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R E S U M E N

La Física de Neutrinos cambió el curso de su historia en 1998

con el descubrimiento de las oscilaciones de neutrinos en neu-
trinos atmosféricos, después corroborado en experimentos con
neutrinos solares, de reactor y de acelerador. Así pues, los neu-
trinos tienen masa no nula y hay mezcla de sabor entre las tres
familias de neutrinos ligeros levógiros activos. A pesar de los
grandes avances que ha habido, todavía queda cierto número
de preguntas abiertas en este campo. A partir de principios de
simetría, esta Tesis ha estudiado:

1. Violación genuina de CP en el sector leptónico, un problema
histórico debido a la falsa violación de CP que la propa-
gación de neutrinos en materia induce en los observables,
en cuyo estudio también han surgido nuevos observables
para la determinación de la jerarquía de masas de los neu-
trinos. Hay dos ideas fundamentales con las que afrontar
este problema, para las cuales esta Tesis ha proporcionado
respuestas afirmativas:

i) ¿Es teóricamente posible separar la asimetría CP ob-
servable en dos componentes, genuina y falsa, bien
definidas?

ii) ¿Son estas dos componentes observables por separa-
do en los experimentos terrestres con neutrinos de
acelerador planificados?

2. Violación de número leptónico global, a partir de conceptos
alternativos a la profundamente estudiada desintegración
doble beta sin neutrinos. La respuesta a la naturaleza de
los neutrinos como partículas de Dirac o de Majorana es
de crucial importancia, con sus implicaciones para la Física
de más allá del Modelo Estándar y leptogénesis. Además
de estas desintegraciones nucleares, hemos estudiado dos
observables alternativos para comprobar la existencia de

11



12 resumen

términos de masas para los neutrinos violando número
leptónico en dos unidades:

i) Doble captura electrónica sin neutrinos, que corres-
ponde a una mezcla atómica con ∆L = 2, a través
de diferentes observables mediados por el átomo hija
mezclado, aumentados por la condición de resonancia
y con emisión estimulada por un haz de rayos X.

ii) Separar la dependencia en los términos de masa de
los neutrinos, diferentes para Dirac o Majorana, en
la interacción ∆L = 0 de largo alcance entre materia
agregada medida por el intercambio de un par de
neutrinos, que serán especialmente relevantes a dis-
tancias del orden de una micra —la longitud de onda
Compton del neutrino.

1. Violación genuina de CP
Hemos estudiado el problema del enmarañamiento de las dis-

tintas fuentes de violación de CP en la asimetría CP, junto con
las asimetrías T y CPT, para oscilaciones de neutrinos en materia.
Nuestros resultados culminan la solución de este problema histó-
rico de la contaminación por efectos de materia en las asimetrías
para las tres simetrías discretas CP, T y CPT en la propagación
de neutrinos. Teniendo en cuenta que el Lagrangiano en vacío es
simétrico bajo CPT y que los efectos de materia son invariantes
bajo T, la separación de los distintos efectos queda realizada en
términos de una base de tres componentes independientes: la
genuina (invariante CPT), la inducida por materia (invariante T),
la de interferencia (invariante CP).

De forma independiente del marco teórico para la dinámica
de los tres sabores de neutrinos activos, hemos demostrado el
Teorema de Desenmarañamiento

ACP
αβ = ACP;T

αβ + ACP;CPT
αβ , (2.13a)

AT
αβ = AT;CPT

αβ + AT;CP
αβ , ĀT

αβ = AT;CPT
αβ − AT;CP

αβ , (2.13b)

ACPT
αβ = ACPT;T

αβ + ACPT;CP
αβ , ĀCPT

αβ = ACPT;T
αβ − ACPT;CP

αβ , (2.13c)

para las tres asimetrías experimentales independientes, en térmi-
nos de nuestras tres componentes. Incluso para materia invarian-
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te T, AT
αβ tiene una componente falsa debido a la interferencia

cuántica.
Al escribir la regla de suma de las asimetrías para cualquier

canal de sabor, ACPT
αβ = ACP

αβ + ĀT
αβ (2.10), en términos de las

componentes separadas, el comportamiento bajo cada una de las
tres simetrías discretas implica que AS1;S2

αβ = AS2;S1
αβ .

Para el Hamiltoniano efectivo escrito como la suma de propaga-
ción libre más el potencial de materia para neutrinos electrónicos,
las tres componentes tienen paridades definidas bajo la distancia
L recorrida por el neutrino, el potencial de materia a, la parte
imaginaria sin δ de la matriz de mezcla PMNS, y la jerarquía de
masas de los neutrinos h = ±1: ACP;T

αβ es impar en L y sin δ, par

en a y h; ACP;CPT
αβ es par en L y sin δ, impar en a y h; AT;CPT

αβ es
impar en L, sin δ, a y h.

A distancia L y energía E fijadas, hemos comprobado el Teo-
rema de Desenmarañamiento estudiando las componentes en
función del potencial de materia V en a = 2EV y del paráme-
tro de violación de CP sin δ. Las componentes genuina y de
interferencia se anulan si sin δ = 0 ∀a, mientras que las dos
componentes falsas se anulan si a = 0 ∀ sin δ.

Con el potencial V fijado para el valor de propagación a través
de la corteza terrestre, hemos estudiado la región de energías
∆m2

21 � |a| �
∣∣∆m2

31

∣∣ entre las dos resonancias MSW, relevante
para los experimentos de acelerador actuales y de la siguiente
generación. Hemos podido resolver el problema de autovalores
y autoestados del Hamiltoniano H en materia, así como expresar
todas las componentes de las asimetrías a primer orden en ∆m2

21
y a. Vienen dadas por:

Componente Genuina

ACP;T
µe ≈ −16 Jr sin δ ∆21 sin2 ∆31 , (3.35a)

Componente Inducida por Materia

ACP;CPT
µe ≈ 16∆a

[
sin ∆31

∆31
− cos ∆31

]
(S sin ∆31 + Jr cos δ ∆21 cos ∆31) ,

(3.35b)Componente de Interferencia

AT;CPT
µe ≈ −16∆a Jr sin δ ∆21 sin ∆31

[
sin ∆31

∆31
− cos ∆31

]
. (3.35c)
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Estas expresiones analíticas, aun siendo sencillas, dan resul-
tados precisos, en comparación a la resolución numérica del
problema. Este hecho se entiende gracias a la paridad definida
de cada componente bajo a.

Los resultados analíticos demuestran que la componente genui-
na ACP;T

µe es ciega a efectos de jerarquía de masas, mientras que
el signo de las componentes falsas ACP;CPT

µe y AT;CPT
µe es suficiente

para discriminar entre Jerarquía Normal e Invertida.
La medida separada de todas las componentes solo se puede

conseguir en factorías de neutrinos o con neutrinos atmosféricos.
En estos casos, las tres componentes se pueden extraer bien de
AT

µe, ĀT
µe, ACP

µe o de ACP
µe , AT

µe, ACPT
µe .

Para las fuentes de neutrinos y antineutrinos muónicos de los
experimentos de acelerador actuales, las dos componentes de la
asimetría CP de aparición ACP

µe se pueden separar mediante su
dependencia en la distancia (T2HKK) o su dependencia en la
energía (DUNE). Con un único detector en el primer máximo
de oscilación, la medida en T2HK está dominada por el efecto
genuino, mientras que la componente falsa se puede sustraer
una vez se conozca la jerarquía de masas.

A la distancia de DUNE, la componente inducida por materia
ACP;CPT

µe domina en la región de alta energía por encima del
primer nodo de oscilación, de forma que el signo de la asimetría
CP experimental ACP

µe determina la jerarquía de masas.
Complementariamente, se puede explotar un configuración

mágica de energía con L/E = 1420 km/GeV, alrededor del se-
gundo máximo de oscilación, en la que la componente inducida
por materia ACP;CPT

µe tiene un cero de primer rango mientras que
la componente genuina ACP;T

µe tiene un extremo (proporcional a
sin δ).

Ese valor mágico de L/E viene dado por

E = 0,92 GeV
L

1300 km

∣∣∆m2
31

∣∣
2,5× 10−3 eV2 , (4.21)

que corresponde a E = 0,92 GeV para la distancia experimen-
tal de DUNE. Con una resolución energética modesta de ∆E ∼
200 MeV, se mantiene un cero efectivo para la componente indu-
cida por materia.
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2.i. Doble captura electrónica sin neutrinos
A diferencia de la desintegración doble beta sin neutrinos, la

doble captura electrónica sin neutrinos no es un proceso, sino
una mezcla virtual entre un átomo padre ZA y un átomo hijo
(Z− 2)∗A excitado con dos huecos. La señal observable es la

emisión de 2 rayos X debidos a los huecos. Además de esta
diferente señal, la estrategia para su detección y los eventos de
fondo del experimento son diferentes respecto a los encontrados
en la desintegración doble beta sin neutrinos.

La mezcla es resonante para la cuasi-degeneración de los nive-
les energéticos padre e hijo y, bajo estas circunstancias, no hay
fondo irreducible debido al canal con emisión de dos neutrinos.

Hemos reconstruido la historia natural de un átomo padre
nominalmente estable desde su producción, ya sea en la natura-
leza o en el laboratorio. Después de los períodos de oscilaciones
de átomos y de la desintegración de estado excitado de vida
media corta del átomo hijo, los estados “estacionarios” relevantes
a tiempos observables son el estado mezclado metaestable de
vida media larga y el estado excitado no ortogonal de vida media
corta, así como el estado fundamental del átomo hijo. Hemos
descubierto que este sistema se encuentra de forma natural en
inversión de población, hecho que se puede aprovechar para
explotar la naturaleza bosónica de la radiación emitida por las
transiciones atómicas observadas.

De entre diferentes observables para este fenómeno de mezcla
atómica de Majorana, destacamos la emisión estimulada de rayos
X del estado metaestable de vida media larga mediante un haz
de alta intensidad de rayos X: se pueden esperar ganancias de
hasta G ∼ 100 en las presentes instalaciones de láseres de rayos
X (XFEL).

Por otro lado, la población histórica en el estado fundamental
del átomo hijo se puede muestrear excitando la muestra con
un láser pulsado actual, que mostraría el espectro de absorción
característico del átomo hijo.

Los valores numéricos en estos resultados quedan supeditados
a que se encuentre un isótopo que cumpla mejor la condición
de resonancia ∆ ∼ Γ, con una posible mejora de hasta un factor
∼ 1000 en la vida media de los observables.
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2.ii. Fuerzas de largo alcance mediadas por un par de neutrinos
Por primera vez, presentamos un cálculo realista de la interac-

ción de largo alcance entre materia agregada, mediada por un
par de neutrinos, para distancias cercanas a su alcance, cuyo aco-
plamiento es coherente. Hemos incluido todos los ingredientes
conocidos a día de hoy en física de neutrinos relevantes para la
interacción coherente con materia, incluyendo las cargas vectoria-
les para electrones, protones y neutrones, los términos de masa
de neutrinos relevantes a distancias del orden de su longitud de
onda Compton y la matriz de mezcla PMNS, que distingue los
neutrinos de sabor en el vértice νe e de corrientes cargadas de los
neutrinos de masa definida que aparecen en el estado intermedio
que determina la parte absortiva de la amplitud. De nuestro tra-
tamiento surge un resultado clave: la medida de esta interacción
a distancias del orden de la micra supondría un metodología
completamente nueva para la distinción de la naturaleza Dirac o
Majorana del neutrino. En lugar de buscar un observable ∆L = 2
que solo está permitido para neutrinos de Majorana, esta interac-
ción permite distinguir si los neutrinos son de Dirac o Majorana
a partir de los efectos de masa en un observable permitido en
ambos casos.

La longitud de onda Compton de los neutrinos masivos es
del orden de una micra. Aunque todavía se desconoce la escala
absoluta de masas de los neutrinos, los límites experimentales y
los valores conocidos de

∣∣∆m2
31

∣∣ y ∆m2
21 hacen que mν ∼ 0,1 eV

sea de esperar. Nuestro cálculo en teoría dispersiva para la fuerza
mediada por dos neutrinos incluye precisamente esta región
de distancias. De hecho, nuestro resultados muestran la fuerte
dependencia del potencial de interacción a la masa del neutrino
más ligero, y por tanto a la escala absoluta de masas de los
neutrinos, para distancias entre 1 y 10 micras.

El alcance de esta interacción mediada por dos neutrinos está
muy por encima de la escala atómica, garantizando que será
operativa para átomos y agregados de materia neutros de carga
eléctrica, siempre y cuando sí tengan una carga débil no nula.
Efectivamente, hemos construido dicha carga débil a partir de las
interacciones por corrientes neutras con electrones, protones y
neutrones, así como la interacción de neutrinos electrónicos por
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corrientes cargadas con electrones. Estas cargas débiles para la
interacción de materia con νe y νµ τ son proporcionales al opera-
dor número, por lo que violan el principio débil de equivalencia.
No se han encontrado desviaciones del principio de equivalencia
en medidas con precisiones que alcanzan los 10−14, por lo que
un estudio más detallado sobre las implicaciones de nuestro
potencial será conveniente.

En las interacciones por corrientes neutras, la mezcla de sabor
en la matriz PMNS es irrelevante, por lo que el estado interme-
dio de propagación con neutrinos de masa definida aparece de
forma directa. En las interacciones por corrientes cargadas, en
cambio, las mezclas Uei de neutrinos electrónicos con todos los
estados de masa definida son necesarias. Estas cantidades son
bien conocidas por las medidas de oscilaciones de neutrinos.

La teoría dispersiva para las fuerzas de largo alcance nos ha
conducido a la determinación del potencial efectivo en términos
de la parte absortiva de la amplitud a bajos t, es decir, a baja
energía del par de neutrinos en la amplitud del canal t. Por tanto,
unitariedad indica que la física que domina el potencial es la de
un par de neutrinos no relativistas con masa definida.

Para neutrinos de Dirac con número leptónico definido, el
vértice de interacción es la carga quiral que distingue neutrinos
de antineutrinos. Para neutrinos de Majorana sin ninguna carga
conservada, el vértice de interacción es la carga axial, por lo que,
a diferencia del caso Dirac, el par de neutrinos se encuentra en
onda P. Las partes absortivas para neutrinos de Dirac y Majorana
difieren en los términos que dependen de sus masas.

Para neutrinos con masa, independientemente de su carácter
de Dirac o Majorana, las tres cargas de sabor Qα

W encontradas en
el potencial de neutrinos sin masa aparecen mezcladas, hecho
que da lugar a un tensor 3× 3 simétrico Qij

W . Este tensor depende
de los elementos Uei de la matriz de mezcla, y cada uno de sus
elementos se corresponde con el vértice de intercambio del par
νiν̄j. La unitariedad de la matriz PMNS garantiza la consistencia
de las dos descripciones en la región con neutrinos efectivamente
sin masa, mνr � 1.

A distancias por debajo de una micra, los potenciales que
hemos obtenido para neutrinos de Dirac y Majorana reproducen
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la dependencia r−5 conocida para neutrinos sin masa. Por encima
de la escala de la micra, donde los efectos de masa son relevantes,
los potenciales presentan una supresión tipo Yukawa, con un
comportamiento prácticamente independiente de la jerarquía de
masas de los neutrinos. La región en torno a la micra donde los
efectos de masa ya son relevantes pero los potenciales todavía no
están demasiado suprimidos es la escala óptima para la distinción
del carácter Dirac o Majorana de los neutrinos a partir de este
observable.



1 I N T R O D U C T I O N

The last two decades have seen a revolution in neutrino physics
with the discovery of, and precision studies on, flavor oscillations
in atmospheric [1], solar [2], reactor [3] and accelerator [4] neutri-
nos. These phenomena are interpreted in terms of non-vanishing
masses and flavor mixing, the unitary PMNS matrix [5, 6] describ-
ing the mismatch between flavor and mass eigenstates. Global
fits to all observable quantities provide better and better determi-
nation of the two mass differences ∆m2

21 and
∣∣∆m2

31

∣∣, as well as
the three mixing angles [7–9].

The most fundamental pending questions are the Dirac-Majora-
na confusion on the nature of neutrinos and their absolute mass
scale, properties studied by means of non-accelerator methods,
as well as the novel challenges for the next-generation neutrino
flavor oscillation experiments like T2HK [10] and DUNE [11] us-
ing terrestrial accelerators. Above all, once known that the three
mixing angles are non-vanishing [12–14], they should answer
whether the lepton sector of elementary particles also incorpo-
rates CP violation, opening the door to concepts able to explain
the matter-antimatter asymmetry of the Universe through lepto-
genesis [15] at higher energy scales. An additional open problem
is the ordering of the neutrino mass spectrum, with the so-called
either Normal or Inverted Hierarchies.

This work addresses the problems in neutrino physics just
mentioned, providing novel concepts and methodologies relevant
to their experimental attack at present and near future facilities.

Chapters 2, 3 and 4 represent the culmination of the under-
standing of the physics involved in the discrete CP, T and CPT
asymmetries for neutrinos propagating in matter. Contrary to
an attitude of considering as irremediable the contamination of
matter-effects [16, 17] in the search of the genuine asymmetry,
we prove Asymmetry Disentanglement Theorems using as guid-

19



20 introduction

ing principle the different symmetry properties of the free and
interaction Hamiltonian terms under T and CPT. In addition,
the disentangled genuine and matter-induced components offer
peculiar experimental signatures in their baseline and energy
distributions which allow their separation.

Chapter 5 presents a discussion of neutrinoless double electron
capture, as alternative to neutrinoless double beta decay, in terms
of a virtual ∆L = 2 atom mixing generated by Majorana neutrino
exchange. We put forward the idea, quantified in this Thesis,
of the possibility of stimulating the X-ray decay induced by the
atom mixing by means of XLaser facilities such as the new ones
operating at DESY [18] and Stanford [19, 20].

Chapter 6 gives the reader the first consistent calculation of the
long-range coherent interaction between ordinary matter medi-
ated by two-neutrino exchange, including both the flavor mixing
and the Dirac-Majorana neutrino mass distinction relevant at
distances of the order of the neutrino Compton wavelength —the
micron.

Chapter 7 presents our main conclusions and prospects.

1.1 the birth of the neutrino

Before 1930, the only subatomic particles known were the
electron [21] and the proton [22]. Together with a still-developing
quantum theory, these two elementary particles were enough
to describe the atomic spectrum of hydrogen. The structure of
atomic nuclei [23] was initially thought of in terms of bounded
protons and electrons, especially motivated by the identification
of β radioactivity [24] with electron emission [25]

XA
Z → YA

Z+1 + e− , (1.1)

as is the case of C14
6 decaying into N14

7 with a half-life of about
5730 years. Conservation of energy and momentum in this two-
body decay predicts a definite value for the emitted electron
energy,

Ee =
m2

X −m2
Y + m2

e

2mX
. (1.2)
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Figure 1.1: β-decay electron energy spectrum [31].

Lise Meitner and Otto Hahn in 1911 [26] and Jean Danysz
in 1912 [27] obtained the first hint that β particles have a con-
tinuous spectrum, against the energy conservation rule leading
to Eq. (1.2). Further evidence of the violation of energy conser-
vation was given by James Chadwick in 1914 [28], measuring
that the spectrum was continuous. In addition, molecular band
spectra established [29] that the nuclear spin of Nitrogen-14 is 1,
implying the violation of angular momentum conservation too in
the process (1.1), which would thus involve the spins 0→ 1 + 1

2 .
Dedicated studies in 1920–1927 by Charles Drummond Ellis and
others [30–32] finally demonstrated beyond any doubt that the
spectrum is continuous, as shown in Figure 1.1.

In a desperate reaction to these experimental facts, Niels Bohr
postulated that conservation of energy was true in a statistical
sense only [33]. These β decay puzzles of non-conservation of
energy and angular momentum were on the forefront of the
open problems in the fundamental physics endeavor.

Indeed, the fact that the measured energy ranged from zero
to a maximum given by its nominal value in Eq. (1.2), cannot be
explained in this framework. Furthermore, the nuclear models
with A protons and Z − A electrons were not able to explain
the spin of the nuclei, which for e.g. N14

7 should have been half-
odd instead of the measured integer value. In this context, both
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conservation of energy and angular momentum seemed to be
failing.

In 1930, Wolfgang Pauli wrote the famous letter in Figure 1.2 of
the 4th of December, addressed to the “Dear Radioactive Ladies
and Gentlemen” participating in the Tübingen Conference: he
proposed the existence of a hitherto unobserved spin-1/2 neutral
particle with a small mass, no greater than 1% the mass of a
proton, which he called a “neutron”. In his words, this was a
desperate remedy to save the exchange theorem of statistics and
the law of conservation of energy. Assuming that this particle
was emitted together with the electron in β processes,

C14
6 → N14

7 + e− + ν , (1.3)

the law of conservation of energy could successfully explain the
spectrum in Figure 1.1, and angular momentum conservation
could describe the 0 → 1 + 1

2 +
1
2 transition too. Moreover, the

presence of this hypothetical neutral particle in the nucleus in
the same number as electrons could also solve the problem of
nuclear spin.

Pauli excused his participation in the conference: « I cannot
appear in Tübingen personally since I am indispensable here
in Zurich because of a ball on the night of the 6th to 7th of
December ». The fact that this hypothetical particle had not
been observed in β decay forced it to be very weakly interacting,
to the point that Pauli himself believed that it would never be
observed. Unlike nowadays, when theoreticians have no problem
in proposing particles whose observation is unfeasible, Pauli
avoided claiming his solution in a scientific journal.

The nuclear spin problem was soon solved: James Chadwick
discovered the neutron in 1932 [34]. Its spin 1/2 and mass similar
to the proton mass opened the door to the understanding of the
atomic nucleus in terms of protons and nucleons. Its heavy mass,
however, made it clear that this particle could not be identified
as Pauli’s “neutron”, and indeed the problems with conservation
of energy and angular momentum in β decays were still present.

The description of the subatomic world in terms of protons,
electrons and neutrons lived a short life. A few months after
Chadwick’s discovery of the neutron, Carl D. Anderson took
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Figure 1.2: Pauli and his famous letter to the Tübingen Conference
proposing the neutrino.

the photograph of a positron [35] shown in Figure 1.3, finding
the first evidence on the existence of antimatter. In 1934, Enrico
Fermi incorporated Pauli’s neutral particle, which he named
“neutrino”, together with all of these particles into his theory of
β± decays [36], described as the subatomic processes

n→ p + e− + ν̄ , (1.4a)

p→ n + e+ + ν . (1.4b)

His theory successfully predicted the spectrum shapes, and pro-
vided a framework to calculate their lifetimes, supporting Pauli’s
proposed particle.
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Figure 1.3: Positron track in a cloud chamber [35]. The particle track
is curved due to the effect of an orthogonal magnetic field,
and the curvature gets tighter after the particle is slowed
down by the lead plate across the center of the chamber
—so the particle is moving upwards. The direction of the
curvature shows that the charge is positive, the radius that
its charge-to-mass ratio is that of an electron.

Using Fermi’s theory, Hans Bethe and Rudolf Peierls estimated
in 1934 [37] the mean absorption length of neutrinos in solid
matter, a value larger than 1014 km: the expected cross section
of neutrinos with matter was so low that they could traverse
the Earth without any interaction. They concluded that « it is
absolutely impossible to observe processes of this kind ».

Due to this low interaction rate, it was not unitl 1956 that the
Cowan–Reines experiment [38] at the Savannah River Nuclear Re-
actor proved the existence of the neutrino. Antineutrinos created
in the nuclear reactor by the β decay (1.4a) were subsequently
detected by the process

ν̄ + p→ n + e+ (1.5)

in a large water tank. The signature of the process are the two
511 keV gammas from the positron annihilation, in coincidence
with the nuclear gamma

n + Cd108 → Cd109 + γ (1.6)



1.2 the family problem: lepton flavor 25

due to the de-excitation of the Cd109 nucleus after the neutron
was captured by cadmium chloride molecules (CdCl2) dissolved
in the water.

Beyond the theoretical motivation for such a neutral particle
proposed by Pauli and bolstered by Fermi, unquestionable evi-
dence for its existence had been provided by Reines and Cowan.
And so the neutrino was born.

1.2 the family problem: lepton flavor

With the discovery of the muon [39, 40], a first problem ap-
peared with its insertion in the Fermi theory of charged current
weak interactions. Indeed, the muon was so unexpected that, re-
garding its discovery, Isidor Isaac Rabi famously quipped «Who
ordered that? ». A decade before the V-A theory [41], Bruno Pon-
tecorvo discussed [42] the “universality” of Weak Interactions for
nuclear β-decay processes together with those with muons and
neutrinos. He introduced muon capture by nuclei and compared
it with the probability for electron capture.

The idea of µ− e universality was also followed by Giampi-
etro Puppi [43] with the famous “Puppi triangle” in Figure 1.4,
involving β decay, muon decay and muon capture. However, a
question remained: was it the same neutrino in all vertices?

The idea of different neutrinos νµ 6= νe appeared published
in 1959 by Pontecorvo [44] and, ever more important, in the

p̄n ν̄µ

ν̄e

µ capture

β
de

ca
y µ

decay

Figure 1.4: Puppi and his triangle, relating the processes on its sides.
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π+
µ+

ν

e? µ?

Figure 1.5: Pontecorvo and a diagram of the process he proposed to
test whether νe = νµ.

proposal he made for the generation of a neutrino beam from
pion decay [45], as schematically represented in Figure 1.5.

In 1962, there was already a hint towards the different nature
of the electron and muon neutrinos, coming from the µ → eγ

decay. An estimation of its branching ratio in the V-A theory with
the W boson had yielded, if νµ = νe, the value [46] Rth ∼ 10−4,
whereas a limit Rexp < 10−8 was found [47].

The Brookhaven experiment [48] was the first one involving
high-energy neutrinos from pion decay. Using about 1014 muon
antineutrinos from π−, the experiment detected 29 events of the
expected

ν̄µ + p→ µ+ + n (1.7)

and no events of the forbidden

ν̄µ + p→ e+ + n . (1.8)

The demonstration that νµ 6= νe was a great event in physics and
thus two lepton families were completed:

1. (νe, e) 2. (νµ, µ)

After the discovery of the third charged lepton τ [49], the
existence of (at least) a third neutrino was to be expected. The
third neutrino ντ was directly observed in 2000 in an experiment
at Fermilab performed by the DONUT collaboration [50]. Using
the Tevatron beam, a ντ beam was mainly produced from τ decay,
with the τ produced in the leptonic decay of a DS meson. These
ντ were detected by means of the reaction

ντ + n→ p + τ− , (1.9)
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Figure 1.6: The Big Bang Nucleosynthesis (BBN) prediction for the pri-
mordial helium mass fraction Y and the deuterium abun-
dance D/H, for Nν = 2, 3, 4. The width of the bands
represents the theoretical uncertainty, largely due to that
of the neutron lifetime τn in the Figure. The black square
shows the measured values. [52]

by identifying the τ lepton as the only lepton created in the
interaction vertex. Even before this direct observation of the ντ,
the number of neutrino species has been fixed following different
methods.

A first method was the determination of the primordial helium
abundance in the Universe. Since nucleosynthesis is affected by
the energy density of all relativistic particles, it depends on the
number of neutrino species, changing the helium abundance YP

if the number of neutrinos differs from three by ∆Nν as [51]

∆YP = 0.056YP ∆Nν . (1.10)

As shown in Figure 1.6, these measurements of primordial abun-
dances clearly show the existence of three neutrino species.

Two complementary methods led to a highlighted LEP e+e−

Collider legacy at CERN [53]. The invisible width of the Z boson
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Figure 1.7: Measurements of the hadron production cross-section
around the Z resonance. The curves indicate the predicted
cross-section for two, three and four neutrino species with
SM couplings and negligible mass. [53]

Γinv = NνΓν is not measurable directly, but the visible cross
section depends on the number of neutrino species Nν as

σ =
4πs
M2

Z
Γee

ΓZ − NνΓν

(s−M2
Z)

2 + Γ2
Z M2

Z
, (1.11)

as shown in Figure 1.7, from which LEP could determine the
existence of three (and only three) light active neutrinos.

An alternative at LEP was the measurement of the cross sec-
tion for e+e− → γZ → γνν̄, detecting the photon plus nothing
else. This cross section in Figure 1.8, normalized to γµµ, is a
known function of Nν, and consistently reproduced the previous
answers: there are three light active neutrinos.

1.3 neutrino mass: ups and downs

Parity violation in processes involving neutrinos, like β decay,
is automatic if neutrinos have a definite helicity. This fact led
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e−

e+

Z

γ µ−, να

µ+, ν̄α

Figure 1.8: Tree-level Feynman diagram for the Z → γ + MET decay
at LEP, probing the number of neutrino species να, together
with the normalization channel to muons.

to the advent of the two-component theory —introduced by
Hermann Weyl in 1929 [54]— if neutrinos are exactly massless,
for which the Dirac equation

iγµ∂µνL(x)−mν νR(x) = 0 (1.12)

decouples. Non-conservation of parity was first observed in 1957

with Wu’s experiment [55], measuring an asymmetry in the elec-
tron angular distribution emitted from the β decay of polarized

Co60
27 . In 1958, the celebrated Goldhaber experiment [56] proved
that the neutrino helicity is -1, using conservation of angular
momentum in a selected electron capture transition in Eu152m1

63
leading to an excited nuclear state of Sm152

62 —the measurement
of the circular polarization of the de-exciting γ ray fixed the
neutrino helicity.

Even though this picture was consistent for massless neutrinos
with definite helicity, the universal V-A theory of charged-current
weak interactions was also formulated in 1958 [41], extending
Fermi’s theory of β decay into a high-energy picture where
left-handed chiral fields enter for all fermions, either neutrinos
or not. Thus there is no rationale why neutrinos should be
special and massless. Still, contrary to other fermions, neutrinos
have no electric charge, so they present unique possibilities in
the explanation of the origin of their masses. Whether these
possibilities can be realized depends on the existence of a lepton
charge that distinguishes ν and ν̄. This is the most important
open question even today!

Already in 1946 (!!), Pontecorvo asked the question whether
antineutrinos produced from β decay in reactors could produce
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electrons [57]. The negative result in 1959 of the Davis experi-
ment [58] for

ν̄ + Cl37
17 → e− + Ar37

18 (1.13)

suggested the existence of definite lepton numbers with values
Le− = Lν = 1 and Le+ = Lν̄ = −1. Such a flavor charge would
imply that neutrinos are not neutral particles, and so their mass
could only be described with the same theories as all other
fermions. The genius of Pontecorvo was the first to realize that
this conclusion was referring to interacting neutrinos, and that
there was still a possibility for neutrinos to acquire a Majorana
mass.

The theory of Majorana particles had been introduced in 1937

by Ettore Majorana [59], who noticed that there are solutions of
the Dirac equation for neutral particles with only two degrees of
freedom: « the meaning of the Dirac equations is somewhat modi-
fied and there is no longer any reason to speak of negative-energy
states nor to assume, for any other types of particles, especially
neutral ones, the existence of antiparticles, corresponding to the
“holes” of negative energy ».

Forbidden for the other elementary fermions due to exact elec-
tric charge conservation, a Majorana mass for neutrinos is a priori
allowed if the mass terms violate global lepton number by two
units. In this case, the states of neutrinos with definite Majorana
mass would be a linear superposition of weak interacting neutri-
nos with opposite lepton charge. Global lepton number would
then be undefined for neutrinos with definite Majorana mass.
Even more: one can have massive neutrinos with the active (left-
handed) chiral component νL only and the sterile (right-handed)
component νR is not needed. Contrary to Dirac fermions, Majo-
rana fermions have only two degrees of freedom, the neutrino of
left-handed chirality and its conjugate νc

L. The states of definite
mass and helicity, which are compatible observables, are the
left-handed with a relative m/E component of the conjugate, and
its orthogonal.

It is astonishing that the early ideas on neutrino mixing came
through these reasonings. In 1957, Pontecorvo writes [5]: «If the
theory of two-component neutrinos were not valid, and if the
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conservation law for “neutrino charge” took not place, neutrino-
antineutrino transitions would be possible». In this statement one
finds the two essential ingredients for oscillations: neutrino mass
and mixing. He calculated [60] the survival probability of active
neutrinos in a model of two Majorana neutrinos, one active, the
other sterile, and suggested that the Cowan-Reines experiment
should be repeated as function of the baseline for the detector.
This kind of measurement in reactors was only performed for
the first time in 2003 in the KAMLAND experiment [61].

In 1962, in the context of the Nagoya model of Baryons as
bound states of neutrinos and “a new sort of matter” vector
boson, Ziro Maki, Masami Nakagawa and Shoichi Sakata [6]
introduced a mixing between two neutrinos to form the “true
neutrinos” in these baryons. The objective was the explanation
of the smallness of the leptonic decay rate of the hyperons, later
explained by the Cabibbo mixing [62]. Although these ideas were
not connected to neutrino oscillation phenomena, the concept of
quantum mixings between neutrino states was there.

In 1967, after the discovery of the muon neutrino, Pontecorvo
discussed [63] the phenomenology of neutrino oscillations in
modern views, including the flavor transitions νe → νµ and the
Majorana transitions νe → (νc

e )L and νµ → (νc
µ)L. Among other

subjects, he applied this study to solar neutrino oscillations. At
that time, Raymond Davis started his famous experiment on the
detection of solar neutrinos [64]. They were detected via the
observation of the reaction

νe + Cl37
17 → e− + Ar37

18 . (1.14)

The results, measuring a νe flux significantly smaller than ex-
pected from solar models, created the solar neutrino problem.

The other grand historical problem in the neutrino field, the
atmospheric neutrino problem, appeared in 1988 with the measure-
ment of an anomalously small νµ flux at Kamiokande [65]. The
understood origin of atmospheric neutrinos from cosmic rays,

π → µ νµ , µ→ e νe νµ , (1.15)
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predicted a precise ratio of muon to electron neutrinos of 2:1,
whereas the smaller muon neutrino flux observed lead to a ratio
of 1.2.

These two problems were eventually solved with the consol-
idation of the oscillation paradigm. The discovery of neutrino
oscillations in 1998 by Super Kamiokande [1], solving the atmo-
spheric neutrino problem, together the later corroboration with
solar neutrinos by SNO [2], solving the solar neutrino problem,
marked the birth of the modern era in neutrino physics.

Historically, it is spectacular that the fundamental concepts of
e− µ universality, flavor families, neutrino mixing and oscilla-
tions were understood in a period in which the prevailing idea
was that of massless neutrinos. In the centenary of the birth of
Pontecorvo, José Bernabeu [66] concluded that it is fair to name
the neutrino mismatch of flavor states with mass eigenstates as
the PMNS Mixing Matrix.

1.4 pending questions in neutrino
oscillations

The framework of neutrino oscillations is now established, and
many of its parameters have reached the precision era thanks
to the effort of countless experiments [1–4, 12–14, 67–88]. The
standard parametrization of the PMNS matrix in terms of three
mixing angles θ12, θ23, θ13 and a CP phase δ reads

U =

1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13 e−iδ

0 1 0
−s13 eiδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 ,

(1.16)

where cij ≡ cos θij and sij ≡ sin θij.
These Uαk matrix elements describe the mismatch between

the flavor eigenstates |να〉, produced and detected in weak in-
teractions, and the time evolution eigenstates |νk〉 with definite
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mass mk. If (relativistic) neutrinos travel a certain distance L in
vacuum, their state evolves with time as

|να(t)〉 = ∑
k

Uαk e−iHt |νk〉 ≈ e−iEt ∑
k

Uαk e−im2
k t/2E |νk〉 . (1.17)

Therefore, the probability of measuring flavor β after a certain
time t ≈ L is given by

∣∣〈νβ

∣∣να(t)
〉∣∣2 as

Pαβ(t) = δαβ− 4 ∑
j<i

Re Jij
αβ sin2 ∆ij − 2 ∑

j<i
Im Jij

αβ sin 2∆ij , (1.18)

where Jij
αβ ≡ UαiU∗αjU

∗
βiUβj are rephasing-invariant combinations

of the mixing matrix elements, and ∆ij ≡
∆m2

ij L
4E are the oscillation

phases. This expression shows that neutrino oscillation experi-
ments are sensible, besides the elements of the PMNS matrix, to
the differences of squared neutrino masses ∆m2

ij ≡ m2
i −m2

j , but
not to the absolute scale of neutrino masses.

In this parametrization, all the experimental measurements of
neutrino oscillations converge to a standard picture whose key
parameters are [9]

∆m2
21 = 7.55(20)× 10−5 eV2 ,∣∣∆m2

31
∣∣ = 2.50(3)× 10−3 eV2 ,

s2
12 = 3.20(20)× 10−1 ,

s2
23 = 5.51(30)× 10−1 ,

s2
13 = 2.160(83)× 10−2 .

(1.19)

As seen, the small uncertainties in these quantities ensure that
the oscillation paradigm is consistent, with the unitarity of the
PMNS matrix granted up to possible deviations of a few per-
cent. Consistent with these best-fit values, we perform all the
computations in this work using the benchmark configuration

θ12 = 34.5o , θ13 = 8.45o , θ23 = 47.7o ,

∆m2
21 = 7.5× 10−5 eV2 ,

∣∣∆m2
31
∣∣ = 2.5× 10−3 eV2 . (1.20)

Despite the increasing precision in these parameters, some
very crucial neutrino properties are still unknown. Regarding
the oscillation picture, only the absolute value

∣∣∆m2
31

∣∣ has been
measured, but not its sign —unlike ∆m2

21, whose sign is known
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Figure 1.9: Possible neutrino mass orderings, with the mass eigenstates
νk separated by the known atmospheric and solar mass
splittings; the unknown absolute mass scale mmin is also
shown. The colored areas show the flavor fraction |Uαk|2 of
each νk for α = e (red), µ (green), τ (blue). The change in
|Uαk|2 from the bottom to the top of the boxes corresponds
to changing cos δ from 1 to -1.

through the matter effects in the Sun for solar neutrinos. This
sign choice opens the door to two possible mass orderings, the so-
called Normal Hierarchy with m1 < m2 < m3, and the Inverted
Hierarchy with m3 < m1 < m2, as illustrated in Figure 1.9. Fixing
the Hierarchy is one of the main goals of the next-generation
experiments, as is the case of the long-baseline accelerator ex-
periment DUNE [11] or the neutrino telescopes ORCA [89] and
PINGU [90].

Another most important open question is whether there is CP
violation in the lepton sector. Unlike the quark sector, where CP-
violating measurements have been long established [91], there is
still no evidence of CP violation in the lepton sector, as could be
tested in neutrino oscillations. That is a crucial property to be
determined, because the quark sector by itself cannot provide the
CP violation needed to explain the observed matter-antimatter
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asymmetry in the universe, and CP violation in the lepton sector
could compensate this deficit via leptogenesis [15]. Therefore, a
measurement of CP violation in neutrino oscillations can tell us
whether a Beyond the Standard Model mechanism for CP viola-
tion is needed. This is a main goal of next-generation neutrino
oscillation experiments such as T2HK [10] and DUNE [11].

We analyzed the possibility to extract the answer to these
two questions from the measurement of the CP, T and CPT
asymmetries in neutrino oscillation transitions, as presented in
Chapters 2, 3 and 4.

1.5 majorana neutrinos

The experimental evidence of neutrino oscillations is one of the
most important discoveries in particle physics, confirming that
neutrinos are massive particles and that the three left-handed
flavor neutrinos να are mixtures of the neutrinos with definite
masses νk.

Knowing that neutrinos are massive, the most fundamental
open problem is the determination of the nature of neutrinos
with definite mass: are they four-component Dirac particles with
a conserved total lepton number L, distinguishing neutrinos from
antineutrinos, or two-component truly neutral (no electric charge
and no total lepton number) self-conjugate Majorana particles?
The fields required to realize each of these cases are schematically
shown in Figure 1.10.

For Dirac neutrinos, like quarks and charged leptons, their
masses can be generated in the Standard Model of particle
physics by spontaneous breaking of the gauge symmetry with
the Higgs scalar as

L ⊃ ν̄R mD νL , (1.21)

if there were additional right-handed sterile neutrinos. In doing
so, one must be willing to accept Yukawa couplings many orders
of magnitude smaller than those of the other fermions, but this
fact in itself is not forbidden by the gauge principle.
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νL

νc
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νR

νc
L
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CP

νL
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Figure 1.10: Dirac (left) and Majorana (right), with a schematic repre-
sentation of the fields required to write the mass terms in
Eqs. (1.21) and (1.23), as well as the C, P and CP relations
between them. Notice that νc

L(R) is right (left) handed.

The crucial point comes from the fact that, once right-handed
neutrinos are included in the model, the gauge-group invariance
allows Majorana mass terms for them by hand. The mass terms
in the Lagrangian become

L ⊃
[
ν̄c

L ν̄R
][ 0 mD

mD mM

][
νL

νc
R

]
, (1.22)

which give rise to Majorana masses for both mass eigenstates.
The unavoidable conclusion is thus that there is New Physics in
the neutrino sector: either one needs to add a new mechanism
to forbid the gauge-allowed Majorana mass terms for νR, or
neutrinos are the first (and only) fundamental Majorana fields.

A Majorana ∆L = 2 mass term, with the active left-handed
neutrinos only,

L ⊃ ν̄c
L mM νL , (1.23)

leads to definite mass neutrinos with no definite charge, being a
coherent superposition of the chiral left-handed neutrino and its
CP-conjugate chiral right-handed antineutrino.

νM = νL + η νc
L , (1.24)

where η is a phase factor.
Is this superposition observable? Due to the Majorana condi-

tion of neutrinos with definite mass being their own antiparticles,
Majorana neutrinos have additional CP violating phases [92–94]
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beyond the Dirac case, which can be included in the PMNS
mixing matrix adding the diagonal phases

UPMNS 7→ UPMNS ×

1 0 0
0 eiα/2 0
0 0 eiβ/2

 . (1.25)

Neutrino flavor oscillation experiments cannot answer the fun-
damental question of the nature of massive neutrinos, because in
these flavor transitions the total lepton number L is conserved.
Indeed, all oscillation observables are blind to the value of the
Majorana phases in the PMNS matrix —they cancel out from the
rephasing-invariant Jij

αβ in the transition probabilities (1.18).
In order to probe whether neutrinos are Dirac or Majorana

particles, we need to study observables violating the total lepton
number L. The difficulty encountered in these studies is well
illustrated by the so-called “confusion theorem” [95, 96], stating
that in the limit of zero mass there is no difference between Dirac
and Majorana neutrinos. As all known neutrino sources produce
highly relativistic neutrinos (except for the cosmic neutrino back-
ground in the universe), the ∆L = 2 observables induced by the
mass term (1.23) are highly suppressed by powers of m/E.

Two alternative approaches can be taken in order to probe these
observables. The first one is to probe a ∆L = 2 process, such as
the well known neutrinoless double beta decay or the alternative
neutrinoless double electron capture discussed in Chapter 5. We
suggest a second novel method, looking for virtual effects of
non-relativistic neutrino exchange for ∆L = 0 observables when
the mass terms are relevant. This situation appears for the long-
range force between ordinary matter, mediated by two neutrinos,
at distances of the order of the micron, studied in Chapter 6.
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2 D I S E N TA N G L E M E N T
T H E O R E M S

The straightforward observable to directly test whether CP is
broken is a CP-violating asymmetry

ACP
αβ ≡ P(να → νβ)− P(ν̄α → ν̄β) , (2.1)

whose non-vanishing value is a proof of the violation of the
symmetry. In the case of vacuum oscillations, CP-violating con-
tributions are forbidden in the oscillation probabilities of the
flavor-conserving T-invariant channels να→ να, so an appear-
ance experiment with α 6= β is needed. This T-odd and CP-odd
ACP

αβ , which is an odd function of L/E, is a bona fide observable
to test CP in the lepton sector.

The observation of CP violation, however, is very demanding.
In actual experiments, neutrinos travel through the Earth matter
in their path from production to detection. Due to the fact that
matter is CP asymmetric —composed of protons, neutrons and
electrons, but no antiparticles— this background induces extra
CP-violating contributions [16, 17] in the oscillation probabilities.

Even though this fact gives the impression that a CP asym-
metry is no longer a trustworthy observable to test CP in the
lepton sector, we point out that these two sources of CP viola-
tion come from different principles: the genuine one, present in
vacuum oscillations, behaves as a T-violating and CPT-invariant
effect, whereas matter effects are CPT violating and T invariant
in terrestrial experiments. In this Chapter, we will exploit these
different origins to separate their effects in the observable CP
asymmetry ACP

αβ .

41
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2.1 cp asymmetry disentanglement
theorem

Neutrino oscillations in matter are described through the effec-
tive Hamiltonian in the flavor basis [16, 97–101]

H =
1

2E

U

m2
1 0 0

0 m2
2 0

0 0 m2
3

U† +

 a 0 0
0 0 0
0 0 0

 =
1

2E
ŨM̃2Ũ† ,

(2.2)

where the first term describes neutrino oscillations in vacuum,
leading to the transition probabilities in Eq. (1.18), and the second
one accounts for matter effects. The a parameter is given by
a = 2EV, with V the interaction potential with matter and E
the relativistic neutrino energy. The reason why matter effects
only enter the Hee matrix element is that the only non-diagonal
neutrino-matter interaction is Vee = ±

√
2GF Ne, generated by

charged current νee coherent forward scattering, where the +(−)
sign is for (anti)neutrinos, GF is the Fermi constant and Ne is the
electron fraction density.

For antineutrinos, U → U∗, originating a genuine CP violation
effect through the CP phase δ in the mixing matrix (1.16), as well
as a→ −a, originating matter-induced CP violation. All neutrino
masses (M̃2) and mixings (Ũ) in matter, i.e. eigenvalues and
eigenstates of H, can be calculated in terms of the parameters in
the vacuum Hamiltonian (M2, U) and a, as studied in Chapter 3.

For any number of mass eigenstates, the exact Hamiltonian
leads to the flavor oscillation probabilities Pαβ for any να → νβ

transition

Pαβ = δαβ − 4 ∑
j<i

Re J̃ij
αβ sin2 ∆̃ij − 2 ∑

j<i
Im J̃ij

αβ sin 2∆̃ij , (2.3)

which are formally equivalent to the oscillation probabilities in
Eq. (1.18) after replacing for the effective values in matter of the
rephasing-invariant mixings J̃ij

αβ ≡ ŨαiŨ∗αjŨ
∗
βiŨβj, and the oscilla-

tion phases ∆̃ij ≡
∆m̃2

ij L
4E . Notice that both J̃ij

αβ and ∆m̃2
ij are energy
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dependent in matter via the matter parameter a. Antineutrino
oscillations are given in general by the same expression with
different masses (∆ ˜̄m2

ij) and mixings ( ˜̄Jij
αβ), so one can explicitly

write the CP asymmetry ACP
αβ defined in Eq. (2.1) as

ACP
αβ =− 4 ∑

j<i

[
Re J̃ij

αβ sin2 ∆̃ij − Re ˜̄Jij
αβ sin2 ˜̄∆ij

]
− 2 ∑

j<i

[
Im J̃ij

αβ sin 2∆̃ij − Im ˜̄Jij
αβ sin 2 ˜̄∆ij

]
. (2.4)

With the objective to check which terms are either genuine
(CP&T-violating) or matter induced (CP&CPT-violating), we first
explore the CPT- and T-invariant limits.

If CPT holds, as assumed in vacuum, necessarily ∆m̄2
ij = ∆m2

ij

and J̄ij
αβ = (Jij

αβ)
∗. The two terms in the first line of Eq. (2.4) would

thus cancel each other out, which shows that all L-even terms in
ACP

αβ are CPT violating.
In the absence of genuine CP violation, on the other hand, T

invariance leads to real J̃ij
αβ and ˜̄Jij

αβ, so all imaginary parts vanish
and the transition probabilities are L-even functions. This result
shows that L-odd terms in both Pαβ and ACP

αβ are T violating.
From the different character of each of these terms under the

discrete T and CPT symmetries, one derives the Asymmetry
Disentanglement Theorem by separating the observable CP
asymmetry in any flavor transition into L-even (matter-induced
CP&CPT violating) and L-odd (genuine CP&T violating) func-
tions, ACP

αβ = ACP;T
αβ + ACP;CPT

αβ , given by

ACP;T
αβ = −2 ∑

j<i

[
Im J̃ij

αβ sin 2∆̃ij − Im ˜̄Jij
αβ sin 2 ˜̄∆ij

]
, (2.5a)

ACP;CPT
αβ = −4 ∑

j<i

[
Re J̃ij

αβ sin2 ∆̃ij − Re ˜̄Jij
αβ sin2 ˜̄∆ij

]
. (2.5b)

Let us emphasize that not only ACP;CPT
αβ is CPT violating and

ACP;T
αβ is T violating, we also find that ACP;CPT

αβ is T invariant and

ACP;T
αβ is CPT invariant. In this sense the two terms are truly
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disentangled. To prove these properties, we analyze the effects
of both CPT and T transformations,

CPT :

∆m̃2
ij ↔ ∆ ˜̄m2

ij

J̃ij
αβ ↔ ( ˜̄Jij

αβ)
∗ , T :

 J̃ij
αβ → ( J̃ij

αβ)
∗

˜̄Jij
αβ → ( ˜̄Jij

αβ)
∗

. (2.6)

Under CPT, neutrino and antineutrino terms in ACP;CPT
αβ are

interchanged, so ACP;CPT
αβ changes its sign. This sign in ACP;T

αβ is

compensated by the change of sign in both Im J̃ij
αβ and Im ˜̄Jij

αβ,

leaving ACP;T
αβ invariant. Under T, on the other hand, the only

change in the asymmetries is a change of sign in all imaginary
parts, changing the sign of ACP;T

αβ and leaving ACP;CPT
αβ invariant.

These properties lead cleanly to the disentanglement of the
CP asymmetry ACP

αβ = ACP;T
αβ + ACP;CPT

αβ , where ACP;T
αβ is CPT

invariant and T-odd in L, whereas ACP;CPT
αβ is T invariant (even

in L) and CPT odd. These complementary behaviors of the
two components of the experimental CP asymmetry identify the
component ACP;T

αβ as CPT invariant and thus a fully genuine CPV

observable, whereas the component AT;CPT
αβ is T invariant and

thus a fully fake matter-induced CPV observable.

2.2 definite parities in the standard
parameters

The disentanglement (2.5) provides a conceptually clean crite-
rion to separate genuine from matter-induced terms in the CP
asymmetry. However, the measurement of ACP

αβ as a function of
the baseline is not always feasible, due to the large requirements
of a neutrino detector. In order to connect with actual experi-
ments, we analyze the consequences of the disentanglement in
terms of the parameters in the Hamiltonian (2.2).

The only difference between neutrinos and antineutrinos in
the Hamiltonian is the sign change in a and δ, that corresponds
to a CP transformation. As in vacuum, the only effect of the anti-
unitary T transformation in the matter Hamiltonian comes from
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Table 2.1: Definite parities of the mixing parameters under all discrete
symmetries: CP (diagonals), T (rows) and CPT (columns).

CP-even

CP-oddcos δ a, a cos δ

sin δ a sin δ

T-even

T-odd

CPT-even CPT-odd

changing eiδ 7→ e−iδ, all other parameters remaining invariant.
The effects of CPT are thus only changing the sign of a. This
behavior of the key parameters a, δ under the three discrete
symmetries is summarized in Table 2.1.

In the disentangled components (2.5) with definite L parities,
one expects the definite parities under T and CPT to translate
into definite parities in the CP phase δ and the matter parameter
a, respectively. In order to check whether this happens, we
study the functional dependence of the components on these two
parameters.

The CPT-invariant T-odd component (2.5a) depends on the
mixings only via their imaginary parts, so the functional form of
this ν− ν̄ difference must be f (a) sin δ− f (−a) sin(−δ). Indeed,
this expression shows that ACP;T

αβ must be an odd function in
sin δ, consistent with its T-odd character, and an even function
in a. As expected, this even parity in a is consistent with its
non-vanishing value in vacuum, whereas the odd parity in sin δ

forces this component to vanish in the absence of T violation, i.e.
for a real mixing matrix, even in matter.

The CPT-odd T-invariant component (2.5b), on the other hand,
depends on the mixings only via their real parts, so its func-
tional form must be f (a, cos δ) − f (−a, cos(−δ)). Indeed, this
expression shows that ACP;CPT

αβ must be an even function in δ,
consistent with its T-invariant character, and an odd function in a.
Since CPT violation only comes into the Hamiltonian (2.2) from
matter effects, this odd parity in a ensures that the CPT-violating
component vanishes in the vacuum limit a→ 0, as it must. On
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ACP;CPT
µe ACP;T

µe

Figure 2.1: CPT-odd (left) and T-odd (right) components of the CP
asymmetry ACP

µe at L = 1300 km and E = 0.75 GeV, as
function of the matter parameter a (in units of ∆m2

21) and
the CP phase δ.

the contrary, nothing can be imposed in the T-invariant limit,
since an even function of δ can have any value even if δ is zero
—one thus expects a non-vanishing CP asymmetry in matter even
in T-invariant disappearing channels ACP

αα , unlike the vacuum
case.

We illustrate in Figure 2.1 the power and expected behavior
of the Disentanglement Theorem by a separate representation of
ACP;CPT

µe and ACP;T
µe as function of the matter potential a and the

CP phase δ. The chosen (E, L) point gives comparable values of
the two components, showing their appropriate parities under
these two parameters.

2.3 full disentanglement of all
asymmetries

In the previous Sections of this Chapter we analyzed the disen-
tanglement of the CP asymmetry into two separate components,
one of them also CPT violating and T invariant, the other one T vi-
olating and CPT invariant. The same reasoning can be applied to
both T and CPT asymmetries, separating them into components
with definite behavior under the other two discrete symmetries.
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Let us focus first on the T-violating asymmetries. According to
the definition of the rephasing-invariant mixings below Eq. (2.3),
the identity J̃ij

βα = ( J̃ij
αβ)
∗ holds, so the α ↔ β exchange in the T

asymmetry leads to

AT
αβ ≡ Pαβ − Pβα = −4 ∑

j<i
Im J̃ij

αβ sin 2∆̃ij , (2.7)

which is an odd function of the baseline L, as imposed by its
T-odd character. Notice that, even though matter may affect the
T asymmetry, it cannot generate a non-vanishing T asymmetry
in the absence of genuine T violation —the real mixing matrix
would ensure a vanishing AT

αβ. Therefore, contrary to the CP
asymmetry case, a non-vanishing T asymmetry in matter is a
direct proof of the existence of genuine CP violation in the lepton
sector. Strangely enough, this reasoning does not prove that CP
violation has actually been seen in the T asymmetry, unless one
is able to separate a genuine T&CP-odd component.

To check whether the asymmetry (2.7) violates CP or CPT, as
well as T, one should compare it with its ν̄ equivalent,

ĀT
αβ ≡ P̄αβ − P̄βα = −4 ∑

j<i
Im ˜̄Jij

αβ sin 2 ˜̄∆ij , (2.8)

and separately check their behavior in the CP- and CPT-invariant
limits. Imposing CP: {∆m̃2

ij = ∆ ˜̄m2
ij, J̃ij

αβ = ˜̄Jij
αβ} leads to the iden-

tity ĀT
αβ = AT

αβ. Conversely, CPT: {∆m̃2
ij = ∆ ˜̄m2

ij, J̃ij
αβ = ( ˜̄Jij

αβ)
∗}

imposes ĀT
αβ = −AT

αβ. Therefore, we expect from symmetry
principles that all terms in AT

αβ will also appear in ĀT
αβ, either

with the same sign —and so conserving CP and violating CPT—
or with opposite sign —violating CP, and CPT invariant.

These symmetry principles imply that a consistent separa-
tion of the T asymmetry into two disentangled components,
AT

αβ = AT;CP
αβ + AT;CPT

αβ , needs the decomposition of the antineu-
trino asymmetry, in terms of the same components as AT

αβ, into

ĀT
αβ = −AT;CP

αβ + AT;CPT
αβ . These two disentangled components

with definite parities under all CP, T and CPT can thus be under-
stood as a symmetry-inspired basis of functions to describe the
experimental T asymmetries.
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Explicit expressions for these two components can be obtained
from linear combinations of Eqs. (2.7, 2.8) as

AT;CP
αβ = −2 ∑

j<i

[
Im J̃ij

αβ sin 2∆̃ij − Im ˜̄Jij
αβ sin 2 ˜̄∆ij

]
, (2.9a)

AT;CPT
αβ = −2 ∑

j<i

[
Im J̃ij

αβ sin 2∆̃ij + Im ˜̄Jij
αβ sin 2 ˜̄∆ij

]
. (2.9b)

Notice that the expression (2.9a) for the CP-odd CPT-invariant
component of the T asymmetry is the same as the genuine T-odd
CPT-invariant component of the CP asymmetry in Eq. (2.5a). This
fact can be understood from the asymmetry sum rule1

ACPT
αβ = ACP

αβ + ĀT
αβ . (2.10)

In the CPT-invariant limit, this relation reduces to AT;CP
αβ = ACP;T

αβ .
The fact that these two components are always CPT invariant
ensures that this identity is valid even if there is CPT violation,
thus explaining the obtained result.

On the other hand, a new component AT;CPT
αβ (2.9b) appears

in the T asymmetry not seen in the CP asymmetry. Contrary
to the matter-induced ACP;CPT

αβ (2.5b), a non-vanishing value of
this component requires the combined effect of both genuine
CP violation and the matter-induced CPT violation. Hence it is
clear that, in general, a non-vanishing T asymmetry in matter
will present contributions from this CP-even component.

One can further exploit the sum rule in Eq. (2.10) to constraint
a consistent separation of the CPT asymmetry, following the
same guiding principles as with the CP and T asymmetries,
into T-odd CP-invariant and CP-odd T-invariant components,
ACPT

αβ ≡ Pαβ − P̄βα = ACPT;CP
αβ + ACPT;T

αβ . The expression of the
sum rule fully expanded into components,

ACPT;CP
αβ + ACPT;T

αβ = ACP;CPT
αβ + ACP;T

αβ + AT;CPT
αβ − AT;CP

αβ , (2.11)

1 This identity is trivially proved from the definition of the three asymmetries as
differences of oscillation probabilities, Pαβ − P̄βα = Pαβ − P̄αβ + P̄αβ − P̄βα.
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implies that, due to the separate invariance under the three
discrete symmetries, the following three equalities must be inde-
pendently satisfied:

the CP-invariant ACPT;T
αβ = AT;CPT

αβ , (2.12a)

the T-invariant ACPT;CP
αβ = ACP;CPT

αβ , (2.12b)

the CPT-invariant ACP;T
αβ = AT;CP

αβ . (2.12c)

Therefore, the decomposition of all asymmetries,

ACP
αβ = ACP;T

αβ + ACP;CPT
αβ , (2.13a)

AT
αβ = AT;CPT

αβ + AT;CP
αβ , ĀT

αβ = AT;CPT
αβ − AT;CP

αβ , (2.13b)

ACPT
αβ = ACPT;T

αβ + ACPT;CP
αβ , ĀCPT

αβ = ACPT;T
αβ − ACPT;CP

αβ , (2.13c)

is written in a basis of only three (per flavor channel) indepen-
dent components, since the two superindices of all components
commute. These indices state under which two symmetries the
component is odd, being invariant under the third one.

Their peculiar behavior under the CP, T and CPT discrete
symmetries shows that these three independent components cor-
respond to:

• ACP;T
αβ (2.5a) the CPT-invariant CP&T-odd genuine compo-

nent of the CP asymmetry

• ACP;CPT
αβ (2.5b) the T-invariant CP&CPT-odd matter-induced

component of the CP asymmetry

• AT;CPT
αβ (2.9b) the CP-invariant T&CPT-odd interference com-

ponent, induced by matter in presence of gen-
uine CP violation, breaking the vacuum identity
ĀT

αβ = −AT
αβ.

Notice that the interchange of flavor indices corresponds to a
T transformation, so all T-odd components will be odd under
α↔ β, whereas T-invariant components will remain unchanged.

These components are a theoretically clean tool to study effects
of the violation of the discrete symmetries in neutrino oscillations.
We will exploit their properties in the next two Chapters in order
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Table 2.2: Definite parities of the three independent components under
the three CP, T and CPT discrete symmetries. These parities
are associated to definite parities of the functions under the
parameters in brackets.

CP T (L, sin δ) CPT (a)

ACP;T
αβ odd odd even

ACP;CPT
αβ odd even odd

AT;CPT
αβ even odd odd

to design clear, direct tests of the violation of CP in the lepton
sector. For further reference, all the properties discussed in this
Section are summarized in Table 2.2



3 M E T H O D S TO E X P LO R E T H E
T H E O R E M S I M P L I C AT I O N S

In the picture described by the Hamiltonian (2.2), where no
BSM effects are included in the vacuum limit, the mixing matrix
Ũ is unitary and the only sources of CP violation are the CPT-
even genuine phase δ, and the T-even matter parameter a. In the
vacuum limit a→ 0, the two CPT-odd components defined in the
previous Chapter vanish, as well as the whole CPT asymmetries
ACPT

αβ , and the other two experimental asymmetries are fully

genuine, ACP
αβ = AT

αβ = ACP;T
αβ .

Three generations are needed so that there is room for a CP
violating phase in the mixing matrix: the most general 2× 2
unitary matrix is described by a single angle, whereas a 3× 3
unitary matrix —such as the PMNS matrix in Eq. (1.16)— requires
3 angles and 1 phase. This effective erasing of all CP-violating
effects in the 2-generation limit implies that the only experimental
regimes where CP violation can be probed are those where all
three generations play a relevant role.

In the case of neutrino oscillations in vacuum, this only hap-
pens at L/E values where the phases associated to ∆m2

21 and
∆m2

31 are both neither negligible nor averaged out. In order to lay
in this region, the experimental relation ∆m2

31 ≈ 33∆m2
21 requires

an L/E so that the phase ∆31 is not too large and the phase ∆21

not too small. At long-baseline accelerator experiments, even
with the phase displacement due to matter effects in the neu-
trino propagation, one finds that energies E ∼ GeV and baselines
L ∼ 103 km provide a convenient setup to observe CP-violating
effects in neutrino oscillations. Therefore, we will focus on the
baselines and energy ranges of the T2HK [10] and DUNE [11]
experiments.

Accelerator experiments favor the νµ → νe transition, and
are also sensitive to its CP counterpart ν̄µ → ν̄e. As discussed
in the previous Chapter, the disentanglement of genuine and

51
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matter-induced CP violation in these channels can be achieved
separating the CP asymmetry ACP

µe into its T-odd CPT-even and
CPT-odd T-even components, ACP;T

µe and ACP;CPT
µe . As a complete

study, we will also analyze the third independent component
AT;CPT

µe , induced by matter effects in the T asymmetry AT
µe. Its

direct observability would require terrestrial sources of electron
neutrinos with equal energies to those for muon neutrino sources,
not accessible at present. However, these AT

µe and ĀT
µe asymme-

tries would be natural for a neutrino factory [102] and they are
ingredients for an analysis using atmospheric neutrinos.

With this objective of testing genuine CP violation in mind, we
develop tools to explore whether, at fixed L through the Earth’s
crust, the energy distributions of the three disentangled compo-
nents present signatures of their separation in the observable
asymmetries.

3.1 first approach: a numerical scan

Starting from the 3× 3 Hamiltonian (2.2) in matter

H =
1

2E

U

m2
1 0 0

0 m2
2 0

0 0 m2
3

U† +

 a 0 0
0 0 0
0 0 0

 =
1

2E
ŨM̃2Ũ†

with the best-fit oscillation parameters in Eq. (1.20),

θ12 = 34.5◦ , θ13 = 8.45◦ , θ23 = 47.7◦ ,

∆m2
21 = 7.5× 10−5 eV2 ,

∣∣∆m2
31
∣∣ = 2.5× 10−3 eV2 ,

computing the neutrino evolution numerically is straightforward.
The eigenvalues of this matrix are the effective neutrino masses
in matter, whereas its eigenstates (whose phase must be chosen
so that lim

a→0
|ν̃i〉 = |νi〉) determine the elements of Ũ. For any

value of δ and a chosen Hierarchy, this diagonalization can be
performed iteratively to compute these quantities as a function
of the matter potential, as shown in Figure 3.1. Once this process
is done, deriving the disentangled components is a matter of
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m̃2
3

m̃2
2

m̃2
1

Ũe3

Ũe2

Ũe1

Figure 3.1: Effective masses (left) and mixings Ũei (right) as a function
of the matter parameter a in units of ∆m2

21, as an example
of the results provided by the numerical diagonalization
of the Hamiltonian (2.2). Normal Hierarchy and δ = 0
assumed, as well as the best-fit values in Eq.(1.20).

computing them from their definitions in the previous Chapter’s
Eqs. (2.5) and (2.9).

Figure 3.2 gives the predictions for the energy distributions of
ACP;T

µe , ACP;CPT
µe and AT;CPT

µe at an intermediate baseline L = 295 km,
for both Normal and Inverted Hierarchies. In order to com-
pare the two Hierarchies for the same physical configuration
of masses, we always use the NH best-fit values in Eq. (1.20),
and compute the Inverted Hierarchy case with the condition
∆m2

31|IH = −∆m2
32|NH, keeping the same values for all other

quantities. In this way, one is consistent in isolating the ob-
servable effects due to the change in the ordering of the same
neutrino mass states.

It is worth to note the lack of oscillating structure in the neu-
trino energy for all three components, and hence for the asym-
metries. The magnitude of the CPT-odd components ACP;CPT

µe

and AT;CPT
µe is small, as expected, and slightly dependent on

the CP phase δ through the small contributions of order ∆m2
21,

more visible at low energies —the first component as a genuine
CP-conserving cos δ, the second one as a genuine CP-odd sin δ.
When these results for a Normal Hierarchy are re-calculated for
an Inverted Hierarchy, the net effect is essentially a change of
sign in the two components.
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IHACP;T
µe

NH

ACP;CPT
µe

AT;CPT
µe

Figure 3.2: Energy distribution of the genuine ACP;T
µe (top), matter-

induced ACP;CPT
µe (middle) and interference AT;CPT

µe (bottom)
components for the T2HK baseline L = 295 km. Normal
(Inverted) Hierarchy in the left (right). The bands show all
possible values of each term changing δ in (0, 2π).

Unlike the matter-induced component of the CP asymmetry,
the magnitude of ACP;T

µe is proportional to sin δ without any de-
generacy when sin δ is varied in the entire interval from -1 to 1.
In this genuine term of ACP

µe , in addition, the Hierarchy in the
neutrino mass spectrum plays no role: it remains invariant when
the sign of the largest mass splitting is changed.

We thus conclude that a separate determination of the CP
asymmetry components would (i) fix the Hierarchy, via the sign
of the matter-induced component ACP;CPT

µe , and (ii) fix sin δ from
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the magnitude and sign of the genuine component ACP;T
µe . Due

to the fact that both genuine CP violation and Hierarchy effects
are present in the interfere component AT;CPT

µe , the value of one
of them can only be extracted once the other one is known.

For any flavor channel α→ β, this beautiful different behavior
of the genuine CPT-invariant component with respect to the two
CPT-odd components for the discrimination of the Hierarchy is
well understood to leading order in ∆m2

21: zeroth order for the
T-even ACP;CPT

αβ , independent of δ, and first order for the T-odd

ACP;T
αβ and AT;CPT

αβ . The mass spectrum in matter changes from
neutrinos to antineutrinos as

∆m̃2
21 ↔ ∆ ˜̄m2

21 , ∆m̃2
31 ↔ −∆ ˜̄m2

32 , ∆m̃2
32 ↔ −∆ ˜̄m2

31 . (3.1)

Under this exchange of neutrinos by antineutrinos, the imaginary
part of J̃ij

αβ, as that of Jij
αβ, changes sign whereas the real parts do

not. As the CP asymmetries (2.1) are a difference between neu-
trino and antineutrino oscillation probabilities, we discover that
ACP;CPT

αβ is changing its sign, whereas the sign of ACP;T
αβ remains

invariant under the change of Hierarchy, as seen in our numerical
results. The interference component AT;CPT

αβ , on the other hand,
is a sum of imaginary parts, so it changes its sign as the other
CPT-odd component. The modifications to this argument due to
a non-vanishing ∆m2

21 will be analyzed in detail in Section 4.2.
The increase in the baseline from L = 295 km to L = 1300 km

has a very important implication: the appearance of oscillations
in the low and medium neutrino energy regions of the distribu-
tions. There is a different pattern for the two components of the
experimental CP asymmetry, with the zeros at different values
and ACP;CPT

µe changing its sign around the zeros, whereas ACP;T
µe

does not. This contrast is very well apparent in the results we
show in Figure 3.3, where one also sees that the interference
component AT;CPT

µe presents the same oscillation pattern as the
matter-induced ACP;CPT

µe .
Besides this additional effect of having in the different energy

distributions a signature to separate the two components of the
CP asymmetry, all the other properties discussed above remain
the same, independent of the baseline. These are the slight
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IHACP;T
µe

NH

ACP;T
µe

ACP;T
µe

Figure 3.3: Energy distribution of the genuine ACP;T
µe (top), matter-

induced ACP;CPT
µe (middle) and interference AT;CPT

µe (bottom)
components for the DUNE baseline L = 1300 km. Normal
(Inverted) Hierarchy in the left (right). The bands show all
possible values of each term changing δ in (0, 2π).

dependence of ACP;CPT
µe and AT;CPT

µe on δ due to effects of ∆m2
21

at low energies, and the Hierarchy discrimination with the sign
of ACP;CPT

µe , as well as the proportionality of ACP;T
µe with sin δ

independent of the neutrino Hierarchy.
Our scan of the different behavior in the energy distribution

at L = 1300 km of the three disentangled components points
towards a magic energy interval around E ∼ 0.9 GeV with a
zero for ACP;CPT

µe and AT;CPT
µe , and a relative maximum for

∣∣∣ACP;T
µe

∣∣∣.
With our numerical simulation, we checked that this energy value
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NH
IH

3σ 2σ 1σ

Figure 3.4: Energy value at which the matter-induced component
ACP;CPT

µe of the CP asymmetry vanishes, as a function of the
measured

∣∣∆m2
31

∣∣ in its 3σ range. Both Normal (black) and
inverted (orange) Hierarchies , and the difference in EMP
between them is shown in the lower panel.

changes linearly with the vacuum
∣∣∆m2

31

∣∣ and is blind to all other
fit parameters, as well as nearly Hierarchy independent. These
properties are shown in Figure 3.4, from which it is clear that
Hierarchy effects in this energy value are below 1%.

This remarkable configuration is well seen in the results pre-
sented in Figure 3.5, with the three bands for ACP;CPT

µe (green),
AT;CPT

µe (red) and ACP;T
µe (blue) superposed. The zero in the two

CPT-odd components is independent of δ, and both ACP;CPT
µe and

AT;CPT
µe change sign around this first-order zero, whereas ACP;T

µe
has a maximal value proportional to sin δ. For a measurement of
the CP asymmetry in future accelerators, this behavior ensures
that, for a bin width up to the feasible [103] 0.15− 0.20 GeV, the
mean value of ACP;CPT

µe is below 10%
∣∣∣ACP;T

µe

∣∣∣
max

, whereas ACP;T
µe is

above 95% of its peak value, as shown in Figure 3.6
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NH
CP;CPT

T;CPT

CP;T

IH

CP;CPT

T;CPT

CP;T

Figure 3.5: Zooming Figure 3.3 at low E, superposing the CPT-odd
(green/solid) and T-odd (blue/dashed) components of the
CP asymmetry ACP

µe , together with the CPT-odd compo-
nent (red/dot-dashed) of the T asymmetry AT

µe. Normal
(Inverted) Hierarchy in the left (right). The bands corre-
spond to all possible values changing δ in (0, 2π); the
upper/lower lines for the T-even (T-odd) components cor-
respond to cos δ(sin δ) = ±1.

NH

CP;CPT

CP;T
IH

CP;CPT

CP;T

Figure 3.6: Average value of the CPT-odd (green/solid) and T-odd
(blue/dashed) components of ACP

µe , at DUNE L = 1300 km,
in an energy bin width ∆Ebin centered on the magic en-
ergy 0.9 GeV. Normal (Inverted) Hierarchy in the left (right)
panel. The bands correspond to all possible values chang-
ing δ in (0, 2π); the upper/lower lines for ACP;CPT

µe (ACP;T
µe )

correspond to cos δ(sin δ) = −1, 1.
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Since this (E, L) ∼ (0.9 GeV, 1300 km) point is a promising
configuration to genuinely test CP in the lepton sector, we focus
in the remaining of this Chapter on obtaining precise-enough
analytical expressions able to help understand its existence and
dependence on the oscillation parameters. We aim to determine
its precise dependence on ∆m2

31, as well as explain why maximal
genuine and vanishing matter-induced happen simultaneously
at those (E, L) values and whether other configurations like this
one might exist. The tool we need in order to proceed is thus
a set of simple analytical expressions that provide insight into
the relevant physical mechanisms. We will check the accuracy
of these expressions comparing them with the numerical exact
results.

3.2 analytic perturbation expansions

To understand the behavior of the three disentangled compo-
nents ACP;CPT

µe , ACP;T
µe and AT;CPT

µe in Eqs. (2.5) and (2.9) required by
the CP, T and CPT symmetries, as proved in the previous Chapter,
we proceed to their analytic study for neutrino oscillations in
matter of constant density. Notice that the formal description
of the system is equivalent to neutrino oscillations in vacuum,
if one parametrizes matter effects as a redefinition of neutrino
masses and mixings as in the Hamiltonian (2.2). However, this
redefinition is strongly dependent on the neutrino energy, so it
does not provide a clear insight into the intrinsic properties of
the system. A useful description should write all observables
in matter, relevant to our two components of the experimentally
accessible CP asymmetry, as well as the interference component
of the T asymmetry, as functions of the vacuum parameters and
the matter potential a. A similar methodology is being applied
to calculations of the full CPT [104] and T [105] asymmetries.

The search of these formulae unavoidably finds the same issue:
an exact description of the matter effects in neutrino oscilla-
tions leads to cumbersome expressions which do not provide a
clear understanding [106]. The way to simplify the results is to
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treat perturbatively the small parameters of the system, namely
∆m2

21 �
∣∣∆m2

31

∣∣ and |Ue3|2 � 1. The most important drawback
of this procedure is that, in perturbing in ∆m2

21, the implicit re-
lation ∆m2

21 � |a| is also assumed, so one should not expect to
reproduce the right vacuum limit a → 0 for all matter ingredi-
ents. Even so, this perturbation theory leads to compact and
percent-level precise expressions for neutrino oscillation proba-
bilities written in terms of vacuum parameters only [107], as well
as more precise relations mapping the mixings in matter to the
quantities in vacuum [108, 109].

We develop a new perturbative expansion in ∆m2
21, |a| �

∣∣∆m2
31

∣∣
without assumptions between ∆m2

21 and a, similar to Ref. [110],
oriented to the understanding of masses, mixings and the sep-
arate behavior of ACP;CPT

µe , ACP;T
µe and AT;CPT

µe as functions of the
different variables. In doing so, we can check from our analytic
expressions both the vacuum limit a → 0 and the T-invariant
limit ∆m2

21 → 0. The expansion in |a| �
∣∣∆m2

31

∣∣ holds for ener-
gies below a few GeV taking into account the definite a-parity of
each component, so that corrections are quadratic. This way, we
find the most simple expressions for ACP;CPT

µe and ACP;T
µe at the en-

ergies accessible by accelerator experiments, which are accurate
enough to let the reader clearly understand their behavior. Even
though it is unobservable at accelerator experiments, we will
present also the results for the interference component AT;CPT

µe at
these configurations, in order to compare its behavior with that
of the other two components.

We emphasize that any desired precision can be achieved using
a numerical computation of the neutrino propagation. Our aim
is not finding very precise expansions, but precise enough to
identify and understand the distinct characteristic patterns of the
energy behavior of the three components with the objective of
serving as a guide for experimental signatures.
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3.2.1 The crucial role of the reference m̃2
0 in matter

Since a diagonal m2
1 1 in the Hamiltonian H in Eq. (2.2) leads

to a global phase in time evolution, which is unobservable, the
equivalent Hamiltonian

2E ∆H ≡ ∆H′ = U ∆M2 U† + a Pe , (3.2)

is widely used, where Pe = diag(1, 0, 0) is the e-flavor projector
and ∆M2 = diag(0, ∆m2

21, ∆m2
31).

Analogously, one could argue that m̃2
1 is unobservable in neu-

trino oscillations in matter. Even though this is true, one must
take into account that either m2

1 or m̃2
1 can be chosen as origin of

phases, but not both of them at the same time when connecting
the parameters in matter to those in vacuum. Indeed, one can
easily check that the Hamiltonian ∆H′ has three non-vanishing
eigenvalues, so choosing m2

1 = 0 automatically leads to all m̃i 6= 0,
despite one of them being unobservable.

On the following, we call m̃2
0 the mass squared in matter lead-

ing to the relative phase shift between the unobservable global
phases in vacuum and matter, writing the Hamiltonian as

∆H′ = U ∆M2 U† + a Pe = m̃2
0 1 + Ũ ∆M̃2 Ũ† . (3.3)

In this notation, the three eigenvalues of ∆H′ will be the refer-
ence scale in matter m̃2

0 and the two observable mass squared
differences in matter ∆m̃2

ij.
As proposed in Ref. [106], we choose to diagonalize the Hamil-

tonian in the vacuum mass eigenbasis,

∆H′ij = ∆M2 + a U†PeU = m̃2
01 + V∆M̃2V† . (3.4)

Since the eigenvalues are basis independent and real, this equa-
tion cleanly shows that m̃2

0 and ∆m̃2
ij can only depend on the

parameters (∆m2
ij, |Uei|, a). Moreover, working in this basis fac-

torizes the mixing matrix in matter into Ũ = UV, where U is the
(vacuum) PMNS matrix and V is the change of basis between
vacuum and matter eigenstates, which must go to the identity
when a→ 0.
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The Hamiltonian being a 3× 3 matrix leads to the characteristic
equation

p(λ) ≡ −λ3 + λ2 tr
(
∆H′

)
+

+
1
2

λ
[
tr
[
(∆H′)2]− tr2(∆H′)

]
+ det

(
∆H′

)
= 0 , (3.5)

where p(λ) is the characteristic polynomial of ∆H′ and its roots
λi provide the three neutrino squared masses in matter, as well
as the observable mass squared differences ∆m̃2

ij = λi − λj. The
three invariants appearing in the characteristic equation (3.5) can
be easily calculated,

tr
(
∆H′

)
= ∆m2

21 + ∆m2
31 + a , (3.6a)

tr
[
(∆H′)2] = (∆m2

21)
2 + (∆m2

31)
2 + a2+

+ 2a
[
∆m2

21|Ue2|2 + ∆m2
31|Ue3|2

]
, (3.6b)

det
(
∆H′

)
= a|Ue1|2∆m2

21∆m2
31 . (3.6c)

From this straightforward setup of the problem, even before
trying to solve Eq. (3.5), we find a fundamental result. Since

p(0) = a|Ue1|2∆m2
21∆m2

31 ≥ 0 , (3.7a)

p(∆m2
21) = a|Ue2|2∆m2

21(∆m2
21 − ∆m2

31) ≤ 0, (3.7b)

at least one of the eigenvalues of ∆H′ will always lie in the range
[0, ∆m2

21]. All ∆m̃2
ij are known to be nonbound by ∆m2

21, as can
be read from the dependence on a of the effective masses in
matter in Figure 3.1, so we find that 0 ≤ m̃2

0 ≤ ∆m2
21. Although

the inequalities in (3.7a) and (3.7b) have been written for Normal
Hierarchy neutrinos, the argument is also valid for the Inverted
Hierarchy and antineutrinos, since the product p(0)p(∆m2

21) is
always negative regardless of the signs of ∆m2

31 and a.
Given that physically ∆m2

21 �
∣∣∆m2

31

∣∣, this result shows that
m̃2

0 ≤ ∆m2
21 is also a good perturbative parameter. Therefore,

we focus in this Subsection on writing the two observable ∆m̃2
ij

exactly as functions of (∆m2
ij, m̃2

0, |Uei|, a), which gives enough
information to calculate all observables of neutrino oscillations
in matter.
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A simple way to calculate the physical ∆m̃2
ij is the diagonaliza-

tion of the displaced Hamiltonian

∆H′ij − m̃2
01 = ∆M2 + a U†PeU − m̃2

01 = V∆M̃2V† . (3.8)

By construction, one of its eigenvalues is zero, so its determinant
is zero and its characteristic equation reduces to a quadratic
polynomial whose (non-vanishing) roots are

∆m̃2
± =

1
2
(
∆m2

21 + ∆m2
31 + a− 3m̃2

0
)
±

± 1
2

√
l2 + 2m̃2

0(∆m2
21 + ∆m2

31 + a)− 3(m̃2
0)

2 , (3.9)

where

l2 ≡
(
∆m2

31 + ∆m2
21 − a

)2 − 4∆m2
21∆m2

31 + 4a∆m2
21|Ue2|2+

+ 4a∆m2
31|Ue3|2 .

Even though it is clear from this definition that ∆m̃2
+ > ∆m2

−,
notice that

∣∣∆m̃2
+

∣∣ >
∣∣∆m̃2

−
∣∣ for Normal Hierarchy, whereas∣∣∆m̃2

−
∣∣ > ∣∣∆m̃2

+

∣∣ for Inverted Hierarchy. This expression for ∆m̃2
±

is a good starting point from which one can easily derive approx-
imate formulae in the physical region m̃2

0 ≤ ∆m2
21 �

∣∣∆m2
31

∣∣. In
order to write ∆m̃2

± as functions of vacuum parameters only, this
same limit can be used directly in Eq. (3.5) to find m̃2

0 perturba-
tively, as we will do in the following Subsection.

We finish this Subsection writing explicitly the exact eigenstates
of ∆H′ij in the canonical basis of mass eigenstates in vacuum,

|ν̃i〉 =
1
Ni


a
[(

λi − ∆m2
31

)
|Ue2|2 +

(
λi − ∆m2

21

)
|Ue3|2

]
U∗e1[

λi − a|Ue1|2
] [

λi − ∆m2
31

]
U∗e2[

λi − a|Ue1|2
] [

λi − ∆m2
21

]
U∗e3

 ,

(3.10)

where the normalization factor Ni is needed to ensure 〈ν̃i|ν̃i〉 = 1,
and its phase must be chosen so that lim

a→0
|ν̃i〉 = |νi〉.

The eigenvalues λi, labeled according to λ1 < λ2 < λ3 for the
Normal Hierarchy and λ3 < λ1 < λ2 for the Inverted Hierarchy,
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Table 3.1: Relation between the eigenvalues λi, with the convention

λi
a→0−−−→ ∆m2

i1, and the quantities m̃2
0 and ∆m̃2

± as calculated
from Eq. (3.9) with the corresponding sign of a for ν/ν̄
and the sign and value of ∆m2

31 for NH/IH. According to
Hierarchy, the eigenvalues are ordered from larger to smaller.
The observable ∆m̃2

ij = λi − λj can be read from the table.

Neutrinos (a > 0) Antineutrinos (a < 0)

NH λ3 = m̃2
0 + ∆m̃2

+ λ̄3 = ˜̄m2
0 + ∆m̃2

+

(∆m2
31 > 0) λ2 = m̃2

0 + ∆m̃2
− λ̄2 = ˜̄m2

0
λ1 = m̃2

0 λ̄1 = ˜̄m2
0 + ∆m̃2

−

IH λ2 = m̃2
0 + ∆m̃2

+ λ̄2 = ˜̄m2
0

(∆m2
31 < 0) λ1 = m̃2

0 λ̄1 = ˜̄m2
0 + ∆m̃2

+

λ3 = m̃2
0 + ∆m̃2

− λ̄3 = ˜̄m2
0 + ∆m̃2

−

NH

λ3

λ2

λ1

IH

λ2

λ1
λ3

Figure 3.7: Eigenvalues λi of the mass matrix in matter in units of
∆m2

21, for both neutrinos (a > 0) and antineutrinos (a < 0).
The horizontal axis shows both the evolution of the matter
parameter a at fixed energy (lower labels), i.e. changing the
matter density, and as function of the energy if the constant
density is chosen as that of the Earth crust (upper labels).
Both the exact (dashed) and the analytical (solid) results
from Eqs. (3.11, 3.12) are shown to illustrate the excellence
of the analytic approximation. Normal (Inverted) Hierarchy
in the left (right) panel.
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are given by m̃2
0 and ∆m̃2

± as shown in Table 3.1 for neutrinos and
antineutrinos. The reason why λ1 = m̃2

0 whereas λ̄2 = ˜̄m2
0 will be

explained analytically when exploring the vacuum limit. This fact
is also shown in Figure 3.7 by a numerical determination of the
evolution of the eigenvalues of ∆H′ with the matter parameter
a, where one identifies m̃2

0 ( ˜̄m2
0) as the (anti)neutrino eigenvalue

bounded by ∆m2
21.

As seen, the eigenvalues that fulfill 0 ≤ m̃2
0 ≤ ∆m2

21 are λ1

and λ̄2, independently of whether the Hierarchy is Normal or
Inverted. In order to distinguish these two functions, we call them
λ1 ≡ m̃2

0 and λ̄2 ≡ ˜̄m2
0. Notice that, even if both m̃2

0 and ˜̄m2
0 are

bounded by ∆m2
21, they are necessarily different functions, as seen

by their different vacuum limits lim
a→0

m̃2
0 = 0 and lim

a→0
˜̄m2

0 = ∆m2
21.

3.2.2 The way to the vacuum limit at fixed (E, L)

The perturbation theory used in the literature to make profit
of the relation ∆m2

21 �
∣∣∆m2

31

∣∣ also assumes ∆m2
21 � |a|. In

order to ensure that all our expressions will reproduce the right
vacuum limit, which is crucial to study the CPT-invariant limit of
the three disentangled components, we expand ∆m2

21 �
∣∣∆m2

31

∣∣
without any assumption between ∆m2

21 and a. Up to first order in
this regime, the characteristic polynomial (3.5) —that fixes m̃2

0—
and the squared mass differences in matter (3.9) reduce to

(m̃2
0)

2(∆m2
31 + a)−

− m̃2
0[∆m2

21∆m2
31 + a∆m2

21(1− |Ue2|2) + a∆m2
31(1− |Ue3|2)] +

+ a|Ue1|2∆m2
21∆m2

31 = 0 , (3.11)

and

∆m̃2
± =

1
2
(∆m2

31 + a + ∆m2
21 − 3m̃2

0)±

± 1
2

√√√√(∆m2
31 − a)2 + 4|Ue3|2a∆m2

31−
− 2(∆m2

21 + m̃2
0)(∆m2

31 + a) + 4|Ue2|2a∆m2
21

.

(3.12)
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These analytical results are shown in Figure 3.7 for neutrinos
(a > 0) and antineutrinos (a < 0), as well as both Normal
(∆m2

31 > 0) and Inverted (∆m2
31 < 0) Hierarchies, and they

match perfectly the exact numerical values. Notice that the
two solutions of Eq. (3.11) in vacuum, m̃2

0(m̃
2
0 − ∆m2

21) = 0, are
m̃2

0 = 0, ∆m2
21. From the discussion in the previous Subsection

we know that the first one corresponds to m̃2
0, which is bound

by ∆m2
21 when a > 0, whereas the second one, ˜̄m2

0, is bound by
∆m2

21 when a < 0.
As illustrated in Figure 3.8, the appropriate expansion up to

first order for ∆m̃2
± in both ∆m2

21�
∣∣∆m2

31

∣∣ and |a| �
∣∣∆m2

31

∣∣ is

∆m̃2
+sign(∆m2

31)
= ∆m2

31 + a|Ue3|2 − m̃2
0 , (3.13a)

∆m̃2
−sign(∆m2

31)
= ∆m2

21 + a(1− |Ue3|2)− 2m̃2
0 . (3.13b)

The same expressions apply to antineutrinos changing a→ −a,
m̃2

0 → ˜̄m2
0, and the dependence on the Hierarchy is implicit in

sign(∆m2
31), that accounts for the interchange of the expressions

∆m̃2
±|NH ↔ ∆m̃2

∓|IH.
The approximation of m̃2

0 and ˜̄m2
0, on the other hand, comes

from neglecting ∆m2
31-independent terms in the characteristic

equation (3.11),

m̃2
0 =

1
2

[
∆m2

21 + a(1− |Ue3|2)
]
±

± 1
2

√[
∆m2

21 + a(1− |Ue3|2)
]2
− 4|Ue1|2a∆m2

21 , (3.14)

where the −(+) sign corresponds to m̃2
0 ( ˜̄m2

0), as shown by their
a → 0 limit. In order to compare their behavior above and
below ∆m2

21, one can further expand Eq. (3.14) in the two regions
|a| � ∆m2

21,

m̃2
0 = a|Ue1|2

[
1− a|Ue2|2

∆m2
21

+ · · ·
]

, (3.15a)

˜̄m2
0 = ∆m2

21 − |a||Ue2|2
[

1− |a||Ue1|2

∆m2
21

+ · · ·
]

, (3.15b)
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∆m̃2
+|NH

∆m̃2
−|NH = ∆m̃2

+|IH

∆m̃2
−|IH

Figure 3.8: Dependence of the Hierarchy-independent m̃2
0 (left), and

the two ∆m̃2
± (right) in units of ∆m2

21, for both Hierarchies
and both neutrinos (a > 0) and antineutrinos (a < 0). The
horizontal axis shows both the evolution of the matter pa-
rameter a at fixed energy (lower labels), i.e. changing the
matter density, and as function of the energy if the constant
density is chosen as that of the Earth crust (upper labels).
Both the exact (dashed) and the analytical (solid) 1st order
approximations for ∆m̃2

± (3.13) and m̃2
0 (3.14) are shown. Be-

sides this excellent m̃2
0 (black), also shown are the different

approximations discussed: red for |a| � ∆m2
21 (3.15), green

for |a| � ∆m2
21 (3.16), and blue for the interpolation (3.17).

and ∆m2
21 � |a|,

m̃2
0 =

∆m2
21|Ue1|2

1− |Ue3|2

1− ∆m2
21|Ue2|2

a
(

1− |Ue3|2
)2 + · · ·

 , (3.16a)

˜̄m2
0 =

∆m2
21|Ue1|2

1− |Ue3|2

1 +
∆m2

21|Ue2|2

|a|
(

1− |Ue3|2
)2 + · · ·

 , (3.16b)

adequate when looking at the CPT-invariant (vacuum) limit or
the T-invariant limit, respectively. Notice that both m̃2

0 and ˜̄m2
0

converge to the same asymptotic limit in |a| above ∆m2
21, as seen

in Figure 3.8.
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At the expense of losing precision, the evolution of these pa-
rameters between the two limits is illustrated by the approximate
interpolations

m̃2
0 ≈ |Ue1|2

a ∆m2
21

a + ∆m2
21

, ˜̄m2
0 ≈ ∆m2

21− |Ue2|2
|a|∆m2

21

|a|+ ∆m2
21

, (3.17)

with errors ∼ 20%, that roughly describe their behavior: their
vacuum limits are m̃2

0 → 0 and ˜̄m2
0 → ∆m2

21, both vanish when
∆m2

21 goes to zero (since m̃2
0 ≤ ∆m2

21) and go to ≈ |Ue1|2∆m2
21

above ∆m2
21. Notice that first-order approximations in Eqs. (3.17)

reproduce all four limits in Eqs. (3.15, 3.16) if one neglects |Ue3|2

terms. Since these parameters are already O(∆m2
21), the effects of

extra O(∆m2
21|Ue3|2) corrections are typically negligible higher-

order terms.
The expansion of the exact eigenstates in Eq. (3.10) up to

leading order, together with the eigenvalues in Eqs. (3.13), leads
to the simple expressions

|ν̃1〉 =
1

N1

 1
m̃2

0−a|Ue1|2
aU∗e1Ue2

0

 , |ν̃2〉 =
1

N2


aU∗e1Ue2

∆m2
21−m̃2

0+a|Ue2|2

1
0

 , (3.18)

and |ν̃3〉 = |ν3〉, valid for both Hierarchies. Analogously, antineu-
trino eigenstates are given by

| ˜̄ν1〉 =
1

N̄1

 1

−∆m2
21− ˜̄m2

0−a|Ue2|2
aUe1U∗e2

0

 , | ˜̄ν2〉 =
1

N̄2

−
aUe1U∗e2

˜̄m2
0+a|Ue1|2

1
0

 , (3.19)

and | ˜̄ν3〉 = |ν̄3〉.
These eigenstates determine the columns of the V mixing

matrix between matter and vacuum mass eigenstates, which
allows us to write Ũ = UV for both neutrinos,

Ũα1 =
1

N1

[
Uα1 +

m̃2
0 − a|Ue1|2

aU∗e1Ue2
Uα2

]
, (3.20a)

Ũα2 =
1

N2

[
Uα2 +

aU∗e1Ue2

∆m2
21 − m̃2

0 + a|Ue2|2
Uα1

]
, (3.20b)

Ũα3 = Uα3 , (3.20c)
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Ũµ3

Ũµ2

Ũµ1

Ũe3

Ũe2

Ũe1

Figure 3.9: Mixing elements Ũei (left) and Ũµi (right) in matter, for both
neutrinos (a > 0) and antineutrinos (a < 0), assuming
δ = 0. The horizontal axis shows both the evolution of
the matter parameter a at fixed energy (lower labels), i.e.
changing the matter density, and as function of the energy
if the constant density is chosen as that of the Earth crust
(upper labels). Exact (dashed) and analytical (solid) results
from Eqs. (3.20, 3.21) shown. The thin horizontal lines show
the vacuum limit after setting ∆m2

21 → 0.

and antineutrinos,

˜̄Uα1 =
1

N̄1

[
U∗α1 −

∆m2
21 − ˜̄m2

0 − |a||Ue2|2

|a|Ue1U∗e2
U∗α2

]
, (3.21a)

˜̄Uα2 =
1

N̄2

[
U∗α2 −

|a|Ue1U∗e2

˜̄m2
0 + |a||Ue1|2

U∗α1

]
, (3.21b)

˜̄Uα3 = U∗α3 . (3.21c)

Figure 3.9 shows the excellent agreement of these expressions
with the numerical results within the density/energy region
|a| �

∣∣∆m2
31

∣∣, corresponding in the Figure to |a|/
∣∣∆m2

21

∣∣� 33.
Since matter effects do not depend on all elements of UPMNS

but only Uei, the above expressions are simpler in the α = e case.
In particular, notice that both

Ũe1 =
Ue1

N1

m̃2
0

a|Ue1|2
, ˜̄Ue2 =

U∗e2
N̄2

˜̄m2
0

˜̄m2
0 + a|Ue2|2

, (3.22)

vanish if ∆m2
21 = 0 for all a, due to m̃2

0 ≤ ∆m2
21. This fact origi-

nates in the transmutation [111] of masses in vacuum to mixings
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in matter, leading to the absence of genuine CP violation in
matter if ∆m2

21 = 0, even though there are three non-degenerate
neutrino masses.

These expressions reproduce the right vacuum limit, as seen
by developing |a| � ∆m2

21 for both neutrinos,

Ũα1 = Uα1 −
a

∆m2
21

Ue1U∗e2Uα2 , (3.23a)

Ũα2 = Uα2 +
a

∆m2
21

Ue2U∗e1Uα1 , (3.23b)

and antineutrinos,

˜̄Uα1 = U∗α1 +
|a|

∆m2
21

U∗e1Ue2U∗α2 , (3.24a)

Ũα2 = U∗α2 −
|a|

∆m2
21

U∗e2Ue1U∗α1 . (3.24b)

When assuming ∆m2
21 � |a|, however, a surprising result appears

for both neutrinos

Ũα1 =
|Ue2|√

1− |Ue3|2

[
Uα1 −

Ue1

Ue2
Uα2 +

+
∆m2

21
a

Ue1 (U∗e1Uα1 + U∗e2Uα2)

(1− |Ue3|2)2

]
, (3.25a)

Ũα2 =
|Ue2|√

1− |Ue3|2

[
Uα2 +

U∗e1
U∗e2

Uα1 −

−∆m2
21

a
U∗e1 (Ue2Uα1 −Ue1Uα2)

(1− |Ue3|2)2

]
, (3.25b)

and antineutrinos,

˜̄Uα1 =
|Ue1|√

1− |Ue3|2

[
U∗α1 +

Ue2

Ue1
U∗α2 −

−∆m2
21
|a|

Ue2 (U∗e2U∗α1 −U∗e1U∗α2)

(1− |Ue3|2)2

]
, (3.26a)
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˜̄Uα2 =
|Ue1|√

1− |Ue3|2

[
U∗α2 −

U∗e2
U∗e1

U∗α1 +

+
∆m2

21
|a|

U∗e2 (Ue1U∗α1 + Ue2U∗α2)

(1− |Ue3|2)2

]
, (3.26b)

showing that lim
a→0

lim
∆m2

21→0
Ũ 6= UPMNS = lim

∆m2
21→0

lim
a→0

Ũ ! This is

strongly illustrated in the case lim
∆m2

21→0
Ũe1 = lim

∆m2
21→0

˜̄Ue2 = 0 for

all a. The subtlety behind this non-commutability of the a → 0
and ∆m2

21 → 0 limits in the effective mixing matrix in matter is
the following.

Setting ∆m2
21 = 0 in vacuum means that ν1 and ν2 are degen-

erate. Therefore, any two independent linear combinations of
them can be chosen as basis states, which in the language of the
standard parametrization would mean that θ12 is nonphysical.
Adding the matter potential to this system breaks the degeneracy:
the arbitrariness in θ12 is lost in favor of the eigenstates of the
perturbation. Since the matter term in the neutrino Hamiltonian
adds a > 0 to the e-flavor component, this fact results ν̃1 and
ν̃2 such that the heavier ν̃2 is mainly νe, forcing the Ũe1 = 0
we obtained. The change of sign in a for the antineutrino case
forces analogously the lighter ˜̄ν1 to be mainly ν̄e, explaining the
(different) limit ˜̄Ue2 = 0.

This behavior shows that the vacuum connection should be
analyzed in the regime where |a| � ∆m2

21 �
∣∣∆m2

31

∣∣. The definite
a-parity of the disentangled components defined in the previous
Chapter forces the leading-order term in ACP;T

αβ to be independent

of a, whereas both ACP;CPT
αβ and AT;CPT

αβ are linear. To provide a
precise description in this region, we keep all linear terms in
a/∆m2

21 and a/∆m2
31 in both the mass squared differences,

∆m̃2
21 ≈ ∆m2

21 − a(|Ue1|2 − |Ue2|2) , (3.27a)

∆m̃2
31 ≈ ∆m2

31 − a|Ue1|2 , (3.27b)

∆m̃2
32 ≈ ∆m2

32 − a|Ue2|2 , (3.27c)
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and the mixings,

Ũα1 ≈ Uα1 −
a Ue1

∆m2
21

U∗e2Uα2 −
a Ue1

∆m2
31

U∗e3Uα3 , (3.28a)

Ũα2 ≈ Uα2 +
a Ue2

∆m2
21

U∗e1Uα1 −
a Ue2

∆m2
31

U∗e3Uα3 , (3.28b)

Ũα3 ≈ Uα3 +
a Ue3

∆m2
31

U∗e1Uα1 +
a Ue3

∆m2
31

U∗e2Uα2 . (3.28c)

Figure 3.10 shows computations of the CP asymmetry compo-
nents ACP;CPT

µe (green) and ACP;T
µe (blue) from Eqs. (2.5), as well

as the T asymmetry interference component AT;CPT
µe (red) from

Eq. (2.9b), using these expressions for the mixings in matter. They
are compared with the exact results for both Hierarchies, at fixed
E and L as functions of the matter potential, i.e. as function of
the (constant) matter density. Since all three components depend
on δ, we take the following convention. All components are
represented by a band showing all their possible values if δ is ar-
bitrarily changed in (0, 2π). The comparison with the numerical
results is done for the values of δ corresponding to the central
and extremal curves of the bands: sin δ = 0, ±1 for the T-odd
components, and cos δ = 0, ±1 for the T-invariant one.

These analytic approximations for constant ACP;T
µe and linear

ACP;CPT
µe and AT;CPT

µe work well at low matter densities, as they
should, but their range of validity is much larger than expected.
For the values used in the Figure, the point a = ∆m2

21 corresponds
to ρ = 0.44ρE, so the previous expansions should only work for
ρ� 0.44ρE. Their working reasonably well even above ρE hints
that higher-order corrections are dominated by (a/∆m2

31)
2.

This surprising feature stems from the fact that corrections
(a/∆m2

21)
2 are inoperative in the region |a| � ∆m2

21 �
∣∣∆m2

31

∣∣
for the ACP;CPT

µe and ACP;T
µe observables. This behavior is explained

by the peculiar dependence on the mixings and masses of the
oscillation probabilities, as can be understood from the matter-
vacuum invariants we will exploit in the following Chapter for
both Im J̃ij

αβ (Section 4.1) and Re J̃ij
αβ (Section 4.2). As will be dis-

cussed, they lead to dependencies in the oscillation probabilities
in Eq. (2.3) on the phases associated to the small quantities a and
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IH
CP;T

CP;CPT

CP;T

T;CPT

NH
CP;T

CP;CPT

CP;T

T;CPT

Figure 3.10: CPT-odd T-invariant (green) and T-odd CPT-invariant
(blue) components of the CP asymmetry ACP

µe (top), and
CPT-odd CP-invariant (red) and CP-odd CPT-invariant
(blue) components of the T asymmetry AT

µe (bottom),
as functions of the matter density ρ in units of that
of the Earth crust, at fixed energy-baseline values of
(E, L) = (0.75 GeV, 1300 km). Both exact (dashed) and
analytical (solid) results from Eqs.(3.27, 3.28) shown. Nor-
mal (Inverted) Hierarchy in the left (right). The bands
correspond to all possible values changing δ in (0, 2π); the
central lines for ACP;CPT

µe (ACP;T
µe and AT;CPT

µe ) correspond to
cos δ(sin δ) = 0; the upper/lower lines for ACP;CPT

µe (ACP;T
µe )

correspond to cos δ(sin δ) = ∓1, whereas those for AT;CPT
µe

correspond to sin δ = ∓sign(∆m2
31).

∆m2
21 of the form 1

∆ sin ∆, which cancel out if both of them are
small, independently of whether |a| � ∆m2

21 or ∆m2
21 � |a|. This

cancellation will happen as long as ∆ε ≡ εL
4E � 1, for ε = a, ∆m2

21.
This peculiar dependence in the oscillation probabilities is re-
sponsible for the restoration of the commutability of the limits
a → 0 and ∆m2

21 → 0 at this level, even though they do not
commute at the mixings level.
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3.3 actual experiments: E dependence at
fixed L in the earth crust

In the previous Subsection we discussed the way to obtain
analytic approximated expressions for neutrino oscillations in
matter that reproduce the right vacuum limit, i.e. the limit when
the matter parameter a → 0 at fixed energy due to the matter
density going to zero.

In the following, we consider the constant value of the matter
density in the Earth crust [112] ρE ≈ 3 g/cm3, and discuss
dependencies in a as dependencies in the neutrino energy in
νµ → νe transitions. In fact, the actual best-fit value [9] for
∆m2

21 shows that the relation between a and ∆m2
21 is given by

|a| ≈ 3(E/GeV)∆m2
21, so we can use the mixings in Eqs. (3.20,

3.21) expanding up to second order in ∆m2
21/a, with errors only

∼ 3% around 1 GeV.
As in the oscillation probabilities in Eq. (2.3), all observable

quantities can be written in terms of the rephasing-invariant
mixings J̃ij

αβ and the oscillation phases ∆̃ij. Since Ũe1 in Eq. (3.22)
is already a first order quantity, as we discussed, and expanding
up to second order also in |Ue3| � 1, which is of the same size
as ∆m2

21/a, we find that all J̃ij
eα can be calculated at second order

in these two quantities using our first-order Ũαi in Eqs. (3.25),

J̃13
eα =

∆m2
21

a

(
|Ue2|2 J13

eα − |Ue1|2 J23
eα

)
, (3.29a)

J̃23
eα = J23

eα + J13
eα −

∆m2
21

a

(
|Ue2|2 J13

eα − |Ue1|2 J23
eα

)
, (3.29b)

J̃12
eα =

∆m2
21

a

[
|Ue2|2 J12

eα − |Ue1|2 J21
eα + |Ue1|2|Ue2|2

(
|Uα1|2 − |Uα2|2

)]
−
[

∆m2
21

a

]2

|Ue1|2|Ue2|2(1− |Uα3|2) . (3.29c)

However, as discussed in the previous Subsection, the definite
odd a-parity of the two CPT-odd components implies that linear
corrections in a/∆m2

31 are relevant to accurately describe them,
so we must keep these terms as well. These linear terms can
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be easily calculated setting ∆m2
21 → 0 in the eigenstates in

Eq. (3.10) and expanding for |a| �
∣∣∆m2

31

∣∣. Analogously, we
obtain linear corrections in ∆m2

21/∆m2
31 to the previous J̃ij

αβ setting
a→ 0 in the eigenstates and expanding in ∆m2

21 �
∣∣∆m2

31

∣∣. The
resulting rephasing-invariant mixings, written in the standard
parametrization for α = µ, which is the relevant transition for
accelerator experiments, are

J̃13
eµ = −

(
∆m2

21
a

+
∆m2

21

∆m2
31

)
Jr eiδ , (3.30a)

J̃23
eµ = −S

(
1 +

2a
∆m2

31

)
+

(
∆m2

21
a

+
∆m2

21

∆m2
31

)
Jr eiδ , (3.30b)

J̃12
eµ =

(
∆m2

21
a

+
∆m2

21

∆m2
31

)
Jr eiδ −

[
∆m2

21
a

]2

T , (3.30c)

in terms of the four observable reparametrization invariants
J ≡ Jr sin δ = c12c2

13c23s12s13s23 sin δ, R ≡ Jr cos δ, S ≡ c2
13s2

13s2
23

and T ≡ c2
12s2

12c2
23. Notice that these are the same results found

in Ref. [107] after further expanding in |a| �
∣∣∆m2

31

∣∣, as expected.
Since

∣∣∆m2
31

∣∣ ≈ 33∆m2
21, it turns out that the largest mass splitting∣∣∆m2

31

∣∣ ≈ 11|a|/(E/GeV), so expanding in |a| �
∣∣∆m2

31

∣∣ around
the E ∼ GeV region is as reasonable as expanding in |Ue3| � 1.
All J̃ij

µe are already second order in ∆m2
21 and |Ue3|, so we can

neglect all non-leading terms in the oscillation arguments,

∆m̃2
21 ≈ a , ∆m̃2

31 ≈ ∆m2
31 , ∆m̃2

32 ≈ ∆m2
31 − a , (3.31a)

∆ ˜̄m2
21 ≈ |a| , ∆ ˜̄m2

31 ≈ ∆m2
31 + |a| , ∆ ˜̄m2

32 ≈ ∆m2
31 . (3.31b)

In this regime, the only oscillation phases are the vacuum phase
∆31 ∝ L/E and the constant (for a given baseline through the
Earth crust)

∆a ≡
aL
4E

= 3.8 ∆m2
21(eV2) L(km) = 0.29

L
1000 km

. (3.32)

This value is not particularly small at long baselines, but we
again remind the reader that all three ACP;T

µe , ACP;CPT
µe and AT;CPT

µe
have definite parity in a, the first one being even, the second
and third ones odd, as we proved in Chapter 2. This means
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that corrections to the leading order in each component will be
quadratic in a, and so we can also expand up to leading order in
∆a with errors ∼ 8% around 1000 km.

In summary, the expansion quantities used are the standard
parameters

∆m2
21

∆m2
31
∼ 0.030 , |Ue3| ∼ 0.15 , (3.33)

up to second order, and the quadratic (due to the definite parity
of the disentangled components)[

∆m2
21

a

]2

∼ 0.12
(E/GeV)2 ,

[
a

∆m2
31

]2

∼ 0.008 (E/GeV)2 ,

[∆a]
2∼ 0.084 (L/1000km)2 . (3.34)

Taking into account Eqs. (3.30) for the rephasing-invariant
mixings, with the symmetry property J̃ij

µe = J̃ ji
eµ, and Eqs. (3.31)

for the mass differences in matter, we find the approximate
expressions

ACP;T
µe ≈ −16 Jr sin δ ∆21 sin2 ∆31 , (3.35a)

ACP;CPT
µe ≈ 16∆a

[
sin ∆31

∆31
− cos ∆31

]
(S sin ∆31 + Jr cos δ ∆21 cos ∆31) ,

(3.35b)

AT;CPT
µe ≈ −16∆a Jr sin δ ∆21 sin ∆31

[
sin ∆31

∆31
− cos ∆31

]
, (3.35c)

where S ≡ c2
13s2

13s2
23, Jr ≡ c12c2

13c23s12s13s23, ∆a ≡ aL
4E ∝ L and

the two ∆ij ≡
∆m2

ij L
4E ∝ L/E. From these expressions, which

are precise enough to provide understanding of the physics
behind these observables, we find that ACP;T

µe in matter is well
described by its vacuum value. Since ∆21 is small, this means
that this genuine component oscillates as 1

E sin2 ∆31. Conversely,
the matter-induced ACP;CPT

µe and interference AT;CPT
µe components,

which vanish when a→ 0, are well described by their first order
in a.

The agreement of Eqs. (3.35) with the exact results is shown in
Figure 3.11, which makes clear that, even if the value of the asym-
metry components in the maxima is a bit off, their position and
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IH

CP;CPT

T;CPT

CP;T

NH
CP;CPT

T;CPT
CP;T

Figure 3.11: ACP;T
µe (blue), ACP;CPT

µe (green) and AT;CPT
µe (red) compo-

nents as functions of the neutrino energy E through
the Earth crust (of constant density) and a baseline of
L = 1300 km. Both exact (dashed) and analytical (solid)
results from Eqs.(3.35) are shown. Normal (Inverted) Hier-
archy in the left (right) panel. The bands correspond to all
possible values changing δ in (0, 2π); the lines correspond
to δ = π/2, the T-odd components proportional to sin δ,
the T-even one extremal when cos δ = ±1.

the general behavior are well reproduced. Therefore, Eqs. (3.35)
are the perfect tool to understand the energy dependencies of
the disentangled components and search for their actual experi-
mental separation. We will break down the insight they provide
in the next Chapter, explaining all the properties and interesting
behaviors found in Section 3.1.





4 S I G N AT U R E S O F T H E T H R E E
S E PA R AT E C O M P O N E N T S

In the previous two Chapters, we established a theorem to
cleanly separate the effects of the different sources of CP, T and
CPT violation, finding observables with definite parity under
all three symmetries, and developed the appropriate tools to
understand its implications.

In this Chapter, we will break down all the information pro-
vided by the precise enough analytical approximations for each
of the three disentangled components in Eqs. (3.35). All the
properties observed in the numerical scan in Section 3.1 will
be explained, and in particular the nearly definite parity of the
components under a change of Hierarchy, the particular depen-
dencies on the CP phase δ, and the existence of a magic point
where the experimental asymmetries are fully genuine.

4.1 a closer look at the genuine
component

According to its last term in Eq. (2.2), the Hamiltonian of our
problem in the flavor basis is proportional to the hermitian mass
matrix squared in matter M̃ν as

2E H ≡ H′ = M̃ν M̃†
ν . (4.1)

In such a basis, the necessary and sufficient condition for CP
invariance is [113]

Im[H′eµH′µτ H′τe] = 0 . (4.2)

For any flavor-diagonal interaction of neutrinos with matter,
this condition is equal to that for neutrino mass matrices in
vacuum. This invariance [114] of the left-hand side of the last

79
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IHNH

Figure 4.1: J̃ /J ratio for both neutrinos (a > 0) and antineutrinos
(a < 0). The horizontal axis shows both the evolution of
the matter parameter a at fixed energy (lower labels), i.e.
changing the matter density, and as function of the energy
if the constant density is chosen as that of the Earth crust
(upper labels). Exact (dashed) and analytical (solid) results
from Eqs. (4.4). Normal (Inverted) Hierarchy in the left
(right) panel.

equation (4.2) between the CP behavior of neutrinos in vacuum
and in matter has far-reaching consequences for the observable
rephasing-invariant mixings of neutrinos J̃ij

αβ and antineutrinos
˜̄Jij
αβ in matter.

The explicit calculation of the matter-vacuum invariant gen-
uine CP violation expression for neutrinos, antineutrinos and in
vacuum leads to

∆m̃2
12∆m̃2

23∆m̃2
31J̃ = ∆ ˜̄m2

12∆ ˜̄m2
23∆ ˜̄m2

31
˜̄J = ∆m2

12∆m2
23∆m2

31J , (4.3)

where J is the rephasing-invariant CP-violating quantity in
vacuum [115], J = c12c2

13c23s12s13s23 sin δ. The proportionality of
J̃ and ˜̄J to the vacuum ∆m2

21 explains the absence of genuine
CP violation in matter in the limit of vanishing ∆m2

21, even in the
presence of three non-degenerate neutrinos and antineutrinos
in matter. The vanishing of J̃ and ˜̄J in this limit comes from
the transmutation of masses in vacuum to mixings in matter
calculated in Section 3.2.2, leading to Ũe1 = 0 and ˜̄Ue2 = 0. To
leading order in ∆m2

21, the non-vanishing J̃ and ˜̄J differ by
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linear terms in the matter potential a present in the neutrino
masses in matter.

Using the analytic perturbation expansion of Section 3.2 for
the connection between quantities in matter and in vacuum, we
can write

J̃ =
∆m2

21

[
∆m2

31 + a
]

∆m2
31

[
∆m2

21 − 2m̃2
0 + a(1− |Ue3|2)

] J , (4.4a)

˜̄J =
∆m2

21

[
∆m2

31 − |a|
]

∆m2
31

[
2 ˜̄m2

0 − ∆m2
21 + |a|(1− |Ue3|2)

] J . (4.4b)

Notice that the proportionality factors in Eqs. (4.4) are energy
dependent through a, as shown in Figure 4.1.

The behavior at low/high energies can be easily understood
using the expansions at leading order of m̃2

0 and ˜̄m2
0 in Eqs. (3.15)

and (3.16). Indeed, at low energies

J̃ ≈ J
[

1 +
a(|Ue1|2 − |Ue2|2)

∆m2
21

+
a

∆m2
31

]
> J , (4.5a)

˜̄J ≈ J
[

1− |a|(1− |Ue2|2)
∆m2

21
− |a|

∆m2
31

]
< J , (4.5b)

the ratio increases (decreases) with respect to 1 for (anti)neutrinos
independently of sign(∆m2

31) due to both ∆m2
21 �

∣∣∆m2
31

∣∣ and
|Ue1| > |Ue2|, whereas at high energies

J̃ ≈ J
∆m2

21(∆m2
31 + a)

a ∆m2
31

, (4.6a)

˜̄J ≈ J
∆m2

21(∆m2
31 − |a|)

|a|∆m2
31

, (4.6b)

both of them decrease roughly as 1/a, and changing the sign(a) is
equivalent to changing the sign(∆m2

31). This degeneracy between
NHν and IHν̄ explains why the two plots in Figure 4.1 seem to
be symmetrical.

The decreasing value of the J̃ /J ratio at higher energies de-
scribed by Eqs. (4.6), i.e. when |a| � ∆m2

21, is a consequence
of the absence of genuine CP violation in matter in the limit
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DUNET2HK

Figure 4.2: Energy distribution of the genuine component ACP;T
µe at

T2HK baseline L = 295 km (left) and DUNE L = 1300 km
(right), which is Hierarchy independent. Exact (dashed)
and analytical (solid) results from Eq. (3.35a). The bands
correspond to all possible values changing δ in (0, 2π); the
upper/central/lower lines correspond to sin δ = −1, 0, 1.

∆m2
21 = 0 even if there are three non-vanishing neutrino masses

in matter. The transmutation of masses in vacuum to mixings in
matter forces the smallness of the imaginary part of the rephasing-
invariant mixing in matter at high energies. However, this fact
does not necessarily mean that genuine CP violation is unobserv-
able at these energies, since the genuine T-odd component of the
CP asymmetry contains this energy-dependent factor together
with the matter-dependent oscillation function —odd in L— that
depends on both energy and baseline.

The effects of the baseline are shown in Figure 4.2, comparing
the whole genuine component ACP;T

µe as function of the energy
for T2HK L = 295 km and DUNE L = 1300 km. The Figure
shows that the oscillation amplitude of the genuine component at
each experiment (fixed baseline L) decreases as 1/E, as expected,
whereas a higher baseline (at fixed E; look e.g. at 1 GeV) enhances
the values of ACP;T

µe .
This behavior is understood with the perturbation expansion in
|Ue3|2 � 1 in the energy regime ∆m2

21 � |a| �
∣∣∆m2

31

∣∣, between
the two MSW resonances, that we performed in the previous
Chapter. The 1/E dependence in J̃ is changed by the approx-
imated oscillating functions into L/E, producing genuine CPV
components of the same size at the spectrum peak for both exper-
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iments. In fact, the matter effects in J̃ and oscillating phases just
compensate to generate in this approximation a genuine compo-
nent equal to that in vacuum, i.e. Eq. (3.35a). As such, it is odd
in L/E, independent of a and the Hierarchy, and proportional to
sin δ.

4.2 neutrino mass ordering
discrimination

Last Section has demonstrated that the genuine component
ACP;T

µe in matter is, to a good approximation for energies between
the two resonances ∆m2

21 � |a| �
∣∣∆m2

31

∣∣, as planned in acceler-
ator facilities, given by the vacuum CP (and T) asymmetry. Its
information content is then crucial to identify experimental signa-
tures of genuine CP violation. On the other hand, it has nothing
to say about the neutrino mass ordering: it is invariant under
the change of sign in ∆m2

31. This simple change of sign, without
changing the absolute value

∣∣∆m2
31

∣∣, is in fact the only effect of
changing the Hierarchy under the approximations leading to
Eqs. (3.35).

Even though we found in Section 3.1 that the interference
component AT;CPT

µe changes its sign under a change of Hierar-
chy, its proportionality to sin δ makes it impossible to extract
information on the Hierarchy from its measurement unless the
CP phase δ is already known. Under these conditions, a direct
determination of the neutrino mass ordering must come from
the matter-induced component ACP;CPT

µe , even in L and sin δ and
odd in a. We thus discuss in this Section the information on
the neutrino mass ordering that the matter-induced component
introduces in the experimental CP asymmetry ACP

µe . Propagation
in matter is needed to generate effects of the change of Hierarchy
and our ACP;CPT

µe is able to separate out this information, going
beyond studies of its influence on transition probabilities [116].

Contrary to the J̃ discussed in the previous Section, there is
no simple matter-vacuum relation such as Eq. (4.3) to easily write
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Re J̃ij
αβ as function of the vacuum ReJij

αβ —the most compact result
following this idea is [117, 118]

∆m̃2
12∆m̃2

23∆m̃2
31∆m̃2

ij Re J̃ij
αβ = Kij

αβ +∆m2
12∆m2

23∆m2
31∆m2

ij ReJij
αβ ,

(4.7)

where all Kij
αβ vanish in vacuum [no ij sum implied in Eq. (4.7)].

This relation explains the dependence of all L-even terms in the
oscillation probabilities in each of the ∆̃ij phases as 1

∆̃2
ij

sin2 ∆̃ij,

which is the reason why the vacuum limit a → 0 is restored in
these observables even after taking ∆m2

21 � |a|, as discussed in
Section 3.2.2. However, the Kij

αβ are complicated functions of the
vacuum quantities, and do not provide a clear insight into the
behavior of ACP;CPT

αβ , so we will use Eq. (3.35b) instead,

ACP;CPT
µe ≈ 16∆a

[
sin ∆31

∆31
− cos ∆31

]
(S sin ∆31 + Jr cos δ ∆21 cos ∆31) .

In general, this matter-induced component of the CP asymme-
try has no definite transformation properties under the change
of sign in ∆m2

31. Under the approximations made in Section 3.3,
there are two distinct terms in ACP;CPT

µe , a first one AH
− which is

an odd function of ∆m2
31 and a second one AH

+ which is an even
function of ∆m2

31, so that ACP;CPT
µe = AH

− + AH
+ +O(∆3

a),

AH
− = 16 ∆a

[
sin ∆31

∆31
− cos ∆31

]
S sin ∆31 , (4.8a)

AH
+ = 16 ∆a

[
sin ∆31

∆31
− cos ∆31

]
Jr cos δ ∆21 cos ∆31 . (4.8b)

Notice that both terms, as well as the whole ACP;CPT
µe , vanish

simultaneously when the δ-independent common prefactor van-
ishes. Alternatively, the matter-induced component vanishes
δ-dependently when these AH

− and AH
+ terms compensate each

other.
As seen, the information content in ACP;CPT

µe on the neutrino
mass Hierarchy is due to AH

− only, its dominant zeroth-order
term in ∆m2

21 independent of the phase δ. Consistently with the
energy-dependence of the neutrino masses in matter computed
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T2HK

AH
−

AH
+

DUNE
AH
−

AH
+

Figure 4.3: Energy distribution of the two distinct terms of ACP;CPT
µe as

defined in Eqs. (4.8), AH
− (green, δ-independent, Hierarchy-

odd) and AH
+ (red, cos δ-odd, Hierarchy-invariant), at T2HK

L = 295 km (left) and DUNE L = 1300 km (right). Both
Normal Hierarchy (solid) and Inverted Hierarchy (dashed)
shown for the Hierarchy-dependent term. The bands corre-
spond to all possible values changing δ in (0, 2π).

numerically in Section 3.1, our results for ∆m̃2
ij from Eq. (3.31)

show that, in the limit ∆m2
21 → 0, the mass spectrum in matter

changes under a change of Hierarchy from neutrinos to antineu-
trinos as

∆m̃2
21 ↔ ∆ ˜̄m2

21 , ∆m̃2
31 ↔ −∆ ˜̄m2

32 , ∆m̃2
32 ↔ −∆ ˜̄m2

31 , (4.9)

whereas the J̃ij
αβ do not change sign, since ∆m2

31 effects are sub-
leading corrections to Eqs. (3.29). Therefore, all L-even terms in
the oscillation probabilities —which are blind to the sign change
in Eq. (4.9)— are simply interchanged between neutrinos and
antineutrinos. As the CP asymmetry is a difference between
neutrino and antineutrino oscillation probabilities, the matter-
induced component ACP;CPT

µe is only changing its sign under a
change of Hierarchy in the vanishing limit of ∆m2

21, explaining
why only AH

− is non-vanishing in this case.
A non-vanishing ∆m2

21 affects the matter-induced component
generating the AH

+ term in Eq. (4.8b). It is thus only appreciable
at low energies, and sensitive to the δ phase as a CP-conserving
cos δ factor. In Figure 4.3 we represent these two terms of the
matter-induced component ACP;CPT

µe as function of the energy for
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the baselines of T2HK and DUNE, and for both Normal and
Inverted Hierarchies.

To test the neutrino mass ordering from ACP;CPT
µe , we find that

imposing the condition
∣∣AH
−
∣∣ > ∣∣AH

+

∣∣ in the non-oscillating (high
energy) region leads to E > 1.1 E1st node. For these energies
above the first node of the vacuum oscillation probability, the
whole effect of the change of sign in ∆m2

31 is an almost odd
ACP;CPT

µe . At long enough baselines such that the matter-induced
component dominates the CP asymmetry over the genuine one,
as happens at DUNE (see Figure 3.11), we find that the AH

− term
in ACP;CPT

µe dominates the whole CP asymmetry for any value of
δ, so the measurement of the sign of the experimental ACP

µe at
these energies fixes the Hierarchy.

4.3 the genuine-matter interference
component

The genuine component ACP;T
µe analyzed in Section 4.1 is non-

zero, even in matter, only if there is genuine CP violation in
the lepton sector, which is why it is a trustworthy observable
to test CP violation in neutrino oscillations. Conversely, the
matter-induced component ACP;CPT

µe analyzed in Section 4.2 is
non-zero due to the CPT-violating matter effects, even if there
is no genuine CP violation, and we found it carries precious
information on the neutrino mass ordering.

After looking into these two components of the CP asymmetry,
a question could immediately arise: are these ACP;T

αβ and ACP;CPT
αβ

components coincident with the T and CPT asymmetries, respec-
tively? As the genuine T-odd ACP;T

αβ component is CPT-invariant
and thus CP-odd, a positive answer to this question would be
equivalent to claim the absence of fake matter-induced terms in
the T asymmetries, and hence a vanishing value for the interfer-
ence component AT;CPT

αβ . In this case, the usual factorization of
fake matter effects in the CP asymmetry, namely

ACP
αβ = AT

αβ +AF
αβ , (4.10)
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would be equivalent to our Disentanglement Theorem, with AF
αβ

identified as the CPT asymmetry. For a non-vanishing interfer-
ence component, however, this separation is not conceptually
possible in the sense that the two asymmetries in which the CP
asymmetry is separated include CP-even terms.

In the literature on neutrino oscillations T asymmetries [92, 105,
106, 114, 119–127], however, one does not find definite claims on
this question, even for a T-symmetric matter between the source
and the detector (and, a fortiori, for uniform matter) neither in
one nor the other sense of the response. Contrary to the matter-
induced component of the CP asymmetry, which exists even in
the absence of true CP violation, if the medium is T-symmetric it
by itself cannot generate a T asymmetry in neutrino oscillations.
However, in the presence of genuine CP violation this last rea-
soning does not lead to a definite conclusion whether the entire
T asymmetry is also CP-odd and CPT-invariant. In this last case,
the genuine component in the disentangled CP asymmetry could
be separately measured by the T asymmetry. On the contrary, a
non-vanishing value of the interference component AT;CPT

αβ would
mean that the medium generates an additional term in the T
asymmetry which is CP-even by the combined effect of genuine
and matter amplitudes. This CPT-odd component would then be
a fake effect even for a T-symmetric medium.

We focus in this Section on this open question and break down
the case of the interference component AT;CPT

µe , which is thus
unique, for it needs both genuine CP violation and matter effects
to be non-zero. In the region between the two MSW resonances
∆m2

21 � a �
∣∣∆m2

31

∣∣ leading to its approximate expression in
Eq. (3.35c),

AT;CPT
µe = −16∆a Jr sin δ ∆21 sin ∆31

[
sin ∆31

∆31
− cos ∆31

]
+O(∆3

a) ,

these two requirements for its non-vanishing value translate into
the proportionality of the interference component to the T-odd
∆m2

21 sin δ factor and the CPT-odd ∆a factor.
Further implications can be understood from this fact. As

happens with the CP-odd genuine component ACP;T
µe , their T-odd

parity together with the matter-vacuum invariance in Eq. (4.3)
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ensure that a non-vanishing value of any of these two compo-
nents is a proof of genuine CP violation. Information on the CP
phase δ in the standard parametrization, however, is not clearly
extracted from AT;CPT

µe due to its CPT-odd parity: as happens
with the matter-induced ACP;CPT

µe , their CPT-odd parity is related
to Hierarchy-dependent terms in these two components —the
difference in nature between them explaining why the Hierarchy-
odd term in ACP;CPT

µe is independent of ∆m2
21, whereas AT;CPT

µe is
fully Hierarchy-odd and proportional to ∆m2

21.
Notice that the non-vanishing value for this interference com-

ponent claims, indeed, that T-symmetric matter effects are able
to change the value of the experimental T-odd asymmetry AT

αβ.
Although this change does not affect the genuine character of
the T asymmetry as a test of genuine CP violation, it means that,
strangely enough, its non-vanishing value does not prove that
CP violation has actually been observed in the T asymmetry.

Such a proof would need the experimental measurement of
both neutrino and antineutrino T asymmetries in Eq. (2.13b),

AT
αβ = AT;CPT

αβ + AT;CP
αβ , ĀT

αβ = AT;CPT
αβ − AT;CP

αβ ,

under the same conditions of baseline and energy, from which
one could separate the two components as

AT;CP
αβ =

1
2
(AT

αβ − ĀT
αβ) , AT;CPT

αβ =
1
2
(AT

αβ + ĀT
αβ) . (4.11)

The first component, blind to Hierarchy effects, would provide
information on the CP phase δ, which could then be used to
extract the Hierarchy from the second one.

4.4 signatures of the components’
peculiar energy distributions

Having analyzed in detail the information accessible by each
of the three components, and thinking especially in accelerator
experiments, in this Section we identify those aspects of the en-
ergy distribution of the CP asymmetry ACP

µe that can offer an
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IH

CP;CPT

T;CPT

CP;T

NH

CP;CPT

T;CPT

CP;T

Figure 4.4: CPT-odd T-invariant (green) and T-odd CPT-invariant
(blue) components of the CP asymmetry ACP

µe , together
with the CPT-odd CP-invariant (red) component of the
T asymmetry AT

µe, as functions of the neutrino energy E
through the Earth crust (of constant density) at T2HK base-
line L = 295 km. Exact (dashed) and analytical (solid)
results from Eqs.(3.35) shown. Normal (Inverted) Hierar-
chy in the left (right) panel. The bands correspond to all
possible values changing δ in (0, 2π); the lines correspond
to δ = π/2, the T-odd components proportional to sin δ,
the T-even one extremal when cos δ = ±1.

experimental signature for the separation of its genuine and
matter-induced components. We will, nevertheless, also include
the interference component in the analysis, for the sake of com-
pleteness.

With experiments in which the fingerprint of the baseline
dependence, L-odd and L-even functions, cannot be used, the
peculiar patterns of the energy distribution provide precious in-
formation. The general trend of this dependence for L = 1300 km
is given in Figure 3.11, showing the appearance of oscillations
in the low and medium energy regions of the spectrum. The
genuine ACP;T

µe behaves differently from the two CPT-odd ACP;CPT
µe

and AT;CPT
µe , with nodes and extremal values at different energies.

However, this rich structure is lost when the baseline is de-
creased to a medium baseline L = 295 km and a threshold energy
of 300 MeV is imposed. The emerging picture under these condi-
tions is given in Figure 4.4 and the main conclusion is the relative
suppression of ACP;CPT

µe and AT;CPT
µe with respect to ACP;T

µe , due to
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their proportionality to ∆a ∝ L. In addition, this small matter-
induced ACP;CPT

µe is mainly the δ-independent AH
− in Eq. (4.8a)

and so it can be subtracted away from the experimental ACP
µe , if

the neutrino mass Hierarchy is previously known, as a theoretical
background. This would allow to separate the genuine ACP;T

µe .
Using the analytical approximate expressions of the observable

components given in Eqs. (3.35), we perform a detailed study of
the position of extremal values and zeros of each of them, as well
as their behavior around the zeros. The energy dependence is
controlled by the phase ∆31 ∝ 1/E and we will take as reference
the functional form of the CP-conserving transition probability
f (∆) = sin2 ∆.

For the genuine component ACP;T
µe in Eq. (3.35a),

ACP;T
µe = −16 Jr sin δ ∆21 sin2 ∆31 +O(∆2

a) ,

the energy distribution is

fgen(∆) = ∆ sin2 ∆ . (4.12)

Contrary to f (∆), the amplitude of the oscillations of fgen(∆)
decreases as 1/E, but the zeros are the same ∆0 = 0, π, 2π . . . as
for f (∆). There are, however, two series of extremal values given
by

f ′gen(∆) = sin ∆(sin ∆ + 2∆ cos ∆) = 0 . (4.13)

The first kind, those corresponding to solutions of sin ∆ = 0 as
for the zeros, are double zeros, which indicates that ACP;T

µe keeps
the same sign around the zeros, and so in the whole energy
spectrum. From Eq. (3.35a) for the analytical approximation
of the genuine component, it is clear that the sign is given by
sign(ACP;T

µe ) = −sign(sin δ).
The additional extremal values appear for

tan ∆ = −2∆ . (4.14)

In Figure 4.5 we identify graphically (in blue) the solutions to
Eq. (4.14), which appear slightly above the oscillation maxima
∆osc

max = (2n + 1)π
2 . This is a first fortunate fact, implying that the
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Figure 4.5: Illustration of the position of the relevant zeros of the
two CPT-odd components, given by tan ∆31 = ∆31, and
the maxima of |ACP;T

µe |, given by tan ∆31 = −2∆31. The
vertical dashed lines are the asymptotes of tan ∆ (black),
corresponding to oscillation maxima, and the perturba-
tive solutions of the previous equations given, respec-
tively, by ∆CPT

0 = (2n + 1)π
2 −

[
(2n + 1)π

2
]−1 (green) and

∆T
max = (2n + 1)π

2 + 1
2
[
(2n + 1)π

2
]−1 (blue). As calculated

in Eq. (4.17), the δ-dependent zeros of ACP;CPT
µe around

∆0 = nπ are bounded within the orange regions of tan ∆.
The highest-energy point, i.e. smallest ∆, where ACP;CPT

µe
vanishes δ-independently is emphasized by the red ellipse.

experimental configurations with maximal |ACP;T
µe | are close to

those with highest statistics. A perturbative expansion of cot ∆
around ∆osc

max leads to the approximate solutions

∆T
max = (2n + 1)

π

2
+

1
2

[
(2n + 1)

π

2

]−1
+ · · · , n ≥ 0

≈ π

2
+

1
π

,
3π

2
+

1
3π

,
5π

2
+

1
5π

. . . , (4.15)

which show that the interesting (see below) second and higher
maxima in |ACP;T

µe | are within a 3% interval above the oscillation
maxima.

In the case of the matter-induced component ACP;CPT
µe of the

CP asymmetry, the energy distribution in Eq. (3.35b) is

fmat(∆) =
(

sin ∆
∆
− cos ∆

)(
S sin ∆ + Jr

∆m2
21

∆m2
31

cos δ ∆ cos ∆
)

,

(4.16)
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which has two kinds of zeros with distinct implications. The van-
ishing points for the second factor are the δ-dependent solutions
of

tan ∆ = − Jr

S
∆m2

21

∆m2
31

cos δ ∆ = −0.09 cos δ ∆ , (4.17)

that reduce to the vacuum nodes sin ∆ = 0 if cos δ = 0, where
the genuine ACP;T

µe also vanishes. The actual position of these
zeros is strongly dependent on cos δ, and the set of solutions is
illustrated in Figure 4.5 by the region around ∆0 = nπ where
tan ∆ is orange.

The second kind of zeros in Eq. (4.16) are solutions of the
equation

tan ∆ = ∆ , (4.18)

and are graphically depicted in Figure 4.5 too (in green). As
seen, they appear slightly below the oscillation maxima in the
vacuum f (∆) starting from the second one, with approximate
values given by

∆CPT
0 = (2n + 1)

π

2
−
[
(2n + 1)

π

2

]−1
+ · · · , n ≥ 1

≈ 3π

2
− 2

3π
,

5π

2
− 2

5π
. . . , (4.19)

which almost coincide with the values of the maxima ∆T
max of

|ACP;T
µe | in Eq. (4.15). Not only that: these zeros ∆CPT

0 of ACP;CPT
µe

are again near the oscillation maxima ∆osc
max = (2n + 1)π

2 , so
we conclude that there are “magic energies” at these phase val-
ues (4.19), within a 5% interval below the corresponding oscilla-
tion maximum, in which ACP;CPT

µe vanishes and |ACP;T
µe | is close

to a maximum. These magic points for the measurement of the
experimental CP asymmetry have additional bonuses:

• The zero of the matter-induced component ACP;CPT
µe is inde-

pendent of cos δ and the Hierarchy, providing no ambiguity
in its position. This Hierarchy independence is consistent
with the below 1% effect observed numerically in Figure 3.4,
which could be calculated with higher-order corrections.
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• These ∆CPT
0 are simple zeros, in such a way that the sign of

ACP;CPT
µe is changing around them, and so its average value

around the zero remains small.

• Although the genuine component |ACP;T
µe | is not exactly at

its maximum value when ACP;CPT
µe = 0, the leading-order

deviations from ∆osc
max we calculated show that its value is

above 90%|ACP;T
µe |max

A look into the derivative of fmat(∆) shows that the sign-change
of ACP;CPT

µe around these zeros is such that ACP;CPT
µe is always de-

creasing (increasing) around the relevant δ-independent zeros for
Normal (Inverted) Hierarchy, and opposite around δ-dependent
zeros, explaining the behavior observed in Figure 3.11.

Even though the analysis so far would be enough to break
down the signatures of the CP asymmetry components, we also
study the zeros of the interference component, in which the T
asymmetries for both neutrinos and antineutrinos are genuine.
From the analytical approximation (3.35c), one reads the energy
spectrum to be

fint(∆) = ∆ sin ∆
(

sin ∆
∆
− cos ∆

)
. (4.20)

We find that AT;CPT
µe vanishes in two families of zeros, the

first one the vacuum nodes ∆0 as for AT;CP
µe , the second one the

solutions ∆CPT
0 to Eq. (4.18) as for ACP;CPT

µe . The two kind of
solutions are both Hierarchy- and δ-independent, so there is no
ambiguity in their position.

Notice that both CPT-odd components vanish in the same
set of “magic energies” associated to ∆CPT

0 in (4.19) near the
maximal values of the genuine |ACP;T

µe |, which means that all
three experimental asymmetries (ACP

µe , AT
µe and ACPT

µe ) are blind
to CPT-violating matter-effects in these configurations. In the
same sense that the CP and T asymmetries could thus be used to
test genuine CP violation, each of the CPT-odd components could
be used in these magic points ∆CPT

0 to test genuine CPT violation
in the lepton sector, as had been suggested for the whole CPT
asymmetry at its zeros [104].
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Taking into account the dependence in L/E of these remarkable
values of the phases, we give in Table 4.1 the relevant energies
around the second oscillation maximum for both the baselines
of the T2HK and DUNE experiments. In consistency with our
numerical results in Section 3.1, the precise position of this energy
—slightly above the second oscillation maximum— is proportional
to L

∣∣∆m2
31

∣∣ as

E = 0.92 GeV
L

1300 km

∣∣∆m2
31

∣∣
2.5× 10−3 eV2 , (4.21)

which explains the absence of this rich oscillatory structure in
Figure 4.4: at the short baseline of T2HK, all of these interesting
points lie below the threshold energy of 300 MeV. The highest-
energy one, corresponding to L/E = 1420 km/GeV, would ap-
pear at E = 210 MeV.

Table 4.1: Specific position of the first zero ∆CPT
0 in Eq. (4.19), corre-

sponding to the highest-energy zero of the two CPT-odd
components independent of δ and the Hierarchy, the second
vacuum oscillation maximum, and the second maximum
∆T

max in Eq. (4.15). For each of these three points, we show
the value of the oscillation phase, which is independent of
any experimental parameter; the L/E, whose value depends
linearly on the inverse of

∣∣∆m2
31

∣∣; and the particular energy
associated to this L/E for T2HK L = 295 km and DUNE
L = 1300 km. Uncertainties show the variability of each
quantity within the 1σ ranges in the best fit (1.20). Notice
that these three values of the phase ∆31 correspond to the
position of the green/black/blue dashed lines within the
red ellipse in Figure 4.5.

∆31
L
E

(
km
GeV

) E (GeV)
T2HK DUNE

Vanishing ACP;CPT
µe & AT;CPT

µe 4.50 1417 (17) 0.208 (2) 0.917 (11)
2nd Oscillation Maximum 4.71 1484 (18) 0.199 (2) 0.876 (11)

Maximum
∣∣∣ACP;T

µe

∣∣∣ 4.82 1518 (18) 0.194 (2) 0.857 (10)
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T;CPT

CP;T IH

CP;CPT
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Figure 4.6: Zooming Figure 3.11 at low energy, showing the CPT-odd
T-invariant (green) and T-odd CPT-invariant (blue) compo-
nents of the CP asymmetryACP

µe , together with the CPT-odd
CP-invariant (red) component of the T asymmetry AT

µe, at
DUNE L = 1300 km. Normal (Inverted) Hierarchy in the
left (right) panel. The bands correspond to all possible val-
ues changing δ in (0, 2π); the lines correspond to δ = π/2,
the T-odd components proportional to sin δ, the T-even one
extremal when cos δ = ±1.

This magic configuration around the second oscillation max-
imum is well apparent in the results presented in Figure 4.6
for1 L = 1300 km. One can observe that the uninteresting (in-
creasing/decreasing for NH/IH) zeros in ACP;CPT

µe are strongly
dependent on cos δ, as seen in Eq. (4.17), and their position
when cos δ = 0 is that of the δ-independent zeros ∆0 of the two
T-odd components. As understood from the previous discus-
sion, we have identified the most relevant δ-independent zeros
(4.19) of ACP;CPT

µe , decreasing/increasing for NH/IH, correlated
to zeros for AT;CPT

µe and near maximal |ACP;T
µe | proportional to

sin δ. Due to the first-order character of this δ-independent (and
nearly Hierarchy-independent too) zeros, ACP;CPT

µe is changing
sign around them, whereas the genuine ACP;T

µe keeps the same
sign —given by sign(sin δ)— in the whole energy spectrum.

Integrating statistics in an energy bin around this point would
still result in a vanishing matter-induced CP-violating term in

1 An equivalent Figure could be obtained at L = 295 km for energies between
100 and 350 MeV, with the same energy dependence for all components, but
relatively smaller ACP;CPT

µe and AT;CPT
µe due to their proportionality to ∆a ∝ L.
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NH

CP;CPT

CP;T IH

CP;CPT

CP;T

Figure 4.7: Average value of the CPT-odd T-invariant (green) and T-
odd CPT-invariant (blue) components of the CP asymmetry
ACP

µe , at DUNE baseline L = 1300 km, in an energy bin
width ∆Ebin centered on the magic energy (4.21). Both the
exact (dashed) and the analytical (solid) results computed
using Eqs.(3.35) are shown. Normal (Inverted) Hierarchy in
the left (right) panel. The bands correspond to all possible
values changing δ in (0, 2π); the upper/lower lines for
ACP;CPT

µe (ACP;T
µe ) correspond to cos δ(sin δ) = −1, 1.

the experimental CP asymmetry, providing a direct test of CP
violation in the lepton sector as clean as in vacuum. As shown in
Figure 4.7, we have checked that this is the case for an energy bin
width up to 0.15− 0.20 GeV, which keeps an almost vanishing
ACP;CPT

µe for all δ and an almost maximal ACP;T
µe ∝ sin δ. Such an

energy resolution appears to be feasible at DUNE [103] around
the second oscillation maximum, and the accumulated events
would provide enough statistical significance to the transition
probability distribution.

The whole discussion in this Section, which stems from the an-
alytical expressions (3.35), allows the reader to understand the pe-
culiar energy distributions of the three disentangled components
observed in the numerical results in Section 3.1. In particular, the
value of the magic energy (4.21), as well as its (in)dependence on
the different oscillation parameters, is explained. This result in
the energy distribution of the experimental CP asymmetry pro-
vides a positive response to our search of observable signatures
able to separate out the genuine and matter-induced components.



4.5 exploitation of the components disentanglement 97

4.5 exploitation of the components
disentanglement

This Section culminates the study of the separate physics in-
volved in the genuine and fake matter-induced effects for all
observable CP, T and CPT asymmetries in neutrino oscillations,
stemmed from the key concept of the 3-dimensional basis (2.13)
of components with definite transformation properties under all
three symmetries

ACP
αβ = ACP;T

αβ + ACP;CPT
αβ ,

AT
αβ = AT;CPT

αβ + AT;CP
αβ , ĀT

αβ = AT;CPT
αβ − AT;CP

αβ ,

ACPT
αβ = ACPT;T

αβ + ACPT;CP
αβ , ĀCPT

αβ = ACPT;T
αβ − ACPT;CP

αβ .

The genuine component in the CP and T asymmetries is given
by ACP;T

αβ , which is CPT invariant as in vacuum; the other two

independent components, ACP;CPT
αβ and AT;CPT

αβ , are induced by
matter in the neutrino propagation and thus they are odd in the
matter potential. However, there is a very interesting distinction
between these two fake components: whereas ACP;CPT

αβ can be
induced by matter alone without any fundamental CP violation
for neutrinos, we found that the genuine-matter interference
component AT;CPT

αβ , which requires both genuine CP violation
and matter effects, can be non-vanishing even for T-symmetric
matter.

All in all, the conditions for a direct evidence of genuine CP
and T violation for neutrino oscillations in matter by means of the
measurement of an observable component odd under the symme-
try are now met. From the detailed analysis in this Chapter, we
find that —excluding the possibility of scanning the asymmetries
as a function of the baseline— one may follow two complemen-
tary procedures: the exploitation of the unique properties of the
magic energy (4.21), and a thorough determination of all three
independent components.
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4.5.1 Signatures of the magic L/E = 1420 km/GeV

Since accelerator neutrino experiments produce beams of νµ

and ν̄µ, the only observable they could possibly access is the CP
asymmetry (2.1)

ACP
µe = P(νµ → νe)− P(ν̄µ → ν̄e) ,

so the separation of the genuine and the matter-induced com-
ponents must come from their different energy spectrum. As
discussed, from these two components one can extract sepa-
rate information on the neutrino mass ordering and genuine CP
violation.

Since ACP;T
µe is blind to sign(∆m2

31), a determination of the
neutrino mass ordering must come from regions where the
Hierarchy-odd (and δ-independent) term AH

− in ACP;CPT
µe domi-

nates the whole CP asymmetry. Due to the proportionality of
ACP;CPT

µe to ∆a ∝ L, this can only happen at long baselines, and
only at energies E > 1.1 E1st node, so that

∣∣AH
−
∣∣ > ∣∣AH

+

∣∣. Consistent
with our analysis, the spectrum at DUNE baseline L = 1300 km
in Figure 3.11 shows that, for energies above the first node of the
vacuum oscillation, the sign of the experimental ACP

µe determines
the Hierarchy.

The strategy towards the measurement of genuine CP violation
depends on the baseline. At medium baselines such as T2HK
L = 295 km in Figure 4.4, the CPT-odd component ACP;CPT

µe is
small and, for energies above the first oscillation node, domi-
nated by its δ-independent term. Therefore, it can be theoretically
subtracted from the experimental ACP

µe , if the Hierarchy is previ-
ously known, in order to obtain the genuine component ACP;T

µe .
At long baselines, both ACP;CPT

µe and ACP;T
µe are of the same

order, so ACP
µe will directly test genuine CP violation only when

the CPT-odd component vanishes. We found a family of simple
zeros (4.19) of ACP;CPT

µe , with decreasing/increasing slope for
Normal/Inverted Hierarchy, corresponding to the solutions of
tan ∆31 = ∆31. These zeros are close to the second and higher
vacuum oscillation maxima sin2 ∆31 = 1, implying that their
position is independent of δ and correspond to a nearly maximal
|ACP;T

µe | proportional to sin δ.
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Figure 4.8: Peak energy Eν of the T2K neutrino beam, as a function
of the off-axis deviation θOA of the detector. On the right
labels, we show the associated magic baseline to each en-
ergy value so that the detector is positioned at the magic
L/E = 1420 km/GeV from Eq. (4.21). The gray band shows
the possible baseline region for the T2HKK second detector.

The main conclusion is thus that the magic energy (4.21)
around the second oscillation maximum,

E = 0.92 GeV
L

1300 km

∣∣∆m2
31

∣∣
2.5× 10−3 eV2 ,

is the ideal choice to find a direct evidence of genuine CP vio-
lation in the lepton sector, since the matter-induced component
ACP;CPT

µe vanishes and the experimental CP asymmetry is fully
genuine.

Any experiment able to probe the L/E = 1420 km/GeV region
would thus have access to this matter-independent configuration,
and we have studied its possible exploitation at T2HKK, a possi-
ble second HK detector in Korea [128], measuring the same beam
as T2HK with baseline within 1000−1300 km. Whereas DUNE
has a wide-band beam and we talked about reconstructing neu-
trino energy bins, the beams envisaged for T2HKK are off-axis
beams with (almost) definite energy. From the configuration of
the T2K beam [129–131], we looked into the beam peak energy
for different off-axis angles θOA, as shown in Figure 4.8. For
each of those peak energies Eν, we compute its associated magic
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baseline L yielding L/E = 1420 km, also shown in the Figure in
the right lables, together with the possible baselines for T2HKK
(gray band). These magic configurations range within the values

θOA = 2.4 o , Eν = 0.71 GeV , L = 1000 km ,

θOA = 1.9 o , Eν = 0.92 GeV , L = 1300 km . (4.22)

Choosing a (θOA, L) setup corresponding to the blue points in
the Figure would ensure that the beam is centered on the magic
point at that specific baseline, allowing the experiment to probe
a genuine CP asymmetry ACP

µe .

4.5.2 Separate determination of all three components

In experiments with sources of electron neutrinos of the same
energy as muon neutrinos, as would be natural for a neutrino
factory but are also ingredients in atmospheric neutrino analy-
ses, not only the CP asymmetry is available. There would also
be the possibility to measure the neutrino and antineutrino T
asymmetries (2.7) and (2.8),

AT
αβ ≡ P(να → νβ)− P(νβ → να) ,

ĀT
αβ ≡ P(ν̄α → ν̄β)− P(ν̄β → ν̄α) .

Unlike the previous case, the two observable T asymmetries
for neutrinos and antineutrinos allow the experimental separa-
tion (4.11) of genuine and fake effects under the same conditions
of baseline and energy,

AT;CP
αβ =

1
2
(AT

αβ − ĀT
αβ) , AT;CPT

αβ =
1
2
(AT

αβ + ĀT
αβ) .

The first component is the genuine one —odd in L and sin δ,
even in a and the Hierarchy— which directly test CP violation in
the lepton sector. The second one is the interference component
—odd in L, sin δ, a and the Hierarchy— which can be used to
extract the mass ordering once sin δ is known. Indeed, the rela-
tive signs of these genuine AT;CP

µe and fake AT;CPT
µe components are

equal (opposite) for Normal (Inverted) Hierarchy, the last one be-
ing smaller in magnitude at all energies and baselines. This is in
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contrast with the other fake component ACP;CPT
µe , which is larger

in magnitude than the genuine ACP;T
µe at large energies for long

baselines, so its information on the Hierarchy can complement
that of AT;CPT

µe .
This other independent fake component ACP;CPT

µe can then be
obtained, using these ingredients, from the CP asymmetry dis-
entanglement (2.5) —or, equivalently, from the asymmetry sum
rule (2.10)— as

ACP;CPT
αβ = ACP

αβ − ACP;T
αβ , (4.23)

being even in L and sin δ and odd in a.
Equivalently, the three components can be obtained from the

measurement of the three CP, T and CPT asymmetries as

ACP;T
αβ =

1
2

(
ACP

αβ +AT
αβ −ACPT

αβ

)
, (4.24a)

ACP;CPT
αβ =

1
2

(
ACP

αβ −AT
αβ +ACPT

αβ

)
, (4.24b)

AT;CPT
αβ =

1
2

(
AT

αβ −ACP
αβ +ACPT

αβ

)
. (4.24c)

Even though this thorough approach is experimentally more
demanding, it provides a general roadmap which one can follow
at any (E, L) configuration, for any flavor channel, in order to ex-
tract the whole basis of components (2.13) from the experimental
asymmetries.
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5 R E S O N A N T ATO M M A J O R A N A
M I X I N G

The experimental evidence of neutrino oscillations is one of the
most important discoveries in particle physics, confirming that
neutrinos are massive particles and that the three left-handed fla-
vor neutrinos νe, νµ, ντ are mixtures of the neutrinos with definite
masses νk.

Knowing that neutrinos are massive, we focus in the following
on possible signatures to answer the most fundamental open
problem: whether neutrinos are Dirac or Majorana particles. The
key distinction between the two cases is that Majorana mass
terms violate total lepton number via ∆L = 2 operators. As a
consequence, no charge can be assigned to definite mass neutri-
nos being a coherent superposition of interacting neutrinos and
antineutrinos. Majorana neutrinos are truly neutral fermions.

In this Chapter, we look into neutrino-mediated ∆L = 2 pro-
cesses. Since these transitions are forbidden in the Standard
Model, their observation would be a proof that neutrinos are
Majorana particles.

5.1 neutrinoless double beta decay

There is a consensus that the highest known sensitivity to
small Majorana neutrino masses can be reached in experiments
searching for the L-violating neutrinoless double-β decay process
(0νββ)

ZA → (Z + 2)A + 2e− , (5.1)

where ZA is a nucleus with atomic number Z and mass number
A. The two-neutrino double-β decay process (2νββ)

ZA → (Z + 2)A + 2e− + 2ν̄e (5.2)

105
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is allowed by the Standard Model for some even-even nuclei for
which the single-β decay or electron capture is forbidden. The
process (5.2) represents an irreducible background in the search
of (5.1), which needs an excellent energy resolution in order to
separate the definite peak in (5.1) from the high-energy tail of
the 2e− spectrum in (5.2).

Dozens of experiments [132–152] around the world are seeking
out a positive signal of 0νββ. The most favorable decays for
the experimental search are those with high mass difference
between the ground state neutral atoms. The most sensitive
limits at present are from GERDA-Phase II [151], located at the
Laboratori Nazionali del Gran Sasso (LNGS), which bounded the

Ge76 half-life T0ν
1/2 > 8.0× 1025 yr at 90% confidence level; and

from KAMLAND-Zen [147], located at the Kamioka Observatory,
which bounded the Xe136 half-life T0ν

1/2 > 1.07× 1026 yr.
If the decay process is mediated by the exchange of light Majo-

rana neutrinos, the mismatch between the e-flavor neutrino and
the definite mass neutrinos νk in the Majorana propagator gen-
erates a decay amplitude proportional to the effective Majorana
neutrino mass

mββ ≡∑
k

U2
ek mνk , (5.3)

which is a coherent combination of the three neutrino masses. Its
determination would thus provide a measure of the absolute neu-
trino mass scale, unobservable at flavor oscillation experiments.
In the standard parametrization with the PMNS matrix (1.25),
this effective mass

mββ = c2
12c2

13m1 + s2
12c2

13eiαm2 + s2
13ei(β−2δ)m3 (5.4)

depends on the three mixing angles and two relative CP phases.
Assuming that neutrinos are Majorana particles, the present

knowledge of mixing angles and neutrino mass differences in
the best-fit values in Eq. (1.20), from neutrino flavor oscillations,
produces the information [153, 154] condensed in Figure 5.1 for
the fundamental quantity mββ. Present experimental limits are
approaching the interval of mββ values predicted for the Inverse
Hierarchy in the neutrino mass spectrum. The lightest case
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Figure 5.1: Allowed parameter space for 0νββ, as a function of the
smallest neutrino mass, for both Normal (green) and In-
verted (blue) Hierarchies. Solid lines show the limits for the
best-fit configuration (1.20), dashed lines show the limits
changing the parameters in their 2σ ranges. Current experi-
mental bounds are also shown for the 0νββ KamLAND-Zen
bound [147] (red), β-decay KATRIN sensitivity [155] (or-
ange), and cosmological Planck results [156] (gray).

m3 = 0 corresponds to ∑ mν = 0.10 eV, whereas the Normal
Hierarchy lightest case m1 = 0 produces ∑ mν = 0.06 eV.

A possibly vanishing mββ would make this decay process
unobservable, even if neutrinos are Majorana particles, and the
experiments looking for this signal would remain inconclusive.
Imposing mββ = 0 leads to the consistency condition

|cos α| =
∣∣∣∣∣ c4

12c4
13m2

1 + s4
12c4

13m2
2 − s4

13m2
3

2c2
12s2

12c4
13m1m2

∣∣∣∣∣ ≤ 1 , (5.5)

which for the best-fit configuration in Eq. (1.20) becomes

1
m1m2

(1.059 m2
1 + 0.236 m2

2 − 0.001 m2
3) ≤ 1 . (5.6)

The absence of the vanishing mββ for the Inverted Hierarchy
is now clear: only if m3 is larger than the other two masses can
it (partially) compensate their terms for the bound to hold. In
the case of the Normal Hierarchy, and taking into account the
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dependence in m1 of m2 =
√

m2
1 + ∆m2

21 and m3 =
√

m2
1 + ∆m2

31,
the consistency condition for vanishing mββ leads to the range of
values m1 ∈ (2.7, 6.9)× 10−3 eV, as shown by the solid lines in
the Figure.

5.2 neutrinoless double electron
capture

There is an alternative to 0νββ by means of the mechanism of
neutrinoless double electron capture (0νεε),

ZA + 2e− → (Z− 2)A ∗ . (5.7)

This is actually a mixing, differing in the total lepton number L
by two units, between two states of two different neutral atoms
with the same baryonic number A, and not a process conserving
energy and momentum in general. The daughter atom is in an
excited state with two electron holes, and its decay provides the
signal for (5.7).

When the mass of the daughter (Z− 2)∗ atom is below the
parent atomic mass, the standard 2ν decay channel

ZA + 2e− → (Z− 2)∗A + 2νe (5.8)

becomes allowed. This 2νεε process has been observed recently
in Xe124 with a half-life of 1022 yr [157].

Ref. [158] first pointed out that the monumental coincidence of
the initial energy of the parent atom and that of the intermediate
excited atom would give rise to a large enhancement of the decay
probability. The concept of resonant enhancement of 0νεε was
further developed [159, 160] for the exceptional circumstance
of almost degeneracy between the parent and daughter atomic
states in (5.7). The almost matching condition is fulfilled when the
2X-ray decay occurs through the tail of the width of the atomic
state, as shown schematically in Figure 5.2. These works stimu-
lated many experimental searches [161–171] of candidates when
the remarkable trap technique [172] for precision measurements
of atomic masses became available.
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Figure 5.2: Schematic representation of the ZA ↔ (Z− 2)A ∗ mixed
atomic system.

e H

p n

p n

e H

ν

Figure 5.3: Feynman diagram for the Majorana mixing amplitude of
the ZA atom ground state and the 2-hole (Z− 2)A ∗ state.

The mixing amplitude was calculated in Ref. [160] from the
diagram in Figure 5.3 and, in a good approximation, it can be
factorized leading to

M21 = m∗ββ

(
GF cos θC√

2

)2

〈F21〉
g2

A
2π

M0ν , (5.9)

where GF is the Fermi coupling constant, θC is the Cabibbo angle,
〈F21〉 gives the probability amplitude of finding the two electrons
in the nucleus, M0ν is the nuclear matrix element, which is of the
order of the inverse nuclear radius, gA is the axial-vector nucleon
coupling, and the effective Majorana neutrino mass mββ appears
as the complex conjugate of the expression (5.3) for neutrinoless
double beta decay.
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The experimental activity in recent years has in turn stimu-
lated the calculation [173–180] of the nuclear matrix elements
for the cases of interest. A list of likely resonant transitions was
provided in Ref. [176], excluding some of those previously sug-
gested in Ref. [160]. After the improvements in measurements of
atomic masses, the remaining candidates include Gd152

64 → Sm152
62 ,

Er164
68 → Dy164

66 and W180
74 → Hf180

72 , for the atomic mixing to the
daughter atom with the nucleus in the ground state, and having
two holes in the inner atomic shells. More recent detailed analy-
ses, using the state of the art in nuclear QRPA and IBM models,
agree in the results, showing that the most promising known
candidates are Gd152 and W180 .

The case of Gd152 → Sm152 mixing and decay is particularly
attractive. The values of the relevant parameters are the exper-
imental ∆ = M1 −M2 = (0.91± 0.18) keV [167] for the masses
of the parent “1” and daughter “2” atoms, Γ = 0.023 keV [161]
for the two-hole atomic width, and the Q-value of the ground
state to ground state transition Q = (55.70± 0.18) keV [167]. The
theoretical mixing is [177, 180]

|M21| = 10−24

[ ∣∣mββ

∣∣
0.1 eV

]
eV . (5.10)

As seen, the optimal resonant enhancement condition is still off
by at least a factor ∆/Γ ∼ 40, implying a loss of 3 orders of mag-
nitude in the expected X-ray rate from the parent atom. We will
use the values for this transition as a benchmark configuration for
all the calculations in this Chapter, exploring the phenomenology
of 0νεε and the possibility to enhance the transition rate.

5.3 the evolution hamiltonian

In the basis of the
∣∣AZ

〉
and

∣∣A(Z− 2)∗
〉

states, which we label
as “1” and “2”, the dynamics of this two-state system of interest
is governed by the Hamiltonian

H = M− i
2

Γ =

[
M1 M∗21
M21 M2

]
− i

2

[
0 0
0 Γ

]
, (5.11)
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with a Majorana ∆L = 2 mass mixing M21 as given by Eq. (5.9).
The anti-Hermitian part of this Hamiltonian is due to the in-
stability of

∣∣A(Z− 2)∗
〉
, which de-excites into the ground state∣∣A(Z− 2)g.s.

〉
—external to the two-body system in Eq. (5.11)—

emitting its two-hole characteristic X-ray spectrum. The appro-
priate non-Hermitian Hamiltonian formalism for describing the
mixing of an unstable two-state system is known since Weisskopf-
Wigner [181], and has been used in many instances. It has been
employed [174, 176] with the objective of reproducing the rate,
induced by atom mixing, as previously given in Ref. [160].

Besides being non-Hermitian, the Hamiltonian (5.11) is not a
normal operator, i.e. M and Γ are not compatible, [M, Γ] 6= 0.
The states of definite time evolution, eigenstates of H, have com-
plex eigenvalues and are given in non-degenerate perturbation
theory [182] by

|λL〉 =
∣∣∣ ZA

〉
+ α

∣∣∣ (Z− 2)A ∗
〉

,

λL ≡ EL −
i
2

ΓL = M1 + |α|2
[

∆− i
2

Γ
]

, (5.12a)

|λS〉 =
∣∣∣ (Z− 2)A ∗

〉
− β∗

∣∣∣ ZA
〉

,

λS ≡ ES −
i
2

ΓS = M2 −
i
2

Γ− |α|2
[

∆− i
2

Γ
]

, (5.12b)

with ∆ = M1 −M2. Thus the eigenstates lifetimes ΓL,S are not
the eigenvalues of the Γ matrix. The eigenstates are modified at
first order in M21 via

α =
M21

∆ + i
2 Γ

, β =
M21

∆− i
2 Γ

, (5.13)

so the “stationary” states of the system do not have well-defined
atomic properties: both the number of electrons and their atomic
properties are a superposition of Z and Z− 2. Also, these states
are not orthogonal —their overlap is given by

〈λS|λL〉 = α− β = −i
M21Γ

∆2 + 1
4 Γ2

, (5.14)

with its non-vanishing value due to the joint presence of the
mass mixing M21 and the decay width Γ. Notice that Im(M21)

originates a real overlap.
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As seen in Eqs. (5.12), the modifications in the corresponding
eigenvalues appear at second order in |M21| and they are equidis-
tant with opposite sign. Since these corrections are small, we will
use the leading-order values

EL ≈ M1 , ES ≈ M2 ,

ΓL ≈ |α|2 Γ , ΓS ≈ Γ . (5.15)

The only relevant correction at order |α|2 is the one to ΓL, since
the parent

∣∣AZ
〉

was a stable state —even if small, the mixing
produces a non-zero decay width.

This result shows that, at leading order, the Majorana mixing
becomes observable through ΓL ∝ |α|2. The key parameter α in
Eq. (5.13), which for the Gd152 case has the value

|α|2 = 10−54

[ ∣∣mββ

∣∣
0.1 eV

]2

, (5.16)

emphasizes the relevance of the condition ∆ ∼ Γ, which produces
a resonant enhancement [160] of the effect of the ∆L = 2 mass
mixing M21.

5.4 natural time history for initial ZA

The diagonalization (5.12) of the Hamiltonian (5.11) shows that
the states

∣∣AZ
〉

and
∣∣A(Z− 2)∗

〉
are not the stationary states of

the system. For an initially prepared
∣∣AZ

〉
, the time history is far

from trivial and the appropriate language to describe the system
short times after is that of atom oscillations [174] between

∣∣AZ
〉

and
∣∣A(Z− 2)∗

〉
, due to the interference of their amplitudes

through |λS〉 and |λL〉 in the time evolution. The time-evolved∣∣AZ
〉

state becomes∣∣∣ ZA (t)
〉
= e−iλLt |λL〉 − α e−iλSt |λS〉 , (5.17)

and the appearance probability at t� τL is then given by∣∣∣〈A(Z− 2)∗
∣∣∣AZ(t)

〉∣∣∣2 = |α|2
{

1 + e−Γt − 2e−
1
2 Γt cos(∆ · t)

}
, (5.18)
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t� τosc

t� τS

τosc � t� τS

t� τosc t� τS

Figure 5.4: Probability of the
∣∣AZ

〉
→

∣∣A(Z− 2)∗
〉

transition in
Eq. (5.18) as a function of time (blue), for time regions
below (left) and above (right) τS. Also shown the ap-
proximations for t � τosc (green) and t � τS (red), to-
gether with the three averaged-out cases t� τosc (purple),
τS � t� τosc (orange), and t� τS � τosc (black).

as shown in Figure 5.4 (in blue). We also show in the Figure
the approximate expressions for the different time regions in
the following discussion. The smallness of the mixing |α|, as
in Eq. (5.16), simplifies the derivation of Eq. (5.18) by assuming
ΓLt� 1 in the state (5.17), which ensures that the long-lived state
will effectively behave as stable throughout the time evolution of∣∣AZ

〉
. In fact, we find that Gd152 has τL ≡ Γ−1

L ∼ 1029 yr, so this
assumption is valid even for cosmological times.

Eq. (5.18) indicates that the transition probability is controlled
by an oscillation angular frequency |∆| and a decay width ΓS = Γ.
The characteristic oscillation time τosc = 2π |∆|−1 is the shortest
time scale in systems with |∆| significantly larger than Γ, as
happens even for Gd152 , whose ∆ ∼ 40Γ. For t� τosc, one has∣∣∣〈A(Z− 2)∗

∣∣∣AZ(t)
〉∣∣∣2 ≈ |M21|2 t2 (5.19)

induced by the mass mixing, whereas for t � τosc the only
change with respect to Eq. (5.18) is that the interference region
disappears. The two slits |λL〉 and |λS〉 in (5.17) would thus con-
tribute incoherently, averaging the oscillations out and yielding∣∣∣〈A(Z− 2)∗

∣∣∣AZ(t)
〉∣∣∣2 ≈ |α|2 {1 + e−Γt

}
. (5.20)
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The next shortest characteristic time in this system is the decay
time τS = Γ−1, associated to the |λS〉 state. For t � τS, the
short-lived state |λS〉 has not fully decayed and the transition
probability (5.18) reduces to the nearly-stable oscillation∣∣∣〈A(Z− 2)∗

∣∣∣AZ(t)
〉∣∣∣2 ≈ |α|2 (2− Γt) {1− cos(∆ · t)} . (5.21)

At intermediate times τosc � t� τS, these oscillations are aver-
aged out and the transition is governed by the slow |λS〉 decay,∣∣∣〈A(Z− 2)∗

∣∣∣AZ(t)
〉∣∣∣2 ≈ |α|2 (2− Γt) . (5.22)

For t � τS � τosc, conversely, the contribution of |λS〉 disap-
pears and the appearance probability simply becomes∣∣∣〈A(Z− 2)∗

∣∣∣AZ(t)
〉∣∣∣2 = |α|2 . (5.23)

In other words, the initially prepared
∣∣AZ

〉
state evolves towards

the stationary metastable state |λL〉,∣∣∣AZ(t)
〉
→ e−iλLt |λL〉 , (5.24)

with the long lifetime τL = Γ−1
L in Eqs. (5.15).

For a realistic time resolution δt in an actual experiment, this
regime is the interesting one, with the behavior in Eq. (5.24). As
shown in Figure 5.5, the different time scales involved in this
problem are thus

τosc � τS � δt� t� τL , (5.25)

where t refers to the elapsed time since the production of AZ,
either by Nature or in the lab —given the smallness of the mixing,
the metastability of the state (5.24) is valid even for cosmological
times. Therefore, for any time between the two scales τS and τL,
the oscillatory behavior is averaged out and the populations of
the three states involved are given by the probabilities

PL(t) = 1− ΓL t (5.26a)

τS � t� τL =⇒ PS(t) = 0 (5.26b)

Pg.s.(t) = |α|2 Γ t (5.26c)
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Figure 5.5: Timeline of the mixed atomic system. The τosc, τS and τL
values are for 152Gd→152Sm, whereas δt is a typical time
resolution, t0 is the age of the sample ore, t⊕⊕⊕ is the age
of the Earth and ∆t is the observation time in an actual
experiment.

where Pg.s.(t) refers to the population of the ground state of
the A(Z − 2) atom after the decay of the unstable “stationary”
state |λS〉 in (5.17), with rate Γ. No matter whether t refers to
laboratory or cosmological times, the linear approximation in t
is excellent.

With this spontaneous evolution of the system, an experiment
beginning its measurements a time t0 after the AZ was pro-
duced will probe the three-level system with relative populations
PL ≈ 100%, PS ≈ 0, Pg.s. ≈ |α|2Γ t0. One discovers two methods,
involving the third state beyond the two mixed states, to be
sensitive to the resonant Majorana mixing of atoms:

1. Spontaneous emission from the metastable state to the
daughter atom ground state. The population in the upper
level |λL〉, as shown in Eq. (5.26a), decreases with time as
PL(∆t) ≈ 1− ΓL ∆t, where ∆t = t− t0, due to the decay of
the metastable “stationary” state |λL〉 to

∣∣A(Z− 2)g.s.
〉
. This

process is associated to the spontaneous emission of X-rays
with a rate ΓL, considered in the literature after the concept
of resonant mixing was introduced in Ref. [160]. For one
mole of 152Gd, the X-ray emission rate would be of the order
of 10−12 s−1 ∼ 10−5 yr−1. The initial state in the transition
at observable times, being |λL〉, tells us that the total energy
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of the two-hole X-ray radiation is displaced by ∆ with
respect to the characteristic

∣∣A(Z− 2)∗
〉
→
∣∣A(Z− 2)g.s.

〉
X-

ray spectrum, i.e. its energy release is the Q-value between
the two atoms in their ground states (as seen in Figure 5.2).

2. Daughter atom population. The presence of the daughter
atom in the parent ores, expected from Eq. 5.26c, can be
probed e.g. by geochemical methods. For one mole of the
nominally stable 152Gd isotope produced at the time of the
Earth formation, the values in Figure 5.5 would predict
an accumulated number of the order of 104 152Sm atoms.
This observable could be of interest for cosmological times
t0 since, contrary to ββ-decay, in the 0νεε case there is no
irreducible background from a 2ν channel for a resonant
atom mixing.

We would like to emphasize that, even though ΓL = |α|2Γ en-
sures the probability conservation, an interpretation of Eqs. (5.26a)
and (5.26c) in different terms is of interest. On the one hand, ΓL

is the rate for the decay of |λL〉 at any time t, which accounts
for the observable 1. On the other hand, the population of the
daughter atom in the ground state is obtained from the mixing
probability leading to |λS〉 in Eq. (5.17) at all times, given by
|α|2 [Eq. (5.23)], times its decay rate to the ground state, ΓS = Γ
[Eqs. (5.15)]. This mixing×decay temporal evolution explains
the non-zero population of A(Z − 2)g.s., producing the second
observable.

One may wonder whether there is, for ∆ > 0, a spontaneous
emission of lower energy X-rays from |λL〉 to |λS〉 leading to
a regeneration of the short-lived mixed state, and providing a
third observable. From the mixing parameters of these states
in Eq. (5.12), the dynamics of this process would be that of the
Compton amplitudes for the Z and (Z − 2)∗ atoms, whereas
the kinematics correspond to two-photon emission instead of
scattering. At these intermediate energies between atomic and
nuclear physics, the Compton amplitude T2γ can be taken to be
an incoherent sum of the electron contributions [183, 184],

T2γ = α TZ−2
2γ − β TZ

2γ , (5.27)
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where

TZ
2γ =

Z e2

m
(ε′ ∗ · ε∗) , (5.28)

m is the electron mass and ε the polarization vectors of the pho-
tons. A straightforward calculation of the rate for this electromag-
netic |λL〉 → |λS〉 transition, when compared to the transition to
the daughter atom ground state, gives a branching ratio of the
order 10−7, showing that this process is negligible for resonant
atoms.

5.5 stimulated transitions

The observable 1 is analogous to 0νββ in that both of them
require no external factor to happen: their observation is a matter
of detector sensitivity and exposure. Observable 2 is unique to
0νεε thanks to the absence of a 2ν background mode, which
ensures that, if the atom is otherwise stable, the Majorana mixing
is the only mechanism that can produce the daughter traces in
the parent ore.

Further advantages can be taken into account in the 0νεε case
by exploiting the understood description of the atomic system
in terms of the |λL〉 and |λS〉 eigenstates (5.12), instead of using
the “flavor” states

∣∣AZ
〉

and
∣∣A(Z− 2)

〉
. This description in

terms of the energy levels EL, ES with widths ΓL, ΓS in Eqs. (5.15)
opens the door to study the possible stimulation of their atomic
transitions by means of an adequately-tuned electromagnetic
radiation. We explore the different possibilities for the typical
transition energies of these mixed atomic systems.

5.5.1 Emission from |λL〉

A careful reading of Eqs. (5.26) shows that, for any parent ore
under consideration, the metastable state |λL〉 and the ground
state

∣∣A(Z− 2)g.s.
〉

have a natural population inversion, with an
overwhelming abundance of the long-lifetime upper level of
the system. This result suggests the exploitation of the bosonic
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properties of the X-radiation, used as a signal of the Majorana
mixing in this problem, and considering the external action of an
X-ray beam to stimulate the emission from the metastable level
to the ground state of this atomic system.

Stimulating radiation for the emission from |λL〉 to the ground
state

∣∣A(Z− 2)g.s.
〉

could thus enhance the rate, and we present
an estimate of the gain which could be envisaged in future
facilities of X-ray beams. A setup with an incident pulsed beam
allows the observation of low rate events in directions outside the
beam direction and the control of background conditions in the
absence of the beam. Therefore, we discover a third observable:

3. Stimulated emission from |λL〉 to
∣∣A(Z− 2)g.s.

〉
. The nat-

ural population inversion between the ground state and
the metastable “stationary” state |λL〉 gives raise to the
possibility of stimulating the decay |λL〉 →

∣∣A(Z− 2)g.s.
〉
.

The experimental signature of this process would be the
emission of X-rays with total energy equal to the Q-value
of the process, just like in observable 1 of spontaneous
emission.

For the emission between the two levels |λL〉 →
∣∣A(Z− 2)g.s.

〉
of radiation with angular frequency ω, the stimulated rate of the
transition is described in terms of the Einstein coefficients [185]
as1

dNL

dt
= −π2c3

h̄ω3 ρω ΓLNL , (5.29)

where NL is the population of the upper metastable |λL〉 level,
ΓL its width and ρω is the energy density of the beam per unit of
angular frequency, i.e.

ρω =
dE

c dt dS dω
. (5.30)

Therefore, this observable is enhanced with respect to the first
one by a gain factor

G =
π2 c3

h̄ ω3 ρω , (5.31)

1 For the sake of clarity, throughout this discussion we keep all h̄ and c factors.
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which is the ratio between the stimulated and spontaneous emis-
sion rates.

In order to produce a sizable gain, one should devise a setup
with as large a ρω as possible. The transition energy of this
system is of the order of tens of keV, so a high-luminosity X-ray
beam is mandatory. Such high-energy beams are produced at
free-electron laser (FEL) facilities, through a kind of laser con-
sisting of very-high-speed electrons moving freely through a
magnetic structure. Free-electron lasers are tunable and have the
widest frequency range of any laser type, currently ranging in
wavelength from microwaves, through terahertz radiation and
infrared, to the visible spectrum, ultraviolet, and X-ray. The
highest frequencies are obtained in XFEL facilities like the run-
ning SLAC Linac Coherent Light Source (LCLS) [19, 20] and the
commissioned European XFEL (EXFEL) at DESY [18].

The determination of the gain factor one could achieve in
these facilities is clearer after rewriting the spectral energy den-
sity (5.30) in terms of beam parameters,

ρω =
h̄
c

dN
dt dS

[
dω

ω

]−1

. (5.32)

Taking dN/dt as the number of photons per pulse duration, dS
as the beam section and dω/ω as the full width half maximum
(FWHM) spectrum width, one finds the gain factor

G = h̄ (h̄c)2 π2

(h̄ω)3
dN

dt dS

[
dω

ω

]−1

(5.33)

to be written in terms of clearly defined beam properties, where
dN/dtdS is the luminosity L of the beam.

At EXFEL, a sound simulation of the conditions of the ma-
chine [186] gives, for typical energies of tens of keV, the expected
number of photons per pulse duration dN/dt = 1010 fs−1 and
the spectral width dω/ω = 1.12× 10−3. Nanofocusing of this
X-ray FELs has been contemplated [187]; using a beam spot of
the order of 100 nm would lead to a gain factor from Eq. (5.33) of
G ∼ 100. The continuous interaction of these X-rays with a mole
of 152Gd atoms would provide a stimulated rate of the order of
10−10 s−1 ∼ 10−3 yr−1, as shown in Figure 5.6
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2ν

sp. 0ν

st. 0ν

Figure 5.6: Lifetime of the Gd152 → Sm152 double electron capture
transition, as a function of the mass difference ∆ between
the two states —the black line and gray band show the
measured value ∆ = (0.91± 0.18) keV [167]. The longer
lived 2νεε (red) is shown together with the spontaneous
0νεε (purple) and a gain (5.33) G = 100 stimulated 0νεε
(blue). Notice that, at the resonant ∆ ∼ Γ = 0.023 keV [161],
the 2ν mode is suppressed and the 0ν mode is enhanced.

One should notice that this rate of events assumes a constant
irradiation of the whole target. The straightforward setup of a
cylindrical target alongside the pulsating X-ray beam presents
different issues. Most notoriously, pulsed beams limit the en-
hancing time to a fraction of the running time. EXFEL manages
to produce 2.7× 104 pulses per second, so that the fraction of
effective time is of the order of 10−9; LCLS-II expects to produce
pulses at 1 MHz, increasing this number by two orders of mag-
nitude, but still far away from a promising factor. Furthermore,
radiation of these energies has an attenuation length in Gd of
tens of microns, limiting the amount of material one could use
to a fraction of a mole. This setup has the general drawback that
the high energy density effect associated with the small beam
spot size is lost when considering the small interaction volume.

The attenuation of the beam is associated to its interaction
with the sample, which is dominated by the photoelectric effect
and, to a lesser extent, inelastic Compton scattering, leading to
ionization. Successive interactions of the secondary electrons



5.5 stimulated transitions 121

will heat the material. A recent simulation [188] of this effect
under realistic experimental conditions on a cylindrical target,
assuming the extreme limit that the whole absorption power is
converted into heating power, shows that a temperature of about
700 oC is reached for an incoming beam of spot size 100 nm and
an average of 1014 X-ray photons/s. Since this temperature is
proportional to the flux, in all high-flux experiments like the one
contemplated in this work, the small interaction-volume target
is actually destroyed. The design of a macroscopic sample with
a very large number of thermally isolated micro-targets, built
on a plane in transversal motion synchronized with the pulse
frequency of the beam, is a subject of current interest [189].

The use of this approach in order to stimulate the ∆L = 2
emission rate should be explored after a suitable candidate is
found. The limiting factors in the expected integrated rate of
events also suggest an alternative ingenuity program more in the
line of micro-particles inserted into a dreamed X-ray resonant
cavity.

5.5.2 Absorption from
∣∣A(Z− 2)g.s.

〉
A different observable may also be considered. The existing

population of the daughter atom in its ground state is, by itself, a
signal of the atom Majorana mixing, as discussed in the previous
Section as a relic of the previous history with an initial parent
atom. Analogous to the stimulation of |λL〉 →

∣∣A(Z− 2)g.s.
〉

benefiting from their natural population inversion, the absence
of atoms in the |λS〉 state of this three-level system opens the
door to stimulate the absorption from

∣∣A(Z− 2)g.s.
〉

to |λS〉.
In fact, there is no reason to limit the daughter atom detection

via absorption to this particular energy level: its population can
be identified by using an intense photon beam, leading to the
characteristic absorption spectrum of the daughter atom and its
subsequent decay to the ground state. This fourth observable is
thus:

4. Stimulated absorption spectrum of the daughter atom. In
the presence of a light beam, the daughter atom population
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would absorb the characteristic frequencies corresponding
to its energy levels, which would then de-excite emitting
light of the same frequency. In the case of the one mole
152Gd ore that we mentioned in the previous Section, all
104 Sm atoms could be easily excited to any of its ∼ 1 eV
levels using a standard pulsed laser of the order of 100 fs
pulse duration, with a mean power of 5 W and a pulse rate
of 100 MHz.

Notice that these numbers imply, for a laser with FWHM spot
size ∼ 40 µm, an absorption rate

dNg.s.

dt

∣∣∣∣
abs

= −60% Ng.s.

[
100 ns

τ

]
fs−1 . (5.34)

Since Sm levels have lifetimes between 10− 1000 ns [190], one
expects to excite them all during the 100 fs pulse. Disentangling
the parent and daughter lines should not be difficult —the rel-
atively small number of atomic absorption lines (compared to
atomic emission lines) and their narrow width (a few pm) make
spectral overlap rare, not being expected between Z and (Z− 2)
atoms.

5.6 looking for a better resonant
candidate

Neutrinoless double electron capture in atoms, a quantum
mixing mechanism between the neutral atoms AZ and A(Z− 2)∗

with two electron holes, is allowed by the Majorana neutrino
mediation responsible for this ∆L = 2 transition. This Majorana
mixing leads to the X-ray de-excitation of the

∣∣A(Z− 2)∗
〉

daugh-
ter atomic state, which under the resonance condition has no
Standard Model background from the two-neutrino decay.

The intense experimental activity looking for atomic candidates
satisfying the resonance condition ∆ ∼ Γ, by means of precise
measurements of atomic masses, has already led to a few cases
of remarkable enhancement effects and there is still room for
additional adjustments of the resonance condition. With this
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situation, it has proved relevant to understand the complete time
evolution of an atomic state since its inception, and whether one
can find, from this information, different signals of the Majorana
mixing.

As is worth noting, the results of the last Section show that
the bosonic nature of the atomic radiation is a property that can
help in getting observable rates of the atom Majorana mixing,
including the stimulated X-ray emission from the parent atom as
well as the detection of the presence of the daughter atoms by
means of its characteristic absorption lines. These two stimulated
observables, together with the spontaneous ones from Section 5.4,
are schematically represented in Figure 5.7.

The actual numerical values presented in this Chapter corre-
spond to the specific case of 152Gd→ 152Sm, which is still off the
resonance condition by a factor 40, implying a missing factor 103

|λL〉

|λS〉

|g.s.〉
1. Spontaneous emission

|λL〉

|λS〉

|g.s.〉
2. Ground state population

|λL〉

|λS〉

|g.s.〉
3. Stimulated emission

|λL〉

|λS〉

|g.s.〉
4. Stimulated absorption

Figure 5.7: Schematic representation of the four observables discussed
in this Chapter.
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in the rates. Taking into account the ongoing searches for new
isotope candidates with a better fulfillment of the resonance con-
dition, there is room for finding a system with 0νεε spontaneous
rates competitive with the best-known 0νββ isotopes.

Depending on the results of these searches, it remains to be
seen whether these processes, with the ideas on stimulating the
transitions, could become actual alternatives in the quest for the
Dirac/Majorana nature of neutrinos.



6 N E U T R I N O - M E D I AT E D LO N G
R A N G E F O R C E S

Global lepton number is conserved in the Standard Model.
Contrary to charged leptons and quarks, neutrinos may have
a ∆L = 2 Majorana mass term which has to be generated by
beyond the Standard Model physics. For relativistic neutrinos,
the corresponding “confusion theorem” explains the very long
lifetimes of ∆L = 2 processes such as neutrinoless double beta
decay or neutrinoless double electron capture analyzed in the
previous Chapter: even though the neutrinos are virtually ex-
changed, the energies involved in these processes are MeV’s or
keV’s. In this Chapter, we follow an alternative approach in the
search for global lepton number violation: explore the effects
of ∆L = 2 contributions to a ∆L = 0 process allowed in the
Standard Model.

For a ∆L = 0 process involving neutrinos that can be eventually
observed, the possible change in the measured observable due
to these ∆L = 2 terms will prove whether neutrinos are either
Dirac or Majorana particles. Thus the answer to this fundamental
question is a matter of experimental resolution between the two
distinct mass terms. This is unlike ∆L = 2 processes, where
there would be no signal —and thus no experimental answer—
if neutrinos are Dirac. Another benefit of measuring such an
observable is its expected dependence on neutrino masses, which
could give information on the absolute mass scale even with a still
unknown neutrino character. Indeed, this is another fundamental
question still unanswered, since the expected small value of
neutrino masses (mν < 1 eV) makes it hard to observe.

In any case, the fact that their masses are very low stands,
and we discuss here another property of neutrinos as mediators
of a new force. As is well known, the processes represented in
Quantum Field Theory by the exchange of a massless particle
give raise to long-range interactions. A clear example is the

125
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scattering of two particles mediated by a photon, which —at
tree level— describes Coulomb scattering. Our objective in this
Chapter is the application of these ideas to a process mediated
by neutrinos. According to the electroweak Lagrangian, the
lowest-order process is a neutrino-pair exchange, which —since
neutrinos are nearly massless— describes an interaction of long
range. For a typical neutrino mass of mν ∼ 0.1 eV, the range of
such an interaction would be R ∼ 1 µm, well above the atomic
scale. At these distances, the force will probe mass terms. Since
this interaction is expected to be much weaker than Coulomb’s,
we will focus on obtaining the coherent 2ν-mediated potential
between electrically neutral atoms. We will prove that neutral
atoms do have a non-vanishing weak charge, and the coherent
character of the interaction vertex makes it easy to extend this
result to larger aggregates of ordinary matter.

6.1 interaction potential from a quantum
field theory

When discussing the effects of different forces on particles, the
usual language is that of an interaction potential between them.
This picture of an interaction in position space allows for an easy
understanding of its implications in terms of forces. In particle
physics, however, we are used to calculate interaction processes
using the Feynman approach in momentum space.

We thus begin this Chapter with a consistent map between the
two representations, and clearly set the ingredients that will be
needed from the Feynman amplitude in the calculation of the
interaction potential.

6.1.1 Single particle exchange

The interaction between two electrically charged particles, say
A and B, is described by the Coulomb potential,

VC(r) =
e2

4π

QAQB

r
, (6.1)
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A(p1) A(p3)

QA

γ(q)

B(p2) B(p4)

QB

Figure 6.1: Lowest-order Feynman diagram for AB→ AB elastic scat-
tering mediated by a photon, where A and B are particles
of electric charge QA and QB.

where e is the charge of the positron, Qi is the charge of the
particle i = A, B in units of e, and r is the distance between the
two particles.

We are interested in deriving this potential from the QED
amplitude in Figure 6.1, which is described by the interaction
Lagrangian

LQED ⊃ −eQi ψ̄iγ
µψi Aµ . (6.2)

Using the QED Feynman rules [191], the amplitude of the process
is

iM =
[
ūA

p3
(−ieQAγµ)uA

p1

] −igµν

q2

[
ūB

p4
(−ieQBγν)uB

p2

]
, (6.3)

written in such a way that the phase conventions for the ampli-
tude, vertex factors and propagator are clear.

The terms leading to Coulomb scattering are only the coherent
ones, so we can consider

M≈ e2QAQB

[
ūA

p3
γ0 uA

p1

] 1
q2

[
ūB

p4
γ0 uB

p2

]
, (6.4)

taking into account the fact that γ0 is related to the electric charge,
which is coherent, whereas γ is related to the electromagnetic
current, an incoherent quantity.

Using
(
γ0)2

= 1 and dropping external-line factors, we get the
reduced amplitude

M(q2) = e2QAQB
1
q2 (6.5)
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from its definition as

M(q2) ≡ ūA
p3

ūB
p4

M(q2) uB
p2

uA
p1

. (6.6)

We can study this scattering process in the Breit reference
frame, defined by q0 = 0. This choice is consistent with the low
energy transfer in the non-relativistic limit, leading to

M(q2) = −e2QAQB
1

q2 . (6.7)

Since this M(q2) is the reduced amplitude describing the pro-
cess in the low-energy coherent limit, it must be the ingredient
from which the potential can be calculated. In order to transform
the amplitude in momentum space into the potential in position
space, we calculate its 3-dimensional Fourier Transform

F {M} (r) ≡
∫ d3q

(2π)3 eiq r M(q2) = − e2

4π

QAQB

r
. (6.8)

Comparing this Fourier transform with the Coulomb potential
in Eq. (6.1) yields the relation between the Feynman amplitude
and the interaction potential used in a potential description of
the system dynamics,

V(r) = −F {M} (r) , (6.9)

without any numerical factor between them beyond the sign due
to our phase convention for the Feynman amplitude.

6.1.2 Particle-pair exchange

As we have just seen, the interaction potential between particles
A and B is the Fourier Transform

V(r) = −
∫ d3q

(2π)3 eiq r M(q2) , (6.10)

where M is the lowest order Feynman amplitude for the process
AB → AB, with both A and B on-shell but without external-
leg factors, as is discussed in Ref. [192]. In the case of a pair
exchange, this process will be the one represented in Figure 6.2.
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A A

a b

B B

Figure 6.2: Feynman diagram for AB→ AB elastic scattering mediated
by a, b exchange.

The dispersion theory for long-range forces was developed
in Ref. [193] for its application to two-photon exchange, giving
origin to Van der Waals interaction between neutral objects. The
generalization to charge-neutral electromagnetic potentials was
performed in Ref. [194], as well as its extension for a low momen-
tum transfer theorem [195] in lepton-hadron scattering. The case
of the two-neutrino exchange force was first announced [196] in
1968 by Gerald Feinberg and Joseph Sucher for electron-electron
interactions due to charged currents. Its formulation in the dis-
persion approach, including weak neutral current interactions,
was given for massless neutrinos in Refs. [197–199].

With the discovery of neutrino masses and mixings, the interac-
tion potential will be modified near its finite range. In Ref. [200]
the Dirac neutrino exchange case has been calculated for charged
leptons and nucleon interactions using old-fashioned perturba-
tion theory. In the dispersion approach, this Thesis develops
for the first time the physical case of 3 neutrino species with
masses and mixings, with the appropriate treatment of Dirac and
Majorana masses. For aggregate matter, there will be coherent
weak charges associated to each pair of intermediate massive
neutrinos. This study is needed for the exploration of the effec-
tive interaction mediated by two-neutrino exchange at distances
of the order of the Compton wavelength of neutrinos.



130 neutrino-mediated long range forces

Re t

Im t

t0

C∞

C+

C−

Figure 6.3: Integration path C = C∞ + C− + C+ in the complex plane
of the Mandelstam t variable, used in the dispersion re-
lation decomposition of the Feynman amplitude of the
process, as discussed in the text.

In order to compute the integral (6.10), we rewrite the ampli-
tude as a dispersion relation: we extend t ≡ q2 to the complex
plane and expand the amplitude using Cauchy’s Formula,

f (z) =
1

2πi

∫
C

dz′
f (z′)

z′ − z
, (6.11)

which is valid whenever f (z) is analytic inside C.
The physical region of the t variable of elastic scattering pro-

cesses has t < 0, so we want the R− axis inside C. Further-
more, the t-channel amplitude will have a branching point at
t0 ≡ (ma + mb)

2 ≥ 0, so we can use Cauchy’s Formula with the
integration path shown in Figure 6.3. If the amplitude vanishes
along the C∞ circumference, i.e. as |t| → ∞, the only contribution
is the one coming from the integral on both sides of the cut along
the real t axis,

M(t) =
1

2πi
lim
ε→0

∫ ∞

t0

dt′
M(t′ + iε)−M(t′ − iε)

t′ − t
. (6.12)

If not vanishing at C∞, we would have to either rewrite the
dispersion relation for the subtracted amplitude or include the
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contribution of C∞. We continue with the formulation without
subtractions, because the contribution along C∞ is of short range.
We thus understand Eq. (6.12) for the long-range amplitude.

In order to calculate the analytically extended amplitude both
above and below the unitarity cut, we can relate them using the
Schwarz Reflexion Principle,

M(t− iε) = M∗(t + iε) . (6.13)

Using this relation, one finds

M(t) =
1
π

∫ ∞

t0

dt′
Im M(t′)

t′ − t
, (6.14)

which is the so-called t−channel dispersion relation of the Feyn-
man amplitude.

Taking into account the Fourier transform of a spherical wave,

1
t′ − t

=
1

4π

∫
d3r e−iq r e−

√
t′r

r
, (6.15)

the integral (6.10) shows that the non-relativistic potential is

V(r) =
−1

4π2r

∫ ∞

t0

dt′ e−
√

t′r Im M(t′) , (6.16)

determined by the absorptive part of the Feynman amplitude
only. As seen, for the determination of the long-range potential
we will not be interested in the whole 1-loop M(t), but only in
its Im M(t), so we can make a profit from the unitarity of the S
matrix to simplify our calculations.

6.2 unitarity: amplitude absorptive part

Physical processes are determined by matrix elements of the
scattering matrix S. The S matrix relates the orthonormal bases
of initial and final states, so it has to be a unitary operator,

S†S = 1 . (6.17)
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We define the reduced scattering matrix T as S ≡ 1+ i T, which
describes processes where there really is an interaction —initial
and final states are not the same ones. In terms of this operator,
the unitarity relation (6.17) becomes

T†T = −i(T − T†) . (6.18)

In order to describe a physical process, we have to consider
the matrix element

〈 f | T |i〉 ≡ (2π)4δ(4)(p f − pi)M(i→ f ) , (6.19)

where |i〉 is the initial state and | f 〉 is the final one. Therefore,
we need to sandwich the previous relation between those states.

Assuming that Time Reversal is a good symmetry, i.e.

T(i→ f )− T( f → i)∗ = 2 Im T(i→ f ) , (6.20)

the right-hand side of Eq. (6.18) is

〈 f |RHS |i〉 = 2 Im 〈 f | T |i〉 . (6.21)

On the other hand, an identity relation

1 = ∑
n

∫ n

∏
j=1

d3qj

(2π)32Eqj

|qn〉 〈qn| (6.22)

can be inserted into the left-hand side to find

〈 f |LHS |i〉 = ∑
n

∫ n

∏
j=1

d3qj

(2π)32Eqj

〈 f | T† |qn〉 〈qn| T |i〉 , (6.23)

with |qn〉 representing a state of n particles with 4-momenta
q1, q2... qn. Under these conditions, the unitarity relation for
physical processes is

Im 〈 f | T |i〉 = 1
2 ∑

n

∫
dQn 〈qn| T | f 〉∗ 〈qn| T |i〉 , (6.24)

stating that the absorptive part of the |i〉 → | f 〉 amplitude is
determined by the scattering amplitudes of |i〉 and | f 〉 going to
all possible intermediate states |qn〉.
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Ā

ν

ν

s channel

B

B̄

Figure 6.4: Leading-order Feynman diagrams for the neutrino-pair me-
diated t-channel AB→ AB scattering (left) and s-channel
AĀ→ BB̄ scattering (right).

This relation applies to our process. We are interested in calcu-
lating the absorptive part of the AB→ AB amplitude mediated
by a neutrino pair, so we need to do a t-channel unitarity cut
of the diagram in Figure 6.4. Therefore, we apply Eq. (6.24) to
the crossed process AĀ→ BB̄, corresponding to the s channel in
Figure 6.4, with a 2ν intermediate state,

ImM(AĀ→ BB̄) =
1
2

∫ d3k1

(2π)32Ek1

d3k2

(2π)32Ek2

×

× (2π)4δ(4)(k1 + k2 − pi)M(BB̄→ νν̄)∗M(AĀ→ νν̄) .
(6.25)

This expression, written in an explicitly Lorentz-invariant man-
ner as

ImM(AĀ→ BB̄) =
1
2

∫ d4k1

(2π)3 δ(k2
1 −m2

ν)
d4k2

(2π)3 δ(k2
2 −m2

ν)×

× (2π)4δ(4)(k1 + k2 − pi)M(BB̄→ νν̄)∗M(AĀ→ νν̄)

(6.26)

provides a clear insight into the ingredients needed to determine
the interaction potential: there is no need to calculate the 1-loop
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amplitude in Figure 6.4, for its absorptive part is completely
determined by the tree-level scattering amplitudes AĀ→ νν̄ and
BB̄→ νν̄.

6.3 low-energy effective couplings

As is well known, the interactions of neutrinos with the other
fundamental particles are described by the electroweak charged-
current (CC) and neutral-current (NC) Lagrangians,

LCC = − e√
2 sin θW

W†
µ

[
ūiγ

µPLVij dj + ν̄iγ
µPLei

]
+ h.c. (6.27a)

LNC = −eAµ Qjψ̄j γµ ψj−

− e
4 sin θW cos θW

Zµ ψ̄j γµ
(

gVj
− gAj

γ5

)
ψj , (6.27b)

where θW is the weak mixing angle, e is the electric coupling and
gV (gA) are the weak neutral vector (axial) couplings.

For any elementary particle, the weak neutral couplings are
given by

gV = 2T3 − 4Q sin2 θW , gA = 2T3 , (6.28)

where T3 is the third component of weak isospin and Q is the
electric charge. The electroweak charges of the SM fermions are
written in Table 6.1.

The electroweak Lagrangians in Eqs. (6.27) provide the Feyn-
man rules needed to compute the scattering amplitude AĀ→ νν̄.

Table 6.1: Electroweak charges of the Standard Model fermions: elec-
tric Q, neutral weak vector gV and axial gA.

Particle Q gV gA

ui 2/3 1− 8
3 sin2 θW 1

di −1/3 −1 + 4
3 sin2 θW −1

νi 0 1 1
ei −1 −1 + 4 sin2 θW −1
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Our focus, however, is to determine the long-range interaction
potential mediated by a neutrino pair. Its long-range nature is
connected with its blindness to the high-energy details of the
theory, for this potential is given by the low momentum transfer
terms in the amplitude. Therefore, the relevant terms for the po-
tential are the leading terms in the limit

∣∣q2
∣∣� M2

W , M2
Z, and we

can simplify our calculations by obtaining low-energy effective
interactions from the above Lagrangians.

6.3.1 Effective Lagrangian for neutrino-matter interactions

In the scattering process Aν→ Aν at low energy, the neutrino
can interact with the three “elementary” particles which the
aggregate of matter A is formed with —electrons, protons and
neutrons.

We can consider that nucleons are point-like Dirac particles
because the scattering happens at low energy: the neutrino is a
large scale probe that cannot resolve the structure of nucleons.
The vector current is conserved, so both the electric charge Q and
the weak vector charge gV of the nucleons are the sum of their
valence quarks’ charges,

Qp = 1 ,

Qn = 0 ,

gp
V = 1− 4 sin2 θW ,

gn
V = −1 . (6.29)

On the other hand, the axial current is not conserved, so this
argument does not apply to the weak axial charge of the nucleon.
In fact, Eq. (6.28) shows that the axial coupling is independent
of the electric charge —it only depends on the weak isospin
coupled to the W3

µ boson. Therefore, it can be expected due to
weak isospin symmetry, if it coincides with strong isospin for
the (p, n) doublet, that the weak neutral axial coupling at low
momentum transfer, q2 → 0, is related to the coupling to the
W±µ -mediated charged current responsible of the n→ p process,
gA = 1.2723(23) [201]. In general, we may distinguish gN

A for
N = p, n.
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Figure 6.5: Tree-level Feynman diagrams for the ψν → ψν scattering
corresponding to the Standard Model NC Lagrangian (left)
and the effective low-energy Lagrangian obtained integrat-
ing out the Z degrees of freedom (right).

Taking all of this into account, the Lagrangian describing the
Aν→ Aν interaction has three terms, related to the processes

νe + e −→ νe + e , (6.30a)

νi + e −→ νi + e , (i = µ, τ) (6.30b)

νj + N −→ νj + N . (j = e, µ, τ) (6.30c)

There are contributions to all of these processes from Z-mediated
NC interactions, via the Feynman diagram in Figure 6.5. As dis-
cussed, the long-range potential will be blind to

∣∣q2
∣∣ & M2

Z
effects, so we work with a low-energy effective Lagrangian ob-
tained from (6.27b) after integrating out the Z boson degrees of
freedom. This procedure is done by setting the field Zµ in the
full Lagrangian to the solution of its equation of motion,

0 =
∂LNC

∂Zµ
= M2

ZZµ− e
4 sin θW cos θW

ψ̄j γµ
(

gVj − gAj γ5

)
ψj .

(6.31)

The resulting effective Lagrangian,

L eff
NC = − GF

2
√

2
[ν̄k γµ (1− γ5) νk]

[
ψ̄j γµ

(
gVj − gAj γ5

)
ψj

]
, (6.32)

describes the contact interaction represented in Figure 6.5.
On the other hand, the only contribution from CC interactions

to the long-range potential will come from the scattering of
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Figure 6.6: Tree-level Feynman diagrams for the ν̄ee → ν̄ee scattering
corresponding to the Standard Model CC Lagrangian (left),
the effective low-energy Lagrangian obtained integrating
out the W degrees of freedom (middle) and this last La-
grangian after Fierz reordering the fields and writing the
currents as flavor diagonal (right).

electron neutrinos with electrons in process (6.30a). Integrating
out the W from Lagrangian (6.27a) leads to

L eff
CC = − GF√

2
[ν̄e γµ (1− γ5) e]

[
ē γµ (1− γ5) νe

]
, (6.33)

where the Fermi constant is given by GF√
2
= e2

8M2
W sin2 θW

.

As shown in Figure 6.6, it is convenient to rewrite this La-
grangian as flavor diagonal, so that both NC and CC Lagrangians
explicitly contribute to the same interaction vertices, and we can
obtain their effective coupling adding them up. This simplifica-
tion can be achieved using the Fierz identity

[ψ̄1ΓPLψ2] [ψ̄3PRΦψ4] = −
1
2
[ψ̄1ΓγµPRΦψ4][ψ̄3γµPLψ2] , (6.34)

valid for any pair of gamma matrices Γ, Φ. This reordering of
the fields in the current-current interaction leads to the flavor-
diagonal CC effective Lagrangian

L eff
CC = − GF√

2
[ν̄e γµ (1− γ5) νe]

[
ē γµ (1− γ5) e

]
. (6.35)

Unlike the NC effective Lagrangian, which is diagonal in both
neutrino flavor and mass basis, this CC effective Lagrangian
couples only electron neutrinos. Written explicitly in terms of
definite-mass fields,

L eff
CC = − GF√

2
UeiU∗ej

[
ν̄j γµ (1− γ5) νi

] [
ē γµ (1− γ5) e

]
, (6.36)
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ψ
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−i GF
2
√
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(
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Vij
− gψ

Aij
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ψ = e, p, n
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Figure 6.7: Fundamental vertex of the effective low-energy Lagrangian
(6.39). The effective couplings gψ

Vij
, gψ

Aij
in Eqs. (6.38) and

(6.40) depend on both the neutrino masses and which is
the fermion ψ, as discussed in the text.

the Lagrangian shows that propagation of two neutrinos with
different masses is allowed if mixing is taken into account.

From these two low-energy weak Lagrangians, the complete
effective Lagrangian describing the relevant interactions for the
long-range potential is

Leff = −
GF

2
√

2

{[
ν̄j γµ (1− γ5) νi

] [
ē γµ

(
ge

Vij
− ge

Aij
γ5

)
e
]
+

+ [ν̄k γµ (1− γ5) νk]
[

N̄ γµ

(
gN

V − gN
A γ5

)
N
]}

(6.37)

where N = p, n, and the effective electron couplings gψ
Vij

, gψ
Aij

include both e-flavor CC and diagonal NC interactions,

ge
Vij

= 2UeiU∗ej + ge
Vδij , (6.38a)

ge
Aij

= 2UeiU∗ej + ge
Aδij . (6.38b)

Notice that the neutrino current can be factored out if a Kro-
necker δij is added in the nucleon current, so all fundamental
vertices of this Lagrangian have the same structure,

Leff = −
GF

2
√

2

[
ν̄j γµ (1− γ5) νi

] [
ψ̄ γµ (gψ

Vij
− gψ

Aij
γ5)ψ

]
, (6.39)

as represented in Figure 6.7. This fact reduces the calculation of
the required amplitudes to a single one followed by adequate
substitutions, taking into account the effective eeνiνj couplings
in Eqs. (6.38), the fundamental eνi NC couplings in Table (6.1),
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and the nucleon couplings in Eq. (6.29), which enter the effective
Lagrangian (6.39) as

gN
Vij

= gN
V δij , (6.40a)

gN
Aij

= gN
A δij . (6.40b)

6.4 ν-matter scattering amplitude

All ingredients for the calculation of the 2ν-mediated long-
range potential between two aggregates of matter A and B
are now clear. With the two electrically neutral aggregates
parametrized by their number of protons and electrons Z, and
their number of neutrons N, the procedure is as follows:

1. Calculate the ZA
N ν→ ZA

N ν scattering amplitude using the
low-energy effective Lagrangian (6.39).

2. Combine the two amplitudes for A and B as in Eq. (6.26)
to obtain the absorptive part of the 2ν-mediated AĀ→ BB̄
scattering amplitude.

3. Crossing this absorptive part from the s channel to the t
channel yields Im(AB → AB), the last ingredient needed
to calculate the long-range potential as in the integral trans-
form in Eq. (6.16).

We focus in this Section on the first two steps, analyzing their
implications for the cases of massless neutrinos, Dirac neutrinos
and Majorana neutrinos, with special emphasis on the distinction
of the Dirac/Majorana neutrino character. The discussion of their
effects on the long-range potentials will be broken down in the
next Section 6.5.
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A(p1) A(p2)

ν(k1) ν(k2)

q = p2 − p1
= k1 − k2

Figure 6.8: Lowest order Feynman diagram for the Aν→ Aν scattering
in the low-energy effective weak theory.

6.4.1 Massless neutrinos

In the simpler case of massless neutrinos, flavor and mass
states are equivalent, leading to UPMNS = 1. In terms of flavor
fields, Lagrangian (6.39) is simplified to the flavor-diagonal

Leff = −
GF

2
√

2
[ν̄α γµ (1− γ5) να]

[
ψ̄ γµ (gψ

Vα
− gψ

Aα
γ5)ψ

]
, (6.41)

written in terms of the flavor couplings

ge
Vα

= 2δαe + ge
V , gN

Vα
= gN

V ,

ge
Aα

= 2δαe + ge
A , gN

Aα
= gN

A . (6.42)

The scattering of a matter aggregate A with Z protons, Z
electrons and N neutrons is thus determined by this interaction
with its constituent fields as the Feynman diagram in Figure 6.8.
For the diagonal current of massless neutrinos, the possible
channels are the three flavors A(p1) να(k1)→ A(p2) να(k2).

We write the current-current amplitude as

TAα
= − GF

2
√

2

∫
d4x jµ

να
(x)Jα

A,µ(x) , (6.43)

with the usual current for the fundamental neutrino field

jµ
να
(x) = [ū(k2) γµ (1− γ5) u(k1)] e−i(k1−k2)x , (6.44)
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and the aggregate current

Jα
A,µ(x) = e−i(p1−p2)x ∑

ψ

〈A(p2)| ψ̄(0)γµ

(
g̃ψ

Vα
− g̃ψ

Aα
γ5

)
ψ(0) |A(p1)〉 ,

(6.45)

summed for ψ = e, p, n. This matrix element will depend on the
structure of the matter aggregate, but we do not need to consider
this general case, since we are only interested in finding the
relevant terms to the coherent long-range interaction. Looking
separately at each component of the current, we find:

• γ0 is a scalar quantity, related to the matrix element of
ψ†ψ, which is the number operator, so its contribution is
coherent.

• γ0γ5 is a pseudo-scalar quantity, so its matrix element is
related to σq/M, where σ is the spin of A, M its mass and
q = p1 − p2 the momentum transfer. Since this contribu-
tion depends on the spin σ, it is not coherent. Also, any
contribution of the form q/M gives a relativistic correction
to the potential, negligible in the long-range regime.

• γ is a polar vector, so its matrix element must be propor-
tional to q/M. Again, this is a relativistic correction we
will not consider.

• γγ5 is an axial vector, directly related to the spin of the
particle, so this contribution is also incoherent.

Therefore, the coherent contribution to the long-range ampli-
tude is solely determined by the γ0 term in the time-like µ = 0
component of the aggregate current, given by the number opera-
tor of each species ψ = e, p, n as

Jα
A,0(x) ≡∑

ψ

Jψα
A,0(x) = ∑

ψ

Nψ gψ
Vα

e−i(p1−p2)x . (6.46)

In order to work in a Lorentz-covariant formalism, we write
the scattering amplitude in momentum space as

MAα
= − GF

2
√

2
Jα

A,µ [ū(k2) γµ (1− γ5) u(k1)] , (6.47)
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in terms of the full aggregate current Jα
A,µ ≡ ∑ψ Jψα

A,µ, even
though the only relevant component of Jα

A,µ in the coherent long-
range amplitude is, as seen from Eq. (6.46) and the couplings in
Eq. (6.42),

Jα
A,0 = 2Zδαe − N . (6.48)

This relation shows that NC interactions of neutrinos with pro-
tons and electrons cancel each other out due to the conservation
of the vector current leading to gp

V = −ge
V . The remaining terms

are the Z-dependent CC interaction of electron neutrinos with
electrons and the N-dependent NC interaction of all three neutri-
nos with neutrons.

6.4.1.1 The weak flavor charge of aggregate matter

The behavior of the amplitude (6.47) in terms of the coherent
J0

Aα
in Eq. (6.48) has conceptually significant consequences, worth

analyzing in detail.
Notice that this amplitude is analogous to the QED scattering

of a photon off a charged fermion. The amplitude of the γψψ

fundamental vertex is

Mγ = −eQ γµεµ , (6.49)

where Q is the electric charge of the fermion field. Due to
vector current conservation, this vertex does also apply to non-
fundamental particles, which have an electric charge equal to the
sum of its constituents’ charges —and the amplitude would be
this charge times the coupling e.

In this sense of coherent interactions being described by cou-
pling × charge × current, our non-relativistic coherent amplitude
for neutrino-matter scattering

M2να = −
GF

2
√

2
Jα

A,0
[
ū(k2) γ0(1− γ5) u(k1)

]
(6.50)

shows that Qα
W,A ≡ Jα

A,0 = 2Zδαe − N is the weak charge of the
aggregate of matter A. It depends on the flavor of the neutrino,
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Qe
W

−Qµ,τ
W

Figure 6.9: e (blue), µ and τ (black) weak flavor charges in Eqs. (6.51) of
the elements with (Z, N) in the valley of stability, Eq. (6.52).
Beware a minus sign in the µ, τ flavor charges.

so we can speak of three weak flavor charges of aggregate matter,
which are given by

Qe
W,A = 2ZA − NA , (6.51a)

Qµ
W,A = Qτ

W,A = −NA . (6.51b)

Eqs. (6.51) state the fact that, whereas aggregate matter is neutral
of electric charge, it is not neutral of weak charges!

It is interesting to analyze the value of those charges for “nor-
mal” matter. In order to do that, we look at stable nuclei. Accord-
ing to the semi-empirical mass formula [202], the (Z, N) values
of stable nuclei are related by

Z ≈ A
2 + 0.0157A2/3 , (6.52)

where A ≡ Z + N. Using those pairs of values, the weak charges
of each element (neutral atom) are represented in Figure 6.9,
where we see that the e flavor weak charge is always positive,
whereas the µ and τ flavor charges are always negative. The weak
charge of an aggregate of matter is obtained from the values in
the Figure, multiplying by the number of the constituent atoms.
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6.4.1.2 Absorptive part of AB→ AB at low t

According to the discussion leading to Eq. (6.26), the absorptive
part of the s-channel AĀ→ BB̄ scattering amplitude is obtained
from crossing the t channel amplitude (6.47) into the s channel
AĀ→ ναν̄α amplitude

MAα
= − GF

2
√

2
J̃α

A,µ [ū(k2) γµ (1− γ5) v(k1)] , (6.53)

where J̃α
A,µ are the components of the crossed aggregate current,

still yielding J̃α
A,0 = Qα

W,A in the coherent non-relativistic limit.
The quantity that determines the absorptive part is the product

of intermediate-state amplitudes

MAα
M∗

Bα
= G2

F Z̃α
µν

[
kµ

1 kν
2 + kν

1kµ
2 −

1
2

sgµν + aµν

]
, (6.54)

where we defined Z̃α
µν ≡ J̃α

A,µ J̃α
B,ν and aµν is some antisymmetric

tensor which we will no longer consider because it vanishes in
the non-relativistic limit, where the only relevant component is
µ = ν = 0.

The phase-space integral (6.26) of the product of intermediate-
state amplitudes in Eq. (6.54) is easily solved using Lorentz
covariance1, yielding

ImM(AĀ→ BB̄) =
G2

F
48π ∑

α

Z̃α
µν [ qµqν − sgµν ] , (6.55)

whose tensor structure is transverse, a requirement which any
quantity built from conserved currents must satisfy. We can now
uncross back to the t channel to obtain the AB→ AB absorptive
part

ImM(AB→ AB) =
G2

F
48π ∑

α

Zα
µν [ qµqν − tgµν ] . (6.56)

1 The relevant integrals in the massless neutrino case are

I ≡
∫ d3k1

2E1

d3k2
2E2

δ(4)(k1 + k2 − q) =
π

2
,

Iµν ≡
∫ d3k1

2E1

d3k2
2E2

δ(4)(k1 + k2 − q) kµ
1 kν

2 =
π

24
(sgµν + 2qµqν) .
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Weak

Grav.

Figure 6.10: Weak coupling ∑α Qα
W Qα

W (blue), which is written in
Eq. (6.58), for the elements of the valley of stability as
determined from Eq. (6.52), each one interacting with
itself. The gravitational coupling M2/m2

p ≈ (Z + N)2,
neglecting binding energies, is also shown (black).

As discussed, the long-range potential is determined by the
coherent non-relativistic contribution to the amplitude, which is
given by the µ = ν = 0 component with q0 ≈ 0,

ImM(AB→ AB) = − G2
F

48π ∑
α

Qα
W,AQα

W,B t . (6.57)

This result shows that, in the massless neutrino limit, all the
flavor dependence of the absorptive part —and, therefore, of the
long-range potential— is factorized in the weak charges. Since
the sign of each flavor charge is the same for all stable elements,
as shown in Figure 6.9, the negative sign of the absorptive part
for all t > 0 ensures that the potential will be repulsive for all
matter, independently of its composition.

The coherent character of the interaction is also determined by
this flavor-to-flavor product of weak charges

∑
α

Qα
W,AQα

W,B = (2ZA − NA)(2ZB − NB) + 2NANB . (6.58)

For the list of stable nuclei considered in the analysis of the
weak flavor charges, we show in Figure 6.10 the value of the cou-
pling (6.58) if each atom is interacting with itself. We also show
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the gravitational coupling for these pairs of atoms, approximated
to (Z + N)2, from which we find that gravitation grows more
rapidly by enlarging the matter aggregate than the 2ν-mediated
interaction does. Even though both of them increase with the
number of particles composing the interacting systems, their
different scale proves that our coherent weak interaction could
introduce a deviation from the weak equivalence principle, as
had been announced in Ref. [198].

6.4.2 Dirac neutrinos

Although the procedure in calculating the absorptive part of
the scattering amplitude is the same for Dirac neutrinos as for
the massless case, the addition of a mass term as in Eq. (1.21)
in the Lagrangian introduces some significant differences. Most
notoriously, the mismatch between flavor and mass eigenstates
given by UPMNS must be taken into account, which means that the
full Lagrangian (6.39) must be used, with the PMNS-dependent
couplings ge

Vij
and ge

Aij
in Eqs. (6.38) describing the different

contributions from νe and νµ,τ to the νiν̄j intermediate state.
Analogous to the Feynman diagram in Figure 6.8, the relevant

process in obtaining the scattering to the intermediate state will
thus be Aνi → Aνj. Its amplitude can be written in the same
form as the massless amplitude (6.47),

MAij = −
GF

2
√

2
Jij

A,µ

[
ūj(k2) γµ (1− γ5) ui(k1)

]
, (6.59)

with the qualitatively different dynamics in the couplings in the
matter current Jij

A,µ leading to its coherent non-relativistic limit

Jij
A,0 = ∑

ψ

Nψ gψ
Vij

= 2ZUeiU∗ej − Nδij . (6.60)

One can easily check that the massless limit Uαk = δαk of these
mixed charges Qij

W,A ≡ 2ZUeiU∗ej − Nδij correctly reproduces the
weak flavor charges in Eqs. (6.51).

Besides this difference in dynamics, there is also the expected
kinematical difference due to the involved particles being mas-



6.4 ν-matter scattering amplitude 147

sive: treating the neutrino spinors ui as solutions to the Dirac
equation with mass mi leads to the intermediate-state product

MAijM
∗
Bij

= G2
F Z̃ij

µν

[
kµ

1 kν
2 + kν

1kµ
2 −

1
2
(s−m2

i −m2
j )gµν + aµν

]
(6.61)

and the absorptive part2

ImM(AB→ AB) = − G2
F

48π
t ×

×∑
ij

Qij
W,A(Q

ij
W,B)

∗

1−
m2

ij

t
− 1

2

[
∆m2

ij

t

]2

√√√√1−

4m2
ij

t
+

[
∆m2

ij

t

]2

,

(6.62)

written in terms of the mass-squared mean and difference values
m2

ij ≡
1
2 (m

2
i + m2

j ), ∆m2
ij ≡ m2

i −m2
j .

Several comments are in order. First of all, one would expect
this result to reproduce the massless one at high-enough energies,
m2

i � |t|. Neglecting all mass-dependent terms in the amplitude,
we find that the unitarity of the PMNS matrix ensures that this
results reproduces Eq. (6.57), since ∑i |Uei|2 = 1 reduces

∑
ij

Qij
W,A(Q

ij
W,B)

∗ =∑
ij

4ZAZB|Uei|2
∣∣Uej

∣∣2 + NANBδij−

− (ZANB + ZBNA)UeiU∗ejδij (6.63)

to ∑α Qα
W,AQα

W,B in Eq. (6.58). Furthermore, notice that even

though the dependence of Qij
W on Uei implies that they are com-

plex quantities, the observable product Qij
W,A(Q

ij
W,B)

∗ depends
only on |Uei|2, thus being real and CP-conserving, as it should.

2 The relevant integrals in the massive neutrino case are

Iij ≡
∫ d3k1

2E1

d3k2
2E2

δ(4)(k1 + k2 − q) =
π

2

√√√√1−
4m2

ij

t
+

[
∆m2

ij

t

]2

,

Iµν
ij ≡

∫ d3k1
2E1

d3k2
2E2

δ(4)(k1 + k2 − q) kµ
1 kν

2 =
s

12

1−
m2

ij

t
− 1

2

[
∆m2

ij

t

]2 Iijgµν + aqµqν ,

with a an irrelevant constant due to the vanishing contribution of the qµqν

tensor to the long-range amplitude.
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We also checked that our result reproduces the particular
case considered in Ref. [203] in the context of neutron stars for
the potential between neutrons due to 2ν-exchange of a single
neutrino species, i.e. ZA,B = 0, NA,B = 1 and i = j = 1,

ImM(nn→ nn)11 = − G2
F

48π
t
[

1− m2

t

]√
1− 4m2

t
. (6.64)

Our inclusion of mixing and different masses for the three
neutrinos reveals particular behaviors. Even though the tree-
level AĀ→ νiν̄j amplitudes we calculated after the unitarity cut
distinguish the mass indices i and j, since one corresponds to
a neutrino and the other to an antineutrino, the non-relativistic
coherent contribution to the absorptive part in Eq. (6.62) is sym-
metric under i ↔ j. This fact can be understood from different
points of view. Regarding the whole 1-loop scattering amplitude
before the unitarity cut, the distinction between particle and
antiparticle in the propagators makes no sense: the interaction
is mediated by the fields νiνj, symmetric under ij exchange, so
the necessity of the ij symmetry in our absorptive part is clear.
After the unitarity cut, on the other hand, we have discussed
the determination of the absorptive part from the tree-level scat-
tering amplitudes for the Aνi → Aνj processes. At this level,
the invariance of these amplitudes under Time Reversal is the
fundamental principle imposing ij symmetry.

There is one especially important difference of Eq. (6.62) with
respect to the massless amplitude in Eq. (6.57). Whereas in the
massless case the weak flavor charges are factored out from the
energy dependence, the mass-dependent terms in the massive
case entangle their energy-dependent terms with the correspond-
ing Qij

W . This fact indicates that the massive-neutrino long-range
potential will not be written as the product of a coupling times
a function of the distance, but will be built up from the sum of
six3 such contributions.

3 Notice that, even though ∑ij is a 9-element sum for the case of three light
active neutrinos, the ij symmetry discussed ensures that all ij-dependent
quantities are necessarily 3× 3 symmetric tensors, and thus determined by
only 6 independent terms.
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6.4.3 Majorana neutrinos

If a Majorana mass term as Eq. (1.23) is included in the La-
grangian instead of a Dirac one, the only difference is dynamical:
all the kinematics we worked out in the previous Section still ap-
ply. The effect of the Majorana mass in the interaction dynamics,
on the other hand, affects the structure of the neutrino vertex in
Dirac space only, leaving the previous discussion on the effects
of neutrino mixing also unchanged.

The change in the neutrino vertex originates from the fact that
the exchanged neutrinos for the absorptive part are of definite
masses (mi, mj), not of definite chirality. Whereas Dirac neutrinos
interact as the V-A vertex in Lagrangian (6.39) due to the V+A
part of the mass state being sterile, Majorana neutrinos present
both contributions: the V-A interacting neutrino vertex and the
conjugate V+A term with opposite sign. Thus their interaction is
twice the axial one, and the Lagrangian can be written as

Leff = −
GF√

2

[
ν̄j γµγ5 νi

] [
ψ̄ γµ (gψ

Vij
− gψ

Aij
γ5)ψ

]
, (6.65)

with a different Dirac structure than for Dirac neutrinos given by
γµ(1− γ5) 7→ 2γµγ5.

Even though there is no kinematical difference between the
two massive cases, this change in dynamics ensures that the
dependence of our process on neutrino masses will differ. Indeed,
the product of Majorana intermediate amplitudes reads

MAijM
∗
Bij

= 2G2
F Z̃ij

µν

[
kµ

1 kν
2 + kν

1kµ
2 −

1
2
(s−m2

i −m2
j−2mimj)gµν + aµν

]
.

(6.66)

The factor 2 with respect to the Dirac one in Eq. (6.61) is com-
pensated in the phase space integration: the Majorana condition
leads to νiν̄j and νjν̄i being identical final states, so the phase
space integration in the unitarity cut will include an identical-
particles factor 1/2 compensating this 2. Thus the only difference
between Dirac and Majorana neutrinos is the extra interference
term 2mimj present in the Majorana case, which we emphasize in
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Eq. (6.66) in blue. Removing this term would take us back to the
Dirac-neutrino result. We realize that the Dirac/Majorana distinc-
tion is apparent in the quantum undistinguishibility associated
to identical Majoranas with no global lepton charge for definite
mass eigenstates. For Dirac, the two neutrinos are distinguished
by the global lepton charge.

This subtle change between the Dirac and Majorana cases
propagates itself to the absorptive part of the amplitude,

ImM(AB→ AB) = − G2
F

48π
t ×

×∑
ij

Qij
W,A(Q

ij
W,B)

∗

1−
m2

ij+3mimj

t
− 1

2

[
∆m2

ij

t

]2

√√√√1−

4m2
ij

t
+

[
∆m2

ij

t

]2

,

(6.67)

whose only difference with respect to the Dirac case is the 3mimj
interference term in blue, present only for Majorana neutrino
exchange. The properties and behavior of the mixed charges Qij

W ,
however, remain the same for Majorana neutrino exchange as
they were for Dirac neutrinos.

As expected, this result reproduces the massless case in Eq. (6.57)
in the limit mi → 0, as happened in the Dirac case, thanks to the
identity

∑
ij

Qij
W,A(Q

ij
W,B)

∗ = ∑
α

Qα
W,AQα

W,B , (6.68)

ensured by the PMNS matrix unitarity.
We also checked that our result reproduces the single-neutrino

neutron-neutron amplitude in Ref. [203],

ImM(nn→ nn)11 = − G2
F

48π
t
[

1− 4m2

t

]√
1− 4m2

t
. (6.69)

The difference between Dirac and Majorana neutrino exchange
at this level is now clear. The exclusion (Dirac) or inclusion
(Majorana) of the blue term in Eq. (6.67) will affect the value of
the long-range potential calculated in the next Section, leading
to a definite answer to the Dirac/Majorana character if it is
eventually observed.
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6.5 2ν-mediated long-range potential

With all the ingredients ready to calculate the long-range po-
tential V(r) as in Eq. (6.16), we can compare its r dependence for
Dirac and Majorana neutrinos, both of whom must reproduce
the same (massless) limit when mi r � 1.

For the simple case of massless neutrinos, the branching point
for all channels appears at t0 = 0, leading to the calculation of
the potential as

V2ν0
(r) =

−1
4π2r

∫ ∞

0
dt e−

√
t r Im M0(t) , (6.70)

determined by the absorptive part in Eq. (6.57). This integration
yields the long-range potential

V2ν0
(r) =

G2
F

16π3 ∑
α

Qα
W,AQα

W,B
1
r5 , (6.71)

in terms of the weak flavor charges Qα
W = 2Zδαe−N in Eqs. (6.51).

The analysis in Section 6.4.1 of the weak charges of aggregate
matter showed that each Qα

W has the same sign for all atoms.
Thus ∑α Qα

W,AQα
W,B is always positive and, as seen, the r−5 po-

tential is always repulsive for aggregate matter. For atomic and
nuclear spectroscopy [204], however, it is not necessarily so.

The interesting cases with exchange of massive neutrinos have
a different branching point tij = (mi + mj)

2 for each channel,
so the integral transform has to be calculated for each of them
separately,

V2ν(r) =
−1

4π2r ∑
ij

∫ ∞

tij

dt e−
√

t r Im Mij(t) , (6.72)

where Im Mij is the νiν̄j-channel contribution to the absorptive
parts in Eqs. (6.62) and (6.67) for Dirac and Majorana neutrinos,
respectively.

We perform these integrals numerically, and show the resulting
Dirac and Majorana 2ν-exchange long-range potentials, V2νD

(r)
and V2νM

(r), in Figure 6.11. The computation requires two sets
of parameters to be chosen: the number of constituent particles
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IHNH

Figure 6.11: Coherent long-range potential between two K39
19 atoms,

for massless (black), Dirac (green) and Majorana (blue)
two-neutrino exchange V2ν(r), normalized to the absolute
value of the gravitational potential, |VG(r)| = −VG(r).
Normal (Inverted) Hierarchy on the left (right) panel.
Solid lines for a massless lightest neutrino, mmin = 0,
dashed lines for mmin = 0.1 eV.

of the interacting aggregates, and the values of the exchanged
neutrino absolute masses.

We show the potential describing the interaction between two
K39

19 atoms, which is an isotope usually employed in tests of
the weak equivalence principle, and thus interesting for the
observation of this interaction. Regarding the choice of neutrino
masses, we use the experimental values of the mass squared
differences in Eq. (1.20), and a lower/higher bound pair of values
for the lightest neutrino mass as in Figure 5.1, mmin = (0, 0.1) eV.
We show these cases for both Neutrino Mass Orderings, which
correspond to the mass values in Table 6.2.

Table 6.2: Absolute neutrino masses (in eV) used in this Section.

NH

m3 0.0500 0.1118

m2 0.0087 0.1004

m1 0 0.1

IH

m2 0.0500 0.1118

m1 0.0492 0.1115

m3 0 0.1
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As seen in the Figure, both Dirac and Majorana potentials
reproduce the massless case in Eq. (6.71) below 1 micron, i.e.
in the region with mir � 1. Indeed, for the neutrino masses
mi . 0.1 eV in Table 6.2, their Compton wavelength is

λν =
h̄c

mνc2 = 2 µm
[

0.1 eV
mν

]
, (6.73)

explaining the effectively massless behavior of the exchanged
neutrinos below 1 micron. At any distance, nevertheless, they
keep one of the key features of the massless potential: their sign
ensures that the interaction is always repulsive.

This λν value is also a good approximation for the range of
the interaction: once mass effects become relevant, a Yukawa-like
suppression makes the potential decrease rapidly. For the heavier
mmin = 0.1 eV, this fact is already apparent at few microns, as
expected from its λν = 2 µm. For the lightest case mmin = 0,
however, there is a qualitative difference: the contributions in-
volving the two massive neutrino states will indeed be Yukawa
suppressed at ranges above several microns, but the channel due
to the exchange of two massless neutrinos will behave as the
r−5 potential without cut-off. Thus the solid lines in the Figure
show that, at long ranges, the massive potentials have the same
r-dependence as the massless one, albeit being smaller due to
the Yukawa suppression of two of the three neutrinos.

This fact also explains why the Dirac/Majorana cases are so
similar with mmin = 0. Both below the micron scale, where all
neutrinos are effectively massless, and above the micron scale,
where the massless state is the dominant one, the potential is de-
termined by massless behavior for the neutrinos. The confusion
theorem thus ensures that there is no distinguishing the neutrino
character in those cases.

If the lightest state is not massless, however, that behavior
above the micron scale does no longer apply. Indeed, the curves
for mmin = 0.1 eV show that, in the region above λν where
the Yukawa suppression starts to kill the interaction, the Dirac
and Majorana potentials are no longer degenerate. Therefore, a
measurement of this interaction providing information on the
neutrino character should be made at distances of the order
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of the neutrino Compton wavelength, i.e. around the micron,
finding a compromise between the two potentials no longer being
degenerate and the Yukawa suppression still not having made
the interaction too weak.

As a final remark, notice that Hierarchy effects are not signifi-
cant in these interactions. The potentials differ slightly between
the two possible mass orderings, but their overall behavior is
the same. This fact can be understood taking into account that,
regardless of the absolute mass scale mmin, the masses of the
lightest and heaviest neutrino states have the same values in
both Hierarchies —our two particular cases with the values in
Table 6.2 illustrate this relation. Therefore, the range at which
(a) the massive potentials start to differ from the massless one,
given by the Compton wavelength of the heaviest neutrino, and
(b) the full potential is Yukawa-suppressed, given by the Comp-
ton wavelength of the lightest neutrino, are the same for both
Hierarchies.

After this discussion on the overall behavior of the potential
for both Dirac and Majorana neutrinos, we look in higher detail
into the differences between the two cases, which had arisen
from the blue term in the absorptive part in Eq. (6.67). We show
in Figure 6.12 two comparisons of V2νD

and V2νM
.

On the top panels, we show the ratio V2νD
(r)/V2νM

(r) for the
same two values of mmin. As mentioned in the previous discus-
sion, this comparison clearly shows that the Dirac/Majorana dis-
tinction is negligible at ranges below 1 micron. As expected, these
differences are more significant the more important mass effects
are, which in this case is at ranges above the neutrino Compton
wavelength. For a massless lightest neutrino, the Dirac/Majo-
rana ratio remains close to 1 at all ranges due to the potential
being dominated by the massless state both below and above λν,
whereas for three massive neutrinos the ratio increases at longer
ranges even up to a factor ∼ 10.

This larger effect, however, is compensated by the Yukawa
suppression of the potential. In order to show the region most
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IHNH

Figure 6.12: Comparison of the 2ν-exchange potential between two
K39

19 atoms for Dirac and Majorana neutrinos. The ratio
Dirac/Majorana is shown in the top panels, the difference
Dirac - Majorana, normalized to the gravitational poten-
tial, in the bottom ones. Normal (Inverted) Hierarchy on
the left (right) panels. Solid lines for a massless lightest
neutrino, mmin = 0, dashed lines for mmin = 0.1 eV.

promising for the Dirac/Majorana distinction, we also computed
the ratio

ρ(r) ≡
V2νD

(r)−V2νM
(r)

VG(r)
, (6.74)

normalizing the difference between the Dirac and Majorana po-
tentials to the value of gravitation at that distance —this quantity
is shown in the lower panels. Again, notice that the neutrino
mass ordering plays a minor role in this discussion: the quan-
tities analyzed change slightly in their value, but their overall
behavior remains the same.

The behavior in the Figure is the expected one: an easier
Dirac/Majorana distinction for larger neutrino masses, and thus
the dashed line (mmin = 0.1 eV) above the solid one (mmin = 0).
However, the larger the neutrino mass the shorter its Compton
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wavelength, and so the interaction is suppressed at shorter dis-
tances, ensuring the lighter case is more relevant at long distances.
Indeed, the heavier (dashed) ratio is above the lighter (solid) one
at distances of 1-10 microns, whereas the lighter case is larger
above 10 microns.

Since this interaction competes with gravitation in its observa-
tion, this Figure shows that the optimal region for the Dirac/Ma-
jorana distinction is around 1 micron, where a heavier absolute
mass scale for neutrinos would provide an easier discrimination
of the neutrino character.



7 C O N C L U S I O N S

Neutrino Physics changed its history in 1998 with the discovery
of neutrino oscillations in atmospheric neutrinos, and later in
solar, reactor and accelerator experiments. Neutrinos do have
mass and flavor mixing among the three families of light active
left-handed neutrinos. The present state of the art still has a
number of fundamental open pending questions in this field.
Related to symmetry principles, this Thesis has addressed:

1. Genuine CP violation in the lepton sector, under the histor-
ical problem of fake CP Violation induced by the neutrino
propagation in matter —and its spin-off of allowing the dis-
crimination of the hierarchy in the neutrino mass ordering.
There are two ideas/questions around this problem that
deserve attention, and this Thesis has provided affirmative
answers:

i) Is it theoretically possible to disentangle the observ-
able CP asymmetry into two well defined components,
genuine and fake?

ii) Are these two components experimentally separable
in planned neutrino oscillations with terrestrial accel-
erators?

2. Global lepton number violation, with alternative concepts
to the well known activity in neutrinoless double beta de-
cay. The question on whether neutrinos are either Dirac or
Majorana particles is of fundamental importance, includ-
ing its implications for beyond-the-Standard-Model physics
and leptogenesis. Besides the nuclear decay process, we
have contemplated two additional paths in the quest of
discovering the possible presence of ∆L = 2 neutrino mass
terms:

157
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i) Neutrinoless double electron capture corresponding
to ∆L = 2 atom mixing, becoming visible by different
observables mediated by the mixed daughter atom
and enhanced by a resonance condition and stimulated
X-ray emission.

ii) Neutrino-mass-dependent terms, different for Dirac
or Majorana nature, in the ∆L = 0 long range inter-
action of aggregate matter mediated by two-neutrino
exchange, at distances around the micron —the Comp-
ton wavelength of neutrinos.

Regarding subject 1.i,

• We have considered the problem of the CP-violating asym-
metry together with the T- and CPT-violating asymmetries
for neutrino oscillations in matter. Our results represent
the culmination of the solution for this historical problem
of the contamination by matter effects in the discrete CP, T,
CPT asymmetries for neutrino propagation. Using that vac-
uum is CPT-symmetric and matter is T-symmetric, the goal
is accomplished in terms of a basis of three independent
components: genuine CPT-even, matter-induced T-even, in-
terference CP-even.

• Independent of the theoretical framework for the dynamics
of the active neutrino flavors, we prove the Disentanglement
Theorem

ACP
αβ = ACP;T

αβ + ACP;CPT
αβ , (2.13a)

AT
αβ = AT;CPT

αβ + AT;CP
αβ , ĀT

αβ = AT;CPT
αβ − AT;CP

αβ , (2.13b)

ACPT
αβ = ACPT;T

αβ + ACPT;CP
αβ , ĀCPT

αβ = ACPT;T
αβ − ACPT;CP

αβ , (2.13c)

for the three independent experimental asymmetries in terms
of the three components. For even a T-symmetric matter, AT

αβ

has a fake component due to quantum interference.

• The asymmetry sum rule ACPT
αβ = ACP

αβ + ĀT
αβ (2.10), when

expressed in terms of the components for each term, ensures
that AS1;S2

αβ = AS2;S1
αβ .
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• For the effective Hamiltonian written as the sum of free mass
propagation plus the matter potential for electron neutrinos,
the three components have definite parities under the base-
line L, the matter potential a, the imaginary part sin δ of the
PMNS mixing matrix, and the hierarchy h = ±1 in the neu-
trino mass ordering: ACP;T

αβ is odd in L and sin δ plus even

in a and h, ACP;CPT
αβ is even in L and sin δ plus odd in a and

h, AT;CPT
αβ is odd in all L, sin δ, a and h. The last interference

component thus contains the factor a sin δ.

• At a fixed baseline L and energy E, we have checked the
Disentanglement Theorems studying the components as a
function of the matter potential V in a = 2EV and the CPV
parameter sin δ. The genuine and interference components
vanish at sin δ = 0 for all a, whereas the two fake components
vanish at a = 0 for all δ.

• Fixing V for the Earth crust potential, we consider the energy
region ∆m2

21 � |a| �
∣∣∆m2

31

∣∣ between the two MSW reso-
nances, relevant to present and planned accelerator neutrino
facilities. We have been able to solve the problem of eigen-
values and eigenvectors of the Hamiltonian H in matter and
express all components of the asymmetries to first order in
∆m2

21 and a. They are given by

GENUINE COMPONENT

ACP;T
µe ≈ −16 Jr sin δ ∆21 sin2 ∆31 , (3.35a)

MATTER-INDUCED COMPONENT

ACP;CPT
µe ≈ 16∆a

[
sin ∆31

∆31
− cos ∆31

]
(S sin ∆31 + Jr cos δ ∆21 cos ∆31) ,

(3.35b)INTERFERENCE COMPONENT

AT;CPT
µe ≈ −16∆a Jr sin δ ∆21 sin ∆31

[
sin ∆31

∆31
− cos ∆31

]
. (3.35c)

These analytic expressions give precise results when com-
pared to exact numerical results. This is well explained thanks
to the definite parity of the components under a.
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• The analytic results demonstrate that the genuine ACP;T
µe com-

ponent is blind to the Hierarchy in the neutrino mass spec-
trum. On the contrary, the sign of the fake ACP;CPT

µe and
AT;CPT

µe components discriminates between the Normal and
Inverted mass orderings.

Regarding subject 1.ii,

• The independent measurement of all components could only
be made in neutrino factories and atmospheric neutrinos. In
these cases, the three components can be extracted from either
AT

µe, ĀT
µe, ACP

µe or ACP
µe , AT

µe, ACPT
µe .

• For present terrestrial accelerator sources of muon neutrinos
and antineutrinos, the two components of the appearance
CP asymmetry ACP

µe can be disentangled by either baseline
dependence (T2HKK), with detectors at Kamioka and Korea,
or energy dependence (DUNE). With a single detector in the
first oscillation maximum, T2HK has a dominant genuine
effect, and the fake component can be subtracted out if the
Hierarchy of neutrino masses is previously known.

• At the DUNE baseline , the higher energy region above the
first oscillation node provides a dominant matter-induced
ACP;CPT

µe component, and the sign of the experimental asym-
metry ACP

µe fixes the Hierarchy in the neutrino mass ordering.

• Conversely, there is a magic energy at L/E = 1420 km/GeV
around the second oscillation maximum, in which the fake
ACP;CPT

µe component has a first-rank zero whereas the genuine
ACP;T

µe component is maximal (proportional to sin δ).

• The magic L/E relation is given by

E = 0.92 GeV
L

1300 km

∣∣∆m2
31

∣∣
2.5× 10−3 eV2 , (4.21)

which corresponds to E = 0.92 GeV for the DUNE baseline.
With a modest energy resolution ∆E ∼ 200 MeV, an effective
zero remains in the matter-induced ACP;CPT

µe component.
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Regarding subject 2.i,

• Neutrinoless double electron capture is a virtual mixing be-
tween a parent ZA atom and a daughter (Z− 2)∗A excited
atom with two electron holes. The observable signal is the
emission of two-hole X-rays, and the strategy, experimental
signature and background are different from neutrinoless
double beta decay.

• The mixing is resonantly enhanced for almost degeneracy and,
under these conditions, there is no irreducible background
from the standard two-neutrino channel.

• We reconstruct the natural time history of a nominally sta-
ble parent atom since its production either by nature or in
the laboratory. After the time periods of atom oscillations and
the decay of the short-lived daughter atom, the relevant “sta-
tionary” states at observable times are the mixed metastable
long-lived state and the non-orthogonal short-lived excited
state, as well as the ground state of the daughter atom. We
find that they have a natural population inversion which
is most appropriate for exploiting the bosonic nature of the
observed atomic transitions radiation.

• Among different observables of the atom Majorana mixing,
we include the enhanced rate of stimulated X-ray emission
from the long-lived metastable state by a high-intensity X-ray
beam: a gain factor of ∼ 100 can be envisaged at current
XFEL facilities.

• Conversely, the historical population of the daughter atom
ground state can be probed by exciting it with a current
pulsed optical laser, showing the characteristic absorption
lines.

• These results are contingent to finding a candidate isotope
with a better fulfillment of the resonance condition ∆ ∼ Γ,
with a still possible improvement of a factor up to ∼ 1000 in
the observable rates.
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Regarding subject 2.ii,

• A calculation of the realistic long-range interaction between
aggregate matter, mediated by 2ν exchange, is presented for
the first time near its range. We have included all ingredients
known today in neutrino physics relevant to the coherent
interaction with matter, including all vector charges for elec-
trons, protons and neutrons, the neutrino mass terms relevant
to distances of the order of their Compton wavelenght and the
mixing distinguishing the flavor neutrinos in the νe e charged
current interaction vertex from the mass eigenstate neutrinos
relevant to the absorptive part of the amplitude. A detailed
analysis of the implications of each of these ingredients, as a
function of the distance, is still lacking. However, one result
emerges as a key point: this interaction, if detected at micron
distances, could provide a completely novel methodology
for solving the Dirc/Majorana neutrino confusion. Instead
of searching for a ∆L = 2 process allowed for Majorana neu-
trinos only, search for mass effects distinguishing Dirac and
Majorana, both cases being allowed.

• The Compton wavelength of massive neutrinos is of order 1

micron. Although the absolute scale of neutrino masses is
still unknown, the present upper limit and the known

∣∣∆m2
31

∣∣
and ∆m2

21 values tell us that mν ∼ 0.1 eV is expected. Our dis-
persion theory of the 2ν-mediated force includes the region of
distances near this value. In fact, our results demonstrate the
extreme sensitivity of the potential to the lightest neutrino
mass for distances between 1 and 10 microns.

• Such a range for the two-neutrino mediated force is well
above the atomic scale, so it will be operative for atoms and
aggregates of matter if they have a weak charge, being neu-
tral in electric charge. Indeed a coherent weak charge is built
from NC interactions of electrons, protons and neutrons, and
CC interactions of electron neutrinos with electrons. These
weak charges for the interaction with νe and νµ, τ are propor-
tional to the number operator and thus they violate the weak
equivalence principle. Since its tests already reached lev-
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els better than 10−14, a deep exploration of the experimental
implications of our atom-atom potential is in demand.

• For the neutral current interactions, flavor mixing is unopera-
tive and the intermediate neutrino propagation with definite
mass directly appears. For the charged current interaction,
the mixing Uei of electron neutrinos to all neutrinos of definite
mass will be needed. This ingredient is also well known from
neutrino oscillation experiments.

• The dispersion theory of long-range forces leads to the effec-
tive potential in terms of the absorptive part of the low t, i.e.
the energy of the neutrino-pair in the t-channel, amplitude.
Hence the physics involved, by unitarity, is that of a pair of
non-relativistic neutrinos with definite mass.

• For Dirac neutrinos with definite lepton charge, the interac-
tion vertex is the chiral charge distinguishing neutrinos from
antineutrinos. For Majorana neutrinos with no conserved
charge, the interaction vertex is the axial charge and so, con-
trary to the Dirac case, the pair is in P-wave. The absorptive
parts for Dirac and Majorana neutrinos differ in the mass-
dependent terms.

• For massive neutrinos, independently of their nature, the
three weak flavor charges Qα

W found in the massless case be-
come mixed, giving raise to a 3× 3 symmetric tensor Qij

W . It
depends on the neutrino mixings Uei, with each element the
vertex of νiν̄j exchange. The unitarity of the PMNS matrix en-
sures the consistency of the two descriptions in the effectively
massless neutrino region mνr � 1.

• The obtained interaction potentials for Dirac and Majorana
neutrinos reproduce the massless r−5 case at distances below
1 micron. Above the micron scale, the potentials are Yukawa
suppressed, with a behavior nearly independent of the mass
ordering. The region around the micron where mass effects
become significant and the potentials are still not too small is
the optimal range for the distinction of the Dirac/Majorana
neutrino character.
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prospects

This Thesis has a number of open implications and relevant as-
pects which need further thinking and developments. To mention
a few of them,

1.i The theoretical disentanglement of matter effects from
vacuum neutrino propagation has been emphasized here with a
view to extract the genuine symmetry breakings. However, the
fake components are due to the presence of a uniform poten-
tial which is not associated to any force anywhere. The effect
of this component has probably a formulation à la Aharonov-
Bohm leading to selected flavor interferometric observables. The
reader should remember that the Aharonov-Bohm effect has
not been performed for an electric scalar potential, and that the
experimental result for the magnetic spatial interferometry is
interpreted either as the vector potential being a physical entity
or as non-local effects of the existing magnetic field outside the
interferometric arms.

1.ii The urgent studies on this topic after this Thesis are evi-
dent. Once we have demonstrated that a direct evidence of gen-
uine CP violation in neutrino oscillations is now experimentally
reachable by either baseline dependence or energy dependence,
the selection of the best strategy for the two planned T2HK and
DUNE experiments is mandatory. We are going to start a collab-
oration for a detailed simulation of the physics reach at T2HKK,
with an off-axis beam, and at DUNE, with energy reconstruction
using a wide-band beam.

2.i The idea of exploiting the virtues of a ∆L = 2 quantum
mixing between two atoms, with the associated “forbidden” X-
ray emission as a signal of Majorana neutrino mass, needs the
resonant enhancement. The present accuracy in the measurement
of atomic masses, thanks to the trapping techniques, allows the
search of better candidates in order to get closer to the ∆ ∼ Γ
condition. In this case, the 2ν double electron capture channel,
as recently observed, becomes nonexistent as a background. Sev-
eral atomic physics groups in the world are looking for new
candidates. If nature is kind enough, an additional gain can be
envisaged by stimulated transitions in the XLaser facilities.
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2.ii At present there appears to exist a lucky coincidence at
distances of the order of 1 micron. They set the scale for the
Compton wavelength of the neutrino and, independently, they
are in the frontier of gravity experiments testing with fantastic
precision the Weak Equivalence Principle (WEP), which is in-
deed violated by our interaction with internal gauge charges.
The earlier tests of WEP using torsion balance methods have
evolved to optical levitated microsphere techniques and, even
more promising, atom interferometry. Precision limits for the
Eotvos coefficient η = ∆a/a, with a the acceleration, of 10−14

are already available at distances of 10 microns. One expects
a brilliant experimental future in this field by some orders of
magnitude, and going to the distance of microns.

As the WEP test is the best devisable one, our next objec-
tive will be the comparison between gravity and weak forces at
distances around microns, and study the different values and
behaviors of the last force for Dirac and Majorana neutrinos. A
rough estimate tells us that gravity and weak forces become com-
parable at distances of 1 nm, where they are both unobservable
and hidden by the Van der Waals forces. We have obtained in
our study that, in the region 1–10 µm, the ratio between weak
and gravity forces for micro-particles is around 10−13–10−17, as
was expected. It remains to be seen whether this level of preci-
sion could be achievable for a test of WEP in this case. A novel
methodology to extract the absolute neutrino mass scale and to
solve the Dirac/Majorana neutrino confusion by a detailed study
of this WEP-violating effects seems promising.
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