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Preface

The current knowledge on the structure of matter is the result of a huge experimental and
theoretical effort. Our Universe is composed of elementary particles governed by the four
fundamental forces: gravitational, weak, electromagnetic and strong forces.

The Standard Model (SM) of particle physics is the simplest theoretical description
of how these particles and forces, except for the gravitational force, are related to each
other. Along the years, the SM has been able to explain all the experimental data with
high accuracy, culminating in 2012 with the discovery of the Higgs boson. Its elegance,
simplicity and high predictivity have converted the SM in the best theoretical reference
framework to date.

Despite being a successful description of the reality, there are some phenomena that the
SM does not explain such as the large matter-antimatter asymmetry. In the early Universe,
the Big Bang should have resulted in the same proportions of matter and antimatter, but
nowadays we observe that almost everything around us is made of matter except for a
small amount of antimatter. One of the grand challenges facing physics is understanding
why we observe this asymmetry.

CP violation is one of the necessary ingredients to generate this large asymmetry. In
spite of including all needed ingredients, the SM is unable to completely generate the
observed asymmetry. Therefore, extensions of the SM with new sources of CP violation
could explain the size of this asymmetry. The main objective of this work is precisely the

study of phenomenological systems where the CP symmetry is violated.



This thesis is divided in seven chapters. In Chapter |1, we present a comprehensive
overview of the SM, showing how its interactions emerge from symmetry principles. The
last part is dedicated to the flavour sector of the SM where the CP violation phenomena is
introduced through the Cabibbo-Kobawashi-Maskawa (CKM) matrix. Finally, we present
the different ways in which this phenomena can appear in nature.

The concept of Effective Field Theory (EFT) is introduced in Chapter [2| providing a
powerful theoretical approach for the physical systems studied along this thesis.

The theoretical determination of the direct CP-violating ratio €’ /e in the SM is the first
phenomenological application presented in this thesis which can be found in Chapter 3]
Using the theoretical framework of Chiral Perturbation Theory (xPT), we obtain a SM
prediction in complete agreement with its experimental measurement. Finally, in Chap-
ter [4) we update the previous prediction including the known isospin-breaking corrections.

In Chapter [5] we perform a one-loop computation of the short-distance contributions
for the neutral meson mixing in a quite general extension of the SM, the Aligned-Multi-
Higgs-Doublet Model (AMHDM). This extension accommodates new sources of CP vio-
lation that could reproduce the size of the observed matter-antimatter asymmetry of the
Universe. Finally, these sources are strongly constrained from the current flavour data.

In Chapter [0, we obtain new limits for the charm and bottom quark electric dipole mo-
ments (EDMs) using the renormalization group equations (RGEs) and the strong bounds

on their chromo-EDMs.



Chapter 1

Deepening into Flavour Physics

The Standard Model (SM) of particle physics is the simplest theory based on symmetry
principles that is able to describe the experimental data with high accuracy. The SM is
composed by two gauge theories, SU(3)¢c and SU(2);, ® U(1)y, which lead into two types
of interactions, strong and electroweak interactions, respectively. In this chapter, we give
a general overview of the SM, paying special attention to the flavour sector. For further

reading, you can consult Refs. [1-5].

1.1 The Gauge Interactions of the Standard Model

In this section, we study how the fundamental interactions of the SM emerge from gauge

symmetry principles.

1.1.1 Strong interaction

Quantum chromodynamics (QCD) is the gauge theory of the strong interactions with
SU(3)¢ as the underlying gauge group [6H9]. The matter fields of QCD are the so-called
quarks which are spin-1/2 fermions with six different flavours (3 light flavours up w, down
d, strange s and 3 heavy flavours charm ¢, bottom b, top ¢) and three possible colour

charges (red, blue or green). Applying the gauge principle to the SU(3)c group, we can
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obtain the QCD Lagrangian from the free quark Lagrangian. For that purpose, let us

consider
Lo=> > aqf(id —my)q Z Qs (i@ — my) qr (L.1.1)
f [e%

where @ = +* 9, and qf = (q},q]%,qfc)T is the colour triplet field with components ¢F,
being v and f the colour and the flavour indices, respectively. Notice that £y is invariant
under the global SU(3)¢ transformations,

SUB)c UB)e

Gg———aq =Uqg, G —>q} q; U, (1.1.2)

where U is a unitary matrix with det U = 1 that is conveniently written as

8
—exp{ Z % a} . (1.1.3)

0, are arbitrary real parameters without physical meaning and the eight linearly inde-
pendent matrices A\* are the Gell-Mann matrices which play the role of the generators of

SU(3)c. They are traceless and satisfy the following commutation relations

A@ \b . 8 ac)‘c
[27 2‘| =1 Z f b ?, (114)

where %€ are the totally antisymmetric real structure constants which give a measure of

the non-commutativity of SU(3)c,
1
Jabe = 1i TI‘([Aa, )\b} )\c) . (115)

Let the 6, parameters depend on the space-time coordinates, 6, = 0,(x). Then, due to
the derivative acting on the quark field, the Lagrangian given by Eq. (1.1.1)) is no longer

invariant,
8

Lo = Lo — Y (0uba) J¥, (1.1.6)
a=1
where
JE=3"8N g ( ) q (1.1.7)
foap of
is the conserved current given by the Noether theorem associated with the global symme-

try (1.1.2).
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To keep the invariance under local transformations, one has to apply the gauge principle
to the SU(3)¢ group which consists in adding extra pieces to the Lagrangian, transforming
it in such a way that they cancel the additional term in . Then, we must introduce
32 — 1 gauge fields G}, transforming as

@ SU@B)c

G = 5 G ——— G, = UG U + é(aMU) Ut (1.1.8)

where g5 corresponds to the strong coupling constant, and define the covariant derivative
D, as
Dugr = (Ou + i9sGu)ay (1.1.9)
which transforms, by construction, as the quark field.
Then, replacing 9, by D,, in Eq. , we obtain the following Lagrangian

L= 46D —mp)ag => qGG@d—mp)a — g J G, (1.1.10)
7 7

which is invariant under the local transformation given by Eq. . The gauge principle
provides a flavour-independent interaction between quark and gauge fields called gluons.
In order to propagate these new fields, it is necessary to add a kinetic term. The only
quantity with dimension four that does not violate the fundamental symmetries and is

invariant under a local SU(3)¢ transformation, is

1 v 1 v a
Liin = —iTr (G Gu) = 1 GH G, (1.1.11)
where
: \a
G = —gi D", D¥] = 9"G¥ — 9 G" + ig,GM, G = TG, (1112)
and transforms under SU(3)¢ as
SUB)c , ;
G ———— Gy = UG, U (1.1.13)
Finally, the QCD Lagrangian reads
1 14 1% a a — - a
Lacp = - (0"G, — 97GY) (0uGe = 0,G8) + Y ap (i@ — my) ap — g5 JL G,
f

2
9s  rabe v v c 9s  rabe v e
+ S (OMGY — 0VGY) GG = T faae G GEGL G (1.1.14)
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In the first line of Eq. (1.1.14)), one finds from left to right the gluon and quark kinetic
terms and the quark-gluon interaction, while in the last line, the gluon self-interactions

involving vertices with three and four gauge fields as shown in Figure [I.1]

a
Gl

a
G,u gsfabc

L 2P ke b
9s =5 Ga_

Figure 1.1: Feynman vertices for the strong interaction.

The SU(3)¢ symmetry does not allow a mass term for gluons, since m%, G# Gy, breaks
the gauge invariance. The last two terms in the first line of Eq. would be for-
mally identical to the Quatum Electrodynamics (QED) Lagrangian with an appropiate
redefinition of the gauge field. Unlike QED, QCD has triple and quartic self-interactions
between gluon fields. The existence of these terms explain the fundamental features of the
strong interaction such as asymptotic freedom (strong interactions become weaker at short-
distances) and confinement (the strong interaction increases at long-distances). Further

details can be found in Refs. [10-12].

1.1.2 Electroweak interactions

The Electroweak Standard Model (EWSM) is a SU(2); ® U(1)y gauge theory that de-
scribes weak and electromagnetic interactions through the exchange of spin-1 gauge fields,
similar to gluons in QCD. In the EWSM, one has a massless photon for the electromagnetic

interaction and 3 massive weak bosons, W* and Z°, for the weak interaction [13-15].
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The fermionic sector is organized in 3 generations with identical properties. The only
differences are their masses and their flavour quantum numbers. The particle content in

each generation is

Ve u
. . . — !
e First generation: , , €p, ur, dp
e d
1L L7 1L
vy c
. . — /
e Second generation: , s, Hp, CR, Sp
— /
S
I 1L
vy t
. . . — /
e Third generation: , . Tp. tr, by
T~ v
L Jr L1

with their corresponding antiparticles. Xp = Pr X with Ppp = (1 £5)/2 for X =
Qus 4d, V1, |”. Each generation has 1 (1 lepton field) plus 3 (1 quark field with 3 colours)
left-handed fields that transform as SU(2);, doublets, in addition to 1 (1 lepton field) plus
6 (2 quark field with 3 colours) right-handed fields that transform as SU(2), singlets.

For simplicity, let us consider just one generation,

Qi(r) = o , Q2(r) = qur, Q3(z) = qar, (1.1.15)
(9],
_Vl_

Li(z) = , Ly(x) = I, (1.1.16)
-
)

with the following representations under the gauge SU(3)c ® SU(2)r, ® U(1)y,
Qi(z) = (3,2,1/6), Q2(z) = (3,1,2/3), @3(z) = (3,1,-1/3),
Li(z) = (1,2,-1/2),  La(z) = (1,1,-1).

The free Lagrangian is given by

3 2
Liree = 1 Z ] an Z aLk ) s (1117)

Jj=1
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which is invariant under global SU(2); ® U(1)y transformations,

SU(2),®U(1)y

Q1(x) Qi (z) = exp{liy{ 8} UL Qi(z) ,
SU2)L®U(1)y

Q2(x) Qhs(@) = exp{iyss B} Qaa(a),

SU@)L8U(1)y
Li(x) T L) = exp{ivh 8) Un Lu(a)

SU@)L8U(L)y
Lo() - » Ly(x) = exp{ivh B} Lo(w) , (1.1.18)

where Uy, is the non-Abelian matrix associated to the global SU(2);, transformation,

3 .
Uy, = exp{i 3 029043} , (1.1.19)

i=1

and o; are the Pauli matrices and the parameters y; ! are the quark and lepton hyper-
charges which play a similar role as the electric charge Q for U(1)g in QED.

In order to have a Lagrangian invariant under local SU(2); ® U(1)y transformation, as
in QCD, we have to replace the Dirac derivatives by covariant ones. In SU(2);, ® U(1)y,
we have 4 gauge parameters, o/(x) and £(z), which imply 3 vectorial bosons, Wﬁ(m),
one for each SU(2);, generator, and another one, B,,(z), for U(1)y. Then, the covariant

derivatives are given by

D, Qi(z) = :8M+igWM(x)+ig'y§Bu(:c)} Qi(z)
Dy @aae) = |0+ig vy Buls)| Qaalo)

DuLia) = |0+igW(a)+ig v} Bula)| Lila) .

D, Lo(x) = :aﬁz'g'ygBu(x)} Lo(z) | (1.1.20)

where W#(x) = % Wﬁ(:):), while g and ¢’ are the SU(2);, and U(1)y coupling constants

which characterize the strength of the electroweak interaction. The gauge fields B, (x)



1.1 The Gauge Interactions of the Standard Model 9

and Wu(az) transform under SU(2);, ® U(1)y as

SU(2)L®U(1)y , 1
B, (x) > B,(z) = Bu(x) - yauﬂ(a:) , (1.1.21)

— SU(2)L®U(1)y __ _ i
W (@) » Wi(z) = Up(e) Wu(z) Uf () + 5 UL @) Uj(x),

which are obtained imposing that D, Q;(x) and D, L;(x) transform exactly in the same
way as the Q;(z) and L;(x) fields, respectively.

Replacing all the fermionic derivatives by their corresponding covariant derivatives, we
obtain a Lagrangian invariant under local SU(2);, ® U(1)y transformations,

2

3
L=1iY Qix)y"DyQj(x) + i Li(x)y" Dy Ly(x) , (1.1.22)
j=1 k=1

with the following kinetic terms

1 1. . y
Ekin = _Z B,LLIJ B* — Z Wﬁy W,L-u s (1123)
where
By = 0uB,—9,B,, W, = 0,Wi—0a,W,—ge*Wwiw}, (1.1.24)
which transform as
SU(2)L.®U(l)y . Su@weu()y i
By ——— B, w,, ———— ULW,,U]. (1.1.25)

Finally, we obtain the EWSM Lagrangian

1 1 _ _
Lewsm = —; B B — ZW;VW{‘ +iy <leDQj +lebLj> : (1.1.26)
J

which can be expanded as

1 14 14 a a 1 14 14 a a
Lewsm = —7 ("B — 0" BY) (9B} — 0,By) — 7 ("W = 0"WE) (W) — 0,W5)
3 2 3
+iY QidQi +i Y LydLy—g JyBu—g Y JEWS
j=1 k=1 a=1

2
+ g € (WY — 0 Wi WD W — gZ € cuqe WEWI WEWE , (1.1.27)
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where
3 B 2 B
T =390 Qi + > yiLin" Li
i=1 i=1
_ o o o o

are the conserved currents. The first line of Eq. contains the kinetic terms of the
bosonic fields B, and Wj;. The second line contains the free Dirac Lagrangians for quarks
and leptons, and the interaction Lagrangians between fermions and gauge bosons. The
last line contains the typical interactions of non-Abelian groups, the three and four gauge
self-interactions for W bosons. As in QCD, the mass terms of gauge bosons break gauge
symmetry. Furthermore, it is not allowed to include fermionic mass terms, since they mix
left and right field components which follow different transformations properties, so that,
these terms explicitly break gauge symmetry. Therefore, the EWSM Lagrangian, given
by Eq. , only contains massless fields. In the following subsections, we describe in

more detail all different pieces that compose the EWSM Lagragian.

1.1.2.1 The charged-current sector

w w

dd > > qu - > > 4]

Sle
Sl

Figure 1.2: Feynman vertices for charged-currents interactions.
The EWSM Lagragian contains interactions between fermion and gauge bosons,
3 ~
Lewsm D —g Jy Bu—g > JEWS (1.1.29)
a=1

3 2
= —¢dB,> yQiv"Qi —gQ V' WuQ1 — ¢ B> Y Liv"Li — gLiy" Wy, L.
=1 =1
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The terms with Wu fields correspond to the charged-current interactions with a boson
field W, = % (Wﬁ +1 Wi) and its complex conjugate W): = % (W; —1 Wﬁ) The
charged-current interactions for quarks and leptons are

Loc = — % W (qu(ﬂs) Y Pp qa(x) + viz) " Pr l‘(f)) + he (1.1.30)

1.1.2.2 The neutral-current sector

f— > f

e
(vy —agvys)

eQy 2 sgcy

Figure 1.3: Feynman vertices for neutral-current interaction.

The Eq. also contains interactions between neutral gauge fields Wﬁ’ and B,
which we would like to identify with the Z boson and the photon . However, since the
photon field A, has the same right and left chiral fermionic interactions, the B, field can
not be the photon field. It would only happen if y{ = y3 = vi, v} = vh =4}, ¢’ yi = e Qf
and ¢’ yé. =e Qé which can not be satisfied simultaneously. We can try with an arbitrary

combination between them,

Wil _ o o) |2 (1.1.31)
B'u —Sp Cp AM

where sy = sin 0y and ¢y = cos fy. In terms of Z,, and A, the neutral-current Lagrangian

can be written as

Lne = =Y. ]{ [9289+9y]09]+2’{ 5 ¢ —g’y?SeHQj

=1

.

2
Z ]{ [Qse—i—g y]ce}—FZ[che—g’yése]}Lj, (1.1.32)

j=1

.
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where A = YuAF and 7= YuZ*. Then, in order to obtain the QED Lagrangian, one has

to impose

g sinfy = ¢ cosOy = e,

Y = Q _ T3 , (1133)

where T3 = 03/2 is the third component of the weak isospin, while Q is the electric
charge. The first equality relates the g and ¢’ couplings with the electromagnetic coupling
e, providing the unification of the electroweak interactions. The second equality fixes the

fermionic hypercharges in terms of the electric charges and the weak isospin,

ytll = Qqu qu 5 yg = QQu 5 y?q, = qu 5 (1134)

yll = Ql/z Ql* ) yl2 = Ql* . (1135)

M"“M\H

Therefore, the neutral-current Lagrangian can be expressed as
Lxc = Lqep + Léc , (1.1.36)
where Lqrp and L’ﬁc are the QED and Z neutral-current Lagrangians respectively,
Lqep = —e Z (Q]A QIQ; + LA Qg.L]) : (1.1.37)
J

ﬁﬁc = — ZfZ v —agys) f (1.1.38)

2 sin 0W cos Oy

with ay = Ti{, vf = T3f (1 —4]9Q¢| sin? Oy ) and f is the fermion field.

1.1.2.3 Self-interactions of the weak gauge bosons

The kinetic Lagrangian, given by Eq. (1.1.23]), contains triple and quartic self-interactions,
see Figure

Ls = + ie cot@w{w“” Wiz, — vt W, Z, + W, W} ZW}

+ ie{w‘“’ WiA, — w W, A, + W, W) FW} : (1.1.39)
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W
w+t v, Z
Yy Z ANNNS
W+ |4 v, Z
w+ W+
W= W=

Figure 1.4: Self interactions vertices of the weak gauge bosons.

62

Ly = {(W; wH? — Wi wHw, W”}

2sin? Oy

— e%ot?ew{wlj W Z,2" — W} ZFW, Z”}
— € cot Oy {2Wg W Z, AY — Wi ZHW, AY — Wi A* W, Z”}

— ¢ {Wg WHA, A — Wi ArW, A”} , (1.1.40)

where w,,, = 9, W, — 0, W, , wLV = OMWJ — OVW): and Z,, = 0,2, —0,Z, .

1.2 Spontaneous Symmetry Breaking

Promoting the SU(2); ® U(1)y group as a local gauge symmetry, we have determined
all the electroweak fermion and boson interactions. However, in contrast to the gauge
bosons of QED and QCD, the electroweak gauge bosons are massive. Since, the gauge
symmetry does not allow mass terms for the gauge bosons, this requires a new ingredient in

order to solve this problem, spontaneous symmetry breaking. The Spontaneous Symmetry
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Breaking (SSB) appears when a system defined by a Lagrangian symmetric under a certain
transformation has a vacuum state that is not symmetric. In this section, we show how
the SSB leads to the appearance of scalar fields with zero mass called Goldstone particles

and then we give mass to the W and Z° bosons of the SM through the Higgs mechanism.

1.2.1 Global symmetry: Goldstone theorem

Let us consider a complex scalar field ¢(x) with the following Lagrangian
L= (0,0)1(9"0) —V(#), V(6) = 1" (670) +h(819)", (1.2.41)
which is invariant under global phase transformations,
p— ¢ =exp{if}op, ¢ —¢T=0plexp{—ib} , (1.2.42)

where 6 is an arbitrary constant.
The potential is bounded from below, then A > 0 . For p?, we have two possibilities

depending on its sign, see Figure [1.5

1. 2 > 0 : The potential V(¢) has a unique minimum, ¢o(x) = |[(0|¢(x)|0)| = 0 . The

term involving p? is a mass term, therefore ¢(z) has mass p.

2. u? < 0 : The minimum corresponds to the configurations of ¢(z) that satisfy

2

exp{if} , v=4/ -1 . (1.2.43)

oo(z) = -

v
V2
Due to the global U(1) invariance, there are an infinite number of minimum energy

states that are connected through Eq. (1.2.43)).

For ;2 < 0, we can build a perturbation theory through the expansion of the scalar field
around one of these minima given by Eq. (1.2.43)). For that purpose, we introduce the

following parametrization

o(x) = \2 (v + 4,01(1:)> exp {Z (9 + g02($)>} , (1.2.44)
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(a) /1'2<0 (b) [L2>O

Figure 1.5: Scalar potential V' (¢).

where ¢1(z) and @o(x) are real fields that describe small perturbations of the modulus
and the phase of ¢(x) from the chosen minimum. The choice of one of these minima, via

the parameter 6, leads to SSB. Inserting the parametrization given by Eq. (1.2.44]) into
Eq.(T.2.41),

1
L=3 (Oup1) (0" 1) +

2,2 2 2 4
pe v 1 hv 1
— 1 — - — |1 — 1.2.45

2 ( + v ) 2 ( + v ) ’ ( )

(1 + ?)2 (Oup2) (0" p2)

where we find the following aspects:

e () is a scalar field with mass p which describes the radial oscillations of ¢ around

v/v/2. The mass results from non-vanishing radial curvature of V().

e o(x) is a massless scalar field called Goldstone boson. It is massless due to the

vanishing curvature along the potential minima, 62V// 6@% =0.

e 1(x) interacts with ¢o(z) only through derivatives of ¢o(x) . In the limit of zero

momenta, the Goldstone bosons do not interact with ¢;(z) .
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Although this conclusions correspond to a particular model, it is an example of a more

general result, known as Goldstone theorem [16,17]:

If a Lagrangian is invariant under a continuous symmetry group G, but the vacuum is
only invariant under a subgroup H C G, then there are as many massless particles with
zero spin (Goldstone bosons) as generators of G that are not of H, in other words, the

number of symmetries that have been broken.

In this quite general example, there is only one Goldstone boson because when we have

chosen the minimum, we have broken the only symmetry of the vacuum.

1.2.2 Local gauge symmetry: Higgs mechanism

We have studied how a SSB of a global symmetry produces a massless particle. This
seems to be unuseful for giving mass to the gauge bosons. However, when we consider a
SSB of a local gauge symmetry, the problem is completely solved. First, we have to build
the scalar Lagragian which requires the choice of the scalar field representation. This
choice demands that the field with a nonzero vacuum value is electrically neutral, then the
photon remains massless, while it have to carry nonzero values of T3 and Y. The simplest

choice is an SU(2);, doublet of complex scalar fields [18-20]

¢ (z)
d(x) = : (1.2.46)
¢ (x)

We can write the scalar Lagrangian invariant under SU(2); ® U(1)y as

ﬁscalar = (DM(I))T(D;U(I)) - MQ Q)T P — h((I)T (I))Z R

D® = [0 + igWy + ig Yo Bu(a)| @, (1.2.47)

where Yo = Q¢ — T3 = % . The value of the scalar hypercharge Yg is set to have
the correct coupling between ®(z) and A*(x). The photon is not coupled to ¢(?), this is

crucial to have a massless photon.
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For h > 0 and p? < 0, the situation is very similar to the Goldstone model, see

Figure There are an infinite number of minima, satisfying

v T
— = /- 1.2.4
75 v - (1.2.48)

All of them connected by an SU(2);, ® U(1)y transformation (4 generators). When we

1(0]¢@[0)] =

choose one of these minima, the symmetry is spontaneously broken leading a remaining
U(1)g symmetry (1 generator), which gives rise to the appearance of 4 — 1 = 3 massless
scalar fields (Goldstone theorem).

As in the global symmetry case, we parametrize the scalar doublet in terms of the

radial H(z) and the phase 6'(x) excitations around the physical vacuum,

.05 g 1 0
®(z) = exp {2 50 (:c)} 7 o s H . (1.2.49)

Using the gauge invariance of the Lagrangian, we can transform ®(z) into another field in

which the three §%(x) fields (Goldstone bosons) do not appear and so preserving the Higgs
boson as the only physical scalar field H(x),

o) - = | (1.2:50)
V2 v + H(x)
These three degrees of freedom, that are apparently lost, become the longitudinal polar-

izations of the gauge bosons W+ and Z°. After the SSB, they become massive fields as

can be seen inserting Eq. (1.2.50]) into Eq. (|1.2.47)),

2 2
D,®) (DH®) = a2 ! wiwe 4 9 g e
( 2 ) ( ) (U+ ) {4 ,u,W + 8C0820W M + ’

which contains the mass terms for the weak bosons W+ and Z°,

1
Mz cosbyw = My = 309 (1.2.51)

and the photon stays massless. Then, the W* and Z° bosons acquire masses through a

SSB of a local gauge symmetry with the following pattern:

SU@), @ U(l)y — 2 U(1)g . (1.2.52)
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1.2.3 The Higgs boson and its interactions

The scalar Lagrangian, given by Eq. (1.2.47)), has introduced a new scalar particle: the

Higgs boson. In terms of physical fields (unitary gauge), it becomes

1
Lscalar = Z hU4 + Ly + ﬁHGQ R (1.2.53)
where
LH:18H8“H71M2H27M1%H37M%H4 (1.2.54)
2 M 2 TH 2v Sv? ’ -
2 T H 12 w 2 H?

and the Higgs mass is given by My = /-2 u* = vV2hv . In Figure we show the

Higgs interactions with gauge bosons and fermions.

VA4 Ww-—
7 2 M2 + 2 M2,
H my
H

T =

W+

2 2
1%' 2 M2,

v 02

f

Figure 1.6: Higgs interactions with gauge bosons and fermions.

1.2.4 The Yukawa Lagrangian

In the previous section, we have been able to produce all weak boson masses via the

Higgs mechanism. In this section, we show that the SU(2);, scalar doublet allows us to
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add new terms to the Lagrangian which are invariant under the gauge symmetry. These
interactions will be responsible of generating the mass for all fermions in the SM.

Let us consider n generations of fermions, denoted by v/, I, u}, d’;, where the members
of each generation j (j = 1, ...,n) have the usual SU(2);, ® U(1)y transformations. Due to
the insertion of the scalar doublet, a large variety of fermion-scalar doublet couplings are
allowed by the gauge symmetry. The most general interaction is the Yukawa Lagrangian,

— d — ~ — 1
Ly ==Y {Qlj Y0 @ Qly + QY Y & Qb + L1, Y @ Lgk} + he,  (1.2.56)
jk
where Yj(,f), Yj(,?) and Yj(,i) are the three Yukawa couplings, arbitrary nxn complex matrices,
and ® = ioo®@* is the conjugate representation of the scalar doublet ® . In the unitary

gauge, the Yukawa Lagrangian can be written as
H 7 ! U —/ / / 77 !/
EY = — 1"‘; dLMd R + uLMuuR + lLMl lR + h.c. 5 (1257)

where d’, v/ and I’ are n-dimensional vectors in flavour space and

v

1y —yd Y N =y Y n.o=yW®
(Ma)ij =Yy ok (M)ij =Y ok (My)ij =Yy 7 (1.2.58)
are the mass matrices. In general, the M/, matrix can be decomposed as
./\/lil = H,U; = Sji- MgSqUy , (1.2.59)

where Hy = \/ M/, Mg is a hermitian positive definite matrix while Uy is a unitary matrix.
Furthermore, H; can be diagonalized through another unitary matrix S;. Therefore, the
final result is a diagonal, hermitian and positive definite matrix My . For M/, and M) |

we can do the same:
Mg = diag(mg, ms, mp, ...) ,
M, = diag(my, me, my, ...) (1.2.60)

M, = diag(me, my, m4, ...),
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and finally, the Yukawa Lagrangian becomes
H - ~ _
Ey——(1+){d./\/ldd—i—u./\/luu+l./\/lll}, (1.2.61)
v
where we have defined the mass eigenstates as

dp = Sgdy , ur, = Sy up lp = S,

dR = Sd Ud d/Ra UR = Su Uu ’LLIR, ZR = Sl Ul l;% . (1.2.62)

The diagonalization of the Yukawa Lagrangian has strong physical implications on the
previous Lagrangians, since we have to put them in terms of the mass eigenstates. These

implications are the foundations of flavour physics in the SM,

e Neutral-currents do not mix flavour in the SM, this is known as the Glashow-
Iliopoulos-Maiani mechanism [21]. The neutral-current Lagrangian, given by Eq. ((1.1.36)),

does not change when it is expressed in terms of the mass eigenstates,
firfir = for fLr- (1.2.63)

e Charged-currents are the only interactions that mix flavour in the SM. The charged-
current Lagrangian, given by Eq. (1.1.30)), mixes both u fermion states with d and

vy fermion states with [. After diagonalizing the mass matrices,
ahy dy = g S, Shdp = L Vdy . (1.2.64)

In general, S, # Sg, then when we express the weak eigenstates in terms of the mass
eigenstates, it appears the product Sy S;r, which is an n X n unitary matrix denoted
by V. Therefore, the charged-current Lagrangian becomes

Loc = _% Wi N i Py Vigdy + Y mA* Pl + he. (1.2.65)
¥ l
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Figure 1.7: Feynman vertex for flavour-changing interactions.

e [f a right-handed neutrino vg is included in the SM, we would have additional terms

in the Yukawa Lagrangian that would lead to a mass piece,

(M) = v (1.2.66)

5

This would acommodate massive neutrinos in addition of Lepton Flavour Violation
(LFV). This violation would be parametrized by a mixing matrix that would be
analogous to the CKM matrix of the quark sector. Another way to implement
the neutrino masses in the SM is through the addition of a right-handed Majorana

neutrino mass term [22]. In the last case, the neutrino would be its own antiparticle.

1.3 The CKM matrix

The quark mixing matrix V is an n xn unitary matrix, characterized by n? real parameters:
n(n—1)/2 modulus and n(n+1)/2 phases. Since the SM Lagrangian (except the charged-
current Lagrangian) is invariant under phase transformations of the quark fields, u; —
e'®iy,; and d; — et d;, some of these parameters are redundant. The V;; — Vijei(@i_‘f’i)
transformation allows us to eliminate 2n — 1 phases which reduces the parameters to
n(n —1)/2 modulus (mixing angles) and (n — 1)(n — 2)/2 complex phases (CP violating
phases).

For n = 2 generations, the CP violation phenomena can not be explained because there
are no complex phases. For n = 3, the quark mixing matrix is called Cabibbo-Kobayashi-

Maskawa (CKM) matrix [23,24] which has 3 mixing angles and 1 complex phase. In
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the literature, the CKM matrix can be found in different equivalent parameterizations.
One of the most popular is the standard CKM parameterization, introduced by Chau and
Keung [25],

1 0 0 c13 0 si13 e 1013 ci2 s12 0

V = 0 C23 593 0 1 0 —s12 c12 0

0 —8923 (€23 —S813 ei613 0 C13 0 0 1

—i613
C12 C13 C13512 513€
= | —co3s12 — 12513523613 c1aca3 — S12513823€013 €13523 . (1.3.67)
i i
512823 — C12¢23513€"°13  —C12823 — C23512513€"1®  c13¢23

where ¢;; = cosf;; and s;; = sinb;j, ¢ and j are the generation labels (i,7 = 1, 2, 3).

The 6;; angles are defined in the [0, 7] range through a proper redefinition of the quark
phases, so ¢;; > 0, s;5 > 0 and 0 < 613 < 27 and then 413 is the only source that generates
CP violation in the SM. In fact, this was the reason for advocating [24] the existence of a
third family before the discovery of the bottom quark and the tau lepton, since with only
two families, the SM could not explain the CP violation observed in the kaon system.
Experimentally it is known that s13 < s93 < s12 < 1. A convenient parameterization
is the Wolfenstein expansion with three mixing parameters (A, A, p) and one source of
CP violation n . In this parametrization, A plays the role of the expansion parameter.
Defining s12 = A = |[Vio|/V/[Vad® + [Vus? » s23 = AN = X |Vip/Vis| and s33 13 =
AN (p+in) = V7 [26-28], we can explicitly show the hierarchy in the size of mixing
angles through orders of A |
1— 2\ A AN (p—in)
V = )\ 1— 12 A N2 + O\ . (1.3.68)

2

AN A —p—in) —AN 1
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where
|Vep|
A= 2 (1.3.69)
Vub
2 2 . 1.3.70
p*+n ‘)\Vcb ( )

Then, diagonal transitions (Viq, Ves, Vip) are O(1), transitions between the first and
the second generation (Vys, Viq) are O()\), transitions between the second and the third

generation (V, Vis) are O(\?) and transitions between the first and the third generation

(Vab, Via) are O(N\3) .
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Figure 1.8: Principal processes used to determine the CKM matrix elements [29)].

1.3.1 Unitarity of the CKM matrix

The unitarity of the CKM matrix allows us to test the consistency of the SM, then it
is important to determine the matrix elements with high accuracy. The accurate deter-
mination of these matrix elements supposes a challenge because it involves the study of
hadronic decays that introduce large theoretical uncertainties. The Figure .8 shows which

processes are used to determine the CKM matrix elements. An apparent violation of the
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unitarity of the CKM matrix could indicate signs of new physics beyond the SM. For in-
stance, this could lead to a fourth generation or exotic heavy quarks, so the submatrix 3 x 3
would cease to be unitary by itself. Alternatively, this could involve new interactions such
as supersymmetry (SUSY), leptoquarks, or a heavy W’ boson (coupled to right-handed
currents) or a gauge Z' boson that have not been included in the analysis and therefore
would lead to an incorrect determination of some elements of the CKM matrix.

The unitarity of the CKM matrix imposes that
Viv =vvlt =1, (1.3.71)
in matrix form

SoViiVie =60, Y. Vi Vi = O (1.3.72)
i J

This fixes the rows and columns normalization,

Vaal® + [Vas)® + V> = 1, Vad® + [Vea® + [Vial® = 1,
Veal® + Ves|* + [Va|* = 1, Vus|? + [Ves? + [Vis]® = 1, (1.3.73)
Vaal® + [Visl® + [Va|* = 1, Vis)® + [Vaol? + [Vi)? = 1,

and six unitarity relations,

Vudvjs"i_‘/’cd‘/vc)‘;—i_‘/;&d%::O’ V“d‘/cz—i_vus‘/cz—’_vub‘/cz:o’
Vaa Vi + Vea Vi + Via Vi = 0, Vaa Vi + Vas Vit + Ve Vi = 0, (1.3.74)
Vas Vit + Ves Vi + Vis Vi = 0, Vaa Vi + Ves Vit + Va Vi = 0.

Plotting the unitarity relations as a sum of three complex numbers whose sum is zero,
they form a triangle, see Figure The area of these triangles is J/2, where J is the
Jarlskog invariant. In the SM any CP violation is proportional to this invariant quantity.
The Jarlskog invariant is given by [30]

3
Im [VJ Vi Vi V,;;] =T Y Cirmeiin + (1.3.75)

m,n=1
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C VeV B (0,0) 1 (1,0)

Figure 1.9: Unitarity triangle of the CKM matrix.

being

)\2
J = c12 Co3 Ch3 519 S93 513 sindyz = A% N0y (1 - 2> + O()\w) . (1.3.76)

Taking into account the Wolfenstein parameterization, we observe how the identities
satisfy the following relations between the triangle sides: A : A : A5 for the first equation
and A* : A2 : A2 for the third equation, showing that there is always one side that is
suppressed. In the second equation, we observe that all triangle sides are (’)()\3) . Dividing
each side in the left-hand-side equation by V; V.4 , we obtain a triangle, see Figure
with vertices in (0, 0) , (1, 0) and (p, 1) ~ (1—A?/2)(p, n) . Many experimental measure-
ments in flavour physics can be shown in the plane (p, 77) giving important determinations
and constraints for the CKM matrix elements. Some of these measurements come from

decay amplitudes that depend on the CP violation angles o ,  and v ,

ViaVi, VeaVy, VudViy
= — = — c = —_w . 1. .
«a arg [ AR 8 arg ViaVr | ~ arg VoV (1.3.77)

The current experimental constraints are shown in Figure [[.I0] One of the triangle
sides has been calculated using Eq. through |V, /Ves| (dark green region). The
other side can be obtained using the B} — Eg mixing (yellow region), AM; = 0.5064 +
0.0019ps~! [31,132]. Additional information has been obtained from the BY — ES mixing,
AM, = 17.757+0.021 ps~! [31,32] and from the experimental fraction AMy/AM; (orange
region). In addition, constraints on the 7 parameter are determined through K° — 77

decay with the measured value of |ex| = (2.228 £ 0.011) - 1072 [31] which determines the
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Figure 1.10: Experimental constraints on the SM unitarity triangle .

light green parabolic region. The B° decays into CP self-conjugate final states provide
independent ways to determine the angles of the unitarity triangle. One of the most
important decays is Bg — J/¢Kg , which gives us a very good measure of the angle 3,
sin(28) = 0.691 + 0.017 [32]. The determinations of the other two angles « and v, have
already been obtained, and included in the global fit. The different sets of data fit very

well and provide a very accurate determination of the vertices of the unitary triangle.

1.4 CP violation in Neutral Meson Systems

In this section, we introduce a general formalism to study CP violation phenomena in the

mixing and the decay of a generic neutral meson MY being M° = K°, DY, B?, Bg .
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1.4.1 Neutral Meson Mixing
1.4.1.1 Formalism

. .\ 0 . .
Let us consider a superposition of two meson states, [M®) and |M"), which are eigenstates
of the strong and electromagnetic interactions with common mass mg but different flavour

content,

(1)) = a(t) M%) + b(t) M) = : (1.4.78)

where a(t) and b(t) are the time-dependent coefficients for the M° and M states, respec-
tively. In general, M® and M’ mix together through weak interacions and they can also
decay into other states |n). We simplify the problem by considering only two states MY
and M". Therefore, the time evolution of these coefficients is valid for times which are
much larger than the typical strong interaction scale.

The time evolution of |¢)(t)) is governed by an effective Hamiltonian which is a sum of

the strong, electromagnetic and weak Hamiltonians,
H =Hs + Hem + Hw, (1.4.79)

which obeys the non-relativistic Schrodinger equation,

.0
i 5 [0(0) = H|v()) . (1.4.80)

Splitting into a Hermitian and anti-Hermitian parts, the 2 x 2 complex matrix H can be

written in the meson rest frame as

H=M - %r, (1.4.81)

where both M and I' are Hermitian,

M:%(H+HT):MT, r=i(#-Hn)=rh (1.4.82)

Since M and I' are Hermitian, their diagonal elements are real, Ma; = M{, and I'yy =1'75 .

The CPT invariance requires M1; = Moy and I'y; = I'9o . Notice that H is not Hermitian,
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otherwise the meson states would just mix and not decay into other states. Furthermore,
these non-Hermiticity is also reflected in the probability to observe either M? or MO, since

it is not conserved, it goes down with time

0

5 ORM) =~ [v(E) <0. (1.4.83)

In general, H can be described through three physical quantities: two modulus (| Mi2| and
IT'12]) and one CP phase ¢

= arg (—Am) , (1.4.84)

which is the relative phase difference between the off-shell (dispersive) and on-shell (ab-

sorptive) contributions. So, the mass and width differences are
AM = My — M_ = 2|Ms], AT =T, — T = 22| coso, (1.4.85)

up to numerically irrelevant corrections of order O(|I'i2 /M12]2). M4 and I'y are the
masses and decay rates of the physical eigenstates |My) , respectively. Diagonalizing the
Hamiltonian, we find the eigenvalues (masses and decay rates) and eigenvectors (physical

eigenstates),

)\iZMn—%FniA, A

M%) + g [M° 1 - ¢ Mj, — &3
|Mi>:p‘ >2 q|2>7 4 _ f: 12 3 12 (1.4.87)
Ip|* + | p l1+e My — 5T12

which can be rewritten as
VIpl? + gl
M) = YD (g + (o))
0 VIpl* +lqf?
M) = ———— [|M+> — \M_>] . (1.4.88)

2q

(1.4.86)
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"'We use the CP convention CP|M®) = — [M') .
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From Eq. (|1.4.86)), we inmediately obtain
M:t = M11 + Re (A) s Fi = —[FH + QIm(A)] . (1.4.89)

Another interesting phenomenological observable is the CP asymmetry for flavour-specific

final states ags, which relates ¢/p to the mixing phase ¢,

q I'i2 INTIE AT
=21 — |= =1 = = t . 1.4.
s ( ‘pD o <M12) | M2 sin ¢ AM an ¢ (1.4.90)

1.4.1.2 Time evolution

The |M4) are the mass eigenstates that diagonalize the Hamiltonian. Then, from Eq. ([1.4.80)),

the usual time dependence is

M (b)) = = (== 3 T AL (0)) (1.4.91)

Combining Eqs. ([1.4.87)), (1.4.88)) and (|1.4.91)), we obtain the following time evolution of
IM®) and [M°)

IMO(1)) g+(t)  Lg-(t)| |IM°(0))
—0 = —0 ) (1.4.92)
IME(%)) Bg-(t) g+@) | |IM(0))
where
(x—iy) Tt
t )
g+ _ e  iMtg— 3Tt COS[ 2 ] , (1.4.93)
g—(t) —1 sin [(x Zy)rt}
with the following definitions
1 1
and
AM AT
= — = —. 1.4.
T=p. Y=g (1.4.95)
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Figure 1.11: Diagrammatic casuistry of neutral meson mixing transitions.

1.4.1.3 Mixing in the Standard Model

At second order in perturbation theory, M;; and I';; are given by

Mij = mo by + (i[Hylj) + D P(<i|H“;lZ>_<"gitW|j>> , (1.4.96)
Lij = 2m Y (i[Hw|n)(n|Hwlj) 6(mo — En) , (1.4.97)

n
where mg = (M°|(Hs + Hem)|M®) = <MO\(HS + Hem)|MO> is the unperturbed mass of
M and MO, E,, is the energy of the intermediate states n and P indicates the principal
part. The diagonal elements M7 and I'1; are real parameters that would correspond to
the mass and width of the neutral mesons in the ideal world in which the weak interaction
is switch-off. The off-diagonal elements, M5 and I'12, encode the physics behind the
neutral meson transitions. While the dispersive part Mjs quantifies the short-distance
AF = 2 contributions coming from box diagrams and non-local contributions involving
two AF = 1 transitions, the absorptive contribution I'1o encodes all on-shell intermediate
states in which M® and M° can both decay. In Figure we show diagrammatically the
interplay between mixing and decay.

In the following, we explain how to perform the calculation of the mixing parameters
in the SM. The mass width AM is dominated by short-distance AF = 2 contributions.

These contributions appear at one-loop level in the SM due to the GIM mechanism.
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They are represented by the Feynman diagrams popularly known as box diagrams, see

Figure m (MY = ¢1¢o and M = G1g2). In general, the computation of these diagrams

. *
_ , Vifzz % Via, , _ VZqz w Via:
q2 < < < q1
“w a
w W
B o
il > > » > a2
Via i quz Via W Jaz

Figure 1.12: Box diagrams contributing to neutral meson mixing.

is quite complicated because they contain 4 external four-momenta, 4 propagators and a
sum of three quarks flowing into the loop. In the limit of zero external four-momenta and
zero external quark masses, the computation is simplified considerably and the physical

amplitude (in the unitary gauge) is given by (left diagram in Fig. |1.12))

gw Sy ac _ kKB
g M M
_ Y / w | . w | 1.4.98
Z luW k? — ] 41%/ ( )

: [ﬁqz(o) ’YJPLM ’YBPLuth(O)] : [17,12 (0) v Pr (]ji—'— 2) YaPrvg (0)]
J m;

where we can see the weak coupling ¢%> = 4v2Gp MEV to the fourth power, the four CKM

matrix elements \; = V7 Vig,, the two W propagators, the two internal quark propagators

and the external quark and anti-quark spinors. Using the following Fierz identity,
_ _ 1, _
(uy A Pp ug)(us Ppr Buyg) = 3 (ug v" Pr,ug)(uy Ay, Pr B us) , (1.4.99)

being A and B two arbitrary matrices and Lorentz invariance,

4 4 )
/(ZWI; S bk = /(;iﬂ]; (k) l;) G (1.4.100)
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where D is the space-time dimensionEl, the amplitude given by Eq. (1.4.98)) plus a similar
expression from the second Feynman diagram can be reduced to the following effective

Hamiltonian
HAEF=2 = GF MW Z/\ Aj S(m?,m?) Oy | (1.4.101)
where Ovrr, = [@2(2)y,Prgi(x)] [g2(x)v* Prqi(x)] is a local dimension-six operator and
§(m?,m?) = (1 + ,mj) M3, Dy (2, m2, M3,) — 2 B; B; M}y Do(m?, m?, M3,)

where 3; = m? /MI%V and Dy o are loop functions

ohn (3) cln ()

Dol@boed) = G0 0t-a ¥ e ale—te—d)

s )d(ln (;;))( 3 (1.4.102)
D(ab,c.d) = <b—a§2<bln (E))w 9" <c—a>czcli(és>)<c—d>

+ C)l?;n <§)>(d oz (1.4.103)

Assuming the sum over all different flavours that are flowing into the loop, imposing the
unitarity of the CKM matrix through A, + Ac + Ay = 0 and taking m, 4 — 0, the AF =2

effective Hamiltonian can be expressed as

GLM3,
i = 2 {)\tcLL+)\EC\C/CLL+2)‘t>‘Cc€/tLL} OviL (1.4.104)
with
Ci — 3(0.0) — X 3(m2.0) — X 8(m2.0) — L 5(0.m2) — L 5(0.m2
vin = 50,00 =5 <mw>—§ (m2,0) — 5 5(0,m?) — 3 5(0,m?)

+ = S(m m3) + = S(m m?) . (1.4.105)

2In unitarity gauge, there are UV divergences. However, since they are independent of internal quark

masses, the divergences dissapear when the unitarity of the CKM matrix is assumed.



1.4 CP violation in Neutral Meson Systems

33

Then, we obtain an analytical expression which involves three pieces, the first piece de-

pends on m?/M3Z,, the second piece depends on m?2/ME, and the last piece with a more

complicated dependece on both m?/M3, and m2/Mg3, . These corrections Ci;LL are pop-

ularly known as Inami-Lim factors [33]. In the Table we give the size of these three

corrections together with the corresponding CKM matrix elements.

CKM factors (A; Aj)
(i,5) | Cp/4 K’ B’ BY
(t,t) 2.37 AN —p—in2 | A2XS|1 — p—in|? A2\
(c,c) | 2.6-107% A2 A%)\E A2\
(c,t) | 2.3-1073 | A2X\8|1 — p — in AZXNS|1 — p —in| —AZ)\*

Table 1.1: Inami-Lim factors and CKM matrix elements for different mixings.

From Table we inmediately extract the following conclusions,

1. Since A\t < A , K® mixing is largely dominated by the (c, ¢) diagram, while the (¢,)

and (c,t) diagrams represent small corrections.

2. In the BY and Bg mixings, Ay = A, and m; > m, , then they are completely

dominated by the (¢,t) diagram.

Taking into account these conclusions and

—2,% 70
(MG 2|

AMMO -

9

mo

we obtain the following mass differences for the B and K systems,

Gr My 3 CViL
AMBg = T en2 fBg MBg BBg {77132 4
GE My, i

fI2(O MKO BKO

Af} ,

(1.4.106)

(1.4.107)

CVLL 2 C\C/?LL C{:/'CLL 2
Tt 4 )\t + Tet 4 2)\0 )\t + Nee 4 )‘c )
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where fro and fpo are the K° and Bg decay constants, Myo and Mpo are the K° and Bg
q q
masses. Furthermore, Z’S’Ko and l;’Bo are the renormalization group invariant parameters
q

defined by

_ (3)
Byo = Byo(p) [ag@(m] 29 [1 + azi“) ng , (1.4.108)
5 s 702 [ o
Byy = Bug(w) [0 ()] " 1+ ZE (1.4.109)
with
— 2
(M|Ovir(w)M°) = 3 md fipo Byo(p) (1.4.110)

where ozgf ) is the strong coupling constant in an effective three flavour theory, J3 = 1.895

and J; = 1.627 in the Naive Dimensional Regularization (NDR) scheme [34H36]. In
addition, the short-distance QCD effects are described through the correction factors ﬁBg,
Nets Net and fee [37*41]-

On the other hand, I'15 involves the computation of box diagrams with on-shell internal
quarks. For B? and Bg mixings, the dominant contribution comes from the b — ccs
transition. Since b — ccs is a tree-level transition, I'1o is expected to be less sensitive to
new physics than Mjs. It can be written as [42]

m2

2
A2+ A A O <2> + 220 (”@)} Moo f20 Myo B, (1.4.111)
mb q q q q

my

2 2
Ggm,

Tz = - 8 72

where the QCD corrections are encoded in the factor 77;30 . Notice that M5 and I'13 have
q

the same dependence on the non-perturbative parameter fég Z’S’Bg , then one should expect

that the short-distance prediction for I'13/Mjs has a smaller theoretical uncertainty than

I'12 and My separately. Then, from Egs. (1.4.107)), (1.4.111]) and (1.4.85]),

Al'go m2 1 1
4 N3 —L 1.4.112
AMgo "7 M2, Ci T 250 ( )

which is approximately independent of the CKM matrix elements and therefore the same
AT o

for both B-systems. Furthermore, since x MB"O is proportional to
B
q

2
-
MW

, we have Al'go <
q
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AMBg in the SM. Since AM and AT are proportional to \? for B-systems, the phase dif-
ference between Mo and I'15 is 180° and ¢ is very small in the SM. Moreover, Eq. (|1.4.85|)
implies that AT' > 0 .

1.4.1.4 Behaviour of flavour oscillations

The mixing phenomena D? — ﬁ), KY — KO, B — B’ and BY - ES show different oscillation
behaviours, since they have all different values of I') A’ and AM . Let us compute the

probability to observe a M meson at time ¢ if one starts with a M® meson
P(M%(0) = M°(1)) = (MY(O)M°()* = lg+ ()7, (1.4.113)

and the probability to observe a M’ meson at time ¢ if one starts with a M° meson

2

POM(0) = M () = [(MO(0)M" (1) = |g(t)? g , (1.4.114)
and
eth
g0 = 5 (cosh (yT't) + cos (th)) , (1.4.115)

where x and y are the dimensionless parameters controlling the oscillation time scales
defined in Eq. . Our experimental knowledge about these oscillation parameters is
summarized in Table [I.2] Assuming the SM as the ultimate theory, we can try to explain
the size of the AM values in Table For instance, in the D° - mixing, if we consider
the contribution from the heaviest quark that is flowing into the loop mg , this is not enough
to compensate the strong suppression of the CKM matrix elements |V,,V5|? . Then, the
light quarks dominate AMpo and since it is proportional to |VisVi[2 m2 ~ A2 m?2 | we
expect a small value of AMpo . The B - B mixing is clearly dominated by the top
quark loop, so [V V5> m? ~ A8 m? and therefore the DY oscillation is clearly suppressed
compared to BY oscillation. For BY — ES mixing, we expect a value for the mass width
‘2

larger than the B? ~ B value, since |V V5|2 m? ~ A*m? . Finally, K° mixing is dominated

by the charm quark, |VgVi|? m2 ~ X2 m?2 .
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Figure 1.13: Probability to observe a M or a M’ meson at time ¢.

In Table [[.2] we observe that there is a large casuistry depending on the value of

and y. From Eq. (1.4.115)), we observe that x is the frequency of the flavour oscillations.

Depending on the = value:

e x <K 1: Since cos(xI't) ~ 1, the meson has no time to oscillate and then the flavour

is mostly conserved. We call this case slow oscillation. It corresponds to the D? —

D’

mixing, see Figure where we plot the probability for the inputs of Table [I.2]

e x > 1: The meson oscillates many times before decaying, thus flavour is not con-

served. We call this case fast oscillation. It corresponds to the BS — Eg mixing, see

Figure [[.13d]
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System | T' (10 s=1) | AM (1012 s71) x y

DO D’ | 24.384 0.010 3.2-107% | 6.9.1073
K- K’ 0.056 0.005 0.945 —0.991
B - B’ 6.579 0.506 0.770 0.000
B — B! 6.627 17.757 26.795 0.066

Table 1.2: Mixing parameters of neutral mesons systems [31].

e x ~ 1: In this case, there is a nice interplay between the oscillation and the decay
of the meson. It corresponds to the K° — K’ and B® — B’ mixings, see Figure[1.13b
and [LL.13d

We can also study and combine the y parameter with the previous x casuistry:

e |ly| € 1 and y < x: In this case the width difference is irrelevant. It corresponds

to the B mixings.

e |y| ~ x: In this case the width difference and the mass width are relevant. It

corresponds to the DY — D’ and K* - K mixings.

There are other limits that we do not analyze since they have not been observed.

1.4.2 Neutral Meson Decay

We have studied a quite general formalism to describe neutral meson systems. However,
since we have been more focused in the understanding of the mixing phenomena, we did
not include the decay of the meson into a final state f, instead we have considered a
non-Hermitian Hamiltonian. In this section, we include the meson decay, constructing a

more general formalism. Let us consider M? and M’ meson decays into two possible final
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states f and f. Phenomenologically, there are only four independent quantities,

Ap = (FITIM®) . Ay = (FITIM)
Ap = (FITM®), Af = (FITID) (1.4.116)

where 7 is the transition matrix. Then, using Eq. (1.4.92), the different expressions for

the time-dependent decay rates are

Tyosy = |v4f!2{|9+(7f)|2 + AP g (O] + 2Re (A\p g(1) g(t))} , (1.4.117)
Pyop = ZZ{\g )2+ A2 lor (P + 2Re (Af g4 () g7 (1)) } . (1.4.118)
oy = Al 22{\9 1)1+ A g+ (1)1 + 2 Re (Af g4 (t) g*(t))} ., (1.4.119)
I = |Af!2{lg+(t)|2 + PP lo- (O + 2Re (A;g1(H) g (1)) } , (1.4.120)

where I'; ¢ (t) = |(F|T|I)|? give us the probability that a state I at t = 0 decays into the

final state F' at time t. Furthermore, we have defined the following complex parameters

- 1
Y (1.4.121)

s

)\f_

>

Ay

>
<
I
~hy

Notice that in Egs. (1.4.117) - (1.4.120) , the terms proportional to |Af|* or |ﬁf’2 are

associated with decays that occur without any net oscillation, while terms proportional to
2 _ 2
|Af|? ’g‘ or |./4];|2 ’%‘ are associated with decays following a net oscillation. The terms

with g% (t) g—(t) or g4(t) g* (t) correspond to the interference between these two cases.
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Finally, taking into account Eq. (|1.4.93)), we obtain the time-dependent decay rates for

neutral mesons in terms of z and y

T t
M = cosh (y7)+ Dy sinh(y7)+ Cf cos(x7)— Sy sin(z7) ,
T (t) ! f !
f
T 7t 2 _ _ —
M = |4 (cosh(yT)—l—Dfsinh(yT)—Cfcos(xT)+Sfsin(xT)),
L4 (t) P
I'—o (t) 2
Mot ? (R (cosh(yr)+Df sinh (y 7) — Cy cos (x 7) + Sy sin(xT)) ,
Ly(t) q
IF'—o () _ _ _
N%_)(tf) = cosh(y7)+ Dy sinh (y7) + Cf cos(z7) — Spsin(z7) . (1.4.122)
f
where T =1t ,
= ge ! 2 = et Y2
Frt) = AP 5= (L IMP) o T =[P = (1 IAP) o (14123)
and
_ 2Re()y) 1= g _ 2Im(\y) (1.4.124)

f:1+|)\f’2’ f:1+‘)\f|2’ f:1+’/\f’2’

. 2Re (A7 . 1 — M52 . 2Tm (N7
Df:<f), cf57|,f’ : Sf:(f> : (1.4.125)
L+ [Agl? L+ [Ag? L+ [Agf?
which satisfy
D+ 1Cf2 + ISP =1, [Dfl? + [Cf + [Sf> = 1. (1.4.126)

From Eqgs. (1.4.122)), one realizes that the fundamental quantities necessary to completely

describe a meson neutral system are four, z, y, Ay and A 7 Notice in Egs. (1.4.122)) how
2

H

> is a pure global factor.

1.4.3 Types of CP violation in neutral meson systems

The CP violation appears in neutral meson systems through two types of phenomena,
mixing and decay. For completeness, we give a classification of the three types of CP

violation effects [43].
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1. CP violation in decay (also called direct CP violation) is defined by

A

4, 41, (1.4.127)

This is the case of the interference between two decay amplitudes with necessary

different weak and strong phases. These last phases due to rescattering.

In charged mesons where there is no mixing, the only type of CP violation is

- 2
DM~ — f) — T(M* — f¥) ‘jﬁl -1
YETTOC S ) F T S ) ‘Af— - .

. CP violation in mixing (also called indirect CP violation) is defined by

’Z’ 21, (1.4.129)

This type of CP violation is originated through the interference between the absorp-

tive and dispersive mixing amplitudes, see Eq. (|1.4.87]).

One example of CP violation in mixing is the asymmetry of wrong-sign decays in
charged-current semi-leptonic neutral meson decays MY, M’ — 1* X which only

occurs if there is meson oscillation,
’4

aSL = =

s (1.4.130)
MY =+ X) + (M —1-X) 14+ ‘p

M 51+ X) - T(M —»1-x) 1- \,%
g’4.

where the intial neutral meson can be EO, K or DO .

. CP violation in interference between a decay without mixing, M°% — f,

and a decay with mixing M° — Y f is defined by

arg (Af) + arg ()\f-) # 0, (1.4.131)
with the following asymmetry for neutral meson decays into CP eigenstates

(M = fop) — T(M° = fop)
(M = fop) + T(M° = fop)

Afep = ~Im(Apyp) sin(z't) . (1.4.132)



Chapter 2

The Toolbox: EFTs, OPEs and
RGEs

In the previous chapter, we have introduced the foundations of flavour physics. In addition,
we have studied the CP violation phenomena in the SM which is unable to reproduce the
large matter-antimatter asymmetry that we observe in our Universe. We have presented
different phenomenological applications in which the CP violation can appear, i.e. mixing,
decay or both. In this chapter, we introduce the concept of Effective Field Theory (EFT)
which represents a formidable approach to describe a physical system with the appropriate
degrees of freedom. Using the Fermi’s theory [44] as a toy model, we introduce the general
aspects of EFT, paying special attention to those that are close to the field of flavour

physics. Further information can be found in Refs. [45-50].

2.1 What are EFTs and why we use them?

An EFT is a simplified description of an underlying physical theory. EFT provides an
excellent formalism to describe physical problems involving several energy scales. Its
principle is to use the appropriate degrees of freedom to describe a physical system at

some energy scale in which one is interested. For instance, a heavy particle (1 degree of

41
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freedom) can not be created at energy scales smaller than its mass, then it can not be a
dynamical degree of freedom of the low-energy effective theory. The EFT approach works
better when there is a large energy gap between the scale of interest and the scale of the
underlying dynamics. The dynamics at low energies do not depend on the details of the
dynamics at high energies, this is guaranteed by the decoupling theorem [51] which states
that the degrees of freedom of heavy particles decouple at energy scales much lower than
their mass. By decoupling, we mean that the contributions to physical amplitudes of these
degrees of freedom are suppressed by inverse powers of the heavy masses (up to logarithmic
corrections). Then, high-energy physics or physics beyond the SM is suppressed at low
energies. This seems to forbid extracting information on the fundamental theory from the
low-energy measurements, but this is not true. Indications of new physics can be found
through small deviations on the low-energy parameters of the effective Lagrangian, because
they encode information in terms of masses of heavy degrees of freedom. Therefore, the
high-precision in low-energy experiments can be used to probe high-energy dynamics and

provide an alternative to high energy experiments.

2.2 General aspects of EFT

2.2.1 Operator product expansion

Let us consider a QFT composed by a heavy scalar field ® with mass M and a light scalar
field ¢ with mass m < M ,

E:—%(ﬁ(D+m2)¢—%<I>(D+M2)<I>+J<I>, (2.2.1)

L4
L:l(fin ‘Ckin

where [J = 0,0" and J is the source of ® . Suppose that we want to study some phe-
nomenological application at energies £ < M and obtain its scattering amplitude up to
some power of E//M . In the following, we show the steps that one has to follow in order

to build the effective Lagrangian.
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The normalized generating functional for this scalar field theory is given by

[[D¢] [DP] & Sl ]
[[Dg] [DD] e 516,01

Z[J] = (2.2.2)

where S[¢, ®,J] = [ d”z L is the action and D is the dimension of the space-time.
At low energy scales (E < M), we can perform an integration over the ® in Eq. (2.2.2)).
However, notice that the field ® is an integration variable and it does not satisfy the

equation of motion. Let us introduce an auxiliary field ®g:
d=0y+ 9, (2.2.3)
where & satisfies the equation of motion
(O + M) @y = J(a), (2.2.4)
with the following solution
@ =~ [Py AP - y) J(y) . (2.25)

being A% the Feynman propagator of the field ®,

de e—ik(aﬁ—y)
Al(z—y) = / . 2.2.
Ca) 2m)P k2 — M? —ie (2.2.6)

Expanding the Lagrangian around ®q , it can be written as

L[¢, Do+ D] = —%qﬁ (O+m?) ¢ %(@0 + @) (04 M?) (D + @) + J (@ + ®)

_ 9 _ 1 2 _ } 2\ F }N 2
= Lf — 5% (D+M )<I>o 5 %0 (D+M )q> 2(1)(D+M )<I>o
1~ N~ -
—§<I>(D+M><I>—|—J<I>0+J<I>, (2.2.7)
which can be reduced to
- 1 1~ -1 -
Llo, @0+ B) = L, + 5T %0 — 5@ (O+M?) - 50 (900"® — 20" o), (228)
using Eq.(2.2.4) and the identity

@gD&)—fISD%:8M(<I>08“<T>—<58“<I)0) . (2.2.9)
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Therefore, the action can be expressed as
= D o 1 1~ 2\ &

Slo.®,J] = [Pz (Lf, + 5% — @ (O+Mm?)a), (2.2.10)
where the last term in Eq. (2.2.8) has been eliminated using the Gauss’s law. Inserting
Eq. (2.2.5)) into the action given by Eq. (2.2.10]), we obtain

- 1~ -
S, ®,J] = /de (zﬁm - 5@ (0+M?) @)
1
-5 / APz dPy J(2)A%(z — y)J(y) | (2.2.11)
and the normalized generating functional becomes

Z[J] = e 2J P2 dPy @A) W) (2.2.12)
which has the following Lagrangian,

L= — %/dDy T(2) A% (z — ) J(y) . (2.2.13)

It is interesting to point out that all the dependence of Z[0] on the heavy field ® has
canceled out with the normalization Z[0] . In the literature, one says that the heavy field
has been integrated out.

Let us consider = ~ y and perform a Taylor expansion of J(y),

N n _
J(y) = J\}gnoo z_:o (_nl') Sy (@) (2 = y)H oo (= y)H (2.2.14)

. Then, introducing Egs. (2.2.6) and (2.2.14)

Z=T

where fﬂl...”n(x) = (8;1 RN/ J(z))
into Eq. (2.2.13), we obtain

J(@) Ty () -

4"k 1 D 3} fin o—ik(z—y)
'/(27r)D k2—M2/d y(@—y-(z—y)re : (2.2.15)

which using the following identity

ol ..o o ik(z—y) _ (=)™ (@ — y)* - (z — g a2 (2.2.16)
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Figure 2.1: Diagrammatic representation of the OPE.

can be reduced to

L S 50" Pk 1 ) o
L= lim 3" () Jul...un(as)/(QW)D oo 4Py

1. X () - Pk 1
= —— lim Z( ) J(x) Jm...un(m)/@ﬂ)[) Ry 8,’;1...8]’;"/dDzek

1

1 . ;
= —— lim Z o J(x) Jﬂlmun(:v)/deW@gl...ag 5(D)(k)

1. N (i) - D — s 1 (D)
= =3, 3 S I T o) [ @R 0" 0l (= ) 670
1. e ~ R 1

N
. 2 1 " T
~ 2 M2 ]\}gréo z% (_M?) J(@) Ty opizn () G iz Gpan—1 pan
e

=3 o5 Jm ;)J(x) (_A%YJ(;C) , (2.2.17)



46 The Toolbox: EFTs, OPEs and RGEs

where

(2.2.18)

1
premia) = oo ()

k=a

In the following, we give some comments on the proof of Eq. (2.2.17):

e From the first line to the second line, we perform a change of variable: z =y — =z .

e From the second line to the third line, we use the definition of the Dirac delta

function:
/ aPz e — (2m)P 6O) (k) .

e From the third line to the fourth line, we apply recursively the following property of

the Dirac delta function:

[Pk ) 6PV k) = — [ aPk p(k) 6P (k)
where f is a generic function and the prime means a derivative.

e From fourth line to fifth line, we use
[ 4Pk 50 8Pk ~ ) = f(a) .
e From the fifth line to the last line, we use

PM1"'M2n+1(0) =0 ,

(2n)!
praien Q) = T M2yt Gurpz " Gpzn—r pzn 5 VI
Finally, we show that £ can be written as
N
11 2 OA\"
L R 2.2.1
£=5am g 2@ (~yp) v, (2219)
when x ~ y. This expression can be truncated for some value of N,
N
11 & O\"
i~y am Y@ (—Mz) J(z) (2.2.20)
n=0
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and since ' < M , the N + 1 missing corrections are smaller than the N corrections which
guarantees the convergence of our predictions.

In summary, we have performed a Taylor expansion of a non-local Lagrangian given
by Eq. , obtaining as a result an infinite sum of local operators that depend on the
source J(z). Finally, truncating this Lagrangian up to some value of N (depending in how
accurate we want to be in our predictions), we have obtained an effective Lagrangian given
by Eq. which is a finite sum of local operators. This process is called Operator
Product Expansion (OPE) and it is closely related with the suppression in the decoupling

theorem. In Figure [2.I] we show a schematic representation of the OPE approach.

2.2.2 Behaviour of local operators

We have proved that an effective Lagrangian can be expressed as a finite sum of local

operators O; multiplied by certain coefficients Cj:
Lg =Y CiO;, (2.2.21)
i

where the coefficients C; encode all high-energy information in terms of heavy masses,
while the operators O; describe the dynamics at low energies. The different operators O;
can be classified using naive dimensional analysis (h = ¢ = 1). If we define the dimension
of the operator O; as E%, the dimension of the coefficients C; must be AP~% being A
some heavy integrated-out scale (M in our previous example). Therefore, the effective

action has the following behaviour

E d;—D
) , (2.2.22)

S = /dDa:Eeﬁr = ZZ: Ci (A
where ¢; are dimensionless constants of O(1) . The energy dependence given by Eq. (2.2.22))

leads to the following cases:

e d; > D : these operators are called irrelevant, since they are suppressed at low
energies. However, this does not mean that their contribution is not important, in

fact they are crucial in some cases where they are the only type of operators that
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contribute, this only means that they are weak at low energies. These operators

correspond to non-renormalizable operators.

e d; = D : these operators are called marginal. Their contributions do not depend
on the ratio E/A , with the exception of logarithmic corrections. These operators

correspond to renormalizable operators.

e d; < D : these operators are called relevant and they are important at low energies.
These operators are usually forbidden by symmetries, otherwise they cause problems
due to their effects at high energy scales. These operators correspond to super-

renormalizable operators.

Notice that we can take into account the predictability of the EFT. Let us imagine that
we are interested in computing some phenomenological process to some level of accuracy
€ , therefore we have to truncate the Lagrangian for those operators with dimension d;

that satisfy

di <

~

D +

(2.2.23)

In the OPE example, we have started with the fundamental Lagrangian given by
Eq. , composed by two irrelevant mass operators [¢ ¢] = [ @] = D — 2, and three
marginal operators: two kinetic operators [¢p O ¢] = [® O ®] = D and one interacting
operator [J ®] = D , and we have finished with an effective Lagrangian in which all the
interacting operators are irrelevant [J(z) J(x)] = D +2 . It is interesting to point out the

marginal operators do not have a strong energy-scale dependence on their couplings.

2.3 Effective weak interactions

Let us consider the charged-current Lagrangian given by Eq. (1.2.65) which is the only
flavour-changing interaction in the SM. As in the Lagrangian given by Eq. (2.2.1), we
can also obtain the charged-current EFT realization for F <« My, . Similarly, we can

integrate out the W* bosons, leading into a sum of local four-fermion operators which can
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be truncated to some order. After all this process, we obtain the effective weak Lagrangian,

popularly called Fermi’s theory [44] of weak interactions:

2
where G—\/% =3 ]sz is the Fermi constant and
w
=Y Vijuiv Prd; + Z Uy Pl (2.3.25)

ij

In Appendix we give a detailed proof of Eq. . Notice that the first con-
tribution is composed by an irrelevant operator of dimension six. The next higher-order
contribution is also an irrelevant operator of dimension eight and so on. The coupling
constant associated with the operator of dimension six is suppressed by two powers of
My which is the typical behaviour that one finds when integrating out the heavy fields
from the fundamental theory (usually constructed with marginal operators) in the way
down to low energies, as in the example of Section [2:2.1] The Fermi’s theory was proposed
to describe the weak interactions before the formulation of the SM with its weak gauge
bosons. During that time, there was a strong belief that the scale of the weak force should
be around (G—\/E)% ~ 102 GeV . Therefore, the discovery of the weak gauge bosons around
this scale was a very important success for the particle physics community, both because of
the unification of weak and electromagnetic forces and because of the powerful prediction

via the EFT reasoning.

2.3.1 General description

The Lagrangian given by Eq. is quite far from a realistic description, since it does
not take into account the strong interactions which are relevant at low energies. Our EFT
needs to take into account these effects, the perturbative QCD contributions are encoded
by the well-known Wilson coefficients C; while the non-perturbative QCD effects appear

in the local operators O;,

Lieak — 4 G Z i Ci( (2.3.26)
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Figure 2.2: EFT picture of Bg mixing.

where \; contains CKM factors. The O; operators have been constructed with the light
degrees of freedom (quarks and lepton fields) using low-energy symmetry principles. We do

not consider dimension eight or higher-dimension operators because they are suppressed
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by inverse powers of M%V The Wilson coefficients C; are the strengths with which a given
operator O; contributes to some phenomenological process. They are independent of the
particle process and only depend on masses of the heavy particles that have been integrated

out. The values of the Wilson coefficients can be determined using four ingredients:

1. The Wilson coefficients C; have to be determined perturbatively at high energy scales
in some fundamental theory. This can be done because QCD has asymptotic free-

dom.

2. By construction, the low-energy EFT has the same infrared behaviour that the fun-
damental theory, the differences only appear at high energies where the fundamental

theory has additional degrees of freedom, for instance it could have new fields ®np.

3. Determining the amplitude for some phenomenological process in both the effective
and the fundamental theories allows one to determine C;(ugr) for pg > My through

the matching condition:
Aet = Ann — D0 X Ciun) (FlOu)li) = 32 Xilpar) (FIO:(ua)li)

where |i) and |f) are the initial and final particle states, while X; are functions that

depend on parameters from the fundamental theory.

4. Finally, we can use the Renormalization Group Equations (RGEs) to transform the
Wilson coefficients C;(up) at some high energy scale gy > My into the Wilson

coefficients C;(ur) at a low energy scale ur, < My .
In Figure we illustrate these points through the EFT description of Bg mixing in some
extension of the SM with new particles ®np .
2.3.2 Phenomenological application

Since the previous ideas are very technical, let us consider the following phenomenological

application, g1 g3 — g2 q4 in the SM. Notice that we do not specify the flavour of the
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quarks involved. The effective weak Hamiltonian is given by

G \
Heg = 71; Varas Virga |C1(1) Q1 + Co(p) Q2] (2.3.27)

where Q1 = 4[g3 7" P, ¢7] [@5 " Pr, ¢§] and Qo = 4 (g% v* Pp ¢®] [ v* P q)) .

V‘II q2

q1 q2

L 2
R

*
VQS q4

Figure 2.3: Tree-level contribution for ¢; gs — ¢2 @4 in the SM.

In an ideal world where QCD does not exist, the Wilson coefficients of this effective

Hamiltonian would take the following values:
Cl(/L) = 0, CQ(M) =1 y (2.3.28)

which can also be seen in Figure [2.3] where there is not exchange of colour between both
currents. However, in the real world, where QCD effects are not negligible, this transition
has additional QCD contributions. In Figure we show all one-loop QCD corrections.
In the diagrams (c), (d), (e) and (f), there is an exchange of colours between currents
which clearly produces a C contribution through the following Fierz rearrangement of

the Gell-Mann matrices,

1 1
gﬁ q(/lp = = m 5&6 5'yp + 5 5ap 575 . (2329)

2.3.2.1 Computation of the fundamental amplitude

In the following, we give a detailed overview of the computation for each Feynman diagram

in Figure Before we start with it, we must specify the prescriptions adopted:

e The Feynman rules are defined in Appendix [B}
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Figure 2.4: One-loop QCD corrections for ¢; gs — g2 ¢4 in the SM.

The computation is performed in ’t-Hooft-Feynman gauge, {&w =&, =1 .

All external momenta are equal p1 = po =p3 =pPs =7p .

All non-logarithmic momentum dependence is fixed on-shell (p? = m

All external quark masses are fixed to zero.

We neglect constant contributions of O(as) .

2
@)

We do not add the quark field renormalization. Later, we explain why we can do it.
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(Feynman diagram (0) ’

The amplitude for the Feynman diagram (0) is

. 2 .
tg ¢ *  [-a o _
Moy = (“2) 5 Vs Vi [0500) 3 P (o0)] [ (02) 2# P )]

V2) Mg,
_ Gry .
- V2 Varae Vs 52 - (2.3.30)
where
S = |0, (ps) v (1= 75) v, (pa)] |15, (p2) 7 (1 = 75) g (p1)] (2.3.31)
S =[5, (ps) Y (1= 5) v (pa)] |25, (p2) v (1 = 75) i, (p)] - (2.3.32)

( Feynman diagram (a) ]

The amplitude for the Feynman diagram (a) is
. 2 . D .
19 2 * d”k _ ¢ ajo
M) = (\/5) R Varas Vazas /(%)D [v33(p3) Y Pr v34(p4)} (_k% 5ab) gz

i (14/3 + qu)

2 _ .9
ks mg,

i (Mo +mg) . b\ B
W (=7 Yas Tm) Ugy (p1)

: [uq% (p2) (=7 9s Yo T5,) v P,

= 16\/§7TGFQSCFVIH(12V*

q394

/ dPk k5 k3?
@m)P K213 K3

-6 (03) Y Prvgy (p0)] [0, (92) Yo 7 e Pr iy (p1)] (2:3.33)
where ag = % yki=k,k=k+pand ks =k +p . In addition, we have made use of

the following Dirac algebra identity

YA = =202 gty (2.3.34)

and the Gell-Mann identity

N2 —1
T T = ) =_¢
( Jag = Croap , Cr oNG

(2.3.35)
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which can be directly extracted from Eq. (2.3.29). The integral in Eq. (2.3.33)) can be

computed using dimensional regularization with the following result:

de ko1 o2 i :u26 Lo 1 p2
= — e [ In|= : 2.3.36
/(%)D K (k= p)? @z 29 et e (2:3.36)
where D =4+ 2¢ and
1 1
- ==+ vg — In(4n), (2.3.37)
€ €

where vg = 0.57721 - - - is the Euler-Mascheroni constant. Finally, the amplitude becomes

- Gr . (as(u) 1 p?
M(a) =t ﬁ Varqe ‘/q3q4 < ZW ) Cr Z + In E Sy, (2.3.38)
where as(p) = 934‘;26

‘ Feynman diagrams (b), (c), (d), (e) and (f) ’

Similarly to the Feynman diagram (a), we obtain the following amplitudes for the

other Feynman diagrams

M) = M) (2.3.39)
. Gr * as (i) P2 1 1

M(C):M(d):_zﬁv‘“‘” Vasa < A ) o M2, ) |2 Nc 52 — 251}  (2340)
- Gr . [os(p) p? 2

M) =M = =1 75 Ve Vagas ( = ) |3 {231 - NCSQ] L (2341)

Finally, the fundamental amplitude is given by

Apgn = 1 (M(o) + 2./\/1(@) + 2M(C) + 2./\/1(6))

Gp \ {( (asm))[ 1 (ﬁ )D
= VvV 1+ 2Cp ——+ (L)) S
\/5 q192 Y g3qa 47T ¢ Mg[/

+J\:7))c <a2(;6)> In (Ang) Sy — 3 (O‘i(:)> In <J\§V> Sl} . (2.3.42)
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2.3.2.2 Computation of the effective amplitude

In the computation of the effective amplitude, we use the same prescriptions as for the
fundamental amplitude. In Figures and we show the diagrams from the effective
theory with and without QCD corrections respectively. Since the calculation is quite sim-

ilar to the fundamental case, we just give the final amplitudes for each Feynman diagram.

q1 q2

Figure 2.5: Tree-level contribution for ¢; g3 — ¢2 ¢4 in the EFT.

Feynman diagram (0) ’

The amplitude for the Feynman diagram (0) is

Mgy = — NG Varas Visgu Ci(1t) Si

where ¢ = 1,2 depending on the local operator.

(Feynman diagram (a)}

The amplitude for the Feynman diagram (a) is

- GF as(p)\ [1 Y 1 1
1 *
M(a) = 4+ \/§ Vq1qz Vq3q4 Cl(#) <47r> E + In F (- msl + 252> ,

.G . as(u)Y |1 P2\ ]
M%a) =+ 71; Vg ‘/;13114 Ca(p) <4(7r)> z + In (N2> Cr Sy .
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Figure 2.6: One-loop QCD corrections for g1 g3 — ¢2 @4 in the EFT.
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(Feynman diagram (b) ’

The amplitude for the Feynman diagram (b) is

1 1
My = M
2 _ 2
My = Mo -

LFeynman diagram (c)j

The amplitude for the Feynman diagram (c) is

. G " as -]_ 2 ]
Miy =+ Vo Vi, Co (S22) |2+ (ZQ) Cr 51 |

. GF as(p)\ [1 | 1 1
2 *
M(C) = 4+ ﬁ Vl]u]z ‘/;13(14 CQ(N) ( A ) E + In E <— m So + 5 Sl> .

Feynman diagram (d) ’

The amplitude for the Feynman diagram (d) is

1 _ 1
Miay = Mo »
2 _ 2
My = M) -

(Feynman diagram (e) ’

The amplitude for the Feynman diagram (e) is

.G as(p) 1 P’ 2
1 F *
My = _Zﬁ‘/(h(ﬁ Visas C1(1) (M) LA + In (HQ <2 Sy — Ncsl) ;

= =1 ﬁ Ve Vigau Co(u) (477)
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(Feynman diagram (f) }

The amplitude for the Feynman diagram (f) is
1 gl

Mip = My
2 a2

M = M -

Finally, the effective amplitudes are

1 . 1 1 1 1
.Aeﬂr =1 (M(O) + 2M(a) + 2M(c) + 2M(e)>

Ol ’
?/li‘/;}{l@ V;;q401(ﬂ) { <1 +2CF ( 4(:)) _% - in (Z)]) o

) () e o ) Foen(E)] o)

= OV Vi, Cal0) (@) (2.3.43)

2 _ . 2 2 2 2
.Aeﬁr =1 (M(O) + 2M(a) + QM(C) + QM(E))

= ?/51/;1@ Vasas C2(1) { <1 +2CFp (OZ(:))

1 2
é p

3 [ag 1 2 Qg 1 2
* o ( 4(:)) [g + I (;)1 % =3 <4(f:)> lg i (gzﬂ 51}
_ ?/{qu VL Caln) (@2)© . (2.3.44)

where (Q12)(?) are the unrenormalized current-current matrix elements.
In the first terms of Eqs (2.3.43)) and ([2.3.44)), there are diagonal divergences propor-
tional to Cr . These divergences can be eliminated through the quark field renormaliza-

tion,

Zy =1+ i (1) Cr ( MS scheme ) . (2.3.45)
é
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However, after the renormalization of the external legs, the current-current matrix el-
ements are still divergent. To eliminate the remaining divergences, it is necessary to

perform an operator renormalization,
(@) = 2.7 2, (Qu) . (2.3.46)

where (Q;) are the renormalized current-current matrix elements and Z is the 2 x 2

renormalization matrix. Introducing Eqgs. (2.3.43)), (2.3.44) and ([2.3.45]) into Eq. (2.3.46)),

we obtain

3/Noe —3
~3 3/Ne

( MS scheme ) , (2.3.47)

™| =

and then the renormalized matrix elements are given by

B as(p) (1 3 as(p)  (#F
<Q1> = [1+2CF P 1H<p2> ST + Ne 4n In p2 S
2
Qs H
-3 4(7r) In <p2> Sy, (2.3.48)
_ as () /LQ iQS(N) /vﬁ
(@) = |1+2CF— 1n<p2> Sy + No dn In e So
2
Qs M
-3 4(7r) In <p2> St . (2.3.49)

2.3.2.3 Matching condition

At this point, we are in the disposition to compute the Wilson coefficients through the

following matching condition,
Afn = Alg, i=12. (2.3.50)

Since in the fundamental theory, we have not renormalized the quark fields, when using
Eq. (2.3.50)), we must also not renormalize them in the effective theory. To obtain a correct

estimation of the Wilson coefficients, it is crucial to treat the fundamental theory in the
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same way as the effective theory. Since both theories have the same ultraviolet and infrared
behaviour for the dynamical light degrees of freedom, the prescriptions followed during
the computation of the amplitudes exactly cancel when the matching condition is applied.
Finally, one obtains the Wilson coefficients which do not depend on prescriptions followed
during the computation, otherwise physics would depend too. Therefore, inserting both
amplitudes with the same prescriptions in Eqs. , we obtain the Wilson coefficients

C1,2(p) performing a Taylor expansion around () ~ 0:

Ci(n) = —3 O‘Z(:) In (Aﬁ’) , (2.3.51)
Oo(p) = 1 + ]\i;’c O“ZS’:) In (%?) : (2.3.52)

2.3.2.4 Operator mixing and diagonalization

We have seen how gluonic corrections generate contributions to the original matrix element
(Q1) ({Q2)) and also to the other operator (Q2) ((Q1)), when this occurs we say that the
operator mix under renormalization. In the following sections, it is useful to diagonalize

these current-current matrix elements through the following change of basis

_ Qat @

QR+ 5 Cx=0x01. (2.3.53)

The advantage of this basis is that the operators can be renormalized independently,

Q)" = 2,7 24 (Qx) (2.3.54)

being

as(u) 1 3(1F Ng)

Zy =1 -
* 4 N¢

( MS scheme ) . (2.3.55)

2.3.2.5 Large logarithmic corrections

In principle, we can obtain the values of the Wilson coefficients C1 2(p) at any energy scale

w using Egs. (2.3.51)) and (2.3.52). However, there is an important technical limitation in
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these equations. In our application, there are two energy scales with a very large splitting,
1 < My . Analyzing the size of the perturbative corrections of C 2 , we observe that
Oﬂi—(:) In (%‘}) ~ 0.4 for 4 ~ 1 GeV . Then, the perturbative expansion is broken due to
these large logarithmic corrections. This is not a particular case, in fact, when we study a
more generic problem with different energy scales, the presence of logarithmic corrections

is a general feature that emerges when the frequency modes of the fields are integrated

out in the way down to low energies.

2.3.2.6 Renormalization-group improved perturbation theory

In the literature, the solution of this problem is called Renormalization-Group Improved
(RGI) perturbation theory. It consists in re-summing all these logarithmic corrections

2 n
[O‘Z(fr‘) In (Aﬁ‘é’ )} to all orders of n . This involves to solve the RGEs taking in mind the

following counting rules:

ai(:) In (AZ§V> ~0(1), O‘Z(:) <1. (2.3.56)

For that purpose, let us consider the following physical amplitudeE]
A=Y Ci(p) (Qi(p) - (2.3.57)
i=+

Since A is a physical observable, it can not depend on the scale u, then we obtain

Qi) | 4G50
dpu dpu

where sum over repeated indices is understood. Rewriting Eq. (2.3.58]), we obtain the
RGEs for the Wilson coefficients Cy ()

dff;if‘) = a () Celp) | (2.3.59)

Ci(p) (Qj(n)) =0, (2.3.58)

where vy is the anomalous dimension in the diagonal basis,

_ b d@«(w) _ 1 dzZe(w) _ (s 0
W) =~ o b = T e = () s

Tn Eq. (2.3.57), we have omitted some global factors because they do not have any physical repercussion.
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where

1F N
J0 = _gUFNe) (2.3.61)
Ne
Since the anomalous dimension matrix depend only on u through as(p), we can consider

the running of the strong coupling

d s (1)
dIng

=8, (2.3.62)

where f is the QCD S-function given by

2
B = —2a.(n) [Bo ) 4 g (“jl(j)) + 0(al) | (2.3.63)
with
4 = 11N03—2f’ 615%]\%_?]\%}"_20};1’7 (2.3.64)

and f the number of active flavours. Then, taking into account Eq. (2.3.62)), the RGEs

become

dCx(p)  yxl(as(p))

= C , 2.3.65
Tosn)  Blasm) (2309
which has the following solution
as(pm) o
Ciluz) = exp [ [ a2 )] Culpm), o < pn (2.3.66)
as(u) Bla)

where puy, and pg correspond to some low and high energy scales. This problem can also

be solved in the non-diagonal basis,

" ﬁfﬁ) = 57 T, (2367
where the solution is
as(pm) T o
7(#1:) = T, exp l/as(ui) da 75((04))] 7(#1{) ) wr < pp (2.3.68)

being ?(,u) = (Ci(p), Ca(p)) and T, the a-ordering operator which arranges the Taylor

expansion of the exponential function in such a way that coupling constants increase from
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right to left. This is necessary because J(«) is a non-diagonal matrix that in general does
not commute, [y(as(p1)), Y(s(u2))] # 0 .

Finally, we have re-summed all these large logarithmic corrections and the problem
is reduced to the analytical computation of three quantities: Ci(pp), v+(as(p)) and

Blas(p)). Integrating Eq. (2.3.66)), we obtain the following solution

L

Cy(pr) = {Z((fo))}% Cy(pr) (2.3.69)

which clearly re-sum all these large logarithms,

(0

[l |5y g i) (42 o iy (1))

In Figures we plot the dependence of the Wilson coefficients as function of low energy
scale pur,. We have taken Cj(My) = 0 and Co(Mpy ) = 1 from Egs. (2.3.51) and (2.3.52)).

The plot shows that the mixing between the operators has a significant impact to low

energies at few GeVs.
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Figure 2.7: Wilson coefficients as function of pp,



2.3 Effective weak interactions 65

2.3.3 Some final comments or remarks

In the previous example, we have used the RGEs to go down from the electroweak scale
to the charm quark scale. For m. < pp < my , the bottom quark field ceases to be a
dynamical degree of freedom and leads into an EFT with 4 flavours instead of 5. In this
EFT transition, there are QCD corrections that are known as threshold effects, further
details can be found in Refs. [49}50].

In addition, we would like to point out how the numbers —2/9 and —6/23 in Egs.
and respectively correspond to simple gluonic QCD corrections to the typical

current-current operators that govern the neutral meson mixing. These numbers come

(0)
from the power —g% for f =3 and f = 5 respectively.

In this chapter, we have not introduced the EFT for non-perturbative regimes below
1 GeV, Chiral Perturbation Theory (xPT). We prefer to introduce it in the next chapter
where we study the direct CP violating ratio ¢’ /e from K% — 7 in the SM. For this pre-
diction, it is necessary to use some non-perturbative tools like YPT, large-N¢, etc. Then,
some of the powerful non-perturbative techniques used in particle physics are introduced

there.






Chapter 3

Direct CP violation in kaon decays

In 1988 the NA31 experiment presented the first evidence of direct CP violation in the
K° — 7 decay amplitudes. A clear signal with a 7.2 ¢ statistical significance was later
established with the full data samples from the NA31, E731, NA48 and KTeV experiments,
confirming that CP violation is associated with a AS = 1 quark transition, as predicted
by the SM. However, the theoretical prediction for the measured ratio &’/e has been
a subject of strong controversy along the years. Although the underlying physics was
already clarified in 2001, the recent release of improved lattice data has revived again the
theoretical debate. In this chapter, we review the current status, discussing in detail the
different ingredients that enter into the calculation of this observable and the reasons why
seemingly contradictory predictions were obtained in the past by several groups. Finally,
an update of the SM prediction is presented and the prospects for future improvements

are analysed. The content of this chapter is based on Ref. [52].

3.1 Historical prelude

The investigation of kaon decays [53] has a fruitful record of very important scientific
achievements, being at the origin of many of the fundamental ingredients that have given

rise to the current structure of the EWSM [13-15]: the flavour concept of strangeness

67
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[4,55], parity violation [56,/57], meson-antimeson oscillations [58], quark mixing [23],
GIM mechanism |21] and CP violation [24,/59]. Since their discovery in 1947 [60], kaons
have played a very significant role in our understanding of fundamental physics, providing
accurate tests of quantum mechanics and uncovering the existence of higher-mass scales
such as the charm [21,/61] and the top quarks [24,62]. Nowadays, the kaon decay data
continue having a major impact on flavour phenomenology and impose very stringent
constraints on plausible scenarios of New Physics (NP).
The measured ratios of K; — 7w and Kg — nw decay amplitudes,

_ A(Kp — 7%70)

_ _ AKp - 7taT)
Moo = A(Kg — 7970)

M- = A(Kg — mtn™)

=e-2¢, =e+¢, (3.1.1)

exhibit a clear violation of the CP symmetry at the per-mill level [63]
1
el = 3 mo + 20| = (2228+0.011) - 107, (3.1.2)

which originates in a AS = 2 transition between the K0 and the K states [53,[59]. A
more subtle effect is the existence of a tiny difference between 7., and 1, _ that has been
experimentally established through the ratio [64-72]

TIOO

+—

Re (¢'/e) = ;(1—

) — (16.6+2.3)-1074, (3.1.3)

demonstrating the existence of direct CP violation in the K° — 77 decay amplitudes.
This measurement plays a crucial role in our understanding of the dynamical origin of the
CP violation, since it confirms that it is associated with a AS = 1 transition, as predicted
by the SM with the CKM mechanism [23}24].

The theoretical prediction of €'/ has a quite controversial history [73-92] because
the first next-to-leading order (NLO) calculations [75-80] claimed SM values one order
of magnitude smaller than , contradicting the clear signal observed in 1988 by the
CERN NA31 collaboration [64,/65] and giving support to the null result obtained by the
E731 experiment at Fermilab [69]. The final confirmation that Re (¢//e) ~ 1073 | with
the NA48 [66-68] and KTeV [70-72] data, triggered then a large number of new-physics
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explanations for that exciting “flavour anomaly”ﬂ However, it was soon realized that
the former SM predictions had missed completely the important role of the final pion
dynamics [86,87]. Once long-distance contributions were properly taken into account, the
theoretical prediction was found to be in good agreement with the experimental value,
albeit with unfortunately large uncertainties of non-perturbative origin [88].

Numerical QCD simulations on a discretised space-time volume are an appropriate
tool to address non-perturbative problems. However, lattice calculations of the K — 7
amplitudes face many technical challenges, associated with their Minkowskian nature (the
physical amplitudes cannot be extracted from standard Euclidean lattice simulations [93]),
the presence of several competing operators with a very involved dynamical interplay,
and the vacuum quantum numbers of the isoscalar 77 final state (a large vacuum-state
contribution must be subtracted, which deteriorates the signal to noise ratio). For many
years, a quantitative lattice corroboration of the known enhancement of the AT = 1/2
amplitude remained unsuccessful, while attempts to estimate &' /¢ were unreliable, often
obtaining negative values due to an insuficient signal in the isoscalar decay amplitude
[94-97]. The situation has changed in recent years, thanks to the development of more
sophisticated techniques and the increasing power of modern computers. A quite successful
calculation of the Al = 3/2 K+ — 7t7% amplitude has been achieved by the RBC-
UKQCD collaboration [98H100], and the first statistically-significant signal of the Al =
1/2 enhancement has recently been reported [101], confirming the qualitative dynamical
understanding achieved long time ago with analytical methods [1027111]E|

From its most recent lattice data, the RBC-UKQCD collaboration has also extracted
a first estimate for the direct CP-violation ratio: Re(e’/¢) = (1.38 & 5.15 4 4.59) - 1074

[100L/113]. Although the quoted errors are still large, the low central value would imply a

!Many papers addressing the claimed discrepancy can be found at the Inspire data basis. We refrain

from quoting them here.
2A large enhancement of the isoscalar K — 77 amplitude has also been found at unphysical quark

masses (Mg ~ 2M;), using PACS-CS gauge configurations generated with the Iwasaki action and the

O(a)-improved Wilson fermion action [112].
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2.1 0 deviation from the experimental value in Eq. . This discrepancy has revived
some of the old SM calculations predicting low values of ¢’/e [114-116] (missing again
the crucial pion dynamics), and has triggered new studies of possible contributions from
physics beyond the SM [117-143].

Before claiming any evidence for new physics, one should realize the technical limita-
tions of the current lattice result. In order to access the Minkowskian kinematics with
physical interacting pions, evading the Maini-Testa no-go theorem [93], the RBC-UKQCD
simulation follows the elegant method developed by Lellouch and Liischer [144] to relate
the infinite-volume and finite-volume results. At finite volumes there is a discrete spec-
trum and the box size can be tuned to get pions with the desired momentum; moreover,
the Liischer quantization condition [145,/146] allows one to compute the needed S-wave
phase shift of the final 7 state. The (7wm); phase shifts, ; (I = 0,2), play a crucial
role in the calculation and provide a quantitative test of the lattice result. While the
extracted I = 2 phase shift is only 10 away from its physical value, the lattice analysis
of Ref. [113] finds a result for 6y which disagrees with the experimental value by 2.9, a
much larger discrepancy than the one quoted for ¢’/e. Obviously, nobody is looking for
any NP contribution to the w7 elastic scattering phase shifts. Nevertheless, although it is
still premature to derive strong physics implications from these lattice results, they look
already quite impressive and show that substantial improvements could be achieved in the
near future [147,|148].

Meanwhile, it seems worth to revise and update the analytical SM calculation of &’ /e
[88], which is already 18 years old. A very detailed study of electromagnetic and isospin-
violating corrections, which play a very important role in &' /e, was accomplished later
[149-151]. Although the main numerical implications for the £’ /e prediction were reported
in some unpublished conference proceedings [92] and have been quoted in more recent
reviews [53], a complete phenomenological analysis including properly these corrections
has never been presented. The penguin matrix elements that dominate the CP-violating
K — 7w amplitudes are also quite sensitive to the numerical inputs adopted for the light

quark masses. Thanks to the impressive lattice progress achieved in recent years [152],
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the quark masses are nowadays determined with a much better precision and their impact
on €'/e must be investigated. Moreover, we have now a better understanding of several
non-perturbative ingredients entering the calculation such as chiral low-energy constants
and large-N¢ relations [153-169].

A convenient decomposition of the K — mm amplitudes [150] that allows us to in-
corporate electromagnetic and isospin-violating corrections, closely following the familiar
isospin notation, is presented in Section We also review there the phenomenologi-
cal expressions needed to compute ¢’/e and the isospin-breaking corrections computed in
Refs. [149-151] and updated in the next chapter. The short-distance contributions to &’ /e
are detailed in Section where large logarithmic corrections ~ o¥(u)log™ (Myy /) are
summed up with the renormalization group, at the NLO (k = n,n + 1). The hadronic
matrix elements of the relevant four-quark operators are discussed in Section [3.4] Their
chiral SU(3);, ® SU(3)r symmetry properties are analysed, emphasizing the reasons why
the strong and electroweak penguin operators Qg and Js dominate the CP-odd kaon decay
amplitudes into final pions with I = 0 and 2, respectively. Using the large-N¢ limit we
also provide there a first simplified estimate of £’/ that exhibits the presence of a subtle
numerical cancellation. This estimate allows us to easily understand the numerical values
quoted in Ref. [116]. Sections and present a much more powerful EFT ap-
proach to the problem. The low-energy realization of the short-distance AS =1 effective
Lagrangian is analysed in Section using the well-known techniques of xPT [170H176]
that make possible to pin down the long-distance contributions to the K — 7w amplitudes
and unambiguously determine the logarithmic chiral corrections. Section [3.6]discusses the
matching between the short-distance Lagrangian and xPT and shows how the chiral cou-
plings can be determined at No — oco. The kaon decay amplitudes are worked out in
Section [3.7} at the NLO in the chiral expansion. The one-loop chiral corrections are
rather large and have a very important impact on €’ /e because they destroy the numerical
cancellation present in simplified analyses. This is explained in Section which contains
the updated determination of the CP-violating ratio. A detailed discussion of the current

result and the prospects for future improvements are finally given in Section [3.91 The
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input values adopted for the different parameters entering in the analysis are collected in

the Appendix [C]

3.2 Anatomy of £'/e
The K — mw decay amplitudes can be parametrized in the general formﬁ [150]

, 1 .
AK? 5 mfmn™) = A+ Az + -/45/2) = AgeX® + 7 Ag e

75
V2
AK? = n°7%) = Ay — V2 (A3/2 + A5/2) = AgeX® — /2 Ay

3 2 3
At 57 w) = 5 (Ap - i) = 5

; Af 3| (3.2.4)

which expresses the three physical amplitudes in terms of three complex quantities Aa;
that are generated by the Al = %, %, % components of the electroweak effective Hamilto-
nian, in the limit of isospin conservation. Writing A, /5 = Ao exo | Ag 12+ Asja = Ag eix2
and Az — %A5 2 = AS X3 , our notation closely follows the usual isospin decomposi-
tion. In the CP-conserving limit the amplitudes, Ag , As and A; are real and positive by
definition.

In the SM, A5/, = 0 in the absence of electromagnetic interactions. If isospin symmetry
is assumed, Ay and Ay = A; correspond to the decay amplitudes into the (77)7 =, 2 final
states. The phases Yo and Y2 = x5 can then be identified with the S-wave 77 scattering
phase shifts 07 at \/s = Mg , up to isospin-breaking effects [150L|{151].

In the isospin limit (keeping the physical meson masses in the phase space), Ag , Ao

and the phase difference yg — x2 can be directly extracted from the measured K — 7w

3Including electromagnetic corrections, this parametrization holds for the infrared-finite amplitudes
after the Coulomb and infrared parts are removed and treated in combination with real photon emission

[150).
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branching ratios [177]:

Ag = (2.70440.001)-107" GeV ,
Ay = (1.210+0.002) - 107% GeV ,

Xo— X2 = (47.54+0.9)°. (3.2.5)

They exhibit a strong enhancement of the isoscalar amplitude with respect to the isotensor

one (the so-called “AI = 1 rule”),

RGAQ 1
= N — 2.
Y= Redy 227 (3.2.6)

and a large phase-shift difference between the two isospin amplitudes, which mostly orig-
inates in the strong S-wave rescattering of the two final pions with I = 0 . This implies
that 50% of the A; o/ A3 /5 ratio originates from the absorptive contribution:

AbS(A1/2/A3/2)
Dis(Ay/2/As/2)

= 1.09 . (3.2.7)

We would see later their strong implications on &/¢.
When CP violation is turned on, the amplitudes Ag, As and A3 acquire imaginary
parts. The direct CP-violating signal is generated by the interference of the two possible

K% — 7 decay amplitudes, with different weak and strong phases. To first order in CP

violation,
ol I ita—xo) o [ImAo  ImAs
— 3\ =75 - = 2.
e = 3 (= —100) ok | Redy ~ Rody| (3.2.8)
with
~ w ~
W= 1 — L eilx2—X0) — (2 2i(x2—X0) ~owW (3-2~9)

V2
Thus, £ is suppressed by the small dynamical ratio w . The global phase ¢ = x2 —

Xo + 7/2 = (42.5 £ 0.9)° is very close to ¢. ~ tan~! [2(mg, —mr,)/Trs —Tk,)] =
(43.52 + 0.05)° 63|, the so-called superweak phase. This implies that cos (¢ — @) ~ 1
and &' /e is approximately real.

Eq. involves a very delicate numerical balance between the two isospin contribu-

tions. In order to minimize hadronic uncertainties, the CP-conserving amplitudes ReAr
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are usually set to their experimentally determined values. A first-principle calculation
is only needed for the CP-odd amplitudes ImAy and ImAs, which are dominated by the
strong and electromagnetic penguin contributions, respectively, to be discussed in the next
section. However, naive estimates of Im Ay result in a large numerical cancellation between
the two terms, leading to unrealistically low values of ¢’ /e |[75-80]. The true SM prediction
is then very sensitive to the precise values of the two isospin contributions [83},85]. Small
corrections to any of the two amplitudes get strongly amplified in Eq. because they
destroy the accidental numerical cancellation.

Isospin violation plays a very important role in &’/e due to the large ratio 1/w . Small
isospin-violating corrections to the dominant decay amplitude Ay generate very sizeable
contributions to As , which have obviously a direct impact on &’/e . Isospin-breaking
effects in K — w7 decays have been systematically analysed in Refs. [149-151], including
corrections from electromagnetic interactions, at NLO in yPT. To first order in isospin
violation, &’ can be expressed in the following form, which makes explicit all sources of

isospin breaking:

. (0)
b b i(xa—xo) [ImAO B ImA, 1
g = e wr |—= (1+ A+ f — (3.2.10)
V2 - ReA(()O) ( 5/2) ReAgo)

From the (isospin conserving) phenomenological fit in Eq. (3.2.5)), one actually extracts
wy = ReAJ /ReAy, which differs from w by a pure AI = % correction induced by the
electromagnetic interaction at NLO, i.e., at O(e?p?) [53,149-151],

ReA, Wy _9
= ———1 = — —1 = (844 £ 0.02exp £ 2.5¢,) - 107~ . 3.2.11

f5/2 RGA; w ( exp th) ( )
The superscript (0) on the amplitudes denotes the isospin limit and [149,/150]

ImA, ReA{”
ImA(()O) Redg

Ay = —1 = (8443.6)-107%, (3.2.12)

includes corrections of O[(m,, —mq)p?, e*p?] . The final numerical result for Ay is governed
to a large extent by the electromagnetic penguin contribution to ImAg .
The expression (3.2.10|) takes already into account that ImAs is itself of first order in

isospin violation. It is convenient to separate the leading contribution of the electromag-
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netic penguin operator from the isospin-breaking effects generated by other four-quark
operators:

ImA; = ImA5™ + ImAZ™" P | (3.2.13)

This separation is renormalization-scheme dependentﬁ but allows one to identify those
isospin-violating contributions which are enhanced by the ratio 1/w and write them ex-

plicitly as corrections to the I = 0 side through the parameter [149,150]

(0) non—emp
O = RGA?O) ImA, G = (227£76)-1072 . (3.2.14)
ReA, ImA,

This quantity includes a sizeable contribution from 7%-7 mixing |178] which dominates
the full NLO correction from strong isospin violation: Q& = (15.9 £4.5) - 1072 . Elec-
tromagnetic contributions are responsible for the numerical difference with the value in

Eq. (3.2.14).

The phenomenological analysis of £ /¢ can then be more easily performed with the

expression
0 em
Re(c'/e) = ——2F Ay (1—965)—M , (3.2.15)
V2le| |[ReAl” ReA{”
with [149][150]
Qe = Qg — Do — fsp = (6.0£7.7)-1072 . (3.2.16)

Notice that there is a large numerical cancellation among the different isospin-breaking
corrections. Although the separate strong and electromagnetic contributions are sizeable,
they interfere destructively leading to a final isospin-violation correction of moderate size.
In the next chapter, an update of these isospin violating effects is presented, in this chapter

we use the values adopted in Ref. [52].

4 The renormalization-scheme ambiguity is only present in the electromagnetic contribution. The
splitting between Tm A5™ and Tm A5°"~*™P has been performed (in the MS scheme with naive dimensional
regularization) matching the short-distance Hamiltonian and xPT effective descriptions (see the next

sections) at leading order in 1/N¢.
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3.3 Short-distance contributions

In the SM, the flavour-changing AS = 1 transition proceeds through the exchange of a W
boson between two weak charged currents. Since Mg < My, , the heavy W boson can
be integrated out and the effective interaction reduces to a local four-fermion operator,
[57*(1 — 75)u] [y, (1 — v5)d] , multiplied by the Fermi coupling Gp/v2 = ¢?/(8M3,)
and the relevant CKM factors V,;V,5; . The inclusion of gluonic corrections generates
additional four-fermion operators, which mix under renormalization [179-183] as we have

seen in Chapter

Q1 = (5a uﬁ)v_A (aﬁ da)v_A ) Q2 = (Eu)va (u d)V—A )

Qs = (Fd)y_n Y (@Dv_n» Qi= Gads)y_pn > (@8da)y_a >
q=u,d,s q=u,d,s

Qs = 5d)y_n > (TDvia Qo = (Bads)y_p Y, (@da)yin » (3317
q=u,d,s q=u,d,s

where V & A indicates the Lorentz structure v, (1 £ 7s5) and «,  denote color indices.
When colour labels are not explicit, colour-singlet currents are understood (¢I'q = ¢o'qa).
The first two operators originate in the W-exchange topology of Figure while the
QCD penguin diagram in Figure gives rise to 34,56 -

Four additional four-quark operators appear when one-loop electroweak corrections are
incorporated. The electroweak penguin diagrams in Figure generate the structures
[184H188]

3 3

Qr =3 (5d)v-a Y e (@@)vea, Qs = 5 (8adg)v-a > eq (@80a)v+a
9=u,d,s q=u,d,s
3 i 5 )
Qo = 3 (5d)v—a Z eq (qq)v-a , Qio= 3 (S5adg)v_a Z eq (@9a)v—a , (3.3.18)
q=u,d,s q=u,d,s

where e, denotes the corresponding quark charge in units of e = V4o .
The presence of very different mass scales (M, < Mg < My ) amplifies the gluonic
corrections to the K — nw amplitudes with large logarithms that can be summed up all

the way down from My, to scales p < m. , using the OPE and the RGEs as we have seen
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u S U ——p > —s
w Y E w
d U d—> E > — U
(a) (b)

Figure 3.1: SM Feynman diagrams contributing to AS = 1 transitions: current—current

(a), QCD penguin (b) and electroweak penguin (c) topologies.

in Chapter 2| One finally gets a short-distance effective Lagrangian [49)],

EAS 1 - —TVd ZC 5 (3319)

defined in the three-flavour theory, with the different local operators modulated by Wilson
coefficients C;j(p) that are functions of the heavy masses (Mzw, mip. > ) and CKM
parameters:

ViaVis

For convenience, the global normalization in Eq. incorporates the tree-level de-
pendence on CKM factors, so that C; = d;2 at lowest order (LO), and the unitarity of the
CKM matrix has been used to remove the dependences on V_,V .

The Wilson coefficients C; (1) are known at the next-to-leading logarithmic order [189-
192]. This includes all corrections of O(a™") and O(a?*t") | where t = log (M;/M>)

refers to the logarithm of any ratio of heavy mass scales My, Ms > 1 . Moreover, the full
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my/My dependence (at LO in «y) is taken into account. Some next-to-next-to-leading-
order (NNLO) corrections are already known [193,/194] and efforts towards a complete
short-distance calculation at the NNLO are currently under way [195].

In Table we provide the numerical values of the Wilson coefficients, computed at
NLO with a renormalization scale ;. = 1 GeV . The results are displayed in the MS renor-
malization scheme for two different definitions of =5 within dimensional regularization:
the NDR and ’t Hooft-Veltman (HV) schemes [34-36},[196]. The inputs adopted for the
relevant SM parameters are detailed in the Appendix [C] in Table The dependence
of the Wilson coefficients on the renormalization scheme and scale should cancel with a
corresponding dependence on the hadronic matrix elements of the four-quark operators.
However, given their non-perturbative character, a rigorous evaluation of these matrix el-
ements, keeping full control of the QCD renormalization conventions, is a very challenging
task. As shown in Table the Wilson coefficients have a sizeable sensitivity to the
chosen scheme for 5, which limits the currently achievable precision. The table illustrates
also their variation with the input value of the strong coupling, which has been taken in
the range a{M=9) (m;) = 0.325+0.015 [63,/197]. Further technical details can be found in
the Appendix D]

To generate CP-violating effects, the SM requires at least three fermion families so that
the CKM matrix incorporates a measurable complex phase. For the K — 7w transitions,
this implies that direct violations of CP can only originate from penguin diagrams where
the three generations play an active role. Thus, the CP-violating parts of the decay
amplitudes, ImA;, are proportional to the y;(x) components of the Wilson coefficients,
which are only non-zero for ¢ > 2 . In the Wolfenstein parametrization [26], Im 7 ~

—MA%Zy ~ —6-107* , exhibiting the strong suppression of these effects in the SM.

3.4 Hadronic matrix elements

Symmetry considerations allow us to better understand the dynamical role of the different

four-quark operators. The difference Q- = Q2 — @)1 and the QCD penguin operators
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NDR scheme | HV scheme | a4(M;) error
21 —0.4967 —0.6238 +0.04
22 1.2697 1.3587 +0.03
23 0.0115 0.0064 £ 0.002
24 —0.0321 —0.0143 + 0.006
25 0.0073 0.0034 + 0.0007
26 —0.0318 —0.0124 + 0.006
2/ 0.0107 —0.0017 +0.003
28/ 0.0121 0.0082 +0.003
29/ 0.0169 0.0037 £ 0.004
210/ —0.0072 —0.0082 +0.001
Y3 0.0318 0.0367 + 0.003
Y4 —0.0575 —0.0607 +0.004
Y5 0.0000 0.0161 +0.003
Ye —0.1081 —0.0948 +0.02
Y7/ —0.0364 —0.0349 + 0.0004
ys/ 0.1605 0.1748 +0.02
Yo/ —1.5087 —1.5103 +0.04
Y10/« 0.6464 0.6557 + 0.06

Table 3.1: AS =1 Wilson coefficients at u =1 GeV (y; = y2 = 0).

Q3,456 transform as (87, 1) under chiral SU(3); ® SU(3)r transformations in the flavour

space, and induce pure Al = % transitions. Thus, they do not contribute to the Ag

amplitude if isospin is conserved. Al = % transitions can only be generated through the

complementary combination Q27 = 2Qs + 3Q1 — Q3 , which transforms as a (271,1R)
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operator and can also give rise to processes with Al = % . Owing to their explicit

dependence on the quark charges e, , the electroweak penguin operators do not have
definite chiral and isospin quantum numbers. The operators Q7 and Qg contain (81, 1g)
and (81,8p) components, while Q9 and Q19 are combinations of (87,1g) and (27, 1R)
pieces.

The chiralities of the different @); operators play also a very important dynamical role.
Making a Fierz rearrangement, one can rewrite all operators in terms of colour-singlet
quark currents. While the (V —A)® (V — A) operators remain then with a similar Lorentz
structure,

Qs = Y. (50)y_p(@d)y_y , Q1o = > g (3Q)y_p (@d)y_yn ,  (3.4.21)

q=u,d,s q=u,d,s
the two (V — A) ® (V + A) operators transform into a product of scalar/pseudoscalar
currents,
Qs = —8 > (51qr)(qrdr) , Qs = =12 > eq(50qr) (qrdr) . (3.4.22)
g=u,d,s g=u,d,s
For light quarks, the hadronic matrix elements of this type of operators turn out to be
much larger than the (V — A) ® (V — A) ones.

This chiral enhancement can be easily estimated in the limit of a large number of QCD

colours [198},/199], because the product of two colour-singlet quark currents factorizes at

the hadron level into two current matrix elements:
(J-J) = (J)({J) {1+ 0O1/N¢)} . (3.4.23)
Thus, when No — o0 E|

(7r+7r7](EL’y“uL)(”ELL’deL)]KO> = <7T+’77,L’yudL|0> <7Ti‘§L’)/MuL’KO> (3.4.24)
iv2 2 2 M
= TF'R'(MK_MF) {1+O<F7% ,

®The convention for Fi x in Chapters [3| and [4] is different from the one introduced in Chapters [1] and
both are related through fyo = V2 Fyo .
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while

(7r+7r7](§LuR)(ﬂRdL)|KO) = <7T+|1_LRdL‘O><7T7‘§LUR‘KO> (3.4.25)

- 7 ] {e(H))
o lmd<u>+ms<u>] HOE )

where F; = 92.1 MeV is the pion decay constant. Notice the u dependence of this last

matrix element, which arises because the scalar and pseudoscalar currents get renormal-
ized, but keeping the products my ¢ (1,75) g invariant under renormalization. On the other
side, the vector and axial currents are renormalization invariant, since they are protected
by chiral symmetry. This different short-distance behaviour has important consequences
in the analysis of £//e . At =1 GeV , the relative ratio between the matrix elements in

Eqgs. (3.4.25) and (3.4.24)) is a large factor M2 /[ms(p) + mg(p))?> ~ 14 .

Owing to their chiral enhancement, the operators Q¢ and (Jg dominate the CP-odd
amplitudes ImA(()O) and Im A" | respectively, in Eq. . As shown in Table Qs
has in addition the largest Wilson coefficient y;(u) . Ignoring all other contributions to
the CP-violating decay amplitudes, one can then make a rough estimate of ¢’ /e with their

matrix elements [185,200]:

M2 2
ImA = GpA2N 4 (Fy — Fy K BY? | (3.4.26
m 0|Q6 F 7796(#) ( K )[md(ﬂ)+m3(ﬂ) 6 ( )
TmAy| O g2y () 2 F M 2 B&/? (3.4.27)

where F = (1.193 £ 0.003) F;; [152] is the kaon decay constant and the factors Bél/z)

and Bé?’/ 2) parametrize the deviations of the true hadronic matrix elements from their

(1/2) _ g3/

large-N¢ approximations; i.e., B =1at Nog — o© H The renormalization-

scale dependence of yg(u) and yg(u) is cancelled to a large extent by the running quark

masses, leaving a very soft residual dependence on p for the unknown parameters Bél/ 2)

S Actually, the expressions (3.4.26) and (3.4.27) receive small chiral corrections even at No — oo . We

will take them later into account, using an appropriate effective field theory framework.
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B§3/ 2 This very fortunate fact originates in the large- N¢ structure of the anomalous

and
dimension matrix 7;; of the four-quark operators @); . At Ng — oo , all entries of this
matrix are zero, except ves and ~ysg |201]. This just reflects the factorization property in
Eq. and the fact that the product m,q ¢ is renormalization invariant.

Inserting these two matrix elements in Eq. and taking the experimental values

for all the other inputs, one finds
Re(e'/e) ~ 2.2-1073 {Bé“” (1— Qo) — 0.48 B§3/2)} . (3.4.28)

With Bél/z) = B§3/2) =1 and Qg = 0.06 , this gives Re(¢’/e) ~ 1.0- 1073 as the expected
order of magnitude for the SM prediction. However, there is a subtle cancellation among
the three terms in Eq. , making the final number very sensitive to the exact values
of these three inputs. For instance, with the inputs adopted in Ref. [116], Bél/Q) = 0.57,
B§3/2) = 0.76 and Qg = 0.15 , one finds instead Re(¢’/e) ~ 2.6-10~* | which is nearly one
order of magnitude smaller and in clear conflict with the experimental value in Eq. .
Which such a choice of inputs, the cancellation is so strong that contributions from other
four-quark operators become then sizeable. On the other side, a moderate increase of
Bélﬂ) over its large- N¢ prediction, i.e., Bél/2) > 1, gets amplified in Eq. , which
results in much larger values of ¢/ /¢ .

The crucial observation made in Refs. [86-88] is that the chiral dynamics of the final-
state pions generates large logarithmic corrections to the two relevant decay amplitudes,
Ao|g, and As|g, , which are of NLO in 1/N¢ . These logarithmic corrections can be
rigorously computed with standard yPT methods and are tightly related to the large
phase-shift difference in Eq. . They turn out to be positive for A Q6 and negative
for As| Qs 7 destroying the numerical cancellation in Eq. and bringing, therefore,
a sizeable enhancement of the SM prediction for &’/e , in good agreement with its experi-

mental value.
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3.5 Effective field theory description

EFT provides the appropriate framework to address the multi-scale dynamics involved in
kaon decays. While the short-distance electroweak transitions occur at the W mass scale,
kaons and pions are the lightest particles in the QCD spectrum and their dynamics is
governed by the non-perturbative regime of the strong interaction. A proper description
of non-leptonic kaon decays requires then a good theoretical control of short-distance
and long-distance contributions, through a combined application of perturbative and non-
perturbative techniques.

We have already displayed in Eq. the relevant short-distance effective La-
grangian at scales p just below the charm mass, where perturbation theory remains still
valid. This Lagrangian corresponds to an effective field theory description with all heavy
(M > p) fields integrated out. Only the three light quarks (and e, u, v4, v, G,) are kept
as explicit dynamical fields. All informations on the heavy fields that are no longer in
the effective theory are captured by the Wilson coefficients C;(u) , which can be conve-
niently calculated with the OPE and renormalization-group methods as we have explained
in Chapter

Chiral symmetry considerations allow us to formulate another EFT that is valid at
the kaon mass scale where perturbation theory can no longer be applied. Since kaons and
pions are the Goldstone modes of the QCD chiral symmetry breaking, their dynamics is
highly constrained by chiral symmetry, which provides a very powerful tool to describe
kaon decays in a rigorous way [53]. Figure shows schematically the chain of effective

theories entering the analysis of the kaon decay dynamics.

3.5.1 Chiral perturbation theory

At very low energies, below the p mass scale, the hadronic spectrum only contains the
pseudoscalar meson octet; i.e., the Goldstone modes ¢, associated with the dynamical

breaking of chiral symmetry by the QCD vacuum, which are conveniently parametrized
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Figure 3.2: Evolution from My, to the kaon mass scale.

through the 3 x 3 unitary matrix [174]

U(¢) = exp{ivV2®(z)/F} , (3.5.29)
where
) 5T+ s mt KT
d(z) = ;\A/Qqsa(x) = 7r— _%WO T %ng KO | . (3.5.30)
- K~ K° _%778

Under a chiral transformation (gr,g9r) € SU(3)rL ® SU(3)r in the flavour space ¢ =
(u,d,s)” , qn = graqr , ar — 9rqr , U(¢) transforms as gr U(¢) gz , inducing a non-
linear transformation on the Goldstone fields ¢4 () .

The low-energy effective realization of QCD is obtained by writing the most general
Lagrangian involving the matrix U(¢) that is consistent with chiral symmetry [170]. The
Lagrangian can be organised through an expansion in powers of momenta (derivatives)

and explicit breakings of chiral symmetry (light quark masses, electromagnetic coupling,
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etc.):
Log = Lo+ Lg+ L+ . (3.5.31)

Parity conservation requires the number of derivatives to be even, and a minimum of two
derivatives is needed to generate non-trivial interactions because U Ut = 1 . The terms
with a minimum number of derivatives will dominate at low energies. To lowest order,

O(p?) , the effective Lagrangian is given by [172]:
2

Ly =— (D, UTDMU + Uy +X'U) (3.5.32)
where (---) denotes the three-dimensional flavour trace, D, U = 0,U — ir, U + iUl, is
the covariant chiral derivative, in the presence of arbitrary right-handed and left-handed
(matrix-valued) external sources r, and ¢, , and x = 2By(s + ip) with s and p external
scalar and pseudoscalar sources, respectively. Takings = M ,p=0,andr, ={, = eQA,
allows one to incorporate the explicit chiral symmetry breakings generated by the non-zero

quark masses and electric charges:
. 1.
M = diag(my, mg, ms) , Q = 3 diag(2,—1,-1) . (3.5.33)

Moreover, taking derivatives with respect to the external sources one can easily obtain the
effective realization of the QCD quark currents in terms of the Goldstone bosons [174].
One then finds that F' is the pion decay constant in the chiral limit (m, = 0), while the
constant By is related to the quark condensate.

While only two low-energy constants (LECs) appear at O(p?) , F and By , ten addi-
tional couplings L; characterize the O(p*) xyPT Lagrangian [172],

Ly = Li(D,U'D'U)? + Ly(D,U'D,U)(D*U'D"U) + L3 (D, U D*UD,U'D"U)
+ La(DUTDMU) (U +x1U) + Ls (DUTDU (U +x1U))
+ Le({U'x+x'U)? + Ly (U — xTU)? + L (xTUXTU + UT\UTY)

— Ly (FR'D,UD,U" + FI*D,U'D,U) + Lo (U FR'UFr) (3.5.34)
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with FEY = otr? — 9"r# — i [r#,r”] and F}" = 9F¥ — 9" 0F — i [¢*,¢”] , and 90 LECs more
would be needed to compute corrections of O(p6)ﬂ

90
Lo =F2Y x,0". (3.5.35)
=1

The explicit form of the O(p®) operators can be found in Ref. [175]. The current knowledge
on all these LECs has been summarized in Ref. [167].

Quantum loops with Goldstone boson propagators in the internal lines generate non-
polynomial contributions, with logarithms and threshold factors as required by unitarity.
Each loop increases the chiral dimension by two powers of momenta |170]. Thus, to achieve
an O(pt) accuracy one needs to compute tree-level contributions with a single insertion of
L4 plus one-loop graphs with only Lo vertices. These chiral one-loop corrections are then
fully predicted in terms of F; and the meson masses. Two-loop corrections with only Lo
vertices contribute at O(p®) , together with one-loop graphs with a single insertion of £4
and tree-level diagrams with one insertion of Lg .

The ultraviolet divergences generated by quantum loops get reabsorbed by the corre-
sponding LECs contributing to the same order in momenta. This induces a dependence

of the renormalized LECs on the chiral renormalization scale Vy:

L, = L;(I/X) + I A(VX) s (3536)
with
A(u)—W{l—l[lo (4)+r’(1)+1}} (3.5.37)
X) T Qp2 \d—4 2 LoBUT ) 2

the divergent subtraction constant in the usual xPT renormalization scheme. Similar

expressions apply for the other O(p*) and O(e?p?) LECs (K;, N;, D;, Z;) that will be dis-

" There are, in addition, 2 contact terms without Goldstone bosons at O(p?) , and 4 more at O(p°) ,
which are only needed for renormalization. The O(p®) LECs are usually denoted C; = F~2X; . We have
changed the notation to avoid possible confusions with the short-distance Wilson coefficients. The xPT
Lagrangian contains also the O(p*) Wess-Zumino-Witten term that has no free parameters and accounts

for the QCD chiral anomaly [202,/203].
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cussed next, while the O(p%) LECs X; require a two-loop subtraction [176]. The divergent
parts of all these xPT couplings are fully known [172,/176}204-207].
In order to include loop corrections with virtual photon propagators, one needs to

consider also the electromagnetic Lagrangian [153,204}208]

14
Lom = ZF*(QUIQU) + P23 K, OF7 + O(e*pY) . (3.5.38)
i=1

The presence of the quark charge matrix allows for a chiral structure without derivatives.
The corresponding LEC of this O(e?p®) term is determined by the electromagnetic pion

mass difference [153]
1

— 2 2\

3.5.2 Chiral realization of the AS = 1 effective Lagrangian

Strangeness-changing weak interactions with AS = 1 are incorporated in the low-energy
theory as a perturbation to the strong Lagrangian. At LO, the most general effective
Lagrangian with the same transformation properties as the short-distance Lagrangian
given by Eq. contains three terms [184,209.210):

— 2
‘CQASfl e G8F4 <)\DNUTDMU> + G27F4 <Lu23Llf1 + g L/_L21L‘Lf3>

+ €2G3 gew F® (NUTQU) (3.5.40)

where A = (\¢ — i\7)/2 projects into the 5 — d transition and L, = i UD,U represents

the octet of V' — A currents to lowest order in derivatives. Under chiral transformations,

these three terms transform as (8z,1g), (271, 1r) and (81, 8g), respectively. To simplify

notation, we have reabsorbed the Fermi coupling and the CKM factors into effective LECs:
Gp

G8727 = _ﬁ VudV;s 98,27 (3541)

where gg, go7 and gewi are dimensionless couplings.

The Gg and Gy chiral operators contain two derivatives and, therefore, lead to ampli-

tudes that vanish at zero momenta. However, the electromagnetic penguin operator has a
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chiral realization at O(e?p°) , given by the term proportional to Gg gewk - The absence of
derivatives implies a chiral enhancement that we have already seen before in Eq. .

The NLO effective Lagrangians have been worked out in Refs. [205H207] and include
xPT operators of O(p*) and O(e?p?):

22 28 14
L3 = GsF?Y N, Of + GorF? Y D; OF" + 2GsF* >~ Z, 0V . (3.5.42)
=1 =1 i=1

3.6 Matching

In principle, the chiral LECs could be computed through a matching calculation be-
tween the three-flavour quark effective theory and yPT. This is however a formidable
non-perturbative task. Therefore, one needs to resort to phenomenological determina-
tions, using the available hadronic data [167]. Nevertheless, a very good understanding
of the strong LECs has been achieved in the large-N¢ limit, where the meson scatter-
ing amplitudes reduce to tree-level diagrams with physical hadrons exchanged [155]. The
contributions from tree-level meson resonance exchanges have been shown to saturate the
phenomenologically known LECs at v, ~ M, [153-156]. Nowadays, lattice simulations
are also able to provide quantitative values of some of the O(p*) L; couplings [152].

In the limit No — oo , thanks to the factorization property in Eq. , the elec-
troweak xPT couplings can be related to strong LECs because the QCD currents have
well-known chiral realizations. The quark currents are obtained as functional deriva-
tives with respect to the appropriate external sources of the QCD generating functional

Zlvy, ay, s,p] , defined via the path integral formula

exp{iZ} = /Dq DgDG,, exp {z / d*z [Locp + a7y (v + v5au)q — (s — i’y5p)q]}

— /DU exp {i/d4x£eﬁ} . (3.6.43)

The corresponding derivatives of the yPT generating functional determine the chiral ex-
pressions of the QCD currents. At No — oo , the generating functional reduces to the

classical action because quantum loops are suppressed by powers of 1/N¢ . The left and
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right vector currents are then easily computed, by taking derivatives of L.g with respect
to E{f = (v, — a,)’" and r{f = (v, + a,)’" , respectively [174]. One easily finds:
Pt = % {D#UT U [FQ + 8Ly (D U! D“U)} (3.6.44)
+ 4Ly, DUTU (DU DU + DH*UTDU)
t 4L {DMUTU, DQUTDO“U} 4 2L {D“UTU, (UTX + XTU)}
+ 2Ly 0 (D°UTD*U — D*UTDOU)

+2iLy (LD"UTDU — DUTDHUL) VY 4 0P Ne p*NY) |

Bgly = é{D“UUT P2+ 8Ly (DU D) (3.6.45)
+ 4Ly D,UUT (D*UDHUT + DFUDUT)
AL, {D“UUT : DaUDaUT} 2L {D“UUT, (XUT + UXT)}
+2Ly 9 (D*UDMUT — DHUDUY)
+2iLy (ra D"UD*UT — D*UD!U'r, ) }] + O’ Ne, pPND) .
We have made explicit the O(p) contributions from the LO Lagrangian Lo , which are

proportional to F? ~ O(N¢) , and those O(p3) contributions from L4 that are of O(N¢).

Taking derivatives with respect to —(s — ip)’* and —(s + ip)’* , one obtains the scalar

bilinears
dg = _Pofuip 4 poutpey
qr.9r = _7{ { + 5 Mo
— 8Ly (U — x'U) + 8Lg XTU} }U + O(P*Ng, p®N2) |, (3.6.46)
. B,
R —70 {U’f [F2+4L5 D, UDUT

ij
+8L7 (UMY = XTU) + 8LsxUT| } 7 + O(p'Ne, p*NE) . (3.6.47)

The vacuum expectation value of the last two equations relates the coupling By with the
quark vacuum condensate: (0|¢/¢*|0) = —F2By ¥ , at LO.

Inserting these expressions into the four-quark operators in Eq. , using the
factorization property , one finds the yPT realization of [,eAHSZI in the large-N¢
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limit. At O(p?), the three chiral structures in Eq. (3.5.40) are generated, with the following
large- N values for their electroweak LECs [88}|150]:

G = =2 Calp) + 3 Calw) + Calp) — 16 Ls Blp) Colp)
6% = 2 (Ci(k) + Calp)] (3.6.48)
(e gs Gewk)™ = —3B(u) Cs(p) — ?B(u) Cos(1) e? (K9 —2Kp) -

In the last line, we have also taken into account the contribution to gg gewk from electro-
magnetic corrections to Qg |150].

The LO terms in Egs. and give rise to the O(p?) electroweak chiral
structure Qg= — 3BZF* (A\UTQU) . An analogous O(p") contribution is absent for Qg
because (A\UTU) = (\) = 0 . Therefore, the yPT realization of the penguin operator
Qg starts at O(p?) , giving rise to the same octet structure as the (V — A) @ (V — A)
operators. The only difference is that Q124 generate this structure with the LO terms
in Eqs. and , while in the Qg case it originates from the interference of

the O(p°) and O(p?) terms in Eqs. (3.6.46) and (3.6.47). This is the reason why the Cg
contribution to gg° appears multiplied by the strong LEC Ls , reducing the expected chiral

enhancement in a very significant way.

There are no O(p?) contributions from the operators Q3 and Qs , at large-N¢ , because
they are proportional to the flavour trace of the left and right currents, respectively, which
vanish identically at LO. The operators Q79,10 start to contribute at O(e?p?) .

The dependence on the short-distance renormalization scale of the Wilson coefficients
Ci(p) is governed by the anomalous dimension matrix 7;; of the four-quark operators @Q; ,
which vanishes at No — oo , except for the non-zero entries g6 and sg . Thus, the u
dependence of Cj(p) with i # 6,8 disappears when N¢ — oo , while that of Cgg(u) is
exactly cancelled by the factor

2\ 2 2 2 2
Hin = @3) B {[msw) - ) F} ll_ T 21+ LE’}
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Thus, the computed LECs in Eq. do not depend on p , as it should. Notice,
however, that the numerical values of the Wilson coefficients in Table do include those
1/N¢ corrections responsible for the QCD running and, when inserted in Eq. , will
generate a residual p dependence at NLO in 1/N¢ . At No — oo, the strong LECs are also
independent on the xPT renormalization scale v, because chiral loops are suppressed by a
factor 1/N¢ . The renormalization of the LECs L; and their corresponding v, dependences
can only appear at NLO in the 1/N¢ expansion.

The O(p*) strong LEC L plays a very important role in the ¢’ /e prediction because
it appears as a multiplicative factor in the Cg(p) contribution to gg° . Its large-N¢ value

can be determined from resonance exchange, using the single-resonance approximation
(SRA) [153,[155]: o
L = m . (3.6.50)
The numerical result is, however, very sensitive to the chosen value for the scalar resonance
mass. Taking F' = F; and Mg = 1.48 GeV , as advocated in Ref. [211], one gets L£° =
1.0 - 1073 [150], while Mg = 1.0 GeV would imply L = 2.1-1073 . An independent
determination can be obtained from the pion and kaon decay constants, ignoring the
1/N¢ suppressed loop contributions [88]:
2
LY ~ M (?j — 1) = 1.8-1073. (3.6.51)
This procedure, which has actually been used in the rough estimate of the (g matrix
element in Eq. (3.4.26)), is also subject to large uncertainties because the SU(3)-breaking
difference Fx — F} is very sensitive to logarithmic chiral corrections that are no longer
present when Ng — 00 .
Quantitative values for the xyPT coupling Ls have been also extracted through lattice
simulations. The determination has been obtained by the HPQCD collaboration [212],
analysing F and F} at different quark masses with Ny = 2 4+ 1 + 1 dynamical flavours,

and is the result advocated in the FLAG compilation |152]:

Li(M,) = (1.19+£0.25) - 1072 . (3.6.52)
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We will adopt this number in our analysis and will comment later on the sensitivity to
this parameter of the &’ /e prediction.
The combination 2Lg — L5 can also be estimated in the large-N¢ limit, through the

SRA, and it gets determined by Ls |155]:

(2Lg — L5)>™® = —i Lz . (3.6.53)
This relation is well satisfied by the lattice results that find (2L — L§)(M,) = (—0.10 £
0.20) - 1073 [152,1212].

The electromagnetic LECs K; can be expressed as convolutions of QCD correlators
with a photon propagator [213], and their evaluation involves an integration over the
virtual photon momenta. In contrast to the strong LECs L; , the K; couplings have then
an explicit dependence on the yPT renormalization scale v, already at LO in 1/N¢ .
Moreover, they also depend on the short-distance renormalization scale 1 and the gauge
parameter £ . Those dependences cancel in the physical decay amplitudes with photon-loop
contributions. In order to fix the combination K9 — 2K7( that enters gewk in Eq. ,
we follow Ref. [150] and adopt the value [213}214]

(K§ — 2K7y)(M,) = —(9.3£4.6)-107° , (3.6.54)

which refers to the renormalized parameter at v, = M, , in the Feynman gauge £ = 1 and
with a short-distance scale =1 GeV .

Expanding the products of chiral currents to NLO, one obtains the large- N¢ predictions
for the O(p*) and O(e?p?) LECs N;, D; and Z; . The explicit expressions can be found in
Section 5.2 of Ref. [150].

Tables and show the numerical predictions obtained for the CP-even and CP-
odd parts, respectively, of the LO electroweak LECs gg , go7 and ¢s gewc - The large-Ng
limit has been only applied to the matching between the two EFTs. The full evolution
from the electroweak scale down to p < m. has been taken into account without making
any unnecessary expansion in powers of 1/N¢ ; otherwise, one would miss the large short-

distance corrections encoded in the Wilson coefficients C;(u) with ¢ # 6,8 .
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Scheme Re(gs) 927 Re(9s gewk)
NDR 1.2240.13, £0.06, £003, | 046 +£0.02, | —2.24 + 1.4, + 0.38x, T¢57
HV 1.16 + 0.20,, £ 0.027, +0.01,,, | 0.44 +0.02,, | —1.29 + 1.04,, + 0.15x, *¢:13
NDR+HV | 119+ 0.17,, + 0.047, + 0.02,,, | 0.45+0.02,, | —1.77 +1.22,, + 0.26x, 1 (17,

Table 3.2: Large-N¢ predictions for the CP-even parts of the LO electroweak LECs.

Scheme Im(gs)/Im(7) Im(gg gewr)/Im(7)

NDR 0.93+0.22, £0.21, Fggg | —22.245.0, + 1.3, 57

—2.1m,

HV 0.8140.23, +0.18,, 2003 | —23.6+£5.0, + 1.1x, 755

NDR+HV | 0.87+0.22, £0.20, 508, | =229 £5.0, £ 1.2x, 755

Table 3.3: Large-N¢ predictions for the CP-odd parts of the LO electroweak LECs.

The central values quoted in the tables have been obtained at ¢ = 1 GeV . The
first uncertainty has been estimated by varying the short-distance renormalization scale u
between M, and m. , taking into account the large- N¢ running for the factor (ms+mq)(u)

in B(p) . The current uncertainties on the strong and electromagnetic LECs that appear in

Egs. (3.6.48) and (3.6.49) are reflected in the second error, while the third one corresponds

to the uncertainty from the input quark masses given in Table To better assess the
perturbative uncertainties, the Wilson coefficients have been evaluated in two different
schemes for 5 , and an educated average of the two results is displayed in the tables.

It is important to realize the different levels of reliability of these predictions. The
large- Nc matching is only able to capture the anomalous dimensions of the operators g
and Qg . In fact, y6¢ and vsg are very well approximated by their leading estimates in

1/N¢ . Therefore, the contributions of these two operators to the electroweak LECs are
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quite robust, within the estimated uncertainties. This implies that the predicted CP-odd
components of gs and gs gewr (g27 is CP even) are very reliable. However, this is no longer
true for their CP-even parts because the anomalous dimensions of the relevant operators
are completely missed at large-N¢ . The parametric errors quoted in Table[3:2]are probably
underestimating the actual uncertainties of the calculated CP-even components of the
electroweak LECs. An accurate estimate of these components would require to perform

the matching calculation at the NLO in 1/N¢ .

3.7 The xPT K — 7 amplitudes

The evaluation of the kaon decay amplitudes is a straightforward perturbative calculation

within the xPT framework. To lowest order in the chiral expansion, one only needs to

EQAS:l

consider tree-level Feynman diagrams with one insertion of . In the limit of isospin

conservation, the Ax; amplitudes defined in Eq. (3.2.4) are given by Refs. [88,/150]

Ayp = —V2GsF | (M} - M2) - %F%Qgewk] - \f GorF (M} = M2)
Asjp = — % GorF (MI% — Mﬁ) + §G8F3e2gewk , (3.7.55)

and As/, = 0 . From the measured values of the decay amplitudes in Eq. , one
gets the tree-level determinations gg = 5.0 and go7 = 0.25 for the octet and 27-plet chiral
couplings. The large numerical difference between these two LECs just reflects the small
experimental value of the ratio w in Eq. . Moreover, the sizeable difference between
these LO phenomenological determinations and the large-N¢ estimates in Table [3.2) makes
evident that the neglected 1/N¢ corrections are numerically important.

Inserting in Eq. the large-N¢ predictions for the electroweak LECs given in
Eq. and taking for Ls the value in Eq. , one immediately gets the Qg
and Qg CP-odd amplitudes estimated before in Eqgs. and l} with Bél/ 2 _
BE(;S/ 2 -1 , including in addition some small chiral corrections that were still missing

there. Eq. (3.7.55)) contains, moreover, the O(p?) contributions from all other four-quark

operators.
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Note, however, that the 77 phase shifts are predicted to be zero at LO in xPT, since
phase shifts are generated by absorptive contributions in quantum loop diagrams. We
know experimentally that the phase-shift difference xo — x2 = 47.5° is large, which implies
that chiral loop corrections are very sizeable. Chiral loops bring a 1/N¢ suppression but
they get enhanced by large logarithms. The large absorptive contributions originate in
those logarithmic corrections that are related with unitarity. A large absorptive contribu-
tion implies, moreover, a large dispersive correction because they are related by analyticity.
A proper understanding of the kaon dynamics cannot be achieved without the inclusion
of these 1/N¢ suppressed contributions.

At the NLO in xPT the Aa; amplitudes can be expressed as [150]

.AA] = —GsgF; {(MIQ( - Mf) ‘ASAS} - 62 F,? Jewk 'A(Ag}}
— Gy Fr (M — M3) Ag;) ) (3.7.56)

where A(AES} and Ag;) represent the octet and 27-plet components, and Ag} contains the

electroweak penguin contributions. Each of these amplitudes can be decomposed in the

form
ALY = Y [1 +ALASY +AcAX§)} ; (3.7.57)
with
8) 2v/2 27 V2
= V2, W=y wE =g
8 2 o7 10
agy = 0, ah = 3 afy = 5 - (3.7.58)

parametrizing the corresponding tree-level contributions, A L-A(A)? the one-loop chiral cor-
rections and ACA(A)? the NLO local corrections from ££%=! . Since in this chapter we
are not considering electromagnetic corrections, As/5 =0 .

A small part of the O(p*) corrections has been reabsorbed into the physical pion decay
constant Fy; , which appears explicitly in the three terms of Eq. . The NLO relation
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between F and the Lagrangian parameter F' is given by [172]

F = B {1 o (M2 4 2043) 50 + M2 L0

1 M?2 M2
) V| - M2 1 K } .
+2<47r>2F2[ " °g<v>%>+ K g(ﬂ

The chiral logarithmic corrections are obviously suppressed by the geometrical loop factor

(3.7.59)

(4m)~2 and two powers of the Goldstone scale F' ~ /N¢ . Thus, these contributions and
the corresponding dependence of the renormalized L} (vy) couplings on the xPT renormal-
ization scale v, are of O(1/N¢) . The vy-independent parts of the LECs have a different
scaling with 1/N¢: while Ly/F? ~ O(1/N¢) , Ls/F? is a leading correction of O(1) .
This implies the large-N¢ result for Ls given in Eq. (the L5 contribution to Fi
is multiplied by M7 instead of M2).

The numerical values of the different A§)/(2) and Aé)/(Q) components are given in Tables

and respectively. We comment next on the most important features of the different

contributions.
(X) (X) (X) (X)1—
8 | V2 [ 02740474 | 0.01+0.05| 0.02+0.05
g | 22| 02740474 | —0.19£0.01 | —0.19 £0.01
27 § 1.034+0.474 | 0.014+063| 0.01+0.63

Table 3.4: Numerical predictions for the A; /, components: ag)/(g) , A LAS(Q) , AcA
local NLO correction to the CP-even ([A(;A(l)/(z)]ﬂ and CP-odd ([ACA?/(Q) ]7) amplitudes

is only different in the octet case.

3.7.1

The one-loop chiral corrections are generated through the Feynman topologies depicted

in Figure [86-88,|149-151,205,215-217]. They include one insertion of the LO weak

Chiral loop corrections




3.7 The xPT K — wm amplitudes 97

(X)

—-0.50-0.21¢ | —=0.19£0.19

o
SN\

27 | W | —0.04-0.214 0.01 £0.05

Table 3.5: Numerical predictions for the A3/, components: ag /2 A LA3 /2 AC.A3 /5 -

Lagrangian £55=! (filled red vertices), and the first two diagrams contain also interac-
tion vertices from the O(p?) strong Lagrangian Ls . The resulting A L.A /2 and A LA3 /2
corrections given in Tables and respectively, exhibit a very clear pattern. The
one-loop chiral corrections are always positive for all AI = 1/2 amplitudes and negative
for AT = 3/2 . Moreover, the absorptive contributions (the imaginary parts of A L.A(A)? )
only depend on the isospin of the final w7 state. The elastic final-state interaction of the
two pions induces a very large and positive absorptive correction when I = 0 , while this
contribution becomes much smaller and negative when [ =2 .

The absorptive contribution fully originates in the first topology of Figure since it

is the only one where the two intermediate pions can be put on their mass-shell [8§]:

M? M2\ -~
ALAY) = K (g ) B2 M2 MR A
LAY (4nFy )2 2M2 (Mz, Mg, M)+
1 M3 M2\ ~
ALAY) = oK () 2w ) (M2, M2, ME) A - 7.
where
S 2 a2 a2 1—ox , V2
B(MZ, Mz, M) = o |log T o +im| + log 2 +1, (3.7.61)

is the renormalized one-loop scalar integral with two pion propagators and ¢ = MIQ( ,

and or = /1 —4M2/M% . These results reproduce the LO xPT values for the strong 77
scattering phase shifts with J =0 and I =0,2 , at s = M#:

2 _ On 2 ar2
tando(M2) = $mE2 (2M% - n2)
tan §o(M2) = 32‘;}2 (2m2 - M) . (3.7.62)
™
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Figure 3.3: One-loop topologies contributing to K — 7w . The filled red circles indicate
LO AS =1 vertices. The labels 7 and j represent the Goldstone bosons inside the loop.

Wave-function renormalization topologies are not shown.

The predicted phase-shift difference, do(M#) —da(Mz) = 37° , is somewhat lower than its
experimental value showing that higher-order rescattering contributions are numerically
relevant. The one-loop integral in Eq. contains, in addition, a large chiral loga-
rithm of the ultraviolet scale v, over the infrared scale My , which enhances significantly
the dispersive component of the I = 0 amplitude and suppresses the I = 2 one.

The complete analytical expressions for the one-loop corrections A L.A(A)? can be found
in Refs. [88,150]. The absorptive contributions are finite and, therefore, do not depend on
the chiral renormalization scale. An explicit dependence on v, is, however, present on the
dispersive components. The numbers quoted in Tables and have been obtained at
vy = M, = 0.77 GeV . The dependence on v, is of course exactly cancelled by the local
counterterm contributions.

One observes in Table a huge (~ 100%) dispersive one-loop correction to the
AiQ/? amplitude. Fortunately, since the 27-plet contribution is a very small part of the

total Al = % amplitude, this does not introduce any significant uncertainty in the final
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numerical value of Ay . Moreover, the 27-plet components do not contribute to the CP-odd
amplitudes we interested in, because Im(ga7) =0 .
The corrections relevant for ¢’ /e are the octet contribution to the isoscalar amplitude

and the electroweak-penguin contribution to As . The first one generates a very sizeable

(8)

enhancement of ImAg by a factor |1 + Ap.A; /2

| ~ 1.35 , while the second one induces
a strong suppression of ImA5™" with a factor |1 + ALAgg/)ZI ~ 0.54 . Looking to the
simplified formula in Eq. (3.4.28)), one immediately realizes the obvious impact of these
chiral corrections on the final value predicted for ' /e , since they destroy completely the

accidental numerical cancellation between the Qg and (Jg contributions.

3.7.2 Local O(p*) contributions

Explicit expressions for the local ACA(A)? corrections in terms of the O(p?) electroweak
LECs can be found in Refs. [88]/150]. In the large-N¢ limit, the local contribution to the
A®) amplitude takes the form

1/2
~ 00 2 3 4M2
o [1+AacAD)|” = {—5 C1(p) + ¢ Calp) + a;(u)] {1 + Lg,}

AM2 5K 4 4M2
F2 8

— 16 B(1) Cs(p) {L5+ — 5g} . (3.7.63)

The NLO corrections 64 depend on some O(p%) LECs X; that are not very well known.
The relevant combinations can be estimated with the SRA, up to unknown contributions

from couplings with two resonance fields [156]:

1 1
68 = Ls(2Lg— Ls)+ 7 X1+ Xa0) ~ 5 L, (3.7.64)

15
67 = (8LE—3L3)+ X194+ X1a + X17 — 3X19 — 4Xog — X31 & -5 L.

Since the contributions from @ and the other four-quark operators get different NLO

corrections, the O(p*) corrections to the CP-even and CP-odd octet amplitudes,

Re(gs AcA[)) +iTm(gs AcAf))) = Re(gs) [Ac AT +iTm(gs) [AcAT]™ , (3.7.65)
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are also different. The predicted numerical values for the separate corrections [AC.AS)Q]Jr
and [ACAS)Q]_ are given in Table The O(p*) local corrections to the other A(A)?

amplitudes only depend on Lj , in the large-N¢o limit:

Cr T @2n|ee 41”7%
AcA1/2 = A0A3/2 ‘ = 7F2 L5 )
S ) 4
AcAD™ = AcAY)|” = — g (M +5M7) L . (3.7.66)

Thus, all local NLO contributions are finally determined by the input value of Lg° .

The numerical predictions for the different local corrections ACA(A)? are shown in
Tables and The main uncertainty originates in their dependence on the chiral
renormalization scale v, , which is totally missed by the large-N¢ approximation. We
take the large-N¢ results as our numerical estimates at v, = M, . The errors have been
estimated varying v, between 0.6 and 1 GeV in the corresponding loop contributions
ALA(A)? . We have also varied the short-distance renormalization scale p between M,
and m., but the impact on the A(;.A(A)? corrections is negligible compared with the v,
uncertainty.

The relevant corrections for our determination of ¢’/ are [ACA?;)Q]_ = 0.024+0.05 and
AcAé% = —0.194£0.19. They are much smaller than the corresponding loop contributions,

which is also reflected in the large relative uncertainties induced by the v, variation.

3.8 The SM prediction for &’'/e

Putting all computed corrections together in Eq. (3.2.15)), we obtain the updated SM

prediction
Re (¢//2) = (15 % 2, £ 2, # 20, £ 61/, ) x 1071 = (15£7) x 1074 . (3.8.67)

The input values adopted for the relevant SM parameters are given in Table [C.I] of Ap-
pendix [C] We have only calculated theoretically the CP-odd amplitudes ImA; . For their
CP-even counterparts (and |e]) the experimental values have been taken instead. We dis-

play explicitly the four main sources of errors. The first one reflects the fluctuations under
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Figure 3.4: SM prediction for ¢’/e as function of Ls (red dashed line) with 1o errors
(oblique band). The horizontal blue band displays the experimentally measured value
with 1o error bars. The dashed vertical line shows the current lattice determination of

L5(Mp) -

changes of the short-distance renormalization scale p in the range between M, and m. ,
and the choice of scheme for «5 . The second uncertainty shows the sensitivity to varia-
tions of the input quark masses within their currently allowed ranges, while the third one
displays the uncertainty from the isospin-breaking parameter Qg . The fourth error ac-
counts for the sum of squared uncertainties from the input value of L5 (&5-107%) and the
xPT scale v, that is varied between 0.6 and 1 GeV (&3-107%). This fourth error is by far
the dominant one and reflects our current ignorance about 1/N¢g-suppressed contributions
in the matching process.

In Figure we show the prediction for €’ /e as function of the input value of L5 . The
strong dependence on this important parameter is evident from the plot. The experimental
1o range is indicated by the horizontal band, while the dashed vertical lines display the
current lattice determination of LE(M,) . The measured value of ' /¢ is nicely reproduced

with the preferred lattice inputs.
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In order to better appreciate the dynamical contributions that have been included in
Eq. , it is worth to go back to the schematic description of EFTs displayed in
Figure Starting with the SM at the electroweak scale, where the underlying AS =1
transitions take place, we have first used the full machinery of the short-distance OPE
to determine the effective Lagrangian £eAﬁS:1 , defined in the three-flavour quark theory
at scales just below the charm mass. We have included all NLO contributions to the
Wilson coefficients C;(p) , without making any large-N¢ approximation, see Appendix [D]
The OPE sums up large logarithmic QCD corrections, but most of these logarithms are

suppressed by factors of 1/N¢ because the anomalous dimension matrix ~;; of the @;

operators vanishes at No — 0o , except for 756 and ~gg which remain non-zero. Since
L 2y 2y _
log (M /p5) = 2.9 (3.8.68)
Ne

at u = po =1 GeV , it would not make much sense to neglect “subleading” corrections in
1/N¢ .

At the kaon mass scale, we have made use of a different EFT that takes advantage of
the chiral symmetry properties of QCD to constrain the pseudoscalar Goldstone dynamics.
xPT is the appropriate tool to describe rigorously the physics of kaons and pions, through
a low-energy expansion in powers of momenta and quark masses [53]. Chiral symmetry
determines the effective realization of £eAﬁS:1 at the hadronic mass scale; i.e., the most
general form of the low-energy yPT structures with the same symmetry properties than
the four-quark operators Q); , at a given order in momenta. All short-distance information
is encoded in LECs that are not fixed by symmetry considerations. The K — 7w ampli-
tudes can then be easily predicted in terms of those LECs. The xyPT predictions include
unambiguous quantum corrections, which comply with the requirements of unitarity and
analyticity.

The so-called chiral logarithmic corrections are also suppressed by factors of 1/N¢
(quantum loops are absent from the N¢ — oo mesonic world [155]), but they cannot be
ignored since they are responsible for the large w7 phase shifts that originate in their

absorptive contributions. Moreover, the dispersive logarithmic corrections are also large
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when the two pions are in a J = 0 state. Once again, a 1/N¢ suppression gets compensated
by a large logarithm: at v, = vg =1 GeV ,

1

~ log (V3 /M?) = 1.3 . (3.8.69)
C

The measured kaon decay amplitudes cannot be understood without the inclusion of these
large, but 1/N¢ suppressed, contributions. Our SM prediction in Eq. includes of
course the full O(p*) xPT results, without any unnecessary 1/N¢ approximation.

The limit of a large number of QCD colours has been only used to perform the matching
between the two EFTs; i.e., to evaluate the numerical values of the yPT LECs. Thanks to
the factorization property in Eq. , the hadronic matrix elements of the four-quark
operators can be reduced to matrix elements of QCD currents at Ng — oo . Since these
currents have well-known yPT realizations at low energies, the electroweak LECs can be
easily determined in the large- N limit. The intrinsic uncertainty of this determination is
of O(1/N¢) , but it is not enhanced by any large logarithm of two widely separated mass
scales.

The large-N¢ structure of the anomalous dimension matrix «;; allows us to better assess
the quality of our matching procedure. At No — oo , the only non-zero entries are ygg and
~ss, which, moreover, are well approximated by their large- N estimates. Thus, the short-
distance properties of (g and (g are very efficiently incorporated into the corresponding
xPT couplings through the large- N matching. In fact, the leading renormalization-scale
dependence of Cg(1) and Cs(p) cancels exactly with the running of the light quark masses
appearing through the yPT factor B(u) in Eq. . Fortunately, Q¢ and Qg are
precisely the only two operators that really matter for the numerical prediction of &' /e .

This is no longer true for the other four-quark operators because their anomalous
dimensions are lost at No — oo . The p dependence of their Wilson coefficients cannot
be compensated in the large-No matching process, which indicates the relevance of the
missing 1/N¢ contributions. The bulk of the Al = 1/2 enhancement is associated with
the octet operator Q— , while AI = 3/2 transitions originate from Q@) . Since the

1/N¢-suppressed anomalous dimensions of these two operators are a crucial ingredient of



104 Direct CP violation in kaon decays

the K — 7w dynamics, an accurate prediction of the CP-even decay amplitudes will only

become possible with a matching calculation at NLO in 1/N¢ [102-104].

3.9 Discussion and outlook

The SM prediction for &'/e , given in Eq. , is in perfect agreement with the mea-
sured experimental value given by Eq. . The final result emerges from a delicate
balance among several contributions, where the chiral dynamics of the two final pions plays
a very crucial role. The 77 rescattering corrections destroy the naive cancellation between
the Q¢ and Qg terms in Eq. , enhancing the positive Qg contribution and sup-
pressing the negative contribution from Qg . The small corrections from other four-quark
operators to ImA(()O) and ImA5™ are not important numerically, once the cancellation is
no longer operative.

The low values of &’ /e claimed in some recent references [114-116] originate in simplified
estimates of the relevant K — w7 amplitudes that neglect the long-distance contributions
from pion loops. Following a 1/N¢-inspired approach [110], Ref. [114] has advocated
the inequality Bél/ 2) < B§3/ 2 < , which has been later adopted in subsequent works.
However, this very questionable result is obtained within a chiral model that only includes
the O(p*) Ls structure, neglecting all other terms in Eq. . Moreover, the only
computed 1/N¢ corrections correspond to some non-factorizable divergent contributions
of the form log (A%/M?) , with A an UV cut-off that is identified with the short-distance
renormalization scale p, and M a badly-defined infrared scale of O(Mg) . All other
quantum corrections (including the important absorptive contributions) are just ignored.
Notice also that in order to properly define the parameter Bél/ 2) , one needs first to specify
Lg° , which in Ref. [114] is fixed at the large value shown in Eq. (3.6.51]).

It has been well known for many years that the elastic scattering of two pions with
zero relative angular momentum is very strong and generates a large phase-shift difference

between the I = 0 and I = 2 states [218]. This important dynamical effect is well

understood and has been rigorously predicted within the yPT framework. The relevant
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quantum corrections have been computed by many groups for K — 77 [86-88,|149-151]
205,215H217,219,220], Kpq [221-225] and 7 — 7 |[171,]172,226,227], reaching a two-loop
precision in the last two cases. Higher-loop effects have been also estimated with dispersive
methods and many successful phenomenological analyses of the relevant data have been
put forward along the years [228-235|. The inclusion of all known xPT corrections is a
compulsory requirement for a reliable prediction of the kaon decay amplitudes [53].

The recent RBC-UKQCD lattice calculation [1004/113], which also finds a low central
value for ¢'/e | follows the Lellouch-Liischer prescription [144] in order to incorporate
the Minkowskian pion dynamics into the numerical simulation. Their results look quite
encouraging, since it is the first time that a clear signal of the AI = 1/2 enhancement
seems to emerge from lattice data [101]. However, the value obtained for the isoscalar 7
phase shift disagrees with the experimental determination by 2.9 . This discrepancy is
larger than the one quoted for £’/ (2.1 ¢), indicating that these results are still in a very
premature stage and improvements are clearly needed. Efforts towards a better lattice
understanding of the pion dynamics are under way and improved results are expected
soon [148]. In addition, the current lattice result does not take into account any isospin-
breaking effects, which are a very important ingredient of the &’/¢ prediction [149-151].
The inclusion of electromagnetic corrections in lattice simulations of the K — wm ampli-
tudes looks difficult, but proposals to face some of the technical problems involved are
already being considered [236].

The quoted uncertainty of the SM prediction of &'/ in Eq. is three times
larger than the current experimental error. This leaves ample margin to speculate with
hypothetical new-physics contributions, but prevents us from making a precise test of
the SM mechanism of CP violation that could give significant constraints on the CKM
parameters [237].

In order to achieve a better theoretical accuracy, the different ingredients entering the
calculation must be substantially refined. Improvements look possible in the near future

through a combination of analytical calculations, numerical simulations and data analyses:
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e A NNLO computation of the Wilson coefficients is currently being performed [195].

The known NNLO corrections to the electroweak penguin operators [193] reduce
the scheme dependence of Cg(u) in a quite significant way and slightly increase
the negative Qg contribution to & /e . A complete NNLO calculation should allow
for a similar reduction of the yg(u) uncertainty. Since the quark-mass anomalous
dimension is already known with a much better O(a2) precision |238], the large-N¢
matching could be trivially promoted to NNLO accuracy in «s , once the Wilson

coefficients are determined at this order.

The isospin-breaking correction Qeg plays a quite important role in the &’ /e predic-
tion because the moderate value of (g results from a large numerical cancellation
among different electromagnetic and strong contributions. A complete re-analysis
with updated inputs has been performed [239]. Detailed information of this analysis

will be presented in the next chapter.

Applying soft-pion techniques, the O(e?p?) coupling gs gewk can be related to a
dispersive integral over the hadronic vector and axial-vector spectral functions [240-
243]. This makes possible to perform a phenomenological estimate of this LEC
with 7 decay data. The published analyses, using the 7 spectral functions measured
at LEP, agree reasonably well with the large-N¢ determination, but their errors
are rather large [244-247]. A new phenomenological analysis, using the recently
updated and more precise ALEPH 7 data has been presented in Ref. [248], obtaining
a compatible prediction with the large- N determination. Several lattice calculations
of the matrix element (77|Qs|K) have been also published (some of them in the chiral

limit) [05[96}[100}[112,[113,249].

A matching calculation of the weak LECs at NLO in 1/N¢ is a very challenging task
that so far remains unsolved. Several analytical approaches have been pursued in
the past to estimate the hadronic matrix elements of the ); operators beyond the
large-N¢ approximation [81H83,89,/90,/102-111]. A fresh look to these pioneering

attempts from a modern perspective could bring new enlightenment and, perhaps,
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could suggest ways to implement some of these methods within a well-defined EFT

framework where a proper NLO matching calculation could be accomplished.

e The dominant two-loop xYPT corrections originate from large chiral logarithms, ei-
ther associated with unitarity contributions or infrared singularities of the massless
Goldstone theory [86-88}250,251]. A reliable estimate of these two-loop contribu-

tions should be feasible.

e In the next few years, lattice simulations are expected to provide new data on K —
7w transitions, with improved methods and higher statistics [147,/148]. Combined
with appropriate yPT techniques, a better control of systematic uncertainties could
be achieved. Moreover, analysing the sensitivity of the lattice results to several input
parameters, such as quark masses and/or the electromagnetic coupling, one could try
to disentangle the different contributions to the decay amplitudes and get a better
understanding of the underlying dynamics. Improved lattice determinations of the

strong LECs are also needed, in particular of the crucial Ls parameter.

At present, the SM prediction of £’ /¢ agrees well with the measured value and provides
a qualitative confirmation of the SM mechanism of CP violation. The theoretical error is
still large, but the prospects to achieve a better accuracy in the next few years are good.
A significant step forward in our theoretical understanding of the kaon dynamics would
allow us to perform a precise test of the electroweak theory, giving complementary and

very relevant information on the CKM matrix structure in the kaon sector.






Chapter 4

Isospin violation in kaon decays

In this chapter, we perform a reanalysis of the known isospin-breaking contributions to
the K — mm amplitudes, taking into account our current understanding of the quark
masses and the relevant non-perturbative inputs. In addition, we present a complete nu-
merical reappraisal of the direct CP-violating ratio ¢’/e , where these corrections play a
quite significant role. After including the updated isospin-breaking effects, we obtain that
the SM prediction Re (¢//e) = (13 f?) -10~% is again in very good agreement with the
measured ratio. As in Chapter [3] the uncertainty, which has been estimated very conser-
vatively, is dominated by our current ignorance about 1/Ng-suppressed contributions to

some relevant yPT LECs.

4.1 Introduction

While isospin symmetry is an excellent approximation for most phenomenological appli-
cations, the isospin violations induced by the quark mass difference m, — mg and the
electromagnetic interaction can get strongly enhanced in some observables [150,207], ow-
ing to the AT = 1/2 rule given by Eq. (3.2.6), when a tiny isospin-violating correction
to the dominant amplitude feeds into the suppressed one. This is certainly the case in

the direct CP-violating ratio ¢’/ , where a subtle numerical cancellation between the two

109
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isospin contributions takes place as discussed in Section [3.4] The current theoretical effort
to predict this observable with a precision similar to the experimental one [52}/100,/113]
requires an improved understanding of isospin-breaking effects |149H151},207]. This would
allow to test many possible New Physics (NP) scenarios that have been recently advo-
cated [117-142]. Assessing the role of the different isospin-breaking corrections is one of
the main motivations of this chapter.

In Chapter 3] we have seen that when CP violation is turned on, the amplitudes Ay , Ao
and A3 acquire imaginary parts and &’ is given to first order in CP violation by Eq. ,

which can be expressed as

1 ibexo) , 1A (1 1 ImAz) .
: \/ie wReAO WIHIAO : ()

This expression makes manifest the important potential role of isospin-breaking effects.

Any small correction to the ratio %ﬁﬁi gets amplified by the large value of w™! . It is well-

known that the further chiral enhancement of the electromagnetic penguin contributions to
Im Az makes compulsory taking them into account for any reliable estimate of /e , in spite
of the fact that they are isospin-violating corrections. Futhermore, Eq. contains a
delicate numerical balance between the two isospin contributions, making the result very
sensitive to any additional isospin-breaking corrections. Indeed, some naive estimates of
ImA; result in a strong cancellation between the two terms, leading unjustifiably to low
values for &' /e |75H80,/114-116], as have been shown in Section A proper assessment
of the isospin-violating contributions to the K — 77 amplitudes is then a compulsory
requirement for making reliable predictions of &' /¢ .

A detailed study of isospin-breaking effects in K — 7w was performed in Ref. [149-
151]. While the analytical calculations reported in these references remain valid nowadays,
meanwhile there have been many relevant improvements in the needed inputs that make
worth to perform an updated numerical analysis of their phenomenological implications.
The much better precision achieved in the determination of quark masses allows now
for improved estimates of the penguin matrix elements. Moreover, we have at present

a better understanding of several non-perturbative ingredients such as the chiral LECs,



4.2 K — 7w amplitudes at NLO 111

which govern the yPT K — 77 amplitudes [152H169]. Implementing those improvements
by updating Ref. [150] is one of the main motivations.

In Section [£.2] we describe the structure of the amplitudes at NLO in xPT including
the most relevant isospin-breaking corrections and using the same parametrization as in
Eq. . The main limitation of the yPT approach originates in the not very well-
known LECs that encode all short-distance dynamical information. Our current knowledge
on those LECs is compiled in Section Section [4.4] gives the chiral expansion of the
different isospin amplitudes to first order in isospin-breaking and CP violation. Finally,

the numerical results are presented in Section [£.5]

4.2 K — 7 amplitudes at NLO

Isospin-breaking corrections are accounted only at first order, i.e., only corrections of
O(e?(mg — my)°?) and O(e’(mg — my)) are considered. Additionally, owing to the very
small value of go7 , as can be seen from Eq. and also in the fact that Im(ge7) = 0 in
the large- N¢ limit, we neglect isospin-breaking corrections proportional to this couplingE

Therefore, we must consider the following isospin-violating contributions:

° 0(6(2) Gsp?) with the tree-level 7° — n mixing angle ¢® | which to first order in

isospin breaking is given by

3 I B ™ : (4.2.2)
78 €@ 1 " )io
with
(D _ V3 mazmn V3 (1.137 £ 0.045) - 1072 . (4.2.3)

4 mg—m 4R
We have extracted the numerical value from the most recent FLAG average of lattice
determinations of light-quark masses, with Ny = 2 + 1 dynamical fermions, which
quotes R = 38.1 & 1.5 [259]. The corrections from 7¥ — 1 mixing enter both in the

modified vertices and in the on-shell masses.

sospin-breaking corrections to ga7 can be found in Refs. [256[258]
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o O(¢® Ggp*) . One has:
— 70 — 5 mixing at NLO. Identical to the previous correction but changing (2 —

e [150,[178],

(2)
(4) 2¢ 5 . ) yeo
== 4 4 [3L7+ L M2 — M
‘s 3(4m F)? (M% — M2) {( m)% 64 [3 L7 + Lg(vy)] (Mg 2
]\42 M2
= My (M = My) log —5 + Mz (Mf. — 3 My) log =
X X
2 2 2 M12< 2 2 2
— 2 M (M — 2 M7) log — 1€ — 2 M (M — M2) ¢ . (4.2.4)
X

— Isospin-conserving amplitudes, but accounting for the isospin-breaking correc-
tion to the pseudoscalar masses, either in the propagators or the on-shell ex-

ternal legs.
— Diagrams analogous to the isospin-conserving ones, but with vertices obtained

after applying the rotation of Eq. (4.2.2), so that one of the vertices introduces

an €2 factor.

e O(e?Ggp®) , coming from either the electroweak Lagrangian (e?gggewk) or the non-
leptonic one (gg) when accounting for electromagnetic corrections to the external

masses.
e O(e?Ggp?), entering through:

— 7 — » mixing at NLO. Identical to the strong isospin-breaking correction but

with € — €5 [150.260],

W _ ___2V3a {—9M22 tog ME 1
BM T 108 7 (MZ — M2) kKZ\8 72

+2 ME (4m)2[2U5 (vy) + 3 U ()]

M2 (4m)2 [2U5 (1) + 3U3 (1) — 6U1(VX)]} L (425)
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where U/ (vy) are linear combinations of the K] LECs defined in Eq. (3.5.38)),
Uy =K+ K>, Uy = K5+ Ks

Us=Ky—2Kj5, Uy = K9+ Ky . (426)

— Loop corrections with one gg gewk vertex.

— Again, isospin-conserving amplitudes, but accounting for the isospin-breaking
correction to the pseudoscalar masses either in the propagators or the external
legs.

— Electromagnetic loop corrections with one gg vertex and virtual photon prop-

agators. In order to cancel the infrared divergences, one must also add the

corresponding calculation of the K — wry rates [150].

— Tree-level diagrams with at least one electroweak vertex and a NLO insertion.

4.2.1 Isospin breaking structure of the amplitudes

Taking into account the previous discussion and inspired by the parametrization intro-
duced in Section we generalize this parametrization including the isospin-breaking
corrections. Then, the isospin amplitudes A,, (n = 1/2, 3/2, 5/2) can be expressed to first

order in isospin-breaking as

Ay, = — Goy Fy (Mf( - M,?) A@D _ Gy F, (Mf( - M,%) [A,(f) + @ ASf)}

+¢2 Gy F2 [AD + Z AD) + goic A (4.2.7)

where .Agf) refers to the strong isospin-breaking contributions, A%q ) and .A%Z) are the
contributions with an insertion of gewk and Z vertices, and .,47(;/) are the contributions
induced by the photon loops. In Eq. , we have replaced the Goldstone coupling F
by Fj, the physical pion decay constant at NLO. The isospin-conserving relation between

these two parameters has already been introduced in Chapter [3| through Eq. (3.7.59).
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n 2D (9 | @]
/2| P | VR 32 || P
2 R0 sn [ 4]

Table 4.1: agX) values for n =1/2, 3/2 . aé)/(z) = (0 for all X and a,(]) =0 foralln.

Including isospin-breaking effects, they are related through [172}208]

4
F=F, {1 - [LZ(VX) (M2 +2MF) + Lg(yx)Mﬁl

1 M2 M?
X X
2¢(?) 8L (vy) 1 M?
(M} - M2 DX 141 (K> 4.2,
MVE (i = 2) l FZomeEEr %\ ;o (428)

so that those corrections get reabsorbed into the different NLO terms.

Each amplitude A%X) in Eq. 1) can be decomposed as

0 _ o) [14+ A4 + AcAfY] it o 40, 129)

" ApASY + AcASY it oY =0, -
with a%X) , ALA%X) and ACA%X) being the LO, NLO loop and NLO local contributions,
respectively as we have already seen in Chapter |3l The amplitudes A%X) and their com-
ponents a£f” , A LA%X) and ACA%X) are dimensionless by construction. In Table u we
give the values of the LO factors a%X) . The loop corrections A L.A%X) account for the

requirements of unitarity and analyticity; these non-local contributions are fully predicted
in terms of the pseudoscalar masses and the pion decay constant. The local compo-
nents ACA%X) contain the explicit dependence on the NLO LECs that renormalize the
ultraviolet loop divergences. Therefore, both AL.A%X) and ACA%X) depend on the xPT
renormalization scale, but this dependence exactly cancels in their sum. The full expres-
sions for A LA%X) and ACA%X) can be found in Appendix B and in Section 4.4 of Ref. [150]

respectively.
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4.3 Determination of chiral LECs

In the last section, we have introduced the general structure of the K — 7w amplitudes at
NLO, accounting for isospin-breaking effects too. The only remaining ingredients are the
xPT LECs, which are not fixed by symmetry considerations. However, these couplings can
be determined performing a matching in the large-No limit between the short-distance
Lagrangian and its chiral realization as we have seen in Section [3.6] As a result, we obtain
the electroweak chiral couplings (gs, 927, 98 Gewk, 98Ni, g27D;i, gsZ;) in terms of the strong
and electromagnetic LECs of O(p") with n = 2,4, 6 and O(e?p?) , respectively.

4.3.1 Weak couplings at O(Grp?) and O(e*Ggp?)

At leading order in 1/N¢ , the chiral couplings of the nonleptonic electroweak Lagrangian

of O(GF p?, €2 G p°) given by Eq. (3.5.40)), take the values of Egs. (3.6.48) [88,(150]. These
large- N¢ expressions implyﬂ

g = (1.15+8;}$ w £ 0040, + 0.01(%))
+ 7 <0.76i8;§§ o £ 0200, £ 0.03(%)) : (4.3.10)
955 =0.46 £ 0.02, , (4.3.11)
(98 Gowl) ™ = (1.54%;;% o £ 014y £ 0.17(x,) £ 0.05 (ms)>

+5.7
+ 7 (—19.92.2 (,u,) + 18([/1) + 083(1(1) + 07(m5)) s (4312)

where the first uncertainty has been estimated through the variation of the scale p between
0.77 GeV and 1.3 GeV, while the second and third ones reflect the current errors on the

strong LECs of O(p*) and the electromagnetic couplings of O(e?p?) . The last error

2The numerical inputs for Ko and Kio are presented below. Although this results have been already
presented in Tables [3.2] and [3-3] we decide to put them since the numerical inputs used for this chapter

differ slightly from the previous one.
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indicates the parametric uncertainty induced by the quark mass factor, which has been

taken within the range (ms + mg)(n = 1GeV) = 131.8 + 2.2 MeV [259].
The numerical results in Eqgs. (4.3.10]) and (4.3.11]) are quite far from their phenomeno-

logically extracted values, including chiral loop corrections, gs ~ 3.6 and go7 =~ 0.29 [53].
This fact just reflects the importance of O(1/N¢) corrections in the CP-conserving ampli-
tudes. In Section [£.5.2] we will perform a fit to K — 7 data in order to obtain reliable

predictions for the CP-conserving parts of gg and ga7 .

4.3.2 Weak couplings at O(Grp*) and O(e*Ggp?)

At NLO, the large-N¢o matching fixes the couplings GgN; , Go7D; and GgZ; of the non-
leptonic weak and electroweak Lagrangians given by Eq. (3.5.42)). In this section, we

compile the results obtained in Ref. [150]. Taking the definitions,

Ca(p) = 2 Calp) + SCo() + Cal) (43.13)

Colp) = +3Ca(p) — 2Co(p) + () — Csn) (4.3.14)

the non-vanishing LECs contributing to the K — w7 amplitudes can be parametrized as

follows:

(921 Da)* = 4Lsg5% , (4.3.15)

(9s Ni)® = m; Ls C1(p) + Xi B(u) Co(p)

= n;Ls <g§° + B(u) Cs(p) [16L5 + nXL5D : (4.3.16)

with n; and A; defined in Table of Appendix [E] as functions of the LECs of Egs.
(3.5.34) and ([3.5.35)), and

(95 20 = KM Cr(p) + K Co(u) + K B(p) Co(p) (4.3.17)

1
+ S {KCr ) + K7 Blw) Cs () + K1 Col) + K7 Crou)

where the constants ICEk) are defined in Table of Appendix
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The dependence on the yPT renormalization scale v, is of O(1/N¢) and, therefore,
is absent from these large-N¢ expressions. To account for this systematic uncertainty,
we will vary v, between 0.6 GeV and 1 GeV in the loop contributions and the resulting

numerical fluctuations will be added as an additional error in the predicted amplitudes.

4.3.3 Strong couplings of O(p*) and O(p®)

The K — 7 amplitudes have an explicit dependence on some LECs of the O(p?*) strong
Lagrangian as we have seen in Chapter 3] The values for Ls and Lg have been introduced

in Section For L7 , we use
L7 = (—0.34+0.09) - 1073 (4.3.18)

which has been extracted from an O(p®) phenomenological fit to kaon and pion data [167].
Note that L7 does not depend on the xPT renormalization scale. This input value is in

perfect agreement with the large-N¢ estimate [153}|155],

LY = — Fr _ —2.7-107* (4.3.19)
48M2, ’

with M, = 804 MeV [153].

The strong LECs of the O(p®) Lagrangian enter into the amplitudes through the co-
efficients X; of Eq. , which only depend on Xis, X14-920, X31, X33, X34, X37,
X3g, Xg91 and Xgg4. The dependence on Xs37 and Xg4 exactly cancels, however, in all
ACA%X) amplitudes; thus these couplings are not needed. Using Resonance Chiral Theory
(RxT) [153,/154], these LECs can be estimated in terms of meson resonance parameters,
through the tree-level exchange of the lightest resonance states. This amounts to perform
the matching between the xPT and RxT Lagrangians at leading order in 1/N¢, in the
single-resonance approximation. An analysis of all resonance contributions to the X; cou-
plings can be found in Ref. [156]. Furthermore, a complete analysis of the n; contributions
to the chiral low-energy constants of O(p%) was presented in Ref. [157], the only XZ” that

contribute to K — n are
Ly

X?BI = 32{% = _2Xgé = X;,’{ = 2 Xgé =0. (4.3.20)
m
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Combining both results, we obtain the values given in Table As expected for the
K — mm amplitudes, the relevant couplings do not receive contributions from vector
and axial-vector exchanges. Moreover, all n; contributions coming from the X’zm factors
in Table cancel also in the combinations X; that govern the (gsN;)*° LECs, as it
should. The exchange of 771 mesons can only contribute indirectly to K — 7w, through
the dependence on Ly of the 7% — ) mixing correction egl) in Eq. , which gives rise
to the the term proportional to LyLg in X;3. This unique n; contribution appears in the
NLO local corrections AcAgﬁ/)Q’g /2 and represents one of the largest sources of uncertainty

in our numerical results.

X;/F? Large-N¢ prediction
Cq Cm
12 B 2dMg
d2 3 3
1 — g+ () + 258 (57
15 0
16 0
2 _
17 — a4+ A58
4 M3 A
18 xn
\S — ~
19 shem + g+ (8% + X
20 _oeom Mo ogm
18 M3 6 T 20
d2 S\S — ~
3L | —g — g+ T - 2080 + Xy
2, 2 cacm o M oL XS _ 3P L ¥
33 6M;+§Ci\fg+?4+)‘5_)‘3+x§7§
d?n Cd Cm C?n dgn
34 2 M3 ™ 2dMg ™ 2ME  MZMZ
38 _dy + Cm
2 M} 2 M}
01 o iy
Mp

Table 4.2: Large-N¢ predictions for the relevant strong LECs of O(p®) [156].

Thus, only contributions from scalar and pseudoscalar resonance-exchange enter into

the relevant X; LECs in Table The LO RxT couplings have been determined within
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the single-resonance approximation, which gives the relations [155]:
em=cq=\2dp = Fyp/2, Mp =2 Msg . (4.3.21)

These couplings correspond to O(p?) chiral structures with Goldstone fields coupled to a
single resonance multiplet, either scalar (cq,,) or pseudoscalar (d,,). The table contains,
in addition, contributions from O(p*) chiral structures with one resonance (A%) and O(p?)
terms with two resonances (S\zRR’) that are currently unknown. We are only aware of one
estimate of A\ = A§¥ M%/c2, | determined from the scalar resonance spectrum [211],

which we update in Appendix |kl We obtain:

Mg = 1478 MeV | A5S = 0.1548 . (4.3.22)

In the absence of better information, we will take null values for the unknown XZR and B\ZRR/
couplings. In order to estimate the size of uncertainties in any observable F’ associated to
the LECs X; , we will take:

[F(Xi) — F(0)]

tF =
error o No

(4.3.23)

4.3.4 Electromagnetic couplings of O(e?p?)

The electromagnetic LECs K; can be expressed as convolutions of QCD correlators with
a photon propagator [213], and their evaluation involves an integration over the virtual
photon momenta. Therefore, they have an explicit dependence on the xPT renormal-
ization scale v, , already at leading order in 1/N¢ . In Ref. [266], the couplings K| _g
have been estimated by computing 4-point Green functions (two currents and two electro-
magnetic spurion fields) in yPT and matching them with their RxT estimate (neglecting
pseudoscalar contributions). The RxT couplings are obtained by imposing short-distance

constraints. They find

K{(M,) = —K}(M,) = —2.71 - 1073 , KE(M,) = 11.59 - 1072 |

1
K3(M,) = 5 Kj(M,) = 0.69 1073, K§(M,) = 2.77 -107% . (4.3.24)
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The remaining couplings can be accessed through the study of two- and three-point func-
tions. K7g turn out to be 1/N¢ suppressed, i.e., K7(M,) ~ K7(M,) ~ 0 [213]. Kj_;3
are gauge dependent, while K§_;, depend also on the short-distance renormalization scale
1 . Those dependences cancel with the photon loop contributions in the physical decay
amplitudes. The explicit values we quote below refer to the Feynman gauge (£ = 1) and

1 =1 GeV [150,213,214,266,267]:

K§(M,) = 2.2-107% Kiy(M,) = 6.5-107° , (4.3.25)

K{(M,) = 1.26-1073 | K[,(M,) = —4.2-107%,  Ki3(M,) = 4.7-107%.

The uncertainties associated with these LECs will be also estimated following the method

indicated in Eq. (4.3.23]).

4.4 Anatomy of isospin-breaking parameters

To first order in isospin breaking &’ can be written as indicated in (3.2.10)). In order to
determine the different sources of isospin-breaking effects, it is useful to write the CP-

violating amplitudes as

AO eiXO = Ag(;)Q + 5./41/2 s

Ape™ = AP+ 03 + Asps (4.4.26)

where 0.4, /3 3/9 and Ajs /o are first order in isospin violation. The amplitudes Aa; have
both absorptive, Abs Aa; , and dispersive, Disp Aa; , parts. Therefore, the loop-induced

phases x; have to be carefully separated from the CP-violating ones. Expanding to first
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order in CP and isospin violation, one finds |150]:

mAfY = | A /2(*1 {Im[Disp A{))] Re[Disp A{)]
+Im[Abs A7) Re[Abs A},
TmAy = ‘A3 /2( {Im[Dlsp (5,43/2 +A5/2)]R6[DlspA3 A
+ Tm[Abs (6435 + As o )| Re[Abs AT (4.4.27)
Ao = 2] A (Re[Disp AL)] Re[Disp 641 5] + Re[Abs AL)] Re[Abs 6415
+ [Im[Disp A{})] Re[Disp A{})] + Tm[Abs A{})] Re[Abs A{)]]
x {Im[Disp 6.4; o] Re[Disp A{))] + Tm([Disp A{})] Re[Disp 6.4y o]
+ Tm[Abs 5.4y /5] Re[Abs )] + Im[Abs A}))] Re[Abs 6.4, o]}

f5/2 ‘AS/Q ‘ {Re[DiSp A3/2] Re[DiSp A5/2] + Re[AbS Ai(%(})Z] Re[AbS .A5/2] } s

which are all the quantities that we need to determine the different sources of isospin

violation in Eq. (3.2.15|).

4.5 Numerical results

At this point, we have all the theoretical ingredients to provide a numerical prediction for
the isospin-breaking effects in K — w7 . In the following subsections, we present each of

the numerical results that enter in the estimation of these corrections.

4.5.1 Amplitudes at NLO

In this subsection, we present the numerical results of the different isospin amplitudes, A,
with n =1/2, 3/2 and 5/2 . Tables and which supersede Tables 1, 2 and 3 of
Ref. [150] display the following information:

e The type of contribution (X) in the first column.

e The LO contributions a%X) in the second column.
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(X) | i) | ArAp) [AcATT [AcA})
27 | M2 | 1.03+047i | 0.01F399+0:5 | 0.01 1599065
8 | V2 | 02740474 | 0.027000 00 | 0.11F508 00
e | -22| 02640470 | —03270% 00 | 1540500
v |- —1.39 —0.48F035 1057 | —11.16 T 32 1057
Z | 22 | _1.0740807 | —0.11 30 +01T 1 0,14 +0:01 017
g | 22 | 02840473 | —0.19 000011 (19 +0.00 001

Table 4.3: NLO loop and local counterterm amplitudes A; /5

the local amplitudes are associated with the variations of the short-distance scale p and

the chiral scale vy, respectively.

(X) | o)) | ALAR) AcATITE | [AcAS)T
27 | 1 | 0.04-0.217| 0.017390052 | 0.015:05 £358
e | 305 | —0.70-0.214 | —0.30 597 050 | 1.65 055 1050

- —047 | 0407555 1555 | —0-22751 T8
Z | 4 | -087-0.79| 00113504032 | 0.07 390552
g | 2 |-0.50-0.217|—0.19%300 019 | —0.19 590 +0-19

Table 4.4: NLO loop and local counterterm amplitudes Ajz/, .

the local amplitudes are associated with the variations of the short-distance scale u and

the chiral scale vy, respectively.

X X X X)—
(X) aé/Q) ALAé/Q) [AcAé/Q)]+ [ACAS')/Q)]

- —0.51 | —0.15 001 F00Y | —0.57 1505 T
Z | - | —093—-1.16i| —0.16595 941 | .09 +0-01 +0-41

Table 4.5: NLO loop and local counterterm amplitudes As/; -

the local amplitudes are associated with the variations of the short-distance scale u and

the chiral scale vy, respectively.

The two uncertainties in

The two uncertainties in

The two uncertainties in
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e The NLO loop contributions A L.A%X) with the absorptive and dispersive compo-
nents in the third column. Absorptive contributions are independent on the chiral

renormalization scale v, . For the dispersive contributions, v, is fixed to 0.77 GeV .

e The NLO local corrections to the CP-even and CP-odd amplitudes, [ACA%X)]‘F and

[A(;AT(lX)]* respectively in the last columns, where

e (G27 ACA%W))
= , X =27,
Im <G27)
Re (9)
G8Gewk AcAp
[AcATIE = Im(Rgge Aol , X=y, (4.5.28)
e (G8Gewk)
e (G A0AY)
Re ) X = 87 Z7 67 ’y .
Im (GS)

The estimation of NLO local contributions represents the main uncertainty in our
results. In Tables [4.4and we quote the two different sources of uncertainties.
The first error is related with the lack of cancellation of the short-distance scale pu.
We estimate it by varying this scale from 0.77 GeV to 1.3 GeV . The second error is
associated to the missed logarithmic dependence on the xPT scale v, due to applying
the large-N¢ limit. In order to estimate it, we vary the chiral renormalization scale
between 0.6 and 1 GeV . In most of the cases, this non-perturbative error dominates

over the first one.

The results are in good agreement with the ones of the previous analysis. While the
underlying physics behind the large values of A LAS%,?) /2 and [ACAEV/)Z]_ is well understood
[150], the larger than expected values of [Ac.Age/)Z3 /2]_ are not. It might be consequence
of a numerical accident. While the size of the gg/V;" is not larger than expected, their role

appears enhanced in the amplitudes with huge numerical prefactors.

4.5.2 xPT fit to K — 7w data

In Section we have seen the price of taking the large-N¢ limit in the CP-even

sector, reflected in an unphysical short-distance scale dependence for the observables. The
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large- N¢ estimate is unable to correctly predict the CP-conserving parts of gs and go7 .
However, one can fit them to data. The observables [150],
1/2
2./sp T
C, = [ X=" , (4.5.29)
G?’L @TL
where I',, with n = +—,00,+0 are the decay rates, én = Br,/7, , Br, and 7, are
respectively the branching ratios and the kaon lifetimes, /s, is the total center of mass

energy and ®,, is the two-body phase space; are directly related to the amplitudes of Eq.
(13.2.4)):

2 2 1
A7 = 3Ch, (A + (A2)? = 2CE + S Chy,

4 cos(xo — X2) = 7"—1+(%(2))2(2r_%)
A(] 0 2 \/§(1+2’f') 3

where r = (Cy_/Co)? . Then, using the partial widths T'y_ g9 o from Ref. [31] as

(4.5.30)

experimental inputs to obtain the C,, and using xPT for A; , we can perform a fit to gs ,
g27 and the phase difference xo — x2 . We obtain the results of Tables 4.8 [£.9] [4.6 and [4.7]
which supersede Eqgs. (7.11), (7.12) and (7.13) and the discussion therein of Ref. [150].
We obtain numerical values in good agreement with that work. In the next section, we use
the results presented in Table [4.9] as inputs to compute the isospin-breaking parameters

presented in Section [£:4]

4.5.3 Isospin-breaking parameters in the CP-odd sector

Once the NLO amplitudes have been updated (Section and the CP-conserving com-
ponents of gg and go7 have been fitted to experimental data (Section , we have all
needed ingredients to compute the different IB parameters in the CP-odd sector given
in Section Since this work is an update of Ref. [150], it is worth it to compare the
impact of the different updated inputs in the different (central) final NLO « # 0 values.
This is shown in Table where A; corresponds to the difference between the updated
set-up and the same one but with the old input for the variable i (i = WC stands for

Wilson Coefficients). The impact of the different changed inputs is comparable in size,
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Value
Re gs 4.985 £ 0.002 (exp)
Re g7 0.286 & 0.001 (cyp)
Re Ag/Re Ay | 22.36 & 0.05 (op)
Re Ag/Re A7 | 22.36 £ 0.05 (exp)
I5/2 0
xo — x2 (°) 44.78 £+ 0.98 (exp)
Re Ag(-1077 GeV) | 2.711 £ 0.001 (exp)
Re Az(-107% GeV) | 1.212 + 0.003 (exp)

Table 4.6: Tree-level (LO) isospin-conserving amplitudes.

Value
Re gs 3.599 £ 0.001 (cxp) 0135 (1) T 0:004 ()
Re gor 0.288 & 0.001 () £ 0.014,, )
Re Ag/Re As 22.36 £ 0.05 (exp)
Re Ag/Re Ay 22.36 £ 0.05 (exp)
512 0
xo — x2 (°) 44.78 £ 0.98 (cxp)
Re Ap(-1077 GeV) 2.711 £ 0.001 (exp)
Re A5(-1078 GeV) 1.212 & 0.003 (exp)

Table 4.7: NLO isospin-conserving amplitudes.

and typically slightly smaller than the central values. In particular, the sensitivity to Ly

is remarkable.
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Value

Re g 5.002 = 0.002 (exp) * 0065 1
Re ga7 0.251 % 0.001 (exp) * 0054

Re Ao/Re Ay 22.13 £ 0.05 (exp) 008

Re Ag/Re A 22.13 £ 0.05 (exp) T 000 (1)

I5/2 0
xo — x2 (°) A7.97 +0.92 (o) 035 ()
Re Ag(-10~7 GeV) 2.704 £ 0.001 (exp)

Re A(-107° GeV) | 1.222 £ 0.003 (exp) £ 0005

Table 4.8: Tree-level (LO) isospin-breaking amplitudes.

Value

Re gg 3.581 £ 0.001 (exp) T 0141 () T 6:008 ()
Re ga7 0296 = 0.001 (exp) 0001 () = 0:003 (1)

Re Ag/Re As 20.54 £ 0.04 (exp) £030 ) T009 0

Re Ag/Re Af 22.29 £ 0.05 (exp) 7006 () 09 W

f52 0.0853 £ 0.0002 (exp) ~ 00550 )~ 0:0007 (0
Xo —x2 (°) 51.395 £ 0.806 (exp) 1011 () * 0:00% (0
Re Ay(-1077 GeV) 2.704 £ 0.001 (exp)

Re As(-107° GeV) | 1.317 % 0.003 (o) 0057, ) T 6:000 ()

Table 4.9: NLO isospin-breaking amplitudes.

In Tables {4.11] [4.12] |4.13] and [4.14] we update Table 4 of Ref. [150] separating the

estimate for the different sources of uncertainties, being o; the error associated to the

variable i Pl

3The label B(u) refers to the running of the quark masses.
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Set-up Ay f5/2 Qrp Qefr
Central Ref. [150] | 0.08346 | 0.08360 | 0.2267 | 0.05967
New value 0.05650 | 0.08202 | 0.2597 | 0.1212
Awc -0.011 | -0.0009 | 0.0018 | 0.013
Ar, -0.016 | 0.0009 | -0.032 | -0.017
JAYR 0.0032 | 0.0013 | -0.0049 | -0.0094
Ar, -0.0007 | 0.0000 | 0.043 0.044
Ak, 0.0013 | -0.0036 | 0.022 0.024
Ax, -0.0018 | 0.0001 | -0.0008 | -0.0026
A2 -0.0003 | 0.0000 | 0.012 0.012
Ap) -0.0051 | 0.0005 | -0.0067 | -0.0024

Table 4.10: NLO central values for « # 0 and impact of the different modified inputs.

Set-up

Ao

f5/2

OB

Qeﬁ

Central

-0.00002

0

0.1370

0.1370

Table 4.11: LO central values for o« = 0.

Set-up Ao fsp2 | Sus Qe
Central | -0.0051 | 0.0 | 0.171 | 0.176
o | Todoos | 0-0 | To00s | Tooor
oy, | 0.0001 | 0.0 | £308 | £0.0e8
oy | 0.0004 | 0.0 | 0.001 | 0.002
OrLss | 0.0001 | 0.0 | 0.033 | 0.033
oL, | 0.0011 | 0.0 | 0.060 | 0.061
ox, | 0.0000 | 0.0 | 0.006 | 0.006

Table 4.12: NLO central values for a = 0 and their parametric errors.
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Set-up Ag fs2 | QB Qe

Central | 0.0563 | 0.0 | 0.196 | 0.140

+0.0021 0.0 +0.004 +0.002
Ou —0.0000 : —0.001 —0.002

o, 0.0000 | 0.0 | 0.000 | 0.000
oy | 0.0067 | 0.0 | 0.001 | 0.006
OLss | 0.0143 | 0.0 | 0.028 | 0.014

OK; 0.0021 | 0.0 | 0.039 | 0.037

Table 4.13: LO central values for a # 0 and their parametric errors.

Set—up Ao f5/2 QIB Qeff

Central | 0.0565 | 0.0820 | 0.260 | 0.121

+ 0.0066 + 0.0003 +0.008 +0.001
Ou —0.0015 —0.0011 —0.002 —0.000

0.0232 0.057
o, 0.0017 | Tooass | 0.034 | £0027

Onys 0.0067 | 0.0009 | 0.001 | 0.004

OLss 0.0136 | 0.0017 | 0.040 | 0.029
oL, 0.0011 | 0.0000 | 0.060 | 0.061
OK,; 0.0019 | 0.0031 | 0.018 | 0.013

ox; 0.0021 | 0.0003 | 0.003 | 0.005

Table 4.14: NLO central values for o # 0 and their parametric errors.

Since its sensitivity to Ly is particularly strong, we show in Figure the dependence
of the central value of Qeg with L7. The dashed line is the L7 value from Ref. |167] with

its error (dotted line). The red line is the large-N¢ prediction for Lz.

4.6 Impact on the €’/e prediction

In this chapter, we have presented a re-analysis of the isospin-breaking corrections in

K — 7m [150]. Due to the AT = 1/2 rule, these corrections get strongly enhanced in the
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Figure 4.1: Central value of Q.g as a function of L7 .

'
Re (E—> 107"
154

—1 i

Figure 4.2: SM prediction for Re (¢'/e) (red dashed line) as a function of Qeg. The red
band has been obtained adding all sources of uncertainty in quadrature for a fixed value
of Q. The vertical dashed line indicates the central value of Q.g in (4.6.31) and the blue

horizontal band the measured value of Re (¢/e) .

direct CP-violating ratio ¢’/e , then it is necessary to re-analyze them in order to make
a reliable prediction for this observable. After reviewing the different improvements on
many of the inputs, we have obtained updated amplitudes, which lead to a new value for

the different relevant isospin-breaking parameters. Among them, it is worth it to remark
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the value of Qug that encodes the isospin-breaking corrections in &’/e . Our prediction is
Qe = (121739)-1072, (4.6.31)

where the final uncertainty has been obtained by conservatively adding all the errors in
quadrature. Figure shows the dependence of Re (¢'/¢) on Qe . Taking into account

the updated value, our prediction for Re (¢’/e) is
Re(e'/e) = (1814045, T35 T80, +1.2, £43 1, £ 111, £025, +£0.3x,) 107"
= (139) 1071, (4.6.32)

which is in perfect agreement with the experimental one [64-72]. We find that the impact
of this updated value on &'/e is small, finding a central value a slightly smaller than the
one obtained in Chapter [3] In spite of the large uncertainty, mostly coming from our

ignorance of non-perturbative effects in the matching region.



Chapter 5

Neutral meson mixing in

Multi-Higgs-Doublet Models

In this chapter, we present a complete one-loop computation of the Wilson coefficients
for the neutral meson mixing in the Aligned-Multi-Higgs-Doublet Model (AMHDM). We
contemplate the possibility of extending the N — 1 Higgs doublets to colour-octet scalars.
After giving a detailed technical summary of the computation, we particularize our analyt-
ical results to the wide casuistry of NP models, and finally we obtain combined constraints

on the parameters of these models from the current flavour data.

5.1 Introduction

Since the discovery of the Higgs boson, the search for physics beyond the SM has become
a priority task for the high-energy-physics community. One of the simplest extensions
is to include in the SM one additional Higgs doublet that transforms under the SU(2),
gauge group, this model is known as Two-Higgs-Doublet Model (2HDM) [268,269]. It
has a rich scalar spectrum (two charged and three neutral scalar fields, in addition to
the three Goldstones needed to generate the gauge boson masses) which incorporates

interesting phenomenological features, such as potential new sources of CP violation, axion
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phenomenology or dark matter candidates, just to mention a few of them. In the most
general version of the 2HDM [270-272|, the fermionic couplings of the neutral scalars are
non-diagonal in flavour, then this gives rise to Flavour Changing Neutral Current (FCNC)
interactions which represent the main deficiency of this model because these phenomena
are experimentally very constrained [2]. One of the possible ways to avoid the FCNC
interactions consists in using flavour alignment [273-275]. Assuming that the couplings of
all scalar doublets to a given right-handed fermion have the same flavour structure, then all
the Yukawas can be diagonalized simultaneously and these unwanted FCNC interactions
disappear at tree level.

Due to the GIM mechanism, the scalar mediators of this type of models play an
important role in some low-energy processes. An example can be found in the neutral
meson mixing, where the charged particles contribute at the same order as does the W+
bosons in the SM, therefore one could expect significant NP contributions. Although some
recents works have studied these type of contributions [276-279|, we can go a step further

and generalize the results present in the literature in four different ways:

e Including “Generalized Alignment” [275] in the Yukawa matrices, where (in the
fermion mass-eigenstate basis) Yd(g) = cc(f) M, and YU(Q) = [§£2)]TMU with 3 x 3
diagonal complex matrices in flavour space <4, which in general are not proportional

to the identity matrix.

e Extending to N Higgs doublets instead of two. This type of models are called Multi-
Higgs-Doublet Models (MHDMs).

e Giving a wide meson-mixing phenomenology (B® Bg , KY and DY) through a single

master formula.

e For the computation, keeping all external quark momenta and all external masses

up to second order.

In Sections [5.2.1] and we present the theoretical framework used in this chapter.

In Sections [5.2.3 and [5.2.4] we present the complete one-loop computation of the Wilson
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coefficients for the meson mixing, providing a detailed guide for the computation of the
box diagrams. In Section we compare our results with those present in the liter-
ature [276-278]. Finally, in Section we particularize our analytical results to some
specific models and we obtain combined constraints from the currently measured mixing

observables.

5.2 Theoretical framework

5.2.1 Multi-Higgs-Doublet Model

The 2HDM is based on a SU(3)c ® SU(2);, ® U(1)y symmetry with two scalar doublets

¢i(x) (i = 1,2) with hypercharge ¥ = 5 and the same SM fermion content. Using a

1
2
global SU(2) transformation in the scalar space (¢1, ¢2) takes us to the so-called Higgs
basis (®1, ®2) where only one doublet acquires Vacuum Expectation Value (VEV), (®;) =
% # 0 . In this basis, the doublets can be parametrized as
G+ H*
D, = . Dy = : (5.2.1)
F5(v + 81 +1GY) 7552 + i S3)

where G* and G are the Goldstone boson fields and (H*) = (G*%) = (S;) =0 .

Let us generalize the previous result assuming that the second Higgs doublet can be
either a singlet or an octet of SU(3)¢ . Then, we can rewrite ®y as

H),
Dy = T° (H™) = 7ol (5.2.2)

% [(S2)a + 1 (S3)]
where T® are 3 x 3 matrices that encode the colour nature of the second Higgs doublet.
For instance, the usual 2HDM is obtained by setting these matrices to the identity matrix
in colour space, while in the colour-octet 2HDM [280] these matrices are the generators of
SU(3)¢ being a = 1,--- ,8 the adjoint colour index.
A more general extension of the scalar sector can be constructed considering N dou-

blets instead of two, the so-called Multi-Higgs-Doblet Model (MHDM). In this extension,
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Eq. (5.2.2) has to be modified to

(H{)a
L[580 + 7 (58]

where A = 2, ..., N with NV the number of Higgs doublets.

Oy = T° =19\ (5.2.3)

5.2.2 Yukawa interactions and alignment

The most general Yukawa Lagrangian in the MHDM is given byE]

3 _ al > =
Ly — _‘vf Q'L{ <M(’1q>1 +3 [Yd(A’]’@A) g <M;q>1 +3 [Y;AH’@A) ujq} +he.
A=2 A=2

where @ is the left-handed quark doublet and dp = ioo ®7 is the charge-conjugated
doublet with hypercharge ¥ = —% . All fermionic fields are written as 3 dimensional
flavour vectors, i.e., dy = (df, s, by) and similarly for u}; and @} . The matrices
M} (f = u,d) are the non-diagonal fermion mass matrices, while the matrices [Yf(A)]’
contain the Yukawa couplings to the scalar doublets ®5 . In general, these matrices
cannot be diagonalized simultaneously. Therefore, in the fermion mass-eigenstate basis,
with diagonal mass matrices My , the Yukawa matrices are non-diagonal, which results
in flavour-changing interactions of the neutral scalars. One of the possible ways to avoid
these non-diagonal neutral couplings consist in requiring the alignment in flavour space
of the Yukawa matrices [273-275]. The Yukawa alignment guarantees that these matrices

can be simultaneously diagonalized by imposing (in the fermion mass-eigenstate basis)

v =My, Y™ = (M) (5:24)
where ggiz are 3 x 3 diagonal complex matrices in flavour space,
A . A A A .
V) = diag(ch sy sl ) s st = diag(sl, <, <)) (5.2.5)

IThe lepton part has been skipped.
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The matrices géA) and QSA) introduce family-dependent complex quantities which represent

new sources of CP violation. For N = 2 with ¢4, = ¢4 and ¢, = ¢, , we recover the family-
universal Aligned 2HDM (A2HDM) |273] case, in which for particular real values of these
parametersﬂ indicated in Table one restores all different versions of the 2HDM with
Natural Flavour Conservation (NFC).

Model Sd Su S

Type I cot (3 cot (3 cot B

Type Il | — tan 8 | cot 5 | — tan

Type X cot (3 cot 8| — tan S8

Type Y | — tan 3 | cot 8 cot B

Table 5.1: Two-Higgs-doublet models with NFC.

In the mass-eigenstate basis, the charged-current Yukawa Lagrangian can be expressed as

=T Z Z e)aRpaa T [V V My Py — o M,V Pr|d + he., (5.26)
A=2B=2

where V' denotes the CKM matrix, Pr = &% are the right-handed and left-handed
projectors respectively. For N > 2, the charged Higgs particles (Hl(:))a are not mass
cigenstates and we must diagonalize them through a rotation matrix R(H) to put them in
terms of the mass eigenstates (cpf))a In order to simplify our analytical results, we use

the following definition,
Z Riga), (5.2.7)

in general gAd #* g(’? . In addition, for the numerical analysis presented in Section
we introduce the following definitions: ¢, q = g( C)l in the A2HDM, and ¢, 4 = R, gqgc)l +
R CL(L C)l s Sud =R Cz(i)l + R CL(L L)i in the Aligned-Three-Higgs Doublet Model (ASHDM).

Ztan B = % and v = 4/v? + v2 where v1 and ve are the VEVs of ¢1 and ¢> .
3Notice that the colour-charged Higgs particles do not mix with those that are colourless.
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5.2.3 M°— M’ mixing within the SM and beyond

In Chapter we have seen that M® — M° mixing is governed by box diagrams with
M° = ¢1> and M = q192 , see Figure In the SM, the short-distance contributions
to BY | BS and K° (DO) mixing are given by box diagrams mediated by up-type (down-

type) quarks and W* bosons (Goldstone bosons depending on the gauge choice &y, see

Figures|5.1al |5.1bland [5.1f)). In the AMHDM, the Yukawa interactions introduce additional

diagrams, mediated by charged Higgs particles (cpf)a that can be either colour-singlet or

colour-octet scalars, see Figures [5.1d, [5.1d] and [5.1¢]

To be specific, in the following discussion we consider neutral mesons composed of down-

type quarks (BO7 KO). The modifications for the D° case are going to be obvious. The

MO — mixing is described by the following effective weak Hamiltonian,

2 2
HaF= = TRV S (G0 O
(CR)F (1) = (CPM)7 () + D _(6CEP) (u) (5.2.8)

AB

where the A and B labels refer to the N — 1 Higgs doublets with (Pap) =0, ¢ and j
represent the internal quarks flowing inside the loop, G is the Fermi coupling constant,
Ai = Vig, Vig, and (Ck)¥ (u) are the Wilson coefficients associated to the eight four-quark

operators Oy, ,

OVLLVRR _ 1aa v pr g ] [q§ Yu Pr,r Qﬂ J

O™ = (a8 7" Praf @ v Prdl] .
OF™ = (g8 P af] |@& Pral] . (5.2.9)
SLL,SRR _
Oy = (& Pr.r a7 [q? Prr Qﬂ ,

OgLL,SRR el B

= [@3 Oy PL,R Q?] [qQ at” PL,R Ch} s

with a and § being colour indices and o* = % [, 7] E|

4Other works use i 0, instead of o, . One can change to this basis through a simple shift ,, — ic,.

which only adds an extra minus sign in the Wilson coefficient (CZS LL’SR’R)” .
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Figure 5.1: Box diagrams contributing to meson mixing in the AMHDM. The omitted

crossed diagrams can be obtained exchanging the external lines.

5.2.3.1 Technical details for the computation

For the computation of the box diagrams shown in Figure we have taken into account

the following prescriptions:

1. The Feynman rules are in Appendix [G]

2. The contributions from the box diagrams in Figure have been calculated keeping

all the external quark masses and momenta up to second order (’)(

2
mag,
2 2
MW MW
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3.

Since the external momenta [ are much smaller than the masses of some internal
quarks, gauge bosons and charged scalars M , the Feynman integrands are expanded

in powers of external momenta before performing the loop integration,

1 1 1_l2+2(k~l)+ Ak - 1) o o
(k+l)2 - M2 k2 — M2 k2 — M2 (k2 _M2)2 M4 ’

where k is the loop momenta.

. We have applied the partial fraction decomposition

NS ) S S
(k2 —m}) (k2 —m3)  m3—m3 k2—m3 k2-—m3]’ -
which allows to reduce all Feynman integrals into one-propagator integrals. After

the reduction of tensor integrals to scalar ones through Lorentz invariance,

/k ky f(K2) = 9“”/ k2 (R (5.2.11)
/ ok ko k f(k?2) o guugaﬁ+guﬁgau+guﬁgua / k4 k2 (5 9 12)
A wky ko kg D (D 2.

dPk
where / = / W , the only non-vanishing one-loop integrals take the form
k ™

/ (k2)a _ i(_)aiﬁ (mg)D/2+a_5 F(ﬁ - — D/Q) F(a + D/Q)
K (k2 ['(3)T(D/2) ’

_ m2)5 - (47T)D/2
where o and (8 are arbitrary integer powers and m # 0 .
In this computation, we have been able to express all loop integrals in terms of the
loop functions Dy and Ds, defined in Appendix [H], and derivatives of these functions

using recursively the following formulas:

d
dm2 (/k (k2( ) = ﬁ/ m2 o (5.2.13)

(k2)a / (k2)a—1 9 / (kQ)a—l
12 _ . 2\8 79 og_1 TG NG V] 5.2.14
/k (k2 — m2)B k (k2 — m2)p—1 + m w (B2 = m2)f ( )
where Eqs. (5.2.13]) and (5.2.14]) reduce in one unit the powers of the loop momenta

in the denominator and numerator respectively.




5.2 Theoretical framework 139

D.

aq

as

We have applied the Fierz identity (|1.4.99)), followed by some Dirac reductions, i.e.,

YAy, = —27Y , etc. Even so, there have appeared irreducible spinor structures,
such as
[(73 Powe LR Q?] [@zﬁ Prr (I’f] ; [65“ P P g Q?} [475 ?2) P 6]16} ;o (5.2.15)

where g1 and g9 in this case represent the Dirac spinors for abbreviation reasons.
These structures have been reduced by choosing the kinematical framework in which

the initial particles do not have trimomentum.

After the computation of all box diagrams, we have summed all the contributions
taking into account the relative signs between the Feynman diagrams. Finally with
the fundamental amplitude, we have obtained the Wilson coefficients performing
a matching between the effective amplitude obtained through Eq. and the

fundamental amplitude.

. In order to validate our results, we have checked the gauge invariance. For that

reason, we have performed the calculation in the Feynman ({;y = 1) gauge and in
the unitary (& = 00) gaugeﬂ and we have obtained the same results in both gauges.
It is important to stress that in the unitary gauge, the result is divergent but when

we take into account the GIM mechanism (3>, \; = 0), the divergences disappear.

a2

o A1

o7}

£l EEEELELEY 3
E¥ TS T

! SECRERRNS b

aq4 QA3

(a) (b)

Figure 5.2: Topologies generated by the colour-octet scalar.

®In the unitary gauge, the contribution of the Goldstone bosons is zero.
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8.

Extending the colourless results to the colour-AMHDM can be easily done because
the only differences appear in the number of colour structure insertions. In the
colour-AMHDM, there are two types of topologies, as shown Figure [5.2] those with
one colour-octet scalar particle and those with two. These diagrams generate the

following colour structures

1 1
[Ta]oa a2 [Ta]a3 as = m 5041 %) 5043 ag T 5 501 oy 56!3 az (5-2'16)
1 NZ -2
1° Tb}al . 7" 7] wyon = @ NG Jo o Gz s T TCNC Son s Oz ag - (5:2.17)

The contributions given by Figure can be distinguished from the ones given by
Figure [5.2b| simply by counting the number of couplings. For instance, an operator
with two couplings (gﬁ‘j (si)*, ...) is a clear contribution of one colour-octet scalar
particle and, therefore, we have to use Eq. , while an operator with four
couplings ((s2)* <2 (ggj)* g{}j , ...) is a two scalar contribution and we have to use

Eq. (5.2.17). Let us consider the following example of an operator with four couplings
Ay * A Anx * A = -
(o)™ sl ()" it OFR = ()" o (sB)* < @8 Poaf] @ Pral] - (5.218)

Using the previous rules, O%R corresponds to an operator with two colour scalar

particles. Then, in the colour-AMHDM, it has to be replaced by @%R =

{cjgl (T“ Tb) Py qf‘ﬂ [cjg‘s (Tb Ta) Pr q?“} . The operator OF® can be
(a3 e%) a3z tq

reduced to the basis of eight four-quark operators given by Egs. (5.2.9), using

Eq. (5.2.17) and the Fierz identities of Appendix |Jl Finally, we obtain the following

result

~ 1 NZ —2
O%R _ O%R _ '

(2 No)? 8 Nc
Two important facts can be derived from Eq. (5.2.19)), when extending the results
to the colour-AMHDM:

ot . (5.2.19)

e From the first term of Eq. ((5.2.19]), we can conclude that when a colour operator
is reduced to the colourless basis given by Eq. (5.2.9)), produces a colour factor
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(NV;) in the same colour operator but with 7% = I where I is the identity matrix

in the colour space.

e The reduction of a colour operator also produces a colour factor (Nl) in other

colourless operators different from the one with 7% = I . This operator comes

from the second term of Eqs (5.2.16)) and (5.2.17)) after the Fierz rearrangement

is applied.

Taking into account all these facts, we can generalize our results as follows, the
colourlesssAMHDM will be obtained by making N; = 1 and N; = 0, while the
colour-AMHDM fixing N; and N; to the values given in Appendix

5.2.3.2 Analytical results

The previous technical aspects have allowed us to obtain the following results for the
Wilson coefficients in the Feynman gauge, before applying the GIM mechanism.

SM contributions

(CVLL)Y = (4 + BiB;) My, Da(m?, m3, M) — 86:3; My Do(m?,m3, M) . (5.2.20)

(ClsRR)H = Zq /Bzﬁj MW [3 Do(mw m MW)

= 2 (BYWH 4 W +F2WW41” : (5.2.21)
3 1
(CSM. VI — 2, 4 M, {3 (FWW31 bW F2wwz1>
1/(1 d d
—— | 3 ==-Da(m?, m?, M3,) + ——Do(m?, m?, M%)) ] . (5.2.22)
2 (2 dME, v dm? v

AMHDM contributions

(BCYTL)7 = ()" <oy ()" s N1 (f1P)%

+car (o) Nz (227 + b ()™ Ns (f5P)7 (5.2.23)
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GO = () o8 (B)7 < Na ()7 + Re [(f)7 o] Ns (A9, (5.2.24)

(GCHR)7 = ()7 B ()" sty Ne (F85)7 + Re [ (s2)" st | N7 (fB)"
+ o (58" Ns (FAP)7 + Re (<) sh] No (f8™)Y
+ Re [(s)" it st ()] Nio (67 + (o)™ sty < (si)* Nax (FY%)Y

+ (i) o sy ()" Nag (F52)7 + i (i)™ Nas (F3)7 (5.2.25)

(OCHR)T = it ()" Ns (%) + Re [(s)" sih| No (f3F)7
+ Re [ (sm)" it st (S2)7] Nio (FP)7 + (o) i st (sB)" Nux (F4%)Y
+ (o) s s, (sa)* Nia (597 4 <ot (s )™ Nag (f3°)7
+ ()" S (o) s No (F82)7 + Re ()" s | N7 (F2B)7, (5.2.26)

(0CigiL)" = (9‘:)* So (§5’j)* 9/2. Nug (fi2)9 + (9{2)* (st )’ S Q/} Nis (fi3%)4
+ (o) su (s2)" st N6 (F152)7 + (i)™ sy Naz (fi7)V

+ (s3)" s Nis (f8%)7 (5.2.27)

(6Cishr)7 = (o) sup (sie) ™ suts Nag (F19)7 + < sy (sim)™ (s )™ Nao (f35°)"
+ (o) i ()™ s Not (foi)Y 4 (i)™ sy Naa (f33°)7
+ o (o)™ Nag (f25°)" (5.2.28)

(0C35iL)" = (%ﬁ-)* So (9]?]-)* ijj Nug (FAB)Y + (%/Z-)* (st )’ o %/? Nis (f{33)4
+ (o) i () i Ni6 (Fi6)Y + (i)™ s, Nz (f35)7

+ (s3)" s Mis (f8%)7 (5.2.29)
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(6Co¥RR)"T = ()" s (sB)" st Nio (F92)7 + <ft st (i)™ (i)™ Nao (f3i°)"

+ () ol (o) sl Nax (F52)7 + ()" ol Nao (£85°)

+ o (i)™ Nag (f3)7 (5.2.30)
2
where 5; = ]\7;2? Tg oy = 7}122 and the couplings gu d, are defined in Eq. ( . The loop

functions f; functions are defined in Appendix [Hl The N; and N; are colour factors which
are given in Appendix [[|

5.2.4 GIM mechanism

After computing all the Feynman diagrams given in Figure the amplitude for neutral

meson mixing can be written as
<M ‘HAF | 0> ~ E E Xi Nj F(zy, z5) , (5.2.31)
ralia

which sums over all quarks flavours flowing into the loop (i, ;7 = u (1), ¢ (2), t (3)),
Ai is the product of the CKM matrix elements and F(x;, ;) is the loop function that
depends on the internal quark masses (z; = m?/ MI%V @f,B) and products of the NP couplings
((sh)*<B (g}?j)* g{;\j , ...). Considering the unitarity of the CKM matrix, A\ + Ao+ A3 =0,

the amplitude can be expressed as

Z Z >\z )‘j F(CL‘,L, l‘j) = )\% JT"QQ + 2)\2 )\3 f23 + )\% f33 s (5232)
[
where
Foo = F(xy1, m1) — F(x2, 21) — F(21, 12) + F(22, 22) , (5.2.33)
1 1
Fo3 = F(x1, 11) — §F(:1:27 r1) — §F(:c3, 1)
1 1 1 1

- §F(:n1, x9) — §F(3:1, x3) + 5 F(xs3, x2) + 3 F(x2, x3) , (5.2.34)

Fs3 = F(x1, 1) — F(xs, x1) — F(x1, x3) + F(x3, x3) . (5.2.35)
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Finally, when the GIM mechanism is applied in Egs. (5.2.20)) to (5.2.30]) with Eq. (5.2.32),

the effective weak Hamiltonian becomes
2 772
Gy My,

AF=2 __
Heit — = 1672

M Ch + 2Xe M Cop + N2 Ceel (5.2.36)

where
Cij = Cpr, OV + Cfpp OV + Ciip OFF + Cop OFF
+ Cisp, OF™ + Cikpr O™ + Copr, O5™ + Cpr O5™F (5.2.37)

where C,ij plays the same role as F;; with ij = tt, ct, cc in Eq. being k =
VLL, VRR, 1LR, ... and (Cy)¥ are the Wilson coefficients defined by Eq. which
correspond to Fj; in Eq. . Eq. can be applied to all the phenomenology
(BY, BY, K%) because we have kept all the contributions (Cy, C and C.) which in some
cases are important. In the SM, the application of the GIM mechanism results in some
contributions proportional to In 3, that do not vanish in the massless limit. This infrared-
sensitive terms only appear for (C53)¥ , in Appendix [K| we show how to deal with
these terms. The different Wilson coefficients C,ij can be found applying Eq. (5.2.32)) to
their respective Wilson coefficients (Cy)¥ . The explicit expressions will be accessible on
a webpage after the publication of this work.

The QCD renormalization group evolution of the Wilson coefficients from the scale p; down
to the lower scale i, for B mixing or u. for K mixing, has been calculated in Ref. [283],
as well as the corresponding parametrization for the hadronic matrix elements of the four-
quark operators. More details can be found in Appendices [[] and M] In addition, we
have taken into account the NLO QCD corrections for the SM which have been calculated

in [37,/41] and for the charged scalar the top contribution from [38] in those cases that
apply.
5.2.5 Comparison with the literature

In this section, we compare our results with the current ones in the literature [276-278§].

To compare with Ref. [276], we particularize our results to mg, — 0 and we ignore all



5.3 Numerical results 145

the contributions of O(z,,) to our C{';LL coefficient, then we obtain the same results for
all Wilson coefficients except for Cqy osrr because they do not follow a correct treatment
for the infrared divergences. In order to eliminate these infrared divergences, they put
them equal to zero, a correct treatment is presented in the Appendix For Ref. [277],
we particularize again to mg, — 0 and we observe that our result disagrees in the term
proportional to gj?j (glﬁ)* Ny (f5B)Y in Eq. . In Figure we plot this discrepancy
between both Wilson coefficients which is less than 2% for Mg+ > 25 GeV . We also
compare with Ref. [278]. Our results disagree with their Egs. (26) and (29) in the terms
proportional to A2 A*? . Basically, they have only considered the corrections of O(z) in
OVLL but there are leading order corrections independent of x, as shown in our Eq. .
Finally, we would like to point out that Ref. [278] quotes results that are inconsistent with
those previously given in Ref. [276] by authors of the same group, see for instance OV
for the case of B — B, mixing.

ACyLL
0.020 |
0.015}
0.010

0.005 -

1 1 1 1 1 MH (Gev)
50 100 150 200 250 300

Figure 5.3: Dependence with Mg+ of the difference between the Wilson coefficient

(6CHE, ) of this work and the one extracted from Ref. [277].

5.3 Numerical results

In this section, we present the numerical results extracted from ES, d— Bg q and K’ — KO

data. In Eg — Bg mixing, we obtain combined constraints from AM, , AT, , ad; and <;Sffq
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where ¢ = s, d . The relation of these observables with the off-diagonal transition matrix
element has been given in Chapter

In K — K° mixing, AMg is dominated by large long-distance contributions, so it is
difficult to put accurate constraints using this observable. However, there exists another
observable, the CP-violating parameter i , that is mostly dominated by the short-distance
contributions,

o — ke el e Im(MlKQO)
K — \/§ AMK )

(5.3.38)

where k. = 0.94 + 0.02 [284] takes into account the small long-distance corrections. In
orther to reduce the theoretical uncertainties, we fix AMg and ¢. to their experimental

values, AMg P = 3.484(6) - 10712 MeV [31] and ¢. = 43.52(5)° [31].

5.3.1 Standard Model predictions

Our SM predictions for the Eg — Bg mixing observables are given in the third row of

Tables and for ¢ = d, s respectively. For the computation of ATl'y|sm and alj|swm
e,
M,
are provided in Tables [N.I] [N.2] and [N.3] The theoretical uncertainties are obtained

we have used the ratio from Ref. [285]. The input parameters used in our analysis

by varying each input of these tables within its allowed range and finally adding the
individual uncertainties in quadrature. The experimental values averaged by HFLAV [32]
are displayed in the second row. At the current level of precision, the SM predictions do
not show any strong deviation from their experimental values. Therefore, these observables

will set strong constraints on the parameters of NP.

AMy [ps™] qﬁffd [rad] ATy [ps1] a‘sil (%]
Exp. 0.506 = 0.002 — — —0.21 + 0.17
SM 0.502 £ 0.071 0.816 + 0.068 (2.5 + 0.5) - 1073 —0.0512 + 0.0075

Table 5.2: Numerical results for AM; , Ay, ¢§Ed and agl within the SM.
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AM, [ps™!] ¢ [rad] AT [ps™] a3y [%]
Exp. 17.757+0.021 -0.03040.033 0.086+0.006  -0.06 «+ 0.28
SM  17.27941.765 -0.038 +0.001 0.085+ 0.013 0.0023 4 0.0003

Table 5.3: Numerical results for AM; , AT , ¢<°° and a¥; within the SM.

K’ —K° mixing, we have computed the SM prediction for ek, adding all the individual

uncertainties in quadrature, we obtain
exlsm = (2.22 + 0.32)-1073 | (5.3.39)
which is in very good agreement with the experimental value [31]
ek |Bxp. = (2.228 £ 0.011) - 1073 . (5.3.40)

This gives very strong constraints on the NP models.
In the next section, we present our numerical results. These have been obtained imposing
that the NP contributions to the different observables X jNP have to be lower than the

difference between the experimental value and its prediction in the SM,
exp SM NP
I X7P - XM > X (5.3.41)

where j = 1,...,n0 and np is the number of observables. Finally, we obtain combined

constraints plotting those points that fulfill Eq. (5.3.41)).

5.3.2 Aligned Two-Higgs-Doublet Model

In this section, we present the numerical results for the colourless- and colour- A2HDM.

In the Table we display the wide range of models to which our result can be applied.

A5 and By models

The Ay (A2HDM) [273] and B (Manohar-Wise) [280] models correspond to the case of

real coupling constants with normal flavour alignment. In Figure [5.4] we study how the
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Model Real (R)/Complex (C) Aligned (A)/Generalized Alignment (GA) Colour (C)/Colourless (¢')
A, R A ¢
A
A
A
GA
GA
GA
GA

n

oo H o O 0
S R R N
O O v v O O =
QO 8 O & a8 Q

3

Table 5.4: Casuistry of AMHDM depending on the number of doublets n . First column
denotes the name of the model. Second column refers to the couplings, ¢, 4, , Which can
be real (R) or complex (C). The third column indicates if the model is aligned (¢,, =
Sus = Sug = Sy and ¢, = g, = gy = Sg) or it has generalized alignment (¢, # Suy 7 Sus
and ¢g, # <4, # Sdy)- Lhe last column makes reference to the nature of n — 1 doublets if

they are singlets (¢) or octets (C) of SU(3)c.

different mixing observables constraint the (g, ;) plane for the Ay and the Bs models. In
the Ay model, using Ef, — Bg mixing we observe for Mg+ = 100 GeV that ¢, is bounded
between [—0.3, 0.3] and it quickly decreases with the increase of ¢; which is unbounded
for this case. For Eg — BB mixing, we find that ¢, is bounded between [—0.3, 0.3] , until
¢q reaches values of 50 and —50 where ¢, breaks into two vertical legs with 0.4 and —0.4
values. In addition, the lower part of Figure displays how the parameter space of ¢, is
strongly constrained from KK mixing data while ¢; remains unconstrained. Combining

all mixings, we obtain the following constraints for the As model,

G €1-03,03],  Mpye =100GeV , (5.3.42)
G €[-04,04] ,  Mys =250GeV , (5.3.43)
G €[-0.6,06] , Mgz =500GeV , (5.3.44)

v

while the bounds for ¢4 lie above its perturbative limit, |¢4| < T R 40 .
b
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In the Bs model, we find similar behaviours for both Bg mixings, in contrast to the Ag
model, we observe oblique legs that allow large values of ¢, . However, these fine-tunned
regions completely disappear when we consider the K — K mixing data. Combining all

mixings, we find

G €[-05,05 ,  Mpge =100GeV , (5.3.45)
G €[-0.7,07 ,  Mpys =250GeV , (5.3.46)
G €]-09,09] ,  Mpgs =500GeV , (5.3.47)

while ¢; remains unconstrained. Notice in Figure for the As model that we obtain a
different pattern than the one obtained in Ref. [276] because the authors of Ref. [276] have
neglected the mass of the light quarks (mq = 0). These contributions can be proportional
to (s4)? and (gq)*, then they can have strong repercussions for large values of ¢; . In Fig-
ure we make a numerical cross-check, in the left side with (c4)? and (s4)* contributions
and in the right side without these contributions. The right plot is completely equivalent
to the plot of Ref. [276]. Finally, we would like to point out the constraints on ¢; obtained
thanks to these contributions (see Figure [5.4)), while in Ref. [276] the coupling ¢4 remains

unconstrained.

C5 and Dy models

In the Co and Do models, there are four parameters that contribute to the mixing, |¢,| ,
|sal , M+ and 6 , where the last one is the phase between the two alignment parameters,
SFeq = |sf gqle? . In Figures we display the different mixing constraints for the
Co (left) and the Dy (right) models. In the Cy model, the Eg,d - Bgd mixings allow
large values of |sq| and |g,| for 6 ~ Z, m, 3T . Around the vicinity of these angles, there
are destructive interferences between the different contributions that result into a linear
relation as Figure shows. The vertical legs correspond to # ~ 7 while the horizontal

lines belong to 6 ~ 7, 3777 . However, when we take into account the K’ — KO mixing, the
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Figure 5.4: Allowed parameter space for ¢, and ¢4 in the Ag (left) and Bg (right) models
under combined constraints from AM, , ad; , $5° and ex . The blue, orange and green

regions are obtained with Mg+ =100 , 250 and 500 GeV , respectively.



5.3 Numerical results 151

Sd
Sd

-100 -100

Figure 5.5: Constraints on the Ay model from AM, . Left side with (¢;)? and (¢4)*
contributions and right side without them. The blue, orange and green regions are obtained

with Mg+ =100 , 250 and 500 GeV , respectively.

horizontal lines disappear and give rise to the following bounds for the Co model,

lsu] €10, 0.3] , Mpy+ =100 GeV (5.3.48)
lsu| €10, 0.4] , Mp+ = 250GeV (5.3.49)
lsu| € [0, 0.6] , Mpy+ = 500 GeV . (5.3.50)

while ¢4 is again above its perturbative limit, |¢4| < 40 .
In the Dy model, the constraints are less stringent than in the Cy model. The cancellations

appear around 6 ~ 0 , 7. Finally, we obtain the following limits for the the Do model,

lsu| € [0, 0.5] , Mpy+ =100 GeV , (5.3.51)
lsu| €0, 0.6] , Mpy+ = 250 GeV (5.3.52)
lsu| €10, 0.9] , Mp+ =500 GeV (5.3.53)

while |¢4| remains unbounded.
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Figure 5.6: Allowed parameter space for |g,| and |¢4| in the Cy (left) and the Do (right)
models under combined constraints from AM,, agL , ¢Z@q and €x . The blue, orange and

green regions are obtained with Mg+ =100 , 250 and 500 GeV |, respectively.
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Generalized alignment

In the generalized alignment, there are in total 12 parameters, 6 modulus [Sg s p,u,c ¢
1 mass My+ and 5 phases, in contrast to the Eo and Fo models where the number of
parameters is reduced to 6 .

Limits on the || and || parameters can be extracted from the BY mixing data. In
Figure we represent the allowed parameter space for these couplings in the Es model.
Since the BY mixing contribution is dominated by diagrams with internal top quarks, the
constrains obtained are completely equivalent to the As model shown in Figure

In the Fy, Gy and Hs models, we obtain similar bounds as the By , Co and Do models,

respectively, which again reflects that the NP couplings ¢,; and ¢4; in the Bg,d mixing are

completely dominated by the coupling with the top quark (i = 3 and j = 2).

300 Vi 300
200 200 k ﬂ
100 oo \-/

F o [

300 ’(\‘ -300
-l -0s 0o 0s 1o -1a -05 0o 0s o

St St

(a) BY mixing (b) BY mixing

Figure 5.7: Allowed parameter space for ¢, and ¢; in the Eo model under combined con-
straints from AM, , ad; and qﬁffq . The blue, orange and green regions are obtained with

M+ =100, 250 and 500 GeV , respectively.

The K’ —K° mixing allows us to study the |¢.| and |¢s| couplings. In Figure we present

the parameter space for |¢.| and |¢s| , observing that while large values for |.| are allowed,
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values for |¢s| are not, instead we obtain the following bounds

ls| €10, 15] , [0,25] , [0,40] ,  Mpy= =100, 250 , 500 GeV , (E; and Ga) (5.3.54)

lss| € [0, 100] , [0,160] , [0,270] , M+ = 100, 250 , 500 GeV , (Fs and Hy) (5.3.55)

which are remarkable stronger than its perturbative bound, [¢s| < \/ﬁLm ~ 1850 .

-2 -1 [ 1 2 2 -1 [ 1 2
Se Sc

(a) K° mixing, Eo model (b) KY mixing, Fy model

00 os 10 15 20 LX) 0S5 10 15 20
sl Isel

(¢) K® mixing, G model (d) K° mixing, Hy model

Figure 5.8: Allowed parameter space for ¢s and ¢. in the E5 , F5 , Go and Hy models under
constraints from ex . The blue, orange and green regions are obtained with Mg+ =100 ,

250 and 500 GeV , respectively.
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5.3.3 Aligned Three-Higgs-Doublet Model

In this section, we present our numerical analysis for the colour- and colourless- ASHDM
which corresponds to n = 3 in Table The parameter space is enlarged by the additional
charged Higgs particle which in general can have different mass and different couplings

constants. In view of this, we simplify our discussion to two quite general scenarios:

e Scenario I: The values of the up- and down- type couplings are equal, ¢, ¢ = Gy, q -
We analyze the allowed region for the ¢, and ¢; parameters for both equal, M ot =
1

M + = Mg+ , and different masses, M_+ # M + .
2 ®1 Po

e Scenario II: The values of the down-type couplings (¢q and ¢;) are fixed to some
value (¢4 = ¢g = 20 for our study) below its perturbative limit. We set constrains in

the ¢,-¢, plane for equal, M@li = M%i = Mpy+ , and different masses, M ok + M ok -

Due to the large number of parameters in the NP models with the generalized alignment,

we limit our analysis only to aligned models.

A3, B3, C3, D3 models in Scenario I

In Scenario I, we obtain the same behaviour as in the A2HDM with a pertinent scale factor.

Since, diagrams with two exchanges of charged Higgs particles (Figure|5.1c]) are suppressed

by a factor MgV/Mzi with respect to those with only one (Figures [5.1d| and [5.1€|), the
1,2

main contributions come from the Feynman diagrams with only one exchange of charged
particle. In that limit, the total amplitude for the meson mixing can be approximated
by two A2HDM. Therefore, we can directly extract the bounds on the ASHDM from the
A2HDM with

|
ol = 5 lsaal (5.3.56)

where gffil are the bounds in Xy = As , By , Cy , Dy model for Mp+ = M@i . It is
’ 1
interesting to remark that the factor 1/2 allows us to extract better bounds on ]gflii”\ than

the ones obtained by perturbativity.
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For different masses M@f % Mwéc , the amplitude is dominated for the lightest charged

Higgs contribution, and then the scale factor disappears leading into

ool = lsp2l - (5.3.57)

Aj, B3, C3, D3 models in Scenario I1

For Scenario II, the strongest bounds are set by Bg mixing. We have performed an
analysis for equal, Mwit = M@C = Mpy+ (Figure , and different masses, M@% #* M%i
(Figure . In the A3 model, using the E‘j — BY mixing data we find that for a given
charged Higgs mass, the parameters ¢, and ¢, are bounded by a circular region, which

leads into the following limits

G € [—0.25, 0.25] , Su € [—0.25, 0.25] , Mpy+ =100 GeV . (5.3.58)
G € [—0.30, 0.30] , S € [—0.30, 0.30] , Mpg+ =250GeV . (5.3.59)
G € [—0.45, 0.45] | Su € [—0.45, 0.45] , Mpg+ =500 GeV . (5.3.60)
g oo g oo

(a) Az model (b) B3 model

Figure 5.9: Allowed parameter space for ¢, and ¢, in the Ag (left) and By (right) models
in scenario II under combined constraints from AM; , ag; and ¢ . The blue, orange

and green regions are obtained with Mg+ =100 , 250 and 500 GeV |, respectively.
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Figure 5.10: Allowed parameter space for ¢, and ¢, in the Az (left) and Bs (right) models
in scenario IT under combined constraints from AM; , a§; and ¢S . The blue, orange
and green regions are obtained for (MSOI:, M%i) = (100, 250), (100, 500), (250, 500) GeV,

respectively.

In the B3 model, we find the same behaviour as in the A3 model but less stringent,

G € [-0.35,0.35] , &, €[-0.35,0.35] , Mpy= =100GeV . (5.3.61)
Su € [-0.5, 0.5] , Su € [—0.5, 0.5 , M+ = 250 GeV . (5.3.62)
Su € [-0.7,0.7] , Su €[-0.7,0.7] , M+ = 500 GeV . (5.3.63)

In contrast to the previous cases, for different masses, we find that the ¢,-¢, plane is

constrained by ellipses, see Figure that lead into the following bounds

G €[-0.25,0.25] , &, €[-0.35,0.35] , (M+, M,2) = (100, 250) GeV . (5.3.64)

G €[-05,05] , G €[-0.25025 , (Ms, M,s) = (100, 500) GeV . (5.3.65)

G € [-0.45,045] , & €[-0.3,0.3] , (M, M_x) = (250, 500) GeV . (5.3.66)
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for the Ag model, and

G €[-0.25,0.25] , G, €[-0.35,0.35] , (M+, M,2) = (100, 250) GeV . (5.3.67)

¥2
G € (05,05 , G €[-0.25,025 , (Me, Mx) = (100, 500) GeV . (5.3.68)
G €[~0.45,0.45] , &, €[-03,038] ,  (M,x, Ms) = (250, 500) GeV . (5.3.69)

for the B3 model.

For the C3 and D3 models, the number of parameters increase with additional phases
between the different NP couplings. Studying the C3 and D3 models in the |, |-|<,| plane,
we obtain similar bounds to the As and Bs models, respectively. The additional phases
have been varied from 0 to 27 .

It is interesting to remark the geometrical shape obtained for this scenario, circles and
ellipses. The bounds are controlled by AM, via the condition given by Eq. For
large values of M o it is a good approximation if one just considers the contributions with
one exchange of a charged Higgs boson (Figures and to the Wilson coefficient
CY . . In that limit, the condition given by Eq. can be simply written as

- SAM, 24 72
Joul® N5 f(MZ2) + [Gul® Ny f(M2y) < ——— e — , (5.3.70)
! 20 Gy My, AY fo Mo Bo g0

where N3 is a colour factor (N3 = 1/3 and N3 = 1 for the colour- and colourless- cases,
respectively), 6AMj is the uncertainty associated with the difference between the exper-
imental value of AM, and its SM prediction and f is a non-trivial loop function that
depends on mass parameters like My, , my , wag , etc. For Mili = Mig = MIQ{i ,

Eq. (5.3.70) simplifies to

~ SAM, 24 2
’§u|2 + |§u|2 < 2

< - R(M%.:)? (5.3.71)
G M, A ég Mo Bygo o N3 f(ME) "

that corresponds to a circular region of radius R(MIQ#) and explains why we have obtained
the circular regions shown in Figure Since the loop function f decreases with the
increase of Mpy+ , we get stronger bounds for light charged Higgs masses. In addition,

it is interesting to point out that the differences between the Ag and the B3 models can
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be explained with the colour factor (N3 = 1/3) which clearly produces an increase in the
radius of the circle.

In the case of different masses, Eq. turns to be an ellipse which is precisely the
same behaviour that shows Figure [5.10, Eq. shows that large values of M(pit
(M @;) imply an enlargement for |¢,| (|<y|), since the masses are different we get different

bounds for each coupling.

5.4 Conclusions

The good agreement between the SM prediction and the mesured values in the mixing
observables makes the neutral meson mixing a formidable phenomenological application
to test the quantum structure of some NP extensions. In this chapter, we have performed
a complete one-loop computation of the M? — M’ mixing within a quite general extension
of the SM, the AMHDM where the N — 1 additional Higgs doublets can be singlet or
octets of SU(3)¢ and we have also included the possibility of generalized alignment.

Our analytical results, presented in Section have been computed as generally as
possible. Unlike the results present in the literature [276-278|, we have provided our
results in a compact manner without specifying any phenomenological application, i.e.
B — B’ , Bg — Eg , KO — K , etc. They have been computed keeping up to the second
order the masses and momenta of all external quarks in the box diagrams, so the number
of dimension-six operators increase up to 8 in contrast to the 3 operators of the current
literature [276-278|. Although these additional contributions are very small because they
are proportional to the external light quark masses, we have observed that they can give
non-trivial contributions for large values of ¢; .

Using the current experimental mixing observables in Section [5.3] we have analysed the
allowed parameter space in the A2HDM and the ASHDM for singlet or octet colour dou-
blets. In the A2HDM for real couplings (As and By models), we have obtained stronger
bounds for |g, 4| than the ones presented in Refs. [276-278|. In the A, (Bg) model, we
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have obtained |¢,| < 0.6 (0.9) for a Mg+ = 500 GeV . For complex couplings (Co and Do
models), we obtain similar constraints to the Ay and the B models.

Our analytical results have been particularized to the case of generalized alignment. From
the BY mixing data, we have been able to extract bounds on the NP couplings || and
s¢| . Since the B® mixing is dominated by the internal top quark contributions, the bounds
extracted for these models are of the same size as the ones presented in the aligned case.
In adition, the K® mixing has allowed us to strongly constraint the |s,| coupling, while for
the |¢.| parameter, large values of |¢.| remain allowed.

In the ABHDM, due to the large number of parameters, we have particularized our study
to two quite general cases. For scenario I, we have obtained the same limits as in the
A2HDM with the pertinent scale factor because in that limit the amplitude is dominated
by the diagrams with a single exchange of the lightest charged Higgs particle. For scenario
IT, we have obtained a simple dependence on our constrains, circles and ellipses. Finally,
we have given the arguments that explain the appearance of these geometric forms

In summary, we have presented all the different behaviours followed by the different types
of A2HDM and A3HDM. The current experimental data is unable to reveal which one
of them fits better, instead we have obtained stringent bounds on their parameter space.
However, in the future, our analytical results together with the improvements on the ex-
perimental and theoretical uncertainties could disclose which types of MHDM are preferred

by experimental data.



Chapter 6

Improved bounds on heavy quark

electric dipole moments

In this chapter, we obtain new bounds on the electric dipole moment (EDM) of charm
and bottom quarks using the stringent limits on their chromo-EDMs. The new limits,
|de| < 1.5 x 1072 ecm and |dy| < 1.2 x 1072 ecm , improve the previous ones by about
three orders of magnitude. These indirect bounds can have important implications for

models of new physics. The content of this chapter is based on Ref. [287].

6.1 Introduction

Searches for EDMs are currently setting stringent constraints on NP models with addi-
tional CP violation sources [288-292]. Since the SM predictions are well below the current
experimental accuracy, any signal of a non-zero EDM would be a clear sign of NP. More-
over, the persisting B-anomalies suggest a non-trivial flavour structure in NP models,
which can enhance the heavy quark EDMs [293}294].

Due to their very small lifetime, direct EDM searches on heavy-flavoured hadrons represent

an experimental challenge and only indirect limits on heavy quark dipole couplings have

161
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been obtained to date. However, this situation may change with the new proposals to
search for the EDM of charmed and bottom baryons at the LHC [295-298].

In this chapter, we present a new approach for setting indirect bounds on quark EDM
couplings. By exploiting the mixing of operators under the renormalization group and
using current constraints on the chromo-EDM of charm and bottom quarks [299,300],
we extract new bounds on their corresponding EDMs that improve the current ones by

several orders of magnitude.

6.2 Renormalization group equations

Let us consider the following flavour-conserving CP-violating effective Lagrangian
2
Lon = 352 C11) O%p) + Cs() Os(n) (6.2.1)
i=1 ¢
where the index ¢ runs over the relevant flavours at the chosen renormalization scale. The

effective operators are defined as

i

0(11 = _§qumqanuV75anuu s
1 _

ol = — 3 9s Mg q“ o Ty vs q* Gy, (6.2.2)
1

O3 = = ¢ 9s fabe e Gl G GS,

where (), and m, are the quark charge and quark mass, respectively. The quark EDM,
chromo-EDM, and the usually defined coefficient w(11) of the Weinberg operator are related
to the Wilson coeflicients by

dy(p) = e Qqmg(p) CY(p)

dg(p) = mq(p) C3 (k) (6.2.3)
W) = — 5 95() Cs(p)

When a heavy quark is integrated out, its chromo-EDM gives a finite contribution to the

Weinberg operator [300-302], which is strongly constrained from the limits on the neutron
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EDM. This allows to bound the quark chromo-EDMs to be [299,300],

|de(me)| < 1.0 x 10722 cm |

\dy(mp)| < 1.1 x 107! em . (6.2.4)

Attempts to constraint heavy quark EDMs have followed different strategies: flavour-
mixing contributions into light-quark EDMs [299,303/304], b — s+ transitions [299], mixing
into the electron EDM via light-by-light scattering diagrams [304] and tree-level contribu-
tions to the eTe™ — ¢ q total cross section [305,[306]. All of these approaches yield results

within the same order of magnitude, the most restrictive ones being [299,[306]

|de(me)| < 4.4x 107 T ecm |

|dy(mp)| < 2.0x 10717 ecm . (6.2.5)

We follow a new strategy that relates the EDM and chromo-EDM operators in order to
find new limits on d; from the already available strong bounds on Jq . This relation is
done in a model-independent way using the RGEs, which mix the effective operators when
the energy scale is changed as we have seen in Chapter [2l The relevant diagrams include
photon loops which have been neglected in previous works due to its small size compared
with pure QCD corrections. Nevertheless, they represent the first non-zero contribution
to the mixing we are interested in as we will see in the next section.

The evolution of the Wilson coefficients is given by

d
dlnp

Cp) =37 Cp), (6.2.6)

where C' = (C], C4, C3) and 7 is the anomalous dimension matrix. This matrix can be

expanded in powers of the QCD and QED coupling constants, as and «, respectively,

2
s o, (Y o, Y o, 5
T = +<4W> Vo F e o (6.2.7)
where vgo) and vgl) represent the one- and two-loop QCD anomalous corrections, while

yéo) encodes the one-loop QED correction [301,/307-310]. The one- and two-loop QCD
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anomalous dimensions are given byE|

8Cp 0 0
7O = |8Cr 16Cr — 4 Ng 0 : (6.2.8)
0 —92Ne No +2f + Bo
(%8 No = 16Cp — ¥ f) Cr 0 0
M= | (BN —320p - Bf)Op —48 - 12 L 2UNZ L 50 L _BNGF 0
Vs 9 VO F— 7 F 9 N2 9 Vo T 9 Ng — 9iVC ;
X X X

respectively. At O(as) and O(a?) , the quark EDM does not mix into the chromo-EDM,
see the matrix elements (7§°>)12 and (’)/5(1))12 , and the first contribution only appears at
O(«) from photon-loop diagrams as shown in Figure Applying the standard techniques
for the computation of anomalous dimensions [49,/50] which have been introduced in the

Chapter 2, we obtain the following matrix element

(7)) =8, (6.2.9)

in agreement with a previous calculation [310]. In Appendix @ we provide detailed infor-
mation on the computation of .

Solving Eq. by adding this contribution, the evolution of the charm and bottom
chromo-EDMs read

de(me) 0.6de —0.47¢| | deinr)

e

= , (6.2.10)

dc(mc) —0.04 0.74 C(MNP)

&.

!The matrix elements with crosses in the yﬁ” are unknown. However, since we have neglected the

contributions of the Weinberg operator, these elements do not contribute to the RGEs.
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Figure 6.1: The quark EDM coupling (blue square) induces a chromo-EDM through

photon-loop diagrams. These represent the leading contributions to the matrix element

('Ve)gg) .

dy () 0.80e 0.19¢| | d(e)

e

= : (6.2.11)

dy () 0.08 0.88 | |dy(Mxp)

where we have taken Myp ~ 1 TeV as the scale of NP. The mixing of dvq and d, into
themself, described by the diagonal matrix elements of Eqgs. and , has
leading contributions from pure QCD corrections, then corrections of O(«) can be safely
neglected. In the way down to low energies, we do not include the threshold effect of
heavy quarks like bottom or top since these corrections represent less than 10% of the

contribution to the RGEs.

6.3 Extracting the new bounds

Taking the first rows of Egs. (6.2.10]) and (6.2.11)), together with the bounds on the chromo-
EDMs at the low scales quoted in Eq. (6.2.4)), we obtain the following inequalities

de(M, -
’0.04’3(“’) — 0.74d.(Mxp) | < 1.0x 102 cm | (6.3.12)
e
dy (M, -
’0.08 (M) | g dy(Myp) | < 1.1 x 1072 cm | (6.3.13)
e

which can be plotted in the Jq—dq plane as shown in Figure We observe an allowed
region extending along a straight line, these strong fine-tuned cancellations come from

the destructive interference between the two pieces of Egs. (6.3.12) and (6.3.13)). Since
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[ 10720
0 |dy(my)] < 1.1-107% ¢m o |(Z((mc)\ <1.0-1072 ¢m
constructive interference constructive interference
= 10720} ‘2107t
= CH
= =
= =
5 10721} = 10722}
10722 : ‘ 10784 ‘ ‘ l
107 107 107° 1078 1072 107 1070 107"
|dp(1 TeV)] [e cm] |de(1 TeV)] [e cm]

Figure 6.2: Bounds on the charm (bottom) chromo-EDM constrain the d-d,. (dy-dp) plane
to the allowed blue region. Notice that strong fine-tuned cancellations result in a straight
line region that is not present in the case with constructive interference, displayed in

orange.

this fine-tuned region is unlikely to be realised in NP models, we assume constructive
interference between the EDM and chromo-EDM contributions at the NP scale which

allow us to extract the following bounds on d,(Mnp) ,

|d.(Mxp)| < 2.5 x 1072  ecm |

|dy(Myp)| < 1.3 x 107 ecm . (6.3.14)

Then, using the evolution of the EDM operator, given by the second rows of Egs. (6.2.10))
and (6.2.11)), to bring these bounds down to the quark mass scale, the new bounds on the

charm and bottom quark EDMs are

|do(me)| < 1.5 x 1072  ecm |

|dy(myp)| < 1.2 x 1072 ecm | (6.3.15)

which improve the previous ones quoted in Eq. (6.2.5)) by three and four orders of magni-
tude, respectively. This approach does not improve the current bounds on the top quark

EDM [312] given that the limit on its chromo-EDM is of similar size [313]. The theoretical
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uncertainty of this result is dominated by the contribution of the Weinberg operator to
the neutron EDM, since it determines the size of the chromo-EDM bounds. Note also that
higher values of the NP scale yield less conservative results, e.g. a 30% stronger bounds
for Myp = 10 TeV .

The new constraints for the charm and bottom quark EDMs are in tension with the
predictions of different theories beyond the standard model [314H317] and will provide

valuable input for future phenomenological analysis of NP models.






Conclusions

This thesis is focused on the study of physical systems with CP violation. Since the SM
of particle physics is unable to predict the large size of the observed matter-antimatter
asymmetry in the Universe, new sources of CP violation from SM extensions are needed.
The SM of particle physics is currently considered as the theoretical framework of reference
for any NP theory because along the years it has successfully overcome a large number of
experimental tests. In Chapter [I} we have seen how its interactions emerge from gauge
symmetry principles and how the SSB is able to generate the masses of the weak bosons
through the Higgs mechanism. Finally, we have presented the flavour sector, introducing
the CP violation phenomena and the different ways in which this appears in nature.

In Chapter [2| we have introduced the EFT approach which provides a formidable frame-
work to deal with the different physical systems. The techniques used along this thesis
have been illustrated there by the Fermi’s theory.

The first phenomenological application is the theoretical determination of the CP-violating
ratio €’ /e in the SM which has been presented in Chapter |3l We have reviewed the current
status, discussing in detail the different ingredients that enter into the calculation of this
observable and the reasons why seemingly contradictory predictions were obtained in the
past by several groups. We have included all known short- and long-distance contributions
and our SM prediction is in complete agreement with the experimental measurement.
The known isospin-breaking contributions to the K — w7 amplitudes have been reanalyzed
in Chapter Taking into account these contributions, we have presented a complete

numerical re-evaluation of the previous ¢’/e prediction. We have obtained the following
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Standard Model prediction
Re (¢'/e) = (13 Jjg) 1074,

which is again in good agreement with its measured ratio. The central value of &' /e is

slightly smaller than the previous one due to the increase in Qeg,
Qe = (12.1739)-1072 .

A complete one-loop computation of the Wilson coefficients for the neutral meson mixing
in the AMHDM has been presented in Chapter [5] Since this type of process appears at
loop level in the SM, it could be very sensitive to NP contributions. We have given a
detailed summary of the computation and finally we have obtained combined constraints
on the parameters of these models using the current flavour data.

Finally, we have focused on the study of the heavy quark EDMs. The quark EDM coupling
produces a chromo-EDM contribution at loop level through photon-loop diagrams. Includ-
ing these corrections in the RGEs and using the stringent bounds on their chromo-EDMs,

we have obtained the following limits of the charm and bottom quark EDMs

|do(me)| < 1.5 x 1072  ecm |

|dy(mp)| < 1.2 x 107 ecm

which improve the previous ones by about three orders of magnitude. These new limits

could place strong constraints on NP extensions of the SM.



Appendix A

OPE in the charged-current SM

Lagrangian

The charged-current SM Lagrangian is given by
1 14 124
Leo = -5 (W = a,W)) ("W — o"wh) + MG, Wi W

where the first and the second terms correspond to the kinetic and the mass terms of W*

bosons respectively. The first two pieces can be written as

Lk, = — 0, W) O"W" + 9,W) 0"W* + Mg Wi wH
= WiOWwW" + Mg Wi w* — W} o, 0" wr
= wi g™ (O + ME) - om0 W,

= [Py W) 8P =) [9 (B, + M) - 0405] Wala)

where we have eliminated all the total derivatives, in the second line, and we have used

[dPy 6P)(z —y) = 1, in the last line. Then, the normalized generating functional is
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given by

JD W] [DW,] eiSccld 7]
JID W] [DW,] eiScclo]

ZaoclTT, J) = (A.0.2)

where the action of the charged-current SM Lagrangian is given by

Seccld 7= [P | [Py i) o @ - pWaty) = 25 (W + Wi )]

and

KR (z —y) = 6P (z —y) [g’“’ (Dy + Mgv) — 8585} (A.0.3)

is the inverse of the W+ boson propagator, defined by

[Py K ) AR~ 2) = g} 6P ) (A0
with
de, efik:(:cfy) kY kA
Az —y) = — / ¢ — | . (A.0.5)
2m)D k2 — M3, MZ,

At low energy scales (E < My ), we can perform an integration over the W, fields in

Eq. (A.0.2)). Let us introduce the following auxiliary fields WJ and Wpﬂ
Wy =W,+W,, Wi=wWi+W], (A.0.6)

where Wg and Wu satisfy the classical equations of motion

g (O+ M) — 00| W, =L 7t [g (O+ M§y) — 0"0"| W =

NG I

Sl

with the following solutions

—

g v 77 g v
W) = 55 [ aPyalle —) 5"w) . Wi = 55 [aPyalle—9) 7).
Expanding the charged-current Lagrangian around 1//1\//1 and I//T\/u, we obtain

ZCC[jT,J] — e*ié JdPzdPy 7.7 () AW (z—y) T (v) ’ (A.0.7)
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with

2
L= -2 [aPy 7,0@) M- ) D) (A.08)

Then, performing a Taylor expansion of 7,(y) around y ~ z , the Lagrangian becomes

2 N -n
g . i S o
£=—7 lim _Omjj(a:) TE () PEC.L,, (0) (A.0.9)
where
Tyt (@) = (98- 0 Tp(2)| (A.0.10)
« — k k «
Polyn(0) = (08, - 0f FPW)]| (A.0.11)
with
1 kKB
By = ——— (g™ - 2 . A.0.12
Finally, we can truncate the Lagrangian given by Eq. (A.0.9) for N =1 ,
g2
Lok Tl (x) Tx) , (A.0.13)

¢ 2ME,

which is the usual Fermi’s Lagrangian.






Appendix B

Feynman rules for g gs — g2 q4

Propagators
w 1 k, ky
ANNANNNN- - v — (=&)L B.0.1
k% — M2, + ic In ( fW)kQ—gwMI%V] (B.0.1)
g ky Ky
2110011001100 i Ogb [ {gw (1-¢&c) ‘k2 } (B.0.2)
P i(p+my)
B.0.
p? + mff + e (B.0-3)
Vertices
Ua (dp)
+(-) i Ly, PV (B.0.4)
Wi V2 af
dg (ua)
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176 Feynman rules for g1 g3 — g2 qu

Ga
p —i 95 Tap (B.0.5)

qp



Appendix C

Inputs values of Chapter 3

Parameter Value Ref.
A 0.22506 + 0.00050 63]
A 0.811 + 0.026 [63]
o 0.124 + 0.019 [63]
n 0.356 + 0.011 [63]
a~H(M2) 128.947 £ 0.012 [252]
o=V () 0.325 £ 0.015 63197
sin? 0w (M2 )55 0.23129 + 0.00005 63]
My, (80.385 + 0.015) GeV 63]
M, (1.77686 % 0.00012) GeV [63]
T (2 GeV) (2.36 + 0.24) MeV [152]
Mg(2 GeV) (5.03 + 0.26) MeV [152]
s (2 GeV) (93.9 4 1.1) MeV [152]
e (T, (1.286 =+ 0.030) GeV [152]
i1 (77 (4.190 4 0.021) GeV [152]

7t (777 ) (165.9 4 2.1) GeV [253(254]
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Table C.1: Input values adopted for the relevant SM parameters.






Appendix D

NLO AS = 1 Wilson coefficients

In this appendix, we give all technical details to obtain the Wilson coefficients of Table [3.1]
Further details can be found in Refs. [189-192].

D.1 Effective AS = 1 short-distance Hamiltonian

We have introduced the effective Lagrangian for AS = 1 in Eq. (3.3.19)). The operators in
Eq. correspond to an energy scale i < m. , where the charm quark c has already
been integrated out. Therefore, in that case the sum would be about u, d and s. For an
energy scale myp > p > m, , the charm quark ¢ must be included; and in this case it gives

rise to the appearance of two new operators,

Q(f = (gacﬁ)va (Eﬁda)va ) Qg = (gc)v—A (Ed)V—A : (D-1~1)

D.2 Renormalization group equations

The RGEs for 8(;1) are given by
9 9 2 a) = AT (g2 2 _ My
1505 Cltgtia) =47 (%) Cltghia) . 1= 28 (D22

where ((g) is the beta function of QCD
e 5 2 g

— g
B(g) = — Bo 62 M (16722 Bie 16722 ° (D.2.3)
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180 NLO AS =1 Wilson coefficients

with

fo=1-27, p=102-2F  p=-(ut), (D.2.4)

and f = u + d is the number of active flavours being v and d the number of up- and
down-type flavours respectively. 4(g?, ) is is the anomalous dimension, in this case a

10 x 10 matrix, which can be expanded as

~ ~ [ 7S
(9% @) = 4s(9”) + o T(g") + -, (D.2.5)
where the QCD and QED parts are given by
2
5 (02) = 25400 A A (1) D.2
Blg”) =%+ am)? s + o (D.2.6)
P(g?) =40 + 2250 + .., (D.2.7)

4
where o = % and as = % . The expressions of (3", 4{") and (3,44) can be found
in Refs. [190,/191].

The solution of (D.2.2)) is given by

2 g(p) AT (a2 o
8(%,92@) = ng exp (/g(];w)dg/ %)] 8(1,92(MW),04) 7 (D.2.8)

where T} is responsible to order the coupling constant of QCD in such a way that increases

from right to left.

D.3 General evolution matrix

The general evolution matrix from mo to m1 < meo , is defined by

: sm) 47 (g, a)
U(my,ma, o) =T, ex / dg ——— 1 . D.3.9
i, ma, o) = T p( ooy 0 B (b-39)

Then, Eq. (D.2.8)) can be written more compactly as
C (1) = U, My, 0)C (Myy) . (D.3.10)
In addition, the evolution matrix U (m1, mg, ) can be decomposed as

U(ml,mg,a) = ﬁ(ml,mg) + %ﬁ(ml,mg) , (D.3.11)
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where
. gtm) 7 (9)
U(mi,me) = Tyexp / dg' -2 ) D.3.12
R g(m1) Ay / FT INTT /
R(mi,ms) = / Y gy Ymm) (gl)U(m’mQ) , (D.3.13)
g(m2) B9’

where ¢’ = ¢’(m’) and U(my,ms) represents the QCD evolution matrix, while R(ml, ma)

is the QED evolution matrix.

D.4 QCD evolution matrix
The NLO QCD evolution matrix can be written as

U(my, mg) = (i + cysirru)j> U (my, my) (i - as(mg)j> , (D.4.14)

T 47

where () (mq, m2) represents the evolution matrix to LO and J contains NLO corrections.
Notice, in U (m1, mz), that terms proportional to a2 should not be considered since they

correspond to contributions of NNLO. Taking into account the following definitions
G =V 15OV G=v MY (D.4.15)

where ('Ays(o)) p is a diagonal matrix, we obtain

@ (0)
(] 5 5 E o
s D

The matrix J is given by
J=vSsv1, (D.4.17)

while the matrix elements of S are given by

0 B _ Gij
28 96y + 49 — 70

Sij = 51']' Y (D.4.18)

where 7(0) are the components of 7£0) and G;; are the matrix elements of G. Eq. (D.4.18|)

EX)

develops singularities for certain combinations of 2 8y + Vgg) — Vﬁ?j) (for f =3,i=10 and



182 NLO AS =1 Wilson coefficients

j= 1)E| However, Eq. (D.4.14) remains finite after making a proper combination of the
relevant terms. After this rearrangement, Eq. (D.4.14]) can be written as

. . 1 - .
U(ml,mg) = Uo(ml, mg) + 4—VA(m1,m2)V_1 y (D.4.19)
7
where
VA(my, ma)Vt = ag(m1)J Us(my, ma) — as(ma)Up(ma, ma) J . (D.4.20)

Notice that when the matrices S and J have no singularities, A is given by

Ay = i fostm) (S ) (202N )

as(my) as(my)

while when S;; is singular (¢ = 10 and j = 1), this expression diverges and it can not be
used to perform numerical calculations. In this case, A;; is finite

Ay = S (mg) (O‘Sm?))ai In (O‘S(m2)) , (D.4.22)

~ 26, as(m) as(my)

for 1 +a; — a; = 0 with ¢ # j. Since, the matrix S can be expressed as

Gy

Sij - _2ﬂ0(1 +a; — aj) ’

(D.4.23)

for i # j , then

Ajj = Gij ] [as(vm) (as(m2)>aj — as(ma) <as(m2)>al} .

_260(1—1—% —aj as(my) as(my)

and we can regularize the divergence through a change of variable a; = 1+a; —¢ . Finally,

we obtain

Ajj = (G”) %as(mg) (as(mQ))ai {eln (as(m2)> + (’)(62)] , (D.4.24)

2530 as(my) as(my)

which in the limit of € — 0 becomes Eq. (D.4.22)).

The components i and j of the divergences depend on the order of the eigenvalues of (’A)/S(O))D.
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D.5 QED evolution matrix

The evolution matrix R(my,mz) (D.3.13) can be expanded in powers of g2 as

A

R(ml, mQ) = R(O) (ml, mg) + R(l)(ml, mg) 4+ (D.5.25)

At this point, it is useful to split the different contributions using the following counting
rules R© ~ O(1/a,) and RV ~ O(1) , then

QT A A ~

R(ml,TTLQ) = —FVK(ml,mz)V_l s (D.5.26)
0
. . 1 S.
K(ml,mz) = K(O)(ml,mg ZZK ml,mg) s (D.5.27)
3(0) _ _TyiO -1
R (ml,mg) = —FVK (ml,mg)V s (D.5.28)
0
2O (1, my) = 2“ i VR (my, ma) V! (D.5.29)
1, 2 47T 1,M2 0.

The first contribution K(© can be obtained using Eq. (D.3.13)),

(KO (m1,ma)); = ) [(%(mz))% o (1 - (%(mz))ai as(l ] ’

a; —aj —1[ \ag(my) s(mq) as(my) ma)

where M©) is

MO = y=13OTy (D.5.30)
Similar to S;; , KO (my,my) can also develop singularities for (i, j) = (10, 1) since ag =
a1 + 1 when f = 3. However, the numerator also cancels and (K(©) (m1,m2))i; becomes

finite

(RO (my,ms))y; = MO — <“5(m2)>aj1n(as(m1>>. (D.5.31)

Yag(my) \as(m) as(ma)
The NLO QED corrections are given by Ki(l)(ml, mz) . For this type of corrections, it is

useful to define

SO - DLsor _ Blesor ) = o1 (P04 OT )V, (D532)

I
Tse T e Bo !
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then, IA(Z»(I)(ml,mg) is given by

Mi(jl). [(as(mQDGj - (Myl] if a; #ajand i #j ,

a;—a; as(mi as(mi)
(1 A~ a;
(K{ )(ml’m2>)ij = Mi(jl) (ig:i;) In M) if a; =ajand i #j ,

O‘s(ml)) ifa;j=ajandi=j,

K’él)(ml,mg) = —as(mg)f{(o)(ml,mg)g,

A A

Kél)(ml,mg) = ozs(ml)SK(O)(ml,mg).

Since the previous equations depend on the matrices SorJ , they develop singularities for
f = 3 that cancel in the evolution matrix R(ml, ms) . The procedure used is described in

Ref. [255]. Let us to introduce a new non-singular matrix H;; which is finite by definition,

Hij = Sij(1— 00,041 - (D.5.33)
Expressing R(m1, ms) as:
. 27 o .
R(ml,mg) == —B—VK(ml,mz)V 5 (D534)
0
. . 1 G
K(mi,ms) = KO(my,mo) + — 3" KM (my,ma) | (D.5.35)
dm i

. . ~ (1
we can write the matrices Kl( ) as

[Kfl)]ij = [‘7711%(1)‘7 + (MO, lfIHijQij , (D.5.36)

KM = —ag(ma)[K© A1) (D.5.37)

[—f(?(,l)]ij = as(m)[H f((o)]z’j ) (D.5.38)
. Gia M) Oé,

[Kil)]ij = Oan,ai+1 250]} [11]ij + 0aj,a0+1 1550]} [Io)ij (D.5.39)

where

o = | 7 GED"-GED)] ware.

()" (i) i =a;
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and
1 as(mz) “ as(mi)
a;—aj; (as(m1)> In (as(m2)>
1 as(ma) “ as(ma) “ .
[Il]ij = " (a;—a;)? {(ai(mﬂ) o <ai(m1)> } if a; # a; , (D.5.41)
a; 2
3 [ ()] ;= a;.
1 as(mQ) “ as(mg)
a;—a; (as(ml)> In (as(ml)>
1 as(ma) “ as(ms2) i .
[IZ]ij = +(ai—aj)2 |:<a§(m1)> - (042(7711)) :| if a; 7& aj s (D542)

(m2)\ ma)\]”
_%<a2(mf)> |:1n<a:(mf))] if a; = a; .

Notice that K’i(l) (i = 1,2,3) matrices are equal to the KW matrices when § is replaced

7

by H. K il) corresponds to the contribution of the singular element of the matrix S .

D.6 Wilson coefficients at p < m,
The Wilson coefficients are defined by

Ci(p) = zi(p) +7yi(p) ,  vilp) = vi(p) — zi(p)

where z;(p) and v; (1) are the components of Z and ¥ , given by

A

Z (1) = Us(p, me, ) Z (me) |

A A A ~ N

7(;4) = Us(p, me, @) M (me) Ug(me, my, «) M (my) Us(myp, My, ) ?(Mw) )

where M (m;) encodes the threshold effects,

Ni(m) =1+ 0‘54(:1)

«
orl + E(ng :

(D.6.43)

(D.6.44)

(D.6.45)
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The only elements of §7s that contribute are:

. . R . 5
57"5(@4) = 57"5(@6) = -2 (57"5(@8) = -2 (5T‘S(Q10) = —§ P 5 m=my, (D.6.46)
. . . . )
075(Qa) = 675(Qo) = 75(Qs) = 075(Quo) = —g P, p=me , (D.6.47)
where
1 1
P = (0,0,—3,1,—3,1,0,0,0,0> . (D.6.48)

In the case of §7, ,

570(Qs) =3 672(@u) = 072(@5) =3 07(Qe) = 0 P p=rmy (D.6.49)
07e(Q7) = 3 07e(Qs) = 07e(Qy) = 3 67e(Q10) = —% P, pu=my, (D.6.50)
and
R R ) X 40

07e(Q3) = 67e(Qs5) = 67e(Q7) = 07e(Qo) = =52 P pp=me (D.6.51)
570(Q1) = 7(Q6) = 07(Qs) = 07e(Quo) = 0 P, p=me (D.6.52)

where
P =(0,0,0,0,0,0,1,0,1,0) . (D.6.53)

When we use Egs. (D.6.43) and (D.6.44), we must eliminate higher-order contributions

because the matrix Uf(ml, ma, ) has only been calculated at the order O(1, as, &, a) .
For instance, products that involve JRM terms must be eliminated because they belong

to higher-order contributions of O(a ay) .
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The B(MW) values in the NDR scheme are given by

_ as(Mw) ,NpR |, @ ,NDR
Cl(MW) — 47‘( Bs,l + 47[_Be71 3 (D654)
Co(Myy) = 1+ 25W) pNpR @ paor (D.6.55)
47 ' I =
 as(Mw) ~ o
Ca(Myy) = == = B(we) + o —— =" [2B(z) + C ()] , (D.6.56)
S M -
Cu(My) = & (SWW)E(@) , (D.6.57)
. as(MW) '
M) ~
Co(Myy) = O‘S<8WW)E(:%) , (D.6.59)
a ~
Cr(Mw) = o [4C(ar) + D(a1)] . (D.6.60)
Cs(Mw) =0, (D.6.61)
« ~ 1
Co(Mw) = o= [4C(mt) +Dlay) + oy (10B(ar) ~ 4C()| | (D.6.62)
Cio(Mw) =0, (D.6.63)
where
BNPR = 11/2, BNMPR = -11/6,
(D.6.64)
BIPR = 0, BIPR = -35/18,
and
~ 2 ~ 4 m2
E(I‘t) = E(l’t) - g s D([L‘t) == D(l‘t) - § y Ty = Miév y (D665)
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and
B(z) = i fo (jl_nlx) } : (D.6.66)
Cw) = % E:f (ixjjz lnx] , (D.6.67)
T
E(x) = —glnx + $(1§2—(111$x)—3$2) + 332(156(—1 1?2; 4z°) Inz . (D.6.69)

Due to the GIM mechanism, the z;(u) ¢ # 1,2 coefficients are zero for f equal to 4 and
5. Then, for 1 > m. , the evolution only involves the operators @12 with the following

initial conditions

_ as(Mw) NDR a(Mw) ,NDr
Zl(Mw) = 7471_ B e Be,l 5 (D670)
M a( M-
20 (Mw) = 1+C“S(47TW)BI“DR (4WW)B§§R. (D.6.71)
Therefore,

z1(me . . R 21 (M-
1(me) = Us(me, mn, @) N (my) Us(my, My, a) (M) . (D.6.72)
z2(mec) z2(Mw)

where the evolution matrices U475 only contain the 2 x 2 anomalous dimension. When the
charm quark is integrated out, the operators Qf , disappear and the coefficients z;(u) for
i # 1,2 cease to be zero. To calculate z;(m.) , we have to perform a matching between

the f =4 and f = 3 theories that leads in the NDR scheme

FOR ) = (AR o), PR (o), (ij )FSNDR<mC>,
Y pNDR(,. \ __% pNDR(,, NDR (1,
(o R me), 0, S XN me), (D.6.73)
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where
NDR 2 mg
F;, (u):—g In 2 +1)] 2z2(p), (D.6.74)
NDR 4 mg
FS 7N (p) = ~3 In el + 1) [Baa(p) + 2z2(p)] (D.6.75)

for =~ O(m.) .

D.7 Wilson coefficient in the HV scheme
The changes for the HV renormalization scheme are the following:

1. Anomalous dimensions of HV scheme:

and %0) do not depend on the renormalization scheme.

° ’AYéi,)Hv = ’AYS,)NDR + {Afs’ ’AYfEO)} T {Afe’ %0)} ’

° %0)

(1 ~(1 L (0 .
. 72,)}1V = 7§,%\1DR + [Ars, 'yg )} + 2 BoAfs .
e We must perform the following changes:

(1 (1 (1 1), =
[%S{%/] — [VJ(LI\)/]eﬁ‘ = ’Yén)/ — 2 [7(0)]Hv1 .

Ay — APy — 4CF1 .

where [yV]y = 4Cp B and Cp = 1\;%\[—01 :

2. The Wilson coefficients can be extracted from the relationship between two renor-

malization schemes a and b:
I P as(K) s o1 QLT
81)(/‘6) = |1 An ATS 47TAT6 8a(:u) )

where Aﬁ' = (ﬁ)b — (ﬁ')a .
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Finally, we get

CIV(My) = O‘S(jﬁW) (BYP® - 2) +%B§PR, (D.7.76)
OV (My) = 1+O‘S(iw7rW) (B;\BDR - 1;) +% (BS;DR - ;) ., (D.7.77)
o) = 0 (5, 2)
b ome 7= [2B(e0) + C(a)] | (D.7.78)
CHV (M) = ozs(é\;fw) <E(xt)+§> ’ (D.7.79)
CY (Mw) = O‘S%TW) (E(xt)+§) : (D.7.80)
eV (My) = W@(MHQ , (D.7.81)
0V «Q ~ 4
CHV (My) = 6ﬂ{40(:13)—|—D(xt)+9} , (D.7.82)
CV(Mw) = 0, (D.7.83)
HV @ D, 4
CEV(My) = &= |4C(wr) + Dlar) + 5
+ SinQOW*(loB(xt)—‘lC(fEt)) ; (D.7.84)
CHV(Mw) = 0. (D.7.85)

D.8 Errors on the Wilson coefficients

In Table we show the numerical errors of the Wilson coefficients for different inputs.

We have obtained them generating N = 1000 inputs considering that they follow a Gaus-
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sian distribution. Then, we have evaluated the Wilson coefficients with these values and
plot them in a histogram from which we have extracted the error. During the analysis of
each input, we have kept the other inputs fixed to their central value. Table shows
that the error of the Wilson coefficients is dominated by agg)(MT) .

aP (M) | sin? B(My)yg me me my My M,
z1 | £0.0373 | +£0(107%) +0.0008 | £0.0004 | £0O(1078) | £ O(107%) | £ O(107?)
2z | £0.0258 | +£0O(1077) +0.0005 | £0.0003 | £0O(1077) | £ 0(107%) | £ O(107?)
23 | £0.0024 | +0O(1079) +0.0007 | £0(107%) | £0O(107?) | £ 0(1077) | £ O(107%)
24 | £0.0060 | +O(1079) +0.0016 | £0(107%) | £0O(107?) | £ 0(1077) | £ O(107%)
z5 | £0.0007 | +0O(1079) +0.0001 | £0O1077) | £0(107?) | £ 0(1078) | £ O(107%)
26 | £0.0060 | + O(1079) +0.0017 | £0(107%) | £0(107?) | £ 0(1077) | £ O(107%)
z7/a | £0.0030 | +O(1079) +0.0005 | +£0O(107%) | £ O(107?) | £ 0(1076) | £ O(107%)
zg/a | £0.0028 | +O(1079) +0.0016 | +£0(107%) | £ 0107 | £ 0(1077) | £ O(1079)
zo/a | £0.0044 | +O(1079) +0.0002 | £0O(107%) | £ O(107?) | £ 0(1076) | £ O(107%)
z10/a | £0.0013 | £ 0O(1079) +0.0009 | £0(107%) | £ 0107 | £0(1077) | £ O(1079)
ys | £0.0030 | +O(1079) +0.0006 | £0O(1075) | £0.0002 | £0O(1077) | £ O(1079)
ys | £0.0038 | £0(1077) +0.0014 | £0(107%) | £0.0001 | +0(107%) | £ O(107)
ys | £0.0032 | £0O(1077) | £0(107%) | £0(107%) | £ O(107%) | £ O(1075) | £ O(107F)
ye | £0.0160 | +O(1077) +0.0016 | £0O(107%) | £0.0002 | +0O(107%) | £ O(107?)
yr/a | £0.0004 | +0O(1079) +0.0004 | £O(107%) | +£0.0075 | +0.0001 | +O(1077)
ys/o | £0.0244 | £ 0O(1078) +0.0018 | £0.0002 | +£0.0103 | 40.0001 |+ O(1079)
Yo/ | +0.0420 +0.0011 +0.0002 | £0.0001 | +£0.0538 | 40.0008 |+ O(1079)
yio/a | £0.0617 +0.0005 +0.0005 | £0.0003 | +£0.0264 | 40.0003 | £+ O(1079)

Table D.1: Errors of the Wilson coefficients p =1GeV . y1 =y2 =0 .






Appendix E

Parameters of large- N~ matching

at NLO

E.1 (gs N;) couplings

| ny X;

5| -2 —16 X144+ 32 X17 — 24 X35 — 4 Xo

6 | 4 —32 X7 — 32 X158 + 32 X37 + 16 X3g

7|2 —32X16 — 16 X17 + 8 X3

8 | 4 —16 X15 — 32 X17 + 16 X33

910 —64 L5 Ly — 8 X34 + 8 X33 + 4 Xo1

100 —48 X19 — 8 X35 — 2 Xo1 — 4 Xo4

110 —32 X0 + 4 Xo4

12 | 0 | 128LgLs+ 16 X1o — 16 X351 + 8 X35 — 2 Xg1 — 4 Xos
13 | 0 | 256 L7 Lg — 32 X12 — 16 X33 + 16 X37 + 3 Xo1 + 4 Xo4

Table E.1: Large-N¢ parameters determining the (gg N;) couplings in (4.3.16)).
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The strong LEC Xg4 only appears in &; for ¢ = 10, 11,12, 13. The corresponding couplings
N; contribute to ACA§E;)2 and AC.AS)Q,:.) /2 but Xg4 always appear in combinations of the
form 21‘1210 a; N; with aj9+a12 = a114a13 . Thus, X9y drops completely from the K — 77
amplitudes. The same happens with X357 , because Ay and X3 only enter through the

combination Ng — 2N7; .

E.2 (gs Z;) couplings

i KM K@ K® KDL k™ kO | k@
1 1Ky — K3 0 |64Ls(—3Ko+32Kio+Ku)| 0 | —24Lg| 0 | O
2 3 K3 0 —20 Ly (K10 + K1) 0 0 0| o0
3 Kis 0 —64 Lg (K10 + K1) 0 0 0|0
4 —Ki3 0 64 Ly (K10 + K11) 0 0 0] 0
5 3 (4K +3K5+3K1) 0 % Ly (2K7 + Ky) 0 0 0 1
6 | —3(Ks+ Kg)+2(Kia+Ki3) | 0 =2 L5 (Ko + K1 + 3K11) 0 | -12Ls| © 0
7 8Ky +6Kg—4Ki3 0 | —32Ls 2Ks+ Ko+ Kui) | 0 0 0] 0
8 SK3+4Kp 3K 0 0 0 3 3
9 —3 (K4 + K2 + K13) 3 Ks 0 -3 0 0 0
10 —2 K13 4 Kg 0 0 0 0] 0
11 2 (K4 + Ki3) 0 0 0 0 0|0
12 —4 K3 0 0 0 0 0] 0

Table E.2: Large-N¢ parameters determining the (gg Z;) couplings in (4.3.17)).



Appendix F

Updated estimate of )\?*? o

The RxT coupling )\gs splits the masses of the different isospin components of the scalar-

resonance nonet multiplet through the term

, M}
Lmass — _75 (%) + 3% 4By (S*M) . (F.0.1)

The common multiplet mass and A3 can then be determined through the relations [211]:
Mi_y — M12:1/2

A3% = ME = M7
YT A0 - ) § = M

M (MP_y — M, )5)
MZ — M2 ’

(F.0.2)

with M the mass of the scalar meson with isospin I .

In order to identify the members of the scalar resonance nonet, we must exclude the
lightest observed scalars that are well understood as dynamically-generated poles arising
from 2-Goldstone scattering: fo(500) (o) , K§(700) (k) , ao(980) and f,(980) [261-265].
The I = 1/2 and I = 1 members of the resonance nonet are identified without controversy
with K§(1430) and ao(1450) respectively. For the I = 0 states, we have three possible
candidates: fo(1370) , fo(1500) and fo(1710) . Thus, there are two possible scenarios:

A: fo(1370) , K7 (1430) , ao(1450) , fo(1500) .

B:  fo(1370) , K{(1430), ao(1450) , fo(1710) .
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One can figure out the favoured dynamical option, comparing these candidates with the

predicted isosinglet masses. Using the relation [211],
Mi y = M12=1/2 + |M12=1/2 - Mil, (F.0.3)

we find M; = 1374 MeV and My = 1474 MeV for the lighter and heavier isosinglet
scalar states, respectively. Therefore, we can conclude that the lightest scalar-resonance
nonet is given by the scenario A. Moreover, since the values of My, iy are very close to the
measured masses, additional nonet-symmetry-breaking corrections to the scalar masses

can be neglected (i.e., kff = yg =0, in Ref. [211]). Inserting the scalar resonance masses

in the relations (F.0.2)), one finally finds the values of Mg and )\gs given in Eq. (4.3.22)).



Appendix G

Feynman rules for meson mixing

Propagators
W _ 1 Ky ky
AN i |G — (1= &w) 57— 0.
1 k‘2 — M‘%V + ic gu (1 £W)k72 — é.WMI%V (G 0 1)
4 iptmy) (G.02)
. p?+ m?c + i€ o
G* i
""""""" pQ _ £WMI%V + i€ (G03>
! (G.0.4)

p2 — M?, +ie
PA
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198 Feynman rules for meson mixing

Vertices
Ua (ds)
WO N o VA, (G.0.5)
dg (uq)
Ua (ds)
-ees GFO) ﬂ(m“ap s p >V” (G.0.6)
2 \ My L(R) My R(L) af
dp (ta)
Ua (dg)
-QTQ[ A ) A () }_ 9T Ao
— P + (b P =— % G.0.7
? \/i (aaﬁ) L(R) ( aﬁ) R(L) t \/i ( aﬁ) ( )
dg (ua)
where g is the SU(2) coupling constant which is related with the VEV through g = 2 A:;,W ,
(agﬁ)(*) = — M—lw (gfa)(*) muavcfg) and (béﬁ)(*) = ﬁ (gﬁ;)(*) mdBVOEE) where (gid)(*) are

defined in Eq. (5.2.7)).



Appendix H

Loop functions for meson mixing

In this appendix, we present the loop functions that appear in the Wilson coefficients

before applying the GIM mechanism.
(fBYT = B B; M, APP (H.0.1)
1 .
— 24 éﬁi B; My [6 AngJ + 3A8B _ 4 (FZABlll + FAB12L | F2A13131ﬂ 7
(FP) = g, 48, My, (C3F + B (H.0.2)

(FB) = =28 8; My (4 M7, DY - CfY) (H.0.3)
2, A (1o 02 (DN 4 pA _ pAWIL _ pAWI2L _ pAWISL
+ Tq 3ﬁz Bj My, w (D37 + Dy 1 1 1

. 3D1A 4 FQAW111 4 FQAW113 4 FQAWIQl 4 FQAngl 4 F2VVA122 4 F2VVA131} ,
AB\ij A
(F2P)7 = wgaq, My AP (H.0.4)

( ?B)ij = T Lgo 2 MI%V C? ) (H‘O'E))
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(f&B)9 = \Jagag 2 Mi, B ARE (H.0.6)
() = oqmg A MG B {CF — 2 M, (C) + ¢f)} (H.0.7)
(FP) = — JEqmg 8 My (Cf = 8,8 M, DY) (H.0.8)
(FP) = = VEamg 8 B Miy {2 (C8 + C3F) + 8 (c + BF)} (H.0.9)
()7 = — VTquTq 4 B; B My (42° + 2457 (H.0.10)

. 4
( ﬁB)zg = [TaTq gﬁi B; Mév {FQABH2+F2A8121+F2AB122+2F2AB131} . (H.0.11)

(529 = \fTq,3g 8 B; B; My BB, (H.0.12)

y 4
() = o g 6005 My {388 — 208) + BVI2 4 W pp

—|—2F2AW131 + F2VVA112 + FQVVAlQl + FQVVAIQQ + 2F2VVA131} , (H013)

| 1 :
()T = g, 5 51 55 Miy {3(A3° + 2487

— A (FPBUS 4 pABI22 F?Bli‘“)} : (H.0.14)
(Fi)9 = wq, 4 B; Bj My, BP | (H.0.15)
)7 = g B B0 {2 (A3 — AF™) 4 (A3 - APA) — 4B} (H.0.16)
(Y7 = = 55085 My {3(DF = CF — O + R 4 v

4 OEAWI22 | pAWISL | pWAI2L | F2WA131} , (H.0.17)
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()T = 24,28, 8 Miy (C3 — €30 = ¢ + 2D} + B}, (H.0.18)
g 1 )
() = g, 5 i By My {3 (43" +243™)

_4<F2AB111 + FQAB121 + F2AB131)} , (H.0.19)

(f502)7 = x4, 45 B My BYP (H.0.20)

(FAP)Y = g, B By Miy {2 (435 — A3%T) 4 (ABY — A3P) — 4 BB} (HO21)

g 4 .

(BT = —aq 5 65 My {3(DY — O — CgY) 4 BV 4 S
+F2AW121 4 FQAWISI =+ FQ\NA122 + FQVVAISI} (HOQQ)

(FP)Y = g, 28 8y My (G5 — Y — €8 + 2D} + B (H.0.23)

where the capital-letter functions are defined by

APB = Dy(m?, m3, M2y, M%) , (H.0.24)
PA ¥B
ABB =94 b2 w2 M2 a2 H.0.25
2 = M Q(mivmja oL %E)’ (H.0.25)
¥B
, d
ABi _ 2 2 2 2
A3 = dm? Dg(ml, 7’)’L]7 M‘Pi’ Mcpﬁ) ; (H026)
BB = Do(mi, m3, M2s, M%) (H.0.27)
YA ¥B
CP = Da(mi, m3, My, M21) (H.0.28)
A
b = L pom2 m2, M2, M2 H.0.29
2 = dMI%V 2(miamj7 W @i‘f)a ( I )
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o= 4 pom2, m? M2, M2 (H.0.30)
3 = dm? 2 79 ' W wi ; -J.
Dt = Do(mi, m?, My, MZ) (H.0.31)
A
DA—LD( 2 m2, M3, M>,) (H.0.32)
2 = dMI%V 0 mi, mj, W @i N U.
i = 4 pom2, m2, Mz, M2 (H.0.33)
3 — dm% 0 ) R W @f 3 U.
B = — Y pom2, m2 M2, M2 H.0.34
QZM 2(mz’7’mj7 W ﬁ)’ (H.0.34)
YA
andll
FABabcE/Oodx 2‘%.5
! 0 (2% + M3)® (22 + ME)? (22 + m?)¢ (2? + m2)0-a-b—c’
FABabcE_/oodx 21’7
2 0 (22 4+ M3Z)® (22 + MB)b (22 + m7)e (22 + m3)b-a-b=c”’
F2AA a+bc = F2AA abce
where
Do(a,b,c,d) = bin (3) + el ;) +
DS = b -ob-d)  (c—alc—b)lc—d) ' ([d—a)d-0b)d—c)’
#n 2) @n (2)
Dsy(a,b,c,d) = 4 + ,
(b—a)(b—c)(b—d) (c—a)(c—b)(c—d) (d—a)(d—-0b)(d-c)
being
Di(m1,mo, M) = M21i£1>MDi(m1,m2,M7M2),
withi=0, 2.
!The loop functions FyB @€ and FpAB 2%¢ are f% WP=MZ)e (R =MZ)0 (2 —m2)e (R —mZ)o-ab=e and
(%k(kLMﬁ)a CEESVERT (]izkjm?)C Ty respectively, but we have converted them into simple

Riemann integrals performing a Wick rotation.



Appendix 1

Colour factors

In Tables and , we present the colour factors N; and N; respectively which have

been computed following the arguments given in Section [5.2.3

i N; 1 Nz
14 N3, —42N1£c+1 6 9 (]\;%N—CQ)
2,3, 5 55t 7 —1
6, 10, 11, 12 N 8,9, 13 —1
7,89, 13 . 10, 11, 12 = (J?NC“‘)
14, 15, 16, 19, 20, 21 | =N roe 2 14, 15, 16, 19, 20, 21 | <1f15N02>
17, 18, 22, 23 - (422) 17, 18, 22, 23 =
Table I.1: N; colour factors. Table 1.2: N; colour factors.
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Appendix J

Fierz transformations

The Fierz rearrangements used in Chapter [5] are

" Pun]y [ Pun ], = [ Pram ], [ Puan)

i

kj

[ Puw), P Praoly = =2 [Praol,, [P,

:UW PL(R)Lj [Uuu PR(L)]M =0,

Prw),, [Pumly, = = 5 [Pr], [Pam],, + g [ Praw), [om Prcm],,

:JW PL(R)} ‘ [U;w PL(R)] -6 [PL(R)L‘I [PL(R)LW‘ —i—% {J“V PL(R)L.Z {Uuy PL(R)}kj ;

ij kl

where o0, = % [Yus %] - These Fierz transformations are valid at the operator level,
i.e., they include the Fermi-statistics minus sign from the permutation of the two fermion

fields. The minus sign is absent in the analogous relations between spinor bilineals.
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Appendix K

GIM mechanism in C&\; 2srR

When the GIM mechanism is applied to the Wilson coefficients, C’éJM 9srR has In 3, con-
tributions that do not vanish in the massless limit. These infrared terms coming from
Figure correspond to virtual contributions from the up and the charm quarks, see
Figure When these new contributions are realized in the low-energy effective theory,
all the infrared divergencies cancel in the matching process because both theories have the

same infrared behaviour. The low-energy effective Lagrangian is

4G « = _ .
Lgpr = —WF > Vign Vigs [zm Py, ql] [G2 " Pr 7] - (K.0.1)

ij=u,c

There are eight diagrams with the topologies depicted in Figure four a)-topology
diagrams with (i, j) = (¢, ¢), (¢, u), (u, ¢), (u, u) and another four which are related to
the previous ones by interchanging the external legs, b)-topology.

Computing the amplitude of diagram b), we obtain

Mg) = 8 G AN A [ty (k2) VYoV Prvg, (k)] [Dg, (01)7 57" Pruig, (p2)] (K.0.2)

where

Aa,@ E/ IC%K:g
(G = m)(Ke? = mi)

)

with 1 =k and Ko =k +py — ko .
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q2

Figure K.1: Diagrams from the low-energy effective theory with 7,57 = u,c.

Expanding A®? in powers of external momenta and taking the external momenta of the

light quarks equal to zero (k2 and p;), we obtain

af
af — 9 psp
AP — T filmg, m3, m2 ) — % fa(mi, m3) (K.0.3)
where
k‘2 k:4
2 2 2 _ B
fl(mly m]7 mlh) - A (kZ _ m?)(kﬂ _ m%) /k; (k’Q — m?)(/@ — m?)2
i lmz k4

6 " Jp (k- mjz)(kQ —m?2)3 "’

k2 2 k4
fa(m?2, m?) = / - = :
L g (k2 — m?)(k‘2 —m?)?2 3 Ji (K — m?)(k:2 —m?)3

Then, Eq. (K.0.2) can be simplified by using the Fierz identities defined in Appendix

and the Dirac spinor equation,

y 1
MY, = 8GEA N, ( flo?, 2, 0)OF = L, o, m2) (9{§> L (K04
where
OF = [0y (k) 3 Pr. vy (k)]s (p1) 7 P g ()] ~ OV (K.0.5)

01 = [tigy (k2) 0w Pr v, (k1))[Ug, (p1) 0 Pr gy (p2)] ~ O3 . (K.0.6)
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2
In the computation of Eq. (K.0.4), we must neglect contributions of O (Z’Q) in OVLL
w

because we have not computed up to this order. Similarly for the Feynman diagram a),

we find

ij 1
M) = 8GN N (fl(m mi, 0) Oy = 5 mg, fo(m, m3) 05%) : (K.0.7)

where

O3 = gy (ka) v Pr ttgy (p2)][Ug5 (p1) 7" Pr, vg, (k1)) ~ OV

O30 = [tigy (k2) 0y P gy (p2)][0g, (p1) 0™ PR vg, (k1)) ~ O3

Then, the total amplitude taking the relative signs given by the Wick’s theorem is given
by

eff—ZM ZM

2 m2
iyt [FVLL (OF — 0F) — 6?1 ESRR (O0F — Ofg)] , (K.0.8)
where
ﬁ‘VLL = )‘2 fl( (T3] 3) + )\u )\c [fl( w’ ) + fl(m ) m2)} + )‘g‘]?l(mgv m?) )
SRR = N2 fo(ml, m2) + Mo [fo(ml, md) + fa(m?, m2)| + A2 fa(m2, m2) ,
and
mim3 m? d
_ i 2y| _ i el 2
Film? ) = o [Aolmd) — do(mi)] = 25 Gl Aomd)
mZ(m3 — 3my) m2(m? +m32) d
= L T Ty Ap(m2)] + kit m) 4 o2
f2( i ) (mlg_mg) [ 0( ) O(m])} + (m?_mg)Q dmlz O(mz)
mi d d
_ i An(m2
m? — mj2 dm? dm? 0(m3)
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where

fl(m?, mj2) = —i16 72 fy(m?, m?, 0),
Falm?, m2) = — i 4872 fa(m?, m2)
Ao(a) = —uPa {1+1n(“>}
0 = 2 ¢ MQ .
At this point, it is convenient to express FVLL and ﬁ’ZSRR in terms of A¢ .. For that purpose,

we use the unitarity of the CKM matrix, so Eq. (K.0.8)) becomes

GZ 2~ m2 -
Ma = L Ry 0F - o) - Tl B 0 - o)
GE22e Rk oF - of) - U B (0 - o)
CGE AN | =viL (X Xy Mg FSRR (X b's
TS [Fcc (O3 —O1)— 6 Fyee (O — 019)] 5 (K.0.9)
where
FYIL = X2 EYY A BV 4 2 VM
P = 0 PS4 A FE 4 2
and
Fy™ = fi(m, m3)

ﬁ‘t\c/LL = 2-]?1 (m?m mi) - ]?1 (mia mg) - ]?1 (mzv mi) )
ﬁ‘c\éLL = ]?1 (mia mi) - fl (m%m mz) - ]71 (mza mi) + fl (mgv mg) s
ﬁggR = f? (szu mi) s

ﬁQSfER = 2f~.2 (quw mz) - f2 (m?w m?) - f2 (mgv mZ) )

F3at = fo(mi, m3) — o (miy, m2) — fo (2, m) + fa (mf, m?) .



K.1 B mixing 211

K.1 B mixing

In B mixing, in the limit of m, . — 0 , we obtain

Ej*t =0, YRR = f2(0,0)
EYEL =0 | FSRR — (K.1.10)
FVIL_o.  ERR_g
where
~ 1 u? m?2 5 .
f2(0,0) = — = + In (W) — In (M%) s with m, — 0. (K.1.11)

This limit depends on the way we do it. This means that lim ,,, 0 lim ,,,, 0 m, f (M, M) =
f(a). The result depends on «, however when we take the limit in the fundamental theory,
we get the same a-dependence as in the low-energy theory which exactly cancels out in
the matching procedure. Therefore, it does not matter the « chosen, in particular our
results are for @« = 1 in both effective and fundamental theories.

Finally, the effective amplitude is given by

G2 M -
MEy = —i SEZWAL o FSRR (0 - Of) (K.1.12)
with
FSER = — 2 4 In (&) —In <ATZ;> — o with om0, (K113)
€ W W

In Eq. (K.1.13)), we can see the ultraviolet divergence given by the first two pieces, which
has to be renormalized with a dimension-8 four-quark operator, and the infrared divergence
given by the third piece that will cancel out with the coming ones from the fundamental

theory.



212 GIM mechanism in C;JM 2SRR

K.2 K mixing

In K mixing, in the limit of m, — 0 , we obtain

B — o, BV = 2 E_ln<ﬂ/gv>+1n<ﬂ’;‘v§v>+1 R T
~§§R:-§+m(ﬂ/};>_m<$§v>_g,
Ngt}iR:—ﬂn(E;V)%—an(EgV)—g,
ﬁ;?cR:—ln<E§;>+ln<E§V)—g, (K.2.14)

Therefore, the effective amplitude is

CGA N[ mE -
M = 1| T g o - o)

CGE M ~ m2 -
; [F ©OF - o)~ "M FsRR (0 — o@]

2 72 6
CGE N SviL X X me ~SRR /X X
+ 1 27TQC chc (O3 — O7) - 6q1 yee (O30 — 019)] . (K.2.15)

K.3 Matching procedure
We have proved that the effective amplitude is given by

Mer = Xog™ (03 — OF) + XG™ (O — O)

G2 N\ - m2
G, [F ©OF — 0F)— M psRR (0 _ of@]

2 2 6
CGE M| = m2 -~
+ 1 SB[y o - o) - T B0 - O

G A2 | &ViL X me ~SRR [ X X
+ 7 27T2C [Fcc (02 - 01 )— 6q1 e (020 — 019)] , (K316)
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where X VL and Xezf%RR are tree-level amplitudes from the low-energy effective theory
defined as
X" = N Xévin + 2 de XGvin + A2 XGvir »
2SRR — 2 2
X3 = N Xiasrr + 20 Ae Xfrasrr + A2 Xfosrr -

On the other hand, the fundamental amplitude is give by

Miw = Xp" (055 = OF) + X (05 — O7) | (K.3.17)
where
Xem™ = A Xfvin + 2 de Xfbvin + A2 Xfavin »
X = Af Xflosrr + 2 M Ae Xfinosrr + A2 XfinosgR -

Therefore, performing a matching between both theories, Meg = My, , we obtain the

following relations

G
it _ . UF =VLL
Xvin = Xfwmvin — i5-32 Fi~,
ct _ Xct o GF FVLL
eff VLL = <“fun VLL i 472 )
cc — Xxce _ C;’F FVLL
eff VLL = <“fun VLL i P )
GE Mg ~
tt _ tt - F w SRR
Xeosrr = Xnmosrr T1 55 Ta Fou (K.3.18)
2
ct _ ct el Dl 4 "SRR
XeFEZSRR - XfunQSRR t1 24 72 Lqy F2 ct
2
cc _ F YW "SRR
cff2sRR = Xfun 2R T 1 122 o Fyee
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Translating Egs. (K.3.18)) in terms of Wilson coefficients, we ﬁndﬂ

4 -~
tt tt fun VLL
Csmvin = Csmvin + 2 Fi=,
W
92 -
ct _ pctfun VLL
Csmvir = Csmvin + 2 Fa=,
W
4 -~
_ f VLL
Csmvir = C§uvin + 2 F.,
W
CH, = 2 FSRR _ 4 S K.3.19
SM2SRR — — ¥qu 3 2 T w So(mu, me)| (K.3.19)
ct 1 ~SRR 4 3
CSMosRR = — Tqy 3 B2 — 4 My, So(mu, me, my)|
CCC _ 2 "SRR 4M4 g
SM2SRR — — ¥qu 3 T2cc T w So(my, me)|

where

gO(mU7 mt) - -Ffun(mu’ mu) - [-Ffun(muv mt) + -Ffun(mh mu)] + ffun(mty mt) 5

g()(mu’ mc) = —Ffun(mua mu) - []:fun(mua mc) + ]:fun(mca mu)] + ffun(mca mc) 5

gO(mua me, mt) = ‘Ffun(mU7 mu) - 5 []:fun(m1u mc) + ‘Ffun(mw mu)]
1
- 5 [J:fun(mua mt) + ~F'fun(ﬂflta mu)]

+ []:fun(mc, mt) + ]:fun(mta mc)] s
with

Frun = [F2WW31 b OEVWAL L pwwal

1
3

Da(my, m3, M| . (K.3.20)

111 d
= 5 |3 g, P 28 +

2|2 dMg,

SN

'Without the renormalization of the ultraviolet divergences.
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K.4 Renormalization procedure

The contributions from the Feynman diagrams given by Figure generate ultravio-
let divergences in N;ER and ﬁt\c/LL . These divergences have to be renormalized with
dimension-eight four-quark operators (0238 and OF®). Then, the AB = 2 and AS = 2

counter-terms Lagrangians are

LRP=2 = [BRR (K.4.21)
LR°=2 = LM + cB™ (K.4.22)
where
G2 \? _
LEM =+ 55 Colw) Oz
G2 M A _
LR = =5 Colw) OV
with
OQDS?{SR = [(72 Opy 304 Pgr QI} [(12 lojaud 306 Pr ql} ,
oVt = me [ Poa] (@ Prail
and

12
C =In|l—| .
After the renormalization of the Wilson coefficients given by Eq (K.3.19)), we obtain

tt tt fun 4 ~VLL
Csmvin = Csmvin + 2 Fi=,
w

9
ct _ pctfun VLL
Csmven = CSmveL + 2 Fa=,
w

4 ~

cc __ pccfun VLL
Csmvin = Csmvin + U2 Fe
w

2 S
Céiosrr = — Tq 3 f2u — 4 My, So(my, my)| ,



216 GIM mechanism in C;JM 2SRR

1 ~
Cgi/fzsRR = — Zq 3 2§tR - 4Mf/lv So(mu, me, mt)] )
cc _2 SRR 4 S
CSM2sRR = — Tq §f2cc — 4 My So(mu, me)| ,
with
_ - 2 B 2
M2, 2

(K.4.23)

Sy
s=s]
j=s]
|
=3
<
NN E
+
=
<
gw nsw
SN—
|



Appendix L

Hadronic matrix elements for

meson mixing

The matrix elements (O;(n)) = <M0](’),-(,u)|MO> can be written as

OV () = 5 Mo Fro BY (1) (L.0.1)
(OVFR () = 3 Mygo fio BYF () (L.0.2)
(O () = — 5 R) Myo fipo BE (1) (L.0.3)
(OFX () = § R(u) My Fpo BY () (L.0.4)
(05 () = —o R(x) Mago o BS (1) (L.0.5)
(05 () = 5 Rlw) Mo Fyo BS™H () (L.06)
(OF () =~ R(u) Mago Fop0 BI (1) | (L.07)
(OF () = 3 R(u) Myo Fgo BS™ (1) (L.08)
where
y :
R(n) = (mql o +M°mq2 (N)> (L.0.9)

and fyo is the M-meson decay constant, fpo = (192.0 £ 4.3) MeV [152],
fro = (228.4 % 3.7) MeV [152) and fio = (155.6 + 0.4) MeV [32). The B (1) parametrize
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1= 1 2 3 4 5
fBu\/BZBD 174 £ 8 MeV 160 £ 8 MeV 177 £ 17 MeV 185 £ 9 MeV 229 + 14 MeV
BD
feoV B;® 211 £ 8 MeV 195+ 7 MeV 215 £ 17MeV 220 £9 MeV 285 £ 14 MeV
BE 0.506 4 0.017 +0.003  0.46 =£0.01 £0.03 0.79+0.024+0.05 0.78 £0.02£0.04 0.49+0.03 +0.03

Table L.1: Determinations of fl\/[o\/BZM0 (M? = BY, BY) [281] and BZ-KO (MY = KY) [282],
in the MS scheme. The Bg parameters are given at pu = my, , while the K° values refer to

uw=3 GeV .

the deviation from the naive factorization limit. These B{(u) factors are given by

BYY () = BY®R(u) = BM () | (L.0.10)
B (u) = BY (), (L.0.11)
BYR(u) = B () | (L.0.12)
B () = BY™ () = BY(n) (L.0.13)
By (p) = By"(p) = gBédo(u) - ;Bzﬁdo(u), (L.0.14)



Appendix M

Renormalization group

short-distance QCD effects

The renormalization group short-distance QCD effects can be calculated by solving the
renormalization group equations that govern the scale dependence of Wilson coefficients
Ci(p) . In this appendix we present the analytic formulae of the AF = 2 dimension six
four-quark operators O; extracted from Ref. [283]. The general expression for C;(u) is

given by
Cw) = Uluo)Cluo) s w<po, (M.0.1)

where 7 is a column vector built out of the C; components and U (1, p1p) is the evolution

matrix. ?(MO) are the initial Wilson conditions which encode all short-distance physics.
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For instance, (s, jio) = (uy, prw) for BY and (1, po) = (sies o) for K]

M () = (v, & (mew) (M.0.2)
ClLR(M) _ [Ull(M)]LR [7712(H)]LR ClLR(MtW) (M.0.3)
CyR () 21(W)]ir m2(w)ler ) \CER(pew)
CH() ) (Im(lsr [me(wlsen | (G () (M04)
C3M () 21 (Wse, m22()lser ) \C3™F (pew)
where
NG
(. = [nOw)] 347(:0 1Y) (M.0.5)

M.1 n-Factors for B(S), q— Eg, 4 mixing

VLL-Sector
6/23 6/23
O] = 100w = 16273 (1= ns) g
_LR-Sector
0 3/23 0
{ngl)(ﬂb)}LR = 775/ ) [U](Lz)(ﬂb)}LR =0,
2/ 3/23  —24/93 0 —24/23
[nél)(ub)}LR =3 (n3/% =3 2%) [néz)(ub)}m = 5
()] = 0.9250 552 4 B (<2.0094 + 11744 75)
1 26/23 —24/23
i3 ()] = 13875 (%% = g%
[n;?(u,,)]m = (—11.7329 + 0.782975) 12/* + 0o 2?3 (—5.3048 + 16.25481)5) |
053 ()] = (7.9572 — 8.8822) 1% 4 0.9250 52/

'The VRR and SRR sectors are the same as in the VLL and SLL sectors.
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SLL-Sector

where 75

iz ()
sy ()

2 (1)

= (4.8177 —
1SLL

= (9.1696 —
1SLL

= (0.0531 +
1SLL

= (0.1011 +
1SLL
ol (uw)

ol ()

1.0153 n5 6312
1.9325 (n; 0031 —
0.0081 (ng.7184 . 775—0.6315) ’

1.0153 3 ™1# — 0.0153 75 001> |

0.7184
75 )

0.0415 n5) ng 6315 —

— 0.0153 97184

Y

M.2 n-Factors for K — K° mixing

VLL-Sect

or

(1 ()|

[ (1)

LR-Sector

VLL

VLL

3/25 3/23
= 774/ 775/

6/25 6/23
774/ 775/ )

6/25

Y

0,
2 [ 3/25 3/23  —24/25 —24/23
_*(774/ 775/ — My / Ul / )
3
—24/25 —24/23
= 774 / 775 / )
0.9279 ny 225 2% _ 0.0029 7

Y

28/25
4

38.8778 m5) n5 - 031% 4 (42,5021 — 12.7939 15) 0

= 03/ 8 (17917 — 016440y — 1.62T3 4 75) -

—24/23
5 /

o/ S (220241 — 0.0753 7m0 + 11744 ns) |

5.227215) 05 6315 + (0.3371 + 0.0724 15) 0S84

0.7184
5

(0.0566 4 0.0380 1) 7o T84 |

0.3083 75) 75 0315 + (—7.1314 + 6.721915) nOT18

9
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Renormalization group short-distance QCD effects

s ()]

5 ()]

] R

SLL-Sector

ISLL
ISLL
ISLL

ISLL

ISLL

28/25 —24/23

— _1.39187 24/2577 24/23 0.0043 1 -
+ 1.3875 28/25 26/23
= —0.0019 28/2577 24/23 5.0000 77 1/25 3/23

+ 1y

+n

325 13123 (_16.6828 — 0.050274 + 0.7829 04 )

—24/25 —24/23
4 / ] / (

5 —4.4701 — 0.8327 14 + 16.2548 n4ns)

= 0.0029 28/25 75 —24/23 + 0.9250 7 28/25 7726/23

+

22 2B (67052 + 1.2491 g — 8.8822 14 75)

= 1.0153 7 05810 5)=0.6315 _ () 0153 ;06610 ;07184

— 1.9325 ( —0.5810 77—()‘6315 . 772'6610 ng.7184) :
= 0.0081 (772-6610 775(3.7184 . n4—0.5810775—0.6315) 7

= 1.0153 772.6610 7,’2.7184 — 0.0153 ,'7;0.5810 ,’750.6315 ’

= 0.0020 77i6610 n5—0.6315 — 0.0334 7]2'4190 ng.7184

+ 1y 05810 06315 (4 92458 + 0.5700 1, — 5.2272 14 75)

+ 76610 07184 (9 3640 + 0.0064 74 + 0.0724 74 15)

= 0.0038 716610 ;06315 _ 4 975 ;04190 ,0.7184

4y 08810 ) =06315 (8 0810 + 1.0848 1y — 38.8778 14 1)5)

+ 78610 07184 (45 9008 + 0.8087 ny — 12.7939 4 15) ,

—0.0011 1} 9610 p=0-6315 4 0 903 7704190 )0-7184

+ {6610 pOTI84 (0 0534 — 0.0034 74 — 0.0380 14 75)

+ 1y 05810 206315 (0 0587 — 0.0045 4 + 0.0415 14 715)
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1 _
[77§2) (MC)}SLL — —0.0020 ni661o s 0.6315 | () 0334 772.4190 775())‘7184

+ 1y 05810206315 (01117 — 0.0086 14 + 0.3083 14 775)

+ Q6610 018 (L6 7398 — 0.4249 14 + 6.7219 14 715) ,






Appendix N

Inputs for meson mixing

Tables [N.1] [N.2] and [N.3] show the inputs values adopted for the different inputs entering

in the numerical analysis. [[]

Parameter Value Ref.
GF 1.1663787(6) - 1077 GeV 163]
My 91.1876(21) GeV 163]
My 80.385(15) GeV 163]

m 163.427 GeV Our analysis
U 80.385 GeV 163]
1 4.18 GeV 163]

Table N.1: Electroweak parameters.

In Tables and “Our analysis” means that we have used the Mathematica package

RunDec [286] to extract the value.
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Parameter‘ Value ‘ Ref.

o) 0.1086(10) | Our analysis
as(Mz) | 0.1182(12) l63
as(pw) 0.1205(12) | Our analysis

(
(

as () 0.2243(45) | Our analysis
)

as(3GeV) | 0.2521(58) | Our analysis

Table N.2: QCD coupling constant.

Parameter Value Ref.
mpoe 173.21(87) GeV 63]
m(my) | 163.42710858 GeV | Our analysis
my(pw) 173.23570915 GeéV | Our analysis
() 2.75(2) GeV Our analysis
mp () 2.91(2) GeV Our analysis
() 4.187003 GeV 63]
me(pue) 0.623(15) GeV | Our analysis
me(pw) 0.660(16) GeV | Our analysis
me(me) 1.27(3) GeV [63]
ms(fit) 0.05470905 GeV | Our analysis
ms(pw) 0.05715:005 GeV | Our analysis
ms (1) 0.08215:00% GeV | Our analysis
ms(3GeV) | 0.08715:007 GeV | Our analysis
ms(2GeV) | 0.09670:9%8 GeV 63]
ma(pt) 0.0026 00905 GeV | Our analysis
ma(pw) 0.002810-0003 GeV | Our analysis
ma(ip) 0.004019:0003 GeV | Our analysis
ma(3 GeV) | 0.004315:009° GeV | Our analysis
ma(2 GeV) | 0.004715:900% GeV 63]

Table N.3: Quark masses.



Appendix O

Computation of (’ye)gg)

O.1 Feynman diagrams

In Figure we show all the Feynman diagrams that contribute to (%)g) . In total,

there are six diagrams with d, couplings inside contributing to Jq .

(d) (e) (f)

v

v

Figure O.1: Feynman diagrams contributing to (%)gg) .
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0.2 Feynman Rules

il o1 kuky
ANANANANNN -~ e |9 U T
H
103T
1 AP
p1 P2 1e(v");i
i J
H
pgT
m P2 Dye (0"y5)ji p3 v where Dy = —Cf(n) Qgmy
i J

0.3 Computation

In this section, we compute the Feynman diagrams of Figure The technical prescrip-

tions adopted for the computation of these diagrams:
1. All the Feynman rules are provided in Appendices [B] and )
2. We take the limit of external quark masses equal to zero.

Let us start with the computation of the Feynman diagrams shown in Figure

(Feynman diagram (1 a) ’

Assuming the momentum directions presented in Figure the amplitude of the Feyn-

man diagram (1 a) can be written as:

dPk [ig
x _ B
M(1a) = /(271')D ( k2 1>’

i (p, + K +myg) L R+ my)
(p22—|—k:)2—mglgSVXT m

) l“q(pZ) ieyt (6 Dy 'Y 5 kl/) ug(p1)| -
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which after some Dirac algebra and putting all external quark masses equal to zero, it

becomes

MG oy = i €% g3 Dy [g(P2) Y Yo 75 Y 0 95 T g(p1)| AS**(p1, p2) ,  (0.3.1)

where

APk (p2 + k) (p1 + k)*2k”
A aav 7 = /
W1 p2) = | 50Dy + 2 (o1 + R)2R2

(0.3.2)

We have omitted the gluon polarization, since it is not necessary for our purposes.

X,a
g
p3T
+ k +k
poopitk 8 pptk o py
T w4
k
A v

Figure O.2: Feynman diagram (1 a) showing momentum directions.

(Feynman diagram (1 b), (1 c¢), (1 d), (1 e) and (1 f)}

Following a similar proceeding as in the diagram (1 a), we obtain the following amplitudes

for the rest of diagrams depicted in Figure [0}

MG ) = =i € g, Dy [4(p2) 0 %5 Yoy ¥ Yo 1T g(p1)] AL (p1, p2) , (0.3.3)

o
. P v
M oy = i€ gs Dy p12 [tg(P2) 75 T Yoy Yo Yz 0 95 g (p1)] BE2(p1) (0.3.4)
1
oy
. D _
MG ay=—ie’gs Dy ?12 [14(P2) YT Yoy 05 Yo Y Ug(p1)| B (p1) . (0.3.5)
1
a2

. D _ v a «
MB o= — i€ gs Dy =2 |tg(p2) Y Yor 0 75 Yas YT ug(pr)| B (p2) ,  (0.3.6)
(1¢) 3
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a2

. D _

My = i€ g: Dy [4(P2) 0 %5 Yar Y Yo V5 T g(pr)| B (p2) . (0.3.7)
2

where

iy [ APk (p+k)* R
b (p):/(QW)D (p+ k)2k2

(0.3.8)

Since we are going to compute the anomalous dimensions, we are only interested in ultra-

violet (UV) divergences. The UV parts of A% (py,ps) and B (p) are given by

i 2¢
A (p1,po) = (4%;;1%[9“6 (p1 + p2)’ + 7% (;1 — 2p2)®
- 9" (p2 — 2p1)5} 7 (0.3.9)
av iM2E av , 2 v, o
B*(p) = amzizel? P + 2p7p| . (0.3.10)

Adding up all the contributions, we obtain the following total amplitude

2e
. [T
M(xl):—7/€2gqu <(4

7T)26> (p1 + p2)* [ag(p2) v5 T uq(p1)] - (0.3.11)
0.4 Extracting the anomalous dimension matrix
Using Eqs. ((O.3.11) and the unrenormalized amplitude which is given by

MY = —i Dy gs (01 + p2)* liag(p2) 95 T ulpy)] (0.4.12)

we obtain
(0N = 21, (0) | (0.4.13)

where

{_ j (Z)sle) | (0.4.14)
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and a(p) = p* % . Therefore, the anomalous dimension is given by
0 Z(g)
¥(g) = —24° 0.4.15
Y(g) A yeal ( )
where ¢ in this case is the electric charge e. Finally, we get
a(p) (@ 2 0 (Z1)12(e) _ aln)
— = -2 = 8 0.4.16
A (V"2 e 9 o2 An ) ( )
and then
(Y12 = 8, (0.4.17)

which is in perfect agreement with the results present in the literature [310].






Appendix P

Resum de la tesi

El coneixement actual sobre 'estructura de la matéria és el resultat d’un enorme esforg
experimental i teoric. El nostre Univers es compon de particules elementals governades
per les quatre forces fonamentals: gravitatories, febles, electromagnétiques i fortes.

El model estandard (SM) de la fisica de particules és la descripcié teorica més senzilla de
com es relacionen aquestes particules i forces, excepte la forga gravitatoria. Al llarg dels
anys, el SM ha estat capag d’explicar totes les dades experimentals amb gran precisio,
culminant en 2012 amb el descobriment del bosé de Higgs amb una massa de 125 GeV .
La seua elegancia, simplicitat i alta predictibilitat han convertit el SM en el millor marc
de referéncia teoric fins ara.

Tot i ser una descripcié satisfactoria de la realitat, hi ha alguns fenomens que el SM no
explica, com ara la gran asimetria de materia-antimateéria. A I'univers prematur, el Big
Bang hauria de tenir com a resultat les mateixes proporcions de materia i antimateria,
pero les observacions indiquen que tot el que ens envolta esta fet de materia excepte per
una petita quantitat d’antimateria. Un dels grans reptes de la fisica és entendre per que
observem aquesta asimetria.

La violacié de CP és un dels ingredients necessaris per a generar aquesta gran asimetria.

La quantitat de violacié de CP present al SM no és suficient per a obtindre completament
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I’asimetria observada. Per tant, les extensions del SM amb noves fonts de violacié de CP

podrien explicar la proporcié d’aquesta asimetria.

P.1 Objectius assolits

L’objectiu principal d’aquest treball és precisament I'estudi dels sistemes fenomenologics
amb violacié de CP.

Al Capitol [I] presentem una visié6 general del SM que mostra com sorgeixen les seues
interaccions dels principis de simetria. L’tltima part esta dedicada al sector de sabor al
SM, on s’introdueixen els fenomens de violacié de CP a través de la matriu Cabibbo-
Kobawashi-Maskawa (CKM). Finalment, es presenten les diferents formes en qué aquest
fenomen pot aparéixer a la natura.

El concepte de teoria efectiva de camps (EFT) s’introdueix al Capitol |2 proporcionant un
potent marc teoric per als sistemes fisics estudiats al llarg d’aquesta tesi.

La determinaci6 teorica de la relaci6 directa de violacié de CP €’/e en K — 7w al SM és
la primera aplicacié fenomenologica presentada en aquest treball al Capitol [3] Utilitzant
la teoria de pertorbacions quirals (xPT), obtenim una prediccié del SM que esta d’acord
amb el resultat experimental. Al Capitol [4] realitzem una actualitzacié de la prediccié
anterior incloent les correccions conegudes d’isospin.

Considerant una extensié prou general del SM, el model Aligned-Multi-Higgs-Doublet
(AMHDM), al Capitol realitzem un calcul a un loop de les contribucions de curta
distancia per a la mescla de mesons neutres. Aquesta extensié permet acomodar noves
fonts de violacié de CP que podrien reproduir I’asimetria observada. Finalment, restringim
fortament aquestes fonts a partir de les dades de sabor actuals.

Al Capitol [6] obtenim nous limits per als moments dipolars eléctrics (EDM) dels quarks
pesats charm i bottom utilitzant les equacions del grup de renormalitzacié (RGE) junt

amb els forts limits dels seus chromo-EDM.
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P.2 Metodologia

La metodologia utilizada al llarg d’aquest treball és pot trobar als Capitols [1] i A

continuacié fem un resum dels punts més rellevants.

P.2.1 El model estandard de la fisica de particules

El model estandard electrofeble (EWSM) és una teoria quantica de camps basada en el
grup de simetria gauge SU(2);, ® U(1)y . El EWSM és capag de descriure i unificar les
interaccions electromagnetiques i debils a través de bosons de gauge, un foté + sense massa
per a la interaccié electromagnetica i 3 bosons massius febles, dos carregats i un neutre,
w*1i2z0.

Pel que fa al sector fermionic, aquest s’organitza en tres generacions amb propietats iden-
tiques. Les tniques diferéncies sén les seues masses i els seus nombres quantics. El

contingut de particules en cada generacié s’organitza de la segiient manera

Ve u
e Primera generacioé: , , €erp, ur, dp
e d
RS L
Vi c
e Segona generacio: , . Mg, CrR, Sh
- /
s
) Rauy
vy t
e Tercera generacio: , , Tp, IR, Ve
T~ b
L Ry

amb les seues antiparticules corresponents. Podem observar com cada generaci6 consta d’1
camp (1 camp de leptons) més 3 camps (1 camp de quark amb 3 colors) que transformen
com a doblets de SU(2)7, , i a més d’1 camp (1 camp de leptons) més 6 camps (2 camps

de quark amb 3 colors) que es transformen com a singlets de SU(2)p.

P.2.1.1 Interaccions al model estandard

El Lagrangia cinetic del sector fermionic és invariant sota transformacions globals del grup

de simetria SU(2);, ® U(1)y . Si volem que aquest Lagrangia es mantinga invariant local
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sota aquest grup de simetria, hem d’imposar el que es coneix com a principi d’invariancia
gauge. Aquest principi consisteix a substituir les derivades de Dirac per derivades co-
variants. Substituint totes les derivades fermioniques per les seues derivades covariants
corresponents, les quals venen donades per l'equacié ((1.1.20)), s’obtenen les interaccions

que constituixen el SM, que es poden classificar com:

e Corrents carregades: interaccions entre fermions i els bosons W+ .

w w

dd > > Qu I~

Py,

Y
v
AN

Pr,

Sle
Sle

Figure P.1: Vertexs de Feynman per a les interaccions de corrents carregades.

e Corrents neutres: interaccions entre fermions i els bosons v i ZY .

Z

f————

(vy —agvys)

eQy 2 sgcy

Figure P.2: Vertexs de Feynman per a la interaccié de corrent neutra.
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e Auto-interaccions dels bosons febles: interaccions entre els bosons v, Z% i W* .

-
w+ v, Z
Yy £ ANNNNS
%% wW- v, Z
w+ W+
W-— W=

Figure P.3: Vertexs de Feynman per a les auto-interaccions dels bosons febles.

P.2.1.2 El mecanisme de Higgs

En l'apartat anterior, hem vist com el principi d’invariancia gauge ha sigut capac de
generar totes les interaccions del SM. No obstant aix0, experimentalment s’observa que els
bosons febles son massius. Com que la simetria de gauge no permet termes de masses per a
aquests bosons, un nou ingredient és requerit per a resoldre aquest problema, el mecanisme
de Higgs. El mecanisme de Higgs es basa en el trencament de simetria espontania (SSB)
que apareix quan un sistema definit per un Lagrangia que és simetric sota una determinada
transformacio, té un estat de buit que no és simetric. D’aquesta manera el bosé d’Higgs
adquireix un valor esperat en el buit que indueix una ruptura espontania de la simetria

electrofeble, donant lloc a les masses dels bosons W=+ i Z0 del SM.
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P.2.1.3 Conseqiiéncies del mecanisme de Higgs: el Lagrangia de Yukawa

El mecanisme de Higgs requereix la introduccié d’un doblet escalar de SU(2) 1, que permet
afegir nous termes invariants sota la simetria SU(2);,®U(1)y . Aquestes noves interaccions
son les responsables de generar les masses de tots els fermions del SM. La diagonalitzacié
d’aquestes masses te fortes implicacions fisiques que constituixen els pilars de la fisica del

sabor al SM,

e Les corrents neutres no canvien sabor al SM, conegut com el mecanisme Glashow-
Iliopoulos-Maiani (GIM). El Lagrangia de les corrents neutres no canvia quan

s’expressa en termes dels estats propis de massa.

o FEls corrents carregades son les uniques interaccions que cambien sabor al SM. Quan
expressem els estats febles del Lagrangia de corrents carregades en termes dels es-
tats de massa, apareix una matriu unitaria coneguda com la matriu CKM. Aquesta

matriu és la responsable de la violacié de CP al SM com veurem a continuacio.

w

U

Figure P.4: Veértex Feynman per a les interaccions amb canvi de sabor.

P.2.1.4 La matriu CKM

A la literatura, la matriu CKM es pot trobar en diferents parametritzacions equivalents.
Una d’aquestes parametritzacions és la de Wolfenstein, que inclou tres parametres de
mescla (A, A,p) 1 a més una fase n ; aquesta udltima és la responsable de descriure el

fenomen de violacié de CP al SM, tal com s’observa a l'equaci6 [1.3.68 A la matriu
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s’observa que les transicions diagonals (V,g, Ves, Vi) som O(1) , les transicions entre la
primera i la segona generacié (Vys, Voq) sén O(\) , les transicions entre la segona i la tercera

generaci6 (Vp, Vis) sén (’)()\2) i les transicions entre la primera i la tercera generacié (Vyp,

Vi) s6m O(A3) .

e I -
u n?___ég Kgé? B gg
\/ = £ EE__ i
¢ D.*L_—-mé-,;r/ D!__HJ_;IL% Btis’g
¢ BB B’ |Bp—w B <
- b _J

Figure P.5: Processos utilitzats per determinar els elements de la matriu CKM [29).

P.2.1.5 Unitaritat de la matriu CKM

Una de les propietats més interessants de la matriu CKM és la unitarietat. Com que
aquesta ens permet provar la consisténcia del SM, és important determinar els elements
de la matriu amb gran precisié. La determinacié d’aquests elements suposa un repte perque
consisteix en 'estudi de les desintegracions hadroniques que introdueixen grans incerteses
teoriques. La Figura|[P.5] mostra quins processos s’utilitzen per determinar els elements de
la matriu CKM. Una violacié de 'unitaritat podria indicar signes de nova fisica més enlla
del SM. Per exemple, amb una quarta generacié o uns quarks pesats exotics, la submatriu

3 x 3 deixaria de ser unitaria conduint a una determinaci6 incorrecta d’alguns elements

de la matriu CKM.
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Les restriccions experimentals actuals es mostren a la Figura Un dels costats del
triangle s’ha calculat utilitzant 1’equacio a través de |Vip/Vey| (regi6 verda fosca).
L’altre costat es pot obtenir utilitzant la mescla B — BY (regié groga), AMy = 0.5064 +
0.0019ps~—! ,. També s’obté informaci6é addicional de la mescla de AM, = 17.757 +
0.021 ps~* i de la fraccié experimental AMy/AM, (regié taronja). A més, les
restriccions sobre el parametre 1 es determinen a través de K — 7 amb el valor mesurat
de |ex| = (2.228 £0.011) - 1073 que determina la regié parabolica de color verd clar.
El mesé BY es desintegra als estats finals autoconjugats de CP que proporcionen maneres
independents de determinar els angles del triangle d’unitaritat. Una de les desintegracions
més importants és Bg — J/YKg , que ens déna una molt bona mesura de l’angle
B, sin(28) = 0.691 £ 0.017 [32]. Les determinacions dels altres dos angles a i vy , també
s’inclouen en ’ajust global. Els diferents conjunts de dades encaixen molt bé i proporcionen

una determinacié molt precisa dels vertexs del triangle d’unitaritat.

0.7 _ .In L L L L7 A R W\ (L

BN N I

06 __6' : Amd K Summer 18 -

=8 : -

05 —¢g sin2B ! —

— | @ ' sol.w/\cos 28 < 0 —

— 8 (excl. at CL > 0.95) .

I= C |8 T -

03 — < . L=

: : o AN :

0.2 ! —

0.1 —

i/ B B u
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Figure P.6: Restriccions experimentals al triangle d’unitaritat del SM .
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P.2.1.6 Tipus de violacié de CP en sistemes de mesons neutres

La violacié de CP apareix en sistemes de mesons neutres a través de dos tipus de fenomens,
mezcla i desintegracions. A continuacié fem una classificacié de les tres formes de violacid

de CP que poden apareixer a la natura [43].

1. Violacié de CP a la desintegracié, també coneguda com a wiolacié directa de

CP.
2. Violacié de CP a la mescla, també coneguda com a violacio indirecta de CP.

3. Violacié de CP en la interferéncia entre desintegracié sense mescla i desin-

tegracié amb mescla.

Les aplicacions dels Capitols [3] i [4] corresponen al primer cas, mentre que 'aplicacié del

Capitol [5| al segon cas.

P.2.2 Teoria de camps efectius

Una teoria de camps efectius (EFT) és una descripcié simplificada d’una teoria fisica
subjacent. La EFT proporciona un excel-lent formalisme per a descriure problemes fisics
que impliquen diverses escales energetiques. Aquesta es basa en utilitzar els graus de
llibertat adequats per a descriure un sistema fisic a una determinada escala d’energia. Per
exemple, no es pot crear una particula pesada (un grau de llibertat) a escales energetiques
més petites que la seua massa, per tant no pot ser un grau de llibertat dinamic de la
teoria efectiva de baixa energia. Les EFTs funcionen millor quan hi ha una gran diferéncia
d’energia entre 1’escala que es vol estudiar i ’escala d’energia de la teoria subjacent. La
dinamica a baixes energies no depén dels detalls de la dinamica a altes energies, aixo es
garanteix pel teorema del desacoblament [51] que indica que els graus de llibertat de les
particules pesades es desvinculen a escales energetiques molt inferiors a la seua massa.
Llavors, la fisica d’alta energia o la fisica més enlla del SM se suprimeix a baixes energies.
Tot sembla indicar que I'extraccié d’informacié sobre la teoria fonamental a les mesures de

baixa energia no es possible. No obstant aixo0, les indicacions de nova fisica es poden trobar
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a través de petites desviacions dels parametres de baixa energia del Lagrangia efectiu, ja
que codifiquen la informacié en termes de masses que han deixat de ser dinamiques a eixa
escala. Per tant, els experiments d’alta precisié a baixa energia es poden utilitzar per
estudiar dinamiques d’alta energia i proporcionar una alternativa als experiments d’alta

energia.

P.2.2.1 Lagrangia efectiu i comportament dels seus operadors

Un Lagrangia efectiu es pot expressar com una suma finita d’operadors locals O; multi-

plicats per certs coeficients Cj:
L =Y Ci0;. (P.2.1)
i

Aquests coeficients codifiquen tota la informacié d’alta energia en termes de les masses
pesades, mentre que els operadors O; descriuen la dinamica a baixes energies. Els diferents
operadors O; es poden classificar utilitzant analisis dimensional (A = ¢ = 1). Definint la

AD*di

dimensi6 de 'operador O@; com a E% | la dimensi6 dels coeficients C; ha de ser , on

A és una escala d’alta energia. Llavors, 'accié efectiva es pot escriure com:

_ [qP _ (ENTP
Sef = [ A7z Leg = Z Ci A , (P.2.2)

on ¢; s6n constants adimensionals de O(1) . La dependéncia energetica donada per

I'equacié (P.2.2) condueix als segiients tipus d’operadors:

e d; > D: aquests operadors s’anomenen irrellevants, ja que la seua contribucio es
feble a baixes energies. Tanmateix, aixo no vol dir que la seua contribucié no siga
important, de fet son fonamentals en alguns casos en que sén I'inic tipus d’operadors

que contribueixen. Aquests operadors es coneixen com a no renormalitzables.

e d; = D: aquests tipus d’operadors s’anomenen marginals. Les seues contribucions no
depenen de E/A , amb 'excepci6 de correccions logaritmiques. Aquests operadors

corresponen a operadors renormalitzables.
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e d; < D: en aquest cas s’anomenen rellevants i son importants a baixes energies.
En general, solen estar prohibits per simetries, ja que causen problemes degut
als seus efectes a altes escales energetiques. Aquests operadors reben el nom de

super-renormalitzables.

Es interesant destacar la relacié entre la dimensié dels operadors i la precisié amb qué
volem realitzar les nostres prediccions. Per exemple, imaginem que volem calcular algun
procés fenomenologic fins a un cert nivell de precisié €, per tant hem de truncar el Lagrangia

per a aquells operadors amb dimensié d; que satisfan

(P.2.3)

que s’obte de l'equaci6 (P.2.2)).

P.2.2.2 Un exemple de EFT: la teoria de Fermi de les interaccions febles

Per tal d’il-lustrar els aspectes generals de les EFTs, a continuacié considerem un exemple
de teoria efectiva al Lagrangia de corrents carregades donat per I’equacio . Aquest
Lagrangia juga un paper molt important en algunes de les aplicacions fenomenologiques
presentades al llarg d’aquesta tesi, en particular als Capitols i[5l A baixes energies els
bosons W* deixen de ser graus de llibertat dinamics del sitema i com a resultat obtenim
una suma infinita d’operadors locals que es pot truncar a un determinat ordre, com hem
vist a l'equacié (P.2.1)). Després de tot aquest procés, obtenim el que es coneix com la

teoria de Fermi de les interaccions febles:

G 2
weak __ F t b
Lo = —4 ﬁ T, JH+ O (5[/) , (P.2.4)
on % =z ]\gjav es la constant de Fermi i
jJ = E Vijﬁi’y#PLdj + E EZ'Y;LPLZ . (P.2.5)

ij 1
La constant d’acoblament associada a aquest operador esta suprimida per dues poténcies

de My, que és el comportament tipic que es troba a l'integrar els camps pesats de la teoria
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fonamental. La teoria de Fermi es va proposar per a descriure les interaccions febles abans
de la formulacié del SM amb els seus bosons de gauge. Durant aquest temps, hi havia una
forta creenca que l’escala de la interaccié feble hauria d’estar al voltant de (G—\/z)% ~ 10%
GeV . Llavors, el descobriment dels bosons febles al voltant d’aquesta escala va ser un
exit molt important per a la comunitat de fisica de particules, no sols per 'unificacié
d’electromagnetisme amb 'interaccié feble, siné també per la poderosa prediccié a través
del raonament de les EFTs.

El Lagrangia donat per l’equacio esta molt lluny de ser una descripcié realista,
ja que no té en compte les interaccions de la cromodinamica quantica (QCD) que sén
rellevants a baixes energies. Aquestes correccions s’han de tindre en compte a la nostra
EFT. Les contribucions pertorbatives de QCD estan codificades pels coneguts coeficients

de Wilson C; mentre que els efectes no pertorbatius apareixen als operadors O; , com

s’observa en
e = —19E S new o, (P.2.6)
V2 4

on A; conté productes d’elements de la matriu CKM. Els operadors O; es construeixen
amb els graus de llibertat lleugers (camps de quarks i leptons) utilitzant els principis
de simetria. En canvi, els coeficients de Wilson C; sén les constants d’acoblament dels
operadors O; , que ens diuen com de grans sén les contribucions d’aquests operadors per
a un determinat procés fenomenologic. Els coeficients de Wilson només depenen de les
masses de les particules pesades que s’han integrat. Els valors dels coeficients de Wilson

es poden calcular tenint en compte que:

1. Els coeficients de Wilson C; s’han de determinar de forma pertorbativa a escales
d’alta energia en alguna teoria fonamental. Aixo es pot fer perque el QCD té llibertat

asimptotica.

2. Per construccié, la EFT a baixes energies té el mateix comportament infraroig que

la teoria fonamental, per tant les diferéncies només apareixen a altes energies on la
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Figure P.7: Imatge de la EFT a la mescla de Bg .

teoria fonamental té graus de llibertat addicionals, com per exemple camps de nova

fisica Onp .
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3. La determinacié de Pamplitud d’alguns processos fenomenologics (a través del calcul
de diagrames de Feynman) tant a la teoria efectiva com a la teoria fonamental permet
determinar els coeficients de Wilson C;(upr) per a escales energetiques pg > My a

través de la condicié de matching:
Acii = Ann — > Ni Cilpr) (F10:(um)li) = > Xi(pm) (f1Oi(pm)li)

on |i) and |f) sén els estats de les particules inicials i finals, mentre que X; sén

funcions que depenen de parametres de la teoria fonamental.

4. Finalment, utilitzant les RGEs podem transformar els coeficients de Wilson C;(pufr)
d’una escala d’alta energia puy > My en uns altres coeficients de Wilson a una

escala més baixa py << My .

A la figura [P.7] s’il-lustren els punts anteriors amb un exemple del que ocorre a la mescla
de mesons Bg en alguna extensié del SM amb noves particules ®xp . S’observa com els

graus de llibertat dinamics sén integrats per a energies menors que la seua massa.

P.3 Resultats i conclusions

El SM de la fisica de particules es considera actualment com el marc teoric de referéncia
de qualsevol teoria de NP perque al llarg dels anys ha superat amb éxit un gran nombre de
proves experimentals. Hem vist com les seues interaccions surten de principis de simetria
de gauge i com el SSB és capag¢ de generar les masses dels bosons febles a través del
mecanisme de Higgs. També, hem presentat el sector del sabor, introduint els fenomens
de violacié de CP i les diferents formes en queé apareix a la natura. Finalment, hem
introduit I’enfocament EFT que proporciona un marc excel-lent per fer front als diferents
sistemes fisics. Les técniques utilitzades al llarg d’aquest treball s’han il-lustrat a partir
de la teoria de Fermi.

Aquesta tesi se centra en ’estudi de sistemes fisics amb violacié de CP. Atés que el SM de

la fisica de particules no és capag de predir I’asimetrica proporcié de materia-antimateria
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observada a 1’Univers, es necessiten noves fonts de violaci6 de CP que podrien vindre
d’extensions de SM.
En les seglients seccions s’exposaran els resultats i les conclusions assolides en aquesta tesi

doctoral. Informacié detallada es pot trobar als Capitols [3] [4] [5] i [6}

P.3.1 Violaci6 directa de CP en la desintegracié de K — 7

En 1988 I'experiment NA31 va presentar la primera evidéncia d’una violaci6 directa de CP
a les amplituds de K — 77 . Més tard, un senyal clara amb una significanca estadistica de
7.2 0 es va establir amb les mostres de dades completes dels experiments de NA31, E731,
NA48 i KTeV, confirmant d’aquesta manera ’existéncia de la violacié de CP associada
a la transici6 amb canvi de sabor AS = 1 tal com va predir el SM. No obstant aixo, la
predicci6 tedrica de la relacié mesurada de &’ /e ha sigut objecte d’una forta controversia al
llarg dels anys. Tot i que la fisica subjacent ja es va aclarir en 2001 , la recent actualitzacié
de les dades de lattice ha revifat de nou el debat teoric. En aquest capitol, revisem ’estat
actual, es discuteix detalladament els diferents ingredients que entren en el calcul d’aquest
observable i els motius pels quals, en el passat, es van obtenir prediccions contradictories
per diversos grups. Finalment, es presenta una actualitzacié de la prediccié del SM,
que esta totalment d’acord amb la mesura experimental, i s’analitzen les perspectives de

millora futures. El contingut d’aquest capitol es basa en Ref. [52] .

P.3.2 Violaci6 d’isospin en la desintegracié de K — 7w

Mentre que la simetria d’isospin és una excellent aproximacié per a la majoria
d’aplicacions fenomenologiques, les violacions d’isospin induides per la diferéncia de massa
de quarks m, — mgy i la interaccié electromagnética poden generar contribucions grans a
alguns observables. Aquest és el cas de la relacié directa de violacié de CP €’/e , on es pro-
dueix una subtil cancel-lacié numerica entre les dues contribucions de I’isospin tal com es
discuteix a la Seccid L’esforg teoric actual per predir aquest observable amb una pre-

cisi6 similar a I’experimental requereix una millor comprensié dels efectes de trencament
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de l'isospin. El que permetria testejar diferents escenaris de nova fisica (NP). L’avaluacié
del paper de les diferents correccions d’isospin és una de les principals motivacions del
Capitol 4] on duem a terme una reanalisi de les contribucions de violacié d’isospin a les
amplituds de K — 7w . Per altra banda, presentem una revisié numerica completa de
la relacié directa de violacié de CP &’/e , on aquestes correccions tenen un paper molt
important. Després d’incloure els efectes actualitzats de violacié d’isospin, obtenim que

la predicci6 de SM
Re (¢'/e) = (13 t?) 107,

torna a estar d’acord amb la seua relacié mesurada experimentalment. Com al Capitol
la incertesa esta dominada per la nostra ignorancia actual sobre contribucions suprimides
d’ordre 1/N¢ a alguns acoblaments chirals de baixa energia. El valor central de ¢’/e és

lleugerament més petit que 'anterior a causa de 'augment de Qg ,

Qe = (121739)-1072 .

P.3.3 Mescla de mesons neutres en extensions del Model Estandard

Al Capitol [5] presentem un calcul complet, a un loop, dels coeficients de Wilson per a la
mescla de mesons neutres al AMHDM on contemplem la possibilitat d’ampliar els N — 1
doblets de Higgs a octets escalars de color. Aquest tipus de procés apareix a nivell de loop
al SM, per tant la mescla de mesons neutres és molt sensible a les contribucions de NP.
Finalment, particularitzant els nostres resultats analitics a 'ampla casuistica de models
de NP i utilitzant les dades experimentals de les factories de sabor actuals, hem obtingut

restriccions combinades per als parametres que caracteritzen aquests models.

P.3.4 Millora als moments dipolars electrics dels quarks pesats

A Ttltima aplicacié que es pot trobar al Capitol [6] ens centrem a ’estudi dels EDMs dels
quarks pesats. L’acoblament del EDM d’un quark produeix una contribucié al chromo-

EDM mitjancant diagrames a un loop de fotons. Incloent aquestes correccions en les RGE
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i utilitzant els estrictes limits dels seus chromo-EDMs, hem obtingut els segiients limits

als EDMs dels quarks charm i bottom.

ld.(me)| < 1.5 x 1072t ecm |

|dy(myp)| < 1.2 x 1072 ecm |

que milloren els anteriors en tres ordres de magnitud. Aquests nous limits podrien re-

stringir fortament algunes de les extensions proposades per al SM.
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