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1 INTRACELLULAR MEMBRANE TRAFFIC 

 Eukaryotic cells have a complex endomembrane system composed 

by several membrane-bound compartments, which have a specific molecular 

composition and, therefore, are functionally different. In plants, the major 

endomembrane compartments are the endoplasmic reticulum (ER), the 

Golgi apparatus (GA), the trans-Golgi network (TGN), the prevacuolar 

compartment/multivesicular bodies (PVC/MVB) and the vacuoles. 

1.1 MEMBRANE TRAFFICKING PATHWAYS 

 The different compartments which are part of the endomembrane 

network are connected through small membrane-enclosed transport vesicles 

to exchange proteins, polysaccharides and lipids (Figure 1). The membrane 

trafficking allows the delivery of several thousands of proteins to their site of 

action. Moreover, membrane trafficking is involved in multiple cellular 

functions such as cellular homeostasis, development, cell-to-cell 

communication and physiological responses to changes in the environment 

(Bassham et al., 2008; Park and Jürgens, 2012; Pfeffer, 2013). This membrane 

trafficking system consist of highly organized directional routes through the 

cell of which two are the main pathways, the secretory or biosynthetic 

pathway and the endocytic pathway (Figure 1) (Bassham et al., 2008; Chung 

and Zeng, 2017): 

• Secretory or biosynthetic pathway: The secretory pathway starts when 

newly synthesized molecules are transported from the ER to different 

compartments or are secreted. In the conventional secretory pathway, 

proteins synthesized in the ER are transported to the plasma membrane 
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(PM) or the vacuole via the Golgi apparatus and the TGN (Drakakaki and 

Dandekar, 2013; Wang et al., 2018). 

 

• Endocytic pathway: Endocytosis is a process by which plant cells capture 

molecules from the apoplast or internalize plasma membrane proteins 

or receptor-ligand complexes via vesicles generated at the plasma 

membrane (Marsh and McMahon, 1999). Endocytic vesicles are released 

from the plasma membrane and are transported into the cell to the 

TGN/EE (Early Endosomes), where the endocytic cargos are sorted to 

follow different destinations: They can be recycled back to the plasma 

membrane or be delivered to the lytic vacuoles for degradation through 

the PVC/MVB (Viotti et al., 2010; Paez Valencia et al., 2016). 

 

• “Retrograde” pathways: The retrograde pathways recover material back 

from later steps in either pathway for a wide variety of reasons (Pagny et 

al., 2000; Brandizzi et al., 2003; Kleine and Leister, 2016). These 

retrograde pathways can serve to get back molecules which should 

remain in one compartment and have entered into vesicles in a 

nonspecific manner or for recycling the molecules involved in the 

vesicular transport formation. 

 

• Others: It has also been shown the existence of different pathways which 

allow protein transport from the endomembrane system to peroxisomes 

and plastids (Nanjo et al., 2006; Titorenko and Mullen, 2006). It has also 

been suggested that secretion may be redirected to the cell plate during 

cell division (Richter et al., 2009).  
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Figure 1. The endomembrane system of a plant cell (adapted from Vukašinović and Žárský, 
2016). The compartments and organelles are all communicated with one another and the 
outside of the cell by vesicles. In the secretory pathway (red arrows), proteins are transported 
from the ER to the vacuole or to the PM. In the endocytic pathway (green arrows), molecules 
are endocytosed in endocytic vesicles formed at the PM and delivered to TGN/EE and then 
(via MVB/LE) to the vacuole. Some endocytosed molecules can be recycled from the TGN and 
returned to the cell surface, as some molecules are retrieved from MVB/LE and TGN to the 
Golgi apparatus or from the Golgi apparatus to the ER (blue arrows). CW, cell wall; ER, 
endoplasmic reticulum; PVC/MVB/LE, prevacuolar compartment/multivesicular body/late 
endosome; PM, plasma membrane; TGN/EE, trans-Golgi network/early endosome. 

 

1.2 VESICLE TRAFFICKING 

 Nowadays it is widely accepted that molecular transport through the 

compartments of the membrane trafficking system occurs via small coated 

vesicles. These vesicles bud off from a donor compartment and fuse with a 

target compartment, carrying cargo molecules, including membrane and 
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soluble proteins, from one compartment to the next (Rothman and Wieland, 

1996; Nickel et al., 1997; Paul and Frigerio, 2007; Klann et al., 2012). 

1.2.1 Steps of the vesicular transport 

 The vesicular traffic between the different compartments of the 

plant endomembrane system occurs via similar mechanisms as in mammals 

and yeast. Each step of vesicle trafficking can be divided in three steps:  

1.2.1.1 Budding 

 Transport vesicles bud from the donor compartment by the action of 

several ordered systems of coat proteins which are recruited and regulated 

by the activity of a specific GTPase (coat-GTPase) (Stenmark, 2009; Yorimitsu 

et al., 2014; Suda et al., 2018). This protein is recruited into the donor 

membrane through a GTP/GDP-exchange factor (GEF), which exchanges the 

GDP to GTP and activates the coat-GTPase. Once the coat-GTPase is 

activated, this is attached onto the donor membrane and then the other 

subunits needed to form the vesicle are also recruited. The subunits of the 

coat complex polymerize deforming the membrane surface to form the 

nascent vesicle. While the vesicle is forming, cargo molecules are captured 

into the vesicle together with those molecules that are necessary for 

transport and fusion with the target compartment, including soluble N-

ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), 

which carry out the membrane fusion between the vesicle and the target 

compartment (Chen and Scheller, 2001; Hong and Lev, 2014). Finally, a 

GTPase activating protein (GAP) triggers the hydrolysis of GTP to GDP of the 

coat-GTPase for uncoating the vesicle (Ross and Wilkie, 2000; Lamber et al., 

2019). 
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 Plant cells contain four major types of vesicles: COP (“Coat Protein”) 

I and COPII coated vesicles, which are implicated in the transport in the early 

secretory pathway (Brandizzi and Barlowe, 2013); retromer coated vesicles, 

which are involved in post-Golgi trafficking, mostly recycling vacuolar sorting 

receptors from the PVC to the TGN (Niemes et al., 2010); and clathrin coated 

vesicles (CCV) which have been proposed to be involved in the late secretory 

pathway and in endocytosis (Ferreira and Boucrot, 2018). 

1.2.1.2 Transport 

 Newly formed vesicles generated in the donor compartment have to 

be transported to the target compartment. This transport usually occurs 

along a cytoskeletal element via a motor-mediated process in which kinesin 

and dynein motors and other docking factors could be involved for transport 

of vesicles (Hafner and Rieger, 2016; Verdeny-Vilanova et al., 2017). 

1.2.1.3 Fusion 

 Once the vesicles reach the target compartment, the membranes 

fuse and the cargo molecules are delivered into the target compartment. This 

requires specific mechanisms for recognition between the membrane of the 

vesicle and the target membrane. The identification is mediated by different 

family proteins, here summarized: 

 
a) Rab family of small GTPases 

 Small GTPases of the Rab family are involved in vesicle formation, 

tethering, motility and docking, and also preceding vesicle fusion, recruiting 

proteins onto membranes for vesicle formation. Therefore, Rab GTPases 

contribute to membrane identity and the rightness of vesicle targeting 
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(Pfeffer, 2001; Woollard and Moore, 2008). Through genomic analysis, Rab 

GTPases are classified into eight types (RabA-RabH) which are conserved 

among the vast majority of eukaryotes (Pfeffer, 2017). 

 As introduced before, Rab GTPases are regulated by switching 

between GDP-bound and GTP-bound forms. The GDP-form is the inactive 

one, and is usually localized in the cytosol associated with a RabGDI (GDP-

displacement inhibitor) (Wu et al., 1996), which masks the two prenyl- 

groups which are attached post-translationally to the C-terminus (Pereira-

Leal et al., 2001). They are recruited onto the membrane by their interaction 

with RabGDI-displacement factors, which allow Rab attachment to the 

membrane using the prenyl-groups (Pylypenko et al., 2018). Then, specific 

GEFs convert the protein to the GTP-bound form which can recruit the 

subunits and effectors for protein assembly. Once the vesicle is formed, GAPs 

stimulate the intrinsic GTPase activity of the Rab GTPase, which finally 

produce the disassembly of the coated-vesicle (Woollard and Moore, 2008). 

 
b) Tethering factors 

 Tethering factors are single long rod-like proteins or protein 

complexes which mediate the first specific contact between the vesicle and 

the target membrane. They connect newly assembled vesicles with the 

target membrane through their interaction with Rab GTPases, SNAREs and 

coat subunits, to ensure the appropriate docking and fusion. There are two 

classes of tethers that have been defined and characterized in eukaryotes: 

Elongated coiled-coil tethers and multisubunit tethering complexes (Sztul 

and Lupashin, 2009; Bröcker et al., 2010; Vukašinović and Žárský, 2016). 
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c) Soluble N-ethylmaleimide-sensitive fusion protein Attachment protein 

Receptors (SNAREs) 

 The SNARE family of proteins have a critical role in membrane fusion. 

SNAREs on a vesicle interact with the related SNAREs on the target 

membrane, forming a stable SNARE complex which provides energy for the 

membranes to fuse (Bombardier and Munson, 2015). They can be classified 

into two types depending on their localization: v-SNARE, as SNARE on the 

vesicle; and t-SNARE, as SNARE on the target membrane. On one hand, v-

SNAREs on the vesicle interact with three t-SNAREs on the target membrane 

forming a parallel coiled-coil complex which produces membrane fusion (Kim 

and Brandizzi, 2012; Bombardier and Munson, 2015). On the other hand, t-

SNAREs on the target membrane are bundled into three SNARE-helices which 

serves as binding site for the v-SNARE helix. Mutual twisting of the SNARE 

helices pulls the membrane into close proximity and drives fusion of the 

bilayers (Bassham et al., 2008). This post-fusion assembled SNARE complex 

is very stable and needs to be mechanically disassembled (Bombardier and 

Munson, 2015). 

1.2.2 Principles of vesicular trafficking 

 The compartments which belong to the membrane trafficking system 

must maintain their unique composition of membrane and soluble proteins 

despite the constant exchange of vesicles. To this end, there are two key 

principles in the vesicular transport: 
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1.2.2.1 Molecular sorting 

 Vesicular transport requires that each transport vesicle includes the 

appropriate molecules, including cargo molecules and the components 

which are required for the traffic of the vesicle, and exclude the ones which 

should remain in the donor compartment. There are three different ways to 

achieve the accurate selection of the desired molecules into the transport 

vesicles: 

- Sorting the cargo molecules into transport vesicles depends on the 

interaction between coat proteins involved in vesicle budding and the 

molecules that must be recruited into the vesicle. This interaction occurs 

through the recognition of particular motifs called sorting signals, 

localized in the cytoplasmic domain of the cargo molecules. 

- Resident proteins can be retained through their interaction with other 

components of the donor compartment, avoiding their inclusion in the 

newly formed vesicle. 

- Proteins that should remain at the donor compartment can be included 

into vesicles by mistake or randomly and be transported to the target 

compartment. From this compartment, these proteins can be recovered 

through “recovery or rescue pathways”. 

1.2.2.2 Vesicle targeting 

 Transport vesicles must be transported towards the correct target 

compartment and recognize it to fuse correctly. To this end, vesicles contain 

Rab GTPases and SNARE proteins in their surface which identify them and 

target membranes display complementary receptors that recognize these 

proteins on their surface. The most important vesicle targeting markers for 
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vesicles are Rab GTPases and SNAREs (Pelham, 2001; Pfeffer, 2001; Sztul and 

Lupashin, 2009). Besides, these proteins have restricted and specific 

subcellular localization (Uemura and Ueda, 2014). 

 

2 THE SECRETORY PATHWAY 

 The secretory pathway is a complex system of membrane-bound 

compartments which are specialized in the synthesis, transport, modification 

and secretion of a wide range of proteins, lipids and complex carbohydrates. 

It is the main exit route for secretory cargo proteins. Besides, the secretory 

pathway must response to specific cellular functional demands, which are 

continuously changing and, therefore, this implies a highly dynamic 

trafficking of molecules along the cell. Consequently, this system is of vital 

importance during the cell life (Kim and Brandizzi, 2016a; Wang et al., 2018). 

 The secretory pathway comprises first, the transport of newly 

synthesized proteins from the ER to the Golgi apparatus (early secretory 

pathway). Then, cargo molecules travel through the Golgi apparatus, from 

the cis- to trans- cisternae, to reach the TGN, where they are sorted into 

vesicles and delivered to the PM (late secretory pathway) or to the vacuole 

through the PVC/MVB (Figure 2). 

 There is an equilibrium between anterograde and retrograde 

transport. Retrograde transport is essential for the homeostasis of the cell 

because it is continually recycling proteins and lipids. Furthermore, 

disruption of retrograde transport inhibits anterograde transport (Hanton et 

al., 2005). 
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Figure 2. Overview of the secretory pathway in plants (Hanton et al., 2005). Schematic representation of 
organelles and their connecting protein transport routes in the plant-secretory pathway. ER, Endoplasmic 
reticulum; TGN, trans-Golgi network; PVC, prevacuolar compartment; PSV, protein storage vacuole. 
 

 In conventional protein secretion (CPS) pathway, secretory proteins 

are transported to the extracellular region via the ER-Golgi apparatus and the 

subsequent endomembrane system (Chung and Zeng, 2017). In this pathway, 

secreted proteins have in common three characteristics: They are post-

translational modified through the secretory pathway (Walsh et al., 2005), 

they possess an N-terminal leader sequence (von Heijne, 1990; Petersen et 

al., 2011; Whitley and Mingarro, 2014) and their transport is blocked by the 

application of brefeldin A (BFA) (Fujiwara et al., 1988). For vacuolar proteins, 

they should contain an additional sequence-specific sorting determinant 

(Neuhaus and Rogers, 1998; Vitale and Hinz, 2005). 

 As it has been introduced before, protein transport through the 

secretory pathway is controlled by transport vesicles which carry cargo 
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molecules from one organelle to the next. This transport can occur in the 

forward direction (anterograde transport), from the ER to the PM, or in a 

reverse direction (retrograde transport) (Figure 2 and 3) (Hanton et al., 

2005). 

•  Anterograde transport: Membrane traffic pathway in which cargo 

movement is from the ER towards the cell surface through the Golgi 

apparatus or to the lytic vacuole via PVC and protein storage vacuole 

(Brandizzi and Barlowe, 2013). 

 

• Retrograde transport: Membrane traffic pathway in which a linear 

assembly of compartments facilitates cargo movement towards the ER 

(Brandizzi and Barlowe, 2013). 

2.1 EARLY SECRETORY PATHWAY 

 The early secretory pathway includes the transport of newly 

synthesized proteins from the ER to the Golgi apparatus. Protein transport 

between ER and Golgi apparatus is bidirectional: Anterograde transport 

(from the ER to the Golgi) is mediated by COPII vesicles, while retrograde 

transport (from the Golgi to ER) is mediated by COPI vesicles (Figure 3) 

(Hawes et al., 2008; Marti et al., 2010; Gao et al., 2014; Brandizzi, 2018). 

2.1.1 The ER network 

The ER is the factory where proteins which have to be secreted are 

synthesized, and therefore, the early secretory pathway starts. These 

proteins contain an N-terminal signal peptide (SP) in their sequence and are 

translocated into the ER (von Heijne, 1990; Whitley and Mingarro, 2014; 

Bassham et al., 2008; Ding et al., 2012; Robinson et al., 2016). The ER network 
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morphology extends from the nuclear envelope to the cortical regions of the 

cell pushed by the large central vacuole. It is characterized by a network of 

interconnected membrane tubules and sheets, which are in continuous 

remodelling (Kriechbaumer et al., 2018; Pain et al., 2019). As the ER is 

extended along the cell, it is in close contact with every organelle in the cell, 

performing various roles with each contact (Sparkes et al., 2009, 2011; 

Stefano et al., 2014). Besides, ER network changes depending the necessities 

of the cell and environmental conditions (Brandizzi et al., 2014; Pain et al., 

2019). 

 The ER is responsible for synthesis, folding and quality control, as 

well as the first steps of glycosylation of a large number of proteins (Sparkes 

et al., 2009, 2011; Stefano et al., 2014). In the ER, proteins acquire their 

proper conformation carried out by chaperones and undergo initial post-

translational modifications (Boston et al., 1996; Miernyk, 1999; Webster and 

Thomas, 2012). N-glycosylation is initiated at the ER when a preformed 

oligosaccharide is transferred en bloc to the asparagine residue in an Asn-X-

Ser/Thr motif (where X represents any amino acid residue except proline) of 

the nascent polypeptide chain during translation (Webster and Thomas, 

2012). Then, chaperones recognize that are correctly N-glycosylated to 

continue for further modifications (Boston et al., 1996; Miernyk, 1999).  
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Figure 3. Bidirectional transport between the ER and the Golgi is mediated by COPI and COPII 
vesicles (Brandizzi and Barlowe, 2013). Bidirectional transport of secretory cargo between the 
ER and the Golgi requires budding, movement, tethering, as well as uncoating and fusion of 
COPII and COPI vesicles with their respective compartments. These include bulk-flow, 
membrane cargo and receptor-dependent luminal cargo. COPII vesicles facilitate selective and 
bulk-flow cargo export towards the Golgi apparatus. One important function of COPI vesicles 
is to facilitate retrieval of escaped luminal proteins containing K/HDEL retrieval signals that 
are recognized by the K/HDEL receptor ERD2 as well as other machinery required for optimal 
anterograde transport. Vesicle fusion is mediated by vesicular SNARE proteins (v-SNARE) a 
target-SNAREs (t-SNAREs) upon anchoring of the vesicles to their target compartment via 
tethers. 
 

 Proteins which are not properly folded have to repeat the folding 

cycle, but when folding fails, those proteins that are not correctly folded are 

targeted to degradation by the ER-degradation system (ERAD) (Meusser et 

al., 2005; Nishikawa et al., 2005). If the load of unfolded proteins increases, 

a signalling cascade, known as the unfolded protein response (UPR), is 
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activated in order to decrease the amount of unfolded proteins (Vitale and 

Boston, 2008; Wan and Jiang, 2016). 

2.1.2 ER export sites and ER-to-Golgi transport 

 Once proteins and membrane cargos are correctly folded, they are 

transported from the ER to the Golgi through COPII-coated vesicles (Figure 

3) which are known to be recruited and bud from specialized subdomains of 

the ER, called ER export sites (ERES) (Marti et al., 2010; Brandizzi and 

Barlowe, 2013; Brandizzi, 2018). Therefore, ERES are defined as the sites 

through which secretory proteins leave the ER and form vesicles, and they 

are also characterized by the absence of ribosomes and the local 

accumulation of COPII proteins, so that this is the reason by COPII 

components are used as ERES markers (Langhans et al., 2012; Brandizzi and 

Barlowe, 2013; Takagi et al., 2013; Luo et al., 2015; Zhao et al., 2016; 

Brandizzi, 2018). Moreover, ERES are rich in SEC16 proteins, which have been 

proposed to be required for ERES organization and function as scaffold and 

regulator of COPII coat assembly at ERES (Budnik and Stephens, 2009; 

Hughes et al., 2009; Miller and Barlowe, 2010; Brandizzi and Barlowe, 2013; 

Brandizzi, 2018).  

 In mammals the distance between the ER and the Golgi apparatus is 

relatively large, which may justify the existence of an intermediate 

compartment between both, known as the ER-Golgi Intermediate 

Compartment (ERGIC), which is involved in concentration of anterograde 

biosynthetic cargo, and COPI-dependent retrograde cargo (Figure 4) (Hauri 

and Schweizer, 1992; Appenzeller-Herzog and Hauri, 2006; Brandizzi and 

Barlowe, 2013). However, this compartment is not present in plants, and 
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COPII-coated carriers are supposed to fuse with other COPII-coated carriers 

to form the first cis-cisterna or to attach to the rims of the cis-cisterna (Yang 

et al., 2005; Kang and Staehelin, 2008). This fact involves that the 

organization of the ER-Golgi interface varies greatly among species. 

Furthermore, in plants the Golgi apparatus is present as multiple stacks 

which are distributed throughout the cytosol and it shows rapid motility (up 

to 4 µm/sec) and this requires the activity of actomyosin motors and close 

association with tubular ER strands. As the distance between both organelles 

is very small, ERGIC is no needed in plants (Figure 4) (Boevink et al., 1998; 

Hawes et al., 2008; Akkerman et al., 2011).   

 

Figure 4. The ER-Golgi interface and ERES have a distinct organization in mammals and 
plants (Brandizzi and Barlowe, 2013). A) In mammalian cells, ER exit sites (ERES) are oriented 
towards a juxtaposed endoplasmic reticulum (ER)-Golgi intermediate compartment (ERGIC). 
COPII-coated vesicles originate within cup-shaped ER subdomains, which are associated with 
the plus end of microtubules. Upon fission of vesicles from the ERES, the SEC13-SEC31 cage is 
depolymerized, but the SEC23-SEC24 coat is partially retained. Vesicles reach the ERGIC in a 
microtubule-independent manner where they are tethered through the interaction between 
SEC23 and the TRAPPI (transport protein particle I) tethering complex. COPI mediates forward 
protein transport from the ERGIC towards the Golgi as well as recycling back to the ER 
membrane. B) In plant cells, ERES and Golgi are closely associated, possibly through a matrix 
(indicated in grey) that holds the ER and the Golgi together. The existence of COPII vesicles in 
plants is still debated. Unlike mammalian cells, plant cell ER-Golgi transport does not rely on 
the microtubule cytoskeleton. 
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 Four possible mechanisms for protein transport from the ER to 

mobile Golgi stacks have been suggested (Figure 5) (Ito et al., 2014; Brandizzi, 

2018): 

• “Kiss-and-run” or “stop-and-go” model: ERES are relatively stable and 

the Golgi stacks are travelling from one ERES to another. It has been 

proposed in this model that an active ERES produces a “stop signal” 

which is recognized by the Golgi stack to stop it. Once this recognition is 

done, ER-to-Golgi transport takes place during this temporal association. 

Finally, after the transport is finished, the Golgi stack resumes its 

movement (Nebenführ et al., 1999; Kang and Staehelin, 2008). 

 
• Secretory unit model: ERES are able to move over the ER and are 

continuously associated with Golgi stacks, so that both organelles move 

together. The transport between ER-to-Golgi stacks can occur while both 

are moving (daSilva et al., 2004; Stefano et al., 2006; Hanton et al., 2007; 

Takagi et al., 2013). 

 
• Hybrid model: This is similar to the secretory unit model because some 

ERES are continuously associated with Golgi stacks. However, other 

ERES, which are not associated with the Golgi stacks, are smaller and 

move independently. They become active and stable when they 

associate with a Golgi stack (Ito et al., 2012). 

 
• Modified secretory unit model: During the Golgi movement, COPII and 

COPI vesicles are continuously formed. The anterograde COPII transport 

is not restricted to temporary stationary Golgi stacks, nevertheless, 

fusion of COPI vesicles to the ER occur when the Golgi stacks temporally 

stop at the ER import sites (ERIS). However, both types of vesicles are 
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accumulated between the ER and the Golgi and move together with the 

Golgi stacks (Langhans et al., 2012; Lerich et al., 2012). 
 

 
Figure 5. Models of ERES-Golgi organization in plant cells (Ito et al., 2014). Image of the four 
models of protein transport between ERES and the Golgi stacks (see text for details). 
 

 However, the major dispute is over the type of COPII-carriers 

involved in the ER-Golgi transport because vesicle-like structures have been 

rarely detected in electron microscopy analyzes, so the possibility of 

membrane connections between the ER and the Golgi through 

interconnecting tubules has been debated. Several different models have 

been proposed to explain the ER export in plants (Figure 6) (Robinson et al., 

2015; Chung et al., 2016):  
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• Vesicular-mediated ER export: COPII-coated vesicles bud from the ERES 

to the cis-Golgi carrying cargoes. 

 
• Tubule-mediated ER export: COPII carriers mediates the formation of 

tubules that connect the ER and the Golgi apparatus which allows the 

direct transport of cargo proteins. 

 
• Tubule and vesicle-mediated ER export: Vesicles and tubules can 

mediate the ER export under specific conditions. 
 

 

Figure 6. Models of ER export in plants (Chung et al., 2016). Picture of the three proposed 
models to explain the ER export in plants (see text for further details). 

 There are arguments based on experimental data which support 

each model, being difficult to arrive to any consensus about the modality of 

membrane traffic between both organelles in plants (Robinson et al., 2015). 

 It has been proposed that the close association between the ER and 

the Golgi stacks is due to the fact that both organelles are connected through 

a tethering matrix which might facilitate ER-Golgi COPII transport. Besides, 

cytoskeletal elements may not be needed to facilitate the bidirectional 

transport at the ER-Golgi interface so that in highly vacuolated cells, the Golgi 
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apparatus was found to be mainly associated with the ER due to the presence 

of a central vacuole that occupies most of the cell volume. So it is possible 

that different plant cell types could use diverse ERES-Golgi spatial 

organization to achieve ER export (Kang and Staehelin, 2008; Marti et al., 

2010; Brandizzi and Barlowe, 2013; Robinson et al., 2015; Brandizzi, 2018). 

2.1.3 COPII vesicles 

2.1.3.1 Formation of COPII vesicles 

 The COPII coat is composed by five proteins: SAR1, SEC23, SEC24, 

SEC13 and SEC31, which are the minimal machinery required to form vesicles 

in vitro (De Craene et al., 2014; Chung et al., 2016). The COPII coat assembly 

is initiated by the activation of the small Rab GTPase SAR1 mediated by 

SEC12, which is a GEF localized at the ER which can recruit SAR1 changing 

GDP for GTP (Lee and Miller, 2007). When SAR1 is activated in its GTP-bound 

state, it exposes its N-terminal amphipathic helix to the ER membrane and 

induces membrane curvature (Lee et al., 2005). Next, two COPII coat 

heterocomplexes (SEC23/SEC24 and SEC13/31) are sequentially recruited to 

form two layers (Lee and Miller, 2007). To this end, activated SAR1 first 

interacts with SEC23 to recruit the SEC23/SEC24 complex for forming the 

“prebudding complex” SAR1/SEC23/SEC24 (Lee and Miller, 2007), where 

SEC23 is the GAP of SAR1 and SEC24 contains multiple independent domains 

to interact with specific cargo signals. At this point, the heterotetramic 

complex SEC13/SEC31 is recruited through the SEC23-SEC31 interaction, 

which also contributes for SEC23 GAP activity (Lee and Miller, 2007). Finally, 

GTP hydrolysis by SAR1 is maximal once the coat is completely assembled 

(Figure 7) (Bielli et al., 2005; Hanna et al., 2016).  
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Figure 7. COPII assembly at the ER membrane (Adapted from D’Arcangelo et al., 2013). The 
formation of the COPII vesicle at the ER is initiated by the recruitment of SAR1 to the 
membrane in the GTP-state, enhanced by SEC12 GEF activity. SAR1-GTP recruits SEC23/24 
heterodimer through interaction with SEC23. At the ER, SEC24 recruits cargo into prebudding 
complexes. Then, SEC13/SEC31 complex is recruited to the inner coat layer through 
interactions with SEC23. The assembly of SEC13/31 into the coat drives membrane curvature, 
facilitating membrane deformation. Nascent COPII vesicles typically measure within a 60 to 
100 nm range. SEC16 facilitates COPII coat recruitment at the ER, likely through scaffolding for 
COPII components and contributing to ERES structure. 

 

 Thus, the fully assembled coat is composed by: The “inner” 

membrane layer of SAR1/SEC23/SEC24 (Bi et al., 2002), which contributes to 

cargo-binding function, and the “outer” membrane layer composed of 

SEC13/SEC31 (Stagg et al., 2006; Bhattacharya et al., 2012), which provides a 

scaffold that produces curvature to the nascent vesicle at the ER (Figure 7).  

 COPII components are highly conserved along eukaryotes (Chung et 

al., 2016). In Arabidopsis thaliana (Arabidopsis), nineteen paralogs have been 

identified, including five SAR1, seven SEC23, three SEC24, two SEC13 and two 

SEC31 isoforms in its genome (Table 1). Recent studies have suggested the 
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functional diversity of various COPII subunit paralogs in plants (De Craene et 

al., 2014), thus certain COPII subunit paralogs have shown organ specific or 

developmental stage-specific expression and several isoforms (SAR1 ad 

SEC31) seem to be regulated under stress (Chung et al., 2016; Bao and 

Howell, 2017; Gimeno-Ferrer et al., 2017). 

SAR1 SEC23 SEC24 SEC13 SEC31 

AT1G09180 (A) 

AT1G56330 (B) 

AT4G02080 (C) 

AT3G62560 (D) 

AT1G02620 (E) 

AT4G01810 (A) 

AT1G05520 (B) 

AT2G21630 (C) 

AT2G27460 (D) 

AT3G23660 (E) 

AT4G14160 (F) 

AT5G43670 (G) 

AT3G07100 (A) 

AT3G44340 (B) 

AT4G32640 (C) 

AT2G30050 (A) 

AT3G01340 (B) 

AT1G18830 (A) 

AT3G63460 (B) 

Table 1. Different isoforms for COPII coat subunits in Arabidopsis thaliana.  

 

2.1.3.2 COPII interaction motifs 

 Cargo proteins can enter into vesicles in a nonspecific manner known 

as “bulk flow”; however, some cargos are dramatically enriched in some 

specific vesicles (Barlowe and Miller, 2013; Manzano-Lopez et al., 2015). 

Selective enrichment in COPII vesicles occurs via specific sorting signals. 

SEC24 acts as the cargo binding adaptor, with multiple binding sites for 

interaction with distinct sorting signals (Wendeler et al., 2007; Pagant et al., 

2015). 

 Transmembrane cargo proteins also contain in their cytosolic tail 

different sorting signals for interacting with SEC24. However, soluble 

proteins cannot interact directly with SEC24, so they have to use cargo 
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receptors, such as the p24 proteins (for further details see section 3 of 

Introduction), which contain lumen-exposed domains that can bind cargo 

proteins to facilitate their incorporation into COPII vesicles (Barlowe, 2003). 

 Different sorting signals (ER export signals) have been identified 

which bind COPII subunits: A diacidic motif (DXD, DxE, EXE), a diaromatic 

motif (φφ,FF) and a dibasic motif ([RX](X)[RX]) (Mossessova et al., 2003; 

Mancias and Goldberg, 2008). In plants, different studies have shown their 

differences between Arabidopsis SEC24 isoforms could reflect specific cargo 

recognition (Faso et al., 2011; Nishimura et al., 2013; Qu et al., 2014). 

2.1.4 Golgi-to-ER transport 

 The transport from the Golgi apparatus back to the ER is mediated 

by COPI vesicles, which bud from the edges of cis-Golgi cisternae (Pimpl et 

al., 2000; Ahn et al., 2015). It has been proposed that ER export in plants is a 

continuous process, but COPI vesicles are tethered by the Dsl1 complex 

(Latijnhouwers et al., 2005; Ravikumar et al., 2017), while Golgi stacks are 

moving and can fuse with the ER during temporary pauses of the Golgi stack 

carried out by a domain of the ER containing COPI-tethering factors (Lerich 

et al., 2012; Ravikumar et al., 2017). 

 Fusion between COPI vesicles and the ER membrane seems to occur 

at specialized ER subdomains named ERAS (ER arrival sites) or ERIS, which are 

close and related to the ERES. The spatial separation of exit and entry sites 

may facilitate the simultaneous arrival and departure of proteins (Lerich et 

al., 2012; Schröter et al., 2016). 
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2.1.5 The Golgi apparatus and intra-Golgi trafficking 

 The plant Golgi apparatus is the main sorting station and the 

responsible for delivering cargo proteins to multiple destinations, so it plays 

a central role in the secretory pathway (Staehelin and Moore, 1995; 

Mollenhauer and Morre, 1966).  It functions as a polysaccharide factory (N- 

and O-glycosylations) and its activity is essential for the formation of the cell 

wall during cytokinesis and growth (Driouich et al., 1993; Dupree and 

Sherrier, 1998; Ito et al., 2014). As described before, it consists of numerous 

individual stacks which are usually dispersed through the cytoplasm and can 

travel along actin filaments (Boevink et al., 1998). Each Golgi stack has a 

polarized structure, from the cis side which receives cargo proteins from the 

ER and the trans side which send the cargo proteins to their final destination 

(Zhang and Staehelin, 1992). Along the Golgi stacks there are many 

glycosylation enzymes which are arranged as a gradient, so that cargo 

proteins can be modified sequentially by these enzymes, while they traverse 

the Golgi stacks (Driouich et al., 1993; Staehelin and Moore, 1995). Two 

major models have been proposed to explain how cargo molecules are 

transported through the stack of cisternae (Figure 8) (Ito et al., 2014): 

• Vesicular transport model: The Golgi cisternae are stable compartments 

and each Golgi cisterna is viewed as a different suborganelle with a 

characteristic set of resident proteins. Cargo proteins are transported 

from one cisterna to the other by anterograde or retrograde COPI 

vesicles, while resident proteins are excluded from them and remain in 

the cisterna. Finally, cargo proteins arrive to the TGN. 
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• Cisternal progression model: Each cis-cisterna is newly formed by the 

homotypic fusion of COPII vesicles and functions as a transient 

compartment which progresses from the cis to the trans side to become 

the TGN. Thus, the nature of the cisternae gradually changes while they 

progress along the secretory pathway. Retrograde COPI vesicles recycle 

Golgi proteins from later to earlier cisternae.  
 

 
 
Figure 8. Two major models for intra-Golgi trafficking (Ito et al., 2014). A) The vesicular 
transport model. B) The cisterna maturation model. 
 
 

2.1.6 COPI vesicles 

2.1.6.1 Formation of COPI vesicles 

 The retrograde transport from the Golgi apparatus to the ER is 

mediated by COPI vesicles. The COPI coat complex consists of a heptameric 

complex (α, β, β’, γ, δ, ε and ζ) named coatomer, which is composed of two 

A B 
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subcomplexes: The β/δ/γ/ζ F-complex, which is proposed to be the inner 

layer core that binds cargo; and the α/β’/ε B-complex, which has been 

proposed to function as the outer layer and confer curvature to the 

membrane (Figure 9) (Jackson, 2014). Nevertheless, recent structural studies 

suggest that the seven subunits are highly connected one to each other, 

which means that the COPI coat may not form a distinct two-layered 

structure like the COPII coat (Donovan and Bretscher, 2015). 

 COPI assembly to the Golgi membrane is initiated by the activation 

of the ARF1 GTPase (Takeuchi et al., 2002). This activation involves GDP/GTP 

exchange mediated by a family of GEFs proteins, and produces a 

conformational change to ARF1, which exposure a myristoylated 

amphipathic N-terminal helix that is inserted into the Golgi membrane 

(Jackson and Casanova, 2000; Lundmark et al., 2008). Then, ARF1 recruits en 

bloc the coatomer complex through its interaction with the F-complex 

(Figure 9) (Jackson, 2014). 

 In order to fuse with the target membrane, COPI vesicles need to be 

uncoated, which is mediated by the GAP activity of the ARF GAP1 protein, 

which is accelerated by binding with the coatomer, but this effect is inhibited 

by p24 proteins which are proposed to act as cargo receptors. Arabidopsis 

genome encodes fifteen ARF GAP domain (AGD) proteins (Ito et al., 2014). 

Once the hydrolysis of GTP is produced by a GTPase activating protein, ARF1-

GDP is displaced from the membrane for future rounds of recruitment.   
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Figure 9. COPI assembly at the Golgi membranes (Brandizzi and Barlowe, 2013). Once ARF is 
activated by ADP-ribosylation factor (ARF) guanine nucleotide exchange factor (GEFs), 
myristoylated membrane-anchored ARF GTPases recruit COPI coatomer en bloc to Golgi 
membranes. The coatomer subunits α-COP, β’-COP, γ-COP and δ-COP can recognize sorting 
motifs on the cytosolic domain of membrane cargo and mediate cargo incorporation into 
nascent COPI vesicles. 

 

 COPI machinery is well conserved among eukaryotes, including 

plants. While yeast contains only one isoform for each COPI subunit, in 

mammals, γ and ζ subunits have two isoforms, which allows the formation of 

four alternative coatomer complexes. In clear contrast, all coatomer subunits 

in Arabidopsis have more than one isoform (except δ- and γ-COPI) (Table 2) 

(Gao et al., 2014). Interestingly, morphological studies in Arabidopsis have 

identified two structurally distinct types of COPI vesicles, named COPIa and 

COPIb, located between the ER and the Golgi apparatus or around Golgi 

cisternae, respectively (Donohoe et al., 2007; Hwang and Robinson, 2009; 
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Gao et al., 2014). These different subpopulations of COPI vesicles might be 

formed by different coatomer isoforms. 

Organism α-COP β-COP β’-COP δ-COP ε-COP γ-COP ζ-COP 

Sc Ret1 Sec26 Sec27 Ret2 Sec28 Sec21 Ret3 

Hs α β β’ δ ε 
γ1 
γ2 

ζ1 
ζ2 

At 
At1g62020 
At2g21390 

At4g31480 
At4g31490 

At1g52360 
At3g15980 
At1g79990 

At5g05010 
At2g34840 
At1g30630 

At4g34450 
At1g60970 
At3g09800 
At1g08520 

Table 2. Plant COPI subunits in different organisms (Gao et al., 2014). Abbreviations: Sc, 
Saccharomyces cerevisiae; Hs, Homo sapiens; At, Arabidopsis thaliana 

 

2.1.6.2 COPI interaction motifs 

 The α, β’, γ and δ subunits of COPI coatomer have been proposed to 

recognize sorting motifs on the cytosolic domain of membrane cargo and 

mediate its incorporation into COPI vesicles (Brandizzi and Barlowe, 2013; 

Gao et al., 2014). In particular, δ-COPI has been suggested to be involved in 

efficient retrieval of HDEL proteins (Jackson, 2014; Arakel et al., 2016).  

 The best characterized ER retention signals are a canonical dilysine 

motif (KKXX or KXKXX) for membrane proteins (Letourneur et al., 1994; 

Benghezal et al., 2000; Contreras et al., 2004a) and the K/HDEL motif for 

soluble proteins. Soluble proteins containing the K/HDEL motif can bind to 

the retrieval receptor ERD2 at the Golgi apparatus for sorting into COPI 

vesicles for retrograde Golgi-ER transport (Xu et al., 2012; Gao et al., 2014). 

However, in Arabidopsis p24 proteins have been shown to directly interact 

with COPI proteins and ARF1, which depends on both dilysine and 

diphenylalanine motifs (Contreras et al., 2004b).  
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 For Golgi retention signals the mechanisms usually are more diverse, 

thus KXD/E motif has been recently identified as a retention signal for 

integral membrane proteins for at least Arabidopsis endomembrane protein 

(EMP) family proteins (Gao et al., 2012, 2014). Due to the different 

population of COPI vesicles identified (Donohoe et al., 2007), it has been 

proposed that different sorting signals may be recognized by different 

coatomer isoforms for their sorting into COPIa vesicle for ER retrieval or 

COPIb vesicles to Golgi retention (Gao et al., 2014). 

2.2 LATE SECRETORY PATHWAY 

2.2.1 The trans-Golgi network (TGN) 

 Once the secretory proteins arrive to the trans-Golgi network 

through the Golgi stacks, this tubulo-vesicular compartment is transiently 

associated with an individual Golgi stack and can move away independently 

(Jurgens and Geldner, 2002; Viotti et al., 2010). This compartment is the 

major sorting station for exocytic cargo proteins except for some storage 

proteins which are sorted from the ER or cis-Golgi. Moreover, it also function 

as an early endosome (EE) in plants (Scheuring et al., 2011), being the first 

compartment which receives endocytosed proteins, so that the TGN is at the 

convergence of the secretory and endocytic pathways. However, there is no 

structural evidence for the existence of different TGN subdomains despite of 

distinct sorting functions performed by the TGN (Park and Jürgens, 2012). 

Finally, this compartment may be formed from the trans-Golgi cisterna, 

possibly by maturation (Matsuura-Tokita et al., 2006; Park and Jürgens, 

2012).  
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2.2.2 Transport to the plasma membrane 

 The PM is the final destination for components of the extracellular 

matrix and secreted proteins which are delivered to the apoplast where they 

can become incorporated or diffuse away (Bassham et al., 2008; Kim and 

Brandizzi, 2016b). Traffic of soluble proteins from the ER to the PM through 

the Golgi apparatus requires a N-terminal signal peptide that allows their 

translocation across the ER membrane during protein synthesis (von Heijne, 

1990; Park and Jürgens, 2012). 

 Membrane proteins at PM can function as membrane transporters, 

ion channels, signalling complexes or ligand receptors, or even as physical 

contact points for both the intracellular cytoskeleton network or for the 

extracellular matrix (Bassham et al., 2008; Kim and Brandizzi, 2016b). 

Membrane proteins with a single transmembrane domain seem to reach 

their destination along the secretory pathway according to the length of their 

hydrophobic region: Proteins with a shorter membrane span are held back in 

the Golgi stack whereas those with a longer membrane span are trafficked 

to the PM (Brandizzi et al., 2002). 

 Although secretory traffic to the PM appears to be the default 

pathway in interphase, in dividing cells, TGN-derived membrane vesicles that 

deliver the necessary material for building the PM and the cell wall are 

targeted to plane of cell division. Thus, the default pathway changes from 

the PM to the cell plate during cell division (Richter et al., 2009; Park and 

Jürgens, 2012). 
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2.2.3 Vacuolar cargo trafficking pathway 

 In the conventional secretory pathway, newly synthesized soluble 

cargo proteins destined to the vacuoles contain a N- or a C-terminal vacuolar 

sorting sequence/signal (VSS) or/and plant-specific insert (PSI) motif, which 

binds to vacuolar sorting receptors (VSRs) to be delivered to the PVC or MVBs 

and the vacuole (Neuhaus and Rogers, 1998; Vitale and Hinz, 2005; Pereira 

et al., 2013; Shimada et al., 2018). 

 Sorting of vacuolar cargo has been long thought to occur at the TGN, 

but other studies suggest that this could occur at the ER (Niemes et al., 2010). 

Once in the MVBs/PVC, they are released from the VSRs due to its acidic pH. 

Whereas soluble cargo proteins are delivered to the vacuole via membrane 

fusion of the MVBs/PVC with the vacuole, the VSRs are recycled back to the 

TGN through the retromer (daSilva et al., 2006; Oliviusson et al., 2006; Park 

and Jürgens, 2012). 

 Nevertheless, some published data claim the existence of multiple 

transport routes for tonoplasts proteins (Bottanelli et al., 2011; Viotti, 2014; 

Robinson and Pimpl, 2014; Sansebastiano et al., 2017). Some membrane 

proteins have been also suggested for an independent Golgi-to-vacuole 

transport, in which is involved a direct transport from the ER to the vacuole 

(Viotti, 2014; Uemura and Ueda, 2014). These different pathways show the 

existence of different types of vacuoles which are diverse in size, shape, 

content and function (Frigerio et al., 2008). Vacuoles have important 

functions in plant cells, such as space filling to increase the volume of the cell, 

defence responses, storage proteins and sugars and lytic function in lytic 
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vacuoles (Uemura and Ueda, 2014; Martinoia et al., 2018; Shimada et al., 

2018). 

 

3 P24 PROTEINS 

 The p24 family proteins have been known for a long time; 

nevertheless, they have recently emerged as essential regulators of protein 

trafficking along the secretory pathway, playing important specific functions 

in the composition, structure and function of different organelles in the 

pathway, especially the ER and the Golgi apparatus (Pastor-Cantizano et al., 

2016). In addition, they seem to modulate the transport of specific cargos, 

including: Glycosylphosphatidylinositol-anchored proteins (GPI-APs), G-

protein-coupled receptors and K/HDEL ligands bound to the K/HDEL receptor 

ERD2. As a result, they have been shown to play specific roles in signalling, 

development, insulin secretion and pathogenesis of Alzheimer’s disease 

(Pastor-Cantizano et al., 2016). 

 p24 family proteins were first described by Wada et al. (1991), and 

subsequently they have been characterized in mammals and yeast and more 

recently, in plants. However, many functions of these proteins still remain 

elusive. It has been reported that p24 family proteins cycle between the ER 

and the Golgi apparatus (Aniento et al., 2006), the so-called early secretory 

pathway, as described before. p24 proteins have been shown to be 

efficiently packaged within COPI- and COPII-coated vesicles (Brandizzi and 

Barlowe, 2013), and based in these properties and in their topology, they 

have been proposed to function as cargo receptors and play a role in quality 
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control during transport along the secretory pathway (Pastor-Cantizano et 

al., 2016).  

3.1 PHYLOGENY AND NOMENCLATURE 

 p24 proteins constitute a family of type-I transmembrane proteins of 

~24 kDa. Based on sequence homology, p24 proteins can be classified in four 

subfamilies, named α, β, γ and δ (Figure 10) (Dominguez et al., 1998). The 

number of p24 proteins of each subfamily varies among species. The four p24 

subfamilies are present in all animals and yeast but plants appear to have 

members of only p24δ and p24β subfamilies (Figure 10). 

 Phylogenetic analysis of vertebrate p24 proteins showed that the 

p24δ and p24α subfamilies have a common origin, as also seems to be the 

case for p24γ and p24β subfamilies (Figure 10) (Strating et al., 2009). In most 

vertebrates, the p24α and p24γ have several members, nevertheless the 

p24β and p24δ subfamilies contain only one single member. Within each of 

the four vertebrate p24 subfamilies, the degree of amino acid sequence 

identity is high, being the p24γ subfamily the one that shows largest 

variability (Theiler et al., 2014). 

 In plants, the p24δ subfamily seems to have greatly expanded 

independently from the animals/fungi. Arabidopsis has nine members of the 

delta subfamily which can be divided into two different subclasses, the δ-1 

subclass, with four members (comprising p24 δ3-6) and the δ-2 subclass, 

with five (comprising p24 δ7-11), and two members of the beta subfamily 

(p24β2-β3) (Figure 11) (Chen et al., 2012; Montesinos et al., 2012). 



INTRODUCTION 
 

53 
 

 

Figure 10. Phylogeny tree of the p24 protein family (Pastor-Cantizano et al., 2016). The four 
p24 subfamilies (α, β, δ, γ) are highlighted by different colours. Abbreviations: Hs Homo 
sapiens; Mm Mus musculus; Sc Saccharomyces cerevisiae; Dm Drosophila melanogaster, At 
Arabidopsis thaliana; Os Oryza sativa. 

 

 In the past, several nomenclatures for vertebrate p24 have been 

used. These proteins were originally named according to their apparent 

molecular weight in SDS-PAGE (22-24 kDa), for example: p23, p24, emp24, 

erv25… As new members have been discovered, they were named by 

analogy, p26, p27, p28, although their deduced molecular weight were also 

22-24 kDa (Pastor-Cantizano et al., 2016). Most p24 proteins in the 
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vertebrate protein database are also named as TMED (transmembrane 

emp24 domain containing protein, emp24 was the first yeast p24 protein 

identified) (Schimmöller et al., 1995). 

 

 

Figure 11. Phylogeny tree of the p24 protein family in Arabidopsis thaliana (Montesinos et 
al., 2012). Arabidopsis contains two different subfamilies (β and δ) of p24 proteins. The δ 
subfamily contains nine members and can be divided into two subclasses (δ-1 and δ-2), while 
the β subfamily only contains two members. 

 

 Dominguez et al. (1998) proposed a more systematic nomenclature 

involving the use of greek letters (δ, γ, β and α) to identify the subfamilies, 

followed by a number, starting with the first discovered member. In this 

thesis, we use this last nomenclature in order to facilitate their identification 

within the family and to avoid confusion (Figure 11). 



INTRODUCTION 
 

55 
 

3.2 TISSUE-SPECIFIC AND REGULATED EXPRESSION 

 Most p24 proteins are ubiquitously expressed (Rötter et al., 2002; 

Boltz et al., 2007; Strating et al., 2009; Pastor-Cantizano et al., 2018), 

although a few of them are expressed in a tissue-specific manner and show 

regulated expression (Denzel et al., 2000; Rötter et al., 2002; Hosaka et al., 

2007; Vetrivel et al., 2008; Xie et al., 2014; Pastor-Cantizano et al., 2018). 

These specific expression patterns could reflect specialized functions, as the 

transport of a specific set of cargo proteins. 

 In Drosophila, the expression of some p24 genes is mediated by 

CRABA/CREB3-like family of bZIP transcription factors which have been 

suggested to be the direct and major regulators of the secretory capacity (Fox 

et al., 2010). Moreover, in mouse, several p24 proteins have been found to 

be highly expressed in secretory cell types for instance exocrine, endocrine 

and neural cells (Hosaka et al., 2007; Zhang and Volchuk, 2010; Wang et al., 

2012). 

 In Arabidopsis, the expression pattern of the eleven p24 genes were 

studied by Pastor-Cantizano et al. (2017b). This study showed that p24δ4, 

p24δ5, p24δ7, p24δ9, p24δ10, p24β2 and p24β3 genes are widely expressed 

and have high or medium levels of expression in the different organs of the 

plant; however, p24δ3 expression was observed in all organs except flowers. 

In contrast, expression of p24δ6 and p24δ8 was mostly detected in flowers 

and siliques and p24δ11 expression was only observed in flowers, with no 

expression found in the other organs examined (Zimmermann et al., 2004; 

Pastor-Cantizano et al., 2018). 
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 Therefore, most of p24 genes are widely expressed in Arabidopsis, 

indicating that these genes may play a housekeeping function. Nevertheless, 

the restricted expression patterns of three genes of the p24δ subfamily 

(p24δ6, p24δ8 and p24δ11), may reflect specialized functions for the p24 

proteins coded by these genes in floral tissues (Zimmermann et al., 2004; 

Pastor-Cantizano et al., 2018). 

 Finally, some p24 proteins have been shown to be up-regulated in 

response to ER stress as p24β2 in Arabidopsis (Kamauchi et al., 2005) and 

p24γ4 in mammals (Hartley et al., 2010). This suggests that they may be 

induced as a part of the unfolded protein response to ER stress (Schuiki and 

Volchuk, 2012). 

3.3 PROTEIN DOMAIN STRUCTURE 

 All p24 proteins have a similar structure: A large N-terminal region, 

which includes the Golgi dynamics (GOLD) domain, a linker region called the 

coiled-coil domain, a single transmembrane domain and a short (13-20 

residues) cytosolic C-terminal tail (Figure 12). 

 

Figure 12. Domain organization of p24 proteins (Pastor-Cantizano et al., 2016). The structure 
includes two luminal domains, the Golgi dynamics (GOLD) domain and a coiled-coil (CC) 
domain, separated by a single transmembrane (TM) domain and a short cytosolic C-terminal 

tail. 
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•  The GOLD domain: It is a β-strand-rich globular domain which is also 

present in several proteins related to Golgi dynamics and secretion 

hence its name (Golgi Dynamics). The GOLD domain is predicted to be 

involved in protein-protein interactions and cargo recognition (Gaskell et 

al., 1995; Anantharaman and Aravind, 2002; Carney and Bowen, 2004; 

Nagae et al., 2016). It also contains two cysteine residues, which may 

form a disulfide bridge and a site for N-glycosylation which is involved in 

recognition of the K/HDEL receptor ERD2 (Pastor-Cantizano et al., 2017). 

 
• The coiled-coil (CC) domain: The CC domain has been shown to be 

involved in the interaction between p24 proteins and their 

oligomerization (Ciufo and Boyd, 2000; Emery et al., 2000; Montesinos 

et al., 2012; Liaunardy-Jopeace and Gay, 2014). Recently, it has been 

reported that the CC domain is important for recognition and transport 

of GPI-anchored proteins (Theiler et al., 2014). 

 
• The transmembrane (TM) domain: The TM domain contains polar 

residues and a conserved glutamine at the membrane-cytosol interface. 

It seems to interact specifically with one single sphingomyelin species 

which is present in several G-protein-coupled receptors as potential 

cargos for p24 proteins (Contreras et al., 2012; Björkholm et al., 2014), 

and it has also been proposed to modulate the equilibrium between 

monomeric and oligomeric states of p24 proteins (Contreras et al., 2012). 

 
• The cytosolic tail: The cytosolic tail of p24 proteins contains signals for 

binding COPI and COPII subunits, allowing p24 proteins to be efficiently 

packaged into COPI and COPII vesicles for their bidirectional transport 

between the ER and the Golgi apparatus (Aniento et al., 2006). All of 
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them have a conserved phenylalanine residue, which is often part of a 

diaromatic motif. Besides, many of them also contain a dibasic (dylisine) 

motif, in the form of a φFXXBB(X)n, where φ is a bulky hydrophobic 

residue, B is a basic residue, X can be any amino acid, and n≥2.  

On one hand, the dilysine motif is directly involved in COPI binding 

(Béthune et al., 2006; Popoff et al., 2011; Jackson et al., 2012; Ma and 

Goldberg, 2013; Gao et al., 2014), and is only present in members of the 

α and δ subfamily. On the other hand, the diaromatic motif is present in 

all p24 proteins and has been shown to bind COPII subunits (Dominguez 

et al., 1998; Belden and Barlowe, 2001b; Barlowe, 2003; Contreras et al., 

2004b; Aniento et al., 2006). In addition, this motif seems to be also 

involved in binding COPI subunits (Fiedler et al., 1996; Sohn, 1996; 

Dominguez et al., 1998; Goldberg, 2000; Belden and Barlowe, 2001b; 

Contreras et al., 2004b; Aniento et al., 2006). 

 Members of the same subfamily show significant differences among 

different organisms (Pastor-Cantizano et al., 2016). In Arabidopsis, all 

members of the p24δ subfamily have the dilysine motif in the -3,-4 position 

(relative to the C-terminus) and a diaromatic motif in the -7,-8 position, like 

members of the p24α subfamily in animals. The two members in Arabidopsis 

of the p24β subfamily only have the diaromatic motif in -7,-8 position but not 

the dilysine motif in -3, -4. 

3.4 POST-TRANSLATIONAL MODIFICATIONS AND 
DEGRADATION 

 In animals, several reports have shown that some p24 proteins can 

be glycosylated, such as p24α2 (Dominguez et al., 1998; Füllekrug et al., 
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1999; Lavoie et al., 1999), p24γ3 (Füllekrug et al., 1999) and p24δ1 (Osiecka-

Iwan et al., 2014). This also happens in the yeast p24 protein Rtr6 (p24δ 

isoform), and glycosylation has been proposed to modulate cargo specificity 

(Hirata et al., 2013). Also in animals, Liu et al. (2015) has postulated that 

p24α2 could be phosphorylated.  

 Arabidopsis members of the p24δ-1 subclass (p24δ3-δ6) contain a 

putative N-glycosylation motif in its GOLD domain, which is not present in 

members of the p24δ-2 subclass (p24δ7-δ11) (Pastor-Cantizano et al., 2017). 

Indeed, p24δ5 (but not p24δ9) was found to be glycosylated in its GOLD 

domain. Furthermore, N-glycosylation of p24δ5 was shown to be important 

for its coupled transport with p24β2 at the ER-Golgi interface, for its 

interaction with ERD2 receptor and for its retrograde transport and 

therefore, the retrieval of K/HDEL ligands from the Golgi apparatus to the ER 

(Pastor-Cantizano et al., 2017). 

 Little is known about the degradation of p24 proteins. Liu et al. 

(2008) reported that p24δ1 in animals has a short half-life and is degraded 

by the ubiquitin-proteasome pathway. In Arabidopsis, co-expression of 

p24β2 with p24δ5 increases enormously its stability possibly because p24δ5 

holds p24β2 in the early secretory pathway and prevents its transport to the 

vacuole (Montesinos et al., 2012). In addition, it has been shown that 

degradation of p24 proteins of the β subfamily in plants is mediated by 

cysteine proteases upon their transport to the prevacuolar compartment and 

the vacuole (Montesinos et al., 2013; Pastor-Cantizano et al., 2017).  
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3.5 OLIGOMERIZATION 

 p24 proteins can interact with each other through their CC domains 

(Ciufo and Boyd, 2000; Emery et al., 2000; Jenne et al., 2002; Langhans et al., 

2008; Montesinos et al., 2012; Liaunardy-Jopeace et al., 2014) to form 

different types of oligomeric complexes (including members of the different 

subfamilies), which are important not only for their trafficking and 

localization but also for their stability. 

 In yeast, it was suggested that p24 proteins form a heterotetrameric 

complex containing members of the four p24 subfamilies, called the yeast 

p24 complex (Marzioch et al., 1999a). This complex has been proposed to 

contain Emp24 (p24β), Erv25 (p24δ) and different combinations of p24α and 

p24γ isoforms (Hirata et al., 2013). Nevertheless, in gel-filtration experiments 

it was also found that p24 proteins can also form p24 dimers and even p24 

monomers (Marzioch et al., 1999a). 

 In mammals, the same experiments were carried out to identify the 

composition of p24 complexes. Immunoprecipitation or pull-down 

experiments also showed that p24 proteins form heterotetramers including 

members of the four subfamilies (Füllekrug et al., 1999; Fujita et al., 2011). 

However, it was also found that p24 proteins can also exist as monomers and 

dimers of different composition depending on their subcellular localization 

(Jenne et al., 2002). More recently, it was discovered that the composition of 

these complexes of p24 proteins depends on the cargo specificity (Theiler et 

al., 2014). 
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 In both organisms, yeast and animals, it has been demonstrated that 

interactions between the p24 proteins are required for their stability, since 

deletion or knock down of a single member of the p24 family produces a 

decrease in the protein levels of other p24 proteins suggesting the formation 

of hetero-oligomeric complexes. In yeast, strains deleted of one member of 

each subfamily showed reduced levels of members of the other subfamilies 

(Marzioch et al., 1999a). The same happened in mammals, the stability of the 

complex was compromised when one member was silenced. This was the 

case of a knock down of p24δ1 (Denzel et al., 2000; Vetrivel et al., 2007; 

Takida et al., 2008; Zhang and Volchuk, 2010; Fujita et al., 2011; Theiler et al., 

2014), p24γ2 (Koegler et al., 2010) and p24β1 (Jerome-Majewska et al., 

2010). 

 All this data is consistent with a model where p24 proteins do not 

exist in a stable complex all the time, it is more likely that they exist in a 

dynamic equilibrium between complexes and individual proteins and maybe 

these heterotetramers could be a dimer of dimers, as proposed by Ciufo and 

Boyd (2000) (Figure 13). 

 In plants, as they only have members of the beta and delta 

subfamilies, any complex should be made with members of these two 

subfamilies. Previous studies have shown the interdependence between p24 

protein levels in Arabidopsis (Montesinos et al., 2012, 2013). In these studies, 

single KO-mutants of p24δ4 or p24δ5 (p24δ-1 subclass) had similar protein 

levels of p24δ5 or p24δ4, respectively, but reduced protein levels of p24δ9 

(p24δ-2 subclass), p24β2 and p24β3. Moreover, knock down lines of the two 

members of p24β subfamily showed also reduced protein levels of p24δ5 
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(p24δ-1 subclass), p24δ9 (p24δ-2 subclass) and p24β subfamily protein 

respectively.  

 

Figure 13. Oligomerization properties of p24 proteins (Pastor-Cantizano et al., 2016). 
Proposed model for a dynamic equilibrium between monomeric, dimeric and 
heterotetrameric forms of p24 family members. 

 

 Besides, a quadruple mutant of the four p24δ-1 subclass generated 

by Pastor-Cantizano et al. (2017b), showed undetectable protein levels of 

p24δ9 (p24δ-2 subclass) and a drastic reduction of the two members of p24β 

subfamily. However, the reduction in protein levels does not correlate with 

reduced mRNA levels of p24δ-2 subclass, p24β2 and p24β3, so this could be 

due to a decrease in protein stability. This is also consistent with Arabidopsis 

p24 proteins also form hetero-oligomeric complexes including p24 proteins 

from the p24δ-1 subclass, p24δ-2 subclass and the p24β subfamily (Pastor-

Cantizano et al., 2018). 

3.6 TRAFFICKING AND LOCALIZATION 

 p24 proteins have been shown to localize in the compartments of the 

early secretory pathway, which include the ER, the ERGIC (only mammals 

have this compartment), the cis-Golgi network (CGN) and the Golgi 
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apparatus (Stamnes et al., 1995; Belden and Barlowe, 1996; Blum et al., 1996; 

Sohn, 1996; Nickel et al., 1997; Rojo et al., 1997; Dominguez et al., 1998; 

Füllekrug et al., 1999; Gommel et al., 1999; Emery et al., 2000; Rojo et al., 

2000). 

 They are also major constituents of both COPII-coated (Schimmöller 

et al., 1995; Belden and Barlowe, 1996) and COPI-coated vesicles (Stamnes 

et al., 1995; Sohn, 1996; Gommel et al., 1999), which facilitate their 

bidirectional transport between the ER and the Golgi apparatus. It has been 

also reported that p24 proteins can also be found in places different from the 

ER-Golgi interface, such as peroxisomes (Marelli et al., 2004), secretory 

granules (Hosaka et al., 2007) and even to the plasma membrane (Chen et 

al., 2006; Blum and Lepier, 2008; Langhans et al., 2008). 

 As described before, the CC domain was the domain of p24 proteins 

involved in the oligomerization of these proteins, therefore it has a strong 

influence in their trafficking. However, the minimal requirement for cycling 

p24 proteins between ER-Golgi interface has been described to be the 

transmembrane domain and the cytoplasmic tail with the dylisine motif 

(Emery et al., 2000; Blum and Lepier, 2008). 

 As mentioned before, in Arabidopsis the two members of the p24β 

subfamily are dependent on the protein levels of p24δ subfamily and their 

stability is depending on the presence of both subclasses of p24δ subfamily 

(Pastor-Cantizano et al., 2018), and protein levels of p24δ9 (p24δ-2 subclass) 

are also strongly dependent on p24δ-1 subclass proteins (Pastor-Cantizano 

et al., 2018). This interdependence between different members of the p24 

family proteins indicates that these proteins may function together in 
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heteromeric complexes, as it was previously described (Figure 13) 

(Montesinos et al., 2013). 

 It has been proposed that these hetero-oligomeric complexes may 

contain members of the both subfamilies of p24 proteins, and also different 

members of the two subclasses of p24δ subfamily. However, the 

stoichiometry and composition of these complexes still remains elusive. It 

has been proposed that for “anterograde” transport (ER to Golgi) these 

complexes should include p24β2, which has been shown to facilitate 

transport of p24δ5 (p24δ-1 subclass) and p24δ9 (p24δ-2 subclass) from the 

ER to the Golgi apparatus. In contrast, for “retrograde” transport (Golgi to 

ER) these complexes should contain members of p24δ subfamily proteins, 

probably including members of both subclasses, which efficiently recruit the 

COPI coatomer to form COPI vesicles for their retrograde Golgi-ER transport 

(Montesinos et al., 2012, 2013). p24β3 may bind complexes containing 

p24β2/p24δ5 or p24β2/p24δ9 for its transport to the Golgi apparatus, and 

p24β3 may also be recycled to the ER in complexes containing both p24δ5 

and p24δ9 proteins (Montesinos et al., 2012, 2013). This is consistent with 

the protein level of p24β3 been almost undetectable in the quadruple 

mutant of p24δ-1 subfamily, so it suggests that it needs p24δ proteins from 

both subclasses for its stability (Pastor-Cantizano et al., 2018).  

3.7 FUNCTIONS OF P24 PROTEINS 

 p24 proteins can interact with COPII and COPI subunits through their 

cytosolic tail, and cycle between ER and the Golgi apparatus within 

COPII/COPI vesicles (Aniento et al., 2006). Due to these properties, numerous 

functions have been proposed for p24 proteins. 
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3.7.1 COPI and COPII vesicle formation 

 A large number of studies indicate that p24 proteins help in the 

formation of COPI vesicles from Golgi membranes (for reviews, see Popoff et 

al., 2011; Jackson, 2014; Pastor-Cantizano et al., 2016). Based on these 

reports, a model for the participation of p24 proteins in COPI vesicle 

formation has been proposed (Figure 14) (Pastor-Cantizano et al., 2016). 

Hetero-oligomers of p24 proteins (probably p24β/p24δ dimers) can directly 

interact with ARF1-GDP for the recruitment of ARF1 to the Golgi membranes 

via the cytosolic domain (Harter et al., 1996; Dominguez et al., 1998; 

Contreras et al., 2004a; Béthune et al., 2006). Once on the membrane, ARF1 

is activated by GDP/GTP exchange which produces its dissociation from p24 

proteins (Gommel et al., 2001). Then, ARF1-GTP carries out an interaction 

with the COPI coatomer which can also interact with p24 proteins (either 

through the γ-subunit of the F-complex or to the B-complex) (Hara-Kuge et 

al., 1994). At this stage, p24γ and p24α proteins can be also recruited forming 

a tetramer with p24β/p24δ dimers. Interaction with p24 proteins leads to 

coatomer polymerization and the formation of COPI vesicles. It has been 

reported that p24 proteins can also interact with the K/HDEL receptor ERD2, 

which can also interact with coatomer and has been proposed to be involved 

in a variety of interactions which contribute to COPI vesicle formation 

(Majoul et al., 2001; Montesinos et al., 2014; Pastor-Cantizano et al., 2017). 

Furthermore, p24 proteins can also control coat depolymerisation inhibiting 

GTP hydrolysis in ARF1 which is required for uncoating (Goldberg, 2000; 

Lanoix et al., 2001; Majoul et al., 2001). This may prevent immature 

uncoating and allow cargo selection. 
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Figure 14. p24 proteins and COPI vesicle formation (Pastor-Cantizano et al., 2016). p24 
proteins are involved in COPI vesicle formation, especially for recruitment of ARF1 to the Golgi 
membrane (1), the interaction with the K/HDEL receptor ERD2 (2) and the interaction with 
coatomer, which also binds to ARF1, ERD2 and other dilysine cargo (3). These interactions 
enhances coatomer polymerization and the formation of nascent COPI vesicles (4). 

 

 p24 proteins are also present in COPII vesicles and can interact with 

SEC23 and SEC24 subunits (Schimmöller et al., 1995; Belden and Barlowe, 

1996; Dominguez et al., 1998; Miller et al., 2003; Contreras et al., 2004b). 

Although p24 are not essential for the formation of COPII vesicles, it has been 

proposed that p24 proteins influence this process through the alteration of 
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the physical properties of the ER membrane due to their abundance and 

asymmetric distribution (Čopič et al., 2012). It has been also suggested that 

p24 proteins could be involved in the formation of the ERES (Lavoie et al., 

1999), helping the proteins folded at the ER to be packaged into COPII 

vesicles. Moreover, it has been proposed that asymmetrically localized 

proteins, like p24 proteins, are required for scaffolding function of the cargo 

adaptor Lst1p (a SEC24 homolog in yeast) to form larger COPII vesicles for 

special big cargoes (D’Arcangelo et al., 2015). 

3.7.2 Maintenance of structure and organization of the early 
secretory pathway 

 Several reports have suggested that p24 proteins may play a role in 

the structure and organization of the compartments of the early secretory 

pathway. In particular, p24 proteins have been suggested to be involved in 

the formation of ERES (Lavoie et al., 1999), the structure of the ER and the 

ERGIC and the biogenesis and maintenance of the Golgi apparatus (Mitrovic 

et al., 2008; Koegler et al., 2010). Moreover, it has been proposed that p24 

proteins may be important for recycling of components required for ER-Golgi 

transport or in ER function and maintenance. 

 In mammals, silencing of p24β1, p24α2 and p24γ2 led to Golgi 

fragmentation (Luo et al., 2007; Mitrovic et al., 2008; Koegler et al., 2010) 

and silencing of p24α2 also produced a reduction in the number of ERGIC 

clusters as well as the destabilization of the ERGIC (Mitrovic et al., 2008). 

Overexpression of p24β1 and p24δ1 led to Golgi fragmentation as well and 

the appearance of smaller Golgi fragments (Rojo et al., 2000; Blum et al., 

1999; Gong et al., 2011). Nevertheless, inactivation of one allele of p24δ1 
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was shown to induce the dilation of the Golgi cisternae, which was more 

prominent at the rim (Denzel et al., 2000). 

 In Arabidopsis, single knock out mutants did not show any obvious 

ultrastructural alterations, perhaps due to a functional redundancy with 

other p24 family members (Montesinos et al., 2012). In contrast, the 

silencing of the four members of the p24δ-1 subfamily and the depletion of 

the other members of the p24 family caused a clear alteration in the Golgi, 

with dilated areas throughout the whole cisternae, which were also more 

prominent at the rim of the Golgi cisternae, and in some cases discontinuous 

cisternae (Pastor-Cantizano et al., 2018). 

3.7.3 Cargo protein receptor 

 p24 proteins have been long proposed to function as cargo 

membrane receptors for protein transport in the early secretory pathway. 

Most putative p24 cargoes described until now are membrane proteins or 

lipid-linked proteins, in contrast to many classical cargo receptors (for a 

revision, see Pastor-Cantizano et al., 2016). 

• GPI-anchored proteins: This is the cargo object of study in this thesis. 

Some studies in yeast have suggested that p24 proteins may be involved 

in the transport of GPI-APs (Schimmöller et al., 1995; Belden and 

Barlowe, 1996; Marzioch et al., 1999a; Muñiz et al., 2000). It has been 

proposed that the yeast p24 complex may function as an adaptor 

connecting remodelled GPI-APs with the COPII coat to facilitate their 

incorporation into COPII vesicles but do not participate in concentrating 

them into ERES (Castillon et al., 2009, 2011; Manzano-Lopez et al., 2015). 
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Besides, the p24 complex may be also involved in retrograde Golgi-to-ER 

transport of unremodelled GPI-APs (Castillon et al., 2011). 

In mammals, p24 proteins have also been proposed to participate in 

efficient ER-to-Golgi transport of GPI-APs (Takida et al., 2008; Bonnon et 

al., 2010). Nevertheless, in comparison to yeast, p24 proteins appear to 

be required for concentration of remodelled GPI-APs at ERES and their 

packaging into COPII vesicles (Fujita et al., 2011). For the interaction 

between GPI-APs and p24 proteins, it was reported that it is needed the 

α-helical domain of p24 proteins (Theiler et al., 2014). This interaction 

has also been shown to be pH-dependent and takes place at the neutral 

pH of the ER but not at the mildly acidic pH of the Golgi apparatus (Fujita 

et al., 2011). 

 

• K/HDEL-receptor ERD2: p24 proteins of the p24δ subfamily have been 

shown to be involved in retrograde transport of K/HDEL ligands through 

interaction between p24δ proteins and the K/HDEL receptor ERD2 in 

mammals and plants (Majoul et al., 2001; Montesinos et al., 2014; 

Pastor-Cantizano et al., 2017). In Arabidopsis, two p24δ members, p24δ5 

and p24δ9, have been shown to interact with two different K/HDEL 

receptors, ERD2a and ERD2b, an interaction that requires the GOLD 

domain and its N-linked glycosylation of p24δ5 and it is also pH-

dependent (Montesinos et al., 2014; Pastor-Cantizano et al., 2017). In 

particular, this interaction was optimal at acidic pH but very low at 

neutral pH, consistent with the interaction taking place at Golgi 

apparatus and the dissociation of p24 proteins from ERD2 at the ER 

lumen (Montesinos et al., 2014). 
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• Other putative cargoes: Some other putative cargo proteins have been 

proposed for p24 proteins, including Wnt glycoproteins, which are lipid-

modified secreted signalling proteins involved in controlling animal 

development (Buechling et al., 2011; Port et al., 2011; Li et al., 2015b). 

Other putative cargoes proposed are: G-protein-coupled receptors 

including protease-activated receptors (PAR-1 and PAR-2), nucleotide 

P2Y and µ-opioid receptors (Luo et al., 2007, 2011); Toll-like receptors 

(Liaunardy-Jopeace and Gay, 2014); and GLL3, a putative myrosinase-

associated protein in plants (Jancowski et al., 2014). 

3.7.4 ER quality control 

 Several studies have proposed that p24 proteins prevent exiting from 

the ER of misfolded and aberrant proteins, suggesting a role of p24 proteins 

in the ER quality control of certain secretory proteins (Wen and Greenwald, 

1999; Springer et al., 2000; Belden and Barlowe, 2001a; Vetrivel et al., 2007). 

3.7.5 p24 proteins in physiology and pathology 

 Due to the implication of p24 proteins in a variety of specific 

functions in animals, they have been proposed to be involved in different 

physiological processes and diseases in mammals, including: 

- Trafficking and metabolism of amyloid-β precursor and pathogenesis of 

Alzheimer’s disease (Chen et al., 2006; Vetrivel et al., 2007, 2008; 

Hasegawa et al., 2010; Liu et al., 2015). 

- Early embryotic mouse development and morphogenesis of the mouse 

embryo and placenta (Denzel et al., 2000; Jerome-Majewska et al., 

2010). 
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- Normal insulin biosynthesis and subsequent secretion in pancreatic β-

cells, with a putative role in diabetes (Zhang and Volchuk, 2010; Wang et 

al., 2012). 

 

4 GPI ANCHORED PROTEINS 

 There are several ways to attach proteins to the plasma membrane. 

Transmembrane proteins contain domains with hydrophobic amino acid 

sequences which are embedded within the plasma membrane lipid bilayer, 

while other proteins use a post-translational attachment to lipids. On one 

hand, if the protein has to be on the intracellular face of the plasma 

membrane, it can be post-translationally modified by S-acylation, N-

myristoylation, prenylation or palmitoylation (Figure 15) (Luschnig and 

Seifert, 2011; Hemsley, 2015). On the other hand, the protein can be 

attached to a GPI anchor during the secretion of the protein, targeting it to 

the outer surface of the plasma membrane. 

 Since the GPI-anchored proteins were discovered (Bordier et al., 

1986; Conzelmann et al., 1988; Low, 1989), these proteins have raised a great 

interest due to their contribution to diverse crucial biological processes, 

including growth, morphogenesis, reproduction and disease pathogenesis 

(Cheung et al., 2014). They have been studied from yeast and trypanosomes 

to mammals and plants. In mammals, GPI anchoring is essential for 

mammalian embryogenesis, development, neurogenesis, fertilization and 

for the immune system. Mutations of genes involved in GPI anchor 

remodelling cause human diseases characterized by neurological 
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abnormalities (Takeda et al., 1993; Tarutani et al., 1997; Nozaki et al., 1999; 

Alfieri et al., 2003; Kondoh et al., 2005; McKean and Niswander, 2012; Park 

et al., 2013). In yeast, the GPI anchor is essential for the correct growth of 

Saccharomyces cerevisiae (Leidich et al., 1994). 

 

Figure 15. Structures of the three main lipid modifications of proteins found on the 
cytoplasmic face of cellular membranes (Hemsley, 2015). For S-acylation 18 carbon stearate 
is shown, for N-myristoylation the myristoyl group is shown attached to the α-amino group of 
Gly, and for prenylation a farnesyl moiety is depicted.  

 

 GPI-anchored proteins were identified based on their susceptibility 

to a treatment with bacterial phosphatidylinositol specific phospholipase C 

(PI-PLC) (Low, 1989), which hydrolyses the GPI anchor releasing a soluble 

protein. GPI-anchored proteins were first identified by Bordier et al., (1986) 

in the protozoan parasites Leishmania spp. and Trypanosoma brucei and in 

Saccharomyces cerevisiae (Conzelmann et al., 1988). Several years later, GPI-
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anchored proteins were also discovered in plants (Morita et al., 1996; Kunze 

et al., 1997; Takos et al., 1997; Schultz et al., 1998).  

 The GPI anchor is newly synthesized in the ER and is then attached 

to the protein, which is also synthesized in the ER. The nascent peptide, 

which will be attached to the GPI anchor, has a N-terminal secretory signal 

peptide and a C-terminal GPI-specifying hydrophobic signal sequence (SS) 

(Yeats et al., 2018), which has to be cleaved before joining the GPI anchor. 

 Although the GPI anchor is largely conserved across eukaryotes, the 

repertoire of functional domains has diverged substantially. The GPI anchor 

is characterized for having two long fatty acids, a phosphatidylinositol ring, 

one N-acetyl glucosamine and three mannoses (Man) attached to 

ethanolamine phosphate (EtNP). The GPI anchor is attached to the 

polypeptide by an amide bond between EtNP and the C-terminal of the 

polypeptide (Kinoshita and Fujita, 2016).  

 Once attached, the GPI anchor of the GPI-anchored proteins is post-

translationally remodelled by the addition of long saturated fatty acids 

replacing shorter insaturated fatty acids, and they are also modified by the 

addition or removal of EtNP at the glycan core of the GPI anchor. These 

modifications occur during their transport along the secretory pathway via 

Golgi apparatus to the outer surface of the plasma membrane (Kinoshita and 

Fujita, 2016).  

 Once the GPI anchor is correctly remodelled, some GPI-anchored 

proteins can also transiently homodimerize (Suzuki et al., 2012), acquire 

detergent resistance (Seong et al., 2013) and be sorted to the apical plasma 
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membrane in mammalian polarized cells (Paladino et al., 2006). Once at the 

plasma membrane, GPI-anchored proteins can associate with membrane 

microdomains enriched in sterols (cholesterol in mammals) and 

sphingolipids (Brown and Rose, 1992), also called lipid rafts (Simons and Gerl, 

2010; Zurzolo and Simons, 2016).   

 The importance of GPI-anchored proteins for plants, mammals, 

yeasts and trypanosomes development has become obvious by the fact that 

GPI biosynthetic null mutants show embryo lethality, which was a problem 

for the understanding of the biosynthesis and remodelling routes of the GPI 

anchor in these organisms. 

 Most of the knowledge of the biosynthesis and modification on GPI 

anchors come from the studies in mammals and yeast, but these pathways 

are likely conserved in plants. 

 In plants, it has been predicted 248 GPI-APs in Arabidopsis thaliana 

(Borner et al., 2003), approximately 1 % of plant proteins and 10 % of 

secretory proteins, indicating the enormous importance of these proteins for 

plants. They play relevant functions in cell wall metabolism, cell wall polymer 

cross-linking, plasma membrane and cell wall signalling and plasmodesmatal 

transport (GPI-APs in plants will be further described below, section 4.8 of 

Introduction). 
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4.1 STRUCTURE OF THE GPI ANCHOR 

 The diverse eukaryotic lineages show a conserved glycan core 

structure with heterogeneity in the lipid composition of the anchor and the 

glycosyl and non-glycosyl substitutions of the glycan core structure.  

 The structure of the GPI anchor is composed by three α-linked Man 

residues as the glycan core structure. Yeast contains two additional 

mannoses (Fankhauser et al., 1993), of which Man4 is essential for the 

biosynthesis steps (Grimme et al., 2001), and Man5 is added at the Golgi 

apparatus (Sipos et al., 1995). This core structure is linked by N-acetyl 

glucosamine to the lipid moiety, which is composed by a phosphatidylinositol 

ring (myoinositol-P-lipid) anchored to long fatty acids (Figure 18). The lipid 

composition has been reported to be a phosphoceramide in yeast, consisting 

of phytosphingosine and tetracosanoic acid, with minor isoforms consisting 

of 4-hydroxy-8-sphingenine and/or docosanoic acid. In mammals a 

phosphatidylinositol of diacyl or 1-alkyl-2-acyl form with stearic acid (C18:0) 

or arachidonic acid (C20:4) have been found at sn2 position (Käkelä et al., 

2003; Houjou et al., 2005; Kinoshita and Fujita, 2016). On the other part, this 

core structure is linked to the C-terminal of the protein by an amide bond 

with a phosphoethanolamine residue (Figure 16). 

 The remodelling of the GPI anchor changes the glycan composition 

of the glycan core structure. EtNP residues or short mono-/oligo-saccharides 

like galactose or N-acetyl galactosamine, can be attached to several positions 

of the glycan core structure (Yeats et al., 2018). 
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Figure 16. Structural features of GPI-anchored proteins (Created with BioRender). Common 
backbone of GPI anchors consisting of EtNP, three Mans, GlcN, and inositol phospholipid, is 
conserved in wide varieties of eukaryotes. Variable structural features that have been 
observed in a range of eukaryotic species are indicated with parentheses. The protein is 
anchored to the outer leaflet of the plasma membrane by fatty chains of inositol phospholipid.  

 

 The GPI anchor remodelling pathway also changes the lipid 

composition of the anchor. The nascent GPI anchor has two fatty acid chains, 

one of them is unsaturated and the other one saturated. In mammals, the 

saturated one is usually stearic acid (C18:0), whereas the unsaturated one is 

mainly arachidonic acid (C20:4) (Käkelä et al., 2003; Houjou et al., 2005). 

After the remodelling of the lipid part, both fatty acid chains are saturated 

and long in a vast majority of the GPI-APs, which is important for their 

association with membrane microdomains (“rafts”) and their transient 
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homodimerization (Maeda et al., 2007; Seong et al., 2013). As we will see 

below, the palmitate attached to the sn2 position of the phosphatidylinositol 

ring is normally removed during the processing and transport of GPI-APs, 

although in some mature GPI-APs, this fatty acid is not removed during 

remodelling. 

 Despite the GPI anchor structure has been studied in a range of 

different kingdoms, only one single GPI anchor has been characterized in 

plants. This GPI anchor was found in the arabinogalactan protein AGP1, 

which was isolated from Pyrus communis cell suspension cultures (Figure 17). 

This GPI-AP has a simple GPI anchor structure lacking EtNP residues or 

saccharides attached to the glycan core (Oxley and Bacic, 1999). The lipid 

moiety is based in a ceramide, which has been also detected in fungal GPI 

anchors.  A ceramide was also observed as the lipid component of the GPI 

anchor of an arabinogalactan protein isolated from Rosa sp. cell suspension 

culture (Svetek et al., 1999). 

 The GPI anchor of the yeast Saccharomyces cerevisiae contains two 

additional mannoses in the glycan core which are important for the following 

steps of the biosynthesis (Fankhauser et al., 1993; Sipos et al., 1995; Grimme 

et al., 2001). The lipid moiety of mature yeast GPI-APs is composed by a very 

long chain fatty acid at the position sn2 hexanoic acid (C26:0) or a ceramide 

containing phytosphingosine with a very long chain fatty acid (C26:0) (Fujita 

and Jigami, 2008).  
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Figure 17. Structure of Pyrus communis AGP1 GPI anchor identified by Oxley and Bacic, 1999 
(Adapted from Yeats et al., 2018). Aside from the core GPI glycan structure, only a β-1,4-linked 
Gal side-chain was observed. The lipid was found to be a ceramide consisting primarily of 
phytosphingosine and tetracosanoic acid, with minor isoforms consisting of 4-hydroxy-8-
sphingenine and/or docosanoic acid. 

 

4.2 BIOSYNTHESIS OF THE GPI ANCHOR 

 The pathway of the biosynthesis of the GPI anchors has been largely 

studied in different model systems as mammals, parasites and yeast. They all 

share a conserved pathway and it is possible that plants share similarities in 

this pathway. Even the archaea species have also a conserved biosynthetic 

pathway (Eichler and Adams, 2005). 

 First, the GPI anchor is synthesised de novo in the ER and then is 

attached en bloc to the C-terminus of the protein, which contains a GPI 

anchor signal, by GPI transamidase (GPI-TA). After this, the GPI anchor is 

remodelled by several enzymes also localized at the ER (Figure 18). 
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Figure 18. Biosynthesis of GPI-anchored in plants (Yeats et al., 2018). The scheme is based on 
the pathway described in mammalian, protozoan and yeast systems. GPI anchor biosynthesis 
is initiated by generation of N-glucosamine-phosphoinositide (steps 1 and 2) on the 
cytoplasmic surface before flipping by an unknown mechanism (is proposed to be a “flippase”) 
to the ER lumen (step 3). This is followed by acylation of inositol (step 4) and synthesis of the 
trimannosyl core (steps 5 to 7); elaboration of the GPI-anchor in plants is proposed to include 
galactosylation (step 8) and the potential addition of EtNP side-chains (not shown). A GPI 
transamidase complex transfers the GPI anchor to the protein (step 10) before export from 
the ER. Most biosynthetic genes have single copy orthologs in the Arabidopsis thaliana 
genome. The orthologous human (PIG) and yeast (Gpi) proteins are indicated. 
 

 Around 30 genes have been identified to be involved in the synthesis, 

assembly and remodelling of the GPI anchor and there is homology between 

mammals and yeast genes. A study made in plants reported that Arabidopsis 

genome have single copy homologs of most of these genes (Luschnig and 

Seifert, 2011). Mutations in five of these genes have experimentally 

supported the importance of these enzymes during the biosynthesis of the 

GPI anchor.  
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 Biosynthesis of GPI anchor is initiated on the cytoplasmic face of the 

ER, generating a N-glucosamine-phosphoinositide (GlcN-PI) by the enzymatic 

complex SETH1 and SETH2 (Figure 18, steps 1 and 2) (Watanabe et al., 1998, 

1999; Lalanne et al., 2004; Murakami, 2005). Next GlcN-PI is translocated to 

the luminal face of the ER by an unknown mechanism (Figure 18, step 3). 

Nevertheless it has been proposed that this process is mediated by a 

“flippase”, although it has not been identified and characterized yet 

(Vishwakarma and Menon, 2005). Then, the phosphoinositol (PI) ring is 

acylated at the position 2 (Figure 18, step 4) (Doerrler et al., 1996; Murakami, 

2003). 

 Once the lipid part is completed, the next step is the synthesis of the 

trimannosyl core. The first Man is added by the enzyme PNT1 (Figure 18, step 

5) (DeGasperi et al., 1990; Maeda et al., 2001; Sugimoto et al., 2005), while 

the second and third Mans are added sequentially by the APTG1 enzyme 

(Figure 18, steps 6 and 7) (Kang et al., 2005). In order to finish the glycan core, 

it has been proposed for plants to include a galactosylation (Figure 18, step 

8) and the potential addition of lateral EtNPs (Hong et al., 1999) apart of the 

top one (Figure 18, step 9) to attach the C-terminus of the protein (Yeats et 

al., 2018). 

 Finally, the GPI transamidase complex (AtGPI8) catalyzes the 

attachment between the C terminus of the protein and the EtNP of the GPI 

anchor by an amide bond (Figure 18, step 10) (Maxwell et al., 1995; Sharma 

et al., 1999). After this, the nascent GPI-AP is remodelled during the secretory 

pathway before reaching the plasma membrane. 
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 These enzymes of the biosynthetic pathway have each a single copy 

ortholog in the Arabidopsis thaliana genome (Table 3).  

 Enzyme Mammal 
Saccharomyces 

cerevisiae 
Arabidopsis 

thaliana 

Step 1 

GPI-GlcNAc 
transferase 

PIG-C Gpi2p 
SETH1 

(AT2G34980) 
GPI-GlcNAc 
transferase 

PIG-A Gpi3p 
SETH2 

(AT3G45100) 

Step 2 
GlcNAc-PI de-N-

acetylase 
PIG-L Gpi12p 

Not studied 
(AT2G27340) 

Step 3 Flippase 
Not 

identified 
Not identified Not identified 

Step 4 
Inositol 

acyltransferase 
PIG-W Gwt1p 

Not studied 
(AT4G17910) 

Step 5 
α-(1-4)-Mannosyl-

transferase 
PIG-M Gpi14p 

PNT1 
(AT5G22130) 

Step 6 
α-(1-4)-Mannosyl-

transferase II 
PIG-V Gpi18p 

Not studied 
(AT1G11880) 

Step 7 
α-(1-4)-Mannosyl-

transferase III 
PIG-B Gpi10p 

APTG1 
(AT514850) 

Step 8 

EtNP transferase I PIG-N Mcd4p 
Not studied 

(AT3G01380) 

EtNP transferase II PIG-G Gpi7p 
Not studied 

(AT2G22530) 
Putative plant-

specific GalT 
--- --- Not identified 

Step 9 EtNP transferase III PIG-F Gpi13p 
Not studied 

(AT5G17250) 

Step 10 GPI transamidase PIG-K Gpi8p 
AtGPI8 

(AT1G08750) 

Table 3. Orthologs of the enzymes involved in the biosynthesis of the GPI anchor in 
mammalian, yeast and Arabidopsis thaliana. 
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These enzymes have been identified and characterized using mutants 
deficient in five of these enzymes (seth1, seth2, pnt1, aptg1 and atgpi8) 
(Lalanne et al., 2004; Ellis et al., 2010). 

 

4.2.1 Attachment of GPI anchor to proteins by GPI transamidase 

 Preproteins which are attached with a GPI anchor, have a N-terminal 

leader sequence for ER translocation (von Heijne, 1990; Petersen et al., 2011; 

Whitley and Mingarro, 2014) and a C-terminal sequence for GPI anchor 

attachment (Maxwell et al., 1995).  

 On the one hand, the signal peptide (SP) at the N-terminal sequence 

targets the protein to the ER translocon (Whitley and Mingarro, 2014), where 

the SP is cleaved off (Johnson and van Waes, 1999). On the other hand, the 

C-terminal sequence for GPI anchor attachment is composed by four 

consecutive parts from the N terminus of the ω site (where the GPI anchor is 

attached) to the C terminus. The first part consists of an unstructured linker 

of 10 amino acids from the site ω-11 to ω-1; in the second part, ω and ω+2 

sites have short side chains; the third part has five to ten hydrophilic amino 

acids and the fourth part a 15 to 20 amino acid hydrophobic stretch (Figure 

19) (Eisenhaber et al., 2001; Kinoshita and Fujita, 2016). 

 The ω site has been reported to include small residues such as Ala, 

Asn, Asp, Cys, Gly and Ser. If the ω site is changed for another amino acid 

such as proline, the GPI attachment is impaired (Eisenhaber et al., 2001). 

Currently, there is software which can predict the amino acid sequence of 

the ω sites and the GPI attachment (Eisenhaber et al., 2000).  
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Figure 19. Schematic representation of the GPI signal architecture and the GPI-attachment 
reaction (Galian et al., 2012). 

 

 The preproteins with the SP in the N-terminal are translocated to the 

ER (Figure 20, step 1) (von Heijne, 1990; Johnson and van Waes, 1999; 

Whitley and Mingarro, 2014). Once the preprotein is translocated to the 

luminal part of the ER, the GPI attachment sequence at the C-terminal of the 

preprotein is recognized by the GPI transamidase AtGPI8 (Figure 20, step 2) 

(Hamburger et al., 1995; Yu et al., 1997; Luschnig and Seifert, 2011). The GPI 

transamidase recognizes the ω site and cleaves the amino acid sequence 

between the ω and ω+1 sites, generating the substrate to the attachment 

(Figure 20, step 3) (Ohishi et al., 2000, 2001; Hong et al., 2003). This protein 

substrate is attached to the EtNP of the GPI anchor via an amide bond (Figure 
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20, step 4) (Benghezal et al., 1996; Eisenhaber et al., 2014), resulting in a GPI-

AP which has yet to be maturated (Figure 20, step 5). 

 

Figure 20. GPI attachment to proteins by GPI transamidase in mammalian (Kinoshita and 
Fujita, 2016). Preproprotein has an N-terminal signal for ER translocation and a C-terminal 
signal for GPI attachment (step 1). After translocation into the ER lumen, the N-terminal signal 
is removed and the C-terminal signal is recognized by the GPI transamidase (PIG-K) (step 2). 
GPI transamidase cleaves a peptide bond between ω and ω+1 amino acids, generating a 
substrate-enzyme complex linked via a thioester bond (step 3). The thioester-linked 
intermediate is attacked by GPI presented by GPAA1 (step 4) completing transamidation (step 
5). 

 

4.2.2 Remodelling of the GPI anchor 

 Before the delivery of the GPI-APs to the cell surface, these proteins 

are remodelled during their transport along the secretory pathway. The 

structure of the glycan core and the lipid composition of the GPI anchor 

change during this remodelling.  

 On the one hand, the change in lipid composition involves the 

removal of the acyl chain and the replacement of the unsaturated fatty acid 
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for a long saturated fatty acid. This allows the GPI-APs to follow a selective 

rather than a “bulk-flow” pathway (Muniz et al., 2000; Bonnon et al., 2010; 

Zurzolo and Simons, 2016). Due to this lipid composition, GPI-APs can 

associate with membrane domains rich in sphingolipids and sterols, also 

called membrane microdomains or lipid rafts (Yeats et al., 2018).  

 On the other hand, the composition of the glycan core is also 

changed. It has been proposed that p24 proteins are involved in transport of 

GPI-APs from the ER to the Golgi apparatus (for further details see section 

3.7.3 of Introduction). To this end, p24 proteins can interact with the 

remodelled glycan core of GPI-APs and also recruit components of the COPI 

and COPII coat, to sort them within COPI or COPII vesicles (Muniz et al., 2000; 

Castillon et al., 2011; Fujita et al., 2011). In Arabidopsis, the role of the p24 

proteins in sorting of GPI-APs has not yet been elucidated (Pastor-Cantizano 

et al., 2016).  

 In yeast, the remodelling of the GPI-APs is completed within the ER 

(Muniz and Zurzolo, 2014), while in mammals, this pathway starts at the ER 

but continues in the Golgi apparatus, where the remodelling is finally 

completed (Muniz and Zurzolo, 2014; Kinoshita and Fujita, 2016). For a 

summary of the orthologs of yeast and mammals involved in GPI anchor 

remodelling see Table 4. Little is known about the remodelling pathway in 

plants, which is one subject of study in this thesis. 

 

 



INTRODUCTION 
 

86 
 

GPI anchor 
remodelling 

enzymes 

Saccharomyces 
cerevisiae 

Mammals 
 

Function 
Enzyme Location Enzyme Location 

GPI inositol 
deacylase 

Bst1p ER PGAP1 ER 

Removes the 
acyl-chain 
linked to 
inositol 

GPI 
phospholipase A2 

Per1p ER PGAP3 Golgi 

Removes the 
unsaturated 

fatty acyl chain 
in the sn2 
position 

GPI O-
acyltransferase 

Gup1p ER PGAP2 Golgi 

Inserts a long 
saturated fatty 
acid in the sn2 

position 

GPI ethanolamine 
phosphate 

phosphoesterase 
Cdc1p ER --- --- 

Removes a side-
chain EtNP 
attached to 
Man1 from 

some GPI-AP 

Ceramide 
remodelase 

Cwh43p ER --- --- 

Exchanges lipid 
moieties from 

diacylglycerol to 
ceramide types 

GPI ethanolamine 
phosphate 

phosphoresterase 
Ted1p ER PGAP5 ER 

Removes the 
side-chain EtNP 

attached to 
Man2 

Table 4. Orthologs and function of the enzymes involved in the remodelling of GPI anchor in 
mammalian and yeast. 
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4.2.3 Remodelling pathway in mammals 

 The nascent GPI-APs formed by the action of the GPI transamidase 

are still immature and need some remodelling reactions to become mature 

GPI-APs (Kinoshita and Fujita, 2016). These remodelling reactions occur 

during their transport in the secretory pathway to the cell surface. As it is 

shown in Figure 21, these reactions are catalyzed by different enzymes 

located at the ER and the Golgi apparatus in mammals. 

 

Figure 21. Maturation of mammalian GPI-AP during ER-to-plasma membrane (PM) transport 
(Kinoshita and Fujita, 2016). Nascent GPI-APs formed by GPI transamidase (GPI-TA) undergo 
two reactions, inositol-deacylation (step 1) and removal of the EtNP side branch from Man2 
(step 2) in the ER. A cargo receptor consisting of four p24 proteins is involved in ER-to-Golgi 
transport. Once in the Golgi, GPI-APs undergo fatty acid remodelling (steps 3 and 4), 
generating mature GPI-APs. 

 

 The first reaction is in the ER carried out by the inositol deacylase, 

PGAP1 (Figure 21, step 1) (Chen et al., 1998; Tanaka et al., 2004), which 

removes the acyl chain from the inositol ring. This acyl chain is usually 

palmitate, but can also be myristate in some cases (Houjou et al., 2007). The 

enzyme has nine transmembrane domains with a typical lipase motif and is 

widely expressed in the ER (Tanaka et al., 2004).  
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 The deacylation by PGAP1 makes GPI-APs sensitive to the bacterial 

PI-specific phospholipase C. There are some cells which exceptionally do not 

remove this acyl chain and therefore are resistant against PI-PLC, such as 

erythrocytes (Walter et al., 1990), CD52 on human spleen cells and sperm 

(Schröter et al., 1999) and ALP (alkaline phosphatase) proteins on certain cell 

lines (Yee Wah Wong and Low, 1992). In mammalian cells which are defective 

in PGAP1, GPI-APs are resistant to PI-PLC, and their transport from ER to Golgi 

is three times slower (Tanaka et al., 2004), probably because GPI-APs are not 

recognized by the p24 complex (Fujita et al., 2011) so the transport is 

impaired.  

 The second reaction is catalyzed by PGAP5, which removes the EtNP 

side branch linked to Man2 (Figure 21, step 2) (Fujita et al., 2009). PGAP5 is 

also in the ER but restricted to the ERES (Fujita et al., 2009). The lack of this 

enzyme cause that GPI-APs are not recognized by the p24 complex 

(Manzano-Lopez et al., 2015). 

 After these two remodelling reactions, the GPI-APs are recognized by 

the cargo receptors p24, which form a complex including different members, 

and concentrate them at the ERES and package them into COPII-coated 

vesicles in order to be transported from the ER to the Golgi apparatus 

(Kinoshita and Fujita, 2016). The GPI-APs need to be remodelled before their 

association with p24 transmembrane cargo receptors (Fujita et al., 2011).  

 Once at the Golgi, GPI-APs may dissociate from the p24 cargo 

receptor complex in the ERGIC/cis-Golgi lumen due to slightly acidic pH 

(Fujita et al., 2011). There, the lipid part of the GPI-APs is remodelled 
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replacing the unsaturated fatty acid at the sn2 position by saturated fatty 

acid, which usually is a stearic acid (Kinoshita and Fujita, 2016).  

 The first enzyme which acts at the Golgi apparatus is PGAP3, a GPI-

specific phospholipase A2 which has seven TMDs and belongs to the 

membrane bound hydrolase superfamily called CREST (alkaline ceramidase, 

PAQR receptor, Per1, SID-1 and TMEM8) (Pei et al., 2011). This enzyme 

removes the unsaturated fatty acid in the sn2 position (Figure 21, step 3) 

(Maeda et al., 2007). The lack of this enzyme impairs lipid remodelling at the 

Golgi but the GPI-APs are still transported and expressed on the plasma 

membrane (Maeda et al., 2007), although the expression of GPI-APs at the 

plasma membrane is moderately affected. This unremodelled GPI-APs have 

unsaturated fatty acids and cannot associate with specific membrane 

domains (Maeda et al., 2007).  

 The last enzyme involved in the remodelling route of the GPI-APs is 

the Golgi-resident PGAP2, which has five TMDs. It is required for reacylation 

of the GPI-APs at the sn2 position, adding a long saturated fatty acid, 

preferentially stearic acid (Figure 21, step 4) (Tashima et al., 2006). Cells 

defective in PGAP2 have severely affected the composition of GPI-APs at the 

cell surface, less than 10 % than in wild type cells, as a result of the secretion 

of GPI-APs with only one fatty chain (Tashima et al., 2006).  

 At the Golgi apparatus, GPI-APs are usually also modified by N/O-

glycosylation, which mostly occurs in the Golgi apparatus. The addition of a 

GalNAc-containing side chain to some GPI-APs also occurs there (Kinoshita 

and Fujita, 2016). Three glycosyltransferases, β4GalNAc transferase, β3Gal 
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transferase and a sialyltransferase, which are not still identified, could be 

involved in the addition of the GalNAc (Brewis et al., 1995).  

 It has been reported that deficiencies of lipid/fatty acid remodelling 

and inositol acylation and deacylation can cause several diseases and cell 

abnormalities in peroxisomal disorders and the Zellweger syndrome 

(Braverman and Moser, 2012; Crane, 2014; Wanders, 2014; Kinoshita and 

Fujita, 2016). Loss-of-function of the enzymes PGAP2 (Hansen et al., 2013; 

Krawitz et al., 2013) and PGAP3 (Murakami et al., 2012; Howard et al., 2014) 

cause the Mabry syndrome (HPMRS) in patients with intellectual disability, 

seizures, and hyperphosphatasia. PGAP1 mutations cause neuronal 

abnormalities such as intellectual disability and encephalopathy in patients 

(Murakami et al., 2014; Williams et al., 2015) and male mice were infertile 

(Ueda et al., 2007). 

4.2.4 Remodelling pathway in yeast 

 As it occurs in mammals, nascent GPI-APs at the ER need to be 

remodelled during the secretory pathway to achieve the mature form before 

being transported to the plasma membrane. The principal difference with 

mammals is that this remodelling route in yeast is completed at the ER (Fujita 

and Kinoshita, 2012). 

 The first step in the remodelling route is the elimination of the acyl-

chain of inositol by the GPI inositol deacylase Bst1p, the ortholog of PGAP1 

in mammals (Figure 22, step 1) (Tanaka et al., 2004). Next, the yeast PGAP3 

homolog, Per1p, removes the unsaturated fatty acyl chain at the sn2 position 

(Figure 22, step 2) (Fujita et al., 2006a). The third step is carried out by Gup1p, 

the yeast PGAP2 homolog, an enzyme from the MBOAT (membrane bound 
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O-acyl transferase) family (Bosson et al., 2006). This enzyme incorporates a 

very long chain fatty acid (C26:0) at the sn2 position. 

 

Figure 22. Remodelling of GPI anchors in yeast Saccharomyces cerevisiae (Kinoshita and 
Fujita, 2016). GPI anchor is synthesized in the ER and transferred to proteins by the GPI-
transamidase complex. After GPI-attachment to proteins, an acyl-chain linked to inositol is 
eliminated by Bst1p. Then, an unsaturated fatty acyl chain in the sn2 position is removed by 
Per1p, and a very long saturated (C26:0) fatty acid is reacylated to that position by Gup1p. 
C26-fatty acyl-CoA is used as the substrate. Many fractions of lipid moieties in GPI anchors are 
further exchanged from diacylglycerol types to ceramide types by Cwh43p. The substrate for 
the ceramide remodelling is still unclear. A side-chain EtNP attached to Man1 is removed from 
some fractions of GPI anchors by Cdc1p, but it is not clear which GPI-APs are recognized as 
substrates, whereas the experimental data suggest that GPI anchors having diacylglycerol 
types might be the preferential substrates (Vazquez et al., 2014). A side-chain EtNP attached 
to Man2 is removed by Ted1p. This reaction is important for recognition by the p24 protein 
complex. The order of the reactions mediated by Cdc1p and Ted1p is not known. After GPI-
APs are transported to the Golgi, additional Man is transferred to the Man4 with α-1,2 or α-
1,3-linkage by unidentified enzymes. Once on the cell surface, many GPI-APs are cleaved and 
cross-linked to β-1,6-glucans on the cell wall. Dfg5p and Dcw1p are involved in the cell wall 
anchorage of GPI-APs. 

 

 At this point, two different models have been proposed to describe 

the lipid remodelling pathway of GPI anchors in yeast, the sequential 

pathway and the divergent pathway (Ghugtyal et al., 2007; Umemura et al., 

2007). In the sequential pathway, the PI moieties in GPI anchors are 
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sequentially modified from conventional PI to lysoPI by Per1p (Figure 22, step 

2), then the C26:0 fatty acid is added at the sn2 position by Gup1p (pG1) 

(Figure 22, step 3) to finally generate the inositolphosphoceramide (IPC) 

(Kinoshita and Fujita, 2016). The divergent pathway model involves the PI 

generated by Bst1p and the lysoPI generated by Per1p as substrates for the 

Cwh43p, an enzyme which carry out the changing to ceramide as the lipid 

part of the GPI anchor (Kinoshita and Fujita, 2016).  Last studies suggest that 

the main pathway for lipid remodelling is the sequential pathway, but the 

other pathway is also conserved and exists (Yoko-o et al., 2013). 

 As indicated before, Cwh43p is the enzyme which carry out the 

addition of ceramide as lipid moiety to the GPI anchor (Ghugtyal et al., 2007; 

Umemura et al., 2007; Yoko-o et al., 2018). The substrate for the ceramide 

remodelling is still not clear, but it has been described that most lipid 

moieties of GPI anchors are exchanged from diacylglycerol to ceramide types 

(Ghugtyal et al., 2007). The N-terminal region of this enzyme shares 

homology with the mammalian PGAP2 (Ghugtyal et al., 2007; Umemura et 

al., 2007), but Cwh43p has an additional C-terminal domain consisting of 700 

amino acids, which shares characteristics with exonuclease, endonuclease 

and phosphatase proteins (Kinoshita and Fujita, 2016). In the Cwh43p 

mutant, GPI-APs with diacylglycerol at the sn2 position in GPI anchor are 

accumulated while ceramide as part as lipid moiety is completely lost 

(Ghugtyal et al., 2007; Umemura et al., 2007; Yoko-o et al., 2018). 

 In some GPI-APs, the enzyme Cdc1p removes a side-chain EtNP 

attached to Man1 (Vazquez et al., 2014). It remains elusive which GPI-APs are 

recognized as substrates, but experimental data suggest that the GPI-APs 
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with diacylglycerol as a lipid moiety could be preferential substrates (Vazquez 

et al., 2014). In the mutant of this enzyme, the transport of GPI-APs is not 

impaired in contrast to other enzymes of the remodelling route. Therefore, 

the reaction carried out by Cdc1p might be related to cell wall anchorage of 

some GPI-APs because the mutant shows defects in the cell wall (Vazquez et 

al., 2014). 

 In the step 4 (Figure 22), the enzyme Ted1p removes a side-chain 

EtNP attached to Man2, the homologue of PGAP5 in mammals (Fujita et al., 

2009). This reaction is important for the recognition by p24 proteins complex 

(Emp24p, Erv25p, Erp1p and Erp2p) (Castillon et al., 2011). The order of 

reactions mediated by Cdc1p and Ted1p is not known yet (Kinoshita and 

Fujita, 2016). It has been reported that the mutant of Ted1p shows a delay 

in ER to Golgi transport of GPI-APs (Haass et al., 2007; Manzano-Lopez et al., 

2015; Yoko-o et al., 2018). 

 After the GPI anchor is remodelled at the ER, the GPI-APs are 

transported to the Golgi apparatus via COPII vesicles. There, an additional 

Man is transferred to the Man4 by unidentified enzymes. Finally, many GPI-

APs on the cell surface can be cleaved and cross-linked to β1,6-glucans on 

the cell wall (Fujii et al., 1999; Orlean, 2012). However, most GPI-APs are 

retained in the plasma membrane (Caro et al., 1997; Hamada et al., 1999; 

Frieman and Cormack, 2003). In this process, Df5p and Dcw1p enzymes are 

involved in the cell wall anchorage (Kitagaki et al., 2002, 2004; Pittet and 

Conzelmann, 2007). 
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4.3 EXPORT FROM THE ER 

 The remodelled GPI anchor acts as a transport signal that triggers the 

transport of GPI-APs from the ER to the Golgi apparatus (Muñiz and Riezman, 

2016). The unique structure and composition of the GPI anchor confers 

special features to them and a special mode of interaction with membranes 

in the lumen of the organelles involved in the secretory pathway (Muñiz and 

Riezman, 2016). Therefore, transport of GPI-APs along the secretory pathway 

is different from other secretory membrane proteins (Lisanti et al., 1988; 

Brown et al., 1989; Muñiz et al., 2001; Castillon et al., 2009). 

 To initiate the transport to the plasma membrane, correctly 

remodelled and folded GPI-APs are selectively incorporated into COPII 

vesicles at ERES. For efficient ER export, proteins are concentrated at ERES 

by direct or indirect interaction with COPII proteins. In particular, the subunit 

SEC24 is the one specialized in cargo selection. The p24 protein complex acts 

as cargo receptor because it can interact with the COPII subunit SEC24 and 

also with cargos that have to be incorporated in COPII vesicles (Barlowe and 

Miller, 2013). 

 It has been observed in yeast that GPI-APs are accumulated in ERES 

distinct than those accumulating other secretory proteins. Therefore, GPI-

APs and other secretory proteins are subsequently incorporated into distinct 

COPII vesicles (Muñiz et al., 2001; Castillon et al., 2009). Nevertheless, in 

mammalian cells it has been reported that GPI-APs are packaged into the 

same COPII vesicles as the other secretory proteins because GPI-APs were 

found in the same ERES and COPII vesicles as transmembrane proteins (Rivier 

et al., 2010). These facts suggest that GPI-APs use different mechanisms to 
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concentrate at the ERES and being packaged into COPII vesicles in these two 

organisms (Figure 23).  

 

Figure 23. GPI anchor remodelling and export from the ER in yeast and mammalian cells 
(Muniz and Zurzolo, 2014).  In yeast, the GPI anchor is completely remodelled in the ER and 
they can oligomerize forming clusters at specific ERES. In mammalian cells, the GPI anchor is 
not completely remodelled in the ER and this process continuous in the Golgi apparatus. Once 
GPI anchor is remodelled, they homodimerize forming clusters at the TGN. 

 

4.3.1 Yeast 

 It seems that yeast do not need neither the COPII machinery nor p24 

proteins in order to concentrate GPI-APs at ERES (Castillon et al., 2009), since 

mutants of several members of the p24 family, Emp24p and Erv25p, showed 

an impaired transport of GPI-APs (Schimmöller et al., 1995; Belden and 

Barlowe, 1996), but their concentration at ERES was not affected (Castillon 

et al., 2011). Therefore, an alternative mechanism for cargo concentration is 
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used for GPI-APs. It has been suggested that concentration of GPI-APs is 

based on a lipid-remodelling mechanism (Figure 24) (Castillon et al., 2009). 

 

Figure 24. In yeast, GPI-APs use a specialized COPII vesicle budding system for ER export, 
which is actively regulated by structural remodelling of the GPI anchor (Muñiz and Riezman, 
2016). After GPI-APs are remodelled, they are concentrated at specific ERES. The GPI-glycan 
remodelling allows the subsequent recruitment of p24 complex, which functions as a specific 
lectin by recognizing the remodelled GPI-glycan moiety of GPI-APs, to these ERES. This binding 
stimulates the p24 complex to selectively recruit and stabilize Lst1p-Sec23p pre-budding 
complexes to generate specialized COPII vesicles enriched in GPI-APs. 

 

 As it was explained before, newly synthesized proteins attached to 
the GPI anchor need to be remodelled in order to reach the plasma 
membrane. The GPI anchor remodelling starts just after the GPI 
transamidase catalyzes the formation of the amide bond between the GPI 
anchor and the C-terminal of the protein. As described before, the lipid 
remodelling of GPI anchor consist basically in changing unsaturated fatty 
acids to very long-chain saturated fatty acids, catalyzed by Bst1p, Per1p and 
Gup1p (Tanaka et al., 2004; Bosson et al., 2006; Fujita et al., 2006a). Mutants 
of these enzymes fail to concentrate GPI-APs at ERES (Castillon et al., 2009).  
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 In yeast, remodelled GPI-APs have a lipid moiety composed by 

diacylglycerol (C26:0) or ceramide (C26:0). The remodelling of the GPI anchor 

is completed at the ER, and it is necessary for the isolation of GPI-APs in 

detergent-resistant membranes (DRM) (Fujita et al., 2006a; Maeda et al., 

2007; Castillon et al., 2011). These long-chain saturated fatty acids change 

the physical properties of the GPI-APs and the association with the 

membrane forming ordered domains at the ER lipid membrane (Silva et al., 

2006). Therefore, these domains would be selectively concentrated at 

specific ERES (Figures 23 and 24) (Muñiz and Riezman, 2016). 

 Once the GPI-APs have been concentrated at specific ERES, they have 

to be incorporated into COPII vesicles for transport to the Golgi. Because of 

their luminal topology, GPI-APs need a transmembrane cargo adaptor which 

connect these proteins with the cytosolic COPII proteins. This 

transmembrane cargo adaptor is the p24 complex (Muñiz et al., 2000; 

Castillon et al., 2011; Manzano-Lopez et al., 2015). These proteins act as a 

heteromeric complex that cycle between ER and Golgi (see section 3 of 

Introduction) (Marzioch et al., 1999b) and are required for the incorporation 

of remodelled GPI-APs to nascent COPII vesicles (Figure 24) (Muñiz et al., 

2000; Castillon et al., 2011; Manzano-Lopez et al., 2015). Mutants that 

impaired the concentration of GPI-APs at ERES, showed a mislocalization of 

p24 proteins (Castillon et al., 2011). 

 It has been reported that the GPI-APs interact with the p24 complex 

when the glycan core is completely remodelled, acting as a lectin (Manzano-

Lopez et al., 2015). This remodelling process is completed when the 



INTRODUCTION 
 

98 
 

phosphodiesterase Ted1p removes the side-chain EtNP on the Man2 (Haass 

et al., 2007; Fujita et al., 2009; Manzano-Lopez et al., 2015). 

 The biogenesis of specialized COPII vesicles containing GPI-APs in 

yeast involves the recruitment of a specialized COPII machinery, in particular 

the Lst1p subunit, which is one of the two paralogs of Sec24p (Manzano-

Lopez et al., 2015; Lopez et al., 2019). It has been shown that p24 proteins 

can also interact with the two paralogs of Sec24p (Miller et al., 2003), but 

GPI-APs only are incorporated to COPII vesicles with the Lst1p subunit (Figure 

24) (Manzano-Lopez et al., 2015). This could be explained by the fact that 

cargo binding could trigger a structural change of the p24 proteins and this 

increases the affinity to Lst1p and not to Sec24p (Peng et al., 2000; Miller et 

al., 2002; Iwasaki et al., 2015). The final scaffolding of COPII vesicles also 

requires the subunit Sec13p, a subunit of the outer layer of COPII coat (Čopič 

et al., 2012; D’Arcangelo et al., 2015). This specific requirement seems to be 

due to the luminal topology of both the p24 complex and GPI-APs; when both 

groups of proteins concentrate at specific ERES, they impose special 

biophysical requirements for vesicle budding. In particular, the size of the GPI 

anchors is short in comparison with the heavily glycosylated luminal 

ectodomains of GPI-APs, generating a negative curvature in ER membranes 

that has to be overcome by the COPII coat machinery. This appears to require 

both Lst1p, which creates buds with a larger diameter (Shimoni et al., 2000), 

and Sec13p, which confers rigidity to the coat. Therefore, both Lst1p and 

Sec13p could specifically cooperate to capture larger cargos, such as clusters 

of GPI-APs (Lopez et al., 2019). 
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 Finally, some v-SNAREs and other specific tethering factors are 

required for the targeting of GPI-APs upon the ER exit. However, this 

mechanism is not still described (Morsomme and Riezman, 2002; Morsomme 

et al., 2003). 

4.3.2 Mammals 

 In contrast to yeast, in mammalian cells GPI-APs are not segregated 

from other secretory proteins in different ERES and COPII vesicles for 

transport to the Golgi apparatus (Figure 23) (Rivier et al., 2010). This 

difference is caused by the fact that the glycan core of the GPI anchor is 

remodelled in the ER but the lipid remodelling is carried out in the Golgi 

apparatus (Tashima et al., 2006; Maeda et al., 2007). Therefore, GPI-APs 

cannot be concentrated at ERES by a lipid-based sorting mechanism. In this 

way, the p24 complex is responsible for the concentration at ERES (Figure 25) 

(Fujita et al., 2011). The mammalian p24 complex recognizes in the same way 

the GPI-APs as yeast. In mammals, the glycan core remodelling is also 

necessary for the interaction with the p24 complex, so PGAP5, Ted1p 

ortholog in yeast, is at the ER and is needed for GPI-APs recognition by p24 

complex (Figure 25) (Fujita et al., 2009, 2011). The p24 complex domain 

involved in the interaction with GPI-APs have been reported to be the 

membrane adjacent α-helical region (CC domain) (Theiler et al., 2014). 

 Mammalian GPI-APS also exit the ER in specialized COPII vesicles. 

SEC24C and SEC24D are the specific isoforms of the COPII subunit SEC24 

required for ER export of both GPI-APs and the p24 complex (Bonnon et al., 

2010). This suggests that, similar to yeast, the mammalian p24 complex 
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interacts with the inner layer of the COPII coat through specific subunits for 

efficient packaging of GPI-APs into COPII vesicles (Lopez et al., 2019). 

 

Figure 25. Mammalian model for selective sorting and transport of GPI-APs from the ER 
(Fujita et al., 2011). After GPI anchor is transferred to proteins by GPI transamidase, an acyl 
chain linked to inositol is removed by PGAP1, and then a side-chain on the Man2 is also 
removed by PGAP5. These two GPI remodelling reactions in the ER are critical for the sorting 
of GPI-APs to the ERES. Remodelled GPI-APs in the ER are recognized by the p24 complex that 
concentrates GPI-APs into the COPII-derived vesicles. Once to the ERGIC or cis-Golgi, GPI-APs 
dissociate from the p24 complex because of decreased luminal pH in these compartments. 
The p24 complexes are retrieved from the Golgi to the ER by the COPI vesicles. 

 

4.4 GOLGI ARRIVAL AND POST-ER QUALITY CONTROL 

 Once at the Golgi apparatus, GPI-APs dissociate from the p24 

complex. It seems that at slightly acidic pH of Golgi, the conformation of p24 

complex changes and this causes the dissociation of GPI-APs from the p24 

complex (Figure 25) (Fujita et al., 2011).  

 Then, p24 proteins are recycled to the ER within COPI vesicles, 

because some p24 proteins also have in their cytosolic part signals for 

binding COPI subunits (Bremser et al., 1999; Gommel et al., 2001; Aguilera-
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Romero et al., 2008).  In yeast, it has been suggested that p24 proteins play 

a post ER quality control because they can contribute to the retention of GPI-

APs which are not correctly remodelled or function in the retrieval of escaped 

unremodelled GPI-APs from the Golgi to the ER in COPI vesicles (Castillon et 

al., 2011). The interaction of the p24 complex with unremodelled GPI-APs 

could only be detected by cross-linking pull down experiments (Castillon et 

al., 2011). 

4.5 EXPORT FROM THE TRANS-GOLGI NETWORK 

 After being fully glycosylated and remodelled during transport along 

the different cisternae of the Golgi apparatus, GPI-APs have to exit from the 

TGN in secretory vesicles that transport them to the plasma membrane 

(Muñiz and Riezman, 2016). In yeast, GPI-APs exit from the ER in different 

vesicles than the other secretory proteins, but it is still unknown whether 

they continue travelling separately along the Golgi stacks to the plasma 

membrane or if they mix in these Golgi stacks. 

 However, this process have been further studied in mammalian cells, 

especially in mammalian polarized cells, because in these kind of cells GPI-

APs can go to the apical or basolateral face (Figure 26) (Rodriguez-Boulan et 

al., 2005). In neurons and epithelial cells, which are polarized, GPI-APs go 

dominantly to the apical face (Ledesma et al., 1998; Keller et al., 2001; Hua 

et al., 2006; Paladino et al., 2006); nevertheless there are exceptions to this 

rule and some GPI-APs in different epithelial cells can also be transported 

and sorted to the basolateral face (Zurzolo et al., 1993; Sarnataro et al., 

2002). 
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 In mammalian cells, GPI-APs are segregated from other secretory 

proteins in different secretory vesicles at the TGN that can take on different 

routes to the plasma membrane (Figure 26) (Weisz et al., 2009; Cao et al., 

2012). The GPI anchor seems to act as an apical sorting signal at the TGN 

(Lisanti et al., 1989). Interestingly, the sorting of GPI-APs correlates with the 

acquisition of the two saturated long-chain fatty acids by the GPI anchor after 

the lipid remodelling and leads to the formation of DRMs (Tashima et al., 

2006; Maeda et al., 2007). 

 

Figure 26. GPI-APs sorting upon TGN exit in polarized epithelial cells (Muniz and Zurzolo, 
2014). Upon GPI-lipid remodelling with saturated fatty acid chains in the Golgi, GPI-APs can 
be segregated from other transmembrane proteins (TM) into sphingolipids and cholesterol-
enriched domains. Further segregation would then occur as consequence of the 
oligomerization process. Vesicle formation and budding might derive from the coalescence of 
lipid domains that are driven by the protein oligomerization. Putative cytosolic receptors 
might also facilitate vesicle budding. 
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 As we have introduced before, GPI-APs are principally sorted to the 

apical face. This seems to be dependent on their inclusion into sphingolipid 

and cholesterol-rich microdomains or rafts, which could act as apical sorting 

signal at the TGN (Simons and Ikonen, 1997). These rafts of GPI-APs have the 

feature to acquire resistance to detergent extraction (DRMs) (Brown and 

Rose, 1992; Zurzolo et al., 1994) after their complete lipid remodelling along 

the Golgi apparatus (Maeda et al., 2007; Fujita and Kinoshita, 2012). Besides, 

it has been studied that the removal of cholesterol or inhibitors of 

sphingolipid biosynthesis impairs their apical sorting (Mays et al., 1995; 

Lipardi et al., 2000; Paladino et al., 2004, 2014).  

 However, some GPI-APs are sorted to the basolateral face despite 

their association with DRMs (Zurzolo et al., 1993; Benting et al., 1999a; 

Sarnataro et al., 2002; Paladino et al., 2004), indicating that this is not the 

main mechanism for apical sorting of GPI-APs (Paladino et al., 2004). 

Nevertheless, it is postulated that the sorting of GPI-APs from the TGN is a 

lipid-based mechanism for the selective sorting in vesicles to the plasma 

membrane (Simons and Ikonen, 1997; Surma et al., 2012).  

 On one hand, GPI-APs have the intrinsic property to oligomerize, 

forming high molecular weight complexes at the Golgi apparatus (Paladino 

et al., 2004). This process has been identified as a requirement for apical 

sorting, because its impairment results in the missorting of GPI-APs to the 

basolateral face (Paladino et al., 2004, 2007). Oligomerization has been 

proposed to facilitate GPI-APs segregation from the other secretory proteins 

and favour their inclusion in specialized vesicles for the sorting to the apical 

plasma membrane (Paladino et al., 2004, 2014). This process is dependent 
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on lipid moiety remodelling of GPI-APs and their cholesterol and 

sphingolipids association forming the microdomains or rafts (Paladino et al., 

2004; Seong et al., 2013). Interestingly, some specific GPI-APs which do not 

oligomerize, are transported to the basolateral face (Paladino et al., 2008). 

 On the other hand, the other process which seems to be involved in 

the apical sorting of GPI-APs is N-glycosylation (Benting et al., 1999b).  

Galectins have been proposed to recognize GPI-APs in a lectin receptor-

based mechanism (Benting et al., 1999b) because they form oligomers which 

contain multivalent carbohydrate binding sites (Brewer et al., 2002). They are 

synthesized in the cytosol but are transported to the lumen of the TGN 

(Mishra et al., 2010), where due to galectin-carbohydrates interactions, it is 

supposed to induce clustering of glycoproteins and glycosphingolipids and 

facilitate vesicle formation at the TGN (Delacour et al., 2006; Mishra et al., 

2010). It has been proposed that galectin 3 could interact with some GPI-APs 

in their apical sorting of the Golgi (Delacour et al., 2006). In favour of this 

hypothesis, some GPI-APs are modified with the addition of a N-

acetylgalactosamine (GalNAc) residue to the glycan core (Ferguson et al., 

2009), which could be recognized by these galectins. 

 Nevertheless, it is still unclear how these processes lead to sorting of 

GPI-APs for the apical or basolateral face and if at the TGN exists any specific 

transmembrane cargo-coat adaptor analogous to the p24 complex at the ER 

that facilitate the formation of vesicles for their transport from the ER to the 

Golgi apparatus. 
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4.6 GPI-APS AT THE PLASMA MEMBRANE 

 In yeast, which have cell wall as plants, glycoproteins are cross-linked 

to the glucans of the cell wall via trans-glycosylation, a process which is 

carried out by GPI-APs and is essential for correct development and growth. 

Most of these glycoproteins are GPI-APs, which are N- and/or O-glycosylated 

and are needed for yeast morphology and cell wall integrity (Bowman et al., 

2006; Pittet and Conzelmann, 2007).  

 Sometimes, GPI-APs attached to the wall can be released after 

digestion of β-1,3-glucanase and β-1,6-glucanase suggesting that they are 

covalently linked to the polysaccharides of the cell wall (Fleet and Manners, 

1977; Pettolino et al., 2012). This connection is made to β-1,6-glucan through 

EtNP and several mannose residues of the glycan core of GPI anchor (Kapteyn 

et al., 1997; Kollár et al., 1997; Fujii et al., 1999). Two enzymes have been 

identified in Saccharomyces cerevisiae, Dcw1p and Dfg5p, are involved in 

cleavage of the GPI anchor, allowing GPI-APs to be released to the cell wall 

(Kitagaki et al., 2002). Mutants of these two enzymes show important defects 

in cell wall integrity and the yeast viability is impaired (Kitagaki et al., 2002). 

In addition, it has been described that GPI anchors with C26:0 DAG 

determines cell wall destination. However, GPI-APs, whose fate is to remain 

to the plasma membrane, replace C26:0 DAG with ceramide. The molecular 

basis for this is still unknown (Yoko-o et al., 2018). 

 In mammals, several mechanisms have been proposed to release 

GPI-APs from the cell surface. The two classes of phosphatidylinositol-

phospholipases (PI-PLs), PI-PLCs and PI-PLDs, can cleave the GPI anchor 

acting at different sites within the GPI anchor (Udenfriend and Kodukula, 
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1995). In mammals, PI-PLD has been reported to be involved in several 

cellular processes such as adhesion, differentiation, proliferation, survival 

and oncogenesis (Fujihara and Ikawa, 2016). Whereas PI-PLCs are known to 

act in unicellular organisms (Staudt et al., 2016), PI-PLCs can also cleave GPI-

APs in mammals suggesting that the function of PI-PLCs may have been 

conserved (Song et al., 2006). The treatments with these enzymes support 

the idea that plasma membrane location of GPI-APs could be regulated by 

the action of PI-PLs (Borner et al., 2003; Lalanne et al., 2004). 

 In plants, trans-glycosylation of GPI-APs has not been reported yet; 

however, it is important for cell wall remodelling during growth that cell wall 

polysaccharides are cross-linked via trans-glycosylation (Franková and Fry, 

2013). Although no clear Dcw1p and Dfg5p orthologues have been identified 

in plants, it cannot be excluded that the GPI anchor can link covalently to cell 

wall polysaccharides.  

4.7 GPI-APS IN PLANTS 

 As introduced before, there are 248 predicted GPI-anchored proteins 

in Arabidopsis thaliana (Borner et al., 2003), a relatively large number 

compared with about 150 in mammals and 50 in the yeast Saccharomyces 

cerevisiae (Conzelmann et al., 1988). This means that approximately 1 % of 

plant proteins are predicted to be post-translationally modified with a GPI 

anchor, playing important roles in diverse plant biological processes focused 

at the interface of the plasma membrane and the cell wall including 

signalling, cell wall metabolism, cell wall polymer cross-linking and 

plasmodesmatal transport (Table 5) (Yeats et al., 2018). 
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Name Gene Family Phenotype References 
Arabidopsis thaliana 

AGP4 AT5G10430 Classical AGP Synergid 
degeneration 

(Pereira et al., 
2016) 

AGP6 
AGP11 

AT5G14380 
AT3G01700 Classical AGP 

Collapse 
pollen 
development 

(Levitin et al., 
2008; Coimbra 
et al., 2009) 

AGP17 AT2G23130 Lys-rich 
Reduced 
biotic 
responses 

(Nam et al., 
1999; Gaspar, 
2004) 

AGP18 AT4G37450 Lys-rich 

Defect in 
female game-
togenesis and 
megaspore 
selection 

(Acosta-Garcia, 
2004; Demesa-
Arevalo and 
Vielle-Calzada, 
2013) 

AGP19 AT1G68725 Lys-rich Smaller 
growth 

(Yang et al., 
2007) 

AGP24 AT5G40730 AG peptide 
Deposition of 
Yariv-positive 
AGPs 

(Stenvik, 2006) 

FLA1 AT5G55730 Fasciclin-like 
AGP 

Reduced 
shoot and 
regeneration 
in tissue 
culture 

(Johnson et al., 
2011) 

FLA3 AT2G24450 Fasciclin-like 
AGP 

Microspore 
development, 
cellulose 
deposition 
defect 

(Li et al., 2010) 

FLA4/SOS5 AT3G46550 Fasciclin-like 
AGP 

Swollen root 
tips; salt 
sensitivity 

(Shi et al., 2003; 
Xu et al., 2008b; 
Seifert et al., 
2014; Xue et al., 
2017) 

FLA9 AT1G03870 Fasciclin-like 
AGP 

Seed abor-
tion under 
drought 
stress 

(Cagnola et al., 
2018) 
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FLA11 
FLA12 

AT5G03170 
AT5G60490 

Fasciclin-like 
AGP 

Affected 
secondary 
cell wall 
mechanics 
and reduced 
cellulose 

(MacMillan et 
al., 2010) 

COBRA AT5G60920 COBRA-like 
Primary wall 
cellulose 
disorganized 

(Schindelman et 
al., 2001) 

COBRA-like 
2 AT3G29810 COBRA-like 

Seed coat 
mucilage 
reduced 

(Ben-Tov et al., 
2015) 

COBRA-like 
4/IRX6 AT5G15630 COBRA-like 

Secondary 
wall cellulose 
affected 

(Brown, 2005) 

COBRA-like 
9 AT5G49270 COBRA-like 

Root hair 
development 
impaired 

(Jones et al., 
2006) 

COBRA-like 
10 AT3G20580 COBRA-like Pollen tube 

impaired (Li et al., 2013) 

LORELEI AT4G26466 Lorelei-like Pollen tube 
reception 

(Capron et al., 
2008; 
Tsukamoto et 
al., 2010) 

LLG1 AT5G56170 Lorelei-like 

Rapid alka-
lization factor 
(RALF) 
perception 

(Li et al., 2015a) 

ATBG_PPAP AT5G42100 β-glucosidase 
Control of 
symplastic 
connectivity 

(Levy et al., 
2007) 

PdBG1 
PdBG2 

AT3G13560 
AT2G01630 β-glucosidase 

Control of 
symplastic 
connectivity, 
lateral 
root 
formation 

(Maule et al., 
2013) 

A36 
A39 

AT5G36260 
AT1G65240 

Aspartic 
protease 

Pollen and 
ovule 
development 
impaired 

(Gao et al., 
2017a, 2017b) 
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ENODL11 
ENODL12 
ENODL13 
ENODL14 
ENODL15 

AT2G23990 
AT4G30590 
AT5G25090 
AT2G25060 
AT4G31840 

Early-nodulin 
like/ 

plastocyanin 

Pollen tube 
reception 

(Huang et al., 
2016) 

LTPG AT1G27950 Lipid-transfer 
protein 

Cuticular wax 
export 

(Jetter et al., 
2009) 

LTPG2 AT3G43720 Lipid-transfer 
protein 

Cuticular wax 
export 

(Kim et al., 
2012) 

LYM1 
LYM3 

AT1G21880 
AT1G77630 

Lysin-motif 
domain 

containing 

Peptidogly-
can sensing 

(Lajunen et al., 
2011) 

NDR1 AT3G20600 

Late embryo-
genesis abun-

dant (LEA) 
hydroxyprol-

ine rich 
glycolprotein 

family 

Mediates 
salicylic acid-
mediated res-
ponse (SAR), 
possibly 
double-
anchored 

(Coppinger et 
al., 2004) 

PMR6 AT3G54920 Pectate-
lyase-like 

Powdery 
mildew 
resistance 

(Vogel et al., 
2002) 

SHAVEN3 AT4G26690 SHAVEN3-like Root hair 
defective 

(Jones et al., 
2006) 

SHAVEN3-
like 1 AT5G55480 SHAVEN3-like 

Cellulose-
deficient and 
sucrose-
sensitive (in 
combination 
with SHV3) 

(Wada et al., 
2008; Yeats et 
al., 2016) 

SKU5 AT4G12420 
Skewed 5-
like/cupre-
doxin-like 

Root skewing (Sedbrook et al., 
2002) 

XYP1 
XYP2 

AT5G64080 
AT2G13820 

Lipid-transfer 
protein 

(xylogen) 

Promotion of 
xylem diffe-
rentiation, 
vascular 
development 
defects in 
mutant 

(Motose et al., 
2004) 

ZERZAUST AT1G64760 Beta-1,3-
glucanase 

Aberrant cell 
morphogene-
sis 

(Vaddepalli et 
al., 2017) 
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Oryza sativa 

SRL1/CLD1 
 Os07g01240 Unknown 

Curled leaves, 
dwarf, redu-
ced cellulose, 
enhanced 
water loss 

(Xiang et al., 
2012) 

BRITTLE 
CULM 1 Os03g30250 COBRA-like 

Secondary 
cell wall 
synthesis 

(Li et al., 2003; 
Liu et al., 2013) 

Zea mays 

BRITTLE 
STALK 2  COBRA-like 

Secondary 
cell wall 
synthesis 

(Ching et al., 
2006; Johal et 
al., 2007) 

Table 5. Plant GPI-anchored proteins and their respective mutant phenotypes (Adapted from 
Ellis et al., 2010 and Yeats et al., 2018). 

 

 Some important functions of GPI-APs have been found out studying 

some proteins, such as LORELEI family in the pollen tube-female 

gametophyte interaction (Capron et al., 2008; Tsukamoto et al., 2010; Liu et 

al., 2016b), the COBRA family in cell expansion and cell wall biosynthesis (Li 

et al., 2013) and the ARABINOGALACTAN proteins in megagametogenesis 

(Ellis et al., 2010; Demesa-Arevalo and Vielle-Calzada, 2013). This last family 

of proteins are predicted to be approximately the 40 % of plant GPI-APs 

encoding genes (Borner et al., 2002, 2003). Here are summarized some 

important families of GPI-APs in plants: 

LORELEI family proteins 

 The success of plant reproduction depends on a series of cell to cell 

interactions between the male and female gametophytes (Kessler and 

Grossniklaus, 2011; Palanivelu and Tsukamoto, 2012; Beale and Johnson, 
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2013; Qu et al., 2015). The LORELEI proteins are encoded by three genes, 

which are highly expressed in synergid cells of the embryo sac (ovules) but 

not in the pollen or pollen tubes (Tsukamoto et al., 2010), and are involved 

in regulating pollen tube reception (Liu et al., 2016b). 

 A mutant of one of these proteins showed an impairment of 

fertilization in the embryo sac caused by the inability of the pollen tube to 

release the sperm cells upon arrival to the mutant embryo sac  (Capron et al., 

2008; Tsukamoto et al., 2010). As a consequence, the pollen tube 

experienced a continuous growth, resulting in an invasion of the embryo sac 

and consequently, the fertilization was prevented (Capron et al., 2008; 

Eckardt, 2008). 

COBRA family proteins 

 These proteins are required for the oriented deposition of cellulose 

microfibrils in order to manage the cell expansion during plant 

morphogenesis (Roudier, 2005). The expression of COBRA family proteins 

focus in the root and specially in the more differentiated parts of the root 

(Schindelman et al., 2001). It is aligned in narrow bands perpendicular to the 

longitudinal axis in cells undergoing rapid elongation, a pattern which 

depends on cortical microtubule organization (Gendreau et al., 1997; 

Refregier, 2004). Mutants of these proteins showed severe growth defects 

(Roudier, 2005). 

 It has been reported that there are two mechanistically distinct 

growth phases during the expansion of leaf pavement cells (Fu, 2002). A 

mutant of COBRA protein used by Roudier et al. (2005) showed that this 
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protein is required for the second phase of growth, characterized by 

extensive cell growth and not for the initial morphogenesis of the different 

epidermal cell types. In this mutant, leaves of the epidermis were small, with 

roughly isodiametric shapes, which suggests that the ability of the cells to 

expand anisotropically is lost (Roudier, 2005). 

 COBRA proteins are modified by a GPI anchor and N-glycosylation 

and localize to compartments of the secretory pathway and at the plasma 

membrane (Borner et al., 2003; Foster et al., 2003; Lalanne et al., 2004). They 

are also detected at the cell wall, suggesting that during anisotropic 

expansion, the protein is released from the GPI anchor by a PI-specific 

phospholipase (Sharom and Lehto, 2002; Mayor, 2005) and can regulate the 

activity of this protein at the cell surface (Roudier, 2005). 

ARABINOGALACTAN family proteins 

 As reported before, it has been postulated that up to 40 % of 

Arabidopsis GPI-APs are predicted to be ARABINOGALACTAN proteins (AGPs) 

(Borner et al., 2003). The roles that these proteins play are diverse, including 

plant growth and development as biological regulatory molecules. AGPs 

localize mostly to the plasma membrane, but they are also in the cell wall, 

apoplastic space and in secretions (stigma surface and wound exudates). The 

high degree of heterogeneity is a property of the complexity of both the 

carbohydrate structure and the protein backbone, due to this fact they have 

been proposed to act as ligands in signalling pathways (Ellis et al., 2010). 

 The complexity in the structure of the AGPs is due to the incredible 

diversity of glycans attached to the protein core, the peripheral sugars 
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decorating the large arabinogalactan chains, the degree of glycosylation of 

the structure and the diversity of the protein module (Figure 27). Several 

studies have suggested that the glycan chains are important for AGP function 

(Gaspar et al., 2001; Showalter, 2001; Seifert and Roberts, 2007; Ellis et al., 

2010). 

 

Figure 27. Model structure of AGPs with a GPI membrane anchor attached (Adapted from 
Ellis et al., 2010). A, In this model of AGP there are approximately 25 Hyp residues, most of 
these are non-contiguous and are predicted to bear an AG chain. Each AG chain may contain 
15 or more repeats of a β-(1-3)-linked Gal oligosaccharide. The molecule as a whole is 
spheroidal. The structure of the GPI anchor is based from Oxley and Bacic, 1999. B, The twisted 
hairy rope model of the structure of the GAGP. A hypothetical block size of 7 kD contains 10 
amino acid residues (1 kD), 30 sugar residues (4.4 kD), and three Hyp-triarabinosides (1.32 
kD). This model is based from Qi et al., (1991). 



INTRODUCTION 
 

114 
 

 There are some key features of the AGPs that confer their specificity 

and properties (Ellis et al., 2010): The carbohydrate part, O-linked to the 

Hydroxiproline (Hyp) residues of the protein core, constitutes 90 to 98 % of 

weight, while the protein backbone constitutes 2 to 10 % of the weight and 

this part is rich in Hyp/Pro, Ala, Ser and Thr; they are attached to a GPI 

anchor; and finally, most of AGPs have the ability to bind a class of synthetic 

chemical dyes (Yariv reagents) (Yariv et al., 1967). 

 Several roles have been suggested to this family of proteins due to 

their heterogenous nature. Some of these proteins are involved in somatic 

embryogenesis (Van Hengel et al., 2002), root growth and development (Van 

Hengel and Roberts, 2003), signalling (Schultz et al., 1998), resistance to 

Agrobacterium tumefaciens mediated infection (Gaspar, 2004), hormone 

responses (Park, 2003), cell wall plasticity (Lamport et al., 2006), salt 

tolerance (Shi et al., 2003; Lamport et al., 2006), xylem differentiation 

(Motose et al., 2004), initiation of female gametogenesis (Acosta-Garcia, 

2004), promotion of pollen tube growth and guidance (Cheung et al., 1995; 

Wu et al., 1995, 2000; Mollet et al., 2002; Lee et al., 2008), cell expansion 

(Lee, 2005; Yang et al., 2007), secretion (Xu et al., 2008a), programmed cell 

death (Gao and Showalter, 1999), pollen grain development (Monteiro et al., 

2005; Levitin et al., 2008; Coimbra et al., 2009) and self-incompatibility in 

pollen (Lind et al., 1996; Cruz-Garcia et al., 2005; McClure et al., 2008; Lee et 

al., 2008). 

 It has also been suggested that the GPI anchor of the AGPs could 

interact with plasma membrane bound receptors kinases while the soluble 

forms of the AGPs could also interact with receptors in neighbouring cells. 
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The Fasciclin-like AGPs (FLAs) have been proposed to be involved in such 

interactions because of having fasciclin-like domains (Johnson, 2003). One 

protein of this subfamily implicated in this kind of interactions could be 

FLA4/SOS5 (Xu et al., 2008b). 

 Sometimes, the function of the GPI-APs can be regulated by 

enzymatic cleaving of the GPI anchor, allowing the GPI-APs at the plasma 

membrane to diffuse into the extracellular space. Therefore, this kind of 

proteins can have additional functions like cross-linking of polysaccharides 

and glycoproteins at the cell wall (Kondoh et al., 2005; Watanabe et al., 2007; 

Fujihara et al., 2013; Park et al., 2013).  

 The importance of the GPI-APs in plants is deduced by the fact that 

losing of the GPI anchor in plants causes lethality, both embryogenic and 

gametophytic as indicated before. For instance, Gillmor et al., (2005) 

reported that a mutant of the Arabidopsis homolog of the mammalian PIG-

M (PNT1), a mannosyltransferase enzyme localized at the ER which is 

required for the synthesis of the GPI anchor, showed defects in cell wall 

synthesis in the embryo and was lethal. 

 GPI-APs in plants can also play relevant roles associating with other 

structures of the cell for maintenance and signalling, such as: 

4.7.1 Association of GPI-APs with plasmodesmata 

 Plasmodesmata (PD) are plasma membrane channels in plant cells 

that traverse the cell wall and connect adjacent cells to enable symplastic 

transport of RNA, soluble proteins and solutes. Therefore, PDs contain 

specific plasma membrane proteins which generate a curved membrane 



INTRODUCTION 
 

116 
 

organization (Mongrand et al., 2010; Bayer et al., 2014), and the cell wall 

lacks cellulose and is rich in pectins and callose (Knox and Benitez-Alfonso, 

2014). Callose is deposited in the neck regions of PDs to structurally constrict 

the PD aperture, and therefore inhibit the molecular traffic. 

 The lipid composition of PDs is enriched in sterols and sphingolipids, 

with very long chain saturated fatty acids (Grison et al., 2015). Therefore, 

microdomains are formed in these regions to restrict lateral movement and 

segregate PD proteins from the rest of the plasma membrane (Raffaele et al., 

2009; Simpson et al., 2009; Fernandez-Calvino et al., 2011). 

 Two GPI-APs were found in PDs, Callose Binding 1 (PDCB1) and β-1,3-

glucanase (PdBG2) (Grison et al., 2015), which depend on the GPI anchor in 

order to localize to PDs (Grison et al., 2015; Zavaliev et al., 2016). 

Interestingly, the GPI anchor of two non-PDs GPI-APs, AGP4 and LTGP1, is 

able to target a reported protein to PD (Zavaliev et al., 2016). These proteins 

are predicted to provide a link between the PD and the cell wall, which is 

important for PD opening and for restricting lateral diffusion within the 

plasma membrane and PDs (Yeats et al., 2018). 

 There are also GPI-APs at the PDs that have important roles in 

defence responses against fungal pathogens. One of these proteins is the 

GPI-AP Lys motif domain 2 (LYM2), which is a chitin receptor-like protein 

responsible for changing the molecular flux through the PD upon chitin 

perception (Faulkner et al., 2013). This protein can bind chitin 

oligosaccharides and acts independently of the receptor kinase for chitin 

signalling CERK1 (Shinya et al., 2012; Faulkner et al., 2013). Therefore, this 
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component is essential for mediating cell to cell communication through PD 

during pathogen perception.  

4.7.2 GPI-APs and cell wall biosynthesis, maintenance and 
signalling 

 GPI-APs that act to modify cell wall polymers in yeast are well 

characterized (Martínez-Núñez and Riquelme, 2015). In plants, GPI-APs also 

act modifying cell wall polymers like callose, xyloglucan and cellulose. 

Therefore, GPI-APs are really important modulating the synthesis and 

remodelling of the polysaccharides that form the cell wall. 

 The main component of the cell wall in plants is cellulose, which form 

strong microfibrils composed of 18-24 β-(1,4)-glucan chains. These 

microfibrils are synthesized by cellulose synthases (CESAs) at the plasma 

membrane, which are also associated with other protein complexes that 

regulate the activity of CESAs or the crystallization of the microfibrils 

(Richmond and Somerville, 2000; Taylor et al., 2000). Besides, the S-acylation 

of CESAs and their hydrophobicity provide a specialized membrane 

environment (Konrad and Ott, 2015; Kumar et al., 2016). 

 The complexes that regulate CESAs activity contain GPI-APs such as 

COBRA-like family (Hemsley et al., 2013), which regulate the deposition of 

cellulose into cell wall (Li et al., 2013; Ben-Tov et al., 2015) and microfibrils 

crystallinity (Liu et al., 2013). They also regulate the secondary cell walls 

providing rigidity (Zhong and Ye, 2015), and therefore are implicated in wood 

and fibre quality (Gritsch et al., 2015; Niu et al., 2015). The GPI-APs FLA11 

and FLA12 can influence the microfibril angle of cellulose in secondary walls 

(MacMillan et al., 2010, 2015). 
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 Two putative GPI-APs aspartic proteases, A36 and A39, also 

colocalize with COBRA proteins (Gao et al., 2017a, 2017b). In yeast, it has 

been reported that aspartic proteases have a role in cell wall integrity and 

remodelling (Krysan et al., 2005; Kaur et al., 2007). 

 Some GPI-APs are implicated in defence against fungal pathogens, by 

modulating the cell wall and limiting penetration. The protein PMR6 is a GPI-

AP pectate lyase protein involved in pectin degradation and potentially 

release pectin oligosaccharides in order to defend against the fungal 

pathogen (Vogel et al., 2002; Engelsdorf et al., 2017). 

 As indicated before, GPI-APs may also play an important role in 

signalling as the LORELEI family (Liu et al., 2016b). These family proteins seem 

to interact with FERONIA (FER) protein, a receptor-like kinase implicated in 

cell wall integrity sensing, suggesting that they may act in the same pathway 

(Huck et al., 2003; Wolf and Höfte, 2014; Li et al., 2015a).  

 Recently, LORELEI protein has been shown to form complexes with 

FLAGELLIN SENSING 2 (FLS2), BRASSINOSTEROID INSENSITIVE 1-ASSOCIATED 

RECEPTOR KINASE 1 (BAK1) and the elongation factor Tu receptor (EFR) in 

order to regulate the response to pathogen associated molecular patterns 

(PAMPs) (Shen et al., 2017). 

 The role of GPI-APs in pollen tube is also exemplified with ENOD-like 

14 proteins (ENDOL/EN14), which interact also with FER. These proteins have 

a plastocyanin-like domain, arabinogalactan glycomotifs and GPI anchor, and 

are expressed in ovules and accumulate at the filiform apparatus (Huang et 

al., 2016).  
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 Finally, in the seed coat, the GPI-AP FLA4/SOS5 is proposed to act in 

the same pathway as two leucine rich receptor like kinases, FER1 and FER2 

(Basu et al., 2016; Showalter and Basu, 2016). It is suggested that they 

physically interact through the arabinogalactans glycans (Basu et al., 2016), 

which play a function as soluble extracellular factor as a ligand for receptor-

like kinases (RLKs) (Xue et al., 2017). 
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 GPI-anchored proteins (GPI-APs) are a family of proteins which are 

attached to the outer face of the plasma membrane by a GPI anchor. There 

are 250 predicted GPI-anchored proteins in Arabidopsis, approximately 10 % 

of secretory proteins and are involved in important functions such as signal 

transduction, cell-cell interactions, growth, host defence and cell wall 

biosynthesis. However, the molecular machinery involved in transport of 

GPI-APs to the plasma membrane is essentially unknown in plants. 

 GPI-APs are synthesized at the ER and, in mammals and yeast, ER 

export of GPI-APs requires p24 proteins. p24 proteins constitute a family of 

proteins which localize to the compartments of the early secretory pathway, 

including the ER and the Golgi apparatus, and to COPI- and COPII-coated 

vesicles. They play an important role in quality control during transport 

between ER and Golgi, possibly as cargo receptors. Several cargoes have 

been proposed for p24 proteins, including G-protein-coupled receptors, the 

K/HDEL receptor ERD2 and GPI-APs. 

 In mammals and yeast it has also been described that during their 

transport from the ER to the plasma membrane, GPI-APs undergo lipid 

remodelling of their GPI anchor, which is required for their efficient transport 

along the secretory pathway.  

 The main objective of this work is to characterize the transport to the 

plasma membrane of GPI-APs in Arabidopsis. 
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Specific objectives: 

1. To investigate whether Arabidopsis p24 proteins from the delta-1 

subclass are implicated in ER export and plasma membrane localization 

of GPI-anchored proteins. 

 

2. To study the role of the Arabidopsis enzymes PGAP1 and PER1L, which 

may be involved in the lipid remodelling of the GPI anchor, in the 

transport of GPI-APs from the ER to the plasma membrane. 
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1 BIOLOGICAL MATERIAL 

1.1 MICROORGANISMS 

1.1.1 Growth of Escherichia coli 

 Escherichia coli DH5α strain (Invitrogen®) was incubated at 37°C and 

220 rpm in liquid LB (Luria-Bertani) (Bertani, 1951) medium or solid LB 

medium (1 % (w/v) tryptone, 0.5 % (w/v) yeast extract and 1% (w/v) NaCl, pH 

7; for solid medium 1.5 % (w/v) bacteriological agar (Pronadisa®) was added. 

Media for selection of transformants was supplemented with antibiotic (100 

µg/mL ampicillin). 

1.1.2 Growth of Agrobacterium tumefaciens 

 Agrobacterium tumefaciens C58 MP90 strain (Koncz and Schell, 

1986) was incubated at 28°C and 220 rpm in liquid or solid LB medium plus 

25 µg/mL  gentamicin and 100 µg/mL kanamycin or 100 µg/mL 

spectinomycin, to ensure the presence of the Ti plasmid and T-DNA sequence 

of interest (when using T-DNA vectors with the kanamycin or spectinomycin 

resistance genes), respectively, to select and grow transformants. 

1.2 PLANTS 

1.2.1 Arabidopsis thaliana 

1.2.1.1 Insertion mutants 

 The following table shows the Arabidopsis insertion mutants used in 

this work: 
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Mutant 
(Gene 

identifier) 

Mutant 
(ID number*) 

Ecotype Origin 

p24δ3 
(AT1G09580) 

GK_029E10 Col-0 
GABI-KAT project (Kleinboelting 

et al., 2012) 
p24δ4 

(AT1G57620) 
SAIL_664_A06 Col-0 

SAIL collection (Sessions et al., 
2002) 

p24δ5 
(AT1G21900) 

SALK_016402C Col-0 
SALK collection (Alonso et al., 

2003) 

p24δ6 
(AT3G10780) 

GK_823G03 Col-0 
GABI-KAT project (Kleinboelting 

et al., 2012) 

p24δ3δ4δ5δ6  Col-0 
Obtained by Pastor-Cantizano 

et al., 2017 
pgapA-1 

(AT2G44970) 
SALK_067058 Col-0 

SALK collection (Alonso et al., 
2003) 

pgap1A-2 
(AT2G44970) 

SALK_072702 Col-0 
SALK collection (Alonso et al., 

2003) 
pgap1B-1 

(AT3G27325) 
SALK_078662 Col-0 

SALK collection (Alonso et al., 
2003) 

pgap1B-2 
(AT3G27325) 

SAIL_1212_H07 Col-0 
SAIL collection (Sessions et al., 

2002) 
pgap1C-1 

(AT3G52570) 
SAIL_302_A06 Col-0 

SAIL collection (Sessions et al., 
2002) 

per1lA-1 
(AT5G62130) 

SALK_039375 Col-0 
SALK collection (Alonso et al., 

2003) 
amiR-per1lB 
(AT1G16560) 

 
Col-0 

per1lA-1 
Obtained in this work 

Table 6. Arabidopsis insertion mutants  
* All seeds were provided by NASC (Nottingham Arabidopsis Stock Centre) 
* amiRNA technology was described by Ossowski et al. (2008). 
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1.2.1.2 Growth conditions in soil 

 Seeds were suspended in 1 mL distilled H2O and kept in darkness for 

2 days at 4°C to synchronize germination. Then, they were sown in plastic 

pots containing a mixture of compost:perlite:vermiculite (2:1:1). Two sizes of 

plastic pots were used, pots of 6 cm diameter (one plant per pot) to perform 

phenotypic analysis or to obtain protoplasts, or pots of 15 cm diameter (25 

plants per pot) to transform the plants. After sowing, pots were covered with 

plastic film the first five days to maintain high humidity during germination 

and to prevent contamination of seeds from other plants nearby. 

 Plants were grown in the greenhouse or chambers under controlled 

conditions of temperature, 22°C, and 16h/8h photoperiod with 16 hours of 

white, cold and fluorescent light (150 µE m-2 s-2, Sylvania Standard 

F58W/133-T8), watering them manually by immersion in distilled water 

twice a week. 

1.2.1.3 Growth conditions in Petri dishes 

 Arabidopsis was cultured in vitro in culture chambers in Murashige 

and Skoog (MS) medium with agar, which contains 2.2 g/L MS salts 

(Duchefa®), 10 g/L sucrose, 0.1 g/L 2-(N-Morpholino) ethanesulfonic acid 

(MES), pH 5.9 and 0.6 % (horizontal oriented plates) or 1 % ( vertical oriented 

plates) phytoagar. 

Seeds were sterilized by immersion for 3 minutes in 70 % (v/v) 

ethanol and 0.05 % (v/v) Triton X-100 (TX-100), and for one minute in 96 % 

(v/v) ethanol. Then, seeds were left until they got dry over sterile WhatmanTM 

paper at the laminar flow hood. After sowing them, plates were put for 2 
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days at 4°C and kept in darkness to synchronize germination and then they 

were moved into the growth chamber. 

 To select homozygous lines by segregation analysis, the seeds of the 

different insertion mutants were plated in Petri dishes containing selection 

medium (MS with antibiotic resistance). 

1.2.1.4 Crosses of different transgenic lines 

 The technique to cross different Arabidopsis plants consist in rubbing 

gently the convex surface of the anthers from the male parent against the 

stigmatic surface of an exposed carpel on the female parent. 

 For the different crosses between single, double mutants, selection 

of F1 and F2 progeny was performed by PCR (section 4.2.3 of Materials and 

methods) using genomic DNA as a temple and specific primers of the 

different genes and their corresponding insertions (Table 9).  

1.2.1.5 Isolation of Arabidopsis protoplasts 

 To obtain mesophyll protoplasts from Arabidopsis plants, the Tape-

Arabidopsis Sandwich method was used as described previously by (Wu et 

al., 2009). In this protocol, two kinds of tape (Autoclave tape adhered to the 

upper epidermis and 3 M magic tape (Trademark Scotch®) to the lower 

epidermis) were used to make a “sandwich”.   

 3-4 week rosette leaves were adhered to the autoclave tape with the 

abaxial surface down during manipulation. Then, the 3 M magic tape was 

adhered to the abaxial surface of the leaves. Tearing off the 3 M magic tape 

allowed easy removal of the lower epidermal layer and exposed mesophyll 
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cells to cell wall digesting enzymes. The autoclave tapes containing the leaves 

were incubated in an enzyme solution [1.5 % Cellulase R10 (Yakult 

Pharmaceutical®, Japan), 0.4 % Macerozyme R10 (Yakult Pharmaceutical®, 

Japan), 0.4 M mannitol, 20 mM KCl, 20 mM MES, 10 mM CaCl2, 5 mM β-

mercaptoethanol and 0.1 % Bovine serum albumin (BSA), brought to pH 5.7 

with KOH] for 2 h at room temperature (RT) with gentle shaking.  

 After digestion, the suspension was filtered through a 100-µm nylon 

mesh and briefly washed of the cell debris to release further protoplasts from 

the tissue remnants with W5 medium which contains 154 mM NaCl, 125 mM 

CaCl2, 5 mM KCl and 2 mM MES and pH 5.7. The protoplast suspensions were 

then centrifuged in Falcon tubes (50 mL) for 5 min at 124 xg and 4°C. 

Protoplasts were washed twice with W5 medium and the protoplast pellets 

were used to PEG transformation. 

1.2.2 Nicotiana benthamiana 

 Wild-type Nicotiana benthamiana plants were grown from surface-

sterilized seeds on soil in the greenhouse at 24°C with 16 h daylength. Plants 

were everyday watered. 

 



MATERIAL AND METHODS 
 

132 
 

2 TRANSFORMATION PROCEDURES 

2.1 TRANSFORMATION OF Escherichia coli 

 MAX Efficiency® DH5α™ competent cells from Invitrogen™ (Ref. 

#18258012) were used. Heat shock transformation was performed according 

to the manufacturer’s protocol. 

2.2 TRANSFORMATION OF Agrobacterium tumefaciens 

 Competent cells were prepared growing A. tumefaciens in liquid LB 

plus gentamicin (25 µg/mL) until an OD600 of 0.5-1.0 was reached. Then, the 

cells were collected and resuspended in 20 mM CaCl2, as described 

previously (Weigel and Glazebrook, 2002). A. tumefaciens transformation 

was performed using the freeze-thaw method. Competent cells were 

incubated with 1 µg plasmid DNA for 5 minutes at 0°C. Then, they were 

transferred to liquid nitrogen for 5 minutes and after, they were incubated 

for another 5 minutes at 37°C. Finally, 1 mL of LB was added and the cells 

were incubated 3-4 hours at 28°C and 220 rpm. The cells were plated in solid 

LB medium with the antibiotic resistance of the plasmid used and incubated 

for 2 days at 28°C until colonies appeared. 

 Colony PCR was performed to identify A. tumefaciens colonies 

containing the plasmid of interest. A transformant colony was taken with a 

yellow tip and was spread vigorously inside a sterile PCR tube for 30 seconds 

to run a hot start PCR reaction (as described in section 4.2.3 of Materials and 

Methods). Then, the yellow tip was introduced in a culture tube containing 2 
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ml of LB medium with antibiotic and it was incubated 1-2 days at 28°C and 

220 rpm to obtain a culture and store it at 4°C for further use. 

2.3 TRANSIENT GENE EXPRESSION OF Arabidopsis 
PROTOPLASTS BY PEG TRANSFORMATION METHOD 

 For transient expression by PEG (polyethylene glycol) transformation 

method, the protocol described by Yoo et al., 2007 was followed. Protoplasts 

isolated from Arabidopsis rosette leaves (of wild-type, p24δ3δ4δ5δ6, 

pgap1B-1, pgap1ABC, per1lA-1, per1lB-2 and per1lAB-2) (section 1.2.1.5 of 

Materials and methods) were washed with 40 mL of W5 pH 5.7 medium and 

collected by centrifugation at 124 xg and 4°C for 5 minutes. 

 For transformation, protoplasts were resuspended in 1 mL of W5 

medium and incubated 30 minutes on ice. An aliquot of the protoplast 

suspension was taken and used to calculate the concentration of protoplasts 

(protoplasts/mL). Then, protoplasts were collected by centrifugation (at 124 

xg and 4°C and for 5 min) and resuspended in MMG solution (0.4 M mannitol; 

15 mM MgCl2; 4 mM MES) to 5·105 cells/mL. 200 µl of protoplasts suspension 

was mixed with 50 µl of DNA(s) and 250 µL of PEG solution (0.1 M PEG 4000; 

0.2 M mannitol; 80 mM CaCl2) was added. After 5 minutes of incubation, 5 

mL of W5 was added. Protoplasts were collected as described previously and 

washed twice with W5. Finally, transformed protoplasts were resuspended 

in 1 W5 and incubated for 16 hours at 25°C and darkness. Protoplasts were 

then analyzed by confocal laser scanning microscopy (CLSM), as described in 

section 6.1, used to perform pull-down assays, as described in section 5.5; or 

used to perform protein analyzes, as described in section 5.2. 
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 The plasmids of the constructs used in this procedure were: pUC, 

pDH51 and pBP30. 

2.4 AGROINFILTRATION OF Nicotiana benthamiana LEAVES 

 Two days before the agroinfiltration, fresh cultures of LB medium 

with correspondent antibiotics were prepared from the stock. Then, 10 mL 

of LB medium (containing the corresponding antibiotics) was inoculated with 

the fresh culture prepared from stock and incubated overnight under same 

conditions. Finally, the culture was collected by centrifugation (1525 xg, 15 

min, room temperature) and the bacteria pellet was resuspended in 1 mL of 

water to measure the concentration of the Agrobacterium in the solution. A 

final OD of 0.6 for one construct was used and an OD of 0.3 of each marker 

was used when two different markers were used at the same time.  

 Once the solutions of Agrobacterium were prepared, Nicotiana 

benthamiana (Nicotiana) plants from the greenhouse were used (section 

1.2.2 of Materials and Methods). Nicotiana plants were watered and 

humidified gently during 20 minutes for opening the stomatas of abaxial 

surface of the leaves. After this time, Nicotiana leaves were agroinfiltrated 

carefully with a syringe and kept them into darkness for three days. Finally, 

the leaf space infiltrated was analyzed to the confocal (section 6.1) or for 

pull-down (section 5.5) and Western Blot experiments (section 5.8).  
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2.5 TRANSIENT TRANSFORMATION OF Arabidopsis thaliana 
SEEDLINGS BY VACUUM INFILTRATION 

 This protocol was adapted from the protocol described by Marion et 

al., 2008. Arabidopsis seeds were sowed into small plates containing 4 mL of 

MS without sucrose. The plates were stored at 4°C in the dark for 2-4 days to 

stratify the seeds and synchronize germination. After this, plates were placed 

into the growth chamber for 4 to 5 days for getting a germinated and 

expanded cotyledons from the seedlings. 

 For preparation of Agrobacterium cultures used for agroinfiltration, 

the desired Agrobacterium was inoculated into 2.5 mL of LB containing the 

appropriate antibiotics. This culture was grown overnight at 28C in a shaking 

incubator. Next, the day before the experiment, it was inoculated 50 mL of 

LB containing the appropriate antibiotics with 0.5 mL of the 2.5 mL pre-

culture. This culture was grown in the same conditions as indicated before. 

 Once the Agrobacterium culture reaches an OD around 2.2, it was 

centrifuged 30 mL of Agrobacterium overnight culture for 15 min at 6000 xg 

(RCF) at room temperature. The medium was removed and kept the bacterial 

pellet, which was resuspended with 2 mL of liquid MS medium. The bacterial 

suspension was measured in order to get the bacterial suspension OD. Then, 

the infiltration buffer was prepared with liquid MS at room temperature with 

0.005 % Silwet L-77® and 200 µM acetosyringone (3’,5’-Dimethoxy-4’-

hydroxyacetophenone, 97 %, Fisher®, Ref. #115540010). The Agrobacterium 

suspension was diluted with the infiltration buffer to have an OD of 2. The 

Agrobacterium infiltration-buffer was kept for 30-45 min at room 
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temperature to let the acetosyringone be assimilated by the Agrobacterium 

and activate its virulence genes. 

 The Agrobacterium infiltration-buffer was placed onto the plates 

with the Arabidopsis seedlings, making sure that all seedlings were covered 

by the buffer. Plates were placed into the vacuum desiccator and vacuum 

was applied (300 mbar) with the help of a manometer for one minute. After, 

the pressure was increased slowly and applied the vacuum again for another 

minute. The Agrobacterium solution was removed from the plates and these 

were placed back to the growth chamber and covered with aluminium foil 

for 45 min-1 h. After 3 days, the healthy seedlings were selected and imaged 

the cotyledons by the abaxial side on the confocal microscope. 

2.6 Arabidopsis STABLE TRANSFORMATION BY FLORAL DIP 
METHOD 

 For the generation of transgenic plants expressing the amiRNA of the 

gene PER1LB, wild-type (ecotype Columbia, Col-0) and per1lA-1 plants were 

used. For the generation of transgenic plants expressing RFP-p24δ5 it was 

used the mutant p24δ3δ4δ5δ6. The transformations were performed 

following the protocol described by Clough and Bent, 1998. Approximately, 

25 seeds of wild-type, per1lA-1 or p24δ3δ4δ5δ6 were sown and cultured for 

5 to 6 weeks in pots, as described in section 1.2.1.2 of Materials and 

Methods. The first inflorescence shoots were removed as soon as they 

emerged, to promote secondary inflorescences development. 

 Three days before transformation, a culture of 10 mL LB medium 

(containing the corresponding antibiotics) inoculated with an Agrobacterium 
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strain carrying the construction of interest was incubated as described in 

section 1.1.2. Then, 600 mL of LB medium containing the corresponding 

antibiotic was inoculated with 6 mL of the preculture and incubated 

overnight under same conditions. Finally, the culture was collected by 

centrifugation (6000 xg, 20 minutes, room temperature) and the bacteria 

pellet was resuspended in 600 mL of infiltration medium (5 % (w/v) sucrose 

and 0.05 % (v/v) Silwet L-77®) with a final OD600 of 0.8.  

 The pots containing the plants were inverted and all the plants were 

immersed in the suspension of Agrobacterium in infiltration medium for 2 

min with gentle shaking. Then, the pots were placed horizontally on trays 

which were covered with plastic film and a sheet of paper to avoid excess of 

light and were placed into the growth chamber. After 24 hours, the covers 

were removed and the pots with the transformed plants were placed as 

usual, letting plants to grow until the end of their reproductive cycle, when 

the seeds were harvested. 

 To select primary transformants, T1 seeds were sown on Petri dishes 

with MS medium supplemented with the corresponding antibiotic according 

to the antibiotic resistance gene of the construct (Table 8). After 7-10 days 

from sowing, transformants could be clearly distinguished by their green 

colour and developed roots. Selected plants were transferred into soil for 

growth under conditions described in section 1.2.1.2 of Materials and 

Methods. Secondary transformants from T2 seeds that showed a 3:1 

(resistant:senstitive) ratio when grown in MS plus antibiotic plates were 

selected and at least 6 seedlings resistant to the corresponding antibiotic 

were transferred to soil. Finally, T2 transformants with seed that showed 100 
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% resistance to the corresponding antibiotic were selected as homozygous 

plants. 

 Selection of homozygous transformants lines was analyzed by RT-

qPCR to test the silencing of the PER1LB gene of each line. The lines which 

were more silenced were chosen.  

2.6.1 Segregation analysis of transgenic lines 

 To estimate the number of loci in which amiRNA and RFP-p24δ5 has 

been inserted in the different primary transformants of A. thaliana, 40 seeds 

from individual T1 plants were sown after sterilization and grown in MS solid 

medium supplemented with the corresponding antibiotic, as described in 

section 1.2.1.3 of Materials and methods. The counting of green and white 

seedlings, resistant or sensitive to the antibiotic, respectively, was performed 

7-10 days after sowing. T2 homozygous and heterozygous plants were 

identified by analysing the T3 generation with the same technique. 

 To analyze segregation data of the corresponding antibiotic 

resistance in the progeny of the different T1 plants, the null hypothesis (H0) 

were that the data were compatible with a 3:1 segregation 

(resistant:sensitive), which corresponds with an unique insertion of the T-

DNA in a locus or with a 15:1 segregation, which corresponds to the insertion 

of the T-DNA in two loci. The alternative hypothesis (H1) was that H0 was not 

true, setting as categories resistant and sensitive plants to the corresponding 

antibiotic. 

 To analyze segregation data of the corresponding antibiotic 

resistance in the progeny of the selected T2 transgenic plants with an unique 
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insertion, the null hypothesis (H0) were that the data were compatible with 

40:0 segregation (resistant:sensitive), which corresponds with an 

homozygous line or with a 3:1 segregation, which corresponds with an 

heterozygous line. The alternative hypothesis (H1) was that H0 was not true, 

setting as categories resistant and sensitive plants to the corresponding 

antibiotic 

 The Chi-square (χ2) statistical test was used to determine how well 

our sets of segregation data fit this particular hypothesis (H0). The formula 

is: 

𝝌𝝌𝟐𝟐 = �
[(𝑶𝑶𝑶𝑶 − 𝑬𝑬𝑬𝑬) − 𝟎𝟎.𝟓𝟓]𝟐𝟐

𝑬𝑬𝑬𝑬

𝒌𝒌

𝒊𝒊=𝟏𝟏
 

k = number of categories (2); Oi = number of plants observed in a category; Ei = number of 

plants expected in a category; the degree of freedom (i = k-1) is 1. 

 The calculated χ2 value was then compared with computed critical 

values. In this case, for 2 different categories and one degree of freedom, a 

value of χ2 equal or less than 3.841 should indicate that the null hypothesis 

(H0) was accepted. 
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2.7 PLASMIDS USED IN TRANSIENT GENE EXPRESSION IN 
Arabidopsis PROTOPLASTS 

 Table 7 shows all the plasmids encoding proteins of interest used in 

transient gene expression in protoplasts. 

(X)FP protein Origin 

RFP-p24δ5 (Montesinos et al., 2012) 

RFP-p24δ5ΔGOLD (Montesinos et al., 2012) 

RFP-p24δ5ΔCC (Montesinos et al., 2012) 

RFP-p24δ9 (Montesinos et al., 2013) 

RFP-Calnexin (Künzl et al., 2016) 

GFP-PMA (Martinière et al., 2012) 

MAP-GFP (Martinière et al., 2012) 

GFP-PAP (Martinière et al., 2012) 

GFP-GPI (Martinière et al., 2012) 

GFP-AGP4 (Martinière et al., 2012) 

Table 7. Plasmids used in transient gene expression in Arabidopsis protoplasts in this work. 
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2.8 PLASMIDS USED IN TRANSFORMATION MEDIATED BY 
Agrobacterium: TRANSIENT EXPRESSION IN Arabidopsis 
SEEDLINGS, Arabidopsis STABLE TRANSFORMATION AND 
AGROINFILTRATION OF N. benthamiana LEAVES 

 Table 8 shows all the plasmids encoding proteins of interest used in 

transformation mediated by Agrobacterium and the amiRNA construct for 

silencing PER1LB. 

(X)FP protein Origin 

GFP-AGP4 (Martinière et al., 2012) 

GFP-GPI (Martinière et al., 2012) 

PIP2A-RFP ABRC stock 

RFP-p24δ5 (Montesinos et al., 2012) 

RFP-p24δ5ΔGOLD Obtained in this work 

RFP-p24δ5ΔCC Obtained in this work 

PER1LA-RFP Obtained in this work 

PER1LB-RFP Obtained in this work 

GFP-HDEL (Pain et al., 2019) 

YFP-ManI DG Robinson lab, University of 
Heidelberg 

amiRNA Origin 

amiR-PER1LB The Arabidopsis Information Resource* 

 
Table 8. Plasmids used in transformation mediated by Agrobacterium in this work. 
* The Arabidopsis Information Resource. pAMIR vector. 
http://www.arabidopsis.org/servlets/TairObject?type=vector&id=1001200233 
 

http://www.arabidopsis.org/servlets/TairObject?type=vector&id=1001200233
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3 TREATMENTS 

3.1 GERMINATION UNDER NaCl TREATMENT 

 To study whether salt tolerance was affected in the mutants of the 

GPI anchor remodelling enzymes, seeds of wild-type (Col-0) and GPI anchor 

remodelling enzymes mutants were sown on Murashige and Skoog (MS) 

plates containing 120 and 150 mM NaCl. Plates were transferred to a 

controlled growth chamber after cold treatment in the dark for 3 days at 4°C. 

After 14 days, the rates of cotyledon greening were scored. Seeds harvested 

from Col-0 and GPI anchor remodelling enzymes mutants plants were grown 

under the same conditions and at the same time were used. 

3.2 INFILTRATION OF BFA IN N. benthamiana LEAVES 

 In order to block the transport between the ER and Golgi apparatus 

it was decided to use the drug Brefeldin A (BFA), which blocks the activation 

of some ARF proteins involved in the regulation of the vesicular trafficking of 

COPI vesicles from Golgi apparatus to ER (Fujiwara et al., 1988; Ritzenthaler 

et al., 2002) and, therefore, this disrupts the secretion pathway avoiding GFP-

AGP4 can go to the plasma membrane and would be retained into the ER, 

increasing the possibilities of the interaction between GFP-AGP4 and RFP-

p24δ5 at the ER. 

 From a stock of 5 mg/mL BFA (from Penicillium brefeldianum, 99% 

(HPLC and TLC), Sigma-Aldrich®, Ref. #B7651) dissolved into ethanol, it was 

diluted into water to reach a concentration of 20 µg/mL. This was infiltrated 

16 hours before taking the sample in the piece of leaves agroinfiltrated 2 days 
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before. The infiltration of the solution of BFA consists as it was explained in 

section 2.4 of Material and Methods. 

3.3 STAINING OF PROTOPLAST PLASMA MEMBRANE USING 
FLUORESCENT PROBES 

 For staining the protoplast plasma membrane it was used the dye 

FM4-64 (N-(3-Triethylammoniumpropyl)-4-(6-(4-(Diethylamino) Phenyl) 

Hexatrienyl) Pyridinium Dibromide) (Thermofisher®, Ref. #T3166).  FM4-64 

stains the plasma membrane and is endocyted by time. It is excited by laser 

at 520 nm and the CLSM detection window is 600-700 nm. 

 The dye stock was 2 mM in DMSO (dimethyl sulfoxide) and was 

diluted to 50 µM in W5. Protoplasts were centrifuged in an Eppendorf at 124 

xg, 1 min and 4°C and the supernatant was removed. Next, the pellet 

(protoplasts) was resuspended with 100 µL of the 50 µM FM4-64 dilution in 

W5 and then incubated 15 min at 4°C. After this time, samples were washed 

by addition of 900 µL of W5 and then centrifuged at 124 xg, 5 min and 4°C. 

Finally, the supernatant was removed and the pellet (protoplasts) was 

resuspended with 80 µL for visualization to the CLSM. 
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4 NUCLEIC ACIDS 

4.1 ISOLATION OF NUCLEIC ACIDS 

4.1.1 Isolation of plasmid DNA 

 For small-scale preparations of plasmid DNA, an alkaline lysis method 

described by Green and Sambrook, 2016 was used beginning with 1 mL 

culture grown overnight in LB supplemented with the corresponding 

antibiotic. 

 Middle-scale preparations of plasmid DNA were performed 

beginning with 100 mL cultures grown overnight in LB with antibiotic, and 

following the manufacturer’s instructions for extraction and purification of 

plasmid DNA indicated in Qiagen® Plasmid Midi Kit (Qiagen columns tip-100, 

Ref. #12143). 

 For large-scale preparations of plasmid DNA the Qiagen® Plasmid 

Maxi Kit (Ref. #12163) was used following the manufacturer’s instructions. 

This method was used mainly to obtain plasmid DNA for PEG transformation.  

4.1.2 Isolation of genomic DNA from Arabidopsis 

 To isolate Arabidopsis genomic DNA, 100 mg of rosette leaves of 3-

4-week-old plants, before the main shoot elongated, were collected and 

snap frozen in liquid nitrogen. The genomic DNA was obtained following a 

protocol described previously (Edwards et al., 1991). 
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4.1.3 Isolation of total RNA from Arabidopsis 

 To obtain Arabidopsis total RNA, the Rneasy® Plant Mini Kit (Qiagen®, 

Ref. #74904) system, which is specific for plants, was used. 75 mg of the 

indicated tissue was collected and snap frozen in liquid nitrogen. Samples 

were homogenized by grinding them in liquid nitrogen with a pestle. Total 

RNA extraction was performed following the instructions of the 

manufacturer. All samples were treated with DNase (Qiagen®, Ref. #79254). 

 RNA quantification was performed in a spectrophotometer 

(Ultrospec 2000, Pharmacia Biotech®) and total RNA was stored at -80°C for 

further use. 

4.2 MANIPULATION AND ANALYSIS OF NUCLEIC ACIDS 

4.2.1 Recombinant plasmid production 

 The coding sequence of fluorescent proteins PER1LA-RFP and 

PER1LB-RFP were commercially synthesized de novo (Geneart AG®) based on 

the sequence of RFP or GFP and the Arabidopsis genes of PER1LA 

(AT5G62130) and PER1LB (AT1G16560). The sequence of the fluorophore is 

at the end of the coding sequence of these genes. The coding sequence of 

these proteins were cloned into the pCHF3 vector (Ortiz-Masia et al., 2008) 

through the restriction enzymes: KpnI and SalI. 

4.2.2 Agarose gel electrophoresis 

 DNA fragments were visualized in 0.8-2 % agarose gels (depending 

on the size of the fragments to be analyzed) in TBE buffer (89 mM Tris, 89 

mM boric acid, 2 mM EDTA, pH 8.0), stained with 10 µg/mL Real Safe® 
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(Durviz, S.L.), and separated by electrophoresis with a constant voltage 

between 100-150 V, immersed in TBE. Samples were diluted in 6X Loading 

buffer (50 % (v/v) glycerol, 0.05 % (w/v) bromophenol blue, 100 mM EDTA). 

DNA bands were visualized by lighting up the gel with ultraviolet light, using 

the UVITEC system® (Cambridge). This system allows also to photograph the 

gel. 

4.2.3 Amplification by polymerase chain reaction (PCR) 

 Amplification reactions were performed in the cycler GeneAmp PCR 

system 2400® (Perkin Elmer®), following the instructions contained in the kit 

from WVR Red Taq DNA Polymerase Master Mix (Ref. #5200300-1250). 

 For genotyping by PCR, samples consisted of 2 µl from genomic DNA 

isolated as described in section 4.1.2., 2 µl of each primer at 10 µM (Table 9), 

19 µl sterile Milli-Q water and 25 µl of WVR Red Taq DNA Polymerase Master 

Mix, which contains dNTPs (dATP, dCTP, dGTP and dTTP at 0.4 mM), 0.2 

units/µl VWR Taq polymerase in Tris-HCl pH 8.5, (NH4)2SO4, 3 mM MgCl2 and 

0.2% Tween ® 20. Total volume was 50 µl. 

 Genotypic analysis by PCR consisted in running a first denaturation 

step of 2 minutes at 95°C, followed by 36 cycles. Each cycle was divided in 

three sections: 30 seconds at 95°C (denaturation), 30 seconds at the 

respective annealing temperature of specific primers (usually 55°C) and 1 to 

3 minutes according to the size of the fragment at 72°C (elongation). Finally, 

a final period of 7 min at 72°C was added to assure the elongation of all 

fragments. 
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 The primers used in this work for PCR and RT-sqPCR are listed in the 

Table 9. 

Name Gene Sequence (5’→3’) Tm (°C) 

PGAP1 genes 

Bst1AR PGAP1A ACCGTATCTGACTTGAAGTAGC 60 

Bst11AF PGAP1A TCGGCAGATGACATAGGATGGTTA 64 

NRPBst1A PGAP1A GAAACTGTCTCCTTGTGTCTATG 61 

RPBst1A PGAP1A TACGATCAACTTCCGGAGTTG 59 

LPBst1A PGAP1A CTAAAGGATAAGGTCGCTGGG 61 

Bst1BR PGAP1B ACGAGACCACTGTGAAGCTTGTGAG 67 

Bst1BF PGAP1B GCTCTGCAAATTGCGTTGTTTCCC 65 

RPBst1B PGAP1B ACCAGCTTAGGTCTATTGCCC 61 

LPBst1B PGAP1B TTGGAAGGGAAATTTGGAAAC 55 

Bst1CR PGAP1C CCATTTTCGTAGCGCATCGT 58 

Bst1CF PGAP1C ACAGCTCTCATCCTTCATGG 58 

PER1L genes 

RPPer1A PER1LA AATGTCAGAAAACTGGATGCG 60 

LPPer1A PER1LA GAGCTTTCTTGATCTCGAGCA 62 

Per1BR PER1LB GGATCCAAATCCTTGTAAAACTTAGC 63 

Per1BF PER1LB GTCAAGGTGATTGCCGTTAT 56 

Housekeeping genes 
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A5 ACT-7 GGATCCAAATGGCCGATGGTGAGG 69 

A3 ACT-7 GGAAAACTCACCACCACGAACCAG 67 

Insertion 

LBb1 T-DNA GGATCCGCGTGGACCGCTTGCTGCAACT 76 

LB3 T-DNA TTCATAACCAATCTCGATACAC 55 

ami3 amiRNA GGATCCGCAATTAACCCTCACTA 63 

ami5 amiRNA ATATAAGGAAGTTCATTTCATTTGGAG 61 

Table 9. Primers used in this thesis. 

4.2.4 Synthesis of cDNA by retrotranscription (RT-PCR) 

 This procedure allows obtaining complementary (cDNA) from RNA by 

the action of a reverse transcriptase which is a viral enzyme that synthesizes 

DNA using RNA as a template. To obtain cDNA, the Maxima® First Strand 

cDNA Synthesis Kit for RT-PCR (Fermentas®, Ref. #K1641) was used. The 

starting point was 3 µg of total RNA, to which 2 µl of Maxima enzyme mix, 4 

µl of 5X Reaction mix and free ribonuclease water to a total volume of 20 µl 

were added. PCR tubes were incubated for 25 minutes at 25°C, then 30 

minutes at 50°C and finally, the reverse transcriptase was inactivated 

incubating the PCR tubes for 5 minutes at 85°C. The cDNA obtained was 

stored at -20°C until its use. 

4.2.5 Semiquantitative PCR (RT-sqPCR) 

 For semiquantitative expression PCR (RT-sqPCR) analysis, 

amplification reactions were performed in the cycler GeneAmp PCR system 
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2400 (Perkin Elmer®), following the instructions contained in the kit from 

Roche PCR Master®. 

 In this case, samples consist of 3 µl (initially) of cDNA from the 

retrotranscription reaction and 2 µl of each primer at 10 µM (Table 9) diluted 

in the H2O provided by the kit, up to 25 µl. To avoid non-specific 

amplification, a “hot start” protocol was used. It consisted in running a first 

denaturation period of 2 minutes at 95°C, after which 25 µl of PCR Master 

(which contains dNTPs at 0.4 mM, 25 U of DNA polymerase thermophilic 

eubacterium Thermus aquaticus BM (Taq polymerase) in 20 mM Tris-HCl, 100 

mM KCl, 3 mM MgCl2 and 0.01 % (v/v) Brij 35 at pH 8.3) pre-heated at 50°C 

(total volume of 50 µL) was added.  

 The amplification cycles were divided into 15 initial cycles which 

consisted in three sections as described in section 4.2.3. To these initial 

cycles, a variable number of cycles were added depending on the level of 

mRNA expression of the analyzed gene in the tissue. 12 µL aliquots of the 

PCR products were taken at a consecutive number of cycles (to check the 

linear range) and incubated 7 min at 72°C, for further analysis. The 

temperature was kept at 4°C till the samples were removed from the thermal 

cycler. 

The primers used in this work for PCR and RT-sqPCR are listed in the Table 9. 
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5 PROTEINS 

5.1 TOTAL PROTEIN EXTRACTION OF Arabidopsis ROOTS 

 To obtain protein extracts from cytosolic and membrane fractions, 

roots of 7-day-old seedlings grown in MS plates (section 1.2.1.3 of Materials 

and methods) were cut with a scissors and frozen in liquid nitrogen until use. 

Next, they were homogenized in homogenization buffer (HB) (0.3 M sucrose; 

1 mM EDTA; 1 mM dithiothreitol DTT; 20 mM HEPES pH 7.5; 20 mM KCl; pH 

7.5) supplemented with 1 mM DTT and 10 % Protease Inhibitor Cocktail 

Sigma® (IPs) using a mortar and a pestle, maintaining always the mortar on 

ice. The homogenate was centrifuged for 10 minutes at 1215 xg and 4°C, and 

the supernatant was recovered (post nuclear supernatant (PNS)). TX-100 was 

then added to a final concentration of 0.5 % and the PNS was incubated in a 

rotating wheel during 30 min at 4°C. Then, the PNS was centrifuged again for 

5 minutes at 15700 xg and 4°C. The final supernatant were adjusted to the 

same protein total concentration by adding HB.  

5.2 TOTAL PROTEIN EXTRACTION OF Arabidopsis 
PROTOPLASTS FOR PULL-DOWN EXPERIMENTS 

 Protoplasts obtained as described in section 1.2.1.5 were collected 

in W5 medium by centrifugation for 5 minutes at 124 xg and 4°C. Pellet was 

homogenized in 1 mL of HB with 10 % IPs and protoplasts were disrupted by 

sonication (6 x 5 s). Protoplast extracts were separated from unbroken 

protoplasts by centrifugation for 10 min at 1215 xg and 4°C. To the 

supernatant (PNS) was added to a final concentration of 0.5 % TX-100 and 

the PNS was incubated in a rotating wheel during 30 min at 4°C. Then, the 



MATERIAL AND METHODS 
 

151 
 

PNS was centrifuged for 5 minutes at 15700 xg and 4°C to finally obtain the 

final supernatant which is incubated with the beads for pull-down 

experiments (section 5.5) or it is used as Input. 

5.3 TOTAL PROTEIN EXTRACTION OF N. benthamiana LEAVES 

 Nicotiana leaves agroinfiltrated as described in section 2.4 of 

Materials and Methods were frozen in liquid N2 and then grinded in a mortar 

adding HB with 10 % IPs until leaves are totally dispersed. Leaves extracts 

were separated from undispersed pieces by centrifugation for 10 min at 1215 

xg and 4°C. Next, the supernatant (PNS) was added to a final concentration 

of 0.5 % TX-100 and the PNS was incubated in a rotating wheel during 30 min 

at 4°C, as in section 5.2. Finally, the PNS was centrifuged for 5 min at 15700 

xg and 4°C to obtain the final supernatant which is used to do a pull-down as 

described in section 5.5, or it is used as Input. 

5.4 PI-PLC TREATMENT 

 PI-PLC is an enzyme which can catalyze the hydrolysis of a 

phosphatidylinositol into an inositol triphosphate and a diacylglycerol. PI-PLC 

treatment was carried out in order to study if the precursors of GFP-AGP4 

that interact with RFP-p24δ5 are PI-PLC sensitive. 

 A N. benthamiana leaf that was agroinfiltrated 3 days before with 

GFP-AGP4 was grinded in a mortar adding HB with 10 % IPs. N. benthamiana 

extracts were separated from unbroken cells by two centrifugations of 10 

min at 1215 xg and 4°C to finally obtain the PNS.  
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 Next, the PNS was centrifuged at 500000 xg, 10 min and 4°C in order 

to separate the cytosol from membranes. The sediments were resuspended 

by the addition of HB with 10 % IPs to obtain the membrane fraction. The 

membranes fractions were incubated with 2 U PI-PLC (from Bacillus cereus, 

100 U/mL, Invitrogen®, Ref. #P6466) and without (as a control) for 1 h at 

37°C. After this, samples were centrifuged for 1 h at 150000 xg and 4°C in 

order to separate membranes (pellet) from the GFP-AGP4 cleaved by the PI-

PLC (supernatant). Membrane fractions were disrupted by the addition of 

100 µL Lysis buffer (50 mM Tris-HCl pH 7.5 1 M, 0.5 % TX-100 20 %, 1 mM 

EDTA 0.5 M, 1 mM PMSF (phenylmethylsulfonyl fluoride) 0.1 M, 150 mM 

NaCl) with 10 % IPs and incubated 30 min in ice with occasional vortex. Next, 

broken membrane fractions were centrifuged for 5 min at 10000 xg and 4°C 

to get the supernatant. Finally, 3x Sample Buffer (SB) was added to the 

samples and heated for 5 min at 95°C and analyzed by Western blot as 

indicated in section 5.8. 

5.5 PULL-DOWN EXPERIMENTS 

 Pull-downs experiments from leaves of N. benthamiana or 

Arabidopsis protoplasts co-expressing RFP-tagged proteins and GFP-tagged 

proteins were performed using RFP-Trap or GFP-Trap magnetic beads 

(Chromotek®), following the recommendations of the manufacturer, as 

described previously (Montesinos et al., 2013). The magnetic beads were 

incubated with 0.5 mL of PNS and 0.8 mL of CO-IP buffer (10 mM Tris-HCl pH 

7.5 1 M, 150 mM NaCl, 0.5 mM EDTA; pH 7.5) for 2 h in a wheel at 4°C. After 

the incubation period, the beads were washed 3 times with CO-IP buffer and 
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then 2x SB was added to the beads and heated for 5 min at 100°C and 

analyzed by Western blot as indicated in section 5.8. 

5.6 DETERMINATION OF PROTEIN CONCENTRATION 

 To quantify the protein concentration in a sample, the Bio-Rad® 

Protein Assay kit was used. It is based on the method described by Bradford 

(1976), which allows to correlate the variation of absorbance at 595 nm from 

an acidic solution of Coomasie Brilliant Blue G-250® with the quantity of 

proteins in a sample (optimum range of 0.2-2 mg/mL of protein), using 

different concentrations of BSA as a standard. 

5.7 SDS-POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS-
PAGE) 

 Proteins from different samples were separated through 

electrophoresis in vertical gels of SDS-polyacrylamide, following the protocol 

described by Laemmli (1970), at constant voltage (100 V). Previously, 

samples were mixed 1:1 with 2X SB, which contains 125 mM Tris-HCl, 20 % 

glycerol, 4 % SDS, 25 µg/mL Bromophenol blue and 50 µl/mL of 14 M β-

mercaptoethanol, pH 6.8. Then, samples were incubated for 5 minutes at 

95°C. 

The acrylamide/bisacrylamide gels consisted in two different parts: 

- Running gel: 8-14 % polyacrylamide [30 % acrylamide/bis (29:1), Bio-

Rad®], 0.39 mM Tris-HCl pH 8.8, 0.1 % SDS, 0.1% APS (ammonium 

persulfate, Bio-Rad®), 1/1000-1/2500 99 % TEMED (N, N, N’, N’-

tetramethilethilendiamine, Bio-Rad®). 
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- Stacking gel: 5 % polyacrylamide, 0.13 % Tris-HCl pH 6.8, 1 % APS, 1/1000 

99 % TEMED. 

 

 The electrophoresis was performed with the Electrophoresis buffer, 

which contains 192 mM glycine, 25 mM Trizma® base, 0.1% SDS, pH 8.3. After 

SDS-PAGE, proteins were transferred to a nitrocellulose membrane to 

perform Western blot analysis. 

5.8 PROTEIN DETECTION: WESTERN BLOT ANALYSIS 

 Proteins separated by SDS-PAGE were transferred to a nitrocellulose 

membrane of 0.45 µm (Bio-Rad®) following the Burnette protocol (Burnette, 

1981) through a humid transfer system (Bio-Rad®) with constant voltage (100 

V) for 1 h, all immersed in Transfer buffer (25 mM Trizma® base; 192 mM 

glycine; 20 % MeOH; pH 8.5). The efficiency of the transference and the 

proper loading of the different samples were tested in the membranes 

staining them with Ponceau S 0.5 % solution (SIGMA®).  

 Western blot analysis is based on the indirect detection of proteins 

placed in a nitrocellulose membrane, using specific antibodies. To this end, 

membranes were blocked with blotto-Tween (powdered milk in 3-5 % PBS; 

0.01 % Tween® 20) for 16 h at 4°C or 1 h at RT with gentle shaking (see-saw 

rocker SSL4, Stuart®), which was maintained during all the process. After 

blocking, membranes were incubated with the pertinent primary antibody 

(Table 10) diluted in PBS-BSA [PBS (8 mM Na2HPO4, 1.7 mM KH2PO4, 137 mM 

NaCl, 2.7 mM KCl), 2 mg/mL BSA, 0.02 % sodium azide] for 1h at RT. Next, 6 

incubations of 5 minutes with TBS-Tween [0.01 % Tween® 20 in TBS (24 mM 
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Tris-HCl, 150 mM NaCl, pH 7.5)) were performed to wash out the excess of 

antibody. The incubation with the secondary antibody (Table 11) which is 

conjugated to horseradish peroxidase (HRP) was performed for 1h at RT. 

After the incubation, the excess of secondary antibody was washed out as 

the primary antibody. 

 Developing was performed by the Enhanced chemiluminescence 

method (ECL). This method is based on the chemiluminiscence reaction of 

luminol. The enzyme HRP, which is linked to secondary antibodies, catalyz-

expres the oxidation of luminol when there is hydrogen peroxide in alkaline 

conditions, generating a product that emits luminescence (Whitehead et al., 

1979). Developing was performed following the instructions of the 

manufacturer (Western blotting detection reagents, Thermo Scientific®), 

using the automatic system Molecular Imager® ChemiDocTM XRS+ Imaging 

system (Bio-Rad®), with variable exposure times. The intensity of the bands 

obtained from Western-blots in the linear range of detection was quantified 

using the Quantity One software (Bio-Rad Laboratories®). 

 Nitrocellulose membranes can be reused for another Western blot 

analysis after stripping the antibodies. To this end, membranes were 

incubated with 0.5 M glycine pH 2.5 for 15 minutes at RT with constant 

shaking. Then, they were washed five times, twice with distilled water and 

three times with TBS-Tween. Finally, membranes were blocked again with 

blotto-Tween. 
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Target Host Dilution Reference 

p24δ5-Nt Rabbit 1/500 (Montesinos et al., 2012) 

p24δ9-Nt Rabbit 1/500 (Montesinos et al., 2013) 

p24β2-Ct Rabbit 1/500 (Montesinos et al., 2012) 

RFP Rabbit 1/500 Rockland® 

GFP Rabbit 1/500 Rockland® 

Table 10. Primary antibodies used in this work. 

 

Target Host Dilution Reference 

IgG Rabbit Donkey 1/7500 GE Healthcare® 

Table 11. Secondary antibody used in this work. 

 
6 VISUALIZATION OF PROTEINS 

6.1 CONFOCAL MICROSCOPY (CLSM) 

 Confocal fluorescent images from protoplasts (section 2.3), 

Arabidopsis seedlings (section 2.5) or N. benthamiana leaves (section 2.4) 

were collected and analyzed using an Olympus® FV1000 confocal microscope 

with 60x water lens and a super-resolution microscopy Zeiss® LSM880 wit 

Fast Ayriscan® detector. Fluorescence signals for GFP (488 nm/496-518 nm), 

YFP (514 nm/529-550 nm) and RFP (543 nm/593-636 nm) were detected. 

Sequential scanning was used to avoid any interference between 

fluorescence channels. Post-acquisition image processing was performed 

using the FV10-ASW 4.2 Viewer® and ImageJ (v.1.45) for Olympus images and 

Zeiss ZEN 2 (Blue edition®) V.1.0 for Zeiss images.
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CHAPTER I. ROLE OF P24 PROTEINS IN ER EXPORT 

AND TRANSPORT TO THE PLASMA MEMBRANE OF 

GPI-ANCHORED PROTEINS 

1 FUNCTIONAL REDUNDANCY AND PROTEIN 

STABILITY OF P24 FAMILY PROTEINS 

 Our group has shown previously that Arabidopsis p24 proteins form 

hetero-oligomeric complexes which are important for their intracellular 

trafficking and localization but also for their stability (Montesinos et al., 2012, 

2013, 2014; Pastor-Cantizano et al., 2016, 2018). To test for the role of p24 

proteins in localization of GPI-APs, we have used a quadruple KO mutant 

affecting the 4 members of the p24delta-1 subclass of the p24 delta 

subfamily (p24δ3, p24δ4, p24δ5 and p24δ6), which we named p24δ3δ4δ5δ6 

or p24δ-1 mutant (Pastor-Cantizano et al., 2018).  

 We have shown previously that there is interdependence in the 

protein levels of p24δ proteins from the two subclasses and the two 

members of the p24 beta subfamily, which is consistent with Arabidopsis p24 

proteins forming hetero-oligomeric complexes, as described in other 

systems, probably including p24 proteins from the p24δ-1 and p24δ-2 

subclasses and the p24 beta subfamily (Montesinos et al., 2013). Indeed the 

p24δ-1 mutant had reduced protein levels of p24δ9, a member of the 

p24delta-2 subclass of the p24 delta subfamily and also of the two members 

of the p24 beta subfamily (p24β2 and p24β3) without a change in their mRNA 
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levels (see Figure 28) (Pastor-Cantizano et al., 2018). Therefore, this mutant 

had reduced function of many different p24 proteins. Our previous 

experiments also suggested that there may be functional redundancy 

between members of the p24delta-1 subclass within the p24 delta subfamily 

(Pastor-Cantizano et al., 2018). To further address this question, we 

expressed a member of the p24delta-1 subclass, p24δ5 (RFP-p24δ5) in the 

p24δ-1 mutant background (section 2.6 of Material and Methods), to see if 

p24δ5 could alone restore the protein levels of other p24 proteins. Indeed, 

expression of RFP-p24δ5 was enough to restore the protein levels of both 

p24δ9 and p24β2 (Figure 28).  

 
Figure 28. p24δ5 (p24delta-1 subclass) expression restores protein levels of p24 proteins in 
the p24δ3δ4δ5δ6 mutant. Two independent transgenic lines were generated by transforming 
the p24δ3δ4δ5δ6 mutant with RFP-p24δ5 (lines #1 and #2). Protein extracts were obtained 
from the roots of 7 days-old plants from these lines (section 5.1 of Materials and Methods), 
as well as from the p24δ3δ4δ5δ6 mutant and wild-type (Col-0) plants and analyzed by 
Western blotting with antibodies against p24δ5, p24δ9, p24β2 and RFP (to detect RFP-p24δ5) 
(sections 5.7 and 5.8 of Material and Methods). A 20 µg aliquot of protein was loaded in each 
line (section 5.6 of Material and Methods).
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 These results suggest that p24δ5 is enough to restore the stability of 

other p24 protein family members, and thus can substitute for other 

members of the p24δ-1 subclass of the p24δ subfamily in putative p24 

hetero-oligomeric complexes. These data also suggest the existence of 

functional redundancy within the p24delta-1 subclass. 

 

2 P24 PROTEINS ARE NECESSARY FOR ER EXPORT 

AND PLASMA MEMBRANE LOCALIZATION OF GPI-

ANCHORED PROTEINS 

 To test for the putative involvement of p24 proteins in transport to 

the plasma membrane of GPI-anchored proteins we used two different 

markers. The first one was a GFP fusion with arabinogalactan protein 4 (GFP-

AGP4) (Martinière et al., 2012), a proteoglycan that seems to be implicated 

in diverse developmental processes such as differentiation, cell-cell 

recognition, embryogenesis and programmed cell death (Ellis et al., 2010). 

The second one was a glycosylphosphatidylinositol-anchored GFP (GFP-GPI) 

(Martinière et al., 2012). As a control, we used a transmembrane plasma 

membrane protein, the aquaporin PIP2A-RFP.  

 To study the localization of these proteins, we first used transient 

expression in Arabidopsis seedlings, as described in section 2.5 of Material 

and Methods. The localization of these markers was analyzed both in the 

p24δ-1 mutant and in wild-type Arabidopsis seedlings. As shown in Figure 29 

A, GFP-AGP4 was almost exclusively localized to the plasma membrane of 

cotyledon cells of wild-type Arabidopsis seedlings. In clear contrast, GFP-



RESULTS AND DISCUSSION: CHAPTER I 
 

162 
 

AGP4 showed a predominant ER localization pattern in the p24δ-1 mutant 

(Figure 29 D). The same happened with the second GPI-anchored marker 

protein, GFP-GPI, which localized to the plasma membrane in wild-type cells 

(Figure 29 B) but showed a predominant ER pattern in the p24δ-1 mutant 

(Figure 29 E). In clear contrast, PIP2A-RFP, a transmembrane plasma 

membrane protein, mostly localized to the plasma membrane both in wild-

type Arabidopsis cells and in the p24δ-1 mutant (Figure 29 C and 29 F).  

 This suggests that p24 proteins are specifically required for transport 

to the plasma membrane of GPI-anchored proteins, and that loss of p24 

proteins does not seem to affect transport to the plasma membrane of 

transmembrane proteins. 

 

Figure 29. Localization of plasma membrane proteins in wild-type and p24δ-1 mutant 
Arabidopsis seedlings. Transient gene expression in Arabidopsis seedlings. Two GPI-anchored 
proteins, GFP-AGP4 (A) and GFP-GPI (B), mainly localized to the plasma membrane in 
cotyledon cells from wild-type (Col-0) seedlings, as the transmembrane plasma membrane 
protein PIP2A-RFP (C). In the p24δ-1 mutant, both GFP-AGP4 (D) and GFP-GPI (E) showed a 
predominant ER localization pattern, in contrast to PIP2A-RFP (F), which mainly localized to 
the plasma membrane. Scale bars, 10 µm. 
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 We next analyzed the localization of GFP-AGP4 by transient 

expression in Arabidopsis protoplasts, as described in sections 1.2.1.5 and 

2.3 of Material and Methods. As shown in Figure 30 A (and quantified in 

Figure 31), GFP-AGP4 mostly localized to the plasma membrane of 

protoplasts from wild-type Arabidopsis plants, where it colocalized with the 

FM dye FM4-64 (Figure 32 A-C). In contrast, GFP-AGP4 showed either a 

predominant or a partial ER localization pattern in protoplasts from the p24δ-

1 mutant (Figure 30 B-C), where it partially colocalized with the ER marker 

RFP-calnexin (Figure 32 G-I).  

 

Figure 30. Localization of GPI-anchored proteins in wild-type (Col-0) and p24δ-1 mutant 
Arabidopsis protoplasts. Transient gene expression in Arabidopsis protoplasts. GFP-AGP4 (A) 
and GFP-GPI (D) mainly localized to the plasma membrane in protoplasts from wild-type (Col-
0) plants, but partially localized to the endoplasmic reticulum in the p24δ3δ4δ5δ6 mutant (B-
C, E-F) (see quantification in Figure 31). Scale bars, 10 µm. 
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 Based on the localization patterns obtained under different 

experimental conditions, we analyzed a significant number of protoplasts 

and grouped them in three different categories depending on the main 

localization of GFP-AGP4: Mostly plasma membrane (PM), mostly ER (ER) and 

both ER and plasma membrane (ER + PM) (Figure 31).  

 

Figure 31. Quantification of the localization of GFP-AGP4 in transient expression 
experiments in protoplasts. A significant number of protoplasts (from at least four 
independent experiments), showing comparable expression levels of GFP-AGP4, in the 
absence or presence of RFP‐p24δ5/9 (or mutant versions), were analyzed per condition, using 
identical laser output levels and imaging conditions. Number of protoplasts analyzed per 
condition: GFP-AGP4 (Col-0) (121); GFP-AGP4 (142); GFP-AGP4 + RFP‐p24δ5 (206); GFP-AGP4 
+ RFP‐p24δ9 (35); GFP-AGP4 + RFP‐p24δ5(ΔGOLD) (63) GFP-AGP4 + RFP‐p24δ5(ΔCC) (63). The 
localization of GFP-AGP4 was assigned as: Mostly plasma membrane (PM), mostly ER (ER) or 
ER and plasma membrane (ER + PM) and calculated as a percentage. Error bars represent SE 
of the mean. 
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 Using these criteria, we found that in a percentage of protoplasts 

GFP-AGP4 also localized totally (9 % of protoplasts) or partially (23 % of 

protoplasts) to the plasma membrane in the p24δ-1 mutant (Figure 30 C and 

31), as shown by colocalization with FM4-64 (Figure 33).  

 This suggests that a proportion of GFP-AGP4 is still able to reach the 

plasma membrane in this mutant. The same happened with GFP-GPI, which 

mainly localized to the plasma membrane of wild-type Arabidopsis 

protoplasts (Figure 30 D and Figure 32 D-F) but showed a partial or 

predominant ER localization pattern in protoplasts from the p24δ-1 mutant 

(Figure 30 E-F), where it partially colocalized with RFP-calnexin (Figure 32 J-

L), but was also partially localized to the plasma membrane, where it 

colocalized with FM4-64 (Figure 33), as it is described in section 3.3 of 

Material and Methods. 

 To test if the lack of p24 proteins from the delta-1 subclass affects 

the localization of other plasma membrane proteins different from GPI-

anchored proteins, we used different membrane-anchoring types of minimal 

constructs, including a myristoylated and palmitoylated GFP (MAP-GFP) and 

a prenylated GFP (GFP-PAP) (Martinière et al., 2012). We also used a 

transmembrane protein, a GFP fusion with the plasma membrane ATPase 

(GFP-PMA).  
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Figure 32. Localization of GFP-AGP4 and GFP-GPI in Arabidopsis protoplasts. Transient gene 
expression in Arabidopsis protoplasts. (A-F) In wild-type (Col-0) Arabidopsis protoplasts, GFP-
AGP4 (A) and GFP-GPI (D) were mainly found at the plasma membrane (see quantification in 
Figure 31), where they colocalized with FM4-64 (B, E) (merged images in C and F) (see section 
3.3 of Material and Methods). (G-L) In protoplasts from the p24δ3δ4δ5δ6 mutant, GFP-AGP4 
(G) and GFP-GPI (J) mainly localized to the endoplasmic reticulum (see quantification in Figure 
31), where they partially colocalized with the ER marker RFP-calnexin (H, K) (see merged 
images in I and L). Scale bars, 10 µm. 
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Figure 33. Localization of GFP-AGP4 and GFP-GPI in p24δ-1 Arabidopsis protoplasts. In 
protoplasts from the p24δ3δ4δ5δ6 mutant, both GFP-AGP4 and GFP-GPI (left panels) localized 
to the plasma membrane in a small proportion of protoplasts (see quantification for GFP-AGP4 
in Figure 31), where they colocalized with FM4-64 (medium panels) (merged images in right 
panels) (see section 3.3 of Material and Methods). Scale bars: 10 µm. 
 

 As shown in Figure 34, these 3 proteins mainly localized to the 
plasma membrane of p24δ-1 mutant protoplasts (Figure 34 D-F), as in 
protoplasts from wild-type Arabidopsis plants (Figure 34 A-C). Therefore, p24 
function seems to be specifically required for ER export and transport to the 
plasma membrane of GPI-anchored proteins. 
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Figure 34. Localization of plasma membrane proteins without a GPI anchor in wild-type and 
p24δ-1 mutant Arabidopsis protoplasts. Transient gene expression in Arabidopsis protoplasts 
from wild-type (Col-0) (A-C) or the p24δ3δ4δ5δ6 mutant (D-F). The plasma membrane ATPase 
(GFP-PMA), a myristoylated and palmitoylated GFP (MAP-GFP) and a prenylated GFP (GFP-
PAP) mostly localized to the plasma membrane both in wild-type and in mutant protoplasts. 
Scale bars, 10 µm. 

 

3 P24δ5 (P24δ-1 SUBCLASS), BUT NOT P24δ9 (P24δ-2 

SUBCLASS), PARTIALLY RESTORES PLASMA 

MEMBRANE LOCALIZATION OF GPI-ANCHORED 

PROTEINS IN THE P24δ-1 MUTANT 

 As shown in Figure 28, p24δ5 was enough to restore the protein 

levels of different p24 proteins in the p24δ-1 mutant, suggesting that there 

is functional redundancy between different p24 protein members (at least 
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within the p24δ-1 subclass). Indeed, we have previously shown that the 

function of p24δ5 was enough to restore normal trafficking of the K/HDEL 

receptor ERD2a in the p24δ-1 mutant (Pastor-Cantizano et al., 2018). 

Therefore, we decided to test if p24δ5 function was sufficient to facilitate ER 

export and transport to the plasma membrane of GPI-anchored proteins in 

the absence of other p24 proteins from the delta-1 subclass. To this end, we 

co-expressed RFP-p24δ5 with GFP-AGP4 or GFP-GPI in protoplasts from the 

p24δ-1 mutant. 

 As shown in Figure 35, RFP-p24δ5 expression was enough to partially 

restore plasma membrane localization of both GFP-AGP4 (Figure 35 A-C) and 

GFP-GPI (Figure 35 D-F). As quantified in Figure 31, GFP-AGP4 localized to the 

plasma membrane in more than 60 % of protoplasts, or had a dual ER/plasma 

membrane localization in around 30 % of protoplasts under these conditions. 

In clear contrast, expression of RFP-p24δ9 (which belongs to the p24δ-2 

subclass) could not restore plasma membrane localization of GFP-AGP4 

(Figure 35 G-I) and GFP-GPI (Figure 35 J-L) in the p24δ-1 mutant. Instead, 

both proteins mainly showed an ER localization pattern (see also 

quantification in Figure 31), and partially colocalized with RFP-p24δ9 (Figure 

35 G-L), which normally localizes at the ER (Montesinos et al., 2012). This 

suggests that members of the two p24delta subclasses are not functionally 

redundant. 
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Figure 35. p24δ5 (but not p24δ9) partially restored the plasma membrane localization of 
GFP-AGP4 and GFP-GPI in the p24δ-1 mutant. Transient gene expression in Arabidopsis 
protoplasts from the p24δ3δ4δ5δ6 mutant. (A-F) Expression of RFP-p24δ5 (B, E) partially 
restored the plasma membrane localization of GFP-AGP4 (A) and GFP-GPI (B) (see merged 
images in C and F) (see quantification in Figure 4). (G-L) Expression of RFP-p24δ9 (H, K) could 
not restore the plasma membrane localization of GFP-AGP4 (G) and GFP-GPI (J) (see merged 
images in I and L) (see quantification in Figure 31). Scale bars, 10 µm. 
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4 TRANSPORT OF GPI-ANCHORED PROTEINS TO THE 

PLASMA MEMBRANE REQUIRES THE COILED-COIL 

DOMAIN, BUT NOT THE GOLD DOMAIN IN P24δ5 

 We next investigated which domain in p24 proteins was important 

for their role in transport of GPI-anchored proteins. Due to the luminal 

localization of the GPI anchor, we decided to test for the involvement of p24 

luminal domains. The luminal part of p24 proteins includes two domains, a 

GOLD (Golgi Dynamics) domain and a coiled-coil (CC) domain.  

 To investigate which of these domains was necessary for transport 

of GPI-anchored proteins from the ER to the plasma membrane, we co-

expressed GFP-AGP4 and GFP-GPI with RFP-p24δ5 deletion mutants lacking 

the GOLD or the coiled-coil domain (Montesinos et al., 2012). 

 As shown in Figure 36 (A-F), the RFP-p24δ5 deletion mutant lacking 

the GOLD domain was able to partially restore plasma membrane localization 

of both GFP-AGP4 and GFP-GPI, very similar to wild-type RFP-p24δ5 (see 

quantification in Figure 31). In contrast, the RFP-p24δ5 deletion mutant 

lacking the coiled-coil domain was unable to restore plasma membrane 

localization of GFP-AGP4 and GFP-GPI. Instead, both proteins mainly 

localized to the ER (see quantification in Figure 31), where they partially 

colocalized with the RFP-p24δ5 deletion mutant lacking the coiled-coil 

domain (Figure 36 G-L).  
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Figure 36. Transport of GPI-anchored proteins to the plasma membrane requires the coiled-
coil domain, but not the GOLD domain in p24δ5. Transient gene expression in Arabidopsis 
protoplasts from the p24δ3δ4δ5δ6 mutant. (A-F) Expression of RFP-p24δ5∆GOLD (B, E) 
partially restored the plasma membrane localization of GFP-AGP4 (A) and GFP-GPI (B) (see 
merged images in C and F) (see quantification in Figure 4). (G-L) Expression of RFP-p24δ5∆CC 
(H, K) could not restore the plasma membrane localization of GFP-AGP4 (G) and GFP-GPI (J) 
(see merged images in I and L) (see quantification in Figure 31). Scale bars, 10 µm. 
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 This suggests that the coiled-coil domain in p24δ5, but not the GOLD 

domain, is essential for its role in ER export and transport to the plasma 

membrane of GPI-anchored proteins. 

 

5 GFP-AGP4 INTERACTS WITH P24δ5, AN 

INTERACTION WHICH REQUIRES THE COILED-COIL 

DOMAIN IN P24δ5. 

 Once established that p24 proteins are important for ER export and 

transport to the plasma membrane of GPI-anchored proteins, and that p24δ5 

is sufficient to facilitate this transport, we tested for a putative interaction 

between p24δ5 and GPI-anchored proteins. We first investigated the 

biochemical properties of GFP-AGP4 by transient expression using 

agroinfiltration in N. benthamiana leaves (section 2.4 of Material and 

Methods). A post-nuclear supernatant (PNS) from these leaves was analyzed 

by SDS-PAGE and Western blotting with antibodies against GFP (to detect 

GFP-AGP4) (sections 5.7 and 5.8 of Material and Methods). Western blotting 

showed a predominant band around 115 kDa, with a width compatible with 

its presumed high degree of glycosylation (Figure 37).  

 To test whether this was actually a GPI-anchored protein, we 

centrifuged the post-nuclear supernatant to obtain a total membrane 

fraction, which was treated in the absence or presence of Phosphatidyl 

Inositol-specific Phospholipase C (PI-PLC), as it is described in section 5.4 of 

Material and Methods. Membranes were then centrifuged again to separate 
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total membranes (TM), found in the pellet, from non-membrane proteins 

(soluble fraction, SF), found in the supernatant.  

As shown in Figure 37, PI-PLC treatment for 1 h at 37°C produced a very 

significant decrease in the amount of the 115 kDa band found in the 

membrane fraction, and the appearance of a similar band in the soluble 

fraction, presumably released from membranes upon PI-PLC treatment. 

Another band of around 70 kDa, present in the membrane fraction (but not 

in the soluble fraction) was also sensitive to PI-PLC treatment, which 

probably represents the ER form of GFP-AGP4 (see below). 

 To test for interaction between GFP-AGP4 and RFP-p24δ5, we 

performed pull-down assays upon transient co-expression of these proteins 

in N. benthamiana leaves (section 5.5 of Material and Methods). Under these 

conditions we were unable to detect an interaction between these proteins 

(data not shown). 

 We reasoned that this could be due to the transient nature of these 

interactions and to different steady-state localization of both proteins. At 

steady-state, GFP-AGP4 mainly localizes to the plasma membrane, while 

RFP-p24δ5 mainly localizes to the endoplasmic reticulum (Figure 38 A-C). To 

increase the probability to detect the interaction between both proteins, we 

decided to infiltrate leaves with BFA 2 days after agroinfiltration and to allow 

expression for 1 extra day as it is described in section 3.2 of Material and 

Methods, to accumulate newly synthesized proteins at the ER. As shown in 

Figure 38 D-F, GFP-AGP4 and RFP-p24δ5 showed a high degree of 

colocalization upon BFA treatment, although a proportion of GFP-AGP4 was 

still found at the plasma membrane.  
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Figure 37. GFP-AGP4 is a GPI-anchored protein. A total membrane fraction was obtained 
using a post-nuclear supernatant (PNS) from Nicotiana benthamiana leaves transiently 
expressing GFP-AGP4 and treated in the absence (-) or presence (+) of Phosphatidyl-Inositol-
Phospholipase C (PI-PLC). Total membranes were then centrifuged again to separate total 
membranes (TM) (pellet) from soluble proteins (soluble fraction, SF) (supernatant). PNS, TM 
and SF fractions were analyzed by SDS-PAGE and Western blotting with GFP antibodies (to 
detect GFP-AGP4). Lower panel shows a higher exposure of the 70 kDa region of the gel. Right 
panel shows a PNS from N. benthamiana leaves transiently expressing GFP-AGP4 and treated 
in the absence (-) or presence (+) of BFA for 24 h (see Figure 39). Arrows show the presence 
of a major band of 115 kDa in the absence of BFA and of a 70 kDa band which is much more 
prominent upon BFA treatment. 

 

 A PNS was obtained from leaves expressing both proteins in the 

absence or presence of BFA and analyzed by SDS-PAGE. As shown in Figure 

37 (right panel), BFA treatment produced a drastic reduction of the 115 kDa 

protein and a concomitant increase in the band of 70 kDa, which was also 

present in the absence of BFA but at much lower levels. Therefore, we 
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hypothesize that the 70 kDa band correspond to the ER form of AGP4, while 

the 115 kDa form is the highly glycosylated form present at the plasma 

membrane. 

 
Figure 38. Effect of BFA treatment on localization of GFP-AGP4 and RFP-p24δ5. Transient 
expression of GFP-AGP4 and RFP-p24δ5 in N. benthamiana leaves. (+) BFA: Two days after 
agroinfiltration, leaves were infiltrated with BFA and left for an extra day before CLSM 
analysis. (-) BFA: Leaves were analyzed 3 days after agroinfiltration (see section 3.2 of Material 
and Methods). Scale bars, 10 µm. 
 

 We thus used PNS from leaves expressing GFP-AGP4 and RFP-p24δ5 

and treated with BFA as input for GFP-trap, to pull-down GFP-AGP4, or RFP-

trap, to pull-down RFP-p24δ5. Pull-downs were analyzed by SDS-PAGE and 

Western blotting with antibodies against RFP (to detect RFP-p24δ5) and GFP 

(to detect GFP-AGP4). As a control, PNSs were also incubated with blocked 

magnetic particles (Bmp), to detect unspecific binding. Additional negative 

controls included the incubation of GFP-trap or RFP-trap with extracts of 

leaves which did not express GFP-AGP4 and RFP-p24δ5 (Input Ctrl).  
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 As shown in Figure 39 A, the GFP-trap pulled-down a major band of 

70 kDa, presumably the ER form of GFP-AGP4 (top panel), but also RFP-p24δ5 

(lower panel). The reverse was also true: RFP-trap pulled-down RFP-p24δ5 

but also GFP-AGP4. No band was detected in the absence of expressed 

proteins or using blocked magnetic particles. Another band of around 60 kDa 

was also present in the specific input and the GFP-trap. Since this band was 

not present in the total membrane fraction (see Western blotting in Figure 

37), we speculate this is not GPI-anchored. Similar experiments were 

performed upon expression of GFP-AGP4 and the RFP-p24δ5 versions lacking 

either the GOLD (Figure 39 B) or the CC domain (Figure 39 C).  

 These experiments showed the interaction of GFP-AGP4 with the 

p24δ5 deletion mutant lacking the GOLD domain, but not with the p24δ5 

deletion mutant lacking the CC domain. These results suggest that the CC 

domain, but not the GOLD domain, is required for the interaction of p24δ5 

with GFP-AGP4, in line with the experiments showing that the p24δ5 deletion 

mutant lacking the GOLD domain is able to partially restore the plasma 

membrane localization of GFP-AGP4, in contrast with the p24δ5 deletion 

mutant lacking the CC domain (Figure 36).  

 Finally, we also performed pull-down assays using post-nuclear 

supernatants from protoplasts of the p24δ-1 mutant expressing GFP-AGP4 

and RFP-p24δ5. Since both proteins partially accumulate at the ER in this 

mutant, they could also be used to detect the interaction, as after BFA 

treatment. Figure 39 D shows that the GFP-trap pulled-down the ER form of 

GFP-AGP4 but also RFP-p24δ5, while the RFP-trap pulled-down RFP-p24δ5 

but also GFP-AGP4. No band was detected in the absence of expressed 
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proteins or using blocked magnetic particles. These experiments confirm the 

interaction between the ER form of AGP4 and p24δ5. 

 

6 DISCUSSION 

6.1 FUNCTIONAL REDUNDANCY BETWEEN P24 PROTEINS.  

 The p24 protein family includes 11 members in Arabidopsis, 9 of 

them belonging to the p24 delta subfamily (p24δ3 to p24δ11) and two 

belonging to the p24 beta subfamily (p24β2 and p24β3). p24 proteins of the 

delta subfamily can be divided into two different subclasses, the delta-1 

subclass (including p24δ3 to p24δ6) and the delta-2 subclass (including 

p24δ7 to p24δ11) (Chen et al., 2012; Montesinos et al., 2012). We have 

shown previously that Arabidopsis p24 proteins form different heteromeric 

complexes (including members of the δ and β subfamilies) which are 

important for their stability and their coupled trafficking at the ER-Golgi 

interface (Montesinos et al., 2013). Consistent with this, the p24δ-1 mutant, 

lacking the 4 members of the p24 delta subfamily, had reduced protein levels 

of other p24 proteins, including p24δ9 (p24 delta-2 subclass) and the two 

members of the p24 beta subfamily (p24β2 and p24β3) (Pastor-Cantizano et 

al., 2018). Strikingly, the expression of a single member of the p24 delta-1 

subclass (p24δ5) in the p24δ-1 mutant was enough to restore the protein 

levels of p24δ9 and p24β2. This suggests that the presence of p24δ5 is 

enough to compensate the absence of the other member of the p24 delta-1 

subclass in putative oligomeric complexes, thus increasing protein stability of 

other p24 proteins. This increase in protein levels also correlates with 

increased p24 function.  
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Figure 39. GFP-AGP4 interacts with RFP-p24δ5, an interaction which requires the coiled-coil 
domain in p24δ5. Pull-down experiments using GFP-trap (to pull-down GFP-AFP4) or RFP-trap 
(to pull-down RFP-p24δ5). As a negative control, we used blocked magnetic particles (Bmp). 
As inputs for the pull-downs we used PNS from N. benthamiana leaves expressing (+, Input 
Sp) or not (-, Input Ctrl) GFP-AGP4 and RFP-p24δ5 wild-type (WT) (A) or deletion mutants 
lacking either the GOLD domain (B) or the CC domain (C). Input in D was a PNS from 
p24δ3δ4δ5δ6 mutant protoplasts expressing or not GFP-AGP4 and RFP-p24δ5WT (section 5.2 
of Material and Methods). Inputs and pull-downs were analyzed by SDS-PAGE and Western 
blotting with antibodies against GFP (to detect GFP-AGP4) or RFP (to detect RFP-p24δ5). 
Arrowheads show the position of these proteins in the Western blotting. 
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 We have shown previously that loss of p24δ-1 subclass proteins 

induced the accumulation of the K/HDEL receptor ERD2a (ER lumen protein-

retaining receptor a) at Golgi membranes with an altered morphology, but 

normal ERD2 labelling was restored upon co-expression of p24δ5 (Pastor-

Cantizano et al., 2018). Here we show that expression of p24δ5 (p24delta-1 

subclass), but not p24δ9 (p24delta-2 subclass), partially restored plasma 

membrane localization of GPI-anchored proteins in the p24δ-1 mutant. 

Altogether, these data suggest that the function of p24δ5 is enough to 

compensate the loss of function of p24 delta-1 subclass proteins, which 

indicates functional redundancy of Arabidopsis p24 family proteins, at least 

within the p24 delta-1 subclass. 

6.2 P24 PROTEINS AND TRANSPORT OF GPI-ANCHORED 
PROTEINS.  

 In the absence of p24 proteins, GPI-anchored proteins partially 

accumulated at the endoplasmic reticulum. We could not detect a significant 

localization of these proteins at the Golgi apparatus, suggesting that p24 

proteins are involved in the ER export of GPI-anchored proteins. In mammals 

and yeast, p24 proteins interact with GPI-anchored proteins at the 

endoplasmic reticulum and dissociate at the Golgi apparatus, presumably 

because of differences in pH between both compartments. In this manuscript 

we show that it is the ER form of GFP-AGP4 the one interacting with RFP-

p24δ5, in line with the proposed role of p24 proteins in ER export of GPI-

anchored proteins. 

 The coiled-coil (CC) domain seems to be the one involved in the 

function of p24 proteins to facilitate transport from the ER to the plasma 
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membrane of GPI-anchored proteins. This was confirmed by biochemical 

experiments showing the interaction of both p24δ5 and of a p24δ5 deletion 

mutant lacking the GOLD domain with GFP-AGP4, which was not the case for 

the p24δ5 deletion mutant lacking the coiled-coil domain. A previous report 

in mammals showed that the α-helical region of p24γ2 (but not the GOLD 

domain) was involved in the specific binding of GPI-anchored proteins, 

suggesting that this domain was responsible for the incorporation of  these 

proteins within COPII vesicles for their ER export (Theiler et al., 2014). Plants 

do not contain p24 proteins from the gamma subfamily. Here, we show for 

the first time a direct interaction of a GPI-anchored protein with a p24 

protein from the delta-1 subclass which involves its coiled-coil domain, and 

the role of this domain in the ER export of GPI-anchored proteins. 

Interestingly, p24δ5 (p24δ-1 subclass) and p24δ9 (p24δ-2 subclass) have 

different coiled-coil domains and this could explain that p24δ5, but not 

p24δ9, partially restores plasma membrane localization of GPI-APs in the 

p24δ-1 mutant. 

 The function of p24 proteins seems to be restricted to GPI-anchored 

proteins, and is not required for plasma membrane proteins with different 

forms of membrane attachment, including transmembrane plasma 

membrane proteins (the aquaporin PIP2 or the plasma membrane ATPase), 

myristoylated and palmitoylated GFP and prenylated GFP. This is consistent 

with the fact that GPI-anchored proteins have special biophysical properties 

which may require a specialized trafficking machinery, different from that 

required for other secretory proteins, for their ER export, including specific 

COPII subunits (Lopez et al., 2019). In particular, the bulky nature of the GPI 

anchor in the luminal side of the ER opposes the membrane bending required 



RESULTS AND DISCUSSION: CHAPTER I 
 

182 
 

for COPII-dependent vesicle formation. In addition, the GPI-lipid appears to 

increase the rigidity of the ER membrane. 

 Sorting of GPI-anchored proteins at specific ERES seems to be 

different in yeast and mammals. In yeast, concentration of GPI-anchored 

proteins into specific ERES is lipid-based and does not require p24 proteins, 

which instead function as an adaptor to connect remodelled GPI-anchored 

proteins with the COPII coat subunits to facilitate their incorporation within 

COPII vesicles (Castillon et al., 2009, 2011). In contrast, concentration of GPI-

anchored proteins at ERES and packaging within COPII vesicles in mammals 

is dependent upon p24 proteins (Fujita et al., 2011). In any case, since GPI-

anchored proteins are entirely luminal cargo proteins, they need p24 

proteins to recruit the cytosolic components of the COPII coat both in 

mammals and in yeast. Export of GPI-anchored proteins from the ER requires 

a specialized COPII system, both in mammals and in yeast. The biogenesis of 

specific COPII vesicles containing GPI-anchored proteins in yeast requires the 

specific COPII coat subunit isoform Lst1p, which together with Sec23p form 

the inner layer of the COPII coat. Mammalian GPI-anchored proteins also 

seem to use specific COPII coat isoforms, SEC24C and SEC24D (Bonnon et al., 

2010; Lopez et al., 2019).  Our data clearly show that p24 proteins are also 

required for ER export and transport to the plasma membrane of GPI-

anchored proteins in plants. However, whether p24 proteins are required for 

the concentration of GPI-anchored proteins at specific ERES remains to be 

investigated. The same applies to the requirement of specific COPII subunits 

for ER export of GPI-anchored proteins in plants, although there is increasing 

evidence indicating that specific expression patterns in COPII subunit 

isoforms in Arabidopsis may reflect functional diversity (Chung et al., 2016). 



RESULTS AND DISCUSSION: CHAPTER I 
 

183 
 

 Despite the accumulation of GPI-anchored proteins at the 

endoplasmic reticulum in the p24δ-1 mutant, we could not find obvious 

phenotypic alterations in this mutant under standard growth conditions, 

although we found it was much more sensitive to saline stress (Pastor-

Cantizano et al., 2018). There are several possible explanations for the lack 

of phenotypic alterations under standard growth conditions. Remaining 

levels of other p24 proteins (i.e. p24 proteins from the delta 2 subclass and 

the beta subfamily) in the p24δ-1 mutant could still be sufficient to provide 

p24 function for normal plant performance. Indeed, despite the lack of p24 

proteins from the delta-1 subclass, a proportion of GPI-anchored proteins is 

still able to reach the plasma membrane, which could be sufficient to provide 

their expected functions at this location. In addition, this mutant showed a 

constitutive activation of the unfolded protein response (UPR), which may 

help the plant to cope with the transport defects seen in the absence of p24 

proteins (Pastor-Cantizano et al., 2018). The p24δ-1 mutant also showed the 

transcriptional upregulation of the COPII subunit gene SEC31A, which 

encodes one of the two COPII SEC31 isoforms of Arabidopsis, but not SEC31B 

(Pastor-Cantizano et al., 2018). SEC31A shows 61% amino acid sequence 

identity with SEC31B and according to public microarray data (Zimmermann 

et al., 2004) SEC31B expression is about 10 times higher than that of SEC31A 

in Arabidopsis tissues. It would be interesting to study if this SEC31 isoform, 

together with specific SEC24 isoforms may play a role in ER export of GPI-

anchored proteins in plants. 
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CHAPTER II. GPI ANCHOR REMODELLING AND 

TRANSPORT TO THE PLASMA MEMBRANE OF GPI-

ANCHORED PROTEINS 

 Disrupting GPI-anchor synthesis in Arabidopsis is lethal. However, no 

studies have been reported of lipid GPI remodelling enzymes. In this study, 

we have used a loss-of-function approach to initiate the study of the role of 

PGAP1/BST1 and PGAP3/PER1 like Arabidopsis genes. 

 

1 PGAP1 GENES 

 Inositol deacylation of GPI-APs is mediated by mammalian PGAP1 

and yeast Bst1p. As it is described in the Introduction (Table 4, Figure 21 and 

Figure 22), Bst1p and PGAP1 are ER membrane proteins with a catalytic 

serine containing motif that is conserved in a number of lipases. They 

function as a GPI inositol-deacylase and this deacylation is important for the 

efficient transport of GPI-anchored proteins from the ER to the Golgi 

apparatus. By searching for Arabidopsis putative GPI inositol-deacylase 

PGAP1-like (IPR012908, pfam07819) genes using Pfam and InterPro 

databases (Hunter et al., 2009; Finn et al., 2010), 7 Arabidopsis genes have 

been found (Table 12). 

 In this work, it was decided to begin the study of the putative 

function in lipid remodelling of GPI-APs of AT3G27325, the only Arabidopsis 

PGAP1-like gene that encodes a presumed ER protein. As a control, the 
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function of AT2G44970 and AT3G52570, which are not expected to localize 

to compartments of the secretory pathway, were also analyzed. From now 

on, AT2G44970, AT3G27325 and AT3G52570, will be referred as PGAP1A, 

PGAP1B and PGAP1C, respectively. We chose the mammalian name of the 

gene (PGAP1) because it is the name that appears in the Arabidopsis 

Information Resource (TAIR) and in addition, the yeast name had already 

been assigned to the Arabidopsis gene AT5G65090 (BST1, Bristled). 

 Length 
(aa) Membrane Topology Expected subcellular 

localization 

AT2G44970 503 Transmembrane Nucleus 

AT3G29790 144 
Probably not a 

transmembrane 
protein 

Nucleus 

AT3G27325 1121 Transmembrane ER/Plasma membrane 

AT3G52570 335 
Probably not a 

transmembrane 
protein 

Mitochondria 

AT4G34310 1228 Transmembrane Chloroplast/Mitochondria 

AT5G17670 309 
Probably not a 

transmembrane 
protein 

Chloroplast 

Table 11.  Putative Arabidopsis GPI inositol-deacylase PGAP1-like genes. For 
membrane topology it was used the TMpred program, (Hofmann and Stoffel, 
1993) and the data for the expected subcellular localization was obtained 
from Tair (Arabidopsis.org). 
 

 To investigate the relative expression of the PGAP1A-C genes, we 

used the public available RNAseq expression database GENEVESTIGATOR 

(www.genevestigator.com) (Zimmermann et al., 2004; Hruz et al., 2008).  As 
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it is shown in Figure 40, expression pattern of PGAP1B (AT3G27325) and 

PGAP1C (AT3G52570) genes are similar.  Nevertheless, mRNA levels of 

PGAP1A (AT2G44970) are approximately double than PGAP1B and PGAP1C 

and a high expression in siliques is detected.  

 

Figure 40. mRNA levels of PGAP1A-C in 9 developmental stages obtained 
from data of Genevestigator (Zimmermann et al., 2004; Hruz et al., 2008). 
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1.1 IDENTIFICATION OF SINGLE T-DNA MUTANTS OF PGAP1 
GENES 

 To study the role of the PGAP1B gene, a reverse genetic approach 

was chosen. Several T-DNA insertion mutants of PGAP1A-C genes were found 

in the Arabidopsis SALK collection (http://signal.salk.edu/cgi-

bin/tdnaexpress). 

1.1.1 PGAP1A mutants 

 Two mutants of PGAP1A, pgap1A-1 (SALK_067058) and pgap1A-2 

(SALK_072702) were characterized (Figure 41 A).  Homozygous plants were 

selected by PCR analysis.  RT-PCR analysis showed that mRNA levels of 

PGAP1A from the pgap1A-1 homozygous line were less than 10 % wild-type 

levels (Figure 41 B). No transcript of PGAP1A from the pgap1A-2 homozygous 

line was detectable (Figure 41 B). Then, here we focused on the 

characterization of the pgap1A-2 mutant for further analysis of PGAP1A loss 

of function. 
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Figure 41. RT-sqPCR analysis of PGAP1A mRNA levels in the pgap1A-1 and pgap1A-2 
mutants. A. Diagram of the PGAP1A gene and localization of the T-DNA insertion (triangle) in 
the pgap1A-1 and pgap1A-2 mutants. Black boxes represent coding regions. The positions of 
PGAP1A specific primers, NRPBst1A and LPBst1A (Table 9), are shown. PCRs were performed 
as described in sections 4.1.2 and 4.2.3 of Material and Methods. B. Total RNA from pgap1A-
1, pgap1A-2 and wild-type (Col-0) 4 day-old seedlings were used for the RT-PCR. In the PCRs, 
PGAP1A specific primers, NRPBst1A and LPBst1A, were used (Table 9). Actin-7 (ACT7) was used 
as a control. RT-PCRs were performed as described in sections 4.1.3, 4.2.4 and 4.2.5 of 
Materials and Methods. PCR samples were collected at cycle 22 for ACT7 and at cycle 36 for 
PGAP1A. It was observed that in wild-type and pgap1A-1 plants, a cDNA fragment of 0,9Kb 
was amplified. In contrast, no fragment was detected in pgap1A-2 plants.  

 

1.1.2 PGAP1B mutants 

 Two mutants of PGAP1B, pgap1B-1 (SALK_078662) and pgap1B-2 

(SAIL_1212_H07) were characterized (Figure 42 A).  Homozygous plants were 

selected by PCR analysis. RT-PCR analysis showed that no transcript of 

PGAP1B from the pgap1B-1 and pgap1B-2 homozygous lines was detectable 
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(Figure 42 B). Here we focused on the characterization of the pgap1B-1 

mutant for further analysis of PGAP1B loss of function. 

 

Figure 42. RT-sqPCR analysis of PGAP1LB mRNA levels in the pgap1B-1 and pgap1B-
2 mutants. A. Diagram of the PGAP1B gene and localization of the T-DNA insertion 
(triangle) in the pgap1B-1 and pgap1B-2 mutants. Black boxes represent coding 
regions. The positions of PGAP1B specific primers, RPBst1B and LPBst1B, are shown. 
B. Total RNA from pgap1B-1, pgap1B-2 and wild-type (Col-0) 4 day-old seedlings 
were used for the RT-PCR. In the PCRs, PGAP1B specific primers, RPBst1B and 
LPBst1B, were used (Table 9). Actin-7 (ACT7) was used as a control. PCR samples 
were collected at cycle 22 for ACT7 and at cycle 36 forPGAP1B. It was observed that 
in wild-type plants, a cDNA fragment of 650pb was amplified. In contrast, this 
fragment was not detected in pgap1B-1 and pgap1B-2 plants. 

 

1.1.3 PGAP1C mutant 

 One mutant of PGAP1C, PGAP1C-1 (SAIL_302_A06) was 

characterized (Figure 43 A).  Homozygous plants were selected by PCR 

analysis. RT-PCR analysis showed that no transcript of PGAP1C from the 

pgap1C-1 homozygous lines was detectable (Figure 43 B). 
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Figure 43. RT-sqPCR analysis of PGAP1C mRNA levels in the pgap1C-1 mutant. A. Diagram of 
the PGAP1C gene and localization of the T-DNA insertion (triangle) in the pgap1C-1 mutant. 
Black boxes represent coding regions. The positions of PGAP1C specific primers, Bst1CF and 
Bst1CR, are shown. B. Total RNA from pgap1C-1 and wild-type (Col-0) 4 day-old seedlings were 
used for the RT-PCR. In the PCRs, PGAP1C specific primers, Bst1CF and Bst1CR, were used 
(Table 9). Actin-7 (ACT7) was used as a control. PCR samples were collected at cycle 22 for 
ACT7 and at cycle 36 for PGAP1C. It was observed that in wild-type plants, a cDNA fragment 
of 0,9Kb was amplified. In contrast, no fragment was detected in pgap1C-1 plants. 

 

 None of the single mutants of PGAP1A, PGAP1B and PGAP1C showed 

any phenotypic alteration under standard growth conditions (Figure 44 B) or 

salt stress (data not shown).  

1.1.4 Generation of the pgap1ABC triple mutant  

The single mutants were crossed to obtain double mutants. Then, triple 

mutant was generated by crossing double mutants that share one allele. 

Genotype analysis of the progenies was performed by PCR in order to obtain 

the homozygous lines of the multiple mutants. The triple mutant 

homozygous line was named pgap1ABC and it did not show any phenotypic 

alteration under standard growth conditions (Figure 44 B) or salt stress (data 

not shown). To check the mRNA levels of PGAP1A, PGAP1B and PGAP1C in 

the pgap1ABC mutant, RT-sqPCR was performed with total RNA extracted 

from wild-type and pgap1ABC seedlings. Figure 44 A showed that the triple 
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mutant lacks the full transcript of PGAP1A, PGAP1B and PGAP1C. 

 
Figure 44. RT-sqPCR analysis of pgap1ABC mutant to show the absence of full-length 
PGAP1A, PGAP1B and PGAP1C mRNA. A. Total RNA from the triple T-DNA insertion mutant 
pgap1ABC and wild-type (Col-0) 4 day-old seedlings were used for the RT-PCR. In the PCRs, 
specific primers for PGAP1A, PGAP1B and PGAP1C genes were used (Table 9). Actin-7 (ACT7) 
was used as a control. PCR samples were collected at cycle 22 for ACT7 and at cycle 36 for 
PGAP1A, PGAP1B and PGAP1C genes. It was observed that in wild-type plants, the expected 
molecular weight cDNA fragments were amplified. In contrast no fragments were amplified in 
the mutant. B. pgap1A-2, pgap1B-1, pgapC-1 and pgap1ABC mutants did not show a 
phenotype different from wild-type. Upper panel, 20 day-old plants and lower panel, 42 day-
old plants of wild-type and the pgap1ABC mutant, respectively. 

 
 

2  PER1L GENES 

 The lipid remodelling enzyme that removes an unsaturated acyl 

chain at the sn‐2 position of the PI moiety (see Table 4, Figure 21 and 22 of 

Introduction) is mediated by mammalian PGAP3 and yeast Per1p that belong 
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to the membrane bound hydrolase superfamily CREST (Pei et al., 2011). In 

this thesis, we have used a loss-of-function approach to study the role of 

PER1 like Arabidopsis genes in GPI-APs metabolism. Two Arabidopsis genes, 

AT5G62130 and AT1G16560, have been assigned to belong to the PER1 

family of fatty acid remodelling hydrolases for GPI-anchored proteins (Figure 

45) (Pei et al., 2011). They share 60 % amino acid sequence identity. From 

now on, AT5G62130 and AT1G16560 will be referred as PER1LA and PER1LB, 

respectively. We chose this time the yeast name of the gene (PER1) because 

it is the name that appears in the Arabidopsis Information Resource (TAIR). 

We add the letter L at the end (PER1L, L stands for like) because the name 

ATPER1 (1-cysteine peroxiredoxin 1) has already been assigned to the 

Arabidopsis gene AT1G48130. 

 Both Arabidopsis PER1L proteins are putative membrane proteins 

with expected subcellular localization at ER, Golgi apparatus or plasma 

membrane (Table 13). 

Isoform Mw (kDa) Membrane Topology 
Expected subcellular 

localization 

AtPER1LA 39,9 
Transmembrane- C-terminus 

in the cytosol 
ER/Golgi/PM 

AtPER1LB 39,4 
Transmembrane- C-terminus 

in the cytosol 
ER/Golgi/PM 

Table 13.  Putative Arabidopsis GPI inositol-deacylase PER1-like (PER1L) coding genes. For 
membrane topology it was used the TMpred program (Hofmann and Stoffel, 1993) and the 
data for the expected subcellular localization was obtained from Tair (Arabidopsis.org). 
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Figure 45. A multiple sequence alignment of CREST proteins (Pei et al., 2011). 
Three predicted core transmembrane segments (labeled TM2, TM3 and TM7 respectively 
below the sequences) with conserved motifs are shown for representative sequences of 
eleven CREST groups. Putative active site residues are shown on black background, whereas 
mutations in these positions are on grey background. Non-charged residues in mainly 
hydrophobic positions are on yellow background. NCBI gene identification numbers, along 
with common names for some proteins, are shown before the species abbreviations. The 
numbers of residues in between the three segments are shown in parentheses. 
Starting/ending residue numbers and sequence lengths are shown in italic font and in 
brackets, respectively. Species abbreviations are as follows: At, Arabidopsis thaliana; Bs, 
Bacillus subtilis; Ca, Clostridium acetobutylicum; Ce, Caenorhabditis elegans; Cr, 
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Chlamydomonas reinhardtii; Cs, Cyanothece sp.; Dd, Dictyostelium discoideum; Dm, 
Drosophila melanogaster; Fs, Frankia sp.; Hs, Homo sapiens; Mp, Micromonas sp.; Mr, 
Methylobacterium radiotolerans; Mt, Mycobacterium tuberculosis; Ol, Ostreococcus 
lucimarinus; Pp, Photobacterium profundum; Ps, Pseudovibrio sp.; Pt, Paramecium tetraurelia; 
Re, Ralstonia eutropha; Sc, Saccharomyces cerevisiae; Tb, Trypanosoma brucei; Tc, Tribolium 
castaneum. They are colored as follows: Metazoans, black; fungi, brown; plants, green; 
protists, red; and bacteria, blue. 
 

 To investigate the relative expression of the PER1L genes, we used 

the public available RNAseq expression database GENEVESTIGATOR 

(Zimmermann et al., 2004; Hruz et al., 2008) .  As it is shown in Figure 46, the 

mRNA levels of PER1LB (AT1G16560) are higher than the mRNA levels of 

PER1LA (AT5G62130).   

2.1 LOCALIZATION OF PER1L PROTEINS IN N. BENTHAMIANA 

 As described in the Introduction, Per1p (yeast) is an ER enzyme which 

removes an unsaturated acyl chain at the sn‐2 position of the PI moiety. 

However human PGAP3 is a functional homologue of Per1p but GPI anchor 

remodelling by PGAP3 occurs in the Golgi apparatus instead of at the ER.  As 

a consequence, mammalian GPI-APs are segregated and sorted at the Golgi 

apparatus rather than at the ER, as it happens with yeast GPI-APs. Therefore, 

it would be of great interest to investigate the localization of the Arabidopsis 

PER1Ls. 

 In order to localize PER1LA-B in vivo, we prepared constructs of 

PER1LA and PER1LB with C-terminal RFP to be used for transient expression 

in Nicotiana benthamiana leaves, as it is described in section 2.4 of Material 

and Methods. 
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Figure 46. mRNA levels of PER1LA-B in 9 developmental stages obtained from data of 
Genevestigator (Zimmermann et al., 2004; Hruz et al., 2008). 
 

 As shown in Figure 47 and 48, both PER1LA-RFP and PER1LB-RFP 

showed a punctate pattern and extensively colocalized with two Golgi 

markers, YFP-ManI and ST-YFP, but not with GFP-HDEL, an ER marker. These 

results clearly showed that both PER1LA and PER1LB proteins localize to the 

Golgi apparatus, as mammalian PGAP3, but in contrast to yeast Per1p, which 

is localized at the ER. 
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Figure 47. Localization of PER1LA-RFP in N. Benthamiana leaves. PER1LA-RFP (left panels) 
mainly showed a punctate pattern and extensively colocalized with the Golgi markers YFP-
ManI and ST-YFP, but not with the ER marker GFP-HDEL (medium panels) (see merged images 
in right panels).  
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Figure 48. Localization of PER1LB-RFP in N. benthamiana leaves. PER1LB-RFP (left panels) 
mainly showed a punctate pattern and extensively colocalized with the Golgi markers YFP-
ManI and ST-YFP, but not with the ER marker GFP-HDEL (medium panels) (see merged images 
in right panels).  
 
 
 
 
 



RESULTS AND DISCUSSION: CHAPTER II 
 

199 
 

2.2 CHARACTERIZATION OF LOSS OF FUNCTION MUTANTS OF 
PER1L GENES 

2.2.1 per1lA mutant 

 per1lA-1 (SALK_039375) is the only one exon T-DNA insertion mutant 

of PER1LA found in the Arabidopsis SALK collection 

(http://signal.salk.edu/cgi-bin/tdnaexpress). Homozygous plants were 

selected by PCR analysis. RT-PCR analysis showed that the mRNA levels of 

PER1LA from the per1lA-1 homozygous line were less than 10 % wild-type 

levels (Figure 49). 

 
Figure 49. RT-sqPCR analysis of PER1LA mRNA in the per1lA-1 mutant. A. Diagram of the 
PER1LA gene and localization of the T-DNA insertion (triangle) in the per1lA-1 mutant. Black 
boxes represent coding regions. The positions of PER1LA specific primers, RPPER1A and 
LPPER1A (Table 9), are shown. B. Total RNA from per1lA-1 and wild-type (Col-0) 4 day-old 
seedlings were used for the RT-PCR. In the PCRs, PER1LA specific primers, RPPER1A and 
LPPER1A, were used (Table 9). Actin-7 (ACT7) was used as a control. PCR samples were 
collected at cycle 22 for ACT7 and at cycle 36 for PER1LA. It was observed that in wild-type 
and per1lA-1 plants, a cDNA fragment of 0,8Kb was amplified. C. Quantification of the 
experiments shown in B from three biological samples. Values were normalized against the 
PER1LA fragment band intensity in wild-type that was considered to be 100 %. Error bars 
represent SEM. The signal intensities of bands were measured using ImageJ software. 
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2.2.2 per1lB mutants 

 Due to the lack of PER1LB T-DNA insertion mutants in mutant 

collections, artificial microRNAs (amiRNAs) were used to knock down the 

expression of this gene. The PERL1B amiRNA construct CSHL_013451 was 

purchased from Arabidopsis Biological Resource Center (ABRC, 

https://abrc.osu.edu/). This amiRNA, that we called amiR-PER1LB, is targeted 

to a sequence of the last exon of PER1LB. After transformation with this 

construct, transgenic plants were selected by antibiotics and segregation of 

these lines were analyzed as described in section 2.6.1 of Material and 

Methods. T3 homozygous generation was used to characterize silencing by 

RT–PCR as above. Two independent homozygous lines, amiR-per1lB-1 and 

amiR-per1lB-2, that showed the best silencing for PER1LB were selected 

(Figure 50).  

2.2.3 Generation of the amiper1lBper1lA double mutant 

 per1A-1 plants were transformed with the amiR-PER1LB construct. 

Transgenic plants were selected by antibiotics and segregation of these lines 

were analyzed. T3 homozygous generation was used to characterize silencing 

by RT–PCR as above. Two independent homozygous lines, amiR-

per1lBper1lA-1 and amiR-per1lBper1lA-2, that showed the best silencing for 

PER1LB were selected  (Figure 50 B) and from now on, they will be referred 

as per1lAB-1 and per1lAB-2, respectively.  
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Figure 50. RT-sqPCR analysis of PER1LB mRNA in the amiR-per1lB mutants. A. Diagram of 
PER1LB gene. Black boxes represent coding regions. B. Total RNA from amiR-per1lB-1, amiR-
per1lB-2, amiR-per1lBper1lA-1 and amiR-per1lBper1lA-2 and wild-type (Col-0) 4 day-old 
seedlings were used for the RT-PCR. In the PCRs, PER1LB specific primers, Per1BR and Per1B 
were used (Table 9). Actin-7 (ACT7) was used as a control. PCR samples were collected at cycle 
22 for ACT7 and at cycle 36 for PER1LB. Quantification of the experiments shown in B from 
three biological samples. Values were normalized against the PER1LB fragment band intensity 
in wild-type that was considered to be 100 %. Error bars represent SEM. The signal intensities 
of bands were measured using ImageJ software.  

 

 None of the single mutants of PER1LA, PER1LB and double mutants 

of PER1LA-B showed any obvious phenotypic alteration under standard 

growth conditions when comparing to wild-type plants (Figure 51). However, 

we found that per1Al-1 and per1lAB-2 showed enhanced sensitivity to salt 

stress (Figure 52).  
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Figure 51. Phenotypic analysis of per1lA-1, per1lB-2 and per1lAB-2 mutants under standard 
growth conditions. 
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Figure 52. Phenotypic analysis of per1lA-1, amiper1lB-2 and per1lAB-2 mutants exposed to 
salt (NaCl) stress. Wild-type (Col-0) and mutant seeds were sown on 0.5× MS for control 
conditions and 0.5× MS supplemented with 150 mM NaCl in Petri plates as described in 
section 3.1 of Material and Methods. The percentage of seedlings with green cotyledons was 
calculated after 12 days. Data are mean±s.e.m. (n=100) of three independent experiments. 

 

3 LOCALIZATION OF GPI-ANCHORED PROTEINS IN 

pgap1 AND per1l MUTANTS 

3.1 LOCALIZATION IN pgap1 MUTANTS 

 To test for the putative involvement of GPI anchor remodelling in the 

transport to the plasma membrane of GPI-anchored proteins, we used the 

same two markers as in Chapter I, a GFP fusion with the arabinogalactan 

protein 4 (GFP-AGP4) and a glycosylphosphatidylinositol anchor fused to GFP 
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(GFP-GPI) (Martinière et al., 2012). As a control, we used a transmembrane 

plasma membrane protein, the aquaporin PIP2A-RFP. To test for the 

localization of these proteins, we first used transient expression in 

Arabidopsis seedlings (see section 2.5 of Material and Methods), as in 

Chapter I.  

 The localization of these markers was analyzed in PGAP1A, PGAP1B 

and PGAP1C mutants and in wild-type (Col-0) Arabidopsis seedlings. As 

shown in Figure 53 A-B, both GFP-AGP4 and GFP-GPI were exclusively 

localized to the plasma membrane of cotyledon cells of wild-type Arabidopsis 

seedlings, as it was the case for PIP2A-RFP, a transmembrane plasma 

membrane protein (Figure 53 C), as shown in Chapter I. In both pgap1A-2 

(Figure 53 D-E) and pgap1C-1 (Figure 53 J-K) mutants, GFP-AGP4 and GFP-

GPI were also localized to the plasma membrane, as PIP2-RFP (Figure 53 F 

and 53 L), suggesting that PGAP1A and PGAP1C enzymes are not required for 

transport to the plasma membrane of GPI-anchored proteins. In clear 

contrast, GFP-AGP4 showed a predominant ER localization pattern in the 

pgap1B-1 mutant; and in some cases, punctate structures were also 

observed, suggesting a partial Golgi localization (Figure 53 G). The same 

happened with the second GPI-anchored marker protein, GFP-GPI (Figure 53 

H), which showed a predominant ER pattern and also a partial punctate 

pattern, which was more obvious than that of GFP-AGP4. In clear contrast, 

PIP2A-RFP mostly localized to the plasma membrane in this mutant (Figure 

53 F), suggesting that PGAP1B enzyme is specifically required for transport 

to the plasma membrane of GPI-anchored proteins, and that loss of PGAP1B 

function does not affect transport of transmembrane proteins from the ER 

to the plasma membrane. 
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Figure 53. Localization of plasma membrane proteins in wild-type and PGAP1 mutants 
Arabidopsis seedlings. Transient gene expression in Arabidopsis seedlings. Two GPI-anchored 
proteins, GFP-AGP4 (A) and GFP-GPI (B), mainly localized to the plasma membrane in 
cotyledon cells from wild-type (Col-0) seedlings, as the transmembrane plasma membrane 
protein PIP2A-RFP (C). In the pgap1A-2 and pgap1C-1 mutants, both GFP-AGP4 (D, J) and GFP-
GPI (E, K) showed a predominant plasma membrane localization, as PIP2-RFP (F, L). In the 
pgap1B-1 mutant, GFP-AGP4 (G) and GFP-GPI (H) showed a predominant ER localization 
pattern and also a partial punctate pattern, in contrast to PIP2A-RFP (I), which mainly localized 
to the plasma membrane. Scale bars, 10 µm. 



RESULTS AND DISCUSSION: CHAPTER II 
 

206 
 

 To confirm these results, we next analyzed the localization of GFP-

AGP4 and GFP-GPI by transient expression in Arabidopsis protoplasts as 

described in section 2.3 of Material and Methods. We have shown previously 

(Chapter I) that both GFP-AGP4 and GFP-GPI were mostly localized to the 

plasma membrane of protoplasts from wild-type Arabidopsis plants. In 

contrast, GFP-AGP4 showed a predominant ER localization pattern in 

protoplasts from the pgap1B-1 mutant (Figure 54 A-B); occasionally, some 

punctate structures were also observed (Figure 54 A). The same happened 

with the second GPI-anchored marker protein, GFP-GPI (Figure 54 C-D), 

which showed a predominant ER pattern and also a partial punctate pattern, 

which was more obvious than that of GFP-AGP4, as observed in transient 

expression Arabidopsis seedlings experiments. Very similar results were 

observed in the triple pgap1ABC mutant (Figure 54 E-H).  

 
Figure 54. Localization of GPI-anchored proteins in pgap1B-1 and pgap1ABC mutant 
Arabidopsis protoplasts. Transient gene expression in Arabidopsis protoplasts. GFP-AGP4 (A, 
B, E, F) and GFP-GPI (C, D, G, H) mainly showed an ER localization pattern and also a partial 
punctate pattern both in pgap1B-1 (A-D) and pgap1ABC mutant (E-H) protoplasts. Scale bars, 
10 µm. 
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 To confirm the partial ER localization of both GFP-AGP4 and GFP-GPI 

in the pgap1ABC mutant, these markers were co-expressed with the ER 

marker RFP-calnexin. As shown in Figure 55, GFP-AGP4 and GFP-GPI partially 

colocalized with RFP-calnexin in the pgap1ABC mutant. In any case, both 

GFP-AGP4 and GFP-GPI could also partially reach the plasma membrane both 

in the pgap1B-1 and pgap1ABC mutants. 

 
Figure 55. Localization of GFP-AGP4 and GFP-GPI in pgap1ABC Arabidopsis protoplasts. 
Transient gene expression in Arabidopsis protoplasts. In protoplasts from the pgap1ABC 
mutant, GFP-AGP4 (A) and GFP-GPI (D) mainly localized to the endoplamic reticulum, where 
they partially colocalized with the ER marker RFP-calnexin (B, E) (see merged images in C and 
F). Scale bars, 10 µm. 

 

 To test if the lack of PGAP1 enzymes affects the localization of other 

plasma membrane proteins different from GPI-APs, we used different 

membrane-anchoring types of minimal constructs, including a myristoylated 

and palmitoylated GFP (MAP-GFP) and a prenylated GFP (GFP-PAP) 
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(Martinière et al., 2012), as in Chapter I. We also used a transmembrane 

protein, a GFP fusion with the plasma membrane ATPase (GFP-PMA). As 

shown in Figure 56, these 3 proteins mainly localized to the plasma 

membrane of pgap1B-1 (Figure 56 D-F) and pgap1ABC (Figure 56 G-I) mutant 

protoplasts, as in protoplasts from wild-type Arabidopsis plants (Figure 56 A-

C). Therefore, PGAP1B function seems to be specifically required for ER 

export and transport to the plasma membrane of GPI-anchored proteins. 

3.2 LOCALIZATION IN per1l MUTANTS 

 We next analyzed the localization of GFP-AGP4, GFP-GPI and PIP2A-

RFP in per1lA-1, per1lB-2 and per1lAB-2 mutants by transient expression in 

Arabidopsis seedlings. As shown in Figure 57, GFP-AGP4 showed a 

predominant ER localization pattern in these three mutants, together with 

some punctate pattern which could reflect a partial Golgi localization. In clear 

contrast, GFP-GPI mostly localized to the plasma membrane in the three 

mutants, as it was also the case of PIP2A-RFP. This suggests that PER1L 

function may be required for transport to the plasma membrane of the GPI-

anchored protein GFP-AGP4, but not to that of GFP-GPI or of a 

transmembrane plasma membrane protein (PIP2A-RFP). 

 We also analyzed the localization of GFP-AGP4 and GFP-GPI in 

protoplasts from these three mutants. As shown in Figure 58, GFP-AGP4 

showed a predominant ER localization pattern in the three mutants, as well 

as a partial punctate pattern and also plasma membrane localization. GFP-

GPI also showed a partial ER localization pattern, as well as a partial punctate 

pattern and also some plasma membrane localization in the per1lA and 

per1lAB-2 mutants. In clear contrast, GFP-GPI mostly localized to the plasma 
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membrane in the per1lB-2 mutant as it happened in transient expression in 

Arabidopsis seedlings. 

 
Figure 56. Localization of plasma membrane proteins without a GPI anchor in wild-type and 
pgap1B-1 and pgap1ABC mutants Arabidopsis protoplasts. Transient gene expression in 
Arabidopsis protoplasts from wild-type (Col-0) (A-C), pgapB-1 (D-F) and pgap1ABC (G-I) 
mutants. The plasma membrane ATPase (GFP-PMA), a myristoylated and palmitoylated GFP 
(MAP-GFP) and a prenylated GFP (GFP-PAP) mostly localized to the plasma membrane both in 
wild-type and in mutants protoplasts. Scale bars, 10 µm. 
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Figure 57. Localization of GFP-AGP4, GFP-GPI and PIP2A-RFP in wild-type and per1lA-1, 
per1lB-2 and per1lAB-2 mutants Arabidopsis seedlings. Transient gene expression in 
Arabidopsis seedlings. Two GPI-anchored proteins, GFP-AGP4 (A) and GFP-GPI (B), mainly 
localized to the plasma membrane in cotyledon cells from wild-type (Col-0) seedlings, as the 
transmembrane plasma membrane protein PIP2A-RFP (C). In the per1lA-1, per1lB-2 and 
per1lAB-2 mutants, GFP-AGP4 (D, G, J) mostly showed an ER localization and partial punctate 
pattern, in contrast to GFP-GPI (E, H, K), which showed a predominant plasma membrane 
localization, as PIP2-RFP (F, I, L). Scale bars, 10 µm. 
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Figure 58. Localization of GPI-anchored proteins in per1LA-1, per1lB-2 and per1AB-2 mutants 
in Arabidopsis protoplasts. Transient gene expression in Arabidopsis protoplasts. GFP-AGP4 
(A-C) mainly showed an ER localization and partial punctate pattern in per1lA-1 (A), per1lB-2 
(B) and per1lAB-2 mutants (C) protoplasts. The same was true for GFP-GPI in per1lA-1 (D) and 
per1lAB-2 mutants (F) protoplasts, but not in the per1lB-2 mutant (E), where it mainly localized 
to the plasma membrane. Scale bars, 10 µm. 

 

 As a control, we used plasma membrane markers without a GPI 

anchor, including GFP-PMA, MAP-GFP and GFP-PAP. They mostly localized to 

the plasma membrane in these three mutants (data not shown), suggesting 

that transport of other plasma membrane proteins is not affected in these 

mutants. 
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4 DISCUSSION 

 Up to now, only one plant GPI anchor structure has been resolved, 

the structure of PcAGP1, isolated from Pyrus communis (pear) cell 

suspension culture (Oxley and Bacic, 1999). From this structure, it can be said 

that the core structure of GPI anchors seem to be conserved in plant and 

non-plant eukaryotes. In addition, a survey of the Arabidopsis genome 

indicates that most of the genes involved in particular steps of GPI anchor 

assembly and their remodelling have orthologs in Arabidopsis (Luschnig and 

Seifert, 2011). However, it has to be established if all yeast and human 

orthologs of these enzymes are functional and if their function is conserved.  

 Five Arabidopsis orthologs of enzymes involved in the biosynthesis 

and attachment of the GPI anchor have been studied: SETH1, SETH2, 

PEANUT1 (PNT1), APTG1 and AtGPI8 (Lalanne et al., 2004; Gillmor et al., 

2005; Dai et al., 2014; Bundy et al., 2016). SETH1 (PIG-C, mammals/Gpi2p, 

yeast) and SETH2 (PIG-A, mammals /Gpi3pA, yeast) are the orthologs of the 

GPI-GlcNAc transferase that initiates the anchor biosynthesis and is involved 

in the generation of the N-glucosamine-phosphoinositide (GlcN-PI). 

PEANUT1 and APTG1 are orthologs of the mammalian mannosyl-transferases 

PIG-M (yeast GPi14p) and PIG-B (yeast Gpi10p), respectively and AtGPI8 (PIG-

K/Gpi8p) is the GPI transamidase that catalyzes the transfer of an assembled 

GPI anchor to proteins. Studies with Arabidopsis null mutants of these 

enzymes results in lethality, either gametophytic or embryogenic. This 

indicates that GPI-anchored proteins are essential for plant growth and 

development. 
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 Once the anchor is assembled in the ER and transferred en bloc to 

the processed C‐terminus of a protein, subsequent remodelling of the 

anchor, particularly with regard to its lipid moiety, occurs during secretion. 

The lipid found in the only plant GPI anchor structure described was a 

ceramide consisting primarily of phytosphingosine and tetracosanoic acid. 

No studies have been reported of lipid GPI remodelling enzymes in 

Arabidopsis. In the second part of this thesis, we have undertaken the 

characterization of mutants of the Arabidopsis orthologs of two enzymes 

involved in lipid remodeIling: Yeast Bst1p/mammal PGAP1 and yeast 

Per1p/mammal PGAP3.  

 7 Arabidopsis genes have been found that encode Arabidopsis 

putative PGAP1 genes. In this study we have characterized single mutants of 

three of them, PGAP1A-C, and we have also obtained and characterized the 

triple mutant. The three putative PGAP1 proteins have the typical lipase 

motif (GxSxG) containing a catalytic Ser. Only PGAP1B is expected to localize 

at the ER and therefore function as the GPI inositol-deacylase which cleaves 

the acyl chain from the inositol of the GPI anchor.  

 Interestingly, the trafficking of GPI-APs was altered in the pgapB-1 

and the pgap1ABC mutants but not in pgap1A-2 or pgap1C-1 mutants. Both, 

GFP-AGP4 and GFP-GPI, showed mainly ER localization both in protoplasts 

and seedling transient expression. This agrees with previous results in yeast 

and mammals that showed that in cultured cells null mutations of PGAP1 

causes accumulation of GPI-APs in the ER due to inefficient exit from the ER 

(Tanaka et al., 2004; Fujita et al., 2011). However, steady state levels of cell 

surface GPI-APs were only mildly affected and therefore, GPI-APs with 
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unusual GPI structures were expressed at the cell surface. The studies with 

individuals with PGAP1 deficiency indicate that null mutations are 

compatible with life in humans but mainly affects functions of neuronal cells 

(Ueda et al., 2007; Murakami et al., 2014; Williams et al., 2015).  ScBst1p is 

also non-essential in yeast (Komath et al., 2018) and its deletion causes delay 

in transport of GPI-APs from the ER to the Golgi (Fujita et al., 2006b).  All 

these results are consistent with the fact that none of the Arabidopsis 

mutants have a phenotype different of wild-type under standard growth 

conditions. None of the mutant have altered salt response either. In the 

future, it would be interesting to determine the sensitivity of the mutants to 

other kind of stress and if the cell wall is affected, as it happens in Candida 

albicans (Liu et al., 2016a).  

 We have also characterized mutants of Per1p/PGAP3, other enzyme 

involved in lipid remodelling of the GPI anchor. In Arabidopsis there are two 

isoforms that we called PER1LA and PER1LB. They both belong, as 

Per1p/PGAP3, to the membrane-bound hydrolase superfamily name CREST 

(Pei et al., 2011).  PER1LA and PER1LB share 60 % amino acid sequence 

identity and the expression of PER1LB is higher than PER1LA. We only found 

in T-DNA mutant public collections one exon T-DNA insertion mutant of 

PER1LA that has reduced expression of PER1A (less than 10 % wild-type 

expression). However, no PER1LB mutant was found and therefore an 

amiRNA was used to knock down the expression of PER1LB. Two 

independent amiRNA lines with reduced levels of PER1B were obtained 

(amiR-per1lB-1 and amiR-per1lB-2). Both lines have reduced PER1LB 

expression (around 20 % PER1LB wild-type expression). In addition we 

obtained two independent lines of the double mutant, per1lAB-1 and 
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per1lAB-2 (with around 65 % and 40 % PER1LB wild-type expression, 

respectively).  

 Interestingly, the trafficking of GPI-APs was altered in per1lA-1, 

perlB-2 and per1lAB-2 mutants. In all three mutants, GFP-AGP4 and GFP-GPI 

mainly localized to the ER and punctate structures (possibly Golgi apparatus) 

in transient expression experiments in seedlings or protoplasts. These results 

agree with previous results in yeast and mammals. In yeast, mature GPI-APs 

carry either a very long C26:0 at the sn2 position or have a ceramide with 

phytosphingosine containing a C26:0 fatty acid. To replace the initial short 

fatty acid a series of events should take place, the first step of which involves 

the phospholipase A2 activity of the ER enzyme Per1p (Kinoshita and Fujita, 

2016). This enzyme removes the fatty acid at sn2 position to generate lyso-

PI. The null mutant of Per1p was viable. However, in per1p cells, GPI-APs 

trafficking was altered and accumulate at the ER due to inefficient exit from 

the ER, consistently levels of cell surface GPI-APs were affected (Fujita et al., 

2006a). Mammalian mature GPI-APs usually contained a stearic acid at the 

sn2 position and PGAP3 is the enzyme that is involved in the removal of the 

initial unsaturated fatty acids at sn2 position and generation of lyso-PI. 

PGAP3, as yeast Per1p, belongs to the CREST membrane-bound hydrolase 

superfamily although direct demonstration of this enzyme activity has not 

yet been shown (Pei et al., 2011). In contrast to yeast Per1p, which localized 

at the ER, mammalian PGAP3 is a Golgi enzyme (Maeda et al., 2007). The 

defect of PGAP3 also causes the surface expression of unremodelled GPI-APs, 

accompanying a decrease in the surface levels to different extents from 

almost normal to one-third of the normal level (Maeda et al., 2007). This 

variation may depend on proteins, cell types and animal species (Maeda et 
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al., 2017). It has also been observed that defects in PGAP3 causes that GPI-

APs are not well associated with lipid rafts and their oligomerization is also 

altered (Murakami et al., 2012; Kinoshita and Fujita, 2016). There are several 

reports regarding pgap3-ko mice (Murakami et al., 2012). That mutant 

showed growth retardation and minor abnormalities as kinked tail and short 

heads. Mutations that produced low levels of PGAP3 in humans is associated 

with altered neuronal function (Howard et al., 2014). 

 We could not observe distinct phenotype in per1lA-1, per1lB-2 and 

per1lAB-2 mutants when compared with wild-type plants under standard 

growth conditions. Nevertheless, per1lA-1 and per1lAB-2 mutants showed 

enhanced sensitivity to salt stress. Since many GPI-APs are signal receptors 

that help the cell response to the extracellular environment, GPI anchor 

remodelling defects are also expected to have altered cellular response to 

salt stress. amiR-per1lB, in contrast to other mutants, did not show enhanced 

sensitivity to salt stress. This suggests that the response to salt stress is 

PER1LA specific. Alternatively, this mutant may express enough PER1L to 

respond to salt stress. 

 The localization at the Golgi apparatus of PER1LA-RFP and PER1LB-

RFP, may indicate that the fatty acid remodelling occurs at the Golgi, as it 

happens in mammalian cells. This fact suggests that the GPI anchor 

remodelling pathway of GPI-APs in Arabidopsis is likely as in mammals and 

not as in yeast, as it was previously supposed.  Strikingly, in the pgap1B-1 and 

pgap1ABC mutants, GFP-AGP4 and GFP-GPI showed the same localization 

pattern than in per1lA-1, per1lB-2 and per1lAB-2 mutants, in spite of the 

different localization of PGAP1B (ER) and PER1LA-B (Golgi) enzymes, 
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respectively. The predominant pattern of GPI-anchored proteins in these 

mutants was ER accumulation and some punctate structures that may 

correspond to Golgi apparatus. Co-localization experiments with Golgi 

markers and PGAP1B-RFP assays will be done in the future to corroborate 

that.  

 In the case of pgap1B-1 and pgap1ABC mutants, this could be 

explained because GPI-anchored proteins which are not correctly 

remodelled could escape to the quality control of p24 proteins and when 

they would arrive to the Golgi, they could be retained by other mechanism 

involved in quality control into the Golgi apparatus or may not be recognized 

by PER1L enzymes at the Golgi.  In the case of per1lA-1, per1lB-2 and per1lAB-

2 mutants, it could be due to a regulation of the remodelling pathway.  If GPI-

AP traffic is blocked at the Golgi apparatus, p24 proteins or another 

mechanism could retain them at the ER, avoiding their trafficking along the 

secretory pathway. Nevertheless, a proportion of not remodelled GPI-APs 

can scape to this control and still reach the plasma membrane in all mutants. 

 Interestingly, GFP-GPI trafficking seems not to be altered in the 

per1lB-2 mutant as it does in per1lA-1. In addition, per1lB-2 is not sensitive 

to salt stress as it is per1lA-1. This could be due to different protein levels of 

PER1L enzymes in these mutants but it cannot be discarded that PER1LA and 

PER1LB are not redundant and have different specificities. 

 Finally, if PER1L in plants localized at Golgi, this indicates that once 

the lipid moiety is remodelled, this could act as a lipid-based mechanism for 

selective sorting in the Golgi instead of in the ER (as in yeast) within vesicles 

destined to the plasma membrane (Simons and Ikonen, 1997; Surma et al., 
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2012).  As a consequence, as it has been previously shown in mammals, plant 

GPI-APs may then homodimerize and associate to microdomains or rafts 

formed by cholesterol and sphingolipids association (Paladino et al., 2004; 

Seong et al., 2013) or not and this may decide whether a GPI-AP would go to 

the apical or basolateral face. Indeed, it is very important for mammalian 

cells the distribution along the secretory pathway of the enzymes implicated 

in the remodelling pathway of the GPI anchor, because mammals have 

polarized cells. As plants also have polarized cells, it makes sense that GPI 

anchor remodelling pathway would be as in mammals. 
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1. The absence of p24 proteins from the delta-1 subclass causes a decrease 

in the protein levels of other members of p24 protein family in 

Arabidopsis, which is due to a reduction in protein stability. The 

expression of only one single member of the delta-1 subclass (p24δ5) is 

enough to restore the protein levels of other p24 protein family 

members, suggesting the existence of functional redundancy within p24 

proteins of the delta-1 subclass. 

 

2. Loss of p24 proteins from the delta-1 subclass causes the accumulation 

of GPI-anchored proteins at the ER, indicating that p24δ-1 proteins are 

involved in ER export and plasma membrane localization of GPI-

anchored proteins in Arabidopsis. However, a proportion of GPI-

anchored proteins is still able to reach the plasma membrane in the 

p24δ-1 mutant, which may explain why the p24δ-1 mutant does not 

show any phenotypic alteration under standard growth conditions, 

although is more sensitive to salt stress. 

 

3. p24δ-1 proteins seem to be specifically involved in ER export and 

transport to plasma membrane of GPI-anchored, since loss of p24δ-1 

proteins does not affect bulk transport of other plasma membrane 

proteins, including transmembrane proteins and proteins anchored to 

the plasma membrane with different types of lipid anchors.  

 

4. p24δ5 (delta-1 subclass) but not p24δ9 (delta-2 subclass) partially 

restores plasma membrane localization of GPI-anchored proteins in the 

p24δ-1 mutant which suggest that members of the two p24delta 

subclasses are not functionally redundant. The coiled-coil domain and 
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not the GOLD domain of p24δ5 seems to be involved in the transport of 

GPI-anchored proteins. Pull-down experiments showed that p24δ5 

interacts with the ER form of the GPI-anchored protein AGP4, an 

interaction which requires the coiled-coil domain in p24δ5. 

 

5. The study of the role of Arabidopsis PGAP1/Bst1p and PGAP3/Per1p lipid 

remodelling enzymes of the GPI anchor in the transport of GPI anchored 

proteins reveals that: 

 

5.1 Mutants of PGAP1B (the only putative Arabidopsis PGAP1/Bst1p 

ortholog located at the ER), PER1LA and PER1LB (the two Arabidopsis 

PGAP3/ Per1p orthologs) show an accumulation of GPI-anchored 

proteins at the ER, suggesting the requirement of the lipid 

remodelling for efficient transport of GPI-anchored proteins from 

the ER to the plasma membrane. None of the mutants shows any 

evident phenotypic alteration under standard growth conditions; 

nevertheless, per1lA and per1lAB mutants are more sensitive to salt 

stress than wild type plants. 

 

5.2  Both PER1LA-RFP and PER1LB-RFP localize to the Golgi apparatus, 

indicating that in plants part of the remodelling pathway of GPI-

anchored proteins may occur at the Golgi apparatus, as in mammals. 

This is in contrast to yeast, where all the remodelling pathway occurs 

at the ER.  
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1 INTRODUCCIÓN 

TRÁFICO INTRACELULAR DE MEMBRANAS 

 Las células eucariotas tienen un complejo sistema de 

endomembranas compuesto por varios compartimentos rodeados a 

membranas, que tienen una composición molecular específica y por lo tanto, 

son funcionalmente diferentes. En plantas, los mayores compartimentos 

endomembranosos son: El retículo endoplásmico (RE), el aparato de Golgi 

(GA), el complejo trans-Golgi (TGN), el compartimento prevacuolar/cuerpos 

multivesiculares (PVC/MVB) y las vacuolas. 

 Estos compartimentos forman parte de un complejo 

endomembranoso que está conectado por pequeñas vesículas que 

transportan proteínas, lípidos y polisacáridos. Este tráfico de membranas 

permite el transporte de miles de proteínas hasta su sitio de acción. Además, 

este tráfico de membranas está implicado en múltiples funciones celulares, 

tales como la homeostasis celular, desarrollo, comunicación célula-célula y 

respuestas fisiológicas frente a cambios ambientales. Este sistema de tráfico 

membranoso puede clasificarse en las siguientes rutas: 

• Vía secretora o biosintética: Esta vía la utilizan moléculas que son 

sintetizadas en el ER y son transportadas a otros compartimentos o son 

secretadas. 

• Vía endocítica: La endocitosis es un proceso por el cual la célula captura 

moléculas del exterior o internaliza proteínas de la membrana 

plasmática mediante vesículas.  
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• Vías retrógradas: Vías encargadas de recuperar material y moléculas que 

por alguna razón se localizan en un compartimento pero están en otro. 

• Otros: Se ha visto la existencia de diferentes vías que permiten 

transportar proteínas hasta peroxisomas y plastidios. 

Tráfico vesicular 

 Hoy en día, está ampliamente aceptado que el transporte entre 

compartimentos celulares se produce mediante pequeñas vesículas. Éstas 

parten de un compartimento dador y son transportados hasta el 

compartimento diana en el que se fusionan, llevando así moléculas de un 

compartimento a otro. 

 El transporte entre estos compartimentos en plantas ocurre 

mediante mecanismos similares a animales y levaduras, y puede dividirse en 

tres etapas: 

• Gemación: La formación de vesículas nacientes está regulada por la 

actividad específica de GTPasas. Las subunidades del complejo formador 

de vesículas polimerizan deformando la superficie membranosa para 

formar la vesícula. Mientras se produce esta deformación, las moléculas 

que deben ser transportadas van siendo capturadas por ésta. 

• Transporte: Las vesículas son transportadas hasta el compartimento 

diana a través del citoesqueleto, mediante procesos mediados por 

proteínas motoras (quinesinas y dineinas). 

• Fusión: Una vez las vesículas han llegado al compartimento diana, ambas 

membranas deben fusionarse. Esto requiere un proceso específico de 

reconocimiento entre las membranas de la vesícula y la diana, en el que 
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participan proteínas de diferentes familias como: Pequeñas GTPasas de 

la familia Rab, factores de anclaje y SNAREs. 

 Los compartimentos implicados en el sistema de transporte de 

endomembranas deben seguir unos principios básicos para mantener su 

composición única, a pesar del constante intercambio de vesículas:  

• Clasificación molecular: El transporte vesicular debe incluir las moléculas 

apropiadas, tanto como cargo como aquellas apropiadas para el 

transporte de la vesícula. 

• Direccionalidad de la vesícula: Las vesículas deben ir al compartimento 

adecuado para reconocerlo y fusionarse correctamente. 

 

LA VÍA SECRETORA 

 Como hemos comentado anteriormente, la ruta secretora es la 

encargada de la síntesis, transporte, modificación y secreción de un amplio 

abanico de proteínas, lípidos y polisacáridos que además, debe responder a 

demandas celulares específicas, que están continuamente cambiando 

dependiendo de las necesidades de la célula por lo que requiere de un alto 

dinamismo en el transporte de moléculas a través de la célula. Para la 

homeostasis de las células, es importante que haya un equilibrio entre las 

rutas de transporte anterógrada (del ER al Golgi y la superficie celular) y 

retrógrada (en sentido contrario). 
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Vía secretora temprana 

 Esta vía incluye el transporte entre el ER y el aparato de Golgi, en la 

que el transporte proteico es bidireccional. Está compuesta por: 

• Retículo endoplásmico: Es la factoría donde se sintetizan las proteínas 

que van a ser secretadas y, por tanto, donde esta vía empieza. Las 

proteínas que van a seguir esta vía contienen un péptido señal (SP) en su 

extremo N-terminal, para ser translocadas al ER. El ER se extiende a 

través de la célula y está formado por una red de cisternas y túbulos 

interconectados que están en continuo remodelado. 

• Sitios de salida del ER y transporte ER-Golgi: Una vez las proteínas y 

cargos membranosos son plegados correctamente, son transportados 

del ER al Golgi mediante vesículas COPII, las cuáles son reclutadas en 

subdominios especializados del ER llamados sitios de salida del ER (ER 

exit sites, ERES). 

• Vesículas COPII: La cubierta COPII está compuesta por cinco proteínas: 

SAR1, SEC23, SEC24, SEC13 y SEC31. La formación de estas vesículas se 

inicia con la activación de SAR1, una pequeña Rab GTPasa, activada por 

SEC12. A continuación, se reclutan secuencialmente el complejo 

SEC23/SEC24 y SEC13/SEC31, formando dos capas. Se ha propuesto que 

la proteína SEC24 es la encargada de reconocer los diferentes cargos que 

entrarán en estas vesículas. 

• Transporte Golgi-ER: El transporte desde el aparato de Golgi de vuelta al 

ER esta mediado por las vesículas COPI, que son formadas desde la cara 

cis del Golgi. 

• El aparato de Golgi y transporte intra-Golgi: Es la estación de salida y el 

responsable del envío de proteínas a múltiples destinos, jugando un rol 
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central en la vía secretora. Está formado por múltiples cisternas que 

tienen una estructura polarizada, desde la cara cis donde recibe las 

vesículas procedentes del ER, a la cara trans desde donde se forman 

vesículas con diferentes destinos. Existen dos modelos para el transporte 

intra-Golgi, si éste se realiza mediante vesículas o más bien por 

progresión de las cisternas. 

• Vesículas COPI: La cubierta COPI está formada por un complejo 

heptamérico (α, β, β’, γ, δ, ε, ζ) llamada coatómero. Estas vesículas son 

las encargadas del transporte intra-Golgi y el transporte del aparato de 

Golgi al ER. Como en el caso de las vesículas COPII, el ensamblaje de las 

vesículas COPI está regulada por una proteína GTPasa, ARF1. Se ha 

descrito que las proteínas p24 y el receptor K/HDEL ERD2 son capaces de 

interaccionar directamente para la formación de estas vesículas. 

Vía secretora tardía 

 Esta vía incluye el transporte de los cargos desde el aparato de Golgi 

hasta su destino final: 

• Red trans-Golgi (trans-Golgi Network, TGN): Este compartimento es la 

estación de salida para las proteínas exocíticas excepto para las proteínas 

de almacenamiento. En plantas, también puede comportarse como un 

endosoma temprano. 

• Transporte a la membrana plasmática: Este es el destino final para las 

proteínas secretadas o que forman parte de la matriz extracelular.  

• Vía de transporte vacuolar: Destino de muchas proteínas y moléculas de 

almacenamiento en células vegetales. Las vacuolas juegan un papel 

importante en células vegetales como: Incrementando el volumen de la 
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célula, respuestas de defensa, almacenamiento de proteínas y azúcares 

y función lítica.  

 

PROTEÍNAS P24 

Filogenia y nomenclatura 

 Las proteínas p24 constituyen una familia de proteínas 

transmembrana de tipo I de alrededor de 24 kDa. Basándose en su homología 

de secuencia, éstas pueden clasificarse en cuatro subfamilias: α, β, δ, γ. El 

número de proteínas p24 en cada subfamilia varía dependiendo de la 

especie. Las plantas solamente poseen las subfamilias p24β (β2-β3) y p24δ 

(δ3-δ11), siendo esta última ampliamente expandida. Arabidopsis contiene 

9 miembros de la subfamilia delta y 2 miembros de la beta. 

Especificidad en el tejido y expresión regulada 

 Son ampliamente expresadas en todos los órganos por lo general, lo 

que indica que tienen una función de mantenimiento básica. En Arabidopsis 

se ha visto que algunas proteínas p24 se expresan exclusivamente en flores 

y silicuas, por lo que podrían tener una funcionalidad específica. 

Estructura de las proteínas p24 

 Todas las proteínas p24 tienen una estructura similar, que se basa 

en: Una larga región N-terminal llamada dominio GOLD que está implicada 

en el reconocimiento de diferentes cargos; un dominio coiled-coil (CC) que 
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se encarga de la oligomerización de las proteínas p24; un dominio 

transmembrana y una pequeña (13-20 residuos) cola citoplasmática C-

terminal que contiene  diferentes motivos para interaccionar con las 

subunidades de las cubiertas COPI y COPII. 

Modificaciones post-transduccionales y degradación 

 Se ha descrito que algunas proteínas p24 pueden ser N-glicosiladas o 

fosforiladas. En Arabidopsis, las proteínas p24δ de la subclase δ-1 (δ3-δ6) 

están N-glicosiladas, y se ha visto que esta modificación regula la 

especificidad de los cargos. También se ha visto que en Arabidopsis, las 

proteínas p24 son degradadas en la vacuola por cisteín-proteasas.  

Oligomerización 

 Se ha visto que las proteínas p24 interaccionan entre ellas mediante 

el dominio CC formando diferentes complejos incluyendo miembros de las 

diferentes subfamilias y subclases. La formación de estos complejos es 

importante para su transporte y localización, pero también para su 

estabilidad. 

Transporte y localización 

 Las proteínas p24 se localizan en los compartimentos de la vía 

secretora temprana incluyendo: El ER, el ERGIC (en animales), cis-Golgi y el 

aparato de Golgi, así como las vesículas COPI y COPII. Estas ciclan 

principalmente entre el ER y Golgi por medio de las vesículas COPII y COPI. 

Como se ha indicado anteriormente, el dominio citosólico de estas proteínas 
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es el encargado de interaccionar con las subunidades COPII y COPI para que 

su transporte bidireccional. 

Funciones de las proteínas p24 

• Formación de las vesículas COPII y COPI: Al contener diferentes motivos 

en la cola citosólica, pueden interaccionar directamente y, por tanto 

favorecer, la formación de vesículas COPI y COPII. Además, también se 

ha visto que son importantes para regular la función de las Rab GTPasas 

que son a su vez las encargadas de iniciar y regular, la formación de estas 

vesículas. 

• Mantenimiento de la estructura y organización de la vía secretora 

temprana: Están implicadas en la formación de ERES, la estructura del ER 

y del ERGIC y la biogénesis de aparato de Golgi, pudiendo ser 

importantes para el reciclaje de componentes requeridos para el 

transporte ER-Golgi y función y estructura del ER. 

• Receptor de cargos proteicos: Varias cargos se han propuesto para las 

proteínas p24 como: Las proteínas con anclaje GPI (objeto de estudio en 

esta tesis), el receptor K/HDEL ERD2 y receptores acoplados a proteínas 

G. 

• Control de calidad en el ER: Varios estudios sugieren la posibilidad de 

que actúen en la prevención de la salida de proteínas mal plegadas y 

aberrantes. 

• Proteínas p24 en fisiología y patologías: Parecen estar implicadas en 

diferentes procesos y enfermedades como la enfermedad de Alzheimer, 

desarrollo embrionario temprano en ratón y la síntesis y posterior 

secreción de la insulina. 
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PROTEÍNAS CON ANCLAJE GPI 

 Existen diferentes maneras de anclar una proteína a la membrana 

plasmática. Las proteínas transmembrana tienen un dominio hidrofóbico que 

le permite estar embebido en la bicapa lipídica mientras que otras proteínas 

son modificadas post-transduccionalmente mediante la unión a lípidos que 

les anclan a la membrana. Si las proteínas tienen que estar en la cara 

intracelular de la membrana plasmática, éstas son modificadas mediante S-

acetilación, N-miristoilación, prenilación o palmitoilación. En el caso de que 

las proteínas deban anclarse a la cara externa de la membrana plasmática, 

deberán ser modificadas con ancla de glicosilfosfatidilinositol (GPI).  

 Las proteínas con anclaje GPI (GPI-APs), objeto de estudio en esta 

tesis, han sido ampliamente estudiadas en animales y levaduras debido a su 

elevada relevancia en procesos esenciales. En el caso de animales se ha 

estudiado que están involucradas en la embriogénesis, desarrollo, 

neurogénesis, fertilización y en el sistema inmunitario; mientras que en 

levaduras son imprescindibles para su correcto crecimiento. 

 En plantas también se presupone una elevada importancia a esta 

familia de proteínas, ya que se han predicho 248 en Arabidopsis, 

aproximadamente el 10 % de las proteínas de la vía secretora. Éstas juegan 

un papel relevante en el metabolismo, señalización y formación de polímeros 

en la pared celular; membrana plasmática; y transporte en los 

plasmodesmatas. 
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Estructura del ancla GPI  

 La estructura principal del ancla GPI (ésta puede variar dependiendo 

de especies) se basa en una parte lipídica compuesta por una fosfoceramida, 

y una parte glicídica compuesta por una glucosamina, tres manosas y una 

etanolamina fosfato que une la proteína por el extremo C-terminal. La 

estructura del ancla GPI va cambiando mediante una ruta de remodelado 

desde su síntesis hasta su forma final. 

Biosíntesis del ancla GPI 

 La síntesis del ancla GPI empieza en la cara citosólica del ER, siendo 

posteriormente translocada a la cara luminal mediante una flipasa para 

continuar su síntesis. Una vez sintetizada el ancla GPI, ésta es anclada a la 

proteína por el C-terminal mediante un complejo enzimático llamado GPI-

transamidasa. Fruto de su importancia, no existen mutantes de ningún 

enzima en esta ruta para Arabidopsis ya que resultan ser letales. 

Remodelado del ancla GPI 

 Una vez la proteína está ensamblada al ancla GPI, ésta se debe 

remodelar hasta alcanzar su forma madura. Ambas partes lipídica y glicano 

son remodeladas. El remodelado de la parte lipídica se basa en el cambio de 

los ácidos grasos cortos e insaturados por ácidos grasos de cadenas largas y 

saturadas para que de esta manera puedan asociarse a membranas ricas en 

esfingolípidos y esteroles, llamados microdominios o “rafts”. El remodelado 

del glicano se basa en la eliminación de etanolaminas fosfatos de las tres 

manosas, para que una vez finalizados ambos remodelados, puedan ser 
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reconocidas por las proteínas p24 y facilitar así su transporte al Golgi 

mediante las vesículas COPII. 

 Se ha descrito que en animales este remodelado sucede entre el ER 

y el aparato de Golgi, de manera que las proteínas con anclaje GPI acaban su 

remodelado en el Golgi, mientras que en el caso de las levaduras, el 

remodelado sucede exclusivamente en el ER, de manera que en estas 

proteínas el ancla GPI adquiere su forma final en el ER. 

Salida de proteínas con anclaje GPI desde el ER 

 El ancla GPI una vez remodelada, actúa como señal de transporte 

desde el ER al aparato de Golgi. La estructura única del ancla GPI le confiere 

propiedades especiales y un modo especial de interacción con membranas 

en el lumen de los orgánulos. Una vez remodelas, son incorporadas a las 

vesículas COPII en los ERES. Como se encuentran en la cara luminal del ER y 

no pueden interaccionar directamente con la cubierta COPII, necesitan de un 

receptor de cargo para ser introducidas en estas vesículas COPII, como es el 

caso de las proteínas p24.  

 En el caso de las levaduras, al tener la parte lipídica del ancla ya 

remodelada, se concentran en ERES específicos por un mecanismo basado 

en lípidos, mientras que las proteínas p24 las ayudan a incorporarse a las 

vesículas COPII. En el caso de los animales, al no estar el ancla GPI 

completamente remodelada, las proteínas p24 son las encargadas de 

concentrarlas en los ERES y de facilitar su incorporación a las vesículas COPII. 

 También se ha observado que las proteínas con anclaje GPI se 

acumulan en ERES distintos al resto de proteínas que van a ser secretadas, 
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por lo que viajarán en distintas vesículas COPII.  En la formación de estas 

vesículas COPII especiales parece estar implicada la subunidad SEC24 de la 

cubierta COPII, ya que en levaduras se ha visto que estas vesículas especiales 

contienen la isoforma Lst1p, mientras que en animales tienen las isoformas 

SEC24C y SEC24D. 

Llegada al Golgi y control de calidad post-ER 

 Una vez en el aparato de Golgi, las proteínas con anclaje GPI se 

disocian de las proteínas p24, parece ser por el ligero pH acídico del Golgi. 

Aquellas proteínas cuyas anclas GPI no han sido correctamente remodeladas 

y han llegado al Golgi por error, son reconocidas por las proteínas p24 y las 

devuelven al ER mediante vesículas COPI. 

Salida desde la red trans-Golgi (TGN) 

 Una vez las proteínas con anclaje GPI son completamente 

remodeladas y glicosiladas a través de las cisternas del aparato de Golgi, 

estas proteínas tienen que salir desde el TGN en vesículas secretoras para 

alcanzar la membrana plasmática. En levaduras, las proteínas con anclaje GPI 

son separadas del resto de proteínas secretoras desde su salida del ER, pero 

nada se sabe sobre su transporte por el aparato de Golgi. En cambio, este 

proceso ha sido más estudiado en animales, ya que al tener células 

polarizadas, las proteínas con anclaje GPI pueden dirigirse a la cara 

basolateral o a la apical. Se ha propuesto, que dependiendo de su asociación 

a microdominios o “rafts” ricos en colesterol y esfingolípidos, esto podría 

dirigir la secreción de estas proteínas hacia una cara u otra. 
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Proteínas con anclaje GPI en la membrana plasmática 

En levaduras, se ha visto que las proteínas con anclaje GPI tienen una 

función fundamental en el correcto desarrollo y crecimiento de la pared 

celular. Muchas de estas proteínas controlan su morfología y su integridad. 

También se ha visto, que existen diversos enzimas capaces de degradar el 

ancla GPI de estas proteínas para liberarlas a la pared celular, donde realizan 

importantes funciones como la polimerización de polisacáridos en la pared 

celular. 

En animales, también se ha visto que el ancla GPI puede ser digerida 

por enzimas fosfatilinositol-fosfolipasas (PI-PLs) para realizar diferentes 

funciones difundiendo hacia el espacio extracelular. Este proceso tiene 

implicaciones importantes en adhesión, diferenciación, proliferación, 

supervivencia y oncogénesis. 

Proteínas con anclaje GPI en plantas 

 Se ha predicho que las plantas poseen alrededor de 248 proteínas 

con anclaje GPI, aproximadamente, un 10 % de las proteínas secretoras. 

Estas proteínas realizan funciones esenciales en los procesos biológicos de 

las plantas como señalización, metabolismo y formación de polímeros en la 

pared celular y transporte en el plasmodesmata. Existen algunas familias de 

estas proteínas con funciones importantes: 

• Familia LORELEI: Tres proteínas forman parte de esta familia que se 

encarga de la interacción del gametofito femenino en el tubo polínico. 

• Familia COBRA: Estas proteínas son requeridas para la deposición 

orientada de las microfibrillas de celulosa para dirigir la expansión celular 
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durante la morfogénesis de la planta. La expresión de las proteínas 

COBRA se concentra en la raíz. 

• Familia ARABINOGALACTANOS: Son aproximadamente el 40 % de todas 

las proteínas con anclaje GPI. Se encuentran tanto en la membrana 

plasmática, como en la pared celular, apoplasto o secreciones. La 

complejidad en su estructura está formada por la gran diversidad de 

azúcares y el alto grado de glicosilaciones que están asociados a la 

estructura proteica de la proteína. Debido a su heterogeneidad en su 

estructura, pueden realizar múltiples funciones diferentes como: 

Embriogénesis somática, crecimiento y desarrollo de la raíz, señalización, 

resistencia frente a patógenos, plasticidad de la pared celular, tolerancia 

a la sal, diferenciación del xilema, iniciación de la gametogénesis 

femenina, expansión celular, secreción, muerte celular programada y 

desarrollo del grano de polen. 

 Fruto de la importancia de las proteínas con anclaje GPI en plantas 

es que no existen mutantes de los enzimas implicados en la síntesis del ancla, 

ya que resultan ser letales. También juegan papeles clave en su asociación 

con otras estructuras de la célula para su mantenimiento y señalización, 

como: 

• Asociación de proteínas con anclaje GPI a plasmodesmos: Los 

plasmodesmos son canales en la membrana plasmática que conectan 

células adyacentes, permitiendo estar conectadas e intercambiar 

proteínas solubles, solutos y ARN. Se han descubierto varias proteínas 

con anclaje GPI que pueden regular la formación de plasmodesmos y su 

tráfico entre células. 
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• Proteínas con anclaje GPI y señalización, mantenimiento y biosíntesis 

de la pared celular: Las proteínas con anclaje GPI son capaces de 

modificar y regular la formación de polímeros de calosa, xiloglucanos y 

celulosa en la pared celular. Forman parte de complejos proteicos que 

regulan la actividad de las celulosa sintasas (CESAs), influyendo de esta 

manera en la deposición, cristalización y orientación de estas 

microfibrillas en la pared celular.  

 

2 OBJETIVOS 

 Las proteínas con anclaje GPI (GPI-APs) son una familia de proteínas 

que están unidas a la cara externa de la membrana plasmática por un ancla 

GPI. En Arabidopsis thaliana se ha predicho la existencia de 250 proteínas 

con anclaje GPI, aproximadamente el 10 % de las proteínas secretoras, y 

además, participan en funciones muy importantes como la transducción de 

señales, las interacciones célula-célula, el crecimiento, defensa y la 

biosíntesis de la pared celular. Sin embargo, la maquinaria molecular 

involucrada en el transporte de las GPI-APs a la membrana plasmática es 

esencialmente desconocida en plantas. 

 Las GPI-APs se sintetizan en el ER y, en animales y levaduras, la salida 

del ER de las GPI-APs necesita de las proteínas p24. Las proteínas p24 

constituyen una familia de proteínas que se localizan en los compartimentos 

de la vía secretora temprana, incluyendo el ER y el aparato de Golgi, y las 

vesículas recubiertas de COPI y COPII. Estas proteínas desempeñan un papel 

importante en el control de calidad durante el transporte entre el ER y el 

Golgi, posiblemente como receptores de cargo. Se han propuesto varios 
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cargos para las proteínas p24, incluyendo los receptores acoplados a 

proteínas G, el receptor K/HDEL ERD2 y las GPI-APs. 

 En mamíferos y levaduras también se ha descrito que durante su 

transporte desde el ER hasta la membrana plasmática, las GPI-APs son 

sometidas a un remodelado de la parte lipídica del ancla GPI, que es 

necesario para su transporte eficiente a lo largo de la vía secretora. 

 Por tanto, el objetivo principal de este trabajo es caracterizar el 

transporte a la membrana de las GPI-APs en A. thaliana. 

Objetivos específicos: 

1. Investigar si las proteínas p24 de Arabidopsis de la subclase delta-1 están 

implicadas en la salida del ER y en la localización en la membrana 

plasmática de las GPI-APs. 

2. Estudiar el papel de los enzimas PGAP1 y PER1L de Arabidopsis, que 

pueden estar implicados en el remodelado de la parte lipídica del ancla 

GPI, en el transporte de las GPI-APs desde el ER a la membrana 

plasmática. 

 

3 MATERIAL Y MÉTODOS 

Material Biológico 

 Entre los diferentes materiales biológicos utilizados en esta tesis se 

encuentran los microorganismos Escherichia coli (cepa DH5α) y 
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Agrobacterium tumefaciens (cepa C58 MP90); y las plantas: Arabidopsis 

thaliana (ecotipo Columbia (Col-0)) y Nicotiana benthamiana. 

Mecanismos de transformación 

 Los mecanismos de transformación que han sido utilizados en este 

trabajo se resumen a continuación: 

• Transformación de Escherichia coli: Se utilizaron bacterias competentes 

MAX Efficiency DH5α para ser transformadas con los marcadores 

fluorescentes utilizados en esta tesis. 

• Transformación de Agrobacterium tumefaciens: Se utilizaron bacterias 

competentes para ser transformadas con las construcciones que 

codifican los marcadores fluorescentes utilizados en esta tesis. 

• Expresión transitoria de proteínas en protoplastos de Arabidopsis 

mediante transformación con PEG: Una vez obtenidos los protoplastos 

de plantas control o mutantes, esta técnica nos permite la rápida 

expresión de uno o varios marcadores fluorescentes en protoplastos. 

• Expresión transitoria de proteínas en hojas de Nicotiana benthamiana: 

Se agroinfiltraron hojas de N. benthamiana con cultivos de A. 

tumefaciens conteniendo marcadores fluorescentes para analizar su 

localización subcelular o para la obtención de material para la realización 

de ensayos bioquímicos. 

• Expresión transitoria de proteínas en plántulas de Arabidopsis 

mediante infiltración por vacío: Esta técnica nos permite la rápida 

expresión de un marcador fluorescente en plántulas de Arabidopsis, sin 

la necesidad de crear líneas transgénicas estables que necesitan de un 

largo proceso para su obtención. 
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• Transformación estable de Arabidopsis mediante el método de 

sumersión floral: Este método permite generar líneas transgénicas que 

expresen un gen de manera estable. Se utilizó en esta tesis para crear los 

mutantes del gen PER1LB con la construcción amiR-PER1LB y la expresión 

estable de RFP-p24δ5 en el mutante p24δ-1. 

• Análisis de segregación en líneas transgénicas: Se realizaron para 

comprobar que el gen introducido en el genoma de Arabidopsis 

mediante el método anterior se había introducido solo una vez. 

• Plásmidos utilizados en expresión transitoria en protoplastos y 

plántulas de Arabidopsis: Una gran variedad de construcciones 

fluorescentes fueron utilizadas a lo largo de la tesis para su visualización 

en microscopía de confocal o para la realización de ensayos “pull-down”.  

Tratamientos 

 Los tratamientos utilizados en este trabajo se resumen a 

continuación: 

• Germinación con NaCl: Se realizó para comprobar la tolerancia a la sal 

en los mutantes del remodelado del ancla GPI. 

• Infiltración de brefeldina A (BFA) en hojas de N. benthamiana: Se 

infiltró BFA en las hojas de N. benthamiana a los 2 días de ser 

agroinfiltradas para evitar la salida del ER de las proteínas sintetizadas 

por la agroinfiltración. 

• Tinción de la membrana plasmática de protoplastos: Para la 

colocalización de marcadores fluorescentes verdes en la membrana 

plasmática, se utilizó el colorante FM4-64. 
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Ácidos nucleicos 

 Los siguientes procesos relacionados con el aislamiento, 

manipulación y análisis de ácidos nucleicos realizados en esta tesis se 

detallan a continuación: 

• Aislamiento de ácidos nucleicos: Se aislaron plásmidos de ADN para su 

transformación en Agrobacterium tumefaciens y Escherichia coli; ADN 

genómico de Arabidopsis para el genotipado de plantas; y ARN total de 

Arabidopsis para medir la expresión de diferentes genes en plántulas. 

• Manipulación y análisis de ácidos nucleicos: Se adquirieron 

comercialmente los marcadores PER1LA-RFP y PER1LB-RFP; se realizaron 

PCRs para el genotipado de mutantes y detectar inserciones de T-DNA, 

RT-sqPCRs para la obtención de cDNA a partir de RNA y medir la 

expresión de ciertos genes y se realizaron electroforesis en geles de 

agarosa para separar las bandas obtenidas en estos procesos que 

acabamos de detallar. 

Proteínas 

 Los siguientes procesos relacionados con la manipulación de 

proteínas se explican a continuación: 

• Extracción de proteínas en raíces de Arabidopsis: Se realizó la extracción 

de proteínas en raíces de 7 días para analizar la estabilidad proteica y la 

redundancia funcional de las proteínas p24. 

• Extracción de proteínas en protoplastos de Arabidopsis: Se realizó para 

analizar si existía una interacción entre la proteína AGP4 y p24δ5 en 

protoplastos del mutante p24δ-1 mediante ensayos “pull-down”. 
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• Extracción de proteínas en hojas de N. benthamiana: Se utilizó este 

procedimiento para la realización de ensayos “pull-down”. 

• Tratamiento con PI-PLC: Este tratamiento se llevó a cabo para 

comprobar si AGP4 es una proteína con anclaje GPI y su estudio 

bioquímico. 

• Experimentos “pull-down”: Estos ensayos nos permiten conocer si 

existe una interacción directa entre dos proteínas. En esta tesis se 

llevaron a cabo para conocer si existe una interacción directa entre AGP4 

y p24δ5, así como qué dominio de p24δ5 está implicado en esta 

interacción. 

• Determinación de la concentración de proteínas: Se utilizó el método 

de Bradford para conocer la concentración proteica de diferentes 

muestras. 

• Gel de electroforesis SDS-poliacrilamida y Western-Blot: Esta técnica 

nos permite separar las proteínas por su tamaño y posteriormente ser 

reconocidas por un anticuerpo específico. 

Estudio de localización de proteínas in vivo 

 Para la visualización de proteínas fluorescentes se utilizaron los 

microscopios confocales: Olympus® FV1000 y Zeiss® LSM880 con el detector 

Fast Ayriscan. 
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4 RESULTADOS Y DISCUSIÓN 

CAPÍTULO I. PAPEL DE LAS PROTEÍNAS P24 EN LA SALIDA 

DEL ER Y TRANSPORTE A LA MEMBRANA PLASMÁTICA DE 

LAS PROTEÍNAS CON ANCLAJE GPI 

Redundancia funcional y estabilidad proteica de las proteínas 

p24 

 Nuestro grupo demostró previamente que las proteínas p24 de 

Arabidopsis forman complejos hetero-oligoméricos, que son importantes 

para su transporte intracelular y para su estabilidad. Para estudiar la 

implicación de las proteínas p24 en el transporte de las proteínas con anclaje 

GPI se decidió utilizar un mutante KO para los cuatro miembros de la subclase 

δ-1 (mutante p24δ-1). Este mutante, resultó tener disminuidos los niveles 

proteicos de diferentes proteínas de la subclase p24δ-2 (p24δ9) y los dos 

miembros de la subfamilia p24β (β2 y β3), mientras que sus valores de RNA 

mensajero no variaban, lo que sugiere una pérdida de estabilidad del 

complejo p24 en ausencia de las proteínas de la subclase p24δ-1. 

 Otros resultados previos, sugirieron que existe redundancia entre los 

mismos miembros de la subclase. Para comprobar esto, se generaron líneas 

transgénicas estables del mutante p24δ-1 expresando la proteína RFP-p24δ5 

(un miembro de la subclase p24δ-1). Como se muestra en la Figura 28, se 

recuperaron los niveles proteicos de las proteínas p24δ-9 (subclase p24δ-2) 
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y p24β2, sugiriendo que existe una redundancia funcional entre los 

miembros de la subclase p24δ-1. 

Las proteínas p24 son necesarias para la salida del ER y la 

localización en la membrana plasmática de las GPI-APs 

 A continuación, se analizó la localización de diferentes proteínas con 

anclaje GPI mediante técnicas de expresión transitoria en plántulas y 

protoplastos de Arabidopsis. Los marcadores utilizados fueron: GFP-AGP4, 

un arabinogalactano con anclaje GPI; y GFP-GPI, un ancla GPI fusionada a 

GFP. Además, se utilizaron 2 proteínas transmembrana, la acuaporina PI2A-

RFP, y la ATPasa de membrana plasmática GFP-PMA; MAP-GFP (una GFP 

miristoilada y palmitoilada) y GFP-PAP (una GFP prenilada). 

 En experimentos de expresión transitoria en plántulas de Arabidopsis 

observamos que GFP-AGP4 y GFP-GPI se localizaban en la membrana 

plasmática en plantas silvestres pero se acumulaban en el ER en el mutante 

p24δ-1. En contraste, la acuaporina PIP2A-RFP se localizó en la membrana 

plasmática tanto en plantas silvestres como en el mutante p24δ-1 (Figuras 

29 y 30). Utilizando ensayos de expresión transitoria en protoplastos de 

Arabidopsis pudimos observar que los marcadores con anclas GPI se 

acumulaban en el ER, pero también podían llegar parcialmente a la 

membrana plasmática. Por ello decidimos realizar una cuantificación de 

estos experimentos en protoplastos (Figura 31), dividiendo éstos en tres 

categorías dependiendo de la localización principal de la proteína GFP-AGP4: 

Membrana plasmática (PM), retículo endoplásmico (ER) y ambos (ER + PM). 

Este análisis permitió comprobar que un porcentaje de estas proteínas 
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alcanzan la membrana plasmática, pero la mayor parte se acumula en 

estructuras con el patrón típico del ER. 

 Para corroborar estos patrones en el mutante p24δ-1, GFP-AGP4 y 

GFP-GPI se colocalizaron con el marcador de ER, y con una tinción de la 

membrana plasmática con FM4-64, como se puede observar en las Figuras 

32 y 33, respectivamente. 

 También se expresaron proteínas de la membrana plasmática sin 

anclas GPI mediante expresión transitoria en protoplastos, tanto en el 

control como en el mutante p24δ-1 (Figura 34). En particular, una proteína 

transmembrana, la ATPasa de la membrana plasmática (GFP-PMA), y 

proteínas unidas a lípidos diferentes del ancla GPI, incluyendo GFP 

miristoilada y palmitoilada (MAP-GFP) y GFP prenilada (GFP-PAP). Se observó 

que estos tres marcadores se encontraban en la membrana plasmática, tanto 

en el control como en el mutante cuádruple, de manera que la ausencia de 

las proteínas p24 no implica un retraso ni acumulación del resto de proteínas 

que no contienen un ancla GPI. 

p24δ5 (subclase δ-1), pero no p24δ9 (subclase δ-2), recupera 

parcialmente la localización en la membrana plasmática de las 

proteínas con anclaje GPI en el mutante p24δ-1 

 Como se vio en la Figura 28, la expresión de p24δ5 fue suficiente para 

la recuperación del resto de proteínas p24 en el mutante p24δ-1. De manera 

que se decidió coexpresar ambos marcadores, GFP-AGP4 y GFP-GPI, con 

p24δ5 (subclase p24δ-1) y con p24δ9 (subclase p24δ-2) en expresión 

transitoria en protoplastos en el mutante cuádruple. 
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 De esta manera, se observó que con la coexpresión de p24δ5 se 

recuperaba parcialmente la localización en la membrana plasmática de las 

proteínas con anclaje GPI, mientras que con la coexpresión con p24δ9 las 

proteínas con anclaje GPI seguían acumuladas en el ER (Figura 35 y 

cuantificación Figura 31). 

El transporte de proteínas con anclaje GPI a la membrana 

plasmática requiere del dominio coiled-coil, pero no el dominio 

GOLD de p24δ5 

 A continuación se estudió qué dominio de las proteínas p24 es 

importante para el transporte de las proteínas con anclaje GPI a la membrana 

plasmática. Para esto, se utilizaron dos mutantes de p24δ5, uno sin el 

dominio GOLD y el otro sin el dominio CC, en expresión transitoria en 

protoplastos. 

 Como se puede observar en la Figura 36, cuando se coexpresaron 

GFP-AGP4 y GFP-GPI con el mutante sin el dominio GOLD, se restableció 

parcialmente el transporte de las proteínas con anclaje GPI a la membrana 

plasmática. En cambio, cuando se coexpresaron con el mutante sin el 

dominio CC, éstas se mantuvieron acumuladas en el ER (cuantificación en la 

Figura 31). 

GFP-AGP4 interacciona con p24δ5, una interacción que 

requiere del dominio coiled-coil de p24δ5 

 Después de establecer que las proteínas p24 están involucradas en 

la salida del ER y el transporte a la membrana plasmática de las proteínas con 
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anclaje GPI, se decidió investigar si existe una interacción directa entre estos 

2 tipos de proteínas. Para esto se agroinfiltraron los marcadores en N. 

benthamiana para luego realizar ensayos “pull-down”. 

 Primero, se estudiaron las propiedades bioquímicas de GFP-AGP4 

mediante un western-blot y se realizó un tratamiento con PI-PLC para ver si 

se trata de una proteína con anclaje GPI, ya que dicho enzima es capaz de 

degradar el ancla GPI soltando el resto de la proteína al medio. Como se 

observó en la Figura 37, GFP-AGP4 apareció en forma de tres bandas de 

tamaños 115, 70 y 60 kDa. La banda de 115 kDa es sensible al tratamiento 

con PI-PLC, y probablemente corresponde a la forma final de la proteína 

AGP4 en la membrana plasmática, al presentar un patrón consistente con su 

alto grado de glicosilación tras su paso por el aparato de Golgi; la banda de 

70 kDa también resultó ser sensible al tratamiento con PI-PLC, y 

posiblemente corresponda con la forma de la proteína que se localiza en el 

ER; la banda de 60 kDa que no resultó ser sensible al tratamiento y además 

resultó ser soluble, por lo que no se trata de una proteína con ancla GPI. 

 A continuación se intentó co-inmunoprecipitar GFP-AGP4 con RFP- 

p24δ5, pero no se observó ninguna interacción, por lo que se decidió 

coexpresar ambas proteínas en presencia de brefeldina a (BFA) para evitar la 

salida de ambas proteínas del ER (Figura 38). Como se puede observar en la 

Figura 37, con estas condiciones se aumentó enormemente la proporción de 

la banda de 70 kDa, presumiblemente la forma de AGP4 en el ER. En estas 

condiciones, se puede observar en la Figura 39 como AGP4 es capaz de 

interaccionar con p24δ5, así como con el mutante sin el dominio GOLD pero 

no con el mutante sin el dominio CC. Esto indicaría que el dominio CC en 
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p24δ5 es el implicado en la unión a AGP4, lo que explicaría la incapacidad del 

mutante sin el dominio CC de facilitar el transporte de AGP4 a la membrana 

plasmática. También se realizó un ensayo “pull-down” de AGP4 con p24δ5 

en protoplastos del mutante p24δ-1, observando la misma interacción. 

Discusión 

 La familia de proteínas p24 en Arabidopsis incluye 11 miembros, 9 de 

ellos pertenecen a la subfamilia delta, que a su vez puede dividirse en 

subclase p24δ-1 con cuatro miembros (p24δ3-6) y subclase p24δ-2 con cinco 

miembros (p24δ7-11); y 2 miembros pertenecen a la subfamilia beta (p24β2 

y β3). Previamente se ha demostrado que estas subfamilias y subclases son 

importantes para la estabilidad de los complejos de proteínas p24. En esta 

tesis se ha demostrado además, que la expresión de un miembro de la 

subclase p24δ-1 en el mutante p24δ-1 es suficiente para restablecer la 

estabilidad del resto de proteínas p24. 

 En ausencia de las proteínas p24 se observó que las proteínas con 

anclaje GPI no pueden salir correctamente del ER y por lo tanto quedan 

retenidas en el retículo. La ausencia de las proteínas p24 no afecta al resto 

de proteínas secretoras, por lo que éstas pueden ser transportadas 

correctamente a la membrana plasmática o ser secretadas. 

 También se demostró que el dominio CC es el que está implicado en 

el reconocimiento del ancla GPI y por lo tanto, en el transporte de las 

proteínas con anclaje GPI a la membrana plasmática y que existe una 

interacción directa entre las proteínas con anclaje GPI y las proteínas p24. 

Interesantemente, p24δ5 (subclase p24δ-1) y p24δ9 (subclase p24δ-2) 
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tienen dominios CC diferentes, lo cual podría explicar por qué p24δ5 y no 

p24δ9, es capaz de restablecer parcialmente la localización de las proteínas 

con anclaje GPI en la membrana plasmática en el mutante p24δ-1. 

 Finalmente, queda aún por determinar en plantas si existen vesículas 

COPII especiales, como acurre en levaduras y animales, que transporten las 

proteínas con anclaje GPI del ER al aparato de Golgi. Interesantemente, se ha 

visto que el mutante p24δ-1 tiene activada la respuesta a proteínas mal 

plegadas (UPR), en la que la isoforma SEC31A de COPII se encuentra 

sobreexpresada. Se requieren más experimentos para ver si esto pudiese 

tener alguna implicación en la salida de las proteínas con anclaje GPI del ER. 

 

CAPÍTULO II. REMODELADO DEL ANCLA GPI  Y TRANSPORTE 

A LA MEMBRANA PLASMÁTICA DE LAS PROTEÍNAS CON 

ANCLAJE GPI 

Genes PGAP1 

 La desacilación del inositol de las proteínas con anclaje GPI es 

realizada por el enzima PGAP1 (mamíferos) o Bst1p (levaduras) y se trata de 

la primera reacción en la ruta del remodelado lipídico de las anclas GPI. En 

Arabidopsis se encontró en las bases de datos 7 genes que codifican 

ortólogos de este enzima. Se decidió utilizar la terminología PGAP1 para este 

enzima en Arabidopsis. En esta tesis se caracterizaron 3 de estas isoformas: 

AT2G44970 (PGAP1A), AT3G27325 (PGAP1B) y AT3G52570 (PGAP1C). Según 

la base de datos, PGAP1A debería localizarse en el núcleo, PGAP1B en el ER 
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y PGAP1C en la mitocondria, por lo que se decidió empezar el estudio de este 

enzima por la isoforma PGAP1B, utilizando PGAP1A y PGAP1C como 

controles (Tabla 11). La expresión de la isoforma PGAP1A fue 

aproximadamente casi el doble que la de las isoformas PGAP1B y PGAP1C, 

que tienen una expresión similar según las bases de datos (Figura 40). 

Caracterización de mutantes de pérdida de función de PGAP1A, PGAP1B y 

PGAP1C 

 Para la isoforma PGAP1A se caracterizaron 2 mutantes: pgap1A-1 y 

pgap1A-2; siendo el primero knock-down (menos del 10 % de expresión que 

el control), y el segundo knock-out, por lo que este útlimo fue el mutante 

seleccionado (Figura 41). Para la isoforma PGAP1B se caracterizaron 2 

mutantes: pgap1B-1 y pgap1B-2; los dos resultaron ser knock-out, por lo que 

se seleccionó pgap1B-1 para el estudio de esta isoforma (Figura 42). 

Finalmente, para la isoforma PGAP1C se caracterizó el mutante pgap1C-1, 

que resultó ser knock-out (Figura 43). 

 A partir de estos 3 mutantes, mediante cruzamiento de los mutantes 

seleccionados se obtuvo el triple mutante pgap1ABC. Tanto este triple 

mutante como los mutante simples pgap1A-2, pgap1B-1 y pgap1C-1; no 

mostraron fenotipo aparente bajo condiciones de crecimiento estándar, ni 

mayor sensibilidad al estrés salino (Figura 44). 

Genes PER1L  

 Este enzima es el encargado de quitar el ácido graso insaturado de la 

posición sn-2 de la parte lipídica del ancla GPI y está mediado por PGAP3 en 
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mamíferos o Per1p en levaduras. En Arabidopsis se ha visto que existen 2 

isoformas para este enzima (Tabla 13): AT5G62130 (PER1LA) y AT1G16560 

(PER1LB), que pertenecen a la superfamilia de proteínas CREST (Figura 45). 

En este caso se utilizó la terminología proveniente de levaduras PER1-like 

(PER1L). La expresión de la isoforma PER1LB resultó ser 3 veces mayor que la 

isoforma PER1LA según las bases de datos (Figura 46). 

Localización de las isoformas PER1LA y PER1LB 

 Para saber la localización de este enzima en plantas, se expresaron 

las construcciones de ambas isoformas de PER1L, PER1LA-RFP y PER1LB-RFP, 

en hojas de N. benthamiana. Estos marcadores colocalizaron con dos 

marcadores del aparato de Golgi (YFP-ManI y ST-YFP) pero no con un 

marcador de ER (GFP-HDEL). Estos resultados sugieren que en plantas la ruta 

del remodelado del ancla GPI es como en animales, se produce en el ER y el 

aparato de Golgi, y no como en levaduras, que toda la vía de remodelado se 

completa en el ER. 

Caracterización de mutantes de pérdida de PER1LA y PER1LB 

 Para la isoforma PER1LA se caracterizó el único mutante disponible, 

per1lA-1, que resultó ser knock down (menos del 10 % de expresión que el 

control) (Figura 49). Para la isoforma PER1LB no existe ningún mutante 

disponible, por lo que se utilizó la tecnología amiRNA para la obtención de 

mutantes con expresión disminuida (silenciamiento) de esta isoforma. De 

esta manera, se obtuvieron diferentes líneas, per1lB-1 y per1lB-2, con una 

disminución de la expresión de menos del 20 % que las plantas silvestres en 

ambas líneas (Figura 50). Además, a partir de plantas per1lA-1, se transformó 
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con el amiR-per1lB para la obtención del doble mutante de ambas isoformas 

del enzima PER1L. Se obtuvieron dos líneas diferentes, per1lAB-1 y per1lAB-

2, con una disminución de la expresión del 65 % y 40 % respectivamente, por 

lo que se eligió la línea per1lAB-2 (Figura 50).  

 Ninguno de estos tres mutantes (per1lA-1, per1lB-2 y per1lAB-2) 

mostró un fenotipo diferencial bajo condiciones de crecimiento estándar 

(Figura 51), no obstante los mutantes per1lA-1 y per1lAB-2 resultaron ser 

más sensibles frente al estrés salino que las plantas silvestres (Figura 52). 

Localización de GPI-APs en mutantes pgap1 

 Se utilizaron los mismos marcadores fluorescentes que en el capítulo 

I: GFP-AGP4 (una proteína arabinogalactana con anclaje GPI), GFP-GPI (un 

ancla GPI fusionada a GFP), PIP2A-RFP (una acuaporina transmembrana de la 

membrana plasmática), GFP-PMA (una ATPasa transmembrana de la 

membrana plasmática), MAP-GFP (una GFP con un ancla miristoilada y 

palmitoilada) y GFP-PAP (una GFP con un ancla prenilada). 

 En la técnica de expresión transitoria en plántulas de Arabidopsis se 

observó que en el mutante pgap1B-1 GFP-AGP4 y GFP-GPI se acumulan en el 

ER y también aparecen en estructuras punteadas (posiblemente Golgi); 

además, un porcentaje de estos marcadores consigue llegar a la membrana 

plasmática. Sin embargo, estos marcadores se localizaron en la membrana 

plasmática en los mutantes pgap1A-2 y pgap1C-1, por lo que estas dos 

isoformas no parecen estar implicadas en el remodelado del ancla GPI (Figura 

53). 
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 Estos resultados fueron refrendados utilizando la técnica de 

expresión transitoria en protoplastos de Arabidopsis con los mismos 

marcadores (Figura 44). También se colocalizaron ambos marcadores con 

RFP-calnexina para confirmar que este patrón coincide con el del ER (Figura 

55).  Finalmente, se comprobó que este efecto es específico para las GPI-APs 

y no para el resto de proteínas secretoras, ya que los marcadores antes 

indicados GFP-PMA, MAP-GFP y GFP-PAP se localizaron en la membrana 

plasmática, tanto en las plantas silvestres como en los mutantes pgap1B-1 y 

pgap1ABC. 

Localización de GPI-APs en mutantes per1l 

 Las mismas técnicas y marcadores del apartado anterior fueron 

utilizados esta vez para los mutantes per1l. En los 3 mutantes per1lA-1, 

per1lB-2 y per1lAB-2, GFP-AGP4 quedó retenido en el ER y con un patrón 

punteado (posiblemente Golgi). Sin embargo no fue el mismo caso que para 

GFP-GPI, el cual se localizó en la membrana plasmática en estos 3 mutantes 

en expresión transitoria en plántulas de Arabidopsis (Figura 57).  

 Finalmente se utilizó la técnica de expresión transitoria en 

protoplastos para confirmar los resultados anteriores. Los patrones 

resultaron ser los mismos para estos 3 mutantes, excepto para GFP-GPI, que 

en los mutantes per1lA-1 y per1lAB-2 mostró un patrón reticular y punteado 

(característicos de ER y Golgi, respectivamente) en lugar de localizarse 

exclusivamente en la membrana plasmática (Figura 58). También se 

utilizaron los marcadores GFP-PMA, MAP-GFP y GFP-PAP para comprobar 

que esta acumulación es específica de las GPI-APs y no del resto de proteínas 

secretoras. 
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Discusión  

 Arabidopsis contiene 7 ortólogos putativos del enzima PGAP1 y 2 

para el enzima PER1L. En esta tesis se han caracterizado 3 isoformas de 

PGAP1, centrándonos en la isoforma PGAP1B, la única que se ha predicho 

que se localiza en el ER, y las dos isoformas del enzima PER1L. 

 Por una parte, en los experimentos realizados en esta tesis, se ha 

visto que en el mutante pgap1B-1, las GPI-APs se acumulan en el ER, aunque 

aparece también un patrón punteado característico de Golgi (en el futuro se 

realizarán más experimentos para corroborarlo), y además un porcentaje de 

las GPI-APs consiguen llegar a la membrana plasmática. Este patrón coincide 

con lo descrito en animales y levaduras, donde las GPI-APs no remodeladas, 

sufren una salida ineficiente del ER y su transporte está retrasado. Además, 

este hecho explicaría que los mutantes de PGAP1, así como sucede con los 

mutantes de animales y levaduras, son viables. No obstante, se ha descrito 

en un mutante Bst1p de Candida albicans, que la pared celular está afectada, 

por lo que será de interés comprobar si en plantas ésta también está 

afectada. 

 Por otra parte, en los mutantes per1lA-1, per1lB-2 y per1lAB-2, 

también se ha visto el mismo patrón que en el caso anterior, es decir, se 

observa una acumulación de GPI-APs en el ER, un patrón punteado, y que 

una proporción de GPI-APs, consiguen llegar a la membrana plasmática. 

Estos mutantes tampoco presentan ninguna alteración fenotípica en 

condiciones de crecimiento estándar, aunque a diferencia de los mutantes 

de PGAP1, per1lA-1 y per1lAB-2 son más sensibles al estrés salino, por lo que 

este enzima podría estar implicado en la resistencia a este estrés. 
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 También se analizó la localización de las 2 isoformas de PER1L, las 

cuales se observaron en el Golgi, por lo que indica que la ruta del remodelado 

de anclas GPI podría ser parecida a la de animales, donde la ruta de 

remodelado se produce en el ER y Golgi, y no como en levaduras, como se 

pensaba, donde la ruta concluye en el ER. Esto adquiere especial relevancia 

ya que las células animales tienen polaridad, así como las vegetales, y el 

hecho de que esta vía concluya en el Golgi puede tener incidencia para dirigir 

a qué cara celular son enviadas las GPI-APs. 

 Por último, resulta interesante el hecho de que se observe el mismo 

patrón de localización de las GPI-APs en mutantes de enzimas que se sitúan 

en orgánulos diferentes. Esto podría ser debido, en el caso de PGAP1, a que 

en el Golgi existe un mecanismo de retención de las GPI-APs que no están 

correctamente remodeladas, o bien no son reconocidas por los enzimas de 

la ruta en el Golgi, quedando atrapadas. Y en el caso de PER1L, se podría 

deber a que esta ruta está regulada, y las proteínas p24 o algún otro 

mecanismo molecular podría retener las GPI-APs en el ER. 

 

5 CONCLUSIONES 

1. La ausencia de proteínas p24 de la subclase delta-1 provoca una 

disminución en los niveles de proteínas de otros miembros de la familia 

de proteínas p24 en Arabidopsis, lo que se debe a una reducción en la 

estabilidad de las proteínas. La expresión de un solo miembro de la 

subclase delta-1 (p24δ5) es suficiente para restaurar los niveles de 

proteína de otros miembros de la familia de proteínas p24, lo que sugiere 
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la existencia de redundancia funcional dentro de las proteínas p24 de la 

subclase delta-1. 

2. La pérdida de las proteínas p24 de la subclase delta-1 provoca la 

acumulación de proteínas con anclaje GPI en el ER, lo que indica que las 

proteínas p24δ-1 están implicadas en la salida del ER y en la localización 

en la membrana plasmática de las GPI-APs en Arabidopsis. Sin embargo, 

una proporción de GPI-APs es todavía capaz de alcanzar la membrana 

plasmática en el mutante p24δ-1, lo que puede explicar por qué el 

mutante p24δ-1 no muestra ninguna alteración fenotípica bajo 

condiciones de crecimiento estándar, aunque es más sensible al estrés 

salino. 

3. Las proteínas p24δ-1 parecen estar específicamente involucradas en la 

salida del ER y el transporte a la membrana plasmática de las GPI-APs, ya 

que la pérdida de las proteínas p24δ-1 no afecta el transporte de otras 

proteínas de la membrana plasmática, incluyendo proteínas 

transmembrana y proteínas ancladas a la membrana plasmática con 

diferentes tipos de anclajes lipídicos. 

4. p24δ5 (subclase p24δ-1) pero no p24δ9 (subclase p24δ-2), restaura 

parcialmente la localización en la membrana plasmática de GPI-APs en el 

mutante p24δ-1, lo que sugiere que los miembros de las dos subclases 

p24delta no son funcionalmente redundantes. El dominio coiled-coil y no 

el dominio GOLD de p24δ5 parece estar involucrado en el transporte de 

GPI-APs. Los experimentos realizados en la tesis mostraron que p24δ5 

interacciona con la forma del ER de la proteína con anclaje GPI AGP4, una 

interacción que requiere el dominio coiled-coil de p24δ5. 
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5. El estudio de la función de los enzimas PGAP1/Bst1p y PGAP3/Per1p en 

Arabidopsis, en el remodelado lipídico del ancla GPI y en el transporte de 

las GPI-APs a la membrana plasmática, reveló que: 

5.1 Los mutantes de PGAP1B (el único ortólogo de PGAP1/Bst1p en 

Arabidopsis que se encuentra en el ER), PER1LA y PER1LB (los dos 

ortólogos de PGAP3/Per1p en Arabidopsis) muestran una acumulación 

de las GPI-APs en el ER, lo que sugiere la necesidad del remodelado 

lipídico para un transporte eficiente de las GPI-APs desde el ER a la 

membrana plasmática. Ninguno de estos mutantes muestra una 

evidente alteración fenotípica bajo condiciones de crecimiento estándar; 

sin embargo, los mutantes per1lA y per1lAB son más sensibles al estrés 

salino que las plantas control. 

5.2 Tanto PER1LA-RFP como PER1LB-RFP se localizan en el aparato de Golgi, 

lo que indica que en plantas la ruta de remodelado de las GPI-APs 

también ocurre en el aparato de Golgi, como en animales. Esto es 

contrario a lo sucedido en levaduras, donde toda la vía de remodelación 

ocurre en el ER. 
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