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General introduction

1.1 Tuberculosis

Tuberculosis (TB) is a highly contagious, airborne-transmitted disease that

mainly affects the respiratory tract, although it can affect other body parts.

According to the World Health Organization (WHO), TB is the leading cause of

death by an infectious agent, ranking above AIDS/HIV. In 2017, the WHO

estimated that 1.6 million people died due to the disease, and that 10 million

were infected. The impact of the disease is geographically heterogeneous, with

8 countries (India, China, Indonesia, the Philippines, Pakistan, Nigeria,

Bangladesh and South Africa) accounting for one third of the new annual cases

[1] (Figure 1.1).

In developed countries, the incidence of the disease decreased

substantially since the second half of the XXth century. As a consequence, the

budget devoted to TB research diminished notably during this period. However,

during the 80’s and 90’s, the incidence of TB in developed countries rose again,

following the global expansion of AIDS. This sudden emergence of the disease

was not predicted by public health offices. Thus, billions of dollars from

emergency funds were used to control TB outbreaks particularly in large urban

settings [2]. In addition, the low investment in basic research and development

of specific treatments meant that global TB control laid on diagnostic tests,

vaccines and treatments developed more than 50 years ago. The WHO stated
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General introduction

Figure 1.1: Global estimated incidence of TB in 2017. Source: WHO [1]

that the majority of TB fatalities could be prevented with an early diagnostic and

an appropriate treatment. However, decades-old diagnostics and treatments

are still used in many countries in which TB is one of the most important health

issues [1].

Classically, the disease was clinically classified in two main forms: latent

TB, which is asymptomatic and non-transmissible, and active TB, which is

transmissible and can be found in two main presentations: pulmonary and

extrapulmonary [3, 4]. However, recent studies suggest that classifying the

clinical forms of the disease as binary (either latent or active TB) is an

oversimplification of the real clinical scenarios [3, 5]. In reality, there is a whole

spectrum of infection outcomes, with active TB showing different combinations

of symptoms ranging from mild to severe in distinct patients. In addition,

patients without TB symptoms could represent cases of latent TB or subclinical

TB. Extrapulmonary tuberculosis accounted for 14% of the incident cases

notified in 2017 [1] and its incidence is even higher among HIV-positive

patients. In extrapulmonary tuberculosis, the disease disseminates in the

patient’s body, affecting many organs. In pulmonary tuberculosis, which is the

most common clinical form of the disease, the disease affects the lungs. The
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Figure 1.2: Estimated incidence of MDR and rifampicin resistance cases in 2017,
for countries with at least 1,000 incident cases. Source:WHO [1]

symptoms include coughing with sputum and blood, chest pain, fever, night

sweats and weight loss [6, 1].

The standard treatment for patients with active TB consists of a minimum of

6 months of therapy with a combination of four antibiotic drugs (rifampicin,

isoniazid, pyrazinamide and ethambutol) [6]. Although this treatment has been

used for decades, there is a current increase in TB-cases that do not respond

to it. Cases not responding to rifampicin and isoniazid, the two most powerful

anti-TB drugs, are classified as multidrug-resistant tuberculosis (MDR-TB)

(Figure 1.2). In these cases, treatment relies on the use of second-line drugs

(more expensive, toxic and less effective) and could last up to 2 years. More

extreme are the extensively drug-resistance cases (XDR-TB) which, in addition

to isoniazid and rifampicin, are resistant to several second-line anti-TB drugs.

In those cases, treatment is personalized depending on the clinical history of

the patient. Options in these cases include mixtures of more than 4 drugs and

sometimes are limited to experimental therapies [7].

Latent TB is typically diagnosed by means of immunodiagnostic tests, that
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General introduction

report if the patient has been in contact with the infectious agent. These tests

are applied to people identified as being at risk to develop active disease

(previous contact with active TB patients, immunocompromised status,...) [8].

Further assays, such as smear microscopy from sputums (mainly in high

burden countries) and chest X-rays, are performed if these tests are positive to

confirm active TB cases [9]. At the end, the gold standard to confirm active TB

is a positive culture of the bacilli isolated from the patient, typically from sputum

[10]. These detection methodologies face several problems. First,

immunodiagnostic tests could be positive in response to past exposures to the

pathological agent, thus not reflecting recent contact. Second, sputum-based

tests are not recommended in at least one third of the global cases because of

several factors (extra-pulmonary infections, inability to obtain sputum from

children, low bacillar concentrations,...) [9]. Third, the sputum culture could take

around three weeks to show positive results. In addition, in 2017 44% of the

global pulmonary infections were not bacteriologically confirmed by current

methods [1]. So, the global diagnostic capacity is suboptimal. Currently, efforts

are invested to solve the low sensitivity of classical methods [11], the long time

needed to confirm a positive TB case [12] and the technical requirements that

are not available in many of the high burden regions [13].

In 2014, the WHO started a strategy aimed at ending the TB world epidemic

by 2035. Specifically, the strategy aspire to achieve a 95% reduction of mortality

and 90% reduction of incidence by 2035 in comparison with 2015 [14]. This

strategy is based on three main pillars: improving the protocols of prevention

and patient attention, reinforcing the political actions and supporting systems,

and intensifying research and innovation.

Despite the WHO goal, the global TB incidence is declining at a rate of only

2% per year. To meet the ENDTB objectives of WHO by 2025, we need to

increase this rate to 4%-5% by 2020 and by 10% by 2020 to 2025 [15]. New

diagnostic methods, strategies to interrupt transmission and more effective

treatments are needed to fulfil this objective [16]. And all these improvements

have a strong need of basic research.
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The Mycobacterium tuberculosis complex

1.2 The Mycobacterium tuberculosis complex

The main causative agent of TB in humans is a slow-growing mycobacteria

called Mycobacterium tuberculosis [17]. In Africa, TB is also caused by a

closely related bacterial lineage classically called Mycobacterium africanum

[18]. In addition, several mammalian species are prone to be infected with

mycobacteria that cause animal tuberculosis disease [19]. These mycobacteria

are named in reference to their preferred host such as M. bovis (cows), M.

caprae (goats), M. microti (rodents), M. pinnipedii (seals), M. origys (oryxes),

M. suricattae (meerkats) and M. mungi (mongooses). All these mycobacteria

that cause tuberculosis in animals together with M. africanum and M.

tuberculosis form a monophyletic group called Mycobacterium tuberculosis

complex (MTBC) [20].

The Mycobacterium genus comprises a relatively large number of species

(∼190) [21]. Most of them are free living organisms found in a wide range of

environments, in contrast with M. tuberculosis, which is an obligate pathogen

that is not able to survive outside the host environment [22]. Despite their

saprophytic lifestyle, an important number of these mycobacterial species are

capable of causing disease in humans (i.e. M. kansasii, M. avium, and M.

marinum, among others). The increasing public availability of mycobacterial

genomes has allowed us to draw a precise map of the phylogenetic

relationships of this group, avoiding the limitations of classifications based on

16S rRNA reconstructions and phenotypes [21]. Average Nucleotide Identities

(ANI) analyses have shown that some members previously considered as

independent taxa could represent, in reality, different variants of the same

species [23](understanding species as groups of individuals with genomic ANI

values of 95% or higher [24]). On the light of the new genomic information

available, Gupta et al., [25] have proposed recently a new classification of the

Mycobacterium genus by introducing a division of the group in 5 different

genera.

Phylogenomic analysis places the MTBC near other slow-growers that are
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Figure 1.3: The Mycobacterium tuberculosis complex phylogeny. A) Proposed
evolutionary pathway derived from the evaluation of the Regions of Difference between
distinct MTBC members by Brosch et al. B) The MTBC phylogeny derived using complete
genome sequences. C) Global distribution of the human-affecting clades of the MTBC.
Source: Brosch et al.[26] 2002 and Gagneux 2018 [20]

associated with human diseases such as M. leprae and M. ulcerans. The

closest known phylogenetic species to MTBC is Mycobacterium canettii.

Despite its historical classification as a different species, the ANI between the
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M. canettii group and M. tuberculosis is about 98% (range 97.71%-99.30%)

([27], our own data). Thus, the current consensus is to include M. canettii as

part of the MTBC. However, in contrast with other members of the MTBC, M.

canettii has a low epidemiological incidence, with less than 100 cases reported

since its first isolation in 1969 [27] and it seems to have an environmental

lifestyle [28]. In consequence, in the present thesis we will exclude M. canettii

when we refer to the MTBC throughout the text. The MTBC (excluding M.

canettii) comprises a group of bacteria with genome sequences having an ANI

greater than 99% and sharing a single common ancestor. So, again, although

the different members of the MTBC have distinct taxonomic names, all of them

belong to the same genomic species [29]. Nevertheless, to facilitate readability,

in the present thesis we will refer to the different strains of the MTBC by their

classical names (i.e., M. tuberculosis, M. africanum, M. bovis, etc.)

The MTBC has a clonal population structure, consisting of seven human-

adapted bacterial lineages (L1-7) and several animal-adapted strains (Figure

1.3). Focusing in the human-adapted strains, L1,L2,L3,L4 and L7 belong to

M. tuberculosis sensu stricto whereas L5 and L6 belong to M. africanum [20].

The genetic diversity found among these lineages results from large genetic

deletions and point mutations [30]. Classically, some of these large deleted

regions (known as RD from Regions of Difference) have been used for strain

typing and lineage identification as they are accurate phylogenetic markers with

virtually absence of homoplasy [31, 26] (Figure 1.3A). The rationale behind

this is that because of the MTBC clonal structure, some parts of the genome

involved in past deletion events were never recovered by the descendants of the

ancestral strain. The loss of these genomic regions had important implications in

terms of bacterial pathogenicity [26]. In fact, the history of the BCG vaccine is a

clear example of such a process [32, 33] where cumulative deleted regions have

led to different immunogenic potential. Nowadays, the use of complete genome

sequences has allowed us to drawn a more precise picture of the phylogenetic

relationships of the MTBC (Figure 1.3B).

The different lineages are heterogeneously distributed around the globe
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(Figure 1.3C). L1 is mainly found is southeast Africa, southeast Asia and India;

L2 is widely distributed in east Asia; L3 is present in east Africa and India; L4 is

the most widely distributed, affecting the whole Euro-American territory, with

spots in Africa and Asia; L5 and L6 are restricted to specific regions of west

Africa and L7 is only present in Ethiopia [30, 34, 35]. Regarding the

animal-adapted clade, our knowledge is much more limited. The phylogenetic

analyses shown that the animal-adapted strains and L6 share a common

ancestor [26, 19]. However, little is known about its ecology and global

distribution. In addition, the number of complete genomes available for these

MTBC members is lower than those of the human-adapted strains. For these

reasons, in the present thesis we have focused our analyses in the

human-adapted strains of the MTBC.

Population genetics studies have shown that there has been parallel

evolution between humans and the MTBC. The bacteria radiated in the distinct

lineages and occupied different regions following human population changes

and migrations, from ancient ages until present [36, 37]. Although the seven

main lineages are deeply rooted in the phylogeny, L2, L3 and L4 are also

known as ‘modern lineages’ because they diverged recently in comparison to

the others, whereas L1, L5, L6 and L7 are called ‘ancient lineages’ [26]. It is

also known that the maximum genetic distance between strains of different

lineages is around 2,500 Single Nucleotide Polymorphisms (SNPs)(after

elimination of hypervariable regions which are not usually considered in whole

genome comparisons) [38, 39].

It has been hypothesized that modern lineages have evolved in scenarios

with a high density of hosts. In these scenarios, the variants having lower

latency time could be selected naturally. In contrast, ancient lineages appeared

in low density populations and, as a result, they may have been selected for

larger latency periods [40]. In 2011, Portevin et al. [41] selected 26 strains

representing the global MTBC diversity and infected human macrophages and

dendritic cells from different donors to evaluate the innate immune response to

the different bacteria. They found that strains from modern lineages induced a
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lower innate inflammatory response than ancient lineages, and these

differences appeared even when infecting different donors. Another work, from

de Jong et al. [42], was based on the monitorization of a cohort of patients and

their relatives in The Gambia for two years. The authors found that patients

infected with strains belonging to modern lineages had 3 times more chances

to develop active TB than those infected with M. africanum. These studies, and

some others [30, 38, 43, 44], show that the MTBC genetic diversity has

epidemiological implications and genetic differences among lineages lead to

differences in the immune response and disease progression in the host.

Besides the differences in virulence and latency time shown above, the

MTBC genetic diversity seems to have implications in disease transmission too.

For example, animal-adapted strains have undergone an evolutionary pathway

different to the human-adapted strains [26]. The genetic differences between

both type of strains, are enough to limit the transmission capacity of

animal-adapted strains among humans [45].

As stated above, past studies have shown that there was likely co-evolution

between the different MTBC lineages and human populations. A study by

Gagneux et al. with epidemiological data of the city of San Francisco [30]

showed that the MTBC lineages have host preferences related to their

phylogeographical origin. For example, L1 is mainly found in southeast Asia,

southeast Africa and India, whereas L2 is especially abundant in east Asia.

Gagneux et al. showed that, in a mixed population with individuals from

different geographical origins, L1 strains transmitted significantly better among

individuals from southeast Asia (mainly The Philippines and Vietnam) whereas

L2 strains transmitted better among individuals from east Asia (China). This

fact was further confirmed by Reed et al., [46], in a study following a similar

approach in the city of Montreal. Although social factors could be responsible of

such a pattern, this trend was not observed in HIV patients [47]. In

consequence, the interaction of the host-immune system and the pathogen

seems to be the cause of this preference for specific hosts. Moreover, a recent

study by Stucki et al. [34] tried to identify the factors that lead to this
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host-pathogen association by focusing on the differential distribution and

adaptation to local human populations of L4 strains. L4 is the most widely

distributed lineage and comprises 10 well-defined sublineages. Among these

lineages, there is a subset that are globally distributed and showed a high

transmission rate among different host populations. These lineages were called

‘generalists’ due to their cosmopolitan distribution. On the other hand, the so

called ‘specialists’, are a set of L4 clades that are geographically restricted and

show a high association with local human populations. These phenotypic

differences seem to depend on genetic variants found in some specific antigens

recognized by the host immune-system. Due to these variants, the ‘generalists’

clades are able to respond to a broader range of human leukocyte antigens,

thus being capable of interacting with a larger diversity of hosts.

So, the distinct MTBC members show differences in their pathogenic

characteristics linked to their genetic background. However, identifying specific

genetic variants is much more challenging. As a result a global solution to the

TB problem will probably need to incorporate the bacilli genetic diversity as a

variable.

1.3 Mycobacterium tuberculosis, a professional
pathogen

The MTBC shares several microbiological characteristics with other members of

the Mycobacterium genus: (i) it possesses mycolic acids in its cell wall, a type

of fatty acids that contain from 60 to 90 carbon atoms, (ii) it is acid fast [22],

(iii) not only the MTBC, but also all the Mycobacterium species have a unique

cell wall that confers them a high robustness to several stress conditions. In

general, they are able to tolerate acidic environments, desiccation, heat, host-

immune mechanisms and have a basal resistance to antibiotics [22, 48, 49].

These singular cell wall is also responsible for many virulence characteristics

[50].

The infectious process starts when the bacterium gets into the host through
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the respiratory tract. Once in the lung, it is phagocytosed by macrophages,

triggering a slow inflammatory response, and forming a structure known as

granuloma in distal sites of the lungs [51]. The bacteria can be dormant and

survive inside the granuloma during months, years or even decades in an

asymptomatic disease state called latency [52]. The transition from latency to

an active disease state depends on biological features of the bacteria [53, 42],

the host [54, 55], environmental factors [56, 57, 58] and the interactions among

all of them [59].

At a certain moment, the bacterium starts to replicate inside the granuloma.

For reasons not completely known, the bacterial load becomes so high that the

granuloma cannot contain the infection, and the bacilli are released [6]. At this

stage, the bacterial infection can provoke tissue necrosis and lung cavitation

[60]. Due to these lung lesions, the host starts to cough, spreading the bacteria

and potentially infecting new individuals [9]. In some cases, the bacteria can

enter the bloodstream and disseminate through the body, causing

extrapulmonary tuberculosis.

Early experiments with animal models suggested that the minimum

infectious unit for MTBC is one single cell [61, 62]. This means that one single

individual that accesses the respiratory track of the host is capable of starting

an infectious process which could ultimately lead to TB disease. Although the

bacterium is initially phagocytosed by the macrophages, in many cases it is

able to obstruct the macrophages defenses not only to survive but also to

replicate. First, the bacterium is able to resist the acidic conditions of the

phagosome [48]. Second, the pathogen secretes a set of virulence factors that

interfere with the phagosome maturation process (Figure 1.4) [63]. Third, the

bacillus is able to inhibit the JNK, p38 and NF-κB pathways which are important

mediators of anti-TB immunity [63].

In these conditions, the pathogen can either stop its proliferation (and

become dormant) or start to replicate inside the macrophage. This ability to

hijack the host-immune system to serve the bacterial purposes is one of the

reasons why M. tuberculosis is considered the world’s most successful human
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Figure 1.4: Schematic view of the macrophage infection by the pathogen. Several
bacterial factors have the ability to alter the phagosome maturation as well as the
inflammatory response. Source: Stutz et al. 2017 [63]

pathogen.

In summary, TB disease and infection are multifactorial processes. We are

far from knowing all the details of these processes, as they involve different

biological characteristics of the host, the pathogen and the environment. From

our point of view, a crucial step to fight against TB is to fully understand the

biological characteristics of M. tuberculosis, at all its different levels. So, in the

present thesis, we have tried to decipher genomic determinants of the bacteria

that are relevant for its capacity as a professional pathogen.
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1.4 Genomic features of the MTBC

No plasmids have been reported in the MTBC so all the genetic information of

the bacteria is contained in a single, circular chromosome. Its genome has a

high GC content (65.6%) and a length of 4,411,532 bp [64]. The dN/dS value is

a measure of the functional conservation of a gene. It represents the ratio of

nonsynonymous to synonymous substitutions weighted by the number of

nonsynonymous and synonymous sites in the genome. When a gene is under

the action of the adaptive or diversifying selection, we expect that

nonsynonymous mutations accumulate at a higher rate than synonymous ones

(dN/dS > 1). In the MTBC genome we found the opposite situation, with mean

dN/dS around 0.5 for essential genes and around 0.66 for non-essential genes

[65]. Despite the low genetic diversity, the accumulation of nonsynonymous

mutations is higher than in other organisms, likely reflecting strong genetic drift

and recent emergence of the clade and leading to functional diversity [40]. As

stated above, the maximum genetic distance between any strain of the MTBC

is around 2,500 variants (excluding repetitive regions) [38, 39]. Apart from

single variants, the RD cause that different strains vary slightly in its gene

content.

Some of the genomic characteristics of the MTBC have been used for

phylogenetic typing. The RDs commented above, for example, are useful to

determine the lineage or the major clade of an MTBC strain. But in order get

more detail into the strain identification we need more information. For

example, the MTBC has a region of Clustered Regulatory Short Palindromic

Repeats (CRISPR) or also known as spoligotypes. In this region, there are a

series of direct repeats alternated with short unique regions called spacers.

More concretely, there has been reported 43 unique spacers between these

repetitive regions. As not all of these spacers are present in all the MTBC

strains, their pattern of presence/absence have been used for identifying the

phylogenetic group of the strain (Figure 1.5) [31]. Regarding epidemiology,

there are some genomic regions called Mycobacterial Interspersed Repetitive
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Units (MIRU) that are enriched for Variable Number Tandem Repeats (VNTR).

The number of VNTR inside each MIRU is variable across strains, so they have

been used classically to identify closely related strains. For years, this

MIRU-VNTR approach was the gold standard for molecular epidemiological

studies.

Figure 1.5: Schematic view of the spoligotype and MIRU-VNTR loci in the MTBC.
The spoligotype and MIRU-VNTR patterns vary broadly across strains. Source: Comas
et al. 2009 [31]

Despite their utility in achieving a fast result and their simplicity, these

techniques have a low sensitivity and specificity, discouraging their use for

population-based studies or in complex epidemiological situations [66, 67].

However, with the advent of whole-genome sequencing (WGS) techniques,

new prospects for TB research appeared [68]. WGS provides researchers with
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information at the genomic level, allowing to derive reliable epidemiological and

evolutionary inferences at a population scale. WGS data is much more precise

to detect recent transmission [69] and allows researchers to obtain important

results in many other areas, such as MTBC evolution, physiology or resistance

mechanism among others[70].

1.5 The impact of Computational Biology on TB
research

The popularization of WGS drove the creation of public databases to store and

share this type of data, the two main examples are the Sequence Read Archive

(SRA) or the European Nucleotide Archive (ENA). Since its establishment in

2007, the number of MTBC WGS datasets in these databases has grown

steadily (Figure 1.6). This has a main advantage: the large amount of

information generated by WGS in each study can be reused. Researchers can

now join genomic data from different sources to create datasets containing

thousand of samples. This type of information has been used to perform

population-based analysis, as for example, to identify genetic variants linked to

drug resistance phenotypes [71]. Despite its indubitable usefulness, the

amount of information generated by WGS overcame at the first moment the

capacity of analysis with the classical methodologies.

Bioinformatics and computational biology initially emerged as an assistance

for studies which deal with genetic data or in punctual statistical analyses.

However, these large-scale data analyses have become so essential that

bioinformaticians are current keystones for biomedical research [72]. So that,

not only specialized scientific profiles but also specific equipment is needed for

analyzing this type of data. As most WGS analyses exceed the processing

capacity of personal computers, high-throughput computing equipment has

been installed in most institutes and laboratories. In parallel to these changes

in laboratory structures, facilities and staff, a new research field appeared

merging biology and computer science called systems biology.
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Figure 1.6: Amount of WGS data in the SRA database derived from M. tuberculosis
samples by year (from january 2009 to october 2018). The number of deposited data
increases year by year. Bars represent the data deposited each year, while the scatter
plot represents the cumulative amount of data in the database.

Systems biology joins mathematicians, biologists, computer scientists and

physicians to derive in-silico models to better understand the structure,

functionality and evolution of complex biological systems. This research field

has been demonstrated to be extremely useful in biomedical research, as it has

the power of making reliable predictions on disease progression and outcome,

reducing the amount of animal experimentation or patient samples [73, 74, 75].

In the field of TB research, systems biology approaches have produced

encouraging results. For example, Dutta et al. [76] constructed computational

algorithms that were capable of identifying genes involved in persistent

infections in mice. These algorithms used as an input phenotypes from

previous studies on persistence infection in mice, transcriptomics data and

functional interaction networks. As a result, the models returned a list of genes

potentially involved in persistence. These genes were tested in vivo, confirming

their direct link with persistence in many of them. Other research by Pienaar et

al. [77] derived computational models to simulate the dynamics of TB infection

inside the granuloma when applying two different antitubercular drugs. They

made important findings related to antibiotic penetration, concentration and

efficacy inside the granuloma as well as bacterial population dynamics. In a
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similar way, Lalande et al. [78] have tested the pharmacokinetics and

pharmacodynamics of TB drugs (isoniazid in this case) during the first days of

administration by using computational models. A different approach was used

by Peterson et al.[79] to detect resistance mechanisms for a new

anti-tubercular drug (bedaquiline). In this case, the authors created a

regulatory network model and studied the effect on bedaquiline resistance

when disrupting the network. Their model predictions were further assessed

in-vitro. In another study, Sambarey et al. [80] applied a network analysis to

identify biomarkers of TB infection in blood. They analyzed whole-blood

transcriptomic data from healthy and TB infected patients. While comparing the

different host responses and applying a systems biology approach they were

able to identify 10 genes that act as biomarkers of TB infection and differentiate

between latent and active TB infection cases. As a last example, Farrell et al.,

[81] used a combination of different computational algorithms with an M. bovis

proteome dataset to predict epitopes recognized by the host immune system

(cattle in this case). The importance of this study lies in that epitope

identification is key to develop new vaccines and diagnosis tools. The peptides

identified as potential epitopes by the computational approaches were

experimentally tested to assess their capacity of inducing an immune response,

using a random selection of peptides as controls. Approximately 24% of the

epitopes selected induced interferon-γ secretion by T-cells from infected cattle,

proving the validity of the approach.

These new methodologies and techniques are becoming relevant tools in TB

research as they allow processing huge quantities of data in a fast, reproducible

and reliable way. Therefore, bioinformatics and systems biology are at the core

of many analyses the present thesis.

1.6 Motivation

Despite its low genetic diversity, the MTBC is not genetically homogenous.

Analyses of the diversification of M. tuberculosis from its common ancestor
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have been carried out in the past [26, 36, 82]. However, dozens to hundreds of

genomes were used in these studies, in contrast to the thousands of genomes

currently available in public databases. With this in mind, we aim to analyze this

huge amount of new information to: (i) obtain a more detailed view of the

evolutionary processes that have led to the present MTBC population structure,

and (ii) detect the genetic mechanisms and genes involved in the emergence of

the MTBC as an obligate pathogen globally distributed (Chapter 4).

In addition, we have stated previously that the genetic diversity of MTBC,

although modest in comparison with other pathogenic bacteria, may have

implications in the disease outcome. Most of the research currently carried out

on M. tuberculosis does not take into account the pathogen’s genetic diversity,

as they rely in clinical reference strains. Thus, it is of special interest to evaluate

whether the conclusions derived from cutting-edge research not taking into

account this diversity can be generalized to the whole MTBC or, on the

contrary, are biased (Chapter 5).

Finally, the forces that drive the evolution of the MTBC have created a range

of different phenotypic traits. The different evolutionary mechanisms that acted

along the MTBC history to model this current phenotypic diversity are not fully

catalogued. So, we intend to characterize in detail the transcriptomic and

methylation diversity of the MTBC as phenotypes associated to the underlying

genetic diversity of the pathogen (Chapter 6).

Part of the introduction has been published as a Review Article:

Chiner-Oms Á., Comas I. Large genomics datasets shed light on the evolution of the

Mycobacterium tuberculosis complex. Infection, Genetics and Evolution. In press.

DOI:10.1016/j.meegid.2019.02.028
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The present thesis aims to study the evolution and biological characteristics of

the tuberculosis pathogen by using bioinformatics and cutting-edge systems

biology techniques. We are going to use WGS coming from different sources as

the main source of data. Specifically, we will address the following objectives:

• To study the different evolutionary processes that guide the evolution of

the MTBC from an environmental reservoir to its current ecological niche

as an obligate pathogen (Chapter 4).

• To depict the main genetic changes involved in the MTBC adaptation to

specific mammalian hosts. (Chapter 4).

• To evaluate the capacity of current M. tuberculosis predictive models,

based on the H37Rv strain, to make reliable predictions about other

members of the MTBC (Chapter 5).

• To study the impact of the MTBC genetic diversity on biological networks

such as the regulatory network and the protein-protein interaction network

(Chapter 5).

• To study the transcriptomic signatures of the different MTBC members

and the main evolutionary processes that lead to clade-specific regulatory

patterns (Chapter 6).
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3.1 Computers and High Performance Computing
servers

All the work presented in this thesis has been developed using bioinformatic

techniques and methods. Thus, the main instruments used along this 4-year

period were computing equipments. Daily analyses were run in a personal

computer with the following characteristics:

• Ubuntu 14.04 (2014 to 2017) and Ubuntu 18.04 (2018 to 2019) as the

basic operative system.

• CPU Intel i7 7700 (8 cores).

• 16 GB DDR4 RAM memory.

• 1 TB SATA 3 HDD.

Some of the analyses that required a higher computational capacity were

performed in several High Performance Computing servers, located in

FISABIO-CSISP and the IBV-CSIC.

• Cuda (FISABIO-CSISP).

– CentOS 6.7 operative system, 64 bits.
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– 2 x Intel Xeon Family 6 Model 44 3.4GHz (24 cores).

– 64 GB DDR4 RAM memory.

– 44 TB SATA 6 HDD.

– 3 x NVIDIA Quadro 6000.

• Calcul2 (FISABIO-CSISP).

– CentOS 5.11 operative system, 64 bits.

– 4 x Intel Xeon E7450 2.4GHz (24 cores).

– 64 GB DDR4 RAM memory.

– 40 TB SATA 6 HDD.

• Yersin (IBV-CSIC).

– CentOS 7.3.1611 operative system, 64 bits.

– 2 x Intel Xeon E5-2620v3 2.4GHz (24 cores).

– 128 GB DDR4 RAM memory.

– 48 TB SATA 6 HDD.

• Koch (IBV-CSIC).

– CentOS 7.4.1708 operative system, 64 bits

– 2 x Intel Xeon E5-2620v3 2.4GHz (24 cores).

– 256 GB DDR4 RAM memory.

– 48 TB SATA 6 HDD.

3.2 Analysis pipeline

An important part of the studies tackled in this thesis is the analysis of MTBC

genomic data. Raw data was either downloaded from public databases or

supplied directly from the original sources by the owners. In some chapters,
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more than 7,000 genomic samples were analyzed. A custom analysis pipeline

based on a previous one [36], was constructed step-by-step to automate the

extraction of genomic information from the data samples. A general overview of

the pipeline can be found in Figure 3.1. This pipeline was specifically set up to

manage short-read sequencing data. Almost all the genomic data analyzed in

the present thesis have been generated with different Illumina platforms, except

part of the data analyzed in Chapter 6 (see this chapter for specific details on

the methodology used). The pipeline performs the following detailed steps:

Initial filtering

Initially, FASTQ files were filtered and trimmed using autodapt [83] to remove

adapters in case they were present. After that, prinseq [84] was used to trim

poor quality bases. We required a minimum read length of 50 bp, and right-

end bases were trimmed if their mean quality was lower than 20 in a window

of 20 bp. In the last part of the thesis, the pipeline was updated and the initial

filtering was performed with the fastp program [85]. Fastp was written in C code

in contrast to prinseq, which was written in Perl. Hence, fastp is much faster

than prinseq. Moreover, fastp includes an automatic adapter detection function

so it covers the joint functionality of autoadapt+prinseq. We run fastp requiring a

minimum length of 50 bp, scanning the 3’ end of the reads using a window size

of 10 bp and cutting the bases that had a mean quality under 20. In addition,

fastp corrects bases in overlapped pair-end reads that mismatch.

Aligning

Once the FASTQ files were trimmed, we used the BWA-mem [86] algorithm to

align the reads to a reference genome. The reference genome we used is the

MTBC most likely ancestral genome [87], derived by maximum parsimony and

likelihood methods. This ancestor is H37Rv-like in terms of genome structural

variants, but H37Rv alleles were replaced by those present in the inferred

common ancestor of all MTBC lineages. Samtools [88] was used to create
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Figure 3.1: Schematic view of the analysis pipelines built to manage the raw data
derived from whole-genome sequencing.
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sorted alignment files in BAM format from the BWA-mem output. Picard tools

[89] was used to remove potential duplicated reads formed during the

sequencing process.

Variant calling

From each BAM file, a mpileup file was derived using Samtools. This file was

scanned with VarScan [90] to extract single variants and indels. Initially, a Single

Nucleotide Position (SNP) was called if variants were supported by 3 reads at

least and found in at least 5% of the reads covering the positions. The called

SNPs were kept in a SNP file. Similarly, we required a minimum coverage of

10 reads and at least 10% of the reads in this position to call an indel. These

variants were stored in the INDEL file. Positions not covered by any read (i.e.

regions present in the reference genome but not in our genomic sample) are not

reported in the mpileup file and are not detected by VarScan. So, we included

also these positions in the INDEL file as well as regions covered by 3 or fewer

reads (regions mapped with few reads, in a genomic sample with mean depth >

50, could not be discarded as indels).

Variant filtering

Almost every single variation found in the alignment is called as a potential SNP

in the SNP file. However, with these relaxed criteria many of the variants found

are potentially false, introduced by errors or inaccuracies in some part of the

process. To consider only highly confident variants, a stricter filtering is needed.

So the SNP file was filtered with VarScan. We kept variants that were supported

by at least 20 reads, called in both strands and present in 90% of the reads

covering the corresponding position. In addition, we did not take into account

SNPs that were close to indel regions (10 bp upstream and downstream) or in

regions with a high accumulation of variants (more than 3 variants in a 10 bp

window). These filtered SNPs were stored in a high confident (HC) SNP file.
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Annotation

From all the HC SNP files, we created a non-redundant list of variants

containing all the SNPs found in the set of samples. The snpEff program [91]

was used to create a custom annotation database based on the most likely

ancestral positions of the MTBC and using the H37Rv annotation. This snpEff

database was extensively used in the present thesis to annotate SNPs lists,

both those derived from the pipeline (including the HC SNP files) and those

from any other list of SNPs. SIFT4G [92] was used to predict the potential

impact of each nonsynonymous mutation in the coding regions. SIFT4G

assigns a score for each SNP based on evolutionary information. It predicts the

tolerability of a nucleotide substitution based on the abundance of substitutions

in this position in related sequences. Next, variants that were predicted to fall in

phages, repeated regions or PE/PPE genes were filtered out from the list of

variants. These regions are difficult to map with short reads (i.e., Illumina

reads) and tend to accumulate many false positive SNPs. The remaining

variants along with their annotation were stored in a SNP annotated table.

Multifasta reconstruction

For the subsequent analyses (phylogeny reconstruction, distance calculus,

evolutionary traces, etc.) we needed a multiple sequence alignment. For each

sample, we used the MTBC ancestor genome to define the wild-type base.

Over this structure, we introduced the deletions present in the INDEL file for

each sample as well as the variants present in the SNP file that were also

present in the SNP annotated table. With this approach we were introducing

only HC SNPs (those that are present in the SNP annotated table) or likely true

SNPs that did not pass the variant filters in a concrete sample but was

observed as a HC SNP in another sample. Finally, we joined all the

reconstructed sequences in one single multifasta file.
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Resistance prediction and typing

With the information contained in the HC SNP files we can type the samples

without constructing a phylogeny. We compared the HC SNP files with a list

of phylogenetic SNPs [93, 34] and with a list of known resistance-conferring

variants [94, 95]. With these information we constructed a table of samples with

their potential phylogenetic assignment and resistance profile.

3.3 Scripting and statistical analyses

All the scripting work was performed using several programming languages,

mainly Bash but also Perl, Python and R. Specially useful were the GNU

parallel package [96], used for parallelizing some Bash code (i.e. the multifasta

reconstruction process in the pipeline described above), and BioPerl [97],

adopted for working with sequence data with the Perl language. The biological

network visualizations and plotting were performed using Cytoscape [98]. Gene

Set Enrichment (GSE) analyses were performed with the BiNGO plugin [99].

This Cytoscape plugin was widely used in the current thesis to study the

enrichment in certain functional categories of a specific group of genes, in

comparison with the total number of functional categories found in the complete

annotation. The tool uses a hypergeometric test (sampling without

replacement) and the BH correction for multiple testing comparisons [100].

Almost all the statistical analyses performed in this thesis were implemented

using the R statistical language [101], and the RStudio program [102]. R was

used not only for the statistical work but also for daily scripting tasks involving

tables and numeric data. The following R packages were extensively used:

• Bioconductor [103]: An open source project that aims to maintain tools

for the analysis of genomic data in R. It was used mainly for microarray

data analysis.

• doParallel [104] and foreach [105]: This two packages combined allow

to run loops in parallel. They were extremely useful when working in the
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servers as they permit to select the number of nodes/threads in which the

code is going to be executed.

• ggplot2 [106]: Provides a complete set of tools to create colorful and

elegant plots. It is helpful to represent a wide range of data types in a

graphical manner.

• DEseq2 [107]: Contains many functions (as well as a complete manual) to

handle RNA-seq data and perform several statistical analyses with them.

• igraph [108]: Designed to work with graph structures (nodes and edges)

and to calculate several specific statistics associated with this type of data.

• seqinr [109]: Used to manage sequence data (nucleotides and proteins)

in the R environment.

31



General materials and methods

32



Genomic determinants of
speciation and spread

4.1 Introduction

The increasing availability of population genomics data has allowed an

improved understanding of genotypic and ecological differentiation among

closely related bacteria [110]. While a species concept sensu stricto cannot be

applied to bacteria [111] models exist to understand how species can emerge

in natural populations. Depending on the evolutionary forces involved, models

range from differentiation driven by natural selection and adaptation to different

ecological niches (Ecological Species Concept) to differentiation as a result of

restricted gene flow that reinforces isolation (Biological Species Concept). In

reality, most natural populations show a combination of both processes with

certain overlap between habitats (Overlapping habitats model, [112]). The

study of natural populations and models shows that the emergence of new

species is more common among bacterial groups sharing, partially or totally,

their habitat, a process also known as sympatric speciation [112]. Processes of

bacterial differentiation are often expected to leave measurable genetic

signatures in extant genomes including “speciation islands” (regions of high

divergence between the nascent species) [113, 112]. These genetic signatures

hold clues about the key genomic determinants responsible for ecological

differentiation of nascent species from a common genetic pool. However, how
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these models apply to professional pathogens, particularly those characterized

by an obligate association with their host species, has been little explored.

As stated in the General Introduction, the most closely-related bacteria that

fall outside the MTBC include isolates known as Mycobacterium canettii

(MCAN). MCAN strains differ from MTBC isolates by tens of thousands of

SNPs [27, 114]. MCAN strains have been isolated from the Horn of Africa,

predominantly from children and often in association with extrapulmonary

tuberculosis [115]. It is assumed that MCAN represents an opportunistic

pathogen with an unidentified environmental reservoir [28] as opposed to the

obligate MTBC pathogen. Genomic comparisons have identified gene-content

differences between MTBC, MCAN and other mycobacteria [27, 114, 116] as

well as genetic differences in virulence-related loci [117, 118].

Two pieces of evidence suggest that MTBC and MCAN evolved from a

common genetic pool in Africa. The high ANI between the MTBC and MCAN

suggests incomplete or recent speciation. In addition, most reports suggest

lack of on-going recombination between MCAN and MTBC and within the

MTBC [119, 120] suggesting complete separation (but see [121]). The second

piece of evidence comes from phylogeographic and genetic diversity analyses

which identified the origin of the tuberculosis bacilli in Africa [36, 35], the likely

place of origin of MCAN [122, 27]. Taken together, the data suggests that

ancestral MTBC and MCAN strains at least shared partially the same niche and

genetic pool.

Our understanding about the population genomic events mediating the

divergence of the ancestor of the MTBC from a common ancestral pool with

MCAN is far from complete. In this chapter, the availability of genome

sequences from thousands of MTBC clinical strains, as well as of close

relatives like MCAN, enables us not only to identify molecular signatures of

MTBC speciation events, but also to reveal known and new targets for

biomedical research.
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4.2 Results

We first analyzed the differentiation between MTBC and MCAN by searching

for any hallmark of on-going recombination between and within these groups of

strains. Previous reports have suggested that there might be limited but

significant recombination among MTBC strains [121, 123] while others failed to

identify measurable recombination events [124]. To revisit this question we

used a large collection of MTBC genomes. To maximize the chances of

identifying potential ongoing recombination events within the MTBC, we

screened a data set of complete genome sequences of strains from global

sources [93](n=1,591). These genomes are representative of the known

geographic and genetic diversity of the MTBC (Supplementary Figure 10.1).

Among these genomes, we identified all the variant positions and, more

specifically, potential homoplastic sites, i.e., polymorphic sites showing signs of

convergent evolution. A total of 96,143 variant positions were called in the

1,591 strains. Homoplasy can arise as a consequence of recombination but it

may be caused by other processes, such as positive selection, sequence gaps

contributing to homoplastic counts or mapping/calling errors. For example,

known drug-resistance positions use to accumulate lots of homoplasies as they

are well known instances of convergent evolution [125, 126]. So, to increase

the likelihood for homoplastic positions to be due to recombination events, we

filtered out known drug-resistance positions (n=48), non-biallelic positions

(n=1,076), potential mapping errors identified by generating synthetic reads

around each SNP position (n=239). In total we excluded as likely arising from

other signals 1,363 positions out of the initial 96,143 positions (1,42%).

As a result, a total of 2,360 core homoplastic sites were identified across the

1,591 strains analyzed (2.5% of all variable sites). Homoplastic sites did not

significantly accumulate in any region of the genome, suggesting absence of

recombination hotspots (Figure 4.1A). To get a more detailed view and detect

small recombination events, we looked for regions with two or more

consecutive homoplastic variants (allowing one non-homoplastic variant
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between them) co-occurring in the same phylogenetically unrelated strains. We

detected only 2 cases in which two variant positions were homoplastic,

consecutive and shared phylogenetic congruence (found in the same unrelated

strains). The two regions accounted for 4 convergent variants ( 4.1) and

affected strains from different MTBC lineages. Variants in positions 2195896

and 2195899 fell in the primary regulatory region of mazE5 [127]. Variants in

positions 2,641,161 and 2,641,163 fell in the intergenic region of glyS and

Rv2358. Although we cannot completely discard the possibility that these

represent recombination events, it is more likely that the two regions have been

under positive selection, a mechanism known to lead to the accumulation of

homoplastic accumulation in the MTBC [126]. In summary, this large-scale

variant-by-variant analysis could not identify significant ongoing recombination

between any of the 1,591 MTBC strains analyzed.

Position A G C T Homoplastic
steps

Genomic
region

Nuc.
change

AA.
change

2195896 0 4 1587 0 3 Rv1994c 39G>C K13N
2195899 1587 0 0 4 3 Rv1994c 36T>A D12E

2641161 0 2 0 1589 2 IG Rv2357c-
Rv2358

2641163 0 1589 2 0 2 IG Rv2357c-
Rv2358

Table 4.1: Variants identified as homoplastic and phylogenetically convergent

Due to the low diversity within the MTBC, we also followed alternative

approaches to identify recombination events with a high statistical confidence.

Using an additional method, we evaluated linkage disequilibrium (LD) as a

function of the distance between the 94,780 core variant positions. R2 has been

used to show on-going recombination at very short distances (less than 50 bp.)

[121]. In our much larger dataset, R2 values were also slightly higher at shorter

distances, which is compatible with recombination involving larger fragment

sizes. However, a close examination reveals that the peak at short distances is

misleading, as it is driven by only six points out of more than 11,000

comparisons (Figure 4.1B). In addition, R2 values are known to fail to reach the
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theoretical maximum of 1 when variants compared have very different

frequencies [128]. This is likely the case for MTBC, in which there is a strong

skew of the site frequency spectrum towards low frequency values (Figure

4.1C) [40]. Thus, as an alternative we calculated D’. In this data set, as

expected for a mostly clonal organism, LD measured by D’ remained at its

maximum value, even when focusing on distant variant positions more than 5

Kb apart, suggesting very little or no ongoing recombination (Figure 4.1B).

To further validate these findings, we ran Gubbins with the same data set

and validated them with RDP4 (see methods for details). Gubbins detects the

accumulation of a higher than expected number of variants in addition to

homoplastic sites as a hallmark of possible recombination. We partitioned the

1,591 strain dataset into the different lineages and screened for possible tracks

of recombination. Gubbins reported potential recombining regions

characterized by a higher than average number of SNPs. However, none of the

RDP4 methods confirmed any of them. Thus, those events maybe real but

cannot be confirmed by alternative approaches.

Having established that recombination has little impact on the overall MTBC

genetic diversity, we compared a representative data set of MTBC genomes

[36] (n = 219) with 7 MCAN genomes to identify and quantify eventual ongoing

recombination within MCAN and between MCAN and the MTBC. Of the 93,922

polymorphic sites identified, 22,718 were biallelic homoplasies (24.2%). The

genomic distribution of variant positions and homoplasies in the MCAN group

showed a landscape different to the MTBC group (Figure 4.2B). A total of

22,464 (98.9%) of those homoplasies were found only among MCAN strains,

representing almost half of the variability within this group (22,464/52,392

biallelic sites, 42.9%) which points to recombination as a main source of

variability in MCAN. This is consistent with previous reports(Supply et al.

2013). This profile is in sharp contrast with the flat homoplastic profile for the

MTBC described above (Figure 4.1A).

To test for ongoing recombination between MCAN and extant MTBC, we

identified homoplasies involving both groups. From the 93,922 total variants,
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Figure 4.1: No ongoing recombination within the MTBC A) Number of homoplasies
(grey) as a function of the total number of variants detected (orange) in the MTBC
dataset (n=1,591) B) Linkage disequilibrium as a function of genetic distance detected
in the 1,591 strains. C) Site frequency spectrum of MTBC strains using the core variant
positions.

7,934 involved MCAN and MTBC strains. We found 234 biallelic homoplasies

involving extant MTBC and MCAN strains, thus compatible with ongoing

recombination but also with independent diversification. The vast majority of
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Figure 4.2: Genome-wide variant profiles vary between M. canettii, M. tuberculosis
and the MTBC ancestor A) Schematic view of the phylogenetic relationships between
the MCAN groups and the MTBC. In the Supplementary Figure 10.2 a Maximum
Likelihood phylogeny of the MCAN group including the MTBC ancestor can be found.
B) Number of homoplasies (grey) as a function of the total number of variants detected
(orange) in the MCAN dataset and in the branch leading to the MTBC most recent
common ancestor. Black dots indicate recombination events detected in the branch
leading to the most recent common ancestor of the MTBC.

homoplasies detected (97%) mapped to the branch leading to the MTBC clade

(thus fixed within the MTBC but variable within the MCAN group). These results

indicate that measurable recombination events were common between MCAN

and the ancestral branch of the MTBC, but are unlikely during the subsequent

diversification of the MTBC. Consistently, a Gubbins analysis in this dataset did

not identify recombination events involving current MTBC and MCAN strains.

All the potential recombinant segments mapped on branches involving only

MCAN strains or involving MCAN and the common branch of all the MTBC
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strains (see External Data1).

Sympatric and stepwise emergence of the MTBC ancestor

Our results show that recombination with closely related mycobacteria occurred

during the emergence of the common ancestor of the MTBC. To gain a better

insight on how it occurred we reasoned that instead of comparing MCAN

strains against extant MTBC strain we should compare against a reconstructed

most common ancestor of the MTBC (see Chapter 3). This strategy allowed us

to focus on those changes specifically happening in the ancestral branch of the

MTBC (see Figure 4.2A and Supplementary Figure 10.2). As described by

others, the phylogeny suggests a specific clone of the MCAN group diverged

and resulted in the MTBC [129, 122]. To do so we extracted all the variant

positions that were homoplastic between the MTBC ancestor and any of the

MCAN strains. That is, equal nucleotide changes occurring in the same

genomic positions that appeared independently in the branch leading to the

MTBC ancestor and in any other branch of the phylogeny (7,700 positions).

The SNPs mapping to the branch leading to the MTBC ancestor genome

showed a similar homoplasy profile to that of the MCAN strains (Figure 4.2B),

suggesting that there were not hard barriers to gene flow between ancestral

MTBC and MCAN ancestral strains, thus supporting a model of sympatric

speciation. Notably, both MCAN and the MTBC ancestor shared a peak around

the CRISPR region, highlighting the dynamic nature of this region possibly as a

result of common phage infections.

A Gubbins analysis including MCAN genomes and the most likely common

ancestor of the MTBC was performed. Gubbins identified 70 recombination

events between the MTBC ancestor and MCAN strains. 5 of these fragments

were filtered out due to a high accumulation of gaps (see Methods). So, we

kept a total of 65 recombination events mapping to the branch leading to the

MTBC (External Data 2). Mapping of variants into the phylogeny revealed that

those regions were coincident with a high number of homoplastic variants

between MCAN and the MTBC (Suplementary Figure 10.3). To explore
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whether these fragments reflected real recombination, we performed a

phylogenetic congruence test. First, a likelihood mapping analysis was

performed for each fragment (Supplementary Figure 10.4). Fragments 13 and

14 had not enough phylogenetic signal to resolve a reliable phylogeny. The

variants found in these regions were present only in the MTBC ancestor

branch, so recombination with other organism not present in our dataset is

likely to have occurred. Later, the topologies of the trees of the remaining

fragments were compared with that of the tree derived from the

non-recombinant alignment (whole genome alignment subtracting the

recombinant regions). These analyses revealed significant incongruence for all

the 63 fragments compared to the non-recombinant phylogeny

(Shimodaira-Hasegawa test; p-value¡0.05, External Data 3). The analysis

identified consecutive fragments with similar topologies implying not only that

the event involved similar donor/strains but also that they likely are part of a

larger, unique event (Figure 4.3). This is the case for the genes in fragments

40, 41, 42. The genes involved are almost consecutive and only separated by

PE/PPE genes that are not analyzed in this study. The fact that they share a

common phylogenetic story indicates that they belong to a unique

recombination event involving almost 28 Kb. A similar pattern can be observed

for fragments 9-12 in which the fragments are not only consecutive in the

genome but they also share a common phylogenetic story. In addition, events

falling apart in the genome maybe also share a common phylogenetic story. For

example regions 6, 63, 62 are more than 3.8 Mb apart on the genome but they

share the same phylogenetic topology. The genes involved are part of the same

regulon, KtsR [130], suggesting that selection may have played a role in fixing

those independent recombination events. Thus, both Gubbins and phylogenetic

approaches indicated that these 65 regions are likely recombinant regions.

To test whether speciation of the MTBC ancestor occurred in one single

episode or in multiple episodes over time, we analyzed the relative age of

divergence of the recombination fragments from the MCAN closest clade using

BEAST. Results show that the MTBC ancestor differentiated from MCAN
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Figure 4.3: Phylogenetic incongruence test. Each fragment alignment was compared
against all recombinant fragments phylogenies and the non-recombinant genomic
phylogenetic topology. Dark blue indicates strong incongruence and yellow no evidence
to reject the topology. In the left side we show a double clustering of fragments and
phylogenies in which each row corresponds to a phylogeny and each column to a
fragment. In the right plot fragments are organized following their position in the genome.
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Fragments 13 and 14 were not included in the analysis as they did not have enough
phylogenetic signal to reconstruct a reliable phylogeny. Fragments 40, 41, 42 are marked
with a red square in the right panel. They share a common phylogenetic story and
are correlatives suggesting that they belong to a unique recombination event. A similar
pattern can be observed for fragments 9-12 (orange box, right panel). Regions 6, 63, 62
also share the same phylogenetic topology although not being consecutive (left panel,
red square). The genes involved are part of the KtsR regulon.
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sequentially (Supplementary Figure 10.5). The estimated ages show large

HPD intervals, as expected from the low number of variant positions per

fragment. Although the distribution of tMRCA for the fragments represents a

continuum, the analysis suggests a separation between “recent” recombination

events and “ancient” events, closer to the time of divergence from the MCAN

group (Figure 4.4B). The large HPD intervals preclude any firm conclusion but

the results suggest that some regions in the MTBC ancestral genome were

restricted to gene flow earlier than others (Figure 4.4A).

Figure 4.4: Past recombination between M. canettii strains and the MTBC ancestor
A) Histogram distribution of the recombination fragments ages using the 5ka scenario
[82]. A more detailed view can be found in the Supplementary Figure 10.5, with the
confidence intervals plotted. B) Gene Ontology terms overrepresented in the coding
regions contained in the recombinant fragments

If recombination played a major role in shaping the MTBC ancestral genome

with regards to pathogenesis, we would expect some functions related to the

interaction with the host to be affected. Indeed, we observed an enrichment in

experimentally confirmed essential genes in the regions involved in

recombination events, suggesting that recombination targeted important cell

functions (Chi-square test; p-value < 0.01). An enrichment analysis of Gene

Ontology terms for the genes contained in these regions identified functions

related with growth, and most specifically with the category “growth involved in
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symbiotic interactions inside a host cell” as significantly overrepresented

(Binomial test; adj. p-value < 0.05) (Figure 4.4C). This category can be

interpreted as genes involved in a strong association between the pathogen

and the host. Remarkably, most of the genes involved have been implicated in

virulence using animal models of infection (see Discussion).

The recombination profile shown in Figure 4.2 suggests that the MTBC

ancestor recombined with MCAN ancestral strains and, thus, they shared a

common niche. A sympatric model of speciation predicts that some parts of the

genome will be involved in adaptation to a new niche [113]. The hallmark trace

would be the accumulation of variants differentiating the emerging species, at

the genome-wide level or in a few loci, as a consequence of reduced

recombination between both groups. We identified all the variant positions that

appear in the ancestral branch of the MTBC but remain unchanged in all the

MCAN strains, the so called divergent variants (divSNPs). These divSNPs are

new alleles unique to the MTBC ancestor and not present in any of the MCAN

strains. The distribution of divSNPs per gene revealed that only few of them

accumulated divSNPs in the branch leading to the ancestor while most genes

did not (Figure 4.5A). This pattern is compatible with population differentiation

models in which the overlap between emerging species is high [112]. The

genome-wide landscape of divergent variants (n = 5,688, Figure 4.5B)

revealed that a total of 120 genes harbored more divergent variants than

expected by chance (see Methods)(Figure 4.5B).

However, bacterial genomes are highly dynamic and different processes

can contribute to the genetic makeup of extant species. Consequently, not all

the detected regions necessarily result from pure divergence by accumulation

of substitutions. To ascertain the evolutionary origin of the 120 genes

containing a high number of divergent variants, we checked whether the

abnormal accumulation was due to: (i) horizontal gene transfer with other

mycobacteria; (ii) recombination with MCAN strains that were not present in our

dataset; or (iii) other evolutionary processes such as mutation combined with

natural selection and/or genetic drift, thus representing genes that genuinely
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Figure 4.5: Divergent positions between the MTBC ancestor and the M. canettii
clade. A) Average of divSNPs per 10 kb positions (green) as compared to the average
of homoplastic variants (gray). Blue arrows above the distribution are genes that
significantly accumulate more divSNPs. B) Accumulation of divSNPs per gene, corrected
by gene length. A small number of genes accumulate a high amount of divSNPs while
most of the genes have a low number of variants or even none. This pattern resembles
those of high habitat overlap derived from Overlapping Habitat Models [112].

have accumulated divergence during the speciation process. To check for

horizontal gene transfer events, we downloaded from Refseq and GenBank a

set of 155 complete genomes from distinct mycobacterial species. We looked

for orthologues of the 120 genes accumulating divSNPs between the MTBC

ancestor and the rest of the mycobacterial species. For each gene, we

reconstructed a Maximum Likelihood (ML) phylogenetic tree and each of these
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phylogenies was compared to a ML reference built from the concatenated core

mycobacterial gene set. Phylogenies for 53 of these genes placed MTBC within

the MCAN clade, which is compatible with the accumulation of variants by

mutation. Sixty-seven of the phylogenies were not topologically congruent with

the reference tree. For all these genes, a BLAST search was performed against

the NCBI database. In 54 cases the BLAST search gave a best hit with M.

canettii and in one case no hits were returned. The most plausible explanation

for this alternative topology is that recombination with other MCAN strains not

included in our data set had occurred. On the other hand, in 12 cases the

BLAST search showed a best hit with other mycobacteria, more specifically

with M. chimaera, M. kansasii, M. sp. 3/86Rv, and M. shinjukuense.

Interestingly, the consecutive genes from Rv2798c to Rv2803 followed this

pattern, giving a better hit with M. shinjukuense than with MCAN. The mazF9

and mazE9 genes are in this region and were previously reported as a genomic

island related with virulence and pathogenesis [131]. Finally, one gene,

Rv2804c, returned no results for the BLAST search.

Thus, a total of 53 genes in the MTBC ancestral genome were highly

divergent with respect to MCAN due to substitution events (Supplementary

Table 10.1). While the genome-wide analysis identified divSNPs that might

result from genetic drift or hitch-hiking events associated with selection on other

loci, their accumulation in only 53 genes suggests that those regions might

have played an important role during the process of niche differentiation. In

agreement, those 53 genes are significantly more functionally conserved than

the rest of the genome (dN/dS = 0.154 vs genome average dN/dS = 0.279,

chi-squared p-value ≤ 0.001). This result suggests that, despite the increased

divergence from the MCAN strains, those 53 regions have been evolving under

purifying selection. Alternatively, the accumulation of divergent variants could

also represent hotspot regions for mutation. None of the genes showed a

similar pattern of mutation accumulation in other MCAN (no overlap between

the divSNPs probabilities distributions for these 53 genes and the rest of the

genomes, t-test p-value < 0.05).
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Regions under positive selection after the transition to
obligate pathogen

Having established that some divSNPs accumulate in genes under purifying

selection, we screened for positive selection patterns to identify additional

genes relevant in the transition from a newly emerged pathogen to a globally

established pathogen. We first revisited the evolution of antigenic proteins.

These regions are recognized by the immune system and most of them are

hyperconserved within the MTBC [87, 65]. Interestingly, and in agreement with

previous data from MCAN genomic analyses [27], the dN/dS calculated in the

branch leading to the ancestor showed a very similar pattern, with essential

genes being more conserved than non-essential ones and T-cell epitopes being

hyperconserved (Figure 4.6). Only nine divSNPs (5 synonymous and 4

nonsynonymous) were found in T-cell epitope regions, which is significantly less

than expected by chance (Poisson distribution, p-value < 0.001).

Figure 4.6: The dN/dS ratio distribution for the epitopes regions, essential and
nonessential genes. The dN/dS ratios distribution match previous results. Values
calculated in the MTBC ancestor branch meet the same pattern as those calculated from
modern strains. T-cell epitopes are in both cases hyper-conserved.

48



Results

Thus, antigenic regions do not show an altered pattern or intensity of

selective pressure. We then explored what other regions of the genome

changed significantly in selective pressure by comparing the MTBC ancestor

dN/dS and the actual dN/dS in extant populations using our global reference

dataset of 4,598 MTBC strains. We calculated a dN/dS for all the genes with at

least one synonymous and one nonsynonymous mutation for each of the two

sets (divSNPs versus within MTBC SNPs). Due to the low number of divSNPs

in individual genes, only 499 genes were evaluated. Consequently, although

additional genes to those shown in the ensuing analyses may have changed

the selection pattern or intensity, they cannot be evaluated properly (External

Data 4). We were particularly interested in those genes with a drastic change

from purifying (dN/dS < 1) to diversifying or positive selection (dN/dS > 1) or

vice versa.

Most of the genes evaluated did not show any sign of changing selective

pressure or pattern. However, when looking at the dN/dS variation data, 14

genes appeared as outliers (as defined by Tukey’s method [132](Figure 4.7A).

Genes Rv1244 (lpqZ), Rv3910, Rv0166 (fadD5), Rv0874c, Rv1152, Rv1678,

Rv1951c, Rv2584c (apt), Rv3026c, Rv3276c (purK ), Rv3370, Rv3759c (proX )

and Rv3900c were under a stronger negative selective pressure following

speciation. Many of them are annotated [133] as hypothetical conserved

proteins. On the other hand, only one gene changed to evolve under positive

selection after divergence from the MTBC ancestor Rv0758, also known as

phoR. Notably, PhoR forms part of the PhoP/PhoR virulence regulation system

[134]. In the branch leading to the MTBC ancestor, this gene was as conserved

at the amino acid level, as other essential genes (Chi-square test; p-value =

0.4721), but when we looked within the extant MTBC diversity, the gene was

significantly less conserved at the amino acid level than essential genes

(Chi-square test; p-value < 0.001).
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Figure 4.7: Genes with differential selective pressures across the MTBC speciation
stages. A) Genes changing selective pressure in the branch of the MTBC ancestor
as compared to extant MTBC strains. Red lines mark those genes being outliers of
the dN/dS variation distribution. B) phoR and phoP show different selective pressure
dynamics. In both cases the accumulation of nonsynonymous (dN) or synonymous (dS)
mutations through time is measure as the distance to the most common ancestor of the
MTBC. The dN and dS values have been corrected by the number of branches in the
phylogeny at each time point.
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Positive selection on phoR linked to ongoing selective
pressures

Given the known central role of PhoPR in MTBC virulence, we focused our

attention on the new mutations found in phoR. We observed a total of 193

nonsynonymous mutations and 31 synonymous mutations in phoR (Figure

4.8). The average dN/dS for this gene was well above 1 (dN/dS = 2.37),

suggesting the action of positive selection.

Figure 4.8: phoR mutations are phylogeny-wide. Genome-based phylogeny
calculated from a total of 4,595 clinical samples obtained from different sources.
The synonymous and nonsynonymous variants found in phoR are mapped to the
corresponding branch. Variants in internal branches affect complete clades which are
colored in the phylogeny. Homoplasies are marked in the outer circle of the phylogeny.
The star marks the G71I PhoR variant common to L5 and 6 previously reported by
Gonzalo-Asensio et al.[135]
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Furthermore, a plot of the dN and dS values over time reveals that the overall

dN/dS remained high along the evolutionary history of the MTBC (Figure 4.7B)

corroborating that this gene has likely been under pervasive positive selection.

Codon-based maximum likelihood tests of positive selection normally are not

suited for intraspecies comparisons. However, in the case of phoR the tests

identified a higher dN/dS than expected by chance and at least two codons with

strong evidence to be under positive selection (Table 4.2). Additional evidence

for the action of positive selection on this gene derives from nonsynonymous

mutations, among which we found 34 homoplastic variants, which are strong

predictors of positive selection in MTBC (External Data 5). Nonsynonymous

mutations significantly accumulated in the sensor domain (Chi-square test, p-

value < 0.01), further supporting the hypothesis that they could be involved in

the fine-tuning of the PhoR sensitive function to the changing environment during

infection (Figure 4.9B).

Site α β β - α Prob[α > β] Prob[α > β]
71 0.64 11.264 10.624 0.007 0.984

355 2.151 10.592 8.441 0.047 0.915
α = Mean posterior synonymous substitution rate at a site.
β = Mean posterior nonsynonymous substitution rate at a site.
Prob[α > β] = Posterior probability of negative selection at a site.
Prob[α > β] = Posterior probability of a positive selection at a site.

Table 4.2: Codons with strong evidence of being under positive selection as
detected by FUBAR.

All the mutations identified in our analysis were found in human clinical

isolates and mapped to relatively recent branches in the MTBC phylogeny

(Figure 4.8). Thus, we reasoned that most mutations were associated with

recent selective pressures as opposed to the previously reported mutations

found in Mycobacterium africanum L5 and L6, and the animal-adapted clade

[135] that map to deep branches in the phylogeny (Figure 4.8). To get insights

in this hypothesis, we tested whether novel phoR mutations are also arising in

clinical settings during infection and recent transmission events. We used a
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Figure 4.9: Characteristics of the phoR nonsynonymous mutations.A) Relative ages
distribution of the phoR variants in the reference dataset from Coll et al.[93] (left pannel)
and the transmission dataset [136] (middle pannel) in comparison with the rest of the
genome variants. In the right pannel, the relative age of the phoR variants exclusive from
each of the two datasets were compared. B) Schematic view of PhoR with the amino
acid changes found across the 4,595 samples dataset marked on it. Amino acid changes
are significantly more abundant in the sensor domain (p-value < 0,01).

population-based data set from Malawi [136] where more than 70% of the

strains were collected during fifteen years and their genomes sequenced (n =

1,187). We found 13 mutations (12 nonsynonymous and 1 synonymous) in

phoR exclusive of the Malawi data set and a phoR dN/dS value of 3.93.

Moreover, the mean relative age of the nonsynonymous phoR variants were

significantly younger than that of other nonsynonymous variants in both

datasets (Welch’s t-test, p-value � 0.01) and the phoR variants from the

Malawi dataset were more recent than those phoR mutations from the

reference dataset (Welch’s t-test, p-value = 0.04)(Figure 4.9A). From the 12
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nonsynonymous mutations in the Malawi data set, 8 were markers of recent

transmission clusters. Moreover, phoR mutations in the Malawi data set

involved larger transmission clusters than other mutations (permutations test,

p-value < 0.001).

Taken together, there is strong evidence for positive selection acting on

phoR steaming from higher than expected dN/dS values in the reference

dataset, presence of homoplastic variants and new nonsynonymous mutations

linked to larger transmission clusters. Thus our data indicates that (i) phoR

mutations have been selected since the establishment of the MTBC as an

obligate pathogen (Figure 4.7); and (ii) novel phoR mutations are selected

during infection and propagates during human to human transmission in

current epidemiological settings (Figure 4.9).

4.3 Discussion

We present evidence that the MTBC ancestor transitioned to an obligate

pathogenic lifestyle from a common genetic pool including the ancestors of

extant MCAN strains. Specifically, we found common patterns of genome-wide

recombination in the branch leading to the MTBC ancestor and the extant

MCAN strains. The high recombination rate between MCAN strains, including

the MTBC ancestor, stands in sharp contrast to the strictly clonal population

structure of extant MTBC strains. By analyzing events leading to the transition

from a recombinogenic to a clonal organism, we have also been able to identify

genomic regions under different selective pressures. The comparison between

selective pressures before and after becoming an obligate pathogen also allow

us to propose PhoR as an important player in the past evolutionary history of

the MTBC as well as in current clinical settings.

Population genomics data has led to the development and testing of

different models of how different genetic clusters of the same species can arise

in sympatry [110, 112, 137]. In the case of Vibrio cholerae, an appropriate

combination of certain virulence-associated variants, ecological opportunity
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and additional virulence factors mediated the successful transition of a

particular clone from an environmental to a pathogenic lifestyle [138]. Other

known cases such as pathogenic Salmonella [139] or Yersinia species [140]

may have followed a similar trajectory. The MTBC represents an extreme case

of clonal emergence associated to its obligate pathogenic lifestyle. Here, we

have shown that, despite the high ANI between MCAN and the MTBC, there is

complete genomic isolation between these organisms. There is experimental

evidence that genetic exchange among MCAN strains occurs easily but not

between MCAN and the MTBC [118]. We have shown that there is no

measurable ongoing recombination among the MTBC strains based on our

analysis of 1,591 genomes and in agreement with other recent reports

[141, 119]. It is important to note that, due to the low divergence within the

MTBC, most methods to detect recombination are limited. Hence, we cannot

completely exclude the possibility that we might have missed some

recombination events. It was previously suggested that recombination (or gene

conversion) could be affecting PE/PPE genes disproportionally [142].

Unfortunately, short reads cannot be properly mapped to these regions so our

approach does not allow testing this possibility. However, if recombination does

occur in the MTBC, it seems to have a minor impact on the overall genetic

diversity of the MTBC. Recombination in natural populations depends both on

the capacity of chromosomal DNA exchange between the two groups involved

and on the ecological opportunity. The mechanisms, if any, by which the MTBC

bacilli lost their capacity to recombine while the ancestral genetic pool showed

very similar recombination patterns to MCAN strains, remains to be elucidated.

Ecological opportunity may also influence on the lack of opportunities for

exchange between MTBC strains. Despite the occurrence of super-infections,

the bacilli occupy mainly an intracellular lifestyle, thereby reducing the

opportunities for genetic exchange.

We can only speculate about how the transition from a likely environmental

or opportunistic pathogen to an obligate pathogen occurred, but our analysis

has identified a series of non-random evolutionary events. Notably, these
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events involve core pathogenesis genes. We have identified highly divergent

regions in the MTBC ancestor compared to MCAN. The pattern of SNP

accumulation suggests that those regions were important in the transition to a

closer association with the host. In addition, recombination events mapping to

the branch leading to the MTBC ancestor affected essential genes as well as

genic regions known to be involved in host-pathogen interaction. The mymA

operon (Rv3083-Rv3089) is related to the production of mycolic acids and its

disruption leads to an aberrant cell-wall structure. Importantly, knock-out

studies [143] have shown that this operon is essential for growth in

macrophages and the spleen of infected mice. Furthermore, the deletion of

genes in this operon leads to a higher TNF-alpha production, highlighting their

role on regulating host-pathogen interactions [144]. The other major operon

identified in our analysis is the mce1 operon [145]. mce1 knock-out mutants are

hypervirulent in a mouse model of infection and lose the capacity of a proper

pro-inflammatory cytokine production that is needed for the establishment of

the infection [146] and granuloma [145]. How these processes are mediated by

mce1 is still not clear, pointing at this gene as a priority target for biomedical

research.

Our analysis identified one gene, phoR, which is under positive selection in

extant MTBC strains although it was under purifying selection in the MTBC

ancestor. PhoR is the sensor component of the PhoPR two-component system,

which plays a major role in MTBC pathogenesis [147, 148]. Previous

experimental data show that 1) PhoPR is a major virulence determinant in

MTBC [134]; 2) that deep phylogenetic branching mutations in PhoPR were

involved in the adaptation of the pathogen to different mammalian hosts [135]

and that there is at least one case in which natural overexpression of PhoPR in

a Mycobacterium bovis clinical isolate was linked to a highly transmissible and

virulent phenotype in humans [147]. In fact, mutations affecting the whole

animal clade in phoR have been proposed to fine-tune MTBC virulence across

different animal host species. We find alternative amino acid changes in the

same codon experimentally tested by Gonzalo-Asensio et al. (2014), thus
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changes in this codon could have been selected multiple times in unrelated

human isolates. Based on these findings, we speculate that recent phoR

mutations help to fine-tune the immunogenicity of the pathogen during

infection, allowing it to manipulate the human host responses and increase the

chances of transmission. However, we still need to understand the stimuli and

the molecular pathways that are at the basis of the selective pressures driving

the evolution of phoR. Given that PhoPR is involved in membrane composition

[149], mutations in this regulator might also be involved in susceptibility to some

antibiotics. However, antibiotic selection is an unlikely explanation for the oldest

mutations in PhoPR, as they likely predate antibiotic usage.

Based on our findings, a model can be proposed in which recombination,

together with the acquisition of new genetic material [114, 150], generated a

favorable genetic background for the MTBC ancestor to occupy or increase its

association with mammalian hosts. We see this emergence only once in the

MTBC, perhaps because the right combination of multiple, fortuitous genetic

events and the particular ecological conditions has occurred only once. More

provocative is the idea that MTBC might just be part of a spectrum of association

to the host occupied by the different MCAN-MTBC groups. The fact that the so-

called Clone A of MCAN strains are more common in the clinic may suggest

differences in ecological niches within the MCAN group [122]. In agreement,

previous publications [122, 27] and our own analysis (Supplementary Figure

10.2) have identified Clone A strains as the closest MCAN evolutionary group to

MTBC.

In the MTBC, the strong and obligate association with new host(s) was

accompanied by new selective pressures. In accordance, we identified genes

in the MTBC genome highly diverging from MCAN and evolving under purifying

selection, suggesting that they have become essential following MTBC’s

transition to an obligate pathogenic life-style. In the final stages of adaptation,

positive selection on genes such as phoR and others [151, 152, 153] likely led

to a narrowing of the host-range and later still to a further fine-tuning during the

spread of the bacteria within the new host species.
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4.4 Materials and methods

Datasets used

Mycobacterium canettii dataset. The M. canettii dataset is composed by

seven draft genomes downloaded from GenBank (CIPT 140010059,

NC 015848.1; CIPT 140060008, NC 019950.1; CIPT 140070008,

NC 019965.1; CIPT 140070002, NZ CAOL00000000.1; CIPT 140070005,

NZ CAOM00000000.1; CIPT 140070013, NZ CAON00000000.1 and CIPT

140070007, NZ CAOO00000000.1).

MTBC datasets. We have downloaded all the available genomes from the

studies of Coll et al. 2014 [93],Walker et al. 2015 [154], Guerra-Assunção et al.

2015 [136] and Comas et al. 2015 [35]. The total number of sequences

originally downloaded were 7,977 genomes. For the dN/dS calculations and

phoR variants screening, we used all the downloaded genomes, with the

objective of incrementing the robustness of the measures and the number of

variants per gene. We identified all clusters at a maximum distance of 15 fixed

SNPs (common threshold in MTB epidemiology), removed samples potentially

coinfected with more than one strain, and then randomly select just one

representative from each cluster. Thus, the final number of genomes for these

analyses were 4,595. The rest of the analyses were performed in smaller

subsets of samples, due to computational limitations or the specific features of

each dataset. A 1,591 sequences subset from the Coll et al. 2014 samples was

used for the recombination analyses within the MTBC, as they include global

representatives of the MTBC diversity. A smaller subset of these, which

included 219 sequences corresponding also to global representatives, was

used for Gubbins because it was not computationally feasible to run the

program with more strains. Finally, genomes from the Guerra-Assunção et al.

2015 dataset, which includes samples taken over a 15-year period in a high

transmission setting (thus enriched in transmission clusters) was used for the

phoR transmission analysis (n=1,187). Information about all the strains used in

this study (including its accession numbers) can be found in External Data 6.
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Phylogenetic inference and parsimony mapping of SNPs

In the subset of 1,591 strains of the MTBC dataset, we identified 140,239

variants by applying the pipeline defined in Chapter 2. As we wanted to identify

nucleotide variants due to recombination events, a stricter filtering was applied

to remove putative recombination signal due to polymorphisms introduced by

other causes. To avoid false positives, we also removed positions in which a

variant was called in at least one strain but also with a gap in at least another

strain. Variants related to antibiotic resistance were obtained from PhyResSe

[94] and were removed from the analysis. Also, non-biallelic variants were

removed from the analysis. To identify variants resulting from mapping errors

we generated fragments of 50 bp. downstream, upstream and midstream of the

variant positions in the reference genome. With these fragments, we performed

a BLAST search over the reference genome to check whether they mapped to

other regions. Variants identified in reads that mapped to more than one region

of the reference genome (query coverage per HSP over 98% and percentage

of identical matches between the query and the reference genome of 98%)

were removed from the analysis.

The remaining variants (94,780) were used to infer a phylogenetic tree

using RAxML [155] with the GTRCATI (GTR + optimization of substitution rates

+ optimization of site-specific evolutionary rates) model of evolution. Variants

were mapped to the phylogeny using the Mesquite suite [156]. Homoplastic

variants were identified based on parsimony criteria. Using these homoplastic

variant positions, we looked for consecutive homoplastic variants (allowing at

least one variant between them). The detected variants were mapped on the

phylogeny using Mesquite to look for coincident phylogenetic patterns.

Linkage-disequilibrium calculation

Using the filtered variant positions (94,780), we used the PLINK software [157]

to calculate the linkage-disequilibrium statistics D’ and R2. To estimate these

values, we took into account variants with a minimum frequency of 0.01 and
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used a sliding window of 10 Kb. To plot the D’ and R2 pattern by variant distance,

we calculated average D’ and R2 values for 50 bp. windows.

Multiple alignment of M. canettii and MTBC

Seven M. canettii draft genomes were aligned to each other and to the ancestor

of MTBC using progressiveMauve [158]. The segmented alignment obtained in

XMFA format was converted to a plain FASTA format using the MTBC ancestor

as reordering reference with a custom Perl script. Positions with gaps in the

reference sequence were removed from the final alignment, so the resulting

aligned genomes had the same size than the reconstructed MTBC ancestor

(4,411,532 Mb). The MTBC pseudogenomes reconstructed from mapping to the

MTBC ancestor from the different datasets described above were concatenated

to the M. canettii alignment obtained in the previous step for further analyses.

From these alignments, homoplastic variants were identified using both,

parsimony and maximum-likelihood approaches [159]. Both approaches

agreed in identifying the same homoplastic variants.

Recombination analyses and phylogenetic evaluation

Besides SNPs, linkage-disequilibrium analysis and Gubbins, RDP4 [160] was

used to detect recombination signal in the MTBC dataset. To mark the regions

reported by Gubbins as potentially recombinant we required at least three of the

methods implemented in RDP4 to agree in showing a significant signal.

Recombination was evaluated in the alignment containing 219 strains from

MTBC and 7 M. canettii and in the one containing the MTBC ancestor and 7

M. canettii. Firstly, repetitive regions (i.e. PPE/PGRS) were masked from both

alignments and, secondly, recombination events were inferred using Gubbins

[161], which identifies clusters of high SNP density as markers.

Gubbins identified 70 potential recombinant regions in the alignment

containing the 7 MCAN strains and the MTBC ancestor. Four of these regions
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were obviated because they fell in regions deleted in several M. canettii strains.

One more region was removed from the analysis because it was extremely

short (41 bp.) and we did not obtain reliable results in the subsequent analyses.

For the remaining 65 fragments a phylogeny was calculated using RAxML

[155] and applying the GTRCATI model. Also, a reference phylogeny was

calculated with the same method using the complete genomes after subtracting

these 65 regions. This reference phylogeny had the same topology as the one

obtained from the complete genomes. To test for phylogenetic incongruence

between the putative recombination fragments and the genome phylogeny, we

applied the Shimodaira-Hasegawa and Expected Likelihood Weight tests

implemented in TREE-PUZZLE [162].

Dating analyses

To infer the age of the 65 recombinant fragments we first reasoned that most of

the mutations found were contributed by recombination and not by mutation

once the fragment had been integrated in the genome. Thus, before dating the

fragments we first removed all the homoplastic variants with other MCAN strain

found in the fragments. The final alignments for the 65 fragments consisted of

only those variants accumulated after the recombination event. We then used

the non-recombinant part of the genome to infer a substitution rate assuming

two different dating scenarios published for the tMRCA [36, 82]. We ran BEAST

for each fragment pre-specifying monophyletic groups and substitution rate

based on the non-recombinant genome phylogenetic reconstruction. We used

an uncorrelated log-normal distribution for the substitution rate in all cases and

a skyline model for population size changes. We ran several chains of up to

10E6 generations sampling every 1E3 generations to ensure independent

convergence of the parameters. Convergence was assessed using Tracer

[163]. For both evolutionary scenarios, the results obtained were largely

congruent and proportional to the age limit imposed for the MTBC ancestor.

The 5ka scenario [82] was selected for plotting the ages in Figures 4.4 and

Supplementary Figure 10.5, as there is now more evidence for this timeframe.
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divSNP analysis

From the MCAN and MTBC ancestor alignment, we extracted those positions

having one variant in all the M. canettii strains and another variant in the MTB

ancestor. The divSNP frequency by nucleotide was calculated by dividing the

total number of divSNPs (5,688) by the total number of bases in the alignment.

Next, the expected abundance of divSNPs for each gene was calculated by

multiplying the nucleotide divSNP frequency by the number of nucleotides in

each gene. From the expected and observed divSNP abundances, we used a

Poisson distribution to calculate the probability of having the observed divSNPs

by chance for each gene. We selected genes having a pFDR ≤ 0.01 using the

q-value from Storey method [164].

Complete mycobacterial genomes for reference strains [21](External Data

7) were downloaded from RefSeq and GenBank. The orthologous genes were

obtained from the amino acid sequences and using the Proteinortho tool [165].

A gene was considered as orthologous based on reciprocal best hits in BLAST.

BLAST analysis required a minimum identity of 25%, a query coverage of 50%

and a maximum e-value of 1E-05. The orthologous genes were aligned using

Clustal-omega [166] and the phylogenies were constructed using RAxML and

applying the PROTCATIAUTO model. The reference phylogeny was

constructed using only the core genome (proteins having orthologous in all the

mycobacterial genomes downloaded) with RAxML using the same options as

above. The reference and alternative phylogenies calculated with the

orthologous genes for the divSNPs enriched genes were manually inspected to

check for congruence.

dN/dS analysis

The potential synonymous and nonsynonymous substitution sites for each

region were calculated using the SNAP tool [167]. The dN/dS ratio for each

region was calculated using equation 4.1.
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Nonsynonymous variants/Nonsynonymous sites
Synonymous variants/Synonymous sites

(4.1)

The dN/dS for the MTBC ancestor was calculated using the divSNPs while

the dN/dS for the MTBC were calculated using 208,238 variants detected in

coding regions from the 4,595 strains in the MTBC global data set. To look for a

robust comparison between both ratios, only genes having at least 1

synonymous and 1 nonsynonymous variants were taken into account. To

compare the dN/dS ratios, both were normalized by the genomic dN/dS for

each taxon (0.24 for the MTBC ancestor and 0.59 for the MTBC). The

difference between the dN/dS ratio was calculated by subtracting the MTBC

dN/dS to that of the MTBC ancestor. The genes that account for the largest

differences in the dN/dS were identified as outliers (equation 4.2) of the

differences distribution [132].

(Q2− 1.5× IQR)

(Q3 + 1.5× IQR)
(4.2)

phoR positive selection analysis

Positive selection on phoR was tested using FUBAR [168] and BUSTED [169].

FUBAR was run with 5 MCMC chains of length 10,000,000. 1,000,000 states

were used as burn-in and a Dirichlet prior of 0.5. BUSTED was run with default

parameters. To study the potential effect of phoR mutations on transmission

efficacy we used the data set from Guerra-Assunção et al. [136]. We identified

SNPs in branches leading either to leaves or to transmission clusters.

Transmission clusters were categorized in large, medium or small according to

the number of isolates in the cluster (large = over 75th percentile,

medium=between 25th and 75th percentile, small = under 25th percentile).

Each gene was scored to check for accumulation of mutations in branches

leading to large transmission clusters according to equation 4.3.
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Score = Large clusters * 3 + Medium clusters (4.3)

Genes with high mutation rates have a higher number of polymorphisms

that could lead to a larger score by chance. To test the probability of obtaining

the observed score by chance, a permutation test was carried out 10,000

times. Each of the identified SNP was randomly reassigned to the same

branches and the score was recalculated for each gene. The expected score

distribution for each gene was compared to the observed score to calculate the

probability. This test was performed for transmission events defined at 10

SNPs. The ages for the variant positions were calculated as node-to-tip

distances. These distances were relativized to the maximum root-to-tip

distance to obtain a relative age value in the [0 - 1] range. In order to have a

common framework, a phylogeny was constructed including all the samples

from the transmission and the reference data sets. The phylogeny was

constructed using RAxML and applying the GTRCATI model. For each variant

position we first identified the node in which the variant appeared. The

node-to-tip distance was calculated afterwards for each node using the geiger

package [170]. Distances were normalized to obtain a relative distance. Later,

all the nonsynonymous variants except the phoR polymorphisms were used as

a reference set. The nonsynonymous phoR variants to be compared were

categorized in two groups, those exclusive to the reference dataset [93] and

those derived from the transmission data set [136].

PhoR domains and structure representation

The PhoR domains structure was inferred by using PFAM [171] and SMART

[172].

The work described in the present chapter has been published as a Research Article:

Chiner-Oms Á., Sánchez-Busó L., Corander J., Gagneux S., Harris S., Young D.,

González-Candelas F., Comas I. Genomic determinants of speciation and spread of the

Mycobacterium tuberculosis complex. Science Advances. In press.
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diversity on the bacterial biological
networks.

5.1 Introduction

In the last years, relevant studies based on TB biological networks analysis

have been published. Overexpression experiments and

chromatin-immunoprecipitation sequencing (ChIP-Seq) data have been used to

produce a detailed map of the interactions and regulatory logics of more than

200 transcription factors (TFs) [173, 174]. In addition, networks of

protein-protein interactions (PPI or interactome) have been derived using both,

experimental and computational approaches [175, 176, 177, 178]. The

enormous amount of data generated is publicly available and can be used to

study the interactions of the bacteria in several ways [179, 180]. For example,

computational models mimicking the regulatory behaviour of the bacteria have

been derived from these networks and were used to predict expression

changes under different conditions [181].

However, these networks have been derived based on H37Rv, a clinical

reference strain. Little attention has been paid to the fact that H37Rv is a

clinical strain used in laboratories for decades and that in many aspects it does

not represent the whole species. Therefore, natural perturbations in the
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biological networks inferred in H37Rv, introduced by naturally occurring

mutations in clinical strains, will likely change the models architecture and the

predictions derived from them.

The phenotypic role of mutations defining lineages has been extensively

studied and some of them are clearly linked to transcriptional differences

between the MTBC lineages [182, 183, 184]. It is also clear that one single

mutation affecting regulatory processes can impact dramatically on the

virulence of the pathogen [135, 185]. In fact, a novel live vaccine, attenuated by

carrying a deletion in the key regulator PhoP, is currently in phase 2A of clinical

trials [186]. In the general introduction it has been stated the implications of the

bacterial genetic diversity for the epidemiology, host immune response and

disease progression of the TB disease. As a result of this diversity, novel

diagnostics, vaccines and treatments may be compromised by failing to

account for the circulating diversity as recently described for several diagnostics

tests based on the detection of the protein of Mpt64 [187]. Thus, we are

completely blind on whether the topology of the regulatory network and the

computational models derived from H37Rv can be extrapolated to other strains

of the MTBC and on how the regulatory modulations are affected by the

existing bacterial diversity. In the case of PPI networks, there is data from

human cells suggesting that the network topology is important for the

distribution of synonymous and nonsynonymous substitutions [188]. The

identification of key functional nodes, necessary for maintaining the interactome

structure and functionality could be of great interest as new biomedical targets.

In this chapter, we derive new gene expression models by pooling existing

H37Rv data and explore their predictive power on genome-wide expression

patterns when natural variations (mutations) found in clinical strains are

considered. We show how different experimental setups can affect the inferred

models of gene expression and regulation and how far we are from predicting,

only from transcriptomic data, the impact of genetic polymorphisms at a

genome-wide expression level. In addition, we study the impact of the global

diversity of the MTBC over the topology of the PPI network. We identify
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network nodes that are key to maintain the interactome structure and function.

5.2 Results

Building and validation of gene expression models based on
strain H37Rv, lineage 4

By taking advantage of recently published experimental datasets testing the

regulatory influences of known TFs, we defined gene expression models for the

laboratory reference strain H37Rv. The datasets included transcription factors

overexpression experiments (TFOE) for ∼200 TFs (∼700 tiling microarray

experimental tests) [173]. Our aim was to model, for each gene, the level of

expression and the resulting changes therein as a function of varying the

expression of each TF. We built the models using a linear regression approach

as described previously by Galagan et al. [181].

Using a backward stepwise algorithm (Figure 5.1, see Materials and

methods for details), we generated 3,960 putative gene expression models.

When, in addition, we required evidence of physical interaction from ChIP-seq

data, the number of initial models was reduced to 755. Therefore, our putative

gene models accounted for 98.3% of the coding capacity of the genome when

physical interaction was not required, and only 19.24% of it when we used the

ChIP-Seq data. Secondly, we cross-validated all the models in the two data

sets and then compared them with random models to discard spurious results.

Following this approach, we discarded 2,744 models for the TFOE and retained

1,216 (30.8%). For the case of ChIP-Seq data, only 29 models were retained

(3.74% of the initial models) (Figure 5.2A). The models derived from TFOEs

alone included a larger number of TFs (regressors) per model, as expected due

to the larger number of regulatory events incorporated. On the contrary, the

models derived from the combination of TFOEs and ChIP-Seq data had fewer

TFs influencing the expression, as they only include those TFs physically

bound to the gene (Figure 5.2). In summary, our approach shows the
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relevance of performing sequential statistical validations of expression models

derived from experimental data.

Figure 5.2: Gene expression computational models. A) Overview of the results
obtained during the building process and refining steps of the computational models
derived from the TFOE data (left) and the ChIP-Seq data (right). B) Distribution of the
number of TFs affecting the target gene on each network model.

There is a limited agreement between the values predicted by the

TFOE-derived models and the observed values (average of the Pearson’s

correlation coefficients = 0.71) (Figure 5.3A) despite being trained by the same

dataset. To evaluate how robust the predictions were to experimental noise, we

compared them with the expression values obtained in a previous, analogous

TFOE experiment [181]. To compare the predictive power of the models across

data sets we used the housekeeping gene Rv0001 (dnaA) as a reference for

the expression values. We measured the average fold-change in expression
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values between dnaA and the remaining genes across all the samples. When

we compared the fold-change with the observed Rustad dataset, we found a

correlation coefficient of 0.98 (p-value < 0.01) (Figure 5.3B). When we

compared the predicted fold-change with the Galagan dataset, the correlation

coefficient was 0.97 (p-value < 0.01). As expected, in the first case the

correlation was almost perfect, because the models are making predictions

over the same data set used to calculate their regressors’ coefficients.

However, predictions over a similar but different data set were less accurate but

still a high predictive power was achieved.

Figure 5.3: Comparison of models performance over different data sets. A)
Distribution of the Pearson correlation values obtained when comparing each gene
expression measure with its predicted expression. B) There is one data point for each
model. Each dot in a plot is a measure of the gene expression fold-change between dnaA
and the gene represented by this model. The y-axis corresponds to the predicted fold-
change in gene expression while the x-axis corresponds to the measured fold-change.
The upper row refers to the models derived from the TFOE data set. The lower row
contains the models derived from the ChIP-Seq data set. The values in the left column
were calculated when training and predictions were performed with the same data set.
The values in the right column were calculated when different data sets were used for
training and predicting.

Having established that gene expression models can predict gene

expression trends in TFOEs experiments, we tried to predict absolute

expression values in the Galagan data set [181]. We correctly predicted the
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expression for only 128 genes (10.52% of TFOEs-derived gene models, pFDR

≤ 0.01). In fact, the comparison of average expression values for each gene

between the two datasets (Galagan vs Rustad) revealed that only in 18 cases

the mean expression values for the same gene were not different (pFDR <

0.01, see Supplementary Figure 10.6 for more information). Taken together

these results show that experimental noise across laboratories has a large

influence on the results for analogous experiments, at least for the prediction of

absolute quantitative expression levels.

Regulatory network based on statistically validated
interactions

The 1,216 expression models obtained from the TFOE data set included

11,253 regulatory relationships. These relationships are the ones selected after

applying the backward step-wise method in the building process of the models

(see Material and methods for details). Although all of them led to a lower

Bayesian Information Criterion in their respective models, most of these

relationships are based on a weak regulatory signal. To select the strongest

links between TFs and gene regulation influence, we kept those leading to a

significant change in gene expression (two-fold change) according to TFOE

data [173]. We built a new regulatory network with these subsets of regulatory

relationships. The new network comprised 3,396 regulatory events across

1,102 genes (37.15% of the events and 38.76% of the genes from the network

proposed by Rustad et al. (2014)). The distribution of the in-degree parameter

of the network (Figure 5.4) revealed that most genes are regulated by an

intermediate number of factors whereas a minority is regulated by a large or

small number of them. On the other hand, the distribution of the out-degree

parameter followed the expected power-law distribution [189], with most TFs

regulating a small amount of genes and a few genes affecting the regulation of

many (see Table 5.1 for more details).

In agreement with the original networks of Rustad et al. and Galagan et al.,

in this new regulatory network Rv0023 and Rv0081 are the TFs that regulate
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Figure 5.4: Validated gene expression network. Comparison of the out- and in-degree
distributions between the network derived from TFOE data and the network derived in this
study.

Network TFOE derived network Network based on validated interactions
Number of nodes 2,843 1,102
Number of edges 9,142 3,396

Clustreing coefficient 0.065 0.004
Network diameter 12 3

Shortest paths 114,080 4,352
Characteristic path length 3,996 1,239

Mean closeness 1.35E-07 8.27E-07
Mean radiality 3.95 6.54

Mean betweenness 120.2 0.945
Mean eccentricity 5 6.15

Table 5.1: Comparison of mean centralities and descriptive statistics between the
TFOE derived network and the new proposed one.
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the largest number of genes (672 and 627, respectively). Thus, these genes are

regulatory hubs of M. tuberculosis. On the other hand, Rv3202c is the gene with

the largest number of TFs influencing its expression, as it is indirectly regulated

by 26 TFs. This gene has ATPase and helicase activities [133]. The regulatory

subnetwork of Rv3202c is related to regulatory DNA and RNA processes as well

as to response to external stimuli, transport and secretion. The new network

derived can be found in the External Data 8 file.

Transcription factors are not universally conserved in the
MTBC

Once gene expression models and a regulatory network for H37Rv were

available, we tried to predict the phenotypic effect of natural genetic variation

observed in circulating clinical strains. For this, we first examined the degree of

conservation of the studied TFs across the MTBC. Previous studies have

identified mutations in the genes that code for the PhoPR system in MTBC

strains that had important effects on the pathogen’s virulence [135], so that not

only SNPs in the regulatory regions of the TF but also those located in the

coding region could lead to differences in TF activity. Thus, we focused our

analyses on mutations falling in regulatory regions but also on those coding

mutations that might impair the normal function of the TF.

Using the 219 strains representatives of the global diversity previously used

in Chapter 4 [36], we identified a total of 28 transcription factors (TFs), among

those present in the TFOE data [173], that are missing or likely dysfunctional

(as defined in the Materials and methods section) in one or more clinical

strains, including 4 affecting complete lineages of the MTBC (Figure 5.5).

Some of these transcription factors are missing in complete lineages and

sublineages as they are in known RDs used as phylogenetic markers [30] (all

the deletions detected shown in External Data 9A). For example, Rv1994c and

Rv2478c are in RD743 and RD715 and they affect the entire L5 [190]. Those

lineages represent up to 50% of the tuberculosis cases in West Africa [191].

We have also identified single point mutations disrupting the normal functioning
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of some TFs (Figure 5.5 and External Data 9B). This is the case of sirR

(Rv2788). An early stop codon mutation was found in all the strains of L1. In

the proposed regulatory network, Rv2788 regulates 22 genes (Figure 5.6B)

and, accordingly, 16 of those genes were expressed differentially in L1 strains

with respect to H37Rv using RNAseq data [182]. In our estimates (Figure

5.6A), L1 accounts for roughly 18% of the strains causing active tuberculosis

cases each year (almost 1.9 million cases/year). In light of the existing variation

in TFs and other regulatory elements among clinical MTBC strains, it is very

important to take the circulating diversity when building comprehensive

regulatory networks, as these may differ among strains with different variants.

Next, in order to identify the main biological processes involved, we

analyzed the relative abundance of Gene Ontology (GO) terms in the

regulatory subnetworks for each affected TF. Most of the TFs identified as

missing in clinical strains have an important role, with a direct or indirect

regulatory influence in up to 210 genes. The GO analysis showed that a wide

range of processes are significantly overrepresented among affected TFs,

including specific metabolic, regulation, pathogenicity and response to external

stimuli pathways (External Data 9). Some deletions affecting TFs appear in

single strains, such as one affecting Rv1994c in a strain of L2 or Rv1776c in a

strain of L3. A deletion of gene Rv1985c, a known antigen, was also found in a

group of strains belonging to L1. It is also remarkable that a stop-codon gain

mutation was found in Rv0465c (also known as ramB) in one strain of L4.

RamB is related to the glyoxylate cycle in the pathogen and it has been

proposed to play an important role in the adaptive response of the bacteria to

different host environments during infection [192]. Moreover, the regulatory

subnetwork of ramB is involved in several processes such as regulation of RNA

biosynthesis, response to hypoxia or interaction with the host.

We also identified 117 SNPs located in the regulatory regions of 44 TFs

(Figure 5.5, External Data 9C). Most of these SNPs affect primary or

alternative transcription start sites (TSS), as defined previously [127]; two of

them correspond to antisense TSS and two more were internal TSS.
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Figure 5.5: MTBC phylogeny comprising the seven major lineages. The figure
represents the number of TFs missing or potentially affected in their regulatory functions
in one or more clinical strains from an MTBC reference dataset (n=219 strains). Mutations
affecting a TF are mapped to the corresponding internal/external node of the phylogeny
and highlighted in colour. Green colour indicates total or partial deletions of a TF, yellow
indicates stop-codon gain or loss, and blue indicates a SNP in the regulatory region of a
TF.

Seventy-four of these SNPs affect one single strain, with the remaining 43

affecting more than one strain. Interestingly, only a few of them affect complete

lineages, such as T89200G, which impacts the master regulator Rv0081 in

modern L2, 3, 4 and 7 (76% of the circulating strains), or C422745T, which

impacts Rv0353 in all lineages except 5 and 6. Rv0081 regulates 188 genes

(including tcrR, which also regulates 26 genes) (Figure 5.6B). Hence, a SNP

potentially affecting Rv0081 regulation could have an important effect on the

regulatory network of the bacteria [135]. Besides, we found one homoplastic
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Figure 5.6: Global incidence of the different lineages and representative examples
of mutations affecting complete lineages. A) Pie chart showing the estimated number
of annual tuberculosis cases attributed to each lineage and a barplot showing the
incidence of the different lineages by region. L7 is not shown due to its low incidence
in global terms. The data related to the disease incidence by region come from the
WHO [1] and the lineage abundance for each region from a previous work [30]. B)
Examples of regulatory subnetworks of transcription factors affected by mutations in
one or more lineages. From upper-left to lower-right: regulatory subnetwork of Rv2788
(early stop-codon in all L1 strains); regulatory subnetwork of Rv1994c (deleted in all
L5 strains); regulatory sub-network of Rv0081 (SNP in regulatory region found in all
the strains screened from L2,3,4 and 7) and regulatory sub-network of Rv3676 (SNP in
regulatory region in all the strains from L3). Only TF (yellow nodes) were labeled. Green
edges indicate positive regulations whereas red edges indicate negative regulation. The
intensity of the edges is related to the influence of the TFon the gene (the darker the
edge, the higher the regulatory effect).

SNP (C2965900T, which affects Rv2642) that has emerged independently in

strains of three different lineages. It has been shown previously that some of

the SNPs screened affect the expression of their corresponding TF. For

example, SNP G3500149A has been reported to be involved in the regulation

of TF Rv3133c in Beijing strains (L2), as it creates a TANNNT box leading to

the overexpression of the DosR regulon [182, 193]. The External Data 10

includes a detailed view of the phylogeny with all the variants marked on it.
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In-silico expression prediction of genetic backgrounds
observed in a clinical and in a vaccine strain

To explore how well the H37Rv-based expression models and the validated

network predicted the impact of the genetic background in the transcriptional

landscape of the bacteria, we selected a L1 strain (T83) from the comparative

genomics analysis. For T83 there is publicly available expression dataset [182]

and we have identified a deletion in TF Rv1985c and an early stop-codon in TF

Rv2788. Rv1985c or Rv2788 are present in 169 gene models. By reducing the

expression of Rv1985c and Rv2788 to its minimum level, we created gene

models mimicking the T83 genetic background. With these modifications, we

were able to predict that 148 genes will have a significant change in their

absolute expression value (pFDR < 0.05). To formally compare with

experimental data, we used the RNA-seq data sets from H37Rv and T83. Of

those 148 genes only 71 changed in the same direction as determined in

RNA-seq dataset irrespective of the absolute expression value. Moreover, out

of the 148 genes only 64 showed differential gene expression in RNA-seq

experiments with the same strain and with no correlation between predicted

and observed values (Pearson correlation coefficient = 0.08, p-value = 0.48)

(Figure 5.7A). Although conclusions from a single strain are necessarily

provisional, it is also true that mutations in T83 are present in several strains of

L1. Thus, from the limited data available we speculate that gene expression

models based on H37Rv and derived from TFOE are not likely to predict

accurately enough the transcriptional landscape of the MTBC lineages.

We reasoned that, given that it is not possible to predict expression changes

in different genetic backgrounds, gene expression models might still be valid for

experiments using the H37Rv background. As an example, we selected PhoP

for several reasons: (i) it is one of the main regulators in the MTBC [185, 181];

(ii) it is the main gene deleted in a vaccine candidate that is already in clinical

trial phase 2A [186]; (iii) there are large datasets available on the expression

changes in knock-out strains using two different approaches, microarray [134]

and RNAseq [194]; and (iv) there is strong evidence that mutations in the
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Figure 5.7: Comparison between experimental and predicted fold-changes. A) The
x-axis corresponds to the measured log2 fold-change in gene expression between H37Rv
and the T83 strain in Rose et al. (2013)[182]. The y-axis corresponds to the predicted
fold-changes calculated with the predictive models obtained in this work. B) The x-axis
corresponds to the measured log2 fold-change in gene expression between the wild-type
strain and the ∆phoP strain in Solans et al. (2014) [194]. The y-axis corresponds to the
predicted fold-changes calculated with the predictive models.

PhoPR regulatory regions impact fitness of clinical strains in the human host

(see Chapter 4 and [135]).

From the TFOE, we identified 218 models in which phoP (Rv0757) is

present as a regressor. We lowered the expression value of phoP in the

models to the minimum, thus simulating that the gene is knocked-out.

Comparing the simulated knock-out with the wild-type models, we detected 188

genes with a statistically significant difference in expression (pFDR < 0.05).

Very little overlap was found between the 188 genes predicted and those found

experimentally to be impacted by a knock-out mutant. Of the 188 predicted

genes, Gonzalo-Asensio et al. (2008) described only 10 in microarray

experiments. We also contrasted our predictions with an RNA-seq data set of a

phoP knockout H37Rv strain [194]. We first compared whether the predicted

expression for the 188 genes followed the same direction as the ones from the

RNA-seq data set. In 96 cases the predictions agreed with the experimental

values but in 92 cases the predictions failed. Cohen’s kappa test showed a

slight agreement between the real and the predicted values (kappa = 0.05).

Next, we compared the 188 predictive models showing differential expression
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with the genes showing differential expression in the data set (adjusted p-value

< 0.05) and we found only 9 coincidences. For these 9 genes, we observed no

statistically significant correlation (Pearson correlation coefficient = 0.59,

p-value = 0.09) (Figure 5.7B) between the predicted and measured gene

expression fold-change in the mutant.

We tested whether the lack of correspondence between our predictions and

the experimental data might be due to the former being obtained from TFOE

whereas the later were defined after analyzing a knock-out strain. Figure 5.8

shows a graphical comparison between the ChIP-Seq coverage of the

over-expressed, the knock-out mutant, and the wild-type strains. Using the

wild-type coverage vs the phoP mutant coverage as a negative control, we

were able to infer the binding sites of PhoP in the H37Rv strain [194]. By

comparing these results with the binding sites inferred from the TFOE strains,

we observed differences in several genes (the 9 genes showing differences in

ChIP-Seq coverage are highlighted in Figure 5.8A). Details for two of these

genes are shown in Figure 5.8B and more examples are included in

Supplementary Figure 10.7. For example, for the Rv0789c gene there is no

evidence of PhoP regulation when the mutant and the wild-type are compared.

However, a peak appears in the overexpressed strain and strong regulatory

evidence has been reported [173]. In total, from 139 genes predicted to be

regulated by PhoP from the TFOE data and 51 from the mutant data, only 16

genes overlapped. Thus, different methodologies to test the function of a gene

(overexpression versus deletion) partially account for the limited predictive

power of the H37Rv gene expression models even when the mutant is derived

from a H37Rv background.

Shaping of genetic diversity by protein-protein interaction
networks

Hence, we noticed that the bacterial regulatory network was not conserved and

that this fact has implications on predictions derived from H37Rv experiments.

Next, we wondered about the conservation degree of other biological networks
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Figure 5.8: ChIP-Seq coverage comparison and regulatory influences between the
phoP knock-out, wild-type and phoP overexpressed strains. A) Circle representation
of the H37Rv reference genome. From outside to inside: ChIP-Seq coverage of phoP
knock-out mutant, wild-type and TFOE. The inner links represent the regulatory influence
of phoP derived from TFOE (blue), mutant strain (purple) and their overlap (black). B)
Detail of two selected genes with regulatory influences derived from TFOE that do not
match the evidence from WT and the mutant strain.

80



Results

derived from the same clinical reference strain. Beyond regulation, cellular

functionalities rely on proteins, which are the ultimate product of the cell.

Proteins interact to perform a whole catalog of biological functions. Until now,

several M. tuberculosis PPI networks have been derived [175, 176, 177, 178].

These networks try to model how proteins interact to achieve full functionality

but, as in the case of the regulatory network, they were all derived by using the

H37Rv strain. So, the MTBC genetic diversity was not taken into account when

constructing these network models.

We were not able to select a representative PPI network to analyze from all

the published ones, because all of them share a minimum overlap. Thus, we

decided to download the protein-protein interactions contained in the STRING

database [178] because they are curated, updated and derived from

experimental data, scientific literature, computational algorithms and other

databases. Moreover, STRING provides a confidence score (range 0-1) for

each protein-protein interaction. So, we have downloaded all the interactions in

the database having a confidence score > 0.7 and created a PPI network to be

used in posterior analyses. This network had 3,272 nodes and 44,784 edges

connecting them.

Essential proteins tend to occupy central positions

Essential proteins of M. tuberculosis have been characterized previously in in-

vivo [195] and in-vitro [196] assays. Almost all of these proteins are present in

the PPI network. As these proteins are required for the pathogen survival, they

could have an important role in the biological network function and structure. In

graph theory, the relative importance of a node is determined by its centrality

values. These attributes summarize structural characteristics of the nodes and

are related to their position in the network. The more central the node the more

important it is in terms of network stability and communication between nodes. It

has been stated that, in biological networks, nodes with higher centrality values

have more relevance for the network’s biological function [189].

81



Impact of the global genetic diversity on the bacterial biological networks.

We have observed statistical differences (Welch t-test, p-value < 0.01) in

the distribution of centrality values between essential and non-essential nodes

(Figure 5.9A). To explore the level of association between the centrality of a

node and their essentiality, we have constructed a logistic regression model (see

the Materials and methods section). This model determines the probability of a

protein of being essential according to a combination of centrality measures. We

applied the model to each protein in the network. When splitting the predictions

by the protein’s essentiality classification, it seems clear that the probability of

being essential is higher for the essential proteins than for the non-essential

ones (Figure 5.9B).

This result means that essential proteins have a characteristic set of

centrality measures that differ from the non-essential proteins. If we check the

coefficients of the regression model, that is, the weight of each centrality value

over the model predictions (Table 5.2), we see that the high probability of being

essential would be determined by high values of degree, closeness and

eigenvector centralities while low values of eccentricity and radiality [189, 108].

These values are those that define central proteins. So that, it seems that

essential proteins tend to occupy central positions in the PPI network.

Centrality Degree Closeness Eigenvector Eccentricity Radiality
Value 1.6E-03 5.50E+04 1.32E+00 -2.19E-01 -4.15E-01

Table 5.2: Coefficients of the computational predictive model derived from the
centrality values of the nodes.

Central proteins of the interactome accumulate less
mutations impairing gene function

To test how mutations present in the M. tuberculosis natural diversity affect the

PPI network we screened the MTBC genomic dataset described in Chapter 4.

From the 4,595 strains we obtained a total of 235,254 SNPs. We kept the SNPs

that affect coding genes (200,033, 85.02% of the total SNPs) as we wanted to

map them onto the PPI network. We used the SIFT4G score calculated for
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each mutation (see General Methods for details) to classify the SNPs as those

having high-impact in gene function (HI, SIFT score ≤ 0.15) and those having

low-impact (LI, SIFT score > 0.15). For the total amount of SNPs in coding

regions we obtained 75,545 as HI and 124,488 as LI. With this information, we

set a protein as ‘Impacted’ if the number of HI variants found across all the

samples was higher than the number of LI variants. We did not take into

account proteins belonging to PE/PPE family, phages and those having

repetitive regions as they are prone to false positive SNPs. So that, we had 280

proteins of the network that are impacted versus 2,992 that are not. To analyze

the effect of the mutations in terms of PPI structure and function, we first

created a clusterized version of the interactome. We defined communities

(clusters of proteins) which are densely connected subgraphs. All the nodes

belonging to a community are more connected between them than with nodes

from other communities. These communities include proteins that are related in

similar biological processes [197]. Later, we calculated an impact value for

each community of proteins. The community impact value was derived from the

number of impacted proteins in the community (those having a higher number

of SNPs potentially affecting gene function). We observed a significant

correlation between some centrality measures and the impact value of a

community (Figure 5.10A)

So, communities with a higher impact value (those having a high

percentage of impacted proteins) tended be periferic while communities placed

in the core of the network accumulated less impacted proteins. Finally, instead

of putting all the variants together, we repeated the same analysis for each

lineage. We noticed that the community impact patterns of the different

lineages clustered almost according to its phylogenetic relationships (Figure

5.10B). So, close lineages (in phylogenetic terms) had similar communities

affected, probably because of sharing common phylogenetic variants. It is

remarkable however, that all the patterns were different, and we can observe

that the protein communities are not equally impacted in all the lineages.
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Figure 5.10: Impact of the mutations that potentially affect gene function on the
PPI network. A) The most impacted protein communities of the network are those
that are more periferic, while the central ones accumulate less HI mutations. B) The
distinct lineages have different protein communities impacted. The clustering derived
from the communities impact value is highly congruent with the phylogenetic topology of
the MTBC.
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5.3 Discussion

We have shown that the genetic diversity naturally present in the MTBC has

impact on the biological networks. Until now, in-silico modeling of these

networks has not taken into account this diversity, and only the clinical

reference strain H37Rv has been used to derive these approximations. Overall,

our results suggest that using a reference strain for generating complex

network models only grabs a minor part of the true phenotypic variation, thus

leading to inaccurate predictions when using these models.

Regarding the regulation of gene expression, we have tested the predictive

power of state-of-the-art M. tuberculosis regulatory networks and expression

models when the system is disturbed by (i) experimental noise, (ii) mutations

associated to a clinical strain with a different genetic background to that of the

training data set, and (iii) a knock-out mutation in the key regulator PhoP in the

reference strain used for the training data set. For the genetic background and

single mutations predictions our results show very little overlap between the

genes predicted to be significantly impacted and those determined

experimentally.

One striking result is that gene expression models are not statistically

different from random generated models in 66.87% of the cases. This result

suggests that subtle impacts of TFs in expression maybe missing even for a

data set that comprises the construction of 206 TFOEs strains and 698

microarray for the analysis. In this analysis, only the TFs having a strong signal

were taken into account. Background noise introduced by the experimental

system prevented us from incorporating TFs with more subtle effects. Thus, we

cannot discard the possibility that the sum of weak effects may account for

some of the expression differences. For the remaining models there is a

moderate correlation, with predicted absolute quantitative expression (r = 0.71)

and a high correlation (r = 0.98) to predicted fold-changes using dnaA to

normalize. When applied to an analogous data set, we found a good

agreement with fold-change data (r = 0.93) but almost none when we tried to
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predict absolute expression values (128 out of 1216). Thus, although the

models grab the intensity of the interaction they are not able of quantifying the

changes.

The limitations of the models, even when applied to the same data used to

train them, can be explained by two different, non-mutually excluding

alternatives.

Firstly, our results show that the statistical validation of gene expression

models is essential to remove methodology-dependent effects that may or may

not correspond to actual biological differences and contrasted biological effects.

Only 1,216 gene models derived from the TFOE dataset and 29 from the

ChIP-Seq were significantly different from random-generated gene expression

models. In addition, predictions with an alternative data set, generated in a

different laboratory but following the same protocols, show that absolute

quantification of gene expression is not possible with the current models. This

suggests that, in order to understand the impact of different perturbations in the

system such as genetic mutations, the noise introduced by the experimental

setting must be taken into account, especially in genes with a low expression

level [198].

Secondly, the regulatory network inferred is highly dependent on the

experimental methodology. Overexpression of transcription factors is a

common, widely used technique to identify regulatory influences but it can fail

in making accurate predictions when an increase in gene expression has no

physiological effect or, on the contrary, it can overestimate the regulatory effect

due to a loss of specificity [199]. A recent work with Mycoplasma pneumoniae

demonstrated that the overexpression of regulatory molecules (asRNAs in this

case) leads to an overestimation of the regulatory effect of these molecules

[200]. In addition, the ChIP-Seq technique might introduce false positives when

overexpressing the TF [201]. Besides, other studies [202] have shown that

there are many sRNAs in bacteria that regulate gene expression. Their effect is

not reflected in this type of networks and analyses, as we only look for the

amount of mRNA produced by a gene. Finally, the amount of mRNA does not
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always agree with the amount of translated protein [203, 204]. However, new

experimental techniques, such as CRISPRi, are being tested in M. tuberculosis

and other organisms to characterize and modify gene expression [205].

Our results show that the different TFs tested in H37Rv are not universally

conserved. Some of those mutations (deletions and single point mutations) are

present in complete lineages and in up to 76% of the circulating strains. Using

comparative genomic data we have predicted the transcriptional landscape of

a L1 strain. We found 64 out of 148 matches between the genes predicted

to be impacted and those found in an RNA-seq experiment [182]. Strain T83

belongs to L1 and its genetic distance to H37Rv, the strain used to build the

models, is more than 1,800 SNPs [36]. Thus, other genetic differences besides

those found in TFs between this strain and the one used to infer the regulatory

influences will certainly impact the genome-wide transcriptional landscape of

T83. For example, we have mapped two SNPs in the regulatory region of TF

Rv0353 in T83. Current models do not take into account the potential influence

of these SNPs nor that of other regulatory layers that possibly differ between

lineages. In addition, we have previously shown that specific SNPs of L1 alter

the expression levels of sense and antisense transcripts by means of new TSSs

[182]. Our predictions on a PhoP knock-out H37Rv strain were also poor. The

regulatory influence was predicted correctly only for 96 out of 188 genes.

Modulation of the regulatory processes does not always agree with changes

in translation rates, as post-transcriptional mechanisms are known to have an

effect over the translation of the final protein product [206, 207]. So that, it

could be the case that the impact of the genetic diversity over the regulatory

network could be balanced by post-transcriptional mechanisms in the different

MTBC genetic backgrounds. This fact perhaps could lead to convergent

translation patterns despite the heterogeneity found in the regulatory network

due to genetic variants. However, nonsynonymous mutations that potentially

affect protein function could have an impact in the way that proteins interact (in

a post-traductional stage). In this way, we have seen that the interactome

structure is highly related with the biological function of the proteins. The most
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important proteins, those essential for bacterial survival, are located in the

central region of the interactome, being key hubs for communication and

involved in multiple processes. The proteins tend to form clusters with its

related neighbours and these structures prevent the accumulation of mutations

that affect the gene function in the most important regions of the interactome.

This type of structure confers a high robustness to random mutations that can

alter the network structure and function [189]. However, it is susceptible to be

disrupted with directed “attacks” over specific key nodes. We could use the

central proteins of the network structure as potential biomedical targets as a

direct “attack” on them could affect multiple essential functions of the pathogen

physiology.

Additionally, we have checked that different lineages have different nodes

impacted. Again, the PPI network used was derived from H37Rv. Similarly to

what happens with the regulatory network, some of the network edges

(interactions between proteins) could be different as there are genetic

differences naturally present in MTBC strains. Will the network map change in

the different lineages? Could the proteins affected by HI mutations be

bypassed thus maintaining the network functionality? If this is the case, we

should need a different network representation for each lineage, to look for

central proteins/communities that could be potential biomedical targets.

5.4 Materials and methods

Datasets and techniques used

The main microarray expression data sets were obtained from Rustad et al.

[173] (GEO accession number GSE59086). The ChIP-Seq data were obtained

from Minsch et al. [174]. The TFOE-derived network used to compare with the

TFOE network generated in this work was obtained from Rustad et al. [173].

The phoP mutant data were obtained from Solans et al. [194] (GEO accession

number GSE54241). The RNA-seq data from L1 were obtained from Rose et
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al.[182] (EBI ENA accession number ERP002122). The H37Rv RNA-seq data

were obtained from Arnvig et al.[202].

Gene expression models construction

The regulatory relationships used for model construction were obtained from

Rustad et al.[173] data set. We selected all the regulatory interactions with

adjusted p-value≤0.01 (Benjamini-Hochberg) regardless the fold-change in the

expression values. In consequence, all the statistically significant regulatory

influences (even the weak ones) were taken into account. From Minsch et al.

(2015), we selected the physical bindings that demonstrated a regulatory effect

on the level of gene expression of the target. To select the TFs to be

incorporated into gene-expression models we compared two different

strategies. Firstly, for each gene expression model we selected those TFs that

had a large influence on the expression response (Moderated t-test, adjusted

p-value<0.01 and fold-change>2). Alternatively, we selected as relevant TFs

all the genes showing regulatory influence (Moderated t-test, adjusted

p-value<0.01) without taking into account the intensity of the effect. The latter

models were trimmed a posteriori following a backward stepwise methodology.

In both cases, we evaluated whether the predicted values departed from

random estimates by generating at least 20 random models incorporating some

of the 200 TFs. To identify which of the two strategies predicted better the

observed expression values in the Rustad et al. data set and to evaluate the

strength of the prediction, we computed the correlation between predicted and

real values of gene expression. We obtained an average correlation of 0.32 for

the a priori approach and 0.71 for the a posteriori approach. As the differences

in correlation estimates between both strategies were statistically significant

(t-test, p-value<0.01), we selected the latter method to construct the final

models. The following process was performed for each target gene in the

TFOE- and the ChIP-Seq-derived models:

1. All the TFs affecting the gene were selected as regressors for the model.

A TF is said to affect a gene if there is statistical evidence that the expression
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of the gene (moderated t-test adjusted p-valueleq0.01) changes when the TF

is over-expressed following the procedure described in Rustad et al. [173]. In

addition, the RNA polymerase alpha chain gene, rpoA (Rv3457c), and the sigma

factor gene, sigA (Rv2703), were included as normalization factors. Interactions

between TFs were also taken into account. The model structure [181] was based

on equation 5.1.

y = a+

T∑
i=1

bixi +

T∑
i=1

T∑
j=i+1

cijxixj + dxsigA + exrpoA + ε (5.1)

where y is the target gene expression, xi are the expression values of the

selected TFs (from i = 1 to T ), a, b, d and e are the linear coefficients in the

regression model, c are the interaction coefficients, and ε is the error term.

2. A linear regression model with all the TFs selected as regressors and

based on the previous structure was constructed. Next, the model was

parameterized using microarray data from Rustad et al. [173]. This data set

consists of 698 tiling microarrays, so that the model was fitted using 698 data

points corresponding to expression values of the strains present in the data set.

3. The Bayesian Information Criterion (BIC) and the Akaike Information

Criterion (AIC) associated to the model were calculated. To limit the overfitting

error we used the BIC in the TFOE-derived models because it penalizes

models with a large number of regressors [208]. In turn, the AIC was used

when calculating models from the ChIP-Seq data set given the low number of

regressors involved.

4. We sequentially eliminated from the model regressors whose removal led

to the largest decrease in the BIC/AIC. So, we deleted from the model those

terms whose removal had a minor or null contribution on the model’s

performance. In biological terms, we filtered out the TFs that led to a minor or

weak regulatory response in the target gene, in comparison with the rest of the

TFs. The remaining TFs were retained and we returned to step 2. In case we

did not observe a decrease in the BIC/AIC after the removal of any regressor,
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we considered that model as optimal for the corresponding gene.

5. A Fisher’s F-test was performed to check the null hypothesis that the

retained regressors do not have predictive power [208]. P-values were adjusted

to multiple testing by Benjamini and Hochberg’s false discovery rate (FDR) [100]

and all models with adjusted p-value≥0.05 were rejected.

Cross-validation of the models

We checked the initial models obtained above in a 10-fold cross-validation. For

each gene:

1. The optimal model selected was parameterized using a random subset of

the 90% TFOE data set as a training-set.

2. Next, the remaining 10% of the data set was used as a test-set to make

predictions. A Fisher’s F-test was performed to check differences between

residuals of the training set and the test set. Also, the Root Mean Squared

Error (RMSE) [209] was obtained when predicting over the test set.

3. Steps 1 and 2 were repeated 10 times (10-fold cross-validation) We

retained those models that showed no difference between predictions over the

training set and the test set, by comparing the average adjusted p-value of the

F-test over the 10 iterations (α≥0.05). In some cases, we could not find

differences between residuals but the squared error was high. In consequence,

we also rejected models with RMSE>Q3+1.5 * IQR, as they were considered

outliers of the RMSE distribution [132].

Comparisons to random models

We considered each TF of the data sets as a potential regulator. For each

gene, we listed all the TFs that do not have a regulatory influence on it. From

this list, we created 100 random subsets of TFs. The number of elements in

each subset was equal to the number of real factors with regulatory influence

on the corresponding gene. With this random subset of TFs, we followed the
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steps described above to create the random models. Also, the 10-fold

cross-validation was performed for each random model. For each model, a

Welch’s t-test was performed to compare the distribution of p-values from the

10-fold cross-validation of the real model versus the random ones. P-values

from Welch’s tests were adjusted by Storey’s method [164]. Tests showing a

pFDR≤0.01 were accepted as having a better fit than random models. Also,

the RMSE distributions of random models were tested versus the real ones by

means of a Welch’s t-test, correcting the p-values with Storey’s method. Tests

showing a pFDR≤0.05 were accepted.

Comparison to a different TFOEs dataset

To check the ability of the models to perform accurate predictions over different

datasets, we used a TFOE dataset similar to the one used to built the models

but derived only from 50 TFs construct strains [181]. As gene expression

values can have very different ranges it is not advisable to compare the

numeric values directly. Predictive models are uncertain when predicting in a

range of values different to the ones used to train them [208]. So, to compare

both data sets we used the expression value of dnaA to normalize both the

predicted values from the models and the absolute expression values from the

experiments by Galagan et al. [181] and Rustad et al.[173]). Pearson’s

correlation was calculated between predicted and observed fold-changes.

Evolutionary conservation of TFs within the MTBC

We have analyzed the 219 representative strains of the complex described in

Chapter 4. A custom script was used to search for TFs with at least 25% of

their gene length deleted. A manual inspection was performed for the detected

TF deletions to filter false positives and mapping errors. Also, single nucleotide

polymorphisms (SNPs) leading to stop-codon gains or losses, and point

mutations affecting TF regulatory regions [127] were extracted from this

dataset. The terminology used to classify the TSSs follows that of Cortes et
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al.[127].

We defined the regulatory sub-network associated to each TF as that defined

by the one-step distance nodes to the TFOE network. We studied for each sub-

network the enrichment in certain functional categories as defined by the GO

classification [210] by using the tools described in the Chapter 3.

RNA-seq analysis

Expression data from H37Rv and L1 strains were obtained from Rose et al.[182].

The differential expression analysis was performed using the DESeq2 package

[107]. Differentially expressed genes were those with an adjusted p-value of

0.05. Differential expression analyses were performed over H37Rv versus all

L1 strains to test the differences in those genes regulated by Rv2788 (sirR). In

addition, we specifically analyzed differentially expressed genes between strains

T83 (L1) and H37Rv (L4).

Predicting the impact of genetic polymorphisms in the
regulatory network

To predict the impact of the genetic background on the transcriptional

landscape of the M. tuberculosis complex we chose a L1 strain, namely T83.

We have identified two genetic mutations in L1 which likely have a major impact

on the functionality of TFs. One of the mutations corresponds to a deletion

affecting TF Rv1985c whereas the other is in an early stop codon in TF

Rv2788. To simulate a transcriptional landscape for L1, the expression values

of both TFs were set to the minimum value found in the training dataset

because standard regression models are only valid to make predictions in the

same data range used to parameterize the model [208]. Gene expression

values predicted for T83 were compared to those obtained from H37Rv

expression models. We performed a Welch’s t-test over the expression values.

P-values were adjusted by Storey’s method. A pFDR<0.05 was considered for

accepting the difference between models as significant. For the genes that
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showed differential expression, we calculated the log2 fold-change between

H37Rv and T83. We compared these values with those obtained from the

RNA-seq analysis. For a qualitative approach, we checked whether changes in

expression values had the same sign (positive for induction and negative for

repression). We constructed a 22 matrix with the predicted effect vs the

measured effect and a Cohen’s kappa test was performed over this matrix to

check the agreement between predicted and real data. To test the quantitative

accuracy of the models we selected those genes that showed differential

expression in the RNA-seq data set (adjusted p-value<0.05) and in the

predicted expression to calculate Pearson’s correlation. Similarly, to make

predictions on a phoP mutant in a H37Rv background we set its expression to

the minimum value found in the training data set for this TF. The analysis was

performed following the steps described above. To analyze how accurately the

models reflect fold-changes in experimental data, we used an RNA-seq data

from a phoP mutant and H37Rv [194] as explained in the previous section. We

compared the log2-based fold-changes between the predictive models and

experimental data comparisons. To compare the ChIP-Seq coverages in the

different cases, we obtained raw data from the wild-type strain and the phoP

mutant from Solans et al. [194]. We also downloaded ChIP-Seq data from the

overexpression experiment of phoP (Rv0757 B167) from the MTB network

portal [174]. The circular diagram was constructed with the Circos tool [211]

and the values from the regulatory influence were extracted from the TFOE

data set.

PPI network construction and analysis

Every interaction involving two proteins of the M. tuberculosis H37Rv strain,

and having a confidence score > 0.7, was retrieved from the STRING database

[178]. Centrality values were calculated by using the igraph package from R

[108]. A logistic regression model was constructed, using a generalized linear

model with the distribution function specified as binomial. The independent

variable of the model was the probability of being essential, and the predictors
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were the centrality values calculated for each protein. Mutation affecting coding

regions were extracted from the MTBC global dataset (n=4,595) defined in

Chapter 4. The potential impact over the gene function of each mutation was

inferred by using SIFT4G [92]. This tool works by predicting the potential

impact of an amino-acid substitution over the gene function, by comparing the

conservation of these gene in a group of closely related species. We

established a threshold of 0.15 in the SIFT score to define a mutation as

potentially affecting gene function. The SIFT manual establish a threshold of

0.05 to define a mutations as impacting gene function. However, and due to the

low genetic variability found in the MTBC, we have tried to be more

conservative and we have penalized more the fact of finding a nonsynonymous

mutation. The clusters of proteins (communities) were defined by using the

walktrap algorithm [212] which defines dense connected clusters of nodes by

performing multiple random “walks” across the network edges. For each

community an impact value was calculated. The community impact value was

defined as the number of impacted proteins in the community corrected by the

number of proteins in this specific community. A protein was set as impacted if

the number of variants that potentially affect gene function (SIFT value < 0.15)

was higher than the number of variants that potentially do not affect gene

function (SIFT value > 0.15).

Part of the work described in the present chapter has been published as:

Chiner-Oms Á., González-Candelas F., Comas I. Gene expression models based on a

reference laboratory strain are poor predictors of Mycobacterium tuberculosis complex

transcriptional diversity. Scientific Reports:8(1),3813. DOI:10.1038/s41598-018-22237-

5
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The roles of mutation and
methylation on transcriptional
heterogeneity

6.1 Introduction

We have previously stated that, despite the low diversity found in the MTBC,

there are biological differences between lineages which result in different

phenotypic characteristics. For example, there are multiple examples of the

association of MTBC lineages with specific populations [213, 214] and in some

settings this association could be linked to differential transmission efficacy

depending on the host population [30, 47]. Apart from transmission, the

progression from latent infection to active disease differs among the different

MTBC members [42]. Moreover, there are differences in growth rates for

different MTBC strains in different in-vitro and in-vivo conditions [38]. Some of

these phenotypic characteristics seem to depend on transcriptional differences,

illustrated by the gene expression differences reported in MTBC strains grown

in-vitro and in-cellula [184, 152].

In Chapter 5, we have shown that regulatory layers in the MTBC are

multiple and that expression models based on H37Rv do not adjust the

introducing perturbations. Also, we have shown that the MTBC regulatory

networks vary across strains and lineages, with several transcription factors
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carrying mutations that potentially impair regulatory function (External Data 9).

For example, sequence variants that affect coding regions of a signaling

cascade [147] or create new transcriptional start sites (TSS) [182] result in

major gene expression changes, especially if they affect regulatory hubs. Some

of these new TSS were previously reported to be favoured by a genome-wide

mutational bias in the MTBC towards AT genetic changes [215, 183]. However

we still miss the link between individual variants, underlying population

processes and and phylogenetically-wide transcriptional diversity.

In addition, there is now substantial evidence in bacteria that DNA

methylation can affect transcription, and that changes in methylation patterns

can modify transcription patterns over long or short timescales [216]. The

development of Single Molecule Real Time (SMRT) sequencing now allows

direct detection of this DNA methylation [217]. Previous work has shown that

DNA modifications induced by the MamA methyltransferase affect transcription

of several genes in H37Rv [218]. Moreover, other regulatory mechanisms such

as non-coding RNAs are known to be present among the MTBC members,

although their roles have not yet been clearly defined [219]. All these factors,

together with previously published transcriptional data [152, 184] suggest that

the MTBC has a rich transcriptional diversity.

Considering that the genetic heterogeneity among lineages could lead to

differences in gene expression regulatory mechanisms, it is of particular

interest to characterize the gene expression signatures of each MTBC lineage.

As phenotypic traits are affected by the expression of specific genes and the

distinct MTBC members show heterogeneous phenotypes, those differences

could be related to specific gene expression patterns for each MTBC clade.

However, gene expression studies to date have been based on microarray

technology [184] or have used RNA-seq but addressing only single strains,

some phylogenetic groups or compared to distant mycobacteria [183, 182].

Therefore, there is a lack of transcriptomic studies based on recent technology

(RNA-seq) and taking into account the whole MTBC diversity.

In this chapter, we studied the transcriptomic signatures of different MTBC
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members, from RNA-seq data, and identify differentially expressed genes using

a novel phylogeny-based approach. In addition, we have revisited the

mutational biases observed in MTBC populations and quantified the direct

impact of individual genetic changes on transcriptional patterns. We extend our

analyses to the impact of individual variants in methylation patterns and

assessed its role in the regulation of in-vitro gene expression. We demonstrate

the hypothesis, previously suggested [183, 182], that the universal

genome-wide mutational bias on MTBC leads to a higher phenotypic plasticity

at the transcriptome level.

6.2 Results

RNA-seq data and analysis

We selected 19 strains from clinical samples which are representative of the

MTBC global diversity (Supplementary Figure 10.8). Each lineage (L1-6) was

represented by at least 3 strains. Two replicates per strain were grown in

standard 7H9 medium with the addition of 30 mM pyruvate to account for

strains with potential pyruvate kinase mutations (Supplementary Table 10.2).

Cells were harvested for DNA and RNA extraction at an OD600 between 0.5

and 0.7.

From the RNA extracted, ribosomal RNA was depleted by using a

Ribo-Zero Magnetic Kit. After that, sequencing libraries were prepared using

the TrueSeq stranded Illumina protocol and sequenced on an Illumina HiSeq

2500 platform. RNA-seq analysis was performed using a custom analysis

pipeline (see Materials and methods for details). From the DNA extracted,

long-read sequencing was performed on the PacBio RSII platform. In addition

to transcriptome and long-read sequencing, short-read sequences for the

selected strains were obtained from a previous publication [220].
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Global transcriptomic patterns

As a control, we first checked the agreement between sample replicates. We

calculated the pairwise Pearson correlation between each pair of replicates. An

almost perfect correlation (range 0.9996 - 0.9999) was achieved between each

pair of replicates derived from the same strain. So, after evaluating the

minimum level of variability between both replicates, the coverage data from the

two biological replicates of each sample were merged for the subsequent

analyses.

Figure 6.1: Global transcriptomic profiles of the samples A) The PCA plot shows that
samples belonging to the same phylogenetic clade tend to group closely, except for two
cases. B) A cluster analysis reinforces the trend derived from the PCA, with almost all
the samples belonging to the same lineage clustering together.

Next, we surveyed the transcriptomic profile of the whole MTBC. A principal

component analysis (PCA) was performed with the gene expression profiles of

all the samples. Samples belonging to the same phylogenetic lineage group

closely in the PCA (Figure 6.1A). M. africanum (L5 and L6) and M. tuberculosis

(L1-4) samples split along the first component (31% of the variance), grouping

according to their phylogenetic clade. In addition, strains belonging to L1 were

found between the MAF group and the modern lineages (L2, L3 and L4). As a

further step, we performed an unsupervised hierarchical clustering (Euclidean

distance, clustering method complete). The results agreed with the

observations derived from the PCA, with the samples clustering according to
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their phylogenetic relationships (Figure 6.1B). However, there were two

exceptions. N0031 belongs to L2 but its transcriptomic signature was different

from other L2 strains. It was previously reported that N0031 belongs to a basal

branch of L2 in which the dosR regulon is differentially expressed in

comparison with L2 Beijing strains. Thus, its transcriptomic profile is expected

to differ from others strains belonging to the same lineage [182]. On the other

hand, N1177 belongs to L6 but it clustered with L5 samples. After the initial

analysis, we realized that N1177 harbours a mutation in the rpoB gene

(D435Y) that confers resistance to rifampicin. As this mutation affects the

RNA-polymerase and genome-wide transcriptional, levels it is not surprising

that it does not cluster together with the other L6 strains. Therefore, for

subsequent analyses we removed N1177 as it may not be representative of the

common L6 transcriptional profile.

As the RNA-seq profiles were congruent with the topology of the MTBC

phylogeny, we investigated whether the number of differentially expressed

genes between different clades was related to the genetic distance between

them. We performed a Phylogenetically aware Differentially Expressed Genes

(PDEG) analysis (see Materials and methods for details) to infer the number of

differentially expressed genes on each of the main branches of the phylogeny

(Supplementary Table 10.3 and External Data 11A). The results were highly

variable, with a maximum of 42 PDEG genes in the branch leading to L6 and a

minimum of 7 in the common branch of the modern lineages (Figure 6.2A). We

observed a reasonable trend in the data with the number of PDEG genes

varying according to the genetic distance between groups (Pearson’s

correlation value 0.57, p-value = 0.04). This suggests that the differences in the

transcriptomic profiles between each group were accumulated gradually as the

MTBC lineages diverged. However, there were two branches that break slightly

away from this trend. The split between M. tuberculosis and the two M.

africanum lineages was defined by a short genetic distance but by a high

number of PDEG genes while in the branch leading to the modern lineages we

found the opposite situation. A complete list of the PDEG genes detected in
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each of the main branches can be found in External Data 11A.

Figure 6.2: Gene expression changes across the MTBC phylogeny. A) Number of
genes differentially expressed (red up, blue down) in each of the main branches of the
MTBC phylogeny. The phylogeny was constructed using Illumina sequencing data, the
Maximum-Likelihood algorithm and a bootstrapping of 1,000 replicates. B) Number of
PDEG genes in each of the main MTBC branches plotted against the genetic distances.

Differential expression between phylogenetic clades

We performed an enrichment analysis of Gene Ontology functions for the up-

and down-regulated sets of genes for each of the branches analyzed above.

This analysis highlights the relative abundance of specific biological functions in

a set of genes in comparison to the rest of the genome. Diverse biological

functions appear as up- and down-regulated in each of the branches (Table 6.1

and External Data 11B), most of them related to host interactions and

metabolic processes. Several studies have shown that strains belonging to

different MTBC lineages show phenotypic differences when growing in-vitro

and in-vivo [41, 42, 43]. In this context it is not surprising that biological

functions related with host environment, nutrient uptake and metabolic

processes are differentially modulated across the MTBC.

The deepest phylogenetic split split in the MTBC phylogeny is between MAF

and MTB (Figure 6.2A). As stated above, the short genetic distance between

both groups contrasts with a high number of differentially expressed genes. 18

genes were significantly upregulated and 9 were significantly downregulated

between both groups (BH adjusted p-value < 0.05, fold-change > 1.5).
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Branch Up-regulated genes Down-regulated genes

MTB-MAF
Response to iron

starvation, siderophore
metabolic process

L6 Response to copper ion Reactive nitrogen species
metabolic process

L5 Reactive nitrogen species
metabolic process

Response to host
immune response and

oxygen-containing
compounds

L1
Growth of symbiont in

host cell and response to
acid chemical

L4 Oxalate metabolic
process

Molybdopterin cofactor
biosynthetic process

L3 & L2 common
branch

Response to hypoxia and
sulfolipid biosynthetic

process

L3 Response to heat

L2

Phosphorelay signal
transduction system and
regulation of fatty acid

metabolic process

Beijing Response to hypoxia and
signalling

Phospholipid catabolic
process

Table 6.1: Gene Ontology enrichment analysis. Main GO functions enriched in the
up- and down-regulated genes for each branch of the PDGE analysis. More detail can
be found in the External Data 11.
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Almost all of the mbt operon genes are upregulated in the MTB clade (mbtI,

mbtC, mbtH, mbtE, mbtG, mbtD, mbtB and mbtF ). These genes code for the

siderophore (mycobactin) system that is necessary for iron acquisition in

iron-limited environments (i.e. macrophages)[221]. Genes ctpG and ctpC were

also overexpressed and are involved in metal cation transport [222]. However,

the mbtJ gene was not upregulated but its antisense transcript was highly

overexpressed in MTB suggesting a differential regulation between MAF and

MTB. On the other hand, gene Rv0216, which is known to be essential for

bacterial survival during infection, is overexpressed in MAF [223]. It is also

interesting that ncRNA-mcr16, a non-coding RNA located in the fadB locus,

appears as differentially down-regulated in MTB in comparison with MAF. FadB

is involved in mycolic acid synthesis [224] and the PDEG of this ncRNA could

be potentially involved in transcriptional regulation of FadB.

Although MAF lineages are geographically and genetically related, studies

show that there are phenotypic and genetic differences between both clades

[225, 226]. There is a high genetic distance (Figure 6.2A) between both

lineages. Consequently, many PDEG genes appear in the branches that lead to

current strains in both groups. The VapBC3 and VapBC5 toxin-antitoxin

systems are upregulated in the L6 clade. Toxin-antitoxin systems have been

proposed to play a role in response to stress. Specifically, VapBC3 and

VapBC5 are up-regulated in moderately low pH conditions (i.e., the

phagosome) [227]. As the pathogen is able to reside in the acidic phagosome

during infection [228], the basal up-regulation of this system in L6 could be

related to adaptation to the host environment during disease progression. We

also found upregulated genes related to the copper ion response (lpqS,

Rv0967, Rv2642 and Rv2963) in this lineage. Copper ions affect bacteria

during the infectious process and the management of high levels of this

substrate is required for full virulence in animal infections [229]. With respect to

L5, the most upregulated gene is acyP. AcyP is an acylphosphatase involved in

the pathway of pyruvate metabolism [230]. Also nirB and nirD, which are known

to play a role during dormancy [231], were upregulated. On the other hand, an
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important number of genes involved in parasitic functions such as virulence,

persistence and macrophage infection are downregulated in L5 (External Data

11). For example, icl, fadB2, tgs2 and mmpL12 are significantly

underexpressed with a fold-change range [∼2 - 3.4].

L1 belongs to the so-called ancient lineages with M. africanum. However,

it is genetically closer to the modern lineages than to the M. africanum strains.

One of the most upregulated genes in the L1 clade is virS, which encodes a

transcriptional regulator essential for the transcription of the virulence-related

mymA operon under acidic conditions [232]. The mymA operon is known to be

required for growth in macrophages and spleen. This upregulation of virS seems

to have no effect on mymA regulation in this condition, as previously reported

[182]. It is also interesting that mpt63, which encodes an epitope recognized by

the immune system [233], had a strong antisense signal in L1 strains.

The modern lineages form a monophyletic clade which is ∼300 SNPs distant

from the common ancestor of all the MTB strains. In this branch only 8 genes

are upregulated. From these genes, 3 of them seem to form an operon (nrdE,

nrdI and nrdH). NrdE is an essential protein involved in DNA replication and its

transcriptional levels vary according to oxygen level [234]. Interestingly, these

genes are significantly down-regulated in the L1 strains.

Regarding each of the single modern lineages, the L4 branch had only 4

genes upregulated. From them, Rv2159 and Rv2160A form part of an operon

previously identified as being overexpressed in M. tuberculosis H37Rv strain

compared to M. bovis strains due to the loss of a transcriptional repressor

[235]. In contrast, genes involved in molybdopterin cofactor biosynthesis

(moaC and moaX ) [236] were downregulated in this branch as well as part of

the mce2 operon (mce2C, mce2D, lprL and mce2F ). mce2 mutant strains

showed an attenuated phenotype in a mouse model of infection, with less

pro-inflammatory cytokine recruitment and lower mortality rates in comparison

with the wild-type [237].

In the branch leading to L3, 11 genes were upregulated while 6 were
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repressed. Surprisingly, the most upregulated gene in L3 strains was oxyR.

This gene is related to detoxification of ROS, contributing to the survival of the

bacterium in the host, and also related to isoniazid resistance [238, 239]. It was

reported previously that oxyR is inactivated in H37Rv, BCG, M. africanum and

M. microtti [238]. Intriguingly, we have found that in L3, this gene had a 3-fold

increase in expression compared to L2. The ahpC and ahpD loci upstream of

oxyR were also overexpressed in L3 strains.

For L2, we have studied 4 representative strains. N0031 which belongs to

a basal branch of this lineage and N0052, N0145 and N0155 which belong to

the Beijing clade. As we noted in the global transcriptomic analysis, the N0031

transcriptomic profile was markedly different to those of the Beijing group. The

DosR/DosS system was overexpressed in Beijing strains as previously reported

[182] as well as the genes regulated by them. The DosR regulon is related

to virulence and response to hypoxia [240]. In contrast, plcD, a gene related

with extrathoracic progression of the disease and pathogenesis, was strongly

repressed (fold-change = -7.7).

Non-random processes lead to higher transcriptional
plasticity

Next we tried to link specific transcriptional changes to genetic variants and to

underlying mutational biases. It has been reported previously that mutations

can create new Pribnow boxes (TANNNT motifs) which are recognised by

sigma factor A, SigA, and lead to the overexpression of nearby genes

[182, 127, 183]. To test the influence of such mutations, we scanned all the

single nucleotide variants across the 19 samples that either create or disrupt

TANNNT motifs. We found 603 variants that created new Pribnow boxes in at

least one strain and 81 that disrupted existing boxes (External Data 12). We

investigated whether the observed impact on the Pribnow boxes resulted from

stochastic mechanisms (i.e. genetic drift) or from non-random processes (i.e.

selection). By comparing the number of expected versus observed occurrences

(see Materials and methods), we have obtained a probability of 0.006 for the
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observed number of disrupted boxes by chance and a probability of 2.5E-54 for

the observed number of new boxes by random processes. So, it seems that

non-random processes are acting to modulate the number of Pribnow boxes in

the MTBC.

In addition, we randomly introduced all the mutations observed in the

genome and repeated the process 1,000 times (Figure 6.3A). We obtained a

probability of 0 for having at least the same number of observed new boxes

(n=683) and a probability of 0.015 of having at least the same number of

disrupted boxes (n = 81). Hence, it is unlikely that stochastic processes have

been responsible for the observed appearance of Pribnow boxes across the

MTBC. In addition when we looked at other sigma factors’ -10 consensus

sequences such as SigE (cGTT), SigG (CGANCA) and SigJ (CGTCCT) [241],

no difference in the permutation was identified supporting the hypothesis that

new SigA boxes are maintained by selection and not drift.

Figure 6.3: Non-random processes impact the emergence and disruption of
Pribnow boxes. A) Distribution of new (green) and disrupted (purple) Pribnow boxes
in 1,000 random simulations. Red arrows mark the observed value for each type of event
in our dataset. B) Distribution of the alternative alleles from 235,254 mutations (obtained
from 4,595 clinical samples of the MTBC). There is a clear bias favouring new T and A
alleles.

We also noted that there was a remarkable difference between the number

of new versus disrupted Pribnow boxes (ratio = 7.88). To get insights into the

mechanism behind this figure, we randomly reordered all the mutations

observed in our dataset by maintaining the alternative alleles but reshuffling the
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genomic positions. After that, we searched for new/disrupted Pribnow boxes in

these ‘reordered’ mutations. A Fisher-exact test showed that there was no

difference between real and reordered mutations in terms of new/disrupted

boxes ratio (p-value = 0.39). Thus, the higher ratio observed between both type

of events is independent of the genomic context in which the new allele

appears. It seems that these differences are caused by the type of substitution

(TA alternative alleles could create TANNNT motifs, while mutation of wild-type

TA bases disrupts them). It is known that there is a bias towards TA

substitutions in bacteria [215]. Hence, this could be the cause of the notable

difference between new acquisition and loss of TANNNT motifs. Using the

global dataset described in Chapter 4, (n=4,595), we checked the alternative

alleles derived from single nucleotide mutations and we observed that this

pattern was also present across the MTBC (Figure 6.3B). Thus, the mutational

signature of the MTBC facilitates the appearance of new Pribnow boxes which,

ultimately, supplies the bacteria with a higher transcriptional plasticity.

We tested the potential impact on gene expression of these new and

disrupted Pribnow boxes. (see Materials and methods, External Data 12). We

took into account only those mutations affecting the clades defined previously

in the PDEG as the analysis of individual strains could lead to inconsistent

results due to the lack of statistical power. We identified a trend in which new

boxes increased the transcription of nearby genes and the disruption of boxes

decreased gene expression (Figure 6.4A).

Interestingly, 57 genes identified above as PDEG seem to be differentially

expressed by means of a new or disrupted Pribnow box (External Data 11A),

meaning that∼26% of the transcriptional variability found across the MTBC main

clades was due to single point mutations. Despite the genetic context in which

the Pribnow box appears (Figure 6.4C, External Data 12) there is always an

increase in transcription rates of nearby genes. Transcription is found to be

induced in the sense or antisense direction, depending on the strand in which

the mutation appeared, creating a complex regulatory scenario (Figure 6.4C).

For example, a mutation previously reported in L3 upstream of the ahpC gene
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Figure 6.4: Impact of natural mutations in the appearance and disruption of
Pribnow boxes. A) Effect of the new/disrupted Pribnow boxes over the expression of
nearby genes. New boxes tend to upregulate gene expression while disrupted boxes
tend to down regulate transcription. B) The G2726105A mutation, common to all L3
strains, create two new Pribnow boxes in the intergenic region of oxyR and ahpC. These
new boxes are the potential explanation for the observed upregulation of oxyR, ahpC and
ahpD in the L3 strains. C) New Pribnow boxes can increase sense and/or antisense
expression, depending on the genomic context on which the mutation appears.

creates a new TANNNT motif in both the forward and reverse strands (Figure

6.4B). This new box could be the cause of the observed overexpression of oxyR,

ahpC and ahpD in all L3 strains reported in the section above (External Data

11A and 12).

New boxes enhancing the transcription of complete genes or operons (i.e.

those falling in intergenic regions) are more probable to be functionally relevant.

An interesting case is the upregulation of the ribonucleotide reductase genes

nrdE, nrdI and nrdH (Rv3051c-Rv3053c operon) in the modern lineages
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(External Data 11A). The expression of these genes are regulated by the

transcription factor NrdR [242]. It was previously hypothesized [243] that a new

TSS created by the G3415332A variant present in all the modern lineages

could potentially lead to NrdR-independent expression of the operon. Our

results support this prediction, as we observe an upregulation of these genes in

the strains that harbour this mutation. Other interesting case is the narG

operon. In our analysis, we detected that the intergenic region located

upstream the narG gene accumulates 2 variants that create 4 different

TANNNT motifs (External Data 12). The C1287112T variant is found in the

common branch of the modern lineages and seem to upregulate the

transcription of the narG operon in the modern lineages compared with L6 and

and L1 (Supplementary Figure 10.9). NarG is a nitrate reductase known to be

related with the switch from dormancy to active state [244]. L5 had also the

NarG operon upregulated but by means of an unidentified mechanism. The

other variant found was C1287068T, which creates a new TANNNT motif in

N0153 (L1) and increases the expression of the operon in N0153 with respect

to the other L1 strains (Supplementary Figure 10.9A). To gain a global

understanding of the abundance of these variants, we checked their distribution

in the 4,595 strain dataset (Chapter 4). In addition to the variants reported

above, we found 2 more variants, C1287081T and G1287182T, that also

created a new Pribnow box. Interestingly, all the variants that generate new

Pribnow boxes upstream were found to be highly homoplastic (Supplementary

Figure 10.9A) suggesting the action of positive selection. Most of our analyses

can only be focused in the deeper branches of the phylogeny. However, the

data from narG suggests that new Pribnow boxes fuelled by genome-wide

mutational biases is a mechanism under selection to access transcriptional

diversity in clinical strains. One more obvious case was the previously reported

G3500149A SNP present in Beijing strains which leads to the overexpression

of the dosR regulon [182].
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Differential methylation patterns across the MTBC

From our RNA-seq analysis it is clear that there are marked differences in gene

expression between the main MTBC strain groups. Several mechanisms are

known to impact gene expression in addition to sequence changes. Recent

studies have shown that DNA methylation can have an effect on gene

expression in bacteria [216]. To test the potential transcriptional effect of

methylation in the MTBC we tried to link differential methylation (DM) patterns

between samples in our dataset with differences in gene expression. To do this,

each sample was sequenced using PacBio technology and analyzed with the

SMRT Analysis Software to identify methyltransferase recognition motifs (see

Materials and methods for details). Consistent with previous reports, we

identified three main methylated motifs in almost all the samples

[245, 246, 247]. The frequency of methylated sequences among these motifs

was near 100% in almost all the samples. In some of the strains however, the

sequences recognized by the methyltransferase were not methylated

(frequency of methylated motifs 0%), suggesting that the methyltransferase that

recognises this pattern is inactive (Table 6.2).

The three main methyltransferases that recognise these motifs are MamA,

MamB and HdsM/HsdS.1/HsdS. Interestingly, in two cases (N0052 and N0136)

we observed that only a fraction of the motifs recognised by MamA were

methylated (20% in N0052 and 56% in N0136). The sequences recognised by

MamB and HdsM/HsdS.1/HsdS in N0052 and N0091, respectively, were also

partially methylated along the genome (∼70% of the sequences), suggesting

that the activity of those methyltransferases was reduced, but not eliminated.

We wanted to identify the genetic variants that could be responsible for

these functional differences. We therefore analysed the methyltransferase

coding genes in the strains lacking methylation of one or more of the three

motifs. From that, we identified several nonsynonymous SNPs potentially

involved in the methyltransferase inactivation (or partial inactivation) (Table

6.2). Some of these variants have already been reported [246] while others are
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novel. Curiously, mamA in N0052 carries the same mutation as mamA in

N0145 and N0155, although the activity in N0052 was only partially lost,

compared to full loss of activity in the latter two, suggesting other genetic

variants outside the gene may be having an effect. We expanded our analysis

to the bigger dataset of 4,595 strains to get a global picture of the

methyltransferase conservation degree. Some of these variants located deep in

the phylogeny affected complete lineages while others were more recent and

affected only a subset of strains (Figure 6.5). For example, of the W136R and

G152S mutations that were found in MamA inactive strains, G152S was found

in a subset of L4.3.3 strains and a small clade of L1.1.2 (it is homoplastic) while

W136R affected a subset of L1.2.1 samples. Interestingly, a new mamB variant

(D59G) was found also in these strains potentially linked to MamB inactivation.

On the other hand, a T393A variant was found to affect hsdM in a subset of L6

strains potentially affecting the methyltransferase activity in those strains.

To gain a wider perspective on the main MTBC methyltransferase diversity,

we analyzed all the variants present in these genes in the larger dataset. In all

the methyltransferase coding genes, we found nonsynonymous variants

(External Data 13), most of them potentially compromising gene functionality.

The dN/dS values for mamA (0.75) and mamB (0.72) were slightly higher than

the mean dN/dS value for non-essential genes (0.66 [87]). In contrast,

HdsM/HsdS.1/HsdS has a different pattern, with the genes that encode for the

specificity units hsdS (0.73) and hsdS.1 (0.69) having similar values than

mamA and mamB, and the gene that encode for the methyltransferase unit

hsdM (0.5) showing a value similar to that of the essential genes (0.53 [87]).

The impact of DM on gene expression is subtle and lineage
independent

DM in regulatory regions has been reported as potentially affecting gene

expression in H37Rv [218]. We wanted to check if DM naturally present in our

strains could be linked to differential gene expression. To do that, we looked for

SigA recognition motifs (TANNNT / GNNANNNT [183]) in gene promoter
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Figure 6.5: Methyltransferase activity of the MTBC. Distribution of the characterized
mutations that potentially impair methyltransferase function on the global dataset.

regions (-50 bp upstream the TSS previously defined [127]) that overlap with

methyltransferase recognition motifs. We managed to identify SigA recognition

motifs for 13 genes overlapping with the MamA motif, 24 with the

HdsM/HsdS.1/HsdS motif and with the MamB motif (Figure 6.2B). To account

for differential gene expression due to DM and not for other evolutionary

reasons, we compared gene expression values in strains which belonged to the

same lineage but in which the specific methylase was either active or inactive.

This was the case for MamA in L1 and L2, HdsM/HsdS.1/HsdS in L4 and L6,

and MamB in L4 (Table 6.2).

First, we compared the expression of the 13 genes identified in both
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Figure 6.6: Impact of DM on gene expression. A) Gene expression differences
between with SigA recognition motifs differentially methylated by each of the three
methyltransferases. Red line maks a 0 fold-change in gene expression (no differences).
The expression of each gene was tested in both situations, methylated and non-
methylated strains, in independent lineages (when possible). B) Different overlapping
patterns found between SigA recognition motifs and the methylated motifs. The red
adenines in the motif are the methylated ones.

situations (MamA activated or inactivated) in L1 and L2 strains. We observed

that almost all genes increase their expression values in the methylated strains

in both lineages, matching previous observations in H37Rv [218] (Figure 6.2A).

However, we identified some exceptions in which the gene expression behaved

differently in each lineage. This was the case for example for Rv3272. In L1,

this gene showed a lower expression in methylated strains (N0072 and N0153)
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than in the non-methylated strain (N0157). Rv3272 is regulated by the

transcription factor Rv0022c which had an early-stop codon in the N0157

strains [248]. This type of polymorphism could be the cause of the discordant

results. For MamB, we only found 2 genes where SigA and MamB motifs

overlapped. Even so, for these two genes we observed the same effect as in

MamA DM strains.

However, for HdsM/HsdS.1/HsdS we did not observe this pattern of

changes in gene expression. The overlap between SigA recognition motifs and

HdsM/HsdS.1/HsdS motifs in the regulatory regions seemed to have no impact

on the gene expression. In some cases the genes increased their expression in

the non-methylated strains while some others behave in the opposite manner.

Moreover, this behaviour was not congruent in L4 and L6 as half of the genes

showed the same regulatory response in both lineages while the other half

behave differently in each lineage. So, MamB and MamA methylation over SigA

motifs seems to cause a similar effect independently of the strain genetic

background while HdsM/HsdS.1/HsdS seems to have no effect.

We searched for other sigma factors apart from SigA that could potentially

have an overlap between their recognition motifs and methyltransferase

recognition motifs. We found that the SigB recognition motif (NNGNNG) could

overlap, so we applied the same analysis as for SigA. However, DM seemed to

have no effect on SigB regulated genes. It is known that SigB plays a role

during stress response [249] but it is dispensable for growth. As the RNA-seq

samples were collected during exponential growth (applying no stress), DM

over SigB influenced genes could show little or no differential expression.

A different mechanism for HdsM/HsdS.1/HsdS gene
expression regulation

Although we were not able to link HsdM DM in the SigA sites with regulation of

gene expression, the natural variability of HsdM found in the MTBC suggests

that there may be some biological relevance associated with this protein. We
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therefore created an HsdM mutant by deleting the hsdM gene in a N1283

background (L4).

We performed a transcriptomic analysis comparing the ∆hsdM strain and

the wild-type. An initial analysis showed differences between the strains, as the

transcriptomes split into two groups in a PCA analysis (Figure 6.7A). In the

Differential Expression (DE) analysis, we observed that these differences were

mainly driven by a small number of genes (BH adj-pvalue < 0.05 and

log2fold-change > 1, External Data 14, Figure 6.7B). In N1283-∆hsdM,

several genes were increased in expression in comparison with the wild-type.

First, hsdS.1 expression was increased in the mutant, suggesting that its

regulation is linked to hsdM (which is found upstream in the H37Rv genomic

context). In addition, a set of 7 consecutive genes (Rv0081-Rv0087),

potentially forming an operon, were found to have increased expression.

Interestingly, Rv0081 is a transcriptional hub involved in the regulation of

multiple genes [181, 248, 173], including the hyc-family genes, which have

homology to so-called EHR (energy-converting hydrogenases related)

complexes. Evolutionarily, EHR proteins stand between complex 1 and

NiFe-hydrogenases [250] and their functions have yet to be determined. The

EHR complex of the MTBC is with high certainty not a functional hydrogenase,

because M. tuberculosis lacks the cluster of assembly genes needed to mature

NiFe centers and insert them in to the protein [251]. In contrast, Rv1813c,

Rv0080, Rv3131 (all hypothetical proteins) were decreased in expression in the

mutant, as well as ctpJ. Thus, HsdM methylation has an effect on gene

expression, but the mechanism seems to be different to that of MamA and

MamB, as the genes reported above did not have any overlap between SigA

and HsdM motifs. Moreover, we found no bases methylated by HsdM near

these genes, suggesting an indirect effect of HsdM DM on gene expression.
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Figure 6.7: Gene expression differences due to an hsdM deletion. A) Overall
transcriptomic profiles of the wild-type versus the ∆hsdM strains. B) Volcano-plot of
the gene expression differences of the wild-type versus de mutant strains. A small
numbers of genes showed significative differential expression (3 down-regulated and 10
up-regulated).

6.3 Discussion

Our results show that the different MTBC clades have their own transcriptomic

signature. Each main lineage showed a transcriptomic landscape, clearly

separated from the rest of the lineages. However, mutations impacting key

regulators can blur these separations and alter the transcriptomic profile of the

strains carrying these mutations. An example was strain N1177, which carries

a single mutation in rpoB gene conferring rifampicin resistance which modified

the transcriptional levels of multiple genes.

Our phylogeny-based approach allowed us to identify gene expression

changes that took place during the evolution of the MTBC. We observed that,

as the MTBC diverged into the different lineages, the expression of specific

genes varied. There was a moderate correlation between increasing genetic

distance and increasing gene expression differences. Modification of gene

expression could be a rapid mechanism of physiological adaptation to a new

environment, without the need to substantially change the genome. This seems

to have been the case when MAF and MTB split from a common ancestor. In a

relatively short genetic distance, many genes changed their expression. We

propose that a sudden environmental change (possibly a change in host

population) rapidly selected nascent phylogenetic groups that behaved
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differentially in terms of gene expression, or that standing variation in regulation

allowed the ancestor to differentially specialise in different environments. In

accordance with this, enrichment in genes involved in metal homeostasis may

be related to different concentrations of ions in different host populations or

animals [252]. For example, ctpA has been found to be under positive selection

in ancient strains of animal origins infecting humans [82]. This could be related

to the point at which the basal MTBC clades diverged, following the human

population migrations [36, 82]. The opposite situation seems to have occurred

in the modern lineages. They seem to have not accumulated large

transcriptomic differences although a large genetic distance separates them

from their common ancestor.

The GO analysis showed that the main functions affected by the expression

differences were those related to nutrient uptake and the macrophage

environmental conditions, despite the genes involved being different in each

clade. This reinforces the idea that the different lineages have adapted to

different hosts, not only at the gene sequence level, but also by altering the

expression levels of specific genes. Thus, the variability in gene expression

patterns found in the different clades could be related to the adaptation to

specific host populations (i.e. different environments).

The analyses of the genetic bases of expression differences between

phylogenetic clades reveals an interplay of natural selection and mutational

processes. Up to 26% of the core expression differences between lineages

were due to single point mutation creating new Pribnow boxes in gene

regulatory regions. The number of new Pribnow boxes are more than expected

by chance and thus selection probably played a role fixing expression

differences. Importantly, the underlying AT mutational bias across the genome

has been a source of expression diversity through random generation of new

Pribnow boxes, as previously theorized [183]. The reason why selection is

apparent for SigA motifs but not for other sigma factors remains unclear but at

least two non-mutually exclusive explanations are possible. On the one hand,

SNPs impacting SigA recognition motifs can have an impact across
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environmental conditions while SNPs for other sigma factors only will be

relevant for specific conditions. They may happen but are more difficult to

detect in our analyses. On the other hand, SigA motifs are enriched in AT

bases and thus it is not surprising that new SigA motifs are generated at a

faster pace leaving more room for selection to act.

Our results also show that methylation seems to play a minimal role in

shaping in-vitro gene expression. We have not been able to detect a regulatory

impact for the main methyltransferases, except for a subtle effect on few genes

having overlapping SigA and MamA/MamB recognition motifs, consistent with

previous reports [218]. This could be due to our inability to identify genes that

are actually influenced by the methyltransferases, as the ∆hsdM strain shows

differential expression in genes that we had not previously identified as

potentially influenced by HsdM. MamA/MamB methylation motifs do overlap

with SigA recognition motifs, affecting the transcription mediated by SigA,

however, this seems to not be the case for HsdM. It is intriguing that the GC

content in MamA/MamB recognition motifs is higher than in HsdM motifs. As

the transcription machinery needs to open the DNA strands, it is possible

methylation could have some synergistic effect with the high content of GC

bases on initiation of transcription, reducing the potential effect of the

methylation in the AT-rich HsdM motifs. Whatever the mechanism, the analysis

of the hsdM mutant has shown that HsdM-mediated methylation does have an

effect on gene expression of several genes, although the exact mechanism

remains to be elucidated.

It seems clear from our results that there has been a convergence of the

methylation patterns in the different phylogenetic groups of the MTBC, instead

of a lineage-specific pattern as proposed previously [246]. Equivalent

phenotypes (non-methylation of specific motifs) appear to be produced by

different genetic variations. For example, W136R mutations in a subset of L1

strains seem to have the same effect as E270A in a subset of L2 strains,

impairing MamA activity. Similarly, G173D and/or L119R mutations in HsdM

and HsdS seem to inactivate HdsM/HsdS.1/HsdS in L3, which is the same
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phenotype we found in a sublineage of L4 potentially due to the effect of P306L

in HsdM. Moreover, one of the variants characterized was found to be

homoplastic. These convergent change could suggest that methylation in the

MTBC still plays a biological role, although not necessarily related to gene

expression regulation.

In summary, in this chapter we have carried out a comprehensive

comparison of transcriptomes and DNA-methylomes of nineteen clinical

isolates representative of the global phylogenetic spectrum of human

Mycobacterium tuberculosis complex. Patterns of differential transcription

between lineages reflected constitutive expression of genes that are normally

regulated in response to environmental cues, as a result of mutations that

introduce novel TANNNT Pribnow boxes and mutations that impair the function

of transcriptional repressors. The role of methylation is more elusive but it is

clear from pattern of inactivating mutations that methylases are not conserved

across the MTBC. Isolated from the opportunity to generate diversity by

horizontal gene transfer, transcriptional adaptation may allow M. tuberculosis

isolates to optimise their infectivity and transmission in subtly differing

environments provided by different human host populations.

6.4 Materials and methods

The culture, DNA/RNA extraction and sequencing processes were performed by

external collaborators in different institutes. More concretely, strain culture and

DNA/RNA isolation were performed by Michael Berney at the Albert Einstein

College of Medicine, in New York, USA. The complete sequencing process was

performed by Christine Boinett and Julian Parkhill at the Sanger Institute, in

Hinxton, UK. The accesion numbers for the newly generated data can be found

in External Data 15.

The rest of the research comprising the transcriptome, methylome and

genome analysis was performed by the author of the thesis. Part of this

research took place during a short stay of three months in the London School
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of Hygiene and Tropical Medicine, in London, UK, under the supervision of

Teresa Cortés.

Culture conditions

All cultures were grown in ink wells containing 10 ml Middlebrook 7H9 OADC

medium supplemented with 30 mM sodium pyruvate to account for pyruvate

kinase mutations in L5 and L6. Cultures were grown on orbital shakers at 80

rpms at 37oC. For each strain, two biological replicates were generated.

RNA isolation

For RNA extraction cultures were grown to OD600 of 0.5 - 0.7. Ten ml aliquots

were spun down and immediately processed with TRIZOL reagent according to

manufacturer protocols. Cells were harvested from exponential cultures and

RNA extracted using the Direct-zolTM RNA Kit from Zymo according to

manufacturer’s instructions. From the RNA extracted, ribosomal RNA was

depleted by using a Ribo-Zero Magnetic Kit. After that, sequencing libraries

were prepared using the TrueSeq stranded Illumina protocol and sequenced on

an Illumina HiSeq 2500 platform.

DNA isolation

For DNA extraction cultures were harvest between OD600 of 0.5 - 0.7 by

spinning down 5 ml culture and immediately starting DNA extraction by CTAB

method[253].

RNA-seq pipeline

Fastq files qualities were assessed using FastQC [254]. Trimmomatic, a

program that uses a dynamic trimming approach [255], was used to remove

bases from the start and the end of the reads when its quality was below 20.

Reads were mapped to the H37Rv reference strain [64] using BWA-mem
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algorithm [86]. Potential duplicates were removed by using the MarkDuplicates

option from the Picard tools package [89]. Bedtools [256] was used to calculate

the read coverage for each genomic feature. To precissely report the coding

and non-coding coverage, each read was classified according to the strand

from which it was initially derived.

Transcriptomic analysis

The transcriptomic analysis was performed using the R statistical language

[101], specifically the DESeq2 package [107]. The input data was the count

table containing the coverage information for each feature for all the samples.

The PCA and the hierarchical clustering were performed by previously

normalizing the count data across samples and scaling it into a log2 scale, by

using the rlog function from the DESeq2 package. For the analysis of

Phylogenetically aware Differentially Expressed Genes (PDEG), we performed

a two-step process. First, we identified all the genes having differential gene

expression (adjusted BH p-value < 0.05 and log2fold-change > 1.5) between

each pair of phylogenetic groups with a common origin (for example L5 and L6,

MAF and MTB, etc). Therefore, we identified the genes changing their

expression between these groups. This information however, is not enough to

assign the expression change to one group or the other. We can not know if an

increase in gene expression for one gene is due to an up-regulation in one

group or to a down-regulation in the other. To resolve this, for each gene

identified as differentially expressed, we compared its expression value in each

of the two groups against the rest of the MTBC samples. This analysis allowed

us to identify the group in which the change in gene expression took place and

the direction of this change. Finally, we assigned all the changes in a group to

the tree branch common to this clade. For this part of the analysis, sample

N1177 (L6) was excluded, as the rpoB mutation alters its transcriptomic

signature and it is therefore not representative of the L6 transcriptomic

signature. Genes with deletions in each of the groups were not taken into

account in the pairwise comparisons, as they result in false positive signals.
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These genes were identified by mapping long-reads obtained from PacBio

sequencing against the H37Rv reference genome, and assessing the genomic

coverage. PE/PPE, phages and repetitive genes have not been taken into

account in any of the analyses, as their sequenced reads are prone to map

erroneously. The enrichment analysis in GO functions was performed using the

BiNGO tool [99]. BiNGO identifies the most abundant functions in a subset of

genes, compared to all functions present in a complete genome using a

hypergeometric test (sampling without replacement).

FASTQ mapping and variant calling from the Illumina data

For each of the analyzed strains, we downloaded the publicly available genomic

data from a previous work [220] (Supplementary Table 7). The variant calling

was performed as described in the Chapter 3.

Creation and disruption of Pribnow boxes

Using the MTBC ancestor genome as a template, we introduced all the

mutations found in the dataset, and look for new/disappeared TANNNT motifs

with the fuzznuc tool included in the EMBOSS program [257]. By doing this, we

have obtained the number of affected Pribnow boxes in our dataset.

To calculate the probability of appearance or disruption of Pribnow boxes we

have first scanned the MTBC ancestor genome looking for the ‘ancestral’

TANNNT motifs, or for motifs that could result in TANNNT motifs by introducing

one single mutation (VANNNT, TANNNV, TBNNNT). In parallel, from the

observed number of variants in the MTBC dataset, we calculated the probability

of a non-A (B), non-T(V), A and T mutations. After that, we calculate the

expected disruption of boxes by inferring the probability of non-A or non-T

mutations to fall in the 1st, 2nd or 6th position of the ‘ancestral’ motifs. The

expected generation of new boxes was calculated by inferring the probability of

A and T mutations to fall in the corresponding VANNNT, TANNNV and TBNNNT

motifs. In a last step, we have used a Poisson distribution to calculate the
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probability of the expected versus the observed number of disruptions in our

dataset (Figure 6.8A).

A random permutation test was performed by keeping the alternative alleles

for the 8,093 SNPs found in the global dataset, but randomly assigning a new

genomic position in which those SNPs appear. Later, we scanned for

new/disappeared TANNNT motifs with the fuzznuc tool. This process was

repeated 1,000 times. With the number of new/disrupted boxes in this 1,000

simulations we calculated a cumulative empirical distribution of expected

Pribnow boxes affected by random mutations. Later, we compared these

distributions with the number of boxes affected by the real variants (Figure

6.8B).

Finally, we have reshuffled the 8,093 mutations so the alternative alleles

were randomly assigned to genomic positions that initially harbour other

variants. Again, we impacted the MTBC ancestor genome with these variants

and assessed the number of new/disrupted Pribnow boxes by using fuzznuc.

The results obtained were confronted against the number of new/disrupted

boxes with the real 8,093 variants in a chi-squared test (Figure 6.8C).

Genomic DNA isolation for PacBio Sequencing

DNA was prepared and sequenced on the Pacific Biosciences RSII machine as

described previously [258]. Briefly, we used template preparation kit version 3.0,

polymerase binding P6 version 2, and sequencing reagents version 4.0 (C4).

Data were captured using 3-h movies. Each sample replicate was sequenced

on two to four chips to get enough genome coverage for the detection of the

methylated patterns.

HsdM mutant construction

The gene hsdM was deleted in sample N1283 by specialized transduction as

described previously [259]. Transductants were recovered on 7H10 OADC

plates containing hygromycin (75 g/mL). Mutations were confirmed by
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three-primer PCR using primers hsdM L, hsdM R, and Universal uptag, listed

in Table 6.3.

Primer Secuence
hsdM L CTCTGGTCAACGCAATGT
hsdM R ATCTGAGACTCCTCCATTCC

Universal uptag GATGTCTCACTGAGGTCTCT

Table 6.3: Number of Phylogenetically Aware Differentially Expressed genes and
the branch length for each of the main clades in the MTBC phylogeny. The
phylogeny was calculated by using the ML algorithm, with 1,000 iteration bootstraping.

Methylation analysis and variant search

DNA isolated from the cultured samples were used for PacBio sequencing. The

SMRT Analysis Software from PacBio [260] was used to detect methylation

patterns in the PacBio sequencing data. Sequencing reads from both biological

replicates per strain were merged to assess a higher sequencing depth. The

Modification and Motif Analysis protocol was used as defined in the SMRT

manual. This protocol detects the Interpulse Duration (IPD) to classify one

base as methylated. After that, it looks for over-represented methylation motifs

in the genome. For those strains lacking at least one of the three main

methylated motifs present in the rest of the dataset, we looked for

nonsynonymous variants affecting the methyltransferases. These variants, that

potentially affect the methyltransferase function, were also scanned in the

4,595 strains dataset representative of the MTBC global diversity described in

Chapter 4. The potential effect of the nonsynonymous variants over gene

functionality was assessed by using the SIFT4G tool [92]. dN/dS values for the

methyltransferases were calculated as explained in Chapter 4 methods.

RNA-seq analysis linked to differential methylation

We used fuzznuc from the EMBOSS package [257] to identify genes whose

conserved -10 TANNNT motif overlapped with identified methylated motifs. The
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The roles of mutation and methylation on transcriptional heterogeneity

potential effect of methylation over the expression of these genes was assessed

by comparing the expression values in strains with a similar genetic background

(same lineage), but having differential methyltransferase activity.

The work described in the present chapter is currently under second review:

Chiner-Oms Á., Berney M., Boinett C., González-Candelas F., Young D., Gagneux S.,

Jacobs W.R., Parkhill J., Cortes T., Comas I. Genome-wide mutational biases fuel

transcriptional diversity in the Mycobacterium tuberculosis complex . Nature

Communications. Under review.
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Infectious diseases rank among the top 10 causes of death worldwide, being

a global health concern for the WHO. Among them, tuberculosis is the leading

cause by a single infectious agent. As a result, multiple international initiatives

involving public and private funds have been proposed in the last decades to

stop TB pandemic. However, an annual declining rate of 2% has been achieved

in 2017, not enough yet to accomplish the WHO objective of eradicating the

disease by 2035. Innovative solutions to this problem depend on gaining more

knowledge about the complex biological mechanisms of the pathogen, the host

and their interaction. From the pathogen point of view, we need to gain more

insights into transmission dynamics, persistence, virulence (in all its alternative

meanings) and drug-resistance development, as these are the main bacterial

determinants of the disease outcome.

These characteristics are highly heterogeneous in pathogens with complex

population structures. For example, Salmonella enterica is a pathogenic

bacteria, with a population structure formed by several subspecies [261]. It has

been shown that recombination exists within and between these subspecies

[262]. The S. enterica genetic lineage defines the host range for the different

subspecies, as well as the symptoms of the salmonellosis infection [263].

Another example is Legionella pneumophila, causative agent of Legionnaires’

disease, which has a mosaic population structure [264, 265]. Genetic

differences between the distinct L. pneumophila clades have impact in
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pathogenicity and intracellular growth rate [266].

In the case of TB, it has been shown that heterogeneities disease outcome

are also related with the genetic background of the bacterial strain [42, 38],

despite its (almost) clonal population structure. So, genetic diversity of the

MTBC is gaining momentum as a major point to evaluate in TB research, in

contrast to what happened until very recently. For example, systems biology

approaches rarely accommodate information about natural polymorphisms in

the systems studied. In addition, even for model organisms, this type of

approach has been rarely applied to more than one genetic lineage [267]. This

is also true in the application of systems biology to TB research. As we have

seen in Chapter 5, computational models derived from a single strain do not

make reliable predictions in MTBC strains from different genetic backgrounds.

We focus our research in human MTBC lineages but these differences are even

more pronounced when human- and animal-adapted strains are compared or

to the BCG (animal-like) vaccine [152, 268, 235]. We have also seen how

mutations found across the whole human MTBC impact different modules of

the regulatory and PPI networks depending on the bacterial clade. These

mutations could result in a high impact on gene functionality, sometimes

impairing it (i.e., early stop-codons). Despite the existing variability, most of the

analyses and predictions performed until now have been based on network

models derived from clinical reference strains used in the laboratory, mainly

H37RV (L4), CDC1551 (L4), Erdman (L4), HN878 (L2 - Beijing), AF2122/97 (M.

bovis). It is true that, despite the limitations of current predictive models, we

cannot preclude that significant results can be obtained from their application

[79]. Nevertheless, we are losing the details of the complete picture. For

example, we do not know how resilient to perturbations these networks are.

Does the topology of these biological networks differ between different strains,

in order to bypass dysfunctional nodes while maintaining their main

performances? Or, on the contrary, is the topology maintained but existing

nodes gain new functions to supply the impaired ones?

So, it is apparent that at least lineage- and condition-specific network
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models will be necessary to generate more accurate predictions across the

Mycobacterium tuberculosis complex. We are aware that meeting the above

conditions is a major experimental and computational accomplishment. For

example, the regulatory network and the gene expression data used in Chapter

5 were derived from almost 200 TFs genetic constructs and ∼700 microarray

experiments and used only strain H37Rv. Generating comprehensive models

for all major human- and animal-adapted lineages of the M. tuberculosis

complex will represent a challenge in the years to come.

The “limited” genetic diversity of the MTBC responds to several factors.

First, the bacteria has a low mutation rate in comparison with other pathogens

[269]. This is probably influenced by its low growth rate (doubling time of 24 h.

in culture) and dormancy times, in which the bacteria can reside for years

within granulomas with a reduced physiological activity. Second, as it has been

shown in Chapter 4, there is neither ongoing recombination among MTBC

strains nor modern acquisition of genetic material from other bacteria. This last

point is specially relevant for understanding the development of drug-resistance

in the MTBC. In many pathogenic bacteria, drug-resistance mutations spread in

bacterial populations through recombination and horizontal gene transfer. This

is the case of Neisseria gonorrhoeae [270], for example, in which a

multi-resistant lineage has established globally and its resistant determinants

have disseminated in the bacterial population through homologous

recombination. In contrast, drug-resistance mutations in the MTBC are all

chromosomic and do not spread through genetic interchange (they appear

independently in different bacterial strains). This fact has important implications

in terms of surveillance and epidemiology. Recombinant pathogens are able to

share its drug-resistant determinants with other members of the population, so

the control and eradication of a drug-resistant strain do not guarantee the

stagnation of the resistant phenotypes. In the case of the MTBC, the spread of

drug-resistant phenotypes in the bacterial population is through clonal

inheritance, so the identification and treatment of these strains is determinant

to cut transmission of specific drug-resistant phenotypes.

131



General discussion

WGS is gaining momentum as a key methodology to tackle the TB

epidemic. The analysis of bacterial genome sequences allow us to identify

drug-resistance mutations even when they are not fixed in the population, ie. at

a low frequency. In a recent work [271], our research group described a patient

which carried a persistent infection over nine years, with recurrent relapses. In

a first TB episode, the patient was initially diagnosed with a susceptible strain

by routine means of different drug susceptibility tests, and it ended up

developing several drug-resistances through time. The authors performed a

retrospective study using WGS and found that uncommon drug-resistance

mutations were present in a relapse episode 4 years later. These rare variants

are missed by routine clinical diagnostic methods. In addition, they identified

resistant variants related with MDR, indicating that the patient developed an

MDR infection during time. With this information, the patient treatment was

changed to finally be cured. In another study [272], the authors identified a

patient which was infected by a strain with a complex resistant profile.

Bedaquiline and delamanid, a recently approved anti-tubercular drugs at that

time, were added to the treatment at different points. By using WGS, the

authors realised that, after several relapses, the infectious strain had acquired

resistance to these new drugs. The patient was finally cured after undergoing

surgery, but the study shows that inadequate treatment of MDR-TB and

XDR-TB cases could lead to the development of new resistant mutations, even

for newly developed drugs. These studies highlight the importance of using

WGS approaches as a first line tool for diagnosis in clinical settings, at least in

high income countries. In fact, WGS is becoming the de facto standard for

surveillance and monitoring of epidemic outbreaks [273, 274]. Specifically, in

the last years this methodology has been applied to large-scale surveys of

pathogenic bacteria such as Listeria monocytogenes, Staphylococcus aureus

and Salmonella species [261].

In addition to the significative advantage that WGS entails in applied and

clinical contexts, the amount of information derived from this technique has also

been used to greatly improve the quality of basic research. Almost all the
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results derived in the present thesis were obtained from WGS data,

downloaded from public databases or generated by collaborators for other

projects. We have been able to study genomic polymorphisms at the single

nucleotide level in thousands of genomes which, in the end, have allowed us to

perform robust statistical analyses. An illustrative example of this is the

linkage-disequilibrium analysis performed in Chapter 4. While comparing the

co-occurrence of independent alleles in thousand of genomes, in a dataset of

98,780 variant positions, we can affirm that our results are statistically well

supported. Thus, we can be very confident about the conclusions derived from

them. Another example is the important discovery of phoR as an ongoing key

player in the MTBC evolution. Again, the low genetic diversity of the MTBC

made it difficult to perform selection tests on specific genes. So, the

management of thousands of strains has allowed us to perform these tests and

to detect the traces that positive selection has left on the phoR genetic

sequence.

Besides DNA, high-throughput sequencing techniques can be applied to

RNA to gain insight into the organism physiology that we cannot derive solely

from the genomic sequence. Several studies comprising different organisms

have reported that small genomic changes can have a strong impact on gene

expression patterns [275, 276, 277, 278]. So, species with low genomic

variability among its members can show wide transcriptional fluctuations which,

ultimately, could have an effect on the phenotype and physiology of these

organisms at multiple levels. In Chapter 6, we have made use of

high-throughput sequencing to define the gene expression patterns of the main

clades of the MTBC. We have observed that the different clades have a variety

of genes showing changes in their expression values through time. These

fluctuations affect several biological functions, almost all of them related to the

interplay between host and pathogen. It makes complete sense as changes in

gene expression are a mechanism of adaptive plasticity to environmental

changes.

The variability in gene expression patterns found in the different clades
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could be related to the fact that many MTBC lineages and sublineages are

better adapted to specific host populations (i.e., different environments).

Nevertheless, studies in Escherichia coli have shown that populations evolving

in different environments and with diverse gene expression patterns show

similar phenotypes [279]. So, it is possible to reach phenotypic convergence

even when having different transcriptomic patterns in independently evolved

clades. We are aware that an important limitation of the studies presented in

this thesis is that we have not used in-vivo or in-vitro infection models. Although

that does not detract from our conclusions, future in-vivo and in-vitro

experiments could be necessary to identify the genetic determinants that lead

to this host-specificity, and to link gene expression with phenotypic

characteristics.

We have shown different mechanisms for which the transcriptional diversity

of the MTBC have been generated. As we have shown and discussed in

Chapters 5 and 6, mutations affecting TFs and regulatory regions have

heterogeneous impact on gene expression regulation. For example, the D435Y

mutation in rpoB gene in N1177 alters its transcriptomic profile to the extent

that its pattern is different to the other strains tested from the same

phylogenetic clade. And this impact could potentially affect the phenotypic

outcome. In addition, there is now substantial evidence in bacteria that DNA

methylation can affect transcription, and that changes in methylation patterns

can modify transcription patterns over long or short timescales [280]. The use

of SMRT sequencing in Chapter 6 has allowed us the direct detection of this

DNA methylation [217]. Regarding M. tuberculosis, it has been published

previously that modifications induced by the MamA methyltransferase affect the

regulation of several genes, in an H37Rv background [218]. We have scaled

this analysis to study the potential regulatory effect of the three main

methyltransferases in the major MTBC lineages. As a result, we have not been

able to detect a regulatory role for the main methyltransferases, except for a

subtle effect on a few genes. This could respond to three main reasons: (i)

phase variation mechanisms act when the organism needs a quick response to
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rapid changing environments; hence,to see a regulatory effect we might need

to apply several stresses, (ii) methylation could be an ancestral phase variation

mechanism in the MTBC an it has lost its regulatory role in current strains, and

(iii) we have not tackled the proper approach to identify genes influenced by the

methyltransferases, as the ∆hsdm strain shows differential expression in genes

that we have not determined previously as influenced by HsdM. Thus,

understanding gene expression regulation in an holistic manner is complex and

difficult to fulfill even with high-throughput datasets. Moreover, transcriptional

levels do not correlate perfectly with translation rates, as post-transcriptional

regulatory events can occur before obtaining the final protein [203, 204]. Future

approaches in this field should generate and integrate multiomics data in order

to capture the major regulatory layers [281]. The challenge will be to integrate

all of them in a manner that can inform each other [282] and to accommodate

and predict the role of existing MTBC genetic diversity[283].

What is clear from our analyses in Chapters 4 and 6 is that, from a

physiological point of view, the MTBC members are adapted to the host

environments. This is not a surprise, as it is well known that the MTBC has

evolved in parallel with its host population for millennia [82, 36, 35]. Previous

reports [65] and our data in Chapter 4 have shown that purifying selection is

acting in certain parts of the genome, specifically in the epitopes regions. Given

that the bacteria need to be recognized by the immune system to complete

their infectious cycle, and that this recognition involved the epitopes, it has been

proposed that the hyper-conservation of the epitopes is advantageous for the

MTBC [87] in contrast to what occurs with other pathogens [284, 285].

Despite purifying selection in epitopes, there are reports describing the

action of other types of selection over specific genes in current MTBC strains.

As shown in Chapter 4, several methods agree in concluding that positive

selection is shaping the evolution of the phoR gene in past and current settings.

However, this is not the only case, as other studies have identified more genes

subjected to the action of this type of selection. For example, early studies in

Mycobacterium marinum identified a ppe38 knockout strain unable to secrete
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ESX5 dependent substrates involved in virulence [286]. This gene is part of a

larger family, difficult to study with current short-read sequencing techniques,

with some of its members linked to virulence and host-pathogen crosstalk.

More recent studies using whole genome comparisons corroborated that

strains across the MTBC and particularly the Beijing clade had naturally

occurring insertions/deletions occurring in this gene [151, 287]. The mutant

strains with ppe38 inactivated had no capacity to secrete a large number of

PE PPE members leading to a higher virulence [151]. As Beijing strains are

thought to be hypervirulent [288] this led to the hypothesis that ppe38 is under

selection in natural populations. With this idea in mind, Ates et al. identified

strains across the world with likely ppe38-inactivating mutations [151]. First, the

authors showed that the situation in M. marinum ppe38-deleted strains was

paralleled by M. tuberculosis strains when different parts of the ppe38-related

region were knocked out. Second, the authors showed that clinical strains of

MTBC with putative inactivating mutations did not secrete the

ESX-5-associated proteins. Third, they showed that virulent strains of the

Beijing family had inactivation of pp38 and thus impaired secretion of the

PE PPE protein cluster. These strains were also highly virulent in a mice model

of infection, showing again that natural inactivation of ppe38 leads to highly

virulent strains in vitro and in vivo. Furthermore, the inactivating mutations are

shared by a cluster of Beijing strains called “modern”, which is particularly

successful across the globe. Another study that analyzed a large number of

strains collected from patients over 2.5 years in Vietnam found that a gene

belonging to the esx family, esxW, is under positive selection [153]. In this

case, the authors identified a mutation common to all strains of a particular

sublineage of Beijing strains. The mutation is also homoplastic, and was

identified in other unrelated phylogenetic clades including L1 and L3 strains.

Homoplasy in M. tuberculosis is very rare: only around 1-2% of all mutations

appear more than once in the phylogeny of the MTBC [126]. Detecting positive

selection in M. tuberculosis depends critically on the existence of these

convergence episodes of homoplasy. At the same time, the number of

homoplasies of a character largely depend on the strength of the selective
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force. Thus, those residues evolving under strong selective forces are easier to

spot than those masked by other phenomena or when selection is weak. Thus,

it is not surprising that most residues described under positive selection are

linked to drug resistance, arguably the strongest selective force that M.

tuberculosis encounters. In comparison, it is much more difficult to find variants

positively associated to virulence as this trait is not easily defined which, in turn,

may cause spurious associations.

The results achieved in the two studies referenced above have been

obtained by applying WGS to thousands of samples. As stated before in this

discussion, the use of WGS data is improving the quality and the extent of TB

research. Nevertheless, it is important to note that, after genome sequencing,

subsequent analyses with WGS data must be performed with bioinformatic

tools. So, strong computing skills are needed to analyze all the data generated

in an accurate and proper manner. In this thesis, computing had a preeminent

role as all the analyses and processes described here have been performed

with bioinformatic tools and programming languages. For example, the WGS

analysis pipeline described in Chapter 3 has been essential for managing and

analyzing MTBC genomes. An initial pipeline developed by Iñaki Comas [36]

was at the core of the current pipeline. Over this initial basis, several modules,

such as duplicate read removal, refinement of indel detection, strict variant

filtering (near indels and high density regions), and the resistance and typing

prediction were added during this thesis. In addition, some processes such as

annotation, fastq trimming, and multifasta reconstruction were updated to

improve their performance and/or computing time. The current pipeline,

including some extended functionalities developed by other members of our

research group and not described in this thesis, is used in our daily analyses.

In fact, routine analyses of tuberculosis samples derived from all the Comunitat

Valenciana hospitals are performed in our laboratory, based on WGS and the

application of our analysis pipeline. Recently, a proficiency study [unpublished

data] performed at Dick Van Soolingen group compared different analysis

pipelines from different Mycobacterial National Reference Laboratories. Our

137



General discussion

pipeline performed among the best ones, as we implemented stricter criteria

regarding initial sample filtering and variant calling. So, false positive variants

are not likely to be included in our final results. The application of our pipeline

has allowed us to construct a database of clinical samples representative of the

global MTBC diversity, composed by ∼4,600 strains. Sharing this database has

allowed us to establish collaborations with other laboratories [289, 290] and to

participate in projects developed by other members of our research group. In

addition to the analysis pipeline, most of the methodology described in the

Materials and methods sections has been specifically developed for each of the

projects included in this thesis. For example, the ascertainment that mutations

in phoR were related to transmission and the evolution of dN/dS through time in

Chapter 4 were methods newly devised for this project. Another example is the

PDEG analysis explained in Chapter 6, which has allowed us to track

expression changes of specific genes along the MTBC evolution. We are

convinced that these methodologies can be exported to other organisms and

projects because they are not TB-specific. Thus, we think that the contribution

of this thesis to the scientific field is not limited to the results and conclusions

shown here, but it also includes the methodology developed over this time.

In summary, we have studied the evolution of the MTBC in current and past

environments, by taking advantage of new available technologies. As the

eminent scientist Douglas Young stated in an opinion article before his

retirement [291], the biology research field is moving forward, and the classical

reductionist mode of investigation ‘gene-by-gene’ is now getting complemented

with holistic approaches. These methods will allow us to draw a general picture

of the problem and to fill the gaps in our knowledge about the disease. With this

in mind, we have tried to contribute to the TB research field by highlighting the

importance of the MTBC genetic diversity as a characteristic to be taken into

account in order to fight this deadly pathogen.
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Conclusions

• There is no measurable recombination in current MTBC strains, neither

among the MTBC strains nor between them and M. canettii. However,

recombination between the M. canettii clade and the ancestor of the MTBC

group occurred in the past.

• The MTBC and M. canettii evolved in sympatry from a common genetic

pool in Africa. Recombination and selective pressures on specific genes,

most of them involved in pathogenic functions, have driven the divergence

between both groups of bacteria.

• The phoR gene has been subjected to pervasive positive selection since

the divergence between M. canettii and the MTBC until nowadays. It has

been involved in host environment adaptation and transmission.

• The MTBC regulatory and PPI networks are not conserved, and have

many of their nodes impacted by potential dysfunctional mutations.

• Computational predictive models derived from the clinical reference strain

H37Rv show inaccurate and poor predictions.

• Essential proteins tend to occupy central nodes in the protein-rotein

interaction network. Moreover, the structure of the interactome prevents

the accumulation of dysfunctional mutations in the core of the network,

maintaining its functionality.
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Conclusions

• The MTBC transcriptional profiles are diverse, with each main clade having

a well defined transcriptional space. However, point mutations can alter

the transcriptomic profile of single strains, making them to separate clearly

from their phylogenetic relatives.

• The main functional categories affected by expression differences in the

MTBC clades are those related to nutrient uptake and to the macrophage

environmental conditions. This reinforces the idea that the different

lineages have adapted to different hosts, not only at the genetic level, but

also at the transcriptome level.

• Point mutations can affect significantly the regulation of specific genes.

Creation and disruption of Pribnow boxes results in patterns of differential

gene expression.

• There is evolutionary convergence of the methylation patterns in the

different phylogenetic groups as identical phenotypes (methyltransferase

inactivations) are presumably produced by different genetic variations.

However, there is not a clear impact of differential methylation on gene

expression regulation in in-vitro conditions.
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[264] Sánchez-Busó L, Comas I, Jorques G and González-Candelas F. Recombination
drives genome evolution in outbreak-related Legionella pneumophila isolates. Nat
Genet, 2014: 46(11):1205.

[265] Gomez-Valero L, Rusniok C and Buchrieser C. Legionella pneumophila:
population genetics, phylogeny and genomics. Infect Genet Evol, 2009: 9(5):727–
739.

[266] Qin T, Zhang W, Liu W, Zhou H, Ren H, Shao Z, Lan R and Xu J. Population
structure and minimum core genome typing of Legionella pneumophila. Sci Rep,
2016: 6:21356.

[267] Gasch AP, Payseur BA and Pool JE. The power of natural variation for model
organism biology. Trends Genet, 2016: 32(3):147–154.

[268] Rehren G, Walters S, Fontan P, Smith I and Zárraga AM. Differential gene
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10.1 Tables

Gene Gene phylogenycongruent with reference Nearest species (BLAST)

Rv0007 Yes

Rv0083 Yes

Rv0150c No M. canettii

Rv0153c No M. canettii

Rv0154c Yes

Rv0161 Yes

Rv0166 Yes

Rv0178 Yes

Rv0180c Yes

Rv0194 Yes

Rv0197 Yes

Rv0276 Yes

Rv0338c Yes

Rv0356c No M. canettii

Rv0357c Yes

Rv0389 Yes

Rv0393 No M. shinjukuense

Rv0399c No M. canettii
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Rv0405 No M. canettii

Rv0438c Yes

Rv0524 No M. canettii

Rv0538 Yes

Rv0609 No M. canettii

Rv0609A No M. canettii

Rv0620 No M. canettii

Rv0630c No M. canettii

Rv0673 No M. canettii

Rv0698 No M. canettii

Rv0756c Yes

Rv0870c No M. canettii

Rv0871 No M. canettii

Rv0873 Yes

Rv0875c Yes

Rv0914c No M. canettii

Rv0936 Yes

Rv0957 Yes

Rv0971c No M. canettii

Rv0983 Yes

Rv0987 Yes

Rv1185c No M. canettii

Rv1187 No M. canettii

Rv1192 Yes

Rv1244 No M. canettii

Rv1385 Yes

Rv1443c No M. canettii

Rv1449c Yes

Rv1462 Yes

Rv1554 Yes

Rv1629 Yes

Rv1631 No M. canettii
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Rv1657 Yes

Rv1658 Yes

Rv1736c No M. canettii

Rv1775 Yes

Rv1817 No M. sp 3/86Rv

Rv1899c No M. canettii

Rv1937 Yes

Rv1951c No M. canettii

Rv1963c No M. canettii

Rv1990c No M. chimaera

Rv1992c Yes

Rv2015c Yes

Rv2016 No M. sp 3/86Rv

Rv2017 No M. canettii

Rv2021c No M. canettii

Rv2022c No M. sp 3/86Rv

Rv2048c Yes

Rv2064 No M. canettii

Rv2125 Yes

Rv2160A No M. canettii

Rv2463 No M. canettii

Rv2464c Yes

Rv2465c No M. sp. 3/86Rv

Rv2515c Yes

Rv2528c No M. canettii

Rv2541 No M. canettii

Rv2542 No M. shinjukuense

Rv2552c Yes

Rv2774c No M. canettii

Rv2798c No M. shinjukuense

Rv2799 No M. shinjukuense

Rv2800 No M. shinjukuense
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Rv2802c No M. shinjukuense

Rv2803 No M. shinjukuense

Rv2804c No

Rv2806 Yes

Rv2829c No M. shinjukuense

Rv2833c Yes

Rv3009c Yes

Rv3014c Yes

Rv3027c Yes

Rv3037c No M. canettii

Rv3273 Yes

Rv3275c Yes

Rv3339c No M. canettii

Rv3384c No M. shinjukuense

Rv3385c No M. shinjukuense

Rv3423c No M. canettii

Rv3447c Yes

Rv3451 Yes

Rv3464 No M. canettii

Rv3465 No M. canettii

Rv3466 No M. canettii

Rv3467 No M. canettii

Rv3468c Yes

Rv3522 No M. canettii

Rv3534c Yes

Rv3559c No M. canettii

Rv3561 No M. canettii

Rv3589 No M. sp 3/86Rv

Rv3591c No M. canettii

Rv3593 No M. canettii

Rv3777 Yes

Rv3782 Yes
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Rv3785 Yes

Rv3896c No M. canettii

Rv3897c No M. canettii

Rv3899c No M. canettii

Rv3900c No M. kansasii

Rv3901c No M. canettii

Table 10.1: Results of the phylogenetic comparison of genes having a significant
accumulation of divSNPs

Strain Lineage Genotype
N0157 L1 W.T.
N0072 L1 W.T.
N0153 L1 W.T.
N0145 L2 W.T.
N0052 L2 W.T.
N0031 L2 W.T.
N0155 L2 W.T.
N0004 L3 G1816338A syn
N1274 L3 C1816370T A61V
N0054 L3 W.T.
N1216 L4 W.T.
N0136 L4 W.T.
N1283 L4 W.T.
N1063 L5 G1816848T E220D
N1272 L5 G1816848T E220D
N1176 L5 G1816848T E220D
N0091 L6 C1816587G syn; G1816848T E220D
N1202 L6 C1816587G syn; G1816848T E220D
N1177 L6 C1816587G syn; G1816848T E220D

Table 10.2: Mutations found in the pyruvate kinase gene pykA (Rv1617) in the
cultured strains
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Branch Branch length PDEG genes
L5 0.096 23
L6 0.089 42

Ancestor 0.003 27
L1 0.064 30

Modern 0.042 7
L4 0.023 13

L3&L2 0.007 13
L3 0.035 17
L2 0.017 14

Beijing 0.017 20

Table 10.3: Number of Phylogenetically Aware Differentially Expressed genes
and the branch length for each of the main clades in the MTBC phylogeny. The
phylogeny was calculated by using the ML algorithm, with 1,000 iteration bootstraping.
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10.2 Figures

Figure 10.1: MTBC global phylogeny. The dataset used in the recombination analyses
of Chapter 4 comprises 1,591 strains representatives of the global MTBC diversity. The
phylogeny was constructed using both, ML and Neighbor-Joining methods. Congruent
trees were obtained in both approaches. Tree scale in the figure refers to the number of
genomic variants.
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Figure 10.2: ML phylogeny of the MCAN group, including the MTBC most likely
inferred ancestor.
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Figure 10.5: Recombination fragments ages derived from BEAST. A) Ages of the
recombinant fragments (x-axis), sorted by age. B) Ages of the recombination fragments
(y-axis) sorted by its genomic position (x-axis). In both panels, the red error bars
represent the 95% highest probability density (HPD).
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Figure 10.6: Evaluation of accuracy and comparison of model’s behavior between
different datasets. The main goal of the models is to make predictions under different
conditions and with several data sources. Therefore, apart from training the models with
the same dataset used to calculate the models and the regulatory networks we trained
them with the other analogous dataset. In this figure, dataset A is the one obtained from
Rustad et al., and dataset B from Galagan et al. A) Root mean squared error comparison
(RMSE) for the models obtained from TFOE data. Values when training and testing with
dataset B (green), training and testing with dataset A (blue), training with dataset A and
testing with dataset B (red) and training with dataset Band testing with dataset A (yellow).
B) Plot showing RMSE values for TFOE derived models. Index refers to the list of models
sorted by RMSE. The green arrows mark those models having no differences between
predicted and measured mean expression. The left plot shows the case of training with
dataset A and testing with dataset B while the right plot shows the reverse case. In the
left plot, 128 genes show no differences between real and predicted values in terms of
equaliy of means while in the right plot 33 genes show no statistical differences (pFDR ≤
0.01).
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C) RMSE comparison for the models obtained from ChIP-Seq data. Values when training
and testing with dataset B (green), training and testing with dataset A (blue), training with
dataset A and testing with dataset B (red) and training with dataset B and testing with
dataset A (yellow). D) Plot showing RMSE values for ChIP-Seq derived models. Index
refers to the list of models sorted by RMSE. The green arrows mark those models having
no differences between predicted and measured mean expression. The left plot shows
the case of training with dataset B and testing with dataset A while the right plot shows the
reverse case. In the left plot, 10 genes show no differences between real and predicted
values in terms of equality of means while in the right plot only 3 genes show no statistical
differences (pFDR ≤ 0.01).
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Figure 10.7: Detailed information about 9 selected genes showing no agreement in their
phoP regulatory signal depending on the experiment used to detected it. Detail of the 9
genes selected for which regulation is affected in phoP overexpression experiments but
not in phoP knockout experiments. The red track corresponds to the level of PhoP binding
in the regulatory region of the genes in a knockout strain. The magenta track corresponds
to the level of binding in the wild type strain. The green track corresponds to level of
binding in the phoP overexpressed strain. The impact on downstream transcriptional
levels are shown as published previously for the TFOE data and for the phoP knockout
data.
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Figure 10.8: ML phylogeny, constructed with 4,595 strains representative of the
global MTBC diversity. Red marks point to the 19 strains used for the main analyses in
Chapter 6.
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10.3 External Data

Some of the supporting data generated is not suitable to be printed. It can be

found in the following link:

http://tgu.ibv.csic.es/wp-content/uploads/2019/03/External-Data.zip.

External Data 1. Gubbins report for the MTBC-MCAN alignment. Each color

block is a potential recombination region identified by Gubbins represented by

its genomic position. Red blocks mark recombination events mapping in internal

nodes, while blue blocks mark recombination events in terminal branches. All the

recombinant blocks identified in the MTBC clade were common to all the strains

and no recombinant traits were found in terminal branches. In contrast, the

MCAN clade has a higher abundance of recombination events detected either

in internal nodes or in terminal branches.

External Data 2.Potential recombination fragments detected between the
MTBC ancestor and MCAN. The inferred dating for the 5ka and 70ka scenarios

are included, as well as the genes contained in these sections.

External Data 3. Values for the Shimodaira-Hasegawa test (p-SH) between
the recombinant fragments, the non-recombinant genomic fragment and
the phylogenies derived from them.

External Data 4. Analysis of dN/dS variation between the MTBC ancestor
and the MTBC. Only genes with at least 1 variant positions in each category

were taken into account.

External Data 5. Variants found in the phoR gene.

External Data 6. Accession numbers and description of the strains
analyzed in Chapter 5.

External Data 7. Accession numbers of the mycobacterial genomes used
to construct the reference phylogeny.

External Data 8. Regulatory network obtained from statistically validated
interactions. Each row correspond to an edge of the network. The edges are
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directed the way TF → Target. The coefficient is a measure of the regulatory

influence the TF has over the target gene. The sign of the interacions refers to

a positive interaction (+) or to a negative interaction (-).

External Data 9. Mutations potentially affecting different TFs of the
regulatory network Each row of the table corresponds to a mutation. Each

row number agree with the number set in the External Data 10. Strain names

came from Comas et al. 2013. The regulatory influence in the network refers to

the number of genes regulated by the mutated TF in network derived from

H37Rv network. The column principal GO terms overrepressented on the

subnetwork came from the Gene Set Enrichment Analysis performed over the

genes regulated by the TF A) Transcription factors missing in MTBC main

lineages or sublineages. The RD column reffers to the Region of Difference (if

any) associated to this TF’s deletion. B) Transcription factors likely

dysfunctional due to SNPs provoking stop-codons gain or loss. C) SNPs

present in TF’s regulatory regions.

External Data 10. Mutations affecting TFs in the MTBC phylogeny
comprising the seven major lineages. The figure represents the number of

TFs missing or potentially affected in their regulatory functions in one or more

clinical strains from an MTBC reference dataset (n = 219 strains). The

mutations affecting a TF are mapped to the corresponding internal/external

node of the phylogeny. Each panel shows the same phylogeny and the

mutations affecting a TF are mapped to the corresponding branch in the tree

and highlighted in red. Label numbers correspond to entries in External Data 9.

The mutations considered are either partial or complete deletions of the TF (A)

(External Data 9A), single point mutations leading to gain or loss of stop

codons (B) (External Data 9B) and single point mutations affecting the

regulatory region of a TF (C) (External Data 9C).

External Data 11. PDEG Genes and Gene Ontology enrichment analysis
A) Phylogenetically Aware Differentially Expressed genes for the comparison

between the main phylogenetic groups. BaseMean, log2FoldChange and padj

(BH) values were calculated with the DEseq2 package. The branch assignation
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was obtained while comparing the branch again the rest of the MTBC. B) Gene

Ontology enrichment analysis for the up and down-regulated genes for each

branch of the PDGE analysis.

External Data 12. SNPs that either create or disrupt Pribnow boxes, and
their potential effect over the expression of specific genes.

External Data 13. Nonsynonymous SNPs affecting the three main
methyltransferases found in an MTBC dataset (n=4,595) representative of
the global MTBC diversity.

External Data 14. Differential expression analysis performed with DEseq2,
for N1283-∆hsdM and N1283 strains

External Data 15. Accession numbers for the samples
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10.4 Abbreviations

AIC Akaike Information Criterion

ANI Average Nucleotide Identity

BCG Bacillus Calmette-Guérin

BIC Bayesian Information Criterion

ChIP-Seq Chromatin ImmunoPrecipitation Sequencing

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats

DE Differentially Expressed

DM Differentially Methylated

ENA European Nucleotide Archive

GEO Gene Expression Omnibus

GO Gene Ontology

GTR General Time Reversible

HC High Confident

LD Linkage Disequilibrium

MCAN Mycobacterium canettii

MDR Multi-Drug Resistant

MIRU Mycobacterial Interspersed Repetitive Units

ML Maximum Likelihood

MTBC Mycobacterium tuberculosis complex

PCA Principal Component Analysis

PDEG Phylogenetically aware Differentially Expressed Genes

FDR False Discovery Rate

PPI Protein-Protein Interaction
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RD Region of Difference

RMSE Root Mean Squared Error

ROS Reactive Oxygen Species

SMRT Single Molecule Real Time

SNP Single Nucleotide Position

TB Tuberculosis

TFOE Transcription Factor Overexpression Experiment

TSS Transcription Start Site

VNTR Variable Number Tandem Repeats

WGS Whole-Genome Sequencing

WHO World Health Organization

XDR eXtensively-Drug Resistant
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Resumen en castellano

Introducción

La tuberculosis

La tuberculosis es una enfermedad de transmisión aérea que afecta

principalmente al sistema respiratorio. Según la OMS, es la principal causa de

muerte por un único agente infeccioso, causando 1,6 millones de fallecimientos

en 2017. La tuberculosis está especialmente presente en el continente

africano, Asia y Sudamérica.

Clásicamente se ha clasificado la enfermedad en dos estadı́os clı́nicos

principales, tuberculosis latente, que es asintomática y no transmisible, y

tuberculosis activa, que es transmisible y sintomática. Sin embargo, estudios

recientes proponen un abanico muy amplio de estadı́os clı́nicos, con la

tuberculosis activa mostrando una combinación de sı́ntomas desde leves a

muy graves en distintos pacientes. Además, hay pacientes asintomáticos que

también pueden estar afectados por la enfermedad a distintos niveles.

Los sı́ntomas incluyen expectoración sanguinolenta con esputo, dolor de

pecho, fiebre, sudores nocturnos y pérdida de peso. El tratamiento estándar

para pacientes con tuberculosis activa consiste en un mı́nimo de 6 meses de

terapia con 4 antibióticos combinados. Aunque este tratamiento se ha estado

utilizando durante décadas, hoy en dı́a hay un gran número de casos que no
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responden al mismo. Por una parte, las cepas multidrogo-resistentes son

aquellas que no responden, al menos, a dos de los más potentes antibióticos

del tratamiento, isoniacida y rifampicina. Más difı́ciles de tratar son las cepas

extremadamente resistentes que, además de los antibióticos anteriormente

mencionados, son resistentes a varios antibióticos de segunda lı́nea.

Con respecto a la detección, el diagnóstico preliminar de la tuberculosis se

basa en dos tests rápidos pero poco precisos, que indican si el paciente ha

tenido contacto con la bacteria en el pasado. Si dan un resultado positivo, al

paciente se le somete a radiografı́as de pecho y, finalmente, a un cultivo a partir

de muestras de esputo. Todo este proceso puede durar más de 3 semanas, y

suelen obtenerse falsos negativos.

En 2014, la OMS comenzó una estrategia con el objetivo de eliminar la

epidemia mundial de tuberculosis para 2035. Esta estrategia se basa en tres

pilares principales: mejorar los protocolos de prevención y atención a

pacientes, aumentar las acciones polı́ticas y sistemas de soporte e intensificar

el apoyo a la investigación. A pesar de las intenciones de la OMS, la incidencia

global de la tuberculosis decrece a una tasa del 2% por año, insuficiente para

cumplir el objetivo de erradicar la enfermedad en 2035. Para poder llegar a

cumplir esa meta son necesarios nuevos métodos diagnósticos, estrategias

para interrumpir la transmisión y tratamientos más efectivos. Todas estas

mejoras necesitan de una fuerte inversión en investigación básica.

El complejo de Mycobacterium tuberculosis

La tuberculosis humana es causada principalmente por las bacteria

Mycobacterium tuberculosis y Mycobacterium africanum, dos linajes

bacterianos hermanos. Además, distintas especies de mamı́feros pueden ser

infectados por micobacterias que les provocan la enfermedad tuberculosa.

Todas estas bacterias (M. tuberculosis, M. africanum y las micobacterias que

infectan animales) forman un grupo monofilético llamado el complejo de

Mycobacterium tuberculosis (MTBC). El MTBC tiene un único ancestro y sus
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miembros comparten un 99% de su genoma, por lo que en realidad forman

parte de una única especie pese a tener designaciones taxonómicas

diferentes. En la presente tesis, nos hemos referido a las distintas cepas del

MTBC por sus nombres clásicos, para facilitar la comprensión y legibilidad.

El MTBC tiene una estructura poblacional clonal, consistente en 7 linajes

bacterianos adaptados a infectar humanos y varias cepas especı́ficamente

adaptadas para infectar animales. Los linajes 1,2,3,4 y 7 se clasifican como M.

tuberculosis sensu estricto (MTB) mientras que los linajes 5 y 6 pertenecen a

M. africanum (MAF). Los distintos linajes están distribuidos de forma

heterogénea por el globo. Esto responde al hecho de que la bacteria se

diversificó en los distintos linajes y ocupó distintas regiones geográficas

siguiendo las migraciones y los cambios de las poblaciones humanas desde el

neolı́tico hasta la actualidad.

Distintos estudios han mostrado que hay diferencias fenotı́picas en cuanto

a tasas de crecimiento, virulencia y capacidad de transmisión entre los

distintos linajes. Esto indica que, pese a que el MTBC es poco diverso

genéticamente hablando, la variabilidad genética presente tiene importantes

implicaciones epidemiológicas y sobre la respuesta del hospedador a la

enfermedad. La evolución paralela que se ha dado entre las poblaciones

humanas y la bacteria, ha generado un cierto nivel de especialización del

patógeno. Ası́, distintos linajes tienen preferencia por ciertos grupos de

hospedadores en función de su origen filogeográfico.

El MTBC, un patógeno profesional

El proceso infeccioso comienza cuando la bacteria penetra en el cuerpo del

hospedador a través del aparato respiratorio, donde es fagocitada por los

macrofagos, desatando una respuesta inflamatoria leve y formando una

estructura conocida como granuloma. La bacteria puede sobrevivir dentro del

granuloma desde dı́as hasta décadas en un estado asintomático llamado

latencia. La transición de latencia a estado activo depende de factores

187



Resumen en castellano

bacterianos, del hospedador y de la interacción entre ambos. Cuando se da

esta transición, la bacteria comienza a replicarse dentro del granuloma hasta

que este ya no es capaz de contener al patógeno y la bacteria es liberada. En

ese punto, la bacteria causa necrosis y cavitación pulmonar, lo que provoca

que el hospedador expectore. La bacteria aprovecha este hecho para

diseminarse e infectar nuevos individuos.

La bacteria es capaz de interferir las defensas de los macrófagos cuando

estos la fagocitan. Puede resistir el entorno ácido del fagosoma e interrumpir el

proceso de maduración del mismo. La capacidad del bacilo para alterar el

sistema inmunitario del hospedador es una de las razones por las que M.

tuberculosis es considerado uno de los patógenos humanos más exitosos.

En resumen, el proceso por el que el bacilo provoca infección y se

transmite es multifactorial, y todavı́a no conocemos todos los detalles del

mismo. Un paso crucial para combatir al patógeno es entender de forma lo

más completa posible sus caracterı́sticas biológicas, las del hospedador y el

entorno en que ambos interactúan. En la tesis que se presenta, nos hemos

centrado en descifrar aspectos biológicos de la bacteria desconocidos hasta

ahora y que son relevantes para su capacidad patogénica.

Caracterı́sticas genómicas

El MTBC no tiene plásmidos, y su genoma es de 4,5 millones de bases. Tiene

un contenido en GC elevado (∼65%) y está muy conservado a nivel funcional.

La máxima distancia genética entre cualquier par de cepas del MTBC son

2.500 SNPs. Además de SNPs, hay polimorfismos que afectan a regiones más

grandes del genoma. Estos polimorfismos son regiones genómicas que están

ausentes en algunas cepas del MTBC en comparación con la cepa de

referencia H37Rv.
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El impacto de las nuevas herramientas computacionales en
la investigación de la tuberculosis

Actualmente, la secuenciación de genomas completos (WGS, por sus siglas en

inglés) ha proveı́do a los investigadores con una gran cantidad de nuevos

datos. Esto ha incrementado enormemente la resolución de los análisis que se

venı́an haciendo hasta el momento, en múltiples áreas (evolución,

epidemiologı́a, estudio de mecanismos de resistencia, ...). La bioinformática y

la biologı́a computacional se han transformado en herramientas

imprescindibles manejar los datos derivados de WGS. En consecuencia, los

laboratorios y los equipos de trabajo se han transformado para dar cabida al

material y los perfiles humanos necesarios para manejar estas nuevas

herramientas. En ámbitos como la biologı́a de sistemas, los equipos son

multidisciplinares y aglutinan perfiles como matemáticos, biólogos, fı́sicos, etc.

En el campo de la tuberculosis, estas disciplinas han producido importantes

resultados. Por ejemplo, en la identificación de genes de persistencia, en el

modelado de la dinámica del proceso infeccioso dentro del granuloma al

aplicar antibióticos o en la farmacodinámica y farmacocinética de distintas

drogas antituberculosas. Dado que la presente tesis se basa en el manejo de

datos WGS, las metodologı́as de biologı́a computacional y bioinformática

tienen un papel predominante.

Motivación

En el pasado se han realizado algunos análisis sobre el proceso de

diversificación del MTBC desde su ancestro común. Para estos análisis se

utilizaron cientos de genomas, lo que contrasta con los miles de genomas que

actualmente hay disponibles en las bases de datos. Se pretende usar toda la

información disponible para entender en detalle, a nivel genómico y

poblacional, el proceso de especiación del MTBC (capı́tulo 4). Además, pese a

que la diversidad genética del MTBC es modesta en comparación con otras

bacterias patógenas, tiene una importante implicación en el desenlace de la
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enfermedad. Sin embargo, gran parte de las investigaciones publicadas no

tienen en cuenta esta diversidad. Por tanto, comprobaremos si las

conclusiones derivadas de algunas de estas investigaciones pueden ser

generalizadas a todo el MTBC o, por el contrario, están sesgadas (capı́tulo 5).

Por último, se plantea estudiar el papel que distintos mecanismos han jugado a

lo largo de la historia evolutiva del MTBC para generar la diversidad fenotı́pica

actual. Para ello, caracterizamos en detalle la diversidad transcripcional del

MTBC como una medida de su diversidad fenotı́pica, y los procesos evolutivos

que la han moldeado (capı́tulo 6).

Objetivos

La presente tesis pretende estudiar la evolución y las caracterı́sticas biológicas

del complejo de Mycobacterium tuberculosis usando herramientas

computacionales y las nuevas técnicas de biologı́a de sistemas. Utilizaremos

secuencias de genomas completos como fuente de datos principal.

Especı́ficamente, perseguimos la consecución de los siguientes objetivos:

• Estudiar los distintos procesos evolutivos que han guiado la evolución del

MTBC, desde un reservorio potencialmente ambiental a su nicho

ecológico actual como patógeno obligado.

• Describir las modificaciones genéticas principales implicadas en la

adaptación del MTBC a distintas especies de hospedadores.

• Auditar la capacidad de predicción de los modelos computacionales

desarrollados hasta el momento, para realizar predicciones precisas en

cualquier miembro del MTBC.

• Estudiar el impacto de la diversidad genética del MTBC sobre distintas

redes biológicas de la bacteria.

• Analizar los perfiles transcriptómicos de distintos miembros del MTBC y

los principales procesos evolutivos que han dado lugar a los patrones

190



regulatorios especı́ficos de cada clado bacteriano.

Determinantes genómicos del proceso de
especiación y expansión del MTBC

Introducción

Actualmente hay modelos teóricos que explican los procesos evolutivos por los

cuales, a partir de una población natural de bacterias, pueden aparecer nuevas

especies. La aparición de nuevas especies es más común en grupos de

bacterias que comparten hábitat, en un proceso llamado especiación en

simpatrı́a.

Mycobacterium canettii (MCAN) es la bacteria más próxima al MTBC

genéticamente hablando y solo se encuentra en una región geográfica

pequeña del Cuerno de África. Precisamente en esa región es donde algunos

estudios sitúan el origen del MTBC. Pese a no haber encontrado el reservorio

natural de MCAN, diversas pistas apuntan a que es una bacteria ambiental que

en ciertas circunstancias puede infectar humanos. Su gran parecido genético y

el hecho de encontrarse en el mismo lugar donde se cree que se originó el

MTBC hacen pensar que el MTBC y MCAN evolucionaron a partir de un mismo

grupo de bacterias.

Nuestro entendimiento actual del proceso de especiación entre MCAN y el

MTBC no es completo. En el presente capı́tulo, gracias al análisis de miles de

secuencias del MTBC y de muestras de MCAN, identificamos las señales

moleculares que dejó aquel proceso de especiación pasado, y revelamos

nuevas dianas útiles para la investigación biomédica actual.

Resultados

Como primera aproximación para estudiar el proceso de diferenciación entre el

MTBC y MCAN, buscamos señales de procesos de recombinación inter- e
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intragrupo en ambas poblaciones actuales de bacterias. Para evaluar esta

cuestión utilizamos un conjunto de 1.591 genomas representativos de la

diversidad global del MTBC y distintas aproximaciones:

• Identificamos zonas con variantes homoplásicas (posiciones en las que

un mismo alelo aparece de forma independiente en distintos linajes de la

filogenia), y que compartan historia filogenética. Después de aplicar

distintos filtros para asegurarnos de la robustez de los resultados,

únicamente obtuvimos dos regiones que acumulan dos mutaciones

homoplásicas cada una.

• Se utilizaron los estadı́sticos D’ y R2 para evaluar potenciales

desequilibrios de ligamiento entre todas las posiciones polimórficas

identificadas entre los 1.591 genomas (fueran homoplásicas o no).

Ambos estadı́sticos coincidieron en asignar un papel mı́nimo o

inexistente a los procesos de recombinación en la población actual del

MTBC.

• Usamos los programas Gubbins y RDP4, sobre el mismo conjunto de

datos. De nuevo, ninguno de los dos programas coincidió en identificar

ninguna región genómica con fuerte señal recombinatoria.

Por tanto la recombinación, de estar presente, juega un impacto mı́nimo en

la diversidad global del MTBC. A continuación, comparamos una selección de

cepas del MTBC (n=219) contra 7 genomas de MCAN para identificar y

cuantificar eventos de recombinación recientes entre ambos grupos. Para ello

evaluamos el número de variantes homoplásicas entre ambos. De todas las

homoplasias detectadas, el 98% estaban presentes en cepas de MCAN, lo que

indica que la recombinación juega un papel muy importante en ese grupo. Sin

embargo, no parecı́a haber eventos de recombinación actuales entre ambos

grupos.

Especiación en simpatrı́a del ancestor del MTBC

Hicimos un análisis con el programa Gubbins incluyendo los 7 genomas de
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MCAN y el genoma del ancestro del MTBC. Identificamos un total de 65

eventos de recombinación entre ambos. Se realizó un test de congruencia

filogenética con cada uno de estos fragmentos y comprobamos que,

efectivamente, provenı́an de potenciales eventos de recombinación.

Analizamos la edad relativa de cada uno de los fragmentos con BEAST.

Los resultados nos mostraron que el ancestro del MTBC se diferenció del

grupo de MCAN de forma secuencial, acumulando eventos de recombinación a

lo largo del tiempo. Aunque la poca variabilidad genética presente en los

fragmentos impide establecer conclusiones firmes, los resultados sugieren que

algunas regiones del genoma del ancestro acumularon eventos de

recombinación antes que otras.

Estas regiones recombinantes además, están enriquecidas para genes

esenciales (Chi-cuadrado, p-valor < 0,01) lo que indica que la recombinación

afectó a funciones celulares importantes. Además de esto, un análisis de

enriquecimiento de funciones biológicas (términos de Gene Ontology)

identificó funciones relacionadas con ‘crecimiento dentro de células del

hospedador’ como sobrerrepresentadas en estas zonas. Es importante

resaltar que muchos de los genes presentes en estas regiones están

implicados en procesos de virulencia testados en animales.

Hay modelos teóricos que predicen que, durante el proceso de especiación

simpátrica, hay partes concretas del genoma que acumulan mucha variabilidad

al estar implicados en la adaptación a un nuevo nicho ecológico. Buscamos este

tipo de variantes escaneando aquellas posiciones genómicas que mostraban

un alelo en todas las cepas de MCAN y un alelo distinto en el ancestro del

MTBC (divSNPs). Tras el análisis, identificamos 120 genes que acumulaban

más divSNPs que las esperadas por azar.

Para comprobar a qué se debı́a la acumulación de divSNPs en estos genes

los comparamos con bases de datos públicas y con genomas de otras

micobacterias. Concluı́mos que de esos 120 genes, 53 son altamente

divergentes entre ambos grupos debido a eventos de sustitución nucleotı́dica.
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Además, estos están significativamente más conservados que el resto del

genoma del MTBC. Esto indica que, después de divergir de MCAN, estos

genes evolucionaron bajo presiones de selección purificadora.

Regiones bajo selección positiva después de la transición a patógeno
obligado

Después buscar pistas sobre el proceso de diferenciación del MTBC y

MCAN, quisimos encontrar genes relevantes para la ‘profesionalización’ y

expansión global del nuevo patógeno. Primero nos centramos en la evolución

de las proteı́nas antigénicas. Vimos como los epı́topos de las células T

estaban hiperconservados en la rama del ancestro del MTBC, lo que

concuerda con otras observaciones anteriores en MCAN.

Buscamos luego regiones del genoma que si mostraran esa alteración.

Calculamos el dN/dS en la rama del ancestro (usando los divSNPs) y el dN/dS

actual del MTBC. Nos centramos en genes sujetos a selección purificadora

antes del ancestro (dN/dS < 1) y selección positiva después (dN/dS > 1), y

viceversa. Detectamos 14 genes en los que habı́a un cambio de selección

positiva a selección purificadora y 1 con cambio de selección purificadora en la

rama del ancestro a selección positiva en las cepas actuales del MTBC. Ese

gen es Rv0758, también conocido como phoR, y codifica para parte del

sistema regulador PhoP/PhoR, implicado en virulencia.

Selección positiva en phoR ligada a presiones selectivas actuales

Dado que PhoPR es un sistema implicado en múltiples funciones de

virulencia, centramos nuestra atención en las mutaciones encontradas en

phoR. Ampliamos el número de cepas a analizar hasta 4.595, y encontramos

193 mutaciones no sinónimas y 31 sinónimas, lo que nos da un dN/dS de 2,37.

Esto sugiere un fuerte efecto de la selección positiva. De hecho, comprobamos

de forma retrospectiva cómo a lo largo del tiempo, desde el ancestro del MTBC

hasta la actualidad, phoR ha estado sujeto a la acción de la selección positiva.

Distintos tests de selección usando máxima verosimilitud nos permiten

identificar, al menos, dos codones con una fuerte evidencia de estar bajo
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selección positiva. Además, el hecho de encontrar 34 variantes homoplásicas

apoya la idea de que el gen se encuentra evolucionando bajo una fuerte

presión de selección. Las mutaciones no sinónimas se acumulan de manera

estadı́sticamente significativa en la parte sensora del gen, lo que nos hace

pensar que están relacionadas con la adaptación de la función sensora de la

proteı́na a un ambiente cambiante (el hospedador) durante el proceso

infeccioso.

Por último, para conocer la relevancia de las mutaciones de phoR en

ambientes clı́nicos reales, analizamos las variantes del gen encontradas en un

conjunto de cepas obtenidas en Malawi (un paı́s con una alta tasa de

transmisión de TB) durante 10 años. Encontramos 14 mutaciones nuevas en

phoR exclusivas de este grupo de cepas. Además, al evaluar la edad relativa

de las mutaciones no sinónimas de phoR, vimos que son significativamente

más recientes que el resto de mutaciones no sinónimas del genoma.

Finalmente, encontramos que mutaciones en phoR están significativamente

sobrerrepresentadas en grupos de transmisión de mayor tamaño, en

comparación con el resto de mutaciones no sinónimas en todo el genoma.

Todos estos datos juntos nos indican que nuevas mutaciones en phoR están

implicadas en la transmisión actual del MTBC en humanos.

Discusión

En este capı́tulo presentamos evidencia de que el MTBC comparte

ancestralidad con el grupo de M. canettii, y que el ancestro del MTBC se

separó del grupo bacteriano común especiando en simpatrı́a. Durante las

primeras etapas del proceso encontramos múltiples eventos de recombinación

entre ambos grupos, lo que contrasta con la estructura poblacional actual del

MTBC, que es prácticamente clonal. Además, hemos sido capaces de

identificar regiones genómicas con diferentes presiones de selección antes y

después del establecimiento del MTBC como un patógeno obligado.

Otras bacterias como Vibrio cholerae y especies de los géneros Salmonella
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o Yersinia parecen haber especiado también en simpatrı́a. Sin embargo, el

MTBC parece un caso extremo de emergencia clonal. Pese a haber

aumentado la resolución y contar con más de 1.500 genomas, no hemos

encontrado ninguna prueba sobre eventos de recombinación recientes. Este

cambio de perfil, de una bacteria altamente recombinogénica (el grupo

ancestral del MTBC) a un organismo con herencia prácticamente clonal puede

explicarse por dos causas no excluyentes: restricciones ecológicas y

restricciones genéticas. Es cierto que no podemos descartar totalmente la

presencia de recombinación, ya que la poca diversidad genética presente en

las muestras limita la efectividad de las metodologı́as de detección. Además,

hay regiones genómicas que no podemos evaluar con la tecnologı́a de

secuenciación de lecturas cortas. Sin embargo, parece claro que la

recombinación, de estar presente, tiene un impacto mı́nimo en la diversidad

genética del MTBC.

Los eventos de ancestrales de recombinación descritos implican a genes

relevantes para las funciones patogénicas de la bacteria, como por ejemplo los

operones mymA (esencial para el crecimiento dentro de macrófagos) y mce1

(necesario desencadenar una la respuesta pro-inflamatoria adecuada para el

desarrollo de la infección). Alternativamente, hemos identificado genes

concretos que fueron relevantes en el proceso de adaptación del MTBC a su

nuevo nicho ecológico.

Nuestros análisis nos han permitido identificar un gen, phoR, que está bajo

selección positiva en cepas actuales del MTBC. Estudios previos ya han

mostrado que:

• PhoPR es uno de los principales factores de virulencia del MTBC.

• Mutaciones antiguas en PhoPR están relacionadas con la adaptación del

MTBC a nuevos hospedadores animales.

Hemos encontrado cambios aminoacı́dicos en codones que ya han sido

propuestos como implicados en adaptación a hospedadores animales, en

muestras clı́nicas de humanos. Esto nos lleva a pensar que las mutaciones en
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phoR pueden estar implicadas en el ajuste de la respuesta inmunogénica del

patógeno durante la infección, permitiéndole manipular la reacción del

hospedador e incrementar las posibilidades de transmisión. Sin embargo, aun

desconocemos los estı́mulos concretos que activan phoR, y que han sido la

base de las presiones de selección de este gen durante su evolución.

En resumen, proponemos que la recombinación, ası́ como la adquisición

de nuevo material genético (demostrado en otros estudios), le permitieron al

ancestro del MTBC especializarse como patógeno obligado de mamı́feros. Esta

asociación obligada al hospedador, se vió acompañada de nuevas presiones

de selección, que actuaron sobre diversos genes. El hecho de que esos genes

hoy en dı́a evolucionen bajo selección purificadora sugiere que son importantes

para la adaptación al nicho ecológico actual. Por último, en las últimas fases de

expansión y especialización del MTBC a distintos hospedadores, encontramos

trazas de selección positiva en distintos genes, phoR entre ellos.

Impacto de la diversidad global del MTBC en las
redes biológicas de la bacteria

Introducción

En los últimos años se han publicado importantes artı́culos basados en el

estudio de las redes biológicas de M. tuberculosis. Por ejemplo, se ha

publicado una red de regulación de la bacteria basada en datos de ChIP-Seq y

experimentos de sobreexpresión, ası́ como múltiples modelos de redes de

interacción de proteı́nas (redes PPI o interactomas). Algunos de estos

modelos han permitido predecir el comportamiento de la bacteria en distintas

condiciones ambientales.

Sin embargo, todas estas redes han sido construidas basándose en la cepa

de referencia H37Rv (linaje 4). Esta cepa es una cepa clı́nica de referencia

usada durante décadas en laboratorios de todo el mundo, y en muchos aspectos

no representa la complejidad del MTBC. Ası́ pues, mutaciones presentes en el
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MTBC de forma natural, pueden cambiar la arquitectura de estas redes basadas

en H37Rv.

Se sabe que hay mutaciones puntuales, presentes en clados principales del

MTBC, que afectan a procesos regulatorios y tienen impacto sobre la virulencia

del patógeno. De hecho, actualmente se está testando una vacuna (fase 2

de ensayos clı́nicos) basada en una deleción del factor de transcripción PhoP.

Además, como se comentó en la introducción general, la diversidad genética

de la bacteria tiene implicaciones epidemiológicas y para el desarrollo de la

enfermedad en el hospedador. Desconocemos el efecto que esta diversidad

pueda tener sobre la topologı́a de las redes biológicas de la bacteria y sobre las

predicciones que los modelos computacionales calculados en base a H37Rv

ofrecen. Tampoco sabemos si estas predicciones pueden ser extrapolables a

otras cepas del MTBC.

En este capı́tulo, construı́mos nuevos modelos de expresión basados en

H37Rv, y comprobaremos su capacidad predictiva al introducir mutaciones

presentes en cepas del MTBC. Además, estudiamos el impacto de la

diversidad global del MTBC en la topologı́a del interactoma, e identificamos

nodos de la red claves para mantener su estructura.

Resultados

Construcción y validación de modelos de expresión génica basados en
H37Rv

Basándonos en datos calculados a partir de experimentos de

sobreexpresión (TFOE) sobre más de 200 factores de transcripción (TF),

generamos modelos computacionales que nos permiten predecir el nivel de

expresión de un gen a partir de los niveles de expresión de los TF que lo

regulan. Los modelos predictivos se construyeron mediante regresión lineal,

utilizando los datos derivados de los experimentos de TFOE. Los modelos

calculados inicialmente fueron evaluados en un proceso de validación cruzada

y frente a modelos calculados con datos aleatorizados. Esto hizo que, al final

198



del proceso, tuviéramos 1.216 modelos predictivos que superaran las pruebas

de evaluación (30,8% de los modelos iniciales).

Para evaluar la robustez de las predicciones, comprobamos el

funcionamiento de los modelos con un conjunto de datos de expresión distinto

a los usados para construirlos y entrenarlos, aunque de nuevo basados en

H37Rv. Si intentamos predecir el valor de expresión bruto (valor cuantitativo),

obtenemos una correlación de 0,71 entre los datos predichos y los reales.

Intentamos otra aproximación, usando un gen como referencia (dnaA), e

intentamos predecir el nivel de cambio de expresión entre este gen y el resto

de genes del genoma. En este caso, obtuvimos un coeficiente de correlación

de 0,97 entre los datos reales y los datos predichos.

Red de regulación basada en interacciones estadı́sticamente validadas

Los 1.216 modelos obtenidos incluyen 11.253 relaciones de regulación.

Algunas de estas relaciones están basadas en una señal regulatoria muy débil,

por lo que seleccionamos únicamente las relaciones con una señal más fuerte

(aquellas que, en los experimentos de TFOE, provocan una respuesta

regulatoria 2 veces superior o inferior a la expresión inicial). Con estas

relaciones creamos una nueva red de regulación, que incluye 1.102 genes y

3.396 relaciones. La distribución del parámetro de grado de la red indica que

muchos TF regulan un número pequeño de genes mientras que un número

bajo de TF regulan a muchos de ellos, siguiendo una ley de potencia.

En esta nueva red, los nodos Rv0023 y Rv0081 son los TF que regulan

un número mayor de genes, lo que los convierte en nodos extremadamente

importantes. En contraposición, Rv3202c es el gen que tiene un mayor número

de TFs modulando su expresión. Este gen tiene actividad ATPasa y helicasa.

Los factores de transcripción no están globalmente conservados en el
MTBC

Una vez calculamos los modelos de expresión y la nueva red de regulación,

intentamos predecir el efecto fenotı́pico de la variación genética natural

existente en cepas clı́nicas. Para ello examinamos el grado de conservación de

199



Resumen en castellano

los TF estudiados en todo el MTBC. Buscamos mutaciones tanto en las

regiones reguladoras de los TF como en las regiones codificantes de los

mismos.

Usamos una colección de SNPS obtenidos de una publicación anterior. En

esta colección, identificamos mutaciones con efecto potencial sobre la función

génica. Por ejemplo, tenemos 15 TF con SNPs que introducen alteraciones

en codones de parada. Además, 12 TF están delecionados en algunos linajes

y sublinajes, ya que caen en conocidas regiones de diferencia (RD). Para cada

una de los subconjuntos de genes regulados por estos factores de transcripción,

hacemos un análisis de enriquecimiento de categorı́as funcionales. Un amplio

espectro de funciones están representadas en estas redes como por ejemplo

rutas metabólicas, respiración, patogenicidad y respuesta a estı́mulos externos.

Además de estas mutaciones, identificamos 117 SNPs en las zonas

reguladoras de 44 TFs, algunos de ellos afectando a linajes y sublinajes

completos. Algunos de estos SNPs, ya reportados en estudios anteriores,

tienen efecto sobre la expresión del TF. Otras variantes, pese a no haber sido

reportadas, pueden tener efecto potencial sobre la regulación de los TF. Por

ejemplo, el cambio T89200G que afecta al gen Rv0081, que es uno de los

reguladores más importantes de la bacteria. O la variante C2965900T, que se

encuentra en la región reguladora del TF Rv2642 y es homoplásica.

Predicción in-silico de los niveles de expresión en cepas con distintos
trasfondos genéticos

A continuación, nos interesa comprobar si los modelos construidos son

capaces de predecir el impacto del trasfondo genético en el perfil

transcripcional de la bacteria. Para ello seleccionamos una cepa del linaje 1

(T83) para la cual hay publicados datos de expresión, y en la que hemos

identificado una deleción en el TF Rv1985c y un stop-codon en el TF Rv2788.

En los modelos, reducimos al mı́nimo el nivel de expresión de Rv1985c y

Rv2788 (imitando el potencial efecto de ambas mutaciones) y predecimos el

efecto sobre la expresión de los genes regulados por ambos TF. Predecimos
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diferencias significativas en la expresión de 148 genes. De ellos, solo 64

muestran diferencias de expresión en experimentos de RNA-seq reales, y

obteniendo una correlación de 0,08 entre los niveles predichos por nosotros y

los datos reales de esta cepa. No podemos obtener conclusiones definitivas a

partir del análisis de una sola cepa, pero nuestros resultados parecen indicar

que los modelos obtenidos únicamente con datos de H37Rv no pueden

aplicarse para hacer predicciones en todo el MTBC.

Razonamos que, si no es posible predecir cambios de expresión en los

distintos linajes, tal vez los modelos podrı́an ser aplicados en experimentos

basados en H37Rv. Seleccionamos datos provenientes de un estudio en el

que a la cepa H37Rv se le deleciona el TF phoP. De nuevo, seleccionamos

todos los modelos en que phoP está presente como regresor y disminuimos su

expresión al mı́nimo. Predecimos 188 genes en los que su expresión génica

está significativamente alterada en el mutante. Al contrastar estos resultados

con datos de RNA-seq obtenidos de otro estudio, solo encontramos 9 genes

coincidentes. Además, para esos genes tampoco encontramos una correlación

estadı́sticamente significativa entre la expresión predicha y la expresión

medida.

En vista de estos resultados, evaluamos si la ausencia de correspondencia

entre las predicciones y los datos experimentales se debı́a a que los modelos

predictivos se han generado con datos de sobreexpresión de TFs mientras que

los datos con los que intentamos contrastar las predicciones se han obtenido

por la deleción de TFs. Comparamos los sitios genómicos a los que el factor

PhoP se liga en el genoma en el mutante knock-out, en la cepa original H37Rv

y en la cepa con phoP sobreexpresado. Vimos que, en los experimentos de

sobreexpresión, el factor PhoP se liga a más sitios que en H37Rv, lo que hace

pensar en ligamientos inespecı́ficos. Además, los datos de expresión de los

TFOE indican que estos ligamientos inespecı́ficos generan respuesta

transcripcional. Esto nos hace sospechar que el hecho de trabajar con

distintas metodologı́as (sobreexpresión y deleción) puede ser causa de parte

de las inexactitudes en las predicciones de los modelos.
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Las proteı́nas esenciales tienden a ocupar lugares centrales en el
interactoma

Al darnos cuenta de que la red de regulación no está conservada, nos

preguntamos por el nivel de conservación de otras redes biológicas de la

bacteria. Las proteı́nas, que son el producto final de los procesos de

regulación, interactúan entre ellas para desarrollar un completo abanico de

funciones biológicas. Para los análisis posteriores, elegimos descargarnos las

PPI contenidas en la base de datos STRING, eligiendo aquellas con un ı́ndice

de confianza mayor, para construir una red. En esta red, las proteı́nas son los

nodos, y las interacciones entre ellas aparecen como conexiones aristas.

La rama matemática que estudia teorı́a de grafos dice que la importancia

relativa de un nodo en una red viene dada por sus valores de centralidad.

Cuantos más elevados sus valores, más importancia en términos de

estabilidad y comunicación de la red. En las redes biológicas se ha propuesto

que los nodos centrales son más relevantes para la funcionalidad de la red.

Por otro lado, estudios previos han determinado la esencialidad de ciertas

proteı́nas del MTBC para su supervivencia en distintas condiciones.

Enfrentando ambos conceptos, encontramos diferencias estadı́sticamente

significativas en la distribución de los valores de centralidad entre las proteı́nas

esenciales y no esenciales. En base a esto, construimos un modelo para

determinar la probabilidad de que una proteı́na sea esencial, en base a sus

medidas de centralidad. Al aplicarlo, vemos que las proteı́nas esenciales

tienen una probabilidad mayor de ser esenciales que las no esenciales, en

base a sus medidas de centralidad. En concreto, si analizamos el modelo

vemos que una alta probabilidad de ser esencial la tienen proteı́nas con

valores altos de centralidad de grado, cercanı́a y de vector propio y con valores

bajos de excentricidad y radialidad. Por tanto, parece claro que las proteı́nas

esenciales tienden a ocupar puestos centrales en el interactoma.

Las proteı́nas centrales del interactoma tienden a acumular menos
mutaciones que afectan a la función génica
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Para comprobar el impacto de la diversidad genética presente en el MTBC,

extrajimos todas las posiciones variables de las 4.598 cepas clı́nicas usadas

en el capı́tulo 4 (n=235.254). Calculamos el potencial efecto sobre la función

génica de estas mutaciones y las mapeamos sobre el interactoma. 280 de las

proteı́nas presentes en la red tendı́an a acumular más mutaciones con potencial

efecto disruptor de la función génica que de otro tipo.

Posteriormente creamos una versión simplificada del interactoma. Para ello

definimos comunidades, que son grupos de proteı́nas más conectadas entre sı́

que con proteı́nas de otros grupos. Estas comunidades incluyen proteı́nas

implicadas en procesos biológicos comunes. Definimos un valor de impacto

para cada grupo en base al número de proteı́nas con potenciales mutaciones

disfuncionales en la comunidad. Observamos que hay una correlación

significativa entre los valores de centralidad de las comunidades y el valor de

impacto, localizándose las comunidades más impactadas en la periferia del

interactoma. Si en vez de poner todas las mutaciones juntas las segregamos

por linaje, el patrón de comunidades impactadas es similar en los linajes que

están filogenéticamente más relacionados.

Discusión

En este capı́tulo hemos visto cómo la diversidad genética presente de forma

natural en el MTBC tiene impacto sobre las redes biológicas del patógeno.

Nuestros resultados sugieren que el hecho de utilizar una cepa de referencia

(H37Rv en este caso) para generar modelos complejos de redes puede

generar conclusiones inexactas y no generalizables a todo el complejo.

Con respecto a la expresión génica, los modelos predictivos derivados de

la red basada en H37Rv no difieren de modelos aleatorios en el 66,87% de

los casos. Por otro lado, el 33,13% restante, tampoco ofrecen predicciones

precisas, ni siquiera al aplicarlos a los mismos datos utilizados para generarlos

y entrenarlos. Este hecho puede tener dos causas principales no excluyentes.

Por una parte, el ruido introducido por las técnicas de cuantificación ha de ser
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tenido en cuenta a la hora de crear estos modelos, principalmente en genes con

un nivel de expresión bajo. Variaciones en estos niveles de expresión pueden

deberse a procesos estocásticos y ser ruido de fondo. Además, la aplicación

de estos modelos sobre datos generados en distintos estudios hace que no sea

posible cuantificar de forma absoluta la expresión génica. Por otra parte, la red

de regulación inferida es altamente dependiente de la metodologı́a experimental

utilizada para generarla. La sobreexpresión de factores de transcripción pueden

introducir falsos positivos a la hora de cuantificar la regulación de la expresión

debido a la aparición de inespecificidades.

Nuestros resultados muestran que los TFs testados en H37Rv no están

conservados en el resto del MTBC. Mutaciones y deleciones afectan al 76% de

las cepas circulantes. Las redes de regulación modeladas hasta este momento

no tienen en cuenta la influencia potencial de estas variantes, ni tampoco el

efecto de otras capas de regulación (ARN no codificante, metilación o

modificaciones post-transcripcionales). Todo esto hace que, al aplicar los

modelos a otras cepas distintas de H37RV, no obtengamos buenas

predicciones.

Además de encontrar mutaciones que afectan a nodos importantes (TFs)

de la red de regulación, también encontramos mutaciones impactando la red

de interacción de proteı́nas. Hemos visto cómo las proteı́nas más importantes

para el funcionamiento de la bacteria se sitúan en las zonas centrales del

interactoma. Las proteı́nas tienden a agruparse en base a su función, y estas

agrupaciones previenen la acumulación de mutaciones aleatorias con potencial

efecto disfuncional en las zonas más centrales del interactoma. Sin embargo,

esto hace también que el interactoma sea sensible de ser desestabilizado por

‘ataques’ dirigidos contra nodos especı́ficos que sean ejes centrales de esta

red. Además, hemos visto cómo distintos linajes del MTBC tienen distintos

nodos impactados por estas mutaciones. Esto puede provocar que las

interacciones entre las proteı́nas no sean las mismas en todas las cepas, ya

que se pueden crear nuevas interacciones entre distintas proteı́nas para suplir

aquellas afectadas por mutaciones disfuncionales. Si esto es ası́, deberı́amos
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generar, al menos, un modelo de interactoma para cada uno de los grandes

grupos filogenéticos del MTBC, con ánimo de identificar proteı́nas o grupos de

ellas que sean centrales y puedan ser potenciales dianas terapéuticas.

El papel de los mecanismos de mutación y
metilación en la heterogeneidad transcripcional del
MTBC

Introducción

Como se ha detallado en la introducción general, pese a la baja diversidad

genética presente en el MTBC las diferencias entre los distintos linajes se

traducen en caracterı́sticas fenotı́picas distintas. En el capı́tulo anterior hemos

comprobado como hay variantes genéticas que impactan la red de regulación

del complejo a distintos niveles filogenéticos, lo que sugiere la presencia de

una variabilidad transcripcional elevada en el MTBC.

Dado que las caracterı́sticas fenotı́picas pueden venir dadas por diferencias

en los mecanismos de regulación de la expresión, es de especial interés

caracterizar el perfil transcripcional propio de cada uno de los linajes del

MTBC. Hasta ahora, los estudios de expresión génica en el MTBC se han

basado en el uso de microarrays o de secuenciación de cepas concretas. No

hay estudios, a nivel de linaje, utilizando las herramientas de secuenciación del

transcriptoma (RNA-seq). Ası́ pues, en este capı́tulo final se han estudiado los

perfiles transcripcionales de los principales grupos filogenéticos del MTBC

usando datos de RNA-seq. Además, se ha caracterizado el impacto de dos

mecanismos diferentes sobre la plasticidad transcripcional del complejo;

mutaciones puntuales y patrones de metilación diferencial, ambos afectando a

regiones reguladoras.
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Resultados

Patrones generales de transcripción en el MTBC

Se seleccionaron 19 cepas, representantes de los linajes 1 a 6, para las

cuales se extrajo y secuenciaron el ADN y el ARN. En un primer paso, se

analizó el perfil transcripcional global del complejo a partir de los

transcriptomas de cada una de las muestras. Todas las muestras

pertenecientes a un mismo linaje filogenético mostraron un perfil

transcripcional similar, con dos excepciones. Ambas excepciones debı́an su

alteración del perfil a mutaciones puntuales en reguladores principales (los

genes dosR y rpoB). Al ser congruentes las agrupaciones de los perfiles

transcripcionales con la topologı́a de la filogenia, investigamos el número de

genes diferencialmente expresados (DE) en cada una de las ramas principales.

Observamos un patrón, en el cual el número de genes DE es proporcional a la

longitud de la rama. Esto sugiere que los cambios en los perfiles de

transcripción se acumularon gradualmente, a medida que los linajes fueron

divergiendo. Encontramos dos excepciones. La divergencia entre MTB y MAF

viene definida por una distancia genética pequeña, pero comprende un gran

número de genes DE. Por otro lado, en la rama común de todos los linajes

modernos (linajes 2,3 y 4) encontramos justo la situación contraria.

Expresión diferencial entre principales clados del complejo

Después de analizar los perfiles transcriptómicos generales, quisimos ver

las diferencias especı́ficas entre cada uno de los linajes. Encontramos que los

genes que codifican para sideróforos (sistemas necesarios para adquisición de

hierro en ambientes limitados, como el macrófago) están sobreexpresadas en

MTB frente a MAF; y genes relacionados con transporte de cationes metálicos

están sobreexpresados en MAF frente a MTB. Con respecto al linaje 6,

encontramos genes relacionados con el metabolismo de iones de cobre;

sustrato necesario para que la bacteria desarrolle caracterı́sticas virulentas en

animales. Con respecto al linaje 5, encontramos genes relacionados con el

estado metabólico dormante sobreexpresados; mientras que genes
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relacionados con funciones de virulencia están reprimidos. En el linaje 1,

encontramos genes como virS, otro regulador de virulencia, sobreexpresados.

Por otro lado, tenemos mpt63, un epı́topo reconocido por el sistema inmune,

con una fuerte señal transcripcional en antisentido. En la rama común del

linaje 4 tenemos parte del operón mce2 reprimido ası́ como genes

relacionados con biosı́ntesis de molybdopterin. Con respecto al linaje 3, el gen

más sobreexpresado es oxyR. Este hecho es bastante intrigante, ya que oxyR

es un pseudogen que ha perdido su función en el MTBC. Por último, dentro del

linaje 2 tenemos dos grandes grupos. Por una parte el llamado clado

proto-Beijing, que es la rama más basal del linaje, y por otro el clado Beijing,

que comprende cepas con un impacto epidemiológico muy importante,

principalmente en Asia. Encontramos que el sistema DosR/DosS está

sobreexpresado en las cepas Beijing con respecto a la rama basal del linaje, lo

cual es un hecho ya conocido. Esta sobreexpresión viene dada por una

mutación que genera un nuevo sitio de inicio de la transcripción aguas arriba

del TF dosR. Un análisis de enriquecimiento para cada una de las ramas

resaltó que la mayorı́a de funciones biológicas sobrerrepresentadas en los

genes DE están relacionados con interacciones con el hospedador y procesos

metabólicos.

Procesos no aleatorios generan gran plasticidad transcripcional en el
MTBC

En un siguiente paso, intentamos ligar cambios transcripcionales con

mutaciones genéticas concretas. Como adelantamos en el capı́tulo 5, ciertas

mutaciones pueden crear nuevos sitios de inicio de transcripción (motivos

TANNNT) que pueden provocar sobreexpresión de genes adyacentes.

Decidimos buscar en nuestras cepas, mutaciones que pudieran o bien crear

nuevos motivos TANNNT o interrumpir los ya existentes. Encontramos 683

mutaciones que creaban nuevos motivos y 81 que interrumpı́an motivos ya

existentes. Análisis de permutaciones aleatorias y comparaciones frente a

distribuciones de probabilidad, indicaron que estos valores eran mayores de los

esperados por azar. Además, comprobamos como el elevado ratio de nuevos
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motivos frente a interrumpidos es independiente de la posición genética en la

que está la mutación. Parece ser que este hecho está relacionado con el

elevado sesgo en mutaciones que generan nuevas bases AT.

Mirando los genes que anteriormente habı́amos detectado como DE en

cada una de las ramas, vemos que los nuevos motivos tienden a incrementar

la transcripción de genes adyacentes (es el caso de oxyR en linaje 3) mientras

que la interrupción de los motivos la disminuyen. Además, el ∼26% de los

genes detectados como DE están asociados a este tipo de eventos

mutacionales.

Patrones diferenciales de metilación

Intentamos testar el efecto de la metilación sobre la regulación génica. Para

ello secuenciamos el ADN de las cepas con la plataforma PacBio, y buscamos

bases metiladas. Encontramos tres motivos principales metilados en la

mayorı́a de nuestras muestras, correspondientes a tres metiltransferasas

identificadas en estudios previos (MamA, MamB y HsdM). En algunas cepas,

los motivos reconocidos por cada una de las metiltransferasas no estaban

metilados, lo que sugerı́a que en determinados casos estas proteı́nas estaban

inactivas. En estos casos, buscamos mutaciones no sinónimas en los genes

codificantes para las metiltranferasas. Encontramos algunas mutaciones

previamente caracterizadas, y algunas otras nuevas. Para tener una idea de la

distribución global de estas mutaciones, las buscamos en las 4.595 cepas

usadas en el capı́tulo 4. Algunas de las mutaciones las encontramos

enraizadas muy profundamente en la filogenia, afectando a linajes completos.

Por tanto, parece que gran parte de las cepas del MTBC pueden tener gran

parte de su genoma metilado de forma diferencial.

El impacto de la metilación diferencial sobre la expresión génica es
sutil e independiente de linaje

Para comprobar el impacto de la metilación diferencial (MD) sobre la

regulación génica, buscamos lugares de inicios de la transcripción que estén

metilados por alguna de las tres principales metiltransferasas. Encontramos 13
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genes metilados por MamA, 24 por HsdM y 2 por MamB. A continuación,

comparamos la expresión de cada uno de estos genes en cepas del mismo

linaje, que tengan MD. Encontramos que, para los genes afectados por MamA

y MamB, la expresión génica es ligeramente superior en las cepas metiladas

que en las no metiladas, independientemente del linaje. Sin embargo, la

metilación por HsdM no parece afectar a la expresión génica de los 24 genes

con MD.

El mecanismo de regulación de HsdM es distinto a MamA y MamB

Para dilucidar el potencial efecto regulador la MD por HsdM, creamos un

mutante knock-out de este gen, y analizamos su transcriptoma comparándolo

con el wild-type. Encontramos varios genes con su expresión incrementada en

el mutante. Principalmente los genes comprendidos entre Rv0081 a Rv0087.

Por otro lado, 3 genes ven su expresión reducida en el mutante. Ası́ pues,

parece que la MD por HsdM tiene efecto sobre la regulación de algunos genes,

aunque el mecanismo parece ser distinto a MamA y MamB, ya que no se han

encontrado bases metiladas cerca de los genes DE.

Discusión

De nuestro análisis se deduce que cada uno de los linajes del MTBC tiene

un perfil transcripcional propio. Sin embargo, pequeñas variaciones genéticas

pueden tener un gran impacto sobre el perfil transcripcional de las muestras.

Hemos caracterizado genes que han visto su expresión modificada o lo

largo de la evolución del complejo. La modificación de los niveles de expresión

puede ser un mecanismo de adaptación fisiológica rápido ante un ambiente

cambiante. Este parece haber sido el escenario cuando MAF y MTB se

separaron de su ancestro común. En una distancia genética pequeña, muchos

genes vieron alterada su expresión. Un cambio ambiental brusco relacionado

con las poblaciones del hospedador, pudo ser la causa de estos cambios. El

análisis funcional refuerza la idea de que los distintos linajes se han adaptado

a diferentes hospedadores no solo a nivel de secuencia, si no también
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alterando la expresión de distintos genes.

En este capı́tulo se han estudiado dos procesos que potencialmente tienen

efecto sobre la regulación de la expresión. Por un lado, cerca del 26% de la

expresión génica diferencial detectada en el MTBC está provocada por la

alteración de sitios de inicio de la transcripción reconocidos por SigA. La

selección, junto al sesgo mutacional AT, parece haber jugado un importante

papel en este hecho. Por el contrario, la metilación parece tener un efecto

mı́nimo en la regulación de la expresión génica in-vitro. No hemos sido

capaces de detectar un gran impacto sobre la regulación debido a las

metiltransferasas principales, excepto por un efecto sutil en unos pocos genes

cuyas regiones reguladoras están metiladas por MamA o MamB. Esto puede

ser debido a que:

• Para ver un efecto regulador importante debemos aplicar estress

• La metilación pudo tener un efecto regulador en cepas ancestrales, pero

ahora no juega ese papel

• No hemos usado la aproximación correcta que ya el mutante ∆hsdM no

muestra expresión diferencial en genes con el motivo TANNNT metilado

de forma diferencial.

Lo que sı́ se deduce de nuestros resultados es que hay convergencia en los

patrones de metilación de los distintos grupos filogenéticos. Fenotipos similares

están presumiblemente producidos por variantes genéticas diferentes. Esto,

junto con el hecho de que las metiltransferasas hayan estado evolucionando

bajo selección purificadora, sugiere que la metilación en el MTBC aún puede

estar jugando algún papel biológico.

Discusión general

Para conseguir erradicar la tuberculosis, la enfermedad infecciosa que más

muertes humanas ha causado, necesitamos adquirir más conocimiento en
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cuanto a los mecanismos de transmisión, persistencia, virulencia y adquisición

de resistencias del patógeno. Todas estas caracterı́sticas son altamente

heterogéneas en patógenos con estructuras poblacionales muy complejas. En

el caso de la tuberculosis, diversos autores han demostrado que también hay

fluctuaciones en estos factores relacionadas con el perfil filogenético de la

cepa bacteriana, pese a tener una estructura poblacional altamente clonal.

Es por esto que la diversidad genética del MTBC deberı́a ser tenida en

cuenta en las investigaciones que se realizan con este patógeno. Sin embargo,

en muchos casos esto no sucede. Por ejemplo, las técnicas de biologı́a de

sistemas suelen trabajar con organismos modelo, y raramente incluyen

polimorfismos. En el caso del MTBC y como vimos en el capı́tulo 4, modelos

computacionales calculados con datos de una cepa de referencia no son

capaces de realizar predicciones fiables sobre cepas de otros orı́genes

genéticos. Además, mutaciones encontradas de forma natural en el MTBC

impactan distintos módulos de las redes de regulación y PPI, potencialmente

afectando a su función. Sin embargo, todas las redes biológicas modeladas

hasta ahora en el MTBC están basadas en la cepa de referencia H37Rv. Serı́a

de gran utilidad generar, al menos, redes especı́ficas de linaje y/o en distintas

condiciones. Sin embargo, lo cierto es que generar datos a esa escala es

técnica y económicamente muy costoso.

La limitada diversidad genética del MTBC puede deberse a distintos

factores:

• El MTBC tiene una tasa evolutiva baja, probablemente influenciada por su

lenta tasa de crecimiento y los largos tiempos de latencia, en los que la

bacteria puede estar años con una actividad biológica reducida.

• Como vimos en el capı́tulo 4, no hay adquisición de material genético

externo ni recombinación en el MTBC.

Este último punto es especialmente relevante para entender la aparición de

resistencias a antibióticos en el MTBC. Las mutaciones de resistencia

aparecen de forma independiente en la filogenia y se fijan a causa de la
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presión de selección que supone el uso de antibióticos. La identificación de las

cepas que contienen estas mutaciones es clave para vigilancia epidemiológica.

La WGS está ganando cada vez más relevancia para la consecución de este

objetivo.

Además, la WGS está aplicándose cada vez con más éxito en contextos

clı́nicos y en investigación básica. Casi todos los resultados que se han

presentado en esta tesis provienen de WGS, descargados de bases de datos

públicas o generados por colaboradores en otros proyectos. Gracias a esto,

hemos sido capaces de estudiar polimorfismos genómicos a nivel de SNP en

miles de genomas, lo que nos ha permitido obtener resultados

estadı́sticamente robustos.

Pero no solo hemos usado datos de secuenciación de genomas, si no que

también hemos secuenciado transcriptomas completos. Los análisis del

capı́tulo 6 nos han permitido arrojar luz sobre la heterogeneidad transcripcional

presente en el MTBC, y los mecanismos por los que se produce esta

variabilidad. Hemos logrado identificar como mutaciones en genes clave como

rpoB, pueden alterar completamente el perfil transcripcional de la bacteria. Por

otro lado, mutaciones que crean nuevos sitios de inicio de la transcripción

también tienen efecto sobre la regulación de ciertos genes. Además de las

modificaciones genéticas, hemos testado modificaciones epigenéticas

(metilación de adeninas) para ver si tienen efecto regulador. Sin embargo, en

este caso solo hemos sido capaces de encontrar un efecto sutil de la

metilación del ADN sobre la expresión de ciertos genes.

Lo que se desprende de todos los análisis que hemos realizado es que los

miembros del MTBC están perfectamente adaptados a su hospedador. La

selección natural parece estar actuando para mantener la asociación

patógeno-hospedador en un nivel máximo. En consecuencia, la mayor parte

del genoma del MTBC parece estar bajo selección purificadora, con valores de

dN/dS menores que 1. Pese a esta tendencia general, hay genes concretos

que evolucionan bajo selección positiva. En el capı́tulo 4 hemos mostrado

como phoR está evolucionando bajo selección positiva. No es el único sin
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embargo, ya que otros estudios han mostrado como otros genes como ppe38,

esxW o genes relacionados con resistencia a antibióticos están evolucionando

bajo este tipo de selección.

Todos estos resultados se han obtenido mediante el uso de datos WGS. Y

como ya hicimos notar en la introducción general, para analizar este tipo de

datos es necesario el uso de herramientas bioinformáticas. En la presente

tesis, la bioinformática ha tenido un papel protagonista. Por ejemplo, el pipeline

de análisis que se ha desarrollado para analizar los datos ha sido esencial no

solo para el desarrollo de esta tesis, si no para el trabajo diario de muchos de

los miembros del grupo. De hecho, una comparativa realizada por un

laboratorio independiente entre pipelines de distintos centros de referencia

demostró que nuestra metodologı́a estaba entre las que ofrecı́an resultados

más robustos y reproducibles. Además del pipeline, muchos de los métodos

usados han sido especı́ficamente desarrollados por el doctorando para los

proyectos y análisis que comprende esta tesis. Estamos convencidos de que la

metodologı́a desarrollada puede ser exportada a otros organismos y proyectos.

Por tanto, la contribución de esta tesis al ámbito cientı́fico no se limita solo a

los resultados y conclusiones, sino que también incluye la metodologı́a

desarrollada durante este tiempo.

En resumen, hemos estudiado la evolución del MTBC en distintos

escenarios valiéndonos de las nuevas tecnologı́as disponibles. Hemos

intentado poner en valor la diversidad genética del MTBC, como una

caracterı́stica clave a tener en cuenta si queremos encontrar una solución

global para este patógeno mortal.
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