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RESUMEN  

INTRODUCCIÓN 

EL ÚTERO: ANATOMÍA Y ENDOCRINOLOGÍA 

El aparato reproductor femenino está formado por los genitales externos (vulva y perineo) y 

los genitales internos que pueden dividirse a su vez en dos partes: el ovario, glándula en la 

cual se forman los ovocitos, y un sistema de conductos que incluye las trompas de Falopio, el 

útero y la vagina, cuya función es el transporte de los ovocitos desde la superficie ovárica hasta 

la cavidad uterina.  

El útero es un órgano hueco con forma de pera invertida que consta de tres partes: fondo, 

cuerpo y cérvix. Su función es alojar y alimentar al ovocito fecundado durante el embarazo, 

proceso durante el cual aumenta su tamaño entre 4 y 5 veces. La pared uterina está formada 

por tres capas: endometrio, miometrio y perimetrio. El endometrio, es la capa mucosa que 

recubre el interior de la cavidad uterina la cual a su vez consta de: la capa funcional, que se 

desprenden durante la menstruación, y la capa basal que permanece y se encarga de 

regenerar la capa funcional. El miometrio, la capa más gruesa (12-15mm) y más vascularizada 

del útero, se encuentra por debajo del endometrio y está formada por células musculares lisas 

embebidas en una abundante matriz extracelular rica principalmente en colágeno. Durante el 

embarazo, las células musculares se dividen (hiperplasia) y crecen (hipertrofia), de modo que 

el útero gestante aumenta su tamaño mientras el endometrio nutre al embrión. Finalmente, 

el perimetrio, la capa más externa que se conoce como serosa y cubre el cuerpo y fondo 

uterinos. 

La matriz extracelular (MEC) del miometrio juega un importante papel en los procesos 

de crecimiento y remodelación del útero, característicos del embarazo, parto y posparto, 

debido a sus funciones relacionadas con la adhesión, comunicación célula-célula y 

diferenciación. La MEC es una red tridimensional de macromoléculas extracelulares que 

proporciona soporte estructural y bioquímico a las células adyacentes. Uno de los principales 

componentes de la MEC son las fibras de colágeno, entre las cuales se distribuyen las células 

musculares lisas. El colágeno no es una proteína única, si no que forma parte de una familia 
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de proteínas que engloba 29 tipos de colágenos los cuales presentan tres cadenas 

polipeptídicas ensambladas en una estructura de triple hélice. Los principales tipos de 

colágeno del miometrio son el Tipo I, Tipo III y Tipo IV, responsables de la fuerza mecánica del 

tejido uterino. Además del colágeno, la MEC del miometrio está formada por otros 

componentes tales como proteoglicanos, implicados en el control del crecimiento celular y la 

diferenciación; elastina, que proporciona elasticidad al útero; integrinas, implicadas en 

procesos de adhesión, señalización y supervivencia celular, y fibronectina, que participa en la 

organización de los diferentes componentes de la MEC, así como en procesos de migración, 

adhesión, crecimiento y diferenciación celular y fibrosis.  

Los cambios que experimenta la MEC del útero están controlados por el sistema de 

metaloproteinasas de matriz extracelular (MMPs por sus siglas en inglés; matrix 

metalloproteinases). Las MMPs son enzimas con actividad proteolítica reguladas por los 

inhibidores de tejido de MMPs (TIMPs por sus siglas en inglés; tissue inhibitors of 

metalloproteinases). A su vez, la expresión de MMPs y TIMPs está influenciada por citoquinas 

proinflamatorias, hormonas o factores de crecimiento tales como Transforming Growth 

Factor β (TGFβ). El equilibrio entre la expresión de MMPs y TIMPs es esencial en el control de 

la actividad del sistema de MMPs, fundamental en los cambios estructurales asociados con el 

ciclo menstrual, así como en el embarazo. Consecuentemente, el control inapropiado de dicho 

sistema daría lugar a condiciones patológicas tales como ovario poliquístico, endometriosis y 

miomas uterinos.  

En lo referente a la endocrinología del útero, la edad reproductiva de la mujer se caracteriza 

por el ciclo menstrual, el cual es el resultado de cambios mensuales cíclicos en las tasas de 

secreción de las hormonas sexuales, controlados por el eje hipotálamo-hipófisis-ovario. Este 

control comienza en el hipotálamo donde la hormona liberadora de la gonadotropina (GnRH 

por sus siglas en inglés; gonadotropin-releasing hormone) es liberada en pulsos y desde donde 

viaja hasta la hipófisis. La liberación pulsátil de la GnRH es crucial para la función reproductiva, 

lo cual implica que un aumento o una disminución de GnRH apaga todo el sistema. En la 

hipófisis, la GnRH estimula la síntesis de dos gonadotropinas encargadas del control del ovario: 

la hormona luteinizante (LH por sus siglas en inglés; luteinizing hormone) y la hormona folículo 

estimulante (FSH por sus siglas en inglés; follicle stimulating hormone).  
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El ciclo menstrual incluye el ciclo ovárico y el ciclo endometrial, los cuales ocurren al mismo 

tiempo y están altamente coordinados a través de interacciones mutuas. 

El ciclo ovárico presenta dos fases separadas por la ovulación: la fase folicular y la fase lútea. 

Durante la fase folicular, la FSH es la gonadotropina predominante, la cual estimula el 

crecimiento del folículo ovárico y controla la producción de estrógenos en el ovario. Por el 

contrario, la LH predomina durante la segunda fase del ciclo, empezando a ser liberada tras la 

ovulación, momento tras el cual estimula y mantiene la producción de progesterona. A su vez 

ambas hormonas esteroides, estrógenos y progesterona, proporcionan un feedback negativo 

sobre el hipotálamo y la hipófisis resultando en la represión de las hormonas estimulantes.  

El ciclo endometrial consta de dos fases: la fase proliferativa y la fase secretora, que 

corresponden, respectivamente, a las fases folicular y lútea del ciclo ovárico. La fase 

proliferativa comprende el periodo de tiempo entre la menstruación y la ovulación. Durante 

esta fase el tejido endometrial prolifera y crece debido a la acción de los estrógenos. Por otra 

parte, la fase secretora va desde la ovulación hasta la menstruación. En dicho periodo, la 

progesterona producida por el cuerpo lúteo tras la ovulación hace que en endometrio secrete 

glicógeno y moco durante la fase secretora temprana. Posteriormente, en la fase secretora 

media, el endometrio comienza a decidualizarse y convertirse en receptivo para el ovocito 

fertilizado. Finalmente, en la fase secretora tardía, si no se produce embarazo, los niveles de 

estrógenos y progesterona decaen, resultando en una reducción el flujo sanguíneo del 

endometrio lo que causa su involución.  

MIOMAS UTERINOS 

Los miomas uterinos, también llamados leiomiomas, son tumores benignos estrógeno-

dependientes que se desarrollan en la capa de tejido de miometrio. Están formados por 

células musculares lisas y fibroblastos intercalados en una abundante MEC compuesta por 

colágeno, fibronectina y proteoglicanos. La formación de dicha MEC juega un papel 

importante en la expansión tumoral, sin embargo, es importante destacar que los miomas 

uterinos tienen tasas de proliferación in vivo bajas, por lo que son tumores benignos.  

La clasificación de los miomas uterinos está basada en su localización en las capas del útero. 

En base a ella, los miomas submucosos son aquellos que deforman el endometrio o protruyen 
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la cavidad uterina. Los miomas subserosos, protruyen desde la capa más externa del útero (la 

serosa), dando lugar a úteros con forma irregular. Finalmente, los miomas que crecen entre 

la pared uterina se denominan miomas intramurales. La mayoría de los miomas son en 

realidad una combinación de varios de estos tipos.  

Aunque la mayoría de los miomas son asintomáticos, en el 25% de los casos están asociados 

a síntomas graves los cuales pueden dividirse en tres grupos principales: sangrado uterino 

anormal, dolor y/o presión pélvica y disfunción reproductiva. Tanto la localización como el 

tamaño de los miomas uterinos son determinantes en sus manifestaciones clínicas o síntomas. 

Mientras que los miomas subserosos están más relacionados con el dolor y la presión pélvica, 

los miomas submucosos afectan a la integridad endometrial, implantación y la capacidad de 

contracción del miometrio. Como resultado, este tipo de miomas suelen asociarse con 

sangrado uterino anormal, infertilidad y aborto de repetición.  

Aunque la patogénesis de los miomas uterinos es desconocida, tradicionalmente éstos han 

sido definidos como tumores monoclonales, lo que significa que cada mioma surge de la 

expansión clonal de una única célula muscular del miometrio transformada por una mutación. 

Esta definición ha sido apoyada por diferentes evidencias científicas que demuestran la 

presencia de células madre en el miometrio y su implicación en la formación de los miomas 

uterinos. El miometrio humano, como otros tejidos y órganos, contiene una población de 

células madre somáticas que representa el 2% de su población celular total. Las células madre 

de los tejidos adultos, mediante división asimétrica, mantienen su habilidad de auto-

renovación mientras dan lugar a células hijas parcialmente diferenciadas, las cuales se 

diferencian y participan en los procesos de regeneración y reparación. Una de las hipótesis 

más apoyadas acerca de la patogénesis de los miomas propone que las células madre del 

miometrio están implicadas en el desarrollo de los miomas. De acuerdo con esta hipótesis, las 

células madre de los miomas surgirían de una célula madre miometrial la cual sufre una 

transformación tumorigénica debido a una mutación o cambio. Dicha transformación resulta 

en una célula madre con una aumentada capacidad de auto-renovación y proliferación que da 

lugar a un mioma.  

De acuerdo con esta teoría, se han descrito cuatro tipos de miomas en función de sus 

alteraciones genéticas. Los miomas con mutación en el gen mediator complex subunit 12 
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(MED12), los cuales son los más abundantes con una frecuencia entre 48-92% en función del 

grupo étnico. Dada la relación entre MED12 y la ruta de señalización Wingless-type (Wnt)/β-

catenina, se ha demostrado que los miomas con esta mutación presentan esta ruta 

sobreexpresada, resultando en un aumento de la proliferación. Así mismo, la deficiencia de 

MED12 resulta en la activación de la ruta de señalización de TGF, lo cual daría lugar a un 

aumento en la producción de MEC. El resto de las alteraciones genéticas descritas en los 

miomas son los reordenamientos del gen high mobility AT-hook 2 (HMAG2), la inactivación 

del gen fumarate hidratase (FH) y las deleciones del gen collagen type IV α5 (COL4A5) y α6 

(COL4A6). 

Dentro de la patogénesis de los miomas se ha descrito la relación paracrina entre las 

diferentes poblaciones celulares del mioma implicada en el desarrollo de los mismos. En este 

sentido, se conoce que las células madre del miometrio y del mioma expresan menos 

receptores de estrógenos y progesterona en comparación con las células diferenciadas. Del 

mismo modo, se ha descrito que los estrógenos y la progesterona actúan al nivel de las células 

maduras, enviando a través de ellas factores paracrinos a las células madre e induciendo su 

proliferación. En esta interacción paracrina la ruta de señalización Wnt/β-catenina 

desempeña un papel importante.  Más en detalle, se ha propuesto que los estrógenos y la 

progesterona inducen la expresión de ligandos Wnt en las células maduras de mioma y 

miometrio, los cuales a su vez inducen la entrada nuclear de la β-catenina en las células madre 

del mioma, la cual se une a los factores TCF/LEF (por sus siglas en inglés T-cell factor/lymphoid 

enhancer factor) estimulando la expresión de sus genes diana implicados en la regulación de 

procesos celulares importantes como la proliferación. Además, la ruta Wnt/β-catenina puede 

estimular la expresión del TGFβ3, resultando en un aumento en la producción de MEC y 

proliferación celular. El resultado biológico de esta interacción paracrina es un aumento en el 

crecimiento del tumor como consecuencia del aumento en la proliferación celular y la 

formación de MEC, así como una disminución en la apoptosis.  

Los miomas uterinos, al ser dependientes de las hormonas ováricas, representan el tumor 

benigno más común del tracto reproductivo en mujeres con una incidencia del 70% en 

mujeres en edad reproductiva. Además de las hormonas esteroideas otros factores han sido 

relacionados con el riesgo de presentar miomas uterinos: edad, raza, estado reproductivo, 

historia familiar, obesidad y dieta. Así mismo, es importante destacar que se ha demostrado 
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una relación entre el riesgo de miomas uterinos y el déficit de Vitamina D. Diferentes estudios 

han reportado niveles de Vitamina D insuficientes en mujeres con miomas, así como una 

relación inversamente proporcional entre el tamaño del mioma y el nivel de Vitamina D en 

suero.   

Las opciones actuales para el tratamiento de los miomas uterinos pueden dividirse en tres 

grandes grupos: opciones quirúrgicas, no quirúrgicas y médicas. Las opciones quirúrgicas, 

histerectomía o miomectomía, son las más agresivas. Entre las opciones no quirúrgicas se 

encuentran la embolización de la arteria uterina o la miolisis, las cuales presentan la ventaja 

de ser menos agresivas pero sus efectos sobre la fertilidad todavía no han sido aclarados.  

En cuanto a los tratamientos médicos existen opciones que alivian los síntomas de los miomas, 

pero no reducen su tamaño. Dentro de éstos encontramos, los tratamientos no hormonales, 

como los antiinflamatorios no esteroides, los anticonceptivos orales o el dispositivo 

intrauterino que libera progesterona. Por otro lado, los análogos de la GnRH han sido 

ampliamente utilizados para reducir el tamaño de los miomas, aunque en la actualidad están 

en desuso debido a que generan una “pseudomenopausia” que causa sofocos y pérdida de 

densidad mineral ósea además de impedir la gestación durante el periodo de tratamiento. 

Otra de las opciones son los moduladores selectivos de los receptores de progesterona como 

el Tamoxifeno y el Raloxifeno, los cuales a pesar de ser efectivos en el tratamiento de los 

miomas presentan efectos secundarios como cambios endometriales, desarrollo de quistes 

ováricos, sofocos, aumento del apetito y de peso.  En cuanto a los inhibidores de la aromatasa, 

como el Letrozol y el Anastrozol, aunque se ha demostrado que son eficaces disminuyendo el 

tamaño de los miomas, no existen evidencias suficientes para recomendar su uso para el 

tratamiento de miomas sintomáticos. Por último, el uso de moduladores selectivos de los 

receptores de progesterona para el tratamiento de los miomas ha ido creciendo en los últimos 

años. Dentro de este grupo de compuestos cabe destacar el Acetato de Ulipristal, el más 

utilizado en la actualidad por reducir el tamaño de los miomas uterinos, así como el sangrado 

y el dolor asociados a los mismos. Sin embargo, dicho tratamiento causa cambios 

endometriales conocidos como PAEC (del inglés Progesterone receptor modulator Associated 

Endometrial Changes) que impiden administrarlo durante periodos largos. Así mismo, en 

febrero de 2018 la Agencia Española del Medicamento y Productos Sanitarios (AEMPS) 

notificó casos graves de daño hepático en mujeres tratadas con Acetato de Ulipristal, 
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recomendado no iniciar nuevos tratamientos. Finalmente, en julio del mismo año, tras una 

reevaluación del riesgo, la AEMPS restringió el uso de Acetato de Ulipristal como tratamiento 

preoperatorio de los miomas uterinos con una duración máxima de 3 meses.  

Por lo tanto, pese a la gran incidencia de los miomas uterinos y la gran variedad de opciones 

terapéuticas, en la actualidad no existe ningún tratamiento que reduzca el tamaño de los 

miomas de manera eficiente, mínimamente invasiva y sin efectos secundarios.  

POTENCIALES TRATAMIENTOS DE LOS MIOMAS UTERINOS: VITAMINA D 

En la búsqueda de nuevos tratamientos para los miomas uterinos, la correlación negativa 

entre el déficit de Vitamina D y el riesgo de miomas uterinos, junto con el potencial 

terapéutico de dicha vitamina descrito en cáncer, centraron la atención en la Vitamina D como 

posible tratamiento.  

Aunque históricamente se ha considerado a la homeostasis del calcio como la función 

principal de la Vitamina D, más en concreto su metabolito activo 1,25-dihydroxyvitamina D3 

(1,25(OH)2D3) ésta es una hormona multifuncional que también regula múltiples procesos 

celulares como la proliferación y diferenciación celular. En este sentido, diversos estudios han 

demostrado los efectos anticancerígenos de 1,25(OH)2D3 en diferentes tipos de cáncer y se ha 

propuesto que dichos efectos son mediados a través de tres mecanismos principales que se 

detallan a continuación. Por un lado, se ha demostrado que la Vitamina D en células de cáncer 

induce un arresto del ciclo celular, impidiendo la progresión del mismo y, por tanto, 

disminuyendo la proliferación. Por otra parte, la Vitamina D inhibe la ruta de señalización 

Wnt/β-catenina resultando en una disminución de sus genes diana, los cuales participan en 

procesos celulares tales como proliferación celular, migración y diferenciación. Finalmente, se 

ha demostrado que la acción antitumoral de la Vitamina D no es debida solamente a su efecto 

antiproliferativo si no que también es capaz de inducir apoptosis en las células del cáncer.  

Teniendo en cuenta los efectos anticancerígenos de la Vitamina D descritos en cáncer, los 

cuales proponen a esta vitamina como un posible tratamiento para inhibir el crecimiento 

tumoral, y la correlación entre déficit de Vitamina D y el riesgo de miomas, diversos estudios 

han centrado su interés en elucidar si dicha vitamina tiene efectos antiproliferativos sobre los 

miomas. En este sentido diversos estudios in vitro han demostrado que la Vitamina D es capaz 
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de inhibir la proliferación y la producción de proteínas de la MEC, así como aumentar la 

apoptosis en una línea celular de miomas humanos. De manera similar, estudios in vivo han 

analizado el efecto del tratamiento con Vitamina D en los miomas de ratas Eker y miomas 

formados en ratones a partir de una línea celular derivada de miomas de ratas Eker, 

corroborando que dicho tratamiento disminuye el tamaño de los mismos. Finalmente, un 

estudio llevado a cabo en pacientes con miomas uterinos y déficit de Vitamina D demostró 

que la suplementación con dicha vitamina mantuvo el tamaño de los miomas tras un año de 

tratamiento.  

Sin embargo, hasta la fecha no existe ningún estudio que evalúe en profundidad el efecto de 

la Vitamina D sobre los mecanismos moleculares implicados en el desarrollo de los miomas 

uterinos en células humanas de mioma, ni en modelos animales que utilicen tejido humano, 

los cuales mantienen las características fisiológicas de los miomas.  

HIPÓTESIS 

La Vitamina D, concretamente su metabolito activo 1,25-dihydroxyvitamina D3, podría jugar 

un papel importante en la patogénesis de los miomas uterinos a través de la regulación de sus 

rutas de señalización: ciclo celular, proliferación celular, ruta de señalización Wnt/β-catenina 

y apoptosis, disminuyendo el crecimiento de los miomas uterinos.  

OBJETIVOS 

El principal objetivo de esta tesis es analizar el efecto del tratamiento con Vitamina D en el 

crecimiento de los miomas uterinos con el fin de evaluar su potencial como agente terapéutico 

para reducir su tamaño. 

Objetivos específicos:  

1. Determinar in vitro el efecto del tratamiento con Vitamina D en células de miomas 

uterinos humanos a través de la regulación del ciclo celular, la proliferación celular, la 

ruta de señalización Wnt/β-catenina y la apoptosis.  

2. Determinar in vivo en un modelo animal heterólogo el efecto del tratamiento con 

Vitamina D a través de la regulación de la proliferación celular, la formación de matriz 

extracelular y la apoptosis. 
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METODOLOGÍA 

Las muestras humanas de miomas uterinos, así como miometrio adyacente utilizados en este 

estudio, ensayos in vitro e in vivo, fueron recogidas de pacientes con edades comprendidas 

entre 35-54 años las cuales se sometieron a miomectomía o histerectomía debido a miomas 

uterinos sintomáticos. Ninguna de las pacientes recibió tratamiento en los meses previos a la 

cirugía. Este estudio fue aprobado por el Comité Ético del Hospital Universitario y Politécnico 

La Fe (España) (2014/0691) y todas las pacientes entregaron el consentimiento informado.  

 

ENSAYO IN VITRO 

Evaluación de los tejidos de mioma uterino y miometrio adyacente 

Con el fin de determinar la implicación de la proliferación, la ruta Wnt/β-catenina y la 

apoptosis en el desarrollo de los miomas uterinos, la expresión de las proteínas PCNA (por sus 

siglas en inglés; proliferating cell nuclear antigen), WISP1 (por sus siglas en inglés; Wnt1-

inducible-signaling pathway protein 1), BCL2 (por sus siglas en inglés, B-cell lymphoma-2), y 

BAX (por su siglas en inglés, BCL2 Associated-X) fue medida mediante western blot en los 

tejidos de mioma y miometrio adyacente (n=22). 

Tratamiento con Vitamina D en células primarias de miomas uterinos humanos y ensayos 

funcionales 

Para testar el efecto de la Vitamina D sobre los miomas uterinos in vitro, los miomas recogidos 

fueron procesados mediante medios mecánicos y enzimáticos para obtener células primarias 

de miomas. 

Dichas células primarias de miomas humanos fueron cultivadas a 37°C y 5% CO2 en medio de 

cultivo y tratadas con/sin 100nM de Vitamina D (1,25(OH)2D3) para evaluar su efecto sobre las 

vías de acción de dicha vitamina, las cuales han sido previamente descritas en cáncer, 

mediante diferentes ensayos funcionales: 

- Arresto del ciclo celular: Las células derivadas de miomas humanos (n=22) fueron tratadas 

en ausencia o presencia de 100nM de 1,25(OH)2D3 durante 144 horas, y el análisis del ciclo 
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celular y del contenido de ADN se llevó a cabo mediante citometría de flujo por tinción 

con ioduro de propidio (IP). 

- Proliferación: Las células primarias de miomas humanos (n=15) fueron tratadas en 

ausencia o presencia de 100nM de 1,25(OH)2D3 durante 48 horas y la expresión de PCNA 

fue medida mediante western blot con el fin de evaluar la proliferación celular.  

- Ruta de señalización Wnt/β-catenina: Las células primarias de miomas humanos (n=11) 

fueron tratadas en ausencia o presencia de 100nM de 1,25(OH)2D3 durante 48 horas y el 

efecto de dicho tratamiento sobre la ruta Wnt/β-catenina a nivel genético fue evaluado 

mediante RT2-Profiler PCR Arrays (Qiagen, Alemania) y a nivel proteico mediante 

Quantibody Human Cytokine array (RayBiotech, EE. UU.). 

- Apoptosis: Las células de miomas humanos (n=11) fueron tratadas en ausencia o presencia 

de 100nM de 1,25(OH)2D3 durante 48 horas y el efecto de dicho tratamiento sobre la 

apoptosis a nivel genético fue evaluado mediante RT2-Profiler PCR Arrays (Qiagen, 

Alemania). Además, el porcentaje de células apoptóticas se midió mediante ensayo 

TUNEL.  

 

ENSAYO IN VIVO 

Con el objetivo de evaluar in vivo el efecto del tratamiento con Vitamina D en miomas uterinos 

humanos, generamos un modelo animal heterólogo y, seguidamente evaluamos el efecto del 

tratamiento con Vitamina D a corto y largo plazo en dicho modelo. Los procedimientos 

realizados con animales fueron aprobados por el Comité Ético de Bienestar Animal de la 

Universitat de València (2017/VSC/PEA/00017). 

Establecimiento de un modelo animal heterólogo de miomas uterinos 

Para la generación de un modelo animal heterólogo de miomas, se recogieron miomas 

intramurales de pacientes las cuales se sometieron a miomectomía o histerectomía, los cuales 

se cortaron en fragmentos de aproximadamente 3-4 mm3. Posteriormente, dos fragmentos 

de miomas humanos se implantaron intraperitonealmente en ratonas NOD-SCID (código de 

cepa 394; NOD.CB17-Prkdcscid/N) (Charles River Laboratories, Francia) previamente 

ovariectomizadas y suplementadas con estrógenos y progesterona.  
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Tratamiento con Vitamina D en un modelo animal heterólogo de miomas uterinos humanos 

y ensayos funcionales 

Una semana después del implante de los miomas uterinos, los animales fueron divididos en 

tres grupos de estudio:  

1) Control (tratados con Etanol, vehículo de la Vitamina D) 

2) 1,25(OH)2D3 0.5 µg/kg/día 

 3) 1,25(OH)2D3 1 µg/kg/día 

En el ensayo in vivo los tratamientos se administraron mediante bombas osmóticas (Alzet, EE. 

UU.) durante 21 días en el tratamiento a corto plazo (10 animales /grupo) y durante 60 días 

en el tratamiento a largo plazo (6 animales /grupo).   

Durante el tratamiento, se llevó a cabo la monitorización no invasiva de los miomas uterinos 

mediante la realización de estudios PET/TAC usando el radiofármaco 18F-FDG, un análogo de 

la glucosa, que permite la detección de células con una alta captación de glucosa como son 

las células cancerígenas. Además de detectar los miomas generados, los estudios PET/TAC 

permiten medir la actividad metabólica de los mismos ayudando a evaluar el efecto del 

tratamiento sobre su tamaño.  

Tras finalizar ambos estudios, a corto y largo plazo, los animales fueron sacrificados y se 

recogieron los miomas.  

Para evaluar el efecto del tratamiento sobre el tamaño de los miomas, los fragmentos fueron 

medidos con un calibrador digital antes del implante y tras finalizar el tratamiento.  

Posteriormente se llevaron a cabo diferentes ensayos funcionales para evaluar el efecto del 

tratamiento con Vitamina D a través de diferentes vías: 

- Proliferación: el efecto del tratamiento se evaluó en los miomas generados, mediante el 

análisis de dos marcadores de proliferación: Ki67 mediante inmunohistoquímica y PCNA 

mediante qRT-PCR. 

- Densidad celular: para determinar el porcentaje de células por área de tejido se realizó la 

tinción con hematoxilina y eosina en los fragmentos de mioma. 
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- Matriz extracelular: la expresión de las proteínas de matriz extracelular COLAGENO I, 

FIBRONECTINA y  Plasminogen Activator Inhibitor-1 (PAI-1) en los miomas generados fue 

evaluada mediante western blot.  

- Ruta de señalización TGF: la expresión del gen TGF3 en los miomas generados fue 

evaluada mediante qRT-PCR. 

- Apoptosis: para evaluar el efecto del tratamiento sobre la apoptosis, la expresión de las 

proteínas PRO-CASPASA 3 y CASPASA-3 en los miomas generados fue evaluada mediante 

western blot. Así mismo, el % de células apoptóticas se midió mediante ensayo TUNEL.  

 

RESULTADOS 

ENSAYO IN VITRO 

Evaluación de los tejidos de mioma uterino y miometrio adyacente 

La evaluación de la proliferación, la ruta Wnt/β-catenina y la apoptosis en los tejidos de mioma 

y miometrio reveló que el 95% de los miomas presentaba mayor proliferación que su 

miometrio adyacente. Del mismo modo, en el 77% de los miomas la expresión de la ruta 

Wnt/β-catenina fue mayor que en su miometrio adyacente. Por el contrario, la evaluación de 

las proteínas implicadas en la apoptosis no mostró diferencias en la expresión entre los 

tejidos.  

Tratamiento con Vitamina D en células primarias de miomas uterinos humanos y ensayos 

funcionales 

El análisis del ciclo celular por citometría de flujo en las células primarias de miomas humanos 

mostró que en el 50% de los casos el tratamiento con Vitamina D indujo arresto celular en las 

mismas, disminuyendo el porcentaje de células en fase S-G2/M. Del mismo modo, la expresión 

protéica del marcador de proliferación celular PCNA fue disminuida significativamente en las 

células de mioma tratadas con Vitamina D, indicando una disminución de la proliferación con 

el tratamiento con Vitamina D. 

En cuanto al efecto del tratamiento sobre la ruta Wnt/β-catenina, los resultados obtenidos 

mediante el Array de expresión génica de genes implicados en dicha ruta, demostraron que la 
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Vitamina D inhibe significativamente la ruta Wnt/β-catenina a nivel genético en las células 

primarias de miomas humanas. Así mismo, la expresión de las proteínas de dicha ruta fue 

disminuida en las células tratadas con Vitamina D en comparación con el grupo control. Estos 

resultados indicaron que la Vitamina D inhibe la ruta Wnt/β-catenina tanto a nivel 

transcripcional como a nivel postranscripcional. 

Por el contrario, ni el análisis de la apoptosis a nivel genético mediante el array de expresión 

de genes implicados en dicha ruta, ni el porcentaje de células apoptóticas determinado 

mediante el ensayo TUNEL, mostraron cambios significativos en la apoptosis en las células 

primarias de miomas humanos tratadas con Vitamina D.   

ENSAYO IN VIVO 

La evaluación de la actividad metabólica de los miomas generados en nuestro modelo animal 

heterólogo mediante monitorización no invasiva mostró que tras 21 días de tratamiento 

(ensayo a corto plazo) la actividad metabólica de los diferentes grupos de estudio fue similar. 

En cambio, en el ensayo a largo plazo, la actividad metabólica al final del tratamiento (60 días) 

de los miomas fue significativamente menor en los dos grupos tratados con Vitamina D al 

compararlos con el grupo control. 

Del mismo modo, en el ensayo a corto plazo la evaluación del tamaño de los miomas 

generados a día 0 y día 21 no mostró diferencias en ninguno de los grupos de estudio a pesar 

de que, en el grupo control se observó una tendencia al aumento mientras que, en los grupos 

tratados con Vitamina D el tamaño se mantenía. Por el contrario, en el ensayo a largo plazo el 

tamaño de los miomas del grupo tratado con Vitamina D 1 µg/kg/día fue significativamente 

menor a día 60 comparado con su tamaño a día 0. 

La evaluación de la proliferación en los miomas procedentes de los diferentes grupos de 

estudio al final del tratamiento con Vitamina D mostró resultados similares. Mientras que en 

el ensayo a corto plazo no se observaron diferencias en la expresión de los marcadores de 

proliferación Ki67 y PCNA en ninguno de los grupos, a largo plazo el tratamiento con Vitamina 

D 1 µg/kg/día disminuyó la expresión de Ki67 y PCNA, siendo dicha disminución significativa 

en el caso del Ki67, indicando que la Vitamina D disminuye la proliferación de las células de 

mioma.  
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El análisis de la expresión de proteínas de la matriz extracelular (MEC) mostró que, la 

expresión de COLAGENO I fue disminuida tanto a corto como a largo plazo, siendo esta 

disminución estadísticamente significativa con la dosis alta de Vitamina D (1 µg/kg/día) a largo 

plazo. En cuanto a la FIBRONECTINA, no se observaron cambios significativos en su expresión, 

aunque en el grupo tratado con Vitamina D 1 µg/kg/día durante 60 días se observó una 

disminución. Finalmente, la expresión de la proteína PAI-1 fue similar entre grupos en el 

ensayo a corto plazo, mientras que en el ensayo a largo plazo la expresión disminuyó con 

ambas dosis de Vitamina D, siendo dicha disminución significativa solo en el grupo tratado con 

la dosis alta (1 µg/kg/día). Posteriormente, con el fin de evaluar si la Vitamina D inhibe la 

expresión de proteínas de la matriz extracelular en los miomas uterinos a través de la vía de 

señalización TGFβ, la expresión del gen TGF 3 en los miomas generados en nuestro modelo 

animal fue evaluada. Los resultados mostraron una disminución de la expresión de dicho gen 

a corto plazo en ambos grupos tratados con Vitamina D. Además, en el ensayo a largo plazo, 

el grupo tratado con Vitamina D 1 µg/kg/día mostró una expresión significativamente menor 

de TGF3 comparado con el grupo control.  

Posteriormente, con el fin de confirmar que el tratamiento con Vitamina D disminuye la 

formación de MEC, se evaluó la densidad celular en los miomas generados. Tal y como 

esperábamos, el grupo tratado con la dosis alta de Vitamina D (1 µg/kg/día) durante 60 días 

mostró un aumento significativo del porcentaje de núcleos por área de tejido comparado con 

el grupo control, corroborando la disminución de la formación de MEC en los miomas tratados 

con Vitamina D. 

Finalmente, la evaluación de la apoptosis mostró una disminución significativa de la expresión 

de la PRO-CASPASA 3 en ambos grupos tratados con Vitamina D en el ensayo a corto plazo. 

Del mismo modo, la expresión de ésta fue disminuida en el grupo tratado con Vitamina D 1 

µg/kg/día durante 60 días. En cuanto a la CASPASA 3, no se observaron cambios entre grupos 

a corto plazo mientras que a largo plazo la expresión de dicha proteína aumento de manera 

dependiente de la dosis. Además, el porcentaje de células apoptóticas aumentó en ambos 

ensayos en el grupo tratado con Vitamina D 1 µg/kg/día comparado con su respectivo control. 

Estos resultados muestran un efecto anti-apoptótico de la Vitamina D sobre los miomas 

uterinos. 
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DISCUSIÓN 

Los miomas uterinos son el tumor benigno más frecuente del tracto reproductivo femenino, 

afectando al 70% de las mujeres en edad reproductiva. A pesar de su alta prevalencia y de la 

gran variedad de tratamientos disponibles, en la actualidad no existe ningún tratamiento que 

reduzca el tamaño de los miomas uterinos de forma mínimamente invasiva y sin efectos 

secundarios. Aunque se desconoce la patogénesis exacta de los miomas, la relación descrita 

entre déficit de Vitamina D en suero y el riesgo de miomas uterinos, junto con los efectos 

antiproliferativos de dicha vitamina descritos en cáncer, señalaron a la Vitamina D como una 

posible opción terapéutica en el tratamiento de estos tumores.  En este sentido, la acción de 

la Vitamina D en cáncer ha sido ampliamente estudiada, demostrando que sus efectos 

antitumorales implican mecanismos asociados con arresto del ciclo celular, inhibición de la 

ruta Wnt/β-catenina e inducción de la apoptosis.  

En los miomas uterinos, aunque la acción de la Vitamina D ha sido evaluada en ensayos in vitro 

e in vivo, éstos utilizan líneas celulares de mioma, el modelo de la rata Eker o células derivadas 

del mismo, y centran su atención en una única ruta de señalización o mecanismo. Por lo tanto, 

los mecanismos moleculares a través de los cuales la Vitamina D podría actuar en las células 

primarias y tejidos de miomas humanos no han sido investigados de manera precisa.  

Considerando lo anterior, el principal objetivo de esta tesis fue analizar el efecto del 

tratamiento con Vitamina D tanto in vitro, en células primarias de miomas humanos, como 

in vivo, en un modelo animal generado a partir de miomas humanos, a través de los 

mecanismos descritos en cáncer, manteniendo las condiciones fisiológicas propias de los 

miomas uterinos y, por tanto, considerando la gran variabilidad inter-paciente, con el fin de 

evaluar su potencial terapéutico.  

La evaluación de los tejidos previa al estudio in vitro reveló que la aumentada proliferación 

celular junto con la desregulación de la ruta de señalización Wnt/β-catenina en los miomas 

uterinos podrían ser una pieza clave en el desarrollo y crecimiento de los mismos, mientras 

que la apoptosis parece no estar implicada. Así mismo, los resultados in vitro demostraron 

que la Vitamina D ejerce una acción antiproliferativa en las células primarias de miomas 

humanos a través del arresto del ciclo celular y la inhibición de la ruta Wnt/β-catenina a nivel 

transcriptómico y post-transcriptómico, pero no a través de la regulación de la apoptosis. De 
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acuerdo con nuestros datos, sugerimos que la Vitamina D podría ser un tratamiento efectivo 

para prevenir el crecimiento de los miomas y estabilizar su tamaño.  

El siguiente objetivo de la presente tesis fue corroborar in vivo el efecto antiproliferativo de 

la Vitamina D observado in vitro, en un modelo animal heterólogo generado por la 

implantación de fragmentos de mioma uterinos humanos en ratón, así como evaluar la 

apoptosis y la formación de MEC (lo cual es posible en el modelo animal gracias al 

mantenimiento de la estructura tridimensional de dicha MEC). Para ello, fragmentos de 

miomas uterinos humanos fueron implantados en ratonas las cuales fueron posteriormente 

tratadas sin Vitamina D o con Vitamina D (0.5 µg/kg/día y 1 µg/kg/día) a corto y largo plazo. 

El estudio in vivo reveló que mientras el tratamiento con Vitamina D a corto plazo solo fue 

capaz de mantener el tamaño de los miomas, a largo plazo el tratamiento redujo 

significativamente su tamaño a través de la disminución de la proliferación celular, inhibición 

de la formación de MEC y aumento de la apoptosis en las células que lo forman, sin efectos 

secundarios. Nuestros datos sugieren que un tratamiento prolongado con Vitamina D podría 

ser considerado como un tratamiento efectivo para reducir el tamaño de los miomas uterinos 

en mujeres con déficit de dicha vitamina.   

CONCLUSIONES 

- Una aumentada proliferación celular junto con la desregulación de la ruta de señalización 

Wnt/β-catenina en los tejidos de miomas uterinos humanos podrían ser una pieza clave 

en el desarrollo y crecimiento de los mismos, mientras que la apoptosis parece no estar 

implicada en este tumor benigno. 

- El tratamiento con Vitamina D inhibe el crecimiento de las células primarias de miomas 

humanos cultivadas in vitro a través de la inducción del arresto del ciclo celular en fase 

G0/G1 (disminuyendo el porcentaje de células en división) y la inhibición de la proliferación 

celular. 

- La Vitamina D disminuye la expresión de genes y proteínas de la ruta Wnt/β-catenina 

implicados en mecanismos moleculares tales como migración, crecimiento y proliferación 

celular en las células primarias de miomas humanas in vitro, inhibiendo significativamente 

dicha ruta, sin embargo, la apoptosis no se vio aumentada por el tratamiento con Vitamina 

D en las células primarias de miomas humanos cultivadas in vitro.  
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- Aunque el tratamiento in vivo a corto plazo con la dosis alta de Vitamina D (1 µg/kg/día) 

disminuyó la proliferación celular y la producción de colágeno y aumentó la apoptosis, 

dichos efectos no fueron estadísticamente significativos, lo cual se ve reflejado en el 

mantenimiento del tamaño y actividad metabólica de los miomas generados en nuestro 

modelo animal. 

- La dosis alta de Vitamina D (1 µg/kg/día) a largo plazo disminuyó significativamente la 

proliferación celular, la producción de proteínas de la matriz extracelular a través de 

inhibición de la vía de señalización TGFβ, así como aumentó la apoptosis, lo cual se vio 

reflejado en la disminución significativa del tamaño y actividad metabólica de los miomas 

generados en nuestro modelo animal.  

- El tratamiento con Vitamina D a corto plazo podría ser una terapia efectiva para prevenir 

el crecimiento de los miomas y mantener su tamaño, mientras que un tratamiento con 

Vitamina D durante un periodo prolongado podría disminuir el tamaño de los miomas 

uterinos de manera efectiva, sin efectos secundarios asociados. 
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I. INTRODUCTION 

1. UTERUS: ANATOMY AND ENDOCRINOLOGY 

1.1. Female reproductive system 

The female genital system consists of external genitalia—perineum and vulva—and internal 

organs—ovaries, fallopian tubes, uterus and vagina (Figure 1). These internal genitalia, located 

deep within the pelvic cavity, comprise two parts: the ovary, a glandular body where oocytes 

are formed; and a duct system of fallopian or uterine tubes, uterus and vagina. The fallopian 

tubes transport oocytes from the ovarian surface to uterine cavity. The uterus is a hollow 

organ shaped like an inverted pear that is responsible for housing and nurturing the fertilized 

oocyte during pregnancy. An adult uterus measures about 7 cm long, 5 cm wide and 3 cm 

thick, but during pregnancy it is enlarged four to five times (Ramírez-González et al., 2016; 

Rogers, 2011). 

The uterus itself comprises three parts: fundus, body and cervix. The uterine fundus is the 

superior part of the uterus and, in conjunction with the body, forms the superior two-thirds 

of the organ. The uterotubal union, where fallopian tubes enter the uterus, is located between 

the fundus and the body. The cervix, separated from the body by the uterine isthmus, 

connects the uterus with the vagina, the lowest portion of the female genital tract (Ramírez-

González et al., 2016). 

  Figure 1. Female internal reproductive organs. The uterus is divided in three parts: fundus, body and cervix. The 

vagina is the inferior portion of the female reproductive tract and connects with the cervix. Fallopian tubes, 

located between the uterine fundus and body, connect the uterus with the ovaries. Image adapted from 

www.biologianet.com 
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The uterine wall is composed of three layers: endometrium, myometrium and perimetrium 

(Figure 2). The endometrium is a mucosal layer that covers the uterine cavity, which is divided 

in two parts: stratum functionalis, which is shed during menstruation, and stratum basale, 

adjacent to the myometrium, which is retained and serves to regenerate the functional layer. 

The myometrium is the thickest (12-15 mm) and most vascularized layer of the uterus, and is 

composed of smooth muscle cells embedded in a collagen-rich extracellular matrix (ECM). The 

smooth muscle is distributed in three distinct anatomical layers in which the muscle presents 

different orientations: the innermost layer, arranged in a circular orientation; the middle and 

thickest layer with fibers in all directions and lacking any orderly arrangement; and the 

outermost layer, which has longitudinal fibers. During pregnancy the muscle cells both divide 

(hyperplasia) and enlarge (hypertrophy), so that the uterus can grow while the endometrium 

nourishes the pregnancy. The perimetrium is a serosal layer that covers the uterine body and 

fundus (Coad and Dunstall, 2011; Ramírez-González et al., 2016; Rogers, 2011). 

 

 

 

 

Figure 2. The uterine wall. The uterine wall consists of three layers: endometrium, myometrium and 

perimetrium. The myometrium is the most vascularized layer and consists of three different layers in which 

muscle fibers present different orientations: circular orientation in the inner layer, multi-directional fibers in the 

middle layer, and longitudinal orientation in the outer layer.  Image adapted from www.austincc.edu 
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1.2. Extracellular matrix of the uterus 

The extracellular matrix (ECM) is an important part of the uterine myometrium. The ECM plays 

a crucial role in the growth and remodeling of the uterus during pregnancy, parturition and 

the postpartum period, due to the its principal functions in adhesion, cell-to-cell 

communication and differentiation. This ECM is a three-dimensional network of extracellular 

macromolecules that provides structural and biochemical support to surrounding cells. 

Components of ECM are produced intracellularly by resident cells and secreted into the ECM 

via exocytosis. Once secreted, they are aggregated in the existing matrix. ECM is composed of 

an interlocking mesh of fibrous proteins and glycosaminoglycans (Basu, 2016). 

One of the major components of uterine ECM are collagen fibrils, among which smooth muscle 

cells are interspersed. The collagen superfamily proteins include twenty-nine types of 

collagens that have three polypeptide chains assembled into triple-helical structures. The 

main collagens found in myometrium are Type I, Type III and Type V, which are responsible 

for the mechanical strength of uterine tissue (Leppert et al., 2014).  

Another important component of ECM are proteoglycans, which are glycoproteins consisting 

on a protein core with glycosaminoglycans attached covalently. These molecules attract 

cations and bind water, allowing the tissue to adapt to pressure changes. Some of the 

proteoglycans present in the uterine ECM are decorin, hyaluron or versican, which are 

involved important processes, such as the control of cell growth and differentiation.  

Elastin, a hydrophobic protein, is another essential component of this matrix that provides 

elasticity to tissues, allowing them to stretch and recoil back to their original state (Basu, 

2016).  In the uterus, elastin is found in fibrils and thin sheets that, during pregnancy, allow 

the uterus to increase in size, stretch and eventually recoil (Leppert et al., 2014).  

Moreover, integrins are transmembrane receptors formed by two subunits (α and β) that 

contain three portions: cytoplasmic, transmembrane and extracellular. These receptors 

mediate signals between cells and ECM and vice versa and act as mechanosensors 

participating in important processes, such us adhesion, ECM organization, signaling or cell 

survival (Leppert et al., 2014; Vinatier, 1995). 
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Finally, fibronectin is a multifunctional ECM molecule that acts as an organizer of matrix 

assembly binding collagen, integrins and other ECM molecules (Leppert et al., 2014). In 

addition, fibronectin participates in processes involving ECM remodeling or assembly such as 

cell migration, adhesion, growth, differentiation or fibrosis (Islam et al., 2018). 

The degradation and changes that uterine ECM undergoes are controlled by the matrix 

metalloproteinase (MMP) system. MMPs are enzymes with proteolytic activity and are partly 

regulated by tissue inhibitors of MMPs (TIMPs). The expression of MMPs and TIMPs is 

influenced by pro-inflammatory cytokines, hormones and growth factors such as transforming 

growth factor β (TGFβ). In particular, TGFβ1 increases the expression of TIMPs and decreases 

the expression MMPs in human uterine myometrial cells, highlighting the role of TGFβ in the 

myometrium ECM turnover (Ma and Chegini, 1999). The balance between the expression of 

both MMPs and TIMPs is essential to the control of MMP activity, and therefore fundamental 

in the dynamic structural changes associated with the menstrual cycle as well as pregnancy-

related ECM remodeling processes. Consequently, an improper control of the MMP system 

can promote pathological conditions such as ovarian cysts, endometriosis or uterine fibroids 

(Curry and Osteen, 2003; Ma and Chegini, 1999).  

 

1.3. Endocrinology of the uterus 

The reproductive years in women are characterized by the menstrual cycle, which is the result 

of monthly rhythmic changes in the rates of secretion of sex hormones controlled by the 

hypothalamus-pituitary-ovarian axis. This control starts in the hypothalamus, where 

gonadotropin-releasing hormone (GnRH) is released in a pulsatile way and travels to the 

pituitary. The pulsatile release of GnRH is critical to reproductive function. This means that an 

increase or decrease in GnRH inhibits the entire system. At the pituitary level, GnRH stimulates 

the biosynthesis and release of two gonadotropins that control the ovaries: luteinizing 

hormone (LH) and follicle-stimulating hormone (FSH) (Coad and Dunstall, 2011). The 

menstrual cycle includes the ovarian cycle and the endometrial cycle, both of which occur at 

the same time and are highly coordinated through mutual interaction. 
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The ovarian cycle presents two phases, the follicular and luteal phases, separated by 

ovulation. FSH is the predominant gonadotropin during the follicular phase, and stimulates 

the growth of the ovarian follicle while controlling the production of estrogen in the ovary 

(Coad and Dunstall, 2011) (Figure 3). LH plays the dominant role during the second half of the 

ovarian cycle, starting with an initial surge that leads to ovulation. After oocyte release, the 

corpus luteum is formed, and LH stimulates and maintains the production of progesterone 

(Figure 3). Both steroids hormones, estrogen and progesterone, provide negative feedback to 

the hypothalamus and pituitary, resulting in a repression of the stimulating hormones. In 

addition, these hormones also affect many body tissues such us breast, bone, hair follicles, 

muscle and, of course, uterus (Coad and Dunstall, 2011; Stewart, 2007). 

The endometrial cycle comprises two parts: the proliferative phase, corresponding to the 

follicular phase in the ovary; and the secretory phase, corresponding to the luteal phase. The 

proliferative phase is the time from menstruation to ovulation. During this phase, the 

endometrial lining thickens, transforming it into a proliferative pattern due to the action of 

estrogen (Figure 3). The secretory phase includes the time from ovulation until menstruation. 

In this phase, progesterone is produced after ovulation by the corpus luteum causes the 

endometrium to secrete glycogen and mucus during the early secretory phase. In the mid-

secretory phase, the endometrium becomes decidualized and receptive to a fertilized oocyte. 

Finally, in the late secretory phase, if pregnancy does not take place, estrogen and 

progesterone levels fall, leading to a reduced blood flow of the endometrium that causes its 

involution (Hawkins and Matzuk, 2008). Apart from its effect on the endometrium, 

progesterone decreases the frequency and intensity of uterine contractions, helping to 

prevent the expulsion of the implanted embryo (Hall and Guyton, 2011). 
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Figure 3. Ovarian and endometrial cycle. Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) 

control the ovarian cycle, which consists of two phases, follicular and luteal, separated by ovulation. The steroids 

hormones produced by the ovaries control the uterine or endometrial cycle, which has two parts: proliferative 

and secretory phases, corresponding with follicular and luteal phases, respectively. Image from 

http://physiologyplus.com 
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2. UTERINE LEIOMYOMAS  

2.1. Description 

Uterine leiomyomas, also known as uterine fibroids, are benign estrogen-dependent tumors 

that arise from myometrium. They are composed of disordered smooth muscle cells and 

fibroblasts interspersed in an abundant ECM containing collagen, fibronectin and 

proteoglycans. Collagen fibers in uterine leiomyomas have a distorted spatial structure 

differing from their structure in normal myometrium. Uterine leiomyoma cells proliferate at a 

modest rate in vivo and ECM formation plays an important role in tumor expansion (Bulun, 

2013; Parker, 2007). 

2.2. Classification 

Based on its localization in the uterine layers, leiomyomas can be divided in three groups: 

submucosal, subserosal and intramural. Submucosal leiomyomas are those that distort the 

endometrium or protrude into the endometrial cavity. Subserosal leiomyomas protrude from 

the outer layer of the uterus (serosa), resulting in an irregularly-shaped uterus. Finally, when 

fibroids grow within the uterine wall, they are named intramural leiomyomas. Most fibroids 

are combinations of these various types. The International Federation of Gynecology and 

Obstetrics (FIGO) established a classification system of the causes of abnormal uterine 

bleeding in women of reproductive age, which enables discrimination between the different 

leiomyoma types (Figure 4). This system uses an 8-point numerical scale to describe the 

location of uterine leiomyomas (Munro et al., 2011). Type 0 includes intracavitary lesions that 

are attached to the endometrium by a narrow stalk, also called pedunculated. Type 1 and 2 

are submucosal leiomyomas with a portion of intramural lesion with type 1 being <50% and 

type 2 at least 50%. Type 3 comprises leiomyomas with an intramural location but in contact 

with endometrium, while type 4 lesions are intramural leiomyomas that are entirely within 

the myometrium, with no extension to the endometrial surface or to the serosa. Types 5-7 are 

subserosal leiomyomas with type 5 being at least 50% intramural, type 6 being <50% 

intramural, and type 7 being attached to the serosa by a stalk. Lastly, type 8 is reserved for 

leiomyomas that do not involve the myometrium, such us cervical lesions or lesions in the 

round (Munro et al., 2011; Stewart et al., 2016).  
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2.3. Symptoms 

Although most uterine leiomyomas are asymptomatic, severe symptoms occur in 25% of cases 

(Bulun, 2013; Stewart, 2001). These myoma-related symptoms can be divided in three main 

groups: abnormal uterine bleeding, mainly menorrhagia or hypermenorrhea; pelvic pressure 

and pain, and reproductive dysfunction (Stewart, 2001). 

The location and size of uterine leiomyomas are determinants of their clinical manifestations 

or symptoms. While subserosal leiomyomas are more related with pelvic pressure and pain, 

submucosal leiomyomas affect endometrial integrity, implantation and myometrium capacity 

to contract and, therefore, stop endometrial bleeding. As a result, such fibroids are associated 

with abnormal uterine bleeding, infertility and recurrent pregnancy loss. Intramural 

leiomyomas are considered an intermediary group (Bulun, 2013; Stewart, 2001).  

2.3.1. Abnormal uterine bleeding 

The pathophysiology of heavy menstrual bleeding associated with uterine leiomyomas is 

unclear. However, several mechanisms have been proposed as possible causes. These 

potential mechanisms include increased endometrial surface area, increased uterine 

Figure 4. FIGO leiomyoma classification system. The International Federation of Gynecology and Obstetrics 

(FIGO) established an 8-point numerical score to describe the location of uterine leiomyomas.  Image adapted 

from (Munro et al.  2011) with the permission of John Wiley and Sons, and from (Stewart et al. 2016) with the 

permission of Springer Nature. 
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vascularity, impaired uterine contractility, endometrial ulceration by submucosal fibroids or 

compression of the venus plexus within the myometrium (Sinai Talaulikar, 2018).  

2.3.2. Pelvic pressure and pain 

Women diagnosed with uterine leiomyoma more often experience significant pelvic pain, 

pressure on the bladder or inside the abdomen as well as painful sexual intercourse 

(Zimmermann et al., 2012). Uterine leiomyomas can induce changes in uterus size and cause 

the organ to exert greater pressure on adjacent organs, resulting in pelvic pressure. Pelvic pain 

is proposed to result from two situations: when leiomyomas grow faster but with insufficient 

blood supply, or when a pedunculated leiomyoma twists (Stewart, 2007).  

2.3.3. Reproductive dysfunction 

Leiomyomas can have adverse effects on fertility. Importantly, these impacts are not only due 

to anatomic or functional changes of the uterine cavity or myometrium, but also to molecular 

changes.  

Regardless of their localization, uterine fibroids can generate paracrine molecular changes 

that alter the adjacent endometrium and can cause excessive uterine bleeding or impair 

blastocyst implantation (Galliano et al., 2015). Specifically, TGF produced by leiomyomas 

affects endometrial receptivity, as well as the production of anticoagulants in endometrium. 

Therefore, leiomyomas producing sufficient TGF levels and being localized near the 

endometrial cavity will affect fertility (Galliano et al., 2015; Sinclair et al., 2011). Similarly, the 

expression of HOX genes is decreased by uterine leiomyomas affecting endometrial 

receptivity and embryo implantation (Matsuzaki et al., 2009; Purohit and Vigneswaran, 2016; 

Rackow and Taylor, 2010).  

Moreover, obstetric outcomes can be affected by uterine leiomyomas. Women with uterine 

leiomyomas present higher risk of short cervix during pregnancy, as well as preterm delivery, 

primary cesarean section, breech presentation and lower-birthweight infants (Donnez and 

Dolmans, 2016).  
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2.4. Pathogenesis 

The pathogenesis of uterine leiomyomas remains unclear, but they have been traditionally 

described as monoclonal tumors, meaning that each leiomyoma arises from the clonal 

expansion of a single myometrial smooth muscle cell transformed by a mutation (Bulun, 

2013). This etiology has been confirmed by several studies. 

2.4.1. Stem cells from myometrium and uterine leiomyoma formation. 

Human myometrium, as with other tissues and organs, contains a population of somatic stem 

cells (SSC) that represent the 2% of its total cell population (Ono et al., 2007). The SSC 

population of adult tissues, by asymmetric cell division, maintains their ability to self-renew 

while producing partially differentiated daughter cells known as transit amplifying cells. These 

cells are able to differentiate, resulting in terminally differentiated cell types that play a role 

in tissue regeneration and repair (Mas et al., 2014; Ono et al., 2012). During pregnancy, 

mechanical stretching of myometrium results in hypoxia. Taking into account that a hypoxic 

environment stimulates SSCs growth, hypoxia may promote the proliferation of myometrium 

SSCs and, consequently, uterine growth (Maruyama et al., 2013).  

One of the most supported hypotheses about uterine leiomyoma pathogenesis is that which 

proposes that myometrium SSCs are involved in leiomyoma development. According to this 

hypothesis, uterine leiomyoma stem cells arise from myometrium SSCs that have undergone 

tumorigenic transformation following a mutation. This transformation results in a stem cell 

with increased capacity for self-renewal and proliferation, giving rise to a leiomyoma. Among 

the factors proposed as possible causes of this transformation are uterine hypoxia, aberrant 

methylation or abnormal estrogen signaling (Ono et al., 2012).  

Finally, mutated myometrial SSC give rise to a population of leiomyoma stem cells, also called 

tumor-initiating cells, responsible for the formation and growth of the uterine leiomyoma, 

which comprises a small fraction of the smooth muscles that are part of the leiomyoma (1% 

of the total cell population) (Mas et al., 2012; Ono et al., 2012). As happens in SSCs, leiomyoma 

tumor-initiating cells undergo self-renewal, proliferate and clonally expand by giving rise to 

intermediately differentiated daughter cells. These daughter cells can then differentiate into 

a leiomyoma differentiated cell (Bulun et al., 2015), leading to uterine leiomyoma formation.  
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2.4.2. Genetic alterations. 

Recent studies based on high-throughput sequencing and hierarchical clustering have 

identified mutations or chromosomal alterations in key genes, demonstrating the existence of 

molecularly distinct subtypes of leiomyomas. Accordingly, four leiomyoma subtypes can be 

distinguished depending on the genetic alterations: mediator complex subunit 12 (MED12) 

mutation, high mobility AT-hook 2 (HMGA2) rearrangements, fumarate hydratase (FH) 

inactivation and collagen type IV α5 (COL4A5) and α6 (COL4A6) deletions (Mehine et al., 2013,  

2014,  2016). 

 MED12 mutations:  This mutation is detected at a frequency between 48 and 92% in 

leiomyomas from several studies with different ethnic groups (Mehine et al., 2014). 

MED12 encodes a subunit of the mediator complex, which regulates transcription by 

linking information between regulatory elements in gene promoters and the RNA 

polymerase II initiation complex (Bulun, 2013) and regulating signaling pathways involved 

in cell growth, cell differentiation and cell migration. β-catenin binds MED12 and activate 

Wingless-type (Wnt)/β-catenin signaling transcription (Kim et al., 2006). Therefore, 

leiomyomas with MED12 mutations express higher levels of WNT4 and β-catenin 

compared to those lacking the mutation (Markowski et al., 2012). Additionally, MED12 

deficiency results in an activation of TGFβ signaling pathway (Huang et al., 2012). It has 

been proposed that MED12 mutations along with the activation of Wnt/β-catenin and 

TGFβ signaling pathways are part of a mechanism involved in leiomyoma stem-cell 

renewal, cell proliferation and fibrosis (Bulun, 2013).  

 HMGA2 rearrangements: Cytogenetic rearrangements are present in 40 to 50% of 

leiomyomas. Among these, 20% exhibit a rearrangement of 12q14–q15, resulting in 

upregulation of the gene HMGA2. This gene encodes a transcription factor that induces 

conformational changes in chromatin structure affecting growth, differentiation, 

apoptosis and cellular transformation (Galindo et al., 2018). Leiomyomas with 

rearrangements in HMGA2 show an upregulation of the proto-oncogene pleomorphic 

adenoma gene 1 (PLAG1), whose ectopic expression is related to several benign tumors 

(Mehine et al., 2016). 
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MED12 mutations and HMGA2 rearrangements may account for 80%–90% of all leiomyomas. 

Although several studies support the idea that these alterations are mutually exclusive in 

leiomyomas (Bertsch et al., 2014; Mehine et al., 2014,  2016), a recent study showed that 

overexpression of HMGA2 and MED12 mutations frequently co-occur, suggesting their 

cooperation in leiomyoma development (Galindo et al., 2018). 

 FH inactivation: The inactivation of FH results in the accumulation of intracellular 

fumarate and causes hereditary leiomyomatosis and renal-cancer (HLRCC) syndrome. 

Women with this mutation have a high risk of develop leiomyomas, which can have a 

distinct histology presenting increased cellularity as well as atypia with multinucleated 

cells (Mehine et al., 2013; Stewart et al., 2016). Although the mechanism of tumorigenesis 

of FH mutations remains unclear, leiomyomas with this mutation present deregulation of 

the nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway. This aberration 

suggests that the accumulation of fumarate results in the activation of the oncogenic 

transcription factor NRF2 (Mehine et al., 2016), whose overexpression increases cell 

survival, cell growth and metastases (Arenas Valencia et al., 2018).   

 COL4A5 and COL4A6 deletions: These deletions are found in a minority of leiomyomas. 

COL4A5 and COL4A6 deletions in the germline cause Alport syndrome with diffuse 

leiomyomatosis (ATS-DL), which displays leiomyomatosis of the esophageal, 

tracheobronchial and genitourinary tract. In uterine leiomyomas with deletions in 

COL4A5-COL4A6, insulin receptor substrate 4 (IRS4), a gene located downstream to 

COL4A5, is overexpressed. IRS4 induces cell proliferation through the increase of insulin-

like growth factor 1 (IGF-1) (Mehine et al., 2014,  2016).  

2.4.3. Paracrine interaction between leiomyoma cell populations. 

In both myometrium and leiomyoma stem cell populations, the expression of estrogen and 

progesterone receptors is remarkably lower than in their differentiated cells (Mas et al., 2012; 

Ono et al., 2007). Estrogen and progesterone act on the tissue’s mature cells and, through 

them, send paracrine factors to the stem cell population inducing its proliferation (Ono et al., 

2012). Thus, myometrium and leiomyoma growth are dependent on these steroid hormones. 

The presence of mature myometrial or leiomyoma cells along with this paracrine mechanism 
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are therefore essential for the proliferation of leiomyoma stem cells and consequent uterine 

leiomyoma formation.  

Wnt/β-catenin signaling plays an important role in this paracrine pathway. In the presence of 

Wnt family signaling, β-catenin is activated and consequently translocated to the nucleus. 

There, β-catenin binds to the T-cell factor/lymphocyte enhancer factor (TCF/LEF) family of 

transcription factors, stimulating the expression of their target genes. Wnt/β-catenin target 

genes such as C-MYC, WNT1 Inducible Signaling Pathway Protein 1 (WISP1) or Cyclin D1 

(CCND1) are important regulators of cell proliferation and, for that reason, this pathway plays 

a crucial role in neoplasia. A more detailed explanation of Wnt/β-catenin signaling pathway 

can be found in section 4.2.2. In leiomyomas, estrogen/progesterone treatment induces the 

expression of Wnt ligands in mature myometrial cells. This, in turn, induces nuclear 

translocation of β-catenin in leiomyoma stem cells, inducing TCF transcriptional activity and 

leading to the stem cell proliferation (Figure 5) (Ono et al., 2013). The Wnt pathway can also 

stimulate the expression of transforming growth factor-β3 (TGFβ3), resulting in excessive ECM 

production and increased cell proliferation (Ciebiera et al., 2017; Tanwar et al., 2009) (Figure 

5). Ultimately, paracrine stimulation results in enhanced tumor growth as a consequence of 

an increased cell proliferation and ECM formation, as well as a decreased apoptosis (Bulun, 

2013). 

 

 

 

 

 

 

 

 

 

Figure 5. Paracrine interaction between leiomyoma cell populations. In response to estrogen and progesterone, 

mature myometrial or leiomyoma cells secrete Wnt ligands, which stimulates the expression of Wnt/β-catenin 

signaling pathway target genes in leiomyoma stem cells, leading to increased proliferation. In addition, 

transforming growth factor β3 (TGFβ3) is also stimulated, resulting in increased extracellular matrix formation. 

Reproduced with permission from (Bulun SE. 2013), Copyright Massachusetts Medical Society.  
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2.5. Incidence and epidemiology 

Uterine fibroids are estrogen- and progesterone-dependent and represent the most common 

benign neoplasm of the reproductive tract, with a cumulative incidence of 70% in women of 

reproductive age. In addition to steroid hormones, other factors have been described as risk 

factor in uterine leiomyoma development and growth, such as age, ethnic group, reproductive 

status, family history, obesity, diet and Vitamin D deficiency. 

2.5.1. Age 

Because gonadal steroid production changes across the lifespan, age is a risk factor in 

leiomyoma development. Leiomyomas have not been described in pre-pubertal girls, but can 

begin to develop during adolescence. From adolescence, leiomyoma incidence increases, 

being most likely to be diagnosed in women aged between 30 and 40 years, when leiomyoma 

symptoms appear. Likewise, in many cases symptoms are relieved at the time of menopause 

(Bulun, 2013; Parker, 2007; Stewart et al., 2016). 

2.5.2. Ethnic group 

The prevalence and incidence of uterine leiomyoma are higher in black women than in white 

women. In particular, the incidence of uterine fibroids in African-American women is 60% by 

age 35, increasing to >80% by age 50, while women of European descent show a rate of 40% 

and 70%, respectively (Baird et al., 2003). In addition, black women develop uterine fibroids 

at an earlier age and are more likely to present severe symptoms than white women (Huyck 

et al., 2008; Marshall et al., 1997). Leiomyoma growth rates also decline with age in white 

women but not in black women, which could explain the greater presence of symptoms in the 

latter (Peddada et al., 2008). 

2.5.3. Reproductive status 

Reproductive status is also involved in leiomyoma development and growth. Several studies 

have reported that the risk of fibroids decreases with an increasing number of pregnancies 

(Parazzini et al., 1996; Ross et al., 1986). It has been proposed that the remodeling process 

that the uterus undergoes during the postpartum period may have a protective effect (Day 

Baird and Dunson, 2003). Similarly, both time since last birth (Stewart et al., 2017) and early 
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age at menarche (Marshall et al., 1997) increase the risk of developing uterine leiomyomas. 

On the other hand, oral contraceptive use does not affect the development or growth of 

leiomyomas (Marshall et al., 1998; Parazzini et al., 1992; Qin et al., 2013). 

2.5.4. Family history 

Family history of uterine leiomyomas is also related to an increased risk. This is likely due to 

the genetic factors involved in their development (Stewart et al., 2017), specifically the FH 

inactivation involved in HLRCC syndrome (Stewart et al., 2008).  

2.5.5. Obesity 

High body mass index (BMI) is correlated with the presence of uterine leiomyomas (Ross et 

al., 1986), making obesity another risk factor in uterine leiomyoma development. This risk may 

be explained because obesity increases conversion of adrenal androgens to estrone, 

decreasing sex hormone-binding globulin and, therefore, increasing biologically available 

estrogen (Parker, 2007).  

2.5.6. Diet 

Diet is also involved in the risk of developing leiomyomas. Few studies have described that 

leiomyoma is associated with a diet heavy in red meat as well as alcohol consumption, 

whereas high intake of green vegetables seems to have a protective effect (Chiaffarino et al., 

1999; Wise et al., 2004). 

2.5.7. Vitamin D deficiency 

Vitamin D deficiency has been strongly associated with an increased risk of uterine 

leiomyomas in both black and white women. Baird et al. found that 90% of black women and 

50% of white women with uterine leiomyomas have levels of Vitamin D regarded as 

insufficient (≤20 ng/mL), suggesting that sufficient Vitamin D is associated with a reduced risk 

of uterine fibroids (Baird et al., 2013). Moreover, several studies comparing Vitamin D serum 

levels in women with uterine leiomyomas versus control demonstrated that serum 

concentration of 25-hydroxyvitamin D3 is significantly lower in affected women compared 

with controls (Paffoni et al., 2013; Sabry et al., 2013). In addition, an inverse correlation is 

observed between serum Vitamin D levels and total leiomyoma volume (Sabry et al., 2013). 
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Considering that Vitamin D deficiency is more common in black women than in white women 

(Nesby-O’Dell et al., 2002), this could explain why black women present higher risk of uterine 

leiomyoma than white women. All these data suggest that Vitamin D may play an important 

role in leiomyoma development. 

3. CURRENT MANAGEMENT OF UTERINE LEIOMYOMAS 

Uterine fibroid management options fall in three main groups: surgical, non-surgical and 

medical options. The choice among these management strategies depends on different 

factors such as the kind and size of leiomyoma, the symptoms and the age of the patient and 

her desire to preserve fertility. An example of an algorithm developed for the management of 

uterine fibroids according to the patient’s profile can be found in Figure 6. 

3.1. Surgical management. 

Surgery is the main strategy for leiomyoma management; the most widely used surgical 

treatments are hysterectomy, laparoscopic myomectomy or hysteroscopic myomectomy. 

Hysterectomy is a surgery to remove the entire uterus and is the most radical option, but 

presents the advantage of the elimination of the risk of new fibroids. This option is usually 

selected in women not wishing to conceive or in their premenopausal age (40-50 years). On 

the other hand, myomectomy is a less invasive option that removes the leiomyoma while 

maintaining the uterus. For that reason, it is normally chosen in women seeking to reproduce. 

Myomectomy includes two options, laparoscopic or hysteroscopic, and the selection relies on 

the number, size and location of the leiomyomas (Donnez and Dolmans, 2016; Mas et al., 

2017). The main drawback of myomectomy is that it does not stop the process of leiomyoma 

formation and new ones may develop in the future (Stewart, 2007). 

3.2. Non-surgical management. 

Uterine artery embolization (UAE) is a minimally invasive treatment for uterine leiomyoma 

that temporarily blocks the blood supply to the uterus. This technique induces ischemic 

necrosis of the leiomyomas, while the myometrium revascularizes, allowing the treatment of 

multiple fibroids at the same time (Donnez and Dolmans, 2016; Stewart, 2007). In comparison 

with surgical options, UAE achieves similar results in terms of pain or discomfort. However, 
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the probability of reoperation is higher for UAE (Donnez and Dolmans, 2016; Mas et al., 2017). 

Further, several reviews have founded poorer fertility outcomes after UAE than after 

myomectomy, although the authors noted the low-quality evidence around this association 

(Gupta et al., 2014; Karlsen et al., 2018). 

Another non-surgical option is fibroid ablation, also known as myolisis, which consists in the 

destruction of the tissue using concentrated energy. High-frequency magnetic resonance-

guided focused ultrasound surgery (MRgFUS) is used to induce necrosis in uterine 

leiomyomas. Even though it is an effective and minimally invasive alternative, its effect on 

future fertility is unclear (Donnez and Dolmans, 2016; Mas et al., 2017).  

3.3.  Current medical management. 

The medical treatment for leiomyomas aims to relieve symptoms, to shrink leiomyoma size 

and, if desired, to preserve fertility. The current medical options include several options.  

3.3.1. Non-hormonal treatments 

Nonsteroidal anti-inflammatory drugs (NSAIDs) along with tranexamic acid, an 

antifibrinolytic agent, are the non-hormonal treatments most commonly used to treat 

bleeding and pain associated with uterine fibroids.  

NSAIDs are used to reduce prostaglandin levels due to the involvement of these molecules in 

the pathogenesis of heavy menstrual bleeding. Levels of prostaglandins E2 and F2α are higher 

in the endometrium of women with heavy menstrual bleeding compared to women with 

normal menses (Willman et al., 1976).  A systemic review about the effectiveness of NSAIDs 

for uterine fibroids concluded that this treatment reduces heavy menstrual bleeding when 

compared with placebo, but it is less effective than tranexamic acid or a levonorgestrel-

releasing intrauterine device (Lethaby et al., 2013).  

Women with heavy menstrual bleeding present an increased activity of the fibrinolytic system 

in their endometrium during menstruation, which leads to accelerated degradation of the 

fibrin clot and increased menstrual blood loss (Chwalisz and Taylor, 2017).  Tranexamic acid is 

a synthetic antifibrinolytic agent often used for the management of menorrhagia. Eder et al. 

demonstrated that treatment with tranexamic acid significantly reduce menstrual blood loss 
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in women with uterine leiomyomas. However, side effects such as menstrual discomfort, 

headache, backpain, nausea or anemia were reported (Eder et al., 2013).  

3.3.2. Combined oral contraceptives  

Historically, the use of contraceptives containing synthetic analogues of steroid hormones has 

been considered as a risk factor for leiomyoma growth, due to the tumors’ dependency on 

steroid hormones. However, the use of contraceptives does not influence the risk of 

leiomyoma development (Qin et al., 2013). In the treatment of leiomyoma-related symptoms, 

combination oral contraceptives reduce menstrual bleeding, but they do not reduce 

leiomyoma size. Despite the latter, oral contraceptives are a good alternative in the treatment 

of heavy menstrual bleeding because they are easy accessible, administered orally and low 

cost (Sohn et al., 2018).   

3.3.3. Progesterone intrauterine device 

The levonorgestrel-releasing intrauterine system (LNG-IUS) was originally developed for 

long-term (5 years) contraception, but is also used for the treatment of heavy menstrual 

bleeding. A T-shaped intrauterine device is sheathed with a reservoir of levonorgestrel that is 

released in the uterus. This local release has an antiproliferative action on the endometrium, 

which results in endometrial atrophy and, consequently, reduces both duration of bleeding 

and the amount of menstrual blood loss (Chwalisz and Taylor, 2017; Sinai Talaulikar, 2018). In 

uterine leiomyoma management, LNG-IUS decreases menstrual blood loss and increases 

blood hemoglobin, ferritin and hematocrit levels in women with symptomatic fibroids (Wrona 

et al., 2017). The non-systemic administration of levonorgestrel reduces side effects. The main 

drawbacks of this device are that it can only be used in women in whom fibroids do not distort 

the endometrial cavity, and there is a higher risk of expulsion of the intrauterine device among 

patients with uterine leiomyomas (Sohn et al., 2018; Stewart et al., 2016).  

3.3.4. GnRH analogs 

One strategy for leiomyoma medical management focuses on the manipulation of the 

hypothalamus-pituitary-ovary axis. GnRH agonists have been widely used to shrink uterine 

leiomyomas, particularly before surgery. These compounds are structurally similar to natural 
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GnRH and therefore induce an increase in FSH and LH, known as the flare effect. Consequently, 

the expression of GnRH receptor is downregulated, resulting 1-3 weeks later in a 

hypoestrogenic state that causes a “pseudomenopause” and thereby, the impossibility of 

pregnancy during the treatment. The lack of estrogen leads to a decrease in leiomyoma size 

up to 47%. Derivative symptoms, however, such as hot flashes or decrease in bone mineral 

density, limit GnRH agonist to short-term therapy (Sohn et al., 2018), 3-6 months at most. 

Furthermore, after discontinuation of the medication, leiomyomas rapidly increase in size, 

returning to pretreatment volume within 6 months (Stewart, 2001). With GnRH antagonist 

the result is the same, but these drugs present the advantage of the rapid onset of clinical 

effects. This is due to their mechanism of action; binding to the GnRH receptor inhibits its 

induced signaling and secretion. Despite this improvement, side effects associated with GnRH 

antagonists are the same as with agonists (Stewart et al., 2016). 

3.3.5. Selective estrogen receptor modulators  

The expression of estrogen receptor (ER) in leiomyoma cells suggests that this hormone plays 

a role in its growth stimulation. Selective Estrogen Receptor Modulators (SERMs) are 

nonsteroidal, tissue-specific ER agonist/antagonist. Tamoxifen and Raloxifene are the SERMs 

studied in uterine leiomyomas.  

Tamoxifen has been used in one prospective, randomized, blinded study comparing 

tamoxifen treatment with placebo in uterine leiomyoma patients (Sadan et al., 2001). The 

results showed that tamoxifen significantly decreased blood loss as well as pain intensity. 

However, patients treated with tamoxifen present many side effects, including hot flashes, 

dizziness, endometrial changes and development of ovarian cysts. Therefore, the use of 

tamoxifen in leiomyoma treatment is not recommended (Sadan et al., 2001; Sohn et al., 2018). 

On the other hand, the use of Raloxifene in the treatment of symptomatic uterine leiomyomas 

has been more studied. A Cochrane review includes three studies, with a total of 215 patients. 

Two of these trials reported a significant decrease in leiomyoma size from raloxifene therapy, 

and the third study found no significant differences in leiomyoma size in the group treated 

with Raloxifene, but a significant increase within control group. No serious adverse events 
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were reported, but some mild side effects, such as increased appetite, weight gain, gastralgia 

or hot flashes, were reported in two studies (Deng et al., 2012).  

3.3.6. Aromatase inhibitors 

Aromatase inhibitors, specifically Letrozole and Anastrozole, have been studied as uterine 

leiomyoma therapy because they block the extragonadal conversion of androgens into 

estrogens. Although several studies reported the efficiency of these treatments in reducing 

leiomyoma size (Brito et al., 2012; Duhan et al., 2013; Parsanezhad et al., 2010), a systemic 

review remarked that the current evidence is insufficient to recommend the use of aromatase 

inhibitors for treatment of symptomatic uterine leiomyomas (Song et al., 2013). 

3.3.7.  Selective progesterone receptor modulators  

Selective Progesterone Receptor Modulators (SPRMs) have recently emerged as a promising 

therapy in the medical management of fibroids. SPRMs are synthetic compounds that exert 

agonistic or antagonistic effect on progesterone receptor (PR), with its action contingent on 

tissue type (Donnez et al., 2018). Four SPRMs have been investigated in phase II clinical trials: 

Mifepristone, Asoprisnil, Ulipristal Acetate (UPA), and Telapristone Acetate. All promoted a 

decrease leiomyoma size and reduced uterine bleeding (Donnez and Dolmans, 2016).  

Mifepristone, also known as RU-86, was the first SPRM to be developed and commonly used.  

Primarily used as an abortifacient, in uterine leiomyoma patients this drug reduces bleeding 

and improves quality of life. However, it does not reduce leiomyoma size significantly. In 

addition, women treated with Mifepristone present abnormal endometrial histology and 

endometrial hyperplasia (Tristan et al., 2012) .  

The synthetic steroid UPA, CD-2914, is a selective PR modulator that binds progesterone 

receptors A and B (PR-A and PR-B) with high affinity. The use of UPA in the management of 

uterine leiomyomas has been studied in four large randomized trials, which were blinded 

phase III clinical studies (PGL4001: Efficacy Assessment in Reduction of Symptoms Due to 

Uterine Leiomyomata, PEARL) (Donnez et al., 2014,  2015; Donnez, Tatarchuk, et al., 2012; 

Donnez, Tomaszewski, et al., 2012). These trials demonstrate the effectiveness of UPA in the 

reduction of the size of fibroids as well as the reduction of associated bleeding or pain. 
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However, UPA induced morphological changes in endometrial tissue known as progesterone 

receptor modulator associated endometrial changes (PAEC), such as large cystic glands and 

changes within the stromal compartment including the fibroblasts and vasculature, which are 

recognized as a distinct histological entity (Whitaker et al., 2017). These endometrial changes 

induced by UPA do not allow long-term treatments. For that reason, it is recommended that 

UPA be prescribed in an intermittent mode (3-month therapy course followed by an interval 

of around 8 weeks, allowing two menstrual bleeds) (Donnez et al., 2018). In 2012 the Spanish 

Agency of Medicine and Health Products (known by the Spanish acronym AEMPS) approved 

the use of UPA (Esmya®) for the treatment of uterine leiomyomas (AEMPS, 2011). However, 

in February 2018, after the notification of severe cases of liver damage in women treated with 

Esmya®, the AEMPS recommended not to start new treatments (AEMPS, 2018a). Finally, in 

July 2018, after a risk-benefit assessment, the use of Esmya® was restricted. In the case of the 

intermittent treatment the use of UPA is limited to women in whom surgery is not an option 

and, in preoperative treatment, the time is limited as a maximum of three months (AEMPS, 

2018b). 

In sum, although there are different management strategies for uterine leiomyomas, selected 

depending on different patient factors (Figure 6), none of them is sufficiently effective without 

minimal long-term side effects. For this reason, there is a need to define an efficient, non-

surgical treatment for reducing uterine leiomyomas with lasting impact and minimal side 

effects. 
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Figure 6. Algorithm for the management of uterine leiomyoma. Example of an algorithm developed for the 

management of uterine fibroids (UF) according to patient profile. Abbreviations: LNG-IUS, levonorgestrel 

intrauterine system; MRgFUS, magnetic resonance-guided focused ultrasound surgery; NSAID, nonsteroidal anti-

inflammatory drug; RF, radiofrequency ablation; UAE, uterine artery embolization; UPA, ulipristal acetate. Image 

reproduced from (Mas A et al. 2017) with the permission of Dove medical press. 
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4. POTENTIAL NEW TREATMENTS FOR UTERINE LEIOMYOMAS:  VITAMIN D  

Despite the high prevalence of uterine leiomyomas, efficient non-surgical treatment options 

for reducing uterine leiomyomas with lasting impact and minimal side effects remain elusive. 

In the search for new treatments, the correlation between Vitamin D deficiency and uterine 

leiomyoma risk, along with the potential of Vitamin D as a therapeutic agent for cancer, 

focused the attention on this vitamin as a possible treatment for uterine leiomyoma.  

4.1. Vitamin D metabolism 

Vitamin D is a group of steroid compounds whose main activity concerns the control of 

calcium-phosphate balance as well as the correct structure and function of the skeleton. 

Vitamin D3, also known as cholecalciferol, is a prohormone obtained from the diet or mainly 

formed in the skin as a result of ultraviolet irradiation of 7-dehydrocholesterol. Cholecalciferol 

is biologically inactive, and its activation requires two hydroxylation steps. First, it is converted 

to 25-hidroxyvitamin D3 [25(OH)D] in the liver, catalyzed by the hepatic enzyme CYP2R1. 

Subsequently, 25(OH)D is hydroxylated in the kidney by the enzyme CYP27B1, leading to the 

final active product, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] also known as calcitriol (Figure 

7). CYP24A1 degrades both 1,25(OH)2D3 and 25(OH)D and is expressed in several tissues along 

with the Vitamin D receptor (VDR) (Ciebiera et al., 2018; Hall and Guyton, 2011; Iruzubieta et 

al., 2014; Lorenzen et al., 2017; Zangemeister-Wittke and Simon, 2001).  

Although historically the maintenance of calcium and phosphate homeostasis has been 

considered the main action of 1,25(OH)2D3, it is a pleiotropic hormone that, apart from that 

function, regulates multiple cellular processes with effects on normal and malignant cell 

growth and differentiation. The biological actions of 1,25(OH)2D3 are mediated by VDR, a 

member of the steroid hormone receptor superfamily that regulates gene expression in a 

ligand-dependent manner. Generally, 1,25(OH)2D3 enters the cell by diffusion and binds the 

VDR in the cytoplasm, resulting in its activation. Subsequently, the activated VDR enters the 

nucleus and forms a heterodimer complex with the retinoid X receptor (RXR) (Figure 7). This 

heterodimer specifically binds to Vitamin D response elements (VDREs) present in the 

promoter regions of target genes, regulating its transcription. In addition, 1,25(OH)2D3 

regulates nongenomic actions that are rapid and not dependent on transcription. This 
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mechanism is proposed to be mediated by non-classical membrane Vitamin D receptor 

(memVDR) (Christakos et al., 2016; Deeb et al., 2007; Lorenzen et al., 2017). 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Vitamin D and cancer 

The biological actions of Vitamin D are not only limited to normal cells. Several studies have 

demonstrated the anticancer effects of 1,25(OH)2D3 in cancers of the ovary (Zhang et al., 

2005), lung (Nakagawa et al., 2004), breast (Colston et al., 1992) and colon (Ordóñez-Morán 

et al., 2008). These antitumor effects are mediated through VDR and affect important cellular 

processes such as proliferation, cell cycle progression, differentiation and apoptosis (Deeb et 

al., 2007). 

Figure 7. Vitamin D synthesis. Vitamin D3 is obtained from the diet or mainly formed in the epidermis as a result 

of ultraviolet B (UVB) irradiation of 7-dehydrocholesterol. Vitamin D is activated by two hydroxylation steps: first, 

it is converted to 25-hidroxyvitamin D3 (25(OH)D) in the liver by the hepatic enzyme CYP2R1 and, subsequently, 

25(OH)D is hydroxylated in the kidney by the enzyme CYP27B1, leading to the final active product, 1,25-

dihydroxyvitamin D3 (1,25(OH)2D3) also known as calcitriol. The biological actions of 1,25(OH)2D3 are mediated 

by Vitamin D receptor (VDR) that enters the cell nucleus and forms heterodimers with the retinoid X receptor 

(RXR), which bind to specific gene promoters regulating their transcription. CYP24A1 degrades both 1,25(OH)2D3 

and 25(OH)D. Image adapted from (Iruzubieta et al., 2014). 
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4.2.1. Regulation of cell cycle  

The cell cycle is the series of events through which cellular components are doubled and 

accurately separated into daughter cells. The cell cycle consists of four consecutive steps: G1, 

S, G2, M. DNA replication occurs in the Synthesis or S-phase; chromosome segregation takes 

place in the Mitosis or M-phase; and G1 and G2 are Gap phases in which cells increase in mass 

and prepare for chromosome segregation (Barnum and O’Connell, 2014). Cells that are not 

dividing enter a quiescent stage, G0 phase. Progression through cell cycle is regulated by 

cyclins and their interaction with cyclin-dependent kinase (CDKs) and CDK inhibitors (CKIs). 

Cyclin/CDK complexes are formed during the different phases of the cell cycle and participate 

in the phosphorylation of target proteins. In the G1/S phase transition, the retinoblastoma 

protein (pRB) should be phosphorylated by Cyclin E/CDK2 and Cyclin D1/CDK4,6. Vitamin D 

antiproliferative action is mediated mainly through a G1/S phase block of the cell-cycle (Figure 

8). In cancer, 1,25(OH)2D3 acts by downregulating the expression of cyclins and CDKs, and 

increasing the expression of CKIs, such as p21 and p27. In this scenario, RB is not 

phosphorylated and, subsequently the G1/S phase does not take place, leading to an 

accumulation of cells in the G0/G1 phase of the cycle (Christakos et al., 2016; Ylikomi et al., 

2002). 

 

 

 

 

 

 

 

 

 

Figure 8. Cell cycle regulation by Vitamin D in cancer cells. 1,25(OH)2D3 inhibits the phosphorylation of the 

retinoblastoma protein (pRB) through the downregulation of cyclins and CDKs, and the upregulation of CDK 

inhibitors, such as p21 and p27. Consequently, G1/S phase transition is blocked. Image adapted from Ylikomi et 

al. 2002. 
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4.2.2. Regulation of Wnt/-catenin pathway 

Human Wnts are a family of 19 secreted proteins that control important developmental and 

homeostatic processes such as proliferation, survival, migration and differentiation. Secreted 

Wnt proteins bind to specific membrane receptors and activate several signaling pathways 

including the Wnt/β-catenin or canonical pathway and other β-catenin-independent non-

canonical pathways (Larriba et al., 2013; Pendás-Franco et al., 2008).  

The Wnt/β-catenin pathway controls intracellular β-catenin levels. In the absence of Wnt 

signals, β-catenin is phosphorylated, ubiquitinated and degraded by the proteasome. This 

process is promoted by the β-catenin destruction complex, whose components are the tumor 

suppressors AXIN and APC, and the protein kinases CK2 and GSK3β. In the presence of Wnt, it 

binds to Frizzled and LRP5/6 co-receptors, inhibiting the β-catenin destruction complex. 

Accordingly, unphosphorylated β-catenin is accumulated in the cytoplasm. Part of this β-

catenin enters the nucleus where it associates TCF/LEF transcription factors and activates the 

transcription of target genes whose encode proteins involved in proliferation, cell cycle 

regulation, survival, migration, lineage commitment and differentiation (Figure 9). These 

target genes included C-MYC, CCND1, WISP1 or MMP7, among others. Moreover, Wnt/β-

catenin signaling is regulated by secreted extracellular Wnt antagonists. There are two kinds 

of Wnt inhibitors, those that act by binding directly to Wnts altering their ability to bind 

receptors [secreted Frizzled-related proteins (SFRPs)], such as Wnt inhibitory factor-1 (WIF-1) 

and Xenopus Cerberus; and those that bind LRP5/6, preventing Wnt-Frizzled-LRP interaction 

[Dickkopf (DKK) proteins and Wise] (Larriba et al., 2013; Pendás-Franco et al., 2008). 

Due to the importance of Wnt/β-catenin target processes, its deregulation is associated with 

many disorders. Specifically, mutations that activate this pathway are involved in the initiation 

and progression of several types of cancer (Larriba et al., 2013; Pendás-Franco et al., 2008). In 

uterine leiomyomas, MED12 mutation is associated with an activation of Wnt/ β-catenin 

signaling pathway. In colon cancer, the action of 1,25(OH)2D3 on Wnt/β-catenin has been 

widely studied and three mechanisms through which Vitamin D antagonizes the Wnt/β-

catenin pathway have been described (Figure 9). First, 1,25(OH)2D3 induces VDR/β-catenin 

interaction, reducing the β-catenin available to bind TCF, and thereby reducing the expression 
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of β-catenin/TCF target genes. Second, Vitamin D induces the expression of E-cadherin, which 

leads to β-catenin nuclear exportation, and relocation to the plasma membrane adherent 

junction, resulting, as in the first mechanism, in a reduced expression of β-catenin/TCF target 

genes. Third, 1,25(OH)2D3 induces the expression of the Wnt inhibitor Dickkopf (DKK)-1 

(Pendás-Franco et al., 2008). The consequence of the different mechanisms is a decreased 

expression of Wnt/β-catenin target genes, which affects proliferation, cell cycle regulation, 

survival, migration and differentiation, among other processes.  

 

 

 

 

 

4.2.3. Regulation of apoptosis 

Apoptosis, or programed cell death, is a highly controlled process crucial in the development 

and homeostasis of tissues as well as in cancer prevention. Apoptosis is initiated by 

extracellular or intracellular signals that activate a complex cascade of events, which 

culminate in the activation of cysteine-aspartic proteases (caspases) and leads to the 

Figure 9. Vitamin D effect on Wnt/β-catenin pathway in cancer cells. (a) In the absence of Vitamin D, Wnt 

ligands bind to Frizzled and LRP5/6 receptors, inhibiting the degradation of β-catenin, which is accumulated in 

the nucleus. Part of this β-catenin and associated TCF/LEF transcription factors activate the transcription of 

targets genes. (b) Vitamin D inhibits Wnt/β-catenin signaling pathway through three mechanism: 1) inducing 

VDR/β-catenin interaction, reducing β-catenin available to bind TCF, 2) inducing the expression of E-cadherin, 

which leads to β-catenin nuclear exportation, or 3) inducing the expression of Wnt inhibitor Dickkopf (DKK)-1. 

Image adapted from (Larriba et al. 2013) with permission of Cancers. 
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degradation of nuclear DNA and dismantling of the cell. The process can be mediated via the 

intrinsic pathway (mitochondria mediated), and via the extrinsic pathway (death-receptor 

mediated). The BCL-2 family of proteins, which contain pro-apoptotic and anti-apoptotic (pro-

survival) members, regulates the execution of intrinsic apoptosis. The dysregulation of 

apoptosis may play an important role in different pathologies, including cancer and neoplasia 

(Singh et al., 2019; Zangemeister-Wittke and Simon, 2001). 

The anti-tumor effect of 1,25(OH)2D3 is not only due to its antiproliferative action, but also to 

its pro-apoptotic effect. The mechanisms through which 1,25(OH)2D3 induces apoptosis in 

cancer cells include: the suppression of the anti-apoptotic proteins B-cell lymphoma 2 (BCL2) 

and B-cell lymphoma extra-large (BCL-XL), and the activation of the pro-apoptotic protein BAX, 

leading to the activation of downstream caspases. Other proposed mechanisms are the direct 

activation of caspase effector molecules, and the destabilization of telomerase reverse 

transcriptase (TERT) mRNA that downregulates telomerase activity, inducing apoptosis 

through telomere attrition (Deeb et al., 2007) (Figure 10).   

 

 

 

 

 

 

 

 

 

 

Figure 10. Vitamin D effect on apoptosis in cancer cells. Vitamin D (1,25(OH)2D3) induces apoptosis through 

different mechanisms: 1) induction of the pro-apoptotic protein BAX expression and suppression of the anti-

apoptotic proteins BCL2 and BCL-XL expression, which leads to the activation of downstream caspases; 2) direct 

activation of caspase effector molecules; and 3) downregulation of telomerase reverse transcriptase (TERT) 

mRNA, which results in a decreased telomerase activity.  



I INTRODUCTION 

   

31 

 

4.3. Vitamin D and uterine leiomyomas  

In cancer, Vitamin D has the potential to inhibit tumor growth. Given the correlation between 

Vitamin D deficiency and uterine leiomyoma risk, several studies have investigated whether 

this vitamin could exert its antiproliferative action on leiomyoma cells.  

4.3.1. In vitro studies  

The first study aiming to test the effect of Vitamin D in leiomyoma cells was carried out by 

Bläuer et al. in 2009. In this work, both leiomyoma and myometrial primary cells from 6 

patients were treated with Vitamin D. Their results showed, for the first time, that myometrial 

and leiomyoma cells are undoubtedly target cells of 1,25(OH)2D3. The treatment decreased 

proliferation of both cell populations, suggesting a likely role of 1,25(OH)2D3 deficiency in 

leiomyoma growth and development (Bläuer et al., 2009).  

Subsequently, several in vitro studies that assessed the effect of 1,25(OH)2D3 on uterine 

leiomyomas were performed using immortalized human uterine leiomyoma (HuLM) cells 

instead of primary culture. Sharan et al. showed that Vitamin D inhibited HuLM cells 

proliferation through the downregulation of proliferating cell nuclear antigen (PCNA) and 

CDK1. In addition, the study suggested that 1,25(OH)2D3 induces apoptosis in leiomyomas 

cells; however, only pro-apoptotic proteins (BCL2 and BCL-W) were evaluated (Sharan et al., 

2011).  

Other studies investigated the effects of Vitamin D on ECM proteins. Halder et al. 

demonstrated that TGF3 induces the expression of collagen I, fibronectin and plasminogen 

activator inhibitor-1 (PAI-1) in HuLM cells. Treatment with 1,25(OH)2D3 significantly decreases 

these TGF3-induced effects (Halder et al., 2011). In addition, further studies from the same 

group showed that 1,25(OH)2D3 treatment inhibits the expression of MMP-2 and MMP-9, as 

well as increasing the expression of TIMP-2 in HuLM and primary leiomyoma cells (Halder et 

al., 2013a). These findings suggest Vitamin D as a key regulator of ECM formation. Further, 

Vitamin D treatment reduces the expression of the ECM leiomyoma proteins, such as collagen 

I, fibronectin and PAI-1, and the proteoglycans fibromodulin, versican and biglycan in HuLM 

cells (Halder et al., 2013b). The main drawback of these studies is the use of HuLM cells, which 

provide uniform results without considering patient heterogeneity. In addition, these studies 
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used 2D culture instead of 3D culture systems that mimic the actual leiomyoma environment 

and are more suitable to evaluate ECM-related processes.  

Finally, Al-Hendy et al. studied the effect of 1,25(OH)2D3 on Wnt/-catenin signaling pathway. 

Vitamin D treatment decreases the expression of Wnt4 and -catenin in HuLM cells, 

suggesting an inhibitory effect of Vitamin D on Wnt/-catenin pathway in this leiomyoma cell 

line. However, the inhibitory effect of Vitamin D was only demonstrated on Wnt4 expression 

in leiomyoma primary cells that came from a single patient (Al-Hendy et al., 2016). In this 

regard, Vitamin D’s effect in a heterogenic leiomyoma primary cell population has not yet 

been described. 

4.3.2. In vivo studies 

Halder et al. assessed the effect of Vitamin D in vivo in two different studies, using different 

leiomyoma animal models and different drugs. First, they tested the effect of 1,25(OH)2D3 on 

leiomyomas using the Eker rat model. Eker rats develop leiomyomas in their uteri with a 

frequency of 65% due to a germ line mutation in the tuberous sclerosis 2 (Tsc2) tumor 

suppressor gene (Everitt et al., 1995; Walker et al., 2003). Their results showed that the 

treatment with 1,25(OH)2D3 (0.5 g/kg/day) for 3 weeks significantly reduces leiomyoma size, 

decreases the expression of genes involved in proliferation (Pcna, Ccnd1, c-Myc, Cdk1, Cdk2 

and Cdk4) and apoptosis (Bcl2 and Bcl-x). At the protein level, the treatment reduces the 

expression of both proliferation markers PCNA and MKI67 and increases expression of 

Caspase 3 (Halder et al., 2012).  

Subsequently, the same group assessed the effect of 1,25(OH)2D3 and its analog paricalcitol 

on a heterologous leiomyoma animal model, using the Eker rat-derived uterine leiomyoma 

cell line (ELT-3). They generated subcutaneous leiomyomas by injecting the ELT-3 cells in 

athymic nude mice supplemented with estrogen pellets. Then, mice were treated with 

paricalcitol (300 ng/kg/d) or 1,25-dihydroxyvitamin D3 (0.5 g/kg/d) for 4 weeks. Both 

treatments reduce leiomyoma size, with shrinkage slightly higher in the paricalcitol group. 

Both treatments also decrease proliferation and collagen IV expression as well as increasing 

apoptosis (Halder et al., 2014).   
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Both in vivo animal models concluded that 1,25(OH)2D3 or its analogs could be a potential 

candidate for effective, safe and noninvasive medical treatments for uterine leiomyomas. 

However, both studies test the Vitamin D effect on leiomyoma size in Eker rats or its derived 

cells, which do not mimic the actual human leiomyoma physiology. So far, there is no in vivo 

study that assesses the effect of Vitamin D treatment on a leiomyoma animal model generated 

using human tissues or human uterine leiomyoma cells.   

4.3.3. Vitamin D supplementation in women with uterine leiomyoma 

The effect of Vitamin D on women with uterine leiomyomas is only reported in one trial. 

Ciavattini et al. studied the effect of Vitamin D supplementation in women with uterine 

leiomyomas and concomitant hypovitaminosis D [25(OH)D3 serum level < 30 ng/mL]. Patients 

who met both criteria were offered Vitamin D supplementation therapy with 50,000 IU of 

cholecalciferol (oral solution) once per week for 8 weeks, followed by maintenance therapy of 

2000 IU daily for 12 months. After that period, patients who properly performed Vitamin D 

supplementation therapy, formed the study group (n=43), while those that who did not 

performed it properly or refused it, constituted the control group (n=34). While in the control 

Vitamin D levels were maintained after 12 months, in the study group, Vitamin D serum levels 

increased significantly. A significant increase in leiomyoma size was found in the control group, 

while no significant difference was found in the study group, suggesting that Vitamin D would 

be an efficient treatment to maintain uterine leiomyoma size instead of to decrease its size. 

However, considering that this study only included peri and menopausal women with “small 

burden” leiomyomas, excluding premenopausal women with leiomyomas > 50 mm diameter, 

with more than 4 fibroids or with severe symptoms, and the control group comprised women 

who did not comply with the therapy (Ciavattini et al., 2016), the obtained results could be 

biased. 

It is important to highlight that Vitamin D effects have been demonstrated in vitro and in vivo 

in a human leiomyoma cell line, in Eker rats, or in rat-derived cells. None of these studies used 

leiomyoma primary cells or human tissue samples, and therefore they do not reflect either 

the heterogeneity of human general population or the actual human leiomyoma physiology. 

Considering this, an in-depth study of the molecular mechanisms through which Vitamin D 
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could act, as has been described in cancer cells, is still pending for human leiomyoma primary 

cells and human leiomyoma tissue. 
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II. HYPOTHESIS 

Vitamin D, specifically its active metabolite 1,25-dihydroxyvitamin D3, could play an important 

role in the pathogenesis of uterine leiomyomas through the regulation of Vitamin D signaling 

pathways: cell growth arrest induction, cell proliferation reduction, Wnt/β-catenin signaling 

pathway inhibition and apoptosis induction, and consequently, decreasing uterine leiomyoma 

growth. 
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III. OBJECTIVES 

The main objective of this study is to evaluate the effect of Vitamin D treatment on uterine 

leiomyomas growth in order to test its potential as a therapeutic agent to reduce its size.  

Specific objectives: 

1. Determine in vitro the effect of Vitamin D treatment in human uterine leiomyoma primary 

cells through the regulation of cell cycle, cell proliferation, Wnt/β-catenin signaling 

pathway and apoptosis.  

2. Determine in vivo in a xenograft mouse model the effect of Vitamin D treatment in human 

uterine leiomyomas through the regulation of cell proliferation, extracellular matrix 

formation and apoptosis. 
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IV. MATERIALS AND METHODS 

1. IN VITRO STUDY  

1.1. HUMAN UTERINE LEIOMYOMA SAMPLE COLLECTION 

This study was approved by the Clinical Ethics Committee at Hospital Univeristario y 

Politécnico La Fe (Spain) (2014/0691), and all participants provided informed consent. 

Human uterine intramural leiomyomas and adjacent myometrium were collected from 

premenopausal women ages 35-54 years undergoing either myomectomy or hysterectomy 

due to symptomatic uterine leiomyoma pathologies without any previous hormonal 

treatment (Table I).  

Table I. Patients characteristics. 

 

After the collection, samples were placed in a maintenance medium containing Medium 199 

Earle's salts, 10% fetal bovine serum (FBS), 0.5% penicillin-streptomycin, 0.5% fungizone 
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antimycotic solution and 1% of 1 M HEPES (all acquired from Gibco, Fisher Scientific, USA) and 

stored overnight at 4° C to be processed the next day.  

Subsequently, uterine leiomyoma and myometrium were divided in two different fractions: 1) 

One fragment was used for protein extraction to evaluate the involvement of proliferation, 

Wnt/-catenin pathway and apoptosis in uterine leiomyoma development by western blot 

and 2) another fragment was used for leiomyoma cell isolation and culture to determine 

Vitamin D’s effect on the cells through cell cycle, Wnt/-catenin signaling and apoptosis 

pathways. 

1.2. EVALUATION OF HUMAN UTERINE LEIOMYOMA AND ADJACENT MYOMETRIAL 

TISSUES 

To determine the involvement of proliferation, Wnt/-catenin pathway and apoptosis in 

uterine leiomyoma development, the expression for proliferating cell nuclear antigen (PCNA), 

Wnt1-inducible-signaling pathway protein 1 (WISP1), B-cell lymphoma-2 (BCL2), and BCL2 

Associated-X (BAX) was assessed by western blot in leiomyoma and adjacent myometrium 

tissues.  

1.2.1. Protein extraction 

Protein was extracted from uterine leiomyoma and myometrial tissue fragments (n=22) using 

radioimmunoprecipitation assay (RIPA) Buffer, containing 50 mM Tris(hydroxymethyl)amino-

methane-HCl pH 7.5, 150 mM NaCl, 1% Triton-X 100, 1% sodium deoxycholate, 1% IGEPAL CA-

630 (Sigma-Aldrich, USA), EDTA-free protease inhibitor cocktail (Roche, Switzerland) and 0.1% 

of sodium dodecyl sulfate (SDS) (Bio-Rad, USA). Samples were maintained on ice to avoid 

protein degradation. Briefly, a small fragment of each tissue sample (5 x 5 mm) was 

mechanically dissected with scalpels to obtain fragments smaller than 1 mm3. Subsequently, 

RIPA buffer was added and samples were incubated for 30 minutes. After incubation, samples 

were centrifuged for 15 minutes, at 160000 g at 4° C.  Supernatant containing the proteins 

was collected and placed in a new tube. Protein concentrations were quantified by a 

colorimetric assay based on the Bradford method with Bio-Rad Protein Assay Dye Reagent 

Concentrate (Bio-Rad, USA) following the manufacturer’s instructions and using SpectraMax 

190 Microplate Reader (Molecular Devices, USA). 
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1.2.2. Western blot 

The same amount of each tissue lysate sample (30 µg) was denatured at 95°C for 5 minutes 

and separated by electrophoresis in 10% sodium dodecyl sulphate-polyacrylamide (SDS-

PAGE) gel. Molecular weight markers (Bio-Rad, USA) were used for determining fragment size. 

Electrophoresis was performed with Tris/glycine/SDS Buffer (Bio-Rad, USA) for 1 hour at 180 

V and the gel percentage was selected depending on the size of the protein of interest. 

Separated proteins were transferred from the gel to a polyvinylidene difluoride (PVDF) 

membrane (Bio-Rad, USA) for 2 hours at 220 mA using Tris/glycine Buffer (Bio-Rad, USA). 

Membrane was incubated 1 hour at room temperature on a shaker with blocking solution 

[phosphate-buffered saline (PBS), 0.05% Tween and 5% nonfat milk] and incubated with the 

primary antibody overnight at 4° C on an orbital shaker. Primary antibodies were prepared in 

blocking solution (PBS, 0.05% Tween and 3% nonfat milk) at the following dilutions: PCNA (sc-

56, 1:200), WISP1 (sc-133126, 1:200), BCL2 (sc-7382, 1:200) and BAX (sc-20067, 1:200) from 

Santa Cruz Biotechnology (USA). After the incubation, the membrane was rinsed 3 times for 5 

minutes with PBS-Tween 0.05% and incubated with the HRP-conjugated secondary antibody 

(sc-516102; 1:2000; Santa Cruz biotechnology, USA) for 1 hour at room temperature on a 

shaker. Membrane was rinsed as previously mentioned and antigen-antibody complex 

detection was performed with an enhanced chemiluminescence detection system (Super 

Signal West Femto Maximum Sensitivity Substrate, ThermoFisher, USA). Specific protein 

bands were visualized by chemiluminescence imaging using the LAS-3000 Imaging-System 

(Fujifilm, Japan) and the intensity of each protein band was quantified with Image J software 

(National Institutes of Health, USA). Expression of each protein was normalized in relation to 

housekeeping protein β-actin (1:2000; sc-516102, Santa Cruz Biotechnology, USA). For that, 

membrane was incubated with Restore Western Blot Stripping Buffer (ThermoFisher, USA) for 

15 minutes at room temperature on a shaker and followed rinsed with PBS-Tween 0.05%. 

Then, membrane was blocked again with blocking solution, incubated with the primary and 

secondary antibodies, detected and quantified as previously described.  

 

 



 IV MATERIALS AND METHODS 

 

48 

 

1.3. VITAMIN D TREATMENT OF HUMAN UTERINE PRIMARY LEIOMYOMA CELLS 

To assess the effect of Vitamin D treatment on uterine leiomyoma in vitro, Human Uterine 

Primary Leiomyoma (HUPL) cells were isolated and treated with 1,25(OH)2D3. Subsequently, 

functional analysis was carried out to analyze cell cycle, proliferation, Wnt/-catenin pathway 

and apoptosis in treated and control cells.  

1.3.1. Human uterine leiomyoma primary cell isolation  

Leiomyoma samples were disaggregated in sterile conditions by mechanical and enzymatic 

procedures to obtain cell suspensions. Briefly, leiomyoma samples were dissected and minced 

manually into small pieces (1 mm3) and enzymatically digested at 37° C on a shaker with 

disaggregation medium (2 mg/mL type II collagenase [Labclinics, Spain] and 1 mg/mL 

deoxyribonuclease I [DNase I] [Sigma-Aldrich, USA] in PBS) for 1 hour. Subsequently, the 

medium was filtered through 40-µm cell strainers (pluriSelect, Germany) to remove 

undigested tissue and centrifuged 5 minutes at 600 g to obtain the cellular fraction. Remaining 

tissue was incubated again with disaggregation medium for 30 minutes 2 times, with filtration 

and centrifugation at the end of each disaggregation step. Finally, harvested cells were treated 

with erythrocyte lysis buffer (1.5 M NH4Cl, 100 mM NaHCO3 and ethylenediaminetetraacetic 

acid [EDTA] 1 mM) at pH 7.4 to eliminate blood cells by hypotonic shock.  

Human uterine leiomyoma primary (HULP) cells were resuspended in cell culture medium 

containing Dulbecco's Modified Eagle Medium (DMEM)/F-12 with 10% FBS, 0.1% penicillin-

streptomycin, 0.1% fungizone antimycotic solution (Gibco, Fisher Scientific, USA) and counted 

with Neubauer chamber in a solution with trypan blue to denote dead cells (Labclinics, Spain). 

1.3.2. Preliminary studies 

1.3.2.1. Vitamin D treatment: Dose-time response assay 

A preliminary study with HULP cell samples (n=6) was conducted to establish cell culture and 

Vitamin D treatment conditions. HULP cells were incubated at 37 °C and 5% CO2 in cell culture 

medium. Once HULP cells achieved 70-80% confluence, they were divided into five 

experimental groups to select the dose of Vitamin D, and treatments were administered in 

cell culture medium for 24 and 48 hours. To prepare the treatments, 10 µg of 1,25-



 IV MATERIALS AND METHODS 

 

49 

 

dihydroxyvitamin D3 (Sigma-Aldrich, USA; molecular weight = 416.64 g/mol), were dissolved 

in 1.2 mL of ethanol (EtOH) to achieve a final concentration of 20 µM. 

Treatment groups: 

1) Cell culture medium (Control) (n=6) 

2) 0.5% EtOH (vehicle of Vitamin D) (n=6) 

3) 1,25(OH)2D3 10 nM (n=6) 

4) 1,25(OH)2D3 100 nM (n=6) 

5) 1,25(OH)2D3 1000 nM (n=6) 

Cultured HULP cells collection 

After treatment, culture medium was removed, and attached cells were treated with trypsin-

EDTA (0.25%) (Fisher Scientific, USA) for 5 minutes at 37° C to induce cell dissociation. 

Subsequently, cell culture medium was added to stop trypsin reaction, and the total volume 

was collected and centrifuged (5 minutes, 600 g). Supernatant was discarded and the pellet 

containing the cells was stored at -80° C until ribonucleic acid (RNA) extraction procedure.  

CYP24A1 expression by quantitative-real time polymerase chain reaction (qRT-PCR) 

To assess cell response to Vitamin D in HULP cells, we measured gene expression of CYP24A1, 

which is strongly induced by 1,25(OH)2D3. Total RNA was extracted from HULP cells treated 

with and without Vitamin D using Quick-RNA Microprep (Zymo Research, USA) following 

manufacturer’s instructions. RNA concentration was measured by Qubit Fluorometric 

Quantification using Qubit RNA HS assay kit (ThermoFisher, USA). Subsequently, 

complementary cDNA was synthesized from 1 µg of RNA with PrimeScript RT reagent Kit 

(Takara, Japan), and cDNA concentration was measured by Qubit Fluorometric Quantification 

using Qubit dsDNA HS assay kit (ThermoFisher, USA). qRT-PCR was performed with 

StepOnePlus™ Real-Time PCR System (Applied Biosystems, USA) using PowerUp SYBR Green 

(ThermoFisher, USA). Expression of the housekeeping gene β-ACTIN was used to normalize 

the expression of CYP24A1. The sequence of primers used is detailed in Annex I.  The amount 
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of sample used in each reaction was 4 ng, and the fold changes were calculated with the 

method ΔΔCt using Qiagen Data Analysis Software. 

1.3.2.2. Cell viability assay 

To assess if Vitamin D vehicle has a detrimental effect on HULP cells, cell viability was 

calculated by flow cytometry.  

Briefly, once HULP cells achieved 70-80% of confluence, they were divided into three groups: 

1) Cell culture medium (control); 2) 0.5 % EtOH (vehicle); and 3) 1,25(OH)2D3 100 nM groups 

(n=6) for 48 and 144 hours. Subsequently, cells were collected as described in section 1.3.2.1. 

and fixed with ice-cold 70% EtOH. Fixed cells were suspended in 100 µg/mL ribonuclease A 

(RNase A) and 50 μg/mL propidium iodide (PI) in PBS (Sigma-Aldrich, USA) to stain DNA. Then, 

HULP cells were incubated in darkness at 4 °C overnight and analyzed in a Cytomics-FC500 

(Beckman-Coulter, USA) flow cytometer. PI fluorescence was detected in a 620-nm 

fluorescence channel; analysis was performed using FlowJo software for flow cytometry data 

to identify the percentage of cell viability. 

1.3.3. Vitamin D treatment: Functional analysis 

After establishing culture conditions and ensure that Vitamin D vehicle (EtOH) did not result 

in toxicity to cells, HULP cells were treated with/without Vitamin D to assess its action on 

signaling pathways by different functional analysis, summarized in Table II.  

HULP cells (n=22) were incubated at 37° C and 5% CO2 in cell culture medium and, once they 

achieved 70% of confluence, were serum-starved (incubated with cell culture medium without 

FBS) for 20 hours to induce cell cycle synchronization.  

Subsequently, HULP cells from each sample were divided in two experimental groups, 1) 

Control (only cell culture medium) and 2) Vitamin D (1,25(OH)2D3 100 nM), and cultured for 

the analysis of cellular DNA content for 144 hours (treatment replaced every 48 hours) and 

for PCNA analysis by western blotting, gene and protein expression for Wnt/β-Catenin and 

apoptosis pathways, gene validation, and apoptosis analysis by TUNEL, cells were cultured for 

48 hours. 
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Table II. Summary of the functional assays performed in the in vitro study. 

 

 

1.3.3.1. Analysis of cellular DNA content by flow cytometry  

To determine the effect of Vitamin D treatment on the cell cycle, HULP cells were sorted by 

flow cytometry. After the 144-hour treatment, HULP cells (n=22 samples) were collected and 

fixed for cellular DNA content analysis. Briefly, the cell culture medium was collected and, 

attached cells were treated with trypsin-EDTA (0.25%) (Fisher Scientific, USA) for 5 minutes at 

37° C to induce cell dissociation. Cell culture medium was added to reverse the effect of 

trypsin, and the total volume was centrifuged, along with the medium previously collected, 

for 5 minutes at 600 g.  Supernatant was discarded and pellet containing the cells was fixed in 

ice-cold 70% EtOH and stored at -20 °C (for at least for 1 h) until DNA staining.  

Subsequently, fixed cells were suspended in 100 µg/mL RNase A and 50 μg/mL propidium 

iodide (PI) in PBS (Sigma-Aldrich, USA) to stain DNA. Then, HULP cells were incubated in 

darkness at 4 °C overnight and analyzed in a Cytomics-FC500 (Beckman-Coulter, USA) flow 

cytometer. PI fluorescence was detected in a 620-nm fluorescence channel, where PI signal 

area was used as a DNA measure and PI signal height was used to exclude the aggregates. 

Analysis was performed using FlowJo software for flow cytometry data to identify the G0/G1, 

S and G2/M phases from PI area signal, quantifying the percentage of cells in each cell cycle 

phase. Cell growth arrest was represented as the difference in the percentage of cells in S-

G2/M between Vitamin D-treated and control HULP cells (100 - [%S-G2/MVitamin D x 100 / %S-

G2/Mcontrol]). 
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1.3.3.2.  Analysis of PCNA expression in HULP cells 

To assess the effect of Vitamin D treatment on HULP cell proliferation, the expression of PCNA 

was evaluated by western blot in Vitamin D treated and control cells. A subset of 

representative samples (n=15) from all samples included in the study, with the same age, BMI, 

size and number of leiomyomas as the entire sample (n=22), was selected for that assay (Table 

I).  

After 48 hours of treatment, HULP cells were collected as described in section 1.3.2.1 and the 

pellet containing the cells was stored at -80° C until protein extraction procedure following 

the protocol described in section 1.2.1. Subsequently, 10 µg of each cell lysate sample were 

analyzed by western blot, as detailed in section 1.2.2, to determine the expression of PCNA. 

1.3.3.3. Gene expression analysis: Wnt/-catenin pathway and apoptosis 

To evaluate the effect of Vitamin D on Wnt/-catenin pathway and apoptosis at the gene 

expression level in HULP cells, a subset of 11 representative samples from all samples included 

in the study, with the same age, BMI, size and number of leiomyomas as the entire sample 

(n=22) was selected (Table I). 

After 48-hour treatment, HULP cells were collected as described in section 1.3.2.1. The 

expression of 84 Wnt-mediated pathway genes and 84 genes involved in apoptosis were 

measured using RT2-Profiler PCR Arrays from Qiagen (Germany) according to the 

manufacturer’s instructions. The protocol is summarized in Figure 11. 

1. RNA extraction. Total RNA of Vitamin D-treated and control HULP cells was isolated using 

RNeasy kit (Qiagen, Germany), including a DNase digestion step performed with RNase-

Free DNase Set (Qiagen, Germany). RNA concentration was determined by Qubit 

Fluorometric Quantification using Qubit RNA HS assay kit (ThermoFisher, USA). In 

addition, an aliquot of each RNA sample (1 µL) was run on the Agilent 2100 Bioanalyzer 

using an RNA 6000 Nano LabChip (Agilent Technologies, USA) to check RNA integrity. 

Samples with an RNA integrity number (RIN) > 7 were included in the assay.  

2. cDNA synthesis. 500 ng of RNA were used to synthesize cDNA using First Strand Kit 

(Qiagen, Germany), according to manufacturer’s specifications. From the 111 µL 
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obtained, 1 µL was used to determine the concentration of cDNA by Qubit Fluorometric 

Quantification using Qubit dsDNA HS assay kit (ThermoFisher, USA).  

3. Gene expression analysis. RT2-Profiler PCR Arrays from Qiagen (Germany) consist of a 

96-well plate containing SYBR® Green-optimized primers for pathway-focused genes. In 

our case, we performed RT² Profiler PCR Array Human WNT Signaling Pathway Plus 

(PAHS-043Y) and RT² Profiler PCR Array Human Apoptosis (PAHS-012Z). Each PCR array 

allows the evaluation of the expression of 84 genes of the pathway of interest and 5 

housekeeping (HK) genes in one sample. In addition, it contains 1 genomic DNA control 

well (GDC), 3 reverse-transcription Control (RTC) wells and 3 positive PCR control (PPC) 

wells. The list of genes evaluated in Wnt signaling and apoptosis arrays is detailed in 

Annexes II and III, respectively. 

Briefly, 102 µL of cDNA were mixed with RT² SYBR Green qPCR Mastermix (Qiagen, Germany), 

following the manufacturer’s protocol. Subsequently, the mix was aliquoted in the 96 wells of 

the RT2 Profiler PCR Array, 25 µL/well. qRT-PCR was performed in StepOnePlus™ Real-Time 

PCR System (Applied Biosystems, USA) with the cycling conditions recommended by Qiagen: 

1 cycle at 95 °C for 10 minutes, 40 cycles of 15 seconds at 95 °C and 1 minute at 60 °C. 

The threshold cycle (CT) was calculated using the StepOnePlus Software. Baseline was defined 

by choosing the automated baseline option, and the threshold was manually set as directed 

by the protocol. The same threshold was set for all the arrays included in the study, 11 control 

and 11 Vitamin D-treated samples. The CT values were analyzed through Qiagen’s GeneGlobe 

Data Analysis Center using a software-based tool. Data were normalized with the 

housekeeping gene with minor variability and the fold regulation of each gene in the Vitamin 

D-treated group compared to control group was calculated. 

In the case of the Human WNT Signaling Pathway Plus (PAHS-043Y) array, Qiagen’s analysis 

software allows the calculation of the pathway activity score. This score is calculated with the 

expression of 16 Pathway Activity Signature Genes included in the array (BOD1, CALM1, 

CCND1, CCND2, CHSY1, CXADR, CYP4V2, HSPA12A, LEF1, MT1A, MTFP1, MTSS1, MYC, NAV2, 

PRMT6, and SKP2), along with a classification algorithm developed by Qiagen. Positive score 

(>0.3) indicates stimulation of pathway activity, while negative score (<-0.3) indicates 

repression of the pathway in the treated group compared to control. 
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In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) Mapper-Color Pathway tool 

was used to represent a Wnt/β-Catenin pathway overview (hsa04310) after Vitamin D 

treatment in HULP cells compared to control HULP cells. Fold regulation data obtained for the 

analysis were used; upregulated genes were colored in red and downregulated genes in blue. 

To validate the results, we analyzed gene expression of WNT5A, DKK1 (for Wnt/β-Catenin 

pathway validation) and gene expression of BCL2, and TNFRSF11B (for apoptosis pathway 

validation) in the same HULP cells used in the expression analysis (n=11) and new HULP cells 

Figure 11.  RT2-Profiler PCR Arrays Procedure. Qiagen (Germany) kits were used at all steps according to the 

manufacturer's instructions. Total RNA from treated and control cells was purified and, subsequently, cDNA was 

synthesized from purified RNA. cDNA was mixed with RT2 SYBR Green Mastermix and aliquoted in the 96 wells 

of an RT2-Profiler PCR Array, which contains primers for 84 pathway-focused genes as well as 5 housekeeping 

genes (HK). In addition, the array contains 1 genomic DNA control (GDC) well, 3 reverse-transcription control 

(RTC) wells and 3 positive PCR control (PPC) wells. Finally, qRT-PCR was performed in StepOnePlus Real-Time PCR 

System (Applied Biosystems, USA). Image adapted from Qiagen protocol. 
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(n=6) treated with/without Vitamin D for 48 hours by qRT-PCR. Relative expression levels were 

normalized to expression of the housekeeping β-ACTIN. The sequence of primers used can be 

found in Annex I.  

1.3.3.4. Protein expression analysis: Wnt/β-catenin pathway 

To assess the effect of Vitamin D treatment on the Wnt/-catenin pathway at the protein level 

in the selected subset of HUPL cells samples (n=11), proteins from Vitamin D-treated and 

control HULP cells were extracted using lysis buffer (RayBiotech, USA). Total protein 

concentration was determined by Pierce™ BCA Protein Assay Kit (ThermoFisher, USA), 

according to manufacturer’s instructions and using SpectraMax 190 Microplate Reader 

(Molecular Devices, USA).  

Subsequently, proteins related to the Wnt/-catenin pathway were evaluated by Quantibody 

Human Cytokine array from RayBiotech (USA). This assay is an array-based multiplex ELISA 

system for simultaneous quantitative measurement of multiple proteins. To determine the 

effect of the treatment in our samples, a Human Custom Quantibody was used to evaluate 

the expression of target proteins related to Wnt/β-catenin pathway (MMP-7, uPAR and WISP-

1), following manufacturer’s instructions. The procedure is summarized in Figure 12. 

1. Cytokine Standard Preparation. To quantify the expression of the proteins of interest, a 

standard curve, whose concentration has been predetermined, was prepared from the 

standard vial provided. 

2. Blocking and Incubation. Glass slides were air-dried, and sample diluent was added to 

each well for 30 minutes at room temperature to block slides. Then, diluent was 

removed, and standards and samples were added to each well and incubated overnight 

at 4 °C. Samples and standards were removed, and the slide was washed with wash 

buffer as directed by the protocol. 

3. Incubation with Biotinylated Antibody Cocktail. The detection antibody was 

reconstituted, added to each well and incubated for 2 hours at room temperature. It was 

removed with washing as directed by the protocol.  
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4. Incubation with Cy3 Equivalent Dye-Streptavidin. Cy3 equivalent dye-conjugated 

streptavidin was added and incubated at room temperature for 1 hour in darkness. Slides 

were washed as directed by the protocol.  

5. Fluorescence detection. Slides were dried and sent to Raybiotech for scanning with an 

Innopsys Innoscan-710A (Carbonne, France) using a dynamic PMT setting, XDR. Signals 

were extracted using MAPIX and sample concentrations [pg/mL] were quantified based 

on a standard curve. 

 

 

 

 

 

 

 

 

 

 

 

 

1.3.3.5. TUNEL assay 

To detect and quantify apoptosis at a single-cell level in HULP cells treated with and without 

Vitamin D (n=11), terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling 

(TUNEL) staining was carried out using a TMR red IN SITU cell death detection kit (Roche, 

Switzerland). This technique labels DNA strand breaks generated during apoptosis, allowing 

the discrimination from necrosis. After the 48-hour treatment, cell culture medium was 

Figure 12.  Quantibody Human Cytokine array procedure. The glass slide is divided in 16 wells, each one 

containing capture antibodies bounded to the glass surface. After incubation with the sample, the protein of 

interest is trapped on the glass. The biotinylated antibody cocktail recognizes a different epitope of the target 

protein and, finally, the protein-antibody-biotin complex can then be visualized through the addition of the 

streptavidin-conjugated Cy3 equivalent dye, using a laser scanner. Image adapted from Raybiotech protocol. 



 IV MATERIALS AND METHODS 

 

57 

 

removed and attached cells were washed with PBS. Cell fixation was performed by incubating 

attached cells for 20 min with 4% paraformaldehyde. Subsequently, HULP cells were rinsed 

with PBS and the permeabilization step was carried out by incubating cells with 0.1% Triton 

X-100 in 0.1% sodium citrate for 8 minutes. Cells were rinse twice with PBS.  

As a positive control, two wells of each set of experiments were treated with DNase I (1000 

U/mL in 50 mM Tris-HCl, pH 7.5, 1 mg/mL Bovine serum albumin [BSA]) for 10 minutes. For 

labeling process, TUNEL reaction mixture was prepared by mixing label solution with enzyme 

solution, following manufacturer’s instruction. Cells were incubated with TUNEL reaction 

mixture in a humified atmosphere for 1 hour at 37 °C in darkness. Negative controls were 

incubated with label solution. Then, samples were rinse 3 times with PBS and cell nuclei were 

counterstained with DAPI (Life Technologies, USA). Stained cells were visualized and analyzed 

using fluorescence microscopy on a ZEISS Axio-Vert.A1 (Germany). Four fluorescent images 

per leiomyoma sample and condition were quantitatively assessed with Image ProPlus (Media 

Cybernetics, USA). 

1.4. STATISTICAL ANALYSIS 

GraphPad Prism 6.0 was used in this study for statistical analyses and graphics generation. 

Data are presented as mean ± standard deviation (SD). Wilcoxon test was performed for WB 

analysis of PCNA and WISP1 in leiomyoma and adjacent myometrium tissue and protein array 

and TUNEL analysis in Vitamin D-treated vs control HULP cells. A paired t-test was performed 

for WB of BAX/BCL2 ratio in leiomyoma and adjacent myometrium tissue and WB analysis of 

PCNA in Vitamin D-treated vs control HULP cells. Gene expression and validation analysis were 

carried out with Qiagen Data Analysis Software applying Student’s t-test. p value<0.05 was 

considered statistically significant. 

2. IN VIVO STUDY 

To test Vitamin D’s effect in human uterine leiomyoma in vivo, a xenograft mouse model was 

developed, in which human uterine leiomyomas fragments were implanted in 

immunosuppressed mice and, subsequently, they were treated with 1,25(OH)2D3 at both short 

and long term.  The experimental design is summarized in Figure 13. 
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Procedures took place in the animal facilities of the Central Research Unit of the Medicine 

Faculty at University of Valencia. Throughout this assay, mice were maintained in specified-

pathogen free (SPF) facilities and fed ad libitum. In all surgery mice were anesthetized by 

isoflurane inhalation and were treated before surgery with pre-emptive and post-surgical 

analgesia (buprenorphine 0.01 mg/kg each 8 hours for 72 hours). 

 

 

 

 

 

 

2.1. ESTABLISHMENT OF A HUMAN UTERINE LEIOMYOMA XENOGRAFT MOUSE MODEL 

Female NOD–SCID mice (strain code 394; NOD.CB17-Prkdcscid/NCrCrl from Charles River 

Laboratories, France) were ovariectomized and hormonally supplemented at 5-6 weeks of 

age. A human uterine leiomyoma xenograft mouse model was induced by leiomyoma 

fragment xenotransplantation.  

 

Figure 13.  In vivo study experimental design. In both short- and long-term assay models, female NOD–SCID 

mice were ovariectomized at 5-6 weeks of age and treated with estradiol and progesterone to mimic the 

menstrual cycle. One week after the ovariectomy, two leiomyoma (LM) fragments were implanted in each 

mouse. Treatment started one week after the LM implantation with the pump implantation. In the short-term 

assay, PET/CT scans were carried out once a week and animals were euthanized at day 21. In the long-term 

assay, at day 30 of treatment pumps were replace. At day 60, PET/CT scan was carried out and animals were 

euthanized.  
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2.1.1. Ovariectomy and hormonal treatment 

Considering that uterine leiomyoma growth depends on steroid hormones, mice were 

ovariectomized to avoid interindividual variation. In addition, to mimic the menstrual cycle, 

mice were treated with estrogen and progesterone, adapting the protocol published by 

Cervelló et al. (Cervelló et al., 2011). Briefly, during ovariectomy surgery, both ovaries were 

removed by bilateral flank laparotomy, and estradiol pellets (SE121, 17β-estradiol 0.36 mg/60 

days; Innovative Research of America, USA) were implanted subcutaneously at the neck. In 

addition, mice were injected subcutaneously with 1 mg/day of progesterone (Sigma-Aldrich, 

USA) for 1 week within a 2-week interval (Figure 13). 

2.1.2. Xenotransplantation 

Human uterine intramural leiomyoma collection: One week after ovariectomy in mice, 

human uterine leiomyoma tissue samples were collected from premenopausal women (n=4) 

undergoing either myomectomy or hysterectomy due to symptomatic uterine leiomyoma 

pathologies without any previous hormonal treatment (Table III). The collection of human 

uterine leiomyomas was approved by Clinical Ethics Committee at Hospital Univeristario y 

Politécnico La Fe (Spain) (2014/0691), and all participants provided informed consent.  

Table III: Characteristics of patients included in the in vivo study. 

 

After human tissue collection, samples were placed in the maintenance medium described in 

section 1.1 and cut manually into approximately 3-4 mm3 square-shaped pieces, measured 

with a digital caliper and photographed next to a reference rule. To determine leiomyoma 

size, fragment volume was calculated using the following ellipsoid formula:  

volume = length x width x depth x 0.52 (Halder et al., 2012) 



 IV MATERIALS AND METHODS 

 

60 

 

In the fragmentation process, one extra fragment from each human leiomyoma sample was 

fixed in 4% neutral-buffered formadehyde overnight at 4 ºC and subsequently, embedded in 

paraffin, as will be describe in section 2.3, for histological evaluation.  

Xenotransplantation in ovariectomized and hormonally supplemented mice: During 

xenotransplantation 2 leiomyoma fragments were implanted intraperitoneally by suture in 

each flank of the mouse. To avoid interindividual variation, human leiomyoma tissue samples 

from the same patient were used for all animals in each of the four experimental sets. The 

study with animals was approved by the Ethics Committee for Animal Welfare of the 

University of Valencia (2017/VSC/PEA/00017). 

2.2. VITAMIN D TREATMENT ON HUMAN UTERINE LEIOMYOMA XENOGRAFT MOUSE 

MODEL 

To assess the effect of Vitamin D on human uterine leiomyoma in our xenograft mouse model, 

a short-term assay [21 days of treatment with 1,25(OH)2D3] was initially carried out. With this 

purpose, three sets of experiments were performed with a total of 10 mice/group (set 1: 4 

mice/group; set 2&3: 3 mice/group). 

Subsequently, considering that uterine leiomyomas are bening tumors whose median growth 

rate is 9% per 6 months (Peddada et al., 2008), we decided to perform an additional assay 

increasing the treatment time to observe the Vitamin D effect on leiomyoma growth. In this 

long-term assay (60 days of treatment with 1,25(OH)2D3) 1 set of experiments with a total of 

6 mice/group was conducted.  

2.2.1. In vivo treatment 

In both short- and long-term assays, one week after leiomyoma fragment implantation, 

ovariectomized and hormonally supplemented mice were divided in three different treatment 

groups: 

1) Control group (EtOH, Vitamin D vehicle) 

2) 1,25(OH)2D3 0.5 µg/kg/day  

3) 1,25(OH)2D3 1 µg/kg/day 
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Although 2000 IU has been set as the Safe Tolerable Upper Intake Level of Vitamin D, absence 

of toxicity has been reported in clinical trials using Vitamin D dose 10 000 IU (Hathcock et al., 

2007). In this regard, the recommended dosage of DELTIUS 25 000 UI/2.5 mL (Italofarmaco, 

Spain), whose active ingredient is cholecalciferol, range from 1400 IU to 3500 IU (AEMPS, 

2017).  

For this reason, we wanted to assay in our in vivo model two Vitamin D doses between 1400 

IU to 3500 IU. Considering that 1 µg of 1,25(OH)2D3 is equivalent to 40 IU (Hathcock et al., 

2007), for mouse treatment we selected 0.5 µg/kg/day and 1 µg/kg/day, which are 

respectively equivalent to 1400 IU and 2800 IU for a human adult of 70 kg.  

Treatments were delivered by ALZET Micro-Osmotic Pumps (USA), specifically the model 1004 

was selected according to mice characteristics and treatment duration. 

2.2.2. Micro-osmotic pumps preparation and implantation 

To prepare the micro-osmotic pumps for Vitamin D groups, 1,25-dihydroxyvitamin D3 (Sigma-

Aldrich, USA) was diluted in ddH2O to achieve the desired dose (0.5 µg/kg/day or 1 µg/kg/day), 

according to the pump delivery rate (0.11 µL/hour) and mouse average weight (20 g 

approximately). Control group was treated with the vehicle of Vitamin D (0.0004% EtOH) in a 

dose equivalent to the 1 µg/kg/day. With the aim of starting treatment immediately after 

implantation, pumps were filled with the different treatments and maintained in physiological 

saline solution at 37° C for 48 hours before pump implantation. 

Pumps were implanted subcutaneously in the neck. Briefly, a small incision was made in the 

skin between the scapulae, and a small pocket was formed by spreading the subcutaneous 

connective tissue a part. The pump was inserted into the pocket, and the incision was closed 

by suture.  

Due to the fact that pumps have a 30-day treatment release time, these pumps were replaced 

for a new one with the same characteristics 4 weeks after the first pump implantation in the 

case of the long-term assay (Figure 13).   
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2.2.3. Monitoring by micro PET/CT scan 

Positron emission tomography with 2-deoxy-2-[fluorine-18] fluoro-D-glucose integrated with 

computed tomography (18F-FDG PET/CT) is a powerful imaging tool used in human for the 

detection of various cancers. This technique is based on the use of the radiopharmaceutical 

18F-FDG, an analogue of glucose, which is metabolized similarly to glucose and provides 

functional information based on the increased glucose uptake and glycolysis of cancer cells 

(Almuhaideb et al., 2011). 18F-FDG enters the cell through glucose transporters and is 

phosphorylated to 18F-FDG-6-phosphate, which cannot undergo glycolysis and becomes 

metabolically trapped intracellularly, in contrast to glucose-6-phosphate (Zhu et al., 2011) 

(Figure 14). Since cancer cells have a high glycolytic rate, 18F-FDG PET/CT scan allows the 

detection of tumors and their anatomical localization (Almuhaideb et al., 2011; Zhu et al., 

2011). In addition, normal cells such as brain and heart cells can be imaged due their high 

metabolic demand, as well as bladder due to the urinary excretion of 18F-FDG (Zhu et al., 

2011). In our case, 18F-FDG PET/CT scan allows to check that uterine leiomyoma has implanted 

correctly and to monitor response to treatments.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14.  Metabolic trapping of 18F-FDG in tumor cells. Glucose (GLU) enters the cells through its membrane 

transporters and its phosphorylated to GLU-6-phosphate, which undergo glycolysis. In contrast, the analog of 

glucose 2-deoxy-2-[fluorine-18] fluoro-D-glucose, also known as 18F-FDG, is transported across cell membranes 

by glucose transporters and is phosphorylated to 18F-FDG-6-phosphate, which cannot undergo glycolysis and is 

metabolically trapped intracellularly.  
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To perform PET/CT scans, mice were anesthetized by isoflurane inhalation and injected 

intraperitoneally with 9250 kBq of 18F-FDG (CURIUM Pharma, Spain). PET/CT scan was 

performed 45 minutes after the injection in a micro PET/CT ALBIRA I (Bruker Biospin PCI 

GmbH, Germany). During the PET/CT scan (15 minutes PET and 7 minutes CT) mice were 

anesthetized by isoflurane inhalation. Uterine leiomyomas were localized, and their metabolic 

activity was calculated by measuring the 18F-FDG uptake (kBq/cm3) in the selected region of 

interest (ROI) by the software A Medical Image Data Examiner (AMIDE) (Loening and Gambhir, 

2003). 

In the short-term assay 18F-FDG PET/CT scans were carried out once a week starting on the 

day when pumps were implanted (DAY 0) and finishing the day of the euthanasia (DAY 21). 

Due to the invasiveness of this technique, a scan once a week for 60 days would not have been 

viable and, therefore, only one scan was performed the day of the euthanasia (DAY 60) for the 

long-term assay (Figure 13). 

2.2.4. Euthanasia and sample collection 

At the end of the experiment, day 21 in the short-term and day 60 in the long-term assay, 

mice were anesthetized by isoflurane inhalation, and blood was collected in a tube without 

anticoagulant. Mice were then euthanized by cervical dislocation and leiomyoma xenografts 

were collected.  

2.3.  Sample processing for subsequent functional analysis 

Immediately after the collection, leiomyoma xenografts were measured and leiomyoma size 

was determined using digital caliper, as described in section 2.1, and photographed next to a 

reference rule.  

Subsequently, to perform the necessary functional analysis, xenografts and blood collected 

from each mouse were processed as follows:  

1. Formalin-fixed paraffin-embedded tissue. For histological, immunohistochemical and 

immunofluorescence analysis, one of the leiomyoma xenografts from each mouse was 

fixed in 4% neutral buffered formadehyde overnight at 4 ºC and then, transferred to 70% 
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EtOH for at least 24 hours. Consecutively, they were dehydrated in graded series of 

ethanol (70%, 80%, 96% and 100%) and xylol washes and embedded in paraffin wax.  

 

For the subsequent analysis, embedded tissues were serially sectioned at 4 m on a 

microtome (HM 310 microtome, Microm), mounted onto Superfrost Plus glass slides 

(ThermoFisher, USA) and stored at 37 C at least for 24 hours. For the following analysis, 

tissue sections were deparaffined and rehydrating. For that, selected sections were placed 

at 60 C for 1 hour followed by xylol washes and series of ethanol (100%, 96%, 80% and 

70%) and, finally, distilled water.  

2. Protein extraction. For western blot assays, half of one leiomyoma xenograft of each 

mouse was used for protein extraction following the protocol described at section 1.2.1.  

3. RNA extraction and cDNA synthesis. For gene expression analysis by qRT-PCR, total RNA 

was extracted from half of one leiomyoma xenograft of each mouse with TRIzol reagent 

(ThermoFisher, USA), following manufacturer’s instructions. Briefly, leiomyoma 

xenografts were mechanically dissected with scalpels to obtain fragments smaller than 1 

mm3. TRIzol reagent was added and incubated for 5 minutes at room temperature to 

induce lysis. Chloroform (Sigma-Aldrich, USA) was added and incubated for 2-3 minutes at 

room temperature. Subsequently, samples were centrifuged for 15 minutes at 4 C at 

12000 g. After centrifugation the sample separates into a lower red phenol-chloroform, 

and interphase, and a colorless upper aqueous phase. For RNA extraction, aqueous phase 

is transferred to a new tube containing isopropanol (Sigma-Aldrich, USA), mixed and 

incubated for 10 minutes at room temperature to induce RNA precipitation. After the 

incubation time, samples were centrifuged at 4 C at 12800 g, supernatant was discarded, 

and pellet was washed in 75% ethanol and centrifuged for 5 minutes at 4C at 7500 g. 

Finally, supernatant was discarded and pellet containing RNA was air-dried and 

resuspended in RNase-free water. RNA concentration was measured by Qubit 

Fluorometric Quantification using Qubit RNA HS assay kit (ThermoFisher, USA). 

Subsequently, complementary cDNA was synthesized from RNA with PrimeScript RT 

reagent Kit (Takara, Japan) and cDNA concentration was measured by Qubit Fluorometric 

Quantification using Qubit dsDNA HS assay kit (ThermoFisher, USA). 
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4. Serum collection. Collected blood was centrifugated at 1600 g for 10 minutes, and serum 

was collected and stored at –80 C until analysis.  

 

2.4. Treatment check, safety and toxicity studies 

To corroborate that Vitamin D treatment has been correctly delivered and degraded, the 

expression of CYP24A1 was measured by qRT-PCR in leiomyoma fragments, as described in 

section 1.3.2.1. The sequence of primers used is detailed in Annex I.       

Additionally, to rule out possible hepatic damage induced by the Vitamin D treatment, liver 

function was evaluated by determining the serum levels of total Bilirubin (Bb) using Bb ELISA 

Kit (Elabscience, USA), following manufacturer’s instructions. 

2.5. Histological evaluation 

To evaluate if uterine leiomyoma xenografts preserved their histological characteristics after 

implantation as well as evaluate the vascularization, tissue sections from the original tissue 

(before implantation) and from the different groups of treatment were subjected to 

hematoxylin and eosin (H&E) histological evaluation. Briefly, tissue sections were incubated 

in Harris hematoxylin for 5 minutes, rinsed with tap water and incubated for 5 minutes with 

Eosin. Then, slides were rinsed with tap water and with distilled water, air-dried and mounted 

with Eukitt Quick-hardening mounting medium (Sigma-Aldrich, USA). 

In addition, the collagen and smooth muscle fiber content of the leiomyoma xenografts was 

evaluated using Trichrome Stain (Masson) Kit (Sigma-Aldrich, USA). Tissue sections were 

incubated in preheated Bouin’s Solution (Sigma-Aldrich, USA) at 56 C for 15 minutes. Slides 

were cooled and washed in running tap water. Subsequently, tissue sections were stained 

with Working Weigert’s Iron Hematoxylin Solution (Sigma-Aldrich, USA) for 5 minutes and 

washed in running tap water for 5 minutes. Next, slides were rinsed in deionized water, 

stained in Biebrich Scarlet-Acid Fucshin for 5 minutes and rinsed in deionized water. Slides 

were placed consecutively in Working Phosphotungstic/Phosphomolybdic Acid Solution (5 

minutes), Aniline Blue Solution (5 minutes) and acetic acid, 1% (2 minutes). Finally, the slides 

were rinsed, air-dried and mounted with Eukitt Quick-hardening mounting medium (Sigma-

Aldrich, USA). 
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2.6. Functional analysis  

2.6.1. Proliferation analysis 

To evaluate the effect of Vitamin D treatment on proliferation in human leiomyoma 

xenografts, inmunihistochemistry (IHC) for the proliferation marker Ki67 and by qRT-PCR of 

the proliferation marker PCNA were carried out. 

For proliferation evaluation in leiomyoma tissue sections by Ki67 IHC, paraffin-embedded 

tissues were sectioned at 4 m, deparaffined and rehydrated as described in section 2.3. 

Subsequently, IHC was performed as follows: 

1. Antigen retrieval: Slides were incubated with 10 mM citrate buffer, 0.05% Tween  20 pH 

6, for 20 minutes at 95 C. 

2. Permeabilization: Incubation with PBS-Tween 20 0.05%, 3 times x 5 minutes. 

3. Blocking Endogenous peroxidase activity: Incubation with H2O2 for 5 minutes at room 

temperature in darkness. 

4. Wash: Distilled water, 3 times x 5 minutes. 

5. Blocking: Incubation with PBS-BSA 5%- Tween 0.05% for 1 hour at room temperature. 

6. Primary antibody incubation: Slides were incubated with Anti-Ki67 antibody (ab15580, 

Abcam, UK) diluted 1:300 in PBS-BSA 1%- Tween 0.05%, for 1 hour at room temperature.  

7. Wash: Distilled water, 3 times x 5 minutes. 

8. Secondary antibody incubation: Incubation with labeled polymer-HRP (Dako EnVision™+ 

Dual Link System-HRP; Agilent, USA) for 30 minutes at room temperature.  

9. Wash: PBS-Tween 0.05%, 3 times x 5 minutes. 

10. DAB chromogen incubation: Slides were incubated with substrate-chromogen solution 

(Dako EnVision™+ Dual Link System-HRP; Agilent, USA). Reaction was stopped with 

distilled water. 

11. Hematoxylin counterstain: Slices were incubated for 5 minutes with Harris Hematoxylin, 

rinsed, dried and mounted with Eukitt Quick-hardening mounting medium (Sigma-

Aldrich, USA). 
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To measure the % of Ki67 expression, samples were evaluated in a Nikon Eclipse 80i 

microscope, and four images of each sample were quantitatively assessed with Image ProPlus 

(Media Cybernetics, USA). 

To measure the expression of PCNA in leioymyoma fragments from treated and control 

groups, qRT-PCR was performed as described in section 1.3.2.1. The sequence of primers used 

is detailed in Annex I.           

2.6.2. Cell density 

To determine cell density in leiomyoma xenografts from Vitamin D treated and control groups, 

hematoxylin-eosin staining was performed, as described in section 2.5 Subsequently, samples 

were evaluated in a Nikon Eclipse 80i microscope and four images of each sample were 

quantitatively assessed with Image ProPlus (Media Cybernetics, USA). Subsequently, cell 

density was calculated following the formula:  

cell density= (nuclei area/total area) x 100 

2.6.3. Extracellular matrix analysis 

The in vivo approach of Vitamin D treatment of human uterine leiomyoma allows the 

assessment of the effect of this treatment on extracellular matrix (ECM) formation. For that 

purpose, the expression of ECM-associated proteins, such as collagen I, fibronectin and 

plasminogen activator inhibitor-1 (PAI-1) was evaluated by western blot in proteins extracted 

from leiomyoma fragments, as described in section 2.3. Briefly, 20 µg of each sample were 

analyzed as described in section 1.2.2. The antibodies used are summarized in Table IV.  

Table IV. Antibodies used in Western Blot experiments 
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2.6.4. Transfroming Growth Factor  signalling pathway  

To assess in our xenotransplanted uterine leiomyoma the effect of Vitamin D treatment on 

transforming growth factor  (TGF) signaling, whose involvement in ECM formation has been 

widely described, the expression of TGF3, was measured by qRT-PCR, as described in section 

1.2.3. The sequence of primers used is detailed in Annex I.  

2.6.5. Apoptosis  

To assess Vitamin D effect on apoptosis in leiomyoma xenografts from treated and control 

mice, the expression of PRO-CASPASE 3 and CLEAVED CASPASE-3 was evaluated by western 

blot, as described in section 1.2.2. For this purpose, 20 µg of each sample were analyzed, and 

the antibodies used are summarized in Table IV.  

In addition, the percentage of apoptotic cells in 4-m tissue sections from xenotransplanted 

leiomyomas embedded in paraffin was determined by TUNEL assay. Sections were 

deparaffined and rehydrated as described in section 2.3 and TUNEL assay was carried out as 

described in section 1.3.3.5, skipping the fixation step. Samples were evaluated in a Nikon 

Eclipse 80i microscope, and four images of each sample were quantitatively assessed with 

Image ProPlus (Media Cybernetics, USA). 

2.7. Statistical analysis 

GraphPad Prism 6.0 was used in this study for statistical analyses and graphics generation. 

Data are presented as mean ± standard deviation (SD). For PET/CT data Kruskal-Wallis test 

was performed. Wilcoxon test was performed for leiomyoma size analysis in the short-term 

assay and Student’s t-test was performed in the long-term assay data analysis. For the analysis 

of Ki67, cell density, and western blot experiments ANOVA test and Kruskal-Wallis test were 

carried out to analyze data from short- and long-term assays, respectively. Gene expression 

and validation analysis were carried out with Qiagen Data Analysis Software applying 

Student’s t-test. p value <0.05 was considered statistically significant. 
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V. RESULTS 

1. IN VITRO STUDY 

1.1. Evaluation of human uterine leiomyomas and adjacent myometrial tissues 

Expression of proliferation-, Wnt/β-catenin signaling- and apoptosis-related proteins was 

assessed in leiomyomas and adjacent myometrium tissue (n=22) using western blotting. 

Higher PCNA expression was detected in 95% (20/22 samples) of leiomyomas compared to 

corresponding myometrium (Figure 15A), indicating greater proliferation in uterine 

leiomyomas. Similarly, 77% (17/22) of leiomyoma samples presented higher expression of 

WISP1 than in corresponding myometrium (Figure 15A), indicating altered Wnt/β-catenin 

signaling in uterine leiomyomas. Jointly, uterine leiomyoma samples presented quantitatively 

higher PCNA expression levels (fold change=8.16; p value=0.0006) (Figure 15B) and 

significantly increased expression of WISP1 (fold change=5.5; p value<0.0001) (Figure 15C), in 

both cases in comparison with myometrium. 

Apoptosis was assessed in leiomyomas compared to adjacent myometrium using BAX (pro-

apoptotic) and BCL2 (anti-apoptotic) protein expression (Figure 15D). No difference was 

detected between tumor and typical tissues in expression of BCL2 or BAX. When BAX is over-

expressed it can heterodimerize with BCL2 and induce cell death. Thus, we also calculated the 

BAX/BCL2 ratio to determine the susceptibiliity to apoptosis in leiomyoma tissue compared to 

myometrium. No significant difference was identified in the BAX/BCL2 ratio between 

leiomyoma and myomeytium (Figure 15E).  
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Figure 15. Proliferation rate, Wnt/β-Catenin signaling and apoptosis in human uterine leiomyoma and 

adjacent myometrium. Expression levels of PCNA (36 kDa) and WISP1 (70 kDa) proteins were analyzed in uterine 

leiomyoma (L) and its corresponding myometrium (M) (n=22) by western blotting (A). Mean values and standard 

deviations of normalized data for PCNA (B) and WISP1 (C) expression, represented as fold change. BCL2 (23 kDa) 

and BAX (26 kDa) expression levels in L and M (n=22) were analyzed using western blotting (D). BAX/BCL2 ratio 

represented as a fold change (E). Note that PCNA and WISP1 expression were significantly higher in L compared 

to M (****p value< 0.0001 and *** p value < 0.0006) 
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1.2. Establishment of Vitamin D treatment conditions 

1.2.2. Vitamin D treatment: Time-dose response assay 

Before starting in vitro experiments, time-dose assays were conducted to determine the 

optimal time-dose of Vitamin D based on the expression of CYP24A1 by HULP cells (n=6). 

CYP24A1 expression was measured by qRT-PCR at 24 and 48 hours after Vitamin D-treatment 

and compared to control HULP cells. Vitamin D treatment activated CYP24A1 expression in 

HULP cells in a dose-dependent fashion (Figure 16). As expected, CYP24A1 expression was not 

induced by vehicle (0.5% EtOH) treatment. However, the expression of CYP24A1 was induced 

by Vitamin D in HULP cells at 10 nM, 100 nM and 1000 nM, at both 24 and 48 hours. 

Considering that the highest expression of CYP24A1 was found in cells treated with 100 nM 

Vitamin D at 48 hours (fold change=20422.9) (Figure 16A), this was the selected Vitamin D 

dose for the subsequent studies. 

1.2.3. Cell viability assay 

After the Vitamin D dose was selected, a preliminary study was performed to check whether 

Vitamin D vehicle may damage HULP cells by flow cytometry (n=6). Data analysis showed that 

viability of HULP cells was similar in those cells treated with cell culture medium, vehicle (0.5% 

EtOH) and Vitamin D at both 48 and 144 hours (Figure 16B), suggesting that both Vitamin D 

and Vitamin D vehicle (0.5% EtOH) did not affect viability of HULP cells. 

 

 

 

Figure 16. Vitamin D treatment: Preliminary studies. CYP24A1 gene expression levels (represented as fold 

change) in HULP cells (n=6) at 24 and 48 hours after Vitamin D (Vit D) treatment at different doses (10 nM, 100 

nM and 1000 nM) compared to control and vehicle (0.5% EtOH) (A). Viability of HULP cells (n=6) treated with Vit 

D (100 nM) and vehicle compared to control at 48 and 144 hours (B). Note that Vit D 100 nM at 48 hours showed 

the highest CYP24A1 expression 
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1.3. Vitamin D effect on cell cycle in human uterine leiomyoma primary cells  

To demonstrate that Vitamin D can induce cell growth arrest in HULP cells in vitro, cellular 

DNA was analyzed by PI assay in Vitamin D-treated compared to control HULP cells (n=22). 

Treatment with Vitamin D induced a decrease in the percentage of cells in S-G2/M phase 

compared to its own control in 50% of cases (11/22) (Figure 17), causing an increase in the 

percentage of cells in G0/G1 phases. Thus, cell growth arrest was induced by Vitamin D 

treatment in HULP cells. 

 

 

 

 

 

 

 

 

 

1.4.  Vitamin D effect on proliferation in human uterine leiomyoma primary cells  

The effect of Vitamin D treatment on cell proliferation was assayed using PCNA protein 

expression, the gold standard for proliferation, in Vitamin D-treated and control HULP cells 

(n=15) by western blotting (Figure 18A). Vitamin D treatment significantly decreased PCNA 

expression in HULP cells (fold change=0.74; p value=0.007) (Figure 18B), suggesting a decrease 

in proliferation in HULP cells treated with Vitamin D. 

 

Figure 17. Vitamin D effect on cell cycle in human uterine leiomyoma primary cells in vitro. Cell cycle 

distribution was determined by flow cytometry using propidium iodide (n=22). The difference in the percentage 

of cells in S-G2/M between Vit D-treated and control L cells (100 - [%S-G2/MvitD x 100 / %S-G2/Mcontrol]) is 

represented in the graph. 
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1.5. Vitamin D effect on Wnt/β-Catenin pathway in human uterine leiomyoma primary 

cells 

1.5.1. Gene expression analysis 

To examine whether Vitamin D can affect Wnt/β-catenin pathway in HULP cells, the 

expression of 84 Wnt-related genes was quantified in Vitamin D-treated and control HULP 

cells (n=11) using RT2-Profiler PCR Arrays (Qiagen, Germany). Although most of the genes 

involved in Wnt/β-catenin pathway were downregulated, none of them was significantly 

different from control (Table V).  

Subsequently, Wnt-related genes were divided according to their role in developmental 

processes implicated in leiomyoma development, such as tissue polarity and cell migration, 

cell cycle, cell growth, and proliferation. In this regard, among genes grouped according to 

their involvement in tissue polarity and cell migration, 11 of 15 genes (73.3%) were 

downregulated in Vitamin D-treated HULP cells (Figure 19A) compared to control cells. 

Similarly, 17/22 (77.2%) of genes involved in cell cycle, cell growth, and proliferation were 

Figure 18. Vitamin D effect on proliferation in human uterine leiomyoma primary cells in vitro. Expression 

levels of PCNA protein (36 kDa) were analyzed in control HULP cells (named as C) and Vitamin D-treated HULP 

cells (named as V) (n=15) by western blotting (A). Mean normalized values for PCNA are represented as fold 

change (B). Note that PCNA expression was significantly higher in Vitamin D-treated cells compared to control 

(p value = 0.007). 
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downregulated after Vitamin D treatment in HULP cells (Figure 19B) compared to control 

HULP cells. Finally, we observed that 9/12 (75%) Wnt/β-catenin target genes were repressed 

in Vitamin D-treated HULP cells (Figure 19C) compared to control cells.  

In addition, the pathway activity score calculated by Wnt-array determined that Vitamin D 

treatment significantly decreased Wnt/β-catenin pathway activity in HULP cells (activity 

score=−0.775; p value<0.001) (Figure 19D).  

 

 

 

 

 

 

Figure 19. Vitamin D effect on Wnt/β-Catenin pathway in human uterine leiomyoma primary cells at the gene 

level. Expression of Wnt-related genes involved in tissue polarity and cell migration (A), cell cycle, cell growth 

and proliferation (B), and Wnt/β-Catenin targets genes (C) in Vitamin D-treated compared to control HULP cells 

(n=11). Gene expression is represented as fold regulation. The pathway activity score in Vitamin D-treated HULP 

cells is represented in a box-and-whisker plot (D). ** p value < 0.001 
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Table V: Fold regulation of Wnt-related genes in Vitamin D-treated human uterine leiomyoma cells 

compared to control.  

Gene 
symbol 

Fold 
Regulation p value  

Gene 
symbol 

Fold 
Regulation p value 

APC -1.1574 0.52955  PRICKLE1 1.0368 0.833244 

AXIN1 -1.0102 0.710028  RHOA -1.2423 0.193577 

AXIN2 -1.2396 0.363504  RUVBL1 -1.0159 0.791431 

BTRC -1.0407 0.646738  SFRP1 1.1137 0.939674 

CSNK1A1 -1.0846 0.581808  SFRP4 1.1329 0.927695 

CTBP1 -1.101 0.565176  SOX17 1.0115 0.618105 

CTNNB1 -1.1607 0.646314  TCF7 -1.0734 0.925476 

CTNNBIP1 -1.0803 0.79625  TCF7L1 -1.1091 0.478641 

DAAM1 -1.2835 0.324044  VANGL2 1.1596 0.668138 

DAB2 1.0511 0.725281  WIF1 -1.5371 0.265442 

DKK1 -1.8945 0.504067  WISP1 -1.0569 0.969949 

DKK3 -1.294 0.355726  WNT1 1.1344 0.96428 

DVL1 -1.1106 0.605367  WNT10A 1.3512 0.988638 

DVL2 -1.119 0.562855  WNT11 1.0375 0.756676 

EP300 1.0792 0.849541  WNT2 1.0804 0.980221 

FBXW11 -1.2757 0.248725  WNT2B -1.2904 0.303299 

FGF4 1.1344 0.96428  WNT3 1.2083 0.869978 

FOSL1 -1.0589 0.80053  WNT3A -1.0049 0.714359 

FRAT1 1.0703 0.624061  WNT4 1.0039 0.764899 

FRZB -1.0386 0.814856  WNT5A -1.8872 0.439247 

FZD1 -1.0674 0.66584  WNT5B -1.2308 0.504732 

FZD2 -1.1191 0.556217  WNT6 -1.0263 0.987674 

FZD3 -1.3324 0.349138  WNT7A 1.0641 0.899469 

FZD4 -1.0453 0.666818  WNT7B -1.0052 0.737202 

FZD5 -1.2656 0.864154  WNT8A -1.0116 0.624645 

FZD6 -1.2039 0.537245  WNT9A -1.4913 0.490877 

FZD7 1.5185 0.751657  BOD1 -1.1211 0.64664 

FZD8 1.1289 0.857104  CALM1 -1.3012 0.433531 

FZD9 1.0161 0.947621  CCND1 -1.4034 0.700478 

GSK3B -1.1845 0.404315  CCND2 -1.2804 0.397358 

JUN -1.1714 0.750493  CHSY1 -1.5558 0.085032 

KREMEN1 -1.0109 0.960874  CXADR 1.3719 0.63466 

LRP5 1.0483 0.995559  CYP4V2 1.0575 0.886613 

LRP6 -1.2381 0.405819  HSPA12A -1.0927 0.51258 

MAPK8 -1.0915 0.741356  LEF1 -1.2966 0.362372 

MMP7 -1.1361 0.929458  MT1A -1.1182 0.811015 

NFATC1 -1.0521 0.672323  MTFP1 -1.1356 0.554851 

NKD1 1.0342 0.796232  MTSS1 1.1625 0.998731 

NLK -1.05 0.895349  MYC 1.017 0.78534 

PITX2 1.2464 0.632669  NAV2 -1.3074 0.646106 

PORCN 1.0595 0.769154  PRMT6 1.1305 0.78106 

PPARD -1.1451 0.415124  SKP2 -1.0777 0.739279 
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In this regard, the overview of the expression levels of genes involved in the Wnt/β-catenin 

pathway (KEGG identifier: hsa04310) showed that both canonical and non-canonical Wnt 

pathways were mostly inhibited in HULP cells treated with Vitamin D compared to control cells 

(Figure 20).  

 

 

 

 

 

 

Figure 20. Wnt/β-Catenin pathway overview in human uterine leiomyoma primary cells after Vitamin D 

treatment. Overview of the expression levels of genes involved in Wnt/β-Catenin pathway (KEGG identifier: 

hsa04310) after Vitamin D treatment in HULP cells compared to control. Upregulated genes were colored in red 

and downregulated genes in blue with KEGG Mapper-Color Pathway. 



    V RESULTS 

 

79 

 

To validate RT2-Profiler PCR Array results, expression of the two genes with the highest 

differential expression (DKK1 and WNT5A) was measured by qRT-PCR in HULP cells (n=17) 

treated with Vitamin D. For both genes, Vitamin D treatment decreased the relative transcript 

abundance compared to untreated control cells (Figure 21). 

 

 

 

 

 

 

 

 

 

 

1.5.2. Protein expression analysis  

To assess the effect of Vitamin D treatment on HULP cells at the protein level, we measured 

the expression of three Wnt/β-catenin target proteins (WISP1, uPAR and MMP7) in Vitamin 

D-treated and control HULP cells (n=11). Our results revealed a trend of Vitamin D inhibiting 

the expression of these protein targets in HULP cells (Figure 22). 

 

 

 

Figure 21. Gene expression analysis validation of Wnt-pathway array. The expression of DKK1 and WNT5A was 

evaluated in HULP cells to validate RT2-Profiler PCR Array results. Gene expression is represented as fold 

regulation.  

Figure 22.  Vitamin D effect on the Wnt/β-Catenin pathway in human uterine leiomyoma primary cells at the 

protein level. Protein expression of WISP1, uPAR and MMP7 in Vitamin D-treated compared to control HULP 

cells was measured using Quantibody Human arrays (n=11). The expression of each protein is expressed in 

pg/mL. 
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1.6.  Vitamin D effect on apoptosis of human uterine leiomyoma primary cells  

1.6.1. Gene expression analysis 

Vitamin D’s effect on apoptosis in HULP cell culture was assessed via the expression of 84 

genes involved in apoptosis quantified using RT2-Profiler PCR Arrays. The fold regulation of 

each gene in Vitamin D-treated group compared to control is detailed in Table VI. Note that 

only three genes (highlighted in red in Table VI) were differentially expressed after Vitamin D 

treatment in HULP cells: BCL2 and PYCARD were significantly upregulated, and TNFRSF11B 

was significantly downregulated.  

To analyze the effect of Vitamin D treatment on the pathway, genes involved in apoptosis 

were divided into two groups: those that act as positive regulators (pro-apoptotic genes) or 

those that act as negative regulators (anti-apoptotic genes). We observed that only 15/42 

(35.7%) positive regulators were upregulated in HULP cells after Vitamin D treatment (Figure 

23A), while 25/32 (78.1%) negative regulators were downregulated in Vitamin D-treated HULP 

cells compared to control (Figure 23B). Interestingly, TNFRSF11B showed a significantly 

decreased expression (fold change=-2.02; p value=0.04). However, among these negative 

regulators, BCL2 expression was significantly upregulated (fold change=2.58; p value=0.01) 

(Figure 23B). In sum, these data indicate that Vitamin D treatment did not induce a significant 

change in apoptosis in HULP cells.  
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Table VI: Fold regulation of apoptotic genes in Vitamin D-treated human uterine leiomyoma cells compared to 

control.  

Gene 
symbol 

Fold 
Regulation p value  

Gene 
symbol 

Fold 
Regulation p value 

ABL1 1.0547 0.742787  CFLAR -1.0112 0.759777 

AIFM1 -1.087 0.602634  CIDEA -1.4028 0.582662 

AKT1 -1.004 0.908165  CIDEB -1.1218 0.65086 

APAF1 -1.2279 0.464424  CRADD -1.1389 0.770786 

BAD 1.013 0.943105  CYCS -1.1573 0.512015 

BAG1 -1.0003 0.894209  DAPK1 -1.1602 0.517227 

BAG3 -1.0221 0.955024  DFFA -1.019 0.873866 

BAK1 -1.0994 0.482775  DIABLO 1.1082 0.656593 

BAX -1.0462 0.833403  FADD 1.0025 0.82956 

BCL10 -1.1762 0.332341  FAS -1.011 0.785986 

BCL2 2.5852 0.011412  FASLG -1.0726 0.580719 

BCL2A1 -1.38 0.555147  GADD45A 1.6088 0.12952 

BCL2L1 1.0909 0.708246  HRK -1.1491 0.601833 

BCL2L10 -1.2494 0.348537  IGF1R -1.3583 0.358817 

BCL2L11 1.2548 0.322227  IL10 -1.6001 0.302305 

BCL2L2 -1.0675 0.882413  LTA -1.1211 0.728551 

BFAR -1.0434 0.797457  LTBR 1.003 0.965457 

BID -1.0216 0.957823  MCL1 1.0467 0.718299 

BIK -1.1697 0.72798  NAIP 1.1525 0.82215 

BIRC2 -1.0735 0.730583  NFKB1 1.0077 0.901464 

BIRC3 -1.5325 0.608641  NOD1 1.0142 0.672034 

BIRC5 -1.0801 0.624735  NOL3 1.0297 0.884482 

BIRC6 -1.1419 0.455174  PYCARD 1.3485 0.028122 

BNIP2 -1.0685 0.702539  RIPK2 -1.0771 0.546991 

BNIP3 -1.2497 0.336155  TNF 1.1075 0.979844 

BNIP3L 1.108 0.734511  TNFRSF10A 1.2055 0.879235 

BRAF -1.0247 0.622354  TNFRSF10B -1.0874 0.611655 

CASP1 1.096 0.97466  TNFRSF11B -2.0138 0.044443 

CASP10 -1.0841 0.994772  TNFRSF1A 1.2697 0.376084 

CASP14 -1.1971 0.469901  TNFRSF1B -1.3214 0.524153 

CASP2 -1.1733 0.617096  TNFRSF21 1.2355 0.533917 

CASP3 -1.1894 0.544941  TNFRSF25 1.0221 0.632808 

CASP4 1.12 0.529764  TNFRSF9 -2.1962 0.175964 

CASP5 -1.3526 0.249319  TNFSF10 -1.3184 0.796289 

CASP6 -1.0449 0.797015  TNFSF8 -1.2017 0.320097 

CASP7 -1.0753 0.700236  TP53 -1.0108 0.995442 

CASP8 -1.0923 0.594909  TP53BP2 -1.1793 0.472651 

CASP9 -1.0548 0.575439  TP73 -1.2525 0.261133 

CD27 1.1577 0.971028  TRADD 1.1255 0.897332 

CD40 1.1345 0.775321  TRAF2 -1.1573 0.494629 

CD40LG -1.2783 0.388493  TRAF3 -1.1193 0.589066 

CD70 -1.3117 0.450324  XIAP -1.0063 0.989487 
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To validate RT2-Profiler PCR Arrays results, we measured the expression of the two genes with 

the highest differential expression (BCL2 and TNFRSF11B) by qRT-PCR in HULP cells (n=17) 

treated with Vitamin D compared to control HULP cells. In accordance with PCR Array results, 

Vitamin D treatment significantly increased the relative transcript abundance of BCL2 and 

decreased the abundance of TNFRSF11B (Figure 24).  

Figure 23.  Vitamin D effect on apoptosis in human uterine leiomyoma primary cells at the gene level. 

Expression of apoptotic positive regulators (Pro-apoptotic genes) (A) and negative regulators (anti-apoptotic 

genes) (B) in Vitamin D-treated compared to control HULP cells (n=11). Gene expression is represented as fold 

regulation. 
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1.6.2. TUNEL assay 

 To corroborate that Vitamin D did not induce apoptosis in HULP cells, a TUNEL assay was 

performed in Vitamin D-treated and control HULP cells. We observed that the % apoptotic 

cells was similar in both Vitamin D-treated and control cells (Figure 25A). Quantification of 

fluorescence images showed that Vitamin D treatment did not increase the percentage of 

apoptotic cells (Figure 25B), corroborating that Vitamin D treatment did not induce a 

significant change in apoptosis in HULP cells. 

 

 

 

Figure 24. Gene expression analysis validation of apoptosis array. To validate RT2-Profiler PCR Array results, 

expression of BCL2 and TNFRSF11B was evaluated in HULP cells. Gene expression is represented as fold 

regulation. Note that BCL2 expression was significantly higher in Vitamin D-treated cells compared to control (p 

value< 0.001). 

Figure 25. Apoptosis assayed by TUNEL. The percentage of apoptotic cells was determined by TUNEL assay in 

HULP cells treated with Vitamin D and control (A). Average percentage of apoptotic cells in each group is 

represented as mean ± SD in (B). 
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2. IN VIVO STUDY 

Considering that human uterine leiomyomas are solid tumors composed of smooth muscle 

cells interspersed in an abundant ECM that plays an important role in tumor expansion, in 

vitro assays, even for primary cells, do not provide sufficient information for how this 

treatment would work in the human patient context. With that purpose, we aimed to assess 

the effect of Vitamin D treatment on a xenograft mouse model generated by the implantation 

of human uterine leiomyoma fragments, at both short and long term. 

2.1.  Treatment utility and toxicity assay  

To ensure administered Vitamin D would be metabolized by leiomyoma cells from xenografts, 

the expression of CYP24A1 in leiomyoma fragments from the different treatment groups was 

measured by qRT-PCR. Expression of CYP24A1 was induced by both Vitamin D doses in a 

concentration-dependent manner, which was statistically significant with the higher dose at 

21 days, and with both Vitamin D doses at 60 days (Figure 26A). Thus, Vitamin D degradation 

had begun in treated leiomyoma cells. 

To rule out possible hepatic damage induced by Vitamin D in mice that received the treatment, 

liver function was evaluated by bilirubin serum levels analysis using ELISA assay. These levels 

were similar in the three study groups (Figure 26B), indicating no side effects in the liver with 

Vitamin D treatment. 

 

Figure 26. Treatment utility and toxicity. CYP24A1 gene expression levels represented as fold change in 

leiomyoma cells from xenograft implants in the different treatment groups (A). Bilirubin serum levels represented 

as mean ± SD in the different treatment groups (B). Note that CYP24A1 gene expression was significantly induced 

by Vitamin D 1 µg/kg/day at 21 and 60 days, and by Vitamin D 0.5 µg/kg/day at 60 days. * p value<0.05 
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2.2.    In vivo monitoring 

In vivo monitoring by PET/CT scans provided the leiomyoma metabolic activity, which enabled 

non-invasive measurement of leiomyoma xenograft size. In the short-term assay, leiomyoma 

xenografts were localized in each weekly PET/CT scan, corroborating that leiomyoma 

fragments were correctly implanted at the beginning of the treatments (Figure 27).  

 

 

 

 

 

 

 

 

 

In the short-term assay, leiomyoma xenograft metabolic activity remained constant over 

treatment time in control and Vitamin D 0.5 µg/kg/day groups. In contrast, mice receiving 

Vitamin D 1 µg/kg/day exhibited a dynamic reduction of 18F-FDG uptake (kBq/cm3) (Figure 

28A). However, metabolic activity compared between groups at the end of treatment (Day 

21) was not significantly different (Figure 28B).  

On the other hand, PET/CT scans outcomes in the long-term assay showed that leiomyoma 

xenograft metabolic activity was significantly lower in both Vitamin D treatment groups 

compared to control group (Vit D 0.5 µg/kg/day: p value = 0.0238 and Vit D 1 µg/kg/day: p 

value = 0.0317) (Figure 28C).  

  

Figure 27. Non-invasive monitoring of leiomyoma xenograft by PET/CT scan. Representative images of PET/CT 

scans carried out weekly during short-term assay in mice from control, Vitamin D 0.5 µg/kg/day and Vitamin D 

1 µg/kg/day groups. White arrows indicate leiomyoma xenografts. “H” denotes hearts, which are observable 

due their high metabolic demand.  
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Figure 28. 18F-FDG uptake of leiomyoma xenografts. 18F-FDG uptake (kBq/cm3) on region of interest (ROI) over 

time in the different experimental groups in short-term treatment (A). 18F-FDG uptake in the three experimental 

groups at day 21 (B) and at day 60 (C). 18F-FDG uptake was significantly decreased for both Vitamin D doses 

compared to control group in the long-term assay (p value<0.05). 
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2.3.  Uterine leiomyoma xenograft size 

To macroscopically examine the leiomyoma size before and after xenotransplantation to 

assess Vitamin D treatment’s effect on leiomyoma size, we photographed leiomyoma 

fragments next to a reference rule. We observed that, while macroscopic exam did not show 

changes in uterine leiomyoma xenograft size in any of the experimental groups after the short-

term assay (Day 21) compare to control (Day 0), a noteworthy decrease was macroscopically 

observed in experimental groups after long-term treatment (Day 60) compare to control (Day 

0) (Figure 29). 

 

 

 

Subsequently, uterine leiomyoma size was measured with a digital caliper before and after 

xenotransplantation and volume was calculated to accurately assess the effect of Vitamin D 

treatment on leiomyoma size (Figure 30). While the control group showed a trend toward 

growth (Figure 30A), both Vitamin D 0.5 µg/kg/day (Figure 30B) and Vitamin D 1 µg/kg/day 

groups (Figure 30C) maintained leiomyoma xenografts size at the end of the short-term assay 

(Day 21) compared to Day 0 (no significant differences). After the long-term assay, no 

differences were found in control (Figure 30D) or Vitamin D 0.5 µg/kg/day (Figure 30E) groups, 

although leiomyoma size tended to increase especially in controls. In contrast, Vitamin D 1 

µg/kg/day treatment significantly reduced leiomyoma xenograft size at day 60 compared to 

day 0 (p value = 0.0254) (Figure 30F). 

Figure 29. Human leiomyoma xenografts. Human uterine leiomyoma fragments were measured before 

xenotransplantation (DAY 0) and after xenotransplantation at the end of treatment (DAY 21 in short-term or 

DAY 60 in long-term assay), in the three experimental groups: control, Vitamin D 0.5 µg/kg/day and Vitamin D 1 

µg/kg/day.  
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2.4.  Histological evaluation 

To assess if leiomyoma xenografts preserved their original histological features after 

xenotransplantation, H&E and Masson’s Trichrome staining were applied in the original tissue 

(leiomyoma tissue before implantation) and leiomyoma xenografts after the treatments. H&E 

staining confirmed that, in both short- and long-term assays, leiomyoma xenografts 

maintained the original histological characteristics with smooth muscle cells interspersed in 

the ECM (Figure 31A-D & I-L). In addition, blood vessels with erythrocytes were found in the 

xenografts, indicating the presence of vascularization. Likewise, Masson’s Trichrome staining 

corroborated that xenografts showed smooth muscle fibers (stained in red) surrounded by an 

abundant collagen ECM (stained in blue), indicating that implants preserved their histological 

characteristics (Figure 31E-H & M-P).  

 

Figure 30. Human leiomyoma xenograft size. Leiomyoma volume at day 0 and day 21 in control (A), Vitamin D 

0.5 µg/kg/day (B) and Vitamin D 1 µg/kg/day (C) groups. Leiomyoma volume at day 0 and day 60 in control (D), 

Vitamin D 0.5 µg/kg/day (E) and Vitamin D 1 µg/kg/day (F) groups. Note that Vitamin D 1 µg/kg/day significantly 

decreased leiomyoma size at day 60 compared to day 0 (p value =0.0254). 
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2.5.  Uterine leiomyoma cell proliferation 

To evaluate the antiproliferative effect of Vitamin D on uterine leiomyomas in vivo, two 

proliferation markers (Ki67 and PCNA) were evaluated in leiomyoma xenografts. While Ki67 

protein expression was evaluated by immunohistochemistry analysis, PCNA gene expression 

was assessed by qRT-PCR.  

Immunohistochemical analysis showed that Vitamin D 0.5 µg/kg/day treatment did not 

reduce proliferation in the short- or long-term. However, treatment with Vitamin D 1 

µg/kg/day reduced the expression of Ki67 in leiomyoma xenografts at both timepoints, and 

Figure 31. Histological evaluation of human uterine leiomyoma xenografts. Leiomyoma tissues before 

implantation, control, Vitamin D (VIT D) 0.5g/kg/day and VIT D 1 g/kg/day are shown. Representative 

histological sections stained with hematoxylin and eosin (H&E) in the short-term (A-D) and long-term (I-L) assays. 

White arrows indicate blood vessels in leiomyoma xenografts. Representative histological sections stained with 

Masson’s Trichrome staining (Masson’s) in the short-term (E-D) and long-term (M-P) assays. Scale bars: 200 m 
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this reduction was statistically significant for the long-term treatment (Figure 32 A-B). In 

addition, PCNA gene expression analysis corroborated that short-term Vitamin D treatment 

did not induce changes in leiomyoma cell proliferation. In the long-term, Vitamin D 1 

µg/kg/day reduced PCNA expression compared to control, although no statistically significant 

differences were found (Figure 32C).  

 

 

 

 

Figure 32. Cell proliferation in leiomyoma xenografts. Representative images of Ki67 immunohistochemistry in 

leiomyoma xenografts (A). Ki67 expression represented as percentage (%) in the different treatment groups in 

short-term (21 DAYS) and long-term (60 DAYS) assays (B). PCNA gene expression levels represented as fold 

change in the different treatment groups for short-term (21 DAYS) and long-term (60 DAYS) assays (C). Note that 

Vitamin D 1 µg/kg/day significantly reduced Ki67 expression at day 60 (p value = 0.0252). Scale bars: 50 m 
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2.6.  Cell density in leiomyoma xenografts 

Cell density was evaluated in leiomyoma xenografts by analyzing the nuclei area in relation to 

total area per sample (Figure 33A). Although cell density was increased by both short- and 

long-term treatments with Vitamin D, no statistically significant differences were observed in 

short-term treatment groups or the Vitamin D 0.5 µg/kg/day group in the long-term assay 

(Figure 33B). However, the higher Vitamin D dose (1 µg/kg/day) produced a statistically 

significant increase in cell density in the long-term assay (p value = 0.0294) (Figure 33C). 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 33. Cell density in leiomyoma xenografts. Representative images of hematoxylin and eosin staining of 

leiomyoma xenografts (A). Cell density in the different treatment groups in both short- (B) and long-term (C) 

assays. Cell density is represented as the percentage (%) of nuclei area in relation to total area per sample. Note 

that cell density was significantly increased at Vit D 1 µg/kg/day in the long-term treatment (p value = 0.0294) 

compared to control group. Scale bars: 200 m 
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2.7. Extracellular matrix  

ECM formation was evaluated in leiomyoma xenografts after treatments by determining, 

COLLAGEN I, FIBRONECTIN and PAI-1 protein expression by western blotting (Figure 34 A-C). 

In this regard, Vitamin D treatment decreased COLLAGEN I expression in both short- and long-

term treatments, but the difference was statistically significant only in the long-term with 

Vitamin D 1 µg/kg/day (p value = 0.0054) (Figure 34D). In addition, while no changes were 

found in FIBRONECTIN expression in the short-term treatment, a reduction, although not 

statistically significant, was observed in the Vitamin D 1 µg/kg/day group (Figure 34E). Finally, 

PAI-1 expression was similar in the different groups in the short-term treatment; however, 

Vitamin D treatment decreased PAI-1 expression in a dose-dependent manner in the long-

term, which was statistically significant at the high dose (p value = 0.0154) (Figure 34F). 

  
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 34. Extracellular matrix protein expression in leiomyoma xenografts. Representative images of western 

blots for COLLAGEN I (A), FIBRONECTIN (B) and PAI-1 (C) in the different treatment groups. Quantitative protein 

expression of COLLAGEN I (D), FIBRONECTIN (E) and PAI-1 (F) in the different treatment groups was normalized 

against -actin expression in both short- (21 DAYS) and long-term (60 DAYS) treatments. Note that COLLAGEN I 

and PAI-1 expression were significantly reduced by Vit D 1 µg/kg/day (p value= 0.0054 and 0.0154, respectively) 

compared to control.  
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2.8.  Transforming growth factor  signaling pathway  

The TGF signaling pathway is involved in the expression of proteins associated with ECM 

formation. Gene expression of TGF3 was measured in treated and untreated leiomyoma 

xenografts by qRT-PCR. TGF3 expression was decreased in the short-term in both Vitamin D 

treatment groups (Figure 35), but these differences were not statistically significant. However, 

Vitamin D 1 µg/kg/day treatment significantly reduced TGF3 expression following long-term 

treatment (fold change =0.1214, p value = 0.03731) (Figure 35).  

 

 

 

 

 

 

 

 

2.9. Apoptosis  

To evaluate whether Vitamin D treatment increases apoptosis in leiomyoma xenografts, PRO-

CASPASE 3 and CLEAVED CASPASE-3 protein expression were measured by western blotting 

(Figure 36 A-B). PRO-CASAPSE 3 expression was significantly decreased in both Vitamin D 0.5 

µg/kg/day (p value = 0.0085) and Vitamin D 1 µg/kg/day (p value <0.0001) treatment groups 

after 21-day treatment (short-term assay). This decrease in PRO-CASPASE 3 expression was 

also observed in the Vitamin D 1 µg/kg/day group compared to control after 60-day treatment, 

although no statistically significant changes were found (Figure 36C). In contrast, CASPASE 3 

expression was similar in the three study groups in the short-term assay, while it increased in 

a dose-dependent manner in the long-term assay (Figure 36D).  

Figure 35. Transforming growth factor β signaling pathway in leiomyoma xenografts. Gene expression levels 

of TGFβ3 in the different treatment groups for both short- (21 days) and long-term (60 days) assays, represented 

as fold change. Note that TGFβ3 gene expression were significantly reduced by Vit D 1 µg/kg/day group 

compared to control in the long-term assay.  

*p value < 0.05. 
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Further, the percentage of apoptotic cells in leiomyoma xenografts was measured by TUNEL 

assay (Figure 36E). This analysis showed that Vitamin D treatment increased the % of apoptotic 

cells in a concentration-dependent manner in the short-term, which was statistically 

significant in the Vitamin D 1 µg/kg/day group (p value =0.0386). Likewise, following long-term 

treatment, the high dose of Vitamin D showed higher % of apoptotic cells compared to control 

and Vitamin D 0.5 µg/kg/day group, which was statistically significant when compared to the 

lowest Vitamin D dose (p value= 0.0206) (Figure 36F). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. Apoptosis in leiomyoma xenografts. Representative images of western blots for PRO-CASPASE 3 (A) 

and CASPASE 3 (B). Protein expression of PRO-CASPASE 3 (C) and CASPASE-3 (D) in the different treatment groups 

in both short- (21 days) and long-term (60 days) assays. Representative images of TUNEL assay in leiomyoma 

xenografts (E). Percentage of apoptotic cells in the different treatment groups in both short- (21 days) and long-

term (60 days) assay. Scale bars: 50 m 
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VI. DISCUSSION 

Uterine leiomyomas affect 70 % of women of reproductive age, disturbing life quality of many 

of them due to its associated symptoms (Stewart et al., 2017). Despite its high prevalence and 

the large amount of management options, there is no effective treatment for leiomyoma size 

reduction minimally invasive and without side effects. Although uterine leiomyoma 

pathogenesis is not fully understood, the relationship between Vitamin D deficiency and 

human uterine leiomyoma risk (Baird et al., 2013; Paffoni et al., 2013; Sabry et al., 2013) along 

with its antiproliferative effects on cancer (Deeb et al., 2007; Garland et al., 2006; Ylikomi et 

al., 2002), pointed to Vitamin D as a possible therapeutic option for uterine leiomyomas.  

Vitamin D action have been widely studied in cancer cells, demonstrating that its anti-tumor 

effects imply mechanisms that are associated with G0/G1 cellular phase arrest, Wnt/β-Catenin 

pathway inhibition, and apoptosis induction (Christakos et al., 2016; Deeb et al., 2007). In 

addition, clinical trial data have indicated that Vitamin D is well tolerated in cancer patients 

within a proper dosing schedule  (Deeb et al., 2007). These data support the hypothesis that 

Vitamin D compounds may have an important role in therapies and prevention of both cancer 

and uterine leiomyoma and, thereby, merit further investigation.      

In uterine leiomyomas, although Vitamin D action have been evaluated in in vitro studies, 

these focused their attention on a particular mechanism or pathway and used uterine 

leiomyoma cells lines (Al-Hendy et al., 2016; Halder et al., 2013b; Sharan et al., 2011) or 

leiomyoma primary cells that came from a single patient and, therefore did not represent the 

variability found in real patients (Al-Hendy et al., 2016). Similarly, Vitamin D effect on uterine 

leiomyomas have been studied in vivo using the Eker rat model or its derived cells, but not on 

human leiomyoma tissues. Thereby, an in-depth study of the molecular mechanisms through 

which Vitamin D could act on human uterine leiomyoma is still pending.  

Based on these findings, the main objective of our study was to evaluate the effect of Vitamin 

D treatment in vitro on human uterine leiomyoma primary (HULP) cells and leiomyoma tissues 

in vivo on the different molecular mechanisms involved in uterine leiomyoma development, 

to test its potential as therapeutic option, resembling the physiological conditions of uterine 

leiomyomas and thereby, considering the high inter-patient variability.  
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For this purpose, before to study the Vitamin D role in HULP cells cultured in vitro, we 

evaluated the cell proliferation rate, Wnt/β-Catenin pathway and apoptosis status in 

leiomyoma tissue compared to adjacent myometrium to know the involvement of these 

mechanisms in leiomyoma development. Our results revealed that most human uterine 

leiomyoma tissues showed significant proliferation and a deregulated Wnt/β-Catenin 

pathway in comparison to myometrium. These results are in concordance with the published 

data which suggest  that the upregulation of this pathway is involved in the develop of uterine 

leiomyomas with MED12 mutation (Al-Hendy et al., 2016). On the other hand, apoptosis 

status seemed to be more heterogeneous in the different leiomyomas analyzed, which could 

be explained why both BCL2 and BAX proteins seem to be regulated by sex steroids (Wu et al., 

2002; Yin et al., 2007). During apoptosis, BAX protein forms a heterodimer with BCL2 and 

functions as an apoptotic activator (Palomba et al., 2005). Considering this mechanism, 

BAX/BCL2 ratio is used to predetermine the susceptibility of cells to apoptosis. In our samples, 

the BAX/BCL2 ratio showed that apoptosis seemed not to be significantly altered in 

leiomyoma tissue compared to myometrium, which is supported by other studies that 

suggested that apoptosis does not act as a major factor in uterine leiomyoma development 

(Dixon et al., 2002). Based on these findings, we conclude that an increased cell proliferation 

rate along with a deregulation of Wnt/β-Catenin pathway in leiomyoma tissue could be a key 

piece in the development and growth of uterine leiomyoma, while apoptosis appears not to 

contribute.  

Subsequently, we analyzed in vitro the effect of Vitamin D in HULP cells from individual 

patients focused on its action through the three described pathways and cellular processes: 

cell cycle and proliferation, Wnt/β-catenin pathway and apoptosis. Our data showed that 

Vitamin D acts through cell cycle regulation, inducing cell growth arrest and significantly 

decreasing cell proliferation. These findings corroborate that, as occurs in both cancer cells 

(Gavrilov et al., 2005; Jamshidi et al., 2008) and leiomyoma cell lines (Sharan et al., 2011), 

Vitamin D has an antiproliferative action on human leiomyoma cells. However, cell growth 

arrest was not observed in all HULP cells cases, which could be explain by the high variability 

between individual patients, leading to less homogeneity than cell lines but representing the 

actual variability found in women.  
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However, the molecular mechanisms through which Vitamin D inhibits cell proliferation in 

leiomyoma remains unclear. In order to determine these mechanisms, we analyzed Wnt/β-

catenin pathway and apoptosis using gene expression array analysis. Wnt/β-catenin pathway 

is an important regulator of cell proliferation and its upregulation has been associated with 

the onset of several cancers (Larriba et al., 2013; Pendás-Franco et al., 2008) as well as with 

uterine leiomyoma development (Ono et al., 2013). The analysis of Wnt/β-catenin pathway 

related genes in our HULP cells cultured with Vitamin D showed that most genes implicated in 

developmental processes such as tissue polarity, cell migration, cell cycle, cell growth and 

proliferation, were downregulated in Vitamin D-treated cells compared to control. 

Interestingly, among the upregulated genes was DAB2 (tumor suppressor gene), which may 

inhibit the canonical Wnt/β-Catenin pathway by stabilizing the β-Catenin destruction complex 

(Hofsteen et al., 2016; Paluszczak et al., 2018). In addition, the negative pathway activity score 

implied that Vitamin D significantly inhibited Wnt/β-catenin pathway, demonstrating for the 

first time that Vitamin D has an inhibitory action on this pathway in HULP cells. The analysis of 

the entire Wnt/β-Catenin pathway in HULP cells complement the published data that 

described the reduction of β-catenin, WNT4, and WISP1 proteins by Vitamin D in a human 

leiomyoma cell line (Al-Hendy et al., 2016). Likewise, we observed that expression of protein 

products of Wnt/β-Catenin pathway (WISP1, uPAR and MMP7) were also downregulated in 

Vitamin D-treated HULP cells. According to our findings, we suggest that Vitamin D treatment 

suppresses cell proliferation in HULP cells through the inhibition of Wnt/β-catenin pathway at 

both the gene and protein levels.  

Additionally, we aimed to determine the effect of Vitamin D on apoptosis in HULP cells. 

Whether Vitamin D induces apoptosis, our results should show an upregulation of pro-

apoptotic genes and a downregulation of anti-apoptotic genes. However, the results obtained 

after Vitamin D treatment did not show this trend, suggesting that Vitamin D does not act via 

apoptosis induction in HULP cells. Despite one of the described action mechanisms of Vitamin 

D as an anti-tumor agent is the induction of apoptosis, it has been reported that this is not 

caused in all cancer types (Fleet, 2008). In this context, our findings begin to clarify the Vitamin 

D effect on apoptosis regulation in leiomyoma, which could be useful to determine the effect 

of this vitamin on programed cell death in other cancer cell types. 
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Based on these findings, our in vitro study demonstrated for the first time that Vitamin D is 

able to reduce proliferation on HULP cells, through the inhibition of Wnt/β-catenin pathway, 

supporting the idea that Vitamin D could be a therapeutic alternative for uterine leiomyoma 

(Bläuer et al., 2009; Halder et al., 2014; Sharan et al., 2011). Taking into account that the 

observed cell proliferation reduction in vitro was slight, we propose Vitamin D as an effective 

treatment to prevent leiomyoma growth and stabilize its size. There findings have been 

published in the journal Fertility & Sterility in February 2019 (Annex IV). 

Considering that human uterine leiomyomas are solid tumors composed of smooth muscle 

cells interspersed in an abundant ECM, which plays an important role in tumor expansion 

(Bulun, 2013; Parker, 2007), it is necessary to corroborate the in vitro antiproliferative effects 

of Vitamin D in an animal model that maintains ECM structure. For this purpose, we aimed to 

assess the effect of Vitamin D treatment on a xenograft mouse model generated by the 

implantation of human uterine leiomyoma fragments, at both short and long term. 

Firstly, we monitored for the first time leiomyoma xenograft in mice by 18F-FDG PET/CT scans, 

whose efficiency detecting leiomyoma have been previously demonstrated in women 

(Kitajima et al., 2010; Ma and Shao, 2017). 18F-FDG uptake demonstrated that, while no 

differences were observed in metabolic activity at the end of short-term Vitamin D treatment, 

this activity was significantly lower with long-term Vitamin D treatment compared to control. 

Macroscopic examination of leiomyomas before and after xenotransplantation revealed a 

statistically significant decrease in leiomyoma size after long-term Vitamin D 1 µg/kg/day 

treatment, while short-term Vitamin D treatment maintained their size. These results support 

previous findings reported in other animal studies that used the Eker rat model (Halder et al., 

2012) or Eker rat-derived uterine leiomyoma cell line (ELT-3) (Halder et al., 2014), which 

demonstrated reduced leiomyoma size with Vitamin D treatment compared to control. 

However, both studies tested Vitamin D or an analog in animal models that do not fully mimic 

human leiomyoma physiology. The in vivo study described here is the first to assess the effect 

of Vitamin D on a leiomyoma xenograft animal model using human uterine leiomyoma tissue 

fragments and suggest that Vitamin D treatment can significantly reduce human leiomyoma 

size.   
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Subsequently, we evaluated molecular mechanisms involved in leiomyoma size reduction: cell 

proliferation, ECM formation, and apoptosis. Our study showed that the highest dose of 

Vitamin D (1 µg/kg/day) reduced cell proliferation in leiomyoma xenografts with long-term 

treatment, suggesting that Vitamin D has an antiproliferative effect on uterine leiomyoma. 

These findings corroborate our previous in vitro results in which Vitamin D significantly 

decreased cell proliferation in HULP cells, reinforcing the antiproliferative action of Vitamin D 

in uterine leiomyoma fragments just like in cancer cells (Gavrilov et al., 2005; Jamshidi et al., 

2008), leiomyoma cells lines (Bläuer et al., 2009; Sharan et al., 2011), and animal models of 

leiomyoma (Halder et al., 2012,  2014), supporting that Vitamin D could be an effective 

treatment that plays an important role in uterine leiomyoma growth.  

The development and expansion of human uterine leiomyomas are not only associated with 

cell proliferation, but also with excessive synthesis and deposition of ECM. Therefore, since 

ECM formation is one of the crucial molecular mechanisms involved in human uterine 

leiomyoma growth, we evaluated the role of Vitamin D in the regulation of ECM-associated 

protein expression in human leiomyoma xenograft. We observed that Vitamin D treatment 

significantly decreased the expression of ECM-associated proteins with the highest dose of 

Vitamin D (1 µg/kg/day) with long-term treatment. These findings suggested a role for Vitamin 

D in the regulation of key fibrotic proteins, and consequently, in uterine leiomyoma expansion 

similar to that observed in the Eker rat model (Halder et al., 2012) and in HuLM cells (Halder 

et al., 2013b).   

In uterine leiomyomas, the production of these ECM-associated proteins is induced by TGFβ3, 

which is involved in ECM deposition and fibrosis process (Ciebiera et al., 2017; Halder et al., 

2011). In this regard, a TGFβ3 overexpression leads to overproduction and oversecretion of 

ECM proteins, such as COLLAGEN TYPE 1, FIBRONECTIN and PAI-1, resulting in an increase in 

leiomyoma size. To evaluated whether Vitamin D might reverse TGFβ3-induced protein 

expression in leiomyoma, TGF3 expression was evaluated in leiomyoma xenograft by qRT-

PCR. TGF3 expression was significantly decreased with long-term, high-dose Vitamin D, 

suggesting that this vitamin may impact fibrosis in human leiomyoma via TGFβ3 as was 

suggested in HuLM cells (Halder et al., 2011). Interestingly, it has been demonstrated that 

TGF produced by leiomyomas affects endometrial receptivity (Galliano et al., 2015; Sinclair 
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et al., 2011), as well as the production of PAI-1 in endometrium, which is involved in the 

regulation of normal menstrual flow (Taylor, 2018). Therefore, Vitamin D treatment might not 

only reduce uterine leiomyoma size but also improve endometrial receptivity and bleeding in 

these patients. 

Since Vitamin D suppresses the proliferation of malignant tumor cells and induces apoptosis 

in cancer cells (Deeb et al., 2007; Ylikomi et al., 2002), human leiomyoma cells line (Sharan et 

al., 2011) and Eker rats (Halder et al., 2012,  2014), we sought to determine whether Vitamin 

D could induce apoptosis in leiomyoma xenograft via changes in CASPASE 3 expression and 

apoptotic cells. Vitamin D treatment was found to increase both CASPASE 3 protein expression 

and the percentage of apoptotic cells at the highest dose when administered long term. 

Based on our findings, Vitamin D given at 1µg/kg/day could prevent human uterine leiomyoma 

growth and stabilize its size in the short term, while long-term treatment could significantly 

reduce leiomyoma size without negative side effects. Considering that 1 µg of 1,25(OH)2D3 is 

equivalent to 40 IU, 1µg/kg/day in mice is equivalent to 2800 IU/day for an human adult of 

70kg, which is reported as a safe dose in clinical trials (Hathcock et al., 2007).  

In this regard, a Vitamin D dose lower than 2800 IU/day during long time might reduce 

leiomyoma size in women with Vitamin D deficiency/insufficiency. This in vivo approach 

paves the way for future clinical studies testing Vitamin D treatment effect during long term 

in pre- and perimenopausal patients with uterine leiomyomas and Vitamin D deficiency, 

improving the results obtained in a study that only included peri- and menopausal women 

with “small burden” leiomyomas, excluding premenopausal women with leiomyomas >50 mm 

(Ciavattini et al., 2016). In this regard, it is worth mentioning that our group have recently 

started a clinical study, carried out at Hospital Universitario y Politécnico La Fe (Spain) whose 

objective is to determine if the restoration of normal serum levels of 25-

hydroxycholecalciferol (25(OH)D) in pre- and perimenopausal patients with uterine 

leiomyomas >30 mm who present hypovitaminosis D is able to maintain or even reduce their 

size. 
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VII. CONCLUSIONS 

The following conclusions can be drawn from this thesis: 

- An increased cell proliferation along with a deregulation of Wnt/β-Catenin pathway in 

leiomyoma tissue could be a key piece in the development and growth of uterine 

leiomyoma, while apoptosis appears not to contribute. 

- Vitamin D treatment inhibits cell growth of human uterine leiomyoma primary cells in 

vitro throughout the induction of cell growth arrest in G0/G1 phases (decreasing cell 

division) and the inhibition of cell proliferation. 

- Vitamin D decreases the expression of genes and proteins of Wnt/β-catenin pathway 

involved in molecular mechanisms, such as cell migration, growth and proliferation in 

human uterine leiomyoma primary cells in vitro, significantly inhibiting this signaling 

pathway. However, apoptosis is not increased by Vitamin D in human uterine leiomyoma 

primary cells in vitro. 

- Although the high dose of Vitamin D (1 µg/kg/day) in the short-term decreases cell 

proliferation and COLAGEN I production and increases apoptosis, these effects are not 

statistically significant, which is reflected in the maintenance of the size and metabolic 

activity of leiomyoma xenografts in our in vivo model. 

- The high dose of Vitamin D (1 µg/kg/day) in the long-term significantly decreases cell 

proliferation, extracellular matrix proteins production throughout TGFβ signaling 

pathway, as well as increases apoptosis, which is reflected in the significant reduction of 

the size and metabolic activity of leiomyoma xenografts in our in vivo model. 

- Short-term Vitamin D treatment could be an effective therapy to prevent leiomyoma 

growth an stabilize its size, while Vitamin D treatment for an extended period could 

effectively reduce leiomyoma size without associated side effects.  
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VII. ANNEXES 

ANNEX I: Sequences of primers used in Q-RT-PCR assays. 

 

 

 

 

 

GENE Forward sequence Reverse sequence 

β-actin CACACTGTGCCCATCTACGA TAGCTCTTCTCCAGGGAGGA 

CYP24A1 CGCATCTTCCATTTGGCGTT GCCTGGATGTCGTATTTGCG 

WNT5A GAAGCCAATTCTTGGTGGT GAGAAAGTCCTGCCAGTTG 

DKK1 GATCATAGCACCTTGGATGGG GGCACAGTCTGATGACCGG 

BCL2 TGGATGACTGAGTACCTGAA GACAGCCAGGAGAAATCAAA 

TNFRSF11B GTGGAATAGATGTTACCCTGTG CAAGACACTAAGCCAGTTAGG 

PCNA GTGACACTCAGTATGTCTGC  CTTCTTCATCCTCGATCTTG 

TGFβ3 CATGAACCTAAGGGCTACTATG CTTCAGGGTTCAGAGTGTTG 
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ANNEX II- RT² Profiler PCR Array Human WNT Signaling Pathway Plus 

POSITION SYMBOL DESCRIPTION

A01 APC Adenomatous polyposis coli

A02 AXIN1 Axin 1

A03 AXIN2 Axin 2

A04 BTRC Beta-transducin repeat containing

A05 CSNK1A1 Casein kinase 1, alpha 1

A06 CTBP1 C-terminal binding protein 1

A07 CTNNB1 Catenin (cadherin-associated protein), beta 1, 88kDa

A08 CTNNBIP1 Catenin, beta interacting protein 1

A09 DAAM1 Dishevelled associated activator of morphogenesis 1

A10 DAB2 Disabled homolog 2, mitogen-responsive phosphoprotein (Drosophila

A11 DKK1 Dickkopf homolog 1 (Xenopus laevis)

A12 DKK3 Dickkopf homolog 3 (Xenopus laevis)

B01 DVL1 Dishevelled, dsh homolog 1 (Drosophila)

B02 DVL2 Dishevelled, dsh homolog 2 (Drosophila)

B03 EP300 E1A binding protein p300

B04 FBXW11 F-box and WD repeat domain containing 11

B05 FGF4 Fibroblast growth factor 4

B06 FOSL1 FOS-like antigen 1

B07 FRAT1 Frequently rearranged in advanced T-cell lymphomas

B08 FRZB Frizzled-related protein

B09 FZD1 Frizzled family receptor 1

B10 FZD2 Frizzled family receptor 2

B11 FZD3 Frizzled family receptor 3

B12 FZD4 Frizzled family receptor 4

C01 FZD5 Frizzled family receptor 5

C02 FZD6 Frizzled family receptor 6

C03 FZD7 Frizzled family receptor 7

C04 FZD8 Frizzled family receptor 8

C05 FZD9 Frizzled family receptor 9

C06 GSK3B Glycogen synthase kinase 3 beta

C07 JUN Jun proto-oncogene

C08 KREMEN1 Kringle containing transmembrane protein 1

C09 LRP5 Low density lipoprotein receptor-related protein 5

C10 LRP6 Low density lipoprotein receptor-related protein 6

C11 MAPK8 Mitogen-activated protein kinase 8

C12 MMP7 Matrix metallopeptidase 7 (matrilysin, uterine)

D01 NFATC1 Nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 1

D02 NKD1 Naked cuticle homolog 1 (Drosophila)

D03 NLK Nemo-like kinase

D04 PITX2 Paired-like homeodomain 2

D05 PORCN Porcupine homolog (Drosophila)

D06 PPARD Peroxisome proliferator-activated receptor delta

D07 PRICKLE1 Prickle homolog 1 (Drosophila)

D08 RHOA Ras homolog gene family, member A

D09 RUVBL1 RuvB-like 1 (E. coli)

D10 SFRP1 Secreted frizzled-related protein 1

D11 SFRP4 Secreted frizzled-related protein 4

D12 SOX17 SRY (sex determining region Y)-box 17  
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POSITION SYMBOL DESCRIPTION

E01 TCF7 Transcription factor 7 (T-cell specific, HMG-box)

E02 TCF7L1 Transcription factor 7-like 1 (T-cell specific, HMG-box)

E03 VANGL2 Vang-like 2 (van gogh, Drosophila)

E04 WIF1 WNT inhibitory factor 1

E05 WISP1 WNT1 inducible signaling pathway protein 1

E06 WNT1 Wingless-type MMTV integration site family, member 1

E07 WNT10A Wingless-type MMTV integration site family, member 10a

E08 WNT11 Wingless-type MMTV integration site family, member 11

E09 WNT2 Wingless-type MMTV integration site family, member 1

E10 WNT2B Wingless-type MMTV integration site family, member 2B

E11 WNT3 Wingless-type MMTV integration site family, member 3

E12 WNT3A Wingless-type MMTV integration site family, member 3A

F01 WNT4 Wingless-type MMTV integration site family, member 4

F02 WNT5A Wingless-type MMTV integration site family, member 5A

F03 WNT5B Wingless-type MMTV integration site family, member 5B

F04 WNT6 Wingless-type MMTV integration site family, member 6

F05 WNT7A Wingless-type MMTV integration site family, member 7A

F06 WNT7B Wingless-type MMTV integration site family, member 7B

F07 WNT8A Wingless-type MMTV integration site family, member 8A

F08 WNT9A Wingless-type MMTV integration site family, member 9A

F09 BOD1 Biorientation of chromosomes in cell division 1

F10 CALM1 Calmodulin 1 (phosphorylase kinase, delta)

F11 CCND1 Cyclin D1

F12 CCND2 Cyclin D2

G01 CHSY1 Chondroitin sulfate synthase 1

G02 CXADR Coxsackie virus and adenovirus receptor

G03 CYPAV2 Cytochrome P450, family 4, subfamily v, polypeptide 2

G04 HSPA12A Heat shock 70kDa protein 12A

G05 LEF1 Lymphoid enhancer-binding factor 1

G06 MT1A Metallothionein 1A

G07 MTFP1 Mitochondrial fission process 1

G08 MTSS1 Metastasis suppressor 1

G09 MYC V-myc myelocytomatosis viral oncogene homolog (avi

G10 NAV2 Neuron navigator 2

G11 PRMT6 Protein arginine methyltransferase 6

G12 SKP2 S-phase kinase-associated protein 2 (p45)

H01 ACTB Actin, beta

H02 B2M Beta-2-microglobulin

H03 GAPDH Glyceraldehyde-3-phosphate dehydrogenase

H04 HPRT1 Hypoxanthine phosphoribosyltransferase 1

H05 RPL10 Ribosomal protein, large, P0

H06 HGDC Human Genomic DNA Contamination

H07 RTC Reverse Transcription Control

H08 RTC Reverse Transcription Control

H09 RTC Reverse Transcription Control

H10 PPC Positive PCR Control

H11 PPC Positive PCR Control

H12 PPC Positive PCR Control  
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ANNEX III- RT² Profiler PCR Array Human Apoptosis  

POSITION SYMBOL DESCRIPTION

A01 ABL1 C-abl oncogene 1, non-receptor tyrosine kinase

A02 AIFM1 Apoptosis-inducing factor, mitochondrion-associated, 1

A03 AKT1 V-akt murine thymoma viral oncogene homolog 1

A04 APAF1 Apoptotic peptidase activating factor 1

A05 BAD BCL2-associated agonist of cell death

A06 BAG1 BCL2-associated athanogene

A07 BAG3 BCL2-associated athanogene 3

A08 BAK1 BCL2-antagonist/killer 1

A09 BAX BCL2-associated X protein

A10 BCL10 B-cell CLL/lymphoma 10

A11 BCL2 B-cell CLL/lymphoma 2

A12 BCL2A1 BCL2-related protein A1

B01 BCL2L1 BCL2-like 1

B02 BCL2L10 BCL2-like 10 (apoptosis facilitator)

B03 BCL2L11 BCL2-like 11 (apoptosis facilitator)

B04 BCL2L2 BCL2-like 2

B05 BFAR Bifunctional apoptosis regulator

B06 BID BH3 interacting domain death agonist

B07 BIK BCL2-interacting killer (apoptosis-inducing)

B08 BIRC2 Baculoviral IAP repeat containing 2

B09 BIRC3 Baculoviral IAP repeat containing 3

B10 BIRC5 Baculoviral IAP repeat containing 5

B11 BIRC6 Baculoviral IAP repeat containing 6

B12 BNIP2 BCL2/adenovirus E1B 19kDa interacting protein 2

C01 BNIP3 BCL2/adenovirus E1B 19kDa interacting protein 3

C02 BNIP3L BCL2/adenovirus E1B 19kDa interacting protein 3-like

C03 BRAF V-raf murine sarcoma viral oncogene homolog B1

C04 CASP1 Caspase 1, apoptosis-related cysteine peptidase (interleukin 1, beta, convertase)

C05 CASP10 Caspase 10, apoptosis-related cysteine peptidase

C06 CASP14 Caspase 14, apoptosis-related cysteine peptidase

C07 CASP2 Caspase 2, apoptosis-related cysteine peptidase

C08 CASP3 Caspase 3, apoptosis-related cysteine peptidase

C09 CASP4 Caspase 4, apoptosis-related cysteine peptidase

C10 CASP5 Caspase 5, apoptosis-related cysteine peptidase

C11 CASP6 Caspase 6, apoptosis-related cysteine peptidase

C12 CASP7 Caspase 7, apoptosis-related cysteine peptidase

D01 CASP8 Caspase 8, apoptosis-related cysteine peptidase

D02 CASP9 Caspase 9, apoptosis-related cysteine peptidase

D03 CD27 CD27 molecule

D04 CD40 CD40 molecule, TNF receptor superfamily member 5

D05 CD40LG CD40 ligand

D06 CD70 CD70 molecule

D07 CFLAR CASP8 and FADD-like apoptosis regulator

D08 CIDEA Cell death-inducing DFFA-like effector a

D09 CIDEB Cell death-inducing DFFA-like effector b

D10 CRADD CASP2 and RIPK1 domain containing adaptor with death domain

D11 CYCS Cytochrome c, somatic

D12 DAPK1 Death-associated protein kinase 1  
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POSITION SYMBOL DESCRIPTION

E01 DFFA DNA fragmentation factor, 45kDa, alpha polypeptide

E02 DIABLO Diablo, IAP-binding mitochondrial protein

E03 FADD Fas (TNFRSF6)-associated via death domain

E04 FAS Fas (TNF receptor superfamily, member 6)

E05 FASLG Fas ligand (TNF superfamily, member 6)

E06 GADD45A Growth arrest and DNA-damage-inducible, alpha

E07 HRK Harakiri, BCL2 interacting protein (contains only BH3 domain)

E08 IGF1R Insulin-like growth factor 1 receptor

E09 IL10 Interleukin 10

E10 LTA Lymphotoxin alpha (TNF superfamily, member 1)

E11 LTBR Lymphotoxin beta receptor (TNFR superfamily, member 3)

E12 MCL1 Myeloid cell leukemia sequence 1 (BCL2-related)

F01 NAIP NLR family, apoptosis inhibitory protein

F02 NFKB1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1

F03 NOD1 Nucleotide-binding oligomerization domain containing 1

F04 NOL3 Nucleolar protein 3 (apoptosis repressor with CARD domain)

F05 PYCARD PYD and CARD domain containing

F06 RIPK2 Receptor-interacting serine-threonine kinase 2

F07 TNF Tumor necrosis factor

F08 TNFRSF10A Tumor necrosis factor receptor superfamily, member 10a

F09 TNFRSF10B Tumor necrosis factor receptor superfamily, member 10b

F10 TNFRSF11B Tumor necrosis factor receptor superfamily, member 11b

F11 TNFRSF1A Tumor necrosis factor receptor superfamily, member 1A

F12 TNFRSF1B Tumor necrosis factor receptor superfamily, member 1B

G01 TNFRSF21 Tumor necrosis factor receptor superfamily, member 21

G02 TNFRSF25 Tumor necrosis factor receptor superfamily, member 25

G03 TNFRSF9 Tumor necrosis factor receptor superfamily, member 9

G04 TNFSF10 Tumor necrosis factor (ligand) superfamily, member 10

G05 TNFSF8 Tumor necrosis factor (ligand) superfamily, member 8

G06 TP53 Tumor protein p53

G07 TP53BP2 Tumor protein p53 binding protein, 2

G08 TP73 Tumor protein p73

G09 TRADD TNFRSF1A-associated via death domain

G10 TRAF2 TNF receptor-associated factor 2

G11 TRAF3 TNF receptor-associated factor 3

G12 XIAP X-linked inhibitor of apoptosis

H01 ACTB Actin, beta

H02 B2M Beta-2-microglobulin

H03 GAPDH Glyceraldehyde-3-phosphate dehydrogenase

H04 HPRT1 Hypoxanthine phosphoribosyltransferase 1

H05 RPLP0 Ribosomal protein, large, P0

H06 HGDC Human Genomic DNA Contamination

H07 RTC Reverse Transcription Control

H08 RTC Reverse Transcription Control

H09 RTC Reverse Transcription Control

H10 PPC Positive PCR Control

H11 PPC Positive PCR Control

H12 PPC Positive PCR Control  
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ANNEX IV: Scientific production PhD student. 

1. International scientific publications 

Corachán A, Ferrero H, Aguilar A, García N, Monleón J, Faus A, Cervelló I, Pellicer A. “Inhibition 

of tumor cell proliferation in human uterine leiomyoma by vitamin D via Wnt/β-catenin 

pathway.” Fertility and Sterility Vol. 111, No. 2, February 2019. 

https://doi.org/10.1016/j.fertnstert.2018.10.008  

2. Works submitted to international conferences  
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in human uterine leiomyoma growth in a xenograft animal model.” Conference: Annual 

Meeting of the SRI – Paris, 12-16 March 2019.  Presentation: Poster 
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proliferative Action of Vitamin D in Uterine Leiomyoma Leaded by Cell Growth Arrest, Wnt/β-

catenin Pathway Inhibition and Apoptosis Induction.” Conference: Annual Meeting of the SRI 

– San Diego, 6-10 March 2018. Presentation: Poster 

Corachán A, Ferrero H, Aguilar A, García N, Monleón J, Faus A, Cervelló I, Pellicer A. “Vitamin 

D can inhibit proliferation of uterine fibroid cells in vitro through the Wnt/ß-Catenin signaling 

pathway.” Conference: Annual Meeting of ESHRE- Geneva, 3-5 July 2017. Presentation: Poster 
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Pellicer A. “In vitro Proliferation of Uterine Fibroids is Related with Vitamin D Receptor and 
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