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Preface

The current knowledge on the structure of matter is the result of a huge experimental and

theoretical effort. Our Universe is composed of elementary particles governed by the four

fundamental forces: gravitational, weak, electromagnetic and strong forces.

The Standard Model (SM) of particle physics is the simplest theoretical description

of how these particles and forces, except for the gravitational force, are related to each

other. Along the years, the SM has been able to explain all the experimental data with

high accuracy, culminating in 2012 with the discovery of the Higgs boson. Its elegance,

simplicity and high predictivity have converted the SM in the best theoretical reference

framework to date.

Despite being a successful description of the reality, there are some phenomena that the

SM does not explain such as the large matter-antimatter asymmetry. In the early Universe,

the Big Bang should have resulted in the same proportions of matter and antimatter, but

nowadays we observe that almost everything around us is made of matter except for a

small amount of antimatter. One of the grand challenges facing physics is understanding

why we observe this asymmetry.

CP violation is one of the necessary ingredients to generate this large asymmetry. In

spite of including all needed ingredients, the SM is unable to completely generate the

observed asymmetry. Therefore, extensions of the SM with new sources of CP violation

could explain the size of this asymmetry. The main objective of this work is precisely the

study of phenomenological systems where the CP symmetry is violated.
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This thesis is divided in seven chapters. In Chapter 1, we present a comprehensive

overview of the SM, showing how its interactions emerge from symmetry principles. The

last part is dedicated to the flavour sector of the SM where the CP violation phenomena is

introduced through the Cabibbo-Kobawashi-Maskawa (CKM) matrix. Finally, we present

the different ways in which this phenomena can appear in nature.

The concept of Effective Field Theory (EFT) is introduced in Chapter 2, providing a

powerful theoretical approach for the physical systems studied along this thesis.

The theoretical determination of the direct CP-violating ratio ε′/ε in the SM is the first

phenomenological application presented in this thesis which can be found in Chapter 3.

Using the theoretical framework of Chiral Perturbation Theory (χPT), we obtain a SM

prediction in complete agreement with its experimental measurement. Finally, in Chap-

ter 4 we update the previous prediction including the known isospin-breaking corrections.

In Chapter 5, we perform a one-loop computation of the short-distance contributions

for the neutral meson mixing in a quite general extension of the SM, the Aligned-Multi-

Higgs-Doublet Model (AMHDM). This extension accommodates new sources of CP vio-

lation that could reproduce the size of the observed matter-antimatter asymmetry of the

Universe. Finally, these sources are strongly constrained from the current flavour data.

In Chapter 6, we obtain new limits for the charm and bottom quark electric dipole mo-

ments (EDMs) using the renormalization group equations (RGEs) and the strong bounds

on their chromo-EDMs.



Chapter 1

Deepening into Flavour Physics

The Standard Model (SM) of particle physics is the simplest theory based on symmetry

principles that is able to describe the experimental data with high accuracy. The SM is

composed by two gauge theories, SU(3)C and SU(2)L ⊗ U(1)Y , which lead into two types

of interactions, strong and electroweak interactions, respectively. In this chapter, we give

a general overview of the SM, paying special attention to the flavour sector. For further

reading, you can consult Refs. [1–5].

1.1 The Gauge Interactions of the Standard Model

In this section, we study how the fundamental interactions of the SM emerge from gauge

symmetry principles.

1.1.1 Strong interaction

Quantum chromodynamics (QCD) is the gauge theory of the strong interactions with

SU(3)C as the underlying gauge group [6–9]. The matter fields of QCD are the so-called

quarks which are spin-1/2 fermions with six different flavours (3 light flavours up u, down

d, strange s and 3 heavy flavours charm c, bottom b, top t) and three possible colour

charges (red, blue or green). Applying the gauge principle to the SU(3)C group, we can

3



4 Deepening into Flavour Physics

obtain the QCD Lagrangian from the free quark Lagrangian. For that purpose, let us

consider

L0 =
∑
f

∑
α

qαf
(
i /∂ − mf

)
qαf =

∑
f

qf
(
i /∂ − mf

)
qf , (1.1.1)

where /∂ ≡ γµ ∂µ and qf ≡ (q1
f , q

2
f , q

3
f )T is the colour triplet field with components qαf ,

being α and f the colour and the flavour indices, respectively. Notice that L0 is invariant

under the global SU(3)C transformations,

qf
SU(3)C
−−−−−−−→ q′f = U qf , q̄f

SU(3)C
−−−−−−−→ q′f = qf U

† , (1.1.2)

where U is a unitary matrix with det U = 1 that is conveniently written as

U = exp
{
i

8∑
a=1

λa

2 θa

}
. (1.1.3)

θa are arbitrary real parameters without physical meaning and the eight linearly inde-

pendent matrices λa are the Gell-Mann matrices which play the role of the generators of

SU(3)C . They are traceless and satisfy the following commutation relations[
λa

2 ,
λb

2

]
= i

8∑
c=1

fabc
λc

2 , (1.1.4)

where fabc are the totally antisymmetric real structure constants which give a measure of

the non-commutativity of SU(3)C ,

fabc = 1
4 i Tr

([
λa, λb

]
λc
)
. (1.1.5)

Let the θa parameters depend on the space-time coordinates, θa = θa(x). Then, due to

the derivative acting on the quark field, the Lagrangian given by Eq. (1.1.1) is no longer

invariant,

L′0 = L0 −
8∑

a=1
(∂µ θa) Jµa , (1.1.6)

where

Jµa ≡
∑
f

∑
α,β

qαf γ
µ
(
λa

2

)
αβ

qβf (1.1.7)

is the conserved current given by the Noether theorem associated with the global symme-

try (1.1.2).



1.1 The Gauge Interactions of the Standard Model 5

To keep the invariance under local transformations, one has to apply the gauge principle

to the SU(3)C group which consists in adding extra pieces to the Lagrangian, transforming

it in such a way that they cancel the additional term in (1.1.6). Then, we must introduce

32 − 1 gauge fields Gaµ, transforming as

Gµ ≡
λa

2 Gaµ
SU(3)C
−−−−−−−→ G′µ = U Gµ U

† + i

gs
(∂µU) U † , (1.1.8)

where gs corresponds to the strong coupling constant, and define the covariant derivative

Dµ as

Dµ qf ≡
(
∂µ + i gs Gµ

)
qf , (1.1.9)

which transforms, by construction, as the quark field.

Then, replacing ∂µ by Dµ in Eq. (1.1.1), we obtain the following Lagrangian

L =
∑
f

q̄f
(
i /D − mf

)
qf =

∑
f

q̄f
(
i /∂ − mf

)
qf − gs J

µ
a G

a
µ , (1.1.10)

which is invariant under the local transformation given by Eq. (1.1.2). The gauge principle

provides a flavour-independent interaction between quark and gauge fields called gluons.

In order to propagate these new fields, it is necessary to add a kinetic term. The only

quantity with dimension four that does not violate the fundamental symmetries and is

invariant under a local SU(3)C transformation, is

Lkin = − 1
2 Tr (Gµν Gµν) = −1

4 G
µν
a Gaµν , (1.1.11)

where

Gµν = − i

gs
[Dµ, Dν ] = ∂µGν − ∂ν Gµ + i gs [Gµ, Gν ] ≡ λa

2 Gµνa , (1.1.12)

and transforms under SU(3)C as

Gµν
SU(3)C
−−−−−−−→ G′µν = U Gµν U

† . (1.1.13)

Finally, the QCD Lagrangian reads

LQCD = − 1
4 (∂µGνa − ∂νGµa)

(
∂µG

a
ν − ∂νG

a
µ

)
+
∑
f

qf (i /∂ − mf ) qf − gs J
µ
a G

a
µ

+ gs
2 fabc (∂µGνa − ∂νGµa) Gbµ Gcν −

g2
s

4 fabc fade G
µ
b G

ν
c G

d
µ G

e
ν . (1.1.14)



6 Deepening into Flavour Physics

In the first line of Eq. (1.1.14), one finds from left to right the gluon and quark kinetic

terms and the quark-gluon interaction, while in the last line, the gluon self-interactions

involving vertices with three and four gauge fields as shown in Figure 1.1.

q̄αf
gs

λa
αβ

2
γµ

qβf

Gaµ

Gaµ gsfabc

Gbσ

Gcν

Gbµ

g2
sfabcfade

Gcν

Gdσ

Geρ

Figure 1.1: Feynman vertices for the strong interaction.

The SU(3)C symmetry does not allow a mass term for gluons, since m2
G G

µ
a G

a
µ breaks

the gauge invariance. The last two terms in the first line of Eq. (1.1.14) would be for-

mally identical to the Quatum Electrodynamics (QED) Lagrangian with an appropiate

redefinition of the gauge field. Unlike QED, QCD has triple and quartic self-interactions

between gluon fields. The existence of these terms explain the fundamental features of the

strong interaction such as asymptotic freedom (strong interactions become weaker at short-

distances) and confinement (the strong interaction increases at long-distances). Further

details can be found in Refs. [10–12].

1.1.2 Electroweak interactions

The Electroweak Standard Model (EWSM) is a SU(2)L ⊗ U(1)Y gauge theory that de-

scribes weak and electromagnetic interactions through the exchange of spin-1 gauge fields,

similar to gluons in QCD. In the EWSM, one has a massless photon for the electromagnetic

interaction and 3 massive weak bosons, W± and Z0, for the weak interaction [13–15].



1.1 The Gauge Interactions of the Standard Model 7

The fermionic sector is organized in 3 generations with identical properties. The only

differences are their masses and their flavour quantum numbers. The particle content in

each generation is

• First generation:

νe
e−


L

,

u
d′


L

, e−R , uR , d′R

• Second generation:

νµ
µ−


L

,

 c
s′


L

, µ−R , cR , s′R

• Third generation:

ντ
τ−


L

,

 t
b′


L

, τ−R , tR , b′R

with their corresponding antiparticles. XR,L ≡ PR,LX with PR,L = (1 ± γ5)/2 for X =

qu, qd, νl, l
−. Each generation has 1 (1 lepton field) plus 3 (1 quark field with 3 colours)

left-handed fields that transform as SU(2)L doublets, in addition to 1 (1 lepton field) plus

6 (2 quark field with 3 colours) right-handed fields that transform as SU(2)L singlets.

For simplicity, let us consider just one generation,

Q1(x) =

qu
qd


L

, Q2(x) = qu R , Q3(x) = qd R , (1.1.15)

L1(x) =

νl
l−


L

, L2(x) = l−R , (1.1.16)

with the following representations under the gauge SU(3)C ⊗ SU(2)L ⊗U(1)Y ,

Q1(x) = (3, 2, 1/6), Q2(x) = (3, 1, 2/3) , Q3(x) = (3, 1,−1/3) ,

L1(x) = (1, 2,−1/2), L2(x) = (1, 1,−1) .

The free Lagrangian is given by

Lfree ≡ i
3∑
j=1

Qj(x) /∂ Qj(x) + i
2∑

k=1
Lk(x) /∂ Lk(x) , (1.1.17)



8 Deepening into Flavour Physics

which is invariant under global SU(2)L ⊗U(1)Y transformations,

Q1(x)
SU(2)L⊗U(1)Y
−−−−−−−−−−−→ Q′1(x) ≡ exp {i yq1 β} UL Q1(x) ,

Q2,3(x)
SU(2)L⊗U(1)Y
−−−−−−−−−−−→ Q′2,3(x) ≡ exp

{
i yq2,3 β

}
Q2,3(x) ,

L1(x)
SU(2)L⊗U(1)Y
−−−−−−−−−−−→ L′1(x) ≡ exp

{
i yl1 β

}
UL L1(x) ,

L2(x)
SU(2)L⊗U(1)Y
−−−−−−−−−−−→ L′2(x) ≡ exp

{
i yl2 β

}
L2(x) , (1.1.18)

where UL is the non-Abelian matrix associated to the global SU(2)L transformation,

UL = exp
{
i

3∑
j=1

σj
2 αj

}
, (1.1.19)

and σj are the Pauli matrices and the parameters yq,li are the quark and lepton hyper-

charges which play a similar role as the electric charge Q for U(1)Q in QED.

In order to have a Lagrangian invariant under local SU(2)L⊗U(1)Y transformation, as

in QCD, we have to replace the Dirac derivatives by covariant ones. In SU(2)L ⊗ U(1)Y ,

we have 4 gauge parameters, αi(x) and β(x), which imply 3 vectorial bosons, W i
µ(x),

one for each SU(2)L generator, and another one, Bµ(x), for U(1)Y . Then, the covariant

derivatives are given by

Dµ Q1(x) ≡
[
∂µ + i g W̃µ(x) + i g′ yq1 Bµ(x)

]
Q1(x) ,

Dµ Q2,3(x) ≡
[
∂µ + i g′ yq2,3 Bµ(x)

]
Q2,3(x) ,

Dµ L1(x) ≡
[
∂µ + i g W̃µ(x) + i g′ yl1 Bµ(x)

]
L1(x) ,

Dµ L2(x) ≡
[
∂µ + i g′ yl2 Bµ(x)

]
L2(x) , (1.1.20)

where W̃µ(x) ≡ σi
2 W i

µ(x), while g and g′ are the SU(2)L and U(1)Y coupling constants

which characterize the strength of the electroweak interaction. The gauge fields Bµ(x)
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and W̃µ(x) transform under SU(2)L ⊗U(1)Y as

Bµ(x)
SU(2)L⊗U(1)Y
−−−−−−−−−−−→ B′µ(x) ≡ Bµ(x)− 1

g′
∂µβ(x) , (1.1.21)

W̃µ(x)
SU(2)L⊗U(1)Y
−−−−−−−−−−−→ W̃ ′µ(x) ≡ UL(x) W̃µ(x)U †L(x) + i

g
[∂µUL(x)]U †L(x) ,

which are obtained imposing that DµQi(x) and DµLi(x) transform exactly in the same

way as the Qi(x) and Li(x) fields, respectively.

Replacing all the fermionic derivatives by their corresponding covariant derivatives, we

obtain a Lagrangian invariant under local SU(2)L ⊗U(1)Y transformations,

L = i
3∑
j=1

Qj(x) γµ Dµ Qj(x) + i
2∑

k=1
Lk(x) γµ Dµ Lk(x) , (1.1.22)

with the following kinetic terms

Lkin = −1
4 Bµν B

µν − 1
4 W

i
µνW

µν
i , (1.1.23)

where

Bµν ≡ ∂µBν − ∂νBµ , W i
µν ≡ ∂µW

i
ν − ∂νW i

µ − g εijkW j
µ W

k
ν , (1.1.24)

which transform as

Bµν
SU(2)L⊗U(1)Y
−−−−−−−−−→ Bµν , W i

µν

SU(2)L⊗U(1)Y
−−−−−−−−−→ ULW

i
µν U

†
L . (1.1.25)

Finally, we obtain the EWSM Lagrangian

LEWSM = −1
4 Bµν B

µν − 1
4 W

i
µνW

µν
i + i

∑
j

(
Qj /D Qj + Lj /D Lj

)
, (1.1.26)

which can be expanded as

LEWSM = −1
4 (∂µBν

a − ∂νBµ
a ) (∂µBa

ν − ∂νBa
µ)− 1

4 (∂µW ν
a − ∂νWµ

a ) (∂µW a
ν − ∂νW a

µ )

+ i
3∑
j=1

Qj /∂ Qj + i
2∑

k=1
Lk /∂ Lk − g′ JµY Bµ − g

3∑
a=1

J̃µa W
a
µ

+ g

2 ε
abc (∂µW ν

a − ∂ν Wµ
a )W b

µW
c
ν −

g2

4 εabc εadeW
µ
b W

ν
c W

d
µ W

e
ν , (1.1.27)
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where

JµY ≡
3∑
i=1

yqi Qi γ
µ Qi +

2∑
i=1

yli Li γ
µ Li ,

J̃µa ≡ Q1 γ
µ σ

a

2 Q1 + L1 γ
µ σ

a

2 L1 , (1.1.28)

are the conserved currents. The first line of Eq. (1.1.27) contains the kinetic terms of the

bosonic fields Bµ and W a
µ . The second line contains the free Dirac Lagrangians for quarks

and leptons, and the interaction Lagrangians between fermions and gauge bosons. The

last line contains the typical interactions of non-Abelian groups, the three and four gauge

self-interactions for W a
µ bosons. As in QCD, the mass terms of gauge bosons break gauge

symmetry. Furthermore, it is not allowed to include fermionic mass terms, since they mix

left and right field components which follow different transformations properties, so that,

these terms explicitly break gauge symmetry. Therefore, the EWSM Lagrangian, given

by Eq. (1.1.27), only contains massless fields. In the following subsections, we describe in

more detail all different pieces that compose the EWSM Lagragian.

1.1.2.1 The charged-current sector

qd
g
√

2
PL

qu

W

l− g
√

2
PL

νl

W

Figure 1.2: Feynman vertices for charged-currents interactions.

The EWSM Lagragian contains interactions between fermion and gauge bosons,

LEWSM ⊃ −g′ JµY Bµ − g
3∑

a=1
J̃µa W

a
µ (1.1.29)

= − g′ Bµ
3∑
i=1

yqi Qi γ
µ Qi − g Q1 γ

µ W̃µ Q1 − g′ Bµ

2∑
i=1

yli Li γ
µ Li − g L1 γ

µ W̃µ L1 .
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The terms with W̃µ fields correspond to the charged-current interactions with a boson

field Wµ ≡ 1√
2

(
W 1
µ + i W 2

µ

)
and its complex conjugate W †µ ≡ 1√

2

(
W 1
µ − i W 2

µ

)
. The

charged-current interactions for quarks and leptons are

LCC = − g√
2
W †µ

(
q̄u(x) γµ PL qd(x) + ν̄l(x) γµ PL l−(x)

)
+ h.c. (1.1.30)

1.1.2.2 The neutral-current sector

f
eQf

f

γ

f
e

2 sθcθ
(vf − afγ5)

f

Z

Figure 1.3: Feynman vertices for neutral-current interaction.

The Eq. (1.1.29) also contains interactions between neutral gauge fields W 3
µ and Bµ

which we would like to identify with the Z boson and the photon γ. However, since the

photon field Aµ has the same right and left chiral fermionic interactions, the Bµ field can

not be the photon field. It would only happen if yq1 = yq2 = yq3, yl1 = yl2 = yl3, g′ y
q
j = eQqj

and g′ ylj = eQlj which can not be satisfied simultaneously. We can try with an arbitrary

combination between them, W 3
µ

Bµ

 ≡
 cθ sθ
−sθ cθ


Zµ
Aµ

 , (1.1.31)

where sθ ≡ sin θW and cθ ≡ cos θW . In terms of Zµ and Aµ, the neutral-current Lagrangian

can be written as

LNC = −
3∑
j=1

Qj

{
/A

[
g
σ3
2 sθ + g′ yqj cθ

]
+ /Z

[
g
σ3
2 cθ − g′ yqj sθ

]}
Qj

−
2∑
j=1

Lj

{
/A

[
g
σ3
2 sθ + g′ ylj cθ

]
+ /Z

[
g
σ3
2 cθ − g′ ylj sθ

]}
Lj , (1.1.32)
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where /A ≡ γµA
µ and /Z ≡ γµZ

µ. Then, in order to obtain the QED Lagrangian, one has

to impose

g sin θW = g′ cos θW = e ,

Y = Q − T3 , (1.1.33)

where T3 = σ3/2 is the third component of the weak isospin, while Q is the electric

charge. The first equality relates the g and g′ couplings with the electromagnetic coupling

e, providing the unification of the electroweak interactions. The second equality fixes the

fermionic hypercharges in terms of the electric charges and the weak isospin,

yq1 = Qqu −
1
2 = Qqd + 1

2 , yq2 = Qqu , yq3 = Qqd , (1.1.34)

yl1 = Qνl −
1
2 = Ql− + 1

2 , yl2 = Ql− . (1.1.35)

Therefore, the neutral-current Lagrangian can be expressed as

LNC = LQED + LZNC , (1.1.36)

where LQED and LZNC are the QED and Z neutral-current Lagrangians respectively,

LQED = −e
∑
j

(
Qj /AQ

q
jQj + Lj /AQljLj

)
, (1.1.37)

LZNC = − e

2 sin θW cos θW

∑
f

f̄ /Z
(
vf − afγ5

)
f , (1.1.38)

with af ≡ T f3 , vf ≡ T
f
3 (1− 4 |Qf | sin2 θW ) and f is the fermion field.

1.1.2.3 Self-interactions of the weak gauge bosons

The kinetic Lagrangian, given by Eq. (1.1.23), contains triple and quartic self-interactions,

see Figure 1.4,

L3 = + i e cot θW
{
wµν W †µ Zν − wµν†Wµ Zν + WµW

†
ν Z

µν
}

+ i e

{
wµν W †µ Aν − wµν†Wµ Aν + WµW

†
ν F

µν
}
, (1.1.39)
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γ, Z

W+

W−

W+

W−

γ, Z

γ, Z

W+

W−

W+

W−

Figure 1.4: Self interactions vertices of the weak gauge bosons.

L4 = − e2

2 sin2 θW

{
(W †µ Wµ)2 − W †µ W

µ†Wν W
ν
}

− e2 cot2 θW

{
W †µ W

µ Zν Z
ν − W †µ Z

µWν Z
ν
}

− e2 cot θW
{

2W †µ Wµ Zν A
ν − W †µ Z

µWν A
ν − W †µ A

µWν Z
ν
}

− e2
{
W †µ W

µ Aν A
ν − W †µ A

µWν A
ν
}
, (1.1.40)

where wµν = ∂µWν − ∂νWµ , w†µν = ∂µW
†
ν − ∂νW †µ and Zµν = ∂µZν − ∂νZµ .

1.2 Spontaneous Symmetry Breaking

Promoting the SU(2)L ⊗ U(1)Y group as a local gauge symmetry, we have determined

all the electroweak fermion and boson interactions. However, in contrast to the gauge

bosons of QED and QCD, the electroweak gauge bosons are massive. Since, the gauge

symmetry does not allow mass terms for the gauge bosons, this requires a new ingredient in

order to solve this problem, spontaneous symmetry breaking. The Spontaneous Symmetry
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Breaking (SSB) appears when a system defined by a Lagrangian symmetric under a certain

transformation has a vacuum state that is not symmetric. In this section, we show how

the SSB leads to the appearance of scalar fields with zero mass called Goldstone particles

and then we give mass to theW± and Z0 bosons of the SM through the Higgs mechanism.

1.2.1 Global symmetry: Goldstone theorem

Let us consider a complex scalar field φ(x) with the following Lagrangian

L = (∂µφ)†(∂µφ) − V (φ) , V (φ) ≡ µ2 (φ† φ) + h
(
φ† φ

)2
, (1.2.41)

which is invariant under global phase transformations,

φ −→ φ′ ≡ exp {i θ}φ , φ† −→ φ′† ≡ φ† exp {−i θ} , (1.2.42)

where θ is an arbitrary constant.

The potential is bounded from below, then λ > 0 . For µ2, we have two possibilities

depending on its sign, see Figure 1.5:

1. µ2 > 0 : The potential V (φ) has a unique minimum, φ0(x) ≡ |〈0|φ(x)|0〉| = 0 . The

term involving µ2 is a mass term, therefore φ(x) has mass µ.

2. µ2 < 0 : The minimum corresponds to the configurations of φ(x) that satisfy

φ0(x) ≡ v√
2

exp {i θ} , v =

√
−µ

2

h
. (1.2.43)

Due to the global U(1) invariance, there are an infinite number of minimum energy

states that are connected through Eq. (1.2.43).

For µ2 < 0 , we can build a perturbation theory through the expansion of the scalar field

around one of these minima given by Eq. (1.2.43). For that purpose, we introduce the

following parametrization

φ(x) = 1√
2

(
v + ϕ1(x)

)
exp

{
i

(
θ + ϕ2(x)

v

)}
, (1.2.44)
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Im(φ)

Re(φ)

V (φ)

(a) µ2 < 0

Im(φ)

Re(φ)

V (φ)

(b) µ2 > 0

Figure 1.5: Scalar potential V (φ).

where ϕ1(x) and ϕ2(x) are real fields that describe small perturbations of the modulus

and the phase of φ(x) from the chosen minimum. The choice of one of these minima, via

the parameter θ, leads to SSB. Inserting the parametrization given by Eq. (1.2.44) into

Eq.(1.2.41),

L = 1
2 (∂µϕ1)(∂µϕ1) + 1

2

(
1 + ϕ1

v

)2
(∂µϕ2)(∂µϕ2)

− µ2 v2

2

(
1 + ϕ1

v

)2
− h v2

2

(
1 + ϕ1

v

)4
, (1.2.45)

where we find the following aspects:

• ϕ1(x) is a scalar field with mass µ which describes the radial oscillations of φ around

v/
√

2. The mass results from non-vanishing radial curvature of V (φ).

• ϕ2(x) is a massless scalar field called Goldstone boson. It is massless due to the

vanishing curvature along the potential minima, ∂2V/∂ϕ2
2 = 0 .

• ϕ1(x) interacts with ϕ2(x) only through derivatives of ϕ2(x) . In the limit of zero

momenta, the Goldstone bosons do not interact with ϕ1(x) .
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Although this conclusions correspond to a particular model, it is an example of a more

general result, known as Goldstone theorem [16, 17]:

If a Lagrangian is invariant under a continuous symmetry group G, but the vacuum is

only invariant under a subgroup H ⊂ G, then there are as many massless particles with

zero spin (Goldstone bosons) as generators of G that are not of H, in other words, the

number of symmetries that have been broken.

In this quite general example, there is only one Goldstone boson because when we have

chosen the minimum, we have broken the only symmetry of the vacuum.

1.2.2 Local gauge symmetry: Higgs mechanism

We have studied how a SSB of a global symmetry produces a massless particle. This

seems to be unuseful for giving mass to the gauge bosons. However, when we consider a

SSB of a local gauge symmetry, the problem is completely solved. First, we have to build

the scalar Lagragian which requires the choice of the scalar field representation. This

choice demands that the field with a nonzero vacuum value is electrically neutral, then the

photon remains massless, while it have to carry nonzero values of T3 and Y . The simplest

choice is an SU(2)L doublet of complex scalar fields [18–20]

Φ(x) =

φ(+)(x)

φ(0)(x)

 . (1.2.46)

We can write the scalar Lagrangian invariant under SU(2)L ⊗U(1)Y as

Lscalar = (DµΦ)†(DµΦ) − µ2 Φ† Φ − h (Φ† Φ)2 ,

DµΦ =
[
∂µ + i g W̃µ + i g′ YΦ Bµ(x)

]
Φ , (1.2.47)

where YΦ = QΦ − T3 = 1
2 . The value of the scalar hypercharge YΦ is set to have

the correct coupling between Φ(x) and Aµ(x). The photon is not coupled to φ(0), this is

crucial to have a massless photon.
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For h > 0 and µ2 < 0 , the situation is very similar to the Goldstone model, see

Figure 1.5. There are an infinite number of minima, satisfying

|〈0|φ(0)|0〉| = v√
2
, v =

√
−µ

2

h
. (1.2.48)

All of them connected by an SU(2)L ⊗ U(1)Y transformation (4 generators). When we

choose one of these minima, the symmetry is spontaneously broken leading a remaining

U(1)Q symmetry (1 generator), which gives rise to the appearance of 4 − 1 = 3 massless

scalar fields (Goldstone theorem).

As in the global symmetry case, we parametrize the scalar doublet in terms of the

radial H(x) and the phase θi(x) excitations around the physical vacuum,

Φ(x) = exp
{
i
σi
2 θi(x)

} 1√
2

 0

v + H(x)

 . (1.2.49)

Using the gauge invariance of the Lagrangian, we can transform Φ(x) into another field in

which the three θi(x) fields (Goldstone bosons) do not appear and so preserving the Higgs

boson as the only physical scalar field H(x),

Φ(x) = 1√
2

 0

v + H(x)

 . (1.2.50)

These three degrees of freedom, that are apparently lost, become the longitudinal polar-

izations of the gauge bosons W± and Z0. After the SSB, they become massive fields as

can be seen inserting Eq. (1.2.50) into Eq. (1.2.47),

(DµΦ)† (DµΦ) = (v + H)2
{
g2

4 W †µ W
µ + g2

8 cos2 θW
Zµ Z

µ

}
+ . . . ,

which contains the mass terms for the weak bosons W± and Z0,

MZ cos θW = MW = 1
2 v g , (1.2.51)

and the photon stays massless. Then, the W± and Z0 bosons acquire masses through a

SSB of a local gauge symmetry with the following pattern:

SU(2)L ⊗U(1)Y
SSB

−−−−−−−−−→ U(1)Q . (1.2.52)
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1.2.3 The Higgs boson and its interactions

The scalar Lagrangian, given by Eq. (1.2.47), has introduced a new scalar particle: the

Higgs boson. In terms of physical fields (unitary gauge), it becomes

Lscalar = 1
4 h v

4 + LH + LHG2 , (1.2.53)

where

LH = 1
2 ∂µH ∂µH − 1

2 M
2
H H2 − M2

H

2v H3 − M2
H

8v2 H
4 , (1.2.54)

LHG2 =
(
M2
W W †µW

µ + 1
2 M

2
Z ZµZ

µ
){

1 + 2
v
H + H2

v2

}
, (1.2.55)

and the Higgs mass is given by MH =
√
−2 µ2 =

√
2 h v . In Figure 1.6, we show the

Higgs interactions with gauge bosons and fermions.

Z 2M2
Z

v

H

Z

Z

M2
Z
v2

Z

H

H

W+ 2M2
W
v

H

W−

W+

M2
W
v2

W−

H

H

H
mf
v

f̄

f

Figure 1.6: Higgs interactions with gauge bosons and fermions.

1.2.4 The Yukawa Lagrangian

In the previous section, we have been able to produce all weak boson masses via the

Higgs mechanism. In this section, we show that the SU(2)L scalar doublet allows us to
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add new terms to the Lagrangian which are invariant under the gauge symmetry. These

interactions will be responsible of generating the mass for all fermions in the SM.

Let us consider n generations of fermions, denoted by ν ′j , l′j , u′j , d′j , where the members

of each generation j (j = 1, ... , n) have the usual SU(2)L⊗U(1)Y transformations. Due to

the insertion of the scalar doublet, a large variety of fermion-scalar doublet couplings are

allowed by the gauge symmetry. The most general interaction is the Yukawa Lagrangian,

LY = −
∑
j k

{
Q
′
1j Y

(d)
jk ΦQ′3k +Q

′
1j Y

(u)
jk Φ̃Q′2k + L

′
1j Y

(l)
jk Φ L′2k

}
+ h.c. , (1.2.56)

where Y (d)
jk , Y (u)

jk and Y (l)
jk are the three Yukawa couplings, arbitrary n×n complex matrices,

and Φ̃ ≡ iσ2Φ∗ is the conjugate representation of the scalar doublet Φ . In the unitary

gauge, the Yukawa Lagrangian can be written as

LY = −
(

1 + H

v

) {
d̄′LM′d d′R + ū′LM′u u′R + l̄′LM′l l′R

}
+ h.c. , (1.2.57)

where d′, u′ and l′ are n-dimensional vectors in flavour space and

(M′d)ij ≡ Y
(d)
ij

v√
2
, (M′u)ij ≡ Y (u)

ij

v√
2
, (M′l)ij ≡ Y

(l)
ij

v√
2
, (1.2.58)

are the mass matrices. In general, theM′d matrix can be decomposed as

M′d = Hd Ud = S†dMd Sd Ud , (1.2.59)

whereHd ≡
√
M′dM

′†
d is a hermitian positive definite matrix while Ud is a unitary matrix.

Furthermore, Hd can be diagonalized through another unitary matrix Sd. Therefore, the

final result is a diagonal, hermitian and positive definite matrixMd . ForM′u andM′l ,

we can do the same:

Md = diag(md, ms, mb, ...) ,

Mu = diag(mu, mc, mt, ...) , (1.2.60)

Ml = diag(me, mµ, mτ , ...) ,
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and finally, the Yukawa Lagrangian becomes

LY = −
(

1 + H

v

) {
d̄Md d + ūMu u + l̄Ml l

}
, (1.2.61)

where we have defined the mass eigenstates as

dL ≡ Sd d
′
L , uL ≡ Su u

′
L , lL ≡ Sl l

′
L ,

dR ≡ Sd Ud d
′
R , uR ≡ Su Uu u

′
R , lR ≡ Sl Ul l

′
R . (1.2.62)

The diagonalization of the Yukawa Lagrangian has strong physical implications on the

previous Lagrangians, since we have to put them in terms of the mass eigenstates. These

implications are the foundations of flavour physics in the SM,

• Neutral-currents do not mix flavour in the SM, this is known as the Glashow-

Iliopoulos-Maiani mechanism [21]. The neutral-current Lagrangian, given by Eq. (1.1.36),

does not change when it is expressed in terms of the mass eigenstates,

f̄ ′L,R f
′
L,R = f̄L,R fL,R . (1.2.63)

• Charged-currents are the only interactions that mix flavour in the SM. The charged-

current Lagrangian, given by Eq. (1.1.30), mixes both ū fermion states with d and

ν̄l fermion states with l. After diagonalizing the mass matrices,

ū′L d
′
L = ūL Su S

†
d dL ≡ ūL V dL . (1.2.64)

In general, Su 6= Sd, then when we express the weak eigenstates in terms of the mass

eigenstates, it appears the product Su S†d which is an n× n unitary matrix denoted

by V . Therefore, the charged-current Lagrangian becomes

LCC = − g√
2
W †µ

∑
ij

ūi γ
µ PL Vij dj +

∑
l

ν̄l γ
µ PL l

 + h.c. (1.2.65)
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dj Vij

ui

W

Figure 1.7: Feynman vertex for flavour-changing interactions.

• If a right-handed neutrino νR is included in the SM, we would have additional terms

in the Yukawa Lagrangian that would lead to a mass piece,

(M′ν)ij ≡ Y
(ν)
ij

v√
2
. (1.2.66)

This would acommodate massive neutrinos in addition of Lepton Flavour Violation

(LFV). This violation would be parametrized by a mixing matrix that would be

analogous to the CKM matrix of the quark sector. Another way to implement

the neutrino masses in the SM is through the addition of a right-handed Majorana

neutrino mass term [22]. In the last case, the neutrino would be its own antiparticle.

1.3 The CKM matrix

The quark mixing matrix V is an n×n unitary matrix, characterized by n2 real parameters:

n(n−1)/2 modulus and n(n+1)/2 phases. Since the SM Lagrangian (except the charged-

current Lagrangian) is invariant under phase transformations of the quark fields, ui →

eiφiui and dj → eiθjdj , some of these parameters are redundant. The Vij → Vijei(θj−φi)

transformation allows us to eliminate 2n − 1 phases which reduces the parameters to

n(n − 1)/2 modulus (mixing angles) and (n − 1)(n − 2)/2 complex phases (CP violating

phases).

For n = 2 generations, the CP violation phenomena can not be explained because there

are no complex phases. For n = 3, the quark mixing matrix is called Cabibbo-Kobayashi-

Maskawa (CKM) matrix [23, 24] which has 3 mixing angles and 1 complex phase. In
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the literature, the CKM matrix can be found in different equivalent parameterizations.

One of the most popular is the standard CKM parameterization, introduced by Chau and

Keung [25],

V =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13 e−iδ13

0 1 0

−s13 eiδ13 0 c13




c12 s12 0

−s12 c12 0

0 0 1



=


c12 c13 c13s12 s13e−iδ13

−c23s12 − c12s13s23eiδ13 c12c23 − s12s13s23eiδ13 c13s23

s12s23 − c12c23s13eiδ13 −c12s23 − c23s12s13eiδ13 c13c23

 , (1.3.67)

where cij ≡ cos θij and sij ≡ sin θij , i and j are the generation labels (i, j = 1, 2, 3).

The θij angles are defined in the
[
0, π2

]
range through a proper redefinition of the quark

phases, so cij ≥ 0 , sij ≥ 0 and 0 ≤ δ13 ≤ 2π and then δ13 is the only source that generates

CP violation in the SM. In fact, this was the reason for advocating [24] the existence of a

third family before the discovery of the bottom quark and the tau lepton, since with only

two families, the SM could not explain the CP violation observed in the kaon system.

Experimentally it is known that s13 � s23 � s12 � 1. A convenient parameterization

is the Wolfenstein expansion with three mixing parameters (λ, A, ρ) and one source of

CP violation η . In this parametrization, λ plays the role of the expansion parameter.

Defining s12 ≡ λ = |Vus|/
√
|Vud|2 + |Vus|2 , s23 ≡ A λ2 = λ |Vcb/Vus| and s13 eiδ13 ≡

Aλ3(ρ + iη) = V ∗ub [26–28], we can explicitly show the hierarchy in the size of mixing

angles through orders of λ ,

V =


1− 1

2 λ
2 λ A λ3 (ρ− i η)

−λ 1− 1
2 λ

2 A λ2

A λ3 (1− ρ− i η) −A λ2 1

 + O(λ4) . (1.3.68)
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where

A ≈ |Vcb|
λ2 , (1.3.69)

√
ρ2 + η2 ≈

∣∣∣∣ Vubλ Vcb

∣∣∣∣ . (1.3.70)

Then, diagonal transitions (Vud, Vcs, Vtb) are O(1), transitions between the first and

the second generation (Vus, Vcd) are O(λ), transitions between the second and the third

generation (Vcb, Vts) are O(λ2) and transitions between the first and the third generation

(Vub, Vtd) are O(λ3) .

Figure 1.8: Principal processes used to determine the CKM matrix elements [29].

1.3.1 Unitarity of the CKM matrix

The unitarity of the CKM matrix allows us to test the consistency of the SM, then it

is important to determine the matrix elements with high accuracy. The accurate deter-

mination of these matrix elements supposes a challenge because it involves the study of

hadronic decays that introduce large theoretical uncertainties. The Figure 1.8 shows which

processes are used to determine the CKM matrix elements. An apparent violation of the
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unitarity of the CKM matrix could indicate signs of new physics beyond the SM. For in-

stance, this could lead to a fourth generation or exotic heavy quarks, so the submatrix 3×3

would cease to be unitary by itself. Alternatively, this could involve new interactions such

as supersymmetry (SUSY), leptoquarks, or a heavy W ′ boson (coupled to right-handed

currents) or a gauge Z ′ boson that have not been included in the analysis and therefore

would lead to an incorrect determination of some elements of the CKM matrix.

The unitarity of the CKM matrix imposes that

V † V = V V † = I , (1.3.71)

in matrix form

∑
i

Vij V
∗
il = δjl ,

∑
j

Vij V
∗
kj = δik . (1.3.72)

This fixes the rows and columns normalization,

|Vud|2 + |Vus|2 + |Vub|2 = 1 , |Vud|2 + |Vcd|2 + |Vtd|2 = 1 ,

|Vcd|2 + |Vcs|2 + |Vcb|2 = 1 , |Vus|2 + |Vcs|2 + |Vts|2 = 1 , (1.3.73)

|Vtd|2 + |Vts|2 + |Vtb|2 = 1 , |Vub|2 + |Vcb|2 + |Vtb|2 = 1 ,

and six unitarity relations,

Vud V
∗
us + Vcd V

∗
cs + Vtd V

∗
ts = 0 , Vud V

∗
cd + Vus V

∗
cs + Vub V

∗
cb = 0 ,

Vud V
∗
ub + Vcd V

∗
cb + Vtd V

∗
tb = 0 , Vud V

∗
td + Vus V

∗
ts + Vub V

∗
tb = 0 , (1.3.74)

Vus V
∗
ub + Vcs V

∗
cb + Vts V

∗
tb = 0 , Vcd V

∗
td + Vcs V

∗
ts + Vcb V

∗
tb = 0 .

Plotting the unitarity relations as a sum of three complex numbers whose sum is zero,

they form a triangle, see Figure 1.9. The area of these triangles is J /2, where J is the

Jarlskog invariant. In the SM any CP violation is proportional to this invariant quantity.

The Jarlskog invariant is given by [30]

Im
[
Vij Vkl V

∗
il V

∗
kj

]
= J

3∑
m,n=1

εikmεjln , (1.3.75)
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C B

A

VcdV
∗
cb

VudV
∗
ub

VtdV
∗
tb

γ α

β

(0, 0) (1, 0)

(ρ̄, η̄)

1

∣∣∣VudV ∗ubVcdV
∗
cb

∣∣∣
∣∣∣ VtdV ∗tbVcdV

∗
cb

∣∣∣

γ α

β

Figure 1.9: Unitarity triangle of the CKM matrix.

being

J = c12 c23 c
2
13 s12 s23 s13 sin δ13 = A2 λ6 η

(
1 − λ2

2

)
+ O

(
λ10) . (1.3.76)

Taking into account theWolfenstein parameterization, we observe how the identities (1.3.74)

satisfy the following relations between the triangle sides: λ : λ : λ5 for the first equation

and λ4 : λ2 : λ2 for the third equation, showing that there is always one side that is

suppressed. In the second equation, we observe that all triangle sides are O
(
λ3) . Dividing

each side in the left-hand-side equation by V ?
cb Vcd , we obtain a triangle, see Figure 1.9,

with vertices in (0, 0) , (1, 0) and (ρ̄, η̄) ≈ (1−λ2/2)(ρ, η) . Many experimental measure-

ments in flavour physics can be shown in the plane (ρ̄, η̄) giving important determinations

and constraints for the CKM matrix elements. Some of these measurements come from

decay amplitudes that depend on the CP violation angles α , β and γ ,

α ≡ arg
[
− VtdV

∗
tb

VudV
∗
ub

]
, β ≡ arg

[
−VcdV

∗
cb

VtdV
∗
tb

]
, γ ≡ arg

[
−VudV

∗
ub

VcdV
∗
cb

]
. (1.3.77)

The current experimental constraints are shown in Figure 1.10. One of the triangle

sides has been calculated using Eq. (1.3.70) through |Vub/Vcb| (dark green region). The

other side can be obtained using the B0
d − B

0
d mixing (yellow region), ∆Md = 0.5064 ±

0.0019 ps−1 [31, 32]. Additional information has been obtained from the B0
s −B

0
s mixing,

∆Ms = 17.757±0.021 ps−1 [31,32] and from the experimental fraction ∆Md/∆Ms (orange

region). In addition, constraints on the η parameter are determined through K0 → ππ

decay with the measured value of |εK | = (2.228± 0.011) · 10−3 [31] which determines the
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Figure 1.10: Experimental constraints on the SM unitarity triangle [28].

light green parabolic region. The B0 decays into CP self-conjugate final states provide

independent ways to determine the angles of the unitarity triangle. One of the most

important decays is B0
d −→ J/ψKS , which gives us a very good measure of the angle β,

sin(2β) = 0.691 ± 0.017 [32]. The determinations of the other two angles α and γ, have

already been obtained, and included in the global fit. The different sets of data fit very

well and provide a very accurate determination of the vertices of the unitary triangle.

1.4 CP violation in Neutral Meson Systems

In this section, we introduce a general formalism to study CP violation phenomena in the

mixing and the decay of a generic neutral meson M0 being M0 ≡ K0, D0, B0, B0
s .
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1.4.1 Neutral Meson Mixing

1.4.1.1 Formalism

Let us consider a superposition of two meson states, |M0〉 and |M0〉, which are eigenstates

of the strong and electromagnetic interactions with common mass m0 but different flavour

content,

|ψ(t)〉 = a(t) |M0〉 + b(t) |M0〉 ≡

a(t)

b(t)

 , (1.4.78)

where a(t) and b(t) are the time-dependent coefficients for the M0 and M0 states, respec-

tively. In general, M0 and M0 mix together through weak interacions and they can also

decay into other states |n〉. We simplify the problem by considering only two states M0

and M0. Therefore, the time evolution of these coefficients is valid for times which are

much larger than the typical strong interaction scale.

The time evolution of |ψ(t)〉 is governed by an effective Hamiltonian which is a sum of

the strong, electromagnetic and weak Hamiltonians,

H = Hs + Hem + Hw , (1.4.79)

which obeys the non-relativistic Schrödinger equation,

i
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 . (1.4.80)

Splitting into a Hermitian and anti-Hermitian parts, the 2× 2 complex matrix H can be

written in the meson rest frame as

H = M − i

2 Γ , (1.4.81)

where bothM and Γ are Hermitian,

M = 1
2
(
H + H†

)
= M† , Γ = i

(
H − H†

)
= Γ† . (1.4.82)

SinceM and Γ are Hermitian, their diagonal elements are real,M21 = M∗12 and Γ21 = Γ∗12 .

The CPT invariance requires M11 = M22 and Γ11 = Γ22 . Notice that H is not Hermitian,
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otherwise the meson states would just mix and not decay into other states. Furthermore,

these non-Hermiticity is also reflected in the probability to observe either M0 or M0, since

it is not conserved, it goes down with time

∂

∂t
〈ψ(t)|ψ(t)〉 = −〈ψ(t)| Γ |ψ(t)〉 ≤ 0 . (1.4.83)

In general, H can be described through three physical quantities: two modulus (|M12| and

|Γ12|) and one CP phase φ

φ = arg
(
−M12

Γ12

)
, (1.4.84)

which is the relative phase difference between the off-shell (dispersive) and on-shell (ab-

sorptive) contributions. So, the mass and width differences are

∆M ≡ M+ − M− = 2 |M12| , ∆Γ ≡ Γ+ − Γ− = 2 |Γ12| cosφ , (1.4.85)

up to numerically irrelevant corrections of order O
(
|Γ12/M12|2

)
. M± and Γ± are the

masses and decay rates of the physical eigenstates |M±〉 , respectively. Diagonalizing the

Hamiltonian, we find the eigenvalues (masses and decay rates) and eigenvectors (physical

eigenstates),

λ± = M11 −
i

2 Γ11 ± ∆ , ∆ ≡
√(

M12 −
i

2 Γ12

)(
M∗12 −

i

2 Γ∗12

)
(1.4.86)

and1

|M±〉 = p |M0〉 ± q |M0〉√
|p|2 + |q|2

,
q

p
≡ 1 − ε̄

1 + ε̄
=

√√√√M∗12 − i
2 Γ∗12

M12 − i
2 Γ12

, (1.4.87)

which can be rewritten as

|M0〉 =
√
|p|2 + |q|2

2 p
[
|M+〉 + |M−〉

]
,

|M0〉 =
√
|p|2 + |q|2

2 q
[
|M+〉 − |M−〉

]
. (1.4.88)

1We use the CP convention CP|M0〉 = − |M0〉 .
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From Eq. (1.4.86), we inmediately obtain

M± = M11 ± Re (∆) , Γ± = −
[
Γ11 ± 2 Im (∆)

]
. (1.4.89)

Another interesting phenomenological observable is the CP asymmetry for flavour-specific

final states afs, which relates q/p to the mixing phase φ,

afs ≡ 2
(

1 −
∣∣∣∣qp
∣∣∣∣) = Im

( Γ12
M12

)
= |Γ12|
|M12|

sinφ = ∆Γ
∆M tanφ . (1.4.90)

1.4.1.2 Time evolution

The |M±〉 are the mass eigenstates that diagonalize the Hamiltonian. Then, from Eq. (1.4.80),

the usual time dependence is

|M±(t)〉 = e− i (M± − i
2 Γ±) t |M±(0)〉 . (1.4.91)

Combining Eqs. (1.4.87), (1.4.88) and (1.4.91), we obtain the following time evolution of

|M0〉 and |M0〉 |M0(t)〉

|M0(t)〉

 =

 g+(t) q
p g−(t)

p
q g−(t) g+(t)


|M0(0)〉

|M0(0)〉

 , (1.4.92)

where g+(t)

g−(t)

 = e− i M t e−
1
2 Γ t

 cos
[

(x− i y) Γ t
2

]
− i sin

[
(x− i y) Γ t

2

]
 , (1.4.93)

with the following definitions

M ≡ 1
2 (M+ +M−) , Γ ≡ 1

2 (Γ+ + Γ−) , (1.4.94)

and

x ≡ ∆M
Γ , y ≡ ∆Γ

2Γ . (1.4.95)
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Figure 1.11: Diagrammatic casuistry of neutral meson mixing transitions.

1.4.1.3 Mixing in the Standard Model

At second order in perturbation theory, Mij and Γij are given by

Mij = m0 δij + 〈i|Hw|j〉 +
∑
n

P
(〈i|Hw|n〉〈n|Hw|j〉

m0 − En

)
, (1.4.96)

Γij = 2π
∑
n

〈i|Hw|n〉〈n|Hw|j〉 δ(m0 − En) , (1.4.97)

where m0 = 〈M0|(Hs + Hem)|M0〉 = 〈M0|(Hs + Hem)|M0〉 is the unperturbed mass of

M0 and M0, En is the energy of the intermediate states n and P indicates the principal

part. The diagonal elements M11 and Γ11 are real parameters that would correspond to

the mass and width of the neutral mesons in the ideal world in which the weak interaction

is switch-off. The off-diagonal elements, M12 and Γ12, encode the physics behind the

neutral meson transitions. While the dispersive part M12 quantifies the short-distance

∆F = 2 contributions coming from box diagrams and non-local contributions involving

two ∆F = 1 transitions, the absorptive contribution Γ12 encodes all on-shell intermediate

states in which M0 and M0 can both decay. In Figure 1.11, we show diagrammatically the

interplay between mixing and decay.

In the following, we explain how to perform the calculation of the mixing parameters

in the SM. The mass width ∆M is dominated by short-distance ∆F = 2 contributions.

These contributions appear at one-loop level in the SM due to the GIM mechanism.
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They are represented by the Feynman diagrams popularly known as box diagrams, see

Figure 1.12 (M0 ≡ q1q̄2 and M0 ≡ q̄1q2). In general, the computation of these diagrams

Vjq1

V ?iq2 Viq1

V ?jq2

q̄1

q2

q̄2

q1

W

i

W

j

β

µ α

σ

Viq1

V ?iq2 Vjq1

V ?jq2

q̄1

q2

q̄2

q1

i

W

j

W

β

µ α

σ

Figure 1.12: Box diagrams contributing to neutral meson mixing.

is quite complicated because they contain 4 external four-momenta, 4 propagators and a

sum of three quarks flowing into the loop. In the limit of zero external four-momenta and

zero external quark masses, the computation is simplified considerably and the physical

amplitude (in the unitary gauge) is given by (left diagram in Fig. 1.12)

AM0 = g4

4
∑
i j

λi λj ·
∫

d4k

(2π)4

gµβ − kµ kβ

M2
W

k2 −M2
W

 ·
gασ − kα kβ

M2
W

k2 −M2
W

 · (1.4.98)

·
[
ūq2(0) γσPL

(/k +mj)
k2 −m2

j

γβPLuq1(0)
]
·
[
v̄q2(0) γµPL

(/k +mi)
k2 −m2

i

γαPLvq1(0)
]
,

where we can see the weak coupling g2 ≡ 4
√

2GFM2
W to the fourth power, the four CKM

matrix elements λi ≡ V ∗iq2Viq1 , the twoW propagators, the two internal quark propagators

and the external quark and anti-quark spinors. Using the following Fierz identity,

(ū1 A PL u2)(ū3 PR B u4) = 1
2 (ū3 γ

µ PL u2)(ū1 A γµ PR B u4) , (1.4.99)

being A and B two arbitrary matrices and Lorentz invariance,∫
d4k

(2π)4 f(k2) kµ kν =
∫

d4k

(2π)4 f(k2) k
2

D
gµν , (1.4.100)
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where D is the space-time dimension2, the amplitude given by Eq. (1.4.98) plus a similar

expression from the second Feynman diagram can be reduced to the following effective

Hamiltonian

H∆F=2
eff = G2

F M
2
W

4 π2

∑
i j

λi λj S̃(m2
i ,m

2
j )OVLL , (1.4.101)

where OVLL ≡ [q̄2(x)γµPLq1(x)] [q̄2(x)γµPLq1(x)] is a local dimension-six operator and

S̃(m2
i ,m

2
j ) ≡

(
1 + 1

4βiβj
)
M2
WD2(m2

i ,m
2
j ,M

2
W )− 2 βi βjM4

WD0(m2
i ,m

2
j ,M

2
W ) ,

where βi ≡ m2
i /M

2
W and D0,2 are loop functions

D0(a, b, c, d) ≡
b ln

(
b
a

)
(b− a)(b− c)(b− d) +

c ln
(
c
a

)
(c− a)(c− b)(c− d)

+
d ln

(
d
a

)
(d− a)(d− b)(d− c) , (1.4.102)

D2(a, b, c, d) ≡
b2 ln

(
b
a

)
(b− a)(b− c)(b− d) +

c2 ln
(
c
a

)
(c− a)(c− b)(c− d)

+
d2 ln

(
d
a

)
(d− a)(d− b)(d− c) . (1.4.103)

Assuming the sum over all different flavours that are flowing into the loop, imposing the

unitarity of the CKM matrix through λu + λc + λt = 0 and taking mu,d → 0, the ∆F = 2

effective Hamiltonian can be expressed as

H∆F=2
eff = G2

FM
2
W

16 π2

{
λ2
t CttVLL + λ2

c CccVLL + 2 λtλc CctVLL
}
OVLL , (1.4.104)

with

CijVLL = S̃(0, 0) − 1
2 S̃(m2

i , 0) − 1
2 S̃(m2

j , 0) − 1
2 S̃(0,m2

i ) −
1
2 S̃(0,m2

j )

+ 1
2 S̃(m2

i ,m
2
j ) + 1

2 S̃(m2
j ,m

2
i ) . (1.4.105)

2In unitarity gauge, there are UV divergences. However, since they are independent of internal quark

masses, the divergences dissapear when the unitarity of the CKM matrix is assumed.
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Then, we obtain an analytical expression which involves three pieces, the first piece de-

pends on m2
t /M

2
W , the second piece depends on m2

c/M
2
W and the last piece with a more

complicated dependece on both m2
t /M

2
W and m2

c/M
2
W . These corrections CijVLL are pop-

ularly known as Inami-Lim factors [33]. In the Table 1.1, we give the size of these three

corrections together with the corresponding CKM matrix elements.

CKM factors (λi λj)

(i, j) CijVLL/4 K0 B0 B0
s

(t, t) 2.37 A4λ10|1− ρ− iη|2 A2λ6|1− ρ− iη|2 A2λ4

(c, c) 2.6 · 10−4 λ2 A2λ6 A2λ4

(c, t) 2.3 · 10−3 A2λ6|1− ρ− iη| A2λ6|1− ρ− iη| −A2λ4

Table 1.1: Inami-Lim factors and CKM matrix elements for different mixings.

From Table 1.1, we inmediately extract the following conclusions,

1. Since λt � λc , K0 mixing is largely dominated by the (c, c) diagram, while the (t, t)

and (c, t) diagrams represent small corrections.

2. In the B0 and B0
s mixings, λt ≈ λc and mt � mc , then they are completely

dominated by the (t, t) diagram.

Taking into account these conclusions and

∆MM0 = |〈M0|H∆F=2
eff |M0〉|
m0

, (1.4.106)

we obtain the following mass differences for the B and K systems,

∆MB0
q

= G2
F M

2
W

6π2 f2
B0
q
MB0

q
B̂B0

q

[
ηB0

q

CttVLL
4 λ2

t

]
, (1.4.107)

∆MK0 = G2
F M

2
W

6π2 f2
K0 MK0 B̂K0

[
ηtt
CttVLL

4 λ2
t + ηct

CctVLL
4 2 λc λt + ηcc

CccVLL
4 λ2

c

]
,
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where fK0 and fB0
q
are the K0 and B0

q decay constants, MK0 and MB0
q
are the K0 and B0

q

masses. Furthermore, B̂K0 and B̂B0
q
are the renormalization group invariant parameters

defined by

B̂K0 = BK0(µ)
[
α(3)
s (µ)

]−2/9
[
1 + α

(3)
s (µ)
4 π J3

]
, (1.4.108)

B̂B0
q

= BB0
q
(µ)

[
α(5)
s (µ)

]−6/23
[
1 + α

(5)
s (µ)
4 π J5

]
, (1.4.109)

with

〈M0|OVLL(µ)|M0〉 = 2
3 m

2
0 f

2
M0 BM0(µ) , (1.4.110)

where α(f)
s is the strong coupling constant in an effective three flavour theory, J3 = 1.895

and J5 = 1.627 in the Naive Dimensional Regularization (NDR) scheme [34–36]. In

addition, the short-distance QCD effects are described through the correction factors η̂B0
q
,

η̂tt, η̂ct and η̂cc [37–41].

On the other hand, Γ12 involves the computation of box diagrams with on-shell internal

quarks. For B0 and B0
s mixings, the dominant contribution comes from the b → cc̄s

transition. Since b → cc̄s is a tree-level transition, Γ12 is expected to be less sensitive to

new physics than M12. It can be written as [42]

Γ12 = −G
2
Fm

2
b

8 π2

[
λ2
t + λt λc O

(
m2
c

m2
b

)
+ λ2

c O
(
m2
c

m2
b

)]
η′B0

q
f2
B0
q
MB0

q
B̂B0

q
, (1.4.111)

where the QCD corrections are encoded in the factor η′B0
q
. Notice that M12 and Γ12 have

the same dependence on the non-perturbative parameter f2
B0
q
B̂B0

q
, then one should expect

that the short-distance prediction for Γ12/M12 has a smaller theoretical uncertainty than

Γ12 and M12 separately. Then, from Eqs. (1.4.107), (1.4.111) and (1.4.85),

∆ΓB0
q

∆MB0
q

≈ 3 π m2
b

M2
W

1
CttVLL

≈ 1
250 , (1.4.112)

which is approximately independent of the CKM matrix elements and therefore the same

for both B-systems. Furthermore, since
∆Γ

B0
q

∆M
B0
q

is proportional to m2
b

M2
W

, we have ∆ΓB0
q
�
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∆MB0
q
in the SM. Since ∆M and ∆Γ are proportional to λ2

t for B-systems, the phase dif-

ference betweenM12 and Γ12 is 180◦ and φ is very small in the SM. Moreover, Eq. (1.4.85)

implies that ∆Γ > 0 .

1.4.1.4 Behaviour of flavour oscillations

The mixing phenomena D0−D0, K0−K0, B0−B0 and B0
s −B0

s show different oscillation

behaviours, since they have all different values of Γ, ∆Γ and ∆M . Let us compute the

probability to observe a M0 meson at time t if one starts with a M0 meson

P (M0(0)→ M0(t)) ≡ |〈M0(0)|M0(t)〉|2 = |g+(t)|2 , (1.4.113)

and the probability to observe a M0 meson at time t if one starts with a M0 meson

P (M0(0)→ M0(t)) ≡ |〈M0(0)|M0(t)〉|2 = |g−(t)|2
∣∣∣∣qp
∣∣∣∣2 , (1.4.114)

and

|g±(t)|2 = e−Γt

2

(
cosh (y Γ t) ± cos (x Γ t)

)
, (1.4.115)

where x and y are the dimensionless parameters controlling the oscillation time scales

defined in Eq. (1.4.95). Our experimental knowledge about these oscillation parameters is

summarized in Table 1.2. Assuming the SM as the ultimate theory, we can try to explain

the size of the ∆M values in Table 1.2. For instance, in the D0−D0 mixing, if we consider

the contribution from the heaviest quark that is flowing into the loopm2
b , this is not enough

to compensate the strong suppression of the CKM matrix elements |VubV ∗cb|2 . Then, the

light quarks dominate ∆MD0 and since it is proportional to |VusV ∗cs|2 m2
s ∼ λ2 m2

s , we

expect a small value of ∆MD0 . The B0 − B0 mixing is clearly dominated by the top

quark loop, so |VtbV ∗td|2 m2
t ∼ λ6 m2

t and therefore the D0 oscillation is clearly suppressed

compared to B0 oscillation. For B0
s − B0

s mixing, we expect a value for the mass width

larger than the B0−B0 value, since |VtbV ∗ts|2m2
t ∼ λ4m2

t . Finally, K0 mixing is dominated

by the charm quark, |VcdV ∗cs|2 m2
c ∼ λ2 m2

c .
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(a) D0 mixing (b) K0 mixing

(c) B0 mixing (d) B0
s mixing

Figure 1.13: Probability to observe a M0 or a M0 meson at time t.

In Table 1.2, we observe that there is a large casuistry depending on the value of x

and y. From Eq. (1.4.115), we observe that x is the frequency of the flavour oscillations.

Depending on the x value:

• x� 1: Since cos(xΓ t) ≈ 1, the meson has no time to oscillate and then the flavour

is mostly conserved. We call this case slow oscillation. It corresponds to the D0−D0

mixing, see Figure 1.13a where we plot the probability for the inputs of Table 1.2.

• x� 1: The meson oscillates many times before decaying, thus flavour is not con-

served. We call this case fast oscillation. It corresponds to the B0
s − B0

s mixing, see

Figure 1.13d.
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System Γ (1011 s−1) ∆M (1012 s−1) x y

D0 −D0 24.384 0.010 3.2 · 10−3 6.9 · 10−3

K0 −K0 0.056 0.005 0.945 −0.991

B0 − B0 6.579 0.506 0.770 0.000

B0
s − B0

s 6.627 17.757 26.795 0.066

Table 1.2: Mixing parameters of neutral mesons systems [31].

• x ∼ 1: In this case, there is a nice interplay between the oscillation and the decay

of the meson. It corresponds to the K0 −K0 and B0 −B0 mixings, see Figure 1.13b

and 1.13c.

We can also study and combine the y parameter with the previous x casuistry:

• |y| � 1 and y � x: In this case the width difference is irrelevant. It corresponds

to the B mixings.

• |y| ∼ x: In this case the width difference and the mass width are relevant. It

corresponds to the D0 −D0 and K0 −K0 mixings.

There are other limits that we do not analyze since they have not been observed.

1.4.2 Neutral Meson Decay

We have studied a quite general formalism to describe neutral meson systems. However,

since we have been more focused in the understanding of the mixing phenomena, we did

not include the decay of the meson into a final state f , instead we have considered a

non-Hermitian Hamiltonian. In this section, we include the meson decay, constructing a

more general formalism. Let us consider M0 and M0 meson decays into two possible final
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states f and f̄ . Phenomenologically, there are only four independent quantities,

Af = 〈f |T |M0〉 , Af = 〈f |T |M0〉 ,

Af̄ = 〈f̄ |T |M0〉 , Af̄ = 〈f̄ |T |M0〉 , (1.4.116)

where T is the transition matrix. Then, using Eq. (1.4.92), the different expressions for

the time-dependent decay rates are

ΓM0→f = |Af |2
{
|g+(t)|2 + |λf |2 |g−(t)|2 + 2 Re

(
λf g

∗
+(t) g−(t)

) }
, (1.4.117)

ΓM0→f̄ = |Af̄ |
2
∣∣∣∣qp
∣∣∣∣2 {|g−(t)|2 + |λ̄f̄ |

2 |g+(t)|2 + 2 Re
(
λ̄f̄ g+(t) g∗−(t)

)}
, (1.4.118)

ΓM0→f = |Af |2
∣∣∣∣pq
∣∣∣∣2 {|g−(t)|2 + |λf |2 |g+(t)|2 + 2 Re

(
λf g+(t) g∗−(t)

) }
, (1.4.119)

ΓM0→f̄ = |Af̄ |
2
{
|g+(t)|2 + |λ̄f̄ |

2 |g−(t)|2 + 2 Re
(
λ̄f̄ g

∗
+(t) g−(t)

)}
, (1.4.120)

where ΓI→F (t) ≡ |〈F |T |I〉|2 give us the probability that a state I at t = 0 decays into the

final state F at time t. Furthermore, we have defined the following complex parameters

λf ≡
q

p

Af
Af

, λ̄f ≡
1
λf

, λf̄ ≡
q

p

Af̄
Af̄

, λ̄f̄ ≡
1
λf̄

. (1.4.121)

Notice that in Eqs. (1.4.117) - (1.4.120) , the terms proportional to |Af |2 or |Af̄ |2 are

associated with decays that occur without any net oscillation, while terms proportional to

|Af |2
∣∣∣pq ∣∣∣2 or |Af̄ |2

∣∣∣ qp ∣∣∣2 are associated with decays following a net oscillation. The terms

with g∗+(t) g−(t) or g+(t) g∗−(t) correspond to the interference between these two cases.
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Finally, taking into account Eq. (1.4.93), we obtain the time-dependent decay rates for

neutral mesons in terms of x and y ,
ΓM0→f (t)

Γ̃f (t)
= cosh (y τ) +Df sinh (y τ) + Cf cos (x τ)− Sf sin (x τ) ,

ΓM0→f̄ (t)
Γ̃f̄ (t)

=
∣∣∣∣qp
∣∣∣∣2 ( cosh (y τ) +Df̄ sinh (y τ)− C f̄ cos (x τ) + S f̄ sin (x τ)

)
,

ΓM0→f (t)

Γ̃f (t)
=
∣∣∣∣pq
∣∣∣∣2 ( cosh (y τ) +Df sinh (y τ)− Cf cos (x τ) + Sf sin (x τ)

)
,

ΓM0→f̄ (t)

Γ̃f̄ (t)
= cosh (y τ) +Df̄ sinh (y τ) + C f̄ cos (x τ)− S f̄ sin (x τ) . (1.4.122)

where τ ≡ Γ t ,

Γ̃f (t) ≡ |Af |2
e−Γ t

2
(
1 + |λf |2

)
, Γ̃f̄ (t) ≡ |Af̄ |

2 e−Γ t

2
(
1 + |λ̄f̄ |

2
)
, (1.4.123)

and

Df ≡
2 Re (λf )
1 + |λf |2

, Cf ≡
1 − |λf |2

1 + |λf |2
, Sf ≡

2 Im (λf )
1 + |λf |2

, (1.4.124)

Df̄ ≡
2 Re

(
λ̄f̄

)
1 + |λ̄f̄ |2

, C f̄ ≡
1 − |λ̄f̄ |2

1 + |λ̄f̄ |2
, S f̄ ≡

2 Im
(
λ̄f̄

)
1 + |λ̄f̄ |2

, (1.4.125)

which satisfy

|Df |2 + |Cf |2 + |Sf |2 = 1 , |Df̄ |
2 + |C f̄ |

2 + |S f̄ |
2 = 1 . (1.4.126)

From Eqs. (1.4.122), one realizes that the fundamental quantities necessary to completely

describe a meson neutral system are four, x, y, λf and λ̄f̄ . Notice in Eqs. (1.4.122) how∣∣∣ qp ∣∣∣2 is a pure global factor.

1.4.3 Types of CP violation in neutral meson systems

The CP violation appears in neutral meson systems through two types of phenomena,

mixing and decay. For completeness, we give a classification of the three types of CP

violation effects [43].
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1. CP violation in decay (also called direct CP violation) is defined by∣∣∣∣∣Af̄Af
∣∣∣∣∣ 6= 1 , (1.4.127)

This is the case of the interference between two decay amplitudes with necessary

different weak and strong phases. These last phases due to rescattering.

In charged mesons where there is no mixing, the only type of CP violation is

af± ≡
Γ(M− → f−) − Γ(M+ → f+)
Γ(M− → f−) + Γ(M+ → f+)

=

∣∣∣∣Af−Af+

∣∣∣∣2 − 1∣∣∣∣Af−Af+

∣∣∣∣2 + 1
. (1.4.128)

2. CP violation in mixing (also called indirect CP violation) is defined by∣∣∣∣qp
∣∣∣∣ 6= 1 . (1.4.129)

This type of CP violation is originated through the interference between the absorp-

tive and dispersive mixing amplitudes, see Eq. (1.4.87).

One example of CP violation in mixing is the asymmetry of wrong-sign decays in

charged-current semi-leptonic neutral meson decays M0, M0 → l± X which only

occurs if there is meson oscillation,

aSL = Γ(M0 → l+ X) − Γ(M0 → l− X)
Γ(M0 → l+ X) + Γ(M0 → l− X)

=
1 −

∣∣∣ qp ∣∣∣4
1 +

∣∣∣ qp ∣∣∣4 . (1.4.130)

where the intial neutral meson can be B0, K0 or D0 .

3. CP violation in interference between a decay without mixing, M0 → f ,

and a decay with mixing M0 →M0 → f is defined by

arg (λf ) + arg
(
λf̄

)
6= 0 , (1.4.131)

with the following asymmetry for neutral meson decays into CP eigenstates

afCP ≡
Γ(M0 → fCP) − Γ(M0 → fCP)
Γ(M0 → fCP) + Γ(M0 → fCP)

≈ Im(λfCP) sin (x Γ t) . (1.4.132)



Chapter 2

The Toolbox: EFTs, OPEs and

RGEs

In the previous chapter, we have introduced the foundations of flavour physics. In addition,

we have studied the CP violation phenomena in the SM which is unable to reproduce the

large matter-antimatter asymmetry that we observe in our Universe. We have presented

different phenomenological applications in which the CP violation can appear, i.e. mixing,

decay or both. In this chapter, we introduce the concept of Effective Field Theory (EFT)

which represents a formidable approach to describe a physical system with the appropriate

degrees of freedom. Using the Fermi’s theory [44] as a toy model, we introduce the general

aspects of EFT, paying special attention to those that are close to the field of flavour

physics. Further information can be found in Refs. [45–50].

2.1 What are EFTs and why we use them?

An EFT is a simplified description of an underlying physical theory. EFT provides an

excellent formalism to describe physical problems involving several energy scales. Its

principle is to use the appropriate degrees of freedom to describe a physical system at

some energy scale in which one is interested. For instance, a heavy particle (1 degree of

41
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freedom) can not be created at energy scales smaller than its mass, then it can not be a

dynamical degree of freedom of the low-energy effective theory. The EFT approach works

better when there is a large energy gap between the scale of interest and the scale of the

underlying dynamics. The dynamics at low energies do not depend on the details of the

dynamics at high energies, this is guaranteed by the decoupling theorem [51] which states

that the degrees of freedom of heavy particles decouple at energy scales much lower than

their mass. By decoupling, we mean that the contributions to physical amplitudes of these

degrees of freedom are suppressed by inverse powers of the heavy masses (up to logarithmic

corrections). Then, high-energy physics or physics beyond the SM is suppressed at low

energies. This seems to forbid extracting information on the fundamental theory from the

low-energy measurements, but this is not true. Indications of new physics can be found

through small deviations on the low-energy parameters of the effective Lagrangian, because

they encode information in terms of masses of heavy degrees of freedom. Therefore, the

high-precision in low-energy experiments can be used to probe high-energy dynamics and

provide an alternative to high energy experiments.

2.2 General aspects of EFT

2.2.1 Operator product expansion

Let us consider a QFT composed by a heavy scalar field Φ with mass M and a light scalar

field φ with mass m�M ,

L = − 1
2 φ

(
� + m2

)
φ︸ ︷︷ ︸

Lφkin

− 1
2 Φ

(
� + M2

)
Φ︸ ︷︷ ︸

LΦ
kin

+ J Φ , (2.2.1)

where � ≡ ∂µ∂
µ and J is the source of Φ . Suppose that we want to study some phe-

nomenological application at energies E � M and obtain its scattering amplitude up to

some power of E/M . In the following, we show the steps that one has to follow in order

to build the effective Lagrangian.
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The normalized generating functional for this scalar field theory is given by

Z[J ] ≡
∫

[Dφ] [DΦ] ei S[φ,Φ,J ]∫
[Dφ] [DΦ] ei S[φ,Φ,0] , (2.2.2)

where S[φ,Φ, J ] ≡
∫
dDx L is the action and D is the dimension of the space-time.

At low energy scales (E < M), we can perform an integration over the Φ in Eq. (2.2.2).

However, notice that the field Φ is an integration variable and it does not satisfy the

equation of motion. Let us introduce an auxiliary field Φ0:

Φ = Φ0 + Φ̃ , (2.2.3)

where Φ0 satisfies the equation of motion(
� + M2

)
Φ0 = J(x) , (2.2.4)

with the following solution

Φ0 = −
∫

dDy ∆Φ
F (x− y) J(y) , (2.2.5)

being ∆Φ
F the Feynman propagator of the field Φ,

∆Φ
F (x− y) ≡

∫ dDk
(2π)D

e−ik(x−y)

k2 −M2 − i ε
. (2.2.6)

Expanding the Lagrangian around Φ0 , it can be written as

L[φ,Φ0 + Φ̃] = −1
2φ
(
�+m2

)
φ− 1

2(Φ0 + Φ̃)
(
�+M2

)
(Φ0 + Φ̃) + J(Φ0 + Φ̃)

= Lφkin −
1
2Φ0

(
�+M2

)
Φ0 −

1
2Φ0

(
�+M2

)
Φ̃− 1

2Φ̃
(
�+M2

)
Φ0

− 1
2Φ̃

(
�+M2

)
Φ̃ + J Φ0 + J Φ̃ , (2.2.7)

which can be reduced to

L[φ,Φ0 + Φ̃] = Lφkin + 1
2JΦ0 −

1
2Φ̃

(
�+M2

)
Φ̃− 1

2∂µ
(
Φ0∂

µΦ̃− Φ̃∂µΦ0
)
, (2.2.8)

using Eq.(2.2.4) and the identity

Φ0 � Φ̃ − Φ̃� Φ0 = ∂µ
(
Φ0 ∂

µ Φ̃ − Φ̃ ∂µ Φ0
)
. (2.2.9)
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Therefore, the action can be expressed as

S[φ, Φ̃, J ] =
∫

dDx
(
Lφkin + 1

2JΦ0 −
1
2Φ̃

(
�+M2

)
Φ̃
)
, (2.2.10)

where the last term in Eq. (2.2.8) has been eliminated using the Gauss’s law. Inserting

Eq. (2.2.5) into the action given by Eq. (2.2.10), we obtain

S[φ, Φ̃, J ] =
∫

dDx
(
Lφkin −

1
2Φ̃

(
�+M2

)
Φ̃
)

− 1
2

∫
dDx dDy J(x)∆Φ

F (x− y)J(y) , (2.2.11)

and the normalized generating functional becomes

Z[J ] = e−
i
2

∫
dDx dDy J(x)∆Φ

F (x−y)J(y) , (2.2.12)

which has the following Lagrangian,

L = − 1
2

∫
dDy J(x) ∆Φ

F (x− y) J(y) . (2.2.13)

It is interesting to point out that all the dependence of Z[0] on the heavy field Φ has

canceled out with the normalization Z[0] . In the literature, one says that the heavy field

has been integrated out.

Let us consider x ≈ y and perform a Taylor expansion of J(y),

J(y) = lim
N→∞

N∑
n=0

(−1)n

n! Ĵµ1···µn(x) (x− y)µ1 · · · (x− y)µn , (2.2.14)

where Ĵµ1···µn(x) ≡
(
∂zµ1 · · · ∂

z
µn J(z)

)∣∣∣∣
z=x

. Then, introducing Eqs. (2.2.6) and (2.2.14)

into Eq. (2.2.13), we obtain

L = − 1
2 lim
N→∞

N∑
n=0

(−1)n

n! J(x) Ĵµ1···µn(x) ·

·
∫ dDk

(2π)D
1

k2 −M2

∫
dDy (x− y)µ1 · · · (x− y)µn e−ik(x−y) , (2.2.15)

which using the following identity

∂µ1
k · · · ∂

µn
k e−ik(x−y) = (−i)n (x− y)µ1 · · · (x− y)µn e−ik(x−y) , (2.2.16)
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Figure 2.1: Diagrammatic representation of the OPE.

can be reduced to

L = −1
2 lim
N→∞

N∑
n=0

(−i)n

n! J(x) Ĵµ1···µn(x)
∫ dDk

(2π)D
1

k2 −M2 ∂
µ1
k · · · ∂

µn
k

∫
dDy e−ik(x−y)

= −1
2 lim
N→∞

N∑
n=0

(−i)n

n! J(x) Ĵµ1···µn(x)
∫ dDk

(2π)D
1

k2 −M2 ∂
µ1
k · · · ∂

µn
k

∫
dDz eikz

= −1
2 lim
N→∞

N∑
n=0

(−i)n

n! J(x) Ĵµ1···µn(x)
∫

dDk 1
k2 −M2 ∂

µ1
k · · · ∂

µn
k δ(D)(k)

= −1
2 lim
N→∞

N∑
n=0

(−i)n

n! J(x) Ĵµ1···µn(x)
∫

dDk (−1)n ∂µ1
k · · · ∂

µn
k

( 1
k2 −M2

)
δ(D)(k)

= −1
2 lim
N→∞

N∑
n=0

(i)n

n! J(x) Ĵµ1···µn(x) ∂µ1
k · · · ∂

µn
k

( 1
k2 −M2

) ∣∣∣∣
k=0

= −1
2 lim
N→∞

N∑
n=0

(i)n

n! J(x) Ĵµ1···µn(x) P µ1···µn(0)

= −1
2 lim
N→∞

N
2∑

n=0

(−1)n

(2n)! J(x) Ĵµ1···µ2n(x) P µ1···µ2n(0)

= 1
2

1
M2 lim

N→∞

N
2∑

n=0

(
− 1
M2

)n
J(x) Ĵµ1···µ2n(x) gµ1 µ2 · · · gµ2n−1 µ2n

= 1
2

1
M2 lim

N→∞

N
2∑

n=0
J(x)

(
− �
M2

)n
J(x) , (2.2.17)
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where

P µ1···µn(a) ≡ ∂µ1
k · · · ∂

µn
k

( 1
k2 −M2

) ∣∣∣∣
k=a

. (2.2.18)

In the following, we give some comments on the proof of Eq. (2.2.17):

• From the first line to the second line, we perform a change of variable: z ≡ y − x .

• From the second line to the third line, we use the definition of the Dirac delta

function: ∫
dDz eikz = (2π)D δ(D)(k) .

• From the third line to the fourth line, we apply recursively the following property of

the Dirac delta function:∫
dDk f(k) δ(D)′(k) = −

∫
dDk f ′(k) δ(D)(k) ,

where f is a generic function and the prime means a derivative.

• From fourth line to fifth line, we use∫
dDk f(k) δ(D)(k − a) = f(a) .

• From the fifth line to the last line, we use

P µ1···µ2n+1(0) = 0 ,

P µ1···µ2n(0) = − (2n)!
(M2)n+1 gµ1 µ2 · · · gµ2n−1 µ2n , ∀ n .

Finally, we show that L can be written as

L = 1
2

1
M2 lim

N→∞

N
2∑

n=0
J(x)

(
− �
M2

)n
J(x) , (2.2.19)

when x ≈ y. This expression can be truncated for some value of N ,

LNeff ≈
1
2

1
M2

N
2∑

n=0
J(x)

(
− �
M2

)n
J(x) , (2.2.20)
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and since E < M , the N+1 missing corrections are smaller than the N corrections which

guarantees the convergence of our predictions.

In summary, we have performed a Taylor expansion of a non-local Lagrangian given

by Eq. (2.2.13), obtaining as a result an infinite sum of local operators that depend on the

source J(x). Finally, truncating this Lagrangian up to some value of N (depending in how

accurate we want to be in our predictions), we have obtained an effective Lagrangian given

by Eq. (2.2.20) which is a finite sum of local operators. This process is called Operator

Product Expansion (OPE) and it is closely related with the suppression in the decoupling

theorem. In Figure 2.1, we show a schematic representation of the OPE approach.

2.2.2 Behaviour of local operators

We have proved that an effective Lagrangian can be expressed as a finite sum of local

operators Oi multiplied by certain coefficients Ci:

Leff =
∑
i

Ci Oi , (2.2.21)

where the coefficients Ci encode all high-energy information in terms of heavy masses,

while the operators Oi describe the dynamics at low energies. The different operators Oi
can be classified using naive dimensional analysis (~ = c = 1). If we define the dimension

of the operator Oi as Edi , the dimension of the coefficients Ci must be ΛD−di being Λ

some heavy integrated-out scale (M in our previous example). Therefore, the effective

action has the following behaviour

Seff ≡
∫

dDx Leff =
∑
i

ci

(
E

Λ

)di−D
, (2.2.22)

where ci are dimensionless constants ofO(1) . The energy dependence given by Eq. (2.2.22)

leads to the following cases:

• di > D : these operators are called irrelevant, since they are suppressed at low

energies. However, this does not mean that their contribution is not important, in

fact they are crucial in some cases where they are the only type of operators that
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contribute, this only means that they are weak at low energies. These operators

correspond to non-renormalizable operators.

• di = D : these operators are called marginal. Their contributions do not depend

on the ratio E/Λ , with the exception of logarithmic corrections. These operators

correspond to renormalizable operators.

• di < D : these operators are called relevant and they are important at low energies.

These operators are usually forbidden by symmetries, otherwise they cause problems

due to their effects at high energy scales. These operators correspond to super-

renormalizable operators.

Notice that we can take into account the predictability of the EFT. Let us imagine that

we are interested in computing some phenomenological process to some level of accuracy

ε , therefore we have to truncate the Lagrangian for those operators with dimension di

that satisfy

di . D + ln ε
ln
(
E
Λ

) . (2.2.23)

In the OPE example, we have started with the fundamental Lagrangian given by

Eq. (2.2.1), composed by two irrelevant mass operators [φ φ] = [Φ Φ] = D − 2 , and three

marginal operators: two kinetic operators [φ � φ] = [Φ � Φ] = D and one interacting

operator [J Φ] = D , and we have finished with an effective Lagrangian in which all the

interacting operators are irrelevant [J(x) J(x)] = D+ 2 . It is interesting to point out the

marginal operators do not have a strong energy-scale dependence on their couplings.

2.3 Effective weak interactions

Let us consider the charged-current Lagrangian given by Eq. (1.2.65) which is the only

flavour-changing interaction in the SM. As in the Lagrangian given by Eq. (2.2.1), we

can also obtain the charged-current EFT realization for E � MW . Similarly, we can

integrate out theW± bosons, leading into a sum of local four-fermion operators which can
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be truncated to some order. After all this process, we obtain the effective weak Lagrangian,

popularly called Fermi’s theory [44] of weak interactions:

Lweakeff = −4 GF√
2
J †µ J µ + O

(
p2

M2
W

)
, (2.3.24)

where GF√
2 ≡

g2

8M2
W

is the Fermi constant and

J †µ =
∑
ij

Vij ūiγµPLdj +
∑
l

ν̄lγµPLl . (2.3.25)

In Appendix A, we give a detailed proof of Eq. (2.3.24). Notice that the first con-

tribution is composed by an irrelevant operator of dimension six. The next higher-order

contribution is also an irrelevant operator of dimension eight and so on. The coupling

constant associated with the operator of dimension six is suppressed by two powers of

MW which is the typical behaviour that one finds when integrating out the heavy fields

from the fundamental theory (usually constructed with marginal operators) in the way

down to low energies, as in the example of Section 2.2.1. The Fermi’s theory was proposed

to describe the weak interactions before the formulation of the SM with its weak gauge

bosons. During that time, there was a strong belief that the scale of the weak force should

be around
(√

2
GF

) 1
2 ≈ 102 GeV . Therefore, the discovery of the weak gauge bosons around

this scale was a very important success for the particle physics community, both because of

the unification of weak and electromagnetic forces and because of the powerful prediction

via the EFT reasoning.

2.3.1 General description

The Lagrangian given by Eq. (2.3.24) is quite far from a realistic description, since it does

not take into account the strong interactions which are relevant at low energies. Our EFT

needs to take into account these effects, the perturbative QCD contributions are encoded

by the well-known Wilson coefficients Ci while the non-perturbative QCD effects appear

in the local operators Oi,

Lweakeff = −4 GF√
2
∑
i

λi Ci(µ)Oi , (2.3.26)
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Higher dimension operators

Figure 2.2: EFT picture of B0
s mixing.

where λi contains CKM factors. The Oi operators have been constructed with the light

degrees of freedom (quarks and lepton fields) using low-energy symmetry principles. We do

not consider dimension eight or higher-dimension operators because they are suppressed
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by inverse powers of M2
W . The Wilson coefficients Ci are the strengths with which a given

operator Oi contributes to some phenomenological process. They are independent of the

particle process and only depend on masses of the heavy particles that have been integrated

out. The values of the Wilson coefficients can be determined using four ingredients:

1. The Wilson coefficients Ci have to be determined perturbatively at high energy scales

in some fundamental theory. This can be done because QCD has asymptotic free-

dom.

2. By construction, the low-energy EFT has the same infrared behaviour that the fun-

damental theory, the differences only appear at high energies where the fundamental

theory has additional degrees of freedom, for instance it could have new fields ΦNP.

3. Determining the amplitude for some phenomenological process in both the effective

and the fundamental theories allows one to determine Ci(µH) for µH > MW through

the matching condition:

Aeff = Afun −→
∑
i

λi Ci(µH) 〈f |Oi(µH)|i〉 =
∑
i

Xi(µH) 〈f |Oi(µH)|i〉 ,

where |i〉 and |f〉 are the initial and final particle states, while Xi are functions that

depend on parameters from the fundamental theory.

4. Finally, we can use the Renormalization Group Equations (RGEs) to transform the

Wilson coefficients Ci(µH) at some high energy scale µH > MW into the Wilson

coefficients Ci(µL) at a low energy scale µL �MW .

In Figure 2.2, we illustrate these points through the EFT description of B0
s mixing in some

extension of the SM with new particles ΦNP .

2.3.2 Phenomenological application

Since the previous ideas are very technical, let us consider the following phenomenological

application, q1 q̄3 → q2 q̄4 in the SM. Notice that we do not specify the flavour of the
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quarks involved. The effective weak Hamiltonian is given by

Heff = GF√
2
Vq1q2 V

∗
q3q4

[
C1(µ)Q1 + C2(µ)Q2

]
, (2.3.27)

where Q1 ≡ 4 [q̄α2 γµ PL q
β
1 ] [q̄β3 γµ PL qα4 ] and Q2 ≡ 4 [q̄α2 γµ PL qα1 ] [q̄β3 γµ PL q

β
4 ] .

V ?q3q4

Vq1q2
q2

q̄4

q1

q̄3

W

Figure 2.3: Tree-level contribution for q1 q̄3 → q2 q̄4 in the SM.

In an ideal world where QCD does not exist, the Wilson coefficients of this effective

Hamiltonian would take the following values:

C1(µ) = 0 , C2(µ) = 1 , (2.3.28)

which can also be seen in Figure 2.3, where there is not exchange of colour between both

currents. However, in the real world, where QCD effects are not negligible, this transition

has additional QCD contributions. In Figure 2.4, we show all one-loop QCD corrections.

In the diagrams (c), (d), (e) and (f), there is an exchange of colours between currents

which clearly produces a C1 contribution through the following Fierz rearrangement of

the Gell-Mann matrices,

T aαβ T
a
γρ = − 1

2NC
δαβ δγρ + 1

2 δαρ δγβ . (2.3.29)

2.3.2.1 Computation of the fundamental amplitude

In the following, we give a detailed overview of the computation for each Feynman diagram

in Figure 2.4. Before we start with it, we must specify the prescriptions adopted:

• The Feynman rules are defined in Appendix B.
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V ?q3q4

Vq1q2
q2

q̄4

q1

q̄3

W

g

(a)

V ?q3q4

Vq1q2
q2

q̄4

q1

q̄3

W

g

(b)

V ?q3q4

Vq1q2
q2

q̄4

q1

q̄3

Wg

(c)

V ?q3q4

Vq1q2
q2

q̄4

q1

q̄3

g
W

(d)

V ?q3q4

Vq1q2
q2

q̄4

q1

q̄3

gW

(e)

V ?q3q4

Vq1q2
q2

q̄4

q1

q̄3

Wg

(f)

Figure 2.4: One-loop QCD corrections for q1 q̄3 → q2 q̄4 in the SM.

• The computation is performed in ’t-Hooft-Feynman gauge, ξW = ξg = 1 .

• All external momenta are equal p1 = p2 = p3 = p4 = p .

• All non-logarithmic momentum dependence is fixed on-shell (p2 = m2
qi).

• All external quark masses are fixed to zero.

• We neglect constant contributions of O(αs) .

• We do not add the quark field renormalization. Later, we explain why we can do it.
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Feynman diagram (0)

The amplitude for the Feynman diagram (0) is

M(0) =
(
i g√

2

)2 i

M2
W

Vq1q2 V
∗
q3q4

[
v̄αq3(p3) γµ PL vαq4(p4)

] [
ūβq2(p2) γµ PL uβq1(p1)

]

= − i GF√
2
Vq1q2 V

∗
q3q4 S2 , (2.3.30)

where

S1 ≡
[
v̄αq3(p3) γµ (1− γ5) vβq4(p4)

] [
ūβq2(p2) γµ (1− γ5) uαq1(p1)

]
, (2.3.31)

S2 ≡
[
v̄αq3(p3) γµ (1− γ5) vαq4(p4)

] [
ūβq2(p2) γµ (1− γ5) uβq1(p1)

]
. (2.3.32)

Feynman diagram (a)

The amplitude for the Feynman diagram (a) is

M(a) =
(
i g√

2

)2 i

M2
W

Vq1q2 V
∗
q3q4

∫ dDk
(2π)D

[
v̄γq3(p3) γµ PL vγq4(p4)

] (
− i

k2
1
δab

)
gα1α2 ·

·
[
ūβq2(p2) (− i gs γα1 T

a
βγ) i ( /k3 +mq2)

k2
3 −m2

q2

γµ PL
i ( /k2 +mq1)
k2

2 −m2
q1

(− i γα2 T
b
γα) uβq1(p1)

]

= 16
√

2 π GF αs CF Vq1 q2 V ∗q3q4
∫ dDk

(2π)D
kα1

3 kα2
2

k2
1 k

2
2 k

2
3
·

·
[
v̄αq3(p3) γµ PL vαq4(p4)

] [
ūβq2(p2) γα2 γ

µ γα1 PL u
β
q1(p1)

]
, (2.3.33)

where αs ≡ g2
s

4π , k1 ≡ k , k2 ≡ k + p and k3 ≡ k + p . In addition, we have made use of

the following Dirac algebra identity

γX γ
α1 γµ γα2 γX = − 2 γα2 γµ γα1 , (2.3.34)

and the Gell-Mann identity

(T a T a)αβ = CF δαβ , CF ≡
N2
C − 1
2NC

, (2.3.35)
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which can be directly extracted from Eq. (2.3.29). The integral in Eq. (2.3.33) can be

computed using dimensional regularization with the following result:∫ dDk
(2π)D

kα1 kα2

k4 (k − p)2 = − i

(4π)2
µ2 ε

4 gα1α2

[
1
ε̂

+ ln
(
p2

µ2

)]
. (2.3.36)

where D ≡ 4 + 2 ε and

1
ε̂
≡ 1
ε

+ γE − ln(4π) , (2.3.37)

where γE = 0.57721 · · · is the Euler-Mascheroni constant. Finally, the amplitude becomes

M(a) = + i
GF√

2
Vq1q2 V

∗
q3q4

(
αs(µ)
4 π

)
CF

[
1
ε̂

+ ln
(
p2

µ2

)]
S2 , (2.3.38)

where αs(µ) ≡ g2
s µ

2 ε

4π .

Feynman diagrams (b), (c), (d), (e) and (f)

Similarly to the Feynman diagram (a), we obtain the following amplitudes for the

other Feynman diagrams

M(b) =M(a) , (2.3.39)

M(c) =M(d) = − i GF√
2
Vq1q2 V

∗
q3q4

(
αs(µ)
4 π

)
ln
(
p2

M2
W

) [ 1
2NC

S2 −
1
2 S1

]
, (2.3.40)

M(e) =M(f) = − i GF√
2
Vq1q2 V

∗
q3q4

(
αs(µ)
4 π

)
ln
(
p2

M2
W

) [
2 S1 −

2
NC

S2

]
. (2.3.41)

Total sum

Finally, the fundamental amplitude is given by

Afun = i
(
M(0) + 2M(a) + 2M(c) + 2M(e)

)

= GF√
2
Vq1q2 V

∗
q3q4

{(
1 + 2 CF

(
αs(µ)
4 π

)[
− 1
ε̂

+ ln
(
µ2

M2
W

)])
S2

+ 3
NC

(
αs(µ)
4 π

)
ln
(
M2
W

p2

)
S2 − 3

(
αs(µ)
4 π

)
ln
(
M2
W

p2

)
S1

}
. (2.3.42)
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2.3.2.2 Computation of the effective amplitude

In the computation of the effective amplitude, we use the same prescriptions as for the

fundamental amplitude. In Figures 2.5 and 2.6, we show the diagrams from the effective

theory with and without QCD corrections respectively. Since the calculation is quite sim-

ilar to the fundamental case, we just give the final amplitudes for each Feynman diagram.

q1 q2

q̄3 q̄4

Figure 2.5: Tree-level contribution for q1 q̄3 → q2 q̄4 in the EFT.

Feynman diagram (0)

The amplitude for the Feynman diagram (0) is

Mi
(0) = − i GF√

2
Vq1q2 V

∗
q3q4 Ci(µ) Si ,

where i = 1, 2 depending on the local operator.

Feynman diagram (a)

The amplitude for the Feynman diagram (a) is

M1
(a) = + i

GF√
2
Vq1q2 V

∗
q3q4 C1(µ)

(
αs(µ)
4 π

) [1
ε̂

+ ln
(
p2

µ2

)] (
− 1

2NC
S1 + 1

2 S2

)
,

M2
(a) = + i

GF√
2
Vq1q2 V

∗
q3q4 C2(µ)

(
αs(µ)
4 π

) [1
ε̂

+ ln
(
p2

µ2

)]
CF S2 .
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q1 q2

q̄3 q̄4

g

(a)

q1 q2

q̄3 q̄4
g

(b)
q1 q2

q̄3 q̄4

g

(c)

q1 q2

q̄3 q̄4

g

(d)
q1 q2

q̄3 q̄4

g

(e)

q1 q2

q̄3 q̄4

g

(f)

Figure 2.6: One-loop QCD corrections for q1 q̄3 → q2 q̄4 in the EFT.
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Feynman diagram (b)

The amplitude for the Feynman diagram (b) is

M1
(b) = M1

(a) ,

M2
(b) = M2

(a) .

Feynman diagram (c)

The amplitude for the Feynman diagram (c) is

M1
(c) = + i

GF√
2
Vq1q2 V

∗
q3q4 C1(µ)

(
αs(µ)
4 π

) [1
ε̂

+ ln
(
p2

µ2

)]
CF S1 ,

M2
(c) = + i

GF√
2
Vq1q2 V

∗
q3q4 C2(µ)

(
αs(µ)
4 π

) [1
ε̂

+ ln
(
p2

µ2

)] (
− 1

2NC
S2 + 1

2 S1

)
.

Feynman diagram (d)

The amplitude for the Feynman diagram (d) is

M1
(d) = M1

(c) ,

M2
(d) = M2

(c) .

Feynman diagram (e)

The amplitude for the Feynman diagram (e) is

M1
(e) = − i GF√

2
Vq1q2 V

∗
q3q4 C1(µ)

(
αs(µ)
4 π

) [1
ε̂

+ ln
(
p2

µ2

)] (
2 S2 −

2
NC

S1

)
,

M2
(e) = − i GF√

2
Vq1q2 V

∗
q3q4 C2(µ)

(
αs(µ)
4 π

) [1
ε̂

+ ln
(
p2

µ2

)] (
2 S1 −

2
NC

S2

)
.
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Feynman diagram (f)

The amplitude for the Feynman diagram (f) is

M1
(f) = M1

(e) ,

M2
(f) = M2

(e) .

Total sum

Finally, the effective amplitudes are

A1
eff = i

(
M1

(0) + 2M1
(a) + 2M1

(c) + 2M1
(e)

)
= GF√

2
Vq1q2 V

∗
q3q4C1(µ)

{(
1 + 2 CF

(
αs(µ)
4 π

)[
−1
ε̂

+ ln
(
µ2

p2

)])
S1

+ 3
NC

(
αs(µ)
4 π

) [
− 1
ε̂

+ ln
(
µ2

p2

)]
S1 − 3

(
αs(µ)
4 π

) [
− 1
ε̂

+ ln
(
µ2

p2

)]
S2

}

≡ GF√
2
Vq1q2 V

∗
q3q4C1(µ) 〈Q1〉(0) , (2.3.43)

A2
eff = i

(
M2

(0) + 2M2
(a) + 2M2

(c) + 2M2
(e)

)
= GF√

2
Vq1q2 V

∗
q3q4C2(µ)

{(
1 + 2 CF

(
αs(µ)
4 π

)[
−1
ε̂

+ ln
(
µ2

p2

)])
S2

+ 3
NC

(
αs(µ)
4 π

) [
− 1
ε̂

+ ln
(
µ2

p2

)]
S2 − 3

(
αs(µ)
4 π

) [
− 1
ε̂

+ ln
(
µ2

p2

)]
S1

}

≡ GF√
2
Vq1q2 V

∗
q3q4C2(µ) 〈Q2〉(0) . (2.3.44)

where 〈Q1,2〉(0) are the unrenormalized current-current matrix elements.

In the first terms of Eqs (2.3.43) and (2.3.44), there are diagonal divergences propor-

tional to CF . These divergences can be eliminated through the quark field renormaliza-

tion,

Zq = 1 + 1
ε̂

αs(µ)
4 π CF ( MS scheme ) . (2.3.45)
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However, after the renormalization of the external legs, the current-current matrix el-

ements are still divergent. To eliminate the remaining divergences, it is necessary to

perform an operator renormalization,

〈Qi〉(0) = Z−2
q Zij 〈Qi〉 . (2.3.46)

where 〈Qi〉 are the renormalized current-current matrix elements and Z is the 2 × 2

renormalization matrix. Introducing Eqs. (2.3.43), (2.3.44) and (2.3.45) into Eq. (2.3.46),

we obtain

Z = 1 − αs(µ)
4 π

1
ε̂

3/NC − 3

− 3 3/NC

 ( MS scheme ) , (2.3.47)

and then the renormalized matrix elements are given by

〈Q1〉 =
[
1 + 2 CF

αs(µ)
4 π ln

(
µ2

p2

)]
S1 + 3

NC

αs(µ)
4 π ln

(
µ2

p2

)
S1

− 3 αs(µ)
4 π ln

(
µ2

p2

)
S2 , (2.3.48)

〈Q2〉 =
[
1 + 2 CF

αs(µ)
4 π ln

(
µ2

p2

)]
S2 + 3

NC

αs(µ)
4 π ln

(
µ2

p2

)
S2

− 3 αs(µ)
4 π ln

(
µ2

p2

)
S1 . (2.3.49)

2.3.2.3 Matching condition

At this point, we are in the disposition to compute the Wilson coefficients through the

following matching condition,

Afun = Aieff , i = 1, 2 . (2.3.50)

Since in the fundamental theory, we have not renormalized the quark fields, when using

Eq. (2.3.50), we must also not renormalize them in the effective theory. To obtain a correct

estimation of the Wilson coefficients, it is crucial to treat the fundamental theory in the
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same way as the effective theory. Since both theories have the same ultraviolet and infrared

behaviour for the dynamical light degrees of freedom, the prescriptions followed during

the computation of the amplitudes exactly cancel when the matching condition is applied.

Finally, one obtains the Wilson coefficients which do not depend on prescriptions followed

during the computation, otherwise physics would depend too. Therefore, inserting both

amplitudes with the same prescriptions in Eqs. (2.3.50), we obtain the Wilson coefficients

C1,2(µ) performing a Taylor expansion around αs(µ) ≈ 0:

C1(µ) = − 3 αs(µ)
4 π ln

(
M2
W

µ2

)
, (2.3.51)

C2(µ) = 1 + 3
NC

αs(µ)
4 π ln

(
M2
W

µ2

)
. (2.3.52)

2.3.2.4 Operator mixing and diagonalization

We have seen how gluonic corrections generate contributions to the original matrix element

〈Q1〉 (〈Q2〉) and also to the other operator 〈Q2〉 (〈Q1〉), when this occurs we say that the

operator mix under renormalization. In the following sections, it is useful to diagonalize

these current-current matrix elements through the following change of basis

Q± = Q2 ±Q1
2 , C± = C2 ± C1 . (2.3.53)

The advantage of this basis is that the operators can be renormalized independently,

〈Q±〉(0) = Z−2
q Z± 〈Q±〉 , (2.3.54)

being

Z± = 1 − αs(µ)
4 π

1
ε̂

3 (1∓NC)
NC

( MS scheme ) . (2.3.55)

2.3.2.5 Large logarithmic corrections

In principle, we can obtain the values of the Wilson coefficients C1,2(µ) at any energy scale

µ using Eqs. (2.3.51) and (2.3.52). However, there is an important technical limitation in
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these equations. In our application, there are two energy scales with a very large splitting,

µ � MW . Analyzing the size of the perturbative corrections of C1,2 , we observe that
αs(µ)

4 π ln
(
M2
W
µ2

)
∼ 0.4 for µ ∼ 1 GeV . Then, the perturbative expansion is broken due to

these large logarithmic corrections. This is not a particular case, in fact, when we study a

more generic problem with different energy scales, the presence of logarithmic corrections

is a general feature that emerges when the frequency modes of the fields are integrated

out in the way down to low energies.

2.3.2.6 Renormalization-group improved perturbation theory

In the literature, the solution of this problem is called Renormalization-Group Improved

(RGI) perturbation theory. It consists in re-summing all these logarithmic corrections[
αs(µ)

4 π ln
(
M2
W
µ2

)]n
to all orders of n . This involves to solve the RGEs taking in mind the

following counting rules:

αs(µ)
4 π ln

(
M2
W

µ2

)
∼ O(1) , αs(µ)

4 π � 1 . (2.3.56)

For that purpose, let us consider the following physical amplitude,1

A =
∑
i=±

Ci(µ) 〈Qi(µ)〉 . (2.3.57)

Since A is a physical observable, it can not depend on the scale µ, then we obtain

Ci(µ) d 〈Qi(µ)〉
d µ + d Cj(µ)

d µ 〈Qj(µ)〉 = 0 , (2.3.58)

where sum over repeated indices is understood. Rewriting Eq. (2.3.58), we obtain the

RGEs for the Wilson coefficients C±(µ)

d C±(µ)
d lnµ = γ±(µ) C±(µ) , (2.3.59)

where γ± is the anomalous dimension in the diagonal basis,

γ±(µ) ≡ − 1
〈Q±(µ)〉

d 〈Q±(µ)〉
d lnµ = 1

Z±(µ)
d Z±(µ)
d lnµ =

(
αs(µ)
4 π

)
γ

(0)
± , (2.3.60)

1In Eq. (2.3.57), we have omitted some global factors because they do not have any physical repercussion.
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where

γ
(0)
± ≡ − 6 (1∓NC)

NC
. (2.3.61)

Since the anomalous dimension matrix depend only on µ through αs(µ), we can consider

the running of the strong coupling

dαs(µ)
d lnµ = β , (2.3.62)

where β is the QCD β-function given by

β = − 2 αs(µ)
[
β0

αs(µ)
4 π + β1

(
αs(µ)
4 π

)2]
+ O(α4

s) , (2.3.63)

with

β0 ≡
11NC − 2 f

3 , β1 ≡
34
3 N2

C −
10
3 NC f − 2 CF f , (2.3.64)

and f the number of active flavours. Then, taking into account Eq. (2.3.62), the RGEs

become

d C±(µ)
d αs(µ) = γ±(αs(µ))

β(αs(µ)) C±(µ) , (2.3.65)

which has the following solution

C±(µL) = exp
[∫ αs(µH)

αs(µL)
d α γ±(α)

β(α)

]
C±(µH) , µL < µH , (2.3.66)

where µL and µH correspond to some low and high energy scales. This problem can also

be solved in the non-diagonal basis,

d−→C (µ)
d lnµ = γ̂T (µ)−→C (µ) , (2.3.67)

where the solution is

−→
C (µL) = Tα exp

[∫ αs(µH)

αs(µL)
d α γ̂

T (α)
β(α)

]
−→
C (µH) , µL < µH , (2.3.68)

being −→C (µ) = (C1(µ), C2(µ)) and Tα the α-ordering operator which arranges the Taylor

expansion of the exponential function in such a way that coupling constants increase from
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right to left. This is necessary because γ̂(α) is a non-diagonal matrix that in general does

not commute, [γ̂(αs(µ1)), γ̂(αs(µ2))] 6= 0 .

Finally, we have re-summed all these large logarithmic corrections and the problem

is reduced to the analytical computation of three quantities: C±(µH), γ±(αs(µ)) and

β(αs(µ)). Integrating Eq. (2.3.66), we obtain the following solution

C±(µL) =
[
αs(µL)
αs(µH)

]− γ(0)
±

2 β0
C±(µH) , (2.3.69)

which clearly re-sum all these large logarithms,

[
αs(µL)
αs(µH)

]− γ(0)
±

2 β0 = 1 + γ
(0)
±

αs(µH)
4 π ln

(
µL
µH

)
+ O

(
α2
s(µH) ln2

(
µL
µH

))
.

In Figures 2.7, we plot the dependence of the Wilson coefficients as function of low energy

scale µL. We have taken C1(MW ) = 0 and C2(MW ) = 1 from Eqs. (2.3.51) and (2.3.52).

The plot shows that the mixing between the operators has a significant impact to low

energies at few GeVs.

Figure 2.7: Wilson coefficients as function of µL
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2.3.3 Some final comments or remarks

In the previous example, we have used the RGEs to go down from the electroweak scale

to the charm quark scale. For mc < µL < mb , the bottom quark field ceases to be a

dynamical degree of freedom and leads into an EFT with 4 flavours instead of 5. In this

EFT transition, there are QCD corrections that are known as threshold effects, further

details can be found in Refs. [49, 50].

In addition, we would like to point out how the numbers−2/9 and−6/23 in Eqs. (1.4.108)

and (1.4.109) respectively correspond to simple gluonic QCD corrections to the typical

current-current operators that govern the neutral meson mixing. These numbers come

from the power − γ
(0)
+

2 β0
for f = 3 and f = 5 respectively.

In this chapter, we have not introduced the EFT for non-perturbative regimes below

1 GeV, Chiral Perturbation Theory (χPT). We prefer to introduce it in the next chapter

where we study the direct CP violating ratio ε′/ε from K0 → ππ in the SM. For this pre-

diction, it is necessary to use some non-perturbative tools like χPT, large-NC , etc. Then,

some of the powerful non-perturbative techniques used in particle physics are introduced

there.





Chapter 3

Direct CP violation in kaon decays

In 1988 the NA31 experiment presented the first evidence of direct CP violation in the

K0 → ππ decay amplitudes. A clear signal with a 7.2σ statistical significance was later

established with the full data samples from the NA31, E731, NA48 and KTeV experiments,

confirming that CP violation is associated with a ∆S = 1 quark transition, as predicted

by the SM. However, the theoretical prediction for the measured ratio ε′/ε has been

a subject of strong controversy along the years. Although the underlying physics was

already clarified in 2001, the recent release of improved lattice data has revived again the

theoretical debate. In this chapter, we review the current status, discussing in detail the

different ingredients that enter into the calculation of this observable and the reasons why

seemingly contradictory predictions were obtained in the past by several groups. Finally,

an update of the SM prediction is presented and the prospects for future improvements

are analysed. The content of this chapter is based on Ref. [52].

3.1 Historical prelude

The investigation of kaon decays [53] has a fruitful record of very important scientific

achievements, being at the origin of many of the fundamental ingredients that have given

rise to the current structure of the EWSM [13–15]: the flavour concept of strangeness

67
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[54, 55], parity violation [56, 57], meson-antimeson oscillations [58], quark mixing [23],

GIM mechanism [21] and CP violation [24, 59]. Since their discovery in 1947 [60], kaons

have played a very significant role in our understanding of fundamental physics, providing

accurate tests of quantum mechanics and uncovering the existence of higher-mass scales

such as the charm [21, 61] and the top quarks [24, 62]. Nowadays, the kaon decay data

continue having a major impact on flavour phenomenology and impose very stringent

constraints on plausible scenarios of New Physics (NP).

The measured ratios of KL → ππ and KS → ππ decay amplitudes,

η00 ≡
A(KL → π0π0)
A(KS → π0π0) ≡ ε− 2 ε′ , η+− ≡

A(KL → π+π−)
A(KS → π+π−) ≡ ε+ ε′ , (3.1.1)

exhibit a clear violation of the CP symmetry at the per-mill level [63]

|ε| = 1
3
∣∣η00 + 2 η+−

∣∣ = (2.228± 0.011) · 10−3 , (3.1.2)

which originates in a ∆S = 2 transition between the K0 and the K0 states [53, 59]. A

more subtle effect is the existence of a tiny difference between η00 and η+− that has been

experimentally established through the ratio [64–72]

Re
(
ε′/ε

)
= 1

3

(
1−

∣∣∣∣∣ η00

η+−

∣∣∣∣∣
)

= (16.6± 2.3) · 10−4 , (3.1.3)

demonstrating the existence of direct CP violation in the K0 → ππ decay amplitudes.

This measurement plays a crucial role in our understanding of the dynamical origin of the

CP violation, since it confirms that it is associated with a ∆S = 1 transition, as predicted

by the SM with the CKM mechanism [23,24].

The theoretical prediction of ε′/ε has a quite controversial history [73–92] because

the first next-to-leading order (NLO) calculations [75–80] claimed SM values one order

of magnitude smaller than (3.1.3), contradicting the clear signal observed in 1988 by the

CERN NA31 collaboration [64, 65] and giving support to the null result obtained by the

E731 experiment at Fermilab [69]. The final confirmation that Re (ε′/ε) ∼ 10−3 , with

the NA48 [66–68] and KTeV [70–72] data, triggered then a large number of new-physics
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explanations for that exciting “flavour anomaly”.1 However, it was soon realized that

the former SM predictions had missed completely the important role of the final pion

dynamics [86,87]. Once long-distance contributions were properly taken into account, the

theoretical prediction was found to be in good agreement with the experimental value,

albeit with unfortunately large uncertainties of non-perturbative origin [88].

Numerical QCD simulations on a discretised space-time volume are an appropriate

tool to address non-perturbative problems. However, lattice calculations of the K → ππ

amplitudes face many technical challenges, associated with their Minkowskian nature (the

physical amplitudes cannot be extracted from standard Euclidean lattice simulations [93]),

the presence of several competing operators with a very involved dynamical interplay,

and the vacuum quantum numbers of the isoscalar ππ final state (a large vacuum-state

contribution must be subtracted, which deteriorates the signal to noise ratio). For many

years, a quantitative lattice corroboration of the known enhancement of the ∆I = 1/2

amplitude remained unsuccessful, while attempts to estimate ε′/ε were unreliable, often

obtaining negative values due to an insuficient signal in the isoscalar decay amplitude

[94–97]. The situation has changed in recent years, thanks to the development of more

sophisticated techniques and the increasing power of modern computers. A quite successful

calculation of the ∆I = 3/2 K+ → π+π0 amplitude has been achieved by the RBC-

UKQCD collaboration [98–100], and the first statistically-significant signal of the ∆I =

1/2 enhancement has recently been reported [101], confirming the qualitative dynamical

understanding achieved long time ago with analytical methods [102–111].2

From its most recent lattice data, the RBC-UKQCD collaboration has also extracted

a first estimate for the direct CP-violation ratio: Re(ε′/ε) = (1.38 ± 5.15 ± 4.59) · 10−4

[100,113]. Although the quoted errors are still large, the low central value would imply a

1Many papers addressing the claimed discrepancy can be found at the Inspire data basis. We refrain

from quoting them here.
2A large enhancement of the isoscalar K → ππ amplitude has also been found at unphysical quark

masses (MK ∼ 2Mπ), using PACS-CS gauge configurations generated with the Iwasaki action and the

O(a)-improved Wilson fermion action [112].
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2.1σ deviation from the experimental value in Eq. (3.1.3). This discrepancy has revived

some of the old SM calculations predicting low values of ε′/ε [114–116] (missing again

the crucial pion dynamics), and has triggered new studies of possible contributions from

physics beyond the SM [117–143].

Before claiming any evidence for new physics, one should realize the technical limita-

tions of the current lattice result. In order to access the Minkowskian kinematics with

physical interacting pions, evading the Maini-Testa no-go theorem [93], the RBC-UKQCD

simulation follows the elegant method developed by Lellouch and Lüscher [144] to relate

the infinite-volume and finite-volume results. At finite volumes there is a discrete spec-

trum and the box size can be tuned to get pions with the desired momentum; moreover,

the Lüscher quantization condition [145, 146] allows one to compute the needed S-wave

phase shift of the final ππ state. The (ππ)I phase shifts, δI (I = 0, 2), play a crucial

role in the calculation and provide a quantitative test of the lattice result. While the

extracted I = 2 phase shift is only 1σ away from its physical value, the lattice analysis

of Ref. [113] finds a result for δ0 which disagrees with the experimental value by 2.9σ, a

much larger discrepancy than the one quoted for ε′/ε. Obviously, nobody is looking for

any NP contribution to the ππ elastic scattering phase shifts. Nevertheless, although it is

still premature to derive strong physics implications from these lattice results, they look

already quite impressive and show that substantial improvements could be achieved in the

near future [147,148].

Meanwhile, it seems worth to revise and update the analytical SM calculation of ε′/ε

[88], which is already 18 years old. A very detailed study of electromagnetic and isospin-

violating corrections, which play a very important role in ε′/ε, was accomplished later

[149–151]. Although the main numerical implications for the ε′/ε prediction were reported

in some unpublished conference proceedings [92] and have been quoted in more recent

reviews [53], a complete phenomenological analysis including properly these corrections

has never been presented. The penguin matrix elements that dominate the CP-violating

K → ππ amplitudes are also quite sensitive to the numerical inputs adopted for the light

quark masses. Thanks to the impressive lattice progress achieved in recent years [152],
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the quark masses are nowadays determined with a much better precision and their impact

on ε′/ε must be investigated. Moreover, we have now a better understanding of several

non-perturbative ingredients entering the calculation such as chiral low-energy constants

and large-NC relations [153–169].

A convenient decomposition of the K → ππ amplitudes [150] that allows us to in-

corporate electromagnetic and isospin-violating corrections, closely following the familiar

isospin notation, is presented in Section 3.2. We also review there the phenomenologi-

cal expressions needed to compute ε′/ε and the isospin-breaking corrections computed in

Refs. [149–151] and updated in the next chapter. The short-distance contributions to ε′/ε

are detailed in Section 3.3, where large logarithmic corrections ∼ αks(µ) logn (MW /µ) are

summed up with the renormalization group, at the NLO (k = n, n + 1). The hadronic

matrix elements of the relevant four-quark operators are discussed in Section 3.4. Their

chiral SU(3)L ⊗ SU(3)R symmetry properties are analysed, emphasizing the reasons why

the strong and electroweak penguin operators Q6 and Q8 dominate the CP-odd kaon decay

amplitudes into final pions with I = 0 and 2, respectively. Using the large-NC limit we

also provide there a first simplified estimate of ε′/ε that exhibits the presence of a subtle

numerical cancellation. This estimate allows us to easily understand the numerical values

quoted in Ref. [116]. Sections 3.5, 3.6 and 3.7 present a much more powerful EFT ap-

proach to the problem. The low-energy realization of the short-distance ∆S = 1 effective

Lagrangian is analysed in Section 3.5, using the well-known techniques of χPT [170–176]

that make possible to pin down the long-distance contributions to the K → ππ amplitudes

and unambiguously determine the logarithmic chiral corrections. Section 3.6 discusses the

matching between the short-distance Lagrangian and χPT and shows how the chiral cou-

plings can be determined at NC → ∞. The kaon decay amplitudes are worked out in

Section 3.7, at the NLO in the chiral expansion. The one-loop chiral corrections are

rather large and have a very important impact on ε′/ε because they destroy the numerical

cancellation present in simplified analyses. This is explained in Section 3.8, which contains

the updated determination of the CP-violating ratio. A detailed discussion of the current

result and the prospects for future improvements are finally given in Section 3.9. The
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input values adopted for the different parameters entering in the analysis are collected in

the Appendix C.

3.2 Anatomy of ε′/ε

The K → ππ decay amplitudes can be parametrized in the general form3 [150]

A(K0 → π+π−) = A1/2 + 1√
2

(
A3/2 +A5/2

)
= A0 e

iχ0 + 1√
2
A2 e

iχ2 ,

A(K0 → π0π0) = A1/2 −
√

2
(
A3/2 +A5/2

)
= A0 e

iχ0 −
√

2A2 e
iχ2 ,

A(K+ → π+π0) = 3
2

(
A3/2 −

2
3A5/2

)
= 3

2 A
+
2 e

iχ+
2 , (3.2.4)

which expresses the three physical amplitudes in terms of three complex quantities A∆I

that are generated by the ∆I = 1
2 ,

3
2 ,

5
2 components of the electroweak effective Hamilto-

nian, in the limit of isospin conservation. Writing A1/2 ≡ A0 e
iχ0 , A3/2 +A5/2 ≡ A2 e

iχ2

and A3/2 − 2
3A5/2 ≡ A+

2 e
iχ+

2 , our notation closely follows the usual isospin decomposi-

tion. In the CP-conserving limit the amplitudes, A0 , A2 and A+
2 are real and positive by

definition.

In the SM,A5/2 = 0 in the absence of electromagnetic interactions. If isospin symmetry

is assumed, A0 and A2 = A+
2 correspond to the decay amplitudes into the (ππ)I = 0, 2 final

states. The phases χ0 and χ2 = χ+
2 can then be identified with the S-wave ππ scattering

phase shifts δI at
√
s = MK , up to isospin-breaking effects [150,151].

In the isospin limit (keeping the physical meson masses in the phase space), A0 , A2

and the phase difference χ0 − χ2 can be directly extracted from the measured K → ππ

3Including electromagnetic corrections, this parametrization holds for the infrared-finite amplitudes

after the Coulomb and infrared parts are removed and treated in combination with real photon emission

[150].
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branching ratios [177]:

A0 = (2.704± 0.001) · 10−7 GeV ,

A2 = (1.210± 0.002) · 10−8 GeV ,

χ0 − χ2 = (47.5± 0.9)◦ . (3.2.5)

They exhibit a strong enhancement of the isoscalar amplitude with respect to the isotensor

one (the so-called “∆I = 1
2 rule”),

ω ≡ ReA2
ReA0

≈ 1
22 , (3.2.6)

and a large phase-shift difference between the two isospin amplitudes, which mostly orig-

inates in the strong S-wave rescattering of the two final pions with I = 0 . This implies

that 50% of the A1/2/A3/2 ratio originates from the absorptive contribution:

Abs(A1/2/A3/2)
Dis(A1/2/A3/2) = 1.09 . (3.2.7)

We would see later their strong implications on ε′/ε.

When CP violation is turned on, the amplitudes A0, A2 and A+
2 acquire imaginary

parts. The direct CP-violating signal is generated by the interference of the two possible

K0 → ππ decay amplitudes, with different weak and strong phases. To first order in CP

violation,

ε′ = 1
3 (η+− − η00) = − i√

2
ei(χ2−χ0) ω̂

[ ImA0
ReA0

− ImA2
ReA2

]
, (3.2.8)

with

ω̂ = ω

1− ω√
2 e

i(χ2−χ0) − ω2 e2i(χ2−χ0) ≈ ω . (3.2.9)

Thus, ε′ is suppressed by the small dynamical ratio ω . The global phase φε′ = χ2 −

χ0 + π/2 = (42.5 ± 0.9)◦ is very close to φε ≈ tan−1 [2(mKL −mKS )/(ΓKS − ΓKL)] =

(43.52 ± 0.05)◦ [63], the so-called superweak phase. This implies that cos (φε′ − φε) ≈ 1

and ε′/ε is approximately real.

Eq. (3.2.8) involves a very delicate numerical balance between the two isospin contribu-

tions. In order to minimize hadronic uncertainties, the CP-conserving amplitudes ReAI
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are usually set to their experimentally determined values. A first-principle calculation

is only needed for the CP-odd amplitudes ImA0 and ImA2, which are dominated by the

strong and electromagnetic penguin contributions, respectively, to be discussed in the next

section. However, naive estimates of ImAI result in a large numerical cancellation between

the two terms, leading to unrealistically low values of ε′/ε [75–80]. The true SM prediction

is then very sensitive to the precise values of the two isospin contributions [83, 85]. Small

corrections to any of the two amplitudes get strongly amplified in Eq. (3.2.8) because they

destroy the accidental numerical cancellation.

Isospin violation plays a very important role in ε′/ε due to the large ratio 1/ω . Small

isospin-violating corrections to the dominant decay amplitude A0 generate very sizeable

contributions to A2 , which have obviously a direct impact on ε′/ε . Isospin-breaking

effects in K → ππ decays have been systematically analysed in Refs. [149–151], including

corrections from electromagnetic interactions, at NLO in χPT. To first order in isospin

violation, ε′ can be expressed in the following form, which makes explicit all sources of

isospin breaking:

ε′ = − i√
2

ei(χ2−χ0) ω+

[
ImA(0)

0

ReA(0)
0

(
1 + ∆0 + f5/2

)
− ImA2

ReA(0)
2

]
. (3.2.10)

From the (isospin conserving) phenomenological fit in Eq. (3.2.5), one actually extracts

ω+ = ReA+
2 /ReA0, which differs from ω by a pure ∆I = 5

2 correction induced by the

electromagnetic interaction at NLO, i.e., at O(e2p2) [53, 149–151],

f5/2 = ReA2

ReA+
2
− 1 = ω+

ω
− 1 = (8.44± 0.02exp ± 2.5th) · 10−2 . (3.2.11)

The superscript (0) on the amplitudes denotes the isospin limit and [149,150]

∆0 = ImA0

ImA(0)
0

ReA(0)
0

ReA0
− 1 = (8.4± 3.6) · 10−2 , (3.2.12)

includes corrections of O[(mu−md)p2, e2p2] . The final numerical result for ∆0 is governed

to a large extent by the electromagnetic penguin contribution to ImA0 .

The expression (3.2.10) takes already into account that ImA2 is itself of first order in

isospin violation. It is convenient to separate the leading contribution of the electromag-



3.2 Anatomy of ε′/ε 75

netic penguin operator from the isospin-breaking effects generated by other four-quark

operators:

ImA2 = ImAemp
2 + ImAnon−emp

2 . (3.2.13)

This separation is renormalization-scheme dependent,4 but allows one to identify those

isospin-violating contributions which are enhanced by the ratio 1/ω and write them ex-

plicitly as corrections to the I = 0 side through the parameter [149,150]

ΩIB = ReA(0)
0

ReA(0)
2

ImAnon−emp
2

ImA(0)
0

= (22.7± 7.6) · 10−2 . (3.2.14)

This quantity includes a sizeable contribution from π0–η mixing [178] which dominates

the full NLO correction from strong isospin violation: Ωα=0
IB = (15.9 ± 4.5) · 10−2 . Elec-

tromagnetic contributions are responsible for the numerical difference with the value in

Eq. (3.2.14).

The phenomenological analysis of ε′/ε can then be more easily performed with the

expression

Re(ε′/ε) = − ω+√
2 |ε|

[
ImA(0)

0

ReA(0)
0

(1− Ωeff)− ImAemp
2

ReA(0)
2

]
, (3.2.15)

with [149,150]

Ωeff = ΩIB −∆0 − f5/2 = (6.0± 7.7) · 10−2 . (3.2.16)

Notice that there is a large numerical cancellation among the different isospin-breaking

corrections. Although the separate strong and electromagnetic contributions are sizeable,

they interfere destructively leading to a final isospin-violation correction of moderate size.

In the next chapter, an update of these isospin violating effects is presented, in this chapter

we use the values adopted in Ref. [52].

4 The renormalization-scheme ambiguity is only present in the electromagnetic contribution. The

splitting between ImAemp
2 and ImAnon−emp

2 has been performed (in the MS scheme with naive dimensional

regularization) matching the short-distance Hamiltonian and χPT effective descriptions (see the next

sections) at leading order in 1/NC .
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3.3 Short-distance contributions

In the SM, the flavour-changing ∆S = 1 transition proceeds through the exchange of a W

boson between two weak charged currents. Since MK � MW , the heavy W boson can

be integrated out and the effective interaction reduces to a local four-fermion operator,

[s̄γµ(1 − γ5)u] [ūγµ(1 − γ5)d] , multiplied by the Fermi coupling GF /
√

2 = g2/(8M2
W )

and the relevant CKM factors VudV ∗us . The inclusion of gluonic corrections generates

additional four-fermion operators, which mix under renormalization [179–183] as we have

seen in Chapter 2:

Q1 = (s̄α uβ)V−A (ūβ dα)V−A , Q2 = (s̄ u)V−A (ū d)V−A ,

Q3 = (s̄ d)V−A
∑

q=u,d,s
(q̄ q)V−A , Q4 = (s̄α dβ)V−A

∑
q=u,d,s

(q̄β qα)V−A ,

Q5 = (s̄ d)V−A
∑

q=u,d,s
(q̄ q)V+A , Q6 = (s̄α dβ)V−A

∑
q=u,d,s

(q̄β qα)V+A , (3.3.17)

where V ± A indicates the Lorentz structure γµ (1 ± γ5) and α, β denote color indices.

When colour labels are not explicit, colour-singlet currents are understood (q̄Γq ≡ q̄αΓqα).

The first two operators originate in the W -exchange topology of Figure 3.1a, while the

QCD penguin diagram in Figure 3.1b gives rise to Q3,4,5,6 .

Four additional four-quark operators appear when one-loop electroweak corrections are

incorporated. The electroweak penguin diagrams in Figure 3.1c generate the structures

[184–188]

Q7 = 3
2 (s̄d)V−A

∑
q=u,d,s

eq (q̄q)V+A , Q8 = 3
2 (s̄αdβ)V−A

∑
q=u,d,s

eq (q̄βqα)V+A ,

Q9 = 3
2 (s̄d)V−A

∑
q=u,d,s

eq (q̄q)V−A , Q10 = 3
2 (s̄αdβ)V−A

∑
q=u,d,s

eq (q̄βqα)V−A , (3.3.18)

where eq denotes the corresponding quark charge in units of e =
√

4πα .

The presence of very different mass scales (Mπ < MK � MW ) amplifies the gluonic

corrections to the K → ππ amplitudes with large logarithms that can be summed up all

the way down from MW to scales µ < mc , using the OPE and the RGEs as we have seen
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Figure 3.1: SM Feynman diagrams contributing to ∆S = 1 transitions: current–current

(a), QCD penguin (b) and electroweak penguin (c) topologies.

in Chapter 2. One finally gets a short-distance effective Lagrangian [49],

L∆S=1
eff = −GF√

2
VudV

∗
us

10∑
i=1

Ci(µ)Qi(µ) , (3.3.19)

defined in the three-flavour theory, with the different local operators modulated by Wilson

coefficients Ci(µ) that are functions of the heavy masses (MZ,W , mt,b,c > µ) and CKM

parameters:

Ci(µ) = zi(µ) + τ yi(µ) , τ ≡ − VtdV
∗
ts

VudV
∗
us

. (3.3.20)

For convenience, the global normalization in Eq. (3.3.19) incorporates the tree-level de-

pendence on CKM factors, so that Ci = δi2 at lowest order (LO), and the unitarity of the

CKM matrix has been used to remove the dependences on VcdV ∗cs .

The Wilson coefficients Ci(µ) are known at the next-to-leading logarithmic order [189–

192]. This includes all corrections of O(αns tn) and O(αn+1
s tn) , where t ≡ log (M1/M2)

refers to the logarithm of any ratio of heavy mass scales M1,M2 ≥ µ . Moreover, the full
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mt/MW dependence (at LO in αs) is taken into account. Some next-to-next-to-leading-

order (NNLO) corrections are already known [193, 194] and efforts towards a complete

short-distance calculation at the NNLO are currently under way [195].

In Table 3.1 we provide the numerical values of the Wilson coefficients, computed at

NLO with a renormalization scale µ = 1 GeV . The results are displayed in the MS renor-

malization scheme for two different definitions of γ5 within dimensional regularization:

the NDR and ’t Hooft-Veltman (HV) schemes [34–36, 196]. The inputs adopted for the

relevant SM parameters are detailed in the Appendix C, in Table C.1. The dependence

of the Wilson coefficients on the renormalization scheme and scale should cancel with a

corresponding dependence on the hadronic matrix elements of the four-quark operators.

However, given their non-perturbative character, a rigorous evaluation of these matrix el-

ements, keeping full control of the QCD renormalization conventions, is a very challenging

task. As shown in Table 3.1, the Wilson coefficients have a sizeable sensitivity to the

chosen scheme for γ5, which limits the currently achievable precision. The table illustrates

also their variation with the input value of the strong coupling, which has been taken in

the range α(nf=3)
s (mτ ) = 0.325± 0.015 [63,197]. Further technical details can be found in

the Appendix D.

To generate CP-violating effects, the SM requires at least three fermion families so that

the CKM matrix incorporates a measurable complex phase. For the K → ππ transitions,

this implies that direct violations of CP can only originate from penguin diagrams where

the three generations play an active role. Thus, the CP-violating parts of the decay

amplitudes, ImAI , are proportional to the yi(µ) components of the Wilson coefficients,

which are only non-zero for i > 2 . In the Wolfenstein parametrization [26], Im τ ≈

−λ4A2η ∼ −6 · 10−4 , exhibiting the strong suppression of these effects in the SM.

3.4 Hadronic matrix elements

Symmetry considerations allow us to better understand the dynamical role of the different

four-quark operators. The difference Q− ≡ Q2 − Q1 and the QCD penguin operators
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NDR scheme HV scheme αs(Mτ ) error

z1 −0.4967 −0.6238 ± 0.04

z2 1.2697 1.3587 ± 0.03

z3 0.0115 0.0064 ± 0.002

z4 −0.0321 −0.0143 ± 0.006

z5 0.0073 0.0034 ± 0.0007

z6 −0.0318 −0.0124 ± 0.006

z7/α 0.0107 −0.0017 ± 0.003

z8/α 0.0121 0.0082 ± 0.003

z9/α 0.0169 0.0037 ± 0.004

z10/α −0.0072 −0.0082 ± 0.001

y3 0.0318 0.0367 ± 0.003

y4 −0.0575 −0.0607 ± 0.004

y5 0.0000 0.0161 ± 0.003

y6 −0.1081 −0.0948 ± 0.02

y7/α −0.0364 −0.0349 ± 0.0004

y8/α 0.1605 0.1748 ± 0.02

y9/α −1.5087 −1.5103 ± 0.04

y10/α 0.6464 0.6557 ± 0.06

Table 3.1: ∆S = 1 Wilson coefficients at µ = 1 GeV (y1 = y2 = 0).

Q3,4,5,6 transform as (8L, 1R) under chiral SU(3)L⊗SU(3)R transformations in the flavour

space, and induce pure ∆I = 1
2 transitions. Thus, they do not contribute to the A2

amplitude if isospin is conserved. ∆I = 3
2 transitions can only be generated through the

complementary combination Q(27) ≡ 2Q2 + 3Q1 − Q3 , which transforms as a (27L, 1R)
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operator and can also give rise to processes with ∆I = 1
2 . Owing to their explicit

dependence on the quark charges eq , the electroweak penguin operators do not have

definite chiral and isospin quantum numbers. The operators Q7 and Q8 contain (8L, 1R)

and (8L, 8R) components, while Q9 and Q10 are combinations of (8L, 1R) and (27L, 1R)

pieces.

The chiralities of the different Qi operators play also a very important dynamical role.

Making a Fierz rearrangement, one can rewrite all operators in terms of colour-singlet

quark currents. While the (V −A)⊗(V −A) operators remain then with a similar Lorentz

structure,

Q4 =
∑

q=u,d,s
(s̄q)V−A (q̄d)V−A , Q10 = 3

2
∑

q=u,d,s
eq (s̄q)V−A (q̄d)V−A , (3.4.21)

the two (V − A) ⊗ (V + A) operators transform into a product of scalar/pseudoscalar

currents,

Q6 = −8
∑

q=u,d,s
(s̄LqR) (q̄RdL) , Q8 = −12

∑
q=u,d,s

eq (s̄LqR) (q̄RdL) . (3.4.22)

For light quarks, the hadronic matrix elements of this type of operators turn out to be

much larger than the (V −A)⊗ (V −A) ones.

This chiral enhancement can be easily estimated in the limit of a large number of QCD

colours [198, 199], because the product of two colour-singlet quark currents factorizes at

the hadron level into two current matrix elements:

〈J · J〉 = 〈J〉 〈J〉 {1 +O(1/NC)} . (3.4.23)

Thus, when NC →∞ ,5

〈π+π−|(s̄LγµuL)(ūLγµdL)|K0〉 = 〈π+|ūLγµdL|0〉 〈π−|s̄LγµuL|K0〉 (3.4.24)

= i
√

2
4 Fπ (M2

K −M2
π)
{

1 +O
(
M2
π

F 2
π

)}
,

5The convention for Fπ,K in Chapters 3 and 4 is different from the one introduced in Chapters 1 and

5, both are related through fM0 =
√

2FM0 .
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while

〈π+π−|(s̄LuR)(ūRdL)|K0〉 = 〈π+|ūRdL|0〉 〈π−|s̄LuR|K0〉 (3.4.25)

= i
√

2
4 Fπ

[
M2
K

md(µ) +ms(µ)

]2 {
1 +O

(
M2
K

F 2
π

)}
,

where Fπ = 92.1 MeV is the pion decay constant. Notice the µ dependence of this last

matrix element, which arises because the scalar and pseudoscalar currents get renormal-

ized, but keeping the products mq q̄ (1, γ5) q invariant under renormalization. On the other

side, the vector and axial currents are renormalization invariant, since they are protected

by chiral symmetry. This different short-distance behaviour has important consequences

in the analysis of ε′/ε . At µ = 1 GeV , the relative ratio between the matrix elements in

Eqs. (3.4.25) and (3.4.24) is a large factor M2
K/[ms(µ) +md(µ)]2 ∼ 14 .

Owing to their chiral enhancement, the operators Q6 and Q8 dominate the CP-odd

amplitudes ImA(0)
0 and ImAemp

2 , respectively, in Eq. (3.2.15). As shown in Table 3.1, Q6

has in addition the largest Wilson coefficient yi(µ) . Ignoring all other contributions to

the CP-violating decay amplitudes, one can then make a rough estimate of ε′/ε with their

matrix elements [185,200]:

ImA0|Q6
= GFA

2λ5η y6(µ) 4 (FK − Fπ)
[

M2
K

md(µ) +ms(µ)

]2

B
(1/2)
6 , (3.4.26)

ImA2|Q8
= −GF√

2
A2λ5η y8(µ) 2Fπ

[
M2
K

md(µ) +ms(µ)

]2

B
(3/2)
8 , (3.4.27)

where FK = (1.193 ± 0.003)Fπ [152] is the kaon decay constant and the factors B(1/2)
6

and B
(3/2)
8 parametrize the deviations of the true hadronic matrix elements from their

large-NC approximations; i.e., B(1/2)
6 = B

(3/2)
8 = 1 at NC → ∞ .6 The renormalization-

scale dependence of y6(µ) and y8(µ) is cancelled to a large extent by the running quark

masses, leaving a very soft residual dependence on µ for the unknown parameters B(1/2)
6

6Actually, the expressions (3.4.26) and (3.4.27) receive small chiral corrections even at NC →∞ . We

will take them later into account, using an appropriate effective field theory framework.
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and B(3/2)
8 . This very fortunate fact originates in the large-NC structure of the anomalous

dimension matrix γij of the four-quark operators Qi . At NC → ∞ , all entries of this

matrix are zero, except γ66 and γ88 [201]. This just reflects the factorization property in

Eq. (3.4.23) and the fact that the product mq q̄ q is renormalization invariant.

Inserting these two matrix elements in Eq. (3.2.15) and taking the experimental values

for all the other inputs, one finds

Re(ε′/ε) ≈ 2.2 · 10−3
{
B

(1/2)
6 (1− Ωeff)− 0.48 B(3/2)

8

}
. (3.4.28)

With B(1/2)
6 = B

(3/2)
8 = 1 and Ωeff = 0.06 , this gives Re(ε′/ε) ≈ 1.0 ·10−3 as the expected

order of magnitude for the SM prediction. However, there is a subtle cancellation among

the three terms in Eq. (3.4.28), making the final number very sensitive to the exact values

of these three inputs. For instance, with the inputs adopted in Ref. [116], B(1/2)
6 = 0.57 ,

B
(3/2)
8 = 0.76 and Ωeff = 0.15 , one finds instead Re(ε′/ε) ≈ 2.6 ·10−4 , which is nearly one

order of magnitude smaller and in clear conflict with the experimental value in Eq. (3.1.3).

Which such a choice of inputs, the cancellation is so strong that contributions from other

four-quark operators become then sizeable. On the other side, a moderate increase of

B
(1/2)
6 over its large-NC prediction, i.e., B(1/2)

6 > 1 , gets amplified in Eq. (3.4.28), which

results in much larger values of ε′/ε .

The crucial observation made in Refs. [86–88] is that the chiral dynamics of the final-

state pions generates large logarithmic corrections to the two relevant decay amplitudes,

A0|Q6
and A2|Q8

, which are of NLO in 1/NC . These logarithmic corrections can be

rigorously computed with standard χPT methods and are tightly related to the large

phase-shift difference in Eq. (3.2.5). They turn out to be positive for A0|Q6
and negative

for A2|Q8
, destroying the numerical cancellation in Eq. (3.4.28) and bringing, therefore,

a sizeable enhancement of the SM prediction for ε′/ε , in good agreement with its experi-

mental value.



3.5 Effective field theory description 83

3.5 Effective field theory description

EFT provides the appropriate framework to address the multi-scale dynamics involved in

kaon decays. While the short-distance electroweak transitions occur at the W mass scale,

kaons and pions are the lightest particles in the QCD spectrum and their dynamics is

governed by the non-perturbative regime of the strong interaction. A proper description

of non-leptonic kaon decays requires then a good theoretical control of short-distance

and long-distance contributions, through a combined application of perturbative and non-

perturbative techniques.

We have already displayed in Eq. (3.3.19) the relevant short-distance effective La-

grangian at scales µ just below the charm mass, where perturbation theory remains still

valid. This Lagrangian corresponds to an effective field theory description with all heavy

(M > µ) fields integrated out. Only the three light quarks (and e, µ, νi, γ, Ga) are kept

as explicit dynamical fields. All informations on the heavy fields that are no longer in

the effective theory are captured by the Wilson coefficients Ci(µ) , which can be conve-

niently calculated with the OPE and renormalization-group methods as we have explained

in Chapter 2.

Chiral symmetry considerations allow us to formulate another EFT that is valid at

the kaon mass scale where perturbation theory can no longer be applied. Since kaons and

pions are the Goldstone modes of the QCD chiral symmetry breaking, their dynamics is

highly constrained by chiral symmetry, which provides a very powerful tool to describe

kaon decays in a rigorous way [53]. Figure 3.2 shows schematically the chain of effective

theories entering the analysis of the kaon decay dynamics.

3.5.1 Chiral perturbation theory

At very low energies, below the ρ mass scale, the hadronic spectrum only contains the

pseudoscalar meson octet; i.e., the Goldstone modes φa associated with the dynamical

breaking of chiral symmetry by the QCD vacuum, which are conveniently parametrized
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Energy Fields Effective Theory

MW

W,Z, γ,Ga

τ, µ, e, νi

t, b, c, s, d, u

Standard Model

<∼ mc

γ,Ga ; µ, e, νi
s, d, u

LNf=3
QCD , L∆S=1,2

eff

mK

γ ; µ, e, νi
π,K, η

χPT

?

?
OPE

NC →∞

Figure 3.2: Evolution from MW to the kaon mass scale.

through the 3× 3 unitary matrix [174]

U(φ) ≡ exp {i
√

2 Φ(x)/F} , (3.5.29)

where

Φ(x) ≡
8∑

a=1

λa√
2
φa(x) =


1√
2π

0 + 1√
6η8 π+ K+

π− − 1√
2π

0 + 1√
6η8 K0

K− K̄0 − 2√
6η8

 . (3.5.30)

Under a chiral transformation (gL, gR) ∈ SU(3)L ⊗ SU(3)R in the flavour space q ≡

(u, d, s)T , qL → gL qL , qR → gR qR , U(φ) transforms as gR U(φ) g†L , inducing a non-

linear transformation on the Goldstone fields φa(x) .

The low-energy effective realization of QCD is obtained by writing the most general

Lagrangian involving the matrix U(φ) that is consistent with chiral symmetry [170]. The

Lagrangian can be organised through an expansion in powers of momenta (derivatives)

and explicit breakings of chiral symmetry (light quark masses, electromagnetic coupling,
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etc.):

Leff = L2 + L4 + L6 + · · · . (3.5.31)

Parity conservation requires the number of derivatives to be even, and a minimum of two

derivatives is needed to generate non-trivial interactions because U U † = 1 . The terms

with a minimum number of derivatives will dominate at low energies. To lowest order,

O(p2) , the effective Lagrangian is given by [172]:

L2 = F 2

4 〈DµU
†DµU + U †χ+ χ†U〉 , (3.5.32)

where 〈· · · 〉 denotes the three-dimensional flavour trace, DµU = ∂µU − irµU + iU`µ is

the covariant chiral derivative, in the presence of arbitrary right-handed and left-handed

(matrix-valued) external sources rµ and `µ , and χ ≡ 2B0(s + ip) with s and p external

scalar and pseudoscalar sources, respectively. Taking s =M , p = 0 , and rµ = `µ = eQAµ

allows one to incorporate the explicit chiral symmetry breakings generated by the non-zero

quark masses and electric charges:

M = diag(mu,md,ms) , Q = 1
3 diag(2,−1,−1) . (3.5.33)

Moreover, taking derivatives with respect to the external sources one can easily obtain the

effective realization of the QCD quark currents in terms of the Goldstone bosons [174].

One then finds that F is the pion decay constant in the chiral limit (mq = 0), while the

constant B0 is related to the quark condensate.

While only two low-energy constants (LECs) appear at O(p2) , F and B0 , ten addi-

tional couplings Li characterize the O(p4) χPT Lagrangian [172],

L4 = L1 〈DµU
†DµU〉2 + L2 〈DµU

†DνU〉 〈DµU †DνU〉 + L3 〈DµU
†DµUDνU

†DνU〉

+ L4 〈DµU
†DµU〉 〈U †χ+ χ†U〉 + L5 〈DµU

†DµU
(
U †χ+ χ†U

)
〉

+ L6 〈U †χ+ χ†U〉2 + L7 〈U †χ− χ†U〉2 + L8 〈χ†Uχ†U + U †χU †χ〉

− iL9 〈FµνR DµUDνU
† + FµνL DµU

†DνU〉 + L10 〈U †FµνR UFLµν〉 , (3.5.34)
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with FµνR = ∂µrν − ∂νrµ− i [rµ, rν ] and FµνL = ∂µ`ν − ∂ν`µ− i [`µ, `ν ] , and 90 LECs more

would be needed to compute corrections of O(p6):7

L6 = F−2
90∑
i=1

Xi O
p6

i . (3.5.35)

The explicit form of the O(p6) operators can be found in Ref. [175]. The current knowledge

on all these LECs has been summarized in Ref. [167].

Quantum loops with Goldstone boson propagators in the internal lines generate non-

polynomial contributions, with logarithms and threshold factors as required by unitarity.

Each loop increases the chiral dimension by two powers of momenta [170]. Thus, to achieve

an O(p4) accuracy one needs to compute tree-level contributions with a single insertion of

L4 plus one-loop graphs with only L2 vertices. These chiral one-loop corrections are then

fully predicted in terms of Fπ and the meson masses. Two-loop corrections with only L2

vertices contribute at O(p6) , together with one-loop graphs with a single insertion of L4

and tree-level diagrams with one insertion of L6 .

The ultraviolet divergences generated by quantum loops get reabsorbed by the corre-

sponding LECs contributing to the same order in momenta. This induces a dependence

of the renormalized LECs on the chiral renormalization scale νχ:

Li = Lri (νχ) + Γi Λ(νχ) , (3.5.36)

with

Λ(νχ) = νχ
d−4

16π2

{ 1
d− 4 −

1
2
[
log (4π) + Γ′(1) + 1

]}
, (3.5.37)

the divergent subtraction constant in the usual χPT renormalization scheme. Similar

expressions apply for the other O(p4) and O(e2p2) LECs (Ki, Ni, Di, Zi) that will be dis-

7 There are, in addition, 2 contact terms without Goldstone bosons at O(p4) , and 4 more at O(p6) ,

which are only needed for renormalization. The O(p6) LECs are usually denoted Ci ≡ F−2Xi . We have

changed the notation to avoid possible confusions with the short-distance Wilson coefficients. The χPT

Lagrangian contains also the O(p4) Wess-Zumino-Witten term that has no free parameters and accounts

for the QCD chiral anomaly [202,203].
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cussed next, while the O(p6) LECs Xi require a two-loop subtraction [176]. The divergent

parts of all these χPT couplings are fully known [172,176,204–207].

In order to include loop corrections with virtual photon propagators, one needs to

consider also the electromagnetic Lagrangian [153,204,208]

Lem = e2ZF 4 〈QU †QU〉+ e2F 2
14∑
i=1

Ki O
e2p2

i +O(e2p4) . (3.5.38)

The presence of the quark charge matrix allows for a chiral structure without derivatives.

The corresponding LEC of this O(e2p0) term is determined by the electromagnetic pion

mass difference [153]

Z = 1
8παF 2

(
M2
π± −M

2
π0

)
≈ 0.8 . (3.5.39)

3.5.2 Chiral realization of the ∆S = 1 effective Lagrangian

Strangeness-changing weak interactions with ∆S = 1 are incorporated in the low-energy

theory as a perturbation to the strong Lagrangian. At LO, the most general effective

Lagrangian with the same transformation properties as the short-distance Lagrangian

given by Eq. (3.3.19) contains three terms [184,209,210]:

L∆S=1
2 = G8F

4 〈λDµU †DµU〉+G27F
4
(
Lµ23L

µ
11 + 2

3 Lµ21L
µ
13

)
+ e2G8 gewkF

6 〈λU †QU〉 , (3.5.40)

where λ = (λ6 − iλ7)/2 projects into the s̄ → d̄ transition and Lµ = i U †DµU represents

the octet of V − A currents to lowest order in derivatives. Under chiral transformations,

these three terms transform as (8L, 1R), (27L, 1R) and (8L, 8R), respectively. To simplify

notation, we have reabsorbed the Fermi coupling and the CKM factors into effective LECs:

G8,27 ≡ −
GF√

2
VudV

∗
us g8,27 , (3.5.41)

where g8, g27 and gewk are dimensionless couplings.

The G8 and G27 chiral operators contain two derivatives and, therefore, lead to ampli-

tudes that vanish at zero momenta. However, the electromagnetic penguin operator has a
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chiral realization at O(e2p0) , given by the term proportional to G8 gewk . The absence of

derivatives implies a chiral enhancement that we have already seen before in Eq. (3.4.25).

The NLO effective Lagrangians have been worked out in Refs. [205–207] and include

χPT operators of O(p4) and O(e2p2):

L∆S=1
4 = G8F

2
22∑
i=1

NiO
8
i +G27F

2
28∑
i=1

DiO
27
i + e2G8F

4
14∑
i=1

ZiO
EW
i . (3.5.42)

3.6 Matching

In principle, the chiral LECs could be computed through a matching calculation be-

tween the three-flavour quark effective theory and χPT. This is however a formidable

non-perturbative task. Therefore, one needs to resort to phenomenological determina-

tions, using the available hadronic data [167]. Nevertheless, a very good understanding

of the strong LECs has been achieved in the large-NC limit, where the meson scatter-

ing amplitudes reduce to tree-level diagrams with physical hadrons exchanged [155]. The

contributions from tree-level meson resonance exchanges have been shown to saturate the

phenomenologically known LECs at νχ ∼ Mρ [153–156]. Nowadays, lattice simulations

are also able to provide quantitative values of some of the O(p4) Li couplings [152].

In the limit NC → ∞ , thanks to the factorization property in Eq. (3.4.23), the elec-

troweak χPT couplings can be related to strong LECs because the QCD currents have

well-known chiral realizations. The quark currents are obtained as functional deriva-

tives with respect to the appropriate external sources of the QCD generating functional

Z[vµ, aµ, s, p] , defined via the path integral formula

exp {iZ} =
∫
DqDq̄DGµ exp

{
i

∫
d4x [LQCD + q̄γµ(vµ + γ5aµ)q − q̄(s− iγ5p)q]

}

=
∫
DU exp

{
i

∫
d4xLeff

}
. (3.6.43)

The corresponding derivatives of the χPT generating functional determine the chiral ex-

pressions of the QCD currents. At NC → ∞ , the generating functional reduces to the

classical action because quantum loops are suppressed by powers of 1/NC . The left and
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right vector currents are then easily computed, by taking derivatives of Leff with respect

to `jiµ ≡ (vµ − aµ)ji and rjiµ ≡ (vµ + aµ)ji , respectively [174]. One easily finds:

q̄jLγ
µqiL =̇ i

2
{
DµU †U

[
F 2 + 8L1 〈DαU

†DαU〉
]

(3.6.44)

+ 4L2DαU
†U 〈DαU †DµU +DµU †DαU〉

+ 4L3
{
DµU †U , DαU

†DαU
}

+ 2L5
{
DµU †U ,

(
U †χ+ χ†U

)}
+ 2L9 ∂α

(
DαU †DµU −DµU †DαU

)
+ 2iL9

(
`αD

µU †DαU −DαU †DµU`α
)}ij

+ O(p5NC , p
3N0

C) ,

q̄jRγ
µqiR =̇ i

2
{
DµUU †

[
F 2 + 8L1 〈DαU

†DαU〉
]

(3.6.45)

+ 4L2DαUU
† 〈DαUDµU † +DµUDαU †〉

+ 4L3
{
DµUU † , DαUD

αU †
}

+ 2L5
{
DµUU † ,

(
χU † + Uχ†

)}
+ 2L9 ∂α

(
DαUDµU † −DµUDαU †

)
+ 2iL9

(
rαD

µUDαU † −DαUDµU †rα
)}ij

+ O(p5NC , p
3N0

C) .

We have made explicit the O(p) contributions from the LO Lagrangian L2 , which are

proportional to F 2 ∼ O(NC) , and those O(p3) contributions from L4 that are of O(NC).

Taking derivatives with respect to −(s − ip)ji and −(s + ip)ji , one obtains the scalar

bilinears

q̄jLq
i
R =̇ −B0

2
{
U
[
F 2 + 4L5DαU

†DαU

− 8L7 〈U †χ− χ†U〉+ 8L8 χ
†U
] }ij

+ O(p4NC , p
2N0

C) , (3.6.46)

q̄jRq
i
L =̇ −B0

2
{
U †
[
F 2 + 4L5DαUD

αU †

+ 8L7 〈U †χ− χ†U〉+ 8L8 χU
†
] }ij

+ O(p4NC , p
2N0

C) . (3.6.47)

The vacuum expectation value of the last two equations relates the coupling B0 with the

quark vacuum condensate: 〈0|q̄jqi|0〉 = −F 2B0 δ
ij , at LO.

Inserting these expressions into the four-quark operators in Eq. (3.3.19), using the

factorization property (3.4.23), one finds the χPT realization of L∆S=1
eff in the large-NC
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limit. AtO(p2) , the three chiral structures in Eq. (3.5.40) are generated, with the following

large-NC values for their electroweak LECs [88,150]:

g∞8 = − 2
5 C1(µ) + 3

5 C2(µ) + C4(µ) − 16 L5B(µ)C6(µ) ,

g∞27 = 3
5 [C1(µ) + C2(µ)] , (3.6.48)

(e2 g8 gewk)∞ = − 3B(µ)C8(µ) − 16
3 B(µ)C6(µ) e2 (K9 − 2K10) .

In the last line, we have also taken into account the contribution to g8 gewk from electro-

magnetic corrections to Q6 [150].

The LO terms in Eqs. (3.6.46) and (3.6.47) give rise to the O(p0) electroweak chiral

structure Q8=̇ − 3B2
0F

4 〈λU †QU〉 . An analogous O(p0) contribution is absent for Q6

because 〈λU †U〉 = 〈λ〉 = 0 . Therefore, the χPT realization of the penguin operator

Q6 starts at O(p2) , giving rise to the same octet structure as the (V − A) ⊗ (V − A)

operators. The only difference is that Q1,2,4 generate this structure with the LO terms

in Eqs. (3.6.44) and (3.6.45), while in the Q6 case it originates from the interference of

the O(p0) and O(p2) terms in Eqs. (3.6.46) and (3.6.47). This is the reason why the C6

contribution to g∞8 appears multiplied by the strong LEC L5 , reducing the expected chiral

enhancement in a very significant way.

There are no O(p2) contributions from the operators Q3 and Q5 , at large-NC , because

they are proportional to the flavour trace of the left and right currents, respectively, which

vanish identically at LO. The operators Q7,9,10 start to contribute at O(e2p2) .

The dependence on the short-distance renormalization scale of the Wilson coefficients

Ci(µ) is governed by the anomalous dimension matrix γij of the four-quark operators Qi ,

which vanishes at NC → ∞ , except for the non-zero entries γ66 and γ88 . Thus, the µ

dependence of Ci(µ) with i 6= 6, 8 disappears when NC → ∞ , while that of C6,8(µ) is

exactly cancelled by the factor

B(µ) ≡
(
B2

0
F 2

)∞
=
{

M2
K

[ms(µ) +md(µ)]Fπ

}2 [
1− 16M2

K

F 2
π

(2L8 − L5) + 8M2
π

F 2
π

L5

]
.

(3.6.49)
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Thus, the computed LECs in Eq. (3.6.48) do not depend on µ , as it should. Notice,

however, that the numerical values of the Wilson coefficients in Table 3.1 do include those

1/NC corrections responsible for the QCD running and, when inserted in Eq. (3.6.48), will

generate a residual µ dependence at NLO in 1/NC . AtNC →∞ , the strong LECs are also

independent on the χPT renormalization scale νχ because chiral loops are suppressed by a

factor 1/NC . The renormalization of the LECs Li and their corresponding νχ dependences

can only appear at NLO in the 1/NC expansion.

The O(p4) strong LEC L5 plays a very important role in the ε′/ε prediction because

it appears as a multiplicative factor in the C6(µ) contribution to g∞8 . Its large-NC value

can be determined from resonance exchange, using the single-resonance approximation

(SRA) [153,155]:

L∞5 = F 2

4M2
S

. (3.6.50)

The numerical result is, however, very sensitive to the chosen value for the scalar resonance

mass. Taking F = Fπ and MS = 1.48 GeV , as advocated in Ref. [211], one gets L∞5 =

1.0 · 10−3 [150], while MS = 1.0 GeV would imply L∞5 = 2.1 · 10−3 . An independent

determination can be obtained from the pion and kaon decay constants, ignoring the

1/NC suppressed loop contributions [88]:

L∞5 ≈
F 2
π

4 (M2
K −M2

π)

(
FK
Fπ
− 1

)
= 1.8 · 10−3 . (3.6.51)

This procedure, which has actually been used in the rough estimate of the Q6 matrix

element in Eq. (3.4.26), is also subject to large uncertainties because the SU(3)-breaking

difference FK − Fπ is very sensitive to logarithmic chiral corrections that are no longer

present when NC →∞ .

Quantitative values for the χPT coupling L5 have been also extracted through lattice

simulations. The determination has been obtained by the HPQCD collaboration [212],

analysing FK and Fπ at different quark masses with Nf = 2 + 1 + 1 dynamical flavours,

and is the result advocated in the FLAG compilation [152]:

Lr5(Mρ) = (1.19± 0.25) · 10−3 . (3.6.52)
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We will adopt this number in our analysis and will comment later on the sensitivity to

this parameter of the ε′/ε prediction.

The combination 2L8 − L5 can also be estimated in the large-NC limit, through the

SRA, and it gets determined by L5 [155]:

(2L8 − L5)∞ = −1
4 L
∞
5 . (3.6.53)

This relation is well satisfied by the lattice results that find (2Lr8 − Lr5)(Mρ) = (−0.10 ±

0.20) · 10−3 [152,212].

The electromagnetic LECs Ki can be expressed as convolutions of QCD correlators

with a photon propagator [213], and their evaluation involves an integration over the

virtual photon momenta. In contrast to the strong LECs Li , the Ki couplings have then

an explicit dependence on the χPT renormalization scale νχ already at LO in 1/NC .

Moreover, they also depend on the short-distance renormalization scale µ and the gauge

parameter ξ . Those dependences cancel in the physical decay amplitudes with photon-loop

contributions. In order to fix the combination K9− 2K10 that enters gewk in Eq. (3.6.48),

we follow Ref. [150] and adopt the value [213,214]

(Kr
9 − 2Kr

10)(Mρ) = −(9.3± 4.6) · 10−3 , (3.6.54)

which refers to the renormalized parameter at νχ = Mρ , in the Feynman gauge ξ = 1 and

with a short-distance scale µ = 1 GeV .

Expanding the products of chiral currents to NLO, one obtains the large-NC predictions

for the O(p4) and O(e2p2) LECs Ni, Di and Zi . The explicit expressions can be found in

Section 5.2 of Ref. [150].

Tables 3.2 and 3.3 show the numerical predictions obtained for the CP-even and CP-

odd parts, respectively, of the LO electroweak LECs g8 , g27 and g8 gewk . The large-NC

limit has been only applied to the matching between the two EFTs. The full evolution

from the electroweak scale down to µ < mc has been taken into account without making

any unnecessary expansion in powers of 1/NC ; otherwise, one would miss the large short-

distance corrections encoded in the Wilson coefficients Ci(µ) with i 6= 6, 8 .
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Scheme Re(g8) g27 Re(g8 gewk)

NDR 1.22± 0.13µ ± 0.06Li + 0.03
− 0.02ms 0.46± 0.02µ −2.24± 1.44µ ± 0.38Ki + 0.19

− 0.21ms

HV 1.16± 0.20µ ± 0.02Li ± 0.01ms 0.44± 0.02µ −1.29± 1.04µ ± 0.15Ki + 0.11
− 0.13ms

NDR+HV 1.19± 0.17µ ± 0.04Li ± 0.02ms 0.45± 0.02µ −1.77± 1.22µ ± 0.26Ki + 0.15
− 0.17ms

Table 3.2: Large-NC predictions for the CP-even parts of the LO electroweak LECs.

Scheme Im(g8)/Im(τ) Im(g8 gewk)/Im(τ)

NDR 0.93± 0.22µ ± 0.21Li + 0.10
− 0.08ms −22.2± 5.0µ ± 1.3Ki + 1.9

− 2.1ms

HV 0.81± 0.23µ ± 0.18Li + 0.08
− 0.07ms −23.6± 5.0µ ± 1.1Ki + 2.0

− 2.2ms

NDR+HV 0.87± 0.22µ ± 0.20Li + 0.09
− 0.08ms −22.9± 5.0µ ± 1.2Ki + 1.9

− 2.2ms

Table 3.3: Large-NC predictions for the CP-odd parts of the LO electroweak LECs.

The central values quoted in the tables have been obtained at µ = 1 GeV . The

first uncertainty has been estimated by varying the short-distance renormalization scale µ

betweenMρ andmc , taking into account the large-NC running for the factor (ms+md)(µ)

in B(µ) . The current uncertainties on the strong and electromagnetic LECs that appear in

Eqs. (3.6.48) and (3.6.49) are reflected in the second error, while the third one corresponds

to the uncertainty from the input quark masses given in Table C.1. To better assess the

perturbative uncertainties, the Wilson coefficients have been evaluated in two different

schemes for γ5 , and an educated average of the two results is displayed in the tables.

It is important to realize the different levels of reliability of these predictions. The

large-NC matching is only able to capture the anomalous dimensions of the operators Q6

and Q8 . In fact, γ66 and γ88 are very well approximated by their leading estimates in

1/NC . Therefore, the contributions of these two operators to the electroweak LECs are
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quite robust, within the estimated uncertainties. This implies that the predicted CP-odd

components of g8 and g8 gewk (g27 is CP even) are very reliable. However, this is no longer

true for their CP-even parts because the anomalous dimensions of the relevant operators

are completely missed at large-NC . The parametric errors quoted in Table 3.2 are probably

underestimating the actual uncertainties of the calculated CP-even components of the

electroweak LECs. An accurate estimate of these components would require to perform

the matching calculation at the NLO in 1/NC .

3.7 The χPT K → ππ amplitudes

The evaluation of the kaon decay amplitudes is a straightforward perturbative calculation

within the χPT framework. To lowest order in the chiral expansion, one only needs to

consider tree-level Feynman diagrams with one insertion of L∆S=1
2 . In the limit of isospin

conservation, the A∆I amplitudes defined in Eq. (3.2.4) are given by Refs. [88, 150]

A1/2 = −
√

2G8F
[ (
M2
K −M2

π

)
− 2

3 F
2e2gewk

]
−
√

2
9 G27F

(
M2
K −M2

π

)
,

A3/2 = − 10
9 G27F

(
M2
K −M2

π

)
+ 2

3 G8F
3e2gewk , (3.7.55)

and A5/2 = 0 . From the measured values of the decay amplitudes in Eq. (3.2.5), one

gets the tree-level determinations g8 = 5.0 and g27 = 0.25 for the octet and 27-plet chiral

couplings. The large numerical difference between these two LECs just reflects the small

experimental value of the ratio ω in Eq. (3.2.6). Moreover, the sizeable difference between

these LO phenomenological determinations and the large-NC estimates in Table 3.2 makes

evident that the neglected 1/NC corrections are numerically important.

Inserting in Eq. (3.7.55) the large-NC predictions for the electroweak LECs given in

Eq. (3.6.48) and taking for L5 the value in Eq. (3.6.51), one immediately gets the Q6

and Q8 CP-odd amplitudes estimated before in Eqs. (3.4.26) and (3.4.27), with B(1/2)
6 =

B
(3/2)
8 = 1 , including in addition some small chiral corrections that were still missing

there. Eq. (3.7.55) contains, moreover, the O(p2) contributions from all other four-quark

operators.



3.7 The χPT K → ππ amplitudes 95

Note, however, that the ππ phase shifts are predicted to be zero at LO in χPT, since

phase shifts are generated by absorptive contributions in quantum loop diagrams. We

know experimentally that the phase-shift difference χ0−χ2 = 47.5◦ is large, which implies

that chiral loop corrections are very sizeable. Chiral loops bring a 1/NC suppression but

they get enhanced by large logarithms. The large absorptive contributions originate in

those logarithmic corrections that are related with unitarity. A large absorptive contribu-

tion implies, moreover, a large dispersive correction because they are related by analyticity.

A proper understanding of the kaon dynamics cannot be achieved without the inclusion

of these 1/NC suppressed contributions.

At the NLO in χPT the A∆I amplitudes can be expressed as [150]

A∆I = −G8 Fπ
{

(M2
K −M2

π) A(8)
∆I − e

2 F 2
π gewk A

(g)
∆I

}
−G27 Fπ (M2

K −M2
π)A(27)

∆I , (3.7.56)

where A(8)
∆I and A(27)

∆I represent the octet and 27-plet components, and A(g)
∆I contains the

electroweak penguin contributions. Each of these amplitudes can be decomposed in the

form

A(X)
∆I = a

(X)
∆I

[
1 + ∆LA(X)

∆I + ∆CA(X)
∆I

]
, (3.7.57)

with

a
(8)
1/2 =

√
2 , a

(g)
1/2 = 2

√
2

3 , a
(27)
1/2 =

√
2

9 ,

a
(8)
3/2 = 0 , a

(g)
3/2 = 2

3 , a
(27)
3/2 = 10

9 , (3.7.58)

parametrizing the corresponding tree-level contributions, ∆LA(X)
∆I the one-loop chiral cor-

rections and ∆CA(X)
∆I the NLO local corrections from L∆S=1

4 . Since in this chapter we

are not considering electromagnetic corrections, A5/2 = 0 .

A small part of the O(p4) corrections has been reabsorbed into the physical pion decay

constant Fπ , which appears explicitly in the three terms of Eq. (3.7.56). The NLO relation
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between Fπ and the Lagrangian parameter F is given by [172]

F = Fπ

{
1− 4

F 2

[(
M2
π + 2M2

K

)
Lr4(νχ) +M2

π L
r
5(νχ)

]

+ 1
2(4π)2F 2

[
2M2

π log
(
M2
π

ν2
χ

)
+M2

K log
(
M2
K

ν2
χ

)]}
. (3.7.59)

The chiral logarithmic corrections are obviously suppressed by the geometrical loop factor

(4π)−2 and two powers of the Goldstone scale F ∼
√
NC . Thus, these contributions and

the corresponding dependence of the renormalized Lri (νχ) couplings on the χPT renormal-

ization scale νχ are of O(1/NC) . The νχ-independent parts of the LECs have a different

scaling with 1/NC : while L4/F
2 ∼ O(1/NC) , L5/F

2 is a leading correction of O(1) .

This implies the large-NC result for L5 given in Eq. (3.6.51) (the L5 contribution to FK
is multiplied by M2

K instead of M2
π).

The numerical values of the different A(X)
1/2 and A(X)

3/2 components are given in Tables 3.4

and 3.5, respectively. We comment next on the most important features of the different

contributions.

X a
(X)
1/2 ∆LA(X)

1/2 [∆CA(X)
1/2 ]+ [∆CA(X)

1/2 ]−

8
√

2 0.27 + 0.47 i 0.01± 0.05 0.02± 0.05

g 2
√

2
3 0.27 + 0.47 i −0.19± 0.01 −0.19± 0.01

27
√

2
9 1.03 + 0.47 i 0.01± 0.63 0.01± 0.63

Table 3.4: Numerical predictions for the A1/2 components: a(X)
1/2 , ∆LA(X)

1/2 , ∆CA(X)
1/2 . The

local NLO correction to the CP-even ([∆CA(X)
1/2 ]+) and CP-odd ([∆CA(X)

1/2 ]−) amplitudes

is only different in the octet case.

3.7.1 Chiral loop corrections

The one-loop chiral corrections are generated through the Feynman topologies depicted

in Figure 3.3 [86–88, 149–151, 205, 215–217]. They include one insertion of the LO weak
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X a
(X)
3/2 ∆LA(X)

3/2 ∆CA(X)
3/2

g 2
3 −0.50− 0.21 i −0.19± 0.19

27 10
9 −0.04− 0.21 i 0.01± 0.05

Table 3.5: Numerical predictions for the A3/2 components: a(X)
3/2 , ∆LA(X)

3/2 , ∆CA(X)
3/2 .

Lagrangian L∆S=1
2 (filled red vertices), and the first two diagrams contain also interac-

tion vertices from the O(p2) strong Lagrangian L2 . The resulting ∆LA(X)
1/2 and ∆LA(X)

3/2

corrections given in Tables 3.4 and 3.5, respectively, exhibit a very clear pattern. The

one-loop chiral corrections are always positive for all ∆I = 1/2 amplitudes and negative

for ∆I = 3/2 . Moreover, the absorptive contributions (the imaginary parts of ∆LA(X)
∆I )

only depend on the isospin of the final ππ state. The elastic final-state interaction of the

two pions induces a very large and positive absorptive correction when I = 0 , while this

contribution becomes much smaller and negative when I = 2 .

The absorptive contribution fully originates in the first topology of Figure 3.3, since it

is the only one where the two intermediate pions can be put on their mass-shell [88]:

∆LA(X)
1/2 = M2

K

(4πFπ)2

(
1− M2

π

2M2
K

)
B̃(M2

π ,M
2
π ,M

2
K) + · · · ,

∆LA(X)
3/2 = −1

2
M2
K

(4πFπ)2

(
1− 2M2

π

M2
K

)
B̃(M2

π ,M
2
π ,M

2
K) + · · · , (3.7.60)

where

B̃(M2
π ,M

2
π ,M

2
K) = σπ

[
log

(1− σπ
1 + σπ

)
+ iπ

]
+ log

(
ν2
χ

M2
π

)
+ 1 , (3.7.61)

is the renormalized one-loop scalar integral with two pion propagators and q2 = M2
K ,

and σπ ≡
√

1− 4M2
π/M

2
K . These results reproduce the LO χPT values for the strong ππ

scattering phase shifts with J = 0 and I = 0, 2 , at s = M2
K :

tan δ0(M2
K) = σπ

32πF 2
π

(
2M2

K −M2
π

)
,

tan δ2(M2
K) = σπ

32πF 2
π

(
2M2

π −M2
K

)
. (3.7.62)
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Figure 3.3: One-loop topologies contributing to K → ππ . The filled red circles indicate

LO ∆S = 1 vertices. The labels i and j represent the Goldstone bosons inside the loop.

Wave-function renormalization topologies are not shown.

The predicted phase-shift difference, δ0(M2
K)−δ2(M2

K) = 37◦ , is somewhat lower than its

experimental value showing that higher-order rescattering contributions are numerically

relevant. The one-loop integral in Eq. (3.7.61) contains, in addition, a large chiral loga-

rithm of the ultraviolet scale νχ over the infrared scale Mπ , which enhances significantly

the dispersive component of the I = 0 amplitude and suppresses the I = 2 one.

The complete analytical expressions for the one-loop corrections ∆LA(X)
∆I can be found

in Refs. [88,150]. The absorptive contributions are finite and, therefore, do not depend on

the chiral renormalization scale. An explicit dependence on νχ is, however, present on the

dispersive components. The numbers quoted in Tables 3.4 and 3.5 have been obtained at

νχ = Mρ = 0.77 GeV . The dependence on νχ is of course exactly cancelled by the local

counterterm contributions.

One observes in Table 3.4 a huge (∼ 100%) dispersive one-loop correction to the

A(27)
1/2 amplitude. Fortunately, since the 27-plet contribution is a very small part of the

total ∆I = 1
2 amplitude, this does not introduce any significant uncertainty in the final
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numerical value of A0 . Moreover, the 27-plet components do not contribute to the CP-odd

amplitudes we interested in, because Im(g27) = 0 .

The corrections relevant for ε′/ε are the octet contribution to the isoscalar amplitude

and the electroweak-penguin contribution to A2 . The first one generates a very sizeable

enhancement of ImA0 by a factor |1 + ∆LA(8)
1/2| ≈ 1.35 , while the second one induces

a strong suppression of ImAemp
2 with a factor |1 + ∆LA(g)

3/2| ≈ 0.54 . Looking to the

simplified formula in Eq. (3.4.28), one immediately realizes the obvious impact of these

chiral corrections on the final value predicted for ε′/ε , since they destroy completely the

accidental numerical cancellation between the Q6 and Q8 contributions.

3.7.2 Local O(p4) contributions

Explicit expressions for the local ∆CA(X)
∆I corrections in terms of the O(p4) electroweak

LECs can be found in Refs. [88, 150]. In the large-NC limit, the local contribution to the

A(8)
1/2 amplitude takes the form

g∞8

[
1 + ∆CA(8)

1/2

]∞
=

[
−2

5 C1(µ) + 3
5 C2(µ) + C4(µ)

] {
1 + 4M2

π

F 2 L5

}

− 16B(µ)C6(µ)
{
L5 + 4M2

K

F 2 δK8 + 4M2
π

F 2 δπ8

}
. (3.7.63)

The NLO corrections δP8 depend on some O(p6) LECs Xi that are not very well known.

The relevant combinations can be estimated with the SRA, up to unknown contributions

from couplings with two resonance fields [156]:

δK8 = L5 (2L8 − L5) + 1
4 (2X14 +X34) ≈ 1

2 L
2
5 , (3.7.64)

δπ8 = (8L2
8 − 3L2

5) +X12 +X14 +X17 − 3X19 − 4X20 −X31 ≈ −
15
8 L2

5 .

Since the contributions from Q6 and the other four-quark operators get different NLO

corrections, the O(p4) corrections to the CP-even and CP-odd octet amplitudes,

Re(g8 ∆CA(8)
1/2) + i Im(g8 ∆CA(8)

1/2) ≡ Re(g8) [∆CA(8)
1/2]+ + i Im(g8) [∆CA(8)

1/2]− , (3.7.65)
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are also different. The predicted numerical values for the separate corrections [∆CA(8)
1/2]+

and [∆CA(8)
1/2]− are given in Table 3.4. The O(p4) local corrections to the other A(X)

∆I

amplitudes only depend on L5 , in the large-NC limit:

∆CA(27)
1/2

∣∣∣∞ = ∆CA(27)
3/2

∣∣∣∞ = 4M2
π

F 2 L5 ,

∆CA(g)
1/2

∣∣∣∞ = ∆CA(g)
3/2

∣∣∣∞ = − 4
F 2 (M2

K + 5M2
π)L5 . (3.7.66)

Thus, all local NLO contributions are finally determined by the input value of L∞5 .

The numerical predictions for the different local corrections ∆CA(X)
∆I are shown in

Tables 3.4 and 3.5. The main uncertainty originates in their dependence on the chiral

renormalization scale νχ , which is totally missed by the large-NC approximation. We

take the large-NC results as our numerical estimates at νχ = Mρ . The errors have been

estimated varying νχ between 0.6 and 1 GeV in the corresponding loop contributions

∆LA(X)
∆I . We have also varied the short-distance renormalization scale µ between Mρ

and mc, but the impact on the ∆CA(X)
∆I corrections is negligible compared with the νχ

uncertainty.

The relevant corrections for our determination of ε′/ε are [∆CA(8)
1/2]− = 0.02±0.05 and

∆CA(g)
3/2 = −0.19±0.19. They are much smaller than the corresponding loop contributions,

which is also reflected in the large relative uncertainties induced by the νχ variation.

3.8 The SM prediction for ε′/ε

Putting all computed corrections together in Eq. (3.2.15), we obtain the updated SM

prediction

Re
(
ε′/ε

)
=
(
15± 2µ ± 2ms ± 2Ωeff ± 61/NC

)
× 10−4 = (15± 7)× 10−4 . (3.8.67)

The input values adopted for the relevant SM parameters are given in Table C.1 of Ap-

pendix C. We have only calculated theoretically the CP-odd amplitudes ImAI . For their

CP-even counterparts (and |ε|) the experimental values have been taken instead. We dis-

play explicitly the four main sources of errors. The first one reflects the fluctuations under
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Figure 3.4: SM prediction for ε′/ε as function of L5 (red dashed line) with 1σ errors

(oblique band). The horizontal blue band displays the experimentally measured value

with 1σ error bars. The dashed vertical line shows the current lattice determination of

Lr5(Mρ) .

changes of the short-distance renormalization scale µ in the range between Mρ and mc ,

and the choice of scheme for γ5 . The second uncertainty shows the sensitivity to varia-

tions of the input quark masses within their currently allowed ranges, while the third one

displays the uncertainty from the isospin-breaking parameter Ωeff . The fourth error ac-

counts for the sum of squared uncertainties from the input value of L5 (±5 ·10−4) and the

χPT scale νχ that is varied between 0.6 and 1 GeV (±3 ·10−4). This fourth error is by far

the dominant one and reflects our current ignorance about 1/NC-suppressed contributions

in the matching process.

In Figure 3.4, we show the prediction for ε′/ε as function of the input value of L5 . The

strong dependence on this important parameter is evident from the plot. The experimental

1σ range is indicated by the horizontal band, while the dashed vertical lines display the

current lattice determination of Lr5(Mρ) . The measured value of ε′/ε is nicely reproduced

with the preferred lattice inputs.
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In order to better appreciate the dynamical contributions that have been included in

Eq. (3.8.67), it is worth to go back to the schematic description of EFTs displayed in

Figure 3.2. Starting with the SM at the electroweak scale, where the underlying ∆S = 1

transitions take place, we have first used the full machinery of the short-distance OPE

to determine the effective Lagrangian L∆S=1
eff , defined in the three-flavour quark theory

at scales just below the charm mass. We have included all NLO contributions to the

Wilson coefficients Ci(µ) , without making any large-NC approximation, see Appendix D.

The OPE sums up large logarithmic QCD corrections, but most of these logarithms are

suppressed by factors of 1/NC because the anomalous dimension matrix γij of the Qi
operators vanishes at NC →∞ , except for γ66 and γ88 which remain non-zero. Since

1
NC

log (M2
W /µ

2
0) = 2.9 (3.8.68)

at µ = µ0 = 1 GeV , it would not make much sense to neglect “subleading” corrections in

1/NC .

At the kaon mass scale, we have made use of a different EFT that takes advantage of

the chiral symmetry properties of QCD to constrain the pseudoscalar Goldstone dynamics.

χPT is the appropriate tool to describe rigorously the physics of kaons and pions, through

a low-energy expansion in powers of momenta and quark masses [53]. Chiral symmetry

determines the effective realization of L∆S=1
eff at the hadronic mass scale; i.e., the most

general form of the low-energy χPT structures with the same symmetry properties than

the four-quark operators Qi , at a given order in momenta. All short-distance information

is encoded in LECs that are not fixed by symmetry considerations. The K → ππ ampli-

tudes can then be easily predicted in terms of those LECs. The χPT predictions include

unambiguous quantum corrections, which comply with the requirements of unitarity and

analyticity.

The so-called chiral logarithmic corrections are also suppressed by factors of 1/NC

(quantum loops are absent from the NC → ∞ mesonic world [155]), but they cannot be

ignored since they are responsible for the large ππ phase shifts that originate in their

absorptive contributions. Moreover, the dispersive logarithmic corrections are also large
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when the two pions are in a J = 0 state. Once again, a 1/NC suppression gets compensated

by a large logarithm: at νχ = ν0 = 1 GeV ,

1
NC

log (ν2
0/M

2
π) = 1.3 . (3.8.69)

The measured kaon decay amplitudes cannot be understood without the inclusion of these

large, but 1/NC suppressed, contributions. Our SM prediction in Eq. (3.8.67) includes of

course the full O(p4) χPT results, without any unnecessary 1/NC approximation.

The limit of a large number of QCD colours has been only used to perform the matching

between the two EFTs; i.e., to evaluate the numerical values of the χPT LECs. Thanks to

the factorization property in Eq. (3.4.23), the hadronic matrix elements of the four-quark

operators can be reduced to matrix elements of QCD currents at NC → ∞ . Since these

currents have well-known χPT realizations at low energies, the electroweak LECs can be

easily determined in the large-NC limit. The intrinsic uncertainty of this determination is

of O(1/NC) , but it is not enhanced by any large logarithm of two widely separated mass

scales.

The large-NC structure of the anomalous dimension matrix γij allows us to better assess

the quality of our matching procedure. At NC →∞ , the only non-zero entries are γ66 and

γ88, which, moreover, are well approximated by their large-NC estimates. Thus, the short-

distance properties of Q6 and Q8 are very efficiently incorporated into the corresponding

χPT couplings through the large-NC matching. In fact, the leading renormalization-scale

dependence of C6(µ) and C8(µ) cancels exactly with the running of the light quark masses

appearing through the χPT factor B(µ) in Eq. (3.6.49). Fortunately, Q6 and Q8 are

precisely the only two operators that really matter for the numerical prediction of ε′/ε .

This is no longer true for the other four-quark operators because their anomalous

dimensions are lost at NC → ∞ . The µ dependence of their Wilson coefficients cannot

be compensated in the large-NC matching process, which indicates the relevance of the

missing 1/NC contributions. The bulk of the ∆I = 1/2 enhancement is associated with

the octet operator Q− , while ∆I = 3/2 transitions originate from Q(27) . Since the

1/NC-suppressed anomalous dimensions of these two operators are a crucial ingredient of
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the K → ππ dynamics, an accurate prediction of the CP-even decay amplitudes will only

become possible with a matching calculation at NLO in 1/NC [102–104].

3.9 Discussion and outlook

The SM prediction for ε′/ε , given in Eq. (3.8.67), is in perfect agreement with the mea-

sured experimental value given by Eq. (3.1.3). The final result emerges from a delicate

balance among several contributions, where the chiral dynamics of the two final pions plays

a very crucial role. The ππ rescattering corrections destroy the naive cancellation between

the Q6 and Q8 terms in Eq. (3.4.28), enhancing the positive Q6 contribution and sup-

pressing the negative contribution from Q8 . The small corrections from other four-quark

operators to ImA(0)
0 and ImAemp

2 are not important numerically, once the cancellation is

no longer operative.

The low values of ε′/ε claimed in some recent references [114–116] originate in simplified

estimates of the relevant K → ππ amplitudes that neglect the long-distance contributions

from pion loops. Following a 1/NC-inspired approach [110], Ref. [114] has advocated

the inequality B(1/2)
6 ≤ B

(3/2)
8 < 1 , which has been later adopted in subsequent works.

However, this very questionable result is obtained within a chiral model that only includes

the O(p4) L5 structure, neglecting all other terms in Eq. (3.5.34). Moreover, the only

computed 1/NC corrections correspond to some non-factorizable divergent contributions

of the form log (Λ2/M2) , with Λ an UV cut-off that is identified with the short-distance

renormalization scale µ, and M a badly-defined infrared scale of O(MK) . All other

quantum corrections (including the important absorptive contributions) are just ignored.

Notice also that in order to properly define the parameter B(1/2)
6 , one needs first to specify

L∞5 , which in Ref. [114] is fixed at the large value shown in Eq. (3.6.51).

It has been well known for many years that the elastic scattering of two pions with

zero relative angular momentum is very strong and generates a large phase-shift difference

between the I = 0 and I = 2 states [218]. This important dynamical effect is well

understood and has been rigorously predicted within the χPT framework. The relevant
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quantum corrections have been computed by many groups for K → ππ [86–88, 149–151,

205,215–217,219,220], K`4 [221–225] and ππ → ππ [171,172,226,227], reaching a two-loop

precision in the last two cases. Higher-loop effects have been also estimated with dispersive

methods and many successful phenomenological analyses of the relevant data have been

put forward along the years [228–235]. The inclusion of all known χPT corrections is a

compulsory requirement for a reliable prediction of the kaon decay amplitudes [53].

The recent RBC-UKQCD lattice calculation [100, 113], which also finds a low central

value for ε′/ε , follows the Lellouch-Lüscher prescription [144] in order to incorporate

the Minkowskian pion dynamics into the numerical simulation. Their results look quite

encouraging, since it is the first time that a clear signal of the ∆I = 1/2 enhancement

seems to emerge from lattice data [101]. However, the value obtained for the isoscalar ππ

phase shift disagrees with the experimental determination by 2.9σ . This discrepancy is

larger than the one quoted for ε′/ε (2.1σ), indicating that these results are still in a very

premature stage and improvements are clearly needed. Efforts towards a better lattice

understanding of the pion dynamics are under way and improved results are expected

soon [148]. In addition, the current lattice result does not take into account any isospin-

breaking effects, which are a very important ingredient of the ε′/ε prediction [149–151].

The inclusion of electromagnetic corrections in lattice simulations of the K → ππ ampli-

tudes looks difficult, but proposals to face some of the technical problems involved are

already being considered [236].

The quoted uncertainty of the SM prediction of ε′/ε in Eq. (3.8.67) is three times

larger than the current experimental error. This leaves ample margin to speculate with

hypothetical new-physics contributions, but prevents us from making a precise test of

the SM mechanism of CP violation that could give significant constraints on the CKM

parameters [237].

In order to achieve a better theoretical accuracy, the different ingredients entering the

calculation must be substantially refined. Improvements look possible in the near future

through a combination of analytical calculations, numerical simulations and data analyses:



106 Direct CP violation in kaon decays

• A NNLO computation of the Wilson coefficients is currently being performed [195].

The known NNLO corrections to the electroweak penguin operators [193] reduce

the scheme dependence of C8(µ) in a quite significant way and slightly increase

the negative Q8 contribution to ε′/ε . A complete NNLO calculation should allow

for a similar reduction of the y6(µ) uncertainty. Since the quark-mass anomalous

dimension is already known with a much better O(α5
s) precision [238], the large-NC

matching could be trivially promoted to NNLO accuracy in αs , once the Wilson

coefficients are determined at this order.

• The isospin-breaking correction Ωeff plays a quite important role in the ε′/ε predic-

tion because the moderate value of Ωeff results from a large numerical cancellation

among different electromagnetic and strong contributions. A complete re-analysis

with updated inputs has been performed [239]. Detailed information of this analysis

will be presented in the next chapter.

• Applying soft-pion techniques, the O(e2p0) coupling g8 gewk can be related to a

dispersive integral over the hadronic vector and axial-vector spectral functions [240–

243]. This makes possible to perform a phenomenological estimate of this LEC

with τ decay data. The published analyses, using the τ spectral functions measured

at LEP, agree reasonably well with the large-NC determination, but their errors

are rather large [244–247]. A new phenomenological analysis, using the recently

updated and more precise ALEPH τ data has been presented in Ref. [248], obtaining

a compatible prediction with the large-NC determination. Several lattice calculations

of the matrix element 〈ππ|Q8|K〉 have been also published (some of them in the chiral

limit) [95,96,100,112,113,249].

• A matching calculation of the weak LECs at NLO in 1/NC is a very challenging task

that so far remains unsolved. Several analytical approaches have been pursued in

the past to estimate the hadronic matrix elements of the Qi operators beyond the

large-NC approximation [81–83, 89, 90, 102–111]. A fresh look to these pioneering

attempts from a modern perspective could bring new enlightenment and, perhaps,
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could suggest ways to implement some of these methods within a well-defined EFT

framework where a proper NLO matching calculation could be accomplished.

• The dominant two-loop χPT corrections originate from large chiral logarithms, ei-

ther associated with unitarity contributions or infrared singularities of the massless

Goldstone theory [86–88, 250, 251]. A reliable estimate of these two-loop contribu-

tions should be feasible.

• In the next few years, lattice simulations are expected to provide new data on K →

ππ transitions, with improved methods and higher statistics [147, 148]. Combined

with appropriate χPT techniques, a better control of systematic uncertainties could

be achieved. Moreover, analysing the sensitivity of the lattice results to several input

parameters, such as quark masses and/or the electromagnetic coupling, one could try

to disentangle the different contributions to the decay amplitudes and get a better

understanding of the underlying dynamics. Improved lattice determinations of the

strong LECs are also needed, in particular of the crucial L5 parameter.

At present, the SM prediction of ε′/ε agrees well with the measured value and provides

a qualitative confirmation of the SM mechanism of CP violation. The theoretical error is

still large, but the prospects to achieve a better accuracy in the next few years are good.

A significant step forward in our theoretical understanding of the kaon dynamics would

allow us to perform a precise test of the electroweak theory, giving complementary and

very relevant information on the CKM matrix structure in the kaon sector.





Chapter 4

Isospin violation in kaon decays

In this chapter, we perform a reanalysis of the known isospin-breaking contributions to

the K → ππ amplitudes, taking into account our current understanding of the quark

masses and the relevant non-perturbative inputs. In addition, we present a complete nu-

merical reappraisal of the direct CP-violating ratio ε′/ε , where these corrections play a

quite significant role. After including the updated isospin-breaking effects, we obtain that

the SM prediction Re (ε′/ε) =
(
13 + 6
− 7

)
· 10−4 is again in very good agreement with the

measured ratio. As in Chapter 3, the uncertainty, which has been estimated very conser-

vatively, is dominated by our current ignorance about 1/NC-suppressed contributions to

some relevant χPT LECs.

4.1 Introduction

While isospin symmetry is an excellent approximation for most phenomenological appli-

cations, the isospin violations induced by the quark mass difference mu − md and the

electromagnetic interaction can get strongly enhanced in some observables [150,207], ow-

ing to the ∆I = 1/2 rule given by Eq. (3.2.6), when a tiny isospin-violating correction

to the dominant amplitude feeds into the suppressed one. This is certainly the case in

the direct CP-violating ratio ε′/ε , where a subtle numerical cancellation between the two

109
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isospin contributions takes place as discussed in Section 3.4. The current theoretical effort

to predict this observable with a precision similar to the experimental one [52, 100, 113]

requires an improved understanding of isospin-breaking effects [149–151,207]. This would

allow to test many possible New Physics (NP) scenarios that have been recently advo-

cated [117–142]. Assessing the role of the different isospin-breaking corrections is one of

the main motivations of this chapter.

In Chapter 3, we have seen that when CP violation is turned on, the amplitudes A0 , A2

and A+
2 acquire imaginary parts and ε′ is given to first order in CP violation by Eq. (3.2.8),

which can be expressed as

ε′ = − i√
2
ei(χ2−χ0) ω

ImA0
ReA0

(
1 − 1

ω

ImA2
ImA0

)
. (4.1.1)

This expression makes manifest the important potential role of isospin-breaking effects.

Any small correction to the ratio ImA2
ImA0

gets amplified by the large value of ω−1 . It is well-

known that the further chiral enhancement of the electromagnetic penguin contributions to

ImA2 makes compulsory taking them into account for any reliable estimate of ε′/ε , in spite

of the fact that they are isospin-violating corrections. Futhermore, Eq. (4.1.1) contains a

delicate numerical balance between the two isospin contributions, making the result very

sensitive to any additional isospin-breaking corrections. Indeed, some naive estimates of

ImAI result in a strong cancellation between the two terms, leading unjustifiably to low

values for ε′/ε [75–80, 114–116], as have been shown in Section 3.4. A proper assessment

of the isospin-violating contributions to the K → ππ amplitudes is then a compulsory

requirement for making reliable predictions of ε′/ε .

A detailed study of isospin-breaking effects in K → ππ was performed in Ref. [149–

151]. While the analytical calculations reported in these references remain valid nowadays,

meanwhile there have been many relevant improvements in the needed inputs that make

worth to perform an updated numerical analysis of their phenomenological implications.

The much better precision achieved in the determination of quark masses allows now

for improved estimates of the penguin matrix elements. Moreover, we have at present

a better understanding of several non-perturbative ingredients such as the chiral LECs,
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which govern the χPT K → ππ amplitudes [152–169]. Implementing those improvements

by updating Ref. [150] is one of the main motivations.

In Section 4.2, we describe the structure of the amplitudes at NLO in χPT including

the most relevant isospin-breaking corrections and using the same parametrization as in

Eq. (3.7.57). The main limitation of the χPT approach originates in the not very well-

known LECs that encode all short-distance dynamical information. Our current knowledge

on those LECs is compiled in Section 4.3. Section 4.4 gives the chiral expansion of the

different isospin amplitudes to first order in isospin-breaking and CP violation. Finally,

the numerical results are presented in Section 4.5.

4.2 K → ππ amplitudes at NLO

Isospin-breaking corrections are accounted only at first order, i.e., only corrections of

O(e2(md − mu)0) and O(e0(md − mu)) are considered. Additionally, owing to the very

small value of g27 , as can be seen from Eq. (3.2.6) and also in the fact that Im(g27) = 0 in

the large-NC limit, we neglect isospin-breaking corrections proportional to this coupling.1

Therefore, we must consider the following isospin-violating contributions:

• O(ε(2)G8 p
2) with the tree-level π0 − η mixing angle ε(2) , which to first order in

isospin breaking is given by π3

η8

 =

 1 −ε(2)

ε(2) 1


 π0

η


LO

, (4.2.2)

with

ε(2) =
√

3
4

md −mu

ms − m̂
≡
√

3
4R = (1.137± 0.045) · 10−2 . (4.2.3)

We have extracted the numerical value from the most recent FLAG average of lattice

determinations of light-quark masses, with Nf = 2 + 1 dynamical fermions, which

quotes R = 38.1 ± 1.5 [259]. The corrections from π0 − η mixing enter both in the

modified vertices and in the on-shell masses.

1Isospin-breaking corrections to g27 can be found in Refs. [256–258]
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• O(ε(2)G8 p
4) . One has:

– π0−η mixing at NLO. Identical to the previous correction but changing ε(2) →

ε
(4)
S [150,178],

ε
(4)
S = − 2 ε(2)

3 (4π F )2 (M2
η −M2

π)

{
(4π)2 64 [3L7 + Lr8(νχ)] (M2

K −M2
π)2

− M2
η (M2

K −M2
π) log

M2
η

ν2
χ

+M2
π (M2

K − 3M2
π) log M

2
π

ν2
χ

− 2M2
K (M2

K − 2M2
π) log M

2
K

ν2
χ

− 2M2
K(M2

K −M2
π)
}
. (4.2.4)

– Isospin-conserving amplitudes, but accounting for the isospin-breaking correc-

tion to the pseudoscalar masses, either in the propagators or the on-shell ex-

ternal legs.

– Diagrams analogous to the isospin-conserving ones, but with vertices obtained

after applying the rotation of Eq. (4.2.2), so that one of the vertices introduces

an ε(2) factor.

• O(e2G8 p
0) , coming from either the electroweak Lagrangian (e2g8gewk) or the non-

leptonic one (g8) when accounting for electromagnetic corrections to the external

masses.

• O(e2G8 p
2), entering through:

– π0 − η mixing at NLO. Identical to the strong isospin-breaking correction but

with ε(2) → ε
(4)
EM [150,260],

ε
(4)
EM = 2

√
3α

108π (M2
η −M2

π)

{
− 9M2

K Z

(
log M

2
K

ν2
χ

+ 1
)

+ 2M2
K (4π)2

[
2U r2 (νχ) + 3U r3 (νχ)

]
+M2

π (4π)2
[
2U r2 (νχ) + 3U r3 (νχ)− 6U r4 (νχ)

]}
, (4.2.5)
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where U ri (νχ) are linear combinations of the Kr
i LECs defined in Eq. (3.5.38),

U1 = K1 +K2 , U2 = K5 +K6 ,

U3 = K4 − 2K3 , U4 = K9 +K10 . (4.2.6)

– Loop corrections with one g8 gewk vertex.

– Again, isospin-conserving amplitudes, but accounting for the isospin-breaking

correction to the pseudoscalar masses either in the propagators or the external

legs.

– Electromagnetic loop corrections with one g8 vertex and virtual photon prop-

agators. In order to cancel the infrared divergences, one must also add the

corresponding calculation of the K → ππγ rates [150].

– Tree-level diagrams with at least one electroweak vertex and a NLO insertion.

4.2.1 Isospin breaking structure of the amplitudes

Taking into account the previous discussion and inspired by the parametrization intro-

duced in Section 3.7, we generalize this parametrization including the isospin-breaking

corrections. Then, the isospin amplitudes An (n = 1/2, 3/2, 5/2) can be expressed to first

order in isospin-breaking as

An = −G27 Fπ
(
M2
K −M2

π

)
A(27)
n −G8 Fπ

(
M2
K −M2

π

)[
A(8)
n + ε(2)A(ε)

n

]
+ e2G8 F

3
π

[
A(γ)
n + ZA(Z)

n + gewkA(g)
n

]
, (4.2.7)

where A(ε)
n refers to the strong isospin-breaking contributions, A(g)

n and A(Z)
n are the

contributions with an insertion of gewk and Z vertices, and A(γ)
n are the contributions

induced by the photon loops. In Eq. (4.2.7), we have replaced the Goldstone coupling F

by Fπ, the physical pion decay constant at NLO. The isospin-conserving relation between

these two parameters has already been introduced in Chapter 3 through Eq. (3.7.59).
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n (27) (8) (ε) (Z) (g)

1/2
√

2
9

√
2 −2

3

√
2√
3

4
√

2
3

2
√

2
3

3/2 10
9 0 4

3
√

3
4
3

2
3

Table 4.1: a(X)
n values for n = 1/2, 3/2 . a(X)

5/2 = 0 for all X and a(γ)
n = 0 for all n .

Including isospin-breaking effects, they are related through [172,208]

F = Fπ

{
1− 4

F 2

[
Lr4(νχ)

(
M2
π + 2M2

K

)
+ Lr5(νχ)M2

π

]

+ 1
2 (4π)2F 2

[
2M2

π log
(
M2
π

ν2
χ

)
+M2

K log
(
M2
K

ν2
χ

)]

+ 2 ε(2)
√

3

(
M2
K −M2

π

) [8Lr4(νχ)
F 2 − 1

2(4π)2F 2

(
1 + log

(
M2
K

ν2
χ

))]}
, (4.2.8)

so that those corrections get reabsorbed into the different NLO terms.

Each amplitude A(X)
n in Eq. (4.2.7) can be decomposed as

A(X)
n =

 a
(X)
n

[
1 + ∆LA(X)

n + ∆CA(X)
n

]
, if a

(X)
n 6= 0 ,

∆LA(X)
n + ∆CA(X)

n , if a
(X)
n = 0 ,

(4.2.9)

with a(X)
n , ∆LA(X)

n and ∆CA(X)
n being the LO, NLO loop and NLO local contributions,

respectively as we have already seen in Chapter 3. The amplitudes A(X)
n and their com-

ponents a(X)
n , ∆LA(X)

n and ∆CA(X)
n are dimensionless by construction. In Table 4.1, we

give the values of the LO factors a(X)
n . The loop corrections ∆LA(X)

n account for the

requirements of unitarity and analyticity; these non-local contributions are fully predicted

in terms of the pseudoscalar masses and the pion decay constant. The local compo-

nents ∆CA(X)
n contain the explicit dependence on the NLO LECs that renormalize the

ultraviolet loop divergences. Therefore, both ∆LA(X)
n and ∆CA(X)

n depend on the χPT

renormalization scale, but this dependence exactly cancels in their sum. The full expres-

sions for ∆LA(X)
n and ∆CA(X)

n can be found in Appendix B and in Section 4.4 of Ref. [150]

respectively.
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4.3 Determination of chiral LECs

In the last section, we have introduced the general structure of the K → ππ amplitudes at

NLO, accounting for isospin-breaking effects too. The only remaining ingredients are the

χPT LECs, which are not fixed by symmetry considerations. However, these couplings can

be determined performing a matching in the large-NC limit between the short-distance

Lagrangian and its chiral realization as we have seen in Section 3.6. As a result, we obtain

the electroweak chiral couplings (g8, g27, g8 gewk, g8Ni, g27Di, g8Zi) in terms of the strong

and electromagnetic LECs of O(pn) with n = 2, 4, 6 and O(e2p2) , respectively.

4.3.1 Weak couplings at O(GFp
2) and O(e2G8p

0)

At leading order in 1/NC , the chiral couplings of the nonleptonic electroweak Lagrangian

of O(GF p2, e2G8 p
0) given by Eq. (3.5.40), take the values of Eqs. (3.6.48) [88,150]. These

large-NC expressions imply2

g∞8 =
(

1.15 + 0.14
− 0.17 (µ) ± 0.04 (Li) ± 0.01 (ms)

)

+ τ

(
0.76 + 0.12

− 0.25 (µ) ± 0.20 (Li) ± 0.03 (ms)

)
, (4.3.10)

g∞27 = 0.46 ± 0.02 (µ) , (4.3.11)

(g8 gewk)∞ =
(
−1.54 + 1.41

− 0.87 (µ) ± 0.14 (Li) ± 0.17 (Ki) ± 0.05 (ms)

)

+ τ

(
−19.9 + 5.7

− 2.2 (µ) ± 1.8 (Li) ± 0.83 (Ki) ± 0.7 (ms)

)
, (4.3.12)

where the first uncertainty has been estimated through the variation of the scale µ between

0.77 GeV and 1.3 GeV, while the second and third ones reflect the current errors on the

strong LECs of O(p4) and the electromagnetic couplings of O(e2p2) . The last error

2The numerical inputs for K9 and K10 are presented below. Although this results have been already

presented in Tables 3.2 and 3.3, we decide to put them since the numerical inputs used for this chapter

differ slightly from the previous one.
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indicates the parametric uncertainty induced by the quark mass factor, which has been

taken within the range (ms +md)(µ = 1GeV) = 131.8± 2.2MeV [259].

The numerical results in Eqs. (4.3.10) and (4.3.11) are quite far from their phenomeno-

logically extracted values, including chiral loop corrections, g8 ≈ 3.6 and g27 ≈ 0.29 [53].

This fact just reflects the importance of O(1/NC) corrections in the CP-conserving ampli-

tudes. In Section 4.5.2, we will perform a fit to K → ππ data in order to obtain reliable

predictions for the CP-conserving parts of g8 and g27 .

4.3.2 Weak couplings at O(GFp
4) and O(e2G8p

2)

At NLO, the large-NC matching fixes the couplings G8Ni , G27Di and G8Zi of the non-

leptonic weak and electroweak Lagrangians given by Eq. (3.5.42). In this section, we

compile the results obtained in Ref. [150]. Taking the definitions,

C̃1(µ) ≡ −2
5C1(µ) + 3

5C2(µ) + C4(µ) , (4.3.13)

C̃2(µ) ≡ +3
5C1(µ)− 2

5C2(µ) + C3(µ)− C5(µ) , (4.3.14)

the non-vanishing LECs contributing to the K → ππ amplitudes can be parametrized as

follows:

(g27D4)∞ = 4L5 g
∞
27 , (4.3.15)

(g8Ni)∞ = ni L5 C̃1(µ) + XiB(µ)C6(µ)

= ni L5

(
g∞8 + B(µ)C6(µ)

[
16L5 + Xi

ni L5

])
, (4.3.16)

with ni and Xi defined in Table E.1 of Appendix E as functions of the LECs of Eqs.

(3.5.34) and (3.5.35), and

(g8 Zi)∞ = K(1)
i C̃1(µ) +K(2)

i C̃2(µ) + K(3)
i B(µ)C6(µ) (4.3.17)

+ 1
e2

{
K(4)
i C7(µ) +K(5)

i B(µ)C8(µ) +K(6)
i C9(µ) +K(7)

i C10(µ)
}
,

where the constants K(k)
i are defined in Table E.2 of Appendix E.
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The dependence on the χPT renormalization scale νχ is of O(1/NC) and, therefore,

is absent from these large-NC expressions. To account for this systematic uncertainty,

we will vary νχ between 0.6 GeV and 1 GeV in the loop contributions and the resulting

numerical fluctuations will be added as an additional error in the predicted amplitudes.

4.3.3 Strong couplings of O(p4) and O(p6)

The K → ππ amplitudes have an explicit dependence on some LECs of the O(p4) strong

Lagrangian as we have seen in Chapter 3. The values for L5 and L8 have been introduced

in Section 3.6. For L7 , we use

L7 = (−0.34± 0.09) · 10−3 , (4.3.18)

which has been extracted from an O(p6) phenomenological fit to kaon and pion data [167].

Note that L7 does not depend on the χPT renormalization scale. This input value is in

perfect agreement with the large-NC estimate [153,155],

L∞7 = − F 2
π

48M2
η1

= −2.7 · 10−4 , (4.3.19)

with Mη1 = 804 MeV [153].

The strong LECs of the O(p6) Lagrangian enter into the amplitudes through the co-

efficients Xi of Eq. (4.3.16), which only depend on X12, X14−20, X31, X33, X34, X37,

X38, X91 and X94. The dependence on X37 and X94 exactly cancels, however, in all

∆CA(X)
n amplitudes; thus these couplings are not needed. Using Resonance Chiral Theory

(RχT) [153, 154], these LECs can be estimated in terms of meson resonance parameters,

through the tree-level exchange of the lightest resonance states. This amounts to perform

the matching between the χPT and RχT Lagrangians at leading order in 1/NC , in the

single-resonance approximation. An analysis of all resonance contributions to the Xi cou-

plings can be found in Ref. [156]. Furthermore, a complete analysis of the η1 contributions

to the chiral low-energy constants of O(p6) was presented in Ref. [157], the only X̃η1
i that

contribute to K → ππ are

X̃η1
18 = 3 X̃η1

19 = − 2 X̃η1
20 = X̃η1

31 = L∞7
M2
η1

, X̃η1
33 = 0 . (4.3.20)
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Combining both results, we obtain the values given in Table 4.2. As expected for the

K → ππ amplitudes, the relevant couplings do not receive contributions from vector

and axial-vector exchanges. Moreover, all η1 contributions coming from the X̃η1
i factors

in Table 4.2 cancel also in the combinations Xi that govern the (g8Ni)∞ LECs, as it

should. The exchange of η1 mesons can only contribute indirectly to K → ππ, through

the dependence on L7 of the π0 − η mixing correction ε(4)
S in Eq. (4.2.4), which gives rise

to the the term proportional to L7L8 in X13. This unique η1 contribution appears in the

NLO local corrections ∆CA(ε)
1/2,3/2 and represents one of the largest sources of uncertainty

in our numerical results.

Xi/F
2 Large-NC prediction

12 − cd cm
2M4

S

14 − d2
m

4M4
P

+ (λ̄SS1 )′ + 2 cd
cm

(λ̄SS3 )′

15 0

16 0

17 − d2
m

4M4
P

+ λ̄SS2

18 X̃η1
18

19 cd cm
27M4

S
+ λ̄S4

9 + (λ̄SS3 )′ + X̃η1
19

20 − cd cm
18M4

S
− λ̄S4

6 + X̃η1
20

31 − d2
m

2M4
P
− 7

18
cd cm
M4
S

+ λ̄S4
3 − 2 (λ̄SP2 )′ + X̃η1

31

33 d2
m

6M4
P

+ 2
9
cd cm
M4
S

+ λ̄S4
6 + λ̄S5 − λ̄P3 + X̃η1

33

34 d2
m

2M4
P

+ cd cm
2M4

S
+ c2m

2M4
S
− d2

m

M2
P M

2
S

38 − d2
m

2M4
P

+ c2m
2M4

S

91 2 d2
m

M4
P

Table 4.2: Large-NC predictions for the relevant strong LECs of O(p6) [156].

Thus, only contributions from scalar and pseudoscalar resonance-exchange enter into

the relevant Xi LECs in Table 4.2. The LO RχT couplings have been determined within
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the single-resonance approximation, which gives the relations [155]:

cm = cd =
√

2 dm = Fπ/2 , MP =
√

2MS . (4.3.21)

These couplings correspond to O(p2) chiral structures with Goldstone fields coupled to a

single resonance multiplet, either scalar (cd,m) or pseudoscalar (dm). The table contains,

in addition, contributions from O(p4) chiral structures with one resonance (λ̄Ri ) and O(p2)

terms with two resonances (λ̄RR′i ) that are currently unknown. We are only aware of one

estimate of λSS3 ≡ λ̄SS3 M4
S/c

2
m , determined from the scalar resonance spectrum [211],

which we update in Appendix F. We obtain:

MS = 1478 MeV , λSS3 = 0.1548 . (4.3.22)

In the absence of better information, we will take null values for the unknown λ̄Ri and λ̄RR′i

couplings. In order to estimate the size of uncertainties in any observable F associated to

the LECs Xi , we will take:

error of F = |F (Xi)− F (0)|
NC

. (4.3.23)

4.3.4 Electromagnetic couplings of O(e2p2)

The electromagnetic LECs Ki can be expressed as convolutions of QCD correlators with

a photon propagator [213], and their evaluation involves an integration over the virtual

photon momenta. Therefore, they have an explicit dependence on the χPT renormal-

ization scale νχ , already at leading order in 1/NC . In Ref. [266], the couplings Kr
1−6

have been estimated by computing 4-point Green functions (two currents and two electro-

magnetic spurion fields) in χPT and matching them with their RχT estimate (neglecting

pseudoscalar contributions). The RχT couplings are obtained by imposing short-distance

constraints. They find

Kr
1(Mρ) = −Kr

3(Mρ) = −2.71 · 10−3 , Kr
5(Mρ) = 11.59 · 10−3 ,

Kr
2(Mρ) = 1

2 K
r
4(Mρ) = 0.69 · 10−3 , Kr

6(Mρ) = 2.77 · 10−3 . (4.3.24)
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The remaining couplings can be accessed through the study of two- and three-point func-

tions. Kr
7,8 turn out to be 1/NC suppressed, i.e., Kr

7(Mρ) ≈ Kr
7(Mρ) ≈ 0 [213]. Kr

9−13

are gauge dependent, while Kr
9−12 depend also on the short-distance renormalization scale

µ . Those dependences cancel with the photon loop contributions in the physical decay

amplitudes. The explicit values we quote below refer to the Feynman gauge (ξ = 1) and

µ = 1 GeV [150,213,214,266,267]:

Kr
9(Mρ) = 2.2 · 10−3 , Kr

10(Mρ) = 6.5 · 10−3 , (4.3.25)

Kr
11(Mρ) = 1.26 · 10−3 , Kr

12(Mρ) = −4.2 · 10−3 , Kr
13(Mρ) = 4.7 · 10−3 .

The uncertainties associated with these LECs will be also estimated following the method

indicated in Eq. (4.3.23).

4.4 Anatomy of isospin-breaking parameters

To first order in isospin breaking ε′ can be written as indicated in (3.2.10). In order to

determine the different sources of isospin-breaking effects, it is useful to write the CP-

violating amplitudes as

A0 e
iχ0 = A(0)

1/2 + δA1/2 ,

A2 e
iχ2 = A(0)

3/2 + δA3/2 +A5/2 , (4.4.26)

where δA1/2,3/2 and A5/2 are first order in isospin violation. The amplitudes A∆I have

both absorptive, Abs A∆I , and dispersive, Disp A∆I , parts. Therefore, the loop-induced

phases χI have to be carefully separated from the CP-violating ones. Expanding to first
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order in CP and isospin violation, one finds [150]:

ImA(0)
0 =

∣∣∣A(0)
1/2

∣∣∣−1 {
Im[DispA(0)

1/2] Re[DispA(0)
1/2]

+Im[AbsA(0)
1/2] Re[AbsA(0)

1/2]
}
,

ImA2 =
∣∣∣A(0)

3/2

∣∣∣−1 {
Im[Disp

(
δA3/2 +A5/2

)
] Re[DispA(0)

3/2]

+ Im[Abs
(
δA3/2 +A5/2

)
] Re[AbsA(0)

3/2]
}
, (4.4.27)

∆0 = −2
∣∣∣A(0)

1/2

∣∣∣−2 (
Re[DispA(0)

1/2] Re[Disp δA1/2] + Re[AbsA(0)
1/2] Re[Abs δA1/2]

)
+
[
Im[DispA(0)

1/2] Re[DispA(0)
1/2] + Im[AbsA(0)

1/2] Re[AbsA(0)
1/2]

]−1

×
{

Im[Disp δA1/2] Re[DispA(0)
1/2] + Im[DispA(0)

1/2] Re[Disp δA1/2]

+ Im[Abs δA1/2] Re[AbsA(0)
1/2] + Im[AbsA(0)

1/2] Re[Abs δA1/2]
}
,

f5/2 = 5
3

∣∣∣A(0)
3/2

∣∣∣−2 {
Re[DispA(0)

3/2] Re[DispA5/2] + Re[AbsA(0)
3/2] Re[AbsA5/2]

}
,

which are all the quantities that we need to determine the different sources of isospin

violation in Eq. (3.2.15).

4.5 Numerical results

At this point, we have all the theoretical ingredients to provide a numerical prediction for

the isospin-breaking effects in K → ππ . In the following subsections, we present each of

the numerical results that enter in the estimation of these corrections.

4.5.1 Amplitudes at NLO

In this subsection, we present the numerical results of the different isospin amplitudes, An
with n = 1/2, 3/2 and 5/2 . Tables 4.3, 4.4 and 4.5, which supersede Tables 1, 2 and 3 of

Ref. [150] display the following information:

• The type of contribution (X) in the first column.

• The LO contributions a(X)
n in the second column.
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(X) a
(X)
1/2 ∆LA(X)

1/2 [∆CA(X)
1/2 ]+ [∆CA(X)

1/2 ]−

27
√

2
9 1.03 + 0.47 i 0.01 +0.00

−0.00
+0.65
−0.62 0.01 +0.00

−0.00
+0.65
−0.62

8
√

2 0.27 + 0.47 i 0.02 +0.00
−0.01

+0.05
−0.05 0.11 +0.01

−0.00
+0.05
−0.05

ε −2
√

2
3
√

3 0.26 + 0.47 i −0.32 +0.04
−0.16

+0.05
−0.06 1.54 +0.08

−0.02
+0.05
−0.06

γ - −1.39 −0.48 +0.28
−0.12

+0.26
−0.27 −11.16 +1.22

−3.45
+0.26
−0.27

Z 4
√

2
3 −1.07 + 0.80 i −0.11 +0.01

−0.02
+0.17
−0.18 0.14 +0.01

−0.00
+0.17
−0.18

g 2
√

2
3 0.28 + 0.47 i −0.19 +0.00

−0.00
+0.01
−0.01 −0.19 +0.00

−0.00
+0.01
−0.01

Table 4.3: NLO loop and local counterterm amplitudes A1/2 . The two uncertainties in

the local amplitudes are associated with the variations of the short-distance scale µ and

the chiral scale νχ, respectively.

(X) a
(X)
3/2 ∆LA(X)

3/2 [∆CA(X)
3/2 ]+ [∆CA(X)

3/2 ]−

27 10
9 −0.04− 0.21 i 0.01 +0.00

−0.00
+0.05
−0.05 0.01 +0.00

−0.00
+0.05
−0.05

ε 4
3
√

3 −0.70− 0.21 i −0.30 +0.04
−0.17

+0.48
−0.50 1.65 +0.08

−0.02
+0.48
−0.50

γ - −0.47 0.40 +0.15
−0.04

+0.08
−0.09 −0.22 +0.78

−0.11
+0.08
−0.09

Z 4
3 −0.87− 0.79 i 0.01 +0.00

−0.01
+0.32
−0.33 0.07 +0.00

−0.00
+0.32
−0.33

g 2
3 −0.50− 0.21 i −0.19 +0.00

−0.00
+0.19
−0.20 −0.19 +0.00

−0.00
+0.19
−0.20

Table 4.4: NLO loop and local counterterm amplitudes A3/2 . The two uncertainties in

the local amplitudes are associated with the variations of the short-distance scale µ and

the chiral scale νχ, respectively.

(X) a
(X)
5/2 ∆LA(X)

5/2 [∆CA(X)
5/2 ]+ [∆CA(X)

5/2 ]−

γ - −0.51 −0.15 +0.04
−0.01

+0.10
−0.11 −0.57 +0.00

−0.02
+0.10
−0.11

Z - −0.93− 1.16 i −0.16 +0.01
−0.02

+0.41
−0.43 0.09 +0.01

−0.00
+0.41
−0.43

Table 4.5: NLO loop and local counterterm amplitudes A5/2 . The two uncertainties in

the local amplitudes are associated with the variations of the short-distance scale µ and

the chiral scale νχ, respectively.
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• The NLO loop contributions ∆LA(X)
n with the absorptive and dispersive compo-

nents in the third column. Absorptive contributions are independent on the chiral

renormalization scale νχ . For the dispersive contributions, νχ is fixed to 0.77 GeV .

• The NLO local corrections to the CP-even and CP-odd amplitudes, [∆CA(X)
n ]+ and

[∆CA(X)
n ]− respectively in the last columns, where

[∆CA(X)
n ]± =



Re
Im

(
G27 ∆CA(27)

n

)
Re
Im(G27)

, X = 27 ,

Re
Im

(
G8gewk ∆CA(g)

n

)
Re
Im(G8gewk)

, X = g ,

Re
Im

(
G8 ∆CA(X)

n

)
Re
Im(G8)

, X = 8, Z, ε, γ .

(4.5.28)

The estimation of NLO local contributions represents the main uncertainty in our

results. In Tables 4.3, 4.4 and 4.5, we quote the two different sources of uncertainties.

The first error is related with the lack of cancellation of the short-distance scale µ.

We estimate it by varying this scale from 0.77 GeV to 1.3 GeV . The second error is

associated to the missed logarithmic dependence on the χPT scale νχ due to applying

the large-NC limit. In order to estimate it, we vary the chiral renormalization scale

between 0.6 and 1 GeV . In most of the cases, this non-perturbative error dominates

over the first one.

The results are in good agreement with the ones of the previous analysis. While the

underlying physics behind the large values of ∆LA(Z)
1/2,3/2 and [∆CA(γ)

1/2]− is well understood

[150], the larger than expected values of [∆CA(ε)
1/2,3/2]− are not. It might be consequence

of a numerical accident. While the size of the g8N
r
i is not larger than expected, their role

appears enhanced in the amplitudes with huge numerical prefactors.

4.5.2 χPT fit to K → ππ data

In Section 4.3.1, we have seen the price of taking the large-NC limit in the CP-even

sector, reflected in an unphysical short-distance scale dependence for the observables. The
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large-NC estimate is unable to correctly predict the CP-conserving parts of g8 and g27 .

However, one can fit them to data. The observables [150],

Cn =
(

2√sn Γn
G̃n Φn

)1/2

, (4.5.29)

where Γn with n = +−, 00,+0 are the decay rates, G̃n ≡ Brn/τn , Brn and τn are

respectively the branching ratios and the kaon lifetimes, √sn is the total center of mass

energy and Φn is the two-body phase space; are directly related to the amplitudes of Eq.

(3.2.4):

A+
2 = 2

3 C+0 , (A0)2 + (A2)2 = 2
3 C

2
+− + 1

3 C
2
00 ,

A2
A0

cos(χ0 − χ2) =
r − 1 + (A2

A0
)2(2 r − 1

2)
√

2(1 + 2 r)
, (4.5.30)

where r ≡ (C+−/C00)2 . Then, using the partial widths Γ+−,00,+0 from Ref. [31] as

experimental inputs to obtain the Cn and using χPT for AI , we can perform a fit to g8 ,

g27 and the phase difference χ0−χ2 . We obtain the results of Tables 4.8, 4.9, 4.6 and 4.7,

which supersede Eqs. (7.11), (7.12) and (7.13) and the discussion therein of Ref. [150].

We obtain numerical values in good agreement with that work. In the next section, we use

the results presented in Table 4.9 as inputs to compute the isospin-breaking parameters

presented in Section 4.4.

4.5.3 Isospin-breaking parameters in the CP-odd sector

Once the NLO amplitudes have been updated (Section 4.5.1) and the CP-conserving com-

ponents of g8 and g27 have been fitted to experimental data (Section 4.5.2), we have all

needed ingredients to compute the different IB parameters in the CP-odd sector given

in Section 4.4. Since this work is an update of Ref. [150], it is worth it to compare the

impact of the different updated inputs in the different (central) final NLO α 6= 0 values.

This is shown in Table 4.10, where ∆i corresponds to the difference between the updated

set-up and the same one but with the old input for the variable i (i = WC stands for

Wilson Coefficients). The impact of the different changed inputs is comparable in size,
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Value

Re g8 4.985 ± 0.002 (exp)

Re g27 0.286 ± 0.001 (exp)

ReA0/ReA2 22.36 ± 0.05 (exp)

ReA0/ReA+
2 22.36 ± 0.05 (exp)

f5/2 0

χ0 − χ2 (◦) 44.78 ± 0.98 (exp)

ReA0(·10−7 GeV) 2.711 ± 0.001 (exp)

ReA2(·10−8 GeV) 1.212 ± 0.003 (exp)

Table 4.6: Tree-level (LO) isospin-conserving amplitudes.

Value

Re g8 3.599 ± 0.001 (exp)
+ 0.139
− 0.135 (νχ)

+ 0.018
− 0.004 (µ)

Re g27 0.288 ± 0.001 (exp) ± 0.014(νχ)

ReA0/ReA2 22.36 ± 0.05 (exp)

ReA0/ReA+
2 22.36 ± 0.05 (exp)

f5/2 0

χ0 − χ2 (◦) 44.78 ± 0.98 (exp)

ReA0(·10−7 GeV) 2.711 ± 0.001 (exp)

ReA2(·10−8 GeV) 1.212 ± 0.003 (exp)

Table 4.7: NLO isospin-conserving amplitudes.

and typically slightly smaller than the central values. In particular, the sensitivity to L7

is remarkable.
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Value

Re g8 5.002± 0.002 (exp)
+ 0.013
− 0.006 (µ)

Re g27 0.251± 0.001 (exp)
+ 0.011
− 0.004 (µ)

ReA0/ReA2 22.13± 0.05 (exp)
+ 0.10
− 0.06 (µ)

ReA0/ReA+
2 22.13± 0.05 (exp)

+ 0.10
− 0.06 (µ)

f5/2 0

χ0 − χ2 (◦) 47.97± 0.92 (exp)
+ 0.12
− 0.22 (µ)

ReA0(·10−7 GeV) 2.704 ± 0.001 (exp)

ReA2(·10−8 GeV) 1.222 ± 0.003 (exp)
+ 0.003
− 0.006 (µ)

Table 4.8: Tree-level (LO) isospin-breaking amplitudes.

Value

Re g8 3.581± 0.001 (exp)
+ 0.144
− 0.141 (νχ)

+ 0.024
− 0.008 (µ)

Re g27 0.296± 0.001 (exp)
+ 0.000
− 0.001 (νχ)

+ 0.010
− 0.003 (µ)

ReA0/ReA2 20.54± 0.04 (exp)
+ 0.49
− 0.50 (νχ)

+ 0.00
− 0.02 (µ)

ReA0/ReA+
2 22.29± 0.05 (exp)

+ 0.01
− 0.06 (νχ)

+ 0.00
− 0.03 (µ)

f5/2 0.0853± 0.0002 (exp)
+ 0.0239
− 0.0250 (νχ)

+ 0.0000
− 0.0007 (µ)

χ0 − χ2 (◦) 51.395± 0.806 (exp)
+ 1.033
− 1.041 (νχ)

+ 0.033
− 0.007 (µ)

ReA0(·10−7 GeV) 2.704 ± 0.001 (exp)

ReA2(·10−8 GeV) 1.317± 0.003 (exp)
+ 0.033
− 0.031 (νχ)

+ 0.001
− 0.000 (µ)

Table 4.9: NLO isospin-breaking amplitudes.

In Tables 4.11, 4.12, 4.13 and 4.14, we update Table 4 of Ref. [150] separating the

estimate for the different sources of uncertainties, being σi the error associated to the

variable i .3

3The label B(µ) refers to the running of the quark masses.
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Set-up ∆0 f5/2 ΩIB Ωeff

Central Ref. [150] 0.08346 0.08360 0.2267 0.05967

New value 0.05650 0.08202 0.2597 0.1212

∆WC -0.011 -0.0009 0.0018 0.013

∆L5 -0.016 0.0009 -0.032 -0.017

∆L8 0.0032 0.0013 -0.0049 -0.0094

∆L7 -0.0007 0.0000 0.043 0.044

∆Ki 0.0013 -0.0036 0.022 0.024

∆Xi -0.0018 0.0001 -0.0008 -0.0026

∆ε(2) -0.0003 0.0000 0.012 0.012

∆B(µ) -0.0051 0.0005 -0.0067 -0.0024

Table 4.10: NLO central values for α 6= 0 and impact of the different modified inputs.

Set-up ∆0 f5/2 ΩIB Ωeff

Central -0.00002 0 0.1370 0.1370

Table 4.11: LO central values for α = 0.

Set-up ∆0 f5/2 ΩIB Ωeff

Central -0.0051 0.0 0.171 0.176

σµ
+ 0.0000
− 0.0004 0.0 + 0.006

− 0.002
+ 0.007
− 0.001

σνχ 0.0001 0.0 + 0.048
− 0.047

+ 0.048
− 0.047

σγ5 0.0004 0.0 0.001 0.002

σL5,8 0.0001 0.0 0.033 0.033

σL7 0.0011 0.0 0.060 0.061

σXi 0.0000 0.0 0.006 0.006

Table 4.12: NLO central values for α = 0 and their parametric errors.



128 Isospin violation in kaon decays

Set-up ∆0 f5/2 ΩIB Ωeff

Central 0.0563 0.0 0.196 0.140

σµ
+ 0.0021
− 0.0000 0.0 + 0.004

− 0.001
+ 0.002
− 0.002

σνχ 0.0000 0.0 0.000 0.000

σγ5 0.0067 0.0 0.001 0.006

σL5,8 0.0143 0.0 0.028 0.014

σKi 0.0021 0.0 0.039 0.037

Table 4.13: LO central values for α 6= 0 and their parametric errors.

Set-up ∆0 f5/2 ΩIB Ωeff

Central 0.0565 0.0820 0.260 0.121

σµ
+ 0.0066
− 0.0015

+ 0.0003
− 0.0011

+ 0.008
− 0.002

+ 0.001
− 0.000

σνχ 0.0017 + 0.0232
− 0.0244 0.034 + 0.057

− 0.055

σγ5 0.0067 0.0009 0.001 0.004

σL5,8 0.0136 0.0017 0.040 0.029

σL7 0.0011 0.0000 0.060 0.061

σKi 0.0019 0.0031 0.018 0.013

σXi 0.0021 0.0003 0.003 0.005

Table 4.14: NLO central values for α 6= 0 and their parametric errors.

Since its sensitivity to L7 is particularly strong, we show in Figure 4.1 the dependence

of the central value of Ωeff with L7. The dashed line is the L7 value from Ref. [167] with

its error (dotted line). The red line is the large-NC prediction for L7.

4.6 Impact on the ε′/ε prediction

In this chapter, we have presented a re-analysis of the isospin-breaking corrections in

K → ππ [150]. Due to the ∆I = 1/2 rule, these corrections get strongly enhanced in the
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Figure 4.1: Central value of Ωeff as a function of L7 .
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Figure 4.2: SM prediction for Re (ε′/ε) (red dashed line) as a function of Ωeff. The red

band has been obtained adding all sources of uncertainty in quadrature for a fixed value

of Ωeff . The vertical dashed line indicates the central value of Ωeff in (4.6.31) and the blue

horizontal band the measured value of Re (ε′/ε) .

direct CP-violating ratio ε′/ε , then it is necessary to re-analyze them in order to make

a reliable prediction for this observable. After reviewing the different improvements on

many of the inputs, we have obtained updated amplitudes, which lead to a new value for

the different relevant isospin-breaking parameters. Among them, it is worth it to remark
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the value of Ωeff that encodes the isospin-breaking corrections in ε′/ε . Our prediction is

Ωeff = (12.1 + 9.0
− 8.8) · 10−2 , (4.6.31)

where the final uncertainty has been obtained by conservatively adding all the errors in

quadrature. Figure 4.2 shows the dependence of Re (ε′/ε) on Ωeff . Taking into account

the updated value, our prediction for Re (ε′/ε) is

Re
(
ε′/ε

)
=
(
13.1± 0.4ms + 2.2

− 4.0 µ
+ 3.0
− 3.2 νχ ± 1.2 γ5 ± 4.3L5,8 ± 1.1L7 ± 0.2Ki ± 0.3Xi

)
· 10−4

=
(
13 + 6
− 7

)
· 10−4 , (4.6.32)

which is in perfect agreement with the experimental one [64–72]. We find that the impact

of this updated value on ε′/ε is small, finding a central value a slightly smaller than the

one obtained in Chapter 3. In spite of the large uncertainty, mostly coming from our

ignorance of non-perturbative effects in the matching region.



Chapter 5

Neutral meson mixing in

Multi-Higgs-Doublet Models

In this chapter, we present a complete one-loop computation of the Wilson coefficients

for the neutral meson mixing in the Aligned-Multi-Higgs-Doublet Model (AMHDM). We

contemplate the possibility of extending the N − 1 Higgs doublets to colour-octet scalars.

After giving a detailed technical summary of the computation, we particularize our analyt-

ical results to the wide casuistry of NP models, and finally we obtain combined constraints

on the parameters of these models from the current flavour data.

5.1 Introduction

Since the discovery of the Higgs boson, the search for physics beyond the SM has become

a priority task for the high-energy-physics community. One of the simplest extensions

is to include in the SM one additional Higgs doublet that transforms under the SU(2)L
gauge group, this model is known as Two-Higgs-Doublet Model (2HDM) [268, 269]. It

has a rich scalar spectrum (two charged and three neutral scalar fields, in addition to

the three Goldstones needed to generate the gauge boson masses) which incorporates

interesting phenomenological features, such as potential new sources of CP violation, axion
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phenomenology or dark matter candidates, just to mention a few of them. In the most

general version of the 2HDM [270–272], the fermionic couplings of the neutral scalars are

non-diagonal in flavour, then this gives rise to Flavour Changing Neutral Current (FCNC)

interactions which represent the main deficiency of this model because these phenomena

are experimentally very constrained [2]. One of the possible ways to avoid the FCNC

interactions consists in using flavour alignment [273–275]. Assuming that the couplings of

all scalar doublets to a given right-handed fermion have the same flavour structure, then all

the Yukawas can be diagonalized simultaneously and these unwanted FCNC interactions

disappear at tree level.

Due to the GIM mechanism, the scalar mediators of this type of models play an

important role in some low-energy processes. An example can be found in the neutral

meson mixing, where the charged particles contribute at the same order as does the W±

bosons in the SM, therefore one could expect significant NP contributions. Although some

recents works have studied these type of contributions [276–279], we can go a step further

and generalize the results present in the literature in four different ways:

• Including “Generalized Alignment” [275] in the Yukawa matrices, where (in the

fermion mass-eigenstate basis) Y (2)
d = ς

(2)
d Md and Y

(2)
u = [ς(2)

u ]†Mu with 3 × 3

diagonal complex matrices in flavour space ς d,u which in general are not proportional

to the identity matrix.

• Extending to N Higgs doublets instead of two. This type of models are called Multi-

Higgs-Doublet Models (MHDMs).

• Giving a wide meson-mixing phenomenology (B0 , B0
s , K0 and D0) through a single

master formula.

• For the computation, keeping all external quark momenta and all external masses

up to second order.

In Sections 5.2.1 and 5.2.2, we present the theoretical framework used in this chapter.

In Sections 5.2.3 and 5.2.4, we present the complete one-loop computation of the Wilson
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coefficients for the meson mixing, providing a detailed guide for the computation of the

box diagrams. In Section 5.2.5, we compare our results with those present in the liter-

ature [276–278]. Finally, in Section 5.3, we particularize our analytical results to some

specific models and we obtain combined constraints from the currently measured mixing

observables.

5.2 Theoretical framework

5.2.1 Multi-Higgs-Doublet Model

The 2HDM is based on a SU(3)C ⊗ SU(2)L ⊗ U(1)Y symmetry with two scalar doublets

φi(x) (i = 1, 2) with hypercharge Y = 1
2 and the same SM fermion content. Using a

global SU(2) transformation in the scalar space (φ1, φ2) takes us to the so-called Higgs

basis (Φ1, Φ2) where only one doublet acquires Vacuum Expectation Value (VEV), 〈Φ1〉 ≡
v√
2 6= 0 . In this basis, the doublets can be parametrized as

Φ1 =

 G+

1√
2(v + S1 + i G0)

 , Φ2 =

 H+

1√
2(S2 + i S3)

 , (5.2.1)

where G± and G0 are the Goldstone boson fields and 〈H±〉 = 〈G±, 0〉 = 〈Si〉 = 0 .

Let us generalize the previous result assuming that the second Higgs doublet can be

either a singlet or an octet of SU(3)C . Then, we can rewrite Φ2 as

Φ2 = T a

 (H+)a
1√
2 [(S2)a + i (S3)a]

 ≡ T a Φ(a)
2 . (5.2.2)

where T a are 3 × 3 matrices that encode the colour nature of the second Higgs doublet.

For instance, the usual 2HDM is obtained by setting these matrices to the identity matrix

in colour space, while in the colour-octet 2HDM [280] these matrices are the generators of

SU(3)C being a = 1, · · · , 8 the adjoint colour index.

A more general extension of the scalar sector can be constructed considering N dou-

blets instead of two, the so-called Multi-Higgs-Doblet Model (MHDM). In this extension,
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Eq. (5.2.2) has to be modified to

ΦA = T a

 (H+
A )a

1√
2

[
(SA

2 )a + i (SA
3 )a

]
 ≡ T a Φ(a)

A , (5.2.3)

where A = 2, ..., N with N the number of Higgs doublets.

5.2.2 Yukawa interactions and alignment

The most general Yukawa Lagrangian in the MHDM is given by1

LY = −
√

2
v
Q
′
L

{(
M ′dΦ1 +

N∑
A=2

[Y (A)
d ]′ΦA

)
d′R +

(
M ′uΦ̃1 +

N∑
A=2

[Y (A)
u ]′Φ̃A

)
u′R

}
+ h.c. ,

where Q′L is the left-handed quark doublet and Φ̃A = i σ2 Φ∗A is the charge-conjugated

doublet with hypercharge Y = −1
2 . All fermionic fields are written as 3 dimensional

flavour vectors, i.e., d′R = (d′R, s′R, b′R) and similarly for u′R and Q′L . The matrices

M ′f (f = u, d) are the non-diagonal fermion mass matrices, while the matrices [Y (A)
f ]′

contain the Yukawa couplings to the scalar doublets ΦA . In general, these matrices

cannot be diagonalized simultaneously. Therefore, in the fermion mass-eigenstate basis,

with diagonal mass matrices Mf , the Yukawa matrices are non-diagonal, which results

in flavour-changing interactions of the neutral scalars. One of the possible ways to avoid

these non-diagonal neutral couplings consist in requiring the alignment in flavour space

of the Yukawa matrices [273–275]. The Yukawa alignment guarantees that these matrices

can be simultaneously diagonalized by imposing (in the fermion mass-eigenstate basis)

Y
(A)
d = ς

(A)
d Md , Y (A)

u = [ς(A)
u ]†Mu , (5.2.4)

where ς(A)
d,u are 3× 3 diagonal complex matrices in flavour space,

ς
(A)
d = diag(ς(A)

d1
, ς

(A)
d2

, ς
(A)
d3

) , ς(A)
u = diag(ς(A)

u1 , ς
(A)
u2 , ς

(A)
u3 ) . (5.2.5)

1The lepton part has been skipped.
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The matrices ς(A)
d and ς(A)

u introduce family-dependent complex quantities which represent

new sources of CP violation. For N = 2 with ςdi = ςd and ςui = ςu , we recover the family-

universal Aligned 2HDM (A2HDM) [273] case, in which for particular real values of these

parameters2, indicated in Table 5.1 one restores all different versions of the 2HDM with

Natural Flavour Conservation (NFC).

Model ςd ςu ςl

Type I cot β cot β cot β

Type II − tan β cot β − tan β

Type X cot β cot β − tan β

Type Y − tan β cot β cot β

Table 5.1: Two-Higgs-doublet models with NFC.

In the mass-eigenstate basis, the charged-current Yukawa Lagrangian can be expressed as

LY = −
√

2
v

N∑
A=2

N∑
B=2

(ϕ+
B)aR+

BA ū T
a
[
ς

(A)
d V Md PR − ς(A)

u Mu V PL
]
d + h.c. , (5.2.6)

where V denotes the CKM matrix, PR,L = 1±γ5
2 are the right-handed and left-handed

projectors respectively. For N > 2, the charged Higgs particles (H(+)
A )a are not mass

eigenstates and we must diagonalize them through a rotation matrix R(+) to put them in

terms of the mass eigenstates (ϕ(+)
A )a .3 In order to simplify our analytical results, we use

the following definition,

ςAu,d ≡
N∑
B=2
R+
AB ς

(B)
u,d , (5.2.7)

in general ςAu,d 6= ς
(A)
u,d . In addition, for the numerical analysis presented in Section 5.3,

we introduce the following definitions: ςu,d ≡ ς
(2)
u,d in the A2HDM, and ςu,d ≡ R+

22 ς
(2)
u,d +

R+
23 ς

(3)
u,d , ς̃u,d ≡ R+

32 ς
(2)
u,d +R+

33 ς
(3)
u,d in the Aligned-Three-Higgs Doublet Model (A3HDM).

2 tan β ≡ v2
v1

and v ≡
√
v2

1 + v2
2 where v1 and v2 are the VEVs of φ1 and φ2 .

3Notice that the colour-charged Higgs particles do not mix with those that are colourless.
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5.2.3 M0 −M0 mixing within the SM and beyond

In Chapter 1, we have seen that M0 − M0 mixing is governed by box diagrams with

M0 ≡ q1q̄2 and M0 ≡ q̄1q2 , see Figure 5.1. In the SM, the short-distance contributions

to B0 , B0
s and K0 (D0) mixing are given by box diagrams mediated by up-type (down-

type) quarks and W± bosons (Goldstone bosons depending on the gauge choice ξW , see

Figures 5.1a, 5.1b and 5.1f). In the AMHDM, the Yukawa interactions introduce additional

diagrams, mediated by charged Higgs particles (ϕ±A)a that can be either colour-singlet or

colour-octet scalars, see Figures 5.1c, 5.1d and 5.1e.

To be specific, in the following discussion we consider neutral mesons composed of down-

type quarks (B0, K0). The modifications for the D0 case are going to be obvious. The

M0 −M0 mixing is described by the following effective weak Hamiltonian,

H∆F=2
eff = G2

FM
2
W

16π2

∑
ijk

λi λj (Ck)ij(µ)Ok(µ) ,

(Ck)ij(µ) ≡ (CSM
k )ij(µ) +

∑
AB

(δCAB
k )ij(µ) , (5.2.8)

where the A and B labels refer to the N − 1 Higgs doublets with 〈ΦA,B〉 = 0 , i and j

represent the internal quarks flowing inside the loop, GF is the Fermi coupling constant,

λi ≡ V ∗iq2Viq1 and (Ck)ij(µ) are the Wilson coefficients associated to the eight four-quark

operators Ok ,

OVLL,VRR = [q̄α2 γµ PL,R qα1 ]
[
q̄β2 γµ PL,R q

β
1

]
,

OLR
1 = [q̄α2 γµ PL qα1 ]

[
q̄β2 γµ PR q

β
1

]
,

OLR
2 = [q̄α2 PL qα1 ]

[
q̄β2 PR q

β
1

]
, (5.2.9)

OSLL,SRR
1 = [q̄α2 PL,R qα1 ]

[
q̄β2 PL,R q

β
1

]
,

OSLL,SRR
2 = [q̄α2 σµν PL,R qα1 ]

[
q̄β2 σ

µν PL,R q
β
1

]
,

with α and β being colour indices and σµν ≡ 1
2 [γµ, γν ] .4

4Other works use i σµν instead of σµν . One can change to this basis through a simple shift σµν → iσµν

which only adds an extra minus sign in the Wilson coefficient (CSLL,SRR
2 )ij .
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Figure 5.1: Box diagrams contributing to meson mixing in the AMHDM. The omitted

crossed diagrams can be obtained exchanging the external lines.

5.2.3.1 Technical details for the computation

For the computation of the box diagrams shown in Figure 5.1, we have taken into account

the following prescriptions:

1. The Feynman rules are in Appendix G.

2. The contributions from the box diagrams in Figure 5.1, have been calculated keeping

all the external quark masses and momenta up to second orderO
(
m2
q1

M2
W
,
m2
q2

M2
W
,
mq1mq2
M2
W

)
.
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3. Since the external momenta l are much smaller than the masses of some internal

quarks, gauge bosons and charged scalarsM , the Feynman integrands are expanded

in powers of external momenta before performing the loop integration,

1
(k + l)2 −M2 = 1

k2 −M2

[
1− l2 + 2(k · l)

k2 −M2 + 4(k · l)2

(k2 −M2)2

]
+O

(
l4

M4

)
,

where k is the loop momenta.

4. We have applied the partial fraction decomposition

1
(k2 −m2

1)(k2 −m2
2)

= 1
m2

1 −m2
2

[ 1
k2 −m2

1
− 1
k2 −m2

2

]
, (5.2.10)

which allows to reduce all Feynman integrals into one-propagator integrals. After

the reduction of tensor integrals to scalar ones through Lorentz invariance,∫
k
kµ kν f(k2) = gµν

D

∫
k
k2 f(k2) , (5.2.11)∫

k
kµ kν kα kβ f(k2) = gµνgαβ + gµβgαν + gνβgµα

D (D − 2)

∫
k
k4 f(k2) , (5.2.12)

where
∫
k
≡
∫ dDk

(2π)D , the only non-vanishing one-loop integrals take the form

∫
k

(k2)α

(k2 −m2)β = i(−)α−β

(4π)D/2
(m2)D/2+α−β Γ(β − α−D/2) Γ(α+D/2)

Γ(β) Γ(D/2) ,

where α and β are arbitrary integer powers and m 6= 0 .

In this computation, we have been able to express all loop integrals in terms of the

loop functions D0 and D2, defined in Appendix H, and derivatives of these functions

using recursively the following formulas:

d
dm2

(∫
k

(k2)α

(k2 −m2)β

)
= β

∫
k

(k2)α

(k2 −m2)β+1 , (5.2.13)

∫
k

(k2)α

(k2 −m2)β =
∫
k

(k2)α−1

(k2 −m2)β−1 + m2
∫
k

(k2)α−1

(k2 −m2)β , (5.2.14)

where Eqs. (5.2.13) and (5.2.14) reduce in one unit the powers of the loop momenta

in the denominator and numerator respectively.
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5. We have applied the Fierz identity (1.4.99), followed by some Dirac reductions, i.e.,

γµγνγµ = −2γν , etc. Even so, there have appeared irreducible spinor structures,

such as[
q̄α2 /pext PL,R q

α
1

] [
q̄β2 PL,R q

β
1

]
,
[
q̄α2 /p

(1)
ext PL,R q

α
1

] [
q̄β2 /p

(2)
ext PL,R q

β
1

]
, ... (5.2.15)

where q1 and q2 in this case represent the Dirac spinors for abbreviation reasons.

These structures have been reduced by choosing the kinematical framework in which

the initial particles do not have trimomentum.

6. After the computation of all box diagrams, we have summed all the contributions

taking into account the relative signs between the Feynman diagrams. Finally with

the fundamental amplitude, we have obtained the Wilson coefficients performing

a matching between the effective amplitude obtained through Eq. (5.2.8) and the

fundamental amplitude.

7. In order to validate our results, we have checked the gauge invariance. For that

reason, we have performed the calculation in the Feynman (ξW = 1) gauge and in

the unitary (ξW =∞) gauge,5 and we have obtained the same results in both gauges.

It is important to stress that in the unitary gauge, the result is divergent but when

we take into account the GIM mechanism (
∑
i λi = 0), the divergences disappear.

Ta

Ta

α2

α4

α1

α3

(a)

Ta

Ta T b

T b

α2

α4

α1

α3

(b)

Figure 5.2: Topologies generated by the colour-octet scalar.

5In the unitary gauge, the contribution of the Goldstone bosons is zero.
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8. Extending the colourless results to the colour-AMHDM can be easily done because

the only differences appear in the number of colour structure insertions. In the

colour-AMHDM, there are two types of topologies, as shown Figure 5.2, those with

one colour-octet scalar particle and those with two. These diagrams generate the

following colour structures

[T a]α1 α2
[T a]α3 α4

= − 1
2NC

δα1 α2 δα3 α4 + 1
2 δα1 α4 δα3 α2 , (5.2.16)

[
T a T b

]
α1 α2

[
T b T a

]
α3 α4

= 1
(2NC)2 δα1 α2 δα3 α4 + N2

C − 2
4NC

δα1 α4 δα2 α3 . (5.2.17)

The contributions given by Figure 5.2a can be distinguished from the ones given by

Figure 5.2b simply by counting the number of couplings. For instance, an operator

with two couplings (ςAdj (ςAui)
∗ , ...) is a clear contribution of one colour-octet scalar

particle and, therefore, we have to use Eq. (5.2.16), while an operator with four

couplings ((ςAui)
∗ ςBui (ςBuj )

∗ ςAuj , ...) is a two scalar contribution and we have to use

Eq. (5.2.17). Let us consider the following example of an operator with four couplings

(ςAui)
∗ ςBui (ςBuj )

∗ ςAuj O
LR
2 = (ςAui)

∗ ςBui (ςBuj )
∗ ςAuj [q̄α2 PL qα1 ]

[
q̄β2 PR q

β
1

]
. (5.2.18)

Using the previous rules, OLR
2 corresponds to an operator with two colour scalar

particles. Then, in the colour-AMHDM, it has to be replaced by ÕLR
2 ≡[

q̄α1
2

(
T a T b

)
α1 α2

PL q
α2
1

] [
q̄α3

2

(
T b T a

)
α3 α4

PR q
α4
1

]
. The operator ÕLR

2 can be

reduced to the basis of eight four-quark operators given by Eqs. (5.2.9), using

Eq. (5.2.17) and the Fierz identities of Appendix J. Finally, we obtain the following

result

ÕLR
2 = 1

(2NC)2 O
LR
2 − N2

C − 2
8NC

OLR
1 . (5.2.19)

Two important facts can be derived from Eq. (5.2.19), when extending the results

to the colour-AMHDM:

• From the first term of Eq. (5.2.19), we can conclude that when a colour operator

is reduced to the colourless basis given by Eq. (5.2.9), produces a colour factor
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(Ni) in the same colour operator but with T a = I where I is the identity matrix

in the colour space.

• The reduction of a colour operator also produces a colour factor (Ñi) in other

colourless operators different from the one with T a = I . This operator comes

from the second term of Eqs (5.2.16) and (5.2.17) after the Fierz rearrangement

is applied.

Taking into account all these facts, we can generalize our results as follows, the

colourless-AMHDM will be obtained by making Ni = 1 and Ñi = 0 , while the

colour-AMHDM fixing Ni and Ñi to the values given in Appendix I.

5.2.3.2 Analytical results

The previous technical aspects have allowed us to obtain the following results for the

Wilson coefficients in the Feynman gauge, before applying the GIM mechanism.

SM contributions

(CSM
VLL)ij = (4 + βiβj)M2

WD2(m2
i ,m

2
j ,M

2
W )− 8βiβjM4

WD0(m2
i ,m

2
j ,M

2
W ) , (5.2.20)

(CSM
1SRR)ij = xq1

2
3βiβj M

4
W

[
3D0(m2

i , m
2
j , M

2
W )

− 2
(
FWW21

2 + FWW31
2 + FWW41

2

) ]
, (5.2.21)

(CSM
2SRR)ij = xq1 4M4

W

[ 1
3
(
FWW31

2 + FWW41
2 + FWW21

2

)

−1
2

(
1
2

d
dM2

W

D2(m2
i , m

2
j , M

2
W ) + d

dm2
j

D2(m2
i , m

2
j , M

2
W )
) ]

. (5.2.22)

AMHDM contributions

(δCAB
VLL)ij = (ςAui)

∗ ςBui (ςBuj )
∗ ςAuj N1 (fAB1 )ij

+ ςAdj (ςAui)
∗ N2 (fAB2 )ij + ςAuj (ςAui)

∗ N3 (fAB3 )ij , (5.2.23)
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(δCAB
VRR)ij = (ςAdi)

∗ ςBdi (ςBdj )
∗ ςAdj N4 (fAB4 )ij + Re

[
(ςAdi)

∗ ςAdj

]
N5 (fAB5 )ij , (5.2.24)

(δCAB
1LR)ij = (ςAdi)

∗ ςBdi (ςBuj )
∗ ςAuj N6 (fAB6 )ij + Re

[
(ςAdi)

∗ ςAuj

]
N7 (fAB7 )ij

+ ςAdi (ςAdj )
∗ Ñ8 (fAB8 )ij + Re

[
(ςAdj )

∗ ςAui

]
Ñ9 (fAB9 )ij

+ Re
[
(ςAui)

∗ ςAuj ς
B
di (ςBuj )

∗
]
Ñ10 (fAB10 )ij + (ςAui)

∗ ςAuj ς
B
ui (ςBuj )

∗ Ñ11 (fAB11 )ij

+ (ςAui)
∗ ςAuj ς

B
di (ςBdj )

∗ Ñ12 (fAB12 )ij + ςAuj (ςAui)
∗ Ñ13 (fAB13 )ij , (5.2.25)

(δCAB
2LR)ij = ςAdi (ςAdj )

∗ N8 (fAB8 )ij + Re
[
(ςAdj )

∗ ςAui

]
N9 (fAB9 )ij

+ Re
[
(ςAui)

∗ ςAuj ς
B
di (ςBuj )

∗
]
N10 (fAB10 )ij + (ςAui)

∗ ςAuj ς
B
ui (ςBuj )

∗ N11 (fAB11 )ij

+ (ςAui)
∗ ςAuj ς

B
di (ςBdj )

∗ N12 (fAB12 )ij + ςAuj (ςAui)
∗ N13 (fAB13 )ij

+ (ςAdi)
∗ ςBdi (ςBuj )

∗ ςAuj Ñ6 (fAB6 )ij + Re
[
(ςAdi)

∗ ςAuj

]
Ñ7 (fAB7 )ij , (5.2.26)

(δCAB
1SLL)ij = (ςAui)

∗ ςBui (ςBuj )
∗ ςAuj N14 (fAB14 )ij + (ςAdi)

∗ (ςBdj )
∗ ςBui ς

A
uj N15 (fAB15 )ij

+ (ςAui)
∗ ςBui (ςBdj )

∗ ςAuj N16 (fAB16 )ij + (ςAui)
∗ ςAuj N17 (fAB17 )ij

+ (ςAdj )
∗ ςAui N18 (fAB18 )ij , (5.2.27)

(δCAB
1SRR)ij = (ςAui)

∗ ςBui (ςBuj )
∗ ςAuj N19 (fAB19 )ij + ςBdi ς

A
dj (ςAui)

∗ (ςBuj )
∗ N20 (fAB20 )ij

+ (ςAui)
∗ ςBui (ςBuj )

∗ ςAdj N21 (fAB21 )ij + (ςAui)
∗ ςAuj N22 (fAB22 )ij

+ ςAdj (ςAui)
∗ N23 (fAB23 )ij , (5.2.28)

(δCAB
2SLL)ij = (ςAui)

∗ ςBui (ςBuj )
∗ ςAuj Ñ14 (fAB14 )ij + (ςAdi)

∗ (ςBdj )
∗ ςBui ς

A
uj Ñ15 (fAB15 )ij

+ (ςAui)
∗ ςBui (ςBdj )

∗ ςAuj Ñ16 (fAB16 )ij + (ςAui)
∗ ςAuj Ñ17 (fAB17 )ij

+ (ςAdj )
∗ ςAui Ñ18 (fAB18 )ij , (5.2.29)
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(δCAB
2SRR)ij = (ςAui)

∗ ςBui (ςBuj )
∗ ςAuj Ñ19 (fAB19 )ij + ςBdi ς

A
dj (ςAui)

∗ (ςBuj )
∗ Ñ20 (fAB20 )ij

+ (ςAui)
∗ ςBui (ςBuj )

∗ ςAdj Ñ21 (fAB21 )ij + (ςAui)
∗ ςAuj Ñ22 (fAB22 )ij

+ ςAdj (ςAui)
∗ Ñ23 (fAB23 )ij , (5.2.30)

where βi ≡
m2
i

M2
W

, xq1,2 ≡
m2
q1,2
M2
W

and the couplings ςAui,di are defined in Eq. (5.2.7). The loop

functions fi functions are defined in Appendix H. The Ni and Ñi are colour factors which

are given in Appendix I.

5.2.4 GIM mechanism

After computing all the Feynman diagrams given in Figure 5.1, the amplitude for neutral

meson mixing can be written as

〈M0|Heff
∆F=2|M0〉 ∼

∑
i

∑
j

λi λj F (xi, xj) , (5.2.31)

which sums over all quarks flavours flowing into the loop (i, j = u (1), c (2), t (3)),

λi is the product of the CKM matrix elements and F (xi, xj) is the loop function that

depends on the internal quark masses (xi ≡ m2
i /M

2
W,ϕ±A,B

) and products of the NP couplings

((ςAui)
∗ ςBui (ςBuj )

∗ ςAuj , ...). Considering the unitarity of the CKM matrix, λ1 +λ2 +λ3 = 0 ,

the amplitude can be expressed as∑
i

∑
j

λi λj F (xi, xj) = λ2
2 F22 + 2 λ2 λ3 F23 + λ2

3 F33 , (5.2.32)

where

F22 ≡ F (x1, x1) − F (x2, x1) − F (x1, x2) + F (x2, x2) , (5.2.33)

F23 ≡ F (x1, x1) − 1
2 F (x2, x1) − 1

2 F (x3, x1)

− 1
2 F (x1, x2) − 1

2 F (x1, x3) + 1
2 F (x3, x2) + 1

2 F (x2, x3) , (5.2.34)

F33 ≡ F (x1, x1) − F (x3, x1) − F (x1, x3) + F (x3, x3) . (5.2.35)
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Finally, when the GIM mechanism is applied in Eqs. (5.2.20) to (5.2.30) with Eq. (5.2.32),

the effective weak Hamiltonian becomes

H∆F=2
eff = G2

FM
2
W

16π2

[
λ2
t Ctt + 2 λc λt Cct + λ2

c Ccc

]
, (5.2.36)

where

Cij = CijVLL O
VLL + CijVRR O

VRR + Cij1LR O
LR
1 + Cij2LR O

LR
2

+ Cij1SLL O
SLL
1 + Cij1SRR O

SRR
1 + Cij2SLL O

SLL
2 + Cij2SRR O

SRR
2 , (5.2.37)

where Cijk plays the same role as Fij with ij = tt, ct, cc in Eq. (5.2.32) being k =

VLL, VRR, 1LR, ... and (Ck)ij are the Wilson coefficients defined by Eq. (5.2.8) which

correspond to Fij in Eq. (5.2.32). Eq. (5.2.36) can be applied to all the phenomenology

(B0, B0
s, K0) because we have kept all the contributions (Ctt, Cct and Ccc) which in some

cases are important. In the SM, the application of the GIM mechanism results in some

contributions proportional to lnβu that do not vanish in the massless limit. This infrared-

sensitive terms only appear for (CSM
2SRR)ij , in Appendix K we show how to deal with

these terms. The different Wilson coefficients Cijk can be found applying Eq. (5.2.32) to

their respective Wilson coefficients (Ck)ij . The explicit expressions will be accessible on

a webpage after the publication of this work.

The QCD renormalization group evolution of the Wilson coefficients from the scale µt down

to the lower scale µb for B0 mixing or µc for K0 mixing, has been calculated in Ref. [283],

as well as the corresponding parametrization for the hadronic matrix elements of the four-

quark operators. More details can be found in Appendices L and M. In addition, we

have taken into account the NLO QCD corrections for the SM which have been calculated

in [37, 41] and for the charged scalar the top contribution from [38] in those cases that

apply.

5.2.5 Comparison with the literature

In this section, we compare our results with the current ones in the literature [276–278].

To compare with Ref. [276], we particularize our results to mq2 → 0 and we ignore all
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the contributions of O(xq1) to our CijVLL coefficient, then we obtain the same results for

all Wilson coefficients except for CSM 2SRR because they do not follow a correct treatment

for the infrared divergences. In order to eliminate these infrared divergences, they put

them equal to zero, a correct treatment is presented in the Appendix K. For Ref. [277],

we particularize again to mq2 → 0 and we observe that our result disagrees in the term

proportional to ςAdj (ςAui)
∗N2 (fAB2 )ij in Eq. (5.2.23). In Figure 5.3, we plot this discrepancy

between both Wilson coefficients which is less than 2% for MH± ≥ 25 GeV . We also

compare with Ref. [278]. Our results disagree with their Eqs. (26) and (29) in the terms

proportional to A2
u A
∗
u

2 . Basically, they have only considered the corrections of O(xs) in

OVLL but there are leading order corrections independent of xs as shown in our Eq. (H.0.1).

Finally, we would like to point out that Ref. [278] quotes results that are inconsistent with

those previously given in Ref. [276] by authors of the same group, see for instance OVLL

for the case of B0
s − B0

s mixing.

50 100 150 200 250 300
MH (GeV)

0.005

0.010

0.015

0.020

ΔCVLL

Figure 5.3: Dependence with MH± of the difference between the Wilson coefficient

(δCAB
VLL)ij of this work and the one extracted from Ref. [277].

5.3 Numerical results

In this section, we present the numerical results extracted from B0
s, d − B0

s, d and K0 −K0

data. In B0
q −B0

q mixing, we obtain combined constraints from ∆Mq , ∆Γq , aqSL and φcc̄qq
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where q = s, d . The relation of these observables with the off-diagonal transition matrix

element has been given in Chapter 1.

In K0 − K0 mixing, ∆MK is dominated by large long-distance contributions, so it is

difficult to put accurate constraints using this observable. However, there exists another

observable, the CP-violating parameter εK , that is mostly dominated by the short-distance

contributions,

εK = κε ei φε√
2

Im(MK0
12 )

∆MK
, (5.3.38)

where κε = 0.94 ± 0.02 [284] takes into account the small long-distance corrections. In

orther to reduce the theoretical uncertainties, we fix ∆MK and φε to their experimental

values, ∆M exp
K = 3.484(6) · 10−12 MeV [31] and φε = 43.52(5)◦ [31].

5.3.1 Standard Model predictions

Our SM predictions for the B0
q − B0

q mixing observables are given in the third row of

Tables 5.2 and 5.3 for q = d, s respectively. For the computation of ∆Γq|SM and aqsl|SM ,

we have used the ratio Γq12
Mq

12
from Ref. [285]. The input parameters used in our analysis

are provided in Tables N.1, N.2 and N.3. The theoretical uncertainties are obtained

by varying each input of these tables within its allowed range and finally adding the

individual uncertainties in quadrature. The experimental values averaged by HFLAV [32]

are displayed in the second row. At the current level of precision, the SM predictions do

not show any strong deviation from their experimental values. Therefore, these observables

will set strong constraints on the parameters of NP.

∆Md [ps−1] φcc̄dd [rad] ∆Γd [ps−1] adsl [%]

Exp. 0.506 ± 0.002 − − −0.21 ± 0.17

SM 0.502 ± 0.071 0.816 ± 0.068 (2.5 ± 0.5) · 10−3 −0.0512 ± 0.0075

Table 5.2: Numerical results for ∆Md , ∆Γd , φcc̄dd and adsl within the SM.
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∆Ms [ps−1] φcc̄ss [rad] ∆Γs [ps−1] assl [%]

Exp. 17.757± 0.021 -0.030± 0.033 0.086± 0.006 -0.06± 0.28

SM 17.279± 1.765 -0.038± 0.001 0.085± 0.013 0.0023± 0.0003

Table 5.3: Numerical results for ∆Ms , ∆Γs , φcc̄ss and assl within the SM.

In K0−K0 mixing, we have computed the SM prediction for εK, adding all the individual

uncertainties in quadrature, we obtain

εK|SM = (2.22 ± 0.32) · 10−3 , (5.3.39)

which is in very good agreement with the experimental value [31]

εK|Exp. = (2.228 ± 0.011) · 10−3 . (5.3.40)

This gives very strong constraints on the NP models.

In the next section, we present our numerical results. These have been obtained imposing

that the NP contributions to the different observables XNP
j have to be lower than the

difference between the experimental value and its prediction in the SM,

|Xexp
j −XSM

j | ≥ |XNP
j | , (5.3.41)

where j = 1, ..., nO and nO is the number of observables. Finally, we obtain combined

constraints plotting those points that fulfill Eq. (5.3.41).

5.3.2 Aligned Two-Higgs-Doublet Model

In this section, we present the numerical results for the colourless- and colour- A2HDM.

In the Table 5.4, we display the wide range of models to which our result can be applied.

A2 and B2 models

The A2 (A2HDM) [273] and B2 (Manohar-Wise) [280] models correspond to the case of

real coupling constants with normal flavour alignment. In Figure 5.4, we study how the
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Model Real (R)/Complex (C) Aligned (A)/Generalized Alignment (GA) Colour (C)/Colourless (/C)

An R A /C

Bn R A C

Cn C A /C

Dn C A C

En R GA /C

Fn R GA C

Gn C GA /C

Hn C GA C

Table 5.4: Casuistry of AMHDM depending on the number of doublets n . First column

denotes the name of the model. Second column refers to the couplings, ςui, di , which can

be real (R) or complex (C). The third column indicates if the model is aligned (ςu1 =

ςu2 = ςu3 = ςu and ςd1 = ςd2 = ςd3 = ςd) or it has generalized alignment (ςu1 6= ςu2 6= ςu3

and ςd1 6= ςd2 6= ςd3). The last column makes reference to the nature of n − 1 doublets if

they are singlets (/C) or octets (C) of SU(3)C .

different mixing observables constraint the (ςu, ςd) plane for the A2 and the B2 models. In

the A2 model, using B0
d − B0

d mixing we observe for MH± = 100GeV that ςu is bounded

between [−0.3, 0.3] and it quickly decreases with the increase of ςd which is unbounded

for this case. For B0
s − B0

s mixing, we find that ςu is bounded between [−0.3, 0.3] , until

ςd reaches values of 50 and −50 where ςu breaks into two vertical legs with 0.4 and −0.4

values. In addition, the lower part of Figure 5.4 displays how the parameter space of ςu is

strongly constrained from K0−K0 mixing data while ςd remains unconstrained. Combining

all mixings, we obtain the following constraints for the A2 model,

ςu ∈ [−0.3, 0.3] , MH± = 100GeV , (5.3.42)

ςu ∈ [−0.4, 0.4] , MH± = 250GeV , (5.3.43)

ςu ∈ [−0.6, 0.6] , MH± = 500GeV , (5.3.44)

while the bounds for ςd lie above its perturbative limit, |ςd| < v√
2mb
≈ 40 .
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In the B2 model, we find similar behaviours for both B0
q mixings, in contrast to the A2

model, we observe oblique legs that allow large values of ςu . However, these fine-tunned

regions completely disappear when we consider the K0 −K0 mixing data. Combining all

mixings, we find

ςu ∈ [−0.5, 0.5] , MH± = 100GeV , (5.3.45)

ςu ∈ [−0.7, 0.7] , MH± = 250GeV , (5.3.46)

ςu ∈ [−0.9, 0.9] , MH± = 500GeV , (5.3.47)

while ςd remains unconstrained. Notice in Figure 5.4 for the A2 model that we obtain a

different pattern than the one obtained in Ref. [276] because the authors of Ref. [276] have

neglected the mass of the light quarks (mq = 0). These contributions can be proportional

to (ςd)2 and (ςd)4, then they can have strong repercussions for large values of ςd . In Fig-

ure 5.5, we make a numerical cross-check, in the left side with (ςd)2 and (ςd)4 contributions

and in the right side without these contributions. The right plot is completely equivalent

to the plot of Ref. [276]. Finally, we would like to point out the constraints on ςd obtained

thanks to these contributions (see Figure 5.4), while in Ref. [276] the coupling ςd remains

unconstrained.

C2 and D2 models

In the C2 and D2 models, there are four parameters that contribute to the mixing, |ςu| ,

|ςd| , MH± and θ , where the last one is the phase between the two alignment parameters,

ς∗u ςd = |ς∗u ςd| eiθ . In Figures 5.6, we display the different mixing constraints for the

C2 (left) and the D2 (right) models. In the C2 model, the B0
s, d − B0

s, d mixings allow

large values of |ςd| and |ςu| for θ ∼ π
2 , π,

3π
2 . Around the vicinity of these angles, there

are destructive interferences between the different contributions that result into a linear

relation as Figure 5.6 shows. The vertical legs correspond to θ ∼ π while the horizontal

lines belong to θ ∼ π
2 ,

3π
2 . However, when we take into account the K0 −K0 mixing, the
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(a) ∆Md , ad
SL , φcc̄d

d (b) ∆Md , ad
SL , φcc̄d

d

(c) ∆Ms , as
SL , φcc̄s

s (d) ∆Ms , as
SL , φcc̄s

s

(e) εK (f) εK

Figure 5.4: Allowed parameter space for ςu and ςd in the A2 (left) and B2 (right) models

under combined constraints from ∆Mq , aqSL , φcc̄qq and εK . The blue, orange and green

regions are obtained with MH± =100 , 250 and 500 GeV , respectively.
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Figure 5.5: Constraints on the A2 model from ∆Ms . Left side with (ςd)2 and (ςd)4

contributions and right side without them. The blue, orange and green regions are obtained

with MH± =100 , 250 and 500 GeV , respectively.

horizontal lines disappear and give rise to the following bounds for the C2 model,

|ςu| ∈ [0, 0.3] , MH± = 100GeV , (5.3.48)

|ςu| ∈ [0, 0.4] , MH± = 250GeV , (5.3.49)

|ςu| ∈ [0, 0.6] , MH± = 500GeV . (5.3.50)

while ςd is again above its perturbative limit, |ςd| < 40 .

In the D2 model, the constraints are less stringent than in the C2 model. The cancellations

appear around θ ∼ 0 , π. Finally, we obtain the following limits for the the D2 model,

|ςu| ∈ [0, 0.5] , MH± = 100GeV , (5.3.51)

|ςu| ∈ [0, 0.6] , MH± = 250GeV , (5.3.52)

|ςu| ∈ [0, 0.9] , MH± = 500GeV , (5.3.53)

while |ςd| remains unbounded.
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(a) ∆Md , ad
SL , φcc̄d

d (b) ∆Md , ad
SL , φcc̄d

d

(c) ∆Ms , as
SL , φcc̄s

s (d) ∆Ms , as
SL , φcc̄s

s

(e) εK (f) εK

Figure 5.6: Allowed parameter space for |ςu| and |ςd| in the C2 (left) and the D2 (right)

models under combined constraints from ∆Mq, aqSL , φcc̄qq and εK . The blue, orange and

green regions are obtained with MH± =100 , 250 and 500 GeV , respectively.
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Generalized alignment

In the generalized alignment, there are in total 12 parameters, 6 modulus |ςd, s, b, u, c, t| ,

1 mass MH± and 5 phases, in contrast to the E2 and F2 models where the number of

parameters is reduced to 6 .

Limits on the |ςt| and |ςb| parameters can be extracted from the B0 mixing data. In

Figure 5.7, we represent the allowed parameter space for these couplings in the E2 model.

Since the B0 mixing contribution is dominated by diagrams with internal top quarks, the

constrains obtained are completely equivalent to the A2 model shown in Figure 5.4.

In the F2, G2 and H2 models, we obtain similar bounds as the B2 , C2 and D2 models,

respectively, which again reflects that the NP couplings ςui and ςdj in the B0
s,d mixing are

completely dominated by the coupling with the top quark (i = 3 and j = 2).

(a) B0
d mixing (b) B0

s mixing

Figure 5.7: Allowed parameter space for ςb and ςt in the E2 model under combined con-

straints from ∆Mq , aqSL and φcc̄qq . The blue, orange and green regions are obtained with

MH± =100 , 250 and 500 GeV , respectively.

The K0−K0 mixing allows us to study the |ςc| and |ςs| couplings. In Figure 5.8, we present

the parameter space for |ςc| and |ςs| , observing that while large values for |ςc| are allowed,
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values for |ςs| are not, instead we obtain the following bounds

|ςs| ∈ [0, 15] , [0, 25] , [0, 40] , MH± = 100 , 250 , 500 GeV , (E2 and G2) (5.3.54)

|ςs| ∈ [0, 100] , [0, 160] , [0, 270] , MH± = 100 , 250 , 500 GeV , (F2 and H2) (5.3.55)

which are remarkable stronger than its perturbative bound, |ςs| < v√
2ms
≈ 1850 .

(a) K0 mixing, E2 model (b) K0 mixing, F2 model

(c) K0 mixing, G2 model (d) K0 mixing, H2 model

Figure 5.8: Allowed parameter space for ςs and ςc in the E2 , F2 , G2 and H2 models under

constraints from εK . The blue, orange and green regions are obtained with MH± =100 ,

250 and 500 GeV , respectively.
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5.3.3 Aligned Three-Higgs-Doublet Model

In this section, we present our numerical analysis for the colour- and colourless- A3HDM

which corresponds to n = 3 in Table 5.4. The parameter space is enlarged by the additional

charged Higgs particle which in general can have different mass and different couplings

constants. In view of this, we simplify our discussion to two quite general scenarios:

• Scenario I: The values of the up- and down- type couplings are equal, ςu, d = ς̃u, d .

We analyze the allowed region for the ςu and ςd parameters for both equal, Mϕ±1
=

Mϕ±2
≡MH± , and different masses, Mϕ±1

6= Mϕ±2
.

• Scenario II: The values of the down-type couplings (ςd and ς̃d) are fixed to some

value (ςd = ς̃d = 20 for our study) below its perturbative limit. We set constrains in

the ςu-ς̃u plane for equal,Mϕ±1
= Mϕ±2

≡MH± , and different masses,Mϕ±1
6= Mϕ±2

.

Due to the large number of parameters in the NP models with the generalized alignment,

we limit our analysis only to aligned models.

A3, B3, C3, D3 models in Scenario I

In Scenario I, we obtain the same behaviour as in the A2HDM with a pertinent scale factor.

Since, diagrams with two exchanges of charged Higgs particles (Figure 5.1c) are suppressed

by a factor M2
W /M

2
ϕ±1,2

with respect to those with only one (Figures 5.1d and 5.1e), the

main contributions come from the Feynman diagrams with only one exchange of charged

particle. In that limit, the total amplitude for the meson mixing can be approximated

by two A2HDM. Therefore, we can directly extract the bounds on the A3HDM from the

A2HDM with

|ςX3
u,d| = 1

2 |ς
X2
u,d| , (5.3.56)

where ςX2
u,d are the bounds in X2 = A2 , B2 , C2 , D2 model for MH± = Mϕ±1

. It is

interesting to remark that the factor 1/2 allows us to extract better bounds on |ςX3
d | than

the ones obtained by perturbativity.
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For different masses Mϕ±1
6= Mϕ±2

, the amplitude is dominated for the lightest charged

Higgs contribution, and then the scale factor disappears leading into

|ςX3
u,d| = |ςX2

u,d| . (5.3.57)

A3, B3, C3, D3 models in Scenario II

For Scenario II, the strongest bounds are set by B0
s mixing. We have performed an

analysis for equal, Mϕ±1
= Mϕ±2

≡ MH± (Figure 5.9), and different masses, Mϕ±1
6= Mϕ±2

(Figure 5.10). In the A3 model, using the B0
s − B0

s mixing data we find that for a given

charged Higgs mass, the parameters ςu and ς̃u are bounded by a circular region, which

leads into the following limits

ςu ∈ [−0.25, 0.25] , ς̃u ∈ [−0.25, 0.25] , MH± = 100GeV . (5.3.58)

ςu ∈ [−0.30, 0.30] , ς̃u ∈ [−0.30, 0.30] , MH± = 250GeV . (5.3.59)

ςu ∈ [−0.45, 0.45] , ς̃u ∈ [−0.45, 0.45] , MH± = 500GeV . (5.3.60)

(a) A3 model (b) B3 model

Figure 5.9: Allowed parameter space for ςu and ς̃u in the A3 (left) and B3 (right) models

in scenario II under combined constraints from ∆Ms , asSL and φcc̄ss . The blue, orange

and green regions are obtained with MH± =100 , 250 and 500 GeV , respectively.
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(a) A3 model (b) B3 model

Figure 5.10: Allowed parameter space for ςu and ς̃u in the A3 (left) and B3 (right) models

in scenario II under combined constraints from ∆Ms , asSL and φcc̄ss . The blue, orange

and green regions are obtained for (Mϕ±1
, Mϕ±2

) = (100, 250), (100, 500), (250, 500) GeV,

respectively.

In the B3 model, we find the same behaviour as in the A3 model but less stringent,

ςu ∈ [−0.35, 0.35] , ς̃u ∈ [−0.35, 0.35] , MH± = 100GeV . (5.3.61)

ςu ∈ [−0.5, 0.5] , ς̃u ∈ [−0.5, 0.5] , MH± = 250GeV . (5.3.62)

ςu ∈ [−0.7, 0.7] , ς̃u ∈ [−0.7, 0.7] , MH± = 500GeV . (5.3.63)

In contrast to the previous cases, for different masses, we find that the ςu-ς̃u plane is

constrained by ellipses, see Figure 5.10, that lead into the following bounds

ςu ∈ [−0.25, 0.25] , ς̃u ∈ [−0.35, 0.35] , (Mϕ±1
, Mϕ±2

) = (100, 250)GeV . (5.3.64)

ςu ∈ [−0.5, 0.5] , ς̃u ∈ [−0.25, 0.25] , (Mϕ±1
, Mϕ±2

) = (100, 500)GeV . (5.3.65)

ςu ∈ [−0.45, 0.45] , ς̃u ∈ [−0.3, 0.3] , (Mϕ±1
, Mϕ±2

) = (250, 500)GeV . (5.3.66)
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for the A3 model, and

ςu ∈ [−0.25, 0.25] , ς̃u ∈ [−0.35, 0.35] , (Mϕ±1
, Mϕ±2

) = (100, 250)GeV . (5.3.67)

ςu ∈ [−0.5, 0.5] , ς̃u ∈ [−0.25, 0.25] , (Mϕ±1
, Mϕ±2

) = (100, 500)GeV . (5.3.68)

ςu ∈ [−0.45, 0.45] , ς̃u ∈ [−0.3, 0.3] , (Mϕ±1
, Mϕ±2

) = (250, 500)GeV . (5.3.69)

for the B3 model.

For the C3 and D3 models, the number of parameters increase with additional phases

between the different NP couplings. Studying the C3 and D3 models in the |ςu|-|ς̃u| plane,

we obtain similar bounds to the A3 and B3 models, respectively. The additional phases

have been varied from 0 to 2π .

It is interesting to remark the geometrical shape obtained for this scenario, circles and

ellipses. The bounds are controlled by ∆Ms via the condition given by Eq. 5.3.41. For

large values ofMϕ±2
, it is a good approximation if one just considers the contributions with

one exchange of a charged Higgs boson (Figures 5.1d and 5.1e) to the Wilson coefficient

CttVLL . In that limit, the condition given by Eq. (5.3.41) can be simply written as

|ςu|2N3 f(M2
ϕ±1

) + |ς̃u|2N3 f(M2
ϕ±2

) ≤ δ∆Ms 24π2

G2
F M

2
W λ2

t f
2
B0
s
MB0

s
B̂B0

s
ηB0

s

, (5.3.70)

where N3 is a colour factor (N3 = 1/3 and N3 = 1 for the colour- and colourless- cases,

respectively), δ∆Ms is the uncertainty associated with the difference between the exper-

imental value of ∆Ms and its SM prediction and f is a non-trivial loop function that

depends on mass parameters like MW , mt , Mϕ±1,2
, etc. For M2

ϕ±1
= M2

ϕ±2
= M2

H± ,

Eq. (5.3.70) simplifies to

|ςu|2 + |ς̃u|2 ≤
δ∆Ms 24π2

G2
F M

2
W λ2

t f
2
B0
s
MB0

s
B̂B0

s
ηB0

s
N3 f(M2

H±)
≡ R(M2

H±)2 , (5.3.71)

that corresponds to a circular region of radius R(M2
H±) and explains why we have obtained

the circular regions shown in Figure 5.9. Since the loop function f decreases with the

increase of MH± , we get stronger bounds for light charged Higgs masses. In addition,

it is interesting to point out that the differences between the A3 and the B3 models can
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be explained with the colour factor (N3 = 1/3) which clearly produces an increase in the

radius of the circle.

In the case of different masses, Eq. (5.3.70) turns to be an ellipse which is precisely the

same behaviour that shows Figure 5.10. Eq. (5.3.70) shows that large values of Mϕ±1

(Mϕ±2
) imply an enlargement for |ςu| (|ς̃u|), since the masses are different we get different

bounds for each coupling.

5.4 Conclusions

The good agreement between the SM prediction and the mesured values in the mixing

observables makes the neutral meson mixing a formidable phenomenological application

to test the quantum structure of some NP extensions. In this chapter, we have performed

a complete one-loop computation of the M0−M0 mixing within a quite general extension

of the SM, the AMHDM where the N − 1 additional Higgs doublets can be singlet or

octets of SU(3)C and we have also included the possibility of generalized alignment.

Our analytical results, presented in Section 5.2.3, have been computed as generally as

possible. Unlike the results present in the literature [276–278], we have provided our

results in a compact manner without specifying any phenomenological application, i.e.

B0 − B0 , B0
s − B0

s , K0 − K0 , etc. They have been computed keeping up to the second

order the masses and momenta of all external quarks in the box diagrams, so the number

of dimension-six operators increase up to 8 in contrast to the 3 operators of the current

literature [276–278]. Although these additional contributions are very small because they

are proportional to the external light quark masses, we have observed that they can give

non-trivial contributions for large values of ςd .

Using the current experimental mixing observables in Section 5.3, we have analysed the

allowed parameter space in the A2HDM and the A3HDM for singlet or octet colour dou-

blets. In the A2HDM for real couplings (A2 and B2 models), we have obtained stronger

bounds for |ςu, d| than the ones presented in Refs. [276–278]. In the A2 (B2) model, we
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have obtained |ςu| < 0.6 (0.9) for a MH± = 500GeV . For complex couplings (C2 and D2

models), we obtain similar constraints to the A2 and the B2 models.

Our analytical results have been particularized to the case of generalized alignment. From

the B0 mixing data, we have been able to extract bounds on the NP couplings |ςb| and

|ςt| . Since the B0 mixing is dominated by the internal top quark contributions, the bounds

extracted for these models are of the same size as the ones presented in the aligned case.

In adition, the K0 mixing has allowed us to strongly constraint the |ςs| coupling, while for

the |ςc| parameter, large values of |ςc| remain allowed.

In the A3HDM, due to the large number of parameters, we have particularized our study

to two quite general cases. For scenario I, we have obtained the same limits as in the

A2HDM with the pertinent scale factor because in that limit the amplitude is dominated

by the diagrams with a single exchange of the lightest charged Higgs particle. For scenario

II, we have obtained a simple dependence on our constrains, circles and ellipses. Finally,

we have given the arguments that explain the appearance of these geometric forms

In summary, we have presented all the different behaviours followed by the different types

of A2HDM and A3HDM. The current experimental data is unable to reveal which one

of them fits better, instead we have obtained stringent bounds on their parameter space.

However, in the future, our analytical results together with the improvements on the ex-

perimental and theoretical uncertainties could disclose which types of MHDM are preferred

by experimental data.



Chapter 6

Improved bounds on heavy quark

electric dipole moments

In this chapter, we obtain new bounds on the electric dipole moment (EDM) of charm

and bottom quarks using the stringent limits on their chromo-EDMs. The new limits,

|dc| < 1.5 × 10−21 e cm and |db| < 1.2 × 10−20 e cm , improve the previous ones by about

three orders of magnitude. These indirect bounds can have important implications for

models of new physics. The content of this chapter is based on Ref. [287].

6.1 Introduction

Searches for EDMs are currently setting stringent constraints on NP models with addi-

tional CP violation sources [288–292]. Since the SM predictions are well below the current

experimental accuracy, any signal of a non-zero EDM would be a clear sign of NP. More-

over, the persisting B-anomalies suggest a non-trivial flavour structure in NP models,

which can enhance the heavy quark EDMs [293,294].

Due to their very small lifetime, direct EDM searches on heavy-flavoured hadrons represent

an experimental challenge and only indirect limits on heavy quark dipole couplings have
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been obtained to date. However, this situation may change with the new proposals to

search for the EDM of charmed and bottom baryons at the LHC [295–298].

In this chapter, we present a new approach for setting indirect bounds on quark EDM

couplings. By exploiting the mixing of operators under the renormalization group and

using current constraints on the chromo-EDM of charm and bottom quarks [299, 300],

we extract new bounds on their corresponding EDMs that improve the current ones by

several orders of magnitude.

6.2 Renormalization group equations

Let us consider the following flavour-conserving CP-violating effective Lagrangian

Leff =
2∑
i=1

∑
q

Cqi (µ)Oqi (µ) + C3(µ)O3(µ) , (6.2.1)

where the index q runs over the relevant flavours at the chosen renormalization scale. The

effective operators are defined as

Oq1 ≡ −
i

2 e Qq mq q̄
α σµνγ5 q

α Fµν ,

Oq2 ≡ −
i

2 gs mq q̄
α σµν Ta γ5 q

α Gaµν , (6.2.2)

O3 ≡ −
1
6 gs fabc ε

µνλσ Gaµρ G
bρ
ν Gcλσ ,

where Qq and mq are the quark charge and quark mass, respectively. The quark EDM,

chromo-EDM, and the usually defined coefficient ω(µ) of the Weinberg operator are related

to the Wilson coefficients by

dq(µ) = e Qq mq(µ) Cq1(µ) ,

d̃q(µ) = mq(µ) Cq2(µ) , (6.2.3)

ω(µ) = − 1
2 gs(µ) C3(µ) .

When a heavy quark is integrated out, its chromo-EDM gives a finite contribution to the

Weinberg operator [300–302], which is strongly constrained from the limits on the neutron
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EDM. This allows to bound the quark chromo-EDMs to be [299,300],

|d̃c(mc)| < 1.0× 10−22 cm ,

|d̃b(mb)| < 1.1× 10−21 cm . (6.2.4)

Attempts to constraint heavy quark EDMs have followed different strategies: flavour-

mixing contributions into light-quark EDMs [299,303,304], b→ sγ transitions [299], mixing

into the electron EDM via light-by-light scattering diagrams [304] and tree-level contribu-

tions to the e+e− → q q̄ total cross section [305,306]. All of these approaches yield results

within the same order of magnitude, the most restrictive ones being [299,306]

|dc(mc)| < 4.4× 10−17 e cm ,

|db(mb)| < 2.0× 10−17 e cm . (6.2.5)

We follow a new strategy that relates the EDM and chromo-EDM operators in order to

find new limits on dq from the already available strong bounds on d̃q . This relation is

done in a model-independent way using the RGEs, which mix the effective operators when

the energy scale is changed as we have seen in Chapter 2. The relevant diagrams include

photon loops which have been neglected in previous works due to its small size compared

with pure QCD corrections. Nevertheless, they represent the first non-zero contribution

to the mixing we are interested in as we will see in the next section.

The evolution of the Wilson coefficients is given by

d
d lnµ

−→
C (µ) = γ̂T

−→
C (µ) , (6.2.6)

where −→C ≡ (Cq1 , C
q
2 , C3) and γ̂ is the anomalous dimension matrix. This matrix can be

expanded in powers of the QCD and QED coupling constants, αs and α, respectively,

γ̂ = αs
4 π γ

(0)
s +

(
αs
4 π

)2
γ(1)
s + α

4 π γ
(0)
e + · · · , (6.2.7)

where γ(0)
s and γ

(1)
s represent the one- and two-loop QCD anomalous corrections, while

γ
(0)
e encodes the one-loop QED correction [301, 307–310]. The one- and two-loop QCD
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anomalous dimensions are given by1

γ(0)
s =



8CF 0 0

8CF 16CF − 4NC 0

0 −2NC NC + 2f + β0


, (6.2.8)

γ(1)
s =



(
548
9 NC − 16CF − 56

9 f
)
CF 0 0

(
404
9 NC − 32CF − 56

9 f
)
CF −458

9 −
12
N2
C

+ 214
9 N2

C + 56
9

f
NC
− 13

9 NC f 0

× × ×


,

respectively. At O(αs) and O(α2
s) , the quark EDM does not mix into the chromo-EDM,

see the matrix elements (γ(0)
s )12 and (γ(1)

s )12 , and the first contribution only appears at

O(α) from photon-loop diagrams as shown in Figure 6.1. Applying the standard techniques

for the computation of anomalous dimensions [49, 50] which have been introduced in the

Chapter 2, we obtain the following matrix element

(γe)(0)
12 = 8 , (6.2.9)

in agreement with a previous calculation [310]. In Appendix O, we provide detailed infor-

mation on the computation of (6.2.9).

Solving Eq. (6.2.6) by adding this contribution, the evolution of the charm and bottom

chromo-EDMs read 
dc(mc)

d̃c(mc)

 =


0.64 e −0.47 e

−0.04 0.74



dc(MNP)

e

d̃c(MNP)

 , (6.2.10)

1The matrix elements with crosses in the γ(1)
s are unknown. However, since we have neglected the

contributions of the Weinberg operator, these elements do not contribute to the RGEs.
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q q

g

γ

Figure 6.1: The quark EDM coupling (blue square) induces a chromo-EDM through

photon-loop diagrams. These represent the leading contributions to the matrix element

(γe)(0)
12 .


db(mb)

d̃b(mb)

 =


0.80 e 0.19 e

0.08 0.88



db(MNP)

e

d̃b(MNP)

 , (6.2.11)

where we have taken MNP ∼ 1 TeV as the scale of NP. The mixing of d̃q and dq into

themself, described by the diagonal matrix elements of Eqs. (6.2.10) and (6.2.11), has

leading contributions from pure QCD corrections, then corrections of O(α) can be safely

neglected. In the way down to low energies, we do not include the threshold effect of

heavy quarks like bottom or top since these corrections represent less than 10% of the

contribution to the RGEs.

6.3 Extracting the new bounds

Taking the first rows of Eqs. (6.2.10) and (6.2.11), together with the bounds on the chromo-

EDMs at the low scales quoted in Eq. (6.2.4), we obtain the following inequalities∣∣∣∣ 0.04 dc(MNP)
e

− 0.74 d̃c(MNP)
∣∣∣∣ < 1.0× 10−22 cm , (6.3.12)∣∣∣∣ 0.08 db(MNP)

e
+ 0.88 d̃b(MNP)

∣∣∣∣ < 1.1× 10−21 cm , (6.3.13)

which can be plotted in the d̃q-dq plane as shown in Figure 6.2. We observe an allowed

region extending along a straight line, these strong fine-tuned cancellations come from

the destructive interference between the two pieces of Eqs. (6.3.12) and (6.3.13). Since
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Figure 6.2: Bounds on the charm (bottom) chromo-EDM constrain the d̃c-dc (d̃b-db) plane

to the allowed blue region. Notice that strong fine-tuned cancellations result in a straight

line region that is not present in the case with constructive interference, displayed in

orange.

this fine-tuned region is unlikely to be realised in NP models, we assume constructive

interference between the EDM and chromo-EDM contributions at the NP scale which

allow us to extract the following bounds on dq(MNP) ,

|dc(MNP)| < 2.5× 10−21 e cm ,

|db(MNP)| < 1.3× 10−20 e cm . (6.3.14)

Then, using the evolution of the EDM operator, given by the second rows of Eqs. (6.2.10)

and (6.2.11), to bring these bounds down to the quark mass scale, the new bounds on the

charm and bottom quark EDMs are

|dc(mc)| < 1.5× 10−21 e cm ,

|db(mb)| < 1.2× 10−20 e cm , (6.3.15)

which improve the previous ones quoted in Eq. (6.2.5) by three and four orders of magni-

tude, respectively. This approach does not improve the current bounds on the top quark

EDM [312] given that the limit on its chromo-EDM is of similar size [313]. The theoretical
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uncertainty of this result is dominated by the contribution of the Weinberg operator to

the neutron EDM, since it determines the size of the chromo-EDM bounds. Note also that

higher values of the NP scale yield less conservative results, e.g. a 30% stronger bounds

for MNP = 10 TeV .

The new constraints for the charm and bottom quark EDMs are in tension with the

predictions of different theories beyond the standard model [314–317] and will provide

valuable input for future phenomenological analysis of NP models.





Conclusions

This thesis is focused on the study of physical systems with CP violation. Since the SM

of particle physics is unable to predict the large size of the observed matter-antimatter

asymmetry in the Universe, new sources of CP violation from SM extensions are needed.

The SM of particle physics is currently considered as the theoretical framework of reference

for any NP theory because along the years it has successfully overcome a large number of

experimental tests. In Chapter 1, we have seen how its interactions emerge from gauge

symmetry principles and how the SSB is able to generate the masses of the weak bosons

through the Higgs mechanism. Finally, we have presented the flavour sector, introducing

the CP violation phenomena and the different ways in which this appears in nature.

In Chapter 2, we have introduced the EFT approach which provides a formidable frame-

work to deal with the different physical systems. The techniques used along this thesis

have been illustrated there by the Fermi’s theory.

The first phenomenological application is the theoretical determination of the CP-violating

ratio ε′/ε in the SM which has been presented in Chapter 3. We have reviewed the current

status, discussing in detail the different ingredients that enter into the calculation of this

observable and the reasons why seemingly contradictory predictions were obtained in the

past by several groups. We have included all known short- and long-distance contributions

and our SM prediction is in complete agreement with the experimental measurement.

The known isospin-breaking contributions to theK → ππ amplitudes have been reanalyzed

in Chapter 4. Taking into account these contributions, we have presented a complete

numerical re-evaluation of the previous ε′/ε prediction. We have obtained the following
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Standard Model prediction

Re
(
ε′/ε

)
=
(
13 + 6
− 7

)
· 10−4 ,

which is again in good agreement with its measured ratio. The central value of ε′/ε is

slightly smaller than the previous one due to the increase in Ωeff,

Ωeff = (12.1 + 9.0
− 8.8) · 10−2 .

A complete one-loop computation of the Wilson coefficients for the neutral meson mixing

in the AMHDM has been presented in Chapter 5. Since this type of process appears at

loop level in the SM, it could be very sensitive to NP contributions. We have given a

detailed summary of the computation and finally we have obtained combined constraints

on the parameters of these models using the current flavour data.

Finally, we have focused on the study of the heavy quark EDMs. The quark EDM coupling

produces a chromo-EDM contribution at loop level through photon-loop diagrams. Includ-

ing these corrections in the RGEs and using the stringent bounds on their chromo-EDMs,

we have obtained the following limits of the charm and bottom quark EDMs

|dc(mc)| < 1.5× 10−21 e cm ,

|db(mb)| < 1.2× 10−20 e cm ,

which improve the previous ones by about three orders of magnitude. These new limits

could place strong constraints on NP extensions of the SM.



Appendix A

OPE in the charged-current SM

Lagrangian

The charged-current SM Lagrangian is given by

LCC = − 1
2
(
∂µW

†
ν − ∂νW

†
µ

)
(∂µW ν − ∂νWµ) + M2

W W †µ W
µ

− g√
2

(
W †µ J µ

† + Wµ J µ
)
, (A.0.1)

where the first and the second terms correspond to the kinetic and the mass terms of W±

bosons respectively. The first two pieces can be written as

LWkin = − ∂µW †ν ∂µW ν + ∂µW
†
ν ∂

νWµ + M2
W W †µ W

µ

= W †ν �W
ν + M2

W W †µ W
µ − W †ν ∂µ ∂

ν Wµ

= W †µ

[
gµν

(
� + M2

W

)
− ∂µ∂ν

]
Wν

=
∫

dDy W †µ(x) δ(D)(x− y)
[
gµν

(
�y + M2

W

)
− ∂µy ∂

ν
y

]
Wν(x) ,

where we have eliminated all the total derivatives, in the second line, and we have used∫
dDy δ(D)(x − y) = 1 , in the last line. Then, the normalized generating functional is
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given by

ZCC[J †,J ] ≡
∫

[DW †µ] [DWµ] eiSCC[J †,J ]∫
[DW †µ] [DWµ] eiSCC[0,0]

, (A.0.2)

where the action of the charged-current SM Lagrangian is given by

SCC[J †,J ] ≡
∫

dDx
[∫

dDy W †µ(x)Kµν(x− y)Wν(y)− g√
2

(
WµJ µ +Wµ

†J µ†
)]

,

and

Kµν
W (x− y) ≡ δ(D)(x− y)

[
gµν

(
�y + M2

W

)
− ∂µy ∂

ν
y

]
(A.0.3)

is the inverse of the W± boson propagator, defined by∫
dDy KW

µν(x− y) ∆νλ
W (y − z) = gλµ δ

(D)(x− z) , (A.0.4)

with

∆νλ
W (x− y) = −

∫ dDk
(2π)D

e−ik(x−y)

k2 −M2
W

(
gνλ − kνkλ

M2
W

)
. (A.0.5)

At low energy scales (E � MW ), we can perform an integration over the Wµ fields in

Eq. (A.0.2). Let us introduce the following auxiliary fields W̃ †µ and W̃µ:

Wµ = W̃µ + Ŵµ , W †µ = W̃ †µ + Ŵ †µ , (A.0.6)

where Ŵ †µ and Ŵµ satisfy the classical equations of motion

[
gµν

(
�+M2

W

)
− ∂µ∂ν

]
Ŵµ = g√

2
J ν† ,

[
gµν

(
�+M2

W

)
− ∂µ∂ν

]
Ŵ †µ = g√

2
J ν ,

with the following solutions

Ŵµ(x) = g√
2

∫
dDy ∆W

µν(x− y) J ν†(y) , Ŵ †µ(x) = g√
2

∫
dDy ∆W

µν(x− y) J ν(y) .

Expanding the charged-current Lagrangian around Ŵ †µ and Ŵµ, we obtain

ZCC[J †,J ] = e− i
g2
2

∫
dDx dDy Jµ†(x) ∆µν

W (x−y) Jν(y) , (A.0.7)
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with

L = − g2

2

∫
dDy Jµ†(x) ∆µν

W (x− y) Jν(y) . (A.0.8)

Then, performing a Taylor expansion of Jν(y) around y ≈ x , the Lagrangian becomes

L = − g2

2 lim
N→∞

N∑
n=0

in

n! J
†
α(x) Ĵ µ1···µn

β (x) Pαβµ1···µn(0) , (A.0.9)

where

Ĵ µ1···µn
β (x) ≡ (∂µ1

z · · · ∂µnz Jβ(z))|z=x , (A.0.10)

Pαβµ1···µn(0) ≡
[
∂kµ1 · · · ∂

k
µn f

αβ(k)
]∣∣∣
k=0

, (A.0.11)

with

fαβ(k) = − 1
(k2 −M2

W )

(
gαβ − kαkβ

M2
W

)
. (A.0.12)

Finally, we can truncate the Lagrangian given by Eq. (A.0.9) for N = 1 ,

Lweakeff ≈ − g2

2M2
W

J †α(x) J α(x) , (A.0.13)

which is the usual Fermi’s Lagrangian.





Appendix B

Feynman rules for q1 q̄3→ q2 q̄4

Propagators

W
−i 1

k2 −M2
W + iε

[
gµν − (1− ξW ) kµ kν

k2 − ξWM2
W

]
(B.0.1)

g
−i δab

1
k2 + iε

[
gµν − (1− ξG)kµ kν

k2

]
(B.0.2)

p i (/p+mf )
p2 +m2

f + iε
(B.0.3)

Vertices

W
+(−)
µ

dβ (uα)

uα (dβ)

−i g√
2
γµ PL V

(∗)
αβ (B.0.4)
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g

qβ

qα

−i gs γµ T aαβ (B.0.5)



Appendix C

Inputs values of Chapter 3

Parameter Value Ref.

λ 0.22506± 0.00050 [63]

A 0.811± 0.026 [63]

ρ 0.124± 0.019 [63]

η 0.356± 0.011 [63]

α−1(M2
Z) 128.947± 0.012 [252]

α
(nf=3)
s (Mτ ) 0.325± 0.015 [63, 197]

sin2 θW (MZ)MS 0.23129± 0.00005 [63]

MW (80.385± 0.015) GeV [63]

Mτ (1.77686± 0.00012) GeV [63]

mu(2 GeV) (2.36± 0.24) MeV [152]

md(2 GeV) (5.03± 0.26) MeV [152]

ms(2 GeV) (93.9± 1.1) MeV [152]

mc(mc) (1.286± 0.030) GeV [152]

mb(mb) (4.190± 0.021) GeV [152]

mt(mt) (165.9± 2.1) GeV [253,254]

Table C.1: Input values adopted for the relevant SM parameters.
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Appendix D

NLO ∆S = 1 Wilson coefficients

In this appendix, we give all technical details to obtain the Wilson coefficients of Table 3.1.

Further details can be found in Refs. [189–192].

D.1 Effective ∆S = 1 short-distance Hamiltonian

We have introduced the effective Lagrangian for ∆S = 1 in Eq. (3.3.19). The operators in

Eq. (3.3.19) correspond to an energy scale µ < mc , where the charm quark c has already

been integrated out. Therefore, in that case the sum would be about u, d and s. For an

energy scale mb > µ > mc , the charm quark c must be included; and in this case it gives

rise to the appearance of two new operators,

Qc1 = (s̄αcβ)V−A (c̄βdα)V−A , Qc2 = (s̄c)V−A (c̄d)V−A . (D.1.1)

D.2 Renormalization group equations

The RGEs for −→C (µ) are given by[
µ
∂

∂µ
+ β(g) ∂

∂g

]−→
C (t, g2, α) = γ̂T (g2, α) −→C (t, g2, α) , t ≡ M2

W
µ2 , (D.2.2)

where β(g) is the beta function of QCD

β(g) = −β0
g3

16π2 − β1
g5

(16π2)2 − β1e
e2 g3

(16π2)2 , (D.2.3)
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with

β0 = 11− 2
3 f , β1 = 102− 38

3 f , β1e = − 8
9
(
u+ d

4
)
, (D.2.4)

and f = u + d is the number of active flavours being u and d the number of up- and

down-type flavours respectively. γ̂(g2, α) is is the anomalous dimension, in this case a

10× 10 matrix, which can be expanded as

γ̂(g2, α) = γ̂s(g2) + α

4π Γ̂(g2) + ... , (D.2.5)

where the QCD and QED parts are given by

γ̂s(g2) = αs
4π γ̂

(0)
s + α2

s
(4π)2 γ̂

(1)
s + ... , (D.2.6)

Γ̂(g2) = γ̂(0)
e + αs

4π γ̂
(1)
se + ... , (D.2.7)

where α = e2

4π and αs = g2

4π . The expressions of (γ̂(0)
s , γ̂

(1)
s ) and (γ̂(0)

e , γ̂
(1)
se ) can be found

in Refs. [190,191].

The solution of (D.2.2) is given by

−→
C

(
M2

W
µ2 , g2, α

)
=
[
Tg exp

(∫ g(µ)

g(MW)
dg′

γ̂T (g′2, α)
β(g′)

)]
−→
C (1, g2(MW), α) , (D.2.8)

where Tg is responsible to order the coupling constant of QCD in such a way that increases

from right to left.

D.3 General evolution matrix

The general evolution matrix from m2 to m1 < m2 , is defined by

Û(m1,m2, α) ≡ Tg exp
(∫ g(m1)

g(m2)
dg′

γ̂T (g′2, α)
β(g′)

)
. (D.3.9)

Then, Eq. (D.2.8) can be written more compactly as

−→
C (µ) = Û(µ,MW, α)−→C (MW) . (D.3.10)

In addition, the evolution matrix Û(m1,m2, α) can be decomposed as

Û(m1,m2, α) = Û(m1,m2) + α

4π R̂(m1,m2) , (D.3.11)
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where

Û(m1,m2) = Tg exp
(∫ g(m1)

g(m2)
dg′

γTs (g′)
β(g′)

)
, (D.3.12)

R̂(m1,m2) =
∫ g(m1)

g(m2)
dg′

Û(m1,m
′)ΓT (g′)Û(m′,m2)
β(g′) , (D.3.13)

where g′ ≡ g′(m′) and Û(m1,m2) represents the QCD evolution matrix, while R̂(m1,m2)

is the QED evolution matrix.

D.4 QCD evolution matrix

The NLO QCD evolution matrix can be written as

Û(m1,m2) =
(

1̂ + αs(m1)
4π Ĵ

)
Û (0)(m1,m2)

(
1̂− αs(m2)

4π Ĵ

)
, (D.4.14)

where Û (0)(m1,m2) represents the evolution matrix to LO and Ĵ contains NLO corrections.

Notice, in Û(m1,m2), that terms proportional to α2
s should not be considered since they

correspond to contributions of NNLO. Taking into account the following definitions

(γ̂(0)
s )D ≡ V̂ −1γ̂(0)T

s V̂ , Ĝ ≡ V̂ −1γ̂(1)T
s V̂ , (D.4.15)

where (γ̂(0)
s )D is a diagonal matrix, we obtain

Û (0)(m1,m2) = V̂

[(
αs(m2)
αs(m1)

)−→a ]
D

V̂ −1 with −→a =
−→γ (0)

s
2β0

. (D.4.16)

The matrix Ĵ is given by

Ĵ = V̂ Ŝ V̂ −1 , (D.4.17)

while the matrix elements of Ŝ are given by

Sij = δij γ
(0)
s,i

β1
2β2

0
− Gij

2β0 + γ
(0)
s,i − γ

(0)
s,j

, (D.4.18)

where γ(0)
s,i are the components of −→γ (0)

s and Gij are the matrix elements of Ĝ . Eq. (D.4.18)

develops singularities for certain combinations of 2β0 + γ
(0)
s,i − γ

(0)
s,j (for f = 3 , i = 10 and
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j = 1).1 However, Eq. (D.4.14) remains finite after making a proper combination of the

relevant terms. After this rearrangement, Eq. (D.4.14) can be written as

Û(m1,m2) = Û0(m1,m2) + 1
4π V̂ A(m1,m2)V̂ −1 , (D.4.19)

where

V̂ A(m1,m2)V̂ −1 = αs(m1)Ĵ Û0(m1,m2)− αs(m2)Û0(m1,m2) Ĵ . (D.4.20)

Notice that when the matrices Ŝ and Ĵ have no singularities, A is given by

Aij = Sij

[
αs(m1)

(
αs(m2)
αs(m1)

)aj
− αs(m2)

(
αs(m2)
αs(m1)

)ai]
, (D.4.21)

while when Sij is singular (i = 10 and j = 1), this expression diverges and it can not be

used to perform numerical calculations. In this case, Aij is finite

Aij = Gij
2β0

αs(m2)
(
αs(m2)
αs(m1)

)ai
ln
(
αs(m2)
αs(m1)

)
, (D.4.22)

for 1 + ai − aj = 0 with i 6= j. Since, the matrix Ŝ can be expressed as

Sij = − Gij
2β0(1 + ai − aj)

, (D.4.23)

for i 6= j , then

Aij = − Gij
2β0(1 + ai − aj)

[
αs(m1)

(
αs(m2)
αs(m1)

)aj
− αs(m2)

(
αs(m2)
αs(m1)

)ai]
.

and we can regularize the divergence through a change of variable aj = 1+ai−ε . Finally,

we obtain

Aij =
(
Gij
2β0

) 1
ε
αs(m2)

(
αs(m2)
αs(m1)

)ai [
ε ln

(
αs(m2)
αs(m1)

)
+O(ε2)

]
, (D.4.24)

which in the limit of ε→ 0 becomes Eq. (D.4.22).

1The components i and j of the divergences depend on the order of the eigenvalues of (γ̂(0)
s )D.
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D.5 QED evolution matrix

The evolution matrix R(m1,m2) (D.3.13) can be expanded in powers of g2 as

R̂(m1,m2) = R̂(0)(m1,m2) + R̂(1)(m1,m2) + · · · . (D.5.25)

At this point, it is useful to split the different contributions using the following counting

rules R̂(0) ∼ O(1/αs) and R̂(1) ∼ O(1) , then

R̂(m1,m2) = −2π
β0
V̂ K̂(m1,m2)V̂ −1 , (D.5.26)

K̂(m1,m2) = K̂(0)(m1,m2) + 1
4π

3∑
i=1

K̂
(1)
i (m1,m2) , (D.5.27)

R̂(0)(m1,m2) = −2π
β0
V̂ K̂(0)(m1,m2)V̂ −1 , (D.5.28)

R̂(1)(m1,m2) = −2π
β0

1
4π

3∑
i=1

V̂ K̂
(1)
i (m1,m2)V̂ −1 . (D.5.29)

The first contribution K̂(0) can be obtained using Eq. (D.3.13),

(K̂(0)(m1,m2))ij =
M̂

(0)
ij

ai − aj − 1

[(
αs(m2)
αs(m1)

)aj 1
αs(m1) −

(
αs(m2)
αs(m1)

)ai 1
αs(m2)

]
,

where M̂ (0) is

M̂ (0) = V̂ −1γ̂(0)T
e V̂ . (D.5.30)

Similar to Sij , K̂(0)(m1,m2) can also develop singularities for (i, j) = (10, 1) since a10 =

a1 + 1 when f = 3. However, the numerator also cancels and (K̂(0)(m1,m2))ij becomes

finite

(K̂(0)(m1,m2))ij = M
(0)
ij

1
αs(m1)

(
αs(m2)
αs(m1)

)aj
ln
(
αs(m1)
αs(m2)

)
. (D.5.31)

The NLO QED corrections are given by K(1)
i (m1,m2) . For this type of corrections, it is

useful to define

Γ̂(1) ≡ γ̂(1)T
se − β1

β0
γ̂(0)T
e − β1e

β0
γ̂(0)T
s , M̂ (1) ≡ V̂ −1

(
Γ̂(1) + [γ̂(0)T

e , Ĵ ]
)
V̂ , (D.5.32)
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then, K̂(1)
i (m1,m2) is given by

(
K̂

(1)
1 (m1,m2)

)
ij

=



M̂
(1)
ij

ai−aj

[(
αs(m2)
αs(m1)

)aj − (αs(m2)
αs(m1)

)ai] if ai 6= aj and i 6= j ,

M̂
(1)
ij

(
αs(m2)
αs(m1)

)ai ln (αs(m1)
αs(m2)

)
if ai = aj and i 6= j ,

M̂
(1)
ii

(
αs(m2)
αs(m1)

)ai ln (αs(m1)
αs(m2)

)
if ai = aj and i = j ,

K̂
(1)
2 (m1,m2) = −αs(m2)K̂(0)(m1,m2)Ŝ ,

K̂
(1)
3 (m1,m2) = αs(m1)ŜK̂(0)(m1,m2) .

Since the previous equations depend on the matrices Ŝ or Ĵ , they develop singularities for

f = 3 that cancel in the evolution matrix R̂(m1,m2) . The procedure used is described in

Ref. [255]. Let us to introduce a new non-singular matrix Ĥij which is finite by definition,

Ĥij = Sij(1− δaj ,ai+1) . (D.5.33)

Expressing R̂(m1,m2) as:

R̂(m1,m2) = −2π
β0
V̂ K̂(m1,m2)V̂ −1 , (D.5.34)

K̂(m1,m2) = K̂(0)(m1,m2) + 1
4π

4∑
i=1

K̃
(1)
i (m1,m2) , (D.5.35)

we can write the matrices K̃(1)
i as

[K̃(1)
1 ]ij =

[
V̂ −1Γ̂(1)V̂ + [M̂ (0), Ĥ]

]
ij
Qij , (D.5.36)

[K̃(1)
2 ]ij = −αs(m2)[K̂(0) Ĥ]ij , (D.5.37)

[K̃(1)
3 ]ij = αs(m1)[Ĥ K̂(0)]ij , (D.5.38)

[K̃(1)
4 ]ij = δaα,ai+1

[
ĜiαM̂

(0)
αj

2β0

]
[I1]ij + δaj ,aα+1

[
M̂

(0)
iα Ĝαj
2β0

]
[I2]ij , (D.5.39)

where

Qij =


1

ai−aj

[(
αs(m2)
αs(m1)

)aj − (αs(m2)
αs(m1)

)ai] if ai 6= aj ,(
αs(m2)
αs(m1)

)ai ln
(
αs(m1)
αs(m2)

)
if ai = aj ,

(D.5.40)
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and

[I1]ij =



1
ai−aj

(
αs(m2)
αs(m1)

)ai
ln
(
αs(m1)
αs(m2)

)

− 1
(ai−aj)2

[(
αs(m2)
αs(m1)

)aj
−
(
αs(m2)
αs(m1)

)ai]
if ai 6= aj ,

−1
2

(
αs(m2)
αs(m1)

)aj[
ln
(
αs(m2)
αs(m1)

)]2
if ai = aj ,

(D.5.41)

[I2]ij =



1
ai−aj

(
αs(m2)
αs(m1)

)aj
ln
(
αs(m2)
αs(m1)

)

+ 1
(ai−aj)2

[(
αs(m2)
αs(m1)

)aj
−
(
αs(m2)
αs(m1)

)ai]
if ai 6= aj ,

−1
2

(
αs(m2)
αs(m1)

)aj[
ln
(
αs(m2)
αs(m1)

)]2
if ai = aj .

(D.5.42)

Notice that K̃(1)
i (i = 1, 2, 3) matrices are equal to the K̂(1)

i matrices when Ŝ is replaced

by Ĥ . K̃(1)
4 corresponds to the contribution of the singular element of the matrix Ŝ .

D.6 Wilson coefficients at µ < mc

The Wilson coefficients are defined by

Ci(µ) ≡ zi(µ) + τ yi(µ) , yi(µ) ≡ vi(µ)− zi(µ) ,

where zi(µ) and vi(µ) are the components of −→z and −→v , given by

−→z (µ) = Û3(µ,mc, α)−→z (mc) , (D.6.43)

and

−→v (µ) = Û3(µ,mc, α) M̂(mc) Û4(mc,mb, α) M̂(mb) Û5(mb,MW, α)−→C (MW) . (D.6.44)

where M̂(mi) encodes the threshold effects,

M̂(m) = 1̂ + αs(m)
4π δr̂Ts + α

4πδr̂
T
e . (D.6.45)
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The only elements of δr̂s that contribute are:

δr̂s(Q4) = δr̂s(Q6) = −2 δr̂s(Q8) = −2 δr̂s(Q10) = −5
9 P , µ = mb , (D.6.46)

δr̂s(Q4) = δr̂s(Q6) = δr̂s(Q8) = δr̂s(Q10) = −5
9 P , µ = mc , (D.6.47)

where

P =
(

0, 0,−1
3 , 1,−

1
3 , 1, 0, 0, 0, 0

)
. (D.6.48)

In the case of δr̂e ,

δr̂e(Q3) = 3 δr̂e(Q4) = δr̂e(Q5) = 3 δr̂e(Q6) = 20
27 P̄ , µ = mb , (D.6.49)

δr̂e(Q7) = 3 δr̂e(Q8) = δr̂e(Q9) = 3 δr̂e(Q10) = −10
27 P̄ , µ = mb , (D.6.50)

and

δr̂e(Q3) = δr̂e(Q5) = δr̂e(Q7) = δr̂e(Q9) = −40
27 P̄ , µ = mc , (D.6.51)

δr̂e(Q4) = δr̂e(Q6) = δr̂e(Q8) = δr̂e(Q10) = −40
81 P̄ , µ = mc , (D.6.52)

where

P̄ = (0, 0, 0, 0, 0, 0, 1, 0, 1, 0) . (D.6.53)

When we use Eqs. (D.6.43) and (D.6.44), we must eliminate higher-order contributions

because the matrix Ûf (m1,m2, α) has only been calculated at the order O(1, αs, α
αs
, α) .

For instance, products that involve ĴR̂(1) terms must be eliminated because they belong

to higher-order contributions of O(α αs) .
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The −→C (MW) values in the NDR scheme are given by

C1(MW) = αs(MW)
4π BNDR

s,1 + α

4πB
NDR
e,1 , (D.6.54)

C2(MW) = 1 + αs(MW)
4π BNDR

s,2 + α

4πB
NDR
e,2 , (D.6.55)

C3(MW) = −αs(MW)
24π Ẽ(xt) + α

6π
1

sin2 θW
[2B(xt) + C(xt)] , (D.6.56)

C4(MW) = αs(MW)
8π Ẽ(xt) , (D.6.57)

C5(MW) = −αs(MW)
24π Ẽ(xt) , (D.6.58)

C6(MW) = αs(MW)
8π Ẽ(xt) , (D.6.59)

C7(MW) = α

6π
[
4C(xt) + D̃(xt)

]
, (D.6.60)

C8(MW) = 0 , (D.6.61)

C9(MW) = α

6π

[
4C(xt) + D̃(xt) + 1

sin2 θW
(10B(xt)− 4C(xt))

]
, (D.6.62)

C10(MW) = 0 , (D.6.63)

where
BNDR

s,1 = 11/2 , BNDR
s,2 = −11/6 ,

BNDR
e,1 = 0 , BNDR

e,2 = −35/18 ,
(D.6.64)

and

Ẽ(xt) = E(xt)−
2
3 , D̃(xt) = D(xt)−

4
9 , xt = m2

t
M2

W
, (D.6.65)
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and

B(x) = 1
4

[
x

1− x + x ln x
(x− 1)2

]
, (D.6.66)

C(x) = x

8

[
x− 6
x− 1 + 3x+ 2

(x− 1)2 ln x
]
, (D.6.67)

D(x) = −4
9 ln x+ −19x3 + 25x2

36(x− 1)3 + x2(5x2 − 2x− 6)
18(x− 1)4 ln x , (D.6.68)

E(x) = −2
3 ln x+ x(18− 11x− x2)

12(1− x)3 + x2(15− 16x+ 4x2)
6(1− x)4 ln x . (D.6.69)

Due to the GIM mechanism, the zi(µ) i 6= 1, 2 coefficients are zero for f equal to 4 and

5. Then, for µ > mc , the evolution only involves the operators Q1,2 with the following

initial conditions

z1(MW) = αs(MW)
4π BNDR

s,1 + α(MW)
4π BNDR

e,1 , (D.6.70)

z2(MW) = 1 + αs(MW)
4π BNDR

s,2 + α(MW)
4π BNDR

e,2 . (D.6.71)

Therefore, z1(mc)

z2(mc)

 = Û4(mc,mb, α) M̂(mb) Û5(mb,MW, α)

 z1(MW)

z2(MW)

 , (D.6.72)

where the evolution matrices Û4,5 only contain the 2× 2 anomalous dimension. When the

charm quark is integrated out, the operators Qc1,2 disappear and the coefficients zi(µ) for

i 6= 1, 2 cease to be zero. To calculate zi(mc) , we have to perform a matching between

the f = 4 and f = 3 theories that leads in the NDR scheme

−→z NDR(mc) =
(
zNDR

1 (mc), zNDR
2 (mc), −

αs
(24π)F

NDR
s (mc),

αs
(8π)F

NDR
s (mc),−

αs
(24π)F

NDR
s (mc),

αs
(8π)F

NDR
s (mc),

α

(6π)F
NDR
e (mc), 0, α

(6π)F
NDR
e (mc), 0

)
, (D.6.73)



D.7 Wilson coefficient in the HV scheme 189

where

FNDR
s (µ) = −2

3

(
ln
(
m2

c
µ2

)
+ 1

)
z2(µ) , (D.6.74)

FNDR
e (µ) = −4

9

(
ln
(
m2

c
µ2

)
+ 1

)
[3z1(µ) + z2(µ)] , (D.6.75)

for µ ≈ O(mc) .

D.7 Wilson coefficient in the HV scheme

The changes for the HV renormalization scheme are the following:

1. Anomalous dimensions of HV scheme:

• γ̂(0)
s and γ̂(0)

e do not depend on the renormalization scheme.

• γ̂(1)
se,HV = γ̂

(1)
se,NDR +

[
∆r̂s, γ̂(0)

e

]
+
[
∆r̂e, γ̂(0)

s

]
.

• γ̂(1)
s,HV = γ̂

(1)
s,NDR +

[
∆r̂s, γ̂(0)

s

]
+ 2 β0∆r̂s .

• We must perform the following changes:

[γ̂(1)
HV ] −→ [γ̂(1)

HV ]eff ≡ γ̂(1)
HV − 2 [γ(1)

C ]HV1̂ .

∆r̂s −→ ∆r̂s − 4CF 1̂ .

where [γ(1)
c ]HV ≡ 4CFβ0 and CF = N2

C−1
2NC .

2. The Wilson coefficients can be extracted from the relationship between two renor-

malization schemes a and b:

−→
C b(µ) =

[
1̂ − αs(µ)

4π ∆r̂Ts −
α

4π∆r̂Te
] −→
C a(µ) ,

where ∆r̂i = (r̂i)b − (r̂i)a .
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Finally, we get

CHV
1 (MW) = αs(MW)

4π
(
BNDR

s,1 − 2
)

+ α

4πB
NDR
e,1 , (D.7.76)

CHV
2 (MW) = 1 + αs(MW)

4π

(
BNDR

s,2 − 14
3

)
+ α

4π

(
BNDR

e,2 − 2
9

)
, (D.7.77)

CHV
3 (MW) = −αs(MW)

24π

(
Ẽ(xt) + 2

3

)

+ α

6π
1

sin2 θW
[2B(xt) + C(xt)] , (D.7.78)

CHV
4 (MW) = αs(MW)

8π

(
Ẽ(xt) + 2

3

)
, (D.7.79)

CHV
5 (MW) = −αs(MW)

24π

(
Ẽ(xt) + 2

3

)
, (D.7.80)

CHV
6 (MW) = αs(MW)

8π

(
Ẽ(xt) + 2

3

)
, (D.7.81)

CHV
7 (MW) = α

6π

[
4C(xt) + D̃(xt) + 4

9

]
, (D.7.82)

CHV
8 (MW) = 0 , (D.7.83)

CHV
9 (MW) = α

6π

[
4C(xt) + D̃(xt) + 4

9

+ 1
sin2 θW

(10B(xt)− 4C(xt))
]
, (D.7.84)

CHV
10 (MW) = 0 . (D.7.85)

D.8 Errors on the Wilson coefficients

In Table D.1, we show the numerical errors of the Wilson coefficients for different inputs.

We have obtained them generating N = 1000 inputs considering that they follow a Gaus-
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sian distribution. Then, we have evaluated the Wilson coefficients with these values and

plot them in a histogram from which we have extracted the error. During the analysis of

each input, we have kept the other inputs fixed to their central value. Table D.1 shows

that the error of the Wilson coefficients is dominated by α(3)
s (Mτ ) .

α
(3)
s (Mτ ) sin2 θ̂(MZ)MS mc mb mt MW Mτ

z1 ± 0.0373 ±O(10−8) ± 0.0008 ± 0.0004 ±O(10−8) ±O(10−5) ±O(10−5)

z2 ± 0.0258 ±O(10−7) ± 0.0005 ± 0.0003 ±O(10−7) ±O(10−5) ±O(10−5)

z3 ± 0.0024 ±O(10−9) ± 0.0007 ±O(10−6) ±O(10−9) ±O(10−7) ±O(10−6)

z4 ± 0.0060 ±O(10−9) ± 0.0016 ±O(10−6) ±O(10−9) ±O(10−7) ±O(10−6)

z5 ± 0.0007 ±O(10−9) ± 0.0001 ±O(10−7) ±O(10−9) ±O(10−8) ±O(10−6)

z6 ± 0.0060 ±O(10−9) ± 0.0017 ±O(10−6) ±O(10−9) ±O(10−7) ±O(10−6)

z7/α ± 0.0030 ±O(10−9) ± 0.0005 ±O(10−5) ±O(10−9) ±O(10−6) ±O(10−6)

z8/α ± 0.0028 ±O(10−9) ± 0.0016 ±O(10−6) ±O(10−9) ±O(10−7) ±O(10−6)

z9/α ± 0.0044 ±O(10−9) ± 0.0002 ±O(10−5) ±O(10−9) ±O(10−6) ±O(10−6)

z10/α ± 0.0013 ±O(10−9) ± 0.0009 ±O(10−6) ±O(10−9) ±O(10−7) ±O(10−6)

y3 ± 0.0030 ±O(10−6) ± 0.0006 ±O(10−5) ± 0.0002 ±O(10−7) ±O(10−6)

y4 ± 0.0038 ±O(10−7) ± 0.0014 ±O(10−5) ± 0.0001 ±O(10−6) ±O(10−6)

y5 ± 0.0032 ±O(10−7) ±O(10−5) ±O(10−5) ±O(10−5) ±O(10−6) ±O(10−6)

y6 ± 0.0160 ±O(10−7) ± 0.0016 ±O(10−5) ± 0.0002 ±O(10−5) ±O(10−5)

y7/α ± 0.0004 ±O(10−9) ± 0.0004 ±O(10−5) ± 0.0075 ± 0.0001 ±O(10−7)

y8/α ± 0.0244 ±O(10−8) ± 0.0018 ± 0.0002 ± 0.0103 ± 0.0001 ±O(10−5)

y9/α ± 0.0420 ± 0.0011 ± 0.0002 ± 0.0001 ± 0.0538 ± 0.0008 ±O(10−5)

y10/α ± 0.0617 ± 0.0005 ± 0.0005 ± 0.0003 ± 0.0264 ± 0.0003 ±O(10−5)

Table D.1: Errors of the Wilson coefficients µ = 1 GeV . y1 = y2 ≡ 0 .





Appendix E

Parameters of large-NC matching

at NLO

E.1 (g8 Ni) couplings

i ni Xi

5 -2 −16X14 + 32X17 − 24X38 − 4X91

6 4 −32X17 − 32X18 + 32X37 + 16X38

7 2 −32X16 − 16X17 + 8X38

8 4 −16X15 − 32X17 + 16X38

9 0 −64L5 L8 − 8X34 + 8X38 + 4X91

10 0 −48X19 − 8X38 − 2X91 − 4X94

11 0 −32X20 + 4X94

12 0 128L8 L8 + 16X12 − 16X31 + 8X38 − 2X91 − 4X94

13 0 256L7 L8 − 32
3 X12 − 16X33 + 16X37 + 4

3 X91 + 4X94

Table E.1: Large-NC parameters determining the (g8 Ni) couplings in (4.3.16).
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The strong LEC X94 only appears in Xi for i = 10, 11, 12, 13. The corresponding couplings

Ni contribute to ∆CA(8)
1/2 and ∆CA(ε)

1/2,3/2 , but X94 always appear in combinations of the

form
∑13
i=10 aiNi with a10+a12 = a11+a13 . Thus, X94 drops completely from theK → ππ

amplitudes. The same happens with X37 , because X6 and X13 only enter through the

combination N r
6 − 2N r

13 .

E.2 (g8 Zi) couplings

i K(1)
i K(2)

i K(3)
i K(4)

i K(5)
i K(6)

i K(7)
i

1 1
3 K12 −K13 0 64L8 (−1

3 K9 + 5
3 K10 +K11) 0 −24L8 0 0

2 4
3 K13 0 −256

3 L8 (K10 +K11) 0 0 0 0

3 K13 0 −64L8 (K10 +K11) 0 0 0 0

4 −K13 0 64L8 (K10 +K11) 0 0 0 0

5 4
3 (4K1 + 3K5 + 3K12) 0 −64

3 L5 (2K7 +K9) 0 0 0 1

6 −2
3 (K5 +K6) + 2 (K12 +K13) 0 −32

3 L5 (K9 +K10 + 3K11) 0 −12L5 0 0

7 8K2 + 6K6 − 4K13 0 −32L5 (2K8 +K10 +K11) 0 0 0 0

8 8
3 K3 + 4K12

4
3 K5 0 0 0 3

2
3
2

9 −4
3 (K4 +K12 +K13) 4

3 K5 0 −3
2 0 0 0

10 −2K13 4K6 0 0 0 0 0

11 2 (K4 +K13) 0 0 0 0 0 0

12 −4K3 0 0 0 0 0 0

Table E.2: Large-NC parameters determining the (g8 Zi) couplings in (4.3.17).



Appendix F

Updated estimate of λSS3

The RχT coupling λSS3 splits the masses of the different isospin components of the scalar-

resonance nonet multiplet through the term

Lmass
S = −M

2
S

2 〈S2〉+ λSS3 4B0 〈S2M〉 . (F.0.1)

The common multiplet mass and λSS3 can then be determined through the relations [211]:

λSS3 =
M2
I=1 − M2

I=1/2
4 (M2

K − M2
π)

, M2
S = M2

I=1 +
M2
π (M2

I=1 − M2
I=1/2)

M2
K − M2

π

, (F.0.2)

with MI the mass of the scalar meson with isospin I .

In order to identify the members of the scalar resonance nonet, we must exclude the

lightest observed scalars that are well understood as dynamically-generated poles arising

from 2-Goldstone scattering: f0(500) (σ) , K∗0 (700) (κ) , a0(980) and f0(980) [261–265].

The I = 1/2 and I = 1 members of the resonance nonet are identified without controversy

with K∗0 (1430) and a0(1450) respectively. For the I = 0 states, we have three possible

candidates: f0(1370) , f0(1500) and f0(1710) . Thus, there are two possible scenarios:

A: f0(1370) , K∗0 (1430) , a0(1450) , f0(1500) .

B: f0(1370) , K∗0 (1430) , a0(1450) , f0(1710) .
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196 Updated estimate of λSS3

One can figure out the favoured dynamical option, comparing these candidates with the

predicted isosinglet masses. Using the relation [211],

M2
L,H = M2

I=1/2 ∓ |M
2
I=1/2 − M2

I=1| , (F.0.3)

we find ML = 1374 MeV and MH = 1474 MeV for the lighter and heavier isosinglet

scalar states, respectively. Therefore, we can conclude that the lightest scalar-resonance

nonet is given by the scenario A. Moreover, since the values of ML,H are very close to the

measured masses, additional nonet-symmetry-breaking corrections to the scalar masses

can be neglected (i.e., kRm = γR = 0 , in Ref. [211]). Inserting the scalar resonance masses

in the relations (F.0.2), one finally finds the values of MS and λSS3 given in Eq. (4.3.22).



Appendix G

Feynman rules for meson mixing

Propagators

W
−i 1

k2 −M2
W + iε

[
gµν − (1− ξW ) kµ kν

k2 − ξWM2
W

]
(G.0.1)

p i (/p+mf )
p2 +m2

f + iε
(G.0.2)

G± i

p2 − ξWM2
W + iε

(G.0.3)

ϕ±A i

p2 −M2
ϕ±A

+ iε
(G.0.4)

197



198 Feynman rules for meson mixing

Vertices

W
+(−)
µ

dβ (uα)

uα (dβ)

−i g√
2
γµ PL V

(∗)
αβ (G.0.5)

G+(−)

dβ (uα)

uα (dβ)

i
g√
2

(
muα

MW
PL(R) −

mdβ

MW
PR(L)

)
V

(∗)
αβ (G.0.6)

ϕ
+(−)
A

dβ (uα)

uα (dβ)

−ig T
a

√
2

[
(aAαβ)(∗)PL(R) + (bAαβ)(∗)PR(L)

]
≡ −igT

a

√
2

(V̂ A
αβ)(∗) (G.0.7)

where g is the SU(2) coupling constant which is related with the VEV through g = 2MW
v ,

(aAαβ)(∗) ≡ − 1
MW

(ςAuα)(∗)muαV
(∗)
αβ and (bAαβ)(∗) ≡ 1

MW
(ςAdα)(∗)mdβV

(∗)
αβ where (ςAu,d)(∗) are

defined in Eq. (5.2.7).



Appendix H

Loop functions for meson mixing

In this appendix, we present the loop functions that appear in the Wilson coefficients

before applying the GIM mechanism.

(fAB1 )ij = βi βj M
2
W AAB

1 (H.0.1)

− xq1
1
6 βi βj M

4
W

[
6AABj

3 + 3AAB
2 − 4

(
FAB111

2 + FAB121
2 + FAB131

2

)]
,

(fAB2 )ij = xq1 4 βiM4
W

(
CAi

3 + EA
2

)
, (H.0.2)

(fAB3 )ij = −2 βi βj M2
W

(
4M2

W DA
1 − CA1

)
(H.0.3)

+ xq1
2
3 βi βj M

4
W

{
12M2

W

(
DAj

3 + DA
2 − FAW111

1 − FAW121
1 − FAW131

1

)
− 3DA

1 + FAW111
2 + FAW113

2 + FAW121
2 + FAW131

2 + FWA122
2 + FWA131

2

}
,

(fAB4 )ij = xq1xq2M
2
W AAB

1 , (H.0.4)

(fAB5 )ij = xq1xq2 2M2
W CA

1 , (H.0.5)
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200 Loop functions for meson mixing

(fAB6 )ij = √xq1xq2 2M2
W βj A

AB
1 , (H.0.6)

(fAB7 )ij = √xq1xq2 4M2
W βj

{
CA

1 − 2M2
W

(
CAj

3 + CA
2

)}
, (H.0.7)

(fAB8 )ij = −√xq1xq2 8M2
W

(
CA

1 − βi βj M
2
W DA

1

)
, (H.0.8)

(fAB9 )ij = −√xq1xq2 8 βiM4
W

{
2
(
CA

2 + CAi
3

)
+ βj

(
CAj

3 + EA
2

)}
, (H.0.9)

(fAB10 )ij = −√xq1xq2 4 βi βj M4
W (AAB

2 + 2AABi
3 ) , (H.0.10)

(fAB11 )ij = √xq1xq2
4
3 βi βj M

4
W

{
FAB112

2 + FAB121
2 + FAB122

2 + 2 FAB131
2

}
, (H.0.11)

(fAB12 )ij = √xq1xq2 8 βi βj M4
W BAB

1 , (H.0.12)

(fAB13 )ij = √xq1xq2
4
3 βi βj M

4
W

{
3 (EA

2 − 2 CA
2 ) + FAW112

2 + FAW121
2 + FAW122

2

+ 2 FAW131
2 + FWA112

2 + FWA121
2 + FWA122

2 + 2 FWA131
2

}
, (H.0.13)

(fAB14 )ij = xq2
1
3 βi βj M

4
W

{
3 (AAB

2 + 2AABi
3 )

− 4 (FAB113
2 + FAB122

2 + FAB131
2 )

}
, (H.0.14)

(fAB15 )ij = xq2 4 βi βj M4
W BAB

1 , (H.0.15)

(fAB16 )ij = xq2 βi βjM
4
W

{
2 (AABi

3 − AABj
3 ) + (AAB

2 −ABA
2 ) − 4BAB

1

}
, (H.0.16)

(fAB17 )ij = − xq2
4
3 βi βj M

4
W

{
3 (DA

1 − CA
2 − CAi

3 ) + FAW111
2 + FAW113

2

+ FAW122
2 + FAW131

2 + FWA121
2 + FWA131

2

}
, (H.0.17)
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(fAB18 )ij = xq2 2 βi βj M4
W

(
CAi

3 − CAj
3 − CA

2 + 2DA
1 + EA

2

)
, (H.0.18)

(fAB19 )ij = xq1
1
3 βi βj M

4
W

{
3 (AAB

2 + 2AABj
3 )

− 4 (FAB111
2 + FAB121

2 + FAB131
2 )

}
, (H.0.19)

(fAB20 )ij = xq1 4 βi βj M4
W BAB

1 , (H.0.20)

(fAB21 )ij = xq1 βi βj M
4
W

{
2 (AABi

3 −AABj
3 ) + (ABA

2 − AAB
2 ) − 4BAB

1

}
, (H.0.21)

(fAB22 )ij = − xq1
4
3 βi βj M

4
W

{
3 (DA

1 − CA
2 − CAj

3 ) + FAW111
2 + FAW113

2

+ FAW121
2 + FAW131

2 + FWA122
2 + FWA131

2

}
, (H.0.22)

(fAB23 )ij = xq2 2 βi βj M4
W

(
CAi

3 − CAj
3 − CA

2 + 2DA
1 + EA

2

)
, (H.0.23)

where the capital-letter functions are defined by

AAB
1 ≡ D2(m2

i , m
2
j , M

2
ϕ±A
, M2

ϕ±B
) , (H.0.24)

AAB
2 ≡ 2 d

dM2
ϕ±B

D2(m2
i , m

2
j , M

2
ϕ±A
, M2

ϕ±B
) , (H.0.25)

AABi
3 ≡ d

dm2
i

D2(m2
i , m

2
j , M

2
ϕ±A
, M2

ϕ±B
) , (H.0.26)

BAB
1 ≡ D0(m2

i , m
2
j , M

2
ϕ±A
, M2

ϕ±B
) , (H.0.27)

CA
1 ≡ D2(m2

i , m
2
j , M

2
W , M

2
ϕ±A

) , (H.0.28)

CA
2 ≡

d
dM2

W

D2(m2
i , m

2
j , M

2
W , M

2
ϕ±A

) , (H.0.29)
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CAi
3 ≡ d

dm2
i

D2(m2
i , m

2
j , M

2
W , M

2
ϕ±A

) , (H.0.30)

DA
1 ≡ D0(m2

i , m
2
j , M

2
W , M

2
ϕ±A

) , (H.0.31)

DA
2 ≡

d
dM2

W

D0(m2
i , m

2
j , M

2
W , M

2
ϕ±A

) , (H.0.32)

DAi
3 ≡ d

dm2
i

D0(m2
i , m

2
j , M

2
W , M

2
ϕ±A

) , (H.0.33)

EA
2 ≡

d
dM2

ϕ±A

D2(m2
i , m

2
j , M

2
W , M

2
ϕ±A

) , (H.0.34)

and1

F AB a b c
1 ≡

∫ ∞
0

dx 2 x5

(x2 +M2
A)a (x2 +M2

B)b (x2 +m2
i )c (x2 +m2

j )6−a−b−c ,

F AB a b c
2 ≡ −

∫ ∞
0

dx 2 x7

(x2 +M2
A)a (x2 +M2

B)b (x2 +m2
i )c (x2 +m2

j )6−a−b−c ,

F AA a+b c
2 ≡ F AA a b c

2 ,

where

D0(a, b, c, d) =
b ln

(
b
a

)
(b− a)(b− c)(b− d) +

c ln
(
c
a

)
(c− a)(c− b)(c− d) +

d ln
(
d
a

)
(d− a)(d− b)(d− c) ,

D2(a, b, c, d) =
b2 ln

(
b
a

)
(b− a)(b− c)(b− d) +

c2 ln
(
c
a

)
(c− a)(c− b)(c− d) +

d2 ln
(
d
a

)
(d− a)(d− b)(d− c) ,

being

Di(m1,m2,M) ≡ lim
M2−→M

Di(m1,m2,M,M2) ,

with i = 0, 2 .

1The loop functions F AB a b c
1 and F AB a b c

2 are
∫ d4k

π2
i k2

(k2−M2
A

)a (k2−M2
B

)b (k2−m2
i
)c (k2−m2

j
)6−a−b−c and∫ d4k

π2
i k4

(k2−M2
A

)a (k2−M2
B

)b (k2−m2
i
)c (k2−m2

j
)6−a−b−c respectively, but we have converted them into simple

Riemann integrals performing a Wick rotation.



Appendix I

Colour factors

In Tables I.1 and I.2 , we present the colour factors Ni and Ñi respectively which have

been computed following the arguments given in Section 5.2.3.

i Ni

1, 4 N3
C − 2NC + 1

4N2
C

2, 3, 5 NC−1
2NC

6, 10, 11, 12 1
(2NC)2

7, 8, 9, 13 − 1
2NC

14, 15, 16, 19, 20, 21 −N3
C + 2NC + 2

8N2
C

17, 18, 22, 23 −
(
NC + 2
4NC

)

Table I.1: Ni colour factors.

i Ñi

6 − 2
(
N2
C − 2

4NC

)
7 − 1

8, 9, 13 −1
4

10, 11, 12 −
(
N2
C − 2

8NC

)
14, 15, 16, 19, 20, 21 1

8

(
N2
C − 2

4NC

)
17, 18, 22, 23 1

16

Table I.2: Ñi colour factors.
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Appendix J

Fierz transformations

The Fierz rearrangements used in Chapter 5 are

[
γµ PL(R)

]
ij

[
γµ PL(R)

]
kl

=
[
γµ PL(R)

]
il

[
γµ PL(R)

]
kj

,

[
γµ PL(R)

]
ij

[
γµ PR(L)

]
kl

= − 2
[
PR(L)

]
il

[
PL(R)

]
kj

,

[
σµν PL(R)

]
ij

[
σµν PR(L)

]
kl

= 0 ,

[
PL(R)

]
ij

[
PL(R)

]
kl

= − 1
2
[
PL(R)

]
il

[
PL(R)

]
kj

+ 1
8
[
σµν PL(R)

]
il

[
σµν PL(R)

]
kj

,

[
σµν PL(R)

]
ij

[
σµν PL(R)

]
kl

= 6
[
PL(R)

]
il

[
PL(R)

]
kj

+ 1
2
[
σµν PL(R)

]
il

[
σµν PL(R)

]
kj

,

where σµν ≡ 1
2 [γµ, γν ] . These Fierz transformations are valid at the operator level,

i.e., they include the Fermi-statistics minus sign from the permutation of the two fermion

fields. The minus sign is absent in the analogous relations between spinor bilineals.
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Appendix K

GIM mechanism in CijSM 2SRR

When the GIM mechanism is applied to the Wilson coefficients, CijSM 2SRR has ln βu con-

tributions that do not vanish in the massless limit. These infrared terms coming from

Figure 5.1a correspond to virtual contributions from the up and the charm quarks, see

Figure K.1. When these new contributions are realized in the low-energy effective theory,

all the infrared divergencies cancel in the matching process because both theories have the

same infrared behaviour. The low-energy effective Lagrangian is

LEFT = −4GF√
2

∑
ij=u,c

Viq1V
∗
jq2

[̄
i γµ PL q1

]
[q̄2 γ

µ PL j] . (K.0.1)

There are eight diagrams with the topologies depicted in Figure K.1: four a)-topology

diagrams with (i, j) = (c, c), (c, u), (u, c), (u, u) and another four which are related to

the previous ones by interchanging the external legs, b)-topology.

Computing the amplitude of diagram b), we obtain

Mij
b) = 8G2

FλiλjΛαβ[ūq2(k2)γµγαγνPLvq1(k1)][v̄q2(p1)γνγβγµPLuq1(p2)] , (K.0.2)

where

Λαβ ≡
∫
k

Kα1 K
β
2

(K1
2 − m2

j )(K2
2 − m2

i )
,

with K1 ≡ k and K2 ≡ k + p2 − k2 .
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SM 2SRR

q2

q̄1

q1

q̄2

i

j

a)

q2

q̄1

q1

q̄2

i j

b)

Figure K.1: Diagrams from the low-energy effective theory with i, j = u, c.

Expanding Λαβ in powers of external momenta and taking the external momenta of the

light quarks equal to zero (k2 and p1), we obtain

Λαβ = gαβ

4 f1(m2
i , m

2
j , m

2
q1) − pα2 p

β
2

2 f2(m2
i , m

2
j ) , (K.0.3)

where

f1(m2
i , m

2
j , m

2
q1) ≡

∫
k

k2

(k2 −m2
j )(k2 −m2

i )
−
∫
k

k4

(k2 −m2
j )(k2 −m2

i )2

+ 1
6 m

2
q1

∫
k

k4

(k2 −m2
j )(k2 −m2

i )3 ,

f2(m2
i , m

2
j ) ≡

∫
k

k2

(k2 −m2
j )(k2 −m2

i )2 −
2
3

∫
k

k4

(k2 −m2
j )(k2 −m2

i )3 .

Then, Eq. (K.0.2) can be simplified by using the Fierz identities defined in Appendix J

and the Dirac spinor equation,

Mij
b) = 8G2

Fλi λj

(
f1(m2

i , m
2
j , 0)OX1 −

1
2 m

2
q1 f2(m2

i , m
2
j )OX19

)
, (K.0.4)

where

OX1 ≡ [ūq2(k2) γµ PL vq1(k1)][v̄q2(p1) γµ PL uq1(p2)] ∼ OVLL , (K.0.5)

OX19 ≡ [ūq2(k2) σµν PR vq1(k1)][v̄q2(p1) σµν PR uq1(p2)] ∼ OSRR
2 . (K.0.6)
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In the computation of Eq. (K.0.4), we must neglect contributions of O
(
m2
q1

M2
W

)
in OV LL

because we have not computed up to this order. Similarly for the Feynman diagram a),

we find

Mij
a) = 8G2

Fλi λj

(
f1(m2

i , m
2
j , 0)OX2 −

1
2 m

2
q1 f2(m2

i , m
2
j )OX20

)
, (K.0.7)

where

OX2 ≡ [ūq2(k2) γµ PL uq1(p2)][v̄q2(p1) γµ PL vq1(k1)] ∼ OVLL ,

OX20 ≡ [ūq2(k2) σµν PR uq1(p2)][v̄q2(p1) σµν PR vq1(k1)] ∼ OSRR
2 .

Then, the total amplitude taking the relative signs given by the Wick’s theorem is given

by

Meff =
∑
ij

Mij
a) −

∑
ij

Mij
b)

= i
G2
F

2 π2

[
F̃VLL (OX2 − OX1 )−

m2
q1

6 F̃ SRR
2 (OX20 − OX19)

]
, (K.0.8)

where

F̃VLL ≡ λ2
u f̃1(m2

u, m
2
u) + λu λc

[
f̃1(m2

u, m
2
c) + f̃1(m2

c , m
2
u)
]

+ λ2
c f̃1(m2

c , m
2
c) ,

F̃ SRR
2 ≡ λ2

u f̃2(m2
u, m

2
u) + λu λc

[
f̃2(m2

u, m
2
c) + f̃2(m2

c , m
2
u)
]

+ λ2
c f̃2(m2

c , m
2
c) ,

and

f̃1(m2
i , m

2
j ) =

m2
im

2
j

(m2
i −m2

j )2

[
A0(m2

i )−A0(m2
j )
]
− m4

i

m2
i −m2

j

d
dm2

i

A0(m2
i ) ,

f̃2(m2
i , m

2
j ) =

m2
j (m2

j − 3m2
i )

(m2
i −m2

j )3

[
A0(m2

i )−A0(m2
j )
]

+
m2
i (m2

i +m2
j )

(m2
i −m2

j )2
d

dm2
i

A0(m2
i )

− m4
i

m2
i −m2

j

d
dm2

i

d
dm2

i

A0(m2
i ) ,
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where

f̃1(m2
i , m

2
j ) ≡ − i 16 π2 f1(m2

i , m
2
j , 0) ,

f̃2(m2
i , m

2
j ) ≡ − i 48 π2 f2(m2

i , m
2
j ) ,

A0(a) ≡ − µD−4 a

{1
ε̂

+ ln
(
a

µ2

)}
.

At this point, it is convenient to express F̃VLL and F̃ SRR
2 in terms of λt,c. For that purpose,

we use the unitarity of the CKM matrix, so Eq. (K.0.8) becomes

Meff = i
G2
F λ

2
t

2 π2

[
F̃VLL
tt (OX2 − OX1 )−

m2
q1

6 F̃ SRR
2 tt (OX20 − OX19)

]

+ i
G2
F λt λc
2 π2

[
F̃VLL
tc (OX2 − OX1 )−

m2
q1

6 F̃ SRR
2 tc (OX20 − OX19)

]

+ i
G2
F λ

2
c

2 π2

[
F̃VLL
cc (OX2 − OX1 )−

m2
q1

6 F̃ SRR
2 cc (OX20 − OX19)

]
, (K.0.9)

where

F̃VLL ≡ λ2
t F̃

VLL
tt + λtλc F̃

VLL
tc + λ2

c F̃
VLL
cc ,

F̃ SRR
2 ≡ λ2

t F̃
SRR
2 tt + λtλc F̃

SRR
2 tc + λ2

c F̃
SRR
2 cc ,

and

F̃VLL
tt = f̃1 (m2

u, m
2
u) ,

F̃VLL
tc = 2 f̃1 (m2

u, m
2
u) − f̃1 (m2

u, m
2
c) − f̃1 (m2

c , m
2
u) ,

F̃VLL
cc = f̃1 (m2

u, m
2
u) − f̃1 (m2

u, m
2
c) − f̃1 (m2

c , m
2
u) + f̃1 (m2

c , m
2
c) ,

F̃ SRR
2 tt = f̃2 (m2

u, m
2
u) ,

F̃ SRR
2 tc = 2 f̃2 (m2

u, m
2
u) − f̃2 (m2

u, m
2
c) − f̃2 (m2

c , m
2
u) ,

F̃ SRR
2 cc = f̃2 (m2

u, m
2
u) − f̃2 (m2

u, m
2
c) − f̃2 (m2

c , m
2
u) + f̃2 (m2

c , m
2
c) .
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K.1 B mixing

In B mixing, in the limit of mu,c → 0 , we obtain

F̃VLL
tt = 0 ,

F̃VLL
tc = 0 ,

F̃VLL
cc = 0 ,

F̃ SRR
2 tt = f̃2(0, 0) ,

F̃ SRR
2 tc = 0 ,

F̃ SRR
2 cc = 0 ,

(K.1.10)

where

f̃2(0, 0) = − 1
ε̂

+ ln
(
µ2

M2
W

)
− ln

(
m2
u

M2
W

)
− 5

6 , with mu → 0 . (K.1.11)

This limit depends on the way we do it. This means that limmc→0 limmu→αmc f(mu,mc) =

f̂(α). The result depends on α, however when we take the limit in the fundamental theory,

we get the same α-dependence as in the low-energy theory which exactly cancels out in

the matching procedure. Therefore, it does not matter the α chosen, in particular our

results are for α = 1 in both effective and fundamental theories.

Finally, the effective amplitude is given by

MB
eff = − i G

2
F M

2
Wλ

2
t

12 π2 xq1 F̃
SRR
2 tt (OX20 − OX19) , (K.1.12)

with

F̃ SRR
2 tt = − 1

ε̂
+ ln

(
µ2

M2
W

)
− ln

(
m2
u

M2
W

)
− 5

6 , with mu → 0 . (K.1.13)

In Eq. (K.1.13), we can see the ultraviolet divergence given by the first two pieces, which

has to be renormalized with a dimension-8 four-quark operator, and the infrared divergence

given by the third piece that will cancel out with the coming ones from the fundamental

theory.
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K.2 K mixing

In K mixing, in the limit of mu → 0 , we obtain

F̃VLL
tt = 0 , F̃VLL

tc = −m2
c

[
1
ε̂
− ln

(
µ2

M2
W

)
+ ln

(
m2
c

M2
W

)
+ 1

]
, F̃VLL

cc = m2
c

2 ,

F̃ SRR
2 tt = − 1

ε̂
+ ln

(
µ2

M2
W

)
− ln

(
m2
u

M2
W

)
− 5

6 ,

F̃ SRR
2 tc = − 2 ln

(
m2
u

M2
W

)
+ 2 ln

(
m2
c

M2
W

)
− 5

3 ,

F̃ SRR
2 cc = −ln

(
m2
u

M2
W

)
+ ln

(
m2
c

M2
W

)
− 5

3 , (K.2.14)

Therefore, the effective amplitude is

MK
eff = i

G2
F λ

2
t

2 π2

[
−
m2
q1

6 F̃ SRR
2 tt (OX20 − OX19)

]

+ i
G2
F λt λc
2 π2

[
F̃VLL
tc (OX2 − OX1 )−

m2
q1

6 F̃ SRR
2 tc (OX20 − OX19)

]

+ i
G2
F λ

2
c

2 π2

[
F̃VLL
cc (OX2 − OX1 )−

m2
q1

6 F̃ SRR
2 cc (OX20 − OX19)

]
. (K.2.15)

K.3 Matching procedure

We have proved that the effective amplitude is given by

Meff = XVLL
eff (OX2 − OX1 ) + X2SRR

eff (OX20 − OX19)

+ i
G2
F λ

2
t

2 π2

[
F̃VLL
tt (OX2 − OX1 )−

m2
q1

6 F̃ SRR
2 tt (OX20 − OX19)

]

+ i
G2
F λt λc
2 π2

[
F̃VLL
ct (OX2 − OX1 )−

m2
q1

6 F̃ SRR
2 ct (OX20 − OX19)

]

+ i
G2
F λ

2
c

2 π2

[
F̃VLL
cc (OX2 − OX1 )−

m2
q1

6 F̃ SRR
2 cc (OX20 − OX19)

]
, (K.3.16)
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where XVLL
eff and X2SRR

eff are tree-level amplitudes from the low-energy effective theory

defined as

XVLL
eff ≡ λ2

t X
tt
eff VLL + 2 λt λc Xct

eff VLL + λ2
c X

cc
eff VLL ,

X2SRR
eff ≡ λ2

t X
tt
eff 2SRR + 2 λt λc Xct

eff 2SRR + λ2
c X

cc
eff 2SRR .

On the other hand, the fundamental amplitude is give by

Mfun = XVLL
fun (OX2 − OX1 ) + X2SRR

fun (OX20 − OX19) , (K.3.17)

where

XVLL
fun ≡ λ2

t X
tt
fun VLL + 2 λt λc Xct

fun VLL + λ2
c X

cc
fun VLL ,

X2SRR
fun ≡ λ2

t X
tt
fun 2SRR + 2 λt λc Xct

fun 2SRR + λ2
c X

cc
fun 2SRR .

Therefore, performing a matching between both theories, Meff = Mfun , we obtain the

following relations

Xtt
eff VLL = Xtt

fun VLL − i
G2
F

2 π2 F̃
VLL
tt ,

Xct
eff VLL = Xct

fun VLL − i
G2
F

4 π2 F̃
VLL
ct ,

Xcc
eff VLL = Xcc

fun VLL − i
G2
F

2 π2 F̃
VLL
cc ,

Xtt
eff 2SRR = Xtt

fun 2SRR + i
G2
F M

2
W

12 π2 xq1 F̃
SRR
2 tt , (K.3.18)

Xct
eff 2SRR = Xct

fun 2SRR + i
G2
F M

2
W

24 π2 xq1 F̃
SRR
2 ct ,

Xcc
eff 2SRR = Xcc

fun 2SRR + i
G2
F M

2
W

12 π2 xq1 F̃
SRR
2 cc .
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Translating Eqs. (K.3.18) in terms of Wilson coefficients, we find1

CttSMVLL = Ctt funSM VLL + 4
M2
W

F̃VLL
tt ,

CctSMVLL = Cct funSM VLL + 2
M2
W

F̃VLL
ct ,

CccSMVLL = Ccc funSM VLL + 4
M2
W

F̃VLL
cc ,

CttSM 2SRR = − xq1

[
2
3 F̃

SRR
2 tt − 4M4

W S̃0(mu, mt)
]
, (K.3.19)

CctSM 2SRR = − xq1

[
1
3 F̃

SRR
2 ct − 4M4

W S̃0(mu, mc, mt)
]
,

CccSM 2SRR = − xq1

[
2
3 F̃

SRR
2 cc − 4M4

W S̃0(mu, mc)
]
,

where

S̃0(mu, mt) = Ffun(mu, mu) − [Ffun(mu, mt) + Ffun(mt, mu)] + Ffun(mt, mt) ,

S̃0(mu, mc) = Ffun(mu, mu) − [Ffun(mu, mc) + Ffun(mc, mu)] + Ffun(mc, mc) ,

S̃0(mu, mc, mt) = Ffun(mu, mu) − 1
2 [Ffun(mu, mc) + Ffun(mc, mu)]

− 1
2 [Ffun(mu, mt) + Ffun(mt, mu)]

+ [Ffun(mc, mt) + Ffun(mt, mc)] ,

with

Ffun = 1
3

[
FWW31

2 + FWW41
2 + FWW21

2

]

− 1
2

[
1
2

d
dM2

W

D2(m2
i , m

2
j , M

2
W ) + d

dm2
j

D2(m2
i , m

2
j , M

2
W )
]
. (K.3.20)

1Without the renormalization of the ultraviolet divergences.
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K.4 Renormalization procedure

The contributions from the Feynman diagrams given by Figure K.1 generate ultravio-

let divergences in F̃ SRR
2 tt and F̃VLL

tc . These divergences have to be renormalized with

dimension-eight four-quark operators (OD=8
2SRR and OD=8

VLL ). Then, the ∆B = 2 and ∆S = 2

counter-terms Lagrangians are

L∆B=2
R = L2SRRR , (K.4.21)

L∆S=2
R = LVLLR + L2SRRR , (K.4.22)

where

L2SRRR = + G2
F λ

2
t

24 π2 C0(µ)OD=8
2SRR ,

LVLLR = −G
2
F λt λc
4 π2 C0(µ)OD=8

VLL ,

with

OD=8
2SRR ≡

[
q̄2 σµν

−→
∂ α PR q1

] [
q̄2 σ

µν −→∂ α PR q1
]
,

OD=8
VLL ≡ m2

c [q̄2 γµ PL q1] [q̄2 γ
µ PL q1] ,

and

C0(µ) ≡ ln
(
µ2

M2
W

)
.

After the renormalization of the Wilson coefficients given by Eq (K.3.19), we obtain

CttSMVLL = Ctt funSM VLL + 4
M2
W

F̃VLL
tt ,

CctSMVLL = Cct funSM VLL + 2
M2
W

F̃VLL
ct ,

CccSMVLL = Ccc funSM VLL + 4
M2
W

F̃VLL
cc ,

CttSM 2SRR = − xq1

[
2
3 f̃

SRR
2 tt − 4M4

W S̃0(mu, mt)
]
,
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CctSM 2SRR = − xq1

[
1
3 f̃

SRR
2 ct − 4M4

W S̃0(mu, mc, mt)
]
,

CccSM 2SRR = − xq1

[
2
3 f̃

SRR
2 cc − 4M4

W S̃0(mu, mc)
]
,

with

F̃VLL
tt = 0 , F̃VLL

tc = −m2
c

[
ln
(
m2
c

M2
W

)
+ 1

]
, F̃VLL

cc = m2
c

2 ,

f̃SRR2 tt = − ln
(
m2
u

M2
W

)
− 5

6 ,

f̃SRR2 tc = − 2 ln
(
m2
u

M2
W

)
+ 2 ln

(
m2
c

M2
W

)
− 5

3 ,

f̃SRR2 cc = −ln
(
m2
u

M2
W

)
+ ln

(
m2
c

M2
W

)
− 5

3 . (K.4.23)



Appendix L

Hadronic matrix elements for

meson mixing

The matrix elements 〈Oi(µ)〉 ≡ 〈M0|Oi(µ)|M0〉 can be written as

〈OVLL(µ)〉 = 1
3 MM0 f2

M0 BVLL
1 (µ) , (L.0.1)

〈OVRR(µ)〉 = 1
3 MM0 f2

M0 BVRR
1 (µ) , (L.0.2)

〈OLR
1 (µ)〉 = −1

6 R(µ)MM0 f2
M0 BLR

1 (µ) , (L.0.3)

〈OLR
2 (µ)〉 = 1

4 R(µ)MM0 f2
M0 BLR

2 (µ) , (L.0.4)

〈OSLL
1 (µ)〉 = − 5

24 R(µ)MM0 f2
M0 BSLL

1 (µ) , (L.0.5)

〈OSLL
2 (µ)〉 = −1

2 R(µ)MM0 f2
M0 BSLL

2 (µ) , (L.0.6)

〈OSRR
1 (µ)〉 = − 5

24 R(µ)MM0 f2
M0 BSRR

1 (µ) , (L.0.7)

〈OSRR
2 (µ)〉 = −1

2 R(µ)MM0 f2
M0 BSRR

2 (µ) , (L.0.8)

where

R(µ) =
(

MM0

mq1(µ) + mq2(µ)

)2

(L.0.9)

and fM0 is the M-meson decay constant, fB0 = (192.0± 4.3)MeV [152],

fB0
s

= (228.4 ± 3.7)MeV [152] and fK0 = (155.6 ± 0.4)MeV [32]. The Ba
i (µ) parametrize
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i = 1 2 3 4 5

fB0

√
BB0
i 174± 8 MeV 160± 8 MeV 177± 17 MeV 185± 9 MeV 229± 14 MeV

fB0
s

√
B

B0
s

i 211± 8 MeV 195± 7 MeV 215± 17MeV 220± 9 MeV 285± 14 MeV

BK
i 0.506± 0.017± 0.003 0.46± 0.01± 0.03 0.79± 0.02± 0.05 0.78± 0.02± 0.04 0.49± 0.03± 0.03

Table L.1: Determinations of fM0

√
BM0
i (M0 = B0,B0

s) [281] and BK0
i (M0 = K0) [282],

in the MS scheme. The B0
q parameters are given at µ = mb , while the K0 values refer to

µ = 3 GeV .

the deviation from the naive factorization limit. These Ba
i (µ) factors are given by

BVLL
1 (µ) = BVRR

1 (µ) = BM0
1 (µ) , (L.0.10)

BLR
1 (µ) = BM0

5 (µ) , (L.0.11)

BLR
2 (µ) = BM0

4 (µ) , (L.0.12)

BSLL
1 (µ) = BSRR

1 (µ) = BM0
2 (µ) , (L.0.13)

BSLL
2 (µ) = BSRR

2 (µ) = 5
3 B

M0
2 (µ) − 2

3 B
M0
3 (µ) , (L.0.14)

whereBM0
i (µ), i = 1, · · · , 5 are non-perturbative factors that can be found in the Table L.1.



Appendix M

Renormalization group

short-distance QCD effects

The renormalization group short-distance QCD effects can be calculated by solving the

renormalization group equations that govern the scale dependence of Wilson coefficients

Ci(µ) . In this appendix we present the analytic formulae of the ∆F = 2 dimension six

four-quark operators Oi extracted from Ref. [283]. The general expression for Ci(µ) is

given by

−→
C (µ) = Û(µ, µ0)−→C (µ0) , µ < µ0 , (M.0.1)

where −→C is a column vector built out of the Ci components and Û(µ, µ0) is the evolution

matrix. −→C (µ0) are the initial Wilson conditions which encode all short-distance physics.
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For instance, (µ, µ0) = (µb, µtW ) for B0
q and (µ, µ0) = (µc, µtW ) for K0:1

CVLL1 (µ) = [η(µ)]VLL C
VLL
1 (µtW ) , (M.0.2)CLR1 (µ)

CLR2 (µ)

 =

[η11(µ)]LR [η12(µ)]LR
[η21(µ)]LR [η22(µ)]LR


CLR1 (µtW )

CLR2 (µtW )

 , (M.0.3)

CSLL1 (µ)

CSLL2 (µ)

 =

[η11(µ)]SLL [η12(µ)]SLL
[η21(µ)]SLL [η22(µ)]SLL


CSLL1 (µtW )

CSLL2 (µtW )

 , (M.0.4)

where

[η(µ)]a =
[
η(0)(µ)

]
a

+ α
(f)
s (µ)
4 π

[
η(1)(µ)

]
a
. (M.0.5)

M.1 η-Factors for B0
s, d − B0

s, d mixing

VLL-Sector

[
η(0)(µb)

]
VLL

= η
6/23
5 ,

[
η(1)(µb)

]
VLL

= 1.6273 (1− η5) η6/23
5 .

LR-Sector

[
η

(0)
11 (µb)

]
LR

= η
3/23
5 ,

[
η

(0)
12 (µb)

]
LR

= 0 ,[
η

(0)
21 (µb)

]
LR

= 2
3
(
η

3/23
5 − η−24/23

5

)
,

[
η

(0)
22 (µb)

]
LR

= η
−24/23
5 ,[

η
(1)
11 (µb)

]
LR

= 0.9250 η−24/23
5 + η

3/23
5 (−2.0994 + 1.1744 η5) ,[

η
(1)
12 (µb)

]
LR

= 1.3875
(
η

26/23
5 − η−24/23

5

)
,[

η
(1)
21 (µb)

]
LR

= (−11.7329 + 0.7829 η5) η3/23
5 + η

−24/23
5 (−5.3048 + 16.2548 η5) ,[

η
(1)
22 (µb)

]
LR

= (7.9572 − 8.8822 η5) η−24/23
5 + 0.9250 η

26/23
5 .

1The VRR and SRR sectors are the same as in the VLL and SLL sectors.
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SLL-Sector

[
η

(0)
11 (µb)

]
SLL

= 1.0153 η−0.6315
5 − 0.0153 η0.7184

5 ,[
η

(0)
12 (µb)

]
SLL

= 1.9325
(
η−0.6315

5 − η0.7184
5

)
,[

η
(0)
21 (µb)

]
SLL

= 0.0081
(
η0.7184

5 − η−0.6315
5

)
,[

η
(0)
22 (µb)

]
SLL

= 1.0153 η0.7184
5 − 0.0153 η−0.6315

5 ,[
η

(1)
11 (µb)

]
SLL

= (4.8177 − 5.2272 η5) η−0.6315
5 + (0.3371 + 0.0724 η5) η0.7184

5 ,[
η

(1)
12 (µb)

]
SLL

= (9.1696 − 38.8778 η5) η−0.6315
5 + (42.5021 − 12.7939 η5) η0.7184

5 ,[
η

(1)
21 (µb)

]
SLL

= (0.0531 + 0.0415 η5) η−0.6315
5 − (0.0566 + 0.0380 η5) η0.7184

5 ,[
η

(1)
22 (µb)

]
SLL

= (0.1011 + 0.3083 η5) η−0.6315
5 + (−7.1314 + 6.7219 η5) η0.7184

5 ,

where η5 ≡ α
(5)
s (µtW )
α

(5)
s (µb)

.

M.2 η-Factors for K0 −K0 mixing

VLL-Sector

[
η(0)(µc)

]
VLL

= η
6/25
4 η

6/23
5 ,[

η(1)(µc)
]
VLL

= η
6/25
4 η

6/23
5 (1.7917 − 0.1644 η4 − 1.6273 η4 η5) .

LR-Sector

[
η

(0)
11 (µc)

]
LR

= η
3/25
4 η

3/23
5 ,[

η
(0)
12 (µc)

]
LR

= 0 ,[
η

(0)
21 (µc)

]
LR

= 2
3
(
η

3/25
4 η

3/23
5 − η−24/25

4 η
−24/23
5

)
,[

η
(0)
22 (µc)

]
LR

= η
−24/25
4 η

−24/23
5 ,[

η
(1)
11 (µc)

]
LR

= 0.9279 η−24/25
4 η

−24/23
5 − 0.0029 η28/25

4 η
−24/23
5

+ η
3/25
4 η

3/23
5 (−2.0241 − 0.0753 η4 + 1.1744 η4 η5) ,
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[
η

(1)
12 (µc)

]
LR

= −1.3918 η−24/25
4 η

−24/23
5 + 0.0043 η28/25

4 η
−24/23
5

+ 1.3875 η28/25
4 η

26/23
5 ,[

η
(1)
21 (µc)

]
LR

= −0.0019 η28/25
4 η

−24/23
5 + 5.0000 η1/25

4 η
3/23
5

+ η
3/25
4 η

3/23
5 (−16.6828 − 0.0502 η4 + 0.7829 η4 η5)

+ η
−24/25
4 η

−24/23
5 (−4.4701 − 0.8327 η4 + 16.2548 η4 η5) ,[

η
(1)
22 (µc)

]
LR

= 0.0029 η28/25
4 η

−24/23
5 + 0.9250 η28/25

4 η
26/23
5

+ η
−24/25
4 η

−24/23
5 (6.7052 + 1.2491 η4 − 8.8822 η4 η5) .

SLL-Sector

[
η

(0)
11 (µc)

]
SLL

= 1.0153 η−0.5810
4 η−0.6315

5 − 0.0153 η0.6610
4 η0.7184

5 ,[
η

(0)
12 (µc)

]
SLL

= 1.9325
(
η−0.5810

4 η−0.6315
5 − η0.6610

4 η0.7184
5

)
,[

η
(0)
21 (µc)

]
SLL

= 0.0081
(
η0.6610

4 η0.7184
5 − η−0.5810

4 η−0.6315
5

)
,[

η
(0)
22 (µc)

]
SLL

= 1.0153 η0.6610
4 η0.7184

5 − 0.0153 η−0.5810
4 η−0.6315

5 ,[
η

(1)
11 (µc)

]
SLL

= 0.0020 η1.6610
4 η−0.6315

5 − 0.0334 η0.4190
4 η0.7184

5

+ η−0.5810
4 η−0.6315

5 (4.2458 + 0.5700 η4 − 5.2272 η4 η5)

+ η0.6610
4 η0.7184

5 (0.3640 + 0.0064 η4 + 0.0724 η4 η5) ,[
η

(1)
12 (µc)

]
SLL

= 0.0038 η1.6610
4 η−0.6315

5 − 4.2075 η0.4190
4 η0.7184

5

+ η−0.5810
4 η−0.6315

5 (8.0810 + 1.0848 η4 − 38.8778 η4 η5)

+ η0.6610
4 η0.7184

5 (45.9008 + 0.8087 η4 − 12.7939 η4 η5) ,[
η

(1)
21 (µc)

]
SLL

= −0.0011 η1.6610
4 η−0.6315

5 + 0.0003 η0.4190
4 η0.7184

5

+ η0.6610
4 η0.7184

5 (−0.0534 − 0.0034 η4 − 0.0380 η4 η5)

+ η−0.5810
4 η−0.6315

5 (0.0587 − 0.0045 η4 + 0.0415 η4 η5) ,



M.2 η-Factors for K0 −K0 mixing 223

[
η

(1)
22 (µc)

]
SLL

= −0.0020 η1.6610
4 η−0.6315

5 + 0.0334 η0.4190
4 η0.7184

5

+ η−0.5810
4 η−0.6315

5 (0.1117 − 0.0086 η4 + 0.3083 η4 η5)

+ η0.6610
4 η0.7184

5 (−6.7398 − 0.4249 η4 + 6.7219 η4 η5) ,

where η4 ≡ α
(4)
s (µb)
α

(4)
s (µc)

.





Appendix N

Inputs for meson mixing

Tables N.1, N.2 and N.3 show the inputs values adopted for the different inputs entering

in the numerical analysis. 1

Parameter Value Ref.

GF 1.1663787(6) · 10−5 GeV [63]

MZ 91.1876(21) GeV [63]

MW 80.385(15) GeV [63]

µt 163.427 GeV Our analysis

µW 80.385 GeV [63]

µb 4.18 GeV [63]

Table N.1: Electroweak parameters.

1In Tables N.1, N.2 and N.3, “Our analysis” means that we have used the Mathematica package

RunDec [286] to extract the value.
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Parameter Value Ref.

αs(µt) 0.1086(10) Our analysis

αs(MZ) 0.1182(12) [63]

αs(µW ) 0.1205(12) Our analysis

αs(µb) 0.2243(45) Our analysis

αs(3 GeV) 0.2521(58) Our analysis

Table N.2: QCD coupling constant.

Parameter Value Ref.

mpole
t 173.21(87) GeV [63]

mt(mt) 163.427+0.828
−0.829 GeV Our analysis

mt(µW ) 173.235+0.946
−0.947 GeV Our analysis

mb(µt) 2.75(2) GeV Our analysis

mb(µW ) 2.91(2) GeV Our analysis

mb(mb) 4.18+0.04
−0.03 GeV [63]

mc(µt) 0.623(15) GeV Our analysis

mc(µW ) 0.660(16) GeV Our analysis

mc(mc) 1.27(3) GeV [63]

ms(µt) 0.054+0.005
−0.002 GeV Our analysis

ms(µW ) 0.057+0.005
−0.002 GeV Our analysis

ms(µb) 0.082+0.007
−0.003 GeV Our analysis

ms(3 GeV) 0.087+0.007
−0.004 GeV Our analysis

ms(2 GeV) 0.096+0.008
−0.004 GeV [63]

md(µt) 0.0026+0.0003
−0.0002 GeV Our analysis

md(µW ) 0.0028+0.0003
−0.0002 GeV Our analysis

md(µb) 0.0040+0.0004
−0.0003 GeV Our analysis

md(3 GeV) 0.0043+0.0005
−0.0004 GeV Our analysis

md(2 GeV) 0.0047+0.0005
−0.0004 GeV [63]

Table N.3: Quark masses.
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Computation of (γe)
(0)
12

O.1 Feynman diagrams

In Figure O.1, we show all the Feynman diagrams that contribute to (γe)(0)
12 . In total,

there are six diagrams with dq couplings inside contributing to d̃q .

q q

g

γ

(a)

q q

g

γ

(b)

q q

g

γ

(c)

q q

g

γ

(d)

q q

g

γ

(e)

q q

g

γ

(f)

Figure O.1: Feynman diagrams contributing to (γe)(0)
12 .
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O.2 Feynman Rules
γ

−i 1
k2 − i ε

[
gµν − (1− ξγ)kµkν

k2

]

i j

γµ

p3 −→

p1 p2
− ie(γµ)ji

i j

γµ

p3 −→

p1 p2
Dqe (σµνγ5)ji p3 ν where Dq ≡ −Cq1(µ)Qqmq

O.3 Computation

In this section, we compute the Feynman diagrams of Figure O.1. The technical prescrip-

tions adopted for the computation of these diagrams:

1. All the Feynman rules are provided in Appendices B and O.2 .

2. We take the limit of external quark masses equal to zero.

Let us start with the computation of the Feynman diagrams shown in Figure O.1:

Feynman diagram (1 a)

Assuming the momentum directions presented in Figure O.2, the amplitude of the Feyn-

man diagram (1 a) can be written as:

MX
(1 a) =

∫ dDk
(2π)D

(
i gµµ1

k2

)
·

·
[
ūq(p2) i e γµ

i (/p2 + /k +mq)
(p2 + k)2 −m2

q

i gs γ
X T a

i (/p1 + /k +mq)
(p1 + k)2 −m2

q

(
e Dq σ

µ1ν γ5 kν
)
uq(p1)

]
,
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which after some Dirac algebra and putting all external quark masses equal to zero, it

becomes

MX
(1 a) = i e2 gs Dq

[
ūq(p2) γµ γα1 γ

X γα2 σ
µν γ5 T

a uq(p1)
]
Aα1 α2
ν (p1, p2) , (O.3.1)

where

Aα1 α2 ν(p1, p2) ≡
∫ dDk

(2π)D
(p2 + k)α1(p1 + k)α2kν

(p2 + k)2(p1 + k)2k2 . (O.3.2)

We have omitted the gluon polarization, since it is not necessary for our purposes.

q q

g

γ

p3 −→

p1−→
p2−→

p2 + k
−→

p1 + k
−→
yk

X, a

µ1 µ

Figure O.2: Feynman diagram (1 a) showing momentum directions.

Feynman diagram (1 b), (1 c), (1 d), (1 e) and (1 f)

Following a similar proceeding as in the diagram (1 a), we obtain the following amplitudes

for the rest of diagrams depicted in Figure O.1:

MX
(1 b) = −i e2 gs Dq

[
ūq(p2) σµν γ5 γα1 γX γα2 γµT

a uq(p1)
]
Aα1 α2
ν (p1, p2) , (O.3.3)

MX
(1 c) = i e2 gs Dq

pα1
1
p2

1

[
ūq(p2) γX T a γα1 γµ γα2 σ

µν γ5 uq(p1)
]
Bα2
ν (p1) , (O.3.4)

MX
(1 d) = − i e2 gs Dq

pα1
1
p2

1

[
ūq(p2) γXT aγα1 σ

µνγ5 γα2 γµ uq(p1)
]
Bα2
ν (p1) , (O.3.5)

MX
(1 e) = − i e2 gs Dq

pα2
2
p2

2

[
ūq(p2) γµ γα1 σ

µν γ5 γα2 γ
XT a uq(p1)

]
Bα1
ν (p2) , (O.3.6)
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MX
(1 f) = i e2 gs Dq

pα2
2
p2

2

[
ūq(p2) σµν γ5 γα1 γµ γα2 γ

X T a uq(p1)
]
Bα1
ν (p2) , (O.3.7)

where

Bαν(p) ≡
∫ dDk

(2π)D
(p+ k)α kν

(p+ k)2k2 . (O.3.8)

Since we are going to compute the anomalous dimensions, we are only interested in ultra-

violet (UV) divergences. The UV parts of Aαβν(p1, p2) and Bαν(p) are given by

Aαβν(p1, p2) = i µ2 ε

(4π)2 12 ε̂

[
gαβ (p1 + p2)ν + gνβ (p1 − 2 p2)α

− gνα (p2 − 2 p1)β
]
, (O.3.9)

Bαν(p) = i µ2 ε

(4π)2 12 ε̂

[
gαν p2 + 2 pνpα

]
. (O.3.10)

Adding up all the contributions, we obtain the following total amplitude

MX
(1) = − i e2 gs Dq

(
µ2 ε 4

(4 π)2 ε̂

)
(p1 + p2)X [ūq(p2) γ5 T

a uq(p1)] . (O.3.11)

O.4 Extracting the anomalous dimension matrix

Using Eqs. (O.3.11) and the unrenormalized amplitude which is given by

MX
(1)
∣∣(0) = − i D̃q gs (p1 + p2)X [ūq(p2) γ5 T

a u(p1)] , (O.4.12)

we obtain

〈Oq1〉
(0) = Z12 〈Oq2〉 , (O.4.13)

where

Z12 = α(µ)
4 π

1
ε̂

4 ≡
[
− 1

ε̂

]
(Ẑ1)12(e) , (O.4.14)
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and α(µ) ≡ µ2ε e2
4π . Therefore, the anomalous dimension is given by

γ̂(g) = − 2 g2 ∂ Ẑ1(g)
∂ g2 , (O.4.15)

where g in this case is the electric charge e. Finally, we get

α(µ)
4π (γ(2))12 = − 2 e2 ∂ (Ẑ1)12(e)

∂ e2 = α(µ)
4π 8 , (O.4.16)

and then

(γ(2))12 = 8 , (O.4.17)

which is in perfect agreement with the results present in the literature [310].
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Resum de la tesi

El coneixement actual sobre l’estructura de la matèria és el resultat d’un enorme esforç

experimental i teòric. El nostre Univers es compon de partícules elementals governades

per les quatre forces fonamentals: gravitatòries, febles, electromagnètiques i fortes.

El model estàndard (SM) de la física de partícules és la descripció teòrica més senzilla de

com es relacionen aquestes partícules i forces, excepte la força gravitatòria. Al llarg dels

anys, el SM ha estat capaç d’explicar totes les dades experimentals amb gran precisió,

culminant en 2012 amb el descobriment del bosó de Higgs amb una massa de 125 GeV .

La seua elegància, simplicitat i alta predictibilitat han convertit el SM en el millor marc

de referència teòric fins ara.

Tot i ser una descripció satisfactòria de la realitat, hi ha alguns fenòmens que el SM no

explica, com ara la gran asimetria de matèria-antimatèria. A l’univers prematur, el Big

Bang hauria de tenir com a resultat les mateixes proporcions de matèria i antimatèria,

però les observacions indiquen que tot el que ens envolta està fet de matèria excepte per

una petita quantitat d’antimatèria. Un dels grans reptes de la física és entendre per què

observem aquesta asimetria.

La violació de CP és un dels ingredients necessaris per a generar aquesta gran asimetria.

La quantitat de violació de CP present al SM no és suficient per a obtindre completament
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l’asimetria observada. Per tant, les extensions del SM amb noves fonts de violació de CP

podrien explicar la proporció d’aquesta asimetria.

P.1 Objectius assolits

L’objectiu principal d’aquest treball és precisament l’estudi dels sistemes fenomenològics

amb violació de CP.

Al Capítol 1, presentem una visió general del SM que mostra com sorgeixen les seues

interaccions dels principis de simetria. L’última part està dedicada al sector de sabor al

SM, on s’introdueixen els fenòmens de violació de CP a través de la matriu Cabibbo-

Kobawashi-Maskawa (CKM). Finalment, es presenten les diferents formes en què aquest

fenomen pot aparéixer a la natura.

El concepte de teoria efectiva de camps (EFT) s’introdueix al Capítol 2, proporcionant un

potent marc teòric per als sistemes físics estudiats al llarg d’aquesta tesi.

La determinació teòrica de la relació directa de violació de CP ε′/ε en K → ππ al SM és

la primera aplicació fenomenològica presentada en aquest treball al Capítol 3. Utilitzant

la teoria de pertorbacions quirals (χPT), obtenim una predicció del SM que està d’acord

amb el resultat experimental. Al Capítol 4, realitzem una actualització de la predicció

anterior incloent les correccions conegudes d’isospín.

Considerant una extensió prou general del SM, el model Aligned-Multi-Higgs-Doublet

(AMHDM), al Capítol 5, realitzem un càlcul a un loop de les contribucions de curta

distància per a la mescla de mesons neutres. Aquesta extensió permet acomodar noves

fonts de violació de CP que podrien reproduir l’asimetria observada. Finalment, restringim

fortament aquestes fonts a partir de les dades de sabor actuals.

Al Capítol 6, obtenim nous límits per als moments dipolars elèctrics (EDM) dels quarks

pesats charm i bottom utilitzant les equacions del grup de renormalització (RGE) junt

amb els forts límits dels seus chromo-EDM.
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P.2 Metodologia

La metodologia utilizada al llarg d’aquest treball és pot trobar als Capítols 1 i 2. A

continuació fem un resum dels punts més rellevants.

P.2.1 El model estàndard de la física de partícules

El model estàndard electrofeble (EWSM) és una teoria quàntica de camps basada en el

grup de simetria gauge SU(2)L ⊗ U(1)Y . El EWSM és capaç de descriure i unificar les

interaccions electromagnètiques i dèbils a través de bosons de gauge, un fotó γ sense massa

per a la interacció electromagnètica i 3 bosons massius febles, dos carregats i un neutre,

W± i Z0 .

Pel que fa al sector fermiònic, aquest s’organitza en tres generacions amb propietats idèn-

tiques. Les úniques diferències són les seues masses i els seus nombres quàntics. El

contingut de partícules en cada generació s’organitza de la següent manera

• Primera generació:

νe
e−


L

,

u
d′


L

, e−R , uR , d′R

• Segona generació:

νµ
µ−


L

,

 c
s′


L

, µ−R , cR , s′R

• Tercera generació:

ντ
τ−


L

,

 t
b′


L

, τ−R , tR , b′R

amb les seues antipartícules corresponents. Podem observar com cada generació consta d’1

camp (1 camp de leptons) més 3 camps (1 camp de quark amb 3 colors) que transformen

com a doblets de SU(2)L , i a més d’1 camp (1 camp de leptons) més 6 camps (2 camps

de quark amb 3 colors) que es transformen com a singlets de SU(2)L.

P.2.1.1 Interaccions al model estàndard

El Lagrangià cinètic del sector fermiònic és invariant sota transformacions globals del grup

de simetria SU(2)L ⊗ U(1)Y . Si volem que aquest Lagrangià es mantinga invariant local
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sota aquest grup de simetria, hem d’imposar el que es coneix com a principi d’invariància

gauge. Aquest principi consisteix a substituir les derivades de Dirac per derivades co-

variants. Substituint totes les derivades fermiòniques per les seues derivades covariants

corresponents, les quals venen donades per l’equació (1.1.20), s’obtenen les interaccions

que constituïxen el SM, que es poden classificar com:

• Corrents carregades: interaccions entre fermions i els bosons W± .

qd
g
√

2
PL

qu

W

l− g
√

2
PL

νl

W

Figure P.1: Vèrtexs de Feynman per a les interaccions de corrents carregades.

• Corrents neutres: interaccions entre fermions i els bosons γ i Z0 .

f
eQf

f

γ

f
e

2 sθcθ
(vf − afγ5)

f

Z

Figure P.2: Vèrtexs de Feynman per a la interacció de corrent neutra.
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• Auto-interaccions dels bosons febles: interaccions entre els bosons γ, Z0 iW± .

γ, Z

W+

W−

W+

W−

γ, Z

γ, Z

W+

W−

W+

W−

Figure P.3: Vèrtexs de Feynman per a les auto-interaccions dels bosons febles.

P.2.1.2 El mecanisme de Higgs

En l’apartat anterior, hem vist com el principi d’invariància gauge ha sigut capaç de

generar totes les interaccions del SM. No obstant això, experimentalment s’observa que els

bosons febles són massius. Com que la simetria de gauge no permet termes de masses per a

aquests bosons, un nou ingredient és requerit per a resoldre aquest problema, el mecanisme

de Higgs. El mecanisme de Higgs es basa en el trencament de simetria espontània (SSB)

que apareix quan un sistema definit per un Lagrangià que és simètric sota una determinada

transformació, té un estat de buit que no és simètric. D’aquesta manera el bosó d’Higgs

adquireix un valor esperat en el buit que indueix una ruptura espontània de la simetria

electrofeble, donant lloc a les masses dels bosons W± i Z0 del SM.
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P.2.1.3 Conseqüències del mecanisme de Higgs: el Lagrangià de Yukawa

El mecanisme de Higgs requereix la introducció d’un doblet escalar de SU(2)L que permet

afegir nous termes invariants sota la simetria SU(2)L⊗U(1)Y . Aquestes noves interaccions

són les responsables de generar les masses de tots els fermions del SM. La diagonalització

d’aquestes masses te fortes implicacions físiques que constituïxen els pilars de la física del

sabor al SM,

• Les corrents neutres no canvien sabor al SM, conegut com el mecanisme Glashow-

Iliopoulos-Maiani (GIM). El Lagrangià de les corrents neutres no canvia quan

s’expressa en termes dels estats propis de massa.

• Els corrents carregades són les úniques interaccions que cambien sabor al SM. Quan

expressem els estats febles del Lagrangià de corrents carregades en termes dels es-

tats de massa, apareix una matriu unitaria coneguda com la matriu CKM. Aquesta

matriu és la responsable de la violació de CP al SM com veurem a continuació.

dj Vij

ui

W

Figure P.4: Vèrtex Feynman per a les interaccions amb canvi de sabor.

P.2.1.4 La matriu CKM

A la literatura, la matriu CKM es pot trobar en diferents parametritzacions equivalents.

Una d’aquestes parametritzacions és la de Wolfenstein, que inclou tres paràmetres de

mescla (λ,A, ρ) i a més una fase η ; aquesta última és la responsable de descriure el

fenomen de violació de CP al SM, tal com s’observa a l’equació 1.3.68. A la matriu
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s’observa que les transicions diagonals (Vud, Vcs, Vtb) són O(1) , les transicions entre la

primera i la segona generació (Vus, Vcd) sónO(λ) , les transicions entre la segona i la tercera

generació (Vcb, Vts) són O(λ2) i les transicions entre la primera i la tercera generació (Vub,

Vtd) són O(λ3) .

Figure P.5: Processos utilitzats per determinar els elements de la matriu CKM [29].

P.2.1.5 Unitaritat de la matriu CKM

Una de les propietats més interessants de la matriu CKM és la unitarietat. Com que

aquesta ens permet provar la consistència del SM, és important determinar els elements

de la matriu amb gran precisió. La determinació d’aquests elements suposa un repte perquè

consisteix en l’estudi de les desintegracions hadròniques que introdueixen grans incerteses

teòriques. La Figura P.5 mostra quins processos s’utilitzen per determinar els elements de

la matriu CKM. Una violació de l’unitaritat podria indicar signes de nova física més enllà

del SM. Per exemple, amb una quarta generació o uns quarks pesats exòtics, la submatriu

3 × 3 deixaria de ser unitària conduint a una determinació incorrecta d’alguns elements

de la matriu CKM.
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Les restriccions experimentals actuals es mostren a la Figura P.6. Un dels costats del

triangle s’ha calculat utilitzant l’equació (1.3.70) a través de |Vub/Vcb| (regió verda fosca).

L’altre costat es pot obtenir utilitzant la mescla B0
d − B0

d (regió groga), ∆Md = 0.5064±

0.0019ps−1 [31,32]. També s’obté informació addicional de la mescla de ∆Ms = 17.757±

0.021 ps−1 [31, 32] i de la fracció experimental ∆Md/∆Ms (regió taronja). A més, les

restriccions sobre el paràmetre η es determinen a través de K0 → ππ amb el valor mesurat

de |εK | = (2.228± 0.011) · 10−3 [31] que determina la regió parabòlica de color verd clar.

El mesó B0 es desintegra als estats finals autoconjugats de CP que proporcionen maneres

independents de determinar els angles del triangle d’unitaritat. Una de les desintegracions

més importants és B0
d −→ J/ψKS , que ens dóna una molt bona mesura de l’angle

β , sin(2β) = 0.691 ± 0.017 [32]. Les determinacions dels altres dos angles α i γ , també

s’inclouen en l’ajust global. Els diferents conjunts de dades encaixen molt bé i proporcionen

una determinació molt precisa dels vèrtexs del triangle d’unitaritat.

γ
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dm∆ K
ε

sm∆ & dm∆

ubV

βsin 2
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Figure P.6: Restriccions experimentals al triangle d’unitaritat del SM [28].
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P.2.1.6 Tipus de violació de CP en sistemes de mesons neutres

La violació de CP apareix en sistemes de mesons neutres a través de dos tipus de fenòmens,

mezcla i desintegracions. A continuació fem una classificació de les tres formes de violació

de CP que poden aparèixer a la natura [43].

1. Violació de CP a la desintegració, també coneguda com a violació directa de

CP.

2. Violació de CP a la mescla, també coneguda com a violació indirecta de CP.

3. Violació de CP en la interferència entre desintegració sense mescla i desin-

tegració amb mescla.

Les aplicacions dels Capitols 3 i 4 corresponen al primer cas, mentre que l’aplicació del

Capítol 5 al segon cas.

P.2.2 Teoria de camps efectius

Una teoria de camps efectius (EFT) és una descripció simplificada d’una teoria física

subjacent. La EFT proporciona un excel·lent formalisme per a descriure problemes físics

que impliquen diverses escales energètiques. Aquesta es basa en utilitzar els graus de

llibertat adequats per a descriure un sistema físic a una determinada escala d’energia. Per

exemple, no es pot crear una partícula pesada (un grau de llibertat) a escales energètiques

més petites que la seua massa, per tant no pot ser un grau de llibertat dinàmic de la

teoria efectiva de baixa energia. Les EFTs funcionen millor quan hi ha una gran diferència

d’energia entre l’escala que es vol estudiar i l’escala d’energia de la teoria subjacent. La

dinàmica a baixes energies no depén dels detalls de la dinàmica a altes energies, això es

garanteix pel teorema del desacoblament [51] que indica que els graus de llibertat de les

partícules pesades es desvinculen a escales energètiques molt inferiors a la seua massa.

Llavors, la física d’alta energia o la física més enllà del SM se suprimeix a baixes energies.

Tot sembla indicar que l’extracció d’informació sobre la teoria fonamental a les mesures de

baixa energia no es possible. No obstant això, les indicacions de nova física es poden trobar
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a través de petites desviacions dels paràmetres de baixa energia del Lagrangià efectiu, ja

que codifiquen la informació en termes de masses que han deixat de ser dinàmiques a eixa

escala. Per tant, els experiments d’alta precisió a baixa energia es poden utilitzar per

estudiar dinàmiques d’alta energia i proporcionar una alternativa als experiments d’alta

energia.

P.2.2.1 Lagrangià efectiu i comportament dels seus operadors

Un Lagrangià efectiu es pot expressar com una suma finita d’operadors locals Oi multi-

plicats per certs coeficients Ci:

Leff =
∑
i

Ci Oi . (P.2.1)

Aquests coeficients codifiquen tota la informació d’alta energia en termes de les masses

pesades, mentre que els operadors Oi descriuen la dinàmica a baixes energies. Els diferents

operadors Oi es poden classificar utilitzant anàlisis dimensional (~ = c = 1). Definint la

dimensió de l’operador Oi com a Edi , la dimensió dels coeficients Ci ha de ser ΛD−di , on

Λ és una escala d’alta energia. Llavors, l’acció efectiva es pot escriure com:

Seff ≡
∫

dDx Leff =
∑
i

ci

(
E

Λ

)di−D
, (P.2.2)

on ci són constants adimensionals de O(1) . La dependència energètica donada per

l’equació (P.2.2) condueix als següents tipus d’operadors:

• di > D: aquests operadors s’anomenen irrellevants, ja que la seua contribucio es

feble a baixes energies. Tanmateix, això no vol dir que la seua contribució no siga

important, de fet són fonamentals en alguns casos en què són l’únic tipus d’operadors

que contribueixen. Aquests operadors es coneixen com a no renormalitzables.

• di = D: aquests tipus d’operadors s’anomenen marginals. Les seues contribucions no

depenen de E/Λ , amb l’excepció de correccions logarítmiques. Aquests operadors

corresponen a operadors renormalitzables.
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• di < D: en aquest cas s’anomenen rellevants i són importants a baixes energies.

En general, solen estar prohibits per simetries, ja que causen problemes degut

als seus efectes a altes escales energètiques. Aquests operadors reben el nom de

super-renormalitzables.

Es interesant destacar la relació entre la dimensió dels operadors i la precisió amb què

volem realitzar les nostres prediccions. Per exemple, imaginem que volem calcular algun

procés fenomenològic fins a un cert nivell de precisió ε, per tant hem de truncar el Lagrangià

per a aquells operadors amb dimensió di que satisfan

di . D + ln ε
ln
(
E
Λ

) , (P.2.3)

que s’obte de l’equació (P.2.2).

P.2.2.2 Un exemple de EFT: la teoria de Fermi de les interaccions febles

Per tal d’il·lustrar els aspectes generals de les EFTs, a continuació considerem un exemple

de teoria efectiva al Lagrangià de corrents carregades donat per l’equació (1.2.65). Aquest

Lagrangià juga un paper molt important en algunes de les aplicacions fenomenològiques

presentades al llarg d’aquesta tesi, en particular als Capítols 3, 4 i 5. A baixes energies els

bosons W± deixen de ser graus de llibertat dinamics del sitema i com a resultat obtenim

una suma infinita d’operadors locals que es pot truncar a un determinat ordre, com hem

vist a l’equació (P.2.1). Després de tot aquest procés, obtenim el que es coneix com la

teoria de Fermi de les interaccions febles:

Lweakeff = −4 GF√
2
J †µ J µ + O

(
p2

M2
W

)
, (P.2.4)

on GF√
2 ≡

g2

8M2
W

es la constant de Fermi i

J †µ =
∑
ij

Vij ūiγµPLdj +
∑
l

ν̄lγµPLl . (P.2.5)

La constant d’acoblament associada a aquest operador està suprimida per dues potències

deMW , que és el comportament típic que es troba a l’integrar els camps pesats de la teoria
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fonamental. La teoria de Fermi es va proposar per a descriure les interaccions febles abans

de la formulació del SM amb els seus bosons de gauge. Durant aquest temps, hi havia una

forta creença que l’escala de la interacció feble hauria d’estar al voltant de
(√

2
GF

) 1
2 ≈ 102

GeV . Llavors, el descobriment dels bosons febles al voltant d’aquesta escala va ser un

èxit molt important per a la comunitat de física de partícules, no sols per l’unificació

d’electromagnetisme amb l’interacció feble, sinó també per la poderosa predicció a través

del raonament de les EFTs.

El Lagrangià donat per l’equació (P.2.4) esta molt lluny de ser una descripció realista,

ja que no té en compte les interaccions de la cromodinàmica quàntica (QCD) que són

rellevants a baixes energies. Aquestes correccions s’han de tindre en compte a la nostra

EFT. Les contribucions pertorbatives de QCD estan codificades pels coneguts coeficients

de Wilson Ci mentre que els efectes no pertorbatius apareixen als operadors Oi , com

s’observa en

Lweakeff = −4 GF√
2
∑
i

λi Ci(µ)Oi , (P.2.6)

on λi conté productes d’elements de la matriu CKM. Els operadors Oi es construeixen

amb els graus de llibertat lleugers (camps de quarks i leptons) utilitzant els principis

de simetria. En canvi, els coeficients de Wilson Ci són les constants d’acoblament dels

operadors Oi , que ens diuen com de grans són les contribucions d’aquests operadors per

a un determinat procés fenomenològic. Els coeficients de Wilson només depenen de les

masses de les partícules pesades que s’han integrat. Els valors dels coeficients de Wilson

es poden calcular tenint en compte que:

1. Els coeficients de Wilson Ci s’han de determinar de forma pertorbativa a escales

d’alta energia en alguna teoria fonamental. Això es pot fer perquè el QCD té llibertat

asimptòtica.

2. Per construcció, la EFT a baixes energies té el mateix comportament infraroig que

la teoria fonamental, per tant les diferències només apareixen a altes energies on la
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Higher dimension operators

Figure P.7: Imatge de la EFT a la mescla de B0
s .

teoria fonamental té graus de llibertat addicionals, com per exemple camps de nova

física ΦNP .
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3. La determinació de l’amplitud d’alguns processos fenomenològics (a través del càlcul

de diagrames de Feynman) tant a la teoria efectiva com a la teoria fonamental permet

determinar els coeficients de Wilson Ci(µH) per a escales energètiques µH > MW a

través de la condició de matching:

Aeff = Afun −→
∑
i

λi Ci(µH) 〈f |Oi(µH)|i〉 =
∑
i

Xi(µH) 〈f |Oi(µH)|i〉 ,

on |i〉 and |f〉 són els estats de les partícules inicials i finals, mentre que Xi són

funcions que depenen de paràmetres de la teoria fonamental.

4. Finalment, utilitzant les RGEs podem transformar els coeficients de Wilson Ci(µH)

d’una escala d’alta energia µH > MW en uns altres coeficients de Wilson a una

escala més baixa µL �MW .

A la figura P.7, s’il·lustren els punts anteriors amb un exemple del que ocorre a la mescla

de mesons B0
s en alguna extensió del SM amb noves partícules ΦNP . S’observa com els

graus de llibertat dinàmics són integrats per a energies menors que la seua massa.

P.3 Resultats i conclusions

El SM de la física de partícules es considera actualment com el marc teòric de referència

de qualsevol teoria de NP perquè al llarg dels anys ha superat amb èxit un gran nombre de

proves experimentals. Hem vist com les seues interaccions surten de principis de simetria

de gauge i com el SSB és capaç de generar les masses dels bosons febles a través del

mecanisme de Higgs. També, hem presentat el sector del sabor, introduint els fenòmens

de violació de CP i les diferents formes en què apareix a la natura. Finalment, hem

introduït l’enfocament EFT que proporciona un marc excel·lent per fer front als diferents

sistemes físics. Les tècniques utilitzades al llarg d’aquest treball s’han il·lustrat a partir

de la teoria de Fermi.

Aquesta tesi se centra en l’estudi de sistemes físics amb violació de CP. Atés que el SM de

la física de partícules no és capaç de predir l’asimètrica proporció de matèria-antimatèria
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observada a l’Univers, es necessiten noves fonts de violació de CP que podrien vindre

d’extensions de SM.

En les següents seccions s’exposaran els resultats i les conclusions assolides en aquesta tesi

doctoral. Informació detallada es pot trobar als Capítols 3, 4, 5 i 6.

P.3.1 Violació directa de CP en la desintegració de K → ππ

En 1988 l’experiment NA31 va presentar la primera evidència d’una violació directa de CP

a les amplituds deK0 → ππ . Més tard, un senyal clara amb una significança estadística de

7.2σ es va establir amb les mostres de dades completes dels experiments de NA31, E731,

NA48 i KTeV, confirmant d’aquesta manera l’existència de la violació de CP associada

a la transició amb canvi de sabor ∆S = 1 tal com va predir el SM. No obstant això, la

predicció teòrica de la relació mesurada de ε′/ε ha sigut objecte d’una forta controvèrsia al

llarg dels anys. Tot i que la física subjacent ja es va aclarir en 2001 , la recent actualització

de les dades de lattice ha revifat de nou el debat teòric. En aquest capítol, revisem l’estat

actual, es discuteix detalladament els diferents ingredients que entren en el càlcul d’aquest

observable i els motius pels quals, en el passat, es van obtenir prediccions contradictòries

per diversos grups. Finalment, es presenta una actualització de la predicció del SM,

que està totalment d’acord amb la mesura experimental, i s’analitzen les perspectives de

millora futures. El contingut d’aquest capítol es basa en Ref. [52] .

P.3.2 Violació d’isospín en la desintegració de K → ππ

Mentre que la simetria d’isospín és una excel·lent aproximació per a la majoria

d’aplicacions fenomenològiques, les violacions d’isospín induïdes per la diferència de massa

de quarks mu −md i la interacció electromagnètica poden generar contribucions grans a

alguns observables. Aquest és el cas de la relació directa de violació de CP ε′/ε , on es pro-

dueix una subtil cancel·lació numèrica entre les dues contribucions de l’isospín tal com es

discuteix a la Secció 3.4. L’esforç teòric actual per predir aquest observable amb una pre-

cisió similar a l’experimental requereix una millor comprensió dels efectes de trencament
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de l’isospín. El que permetria testejar diferents escenaris de nova física (NP). L’avaluació

del paper de les diferents correccions d’isospín és una de les principals motivacions del

Capítol 4, on duem a terme una reanàlisi de les contribucions de violació d’isospín a les

amplituds de K → ππ . Per altra banda, presentem una revisió numèrica completa de

la relació directa de violació de CP ε′/ε , on aquestes correccions tenen un paper molt

important. Després d’incloure els efectes actualitzats de violació d’isospín, obtenim que

la predicció de SM

Re
(
ε′/ε

)
=
(
13 + 6
− 7

)
· 10−4 ,

torna a estar d’acord amb la seua relació mesurada experimentalment. Com al Capítol 3,

la incertesa està dominada per la nostra ignorància actual sobre contribucions suprimides

d’ordre 1/NC a alguns acoblaments chirals de baixa energia. El valor central de ε′/ε és

lleugerament més petit que l’anterior a causa de l’augment de Ωeff ,

Ωeff = (12.1 + 9.0
− 8.8) · 10−2 .

P.3.3 Mescla de mesons neutres en extensions del Model Estàndard

Al Capítol 5, presentem un càlcul complet, a un loop, dels coeficients de Wilson per a la

mescla de mesons neutres al AMHDM on contemplem la possibilitat d’ampliar els N − 1

doblets de Higgs a octets escalars de color. Aquest tipus de procés apareix a nivell de loop

al SM, per tant la mescla de mesons neutres és molt sensible a les contribucions de NP.

Finalment, particularitzant els nostres resultats analítics a l’ampla casuística de models

de NP i utilitzant les dades experimentals de les factories de sabor actuals, hem obtingut

restriccions combinades per als paràmetres que caracteritzen aquests models.

P.3.4 Millora als moments dipolars electrics dels quarks pesats

A l’última aplicació que es pot trobar al Capítol 6, ens centrem a l’estudi dels EDMs dels

quarks pesats. L’acoblament del EDM d’un quark produeix una contribució al chromo-

EDM mitjançant diagrames a un loop de fotons. Incloent aquestes correccions en les RGE
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i utilitzant els estrictes límits dels seus chromo-EDMs, hem obtingut els següents límits

als EDMs dels quarks charm i bottom.

|dc(mc)| < 1.5× 10−21 e cm ,

|db(mb)| < 1.2× 10−20 e cm ,

que milloren els anteriors en tres ordres de magnitud. Aquests nous límits podrien re-

stringir fortament algunes de les extensions proposades per al SM.
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