenge of 
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working with big data is how to prioritise the results, as well as the discrimination of 

the positives from the false positives. This makes, the use of validation experiments 

in several orthogonal methodologies and models absolutely necessary to select the 

true candidates and validate their implication in the genetic pathway. At the same time 

that I performed the CRISPR screen in the YCC6 GC cell line, I also carried out a 

parallel screen in the OCCC TOV21G. In this thesis, I have focused on the YCC6 

screen, as I am principally interested in mechanisms of resistance arising in GC. 

Nevertheless, I have also used the results from the TOV21G screen to cross-reference 

the data from both screens, to give robustness to the data, to help us narrow the list 

of top candidate genes for further following up, and to identify mechanisms that are 

common to other models and not private to the GC models used in this thesis. 

Additionally, a recent study published data from three other cancer cell line models 

revealing genetic determinants of response to ATRi in the  kidney cancer cell line 

293A, the colorectal cancer cell line HCT 116 and the breast epithelial cell line 

MCF10A (Wang, Wang et al. 2018). Despite of the fact the authors used a different 

ATRi in their study (AZD6738), I considered that it would be informative to annotate 

the genes that remain significant independently of the ATRi used or the histology of 

the models. Analysing this combined set of data has allowed me to 1) generate a list 

of ATRi resistant-causing relevant genes across cancer and ATRi 2) narrow down the 

list of genes I want to focus my attention in the next steps of the project. This analysis 

has shown that CDC25B is the gene with a largest effect in causing ATRi resistance 

as, it is a candidate resistance gene present in all 5 cell lines analysed. CDC25B is a 

member of the CDC25 family of phosphatases that can also be found in the CDC25C 

and CDC25A isoforms in humans, and catalyses the dephosphorylation and activation 

of the cyclin dependent kinases (CDKs) required for mitotic entry and cell cycle 

progression in cells (Sohn, Kristjansdottir et al. 2004). While CDC25A has been linked 

to the G1/S checkpoint, the three isoforms are known to have a pivotal role in G2/M 

transition and control mitosis by the modulation of cell cycle regulatory proteins as 

CDK1/2 and CDC2 (Boutros, Lobjois et al. 2007, Aressy and Ducommun 2008). 

CDC25A has been identified as a determinant of resistance to ATR inhibition in murine 

embryonic stem cell based CRISPR/Cas9 positive selection mutagenesis screen. This 

is described to occur through the cell’s failure to enter mitosis prematurely in response 

to the drug, as CDC25A is a key mediator of apoptosis, after DNA damage (Ruiz, 

Mayor-Ruiz et al. 2016). In the latter study, Ruiz et al. investigated the possibility for 
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CDC25B to play similar roles to CDC25A in ATRi resistance, finding no clear effect of 

ATRi resistance in CDC25B deficient cells. Moreover, ATR inhibition did not increase 

CDC25B expression, suggesting a different function to CDC25A in mediating the DNA 

damage cascade in those models. In our initial screen as well as in the validation data, 

I detected CDC25A to be a determinant of ATRi resistance, although the effect seems 

to be much less profound than the one observed for CDC25B. It is possible that these 

differences are due to a model-specific features and that the activation of either 

CDC25A or B depends on the genetic context of each cell line. Furthermore, our model 

is ARID1A deficient, which is a protein implicated in the DDR, and described be 

recruited to DSBs through its interaction with ATR, facilitating DSB end processing to 

generate RPA-coated ssDNA, and sustaining ATR activity in response to DNA 

damage (Shen, Peng et al. 2015). As all the components of the CDC25 family are 

directly regulated by ATR and its downstream effectors, it is possible that ATR 

influences the expression CDC25s to regulate mitosis. As discussed above, a recent 

study has described some ATRi resistance-conferring genes including both CDC25A 

and CDC25B in three different cell lines (HCT 116, MCF10A and 293A). Although 

none of these cell lines are from GC histology, nor ARID1A deficient, this data strongly 

supports a model where both isoforms are implicated in ATRi response and 

resistance. The role CDC25C is less clear; and there is no available data that 

associates its loss to ATRi resistance mechanisms.  

Going forward, it would be informative to evaluate whether the levels of ϒH2AX, a 

marker of genomic instability, or the decrease of premature mitotic entry occurs in the 

absence of CDC25B in our models, and, if the use of WEE1 inhibitors (WEE1i), can 

re-sensitise our cells to ATRi through the induction of the pro-mitotic factor CDK1, as 

described in CDC25A null models. This would be the rational for combining ATRi and 

WEE1i in the clinic, with the aim of avoiding drug-resistance. Related to this, I also 

found FOXM1 loss to cause ATRi resistance from the YCC6 GW CRISPR screen. 

Recent publications have defined FOXM1 as a direct regulator of mitosis, controlled 

by the ATR-CHK1-CDC25 axis (Saldivar, Hamperl et al. 2018). In the model Saldivar 

et al. propose, an ETAA1-DNA damage mediated activation of ATR causes the 

phosphorylation of CHK1, which inhibits CDC25 proteins, which are then not able to 

activate CDK1 and subsequently FOXM1, controlling S/G2 transition and mitosis, to 

ensure the correct replication of DNA before the cell divides. In the context of ATRi, 

cells undergo accelerated mitosis and this is associated with high levels of 
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phosphorylated FOXM1 in S phase (Saldivar, Hamperl et al. 2018). Because of the 

direct implications of FOXM1 downstream the ATR/CHK1/CDC25s pathway, it makes 

sense to think that loss of FOXM1 could mimic what happens when CDC25A or 

CDC25B are not present. If CDC25A deficient cells fail to enter mitosis in response to 

drug, due to an impairment of CDK1 activation after DNA damage, causing resistance 

to ATR inhibition (Ruiz, Mayor-Ruiz et al. 2016), it seems logical to expect that FOXM1 

loss would have similar consequences in the cells. Thus, FOXM1 could be another 

mediator of ATRi resistance, as CDC25 proteins loss causes a reduction in CDK1 and 

FOXM1 activity after DNA damage. With this in mind, I am developing both, CDC25B 

and FOXM1 deficient models, which would be useful to test whether they are both 

involved in mediating ATRi resistance through the impairment of premature mitosis 

(Ruiz, Mayor-Ruiz et al. 2016).  

 

Apart from CDC25B/A and FOXM1, I have validated other interesting ATRi 

determinants of resistance in the arrayed CRISPR/Cas9 screen experiment that have 

been found to be important in the other cell lines analysed (Figure 25B). As an 

example, CARD10, encodes for a structural protein, member of the CARMA 

(membrane associated guanylate kinase-like domain) family of proteins, that 

participates in apoptosis mediation, and plays a role in the activation of the NF-kappa-

B (NF-κB) signalling pathway, forming a complex with BCL10 and MALT1 (CBM) 

(Grabiner, Blonska et al. 2007, Jiang, Grabiner et al. 2011). Interestingly, NF-κB is a 

cancer-related pathway that has been described to be activated through ATM 

phosphorylation in response to DNA damage to induce the expression of anti-

apoptotic genes, which is a process that has also been related to the development of 

resistance to chemotherapy (Zhang, Pan et al. 2017), making CARD10 an interesting 

ATRi resistance gene to study further. 

 

Finally, I also validated SMG8 and SMG9 as ATRi resistance genes. SMG8 and SMG9 

are both members of the non-sense mediated decay (NMD) pathway, in charge of the 

post-transcriptional modulation mRNAs expression and degradation of defective 

mRNAs that contain premature stop codons, preventing aberrant protein truncation 

(Popp and Maquat 2013, Lykke-Andersen and Bennett 2014, Lykke-Andersen and 

Jensen 2015, Karousis, Nasif et al. 2016). SMG8 and SMG9 form a heterodimer that 

acts as a negative regulator of the PIKK SMG1 (Arias-Palomo, Yamashita et al. 2011, 
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Fernandez, Yamashita et al. 2011), pivotal in the NMD pathway. In addition to its role 

in the NMD pathway, SMG1 it is known to play a role in the maintenance of the 

genomic instability, similar to other PIKKs like ATR and ATM (Brumbaugh, Otterness 

et al. 2004). Moreover, the three PIKKs converge in the phosphorylation of UPF1, 

which is an 5’-3’ DNA and RNA helicase in charge of facilitating several RNA 

degradation pathways (including NMD), as well of a mediator of DNA replication in S 

phase of cell cycle (Azzalin and Lingner 2006). Depletion of UPF1, leads to the 

impairment of the NMD pathway, as well as to the accumulation of genomic instability 

and an S phase cell cycle arrest (Azzalin and Lingner 2006, Azzalin and Lingner 2006). 

Depletion of ATR has been shown to lead to the impairment of UPF1 chromatin 

loading and accumulation of DNA damage (Azzalin and Lingner 2006) which suggests 

a central role of ATR in UPF1 regulation. Being a helicase, it has been hypothesised 

that UPF1 it might be in charge of unwinding the DNA in front of the replication fork, 

physically interacting with DNA polymerase delta, a main polymerase in DNA 

replication (Azzalin and Lingner 2006). This could be an explanation for the S phase 

arrest observed in UPF1 knockdown cells, and would suggest multiple roles for this 

protein. As SMG1 is known to have the ability to phosphorylate UPF1, especially in 

the context of the NMD pathway, it is reasonable to think that it might be implicated in 

UPF1 regulation upon other conditions, like ATR depletion. SMG1 depletion in the 

cells, leads to the accumulation of DNA damage, which could be explained by the 

aberrant regulation of UPF1 (Azzalin and Lingner 2006). Thus, in an ATR depleted 

situation, the impairment of SMG8 and SMG9 (as negative regulators of SMG1), could 

potentially lead to the upregulation of SMG1, activating UPF1 at the DNA fork, and 

thus facilitating the DNA repair in the cells before mitosis, causing resistance to ATRi. 

Interestingly, one of the proteins found upregulated in our ATRi resistant clones was 

SMG1, supporting its implication in mediating ATRi resistance. Consistent with my 

hypothesis, siRNA knockdown experiments have demonstrated that SMG1 

downregulation is able to re-sensitise the cancer cells to ATRi, underlying the role of 

SMG1 as a mediator of ATRi resistance. Further experiments will be carried out to 

determine if this resistance is mediated through the modulation of UPF1 and the 

facilitation of DDR in condition of ATR depletion. These observations open the 

possibility to develop and test SMG1 inhibitors in combination with ATRi, to avoid 

resistance in the cancer cells, which can be widely relevant in the clinical practice, now 

that ATRi are starting to be used in clinical trials.  



	 141	

 

Therefore, in this section I have discovered and validated a number of novel 

determinants to ATRi resistance in GC, providing with a rationale to study their role in 

carcinogenesis and drug resistance and that can potentially be considered as 

biomarkers or therapy-guiding genes in the clinical practice. 

 

3.2. ATR inhibitor resistant isogenic cells 
With the aim of identifying genetic determinants to ATRi resistance in GC, I created 

eight ATRi resistant isogenic clones from YCC6 tumour cell line and performed 

proteomic analyses to detect significant deregulated proteins that can cause ATRi 

resistance. I observed that five of the clones, all part of the same cluster, according to 

the principal components analysis of the proteome presented a change in the 

micromorphology of the cell (H1, H2, H3, H4 and H6), exhibiting mesenchymal 

attributes, different from the epithelial parental cell line. Epithelial-mesenchymal 

morphology changes have been widely described in tumour cells that undergo genetic 

changes, as mesenchymal morphology has been related to an enhanced capacity of 

cancer cells to invade and metastasise, which can be related to the development of 

drug resistance mechanisms (Lyons, Alizadeh et al. 2016). Metastasis of tumour cells 

requires the following sequence of events: the ability of detachment from the primary 

tumour, migrating to the vascular supply, trespassing of the vessel wall (intravasation), 

transiting in the blood or lymphatics, exiting from the vascular supply (extravasation), 

and finally with the attachment and proliferation at the new site (Chambers, Groom et 

al. 2002). Usually, metastatic cells are associated with deformable shape and a low 

expression of proteins related to cell-cell adhesion or cell-extracellular matrix 

adhesion, which confers to the cell a larger size, mesenchymal-like elongated spindle 

morphology, and changes in the cytoskeleton structure (Cavallaro and Christofori 

2004, Cross, Jin et al. 2007, Cross, Jin et al. 2008, Berx and van Roy 2009). Using 

the REACTOME 2016 pathway database to carry out a pathway analysis in relation to 

the differences in proteome found in the resistant clones in comparison to the parental 

cell line, one of the highest deregulated group of proteins in our resistant clones were 

the cell-cell adhesion proteins (data not shown). These included proteins expressed 

from the following genes: CDH1 (E-Cadherin), n-CAM (Neural Cell Adhesion Molecule 

1), KRT7 (Keratin 7), KRT19 (Keratin 19), SMAD4 (SMAD Family Member 4), PIK3CB 

(Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Beta), SPTBN1 
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(Spectrin Beta, Non-Erythrocytic 1), ITGB4 (Integrin Subunit Beta 4), PARD6B (Par-6 

Family Cell Polarity Regulator Beta), ROCK2 (Rho Associated Coiled-Coil Containing 

Protein Kinase 2), RHOB (Ras Homolog Family Member B), PAK1(P21 (RAC1) 

Activated Kinase 1), ECM1 (Extracellular matrix protein 1), MLLT4 (Afadin, Adherens 

Junction Formation Factor), EZR (Ezrin), VIM (Vimentin), ARHGAP21(Rho GTPase 

Activating Protein 21) and CD2AP (CD2 Associated Protein), which are known to be 

involved in cell-cell adhesion, cell-extracellular matrix adhesion and the cytoskeletal 

structure in the cell. These changes were seen in the YCC6 ATRi resistant clones that 

had acquired a mesenchymal morphology but were absent in the clones that did not 

undergo morphological changes. This indicates that the changes in the morphology of 

the tumour cells play an important role in the ATRi-resistance mechanism. In contrast, 

some of the resistant clones did not undergo morphological changes, and other 

proteins, not related to cell morphology were detected as significantly deregulated 

proteins, suggesting that this is not the only mechanism mediating resistance. 

 

Apart from the changes in the cell-morphology associated proteins, I detected other 

deregulated proteins in the ATRi resistant clones, compared with the parental cell line. 

This list varied widely when I compared all the clones together to the parental cell lines 

and also when I divided them in two clusters, determined by similarities in the 

proteome (PCA). Several proteins previously related with the carcinogenic process 

were detected. Amongst them, MET/HRAS/PIK3CB have been related to drug 

resistance in cancer (Hah, Zhao et al. 2014, Leiser, Medova et al. 2015, Pietrantonio, 

Fuca et al. 2018). Moreover, NF1 was found to be downregulated in the resistant 

clones. NF1, or Neourofibromatosis type 1 is a tumour suppressor gene that has 

previously been identified as an Cetuximab-resistance conferring factor in EGFR-

amplified colorectal tumours (Mei, Shao et al. 2018). When I cross-referenced the 

results from the proteomic analysis with the GW CRISPR screen data, only 

ARHGAP21 and TYK2 were downregulated in the resistant clones, as well as 

displaying enrichment of sgRNA in the resistant cells. Notably, TYK2 was found in in 

the Top 20 candidates from the screen, and also found to be downregulated in one of 

the resistant colonies (See VX970 positive selection GW CRISPR-Cas9 mutagenesis 

screen section, Figure 20C and Table 8). Additionally, STAT5B was found 

deregulated, also a component of the JAK/STAT pathway, which supports an 

important role of this pathway in the ATRi resistance process. I was especially 
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interested in SMG1, as it validates our hypothesis regarding the role of SMG8/SMG9 

as ATRi resistance mediators. As discussed before, SMG8 and SMG9 form a 

heterodimer in charge of negatively regulating SMG1 (Arias-Palomo, Yamashita et al. 

2011, Fernandez, Yamashita et al. 2011). Therefore, it is reasonable to expect that 

SMG8/SMG9 downregulation could cause an increase in SMG1 expression, which 

could be the mediator of ATRi resistance I have seen in our cells. SMG1 is also 

upregulated in the ATRi resistant clones, which supports our working hypothesis.  

 

In this thesis, I have presented data regarding the proteomic analysis undertaken in 

the resistant clones, although additional mRNA sequencing and exome sequencing of 

the resistant colonies are currently being performed, to achieve a comprehensive view 

of the mechanisms involved in the ATRi resistance process. Integration of sequencing 

results extracted from the different high-throughput techniques, as well as with the GW 

CRISPR screen data will be useful to give us a deeper understanding of the main ATRi 

resistance-causing mechanisms in GC.  

Moreover, for the purposes of this thesis, and due to its interest in relation with the 

GW CRISPR screen data, only SMG1 validation is presented, although more proteins 

will be tested for its part in ATRi resistance mechanisms in the near future. 

 

3.3. Dense Tiling ATR CRISPRx Screen 
With the aim of identifying regions in the ATR protein that are relevant for the 

development of ATRi resistance, I have carried out a dense tiling CRISPRx screen, 

following the principals and methodology described previously (Komor, Kim et al. 

2016, Gaudelli, Komor et al. 2017, Komor, Badran et al. 2017, Komor, Zhao et al. 

2017, Pettitt, Krastev et al. 2018). This approach has allowed me to describe candidate 

mutations in the ATR sequence that cause resistance to the ATRi VX970 in the GC 

tumour cell line YCC6. 

I have detected a cluster of ATRi resistance-conferring mutations affecting residues 

located in the FAT domain (Figure 35A and 35B). The FAT domain has been 

previously described to be crucial for ATR activation through the autophosphorylation 

and stimulation of TopBP1 function, which is crucial for ATR substrate recognition and 

the transmission of the DDR signal (Liu, Shiotani et al. 2011). Apart from its role in 

ATR activation, it has been hypothesised that, due to the fact that FAT and FATC 

domains only occur in combination in the PIKKs, they must structurally interact with 
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each other in a way that ensures the ATR kinase domain function, that is located 

between the two domains (Bosotti, Isacchi et al. 2000, Lempiainen and Halazonetis 

2009). This has also been described to be the case in other PIKKs as ATM, DNA-

PKcs, SMG1 and mTOR, where structural changes in the FAT or the FATC domains 

impair their kinase activity (Stan, McLaughlin et al. 1994, Choi, Chen et al. 1996, 

Bosotti, Isacchi et al. 2000, Peterson, Beal et al. 2000, Takahashi, Hara et al. 2000, 

You, Chahwan et al. 2005, Cavalieri, Funaro et al. 2006, Spagnolo, Rivera-Calzada et 

al. 2006, Morita, Yamashita et al. 2007, Lempiainen and Halazonetis 2009). Lastly, 

mutations in ATR’s FAT domain have been reported to impair ATR-dependent 

responses to DNA damage through the impairment of CHK1 and p53 activation, as 

well as the abrogation of cell cycle arrest (Fang, Tsao et al. 2004, Lewis, Mullany et 

al. 2005, Tanaka, Weinel et al. 2012), which could potentially explain the emergence 

of ATRi resistance mechanisms in our model (Figure 35B). Therefore, I hypothesise 

that mutations in the ATR’s FAT domain are likely to cause ATRi resistance due to the 

impairment of the proper protein folding and kinase function, not allowing ATR to 

ensure the correct repair of DNA damage before cells undergo mitosis.  

The 3D ATR structure has not yet been constructed (due to the technical challenges 

of the large protein size). However, the cryo-electron microscopy structure of the ATR-

ATRIP complex was partially described recently, providing valuable information about 

the complex assembly, and where the ATRi VX970 binds (Rao, Liu et al. 2018). VX970 

is predicted to bind to the catalytic domain of ATR through a deep pocket that is 

thought to accommodate ATP for substrate phosphorylation, preventing the transfer 

of the group phosphate to the substrates (Rao, Liu et al. 2018). Hence, another 

explanation for the observed resistance could be that the aberrant folding of the protein 

impairs the binding of the inhibitor VX970 to bind the ATR catalytic domain, and 

therefore, causing a physical resistance to the drug. The use of other ATRi inhibitors, 

known to bind to other parts of the protein, will reveal if this is the case. 

Following the acquisition of my data, I have designed validation experiments to identify 

the exact effect of a determined mutation in ATR protein activity with respect to ATRi 

response. With this aim, I picked and expanded several resistant clones from the initial 

CRISPRx experiment at the time I retrieved the resistant population for sequencing. 

This will allow us to characterise the clones in terms of ATR mutations and ATRi 
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resistance (to VX970 and other ATRi), and therefore to have a collection of isogenic 

models with mutations located in several areas of the protein. When these models will 

be generated I will create additional isogenic models to represent other areas of the 

protein in this and other cell lines, using the CRISPR/Cas9 technique. This will be 

important to discard model-specific conclusions, thereby removing false positive 

results from our screen. Due to the role of ATR in mediating the DDR cascade through 

its interaction with downstream proteins, it would also be interesting to determine the 

effect of the mutations in a specific region of the protein in other relevant protein-

protein interaction. This could be tested through immunoprecipitation experiments, 

where ATR and its interacting proteins are studied to see changes in the protein 

populations in the ATR mutated cells. At the same time, it would be noteworthy to 

describe the ability of mutated ATR to orchestrate the DDR cascade by carrying out a 

study of the state of phosphorylation of downstream proteins, such as CHK1, TopBP1 

and CDK2. These isogenic models would help to determine whether they are resistant 

to other ATRi that bind to other residues, and whether the resistance I see is due to 

the physical impairment of VX970 accession to ATR catalytic domain.   

 

4. Biological implications of the results and future perspectives 
In this thesis, I have demonstrated that ARID1A deficiency plays an important role in 

ATRi sensitivity, in both, in vitro and in vivo GC models. Although this effect is clear in 

our GC models, the penetrance of this SL (the percentage of models with ARID1A 

deficiency where ATRi enhanced sensitivity is observed) does not seem to be 

complete. To date, only a few highly penetrant SLs have been described, and low 

penetrance SL remains a clinical barrier to exploit genetic dependencies from a 

therapeutic perspective (Ryan, Bajrami et al. 2018). In this study, I have demonstrated 

the ARID1A and ATR SL in GC in vitro and in vivo. More studies, incorporating a larger 

number of models will be necessary to determine the penetrance of this SL in GC or 

across all histologies and thereby, identify robust determinants to ATRi response, in 

the presence or absence of ARID1A deficiency. Therefore, I currently sequencing the 

retrieved resistant tumours from the PDX models to identify other predictive 

biomarkers of ATRi, by comparing them with tumours harvested from the vehicle 

control arm. ARID1A is a gene that is highly mutated across cancer (20%). As a result 

of the data described in this thesis, we are currently negotiating a clinical study 

evaluating response to VX970 in four cohorts of GC: MSI and ARID1A null, MSI and 
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ARID1A WT, MSS and ARID1A null and MSS and ARID1A WT. This will allow us to 

compare responses to ATRi within each genotypic group in a prospective study. 

 

Additionally, I have described and validated several genes involved in the ATRi 

resistance process in GC through undertaking a GW CRISPR screen and the creation 

of ATRi resistant models. Several candidate resistance genes including HUWE1, 

SMG8, SMG9, SMG1, HNRNPF, IRF9, CARD10, CDC25B and STAT2 have been 

robustly validated in orthogonal formats and models. Of note, I have demonstrated 

that SMG1 overexpression mediates ATRi resistance in GC. I am currently creating 

new isogenic models using the CRISPR/Cas9 technique, to generate YCC6 clones 

representing SMG8, SMG9 and SMG1 deficiency in the YCC6 cell line, as well as in 

other mutant gastric cell lines to validate the effect I have described in the YCC6 cells. 

In parallel, I am undertaking knockdown experiments to try to clarify whether this 

resistance is mediated by the regulation of UPF1. The use of orthogonal models will 

allow us to detect ATRi response determinants that are not influenced by the 

genetic/epigenetic profile of a specific model. Additionally, siRNA knockdown and cell 

cycle experiments will be performed to better define the mechanisms by which this 

resistance is occurring.  

 

Furthermore, I have created ATRi resistant models that will allow me to validate 

previous hypotheses generated from the GW CRISPR screen experiment that will be 

useful to further characterise mechanisms of ATRi resistance through DNA whole 

exome sequencing and RNA sequencing. 

 

Finally, I have shown how mutations in the FAT domain of ATR cause resistance to 

ATRi. Going forward, I will create isogenic models that harbour mutations in this 

stretch of the ATR protein, to enable functional validation and to determine whether 

ATRi resistance is caused by an impairment of the inhibitor binding or by the structural 

inability of ATR to carry out its normal function. I will utilise the CRISPRx technique for 

model generation. Mass spectrometry and immunoprecipitation experiments will help 

me to define the changes of ATR-protein interactions in the mutant clones, compared 

with an ATR WT control. 
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Conclusions 
 
In this thesis, I have: 

 
1. Shown that ATR inhibition constitutes an ARID1A synthetically lethal interaction 

in gastric cancer that can be elicited with small molecule inhibitors such as 

VX970, AZD6738 and M4344. These effects have been observed in a panel of 

gastric tumour cell lines, ARID1A isogenic models and gastric cancer human-

derived xenografts. These results provide with a rationale to test these 

compounds in clinical trials recruiting patients with gastric cancer, within the 

context of ARID1A deficiency.  

 

2. Identified and validated HUWE1, HNRNPF, IRF9, SMG8, SMG9, CARD10, 

CDC25B and STAT2 as genetic determinants to ATRi resistance in gastric 

cancer.  

 

3. Described that the overexpression of SMG1 causes resistance to ATRi in 

gastric cancer. 

 

4. Identified potential ATR inhibitors-resistance mediators through the creation of 

ATR inhibition resistance gastric cancer models. 

 

5. Pinpointed how mutations in the FAT domain of ATR cause resistance to ATRi. 
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Appendix 
 
Supplementary Table 1. sgRNA and target genes used in the genome-wide screen 
validation experiment. Highlighted in red, the sgRNA used in (Mayor-Ruiz et al., 2016) 
 

Gene  sgRNA sequence 
HUWE1-1 GCTCTGACGCGTAAGTGAC 
HUWE1-2 ATCGGGGAGATCCTGATCC 
HUWE1-3 CAAGCGTGCGATTCACTGC 
HUWE1-4 TGTAGCCGAGTTAGCAGCG 
HUWE1-5 TCCATCGAAGCGGTCCAAC 
SMG8-1 AATACGGTGTGCGACCGAC 
SMG8-2 CCGGAAGATTCTATAGATC 
SMG8-3 GCTTTCGTGTACATAGTAC 
SMG8-4 GGTCCAGCAACATACCTAC 
SMG8-5 TCATCACCTGGTATCGCCT 
HNRNPF-1 TCTAGGGAAACACAAGGAG 
HNRNPF-2 TTCCTTTGTGCATCCAAAT 
HNRNPF-3 AAGTCCCACAGAACCGAGA 
HNRNPF-4 AAAAAGACAGGGAAAGCAT 
HNRNPF-5 CTGACTGCACGATTCATGA 
IRF9-1 GGCCCTTTCACCTTGAAGA 
IRF9-2 AAGAGTTCTGAATTTAAGG 
IRF9-3 TGTATCAGTTGCTGCCACC 
IRF9-4 TACATTATTGAGGGAGTCC 
IRF9-5 TGGTACCTTCCTGTGGCTC 
CDC25B-1 AGACCATGCACGACCTCGC 
CDC25B-2 TGCCCGTCGAGACAGGGAT 
CDC25B-3 TCACGTCTGCTCCGCCATG 
CDC25B-4 TACTTTCGAATGATCCGGC 
CDC25B-5 GACACTCACCGGCATAGAC 
STAT2-1 AAACTTTGACCCCCGAGAA 
STAT2-2 TTCACCGTCCGAACAAGGT 
STAT2-3 GTGGACCTACGCAACGCCC 
STAT2-4 TGCTTCCGATATAAGATCC 
STAT2-5 GAGATTGAATCCCGGATCC 
SMG9-1 ACTCACGGTCCATGGCTGC 
SMG9-2 GAACGATGGGCTTCTCCAG 
SMG9-3 AGGGACTACATTGCACCAT 
SMG9-4 GCGCTGAAATGAAGGAACG 
SMG9-5 GGACCCCTCGGTACCTCGA 
CARD10-1 GGCCATCCAGAGCCGTGAC 
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CARD10-2 GCGGCTGACGGCGTCACTG 
CARD10-3 GGTGCGGTTGACGCGGCAC 
CARD10-4 TGCCGGGTCATCGACGAGC 
CARD10-5 AATCGAGGGCGTCCGGCAT 
CSTF2T-1 TCAGCAGAACATTAGGTCC 
CSTF2T-2 GATCGATGGGATCCCCATA 
CSTF2T-3 AGTCAATAATGGGCGCTGC 
CSTF2T-4 ATGCGGAACCTCAATGGGC 
CSTF2T-5 CTCTCTATCGTATACCAGC 
ARHGAP22-1 CCTAACATTCTGCGGCCAC 
ARHGAP22-2 AGTCCTCGTACCTGGCGAA 
ARHGAP22-3 ACAACAGACGTGCACACGG 
ARHGAP22-4 CGGAAGTATGGCCCCCGCC 
ARHGAP22-5 GCCCAGATGACTCGGCGGA 
CCDC7-1 CCATTATCACCTGAGCTAA 
CCDC7-2 GGCAAAGCATACCGTAAAA 
CCDC7-3 TTGTCTTACTCGATGGAAT 
CCDC7-4 ATGGACATTGCGATCAGAA 
CCDC7-5 GACAACATGACTTTCACGG 
WDFY4-1 TATTGCTACTCCTCGAGTC 
WDFY4-2 TCCGCTACACTGGTGATAG 
WDFY4-3 GTCAGTGTACGTGCTCACG 
WDFY4-4 GTATGGTCATCTGTCGCTA 
WDFY4-5 CCGGTAGCACTCGTCATCC 
FXYD4-1 CAGCTCTTACCATAGTAGA 
FXYD4-2 GGAAAAACCTGCAGCTGAG 
FXYD4-3 GAGCGGACTGATCTGCGGA 
FXYD4-4 CTGGCCATTGCTGGGATCG 
FXYD4-5 GCATTTGCATTTGCCACCT 
TYK2-1 GACGGCTATTTCCGCCTGA 
TYK2-2 CCTGCGGAAGACGTTCCGA 
TYK2-3 GTGCTGCCGGATATGCCGG 
TYK2-4 GGTACACAGCCGGTTCCCG 
TYK2-5 GATGCTATATTTCCGCATA 
RIC8A-1 ACGTTTGATGATGCCCAAC 
RIC8A-2 CTGCTGGCGCACATCGGTG 
RIC8A-3 CGCCTGCTAACTGACACAC 
RIC8A-4 GGTCCCCAGGTGTCGGTAA 
RIC8A-5 GTGTGATGATCGCTACTGC 
MYPN-1 AGGACTGCCGAAATGGCAA 
MYPN-2 CATTATCCCTGGTATCCGC 
MYPN-3 GTAACTTTTGAGTGAACCG 
MYPN-4 GCTGGATGGTTGCCACACG 
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MYPN-5 CTTTTAGAACCTCGATCCA 
NPY4R-1 CAGGATTCCGTGGACGTGA 
NPY4R-2 AGCATTGAGACTGTCGTGG 
NPY4R-3 CTACACCATCATGGACTAC 
NPY4R-4 GAAGGCCGACATCTTGCAG 
NPY4R-5 GACCGTCACCGACATGCAC 
C11orf86-1 GCTTAGCGCCCTGCGGAGT 
C11orf86-2 ACAGGGGCAAGAGAAGTCC 
C11orf86-3 GTGCCTCTCTCGAGGCCCT 
C11orf86-4 AGATGCCACTGCCCAGGAG 
C11orf86-5 TGATCCAAGCCCAGCGAAG 
CNBP-1 CCTGCTATAACTGCGGTAG 
CNBP-2 AAGGATTGTGATCTTCAGG 
CNBP-3 GAGTCTGGTCATCTTGCCA 
CNBP-4 CAGACATTTGTTATCGCTG 
CNBP-5 GGTAAAACCACCTCTGCCA 
TRAFD1-1 GTTGCCACATAGTTCCGTC 
TRAFD1-2 TATGATGAATCTTGGGGTC 
TRAFD1-3 CAATAGAACTACCAACCAA 
TRAFD1-4 GGTGAAGAGAGTGCAAACT 
TRAFD1-5 GACTGGTCGGCCTCACATA 
JAK1-1 GATCCGATCGAAACTCAGC 
JAK1-2 ATGTTGTGGACGATCAACG 
JAK1-3 CGGAAGTAGCCATCTACCA 
JAK1-4 CCGGCTCCACTACCGGATG 
JAK1-5 GATCTTCTATCTGTCGGAC 
USP43-1 ACCACCGCGTTCATGAAAC 
USP43-2 CTTGAACTCCGCGGAAAGT 
USP43-3 GATCGTGTACATGAGGACC 
USP43-4 GACCGACCTTCTCCGACAC 
USP43-5 CGTACCTCGTCTGGCGCAA 
STAT1-1 TCCGCAACTATAGTGAACC 
STAT1-2 TTGGGCGGCCCCCCAATAC 
STAT1-3 ACTAGTTCATCATTAATCA 
STAT1-4 CCCATTACAGGCTCAGTCG 
STAT1-5 GTAAATGATCATAGACATC 
FOXM1-1 CCCATACTAACGTGCGCCC 
FOXM1-2 TCAAGTAGCGGTTGGCACT 
FOXM1-3 CGGACAAACATGTCGTGCA 
FOXM1-4 CTCCCGTTTCTGCTCGCAA 
FOXM1-5 ATGCCCAACACGCAAGTAG 
KLLN-1 CGAGCCCCTGTTTCCGCCG 
KLLN-2 TTGCCTCCGGAGCTATCAC 
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KLLN-3 TTGGAAAGTTCCCCAACTA 
KLLN-4 CGGAAAGTAGTTCCGACTG 
KLLN-5 GTGGAAAGTACGGAACGGT 
ZNF592-1 CTCCGCTTCAAATGACTCC 
ZNF592-2 CGAAGAATCGAGTGGCATC 
ZNF592-3 TGCTACGAGGGCTGTCCGA 
ZNF592-4 AATCAAACGGACTGTCACA 
CECR6-1 TAGAGCCAGAGCACCGGCG 
CECR6-2 GAAGTAGACGGCGATAAGC 
CECR6-3 CTGCTCGACAGCTTCACGC 
CECR6-4 CAGGAAGCATCCGGCCGCG 
CECR6-5 CAGCCCCAGCGGCACCGCG 
CECR6-6 AAGAACAGCCGGGGCCGTC 
CECR6-7 CACCAGTACAGGTCGGTGA 
CECR6-8 GACAGCCGCGGACTTCGGC 
CECR6-9 GCGCGGCGTTGGGCACCAG 
CWF19L1-1 GCCACCCGGTTTATAGCTC 
CWF19L1-2 GAAATGCTACTCACCGATA 
CWF19L1-3 TATCTTGGTTTCAAGCCCG 
CWF19L1-4 CCTTAAATGAGCCAGTACC 
CWF19L1-5 TGAAGATACCTTTACGACC 
FDFT1-1 ACAGCTGCGAAACTGCGAC 
FDFT1-2 TCTCCATGAACCGCCAGTC 
FDFT1-3 GCGTAACCCCACTCACCGT 
FDFT1-4 CCGACATTTGCCGGAGAAT 
FDFT1-5 GTGACCTCTGAACAGGAGT 
THUMPD1-1 GGTTTAAAGCTCCAAACAA 
THUMPD1-2 TGCTCCACTTTCCACTGAC 
THUMPD1-3 GTCGCCGTATTCGTTGAGG 
THUMPD1-4 TTGCGCTCGTTCATATTGC 
THUMPD1-5 GCCCGGGCTCTAGCTGACG 
CDC25A-1 GCCTCAGAATCGACCGATTC  
CDC25A-2 AGTGATTATGAGCAACCAC 
CDC25A-3 TATTTGGCGCTTCAGCCGC 
CDC25A-4 TTGTAGTTCTCATGACGAG 
CDC25A-5 AGAGGCTTGCCATGCACGA 
CDC25A-6 GCTTCGTGGACCTTCTCGA 
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Supplementray Table 2. Table of ATR tiling primers for CRISPRx PCR 1  
 
Primer Sequence 
ATR-F1 GATGCGTCAATTTTACGCAGACTATCTTTCgcgttggcgtggttgactag 
ATR-R1 CCTCTCTATGGGCAGTCGGTGATCCTCAGCCATGGCTTCCACTCACATTTAC  
ATR-F2 GATGCGTCAATTTTACGCAGACTATCTTTCCCGTGATGTTGCTTGATTTCATCC 
ATR-R2 CCTCTCTATGGGCAGTCGGTGATCCTCAGCCCCATCACATTTCTTCTATGG 
ATR-F3 GATGCGTCAATTTTACGCAGACTATCTTTCGAGTCCTGCTATTTTTGGGG 
ATR-R3 CCTCTCTATGGGCAGTCGGTGATCCTCAGCGAACACAACCTATCTGCCAAAG  
ATR-F4 GATGCGTCAATTTTACGCAGACTATCTTTCCTTACTCGTATTATTGCAATTGTGT 
ATR-R4 CCTCTCTATGGGCAGTCGGTGATCCTCAGCCTTCTGCTTCAAAGGGAAATAG 
ATR-F5 GATGCGTCAATTTTACGCAGACTATCTTTCCAATTGAAACTCTATGAAGAGCC 
ATR-R5 CCTCTCTATGGGCAGTCGGTGATCCTCAGCCCTCAATTCCAAGCACATCC 
ATR-F6 GATGCGTCAATTTTACGCAGACTATCTTTCACAAGTCAGGAAGGTCTATGTG  
ATR-R6 CCTCTCTATGGGCAGTCGGTGATCCTCAGCCTCCATAATATGCTCTTTTGGTT 
ATR-F7 GATGCGTCAATTTTACGCAGACTATCTTTCCACCAAAACAGACTGAGG 
ATR-R7 CCTCTCTATGGGCAGTCGGTGATCCTCAGCGCACTTTTGTGTAAAAATCCAATG 
ATR-F8 GATGCGTCAATTTTACGCAGACTATCTTTCCCAAGAAGAAACCTTCTGTAG 
ATR-R8 CCTCTCTATGGGCAGTCGGTGATCCTCAGCTAGCGGCAAATGTGGTCAAC  
ATR-F9 GATGCGTCAATTTTACGCAGACTATCTTTCTGGTATGCTCTCACTTCCATG  
ATR-R9 CCTCTCTATGGGCAGTCGGTGATCCTCAGCCACTAACACAACTAGCCCGGATTAC  
ATR-F10 GATGCGTCAATTTTACGCAGACTATCTTTCCCTTGAGTGGAGAACAGCAG  
ATR-R10 CCTCTCTATGGGCAGTCGGTGATCCTCAGCGTGGCTTTCAAGTTCCTACAG  
ATR-F11 GATGCGTCAATTTTACGCAGACTATCTTTCAACCTTTCTCTGAACACGG 
ATR-R11 CCTCTCTATGGGCAGTCGGTGATCCTCAGCCCACTAAAAGCCACTCTAAC 
ATR-F12 GATGCGTCAATTTTACGCAGACTATCTTTCCAGATGTAAAAGCAGTTCTTGG 
ATR-R12 CCTCTCTATGGGCAGTCGGTGATCCTCAGCGCTGACTTGGATAACAAACAATG 
ATR-F13 GATGCGTCAATTTTACGCAGACTATCTTTCGATATTGGAAGGGCCGCAAA 
ATR-R13 CCTCTCTATGGGCAGTCGGTGATCCTCAGCTCTCTCTGGTGAGCCACATCTTG  
ATR-F14 GATGCGTCAATTTTACGCAGACTATCTTTCAGCACTTCCGAATACTCCATG  
ATR-R14 CCTCTCTATGGGCAGTCGGTGATCCTCAGCCTTTGGAACAAGAACAGACC 
ATR-F15 GATGCGTCAATTTTACGCAGACTATCTTTCGTTCTACTACCTGATCTTGCTGC 
ATR-R15 CCTCTCTATGGGCAGTCGGTGATCCTCAGCTAATCAGCCATCAGTTCAGGTG 
ATR-F16 GATGCGTCAATTTTACGCAGACTATCTTTCGGTTTGTCAATACTTGCCTC 
ATR-R16 CCTCTCTATGGGCAGTCGGTGATCCTCAGCAAGCTCTGCAACACAATTCAGG 
ATR-F17 GATGCGTCAATTTTACGCAGACTATCTTTCTCTGTGAGGGTGAAGATGATGAC  
ATR-R17 CCTCTCTATGGGCAGTCGGTGATCCTCAGCCGGCTTTTATCTTTTTTAATTCTGG 
ATR-F18 GATGCGTCAATTTTACGCAGACTATCTTTCAAACAGGGATGCTGTGCAAG  
ATR-R18 CCTCTCTATGGGCAGTCGGTGATCCTCAGCCACCAACTGTGAGATAATAGG 
ATR-F19 GATGCGTCAATTTTACGCAGACTATCTTTCCTGATAAAGTATGCAACAGACAGT 
ATR-R19 CCTCTCTATGGGCAGTCGGTGATCCTCAGCGCTATTATCAGCATACGCAAGG 
ATR-F20 GATGCGTCAATTTTACGCAGACTATCTTTCGATTCAAGCTTTGCCTATGG 
ATR-R20 CCTCTCTATGGGCAGTCGGTGATCCTCAGCCTTTACTCCAGACCAATCGGTTGAC 
ATR-F21 GATGCGTCAATTTTACGCAGACTATCTTTCTACTAGAACCTCATCTAAATACCAG 
ATR-R21 CCTCTCTATGGGCAGTCGGTGATCCTCAGCTGCATAAACCTCCTGCTGATC 
ATR-F22 GATGCGTCAATTTTACGCAGACTATCTTTCCTGGTGTATGTCTTACTGGG 
ATR-R22 CCTCTCTATGGGCAGTCGGTGATCCTCAGCCACTCTGATAGTCTTCATAATCCAC 
ATR-F23 GATGCGTCAATTTTACGCAGACTATCTTTCGTCCACACAGCAAATCAAACAG  
ATR-R23 CCTCTCTATGGGCAGTCGGTGATCCTCAGCGCCACTCCATCAGGTTCATGC 
ATR-F24 GATGCGTCAATTTTACGCAGACTATCTTTCACACACGAGCTGTAATGCAC 
ATR-R24 CCTCTCTATGGGCAGTCGGTGATCCTCAGCTTCATCTGTCCACTCGGACCTG 
ATR-F25 GATGCGTCAATTTTACGCAGACTATCTTTCGTCTACTGTTATCACTCAGGTG 
ATR-R25 CCTCTCTATGGGCAGTCGGTGATCCTCAGCCATATCCTCGTTGGTAGGAG 
ATR-F26 GATGCGTCAATTTTACGCAGACTATCTTTCGAACAAATTGTACCTCTTTCAGC 
ATR-R26 CCTCTCTATGGGCAGTCGGTGATCCTCAGCCTCTGCAGCCAGCATTCT 
ATR-F27 GATGCGTCAATTTTACGCAGACTATCTTTCAAGCCTCAACAAAAGACCAG 
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ATR-R27 CCTCTCTATGGGCAGTCGGTGATCCTCAGCCCCACTAGTAGCATAGCT 
ATR-F28 GATGCGTCAATTTTACGCAGACTATCTTTCCACCTGAGGGTAAGAACATG 
ATR-R28 CCTCTCTATGGGCAGTCGGTGATCCTCAGCCGTGGCATTGACTGATATATG 
ATR-F29 GATGCGTCAATTTTACGCAGACTATCTTTCATAAGGATGTGACCGCGTGC  
ATR-R29 CCTCTCTATGGGCAGTCGGTGATCCTCAGCTGCTTGTTGAGGATAGGCTAG  
ATR-F30 GATGCGTCAATTTTACGCAGACTATCTTTCCTCGAATTTGTCATTCTCACG 
ATR-R30 CCTCTCTATGGGCAGTCGGTGATCCTCAGCTGAGTGCTCATGCTTAATGTGG  
ATR-F31 GATGCGTCAATTTTACGCAGACTATCTTTCCTAGAATTGTGCAATAAACCGG 
ATR-R31 CCTCTCTATGGGCAGTCGGTGATCCTCAGCCCATCTGAGCCTTTTAAAGAAA 
ATR-F32 GATGCGTCAATTTTACGCAGACTATCTTTCGATGATATGGTGGAAATTCTTGC 
ATR-R32 CCTCTCTATGGGCAGTCGGTGATCCTCAGCGTCAGAATAGGTCTCAAACCAGCAG  
ATR-F33 GATGCGTCAATTTTACGCAGACTATCTTTCCCACTAAATGATGAATGTGGG 
ATR-R33 CCTCTCTATGGGCAGTCGGTGATCCTCAGCGCAGTGGAACGGCAGTAAGC  
ATR-F34 GATGCGTCAATTTTACGCAGACTATCTTTCCTGAGAACATTCCCTGATCC 
ATR-R34 CCTCTCTATGGGCAGTCGGTGATCCTCAGCCACATGCTCTTCGAAAAAGAC 
ATR-F35 GATGCGTCAATTTTACGCAGACTATCTTTCGGTTAATGGAATGGGTCCTATGG  
ATR-R35 CCTCTCTATGGGCAGTCGGTGATCCTCAGCCCTTCAATAGATAACGGCAGT 
ATR-F36 GATGCGTCAATTTTACGCAGACTATCTTTCGGTGTAATCAAGACTCGAAATAGA 
ATR-R36 CCTCTCTATGGGCAGTCGGTGATCCTCAGCgtattaagaaagcagtttatttctta 
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Suplementary Table 3. List of overlapping resistance hits with Z-Score >2 comparing 
our YCC6 CRISPR screen results with the TOV21G screen and the 293A, HCT 116 and 
MCF10A cell lines extracted from Wang et al., 2018. Highlighted in blue are the hits that I 
have validated for our YCC6 CRISPR screen. 
 

YCC6 + 4 CL POLL CDC34 PLBD1 EBLN1 GNB4 
CDC25B SHROOM3 CXCR1 NUDT5 PRR16 GPR161 
TRIT1 UNC45A GALR2 SGMS1 PRKAR1A ALG9 
YCC6 + 3 CL FBXL22 ZSCAN5B CCDC97 ANKRD35 GBE1 
CHCHD1 ATXN3 PPP1R7 INA RRAGA IL22RA1 
C10orf32 CDC26 RBAK-RBAKDN CDH22 SCARF1 PIK3C2B 
CPN1 RXFP3 PSMA1 C12orf56 CTU2 LAMTOR3 
OSGEPL1 FAM69A MXI1 STXBP2 ZNF33A MED7 
URM1 IGF1R GFRA4 NKIRAS2 ADRB1 RGS17 
ATAD1 NDUFS5 PADI2 SNTA1 TLN1 TP53TG5 
ABI3 MRPS18B RDH11 NANP ZNF251 HOXA5 
STYX TFAM CALCRL CDKN1A LAMTOR1 USP31 
GATA5 PIK3CA EDNRA CYP2U1 MAPKAP1 LIPT1 
DARS TTC14 TMIE KIF3C AIP GPIHBP1 
ASIP CEP44 VILL LRRC15 ARHGAP32 JPH4 
RICTOR KRT27 ICAM4 KCNH4 SGOL2 TAF13 
SYNPR PAPOLA LRRC43 SYNGR2 PCTP INSL5 
WFIKKN2 HNRNPF CCDC160 APEH OLA1 AP1G1 
AVEN SMG9 S100P GADD45GIP1 CMIP YCC6 + 1 CL 
SELPLG STAT2 PKN1 HUWE1 MYLPF RIC8A 
TMPRSS11A KIF5B CCRN4L RBP4 ZDHHC7 TRABD 
MRPL50 BLOC1S2 ATP8B1 HNRNPD MTMR4 MSRB2 
CSTA GAP43 TADA2A CUEDC2 MRPS16 GAD2 
FGD6 MIB1 DESI2 AKT2 SEC63 ARL5B 
PLD6 EFCAB11 GABRG1 DERL2 GTPBP10 GNA13 
SMG8 ITIH2 SPATA22 HOGA1 CFHR5 TNRC6A 
CDC25A GLUD1 PLA2G7 INCA1 MFSD9 RGCC 
AEBP2 BTBD7 RGS13 PRPH2 PFDN4 SEMA3G 
YCC6 + 2 CL ERGIC2 NUDT6 NLRP8 MLNR RXFP2 
SYNPO2L IVD FAM96A PDE6G PHPT1 SOX13 
MTOR CST9L SPIN3 KIAA1984 CCDC117 ZNF268 
SUV39H2 C17orf80 PPFIA2 POLR3F CPQ LTA4H 
MOB3A GPR65 CLIP3 HTR7 COX17 CCSER2 
MED12 VWA5A PHF14 ZFYVE28 ASB6 PTPDC1 
CNPY2 CYP46A1 BROX CALHM2 LOXL2 PML 
SCD USP46 VAT1L MEPE CCDC82 RNF5 
ALKBH5 MAGEB5 NEO1 SCGB3A1 MBOAT2 PAK4 
FAM212A ZFP64 TEKT1 C10orf95 ALG5 RERE 
WDR87 RASSF5 LCN9 OTUD4 ENG SLC6A13 
HNRNPA0 ADCYAP1 CSN2 C4orf17 MITD1 MIEF1 
NDUFAF1 SYNPO2 SLC6A14 HSPB6 GTF2E2 DCUN1D5 
CHUK CYP3A43 PRRX2 SUPT6H TNPO1 CEBPA 
FOXM1 HSP90B1 RGS1 KCTD8 VENTX MGMT 
TRAPPC10 RCAN1 GUCY2C ZNF677 FAF1 VPS37B 
ZFP36L1 RRAS FUT8 IFNAR1 SIGLEC8 COMMD7 
CD164 C17orf105 RNF128 RET RSRC2 BCAT2 
TIGD7 SNX13 NEUROD2 LDB1 STK4 MTF1 
BCAS3 ODF3B TBC1D14 DCUN1D1 FCRL2 HSPA8 
KLK5 MED12L INTU FASTK WDR59 ZMAT1 
NFYB TM4SF19 ADIRF USP6NL RWDD1 LIPJ 
TDP1 CA4 CMAS SEPHS1 SLC6A12 CDR2L 
TRIM69 SLBP TIGD2 BOK UBQLN1 SSR2 



	 172	

ALDH6A1 KLHDC1 INPP5F TMEM126B SLC5A2 MYO1C 
CCDC34 C14orf79 NUDT13 TRHR ELMOD2 C15orf60 
CCDC63 CCDC137 VNN2 DGCR2 PSPC1 C17orf58 
TEX29 AP3B1 RAD51AP2 CNIH4 ESCO1 DOK3 
CYP4Z1 NANOS1 MRPL1 TFDP3 CXorf61 TAOK1 
IMPG2 WDR83OS MS4A7 ZNF107 DCTN1 LAMP5 
SKIV2L GRM3 APPBP2 LRRN3 SERTM1 GPR174 
LINGO1 ELOVL2 SNX6 SKA1 DSC3 AIPL1 
SPTB HPS1 ZC2HC1B TMPRSS7 IFT81 HDAC5 
UCK1 AFP TACR2 GLRA3 GBX2 BLOC1S1 
DUS2 CHST8 ARHGEF3 RNF31 RNF138 SEC62 
PTBP1 TRDN VPS13A RAB1A HEBP2 ADSSL1 
SAMHD1 CDV3 ANGPTL5 C21orf33 TMEM168 CST9 
TCERG1 RBM12 CNNM2 LRRC16B MLXIPL ORM2 
FAM214A NCAN RAB21 APBA1 CCDC114 LRRC46 
NPAS1 SCN4B ARRB1 TRAF1 MYH3 AGFG1 
MOB3C GZF1 PDE6C RWDD4 KPRP MDM1 
C10orf111 ULBP1 CHAT MAP3K13 PF4V1 DLGAP2 
EFCAB4B TSPAN3 CKLF PROL1 KPNA4 CTSC 
TOR1AIP2 ARSH COMTD1 RABL2B AGBL4 AKAP1 
KLRG2 SLC45A3 C11orf91 MLC1 RAP1A OSBPL8 
SPTY2D1 SUGP2 GLYATL2 ABCB1 PAX4 FUT11 
CYFIP1 STARD10 DCAF10 TMEM26 VPS26A RPUSD3 
BTN3A1 C20orf78 PLXDC2 CCDC152 SAA2 CXCR2 
SNX17 C9orf117 ZNF93 VAX1 GJD2 CACNG4 
ECH1 WDR31 C11orf58 RNFT2 IFNGR1 EXD3 
KLF6 ZNF333 ARFGEF1 DENND2A FBRSL1 NREP 
ZSCAN32 FBXL2 TAS2R40 TCTA RAB33B IL23R 
TEAD1 FAM173A AFAP1L2 OXTR BLOC1S5 RSPH3 
ADO MYOM3 HMOX1 LRRC48 ANKS6 PDE6A 
NGLY1 CDC40 CA2 ATP11C DSN1 PLEKHS1 
HMSD C17orf102 SLC46A3 SPAG11B SFTPD CTNNA1 
A4GNT ILDR1 TMEM180 THAP6 BSND MPHOSPH9 
PXN PCDHA9 LHFPL4 PRR24 KIT OTUD6B 
SERPINB13 STK38L IL1A KCNJ11 FAM189B CAMK2G 
TBC1D24 SMYD4 C12orf79 PCGF6 ARHGAP11A VIM 
E2F8 COMP PRSS1 MTERFD1 TOR2A SKIDA1 
C5orf47 MARK4 NGFRAP1 IKBIP SLC24A5 UNC5B 
LRRC37B TMEM106A OPALIN HSDL2 NKX2-2 STOX1 
KHDC1L HSPB8 TTC18 OMG RPL21 GJD4 
BCL6B POLR2A HIST1H4D ARSK RALGAPB MYPN 
VSTM2B GGT7 LRIF1 KIF20B PKDCC TCEB3 
NEMF SPACA3 CD300LD APOL1 MEIS1 WDFY4 
NUDCD1 CLDN12 NRP1 SDF4 GIN1 PTPLA 
HSD3B2 TLR2 SOCS7 PCSK4 MUC1 RBP3 
CCNB2 MAVS PACSIN3 AMOTL1 NDFIP1 A1CF 
MAD1L1 TBCK LOXL4 ELK4 CD2AP FAM107B 
ZNF75A SLC25A41 LCOR ZBTB33 KPNA6 RAP2B 
ZMYM3 NCR2 TLX1 FAM177A1 OAZ3 PRSS27 
CCNL1 ZNF648 AMN HGSNAT PCK1 FAM13C 
CD274 LRRC8E FAM47A FOXRED2 YAP1 ARHGAP21 
TULP4 CADM2 PDS5A NET1 RDX MAGEH1 
UBQLN4 WEE2 PTER PIK3IP1 LARP1B C10orf11 
VN1R1 UROC1 TAGLN ZNF429 CD47 ANKRD30A 
MDM4 UCMA MNDA ZNF654 PHF19 PPP3CB 
PSMB9 ARL13A SLFN12L TFPI 37316 DTNA 
PPAPDC2 TRPV1 IRF1 STOM PLEKHA1 LRRC20 
HOXA4 ARHGEF26 RASSF7 SMIM19 SLC4A8 APPL1 
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ZZEF1 C20orf197 SCN5A UHRF2 ERLIN1 CTSD 
CHAF1A UGT2A1 CCNYL1 CPEB1 ZNF90 PHF2 
ZNF213 CLDN20 BRAF DYNC2LI1 PSKH1 NPM3 
KLK11 SHISA2 REG1A DOCK5 KERA ASB13 
CCDC37 CNN1 IRS1 GJB7 BCO2 ANK3 
N6AMT1 NAGLU CCL19 CCDC166 C1QTNF8 TMEM72 
DOK4 ERAP2 EVA1B MCCC2 ASTL PTF1A 
HDAC8 SH3GL2 SEC61B FLVCR2 NHLRC3 PARD3 
NSUN3 BRD9 ZBTB6 CCDC179 JAKMIP3 CENPH 
GK5 TMEM40 PSD CCDC121 SPOCK2 ZNF124 
SPIRE2 TJAP1 ZNF732 C6orf211 ZNF639 C12orf75 
TLCD2 MANEAL PAPOLG IDH3G PLEC POLR3G 
TOP1MT KRTDAP LIPA TCTN1 P2RY11 PPP1R42 
TANK APBB2 RPRD1A EPS8L1 APAF1 RLN2 
C16orf71 MST1 SNX10 NT5C3A DTWD1 SRCIN1 
ERBB3 UNC5C P2RY10 ATP5L2 CD302 C11orf30 
EBF2 FOXA1 SCD5 AGTR2 PAPSS2 ATXN2 
SMAD2 ZNF518B CRKL CHDC2 CDA KIF2A 
HPCA RNF7 PHLPP1 RBFOX3 KIF22 LRRC7 
NMT2 RTBDN SPTBN1 TGM3 TSPAN8 WFDC3 
KRT36 MPP2 LTBP3 SNCAIP STX16 GFI1B 
CACNA1E RAI14 TMEM189-UBE2V1 C8orf59 ZNF714 SLC30A10 
SOX8 CBLN3 GPR26 FRA10AC1 FN3K RABGAP1 
TMEM70 SLC7A9 TMPRSS11F GKN2 FCN2 CHRM1 
MPP6 ZNF461 FBXL15 HMGN5 C2orf15 HNRNPUL2 
SPATS2L BLMH C10orf54 UBAC2 SCLT1 MS4A1 
ZBED2 PLCH2 SPIN4 UFM1 FAM229B MGARP 
LYPD3 HYKK DNASE2B TAS2R13 RGS3 L1TD1 
TXNDC2 SLC41A1 IQCK ABLIM1 CENPU IL27 
KIF3A DYNLRB2 UGT2B15 ARNTL NTN3 BTG3 
NRD1 KLF2 HTRA1 MEA1 DPYSL4 BCAS1 
TSC22D2 EOMES RIPK3 SERPINB7 SYNE2 RAI2 
PTN ALDH7A1 CHRNA1 SPANXN2 IFIT5 SH3D19 
HYI ZFP36 NME9 GPR116 GLRA1 C4orf27 
GPR45 GDF15 CAPZA2 TMEM243 CHI3L1 FCRL5 
RTKN2 CYP27C1 RPH3AL CEPT1 FBXO32 ADC 
EXOSC1 QSOX1 RPTOR KIAA1107 SLC43A3 GPR150 
LRRC14 SRMS HAAO DLG5 AP4S1 DAOA 
ZNF766 DKK2 PCDHB13 MAN2A1 DNAJC6 KIAA0319L 
PLAC8L1 ACADSB L3MBTL2 ZBTB41 TMEM42 ZNF831 
RIT2 STC2 CDK15 ASAH1 EIF4E3 GRB14 
POLD2 ATP1B3 YME1L1 RELT CHRM4 BTF3L4 
SUV39H1 TFF2 ANTXRL MEOX2 PCDH18 CLUAP1 
TOMM20L GDF1 NOLC1 CUL7 ZNF69 MCM4 
C16orf93 ARIH2 CHST11 FAM168B DDAH1 URAD 
FAM162A HNRNPH3 CCDC13 IRGQ KIR2DL3 TMEFF1 
RNF6 PTPLB SERPINH1 TES FAM50B PAGE5 
PITRM1 CCDC148 CTNNA3 NUDT3 TSPAN9 IKZF2 
DNAJC7 CDH7 WBP1L HGF SPDYE4 C1orf87 
MAFA TIMM17B PGBD3 TMEM86B TNFRSF13B HAPLN3 
BCDIN3D C14orf166B TLE4 C11orf35 ZNF527 ASZ1 
PRDM15 DMXL1 TROAP GLUD2 C7orf65 ELF1 
FAP C7orf10 NFU1 PDZD11 ZFP14 UPB1 
PHF12 CKAP2 LAMC3 GCNT2 CMTM1 PDZD9 
TOMM70A DCN CCDC132 EBPL TRO MMGT1 
IDI2 FLOT2 PBX3 PDXDC1 ATP4B PPM1B 
GPR18 TNFAIP8 NARF NAA38 CYorf17 TRHDE 
SHC4 EPC2 MAN2B1 TRMT10B MXD1 SMARCA4 
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MVB12A TAF1D ZDHHC21 SDF2 ZNF26 DNAJC19 
TMCO6 DNAH10 EVI2A TMEM154 ALDH1A1 HLA-DQB2 
KLHDC7B SCMH1 ANO10 PHF21B DIRC1 PSAP 
CATSPER3 FAM50A SPRED2 C9orf72 ESAM METTL6 
CD86 FNDC8 C8orf88 LLPH PM20D2 CHPT1 
CENPP PGAM5 ARL6 TTPA CCL18 RBM18 
SLC2A13 C22orf23 ST8SIA6 ECHDC3 RNF39 KLHL24 
CDH15 CMPK2 ANXA11 CENPV KXD1 LY96 
ARHGAP18 CLGN GRM5 GPR123 ZNF836 SPINK1 
LINS SMIM20 OLAH IGSF11 SLC7A6 RPL37 
PLEKHN1 EMC8 FGF4 SLC24A2 C14orf178 ARHGEF12 
IPMK MXRA5 DNAJB12 MBNL1 PLK5 ASIC1 
ATP5F1 ZDHHC17 METAP1 TBX3 ZNF721 DGAT2L6 
FAM120AOS NRG4 NODAL ELMSAN1 CALR3 ICOS 
PCDHB2 ZNF329 WBP5 TIPRL DAD1 MROH2B 
TATDN1 THAP10 NXNL2 FAIM TMEM190 POU3F3 
DIABLO C8orf33 HP1BP3 TDRP SEMA7A UBA7 
COG5 PPM1L C1GALT1C1 C2orf47 PDPN TMEM230 
NDN CLRN3 SEMA4G NRBP1 TSEN15 MKRN1 
HIST1H1C ST3GAL6 SEC11A SAMD12 FAM169B ARHGAP19 
LCMT2 PRKCA DPY19L1 MAGEB17 AP3S1 GNAT1 
CMTM4 MBTPS2 FAM196A IQCB1 GUCY2D USP25 
RNF133 DKK4 C14orf39 PTRHD1 USP51 ZNF224 
TTC33 AHI1 PDLIM5 INSL6 HRH4 CLDN14 
CDK6 PMEPA1 ADAMTS14 CCBE1 TAS2R43 RFX1 
LRRC52 MAP1LC3A KLHL1 R3HCC1 SLC35A3 VCL 
RCOR1 PWWP2B MSMO1 C18orf32 PPP1R2 STAT5A 
MSL2 SLC41A2 RFPL3 WASF3 TDRD3 SEZ6 
TMEM140 HCLS1 SPINK9 IHH IRX2 IFLTD1 
KLHL40 COL9A2 C4A PLEKHF2 CLIC2 FXYD4 
IPO4 CAMK2D RHOA PLCL2 FCAMR SYT15 
SLC17A5 CCDC11 THAP2 SVIP TBL2 RRAGC 
SUCLA2 CDK14 SLC25A16 PPP1R3A TMEM194A USP43 
MX2 SPTSSB HIGD1A SSBP2 WISP3 FA2H 
C3orf14 CDKL5 CCR2 CD3G L3MBTL3 LAMTOR2 
TXLNG TRIML1 TMEM65 GRM8 XKR3 DUSP13 
PLA2G5 NEDD4L FOXC1 CORO2A GMDS VAMP4 
PCDHGC5 ZNF346 CEP104 FMNL3 C1orf54 ZNF33B 
DIRAS2 CD3D PRAM1 TCEB3B REG3A TP53AIP1 
FRS2 RBBP6 C7orf63 TCEAL4 SMARCD1 SORCS3 
ZNF674 KIAA0586 RAB18 AQP11 LRBA PPP1R14A 
STATH ZNF214 PALM2 ANGPTL3 SLC25A34 CYB5B 
HLX WNK3 FCER1A MGAT4A COPS2 PPP3R1 
ACSBG1 ZNF625 ZER1 HYAL3 GLI3 ZCCHC24 
MIS12 HOXB5 ACBD7 MEIG1 PLEKHO1 THEM5 
ITM2C IQCF5 CEP70 ZNF98 USB1 BET1 
C5orf15 HECTD1 CCDC169 CRISPLD1 OPN3 RPGRIP1L 
C21orf58 CDHR1 LYN ENHO FETUB TMEM139 
MINPP1 CPD SERPINA9 ZNF573 RAB28 ATP6V1C1 
GLOD4 LIPE COL13A1 BCL2A1 SCPEP1 ALPI 
MYOZ1 NSG1 NUDT7 NLRP3 AMZ2 SV2B 
ARL14 ZBTB7A CT45A5 C1orf173 PRDX4 PSMC5 
WDR49 SERTAD1 CAAP1 HEPH ABCC2 WWP1 
AGTRAP GRIN3B XPNPEP1 SSTR3 CSRP2BP THTPA 
LYSMD3 ASB8 FOXI2 HSBP1L1 CCNI GKAP1 
KLRC4 RTN2 CCDC136 C10orf88 ZNF432 FAM180A 
TICAM2 ADRA1B MTHFD1L MYOD1 DPP4 ASCL2 
ACTR2 FABP2 PPIC TLR7 CALB1 ADM5 
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KCNF1 NPY1R BBIP1 MFSD4 KDELR3 MUM1L1 
SCRIB LSM14B ODAM GNG8 TRIM8 MGAT5 
VSIG1 EIF4B HS3ST5 ZNF276 AJUBA ELP6 
C5orf48 ZMYND11 DPY19L4 TPP2 KRTAP12-3 SPN 
INS FZD8 HS3ST3A1 PTPN3 IFI35 PRX 
AGAP2 NPTX1 ABCB5 HIST1H3A FZD4 HSPG2 
GFPT2 LRAT ZNF83 C8orf47 ZNF567 C6orf25 
C9orf153 TSNAX ZNF503 MUSTN1 ARL4A SSBP4 
HYAL1 IL31RA DUSP5 SLC44A5 NDRG3 HGS 
DDX19B TRIML2 TCP10 EYA1 ZNF596 CARD10 
PHTF2 RBM11 SKAP2 CREB3L3 MMAB C10orf128 
ASB9 HPSE ZNF586 B3GNT3 DEFB132 GPRIN2 
ATRNL1 SPEN TMEM178B CRELD2 PSMG2 ZNF44 
SEC11C VSIG10L SLC45A2 ARHGEF19 SLC23A1 SCUBE3 
WSB1 AXIN2 ATG3 EAPP MMP20 FAM133A 
GUCA1C GRK5 PHYHIPL TEKT4 METTL23 RRAS2 
LCE3D DUS1L TMEM5 DIRAS1 GLYATL1 CCDC3 
SUB1 EXOC3L2 DRD4 FAM45A POPDC2 ISX 
DOT1L SERPINA11 BEND6 LRRC19 ECHDC2 HCN3 
ROR2 ELAVL2 MCMDC2 USP1 ACHE SCN2B 
NUBP1 CHMP4B ADAM18 BLNK PAPPA HMX2 
CCDC7 PAX2 TUBAL3 MARVELD2 PDGFC RHBDD1 
RASGEF1B SIGLEC5 SWT1 VEGFC TC2N SH3PXD2B 
CSGALNACT2 FAS DHFR RNF186 ZNF781 EPDR1 
DHTKD1 PCDHB10 ADI1 SPG21 CDR1 SELV 
FRMPD2 RFC1 GOT1 LIMD1 FCHO2 ARL14EP 
FRAT2 CNTD1 ZNF208 RCN1 C12orf43 LILRB1 
ZRANB1 RBMS3 DENR ARHGEF2 MTCH2 ZNF563 
AKIRIN1 ARHGAP5 NMU MLANA ALDH4A1 LIPK 
ZNF22 GCN1L1 KLRC3 RASGEF1A BBS5 ZFP42 
MMD ZNF419 C1orf229 AKR7A3 38961 STPG2 
SGCD PHOSPHO1 TXNL1 NFE2L3 TTPAL C1orf65 
PAGE1 RAP1GDS1 FAM21C TMEM68 PCBD2 LRTM1 
SLIT1 HLTF ADAM12 GPR160 MYL9 ITGAV 
ILK GXYLT1 HEG1 SPESP1 GIMAP4 CUTC 
VGLL4 LRPAP1 SLC39A11 AP5Z1 UGP2 NSD1 
FKBP8 NXNL1 KNCN APBB1IP RNLS MAPT 
FAM170B C12orf40 PTCHD3 CETN3 TTC12 CYB5A 
DNAJC1 CSRP2 PPAPDC1B ZNF280A NAB2 OCIAD1 
ZNF830 TAF15 TBR1 COMMD3 NUP35 BNIP2 
GALNT12 PCP2 MPC2 IL20RB CLSTN2 REP15 
CCDC127 PDCD2L C10orf129 METTL18 KRTAP26-1 SMAD1 
GSTO2 NFX1 FAM122A EIF6 SC5D IPCEF1 
LTBR KIAA1239 DLC1 C11orf16 PDZRN3 SLFN13 
ZNF239 ZNF557 SHPK SPINK7 PARD6B ZNF488 
PRF1 APCDD1L ARHGEF39 NECAB1 IRF7 HOXA7 
GALNTL6 NIT2 SNX16 GNPDA1 CSTF2 CST7 
PIP4K2A UTP11L TMEM260 FAM149B1 TPST2 ENTPD1 
VDAC2 CNP RPS27A ZC3H12B GALNT2   
MLLT6 CAP1 PDCL2 SEC31B SEC14L4   
B3GNT9 KRTAP17-1 ZBTB8A SPRR1A IDI1   
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Supplementary Figure 1. Mass spectrometry transcriptomic data reveals common 
differentially expressed proteins in all YCC6 ATRi resistant clones. A. Proteins 
downregulated in the resistant clones, compared with the YCC6 WT population. Red means 
high protein expression while blue means low protein expression. B. Proteins upregulated in 
the resistant clones, compared with the YCC6 WT population. Red means high protein 
expression while blue means low protein expression. Statistical significance means 
differences in protein expression levels with a FDR corrected Whelch’s test p-value <0.01 and 
Log2 fold change differences lower than -0.5 or larger than 0.5. All experiments were 
performed in two biological replicates.  
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Supplementary Figure 2. Mass spectrometry transcriptomic data reveals common 
differentially expressed proteins in H1/H2/H3/H4/H6 YCC6 ATRi resistant clones. A. Top 
100 proteins downregulated in the H1/H2/H3/H4/H6 resistant cluster, compared with the 
YCC6 WT population. Red means high protein expression while blue means low protein 
expression. B. Top 100 proteins upregulated in the H1/H2/H3/H4/H6 resistant cluster, 
compared with the YCC6 WT population. Red means high protein expression while blue 
means low protein expression. Statistical significance means differences in protein expression 
levels with a FDR corrected Whelch’s test p-value <0.01 and Log2 fold change differences 
lower than -0.5 or larger than 0.5. All experiments were performed in two biological replicates.  
 

YC
C

6 
R

1

YC
C

6 
R

2

H
1 

R
1

H
1 

R
2

H
2 

R
1

H
2 

R
2

H
3 

R
1

H
3 

R
2

H
4 

R
1

 H
4 

R
2

H
6 

R
1

H
6 

R
2

LGALS2
MUC13

VIL1
TSPAN8

ECM1
SELENBP1

KRT7
C6orf222

SMPD3
FBRSL1

SLC15A1
RAB3B
BCAS1
PDZK1

CYP2E1
PDZK1IP1

AKR7A3
MYRF

ADAMTSL4
GNAI1

LY75
METTL7B

KMO
HEPH

PLEKHS1
GDA
DDC

TMEM56
CA13

HNMT
CYSTM1

MSI2
DPP4
DAB2
UGT8
ACE2

UNC13D
HMHA1
AZGP1

CPS1
NOS1AP
CGREF1

PSG1
FAM107B
PIP4K2A

AGMAT
SPRR3

ANO1
MYLK

RNF128
SLC2A3

SCD5
CAMK1

ALDH1A3
ALDH3B1

CPPED1
HOGA1
ANXA8

ZBTB18
SLC7A7
GALNT5
CYP3A5

RAP1GAP2
HSD3B7

RNASET2
BDH2
VAT1

B4GALT4
TMEM45B

CPVL
POF1B

TSPAN3
FN3K

STK39
CLYBL

C1orf198
TENM3

FECH
D2HGDH

WBP2
SYNE3

PYROXD2
RAB7B

PRSS23
CRIP1

SORBS2
CAP2

SULT1A1
ISG20

LBH
TMCC3
NAGLU

EPS8
SLC9A1
HMGA2

PLS1
CDR2
PLIN2

PLA2G16
LIPA

-6

-4

-2

0

2

YC
C

6 
R

1

YC
C

6 
R

2

H
1 

R
1

H
1 

R
2

H
2 

R
1

H
2 

R
2

H
3 

R
1

H
3 

R
2

H
4 

R
1

 H
4 

R
2

H
6 

R
1

H
6 

R
2

DGKA
SERPINB5

PTRF
PNP

NCBP2-AS2
APOL2

PLXNA2
ANXA1

AIF1L
EPHX1

LURAP1L
IRS1

ARHGDIB
LDHA
TLR3

SLC39A14
LRP8

FMNL1
TPD52L1

IFIT1
HIP1

ARG2
C11orf73

S100A3
MSN

GLIPR1
SAMD9

TMEM45A
NAMPT

CAV1
IFIT3
IFI44

WARS
PLEKHF1

JAG2
LAMA3
IFITM3
HLA-B

SFN
TTC39B
PPDPF

VASN
IL1RN
CAST

SLC25A29
FKBP14

SERPINA1
PLCD1

IRF6
HLA-B
KRT5

SEC14L2
G6PD
CTSD

ACSL1
SAMHD1

PTMS
AGFG2

TGFBR1
CLIC3

FRAS1
GRHL1
VGLL1

TUBB2B
PGM2L1

DDX58
INHBA

AKR1B1
SLC25A18

FERMT2
CD82

MYO5A
SAMD9L
STK17A

CKB
ADIRF

PROM1
HERC6

BST2
CASP1

PDLIM7
RSAD2

TMEM38A
TRIM29

SPRR1B
EPHB3

SLC22A4
CALB2

HK1
CD44

MAP1B
ASS1

RCSD1
AQP3

CLCA2
NCAM1
KRT6A

CD70
MT1F
MT2A

-4

-2

0

2

A B



	 178	

 

 
 
 
Supplementary Figure 3. Mass spectrometry transcriptomic data reveals common 
differentially expressed proteins in H5/M1 YCC6 ATRi resistant clones.  
A. Proteins up and down regulated in the H5/M1 resistant cluster, compared with the YCC6 
WT population. Red means high protein expression while blue means low protein expression. 
No protein interactions were detected. Statistical significance means differences in protein 
expression levels with a FDR corrected Whelch’s test p-value <0.05 and Log2 fold change 
differences lower than -0.5 or larger than 0.5. All experiments were performed in two biological 
replicates. No protein interactions were seen. 
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Resumen en castellano 
 
Introducción y objetivos de esta tesis 

El cáncer gástrico (CG) es el quinto cáncer más frecuente a escala mundial y 

constituye la tercera causa de muertes ocasionadas por cáncer, produciendo 

alrededor de 800.000 muertes al año. La etiología del CG es compleja, resultando en 

una combinación de factores genéticos, epigenéticos y ambientales entre los cuales 

se encuentran la obesidad, la infección por la bacteria Helicobacter pylori o el virus 

Epstein-Barr, así como diversos factores dietarios, consumo de alcohol y tabaco. 

A pesar de los avances prometedores en el diagnóstico y tratamiento del CG, la 

supervivencia global de los pacientes diagnosticados con este tipo de neoplasias 

sigue siendo extremamente pobre. El tratamiento actual se plantea como una 

estrategia multimodal en la que se incluyen la cirugía, la quimioterapia y la 

radioterapia, sin tener en cuenta las características moleculares de cada tumor. Con 

ello se ha conseguido mejorar el control local del tumor, así como disminuir la tasa de 

diseminación o metástasis, pero, el pronóstico de la enfermedad avanzada sigue 

siendo poco esperanzador. La biología molecular del CG, particularmente, el 

conocimiento de las vías de señalización implicadas en su patogénesis, y su 

contribución al desarrollo de nuevas modalidades de terapias dirigidas se halla en una 

etapa temprana, en comparación a otros tipos de neoplasias. 

Alrededor del 95% de los CGs diagnosticados son de tipo adenocarcinoma, los cuales 

se han clasificado, tradicionalmente, en CG difuso e intestinal, siguiendo las pautas 

clínico-patológicas propuestas por Lauren en el año 1965. Al igual que la clasificación 

de Lauren, otras categorizaciones del CG basadas en las características histológicas 

del tumor han sido utilizadas, las cuales han demostrado muy poco uso pronóstico o 

clínico hasta la fecha.  

No fue hasta hace unos pocos años, cuando se comenzaron a publicar las primeras 

clasificaciones moleculares en CG, como la del “Cancer Genome Atlas Research”, la 

cual clasifica el CG en cuatro subgrupos: el CG con inestabilidad cromosómica (CIN, 

50%), con inestabilidad de microsatélites (MSI, 22%), genómicamente estable (20%) 

y con infección del virus Epstein-Barr (EVB, 9%). Esta nueva clasificación, junto con 
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otras que se han publicado a posteriori, ofrecen una visión más amplia del GC, 

teniendo en cuenta nuevas características genéticas y moleculares que permitirán el 

descubrimiento de nuevas dianas accionables, que puedan mejorar el pronóstico y 

supervivencia de los pacientes con CG.   

El gen ARID1A forma parte del complejo SWI/SNF, encargado de remodelar la 

cromatina para el control de la expresión génica mediante la remodelación de los 

nucleosomas en los promotores génicos. Dado a su papel regulador de la expresión 

génica, las mutaciones en los diversos componentes del complejo SWI/SNF, 

incluyendo las que ocurren en ARID1A, causan la desregulación de diversas rutas 

metabólicas, muchas de las cuales se han relacionado con el desarrollo del cáncer. 

De todas las mutaciones descritas en las distintas subunidades del complejo, las 

ocurrentes en ARID1A son las más comunes, detectadas en alrededor del 20% de 

los cánceres, y en el 20% de los pacientes con CG.  

Las mutaciones en ARID1A suelen resultar en la pérdida de expresión de la proteína, 

y se asocian con el subgrupo de CG con inestabilidad de microsatélites, mutaciones 

activadoras de la ruta PI3K, así como con un genotipo wild-type (WT) para la proteína 

p53. Diversas funciones, aparte de la regulación de la expresión génica han sido 

atribuidas a ARID1A, incluyendo el mantenimiento de la integridad genética, mediante 

su interacción con diversas proteínas relacionadas con procesos de reparación del 

DNA. Así, ARID1A ha sido descrita como una proteína clave en el proceso de 

decatenación del DNA, facilitando su reparación tras una ruptura de doble cadena 

mediante su interacción con la Topoisomerasa IIA y ATR. En relación con estas 

observaciones, se ha descrito que el silenciamiento simultaneo de otras proteínas 

clave en este proceso de reparación, junto con el de ARID1A conduce a la muerte 

celular por medio de un fenómeno denominado “letalidad sintética”. La letalidad 

sintética, es descrita como un escenario en que la pérdida no simultánea de dos 

genes permite la viabilidad celular, pero la ausencia simultánea de ambos genes 

causa la muerte de la célula. Así, estudios previos han demostrado que genes 

relacionados con la reparación del DNA, como es el caso de EZH2, ARID1B, PARP y 

ATR, son letalmente sintéticos con ARID1A, y por tanto causan la muerte de las 

células cancerígenas deficientes en ARID1A cuando son inhibidos. Estos estudios 

han sido realizados principalmente, por medio del uso de modelos cáncer de ovario, 

en el cual las mutaciones en ARID1A son altamente frecuentes (alrededor del 40% 
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de los casos en el caso de los carcinomas de células claras de ovario). Los fármacos 

que tienen como diana algunos de estos genes, como los inhibidores de PARP están 

siendo actualmente utilizados en la práctica clínica para tratar a los pacientes con 

cáncer de mama, ovario o próstata que presentan mutaciones en los genes BRCA1 y 

BRCA2, los cuales juegan un papel central en las rutas de reparación del DNA. 

Asimismo, los inhibidores de ATR (iATR) están comenzando a ser probados en 

diversos ensayos clínicos, algunos de los cuales pretenden tener cuenta, 

retrospectivamente, la presencia de mutaciones en ARID1A y otros genes que 

puedan conferir sensibilidad a dichos inhibidores.  

Aunque los iATR se han convertido en terapias anticancerígenas prometedoras, los 

mecanismos de resistencia farmacológica son muchas veces inevitables, lo cual 

enfatiza la importancia de identificar biomarcadores de respuesta y resistencia a 

dichos fármacos, con el objetivo de encontrar combinaciones terapéuticas que 

puedan proporcionar una respuesta clínica más eficaz y a largo plazo. 

Es por todo esto, que este proyecto se centra en el estudio de ARID1A como un 

biomarcador potencial de la sensibilidad a los inhibidores de proteínas implicadas en 

las rutas de reparación del daño al DNA en CG, así como en la búsqueda de 

biomarcadores de resistencia a los iATR, lo cual nos permitirá diseñar nuevas 

combinaciones de fármacos que eviten la aparición de mecanismos de resistencia a 

dichos inhibidores en los pacientes con CG. 

 

Por ello, los objetivos del presente proyecto son: 

1. Probar los fármacos inhibidores de proteínas letalmente sintéticas con ARID1A en 

un panel de células tumorales y en modelos isogénicos de cáncer gástrico. 

2. Validar las relaciones de letalidad sintética descritas in vitro por medio de modelos 

murinos de cáncer gástrico o PDXs (patient-derived Xenografts).  

3. Identificar mecanismos de resistencia a los inhibidores de ATR en cáncer gástrico 

por medio del uso de tecnologías de cribado genético y creación de modelos de 

resistencia. 
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Metodología principal utilizada en esta tesis 

Con el ánimo de alcanzar dichos objetivos, se han utilizado múltiples tecnologías 

comunes en biología celular y genética funcional, siguiendo los protocolos 

previamente descritos en la literatura (Western Blot, PCR, cultivos celulares, 

extracción de DNA, RNA y proteínas). A continuación, se describen los materiales y 

modelos utilizados, así como la metodología más novedosa utilizada en esta tesis, 

que se basa en la creación de modelos isogénicos y en los experimentos de cribado 

genético de alto rendimiento. 

Modelos usados en esta tesis 

Los ensayos in vitro se han realizado mediante el uso de un panel de siete líneas 

celulares de CG (SNU 1, SNU 5, SNU 484, SNU 638, NCI N87, AGS y YCC6), así 

como la línea celular de cáncer colorrectal isogénica para el gen ARID1A, HCT 116. 

Todos los modelos han sido caracterizados por medio de la secuenciación del exoma, 

así como por PCR cuantitativa y western blot de los genes y proteínas de interés. 

Adicionalmente, las líneas celulares han sido caracterizadas para su estatus de 

inestabilidad de microsatélites. Para los ensayos in vivo se han utilizado cuatro 

modelos murinos derivados de tumores gástricos humanos (PDX) deficientes para el 

gen ARID1A, y tres modelos ARID1A WT. Dichos modelos han sido caracterizados 

por medio de la secuenciación del exoma (DNA), secuenciación del transcriptoma 

(RNAseq), inmunohistoquimica para la expresión de ARID1A (IHQ), y determinación 

de la inestabilidad de microsatélites (MSI). Los experimentos con ratones han sido 

realizados por la empresa CrownBio.  

 

Experimentos de respuesta a fármacos 

La evaluación de la respuesta de los modelos celulares a los inhibidores probados se 

ha realizado mediante el uso de los siguientes inhibidores: para iATR, los fármacos 

VX970, AZD6738 y M4344; para PARP, olaparib y talazoparib; para la ruta PI3K, 

MK2206 y BKM120; para HDAC6, ACY1215; y para EZH2, GSK126. Así, la eficacia 

de dichos inhibidores en los diversos modelos utilizados se ha evaluado por medio de 

experimentos de proliferación celular, en los que se ha medido la capacidad 

proliferativa de las células tras exponerlas a diversas dosis del inhibidor a lo largo de 

5 días, en placas de 384 pocillos. El número de células vivas tras la exposición al 

fármaco utilizado se ha determinado por medio del uso del reactivo cell titre glo, que 



	 183	

emite una señal fluorescente solamente en el caso de que la célula esté viva.  

 

Experimentos de cribado genético (CRISPR screens): 

En el caso de los experimentos de cribado genético se ha utilizado la técnica 

CRISPR/Cas9, que se basa en la habilidad de la endonucleasa Cas9 de cortar el DNA 

en una secuencia determinada, dirigida por un RNA guía (gRNA). Así, una vez el 

enzima Cas9 es dirigido a la secuencia diana, ésta es capaz de cortar ambas hebras 

del DNA, causando mutaciones que pueden dar lugar a la pérdida de función del gen 

escogido. En esta tesis, se ha utilizado dicha técnica, no solo para editar el genoma 

de una manera dirigida (creación de modelos isogénicos para ARID1A y otros genes 

de interés), sino también para la realización de cribados genómicos de alto 

rendimiento y la identificación de dianas moleculares de relaciones de letalidad 

sintética con los iATR (“CRISPR screens”). En este caso, y con el objetivo de 

encontrar biomarcadores de resistencia a los iATR, se han llevado a cabo dos tipos 

de cribado mediante CRISPR. El primero de ellos, denominado CRISPRn screen, se 

ha realizado a escala de todo el genoma (GW CRISPR screen, con gRNAs para 

alrededor de unos 20,000 genes), y consiste en la simultánea producción de 

mutaciones de pérdida de función del gen a lo largo de todo el genoma en una 

población de células, en la que cada célula es mutada en sólo uno de los genes. Ésta 

población es pues sometida a altas dosis del fármaco iATR (VX970 en éste caso), 

bajo las cuales, solamente las células con mutaciones en genes que confieren una 

ventaja selectiva son capaces de sobrevivir y proliferar. La secuenciación del DNA 

extraído de las células resistentes (Next-Generation Sequencing) y el correcto análisis 

de los resultados, permite conocer los gRNAs que se encuentran sobre-

representados en dicha población resistente y, por tanto, los genes que, al ser 

mutados confieren resistencia a los iATR. El otro tipo de CRISPR screen utilizado es 

el llamado CRISPRx, en el cual se utiliza un enzima Cas9 sin capacidad 

endonucleasa, que retiene la habilidad de unión al DNA en una secuencia específica, 

por medio de la dirección del gRNA. Es entonces, cuando la adición de enzimas 

editoras del DNA (desaminasas), capaces de causar sustituciones de bases en la 

secuencia diana (por medio de su unión con la Cas9), son transfectadas al interior de 

la célula. Así, se consiguen realizar sustituciones de aminoácidos en la zona 

circundante a la secuencia complementaria al gRNA, sin realizar roturas de la doble 

hélice de DNA. Esta variante del CRISPR, permite evaluar los efectos que 
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determinadas mutaciones puntuales tienen sobre la funcionalidad de la proteína 

diana. En esta tesis, esta tecnología ha sido utilizada para realizar substituciones de 

aminoácidos del gen ATR a lo largo de toda su secuencia, ya que éste es un gen 

esencial en la célula, y las mutaciones troncales (que eliminan completamente ATR 

de la célula) no pueden ser evaluadas de una manera funcional.  

  

Silenciamiento de genes 

Los experimentos de silenciamiento de genes han sido llevados a cabo por medio de 

la transfección inversa de las células con RNAs silenciadores (siRNAs). 

  

Creación de modelos isogénicos de resistencia a los iATR 

La creación de las líneas celulares resistentes a los iATR se ha realizado por medio 

de la exposición progresiva a dosis ascendientes del fármaco VX970 en un periodo 

de 4-6 meses. Así, se han generado los clones H1, H2, H3, H4, H5, H6 y M1, que han 

sido sometidos a la secuenciación del proteoma por medio de técnicas de 

espectrometría de masas.  

  

Ciclo celular 

La medición del ciclo celular ha sido llevada a cabo por medio de técnicas de 

citometría de flujo, tras la tinción de las células con ioduro de propidio (marcador de 

la cantidad de DNA en cada fase del ciclo) y EdU (marcador de la síntesis del DNA). 

  

Análisis estadístico 

Todos los análisis estadísticos han sido llevados a cabo por medio del 

programa GraphPad Prism, excepto el análisis de los resultados de los CRISPR 

screens, en cuyo caso se ha utilizado el programa R. 

  

Resultados principales de esta tesis 

  

1. ARID1A y ATR son sintéticamente letales in vitro 

En la primera parte de la tesis, se ha llevado a cabo la caracterización de un panel de 

líneas celulares de CG, y se ha probado su sensibilidad a diversos inhibidores que 

han sido previamente definidos como efectivos en modelos deficientes en ARID1A, 

en otros tipos de cáncer (inhibidores de ATR, PARP, PI3K, HDAC6 y EZH2). De todos 
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los inhibidores probados, se ha observado que las líneas celulares con mutaciones 

en ARID1A son especialmente sensibles a los iATR, tanto en el caso del panel de 

líneas celulares de CG, así como en el modelo isogénico HCT 116. Esto se ha 

observado fundamentalmente en los casos en los que las líneas celulares 

presentaban niveles nulos de expresión de ARID1A. Con el objetivo de validar estas 

observaciones, se han realizado tanto experimentos de silenciamiento de ARID1A en 

líneas celulares resistentes para los iATR por medio del uso de siRNAs, así como la 

generación de una línea celular de CG isogénica para ARID1A. En ambos casos, el 

silenciamiento del gen o la represión de la expresión de la proteína ARID1A ha 

causado un incremento en la sensibilidad de las células cancerígenas a los iATR, 

demostrando que ARID1A y ATR son sintéticamente letales en las líneas celulares 

de CG. 

  

2. ARID1A y ATR son sintéticamente letales in vivo 

Para validar las observaciones descritas en las líneas celulares, se han utilizado siete 

modelos murinos derivados de tumores gástricos humanos, en los cuales se 

ha probado la respuesta al iATR M4344 en modelos deficientes para ARID1A, así 

como en modelos WT. Consecuentemente con lo que hemos observado in vitro, los 

ratones con tumores deficientes para ARID1A han demostrado ser exquisitamente 

sensibles a los iATR, comparados con el grupo control. En el caso de dos de los tres 

modelos de PDX ARID1A WT, se ha observado que el tratamiento con M4333 es 

capaz de reducir la proliferación del tumor, a una escala mucho menor que en los 

casos deficientes para ARID1A. Sorprendentemente, uno de los modelos ARID1A WT 

ha resultado ser altamente sensible a M4344, indicando que ARID1A no es el único 

determinante de sensibilidad a iATR en CG. En este último caso, y con el objetivo de 

determinar las causas de la sensibilidad detectada en este modelo, se han recogido 

los tumores resultantes al final del experimento, para su caracterización molecular y 

la determinación de nuevos biomarcadores de sensibilidad a los iATR. 

Adicionalmente, se ha probado el tratamiento combinatorio de M4344 con un inhibidor 

de PARP (talazoparib), con el objetivo de observar si la combinación de ambos 

fármacos es capaz de mejorar la respuesta en los modelos murinos. En este caso, 

hemos observado como la combinación de M4344 y talazoparib tiene un impacto 

incluso mayor en el tamaño del tumor en varios de los modelos usados, pero esto 

parece ser independiente del estatus de expresión de ARID1A en dichos modelos.  
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3. Determinación de biomarcadores de resistencia a los inhibidores de ATR 

Aunque los iATR prometen ser un tratamiento efectivo para los cánceres con defectos 

genéticos en las proteínas reparadoras del DNA, los pacientes que reciben 

tratamientos en monoterapia corren el riesgo de sufrir resistencias terapéuticas a 

largo plazo. Es por ello por lo que las combinaciones de fármacos suelen ser más 

efectivas a la hora de detener el desarrollo de las células tumorales de una forma 

efectiva. Para determinar los fármacos que pueden potenciar el efecto de los iATR y 

evitar la aparición de resistencias, es importante detectar los genes implicados en el 

desarrollo de dichas resistencias. Para ello, hemos seguido tres aproximaciones: 

CRISPR screens de todo el genoma “genome-wide (GW) CRISPR screens”, 

generación de modelos isogénicos resistentes a los iATR y CRISPRx screens.  

  

3.1. GW CRISPR screens: 

La realización de un GW CRISPR screen en la línea de CG YCC6, nos ha permitido 

detectar una larga lista de biomarcadores potenciales de la resistencia a los iATR, por 

medio de la selección de las células resistentes a altas dosis del fármaco, tras producir 

en ellas mutaciones individuales a lo largo de todo el genoma (una mutación por 

célula).  

Al probar una lista de alrededor de 20.000 genes, un análisis riguroso y meticuloso 

de los datos debe ser llevado a cabo para poder descartar los resultados verdaderos 

de los falsos positivos y falsos negativos. Adicionalmente, es necesaria la realización 

de diversos experimentos de validación de los descubrimientos por medio del uso de 

formatos y modelos ortogonales. Con este objetivo, se ha realizado un 

subsecuente mini-CRISPR screen, en el que se ha probado un número reducido de 

genes seleccionados, escogiendo los que resultaron tener una mayor significatividad 

estadística en el estudio inicial. De esta forma, hemos podido validar el papel de los 

genes CDC25B, HUWE1, HNRNPF CARD10, SMG8, SMG9, IRF9, STAT1 y STAT2 

en la resistencia a los iATR. Además, se han creado modelos isogénicos de algunos 

de los genes validados, con el objetivo de llevar a cabo experimentos funcionales que 

permitan determinar el mecanismo por el cual estos genes causan resistencia a 

los iATR. 
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3.2. Los modelos isogénicos resistentes a los iATR han permitido definir una lista de 

determinantes de resistencia terapéutica 

Con el objetivo de obtener los modelos relevantes, que nos permitan determinar 

nuevos biomarcadores de resistencia a los iATR, se han generado diversos clones 

de células resistentes a los iATR a partir de la línea celular de CG, YCC6. Estos clones 

han sido caracterizados para la expresión del proteoma (por medio de la medición de 

la expresión más de 9.000 proteínas), a través de técnicas de espectrometría de 

masas. Así, se han podido evaluar los cambios significativos de expresión de 

proteínas, potencialmente ligados a la aparición de la resistencia terapéutica. 

Sorprendentemente, varios de los clones resistentes presentan un cambio en la 

morfología celular, pasando de ser células originalmente epiteliales, a células con una 

morfología más mesenquimal, indicativa de un elevado potencial metastático de las 

células cancerígenas. Esto se ha correlacionado con el hecho de que diversas 

proteínas, implicadas en la adhesión celular, adhesión a la matriz extracelular y en la 

definición del citoesqueleto se encuentran desreguladas en dichos clones resistentes. 

Entre estas proteínas se encuentran las codificadas por los genes CDH1, n-CAM, 

KRT7, KRT19, SMAD4, PIK3CB, SPTBN1, ITGB4, PARD6B, ROCK2, RHOB, PAK1, 

ECM1, MLLT4, EZR, VIM, ARHGAP21 y CD2AP.  

Aparte de la desregulación de las proteínas implicadas en la determinación de la 

morfología celular, otras proteínas, también potencialmente relevantes en los 

fenómenos de resistencia a los iATR han sido detectadas. Éstas incluyen proteínas 

ampliamente relacionadas con cáncer como son MET, HRAS, PIK3CB, NF1, TYK2 y 

STAT5B.  

Llamativamente, la proteína SMG1 se encuentra sobreexpresada en los clones 

resistentes, cuando son comparados con las células parentales. SMG1 es una 

proteína quinasa central en el mantenimiento de la estabilidad genómica de la célula, 

por medio de la degradación de los RNAs mensajeros defectuosos. SMG1 es 

negativamente regulada por el heterodímero formado por las proteínas SMG8 y 

SMG9, las cuales han sido definidas en la sección anterior como causantes 

de resistencia a los iATR. Es por esto por lo que, tras validar que la proteína SMG1 

esta sobreexpresada en los clones resistentes por medio de western blot, hemos 

realizado experimentos de silenciamiento de SMG1 utilizando siRNAs. Estos 

experimentos han demostrado que al silenciar SMG1, las células resistentes vuelven 

a ser sensibles a los iATR. Esto nos indica el interés de probar la combinación de 
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los iATR con los inhibidores de SMG1 en ensayos clínicos, con el objetivo de evitar 

resistencias a los iATR en CG.  

  

3.3. Las mutaciones en el dominio FAT de ATR causan resistencia a los iATR 

(CRIPRx screens) 

Finalmente, con el mismo objetivo de determinar los procesos genéticos por los 

cuales las células cancerígenas pueden resultar resistentes a los iATR, hemos 

modificado genéticamente la línea celular YCC6, causando mutaciones a lo largo de 

toda la secuencia del gen ATR. Esto nos ha permitido determinar qué zonas de la 

proteína son relevantes a la hora causar resistencias a su inhibición en nuestros 

modelos. Tras el evento de mutagénesis, se han seleccionado las células resistentes 

por medio del tratamiento con altas dosis de los iATR y secuenciado el gen ATR, para 

determinar cuáles son las mutaciones causales de dicha resistencia. Así, hemos 

detectado que las mutaciones en el dominio FAT de ATR son capaces de transformar 

las células cancerígenas, previamente sensibles, en células resistentes a los iATR. 

Con el objetivo de validar estas observaciones, se pretende crear modelos isogénicos 

mutados para esta zona del gen ATR, en los que podamos determinar si las causas 

de esta resistencia son estructurales (debidas al bloqueo de la unión del inhibidor a 

la molécula de ATR) o funcionales (por la función anormal de ATR en la célula). 

  

Implicaciones biológicas e importancia de los resultados presentados en esta 
tesis  

En este estudio, se ha demostrado por primera vez que ARID1A es un candidato 

valioso como biomarcador de sensibilidad a los iATR en CG, tanto por medio de 

modelos celulares (en el panel de células y en modelos isogénicos de CG) como en 

modelos animales (PDXs). Debido al hecho de que ARID1A se encuentra mutado en 

alrededor del 20% de los CGs, se plantea el interés del diseño de ensayos clínicos 

que permitan probar los iATR en pacientes con CG deficiente para ARID1A. Esto 

podría mejorar el pronóstico y la supervivencia de dichos pacientes. Asimismo, se 

abre la puerta a la valoración del uso de dichos inhibidores en cánceres provenientes 

de otras histologías, ya que las mutaciones en ARID1A son comunes en muchos otros 

tipos de cánceres.  
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Por otro lado, en esta tesis se han identificado y validado una lista de biomarcadores 

de resistencia a ATRi, lo cual abre la posibilidad a probar nuevas combinaciones de 

fármacos que puedan incrementar el éxito del uso de los iATR por medio del 

detenimiento de la aparición de metástasis, la mejora de la supervivencia y calidad 

de vida de los pacientes con CG.  

  

Finalmente, se resalta la importancia de evaluar a los pacientes seleccionados para 

su tratamiento con los iATR en ensayos clínicos, para las mutaciones en el 

gen ATR, ya que estas pueden evitar una respuesta farmacológica completa al 

tratamiento, por medio del bloqueo de la unión del inhibidor a la proteína o, por medio 

de la alteración de la función de ATR en la maquinaria celular. De esta forma, será 

posible mejorar la selección del inhibidor a utilizar y la prevención de posibles 

resistencias al tratamiento. 

  

Conclusiones  

Como parte de las conclusiones de la tesis presentada, se ha: 

  

1. Demostrado que la inhibición de ATR causa letalidad sintética en los cánceres 

gástricos con deficiencias en el gen ARID1A. Esto se ha evaluado por medio del uso 

de un panel de líneas celulares, modelos isogénicos celulares y modelos murinos 

derivados de tumores humanos. 

  

2. Propuesto que los genes HUWE1, HNRNPF, IRF9, SMG8, SMG9, CARD10, 

CDC25B y STAT2, deben ser evaluados como potenciales biomarcadores de la 

resistencia a los inhibidores de ATR en pacientes con cáncer gástrico.  

  

3. Descrito que la sobreexpresión del gen SMG1, consecuencia de la pérdida de 

expresión de sus reguladores SMG8 y SMG9 conduce a la resistencia a los 

inhibidores de ATR en cáncer gástrico. 

  

4. Identificado una lista de potenciales biomarcadores de resistencia a los inhibidores 

de ATR en cáncer gástrico por el medio de la creación de modelos isogénicos 

terapéuticamente resistentes.  

  



	 190	

5. Descrito que mutaciones en el dominio FAT del gen ATR causan resistencia a los 

inhibidores de ATR y por tanto debe considerarse su evaluación a la hora de someter 

a los pacientes de cáncer gástrico a dicho tratamiento en los ensayos clínicos. 

  



	

 

 
 
  



	

 


