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un placer compartir estos años de mi vida con vosotros. Además, me gustaría agradecer 

a toda la gente que forma PTS por su paciencia y ayuda cuando lo he necesitado. Os he 

visto crecer desde el principio (cuando trabajaban Dani y Luz mano a mano), y me siento 

muy orgullosa de ver en lo que os habéis convertido con mucho trabajo y dedicación. 

  

No me puedo olvidar de la gran experiencia vivida durante mi estancia en el laboratorio 

de Marcelo Calderon en Berlín. Gracias a TODO el grupo por la acogida desde el primer 

día que llegué, solo tengo palabras de agradecimiento!! Gracias por dejarme aprender de 

vosotros y por brindarme vuestra ayuda siempre que lo necesitaba. Nunca olvidaré las 
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cervezas después del lab, las barbacoas y las clases magistrales de alemán-español. Berlín, 

te has quedado con un trocito de mí. 

 

Fuera de los laboratorios, tengo la suerte de contar con unos amigas/os inmejorables. 

Siempre han intentado sacarme una sonrisa en los peores momentos, haciéndome sentir 

querida, valorada y apoyada. Aunque no entendierais porque tenía que trabajar los fines 

de semana o porque no podía ir a las quedadas o a los festivales que tanto nos gustan, 

siempre me comprendíais y teníais una propuesta alternativa para poder vernos. Después 

de mil horas en el laboratorio, sentir que tus amigos van a estar para lo que necesites, ya 

sea en persona o por teléfono (no me olvido de las personas que se han preocupado por 

mí a km de distancia), es algo que os agradeceré eternamente. Mil veces gracias. 

Y por último, me gustaría dar las gracias a mis grandes pilares durante este largo camino... 

En primer lugar, gracias a mis padres, por estar siempre a mi lado y apoyarme en todas 

mis decisiones. Por aguantarme y reconfortarme en mis peores momentos. Nunca os 

podré agradecer tanta dedicación y cariño. Desde pequeña me habéis hecho sentir lo 

orgullosos que estabais de mí y que podía conseguir todo lo que me propusiera. Gracias 

por vuestro esfuerzo para abrirme las puertas de mi futuro.  

 

En segundo lugar, gracias a Fran. Gracias por aparecer en mis peores momentos, quedarte 

y cambiar mi mundo. Has sido mi vía de escape durante este largo camino. Tus palabras 

de ánimo, cariño, paciencia, comprensión y tus abrazos interminables son algo que no 

olvidaré nunca…"si no confías en ti, confía en el mí que cree en ti". Te debo muchísimo. 

Gracias por ser mi calma en la tempestad. 

 

Y por último, esta tesis se la quiero dedicar a mi hermana, a mi ejemplo a seguir. Gracias 

por agarrarme fuerte de la mano y no soltarme nunca. Desde pequeña siempre me has 

enseñado que con esfuerzo, dedicación y trabajo todo se puede conseguir, y por eso una 

parte de esta tesis es tuya. Eres ese ave fénix que resurge de sus cenizas con más fuerza 

todavía. Hasta en tus peores momentos te sigues preocupando por mí y sigues haciéndome 

sentir la persona más fuerte y con más suerte del mundo. Nunca dudes de todo lo que eres 

capaz. Arriba las Dolz! 

 

GRACIAS 
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ABSTRACT 

Topical administration represents the main route to attain local therapeutic activity 

of bioactive agents in several organs, such as the skin or the heart by means of devices 

that enhance drug transport through the endothelium acting as a reservoir. 

The complex structure of the skin protects the human body against potentially 

harmful external agents; however, this protective mechanism inhibits the penetration of 

topically administering bioactive agents employed for the treatment of skin diseases. 

Unfortunately, many of the topical drugs currently used or under evaluation in clinical 

trials lack the appropriate physico-chemical characteristics required for delivery through 

the skin. However, various rational strategies have been employed in an attempt to 

improve the physico-chemical properties of bioactive agents according to the features of 

the desired site of action, thereby improving topical delivery and stability.  

The research carried out in this thesis describes the application of polymer 

therapeutics, a nanomedicinal approach, to improve the physico-chemical properties and 

increase both the penetration of bioactive agents through the skin and retention time at 

the desired site of action. Well-defined polypeptide-based polymer therapeutic 

approaches offer particular advantages for dermal applications such as biodegradability, 

versatility, multivalence, and high drug loading capacity. The development of new 

polypeptide-drug conjugates employing stimuli-responsive linking moieties can enhance 

transdermal drug delivery into the skin, thereby improving the effectiveness of topical 

treatments for skin diseases such as psoriasis. Furthermore, we believe that our newly 

developed platforms may find wider use, and we also explore polypeptide-drug 

combinations as an approach to enhance wound healing and treat ischemia/reperfusion 

injury following myocardial infarction. 

Psoriasis, a common and chronic inflammatory disease mediated by the immune 

system with predominantly cutaneous involvement, affects 2-3% of the adult population 

and 0.5-1% of children. Plaque psoriasis, the most prevalent type of psoriasis, is 

characterized by scaly skin, erythematous plaques, and inflammatory cell infiltration. 

Approximately 80% of patients are affected by mild to moderate disease, and topical 

treatment with corticosteroids remains a widely employed therapeutic approach. 

However, many topical corticosteroids that are currently employed or under assessment 

in clinical trials lack adequate physico-chemical properties and suffer from local 
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cutaneous and systemic side effects that correlate with the high doses required. Therefore, 

we propose the implementation of polymer conjugation approaches to overcome these 

limitations. 

The knowledge base regarding the pathogenesis of human psoriasis has recently 

widened thanks to the development of accurate ex vivo and in vivo models. We now 

present the detailed characterization of an inflammatory ex vivo human skin model, 

including the assessment of tissue viability, immunohistopathology, and the 

quantification of pro-inflammatory cytokine release. Additionally, we developed an in 

vivo preclinically relevant imiquimod (IMQ)-induced model of psoriasis that reflects the 

critical features of the human disease. Our findings demonstrated the suitability of this 

murine model to mimic the main hallmarks of human psoriasis, including inflamed skin 

and the presence of increased levels of psoriasis-associated inflammatory cytokines in 

tissue and serum.  

Furthermore, our newly described models permitted the evaluation of both the 

safety and therapeutic efficacy of our novel polypeptide-based therapeutics. To this end, 

we present the development of a biodegradable vehicle, comprising a cross-linked matrix 

of hyaluronic acid and poly-L-glutamic acid (hyaluronic acid-poly-L-glutamate cross-

polymer or HA-CP), for the topical delivery of the advanced therapeutic agents. We 

exhaustively characterized and biologically evaluated our HA-CP vehicle in vitro, ex 

vivo, and in vivo revealing multiple advantageous properties regarding the topical 

administration of therapeutics. Our HA-CP vehicle functioned as a penetration enhancer, 

using a family of amphiphilic block copolymers of different nature (using PPhe and PBG 

with different degree of polymerization) and physico-chemical properties, significantly 

promoting the penetration into the viable epidermis while avoiding the systemic 

absorption and any associated adverse effects. 

We also present a straightforward methodology for the synthesis of well-defined 

polypeptide-based drug conjugates based on poly-L-glutamic acid, or PGA, as the 

polymeric carrier. We synthesized and characterized a PGA-conjugated corticosteroid 

(fluocinolone acetonide) via a pH-responsive ester linker. PGA conjugation targeted the 

corticosteroid to the appropriate skin layer, and the implementation of bioresponsive 

polymer-drug linking moieties permitted the sustained release of the drug at the required 

site of action. Both these characteristics promote optimal drug release kinetics and the 
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attainment of a therapeutically relevant concentration of an active agent within the 

epidermis for the required period of time. We demonstrated that polymer conjugation 

significantly improved the pharmacological activity of the drug due to greater 

bioavailability in the required skin layer in vitro, ex vivo, and in vivo. Moreover, the 

combination of our polypeptide-conjugated corticosteroid within the HA-CP vehicle 

resulted in synergistic anti-psoriatic activity in vivo, providing a significant reduction in 

inflammation. Therefore, our novel combinatorial polymer-based approach represents a 

possible palliative treatment of inflammatory skin diseases.  

Finally, we applied the knowledge acquired from the development of polymer-

drug conjugates for the treatment of skin inflammation to the development of novel 

wound healing approaches via the PGA-conjugation of the omega-3 polyunsaturated fatty 

acid didocosahexaenoic acid (diDHA). PGA conjugation enhanced diDHA stability and 

decreased degradation, which promoted improved therapeutic activity for the conjugate 

when compared to free diDHA both in skin wound healing and in the treatment of 

ischemia-reperfusion injury in the mouse heart following myocardial infarction. 

Overall, our findings highlight the suitability of polymer therapeutic approaches, 

and polypeptide conjugation in particular, to form drug delivery systems for dermal 

applications. Specifically, PGA-drug conjugates enhance the skin penetration of drugs, 

while bioresponsive linkers promote the specific release of the drug in the desired skin 

layer. Moreover, PGA conjugation of fatty acids has also demonstrated the improvement 

of both safety and effectiveness of the treatment in skin wound healing and in ischemia-

reperfusion injury in the heart. 
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OBJECTIVES OF THE RESEARCH 

The present thesis dissertation focuses on the development of polymeric platforms 

for drug delivery as novel treatment approaches for skin diseases or disorders, such as 

psoriasis and wound healing. The development of polymer-drug conjugates must follow 

well-established synthetic approaches and employ rational design; furthermore, polymer-

drug conjugates require exhaustive physico-chemical characterization and biological 

evaluation in relevant models. 

The general aims can be summarized as the following specific objectives: 

1. The development and exhaustive characterization of healthy and 

inflammatory ex vivo human skin models and a psoriatic mouse model as 

platforms to evaluate advanced treatment approaches (Chapter II) 

 

2. The synthesis, full physico-chemical characterization, and biological 

evaluation of novel crosslinked hyaluronic acid and poly-L-glutamic acid-

based materials that function as vehicles that enhance penetration through 

the skin (Chapter III) 

 

3. The design, synthesis, and exhaustive physico-chemical characterization of 

poly-L-glutamic acid-drug conjugates incorporating bioresponsive linkers as 

a treatment for psoriasis and the in vitro, ex vivo, and in vivo biological 

evaluation of said conjugates to assess enhanced anti-inflammatory/anti-

psoriatic activities (Chapter IV)  

 

4. The design, synthesis, and exhaustive physico-chemical characterization of a 

family of poly-L-glutamic acid-drug conjugates for wound healing disorders 

and the biological evaluation of said conjugate to assess enhanced wound 

healing activity (Chapter V)  
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CHAPTER I 

GENERAL INTRODUCTION AND BACKGROUND 
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I.1. Biological Barriers to the Administration of Therapeutic Agents 

The term “biological barriers” encompasses a group of protective mechanisms 

present throughout the body. These biological barriers, such as the blood-brain barrier 

(BBB), the skin, and the nasal and mouth mucosa, protect the body from unwanted 

exogenous material (including chemicals, viruses, bacteria), while selectively allowing 

molecules with specific characteristics to cross. However, the restrictive nature of these 

barriers also impedes the passage of a range of therapeutic agents, as in the case of the 

topical administration, thereby lowering overall effectiveness. This delivery “challenge” 

requires novel and rationally designed therapeutics, such as polymer therapeutics 

(discussed in detail in Section I.4.), that can conform to the different characteristics 

required to pass through specific biological barriers to reach disease sites, specific tissue 

and cell types, or even specific subcellular locations.  

Biological barriers that inhibit the passage of therapeutic agents to their desired 

site of action can be categorized into five levels (Figure I. 1) and will be discussed below. 

Level 1: Reaching the Bloodstream 

Reaching the bloodstream is generally the first biological barrier faced by a given 

therapeutic. Intravenous injection represents the easiest and most direct administration 

route; however, alternative routes of administration, including topical [1, 2], inhalatory 

[3], and oral [4] administration involve different types of barriers [5, 6]. 

For the treatment of skin diseases/disorders, a given therapeutic agent may require 

targeting to specific skin layers, rather than the bloodstream, thereby requiring the rational 

design of delivery systems that can reach the desired site of action and avoid unwanted 

systemic side effects. 

Level 2: Circulatory System Barriers 

When a given therapeutic agent enters the bloodstream, various plasma proteins, 

including serum albumin, apolipoproteins, and immunoglobulins, adsorb to the surface 

of a therapeutic agent in a process known as opsonization [7]. This process promotes the 

recognition of foreign agents by phagocytes (immune cells) resulting in their removal 

from the bloodstream. Opsonization depends on specific physico-chemical and surface 

properties of the therapeutic agents, including size, surface charge and chemistry, and 

hydrophobicity [8].  
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Level 3: Tissue-specific Barriers  

Several biological barriers separate the blood from the interstitial fluid that 

encloses tissues (including the blood-brain, blood-ocular, and blood-thymus barriers). 

The most selective and controlled of these barriers is the blood-brain barrier, or BBB, 

located in the central nervous system [9]. As an example, certain omega-3 fatty acids 

(including didocosahexaenoic acid [diDHA]) can attenuate neuroinflammation in the 

brain [10, 11], thereby demonstrating its capacity to cross the BBB. Of note, we will 

explain in detail how diDHA can enhance to cross biological barriers in Chapter V of 

this thesis. 

Level 4: Cellular Barriers 

The passive diffusion of molecules represents the main pathway used to cross 

cellular barriers. Therapeutic agents can be uptaken through endocytotic, 

macropinocytotic, or phagocytotic mechanisms [12, 13]. Cell internalization can be 

enhanced by modifying the physico-chemical characteristics of the therapeutic agent, 

including shape, charge, and/or the addition of different ligands. 

Level 5: Subcellular Barriers 

Some therapeutic agents have been designed to target the specific intracellular 

locations/organelles implicated in cellular dysfunction [14]; however, optimal delivery 

through membranes delineating each type of organelle represents a significant challenge. 

Of note, the mechanism employed for the internalization of a given therapeutic agent will 

influence subcellular targeting. Hence, a global understanding of these processes will 

provide relevant information for the rational design of therapeutic agents [15]. 

 

Figure I. 1: General representation of biological barriers present in the body. Adapted from [16]. 
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I.2. Skin as a Barrier 

I.2.1. Skin Structure and Function 

The skin is the largest and most physiologically complex organ of the human 

body; it accounts for ~10% of total body mass and has a surface area of approximately 2-

3 m2, thereby representing the main biological barrier of the body [17]. The skin performs 

multiple functions, including the regulation of temperature, control of water 

ingress/egress, self-maintenance/self-repair, and protection against external threats [18, 

19]. The skin also possesses a sizeable sensory surface containing three categories of skin 

sensory receptors: mechanoreceptors, thermoreceptors, and nociceptors. Therefore, the 

skin transmits sensory information, such as temperature, touch, pressure, and pain 

throughout the body. The skin displays a multilayer structure consisting of two main 

histological layers: the epidermis and the dermis. 

I.2.1.1. The Epidermis 

The epidermis is the outermost layer of the skin, whose thickness varies according 

to body area [19]. The ongoing production of lipids, glycosaminoglycans, and ceramides 

[20] in this layer contributes to the creation of the protective barrier. The epidermis lacks 

blood vessels and diffusion across the dermis supplies nutrients to cells in deeper layers. 

Although is composed mostly of keratinocytes, the epidermis also hosts other cell types, 

such as Langerhans cells (antigen-presenting cells), melanocytes (melanin-producing 

cells), and Merkel cells (mechanoreceptors). The epidermis comprises a stratified 

epithelium formed by several layers of keratinocytes that display increased levels of 

keratinization as the layers approach the skin surface (stratum corneum), creating five 

distinct layers or strata (Figure I. 2).  

The stratum basale 

Commonly known as the basal layer, the stratum basale is considered the deepest 

layer of the epidermis. In this layer, keratinocytes are interconnected and form further 

connections with the dermo-epidermal membrane via desmosomes and 

hemidesmosomes, respectively [21, 22]. The innermost metabolically active layer is 

formed by epidermal stem cells that continually provide keratinocytes from the inner 
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epidermis for the outer epidermis [23]. Interestingly, other cell types, such as 

melanocytes, Langerhans cells, and Merkel cells, are also found in this layer. 

The stratum spinosum 

This stratum spinosum (or spinous layer/prickle cell layer) is located above the 

stratum basale and comprises an average of two to six layers of keratinocytes that flatten 

as they approach the next layer towards the skin surface. These keratinocytes contain 

cytosol prolongations similar to prickles and are often called spiny cells [24]. The prickles 

of adjacent keratinocytes provide improved structural rigidity and increase the resistance 

of the skin to abrasion. Studies have also reported keratin production in this layer [25].  

The stratum granulosum 

The stratum granulosum is composed of one or more layers of flattened 

keratinocytes. The cytoplasm of these keratinocytes contains characteristic granules of 

keratohyalin, the precursor of keratin synthesis [26]. The apoptosis of keratinocytes 

begins in this layer, with cells beginning to lose their nucleus. 

The stratum lucidum 

The stratum lucidum is present only in thicker skin, such as that of the palms of 

the hands and the soles of the feet [27], and consists of a single layer of flattened 

homogeneous keratinocytes that lack a nucleus and display a consistent increase in 

keratinization compared to deeper stratum. 

The stratum corneum 

The stratum corneum is the last and outermost layer of the epidermis with protein 

(mainly keratin) and lipids (predominately triglycerides, cholesterol, and phospholipids) 

[28] representing major components. Both the stratum lucidum and the stratum corneum 

also contain dead keratinocytes that are replaced thanks to the upward migration of cells 

from the deepest epidermal layers - a renewal process known as desquamation [29]. The 

stratum corneum presents as a compacted, dehydrated, and keratinized multilayer whose 

keratinocytes transform into corneocytes (terminally differentiated, anucleated cells of 

the keratinocyte lineage). 

In healthy skin, the rate of stratum corneum desquamation is generally similar to 

the ratio of epidermal cell synthesis, taking approximately 28 days; however, in skin 
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diseases such as psoriasis, the keratinocyte renewal cycle decreases from 28 to 7 days, 

leading to interrupted maturation and incorrect completion [30]. 

 

Figure I. 2: Structure of the epidermis separated into different strata. Adapted from [31].  

I.2.1.2. The Dermis 

The dermis, which constitutes the most significant proportion of the skin as a 

whole, lies directly below the epidermis and is considered as the support of the skin. The 

epidermal and dermal layers meet at the dermal-epidermal junction [32], a matrix of 

mechanically strong fibrous proteins (mainly collagen) immersed in a mixture of proteins, 

glucose, electrolytes, and water (generally known as the ground substance) [33]. 

Additionally, blood vessels, nerve tissues, and skin appendages such as sebaceous glands 

and hair follicles lie within this matrix. While the vasculature provides nutrients for the 

epidermis, it also transports substances absorbed across the skin barrier into the systemic 

circulation.  

I.2.2. Penetrating the Skin Barrier  

The skin represents an alternative route for the administration of therapeutic 

agents due to its sizeable available surface area, allowing for sustained and continuous 

delivery to the circulatory system. This approach enables wider spacing of doses than 

intravenous delivery, for example, while avoiding the unwanted side effects of other 

administration routes [34]. Transdermal delivery also promotes patient compliance due 

to the ease of administration and the option of safe self-administration. Importantly, the 

transdermal route represents an alternative for certain therapeutic agents where there 

exists a significant first-pass effect in the liver, which can lead to premature 
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metabolization, therefore avoiding systemic administration is advisable [35]. However, 

the barrier role of the multilayer stratum corneum makes transdermal delivery a 

challenging prospect. Transdermally administered therapeutic agents can reach the 

bloodstream if said therapeutic can perform three steps: i) penetration, entry into a 

specific skin layer, ii) permeation, penetration from one layer to another, and iii) 

resorption, entry into the vascular system [36]. 

 There exist three proposed penetration pathways through the skin [37]: i) the 

intercellular penetration pathway, ii) the transcellular penetration pathway, and iii) the 

follicular penetration pathway [38, 39] (Figure I. 3). The intercellular route represents 

the most common pathway for permeation [40] - the therapeutic agent penetrates through 

the stratum corneum by passing between corneocytes. However, the transcellular pathway 

is more direct and rapid, with the therapeutic in question crossing the skin by directly 

passing through the lipid structures of the stratum corneum and the cytoplasm of 

keratinocytes. Significant resistance to permeation represents the major limitation to this 

route, given that therapeutic agents must cross both lipophilic and hydrophilic structures 

[41]. Studies had suggested a meager contribution of the follicular pathway (0.15%) in 

comparison to intercellular/transcellular penetration, given the relatively small area of 

skin covered by hair [34]. Nevertheless, recent studies have demonstrated that follicular 

penetration can create a reservoir of drugs that can be released slowly; therefore, this route 

may still have relevance to the delivery of therapeutic agents [42-46]. 

 

Figure I. 3: Representative image of the three penetration pathways: intracellular, intercellular, 

and follicular. Adapted from [34].  
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I.2.3. Penetrant Characteristics 

The physico-chemical properties of the penetrant (the therapeutic agent in 

question) significantly influence the penetration route across the skin, with lipophilicity 

and molecular size representing critical parameters [47-49].  Other critical parameters that 

influence penetration include hydrogen bond acidity and basicity, excess molar 

refractivity, polarizability, molar refractivity, melting point, and molar volume [50, 51]. 

Penetrant properties influence skin permeation through two possible mechanisms: 

increasing absorption into or lowering the diffusion resistance through the stratum 

corneum lipid phase [52]. 

I.2.4. Methods to Improve Penetration through Skin 

The structure of the skin provides resistance to permeation of therapeutic agents; 

however, different methodologies have been developed to increase transdermal 

penetration. 

I.2.4.1. Formulation Optimization 

Effective penetration through the skin not only depends on skin conditions and the 

characteristics of the therapeutic agent but also depends on the transport vehicle employed 

[53]. The vehicle plays a vital role in therapeutic potency and success since the 

characteristics of the vehicle can influence the rate and extent of therapeutic agent 

penetration and absorption, thereby modifying its bioavailability [54].  

The application of hydrophilic and hydrophobic therapeutics to the skin requires 

the application of varying vehicles or formulations, including creams, gels, and patches. 

The vehicle must be selected and formulated with the characteristics of each therapeutic 

agent in mind to promote maximal release and penetration through the skin to ensure 

enhanced transdermal delivery. The vehicle should facilitate the rapid but controlled 

therapeutic release by permitting sustained release over time. 

I.2.4.2. Chemical Enhancers  

Chemicals can be incorporated into topical formulations to promote the 

penetration and enhance therapeutic agent release within skin layers. These chemicals 

must exhibit specific properties for their inclusion in different formulations [55]. 
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Chemical enhancers must: 

 Be pharmacologically inert 

 Be non-toxic, non-irritating, and non-allergenic 

 Allow immediate penetration of the therapeutic agent after application 

 Allow the rapid and complete recovery of full barrier properties after use 

 Be chemically and physically compatible with associated therapeutics and 

adjuvants 

 Be suitable solvents for therapeutic agents 

 Be well-tolerated by patients, organoleptically acceptable  

 Be readily formulated into dermatological preparations, transdermal devices, and 

skin adhesives. 

Chemical enhancers can increase the penetration of therapeutic agents through 

various mechanisms [56]: 

 By increasing the diffusion coefficient of the therapeutic agent 

 By increasing the effective concentration of the therapeutic agent in the vehicle 

 By improving partitioning between formulation and stratum corneum 

 By decreasing skin thickness 

Several types of chemical enhancers have been studied and evaluated: 

1. Water 

The application of water represents one of the most used and safest means to 

improve skin permeation and permeability. The water content of human stratum corneum 

is typically around 15–20% [57]. Despite extensive research in the area, the mechanism 

of action involved remains unclear, although many hypothesize that water increases the 

hydration of the stratum corneum and also controls the transepidermal water loss.   

2. Sulfoxides 

Sulfoxides can aid both hydrophilic and hydrophobic permeants. One of the most 

widely used penetration enhancer is dimethyl sulfoxide or DMSO, also known as the 

“universal solvent” in pharmaceutical sciences. DMSO can denature proteins, changing 

the intercellular keratin configuration in human skin from helical to beta sheet [58]. 
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Although DMSO has proven to be an excellent penetration accelerant, studies have 

encountered adverse effects at high concentrations of DMSO, such as erythema [56]. 

3. Azones 

Azone (1-dodecylazacycloheptan-2-one or laurocapram), a colorless and odorless 

liquid with a melting point of -7°C, is considered as the first molecule exclusively 

designed as a skin penetration enhancer [57]. The mechanism of action comprises the 

fluidization of the intercellular lipid bilayers of the stratum corneum, thereby reducing 

the diffusional resistance of the skin barrier to permeation [59]. The application of azone 

has improved the skin penetration of a variety of drugs, including steroids, antibiotics, 

and antiviral agents [60, 61]. 

4. Pyrrolidones 

Pyrrolidones have been employed as permeation enhancers for a wide range of 

molecules, including hydrophilic and lipophilic drugs. Treatment with pyrrolidones can 

generate drug reservoirs within skin layers, as pyrrolidones partition into the lipids of the 

stratum corneum and increase their fluidity, thereby permitting the release of an active 

agent from the stratum corneum over time [57, 58]. N-methyl-2-pyrrolidone is one of the 

most used enhancers of skin penetration, and has been applied with several drugs and 

active agents, such as caffeine [62]. 

5. Fatty Acids 

Several long-chain fatty acids have been employed as enhancers of therapeutic 

agents penetration through the skin. Oleic acid, one of the principal long-chain fatty acids 

used for this purpose, increases the diffusivity of therapeutics through the skin by 

interacting and interfering with lipids within the stratum corneum [63]. Lauric acid, 

myristic acid, and capric acid can also enhance the delivery of various drugs [64]. 

6. Alcohols 

Ethanol is the most used alcohol in transdermal formulations, often employed as 

a component of transdermal patches. Obtaining the desired effect depends on the 

concentration used, as high levels cause dehydration of biological membranes and 

therefore decrease permeation [56]. Fast evaporation of ethanol increases drug 

concentration, thereby altering solubility in the skin, and providing a supersaturated state 

with a greater driving force, promoting drug penetration.  
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7. Surfactants 

Surfactants in formulations help to form micelles that solubilize the therapeutic 

agent in question and promote effective skin permeation. Surfactants are generally 

classified into three types: anionic (e.g., sodium lauryl sulfate), cationic (e.g., 

cetyltrimethylammonium bromide), and non-ionic (e.g., dodecyl betaine). Anionic and 

cationic surfactants can have adverse effects on human skin; for example, sodium lauryl 

sulfate is a powerful irritant and can increase transepidermal water loss in vivo [65]. In 

contrast, non-ionic surfactants tend to be considered safe for application to human skin.  

8. Urea 

Urea is regarded as a hydrating agent (a hydrotrope) and has been widely applied 

in the treatment of diseases such as psoriasis [57]. Urea induces transdermal permeation 

by facilitating significant stratum corneum hydration and the formation of hydrophilic 

diffusion channels [66]. Moreover, salicylic acid provides keratolytic properties to urea, 

allowing application in skin diseases characterized by an increment of epidermis 

thickening (e.g., keratosis, sometimes associated with the development of psoriasis) [67]. 

Several analogs containing more potent enhancing moieties have been developed to 

improve the penetration-enhancing activity of urea, including cyclic, alkyl, and aryl urea 

analogs [68]. 

9. Essential oils, Terpenes, and Terpenoids 

Terpenes are found in essential oils and have been employed as medicines, 

flavorings, and fragrance agents. The size of terpenes influences their activity; smaller 

terpenes tend to be more active permeation enhancers than larger terpenes (such as 

sesquiterpenes) [57]. Terpenes can transform the solvent nature of the stratum corneum, 

thereby modifying and enhancing diffusivity through the skin [56]. Essential oils of 

eucalyptus, chenopodium, and ylang-ylang have been shown to improve the penetration 

of 5-fluorouracil in human skin [69].  

10. Phospholipids 

Several pharmaceutical formulations have employed phospholipids to carry 

therapeutic agents into and through human skin due to their capacity to create vesicles 

(liposomes) that surround and protect said therapeutic agent. The application of the 

phospholipids as vesicles promotes fusion with stratum corneum lipids, while 
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phospholipids also alter the solvent nature of the human skin and improve the permeation 

of different drugs, demonstrating the most significant positive effect on hydrophilic drugs 

[70, 71]. 

I.2.4.3. Physical Enhancers 

Physical enhancers can improve the penetration of therapeutic agents by physical 

disruption of the structure of the skin, using for this purpose different techniques. 

1. Iontophoresis  

Permeation is enhanced by the application of a low-level electric current directly 

over the skin [72-74], a strategy which can be adapted to each case [75]. Modifiable 

parameters include electrode type, system pH, current intensity, competitive ion effect, 

and permeant type [76]. Several mechanisms can increase permeability: i) the anode-

cathode charge directs the therapeutic agent towards specific layers of skin [77]; ii) the 

electric current itself deconstructs skin layers and inhibits barrier function [78]; and iii) 

the accumulation of water increases by electroosmosis, which improves the hydration of 

the skin and favors penetration [79]. 

2. Sonophoresis or Phonophoresis 

This technique involves the usage of high- or low-frequency ultrasound waves. 

Sonophoresis enlarges existing skin pores and also creates more pores in the skin leading 

to the disruption of the stratum corneum [80]. Parameters that can affect the effectiveness 

of this technique include the duration, intensity, and frequency of the treatment [75]. 

Several studies have demonstrated the improvement of insulin delivery using ultrasound 

[81, 82].  

3. Magnetophoresis  

Magnetophoresis, the application of a magnetic field, represents a novel approach 

to improve therapeutic agent permeation across the skin. The presence of a magnetic field 

induces structural alterations, thereby modifying the protective properties of the skin and 

increasing permeability. This technique has been used to improve the penetration of a 

multitude of drugs/active agents, demonstrating its versatility [83, 84]. 
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4. Electroporation  

Electroporation is the transitory structural modification of the lipid bilayer 

membranes due to the application of short and high voltage pulses to the skin [85], which 

leads to transient pore formation allowing the transit of compounds into cells [58]. The 

electrical parameters and physico-chemical properties of the drugs determine the 

effectiveness of transport. 

5. Thermophoresis  

Thermophoresis employs higher than physiological temperature to favor 

percutaneous absorption [86] thanks to induced vasodilation of the subcutaneous blood 

vessels [87] and increased drug diffusivity through the vehicle and skin because of 

improved lipid fluidity [88]. In vitro [89] and in vivo [90] studies have demonstrated the 

contribution of this technique to the improvement of drug permeation.  

6. Radiofrequency  

Radiofrequency is a versatile technology employed for generating therapeutic 

intensities of heat, thereby producing structural and biological responses. This technique 

focuses on the exposure of skin to high-frequency alternating current (preferably from 

100 to 500 kHz), which induces the formation of membrane microchannels in response 

to the heat caused by electrical current application, facilitating the penetration of 

hydrophilic drugs [91].  

7. Microneedles  

Microneedle devices facilitate the penetration by piercing the stratum corneum to 

deliver therapeutic agents into the epidermis. Microneedles have been fabricated with 

different size, shape, geometry, and materials [92] for applications with a wide range of 

molecules and nanoparticles [93, 94]. 

I.2.5. Techniques to Evaluate Skin Penetration 

The assessment of skin penetration represents a critical challenge in the evaluation 

of the suitability and effectiveness of a given therapeutic agent as a treatment for skin 

diseases. The development of real skin models that can better mimic the characteristic 

features of disease has generated an ever-expanding knowledge base regarding 

penetration. Furthermore, the development of new specific techniques that can track the 
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drug through the skin will allow a better understanding of the processes that mediate the 

localization of a given therapeutic agent. 

I.2.5.1. Skin Models 

Widely accepted models for skin-permeation studies include ex vivo human or 

animal skin either frozen or in culture; however, several alternative in vitro models to in 

vivo animal models have been developed applying the 3R principle (replace, reduce and 

refine [95]) (Table I. 1).  

The latest advances comprise the creation of skin models through artificial 

membranes or reconstructed skin models. 

Table I. 1: Different skin models. Adapted from [96]. 

 

Artificial and reconstructed skin models represent suitable tools for the evaluation 

of transdermal absorption. Artificial skin models are particularly convenient for the study 

of the underlying mechanisms of passive transport through a membrane [97-99]. The 

development of these models is reproducible and straightforward due to the elimination 

of the complexity of human or animal skin [96]. Although simplicity represents one of 

the main advantages of these models, oversimplification also represents a limitation, as 

these skin models do not provide an adequate representation of complexities of in vivo 

skin [100]. 



48 
 

Reconstructed skin models are created from layers of different human cells 

cultured on a polymeric matrix, thereby obtaining the desired organization and a degree 

of complexity. Reconstructed human epidermis models can be generated to mimic the 

epidermis or the entire human skin (living skin equivalents) [101, 102]. Interestingly, 

these models also mimic the physiopathology of various diseases states, such as psoriasis 

or atopic dermatitis [96]. Therefore, reconstructed skin models can be used not only to 

understand the molecular pathways responsible for specific diseases but also to examine 

the penetration, delivery, and effects of topical therapies.  

I.2.5.2. Monitoring Penetration in the Skin 

Several advanced physicochemical techniques have been used to investigate skin 

penetration pathways, which allow the study of the internal structure of skin layers and 

their physiological behavior, as well as the penetration of different drugs through the skin, 

and the interactions between therapeutic agents and skin components [103-105]. 

Techniques employed to detect penetration include infrared and Raman spectroscopy, 

confocal microscopy, and mass spectrometry. 

 Fourier transform infrared spectroscopy permits the investigation of stratum 

corneum lipids under controlled conditions [106] and the evaluation of changes in stratum 

corneum barrier function in vivo after the application of compounds, such as sucrose 

oleate and sucrose laurate [107]. Also, Fourier-transform infrared spectroscopy represents 

a useful screening tool for the evaluation of guidelines in the design of chemical 

enhancers to increase skin permeability [108]. 

Raman spectroscopy provides specific vibrational signatures of chemical bonds, 

allowing the precise skin layer-location of the studied therapeutic agent [109, 110], while 

confocal microscopy permits the visualization and localization of fluorescent compounds 

in the skin [111]. Recent studies have employed a novel technique based on confocal-

Raman microspectroscopy [112], demonstrating its suitability in assessing the effect of 

skin penetration enhancers [113, 114], the penetration of different compounds [115, 116], 

and the status of skin features and conditions, such as hydration [117, 118]. 

Recently, mass spectrometry methods have been used to image the spatial 

distribution of compounds in various skin layers, providing high chemical specificity 
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[119]; as an example, mass spectrometry has allowed the observation of differences in 

penetration profiles for four different drugs [120]. 

I.2.6. Skin Penetration as a Challenge 

The complex structure of the skin provides the necessary protection to the human 

body against external agents; however, this protection also has a negative consequence 

when topically administering drugs or active agents, as the skin prevents penetration. 

Many of the topical drugs currently used or under clinical trials lack appropriate 

physico-chemical characteristics for adequate delivery through the skin. Various rational 

strategies have been evolved to improve the physico-chemical properties of 

drug/therapeutic agents according to the features of the desired site of action, improving 

topical delivery and stability. Some methods include the development of the prodrug 

approach [121] or the development of nanomedicines via the conjugation of therapeutic 

agents to carriers with different characteristics [122]. Said nanomedicines protect the 

therapeutic agent against premature degradation and interact with various components of 

the skin, increasing the penetration of the therapeutic agents through the different layers 

of the skin, and increase retention time in the desired site of action [123, 124].  

We will detail the main characteristics and advantages of nanomedicine in the 

field of topical applications in the next section. 

I.3. Nanomedicine 

Nanotechnology involves controlling the properties and structures with particle 

sizes in the nanometer range, typically ranging from less than 100 to 1000 nm [125, 126]. 

Nanomedicines are nano-sized agents employed for the diagnosis, prevention, and 

treatment of diseases/disorders, and have allowed a deeper understanding of the complex 

pathophysiology of disease [127]. Nanomedicinal advances, mainly in cancer, have 

demonstrated huge potential and utility as systemic treatment approaches [128].  

The first classes of nanomedicinal platforms present distinct physico-chemical 

properties (Figure I. 4) and can be classified into separate groups depending on size 

ranges in the nanoscale: liposomes (80 - 200 nm), nanoparticles (20 - 1000 nm), polymer 
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therapeutics (5 - 25 nm), block copolymer micelles (50 - 200 nm), gold nanoparticles (5 

- 50 nm), and nanosized drug crystals (100 - 1000 nm). 

 

Figure I. 4. Schematic illustration of established first generation nanomedicines platforms. 

Adapted from [127].  

Different nanoparticle-based formulations are used in clinics as a potential 

strategy to deliver a range of therapeutic agents [129], including polymeric nanoparticles 

[130], micelles [131], liposomes [132], antibody-drug conjugates [133], virosomes as 

nanoparticles [134], nanocrystals [135], gene therapy and immunotherapy-based 

treatment [129]. 

I.3.1. Nanomedicine Applications to the Skin  

The improvement of transdermal delivery remains the main target of current 

research. The nanomedicinal approaches in topical applications hope to overcome many 

of the limitations of current transdermal delivery formulations. Nanosized carriers, or 

nanocarriers, are especially useful for the passive delivery of therapeutic agents, inducing 

transit through the skin without the need for energy input or specific receptors.  

Nanocarriers offer several advantages over conventional carriers, including higher 

solubility, controlled size, delivery to specific targets, controlled and sustained release of 
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therapeutic agents, delivery of hydrophilic and lipophilic molecules, weakened skin 

irritancy, protection from degradation, increased loading, and enhanced permeation 

through the skin [136-138]. Due to these advantages, nanocarriers can enhance the 

pharmacokinetic profile and effectiveness of therapeutic agents when compared to “free” 

forms [139]. Moreover, nanocarriers interact with the skin and can modify barrier 

properties, contributing to penetration [140].  

Some of the most used nanocarriers include nanoparticles (e.g., nanocapsules and 

nanospheres), liposomes, microparticles (e.g., microcapsules and microspheres), 

nanocrystals, polymersomes, niosomes, cubosomes, dendrimers, and fullerenes, amongst 

notable others [141, 142]. Of these, nanoparticles represent the most promising systems 

due to their high physico-chemical stability and ability to incorporate different therapeutic 

agents. 

 The application of nanocarriers as treatment approaches for skin diseases has 

given rise to the field of “nanodermatology”. First introduced by the Nanodermatology 

Society [143], nanodermatology consists of the application of nanotechnology to the skin 

for diagnostic, therapeutic, or cosmetic purposes (Table I. 2). 

Table I. 2: Promising areas in nanodermatology research. Adapted from [144]. 

 

This new area of research allows the development of delivery systems to transport 

therapeutic agents through the epidermis and direct them towards their required site of 

action [145, 146]. Therefore, the features of the delivery systems in the skin not only 

depend on the therapeutic agents but also the transporting nanocarrier.  
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This thesis describes a particular nanomedicinal approach, polymer therapeutics, 

to increase the penetrability of bioactive agents through the skin and improve the physico-

chemical properties. 

I.4. Polymer Therapeutics: The First Polymeric Nanomedicines 

Polymer therapeutics represent exciting first-generation nanomedicines and are 

generally considered as the first polymeric nanomedicines [147, 148]. The term “Polymer 

Therapeutics”, coined by Prof. Ruth Duncan, includes an extensive family of nano-sized 

medicines (5 - 100 nm in diameter). More than twenty polymer therapeutics have found 

in routine clinical use [149] with two polymer therapeutics becoming top-selling drugs in 

the USA in the last decade: the polymeric drug glatiramer acetate for the treatment of 

multiple sclerosis (Copaxone®, Teva Pharm) and a polyethylene glycol (PEG)-filgrastim 

polymer conjugate for the treatment of neutropenia (Neulasta®, Amgen) [148].  

Polymer therapeutics-based treatments have demonstrated suitability in a range of 

disease/disorders, including cancer [150-152], neurodegenerative disorders [153, 154], 

hepatitis [155], and autoimmune diseases [156], thereby reflecting the huge potential of 

this nanomedicinal approach. 

I.4.1. Definition and Classification 

Polymer therapeutics fall into five distinct families: polymeric drugs (polymers 

with inherent activity) [157], polymer-protein conjugates [158], polymer-drug conjugates 

[159], polyplexes (multi-component systems used as non-viral vectors for gene/small 

interfering RNA delivery) [160], and polymeric micelles (where drug attachment occurs 

via covalent bonding) [161] (Figure I. 5).  

This thesis focuses most of its attention on the development of polymer-drug 

conjugates, which will be described in detail (Section I.4.2.2.). 
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Figure I. 5: Schematic representation of the polymer therapeutics family. Redrawn from [159].  

Polymer therapeutics employ specific water-soluble polymers, a crucial factor for 

systemic administrations of these systems, acting as an inert structural component or as 

an active agent (polymeric drug) [159]. While most polymer therapeutics in the clinics 

employ intravenous administration, other options include oral, intramuscular, 

subcutaneous, and local administration routes [162]. Of particular interest to this thesis, 

polymer therapeutics have been clinically developed as a topical administration; as an 

example, VivaGel® (Starpharma), a lysine-based dendrimer (a type of branched polymer) 

that acts as microbiocide is currently in Phase III clinical trials [163, 164] as an HIV-1 

preventative agent. 

When used as a delivery system for an active agent, be it a small molecule drug, 

protein, targeting moiety, etc., polymer therapeutic-based approaches allow for targeted 

release at the desired site of action and controlled and sustained release within a suitable 

therapeutic window [165]. The conjugation of a therapeutic agent to a polymer backbone 

offers several advantages over other nanomedicines, including (1) increased water 

solubility; (2) controlled size and size-dependent properties; (3) protection of the 

therapeutic agent against degradation by proteolytic enzymes or unspecific cellular 

uptakes; (4) enhanced plasma half-life due to the increase in hydrodynamic volume and 

the decrease in kidney clearance; (5) prevention or reduction of aggregation, 

immunogenicity, and antigenicity; (6) modified pharmacokinetics both at cellular and 

even subcellular level. 
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The design of nanosized medicines like polymer therapeutics has been inspired by 

the “enhanced permeability and retention (EPR) effect” first described by Matsumura and 

Maeda [166]. After intravenous administration, nanomedicines of specific sizes can 

passively extravasate from the bloodstream and accumulate in the tumor interstitium due 

to the enhanced permeability of the angiogenic tumor vasculature and defective lymphatic 

drainage (Figure I. 6). 

 

Figure I. 6: Enhanced permeability and retention (EPR) effect and passive targeting. Adapted 

from [167]. 

The EPR effect also plays a vital role in inflammatory tissues, as in the case of 

psoriatic skin, supporting and justifying the design and use of this class of nanocarriers 

in infectious and inflammatory conditions [168]. However, studies have shown that the 

EPR effect is a complex phenomenon with a heterogeneous presentation, which in the 

case of cancer is also affected by tumor type, tumor region, and tumor vascularization. 

As tumor vascularization represents an important factor regarding the uptake of 

nanomedicines, poorly-vascularized damaged tissues are less susceptible passively-

targeted nanosized therapeutics [169], thereby highlighting the need for the integration of 

targeting strategies into polymer therapeutics-based approaches.  

Following accumulation around the tumor or target tissue, endocytic mechanisms 

promote the cellular uptake of polymer-based nanomedicines through invaginations of 

the cell membrane, creating vesicles called endosomes that undergo a complex succession 

of fusion events until the formation of the lysosome. Lysosomes contain a high 

concentration of proteolytic enzymes and display an acidic pH (5.5) [170] that can aid the 
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degradation of the polymer-based nanomedicines with degradable linkers or the polymer 

backbone, and release the therapeutic agent from the polymer (Figure I. 7). 

 

Figure I. 7: Lysosomotropic intracellular drug delivery process followed by polymer-drug 

conjugates. Adapted from [171]. 

I.4.2. Polymer Conjugates as Therapeutics 

Polymer conjugates fall into two groups: polymer-protein and polymer-drug 

conjugates. The choice of an adequate polymeric carrier and a suitable linker(s) or 

spacer(s) depends on the physico-chemical properties of the bioactive agents(s) to deliver 

to the molecular target and also the biological activity or aim pursued in each case.  

The exponential increase in the number of polymer conjugates on the market for 

different medical applications reflects the enormous future potential for polymer 

therapeutics (Table I. 3). 
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Table I. 3: Marketed polymer conjugates. PEG: polyethylene glycol; G-CSF: granulocyte-colony 

stimulating factor. 

  

I.4.2.1. Polymer-Protein Conjugates 

Most therapeutics that contain peptides, proteins, or antibodies present limitations 

such as short circulation times, low stability, limited therapeutic effects, and possible 

immunogenic responses. Protein conjugation addresses these limitations by increasing 

stability in serum and decreasing immunogenicity. Although the development of 

polymer-protein conjugates began in the 1990s with the appearance of SMANCS, a poly-

(styrene-co-maleic acid) (SMA) conjugate of neocarzinostatin (NCS) for hepatocellular 
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carcinoma treatment [172], polymer-protein conjugates only became relevant following 

the description of the US Food and Drug Administration (FDA)-approved PEGylation 

technique [173, 174]. The mechanism comprises the covalent attachment of polyethylene 

glycol (PEG) to proteins, and examples abound in the market [147]. 

PEG, an artificial non-biodegradable polymer that displays flexibility, extreme 

water-solubility, and a lack of charge, has found common use in the pharmaceutical 

industry as an excipient and a starting product. PEG conjugation to proteins improves 

immunogenicity and solubility, and prolongs blood plasma half-life [175]. The 

hydrophilic character of PEG contributes to steric stability and protects the system against 

degradation, thereby allowing a reduction in the required dosing frequency, which 

enhances the safety profile of the therapeutic in question.  

Encouragingly, PEGylation has had substantial clinical impact in the treatment of 

various pathologies, including hepatitis C and rheumatoid arthritis. As a consequence, 

this impact has encouraged the clinical approval of PEG-protein conjugates by the FDA 

(Table I. 3), and several products are in clinical development since 2018 (Table I. 4).  

However, reported toxic effects limit the application of PEG [176] as the non-

biodegradable nature of PEG provokes progressive accumulation following continuous 

administration, leading to adverse side effects [177]. Also, the functional molecular 

weight (Mw) used has limits; studies have demonstrated that oligomers with < 400 Da 

are toxic due to oxidation into diacid and hydroxyl acid metabolites by alcohol and 

aldehyde dehydrogenase enzymes [178]. 
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Table I. 4: Polymer-protein conjugates in clinical development. Adapted from [179]. 
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Table I. 4: Polymer-protein conjugates in clinical development (continuation). Adapted from 

[179]. 
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I.4.2.2. Polymer-Drug Conjugates 

Polymer-drug conjugates, a term coined by Ringsdorf in 1975 [180], are 

composed of three main components: a water-soluble polymer, a bioresponsive linker, 

and a bioactive agent (Figure I. 8). Polymer-drug conjugates are formulated to influence 

drug pharmacokinetics at the whole body and cellular level, and to aid passage through 

various biological barriers. Moreover, conjugation improves cellular specificity, controls 

drug release rate in specific targets, and therefore, decreases non-specific toxicities.  

Importantly, inherent polymer multivalency permits the conjugation of more than 

one compound to the polymeric backbone, allowing the introduction of targeting residues 

(promoting receptor-mediated endocytosis) [181], diagnostic moieties [182], or more 

than one drug (polymer-based combination therapy) [183]. 

 

Figure I. 8: Schematic illustration of polymer-drug conjugates. Adapted from [184]. 

In general, the development and application of polymer-drug conjugates have 

generally focused on cancer treatment. In 1994, Kopecek and Duncan developed the first 

polymer-anti-cancer drug conjugate clinically evaluated, the poly-N-hydroxypropyl 

methacrylamide (HPMA) copolymer-doxorubicin (DOX) conjugate (HPMA-DOX or 

PK1, FCE 28068), which employed a lysosomally-cleavable peptidyl linker [159]. 

Although PK1 displayed a 15-fold improvement in plasma half-life, an enhanced safety 

profile, and higher anti-tumor efficacy in comparison with free DOX in preclinical animal 

models [185], clinical trials demonstrated low efficacy, thereby halting PK1 

development.  

Overall, only a small fraction of the first generation of polymer-drug conjugates 

have had success in clinical trials: 
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 Poly (N-hydroxypropyl methacrylamide) (polyHPMA)-DOX [186-189]. 

 Poly (glutamic acid) (PGA) conjugates of paclitaxel (XyotaxTM or OpaxioTM) 

or camptothecin (CT-2106) [190-192]. 

 PEG-cyclodextrin-camptothecin nanoparticulate conjugates (CRLX101 or IT-

101) [193, 194]. 

 PEG-polypeptide block copolymer conjugated with SN-38 (NK-012), 

Doxorubicin (NK-911) or Cisplatin (NC-6004) [195-197]. 

 

And currently, only one polymer-drug conjugate is already in the market, 

MovantikTM (PEGylated derivative of naloxol, a metabolite of naloxone) used to treat 

opioid-induced constipation [198], and more than 20 products are in clinical development 

(Table I. 5).   

 

OpaxioTM [199] (previously called XyotaxTM), a PGA-conjugate form of 

paclitaxel (PTX) using an ester linker (PGA-PTX), represents one of the most advanced 

polymer-drug conjugate and is currently in Phase III clinical trials for the treatment of 

ovarian, prostate and esophageal cancer, which can be applied in combination with 

cisplatin or radiotherapy. OpaxioTM has an average Mw of 38.5 kDa and a drug loading 

between 36 - 37% w/w (1 drug molecule in each 11 glutamic acid (GA) units). In 

comparison with other nanosystems with PTX, OpaxioTM has higher drug loading (37 

wt% vs. 5 wt% for the discontinued HPMA-PTX conjugate [200] and therefore presents 

with enhanced stability in blood.  

Interestingly, the OpaxioTM clinical trial results demonstrated a relationship 

between polymer-drug conjugate therapeutic effect and patient hormone status: pre-

menopausal women with higher estrogen levels responded, while post-menopausal 

women and men did not. The current hypothesis states that higher estrogen levels increase 

cathepsin B activity, with cathepsin B responsible for the PTX release from the PGA 

backbone. Hence, cathepsin B activity represents one of the few examples of biomarker 

assessment in nanomedicine clinical trial patient selection [150]. In 2012, the FDA 

awarded OpaxioTM orphan drug designation for the treatment of glioblastoma multiforme 

in combination with temozolomide and radiotherapy. OpaxioTM development has been a 

reference for the expansion of PGA and polypeptide-based conjugates alone or in 

combination therapy, revealing the huge potential of these systems as therapeutics [16, 
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201]. One of the major strategies to move forward with polymer conjugates is the use of 

biodegradable nanocarriers, such as polypeptides, to avoid undesired side effect as those 

observed with PEG related with vacuolization and lysosomal storage diseases [13, 183].  

Table I. 5: Polymer-drug conjugates in clinical development. Adapted from [179]. 
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Table I. 5: Polymer-drug conjugates in clinical development (continuation). Adapted from [179].   
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I.4.2.2.1. Rational Design of Polymer-Drug Conjugates 

The design of polymer-drug conjugates for the treatment of a given disease or 

disorder must follow a rational stepwise design in consideration of the different processes 

that the conjugate faces following patient administration [202]. The physico-chemical 

characteristics of the polymer-drug conjugates will determine its capacity to cross the 

required biological barriers, such as the skin, and, therefore, the biological activity. The 

successful activity of the conjugate depends mainly on its response to the specific 

physiological environments found in the whole body. The essential components studied 

for the effective development of polymer-drug conjugates are the biodegradable polymer 

carrier itself and the bioresponsive linker between the polymer and the therapeutic agent 

involved.  

I.4.2.2.1.1. Polymeric Carrier 

In general, the polymeric carrier of choice should present the following properties: 

(1) Biodegradability or a suitably small molecular weight, thereby facilitating 

excretion in vivo. 

(2) Low polydispersity, providing homogeneity of the final conjugate. 

(3) Prolonged half-life in the blood, enhancing adequate biodistribution and 

accumulation in body compartments, thus promoting optimal activity. 

(4) Multivalency, allowing adequate drug loading, combinatorial drug loading, or 

the application of targeting/diagnostic moieties. 

Biodegradability represents one of the most important characteristics of potential 

carriers, as this avoids accumulations in the body and possible related adverse side effects. 

The non-biodegradability and molecular weight restrictions of the first-generation 

conjugates of PEG and HPMA revealed limitations to pharmacokinetics and systemic 

toxicity. Thus, current research focuses on developing new and advanced biodegradable 

and biocompatible water-soluble polymers [203]. Polymer carriers include natural 

polymers as dextran (α-1,6 polyglucose), dextrin (α-1,4 polyglucose), cyclodextrin, and 

hyaluronic acid, and synthetic polymers such as PEG, HPMA copolymers (a polymer 

derived from more than one types of monomer), polyacetals, and polypeptides.  

Moreover, polymer structural versatility has allowed the synthesis of a massive 

number of different systems, from linear or branched homopolymers to block 
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copolymers. Branched polymers involve several types, such as star, hyperbranched and 

dendritic-like polymers, dendrimers, graft, brush, and comb-like polymers, and polymer 

networks [204]. The high multifunctionality of branched polymers provides several 

advantages compared to their linear analogs, such as enhanced stimuli-responsiveness 

and the conjugation of a vast amount of different bioactive agents [205]. Moreover, 

branched polymers have demonstrated superior biodistribution, pharmacokinetic profiles 

[206], and in vivo biodistribution in healthy mice. Overall, the required functionality will 

drive the final use of linear or branched polymers.  

I.4.2.2.1.2. Bioresponsive Linkers 

The choice of the bioresponsive linker represents another critical parameter in the 

rational design of polymer-drug conjugates [207]. The application of stimuli-responsive 

materials, both endogenous (e.g., pH, redox environments or reactive oxygen species) 

and exogenous (e.g., magnetic field, temperature, light), has exponentially grown in 

recent times. Linker chemistry can optimize drug release profiles in specific 

microenvironments or the presence of particular enzymes, thereby ensuring the release of 

the active agent(s) within the target area and improving biological activity. 

Different types of linkers have been described according to their susceptibility 

[16]: 

(i) pH-responsive linkers: including acetal or ester bonds, N-cis-aconityl acid, or 

hydrazone linkers [208, 209]. 

(ii) Lysosomal enzyme-responsive linkers: normally oligopeptides cleaved by 

lysosomal enzymes such as cathepsin B or D, or metalloproteinases. Examples 

of such linkers include GFLG (Gly-Phe-Leu-Gly) and GLFG (Gly-Leu-Phe-

Gly) [210]. 

(iii) Self-immolative linkers: These linkers can disassemble into constituent 

fragments, provoking the rapid disassembly of the polymer [211, 212].  

(iv) Reductive-sensitive linkers: Drug release is produced in reducing 

environments, mainly due to the presence of glutathione [213]. 

(v) Drug release by anchimeric-assisted hydrolysis: firstly, drug-linkers release 

from the polymer following hydrolysis (first prodrug), activating the linker 

(second prodrug) which releases the free and active form of the drug [214]. 
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I.4.2.2.1.3. Physico-Chemical Properties of Polymer-Drug Conjugates 

 The selection of the polymeric carrier and the linker significantly influences the 

physico-chemical parameters of the polymer-drug conjugate, such as the size 

(hydrodynamic radius), surface charge, and conformation. 

The size of the conjugate determines its ability to cross biological barriers, such 

as the skin, and also the mechanism of cellular uptake. Therapeutic agents with sizes 

larger than 200 nm do not penetrate through the different layers of the epidermis well, 

although conjugates of this size may be captured by other mechanisms, such as through 

hair follicles [215, 216].  

Within the circulatory system, nanosystems with sizes smaller than 5 nm penetrate 

capillary fenestrae and become rapidly eliminated by renal glomerular capillaries; 

however, larger particles exhibit prolonged circulation in the bloodstream, thereby 

increasing the time in which the nanosystem can play an active therapeutic role. Hence, 

nanosized therapeutics suitable for systemic applications should be in the range from 5 to 

200 nm.  

The self-assembly behavior of nanosystems also affects the final size and is 

determined by the characteristics of the assembling polymers and the conjugated drug(s), 

among other driving forces specific for each nanosystem implicated in its regulation 

[206]. Remarkably, several hydrophilic polymers fail to aggregate in the presence of 

water, but conjugation with a hydrophobic drug can induce self-assembly. As an example, 

both PEG-P(L-Asp) and PEG-P(L-Glu) create nanosized systems only after conjugation 

with DOX, resulting in the well-known polymeric micelles, some of them in advanced 

clinical development [217, 218]. 

The type of polymeric carrier employed also influences the surface charge 

(positive, neutral or negative), while after conjugation to different moieties or drugs, the 

zeta (ξ) potential value (the relative magnitude of the charges) of the system can also 

change. The surface charge impacts the in vivo effect of conjugates, conditioning the type 

of interactions with cell membranes and therefore cellular uptake, recognition and 

elimination from the bloodstream, and toxicity [219, 220].  

In terms of cellular uptake, surface charge regulates the interactions between the 

nanosystem and the lipid cell membrane; due to the presence of sulfated proteoglycans in 
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the lipid bilayer, the cellular surface charge is ordinarily negative [221]. Hence, 

nanosystems with positive surface charges, such as poly-lysine, can bind strongly to the 

membrane, enhancing cellular uptake. However, positively charged nanosystems are not 

recommended for direct application in vivo, as these systems interact with negatively 

charged serum proteins (albumin) and red blood cells in the bloodstream and produce a 

precipitate over the cell surface [222], thereby destabilizing the plasma membrane and 

inducing instantaneous toxicity [223]. Thus, nanosystems should be modified with small 

or neutral charges by conjugation or complexation with anionic molecules (e.g., siRNA), 

to decrease the positive charge. Interestingly, surface charge also affects the physical 

stability and aggregation of the nanosystem in the circulatory system. 

Conjugate conformation also represents an important parameter in the design of 

polymer-drug conjugates. Polymer chain conformation can modulate the stability of the 

nanosystem and the interaction with cellular membranes, and therefore, the final 

biological activity. The conformation of polymer-drug conjugates also affects the 

exposure of the therapeutic agent(s) involved to the factors that trigger its release, such 

as pH or specific enzymes, which can significantly influence release rate, activity, and 

effectiveness of the treatment at the desired target. The conformation of the nanosystem 

can also vary according to the type and pH of the solvent. This effect is especially 

significant in the case of polypeptides, where pH changes promote an ionization or 

neutralization of functional groups in the amino acid residues, which then encourages 

conformational transitions [224]. Furthermore, conjugated moieties or drugs can 

introduce extra charged elements that can modify the electrostatic equilibrium of the 

nanosystem, acting as a stabilizing or destabilizing force [225].  

The polymer-drug conjugates synthesized, characterized, and evaluated in this 

thesis are based on the poly-L-glutamic acid (PGA) as polypeptidic carrier (discussed 

below). Ester bond linkers have been used in the majority of the systems due to their 

susceptibility to pH changes, leading to the drug release in the lysosomal compartment or 

in specific tissue areas showing an inflammation or a pathological situation. 

I.4.3. Polypeptide-Based Therapeutics 

Giving the described problems with previously developed non-biodegradable or 

bioaccumulative polymers, the use of natural biodegradable polymers in polymer 

therapeutics has greatly expanded, especially as a component of drug delivery systems 
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[226]. In particular, poly-amino acids or polypeptide-based materials (such as PGA) have 

had the most significant impact in the field of biomedicine as they provide the previously 

described advantages of polymers (see section I.4.2.2.1.1.) while avoiding some of the 

unwanted side effects.  

The intrinsic characteristics of polypeptide-based materials have justified the 

trend to move away from non-natural polymers. Polypeptides mimic natural proteins, 

demonstrating remarkable biocompatibility and biodegradability due to controlled 

sequences and composition of the constitutive monomers. Therefore, the application of 

polypeptide-based materials suits diseases that require prolonged and continuous 

treatment, such as chronic or infectious diseases, neurological disorders, or tissue 

regeneration. Moreover, polypeptides present low immunogenicity [227, 228], thereby 

contributing to their suitability for constant parenteral administration and allowing the 

use of high doses of polymer [127]. The emergence of polymerization techniques, mainly 

ring-opening polymerization of α-amino-N-carboxyanhydrides [229-231], has led to the 

controlled synthesis of polypeptides with narrow polydispersity, high reproducibility, and 

specific functionalization of the polymeric backbone [204, 230]. 

Several important properties must be considered in the design of advanced 

biodegradable polypeptide-based materials [232]. Characteristics include (i) the 

avoidance of a sustained inflammatory response, (ii) a degradation time according to their 

function, (iii) suitable mechanical characteristics for their final use, (iv) the production of 

easily resorbable or excretable non-toxic degradation products, and (v) the possession of 

adequate permeability and processability for the designed purpose. 

Polypeptide-based conjugates have found use in multiple areas of medicine, with 

an ever-increasing number of polypeptide-based compounds reaching preclinical and 

clinical trials [233]. These products include anti-cancer [234, 235], anti-tuberculosis 

[236], anti-diabetic [237], anti-microbial [238, 239], anti-virus [240], and anti-apoptotic 

conjugates [241], alongside magnetic resonance imaging agents [6], and theranostic 

agents (diagnostic and therapeutic applications in the same agent) [242]. These examples 

demonstrate the structural versatility of the polypeptide conjugates, facilitating the 

conjugation of therapeutic agents with different origin and physico-chemical properties 

(e.g., size, hydrophilicity) and diverse loading rates.  



69 
 

In this thesis, the synthesized polymer-drug conjugates employed PGA as a 

biodegradable polymer to take advantage of the intrinsic properties explained above. 

I.4.4. Characterization Techniques 

The rational design of drug delivery systems will significantly influence the final 

activity of the drug, and the exhaustive physico-chemical characterization of developed 

systems can provide information regarding structure-activity relationships, safety, and 

efficacy. Characterization contributes to the broader understanding of the conformation, 

dynamics, dimensions, and also the interactions with the biological environment. Purity, 

identity, molecular weight, polydispersity, drug content, free drug content, and 

quantification of targeting units represent just some of the critical characteristics of a 

nanosized drug-delivery system. 

A growing interest in new biodegradable polymeric systems has led to the 

development of complex systems, creating the need for establishing adequate physico-

chemical techniques for their characterization. The application of multiple and 

complementary techniques has provided knowledge on shape, size, and conformation. 

Table I. 6 describes some of the most important techniques used in the physicochemical 

characterization of the nanosystems. Novel physico-chemical techniques such as SAXS 

(small-angle X-ray scattering), SANS (small-angle neutron scattering) [243, 244], wide 

angle X-ray scattering (WAXS), and Cryo-TEM (Transmission Electron Microscopy) 

[245, 246] have provided for significant advances in the characterization field. 
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Table I. 6: Summary of the most relevant techniques used to elucidate physico-chemical 

descriptors in physiological media. Adapted from [247]. 

 



71 
 

Table I. 6: Summary of the most relevant techniques used to elucidate physico-chemical 

descriptors in physiological media (continuation). Adapted from [247]. 
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I.4.5. Polymer Therapeutics for Skin Delivery 

Transdermal drug delivery systems based on polymer therapeutics represent a 

non-invasive administration strategy for both local and systemic therapies. The topical 

route presents several advantages compared to other types of administration, mainly due 

to the reduction of the frequency of dose and bypassing hepatic first-pass elimination 

[248, 249]. 

One of the most widely used polymeric carriers for transdermal delivery of 

bioactive molecules is the biodegradable and biocompatible natural polymer, hyaluronic 

acid (HA) [250], a glycosaminoglycan found in the extracellular matrix that binds and 

retains water molecules [251]. As an example of the potential of HA, Yang et al. assessed 

the penetration capacity of an HA-conjugated form of the human growth hormone (hGH) 

[252]. hGH has been commonly employed for the treatment of short stature by injection 

over months to years. As hGH receptors are distributed throughout the skin, especially in 

fibroblasts, and influence cell proliferation and differentiation [253, 254], topical 

administration of hGH represents an exciting alternative to intravenous injection. The 

topical application of the HA-hGH conjugate led to increased penetration and reached the 

dermis, thereby drastically enhancing the bioavailability of hGH in the bloodstream when 

compared to free hGH.  

The bioresorbable polymer chitosan represents another natural polymer carrier 

that can enhance skin penetration by modifying the secondary structure of keratin in the 

skin, thereby increasing the hydration of the stratum corneum and cell membrane fluidity 

[255]. Chitosan is a type of mucopolysaccharide found in the shell of crustaceans, and 

many other organisms, including insects and fungi [256]. Pawar et al. prepared a chitosan 

hydrogel containing the covalently conjugated antibiotic cefuroxime by an ester linker 

for the treatment of wound infections in the skin. The results revealed a potent 

antibacterial activity using the agar well diffusion method (Kirby-Bauer assay [257]), 

thereby extending the therapeutic time span of the antibiotic [258]. 

The conjugation of various drugs (e.g., retinal [Vitamin A], pyridoxal [Vitamin 

B6], and pyridoxal phosphate [metabolically active coenzyme of vitamin B6]) to a 

polyamidoamine based dendrimer (PAMAM), a type of branched polymer, has also been 

used as a means to effectively penetrate the skin [259]. Due to the intrinsic characteristics 

of these branched polymers, such as monodispersity and a compact spherical structure   
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(1 - 10 nm), the reduced size of the PAMAM dendrimers improved the penetration of the 

conjugates in the skin [260, 261].  

A study by Castleberry et al. reported the conjugation of all-trans retinoic acid 

(ATRA) to a hydrophilic polymer, polyvinyl alcohol (PVA), through a hydrolytically 

degradable ester linkage (PATRA), as a potential means to improve transdermal 

penetration. Franz diffusion cell studies using an explant pig skin model demonstrated 

that topical application of the PATRA conjugate for 12 hours led to the improved dermal 

accumulation of ATRA. In vivo irritation studies demonstrated that PATRA generated a 

more significant reduction in inflammation at the site of application site when compared 

to free ATRA [262].  

In another study, Bonina et al. developed polyoxyethylene ester prodrug 

conjugates of different anti-inflammatory drugs (e.g., ketoprofen, naproxen, and 

diclofenac). Ester synthesis employed the conjugation of drugs with polyoxyethylene 

glycols using a succinic acid spacer. In vitro transdermal absorption studies established 

that esters with elevated levels of ethylene oxide groups displayed an increased flux 

through the skin when compared to the application of the free drugs. The evaluation of 

the anti-inflammatory activity of the conjugates in a methyl nicotinate-induced skin 

erythema model in healthy human volunteers demonstrated the appreciable and sustained 

activity of ketoprofen and diclofenac esters with higher PEG molecular mass compared 

with the free drugs [263].  

Polymer therapeutic approaches have also been employed to develop a topical 

chemotherapy strategy for the treatment of melanoma. Capanema et al. developed a 

carbohydrate-based prodrug composed of a carboxymethylcellulose polymer conjugated 

with the anticancer drug DOX via covalent amide bonds. Additionally, cross-linking of 

the polymer with citric acid produced advanced hydrogels. The results established the 

influence of the carboxymethylcellulose structure (different degree of substitution) on 

DOX release kinetics in vitro and its cytotoxicity towards melanoma cancer cells in vitro 

[264]. 

Overall, polymer therapeutics offer particular advantages that can enhance 

transdermal drug delivery. Although the skin presents certain challenges to the delivery 

of therapeutic agents, such as the stratum corneum barrier and constant cell shedding, 

polymer therapeutics can overcome barrier properties and promote drug penetration to 
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deeper skin layers. The use of polymer therapeutic-based formulations for various skin 

diseases could revolutionize current therapeutic strategies employed in dermatology by 

overcoming old challenges and offering new perspectives for the treatment and 

prevention of dermatological diseases. 

To this end, we will discuss the skin disorder psoriasis in the following section as 

one of the main focuses of this thesis. 

I.5. Psoriasis as a Target Pathology 

Damage to the skin barrier function leads to the development of several skin 

diseases or disorders [265]. Skin barrier integrity is essential for the protection of the 

whole body, and its dysfunction can enhance the risk of developing infective and 

inflammatory disorders [266]. In some disorders, such as psoriasis, the inflammatory 

process impedes the correct synthesis and maintenance of skin barrier elements and 

prevents or diminishes the effectiveness of topical treatments. Our challenge is to develop 

a suitable and effective topical treatment for our target pathology, psoriasis, through the 

application of a polymer therapeutic-based approach.  

Psoriasis is a common and chronic inflammatory disease mediated by the immune 

system with predominantly cutaneous involvement. Psoriasis is characterized by the 

unpredictable nature of pathological evolution, presenting with periods free of disease 

followed by periods of outbreaks with highly variable appearance and duration. There are 

several clinical phenotypes of psoriasis, which can be classified based on the 

characteristics of the disease, including patient age at disease onset, degree of skin 

involvement, morphologic pattern, and anatomic location [267]. While the most common 

manifestation of psoriasis is plaque psoriasis or psoriasis vulgaris (90% of psoriatic 

patients [268]), other forms of this disease include psoriasis-like pustular psoriasis, 

erythrodermic psoriasis, and guttate psoriasis (Figure I. 9) [269, 270]. Psoriasis can have 

a considerable impact on patient quality of life, due, in most cases, to the perceived 

embarrassment regarding the appearance of the skin, therefore affecting both the physical 

and emotional health of the patients [271]. 
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Figure I. 9: Clinical presentation of psoriasis. Adapted from [272, 273]. 

I.5.1. Prevalence and Morbidity 

Psoriasis is a relatively common disease, affecting 2 - 3% of the adult population 

and 0.5 - 1% of children [274]. Studies have indicated that the incidence of psoriasis 

doubled between the years 1970 and 2000 [275] and can appear at any age, although 

normally between the ages of 15 - 30 and 50 - 60 [276]. According to the National Institute 

of Health (NIH), as many as 7.5 million Americans suffer from some form of psoriasis, 

with more than 150,000 new diagnoses of psoriasis reported every year; however, most 

new cases are in persons under 30 years of age [277]. These numbers translate to annual 

health care costs of around $135 billion in the USA alone [278].  

Recently, the importance of gender in psoriasis prevalence has been demonstrated 

[279] in a study that demonstrated a significantly higher presence of the disease in male 

than in female in the Japanese and Thai populations (Figure I. 10) [280, 281]. 

 

Figure I. 10: Prevalence of psoriasis and the palmoplantar pustulosis (PPP) (localized forms of 

pustular psoriasis) in the Japanese (left) and Thai (right) population. Adapted from [280, 281]. 

The onset of psoriasis usually leads to the development of new associated 

disorders, as the chronic systemic inflammation associated with psoriasis leads to an 
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increased risk of suffering from cardiovascular diseases [271] such as hypertension, 

diabetes mellitus, and obesity [282]. Furthermore, psoriasis can trigger the appearance of 

other autoimmune diseases, such as psoriatic arthritis and Crohn’s disease [283]. 

I.5.2. Etiology 

Psoriasis is a complex disease that involves a range of factors or causes. The 

development of the disease has a genetic predisposition, along with several factors that 

can trigger its appearance. 

I.5.2.1. Triggering Factors 

1. Trauma and Infection 

In 1872, Koebner discovered that psoriatic skin lesions appeared in unaffected 

areas following trauma in patients [284]. The “Koebner phenomenon” describes the 

characteristic distribution of psoriatic lesions on extensor surfaces, such as the elbows, 

knees, and sacral region. Additionally, infections can induce and/or exacerbate the onset 

of psoriasis by triggering a cascade of internal alterations. Infections by Streptococcus, 

Staphylococcus aureus, Malassezia fungi, Candida, and some viruses can all induce 

psoriasis [285]. 

2. Obesity 

Psoriasis can represent both the cause and consequence of the appearance of 

obesity, along with other cardiovascular diseases. Recent studies have shown that patients 

with obesity have a high risk of developing psoriasis. For instance, the Nurses’ Health 

Study followed around 100,000 women over 12 years, assessing if obesity was a potential 

triggering factor. The authors demonstrated the presence of a significant association 

between increasing body mass index and the risk of suffering psoriasis [286]. 

3. Medication 

Certain medications can cause the appearance of psoriasis in patients with a 

genetic predisposition and can also intensify or exacerbate existing disease. Some of the 

drugs evaluated as potential triggers of the disease include beta-blockers, lithium, 

hydroxychloroquine, some antibiotics (penicillin, amoxicillin, ampicillin, and 

doxycycline), and non-steroidal anti-inflammatory drugs [285, 287, 288]. 
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4. Stress, Alcohol, and Smoking 

Periods of stress can lead to the appearance of psoriasis, and while the exact 

mechanisms involved have yet to be clarified, one study established that stress produces 

alterations in the hypothalamic-pituitary-adrenal axis that provokes changes in the 

expression of some hormones [289, 290]. Furthermore, unhealthy habits such as smoking 

or the excessive consumption of alcohol can trigger the disease, with studies directly 

linking tobacco/alcohol consumption to the appearance of psoriasis [291, 292]. 

5. Endocrine factors 

Some hormones related to the hypothalamic-pituitary-adrenal axis, such as 

androgens, prolactin, and thyroid hormone, influence psoriasis directly [293]. Abrupt 

changes in hormonal levels, such as those that occur during pregnancy, can produce the 

appearance of psoriasis or worsen preexisting disease [294]. 

I.5.2.2. Genetic Factors 

 Psoriasis is also related to a strong hereditary character, involved a complex 

genetic basis [295]. Multiple genes are involved in the molecular genetic basis of 

psoriasis, confirming the complexity of the disease [296]. Although there exists 

heterogeneity between different populations, previous studies identified ten loci as 

common potential psoriasis susceptibility regions [297] (Table I. 9).  

Table I. 7: The ten psoriasis susceptibility regions identified using linkage studies. Adapted from 

[293]. 

 

 

The primary susceptibility locus for psoriasis is at 6p21, referred to as PSORS1, 

which is over-expressed in all populations tested [298-301]. Additional studies found a 
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relationship between psoriasis and other genes implicated in inflammatory pathways, 

including nuclear factor kappa beta (NF-kB), tumor necrosis factor (TNF), and 

interleukin (IL)-23/17 pathways [297] demonstrating a central role of both the innate and 

the adaptive immune system. 

I.5.3. Immunopathological Features 

While initial analyses suggested that the aberrant activity of keratinocytes and the 

associated uncontrolled proliferation of the epidermal cell layers causes psoriasis, recent 

studies have demonstrated that the evolution of psoriatic skin inflammation seems to be 

influenced by the presence of immune cells, especially dendritic cells and T cells [274]. 

Therefore, psoriasis is no longer considered merely as a disease caused by an ineffective 

skin barrier, but rather a more complex and systemic disease. Moreover, studies have 

established a dependence on the interaction between systemic pro-inflammatory factors 

and keratinocyte overproliferation [302-304]. Alterations to the immune system are now 

considered the primary inducing factor for psoriasis [293]. 

 Psoriasis vulgaris is characterized by aberrant keratinocyte hyperproliferation in 

the basal layer when compared with healthy skin, causing the increment in epidermal 

thickening (acanthosis) that produces the plaques that characterize this subtype [305, 

306]. Additionally, the premature maturation of keratinocytes produces the incomplete 

conversion of keratinocytes into corneocytes, with the retention of nuclei in the stratum 

corneum (parakeratosis) [307]. Inflammatory infiltration, consisting mainly of dendritic 

cells, macrophages, and T cells (Figure I. 11), is also observed in psoriatic lesions. 

Psoriasis also affects the regulation of the synthesis of essential keratins (K) for the 

correct functioning of keratinocytes; one study found that hyperproliferation-associated 

keratins (K6, K16, and K17) replaced keratins typical of suprabasal cells (K1 and K10) 

[308, 309]. 
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Figure I. 11: (A) Characteristics plaques together with erythema, in different sizes and shapes. 

(B) Histopathological features characterized by increased epidermis thickness, parakeratosis, 

elongated rete ridges, and a mixed cellular infiltrate CD3+ T cells (C) and CD8+ T cells (D). 

Adapted from [307].  

I.5.4. Immunopathogenesis: Central Role of the Immune System 

The contributions of dysfunctional skin cells and the immune system establish a 

pro-inflammatory environment within the skin that prevents the normal functioning of 

the skin barrier. During the development of psoriasis, there exists a close relationship 

between the innate and adaptive immune system; the innate immune system provides an 

early response mechanism, and after its activation, the adaptive immunity becomes 

involved. 

As described Nestle et al. [307] (Figure I. 12), the onset of psoriasis begins with 

the activation of the innate immune system, in particular, the activation of dendritic cells 

(DCs), which are antigen-presenting cells that connect innate and adaptive immunity. 

Different types of DCs can be found in the skin, expressing different surface markers and 

immune mediators. Following inflammation, studies have revealed an increase in the 

numbers of specific DC populations, including plasmacytoid DCs (pDCs) and dermal 

myeloid DCs (mDCs) [274]. During disease initiation, pDCs become activated in huge 
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numbers. Following a disease trigger, keratinocytes respond by producing LL-37, an 

antimicrobial peptide, that complexes with self-DNA and RNA. LL-37/DNA and LL-

37/RNA complexes can be uptaken by dendritic cells and activate them, stimulating two 

Toll-like receptors (TLR) types, TLR-9, and TLR-7, respectively.  

Adaptive immunity-related mechanisms begin to function following the activation 

of the innate immune system. Activated dendritic cells produce the synthesis of pro-

inflammatory cytokines such as IL-12 and IL-23 [310] to promote T-cell induction of Th1 

and Th17 class expansion, respectively. This interaction begins a cascade of inflammation 

and the synthesis of proinflammatory cytokines such as IL-17A, IL-17F, IL-22, IL-26, 

IL-6, IL-21, TNF-α, and interferon gamma (INF-γ) [274, 310]. The cytokine IL-17 plays 

an essential role in the amplification of the inflammatory signal, and several studies have 

indicated that the development of psoriasis occurs primarily through the IL-23/IL-17 axis, 

which, therefore, represents a primary therapeutic target. Binding of IL-17 to receptors 

on keratinocytes [311] produces several responses, including heightened proliferation. 
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Figure I. 12: Evolution of a psoriatic lesion from initiation to maintenance of disease. Adapted 

from [307]. 

Other than the activation of Th17 cells, IL-23 has been implicated in several other 

effects related to the development of psoriasis [312]. IL-23 receptor complex is formed 

by IL-12Rb1 and IL-23R subunits, which are associated with the Jak family members. 

IL-23 stimulation activates receptor-associated Jaks [310], which, in turn, phosphorylate 

tyrosine residues that serve as docking sites for the signal transducer and activator of 

transcription (STAT) molecules, with STAT3 the most relevant member in the IL-23 

signaling pathway. After activation, STAT3 homodimers translocate into the nucleus and 

bind DNA promoter regions of target genes, thereby promoting the synthesis of cytokines 
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related with psoriasis (IL-17A, IL-17F, and INF-γ) (Figure I. 13). Moreover, IL-23 alters 

the expression of TNF-α by stimulating macrophages [293] and has a direct impact in 

keratinocytes by promoting keratin 16 (K16) gene expression, which is associated with 

epidermal hyperplasia [308, 313]. 

 

Figure I. 13: IL-23 signaling pathway. Adapted from [310]. 

Other cytokines with essential roles in the development of psoriasis include TNF-

α and INF-γ. A multitude of cells involved in the pathophysiology of psoriasis produce 

TNF-α, including keratinocytes, DCs, and Th1, Th17 and Th22 cells [314], which 

participates in both acute and chronic phase disease. The pro-inflammatory functions of 

TNF-α include the initiation of several secondary mediators and the induction of adhesion 

molecules [315]. 

INF-γ also represents a crucial mediator that prolongs the inflammatory process. 

Type I IFNs play various roles in the antiviral host defense, due to their ability to prevent 

viral replication and promote immune system activation [316]. Activated pDCs secrete 

large amounts of INF-γ in response to the release of nucleic acids, which induces 

epidermal regeneration. This type of interferon is mainly involved in the acute phase of 

psoriasis (appearance of skin lesions), where pDCs infiltrate into early developing lesions 

[317]. INF-γ also affects the expression levels of IL-17, contributes to cytokine release 

[318], and induces the expression of the IL-22 receptor by acting indirectly on 

keratinocytes [314]. Moreover, continuous type I IFNs activity prevents wounds healing, 

thereby enhancing the development of psoriatic lesions [319, 320]. 
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 In summary, psoriasis is a complex disease based on interconnected 

immunological mechanisms. Although there are several pathways implied in the onset of 

the disease, the IL-23/IL-17 axis plays an essential role in the beginning, development, 

and maintenance of the disease. 

I.5.5. Current Therapeutic Approaches for Psoriasis 

The complexity of psoriasis has prompted the development of a multitude of 

treatments against the various mechanisms involved in psoriasis. Treatment approaches 

are generally patient-specific, factoring in the severity of the disease (critical factor to 

select the most adequate therapeutic), comorbidities, patient compliance, and safety. 

Furthermore, the body surface area affected must be taken into account, and while topical 

treatment suit mild to moderate psoriasis, moderate to severe psoriasis may require 

systemic medications and/or phototherapy. 

Currently developed therapeutics for psoriasis are classified into three types: 

topical, systemic, and phototherapy-based approaches. 

I.5.5.1. Topical Approaches 

Topical therapies are the most widely employed treatment for psoriasis and can 

be combined with systemic therapies in patients with more severe forms of the disease. 

Topical anti-psoriatic drugs typically aim to diminish local epidermal inflammation and 

thereby reduce both the epidermal layer thickness and desquamation in the stratum 

corneum. This approach can avoid or slow down the formation of characteristic skin 

plaques. Furthermore, decreasing inflammation through topical therapies eliminates the 

red coloration characteristic of erythema, and can, therefore, improve patient quality of 

life from an emotional health point of view.  

Recommended topicals treatments include corticosteroids, vitamin D analogs, 

calcineurin inhibitors, retinoids, and their combination [293]. Topical corticosteroids 

represent the most common and effective topical treatments, with the variety of 

vehicles/formulations (such as ointment, cream, lotion, gel, foams, etc.) allowing patient-

specific approaches based on location and severity of lesions [321].  

Of note, the correct selection of the vehicle for drug delivery is a critical parameter 

controlling the effectiveness and acceptability of topical formulations. As previously 
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mentioned, drug permeability through the different layers of the skin is modulated and 

related by the properties of the vehicle used [322]. The main parameters that ensure 

successful topical treatment, such as drug release, drug penetration through the stratum 

corneum and drug permeation through the skin layers, are determined by the interaction 

between the vehicle, the skin, and the drug [323]. The formulation of therapeutic agents 

includes ointments, creams, lotions, gels, foams, and a range of other similar examples.  

The physico-chemical properties of the vehicle condition the effect of the 

therapeutic agents on the skin. Paraffin, fats, and oils are occlusive and lipophilic vehicles, 

which enhance the moisture content in the skin, and hence increase drug penetration. The 

term occlusion refers to skin coverage by impermeable films or substances that are widely 

utilized to enhance the penetration of applied drugs [324]. In contrast, hydrogels 

consisting mainly of water do not display an occlusive effect but can improve the 

hydration level of the skin, thereby promoting drug penetration and preventing additional 

symptoms related to dry skin.  

The combination of aqueous and oily solutions results in emulsions; water-in-oil 

emulsions have a less occlusive nature than the lipid solutions but are more occlusive than 

the oil-in-water emulsions [322]. Recently, the development of Pickering emulsions, 

emulsions stabilized by solid particles in place of surfactants, has improved such vehicles. 

Adsorbed solid particles avoid coalescence to a greater degree than surfactants, a process 

in which two or more droplets merge to form a single larger droplet, stabilizing the 

emulsions. The elimination of surfactants in these vehicles allows for long term skin 

applications, where surfactants often cause irritancy [325]. Importantly, formulations that 

increase patient compliance will improve outcomes thanks to the stricter adherence to 

treatment regimens. 

I.5.5.2. Systemic Approaches 

Systemic therapies are generally the most effective treatments for psoriasis. An 

increase in our understanding of the mechanisms and mediators involved in psoriasis has 

prompted the development of new systemic therapies specifically targeting various 

critical pathways, thereby increasing the effectiveness of the treatment. These therapies 

have two distinct approaches: biologic or non-biologic therapeutics. 
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I.5.5.2.1. Biologic Therapeutics 

  The discovery of biologic drugs has supposed a revolution in the therapeutic 

management of patients suffering psoriasis. A multitude of research articles have revealed 

the efficacy and safety profile in the long term of the biologic treatments. Therefore, this 

treatment represents an excellent therapeutic tool for chronic diseases like psoriasis [326, 

327]. Living organisms can be employed to generate biological therapeutics [328], which 

include monoclonal antibodies, cytokines, kinase inhibitors, etc [329]. The involved 

mechanisms of action focus on attacking specific targets of the immune system, and so 

have colossal relevance and potential for the treatment of autoimmune diseases. 

Biological therapeutics are classified according to the therapeutic target on which 

they act, although each one will have a different mechanism of action. Based on the 

immunopathogenesis of psoriasis, therapeutic targets with the best clinical results are the 

primary mediators of the inflammatory process of the disease, such as TNF-α, IL-17, and 

IL-23. Schadler et al. [293] described some of the most effective biologic treatments 

approved by the FDA, according to the target on which they act: 

1. TNF-α inhibitors 

Etanercept (Enbrel®, Amgen): a TNF-receptor fusion protein that acts by 

competitively inhibiting the binding of TNF-α to TNF receptors 1 and 2. Etanercept was 

approved for the treatment of psoriatic arthritis in 2002 and the treatment of plaque 

psoriasis in adults in 2005. 

Adalimumab (Humira®, AbbVie): a monoclonal antibody against TNF-α that acts 

by binding host TNF ligands, thereby inhibiting interaction with TNF receptors. 

Adalimumab was approved for the treatment of moderate to severe plaque psoriasis in 

adults in 2008. 

Infliximab (Remicade®, Janssen Pharmaceutica): a monoclonal anti-TNF-α 

antibody that acts through the same mechanism of action as Adalimumab, and was 

approved for the treatment of psoriatic arthritis in 2005 and chronic plaque psoriasis in 

2006. 

Certolizumab Pegol (Cimzia®, UCB): a Polymer Therapeutic, specifically a PEG-

TNF-α antibody fragment conjugate first approved for use in Crohn’s disease, rheumatoid 

arthritis, psoriatic arthritis, and ankylosing spondylitis. The PEG moiety induces 



86 
 

improvements to the activity of the drug, due to the increment lifetime of the molecule in 

circulation. Certolizumab Pegol received approval for the treatment of moderate to severe 

plaque psoriasis in adults in 2018. 

2. IL-17 inhibitors 

Secukinumab (Cosentyz®, Novartis): a humanized IgG monoclonal antibody that 

specifically targets IL-17A. Secukinumab was the first anti-IL-17 antibody on the market 

for the treatment of psoriasis in adults and was approved in 2015.  

Ixekizumab (Taltz®, Eli Lilly and Company): a humanized monoclonal antibody 

which targets IL-17A to inhibit interaction with its receptor that was approved in 2016 

for the treatment of adults with plaque psoriasis.  

Brodalumab (Siliq®; Valeant Pharmaceuticals): a monoclonal antibody targeted 

against IL-17 receptor A. The IL-17 receptor is a dimer complex of which receptor A is 

a shared subunit and binding of this subunit by Brodalumab prevents IL-17 from 

complexing with the receptor. Brodalumab was approved in 2017 for use in adults with 

chronic plaque psoriasis. 

3. IL-23 Inhibitors 

Guselkumab (Tremfya®; Janssen Pharmaceutica): a monoclonal antibody that 

specifically targets the p19 subunit of IL-23. Guselkumab was approved in 2017 for use 

in adults and became the first selective IL-23 inhibitor on the market.  

Tildrakizumab (Ilumya®, Sun Pharmaceutical Industries Ltd.): An IgG 

humanized antibody that also targets the p19 subunit of IL-23. In 2018, Tildrakizumab 

received approval for treatment of adults with moderate to severe plaque psoriasis. 

New drugs in phase III clinical trials for the treatment of moderate to severe plaque 

psoriasis and psoriatic arthritis, including bimekizumab (IL-17 inhibitors) and 

risankizumab (IL-23 inhibitor) [293, 330]. 

I.5.5.2.2. Non-Biologic Therapeutics 

Non-biologic therapeutics for moderate to severe psoriasis represent less specific 

systemic treatments with generally lower efficacy than biologic therapeutics. Commonly 

employed non-biologic therapeutics include methotrexate, a dihydrofolate reductase 

inhibitor that reduces the synthesis of purines and pyrimidines required for DNA 
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synthesis. However, methotrexate also displays anti-inflammatory, anti-proliferative, and 

immunosuppressive activities in psoriatic patients [331].  

Apremilast, a phosphodiesterase 4 inhibitor, inhibits the breakdown of cyclic 

adenosine monophosphate and the decreased production of inflammatory cytokines and 

clinical trials have established Apremilast as an effective treatment for plaque, nail, scalp, 

and palmoplantar psoriasis [332, 333].  

Cyclosporine, an immunosuppressive drug that inhibits calcineurin and decreases 

the synthesis of IL-2, is a conventional oral treatment for psoriasis treatment alongside 

methotrexate [334].  

Finally, Acitretin, a vitamin-A-derived retinoid that interferes with epidermal cell 

growth and differentiation [335], is used in combination with topical or systemic 

treatments as alone it presents only weak effects on outcomes in psoriasis patients [336]. 

I.5.5.3. Phototherapy 

Phototherapy consists of repeated exposure of the skin to ultraviolet (UV) 

radiation as a treatment and is often employed following the failure of topical 

medications. While recent improvements have improved utility and accessibility, the 

mechanism of action has yet to be fully delineated [337]. However, studies have 

discovered that phototherapy intensifies cutaneous immunosuppression, mainly by 

altered cytokine expression and lymphocyte apoptosis [338].  

Different types of radiation have been used; ultraviolet B (UVB), ultraviolet A 

plus psoralen (PUVA), and photodynamic therapy (PDT) [339]. Ultraviolet B radiation 

at 311 nm represents the most common and effective phototherapeutic modality in 

psoriasis patients; however, the strategy of employing ultraviolet A plus psoralen (PUVA) 

is no longer used to the heightened associated risk of skin cancer [293]. To improve 

patient compliance, home UV units were developed to allow patients to avoid medical 

facilities, and this has improved access to treatment and increased patient satisfaction 

[340].  

I.5.6. Nanomedicine-Polymer Therapeutic Approaches to Psoriasis Treatment 

Several polymer-based nanocarriers have been employed as drug delivery systems 

for the treatment of skin diseases such as psoriasis, as they permit the sustained diffusion 
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of the drug into the skin following the formation of a high drug concentration gradient at 

the skin surface [341]. These advantages allow the sustained and controlled drug release 

at the target site for prolonged periods when compared to the free drug [342, 343]. 

Furthermore, polymer-based nanocarriers can also reduce the number of doses and 

spacing times, producing higher levels of patient acceptability and treatment compliance 

[344]. In the following section, we will discuss the few studies that have directly 

addressed psoriasis.  

In 2016, Bessar et al. employed gold nanoparticles functionalized by sodium 3-

mercapto-1-propane sulfonate (Au-3MPS) to encapsulate methotrexate and studied the 

absorption behavior in a C57BL/6 mouse normal skin model. They discovered that this 

formulation reached the epidermis, with a lower amount also reaching the dermis [345]. 

Ultraviolet-visible spectroscopy after 24 hours of skin application revealed the presence 

of the conjugate in the mouse skin, with higher delivery of methotrexate to the epidermis 

and dermis using the gold nanoparticles when compared to treatment with the free drug. 

The authors confirmed their findings in vitro by scanning transmission electron 

microscopy images, observing gold nanoparticles distribution inside the keratinocytes 

from primary cell cultures.  

Another study developed by Crisan et al. employed silver and gold nanoparticles 

to carry polyphenols-rich extracts from the Cornus mas. shrub recently revealed to have 

promising anti-inflammatory activity in vivo [346]. The application of nanoparticle-based 

ointments in psoriatic patients for six weeks prompted a considerable improvement of 

psoriasis plaques, with reduced peeling, erythema, and plaque thickness. 

Immunofluorescence of skin biopsies demonstrated that nanoparticles significantly 

reduced CD68-positive macrophages and TNF-α production in the psoriasis plaques. 

Nemati et al. developed novel nanoparticles conjugating the epidermal growth 

factor receptor (EGFR) siRNAs to gold nanoparticles. Treatment (three times per week 

for three weeks) with EGFR-siRNA gold nanoparticles mixed with Aquaphor®, a 

marketed ointment for skin application of active agents, in an acute imiquimod-induced 

psoriasis murine model revealed reduced epidermal thickness when compared free 

EGFR-siRNA [347].  

Thapa et al. studied the effect of tacrolimus (immunosuppressive drug)-loaded 

liquid crystalline nanoparticles in a psoriatic mice model, finding the retention of 65% of 
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the total drug when applied as a nanoparticle formulation at 24 hours when compared to 

only 25% when used as a solution [348].  

However, the use of non-biodegradable gold, silver or liquid crystalline 

nanoparticles can provoke local and/or systemic accumulation, producing adverse effects 

in the body. Currently, lipidic and polymeric nanoparticles represent the most applied 

type of nanoparticle for the treatment of skin diseases. As an example, the encapsulation 

of capsaicin [349] or a combination of methotrexate and etanercept [350] in lipidic 

nanoparticles increases the amount of drug that reaches the viable epidermis when 

compared to the application of the drug alone. The controlled synthesis of polymeric 

nanoparticles also allows more controllable development of chemical and physical 

characteristics and can help the nanoparticle (and hence the associated drug(s)) to 

penetrate through the skin and improve therapeutic outcomes.  

The application of polymersomes [351, 352] has led to further improvements in 

drug treatment for psoriasis. As an example, Marepally et al. developed a polymersome 

based on a fusogenic nucleic acid lipid particle (F-NALP) system, encapsulating two 

therapeutic nucleic acids, anti-STAT3 and anti-TNF-α siRNA. Results revealed that F-

NALPs efficiently carried both therapeutics into the dermis and synergistically functioned 

to improve psoriatic-like plaques in an imiquimod-induced psoriatic-like plaque mouse 

model.  

Several studies revealed the potential of drug encapsulation in polymeric 

nanoparticles as a delivery system. For instance, the use of curcumin-loaded poly-lactic-

co-glycolic acid) (PLGA) nanoparticles in a psoriasis-like mouse model prompted a 

reduction of psoriasis symptoms, mainly due to the higher penetration through the skin 

of the PLGA nanoparticles in comparison with free curcumin in gel [353]. In studies 

carried out by Mao et al. aiming to increase the encapsulation efficiency of curcumin, 

researchers synthesized new self-assembled nanoparticles formed by a new amphiphilic 

polymer, RRR-α-tocopheryl succinate-grafted-ε-polylysine. The application of these 

curcumin-loaded nanoparticles in gel in an imiquimod-induced psoriatic mouse revealed 

that the nanoparticles displayed better activity than the free curcumin in gel, with a higher 

therapeutic effect and significant inhibition of the expression of inflammatory cytokines 

(TNF-α, NF-kB, and IL-6) [354]. 
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Gurny and co-workers developed a new formulation for tacrolimus encapsulation, 

using a methoxy-poly (ethylene glycol)-hexyl substituted poly (lactic acid)-based 

nanocarrier and subsequently loaded it into a carbopol hydrogel. The authors compared 

the activity of the developed formulation with the commercial formulation Protopic™, 

an ointment containing free tacrolimus used as a benchmark. The results revealed that the 

skin delivery of tacrolimus composite hydrogel in an imiquimod-induced psoriasis mouse 

model was twice as high as for the Protopic™. Furthermore, the tacrolimus composite 

hydrogel showed significant enhancements on both the histopathological score in the 

mice model as well as the in vivo clinical score (erythema and skin thickness) [355]. 

In 2017, Wan et al. synthesized a novel hybrid system based on self-assembling 

nanoparticles of HA-conjugated cholesterol for the encapsulation of nicotinamide and 

tacrolimus. Antipsoriatic activity assessed in an imiquimod-induced psoriasis mouse 

model found that the newly developed nanoparticles functioned as well as a positive 

control for psoriasis treatment (clobetasol propionate) and better than a commercial 

ointment Protopic® [356]. 

To the best of our knowledge, there exist only a few reports of the development 

of polymer-conjugated psoriatic drugs. Jin et al. conjugated zinc phthalocyanine (core) to 

a biocompatible amphiphilic polymer called Brij 58 (a type of polyoxyethylene acyl 

ether) (shell), to create a novel compound for photodynamic therapy of psoriasis. Anti-

psoriatic activity assessments in guinea pig psoriasis model suggested that treatment with 

the conjugate prompted an almost complete disappearance of the signs of psoriasis 

according to the histopathological investigation, compared to groups treated with saline, 

light alone, zinc phthalocyanine polymer conjugate alone, and the combination of light 

and zinc phthalocyanine polymer conjugate [357].  

Summarising, although not many examples of nanomedicine and in particular 

Polymer Therapeutics have been so far reported for the topical treatment of psoriasis it is 

clear that a rational design and a control drug release at the adeaquate skin layer and 

correct cell type significantly improves psoriasis plaque and inflammation.    
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II.1. Antecedents and Background 

Psoriasis, a human-specific and genetically heterogeneous autoimmune chronic 

inflammatory skin disease, currently lacks effective treatment options. At the histological 

level, psoriatic lesions present with acanthosis (thickened epidermis due to rapid 

keratinocyte proliferation), elongated epidermal rate ridges (epithelial extensions that 

project into the underlying connective tissue in both skin and mucous membranes), 

aberrant differentiation of keratinocytes, dilation of blood vessels in papillary dermis 

causing visible erythema (redness of the skin or mucous membranes), and elevated levels 

of inflammatory cell infiltration [1, 2]. During the last decade, our knowledge base 

regarding psoriasis pathogenesis has widened, leading to the development of accurate ex 

vivo and in vivo models. 

Ex vivo models represent valuable research tools for investigations into psoriasis 

and are considered more relevant than in vitro research involving cell lines. Reconstructed 

epidermal models and ex vivo human skin models are the most relevant, and although 

both can test the topical application of different active agents at similar concentrations to 

real dosage conditions [3], the use of human skin from different types of surgeries (e.g., 

abdominal) is considered the most representative model to mimic the complexity and 

interactions in human physiology [4]. Reconstructed epidermal models do not include all 

human skin cell types as they develop from specific cell lines (keratinocytes and 

fibroblasts) and present with a more permeable stratum corneum [5, 6].  

During the development of this thesis, we employed both models to evaluate the 

safety of the synthesized conjugates and their anti-inflammatory activity. We developed 

healthy reconstructed epidermal models following well-established methodologies that 

employed primary human keratinocytes and fibroblasts from juvenile foreskin [7, 8] 

through a collaboration with Prof. Sarah Hedtrich (University of British Columbia, 

Vancouver, Canada). To develop an inflammatory phenotype in the reconstructed 

epidermal models emulating characteristics of psoriatic skin, such as hyperproliferation 

[9], we added recombinant TNF-α to the culture medium to induce the release of pro-

inflammatory cytokines to the culture medium. The assessment of the conjugates in these 

reconstructed epidermal models will be detailed in Chapter IV. We anticipate that the 

application of these models will provide complementary information to the ex vivo human 

skin models. 
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Concurrently, in our laboratory, we have developed ex vivo human skin models 

from skin explants from patients. The methodology involved in the development of ex 

vivo human skin model comprises the culture of skin samples in wells containing metal 

grid supports held over liquid culture medium, allowing epidermal exposure to air and 

contact of the dermis with the culture medium for several days. This approach enables 

the study of several parameters, including tissue viability, drug penetration, intradermal 

vaccination, photosafety evaluation, skin barrier repair, and genotoxicity [3, 6, 10-13]. 

Of note, ex vivo human skin models allow the development of inflammatory 

models through the application of bacterial lipopolysaccharide (LPS) and pro-

inflammatory cytokines or mediators.  

Inflammatory ex vivo skin models allow us to monitor the processes involved 

following activation of the immune system in healthy human skin [14], such as the release 

of pro-inflammatory cytokines or the increment in the thickness of the epidermis due to 

inflammatory processes. These models mimic the physiological characteristics of 

inflammatory skin diseases, such as psoriasis [15, 16], and therefore, allow the screening 

of anti-psoriatic drugs in topical treatments. Ex vivo human skin models also enable the 

testing of pharmaceutical products without the need for animals [17-19], thereby abiding 

by the 3R principle [20]: replacement (replace the use of animals), reduction (reduce the 

number of animals), and refinement (minimize animal suffering). However, limited 

accessibility to skin biopsies, donor variability [4], and the lack a real immune system to 

mimic the features of an autoimmune disease such as psoriasis represent significant 

problems with ex vivo human skin models. Therefore, the application of in vivo models 

will complement the information obtained from the ex vivo models. 

The development of in vivo preclinical mouse models may help us to understand 

the genetic and immune mechanisms contributing to disease development. Thus, any 

animal model developed must reflect the critical features of the human disease and 

respond similarly to previously developed psoriasis treatments [21]. 

 Recent decades have seen the development and characterization of a wide range 

of mouse models of psoriasis, as described in Figure II. 1. The most representative 

models for the study of psoriasis are classified into three types: i) acute (inducible) [22-

24], ii) genetically engineered (transgenic) [25-28], and iii) xenograft (humanized) 
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models [29, 30]. The advantages and limitations associated with each type of model 

highlight the complexity of mimicking multifactorial human diseases in animals [31].   

 We have developed and studied the features of an imiquimod (IMQ)-induced 

model of acute skin inflammation in immunocompetent (BALB/c) mice for the 

preclinical study of psoriasis. IMQ (or 1-(2-methylpropyl)-1H-imidazo[4,5-c] quinolin-

4-amine) is an imidazoquinoline derivative with a small size and high hydrophobicity 

[32]. IMQ has displayed antiviral and antitumor activity in animal models, enhancing 

both the innate and the adaptive immune system [33].  

Drugs like IMQ represent a new therapeutic approach to modify and enhance the 

immune response [34]. The first formulation of IMQ (AldaraTM cream) was developed by 

3M Pharmaceuticals, with IMQ 5% cream clinically applied to treat genital and perianal 

warts commonly caused by different viruses. Overall, patients tolerated this treatment 

well, with some measure of effectiveness observed [35, 36]. 

 

 

Figure II. 1: Summary of the major types of preclinical mouse models currently employed to 

study psoriasis. Adapted from [10]. 
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Van der Fits et al. described the first use of IMQ to generate a psoriasis mouse 

model, establishing that the repeated application of IMQ produced phenotypic changes in 

the skin similar to psoriasis and modulated the IL-23/17 axis [37]. The primary mode of 

action of IMQ occurs through the activation of the Toll-like receptors (TLRs), with TLR7 

specifically involved in psoriatic disease [38-40]. The TLR family is composed of ten 

human pathogen-recognition receptors (TLR-1-10) and represents a central component 

of the innate immune response, allowing cytokine synthesis in response to different 

stimuli [41]. Nevertheless, several studies have demonstrated that IMQ can activate other 

mechanisms independently of TLR7 signaling. For example, IMQ can antagonize A2A 

adenosine receptors to diminish the activation of adenylyl cyclase and the accumulation 

of cyclic adenosine monophosphate (cAMP), thereby decreasing immunosuppression and 

promoting inflammation [42].  

 The IMQ mouse model of acute skin inflammation presents several advantages 

when compared to other model systems, including the straightforward application of IMQ 

(directly to the back of the mouse), the low costs compared to xenograft or knockout 

models, and the rapid induction of inflammation that reduces the treatment duration 

required to produce acute skin inflammation. However, there do exist limitations to this 

model, as the topical application of IMQ can produce a systemic inflammatory response 

and dehydration [39]. Moreover, the establishment of certain aspects of human psoriasis 

is limited due to the acute and non-chronic induction of the disease. Even given these 

limitations, the IMQ-induced psoriasis mouse model has rapidly become one of the most 

widely employed for the study of human psoriasis [43-45]. 

 In this chapter, we focus on fully characterizing disease progression using an 

inflammatory ex vivo human skin model and an in vivo mice model of psoriasis. In the ex 

vivo model, we focus on the histopathological characteristics of the inflamed skin and the 

release of pro-inflammatory cytokines into the culture medium. The in vivo model 

provides information regarding disease progression during the seven days of IMQ 

application in immunocompetent mice, concentrating on the identification of functional 

features in the skin and the expression of pro-inflammatory cytokines considered crucial 

for disease development. Due to the fact that the application of IMQ cream produces acute 

rather than chronic inflammation, we also study the maintenance and progression of the 

disease for a further ten days after the IMQ application ceases to determine the optimum 
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time for subsequent studies into the application of different anti-psoriatic treatments 

(without the disappearance of the main features of the disease). 

II.2. Results 

II.2.1 Ex Vivo Human Skin Model 

II.2.1.1. Characterization of Ex Vivo Human Skin Model  

II.2.1.1.1. Tissue Viability Maintenance 

We developed and characterized an ex vivo human skin model [46] and then 

assessed skin viability over 11 days using the MTT cell metabolic activity assay. The 

results revealed constant tissue viability from day 0 to day 4 in culture medium (Figure 

II. 2) [18]; however, we observed a marked decrease in tissue viability from day 4 to 7, 

after which point, tissue viability remained constant until day 11. These results indicate 

that keratinocytes within the ex vivo human skin model maintain their metabolic activity 

for the first 4 days, therefore mirroring the properties of healthy human body skin.  

 

Figure II. 2: Tissue viability of skin samples in culture medium for 11 days by MTT assay (n=3). 

II.2.1.1.2. Histological Features 

Analysis of the histological features of the ex vivo human skin model also 

confirmed tissue viability during the experimental time in culture (Figure II. 3). 

Hematoxylin-Eosin (H&E) staining of skin samples (Figure II. 3 – Top Row) revealed 

the maintenance of skin structure and physiology for the 11 days in culture medium; 
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overall, the different skin layers appeared similar to day 0 at all other experimental time 

points. Furthermore, we observed a clear differentiation between the epidermis and the 

dermis layer at all times studied, without unwanted alterations such as tears or epidermal 

thickening. 

Additionally, we established the presence of the Ki67 marker in keratinocytes at 

all studied times (Figure II. 3 – Middle Row), indicating the proliferative nature of these 

cells. Finally, we studied the expression of the cytokeratin (Ck) 5/6 basal cell marker in 

the epidermis (Figure II. 3 – Bottom Row) (Ck5 stabilizes the epidermis and Ck6 is 

considered as a hyperproliferative cytokeratin [47]), finding positive staining at all times 

under investigation. Again, this reinforces the adequate maintenance of morphology, 

proliferation, and the capacity for cytokeratin synthesis. 

 

Figure II. 3: Histological features of the ex vivo human skin model by H&E staining (first row), 

Ki67 marker (second row) and Ck5/6 marker (third row). Original magnification displayed in 

each image was 10x. One representative picture is shown for each time point. 

II.2.1.2. Characterization of Inflammatory Ex Vivo Human Skin Model 

A combination of epidermal growth factor (EGF) and bacterial LPS in the culture 

medium in contact with the skin ex vivo can mimic the histological and biochemical 

features of psoriatic lesions [48]. Although this system lacks an immune system, the 

epidermal keratinocytes in such inflammatory model can produce and release pro-

inflammatory cytokines to the culture medium in response to triggers, such as LPS. 

Moreover, the activity of EGF and the local inflammation produced by LPS produces an 
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increment of epidermal thickness, thereby imitating the typical ridges and hyperkeratosis 

that occur in psoriasis. Also, this inflammatory model offers complementary information 

to in vitro experiments and can provide results similar to those obtained from in vivo 

experiments. 

Importantly, this model allows for the extensive evaluation of anti-psoriatic 

therapeutics after application on the skin. For example, penetrative capacity can be 

studied qualitatively and quantitatively with techniques including confocal microscopy, 

high-performance liquid chromatography (HPLC), or liquid chromatography-mass 

spectrometry (LCMS). Also, the model permits both the histological evaluation of 

epidermal thickness modulation and the assessment of anti-inflammatory capacity via 

quantification of the pro-inflammatory cytokines released to the culture medium. 

In the following sections, we report the results of our exhaustive characterization 

of the developed inflammatory model to ensure the presence of psoriasis-like 

characteristics. 

II.2.1.2.1. Maintenance of Tissue Viability Following Inflammation  

We evaluated tissue viability after the addition of a combination of LPS and EGF 

in the culture medium to induce inflammation at 24 and 48 h by MTT assay. We 

maintained a constant concentration of EGF (2.5 ng/mL) but varied the level of LPS from 

10 to 30 µg/mL at 24 h and from 10 to 15 µg/mL at 48 h (Figure II. 4).  

 

Figure II. 4: Tissue viability after the treatments with different concentrations of LPS (10 - 30 

µg/mL) and a constant concentration of EGF (2.5 ng/mL) at 24 (A) and 48 h (B) in culture medium 

by MTT assay (n=3).  
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The results obtained suggest that tissue remains viable, with no significant 

differences observed between any combination of inflammatory insults and control. 

However, we do note the overall trend for a reduction in cell viability with the increasing 

levels of LPS at 24 h. 

II.2.1.2.2. Inflammatory Features  

We next assessed tissue viability after inflammatory insult by monitoring the 

histological modification of tissue over time. H&E staining for histomorphologic analysis 

revealed that the skin maintained its structure in response to the various inflammatory 

insults (Figure II. 5A). However, we observed a general increase in epidermal thickness 

in response to the combined action of the LPS and EGF, therefore suggesting that this 

inflammatory model mimics the features of skin suffering from inflammatory diseases as 

psoriasis.  

We immunohistochemically studied keratinocyte viability (Ck5/6 marker) and 

proliferation (Ki67 marker) and assessed inflammation through the detection of typical 

pro-inflammatory cytokines and mediators, such as the IL-1b, INF-γ, and NF-kB. 

Analyses of Ck5/6 and Ki67 confirmed the viability and proliferation of the keratinocytes 

at all the concentrations of LPS and EGF tested. However, we failed to find significantly 

different levels of inflammation between the control and the treatments, perhaps due to 

the induction of inflammation in the control samples following the surgical procedures 

employed to isolate the samples (Figure II. 5A). 

While keratinocytes are present in considerable numbers in the skin, there also 

exist other cell types such as fibroblasts (synthesis of fibers and maintenance of the 

extracellular tissue matrix), Langerhans cells (initiation and regulation of the immune 

response) and melanocytes (melanin synthesis). After treatment with the lowest 

concentrations (10 and 15 µg/mL of LPS) for 24 and 48 h, immunostaining with Hsp47 

(fibroblasts) [49], langerin (Langerhans cells) and melanin A (melanocytes) markers 

revealed the presence of all three cell types described above in the skin. This finding 

suggests that treatment with LPS and EGF failed to influence other cells of the skin 

significantly, and therefore, the cellular viability of these cell types is not affected (Figure 

II. 5B).  

Histologically, these findings indicate that the inflammatory insults employed do 

not affect the proliferative capacity, morphology, or cellular composition of the skin. 
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Figure II. 5: (A) H&E stained images (first row) of representative skin sections showing intact 

skin structure. Immunohistochemical staining of skin for Ck5/6 (second row) and Ki67 (third 

row) demonstrates the viability and proliferative capacity of keratinocytes. Positive cells for IL-

1b (fourth row), INF-γ (fifth row), and NF-kB (sixth row) demonstrated the induction of 

inflammation (10x magnification). (B) Immunohistochemical staining of fibroblasts (first row), 

Langerhans cells (second row) and melanocytes (third row) provides evidence that the 

inflammatory insults employed failed to affect the cellular composition of the skin (10x 

magnification). 
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II.2.1.2.3. Quantification of Cytokine Release following Inflammatory Insult 

To confirm the results obtained by histology, we assessed cytokine release after 

inflammatory insult to corroborate the establishment of the inflammatory model. We 

quantified the release of cytokines to the culture medium using a LUMINEX kit after 

inflammatory insult at 24 and 48 h. As shown in Figure II. 6A, the application of LPS at 

10 and 15 µg/mL for 24 h led to a significant increase in the levels of the pro-

inflammatory cytokines IL-1b and TNF-α, and the granulocyte macrophage colony 

stimulating factor (GM-CSF). In contrast, higher concentrations of LPS (20 and 30 

µg/mL) failed to produce further increases in the release of pro-inflammatory cytokines 

and so studies at 48 h only employed 10 and 15 µg/mL of LPS (Figure II. 6B). 

Interestingly, we observed a trend for the increased expression of the INF-γ pro-

inflammatory cytokine at 24 h, but we failed to observe a similar induction using 10 and 

15 µg/mL of LPS at 48 h. At 48 h, as for 24 h, we observed a marked increase in the levels 

of IL-1b, TNF-α, and GM-CSF.  

 

Moreover, we also assessed the release of IL-6, a key cytokine involved in the 

inflammatory processes, after induction with specific concentrations of LPS: 10, 15 and 

20 µg/mL at 24 h and 15 µg/mL at 48 h (Figure II. 6C). Each inflammatory insult led 

to an increase in IL-6 when compared to the control – 4 times larger than control at 24 h 

and 15 - 20 times at 48 h.  

Of note, we evaluated the levels of IL-10 anti-inflammatory cytokine [50] in the 

culture medium (Figure II. 7); the increased expression of the IL-10 after the 

inflammatory insult at 24 and 48 h indicates the development of inflammation in the skin, 

as the release of this cytokine counteracts the inflammatory response. 

Summarizing, these results revealed that low concentrations of LPS lead to acute 

inflammation in the proposed ex vivo model without affecting tissue viability and 

morphology. Therefore, we performed further studies in this model using a final 

concentration of 15 µg/mL of LPS and 2.5 ng/mL of EGF. 
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Figure II. 6: Quantification of pro-inflammatory cytokines released to the culture medium after 

24 (A) and 48 h (B) of treatment with different concentrations of LPS (10 - 30 µg/mL)  and a 

constant concentration of EGF (2.5 ng/mL). (C) Quantification of IL-6 released to the culture 

medium after 24 and 48 h of treatment with varying levels of LPS (10 - 20 µg/mL) and EGF (2.5 

ng/mL). Asterisks indicate statistically significant differences after ANOVA analyses followed 

Bonferroni’s post hoc tests, mean ± SEM. In all cases, we considered differences to be significant 

when p***<0.001; p**<0.01; p*<0.05. 

 

Figure II. 7: Quantification of IL-10 released to the culture medium after 24 (A) and 48 h (B) of 

treatment with different concentrations of LPS (10 - 30 µg/mL) and a constant concentration of 

EGF (2.5 ng/mL). Asterisks indicate statistically significant differences after ANOVA analyses 

followed Bonferroni’s post hoc tests, mean ± SEM. In all cases, we considered differences to be 

significant when p***<0.001; p**<0.01; p*<0.05. 
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II.2.2 In Vivo Model of Psoriasis 

II.2.2.1. Monitoring Safety during Disease Induction via Animal Weight 

We applied IMQ cream for seven consecutive days to the mouse dorsal region and 

on the right ear, and then sacrificed animals at day 7, 10, 12, 14, and 17 following the first 

day of treatment with IMQ (Figure II. 8A). We evaluated IMQ cream safety by 

monitoring body weight and comparing observed values to those derived from healthy 

animals. We discovered that the application of IMQ cream for seven days produced a 

slight decrease in animal weight, whereas we observed a recovery in weight after the 

administration of the drug had terminated, eventually reaching the values observed at day 

0 (Figure II. 8B). 

 

Figure II. 8: (A) General scheme of the establishment of the psoriatic model. (B) Mouse body 

weight measurement over time with no significant alterations in body weight. Animals recovered 

weight following the last day of application of the IMQ cream (day 7) with a 100% survival rate.  

II.2.2.2. Evaluation of Inflammation: Back Morphology and PASI Score 

Several studies have demonstrated that IMQ produces a robust immune response, 

inducing psoriasis-like inflammation by activating the production of immune cells via 

TLR activation and thereby mimicking the development of psoriatic features observed in 

mice [51, 52]. In our model, we stopped IMQ cream application after seven consecutive 

days of application and then monitored main psoriatic features.  

At the gross morphological level, we observed the maximum level of erythema, 

scaling, and skin thickness on the back at day 7, which remained for up to 5 days later 

(day 12). After day 12, we observed a decrease in these characteristic disease parameters 

(Figure II. 9). 
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Figure II. 9: Morphological changes observed on the dorsal skin of the animals from 7 days of 

treatment with IMQ (day 7), in comparison with day 10, 12, 14 and 17 after the first dose of IMQ. 

 

We assessed other key psoriatic features, including erythema, scaling, itching, and 

skin epidermal thickening, with the Psoriasis Area Severity Index (PASI) score. Doctors 

use this score to record psoriasis severity in the patients and is the most widely employed 

tool for measuring the psoriasis stage and evaluating the progress of people receiving 

psoriasis treatment. During the optimization stage of the psoriatic mice model, this score 

allowed us to appraise the appearance of the characteristics of the disease while applying 

IMQ cream (7 days) and their subsequent disappearance over time following the cessation 

of IMQ cream application. 

PASI scoring from day 0 to day 17 revealed the expected progressive increase in 

score until 7 days of IMQ application (Figure II. 10). Examination of the back of the 

mouse every two days following the termination of IMQ treatment revealed a reduction 

in the signs of psoriasis, especially from day 12. 

Overall, both the morphological and PASI parameters provided similar results in 

our IMQ-induced mouse model of psoriasis. 
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Figure II. 10: Severity of dorsal skin inflammation of the mouse indicted by PASI scoring 

(itching, thickness, scaling, and erythema) using a scale from 0 to 4. Asterisks indicate statistically 

significant differences after ANOVA analyses followed Bonferroni’s post hoc tests (mean ± SEM 

displayed). In all cases, we considered differences to be significant when p***<0.001; p**<0.01; 

p*<0.05. 

II.2.2.3. Increase in Ear Thickness 

We measured ear thickness with a caliper every two days, discovering an increase 

in the thickness during the application of IMQ up to day seven (Figure II. 11). We found 

a significantly increased ear thickness at day five and day seven of IMQ treatment, and 

this remained until five days after the last application of IMQ (day 12) when compared 

to the contralateral untreated control ear. From day 12, we observed a decrease in the 

thickness of the IMQ-treated ear due to the disappearance of the inflammation produced 

by IMQ application. 
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Figure II. 11: Ear thickness measurements every two days demonstrate IMQ-induced epidermal 

thickening. Asterisks indicate statistically significant differences after ANOVA analyses followed 

Bonferroni’s post hoc tests (mean ± SEM displayed). In all cases, we considered differences to 

be significant when p***<0.001; p**<0.01; p*<0.05. 

II.2.2.4. Histology of Ear and Back  

Histological examination of the ears and back sections via H&E staining revealed 

a marked difference in epidermal thickening between the healthy control and the IMQ-

treated mice (Figure II. 12). Right ear samples treated with IMQ cream displayed an 

increase in epidermal thickness that was maintained up to 12 days after the first 

application of IMQ (five days after the termination of IMQ treatment). However, analysis 

of samples from day 14 and day 17 revealed a slight decrease in epidermal thickness, 

although the differences remained pronounced when compared to the contralateral 

healthy ear. 
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Figure II. 12: H&E staining of the ears in IMQ-treated mice. Original magnification displayed 

in each image was 10x. One representative picture is shown for each time point. 

 

The histological examination of the dorsal skin of the IMQ-treated mouse revealed 

a similar pattern to the treated right ear. Analysis of back skin samples treated with IMQ 

until day seven revealed a considerable increase in epidermal thickness in comparison 

with healthy control. The thickening was maintained up to five days after the termination 

of treatment (day 12), although we observed decreases in epidermal thickness on days 14 

and day 17 as the mouse recovered (Figure II. 13). 

 Both the ear and the back of the mice displayed marked epidermal hyperplasia and 

hyperkeratosis, evidencing increased epidermal growth in these lesions and thereby 

confirming the mimicry of histopathologic changes observed in human psoriasis [53]. 
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Figure II. 13: H&E staining of the dorsal skin in IMQ-treated mice. Original magnification 

displayed in each image is 10x. One representative picture is shown for each time point. 

II.2.2.5. Increase in Spleen Weight 

Several studies have reported that IMQ produces significant spleen enlargement 

and a general increase in weight due to the release of pro-inflammatory cytokines [37, 54, 

55]. Our analyses revealed a considerable increase in spleen weight when compared to 

healthy control at days 7, 10, and 12 (0, 3, and 5 days after IMQ treatment termination) 

(Figure II. 14). The results demonstrated that the application of the IMQ cream in our 
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model produced a significant increase in spleen weight even at our experimental endpoint 

17 days after the first application and 10 days after removal of IMQ treatment. This 

increase in spleen weight correlates to the known increase in the synthesis of pro-

inflammatory cytokines in psoriasis. 

 

Figure II. 14: Spleen weight determined after treatment with IMQ cream. Analysis demonstrated 

significant increase when compared to the untreated control group. Asterisks indicate statistically 

significant differences after ANOVA analyses followed Bonferroni’s post hoc tests, (results 

displayed as mean ± SEM). In all cases, we considered differences to be significant when 

p***<0.001; p**<0.01; p*<0.05. 

II.2.2.6. Increased Pro-Inflammatory Cytokines Release in Serum and Tissue 

IL-1b, IL-23, IL-17, INF-γ, and TNF-α act as major inflammatory mediators of 

psoriasis and are induced upon IMQ treatment [37, 56, 57]. We employed proteins 

extracted from frozen dorsal tissue and blood serum from IMQ treated and control 

animals to study IL-23 and INF-γ protein expression using a LUMINEX Kit according to 

the manufacturer’s instructions.  

Figure II. 15 depicts the levels of cytokines in dorsal tissue over the 17 days of 

the experiment. We observed a trend for maximal induction of cytokines levels on day 

seven (seven days of IMQ treatment) in comparison with healthy control mice. Following 

the cessation of IMQ cream application, we observed a general decrease in all cytokine 
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levels except for IL-23, whose expression increased significantly over time. Of note, IL-

23 is a crucial cytokine for disease progression and maintenance in humans. 

 

Figure II. 15: Induction of the synthesis of pro-inflammatory cytokines related to psoriasis in 

mouse dorsal skin tissue as measured by LUMINEX kit. Asterisks indicate statistically 

significant differences after ANOVA analyses followed Bonferroni’s post hoc tests, results 

displayed as mean ± SEM. In all cases, we considered differences to be significant when 

p***<0.001; p**<0.01; p*<0.05. 

We also assessed the levels of pro-inflammatory cytokines in serum only in the 

last day of the experiment (day 17). While we failed to observe the induction of IL-1b or 

IL-17a synthesis when compared to healthy controls, we observed significantly higher 

values of IL-23, INF-γ, and TNF-α in IMQ-treated animals when compared to healthy 

controls (Figure II. 16).  

 

Figure II. 16: Induction of the synthesis of pro-inflammatory cytokines in serum related to 

psoriasis measured by LUMINEX kit. Asterisks indicate statistically significant differences after 

ANOVA analyses followed Bonferroni’s post hoc tests, results displayed as mean ± SEM. In all 

cases, we considered differences to be significant when p***<0.001; p**<0.01; p*<0.05. 
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These results corroborate a robust immune response not only at the local level in the skin 

but also at the systemic level. 

II.2.2.7. Hematological Parameters 

The assessment of various hematological parameters can contribute to the 

detection of the systemic pathology development in psoriasis. We evaluated the levels of 

leukocytes, platelets, lymphocytes, and monocytes throughout the experimental time 

course. We observed specific alterations related to immune system status with 

significantly higher levels of leukocytes and monocytes after seven days of IMQ 

treatment (Figure II. 17).  

 

Figure II. 17: Complete hemogram of IMQ-induced psoriasis model. Asterisks indicate 

statistically significant differences after ANOVA analyses followed Bonferroni’s post hoc tests, 

results displayed as mean ± SEM. In all cases, we considered differences to be significant when 

p***<0.001; p**<0.01; p*<0.05. 

 

Both cell types are actively involved in the immune system [58] and, interestingly, 

monocyte-derived cells play a role in psoriasis development through the production of 

pro-inflammatory cytokines that increase the activation of skin-resident T cells [59]. 



133 
 

However, we failed to observe significantly higher lymphocyte levels as expected from 

an autoimmune disease such as psoriasis. 

Following the withdrawal of IMQ treatment, levels of leukocytes and monocytes 

reduced over time; however, we observed a peak in platelet production at day 12 (five 

days after IMQ withdrawal), perhaps due to the increase in the number of wounds that 

occur due to scaling and dryness of psoriatic skin.  

II.3. Discussion 

II.3.1. Inflammatory Ex Vivo Human Skin Model Mimics the Features of Psoriasis 

The development of new models that lie between in vitro and in vivo methods 

allow the investigation of the structure and functions of healthy and diseased skin under 

conditions close to the in vivo situation. We have developed healthy and inflammatory ex 

vivo human skin models that ensure the maintenance of skin architecture and properties. 

The implementation of this inflammatory model plays a vital role throughout this thesis, 

as we can simulate the characteristics of the human psoriasis disease and, therefore, 

evaluate different therapeutic agents developed before moving to in vivo models.  

Culturing skin with stimuli such as bacterial LPS and EGF represents a suitable 

means to induce skin inflammation. Histologically, we observed a marked increment in 

epidermal thickening, similar to that which occurs in psoriasis, without altering cell 

viability (including keratinocytes, fibroblasts, melanocytes, and Langerhans cells) and 

proliferation. Also, we failed to observe disruption to the stratum corneum, suggesting 

that the barrier function of the skin remains intact, thereby simulating the properties of 

human skin. Of note, LPS/EGF stimulation induced the secretion of pro-inflammatory 

cytokines to the culture medium, and depending on the concentration of LPS used, we 

can modulate the release of different cytokines involved in the pathology of psoriasis 

(e.g., IL-1b, IL-6, and GM-CSF) [14]. 

This ex vivo model provides a straightforward method for using human skin in 

tissue viability and drug penetration studies. Furthermore, this approach will also allow 

the rapid screening of drugs employed for the treatment of a range of skin diseases, 

including psoriasis, by evaluating the decrease in epidermal thickness and pro-

inflammatory cytokines released to the culture medium. 

https://www.collinsdictionary.com/es/diccionario/ingles-tesauro/straightforward
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II.3.2. Suitability of Imiquimod Cream for Psoriasis Development 

While psoriasis is a uniquely human disease, a wide range of mouse models have 

been developed to mimic the main characteristics of the human condition, and these have 

allowed for the ever-widening understanding of disease pathology [21, 60]. However, the 

absence of animal models that reflect the intrinsic characteristics of the disease in humans 

remains a significant challenge to the development of new anti-psoriatic therapies [61]. 

Taking into consideration all currently available models, the in vivo IMQ-induced model 

[37, 43] has become the most straightforward model with the greatest potential for 

assessing the development of inflammatory skin diseases in humans [44, 51, 62, 63]. 

Although this model does not represent a chronic disease model, but rather an 

acute model of inflammation, IMQ-induced psoriasis in mice provides a powerful model 

with relevance to human psoriatic disease due to its simplicity, rapidity, and general 

applicability to different mouse strains [32, 64]. This simple model presents several 

features of human psoriatic skin lesions, such as the activation of plasmacytoid dendritic 

cells (pDCs) and the production of pro-inflammatory cytokines (IL-23, INF-γ, and TNF-

α) [65]. 

 However, we do note certain limitations of IMQ application; results following 

IMQ in different mouse strains have reached contradictory conclusions regarding the 

inflammatory and cellular mediators as well as the disease mechanism leading to the 

development of the psoriasis form phenotype [66]. 

II.3.3. H&E Staining as a Tool to Evaluate Skin Inflammation 

The daily topical application of IMQ cream in mice for seven days led to inflamed 

skin lesions similar to psoriatic plaques and inflammatory cell activation, mimicking 

human psoriasis, in agreement with other studies [67]. IMQ functions through the ligation 

of TLR7 in mice [38] or TLR7 and TLR8 in humans [68], which then activates the STAT1 

and STAT3 pathways required for optimal cytokine production by dendritic cells (DCs) 

[69]. The importance of STAT3 pathway activation in the pathogenesis of psoriasis was 

initially assessed through the use of transgenic mice [70]. The overexpression of STAT3 

in keratinocytes through activation with IMQ triggered a psoriatic phenotype reproducing 

characteristic features of the disease, including parakeratosis, hyperkeratosis, and 

inflammatory cell infiltration. Moreover, the epidermal thickening caused by increased 
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keratinocyte proliferation reflects the increased mitotic activity within the basal layer [71, 

72].  

Histologically, the characteristics of our model include many hallmarks of human 

psoriasis, including acanthosis, hyperkeratosis, erythema, and desquamation, a 

phenomenon related to the hyperkeratosis that occurs in the stratum corneum after the 

application of IMQ cream. This phenotype has shown to be critically dependent on the 

IL-23/IL-17 axis in human psoriasis [37, 73] as in our mouse model. 

II.3.4. Interleukin Levels as a Critical Biomarker of Psoriatic Progression 

IMQ application affects both innate and acquired immunity [34], and our IMQ 

model displayed alterations to key immunological pathways and inflammatory cellular 

mediators present in the human disease [32]. As discussed above, IMQ is a ligand for 

TLR of macrophages, monocytes, and pDCs in mice [10], and therefore, TLR7 

overexpression in macrophages and DCs can influence the development of an IMQ-

induced mouse model of psoriasis. 

Consequently, IMQ contributes to the strong activation of the immune system. 

Monocyte-derived cells (moDCs) and macrophages located in the dermis [74, 75] play a 

decisive role in the production of pro-inflammatory cytokines that increase the activation 

of skin T cells and epidermal thickening [59, 62, 76]. Hence, IMQ-treated mice exhibited 

increased tissue levels of several inflammatory cytokines characteristic of psoriasis (IL-

1b, IL-23, INF-γ, TNF-α, and IL-17) by activating moDCs, in good agreement with 

several studies [59, 77]. 

Studies have demonstrated that IL-23 present in serum and tissue acts 

preferentially on memory T cells to trigger psoriasis followed by the production and 

proliferation of IFN-γ [78-81]. While there exist contradictory studies regarding the 

presence of IFN-γ [82-85], we have demonstrated the elevated presence of IFN-γ, 

together with TNF-α and IL-23, both in serum and tissue in our disease model in 

comparison with healthy animals. Several studies observed the overexpression of TNF-α 

in lesioned psoriatic skin [86, 87] and plasma [88, 89] from human patients, in agreement 

with our discoveries within our mouse model. 

 Importantly, we emphasize the enlarged spleen (splenomegaly) detected in our 

model after the topical application of IMQ cream, with an increase in weight of two-fold 
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encountered. Studies have demonstrated that IMQ induces systemic effects on the cellular 

composition of the spleen, with a shift from lymphoid to myeloid cells, with an increased 

number of Th17 cells [37]. This finding supports a role for IMQ in the induction of the 

synthesis of pro-inflammatory cytokines. As previously mentioned, psoriasis induction 

occurs in an acute and non-chronic manner, so once the action of the IMQ cream ceases, 

we observed a recovery of normal weight levels. 

 Based on the observations described above, analysis of IMQ treatment of mouse 

skin confirms its suitability in the development of a mouse model of psoriasis by 

mimicking many of the described features of the human disease [32, 37, 59] with regards 

to immunological pathways and inflammatory cellular mediators. 

II.4. Conclusions 

Within this chapter, we have developed and fully characterized ex vivo human 

skin models that can maintain tissue viability after four days in the culture medium, as 

evidenced by tissue viability assays and histological characteristics. The inflammatory 

skin model allows us to understand the peculiarities of inflammatory skin diseases, such 

as psoriasis. Also, ex vivo models permit drug screening as well as the evaluation of both 

drug penetration and anti-inflammatory activity of the desired drug before starting in vivo 

studies. 

Moreover, we have described psoriasis progression in a preclinical mouse model 

widely employed for the appraisal of anti-psoriatic or anti-inflammatory therapies. We 

evaluated disease progression for 10 days after 7 days of disease induction by IMQ cream 

treatment (day 17 as endpoint). We focused our study on the pathological features that 

characterize the disease and compromise patient health. The exhaustive and detailed 

characterization of the psoriatic model over time has allowed us to assess the moment 

where the animals recover to a basal healthy-like state close to the endpoint studied.  

 We also discovered that five days after the termination of IMQ treatment (day 12), 

animals maintained the immune system activation and thickening of the epidermis, 

together with the ongoing presence of hyperkeratosis and acanthosis. Finally, after the 

optimization of our IMQ-induced psoriasis model, we confirmed the maintenance of the 
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main characteristics of the disease for five days after the last application of IMQ, thereby 

allowing us to evaluate the activity of anti-psoriatic therapeutic agents in further steps. 

II.5. Materials and Methods  

II.5.1. Ex Vivo Models 

II.5.1.1. Development of Ex Vivo Human Skin Model 

Breast skin samples were obtained with informed consent from healthy women 

undergoing plastic surgery (kindly donated from Hospital la Fe, Valencia, Spain). The 

skin was cut to approximately 1 cm2 and placed in 6-well plates so that the dermal side 

was in contact with Dulbecco’s modified Eagle medium (DMEM) supplemented with 50 

mL fetal bovine serum (FBS), 5.5 mL penicillin/streptomycin, and 50 µL amphotericin 

B (all from Gibco, Spain). The epidermis was exposed to the air. After each time point 

(1, 4, 7, 11 days) in culture medium, skin samples were washed twice with 0.1 % PBS-

BSA (PBS supplemented with bovine serum albumin (BSA)) and kept in 4% 

paraformaldehyde (PFA) for 24 h at room temperature (r.t.). Then, the samples were 

washed with 30% sucrose in PBS solution and stored in this solution for 24 h at 4ºC. 

Finally, skin samples were washed twice with PBS and preserved in a cryopreservation 

solution (40% 0.1M PB, 30% ethylene glycol, and 30% glycerol) at 4ºC until use.  

II.5.1.1.1 Tissue Viability Assay 

The skin pieces were incubated at 37ºC under 5% CO2 for 11 days, and the media 

was changed every day. Tissue viability after 1, 4, 7, 11 days was evaluated by MTT 

assay. Skin samples were washed twice with PBS and were introduced in 4 mL of MTT 

solution (2 mg/mL) at 37ºC. MTT assay is a colorimetric assay for assessing cell 

metabolic activity; the activity of NAD(P)H-dependent cellular oxidoreductase enzymes 

reflect the number of viable cells present. These enzymes are capable of reducing the 

tetrazolium dye MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide to 

insoluble formazan (Sigma, Spain). After 4 h of incubation, skin samples were washed 

twice with PBS and placed in 4 mL of dimethyl sulfoxide (DMSO) to extract the formazan 

from the skin. After 15 h of extraction, the absorbance was read at 490 nm using 

Victor2Wallac™ plate reader (Perkin Elmer, Spain).  
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II.5.1.1.2. Histological Analysis and Imaging  

Tissue samples were processed for histological analysis. Skin fragments preserved 

in a cryopreservation solution were washed with PBS under shaking conditions three 

separate times. A common dehydration and paraffin-inclusion procedure was carried out, 

leading to blocks that were sliced into 5 μm sections.  

H&E staining and immunostaining (Ki67 and Ck5/6) were performed as required 

(Dako Autostainer 48, US) and the slides were observed under the microscope, and those 

of interest were scanned with a Panoramic 250 Flash II slide scanner and processed with 

CaseViewer software (both from 3DHISTECH Ltd, Hungary).  

II.5.1.2. Development of Inflammatory Ex Vivo Human Skin Model  

Breast skin samples were obtained with written informed consent from healthy 

women undergoing plastic surgery (donated from Hospital la Fe, Valencia, Spain). The 

skin samples were cut to approximately 1 cm2 and placed in 6-well plates so that the 

dermal side was in contact with DMEM medium supplemented with 50 mL FBS, 5.5 mL 

penicillin/streptomycin, and 50 µL amphotericin B (all from Gibco, Spain). The 

epidermis remained exposed to the air. The skin was incubated at 37ºC under 5% CO2.  

The inflammatory model was induced by the addition of a constant concentration 

of EGF (2.5 ng/mL) (Sigma, Spain) and different concentrations of LPS from E. coli 

(InvivoGen, US) (10 µg/mL, 15 µg/mL, 20 µg/mL, or 30 µg/mL) to the culture medium 

and further incubation for 24 and 48 h at 37ºC under 5% CO2. After each time point, skin 

samples were washed twice with 0.1 % PBS-BSA and kept in 4% PFA for 24 h at r.t. 

Then, the samples were washed with 30% sucrose in PBS solution and stored in this 

solution for 24 h at 4ºC. Finally, skin samples were washed twice with PBS and preserved 

in a cryopreservation solution (40% 0.1M PB, 30% ethylene glycol, and 30% glycerol) at 

4ºC until use.  

The model was evaluated by MTT assay, histology and immunohistochemistry 

(H&E, Ki67, Ck5/6, INF-γ, IL-1b, NF-kB), and also the quantification of the pro-

inflammatory cytokines released to the culture medium. 
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II.5.1.2.1. Tissue Viability Assay 

Tissue viability after 24 and 48 h was evaluated by MTT assay. Skin pieces were 

washed twice with PBS and introduced into 4 mL of MTT solution (2 mg/mL) at 37ºC. 

After 4 h of incubation, skin samples were washed twice with PBS and introduced into 4 

mL of DMSO, to extract the formazan from the skin. After 15 h of extraction, the 

absorbance was read at 490 nm using Victor2Wallac™ plate reader (Perkin Elmer, Spain). 

II.5.1.2.2. Histological Analysis and Imaging 

Tissue samples were processed for histological analysis. Skin fragments preserved 

in a cryopreservation solution were washed with PBS under shaking conditions three 

separate times. A common dehydration and paraffin-inclusion procedure was carried out, 

leading to blocks that were sliced into 5 μm sections. Then, tissue samples were processed 

for histopathological analysis as described above. 

II.5.1.2.3. Quantification of Pro-Inflammatory Cytokines Released to the Culture 

Medium 

Culture medium was collected under standardized conditions from skin cultures 

after 24 and 48 h of incubation with the inflammatory treatment and kept at -80ºC until 

use. Cytokines concentrations were measured by LUMINEX kit (Affymetrix, 

eBioscience, Spain) and cytokine levels were determined according to standard solutions. 

II.5.2. In Vivo Models  

II.5.2.1. Mouse Strains  

The 6-week-old male inbred immunocompetent BALB/c (BALB/cOlaHsd) mice 

used for all the experimental procedures were purchased from Envigo Laboratories Inc. 

(Spain).  

II.5.2.2. Ethical Considerations  

Animal experiments were performed in accordance with the European 

Communities Council Directive (86/609/ECC) guidelines and by the Spanish Royal 

Decree 1201/2005. All experimental procedures were approved by the Institutional 

Animal Care and Use Committee and accomplished by certified and trained staff, meeting 

the animal care rules. Mice were maintained in a specific-pathogen-free facility, under 
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constant temperature and humidity, using a 12 h light-dark cycle. Food pellets and water 

were provided ad-libitum during all experiments, and general aspect, body weight, 

grooming conduct, and behavior were evaluated daily from the beginning of the 

experiment to ensure animal welfare.  

II.5.2.3. Establishment of the Psoriatic Model 

The back of the mice was shaved one day before the start of the study. Mice at 6 

weeks of age received a daily topical dose of 62.5 mg of commercially available IMQ 

cream (5%) (Imunocare®; Industrial Farmacéutica Cantabria, S.A., Spain) on the shaved 

back and the right ear (left ear acting as control for each animal) for 7 consecutive days, 

translating to a daily dose of 3.125 mg of the active compound. This dose was empirically 

determined to cause optimal and reproducible skin inflammation in mice [37]. Animals 

were sacrificed after different days (day 7, day 10, day 12, day 14, and day 17) after the 

the onset of treatment with IMQ to determine the time to apply the different treatments 

without the disappearance of the disease. 

II.5.2.4. Scoring Severity of Skin Inflammation (PASI Score) 

An objective scoring system was used to score the severity of the disease and the 

inflammation of the dorsal skin based on the clinical Psoriasis Area and Severity Index. 

Erythema, scaling, itching, and thickening were scored independently on a scale from 0 

to 4: 0, none; 1, slight; 2, moderate; 3, marked; 4, very marked.  

II.5.2.5. Ear Thickness 

Ear thickness was evaluated by measuring using a caliper every two days and 

comparing with the healthy ear (control). 

II.5.2.6. Spleen Weight 

At the end of the 7 days of IMQ treatment, mice were sacrificed via CO2 inhalation 

at different days (7, 10, 12, 14, and 17 days), and spleen weight was then measured 

compared to healthy animals. 
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II.5.2.7. Histology 

H&E staining was carried out in both ears and the back. All the samples were 

removed from euthanized mice at relevant time points, and then tissues were washed in 

fresh PBS, carefully dried, weighed, and fixed in 4% PFA for 24 h. PFA was eliminated 

by successive washing with PBS, dehydration and paraffin-inclusion procedures were 

carried, and blocks were then sliced into 5 μm sections. The slides were observed under 

the microscope, scanned with a Panoramic 250 Flash III slide scanner, and processed with 

CaseViewer software (both from 3DHISTECH Ltd, Hungary).  

II.5.2.8. Pro-Inflammatory Cytokines Levels in Serum and Tissue 

The pro-inflammatory cytokine levels were measured in serum and dorsal skin 

tissue. Fresh serum was isolated from the blood through centrifugation (4000 rpm, 10 

min, 4ºC), and both were stored at -80oC. To performed protein extraction from frozen 

dorsal tissue, the skin was mixed with PBS (pH 7.4) containing a protease and 

phosphatase inhibitor cocktail and then treated in an ice bath by Ultra Turrax Scatter at 

10000 ref/min for 20 min. Immediately after incubation, the tube was centrifuged at 4000 

rpm for 20 min at 4°C and supernatants were collected and stored at -80oC until use. For 

the LUMINEX assays, IL-1b, IL-23, INF-γ, TNF-α, and IL-17A protein expression in 

skin lysates and serum were quantified with according to the manufacturer’s instruction 

(Invitrogen, Spain). 

II.5.2.9. Hematological Analysis 

Blood was extracted immediately after sacrifice by cardiac puncture with a 1 mL 

heparinized syringe and transferred to a 2 mL Eppendorf tube. Blood was gently 

homogenized and then kept at 4ºC until analysis (within the first 30 min after extraction). 

Serum was isolated by centrifugation (4000 rpm, 10 min, 4ºC) and analyzed using an 

automated hematologic analyzer (Sysmex XT-2000i). 
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III.1. Antecedents and Background   

Transdermal drug delivery systems promote the non-invasive delivery of a drug 

or active pharmaceutical ingredients (APIs) through the skin for the localized or systemic 

treatment of various diseases or disorders [1]. This administration route avoids any 

adverse effect associated with hypodermic injection or oral administration [2, 3]. 

Biocompatibility, biodegradability, and high permeation efficiency through the skin 

barrier represent some of the desired characteristics for such delivery systems.  

Hydrogels are commonly employed in nanomedicine for dermal applications and 

cosmetic skincare [4] as many hydrogel-based biomaterials mimic specific properties of 

the skin extracellular matrix [5]. Cross-linking of polymers represents a common 

synthetic approach to obtain hydrogels, providing materials with useful properties when 

compared to linear polymers, including higher viscosity in aqueous solutions, higher 

molecular weights (Mw), and greater resistance to degradation [6]. These advantageous 

properties have promoted the application of cross-polymers in tissue engineering, 

injectable hydrogel formulations, skin delivery, and dermal fillers, among notable others 

[7-9]. 

Polysaccharides, and hyaluronic acid (HA) in particular, represent the most widely 

used biopolymers for dermal applications [8]. HA, a natural heteropolysaccharide with a 

linear structure composed of altered residues of D-glucuronic and N-acetyl-D-

glucosamide, was discovered by Meyer and Palmer in 1934 [10]. HA represents one of 

the primary components of the skin extracellular matrix and disappearance of epidermal 

HA content can occur during natural aging and oxidative processes generated by exposure 

to ultraviolet rays from sunlight [11, 12]. HA has been widely employed in the 

composition of different vehicles for dermal applications [6], wound healing [13, 14], and 

for the penetration of drugs into the skin as part of dermal drug delivery systems [15, 16].  

The characteristics of biodegradable polypeptides have also prompted their 

exploration as part of dermal drug delivery systems [17-19]. Poly-glutamic acid (PGA) 

(specifically poly-γ-glutamic acid – a polymeric chain where the peptide bonds are 

formed between NH2 and gamma COOH at glutamic acid side chain) moisturizes the skin 

and acts as a hydrophilic humectant (a substance that moisturizes and softens the skin) 

due to the creation of a smooth and elastic film after application to the skin [20]. PGA 
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administration also enhances the synthesis of natural moisturizing factors in the skin, such 

as lactic acid, pyrrolidone carboxylic acid, and urocanic acid, and also improves skin 

elasticity when compared with HA or collagen [21, 22]. Of note, studies have reported 

that PGA inhibits the activity of hyaluronidases, a family of enzymes that degrades 

dermal HA, therefore maintaining skin elasticity [23]. Moreover, the free glutamate units 

produced during PGA degradation act as nutrients for the skin [24].  

 Although polyglutamates are mainly used as drug delivery agents itself in 

nanomedicine approaches employed to treat several systemic diseases, such as cancer or 

Alzheimer's disease [25-27], it has also been found to be used as skin penetration 

enhancers for pharmaceuticals such as insulin (through the use of polymer microneedles 

composed by γ-PGA and polyvinyl alcohol/polyvinyl pyrrolidone ([PVA/PVP] 

supporting structures) [24]. PGA can also increase water absorption rates and swelling 

ratios, so it has been widely applied in biomaterials for biological adhesive (natural 

polymeric compounds that can act as adhesives in the skin) and tissue engineering [28, 

29]. Therefore, PGA not only increases the skin penetration of bioactive agents but also 

maintains a moist microenvironment that promotes effective wound healing [30, 31].  

Motivated by the desire to develop an advanced biodegradable platform for the 

topical delivery of drugs and also considering the advantageous properties of PGA as well 

as HA in dermal applications, we decided to rationally design our platform using both 

materials. We based our design on well-established strategies using cross-linked HA and 

γ-PGA for skin applications [32-34], but using the synthetic poly-L-α-glutamic acid 

instead.  

In close collaboration with the company Polypeptide Therapeutic Solutions S.L. 

(PTS, Valencia, Spain) we developed a cross-polymer vehicle composed by HA and PGA 

cross-linked through L-lysine (Lys) residues (hyaluronic-poly-L-glutamate cross-

polymer or HA-CP). This vehicle is a biodegradable and biocompatible material which is 

completely assimilable by the organism and allows the modulation of its rheological 

properties; this viscous gel-like vehicle does not behave as a hydrogel at our working 

concentration (1% w/v) in terms of rheological or mechanical behavior, but can form 

viscoelastic hydrogels at higher concentrations or higher cross-linking degrees. We 

exhaustively characterized HA-CP using a battery of techniques and then evaluated HA-

CP in vitro, ex vivo, in vivo (see Chapter IV) and even in human volunteers. To 
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demonstrate the property of this material as skin penetration enhancer we studied the 

capacity of HA-CP to act as a vehicle of hydrophobic APIs (using fluorescence probes as 

model system) encapsulated in amphiphilic micelles based on polyethylene glycol (PEG)-

polyamino acids (amphiphilic block copolymers). The encapsulation of hydrophobic 

drugs or APIs in aqueous solution by amphiphilic PEG-polyamino acid micelles has been 

widely described in the literature [35], with examples for transdermal skin delivery [2] 

and the treatment of skin diseases such as psoriasis [36, 37].  

The combination of HA-CP with the adequate polymeric nanomicelles could be 

considered an efficient hybrid transdermal delivery system for a variety of therapeutic 

applications where the required drug is not capable to bypass this challenging biological 

barrier, the skin (Figure III. 1). 

 

Figure III. 1: Upper Section: Scheme of the hyaluronic acid-poly-L-glutamate cross-polymer 

(HA-CP) vehicle, the micelle composed by amphiphilic block copolymer encapsulating a 

hydrophobic API, and the hybrid material (composed by micelles embedded into the HA-CP 

matrix). Lower Section: Schematic representation of the developed skin delivery platforms: (i) 

hydrophobic API in micelle applied in water, (ii) hydrophobic API in micelle applied with linear 

hyaluronic acid and (iii) hydrophobic API in micelle applied in HA-CP vehicle. Representative 

confocal microscopy images obtained from the penetration studies with each platform are shown 

next to the skin schema as demonstrative examples. 
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III.2. Results and Discussion 

III.2.1. Development of the Hyaluronic Acid-Poly-L-Glutamate Cross-Polymer 

(HA-CP) Vehicle: Synthesis and Physico-Chemical Characterization 

Cross-linked reactions for HA can use several established methodologies, 

including Schiff-base reaction, thiol-Michael addition, Diels-Alder click cross-linking, 

ionic-crosslinking, amide or ester bond formation, supramolecular-cross-linking, and 

photo-crosslinking [6, 38]. HA possesses various reactive groups, including carboxylic 

acid and hydroxylic groups, which can be easily chemically modified. We selected 

carboxylic acid moieties for cross-linking due to the presence of these groups in PGA. 

Many activating reagents condense carboxyl and amino groups to create amide bonds, 

including carbodiimides, carbonyl diimidazole, 1-ethyl-3-(3-dimethyl aminopropyl)-1-

carbodiimide hydrochloride (EDC), N-hydroxysuccinimide (NHS), and 4-(4,6-

Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM·Cl) [5]. A 

common mechanism of action is the initial activation of the carboxyl group via adduct 

formation, followed by the nucleophilic attack of the amine moiety to create the amide 

bond. This mechanism precludes the activating agent from being incorporated into the 

final product [6].  

Focusing on the development of a biodegradable skin delivery platform, our 

synthetic cross-linking approach employed amide bond formation between carboxylic 

groups of HA and PGA, using the amines of the lysine residue as the cross-linker moiety 

and DMTMM·Cl as the activating coupling agent. The use of DMTMM·Cl for peptidic 

coupling of HA [5, 39] and PGA [40-42] through amine moiety in aqueous solutions is 

reported widely in the literature. 

III.2.1.1. Synthesis and Physico-Chemical Characterization of HA-CP 

We obtained HA-CP through the activation of the carboxylic groups of linear HA 

(50 kDa) and PGA with DMTMM·Cl, employing lysine as coupling moiety. Figure III. 

2 shows the 1H-NMR spectra of HA-CP, demonstrating the presence of HA and PGA 

moieties within the cross-polymer. The low stoichiometric amounts of lysine employed 

for the cross-linking reaction and the fact that epsilon (ε) methylene near to the amino 
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group might experience a significant downfield shift precludes the identification of lysine 

within the HA-CP via NMR after extensive purification by dialysis.  

 

Figure III. 2: NMR studies. (A) 1H-NMR spectra in D2O for starting materials with assigned 

protons. (B) 1H-NMR spectra in D2O for HA-CP and the physical mixture of starting materials, 

showing PGA signals in the HA-CP (A: Signal for PGA; B: No signals for lysine (Lys) in HA-

CP were observed).  

We performed Mw distribution comparing HA-CP with the starting HA material. 

SEC elugrams employing a refractive index (RI) detector revealed higher Mw distribution 
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for HA-CP when compared to starting HA in terms of retention time, yielding a three-

dimensional reticulated HA-CP network of 150 kDa (Figure III. 3A). Mw distribution 

values represented in Table III. 1 obtained by SEC [43] indicated a Mw of our novel HA-

CP cross-polymer three-times higher than the starting HA (145 kDa and 49 kDa, 

respectively). 

Table III. 1: Mw distributions and polydispersity index (PDI) by SEC. 

 

Compound Mw (kDa) by SEC PDI by SEC 

Starting HA  49.1 1.119 

HA-CP 145.2  1.863 

 

We monitored the cross-linking reaction through free amine quantification by 

TNBSA [44, 45] and viscosity assays. Although the cross-linking reactions can produce 

undesired ester bond formation between carboxylic acids and alcohols of HA, the higher 

amine nucleophilic character when compared to the alcohol [42, 46] directs the reaction 

towards amide bond formation. Although NMR studies failed to find evidence for the 

presence of lysine in the cross-polymer, we observed a population of free amines by 

TNBSA assay. Of note, as the reaction progresses, free amine levels fall while viscosity 

increases due to amide bond formation and the promotion of cross-linking. Furthermore, 

the pH decreased as a consequence of the release of protons during the formation of each 

amide bond (Figure III. 3B and C).  

According to the results obtained from the viscosity assay and free amine 

quantification by TNBSA assay, we obtained the desired cross-linked material after 500 

min of reaction. At this point, HA alcohols form undesired cross-linked reactions by the 

formation of ester bonds in the absence of free lysine amines in the reaction media, 

yielding an unstable material with excessive viscosity. Excessively cross-linked HA 

matrices increase collagen deposition and therefore trigger some adverse effects, such as 

inflammatory reactions [43]. For these reasons, we terminated the cross-linked reaction 

time at 500 min to avoid the formation of undesired cross-linking reactions. 
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Figure III. 3: Molecular weight calculations and cross-linking reaction monitoring. (A) SEC-RI 

elugram for HA-CP and starting HA in aqueous media with 100 mM NaNO3 at pH 5 

demonstrating higher Mw distribution for HA-CP compared to starting HA. (B) Percentage (%) 

of free lysine amines determined by TNBSA assay in the cross-linked reaction media for 500 min, 

including pH values. (C) Viscosity in cP of the cross-linked reaction media, demonstrating an 

exponential increase during the first 500 min, and an excessive viscosity increase after lysine 

consumption. 

In summary, we successfully developed a cross-linking reaction between HA and 

PGA through lysine moieties employing DMTMM·Cl as a coupling agent. As expected, 

analysis of the physico-chemical characteristics demonstrated an increase in the 

molecular size and viscosity of HA-CP due to the cross-linking reaction when compared 

to starting HA. 

III.2.1.2. Development of Fluorescently-labeled HA-based Materials 

To compare the skin permeation of our novel cross-polymer compared to 

conventional HA, we fluorescently labeled both HA-based materials with the Cyanine 5.5 

(Cy5.5) fluorescent dye, generating HA-CP-Cy5.5 and HA-Cy5.5 materials. We based 

the synthetic strategy on peptidic coupling through DMTMM·Cl carboxylic group 
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activation following to Cy5.5 amine nucleophile attack and new amide bond formation. 

We characterized both labeled materials by UV-Vis spectroscopy to determine the 

loading percentage (% w/w) within the materials, and by SEC to determine Mw 

distributions (Table III. 2).  Dye loading by UV-Vis quantification demonstrated an 

enhanced conjugation efficiency for HA-CP (0.63 % molar dye) in comparison to linear 

HA (0.43 % molar dye), with 1% molar the target dye loading in both cases. SEC 

elugrams revealed successful dye moiety conjugation to both HA-based materials, 

showing perfect correlation in terms of retention times, which may be attributed to the 

covalent union between the carboxylic acids (from HA and HA-CP) and Cy5.5 (Figure 

III. 4). We next employed the resultant labeled materials for skin permeation studies. 

Table III. 2: Results of Cy5.5 loading by UV-Vis spectroscopy and Mw distributions by SEC 

Compound % w/w Cy5.5* % Molar Cy5.5* 
Conjugation 

Efficiency* 
Mw (kDa)** PDI** 

HA-CP-Cy5.5 1.18 0.63 63% 145.2 1.863 

HA-Cy5.5 0.81 0.43 43% 205.5 1.442 

*Data obtained by UV-Vis spectroscopy measured at 676 nm.**Data obtained by SEC measurements. 

 

 

Figure III. 4: (A) SEC-RI-UV elugram for HA-CP-Cy5.5. (B) SEC-RI-UV elugram for HA-

Cy5.5. SEC-RI-UV chromatograms were achieved at 3.75 mg/mL in 150 mM NaNO3 adjusted to 

pH 5 with 5 mM PB. 
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III.2.2. Analysis of the HA-CP as a Biomaterial for Topical Skin Applications 

To fully understand the biological behavior of our newly developed HA-CP 

vehicle for topical skin applications, we studied several properties in comparison to a 

conventional linear HA with a similar Mw distribution (PrimalHyal300; 200 kDa).  

III.2.2.1. Hyaluronidase Degradation Studies 

We studied the degradation of our HA-based materials by assessing Mw 

distribution alterations in the presence of hyaluronidase (HAase), a natural enzyme 

located in the skin that degrades HA [47]. We selected SEC to study the HAase-mediated 

degradation of our HA-based materials, due to its robustness and reproducibility in Mw 

determination. Furthermore, SEC also allows the study of degradation kinetics and 

comparison between samples. Although the effective HAase concentration depends on 

the Mw of the HA [47], we used 5 U/mL according to literature to mimic the 

concentration of HAase present within human skin [48-50]. We evaluated Mw values 

obtained from the kinetics per triplicate from three different degradations at 0, 1, 2, 3, 4, 

6, 8, 10, and 24 h. The results obtained by SEC revealed a rapid degradation for linear 

HA when compared to HA-CP under the same conditions, with HA-CP presenting a more 

constant and sustained degradation over time (Figure III. 5). This effect may be 

explained by the different structural conformation of HA-based materials; a cross-linked 

conformation may possess intrinsic resistance to HAase activity due to the inaccessibility 

of the HA chains in solution while HAase may have free access to the linear HA chains 

and degrade them more rapidly, thereby promoting a rapid decrease in Mw distribution. 

In addition, maybe our PGA might also have some HAase inhibition activity as in the 

case of γ-PGA, but the complete rationale for this phenomenon lies outside the scope of 

the present work. 
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Figure III. 5: (A) HAase degradation of HA-CP and linear HA showing Mw values obtained by 

SEC. (B) SEC-RI elugram for linear HA. (C) SEC-RI elugram for HA-CP. SEC conditions 

employed: 100 mM NaNO3 at pH 5 using 5 mM PB in the presence of bovine testicular HAase at 

5 U/mL. 

III.2.2.2 Cell Viability In Vitro 

We carried out cell viability assays after 72 h of treatment to determine the toxicity 

of both HA-based materials in human keratinocytes (HaCaT cells) and human fibroblasts 

[51]. As hoped, both linear HA and the HA-CP vehicle maintained cell viability in both 

cell lines up to the concentrations tested (Figure III. 6). 

 

Figure III. 6: Cell viability by MTS assay of HA-CP and HA in (A) HaCaT keratinocytes and 

(B) human fibroblasts after 72 h of treatment (n = 3).  
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III.2.2.3. Tissue Viability in an Ex Vivo Human Skin Model 

We also evaluated tissue viability in an ex vivo human skin model (see Chapter 

II for more details) after 24, 48, and 72 h of treatment with 3 µL of 1% w/v solution of 

linear HA and HA-CP. We obtained breast skin samples with informed consent from 

healthy women undergoing plastic surgery (Hospital la Fe, Valencia, Spain). The results 

shown in Figure III. 7 demonstrate that all both treatments allowed the maintenance of 

tissue viability at the concentration tested. Interestingly, the HA-CP vehicle provided 

enhanced results when compared to linear HA at 48 h. This phenomenon may be due to 

an increase in the hydration of the skin after HA-CP application, given the slower 

degradation of HA present in the HA-CP than linear HA. These results agreed with the 

HAase degradation kinetics obtained by SEC.  

 

Figure III. 7: Tissue viability in an ex vivo human skin model after 24, 48, and 72 h of treatment 

with HA and HA-CP (n = 3).  

III.2.2.4. Ex Vivo Human Skin Permeation by Franz Diffusion Cells  

We next performed skin permeation studies by Franz diffusion cells using human 

skin [52, 53]. Again for this experiment, we obtained breast skin samples with informed 

consent from healthy women undergoing plastic surgery (kindly donated from Hospital 

la Fe, Valencia, Spain). We carefully fixed skin between the donor and the receptor 

chambers of the Franz cells so that the stratum corneum faced upwards; we then filled the 

receptor chamber with 8 mL of 0.01 M PBS pH = 7.4. We added 100 µL of 1% w/v 

solution of fluorescently labeled HA-based materials to the donor chamber, which is in 

contact with the upper part of human skin (stratum corneum), incubated the samples for 

8 h, and then studied skin sections by confocal microscopy (Figure III. 8A).  

The levels of detected fluorescence suggested that HA-based materials permeated 

through the stratum corneum; images for HA-CP-Cy5.5 verified successful penetration 
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through the stratum corneum, with a marked diffusion through to the viable epidermis. 

However, images captured for the linear HA-Cy5.5 revealed accumulation mainly in the 

stratum corneum, a finding that agrees with a previous report from Essendoubi et al. that 

employed an HA of 100-300 kDa [54]. Furthermore, pixel quantification of Cy5.5 

fluorescence using Image J software analysis revealed a marked accumulation of HA-CP-

Cy5.5 in the viable epidermis and lower accumulation in the stratum corneum compared 

to linear HA-Cy5.5 (Figure III. 8B).  

Overall, skin permeation experiments demonstrated that HA-CP-Cy5.5 possesses 

an enhanced skin permeation capacity when compared to linear HA-Cy5.5, reaching 

deeper skin layers. 

 

Figure III. 8: Permeation studies using Franz diffusion cells after 8 h of treatment with HA-Cy5.5 

and HA-CP-Cy5.5 at 1% w/v. (A) Confocal microscopy images of Cy5.5-labeled HA and HA-

CP after 8 h of permeation. Original magnification displayed in each image was 40x. (B) 

Quantification of Cy5.5 fluorescence intensity in the stratum corneum (SC) and the viable 

epidermis by Image J software. Asterisks indicate statistically significant differences after 

ANOVA analysis followed Bonferroni’s post hoc tests, mean ± SEM. In all cases, we considered 

differences to be significant when p***<0.001; p**<0.01; p*<0.05. 

We also studied the ability of both systems to penetrate to the deepest skin layer, 

the dermis, which is in contact with the liquid in the receptor chamber (representing the 

circulatory system for our purposes). We employed benzoic acid, a well-known drug that 

can penetrate through the skin [55], as a positive control for skin penetration (Figure III. 

9). As expected, results obtained by HPLC analysis suggested that the positive control 

reaches the dermis, increasing in concentration in the receptor chamber as treatment time 

increases. 
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Figure III. 9: Concentration of benzoic acid in the receptor chamber of the Franz diffusion cells 

at different permeation times analyzed by HPLC. Asterisks indicate statistically significant 

differences after ANOVA analysis followed Bonferroni’s post hoc tests, mean ± SEM. In all 

cases, we considered differences to be significant when p***<0.001; p**<0.01; p*<0.05. 

However, HPLC analysis of aliquots taken from the receptor chamber 

(representing the circulatory system) revealed the absence of Cy5.5 signal in the case of 

HA-based materials (Figure III. 10). Therefore, the results suggest that either HA-based 

materials remain in the epidermis (HA-CP-Cy5.5) or the stratum corneum (HA-Cy5.5) 

without reaching the dermis.  

 

Figure III. 10: Aliquots from the receptor chamber after 8 h of permeation study in human skin 

by Franz diffusion cells analyzed by HPLC. Chromatograms of a standard sample of Cy5.5 at 0.1 

µg/mL, HA-Cy5.5, and HA-CP-Cy5.5. 
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In summary, our novel HA-CP vehicle has demonstrated suitability for topical 

applications, and the avoidance of systemic absorption and any associated undesired 

systemic effects. 

III.2.2.5. Hydration Assays in Human Volunteers 

Finally, through a certified laboratory (Prof. Cortijo Lab. Univ. Valencia, Spain) 

we performed in vivo hydration assays with both HA-based materials in over 15 healthy 

volunteers (Figure III. 11).  The zone of the cheekbone and nasolabial fold were 

measured using a Corneometer®, an instrument used to indicate the hydration level of the 

layers of the skin via measurement of the skin dielectric properties. For the experiment, 

we used two pharmaceutical formulations developed by the company PTS following 

Good Manufacturing Practice (GMP) in compliance with all regulations (ICH guidelines; 

https://www.ich.org/products/guidelines.html) and using as active component HA and 

HA-CP. The formulations were applied to the left zone, while the right zone acted as a 

control, and performed measurements at time 0 (before applying the product) and at 1, 3, 

8, 16, 24, and 40 h post-treatment.  

The results suggest that conventional linear HA provided significant higher skin 

hydration than HA-CP over short times. However, HA-CP administration displayed a 

trend (non-significant) towards prolonged and enhanced skin hydration when compared 

with linear HA and the control from 8 h. These results agree with the results obtained in 

the HAase assay, where HA-CP displayed higher resistance to HAase-mediated 

degradation at 24 h, supporting the hypothesis that the cross-polymer maintains its native 

structure and intrinsic properties for an extended period of time, providing better results 

in terms of total hydration, cell viability, and skin permeation than conventional linear 

HA. 
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Figure III. 11: Hydration assay in human volunteers using linear HA and HA-CP over 40 h (n = 

15). Asterisks indicate statistically significant differences after ANOVA analysis followed 

Bonferroni’s post hoc tests, mean ± SEM. In all cases, we considered differences to be significant 

when p***<0.001; p**<0.01; p*<0.05. 

III.2.3. Hybrid Material: HA-CP Vehicle Combined with Polypeptidic Micelles for 

Transdermal Delivery of Hydrophobic APIs 

After the robust physico-chemical characterization and biological evaluation of 

HA-CP and in order to validate its capacity as permeation enhancer, we next analyzed a 

hybrid material, with polymeric micelles embedded within HA-CP, as a novel platform 

system for topical delivery for hydrophobic APIs. The polymeric micelles were 

developed via amphiphilic block copolymer formulation. 

III.2.3.1. Synthesis and Characterization of Block Copolymers 

Firstly, we prepared six amphiphilic PEG-amino acid block copolymers by ring-

opening polymerization (ROP) of N-carboxy anhydride (NCA). Using this material, we 

then prepared micelles using a co-solvent methodology [56]. ROP of NCAs occurs via 

two mechanisms: normal amine mechanism (induced by nucleophilic substitution) and 

activated monomer mechanism (AMM, induced by deprotonation) [57]. The synthesis of 

our block copolymers proceeds by normal amine mechanism, based on the nucleophile 

attack of the initiator PEG (in this case). We employed hydrophilic block copolymers 

composed by PEG of 5 kDa (approx. 114 units of ethylene oxide), and L-phenylalanine 

(Phe) or benzyl-L-glutamate (BG) with different degree of polymerization (DP: 10, 20, 
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and 40) as the hydrophobic component. Synthesis yielded a family of six amphiphilic 

block copolymers: PEG-PPhe10, PEG-PPhe20, PEG-PPhe40, PEG-PBG10, PEG-

PBG20, and PEG-PBG40 (Scheme III. 2).  

 

Scheme III. 2: Synthetic scheme for the preparation of the block copolymer family. 

We synthesized amphiphilic block copolymers as previously described [58-60]. 

We employed a well-controlled polymerization reaction by modifying the initiator PEG 

(MeO-PEG-NH2), as illustrated by the well-defined architecture obtained for poly-L-

benzyl glutamate derivatives in terms of targeted Mw and low PDI derived from GPC 

analysis (Figure III. 12A). In the case of PPhe derivatives, we discovered the hindered 

growth of the polypeptide backbone for a degree of polymerization higher than 10, 

perhaps attributed to the increasing insolubility of the resulting polymers (as evidenced 

by the generation of cloudy suspensions during polymerization). We obtained further 

evidence of low solubility from GPC analysis, where larger aggregates appeared for all 

Phe derivatives as the degree of polymerization increased (Figure III. 12C). We 

employed 1H-NMR spectra to assess purity, identity, and confirm the experimental degree 

of polymerization (Figure III. 12B and D). These findings agreed with data obtained by 

GPC, revealing a predominantly normal amine mechanism for the polymerization (Table 

III. 3). 
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Figure III. 12: (A) SEC-RI elugram for PEG-PBG diblock family in DMF. (B) 1H-NMR spectra 

in deuterated trifluoroacetic acid (TFA) for PEG-PBG family. (C) SEC-RI elugram for PEG-PPhe 

diblock family in DMF. (D) 1H-NMR spectra in deuterated TFA for PEG-PPhe family. 

Table III. 3: Physico-chemical characterization of the family of amphiphilic block copolymers 

with different degree of polymerization and amino acid backbone.  

 

Block copolymer 
Target 

DP 

Mwa  

(kDa) 

Mna 

(kDa) 
DPa DPb Ða 

MeO-PEG-NH
2
 - 6749 -- - - 1.187 

PEG-PBG10 10 8943 7801 10 9 1.146 

PEG-PBG20 20 10931 10931 19 17 1.140 

PEG-PBG40 40 13863 11329 33 38 1.224 

PEG-PPhe10 10 7651 7925 6 8 1.134 

 PEG-PPhe20c 20 8571 8954 13 15 1.149 

 PEG-PPhe40c 40 10759 9248 18 17 1.288 
 

aData obtained by GPC (DMF, LiBr 1 % w/w) at 8 mg/mL. bData obtained by 1H-NMR in 

deuterated TFA by integrating PEG signal of the macroinitiator to α-proton of polypeptide block. 

cPrecipitation observed in the polymerization reaction, GPC data showed bimodal traces pointing 

to strong aggregation. DP: Degree of polymerization. Ð = polydispersity.  

 

III.2.3.2. Characterization of Block Copolymer Micelle Formulation  

We used synthesized block copolymers to create the micelles using the co-solvent 

method [56] developed for efficient encapsulation of hydrophobic APIs, encapsulating 

the fluorophore Dil as an example of a hydrophobic API. We performed a preselection of 
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diblock copolymers at 10 mg/mL based on their micellar formulation stability. Larger 

polypeptidic backbone block copolymers (PEG-PPhe40 and PEG-PBG40) precipitated 

within a few hours of incubation at room temperature (r.t.), probably due to an imbalance 

of the hydrophilic and lipophilic ratio. Therefore, we selected PEG-PBG10, PEG-PBG20, 

PEG-PPhe10, and PEG-PPhe20 for further evaluation. The micelles displayed a small 

hydrodynamic diameter by number, a narrow PDI, and a Z-potential close to 0. Of note, 

we observed smaller encapsulation efficiency for PEG-PPhe (~50%) than PEG-PBG 

(~100%) (Table III. 4).  

Table III. 4: Characteristics of the micelles formed by block copolymers with and without 

encapsulated dye.  

Block 

Copolymer 
E.E

a
 Dil Loading

a
 CMC

b
 Conc. Size, I

c
 Size, N

d
 

PDI 
Z-pot 

% % w/w mg/mL mg/mL nm nm mV 

PEG-PBG10 

  

0.04 

10 28/317e 16 0.316 -0.695 

--- --- 5 30 16 0.251 -0.111 
  1 22/312e 12 0.312 7.243 

PEG-PBG10 

+ Dil 114
f
 1.14

f
 --- 

10 32/173e 15 0.420 -0.781 

5 33/179e 17 0.373 0.230 

1 35/248e 18 0.338 2.040 

PEG-PBG20 --- --- 0.01 

10 30 18 0.149 -0.269 

5 32 19 0.130 -0.157 

1 33 20 0.152 -0.039 

PEG-PBG20 

+ Dil 105
f
 1.05

f
 --- 

10 32 19 0.164 0,184 

5 34 20 0.127 0.384 

1 36 19 0.254 0.771 

PEG-PPhe10 --- --- 0.008 

10 164 25 0.363 0.052 

5 137 31 0.279 0.481 

1 110 27 0.246 1.867 

PEG-PPhe10 
+ Dil 

47 0.47 --- 

10 166 30 0.322 0.390 

5 145 30 0.297 1.103 

1 108 28 0.261 3.36 

PEG-PPhe20 --- --- <0.004 

10 143 28 0.409 2.443 

5 128 30 0.282 3.207 

1 103 21 0.232 5.143 

PEG-PPhe20 

+ Dil 
58 0.58 --- 

10 77/403e 30 0.466 2.683 

5 79/330e 34 0.388 3.170 

1 107 26 0.317 5.110 

E.E = Encapsulation efficiency. a Determined by UV-Vis. b Critical micelle concentration (CMC) 

determined by fluorescence using pyrene as a hydrophobic probe. c Hydrodynamic diameter by intensity.   

d Hydrodynamic diameter by number. e Bimodal size distribution by intensity (values related to each peak 

by DLS). f PEG-PBG was found to be highly hygroscopic, deviation in the weighted mass leads to E.E. > 

100%. 
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Moreover, PEG-PBG displayed higher critical micelle concentration (CMC) than 

Phe derivatives, presenting values between 0.04 - 0.01 and 0.004 - 0.008 mg/mL, 

respectively. These results indicate higher propensity for self-assembly of PEG-PPhe in 

aqueous solution, probably due to the strong hydrophobic nature of PPhe (Figure III. 

13A). In agreement with these results, GPC analysis revealed a robust aggregation 

behavior for PEG-PPhe copolymers. 

We next employed circular dichroism (CD) to evaluate the secondary structure of 

the polypeptidic block within the micellar core. As shown in Figure III. 13B, micellar 

aqueous solutions of block copolymers displayed the typical alpha-helix conformation for 

PB and a mixture of beta-sheet and alpha-helix conformation for Phe, both with 

pronounced negative bands for polymers with a larger degree of polymerization (PEG-

PPhe20 and PEG-PBG20). Interestingly, the intensity and the shape of the characteristic 

alpha-helix band changed for PPhe to PBG copolymers, pointing to structurally different 

arrangements of side-chain groups. PPhe derivatives strongly form aggregates; as an 

example, diphenylalanine demonstrates self-assembly behavior generating nanotubes in 

aqueous solutions [61]. Castelletto and Hamley developed a similar system to ours (5 kDa 

PEG and 4 units of Phe) [62], and their CD and fluorescence analysis revealed that self-

assembly behavior relied on π-π* interactions, yielding fibrils at 0.5 mg/mL. Decandio et 

al. analyzed a peptide composed by arginine (Arg) and Phe and discovered the same 

negative band over 200 nm [63]. The negative band for Phe derivatives was also observed 

for triblock PEG-PGA-PPhe micelles at pH 4.5 in aqueous solution [64]. These 

experiments agree with our results and confirm strong aggregation observed for the 

micelles containing Phe residues.  

Size analysis of the micelles by DLS revealed similar mean size distribution (Dh) 

for the selected copolymers, ranging from 12 to 30 nm with no significant variation upon 

changing concentration (1 - 10 mg/mL) in good agreement with reported values for 

similar amphiphilic block copolymers [65-67] (Figure III. 13C). Transmission electron 

microscopy (TEM) images confirmed that micelles displayed a mainly spherical shape 

with a uniform diameter (Figure III. 13D). 
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Figure III. 13: Physico-chemical characterization of micelles. (A) CMC obtained for aqueous 

micellar formulations using a fluorimeter employing an intensity ratio I338/I333. (B) CD spectra of 

micellar solutions at 0.5 mg/mL in water. (C) Size distribution by number obtained from DLS 

measurements at 10 mg/mL of micelles formulation. (D) TEM images of aqueous micellar 

formulations at 2 mg/mL. 

In conclusion, the application of a Phe backbone promoted a more rigid inner core, 

probably very tightly packed. As a result, the Phe-based block copolymers possess a 

higher tendency to form micelles (lower CMC) and lower capacity to encapsulate the dye 

(Dil) than the BG-based block copolymers, as expected due to the modification of the 

hydrophilic-hydrophobic balance. 

III.2.3.3. Cell Viability Studies In Vitro of Selected Micelles 

We performed cell viability assays with the selected micelles (PGA-PPhe10, 

PGA-PPhe20, PGA-PBG10, and PGA-PBG20) to determine any toxicity in HaCaT 

keratinocytes and human fibroblasts by MTS assay. As shown in Figure III. 14, all the 

micelles do not diminished cell viability in both cell lines up to the concentrations tested. 
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Figure III. 14: Cell viability by MTS assay of PGA-PPhe10, PGA-PPhe20, PGA-PBG10, and 

PGA-PBG20 in (A) HaCaT keratinocytes and (B) human fibroblasts after 72 h of treatment (n=3).  

III.2.3.4. Characterization of the Hybrid Material 

To study the properties of the HA-CP vehicle as a skin permeation enhancer for 

hydrophobic APIs, we prepared hybrid materials containing HA-CP vehicle and micelles 

loaded with the fluorophore Dil (PEG-PPhe10-Dil, PEG-PPhe20-Dil, PEG-PBG10-Dil, 

and PEG-PBG20-Dil). We dissolved each micelle at 10 mg/mL in a 1% w/v solution of 

HA-CP vehicle. 

We characterized the resultants hybrid materials in terms of size distribution by 

DLS. The micelles composed by the block copolymers formed by 10 units of polypeptides 

(PEG-PPhe10 and PEG-PBG10), displayed lower size distribution by number, with sizes 

close to micelles without HA-CP (Table III. 5); however, the micelles embedded into 

HA-CP with 20 units of polypeptides (PEG-PPhe20 and PEG-PBG20) displayed a broad 

size distribution, maybe presenting fewer but larger aggregates, but the complete 

explanation requires deeper studies (Figure III. 15). By intensity, all the hybrid materials 

revealed higher size distribution, with similar values to micelles formulated in pure water 

(without the HA-CP).  
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Figure III. 15: Size distribution by number obtained from DLS measurements at 10 mg/mL of 

micelle formulations embedded into the HA-CP vehicle at 1% w/v.  

Table III. 5: Size distribution by DLS of the micelles embedded into HA-CP vehicle (1% w/v).  

Hybrid System Size, Ia (nm) Size, Nb (nm) PDI 

PEG-PBG10 in HA-CP (1% w/v) 75/559c 38 0.521 

PEG-PBG20 in HA-CP (1% w/v) 222 189 0.881 

PEG-PPhe10 in HA-CP (1% w/v) 315 35 0.434 

PEG-PPhe20 in HA-CP (1% w/v) 262 214 1.000 

a Hydrodynamic diameter by intensity. b Hydrodynamic diameter by number. c Bimodal size distribution by 

intensity (values related to each peak by DLS). Concentration of micelles was 10 mg/mL embedded in the 

HA-CP vehicle (1% w/v). 

III.2.3.5. Ex Vivo Human Skin Permeation of Hybrid Material by Franz Diffusion 

Cells  

We next undertook skin permeation studies following 8 h of treatment using Franz 

diffusion cells employing human skin. To perform the permeation studies, we added 100 

µL of a 10 mg/mL solution of each micelle with encapsulated Dil (PEG-PPhe10-Dil, 

PEG-PPhe20-Dil, PEG-PBG10-Dil, and PEG-PBG20-Dil) applied in the HA-CP (1% 

w/v) vehicle to the donor chamber, which is in contact with the upper part of human skin 

(stratum corneum). Encouragingly, all micelles formulated in the HA-CP vehicle 

penetrated through the stratum corneum, reaching the viable epidermis (Figure III. 16A).  
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Of note, by Image J analysis we demonstrated that the hybrid material that 

contained the PEG-PBG20-Dil micelle accumulated significantly in the epidermis in 

comparison to the other micelles composed by different block copolymers, perhaps due 

to the physico-chemical differences of each micelle stated above, such as the 

conformation (PEG-PBG20 presented alpha-helix conformation in solution) and a less 

rigid inner core compared to Phe-based micelles (Figure III. 16B).  

 

Figure III. 16: Permeation studies with polypeptide-based micelles formulated in HA-CP (1% 

w/v) after 8 h of permeation using Franz diffusion cells. (A) Confocal microscopy images of Dil-

labeled micelles formulated in HA-CP. Original magnification displayed in each image was 40x. 

(B) Dil fluorescence intensity quantification by Image J software in the stratum corneum (SC) 

and the viable epidermis. Asterisks indicate statistically significant differences after ANOVA 

analysis followed Bonferroni’s post hoc tests, mean ± SEM. In all cases, we considered 

differences to be significant when p***<0.001; p**<0.01; p*<0.05. 

Additionally, HPLC analysis of aliquots taken from the receptor chamber 

following permeation studies demonstrated the absence of Dil signal for all the micelles 

studied after 8 h of treatment (Figure III. 17). Therefore, these findings confirm the 

potential of our novel HA-CP vehicle as a penetration enhancer for topical applications, 

transporting the micelles to the epidermis without reaching the dermis, thereby avoiding 

systemic absorption and further diffusion.  
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Figure III. 17: Aliquots from the receptor chamber after 8 h of permeation study in human skin 

by Franz diffusion cells analyzed by HPLC. Chromatograms of a standard sample of Dil at 0.1 

µg/mL and the four formulations PEG-PPhe10-Dil, PEG-PPhe20-Dil, PEG-PBG10-Dil, and 

PEG-PBG20-Dil applied in the HA-CP (1% w/v) vehicle. 

Finally, due to the higher capacity of the hybrid material composed by PEG-

PBG20-Dil and HA-CP to permeate through the epidermis, we selected this formulation 

to carry out comparative permeation studies when the system is applied in water, linear 

HA, and HA-CP vehicle. Confocal microscopy images revealed that HA-CP enhanced 

the permeation of the PEG-PBG20-Dil compared to linear HA or water formulation, 

accumulating mainly in the viable epidermis (Figure III. 18A). Quantification of Dil 

intensity by Image J software suggested that the micelle applied in HA-CP penetrated 

significantly through the epidermis, with an almost two-fold higher intensity when 

compared to the formulations in water or linear HA (Figure III. 18B). The intensity in 

the stratum corneum for the formulation with HA-CP remains low, suggesting that the 

micelle penetrates across the stratum corneum barrier and reaches deeper skin layers. This 

enhancement relates to the resistance of HA-CP vehicle against the HAase degradation, 

which maintains an intact structure over time, thereby permitting sustained activity over 

a longer time. 
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Figure III. 18: Permeation studies of PEG-PBG20-Dil applied in water, HA (1% w/v), and HA-

CP (1% w/v) after 8 h of permeation using Franz diffusion cells. (A) Confocal microscopy images 

of Dil-labeled micelle PEG-PBG20 in the three formulations. Original magnification displayed 

in each image was 40x. (B) Dil fluorescence intensity quantification by Image J software in the 

stratum corneum (SC) and the viable epidermis. Asterisks indicate statistically significant 

differences after ANOVA analysis followed Bonferroni’s post hoc tests, mean ± SEM. In all 

cases, we considered differences to be significant when p***<0.001; p**<0.01; p*<0.05. 

III.2.3.6. Tissue Viability of Hybrid Material in an Ex Vivo Human Skin 

We also evaluated tissue viability in an ex vivo human skin model (see Chapter 

II for more details) after 24, 48, and 72 h of treatment with 3 µL of a 10 mg/mL solution 

of the three selected formulations due to its higher permeation through the skin: (i) PEG-

PBG20 in water, (ii) PEG-PBG20 applied in linear HA (1% w/v), and (iii) PEG-PBG20 

applied in HA-CP (1% w/v). The results shown in Figure III. 19 demonstrate that all 

treatments did not diminish tissue viability at the concentration tested. 
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Figure III. 19: Tissue viability in an ex vivo human skin model after 24, 48, and 72 h of treatment 

with the selected formulations: (i) PEG-PBG20 in water, (ii) PEG-PBG20 applied in linear HA, 

(iii) PEG-PBG20 applied in HA-CP, with HA and HA-CP as controls.  

III.3. Conclusions 

Encouraged by previous studies that employed polypeptides in skincare products, 

we proposed a novel transdermal drug delivery platform based on a cross-linked 

hyaluronic acid and polyglutamic acid (HA-CP). In close collaboration with the company 

Polypeptide Therapeutic Solution S.L., we synthesized a biodegradable and 

biocompatible cross-polymer composed by cross-linked HA and PGA through lysine 

moieties. We demonstrated the enhanced properties of HA-CP vehicle compared to linear 

HA, including HAase activity resistance and higher long-term hydration skin capacity in 

human volunteers, which promotes human skin tissue compatibility. Permeation studies 

in human skin established that our novel HA-CP vehicle exhibited a marked penetrative 

capacity to the viable epidermis when compared to linear HA.  

To further demonstrate the penetration properties of our vehicle, we developed a 

family of amphiphilic block copolymers of different nature, using PPhe and PBG with 

different degree of polymerization carrying a hydrophobic fluorescent dye (Dil) as a 

hydrophobic API model, and we studied their skin penetration in the presence of HA-CP 

vehicle. We demonstrated that changes in the solution conformation of the nanocarrier 

were driven by the presence of Phe as aminoacid in the polymeric chain. Moreover, the 

type of polypeptide modifies other physico-chemical characteristics of the micelles such 

as the critical micelle concentration (CMC) and the encapsulation efficiency (E.E) of Dil; 

Phe-based block copolymers micelles possess lower CMC and capacity to encapsulate 
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the dye than the BG-based micelles. We observed the enhanced penetration of micelles 

into the viable epidermis, with a marked accumulation in the case of PEG-PBG20-Dil, 

demonstrating the ability of the cross-polymer to enhance the penetration through the 

skin. Of note, all micelles accumulated in the epidermis without reaching the dermis, 

therefore avoiding the possible undesirable adverse effects observed at the systemic level.  

Finally, using the PEG-PBG20-Dil micelle as an example, we studied skin 

penetration when applied alone, in linear HA, or in the HA-CP vehicle. This study 

demonstrated the utility of our HA-CP vehicle to promote the penetration of micelles in 

comparison with linear HA. Also, our HA-CP vehicle revealed enhanced tissue viability 

compared to control in an ex vivo human skin model. 

III.4. Materials and Methods 

III.4.1. Materials 

All reagent grade chemicals were obtained from Sigma Aldrich (Spain) and used 

without further purification unless otherwise indicated. H-L-Glu(OBzl)-OH, L-

Phenylalanine (Phe) and MeO-PEG-NH2 (Mw = 5 kDa, 114 ethylene glycol units) were 

obtained from Iris Biotech (Germany). Sodium hyaluronate PrimalHyal300 (Mw = 200 

kDa) was supplied by Comercial Química Massó S.A. (Spain) and sodium hyaluronate 

(Mw = 50 kDa) by Principium S.A. (Switzerland). Dil dye fluorophore (1,1'-dioctadecyl-

3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil; DilC18(3)) was purchased from 

Thermo Fisher Scientific (Spain). Cyanine5.5 amine dye fluorophore was purchased from 

Lumiprobe GmbH (Germany). Bovine testicular HAase (Type IV-S) with a specific 

activity of 999 units per milligram was obtained from Sigma Aldrich (Spain). HAase was 

weighed before each experiment because activity in frozen solution did not remain 

constant [47]. Pyrene was obtained from Fluka Analytical (Spain). Deuterated 

trifluoroacetic acid (TFA-d1), chloroform-d1, dimethylsulfoxide-d6, and deuterium oxide 

(D2O) were purchased from Deutero GmbH (Germany). Dialysis was performed in a 

Millipore ultrafiltration device fitted with a 1, 3, 10 or 30 kDa MWCO regenerated 

cellulose membrane (Vivaspin®). 

The human immortalized non-tumorigenic keratinocyte cell line (HaCaT) was 

supplied by CLS Cell Lines Service (Eppelheim, Germany) and human fibroblasts were 
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supplied by Hospital La Fe (Valencia, Spain). High glucose DMEM Glutamax and 

Dulbecco's Modified Eagle's Medium-high glucose were purchased from Fisher (Spain) 

and Sigma Aldrich (Spain), respectively. Phosphate buffer saline (PBS) and fetal bovine 

serum (FBS) Medium 200 were provided from Gibco (Spain). (3-(4,5-dimethylthiazol-2-

yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) was 

supplied by Promega (Spain). All solvents were of analytical grade and dried and freshly 

distilled. Ultrapure water (MilliQ water) with a resistivity of 18 MΩ.cm was used in all 

aqueous preparations.  

III.4.2. Physico-Chemical Characterization Methods 

III.4.2.1. Nuclear Magnetic Resonance (NMR) Spectroscopy 

NMR spectra were recorded at 27°C (300 K) on a 300 UltrashieldTM from Bruker 

(Billerica MA, USA). Data were processed with the software Topspin (Bruker GmbH, 

Karlsruhe, Germany). Samples were prepared at a concentration of 5 mg/mL in the 

required solvent.  

III.4.2.2. Gel Permeation Chromatography (GPC) in DMF 

For SEC measurements in DMF containing 1 g/L of lithium bromide as an 

additive, a GPC max (Malvern Instruments, Spain) autosampler was used with a flow rate 

of 0.7 mL/min at 60°C as an integrated instrument, including two columns (105/103/102Å 

porosity) from Tosoh. Viscotec TDATM 302 triple detector was used as an integrated 

detection system (Refractive index and Light Scattering), and the calibration curve was 

obtained with PEG analytical standards kit (Sigma Aldrich, Spain), ReadyCal set Mp 200-

1.200.000 for GPC. 

III.4.2.3. Gel Permeation Chromatography (GPC) in Aqueous Media 

For SEC measurements in aqueous media containing 150 mM NaNO3, 5 mM 

phosphate buffer (PB) at pH 5, and 0.005 % (w/w) sodium azide as an additive were used 

in an AF2000 system from Postnova Analytics (Landsberg, Germany). The system was 

configured to work on SEC mode with an isocratic pump (PN1130) an autosampler 

(PN5300), a refractive index (RI, PN3150), 21 angle-multi angle light scattering (MALS, 

PN3621), and an ultraviolet-visible (UV-Vis) (PN3211) detectors. A working flow rate 
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of 0.8 mL/min at 30°C was employed with one TSKgel G6000PWXL column. Refractive 

index (RI) and multi-angle light scattering (MALS) were used for detection and Mw 

determination, calibration of both RI and MALS detectors was achieved with well-

defined Pullulan (50 kDa) and validation with polymethacrylic acid sodium salt (62.5 

kDa PMASS) standards, purchased from Polymer Standards Service (PSS, Mainz, 

Germany). dn/dc values for cross-linked sodium hyaluronates were determined from 

recovered mass assuming 95 - 100% recovery from the chromatographic column and 

found to be within 0.125 - 0.150 mL/g. 30 μL of a 3.75 mg/mL polymer solution was 

injected each time. For linear sodium hyaluronates, 0.150 mL/g as dn/dc value was used 

according to the values reported in the literature [47].  

Hyaluronidase Degradation Studies by Gel Permeation Chromatography (GPC) 

in Aqueous Media: HA-based materials were degraded by HAase at 37ºC employing the 

thermo conditioning autosampler of AF2000 system from Postnova Analytics 

(Landsberg, Germany). GPC measurements were carried out as described previously in 

the previous point. Concentration for HA materials was 3.75 mg/mL and for HAase was 

5 U/mL. Mw distributions values were achieved per triplicate and represented as the 

average of Mw. 

III.4.2.4. Circular Dichroism (CD) 

CD Spectroscopy was performed with a J-815 CD Spectrometer using a Peltier 

thermostated cell holder (PTC-4230) with a recirculating cooler (JULABO F250) 

(JASCO Corporation, Spain). A nitrogen flow (~2.7 L/min) was led through the 

spectrometer and controlled with a nitrogen flow monitor (Afriso Euro-Index, Germany). 

The samples were dissolved under different conditions at different concentrations in 

MilliQ water. Samples were measured in triplicate in a quartz cuvette with d = 0.1 cm. 

III.4.2.5. Dynamic Light Scattering (DLS) 

DLS measurements were performed using a Malvern Zetasizer NanoZS 

instrument, equipped with a 532 nm laser at a fixed scattering angle of 173° (Malvern 

Instruments Ltd., UK). Polymer solutions were prepared in MilliQ water or 1 mM KCl at 

different concentrations and temperatures, and then solutions were sonicated for 10 min 

and allowed to equilibrate for the required time, filtered through a 0.45 μm cellulose 

membrane filter, and finally measured. Size distribution was measured (radius, nm) for 
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each polymer sample in triplicate and automatic optimization of beam focusing and 

attenuation was applied for each sample.  

 Z-potential measurements were performed at 20°C using a Malvern ZetaSizer 

NanoZS instrument, equipped with a 532 nm laser using disposable folded capillary cells 

(Malvern Instruments Ltd., UK). Polymer solutions were prepared in 1 mM KCl in MilliQ 

water. The solutions were filtered through a 0.45 μm cellulose membrane filter. Z-

potential was measured for each sample in triplicate. 

III.4.2.6. Fluorescence Spectroscopy 

Critical micelle concentration (CMC) determination was carried out through 

fluorescence experiments performed using a JASCO FP-6500 spectrofluorimeter 

(JASCO Corporation, Spain) at 25ºC with 1 cm quartz cells.  The pyrene assay was 

performed as published elsewhere [68]. In brief, several solutions of the compounds were 

prepared to cover a wide range of polymer concentrations (between 2 - 0.004 mg/mL) to 

which 3 µL of the pyrene stock solution (0.02 mg/mL) in acetone were added. Then, all 

solutions were placed in vials and are incubated at 37ºC for 2 h to evaporate the acetone. 

After storing the samples for 24 h, measurements were carried out. Each excitation 

spectrum is recorded from 300 to 360 nm with an emission wavelength of 390 nm. The 

excitation and emission band slits are 5 and 2.5 nm, respectively. Finally, data were 

expressed by plotting the intensity ratio I338/I333 against the polymer concentration in 

order to determine the CMC value. 

III.4.2.7. Ultraviolet-Visible (UV-Vis) Spectroscopy 

UV-Vis measurements were performed using JASCO V-630 spectrophotometer 

(JASCO Corporation, Spain) at 25°C with 1.0 cm matched quartz cells and with a spectral 

bandwidth of 0.5 nm. 

Quantification of Dil Loading: Dye loading was determined by recording the 

absorbance band at 548 nm using a calibration curve in MeOH, giving a concentration 

range between 0.00001 - 0.00014 mg/mL. 

Quantification of Cy5.5 Loading: Dye loading was determined by recording the 

absorbance band at 676 nm using a calibration curve in water containing 0.001% of 
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DMSO to improve the Cy5.5 solubility, giving a concentration range between 0.00005 -

0.00025 mg/mL. 

III.4.2.8. Transmission Electron Microscopy (TEM) 

TEM images were recorded in a transmission electron microscope EM 410, 

Philips operating at 60 - 80 kV. Block copolymers samples (1 - 2 mg/mL) were applied 

directly onto carbon film on 200 mesh copper grids. Any excess of sample was carefully 

removed by capillary action, and the grids were immediately stained with one drop of 

0.1% phosphotungstic acid for 30 s. Excess stain was also removed by capillary action. 

III.4.2.9. Amine Quantification by TNBSA Assay 

0.01% (w/v) solution of TNBSA (2,4,6-trinitrobenzene sulfonic acid) was 

prepared using 0.1 M sodium bicarbonate buffer at pH 8.5 as a diluent (prepared fresh for 

each measurement). A calibration curve was constructed with lysine from 10 to 250 µM. 

HA-CP aliquots were taken at different times and diluted in the sodium bicarbonate buffer 

and then measured. The levels of amine were obtained via interpolation of the calibration 

curve. Measurements were performed with UV-Vis spectrophotometer plate reader for 

96 well plates SPECTROstarNANO (Biogen, Spain) at 335 nm. 

III.4.2.10. High-Performance Liquid Chromatography (HPLC) 

Analytical determination of Dil content in the receptor chamber after permeation 

studies by Franz diffusion cells was performed on a system comprising an Agilent 1260 

Infinity III Quaternary Pump solvent delivery module, a G7115A Diode Array Detector 

WR (Santa Clara, CA, USA), a InfinityLab Poroshell 120 C18 RP-HPLC column (EC-

C18, 4.6 x 100 mm, 4 μm) (Santa Clara, CA, USA), and an Open Lab (Agilent) 

workstation. The composition of the mobile phase was methanol: tetrahydrofuran (8:2) 

with a flow rate of 1.0 mL/min and a column temperature of 25ºC. The injected sample 

volume was 10 µL at a concentration of 0.1 mg/mL of Dil standard, with a retention time 

between 4.5 and 7.5 min. The dye was monitored at 552 nm. 

III.4.2.11. Viscosity Measurements 

 Viscosity values of the HA-based materials were obtained using a Fungilab 

rotational viscosimeter Visco Smart LT20 (Fisher Scientific, Spain) composed by (i) 
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viscometer head, (ii) adapter for small samples and (iii) a spindle. The concentration of 

HA-CP in aqueous solution was 3.4%, and the temperature employed was 25ºC. A 

starting rpm of 100 was fixed until the system stabilized. Then, rpm values were varied 

until reaching a percentage of base scale 40 ± 3 %. When the percentage was stable to 40, 

the value was obtained as long as values remained constant ± 10 cP. 

III.4.3. Synthetic Protocols 

III.4.3.1. Synthesis of Hyaluronic Acid-poly-L-Glutamate Cross-Polymer 

Synthesis of 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride 

(DMTMM·Cl): This coupling agent was obtained according to synthetic procedures 

plentifully described [69]. Yield: 80%. 1H-NMR (300 MHz, D2O) δ 4.70 (d, J = 11.4 Hz, 

2H), 4.22 (d, J = 8.7 Hz, 8H), 4.06 – 3.87 (m, 4H), 3.63 (s, 3H). 

Synthesis of Cross-Linked Hyaluronic-Polyglutamate Vehicle: HA-CP was 

obtained by peptidic amide bond formation between carboxylic glutamate groups and 

both amine of lysine using DMTMM·Cl as coupling agent [41]. HA-CP was synthesized 

using hyaluronic acid (Mw = 50 kDa). Four solutions were prepared in parallel: (A) 

sodium hyaluronate (100 mg, 0.249 mmol, 1 eq.) was dissolved in distilled water; (B) 

sodium poly-L-glutamate (2.6 mg, 0.017 mmol, 0.07 eq.) was dissolved in distilled water; 

(C) DMTMM·Cl (44 mg, 0.159 mmol, 0.6 eq. to total carboxylic acids) was dissolved in 

distilled water. (D) Lysine hydrochloride salt (1.5 mg, 0.008 mmol, 0.03 eq. to total 

carboxylic acids) was dissolved in distilled water. B solution was added into A, and then, 

C was added and mixed, and the pH was adjusted to 7 with a few microliters of 1 M 

NaOH. The solution was stirred for 15 min before D was added, and the pH adjusted to 

8.5 with a few microliters of 1 M NaOH. The reaction was carried out overnight at r.t. 

Then, the product was purified by dialysis using a Vivaspin® centrifugal concentrators 

containing an MWCO membrane of 30 kDa. The product was washed with 5 mM PB at 

pH 7.5 and was then washed with distilled water. The solution was lyophilized, and a 

white powder obtained. 

III.4.3.2. Cyanine5.5 Labeling of HA-based Materials 

Synthesis of Fluorescently Labeled HA-CP with Cy5.5 (HA-CP-Cy5.5): A 

fluorescent HA-CP was obtained through the formation of an amide bond between 
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carboxylic HA groups and Cyanine 5.5 amine, using DMTMM·Cl as a coupling agent. 

HA-CP (100 mg; 0.249 mmol, 1 eq.) was dissolved in distilled water. In parallel, coupling 

agent DMTMM·Cl (3.4 mg; 0.012 mmol, 0.05 eq.) was dissolved in water. The 

DMTMM·Cl solution was added to HA-CP solution, and the pH was adjusted to 7 with 

a few microliters of 1 M NaOH. The coupling activation of carboxylic acid through 

DMTMM·Cl was allowed to proceed for 30 min. After that, a solution of Cy5.5 amine 

(1.8 mg, 0.003 mmol, 0.01 eq.) previously prepared in a mixture of water:DMSO (1:1) 

was added, and the pH was adjusted at 8.5 with a few microliters of 1 M NaOH. The 

resultant blue solution of conjugation reaction was allowed to proceed for 72 h at r.t. 

Then, the product was purified by dialysis using a Vivaspin® centrifugal concentrators 

containing an MWCO membrane of 30 kDa. The product was washed with 5 mM PB at 

pH 7.5 and then was washed with distilled water. The solution was lyophilized, and a blue 

powder was obtained. 

Synthesis of Fluorescently Labeled HA with Cy5.5 (HA-Cy5.5): Fluorescent HA 

was obtained through the same procedure described previously for HA-CP-Cy5.5 using 

a PrimalHyal300 HA (Mw = 200 kDa). 

III.4.3.3. Synthesis of Amphiphilic Block Copolymers 

General Synthesis of Block Copolymers: Synthesis of PEG-polyamino acid block 

copolymers was achieved following well-established protocols described elsewhere [59, 

60], adjusting the feeding ratio [monomer]/[initiator] to obtain the target degree of 

polymerization. The NCA monomer (3.923 mmol, 10 equivalents (eq.)) was weighed in 

a Schlenk tube, which was fitted with a stir bar and dried at 80oC for at least 24 h before 

starting the reaction. The tube was purged with Argon/vacuum cycles, and the monomer 

was dissolved in 4 mL of dry DMF. The MeO-PEG-NH2 macroinitiator was weighed in 

a vial, purged with argon and dissolved in 1 mL of dry DMF. The initiator solution was 

added to monomer solution under an argon atmosphere, and the polymerization media 

was placed at 4oC under vigorous stirring for three to four days. The reaction mixture was 

poured over 50 mL diethyl ether, and the white precipitate was filtered and washed with 

additional diethyl ether. Further purification was carried out by suspension in THF and 

precipitation over excess diethyl ether. Finally, the product was filtered and dried under 

an N2 stream.  
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III.4.3.4. Preparation of the Micelles using the Block Copolymers 

Co-solvent Method: This method was adapted from the literature [56]. The block 

copolymer (20 mg/mL) was dissolved in THF and added dropwise into MilliQ water with 

continuous stirring at r.t. until the evaporation of the organic solvent. The formulations 

were allowed to equilibrate at r.t. for 24 h, followed by centrifugation at 1000 rpm for 10 

min, and the supernatant was dialyzed against MilliQ water, MWCO = 1 kDa. The 

polymers were studied at concentrations of 1, 5, and 10 mg/mL.  

Synthesis of Fluorescently Labeled Micelles with Dil: For the preparation of 

fluorescently labeled micelles, 1% w/w of Dil loading was aimed for by dissolving the 

block copolypeptides and the dye in THF and following the same procedures described 

above.  

III.4.4. Biological Evaluation 

III.4.4.1. In Vitro Evaluation 

III.4.4.1.1. Cell Viability 

To carry out the cytotoxicity studies in vitro two cell lines were used: a human 

immortalized non-tumorigenic keratinocyte cell line (HaCaT) was supplied by CLS Cell 

Lines Service (Eppelheim, Germany) and human fibroblasts were supplied by Hospital 

La Fe (Valencia, Spain). The culture media used was high glucose DMEM Glutamax 

(Fisher, Spain) for HaCaT keratinocytes and DMEM (Sigma-Aldrich Chemical Co., 

Spain) for fibroblasts; both were supplemented with 2% penicillin/streptomycin and 50 

mL of FBS in a humidified incubator (Hucoa-Erlöss S.A., Spain) at 5% CO2 and 37°C. 

Briefly, 50 μL of cells were seeded in 96-well plates at a concentration of 4,000 cells/well 

in the case of HaCaT and 2,000 cells/well for fibroblasts. After 24 h, 50 μL of each 

treatment were added, reaching a final volume of 100 μL in the well. All treatments were 

filtered before adding to the well (pore size 0.45 μm). Cells were incubated with samples 

or controls for 72 h, and then the MTS assay was performed. For this assay, 20 μL of a 

90% phenazine methosulfate minimum (PMS, Sigma, Spain) solution and salt of 3-(4,5-

dimethylthiazol-2-yl)-5-(3-carboxymethylphenyl)-2-(4-sulfophenyl)-2H tetrazolium), 

(MTS, Promega, Spain) were added in a ratio 1:20. After 3 h of incubation, the absorbance 

was read at 490 nm using Victor2Wallac™ plate reader (Perkin Elmer, Spain). The 
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concentrations tested were in a range from 0.029 to 0.5 mg/mL for PEG-PPhe10, PEG-

PPhe20, PEG-PBG10, and PEG-PBG20. 

III.4.4.2. Ex Vivo Evaluation 

III.4.4.2.1. Permeation Studies by Franz Diffusion Cells 

Breast skin samples were obtained from healthy women undergoing plastic 

surgery after written informed consent (kindly donated by Hospital la Fe, Valencia, 

Spain). Immediately after excision, the subcutaneous fatty tissue was carefully removed 

using a scalpel. The skin was cut into 4 cm2 pieces, wrapped in aluminum foil and stored 

at -20ºC until use. To reduce inter-individual variability and afford a better comparison 

of results, skin from only one donor was used in all experiments. Before starting each 

experiment, the skin was allowed to equilibrate at r.t. 

Permeation studies employed the modified Franz diffusion cells (Logan 

Instruments Corp., EE. UU) with a diffusional area of 0.95 cm2. The skin was fixed 

carefully between the donor and the receptor chamber, so that stratum corneum was 

placed upwards. The receptor chamber was filled with 8 mL of 0.01 M PBS pH = 7.4 and 

stirred with a magnetic stirring bar at 600 rpm with a thermostated temperature of 37ºC. 

After an equilibration time of 30 min, 100 µL of the formulations using a fixed 

concentration (10 mg/mL) were introduced into the donor chamber using a standard 

pipette. The formulations studied were HA-Cy5.5 (1% w/v), HA-CP-Cy5.5 (1% w/v), 

four types of micelles with encapsulated Dil applied in HA-CP (1% w/v) (PEG-PPhe10-

Dil, PEG-PPhe20-Dil, PEG-PBG10-Dil, and PEG-PBG20-Dil), and finally the PEG-

PBG20-Dil micelle in water and linear HA (1% w/v). Also, benzoic acid as a positive 

control at the same concentration was employed. The donor chamber was then sealed 

with Parafilm®, and aluminum foil and the experiments ran for 8 h. Samples from the 

receptor chamber were taken at times 0, 4, and 8 h and was immediately refilled with 

fresh solution. After the permeation study, skin samples were washed twice with 0.1% 

PBS-BSA and kept in 4% paraformaldehyde (PFA) for 24 h at r.t. Then, the samples were 

washed with 30% sucrose in PBS solution and retained for 24 h at 4ºC. Finally, skin 

samples were washed twice with PBS and preserved in a cryopreservation solution (40% 

0.1 M PB, 30% ethylene glycol and 30% glycerol) at 4ºC until use. Then, skin samples 

were included in the optimum cutting temperature inclusion medium and slides of 5 µm 
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were acquired with the cryostat (version CM1850 UV, Leica, Germany), and samples 

were analyzed by confocal microscopy. Images were captured with an inverted DM IRE2 

microscope equipped with a λ-blue 40x oil immersion objective and handled with a TCS 

SP2 system, equipped with an Acoustic Optical Beam Splitter (AOBS). Dil C18(3) was 

excited at 549 nm, Cy5.5 at 675 nm and DAPI at 405 nm. Images were captured at an 8-

bit greyscale and processed with LCS software (version 2.5.1347a, Leica, Germany) 

containing multicolor, macro and 3D components. Control tissue that follows the same 

incubation time with MilliQ water was also analyzed to establish the autofluorescence. 

Cy5.5 or Dil intensity was quantified five times per sample using Image J software and 

expressed as pixels versus the thickness of the skin (µm). The control intensity was 

subtracted in each case. 

III.4.4.2.2. Evaluation of Tissue Viability in an Ex Vivo Human Skin Model 

Breast skin samples were obtained from healthy women undergoing plastic 

surgery after written informed consent (kindly donated from Hospital la Fe, Valencia, 

Spain). The skin was cut to approximately 1 cm2 and placed in 6-well plates so that the 

dermal side was in contact with DMEM supplemented with 50 mL FBS, 5.5 mL 

penicillin/streptomycin, and 50 µL amphotericin B, and the epidermis was exposed to the 

air. The ex vivo human skin model was incubated at 37ºC under 5% CO2 (see Chapter II 

for more details). After 24 h in culture, the treatments were applied. Tissue viability of 3 

µL of a 10 mg/mL solution of PEG-PBG20 applied in water, applied in linear HA (1% 

w/v), and in the HA-CP (1% w/v) vehicle was evaluated after 24, 48 and 72 h of treatment. 

HA (1% w/v) and HA-CP (1% w/v) vehicles were applied as controls. Tissue viability 

after each treatment was evaluated by MTT assay. Briefly, skin pieces were washed twice 

with PBS and were added to 4 mL of MTT solution (2 mg/mL). After 4 h of incubation 

at 37ºC, skin samples were washed twice with PBS and added to 4 mL of DMSO to 

extract formazan from the skin. After 15 h of extraction, the absorbance was read at 490 

nm using Victor2Wallac™ plate reader (Perkin Elmer, Spain).  

III.4.4.3. In Vivo Evaluation 

III.4.4.3.1. Hydration Assays 

To determine the hydration percent, the Corneometer® CM 825 probe of the 

Cutometer dual MPA 580 (Microcraya S.L., Spain) was used showing the arithmetic 
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mean of five determinations, under the conditions of 22°C ± 2 with relative humidity 

between 40 - 60%. Two pharmaceutical formulations developed following Good 

Manufacturing Practice (GMP) using as active component HA and HA-CP were used. 

The measurement was performed in the corresponding zone between cheekbone and 

nasolabial fold in over 15 human volunteers. HA and HA-CP formulations were applied 

in the left zone, while the right zone was used to carry out the control measures. 

Measurements were performed at time 0 (before applying the product) and at 1, 3, 8, 16, 

24, and 40 h after applying the HA-based materials. Finally, reference values for the 

degree of hydration were collected. 
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CHAPTER IV 

POLYMER THERAPEUTICS  

FOR THE TREATMENT OF SKIN DISEASES.  

PSORIASIS TREATMENT AS PROOF OF CONCEPT 
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IV.1. Antecedents and Background  

Approaches involving nanosized drug delivery systems represent an efficient 

means to treat skin diseases such as psoriasis, a molecularly complex autoimmune 

disease.  

Pharmacotherapy for psoriasis disease is generally divided into systemic or topical 

treatment approaches. The primary topical treatments used in the clinics are 

corticosteroids, which exhibit anti-inflammatory, immunosuppressive, anti-proliferative, 

and vasoconstrictive activities [1]. Corticosteroids act by binding to the α-isoform of the 

nuclear glucocorticoid receptor, which modulates the transcription of anti-inflammatory 

proteins. Glucocorticoid receptors are found in most cells of the human body; in the skin, 

these receptors are located in epidermal keratinocytes and dermal fibroblasts [2, 3]. 

Binding of corticosteroids to their receptor, following uptake via passive diffusion, leads 

to the dissociation of the heat-shock proteins and immunophilins that keep the receptor 

in an inactive form in the cytoplasm, allowing the translocation of the corticosteroid-

receptor complex to the nucleus [4]. In the nucleus, this complex binds to a specific 

sequence of DNA (glucocorticoid-response element) and induces the synthesis of anti-

inflammatory and regulatory proteins. 

While the topical corticosteroids display great potential as anti-inflammatory and 

immunomodulatory drugs, several studies have reported that these drugs can trigger 

immediate and delayed hypersensitivity reactions with continued application, as they can 

behave as allergens [5, 6]. Moreover, cross-reactivity between different topically-

administered corticosteroids has also been reported [7].  

 Fluocinolone acetonide (FLUO), 6-alpha, 9-alpha-difluoro-16-alpha, 17 alpha-

acetonide, is classified by the FDA as a class 6 (mild) topical corticosteroid [8] and is 

currently widely applied in the treatment of eye diseases [9-12]. Several FLUO-

containing implants approved by the FDA are currently on the market, including Retisert® 

for the treatment of uveitis [13] and Iluvien® for the treatment of diabetic macular edema 

[14, 15]. Furthermore, several studies have demonstrated the potential of FLUO as an 

anti-inflammatory and anti-psoriatic drug [16-18]. The anti-psoriatic activity of this drug 

was initially studied by Scholtz et al., in 1961, who revealed its ability to reduce psoriatic 

skin lesions in a study with twelve patients [19]. Since then, many studies have tried to 
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improve the effectiveness of FLUO by modifying the optimal concentration and the type 

of vehicle used (e.g., cream, gel, foam) to enhance the penetration into the skin [20].  

Therefore, the development of new formulations that improve the effectiveness of 

FLUO and increase its concentration in the required skin layer, via a more controlled and 

targeted release, continues as an unmet clinical need. Of note, any formulation developed 

should also aim to diminish the adverse effects caused by the continual topical application 

of corticosteroids, such as stinging, irritation, and photosensitivity, among others [21]. 

 Our proposal to overcome these challenges is the conjugation of FLUO to a 

polymeric backbone using rationally designed covalent bonds to promote sustained drug 

release at the desired site of action in response to specific triggers, such as pH or the 

presence of specific enzymes. Furthermore, control and modification of the specific 

physico-chemical characteristics will allow the synthesis of polymer-drug conjugates that 

can penetrate through the skin via selective pathways of penetration. Polymer conjugation 

will also inhibit the degradation of FLUO, thereby ensuring elevated levels of the drug at 

the desired target cell or tissue. The use of biodegradable polymers such as polypeptides, 

in particular poly-glutamic acid (PGA) [22, 23], can reduce the side-effects derived from 

the continued use of non-degradable polymeric carriers [24]. 

 Therefore, in the present study, we proposed giving FLUO a “new breath of life” 

by developing a PGA-conjugated form (PGA-FLUO) that we hoped would improve 

penetration to specific skin layer as well as its anti-inflammatory activity. The use of an 

ester as covalent bond between the polymer and the drug allows FLUO release in a pH-

responsive manner that could permit selective intracellular release of FLUO allowing its 

binding to the glucocorticoid receptor. Furthermore, the abundant esterase activity 

observed within viable skin (epidermis and dermis) will also facilitate the hydrolysis of 

the ester linker and the release of the drug [25-27]. Additionally, in Chapter III of this 

thesis, the hyaluronic-poly-L-glutamate cross-polymer (HA-CP) vehicle demonstrated 

the improvement of the penetration of several micelles through the skin and provided a 

considerable increase in skin hydration. Therefore, we aimed to improve the topical 

administration of PGA-FLUO conjugate in the skin by embedding the conjugate within 

the HA-CP vehicle. 
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 In this chapter, we present the PGA-FLUO conjugate as a promising treatment for 

psoriasis, highlighting the importance of linker design that would secure a sustained drug 

release. We also emphasize the importance of the use of an adequate vehicle for the 

topical application of the conjugate in order to enhance skin penetration. The use of HA-

CP as vehicle provides additional advantages such as skin hydration (Chapter III). 

Therefore, the improvement of the physiological characteristics of the skin could also 

improve the effectiveness of our conjugate in the psoriasis treatment, expecting a 

synergism of PGA-FLUO conjugate and HA-CP combination. 

IV.2. Results 

IV.2.1. Safety and Skin Penetration of Linear and Star PGAs 

As described in Chapter I, the inherent versatility of the polymers based on 

polypeptides, as poly-glutamic acid (PGA), allows the synthesis of different architectures, 

including simple linear or more complex branched polymers (e.g., star polymers) [28]. 

We first assessed the suitability of linear polymer (PGA) and star polymer (ST-PGA) for 

topical applications. In vitro cell viability assays on keratinocytes (HaCaT cells) and 

human fibroblasts after 72 h of treatment confirmed that both polymers maintained or 

increased cell viability up to the concentration tested (Figure IV. 1).  

 

Figure IV. 1: Cell viability assays in HaCaT cells (left) and human fibroblasts (right) after 72 h 

of treatment of PGA and ST-PGA (n=3). 

After confirming the absence of toxicity in cell lines, we evaluated the penetration 

of 10 mg/mL Oregon Green-labeled PGA (PGA-OG) and ST-PGA (ST-PGA-OG) both 

formulated in water in human skin explants by Franz diffusion cells after 24 h of 
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treatment. After fixation and tissue processing, we took confocal images to evaluate skin 

penetration. The results suggest that both polymers reached the epidermis, although they 

mainly accumulated within the stratum corneum (SC) (Figure IV. 2A). We quantified 

the intensity of OG using Image J software, discovering a slightly higher intensity in the 

SC and viable epidermis for the linear PGA (Figure IV. 2B). Considering these 

preliminary results, we decided to conjugate FLUO to the linear PGA for further studies. 

 

Figure IV. 2: Skin penetration of linear and star polymers labeled with OG. (A) Confocal 

microscopy images of PGA-OG and ST-PGA-OG polymers after 24 h of penetration by Franz 

diffusion cells. (B) Quantification of OG intensity by Image J in the stratum corneum (SC) and 

the viable epidermis (n=5).  

IV.2.2. Synthesis and Characterization of Poly-L-Glutamate Fluocinolone 

Acetonide Conjugates 

Herein we aimed to conjugate the poorly water-soluble corticosteroid 

fluocinolone acetonide (FLUO) to a water-soluble PGA carrier via an ester bond, aiming 

to improve FLUO bioavailability after topical administration in the skin while providing 

a modulated release rate of the drug in the specific skin layer. We chose PGA based on 
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its successful application in the synthesis of polymer-drug conjugates in terms of cargo 

loading capacity due to its multivalcency (carboxylic acid groups in the side chains) [29], 

high hydrophilicity, elevated biodegradability of the polyaminoacid backbone under 

physiologically relevant conditions [30], and the ability of PGA-based nanomedicines to 

bypass biological barriers with a non-toxic and safe biodistribution profile [31-33]. 

Furthermore, PGA is composed of repeating units of glutamic acid, an essential amino 

acid that can provide the skin with the necessary nutrition for proper cellular function, 

and hence, enhances skin hydration, thereby exhibiting a soothing effect on damaged skin 

[34].  

We prepared PGA-FLUO conjugates following well-established synthetic 

procedures [35], attaching FLUO to the polypeptidic backbone through an ester linker 

(Figure IV. 3) by means of a carbodiimide coupling using EDC and 4-

dimethylaminopyridine (DMAP) as a catalyst.  

 

Figure IV. 3: Synthetic route for the preparation of PGA-FLUO conjugates through an ester 

linker: i) EDC, DMAP, DMF, 0ºC, N2 (see synthetic methods section for more details).  

The molecular weight for PGA backbone was determined as 15 kDa by size-

exclusion chromatography (SEC) (100 units of glutamic acid, see Figure IV. 4), and a 

targeted drug molar content of ~8 mol% as determined via 1H-NMR (Figure IV. 5).  
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Figure IV. 4: SEC in aqueous conditions (refractive index channel (crosses) vs. molar mass 

(line)) of PGA.  

 

Figure IV. 5: 1H-NMR quantification (mol%) of FLUO (aromatic signals) in the PGA-FLUO 

conjugate in 500 µL of 5 mg/mL solution in D2O. The efficient conjugation was demonstrated by 

achieving around 8 mol% drug loading in all the conjugates. 

We characterized the synthesized conjugates through a battery of techniques to 

ensure identity, purity, total drug loading, and free drug content. The synthetic strategy 

yielded the desired conjugates with excellent purity as revealed via NMR spectroscopy. 

After the conjugation of FLUO to PGA, a broadening of the bands can be observed 

although still retaining the characteristic peaks of the parent drug derivative at 6.5 - 7.5 

ppm. Indeed, the integrity of the acetonide moiety was proven along with the conjugate 
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as shown by the prevalence of the associated peaks at 0.5 and 1.5 ppm respectively within 

the conjugate (Figure IV. 6).  

 

Figure IV. 6: 
1
H-NMR assignment of FLUO signals in the PGA-FLUO conjugate in D2O and 

FLUO in deuterated acetonitrile (5 mg/mL). Aromatic signals that allow the quantification of 

FLUO (6.5 - 7.5 ppm) were maintained after conjugation to PGA. The signals of the acetonide 

group, between 0.5 - 1.5 ppm, were also maintained after conjugation to the polymeric backbone. 

As shown in Figure IV. 7, UV-Vis spectra of PGA-FLUO shows the preservation 

of the characteristic maximum absorbance of the parent drug (239 nm). However, the 

signals of PGA and FLUO overlap at the maximum absorbance, and so we quantified 

total drug loading at 260 nm. UV-Vis analysis allowed us to determine total drug loading 

(TDL) by weight of 16 - 24 wt%, which agreed with the estimated value obtained from 

NMR analysis (6.5 to 8.9 mol%) for the different batches. In the case of the OG-labeled 

conjugates, we also analyzed the loading of OG by UV-Vis spectroscopy, yielding a result 

of  ~0.3 mol% of modification of the PGA backbone (Figure IV. 8). 
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Figure IV. 7: UV-Vis spectra of PGA-FLUO and PGA-FLUO-OG conjugates. (A) Calibration 

curve of FLUO at 239 nm. (B) Spectra of the calibration curve of FLUO. (C) Spectra of PGA-

FLUO conjugates. (D) Spectra of PGA, FLUO and PGA-FLUO conjugate. 

 

Figure IV. 8: UV-Vis spectra of OG-labeled PGA-FLUO conjugates. (A) Calibration curve of 

OG at 495 nm. (B) Spectra of the calibration curve of OG. (C) Spectra of PGA-FLUO-OG 

conjugates. 
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We established the homogenous conjugation of the drug throughout the 

polypeptidic backbone, as evidenced by SEC chromatograms obtained from the parent 

PGA and the conjugates, detected by UV-Vis at the absorbance peak of FLUO (260 nm) 

in good agreement with the refractive index chromatograms (note that the peak at 17 min 

comes from the Na+ counter ion from PGA backbone) (Figure IV. 9).  

 

Figure IV. 9: SEC in aqueous conditions (refractive index and UV channel) of PGA and PGA-

FLUO.  

Then, we optimized the synthetic methodology for robust reproducibility and 

scalability (up to multigram scale), yielding the desired products with high purity. Table 

IV. 1 summarizes the most relevant parameters for the physico-chemical characterization 

of our polymer-drug conjugates from three different batches and scales, demonstrating 

batch to batch reproducibility together with the robustness of the synthetic methodology 

followed (Figure IV. 10).  

Table IV. 1: Physico-chemical characterization of PGA-FLUO conjugates. a Determined by UV-

Vis. b Determined by HPLC. c Determined by 1H-NMR. d Hydrodynamic radius (1 mg/mL and 

intensity) and Z-potential measured via DLS instrument in 1 mM KCl. 
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Figure IV. 10: 1H-NMR spectra in D2O of three different batches of PGA-FLUO demonstrating 

batch-to-batch reproducibility. 

Furthermore, we found a free drug (FD) content of 0.10 - 0.12 wt% in relation to 

the total drug loading in all studied conjugates as determined by high-performance liquid 

chromatography (HPLC). The results obtained demonstrated free drug content below 2 

wt% (relative to total drug loading) after the exhaustive purification of the conjugate, 

thereby providing evidence for the purity and high drug loading of the conjugate (Figure 

IV. 11). We employed Batch 3 for the subsequent complete physico-chemical and 

biological evaluation. 
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Figure IV. 11: (A) Calibration curve of FLUO at 239 nm. (B) HPLC chromatograms of the 

calibration curve of FLUO. (C) HPLC chromatogram of liquid-liquid extraction of FLUO, FLUO 

+ PGA, FLUO + PGA-FLUO conjugate, and FLUO + PGA-FLUO + HA-CP vehicle. (D) HPLC 

chromatogram of free FLUO from PGA-FLUO conjugate (blue) in comparison with a standard 

sample of FLUO at 0.075 mg/mL (black).  

IV.2.3. Self-assembling Behavior of PGA-FLUO 

We next studied the behavior of the PGA-FLUO conjugates in an aqueous 

environment as the conjugation of the corticoid motifs into the hydrophilic PGA 

backbone may result in the generation of an amphiphilic system with appropriate 

hydrophobic-hydrophilic balance, enabling the self-assembly into larger nanometer-sized 
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objects [36]. At the molecular level, we found evidence that the self-assembly of the 

PGA-FLUO proceeded primarily via hydrophobic effect, as evidenced by the pyrene 

assay performed to determine the critical aggregation concentration (CAC) [37]. The 

presence of hydrophobic pockets within the assemblies allowed us to determine the CAC 

via pyrene probe  resulting in a low value of 0.06 mg/mL, in close agreement with other 

anionic polymer amphiphiles reported in the literature [38] (Figure IV. 12A).  

We then employed circular dichroism (CD) to determine the conformation of the 

conjugates as a function of PGA-FLUO conjugate concentration and at different pHs that 

would mimic the different environments to which the conjugates will be exposed after 

topical administration (Figure IV. 12B). At pH 7.4, PGA-FLUO took on a predominantly 

random coil conformation, as revealed by the absolute minimum ellipticity value at 200 

nm. We also recorded a significant redshift evolution of the random coil negative band 

below and above the CAC threshold value, together with the appearance of a cotton effect 

in the 270 - 300 nm region, which is a characteristic change in optical rotatory dispersion 

in the vicinity of an absorption band of a substance, and in this case such bands are 

attributed to the ketones within the FLUO molecules [39]. The increase in the cotton band 

intensity is most likely related to the increasing concentration of the FLUO content rather 

than a supramolecular organization of the inner core of the assembled conjugates, as 

derived by the flat shape of the CD spectra when representing the molar ellipticity and 

hence correcting the concentration effect (Figure IV. 13).  

 

Figure IV. 12: Self-assembly behavior of PGA-FLUO conjugates. (A) Pyrene assay of PGA-

FLUO conjugates by fluorescence spectroscopy. (B) Secondary structure of the conjugates by CD 

at pH 7.4 and 5.5 at different concentrations.  
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Figure IV. 13: Molar ellipticity of PGA-FLUO at different concentrations at pH 7.4 and 5.5.  

At pH 5.5, in contrast, we found a partial alpha-helix characteristic conformation 

that evolved when increasing the concentration above the CAC. Under this condition, the 

random coil to alpha-helix transition is expected to be partial according to the pKa values 

(which indicated the strength of an acid) reported in literature around 4.9 (roughly 50% 

of side chains are protonated at pH 5.5) [28], and the fact that we failed to observe 

precipitation or cloudiness at pH 5.5 [40] as can be observed at pH 3 (Figure IV. 14). 

 

Figure IV. 14: Transmittance measurements by UV-Vis of PGA-FLUO at pH 7.4, 5.5, and 3.  

TEM micrographs confirmed the spherical aspect of the self-assembled carriers 

with geometrical sizes in the range of 50 - 100 nm with no particular evidence for core-

shell morphologies (Figure IV. 15A). The conjugates exhibited a hydrodynamic radius 
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(Rh) of 40 - 100 nm in aqueous solutions at different pHs and ionic strengths, confirming 

the assembly of multiple PGA-FLUO conjugates molecules within the globular 

nanoassembly (Figure IV. 15B). Z-potential measurements resulted in a highly negative 

value of -50 mV, confirming the assembly of multiple PGA-FLUO molecules within the 

globular nanoassembly. The compaction of the assembled conjugates upon increasing 

ionic strength reinforces the critical character of hydrophobic interactions. These 

interactions can drive the self-assembly process exposing the polyglutamate anionic 

backbone to the surface, and hence experiencing a screening of anionic repulsions upon 

increasing ionic strength and leading to the recorded decrease in Rh [41].  

 

Figure IV. 15: (A) TEM micrographs of PGA-FLUO from a sample prepared in MilliQ water at 

2 mg/mL. (B) Hydrodynamic radius by DLS in different solvents (MilliQ water, PB 10 mM, and 

PBS pH 7.4) with a constant size close to 100 nm.  

In summary, the conjugation of the highly hydrophobic corticoid FLUO to PGA 

results into an amphiphilic PGA-FLUO conjugate that self-assembles into spherical 

nanosized objects driven by the hydrophobic interactions of the FLUO motifs. Although 

we found no clear evidence for a core-shell structure by TEM, spectroscopic analyses 

suggest an unordered arrangement of FLUO within an inner hydrophobic core. At the 

outer layer of the constructs, CD analysis and z-potential values indicate a PGA backbone 

composition with a high anionic carboxylate form at pH 7.4 in a relatively constrained 

random coiled conformation, probably due to electrostatic repulsions, which might 

transition to partial alpha-helix conformation at pH 5.5 without altering the solubility of 

the system. 
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IV.2.4. FLUO Release Kinetics as a Crucial Feature Driving Sustained Release into 

the Skin 

We subsequently studied drug release kinetics under hydrolytic and proteolytic 

conditions owing to the pH-labile nature of the ester bond and cathepsin B-mediated 

degradation of the polymer backbone. We incubated samples of PGA-FLUO at 37ºC at 

different pHs including 5.5 (lysosome, in presence and absence of cathepsin B) and 7.4 

(blood) up to 72 h. In addition, as we use the HA-CP hydrogel (see Chapter III for more 

details) as a vehicle to administer the conjugate into the skin, we performed drug release 

kinetics in the presence of the HA-CP vehicle. Overall, the data collected suggests a small 

but sustained FLUO release in all the cases (Figure IV. 16 and Figure IV. 17).  

 

Figure IV. 16: Drug release profiles by HPLC at different pH (5.5 and 7.4) and under proteolytic 

conditions (Cat. B) of PGA-FLUO alone and applied in the HA-CP vehicle. Experiments were 

carried out per triplicate, mean ± SEM. 



210 
 

 

Figure IV. 17: Drug release chromatograms by HPLC. (A) Release of FLUO at pH 5.5 at time 0 

(black) and after 72 h (blue) (B) Release of FLUO at pH 7.4 at time 0 (black) and after 72 h (blue) 

(C) Release of FLUO in presence of cathepsin B at time 0 (black) and after 72 h (blue).  

The results suggest that drug release kinetics from the conjugate at 72 h is 2-fold 

faster at pH 7.4 (5 wt% of free FLUO) than at pH 5.5 (2.4 wt% of free FLUO). Although 

these results might seem counterintuitive, we must consider the conformational and 

spatial arrangement of the drug within the polymer-drug conjugate and the resulting 

assembled nanocarrier. Although acids or bases chemically catalyze ester-bond 

hydrolysis [42-44], these results might be explained in terms of a PGA backbone response 

to pH. At pH 5.5, protonation of PGA side chains represents roughly 50% molar of the 

overall carboxylates as derived from the pKa of linear PGA reported in literature [28]. 

These effects induce a partial random coil to alpha-helix conformation transition as shown 

above, although the system remains fully soluble according to turbidimetric data. At pH 

7.4, 100% molar side chains in PGA are carboxylates, yielding a full random coil 

conformation. Whether the observed change in release kinetics derives from 

conformational aspects (i.e., rigidity, compactness, accessibility to PGA-FLUO bonds) 

or auxiliary effect of vicinal carboxylates, the result observed represents an inverse 
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release profile to that expected. Unfortunately, the complete rationale for this 

phenomenon lies outside the scope of the present work. We also studied drug release in 

the presence of cathepsin B (5 U), a lysosomal cysteine protease that forms a major part 

of the proteolytic conditions faced by the polymer-drug conjugates following cell uptake. 

We found the release of FLUO to be significantly higher following the addition of 

cathepsin B when compared to hydrolytic conditions, with 20 wt% drug released within 

72 h (Figure IV. 16). This significant increase in drug release can be ascribed to the 

digestion of PGA backbone, enabling the heightened accessibility of the PGA-FLUO 

bond to hydrolytic conditions [45]. 

Additionally, the incorporation of the PGA-FLUO conjugate within the HA-CP 

vehicle caused a marked decrease in the release of FLUO under hydrolytic conditions, 

obtaining half of the free FLUO released at pH 7.4 (~2.5 wt% of free FLUO) and pH 5.5 

(~1.2 wt% of free FLUO). However, more importantly, we observed a marked decrease 

under proteolytic conditions, obtaining ~2.5 - 3 wt% of free FLUO in comparison with 

the 20 wt% drug release without the HA-CP vehicle. 

IV.2.5. Compatibility of PGA-FLUO with the HA-CP Vehicle  

As PGA-FLUO will be delivered topically using the HA-CP vehicle (previously 

reported to enhance permeation to the epidermis in Chapter III), we studied the 

compatibility of the intended formulations. The incorporation of PGA-FLUO at a 

working concentration of 10 mg/mL within 1% w/v of HA-CP vehicle established the 

complete solubility and stability of the conjugate in the vehicle. Furthermore, the vehicle 

displayed no effect over nanosized PGA-FLUO in terms of homogenous globular shape 

nanoparticles and an expected size of about 80 - 100 nm, as evidenced in TEM 

micrographs (Figure IV. 18).  

 

Figure IV. 18: Representatives TEM images of PGA-FLUO conjugates in the HA-CP (1% w/v) 

vehicle at 10 mg/mL, scale bar is 100 nm (left) and 500 nm (right).  
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In order to explain the reduction of drug release observed from the PGA-FLUO 

under proteolytic conditions in the presence of the HA-CP, we studied the activity of the 

cathepsin B in vitro with and without the vehicle. We used medium (80 µL of acetate 

buffer 20 mM pH=5, 10 µL of EDTA 2 mM and 10 µL of DTT 5 mM), medium with the 

substrate (Z-Arg-Arg-AMC), and negative control (leupeptin) as controls (Figure IV. 

19). The increase in the viscosity caused sequestering of the nanocarrier structure within 

the gel network contributing to the delayed release of FLUO compared to the aqueous 

dispersion. The decrease of the drug release is more evident under proteolytic conditions, 

where the reduction in the release kinetics is most likely related to the lower mobility of 

enzyme and substrate. Indeed, we discovered a significant decrease of cathepsin B 

activity in the presence of HA-CP vehicle. These results suggest a protective effect of the 

HA-CP vehicle on PGA-FLUO. 

 

Figure IV. 19: Cathepsin B activity in vitro with or without HA-CP vehicle by the quantification 

of the fluorescence intensity. 

IV.2.6. In Vitro Skin Compatibility and Cell Trafficking Studies of PGA-FLUO 

Conjugates 

Cell viability assays performed on HaCaT cells and human fibroblasts after 72 h 

of treatment with increasing doses of free FLUO or PGA-FLUO at the same drug 

equivalents revealed the absence of cell toxicity up to the concentrations tested, 

demonstrating the safety of the conjugation strategy for dermal applications (Figure IV. 

20A and 20B). 
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Figure IV. 20: In vitro evaluation of PGA-FLUO conjugates. Cell viability assays in (A) HaCaT 

cells and (B) human fibroblasts after 72 h of treatment with FLUO or PGA-FLUO conjugate 

(n=3). (C) Uptake study by flow cytometry of PGA-FLUO conjugates fluorescently labeled with 

OG in HaCaT cells. Results represented as the average of positive cells (%) ± SEM. t-student, 

comparison of pair of data with control condition, ***p<0.001, **p<0.01, *p<0.05 (n=3). (D) 

Confocal images from the uptake of OG-labeled PGA-FLUO conjugates at 24 h post-treatment 

in HaCaT cells, in which a colocalization with lysotracker red was observed (yellow). 

In addition, we performed flow cytometry (Figure IV. 20C) and fluorescence 

confocal microscopy (Figure IV. 20D) at non-toxic concentrations in keratinocytes as 

our target cell to understand the cell internalization of OG-labeled PGA-FLUO. As 

expected for these macromolecular systems [46, 47], we observed energy-dependent 

endocytic uptake, reaching 30% of positive cells at 24 h post-treatment. In agreement 

with these results, we obtained confocal images to identify the subcellular localization of 

the PGA-FLUO-OG conjugate inside the keratinocytes after 24 h of uptake, 

demonstrating a clear co-localization with the lysosomal marker Lysotracker red. These 

findings indicate the suitability of our polypeptidic nanocarriers for lysosomotropic drug 

delivery [48].  
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IV.2.7. PGA-FLUO Reduces the Release of Pro-Inflammatory Cytokines In Vitro 

Additionally, we evaluated cell viability of murine macrophages (Raw264.7 cell 

line) in response to FLUO after 72 h of treatment, allowing us to select 0.49 ng/mL as 

FLUO concentration for any subsequent pharmacological study in this cell line (Figure 

IV. 21A).  

 

Figure IV. 21: In vitro PGA-FLUO evaluation in macrophages. (A) Cell viability assay in 

Raw264.7 macrophages following treatment with varying concentrations of FLUO for 72 h (n=3, 

mean±SEM). (B) Cell viability assay after 72 h of treatment with FLUO, PGA-FLUO conjugate, 

and vehicles at 0.49 ng/mL FLUO eq. (C) Reduction of pro-inflammatory cytokines release after 

treatment for 72 h in macrophages stimulated with bacterial LPS (n=3). Asterisks indicate 

statistically significant differences after ANOVA analyses followed Tukey’s post hoc tests mean 

± SEM. In all cases, we considered differences to be significant when p***<0.0001; p**<0.01; 

p*<0.05. 

We then assessed cell viability after the treatments with FLUO, PGA-FLUO, and 

vehicles by MTS assay at the selected concentration of FLUO, revealing a non-toxic 

profile when tested at 72 h of incubation (Figure IV. 21B). Finally, we tested the anti-

inflammatory activity of the FLUO derivatives by assessing the reduction of the pro-

inflammatory cytokines release to the culture media from the macrophages treated with 
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5 ng/mL of bacterial LPS from E. coli, using a LUMINEX multiplex immunoassay for 

the quantification of the cytokines. The results obtained suggested that FLUO not only 

retains its anti-inflammatory activity following incorporation into the polypeptidic 

backbone, but also that the conjugation to PGA promotes the inhibitory effect of FLUO 

on the release of pro-inflammatory cytokines IL-1b and INF-γ (Figure IV. 21C).  

IV.2.8. PGA-FLUO Biocompatibility and Anti-Inflammatory Effect in an 

Inflammatory Skin Equivalents Model and an Inflammatory Ex Vivo Human Skin 

Model 

Ex vivo models represent valuable research tools for investigations into different 

skin diseases such as psoriasis, and are considered more relevant than in vitro research 

involving cell lines. We employed two ex vivo models, from which we can obtain 

complementary information, to evaluate the safety and the anti-inflammatory activity of 

the synthesized conjugates. We explored two ex vivo models to corroborate the data 

obtained in the cell studies: (i) an ex vivo human skin model (Figure IV. 22A) and (ii) a 

skin equivalent model (Figure IV. 22B). 

In an ex vivo human skin model (Figure IV. 22C), tissue viability after the 

treatment with 3 µL of a solution of 10 mg/mL of PGA, FLUO, PGA-FLUO applied in 

water or in the HA-CP vehicle (1% w/v), and the HA-CP (1% w/v) during 24 h revealed 

that all the treatments maintain tissue viability. Additionally, in a skin equivalents model 

the application of two doses of 5 mg/mL of the same treatments on day 11 and 13 of 

culture also demonstrated excellent biocompatibility, as indicated by the absence of 

significant cytotoxic effects (Figure IV. 22D).  

Additionally, we developed inflammatory models to assess the anti-inflammatory 

potential of the FLUO derivatives at the same concentration evaluated in the viability 

assays. We studied IL-6 secretion by ELISA assay in an optimized inflammatory ex vivo 

human skin model after inflammatory insult via the combined treatment with bacterial 

lipopolysaccharide (LPS; 15 µg/mL) and epidermal growth factor (EGF; 2.5 ng/mL) for 

24 h in the culture media (see Chapter II for more details).  
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Figure IV. 22: Evaluation of tissue viability and anti-inflammatory activity of FLUO derivatives 

in inflammatory skin models. (A) Establishment on the inflammatory ex vivo human skin model. 

(B) Establishment of the inflammatory skin equivalents model. (C) Tissue viability in an 

inflammatory ex vivo human skin model after 24 h of treatment (10 mg/mL of PGA, FLUO, PGA-

FLUO in water and HA-CP vehicle (1% w/v), and HA-CP (1% w/v)) by MTT assay. (D) Tissue 

viability in the inflammatory skin equivalents model after 2 doses of treatment (5 mg/mL of PGA, 

FLUO, PGA-FLUO in water and HA-CP vehicle (1% w/v), and HA-CP (1% w/v)) by MTT assay. 

(E) IL-6 levels in the inflammatory ex vivo human skin model after the induction with the 

combination of bacterial LPS (15 µg/mL) and EGF (2.5 ng/mL), following treatment (10 mg/mL 

of PGA, FLUO, PGA-FLUO in water and HA-CP vehicle (1% w/v), and HA-CP (1% w/v)) for 

24 h. Values expressed as relative inhibition of IL-6 (%). (F) IL-6 levels in the inflammatory skin 

equivalents model stimulated with TNF-α (20 ng/mL), following two doses of treatment (5 

mg/mL of PGA, FLUO, PGA-FLUO in water and HA-CP vehicle (1% w/v), and HA-CP (1% 

w/v)). Values are expressed as relative inhibition of IL-6 (%). Asterisks indicate statistically 

significant differences after ANOVA analyses followed Bonferroni’s post hoc tests, mean ± SEM. 

In all cases, we considered differences to be significant when p***<0.001; p**<0.01; p*<0.05. 
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Treatment for 24 h revealed that the reduction in IL-6 release following FLUO 

administration was similar to PGA-FLUO treatment (both applied in water or in the HA-

CP vehicle). All treatments reduced IL-6 levels by around 20% compared to the 

corresponding untreated control (Figure IV. 22E). To ratify this data, we also studied  

IL-6 secretion in the second inflammatory skin equivalents model induced by the 

application of 20 ng/mL of recombinant TNF-α in the culture media on days 10 and 12 

of culture [49-52]. Of note, this model provides a more permeable stratum corneum than 

the ex vivo human skin model, given the reconstitution of this skin model from cells. On 

day 11 and 13, we topically applied the same treatments at 5 mg/mL (35 μg/cm2) and 

evaluated the release of IL-6 by ELISA assay. We discovered a significant reduction in 

IL-6 secretion (almost 50%) in the case of PGA-FLUO treatment applied in water or the 

HA-CP vehicle when compared to the free drug, most probably due to the lower amount 

of model variance when compared to the higher variation observed among the human 

skin samples (Figure IV. 22F).  

IV.2.9. FLUO Conjugation and the Use of HA-CP as Vehicle Enhances Skin 

Permeation 

To visualize skin penetration of PGA-FLUO and explore the role of the HA-CP 

on the extent of skin permeation, we performed a qualitative study on human skin using 

Franz diffusion cells comparing the permeation of 100 µL from 10 mg/mL solution of 

OG-labeled PGA-FLUO applied in water or embedded in Cy5.5-labeled HA-CP vehicle 

(1% w/v) for 24 h. After fixation and tissue process, we acquired confocal microscopy 

images that revealed the significant accumulation of the PGA-FLUO within the stratum 

corneum, and a lower accumulation in the epidermis (Figure IV. 23A). However, PGA-

FLUO within the HA-CP vehicle displayed enhanced penetration through the epidermal 

layer (Figure IV. 23B). The quantification of OG intensity in the different skin layers by 

Image J software revealed that the presence of the HA-CP vehicle significantly enhanced 

the epidermal accumulation of PGA-FLUO, proven by the higher fluorescence intensity 

detected in both, the stratum corneum and the viable epidermis (Figure IV. 23C). 

Furthermore, we extracted FLUO from the whole skin at 24 h post-treatment with 

PGA-FLUO (10 mg/mL) in water or embedded in the HA-CP vehicle (1% w/v) and 

analyzed the samples by HPLC (Figure IV. 24). We normalized HPLC data considering 

the amount of FLUO released determined from the release kinetics studies under similar 
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conditions (with or without HA-CP), demonstrating that the amount of FLUO was almost 

two-fold higher in presence of HA-CP as vehicle (Figure IV. 23D). These findings prove 

the ability of the HA-CP vehicle to act as penetration enhancer, being able to promote the 

accumulation of the conjugate in the epidermal layer, thereby creating a source for the 

sustained release of the drug that could reduce the need for the repeated skin 

administration.  

 

Figure IV. 23: Evaluation of skin permeation of PGA-FLUO and FLUO quantification in whole 

skin. (A) Confocal images after permeation studies of OG-labeled conjugates formulated in water. 

(B) Confocal images after permeation studies of OG-labeled conjugates formulated in the HA-

CP vehicle (1% w/v). (C) Quantification of OG intensity by Image J software in the stratum 

corneum (SC) and the viable epidermis (n=5) after permeation studies. (D) Quantification of 

FLUO extracted from the whole skin (see material and methods for details) analyzed by HPLC 

after the permeation studies of PGA-FLUO with and without the HA-CP vehicle (n=3). Asterisks 

indicate statistically significant differences after ANOVA analyses followed Bonferroni’s post 

hoc tests, mean ± SEM. In all cases, we considered differences to be significant when p***<0.001; 

p**<0.01; p*<0.05. 
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Figure IV. 24: HPLC chromatograms of FLUO extracted from the skin after the permeation 

studies in Franz diffusion cells for 24 h. (A) Calibration curve of FLUO at 239 nm in DMSO. (B) 

Chromatogram of FLUO extracted when the PGA-FLUO conjugate was applied in water (blue) 

in comparison with a standard sample at 0.075 mg/mL (black) (C) Chromatogram of FLUO 

extracted when the PGA-FLUO conjugate was applied in the HA-CP vehicle (blue) in comparison 

with a standard sample at 0.075 mg/mL (black). 

Additionally, we analyzed the aliquots extracted from the receptor chamber 

obtained during the permeation studies by UV-Vis spectroscopy, in order to detect any 

signal from OG that would suggest the capability of the specific formulation to reach 

systemic circulation, feature to be avoided with corticosteroids in order to prevent 

systemic toxicities. MilliQ water as well as the use of HA-CP-Cy5.5 without the 

conjugate were used as controls. The results revealed the absence of OG signal at 495 nm 

and Cy5.5 at 676 nm (as already demonstrated in Chapter III) at 8 and 24 h of study, 
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suggesting that the conjugate is not capable to reach the dermis, and therefore the receptor 

chamber in contact with the dermis (Figure IV. 25). As the receptor chamber simulates 

the bloodstream, this finding would indicate that the conjugate would not reach the 

systemic circulation avoiding the possible corticosteroids adverse effects and focusing its 

action on the desired epidermis. 

 

Figure IV. 25: UV-Vis spectra of the aliquots extracted from the receptor chamber after 8 (left) 

and 24 h (right) after Franz diffusion cell permeation studies in human skin by using PGA-FLUO-

OG applied in water or in the HA-CP vehicle and HA-CP-Cy5.5 as control.  

IV.2.10. Optimization of In Vivo Experiments  

Several reports have demonstrated that imiquimod (IMQ) can activate immune 

cells via a toll-like receptor to induce psoriasis-like inflammation [53-55]. In Chapter II, 

we optimized our IMQ-psoriasis induced model in order to evaluate the anti-psoriatic 

activity of the conjugates compared to the free drug. 

Firstly, in vivo experiments were conducted to optimize the optimal concentration 

of FLUO equivalents that trigger the maximum anti-psoriatic activity, in order to select 

the adequate therapeutic window. After seven days of application of IMQ cream in the 

back and the right ear, we split mice into representative groups. We employed healthy 

and untreated mice as controls (negative and positive control). Conjugate-based 

treatments at different FLUO equivalents (0.01, 0.15 and 0.3 wt% FLUO eq.) were 

studied, based on the commonly marketed dose of FLUO in the formulations (0.01% w/w) 

[20]. The conjugates were dissolved in the HA-CP vehicle (1% w/v) and immediately 

applied topically in the back and the right ear for five consecutive days. We also applied 

HA-CP vehicle (1% w/v) as control following the same methodology. The safety of the 
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treatments was evaluated by tracking body weight every two days, demonstrating that 

after a slightly decrease in body weight during the application of IMQ, the animals 

maintain and recover body weight during the application of the treatments (Figure IV. 

26).  

 

Figure IV. 26: Relative body weight of the mice during the treatment showing no significant 

alterations, which displayed a 100% survival rate. 

IV.2.10.1. Reduction of Skin Inflammation, Ear Thickness, and Splenomegaly 

We evaluated the evolution and progression of the disease for five days of 

treatment after the last application of IMQ cream. PASI score allowed the assessment of 

several features of psoriasis disease, such as erythema, scaling and thickness (skin 

induration) of the back of the mice after the treatment with the different concentrations 

of PGA-FLUO conjugates (0.01, 0.15, and 0.3 wt% FLUO eq.) (Figure IV. 27A). 

Examination of the back every two days revealed that the groups treated with the different 

concentrations of PGA-FLUO conjugate showed a significant reduction in the studied 

features. In the three parameters evaluated, we observed a progressive improvement by 

increasing the concentration of PGA-FLUO conjugate used, obtaining values close to 0 

in the case of the 0.15 and 0.3 wt% FLUO eq. In addition, in those animals treated with 

HA-CP vehicle, we observed a marked reduction of erythema and scaling at day 13, as a 

possible consequence of the general improvement of the skin features, specifically skin 

hydration. 

Ear thickness was also evaluated every two days using a caliper in comparison 

with the positive control. The results obtained at day 13 revealed that the group treated 
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with 0.01 wt% FLUO eq. reduces ear thickness by 10% compared with the positive 

control. Importantly, a significant decrease in the ear thickness was observed using 0.15 

and 0.3 wt% FLUO eq. reducing ear thickness by almost 20% (Figure IV. 27B). 

 

Figure IV. 27: Reduction of skin inflammation, ear thickness, and splenomegaly in an IMQ-

induce in vivo psoriasis model. (A) Scoring severity of skin inflammation in the dorsal skin with 

PASI score (erythema, scaling, and thickness) every two days during the treatment, scale from 0 

to 4. (B) Relative reduction of ear thickness after the treatments compared to the positive control. 

(C) Spleen weight (mg) determination after five days of treatment. Asterisks indicate statistically 

significant differences after ANOVA analyses followed Bonferroni’s post hoc tests, mean ± SEM. 

In all cases, we considered differences to be significant when p***<0.001; p**<0.01; p*<0.05. 

Of note, as explained in Chapter II, the topical application of IMQ cream for 

seven consecutive days has been reported to induce a significant increase in spleen weight 

[56]. This splenomegaly is correlated with the increment of the synthesis of pro-

inflammatory cytokines which are involved in the onset of the disease. After five days of 

treatment application, we observed a marked reduction in the animals spleen weight with 
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the three concentrations tested. The groups treated with 0.01, 0.15 and 0.3 wt% FLUO 

eq. presented a value of spleen weight around 150, 90 and 85 mg, respectively, reaching 

up to a splenomegaly reduction >70% compared with the positive control (Figure IV. 

27C). These results showed that there is a decrease in the immune response not only at 

the local level but also at the systemic level. Therefore, the reduction in spleen weight 

may be closely related to the decrease of the localized inflammation in the skin and the 

synthesis of pro-inflammatory cytokines. Of note, the group treated with the HA-CP 

vehicle also revealed a reduction in spleen weight, which could be related to an 

improvement of the skin properties at a local level triggering a decrease of the local 

inflammation, which also results in a decrease of the systemic inflammation. 

IV.2.10.2. Reduction of Epidermal Thickness 

We also assessed the reduction of the epidermal thickness of the ear and the back 

by histological examination. Firstly, H&E staining of the right ear treated with IMQ 

cream revealed a marked difference in epidermal thickness when compared to the 

contralateral healthy ear, mimicking the pathophysiology of the psoriasis (Figure IV. 28).  

 

Figure IV. 28: H&E staining of the ears after five days of treatment in the IMQ-induced skin 

inflammation model. Original magnification displayed in each image was 10x. One representative 

picture is shown for each treatment regimen. 



224 
 

Although with the three concentrations of FLUO eq. tested we can observe a 

decrease in the epidermal thickness, a more pronounced decrease was revealed in the 

groups treated with 0.15 and 0.3 wt% FLUO eq., even resembling the results of the control 

healthy ear. The control group treated with HA-CP vehicle showed a decrease in 

epidermal thickness, as a possible consequence of improved skin hydration and a decrease 

in the scaling process.  

In addition, we observed the same trend via H&E staining in mouse backs in a 

concentration dependent manner recovering almost completely the skin structure with the 

highest concentration used (Figure IV. 29). Of note, the group treated with the HA-CP 

vehicle also presents a reduction in the epidermal thickness, similar to which occurs with 

the lowest concentration tested (0.01 wt% FLUO eq.). This fact, also observed in the right 

ear, may be explained due to improved dryness and desquamation of the skin, and 

therefore, the improvement of these properties leads to a reduction of the local 

inflammation and the epidermal thickness. 

 

Figure IV. 29: H&E staining of the back of the mice after five days of treatment in the IMQ-

induced skin inflammation model. Original magnification displayed in each image was 10x. One 

representative picture is shown for each treatment regimen. 

IV.2.10.3. Reduction of Pro-Inflammatory Cytokines Levels in Serum 

IL-23, IL-17, INF-γ, and TNF-α act as major pro-inflammatory mediators of 

psoriasis in serum and tissue, and could be induced upon IMQ treatment [56-58]. In this 
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optimization, we will focus on the quantification of pro-inflammatory cytokines in serum 

(specifically IL-1b, IL-23, and INF-γ) detected by LUMINEX assay. 

After five days of treatment with different FLUO eq., the expression of IL-1b, IL-

23, and INF-γ in serum were measured and values compared with controls (Figure IV. 

30). All the concentrations tested and also the HA-CP vehicle revealed a notable decrease 

of the pro-inflammatory cytokine levels compared to the positive control. In the case of 

the IL-1b levels a decrease of 20% respect to the positive control was observed with no 

marked differences between the treatments. For IL-23 levels, the group treated with 0.01 

wt% FLUO eq. showed around a 20% reduction, however, the groups treated with 0.15 

and 0.3 wt% FLUO eq. revealed a higher significant reduction (~55%) compared to the 

positive control. Finally, in the case of INF-γ levels, the best results (40% decrease) was 

obtained with 0.15 wt% FLUO eq. Hence, in general, the group treated with 0.15 wt% 

FLUO eq. exhibited the best results.  

Moreover, the treatment with the HA-CP vehicle also displayed a marked 

reduction of the IL-1b, IL-23, and INF-γ levels. As explained in previous sections, this 

fact is related to the reduction of the systemic inflammation triggered by the reduction of 

the local inflammation present in the skin.  

 

Figure IV. 30: Reduction of pro-inflammatory cytokines IL-1b, IL-23, and INF-γ in serum post-

treatment measured by LUMINEX assay. Asterisks indicate statistically significant differences 

after ANOVA analyses followed Bonferroni’s post hoc tests, mean ± SEM. In all cases, we 

considered differences to be significant when p***<0.001; p**<0.01; p*<0.05. 

Based on these results, further studies in vivo were conducted using the 

intermediate concentration tested, 0.15 wt% FLUO eq. applied in the HA-CP vehicle. 

Therefore, next section describes a final evaluation of the anti-psoriatic activity of our 
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formulation (0.15 wt% FLUO eq. in the HA-CP vehicle) in comparison with the same 

concentration of the conjugate and the free FLUO both applied in a commercially-

available cream used with current marketed corticosteroids. 

IV.2.11. PGA-FLUO in HA-CP Reduces Imiquimod-Induced Skin Inflammation In 

Vivo 

After the optimization of the experimental condition to perform the in vivo 

experiments (0.15 wt% FLUO eq. applied during 5 days) we carried out the final 

benchmark experiment. We used this concentration to compare the anti-psoriatic activity 

of FLUO applied in a commercially-available cream used for current corticosteroids (due 

to its hydrophobicity and poor water solubility) with PGA-FLUO in the same cream and 

also applied in the HA-CP vehicle due to its adequate hydrophilicity. We applied 

treatments to the back and the right ear of IMQ-treated 6-week-old male BALB/c mice 

for five days. We also applied the cream and the HA-CP vehicle alone as controls. 

Treatment safety was evaluated by tracking body weight every two days and comparing 

results to healthy animals. Encouragingly, we discovered that treatments failed to 

significantly alter body weight (Figure IV. 31).  

 

Figure IV. 31: Relative body weight of the mice measured every two days. During treatments, 

the animals recover body weight and we observed no significant alterations. 

 Histological examination of the mouse ears and back sections revealed a marked 

difference in the extent of epidermal thickening and elongation of epidermal ridges 

between the treated groups. PGA-FLUO treatment resulted in a more significant 
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diminishment of ear thickness and epidermal ridges and, remarkably, the choice of the 

vehicle employed for the administration also influenced overall effects, with the group 

treated with PGA-FLUO in HA-CP providing similar results to those observed in healthy 

control animals. Overall, PGA-FLUO in HA-CP exhibited significant differences 

compared to all other groups, presenting minimal epidermal thickening, an intact stratum 

corneum, and histological features compared to the negative control (Figure IV. 32). 

Importantly, following analysis of the control groups treated with the vehicles, we 

discovered that the group treated with the HA-CP presented a decrease in the epidermis 

thickness, whereas treatment with the commercially available cream failed to elicit any 

anti-psoriatic effect. This finding suggests that the probable increase in skin hydration via 

HA-CP treatment can lead to an improvement in the symptoms (dryness, scaling) 

produced by IMQ application.  

 

Figure IV. 32: H&E staining of the back and right ear of the mice after five days of treatments in 

an IMQ-induced skin inflammation model. Original magnification displayed in each image was 

10x. One representative picture is shown for each treatment regimen. 

Therefore, the use of this HA-CP vehicle offers a synergistic effect with the 

conjugated corticosteroids triggering an enhanced cutaneous anti-psoriatic effect. Signs 

of epidermal thickening due to inflammation were not only evident in the back but also 

by microscopical examination of the ear sections.  
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IV.2.12. Reduction of Skin Inflammation, Ear Thickness, and Splenomegaly 

We also evaluated erythema, scaling, and thickness of the dorsal skin by PASI 

score after five days of treatment (Figure IV. 33A). Whereas examination of the back 

every two days revealed that the group treated with FLUO displayed a reduction in all the 

parameters, this was not enough to restore typical values. Again, FLUO conjugation to 

PGA prompted an enhanced effect when applied in cream and a more marked effect when 

administered in the HA-CP vehicle, presenting significant morphological tissue recovery 

(similar to the negative control, a value of 0 in the PASI score at the end of the experiment 

in the three measured parameters). The group treated with the HA-CP vehicle also 

exhibited a reduction in PASI score, due to its ability to hydrate the skin and diminish 

IMQ-induced skin dryness. Regarding the ear thickness measured every two days during 

the treatments with a caliper, the results corroborate the findings observed by H&E 

staining; all treated groups showed a decrease compared to the positive control group, 

with a maximum reduction (20%) of thickness observed in the group treated with PGA-

FLUO within the HA-CP vehicle (Figure IV. 33B).  

Finally, several studies have reported that IMQ can produce a significant spleen 

enlargement with a weight increase, which is attributed to the release of inflammatory 

cytokines [56]. In our IMQ-induced model, we established an average spleen weight in 

the positive control of 250 mg compared to 100 mg in the negative control (Figure IV. 

33C). All treated groups exhibited a marked decreased in the spleen weight (FLUO 125 

mg and PGA-FLUO applied in cream 100 mg), which was maximal for the group treated 

with PGA-FLUO within the HA-CP vehicle. There was no significant difference in the 

spleen weights between the negative control and the group treated with PGA-FLUO in 

HA-CP, confirming the ability of the vehicle embedded conjugate to reach the epidermal 

layers of the skin and reduce inflammation.  
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Figure IV. 33: Reduction of skin inflammation, ear thickness, and splenomegaly. (A) Scoring 

severity of skin inflammation in the dorsal skin with PASI score (erythema, scaling, and 

thickness) every two days during the treatments using a scale from 0 to 4. (B) Relative reduction 

of ear thickness after the treatments compared to the positive control. (C) Spleen weight (mg) 

determination after five days of treatment. Asterisks indicate statistically significant differences 

after ANOVA analyses followed Bonferroni’s post hoc tests, mean ± SEM. In all cases, we 

considered differences to be significant when p***<0.001; p**<0.01; p*<0.05. 

IV.2.13. PGA-FLUO Conjugates Reduce Pro-Inflammatory Cytokines Levels in 

Serum and Tissue 

TNF-α, IL-17, IL-23, and INF-γ act as major mediators of psoriasis as they mark 

the onset of the IMQ induced psoriasis [56-58]. We discovered the significantly higher 

expression of INF-γ and IL-23 for the positive control compared to the negative control 

in tissue and INF-γ in serum, which confirmed adequate in vivo psoriatic model 

development (Figure IV. 34). In tissue, the levels of INF-γ were reduced by 31% and 

51% in the groups treated with PGA-FLUO in cream and PGA-FLUO in HA-CP, 

respectively, compared to 6% for the free FLUO group. Furthermore, IL-23 levels were 

reduced by 21% and 34% for PGA-FLUO in cream and PGA-FLUO in the HA-CP 

vehicle, respectively, as compared to the free FLUO (24%). Similar reduction values and 

differences among groups were observed when INF-γ levels were studied in serum, 

establishing that PGA-FLUO within the HA-CP vehicle displayed the highest anti-

inflammatory capacity. Of note, the group treated with HA-CP vehicle displayed a 
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reduction in INF-γ levels in tissue and serum by 28% and 27%, respectively. The possible 

explanation can be ascribed to the intrinsic nature of HA-CP as it results from cross-

linking of HA with amino acids which protect its enzymatic degradation by 

hyaluronidases and consequently allows a prolonged moisturizing effect that could trigger 

its impact in reducing inflammation (see Chapter III). 

Figure IV. 34: Reduction of pro-inflammatory cytokines levels related to the disease in (A) tissue 

and (B) serum. Asterisks indicate statistically significant differences after ANOVA analyses 

followed Bonferroni’s post hoc tests, mean ± SEM. In all cases, we considered differences to be 

significant when p***<0.001; p**<0.01; p*<0.05. 

In summary, the topical application of PGA-FLUO within an HA-CP vehicle 

ameliorated IMQ-induced psoriasis, returning indicators of disease back to basal levels. 

We believe that the synergism observed derives from the conjugation of the corticosteroid 

to a polypeptidic carrier and from the application of a highly hydrating vehicle for topical 

administration as a permeation enhancer. The application of FLUO as a water-soluble 

PGA conjugate resulted in higher drug concentration available at the site of application, 

while the inclusion of PGA-FLUO within the HA-CP vehicle results in higher uptake by 

dermal cells and improved skin permeation, leading a deeper penetration of PGA-FLUO 

into the viable epidermis. Furthermore, the incorporation of PGA-FLUO in HA-CP might 

increase skin hydration, an additional factor required for treatment success, while HA-CP 

may also protect the conjugate from enzymatic degradation, thereby allowing it to reach 

the target epidermal layer. We believe that the combination of a polymer-corticosteroid 

conjugate and HA-CP vehicle provides a synergistic effect that may make corticosteroid 

treatments more efficient and safer for the treatment of psoriasis. 

 

 

A B 
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IV.3. Conclusions 

Herein, we have demonstrated that the polypeptide conjugation of a corticosteroid 

used for the topical treatment of psoriasis (PGA-FLUO) provides a significant 

improvement in the pharmacological activity due to greater bioavailability in the require 

skin layer. Polypeptide conjugation may contribute to improve the penetration and drug 

exposure, thereby increasing the amount of corticosteroid in the viable epidermis, and 

therefore, increasing the effectiveness of the treatment. An adequate drug release kinetic 

profile represents a crucial parameter for the achievement of a suitable drug concentration 

in the epidermis, and therefore, polymer-drug linker design represents an essential 

feature. However, the mode of conjugate administration also plays a vital role, as the 

application of the polypeptide-conjugated corticosteroid within a polymeric vehicle (HA-

CP) protected the conjugate, resulting in the slower and sustained release of the drug in 

the epidermis and allowing for sustained residence time.  

In conclusion, the synergistic combination of PGA-FLUO and HA-CP provides 

an elevated reduction in inflammation and, therefore, represents a possible palliative 

treatment of inflammatory skin diseases. Our strategy opens a new horizon in the field of 

localized dermal delivery that can be extended to the conjugation of other therapeutic 

moieties implemented for other aggressive skin diseases, such as cancer. The use of 

polymer/polypeptide therapeutic-based formulations for various skin diseases could 

revolutionize current therapeutic strategies of dermatology, overcoming old challenges, 

and offering new perspectives for the treatment and prevention of dermatological 

conditions. 

IV.4. Materials and Methods 

IV.4.1. Materials 

All organic solvents were of analytical grade purchased from Scharlab and used 

without further purification. All chemicals were of reagent grade and used without further 

purification, purchased from Sigma-Aldrich otherwise stated. Poly-(alpha-L-glutamic 

acid) (Mw: 12,9 kDa, PDI: 1.2, 100 subunits per polymer, PGA100 u) was obtained from 

Polypeptide Therapeutic Solutions SL (Valencia, Spain). Fluocinolone acetonide was 
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purchased from Cymit Quimica S.L. (Barcelona, Spain). Anhydrous N,N-

Dimethylformamide (DMF, ≥99.8% anhydrous) was purchased from Scharlab SL 

(Sentmenat, Spain). Oregon Green 488 cadaverine and Cyanine5.5 were purchased from 

Invitrogen (Spain). Ultrapure water with a resistivity of 18 MΩ cm was used in all 

aqueous preparations (MilliQ water ultrapure). Preparative SEC was performed using 

either Sephadex® G-25 or Sephadex® LH-20, purchased from GE Healthcare Bio-

Sciences AB (Uppsala, Sweden). 

Phenazinemethosulfate (PMS), amphotericin B, and leupeptin were supplied by 

Sigma (Spain). Dulbecco’s Modified Eagle’s Medium (DMEM) with Glutamax was 

purchased from Fisher (Spain). DMEM, phosphate buffer saline (PBS), fetal bovine 

serum (FBS) Medium 200, trypsin, and penicillin/streptomycin were provided from 

Gibco (Spain). 3-(4,5-dimethylthiazol-2-yl)-5- (3-carboxymethoxyphenyl)-2-(4-

sulfophenyl)-2H-tetrazolium (MTS) was supplied by Promega (Spain). Cathepsin B from 

bovine spleen (25 units) was supplied by Sigma Aldrich (Spain). The Raw267.4 

macrophages cell line was supplied by CLS Cell Lines Service (Germany). 

IV.4.2. Physico-Chemical Characterization Methods  

IV.4.2.1. Nuclear Magnetic Resonance (NMR) Spectroscopy 

NMR spectra were recorded at 27°C (300 K) on an Avance III 300 MHz Bruker 

spectrometer equipped with a 5 mm TBI broadband probe or a 300 UltrashieldTM from 

Bruker (Billerica MA, USA). Data were processed with the software Mestrenova (Bruker 

GmbH, Karlsruhe, Germany). Samples were prepared typically at 5 mg/mL in deuterated 

solvents.  

IV.4.2.2. Ultraviolet-Visible (UV-Vis) Spectroscopy  

UV-Vis measurements were performed using V-630 spectrophotometer (JASCO 

Corporation, Spain) at 25°C with 1.0 cm matched quartz cells and with a spectral 

bandwidth of 0.5 nm. The determination of total FLUO content was measured by UV-

Vis spectroscopy. First, a stock solution of FLUO in MilliQ water/ACN (60:40) was 

prepared at 1 mg/mL, to prepare a calibration curve. Samples were diluted using the same 

solution to give a concentration range of 0.1-0.005 mg/mL. Total drug loading of the 

conjugates at different concentrations (0.5, 0.25, 0.1 mg/mL) was determined by 
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measuring the absorbance at 260 nm in a solution of MilliQ water/ACN (60:40). PGA at 

the same concentration range was used as blank. 

IV.4.2.3. Size Exclusion Chromatography (SEC) in Aqueous Media 

For SEC measurements in aqueous media containing 0.1 M NaNO3 and 0.005% 

(w/w) azide as an additive was performed in an AF2000 system from Postnova Analytics 

(Landsberg, Germany). The system was configured to work on SEC mode with an 

isocratic pump (PN1130), an autosampler (PN5300), a refractive index (RI, PN3150), 21 

angle-multi angle light scattering (MALS, PN3621), and an UV-Vis detectors (PN3211). 

A working flow rate of 0.7 mL/min at 30°C was employed with one TSKgel 

G3000PWXL column. Refractive index and Multi-Angle Light Scattering were used for 

detection and Mw determination, calibration of both RI and MALS detectors was 

achieved with well-defined Pullulan (50 kDa) and validation with polymethacrylic acid 

sodium salt (PMASS, 62.5 kDa) standards, purchased from Polymer Standards Service 

(PSS)/Mainz Germany. Dn/dc values for polyglutamates were determined from recovered 

mass, assuming 95 - 100% recovery from the chromatographic column and found to be 

within 0.185 - 0.195. The wavelength used was 268 nm for the polyglutamates containing 

FLUO, and 512 nm for OG-labeled polyglutamates. Finally, 30 μL of a polymer solution 

of 5 mg/mL was injected each time. 

IV.4.2.4. Fluorescence Spectroscopy 

Fluorescence experiments were performed using a FP-6500 spectrofluorometer 

(JASCO Corporation, Spain) at 25ºC with 1 cm quartz cells. Pyrene assay was performed 

as published elsewhere in order to determine the critical aggregation concentration (CAC) 

[28]. In brief, several solutions of the compounds were prepared to cover a wide range of 

concentrations (from 0.004 to 2 mg/mL) to which 3 µL of the pyrene stock solution (0.02 

mg/mL) in acetone was added. Then, all the solutions were placed in vials and were 

incubated in an oven at 37ºC for 2 h in order to evaporate the acetone. After storing the 

samples for 24 h, measurements were carried out. Each excitation spectra was recorded 

from 300 to 360 nm with an emission wavelength of 390 nm. The excitation and emission 

band slits are 5 and 2.5 nm, respectively. Finally, data were expressed by plotting the 

intensity ratio I338/I333 against the concentration to determine CAC value.  
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IV.4.2.5. Transmission Electron Microscopy (TEM) 

TEM images were recorded using a JOEL 2100 transmission electron microscope. 

Samples were applied directly onto carbon film on 200 mesh copper grids. Excess of the 

samples was carefully removed by capillarity, and the grids were immediately stained 

with one drop of 0.1% phosphotungstic acid for 30 s. Excess stain was removed by 

capillary action.  

IV.4.2.6. Dynamic Light Scattering (DLS) 

DLS measurements were performed using a Malvern Zetasizer NanoZS 

instrument (Malvern Instruments Ltd., Worcestershire, UK), equipped with a 532 nm 

laser at a fixed scattering angle of 173°. Solutions were sonicated for 10 min, allowed to 

age for the required time, filtered through a 0.45 μm cellulose membrane filter and 

measured. The samples were dissolved under different conditions (MilliQ water, PBS, 

PB 10 mM) and different concentrations (from 0.02 to 2 mg/mL). Size distribution was 

measured (radius, nm) per triplicate with n > 3 measurements.  

Z-potential measurements were performed at 20ºC using a Malvern Zetasizer 

NanoZS instrument, equipped with a 532 nm laser using disposable folded capillary cells, 

provided by Malvern Instruments Ltd. (Worcestershire, UK). Polymer solutions were 

prepared in 1 mM KCl in MilliQ water. The solutions were filtered through a 0.45 µm 

cellulose membrane filter. Z-potential was measured for each simple per triplicate with  

n >3 measurements.  

IV.4.2.7. High-Performance Liquid Chromatography (HPLC) 

Analytical determination of free drug was performed on a Waters HPLC system 

provided with 2 x 515 binary pumps, autosampler 717 Plus, FLD 2475 and PDA 2996 

(Waters Corporation, S.A, Spain). The measurements were performed using an RP C-18 

Lichrospher analytical column (125 x 4.0 mm) (Scharlab S.L., Barcelona, Spain), with a 

flow rate of 1 mL/min, the volume of injection was 20 µL and using a mobile phase of 

H2O (1% orthophosphoric acid)/ACN (60/40). Detection of FLUO absorbance was 

measured at λ = 239 nm with a retention time between 3.5 - 4.5 min. The calibration curve 

was performed using commercial FLUO, showing a linear response within the 
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concentration range employed (0.001 - 0.1 mg/mL). Chromatograms were treated with 

Empower 2.0 software (Waters Corporation, S.A, Spain). 

IV.4.2.7.1. Recovery of FLUO in a Polymeric Matrix: Liquid-liquid Extraction 

Recovery studies were performed to understand the behavior of the drug in the 

presence of the PGA, in order to evaluate the adequate method of extraction to quantify 

the free FLUO. In the study, four calibration curves were used using the extraction 

treatment: FLUO without treatment (control), FLUO with extraction treatment, FLUO 

with PGA treated, and FLUO and the PGA-FLUO conjugate treated. Liquid-liquid 

extraction was the treatment used to determine the recovery of FLUO content in the 

polymeric matrix. 

PGA-FLUO conjugate was dissolved in PBS/ACN (60:40) solution and extracted 

with 5 mL of isopropanol (IPA)-dichloromethane (DCM) (5:95) solution by mechanical 

stirring with the vortex (3 x 30 s). The upper aqueous layer was carefully removed, and 

the solvent was evaporated under reduced pressure using the speedvac (1:30 h, 80ºC, 0.01 

vacuum). The residue was resuspended in 500 µL of ACN, and the suspension was 

filtered (0.45 µm) into HPLC vials for analysis. Samples were measured per triplicate. 

 Determination of Free FLUO in the Conjugates 

Liquid-liquid extraction was used to determine free drug content; the 

concentration of PGA-FLUO conjugate used was 1 mg/mL. 

 Drug Release Kinetics 

Drug release kinetics of PGA-FLUO conjugates was performed at two different 

pHs (5.5 and 7.4) and also in the presence of cathepsin B. A stock solution was prepared 

in the PBS buffers (2 mg/mL), and in the case of cathepsin B the solution was a mixture 

of 700 µL acetate buffer 20 mM pH=5, 100 µL EDTA 2 mM, 100 µL DTT 5 mM and 

100 µL cathepsin B. The stock was divided into aliquots (50 µL) and were incubated at 

37ºC at different time points (from 0 to 72 h). After the incubation, 10 µL of PBS buffers 

and 40 µL of ACN were added to each sample, in order to have a PBS/ACN (60:40) 

solution. Then, we followed the same methodology for the recovery of FLUO, using the 

liquid-liquid extraction. Finally, the residue was resuspended in 500 µL of ACN, and the 

suspension was filtered (0.45 µm) into HPLC vials for analysis. Samples were measured 

repeatedly (n= 3). 
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IV.4.2.7.2. Extraction and Quantification of FLUO in the Skin 

The permeation of PGA-FLUO conjugate (100 µL of 10 mg/mL solution in water 

and in the HA-CP (1% w/v)) in the skin was evaluated over 24 h in Franz diffusion cells. 

Whole skin was then washed twice with 0.1% PBS-BSA (PBS supplemented with bovine 

serum albumin (BSA)), cut into small pieces and added to 4 mL of DMSO for FLUO 

extraction for 24 h with stirring. Skin samples were then removed and DMSO evaporated 

under reduced pressure using a speedvac (3 h, 80ºC, 0.01 vacuum). Next, the residue was 

resuspended in 500 µL of ACN and sonicated (15 min). Finally, the suspension was 

filtered (0.45 µm) into HPLC vials for analysis. Samples were measured repeatedly (n= 

3).  

IV.4.2.8. Circular Dichroism (CD)  

CD spectroscopy was performed with a J-815 CD spectrometer (JASCO 

Corporation, Spain) using a Peltier thermostated cell holder (PTC-423, JASCO 

Corporation, Spain) with a recirculating cooler (JULABO F250, JASCO Corporation, 

Spain). A nitrogen flow (~2.7 L∙min-1) was led through the spectrometer and controlled 

with a nitrogen flow monitor (Afriso Euro-Index, Germany). The samples were dissolved 

under different conditions (MilliQ water or 10 mM PB) at different concentrations (from 

0.1 to 0.6 mg/mL). Samples were measured repeatedly (n=3) in a quartz cuvette with d= 

0.1 cm.  

IV.4.3. Synthetic Protocols 

IV.4.3.1 Synthesis of Poly-L-glutamate Fluocinolone Acetonide Conjugates 

We aimed to conjugate around 8% molar of FLUO relative to glutamate residues 

as a general synthetic procedure. As an example, to describe the synthesis, we used 200 

mg of PGA. 

PGA100-OH (200 mg, 1.55 mmol) in DMF (5 mL) was added to a two necked flask 

equipped with a stir bar under N2 flow and heated until dissolved. FLUO dissolved in 1 

mL of DMF was added (140.27 mg, 0.3 mmol, 0.2 eq. to glutamic acid units (GAU)) to 

this solution, and the mixture was allowed to stir for ten min. The reaction mixture was 

then cooled in an ice bath and, finally, 1 mL of DMF with DMAP (1.9 mg, 0.0155 mmol, 

0.01 eq. to GAU) and 4 mL DMF with EDAC (89.22 mg, 0.465 mmol, 0.3 eq. to GAU) 
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were added. The mixture was stirred for 72 h under N2 flow at room temperature (r.t.). 

Thin-layer chromatography (MeOH) confirmed the consumption of FLUO. The solution 

was purified by size exclusion chromatography employing either Sephadex® LH-20 

(DMF) and after evaporating the DMF (under vacuum conditions) the residue was 

dissolved with 0.5 M NaHCO3 and repurified using Sephadex® G-25 (MilliQ water). 

Finally, the resulting aqueous suspension was freeze-dried and the white powder 

characterized (Yield = 60%). 

1H-NMR (300 MHz, D2O) δ 7.42 (s, 1H), 6.38 (s, 2H), 5.58 (d, J = 52.2 Hz, 1H), 5.26 – 

5.07 (m, 1H), 5.01 (s, 1H), 4.33 (d, J = 40.9 Hz, 10H), 3.68 (d, J = 13.9 Hz, 1H), 2.89 (td, 

J = 70.7, 29.2 Hz, 4H), 2.26 (t, J = 21.5 Hz, 16H), 2.05 – 1.81 (m, 15H), 1.63 (s, 1H), 

1.46 (d, J = 23.3 Hz, 3H), 1.30 – 1.09 (m, 2H), 0.81 (d, J = 24.5 Hz, 2H). 

IV.4.3.2 Oregon Green Labeling of PGA-FLUO Conjugates  

70 mg of PGA-FLUO conjugate (0.4183 mmol GAU, 1 eq.) was dissolved in 12 

mL of dry DMF under N2 flow in a round two necked bottom flask fitted with a stirrer 

bar. Then, 2.745 mg of DMTMM.BF4 (8.366 x 10-3 mmol, 0.02 eq. to GAU) was added 

to the solution and incubated for 10 min at r.t. Finally, 0.01 eq. of the amino dye OG was 

added. The pH was adjusted to 8 by adding ~100 µL of DIEA. The mixture was left 

stirring for 48 h at r.t. and protected from light. The solution was purified by size exclusion 

chromatography employing either Sephadex® LH-20 (DMF) and then the DMF was 

evaporated under vacuum conditions, and then the residue was dissolved with 0.5 M 

NaHCO3 and repurified using Sephadex® G-25 (MilliQ water). Finally, the resulting 

aqueous suspension was freeze-dried, and the powder characterized. (Yield = 40%). 

The percentage of dye loading in the conjugate was determined by UV-Vis 

spectroscopy. A calibration curve of free dye was performed under the same conditions 

(MilliQ water). To obtain a calibration curve, the free dye was diluted to give a 

concentration range of 0.000025 - 0.000250 mg/mL. The total dye loading of the 

conjugates was determined by measuring the absorbance of the samples at 495 nm in 

MilliQ water. 
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IV.4.4. Biological Evaluation of Polymer-Drug Conjugates 

IV.4.4.1. In Vitro Evaluation 

IV.4.4.1.1. Cell Viability 

To perform the cytotoxicity studies in vitro two cell lines were used: Human 

immortalized non-tumorigenic keratinocyte cell line (HaCaT) was supplied by CLS Cell 

Lines Service (Eppelheim, Germany) and human fibroblasts were supplied by Hospital 

La Fe (Valencia, Spain). The culture media used was high glucose DMEM Glutamax 

(Fisher, Spain) for HaCaT cells and Dulbecco's Modified Eagle's Medium-high glucose 

(Sigma-Aldrich Chemical Co., Spain) for human fibroblasts, both supplemented with 2% 

penicillin/streptomycin and 50 mL of fetal bovine serum (FBS) in a humidified incubator 

(Hucoa-Erlöss S.A., Spain) 5% CO2 and 37°C. 50 μL of cells were seeded in 96-well 

plates at a concentration of 4,000 cells/well in the case of HaCaT cells and 2,000 

cells/well for human fibroblasts. After 24 h, 50 μL of each treatment were added reaching 

a final volume of 100 μL in the well. All the treatments were filtered before adding to the 

well (pore size 0.22 μm). Cells were incubated with samples or controls for 72 h and then 

was performed the MTS assay. For that, 20 μL of the solution of Phenazine Methosulfate 

Minimum 90% (PMS) and the salt of 3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethylphenyl)-2-(4-sulfophenyl)-2H tetrazolium (MTS) were added, with a 

dilution 1:20, respectively. After 3 h of incubation, the absorbance was read at 490 nm 

using a Victor2Wallac™ plate reader (Perkin Elmer, Spain). The absorbance values were 

represented as the percentage of cell viability taken as 100% cell viability of untreated 

control cells. The concentrations of linear and star PGA were in a range from 0.02 to 0.5 

mg/mL of polymer, and the concentrations of PGA, FLUO, and PGA-FLUO conjugate 

from 0.0057 to 0.0987 mg/mL FLUO eq. 

IV.4.4.1.2. Cellular Uptake by Flow Cytometry 

Flow cytometry (cell uptake and binding) together with live cell confocal 

microscopy analysis were used to study cellular trafficking of the OG-labeled polymers 

in HaCaT cells. HaCaT cells were seeded in 6-well plates at a density of ~120,000 

cells/cm2 (1 mL cell suspension per well) and allowed to adhere for 24 h. In binding 

experiments conducted at 4ºC, cells were pre-incubated at this temperature for 30 min 

prior to start the experiment. For both experiments, 4ºC and 37ºC, the cathepsin B 
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inhibitor CA-074 (0.4 µL from a solution of 5 µM to reach a final concentration of 2 µM) 

was added 30 min before the addition of PGA-FLUO-OG. Then, 15 µL of OG-labeled 

polymer (were added at different time points from 0 to 27 h) while cells were incubated 

either at 37ºC or 4ºC for each experiment. Finally, cells were placed on ice to inhibit 

energy dependent mechanism and washed twice with cold 0.1% PBS-BSA. Then, 400 µL 

of trypsin was added to detach the cells and 600 µL of culture media was added, and the 

cell pellet was placed in flow cytometer tubes. The fluorescence was then analyzed using 

a fluorescence-activated cell sorting (FACS) caliber cytometer (Becton Dickinson, 

California, USA) equipped with an argon laser (488 nm) and emission filter for 550 nm. 

Data collection involved 10,000 counts per sample, and were analyzed using 

CELLQuestTM version 3.3 software. Data are expressed as a percentage of positive cells. 

Cells incubated without the polymer were used to detect background fluorescence. 

IV.4.4.1.3. Uptake Studies by Confocal Microscopy  

HaCaT cells were seeded in glass in 6-well plates at a density of ~120,000 

cells/cm2 (1 mL cell suspension per well) and allowed to adhere for 24 h at 37ºC. First, 

cathepsin B inhibitor CA-074 (0.4 µL from a solution of 5 µM to reach a final 

concentration of 2 µM) was added 30 min before the addition of the conjugate PGA-

FLUO-OG. Then, 15 µL of OG-labeled polymer was added at different time points from 

0 to 72 h while cells were incubated at 37ºC. 30 min before washing the cells with PBS-

BSA 0.1%, the nuclear marker Hoechst (1 µL from a solution of 5 mM) and the lysosomal 

marker Lysotracker Red (0.75 µL from a solution of 100 mM) were added and incubated 

20 min in order to identify possible co-localizations and therefore establish an endocytic 

pathway. Finally, cells were washed with 0.1% PBS-BSA, and the glass was removed 

and placed on the microscope chamber with 1 mL of fresh media containing 2 µM of CA-

074 inhibitor. Samples were analyzed under the microscope. Images were captured with 

an inverted DM IRE2 microscope equipped with a λ-blue 60 x oil immersion objective 

and handled with a TCS SP2 system, equipped with an Acoustic Optical Beam Splitter 

(AOBS). Excitations were performed with an argon laser ((OG 496 nm), and HeNe laser 

(Lysotracker red 594 nm), and blue diode (Hoechst 405 nm). Images were captured at an 

8-bit greyscale and processed with LCS software (version 2.5.1347a, Leica Germany) 

containing multicolor, macro and 3D components. Control cells that follow the same 

incubation time were also analyzed to establish the autofluorescence, as well as cells 

treated only with Hoechst or Lysotracker red. 
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IV.4.4.1.4. Anti-Inflammatory Activity 

To perform the activity studies in vitro, we used macrophages (Raw264.7 cell 

line), which was supplied by CLS Cell Lines Service (Eppelheim, Germany). The culture 

media used was high glucose DMEM (Fisher, Spain), supplemented with 2% 

penicillin/streptomycin and 50 mL of FBS in a humidified incubator (Hucoa-Erlöss S.A., 

Spain) 5% CO2 and 37°C. 

50 μL of cells were seeded in 96-well plates at a concentration of 6,000 cells/well. 

After 24 h, 50 μL of each individual treatment (LPS from E. coli (5 ng/mL), FLUO (0.49 

ng/mL), PGA-FLUO conjugate (0.49 ng/mL FLUO eq.), and PGA) were added, reaching 

a final volume of 100 μL in the well to evaluate cell viability by MTS assay. At the same 

time, the combination of LPS with FLUO, PGA-FLUO conjugate, and PGA was 

evaluated to assess the anti-inflammatory activity by LUMINEX assay, adding 25 µL of 

each treatment. All the treatments were filtered before adding to the well (pore size 0.22 

μm). Cells were incubated with samples or controls for 72 h and then performed the MTS 

assay. For the subsequent MTS assay, 20 μL of the solution of phenazine methosulfate 

minimum 90% (PMS, Sigma, Spain) and 3-(4,5-dimethylthiazol-2-yl)-5-(3-

carboxymethylphenyl)-2-(4-sulfophenyl)-2H tetrazolium salt (MTS, Promega, Spain) 

were added, using a dilution 1:20. After 2 h of incubation, the absorbance was read at 490 

nm using Victor2Wallac™ plate reader (Perkin Elmer, Spain).  

Next, for the quantification of the pro-inflammatory cytokines released to the 

culture media by LUMINEX assay, the 96-well plates were centrifuged 5 min, 22°C, 400 

rcf, and 90 μL of supernatant were collected and frozen until use. Pro-inflammatory 

cytokines levels were measured by LUMINEX multiplex immunoassay (Affymetrix m 

Th1/2/9/17/22/Treg 17plex, eBioscience, Spain). This study was performed using 

LUMINEX 200 equipment (LUMINEX Corporation, USA) and results expressed as a 

percentage of inhibition of each cytokine. 

IV.4.4.1.5. Cathepsin B Activity 

The enzymatic activity of cathepsin B was measured by means of a fluorescence 

reader CLARIOstar®, software version 5.21 R2 from BMH LABTECH (Offenburg, 

Germany). The activity was analyzed using specific fluorescent substrate for this type of 

enzyme, N-CBZ-l-arginyl-l-arginine 7-amido-4-methyl-coumarin (Z-Arg-Arg-AMC) 

0.05 mM. The buffer used was 80 µL of acetate buffer 20 mM pH=5, 10 µL of EDTA 2 
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mM and 10 µL of DTT 5 mM (final volume of 100 µL). Leupeptin (50 µM) was used as 

a negative control. Buffer, buffer with the substrate, and negative control were used as 

controls. Cathepsin B solution (6.25 units) was a mixture of 700 µL acetate buffer 20 mM 

pH=5, 100 µL EDTA 2 mM, 100 µL DTT 5 mM and 100 µL cathepsin B. 10 µL of this 

stock were added to the samples with or without the HA-CP vehicle (1% w/v). The 

reaction mixture (100 μL) was placed in a 96-well fluorescence plate and incubated at 

37°C. The fluorescence was read at time 0 and at 25 min, using excitation and emission 

wavelengths of 360 nm and 460 nm, respectively. Samples were measured repeatedly 

(n=3).  

IV.4.4.2. Ex Vivo Evaluation 

IV.4.4.2.1. Permeation Studies by Franz Diffusion Cells 

Breast skin samples were obtained from healthy women undergoing plastic 

surgery after written informed consent (kindly donated from Hospital La Fe, Valencia, 

Spain). Immediately after excision, the subcutaneous fatty tissue was removed using a 

scalpel. The skin was cut into 4 cm2 pieces, wrapped in aluminum foil and stored at -20ºC 

until use. Permeation study was developed using Franz diffusion cells (Logan Instruments 

Corp., USA).  

Skin samples were fixed between the donor and the receptor chamber, so that 

stratum corneum was placed upwards. The receptor chamber was filled with 8 mL of 0.01 

M PBS pH 7.4, and mixed with a magnetic stirring bar, while the temperature was kept 

at 37ºC. Treatments with 100 µL of 10 mg/mL of linear or star PGA labeled with OG 

applied in water, and PGA-FLUO-OG applied in water or in the HA-CP vehicle labeled 

with Cy5.5 (1% w/v), were applied on the upper area of the skin. Aliquots from the 

receptor chamber (2 mL) were taken at 8 and 24 h, and the liquid was immediately refilled 

with fresh solution. After the permeation study, skin samples were washed twice with 

0.1% PBS-BSA and kept in 4% paraformaldehyde (PFA) for 24 h at r.t. Then, samples 

were washed with 30% sucrose in PBS solution for 24 h at 4ºC. After that, skin samples 

were washed twice with PBS and preserved in a cryopreservation solution (40% 0.1 M 

PB, 30% ethylene glycol, and 30% glycerol) at 4ºC until use. Finally, the samples were 

placed in the optimum cutting temperature (OCT) inclusion medium, and slides of 5 µm 
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were generated via cryostat (version CM1850 UV, Leica, Germany) and samples were 

analyzed by confocal microscopy.  

Images were captured with an inverted DM IRE2 microscope equipped with a λ-

blue 40x oil immersion objective and handled with a TCS SP2 system, equipped with an 

Acoustic Optical Beam Splitter (AOBS). Excitation was performed with an argon laser 

(OG, 496 nm), a blue diode (DAPI, 405 nm), and red diode (Cy5.5, 675 nm). Images were 

captured at an 8-bit greyscale and processed with LCS software (version 2.5.1347a, Leica 

Germany) containing multicolor, macro and 3D components. Control tissue that followed 

the same incubation time with MilliQ water was also analyzed to establish the 

autofluorescence. OG intensity was quantified five times per sample using Image J 

software and expressed as pixels versus the thickness of the skin (µm). Control intensity 

was subtracted in each case. 

IV.4.4.2.2. Tissue Viability and Evaluation of the Anti-Inflammatory Activity of 

PGA-FLUO Conjugates in an Inflammatory Ex Vivo Human Skin Model 

Breast skin samples were obtained from healthy women undergoing plastic 

surgery after written informed consent (kindly donated from Hospital La Fe, Valencia, 

Spain). The skin was cut to approximately 1 cm2 and placed in 6-well plates so that the 

epidermis was exposed to the air and the dermal side was in contact with DMEM medium 

supplemented with 50 mL fetal bovine serum, 5.5 mL penicillin/streptomycin, and 50 µL 

amphotericin B, and the skin was incubated at 37ºC under 5% CO2. The inflammatory 

model was induced by the addition of a combination of a constant concentration of EGF 

(2.5 ng/mL) and 15 µg/mL of LPS from E.coli (InvivoGen, USA) to the culture media, 

and further incubation for 24 h at 37ºC under 5% CO2. The exhaustive characterization of 

the model was explained in Chapter II. 

After inflammatory insult via combined treatment with bacterial LPS and EGF for 

24 h, 3 µL of a solution at 10 mg/mL of PGA, FLUO, PGA-FLUO conjugate applied and 

in the HA-CP vehicle (1% w/v) and HA-CP (1% w/v) were applied topically. After 24 h, 

skin pieces were washed twice with PBS and were introduced in 4 mL of MTT solution 

(2 mg/mL) at 37ºC. MTT assay is a colorimetric assay for assessing cell metabolic 

activity. After 4 h of incubation, skin samples were washed twice with PBS and 

introduced in 4 mL of DMSO, in order to extract the formazan from the skin. After 15 h 
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of extraction, the absorbance was read at 490 nm using Victor2Wallac™ plate reader 

(Perkin Elmer, Spain).  

 

In addition, culture medium was collected under standardized conditions after 24 

h of incubation with the treatments and kept at -80ºC until use. IL-6 concentrations in the 

culture medium were measured by ELISA assay (Invitrogen, Spain). Cytokine 

concentrations were determined according to standard solutions. 

IV.4.4.2.3. Development of a Skin Equivalents Construction Model and Cell 

Viability Assays 

Human skin equivalents were prepared from primary human keratinocytes and 

fibroblasts from juvenile foreskin following circumcision from three different donors 

(EA: 1/081/13, written consent was obtained) as previously described [52, 59]. Negative 

control (solvent control), untreated control, and positive control (sodium dodecyl sulfate 

(SDS) 1%) were studied to ensure the development of the model. PGA, FLUO, PGA-

FLUO conjugate applied in water or in the HA-CP vehicle (1% w/v) and HA-CP vehicle 

(1% w/v) at 5 mg/mL (35 μg/cm2) were applied topically at days 11 and 13. At day 14, 

tissue viability was evaluated by MTT assay. Human skin equivalents were introduced in 

1.8 mL of MTT solution (0.5 mg/mL), and after 4 h of incubation at 37ºC, samples from 

the human skin equivalents were cut and introduced in 1.5 mL of acidic isopropanol 

shaking 3 h in the dark, in order to extract the formazan from the skin. After 3 h of 

extraction, the absorbance was read at 450 nm using Victor2Wallac™ plate reader (Perkin 

Elmer, Spain). 

IV.4.4.2.4. Development of an Inflammatory Skin Equivalents Construction Model 

and Anti-Inflammatory Activity of PGA-FLUO conjugates 

Human skin equivalents were prepared from primary human keratinocytes and 

fibroblasts as previously described [52, 59]. To develop an inflammatory phenotype in 

the skin equivalents emulating characteristics of psoriatic skin in vitro, such as 

hyperproliferation, 20 ng/mL of recombinant TNF-α (eBioscience, Hatfield, UK) were 

added to the culture media on day 10 and 12 to induce skin inflammation. Negative 

control and untreated control were studied to ensure the development of the model. PGA, 

FLUO, PGA-FLUO conjugate applied in water or in the HA-CP vehicle (1% w/v) and 

HA-CP vehicle (1% w/v) at 5 mg/mL (35 μg/cm2) were applied topically at days 11 and 
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13. At day 14, culture media was collected for quantification of IL-6 levels using an 

ELISA assay (Invitrogen, Spain). Cytokines concentrations were determined according 

to standard solutions. The absorbance was read at 450 nm using Victor2Wallac™ plate 

reader (Perkin Elmer, Spain). Cytokine concentrations were determined according to 

standard solutions. 

IV.4.4.3. In Vivo Evaluation 

IV.4.4.3.1. Ethical Considerations 

Animal experiments were performed in accordance with the European 

Communities Council Directive (86/609/ECC) guidelines and by the Spanish Royal 

Decree 1201/2005. All the experimental procedures were approved by the Institutional 

Animal Care and Use Committee and accomplished by accredited and trained staff, 

meeting the animal care rules. All mice were maintained in a specific pathogen free 

facility, under temperature, humidity, and using a 12 h light-dark cycle. Food pellets and 

water were provided ad-libitum during the whole experiments in all cases, and general 

aspect, body weight, grooming conduct, and behavior were evaluated daily from the 

beginning of the experiment to ensure animal wellness.  

IV.4.4.3.2. Optimization of Optimal FLUO Concentration for Psoriatic Mice Model 

IV.4.4.3.2.1. Establishment of Psoriatic Model 

6-week-old male BALB/c mice used for all experimental procedures were 

purchased from Envigo Laboratories Inc. (Spain, EU). One day before the first IMQ 

application, approximately 2x3 cm of the back of the mice was shaved. Psoriasis-like 

symptoms were induced by the daily application of 62.5 mg of commercially available 

IMQ cream (5%) (Imunocare®; Industrial Farmacéutica Cantabria, S.A., Spain) on the 

back and the right ear for seven consecutive days, translating in a daily dose of 3.125 mg 

of the active compound. This dose was empirically determined to cause the most optimal 

and reproducible skin inflammation in mice [60-62]. 

IV.4.4.3.2.1. Safety Evaluation of Treatments 

Seven days after the induction of the disease, mice were split into representative 

groups. Healthy and untreated mice were used as controls (negative and positive control, 
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respectively). Conjugate-based treatments at different FLUO equivalents (0.01, 0.15, and 

0.3 wt% FLUO eq.) were dissolved in the HA-CP vehicle (1% w/v) and immediately 

applied topically in the back and the right ear during five consecutive days. HA-CP 

vehicle was applied as control, following the same methodology. Treatments safety was 

evaluated by tracking body weight every two days compared to the positive control and 

healthy animals. After five days of treatment, mice were sacrificed using a CO2 

atmosphere, and major organs, skin, ears, and blood were extracted for further analysis.  

IV.4.4.3.2.2. Scoring Severity of Skin Inflammation: PASI score  

The anti-psoriatic potential of the formulations was evaluated using an objective 

scoring system based on the clinical Psoriasis Area and Severity Index (PASI). Erythema, 

scaling, and thickening (induration of the skin) were assigned independently on a scale 

from 0 to 4: 0, none; 1, slight; 2, moderate; 3, marked; 4, very marked.  

IV.4.4.3.2.3. Spleen Weight 

After five days of treatments, mice were sacrificed using a CO2 atmosphere, and 

spleen weight was measured, comparing treatments with positive control and healthy 

animals. 

IV.4.4.3.2.4. Ear Thickness 

Ear thickness was measured using a caliper every two days during the treatments 

in comparison with positive control and healthy animals. 

IV.4.4.3.2.5. Histology  

H&E staining was performed in both ears and the back of the mice. After the 

sacrifice, tissues were washed with fresh PBS, carefully dried, weighed, and fixed in 4% 

of PFA for 24 h. Then, PFA was eliminated by successive washing with PBS, and 

common dehydration and paraffin inclusion procedures were performed, leading to 

blocks that were sliced into 5 μm sections. The staining was performed as required (Dako 

Autostainer 48, US), and the slides were assembled with Eukitt. Finally, the slides were 

observed under the microscope, scanned with a Panoramic 250 Flash III slide scanner and 

processed with CaseViewer software (both from (3DHISTECH Ltd, Budapest, Hungary).  
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IV.4.4.3.2.6. Pro-Inflammatory Interleukin Levels in Serum 

The pro-inflammatory interleukin levels were measured in serum. Fresh serum 

was isolated from the blood through centrifugation (4000 rpm, 10 min, 4ºC) and was 

stored at -80oC until use. The quantification of IL-23, INF-γ, and IL-1b levels were 

performed by LUMINEX assay, using a ProcartaPlexTM Multiplex Immunoassay 

according to the manufacturer’s instructions (Invitrogen, Spain). 

IV.4.4.3.3. Evaluation of Anti-Inflammatory Activity of PGA-FLUO Conjugates in 

Psoriatic Mice Model 

IV.4.4.3.3.1. Establishment of Psoriatic Model 

6-week-old male BALB/c mice used for all experimental procedures were 

purchased from Envigo Laboratories Inc. (Spain, EU). One day before the first IMQ 

application, approximately 2x3 cm of the back of the mice was shaved. Psoriasis-like 

symptoms were induced by the daily application of 62.5 mg of commercially available 

IMQ cream (5%) (Imunocare®; Industrial Farmacéutica Cantabria, S.A., Spain) on the 

back and the right ear for seven consecutive days, translating in a daily dose of 3.125 mg 

of the active compound. This dose was empirically determined to cause the most optimal 

and reproducible skin inflammation in mice [60, 62]. 

IV.4.4.3.3.2. Safety Evaluation of Treatments 

Seven days after the induction of the disease, mice were split into representative 

groups. Healthy and untreated mice were used as controls (negative and positive control, 

respectively). Previous studies were conducted to optimize the optimal concentration of 

FLUO, demonstrating that the concentration of 0.15 wt% FLUO eq. had the maximum 

therapeutic potential. Therefore, conjugate-based treatments with 0.15% FLUO eq. were 

applied in the HA-CP vehicle (1% w/v) and in a commercial base cream used for current 

corticosteroids (Cold cream®, Farmacia BOIX, Spain). Free FLUO was dissolved with 

0.5 mL of Hydrolite® (Guinama S.L., Spain) and incorporated in the base cream. HA-CP 

vehicle (1% w/v) and the base cream were applied as controls, following the same 

methodology. All the treatments were immediately applied topically in the back and the 

right ear for five consecutive days. Treatments safety was evaluated by tracking body 

weight every two days compared to the positive control and healthy animals. After five 



247 
 

days of treatment, mice were sacrificed using a CO2 atmosphere and major organs, skin, 

ears, and blood were extracted for further analysis.  

IV.4.4.3.3.3. Scoring Severity of Skin Inflammation: PASI score 

The anti-psoriatic potential of the formulations was evaluated using an objective 

scoring system based on the clinical Psoriasis Area and Severity Index (PASI). Erythema, 

scaling, and thickening (induration of the skin) were assigned independently on a scale 

from 0 to 4: 0, none; 1, slight; 2, moderate; 3, marked; 4, very marked.  

IV.4.4.3.3.4. Spleen Weight 

After five days of treatment, mice were sacrificed using a CO2 atmosphere, and 

spleen weight was measured comparing the treatments with positive control and healthy 

animals. 

IV.4.4.3.3.5. Ear Thickness 

Ear thickness was measured using a caliper every two days during the treatments 

in comparison with positive control and healthy animals. 

IV.4.4.3.3.6. Histology 

H&E staining was performed in both ears and the back of the mice. After the 

sacrifice, tissues were washed with fresh PBS, carefully dried, weighed, and fixed in 4% 

of PFA for 24 h. Then, PFA was eliminated by successive washing with PBS, and 

common dehydration and paraffin inclusion procedure were performed, leading to blocks 

that were sliced into 10 μm sections. The staining was performed as required (Dako 

Autostainer 48, US), and the slides were assembled with Eukitt. Finally, the slides were 

observed under the microscope, scanned with a Panoramic 250 Flash III slide scanner and 

processed with CaseViewer software (both from (3DHISTECH Ltd, Budapest, Hungary).  

IV.4.4.3.3.7. Pro-Inflammatory Interleukin Levels in Serum and Tissue 

The pro-inflammatory interleukin levels were measured both in serum and in the 

tissue from the back of the mice. Fresh serum was isolated from the blood through 

centrifugation (4000 rpm, 10 min, 4ºC) and stored at -80oC until use. To performed 
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protein extraction from frozen tissue, the skin was mixed with PBS (pH 7.4) with a 

protease and phosphatase inhibitor cocktail and then treated in an ice bath by Ultra Turrax 

Scatter at 10000 ref/min for 20 min. Immediately after the incubation, the tube was 

centrifuged at 4000 rpm for 20 min at 4°C and supernatants were collected and stored at 

-80oC until use. For LUMINEX assays, IL-23 and INF-γ protein expression in skin lysates 

and serum were quantified with ProcartaPlexTM Multiplex Immunoassay according to the 

manufacturer’s instructions (Invitrogen, Spain). 
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V.1. Antecedents and Background  

The wound healing process aims to re-establish the normal architecture and 

biological activity of damaged tissue [1]. Due to the high incidence rate and the 

exponential increase in the aged population, wound healing has a substantial 

socioeconomic impact worldwide [2]. During the development of this chapter, we focus 

on the treatment of skin wounds and ischemia-reperfusion injury in the heart with 

polymer-drug conjugates as examples of tissue healing therapeutic approaches. 

V.1.1. Skin Wound Healing 

As we have shown throughout this thesis, PGA-drug conjugates can penetrate and 

permeate through the different layers of the skin, even in cases where the skin barrier is 

modified or altered (such as psoriasis, Chapter IV); therefore, they may be used in the 

enhancement of skin regeneration and repair, thereby contributing towards wound 

healing. Wound healing represents a common medical challenge, and exists a rising 

incidence of wound healing-related problems associated with metabolic syndrome (e.g., 

obesity and type II diabetes patients), and aging [3]. The main physiological events in 

wound repair can be classified into three stages that overlap the repair process: the 

inflammatory stage, the proliferative stage, and the remodeling stage [4, 5] (Figure V. 1). 

Wound healing involves the complex interaction of several biological and 

molecular processes associated with tissue regeneration. Tissue damage triggers the onset 

of the inflammatory stage of wound repair; at this stage, components of the coagulation 

cascade, inflammatory pathways, and immune system become activated to minimize 

blood/fluid losses and infection. Meanwhile, a platelet plug composed of platelets, 

fibronectin, vitronectin, and thrombospondins forms at the injury site to create a scaffold-

like structure into which various cells types, such as leukocytes, neutrophils, 

keratinocytes, fibroblasts, and endothelial cells, infiltrate [4]. Two to three days after the 

onset of tissue damage, monocytes migrate from the blood vessels to the lesion area and 

differentiate into macrophages. These cells act as antigen-presenting cells and collaborate 

with the neutrophils in the phagocytosis process to eliminate foreign materials and 

damaged cells, and also participate in the synthesis and release of pro-inflammatory 

cytokines [6, 7]. 
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 The proliferative stage occurs between two to ten days after tissue damage and 

reduces the injured tissue area by creating a viable epithelial barrier to the epithelialization 

process by stimulated keratinocytes. The closure of the wound and restoration of the 

vascular system (via angiogenesis) also occurs during this stage, with macrophage-

stimulated differentiation of fibroblasts into myofibroblasts [8] facilitating wound 

closure.  

The remodeling stage begins after two to three weeks of tissue damage and can 

last for over a year. During this stage, endothelial cells, macrophages, and myofibroblasts 

apoptosis halts the wound healing processes [9], thereby creating an avascular and 

acellular mature wound [10]. After six to twelve months, matrix metalloproteinases 

excreted by different cells promote the replacement of the collagen III component of the 

acellular matrix synthesized in the proliferative stage with the more robust collagen I [11]. 

Additionally, a marked decrease of angiogenesis, blood flow, and metabolic activity in 

the wound is also observed. 

 

Figure V. 1: Stages of wound repair: (a) inflammatory stage, (b) proliferative stage, and (c) 

remodeling stage. Adapted from [9]. 

Traditional therapies for wound healing treatment have included naturally 

occurring products such as plants or animal-derived products (such as honey) due to their 

anti-inflammatory, antimicrobial, and cell-stimulating properties [12]. However, more 

recently developed therapies (e.g., the use of skin substitutes, growth factors, or 
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dressings) have significantly improved wound treatment [13]. The avoidance of wound 

contamination represents the primary function of wound dressings [14]; however, they 

can also act as platforms to deliver bioactive molecules to the wound site and promote 

tissue regeneration. Incorporated bioactive drugs can enhance the wound healing process 

directly by promoting the removal of necrotic tissue or indirectly by avoiding/treating 

infections in the wound area and dampening inflammatory responses [3]. 

 Bioactive molecules that modulate inflammatory responses and promote skin 

wound healing include the family of omega-3 polyunsaturated fatty acids (PUFA) [15-

19]. Docosahexaenoic acid (DHA), a 22-carbon omega-3 fatty acid with six cis-double 

bonds, represents the most abundant and highly unsaturated PUFA in tissues (primarily 

in the brain and retina) [20, 21]. DHA is commonly obtained from fish oil, in particular 

from plasma, tissue, and cellular membranes [22]. 

 Dietary studies positively associated DHA with the prevention of numerous 

human diseases, including cancer [23-25], cardiovascular diseases [26-29], and 

Alzheimer’s disease [30, 31], amongst others [32]. In terms of wound repair, a range of 

studies have reported the beneficial role of DHA [16, 33]. Lu et al. revealed that 

endogenous DHA accelerated tissue repair by acting as a substrate for the synthesis of 

14S,21R-dihydroxy-DHA, a compound that enhances both reepithelization and wound 

area closure. Wound-resident activated macrophages promote the activity of 12-

lipoxygenase and p450, catalyzing the conversion of DHA into 14S,21R-dihydroxy-DHA 

[34]. In 2011, a study confirmed deficiency in 14S,21R-dihydroxy-DHA production in a 

diabetic wound healing mouse model, increasing the importance of the topical application 

of DHA to chronic skin wounds [33]. 

Importantly, DHA exhibits anti-inflammatory activity through various 

mechanisms of action and, therefore, could also represent a potential therapeutic for 

psoriasis [35-37] (to be further explored in our models, Chapter IV, in a near future). 

DHA can act as a substrate for the production of some anti-inflammatory molecules, such 

as the resolvins (metabolic byproducts of omega-3 fatty acids) [38-40]. DHA also 

modifies the expression of some pro-inflammatory cytokines and mediators, such as 

cyclooxygenase-II (COX-2) and TNF [22, 38, 41, 42]. Interestingly, recent studies have 

discovered the presence of a membrane receptor for DHA, G-protein-coupled receptor 

120 (GPR120), which inhibits TLR4 and TNF receptor 1 (TNFR1)-induced activation of 
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the IkB kinase (IKK) [43]. As these factors represent potential enhancers of metabolic 

inflammation [44], DHA may promote a general reduction in inflammatory activity.  

 Recent studies have also described an effect of DHA on endothelial cell function. 

De Caterina et al. employed cultured human endothelial cells activated by pro-

inflammatory cytokines to evaluate DHA-modulated endothelial activation. Interestingly, 

DHA treatment resulted in the reduced expression of vascular cell adhesion molecule 1 

(VCAM-1), intercellular adhesion molecule 1 (ICAM-1), E-selectin, and pro-

inflammatory cytokines such as IL-6 and IL-8 [45, 46]. DHA also modifies cell 

membrane features [47] and the organization and composition of the membrane 

microdomains [48-50], specifically in lipid rafts (areas with high concentrations of 

cholesterol and sphingolipids) [51]. 

 Of note, several factors, including oxygen, light, elevated temperatures, and 

irradiation can provoke lipid oxidation, structure destabilization, and reduced activity of 

PUFAs [52]. Lipid oxidation gives rise to various unstable products, creating a mixture 

of intermediate and secondary products that include free radicals and hydroperoxides. 

These products also can be oxidized into aldehydes and ketones, for example, which can 

produce several adverse effects [53]. Furthermore, PUFAs display some limitations 

regarding their incorporation into various formulations, as they can only be completely 

solubilized into formulations with at least one oil phase. Therefore, there exists a growing 

effort to improve stability and overcome the limitations associated with PUFAs through 

innovative delivery methods.  

 The use of nanoemulsions and liposomes represent the most commonly employed 

methods to include fatty acids such as PUFAs in topical treatments. As an example, 

Marinosomes® are liposomes composed of polyunsaturated fatty acids such as 

eicosapentaenoic acid (EPA) and DHA obtained from natural marine lipid extracts [54]. 

Jung et al. used a newly developed emulsification method, layer-by-layer (LbL) 

deposition, to encapsulate the omega-3 fatty acids present in fish oil. Excitingly, this study 

established improved skin permeability of LbL emulsions compared to free fatty acids by 

Franz diffusion cells using a method described by Sonavane et al. [55] with some 

modifications [56]. Yang et al. developed a nanoemulsion loaded with algae oil (rich in 

DHA) and coffee oil, to study the inhibitory effect on UVA-radiation induced skin 

damage in mice and melanoma cell growth. In vitro cytotoxicity assay of nanoemulsions 
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in melanoma cells revealed effective inhibition of cell growth with an IC50 value of 26.5 

µg/mL and cell cycle arrest at the G2/M phase. Moreover, in vivo results demonstrated 

that a nanoemulsion dose of 0.1% coffee oil-algae oil reduced several characteristics 

parameters after UVA-damaged skin, such as trans-epidermal water loss, skin erythema, 

melanin formation, and subcutaneous blood flow [57].  

However, topical application presents with certain limitations, including a 

requirement for aqueous and oily phases to incorporate fatty acids. To overcome these 

limitations, we proposed the application of polymer conjugation.  

In this project, we used a type of DHA composed of two chains containing 12 

double bonds, called didocosahexaenoic acid (diDHA), in order to achieve adequate 

bioresponsive linking chemistry with our carriers. Specifically, we assessed the potential 

for a PGA-conjugated form of diDHA using an ester linker (PGA-diDHA conjugates) 

that promotes stability, solubility in water and allows its incorporation in aqueous 

formulations, such as hydrogels. 

V.1.2. Heart Tissue Damage by Induced Ischemia-Reperfusion Injury 

Cardiovascular diseases (CVD) currently represent a significant cause of mortality 

across the world; an estimated 22 million people will die from CVD in 2030 [58]. 

Interestingly, the use of PUFAs as therapeutic agents to treat CVD has grown 

exponentially in recent years. Specifically, DHA protects the heart against myocardial 

ischemia-reperfusion (I/R)-induced injury [59], entailing both morbidity and loss of 

quality of life in patients [60]. Ischemia, or the lack of oxygen in the myocardial vascular 

territory, cause irreversible damage to the myocardium by inducing necrosis and 

apoptosis of cardiomyocytes [61]. However, subsequent reperfusion with oxygenated 

blood provokes tissue damage, inflammation, and oxidative stress in the area, leading to 

cardiomyocyte death. This process decreases contractile activity and induces alterations 

to the heart wall, thereby generating cardiac dysfunction [62, 63]. Preventing cell death 

during the reperfusion process represents a promising approach for the reduction of 

secondary effects following the implementation of treatment after an ischemic heart 

disease. Of note, recent studies have demonstrated that dietary supplementation with fish 

oil or direct intravenous DHA infusion can reduce arrhythmias in I/R animal models [64, 

65], myocardial infarct size [66-68], and cardiac dysfunction [69-71].  
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For this reason, after exploring skin wound healing application, in the second part 

of this chapter we also studied the ability of the PGA-diDHA conjugates to reduce and 

prevent damage caused by I/R during the cardiac ischemic process, through a 

collaboration with the laboratory of Dr. Pilar Sepúlveda (Hospital La Fe, Valencia, 

Spain). We aimed to enhance the already known properties of diDHA upon polymer 

conjugation by decreasing the damage associated with the I/R process. Mainly, by 

diminishing the effect of blood flow during the reperfusion process not only by a physical 

effect (adhesion of PGA-diDHA to the endothelium) but also by enhancing the anti-

inflammatory and healing properties of diDHA triggering its controlled and sustained 

release at the injury site. 

IV.2. Results and Discussion 

V.2.1. Synthesis and Characterization of Poly-L-Glutamate-Didocosahexaenoic 

Acid Conjugates  

We prepared a family of PGA-diDHA conjugates following well-established 

synthetic procedures [72]. We attached diDHA to the polypeptidic backbone employing 

an ester linker through an esterification reaction using DMTMM·BF4 [73] and DMAP as 

a catalyst (Scheme V. 1). We conjugated different diDHA loadings to PGA, creating a 

broad family of conjugates that exhibit different physico-chemical properties.  

 

Scheme V. 1: Synthetic procedures for PGA-diDHA conjugate synthesis. 

We started from a PGA of an average molecular weight of 41.3 kDa (273 units of 

glutamic acid) and proceed with the conjugation of diDHA achieving the desired family 

of PGA-diDHA conjugates with mol% loading ranging from 2 to 9 mol%, as determined 

via 1H-NMR (namely, PGA-diDHA2.2, PGA-diDHA6.4, and PGA-diDHA9.1 

conjugates). We optimized the synthetic methodology, which proved reproducible and 
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yielded the desired products with high purity as also revealed via 1H-NMR (60% yield). 

While we observed a broadening of the bands after diDHA conjugation to PGA, the 

characteristic peaks of the parent drug at 5.5 - 5 ppm were retained (Figure V. 1A). We 

calculated the backbone modification by 1H-NMR, comparing the integration for the 

alkenyl diDHA protons (5.5 - 5 ppm) to that of the PGA backbone (4.5 - 4 ppm). Indeed, 

we revealed the integrity of the diDHA signals throughout the conjugate, as evidenced by 

the prevalence of the associated peaks at 5.5 - 5 ppm, 3 - 2.5 ppm, and 1 - 0.5 ppm within 

the conjugate (Figure V. 1B).  

 

Figure V. 1: (A) 1H-NMR approach to diDHA loading quantification (mol%) by means of relative 

integration (alkenyl diDHA protons 5.5 - 5 ppm vs. -CH at PGA backbone 4.5 – 4 ppm) in the 

PGA-diDHA conjugate (5 mg/mL D2O). (B) diDHA signals were maintained after the 

conjugation to the polymeric backbone, ensuring the protection of the drug during the synthesis 

of the conjugate. 
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In order to achieve the different diDHA loading in the conjugates the same 

synthetic methodology was implemented demonstrating the robustness of the synthesis 

(Figure V. 2).  

 

Figure V. 2: 1H-NMR spectra in D2O of PGA-diDHA conjugates with different loading 

demonstrating conjugation efficiency and purity. 

 

Figure V. 3: UV-Vis spectra of OG labeled PGA-diDHA conjugates. (A) Calibration curve of 

OG at 495 nm. (B) UV-Vis spectra of the OG calibration curve. (C) UV-Vis spectra of PGA-

diDHA6.4-OG conjugate as representative example. 
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In the case of the conjugates labeled with Oregon Green (OG), we also calculated 

the backbone modification by 1H-NMR (integration of the PGA -CH at 4.5 - 4 ppm vs.  

aromatic OG protons from 6.7 to 8.1 ppm) yielding as result 1.9 mol% OG in all the 

conjugates. We further verified loading efficiency by assessing the UV-Vis absorbance 

at 495 nm compared to a standard curve of free OG, which provided a similar result (2 

mol% OG) (Figure V. 3). 

Table V. 1 summarizes the most relevant physico-chemical parameters of the 

synthesized PGA-diDHA conjugates. We further confirmed diDHA loading determined 

by 1H-NMR using the triglyceride assay, finding diDHA loadings of 1.6, 9.5, and 14.7 

diDHA/PGA for PGA-diDHA2.2, 6.4, and 9.1, respectively. The differences compared 

with the results by 1H-NMR could derive from the degradation of the alkene bonds by 

means of several factors, including peroxidation or hydrolysis. Of note, the size 

assessments of the conjugates by DLS measurements (in number) revealed that diDHA 

loading plays an important role: higher diDHA loading generated conjugates with smaller 

sizes. The measurements by DLS in terms of intensity reflects the different aggregation 

behavior for the synthesized conjugates revealing much larger aggregates for the 

intermediate diDHA loading. Deeper physico-chemical studies on conjugate 

conformation by SAXS and/or SANS techniques are required to fully understand this 

behavior (for preliminary data in this direction see section V.2.3.). 

Table V. 1: Physico-chemical characterization of PGA-diDHA conjugates. a. Diameter by DLS 

in MilliQ water by number (2 mg/mL) b. Diameter by DLS in MilliQ water by intensity (2 

mg/mL) c. Polydispersity index (PDI) as determined by DLS d. Critical concentration of 

aggregation (CAC) by pyrene assay e. diDHA loading (mol%) by 1H-NMR f. diDHA loading 

(mol%) by triglyceride assay g. Free diDHA (wt% of the total drug loading) by FPLC. 

 

All conjugates displayed a negative Z-potential close to -50 mV, in good 

agreement with reported data in the literature for similar systems [74], due to the 

contribution of PGA. Moreover, we detected free diDHA content of <0.15 wt% of the 
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total drug loading in all the conjugates tested, as determined by FPLC, demonstrating the 

purity of the conjugates. 

V.2.2. Enhanced Solubility and Stability upon diDHA Conjugation 

diDHA displays very low aqueous solubility (forming a solid gel visible at the tip 

of the Eppendorf tube), likely due to diDHA autopolymerization upon contact with water. 

However, conjugation of diDHA to PGA significantly increases water solubility, as 

shown for PGA-diDHA-OG conjugate in Figure V. 4A. Conjugation also protects 

diDHA from oxidative damage, as evidenced by a 1H-NMR degradation study that 

compared the depletion of signal from the alkene groups to an internal standard over 28 

days (Figure V. 4B).  

 

Figure V. 4: Increased stability and solubility of PGA-diDHA. (A) Increased solubility in water 

of PGA-diDHA conjugates (yellow staining = OG labeled PGA-diDHA). Free diDHA forms gels 

on contact with water, creating an insoluble mass stuck to the bottom of the tube (clear gel). (B) 

Degradation over time of diDHA and PGA-diDHA conjugates as assessed by 1H-NMR for 28 

days (n=3). (C) Degradation over time of diDHA and PGA-diDHA conjugates by MDA assay 

(n=3). Asterisks indicate statistically significant differences after ANOVA analyses followed by 

Bonferroni’s post hoc tests, mean ± SEM. In all cases, we considered differences to be significant 

when p***<0.001; p**<0.01; p*<0.05. 

After one day, free diDHA degraded by 30 - 40%, while PGA-diDHA conjugates 

maintained their alkene bond integrity and degraded by less than 5%. Encouragingly, at 
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day 28, diDHA degraded by 50%, while PGA-diDHA displayed only 10% degradation, 

demonstrating that PGA conjugation stabilizes and protects diDHA. 

We confirmed the stabilizing effect through the malondialdehyde (MDA) lipid 

peroxidation assay (Figure V. 4C). Independently of the diDHA loading in the 

conjugates, we detected <5 mol% MDA/diDHA for all PGA-diDHA conjugates at room 

temperature (r.t.) after one month, while free diDHA samples provided >100 mol% 

MDA/diDHA after only one week, and >200 mol% MDA/diDHA after one month. 

Overall, these findings suggest that PGA conjugation could significantly enhance the 

shelf-life of diDHA and the stabilization of the molecule. The differences between the 

results of the MDA assay and 1H-NMR assays could derive from the various means of 

degrading alkene bonds, including peroxidation, hydrolysis, and polymerization, 

therefore deeper studies should be performed to fully understand the cause of the 

differences. 

V.2.3. Self-assembling Behavior of PGA-diDHA Conjugates 

 

Figure V. 5: Physico-chemical characterization of PGA-diDHA conjugates. (A) Size 

measurements of PGA-diDHA by DLS in PB 10 mM and water. (B) Correlation coefficients of 

each PGA-diDHA by DLS. (C) TEM images of PGA-diDHA at 2 mg/mL.  

We studied the behavior of the PGA-diDHA conjugates in solution, creating an 

amphiphilic system with appropriate hydrophobic-hydrophilic (diDHA-PGA) balance, 
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enabling the self-assembly behavior into larger nanometer-sized objects [74].  We 

characterized the synthesized conjugates using a battery of techniques. First, we measured 

the sizes of selected PGA-diDHA conjugates in PB 10 mM and water by DLS (Figure 

V. 5A), discovering adequate quality criteria and correlation coefficients (Figure V. 5B). 

In both media, we observed a relationship between diDHA loading and the size of the 

conjugates; the size decreases as diDHA loading increases, with values of 100 nm to 20 

nm for PGA-diDHA9.1 and PGA-diDHA2.2, respectively. In agreement with the above-

mentioned data (Table V.1). This phenomenon may be intimately related to the 

hydrophilic-lipophilic ratio in the conjugates. As expected, looking at solution 

conformation of our nanoconjugates, as the lipophilic part (diDHA) increases, elevated 

compaction occurs, thereby causing a reduction in size. This finding agrees with the 

results obtained by TEM images that confirmed the existence of nanosized spherical 

aggregates (Figure V. 5C).  

We next performed a pyrene assay to determine the critical aggregation 

concentration (CAC) of the conjugates, which suggested that the self-assembly of PGA-

diDHA conjugates was triggered mainly due to hydrophobic interactions. As shown in 

Figure V. 6, the presence of hydrophobic pockets within the assemblies allowed the 

determination of the CAC using a pyrene probe. Of note, diDHA loading modifies the 

capacity of nanoconjugate self-assembly; PGA-diDHA9.1, 6.4, and 2.2 exhibit CACs of 

2.84 µM, 3.96 µM, and 28.87 µM, respectively. This difference in the self-assembly 

capacity of the conjugates directly relates to the range of sizes obtained according to 

diDHA loading.  

 

Figure V. 6: CAC determination for PGA-diDHA conjugates by pyrene assay. 
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We next determined free diDHA content by FPLC to ensure the safety and purity 

of the synthesized conjugates (Figure V. 7). The presence of free diDHA in the 

conjugates can trigger adverse reactions, as well as undesirable biological activity. For 

this reason, after the optimization of the synthesis of the PGA-diDHA conjugates, the 

purification process plays an essential role. After an exhaustive purification by means of 

dialysis, free diDHA content was determined up to a maximum of 0.15 wt% of the total 

diDHA loading in all the conjugates, thereby proving the purity and overall drug loading 

to secure further biological evaluations (see also Table V.1).  

 

Figure V. 7: Free diDHA content in the PGA-diDHA conjugates by FPLC. (A) Chromatograms 

of the diDHA calibration curve. (B) Chromatogram of free diDHA from PGA-diDHA conjugates. 

In summary, conjugation of the highly hydrophobic fatty acid diDHA to PGA 

results in amphiphilic PGA-diDHA conjugates that self-assemble into spherical 

nanosized objects driven by hydrophobic interactions among diDHA residues, therefore, 

diDHA loading drives nanoconjugate solution conformation with the greatest core 

compaction and consequently the smallest size with the highest diDHA loading.  
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V.2.4. Drug Release Kinetics and Conformation of PGA-diDHA Conjugates 

In order to demonstrate diDHA sustained release from the polymeric carrier, we 

studied drug release kinetics by FPLC under hydrolytic conditions, given the pH-labile 

nature of the ester bond. We performed this study only for those conjugates that presented 

promising results in the in vitro/in vivo biological evaluation in both the skin and the I/R-

cardio models (see section V.2.5 and V.2.6). The selected conjugates will be evaluated 

in an in vivo wound healing model in the near future and from the I/R model are currently 

being tested in a swine model (Dr. Sepúlveda, Hospital La Fe, Valencia, Spain).  

We incubated the selected conjugates (PGA-diDHA6.4 and PGA-diDHA2.2) at 

37ºC in hydrolytic conditions: pH 5.5 (lysosome) and 7.4 (blood) up to 72 h, discovering 

a small but sustained diDHA release, with values around 5% and 3% for PGA-diDHA6.4 

and PGA-diDHA2.2, respectively. Unexpectedly considering our physico-chemical 

characterization regarding CAC and size, diDHA release from the PGA-diDHA6.4 

conjugate was found to be two-fold faster than that from PGA-diDHA2.2 conjugate, both 

at pH 5.5 and pH 7.4, most probably due to the different aggregation behavior seen in 

both conjugates. Furthermore, our data indicates a faster drug release at pH 7.4 (as in the 

case of PGA-FLUO conjugates - see Chapter IV for more details) compared to the acidic 

pH. In the case of PGA-diDHA6.4, we obtained 5 and 4.5% of free diDHA, and for PGA-

diDHA2.2 we obtained a 3 and 2.5% of free diDHA at pH 7.4 and 5.5, respectively 

(Figure V. 8A). In the case of the PGA-diDHA2.2 at both pHs, we observed a sustained 

diDHA release over the first 24 h of incubation after a rapid diDHA release, followed by 

an increased release up to 72 h. This plateau may be explained in terms of size, the 

presence of different species (aggregates) in solution, and the exposure of the drug; the 

conjugate PGA-diDHA6.4 presents smaller size by number but higher size by intensity 

(analyzed by DLS) than PGA-diDHA2.2 conjugate, indicating that PGA-diDHA6.4 

displays different species in solution, presenting larger aggregates. Thereby, in the PGA-

diDHA2.2 conjugate the drug could be found in a more compressed form within the 

polypeptidic system, provoking a more impeded exposure of the drug and therefore a 

more sustained release would be obtained over time. As mentioned above, a deeper 

understanding on solution conformation for PGA-diDHA conjugates by SAXS, SANS,  

or even AF4 techniques would help to elucidate the reason for such differences on drug 

release kinetics. 
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Figure V. 8: Drug release kinetics of PGA-diDHA2.2 and PGA-diDHA6.4 conjugates by FPLC. 

(A) diDHA release kinetics at pH 5.5 and 7.4. (B) Chromatograms of released diDHA from PGA-

diDHA conjugates (n=3). Asterisks indicate statistically significant differences after ANOVA 

analyses followed Bonferroni’s post hoc tests, mean ± SEM. In all cases, we considered 

differences to be significant when p***<0.001; p**<0.01; p*<0.05. 

To understand these results for a pH labile ester linker, we next sought to analyze 

the spatial arrangement of the drug within the polymer-drug conjugate and the resulting 

assembled nanocarrier to further explore drug release characteristics. We analyzed the 

conjugates by circular dichroism (CD) as a function of PGA-diDHA conjugate 

concentration and different pHs that mimic the different environments that conjugates 

encounter following topical administration (Figure V. 9).  

At pH 7.4, 100% molar side chains in PGA are presented as carboxylates, yielding 

a full random coil conformation - a more accessible and flexible structure that favors the 

access to cleavable linker and release the drug. However, at pH 5.5, protonation of PGA 

side chains represents roughly 50% molar of the overall carboxylates, as derived from the 

pKa of linear PGA reported in the literature [75]. The protonation induces a partial 

random coil to alpha-helix conformation transition, thereby generating a much more rigid 
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and compact structure that inhibits access to the linker and drug release. This pH-

dependent secondary structure transition could explain the kinetics of diDHA release in 

both conjugates. 

 

Figure V. 9: Secondary structure of PGA-diDHA6.4 conjugates at pH 7.4 and 5.5 as determined 

by circular dichroism. 

V.2.5. PGA-diDHA Treatment of Skin Wound Healing 

V.2.5.1. Cell Viability Studies with PGA-diDHA Conjugates 

We performed cell viability assays using immortalized human keratinocytes 

(HaCaT cells) and human dermal fibroblasts after 72 h of treatment with increasing doses 

of free diDHA or PGA-diDHA conjugates (0.37 - 23.75 ng/mL diDHA equivalents (eq.)) 

(Figure V. 10). While we failed to observe cell toxicity with PGA-diDHA conjugates at 

the concentrations used, treatment with free diDHA from 2.97 ng/mL led to significant 

decreases in cell viability in both cell types.  

These results revealed that in addition to providing stability and protection against 

diDHA degradation, conjugation also minimizes the toxicity of diDHA in vitro. 



271 
 

 

Figure V. 10: Cell viability assays in human fibroblasts (left) and keratinocytes (HaCaT) cells 

(right) after 72 h of treatment with diDHA or PGA-diDHA conjugates (n=3). Asterisks indicate 

statistically significant differences after ANOVA analyses followed by Bonferroni’s post hoc 

tests, mean ± SEM. In all cases, we considered differences to be significant when p***<0.001; 

p**<0.01; p*<0.05. 

V.2.5.2. Enhanced Cell Migration by PGA-diDHA Conjugates 

The scratch assay evaluates the capacity of compounds to modulate cell migration, 

acting as a proxy for wound healing potential [76, 77]. Following scratch formation in a 

human dermal fibroblast cell culture, we directly added the treatments (diDHA and PGA-

diDHA conjugates) to the cell culture medium and compared the capacity of free diDHA 

compared to PGA-diDHA conjugates to enhance the migration of the cells at 24 h post-

treatment (Figure V. 11). For this study, we used the highest non-toxic concentrations 

from cell viability assays (2.97 ng/mL diDHA eq.). As controls we included an untreated 

sample and PGA for better comparison. Interestingly, while diDHA, PGA-diDHA2.2, 

and PGA-diDHA9.1 treatment failed to significantly alter cell migration and proliferation 

compared to controls, treatment with PGA-diDHA6.4 induced ~20% increase in 

fibroblast migration, suggesting that diDHA loading significantly influences conjugate 

biological activity.  



272 
 

 

Figure V. 11: Scratch assay using human dermal fibroblasts. Quantification of the percentage of 

migration of the fibroblasts after 24 h of treatment with PGA, PGA-diDHA conjugates, and 

diDHA (n=3).  

V.2.5.3. PGA-diDHA Permeation into the Epidermis 

We evaluated the penetration of PGA-diDHA-OG labeled after 24 h of incubation 

in human skin explants using Franz diffusion cells. For this study, we used the maximum 

and minimum diDHA loading in the conjugates (PGA-diDHA9.1-OG and PGA-

diDHA2.2-OG) to explore the differences in skin penetration upon diDHA loading. After 

fixation and tissue processing, we captured confocal images to assess skin penetration. 

The results suggest that the conjugate with low diDHA loading (PGA-diDHA2.2-OG) 

can reach the viable epidermis, although the PGA-diDHA9.1-OG conjugate mainly 

accumulated in the stratum corneum (Figure V. 12A). We next quantified OG intensity 

by Image J software after the permeation studies, corroborating the results obtained by 

confocal microscopy. In general, the data obtained revealed significantly higher PGA-

diDHA2.2-OG intensity compared to the PGA-diDHA9.1-OG in all skin layers, 

encountering the most remarkable difference in the viable epidermis (Figure V. 12B). It 

was clear that diDHA loading determines skin penetration, whereas PGA-diDHA9.1-OG 

mainly remains in the stratum corneum, PGA-diDHA2.2-OG efficient found her path up 

to the viable epidermis, our desired skin layer to trigger the therapeutic response. Most 

probably due to the greater exposure of diDHA to the cells due to a less compact conjugate 

solution conformation with lower diDHA loading. 
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Figure V. 12: Permeation studies of PGA-diDHA-OG conjugates in human skin by Franz 

diffusion cells. (A) Confocal images of PGA-diDHA2.2-OG and PGA-diDHA9.1-OG conjugates 

after 24 h of permeation. (B) Quantification of OG intensity by Image J software in the stratum 

corneum (SC) and the viable epidermis (n=5). Asterisks indicate statistically significant 

differences after ANOVA analyses followed by Bonferroni’s post hoc tests, mean ± SEM. In all 

cases, we considered differences to be significant when p***<0.001; p**<0.01; p*<0.05. 

Moreover, we studied the capacity of PGA-diDHA-OG conjugates to cross the 

whole skin, quantifying the signal of OG in the receptor chamber acting as a proxy for 

the passage of our conjugates/drugs into the circulatory system. We analyzed 2 mL from 

the receptor chamber at 8 and 24 h of study by Franz diffusion cells and quantified the 

OG signal at 495 nm in the UV-Vis spectrophotometer (Figure V. 13). When we 

compared results with a negative control using MilliQ water, we failed to observe any 

OG signal, indicating that conjugates failed to penetrate through the skin and therefore 

could be unlikely to reach the circulatory system and induce undesirable side effects. 

Thus, these data provide evidence regarding the safety for topical application of 

our PGA-diDHA conjugates. 
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Figure V. 13: UV-Vis spectra of the aliquots from the receptor chamber after 8 and 24 h of 

permeation in human skin using PGA-diDHA-OG conjugates by Franz diffusion cells.  

V.2.6. PGA-diDHA Treatment of Ischemia-Reperfusion (I/R) Injury 

As mentioned previously, several studies have demonstrated a role for DHA in 

the protection of the heart against myocardial ischemia-reperfusion (I/R)-induced injury. 

Hence, we studied the ability of our PGA-diDHA conjugates to reduce and prevent 

damage caused by I/R. For this purpose, we employed the family of PGA-diDHA 

conjugates following well-established synthetic procedures, described above, which we 

subsequently biologically evaluated in vitro and in vivo. 

V.2.6.1. Enhanced Cell Viability after diDHA Conjugation In Vitro  

We evaluated cell viability and the capacity of the PGA-diDHA conjugates to 

reduce damage caused by I/R in vitro using murine H9C2 cell line (myoblasts). We 

assessed the effect of PGA-diDHA conjugates on cell viability by MTS assay to 

determine the optimum concentration for our cell models. We added PGA, PGA-

diDHA2.2, PGA-diDHA6.4, PGA-diDHA9.1, and diDHA at 0.2, 2, 10, and 20 µg/mL 

diDHA eq. for 72 h (Figure V. 14). PGA, PGA-diDHA2.2, and PGA-diDHA6.4 did not 

exhibit adverse effects on cell viability; however, PGA-diDHA9.1 decreased cell viability 

by 30% at 10 and 20 µg/mL. Additionally, free diDHA revealed a cytotoxic effect at 2, 

10, or 20 µg/mL, but not at 0.2 µg/mL. These data confirmed that conjugation of diDHA 

to PGA has a positive effect on the cellular model, diminishing the toxicity of diDHA. 
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Figure V. 14: Cell viability assays in H9C2 cells after 72 h of treatment with PGA, diDHA, or 

PGA-diDHA conjugates. Asterisks indicate statistically significant differences after ANOVA 

analyses followed by Bonferroni’s post hoc tests, mean ± SEM. In all cases, we considered 

differences to be significant when p***<0.001; p**<0.01; p*<0.05. 

We next assessed the capacity of PGA-diDHA conjugates to reduce the damage 

caused by I/R injury in vitro using the lactate dehydrogenase (LDH) assay, which is 

widely used to study cell damage (higher amounts of LDH secretion correlates with more 

severe cellular damage). In this study, we assessed the amount of LDH in the culture 

medium after 72 h of exposition to PGA, PGA-diDHA2.2, PGA-diDHA6.4, PGA-

diDHA9.1, and free diDHA at the same concentrations used for cell viability assays, 

compared to control cells (1% LDH release). This experiment reflects the importance of 

the diDHA availability, as although non-significant differences were observed, there is a 

clear trend on possible cell damage recovery at 0.2 µg/mL for free diDHA although an 

increase in concentration reverts such effect due to possible cytotoxicity as shown before 

(Figure V.14). In the case of the conjugates, the same effect is observed but at different 

drug concentration as it is clearly correlated with the drug release kinetics profile (Figure 

V. 15). Apoptosis and autophagy studies as mean of cell death/recovery with these diDHA 

derivatives have been also performed with much more significant results than those 

obtained with LDH, as it seems mitochondria-mediated cell death is the molecular 

mechanism followed. PGA-diDHA6.4 conjugate revealed the higher prevention of cell 

death in vitro after an I/R injury (data included in the PhD thesis of Sandra Tejedor, Dr. 

Sepúlveda Lab., Hospital La Fe, Valencia, Spain), and also the presence of PGA-

diDHA2.2 triggered a recovery trend.  

Based on the promising results in vitro, we moved to the in vivo experiments with 

the conjugates that revealed the best therapeutic potential: PGA-diDHA2.2 and PGA-
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diDHA6.4. As PGA-diDHA9.1 clearly displayed cytotoxic effects at high concentration 

against H9C2 cells we did not further consider it for in vivo experiments.  

 

Figure V. 15: LDH release to the culture medium in H9C2 cells after 72 h of treatment with PGA, 

diDHA, or PGA-diDHA conjugates. Results obtained were normalized with values obtained from 

control cells. Data were obtained from three independent experiments by triplicate and presented 

as mean ± SEM.  

V.2.6.2. PGA-diDHA6.4 Treatment Decreases Myocardial Infarct Size in an I/R 

Model In Vivo 

 We evaluated the selected PGA-diDHA conjugates in vivo in a rat I/R model to 

assess the protective capacity of conjugates on cardiomyocytes. We split rats into 

different groups and induced acute myocardial infarction (AMI) as described in the 

materials and methods. We treated the control group with PBS, and we used a negative 

group without I/R-induced injury (sham or placebo surgery). Based on previous results 

in vitro, we decided to test PGA-diDHA2.2 and PGA-diDHA6.4 conjugates at 10 µg/mL 

diDHA eq. We stained representative pictures of heart slices with the redox indicator 

2,3,5 triphenyl tetrazolium chloride (TTC) after the surgical procedure (Figure V. 16A). 

Figure V. 16B depicts the differences between infarct sizes observed. Following the I/R 

procedure and PBS injection as control, we observed an infarct size of 28.32 ± 5.57%. 

We observed a non-significant reduction in infarct size in the group treated with PGA-

diDHA2.2, obtaining values similar to the control (23.43 ± 1.91%); however, we 

discovered significantly lower tissue damage in the group treated with PGA-diDHA6.4 

conjugate (11.99 ± 3.75%). These data suggest that PGA conjugation of diDHA has 

beneficial effects regarding the treatment of AMI through a reduction in the required dose 

of diDHA and an increase in its therapeutic efficiency. Also, this effect is concentration 

0.2 2 10 20
0.0

0.4

0.8

1.2

Control

PGA

PGA-diDHA2.2

PGA-diDHA6.4

PGA-diDHA9.1

diDHA

Concentration (g/mL diDHA eq.)

L
D

H
 r

e
le

a
s

e
 (

%
)



277 
 

dependent, and in this case a higher loading resulted in a greater therapeutic output most 

probably due to the higher diDHA bioavailability at the site of action (see drug release 

kinetics studies, section V.2.4). 

 

Figure V. 16: PGA-diDHA6.4 conjugate decreases myocardial infarct size in an I/R model in 

vivo. (A) Representative pictures of TTC staining in heart slices determined the effect of the 

different experimental procedures on myocardial infarct size. (B) Myocardial infarct size 

expressed as the percentage of area at risk. Sham group without I/R (n=4), control group treated 

with PBS (n=4), PGA-diDHA2.2 (n=6), and PGA-diDHA6.4 (n=5). Results were presented as 

mean ± SEM and analyzed by ANOVA. All groups are compared with the I/R condition 

(*p<0.05). 

V.3. Conclusions  

The use of diDHA provides several advantages in the tissue healing due to its 

ability to promote the reepithelization and closure of the wound area and its anti-

inflammatory activity. To improve the physico-chemical characteristics of diDHA and, 

therefore, the effectiveness of the treatment, we successfully synthesized and 

characterized a new family of PGA-diDHA conjugates. We discovered that diDHA 
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loading determines the final conjugate solution conformation, including size and the 

critical concentration of aggregation giving a more compact constructs upon increasing 

drug loading, which is also a key feature modulating drug release kinetics. Our analyses 

demonstrated that PGA conjugation enhanced diDHA stability by protecting the lipid and 

reducing degradation over time while also increasing its aqueous solubility. 

Moreover, PGA conjugation to diDHA led to a marked improvement in dermal 

cell viability when compared to the free drug, most probably due to the reduction of the 

diDHA degradation subproducts. Of note, diDHA loading also represents a crucial 

parameter towards achieving an adequate biological activity; migration and skin 

penetration studies revealed that lower diDHA loadings prompted better therapeutic 

activity, thereby promoting enhanced closure of the wound and skin penetration.  

These results lay the groundwork for polymer conjugation as an effective means 

to diminish or avoid drug degradation and adverse effects. Moreover, the use of 

polyglutamates as a carrier enhances the skin penetration of conjugated drugs, as has been 

demonstrated in previous chapters of this Thesis, which also contributes to the 

effectiveness of the treatment. Future studies will focus on developing a diabetic rat 

model to evaluate the proliferative and anti-inflammatory activity of conjugates with the 

low-medium diDHA loading. 

Looking at I/R-induced damage applications, our results showed that diDHA 

loadings in the conjugate play a key role in the final biological activity and more 

importantly, PGA-diDHA6.4 conjugate has the best therapeutic effects under I/R 

condition in vitro and in vivo in comparison with free diDHA in terms of safety as well 

as therapeutic efficiency.  

Infusion of nanoconjugates and free diDHA in an in vivo I/R rat model showed 

that heart infarct size was significantly reduced when PGA-diDHA6.4 was administrated 

before reperfusion in comparison with free diDHA at the same dose. Collectively, our 

data showed that PGA-diDHA6.4 could be effective in mitigating I/R-induced injury 

thereby providing a new therapeutic agent for future clinical studies. 
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V.4. Materials and Methods 

V.4.1. Materials 

All analytical grade organic solvents and anhydrous N,N-Dimethylformamide 

(DMF, ≥99.8% anhydrous) were purchased from Scharlab S.L. (Spain) and used without 

further purification. Poly-(alpha-L-glutamic acid) (Mw: 41.3 kDa, PDI: 1.2, 273 subunits 

per polymer) was obtained from Polypeptide Therapeutic Solutions S.L. (Spain). 

Didocosahexaenoic acid (diDHA) was purchased from Nu-Chek Prep, Inc. (Elysian, MN, 

USA). Oregon Green 488 cadaverine was purchased from Invitrogen (Spain). Ultrapure 

water with a resistivity of 18 MΩ cm was used in all aqueous preparations (MilliQ water). 

Phenazine methosulfate (PMS) was supplied by Sigma (Spain). Dulbecco’s Modified 

Eagle’s Medium (DMEM) with Glutamax was purchased from Fisher (Spain). DMEM, 

phosphate buffer saline (PBS), fetal bovine serum (FBS) Medium 200, trypsin, and 

penicillin/streptomycin were provided from Gibco (Spain). (3-(4,5-dimethylthiazol-2-

yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) (MTS) was 

supplied by Promega (Spain). 

V.4.2. Physico-Chemical Characterization Methods  

V.4.2.1. Nuclear Magnetic Resonance (NMR) Spectroscopy 

NMR spectra were recorded at 27°C (300 K) on a 500 MHz Bruker spectrometer 

(Billerica, US). Data were processed with the software Mestrenova (Bruker GmbH, 

Germany). Samples were typically prepared at 5 mg/mL in deuterated solvents.  

V.4.2.2. Ultraviolet-Visible (UV-Vis) Spectroscopy 

UV-Vis measurements were performed using V-630 spectrophotometer (JASCO 

Corporation, Spain) at 25°C with 1.0 cm matched quartz cells and with a spectral 

bandwidth of 0.5 nm. Determination of total OG content was measured by UV-Vis 

spectroscopy. To obtain a calibration curve, free dye was diluted in MilliQ water to give 

a concentration range of 0.000250 – 0.000025 mg/mL. The total dye loading of the 

conjugates at different concentrations (0.5, 0.25, 0.1 mg/mL) was determined by 

measuring the absorbance of the samples at 495 nm in MilliQ water. 
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V.4.2.3. Fluorescence Spectroscopy 

Fluorescence experiments were performed using a JASCO FP-6500 

spectrofluorimeter (JASCO Corporation, Spain) at 25ºC with 1cm quartz cells. Pyrene 

assay was performed as published elsewhere to determine the critical concentration of 

aggregation (CAC) [78]. In brief, polymers were dissolved and diluted ranging from 0.44 

- 240 M in PBS with a final volume of 1 mL, to which 3 µL of the pyrene stock solution 

(0.02 mg/mL) in acetone was added. Then, all solutions were placed in vials and were 

incubated at 37ºC for 2 h to evaporate acetone. The solutions were then allowed to rest 

overnight at r.t. and then transferred into a 1 mL quartz cuvette, and the excitation spectra 

from 300 - 360 were recorded with emission set to 390 nm on the spectrofluorometer. 

Excitation and emission band slits were set to 5 and 2.5 nm. The I338/I333 fluorescence 

intensity was plotted as a function of logarithmic polymer concentration. The I338/I333 

ratio increased steadily with increasing polymer concentration and became sigmoidal in 

the crossover region. The CAC was determined at the intersection of the horizontal 

tangent line through points of low polymer concentration and the tangent line of the curve 

at the inflection point. 

V.4.2.4. Transmission Electron Microscopy (TEM) 

TEM images were recorded using a JOEL 2100 transmission electron microscope. 

Samples were applied directly onto carbon film on 200 mesh copper grids at 2 mg/mL. 

Any excess of the sample was carefully removed by capillary action, and the grids were 

immediately stained with one drop of 0.1% phosphotungstic acid for 30 s. Excess stain 

was removed by capillary action.  

V.4.2.5. Dynamic Light Scattering (DLS) 

DLS measurements were performed using a Malvern ZetaSizer NanoZS 

instrument (Malvern Instruments Ltd., UK), equipped with a 532 nm laser at a fixed 

scattering angle of 173°. Solutions were sonicated for 10 min and allowed to equilibrate 

for the required time, filtered through a 0.45 μm cellulose membrane filter, and then 

measured. The samples were dissolved in MilliQ water and 10 mM PB. Size distribution 

by number and intensity (diameter, nm) were measured in triplicate. 
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Z-potential measurements were performed at 20ºC using a Malvern ZetaSizer 

NanoZS instrument (Malvern Instruments Ltd., UK), equipped with a 532 nm laser using 

disposable folded capillary cells. Z-potential was measured for the highest concentration 

of each polymer (2 mg/mL) in 1 mM KCl in MilliQ water. The solutions were filtered 

through a 0.45 µm cellulose membrane filter. Z-potential was measured for each sample 

in triplicate. 

V.4.2.6. Fast Protein Liquid Chromatography (FPLC)  

Analytical determination of the free drug was performed on an ETTAN LC 

equipment (Amersham Biosciences, Spain). The measurements were performed using a 

C-18 LiChrospher analytical column (125 x 4.0 mm) (Scharlab S.L., Spain), with a flow 

rate of 0.7 mL/min, a 15 L loop, and isocratic conditions with 100% acetonitrile (ACN). 

Detection of the alkene bonds of diDHA absorbance was measured at λ = 200 nm. The 

calibration curve was constructed using commercial diDHA, showing a linear response 

within the concentration range employed (0.001 - 0.5 mg/mL). 

 Free Drug Content 

PGA-diDHA conjugates were dissolved in water at 1 mg/mL and lyophilized to 

form a thin film at the bottom of glass vials, protected from light. Then, 300 L of ACN 

was added slowly over the films, and the vials sealed for 30 min. The contents were then 

physically mixed via a glass pipette and vortex to ensure thorough washing of the solid 

polymers. The liquid was then transferred to a new glass container for centrifugation, and 

80 L of the supernatant was filtered (0.45 µm) and injected in the FPLC system. Samples 

were measured repeatedly (n=3). The area for peak(s) from 3.5 - 4 mL were used against 

a standard curve of diDHA to determine the free diDHA in the conjugates. 

 Drug Release Kinetics 

Drug release kinetics of PGA-diDHA2.2 and PGA-diDHA6.4 conjugates were 

performed at two different pHs (5.5 and 7.4). A stock solution of the conjugates was 

prepared in PBS buffer (5 mg/mL) and was divided into 100 µL aliquots; each aliquot 

was then incubated at 37ºC over times ranging from 0 to 72 h. After incubation, the 

samples were lyophilized, the residue resuspended in 500 µL of ACN, and then 

centrifuged 5 min at 10,000 rpm to separate the free drug from the polymer. Finally, the 
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supernatant was evaporated under reduced pressure using the speedvac (1:30 h, 80ºC, 

0.01 vacuum). The final residue was resuspended in 300 µL of ACN and filtered (0.45 

µm) for analysis. Samples were measured in triplicate. The area for peak(s) from 3.5 - 4 

mL were used against a standard curve of diDHA to determine the final free diDHA 

released. 

V.4.2.7. Circular Dichroism (CD)  

CD spectroscopy was performed with a J-815 CD Spectrometer using a PTC-423 

Peltier thermostated cell holder with a JULABO F250 recirculating cooler (All JASCO 

Corporation, Spain). A nitrogen flow (~2.7 L/min) was led through the spectrometer and 

controlled with a nitrogen flow monitor (Afriso Euro-Index, Germany). Samples were 

dissolved in MilliQ water or 10 mM PB, and employed at different concentrations (0.01- 

0.4 mg/mL). Samples were measured in triplicate in a quartz cuvette with d = 0.1 cm. 

V.4.2.8. Stability Over Time by NMR Analysis 

1H-NMR was used to track the oxidation of fatty acids. Samples were prepared as 

follows: PGA-diDHA conjugates (PGA-diDHA2.2, PGA-diDHA6.4 and PGA-

diDHA9.1) were dissolved at 10 mg/mL in D2O and transferred to an NMR tube. To 

these, an insert with 1 mg/mL of 4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) in 

D2O was added. Free diDHA was dissolved at 10 mg/mL in MeOD with 0.03% of 

tetramethylsilane (TMS) as the internal standard. The NMR tubes were capped, sealed 

with parafilm to prevent evaporation, and placed in the dark, wrapped in foil. At each 

time point, samples were analyzed by 1H-NMR on a Bruker 500 MHz spectrometer 

(relaxation delay time = 10 seconds, 500 scans) and the spectra analyzed using TopSpin 

3.5 pl 7 software. To calculate the percentage of degradation, the integration of the 

internal standard was set to 1, and then the alkenyl peaks for diDHA from 5.66 - 5.17 

ppm at each time point were compared to the integration in the same region at day 0. 

V.4.2.9. Stability Over Time by Malondialdehyde Colorimetric Assay 

Malondialdehyde (MDA) formation was evaluated over time to assess the 

protective function of PGA conjugation on the prevention of lipid peroxidation by 

diDHA. PGA-diDHA conjugates were dissolved at 4 mg/mL in 10 mM PB pH 7.4 (-

NaCl, -Mg2+, -Ca2+) and free diDHA in ethanol. Both were allowed to incubate at r.t., 
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capped and sealed with parafilm, and protected from light. At each time point (one day, 

one week, two weeks, and one month), an aliquot was taken from each sample, and MDA 

levels were quantified via the TBARS (thiobarbituric acid reactive substance) Lipid 

Peroxidation Assay Kit (Sigma Aldrich, Spain). Briefly, 50 L of sample or standard 

were mixed with 300 L TBA solution and heated at 95C for 1 h, the solutions were then 

cooled for 5 min, and fluorescence monitored at 530/590 (Ex/Em) using a 

Victor2Wallac™ plate reader (Perkin Elmer, Spain). 

V.4.2.10. Quantitative Determination of the Triglyceride Content in the PGA-

diDHA Conjugates 

Total triglyceride (TG) content in the conjugates was quantified using a 

LabAssayTM Triglyceride kit (Wako Chemicals GmbH, Germany), which is based on the 

enzymatic GPO-DAOS method [79]. Briefly, a calibration curve was constructed using 

concentrations of glycerol ranging from 0 to 134.62 nmol. PGA-diDHA conjugates were 

dissolved at 15 mg/mL in MilliQ water and 50 µL of the samples were added to 250 µL 

of color reagent containing chromogen substrate (prepared according to the assay kit 

instructions). The mixture was incubated at 37ºC for 5 min, and the absorbance was 

measured at 590 nm using a Victor2Wallac™ plate reader (Perkin Elmer, Spain). TG 

content was determined according to standard solutions. 

V.4.3. Synthetic Protocols 

V.4.3.1 Synthesis of Poly-L-Glutamate Didocosahexaenoic Acid Conjugates 

PGA (100 mg, 3 mol, 273 eq. GAU, 1 eq.) was dissolved in 10 mL dry DMF in 

a 100 mL round bottom under an inert atmosphere. DMTMM·BF4 (19.0 mg, 0.06 mmol, 

20.0 eq.) was dissolved in 1 mL dry DMF under nitrogen and added dropwise to the PGA 

solution. A catalytic amount of DMAP was added in 1 mL dry DMF, and the solution 

was stirred for 30 min. diDHA (27.6 mg, 0.04 mmol, 13.6 eq.) was dissolved in 1 mL dry 

DMF (0.3 ppm BHT added) and the pH adjusted to 8 with N,N-Diisopropylethylamine 

(DIEA). The solution was protected from light and allowed to stir at r.t. for 3 days until 

all diDHA had reacted, as visualized by thin-layer chromatography (TLC) (80:20:1 

hexanes:ether:acetic acid, retention factor (Rf): Rf (diDHA) = 0.2 and Rf (PGA) = 0.1). 

The pH was adjusted as necessary to pH 8, and the solution precipitated into cold diethyl 
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ether. The precipitate was then rinsed (with vortexing) three times with ether. Then, the 

precipitate was suspended in water, and the pH was adjusted to 8 with sodium 

carbonate/bicarbonate buffer pH 10. This solution was then dialyzed (MWCO 3000) 

protected from light against sodium carbonate/bicarbonate buffer pH 10 for 12 h followed 

by MilliQ water to remove salts. The purified product was then lyophilized and stored 

under an inert atmosphere at -20C protected from light.  

V.4.3.2 Oregon Green Labeling of PGA-diDHA Conjugates 

PGA (600 mg, 0.02 mmol, 273 eq. GAU, 1 eq.) was dissolved in 100 mL dry 

DMF in a two-neck round bottom flask under nitrogen atmosphere. DMTMM·BF4 (23 

mg, 0.07 mmol, 4.1 eq.) and a catalytic amount of DMAP were added in 10 mL additional 

dry DMF and the solution allowed to stir for 30 min. OG (23 mg, 0.05 mmol, 2.7 eq.) was 

added to the reaction mixture in 10 ml dry DMF, protected from light. The pH was 

adjusted to 8 with DIEA and stirred for three days. The reaction mixture was then either 

purified or further modified with diDHA. For example, for 5 mol% diDHA modification, 

additional DMTMM·BF4 (38 mg, 0.12 mmol, 20.5 eq.) and catalytic DMAP in 10 mL 

DMF were added to one third of the crude reaction mixture for 30 min, followed by the 

addition of diDHA (55 mg, 0.08 mmol, 13.6 eq.). The pH was again adjusted to 8 with 

DIEA and allowed to react for three days. At the end of the reaction, the pH was adjusted 

to pH 8, and the solution precipitated into cold diethyl ether. The precipitate was then 

rinsed (with vortexing) three times with ether. Then, the precipitate was suspended in 

water, and the pH was adjusted to 8 with sodium carbonate/bicarbonate buffer pH 10. 

This solution was then dialyzed (MWCO 3000) protected from light against sodium 

carbonate/bicarbonate buffer pH 10 for 12 h followed by MilliQ water to remove salts. 

The purified product was then lyophilized and stored under an inert atmosphere at -20C 

protected from light.  



285 
 

V.4.4. Biological Evaluation of PGA-diDHA Conjugates 

V.4.4.1. Skin Wound Healing 

V.4.4.1.1. In Vitro Evaluation 

V.4.4.1.1.1. Cell Viability 

To carry out the in vitro cytotoxicity studies, two cell lines were used: human 

immortalized non-tumorigenic keratinocytes (HaCaT cells), supplied by CLS Cell Lines 

Service (Germany), and human fibroblasts supplied by Hospital La Fe (Valencia, Spain). 

High glucose DMEM Glutamax (Fisher, Spain) was used for keratinocyte culture and 

DMEM (Gibco, Spain) for fibroblast culture; both were supplemented with 2% 

penicillin/streptomycin and 50 mL of FBS in a humidified incubator (Hucoa-Erlöss S.A., 

Spain) at 5% CO2 and 37°C.  

For the cell viability assays, 50 μL of cells were seeded in 96-well plates at a 

concentration of 4,000 cells/well for HaCaT cells and 2,000 cells/well for human 

fibroblasts. After 24 h, 50 μL of each treatment was added, reaching a final volume of 

100 μL. All treatments were previously filtered (pore size 0.22 μm). Cells were incubated 

with samples or controls for 72 h before performing MTS assay. For this assay, 20 μL of 

PMS and MTS (1:20) solution were added. After 3 h of incubation, absorbance values 

were captured at 490 nm using a Victor2Wallac™ plate reader (Perkin Elmer, Spain). The 

absorbance values were represented as the percentage of cell viability relative to the 100% 

cell viability of untreated control cells. The concentrations of PGA, diDHA, and PGA-

diDHA conjugates were in a range from 0.37 to 23.75 ng/mL diDHA eq. 

V.4.4.1.1.2. Scratch Assays 

Human fibroblasts were seeded in a 24-well plate at a concentration of 75,000 

cells/well. After 24 h, simple scratch wounds were made with a white Gilson pipette tip 

in all wells, culture media was removed, and treatments were applied at a 2.97 ng/mL 

diDHA eq. in 400 µL of media. All treatments were previously filtered (pore size 0.22 

μm). A Leica DMI6000 automatic inverted microscope (Leica, Germany) was used to 

follow the migration of the cells, taking pictures every half hour for 24 h. Finally, the 

reduction in scratch wound area compared to time 0 was calculated. 
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V.4.4.1.2. Ex Vivo Evaluation 

V.4.4.1.2.1. Visualization of Dermal Penetration 

Breast skin samples were obtained with informed consent from healthy women 

undergoing plastic surgery (kindly donated by Hospital la Fe, Valencia, Spain). 

Immediately after excision, the subcutaneous fatty tissue was removed using a scalpel. 

The skin was cut into 4 cm2 pieces, wrapped in aluminum foil and stored at -20ºC until 

use. Permeation study was developed using Franz diffusion cells (Logan Instruments 

Corp., USA). The skin was fixed between the donor and the receptor chamber, so that 

stratum corneum faced upwards. The receptor chamber was filled with 8 mL of 0.01 M 

PBS pH 7.4 and mixed with a magnetic stirring bar while the temperature was kept at 

37ºC. The skin was placed between the chambers and 100 µL of a solution of 10 mg/mL 

of PGA-diDHA2.2-OG and PGA-diDHA9.1-OG in water were topically applied to the 

skin surface. 2 mL sample were taken from the receptor chamber at 8 and 24 h for further 

analysis by UV-Vis and immediately refilled with fresh solution. After 24 h, skin samples 

were gently rinsed twice with 0.1% PBS-BSA and incubated in 4% paraformaldehyde 

(PFA) for 24 h at r.t. Then samples were washed with 30% sucrose in PBS and retained 

in said solution for 24 h at 4ºC. Finally, skin samples were washed twice with PBS and 

preserved in a cryopreservation solution (40% 0.1 M PB, 30% ethylene glycol and 30% 

glycerol) at 4ºC until use. Finally, skin samples were included in the optimum cutting 

temperature inclusion medium, and slides of 5 µm were performed with the cryostat 

version CM1850 UV (Leica, Germany). 

V.4.4.1.2.2. Confocal Microscopy 

The permeation of the fluorescent labeled-conjugates by Franz diffusion cells was 

evaluated by confocal microscopy. Excitation was performed with an argon laser ((OG, 

496 nm) and blue diode (Hoechst, 405 nm). Images were captured at an 8-bit greyscale 

and processed with LCS software version 2.5.1347a (Leica Germany) containing 

multicolor, macro, and 3D components. Control tissue that follows the same incubation 

time with MilliQ water was also analyzed to establish the autofluorescence. OG intensity 

was quantified five times per sample using Image J software and expressed as pixels 

versus the thickness of the skin (µm). The controlled intensity was subtracted in each 

case. 
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V.4.4.2. Ischemia-Reperfusion Injury 

V.4.4.2.1. In Vitro Evaluation 

H9C2 cells were seeded on 96-well plates and were treated with increasing 

concentrations of PGA, diDHA, and PGA-diDHA conjugates, using 0.2, 2, 10, and 20 

µg/mL diDHA eq. for 72 h in 190 μL of culture medium. Then, 100 μl of the culture 

medium were taken for LDH activity measurement, following the recommended protocol 

(Roche, Spain). Triton-treated cells were used as a positive control of the assay. The 

absorbance of LDH activity was measured at 490 nm using a Victor2Wallac™ plate 

reader (Perkin Elmer, Spain).  

Cell viability was determined using the MTS assay (CellTiter 96® AQueous Non-

Radioactive Cell Proliferation Assay, Promega, USA). Cells were supplemented with 

MTS solution (10 μL/well) and incubated for 3 h at 37°C. Then, the absorbance was 

recorded at 490 nm using a Victor2Wallac™ plate reader (Perkin Elmer, Spain). 

V.4.4.2.2. In Vivo Evaluation 

Adult male Wistar rats (Charles River Laboratories, Inc., US) weighing 350 – 

400 g were housed in a standard vivarium with free access to food and water. All 

procedures were approved by institutional ethical and animal care committees. Before 

experiments, animals were randomized into experimental groups. Rats were anesthetized 

intraperitoneally with fentanyl (Acost-Comercial Generis Pharma, S.L., Spain) at 0.05 

mg/kg and by inhalation with Sevorane (Abbot, Spain). Once animals were anesthetized, 

intubation was carried out to ensure proper anesthesia during the procedure. Later, the 

left paw was tied to feel the heart beating. The left chest area was sterilized, and a 

thoracotomy was performed. For myocardial ischemia, the left anterior descending 

coronary artery was occluded with a silk suture as previously described [80]. Different 

treatments at 10 µg/mL diDHA eq. (PGA-diDHA2.2 and PGA-diDHA6.4) were prepared 

in PBS and were injected after 15 min of ischemia. PBS alone was injected in control rats, 

and the sham group was used as a negative control. 



288 
 

V.5. References  

[1] N. Meschi, A.B. Castro, K. Vandamme, M. Quirynen, P. Lambrechts, The impact of 

autologous platelet concentrates on endodontic healing: a systematic review, Platelets 

27(7) (2016) 613-633. 

[2] T. Velnar, T. Bailey, V. Smrkolj, The Wound Healing Process: An Overview of the 

Cellular and Molecular Mechanisms, J Int Med Res 37(5) (2009) 1528-1542. 

[3] J. Boateng, O. Catanzano, Advanced Therapeutic Dressings for Effective Wound 

Healing--A Review, J Pharm Sci 104(11) (2015) 3653-80. 

[4] J.M. Reinke, H. Sorg, Wound repair and regeneration, Eur Surg Res 49(1) (2012) 35-

43. 

[5] M.P. Rowan, L.C. Cancio, E.A. Elster, D.M. Burmeister, L.F. Rose, S. Natesan, R.K. 

Chan, R.J. Christy, K.K. Chung, Burn wound healing and treatment: review and 

advancements, Crit Care 19 (2015) 243. 

[6] A.C. Gonzalez, T.F. Costa, Z.A. Andrade, A.R. Medrado, Wound healing - A 

literature review, An Bras Dermatol 91(5) (2016) 614-620. 

[7] S.A. Eming, T. Krieg, J.M. Davidson, Inflammation in wound repair: molecular and 

cellular mechanisms, J Invest Dermatol 127(3) (2007) 514-25. 

[8] S.R. Opalenik, J.M. Davidson, Fibroblast differentiation of bone marrow-derived cells 

during wound repair, FASEB J 19(11) (2005) 1561-3. 

[9] G.C. Gurtner, S. Werner, Y. Barrandon, M.T. Longaker, Wound repair and 

regeneration, Nature 453(7193) (2008) 314-21. 

[10] D.G. Greenhalgh, The role of apoptosis in wound healing, Int J Biochem Cell Biol 

30(9) (1998) 1019-30. 

[11] H.N. Lovvorn, D.T. Cheung, M.E. Nimni, N. Perelman, J.M. Estes, N.S. Adzick, 

Relative distribution and crosslinking of collagen distinguish fetal from adult sheep 

wound repair, J Pediatr Surg 34(1) (1999) 218-23. 

[12] R.F. Pereira, P.J. Bártolo, Traditional Therapies for Skin Wound Healing, Adv 

Wound Care 5(5) (2014) 208-229. 

[13] G. Han, R. Ceilley, Chronic Wound Healing: A Review of Current Management and 

Treatments, Adv Therapy 34(3) (2017) 599-610. 

[14] V. Jones, J.E. Grey, K.G. Harding, Wound dressings, BMJ 332(7544) (2006) 777-

80. 

[15] E.L. Arantes, N. Dragano, A. Ramalho, D. Vitorino, G.F. de-Souza, M.H. Lima, L.A. 

Velloso, E.P. Araújo, Topical Docosahexaenoic Acid (DHA) Accelerates Skin Wound 

Healing in Rats and Activates GPR120, Biol Res Nurs 18(4) (2016) 411-9. 

[16] C.R. Cardoso, M.A. Souza, E.A. Ferro, S. Favoreto, J.D. Pena, Influence of topical 

administration of n-3 and n-6 essential and n-9 nonessential fatty acids on the healing of 

cutaneous wounds, Wound Repair Regen 12(2) (2004) 235-43. 

[17] E. Hatanaka, A. Dermargos, A.E. Hirata, M.A. Vinolo, A.R. Carpinelli, P. 

Newsholme, H.A. Armelin, R. Curi, Oleic, linoleic and linolenic acids increase ros 

production by fibroblasts via NADPH oxidase activation, PLoS One 8(4) (2013) e58626. 

[18] K.I. Shingel, M.P. Faure, L. Azoulay, C. Roberge, R.J. Deckelbaum, Solid emulsion 

gel as a vehicle for delivery of polyunsaturated fatty acids: implications for tissue repair, 

dermal angiogenesis and wound healing, J Tissue Eng Regen Med 2(7) (2008) 383-93. 

[19] L.M. Pereira, E. Hatanaka, E.F. Martins, F. Oliveira, E.A. Liberti, S.H. Farsky, R. 

Curi, T.C. Pithon-Curi, Effect of oleic and linoleic acids on the inflammatory phase of 

wound healing in rats, Cell Biochem Funct 26(2) (2008) 197-204. 

[20] A.A. Spector, Essentiality of fatty acids, Lipids 34 Suppl (1999) S1-3. 



289 
 

[21] J. Lengqvist, A. Mata De Urquiza, A.C. Bergman, T.M. Willson, J. Sjövall, T. 

Perlmann, W.J. Griffiths, Polyunsaturated fatty acids including docosahexaenoic and 

arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain, Mol Cell 

Proteomics 3(7) (2004) 692-703. 

[22] J.C. McDaniel, M. Belury, K. Ahijevych, W. Blakely, Omega-3 fatty acids effect on 

wound healing, Wound Repair Regen 16(3) (2008) 337-45. 

[23] E. Theodoratou, G. McNeill, R. Cetnarskyj, S.M. Farrington, A. Tenesa, R. 

Barnetson, M. Porteous, M. Dunlop, H. Campbell, Dietary fatty acids and colorectal 

cancer: a case-control study, Am J Epidemiol 166(2) (2007) 181-95. 

[24] K. Kuriki, K. Wakai, K. Hirose, K. Matsuo, H. Ito, T. Suzuki, T. Saito, Y. Kanemitsu, 

T. Hirai, T. Kato, M. Tatematsu, K. Tajima, Risk of colorectal cancer is linked to 

erythrocyte compositions of fatty acids as biomarkers for dietary intakes of fish, fat, and 

fatty acids, Cancer Epidemiol Biomarkers Prev 15(10) (2006) 1791-8. 

[25] M.C. Balcos, S.Y. Kim, H.S. Jeong, H.Y. Yun, K.J. Baek, N.S. Kwon, K.C. Park, 

D.S. Kim, Docosahexaenoic acid inhibits melanin synthesis in murine melanoma cells in 

vitro through increasing tyrosinase degradation, Acta Pharmacol Sin 35(4) (2014) 489-

95. 

[26] M.H. Davidson, Mechanisms for the hypotriglyceridemic effect of marine omega-3 

fatty acids, Am J Cardiol 98(4A) (2006) 27i-33i. 

[27] A. König, C. Bouzan, J.T. Cohen, W.E. Connor, P.M. Kris-Etherton, G.M. Gray, 

R.S. Lawrence, D.A. Savitz, S.M. Teutsch, A quantitative analysis of fish consumption 

and coronary heart disease mortality, Am J Prev Med 29(4) (2005) 335-46. 

[28] J.D. Buckley, S. Burgess, K.J. Murphy, P.R. Howe, DHA-rich fish oil lowers heart 

rate during submaximal exercise in elite Australian Rules footballers, J Sci Med Sport 

12(4) (2008) 503-7. 

[29] E.M. Roth, W.S. Harris, Fish oil for primary and secondary prevention of coronary 

heart disease, Curr Atheroscler Rep 12(1) (2010) 66-72. 

[30] S. Kotani, E. Sakaguchi, S. Warashina, N. Matsukawa, Y. Ishikura, Y. Kiso, M. 

Sakakibara, T. Yoshimoto, J. Guo, T. Yamashima, Dietary supplementation of 

arachidonic and docosahexaenoic acids improves cognitive dysfunction, Neurosci Res 

56(2) (2006) 159-64. 

[31] L.S. Honig, Inflammation in neurodegenerative disease: good, bad, or irrelevant?, 

Arch Neurol 57(6) (2000) 786-8. 

[32] N.D. Riediger, R.A. Othman, M. Suh, M.H. Moghadasian, A systemic review of the 

roles of n-3 fatty acids in health and disease, J Am Diet Assoc 109(4) (2009) 668-79. 

[33] H. Tian, Y. Lu, S.P. Shah, S. Hong, 14S,21R-dihydroxydocosahexaenoic acid 

remedies impaired healing and mesenchymal stem cell functions in diabetic wounds, J 

Biol Chem 286(6) (2010) 4443-53. 

[34] Y. Lu, H. Tian, S. Hong, Novel 14,21-dihydroxy-docosahexaenoic acids: structures, 

formation pathways, and enhancement of wound healing, J Lipid Res 51(5) (2009) 923-

32. 

[35] M. Rahman, S. Beg, M.Z. Ahmad, I. Kazmi, A. Ahmed, Z. Rahman, F.J. Ahmad, S. 

Akhter, Omega-3 fatty acids as pharmacotherapeutics in psoriasis: current status and 

scope of nanomedicine in its effective delivery, Curr Drug Targets 14(6) (2013) 708-22. 

[36] V.A. Ziboh, C.C. Miller, Y. Cho, Metabolism of polyunsaturated fatty acids by skin 

epidermal enzymes: generation of antiinflammatory and antiproliferative metabolites, 

Am J Clin Nutr 71(1 Suppl) (2000) 361S-6S. 

[37] M.H. Zulfakar, L.M. Chan, K. Rehman, L.K. Wai, C.M. Heard, Coenzyme Q10-

Loaded Fish Oil-Based Bigel System: Probing the Delivery Across Porcine Skin and 



290 
 

Possible Interaction with Fish Oil Fatty Acids, AAPS PharmSciTech 19(3) (2017) 1116-

1123. 

[38] C.N. Serhan, N. Chiang, T.E. Van Dyke, Resolving inflammation: dual anti-

inflammatory and pro-resolution lipid mediators, Nat Rev Immunol 8(5) (2008) 349-61. 

[39] K.H. Weylandt, C.Y. Chiu, B. Gomolka, S.F. Waechter, B. Wiedenmann, Omega-3 

fatty acids and their lipid mediators: towards an understanding of resolvin and protectin 

formation, Prostaglandins Other Lipid Mediat 97(3-4) (2012) 73-82. 

[40] B. Dangi, M. Obeng, J.M. Nauroth, M. Teymourlouei, M. Needham, K. Raman, L.M. 

Arterburn, Biogenic synthesis, purification, and chemical characterization of anti-

inflammatory resolvins derived from docosapentaenoic acid (DPAn-6), J Biol Chem 

284(22) (2009) 14744-59. 

[41] H. Grimm, K. Mayer, P. Mayser, E. Eigenbrodt, Regulatory potential of n-3 fatty 

acids in immunological and inflammatory processes, Br J Nutr 87 Suppl 1 (2002) S59-

67. 

[42] M. Rahman, J.K. Kundu, J.W. Shin, H.K. Na, Y.J. Surh, Docosahexaenoic acid 

inhibits UVB-induced activation of NF-κB and expression of COX-2 and NOX-4 in HR-

1 hairless mouse skin by blocking MSK1 signaling, PLoS One 6(11) (2011) e28065. 

[43] D.Y. Oh, S. Talukdar, E.J. Bae, T. Imamura, H. Morinaga, W. Fan, P. Li, W.J. Lu, 

S.M. Watkins, J.M. Olefsky, GPR120 Is an Omega-3 Fatty Acid Receptor Mediating 

Potent Anti-inflammatory and Insulin-Sensitizing Effects, Cell 142(5) (2010) 687-698. 

[44] L.A. Velloso, F. Folli, M.J. Saad, TLR4 at the Crossroads of Nutrients, Gut 

Microbiota, and Metabolic Inflammation, Endocr Rev 36(3) (2015) 245-71. 

[45] R. De Caterina, M.I. Cybulsky, S.K. Clinton, M.A. Gimbrone, P. Libby, The omega-

3 fatty acid docosahexaenoate reduces cytokine-induced expression of proatherogenic 

and proinflammatory proteins in human endothelial cells, Arterioscler Thromb 14(11) 

(1994) 1829-36. 

[46] R. De Caterina, J.K. Liao, P. Libby, Fatty acid modulation of endothelial activation, 

Am J Clin Nutr 71(1 Suppl) (2000) 213S-23S. 

[47] E.E. Williams, L.J. Jenski, W. Stillwell, Docosahexaenoic acid (DHA) alters the 

structure and composition of membranous vesicles exfoliated from the surface of a 

murine leukemia cell line, Biochim Biophys Acta 1371(2) (1998) 351-62. 

[48] S.R. Shaikh, V. Cherezov, M. Caffrey, W. Stillwell, S.R. Wassall, Interaction of 

cholesterol with a docosahexaenoic acid-containing phosphatidylethanolamine: trigger 

for microdomain/raft formation?, Biochemistry 42(41) (2003) 12028-37. 

[49] R.S. Chapkin, N. Wang, Y.Y. Fan, J.R. Lupton, I.A. Prior, Docosahexaenoic acid 

alters the size and distribution of cell surface microdomains, Biochim Biophys Acta 

1778(2) (2007) 466-71. 

[50] D.W. Ma, J. Seo, K.C. Switzer, Y.Y. Fan, D.N. McMurray, J.R. Lupton, R.S. 

Chapkin, n-3 PUFA and membrane microdomains: a new frontier in bioactive lipid 

research, J Nutr Biochem 15(11) (2004) 700-6. 

[51] K.R. Rogers, K.D. Kikawa, M. Mouradian, K. Hernandez, K.M. McKinnon, S.M. 

Ahwah, R.S. Pardini, Docosahexaenoic acid alters epidermal growth factor receptor-

related signaling by disrupting its lipid raft association, Carcinogenesis 31(9) (2010) 

1523-30. 

[52] E. Arab-Tehrany, M. Jacquot, C. Gaiani, M. Imran, S. Desobry, M. Linder, 

Beneficial effects and oxidative stability of omega-3 long-chain polyunsaturated fatty 

acids, Trends Food Sci Tech 25(1) (2012) 24-33. 

[53] E. Valero, M. Villamiel, B. Miralles, J. Sanz, I. Martıńez-Castro, Changes in flavour 
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GENERAL DISCUSSION 

Topical administration represents the main route to attain local therapeutic activity 

of bioactive agents due to its affordability compared to other administration routes (e.g., 

intravenous and intramuscular administration) enhancing patient compliance and 

clinician acceptance [1]. The principal body sites explored that benefit from topical drug 

administration include the skin, vagina, eyes and nose, but also other organs, as the heart, 

could be reach by means of devices that act as a reservoir and are capable to enhance drug 

transport through the endothelium.The main challenge of the topical administration of 

various therapeutics is the requirement to bypass specific biological barriers to achieve a 

required concentration of a given therapeutic agent at the desired site of action for a 

duration that would allow optimal pharmacological activity [2].  

The skin represents the main biological barrier present in the human body, 

controlling the exchange of molecules between the body and the environment; however, 

this protective system also diminishes the penetration of therapeutic agents [3]. In 

particular, the nanoporosity and composition of the stratum corneum represent the most 

significant obstacles for therapeutics to surpass [4] leading to low drug bioavailability 

and efficacy. These deficiencies have led to the administration of higher concentrations 

of therapeutic agents to achieve a desired level of activity, but also to the development of 

complex formulations that enhance skin penetration of the therapeutic to the required skin 

layer. Nanosized drug delivery systems represent an exciting means to safely increase 

drug penetration into the skin [5-7] and maintain a prolonged and constant drug release 

rate at the desired site of action [8]. 

In this thesis we focused on the topical administration of advanced therapeutics  

mainly for skin pathologies (Chapter III and IV), but we have also begun to explore a 

local administration approach that aims to diminish the consequences of 

ischemia/reperfusion (I/R) injury in the heart (Chapter V). We developed our new 

advanced therapeutics using a polymer therapeutics-based approach: the conjugation of 

active agents to a biodegradable and biocompatible polypeptide scaffold to create novel 

nanosized drug delivery systems that improve drug penetration through the skin or 

promote endothelial transport to reach cardiac tissue. 
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To this end, we followed the strategies described below:  

(1) The use of biodegradable and biocompatible polymeric carriers, mainly 

polypeptide-based derivatives that permit chronic treatment via topical 

application while avoiding bioaccumulation and any undesirable side-effects. 

(2) The rational design of the final polypeptide-drug conjugates alone and in 

combination with polypeptide-base penetration enhancers, to enhance the 

activity and promote the attainment of therapeutic drug concentrations at the 

desired place of action. 

(3) An exhaustive physico-chemical characterization of the synthesised 

conjugates to correlate features with the biological activity. 

(4) The use of preclinically relevant models of disease, including ex vivo human 

skin models and an in vivo psoriatic model. 

Polymer-drug conjugates, a subtype of polymer therapeutics, offer advantages 

when compared to other nanomedicines that favor drug skin penetration [9-11]. These 

properties include: (1) chemical stability and controlled physico-chemical features due to 

the presence of a covalent linker between the drug and the polymer carrier, (2) solubility 

of hydrophobic drugs in aqueous media, (3) sustained and site-specific release of drugs 

via rationally designed bioresponsive linkers, and (4) the capacity to load drug 

combinations or add targeting moieties due to polymer multivalency [12]. Herein, we 

have achieved proof of concept regarding the benefits of the implementation of polymer 

therapeutics-based approaches for topical administration in pathologies such as psoriasis 

or wound healing. 

Psoriasis is a common inflammatory chronic disease mediated by the immune 

system with a predominantly cutaneous involvement [13]. There are several clinical 

phenotypes of psoriasis that are classified based on the characteristics of the disease, 

including patient age at disease onset, degree of skin involvement, morphologic pattern, 

and anatomical location [14]. Scaly skin, erythematous plaques, and inflammatory cell 

infiltration characterize plaque psoriasis, the most prevalent type of psoriasis [15, 16]. In 

recent years, the immune response involved in the onset of the disease has been 

extensively investigated, uncovering the relative importance of the Interleukin (IL)-
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23/IL-17 axis [16, 17]. The current development of anti-psoriatic therapeutics, mainly IL-

17 and IL-23 inhibitors, focuses on systemic treatments that target the immune system 

[17]. However, topical treatment with corticosteroids remains one of the most widely 

employed treatments for approximately 80% of patients affected with mild to moderate 

psoriasis [18]. Corticosteroids induce anti-inflammatory, antiproliferative, 

immunosuppressive, and vasoconstrictive effects through binding to intracellular 

corticosteroid receptors and the modulation of pro-inflammatory cytokine gene 

transcription [19]. 

However, many topical corticosteroids that are currently employed or under 

assessment in clinical trials lack adequate physico-chemical properties (e.g., solubility) 

and suffer from local cutaneous (e.g., skin atrophy and acne) and systemic side effects 

(e.g., osteoporosis, diabetes and weight gain) that limit their clinical use [20]. These 

effects correlate with the high doses required and the elevated frequency of applications 

and have been noted for both high and reduced potency corticosteroids. Therefore, any 

advanced therapeutic approaches that allow a reduction in dose and the avoidance of 

systemic circulation of corticosteroids could significantly enhance treatment efficacy and 

patient compliance.  

The application of nanomedicines as advanced therapeutics in the field of topical 

and transdermal delivery of active compounds [21-25] and immunotherapy [26] is 

currently in exponential growth. Liposomes have been the most used carriers for skin 

delivery, although their large sizes and heterogeneous size distribution limit their 

efficiency when acting as skin permeation enhancers [27, 28]. The application of 

controlled polymerization techniques and the tailoring of critical nanocarrier parameters, 

such as size and Z-potential, can significantly enhance the penetration of active 

substances into the skin, as has been demonstrated for polypeptide-based nanostructures 

[29, 30]. Furthermore, the mode of the drug encapsulation/entrapment [31] or polypeptide 

carrier-conjugation [32, 33] significantly influences the site of drug release and kinetic 

profile of drug release. Although currently underexplored for skin delivery, rationally-

designed bioresponsive linkers as part of a nonmedicinal approach can optimize the 

therapeutic output of topical treatment by enhancing efficiency and reducing side effects 

[34, 35]. Finally, the vehicle used for the administration of a given therapeutic may also 

have an essential synergistic effect; formulations with an optimal interaction between the 

vehicle and the therapeutic agent can enhance penetration and hydration of the skin [36].  
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We developed healthy and inflammatory ex vivo human skin models and establish 

an in vivo psoriatic murine model with the hope of understanding the complex pathology 

and histological features of psoriasis (Chapter II). These models also provide a useful 

platform to confirm advanced anti-inflammatory and anti-psoriatic therapeutics. 

Moreover, the ex vivo human skin model allows the evaluation of therapeutics in a more 

realistic setting than those in in vitro assays. 

During the development of the inflammatory ex vivo skin model, we assessed 

tissue viability after the induction of inflammation by treatment with LPS and EGF, 

finding maintained tissue viability at each time and concentration evaluated. 

Histomorphologic analysis of the skin samples with H&E staining and the Ki67 and 

Ck5/6 markers confirmed that treated skin maintained its structure, viability, and 

proliferation capacity in response to the inflammatory insult. Of note, the skin mimicked 

certain features of the psoriasis, including induced epidermal thickness and acanthosis, in 

good agreement with other reports [37, 38]. We also assessed the inflammatory model 

through the quantification of pro-inflammatory cytokines released into the culture media 

(e.g., IL-1b, TNF-α, INF-γ, and IL-6), and then employed this model to evaluate the safety 

and the anti-inflammatory activity of our newly developed family of drug conjugates in 

Chapter IV. However, the absence of a full immune response in this ex vivo human skin 

represents a significant limitation in the modeling of autoimmune diseases, such as 

psoriasis. Therefore, the information from in vivo preclinical mouse models can 

complement the ex vivo models with regards to the understanding of the immune 

mechanisms contributing to disease development and reflect the critical features of the 

human disease [39]. 

With this in mind, we subsequently developed an imiquimod (IMQ)-induced 

model of skin inflammation in immunocompetent (BALB/c) mice for the preclinical 

study of psoriasis. Although the main limitation of the IMQ model relates to the duration, 

this acute model does not represent a chronic disease [40], this model remains relevant 

and widely employed as it mimics the histopathological characteristics of inflamed skin 

and induces a systemic inflammatory response [41]. We developed this model by 

applying IMQ cream daily to the mouse back and ear for seven consecutive days, 

following the timing reported in other studies [41-43]. After this point, we evaluated the 

histological characteristics of the mice for ten days to determine the best time for further 

studies into the application of anti-psoriatic treatments.  
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We employed different methodologies to assess disease progression. We 

monitored mouse body weight measurements to ensure the safety of the treatment, 

demonstrating that after the application of the treatments the animals maintain and even 

recover weight. At the gross morphological level, we used the PASI score [44] to evaluate 

itching, erythema, scaling, and skin thickness on the back of the mice, revealing a 

maximum level at day seven which remained for up to five days later. We also assessed 

the increase in epidermal thickness by H&E staining on the back and treated ear, revealing 

marked epidermal hyperplasia and hyperkeratosis compared to the control group at day 

seven that was maintained up to five days after. In the case of the treated mouse ear, we 

corroborated the increase in epidermal thickness via caliper measurements every two 

days. Therefore, our mouse model demonstrated the same histopathologic changes as 

observed in human psoriasis [45]. Of note, we discovered a significant enlargement of 

the spleen after the application of IMQ cream, corroborating the results of previous 

studies [41, 46, 47]. The enlargement was maintained for five days after the last 

application of IMQ, correlating this phenomenon with the increase in pro-inflammatory 

cytokine synthesis observed in tissue and serum. In both cases, we observed a significant 

induction of the pro-inflammatory cytokines that play a crucial role in the onset of 

psoriasis such as IL-23, INF- γ, and TNF-α [48]. These findings corroborated the results 

obtained by other authors using the topical administration of IMQ as a trigger for the 

disease [41, 43, 49].  

We also discovered the importance of the appropriate vehicle to transport 

polymer-drug conjugates into the skin during the development of this thesis [50]. Of note, 

penetration through the skin relies on the combination of the three factors: skin features, 

the physico-chemical characteristics of the polymer-drug conjugate (in this case), and the 

vehicle. Vehicles should possess sufficient residence time on the skin to allow a 

controlled and sustained release of the drug to provide a therapeutic dose, and also should 

enhance patient compliance [51-53]. Importantly, a universal vehicle does not exist, and 

so, vehicle formulation should consider the specific physico-chemical properties of the 

nanomaterial employed to maximize drug release across the skin. 

 For this reason, we used a novel biodegradable hyaluronic acid-poly-L-glutamate 

cross-polymer vehicle (HA-CP; Yalic®) as a penetration enhancer (developed in 

collaboration with Polypeptide Therapeutic Solutions S.L.). The rationale for the 

development of this penetration enhance lies in the properties of hyaluronic acid (HA), 
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whose use in dermal applications has increased in recent years [54-56] (Chapter III). We 

implemented a synthetic methodology to synthesize the cross-linked HA using PGA and 

lysines as cross-linkers, following well-established methodologies [57, 58]. The 

degradation of the HA-based materials in the presence of hyaluronidase revealed a more 

rapid degradation for linear HA compared to the cross-linked vehicle. These findings 

support the results obtained in a hydration study in human volunteers, in which the HA-

CP vehicle prolonged and improved the skin hydration over time compared to linear HA.  

 The biological evaluation in vitro in keratinocytes and fibroblasts cells 

demonstrated that the cross-polymer maintained cell viability when compared to linear 

HA. Moreover, safety assessments of HA-CP in an ex vivo human skin model (see 

Chapter II for more details) revealed the maintainance and even improvement of tissue 

viability after 72 h of treatment, thereby demonstrating suitability for topical applications. 

We also studied the capacity of a fluorescently-labeled HA-CP cross-polymer to penetrate 

the skin by Franz diffusion cells, demonstrating that the HA-CP can significantly 

penetrate the viable epidermis when compared to linear HA, which remains mainly in the 

stratum corneum, in good agreement with previous studies [59, 60]. Also, we evaluated 

the properties of HA-CP as a skin penetration enhancer by evaluating its role as a vehicle 

for the delivery of a family of amphiphilic block copolymers of different nature, using 

PPhe and PBG with different degree of polymerization. We demonstrated that the 

presence of Phe as an amino acid in the polymer chain, as well as the critical micelle 

concentration (CMC) and the encapsulation efficiency (E.E) of a fluorophore (Dil) as a 

model hydrophobic drug drove changes in the nanocarrier solution conformation. 

Micelles composed by the Phe-based block copolymers possessed a higher tendency to 

form micelles (lower CMC) and a lower capacity to encapsulate Dil than the BG-based 

block copolymers. Finally, we confirmed the ability of the HA-CP cross-polymer to 

enhance the penetration of all the micelles through to the viable epidermis while avoiding 

problems related to systemic exposure. 

Therefore, we have demonstrated the suitability of a novel biodegradable cross-

polymer (HA-CP) for topical applications as a vehicle to increase the penetration of 

nanocarriers. Encouraged by this approach, we used this vehicle for the application of the 

PGA-FLUO conjugate as a treatment for psoriasis, aiming to improve the penetration of 

PGA-FLUO into the skin. Within Chapter IV of this thesis, we conjugated the poorly 

water-soluble corticosteroid, fluocinolone acetonide (FLUO), to a water-soluble poly-L-
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glutamic acid (PGA) polymer via an ester bond (PGA-FLUO), to bypass the noted 

limitations of drug treatment and provide more controlled and sustained release of FLUO 

within the epidermis. We also validated the anti-psoriatic activity of PGA-FLUO using 

both preclinically-relevant ex vivo (including human-derived models) and an in vivo 

psoriatic model (described in Chapter II). 

We synthesized PGA-FLUO conjugates using well-established methodologies 

[61] and then characterized them using a full battery of physico-chemical techniques, 

ensuring identity and purity. We discovered self-assembly behavior of the conjugates in 

aqueous environments, creating assemblies with a hydrodynamic radius of 40 - 100 nm 

and a highly negative Z-potential value (-50 mV) by DLS measurements. We 

corroborated a globular nanoassembly for PGA-FLUO by TEM, in agreement with other 

systems based on PGA with similar structures which revealed spherical shapes around 

100 nm [62]. Drug release kinetics at relevant pHs (7.4 and 5.5) revealed higher drug 

release at pH 7.4 than a pH 5.5, an unexpected result due to higher degradability of the 

ester bond under acidic conditions, as previously reported [63-65]. However, this 

phenomenon could be explained by the different solution conformation of the conjugate 

at different pHs, which at pH 7.4 presented a random coil structure meanwhile at pH 5.5 

a alpha-helix structure, more compact and less accessible than the random coil. We also 

studied the physico-chemical characteristics as well as the drug release kinetics of the 

conjugate in the HA-CP vehicle; the conjugate maintained the same size and globular 

shape and displayed a slower and more sustained release compared to the conjugate in 

PBS buffer. These results suggested that the application of the conjugate in the HA-CP 

vehicle promotes a more controllable and sustained release at the desired place of action, 

spacing the necessary doses to achieve the desired therapeutic effect. 

Biological evaluation in vitro revealed that our newly developed PGA-FLUO 

conjugate maintained/enhanced skin cell viability (keratinocytes and fibroblasts) when 

compared to the unconjugated drug. Moreover, cell internalization of a fluorescently-

labeled conjugate in keratinocytes studied by flow cytometry and confocal microscopy 

demonstrated an energy-dependent endocytic uptake and a clear colocalization with 

lysosomes. We also studied the anti-inflammatory activity of the conjugate in LPS-

induced macrophages to evaluate alterations in the secretion of pro-inflammatory 

cytokines. Unexpectedly, we discovered that conjugation enhanced the anti-inflammatory 

capacity of free FLUO. Importantly, during permeation studies in human skin by Franz 
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diffusion cells, we observed a considerable increment in the amount of the fluorescently-

labeled conjugate that reached deeper epidermal layers when applied within the HA-CP 

vehicle than applied in water.   

We corroborated the in vitro findings in two ex vivo models: an optimized 

inflammatory ex vivo human skin model and a reconstructed inflammatory skin 

equivalent model [66]. In both models, we demonstrated the safety of PGA-FLUO and 

the improved ability to reduce the secretion of the pro-inflammatory cytokine IL-6 from 

the skin when compared to the free FLUO.  

Moreover, in vivo proof of concept of the anti-psoriatic activity of our conjugate 

has been achieved in our preclinical IMQ-induced psoriatic mouse model (details in 

Chapter II). Histological comparisons with free FLUO in cream demonstrated that PGA-

FLUO applied in cream produced a more significant reduction in epidermal thickness, 

both in the IMQ-treated back and ear of the mouse model. Remarkable, the group treated 

with PGA-FLUO in the HA-CP vehicle revealed a marked reduction of epidermal 

thickness, compared with healthy animals. These results could be explained due to a 

synergistic effect between the conjugate and the vehicle, promoting an improvement in 

the controlled release of the drug and its permanence in the viable epidermis while also 

improving skin hydration in healthy volunteers (see Chapter III for more details). 

Systemic analyses provided similar results to the localized histological analyses: PGA-

FLUO applied in cream provided a more significant reduction of the release of pro-

inflammatory cytokines related to psoriasis disease (IL-23 and IFN-γ) in serum and tissue 

compared to free FLUO. Of note, treatment with PGA-FLUO within HA-CP provided 

the best results compared to all other treatment modalities. In agreement with these 

results, we observed the same trend in spleen weight reduction, perhaps due to the 

decrease in the synthesis of pro-inflammatory cytokines [41]. Importantly, treatment with 

PGA-FLUO within HA-CP returned spleen weight in psoriatic model mice to that of 

healthy controls.  

 In conclusion, the rationally designed PGA-FLUO conjugate combined with an 

optimized HA-CP vehicle may represent an effective strategy for the treatment of 

psoriasis. This combination provides specific characteristics and advantages compared to 

other nanocarriers; firstly, the conjugation of the drug allows the better controlled of the 

drug release kinetics in the specific skin layer, and secondly, the use of the HA-CP vehicle 
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promotes the penetration of the conjugate into the skin, as well as improves the 

characteristics of the psoriatic skin, such as hydration and dryness. These results lay the 

groundwork for future studies and development of new anti-psoriatic treatments, using 

other types of drugs or drug combination. 

As we have demonstrated during this thesis, PGA-drug conjugates can penetrate 

and permeate through the different layers of the skin, even in cases where the skin barrier 

is altered, such as in the case of psoriasis; therefore, they may find use in the enhancement 

of skin regeneration and repair, thereby contributing towards wound healing. Encouraged 

by these results, we also studied the potential of polymer-drug conjugates to enhance the 

treatment of skin wounds and ischemia-reperfusion injury in the heart. 

Chronic wounds are considered a silent epidemic that affects between 1 - 2% of 

the population in developed countries [67, 68]. Several therapeutic agents have 

demonstrated the capacity to promote skin wound healing, including the family of omega-

3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid (DHA), due to 

its anti-inflammatory properties [69, 70] and the capacity to modify endothelial cell 

function [71, 72]. In Chapter V, we implemeneted a type of DHA composed of two 

chains containing 12 double bonds called diDHA, to develop advanced therapeutics 

towards the treatment of chronic wounds. 

Lipid oxidation of these fatty acids can compromise the implementation of these 

compounds by destabilizing the molecule and decreasing the intrinsic activity [73]. To 

enhance the stability of diDHA, we proposed the generation of a family of PGA-diDHA 

conjugates formed through an ester bond in the hope of protecting the drug from 

degradation and increasing skin wound healing activity. To this end, we synthesized, 

characterized, and biologically evaluated a family of PGA-diDHA conjugates with 

different diDHA loadings (2.2, 6.4, and 9.1 mol%) (Chapter V). diDHA conjugation led 

to increased solubility in water, stability (as evidenced by 1H-NMR), and decreased lipid 

peroxidation of diDHA over time (as evidenced by the malondialdehyde colorimetric 

assay). We also discovered a self-assembly behavior of the conjugates in aqueous 

environments, as occurred with other polymer-drug conjugates developed in this thesis 

due to the hydrophilic-lipophilic ratio. PGA-diDHA conjugates possessed a 

hydrodynamic radius between 20 and 100 nm, in good agreement with the results 

obtained by TEM images, thereby confirming the existence of a globular nanoassembly 
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[62]. Of note, we observed smaller conjugate sizes with higher diDHA loading, results 

related to the critical concentration of aggregation values, which are smaller in conjugates 

with higher diDHA loadings. Moreover, as in the case of the PGA-FLUO conjugates 

(Chapter IV), we discovered a slightly higher drug release kinetics at pH 7.4 than at pH 

5.5 – an unexpected phenomenon that again could be explained by the different 

conformation of the conjugate at different pHs, with overall accessibility higher at pH 

7.4. 

Concerning the biological evaluation, cell viability assays in vitro revealed that 

PGA-diDHA conjugates enhanced skin cell viability (keratinocytes and fibroblasts) and 

maintained nearly complete viability in response to the concentrations evaluated. Of note, 

unconjugated diDHA causes cellular toxicity at higher concentrations, demonstrating that 

diDHA conjugation improved drug stability and decreased cell toxicity in vitro. 

Moreover, in an in vitro scratch assay in fibroblasts, to evaluate the capacity of the 

conjugates to enhance the migration and proliferation into the wounded monolayer, only 

the conjugate with medium diDHA loading (PGA-diDHA6.4) showed a 20% of 

improvement in cell migration compared to control.  

As a topical application, we also assessed the capacity of fluorescently labelled 

PGA-diDHA conjugates with different diDHA loadings (2.2 and 9.1 mol%) to penetrate 

into the human skin by Franz diffusion cells, revealing that the conjugate with lower 

diDHA loading can penetrate deeper into the viable skin, a finding that could be explained 

by saturation of the skin with higher diDHA loadings. Of note, we failed to observe any 

signal in the receptor chamber that could indicate that the conjugate remains in the 

epidermis without reaching the bloodstream and allowing adverse effects on a systemic 

level. 

Encouraged by the successful application of PGA-diDHA conjugates in vitro, 

further studies will be focused on the in vivo evaluation of the selected conjugates in 

diabetic rats, since the biological evaluation revealed that the diDHA loading in the 

conjugate determines the final biological activity.  

Finally, we also demonstrated the ability of the PGA-diDHA conjugates to 

enhance the healing process following damage to the heart produced by I/R associated 

with acute myocardial infarction (AMI) in collaboration with the group of Dr. P. 
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Sepúlveda (Hospital La Fe, Valencia, Spain). In vitro evaluation using a lactate 

dehydrogenase assay revealed that PGA-diDHA6.4 conjugate reduced heart cell damage 

in comparison with free diDHA. Infusion of nanoconjugates and free diDHA in an in vivo 

I/R rat model showed a significant reduction in infarct size following PGA-diDHA6.4 

administration before reperfusion in comparison with free diDHA at the same dose (12 

% vs. 28% infarcted area with or without treatment, respectively). Moreover, 

intracoronary infusion of PGA-diDHA6.4 nanoconjugate after 90 min of ischemia in a 

swine model before reperfusion limited edema and decreased the area in risk seven days 

after experimental infarction as assessed by cardiac magnetic resonance and histological 

analysis (data included in the Ph.D. thesis of Sandra Tejedor at the laboratory of Dr. Pilar 

Sepúlveda).  Collectively, our data established the potential use of PGA-diDHA6.4 in 

mitigating I/R-induced injury, thereby providing a new therapeutic agent for future 

clinical studies. 

In summary, we believe that the results reported in this thesis support the 

development of polypeptide-based conjugates as an effective strategy for the local 

delivery of therapeutic agents and the treatment of a range of conditions. 
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FINAL CONCLUSIONS 

During the development of this Thesis, we demonstrated the applicability of 

polymer therapeutics as platform technology to topically administer bioactive agents or 

drugs for the treatment, among others, of skin disorders such as psoriasis or wound 

healing.  

Herein, we highlight the main conclusions resulting from this work: 

 

1. We have developed ex vivo human skin models using human skin explants from 

donors as a useful tool to validate polymer-based treatments. We established a 

healthy skin model as well as an inflammatory skin model by treating the explants 

with a combination of LPS and EGF. 

 

The established ex vivo models have been validated as relevant preclinical models 

of disease for skin disorders. We evaluated tissue viability both in the healthy and 

in the inflammatory model by means of MTT assay as well as by 

immunohistochemistry, and several inflammatory markers were also used to 

analyze the inflammatory process. Finally, we detected the modulation of the 

release of pro-inflammatory cytokines to the culture media, demonstrating the 

inflammatory effect produced by the combined action of LPS and EGF.  

 

2. We have characterized a preclinically relevant acute psoriatic mice model for 

testing and validating the polypeptide-based therapies developed. By topical 

application of imiquimod (IMQ) cream, we triggered the intrinsic characteristics 

of the psoriasis disease. We evaluated for ten days the progression and 

maintenance of the disease, by assessing the morphology of the skin using PASI 

score and also H&E staining, focusing on specific parameters of the disease, such 

as the epidermal thickening. We also studied the increase in spleen weight after 

the application of IMQ, correlated with the synthesis of cytokines. Finally, we 

identified specific pro-inflammatory cytokines related to the human disease both 

in tissue and in serum. 

 

3. To improve and optimize the penetration of nanocarriers through the skin, we 

have developed and fully characterized a hyaluronic-poly-L-glutamate cross-
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polymer (HA-CP) vehicle (composed by hyaluronic acid (HA) and poly-L-

glutamic acid (PGA) cross-linked through lysine moieties). We validated and 

demonstrated its properties as skin penetration enhancer by means of its use with 

a family of amphiphilic block copolymers of different nature and consequently 

different solution conformation, thereby modulating the final skin permeation 

enhancement. Changes in the nanocarrier solution conformation were driven by 

the presence of Phe as aminoacid in the polymer chain, as well as the polymer size 

among other features.  

 

4. We have developed a family of polymer-drug conjugates, based on the 

biodegradable carrier poly-L-glutamic acid (PGA), incorporating a corticosteroid 

(fluocinolone acetonide) by means an ester bond for the topical treatment of 

psoriasis. An exhaustive characterization using several techniques were employed 

to fully characterize our conjugates in relevant solutions, establishing a relation 

between the structure and their biological activity. 

 

5. In vitro evaluation of the developed conjugates in relevant skin cell lines revealed 

the absence of toxicity up to the concentrations tested. Cellular internalization and 

anti-inflammatory activity studies demonstrated the ability of the conjugates to 

penetrate into the skin cells and maintain the anti-inflammatory activity of the 

drug once conjugated to the PGA. 

 

6. Ex vivo evaluation of the conjugate alone or applied in the HA-CP vehicle as 

penetration enhancer demonstrated its presence in the viable epidermis. 

Moreover, using two ex vivo models, our developed inflammatory ex vivo human 

skin model and a reconstructed inflammatory skin equivalents model (in 

collaboration with Freie Universität Berlin, Prof S. Hedtrich), we demonstrated 

the enhanced activity of the conjugate to reduce the release of IL-6 compared to 

the free drug. 

 

7. In vivo evaluation in our established psoriatic mice model demonstrated the anti-

inflammatory/anti-psoriatic efficacy and safety of our conjugate compared to the 

free drug demonstrating the importance of the use of adequate linking chemistry 
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in order to control drug release kinetics in the adequate skin layers. Of note, the 

conjugate applied in the HA-CP vehicle revealed enhanced activity and 

effectiveness, demonstrating also the importance of the selection of an appropriate 

vehicle to improve the penetration through the skin. HA-CP showed high 

hydration properties which synergizes with the anti-inflammatory effects of the 

corticosteroid conjugate, resulting in a significantly improved therapeutic 

approach for psoriasis. 

 

8. Finally, we have developed a new family of polymer-drug conjugates, using PGA 

as a carrier, incorporating different loadings of an omega 3 fatty acid (diDHA) by 

means of an ester bond for the topical treatment of wound healing. We thoroughly 

studied the physico-chemical characteristics of the conjugate optimizing diDHA 

loading, and the in vitro biological evaluation revealed its suitability for wound 

healing applications, enhancing the closure of the wound.  

 

9. The family of PGA-diDHA conjugates were validated in vivo in a wound healing 

scenario using an ischemia-reperfusion (I/R) model in collaboration with Hospital 

La Fe (Dr P. Sepúlveda) clearly showing the advantages of polymer conjugation. 

Infusion of the conjugates and free diDHA in an in vivo I/R rat model showed that 

infarct size was significantly reduced when PGA-diDHA6.4 was administrated 

before reperfusion in comparison with free diDHA at the same dose. Collectively, 

our data showed that PGA-diDHA6.4 could be effective in mitigating I/R-induced 

injury thereby providing a new therapeutic agent for future clinical studies. 
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1. Introducción y antecedentes de la Tesis  

 
La administración local de agentes bioactivos representa la principal vía de 

administración para lograr una actividad terapéutica local debido a su idoneidad y 

asequibilidad en comparación con otras vías de administración, como la intravenosa e 

intramuscular, lo que mejora el cumplimiento del tratamiento por parte del paciente y la 

aceptación por parte del clínico [1]. Los principales lugares del cuerpo que pueden 

beneficiarse de la administración local son la piel, la vagina, los ojos o la nariz, pero 

también otros órganos, como el corazón, a los que se puede llegar mediante dispositivos 

que actúan como reservorio y son capaces de mejorar el transporte del fármaco a través 

del endotelio. El principal reto de la vía de administración tópica es sortear eficientemente 

las barreras biológicas para lograr una concentración óptima del agente terapéutico en el 

lugar de acción deseado, durante el tiempo necesario para llevar a cabo la actividad 

farmacológica [2]. 

 

La piel es el órgano más extenso del cuerpo humano, por lo que representa la 

principal barrera biológica del cuerpo frente a amenazas externas [3]. La piel está 

compuesta por distintas capas, divididas principalmente entre la epidermis y la dermis. 

Esta complejidad fisiológica ejerce una protección a nuestro organismo, sin embargo, 

también evita la penetración de agentes terapéuticos cuando se administran de forma 

tópica, y por tanto su efectividad se encuentra limitada. Además, muchos de los 

medicamentos tópicos actualmente utilizados o en ensayos clínicos carecen de las 

características físico-químicas adecuadas para su administración a través de la piel. Por 

este motivo, actualmente se están desarrollado varias estrategias para mejorar las 

propiedades físico-químicas de los agentes terapéuticos de acuerdo con las características 

del sitio de acción deseado, mejorando la administración tópica así como la estabilidad 

de los fármacos. Algunos métodos incluyen la utilización de profármacos [4] o el 

desarrollo de nanomedicinas mediante la conjugación de agentes terapéuticos a diferentes 

portadores con características específicas [5]. Dichas nanomedicinas protegen al agente 

terapéutico frente a la degradación prematura y también interactúan con varios 

componentes de la piel, incrementando su penetración a través de las diferentes capas de 

la piel, y aumentando el tiempo de retención en el sitio de acción deseado [6, 7].  
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Los portadores de tamaño nanométrico son especialmente útiles para la 

administración pasiva de agentes terapéuticos, induciendo el tránsito a través de la piel 

sin necesidad de aporte de energía o de receptores específicos. Algunos de los 

nanotransportadores más utilizados son las nanopartículas, los liposomas, las 

micropartículas, los nanocristales, los polímeros, los niosomas, los dendrímeros, entre 

otros [8, 9].  

En esta Tesis se describe un enfoque específico de la nanomedicina mediante la 

utilización de Polímeros Terapéuticos [10], cuyo principal objetivo en este trabajo es 

aumentar la penetrabilidad de los agentes bioactivos a través de la piel, mejorar sus 

propiedades físico-químicas y liberar el fármaco de una manera controlada en la capa de 

la piel específica. Los Polímeros Terapéuticos engloban una amplia variedad de sistemas 

macromoleculares, presentando la mayoría una estructura común basada en un enlace 

químico (covalente) entre el agente(s) bioactivo y el transportador polimérico que es 

soluble en medio acuoso. Las principales ventajas de la conjugación de fármacos a los 

transportadores poliméricos se pueden resumir en: (i) mayor solubilidad en medios 

acuosos, (ii) control sobre el tamaño final del conjugado (tamaño nanométrico), (iii) 

protección del agente terapéutico contra la degradación por enzimas proteolíticas o 

absorción celular inespecífica, (iv) prevención o reducción de la agregación, la 

inmunogenicidad y la antigenicidad, (v) farmacocinética modificada tanto a nivel celular 

como incluso subcelular y (vi) liberación controlada y sostenida del fármaco en el lugar 

de acción específico gracias a los enlaces polímero-fármaco biosensibles en presencia de 

condiciones específicas [11]. Además, el desarrollo de nuevos Polímeros Terapéuticos 

basados en la utilización de polímeros biodegradables y biocompatibles, como los 

aminoácidos, supone un avance frente a las limitaciones que presentan otros polímeros 

que no son biodegradables [12]. En esta Tesis, nos centramos en la utilización de 

poliglutamatos (PGA) para llevar a cabo la conjugación de fármacos, basándonos en los 

buenos resultados obtenidos en ensayos clínicos del conjugado PGA-paclitaxel 

(OpaxioTM) para el tratamiento de varios tipos de cáncer [13]. 

Cabe destacar que la correcta selección del vehículo para la administración de 

estos polímeros es un parámetro crítico para favorecer la eficacia y la aceptabilidad de las 

formulaciones tópicas, ya que la permeabilidad a través de las diferentes capas de la piel 

está modulada y relacionada con las propiedades del vehículo utilizado [14], por lo que 

las propiedades físico-químicas del vehículo condicionan su efecto sobre la piel. Por ello, 
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en este trabajo se propone la utilización de un nuevo vehículo basado en el ácido 

hialurónico [15, 16], para favorecer la penetración de estos polímeros a través de la piel.  

En esta Tesis nos hemos centrado en la administración tópica de terapias 

avanzadas validando una nueva plataforma de administración de fármacos a nivel tópico 

basada en la utilización de Polímeros Terapéuticos, principalmente para patologías de la 

piel (como la psoriasis o la cicatrización de heridas), pero también hemos explorado 

ligeramente un enfoque de administración local para disminuir el daño de la lesión por 

isquemia/reperfusión (I/R) en el corazón. 

 

2. Objetivos de la investigación  

 
La presente tesis doctoral se centra en el desarrollo de plataformas poliméricas 

para la administración de fármacos de manera tópica como nuevos enfoques de 

tratamiento, por ejemplo, para trastornos de la piel, como la psoriasis y la cicatrización 

de heridas. El desarrollo de nuevos conjugados poliméricos debe basarse en enfoques 

sintéticos bien establecidos así como  en el diseño racional de los conjugados, seguido de 

una caracterización físico-química exhaustiva y una evaluación biológica completa en 

modelos preclínicos relevantes, con el objetivo de avanzar hacia un posible escenario 

clínico. 

Este objetivo general puede resumirse en los siguientes objetivos específicos: 

1. Desarrollo y caracterización exhaustiva de modelos de piel humana ex vivo sanos 

e inflamatorios, así como un modelo preclínico de psoriasis en ratones, ambos como 

plataformas para evaluar y validar terapias avanzadas basadas en polipéptidos. 

(Capítulo II) 

 

2. Síntesis, caracterización físico-química completa y evaluación biológica de nuevos 

materiales a base de ácido hialurónico reticulado y polipéptidos (solos o en 

combinación) como portadores capaces de mejorar la penetración de fármacos a 

través de la piel. (Capítulo III) 

 

3. Diseño, síntesis y caracterización físico-química exhaustiva de conjugados de 

ácido poli-L-glutámico y corticosteroides para el tratamiento tópico de la psoriasis. 

Optimización de la química de conjugación y evaluación biológica para lograr una 
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prueba de concepto para mejorar la actividad antiinflamatoria y antipsoriásica 

después de la conjugación. (Capítulo IV)  

 

4. Diseño, síntesis, caracterización físico-química exhaustiva y evaluación biológica 

en modelos preclínicos relevantes de una familia de conjugados de ácido poli-L-

glutámico para los trastornos de cicatrización de heridas (incluida la cicatrización 

de heridas en la piel y en el tejido cardíaco). (Capítulo V) 

 

3. Metodología  

3.1. Materiales e instrumentación 

3.1.1. Materiales 

Todos los reactivos y disolventes utilizados durante el desarrollo de la presente 

Tesis fueron de grado analítico o superior, sin purificación adicional (a no ser que se 

indique lo contrario en el correspondiente apartado). Generalmente, las reacciones 

llevadas a cabo en disolventes orgánicos se realizaron bajo atmósfera inerte de nitrógeno 

o argón. El agua utilizada era desionizada, presentando una conductancia menor que 0.06 

μS (agua milliQ). 

Los métodos más empleados para llevar a cabo la purificación de los conjugados 

poliméricos fueron principalmente la cromatografía por exclusión de tamaño, utilizando 

resina Sephadex® LH-20 medium (disolventes orgánicos) o Sephadex® G-25 medium 

(fase acuosa). Además, se utilizó la diálisis (con membranas de 3, 30 kDa) y la 

ultrafiltración (Vivaspin®).  

Los animales de experimentación utilizados en la Tesis, se adquirieron en Envigo 

Laboratories Inc. (España). Se utilizaron ratones machos de 6 semanas de la cepas 

BALB/c OlaHsd. 

3.1.2. Instrumentación 

Espectroscopía de Resonancia Magnética Nuclear (RMN): Los espectros de 

RMN se llevaron a cabo en un sistema Bruker Advance AC 300 (Billerica MA, USA) 

utilizando al menos 5 mg de compuesto, temperatura ambiente y disolventes deuterados. 

Los datos obtenidos se analizaron mediante el software Topspin (Bruker GmbH, 

Karlsruhe, Germany). 
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Espectroscopía Ultravioleta-Visible (UV-Vis): Los espectros fueron adquiridos 

en un espectrofotómetro Jasco V-630 (JASCO Corporation, Spain) a 25˚C con celdas de 

cuarzo de 1 cm y ancho de banda de 0.5 nm.  

Espectroscopia por dicroísmo circular: Se llevó a cabo en un espectrómetro J-

815 CD Spectrometer equipado con un soporte de celda termostatizado (PTC-423), un 

refrigerante (JASCO Corporation, Spain) y flujo controlado de nitrógeno (~2.7 L.min-1) 

(Afriso Euro-Index, Germany). Las muestras se midieron en agua MilliQ, PB 7.4 y a 

diferentes pHs (7.4 y 5.5) para polímeros en la forma sal sódica. Las medidas se realizaron 

en cubetas de cuarzo, de d= 0.1 cm y por triplicado.  

Dispersión de Luz Dinámica (DLS): Las medidas tanto de tamaño de partícula 

como de potencial Z se realizaron a 25˚C en un dispositivo Malvern Zetasizer Nano ZS 

equipado con un láser (532 nm), utilizando un ángulo de dispersión fijo de 90˚ (Malvern 

Instruments Ltd., UK). La celda utilizada fue DTS 1070. Para las medidas de tamaño, el 

tiempo de equilibrado fue de 0 min con atenuación automática. El índice de refracción 

del disolvente (agua) fue 1.330 y, por lo tanto, la viscosidad fue 0.8872. Para el análisis 

de los diferentes polímeros se utilizó el índice de refracción del látex de poliestireno 

(1.590). Cada muestra se midió tres veces con 10 submedidas. 

Cromatografía de permeabilidad en gel en medios acuosos: Las mediciones en 

medios acuosos que contienen 150 mM de NaNO3, se realizaron utilizando 5 mM de 

tampón fosfato (PB) a pH 5 y 0.005 % (p/p) de azida sódica como aditivo en un sistema 

AF2000 de Postnova Analytics (Landsberg, Germany). El sistema fue configurado para 

funcionar con una bomba isocrática (PN1130), un muestreador automático (PN5300), un 

índice de refracción (RI, PN3150), 21 ángulos múltiples de dispersión de luz (MALS, 

PN3621) y detectores ultravioleta-visible (UV-Vis) (PN3211). La columna utilizada fue 

TSKgel G6000PWXL, empleando un caudal de trabajo de 0.8 mL/min a 30°C. El índice 

de refracción y la dispersión de luz multiángulo se utilizaron para la detección y la 

determinación del peso molecular.  

Microscopía Electrónica de Transmisión (TEM): Las imágenes se adquirieron 

en un microscopio de transmisión electrónica EM 410 Philips. Para su preparación, las 

muestras se adsorbieron en rejillas de cobre recubiertas por una película de carbón de 200 

mallas. Seguidamente, se realizó una tinción de contraste negativo con una disolución de 

ácido fosfotúngstico al 0.1%.  



324 
 

Victor2 WallacTM para medidas de absorbancia o fluorescencia: Para 

determinar absorbancias o fluorescencias se utilizó un equipo Victor2 WallacTM 1420 

(Perkin Elmer, Spain) utilizando placas de 96 pocillos y las correspondientes longitudes 

de onda (emisión/excitación) propias de cada compuesto. 

  Cromatografía líquida de alta eficacia (HPLC): La determinación analítica de 

la cantidad de fármaco libre y la cinética de liberación de los fármacos se realizó en un 

sistema HPLC Waters (Waters Corporation, S.A, Spain) provisto de bombas binarias 

2x515, automuestreador 717 Plus, FLD 2475 y PDA 2996. Las medidas se realizaron 

utilizando una columna analítica RP C-18 Licrospher (125x4.0mm) (Scharlab S.L., 

Spain). Los cromatogramas fueron tratados con el software Empower 2.0 (Waters 

Corporation, S.A, Spain).   

Microscopía Confocal: Las imágenes fueron adquiridas con un microscopio 

(invertido) láser confocal Leica, modeloTCS SP8 AOBS (Leica Microsystems 

Heidelberg and MBH, Germany). Todas las imágenes se adquirieron bajo las mismas 

condiciones y se analizaron mediante el software de Leica LAS AF Lite (Leica 

Microsystems Heidelberg and MBH, Germany). 

3.2. Métodos más relevantes 

3.2.1. Protocolos de síntesis 

Síntesis de un polímero entrecruzado de ácido hialurónico (HA) y ácido poli-

glutámico (PGA): Paralelamente se preparan cuatro soluciones: HA (100 mg, 0.249 

mmol, 1 eq.) (solución A) y PGA (2.6 mg, 0.017 mmol, 0.07 eq.) (solución B) se 

disuelven por separado en agua destilada. (C) DMTMM·Cl utilizado como agente de 

acoplamiento (44 mg, 0.159 mmol, 0.6 eq. a ácidos carboxílicos totales) se disuelve en 

agua destilada. La sal de clorhidrato de L-lisina (1.5 mg, 0.008 mmol, 0.03 eq. a ácidos 

carboxílicos totales) se disuelve en agua destilada. A continuación, la solución B se 

agrega a la A, seguidamente se agrega C y se mezcla, ajustando el pH a 7 con unos pocos 

microlitros de 1 M NaOH. La solución se agita durante 15 minutos. A continuación, se 

añade D y se ajusta el pH a 8.5 con unos pocos microlitros de 1 M NaOH. La mezcla se 

deja reaccionar durante toda noche a temperatura ambiente. Tras ello, el producto es 

purificado por diálisis usando Vivaspin®, utilizando una membrana MWCO de 30 kDa. 

En primer lugar, el producto se lava con 5 mM tampón fosfato (PB) utilizando un pH de 
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7.5, y seguidamente, se lava con agua destilada. La solución final es liofilizada, 

obteniendo un polvo blanco.  

 

Síntesis general de los copolímeros en bloque a partir de polietilenglicol 

(PEG): La síntesis de los copolímeros en bloque compuestos por PEG-poliaminoácido 

se efectúa ajustando la relación [monómero]/[iniciador] para obtener el grado de 

polimerización deseado. Brevemente, el monómero NCA (3.923 mmol, 10 eq.) se pesa 

en un tubo de Schlenk, equipado con una barra de agitación y secado a 80ºC en un horno 

durante al menos 24 h antes de comenzar la reacción. El tubo es purgado con ciclos de 

argón/vacío, y el monómero se disuelve en 4 mL de DMF seco. A continuación, el 

macroiniciador MeO-PEG-NH2 se pesa en un vial, se purga con argón y se disuelve en 1 

mL de DMF seco. Tras ello, la solución iniciadora se agrega a la solución de monómero, 

manteniéndose la atmósfera de argón a 4ºC bajo agitación vigorosa durante 3 - 4 días. 

Finalmente, la mezcla de reacción se vierte sobre más de 50 mL de Et2O, y el precipitado 

obtenido se filtra y lava con Et2O adicional. Tras ello, se realiza una purificación adicional 

mediante suspensión en THF y precipitación sobre el exceso de Et2O, se filtra y se seca 

bajo la corriente de N2. 

 

Marcaje con Cyanine 5.5 (Cy5.5) para estudios de internalización en piel: El 

marcaje con Cy5.5 se realizó mediante la conjugación a los materiales basados en el HA 

mediante enlace tipo amida. Brevemente y a modo de ejemplo, HA-CP (100 mg, 0.249 

mmol, 1 eq.) se disuelve en agua destilada. Paralelamente, el agente de acoplamiento 

DMTMM·Cl (3.4 mg, 0.012 mmol, 0.05 eq) se disuelve en agua y la solución de 

DMTMM·Cl se añade a la solución HA-CP, ajustando el pH a 7 con unos pocos 

microlitros de 1 M NaOH. La activación del acoplamiento del ácido carboxílico a través 

de DMTMM·Cl se lleva a cabo durante 30 minutos. A continuación, se añade la solución 

de Cy5.5 (1.8 mg, 0.003 mmol, 0.01 eq.) previamente preparada en una mezcla de 

H2O:DMSO (1:1), y se ajusta el pH a 8.5 con unos pocos microlitros de 1 M NaOH. La 

solución azul resultante de la reacción de conjugación se deja actuar durante 72 horas a 

temperatura ambiente. Tras ello, el producto se purifica por diálisis usando Vivaspin® 

(MWCO 30 kDa). El producto se debe lavar con 5 mM PB a un pH de 7.5, y seguidamente 

con agua destilada. Finalmente, la solución resultante se liofiliza, obteniendo un polvo 

azul. 
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El contenido de Cy5.5 se determinó por espectroscopia UV-Vis, con filtro de excitación 

de 680 nm de longitud de onda y filtro de emisión de 595 nm a través de una curva de 

calibrado previa. 

 

Protocolo para la conjugación de Acetónido de Fluocinolona (FLUO) al 

PGA: La conjugación se llevó a cabo para alcanzar alrededor de un 8% molar de FLUO 

en relación con los residuos de glutamato, a través de enlaces tipo éster. Como ejemplo 

para describir la síntesis, utilizamos un lote de 200 mg de PGA. 

Brevemente, en un matraz provisto con un agitador magnético y una entrada y salida de 

nitrógeno, se agrega PGA en forma ácida (200 mg, 1.55 mmol) y se disuelve en DMF 

anhidro (5 mL) bajo atmósfera de nitrógeno. Seguidamente, se agrega FLUO (140.27 mg, 

0.3 mmol, 0.2 eq. a unidades de ácido glutámico) disuelto en 1 mL DMF y se permite que 

la mezcla se agite durante diez minutos. Tras ello, la mezcla de reacción se enfría en baño 

de hielo, y se agrega 1 mL de DMF con DMAP (1.9 mg, 0.0155 mmol, 0.01 eq. a unidades 

de ácido glutámico) y 4 mL de DMF con EDAC (89.22 mg, 0.465 mmol, 0.3 eq. a 

unidades de ácido glutámico). La mezcla se deja reaccionar durante 72 horas. La 

cromatografía de capa fina (MeOH) confirma el consumo de FLUO. La solución final se 

purifica mediante cromatografía de exclusión de tamaño utilizando Sephadex® LH-20 y 

después de evaporar el DMF (en condiciones de vacío) el residuo se disuelve con 0.5 M 

NaHCO3 para pasarlo a forma sal y volver a purificarlo con Sephadex® G-25. 

Finalmente, la suspensión acuosa resultante se liofiliza obteniendo un polvo blanco. 

 

 

Marcaje con Oregon Green (OG) 488 Cadaverina para estudios de 

internalización celular y en piel: El marcaje con OG se realizó mediante la conjugación 

al conjugado polímero-fármaco o al polímero mediante enlace tipo amida. Brevemente, 

siguiendo el protocolo descrito para la síntesis del conjugado PGA-FLUO, después de 

agregar el PGA y el fármaco disueltos en DMF, se añaden 2.745 mg de DMTMM.BF4 

(8.366x10-3 mmol, 0.02 eq.) a la solución y se deja transcurrir durante diez minutos a 

temperatura ambiente. A continuación, se añaden 0.01 eq. del fluoróforo OG y se ajusta 

el pH a 8 mediante la adición de DIEA.  La mezcla se deja reaccionar durante 48 horas a 

temperatura ambiente y protegida de la luz. Tras ello, el disolvente es eliminado a vacío, 

y el producto se disuelve con 0.5 M NaHCO3 para pasarlo a forma sal. Finalmente, se 

procede a su purificación mediante los métodos estándar de diálisis, Sephadex® G-25 o 
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precipitación ácido-base. Finalmente, la suspensión acuosa resultante se liofiliza 

obteniendo un polvo naranja. 

El contenido de OG se determinó por espectroscopia UV-Vis, con filtro de excitación de 

490 nm de longitud de onda y filtro de emisión de 535 nm a través de una curva de 

calibrado previa. 

3.3. Ensayos In vitro 

Degradaciones con Catepsina B: La biodegradabilidad de varios conjugados 

polímero-fármaco en presencia de la enzima lisosomal catepsina B fue evaluada in vitro. 

Brevemente, se prepararon disoluciones de 2 mg/mL de polímero en tampón acetato (para 

3 mg de polímero, 700 μL de tampón acetato 20 mM, pH 6, 100 μL de EDTA 2 mM, 100 

μL de DTT 5 mM). A continuación, se añadieron 6.25 unidades de catepsina B disueltas 

en 100 μL de tampón acetato pH 6, 20 mM. Las mezclas se mantuvieron a 37°C bajo 

agitación, y se tomaron alícuotas a diferentes tiempos (0, 0.5, 1, 3, 6, 10, 24, 30, 48 y 72 

horas). La concentración de fármaco liberada en cada tiempo de estudio se analizó 

mediante HPLC. 

Cultivos celulares: Las células HaCaT (CLS Cell Lines Servic, Germany) se 

cultivaron en medio DMEM Glutamax alto en glucosa (Fisher, Spain) mientras que los 

fibroblastos humanos (Hospital La Fe, Spain) y la línea celular Raw264.7 CLS Cell Lines 

Service, Germany) se cultivaron en medio DMEM (Sigma-Aldrich Chemical Co., Spain). 

Los medios de cultivo fueron complementados con un 2% de penicilina/estreptomicina y 

50 mL de suero fetal bovino (FBS). Las células se mantuvieron a 37°C en atmósfera con 

un 5% de CO2. En las 3 líneas celulares, el medio se renovó cada 2 - 3 días y se pasaron 

al menos una vez por semana cuando se alcanzó el 80% de confluencia. 

 

Ensayos de viabilidad celular (MTS): Las células se sembraron en placas 

estériles de 96 pocillos a una concentración de 4000 células/cm2 para HaCaT, 2000 

células/cm2 para los fibroblastos y 6000 células/cm2 para Raw264.7. Después de la 

siembra, las placas se incubaron durante 24 horas y transcurrido ese tiempo se añadieron 

los tratamientos (previamente filtrados con un filtro de 0.22 μm). Transcurridas 72 horas 

de incubación, se añadió 20 μL de la mezcla MTS/PMS (20:1) a cada pocillo, y la placa 

se incubó durante 3 horas más (2 horas en el caso de Raw264.7) en oscuridad. 

Transcurrido este tiempo, la densidad óptica de cada pocillo se midió 
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espectrofotométricamente a 490 nm utilizando el equipo Victor2 WallacTM  (Perkin Elmer, 

Spain). Los valores de absorbancia se representaron como porcentaje de viabilidad celular 

tomando como 100% de viabilidad celular células control no tratadas. 

 

Internalización de los conjugados marcados con OG mediante citometría de 

flujo: Las células HaCaT fueron sembradas en placas de 6 pocillos a una densidad de 

células de 118751 células/cm2, y se incubaron durante 24 horas. El estudio se realizó 

transcurridas las 24 horas tanto a 4°C como a 37°C. Para el experimento a 4°C, las células 

se pre-incubaron a esa temperatura durante 30 minutos antes de empezar el experimento. 

Para ambas temperaturas, 30 minutos antes de añadir el compuesto a estudiar, se añadió 

0.4 μL de una solución de 5 μM de inhibidor de catepsina B CA-074 (alcanzando una 

concentración final de 2 μM). Seguidamente, se añadieron 15 μL de una solución del 

conjugado marcado con OG a diferentes tiempos (0 a 27 horas), tanto a las células 

incubadas a 37°C como a 4°C. Tras ello, las placas se colocaron en hielo, las células 

fueron lavadas dos veces con PBS-BSA 0.1% y se añadieron 400 µL de tripsina para 

levantar las células. Finalmente, las células se resuspendieron en 600 µL de medio celular 

y se depositaron en tubos de citometría de flujo. El pellet se analizó con el citómetro de 

flujo Becton Dickinson FACS Calibur cytometer (California, USA) equipado con un láser 

de argón (488 nm) y filtro de emisión de 550 nm. Los datos se expresaron en porcentaje 

de células positivas. Se utilizaron células incubadas sin polímero para eliminar la 

fluorescencia de fondo. 

 

Internalización celular por microscopía confocal: Las células fueron incubadas 

en las mismas condiciones que para citometría de flujo, pero la siembra se realizó sobre 

un cristal para recoger posteriormente las muestras y analizarlas mediante microscopía 

confocal. Al igual que en la citometría de flujo, primero se añadió el inhibidor de 

catepsina B (misma cantidad que para citometría) 30 minutos antes de la adición del 

conjugado marcado con OG. Seguidamente, se añadieron 15 μL de una solución del 

conjugado marcado con OG a diferentes tiempos (0 a 72 horas) y las células se incubaron 

a 37°C. 30 minutos antes de efectuar el lavado de las células con PBS-BSA 0.1%, se 

añadió el marcador nuclear (Hoetch, 1 μL de una disolución 5 mM) y lisosomal 

(Lysotracker Red, 0.75 μL de una disolución 100 μM). Finalmente, las células se lavaron 

con PBS-BSA al 0.1%, y el cristal fue acoplado a una cámara para microscopía con medio 

nuevo, conteniendo 2 μM de CA-074. Las imágenes fueron capturadas con un 
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microscopio DM IRE2 invertido, excitando con los láseres de argón (OG 496 nm), HeNe 

(Lysotracker Red 594 nm) y diodo azul (Hoetch 405 nm). 

 

Evaluación de la actividad antiinflamatoria en Raw264.7: Se sembraron 50 μL 

de células en placas de 96 pocillos a una concentración de 6000 células/cm2. Después de 

24 horas, se evaluó la combinación de 25 µL de lipopolisacárido (LPS) de E. coli (5 

ng/mL) para inducir la síntesis de citoquinas proinflamatorias, junto con 25 µL de cada 

tratamiento: FLUO libre (0.49 ng/mL), PGA-FLUO (a los mismos equivalentes de FLUO 

libre) y PGA. Todos los tratamientos fueron filtrados antes de añadirlos al pocillo (tamaño 

de poro 0.22 μm). Las células fueron incubadas con muestras o controles durante 72 

horas. Tras ello, las placas de 96 pocillos fueron centrifugadas durante 5 minutos, a 22°C 

y 400 rcf, y 90 μL del sobrenadante fueron recogidos y congelados hasta su uso. Para la 

cuantificación de citoquinas proinflamatorias se utilizó un ensayo LUMINEX® (kit 

Affymetrix m Th1/2/9/9/17/22/Treg 17plex, eBioscience, Spain). Este estudio se analizó 

mediante el equipo LUMINEX 200 (LUMINEX corporation, USA), y los resultados se 

expresaron como porcentaje de inhibición de cada citoquina. 

 

3.4. Ensayos Ex vivo 

3.4.1. Estudios de penetración a través de piel humana mediante celdas de difusión 

de Franz 

Las muestras de piel se obtuvieron de mujeres sanas que se sometieron a cirugía 

plástica (reducciones de pecho) después del consentimiento informado por escrito (piel 

cedida por Hospital La Fe, Valencia, Spain). Inmediatamente después de la escisión, se 

eliminó el tejido graso subcutáneo con un bisturí. La piel se cortó en trozos de 4 cm2, se 

envolvió en papel de aluminio y se almacenó a -20ºC hasta su uso. El estudio de 

penetración a través de la piel humana se desarrolló utilizando las celdas de difusión de 

Franz (Logan Instruments Corp., EE.UU.).  

La piel fue fijada entre el compartimento donador y el receptor, de modo que el 

estrato córneo se colocó hacia arriba. La cámara receptora se llenó con 8 mL de PBS 0.01 

M, pH 7.4 y se mezcló con una barra agitadora magnética, mientras que la temperatura 

se mantuvo a 37ºC. Se colocó la piel entre las celdas y se aplicó en el compartimento 

donador 100 µL del tratamiento de estudio marcado con el fluoróforo correspondiente, a 

una concentración de 10 mg/mL, para poder observar su penetración a través de la piel 
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mediante microscopia confocal. Además, se tomaron alícuotas del compartimento 

receptor  a tiempo 0, 8 y 24 horas (dependiendo del estudio realizado). Los 2 mL de la 

muestra tomada se rellenaron inmediatamente con solución fresca. Después de 8 o 24 

horas de ensayo, las muestras de piel se lavaron dos veces con PBS-BSA 0.1% y se 

mantuvieron en paraformaldehído (PFA) al 4% durante 24 horas a temperatura ambiente. 

A continuación, las muestras se lavaron con un 30% de sacarosa en solución de PBS, y 

se mantuvieron en ella 24 horas a 4ºC. Finalmente, las muestras de piel se lavaron dos 

veces con PBS y se conservaron en una solución de criopreservación (40% PB 0.1 M, 

30% etilenglicol y 30% glicerol) a 4ºC hasta su utilización. A continuación, las muestras 

de piel se incluyeron en el medio de inclusión de temperatura de corte óptima (OCT) y se 

realizaron cortes de 5 µm con el criostato (versión CM1850 UV, Leica, Alemania), para 

analizar las muestras finalmente mediante microscopía confocal. Los núcleos celulares 

fueron marcados con DAPI para diferenciar las distintas capas de la piel. Las imágenes 

se capturaron con un microscopio DM IRE2 invertido equipado con un objetivo de 

inmersión en aceite λ-blue 40x y se manipularon con un sistema TCS SP2, equipado con 

un divisor de haz óptico acústico (AOBS). La excitación se realizó con un láser de argón 

(OG, 496 nm), diodo azul (DAPI, 405 nm) y diodo rojo (Cy5.5 o Dil, 675 nm). Las 

imágenes se procesaron con el software LCS (versión 2.5.1347a, Leica, Alemania). 

También se analizó el tejido control, el cual siguió el mismo tiempo de estudio utilizando 

como tratamiento agua MilliQ para establecer la autofluorescencia. Además, utilizando 

el programa Image J se realizaron medidas de la intensidad de fluorescencia para cada 

fluoróforo (cuantificando 5 veces por muestra), y el resultado se expresó en píxeles frente 

al grosor de la piel (µm). La intensidad del control fue restada en cada caso. 

 

3.4.2. Viabilidad del tejido y evaluación de la actividad antiinflamatoria de los 

conjugados en un modelo de inflamación en piel humana ex vivo 

Las muestras de piel se obtuvieron de mujeres sanas que se sometieron a cirugía 

plástica (reducciones de pecho) después del consentimiento informado por escrito (piel 

cedida por Hospital La Fe, Valencia, Spain). Inmediatamente después de la escisión, se 

eliminó el tejido graso subcutáneo con un bisturí. La piel fue cortada aproximadamente 

en 1 cm2 y se colocó en unas rejillas metálicas situadas en placas de 6 pocillos, de modo 

que el la dermis estaba en contacto con el medio de cultivo DMEM, complementado con 

50 mL de suero fetal bovino, 5.5 mL de penicilina/estreptomicina y 50 µL anfotericina 
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B, quedando la epidermis expuesta al aire. El modelo de piel se incubó a 37ºC y 5% de 

CO2. El modelo inflamatorio fue inducido mediante la adición de una combinación de 2.5 

ng/mL de factor de crecimiento epidérmico (EGF) y 15 µg/mL de LPS de E. coli al medio 

de crecimiento durante 24 horas (ver Capítulo II para más detalles). 

Después de 24 horas en cultivo, se aplicaron los tratamientos.  El control negativo 

y el control no tratado fueron evaluados para asegurar el desarrollo del modelo. 3 µL de 

una solución a 10 mg/mL de los tratamientos bajo estudio fueron aplicados tópicamente 

durante 24, 48 o 72 horas (según experimento). Después de este tiempo, las muestras de 

piel se lavaron dos veces con PBS y se introdujeron en 4 mL de solución de MTT (2 

mg/mL) a 37ºC. Después de 4 horas de incubación, las muestras de piel fueron lavadas 

dos veces con PBS e introducidas en 4 mL de DMSO, para extraer el formazán de la piel. 

Después de 15 horas de extracción, la absorbancia fue leída a 490 nm usando el lector de 

placas Victor2Wallac™. 

Finalmente, para cuantificar los niveles de citoquinas proinflamatorias secretadas 

por la piel, se recogieron los medios de cultivo en condiciones estandarizadas después de 

cada tiempo de tratamiento, y se conservaron a -80ºC hasta su uso. Las concentraciones 

de IL-6 se midieron mediante el ensayo ELISA (Invitrogen, Spain) y se determinaron de 

acuerdo con las soluciones estándar. 

3.5. Ensayos In vivo 

3.5.1. Consideraciones éticas 

Los experimentos con animales se realizaron de acuerdo con las directrices del 

Consejo de la Comunidad Europea (86/609/CCE) y con el Real Decreto español 

1201/2005. Los procedimientos experimentales realizados durante esta Tesis fueron 

aprobados por el comité institucional sobre el cuidado y uso de animales, así como 

realizados por personal acreditado y capacitado. Los ratones utilizados se mantuvieron 

durante todo el proceso en una instalación libre de patógenos específicos (SPF), a una 

temperatura y humedad específica, y bajo un ciclo de luz-oscuridad de 12 horas. Además, 

como alimento se proporcionó pienso estandarizado libre de alfalfa y agua ad-libitum. 

Durante los estudios, se evaluó el aspecto y comportamiento general, la conducta de 

acicalamiento y el peso corporal desde el comienzo del experimento para garantizar el 

bienestar animal. 



332 
 

3.5.2. Establecimiento de un modelo murino de psoriasis mediante la aplicación de 

la imiquimod en forma de crema 

Ratones machos BALB/c (BALB/cOlaHsd) de 6 semanas de edad fueron 

utilizados para todos los procedimientos experimentales. Un día antes de la primera 

aplicación de imiquimod (IMQ) en forma de crema, se afeitó aproximadamente 2x3 cm 

de la parte posterior de los ratones. Los síntomas similares a los de la psoriasis fueron 

inducidos por la aplicación diaria durante 7 días consecutivos de 62.5 mg de crema de 

IMQ disponible comercialmente (5%) (Imunocare; Industrial Farmacéutica Cantabria, 

S.A., Spain) tanto en la espalda como en la oreja derecha, lo que se traduce en una dosis 

diaria de 3.125 mg del compuesto activo. Después de los 7 días de aplicación, la 

progresión de la enfermedad se estudió durante 10 días más, para evaluar los días 

adecuados para añadir los tratamientos posteriores asegurando el mantenimiento de la 

enfermedad. Después de este periodo, los animales fueron sacrificados utilizando una 

atmósfera de CO2 y los órganos de interés fueron aislados y evaluados. 

3.5.3. Evaluación de la actividad antipsoriática de los conjugados poliméricos 

Mediante estudios previos se establecieron 7 días de aplicación de la crema de 

IMQ y 5 días de tratamiento con los polímeros sintetizados. Por lo tanto, siete días 

después de la inducción de la enfermedad, los ratones fueron divididos en grupos 

representativos. Se utilizaron ratones sanos y sin tratar como control negativo y positivo, 

respectivamente. Se realizaron estudios previos para optimizar la concentración óptima 

equivalente de FLUO, seleccionando 0.15% equivalentes de FLUO para realizar el 

experimento con todos los tratamientos. Los conjugados se disolvieron en nuestro nuevo 

vehículo de ácido hialurónico entrecruzado con PGA (HA-CP) al 1% (ver Capítulo III 

para más detalles), y en una crema base (Cold cream®, Farmacia BOIX, Spain). La FLUO 

libre se disolvió con 0.5 mL de Hydrolite® (Guinama S.L., Spain) y se incorporó a la 

crema base. El vehículo HA-CP y la crema base se aplicaron también como control, 

siguiendo el mismo procedimiento. Todos los tratamientos fueron inmediatamente 

aplicados tópicamente en la espalda y en la oreja derecha del ratón durante 5 días 

consecutivos desde la última aplicación de la crema de IMQ. La seguridad de los 

tratamientos se evaluó mediante el seguimiento del peso corporal cada dos días desde el 

principio del experimento en comparación con los animales sanos. El grosor epidérmico 

de las orejas fue medido antes de cada tratamiento cada 2 días desde el inicio del 

experimento. Además, durante todo el estudio se utilizó la escala PASI para evaluar 
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visualmente parámetros presentes en la enfermedad, como eritema, descamación de la 

piel y grosor epidérmico (relacionado con el endurecimiento de la piel). Después de los 5 

días de tratamiento, los ratones fueron sacrificados utilizando una atmósfera de CO2 y se 

extrajeron los órganos principales, la piel, las orejas y la sangre para su análisis posterior. 

El peso del bazo se midió al final del experimento usando para ello una balanza de 

precisión. En estudios posteriores se evaluó el grosor epidérmico de la piel de la espalda 

y de la oreja mediante histología hematoxilina-eosina, así como los niveles de citoquinas 

proinflamatorias relacionadas con la enfermedad (IL-23 y INF-γ) tanto en tejido como en 

suero.  

4. Resultados  

 
4.1. Desarrollo de modelos relevantes para la evaluación de nanomedicinas: modelo 

de inflamación en piel humana ex vivo y un modelo murino de psoriasis (Capítulo 

II). 

La psoriasis es una enfermedad cutánea inflamatoria crónica, autoinmune, 

genéticamente heterogénea y específica de los seres humanos [17]. Durante la última 

década, nuestro conocimiento sobre el desarrollo y la patogénesis de la enfermedad ha 

aumentado, lo que ha promovido al desarrollo de modelos ex vivo e in vivo precisos que 

favorezcan la comprensión de los mecanismos genéticos e inmunológicos que 

contribuyen al desarrollo de la enfermedad. Por lo tanto, cualquier modelo desarrollado 

debe reflejar las características críticas de la enfermedad humana y responder de manera 

similar a los tratamientos previamente desarrollados [18]. 

A lo largo del presente trabajo de Tesis, se presenta una caracterización detallada 

de dos modelos ex vivo (piel sana e inflamada) y un modelo in vivo de ratones psoriásicos. 

Estos modelos han sido empleados para evaluar la seguridad de los conjugados 

sintetizados, así como su actividad antiinflamatoria; el modelo inflamatorio ex vivo nos 

ha servido como plataforma para hacer un primer cribado de la actividad antiinflamatoria 

de los conjugados polímero-fármaco, para posteriormente evaluar en el modelo in vivo de 

psoriasis los que ofrezcan un mejor potencial terapéutico. 

 

El modelo ex vivo de inflamación en piel humana desarrolla características 

histológicas similares a la enfermedad humana, como por ejemplo el engrosamiento de la 

capa epidérmica de la piel, manteniendo la estructura y viabilidad de las células de la piel. 

Además, la inducción de la inflamación en la piel ha promovido la liberación de 
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citoquinas proinflamatorias al medio de cultivo, permitiendo la evaluación de la 

capacidad antiinflamatoria de los conjugados. 

 

Por otra parte, el desarrollo de un modelo agudo de psoriasis en ratón ha 

reproducido fielmente las características más descriptivas de la patología humana. 

Nuestras investigaciones han permitido evaluar la progresión y el mantenimiento de la 

enfermedad con el paso del tiempo. Este modelo se caracteriza por presentar 

características intrínsecas de la enfermedad humana tanto en la espalda como en la oreja 

del ratón, como enrojecimiento y descamación de la piel, así como engrosamiento 

epidérmico. Asimismo, hemos identificado características distintivas de este tipo de 

modelo inducido por la aplicación de IMQ en forma de crema, como es el aumento de 

tamaño del bazo [19-21], el cual está íntimamente relacionado con la síntesis de 

citoquinas proinflamatorias, ya que se encuentran elevadas tanto en suero como en tejido. 

 
Por lo tanto, estos modelos presentan características similares a la enfermedad 

humana, ofreciendo una plataforma útil para poder evaluar terapias antiinflamatorias y 

antipsoriáticas. 

 

4.2. Desarrollo de un nuevo material a base de ácido hialurónico (HA) entrecruzado 

con ácido poli-L-glutámico (PGA) el cual potencia la penetración a través de la piel 

en comparación con HA lineal (Capítulo III). Manuscrito en preparación 

Como se ha discutido anteriormente en varios capítulos de este trabajo de Tesis, 

las características físico-químicas tanto de las nanomedicinas así como del vehículo en el 

que se apliquen a nivel tópico van a condicionar la penetración a través de la piel. La 

utilización de vehículos basados principalmente en el ácido hialurónico (HA) [22], ha 

demostrado su idoneidad para aplicaciones dérmicas y cosméticas [16]. 

A lo largo de este capítulo de Tesis, hemos diseñado una nueva plataforma de 

administración tópica, basada en la utilización del HA como base biodegradable para 

nuestro vehículo. Este vehículo llamado ácido hialurónico-poli-L-glutamato (HA-CP) 

está compuesto por el entrecruzamiento de dos polímeros biodegradables, HA y PGA, a 

través de L-lisina.  

Utilizando metodologías bien establecidas, pudimos llevar a cabo la síntesis del 

vehículo HA-CP, el cual fue caracterizado mediante una exhaustiva caracterización 
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físico-química utilizando una batería de técnicas, como RMN y cromatografía de 

exclusión por tamaño (SEC). Los resultados obtenidos mediante RMN revelaron que 

nuestro material entrecruzado presentaba mayor peso molecular y radio hidrodinámico 

que el HA lineal, sugiriendo que la reacción de entrecruzamiento se había desarrollado 

con éxito. Además, mediante los estudios realizados por SEC, cabe destacar que la 

población de aminas libres se ve disminuida con la progresión de la reacción, mientras 

que la viscosidad se ve aumentada, debido a la formación de enlaces tipo amida que 

promueven la reacción de entrecruzamiento del HA-CP. Además, se pudo observar una 

disminución progresiva del pH de la reacción como consecuencia de la liberación de 

protones en cada formación del enlace amida. 

 Además, estudiamos en profundidad las características del biomaterial HA-CP 

como vehículo para aplicaciones tópicas en la piel. Se realizó un estudio de degradación 

por SEC en presencia de la enzima hialuronidasa [23], comparando el biomaterial HA-

CP con HA lineal, demostrando que nuestro nuevo vehículo presentaba una degradación 

mucho más lenta, constante y sostenida a lo largo del tiempo, debido principalmente a las 

diferentes conformaciones estructurales de ambos materiales. Además, estudios de 

penetración a través de la piel revelaron que nuestro biomaterial HA-CP es capaz de 

alcanzar en mayor medida la epidermis que el HA lineal, el cual se encuentra 

principalmente en el estrato córneo, como ya demostraron otros autores [24]. Por último, 

ensayos de hidratación en voluntarios humanos demostraron que a tiempos largos de 

estudio nuestro HA-CP fue capaz de prolongar y mejorar la hidratación de la piel en 

comparación con HA. 

Como hemos podido corroborar en este trabajo, el entrecruzamiento del HA con 

el PGA modifica las características físico-químicas del HA y favorece la penetración del 

biomaterial a través de la piel. Por ello, nuestro último esfuerzo se centró en estudiar la 

capacidad de nuestro vehículo como potenciador de la penetración de diferentes 

transportadores, como micelas polipeptídicas. Para la síntesis de estas micelas, se 

sintetizaron diferentes copolímeros utilizando polietilenglicol (PEG) como parte 

hidrofílica y como parte hidrofóbica se utilizó poli-fenilalanina (PPhe) y poli-bencil-L-

glutamato (PBG) con diferentes grado de polimerización (10, 20, 40). La caracterización 

físico-química de estas micelas reveló que las que poseían mayor grado de polimerización 

(40) precipitaban en solución, probablemente debido a un desequilibrio de la relación 

hidrofílica y lipofílica, por lo que fueron descartadas del estudio. Los copolímeros PEG-
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PBG mostraron unos valores de concentración micelar crítica más altos que los derivados 

de PEG-PPhe, indicando que los copolímeros de PEG-PPhe tienen un comportamiento 

más compacto en solución acuosa. Además, estos resultados fueron corroborados 

mediante cromatografía por exclusión de tamaño en medio orgánico (GPC), en los cuales 

los copolímeros basados en PPhe presentaron un fuerte comportamiento de agregación en 

comparación con PBG. Por último, las 4 micelas presentaron un tamaño entre 12 y 30 

nm, lo cual coindice con las imágenes de microscopio electrónico de transmisión (TEM). 

 Así pues, estudiamos la penetración de las micelas marcadas con el fluoróforo Dil 

embebidas en el vehículo HA-CP a través de piel humana. Este estudio nos permitió 

demostrar la capacidad de nuestro vehículo para mejorar la penetración de las micelas a 

través de la piel, y por tanto, resaltar su utilización como vehículo para posibles 

aplicaciones tópicas de nanomedicinas. 

4.3. Diseño racional de conjugados basados en poliglutamatos, incorporando un 

corticosteroide para el tratamiento de la psoriasis (Capítulo IV, manuscrito en 

revisión (Journal of Controlled Release)). 

 

A lo largo de este capítulo de Tesis, hemos diseñado un nuevo conjugado 

polímero-fármaco incorporando el corticosteroide acetónido de fluocinolona (FLUO). El 

objetivo de esta conjugación es mejorar la penetración del fármaco a través de la piel y 

que su liberación se lleve a cabo de manera controlada y sostenida en la epidermis.  

Para desarrollar este conjugado, se ha empleado una química optimizada, dotando 

al conjugado de un enlace sensible al pH (éster) para obtener una liberación controlada 

del fármaco. El conjugado PGA-FLUO presentaba un tamaño hidrodinámico constante 

con valores alrededor de 100 nm en todos los medios acuosos evaluados mediante 

dispersión dinámica de luz (DLS). Además, descubrimos que el conjugado era capaz de 

autoensamblarse en nanoestructuras mayores debido al balance hidrofílico-hidrofóbico, 

presentando una morfología esférica mediante TEM. Adicionalmente, se comprobó que 

el pH de la solución acuosa utilizada (pH 7.4 o 5.5) induce un cambio significativo en la 

cinética de liberación del fármaco y su estructura secundaria, influyendo por tanto en la 

disposición interna del fármaco en el esqueleto polipeptídico, tal y como pudimos 

observar tras los análisis llevados a cabo por cromatografía líquida de alta eficacia 

(HPLC) y dicroísmo circular (CD). La distinta estructura secundaria del conjugado parece 

modificar accesibilidad al fármaco, por lo que se ve favorecida su liberación a pH 7.4, del 
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mismo modo que se favorece el acceso de la enzima proteolítica catepsina B. Además, la 

liberación del fármaco una vez el conjugado se aplica en el vehículo HA-CP es más 

sostenida y constante en el tiempo, característica clave a la hora de controlar la actividad 

biológica en la epidermis. 

 La evaluación biológica del conjugado PGA-FLUO in vitro en líneas celulares de 

la piel demostró su internalización en los queratinocitos y colocalización en los lisosomas. 

Además, se comprobó la capacidad antiinflamatoria del conjugado en macrófagos 

estimulados con LPS, ya que el conjugado presentaba una mayor disminución de los 

niveles de citoquinas proinflamatorias en comparación con el fármaco libre. Estudios de 

penetración a través de la piel nos permitieron demostrar la presencia del conjugado en la 

epidermis, aumentando su cantidad si el conjugado se aplicaba con el vehículo HA-CP. 

Además, en dos modelos ex vivo de inflamación (definidos en el Capítulo II), se 

demostró nuevamente la mejoría de la capacidad antiinflamatoria del conjugado 

comparado con el fármaco libre, mediante la disminución de la liberación de IL-6. Por 

último, debemos destacar que la presencia del vehículo HA-CP en la aplicación del 

conjugado resultó en una mayor disminución de los niveles de IL-6. 

 Finalmente, el conjugado fue validado in vivo en un modelo murino de psoriasis 

(definido en el Capítulo II). En este modelo, se comparó la actividad del fármaco libre 

frente al conjugado, ambos aplicados en crema. Los resultados demostraron una mayor 

capacidad antipsoriática del conjugado, reduciendo parámetros significativos de la 

enfermedad como el engrosamiento epidérmico, el tamaño del bazo (un ~60% de 

reducción de peso del bazo con respecto al control positivo) y los niveles de citoquinas 

proinflamatorias características de la enfermedad (INF-γ y IL-23) en suero y tejido. Es de 

destacar que el grupo tratado con el conjugado aplicado en el vehículo HA-CP demostró 

una mayor capacidad de reducción de todos los parámetros estudiados en comparación 

con el conjugado aplicado en crema, alcanzando niveles similares a los controles sanos. 

Mediante este estudio se demostró nuevamente una mejora de la actividad del 

conjugado frente al fármaco libre. Además, la administración del conjugado en nuestro 

vehículo HA-CP presentó en todos los casos un mayor efecto terapéutico, probándose la 

importancia de la correcta administración de los conjugados a nivel tópico mediante la 

elección de vehículos que promuevan su penetración a través de la piel. 
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4.4. Diseño racional de conjugados basados en poliglutamatos, incorporando un 

ácido graso omega 3 para mejorar la cicatrización de heridas y disminuir el daño 

producido por isquemia/reperfusión (I/R) en el corazón (Capítulo IV). Manuscrito en 

preparación 

Tras la mejora terapéutica obtenida mediante la conjugación de fármacos al PGA 

para aplicaciones tópicas, durante este capítulo de Tesis se desarrolló una nueva familia 

de conjugados poliméricos con una estructura similar, incorporando distintas cargas de 

un ácido graso omega 3, llamado ácido docosahexaenoico (DHA), el cual ha demostrado 

eficacia terapéutica para en la cicatrización de heridas [25-27]. Para este trabajo, 

utilizamos DHA con dos cadenas poliinsaturadas, al que llamamos diDHA, para 

favorecer la conjugación al PGA. La conjugación se efectuó mediante un enlace tipo éster 

sensible al pH, con el objetivo de mejorar la estabilidad y actividad del diDHA. 

La síntesis de los conjugados fue previamente optimizada facilitando la 

conjugación de distintas cargas de diDHA al polímero (2.2, 6.4 y 9.1 mol%). Hemos 

demostrado que la conjugación al PGA mejoró la solubilidad del diDHA en medios 

acuosos, así como su estabilidad y protección durante el tiempo, independientemente de 

la carga de diDHA en los conjugados. Mediante estudios de RMN pudimos evidenciar 

que después de 28 días de estudio, el diDHA sufrió una degradación de un 50%, mientras 

que los conjugados PGA-diDHA sólo mostraron un 10% de degradación, y además, estos 

estudios fueron corroborados mediante ensayos de peroxidación de lípidos. 

Adicionalmente, hemos demostrado que la carga de diDHA en los conjugados condiciona 

las propiedades físico-químicas del mismo, ya que a mayor carga de diDHA el conjugado 

presenta tamaños más pequeños y valores de concentración de agregación crítica 

menores, tras los análisis llevados a cabo mediante DLS y fluorímetro.  

 

La familia de conjugados obtenida fue evaluada in vitro, en dos líneas celulares 

de la piel, demostrando una citotoxicidad del 100% el fármaco libre a las mayores 

concentraciones testadas, en comparación con los conjugados que mantuvieron el 100% 

de viabilidad celular a todas las concentraciones testadas. Además, en un estudio de cierre 

de herida en fibroblastos, el conjugado con carga intermedia de diDHA (PGA-diDHA6.4) 

favoreció el cierre de heridas respecto al diDHA libre. Por último, estudiamos la 

capacidad de penetración de los conjugados con mayor y menor carga de diDHA 
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marcados con OG (PGA-diDHA2.2-OG y PGA-diDHA9.1-OG) a través de la piel, 

demostrando que menores cargas de diDHA favorecen su penetración.  

Basándonos en estos resultados, realizamos el estudio de liberación de fármaco 

con los conjugados con menor carga de diDHA, en el que comprobamos que la liberación 

de diDHA en el conjugado con carga intermedia (PGA-diDHA6.4) era casi el doble en 

comparación con el conjugado con carga baja (PGA-diDHA2.2) (5% y 3% de diDHA 

liberado, respectivamente). Mediante estos estudios también comprobamos que a pH 7.4 

la liberación era mayor que a pH 5.5, y al igual que ocurría con otros conjugados 

desarrollados durante esta Tesis (Capítulo IV), observando cambios conformacionales a 

cada pH mediante CD. 

Tanto los resultados experimentales en el modelo de cierre de herida como el 

estudio de la penetración a través de la piel, indicaron que los dos conjugados más 

efectivos eran los que presentaban una menor carga de diDHA (PGA-diDHA2.2 y PGA-

DHA6.4) debido a sus características físico-químicas. Estos resultados sientan las bases 

para realizar estudios posteriores in vivo de rata diabética, en el cual se validarán estos 

dos conjugados y se evaluará su capacidad para favorecer la proliferación celular y 

disminuir la inflamación en la zona de la herida. 

Finalmente, también demostramos la capacidad de los conjugados PGA-diDHA 

para mejorar el proceso de curación tras el daño al corazón producido por I/R asociado a 

infarto agudo de miocardio (IAM). La evaluación in vitro utilizando un ensayo de lactato 

deshidrogenasa reveló que el conjugado PGA-diDHA6.4 redujo el daño a las células 

cardíacas en comparación con el diDHA libre. Además, la infusión de los conjugados y 

diDHA libre en un modelo in vivo de I/R en ratas mostró que el tamaño del infarto se 

redujo significativamente cuando se administró PGA-diDHA6.4 antes de la reperfusión, 

en comparación con el diDHA libre en la misma dosis (12 % vs 28% de área infartada 

con o sin tratamiento, respectivamente). En conclusión, nuestros datos mostraron que la 

conjugación del diDHA podría ser un tratamiento efectivo para mitigar la lesión inducida 

por I/R. 

5. Conclusiones  

Durante el desarrollo de esta Tesis hemos demostrado la aplicabilidad de los 

polímeros terapéuticos como una nueva plataforma de administración tópica de diferentes 

agentes bioactivos o fármacos para el tratamiento, entre otras, de enfermedades de la piel, 
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como la psoriasis o la cicatrización de heridas. A continuación, destacamos las principales 

conclusiones de este trabajo: 

1. Se han desarrollado modelos ex vivo de piel humana utilizando explantes de piel 

a partir de donantes, como una herramienta útil para validar los tratamientos 

basados en polímeros. Hemos establecido un modelo de piel sana así como un 

modelo inflamatorio tratando los explantes con una combinación de LPS y EGF. 

Los modelos ex vivo establecidos han sido validados como modelos preclínicos 

de enfermedad relevantes para los trastornos de la piel. La viabilidad de la piel fue 

evaluada en ambos modelos mediante ensayo MTT e inmunohistoquímica, y 

varios marcadores inflamatorios también se utilizaron para analizar el proceso 

inflamatorio. Finalmente, se detectó la modulación de la liberación de citoquinas 

proinflamatorias en el medio de cultivo, demostrando el efecto inflamatorio 

producido por la acción combinada de LPS y EGF. 

2. Se ha caracterizado un modelo agudo de ratón psoriásico preclínicamente 

relevante, en el cual poder testar y validar las terapias basadas en polipéptidos que 

han sido desarrolladas. Mediante la aplicación tópica de una crema compuesta por 

imiquimod (IMQ), desarrollamos las características intrínsecas de la enfermedad 

de la psoriasis. Se evaluó durante 10 días la progresión y el mantenimiento de la 

enfermedad, mediante la valoración de la morfología de la piel utilizando la 

puntuación PASI y también la tinción H&E, centrándonos en parámetros 

específicos de la enfermedad, como el engrosamiento epidérmico. También se 

estudió el aumento del peso del bazo tras la aplicación de IMQ, el cual está 

relacionado con la síntesis de citoquinas. Finalmente, identificamos varias 

citoquinas proinflamatorias específicas relacionadas con la enfermedad humana, 

tanto en tejido como en suero. 

3. Para mejorar y optimizar la penetración de los nanoportadores a través de la piel, 

hemos desarrollado y caracterizado completamente un nuevo vehículo basado en  

un polímero entrecruzado de ácido hialurónico-poli-L-glutamato (HA-CP) 

(compuesto por ácido hialurónico (HA) y ácido poli-L-glutámico (PGA) 

entrecruzados a través de fragmentos de lisina). Además, validamos y 

demostramos sus propiedades como potenciador de la penetración mediante su 

uso con una familia de copolímeros en bloque anfifílicos de diferente naturaleza 
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y consecuentemente presentando una conformación en solución diferente, 

modulando así la mejora de la permeación cutánea. Los cambios en la 

conformación de los portadores fueron impulsados por la presencia de Phe como 

aminoácido en la cadena de polímeros, así como por el tamaño del polímero, entre 

otras características.  

4. Se ha desarrollado una nueva familia de conjugados polímero-fármaco, basados 

en el ácido poli-L-glutámico (PGA) como portador biodegradable, el cual 

incorpora un corticosteroide (acetónido de fluocinolona) mediante una unión tipo 

éster para el tratamiento tópico de la psoriasis. Se empleó una exhaustiva 

caracterización utilizando varias técnicas para caracterizar plenamente nuestros 

conjugados poliméricos en soluciones relevantes, estableciendo una relación entre 

la estructura y la actividad biológica. 

5. La evaluación in vitro de los conjugados desarrollados en líneas celulares 

relevantes de la piel reveló la ausencia de toxicidad hasta las concentraciones 

probadas. Los estudios de internalización celular y actividad antiinflamatoria 

demostraron la capacidad de los conjugados para penetrar en las células de la piel 

y mantener la actividad antiinflamatoria del fármaco una vez se encuentra 

conjugado al PGA. 

6. La evaluación ex vivo de los conjugados solos o aplicados en el vehículo HA-CP 

(como potenciador de la penetración) demostró su presencia en la epidermis 

viable. Además, utilizando dos modelos ex vivo, nuestro modelo de inflamatorio 

ex vivo de piel humana y un modelo reconstituido de inflamación a partir 

equivalentes cutáneos (en colaboración con la Freie Universität Berlin, Prof. S. 

Hedtrich), demostramos que el conjugado presentaba mayor capacidad para 

reducir la liberación de IL-6 en el medio de cultivo, en comparación con el 

fármaco libre. 

7. La evaluación in vivo en nuestro modelo de ratón psoriásico demostró la eficacia 

antiinflamatoria/antipsoriásica y la seguridad de nuestro conjugado en 

comparación con el fármaco libre, verificando la importancia del uso de una 

química de enlace adecuada para controlar la cinética de liberación de los 

fármacos en las capas cutáneas adecuadas. Cabe destacar que el conjugado 

aplicado en nuestro novedoso vehículo HA-CP reveló una mayor actividad y 
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eficacia, demostrando la importancia de un vehículo adecuado para mejorar la 

penetración a través de la piel. HA-CP mostró altas propiedades de hidratación 

que se sinergizan con los efectos antiinflamatorios del conjugado, resultando en 

un enfoque terapéutico significativamente mejorado para la psoriasis. 

8. Finalmente, se ha desarrollado una nueva familia de conjugados poliméricos, 

utilizando PGA como portador, incorporando diferentes cargas de un ácido graso 

omega 3 (diDHA) por medio de un enlace éster para el tratamiento tópico de la 

cicatrización de heridas. Las características físico-químicas del conjugado fueron 

estudiadas a fondo, y la evaluación biológica in vitro reveló su idoneidad para 

aplicaciones de cicatrización de heridas, mejorando el cierre de la herida.  

 

9. La familia de conjugados PGA-diDHA fue validada en un escenario de curación 

de heridas in vivo utilizando un modelo de isquemia-reperfusión (I/R) en 

colaboración con el Hospital La Fe (Dr. P. Sepúlveda) mostrando claramente las 

ventajas de la conjugación a polímeros. La infusión de los conjugados y el diDHA 

libre en un modelo in vivo de I/R en rata mostró que el tamaño del infarto se redujo 

significativamente cuando se administró el conjugado PGA-diDHA6.4 antes de la 

reperfusión en comparación con el diDHA libre a la misma dosis. En conclusión, 

nuestros datos demostraron que el conjugado PGA-diDHA6.4 podría ser efectivo 

para mitigar la lesión inducida por I/R, proporcionando así un nuevo agente 

terapéutico para futuros estudios clínicos. 

 

6. Referencias  

[1] H.-Y. Chen, J.-Y. Fang, Therapeutic patents for topical and transdermal drug delivery 

systems, Expert Opin Ther Pat 10(7) (2000) 1035-1043. 

[2] D. Singh Malik, N. Mital, G. Kaur, Topical drug delivery systems: a patent review, 

Expert Opin Ther Pat 26(2) (2016) 213-28. 

[3] P.A.J. Kolarsick, M.A. Kolarsick, C. Goodwin, Anatomy and Physiology of the Skin, 

Journal of the Dermatology Nurses' Association 3(4) (2011) 203-213. 

[4] J.Y. Fang, Y.L. Leu, Prodrug strategy for enhancing drug delivery via skin, Curr Drug 

Discov Technol 3(3) (2006) 211-24. 

[5] R. Saraceno, A. Chiricozzi, M. Gabellini, S. Chimenti, Emerging applications of 

nanomedicine in dermatology, Skin Res Technol 19(1) (2013) e13-9. 

[6] F. Alexis, E. Pridgen, L.K. Molnar, O.C. Farokhzad, Factors affecting the clearance 

and biodistribution of polymeric nanoparticles, Mol Pharm 5(4) (2008) 505-15. 

[7] A. Kumari, S.K. Yadav, S.C. Yadav, Biodegradable polymeric nanoparticles based 

drug delivery systems, Colloids Surf B Biointerfaces 75(1) (2009) 1-18. 



343 
 

[8] B.C. Palmer, L.A. DeLouise, Nanoparticle-Enabled Transdermal Drug Delivery 

Systems for Enhanced Dose Control and Tissue Targeting, Molecules 21(12) (2016). 

[9] B.D. Kurmi, P. Tekchandani, R. Paliwal, S.R. Paliwal, Transdermal Drug Delivery: 

Opportunities and Challenges for Controlled Delivery of Therapeutic Agents Using 

Nanocarriers, Curr Drug Metab 18(5) (2017) 481-495. 

[10] R. Duncan, The dawning era of polymer therapeutics, Nat Rev Drug Discov 2 (2003) 

347-60. 

[11] R. Duncan, Polymer therapeutics as nanomedicines: new perspectives, Curr Opin 

Biotech 22(4) (2011) 492-501. 

[12] R. Duncan, R. Gaspar, Nanomedicine(s) under the microscope, Mol Pharm 8(6) 

(2011) 2101-41. 

[13] S.D. Chipman, F.B. Oldham, G. Pezzoni, J.W. Singer, Biological and clinical 

characterization of paclitaxel poliglumex (PPX, CT-2103), a macromolecular polymer-

drug conjugate, Int J Nanomedicine 1(4) (2006) 375-83. 

[14] G.E. Flaten, Z. Palac, A. Engesland, J. Filipović-Grčić, Ž. Vanić, N. Škalko-Basnet, 

In vitro skin models as a tool in optimization of drug formulation, Eur J Pharm Sci 75 

(2015) 10-24. 

[15] S. Berkó, M. Maroda, M. Bodnár, G. Erős, P. Hartmann, K. Szentner, P. Szabó-

Révész, L. Kemény, J. Borbély, E. Csányi, Advantages of cross-linked versus linear 

hyaluronic acid for semisolid skin delivery systems, Eur Polym J 49(9) (2013) 2511-2517. 

[16] S. Khunmanee, Y. Jeong, H. Park, Crosslinking method of hyaluronic-based 

hydrogel for biomedical applications, Journal of Tissue Engineering 8 (2017) 16. 

[17] M.A. Lowes, A.M. Bowcock, J.G. Krueger, Pathogenesis and therapy of psoriasis, 

Nature 445 (2007) 866. 

[18] J.E. Gudjonsson, A. Johnston, M. Dyson, H. Valdimarsson, J.T. Elder, Mouse 

models of psoriasis, J Invest Dermatol 127(6) (2007) 1292-308. 

[19] L. van der Fits, S. Mourits, J.S. Voerman, M. Kant, L. Boon, J.D. Laman, F. 

Cornelissen, A.M. Mus, E. Florencia, E.P. Prens, E. Lubberts, Imiquimod-induced 

psoriasis-like skin inflammation in mice is mediated via the IL-23/IL-17 axis, J Immunol 

182 (2009) 5836-45. 

[20] H. Vinter, K. Kragballe, T. Steiniche, M. Gaestel, L. Iversen, C. Johansen, Tumour 

necrosis factor-alpha plays a significant role in the Aldara-induced skin inflammation in 

mice, Br J Dermatol 174(5) (2016) 1011-21. 

[21] A. Ueyama, M. Yamamoto, K. Tsujii, Y. Furue, C. Imura, M. Shichijo, K. Yasui, 

Mechanism of pathogenesis of imiquimod-induced skin inflammation in the mouse: a 

role for interferon-alpha in dendritic cell activation by imiquimod, J Dermatol 41(2) 

(2014) 135-43. 

[22] L. Kenne, S. Gohil, E.M. Nilsson, A. Karlsson, D. Ericsson, A. Helander Kenne, L.I. 

Nord, Modification and cross-linking parameters in hyaluronic acid hydrogels—

Definitions and analytical methods, Carbohyd Polym 91(1) (2013) 410-418. 

[23] F. Tranchepain, B. Deschrevel, M.N. Courel, N. Levasseur, D. Le Cerf, C. Loutelier-

Bourhis, J.C. Vincent, A complete set of hyaluronan fragments obtained from hydrolysis 

catalyzed by hyaluronidase: Application to studies of hyaluronan mass distribution by 

simple HPLC devices, Anal Biochem 348(2) (2006) 232-242. 

[24] M. Essendoubi, C. Gobinet, R. Reynaud, J.F. Angiboust, M. Manfait, O. Piot, Human 

skin penetration of hyaluronic acid of different molecular weights as probed by Raman 

spectroscopy, Skin Res Technol 22(1) (2016) 55-62. 

[25] E.L. Arantes, N. Dragano, A. Ramalho, D. Vitorino, G.F. de-Souza, M.H. Lima, L.A. 

Velloso, E.P. Araújo, Topical Docosahexaenoic Acid (DHA) Accelerates Skin Wound 

Healing in Rats and Activates GPR120, Biol Res Nurs 18(4) (2016) 411-9. 



344 
 

[26] J.C. McDaniel, M. Belury, K. Ahijevych, W. Blakely, Omega-3 fatty acids effect on 

wound healing, Wound Repair Regen 16(3) (2008) 337-45. 

[27] C.R. Cardoso, M.A. Souza, E.A. Ferro, S. Favoreto, J.D. Pena, Influence of topical 

administration of n-3 and n-6 essential and n-9 nonessential fatty acids on the healing of 

cutaneous wounds, Wound Repair Regen 12(2) (2004) 235-43. 

 

  

 

 


	I.1. Biological Barriers to the Administration of Therapeutic Agents
	I.2. Skin as a Barrier
	I.2.1. Skin Structure and Function
	I.2.1.1. The Epidermis
	I.2.1.2. The Dermis

	I.2.2. Penetrating the Skin Barrier
	I.2.3. Penetrant Characteristics
	I.2.4. Methods to Improve Penetration through Skin
	I.2.4.1. Formulation Optimization
	I.2.4.2. Chemical Enhancers
	I.2.4.3. Physical Enhancers

	I.2.5. Techniques to Evaluate Skin Penetration
	I.2.5.1. Skin Models
	I.2.5.2. Monitoring Penetration in the Skin

	I.2.6. Skin Penetration as a Challenge

	I.3. Nanomedicine
	I.3.1. Nanomedicine Applications to the Skin

	I.4. Polymer Therapeutics: The First Polymeric Nanomedicines
	I.4.1. Definition and Classification
	I.4.2. Polymer Conjugates as Therapeutics
	I.4.2.1. Polymer-Protein Conjugates
	I.4.2.2. Polymer-Drug Conjugates
	I.4.2.2.1. Rational Design of Polymer-Drug Conjugates
	I.4.2.2.1.1. Polymeric Carrier
	I.4.2.2.1.2. Bioresponsive Linkers
	I.4.2.2.1.3. Physico-Chemical Properties of Polymer-Drug Conjugates



	I.4.3. Polypeptide-Based Therapeutics
	I.4.4. Characterization Techniques
	I.4.5. Polymer Therapeutics for Skin Delivery

	I.5. Psoriasis as a Target Pathology
	I.5.1. Prevalence and Morbidity
	I.5.2. Etiology
	I.5.2.1. Triggering Factors
	I.5.2.2. Genetic Factors

	I.5.3. Immunopathological Features
	I.5.4. Immunopathogenesis: Central Role of the Immune System
	I.5.5. Current Therapeutic Approaches for Psoriasis
	I.5.5.1. Topical Approaches
	I.5.5.2. Systemic Approaches
	I.5.5.2.1. Biologic Therapeutics
	I.5.5.2.2. Non-Biologic Therapeutics

	I.5.5.3. Phototherapy

	I.5.6. Nanomedicine-Polymer Therapeutic Approaches to Psoriasis Treatment

	I.6. References
	II.1. Antecedents and Background
	II.2. Results
	II.2.1 Ex Vivo Human Skin Model
	II.2.1.1. Characterization of Ex Vivo Human Skin Model
	II.2.1.1.1. Tissue Viability Maintenance
	II.2.1.1.2. Histological Features

	II.2.1.2. Characterization of Inflammatory Ex Vivo Human Skin Model
	II.2.1.2.1. Maintenance of Tissue Viability Following Inflammation
	II.2.1.2.2. Inflammatory Features
	II.2.1.2.3. Quantification of Cytokine Release following Inflammatory Insult


	II.2.2 In Vivo Model of Psoriasis
	II.2.2.1. Monitoring Safety during Disease Induction via Animal Weight
	II.2.2.2. Evaluation of Inflammation: Back Morphology and PASI Score
	II.2.2.3. Increase in Ear Thickness
	II.2.2.4. Histology of Ear and Back
	II.2.2.5. Increase in Spleen Weight
	II.2.2.6. Increased Pro-Inflammatory Cytokines Release in Serum and Tissue
	II.2.2.7. Hematological Parameters


	II.3. Discussion
	II.3.1. Inflammatory Ex Vivo Human Skin Model Mimics the Features of Psoriasis
	II.3.2. Suitability of Imiquimod Cream for Psoriasis Development
	II.3.3. H&E Staining as a Tool to Evaluate Skin Inflammation
	II.3.4. Interleukin Levels as a Critical Biomarker of Psoriatic Progression

	II.4. Conclusions
	II.5. Materials and Methods
	II.5.1. Ex Vivo Models
	II.5.1.1. Development of Ex Vivo Human Skin Model
	II.5.1.1.1 Tissue Viability Assay
	II.5.1.1.2. Histological Analysis and Imaging

	II.5.1.2. Development of Inflammatory Ex Vivo Human Skin Model
	II.5.1.2.1. Tissue Viability Assay
	II.5.1.2.2. Histological Analysis and Imaging
	II.5.1.2.3. Quantification of Pro-Inflammatory Cytokines Released to the Culture Medium


	II.5.2. In Vivo Models
	II.5.2.1. Mouse Strains
	II.5.2.2. Ethical Considerations
	II.5.2.3. Establishment of the Psoriatic Model
	II.5.2.4. Scoring Severity of Skin Inflammation (PASI Score)
	II.5.2.5. Ear Thickness
	II.5.2.6. Spleen Weight
	II.5.2.7. Histology
	II.5.2.8. Pro-Inflammatory Cytokines Levels in Serum and Tissue
	II.5.2.9. Hematological Analysis


	II.6. References
	III.1. Antecedents and Background
	III.2. Results and Discussion
	III.2.1. Development of the Hyaluronic Acid-Poly-L-Glutamate Cross-Polymer (HA-CP) Vehicle: Synthesis and Physico-Chemical Characterization
	III.2.1.1. Synthesis and Physico-Chemical Characterization of HA-CP
	III.2.1.2. Development of Fluorescently-labeled HA-based Materials

	III.2.2. Analysis of the HA-CP as a Biomaterial for Topical Skin Applications
	III.2.2.1. Hyaluronidase Degradation Studies
	III.2.2.2 Cell Viability In Vitro
	III.2.2.3. Tissue Viability in an Ex Vivo Human Skin Model
	III.2.2.4. Ex Vivo Human Skin Permeation by Franz Diffusion Cells
	III.2.2.5. Hydration Assays in Human Volunteers

	III.2.3. Hybrid Material: HA-CP Vehicle Combined with Polypeptidic Micelles for Transdermal Delivery of Hydrophobic APIs
	III.2.3.1. Synthesis and Characterization of Block Copolymers
	III.2.3.2. Characterization of Block Copolymer Micelle Formulation
	III.2.3.3. Cell Viability Studies In Vitro of Selected Micelles
	III.2.3.4. Characterization of the Hybrid Material
	III.2.3.5. Ex Vivo Human Skin Permeation of Hybrid Material by Franz Diffusion Cells
	III.2.3.6. Tissue Viability of Hybrid Material in an Ex Vivo Human Skin


	III.3. Conclusions
	III.4. Materials and Methods
	III.4.1. Materials
	III.4.2. Physico-Chemical Characterization Methods
	III.4.2.1. Nuclear Magnetic Resonance (NMR) Spectroscopy
	III.4.2.2. Gel Permeation Chromatography (GPC) in DMF
	III.4.2.3. Gel Permeation Chromatography (GPC) in Aqueous Media
	III.4.2.4. Circular Dichroism (CD)
	III.4.2.5. Dynamic Light Scattering (DLS)
	III.4.2.6. Fluorescence Spectroscopy
	III.4.2.7. Ultraviolet-Visible (UV-Vis) Spectroscopy
	III.4.2.8. Transmission Electron Microscopy (TEM)
	III.4.2.9. Amine Quantification by TNBSA Assay
	III.4.2.10. High-Performance Liquid Chromatography (HPLC)
	III.4.2.11. Viscosity Measurements

	III.4.3. Synthetic Protocols
	III.4.3.1. Synthesis of Hyaluronic Acid-poly-L-Glutamate Cross-Polymer
	III.4.3.2. Cyanine5.5 Labeling of HA-based Materials
	III.4.3.3. Synthesis of Amphiphilic Block Copolymers
	III.4.3.4. Preparation of the Micelles using the Block Copolymers

	III.4.4. Biological Evaluation
	III.4.4.1. In Vitro Evaluation
	III.4.4.1.1. Cell Viability

	III.4.4.2. Ex Vivo Evaluation
	III.4.4.2.1. Permeation Studies by Franz Diffusion Cells
	III.4.4.2.2. Evaluation of Tissue Viability in an Ex Vivo Human Skin Model

	III.4.4.3. In Vivo Evaluation
	III.4.4.3.1. Hydration Assays



	III.5. References
	IV.1. Antecedents and Background
	IV.2. Results
	IV.2.1. Safety and Skin Penetration of Linear and Star PGAs
	IV.2.2. Synthesis and Characterization of Poly-L-Glutamate Fluocinolone Acetonide Conjugates
	IV.2.3. Self-assembling Behavior of PGA-FLUO
	IV.2.4. FLUO Release Kinetics as a Crucial Feature Driving Sustained Release into the Skin
	IV.2.5. Compatibility of PGA-FLUO with the HA-CP Vehicle
	IV.2.6. In Vitro Skin Compatibility and Cell Trafficking Studies of PGA-FLUO Conjugates
	IV.2.7. PGA-FLUO Reduces the Release of Pro-Inflammatory Cytokines In Vitro
	IV.2.8. PGA-FLUO Biocompatibility and Anti-Inflammatory Effect in an Inflammatory Skin Equivalents Model and an Inflammatory Ex Vivo Human Skin Model
	IV.2.9. FLUO Conjugation and the Use of HA-CP as Vehicle Enhances Skin Permeation
	IV.2.10. Optimization of In Vivo Experiments
	IV.2.10.1. Reduction of Skin Inflammation, Ear Thickness, and Splenomegaly
	IV.2.10.2. Reduction of Epidermal Thickness
	IV.2.10.3. Reduction of Pro-Inflammatory Cytokines Levels in Serum

	IV.2.11. PGA-FLUO in HA-CP Reduces Imiquimod-Induced Skin Inflammation In Vivo
	IV.2.12. Reduction of Skin Inflammation, Ear Thickness, and Splenomegaly
	IV.2.13. PGA-FLUO Conjugates Reduce Pro-Inflammatory Cytokines Levels in Serum and Tissue

	IV.3. Conclusions
	IV.4. Materials and Methods
	IV.4.1. Materials
	IV.4.2. Physico-Chemical Characterization Methods
	IV.4.2.1. Nuclear Magnetic Resonance (NMR) Spectroscopy
	IV.4.2.2. Ultraviolet-Visible (UV-Vis) Spectroscopy
	IV.4.2.3. Size Exclusion Chromatography (SEC) in Aqueous Media
	IV.4.2.4. Fluorescence Spectroscopy
	IV.4.2.5. Transmission Electron Microscopy (TEM)
	IV.4.2.6. Dynamic Light Scattering (DLS)
	IV.4.2.7. High-Performance Liquid Chromatography (HPLC)
	IV.4.2.7.1. Recovery of FLUO in a Polymeric Matrix: Liquid-liquid Extraction
	IV.4.2.7.2. Extraction and Quantification of FLUO in the Skin

	IV.4.2.8. Circular Dichroism (CD)

	IV.4.3. Synthetic Protocols
	IV.4.3.1 Synthesis of Poly-L-glutamate Fluocinolone Acetonide Conjugates
	IV.4.3.2 Oregon Green Labeling of PGA-FLUO Conjugates

	IV.4.4. Biological Evaluation of Polymer-Drug Conjugates
	IV.4.4.1. In Vitro Evaluation
	IV.4.4.1.1. Cell Viability
	IV.4.4.1.2. Cellular Uptake by Flow Cytometry
	IV.4.4.1.3. Uptake Studies by Confocal Microscopy
	IV.4.4.1.4. Anti-Inflammatory Activity
	IV.4.4.1.5. Cathepsin B Activity

	IV.4.4.2. Ex Vivo Evaluation
	IV.4.4.2.1. Permeation Studies by Franz Diffusion Cells
	IV.4.4.2.2. Tissue Viability and Evaluation of the Anti-Inflammatory Activity of PGA-FLUO Conjugates in an Inflammatory Ex Vivo Human Skin Model
	IV.4.4.2.3. Development of a Skin Equivalents Construction Model and Cell Viability Assays
	IV.4.4.2.4. Development of an Inflammatory Skin Equivalents Construction Model and Anti-Inflammatory Activity of PGA-FLUO conjugates

	IV.4.4.3. In Vivo Evaluation
	IV.4.4.3.1. Ethical Considerations
	IV.4.4.3.2. Optimization of Optimal FLUO Concentration for Psoriatic Mice Model
	IV.4.4.3.2.1. Establishment of Psoriatic Model
	IV.4.4.3.2.1. Safety Evaluation of Treatments
	IV.4.4.3.2.2. Scoring Severity of Skin Inflammation: PASI score
	IV.4.4.3.2.3. Spleen Weight
	IV.4.4.3.2.4. Ear Thickness
	IV.4.4.3.2.5. Histology
	IV.4.4.3.2.6. Pro-Inflammatory Interleukin Levels in Serum

	IV.4.4.3.3. Evaluation of Anti-Inflammatory Activity of PGA-FLUO Conjugates in Psoriatic Mice Model
	IV.4.4.3.3.1. Establishment of Psoriatic Model
	IV.4.4.3.3.2. Safety Evaluation of Treatments
	IV.4.4.3.3.3. Scoring Severity of Skin Inflammation: PASI score
	IV.4.4.3.3.4. Spleen Weight
	IV.4.4.3.3.5. Ear Thickness
	IV.4.4.3.3.6. Histology
	IV.4.4.3.3.7. Pro-Inflammatory Interleukin Levels in Serum and Tissue




	IV.5. References
	V.1. Antecedents and Background
	V.1.1. Skin Wound Healing
	V.1.2. Heart Tissue Damage by Induced Ischemia-Reperfusion Injury

	IV.2. Results and Discussion
	V.2.1. Synthesis and Characterization of Poly-L-Glutamate-Didocosahexaenoic Acid Conjugates
	V.2.2. Enhanced Solubility and Stability upon diDHA Conjugation
	V.2.3. Self-assembling Behavior of PGA-diDHA Conjugates
	V.2.4. Drug Release Kinetics and Conformation of PGA-diDHA Conjugates
	V.2.5. PGA-diDHA Treatment of Skin Wound Healing
	V.2.5.1. Cell Viability Studies with PGA-diDHA Conjugates
	V.2.5.2. Enhanced Cell Migration by PGA-diDHA Conjugates
	V.2.5.3. PGA-diDHA Permeation into the Epidermis

	V.2.6. PGA-diDHA Treatment of Ischemia-Reperfusion (I/R) Injury
	V.2.6.1. Enhanced Cell Viability after diDHA Conjugation In Vitro
	V.2.6.2. PGA-diDHA6.4 Treatment Decreases Myocardial Infarct Size in an I/R Model In Vivo


	V.3. Conclusions
	V.4. Materials and Methods
	V.4.1. Materials
	V.4.2. Physico-Chemical Characterization Methods
	V.4.2.1. Nuclear Magnetic Resonance (NMR) Spectroscopy
	V.4.2.2. Ultraviolet-Visible (UV-Vis) Spectroscopy
	V.4.2.3. Fluorescence Spectroscopy
	V.4.2.4. Transmission Electron Microscopy (TEM)
	V.4.2.5. Dynamic Light Scattering (DLS)
	V.4.2.6. Fast Protein Liquid Chromatography (FPLC)
	V.4.2.7. Circular Dichroism (CD)
	V.4.2.8. Stability Over Time by NMR Analysis
	V.4.2.9. Stability Over Time by Malondialdehyde Colorimetric Assay
	V.4.2.10. Quantitative Determination of the Triglyceride Content in the PGA-diDHA Conjugates

	V.4.3. Synthetic Protocols
	V.4.3.1 Synthesis of Poly-L-Glutamate Didocosahexaenoic Acid Conjugates
	V.4.3.2 Oregon Green Labeling of PGA-diDHA Conjugates

	V.4.4. Biological Evaluation of PGA-diDHA Conjugates
	V.4.4.1. Skin Wound Healing
	V.4.4.1.1. In Vitro Evaluation
	V.4.4.1.1.1. Cell Viability
	V.4.4.1.1.2. Scratch Assays

	V.4.4.1.2. Ex Vivo Evaluation
	V.4.4.1.2.1. Visualization of Dermal Penetration
	V.4.4.1.2.2. Confocal Microscopy


	V.4.4.2. Ischemia-Reperfusion Injury
	V.4.4.2.1. In Vitro Evaluation
	V.4.4.2.2. In Vivo Evaluation



	V.5. References

