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Animal movement is fundamental for ecosystem functioning and species survival, yet
the effects of the anthropogenic footprint on animal movements have not been estimated
across species. Using a unique GPS-tracking database of 803 individuals across
57 species, we found that movements of mammals in areas with a comparatively high
human footprint were on average one-half to one-third the extent of their movements in
areas with a low human footprint. We attribute this reduction to behavioral changes of
individual animals and to the exclusion of species with long-range movements from areas
with higher human impact. Global loss of vagility alters a key ecological trait of animals
that affects not only population persistence but also ecosystem processes such as
predator-prey interactions, nutrient cycling, and disease transmission.

W
ith approximately 50 to 70% of Earth’s
land surface currently modified for hu-
man activities (1), patterns of biodiver-
sity and ecosystem functions worldwide
are changing (2). The expanding foot-

print of human activities not only is causing the
loss of habitat and biodiversity, but is also affect-
ing how animals move through fragmented and
disturbed habitats. The extent to which animal
movements are affected by anthropogenic effects
on the structure and composition of landscapes
and resource changes has been explored only in

local geographic regions or within single species.
Such studies typically report decreasing animal
movements—for example, as a result of habitat
fragmentation, barrier effects, or resource changes
(3–6)—with only a few studies reporting longer
movements as a result of habitat loss or altered
migration routes (7, 8).
We conducted a global comparative study of

how the human footprint affects movements of
terrestrial nonvolant mammals, using Global Po-
sitioning System (GPS) location data of 803 in-
dividuals from 57 mammal species (Fig. 1 and

table S2). Mean species mass ranged from 0.49
to 3940 kg and included herbivores, carnivores,
and omnivores (n = 28, 11, and 18 species, respec-
tively). For each individual, we annotated loca-
tions with the Human Footprint Index (HFI), an
index with a global extent that combines multiple
proxies of human influence: the extent of built
environments, crop land, pasture land, human
population density, nighttime lights, railways,
roads, and navigable waterways (9) (see supple-
mentary materials for details). The HFI ranges
from 0 (natural environments: e.g., the Brazilian
Pantanal) to 50 (high-density built environments:
e.g., New York City).
In addition to the human footprint, we included

other covariates that are known to influence
mammalianmovements. Because individualsmay
need to cover a larger area to gather sufficient
resources, mammals generally move farther in
environments with lower productivity (10). To
capture this effect, we annotated locations with
theNormalizedDifferenceVegetation Index (NDVI),
a well-established, satellite-derived measure of
resource abundance for both herbivores and car-
nivores (11). Because an allometric scaling rela-
tionship shows that animals of greater body size
usually move farther (12), and because diet may
influence movements as a result of differences in
foraging costs and availability of resource types
(13, 14), we annotated the database with species
averages for body size and dietary guild (i.e., car-
nivore, herbivore, or omnivore).
We then calculated displacements as the dis-

tance between subsequent GPS locations of each
individual at nine time scales (15) ranging from
1 hour to 10 days. For each individual at each
time scale, we calculated the 0.5 and 0.95 quan-
tile of displacement. The combination of different
time scales and quantile allowed us to examine
the effect of the human footprint on both the
median (0.5 quantile) and long-distance (0.95 quan-
tile) movements for within-day movements (e.g.,
1-hour time scale) up to longer time displace-
ments of more than 1 week (e.g., 10-day time
scale). We used linearmixed-effectsmodels that,
in addition to all covariates (i.e., NDVI, bodymass,
diet), also accounted for taxonomy and spatial
autocorrelation (see supplementarymaterials for
details).
We found strong negative effects of the human

footprint on median and long-distance displace-
ments of terrestrial mammals (Fig. 2, Fig. 3A, and
table S3). Displacements of individuals (across
species) living in areas of high footprint (HFI =
36) were shorter than displacements of individ-
uals living in areas of low footprint (HFI = 0) by as
much as a factor of 3. For example, median dis-
placements for carnivores over 10 days were 3.3 ±
1.4 km (SE) in areas of high footprint versus
6.9 ± 1.3 km in areas of low footprint (Fig. 2A
and table S3). Likewise, the maximum displace-
ment distances for carnivores at the 10-day scale
averaged 6.6 ± 1.4 km in areas of high footprint
versus 21.5 ± 1.4 km in areas of low footprint
(Fig. 2B and table S3). The effect was signifi-
cant on all temporal scales with 8 hours or more
between locations.
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The effect was not significant at shorter time
scales (Fig. 3A, 1 to 4 hours), which suggests that
the human footprint affects ranging behavior
and area use over longer time scales, rather than
altering individual travel speeds (i.e., individ-
uals may travel at the same speed if measured
across short time intervals, but have more tor-
tuous movements in areas of higher human
footprint and thus remain in the same locale if
displacement is measured across longer time
intervals).
Reduction in movement may be attributable

to (i) an individual-behavioral effect, where in-
dividuals alter their movements relative to the
human footprint, or (ii) a species occurrence ef-
fect, where certain species that exhibit long-range

movement simply do not occur in areas of high
human footprint. To disentangle these two effects,
we ran additional models where we separated the
HFI into two components: (i) the individual-
behavioral effect represented by the individual
variability of HFI relative to the species mean
(i.e., the individual HFI minus the species mean
HFI), and (ii) the species occurrence effect as the
meanHFI for each species. Results from the two-
component model indicate behavioral as well as
species effects. We found a significant behavioral
effect on median displacements and on long-
distance displacements (0.95 quantile) at most
time scales (from 8 hours to 10 days) (fig. S2A
and table S4). The species occurrence effect was
significant only over longer time scales (128- and

256-hour periods, or 5 and 10 days, respectively)
(fig. S2B and table S4). However, we note that the
estimate of the species occurrence effect is con-
servative because our model incorporated taxon-
omy as a random effect. Some variability in the
datamay have been accounted for by the species-
level random effect rather than the species-level
HFI (see table S3).
In addition to the human footprint effect, body

mass, dietary guild, and resource availability were
also related to movement distances. First, as ex-
pected from allometric scaling and established
relationships of body size with home range size
(14) and migration distance (16), larger species
traveled farther than smaller species (Fig. 3C
and tables S3 andS4). Second,we foundanegative

Tucker et al., Science 359, 466–469 (2018) 26 January 2018 2 of 4

1Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, 60325 Frankfurt (Main), Germany. 2Department of Biological Sciences, Goethe
University, 60438 Frankfurt (Main), Germany. 3Department of Biology, University of Maryland, College Park, MD 20742, USA. 4SESYNC, University of Maryland, Annapolis, MD 21401,
USA. 5Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada. 6Norwegian Institute for Nature Research, P.O. Box 5685 Torgard, NO-7485
Trondheim, Norway. 7Departments of Biology and Evolutionary Anthropology, Duke University, Durham, NC 27708, USA. 8Hirola Conservation Programme, Garissa, Kenya. 9Department
of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå 90183, Sweden. 10Institute for Water and Wetland Research, Department of Animal
Ecology and Physiology, Radboud University, 6500GL Nijmegen, Netherlands. 11Ecology and Conservation Graduate Program, Federal University of Mato Grosso do Sul, Campo Grande,
MS, Brazil. 12Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada. 13Structure and Motion Laboratory, Royal Veterinary College, University of London,
London NW1 0TU, UK. 14Wildlife Conservation Society, Mongolia Program, Ulaanbaatar, Mongolia. 15Carnivore Ecology Laboratory, Forest and Wildlife Research Center, Mississippi State
University, Box 9690, Mississippi State, MS, USA. 16Animal Biology Postgraduate Program, São Paulo State University, São José do Rio Preto, SP 15054-000, Brazil. 17Michigan
Department of Natural Resources, 1990 U.S. 41 South, Marquette, MI 49855, USA. 18Department of Anthropology, University of California, Davis, CA 95616, USA. 19Department of
Bioscience, Aarhus University, 4000 Roskilde, Denmark. 20Max Planck Institute for Ornithology, Vogelwarte Radolfzell, D-78315 Radolfzell, Germany. 21Wildlife Conservation Society,
Bronx, NY 10460, USA. 22University of Potsdam, Plant Ecology and Nature Conservation, 14476 Potsdam, Germany. 23Department of Biology, Middle Tennessee State University,
Murfreesboro, TN 37132, USA. 24Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, Gauteng, South Africa. 25Department of
Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all’Adige (TN), Italy. 26Department of Organismic and Evolutionary
Biology, Harvard University, Cambridge, MA 02138, USA. 27Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, USA. 28Departamento de Fitotecnia,
Universidade de Évora, Pólo da Mitra, 7002-554 Évora, Portugal. 29ICAAM–Institute of Mediterranean Agricultural and Environmental Sciences, University of Évora, Évora, Portugal.
30Centre d’Ecologie Fonctionnelle et Evolutive UMR 5175, CNRS–Université de Montpellier–Université Paul-Valéry Montpellier–EPHE, 34293 Montpellier Cedex 5, France. 31Phillip Island
Nature Parks, Victoria, Australia. 32School of Biological Sciences, Monash University, Melbourne, Australia. 33Department of Civil, Environmental and Geodetic Engineering, Ohio State
University, Columbus, OH 43210, USA. 34Department of Biology, Fiji National University, P.O. Box 5529, Natabua, Lautoka, Fiji Islands. 35U.S. Geological Survey, Massachusetts
Cooperative Fish and Wildlife Research Unit, University of Massachusetts, Amherst, MA 01003, USA. 36U.S. Geological Survey, Pennsylvania Cooperative Fish and Wildlife Research Unit,
Pennsylvania State University, University Park, PA 16802, USA. 37Save the Elephants, P.O. Box 54667, Nairobi 00200, Kenya. 38Department of Zoology, University of Oxford, Oxford OX1
3PS, UK. 39Giraffe Conservation Foundation, P.O. Box 86099, Eros, Namibia. 40German Primate Center, Behavioral Ecology and Sociobiology Unit, 37077 Göttingen, Germany.
41Restoration Ecology, Department of Ecology and Ecosystem Management, Technische Universität München, 85354 Freising, Germany. 42Cary Institute of Ecosystem Studies,
Millbrook, NY 12545, USA. 43Irving K. Barber School of Arts and Sciences, Unit 2: Biology, University of British Columbia, Okanagan Campus, Kelowna, BC V1V 1V7, Canada.
44Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland. 45Department of Zoology and Physiology, University of Wyoming,
Laramie, WY 82071, USA. 46School of Environmental and Forest Sciences, University of Washington, Seattle, WA 98195, USA. 47Wildlife Biology Program, Department of Ecosystem and
Conservation Sciences, College of Forestry and Conservation, University of Montana, Missoula, MT 59812, USA. 48Bavarian Forest National Park, Department of Conservation and
Research, 94481 Grafenau, Germany. 49Chair of Wildlife Ecology and Management, Albert Ludwigs University of Freiburg, 79106 Freiburg, Germany. 50CEFS, Université de Toulouse,
INRA, Castanet Tolosan, France. 51Animal Behavior Graduate Group, University of California, Davis, CA 95616, USA. 52Bionet Natuuronderzoek, 6171EL Stein, Netherlands.
53Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, A-1160 Vienna, Austria. 54School of Biological, Earth and Environmental Sciences, University College
Cork, Cork, Ireland. 55U.S. Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA.
56North Carolina Museum of Natural Sciences, Raleigh, NC 27601, USA. 57Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695,
USA. 58Department of Natural Resource Management, Karatina University, P.O. Box 1957-10101, Karatina, Kenya. 59Department of Psychology, University of Lethbridge, Lethbridge,
Alberta T1K 3M4, Canada. 60Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA. 61Cavanilles Institute of Biodiversity and Evolutionary Biology,
Terrestrial Vertebrates Group, University of Valencia, E-46980 Paterna, Valencia, Spain. 62Department of Anthropology, Stony Brook University, Stony Brook, NY 11794, USA.
63International Union for Conservation of Nature (IUCN) Species Survival Commission (SSC) Tapir Specialist Group (TSG), Rua Licuala, 622, Damha 1, Campo Grande, CEP: 79046-150,
Mato Grosso do Sul, Brazil. 64IPÊ (Instituto de Pesquisas Ecológicas; Institute for Ecological Research), Caixa Postal 47, Nazaré Paulista, CEP: 12960-000, São Paulo, Brazil.
65Vertebrates Zoology Research Group, Departamento de Ciencias Ambientales y Recursos Naturales, University of Alicante, Alicante, Spain. 66Embrapa Pantanal, Corumbá,
MS 79320-900, Brazil. 67National Research Center for Carnivores Conservation, Chico Mendes Institute for the Conservation of Biodiversity, Atibaia-SP 12952-011, Brazil. 68Institute of
Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK. 69Center for Genomics and Systems Biology, Department of Biology, New York University,
New York, NY 10003, USA. 70Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA. 71Centre for Ecological and Evolutionary Synthesis,
Department of Biosciences, University of Oslo, Blindern, NO-0316 Oslo, Norway. 72Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman
Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel. 73Norwegian Institute for Nature Research, NO-0349 Oslo, Norway. 74Department of Mathematical
Sciences and Centre for Biodiversity Dynamics, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway. 75Department of Ecology, Federal University of Mato
Grosso do Sul, Campo Grande, MS 79070-900, Brazil. 76Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA. 77Consorzio Parco Nazionale dello
Stelvio, Bormio (Sondrio), Italy. 78Univ. Grenoble Alpes, Irstea, UR LESSEM, BP 76, 38402 St-Martin-d’Hères, France. 79University of Bayreuth, BayCEER, 95447 Bayreuth, Germany.
80Nationalpark Schwarzwald, 77889 Seebach, Germany. 81Evolution and Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South
Wales, Sydney, NSW 2052, Australia. 82Pennsylvania Game Commission, Harrisburg, PA 17110, USA. 83Department of Ecology and Evolutionary Biology, Princeton University, Princeton,
NJ 08544, USA. 84Department of Biology, University of Konstanz, 78467 Konstanz, Germany. 85Directorate of Studies and Expertise (DRE), Office National de la Chasse et de la Faune
Sauvage, Montfort, 01330 Birieux, France. 86Department of Evolutionary and Environmental Biology, University of Haifa, 3498838 Haifa, Israel. 87Western Ecosystems Technology Inc.,
Laramie, WY 82070, USA. 88Arctic Research Centre, Aarhus University, 8000 Aarhus C, Denmark. 89Institute of Nature Conservation Polish Academy of Sciences, 31-120 Krakow,
Poland. 90REN Biodiversity Chair, CIBIO/InBIO Associate Laboratory, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal. 91Centre for Applied Ecology “Prof.
Baeta Neves”/InBIO Associate Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal. 92Centre for Ecology, Evolution and
Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal. 93Department of Environmental Science and Policy, University of
California, Davis, CA, USA. 94Jackson Hole Conservation Alliance, Jackson, WY 83001, USA. 95Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine
Hannover-Foundation, 30173 Hannover, Germany. 96Center for Integrated Spatial Research, Environmental Studies Department, University of California, Santa Cruz, CA 95060, USA.
97Department of Zoology and Entomology, University of Pretoria, Hatfield 0028, South Africa. 98Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort
Collins, CO 80523, USA. 99Tatra National Park, 34-500 Zakopane, Poland.
*Corresponding author. Email: tucker.marlee@gmail.com (M.A.T.); thomas.mueller@senckenberg.de (T.M.)

RESEARCH | REPORT
on M

ay 15, 2019
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


Tucker et al., Science 359, 466–469 (2018) 26 January 2018 3 of 4

La
tit

ud
e

Longitude

50

Human Footprint Index

−20

0

20

40

60

−100 −50 0 50 100 150

−40

Displacement (km)

0.1 10 100403001 020

Image © 2016 DigitalGlobe Image LandsatGoogle™ earth
Image © 2016 Google
© 2009 GeoBasis-DE/BKG

Fig. 1. Locations from the GPS tracking database and the Human
Footprint Index. (A) GPS relocations of 803 individuals across
57 species plotted on the global map of the Human Footprint Index (HFI)
spanning from 0 (low; yellow) to 50 (high; red). (B) Examples of
landscapes under HFI = 2 (the Pantanal, Brazil), HFI = 20 (Bernese
Alps, Switzerland), HFI = 30 (Freising, Germany), and HFI = 42 (Albany,
New York). (C) Species averages of 10-day long-distance displacement
(0.95 quantile of individual displacements). Species (from top to
bottom): Mongolian wild ass (Equus hemionus hemionus), Mongolian

gazelle (Procapra gutturosa), giraffe (Giraffa camelopardalis), wolverine
(Gulo gulo), muskox (Ovibos moschatus), African forest elephant
(Loxodonta africana cyclotis), African buffalo (Syncerus caffer), wolf
(Canis lupus), brown bear (Ursus arctos), maned wolf (Chrysocyon
brachyurus), coyote (Canis latrans), leopard (Panthera pardus),
wildcat (Felis silvestris), yellow baboon (Papio cynocephalus), tapir
(Tapirus terrestris), roe deer (Capreolus capreolus), wild boar
(Sus scrofa), European hare (Lepus europaeus), brushtail possum
(Trichosurus vulpecula).

Fig. 2. Mammalian displacement in relation to the Human Footprint Index. (A) Median displacements; (B) long-distance (0.95 quantile)
displacements. Both displacements decline with increasing HFI at the 10-day scale (n = 48 species and 624 individuals). Plots include a
smoothing line from a locally weighted polynomial regression. An HFI value of 0 indicates areas of low human footprint; a value of 40 represents
areas of high human footprint.
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relationship between resource availability and
displacement distance, such that movements
were on average shorter in environments with
higher resources (Fig. 3B and tables S3 and S4).
These results are consistent with reports of larger
home range size (17) and longer migration dis-
tance (18) in mammals living in resource-poor
environments. Finally, our analyses showed that
carnivores traveled on average farther per unit
time than herbivores and omnivores (tables S3
and S4). These results concur with prior un-
derstanding that carnivores have larger home
range sizes (14) because they need to findmobile
prey and compensate for energy conversion loss
through the food web. For all of these variables,
effects were significant across time scales longer
than 8 hours for both median and long-distance
displacements.
The reduction of mammalian movements in

areas of high HFI likely stems from two nonex-
clusive mechanisms: (i) movement barriers such
as habitat change and fragmentation (19, 20) and
(ii) reduced movement requirements attribut-
able to enhanced resources [e.g., crops, supple-
mental feeding, andwater sources (5, 21)]. Studies
have shown both mechanisms at work with vary-
ing responses across populations or species (see
table S5 for examples). In some cases, they act
together on single individuals or populations.
For example, red deer in Slovenia have smaller
home ranges because of the enhancement of re-
sources via supplemental feeding and the distur-
bance and fragmentation caused by the presence
of roads (22).
Although these mechanisms can have differ-

ential effects on population densities [i.e., in-
creases under supplementation (23) and decreases
under fragmentation (24)], the consequences of
reduced vagility affect ecosystems regardless of
the underlying mechanisms and go far beyond
the focal individuals themselves. Animal move-

ments are essential for ecosystem functioning
because they act asmobile links (25) andmediate
key processes such as seed dispersal, food web
dynamics (including herbivory and predator-prey
interactions), and metapopulation and disease
dynamics (26). Single-species or single-site studies
have shown the severe effects of reduced vagility
on these processes (27, 28). The global nature of
reduced vagility across mammalian species that
we demonstrate here suggests consequences for
ecosystem functioning worldwide. Future land-
scapemanagement should strive tomaintain land-
scape permeability by including animalmovement
as a key conservationmetric. Ultimately, because
of the critical role of animalmovement in human/
wildlife coexistence (29) and disease spread (30),
the effects of reduced vagility may go beyond
ecosystem functioning to directly affect human
well-being.
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Fig. 3. Model coefficients (with confidence intervals) of linear
mixed-effects models predicting mammalian displacements.
Coefficient values are shown for (A) Human Footprint Index (HFI),
(B) Normalized Difference Vegetation Index (NDVI), and (C) body mass.

Models were run for the median (blue) and long-distance (0.95 quantile;
red) displacements of each individual calculated across different
time scales. Where the error bars cross the horizontal line, the effect
is not significant. See table S3 for details.
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altering ecological interactions.
affecting the species themselves, such changes could have wider effects by limiting the movement of nutrients and
were shorter in areas with high human impact, likely owing to changed behaviors and physical limitations. Besides 

 examined GPS locations for more than 50 species. In general, animal movementset al.have been restricted. Tucker 
substantially to ecological processes. As humans have increasingly altered natural habitats, natural animal movements 

Until the past century or so, the movement of wild animals was relatively unrestricted, and their travels contributed
Restrictions on roaming
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