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Resumen 

El presente trabajo de tesis doctoral se recoge en el formato de “compendio de 

artículos” de acuerdo con el reglamento de depósito, evaluación y defensa de la tesis 

doctoral de la Universidad de Valencia, ACCUV 266/2011. En cumplimiento de dicha 

reglamentación, en esta sección se expone un resumen global de la temática, resultados 

y conclusiones extraídas de los mismos. 

El trabajo desarrollado en el marco de esta tesis se encuentra comprendido en el campo 

del Magnetismo Molecular y la Química de Coordinación. El Magnetismo Molecular ha 

sido un área de sostenido interés durante los últimos 30 años. La convergencia de 

múltiples disciplinas, desde la Química y la Física hasta la Biología, ha llevado a un 

progreso rápido y destacado en esta área debido a la complementariedad, tanto de las 

técnicas experimentales utilizadas, como de los conocimientos implicados. El objetivo 

de poder controlar factores como las interacciones y la anisotropía magnéticas ha 

propiciado la obtención de especies capaces de presentar un mejor desempeño 

magnético con miras a potenciales futuras aplicaciones tecnológicas en espintrónica y 

computación cuántica y molecular. 

La investigación desarrollada en esta Tesis Doctoral se ha centrado en la caracterización 

estructural y estudio de propiedades magnéticas de sistemas basados en los iones 

metálicos Mn(III) y Re(IV). El primero es un ion 3d mientras que el último es un ion 

metálico 5d. Estos iones metálicos han sido seleccionados a cuenta de que, dados los 

altos valores de anisotropía y espín que presentan, pueden brindar resultados 

destacables desde el punto de vista del Magnetismo  Molecular.  

El estudio, tanto de complejos mononucleares como polinucleares discretos o 

extendidos en una, dos o tres dimensiones, se ha centrado fundamentalmente en los 

iones metálicos de la primera serie de transición (metales 3d) y lantánidos (metales 4f). 

Sin embargo, los iones metálicos de la segunda y tercera series de transición (metales 

4d y 5d, respectivamente) se han investigado y desarrollado mucho menos. 

La experiencia previa de nuestro grupo, respaldada por decenas de publicaciones 

destacadas, relacionada con la Química de Coordinación del Re(IV) y el estudio de las 

propiedades magnéticas de sus compuestos, ha permitido el desarrollo exitoso de los 

objetivos planteados. Asimismo, ha sido amplia la contribución previa que este equipo 

ha hecho a la descripción y el entendimiento de los sistemas de moléculas imán 

conocidos como [Mn6]s. Entre ellos destacan nada menos que la estructura del primer 

[Mn6] reportada en la literatura y un estudio exhaustivo de la correlación 

magnetostructural de sus propiedades. Todo ello ha sido fundamental para el desarrollo 

adecuado y la posterior publicación de cada uno de los trabajos presentados en esta 

Tesis. 
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Resumen 

En este contexto, los principales objetivos de esta Tesis se componen de dos partes: 

Centrándonos en los complejos basados en Mn(III), se ha buscado ampliar el 

conocimiento, mejorar las propiedades y funcionalizar sistemas pertenecientes a la 

familia de los [Mn6]s. Estos sistemas constituyen una de las familias más 

sistemáticamente estudiada de imanes moleculares, hecho que hace de los [Mn6]s 

candidatos prometedores para estudiar su posible funcionalización y aplicación en 

campos como la espintrónica molecular y la electrónica molecular. Por ello, uno de los 

principales objetivos de esta Tesis ha sido funcionalizar y posteriormente intentar 

conectar estas moléculas a nanodispositivos electrónicos.  

Por otra parte, a pesar de la cantidad de estructuras de sistemas del tipo [Mn6] 

reportados, es muy reducido el número de especies catiónicas descritas en la literatura. 

En consecuencia, hemos considerado que es necesario desarrollar nuevas especies 

tanto neutras como catiónicas de [Mn6], dado que al incluir nuevos ligandos o 

contraiones aniónicos se pueden introducir a estos sistemas funcionalidades 

complementarias, pudiendo obtener así nuevos compuestos multifuncionales. 

El otro apartado de la investigación ha sido dedicado a la obtención y el estudio de 

sistemas basados en Re(IV), con el objetivo de contribuir a una mejor comprensión de 

los fenómenos de canje magnético, así como para tratar de aproximar estos sistemas a 

nuevas posibles aplicaciones. 

Dada la alta anisotropía magnética que exhibe el ion Re(IV), se esperaba observar 

resultados interesantes como los revelados previamente por sistemas como el 

tetranuclear [Ni{ReCl4(ox)}3]4- y los mononucleares [ReX4(ox)]2- (X = Cl, Br), todos ellos 

complejos aniónicos, el primero siendo un Single Molecule Magnet (SMM) y los otros 

Single Ion Magnets (SIMs). En este contexto, con el diseño de sistemas donde las 

especies mononucleares Re(IV) puedan ser consideradas magnéticamente aisladas, 

hemos buscado estudiar y ajustar los principales parámetros que definen sus 

propiedades magnéticas. Para mantener aislados los complejos en estado sólido, se 

utilizó específicamente un ion inorgánico magnéticamente inactivo como lo es el Zn(II), 

un ion d10. Además, también se han utilizado otros cationes de diferente naturaleza, 

diamagnéticos y paramagnéticos, con el objetivo de introducir algunas posibles 

funciones y modificaciones en las propiedades magnéticas de estos sistemas de interés. 

Basándonos en la amplia experiencia de nuestro grupo en esta área de investigación, 

hemos diseñado y llevado a cabo una metodología de trabajo adecuada, la cual nos ha 

permitido alcanzar exitosamente los objetivos antes planteados.  

Esta metodología, como todo el cuerpo de esta memoria, ha estado conformada por dos 

ejes fundamentales. Esto es, la síntesis y caracterización de:  

1. Sistemas pertenecientes a la familia de los [Mn6]

2. Sistemas basados en el ion Re(IV)
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Resumen 

Ambas líneas de trabajo se diferencian fundamentalmente en la etapa de síntesis de los 

compuestos. Una vez sintetizados los mismos se ha realizado una caracterización 

primaria mediante espectroscopia infrarroja, análisis elemental de elementos livianos y 

análisis de emisión de rayos–X mediante microscopía electrónica de barrido. 

Seguidamente se ha procedido a la caracterización estructural mediante difracción de 

rayos–X sobre monocristal y, por último, a la determinación de las propiedades 

magnéticas mediante magnetometría SQUID sobre muestras microcristalinas de los 

compuestos obtenidos. Una vez obtenida la información estructural y magnética de los 

sistemas, se ha procedido con el análisis magneto-estructural de los mismos. 

En lo que se refiere a la síntesis de los compuestos de la familia de los [Mn6], se han 

seguido los procedimientos habituales previamente reportados. En primer lugar se ha 

sintetizado in situ el complejo [Mn6] a partir de una sal simple de Mn(II) y 

salicilamidoxima empleando trietilamina como base. Para ello se ha utilizado etanol 

como disolvente en todos los casos, a excepción del derivado obtenido empleando dmf 

(N-N’dimetilformamida) donde el solvente empleado ha sido la propia 

dimetilformamida. Una vez se ha obtenido el complejo preformado, se han agregado a 

la mezcla de reacción los nuevos agentes previamente seleccionados para llevar a cabo 

las diferentes modificaciones estructurales sobre el compuesto (diferentes contraiones, 

ligandos tipo azoles y ligandos funcionalizados con grupos tioéster respectivamente). 

Finalmente, en los casos en que ha sido necesario, se ha procedido a la recristalización 

de los compuestos mediante difusión directa. Para ello se han empleado, según el caso, 

disolventes como etanol, acetona, dmf y éter. 

Por su parte, el trabajo sobre compuestos basados en Re(IV) ha implicado una gama más 

amplia de desafíos desde el punto de vista sintético. En los trabajos dirigidos 

exclusivamente al estudio magneto-estructural de los compuestos basados en Re(IV), se 

parte del precursor mononuclear de Re(IV) preformado {sea este [ReX6]2- o [ReX4(ox)]2- 

(X = Cl, Br)}, sintetizado según el procedimiento reportado en la literatura.  

Aquellos trabajos dedicados al estudio de las propiedades magnéticas de las especies 

mononucleares [ReX6]2- han implicado procedimientos de metátesis, donde se ha 

llevado a cabo el intercambio de cationes de una sal apropiada (de potasio o 

tetrabutilamonio, según el caso específico) del anión, por los cationes de interés, en el 

medio adecuado (solventes acuosos como los ácidos HX u orgánicos como la dmf). Por 

su parte, en los trabajos dedicados a especies heteropolinucleares, la síntesis se ha 

realizado en mezclas apropiadas de solventes orgánicos (isoporpanol, acetonitrilo, 

nitrometano) mediante la mezcla directa de los correspondientes precursores 

[ReX4(ox)]2- con sales simples de los iones metálicos 3D [sólo en el trabajo basado en 

Re(IV) y Cu(II) se han empleado ligandos auxiliares, añadidos en forma directa sobre la 

mezcla de reacción]. La cristalización de las especies involucradas se ha completado 

mediante evaporación lenta del disolvente. 
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Resumen 

Finalmente, el trabajo dedicado a la exploración de una nueva ruta de síntesis de 

especies mononucleares basadas en Re(IV) ha implicado la utilización del precursor 

[ReCl4(MeCN)2] como compuesto de partida. La estrategia de síntesis ha consistido en 

la sustitución directa de las moléculas de acetonitrilo por diferentes disolventes [dmf y 

dma (N,N’dimetilacetamida)]. Para ello se ha disuelto el precursor en el disolvente que 

se desea emplear para la sustitución, se ha procedido al calentamiento de la mezcla y se 

han probado diferentes tiempos de reacción. La cristalización de los compuestos se ha 

llevado a cabo mediante difusión directa de éter sobre la mezcla de reacción. 

De este modo, la presente tesis se estructura en tres secciones diferentes. La primera 

de ellas es una sección introductoria, la Sección 0. Allí se expone una breve revisión 

histórica sobre el Magnetismo Molecular, desde los orígenes mismos de la noción de 

magnetismo hasta la consolidación de la disciplina. A continuación, se presentan los 

conceptos de SMM y SIM, donde se ejemplifican los trabajos más relevantes en el 

desarrollo de este campo, así como aquellos sistemas destacables relacionados 

directamente con la investigación de esta Tesis. Seguidamente, se presentan los 

conceptos básicos relacionados con el Magnetismo Molecular, fundamentales para el 

entendimiento de la materia, tales como magnetización, susceptibilidad magnética, 

tiempos de relajación, etc. Finalmente se lleva a cabo el desarrollo del tratamiento y la 

interpretación de los datos obtenidos de las medidas magnéticas aplicando un campo 

oscilante, comúnmente conocidas como medidas AC (por sus siglas en inglés Alternating 

Current). Estas medidas son especialmente importantes en lo referente a la 

caracterización de sistemas que presentan señales fuera de fase, tales como los SMMs 

o SIMs.

En la segunda sección, Sección A, se introduce brevemente la familia de complejos 

hexanucleares conocidos comúnmente como [Mn6]s. Estas especies, basadas en el ion 

metálico Mn(III) y diferentes tipos de oximas y sus derivados, han sido extensamente 

estudiadas, presentando todas ellas comportamiento de tipo SMM.  Aquí se realiza un 

breve recorrido histórico destacando los resultados más relevantes obtenidos en este 

contexto.  

De las especies de [Mn6] reportadas hasta el momento, la mayoría componen el grupo 

de compuestos de naturaleza aniónica o neutra. Teniendo en cuenta este hecho, una de 

las finalidades del trabajo de esta Tesis ha sido la síntesis y caracterización, estructural 

y magnética, de nuevas especies catiónicas. Esto en el entendido de enriquecer el 

conocimiento ya existente en lo que se refiere a los sistemas pertenecientes a esta 

familia.  

Así, en el trabajo titulado “Ferromagnetic Oxime-Based Manganese(III) Single-Molecule 

Magnets with Dimethylformamide and Pyridine as Terminal Ligands”, dos nuevos 

miembros de la familia de [Mn6] SMMs de fórmulas [Mn6(μ3-O)2(H2N-sao)6(dmf)8](ClO4)2 
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Resumen 

y [Mn6(μ3-O)2(H2N-sao)6(py)6(EtOH)2][ReO4]2·4EtOH, (dmf = N,N’-dimetilformamida, py 

= piridina, H2N-saoH2 = salicilamidoxima) han sido sintetizados y caracterizados 

estructural y magnéticamente. Ambos compuestos fueron directamente preparados a 

partir de la desprotonación del ligando H2N-saoH2 en presencia de la sal deseada de 

manganeso y el disolvente coordinante adecuado (dmf y py, respectivamente). El 

compuesto conteniendo dmf cristaliza en el sistema triclínico con grupo espacial 𝑃1̅, 

mientras que el análogo de py cristaliza en el sistema monoclínico con el grupo espacial 

P21/n. En el empaquetamiento cristalino de estos compuestos, los aniones (ClO4)- y 

[ReO4]- se encuentran entre las unidades catiónicas [Mn6]2+, que están unidas por enlace 

de hidrógeno a los grupos –NH2 de los ligandos salicilamidoxima. El estudio de las 

propiedades magnéticas reveló acoplamiento ferromagnético entre los iones metálicos 

Mn(III) y la aparición de relajación lenta de la magnetización, característica típica del 

comportamiento de SMM. La naturaleza catiónica de estas especies [Mn6]2+ sugiere que 

podrían usarse como bloques de construcción adecuados para preparar nuevos 

materiales magnéticos que exhiban funcionalidades adicionales. Además, la especie 

conteniendo dmf como ligando terminal presenta el valor de barrera de energía más 

alto reportado hasta el momento para un compuesto catiónico de la familia de los 

[Mn6]s. 

Sin embargo, no sólo se ha explorado la síntesis y caracterización de nuevos sistemas 

catiónicos, sino que además se ha buscado profundizar en la obtención y el estudio de 

compuestos neutros en los cuales pudiesen coexistir funcionalidades complementarias, 

tales como SMMs que resulten adecuados para estudios de espintrónica y electrónica 

molecular. Para ello, los sistemas neutros resultan particularmente apropiados ya que 

se trata de uno de los grupos de especies más estudiadas dentro de la familia de los 

[Mn6]s.  

De este modo, en el trabajo titulado “Hexanuclear manganese(III) single-molecule 

magnets based on oxime and azole-type ligands”, y publicado en un número especial 

con motivo del 65° aniversario del Prof. Miguel Julve, se han reportado dos nuevos 

complejos hexanucleares de manganeso (III) de fórmulas [Mn6(μ3-O)2(H2N-sao)6(bta)2 

(EtOH)6]·2EtOH·4H2O y [Mn6(μ3-O)2(H2Nsao)6(pta)2(EtOH)6]·4EtOH (bta = anión 1,2,3-

benzotriazolato, pta = anión 5-fenil-tetraazolato), los cuales se han sintetizado y 

caracterizado estructural y magnéticamente. Ambos compuestos cristalizan en el 

sistema triclínico con el grupo espacial 𝑃1̅. En el empaquetamiento cristalino, los 

complejos adyacentes de [Mn6] están conectados a través de moléculas de disolvente 

no coordinantes, que a su vez están unidos mediante enlaces de hidrógeno a átomos de 

N de los anillos de azol y los grupos –NH2 del ligando salicilamidoxima. El estudio de las 

propiedades magnéticas, a través de mediciones de susceptibilidad magnética, revelan 

como interacción predominante un acoplamiento antiferromagnético entre los iones 

metálicos Mn(III) en ambos compuestos. Las medidas de magnetización a temperatura 

y campo variable confirmaron la existencia de un estado fundamental de espín de S = 4 
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para ambos compuestos. Asimismo, la presencia de relajación lenta de la magnetización 

en ambos indica que es compatible con el comportamiento de SMM. 

Finalmente, el trabajo más destacado de la sección dedicada a los sistemas de Mn(III) 

implicó la funcionalización de sistemas conocidos de [Mn6] con ligandos del tipo 

tioésteres, proyectando la posibilidad a futuro de su estudio de aplicación a junction 

devices. Este trabajo ha consistido en el diseño y la caracterización estructural y 

magnética de dichos compuestos. Los resultados obtenidos han sido reportados en el 

artículo titulado “Thioester-functionalised and oxime-based hexametallic manganese(III) 

single-molecule magnets”. Aquí se reportan dos nuevos complejos hexametálicos de 

Mn(III) de fórmula [Mn6(μ3-O)2(H2N-sao)6(3-atha)2(EtOH)6]·2EtOH·2H2O y [Mn6(μ3-

O)2(H2N-sao)6(6-atha)2(EtOH)6]· 6EtOH [hatpa = ácido 3-acetilpropiónico, 6-hatha =

ácido 6-acetilhexanoico]. Estos compuestos fueron sintetizados mediante el uso de

ligandos con grupos funcionales tioéster y carboxilato, y caracterizados magneto-

estructuralmente. El primero de ellos cristaliza en el sistema triclínico con grupo espacial

𝑃1̅ mientras que el segundo lo hace en el sistema monoclínico con grupo espacial P21/c.

El estudio de la susceptibilidad magnética DC y AC revela un comportamiento de SMM

para ambos compuestos con estados fundamentales de espín S = 12 y S = 4,

respectivamente. Por lo tanto, estos compuestos son nuevos miembros de la familia de

moléculas imán [Mn6] basados en oximas y funcionalizados con el grupo tioéster.

En base a los resultados obtenidos, se plantea como una proyección a futuro de este 

trabajo realizar los estudios de aplicación de estas nuevas moléculas funcionalizadas en 

dispositivos a escala nanométrica. Asimismo, este trabajo ha abierto las puertas a la 

posibilidad de funcionalizar sistemas de [Mn6] con un amplio abanico de ligandos como 

pueden ser tioésteres de cadena alifática larga u otro tipo de moléculas conteniendo 

azufre.  

En vista de lo antes expuesto, podemos afirmar que se ha cumplido en términos 

generales con los objetivos planteados inicialmente. Se han obtenido nuevas especies 

catiónicas, una de las cuales representa incluso una mejora en las propiedades 

magnéticas de esta familia de compuestos. Se ha explorado la síntesis y además se han 

reportado dos estructuras de compuestos [Mn6] neutros empleando ligandos del tipo 

azol. Esto abre las puertas al uso de este tipo de ligandos, adecuados en lo que se refiere 

a la funcionalización de estos sistemas, a los que podrían añadir otras propiedades físicas 

de luminiscencia, por ejemplo. Asimismo, se han funcionalizado y caracterizado dos 

nuevos [Mn6], funcionalizados con dos ligandos del tipo tioéster presentando diferentes 

longitudes de cadena. Este trabajo deja abierta la perspectiva a futuro de explorar el uso 

de estos compuestos para conectar electrodos en dispositivos a escala nanométrica. 
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Una vez expuestos los trabajos relativos a los sistemas basados en Mn(III), se desarrolla 

en esta memoria la tercera y última sección, Sección B, previa a las conclusiones, referida 

a la investigación llevada  a cabo sobre compuestos basados en Re(IV). Aquí se han 

caracterizado y analizado las propiedades magnéticas de diferentes sales de los aniones 

[ReX6]2-, donde X = Cl, Br, empleando cationes de diferente naturaleza: moléculas 

protonables de origen biológico, cationes paramagnéticos, capaces de ordenar los 

complejos mononucleares en diferentes arreglos de simetría dentro de la estructura 

cristalina. Estos sistemas exhiben propiedades magnéticas interesantes que se 

describen a continuación. 

En primer lugar, en el trabajo titulado “Enhancement of Intermolecular Magnetic 

Exchange through Halogen···Halogen Interactions in Bisadeninium Rhenium(IV) Salts”, 

se han sintetizado y caracterizado magneto-estructuralmente dos nuevas sales de Re(IV) 

de fórmula general [H2ade]2[ReX6]X2·4H2O [(H2ade)2+ = 9H-adenina-1,7-diinio; X = Cl, Br]. 

Ambos compuestos son sales  isoestructurales que cristalizan en el sistema 

ortorrómbico con el grupo espacial Fdd2. Ambas estructuras cristalinas están 

conformadas por aniones mononucleares discretas [ReX6]2- y X y cationes de adenina 

doblemente protonados. El ion de renio (IV) está hexacoordinado y unido a seis ligandos 

haluro [X = Cl y Br respectivamente] en una geometría octaédrica. En ambas redes 

cristalinas se observan interacciones intermoleculares cortas del tipo Re(IV)- X ··· X -

Re(IV), así como Re- X ··· H-N(H2ade) y Re- X ··· H-Ow. Las medidas de susceptibilidad 

magnética en sendas  muestras microcristalinas, en el intervalo de temperatura 2.0−300 

K, revelan interacciones intermoleculares antiferromagnéticas significativas en ambos 

compuestos, lo que resulta en la observación de máximos en χM a ca. 6.0 y 12.0 K, 

respectivamente. La mayor deslocalización de espín del ion Re(IV) sobre los ligandos 

bromuro periféricos, en comparación con los ligandos cloruro, explica la mejora del 

acoplamiento magnético observado en el segundo compuesto. 

Esta publicación en particular la firmo como tercer autor. En este caso mi  contribución 

ha estado directamente relacionada con la caracterización preliminar de los compuestos 

así como con la medida de sus propiedades magnéticas. Además, he llevado a cabo el 

tratamiento de los datos experimentales obtenidos en dichas medidas, sobre los cuales 

he realizado los ajustes teóricos necesarios. Así, este trabajo me ha permitido comenzar 

a desarrollar mi experiencia como investigador en lo que respecta al tratamiento y ajuste 

de datos de propiedades magnéticas. Específicamente, para esta publicación se han 

ajustado las curvas de susceptibilidad molar (χM) en función de la temperatura y también 

el producto χMT en función de la temperatura. 

Como continuación del estudio sobre las propiedades magnéticas de sales de los aniones 

[ReX6]2- empleando cationes de diferente naturaleza, en el trabajo titulado 

“Hexakis(dimethylformamide)iron(II) complex cation in hexahalorhenate(IV)-based 

salts: synthesis, X-ray structure and magnetic properties”, han sido preparados y 

caracterizados dos compuestos conteniendo hierro(II)-renio(IV) de fórmula general 
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[Fe(dmf)6][ReX6] [X = Cl y Br respectivamente; dmf = N, N-dimetilformamida]. Las 

medidas de difracción de rayos X en polvo sobre muestras de ambos compuestos 

confirman que se trata de sistemas isoestructurales. La estructura cristalina del 

compuesto [Fe(dmf)6][ReCl6] se determinó mediante difracción de rayos X de 

monocristal. Este compuesto cristaliza en el sistema triclínico con grupo espacial 𝑃1̅. 

Cada ion Fe(II) se encuentra hexacoordinado por seis oxígenos pertenecientes a seis 

moléculas de dmf que conforman un entorno de coordinación octaédrico distorsionado. 

El ion Re(IV) es también hexacoordinado, en este caso, por seis aniones haluro en una 

geometría octaédrica casi regular. Las propiedades magnéticas de los compuestos 

fueron estudiadas a través de mediciones de susceptibilidad magnética realizadas sobre 

muestras microcristalinas. Los datos experimentales obtenidos fueron reproducidos por 

un modelo de dos centros paramagnéticos aislados [S = 2, Fe(II) y S = 3/2, Re(IV)] 

observándose grandes valores para los parámetros de desdoblamiento a campo cero 

(zfs). 

En el entendido de completar esta primera etapa de estudio de especies mononucleares 

de Re(IV), se plantea como perspectiva llevar a cabo la caracterización estructural y 

magnética de los aniones [ReX6]2- con X = Cl, Br, I, los cuales podrían ser aislados 

magnéticamente en la estructura cristalina empleando cationes orgánicos voluminosos, 

tales como tetrabutilamonio o  tetrafenilfosfonio.  

En la siguiente etapa hemos explorado una nueva estrategia de sustitución de ligando 

sobre un compuesto mononuclear de Re(IV). La estrategia habitual y más utilizada 

implica la sustitución directa de iones halógeno sobre las especies mononucleares 

[ReX6]2- con X = Cl y Br. Sin embargo, este tipo de sustitución no siempre es tan sencilla, 

y raras veces permite la sustitución de más de uno o dos halogenuros, lo cual lleva a la 

formación de productos secundarios no deseados y rendimientos generalmente muy 

bajos. Por otra parte, la estrategia aquí desarrollada se basa en el uso del complejo cis-

[ReCl4(MeCN)2] para controlar tanto la cantidad de posiciones de coordinación 

sustituidas (las dos posiciones ocupadas originalmente por moléculas de acetonitrilo) 

como la isomería del compuesto obtenido. La publicación titulada “Ligand substitution 

in cis-bis(acetonitrile)tetrachlororhenium(IV) complex with N,N-dimethylformamide and 

N,N-dimethylacetamide” reporta la preparación, estructuras cristalinas y propiedades 

magnéticas de dos nuevos complejos mononucleares de Re(IV) de fórmula cis-

[ReCl4(dmf)2] y cis-[ReCl4(dma)2] [dma = N, N-dimetilacetamida]. Ambos sistemas de 

Re(IV) se sintetizaron mediante reacciones  de sustitución de ligando del precursor cis-

[ReCl4(MeCN)2], al calentar en el disolvente empleado. Los compuestos cristalizan en 

el sistema cristalino monoclínico con el grupo espacial C2/c. Cada ion Re(IV) exhibe un 

entorno de coordinación octaédrico distorsionado, unido por dos átomos de oxígeno 

de dos moléculas dmf y dma respectivamente, y cuatro iones cloruro. En la red cristalina, 

los complejos mononucleares de Re(IV) se colocan generando contactos 

intermoleculares cortos del tipo Re-Cl···Cl-Re. Por otra parte, se han estudiado las 
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propiedades magnéticas de los compuestos obtenidos a través de medidas de 

susceptibilidad magnética a temperatura variable. Estas medidas revelan 

importantes interacciones antiferromagnéticas entre los iones Re(IV) vecinos. En 

el compuesto conteniendo dmf, estas interacciones representan un máximo 

en la curva de susceptibilidad magnética a ca. 5.0 K. 

Como continuación del trabajo centrado en las especies mononucleares, en la última 

etapa de nuestra investigación sobre compuestos basados en Re(IV) y sus propiedades 

magnéticas, hemos enfocado nuestros esfuerzos al diseño y caracterización de especies 

heteropolinucleares conteniendo Re(IV) y metales de la primera serie de transición. Esto 

nos ha permitido, no sólo obtener compuestos que podrían ser punto de partida para la 

obtención de futuros sistemas multifuncionales, sino que además, nos ha dado 

fundamentalmente la posibilidad de generar un mayor conocimiento sobre el 

comportamiento y las propiedades magnéticas de las especies basadas en  [ReX4(ox)]2- 

[X = Cl y Br; ox = anión oxalato]. De estas especies, de las cuales ambas presentan por sí 

mismas un comportamiento de tipo SIM, el anión [ReCl4(ox)]2- ha sido el más estudiado, 

siendo los principales trabajos reportados relacionados a su uso como metaloligando 

hacia metales 3d. Por su parte, la química del precursor aniónico [ReBr4(ox)]2- ha sido 

considerablemente menos explorada. 

Es así que en la comunicación titulada “Field-induced slow relaxation of magnetisation 

in an anionic heterotetranuclear [ZnIIReIV
3] system” se utiliza el precursor ampliamente 

explorado [ReCl4(ox)]2- hacia el ion Zn(II), el cual es hasta el momento el menos 

estudiado entre los iones 3d de interés para nuestro campo. Así, en este trabajo se 

reporta la síntesis y caracterización magneto-estructural del compuesto tetranuclear 

basado en zinc(II) y renio(IV) de fórmula (NBu4)4[Zn{ReCl4(μ-ox)}3]. Este compuesto 

cristaliza en un sistema triclínico con grupo espacial 𝑃1̅. El empaquetamiento cristalino 

está constituido por los aniones [Zn{ReCl4(μ-ox)}3]4- y los cationes NBu4
+

 que se 

mantienen unidos por fuerzas electrostáticas e interacciones débiles. La especie 

aniónica [Zn{ReCl4(μ-ox)}3]4- presenta una estructura tipo hélice donde el átomo  

central es el ion Zn(II), unido por puentes oxalato bis-bidentado a tres iones Re(IV) 

periféricos. Las medidas de susceptibilidad magnética DC a temperatura variable 

realizadas sobre una muestra microcristalina dan cuenta del alto valor de 

desdoblamiento a campo cero esperado para los iones Re(IV) (|D| = 46.7 cm-1) así como 

de posibles interacciones intramoleculares de tipo antiferromagnético. Las medidas de 

AC a diferentes temperaturas en presencia de un campo externo DC revelan la existencia 

de una relajación lenta de la magnetización y, por lo tanto, la existencia de un 

comportamiento de tipo Single-Molecule Magnet (SMM). Este es el primer ejemplo de 

un complejo de Zn(II) unido, a puente oxalato, a un ion metálico 5d que exhibe una 

relajación lenta de la magnetización. Además, dada la naturaleza diamagnética del ion 

Zn(II), la obtención de este compuesto nos permitió obtener por primera vez el valor J 

de la interacción magnética entre iones Re(IV) unidos a través de ligandos oxalato. Por 

25



Resumen 

lo tanto, este trabajo muestra que la combinación de Re(IV) (ion 5d3 con gran anisotropía 

magnética) y Zn(II) (ion diamagnético 3d10) proporcionará la síntesis de futuros sistemas 

y nuevos materiales basados en oxalato que muestren propiedades interesantes y 

prometedoras. 

En el caso particular de este trabajo, el cual firmo como segundo autor, mi contribución 

personal ha estado centrada en la colaboración en el aspecto práctico del trabajo de 

síntesis de los compuestos por parte del entonces estudiante del Programa de Máster 

en Química, Adrián Sanchis Perucho. Asimismo, he desarrollado el aspecto 

cristalográfico de este trabajo, llevado a cabo la estrategia de medida y la recolección 

de datos de difracción de rayos X de monocristal, así como el refinamiento de los datos 

así obtenidos y la resolución estructural. 

Finalmente, el último trabajo reportado en esta memoria de Tesis ha involucrado el uso 

de la especie aniónica [ReBr4(ox)]2- como metaloligando hacia el ion Cu(II). Este último 

es uno de los iones de la primera serie de transición que ha sido más explorado en lo 

que refiere tanto a su química como a las propiedades magnéticas de sus especies 

basadas en el ligando oxalato y sus derivados. Así, el trabajo titulado “Synthesis and 

characterisation of a novel ferrimagnetic chain based on copper(II) and rhenium(IV)”, 

publicado en un número especial con motivo del 75° aniversario del Prof. Michel 

Verdaguer, ha permitido profundizar en el conocimiento de las propiedades de la 

especie [ReBr4(ox)]2- frente a un catión ampliamente estudiado como es el Cu(II). De 

este modo, este artículo reporta la preparación y caracterización de un nuevo polímero 

de coordinación unidimensional de cobre(II)  y renio(IV) de fórmula {[ReBr4(μ-

ox)Cu(pyim)2]·MeCN}n [pyim = 2-(2’-piridil)imidazol]. Las medidas de difracción de 

rayos-X en polvo dan cuenta de la pureza de la muestra del compuesto, mientras que la 

de difracción de rayos-X de monocristal muestra que este cristaliza en el sistema 

ortorrómbico con el grupo espacial Pbca. La estructura cristalina de este sistema 

monodimensional está compuesta por cationes [Cu(pyim)2]2+ y aniones [ReBr4(ox)]2- 

unidos a través de puentes de grupos bromuro y oxalato, que generan la alternancia 

Cu(II) y Re(IV) en las cadenas. Las medidas de susceptibilidad magnética de temperatura 

variable realizadas sobre una muestra microcristalina revelan un acoplamiento 

antiferromagnético entre los iones Cu(II) y Re(IV); y a temperaturas más bajas, esta 

interacción conduce a la aparición de comportamiento ferrimagnético. Este compuesto 

es el primer compuesto ferrimagnético obtenido con el precursor [ReBr4(ox)]2-.  
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0. Introduction

Magnetism is a property that was for a long time associated only with metallic and ionic 

lattices. The origin of the term is probably related with Magnesia, where the 

phenomenon was discovered by observation of the attraction between iron and 

lodestone. In addition, there are evidences of the use of compasses in China since very 

early times. At any rate, magnetism attracted attention because it allows action at 

distance, which puzzled humankind for millennia, and led to the association of the 

movement with the existence of a soul in the lodestone.  

It was not until 1820 that new perspectives in the understanding of magnetism were 

opened by the key experiment of Oersted. Thus it was demonstrated that an electric 

current influences the orientation of a compass needle. Later it would be Ampere 

suggesting that currents internal to the material should be responsible of the magnetism 

and that the currents must be molecular in nature, which is microscopic rather than 

macroscopic. In this sense, Faraday went a step farther in the contribution to the 

knowledge of the phenomenon. He discovered that almost all the substances are weakly 

repelled by an applied magnetic field and called these substances diamagnets. 

Furthermore, he described a less numerous class of compounds that was weakly 

attracted by a magnetic field and called them as paramagnets. After discovering and 

naming these two different types of materials, Faraday conceived the concept of a 

magnetic field, which provided an explanation for the action at a distance that alarmed 

so much the ancients. Nevertheless, it was Maxwell who provided the mathematical 

frame that allowed the description of electromagnetism, which meant a giant step 

toward understanding of magnetism. 

Pierre Curie investigated the temperature dependence of the magnetisation, 

discovering the law that carries his name. All this in the context of his doctoral thesis 

titled "Magnetic properties of matter at variable temperatures". Thus, it was introduced 

a third type of material, the ferromagnets, with the concomitant report of some 

examples. This was also the first time that molecular materials were described in the 

sense of their behaviour in the presence of a magnetic field. These molecules were 

oxygen and nitric dioxide, described among paramagnets. 

Finally, in order to complete the puzzle of the necessary context for the appearing and 

development of the research in the field to us concerning, it was necessary that the 

scientific community realised and developed two strongly relevant issues: on one hand, 

the nature of electron and its relevance as magnetic entity, on the other hand, the 

consequent development of quantum mechanics, which provided tools for describing 

magnetic properties and introduced important concepts, such as spin and exchange, 

which are crucial for our field of research: the Molecular Magnetism.1,2 
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Molecular Magnetism 

At the middle of the 20th century, Inorganic Chemists were already studying magnetic 

properties as a method of characterisation of mononuclear coordination compounds by 

their geometry and the oxidation state of the metallic centre. In point of fact, it was in 

the 1970s decade when the synthesis and rationalised design of polynuclear 

coordination compounds started to be performed. Thus, the magnetic exchange 

between the metallic ions throughout given ligands became definitely a matter of 

research. Consequently, the wide amount of results achieved, by using mainly 

paramagnetic 3d metal ions, led to a better comprehension of the mechanisms that are 

involved in the magnetic exchange. Most of this knowledge was compiled and published 

by R. Carlin in his book “Magnetochemistry” in 1986.3 

In this perspective, in the 1980s decade, the achieved knowledge related to the 

magnetic properties and the structure of the compounds started to be used to design 

molecular magnetic materials with the aim of developing their potential properties. 

Hence, a new field of research appeared as a convergence of different branches from 

chemistry, physics and material sciences, where the chemist as a researcher became 

relevant in the design and synthesis of the compounds. Quickly, this new field started to 

be known as Molecular Magnetism. Regarding this new concept, the homonymous book 

was publishes by O. Kahn in 1993.4 

In 1986, O. Kahn himself and his co-workers, reported the first molecular-based 

ferromagnets. The analogous [MnCu(pba)(H2O)3] and [MnCu(pbaOH)(H2O)3·2H2O] 

complexes, where pba = 1,3-propilenebis(oxamate) and pbaOH = 2-hydroxi-1,3-

propilenebis(oxamate). These monodimensional complexes are made up by reaction of 

the mononuclear Cu(II)-containing precursor and Mn(II) ions, leading to a ferrimagnetic 

arrange alongside the main axis of the chain, which is explained by the occurring 

alternation of the S = 5/2 and S = 1/2 from Mn(II) and Cu(II) respectively.5 

In this manner, the structural and magnetic properties of a huge number of magnetically 

ordered molecular species have been thoroughly investigated for their fundamental 

interest in chemistry and physics. The properties of these species can potentially provide 

a gateway for the discovery of new physical phenomena and be used for a diverse array 

of technological applications.6 Nevertheless, most of the studies on magnetic properties 

of polynuclear coordination compounds of different dimensionality have been centred 

on the first transition raw (3d) and, secondly, on lanthanides (4f). During the last decades 

it has been increased the study of systems based on second (4d) and third raw (5d) metal 

ions. Even though, they remind less explored. This fact can be explained having into 

account different aspects. On one hand, the chemistry of 4d and 5d metal ions is 

considerably more difficult to deal with, than that of 3d ions. On the other hand, from 

the magnetic point of view, the magnetic properties are harder to be modelled and 

interpreted. Furthermore, 4d and 5d metal ions tend to lead to low spin complexes, 
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which often means that there are no unpaired electrons in the metallic centres, losing 

all their interest in this discipline. However, when there exist magnetic properties 

susceptible of being studied, phenomena such as spin-orbit coupling appear, which 

makes, particularly in 5d metal ions, calculations to be complex and lead the theoretical 

models to non-satisfactory results. Nonetheless, they still keep the interest of the 

researchers in the field given the fact that the longer diffusivity and anisotropy of 4d and 

5d orbitals may increase the intensity of the magnetic exchange respect from the 

observed in 3d metal systems. 

In this context, the rational design of molecule-based magnetic systems through a 

bottom-up approach, as general rule, requires the knowledge of the self-assembly 

guidelines7 together with the understanding of the exchange interaction4 and the role 

that magnetic anisotropy plays on molecular magnetism.8 The programmed preparation 

of high-spin molecules constitute an illustrative example of the potential that bottom-

up design invest in this area.9 Thus, very well-known complexes such as {Cr[(ox)Ni(Me6-

[14]ane-N4)]3}(ClO4)3 and {Cr[(CN)Ni(tetren)]6}(ClO4)9·2H2O have been obtained by using

the [Cr(ox)3]3− and Cr(CN)6]3− complexes as metalloligands toward the preformed

[Ni(Me6-[14]ane-N4)]2+ and [Ni(tetren)]2+ species, affording in a single step pathway  the

desired tetra- and heptanuclear complexes with S = 9/2 and S = 15/2 respectively.10, 11

The ferromagnetic interaction between the magnetic orbitals of the octahedral Cr(III)

(three unpaired electrons in t2g orbitals) and Ni(II) (two unpaired electrons in eg orbitals)

is given for the parallel alignment of the local spins. These polynuclear complexes with

large ground spin states and a high anisotropy are at the origin of the development of

Single–Molecule Magnets (SMMs).8b-12

Single–Molecule Magnets 

The phenomenon of single–molecule magnetism was established in the early 1990s. 

Then, the ability of certain molecular transition-metal complexes to be magnetised, 

without need of long-range cooperative interaction, was seen for the first time in a 

coordination complex made of oxo- and acetate-bridged manganese metal ions, with 

formula [Mn12O12(O2C2H3)16(H2O)4];13 this formula and the corresponding derivatives 

will be abbreviated from now on generically as [Mn12]. The synthesis and crystal 

structure of this complex, the first one reported as behaving as a SMM, was published 

in 1980,14 even though the possibility of formation of dodecanuclear manganese acetate 

complexes was already suggested as early as in the 1920s decade.15 Nevertheless, it was 

only when monocristal X-ray experiments became routine that it was possible to confirm 

the structure (see Fig. 1a). 

Given the tetragonal symmetry that the molecule has, there are three independent 

manganese ions, namely, two Mn(III) and one Mn(IV), which show an octahedral 

geometry. The different manganese ions can be easily recognised by the bond lengths 

and by the elongated Jahn-Teller distorted structure characteristic for Mn(III) ions. 
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Mn(IV) ions are located in the inside of the molecule, coordinated to five oxo ligands 

and to one oxygen atom of an acetate molecule, whereas there are two different 

peripheral Mn(III) centres, one of them being bounded to two oxo ligands and to four 

oxygen atoms of acetate molecules, while the other one is bounded to two oxo ligands 

and to four oxygen atoms of acetate molecules. All the oxo ligands form 3 bridges.  

Direct evidence of the possible large spin ground states was obtained by the use of 

several techniques, such as high field magnetisation, high field EPR, and ac susceptibility 

measurements. In Figure 1b it is shown the χT versus T plot, obtained from a powdered 

sample of the complex, and in the inset is reported the imaginary part (χ”) of the ac 

susceptibility at three frequencies. The simultaneous use of these techniques provided 

evidence of an S = 10 ground state, and a magnetic behaviour which resembled that of 

superparamagnets.13 

As it is revelled in the book Introduction to Molecular Magnetism, at that time, 

Gatteschi’s opinion was that the research had achieved the result of characterizing the 

ground state of this complex, and he suggested Roberta Sessoli to look for some other 

interesting problem. She said yes, and continued to work on [Mn12], obtaining the 

exciting results that formed the basis for the SMM era.16 The most exciting was the 

observation of magnetic hysteresis of molecular origin.1 In fact, what the new 

measurements performed by Sessoli showed was a slow relaxation of the magnetisation 

phenomenon, which led to a magnetic hysteresis, as can be seen in Figure 2. This is often 

the signature of three-dimensional magnetic order but nothing of that kind occurred in 

[Mn12] compound. The phenomenon was molecular. A few years later, when quantum 

relaxation was described, this meant a full success.17

Figure 1. (a) Molecular structure of [Mn12]. H atoms are omitted for clarity. Code colour: violet, Mn(III); 

green, Mn(IV); red O; grey, C atoms. (b) χMT vs T plot obtained from a powdered sample of the complex. 

In the inset is reported the imaginary part (χ”M) of the ac susceptibility at three frequencies. 

(b) (a) 
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The rising up of the magnetic hysteresis in the molecular system is expected to be seen 

if the relaxation time of the magnetisation of the sample becomes lower than the time 

the field is being applied. The observed steps in the case of [Mn12] were assigned to the 

thermally assisted quantum tunnelling of the magnetisation (QTM)18. The steps were 

spouse to correspond to those fields at which pairs of levels become degenerate. Then, 

they must be related to a minimum in the relaxation times. Thus, it was possible to say 

that at these fields two mechanisms were operative: the thermally activated and the 

quantum tunnelling. At the fields corresponding to flat regions of the magnetic 

hysteresis curve, the degeneracy of the levels was lost and the tunnelling mechanism 

apparently annulled, giving longer relaxation times. 

Indeed, SMMs are characterised by a magnetic relaxation that is thermally activated. 

Assuming an approximate model, at low temperature the system could be described by 

a spin S that is possible to be considered as a “giant” spin as the ground state whose 

Figure 2. Magnetic hysteresis loop for a single crystal of [Mn12] with the field parallel to the tetragonal 

axis at 2.1 K.  

Figure 3. Double-well distribution energies of the spin levels M belonging to a ground manifold S, −S ≤ M 

≤ +S. The lowest lying levels are M=±S, the highest one is M=0. Taken from the book Introduction to 

Molecular Magnetism. 
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Zero-Field Splitting (ZFS) levels follow the double-well distribution shown in Figure 3. If 

a magnetic field is applied parallel to the z axis, the states of one sign go to lower 

energies, while those of the opposite sign go to higher energies. On switching the field 

off, the system goes back to equilibrium through the correspondent quantised series of 

steps. The relaxation follows an Arrhenius low with activation energy Ueff, which is 

normally called the energy barrier of the system. These items are going to be explained 

thoroughly later in this chapter. 

Figure 4. (a) Molecular structure of [Fe8]. Hydrogen atoms are omitted for clarity. Colour code: orange, 

Fe(III); red O; blue N; grey, C atoms. (b) HF-EPR spectra at three different temperatures of a polycrystalline 

sample of [Fe8]. (c) molecular structure of [Fe4]. Hydrogen atoms are omitted for clarity. Colour code: 

orange, Fe; red O; grey, C atoms. (d) HF-EPR spectra at 245 GHz and three different temperatures of a 

polycrystalline sample of [Fe4] pressed in a pellet (bold) and simulated spectra assuming S = 5. The bands 

marked (*) are assigned to the excited multiplets and are not reproduced by the simulation. 

After the first approaches and the development of new concepts reached by the 

extensive studies on the [Mn12] acetate derivative, several other carboxylate 

compounds where prepared. Those modifications performed on the [Mn12] molecule 

induced concomitant changes in the crystallographic and redox properties of systems as 

well as their solubility and stability in solution.19 Nevertheless, there was non-significant 

improvement in the magnetic properties of the complex.  Besides, the research and the 

(b) (a) 

(c) (d) 
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development of SMM is not confined to the limits of the so called [Mn12] family. Quickly, 

these studies were also performed on other Mn(III) families such as the [Mn10],20 [Mn6]21 

or [Mn4],22 and even before them, on other 3d  metal systems like [Fe8],23  [Fe4],24 [V4]24, 

[ CrM6]25 and [Ni12]26. In Figure 4, the molecular structure of the cationic [Fe8] and the 

neutral [Fe4] complexes are shown together with their HF-EPR spectra at different 

temperatures. An important issue which can be easily deducted from comparing both 

of the plots is the fact that the Molecular Magnetism has evolved in a rhythmic way with 

the development of the physical techniques and equipment that requires. This issue 

limited the field to a very late development, but at the same time impulse it forwards 

nowadays. Thus, for the [Fe8] system, published at the beginning of the 1990s decade, 

the obtained HF-EPR spectra is considerably smoother and less defined than the one 

reported for the [Fe4] system at the end of the decade. 

Once the first systems were reported, it was important to find correlations between the 

observed phenomena and the molecular structure of the complexes. Since at that time 

it was already established that the total spin S of the molecule and the magnetic 

anisotropy were the most relevant parameters for SMM behaviour, structural factors 

such as symmetry and torsion angles, which directly determine the presence or absence 

of structural anisotropy, must be related.  Thus, a deeper research on the [Fe4] and [Fe8] 

systems lead to the conclusion that torsion angles where the key for switching from a 

complex which does not behave as SMM to one that actually does. 

Further in the design of SMMs, the less explored 4d and 5d metal ions came finally into 

the discussion and, after approximately a decade of the finding of the first SMM, the 

first 4d- and 5d-based SMMs were reported.27 As indicated before, the magnetic 

anisotropy that the 4d and 5d metal ions can provide to the systems is considerably 

higher than the one proceeding from 3d ions. This fact is easily explained by the known 

proportionality of the anisotropy respect the spin-orbit coupling (SOC) factor (), which 

is around one order of magnitude higher for 4d and 5d than for 3d metal ions. 

From the Molecular Magnetism point of view, the most explored and studied systems 

based on 4d and 5d metal ions are those containing Mo(III),28 Ru(III),29 Re(IV)30 and 

Os(V).31 Among them, Re(IV) can be pointed out to have been the most studied given its 

high magnetic anisotropy factor and S value (S = 3/2). Nevertheless, most of the SMMs 

reported to the date using this metal ion are not homonuclear species, that is, they are 

not exclusively based on Re(IV), but heteropolynuclear species such as the 

heterodinuclear anionic complex shown in Figure 5. The structure showed in this picture 

corresponds to the [Ni{ReCl4(ox)}3]4- anionic species, obtained and reported as a 

tetrabutylamonium salt, which is the first oxalate-based SMM.32  
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In the context of that work, the analogous Fe(II)-, Co(II)-, and Cu(II)-containing 

tetranuclear complexes were also obtained. Nevertheless, only the Ni(II)-based 

analogous was found to behave as a SMM.  

Figure 5. (a) Representation of [Ni{ReCl4(ox)}3]4- anion. Hydrogen atoms are omitted for clarity. Code 

colour: sky-blue, Ni; pink, Re(IV); green, Cl; red O; grey, C atoms. (b) χMT vs T plot obtained from a 

powdered sample of the complex. In the inset is reported the imaginary part (χ”M) of the ac susceptibility 

at several frequencies.  

Regarding the well-known magneto-structural correlation established for tetranuclear 

compounds presenting D3d symmetry, such as the previously mentioned [Fe4] family, the 

dihedral angles between the main planes of the ligands are critical to observe the typical 

for a SMM behaviour. According to the results of this study, such an angle should be ca. 

the 42 degrees. Consequently, in the case of Martínez-Lillo’s work, only Re3Ni complex 

fits that requirement (Figure 5). 

Looking at the χMT vs T plot, it is possible to deduce the existence of ferromagnetic 

intramolecular interaction, since the χMT is continuously increasing while the sample is 

cooled down. The very small decreasing of the values at low temperatures might be 

assigned to the zero–field splitting effect produced mainly by the Re(IV) ions. Finally, 

showing the behaviour expected for a SMM, the sample displayed out-of-phase signals, 

which are susceptible of being observed at higher temperatures when increasing the 

applied field, but even at Hdc = 0 signals are observed. 

After describing some of the most emblematic examples of SMMs in the still short story 

of Molecular Magnetism and the singular features of this special type of molecules, 

there exist another issue that must be pointed out. Despite the agreement in the 

community on considering the value of S in the ground state and the magnetic 

anisotropy as the main factors that make the difference for the SMM behaviour rather 

than the size of the systems, most of these new molecules show slower relaxations 

effects at low temperature than the [Mn12] complexes.  Neither the energy barriers nor 

the relaxation times were actually improved until the mentioned [Mn6] family33 

appeared and the lanthanide-based SMMs were developed.34 Both of them, in their 

(b) (a) 
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times, claimed to present the record energy barrier for a SMM. First it was the [Mn6] 

oxime-based system, reported by J. Milios et al, which presents an energy barrier Ueff 

equal to 86.4K. Later, it was reported the tetranuclear Dy(III)-based system {[Dy4]} 

whose Ueff was reported to be 177 K. In Figure 6, one example of each of this molecules 

are shown together with their corresponding hysteresis loops M/Ms vs 0H(T). 

Figure 6. (a) Molecular structure of [Mn6]. H atoms are omitted for clarity. Colour code: violet, Mn(III); red 

O; blue N; grey, C atoms. (b) Magnetisation (M) vs. applied dc field sweeps at the indicated sweep rates 

and at 4.5 K. (c) Molecular structure of [Dy4]. (d) Magnetisation (M) vs. applied dc field sweeps at the 

indicated sweep rates and at 0.04 K. 

(b) (a) 

(c) (d) 
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Single–Ion Magnets 

Single–Ion Magnet (SIM) is, in principle, an arbitrary definition adopted for grouping 

those mononuclear SMMs which are constituted by only one metallic centre confined in 

an either positive or negative charged molecule, isolated, in the crystal packing, at least, 

by the corresponding counterions. 

Lanthanides, given their high spin and intrinsic magnetic anisotropy values, have 

constituted the cornerstone for the development of the first families of SIMs and, during 

last decades, a huge number of this lanthanide-containing complexes have been 

reported.35 The first example of mononuclear complex showing SIM behaviour was 

reported in 2003 by N. Ishikawa et al.36 This compound, of formula (n-Bu4N)[TbPc2] (Pc 

= phthalocyanine), was found to present an energy barrier equal to 331 K, considerably 

higher for the one observed until that moment for the most representatives SMMs 

[Mn12] and [Mn6]. The χM’ and χM” vs T plots of the mentioned compound can be seen 

in the Figure 7, along with the schematic representation of the molecular structure. 

Surprisingly perhaps, it took almost one decade from the publication of the first SIM to 

the report of the first 3d-based SIM. Freedman, from the research group of Long, in 2010 

reported the first complex based on an element of the first transition raw that was found 

to behave as a SIM. The molecule consist of an anionic unit of Fe(II) in a trigonal pyramid 

environment constituted by a tri-pirrolyltetramine tetradentate ligand. In this case the 

Ueff value is similar to that obtained for [Mn12] system; around 60 K.37 This research led 

to the development and characterisation of new 3d-based SIMs, containing 

fundamentally on Mn(III),38 Fe(II),39 Co(II)40 and Ni(II) and, finally, the investigation was 

also extended to the third transition raw.  

At this point, despite there are only a few examples of 5d-based SIMs already reported, 

Re(IV) becomes once more the star among all the possible 5d metal ions susceptible to 

be studied from the molecular magnetism point of view.  Thus, in 2013, the first two 5d-

based SIMs were reported by Martinez-Lillo et al. The complexes were the already 

known (n-Bu4N)2[ReX4(ox)] (X = Br and Cl).41 They exhibit a fast relaxation of the 

magnetisation due to QTM effects in the presence of an applied dc magnetic field. The 

QTM effects was observed to disappear in the presence of an applied dc field and, as a 

consequence, slow magnetic relaxation takes place. The main question for them was to 

Figure 7. Molecular structure of the (n-Bu4N)[TbPc2] complex (left). χM’ and χM” vs T overlapped plots at 

three different frequencies obtained from a powdered sample of the complex (right).  
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understand the mechanism of that relaxation. An energy barrier of about 14.4 K was 

estimated for the two complexes, derived from the experimental data. However, the 

energy gap between the ground state and the lowest excited spin level for these 

molecules was calculated to be ca. 160−190 K, which is one order of magnitude greater 

than the energy barrier. As a consequence, it was postulated that vibrational levels 

involving molecular distortions may give rise to D values closer to those responsible for 

the energy barrier. Nevertheless, the theoretical studies of these vibrational molecular 

distortions with low D values and a half-life long enough to relax are not developed yet. 

One year later, in 2014, Pedersen et al. reported the hexafluoride mononuclear 

complex, [(Ph)4P]2[ReF6] which also behaves as a SIM. 42 Indeed, out-of-phase signals 

were observed, and also EPR spectroscopy and inelastic neutron scattering (INS) were 

employed for the fully characterisation of the system.  

In this context, admitting that the need to adopt a specific definition for the 

mononuclear molecular magnets is discussable, it is also necessary to recognise that 

SIMs as a family of complexes warrants many advantages. First, the presence of only 

one metallic centre, as the spin carrier in the molecule, guarantee that there is no 

possibility that an unappropriated orientation of the axis makes the magnitude of the 

anisotropy value to be neither debilitated nor cancelled. Secondly, there are no chance 

of intramolecular interactions, which avoid the possibility of a non-magnetic ground 

state. Finally, from the theoretical and the experimental point of views, SIMs are the 

simplest model for the study and understanding of the slow relaxation of the 

magnetisation and quantum tunnelling phenomena. 

Figure 8. (a) Representation of [ReBr4(ox)]4- anion. Hydrogen atoms are omitted for clarity. Colour code: 

pink, Re(IV); soft red, Br; red O; grey, C atoms. (b) Plot of  χM, χM‘, χM“ vs T obtained from a powdered 

sample of the complex. In the inset is reported the plot o the inverse value of the susceptibility  (χ-1) vs T. 

(b) (a) 
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Basic concepts of Molecular Magnetism and fundamental equations 

In the fundamental states of coordination compounds, unpaired electrons are 

frequently find. Those electrons generate an angular moment and, since they poses a 

given electric charge, a magnetic moment is also generated. In presence of an external 

magnetic field, the mentioned magnetic moments tends to align themselves in the 

direction of the applied field. When such a phenomena come to happen, it is said that 

the sample is magnetised. The magnetisation, M, is a magnitude that measure the value 

of the total magnetic moment of a sample in the direction of the field. This magnitude 

is increased with the intensity of the applied field, H. Hence, magnetic susceptibility, χ, 

can be defined as:  

χ = 
𝛿𝑀

𝛿𝐻
(1) 

Besides, magnetic susceptibility also depends on the amount of sample. Thus it can be 

either defined in function of a given mass (cm3g-1) or moles (cm3mol-1). As chemist, from 

now on we are adopting the last definition. In the most general of the cases χ must be 

considered as a second order tensor. However, as far as the sample can be considered 

magnetically isotropic, χ becomes a scalar magnitude. Moreover, when the applied field 

is small enough, the molar magnetisation evolves linearly respect from the magnetic 

field. Thus, χ becomes independent from H and the equation (1) may be expressed as 

(2).  

χ = 
𝑀

𝐻
(2) 

Nevertheless, the magnetisation is not unlimited. Once all the individual magnetics 

moments are aligned with the field a maximum value is reached. At this point, when H 

is increased M remains constant, it is said that the sample has reached the value of 

saturating magnetisation.   

Magnetic susceptibility is also a temperature dependent parameter. Thermic energy is 

opposite to the ordering effect of the magnetic field, making that M, and consequently 

χ, slows down when increasing the temperature. From the competition between the 

applied field and the temperature a certain magnetisation is established in the sample. 

Thus, the lower the temperature the easier the saturation of the magnetisation is 

reached. 

It can be said that the magnetisation is a spontaneous process in the presence of the 

external magnetic field because there is a decrease in the energy of the system. The 

existent relationship that links both magnitudes is expressed by the equation (3) 

M = - 
𝛿𝐸

𝛿𝐻
(3) 
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As can be seen in this expression, paramagnetic substances, for which magnetisation is 

positive, will show a decrease in their energy if the magnetic field increases. This is the 

reason why, if the field is not homogeneous, these substances will tend to move to 

regions where the field is larger. The opposite situation is observed when samples are 

diamagnetic. 

According to quantum mechanics, for a molecule with En (n = 1, 2, ...) energy values, in 

the presence of a magnetic field H, a microscopic magnetisation μn can be defined (4). 

 = - 
𝛿𝐸𝑛

𝛿𝐻
(4) 

Therefore, in a given molar macroscopic sample magnetisation must be given by the 

contribution of each level following a Maxwell-Boltzmann distribution (5), where N is 

Avogadro number, k Boltzmann constant and T the absolute temperature.  

M = 𝑁
∑ (−

𝛿𝐸𝑛
𝛿𝐻

)exp(−
𝐸𝑛
𝑘𝑇

)𝑛

∑ exp(−
𝐸𝑛
𝑘𝑇

)𝑛

(5) 

As a result, χ may be determined by applying this deduction in (1). Furthermore, 

considering that H << kT, the deduction might be done by using (2), which is reasonable 

having in to account that in most of the cases H is in fact considerable minor than T. 

In the latter case, the magnetic susceptibility can be approximated through what is 

known as the van Vleck equation, (6) where 𝐸𝑛
(0)

correspond to the energy of the 

microstate n under field absence, while 𝐸𝑛
(1)

and 𝐸𝑛
(2)

 are the first and second order

Zeeman coefficient.  

χ = 𝑁
∑ (

𝐸𝑛
(1)2

𝑘𝑇
−2𝐸𝑛

(2)
)exp(−

𝐸𝑛
(0)

𝑘𝑇
)𝑛

∑ exp(−
𝐸𝑛

(0)

𝑘𝑇
)𝑛

(6)

As an example, herein we are solving this equation to the simplest situation. Regarding 

this, the orbital contribution to the magnetic moment must be Lef = 0. Therefore, there 

is not possibility of first order spin orbit coupling and the fundamental term is 

represented by a single level. Another feasible consideration is that the exited terms are 

high enough in energy to depreciate the possibility of second order spin orbit coupling. 

Thus, the spin angular moment S is the only contribution to the magnetic moment to be 

considered. This is what we normally call a spin-only situation. When field is not applied 

(H = 0), the 2S+1 microstates remain degenerated. However, when an external field is 

applied (H ≠ 0), the 2S+1 functions split in different energy levels. This interaction is 

known as Zeeman Effect, described by the corresponding Hamiltonian (7). 

HZE = βgS·H  (7) 
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In this equation, g represents the gyromagnetic factor (2.0023 for a free electron) and  

the Bohr magneton. Then, the corresponding energies of the different 2S+1 microstates 

can be deduced and are given by the equation (8). In this case Ms value must be 

comprehended between +S and –S values and the direction of the applied field parallel 

to the z axis. 

En = MSβg·H  (8)

Having in account that second order Zeeman coefficient is depreciable in this case, when 

van Vleck equation is applied (6) the expression (9) is obtained. 

χ = (Ng2β2/3kT)S(S+1) (9) 

As it can be easily seen, this deduction leads to the so called Curie law, where molar 

magnetic susceptibility is proportional to a constant C, dependent from the multiplicity 

of the fundamental term, and inversely proportional to the temperature T (χ = C/T). 

Thus, when a system behaves following the curie law, the plot of the product χT versus 

T corresponds to a horizontal line with a χT constant, equal to C.  

This general expression, only valid when H << T, is also not considering second order spin 

orbit coupling, which is a phenomenon frequently observed in transition metal ions. If 

we consider a complex with a strict Oh symmetry, the interactions of the functions with 

those belonging to the excited ones introduces some non-depreciable percentage of 

angular moment to the ground state. Even more, when the system is less symmetric, 

the assumed degeneration of the different microstates disappeared and the so call 

Kramer doublets are formed. This phenomenon is also frequently observed and named 

by Zero Field Splitting (ZFS). The magnetic properties will then be anisotropic, however, 

since measurements are generally performed on polycrystalline samples, it is difficult to 

determine the components of g and χ. This is the reason why only average values are 

obtained. 

Thus far we have considered that the spin carriers does not interact with each other. 

However, compounds in solid samples can be rarely considered as magnetically isolated. 

From the point of view of molecular magnetism this problem can be modelled by the 

approximation of molecular field using the Hamiltonian of interaction (10). 

Hinter = -zJ<Sz>Sz (10) 

In this expression, z corresponds to the number of neighbouring spin carriers in the 

crystalline state and J is the interaction parameter between spin carriers, which can take 

positive or negative values. In the first case it is said that the interaction is ferromagnetic 

and the spins of neighbouring centres are align in parallel respect to each other. On the 

other hand, when negatives J happen, the spins tend to engage antiparallel and the 

interaction is called antiferromagnetic. 
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Regarding the Zeeman perturbation, in the new situation the final Hamiltonian might be 

represented by (11). Here H is again considered to be applied in the direction of the z 

axis and g value as an isotropic magnitude. 

H = gβSzH-zJ<Sz>Sz (11) 

Finally, applying this molecular field approximation in van Vleck expression (6), it is 

observed that susceptibility is given by (12): 

χ = 
𝑁𝑔22𝑆(𝑆+1)

3𝑘𝑇−𝑧𝐽𝑆(𝑆+1)
 = 

𝐶

𝑇− 
(12) 

Namely, the former expression is known as the Curie-Weiss law, where C correspond to 

the Curie constant and  to the Weiss constant or Weiss temperature 

 = 
𝑧𝐽𝑆(𝑆+1)

3𝑘
(13) 

Therefore, a plot of χ-1= f(T) for a system obeying the Curie-Weiss law is expected to be 

a straight line of which the slope is C-1 . The intercept with the T axis yields both the sign 

and the value of , as shown in Scheme 1b. In the framework of this model positive  

indicates ferromagnetic intermolecular interactions and negative  indicates 

antiferromagnetic intermolecular interactions. In the former case ( > 0) the Curie-Weiss 

law is clearly limited to the temperature range T>. If the magnetic data are represented 

as a plot of χMT versus T, positive  leads to an increase in the curve respect from the C 

value and a negative  to a decrease of χMT on cooling as shown in Scheme 1b. 

 

 

 

 

As said before, in a paramagnetic system each spin is orientated independently from the 

neighbouring ones, however, when reducing the temperature intermolecular 

interactions become relevant. Therefore, every paramagnetic compound is expected to 
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Scheme 1. (a)χ-1 vs T plot for an assembly of molecules that obey Curie-Weiss law. (b) Generic scheme of 

χT vs T plot for an assembly of molecules obeying Curie-Weiss law. 
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present magnetic order at a certain temperature. This temperature is the so called 

critical temperature Tc and it is a characteristic parameter for each compound in a given 

conditions. As a general rule it can be said that the stronger the interactions, the higher 

the value of Tc. The intensity of these interactions is given by their nature. In the case of 

molecular solids, where the interactions are rather van der Waals-type, Tc value might 

be considerably small. It becomes higher when interactions are via H-bonds and Tc can 

reach the room temperature if interactions are given by chemical bonding. 

For establishing a magnetic order it is necessary not only to observe an interaction 

among the existent magnetics moments, but to determine what is called a length of 

correlation (), which means the distance in which spin carriers interact. This magnitude 

must tend to infinite at the Tc.  is a measure of the quantity of order in the system. 

Ferromagnetic systems are characterised by interactions that lead to the parallel 

ordering of all spins in the same direction. In such a case, a spontaneous magnetisation, 

MS, appears at the critical temperature. MS can be considered the measure of the order 

of the system below Tc. MS increases as T decreases when T <Tc. This increase is 

continuous and tends to saturation magnetisation. On the other way around, when T> 

Tc Curie-Weiss law is fulfilled and experimentally what is observed is a huge increase of 

χ and χT values when Tc is reached. 

For antiferromagnets, at Tc,  tends to infinite but, given that the spins are oriented 

antiparallel, there is no spontaneous magnetisation. However, if antiferromagnetic 

systems have certain characteristics, it is possible that the spins are not completely 

antiparallel but a certain angle remains among the spin carriers as represented in 

scheme 2. Thus, a small spontaneous magnetisation is generated and a very weak 

ferromagnetic-type phenomenon takes palce. When it comes to happen, a huge 

increase in χ versus T and χT versus T plot is observed. This phenomenon is called spin 

canting. In the same way, there can be the situation in which the spins are parallel 

oriented but forming a given angle, giving rise to a ferromagnetic canting. 

Regarding this, the system can be described considering that below Tc the compound 

presents a magnetic moment and, when a small magnetic field is applied, then an Mw 

magnetisation appears due to the appearance of the ordered state generated by the 

spin canting. If the applied field continues to increase, the magnetisation will gradually 

increase until it reaches a MS saturation value corresponding to all spins aligned in the 

α

Scheme 2. Representation of magnetic moments arrange in a structure presenting 

spin canting phenomenon. 
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same direction.  An estimation of the angle α presented by these spins can be made 

according to the equation (14). 

Sen (α) = Mw/MS (14) 

Normally, α angle found in thus complexes with a weak ferromagnetism is in de order 

of the unit of degree. However, there are examples that reach the 10 degrees.43 

Nowadays there are two mechanisms which may lead to observe a spin canting 

phenomenon. The first one requires the existence of two non-equivalent sites in the 

network for spin carriers. Thus, for each of this centres the concomitant symmetry 

distortion and the spin-orbit coupling lead to a switch of the directions of the respective 

magnetic anisotropies. Regarding this, the magnetic moments of the metal ions localised 

in those non-equivalent sites become ordered in different directions. The second 

mechanism considers the super-exchange interaction between two magnetic centres 

and the local spin-orbit coupling. Thus, the fundamental and exited states function 

interact and then there is a splitting. This mechanism is frequently called asymmetric 

interaction. This interaction introduces a certain canting angle among the spins as a 

consequence of the stabilisation energy, which is reached when spins are oriented at 90 

degrees. 

Alternating Current (AC) Susceptibility: a tool for the determination of 

Relaxation Times. 

Previously, we have defined the basic concepts and equation of Molecular Magnetism. 

Also the most relevant parameter that describe systems that behave as SMMs and 

related species have been introduced before. Herein, we thoroughly describe the 

possible methods to calculate the relaxation times τ and the energy barriers Ueff. 

In general, the basic quantity studied by experimental techniques of macroscopic 

magnetic measurements is the magnetic moment of the sample, μ. This is a measure of 

the magnetic field generated by the spin carriers in the sample. Another measure of 

great interest, for the analysis of the magnetic properties, is the susceptibility χ, 

magnitude related with the magnetisation M by the already described equation (2). 

Thus, by magnetisation measurements and the use of the mentioned equation, χ value, 

which from now we are going to call static susceptibility (χest), is easily determined. 

These measurements are performed applying a static magnetic field by means of a direct 

electric current (abbreviated DC) and for this reason they are called DC measurements, 

such as susceptibility DC, χDC, magnitude equivalent to the χest. 

Other types of measurements are carried on by applying alternating current 

(abbreviated AC). This technique measures the change in the magnetic moment, δμ. As 

a result, information about the slope of the magnetisation curve described by equation 
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(1) is obtained. In this new scenario χ is now called χAC. All this constitute the main

difference with DC measurements, which actually measure the magnitude of the 

value, as it is shown in the scheme (3).

As it can be easily seen, in those areas of M versus H curve where the magnetisation is 

linear with the magnetic field, both susceptibilities are the same, χDC = χAC, while in 

saturation the χAC is cancelled.  

A great advantage of AC measurements is that they can be performed both in the 

presence and in the absence of a static magnetic field, HDC, as well as the possibility of 

changing the frequency of the alternating current. This kind of experiment is 

considerably relevant to provide information on the relaxation times of the magnetic 

moment. 

During AC experiences, the AC magnetic field (alternating or oscillating magnetic field), 

HAC, varies over the time as indicated by equation (15) or its equivalent equation (16), 

being ω equal to 2πf  (f is the frequency in Hz, t, the time and h, the amplitude of the 

field, usually in the order of a Gauss, HAC << HDC). The resulting magnetisation due to this 

field is given by equation (17). 

HAC = hcos(ωt)  (15) 

HAC = hexp(iωt)  (16) 

MAC =μcos(ωt − ) (17) 

Equation (17) can also be rewritten as equation (18), where χ’ is the real or phase 

component (also called dispersive susceptibility) and χ” is the imaginary or out of phase 

component (also called absorptive susceptibility). 

MAC = χ'cos(ωt) + χ"sen(ωt) (18) 

H 

M 

δM 

M 

χAC = 
𝛿𝑀

𝛿𝐻

χDC = 
𝑀

𝐻

δH H 

Scheme 3. Representation of a plot of M vs H. Overlapped are shown how are 

determined the corresponding magnitudes χDC and χAC. 
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χ' = 
cos ()

ℎ
 = χACcos() (19) 

χ” = 
sen()

ℎ
 = χACsen() (20) 

These equations here presented are related among them by (21) and (22): 

χAC = √χ′
2 + χ"2 (21) 

 = arctang(χ'/χ”) (22) 

Thus, the complex AC susceptibility is given by the combination of both of this 

components (23) 

χAC = χ' + iχ" (23) 

The out-of-phase susceptibility, χ”, is a measure of the dissipative loss that occurs in the 

magnetic system under study; which means that it is a measure of the energy absorbed 

by the sample under the applied HAC. If there is any relaxation process in the system, 

with a time greater than the one of the measurement, the magnetic moment cannot 

follow the variation of the AC field instantaneously, which leads to a non-zero value of 

υ – this means a loss of magnetisation phase, (17), respect from HAC,(15) – and therefore 

a non-zero value of χ ”(the magnetic field and the magnetisation are not in phase). 

Scheme 4 attempts to describe the relaxation of the spin in the presence of an external 

magnetic field, HDC, on which an oscillating field, HAC (HDC >> HAC) is overlapped. Consider 

N paramagnetic ions occupying the state with MS = -1/2 (moments parallel to H) or MS 

= +1/2 (moments antiparallel to H). The presence of HAC implies that the magnetic field 

around the ions changes over time and stimulates the transitions between the two 

states. Consequently, the paramagnetic N ions will be continuously redistributing 

between the two energy levels according to the Boltzmann distribution at a given 

temperature. As a matter of fact, such redistribution requires some time, τ. 

E 

HAC HDC  

Scheme 4. Relaxation of the spin in the presence of an external magnetic field. 
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Three different situation can be described having in account the ratio between both of 

the magnitudes, the relaxation time of the sample, τ, and the measurement time. 

In the first situation, the variation of HAC, requires a shorter time than the sample 

relaxation (ω << τ -1). In this case, the magnetisation is always in equilibrium throughout 

the entire measurement time. In other words, the magnetic moments are always 

parallel to the oscillating field (the sample achieves the minimum energy). Under these 

conditions, AC susceptibility is called isothermal susceptibility, χAC = χT. Some authors 

call it χ0 because its value corresponds to the susceptibility when the frequency, f, tends 

to zero (f → 0). 

Secondly, when the variation of HAC is much faster than the relaxation time of the sample 

(ω >> τ -1), the previously mentioned equilibrium cannot be achieved, that is, the sample 

does not reach its minimum energy. The system is effectively isolated from its 

surroundings (magnetic moments are blocked and cannot be oriented with the HAC 

field). A measure of susceptibility in these conditions reveals an adiabatic susceptibility, 

χAC = χS. Some authors write χ∞, since it is the value of susceptibility when the frequency 

tends to infinity (f → ∞). In general, a reduction of redistribution possibilities (of 

reaching equilibrium) implies a lower capacity of the magnetic system to follow the 

demands of the external magnetic field and consequently, χS << χT. Normally χS is very 

small and in some approximations it can be neglected. 

Finally, when both, the measurement time and the relaxation time are of the same 

order, ω ≈ τ -1, and we assume that all the magnetic centres of the sample have the same 

relaxation time (they have identical transition probabilities), the complex susceptibility 

AC (for a given HDC and a given T) can be expressed according to equation (24) proposed 

by Casimir and du Pré (1938). 

χAC(ω) = χS + 
χ𝑇−𝜒𝑠

1+𝑖𝜔𝜏
(24) 

In fact, this is the case of superparamagnetic compounds with a single relaxation time. 

For this compounds χAC is given by (24), as well as χ’ and χ” in this conditions are given 

by equations (25) and (26) respectively.  

χ’(ω) = χS + 
χ𝑇−𝜒𝑠

1+(𝜔𝜏)2
(25) 

χ”(ω) = 
(χ𝑇−𝜒𝑠)𝜔𝜏

1+(𝜔𝜏)2
(26) 

From (26) it can be deduced that the representation of χ”, as a function of frequency ω 

= 2πf, presents a maximum when ω = τ-1, that is when ωt = 1, as shown in Figure 9a. In 

this figure two graphs of χ” have been represented for the same value of τ and different 

values of χT and χS. It can be seen that the maximum in ordinates is 
χ𝑇−𝜒𝑠

2
. Thus, for 

frequencies lower or higher than the maximum, the values of χ”are cancelled. In Figure 
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9b a plot of three overlapped χ” have been represented for different relaxation times at 

a given temperature. There it is possible to observe that the more the decreases of 

system relaxation time, the higher the frequencies that are required. Thus, a 

representation of the values of χ”, obtained at various frequencies (keeping a constant 

temperature), gives as a result the value of the relaxation time of the system at that 

temperature, when determining the maximum frequency value, τ(T) = 
1

2𝜋𝑓𝑚𝑎𝑥
. However, 

the mentioned τ may be determined more precisely by fitting the experimental data of 

χ” and f to equation (26) and determining the corresponding variables χ = χT – χS and τ. 

The relaxation time can also be determined from χ’. In equation (25) it can be seen that 

when f → ∞, χ’→ χS, while when f → 0, χ’ → χT, as shown in Figure 10a, for various 

relaxation times. The curve χ'= f(log f) presents an inflection point when ω = τ-1, which 

corresponds also to the maximum of χ” as shown in Figure 10b. The use of equations 

(25) and (26) are extremely useful in an exact determination of the value of the

relaxation time at a given temperature. Nevertheless, it is usually more convenient to

use χ”(26) since there are only two variables to be determined (Δχ and τ) while χ’ (25)

has three (χT, χS and τ).

It is interesting to notice that if frequency is kept constant and the temperature varies, 

the relaxation time of the sample increases as the sample is cooled down. At the same 

time χ” presents a maximum when the measurement time agrees with the relaxation 

time, ω = τ-1, as it was discussed before. In cases where χT and χS are constant with the 

temperature, the relaxation time obtained in this way coincides with that determined 

using equation (26). This provides two types of experiences for the determination of 

relaxation times: on one hand, keeping the temperature constant and varying the 

frequency (as indicated above) and, on the other hand, keeping the frequency constant 

and varying the temperature. The latter is less time consuming (but less accurate), 

Figure 9. (a) Representation of      χ” versus   frequency (Hz) and the existence of a maximum at                   

ω = τ-1. (b) Representation of χ” versus frequency (Hz) at different relaxation times 

(b) (a) 
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therefore, the most commonly used. However, in a proper use, it must be verified that 

χT and χS remain constant with the temperature. In general, the temperature zone where 

the AC signals develop is a region where the DC susceptibility is saturated. Therefore, χT 

(≈χDC) varies very little with temperature and χS is very small, so the constancy is 

assumed for both parameters. However, it is not always the case. There are cases when 

both parameters vary in an unknown way leading to countless mistakes in the relaxation 

times determination. 

Coming to this point, it is necessary to keep in mind that all of the expressed above is 

based on the existence of a single relaxation time for all the magnetic constituent of the 

system. This means, a single and identical potential barrier, U, for all of the spin carriers. 

Under these conditions, relaxation times vary with temperature according to Arrhenius' 

law, in the form expressed in equations (27) and (28). 

τ = τ0exp (
𝑈

𝑘𝑇
) (27) 

If in this equation τ is substituted by 
1

2𝜋𝑓
 and τ0 by 

1

2𝜋𝑓0
the analogous Arrhenius 

expression of energy as a function of the frequency is obtained (28). 

f = f0exp (−
𝑈

𝑘𝑇
) (28) 

From the relaxation times obtained for different temperatures, following any of the two 

previously described procedures, the energy barrier, U, and the pre-exponential 

Figure 10. (a) Representation of χ'= f(log f) at different relaxation times. (b) Overlapped representation of 

χ'= f(log f) and χ” versus f. 

(b) (a) 
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coefficient, τ0 (or f0) can be determined, by equation (27) or (28). These two parameters 

are which are normally used to characterise the slow relaxation of the magnetisation of 

a compound. In general, the determination is carried on by a graphical representation 

of the logarithm of τ versus the inverse of the temperature. As can be seen in equations 

(29) and (30), derived from (27). This representation leads to a line of slope U/k and

ordered at the origin lnτ0, as indicated in Figure 10 for different values of U and τ0 = 10-

8 seconds.

Lnτ = lnτ0 + (U/k)
1

𝑇
(29) 

Logτ = logτ0 + (0,4343U/k)
1

𝑇
(30) 

In the Superconducting Quantum Interference Device (SQUID) magnetometers, such as 

the one available in our Institute, a wide frequency sweep (below 1400Hz) is available 

and the measurements are usually performed in the range of frequencies between 0.1 

and 1000Hz (lower values imply excessive measurement time). Thus, the simulated 

experimental points in Figure 11 correspond to temperature intervals (the temperature 

where the maximums of χ”are observed) of 1,9 – 3,8 K (for U = 25 cm-1), 3,8 – 7,5 K (for 

U = 50 cm-1) and 7,5 - 15 K (for U = 100 cm-1) for this frequency range. As can be seen, 

high activation energies are required to take the blocking temperature to high 

temperature. In this sense, and as an example, for AC signals to be observed out of phase 

within the frequency range we have, an energy U = 2000 cm-1 would be required for 

τ0=10-8s. 

An interesting feature of this systems is that if we represent the values of χ ”with respect 

to the corresponding ones of χ’ we get a semicircle. From equations (25) and (26) 

equation (31) is obtained. This expression corresponds to the typical algebraic equation 

χS 

(χT – χS)/2 

χ’ 

χ” 

(χT + χS)/2 χT 

Scheme 5. Argand diagram. Scheme of plot of χ’ versus χ”. There are also shown 

the positions of the characteristics points that can be deduced from (31) and (32). 
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of the circle indicated in (32), where (a,b) is the point where it is located the centre of 

the circle and r the radius of it. 

[𝜒′ −  (
𝜒𝑇+𝜒𝑆

2
) ]2 +[𝜒"]2 = (

𝜒𝑇−𝜒𝑆

2
)2 (31) 

(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2 =  𝑟2 (32) 

When comparing term to term equations (31) and (32) it is easy to notice that (31) 

represents, for positive values of χ’ and χ”, a semicircle whose radio, r, is equal to 
𝜒𝑇−𝜒𝑆

2
,

and its centre at the χ’ is located at the position a = 
𝜒𝑇+𝜒𝑆

2
 and b = 0, as observed in 

Scheme 5. The relaxation time can be obtained from the frequency corresponding to the 

maxima χ” = 
𝜒𝑇−𝜒𝑆

2
. This way of plotting χ” as a function of χ’, normally called Argand 

diagram, is considerably useful since, when it occurs, to obtain a perfect semicircle is a 

clear proof of the existence of a single relaxation time, and with this, a unique potential 

barrier. It is interesting to carry out a few experiences of this type at different 

temperatures in order to check that a single relaxation time and the values of χS and χT 

remain constants with the temperature. If this comes to happen, the Argand diagrams 

measured at different temperatures should collapse into one. In this conditions, 

equation (31) is able to be used to fit the experimental data and obtain the values of χS 

and χT with precision. In some circumstances it is interesting to represent χ”/ω versus 

χ’. As shown in equation (33), deduced from (25) and (26), this representation provides 

a straight line of slope τ (the relaxation time at the temperature of experience) and 

ordered in the origin τχS. Any deviation would indicate the appearance of a new 

relaxation dynamic. This phenomenon is shown in Figure 12 where a change in 

relaxation time is observed. 

Figure 11.  Plot of 1/T versus logτ for different systems with the same τ value and different U. 
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𝜒"(𝜔)

𝜔
 = τ{χ’(ω) -𝜒𝑆} (33) 

Deviations from the ideal semicircle are rather common to be found. In general, these 

deviations appear as a consequence of the existence of more than one relaxation time 

(a certain distribution of relaxation times or potential barriers) in the sample. When this 

comes to happen, more or less flattened semicircles (circle arcs) are obtained and the 

values for the pre-exponential coefficient, τ0, can become excessively small, that is, 

smaller than 10-13s, losing all physical meaning. The time required for the reorientation 

of an electronic spin is of the order of 10-13s (a frequency of 1013 reorientations per 

second). Given that, a shorter time would not make physical sense. 

In order to take into account the indicated deviations, K.S. Cole and R.H. Cole (1941) 

modelled the so called dynamic susceptibility, χCC (Cole-Cole susceptibility) at a given 

temperature under the existence of a distribution of supposedly symmetrical relaxation 

times on a logarithmic time scale. The Cole-Cole formalism introduces a parameter, 

0<α<1, that determines the amplitude of the relaxation times, G(lnτ), around an average 

relaxation time, τm, equations expressed in equations (34) and (35). 

χCC = χS + 
𝜒𝑇−𝜒𝑆

1+(𝑖𝜔𝜏𝑚)1−𝛼
(34) 

G(lnτ) = 
1

2𝜋
[

𝑠𝑒𝑛(𝛼𝜏)

cosh(1−𝛼)ln(
𝜏

𝜏𝑚
)−cos (𝛼𝜏)

] (35) 

Then, equations (25) and (26) corresponding to χ’ and χ” respectively, can be expressed 

as the following (36) and (37) with the introduction of the α parameter. 

Figure 12.  Plot of χ” versus χ’. Red circles corresponds to the experimental data for a systems 

presenting two different relaxation times. In a continues blue line it is shown the fitting for the first 

observed τ and in green dotted line the fitting for the second one.  
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χ’(ω) = χS + 
(𝜒𝑇−𝜒𝑆)[1+(𝜔𝜏)1−𝛼𝑠𝑒𝑛(

𝛼𝜋

2
)]

1+(𝜔𝜏)2(1−𝛼)+2(𝜔𝜏)1−𝛼𝑠𝑒𝑛(
𝛼𝜋

2
)

 (36) 

χ”(ω) = 
(𝜒𝑇−𝜒𝑆)(𝜔𝜏)1−𝛼𝑐𝑜𝑠(

𝛼𝜋

2
)

1+(𝜔𝜏)2(1−𝛼)+2(𝜔𝜏)1−𝛼𝑠𝑒𝑛(
𝛼𝜋

2
)

(37) 

From this equations they can be either predicted the maximum in χ” (38) or determine 

the α value which rises to the experimental maximum of χ” (39). 

χ”max= 
1

2
(𝜒𝑇 − 𝜒𝑆)𝑡𝑎𝑛 [

(1−𝛼)𝜋

4
] (38) 

α= 1- 
1

4
𝑎𝑟𝑐𝑡𝑎𝑛 [

2𝜒"𝑚𝑎𝑥

𝜒𝑇−𝜒𝑆
] (39) 

The last equation is strongly useful for determining the α value. 

From (36) and (37) equation (40) can be deduced. This is the equation for an Argand 

representation, χ" = f(χ'), in the case of the presence of several potential barriers. This 

equation leads to a semicircle when α = 0 (a single relaxation time.) As this parameter 

increases, the semicircle increases, so that the angle between the axis χ' and the 

tangents in χS and χT are ±(1- α)π/ 2, respectively. Thus, the formed arc is defined by the 

angle (1-α) π, as indicated in Figure 13a. An increase in the value of α indicates a greater 

distribution of relaxation times. When the number of relaxation times is enormously 

large the value of α tends to 1. 

χ”(χ) = 
𝜒𝑇−𝜒𝑆

2 tan(1+𝛼)𝜋/2 
+ {(𝜒′ − 𝜒𝑆)(𝜒𝑇 − 𝜒′) +

(𝜒𝑇−𝜒𝑆)2

4𝑡𝑎𝑛2(1+𝛼)𝜋/2 
} (40) 

Figure 13b shows a series of Argand representations for different values of α. The great 

flattening of the semicircle for high values of α can be observed. It is interesting to note 

how the values of χ” with respect to those of χ' (at the same frequency and temperature) 

decrease with the increase of α, so that when there is a large distribution of relaxation 

Figure 13. (a) Argand representation for twoα values and visualisation of the angle of the formed arcs for 

higher α values (b) Plot of  χ”= f(χ') for different α values. 

(a) (b) 
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times the values of χ” can reach to be even less than 1% of those of χ'. Figure 14 shows 

how the curves corresponding to the real and imaginary susceptibility with the value of 

α are widened. 

An interesting representation is the distribution of relaxation times, G (lnτ), described 

by (35). This type of representation shows the relaxation times distribution around the 

average time, τm, at a given temperature. Figure 15a shows this distribution for different 

α values. It can be seen how the distribution widens with the value of α, that is, with the 

number of potential barriers. For α = 0 it would be a line while for α = 1 it would collapse 

with the axis of abscissa (infinite times).  

Figure 14. (a) Plot of χ” versus f for different α values (b) Plot of  χ’ versus f for different α values. The two 

of the plots corresponds to the same samples at the same measurement conditions. 

(b) 

(a) 

Figure 15. (a) Plot of G (lnτ) versus τ. Distribution of the relaxation times in function of the α values(b) Plot 

of distribution of the relaxation times for a given α value. 

(b) (a) 
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If intermolecular interactions happen, it is possible that as the temperature drops, these 

interactions begin to dominate, correlating several molecules and increasing the size of 

the domain molecules, with the consequent increase in relaxation times. In these cases 

the value of α increases as the temperature decreases. Figure 15b shows a 

representation of the distribution of times according to (35) for a value of α = 0.1 that 

increases to 0.2 when the sample is cooled. It can be seen how the dynamic evolves. As 

the temperature decreases, the average relaxation time increases as the probability 

curve widens (greater number of times). 
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General Objectives 

The present Thesis work will be centred on the coordination chemistry, structural 

characterisation and the study of the magnetic properties of systems based on Mn(III) 

and Re(IV) metal ions. The former being a 3d metal ion while the latter is a 5d metal ion, 

essentially both have been here selected for the reason that, given their high anisotropy 

and spin values, they are among the most relevant metal ions from the Molecular 

Magnetism point of view.  

Nowadays the knowledge and understanding of the detailed mechanisms related to 3d-

based systems are considerably advanced. Nevertheless, it is not the case of the species 

containing 4d and 5d metal ions. In the particular case of 5d metal ions, the reported 

complexes are comparatively less than those based on 3d ions. Therefore, and also as a 

consequence of the difficulties of dealing with the theoretical aspects related to the 

electronic structure of the heavier metal ions, there is not a clear understanding and 

control of the factors that influence the magnetic anisotropy.  

Hence, part of this Thesis work will be focused on Mn(III) complexes, with the attempt 

of improving the properties and functionalise already known systems. A second part of 

the research will be dedicated to Re(IV)-based systems and to obtain new species, based 

on this 5d metal ion, in order to contribute to a better understanding of the exchanging 

phenomena, as well as trying to approach these systems to new possible applications. 

Herein we will attempt the functionalisation of already known and thoroughly studied 

Mn(III)-based systems, such as the [Mn6] oxime-based family. The [Mn6]s are a 

systematically studied family, and there exist well-known ways to modulate their 

magnetic properties. Thus, as good examples of inside out controlled systems, [Mn6] are 

promising candidates to be functionalised an applied in fields such as molecular 

spintronics and molecular electronics. So that, the fact of reaching such an application 

establish one of the main aims in our work on [Mn6] systems. 

However, our main goal is not only that. Despite the amount of reported [Mn6] systems, 

most of them are anionic species, being significantly less those which are neutral or even 

cationic species. Consequently, we have considered that it is necessary to develop this 

less explored type of [Mn6]s, given that, by including new ligands or anionic counter-ions 

presenting complementary properties, these systems may be extended to new different 

applications. 

In what Re(IV) concerns, systems containing this metal ion started to be studied from 

the magnetic point of view since the last years of 1990s decade. There are hundreds of 

Re(IV)-containing reported structures. However, there is still a huge field to be explored 

in what concerns the magnetic properties of these species; not only referred to those of 

a large nuclearity, but also to the mononuclear species.  
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Given the high magnetic anisotropy that Re(IV) exhibits, it is expected to observe 

interesting results such as those revelled by the [Ni{ReCl4(ox)}3]4- and [ReX4(ox)]2- ( X = 

Cl, Br) anionic complexes, the former being a SMM and the latter SIMs. In this context, 

cations of different nature, such as biologically active and paramagnetic cations will be 

used with the aim of introducing some possible multifunctionality and modification on 

the magnetic properties of these systems. Furthermore, we will also attempt to find new 

strategies of synthesis of new Re(IV)-based mononuclear species as an isomeric – 

selective alternative for the classical methods. For such a propose the compound of 

formula [ReCl4(MeCN)2] will be used as a precursor. 

Considering all of the above, we expect to do a relevant contribution to the Molecular 

Magnetism, not only in what the design and development of new systems concerns, but 

to a deep understanding of the processes involved in the magnetic exchange, as well as 

the progress of the field in the application of all the already reached knowledge into the 

new technologies, looking forward to future technological applications. 
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A. [Mn6] Systems

Introduction 

The development of molecule-based magnets enabled the specific design and 

modification of the magnetic properties by established coordination chemistry 

techniques as well as the combination of magnetic properties with other mechanical, 

electrical and/or optical properties taking care of the simplicity of preparation.1 

Phenolic oximes have proven to be particularly relevant in the field of molecular 

magnetism, especially for the preparation of Mn(III)-based SMMs.2,3 A diverse range of 

oxime-derivative ligands have been employed to generate a large family of trimetallic 

[Mn3] and hexametallic [Mn6] complexes with SMM behaviour. Among the largest 

families of these complexes are those based on salicylaldoxime (H-saoH2), 

salicylamidoxime (H2N-saoH2) and their derivatives (scheme 1).2  

[Mn3] systems started to be characterised from the crystallographic and magnetic point 

of view at the same time that the first [Mn12] structures were being reported. In the end 

of 1980s decade and the beginning of 1990s the first crystal structures of the non-oxime 

based [Mn3] family were published.4 However, as exposed in Section 0, at that time the 

magnetic properties studies consisted basically on routine experiments and there were 

neither hysteresis nor AC susceptibility measurements performed at all. Actually, it was 

temping to conclude that [Mn3] trinuclear complexes possessing the oxide-centered 

[Mn3(3-O)] arrange could never show a SMM behaviour. Two arguments were given for 

assuming this claim. On one hand, the exchange interactions in the [Mn3(3-O)] arranges 

are antiferromagnetic and thus the molecules possess small or zero ground state S 

values and, on the other hand, their C3 symmetric structure with local anisotropy axes 

relatively close to the Mn3 plane leads to small molecular anisotropy. 

It was not only until 2005, when T. C. Stamatatos et al. communicated their first 

approaches to the first trinuclear SMMs and the phenomenon of “switching on” the 

SMM behaviour, that it was shown that the structural distortion imposed on [Mn3(3-

O)] complexes by binding of tridentate oximate ligands switches the exchange coupling 

to ferromagnetic. Thus, they were able to report the initial examples of triangular SMMs

(see Figure 1).5  

Stamatatos shown that relatively small ligand imposed structural distortions can alter 

the sign of the exchange interactions in [Mn3(3-O)] complexes and switch on the SMM 

Scheme 1. Structures of (a) salicylaldoxime (R-saoH2) and (b) salicylamidoxime (R2N-saoH2) (R = H, Me, Et). 

(a) (b) 
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behaviour. Along last decade, it came to consolidate oximate ligands as appropriate 

candidates to prepare SMMs. 

Regarding this fact, since [Mn6] complexes may be considered as dimeric species of 

[Mn3], the comprehension of these simpler systems come to constitute a relevant 

contribution to complete the understanding of the magnetic properties of the former 

family.  

However, the known succeed of [Mn6] family (reported at the first time by Milios et al.)2a 

was independent from knowledge reached throughout these [Mn3] monomers. Actually, 

it was in 2004 when Milios et al. reported the first example of this [Mn6] SMMs family. 

Three years later, in 2007, Milios et al. reported their study on the magneto-structural 

correlation on a [Mn6] family,6 where they went a step farther in the description of the 

this correlation present into each of the [Mn3(3-O)] arranges of the structure. Although 

they lacked an exact quantitative mathematical expression, the collected data (12 fully 

characterised [Mn6] complexes consisting of the same dimeric structure containing two 

[Mn3(3-O)] units per molecule) clearly demonstrated that for this family of complexes 

it was possible not only to “control” and “understand” the nature of the spin ground 

state of a particular complex but also to predict the ground states of any new member 

of the [Mn6] family. The distortion of the torsion angles (see Figure 2) allows to change 

the spin ground state from S = 4 to S = 12, in a stepwise fashion, passing through the S = 

5, 6, 7, 9, and 11 intermediate ground states. There was evidence enough to assume 

that the steric hindrance introduced by the employed oximate ligands was determining 

for the reached distortion in the angles. They were able to establish a relation between 

this phenomenon and the magnetic behaviour of the complexes, and finally, it was 

postulated that for torsion angles smaller than 27.8° the expected intramolecular 

coupling was antiferromagnetic, whereas for those torsion angles higher than 34.0° the 

coupling must be ferromagnetic.7 

Figure 1. (a) Representation of one example of an oxime-based [Mn3] in the C3 symmetry axis direction. 

(b) Representation of [Mn3] in the direction of the a axis. Hydrogen atoms are omitted for clarity. Code

colour: violet, Mn; blue N; red O; grey, C atoms.

(a) (b) 
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At this point it is necessary to recall the highlight of this huge family of complexes, which 

was mentioned in the previous section, the [Mn6O2(Et-sao)6(O2CPh(Me)2)2(EtOH)6] 

complex, whose anisotropy barrier (Ueff = 86.4 K) reached the record value for a 3d-

based SMM.2b This contribution was also reported by Milios et al in the very prolific year 

2007. 

Later, the exchange coupling constants were studied deeper both experimentally, by dc 

susceptibility, and theoretically, by density functional theory (DFT calculations),8 and 

showed that there is a clear dependence among the sign and magnitude of magnetic 

exchange between the Mn(III) metal ions and the Mn-N-O-Mn torsion angle. In the case 

of complexes based on H2N-saoH ligand, angles larger than 27.0° lead to ferromagnetic 

exchange generating high spin SMMs.7,9 

These Mn-N-O-Mn torsion angles may be easily modified by different strategies already 

explored, such as oxime functionalisation. Other type of modifications is commonly 

performed by means of different coordinating solvents. The solvents may coordinate 

the metal ions and, by steric hindrance, induce distortions in the torsion angles.9 

Changing the anions may modify the crystal packing of the cationic [Mn6] complexes 

and, indirectly, alter intramolecular angles. This fact makes the exchanging of the anions 

of [Mn6]2+ salts another useful strategy to be explored. In addition, the use of anions 

that may bring another physical property or functionality to the material, such as 

conductivity, luminescence or dynamic relaxation increasing the Ueff value of [Mn6] 

family. For instance, the exchange of ClO4
- by [ReCl6]2-, a paramagnetic anion, clearly 

modifies the magnetic behaviour of the material.10 

Besides, nowadays it is of a great interest to develop multifunctional materials. In that 

sense, SMMs have attracted much attention because of their spin properties and 

potential applications. The use of auxiliary ligands constitute a good strategy not only to 

modify the properties but also to attach complementary functionalities into the 

complexes.  

Figure 2. Molecular core of the complexes of the [Mn6] family, highlighting the 

Mn-N-O-Mn torsion angles (α). 
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Hence, as a continuation of our investigation on [Mn6] SMMs, we have explored the 

synthesis of systems with azole-type ligands, in particular benzotriazole and 5-phenyl-

tetrazole (see Scheme 2). Benzotriazole and its derivatives constitute a family of 

versatile heterocyclic compounds with properties that make them very useful in a wide 

variety of different research fields.11 Moreover, the good chelating ability of the 5-

phenyl-tetrazole together with the presence of its four N atoms allow this ligand to be 

very suitable for metal coordination and supramolecular assembling.12 Nevertheless, no 

crystal structure based on manganese and 5-phenyl-tetrazole has been reported so far. 

On top of all above already mentioned, our work not only attempt to develop new 

functionalities but to explore the possibility of using the already developed materials in 

devices at nanoscale level. Since the hysteresis cycle at low temperatures was observed 

in [Mn12], SMMs started to be thought as a possible magnetic storage information 

material. The fact that magnetic hysteresis in SMMs arises from a purely molecular 

mechanism rather than from bulk magnetic interaction was firmly established by 

magnetic dilution experiments.13 Practical applications of SMMs for both, information 

storage and “qubits”, require the addressing of individual molecules and eventually 

manipulating individual systems. To deposit the target molecules on a suitable substrate 

is among the most used techniques to perform such addressing. By using this technique, 

molecules are deposited individually. The process is performed in scanning tunnelling 

microscopy (STM), atomic force microscopy (AFM), and magnetic force microscopy 

(MFM).14 The former has become particularly interesting for many researchers because 

of the study of the interplay between charge transport and the magnetic properties of 

the complexes. 

In 2003, Cornia et al. reported a method to deposit derivatized [Mn12] complexes on 

gold films. Then, the authors were able, for the first time, to observe these molecules 

directly at single-molecule level by STM. It was suggested that, since the complex itself 

is not capable to adhere to gold surfaces in a stable fashion, it needs to be functionalised. 

Given that, their work was carried on gold monolayers, the authors suggested that thiol 

and thioester groups as suitable groups to fix the complexes on the surface, because of 

the well-known affinity of gold for sulphur.15 However, treatment of preformed 

molecules with thiol derivatized ligands afforded intractable solids, presumably as a 

result of the oxidative instability of free thiols in the presence of Mn(III) centers. In 

contrast, the use of the corresponding acetyl-protected acid yielded to a fully-

substituted derivative compound, which was highly soluble in organic solvents. Hence, 

(a) (b) 
Scheme 2. Structures of (a) benzotriazole (Hbta) and (b) 5-phenyl-tetrazole (Hpta). 
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thioester derivatized ligands revelled to be the most suitable functionalizing agents for 

these Mn(III)-containing molecules. 

Subsequently, a great research effort has been devoted to the synthesis of single-

molecule systems, with large magnetic anisotropies, and their functionalisation, which 

is made with functional groups convenient to connect suitable SMMs to junction devices 

or to perform their grafting on surfaces of Si or Au substrates; in many cases, looking for 

the improvement of their magnetic properties, the control of the nanoscale organisation 

or simply to get a reliable description of the electronic structure of the investigated 

system.16 

Thioesters-based ligands have proven to be particularly useful to get derivatised and 

suitable SMMs for this research field. Indeed, [Fe4Ni4] cages have been connected to 

junction devices,15d besides that and apart from [Mn12], complexes such as the well-

known [Fe4] and [Fe3Cr] systems with star-like structures have been grafted on Au 

surfaces after being functionalised with thioester groups.13 

Aliphatic chains are expected to be more isolating than the conjugated ones. 

Nevertheless, they provide a quite stable system that may be useful to start studying 

the capability of these type of complexes for connecting junction devices. 

In the literature, the aliphatic chains which have been used to functionalize the above-

mentioned complexes are normally between 10 and 16 carbon atoms long. This length 

is strongly important because it determines if molecule will be able to connect 

electrodes of the device or not. For instance, Cornia et al. have used 16-

(acetylthio)hexadecanoic acid to functionalize [Mn12] complexes.14 Nevertheless, in the 

last years, with the development of more powerful technologies, the size of nanodevices 

have become even smaller and even shorter molecules have been used to connect 

electrodes. Hence, herein we decided to functionalize our [Mn6] systems with short 

auxiliary ligands in order to find suitable compounds to connect junction devices. The 

auxiliary ligands chosen in this work are 3- (acetylthio)propionic acid (3-hatpa) and 6-

(acetylthio)hexanoic acid (6-hatha); (see Scheme 3). 

Scheme 3. Molecular structures of thioester-carboxylate ligands; 3-hatpa (top), 6-hatha (bottom). 
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Objectives  

Given the amount of work accumulated and the more than one hundred [Mn6] 

structures already reported, one could be tempted to think that, all what could be done 

with these systems is already done. However, as this work aim to demonstrate, there 

are still relevant aspects to be studied.  

First of all, a search on the Cambridge Structural Database (CSD) revealed that, despite 

the huge amount of reported structures of [Mn6] systems, only six were cationic [Mn6]2+ 

species, all of the other are neutral. The strategy of introducing specific modification to 

known cationic systems in order to improve their magnetic properties is going to be 

approached in the present work. Furthermore, modifications will be introduced as a trial 

to improve the already studied magnetic properties of [Mn6] systems. This strategy will 

be carried on by changing the coordinating solvents which complete the coordination 

sphere of the Mn(III) centers in the oxime-based complexes (the typically used ethanol 

or methanol by, dimethylformamide or pyridine for instance), and employing new 

anions.  

In addition, we will explore the use of new terminal ligands with the attempt of 

modifying the Mn-N-O-Mn torsion angles and thus the magnetic properties of the [Mn6] 

complexes. The ligands to use in this section would be able to lead to a good approach 

to the synthesis and characterisation of new systems based on azole ligands, which 

belong to a family of versatile heterocyclic compounds with properties that make them 

very useful in a wide variety of different research fields. 

Finally, SMMs have been considered a fundamental link between two novel scientific 

disciplines, molecular spintronics and molecular electronics. Since neutral [Mn6] 

complexes constitute the wider group of compounds of the family, which makes them 

the most characterised and systematised systems, they are the most recommendable 

species to be used to go a step farther, that is, to the functionalisation. Based on the 

previous experiences reported in the literature, we consider the possibility of 

functionalising [Mn6] molecules in order to connect them to junction devices as a good 

approach to find a direct application of this huge family in devices at nanoscale level. 

The use of the appropriate ligands may be crucial to achieve the aims of both 

functionalising and connecting the [Mn6] SMMs. 

Regarding the above, this work has the aim of exploring in a didactic way the chemistry 

and characterisation of a well-known SMMs family, as well as, improving of their 

magnetic properties.  
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Abstract: Two new members of the [Mn6] family of single-molecule magnets (SMMs) of formulae
[Mn6(µ3-O)2(H2N-sao)6(dmf)8](ClO4)2 (1) and [Mn6(µ3-O)2(H2N-sao)6(py)6(EtOH)2][ReO4]2·4EtOH
(2), (dmf = N,N′-dimethylformamide, py = pyridine, H2N-saoH2 = salicylamidoxime) have been
synthesized and characterized structurally and magnetically. Both compounds were straightforwardly
prepared from the deprotonation of the H2N-saoH2 ligand in the presence of the desired manganese
salt and solvent (dmf (1) vs. py (2)). Compound 1 crystallizes in the triclinic system with space group
Pı̄ and 2 crystallizes in the monoclinic system with space group P21/n. In the crystal packing of 1 and
2, the (ClO4)− (1) and [ReO4]− (2) anions sit between the cationic [Mn6]2+ units, which are H-bonded
to –NH2 groups from the salicylamidoxime ligands. The study of the magnetic properties of 1 and 2
revealed ferromagnetic coupling between the MnIII metal ions and the occurrence of slow relaxation
of the magnetization, which is a typical feature of single-molecule magnet behavior. The cationic
nature of these [Mn6]2+ species suggests that they could be used as suitable building blocks for
preparing new magnetic materials exhibiting additional functionalities.

Keywords: manganese(III); salicylamidoxime; molecular magnetism; single-molecule magnets

1. Introduction

Single-molecule magnets (SMMs) have attracted a great deal of attention during the last
two decades [1], because of their potential applications in quantum information processing [2],
low-temperature cooling [3], and molecular spintronics [4,5]. Most of the reported SMMs are based on
paramagnetic 3D metal ions, the MnIII ion being one of the more explored in this multidisciplinary
research [6].

In this context, the combination of phenolic oximes and MnIII has proven to be particularly
successful in the preparation of SMMs [7]. Thus, a large family of hexanuclear [MnIII

6] complexes
based on salicylaldoxime and salicylamidoxime ligands (Scheme 1), along with their derivatives,
has been investigated [8–20]. All the family members display the SMM phenomenon, with remarkably
different magnetic behavior, antiferromagnetic or ferromagnetic, that is strongly affected by the
structural distortion of the Mn–N–O–Mn torsion angles. As a result, it established a semi-quantitative
magnetostructural correlation that enables the prediction of the magnetic behavior of new [MnIII

6]
systems [8–20].

A search on the Cambridge Structural Database (CSD) revealed more than 100 hits of discrete
[MnIII

6] molecules based on salicylaldoxime and salicylamidoxime ligands. However, only six of them
were cationic [MnIII

6]2+ systems, the rest being neutral complexes [17–19]. This singular type of SMMs
suggests that they could be used as suitable building blocks for preparing new magnetic materials,
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just by replacing the anion by another anionic species exhibiting an additional functionality [17–19].
For that reason, we are motivated to investigate the crystal structure and magnetic properties of
cationic [MnIII

6]2+ SMMs.
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Scheme 1. Structure of the salicylamidoxime ligand (H2N-saoH2).

Herein we report two novel cationic [Mn6]2+ complexes with the formulae [Mn6(µ3-O)2(H2N-
sao)6(dmf)8](ClO4)2 (1) and [Mn6(µ3-O)2(H2N-sao)6(py)6(EtOH)2][ReO4]2·4EtOH (2) (dmf =
N,N′-dimethylformamide, py = pyridine, H2N-saoH2 = salicylamidoxime), which have been
characterized structurally and magnetically. Both 1 and 2 behave as SMMs.

2. Materials and Methods

2.1. Reagents and Instruments

All manipulations were performed under aerobic conditions, using materials as received (reagent
grade). Although no problems were encountered in this work, care should be taken when using the
potentially explosive perchlorate anion. The salicylamidoxime ligand was prepared following the
synthetic method described in the literature [21].

Elemental analyses (C, H, N) were performed with a CE Instruments CHNS 1100 Elemental
Analyzer (samples of 25 (1) and 20 mg (2)) by the Central Service for the Support to Experimental
Research (SCSIE) at the University of Valencia. Infrared spectra of 1 and 2 were recorded with a
PerkinElmer Spectrum 65 FT-IR spectrometer in the 4000–400 cm−1 region. Variable-temperature,
solid-state direct current (DC) magnetic susceptibility data down to 2.0 K were collected on a Quantum
Design MPMS-XL SQUID magnetometer equipped (Quantum Design, Inc., San Diego, CA, USA) with
a 7 T DC magnet. The experimental magnetic data were corrected for the diamagnetic contributions of
the constituent atoms (−990.3 × 10−6 (1) and −1219.8 × 10−6 emu mol−1 (2)) and also for the sample
holder (−3.58 × 10−6 and −3.45 × 10−6 emu g−1 for 1 and 2, respectively).

2.2. Single-Crystal X-Ray Diffraction

X-ray diffraction data of single crystals of dimensions 0.26 × 0.16 × 0.04 (1) and 0.39 × 0.31 ×
0.24 mm3 (2) were collected on a Bruker D8 Venture diffractometer with PHOTON II detector and by
using monochromatized Mo-Kα radiation (λ = 0.71073 Å). Crystal parameters and refinement results
for 1 and 2 are summarized in Table 1.

The structures were solved by standard direct methods and subsequently completed by Fourier
recycling by using the SHELXTL software packages. The obtained models were refined with
version 2013/4 of SHELXL against F2 on all data by full-matrix least squares [22]. In both systems,
all non-hydrogen atoms were refined anisotropically, and the hydrogen atoms were set in calculated
positions and refined isotropically by using the riding model. The highest difference Fourier map
peaks were 2.262 (1) and 1.282 eÅ−3 (2), which are located at 0.935 Å of Cl(1) and at 1.029 Å of Re(1),
respectively. The graphical manipulations were performed with the DIAMOND program [23].

CCDC numbers for 1 and 2 are 1882221 and 1882222, respectively. These data can be obtained
free of charge from the Cambridge Crystallographic Data Center on the web (http://www.ccdc.cam.
ac.uk/data_request/cif).
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Table 1. Summary of the crystal data and structure refinement for 1 and 2.

Compound 1 2

CCDC 1882221 1882222
Formula C66H92O30N20Cl2Mn6 C84H94O28N18Mn6Re2

Mr/g·mol−1 2046.13 2505.81
Crystal system triclinic monoclinic

Space group Pı̄ P21/n
a/Å 12.603(8) 13.446(2)
b/Å 13.256(8) 23.254(4)
c/Å 14.501(9) 16.458(3)
α/◦ 114.71(2) 90
β/◦ 98.09(2) 105.06(2)
γ/◦ 100.59(2) 90

V/Å3 2098.2(2) 4649.1(1)
Z 1 2

Dc/g·cm−3 1.619 1.675
µ(MoKα)/mm−1 1.032 3.244

F(000) 1052 2496
Crystal size 0.26 × 0.16 × 0.04 0.39 × 0.31 × 0.24

Goodness-of-fit on F2 1.079 1.047
R1 [I > 2σ(I)] 0.0623 0.0537

wR2 [I > 2σ(I)] 0.1731 0.1596
∆ρmax, min/e Å−3 2.262, −1.549 1.282, −2.359

2.3. Preparation of the Compounds

2.3.1. Synthesis of [Mn6(µ3-O)2(H2N-sao)6(dmf)8](ClO4)2 (1)

Mn(ClO4)2·6H2O (0.249 g, 0.688 mmol) was dissolved with continuous stirring in dmf (10 mL);
then, H2N-saoH2 (0.103 g, 0.670 mmol) and NEt3 (0.5 mL, 3.6 mmol) were added. The resulting dark
green mixture was stirred for 1 h, filtered and layered with Et2O (10 mL). Dark green crystals suitable
for X-ray diffraction were obtained in 4 days. Yield: 80%. Elemental analysis calculated (found) for
C66H92O30N20Cl2Mn6 (1): C, 39.1 (39.7); H, 5.2 (5.0); N, 13.8 (13.9)%. Selected IR data (in KBr/cm−1):
3332 (m), 2925 (w), 1653 (vs), 1610 (vs), 1533 (m), 1438 (m), 1384 (m), 1317 (m), 1253 (m), 1150 (m),
1121 (s), 1109 (s), 1022 (m), 881 (m), 762 (w), 685 (s), 649 (m), 578 (w).

2.3.2. Synthesis of [Mn6(µ3-O)2(H2N-sao)6(py)6(EtOH)2][ReO4]2·4EtOH (2)

Mn(NO3)2·4H2O (0.173 g, 0.688 mmol) was dissolved with continuous stirring in EtOH (20 mL),
then H2N-saoH2 (0.103 g, 0.670 mmol) was added, followed by pyridine (1 mL, 12.4 mmol) and NEt3

(0.1 mL, 0.72 mmol). Next, (NH4)[ReO4] (0.184 g, 0.688 mmol) was added to the dark green solution,
which was stirred for 1 h. The final dark brown solution was left to evaporate in a fume hood at room
temperature. Crystals of 2 were obtained in 3 days and were suitable for X-ray diffraction. Yield: 70%.
Elemental analysis calculated (found) for C84H94O28N18Mn6Re2 (2): C, 40.3 (40.8); H, 3.8 (4.0); N, 10.1
(9.9)%. Selected IR data (in KBr/cm−1): 3426 (vs), 3314 (vs), 1614 (vs), 1564 (m), 1529 (s), 1483 (w), 1442 (s),
1384 (w), 1311 (w), 1251 (w), 1147 (vw), 1022 (m), 910 (s), 881 (m), 755 (w), 683 (m), 642 (w), 580 (vw).

3. Results and Discussion

3.1. Synthetic Procedure

By reacting Mn(ClO4)2·6H2O (1) and Mn(NO3)2·4H2O (2) with the salicylamidoxime ligand
(Scheme 1) in the presence of the coordinating solvent dmf (1) and py (2), along with NEt3 (1 and 2)
and [ReO4]− (2), we obtained dark green crystals of hexametallic MnIII complexes of the well-known
family of [Mn6] systems. Both (ClO4)− and [ReO4]− anions were chosen because of their diamagnetic
character, and also for giving a suitable solubility to the final compounds. The crystallization techniques
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employed for 1 and 2 were slow diffusion by layering with Et2O (10 mL) and slow evaporation
at room temperature of the resulting solutions, respectively. Both compounds were obtained in
satisfactory yields.

It is worth noting that both 1 and 2 are cationic oxime-based [Mn6]2+ complexes, and only
six systems of this type exist in literature, all of them being obtained with the salicylamidoxime
ligand [17–19]. This fact is in contrast to the results obtained from analogous reactions employing
similar phenolic oximes, such as salicylaldoxime and its alkyl derivatives, where the isolated complex
of the reported works is always a neutral [Mn6] or [Mn3] system.

3.2. Description of the Crystal Structures

The crystal structure and exact chemical composition of 1 and 2 were established by single-crystal
X-ray diffraction. While 1 crystallizes in the triclinic crystal system with space group Pı̄, 2 crystallizes
in the monoclinic crystal system with space group P21/n (Table 1). The structures of 1 and 2 are made
up of [Mn6]2+ cations (1 and 2) and (ClO4)− (1) and [ReO4]− (2) anions. There are solvent molecules of
crystallization in only 2, these are EtOH molecules.

Each cationic [Mn6]2+ unit contains two symmetry equivalent {Mn3(µ3-O)} triangular moieties,
which are linked by two phenolate and two oximate O-atoms and related by an inversion center
(Figure 1). Each edge of the triangle is spanned by the –N–O– group of the salicylamidoxime ligand,
with the central oxo ion displaced 0.102 (1) and 0.184 Å (2) above the plane of the [Mn3] triangle,
towards the dmf (1) and py (2) terminal ligands.
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Figure 1. (a) Molecular structure of the [Mn6(μ3-O)2(H2N-sao)6(dmf)8]2+ cation of 1. H atoms and 
(ClO4)− anion have been omitted for clarity. Thermal ellipsoids are depicted at 50% probability level. 
(b) Molecular structure of the [Mn6(μ3-O)2(H2N-sao)6(py)6(EtOH)2]2+ cation of 2. H atoms, [ReO4]− 
anions and EtOH solvent molecules have been omitted for clarity. Thermal ellipsoids are depicted at 
50% probability level. Color code: Pink, Mn; red, O; blue, N; grey, C. 

The six MnIII ions in the core of 1 and 2 exhibit coordination environments rather similar to 
those of previously reported salicylamidoxime-based [Mn6]2+ complexes [17–19], with distorted 
octahedral geometries and Jahn-Teller axes approximately perpendicular to the [Mn3] planes. The 
remaining coordination site on the third Mn ion [Mn(2a)] ((a) = 1 − x, 1 − y, 1 − z for 1 and (a) = 1 − x, 1 

Figure 1. (a) Molecular structure of the [Mn6(µ3-O)2(H2N-sao)6(dmf)8]2+ cation of 1. H atoms and
(ClO4)− anion have been omitted for clarity. Thermal ellipsoids are depicted at 50% probability level.
(b) Molecular structure of the [Mn6(µ3-O)2(H2N-sao)6(py)6(EtOH)2]2+ cation of 2. H atoms, [ReO4]−

anions and EtOH solvent molecules have been omitted for clarity. Thermal ellipsoids are depicted at
50% probability level. Color code: Pink, Mn; red, O; blue, N; grey, C.

The six MnIII ions in the core of 1 and 2 exhibit coordination environments rather similar to those
of previously reported salicylamidoxime-based [Mn6]2+ complexes [17–19], with distorted octahedral
geometries and Jahn-Teller axes approximately perpendicular to the [Mn3] planes. The remaining
coordination site on the third Mn ion [Mn(2a)] ((a) = 1 − x, 1 − y, 1 − z for 1 and (a) = 1 − x, 1 − y,
−z for 2) is occupied by a dmf (in 1) or EtOH (in 2) molecule. The Mn–N–O–Mn torsion angles of the
[MnIII

3(µ3-O)-(H2N-sao)3] triangular units are 46.5◦, 36.3◦ and 30.3◦ for 1 and 41.4◦, 38.1◦, 28.9◦ for 2
(Table 2).
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Table 2. Selected magneto-structural parameters for compounds 1 and 2.

Compound Crystal
System

Space
Group

α/◦

(Mn–N–O–Mn) J1/cm−1 J2/cm−1 g τo/s−1 E#/K

1 triclinic Pı̄ 46.5, 36.3, 30.3 +0.90 +0.84 1.99 1.6 × 10−11 66
2 monoclinic P21/n 41.4, 38.1, 28.9 +1.88 +0.72 1.98 8.4 × 10−9 41

In the crystal packing of 1 and 2, the (ClO4)− (1) and [ReO4]− (2) anions sit between the cationic
[Mn6]2+ units, which are H-bonded to –NH2 groups from salicylamidoxime ligands. In 2 the O···N
distances are shorter than in 1, linking the anions and cations into chains [N(4)···O(14b) distance
of 2.895(1) Å; (b) = 1

2 − x, 1
2 + y, 1

2 − z], as shown in Figure 2. In 1, the cationic [Mn6]2+ units are
somewhat less separated from each other, the shortest intermolecular Mn···Mn distance being 9.831(1)
Å [Mn(1)···Mn(2c), (c) = 1 − x, 1 − y, 2 − z] (Figure 3), whereas the shortest intermolecular Mn···Mn
distance in 2 is 10.467(1) Å [Mn(1)···Mn(2b), (b) = 1

2 − x, 1
2 + y, 1

2 − z] (Figure 4).
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In both compounds, additional weak C···C interactions of different types are also observed.
In 1, there exist π···π off-center parallel stacking interactions of approximately 3.38 Å between
aromatic rings of salicylamidoxime ligands of adjacent [Mn6]2+ complexes, and also weak C–H···C(O)
interactions between dmf molecules of neighboring [Mn6]2+ cations (ca. 3.45 Å). In 2, π···π
edge-to-face stacking interactions of ca. 3.49 Å connect aromatic rings of coordinated py molecules and
salicylamidoxime ligands of adjacent [Mn6]2+ units. All these additional interactions help in stabilizing
the supramolecular arrangement in 1 and 2.

3.3. Magnetic Properties

DC magnetic susceptibility measurements were performed on microcrystalline samples of 1 and
2 in the 2.0–300 K temperature range and under an external magnetic field of 0.1 T. The magnetic
properties of 1 and 2 in the form of χMT vs. T plot (χM being the molar magnetic susceptibility),
are shown in Figure 5. The χMT values observed at 300 K are approximately 20.2 and 20.7 cm3·mol−1

K for 1 and 2, respectively. Although these values are somewhat higher than that expected for six
magnetically isolated MnIII ions (χMT ≈ 18.0 cm3·mol−1 K with g = 1.99), they have been previously
observed in ferromagnetically coupled [Mn6] systems [8–20]. Upon cooling, the χMT values rise
gradually with decreasing temperature for both compounds, reaching maxima of 38.9 cm3mol−1K at
8.0 K for 1 and 35.8 cm3·mol−1 K at 17.0 K for 2. In both compounds, χMT values decrease at lower
temperatures giving final values of 23.0 (1) and 13.0 cm3·mol−1 K (2) at 2.0 K, which are observed due
to the presence of intermolecular interactions and/or zero-field splitting (ZFS) effects.

The experimental data of the χMT vs. T plots of 1 and 2 were treated by using the 2J
model described by the Hamiltonian of Equation (1), where J1 and J2 are the exchange coupling
constants for the intramolecular Mn–Mn interactions associated with exchange pathways involving
the Mn–N–O–Mn torsion angles of the [Mn6] core, and g is the Landé factor for the MnIII ions.
The theoretical parameters thus obtained are summarized in Table 2.

Ĥ = −2J1 (Ŝ1 Ŝ3 + Ŝ1Ŝ3′ + Ŝ1Ŝ1′ + Ŝ1′Ŝ3 + Ŝ1′Ŝ3′)

−2J2 (Ŝ1 Ŝ2 + Ŝ2 Ŝ3 + Ŝ1′Ŝ2′ + Ŝ2′Ŝ3′) + µBgHŜ
(1)
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These features reveal an intramolecular ferromagnetic coupling between the MnIII metal ions in
both 1 and 2. In previous studies dealing with DFT calculations on salicylamidoxime-based [Mn6]
complexes [16], a critical angle (ca. 27.0◦) that is directly correlated to the Mn–N–O–Mn exchange
pathway between neighboring MnIII ions was found. Mn–N–O–Mn torsion angles upper than this
critical angle switch the magnetic exchange from antiferromagnetic (J < 0) to ferromagnetic (J > 0).
Given that 1 and 2 show Mn–N–O–Mn torsion angles higher than 27.0◦, it would be expected to obtain
a ferromagnetic coupling as the predominant magnetic interaction for both compounds, as observed
experimentally (Figure 5 and Table 2).Crystals 2019, 9, x FOR PEER REVIEW 7 of 11 
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Figure 5. Thermal variation of the χMT product for compounds 1 (a) and 2 (b). The solid red line
represents the best-fit of the experimental data.

The complexes that form the large family of oxime-based [MnIII
6] SMMs display ground state spin

values that vary from 4 to 12. In general, a spin value of S = 4 is found in antiferromagnetic [MnIII
6]

systems, whereas ferromagnetic [MnIII
6] complexes show a spin value of S = 12. A ground state spin

value of S = 12 was obtained for 1 and 2 from the magnetic susceptibility data, hence supporting the
ferromagnetic nature for both compounds. Thus, the isotropic simulation of the magnetic susceptibility
of 1 and 2 generated the plots of the energy versus total spin shown in Figure 6. The first excited state
found in 1 is S = 11 placed at 2.25 cm−1, and the first excited state in 2 is also S = 11, which is located at
1.85 cm−1 (Figure 6).Crystals 2019, 9, x FOR PEER REVIEW 8 of 11 
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Additionally, variable temperature-variable field DC magnetization data were measured for 1
and 2 in the 2–7 K temperature and 0.5–7.0 T field ranges. The experimental data are given as reduced
magnetization (M/NµB versus µoH/T) in Figure 7, which were fitted to a Zeeman plus axial zero-field
splitting Hamiltonian (Ĥ = D(Ŝz

2 − S(S + 1)/3) + µBgHŜ, where D is the axial anisotropy of the cationic
[Mn6]2+ complex, µB is the Bohr magneton, Ŝz is the easy-axis spin operator, and H is the applied field)
assuming only the ground state is populated. The best fits afforded the parameters S = 12, g = 1.99
and D = −0.48 cm−1 for 1 and S = 12, g = 1.98 and D = −0.39 cm−1 for 2, which are in line with those
values reported for similar cationic [Mn6]2+ complexes [17–19].
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Figure 7. Plot of the reduced magnetization (M/NµB versus µoH/T) for 1 (a) and 2 (b) at 4, 5, 6 and 7 T
fields and temperatures 2–5 K. The solid lines represent the best fit of the experimental data.

AC susceptibility measurements were performed on samples of 1 and 2 in the temperature range
2–10 K, in zero applied DC field, and a 3.9 G AC field oscillating in the 5–1000 Hz range of frequencies.
Out-of-phase AC signals (χ′ ′M) for 1 and 2 are shown in Figure 8. The respective χ′ ′M versus T plots
exhibited frequency dependence of the χ′ ′M maxima for 1 and 2. This feature is consistent with SMM
behavior. In addition, it was observed that the χ′ ′M maxima increased with the decreasing frequency
for both compounds. These data were fitted to the Arrhenius equation (τ = τoexp(E#/kBT), where τo is
the pre-exponential factor, τ is the relaxation time, E# is the barrier to relaxation of the magnetization,
and kB is the Boltzmann constant) and plotted in the respective insets of Figure 8. The values obtained
for the τo and E# parameters are listed in Table 2. The E# values for 1 [66.0 K (45.9 cm−1)] and
2 [41.0 K (28.5 cm−1)] fall into the range for previously reported salicylamidoxime-based [MnIII

6]
complexes (24.0 K (16.7 cm−1) < E# < 86.0 K (59.8 cm−1)). Nevertheless, it is worth pointing out
that the E# value calculated for 1 is the higher obtained so far for a cationic oxime-based [MnIII

6]2+

single-molecule magnet.
This last result is interesting since this type of cationic SMMs can be used as precursors of new

multifunctional magnetic materials because the (ClO4)− (1) and [ReO4]− (2) anions can be changed
through the incorporation of anionic species that bring another physical property or functionality to
the final material, for instance, conductivity or luminescence.
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4. Conclusions

In summary, two new members of the family of oxime-based [Mn6] complexes have been
synthesized and magnetostructurally characterized. Both compounds display a magnetic behavior
consistent with the single-molecule magnet (SMM) phenomenon. The barrier value to the relaxation of
the magnetization (E#) for compound 1 is the highest reported so far for cationic oxime-based [Mn6]2+

systems. Finally, due to their cationic character, these singular SMMs could be used as suitable building
blocks for preparing new magnetic materials, just by replacing the anion by another anionic species
exhibiting an additional functionality, namely, conductivity or luminescence. This work is in progress.
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Two novel hexanuclear manganese(III) complexes belonging to the Mn6 family of single-molecule mag-
nets (SMMs), of formulae [Mn6(l3-O)2(H2N-sao)6(bta)2(EtOH)6]�2EtOH�4H2O (1) and [Mn6(l3-O)2(H2N-
sao)6(pta)2(EtOH)6]�4EtOH (2) [H2N-saoH2 = salicylamidoxime, bta = 1,2,3-benzotriazolate anion,
pta = 5-phenyl-tetrazolate anion], have been synthesized and characterized structurally and magneti-
cally. Both compounds crystallize in the triclinic system with space group P 1

�
(1 and 2). In their crystal

packing, adjacent Mn6 complexes are connected through non-coordinating solvent molecules, which
are H-bonded to N atoms of azole rings and –NH2 groups of salicylamidoxime ligand. The study of the
magnetic properties of 1 and 2 through magnetic susceptibility measurements reveals as predominant
interaction an antiferromagnetic coupling between the MnIII metal ions in both compounds. A ground
state spin value of S = 4 for 1 and 2 was confirmed through variable temperature-variable field dc mag-
netization data, and the occurrence of slow relaxation of the magnetization in both 1 and 2 indicates sin-
gle-molecule magnet behavior.

� 2019 Elsevier Ltd. All rights reserved.
1. Introduction

In the multidisciplinary field of Molecular Magnetism, the
structural and magnetic properties of single-molecule magnets
(SMMs) have been thoroughly investigated for their fundamentally
interesting chemistry and physics, which can potentially provide a
gateway for the discovery of new physical phenomena in a diverse
array of technological applications [1].

MnIII has been one of the metal ions more explored in this mul-
tidisciplinary research. In this context, the combination of MnIII

and phenolic oximes, such as salicylaldoxime and salicylami-
doxime, has proven to be particularly successful in the preparation
of SMMs [2–16]. Thus, a large family of hexanuclear MnIII com-
plexes has been studied. All the family members display the
SMM phenomenon, with remarkably different magnetic behavior,
antiferromagnetic or ferromagnetic, which is strongly affected by
the structural distortion of the MnANAOAMn torsion angles. As
a result, it was established a semi-quantitative magneto-structural
correlation that enables the prediction of the magnetic behavior of
new MnIII

6 systems [2–16].
As far as we know, from this family of discrete MnIII

6 molecules
based on salicylaldoxime and salicylamidoxime, only one has been
prepared with a nitrogen-based azole-type ligand, the cationic
[Mn6]2+ complex of formula [Mn6(l3-O)2(H2N-sao)6(Him)6(EtOH)2]
(ClO4)2�6EtOH [H2N-saoH2 = salicylamidoxime and Him = imidazole]
[13].

As a continuation of our investigation on MnIII single-molecule
magnets, we have explored the synthesis ofMn6 systemswith these
azole-type ligands. In particular, we have focused on the benzotria-
zole and 5-phenyl-tetrazole ligands (Scheme 1). Benzotriazole and
its derivatives constitute a family of versatile heterocyclic com-
poundswith properties thatmake themvery useful in awide variety
of different researchfields [17–21]. Aside from that, the good chelat-
ing ability of the5-phenyl-tetrazole togetherwith thepresenceof its
four N atoms allow this ligand to be very suitable for metal coordi-
nation and supramolecular assembling [22–41], as shown in previ-
ous works dealing with the first-row metal ions TiIV [22,23], FeIII

[24], CoII,III [25–27], NiII [28–32], CuI,II [33–37] and ZnII [38–41].
Nevertheless, no crystal structure based on manganese and 5-phe-
nyl-tetrazole has been reported so far.

Herein we report the synthesis, crystal structures and
magnetic properties of two hexanuclear MnIII compounds of gen-
eral formula [Mn6(l3-O)2(H2N-sao)6(bta)2(EtOH)6]�2EtOH�4H2O
(1) and [Mn6(l3-O)2(H2N-sao)6(pta)2(EtOH)6]�4EtOH (2) [H2N-
saoH2 = salicylamidoxime, bta = 1,2,3-benzotriazolate anion,
pta = 5-phenyl-tetrazolate anion], which are based on oxime and
azole-type ligands (Scheme 2).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.poly.2019.05.044&domain=pdf
https://doi.org/10.1016/j.poly.2019.05.044
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https://doi.org/10.1016/j.poly.2019.05.044
http://www.sciencedirect.com/science/journal/02775387
http://www.elsevier.com/locate/poly


Scheme 1. Structure of the 1,2,3-benzotriazole (Hbta) and 5-phenyl-tetrazole
(Hpta) ligands.
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2. Experimental

2.1. Materials

All starting chemicals and solvents were purchased from com-
mercial sources and used without further purification. The salicy-
lamidoxime ligand was prepared following the synthetic method
described in the literature [42].
2.2. Synthesis

2.2.1. [Mn6(l3-O)2(H2N-sao)6(bta)2(EtOH)6]�2EtOH�4H2O (1)
MnCl2�4H2O (0.594 g, 3.0 mmol) was added dropwise and with

constant stirring to a solution of H2N-saoH2 (0.456 g, 3.0 mmol)
and benzotriazole (Hbta) ligand (0.357 g, 3.0 mmol) in EtOH
(40 mL), then NEt3 (2.0 mL, 3.58 mmol) was added. After stirring
for 1 h, a dark green solution was generated and let to evaporate
at room temperature. Dark green crystals of 1 were obtained in
4–5 days and were suitable for X-ray diffraction. Yield: 47%. Ele-
mental Anal. Calc. (found) for C70H100N18O26Mn6 (1): C, 43.4
(42.9); H, 5.2 (4.8); N, 13.0 (12.7). Selected IR data (in KBr/cm�1):
3314 (m), 1609 (vs), 1563 (m), 1440 (m), 1384 (m), 1311 (m),
Scheme 2. Synthesis of 1 and 2 with 1,2,3-benzotriazole (Hb
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1251 (m), 1148 (w), 1120 (s), 1022 (m), 880 (m), 759 (w), 683
(s), 642 (m), 580 (w).

2.2.2. [Mn6(l3-O)2(H2N-sao)6(pta)2(EtOH)6]�4EtOH (2)
Compound 2 was prepared as for 1 but by using 5-phenyl-1H-

tetrazole (Hpta) (0.439 mg, 3.0 mmol) instead of the benzotriazole
ligand. In 3–4 days, dark green crystals of 2 were obtained, which
were suitable for single-crystal X-ray diffraction studies. Yield:
ca. 67%. Elemental Anal. Calc. (found) for C76H106N20O24Mn6 (2):
C, 45.3 (45.8); H, 5.3 (5.8); N, 13.9 (13.5). Selected IR data (KBr pel-
lets/cm�1): 3326 (m), 1610 (vs), 1565 (m), 1443 (m), 1384 (m),
1311 (w), 1250 (w), 1147 (vw), 1022 (m), 910 (s), 881 (m), 758
(w), 683 (m), 640 (w), 580 (vw).

2.3. Physical measurements

Elemental analysis (C, H, N) were performed on a CE Instru-
ments EA 1110 CHNS analyser. Infrared spectra were recorded on
a Thermo-Nicolet 6700 FT-IR spectrophotometer in the 4000–
400 cm�1 region. Dc magnetic susceptibility measurements of 1
and 2were carried out with a Quantum Design SQUIDmagnetome-
ter in the temperature range 2.0–300 K and under an applied dc
fields of 0.025 and 0.1 T. Ac magnetic susceptibility measurements
were performed in the temperature range 2–8 K, at zero applied dc
field, and 3.9 � 10�4 T ac field oscillating at frequencies of 10–
1000 Hz. Diamagnetic corrections of the constituent atoms were
estimated from Pascal’s constants [43].

2.4. Crystallographic data collection and structure determination

X-ray diffraction data of single crystals of dimensions
0.22 � 0.04 � 0.02 (1) and 0.13 � 0.09 � 0.04 (2) were collected
on a Bruker D8 Venture diffractometer, with PHOTON II detector,
by using Cu Ka (k = 1.54184 Å) and Mo Ka (k = 0.71073 Å) radiation
for 1 and 2, respectively. Crystal parameters and refinement results
for 1 and 2 are summarized in Table 1. The structures were solved
by standard direct methods and subsequently completed by Four-
ier recycling by using the SHELXTL software packages. The obtained
models were refined with version 2013/4 of SHELXL against F2 on
all data by full-matrix least squares [44]. In both samples, all
non-hydrogen atoms were refined anisotropically. All the
ta) and 5-phenyl-tetrazole (Hpta) ligands, respectively.



Table 1
Crystal data and structure refinement for compounds 1 and 2.

Compound 1 2

Formula C70H92N18O26Mn6 C76H106N20O24Mn6

Formula weight 1931.25 2012.43
Crystal system triclinic triclinic
Space group P 1

�
P 1

�

a (Å) 12.116(1) 12.361(1)
b (Å) 13.313(1) 13.087(1)
c (Å) 15.006(1) 15.909(1)
a (�) 98.18(1) 70.58(1)
b (�) 113.58(1) 89.16(1)
c (�) 93.41(1) 65.33(1)
V (Å3) 2177.6(3) 2182.3(1)
Z 1 1
Dc (g cm�3) 1.473 1.531
l (mm�1) 7.576 0.927
F(0 0 0) 996 1043
Goodness-of-fit (GoF) on F2 1.013 1.133
R1 [I > 2r(I)]a 0.0671 0.0430
wR2[I > 2r(I)]b,c 0.1755 0.1070
Largest difference peak and hole

(e Å�3)
1.223 and �0.619 1.162 and �0.527

a R1 =
P

||Fo| � |Fc||/
P

|Fo|.
b wR2 = {

P
[w(Fo2 � Fc

2)2]/[(w(Fo2)2]}1/2.
c w = 1/[r2(Fo2) + (aP)2 + bP] with P = [Fo2 + 2Fc2]/3.
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hydrogen atoms of the EtOH molecules (1 and 2) were set in calcu-
lated positions and refined isotropically by using the riding model.
Hydrogen atoms on the water molecules (1) were neither found
nor calculated. Graphical manipulations were performed using
Table 2
Selected hydrogen-bonding interactions in compound 1.a

D–H� � �A D–H/Å H� � �A/Å D� � �A/Å (DHA)/�

O(11)–(11A)� � �N(9) 0.820 2.02(1) 2.834(1) 175.8
N(2)–H(2A)� � �O(1w) 0.860 2.25(1) 3.093(1) 168.7
N(2)–H(2B)� � �O(11a) 0.860 2.18(1) 2.941(1) 147.4
O(9)–H(9A)� � �O(2c) 0.820 2.23(1) 3.042(1) 170.8
N(6)–H(6A)� � �O(9c) 0.860 2.10(1) 2.947(1) 170.1
N(4)–H(4B)� � �O(6d) 0.860 2.17(1) 2.976(1) 156.6

a Symmetry codes: (a) = �x + 2, �y, �z + 4; (c) = �x + 1, �y, �z + 4; (d) = �x + 1,
�y + 1, �z + 4.

Table 3
Selected hydrogen-bonding interactions in compound 2.a

D–H� � �A D–H/Å

O(15)–H(15A)� � �N(13) 0.820
O(16)–H(16A)� � �N(13) 0.820
O(17)–H(17A)� � �O(8) 0.820
O(18)–H(18B)� � �O(8) 0.820
O(19)–H(19D)� � �N(17) 0.820
O(20)–H(20A)� � �O(2) 0.820
N(4)–H(4A)� � �O(23a) 0.860
N(4)–H(4B)� � �N(20a) 0.860
O(21)–H(21A)� � �O(3c) 0.820
O(21)–H(21A)� � �O(4c) 0.820
O(22)–H(22A)� � �O(10) 0.820
O(23)–H(23A)� � �O(5d) 0.820
O(23)–H(23A)� � �O(6d) 0.820
N(10)–H(10B)� � �N(16d) 0.820
N(12)–H(12B)� � �O(21e) 0.860
O(24)–H(24A)� � �O(11) 0.820
N(6)–H(6A)� � �O(20) 0.860
N(6)–H(6B)� � �O(22) 0.860
N(10)–H(10A)� � �O(24) 0.860
N(12)–H(12A)� � �O(17) 0.860

a Symmetry codes: (a) = x, y, z � 1; (c) = x + 1, y � 1, z + 1; (d) = x, y, z + 1; (e) = x � 1, y
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DIAMOND [45] and CRYSTALMAKER [46]. CCDC 1910059 (1) and
1910060 (2).
3. Results and discussion

3.1. Crystal structures of compounds 1 and 2

Both compounds (1 and 2) crystallize in the triclinic system

with the centrosymmetric space group P 1
�
(Table 1). The crystal

structure of 1 and 2 is made up of neutral Mn6 complexes along
with H2O (1) and EtOH (1 and 2) solvent molecules of crystalliza-
tion, which are held together mainly by means of H-bonding inter-
actions (Tables 2 and 3). Perspective drawings showing the Mn6

complexes in 1 and 2 are given in Fig. 1 and Fig. 2, respectively.
The core of these Mn6 complexes is formed by two {Mn3(l3-O)}

triangular moieties, which are connected each other by means of
two phenolate and two oximate O-atoms (Fig. 1 and Fig. 2). Each
edge of the triangle is bridged through the –NAO– groups of the
salicylamidoxime ligands, with the central oxo ion placed in the
plane of the Mn3 triangle in both compounds. The six MnIII ions
in the core of 1 and 2 exhibit coordination environments rather
similar to those of previously reported salicylamidoxime-based
Mn6 complexes [8–16], with distorted octahedral geometries and
Jahn-Teller axes approximately perpendicular to the Mn3 planes.
The MnANAOAMn torsion angles of the [Mn3(l3-O)(H2N-sao)3]
triangular units are 43.9, 25.8 and 25.2� for 1, and 38.5, 30.3 and
17.4� for 2.

In 1, the coordinating benzotriazolate ligand is linked to both
Mn(3) and its symmetry equivalent. In 2, the 5-phenyl-tetrazolate
anion is coordinate to Mn(3) and its two rings, azolate and pyridyl
rings, are non coplanar. Indeed, the dihedral angle through the
inter-ring carbon–carbon bond is approximately 41.0�. Both
azole-type ligands coordinate the Mn ions in a monodentate fash-
ion, and their average values of the CAC and CAN bond lengths are
in agreement with those of previously reported systems containing
these anionic ligands [22–41].

In the crystal packing of 1, adjacent Mn6 complexes are con-
nected through lattice EtOH molecules, which are H-bonded to N
atoms of azole rings and –NH2 groups from benzotriazole and sal-
icylamidoxime ligands, respectively (Fig. 3). These intermolecular
interactions led to the formation of a one-dimensional motif of
Mn6 complexes that grow along the crystallographic a axis through
H� � �A/Å D� � �A/Å (DHA)/�

2.28(1) 2.842(1) 127.6
2.18(1) 2.957(4) 158.9
2.15(1) 2.950(1) 164.9
2.09(1) 2.912(1) 176.2
2.37(1) 2.965(1) 129.8
2.19(1) 3.000(1) 168.3
2.12(1) 2.965(1) 167.0
2.19(1) 2.950(1) 146.8
2.50(1) 3.026(1) 123.2
2.20(1) 3.007(1) 167.1
2.13(1) 2.945(1) 172.8
2.61(1) 3.062(1) 116.0
2.20(1) 3.021(1) 175.2
2.26(1) 3.027(1) 148.7
2.47(1) 3.038(1) 124.5
2.22(1) 3.006(1) 162.1
2.04(1) 2.888(1) 168.0
2.41(1) 3.001(1) 126.2
2.16(1) 2.996(1) 163.7
2.06(1) 2.914(1) 174.2

+ 1, z � 1.



Fig. 1. Perspective drawing of the molecular structure of the [Mn6(m3-O)2(H2N-
sao)6(bta)2(EtOH)6] complex of 1. H atoms and solvent molecules have been
omitted for clarity. Color code: pink, Mn; red, O; blue, N; black, C. (Colour online.)

Fig. 2. Perspective drawing of the molecular structure of the [Mn6(m3-O)2(H2N-
sao)6(pta)2(EtOH)6] complex of 2. H atoms and EtOH solvent molecules have been
omitted for clarity. Color code: pink, Mn; red, O; blue, N; black, C. (Colour online.)
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the N(9)� � �O(11)� � �N(2a) [(a) = �x + 2, �y, �z + 4] pathway, with
N� � �O distances showed in Table 2. Additional hydrogen-bonding
94
interactions involving H2O molecules connect the resulting Mn6

chains, which generate a layered structure that grows along the
ac plane by means of the N(2)� � �O(1wb)� � �O(1w)� � �N(2b) [(b)
= �x + 1, �y, �z + 3] pathway (Fig. 4).

In the crystal packing of 2, Mn6 complexes are directly linked
through H-bonding interactions and arranged in rows that grow
along the c-axis direction (Fig. 5). These intermolecular interac-
tions are promoted by the azole ring of one Mn6 complex and
one –NH2 group of the neighboring Mn6 molecule [N(4)� � �N(20a)
= 2.95 Å and N(16)� � �N(10a) = 3.05 Å; (a) = x, y, z � 1] (Table 3).
These rows are extended to layers on the crystallographic ac plane
through offset face-to-face p� � �p interactions involving the pyridyl
ring of the 5-phenyl-tetrazolate ligand [intercentroid distance of
ca. 3.7 Å; (b) = x + 1, y, z � 1] (Fig. 6). In both compounds, addi-
tional weak C� � �C interactions are also observed, which help to sta-
bilize the supramolecular arrangement in both 1 and 2.
3.2. Magnetic properties

Direct current magnetic susceptibility measurements were car-
ried out on microcrystalline samples of 1 and 2 in the 2.0–300 K
temperature range, under external magnetic fields of 0.1 T (at
T > 25 K) and 0.025 T (at T < 25 K). The vMT vs. T plots of 1 and 2
are shown in Figs. 7 and 8, respectively. At room temperature,
the vMT values are approximately 17.4 and 17.7 cm3 mol�1 K for
1 and 2, respectively. These values are as expected for six magnet-
ically isolated MnIII ions (vMT � 18.0 cm3 mol�1 K with S = 2 and
g = 1.99) and are in agreement with those previously reported for
antiferromagnetically coupled Mn6 systems [2–16]. Upon cooling,
the vMT value in compound 1 approximately follows the Curie
law to ca. 100 K, before vMT decreases to reach a final value of
ca. 4.9 cm3 mol�1 K at 2.0 K (Fig. 7). In 2, the vMT value decreases,
at first slowly, and then more abruptly with decreasing tempera-
ture reaching a small plateau at 10.0 K, then it decreases further
to reach a final value of ca. 5.4 cm3 mol�1 K at 2.0 K (Fig. 8). The
decrease of the vMT values observed for 1 and 2 at low temperature
are likely due to the presence of intermolecular interactions and (at
lower temperatures) zero-field splitting (ZFS) effects, which have
been previously reported for similar Mn6 complexes [2–16].

The experimental data of the vMT vs. T plots of 1 and 2 were
treated by using the 2J model described by the Hamiltonian of
Eq. (1), where J1 and J2 are the exchange coupling constants for
the intramolecular Mn–Mn interactions associated to exchange
pathways involving the MnANAOAMn torsion angles of the Mn6

core (which is highlighted in black in Figs. 1 and 2), J1 being asso-
ciated with the higher torsion angles and J2 with the lower ones
(see point 3.1 Crystal structures of 1 and 2). A term of Zeeman
effect is included at the end of the Hamiltonian, g being the Landé
factor for the MnIII ions. The best-fit theoretical parameters are:
g = 1.99, J1 = +0.14 cm�1, J2 = �0.86 cm�1 for 1, and g = 1.99, J1 =
+0.33 cm�1, J2 = �3.75 cm�1 for 2. Despite a 3J model did not
improve the fit, the curves calculated through the 2J model repro-
duce the experimental data well in the temperature ranges 2.0–
300 and 5.0–300 K for 1 and 2, respectively.

Ĥ ¼ � 2 J1 Ŝ1 Ŝ3 þ Ŝ1 Ŝ30 þ Ŝ1 Ŝ10 þ Ŝ10 Ŝ3 þ Ŝ10 Ŝ30
� �

� 2J2 Ŝ1 Ŝ2 þ Ŝ2 Ŝ3 þ Ŝ10 Ŝ20 þ Ŝ20 Ŝ30
� �

þ lBgH Ŝ
ð1Þ

The values obtained for J1 and J2 result to be consistent with the
torsion angles found in the crystal structures of 1 and 2, and agree
with those previously reported for similar Mn6 systems [8–16]. In
both compounds, the antiferromagnetic contribution (J2 value) is
clearly the predominant magnetic interaction between the MnIII

metal ions, which is observed in their experimental curves (Figs. 7
and 8). DFT studies were performed in a previous work dealing



Fig. 3. View along the crystallographic b axis of one-dimensional motif of [Mn6(m3-O)2(H2N-sao)6(bta)2(EtOH)6] complexes linked through EtOH molecules in 1. H-bonding
interactions are showed as dashed lines. Color code: pink, Mn; red, O; blue, N; black, C. (Colour online.)

Fig. 4. View along the crystallographic ac plane of the two-dimensional arrangement of [Mn6(m3-O)2(H2N-sao)6(bta)2(EtOH)6] complexes linked through H2O molecules in 1.
H-bonding interactions are showed as dashed lines. Color code: pink, Mn; red, O; blue, N; black, C. (Colour online.)

Fig. 5. View of the one-dimensional motif generated through NAH� � �N interactions (dashed lines) between adjacent [Mn6(m3-O)2(H2N-sao)6(pta)2(EtOH)6] complexes in 2.
Color code: pink, Mn; red, O; blue, N; black, C. (Colour online.)
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with salicylamidoxime-based Mn6 complexes [11]. It was found a
critical angle of approximately 27.0�, which is directly correlated
to the MnANAOAMn exchange pathway between couples of MnIII

ions in the Mn6 complex. MnANAOAMn torsion angles upper than
this critical angle switch the magnetic exchange from antiferro-
magnetic (J < 0) to ferromagnetic (J > 0) and vice versa. Given that
95
1 and 2 exhibit some MnANAOAMn torsion angles lower than
27.0�, it would be expected to obtain an antiferromagnetic cou-
pling as the predominant magnetic interaction for both com-
pounds, as observed experimentally.

Most of the systems that form the family of oxime-based Mn6

complexes exhibit ground state spin values that vary from 4 to



Fig. 6. View along the crystallographic ac plane of the two-dimensional arrangement of [Mn6(m3-O)2(H2N-sao)6(pta)2(EtOH)6] complexes linked through p� � �p interactions
(dashed lines) in 2. Color code: pink, Mn; red, O; blue, N; black, C. (Colour online.)

Fig. 7. Thermal variation of the vMT (o) product for 1: ( ) best-fit curve (see text). Fig. 8. Thermal variation of the vMT (o) product for 2: ( ) best-fit curve (see text).
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12. In general, antiferromagnetic Mn6 systems show a spin value of
S = 4, whereas ferromagnetic Mn6 complexes display a S = 12 spin
value. The experimental vMT vs. T curve of both 1 and 2 is consis-
tent with a predominant antiferromagnetic interaction and, there-
fore, a ground state spin value of S = 4 would be expected for both
compounds. Indeed, it is what we observed from the isotropic sim-
ulation of the magnetic susceptibility of 1 and 2, that generated the
plots of the energy vs. total spin shown in Figs. 9 and 10, respec-
tively. For both systems, the ground state spin value is S = 4 and
the first excited state is a S = 3, which is placed at 2.65 and
7.04 cm�1 in 1 and 2, respectively.

To substantiate these results, variable temperature-variable
field dc magnetization data were measured for 1 and 2 in the 2–
7 K temperature and 0.5–5.0 T field ranges. The experimental data
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are given as reduced magnetization (M/NmB vs. moH/T) in Fig. 11 and
Fig. 12, which were fitted to a Zeeman plus axial zero-field splitting
Hamiltonian [Ĥ = D(Ŝz2 � S(S + 1)/3) + lBgHŜ, where D is the axial
anisotropy of these systems, lB is the Bohr magneton, Ŝz is the
easy-axis spin operator and H is the applied field] assuming only
the ground state is populated. The best fits afforded the parame-
ters: S = 4, g = 1.99 and D = �0.78 cm�1 for 1 and S = 4, g = 1.99
and D = �0.94 cm�1 for 2, which are in agreement with those val-
ues reported for similar Mn6 complexes based on salicylamidoxime
ligand [8–16].

Ac susceptibility measurements were performed on samples of
1 and 2 in the temperature range 2–8 K, in zero applied dc field,
and a 3.9 G ac field oscillating in the 10–1000 Hz range of frequen-
cies. Out-of-phase ac signals (v00

M) for 1 and 2 are shown in Fig. 13



Fig. 9. Plot of energy vs. total spin state extracted from the isotropic simulation of
the magnetic susceptibility data for 1.

Fig. 10. Plot of energy vs. total spin state extracted from the isotropic simulation of
the magnetic susceptibility data for 2.

Fig. 11. Plot of the reduced magnetization (M/NmB vs. moH/T) at the indicated dc
fields and temperatures 2–7 K for 1. The solid lines represent the best fit of the
experimental data.

Fig. 12. Plot of the reduced magnetization (M/NmB vs. moH/T) at the indicated dc
fields and temperatures 2–7 K for 2. The solid lines represent the best fit of the
experimental data.
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and Fig. 14, respectively. The respective v00
M vs. T plots exhibit fre-

quency dependence of the v00
M maxima for 1 and 2. This feature is

consistent with SMM behavior. In addition, it is observed that the
v00

M maxima increase with decreasing frequency for both com-
pounds. Given that these data are in the thermally activated region
and do not draw any curved line, they were fitted to the Arrhenius
equation [s = soexp(E#/kBT), where so is the pre-exponential factor,
s is the relaxation time, E# is the barrier to relaxation of the mag-
netization and kB is the Boltzmann constant] and plotted in the
respective insets of Figs. 13 and 14. The values obtained for the
so parameter are 1.05 � 10�9 (1) and 2.16 � 10�10 s�1 (2), whereas
97
the E# values are 36.9 K (25.7 cm�1) for 1 and 45.1 K (31.4 cm�1)
for 2. These E# values fall into the range for previously reported
hexanuclear salicylamidoxime-based Mn6 SMMs [24.0 K
(16.7 cm�1) < E# < 86.0 K (59.8 cm�1)] [8–16].
4. Conclusions

In summary, two new members of the family of oxime-based
Mn6 complexes, with formula [Mn6(l3-O)2(H2N-sao)6(bta)2
(EtOH)6]�2EtOH�4H2O (1) and [Mn6(l3-O)2(H2N-sao)6(pta)2



Fig. 13. Out-of-phase AC susceptibility (v00
M) vs. T plot for compound 1. The inset

shows the Arrhenius best-fit plot (see text).

Fig. 14. Out-of-phase AC susceptibility (v00
M) vs. T plot for compound 2. The inset

show the Arrhenius best-fit plot (see text).
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(EtOH)6]�4EtOH (2) [H2N-saoH2 = salicylamidoxime, bta = 1,2,3-
benzotriazolate anion, pta = 5-phenyl-tetrazolate anion] have been
synthesized with azole-type ligands and magnetostructurally char-
acterized. Our results revealed that 1 and 2 display a ground state
spin value S = 4, that is consistent with the values of their
MnANAOAMn torsion angles. Both compounds exhibit out-of-
phase AC signals typical of single-molecule magnet (SMM) phe-
nomenon. Remarkably, the crystal structure of compound 2 is the
first reported example of Mn complex containing 5-phenyl-
tetrazole.
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graphic data for 1 and 2. These data can be obtained free of charge
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Cambridge Crystallographic Data Centre, 12 Union Road, Cam-
bridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail:
deposit@ccdc.cam.ac.uk.

References

[1] J. Ferrando-Soria, J. Vallejo, M. Castellano, J. Martínez-Lillo, E. Pardo, J. Cano, I.
Castro, F. Lloret, R. Ruiz-García, M. Julve, Coord. Chem. Rev. 339 (2017) 17.

[2] C.J. Milios, C.P. Raptopoulou, A. Terzis, F. Lloret, R. Vicente, S.P. Perlepes, A.
Escuer, Angew. Chem., Int. Ed. 43 (2004) 210.

[3] C.J. Milios, A. Vinslava, P.A. Wood, S. Parsons, W. Wernsdorfer, G. Christou, S.P.
Perlepes, E.K. Brechin, J. Am. Chem. Soc. 129 (2007) 8.

[4] C.J. Milios, A. Vinslava, W. Wernsdorfer, S. Moggach, S. Parsons, S.P. Perlepes, G.
Christou, E.K. Brechin, J. Am. Chem. Soc. 129 (2007) 2754.

[5] C.J. Milios, S. Piligkos, E.K. Brechin, Dalton Trans. (2008) 1809.
[6] R. Inglis, C.J. Milios, L.F. Jones, S. Piligkos, E.K. Brechin, Chem. Commun. 48

(2012) 181.
[7] D.A. Kalofolias, A.G. Flamourakis, M. Siczek, T. Lis, C.J. Milios, J. Coord. Chem. 68

(2015) 1.
[8] A.-R. Tomsa, J. Martínez-Lillo, Y. Li, L.-M. Chamoreau, K. Boubekeur, F. Farias,

M.A. Novak, E. Cremades, E. Ruiz, A. Proust, M. Verdaguer, P. Gouzerh, Chem.
Commun. 46 (2010) 5106.

[9] G.-Y. An, A.-L. Cui, H.-Z. Kou, Inorg. Chem. Commun. 14 (2011) 1475.
[10] J. Martínez-Lillo, L.-M. Chamoreau, A. Proust, M. Verdaguer, P. Gouzerh, C. R.

Chim. 15 (2012) 889.
[11] J. Martínez-Lillo, A.-R. Tomsa, Y. Li, L.-M. Chamoreau, E. Cremades, E. Ruiz, A.-L.

Barra, A. Proust, M. Verdaguer, P. Gouzerh, Dalton Trans. 41 (2012) 13668.
[12] J. Martínez-Lillo, N. Dolan, E.K. Brechin, Dalton Trans. 42 (2013) 12824.
[13] J. Martínez-Lillo, N. Dolan, E.K. Brechin, Dalton Trans. 43 (2014) 4408.
[14] J. Martínez-Lillo, J. Cano, W. Wernsdorfer, E.K. Brechin, Chem. Eur. J. 21 (2015)

8790.
[15] C. Rojas-Dotti, J. Martínez-Lillo, RSC Adv. 7 (2017) 48841.
[16] C. Rojas-Dotti, N. Moliner, F. Lloret, J. Martínez-Lillo, Crystals 9 (2019) 23.
[17] F. Giordano, Acta Crystallogr., Sect. B 36 (1980) 2458.
[18] I. Sotofte, K. Nielsen, Acta Chem. Scand., Ser. A 35 (1981) 739.
[19] J. Emsley, N.M. Reza, H.M. Dawes, M.B. Hursthouse, Chem. Commun. (1985)

1458.
[20] X.-G. Meng, J.-L. Qian, Acta Crystallogr., Sect. E 62 (2006) o4178.
[21] J. Martínez-Lillo, J. Kong, M. Julve, E.K. Brechin, Cryst. Growth Des. 14 (2014)

5985.
[22] C. Yélamos, K.R. Gust, A.G. Baboul, M.J. Heeg, H.B. Schlegel, C.H. Winter, Inorg.

Chem. 40 (2001) 6451.
[23] M.S. Hill, P.B. Hitchcock, Polyhedron 23 (2004) 801.
[24] R. Guilard, I. Perrot, A. Tabard, P. Richard, C. Lecomte, Y.H. Liu, K.M. Kadish,

Inorg. Chem. 30 (1991) 27.
[25] O.M. El-Kadri, M.J. Heeg, C.H. Winter, J. Organomet. Chem. 696 (2011) 1975.
[26] M. Saha, R. Nasani, S.M. Mobin, B. Pathak, S. Mukhopadhyay, Inorg. Chem.

Commun. 34 (2013) 62.
[27] M. Saha, R. Nasani, M. Das, S.M. Mobin, B. Pathak, S. Mukhopadhyay, Inorg.

Chem. Front. 1 (2014) 599.
[28] J. Lach, E. Perlt, B. Kirchner, Z. Anorg. Allg. Chem. 639 (2013) 524.
[29] R. Nasani, M. Saha, S.M. Mobin, S. Mukhopadhyay, Polyhedron 55 (2013) 24.
[30] M. Saha, R. Nasani, M. Das, A. Mahata, B. Pathak, S.M. Mobin, L.M. Carrella, E.

Rentschler, S. Mukhopadhyay, Dalton Trans. 43 (2014) 8083.
[31] N. Malviya, P. Mandal, M. Das, R. Ganguly, S. Mukhopadhyay, J. Coord. Chem.

70 (2017) 261.
[32] M. Saha, N. Malviya, M. Das, I. Choudhuri, S.M. Mobin, B. Pathak, S.

Mukhopadhyay, Polyhedron 121 (2017) 155.
[33] Z.-H. Shao, J. Luo, R.-F. Cai, X.-G. Zhou, L.-H. Weng, Z.-X. Chen, Acta Crystallogr.,

Sect. E. 60 (2004) m225.
[34] X. He, C.-Z. Lu, C.-D. Wu, L.-J. Chen, Eur. J. Inorg. Chem. (2006) 2491.
[35] W.-C. Song, J.-R. Li, C. Sañudo, J. Liu, X.-H. Bu, Aust. J. Chem. 62 (2009) 941.
[36] A.P. Mosalkova, S.V. Voitekhovich, A.S. Lyakhov, L.S. Ivashkevich, P.N. Gaponik,

O.A. Ivashkevich, Z. Anorg. Allg. Chem. 638 (2012) 103.

http://refhub.elsevier.com/S0277-5387(19)30382-1/h0005
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0005
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0010
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0010
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0015
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0015
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0020
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0020
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0025
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0030
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0030
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0035
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0035
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0040
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0040
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0040
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0045
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0050
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0050
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0055
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0055
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0060
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0065
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0070
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0070
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0075
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0080
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0085
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0090
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0095
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0095
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0100
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0105
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0105
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0110
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0110
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0115
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0120
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0120
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0125
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0130
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0130
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0135
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0135
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0140
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0145
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0150
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0150
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0155
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0155
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0160
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0160
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0165
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0165
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0170
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0175
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0180
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0180


C. Rojas-Dotti et al. / Polyhedron 170 (2019) 223–231 231
[37] M. Saha, K.M. Vyas, L.M.D.R.S. Martins, N.M.R. Martins, A.J.L. Pombeiro, S.M.
Mobin, D. Bhattacherjee, Polyhedron 132 (2017) 53.

[38] Q. Ye, Y.-H. Li, Y.-M. Song, X.-F. Huang, R.-G. Xiong, Z. Xue, Inorg. Chem. 44
(2005) 3618.

[39] W.-C. Song, J.-R. Li, P.-C. Song, Y. Tao, Q. Yu, X.-L. Tong, X.-H. Bu, Inorg. Chem.
48 (2009) 3792.

[40] D.-S. Liu, Y. Sui, W.-T. Chen, P. Feng, Cryst. Growth Des. 15 (2015) 4020.
99
[41] M.-Y. Li, H.-X. Zhang, F. Wang, J. Zhang, Inorg. Chem. Front. 5 (2018) 675.
[42] F. Eloy, R. Lenaers, Chem. Rev. 62 (1962) 155.
[43] G.A. Bain, J.F. Berry, J. Chem. Educ. 85 (2008) 532.
[44] SHELXTL-2013/4, Bruker Analytical X-ray Instruments, Madison, WI, 2013.
[45] DIAMOND 4.5.0, Crystal Impact GbR, CRYSTAL IMPACT, 2018.
[46] D.C. Palmer, CrystalMaker Software Ltd, Begbroke, Oxfordshire, England, 2014.

http://refhub.elsevier.com/S0277-5387(19)30382-1/h0185
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0185
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0190
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0190
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0195
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0195
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0200
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0205
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0210
http://refhub.elsevier.com/S0277-5387(19)30382-1/h0215


100



Article 3. 

Thioester-functionalised and oxime-based hexametallic 

manganese(III) single-molecule magnets 





RSC Advances

PAPER
Thioester-functio
Instituto de Ciencia Molecular (ICMol),
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nalised and oxime-based
hexametallic manganese(III) single-molecule
magnets†

Carlos Rojas-Dotti and José Mart́ınez-Lillo *

Two novel hexametallic MnIII complexes of formulae [Mn6(m3-O)2(H2N-sao)6(3-atpa)2(EtOH)6]$

2EtOH$2H2O (1) and [Mn6(m3-O)2(H2N-sao)6(6-atha)2(EtOH)6]$6EtOH (2) [H2N-saoH2 ¼
salicylamidoxime, 3-hatpa ¼ 3-(acetylthio)propionic acid, 6-hatha ¼ 6-(acetylthio)hexanoic acid] have

been synthesised by using thioester-carboxylate ligands and magnetostructurally characterised. 1

crystallises in the triclinic system with space group P�1 and 2 crystallises in the monoclinic system with

space group P21/c. The study of the dc and ac magnetic susceptibility reveals single-molecule magnet

behaviour for both compounds with spin-ground states S ¼ 12 and S ¼ 4 for 1 and 2, respectively.

Hence, 1 and 2 are new members of the oxime-based family of [Mn6] single-molecule magnets,

containing the thioester group functionalisation, which could be used to connect devices in molecular

spintronics studies.
Introduction

Single-Molecule Magnets (SMMs) have attracted much interest
because of their spin properties and potential applications, and
have also been considered a fundamental link between two
novel scientic disciplines, molecular spintronics and molec-
ular electronics.1–4 In recent years, great research effort has been
devoted to the synthesis of single-molecule systems, with large
magnetic anisotropies, and their functionalization, which is
made with functional groups convenient to connect suitable
SMMs to junction devices or to perform their graing on
surfaces of Si or Au substrates;5–10 in many cases, looking for the
improvement of their magnetic properties,7,8 the control of the
nanoscale organization10 or simply to get a reliable description
of the electronic structure of the investigated system.11

Thioesters-based ligands have proven to be particularly
useful to get derivatised and suitable SMMs for this research
eld (Scheme 1). Indeed, [FeIII4 NiII4 ] cages have been connected
to junction devices,9 besides that, complexes such as the well-
known [MnIII

8 MnIV
4 ] system and the [FeIII4 ] and

[FeIII3 CrIII] complexes with star-like structures have been graed
on Au surfaces aer being thioester-functionalised.10

Oxime-based hexanuclear MnIII SMMs have intensively been
studied in the eld of molecular magnetism.12–16 In these
Departament de Qúımica Inorgànica,

sé Beltrán 2, Paterna, 46980, Valencia,

(ESI) available: Fig. S1 and S4. CCDC
ystallographic data in CIF or other
841c
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systems, the magnetic exchange between MnIII ions depends
basically on the Mn–N–O–Mn torsion angles, they possess
generally spin ground states varying from 4 to 12, and the
anisotropy energy barriers vary from 24 to 86 K.12–16 Some of
these [MnIII

6 ] SMMs have also been graed on Au surfaces and
studied, as thiophene-carboxylate [MnIII

6 ] derivatives.7,8 Never-
theless, no thioester-functionalised [MnIII

6 ] compound has been
reported up to date.

Herein we report the synthesis and magnetostructural
characterisation of two novel hexanuclear MnIII compounds of
formulae [Mn6(m3-O)2(H2N-sao)6(3-atpa)2(EtOH)6]$2EtOH$2H2O
(1) and [Mn6(m3-O)2(H2N-sao)6(6-atha)2(EtOH)6]$6EtOH (2)
[H2N-saoH2 ¼ salicylamidoxime, 3-hatpa ¼ 3-(acetylthio)pro-
pionic acid, 6-hatha ¼ 6-(acetylthio)hexanoic acid]. 1 and 2 are
the rst reported structures of thioester-functionalised
[MnIII

6 ] SMMs.
Scheme 1 Molecular structures of: (A) 3-(acetylthio)propionic acid
and (B) 6-(acetylthio)hexanoic acid.
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Results and discussion
Synthetic procedure

By reacting MnCl2$4H2O with the salicylamidoxime ligand in
the presence of the desired S-acetyl-carboxylic acid and NEt3 we
obtain a dark green microcrystalline solid of hexametallic MnIII

complexes in satisfactory yields. Good-sized crystals were ob-
tained from concentrated solutions of the microcrystalline solid
in ethanol by layering them with acetone (1) and ethanol (2) (see
Experimental section). Hence, this is a straightforward
synthetic procedure to add the S-acetyl function [CH3–C(O)–S–]
to the well-known family of [Mn6] complexes (Fig. 1, 2, S1 and
S2†).
Fig. 2 Perspective view of the molecular structure of the [Mn6(m3-
O)2(H2N-sao)6(6-atha)2(EtOH)6] complex of 2. H atoms and solvent
molecules of crystallisation have been omitted for clarity [colour code:
pink, Mn; yellow, S; red, O; blue, N; black, C].
Description of the crystal structures of 1 and 2

Compound 1 crystallises in the triclinic system with space
group P�1, and compound 2 crystallises in the monoclinic
system with space group P21/c (Table 1). Their structures are
made up of neutral hexanuclear [Mn6] complexes together with
water (1) and ethanol (1 and 2) molecules of crystallisation,
which are self-assembled through hydrogen-bonding interac-
tions (see Fig. 3 and S3†).

Each hexanuclear [Mn6(m3-O)2(H2N-sao)6(L)2(EtOH)6] [L ¼ 3-
acetylthiopropionate (3-atpa) in 1 and 6-acetylthiohexanoate
(6-atha) in 2] complex contains two symmetry equivalent
{Mn3(m3-O)} triangular moieties, which are linked by two
phenolate and two oximate oxygen atoms that are related by an
inversion centre. Their hexanuclear cores are rather similar to
previously reported salicylamidoxime-based [Mn6]
complexes.13–16 The six MnIII ions exhibit distorted octahedral
geometries with the Jahn–Teller axes approximately perpen-
dicular to the {Mn3(m3-O)} planes, with the central O2� ion
displaced 0.04 Å and 0.03 Å above the plane of the [Mn3] triangle
for 1 and 2, respectively. The monodentate carboxylate ligand is
coordinate on the Mn(1) atom in 1, on the Mn(3) atom in 2 and
Fig. 1 Perspective view of the molecular structure of the [Mn6(m3-
O)2(H2N-sao)6(3-atpa)2(EtOH)6] complex of 1. H atoms and solvent
molecules of crystallisation have been omitted for clarity [colour code:
pink, Mn; yellow, S; red, O; blue, N; black, C].
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on their symmetry equivalents. The remaining coordination
sites are occupied by EtOHmolecules. TheMn–N–O–Mn torsion
angles of the [Mn3(m3-O)(H2N-sao)3] triangular units are 42.6,
30.1 and 27.5 for 1 and 38.9, 36.5 and 26.0 for 2.

In the crystal packing of 1 and 2, the neutral [Mn6] complexes
are mainly connected by hydrogen bonding interactions. In 1,
the acetylthio groups are H-bonded through the carbonyl to the
–NH2 groups on the salicylamidoxime ligands of adjacent [Mn6]
units (O/N distance, �3.01 Å) (see Fig. 3).

Each [Mn6] is involved in four of these interactions, linking
them into chains that grow along the c axis (Fig. 3). In 2, EtOH
molecules sit between neighbouring [Mn6] complexes and are
Table 1 Summary of the crystal data for compounds 1 and 2

Compound 1 2

Formula C68H102O30N12S2Mn6 C82H134O32N12S2Mn6

Mr 1961.34 2193.77
Crystal system Triclinic Monoclinic
Space group P�1 P21/c
a/Å 12.614(1) 15.993(1)
b/Å 13.146(1) 13.559(1)
c/Å 14.873(1) 23.506(1)
a/� 70.67(1) 90
b/� 76.15(1) 97.23(1)
g/� 66.10(1) 90
V/Å3 2111.8(3) 5056.6(2)
Z 1 2
Dc/g cm�3 1.539 1.441
m(Mo-Ka)/mm�1 8.283 0.850
F(000) 1012 2296
Goodness-of-t
on F2

1.008 1.009

R1 [I > 2s(I)] 0.0733 0.0751
wR1 [I > 2s(I)] 0.1887 0.1739

This journal is © The Royal Society of Chemistry 2017



Fig. 3 View of the one-dimensional motif generated by hydrogen bonds (N/Odistance,�3.01 Å) between the–NH2 and CH3–C(O)–S– groups
of adjacent [Mn6] units in the crystal of 1 (dashed green lines) [colour code: pink, Mn; yellow, S; red, O; blue, N; black, C].
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simultaneously H-bonded to –NH2 (O/N distance, �2.85 Å)
and carboxylate (O/O distance, �2.72 Å) groups generating
chains that grow along the c axis (Fig. S3†). Intermolecular S/S
contacts are observed neither in 1 nor in 2, the shortest S/S
distances being ca. 5.31 Å (1) and ca. 7.99 (2) Å. Additional weak
C/C interactions are also observed, in 1, between aromatic
rings of salicylamidoxime ligands of neighbouring [Mn6]
complexes (ca. 3.33 Å) and, in 2, between aromatic rings of
salicylamidoxime ligands and thioester groups of adjacent
[Mn6] units (ca. 3.67 Å), which stabilize the supramolecular
arrangement in 1 and 2.
Fig. 4 Plot of cMT vs. T obtained from compounds 1 and 2. The solid
red line represents the fit of the experimental data obtained for 1 and 2
using the 2J model of Hamiltonian (1).
Magnetic properties of 1 and 2

Dc magnetic susceptibility measurements were performed on
microcrystalline samples of 1 and 2 in the 2.0–300 K tempera-
ture range, under an external magnetic eld of 0.1 T. The
magnetic properties of 1 and 2 in the form of cMT vs. T plot (cM
being the molar magnetic susceptibility) are shown in Fig. 4. At
room temperature the cMT values are 20.0 (1) and 18.0 cm3

mol�1 K (2). Upon cooling, these values approximately follows
the Curie law to ca. 100 K for both compounds. Then, for
complex 1, cMT rises gradually with decreasing temperature,
reaching a maximum value of 28.0 cm3 mol�1 K at 8.0 K. This
feature reveals an intramolecular ferromagnetic coupling
between the MnIII ions. cMT is then decreasing at lower
temperatures. The value of cMT in 2 decreases with decreasing
temperature reaching a nal value of ca. 6.5 cm3 mol�1 K at
2.0 K, indicating antiferromagnetic interaction as the resulting
magnetic exchange (Fig. 4). The decrease of the cMT for both
compounds at lower temperatures is likely due to the presence
of intermolecular interactions and/or zero-eld splitting (zfs)
effects.

These experimental data were treated by using the 2J model
described by the Hamiltonian of eqn (1) and Fig. S4,† affording
the parameters: J1 ¼ +0.45 cm�1, J2 ¼ +0.11 cm�1 and g ¼ 1.99
for 1 and J1 ¼ +0.86 cm�1, J2 ¼ �1.14 cm�1 and g ¼ 1.99 for 2.
This data treatment has satisfactorily been performed in
previous works.12

Ĥ ¼ �2J1(Ŝ1Ŝ3 + Ŝ1Ŝ3 + Ŝ1Ŝ10 + Ŝ10Ŝ3 + Ŝ10Ŝ30)

� 2J2 (Ŝ1Ŝ2 + Ŝ2Ŝ3 + Ŝ10Ŝ20 + Ŝ20Ŝ30) + mBgHŜ (1)
This journal is © The Royal Society of Chemistry 2017
105
The obtained J1, J2 and g values result to be consistent with
the torsion angles found in the crystal structures of 1 and 2, and
agree with those previously reported for similar [Mn6]
systems.12–16

In a previous work dealing with DFT studies on
salicylamidoxime-based [Mn6] complexes,13c it was established
that the critical angle where the exchange pathway between
neighbouring MnIII ions switches from antiferromagnetic (J < 0)
to ferromagnetic (J > 0) is ca. 27.0�, which is somewhat lower
than that of the related salicylaldoxime-based [Mn6]
complexes.13c

Our results nicely reect that fact, given that compound 1,
with the lowest torsion angle being 27.5�, gave positive J1 and J2
values indicating a ferromagnetic exchange, whereas in
compound 2, with 26.0� as the lowest torsion angle, the sign
and magnitude of the obtained J2 value indicate that the main
magnetic exchange is antiferromagnetic. Given that the value of
J1 (exchange between MnIII ions of different [Mn3] triangles of
the [Mn6] unit) is positive in both compounds, what is making
the difference to get a S ¼ 4 or S ¼ 12 total spin is the value of J2
(exchange constant within each trinuclear [Mn3] subunit).
RSC Adv., 2017, 7, 48841–48847 | 48843



RSC Advances Paper
Variable temperature-variable eld dc magnetisation data
were measured for 1 and 2 in the 2–7 K temperature and 0.5–7.0
T eld ranges. The experimental data are given as reduced
magnetisation in Fig. 5 and 6. These data do not reach the
saturation values, maybe because excited states with lowest
spins are also populated. Anyway, they were well tted to
a Zeeman plus axial zero-eld splitting Hamiltonian [Ĥ ¼ D(Ŝz

2

� S(S + 1)/3) + mBgHŜ, where D is the axial anisotropy of the
[Mn6] cluster, mB is the Bohr magneton, Ŝz is the easy-axis spin
operator and H is the applied eld] assuming only the ground
state is populated.12 The best ts afforded the parameters
S ¼ 12, g ¼ 1.98 and D ¼ �0.44 cm�1 for 1 and S ¼ 4, g ¼ 2.00
and D¼�0.98 cm�1 for 2, which are in line with other members
of the [Mn6] family.12–16 Besides the results obtained by tting
the experimental data of the reduced magnetisation, ground
state spin values of S ¼ 12 (1) and S ¼ 4 (2) were also obtained
Fig. 5 Plot of the reduced magnetisation (M/NmB vs. m0H/T) for 1 in 4,
5, 6 and 7 T fields and temperatures 2–5 K. The solid lines represent the
best fit of the experimental data.

Fig. 6 Plot of the reduced magnetisation (M/NmB vs. m0H/T) for 2 in
0.5, 1, 2 and 3 T fields and temperatures 2–5 K. The solid lines
represent the best fit of the experimental data.
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from dc susceptibility measurements. Indeed, plots of the
energy versus total spin, extracted from the isotropic simulation
of the magnetic susceptibility, are shown in Fig. 7 and 8 for 1
and 2, respectively. The rst excited state found in 1 is a S ¼ 11
located at 1.75 cm�1, and the rst excited state in 2 is a S ¼ 3
located at 0.85 cm�1 (Fig. 7 and 8).

Ac susceptibility measurements were performed on samples
of 1 and 2 in the temperature range 2–8 K, in zero applied dc
eld and a 3.9 G ac eld oscillating in the 5–1000 Hz range of
frequencies. Out-of-phase ac signals (c00

M) for 1 and 2 are shown
in Fig. 9 (1) and Fig. 10 (2), which exhibit frequency dependence
of the c00

M maxima. This feature is consistent with SMM
behaviour. In 2, it is observed that the c00

M maxima decrease
with decreasing frequency, which is a peculiarity typical of
strong intermolecular interactions in single-molecule and chain
magnets (SMMs and SCMs).17,18

We tted these data to the Arrhenius equation [s ¼ so-
exp(Ueff/kBT), where so is the pre-exponential factor, s is the
relaxation time, Ueff is the barrier to relaxation of the magnet-
isation and kB is the Boltzmann constant]. The inset of the Fig. 9
Fig. 7 Plot of energy versus total spin state, extracted from the
isotropic simulation of the susceptibility data, for 1.

Fig. 8 Plot of energy versus total spin state, extracted from the
isotropic simulation of the susceptibility data, for 2.

This journal is © The Royal Society of Chemistry 2017



Fig. 9 Out-of-phase ac susceptibility (c00
M) versus T plot for 1. The

inset shows the Arrhenius best-fit plot (see text).

Fig. 10 Out-of-phase ac susceptibility (c00
M) versus T plot for 2. The

inset shows the Arrhenius best-fit plot (see text).
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(1) and Fig. 10 (2) shows these Arrhenius plots. The obtained
values for so and Ueff are 2.6 � 10�10 s and 54.0 K for 1 and
1.9 � 10�10 s and 47.0 K for 2, respectively. These Ueff values for
1 and 2 fall into the range (24.0 K < Ueff < 86.0 K) for previously
reported salicylamidoxime-based [Mn6] complexes.13–16
Conclusions

In summary, the crystal structures and magnetic behaviour of
two novel [Mn6] single-molecule magnets (SMMs) of formula
[Mn6(m3-O)2(H2N-sao)6(3-atpa)2(EtOH)6]$2EtOH$2H2O (1) and
[Mn6(m3-O)2(H2N-sao)6(6-atha)2(EtOH)6]$6EtOH (2) [H2N-saoH2

¼ salicylamidoxime, 3-hatpa ¼ 3-(acetylthio)propionic acid, 6-
hatha¼ 6-(acetylthio)hexanoic acid] have been reported. 1 and 2
are the rst examples of thioester-functionalised complexes in
the coordination chemistry of oxime-based [Mn6] SMMs, these
structures also being the rst reported complexes containing
the 3-(acetylthio)propionate (3-atpa) and 6-(acetylthio)hex-
anoate (6-atha) ligands. Such features, together with their
This journal is © The Royal Society of Chemistry 2017
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relative stability, make 1 and 2 suitable SMMs to be studied on
devices in the eld of molecular spintronics. Indeed, we believe
that our compounds could be adequate systems to be connected
to junction devices. This investigation is underway.

Experimental
Materials and physical measurements

All manipulations were performed under aerobic conditions,
using chemicals as received from Sigma-Aldrich. Elemental
analyses (C, H, and N) were performed by the Central Service for
the Support to Experimental Research (SCSIE) at the University
of Valencia. Infrared spectra of 1 and 2 were recorded as KBr
pellets using a PerkinElmer Spectrum 65 FT-IR spectrometer in
the 4000–400 cm�1 region. Dc and ac magnetic susceptibility
measurements on microcrystalline samples of 1 and 2 were
carried out on a Quantum Design MPMS-XL SQUID magne-
tometer. The dc studies were performed in the temperature
range of 2–300 K in an applied magnetic eld of 0.1 T. The ac
susceptibility measurements were performed in zero applied dc
eld and a 3.9 G ac oscillating eld with temperature and
frequency ranges of 2–8 K and 5–1000 Hz, respectively.
Diamagnetic corrections were applied to the observed para-
magnetic susceptibilities using Pascal's constants.19,20

Preparation of the complexes

1. MnCl2$4H2O (0.594 g, 3.0 mmol) was added dropwise and
with constant stirring to a solution formed by H2N-saoH2

(0.456 g, 3.0 mmol) and 3-acetylthiopropionic acid (1.0 g,
6.8 mmol) in EtOH (100 mL), then NEt3 (2.0 mL, 3.58 mmol) was
added. Aer stirring for 1 h a dark green solution was generated
and le to evaporate at room temperature. A dark green
microcrystalline solid was formed in 1 day, separated by ltra-
tion and washed with EtOH and ether. Yield: 84%. Suitable
crystals for X-ray diffraction studies were formed by layering
a concentrated acetone solution of the microcrystalline solid
with EtOH. Anal. calcd (found) for C68H102O30N12S2Mn6 (1): C,
41.6 (41.5); H, 5.2 (4.9); N, 8.6 (9.0)%. Selected IR peaks (in
KBr, cm�1): 3332m, 1605vs, 1575m, 1530s, 1481m, 1439m,
1420m, 1315s, 1253s, 1146m, 1023s, 881s, 757m, 684vs, 649m,
579w, 474w.

2. Complex 2 was prepared as 1 but by using 6-acetylth-
iohexanonic acid (1.0 mL, 6.0 mmol) instead of 3-acetylth-
iopropionic acid. Yield: 77%. A concentrated ethanolic solution
of 2was layered with the same solvent to give suitable crystals by
slow diffusion. Anal. calcd (found) for C82H134O32N12S2Mn6 (2):
C, 44.9 (45.1); H, 6.2 (5.9); N, 7.7 (8.1)%. Selected IR peaks (in
KBr/cm�1): 3326m, 2928m, 1604vs, 1574m, 1527s, 1482m,
1440m, 1418m, 1317s, 1254s, 1146m, 1023s, 883s, 750m, 686vs,
648m, 579w, 553w, 474w.

X-ray data collection and structure renement

X-ray diffraction data on single crystals of 1 and 2 were collected
on a Rigaku Oxford Diffraction SuperNova diffractometer with
graphite-monochromated and Cu-Ka radiation (l ¼ 1.54184 Å)
for 1 and Mo-Ka radiation (l ¼ 0.71073 Å) for 2. Crystal
RSC Adv., 2017, 7, 48841–48847 | 48845



RSC Advances Paper
parameters and renement results are summarized in Table 1.
The structures of 1 and 2 were solved by direct methods and
subsequently completed by Fourier recycling using the
SHELXTL21–23 soware packages. The nal full-matrix least-
squares renements on F2, minimising the function
P

wðjFoj � jFcjÞ2, reached convergence with the values of the

discrepancy indices given in Table 1. Disorder of free solvent
molecules was detected in both compounds (1 and 2). The
graphical manipulations were performed with the DIAMOND
program.24 CCDC 1568972 (1) and 1568973 (2).†
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Figure S1. Perspective drawing of the [Mn6] complex showing the atom numbering in 1. Thermal 

ellipsoids are drawn at the 50% probability level. H atoms and solvent molecules of crystallisation have 

been omitted for clarity. 
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2 

Figure S2. Perspective drawing of the [Mn6] complex showing the atom numbering in 2. Thermal 

ellipsoids are drawn at the 50% probability level. H atoms and solvent molecules of crystallisation have 

been omitted for clarity.  
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Figure S3. View of the one-dimensional motif generated by EtOH molecules sit between neighbouring 

[Mn6] complexes and simultaneously H-bonded to the amino and carboxylate groups of adjacent [Mn6] 

units in the crystal of 2 (dashed green lines) [Colour code: pink, Mn; yellow, S; red, O; blue, N; black, C]. 
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Figure S4. The 2-J coupling exchange model used to fit the experimental magnetic data of 1 and 2. 
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Introduction 

Among the ions of the d-block elements of the second and third raw, Re(IV) is one of the 

most relevant and studied metal ions from the Molecular Magnetism point of view. 

Re(IV) is a 5d3 ion whose complexes generally display an octahedral geometry (Oh). In 

the Oh symmetry configuration, the ground term is 4A2g and the first exited state 

corresponds to a 4T2g term. However, an axial distortion is frequently found (tetragonal 

distortion) in the octahedral configuration of these complexes. In those cases, the actual 

symmetry is a D4h and the ground state splits in an orbital singlet 4B2 and a doublet 4E. 

Even more, because of the combined effect of the mentioned distortion and the spin-

orbit coupling, the ground term splits into the so called Kramer doublets |±3/2> 

and|±1/2> (see Scheme 1). This phenomenon is going to be demonstrated later in this 

section. Finally, given the high value of the spin-orbit coupling constant,  ≈ 1000 cm-1 

for the free ion, Re(IV) presents a highly, local magnetic anisotropy with high Zero Field 

Splitting (ZFS) values. 

As a consequence of these intrinsic features, Re(IV) comes to be an appropriated ion to 

look for remarkable magnetic properties, in both isolated mononuclear species and 

heteropolynuclear complexes. Furthermore, since the local anisotropy is originated by 

a second order spin-orbit coupling effect, the magnetic properties of the Re(IV) 

complexes may be modelled and fitted with relative ease, different from Co(II), for 

instance, where the high anisotropy is originated by a first order spin-orbit coupling. On 

top of that, the magnetic orbitals of the Re(IV) ion are considerably diffused, which 

means that a huge spin delocalisation is spread on the ligands, leading to a possible 

increase of the intensity of the magnetic interaction respect from analogous complexes 

of ions belonging to the first and second raws.1 

From both structural and synthetic points of view, the hexahalorhenate(IV) complexes 

[ReX6]2− (X = F, Cl, Br and I) are the simplest systems to be studied. The chlorine and 

Scheme 1. Splitting of the 4F ground term by cubic and axial ligand fields, and 

second-order spin–orbit coupling. 
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bromide derivatives compounds are the most common and easy to be prepared. They 

are conveniently prepared by the reduction of perrhenic acid through (OH)H2PO in 

concentrated HX.2 For instance, the preparative route for the [ReCl6]2- salts, starting 

from the commercially perrhenic acid is illustrated by the reaction (1), the yield being in 

the range 85–90%. 

4HReO4 + 8(Cat)Cl + 3(HO)H2PO + 16HCl ⇔ 4(Cat)2[ReCl6] + 3(HO)3PO + 10H2O  (1) 

Herein, Cat corresponds to univalent countercations (alkaline cations as well as 

ammonium). The use of perrhenic acid as source of rhenium allows the isolation of the 

hexachloro- or hexabromorhenate(IV) anions with the cation coming from the starting 

halide salt.  

Different is the case of the hexaiodorhenate(IV) salts, where the preparation is carried 

out by direct reduction of the perrhenic acid with concentrated HI.3 This synthetic 

strategy allowed the isolation of the [ReI6]2− species with univalent cations as black 

crystals. Other ionic salts with bulkier organic cations have been isolated by means of 

metathetic reactions in organic solvents. For instance, (AsPh4)2[ReI6] separates as a 

brown microcrystalline solid by reaction of stoichiometric amounts of AsPh4Cl and 

K2[ReI6].3c Unluckily, the hexaiodorhenate(IV) derivatives are not very stable, violet 

vapour of iodine can be seen in these salts kept in close containers on standing after a 

couple of months at room temperature. Such a instability is the explanation of why only 

two structures, K2[ReI6] and (NH4)2[ReI6], have been reported so far.3c 

Finally, the investigation of the hexafluororhenate(IV) analogue has taken longer, due 

to the difficulties found in its preparation and purification. Actually, (Cat)2[ReF6] salts (M 

= alkaline cation, NH4
+) are obtained in a very different way respect from the other 

[ReX6]2- derivatives, by dissolving (Cat)2[ReX6] (X = Cl, Br and I) in melted CatHF2.4 

Recently, Pedersen et al. found that the use of the melted NH4HF2 as fluoride source in 

the process affords the water soluble salt (NH4)2[ReF6] which, by metathesis, lead to the 

isolation of (PPh4)2[ReF6]·2H2O. Given these synthetic difficulties, a few crystal 

structures for the [ReF6]2− anion are known. In what to our field concerns, only two are 

of interest: (PPh4)2[ReF6]·2H2O5 and K2[ReF6].6 

In the mentioned publication, Pedersen et al. reported the first full magnetic study 

performed on a [ReF6]2− salt of a bulky cation. By using dc and ac magnetic susceptibility 

measurements, INS and EPR spectroscopies, the magnetic properties of the isolated 

[ReF6]2- unit in (PPh4)2[ReF6]·2H2O was fully studied and a slow relaxation of the 

magnetisation was observed below ca. 4 K.5 Besides, they reported a one-dimensional 

coordination polymer [ReF5(μ-F)Zn(viz)4](viz=1-vinylimidazole) and proved that the slow 

dynamic is preserved, demonstrating the irrelevance of low symmetry for such 

magnetisation dynamics in systems with easy-plane-type anisotropy.5 

By contrast, even when they are known since several years, there is no report of a full 

magnetic study on the other hexahalogen derivatives bulky cation salts. Up to now, the 
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fact that the hexafluororhenate(IV) was reported as showing slow relaxation of the 

magnetisation, and thus, behaving as a SIM, took us to explore the magnetic behaviour 

of the rest of the analogous hexahalogen complexes of the series.  

The magnetic properties of the mononuclear [ReX6]2− complexes as salts with 

diamagnetic cations have been subject of study during the last 60 years.3c,6-8 All of that 

research has exposed the occurrence of significant through space antiferromagnetic 

interactions between the paramagnetic Re(IV) ions. The magnitude of the interaction 

depends on the nature of the halogen ligand and the halogen···halogen distance 

between the anionic complexes in the crystal lattice. These magnetic interactions are in 

general transmitted through space via Re-X···X-Re contacts, the halogen–halogen 

separation being strongly dependent of the size on the countercations. For instance, 

magnetic susceptibility and neutron diffraction measurements on K2ReCl6 and K2ReBr6 

revealed the occurrence of antiferromagnetic ordering below 12 and 14 K, 

respectively.9,10 

After their development in the end of the 1950s, and with the development of the field 

involving the design and study of novel heteropolynuclear complexes, hexahalogen-

derivatives of Re(IV) have been mostly used as precursors to synthetize new 

mononuclear complexes which can be used as metalloligands toward other metal ions, 

mainly 3d metal ions.  

Replacement of two halogen ions from the [ReX6]2- molecule by (potential) bridging 

ligands, such as oxalate (ox2-),11 cyanide (CN-),12 2,2’-bipyrimidine (bpym)13 or malonate 

(mal2-),14 has increased the coordination potential of this metalloligand towards both 3d 

and 4f metal ions,15 making them exceptional building blocks for the synthesis of 

molecule-based magnetic materials Figure 1. These substitution reactions are 

Figure 1. (a) Molecular structure of the {[ReBr4(ox)]2Ni(Him)2} SMM. Hydrogen atoms are omitted for 

clarity. Colour code: pink, Re; pale blue, Ni; brown, Br; red O; blue, N; grey, C. (b) χ”M/χ’ vs 1/T plot at four 

different frequencies (1-1000 Hz range). The solid lines are the best-fit curves. 

(b) (a) 
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commonly performed in non-aqueous solvents, with the anionic complexes being 

isolated as a salt of a bulky organic cation. In this way, the preparation and study of the 

complexes [ReX4(ox)]2-  (X = Cl and Br) and [ReCl4(CN)2]2- provided the first examples of 

Re(IV)-based single-ion,16 single-molecule17 and single-chain18 magnets (SIMs, SMMs 

and SCMs); Figure 1. 

Besides, the [ReX6]2- anions have not only been used for ligand substitution, but also as 

metalloligands towards diamagnetic or paramagnetic transition metal ions. 

Nevertheless, the number of reported crystal structures containing the [ReX6]2- anion 

acting as a ligand is limited to two structures.19 Firstly,  the polymeric {Ag2ReCl6}n 

compound present interesting results. In its crystal structure, the [ReX6]2- unit adopts 

the hexakis-monodentate coordination mode towards diamagnetic Ag(I) cations, 

leading to a corrugated layered structure which behaves as a three-dimensional 

antiferromagnet.20 The other example of the remarkable results reported in the use of 

the [ReX6]2- as metalloligand is the polymeric compound of 

formula {Cu(pyim)(Him)2ReCl6}n·MeCN, which exhibits a metamagnetic behavior 

(Figure 2).21 

Regarding the indicated above, one of the great advantages of Re(IV)-based systems is 

that the high anisotropy is given by a second order SOC, which makes easier to model 

and fit the experimental magnetic data. 

Herein it is deducted a magnetic model for a d3 ion [as Re(IV)] in octahedral (Oh) and 

distorted octahedral symmetries (D4h).  

Figure 2. (a) View of a fragment of the crystal packing of the metamagnetic chain 

{Cu(pyim)(Him)2ReCl6}n·MeCN highlighting the supramolecular two-dimensional network of adjacent 

chains linked through H-bonding interactions (dashed red lines). H atoms and MeCN solvent molecules 

have been omitted for clarity. Colour code: pink, Re; pale blue, Cu; green, Cl; dark blue, N; black, C. (b) 

Variable-field magnetisation data at T = 2.0 K.
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Magnetic model for a d3 ion in an octahedral (Oh) symmetry system 

Any transition metal ion, absolutely isolated in the space, presents five degenerated d 

orbitals. Having into account the ligand field theory (LFT), such a degeneration is broken 

because of the interaction with the ligands. Consequently, the nature of the splitting 

depends on the symmetry of the environment in which the ion is placed. 

A d3 free ion, as Re(IV), has three unpaired electrons which must be distributed in the d 

orbitals. Thus, the total spin S of the ion is S = 3/2 and the orbital component L, 

calculated as (L = 2ml +1), where ml corresponds to those of the state of maximum 

orbital component (see Scheme 2), must be L = 3. Therefore, the fundamental term, 

defined as 2S(S+1)L, for a d3 free ion must be 4F. 

Once the free ion is subjected to a ligands field with a regular octahedral symmetry (Oh), 

the d orbitals split in the way showed in Scheme 3. 

In this new context, the splitting of the d orbitals leads to three possible energy 

configurations (Scheme 4). 

Thus, the fundamental 4F term, in an Oh symmetry, splits as shown in Scheme 5. 

The energy of 10 Dq, between the lowest energy levels, is in the order of thousands of 

cm-1 (8000-15000 cm-1), whereas the thermal energy expressed as the product kT is ca.

Scheme 2. Filling of the degenerated d orbitals for a d3 ion in the 

maximum orbital component configuration. 

2 1 0 -1 -2

Ground State            First Exited State  Second Exited State 

Scheme 4. Energy configurations for a d3 metal ion in an Oh symmetry. 

y x 

z 

dxy 

dxz 

dyz 

dx2-y2 

dz2 
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dxz 

dyz 

dx2-y2 

dz2 

Scheme 3. Octahedral geometry and d orbitals splitting in an Oh symmetry. 

 = 10Dq = h
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200 cm-1. Therefore, the 4T2g term is not expected to be thermally populated at all, which 

means that we expect to work and focus on the ground state 4A2g. 

In order to go farther in the modelling of the system, we can keep applying the 

perturbations theory. Actually, we have already applied the first perturbation to the 

system, the effect of the ligands field. A posterior step is to consider the spin-orbit 

coupling (SOC), but before that some formal remarks are needed. 

The ground term 4F has 28 associated wave functions [(2L+1)(2S+1)], which are related 

to the quantic numbers L = 2 and S = 3/2. The effects of the operators of SOC and 

magnetic moment may be evaluated by means of the numbers L, ML, S and MS. Thus, 

the wave function can be expressed in terms of the corresponding quantic numbers, 

which means, |L, ML, S, MS >. 

However, our calculations are going to be limited to the ground state 4A2g, which means 

that L as well as S are going to be constant parameters and the wave function can be 

abbreviated as |ML, Ms >. 

Accordingly, the wave function corresponding to the 4A2g term are the following: 

𝛹1 = 
1

√2
{|2, 3/2 > − | − 2, 3/2 >} (41) 

𝛹2 = 
1

√2
{|2, 1/2 > − | − 2, 1/2 >} (42) 

𝛹3 = 
1

√2
{|2,−1/2 > − | − 2,−1/2 >} (43) 

𝛹4 = 
1

√2
{|2,−3/2 > − | − 2,−3/2 >} (44) 

The wave function belonging to the first exited state will be needed later in the farther 

calculations. They are not displayed here only in order to make a simpler exposition, but 

some of them will be called later on when they are needed. 

Once we have these functions, the energy of the SOC effect is calculated by solving the 

determinant of the 4 x 4 matrix. Each of the elements of the matrix is given by the 

terms 〈𝛹𝑖|𝐻𝑠𝑜𝑐|𝛹𝑗〉, where the SOC Hamiltonian is: 

𝐻𝑠𝑜𝑐 =  𝐿̂𝑆̂ =  𝐿𝑧̂𝑆𝑧̂ + 


2
 [𝐿+̂𝑆−̂ + 𝐿−̂𝑆+̂ ] (45) 

In this equation  corresponds to the SOC-constant. Thus, the matrix must be written as 

follows: 

 = 10Dq = h

4F

4T1g 

4T2g 

4A2g

d3 

Scheme 5. Splitting of a 4F term in an Oh symmetry. 
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|𝛹1⟩ |𝛹2⟩ |𝛹3⟩ |𝛹4⟩ 

⟨𝛹1| 𝐻11 − 𝜀 𝐻21 𝐻31 𝐻41 

⟨𝛹2| 𝐻12 𝐻22 − 𝜀 𝐻32 𝐻42 

⟨𝛹3| 𝐻13 𝐻23 𝐻33 − 𝜀 𝐻43 

⟨𝛹4| 𝐻14 𝐻24 𝐻34 𝐻44 − 𝜀 

As expressed before, the only term that matters to our aims is the magnetic term 4A2g, 

since it is going to be the only populated term in the working temperatures (2 – 300 K). 

Furthermore, the wave functions |𝛹⟩ are orthogonal and also linear combinations 

adapted to the symmetry of the system they belong to.  

At the moment of applying 𝐻𝑠𝑜𝑐 to the functions, there exist another issue to have into 

account. The operators 𝐿𝑧̂ and 𝑆𝑧̂ are proper operators of the wave functions 𝛹, ML and

Ms being the proper values, respectively. Thus, for instance, 𝐿𝑧̂|𝛹1⟩ = ML|𝛹1⟩. 

Nevertheless, the operators 𝐿+ ,̂ 𝑆−̂, 𝐿−̂, 𝑆+̂are not proper to the functions. As a result,

they operate in the following manner: 

𝐿+̂|𝐿,𝑀𝐿 , 𝑆, 𝑀𝐿⟩ =  [𝐿(𝐿 + 1) − 𝑀𝐿(𝑀𝐿 + 1)]
1/2

|𝐿,𝑴𝑳 + 𝟏, 𝑆,𝑀𝑆⟩ (46)

𝐿−̂|𝐿,𝑀𝐿 , 𝑆, 𝑀𝐿⟩ =  [𝐿(𝐿 + 1) − 𝑀𝐿(𝑀𝐿 − 1)]
1/2

|𝐿,𝑴𝑳 − 𝟏, 𝑆,𝑀𝑆⟩ (47)

𝑆+̂|𝐿,𝑀𝐿 , 𝑆, 𝑀𝐿⟩ =  [𝑆(𝑆 + 1) − 𝑀𝑆(𝑀𝑆 + 1)]
1/2

|𝐿,𝑀𝐿 , 𝑆,𝑴𝑺 + 𝟏⟩ (48)

𝑆−̂|𝐿,𝑀𝐿 , 𝑆, 𝑀𝐿⟩ =  [𝑆(𝑆 + 1) − 𝑀𝑆(𝑀𝑆 − 1)]
1/2

|𝐿,𝑀𝐿 , 𝑆,𝑴𝑺 − 𝟏⟩ (49)

Formerly, when the only operators of the Hamiltonian that do not change the original 

function are applied, one can see that they never give back the original function 

multiplied by a scalar, but also change the sign of it, as it can be seen in the following 

example: 

 𝐿̂𝑆̂|𝛹1⟩ =  
1

2
{3|2,

3

2
> +3 | − 2, 3/2 >} = 3|𝛹13⟩

where 𝛹13 is a new wave function different from 𝛹1. As a result, when afterwards 

 ⟨𝛹1| is applied to this result in the form ⟨𝛹1|3|𝛹13⟩, the result is 0 given that the 

functions are orthogonal. In fact, this phenomenon comes to prove that in a d3 metal 

ion placed in an octahedral environment there is no first order SOC.  

Nonetheless, 𝛹13 is actually a function belonging to the first exited state 4T2g, which 

means that there may exist a little percentage of mixing of these function by second 

order SOC. Indeed, when all the operations are completed the second order SOC is 

confirmed. Only one energy value ε = −
152

10𝐷𝑞
 is obtained and, that means that after the 

mixing with the functions of the other term, the ground state keeps degenerated. There 

is no ZFS, which is expectable for a regular octahedron.  
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Finally, new functions have been obtained as a consequence of the coupling. These 

functions can be constructed as: 

ɸ𝑖 =  𝛹𝑖 + ∑ 𝐶𝑖𝑗𝑗 𝛹𝑗  (50) 

𝐶𝑖𝑗 =  
⟨𝛹𝑖|𝐻̂|𝛹𝑗⟩

𝜀𝑖−𝜀𝑗
(51) 

Hence, the new functions are given by: 

Ф1 = 𝛹1 −
3

10𝐷𝑞
𝛹13 +

√6

10𝐷𝑞
𝛹10 (52) 

Ф2 = 𝛹2 −


10𝐷𝑞
𝛹14 +

√8

10𝐷𝑞
𝛹11 −

√6

10𝐷𝑞
𝛹5 (53) 

Ф3 = 𝛹3 −


10𝐷𝑞
𝛹15 +

√6

10𝐷𝑞
𝛹12 −

√6

10𝐷𝑞
𝛹6 (54) 

Ф4 = 𝛹4 −
3

10𝐷𝑞
𝛹16 +

√6

10𝐷𝑞
𝛹7 (55) 

Besides 𝛹13, the wave functions presented here as 𝛹5, 𝛹6, 𝛹7, 𝛹10, 𝛹11, 𝛹12, 𝛹14, 𝛹15, 

𝛹16, are also functions that belong to the 4T2g exited term. These functions appear in the 

calculations when the non-proper operators are applied as a consequence of being 

linear combinations, which belong to the same group, the 4F term. 

At this point, the system is defined and, so far no external perturbation is applied, these 

functions describe a d3 ion in an Oh symmetry. However, we do want to apply another 

perturbation. We will subject the system to a magnetic field in order to study its 

magnetic properties. Then, going forward with the perturbations theory, the so called 

Zeeman Hamiltonian, 𝐻𝑧̂, must be applied:

 𝐻𝑍 =  𝐻[𝐿𝑍̂ + 2𝑆𝑍̂] (56) 

Herein,  is the Bohr magneton and H the experimental field applied. In this case, since 

the system is isotropic, to apply the magnetic Hamiltonian in only one direction is 

enough.  

When the Zeeman Hamiltonian is applied to the new wave functions the obtained 

results are: 

⟨Ф1| 𝐻𝑍|Ф1⟩ =  3𝐻(1 −
4


)

⟨Ф2|𝐻𝑍|Ф2⟩ =  𝐻(1 −
4


)

⟨Ф3| 𝐻𝑍|Ф3⟩ =  −𝐻(1 −
4


) 

 ⟨Ф4| 𝐻𝑧̂|Ф4⟩ =  − 3𝐻(1 −
4


) 
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These results clearly mean that, in the presence of a magnetic field, the ground state 
4A2g splits in four different energy levels as shown in Scheme 6. 

If now we define 𝑔 = 2(1 −
4


) what we obtain is that the energy of the levels depends 

only on the constants of the system and the applied field, and they are defined by the 

possible spin states of the metal ion S = ±1/2 and S=±3/2 (see Scheme 6). 

Magnetic model for a d3 ion in a distorted octahedral (D4h) symmetry system 

Up to here deductions have taken place in an ideal octahedral system. However, most 

of the reported structures do not display such a regular geometry, but present some 

distortions. Therefore, the previously obtained model shows very restricted 

applications, what makes necessary to approach this model to more real systems. 

When the system is distorted and the regular symmetry avoided, then both, a structural 

and the consequent magnetic anisotropies appear. Thus, magnetic susceptibility will not 

be equal for all the directions of the space. In our specific case, Re(IV) complexes are 

generally axially distorted, which means that the symmetry of the system is transformed 

from Oh to D4h. 

These changes lead to the splitting of the terms, as represented in Scheme 7. 

The wave functions in this new environment are conserved and redistributed in the new 

terms. However, those belonging to the 4A2g term are the same that now are under the 

label of 4B1g. 

4A2g 

Scheme 6. Splitting of a 4A2g term under an applied magnetic field H. 
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Scheme 7. Splitting of a 4F term in a D4h symmetry. 
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Now, when the 𝐻𝑠𝑜𝑐 is applied to the functions 𝛹1, 𝛹2, 𝛹3, 𝛹4 the first order coupling is 

still zero, but there exist a ZFS as a consequence of the second-order SOC. The ZFS value 

is found to correspond to 𝐷 = 82 [
1

2
−

1

1
]. From this result it can be deducted that if 

1 = 2 there is no splitting. Furthermore, the higher the  value, the longer the splitting

(see Scheme 8).

The magnetic anisotropy actually found is the reason why, in a distorted system, a field 

applied in the z direction does not produce the same effect than one applied in the x or 

y directions. 

Additionally, the new wave functions obtained after applying the SOC are the following: 

Ф1 = 𝛹1 −
3

1
𝛹13 +

√6

2
𝛹10 (57) 

Ф2 = 𝛹2 −


1
𝛹14 +

√8

2
𝛹11 −

√6

2
𝛹5 (58) 

Ф3 = 𝛹3 −


1
𝛹15 +

√6

2
𝛹12 −

√6

2
𝛹6 (59) 

Ф4 = 𝛹4 −
3

1
𝛹16 +

√6

2
𝛹7 (60) 

Once the new functions are described, the Zeeman Hamiltonian can be applied in order 

to study the magnetic properties. However, the new system is anisotropic. As a 

consequence, χy = χx ≠ χz, what means that there are two different expressions of the 

Hamiltonian to be applied, the one expressed in equation (56), which corresponds to 

the field applied parallel to the z direction, and that of the perpendicular components: 

𝐻𝑍Ʇ =  𝐻[𝐿𝑥̂ + 2𝑆𝑥̂ + 𝐿𝑦̂ + 2𝑆𝑦̂] (61) 

The two components must be solved separately. Nevertheless, the normal procedure is 

to measure the magnetic susceptibility of a powdered sample. Accordingly, the 

measurements display to us the average value of all of the components. That is why, 

after determining each component of χ by using Van Vleck equation, the final average χ 

value must be calculated. 

4F 

4T1g 

4T2g 

4A2g 

d3 

Scheme 8. Splitting of a 4F term in a D4h symmetry after applying SOC. 

4Eg 

4B2g 

4B1g 

1 2

2D 
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When the Hamiltonian 𝐻𝑍, which from now on must be called 𝐻𝑍‖, is applied to the 

functions, the results are the following: 

⟨Ф1| 𝐻𝑍|Ф1⟩ =  3𝐻𝑧(1 −
4

1
) 

⟨Ф2|𝐻𝑍|Ф2⟩ =  𝐻𝑧(1 −
4

1
) 

⟨Ф3| 𝐻𝑍|Ф3⟩ =  −𝐻𝑧(1 −
4

1
) 

 ⟨Ф4| 𝐻𝑧̂|Ф4⟩ =  − 3𝐻𝑧(1 −
4

1
) 

With these results, the parallel determinant can be described: 

|Ф1⟩ |Ф2⟩ |Ф3⟩ |Ф4⟩ 

⟨Ф1| 3𝐻𝑧  1 −
4

1
− 𝜀 + 𝐷

0 0 0 

⟨Ф2| 
0 

𝐻𝑧  1 −
4

1
− 𝜀 + 𝐷

𝐻32 0 

⟨Ф3| 
0 0 

−𝐻𝑧  1 −
4

1
− 𝜀 + 𝐷

0 

⟨Ф4| 
0 0 0 

−3𝐻𝑧  1 −
4

1
− 𝜀 + 𝐷

Then, the first order Zeeman energies in the z direction are given by: 

𝜀1
′ = 3𝐻𝑧 (1 −

4

1
) + 𝐷

𝜀2
′ = 𝐻𝑧 (1 −

4

1
) 

𝜀3
′ = − 𝐻𝑧 (1 −

4

1
) 

𝜀4
′ = − 3𝐻𝑧 (1 −

4

1
) + 𝐷 

Once the first order Zeeman energies are calculated, and having into account that there 

is no second order energies, the values can be introduced in Van Vleck equation (62). 

 𝜒 = 𝑁
∑ (

𝜀𝑖
′2

𝑘𝑇
2𝜀𝑖

′′)𝑛
𝑖=1 𝑒𝑥𝑝(

−𝜀𝑖
0

𝑘𝑇
)

∑ 𝑒𝑥𝑝(
−𝜀𝑖

0

𝑘𝑇
)𝑛

𝑖=1

(62) 

Thus, the 𝜒‖ and 𝑔‖ values are found to be: 

𝜒‖ =
𝑁2𝑔‖

2

4𝑘𝑇
[
1+9𝑒𝑥𝑝(

−𝐷

𝑘𝑇
)

1+𝑒𝑥𝑝(
−𝐷

𝑘𝑇
)
] 

𝑔‖ = (1 + 
4

1
) 
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At this point, the parallel component of the magnetic susceptibility is determined. The 

next step would be to apply the Hamiltonian 𝐻𝑍 to the functions and follow the same 

procedure already exemplified above.  

An interesting phenomenon that happens when the perpendicular energies are 

calculated is that the determinant is not diagonal, which leads us to the observation of 

second-order contributions in the energy. 

The final expression obtained for the perpendicular component of χ is given by the 

following expression: 

𝜒Ʇ =
𝑁2𝑔Ʇ

2

2𝑘𝑇
[
(2−

3𝑘𝑇

𝐷
)𝑒𝑥𝑝(

−𝐷

𝑘𝑇
)+

3𝑘𝑇

𝐷

1+𝑒𝑥𝑝(
−𝐷

𝑘𝑇
)

] +
8𝑁2

2

where 
8𝑁2

2
 account for the so called temperature independent paramagnetism (TIP), 

and 𝑔Ʇ =  2 (1 + 
4

2
). 

Finally, the magnetic susceptibility of a powdered sample can be calculated by: 

𝜒 =  
𝜒‖+2𝜒Ʇ

3
      (63)
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Objectives 

During the last 20 years rhenium(IV) has proven to be one of the most promising metal 

ions to be studied in the research field of Molecular Magnetism. Regarding the high spin 

and anisotropy values that are characteristics for this 5d metal ion, great results are 

expected for its complexes. Indeed, many of the Re(IV)-containing complexes reported 

in the literature present remarkable properties, such as, SIM, SMM, SCM behaviours, 

apart from singular magnetic phenomena as can be spin-canting, metamagnetism and 

ferrimagnetism. Many of these interesting results are still being investigated and 

improved. 

This second part of the present Thesis work is dedicated to the study of Re(IV)-based 

complexes. We will focus mainly on two types of systems. On one hand the systems 

based on [ReX6]2- anions, with X = Cl and Br, and, on the other hand, those employing 

the [ReX4(ox)]2- anions, X = Cl and Br, as metalloligands toward 3d metal ions. 

Furthermore, we will explore a new route of isomeric selective synthesis by using the 

[ReCl4(MeCN)2] precursor. 

First of all, we will research the synthesis and magnetic properties of a wide spectrum 

of salts based on the [ReX6]2- anions and cations of different nature, which can open the 

possibility to add new functionalities to the final material. First of all, by using 

protonated biological molecules as counter-cations, we will attempt to 

obtain interesting magnetic properties in systems with biological interest. Even more, 

we will try to find new structures, which may also be later studied to perform 

proton transportation. 

As a second step, we will look for paramagnetic salts of these Re(IV)-based anions where 

the cation must also be a paramagnetic complex. Thus, the effect of a paramagnetic 

counter-ion and the possible magnetic exchange between the metallic centres will be 

studied. On that propose mononuclear complexes containing solvated Fe(II) ions will be 

employed. 

As a middle step, before continuing with the [ReX4(ox)]2- based systems, we will explore 

new synthetic strategies for ligands substitution on Re(IV) complexes. In previous works, 

the hexahalogen complexes have been the prevalent choice for this propose. However, 

there exist other possibilities to be explored. For this reason, we will investigate the 

ligand substitution in the [ReCl4(CH3CN)2] complex by using different solvents. This 

research may open a new way of synthetic strategy for the ligands substitution on Re(IV) 

complexes. 

Finally, with the aim of obtaining new interesting materials based on the [ReX4(ox)]2- 

anions, we will explore the synthesis of heteropolynuclear complexes using these 

metalloligands toward 3d metal ions. On one hand, we will use the widely explored 

[ReCl4(ox)]2- complex as metalloligand toward less explored 3d metal ion, for instance 

the Zn(II). The synthesis and characterisation of systems analogous to the already 
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reported involving other 3d metal ions would contribute to the knowledge and 

understanding of their magnetic properties. On the other hand, the less explored of 

the precursors, the anionic [ReBr4(ox)]2-, will be used toward one of the most explored 

of the 3d metal ions with these type of metaloligands: Cu(II). In both of the cases, we 

will attempt to obtain low-dimensionality complexes that could display interesting 

magnetic properties. 

On the subject of all the above, this work has the aim of exploring the chemistry and 

magnetic properties of well-known Re(IV) systems, not only as an attempt of improving 

the knowledge and understanding of the compounds, but also to look for withering the 

possible functionalities, multifunctionalities and future applications in nanotechnology 

and nanoscience.  
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ABSTRACT: Two novel ReIV salts of general formula [H2ade]2[Re
IVX6]X2·

4H2O [H2ade
2+ = 9H-adenine-1,7-diium; X = Cl(1) and Br(2)] have been

synthesized and magnetostructurally characterized. 1 and 2 are isostructural
salts that crystallize in the orthorhombic system with space group Fdd2. Both
compounds are made up of discrete mononuclear [ReIVX6]

2− and X− anions
and doubly protonated adenine cations. The six-coordinate rhenium(IV) ion is
bonded to six halide ligands [X = Cl (1) and Br (2)] in an octahedral
geometry. Short intermolecular ReIV−X···X−ReIV interactions, as well as ReIV−
X···H−N(H2ade) and ReIV−X···H−Ow hydrogen bonds, are present in the
crystal lattice of 1 and 2. Magnetic susceptibility measurements on
polycrystalline samples of 1 and 2 in the temperature range 2.0−300 K
show the occurrence of significant intermolecular antiferromagnetic inter-
actions in both compounds, resulting in the observation of maxima in χM at ca.
6.0 (1) and 12.0 K (2). The larger spin delocalization from the ReIV ion onto
the peripheral bromide ligands when compared to the chloride ligands accounts for the enhancement of the magnetic exchange
observed in 2.

Adenine is one of the five main natural nucleobases that are
precursors and part of the self-assembled structures of

nucleic acids (DNA and RNA). As with other nucleobases,
adenine has been studied for decades due to its capacity to
establish diverse noncovalent interactions and its potential metal
ion binding ability in complex, natural, and artificial nanostruc-
tures.1−11 It is well-known that the combination of hydrogen
bonds and π−π stacking interactions among nucleobases
provides the conformation and function of macromolecular
biological systems.1−3 Protonated and deprotonated nucleobases
play a key role in many biochemical processes and can also
generate supramolecular compounds of interest in crystal
engineering, molecular recognition, liquid crystals, molecule-
based magnetism, and materials science.12−19

The nucleobase adenine presents up to four endocyclic (N1,
N3, N7, and N9) and one exocyclic (N6) protonatable N atoms
(in basicity order: N9 > N1 > N7 > N3 > N6) which can afford a
wide range of neutral tautomers and protonated forms (Chart 1).
Both organic and inorganic salts based on mono- and
diprotonated adenine [adeninium (B) or bisadeninium (C),
respectively] are found in the literature. While paramagnetic
compounds exist with adeninium, all bisadeninium-based salts
reported to date are diamagnetic in nature.20−26

Anionic halorhenate(IV) salts are very appealing because of
their unique magnetic properties, which include both slow
relaxation and quantum tunneling of the magnetization and long-

range magnetic order originating from single-ion or cooperative
magnetic behaviors, respectively.27−46 In particular, the simple
hexahalorhenate(IV) salts [ReIVX6]

2− (X = F, Cl, Br, and I) of
paramagnetic and diamagnetic cations generally show significant
short-range intermolecular ferro- or antiferromagnetic inter-
actions, which are mainly transmitted through relatively short
intermolecular Re−X···X−Re contacts, occasionally leading to
collective magnetic phenomena such as ferromagnetism and spin
canting (weak ferromagnetism).47−59
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Revised: September 8, 2017
Published: September 12, 2017

Chart 1. Molecular Structures of 9H-Adenine (A) and its
Mono- and Diprotonated, 9H-Adenine-1-ium (B) and 9H-
Adenine-1,7-diium (C) Derivatives
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2

a) 

b) 

Figure S1. ORTEP drawing of [ReCl6]
2- (a) and [ReBr6]

2- (b) anions and their intermolecular interactions with 
[H2ade]2+ cations and X- [X = Cl (1) and Br (2)] anions connected by means of C-H···X and H-bonds type 
interactions. short Cl···Cl contacts (dashed lines) in 1. Ellipsoids are depicted at the 50% probability level. 
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3

Figure S2. (a) View of a fragment of the supramolecular motif generated by hydrogen bonds involving [H2ade]2+ 
cations, Cl- and [ReCl6]

2- anions and lattice water molecules in the crystal packing of 1. (b) Perspective view of 
the branched chain connecting [ReCl6]

2- anions through Cl···Cl type interactions (dashed green lines) and 
growing in the c-axis direction. 
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4

Figure S3. Perspective view of a fragment of crystal packing showing detailed N-H···Cl and N-H···Owaters 
hydrogen bonds interactions (dashed lines), which involve the diprotonated [H2ade]2+ cation in 1.  
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5

Figure S4. Details of the Cl···[ReCl6]
2- interaction (dashed brown lines) and surroundings built through H-bonds 

(dashed gray lines) involving the Cl- anion in the crystal packing of 1.  
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6

Figure S5. Perspective view along the crystallographic c axis of the overall supramolecular assembly of cations, 
anions and water molecules of 1, showing the regularly intercalating [H2ade]2+ cations and the eclipsed one-
dimensional arrangement of [ReCl6]

2- anions along the c-axis direction through double ReIV−Cl···Cl−ReIV 
contacts.  
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ABSTRACT 

Two iron(II)-rhenium(IV) compounds of general formula [FeII(dmf)6] 
[ReIVX6] [X = Cl (1) and Br (2); dmf = N,N-dimethylformamide] have been 
prepared and characterized. X-ray powder diffraction measurements 
on samples of 1 and 2 support the same structure for both systems. 
The crystal structure of 1 was determined by single-crystal X-ray 
diffraction. 1 crystallizes in the triclinic system with space group Pī. 
Each iron(II) is six-coordinate and bonded to six oxygens from six dmf 
molecules building a distorted octahedral environment. Rhenium(IV) 
is six-coordinate by six halide anions in an almost regular octahedral 
geometry. The magnetic properties were investigated from variable- 
temperature magnetic susceptibility measurements performed on 
microcrystalline samples of 1 and 2, whose experimental data were 
reproduced by a model of two isolated paramagnetic centers [S = 2 
(FeII) and S = 3/2 (ReIV)] with large values of zero-field splitting (zfs) 
parameter. 
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The preparation, crystal structures, and magnetic properties of two novel mononuclear ReIV complexes of
formula cis-[ReIVCl4(dmf)2] (1) and cis-[ReIVCl4(dma)2] (2) (dmf = N,N-dimethylformamide and dma = N,
N-dimethylacetamide) have been studied. Both ReIV systems were synthesized through ligand substitu-
tion reactions from the cis-[ReIVCl4(MeCN)2] precursor, upon heating in the employed solvent. 1 and 2
crystallize in the monoclinic crystal system with space group C2/c. Each ReIV ion exhibits a distorted octa-
hedral environment, being bonded by two oxygen atoms from two dmf (1) and dma (2) molecules and
four chloride ions. In the crystal lattice of 1 and 2, the mononuclear ReIV complexes are placed generating
short intermolecular ReIV-Cl� � �Cl-ReIV contacts. The magnetic properties of 1 and 2 were investigated
through variable-temperature magnetic susceptibility measurements, which reveal significant antiferro-
magnetic exchange interactions between neighboring ReIV ions. In 1, these interactions account for a
maximum in the magnetic susceptibility curve at ca. 5.0 K.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction mononuclear ReIV systems that can exhibit interesting magnetic
The synthesis and development of new magnetic systems based
on the paramagnetic ReIV metal ion has intensively been investi-
gated in the field of molecular magnetism, because of the broad
variety of interesting magnetic phenomena that these systems
can display [1–7]. ReIV is a 5d3 ion with a ground electronic state
4A2g containing three unpaired electrons (t2g3 configuration), and
a large value of the spin–orbit coupling constant (k � 1000 cm�1

for the free ion) that accounts for the high magnetic anisotropy
that ReIV compounds generally exhibit [6]. Many of these com-
pounds have been prepared from mononuclear ReIV complexes
containing potential bridging ligands [8–30], which in turn origi-
nate from ligand substitution processes of the well-known hexa-
halorhenate(IV) salts, [ReX6]2� (X = F, Cl, Br and I) [31–44].

Although to a much lesser extent than hexahalorhenate(IV)
salts, cis-[ReIVCl4(MeCN)2] complex has also been used as a starting
material to obtain ReIV systems that can exhibit interesting mag-
netic behaviors [45]. The synthetic procedure of this ReIV-based
precursor is known since 1968 [46]. However, the study of its mag-
netic properties was recently reported, which revealed a magnetic
ordering through spin canting at 6.5 K [47]. Hence, it seems that
[ReIVCl4(MeCN)2] complex could be a good candidate to prepare
behaviors, just by replacing the MeCN molecules by another com-
mercial solvent.

In this work, we present our first results concerning this
investigation, namely, the synthesis and magnetostructural
characterization of two novel ReIV complexes of general formula
cis-[ReIVCl4L2], with L = N,N-dimethylformamide (dmf, 1) and N,N-
dimethylacetamide (dma, 2). Remarkably, 2 is the first example
of crystal structure containing N,N-dimethylacetamide molecules
coordinate to a paramagnetic 5d metal ion.
2. Experimental

2.1. Materials

All manipulations were performed under aerobic conditions,
using chemicals as received. cis-[ReCl4(MeCN)2] precursor was pre-
pared following a literature procedure [46]. N,N-dimethylfor-
mamide and N,N-dimethylacetamide solvents were dried and
kept with molecular sieves (type 4 Å) before use.
2.2. Synthesis

2.2.1. cis-[ReCl4(dmf)2] (1)
A solution of [ReCl4(MeCN)2] (41.0 mg, 0.10 mmol) in 3 mL N,N-

dimethylformamide was heated at 100 �C with continuous stirring

http://crossmark.crossref.org/dialog/?doi=10.1016/j.poly.2018.01.009&domain=pdf
https://doi.org/10.1016/j.poly.2018.01.009
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Table 1
Crystal data and structure refinement for [ReCl4(dmf)2] (1) and [ReCl4(dma)2] (2).

Compound 1 2

Formula C6H14N2O2Cl4Re C8H18N2O2Cl4Re
Mr. (g mol�1) 474.20 502.24
Crystal system monoclinic monoclinic
Space group C2/c C2/c
a (Å) 16.010(1) 7.680(1)
b (Å) 8.345(1) 13.642(1)
c (Å) 12.488(1) 14.643(1)
a (�) 90.00 90.00
b (�) 125.77 99.89
c (�) 90.00 90.00
V (Å3) 1353.7(1) 1511.3(1)
Z 4 4
Dc (g cm�3) 2.327 2.207
l (Mo-Ka) (mm�1) 9.750 8.739
F(000) 892 956
Goodness-of-fit (GOF) on F2 1.045 1.107
R1/wR2 [I > 2r(I)] 0.0164/0.0359 0.0241/0.0573
Largest difference in peak and

hole (e Å�3)
0.974 and
�0.971

0.708 and
�1.657
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for 3 h. Once cooled, the resulting green solution was layered
with iPrOH and let to diffuse at room temperature. After complete
diffusion, X-ray quality pale green crystals of 1 were formed. Yield:
ca. 70%. Found: C, 15.0; H, 3.1; N, 5.9. Calc. for C6H14N2O2Cl4Re (1):
C, 15.2; H, 3.0; N, 5.9%. X-ray microanalysis gave a Re/Cl molar
ratio of 1:4. IR (KBr pellets, m/cm�1): 2964 (w), 1638 (vs), 1482
(w), 1432 (s), 1345 (s), 1242 (m), 1126 (m), 1056 (w), 863 (w),
708 (s), 430 (m).

2.2.2. cis-[ReCl4(dma)2] (2)
Compound 2 was prepared as for 1 but using N,N-dimethylac-

etamide instead of N,N-dimethylformamide. Yield: ca. 50%. Found:
C, 19.0; H, 4.0; N, 5.6. Calc. for C8H18N2O2Cl4Re (2): C, 19.1; H, 3.6;
N, 5.6%. X-ray microanalysis gave a Re/Cl molar ratio of 1:4. IR (KBr
pellets, m/cm�1): 2945 (m), 1605 (vs), 1477 (m), 1422 (m), 1392 (s),
1365 (w), 1241 (m), 1026 (m), 965 (m), 756 (s), 624 (m), 588 (w),
490 (w), 438 (w).

2.3. Physical measurements

Elemental analysis (C, H, N) were performed on a CE Instruments
EA 1110 CHNS analyser. Infrared spectra were recorded on a
Thermo-Nicolet 6700 FT-IR spectrophotometer in the 4000–400
cm�1 region. Re/Cl molar ratio was analyzed for both compounds
by means of a Philips XL-30 scanning electron microscope (SEM)
equippedwith a systemofX-raymicroanalysis from the Central Ser-
vice for the Support to Experimental Research (SCSIE) at the Univer-
sity of Valencia. Magnetic susceptibility measurements of 1 and 2
were carried out with a Quantum Design SQUID magnetometer in
the temperature range 2.0–300 K and under an applied magnetic
field of 0.1 T, in the Institute of Molecular Science (ICMol) at the
University of Valencia. Diamagnetic corrections of the constituent
atoms were estimated from Pascal’s constants [48,49].

2.4. Crystallographic data collection and structure determination

X-ray diffraction data of single crystals of dimensions 0.20 �
0.13 � 0.11 (1) and 0.48 � 0.34 � 0.17 mm3 (2) were collected on
a Bruker-Nonius X8APEXII CCD area detector diffractometer using
graphite-monochromated Mo-Ka radiation (k = 0.71073 Å). Crystal
parameters and refinement results for 1 and 2 are summarized in
Table 1. The structures of 1 and 2 were solved by Patterson meth-
ods and subsequently completed by Fourier recycling using
SHELXTL [50–52]. The final full-matrix least squares refinements
based on F2, minimizing the function Rw(|Fo| � |Fc|)2, reached con-
vergence with the values of the discrepancy indices given in
Table 1. The graphical manipulations were performed with DIA-
MOND [53].

3. Results and discussion

3.1. Synthesis of the complexes

The synthesis of both [ReIVCl4L2] complexes (1 and 2) is quite
similar, L being N,N-dimethylformamide (dmf, 1) and N,N-
dimethylacetamide (dma, 2). Both ReIV systems were synthesized
through ligand substitution reactions from the [ReIVCl4(MeCN)2]
precursor, upon heating at 100 �C for 3 h in the employed solvent.
A two-step process is expected to take place and it is represented
in Eqs. (1) and (2), which refers to compound 1.

½ReCl4ðMeCNÞ2� þ dmf $ ½ReCl4ðMeCNÞðdmfÞ� þMeCN ð1Þ

½ReCl4ðMeCNÞðdmfÞ� þ dmf $ ½ReCl4ðdmfÞ2� þMeCN ð2Þ

½ReCl4ðMeCNÞ2� þ 2dmf $ ½ReCl4ðdmfÞ2� þ 2MeCN ð3Þ
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According to Eqs. (1) and (2), an outgoing MeCN group would be
substituted by a dmf molecule to generate the intermediate
[ReCl4(MeCN)(dmf)] species, which could not be isolated. This
[ReCl4(MeCN)(dmf)] complex would react with a second dmf
molecule, as an entering ligand, to release another MeCN molecule
and form [ReCl4(dmf)2] (1). The same process would occur for
[ReCl4(dma)2] (2). Eq. (3) summarizes Eqs. (1) and (2).

It is interesting to note that in either case the ReIV ion retains
the four Cl ligands, which were not substituted even if the reaction
time was increased to ca. 45 h, obtaining the same compounds 1
and 2. It has been previously reported that the inertia to ligand
substitution of mononuclear ReIV complexes increases with the
substitution degree [54]. The reluctance of hexahalorhenate(IV)
anions, [ReX6]2� (X = F, Cl, Br, I), to undergo a full substitution of
the ligands in their coordination sphere has been observed in pre-
vious studies performed on oxalate-based ReIV complexes [55].
Indeed, in a previous work dealing with the substitution reaction
of the [ReCl6]2� precursor in dmf, only the monosubstituted spe-
cies, [ReCl5(dmf)]�, was isolated and characterized [56]. So that,
the reported synthesis constitutes a straightforward preparative
method to increase the substitution degree of solvent molecules
in mononuclear ReIV complexes.
3.2. Crystal structure of cis-[ReCl4(dmf)2] (1) and cis-[ReCl4(dma)2] (2)

Compounds 1 and 2 crystallize in the monoclinic crystal system
with space group C2/c (Table 1). Their structures are made up of
neutral [ReIVCl4L2] complexes, where L = N,N-dimethylformamide
(dmf, 1) and N,N-dimethylacetamide (dma, 2), which are held
together mainly by van der Waals interactions. Two chloride ions
[Cl(1) and Cl(2)] and a L molecule are present in the asymmetric
unit of 1 and 2, the rhenium(IV) cation being located on a special
position.

Each rhenium(IV) ion exhibits a distorted octahedral environ-
ment, being bonded by two oxygen atoms from two dmf (1) or
two dma (2) molecules and four chloride ions (Figs. 1 and 2). No
significant differences are seen in the Re-Cl and Re-O bond lengths
of 1 and 2, which vary in the ranges 2.319(1)–2.344(1) and 2.058
(2)–2.066(1) Å, respectively (Table 2). In 1, the O-Re-O angle is
86.55(8)�, whereas it is 91.74(13)� in 2. The best equatorial plane
around rhenium(IV) ion is defined by O(1)-O(1a)-Cl(2)-Cl(2a) set
of atoms in 1 and 2, each rhenium(IV) ion lying in the plane in both
compounds. The C–C, C–O, and C–N bond lengths of the dmf and
dma ligands exhibit expected values for these molecules [56–59].



Fig. 1. Molecular structure of [ReCl4(dmf)2] complex showing the atom numbering
in 1. Thermal ellipsoids are drawn at 50% probability level.

Fig. 2. Molecular structure of [ReCl4(dma)2] complex showing the atom numbering
in 2. Thermal ellipsoids are drawn at 50% probability level.

Table 2
Selected bond lengths (Å) and angles (�) for 1 and 2.

1 2

Re(1)-O(1) 2.066(1) 2.058(2)
Re(1)-O(1a) 2.066(1) 2.058(2)
Re(1)-Cl(1) 2.334(1) 2.344(1)
Re(1)-Cl(1a) 2.334(1) 2.344(1)
Re(1)-Cl(2) 2.319(1) 2.322(1)
Re(1)-Cl(2a) 2.319(1) 2.322(1)
N(1)-C(3) 1.466(3) 1.473(4)
N(1a)-C(3a) 1.466(3) 1.473(4)
O(1)-Re(1)-Cl(1) 88.06(4) 88.08(7)
O(1)-Re(1)-Cl(2) 176.98(4) 179.50(7)
Cl(1)-Re(1)-Cl(2) 92.48(2) 92.11(3)
O(1)-Re(1)-O(1a) 86.55(8) 91.74(13)
O(1)-Re(1)-Cl(1a) 88.35(4) 87.96(7)
O(1)-Re(1)-Cl(2a) 90.50(4) 88.73(7)
Cl(1)-Re(1)-Cl(1a) 175.08(2) 174.31(4)
Cl(2)-Re(1)-Cl(1a) 90.93(2) 91.88(3)
Cl(2)-Re(1)-Cl(2a) 92.46(2) 90.80(5)
O(1a)-Re(1)-Cl(1) 88.35(4) 87.96(7)
O(1a)-Re(1)-Cl(2) 90.50(4) 88.73(7)
Cl(2a)-Re(1)-Cl(1) 90.93(2) 91.88(3)
O(1a)-Re(1)-Cl(1a) 88.06(4) 88.08(7)
O(1a)-Re(1)-Cl(2a) 176.98(4) 179.50(7)

Symmetry transformation used to generate equivalent atoms:
(a) = �x, y, �z + 1/2.
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Remarkably, 2 is the first example of crystal structure containing
dma molecules coordinate to a paramagnetic 5d metal ion. Indeed,
a survey of the literature and Cambridge Structural Database (CSD)
reveals that only 15 crystal structures of mononuclear ReIV com-
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plexes containing an octahedral cis-[ReCl4O2] geometry have been
up to date reported, the O atoms coming from catecholato [60],
malonato and oxalato anions [8,11,61], dimethoxyethane and
tetrahydrofuran solvents [62,63], crown ethers (18-crown-6) [64]
and triphenylarsine oxides [65]. By comparing all these crystal
structures, we observe that there are no significant differences in
the Re-Cl bond lengths. The Re-O bond lengths vary in the range
2.000(7)–2.142(1) Å, and the Re-O values of 1 and 2 fall into this
range. The complex obtained with 18-crown-6 ligand exhibit the
longest Re-O bond length, whereas the shortest value is observed
in the complex prepared with triphenylarsine oxide. Concerning
the value of the O-Re-O angle, which varies from about 77.2 to
91.7� in this family, compound 2 shows the higher value and the
complex obtained with 18-crown-6 ligand exhibits the lower
value.

In the crystal packing of 1 and 2 there exist different spatial
arrangements of [ReIVCl4L2] complexes. In 1, neutral [ReIVCl4(-
dmf)2] units are arranged forming a one-dimentional motif that
is generated through double Re-Cl� � �Cl-Re contacts (Fig. 3), the
shortest Cl� � �Cl distance being 3.595(1) Å [Cl(2)� � �Cl(1b), (b) = �x,
�y + 1, �z + 1]. Additional Re-Cl� � �Cl-Re interactions of 3.879(1) Å
[Cl(1)� � �Cl(1c), (c) = �x � 1/2, �y + 1/2, �z + 1], that connect neigh-
boring chains of [ReIVCl4(dmf)2] units, lead to a layered structure
(Fig. 4). In 2, the shortest Cl� � �Cl contact of 3.757(1) Å [Cl(1)� � �Cl
(1b), (b) = �x + 1/2, �y + 3/2, �z + 1] links [ReIVCl4(dma)2] com-
plexes generating chains that grow through single Re-Cl� � �Cl-Re
interactions (Fig. 5). A two-dimensional assembly is achieved by
means of weak Cl���H-C type contacts [Cl(1)���C(4c) distance of ca.
3.4 Å, (c) = �x + 1, y, �z + 1/2] between adjacent [ReIVCl4(dma)2]
units (see Fig. 6).
3.3. Magnetic properties

Dc magnetic susceptibility measurements were carried out on
microcrystalline samples of 1 and 2 in the 2.0–300 K temperature
range. The magnetic properties of 1 and 2 in the form of both vMT
and vM vs. T plots (vM being the molar magnetic susceptibility) are
shown in Figs. 7 and 8, respectively. At room temperature, the vMT
value for both compounds is 1.56 cm3 mol�1 K, which is expected
for a magnetically isolated mononuclear ReIV (SRe = 3/2, g = 1.8)

9



Fig. 3. View along the crystallographic [101] direction of one-dimensional arrangement of [ReCl4(dmf)2] complexes generated through double Cl� � �Cl interactions (dashed
green line) in 1. H atoms have been omitted for clarity. Color code: pink, Re; green, Cl; red, O; blue, N; gray, C. (Colour online.)

Fig. 4. Perspective view of two-dimensional assembly of [ReCl4(dmf)2] complexes connected through intermolecular Cl� � �Cl interactions generated from symmetries (b) = �x,
�y + 1,�z + 1 (dashed green line) and (c) = �x � 1/2, �y + 1/2, �z + 1 (dashed red line) in 1. H atoms have been omitted for clarity. Color code: pink, Re; green, Cl; red, O; blue,
N; gray, C. (Colour online.)

Fig. 5. View along the crystallographic a axis of the one-dimensional motif of [ReCl4(dma)2] complexes mediated through single Cl� � �Cl interactions (dashed green line) in 2.
H atoms have been omitted for clarity. Color code: pink, Re; green, Cl; red, O; blue, N; gray, C. (Colour online.)
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complex [6]. Upon cooling, vMT values slowly decrease with
decreasing the temperature reaching final values of 0.15 (1) and
0.69 (2) cm3 mol�1 K at 2.0 K (Figs. 7 and 8). The decrease of
vMT values observed for 1 and 2, at the lower temperature range,
is likely due to the presence of intermolecular interactions and
zero-field splitting (zfs) effects [6]. While a maximum of magnetic
susceptibility is observed at ca. 5.0 K in the vM vs. T plot for 1
(inset, Fig. 7), which is characteristic of an antiferromagnetically
coupled system, this does not occur in 2 (inset, Fig. 8).

An analysis of the crystal packing of both compounds reveals
that short intermolecular Cl���Cl contacts (covering the range
3.60–3.88 Å) take place between neighboring [ReIVCl4L2] units in
both 1 and 2. Hence, to analyze the magnetic behavior of 1 and
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2, we have treated the experimental data through Hamiltonian of
Eq. (4) and its derived theoretical expression for the magnetic sus-
ceptibility, Eq. (5) [66]. In addition, a h parameter was included to
account for the observed intermolecular interactions.

Ĥ ¼ D½ðŜZÞ
2 � SðSþ 1Þ=3� þ g== b HZ ŜZ þ g?bðHX ŜX þ HYŜYÞ ð4Þ

vM ¼ v== þ 2v?
3

ð5Þ

where

v== ¼
Nb2g2

==

4k ðT � hÞ
1þ 9exp ð�2D=kTÞ
1þ exp ð�2D=kTÞ



Fig. 6. Perspective view of two-dimensional assembly of [ReCl4(dma)2] complexes connected through intermolecular Cl� � �Cl (dashed green line) and C–H� � �Cl type
interactions (dashed pink line) in 2. H atoms have been omitted for clarity. Color code: pink, Re; green, Cl; red, O; blue, N; gray, C. (Colour online.)

Fig. 7. Thermal variation of the vMT product for 1. The solid red line represents the
best-fit of the experimental data. The inset shows the temperature dependence of
the magnetic susceptibility. (Colour online.)

Fig. 8. Thermal variation of the vMT product for 2. The solid red line represents the
best-fit of the experimental data. The inset shows the temperature dependence of
the magnetic susceptibility. (Colour online.)
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v? ¼ Nb2g2
?

k ðT � hÞ
1þ ð3kT=4DÞ ½1� exp ð�2D=kTÞ�

1þ exp ð�2D=kTÞ
In Eq. (4), D is the zfs parameter of ReIV ion (2D being the energy

gap between the two MS = ±3/2 and MS = ±1/2 Kramers doublets),
whereas last two terms account for the Zeeman effect. In order
to avoid overparameterization, we have assumed that g = g// = g\
for ReIV ion. Best least-squares fits of the experimental magnetic
data in the 2–300 K temperature range afforded: g = 1.87, |D| =
21.1 cm�1, and h = �9.3 K with R = 6.6 � 10�5 for 1, and g = 1.82, |
D| = 24.5 cm�1, and h = �1.1 K with R = 4.2 � 10�5 for 2 {R being
the agreement factor defined as Ri[(vMT)obs(i) - (vMT)calc(i)]2 / Ri
[(vMT)obs(i)]2}. The theoretical curves are shown as red solid lines
in Figs. 7 and 8, which match the experimental data very well in
the explored temperature range. The g values found for 1 and 2
are in agreement with those previously reported for other
18
mononuclear ReIV complexes exhibiting a similar octahedral envi-
ronment [6,8,11,12,61]. Concerning the D values obtained for 1 and
2, they are quite close when compared between them, but are
somewhat lower than that computed for the [ReIVCl4(MeCN)2] pre-
cursor (|D| = 30.0 cm�1) [47]. The negative h values obtained from
the fitting process imply the occurrence of an antiferromagnetic
exchange which would be transmitted through short Re-Cl� � �Cl-
Re pathways in both compounds. The h value is clearly larger in
compound 1 [�9.3 (1) vs. �1.1 K (2)], where the shortest
Re-Cl� � �Cl-Re separation occurs (ca. 3.6 Å), with a 1D motif that is
spread out to a layered structure by means of additional
Re-Cl� � �Cl-Re contacts (see Figs. 3 and 4). By comparing both
compounds, it turns out that the extra methyl group present on
the dma molecule in 2, in comparison with the dmf ligand in 1,
produces enough steric hindrance to get a different spatial
1
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arrangement and somewhat more separated [ReIVCl4L2] units in
the crystal lattice (see Figs. 5 and 6). These features would explain
the fact that only in 1 a maximum in the vM vs. T curve is observed.
4. Conclusions

In summary, two novel mononuclear ReIV complexes of general
formula cis-[ReIVCl4L2], with L = N,N-dimethylformamide (dmf, 1)
and N,N-dimethylacetamide (dma, 2), have been synthesized and
magnetostructurally characterized. 1 and 2 have been prepared
from the well-known cis-[ReIVCl4(MeCN)2] precursor, by means of
ligand substitution reactions upon heating in the employed sol-
vent. Both compounds crystallize in the same space group (C2/c),
but they pack in a different way. In their crystal packing there exist
different spatial arrangements of [ReIVCl4L2] complexes with short
intermolecular Re-Cl� � �Cl-Re interactions, which transmit an anti-
ferromagnetic exchange between neighboring ReIV ions in 1 and
2. In the case of 1, such interactions account for a maximum
observed in the magnetic susceptibility curve. Remarkably, 2 is
the first example of crystal structure containing N,N-dimethylac-
etamide molecules coordinate to a paramagnetic 5d metal ion.
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Field-induced slow relaxation of magnetisation in
an anionic heterotetranuclear [ZnIIReIV3 ] system†

Adrián Sanchis-Perucho, Carlos Rojas-Dotti, Nicolás Moliner and
José Martínez-Lillo *

The compound (NBu4)4[Zn
II{ReIVCl4(µ-ox)}3] (1) [NBu4

+ = tetra-n-

butylammonium cation and ox2− = oxalate dianion] is the first

example of an oxalato-bridged ZnII system coordinated to a 5d

metal ion that exhibits slow relaxation of magnetisation.

Oxalate-based ZnII compounds have undergone considerable
development in diverse research fields during recent years.1–5

Promising oxalate-based ZnII systems that display catalysis,6

luminescence7,8 and proton conduction9–12 processes have
been investigated with the goal of establishing current and
future technological applications in materials science.1–12

Given the diamagnetic nature of ZnII (3d10 ion), the incor-
poration of a paramagnetic 5d metal ion to this type of system
would offer added value and interesting effects, in terms of
magnetic properties, to the final material.13

Thus, we have used the highly anisotropic ReIV (5d3 ion) in
the form of the [ReCl4(ox)]

2− [ox2− = oxalate dianion] metallo-
ligand towards ZnII as a rational approach to obtain multifunc-
tional materials based on the ZnII and ReIV metal ions.14

Indeed, the number of reported crystal structures of oxalato-
bridged ZnII compounds containing a 5d metal ion is limited
to just one, the heterodinuclear complex [ReCl4(μ-ox)Zn
(bdmpzm)2]·2MeCN [bdmpzm = bis(3,5-dimethyl-1H-pyrazol-1-
yl)methane], which shows a behaviour typical of a magneti-
cally isolated ReIV complex that does not exhibit slow relax-
ation of magnetisation, its magnetic behaviour being governed
only by the large zero-field splitting (ZFS) of this paramagnetic
5d metal ion.15

As far as we know, there exist in the literature only half a
dozen oxalate-based 0D systems exhibiting slow relaxation of
magnetisation, which behave as either single-ion magnets
(SIMs) or single-molecule magnets (SMMs),16–21 most of them

being obtained with the ReIV metal ion.16,17,19,21 Furthermore,
the majority of the reported systems that exhibit field-induced
slow relaxation of magnetisation are based on 3d or 4f metal
ions. In comparison, compounds of this type based on 5d
metal ions have been scarcely explored and studied.22

Herein we report an unusual ZnII–ReIV compound of the
formula (NBu4)4[Zn

II{ReIVCl4(μ-ox)}3] (1) [NBu4+ = tetra-n-butyl-
ammonium cation and ox2− = oxalate dianion] which has
been characterised structurally and magnetically (Fig. 1). 1 is
the first example of an oxalato-bridged ZnII system coordinated
to a 5d metal ion that exhibits slow relaxation of
magnetisation.

The reaction of (NBu4)2[ReCl4(ox)] and Zn(ClO4)2·6H2O in
an isopropanol–MeCN mixture at room temperature results in
the formation of pale green crystals of 1 (see the ESI†).
Compound 1 is stable under air for a period of several months
and does not oxidise under ambient conditions. The phase

Fig. 1 Molecular structure of the anionic heterotetranuclear [Zn
{ReCl4(µ-ox)}3]

4− complex in 1. NBu4
+ cations have been omitted for

clarity. Thermal ellipsoids are depicted at the 50% probability level.
Colour code: pink, Re; yellow, Zn; green, Cl; red, O; grey, C.

†Electronic supplementary information (ESI) available. CCDC 1866320. For ESI
and crystallographic data in CIF or other electronic format see DOI: 10.1039/
c8dt03728k

Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica,

Universitat de València, c/Catedrático José Beltrán 2, 46980 Paterna, Valencia,

Spain. E-mail: f.jose.martinez@uves

370 | Dalton Trans., 2019, 48, 370–373

This journal is © The Royal Society of Chemistry 2019

Pu
bl

is
he

d 
on

 1
9 

O
ct

ob
er

 2
01

8.
 D

ow
nl

oa
de

d 
by

 F
re

ie
 U

ni
ve

rs
ita

et
 B

er
lin

 o
n 

4/
24

/2
01

9 
9:

54
:0

8 
A

M
. 

View Article Online
View Journal  | View Issue

188

www.rsc.li/dalton
http://orcid.org/0000-0003-0086-213X
http://orcid.org/0000-0001-5394-1558
http://orcid.org/0000-0003-1107-2344
http://crossmark.crossref.org/dialog/?doi=10.1039/c8dt03728k&domain=pdf&date_stamp=2018-12-18
http://dx.doi.org/10.1039/c8dt03728k
https://pubs.rsc.org/en/journals/journal/DT
https://pubs.rsc.org/en/journals/journal/DT?issueid=DT048002


The article has been deleted for the publisher copyright policy 

DOI: 10.1039/c8dt03728k 

Pag. 189 – 193. 



192



Supporting Information 

Field-induced slow relaxation of magnetisation in an anionic 

heterotetranuclear [Zn
II𝑅𝑒3

𝐼𝑉] system

Adrián Sanchis-Perucho, Carlos Rojas-Dotti, Nicolás Moliner, José 

Martínez-Lillo 





1 

Electronic Supplementary Information (ESI) 

Field-induced slow relaxation of the magnetisation in an 

anionic heterotetranuclear[Zn
II

Re
IV

3] system

Adrián Sanchis-Perucho, Carlos Rojas-Dotti, Nicolás Moliner and José Martínez-Lillo*  

Instituto de Ciencia                                                                                         

  2, 46980, Paterna, Valencia, Spain. 

Table of contents   page 

Synthesis of 1................................................................................................................................................2 

Table S1........................................................................................................................ ................................2 

Figure S1......................................................................................................................................................3 

Figure S2......................................................................................................................................................4 

Figure S3......................................................................................................................................................5 

Figure S4......................................................................................................................................................6 

Figure S5......................................................................................................................................................7 

Figure S6......................................................................................................................................................8 

Figure S7......................................................................................................................................................9 

Figure S8.....................................................................................................................................................10 

Figure S9.....................................................................................................................................................11 

Figure S10......................................................................................................................... ..........................12 

Table S2.......................................................................................................................................................13 

Electronic Supplementary Material (ESI) for Dalton Transactions.
This journal is © The Royal Society of Chemistry 2018

195
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Synthesis of 1. 

All chemicals were used as received. The precursor (NBu4)2[ReCl4(ox)] was prepared 

following the literature procedures indicated in the references No. 24 and 25 of the main 

text.  

A solution of (NBu4)2[ReCl4(ox)] (202.5 mg, 0.225 mmol) in a isopropanol/MeCN (15 

mL, 9:1, v/v) mixture was added to a solution of Zn(ClO4)2·6H2O (27.9 mg, 0.075 

mmol) in isopropanol (15 mL) under continuous stirring. The resulting pale green 

solution was allowed to evaporate at room temperature. Green needles of 1 were grown 

in one day, were filtered off and washed with cold isopropanol and diethyl ether. Yield: 

ca. 50%. Better crystals of 1 were obtained when a 1:1 Re/Zn molar ratio was used in 

the synthesis. Anal. Calcd. for C70H144N4O12Cl12Re3Zn (1): C, 36.80; H, 6.40; N, 2.45. 

Found: C, 37.30; H, 7.00; N, 2.50. IR (KBr pellet/cm
-1

): bands associated to the oxalate

ligand are observed at 1712m, 1656vs and 812m.  

Table S1. Summary of the crystal data for compound 1. 

Compound 1 

Formula C70H144N4O12Cl12Re3Zn 

Mr 2283.25 

Crystal system triclinic 

Space group Pī 

a/Å 9.813(1) 

b/Å 19.331(1) 

c/Å 25.223(1) 

/° 84.45(1) 

/° 83.08(1) 

/° 81.72(1) 

V / Å
3
 4684.8(5) 

Z 2 

Dc/g cm
-3

1.619 

(Mo-K)/mm
-1

4.511 

Goodness-of-fit on F
2
 0.992 

R1 [I > 2(I)]  0.0195 

wR1 [I > 2(I)] 0.0478 

max, min/e.Å
-3

2.388 and -0.902 
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3 

Figure S1. Plot of the simulated (green line) and experimental XRD (red line) patterns 

profile in the 2θ/° range 0–40° for 1.   
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(a) 

(b) 

Figure S2. (a) View along the a crystallographic axis of the crystal packing of 1 

showing the relative arrangement of the tetra-n-butylammonium cations (space-filling 

model) and the [Zn{ReCl4(µ-ox)}3]
4−

 anions. For the sake of clarity, only the N(CH2)4

skeleton of the tetra-n-butylammonium cations is shown. Colour code: pink, Re; yellow, 

Zn; green, Cl; red, O; blue, N; white, C; grey, H. (b) Detail of the weak C···Cl 

interactions between cations and anions in 1 (red dashed lines) with colour code: pink, 

Re; yellow, Zn; green, Cl; red, O; blue, N; black, C. 
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Figure S3. Plot of the variable-field magnetisation versus applied field at 2.0 K for 1.  
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6 

Figure S4. One J model employed to fit the experimental magnetic susceptibility data 

of compound 1, where J is the exchange coupling constant for the intramolecular Re
IV

–

Re
IV

 interactions through the oxalate bridges. It is assumed that gRe = gRe1 = gRe2 = gRe3

and DRe = DRe1 = DRe2 = DRe3. Colour code: pink, Re; yellow, Zn; green, Cl; red, O; 

blue, N; white, C. 

J 

J J 

Re1 

Re2 
Re3 
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(a) 

(b) 

Figure S5. (a) Out-of-phase ac susceptibility versus temperature plot (χ''M vs. T) for 1 at 

four different frequencies (100-1000 Hz range) under a dc field of 1000 G. (b) χ''M/χ'M 

vs. 1/T plot for 1. The solid lines are the best-fit curves. 
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8 

(a) 

(b) 

Figure S6. (a) Out-of-phase ac susceptibility versus temperature plot (χ''M vs. T) for 1 at 

four different frequencies (100-1000 Hz range) under a dc field of 2500 G. (b) χ''M/χ'M 

vs. 1/T plot for 1. The solid lines are the best-fit curves. 
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(a) 

(b) 

Figure S7. (a) Out-of-phase ac susceptibility versus temperature plot (χ''M vs. T) for 1 at 

four different frequencies (100-1000 Hz range) under a dc field of 5000 G. (b) χ''M/χ'M 

vs. 1/T plot for 1. The solid lines are the best-fit curves. 
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10 

Figure S8. Frequency dependence of the in-phase (top) and out-of-phase (bottom) ac 

susceptibility signals for 1 under a dc field of 1000 G. 
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11 

Figure S9. Frequency dependence of the in-phase (top) and out-of phase (bottom) ac 

susceptibility signals for 1 under a dc field of 2500 G. 
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12 

Figure S10. Arrhenius best-fit plots for 1 obtained by using the τ = τoexp(E
#
/kBT)

equation [where τo is the pre-exponential factor, τ is the relaxation time, E
#
 is the barrier

to relaxation of the magnetisation and kB is the Boltzmann constant] and the data from 

the ac measurements of the 1000 (top), 2500 (middle) and 5000 G (bottom) magnetic 

fields. 
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Table S2. Values of E
#
 and τ0 obtained from different dc applied magnetic fields (Hdc)

and equations (a and b) for 1.   

Hdc / G E# (K/cm-1) a τo (x 10-6) a / s E# (K/cm-1) b τo (x 10-6) b / s

1000 3.50 / 2.43 2.02  4.03 / 2.80 3.42

2500 3.70 / 2.57 5.66   5.00 / 3.48 2.68

5000 3.81 / 2.65 7.05   5.84 / 4.06 2.72

a
Values obtained from the χM″/χM′ = 2πντoexp(E

#
/kBT) equation

b
Values obtained from the τ = τoexp(E

#
/kBT) equation
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a b s t r a c t

A novel one-dimensional copper(II)erhenium(IV) coordination polymer of formula
{[ReIVBr4(m-ox)CuII(pyim)2]$MeCN}n (1) [ox ¼ oxalate anion, pyim ¼ 2-(20-pyridyl)imid-
azole] has been prepared and characterised. Powder X-ray diffraction measurements on a
sample of 1 support the purity of the bulk sample, whereas single-crystal X-ray diffraction
shows that 1 crystallises in the orthorhombic system with space group Pbca. The crystal
structure of 1 is made up of [CuII(pyim)2]2þ cations and [ReBr4(ox)]2� anions linked
through bridging bromide and oxalate groups, which generate alternating CuII and ReIV

chains. Variable-temperature magnetic susceptibility measurements performed on 1
reveal an antiferromagnetic coupling between the CuII and ReIV ions; at lower tempera-
tures, this interaction leads to the occurrence of ferrimagnetic behaviour in 1. Compound 1
is the first ferrimagnetic compound obtained with the [ReBr4(ox)]2� precursor.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Mots cl�es:

Cuivre(II)
Rh�enium(IV)
Diffraction des rayons X
Ordre ferrimagn�etique
r é s u m é

Unnouveaupolym�ere de coordinationunidimensionnel �a basede cuivre(II) et de rh�enium(IV),
de formule {[ReIVBr4(m-ox)CuII(pyim)2]$MeCN}n (1) [ox¼ anion oxalate, pyim¼ 2-(20-pyridyl)
imidazole], a �et�e pr�epar�e et caract�eris�e. Lesmesures de diffraction des rayons X surpoudre ont
confirm�e la puret�e de l’�echantillon, alors que la diffraction des rayons X sur monocristal
montre que 1 cristallise dans le syst�eme orthorhombique et le groupe d'espace Pbca. La
structure du compos�e 1 contient des cations [CuII(pyim)2]2þ et anions [ReBr4(ox)]2�, lesquels
sont connect�es par des groupes bromure et oxalate, g�en�erant des chaînes de CuII et ReIV

altern�es. La susceptibilit�e magn�etique dc de 1 r�ev�ele un couplage antiferromagn�etique entre
ions CuII et ReIV, mais aussi un comportement typique d'une chaîne ferrimagn�etique. 1 est le
premier compos�e ferromagn�etique obtenu avec le pr�ecurseur [ReBr4(ox)]

2�.
© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
z-Lillo).

d by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The first one-dimensional systems displaying ferrimag-
netic behaviour were designed, prepared and investigated
during the decade of the 1980s [1e9], and they certainly
helped to stimulate progress in the field of molecular
magnetism [10]. Most of these systems were mainly based
on CuII and MnII metal ions [1e9], although subsequent
studies incorporated also organic radicals [11,12].

The magnetic behaviour of ferrimagnetic chains is gov-
erned, at least in part, because the antiferromagnetic inter-
action between distinct spin carriers cannot completely
cancel the alternating magnetic moments, thus inducing a
short-range magnetic order [11]. Hence, to get this type of
systems, it seems a good strategy to make use of the com-
bination of couples of paramagnetic 3d and 5d metal ions
exhibiting different magnetic spins.

In this way, in 1999, it was reported the first ferrimag-
netic chain based on CuII (3d9 ionwith S¼ 1/2) and ReIV (5d3

ionwith S¼ 3/2), whichwas obtainedwith the [ReCl4(ox)]2�

metalloligand (ox¼ oxalate anion), thus demonstrating that
the choice of this pair of 3d/5d ions was a promising syn-
thetic route to get ferrimagnetic systems [13]. Indeed, four
studies dealing with ferrimagnetic chains based on CuII and
ReIVwere later reported [14e17], by using the building block
[ReCl4(ox)]2� and as terminal ligands towards the CuII ion
the organic macrocycles N-dl-5,7,7,12,14,14-hexamethyl-
1,4,8,11-tetraazacyclotetradeca-4,11-diene [14] and N-meso-
5,12-Me2-7,14-Et2-[14]-4,11-dieneN4 [15,17], or the 2-(20-
pyridyl)imidazole ligand [16]. In all cases, the alternatingCuII

and ReIV ions exhibit antiferromagnetic coupling between
them and the thus obtained chains behave as ferrimagnetic
compounds at very low temperatures [13e17].

More recently, the bromo derivative [ReBr4(ox)]2�

metalloligand has been studied and used to prepare poly-
nuclear complexes with paramagnetic 3d and 4f ions
[18e23], some of them behaving as single-molecule mag-
net [20]. However, no ferrimagnetic chain containing the
[ReBr4(ox)]2� precursor has been reported so far.

As a continuation of our investigation on the magnetic
properties of rhenium(IV)-based compounds, we report
herein the synthesis andmagnetostructural characterisation
of a novel copper(II)erhenium(IV) compound of formula
{[ReIVBr4(m-ox)CuII(pyim)2]$MeCN}n (1) [ox ¼ oxalate anion,
pyim ¼ 2-(20-pyridyl)imidazole]. Compound 1 is the third
reported copper(II)erhenium(IV) complexobtainedwith the
[ReBr4(ox)]2� precursor and the first [ReBr4(ox)]2�-contain-
ing compound to exhibit magnetic behaviour typical of
ferrimagnetic chain.
2. Experimental section

2.1. Materials

All manipulations were performed under aerobic con-
ditions, using chemicals as received from SigmaeAldrich.
Type 4 molecular sieves were used to dry the CH3CN and
CH3NO2 solvents before use. The precursor (NBu4)2[Re-
Br4(ox)] was prepared following the synthetic method
described in the literature [18,23].
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2.2. Synthesis

2.2.1. {[ReBr4(m-ox)Cu(pyim)2]·MeCN}n (1)
(NBu4)2[ReBr4(ox)] (53.9 mg, 0.05 mmol) was dissolved

in 20 mL of a CH3NO2/CH3CN (4:1, v/v) mixture and was
added dropwise to a solution of Cu(NO3)2$3H2O (12.1 mg,
0.05 mmol) and 2-(20-pyridyl)imidazole (14.5 mg,
0.10 mmol) dissolved in the same solvent mixture (20 mL).
The resulting pale green solution was left to evaporate at
room temperature. Dark green crystals of 1 were obtained
in 2 weeks and were suitable for X-ray diffraction (XRD)
studies. Yield: ca. 60%. Found: C, 24.4; H, 1.6; N, 9.4. Calcd
for C20H17N7O4Br4CuRe (1): C, 24.3; H, 1.7; N, 9.9%. X-ray
microanalysis gave Re/Cu and Re/Br molar ratios of 1:1 and
1:4, respectively. IR peaks (KBr pellets/cm�1): 3358 (m),
3129 (m), 2930 (w), 1704 (vs), 1651 (s), 1619 (m), 1570 (m),
1549 (m), 1500 (m), 1475 (s), 1404 (w), 1366 (s), 1300 (w),
1161 (m),1098 (m),1020 (w), 970 (w), 931 (w), 890 (w), 800
(m), 786 (m), 747 (m), 700 (m), 659 (w), 542 (m), 460 (w).
2.3. Physical measurements

Elemental analysis (C, H, N) were performed using a CE
Instruments EA 1110 CHNS analyser. Infrared spectra were
recorded using a Thermo-Nicolet 6700 FT-IR spectropho-
tometer in the 4000e400 cm�1 region. The Re/Cu and Re/Br
molar ratios were analysed using a Philips XL-30 scanning
electron microscope equipped with a system of X-ray
microanalysis from the Central Service for the Support to
Experimental Research at the University of Valencia. Mag-
netic susceptibility measurements of 1 were carried out
with a Quantum Design SQUID magnetometer in the tem-
perature range 1.9e300 K and under an applied magnetic
field of 0.1 T. All of the experimental magnetic data were
corrected for the diamagnetic contributions of the con-
stituent atoms in 1, through the Pascal's constants [24], and
also for the sample holder.
2.4. Crystallographic data collection and structure
determination

Powder XRD measurements were performed using a
PANalytical Empyrean diffractometer with a hybrid
monochromator (CuKa1 radiation), a PIXcel detector and a
capillary sample holder. XRD data of a single crystal of 1,
with dimensions 0.42 � 0.18 � 0.15, were collected using a
Bruker D8 Venture diffractometer with PHOTON II detector
and using monochromatized MoKa radiation (l ¼
0.71073 Å). The structure was solved by standard direct
methods and subsequently completed by Fourier recycling
using SHELXTL [25e28]. The final full-matrix least-squares
refinements on F2, minimising the function Sw(jFoj � jFcj)2,
reached convergence with values of the discrepancy
indices given in Table 1. All non-hydrogen atoms were
refined anisotropically. All hydrogen atoms of the MeCN
molecule were set in calculated positions and refined as
riding atoms. Graphical manipulations were performed
using DIAMOND [29]. Main interatomic bond lengths and
angles for 1 are given in Table 2. CCDC 1885666 contains
the supplementary crystallographic data for compound 1.



Table 1
Crystal data and structure refinement for {[ReBr4(m-ox)Cu(pyim)2]$
MeCN}n (1).

CCDC 1885666
Formula C20H17Br4N7O4CuRe
Formula weight 988.8
Crystal system Orthorhombic
Space group Pbca
Z 8
a (Å) 18.977(4)
b (Å) 14.282(3)
c (Å) 19.809(5)
a (�) 90
b (�) 90
g (�) 90
V (Å3) 5369(2)
Dc (g cm�3) 2.449
F(000) 3696
m (mm�1) 11.293
Goodness-of-fit on F2 1.415
R1 [I > 2s(I)]a 0.0831
wR2

b,c 0.1958

a R1 ¼ SjjFoj � jFcjj/SjFoj.
b wR2 ¼ {S[w(Fo2 � Fc

2)2]/[(w(Fo2)2]}1/2.
c w ¼ 1/[s2(Fo2) þ (aP)2 þ bP] with P ¼ [Fo2 þ 2Fc2]/3.

Table 2
Selected bond lengths (Å) and angles (�) for 1.

Re(1)eO(1) 2.052(1)
Re(1)eO(2) 2.057(1)
Re(1)eBr(1) 2.499(1)
Re(1)eBr(2) 2.468(1)
Re(1)eBr(3) 2.458(1)
Re(1)eBr(4) 2.491(1)
Cu(1)eO(4) 2.682(1)
Cu(1)eN(1) 1.995(1)
Cu(1)eN(2) 1.994(1)
Cu(1)eN(4) 2.056(1)
Cu(1)eN(5) 1.941(1)
O(1)eRe(1)eO(2) 78.9(4)
O(1)eRe(1)eBr(2) 92.4(3)
O(2)eRe(1)eBr(2) 171.1(3)
O(1)eRe(1)eBr(3) 172.7(3)
O(2)eRe(1)eBr(3) 93.8(3)
Br(2)eRe(1)eBr(3) 94.9(1)
O(1)eRe(1)eBr(4) 87.5(3)
O(2)eRe(1)eBr(4) 88.5(3)
Br(2)eRe(1)eBr(4) 93.2(1)
Br(3)eRe(1)eBr(4) 92.1(1)
O(1)eRe(1)eBr(1) 89.4(1)
O(2)eRe(1)eBr(1) 85.8(3)
Br(2)eRe(1)eBr(1) 92.2(1)
Br(3)eRe(1)eBr(1) 90.3(1)
Br(4)eRe(1)eBr(1) 173.9(1)
N(5)eCu(1)eN(2) 99.3(5)
N(5)eCu(1)eN(1) 166.4(5)
N(2)eCu(1)eN(1) 83.1(5)
N(5)eCu(1)eN(4) 82.0(5)
N(2)eCu(1)eN(4) 157.8(5)
N(1)eCu(1)eN(4) 100.8(5)
C(3)eN(1)eCu(1) 132.9(1)
C(7)eN(1)eCu(1) 113.3(10)
C(8)eN(2)eCu(1) 110.0(10)
C(10)eN(2)eCu(1) 145.7(12)
C(11)eN(4)eCu(1) 126.8(11)
C(15)eN(4)eCu(1) 113.0(11)
C(16)eN(5)eCu(1) 111.4(10)
C(18)eN(5)eCu(1) 140.2(11)
O(4)eC(1)eO(1) 122.8(14)
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3. Results and discussion

3.1. Crystal structure of {[ReBr4(m-ox)Cu(pyim)2]·MeCN}n (1)

Compound 1 crystallises in the orthorhombic system
with space group Pbca (Table 1). The crystal structure is
made up of [Cu(pyim)2]2þ cations and [ReBr4(ox)]2� anions,
which are mainly linked through alternating oxalato and
bromo bridges generating a CuIIeReIV chain of repeating
[ReBr4(m-ox)Cu(pyim)2] units. A MeCNmolecule alongwith
a dinuclear [ReBr4(m-ox)Cu(pyim)2] complex forms the
asymmetric unit in 1. Although selected bonds lengths and
angles are listed in Table 2, a perspective drawing showing
the metal-based ions in 1 is given in Fig. 1.

There exist a couple of significant structural differences
between 1 and the previously reported [ReCl4(m-ox)
Cu(pyim)2] (2) and [ReBr4(m-ox)Cu(bpy)2] (3) compounds
that wewould like to point out [16,19]. Compounds 2 and 3
crystallise in the monoclinic system with space group P21/
n, but besides that, 2 and 3 do not contain solvent mole-
cules of crystallisation. Remarkably, the coordination of the
oxalate group to the CuII ion is through the O(1) atom in 2,
whereas it is bymeans of the O(4) atom in 1 and 3. Only in 3
there exist short halogen/halogen contacts connecting the
adjacent CuIIeReIV chains [19].

In 1, rhenium(IV) ion is six-coordinate by four bromide
anions and two oxygen atoms in a distorted octahedral
geometry. The main cause of such a distortion is the
reduced bite angle of the oxalate group [the value of the
O(1)eRe(1)eO(2) angle is 78.9(1)�], which exhibits biden-
tate and monodentate bridging modes towards the ReIV

and CuII ions, respectively. The O(1), O(2), Br(2) and Br(3)
set of atoms constitute the best equatorial plane around the
ReIV ion, the largest deviation from planarity being 0.070 Å
for O(2). The average value of the ReIVeBr [2.479(1) Å] and
ReIVeO [2.055(1) Å] bond lengths, and also the bond angles,
Fig. 1. Molecular structure of the dinuclear [ReIVBr4(m-ox)CuII(pyim)2] unit
showing the atom numbering of the CuII and ReIV metal ions along with
those of their chromophores in compound 1. Thermal ellipsoids are drawn at
the 50% probability level.
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found in 1 are in agreement with those previously reported
for complexes containing the anionic [ReBr4(ox)]2� entity
[18e22].

Each CuII ion in 1 is mainly five-coordinate and bonded
to four nitrogen atoms from two pyim molecules and an
oxygen atom from the oxalate group of the closer
[ReBr4(ox)]2� anion, in a distorted square pyramidal ge-
ometry. The CuIIeO bond length is 2.682(1) Å and the
average value of the CuIIeN bond lengths is 1.997(1) Å.
Nevertheless, having into account the Br(1a) ion that would
occupy a sixth position generating the one-dimensional
motif [the Cu(1)/Br(1a) distance is ca. 3.23 Å; (a) ¼ x, 1/
2 � y, 1/2 þ z], the CuII ion could also be seen in a very
distorted octahedral environment, as previously described
in similar chloro-derivative CuIIeReIV systems [13,16].

The intramolecular CuII/ReIV distance through the
oxalato bridge is 5.457(1) Å, whereas this intermetallic
distance through the bromo bridge is somewhat shorter
[Cu(1a)/Re(1) distance of 5.263(1) Å; (a)¼ x, 1/2� y, 1/2þ
z]. The average CeC and CeN bond length values of the
pyim ligand show the expected values for this molecule
when coordinated to a metal ion [30e67].

In the crystal packing of 1, the [ReBr4(m-ox)Cu(pyim)2]
units are arranged helicoidally forming chains that grow
along the c-axis direction (Fig. 2). These CuIIeReIV chains
are extended to layers, on the crystallographic bc plane
(Fig. 3), by means of bifurcated hydrogen-bonding in-
teractions between oxalate and NeH groups of coordinated
pyim ligands [the N(6)/O(3b) and N(6)/O(4b) distances
are 2.87(2) and 2.93(2) Å, respectively; (b) ¼ 3/2 � x, 1 � y,
�1/2 þ z]. Likewise, p/p type interactions between the
aromatic rings of neighbouring pyim ligands connect the
CuIIeReIV chains along the crystallographic ab plane (the
shortest intercentroid distance being approximately
3.42 Å). The value of the shortest intermolecular CuII/ReIV

distance between adjacent chains is 8.822(2) Å [Cu(1)/
Re(1c), (c) ¼ 3/2 � x, �y, �1/2 þ z], whereas the shortest
intermolecular CuII/CuII and ReIV/ReIV distances are
7.385(3) and 9.161(2) Å [Cu(1)/Cu(1d) and Re(1)/Re(1d),
(d) ¼ 3/2 � x, �1/2 þ y, z], respectively.

In addition, weak CeH/Br interactions that vary in the
range 3.72e3.78 Å link parallel planes and contribute to
stabilising the supramolecular structure of 1.

Finally, the phase purity of the bulk sample of 1 was
confirmed through powder XRD patterns (Fig. 4).
Fig. 2. Perspective view showing the one-dimensional motif of 1 along the a-axis d
Colour code: pink, Re; pale blue, Cu; green, Br; red, O; blue, N; black, C.
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3.2. Magnetic properties

Direct current magnetic susceptibility measurements
were carried out on a microcrystalline sample of 1 in the
1.9e300 K temperature range and under an external mag-
neticfield of 0.1 T. ThecMT versus T plot (cMbeing themolar
magnetic susceptibility per CuIIReIV pair) of 1 is shown in
Fig. 5. At room temperature the cMT value is
1.96 cm3 mol�1 K, which is very close to that expected for a
pair of uncoupled CuII (3d9, S ¼ 1/2 with g ¼ 2.2) and ReIV

(5d3, S ¼ 3/2 with g ¼ 1.8) ions [14e18]. Upon cooling, the
cMT value decreases slowly with decreasing temperature,
more abruptly at approximately 50 K, reaching a minimum
value of 0.50 cm3 mol�1 K at 2.0 K. Then, the cMT value in-
creases giving a final value of 0.58 cm3 mol�1 K at 1.9 K. No
maximum of the magnetic susceptibility is detected in the
cMversus Tplot. Themagnetic behaviourobserved at higher
temperatures would be because of the large zero-field
splitting of the ReIV ion, together with antiferromagnetic
interaction between the ReIV and CuII centres, whereas the
final increases in the cMT value at very low temperatures
would account for a ferrimagnetic behaviour for 1 [13e16].

The field dependence of the molar magnetisation (M)
plot for 1 at 2.0 K is given in Fig. 6, which exhibits a
continuous increase in M with the applied magnetic field
and neither saturation nor hysteresis loop was observed.
The lack of saturation of M at this temperature is likely
because the applied magnetic field would overcome the
weak intrachain antiferromagnetic interaction [13,16]. The
M versus H plot also supports the presence of antiferro-
magnetic interactions in 1, given that the maximum value
ofM per CuIIReIV pair (ca. 1.19 mB) is smaller than that of the
mononuclear [ReBr4(ox)]2� complex isolated as its tetra-n-
butylammonium salt (ca. 1.50 mB) [23].

c== ¼
Nb2

4kT

�
g2
Cu==

þ g2
Re==

1þ 9 expð�D=kTÞ
1þ expð�D=kTÞ

�
FJ== (1)

c⊥ ¼ Nb2

4kT

�
g2
Cu⊥ þ g2

Re⊥
4þ 6kT=Dð1� expð�D=kTÞÞ

1þ expð�D=kTÞ
�
FJ⊥

(2)

where
irection. Hydrogen atoms and MeCN molecules have been omitted for clarity.



Fig. 3. View along the crystallographic a axis of a fragment of the crystal packing of 1 showing the arrangement of [Cu(pyim)2]2þ cations and [ReBr4(ox)]2� anions
linked through oxalato and bromo bridges. Hydrogen atoms and MeCN molecules have been omitted for clarity. Colour code: pink, Re; pale blue, Cu; green, Br;
red, O; blue, N; black, C.
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Taking into account both the structural description of 1
(see above) and the presence of a minimum at very low
temperature in the cMT versus T plot, we can consider that
compound 1 behaves as a ferrimagnetic chain [13e16].
Thus, to analyse the magnetic properties of 1, the experi-
mental magnetic susceptibility data have been treated
through Eqs 1 and 2 and the following spin Hamiltonian
(Eq 3):
bH ¼
X
i

 �JbSz

2i�1 $
bSz

2i � jbSz

2i $
bSz

2i�1 þ gCu==bbS
z

2i�1H
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z

2iH
z

þgCu⊥b
�bSx

2i�1H
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2i�1H
y
�
þ gRe⊥b

�bSx

2iH
x þ bSy

2iH
y
�
þDRe

h�bSz

2i

�2
�5 =4

�i! (3)
The approach that we have used to fit the experimental
data consists in assuming that the magnetic susceptibility
is given by that of the 4A2g term (ground state for a d3 ion in
an octahedral environment), including the zero-field
splitting, and modulated by a factor predicted from the
Ising model of the magnetic exchange with the parameters
J and j that would be assigned to the magnetic exchange
pathways of the alternating oxalato and bromo bridges,
respectively (and defined as indicated in Eqs 1 and 2)
[16,17]. This is possible because the magnetic susceptibility
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of 1 in the high temperature region may be described by
two contributions: one from the 4A2g term of the ReIV ion
and the other from the uncoupled CuII ion. In the low
temperature region it would be described as a chain of SRe
¼ Seff ¼ 1/2 with different local gCu and gRe Land�e factors
[13e16].

To avoid overparameterisation, we have also assumed
that g¼ g//¼ g⊥ for the CuII and ReIV ions. This approach has
previously been used for fitting themagnetic data of similar
heterometallic CuIIReIV chains [13e16,58]. A least-squares
fit of the experimental data in the 1.9e300 K temperature
range afforded the following parameters for 1: J ¼ �6.3, j ¼
�5.4, gCu ¼ 2.25, gRe ¼ 1.87, and jDRej ¼ 64.2 cm�1 with R ¼
6.4 � 1-0�5 {R being the agreement factor defined as Si
[(cMT)obs(i) � (cMT)calc(i)]2/Si[(cMT)obs(i)]2}. As shown in
Fig. 5, the theoretical curve for 1 (red solid line) matches
quite well with the experimental magnetic data in the
studied temperature range. The values of the J and j mag-
netic exchanges that we have obtained by this approach are
referred to an Seff¼ 1/2 and aiming at comparing themwith
the DRe value (which is referred to a real SRe ¼ 3/2), they
should be reduced by a factor of about 3/5 (3J/5 ¼
�3.8 cm�1 and 3j/5 ¼ �3.2 cm�1), as previously reported
[13,16,58]. The calculated values for the gCu, gRe and DRe
parameters are in agreement with those previously
computed for similar one-dimensional CuIIReIV systems
[13e16,58]. The calculated values of the J and j magnetic



Fig. 6. Plot of the variable-field magnetisation versus applied field at 2.0 K
for 1 (see text).

Fig. 4. Plot of the simulated (top) and experimental XRD (bottom) patterns
profile in the 2q/� range 0e45� for 1.
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exchanges support antiferromagnetic interactions between
the ReIV and CuII centres across the twomagnetic pathways,
that is, through the alternating oxalato and bromo bridges
in 1. According to the orthogonality of the involved mag-
netic orbitals [eg for CuII and t2g for ReIV], a priori, a ferro-
magnetic exchange would be expected. However, this
orthogonality is broken because of the asymmetry of the
bridges and the distorted coordination geometry of the
Cu(II) ion, resulting in a very poor overlap of the magnetic
Fig. 5. Thermal variation of the cMT (o) product for 1. The solid line is the
calculated curve and the inset shows a detail of the low temperature range
(see text).
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orbitals and, hence, in a weak antiferromagnetic exchange
between these metal ions.

Despite showing a chain motif in its crystal structure,
compound 3 behaves magnetically as a tetranuclear
[ReIV2CuII

2] species [19]. Compound 3 does not exhibit
behaviour of ferrimagnetic chain given that contains in
their crystal lattice significant ReeBr/BreRe interactions
(Br/Br separation of ca. 4.8 Å) between adjacent ReIV-

CuII chains. These intermolecular interactions in the
rhenium(IV) chemistry are usually very strong and can
easily overcome the intramolecular ones, accounting for
the magnetic behaviour observed in the cMT versus T
variation [68]. Nevertheless, this fact has not been re-
ported for ferrimagnetic chains based on other 5d metal
ions [69].

As far as we know, compound 1 is the first system
containing the [ReBr4(ox)]2� metalloligand to exhibit
magnetic behaviour of ferrimagnetic chain and, therefore,
any comparison would be precluded. Nonetheless, we
have tried to compare our results with those obtained for
the previously studied CuIIReIV chains based on the chloro-
derivative [ReCl4(ox)]2� complex [13e17]. Thus, we have
plotted the J values versus the ReIV/CuII distances and the
ReeXeCu angle (�) (X ¼ Cl and Br) for ferrimagnetic
CuIIReIV chains (Table 3). As shown in Fig. 7, there exists a
certain trend in these systems: when the Re$$$Cu sepa-
ration shortens and the ReeXeCu angle decreases, the
value of the antiferromagnetic coupling also decreases
(red solid line in Fig. 7). Although we cannot talk about a
magnetostructural correlation, given that more data of
CuIIReIV systems would be needed to complete the study
in detail, this trend could help at least to design new
ferrimagnetic CuIIReIV compounds and similar systems,
having into account the high magnetic anisotropy that
ReIV ion exhibits [70e75].



Table 3
Selected magnetostructural parameters for ferrimagnetic ReIVeCuII chains.a

Compound Space group d(Re/M) (Å) J, j (cm�1) ǀDǀ (cm�1) gRe gCu Ref.

[ReCl4(m-ox)Cu(bpy)2] P21/n 4.798, 4.658 �25.0, �13.0 53.0 1.84 2.17 [13]
[ReCl4(m3-ox)Cu(L1)] P21 5.568, 5.870 �3.4, NA 49.6 1.91 2.27 [14]
[ReCl4(m-ox)Cu(L2)] P�ı 4.684, 4.718 �18.1, �0.7 63.0 1.89 2.20 [15]
[ReCl4(m-ox)Cu(pyim)2] P21/n 4.544, 4.805 �7.8, �6.0 54.8 1.80 2.29 [16]
[ReCl4(m-ox)Cu(L2)] P21/c 6.030, 4.769 �14.2, �8.7 54.5 1.81 2.24 [17]
[ReBr4(m-ox)Cu(pyim)2] Pbca 5.457, 5.263 �6.3, �5.4 64.2 1.87 2.25 This work

a bpy ¼ 2,20-bipyridine; pyim ¼ 2-(20-pyridyl)imidazole; L1 ¼ N-dl-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene; L2 ¼ N-meso-
5,12-Me2-7,14-Et2-[14]-4,11-dieneN4; NA ¼ not available.

Fig. 7. Dependence of the J parameter (cm�1) on the ReIV$$$CuII distance (Å)
and the ReeXeCu angle (�) for ferrimagnetic CuIIReIV chains. The solid line
represents the linear best fit.
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4. Conclusions

We have reported the synthesis, characterisation and
magnetic properties of a novel CuIIReIV compound of for-
mula {[ReIVBr4(m-ox)CuII(pyim)2]$MeCN}n (1) [ox ¼ oxalate
anion, pyim ¼ 2-(20-pyridyl)imidazole]. The analysis of the
magnetic properties of 1 through variable-temperature
magnetic susceptibility data revealed a magnetic behav-
iour typical of ferrimagnetic chain, which is consistent with
its crystal structure. Remarkably, compound 1 is the first
reported copper(II)erhenium(IV) complex obtained with
the [ReBr4(ox)]2� metalloligand that exhibits such a mag-
netic behaviour.

In addition, by comparing our results with those re-
ported in the literature, we have observed a trend associ-
ated with the family of ferrimagnetic CuIIReIV chains,
although more systems would be needed to complete
a study that establishes a proper magnetotructural
correlation.
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This PhD Thesis has developed a deep research on the field of the Molecular Magnetism, 

specifically, on systems based on Mn(III) and Re(IV) metal ions, which present interesting 

magnetic properties. This research also involves the potential application in nanoscale 

devices of some of the obtained complexes. 

In what Mn(III)-based systems concerns, six new members of the family of oxime-based 

[Mn6] complexes have been synthesised and magnetostructurally characterized. All of 

these compounds are reported in three publications and display a magnetic behavior 

consistent with the single-molecule magnet (SMM) phenomenon. Particularly, the 

energy barrier value to the relaxation of the magnetization (Ueff) for the cationic 

compound obtained using dmf as a coordinating solvent, and reported in the first work 

included in this memory, is the highest reported Ueff so far for cationic oxime-based 

[Mn6]2+ systems. Furthermore, due to their cationic character, these singular SMMs 

could be used as suitable building blocks for preparing new magnetic materials, just by 

replacing the anion by another anionic species exhibiting an additional functionality, 

namely, conductivity or luminescence. Additionally, in the second work present here, 

the crystal structure of the first example of Mn-based complex containing 5-

phenyltetrazole was reported. 

To complete this work, and also as the highlight of the Section A of this Thesis, the 3-

(acetylthio)propionic and  6-(acetylthio)hexanoic derivatized [Mn6] SMMs have been 

reported. These structures have also been the first reported complexes containing the 

3-(acetylthio)propionate (3-atpa) and 6-(acetylthio)hexanoate (6-atha) ligands. Such 

features, together with their relative stability, make them suitable SMMs to be studied 

on devices in the field of molecular spintronics. Given that, a future perspective of this 

line of work is to investigate the obtained [Mn6] systems as molecular connectors in 

junction devices. Furthermore, aiming in the same direction, another perspective work 

is to functionalise [Mn6] molecules with other thioester-type ligands, that is, molecules 

presenting longer aliphatic chains and other functional sulphur-based groups which are 

key for connecting the complexes to the junction devices.  

The second part of the present PhD Thesis, dedicated to the study on Re(IV)- based 

complexes, summarizes a huge contribution to the knowledge and the understanding of 

such systems. 

Hence, the crystal structures and magnetic properties of four novel hexahalogen Re(IV) 

salts, based on cations of different nature, have been reported in two publications. In 

the former, the two of the compounds exposed, which are those based on 9H-adenine-

1,7-diium, present the organic cations and the inorganic anions self-assemble into novel 

supramolecular structures through a combination of hydrogen and halogen bonds. The 

latter are responsible for propagating relatively strong intermolecular antiferromagnetic 

exchange interactions between the Re(IV) ions through short Re−X···X−Re contacts. 

Given that the two of the compounds are isostructural, exhibiting the same value of the 
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shortest X···X distance, we can directly observe the effect of changing the halide ligand 

on the magnetic exchange. As evidenced by our results, the larger diffuse character of 

the 4p orbitals of the bromide ligands when compared to the 3p orbitals of chloride 

ligands would account for the enhancement of the magnetic exchange observed in the 

bromide based analogous. 

In addition, the two reported Fe(II)–Re(IV) compounds display a behaviour typical of 

isolated paramagnetic centers with high values of zero-field splitting of the involved 

metal ions. The large separation that exists among [Fe(dmf)6]2+ cations and [ReX6]2− 

anions in the solid accounts for the lack of any significant through-space magnetic 

coupling between the Fe(II) and Re(IV) ions. Remarkably, these are the first examples of 

paramagnetic salts based on the [Fe(dmf)6]2+ cation that have been magnetostructurally 

characterized.  

A future perspective work should be focused on completing this research on the Re(IV) 

hexahalogen-mononuclear species. Herein, we present the perspective of studding the 

magnetic properties of structurally isolated [ReX6]2- anions (X = Cl, Br, I) for what bulky 

cautions, such as tetrabutylammonium and tetraphenylphosphonium, would be 

employed. 

In the attempt of exploring new strategies of synthesis to perform ligand substitutions 

on Re(IV)-based mononuclear species, two novel mononuclear complexes have been 

synthesized and magnetostructurally characterized. They were prepared from the well-

known cis-[ReCl4(MeCN)2] precursor, by means of ligand substitution reactions upon 

heating in the employed solvent. Remarkably, the complex of formula cis-[ReCl4(dma)2] 

is the first example of crystal structure containing N,N-dimethylacetamide (dma) 

molecules coordinate to a paramagnetic 5d metal ion. 

Finally, the crystal structure and magnetic properties of two heteropolynuclear 

complexes of formula (NBu4)4[Zn{ReCl4(μ-ox)}3] and {[ReBr4(ox)Cu(pyim)2]·MeCN}n 

[NBu4
+ = tetra-n-butylammonium cation, ox = oxalate anion and pyim = 2-(2’-

pyridyl)imidazole] have been reported. The former is an unusual Zn(II)–Re(IV) system 

and the first example of an oxalato-bridged Zn(II) complex coordinated to a 5d metal ion 

that exhibits slow relaxation of magnetisation, and, in addition, given the diamagnetic 

nature of the Zn(II) ion, this compound has enabled us to obtain for the first time the J 

value of the magnetic interaction between Re(IV) ions linked through oxalate ligands. 

The latter complex is a novel Cu(II)-Re(IV) monodimensional compound which has 

revealed a magnetic behaviour typical of ferrimagnetic chain, which is consistent with 

its crystal structure. This is the first reported Cu(II)-Re(IV) complex obtained with the 

[ReBr4(ox)]2- metalloligand that exhibits such a magnetic behaviour.  
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