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The Bcl-2 (B-cell lymphoma 2) protein Bax (Bcl-2 associated X,
apoptosis regulator) can commit cells to apoptosis via outer mito-
chondrial membrane permeabilization. Bax activity is controlled in
healthy cells by prosurvival Bcl-2 proteins. C-terminal Bax trans-
membrane domain interactions were implicated recently in Bax pore
formation. Here, we show that the isolated transmembrane domains
of Bax, Bcl-xL (B-cell lymphoma-extra large), and Bcl-2 can mediate
interactions between Bax and prosurvival proteins inside the mem-
brane in the absence of apoptotic stimuli. Bcl-2 protein transmem-
brane domains specifically homooligomerize and heterooligomerize
in bacterial and mitochondrial membranes. Their interactions partic-
ipate in the regulation of Bcl-2 proteins, thus modulating apoptotic
activity. Our results suggest that interactions between the trans-
membrane domains of Bax and antiapoptotic Bcl-2 proteins repre-
sent a previously unappreciated level of apoptosis regulation.
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The mitochondrial apoptosis program can activate the proa-
poptotic Bcl-2 (B-cell lymphoma 2) protein Bax (Bcl-2 as-

sociated X, apoptosis regulator) in response to stress, resulting in
outer mitochondrial membrane (OMM) permeabilization and the
release of cytochrome c (cyt c) and other proteins of the
intermembrane space into the cytosol. The Bcl-2 family controls Bax
activity and thus the integrity of the OMM (1–3). Prosurvival Bcl-2
proteins harbor four Bcl-2 homology domains [BH1–4, as repre-
sented by Bcl-2, Bcl-xL (B-cell lymphoma-extra large), or Mcl-1] and
counteract proapoptotic Bcl-2 proteins with three BH domains
(BH1–3; e.g., Bax or Bak). The diverse group of BH3-only proteins
regulates both prosurvival and proapoptotic Bcl-2 proteins. Pro-
survival Bcl-2 proteins either inhibit Bax via direct interaction or by
sequestering “activator” BH3-only proteins, thus preventing their
interaction with Bax (4–9).
In healthy cells, newly synthesized Bax initially translocates to

the OMM, but efficiently retrotranslocates to the cytoplasm,
depending on prosurvival Bcl-2 proteins (10, 11). Bax shuttling thus
establishes an equilibrium between cytosolic and mitochondrially
anchored molecules (10, 12), determining the cellular response to
apoptotic stress (13). Upon the induction of apoptosis, Bax and
Bak interact and at least partially insert into the OMM (14–16).
Regulatory interactions between Bax and other Bcl-2 proteins can
only be observed in the presence of the OMM or liposomes (17,
18). Recent studies suggest that Bax is inserted in mitochondrial
membranes as a monomer that oligomerizes once inserted (19–21).
These studies also have shown that Bcl-xL inhibits Bax by dissoci-
ating Bax oligomers. However, the contribution of the different
protein domains to oligomer formation and apoptosis modulation
within the membrane is still unclear.
Transmembrane domains (TMDs) can mediate protein–protein

interactions within membranes and be involved in signal transduction

across bilayers via changes in the oligomeric state or protein con-
formation (22–24). The Bax TMD targets fusion proteins to the
OMM; its deletion results in cytosolic Bax localization and impaired
Bax activity (25). Analysis of the active Bax membrane topology
suggests that the TMD could play a central role in Bax oligomeri-
zation (26). Förster resonance energy transfer studies have shown
that Bax forms homooligomers in the mitochondria through TMD
interactions (27). Bcl-xL–mediated Bax retrotranslocation into the
cytosol depends on the Bcl-xL TMD, suggesting the involvement of
TMD interactions in Bax inhibition (13). In addition, distance
mapping of cysteine-labeled Bax variants in large unilamellar vesicles
suggests a role of the Bax TMD in the formation of potential Bax
pore structures (28). Thus, TMD interactions could be involved in
Bax regulation, oligomerization, and pore formation.
Here, we report the self-association and interaction of the TMDs

of Bax, Bcl-2, and Bcl-xL in the biological membranes of living cells
in the absence and presence of apoptosis induction. The TMDs
mediate homooligomerization and heterooligomerization between
proapoptotic Bax, and prosurvival Bcl-2 and Bcl-xL members in-
dependent of extramembrane protein regions, modulating the re-
sponse to apoptosis signaling.

Significance

Bcl-2 (B-cell lymphoma 2) proteins are key regulators of apo-
ptosis. The recruitment of the predominantly cytosolic Bcl-2
protein Bax (Bcl-2 associated X, apoptosis regulator) to the
mitochondria is associated with mitochondrial outer mem-
brane permeabilization and apoptosis. We report specific in-
teractions between the transmembrane domains (TMDs) of Bax
and the prosurvival Bcl-xL (B-cell lymphoma-extra large) and
Bcl-2 proteins. Our results demonstrate that these interactions
occur in nonapoptotic human cells and participate in the reg-
ulation of Bcl-2 proteins, introducing the concept of modula-
tion mitochondrial apoptosis signaling by TMD-mediated Bcl-2
protein interactions.
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Results and Discussion
Bax, Bcl-xL, and Bcl-2 TMDs Homooligomerize in E. coli Membranes.
Interactions between Bcl-2 proteins require membranes (29, 30).
Therefore, the potential homooligomerization of Bax, Bcl-2, and
Bcl-xL TMDs was analyzed in living cells by using the ToxRed
system (31). In this assay, TMDs were inserted between the
transcriptional activation domain (ToxR) and maltose-binding
protein (MBP), targeted to the periplasm (32). Transcriptional
activation of the cholera toxin promoter strictly depends on
ToxR oligomerization (33). Consequently, TMD oligomerization
resulted in red fluorescent protein (RFP) expression (Fig. 1A).
The level of fluorescence is proportional to the analyzed oligo-
merization. Fusion protein functionality, orientation, and mem-
brane insertion were controlled by the growth of mutant
Escherichia coli on maltose as the sole carbon source dependent
on MBP activity in the periplasm (Fig. S1). The TMDs of Bcl-xL
and Bcl-2 induced as much RFP fluorescence and therefore
oligomerization as the positive control, glycophorin A (GpA)
TMD (Fig. 1B). Similar levels of Bax TMD generated the highest
fluorescence levels (Fig. 1B). The emission spectra of ToxRed
chimeras corroborate the formation of Bcl-2 protein homo-
oligomers (Fig. S2). Interestingly, the amino acid sequences of
the Bax, Bcl-xL, and Bcl-2 TMDs (Table 1) revealed central
glycine residues as potential sites for strong helix–helix interac-
tions through ridge-into-grove arrangements, as observed for
other interacting TMDs (24, 34–37). These glycine residues are evo-
lutionarily conserved (Fig. S3). Structural studies have demonstrated

that conserved glycine residues rarely face lipids, and many of them
participate in close helix–helix packing (38). Accordingly, Fig. 1C
shows disruptive effects for mutations Bcl-2 G227I, Bcl-xL G222I,
and, to a lesser extent, for Bax G179I (similar to the GpA G83I
mutant) (39). The helix-breaking G179P mutation [similar to GpA
(40)] resulted in an even-more-prominent disruption of Bax TMD
homooligomerization, whereas mutation of the conserved Bax
F176 had no effect. In all cases, expression levels, as determined
by Western blotting, were comparable (Fig. 1 B and C). Fur-
thermore, appropriate membrane insertion of chimeric proteins
was confirmed (Fig. S4). Therefore, the TMDs of Bax, Bcl-2, and
Bcl-xL mediate specific and efficient homooligomerization in
a biological membrane.

Bax, Bcl-xL, and Bcl-2 TMDs Form Oligomers in Mitochondrial Membranes.
Next, we analyzed the self-association capacity of Bax, Bcl-xL, and
Bcl-2 TMDs in nonapoptotic human cells using bimolecular fluo-
rescence complementation (BiFC) assays (41). TMDs were fused
with two nonfluorescent fragments (VN: 1–155 amino acids, I152L;
and VC: 155–238 amino acids, A206K) of the venus fluorescent
protein to assess whether TMD interactions would reconstitute
fluorescence of venus (Fig. 2A) (42). VN and VC constructs fused to
the same TMDwere cotransfected in HCT116 colon carcinoma cells.
This process, indeed, resulted in Bax, Bcl-2, and Bcl-xL TMD
homooligomerization in the absence of apoptotic stimuli (Fig. 2B).
The nonoligomerizing TMD of the abundant mitochondrial Tom20
protein was used as a negative control for overcrowding. Bcl-xL
oligomerization is still controversial; some cross-linking experiments
suggest oligomer formation, whereas other studies using detergents or
structural data in nanodiscs have revealed monomers (43). However,
extraction of transmembrane proteins with detergents could dissoci-
ate them, and nanodisc studies are highly dependent on the lipid
composition (44). A striking advantage of the BiFC assays is the
observation of interactions in eukaryotic membranes. The Western
blot analysis confirmed comparable expression levels of the VN and
VC constructs. Therefore, the observed fluorescence values indicate
different association levels and agree with the results obtained
in the ToxRed system (Fig. 1B and Fig. S5), where self-association of
the proapoptotic Bax TMD caused the highest fluorescence signal.
The analysis of the intracellular distribution of TMD fusion proteins
by confocal microscopy revealed mitochondrial localization (Fig. 2C).
Next, single amino-acid substitutions were introduced into the

TMDs to analyze the sequence specificity of TMD homooligome-
rization (Fig. 2D). The subcellular distribution of chimeric con-
structs was also corroborated by cellular fractionation (Fig. 2E). In
agreement with ToxRed homooligomerization experiments, strong
interference by Bax G179P (see also Fig. 2C, bottom row), Bcl-2
G227I, and Bcl-xL G222I was observed, whereas Bax F176A again
exhibited no difference from the wild-type construct. The Bcl-2
L225P and Bcl-xL G217P mutants also exhibited strong interference
with TMD oligomerization. Therefore, Bax, Bcl-2, and Bcl-xL
TMDs form specific homooligomers within the OMM.

Bax TMD Interacts with Prosurvival Bcl-2 Protein TMDs. Because of
the specific homooligomerization of the Bax, Bcl-2, and Bcl-xL
TMDs in nonapoptotic cells, the possibility of heterooligomeriza-
tion and regulatory interactions between these TMDs was tested.
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Fig. 1. Bax, Bcl-xL, and Bcl-2 TMDs homooligomerize in membranes. (A) TMD
constructs fused to ToxR were expressed in the inner membrane of E. coli. The
TMD interaction reconstituted active ToxR and activated ctx promoter-
regulated RFP expression. The C-terminal MBP domain was exposed to the
periplasm. (B) ToxR-TMD-MBP constructs (Table 1) were transformed into
MM39 cells. The fluorescence signal (ʎexc 570, ʎem 620 nm) obtained with the
ToxRed system for Bax, Bcl-xL, and Bcl-2 TMDs is shown. Red bars highlight in-
teractions. The GpA TMD and nondimerizing TMD GpA G83I variant served as
positive and negative controls, respectively. Western blotting of MBP revealed
equivalent expression levels. (C) Homooligomerization assay of wild-type and
variants of the Bax, Bcl-xL, and Bcl-2 TMDs. Fusion protein functionality, orien-
tation, and membrane insertion of all variants were controlled by growth on
minimum medium (Fig. S4). Reduction in fluorescence indicates the disruption
of homooligomerization (white bars). Results obtained with mutations that
apparently do not interfere with homooligomerization are depicted in brown.
Error bars represent the mean ± SD; n ≥ 3. Western blotting of MBP revealed
equivalent expression levels for all chimeras. P values according to Dunnett’s
test are displayed. *P < 0.05; **P < 0.01; ***P < 0.001.

Table 1. Sequences of the TMDs of human Bax, Bcl-xL, and
Bcl-2 proteins

Protein Accession no. Amino acid sequence

Bcl-xL NP_612815 210FNRWFLTGMTVAGVVLLGSLFSR232

Bcl-2 NP_000624 214WLSLKTLLSLALVGACITLGAYL236

Bax Q07812 169TWQTVTIFVAGVLTASLTIW188

Central glycine residues are shown in bold, and mutated Phe176 from Bax
is in italics.
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To this end, we analyzed the competition between homomeri-
zation of ToxR fusion proteins and their heterooligomerization
with fusion proteins with the disabled ToxR DNA binding do-
main (ToxR*; Fig. 3A). Disabled ToxR* fusion proteins can
interact with ToxR proteins in a dominant-negative fashion; the
resulting decrease in RFP expression thus indicates the ratio
between homooligomerization and heterooligomerization. In
this assay, competition between homooligomer and hetero-
oligomer formation with similar affinities results in a 50% de-
crease in fluorescence (31).
The Bax TMD has a strong tendency to self-associate (Figs. 1B

and 3B). As expected, this signal was attenuated by coexpressing

ToxR*/BaxTMD, whereas the ToxR*/GpATMD did not in-
terfere with RFP expression (Fig. 3B). Interestingly, both TMDs
derived from prosurvival Bcl-2 or Bcl-xL proteins interfered with
Bax TMD homooligomerization to at least the extent of the Bax
TMD. These results suggest a strong capability of the TMDs of
prosurvival Bcl-2 proteins to heterooligomerize with the Bax TMD.
Accordingly, the Bax TMD reduced Bcl-xL and Bcl-2 homo-
oligomerization (Fig. 3 C and D). Strikingly, the Bcl-2 and Bcl-xL
TMDs did not interfere with each other’s homooligomerization,
suggesting an absence of heterooligomerization between both pro-
survival Bcl-2 TMDs (Fig. 3 C and D). These results suggest that the
interactions of prosurvival Bcl-2 protein TMDs enable hetero-
oligomerization with Bax. Interactions between the Bax TMD and
TMDs of prosurvival Bcl-2 proteins could participate in Bax regu-
lation, because the membrane-bound form of Bcl-xL has been de-
scribed to insert only its TMD into the membrane (43). Therefore,
the influence of TMD interactions on Bax regulation was tested by
analyzing isolated mitochondria permeabilization in HCT116 Bak
knockout (KO) cells in the presence or absence of corresponding
Bax, Bcl-xL, Bcl-2, and Fis1 TMD segments. The presence of high
Bcl-xL or Bcl-2 TMD concentrations inhibited the release of Smac
from mitochondria (Fig. 3E). These results show that hetero-
oligomerization between Bax TMD and prosurvival Bcl-2 protein
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Fig. 2. Bax, Bcl-2, and Bcl-xL homooligomerize in the OMM. (A) BiFC assay
analyzing TMD homooligomerization by reconstitution of venus fluorescence
from separate N and C termini fragments fused to TMD segments. (B) Bax,
Bcl-2, and Bcl-xL TMD homooligomerization measured by BiFC in HCT116 cells.
Fusions of b-Fos and b-Jun protein domains were used as positive controls (+),
and the Δb-Fos/bJun pair served as a negative control (−); n = 3. Significant
increases compared with negative control were analyzed by using Dunnett’s
multiple comparison test (95% confidence interval). Chimeric protein expres-
sion of VN (c-myc) and VC (HA) constructs is compared in B, Lower; α-tubulin
was used as loading control. (C) Confocal images of HCT116 cells transfected
with VC and VN constructs of the Bcl-2 and Bcl-xL, Bax, and Bax G197P TMDs.
Formation of homooligomers (green and rainbow scale, first and second column,
respectively) and mitochondria (red, third column), colocalized (yellow, fourth
column). (Scale bar, 20 μm.) (D) Self-association assays of wild-type and single
amino acid substitution variants of the Bax, Bcl-2, and Bcl-xL TMDs measured by
BiFC in HCT116 cells. Error bars represent the mean ± SD, n ≥ 3. P values
according to Dunnett’s test are displayed. *P < 0.05; **P < 0.01; ***P < 0.001. (E )
Subcellular fractionation of HCT116 cells transfected with TMD constructs
was controlled by using Tom20 (mitochondrial fraction; M) and α-tubulin
(cytosol; C).

B

A

C D

Bax
Bcl-

2
Bcl-

x L

GpA

ToxR */TMDs

ToxR/BaxTMD

Bcl-
x L

Bcl-
2

Bax
GpA

ToxR/Bcl-x TMD

ToxR */TMDs

ToxR/Bcl-2TMD

ToxR */TMDs

E

Fl
uo

re
sc

en
ce

 in
te

ns
ity

 %

tBid 
(10 nM):

Bax Bcl-xL Fis1

- + + + + + + + ++ +

S

P

Smac

Smac

Bax

VDAC

Fis1 L

-    +    +    +    +    +

Bcl-2 

HA

c-myc

kDa

re
ta

in
ed

 S
m

ac
 (%

)

0

20

40

60

80

100

120

  Fis1Bcl-2Bax Bcl-x

***

***

*** ***
***

0

20

40

60

80

100

120

*** *** ***

0

20

40

60

80

100

120

******

Bcl-
2

Bcl-
x

Bax GpA
0

20

40

60

80

100

120

******

L

L

MBP MBP
MBP MBP

ToxR ToxR*
ToxR ToxR

ctx RFP

ctx

Bcl-TMs

MBP MBP MBP MBP

ToxR*ToxRToxR*ToxR*

+ +
MBP MBP

ToxR* ToxR

+

Fl
uo

re
sc

en
ce

 in
te

ns
ity

 %

Fl
uo

re
sc

en
ce

 in
te

ns
ity

 %

72

72

Fig. 3. The Bax TMD interacts with antiapoptotic Bcl-xL and Bcl-2 TMDs.
(A) Dominant-negative ToxR assay to analyze Bcl-2 protein TMD hetero-
oligomerization. Coexpression of TMD constructs fused to wild-type ToxR
(green) and TMD constructs fused to an inactive ToxR* mutant (yellow) in
E. coli can result in heterooligomerization, leading to reduced RFP synthesis.
(B) Effect of the Bax, Bcl-2, and Bcl-xL TMDs on ToxR/Bax TMD homo-
oligomerization. The GpA TMD served as a control. (C) Effect of the Bax, Bcl-2,
and Bcl-xL TMDs on Bcl-xL TMD homooligomerization as in B. (D) Effect of the
Bax, Bcl-2, and Bcl-xL TMDs on Bcl-2 TMD homooligomerization as in B. The
GpA TMD served as a control. (E) Smac release by endogenous Bax with and
without tBid in the absence and presence of the Bax, Bcl-xL, Bcl-2, or Fis1 TMD
peptides from purified HCT116 Bak KO mitochondria. Smac was monitored in
the supernatant (S) and pellet (P) by Western blot. Bax and VDAC served as
controls. Error bars represent the mean ± SD, n ≥ 3. P values according to
Dunnett’s test are displayed. *P < 0.05; **P < 0.01; ***P < 0.001.
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TMDs interferes with Bax-induced OMM permeabilization. How-
ever, other mechanisms, such as competition for a common binding
site or interference in the interaction with other OMM components,
could also account for the observed effects. Bcl-xL TMD-dependent
inhibition of OMMpermeabilization is not complete, because cyt c is
still released (Fig. S6). Lack of inhibition by the Bax TMD is par-
ticularly interesting, because the peptide concentration exceeded the
native Bax protein concentrations. Therefore, symmetric Bax, and
perhaps Bak oligomers, as recently suggested (27, 45), could tolerate
the association of multiple TMDs. Alternatively, other oligomeric
Bax structures could be more prominent in OMM permeabilization.

Bax TMD Interacts with Full-Length Proteins. Next, we tested the
potential of Bax, Bcl-2, and Bcl-xL TMDs to interact with full-
length proteins. Self-associating VN/VC-BaxTMD or VN/VC-Bcl-
2TMD chimeras that reconstitute the venus fluorescent protein
were coexpressed with antiapoptotic and proapoptotic full-length
proteins in HCT116 cells (Fig. 4A). BaxTMD homooligomeriza-
tion was disturbed in the presence of full-length Bax, Bcl-2, and
Bcl-xL (Fig. 4B and Fig. S7A). Therefore, full-length proteins bind
to the Bax TMD-derived chimeras, corroborating the interactions

between the isolated TMD segments (Fig. 3 B–D). Interestingly,
Bax and Bcl-2 proteins interfered with Bcl-2 TMD homo-
oligomerization, but Bcl-xL protein did not (Fig. 4C and Fig. S7B).
The mitochondrial location of overexpressed TMD constructs was
corroborated by subcellular fractionation experiments (Fig. 4 B
and C, Right). The specificity and TMD dependence of these in-
teractions were tested by replacing the Bax TMD with the cor-
responding Bcl-xL TMD segment in the full-length Bax protein
(Bax/Bcl-xLtail). Bax/Bcl-xLtail interfered with Bax, but slightly al-
tered Bcl-2 TMD homooligomerization (Fig. 4 B and C). On the
other hand, the reciprocal chimera harboring the BaxTMD in full-
length Bcl-xL (Bcl-xL/Baxtail) bound to Bax and Bcl-2 (Fig. 4 B and
C). Then, the interaction between the TMDs of Bax and Bcl-2 and
full-length proteins is specific and depends on the TMD of the
Bcl-2 protein. These results were also corroborated in Bax/Bak
double-KO (DKO) cells (Figs. S8 and S9).

Bax TMD Modulates Interactions with Endogenous Proteins and
Activates Apoptosis. The Bcl-xL TMD is involved in Bax retro-
translocation, and we thus focused our studies on the interactions
between both TMDs (13). A fusion of the Bax TMD to the C
terminus of the biotin ligase BirA (BirA/BaxTMD) biotinylated
endogenous Bax and Bcl-xL in nonapoptotic HCT116 cells (Fig. 5
A and B). These results imply binding between Bax TMD and
endogenous Bax and Bcl-xL proteins in the absence of apoptotic
stimuli and independent of cytosolic (extramembranous) domain
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interactions. Our results are supported by Bak (and Bax) TMD in-
terfaces mediating homooligomerization in the absence of BH3-
dependent interactions (45). Mutant Bax proteins lacking either
alpha 5 (Δ5) or alpha 6 (Δ6) helices, which are potentially relevant
for membrane insertion and pore formation (19, 26, 28, 46), retained
the capacity for Bax association in mitochondrial membranes (Fig.
5C), emphasizing the role of the TMDs in early protein interactions.
Both BirA/BaxFL and BirA/BaxTMD bound to wild-type Bcl-xL (Fig.
5D). This binding was strongly reduced when cells were cotransfected
with the nonfunctional Bcl-xL G138A mutant (47). Strikingly, some
capacity for heterooligomer formation was retained (Fig. 5D) and
matches the Bax TMD capability of oligomer formation, corrobo-
rating the contribution of Bax TMD interactions with prosurvival
Bcl-xL. Mutations in the BirA/BaxTMD construct that decrease Bax
homooligomerization, such as G179P, provoked a similar decrease in
Bcl-xL biotinylation (Fig. 5E), suggesting at least a partial common
interface for heterooligomerization and homooligomerization.
Together, our results demonstrate that interactions between the

TMDs of Bax and Bcl-xL occur in the OMM of human cells before
the induction of apoptosis. The analysis of a potential role of
TMD interactions in apoptosis induction revealed that the ectopic
expression of the BaxTMD in HCT116 cells induces caspase-3/7
activation (Fig. 6). BaxTMD G179P, but not BaxTMD F176A,
interferes with this activation, in good agreement with the impact
of these mutants on oligomerization in Fig. 2D. Furthermore,
cotransfection with antiapoptotic Bcl-2- and Bcl-xL TMD-derived
constructs or with full-length proteins significantly reduced apo-
ptosis activation (Fig. 6). Therefore, Bcl-2 protein TMD interac-
tions are involved in mitochondrial apoptosis signaling.

Conclusion
Antiapoptotic and proapoptotic Bcl-2 proteins regulate mitochon-
drial apoptosis signaling, and thus the cell fate, by dynamic interac-
tions. Interplay between the BH3 domains and hydrophobic grooves
of the respective interaction partner have been characterized (48). In

the present study, we discovered interactions between the TMDs of
Bax, Bcl-2, and Bcl-xL that occur in nonapoptotic cells and modu-
late mitochondrial apoptosis signaling. The consistent picture that
emerges from these studies is that Bcl-2 and Bcl-xL TMDs could
have the ability to regulate Bax pore-forming activity by means of
direct competition, leading to the formation of heterooligomers
that abate Bax homooligomer formation and OMM per-
meabilization. The existence of Bax TMD interactions has been
proposed based on cross-linking experiments (49, 50) and 3D
models (28) and has been suggested to contribute to the en-
largement of the Bax pore (51). Although not as tight as hy-
drophobic groove and BH3 domain interactions, TMD-TMD
interactions are sufficient for heterooligomerization and homo-
oligomerization of Bcl-2 proteins. Therefore, Bax dimers and
oligomers could facilitate lateral sorting in the OMM or the
formation of Bcl-2 protein-containing complexes (52). TMD–

TMD interactions are consistent with models of Bax activation,
suggesting separation of helices α5 and α6 (27, 53) and the
concerted insertion of both helices into the OMM (51, 54).
Conversely, Bax activation according to the clamp model would
require a sequential mechanism to allow formation of antipar-
allel TMD interactions (28). The observation of TMD–TMD
interactions between Bcl-2 proteins in proliferating cells further
emphasizes the necessity to assess the protein conformation of
Bax and other Bcl-2 proteins. These new surfaces of protein–
protein interaction among proapoptotic and prosurvival mem-
bers could represent attractive targets for selective drug design.

Methods
Methods are fully described in SI Methods. ToxRed chimeric constructs were
generated by specific primer annealing of Bcl-2 protein TMDs in the HindIII/
XhoI restriction sites of ToxRed vectors (Table 1 and Table S1). The maltose
complementation assay was performed as described (39, 55).

ToxRed Oligomerization Assays. ToxR–Bcl-2 TMD constructs (Table S1) were
transformed into the malE mutant E. coli MM39 strain. For RFP measurements,
24-well plates were adjusted to equivalent growth (OD600 0.6–0.8), and the
RFP emission spectra were collected by a Wallac 1420 Workstation (ʎexc 560
and ʎem 595 nm).

BiFC-TMD Assays. BiFC assays were performed as described (56). An improved
BiFC assay with a high signal-to-noise ratio was selected to avoid back-
ground interference (57, 58). The system was adapted to clone Bax, Bcl-xL,
and Bcl-2 TMDs at the C terminus of venus protein fragments, according to
their natural topology in full-length proteins.

BirA Interaction Partner Identification. HCT116 Bax/Bak DKO cells were trans-
fected with pcDNA3-mycBioID-Bax plasmid, resulting in the expression of myc-
tagged BirA/Bax fusion. The cell lysate was incubated with streptavidin
agarose beads (Thermo) at 4 °C overnight. Input and bead samples were
resolved on a 10% (wt/vol) SDS/PAGE and analyzed by Western blot for the
indicated proteins.
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SI Methods
Design and Cloning of ToxRed Bcl-2 TMD Constructs. The ToxRed
plasmids were provided by William DeGrado, School of Pharmacy,
University of California, San Francisco. ToxRed chimeric constructs
were generated by specific primer annealing of Bcl-2 protein TMDs
in the HindIII/XhoI restriction sites of ToxRed vectors (Table S1).
All transmembrane sequences were codon-optimized for E. coli
expression. TMD mutants were created by using standard site-
directed mutagenesis with a commercially available Stratagene
Quikchange II kit (Agilent). All molecular biology techniques were
performed according to standard procedures. The maltose com-
plementation assay was performed as described (39, 55).

ToxRed Oligomerization Assays. ToxR–Bcl-2 TMD constructs were
transformed into themalE mutant E. coliMM39 strain and plated
in maltose minimal-agar medium. Cells were grown in selective
LB to OD600 0.2 and incubated with shaking at 37 °C in maltose-
minimal medium until OD600 0.8. For RFP measurements, 24-well
plates were adjusted to equivalent growth (OD600 0.6–0.8) and the
RFP emission spectra collected by a Wallac 1420 Workstation
(ʎexc 560 and ʎem 595 nm). The ToxRed dominant-negative ex-
periments to study heterooligomer formation were performed as
described (31).

Western Blotting for ToxRed-TMD Constructs.Whole-cell extracts were
subjected to SDS/PAGE, transferred to nitrocellulose membranes,
and blotted following standard procedures. MBP primary antibody
(no. E8038S) was purchased from New England Biolabs.

TOXRED Fluorometry Studies. Saturated cultures (5 mL) were centri-
fuged at 1,500 × g for 10 min and pellets resuspended in 500 μL of
freshly prepared FasterBreak Cell Lysis Reagent 1× (Promega).
After 15 min of mixing, lysates were centrifuged at 1,500 × g
and fluorescence measured (λexc 584 and λem 595–610 nm) in a
spectrofluorometer.

BiFC Fluorometry Studies. A total of 8 × 105 cotransfected cells
(VN and VC vectors) were scraped on ice, collected in PBS, and
centrifuged at 2,500 rpm for 5 min at 4 °C. Cell pellets were
resuspended in 500 μL of lysis buffer (50 mM Tris HCl, pH 7.4,
150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 5 mM MgCl2, and
0.5% Triton X-100 containing 0.1 mM PMSF, 20 μM leupeptin,
and 1 μM pepstatin) and mixed for 30 min on a rotary platform
at 4 °C. Cell lysates were centrifuged at 10,000 rpm for 5 min at 4
°C, and fluorescence emission spectra were recorded (λexc 515
and λem 520–650 nm).

Cell Culture.Human colorectal carcinoma HCT116 cells, provided
by Richard Youle, Porter Neuroscience Research Center,
Bethesda, and Bert Vogelstein, Johns Hopkins University School
of Medicine, Baltimore, were grown in McCoy’s 5A medium
supplemented with 10% FBS. Cultures were maintained at 37 °C
in a 5% CO2 atmosphere.

BiFC-TMD Assays. BiFC assays were performed as described (56).
An improved BiFC assay with a high signal-to-noise ratio was
selected to avoid background interference (57, 58). The system
was adapted to clone Bax, Bcl-xL, and Bcl-2 TMDs at the C
terminus of venus protein fragments according to their natural
topology in full-length proteins. In the case of Bax, some oligo-
merization experiments were performed in both orientations due
to the high levels of cell death induction observed when the
C-terminal orientation was used that interfere with proper analysis

in some experimental conditions. BiFC plasmids from Addgene
(catalog nos. 27097 and 22011) were modified to insert a linker
(GGGGSGGGGSSGR for VN and RPACKIPNDLKQKVM-
NHDKQKSGR for VC) and a NotI restriction site behind the
venus fragment to clone the Bcl-2 protein TMDs in the adequate
topology. Venus VN-terminal (1–154, I152L) and VC-terminal
(155–238, A206K) fragments were fused with the TMD region of
the different Bcl-2 proteins (Table 1). The human Bcl-2 TMD
sequences were introduced by oligonucleotide annealing (Table
S1). BiFC–Bcl-2 protein TMD mutant constructs were obtained
by using standard site-directed mutagenesis with the Stratagene
Quikchange II kit. VN and VC constructs have c–myc and HA
tags, respectively, for appropriate detection.
HCT116 cells at 60–70% confluence in 96-well black plates were

cotransfected with 0.05–0.1 μg of DNA constructs by using Lip-
ofectamine 2000 or Turbofect, according to the manufacturer’s
instructions. Transfected cells were incubated at 37 °C for 18 h to
avoid toxicity, and then venus fluorescence emission was measured
by using a Wallac 1420 Workstation (ʎ exc 510 and ʎem 535 nm).
Transfection efficiency was monitored using a GFP-Bcl-2 TMD
construct and maintained >70% in all experiments. For Western
blotting analysis, cells were seeded in six-well plates, transfected
with 0.5–1 μg of DNA constructs by using Turbofect, and in-
cubated for 18 h. Total protein extracts were analyzed for chimera
expression by using primary antibodies against HA C29F4 (catalog
no. 3724S) and c-myc 9B11 (catalog no. 2276S) (Cell Signaling).

Smac Release from Isolated Mitochondria. Mitochondria from
HCT116 cells were purified as described (13). To study Smac
release in isolated mitochondria in vitro, mitochondrial outer
membrane permeabilization was induced with recombinant tBid
(R&D Systems; 10 nM). Mitochondria (50 μg) were incubated
with TMD peptides at the indicated concentrations in 200 μL of
KCl buffer [125 mM KCl, 4 mM MgCl2, 5 mM Na2HPO4, 5 mM
succinate, 0.5 mM EGTA, 15 mM Hepes–KOH (pH 7.4), and
5 μM rotenone] for 15 min at 30 °C. The mitochondria were then
centrifuged for 5 min at 13,000 × g at 4 °C. Mitochondrial pellets
corresponding to 5 μg of protein and the corresponding volume
of supernatant fractions were resolved by SDS/PAGE and
transferred to a nitrocellulose membrane. Smac (antibody) was
monitored in the supernatant and pellet by Western blot to
monitor release. Bax (antibody) and VDAC (antibody) served as
loading controls.

BirA Interaction Partner Identification.HCT116 Bax/Bak DKO cells
were transfected with pcDNA3-mycBioID-Bax plasmid, resulting
in the expression of myc-tagged Bax/BirA fusion. After cell harvest
in ice-cold PBS, the cell pellet was resuspended in SEM buffer
[10 mM Hepes, pH 7.2, 250 mM sucrose, containing complete
proteinase inhibitor mix (Roche), and 0.2% Triton X-100] and
lysed. The cell lysate was cleared via centrifugation at 120,000× g at
4 °C for 30 min, applied to a concentrator column (Vivaspin 3000
MWCO; GE Healthcare), and washed (100 mM Tris·HCl, pH 8.0,
150 mM NaCl, 5 mM EDTA, 0.1% Triton X-100, and complete
proteinase inhibitor mix; Roche). The input sample (2.5%) was
separated, and the remaining lysate was incubated with strepta-
vidin agarose beads (Thermo) at 4 °C overnight. After incubation,
the beads were washed four times with washing buffer and finally
boiled in SDS loading buffer. Input and bead samples were re-
solved on a 10% SDS/PAGE and analyzed by Western blot for the
indicated proteins.
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Immunofluorescence. HCT116 cells were seeded on coverslips
(50% confluence), transfected with equal amounts of VC/VN
BiFC-TMD constructs, and incubated for 24 h at 37 °C. Mito-
chondria were stained with 500 nMMitoTracker (Invitrogen) for
20 min at 37 °C, and cells were fixed with 4% paraformaldehyde.
The coverslips were mounted on glass slides with Mowiol/DAPI
(Sigma). Confocal microscopy images were obtained by using a
laser-scanning microscope 510 with a 63× objective.

Apoptosis Assays. Cell extracts were prepared from cells seeded in
3.5-cm-diameter plates at a density of 4 × 105 cells per plate. The
cells were transfected with 0.75 μg of VN-Bax in the presence of a
mock pcDNA3.1 (0.75 μg) vector or the same vector containing
Bcl-2 or Bcl-xL sequences. Cells were harvested after 18 h, and the
pellets were resuspended in 50 μL of extraction buffer (50 mM
Pipes, 50 mM KCl, 5 mM EDTA, 2 mM MgCl2, and 2 mM DTT,
supplemented with protease inhibitor mixture from Sigma), and
kept on ice for 5 min. After the pellets were frozen and thawed
three times, the cell lysates were centrifuged at 14,000 rpm for
5 min, and supernatants were collected. The total protein con-
centration of these cell extracts was quantified by using the
bicinchoninic acid method. A total of 50 μg was mixed with 200 μL
of caspase assay buffer (PBS, 10% glycerol, 0.1 mM EDTA, and
2 mM DTT) containing 20 μM Ac-DEVD-afc. Caspase activity
was monitored after the release of fluorescent afc at 37 °C by using
a Wallac 1420 Workstation (λexc 400 and λem 508 nm).

Statistical Analysis.All of the values represent the mean ± SD of at
least three independent experiments. Significance was deter-
mined by one-way ANOVA, applying the Dunnett’s test using
GraphPad software. P < 0.05 was considered significant.

Sequences of Constructs.
BaxFL/BirA

myc-BIR-Bax TMD

MEQKLISEEDLDKDNTVPLKLIALLANGEFHSGEQLGE-
TLGMSRAAINKHIQTLRDWGVDVFTVPGKGYSLPEPIQ-
LLNAKQILGQLDGGSVAVLPVIDSTNQYLLDRIGELKSG-
DACIAEYQQAGRGGRGRKWFSPFGANLYLSMFWRLE-
QGPAAAIGLSLVIGIVMAEVLRKLGADKVRVKWPNDL-
YLQDRKLAGILVELTGKTGDAAQIVIGAGINMAMRRVE-
ESVVNQGWITLQEAGINLDRNTLAAMLIRELRAALEL-
FEQEGLAPYLSRWEKLDNFINRPVKLIIDKEIFGISRGID-
KGQGALLLEQDGIIKPWMGGEISLRSAEKLELTVTIFVA-
GVLTASLTIWKKMG–

Bax/Bcl-xLtail
MDGSGEQPRGGGPTSSEQIMKTGALLLQGFIQDRAGR-
MGGEAPELALDPVPQDASTKKLSCLKRIGDELDSNME-
LQRMIAAVDTDSPREVFFRVAADMFSDGNFNWGRVVA-
LFYFASKLVLKALCTKVPELIRTIMGWTLDFLRERLLGW-
IQDQGGWDGLLSYFGTPTWFLTGMTVAGVVLLGSLFSRK

Bcl-xL/Baxtail
MSQSNRELVVDFLSYKLSQKGYSWSQFSDVEENRTEAP-
EGTESEMETPSAINGNPSWHLADSPAVNGATGHSSSLD-
AREVIPMAAVKQALREAGDEFELRYRRAFSDLTSQLH-
ITPGTAYQSFEQVVNELFRDGVNWGRIVAFFSFGGAL-
CVESVDKEMQVLVSRIAAWMATYLNDHLEPWIQENGGW-
DTFVELFGTPTWQTVTIFVAGVLTASLTIWKKMG.

GpA

C-

Bcl-2

Bax

Bcl-xL

LB ampicillin Minimal  media
GpA

C-

Bcl-2

Bax

Bcl-xL

Fig. S1. Maltose complementation assay to test ToxR-TMD-MBP chimera topology. MalE-deficient E. coliMM39 cells were transformed with appropriate ToxR-
GpA-MBP and ToxR-Bcl-MBP vectors. The MalE complementation assay indicates that chimeras containing GpA TMD and Bcl-2–related TMDs are expressed and
integrated into the inner membrane of E. coli. The constructs were cultured on either complete medium LB (Left) or M9 agar containing 0.4% maltose (Right).
Because the MM39 cell line is deficient in MBP, only cells with properly integrated ToxR chimera can survive on maltose minimal medium.
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Fig. S2. Emission spectra for the ToxRed assay. For fluorescence measurements of RFP, samples from bacterial lysates were excited at 584 nm, and emission
spectra were recorded from 595 to 650 nm. The mock line is for whole-cell lysates containing a control plasmid without a ctx::mCherry reporter.

Fig. S3. Multisequence alignment of Bcl-2 TMDs from different species. Evolutionarily conserved glycine residues are boxed in red, and mutated leucine and
phenylalanine residues from Bcl-2 and Bax sequences, respectively, are boxed in blue.
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Fig. S4. Maltose complementation assay to test ToxR-TMD-MBP chimera topology in Bcl-2 mutants. MalE-deficient E. coli MM39 transformed with the dif-
ferent ToxR-TMD-MBP mutant constructs were cultured on either on complete medium LB (Left) or M9 agar containing 0.4% maltose (Right) as in Fig. S1.
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Fig. S5. Emission spectra for the BiFC assay. For fluorescence measurements, samples from cellular lysates were excited at 515 nm, and emission spectra were
recorded from 520 to 580 nm. Nonoligomerizing Tom20 TMD, VN, and VC constructs were included as controls.
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Fig. S6. Influence of Bcl-2 protein TMDs on Smac and cyt c release. Smac and cyt c release by Bax with and without tBid in the absence or presence of Bax TMD,
Bcl-xL TMD, or Fis1 TMD from purified HCT116 Bak KO mitochondria. Smac and cyt c were monitored in the supernatant and pellet by Western blot. VDAC
served as a loading control.
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Fig. S7. Expression of FL proteins in VN/VC Bax TMD (A) and VN/VC Bcl-2 TMD (B) competition experiments using full-length Bcl-2–derived proteins from Fig. 4
in the HCT116 wild-type cell line.
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Fig. S8. Bax, Bcl-2, and Bcl-xL homooligomerize in the OMM of HCT116 Bax/Bak DKO cells. Bax, Bcl-2, and Bcl-xL TMD homooligomerization measured by BiFC in
HCT-116 Bax/Bak DKO cells is shown. Fusion b-Fos and b-Jun proteins were used as positive controls (+), and the Δb-Fos/b-Jun pair served as negative controls (−);
n = 3. Significant increases compared with the negative control were analyzed by using Dunnett’s multiple comparison test (95% confidence interval). Chimeric
protein expression is compared in Lower by Western blotting with the appropriate antibodies. Error bars represent the mean ± SD; n ≥ 3. ***P < 0.001.
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Fig. S9. Bcl-2 TMDs interact with full-length proteins in the OMM of HCT116 Bax/Bak DKO cells. (A) Oligomerization analysis of the Bax TMD in the presence
of full-length Bax, Bcl-2, Bcl-xL, Bax–Bcl-xLtail, and Bcl-xL–Baxtail. VFP reconstitution by VN/VC BaxTMD chimeras was challenged with the indicated full-length
proteins in HCT116 cells (A, Left). Subcellular fractionation showed mitochondrial (M) localization of VN/Bax and VC/Bax in the absence or presence of full-
length Bax and Bcl-xL proteins (A, Right Upper). Expression of full-length proteins was analyzed by Western blot (A, Right Lower). (B) Oligomerization analysis
of the Bcl-2 TMD in the presence of full-length Bax, Bcl-2, Bcl-xL, Bax–Bcl-xLtail, and Bcl-xL–Baxtail. Subcellular fractionation showed mitochondrial (M) locali-
zation of VN/Bcl-2 and VC/Bcl-2 in the absence or presence of full-length Bax and Bcl-xL proteins (B, Right Upper). Expression of full-length proteins was
analyzed by Western blot (A, Right Lower). *P < 0.05; ***P < 0.001.

Table S1. Primers for cloning Bcl-2 protein TMDs in the ToxRed vectors

TMD Oligo forward Oligo reverse

Bcl-2 agctttggctgtctctgaagactctgctcagtttggccctggt-

gggagcttgcatcaccctgggtgcctatctgc

tcgagcagataggcacccagggtgatgcaagctcccacca-

gggccaaactgagcagagtcttcagagacagccaa

Bcl-xL agcttttcaaccgctggttcctgacgggcatgactgtggccggc-

gtggttctgctgggctcactcttcagtcggc

tcgagccgactgaagagtgagcccagcagaaccacgccgg-

ccacagtcatgcccgtcaggaaccagcggttgaaa

Bax Agcttacgtggcagaccgtgaccatctttgtggcgggagtgctc-

accgcctcgctcaccatctggc

tcgagccagatggtgagcgaggcggtgagcactcccgcca-

caaagatggtcacggtctgccacgaa
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