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Introducció 

 

Els boscos amazònics, representen el 40% de la superfície forestal tropical global (Aragão 

et al., 2014). Contenen al voltant d’una quarta part de les espècies terrestres del món 

(Dirzo & Raven, 2003) i produeixen el 15% de la fotosíntesi global (Malhi, 2008). 

Addicionalment, juguen un paper important en el cicle hidrològic de la regió (Marengo 

et al., 2018).  

 

Tenint en compte la importància d’aquest ecosistema juntament amb la situació actual 

d’escalfament global, el seguiment dels possibles canvis efectuats en aquests boscos és 

d’especial importància. L’ús d’imatges de satèl·lits es presenta com una via atraient per 

tal d’acomplir aquest objectiu. En particular, el sensor Moderate Resolution Imaging 

Spectroradiometer (MODIS) a bord dels satèl·lits TERRA i AQUA es troba entre les 

principals eines actuals per al seguiment d’aquesta regió (Jiménez-Muñoz et al., 2015). 

L’ús de dades de teledetecció en aquesta regió, no obstant presenta una sèrie de 

limitacions entre les que destaca l’efecte de la possible contaminació per núvols 

introduïda per una deficient detecció d’aquests. Entre les variables que es poden utilitzar 

per al seguiment d’aquests boscos (i que poden ser estimades mitjançant dades de 

teledetecció) destaquen la temperatura de la vegetació i l’evapotranspiració. La 

temperatura de vegetació està directament relacionada amb la fisiologia vegetal. A més, 

alguns estudis han demostrat la relació existent entre aquesta variable i la capacitat 

d’absorció de CO2 i la pèrdua de biomassa d’aquests boscos. Per un altra banda, 

l’evapotranspiració connecta els intercanvis d’aigua, carboni i energia superficial 

d’aquests boscos. Com respondrà aquesta variable al canvi del clima és fonamental per 

entendre l’estabilitat d’aquests boscos (Cox et al., 2000).  

 

Arran de la importància dels temes esmentats prèviament, les activitats de recerca 

realitzades durant aquest període de doctorat es poden agrupar en tres objectius 

principals: 

 

I. Detecció dels núvols mitjançant mètodes basats en l'aprenentatge màquina. 

II. Estimació i validació de temperatura de la superfície terrestre (TST) per a 

diferents sensors de resolució mitjana. 

III. Estimació de l'evapotranspiració a partir de diferents models de teledetecció. 

 

Cal destacar ací que els objectius I i II s’han centrat en l’ús de dades del sensor MODIS, 

en canvi l’objectiu II ha sigut expandit a altres dos sensors: Visible Infrared Imaging 

Radiometer Suite (VIIRS) i Sea and Land Surface Temperature Radiometer (SLSTR).  

 

Per tal d’assolir els objectius esmentats anteriorment, aquesta tesi s’ha estructurat en tres 

parts diferents: introducció teòrica o background (part I), dades i mètodes (part II) i 

resultats (part III). A continuació es presenta un breu resum d’aquestes parts.  
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I. Introducció teòrica 

 

1. Mètodes de detecció de núvols 

 

En aquest capítol ens hem centrat en descriure l’estat de l’art dels mètodes de detecció de 

núvols en imatges de satèl·lit. Per una part trobem els mètodes de base física (Ackerman 

et al., 1998; Irish et al., 2000, 2006; Zhu & Woodcock 2012; Godin, 2014). I per altra 

banda, trobem els mètodes de base estadística (o d’aprenentatge màquina) entre els quals 

podem destacar els següents treballs:  Gomez-Chova et al. (2007), Amato et al. (2008), 

Ricciardelli et al. (2008), Heidinger et al. (2012), Ishida et al. (2018), Chen et al. (2018), 

Chai et al. (2019).  

 

Pel que fa al sensor MODIS, les màscares de núvols de referència són MOD35 (Ackerman 

et al., 1998) i MAIAC (Lyapustin et al., 2008). Aquests es poden classificar dins del 

primer grup. No obstant MAIAC, es beneficia de l’ús d’informació temporal (Lyapustin 

et al., 2008). Apart d’aquests algoritmes, en el present treball també s’ha considerat l’ús 

dels següents algoritmes: Gaussian Naïve Bayes (GNB), Linear Discriminant Analysis 

(LDA), Quadratic Discriminant Analysis (QDA), Random Forests (RF), Support Vector 

Machines (SVM) i Multilayer Perceptron (MLP). La formulació teòrica d’aquests 

mètodes es presenta en la secció 1.4. Addicionalment, també es descriu els algoritmes de 

calibratge de probabilitat emprats: el mètode de Platt (Platt, 1999) i la regressió isotònica 

(Zadrozny & Elkan, 2001-2002). 

 

 

2. Estimació de la TST des de satèl·lit 

 

En aquest capítol, ens hem centrat en descriure els algoritmes utilitzats en els productes 

de temperatura dels sensors MODIS, VIIRS i SLSTR. Pel que fa a MODIS existeixen 3 

algoritmes diferents: l’algoritme Split-window (Wan & Dozier, 1996), l’algoritme dia-nit 

(Wan & Li, 1997) i l’algoritme Temperature-Emissivity-Separation (TES) (Hulley et al., 

2012). Aquests corresponen als productes: MOD11A1, MOD11C1 i MOD21 

respectivament. Addicionalment, també es presenta l’algoritme Split-Window (SW) 

d’estimació de temperatura utilitzat. Aquest ha sigut desenvolupat en el grup de recerca 

Unitat de Canvi Global i correspon a la formulació matemàtica de Sobrino & Raissouni 

(2000). Aquest es tracta d’un algoritme de tipus SW, que relaciona la TST amb la 

temperatura de brillantor i l’emissivitat de les bandes 11µm i 12µm. Els diferents 

coeficients han sigut obtinguts a partir de simulacions.  

 

3. Estimació de l’evapotranspiració des de satèl·lit 

 

En aquest capítol, ens hem centrat en descriure els processos que es produeixen en la capa 

superficial de l’atmosfera. Dins d’aquesta, el transport de calor, aigua (massa) i impuls 

entre diferents nivells de l’atmosfera pot ser descrit mitjançant la teoria K (Brustaert, 

1982). Aquesta permet obtenir les expressions dels perfils de vent, temperatura i vapor 
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d’aigua de l’aire en condicions estables (Equacions 3.8-3.10) i inestables (Equacions 

3.14-3.16). Addicionalment, també ens hem centrat en descriure breument l’estat de l’art 

de l’estimació de l’evapotranspiració des de satèl·lit. Entre els algoritmes existents 

trobem: els mètodes residuals (1 font o 2 fonts), els mètodes contextuals, els mètodes 

Penman-Monteith i Priestley-Taylor, els mètodes empírics i altres mètodes que fan ús del 

balanç hídric o de la vinculació amb el balanç del carboni. A més a més, la formulació 

matemàtica dels algoritmes seleccionats es presenta també en aquest capítol. Aquests en 

són quatre: Priestley-Taylor Jet Propulsion Laboratory (PT-JPL), ii) Penman-Monteith 

MODIS (PM-Mu), iii) Surface Energy Balance System (SEBS), i iv) Satellite Application 

Facility on Land Surface Analysis (LSASAF).  

 

 

II. Dades i mètodes 

 

4. Dades 

 

4.1. - Sensors  

 

Les dades de teledetecció utilitzades en aquesta tesi provenen del sensors MODIS, VIIRS, 

SLSTR. Aquests es tracten de sensors passius a bord de satèl·lits d’òrbita polar. En les 

Taules 4.1-4.3 es presenten les característiques tècniques d’aquests incloent la resolució 

temporal, radiomètrica, espacial i espectral. Addicionalment, per al primer objectiu del 

treball també s’han utilitzat dades dels sensors Cloud Profiling radar (CPR) que es tracta 

d’un radar de 94 Hz i Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) que 

es tracta d’un lidar operant en les longituds de 532 nm i 1064 nm. A la Taula 4.4 es 

detallen les característiques tècniques d’aquests dos sensors. 

 

 

4.2. – Reanàlisis meteorològics  

 

Entre les dades meteorològiques utilitzades en aquesta tesi estan les dels reanàlisis 

MERRA-2 (Bosilovich et al., 2015; Gelaro et al., 2017), ERA-Interim (Berrisford et al., 

2009; Dee et al., 2011) així com les del Global Land Assimilation system (GLDAS-2.1) 

(Rodell et al., 2004). Descripcions tècniques d’aquests es presenten en la Taula 4.5. 

MERRA-2 proporciona dades a escala horaria amb una resolució espacial de 0,5º x 0,65 

º mentre que ERA-Interim i GLDAS-2.1 proporcionen dades a escala tres hores amb una 

resolució espacial de 0,75º x 0,75º i 0,25º x 0,25º respectivament. 
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4.3.-  Regió d’estudi i estacions in-situ  

 

4.3.1.- Regió amazònica 

 

En la Figura 4.6, es mostren els boscos tropicals de l’Amazones tal i com han sigut 

definits en aquest estudi. En la Figura 4.7 es presenta una descripció de les 

característiques de la regió: topografia, vegetació, temperatura anual mitjana, precipitació 

anual i caracterització dels sòls. Tal i com es pot observar, en termes generals es tracta 

d’una regió relativament plana (exceptuant els Andes) amb un clima càlid i humit amb 

vegetació verda i abundant.  

 

4.3.2.- Estació de Manacapuru  

 

Les mesures in-situ utilitzades per a la validació dels resultats dels núvols pertanyen a 

l'Amazon Green Ocean (GoAmazon2014 / 5) Experiment realitzat des del gener del 2014 

fins al 31 de desembre del 2015. De les diferents estacions de mesura, s’han utilitzat dades 

de l’ instal·lació T3 (3.2130ºS, 60.5981º W). En particular, s’ha fet ús de les dades de 

l’instrument total Sky Imager (TSI-880). Aquest  és un sistema automatitzat d'imatges del 

cel a tot color que proporciona el processament i visualització en temps real de les 

condicions de cel durant el dia. Les especificacions del sensor es troben en l’apèndix A.1. 

 

4.3.3.- Estació de Tambopata  

 

L’estació de  Tambopata (12.832 S, 69.282 W) es troba situada a l'Amazònia peruana 

(Madre de Dios, Perú). Aquest lloc té una elevació d’uns 225 metres sobre el nivell del 

mar. Té una precipitació anual de 2580 mm / any i la temperatura mitjana anual és d’uns 

299.2 K. L'estació està situada en una zona homogènia caracteritzada per un bosc tropical 

dens. La instrumentació de l’estació consta de dos radiòmetres infrarojos (SI-111 i IR120) 

i un radiòmetre net CNR4 (Figura 4.9). Els 3 sensors s’integren directament al cos de 

l’instrument. Per obtenir una descripció detallada de les especificacions tècniques del 

sensor, consulteu l’apèndix A.1. 

 

4.3.4.- Xarxa d’estacions LBA 

 

Les dades d’evapotranspiració foren obtingudes del programa Large-Biosphere-

Atmosphere (LBA). Durant aquest es va establir una xarxa de torres de fluxos turbulents 

a l’entorn de l’Amazònia brasilera (Saleska et al., 2013). En la present dissertació, vàrem 

utilitzar dades de cinc estacions (Figura 4.6, Taula 4.6): K34, K67, K83, CAX i RJA. Per 

a una descripció de la instrumentació en cada estació consulteu l’apèndix A.1. En la 
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Figura 4.10 es mostra l’evolució mensual de la vegetació, evapotranspiració i 

precipitació.  

 

 

5. Metodologia 

 

5.1.- Algoritme de detecció de núvols 

 

5.1.1.- Òrbites MODIS i CPR/CALIOP 

 

Per tal de generar la base de dades de referencia que servirà per tal d’entrenar els models 

estadístics s’han utilitzat els següents productes CloudSat: 2B-CLDCLASS-LIDAR, 

MODIS-AUX, 2B-GEOPROF i 2B-FLXHR-LIDAR. A la Taula 5.1 es presenten les 

capes seleccionades dels diferents productes. Per a cada producte, es van descarregar un 

total de 1002 òrbites referents al període temporal de 2007 i l’extensió geogràfica de 

80ºW-45ºW, 10ºN-20ºS. Per tal d’eliminar totes aquelles dades que no foren  vàlides 

s’aplica el següent processament: 1) eliminació dels píxels de mar, 2) eliminació dels 

píxels nocturns i píxels que no correspongueren a la classe “Evergreen Broadleaf Forest” 

i 3) eliminació dels píxels no vàlids. Després del processament inicial, la base de dades 

resulta en un total de 477.415 mostres. Aquestes tenen associades una etiqueta (núvol o 

no-núvol) i les 7 característiques considerades per a la discriminació dels núvols. 

Aquestes són: B1, B3, B4, B7, B26, (B2-B1) / (B1 + B2) i B2 / B1. On els números fan 

referència a les bandes de MODIS. Finalment, la base de dades es va dividir aleatòriament 

en dos conjunts diferenciats de dades (tren i test). Es va utilitzar una proporció 2/3 i 1/3 

respectivament.  

 

 

5.1.2- Productes MODIS 

 

En la Taula 5.2 es presenten productes MODIS a nivell d'imatge considerats a l'estudi. 

També es mostren les capes seleccionades. Aquest productes s’utilitzaren en la validació 

a nivell d’imatge i a nivell in-situ.  Per al primer cas, tan sols s’utilitzaren 20 imatges 

referents a l’any 2014 (és a dir 20 dies). Es mostren en la Taula 5.3. Aquestes tenen com 

a objectiu generar una base de referència d’imatges que pogués servir per validar els 

diferents algoritmes considerats així com els productes oficials. Açò es va aconseguir 

mitjançant la classificació manual de les imatges. Aquesta fou realitzada amb el software 

ENVI.  

 

 

 

7



Resum 

 

 

5.1.3- Dades in-situ 

 

Hem utilitzat el producte maotsiskycoverM1.b1. Aquest proporciona el percentatge de 

núvols opacs i prims que hi ha a les imatges enregistrades. Es va obtenir una fracció total 

del núvol sumant aquests dos percentatges. Per tenir en compte les diferents resolucions 

espacials i temporals, es va fer la mitjana de les mesures de fracció de núvol in situ durant 

els 5 minuts de durada del pas de satèl·lit MODIS. Per discriminar les ocurrències de no-

núvol de les de núvol es va considerar un llindar del 25% de la fracció de núvol (no-núvol 

<25% i núvol ≥ 25%). Aquest valor de llindar fou seleccionat per no restringir 

completament els casos de no-núvol. 

 

5.1.4. – Aprenentatge dels models i calibratge de la probabilitat 

 

El conjunt de dades de train va ser dividit en dos conjunts diferents (train + calibration) 

amb la finalitat de no crear un biaix en el models. La mateixa proporció 2/3 i 1/3 fou 

considerada. Les bases de dades resultants estan compostes per un total de 214311 

mostres per a train i 105557 per a calibration. L’aprenentatge (train) per als models GNB, 

LDA i QDA consisteix en estimar els paràmetres requerits a partir del conjunt de dades. 

En el cas de RF, SVM i MLP els diferents paràmetres involucrats han de ser optimitzats. 

Per a cada model, es van provar diferents combinacions de paràmetres i es va seleccionar 

la millor combinació mitjançant una validació creuada (5-K fold). Els paràmetres podien 

variar d’acord amb l’espai de paràmetres pre-definit en la Taula 5.4. El calibratge de la 

probabilitat proporcionada pels models es va validar mitjançant el sub-conjunt de dades 

de calibration. Es va considerar per a tal fi una regressió isotònica  (Zadrozny & Elkan 

2002–2001). Per tal d’implementar aquesta metodologia es va utilizar el paquet de Python 

Sklearn (Pedregosa et al., 2011). 

 

 

5.1.5- Validació dels models 

 

L’avaluació dels models es va realitzar mitjançant matrius de confusió i estadístics 

derivats (precisió global (OA) i el coeficient Kappa). Addicionalment, els models també 

foren avaluats en termes del cost computacional associat (diferència de temps entre inici 

i final del càlcul). Per a tal fi, es va servir un ordinador amb 8 GB de RAM i un 

processador Intel Core i3-6100. L’avaluació de les probabilitats estimades s’ha realitzat 

mitjançant corbes de fiabilitat (reliability curves). La metodologia emprada per a la 

validació dels models s’agrupa en tres blocs. En el primer, la validació es va realitzar 

sobre el conjunt de dades test. Addicionalment, també s’avaluaren les probabilitats. En el 

segon bloc, la validació es va realitzar sobre les 20 imatges classificades manualment. Per 

tal d’assignar prediccions (dels model obtenim valors continus de probabilitat) el valor 

llindar emprat va ser optimitzat a partir de la base de dades. A més a més, en aquest bloc 
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també es va procedir a la comparació dels resultats amb les màscares de referència de 

MODIS (MYD35 i MAIAC). En el tercer bloc, els resultats del models i les màscares 

MODIS foren validats utilitzant les dades in-situ.  

 

 

5.2.-  Estimació de la TST 

 

5.2.1.- Dades in-situ i caracterització de la incertesa 

 

Pel que fa als dos radiòmetres la TST ha sigut obtinguda a partir de l’Equació 5.4. En 

aquesta el valor de l’emissivitat 휀𝜆 s’ha pres igual a 0.99 i la radiància descendent 𝐿𝜆
↓ 

s’ha obtingut a partir de simulacions MODTRAN utilitzant perfils atmosfèrics com a 

input. Per a la validació, es va considerar la mitjana del valor proporcionat per ambdós 

sensors. Una estimació de les diferents contribucions de la incertesa dels valors in-situ de 

la TST va proporcionar un valor de 0.5 K (<1K). Pel que fa al pirogeòmetre la LST va 

ser calculada mitjançant l’Equació 5.5. La incertesa d’aquesta mesura va ser obtinguda 

mitjançant un càlcul d’errors d’acord amb l’Equació 5.6. La incertesa ve determinada per 

la pròpia incertesa de l’instrument proporcionada pel fabricant. Finalment, a partir de la 

comparació amb els valors de TST dels radiòmetres es va assumir un valor de 0.8 K 

(<1K).  

 

5.2.2.- Dades de satèl·lit   

 

En la Taula 5.7 es presenta la llista de productes MODIS utilitzats i les capes 

seleccionades. Per a la validació de MODIS i VIIRS es descarregaren els productes 

M(OY)D021KM, M(OY)D03, M(OY)D07_L2, M(OY)D05_L2, M(OY)D_35_L2, 

M(OY)D11_L2, MYD21, M(OY)D11C1, MAIAC(TA)BRF/MCD19A1, VNP03MOD,  

VNP02MOD i VNP21 per a l’estació in-situ des de desembre 2014 fins a març 2019. Pel 

que fa al sensor SLSTR es descarregaren per al període Juliol-Agost 2017 dades dels 

productes L1_RBT i L2_LST. El processament inicial va consistir en l’extracció del valor 

de l’estació dels diferents productes.  

 

5.2.3.- Simulacions 

 

Per tal de simular els paràmetres atmosfèrics necessaris (transmissivitat i radiància 

descendent) s’utilitzà el codi de transferència radiativa MODTRAN 5.2.0 (Berk et al., 

2008) considerant com a input els perfils atmosfèrics del producte M(OY)DO7_L2. 

Aquest procés de simulació es va utilitzar de dues formes diferents: 1) obtenir el valor de  
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𝐿𝜆
↓ per tal de corregir la temperatura in-situ (Equació 5.4). 2) generar la base de dades de 

temperatures de brillantor a partir de la qual s’han obtingut els coeficients dels algoritmes 

proposats en aquest treball. Amb aquest fi, es van seleccionar 1118 punts espacials 

aleatoris distribuïts en la regió d’estudi (Figura 5.3). Els perfils atmosfèrics lliures de 

núvols durant el període 2014-2016 es varen utilitzar en les simulacions. Aquestes es 

feren utilitzant l’angle d’observació indicant pel sensor MODIS i considerant com a TST 

la temperatura de l’aire de la primera capa del perfil. Els valors de canal s’obtingueren 

utilitzant la resposta espectral dels sensors mostrada en la Figura 5.4. Per tal d’obtenir les 

temperatures de brillantor tan sols resta saber el valor de l’emissivitat. Aquests foren 

extrets de la llibreria espectral ASTER (Baldrige et al., 2009). Se seleccionaren els 

espectres de vegetació de gespa, coníferes i caducifoli.  

 

5.2.4.- Obtenció dels coeficients de l’algoritme i anàlisi de sensitivitat 

 

Les bases de dades resultant (TERRA-dia, AQUA-dia, TERRA-nit, AQUA-nit) consten 

d’aproximadament 542000, 870000, 650000 i 680000 punts respectivament. Aquests 

conjunts de dades es van dividir en train (70%) i test (30%). Train es va utilitzar per tal 

d’obtenir els coeficients dels algoritmes i test com a validació independent. 2 versions de 

l’algoritme es van considerar: una versió generalitzada on s’han obtingut els 6 coeficients 

de l’algoritme, i una versió simplificada amb 3 (és a dir s’han eliminat contribucions de 

vapor d’aigua i emissivitat). La incertesa d’aquests algoritmes fou avaluada utilitzant les 

equacions 5.7 -5.13.  

 

 

5.2.5.- Validació T-based 

 

Aquesta validació ha consistit en la comparació directa dels valors de TST dels productes 

considerats amb els valors in-situ proporcionats per l’estació.  La validació es va realitzar 

per separat en condicions diürnes i nocturnes. Per al cas del SW generalitzat, es va suposar 

ε un valor fix de 0.99 i ∆ε un valor de 0.005 per a tots els tres sensors. El vapor d'aigua 

de tots els tres sensors va ser extret directament del producte M(OY)D05_L2. A efectes 

pràctics, els valors diürns de TST es van filtrar per núvols mitjançant les màscares de 

núvol M(OY)D35_L2 i MAIAC en el cas del sensor MODIS. Els valors de TST nocturns 

es van filtrar mitjançant M(OY)D35_L2. Per al sensor VIIRS, les estimacions de LST 

diürnes i nocturnes es van filtrar mitjançant la màscara de núvol VNP35_L2 tal com 

incrustada al producte VNP21. En el cas de SLSTR, es van descartar possibles valors de 

TST contaminats per núvols considerant només valors amb una diferència màxima de 6 

K amb valors TST in situ. Aquest filtre addicional també es va aplicar a MODIS i VIIRS. 

Per analitzar els possibles efectes d'aquesta restricció, també es van obtenir resultats per 

a una diferència màxima de 15 K i 3 K (Apèndix A.3).  
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5.2.6.- Validació R-based  

 

A causa del cost addicional de descàrrega i processament, la validació R-based es va 

restringir al cas diürn per a MODIS. En particular, tan sols per als algoritmes MODIS-

SW, MODIS dia-nit i per a la versió simplificada de  l’algoritme proposat. Com a dades 

de validació es seleccionaren 100 punts de les bases test descrites anteriorment. Els valors 

de temperatura de brillantor de les bandes 31 i 32, així com els valors de TST 

s’obtingueren dels productes de la Taula 5.7. S’utilitza la màscara de núvols del producte 

MAIAC(TA)BRF per tal de descartar els píxels contaminats. El període de validació 

considerat és des de desembre del 2014 fins al desembre del 2016. El valor d’emissivitat 

es va suposar en 0.99. Per tal de trobar el valor del llindar òptim 𝛿 (𝑇11 − 𝑇12) 

s’utilitzaren els valors LST de l’estació Tambopata com a referència.  

 

 

5.2.7.- Patrons espacials 

 

Per tal de completar la validació per al cas particular MODIS (dia), es va realitzar una 

comparació entre els patrons espacials del número de dies sense núvols i LST obtinguts 

del producte estàndard MODIS i l’algoritme SW simplificat. Les estacions incloses en 

l'anàlisi van ser JFM (gener-febrer-març), AMJ (abril-maig-juny), JAS (juliol-agost-

setembre) i OND (octubre-novembre-desembre). La comparació es va realitzar per a l’any 

2014. S’utilitzaren tres nivells diferents: i) la màscara de núvols MOD35 inclosa en el 

producte MOD11 sense cap tipus de discriminació QA addicional (TST no produïda a 

causa dels núvols), ii) la màscara de núvol MOD35 tal com està inclosa en el producte 

MOD11 i el filtre addicional basat en la capa QC (TST no produït a causa dels núvols + 

TST va produir una altra qualitat) (Nishida et al., 2003; Williamson et al., 2013) i iii) la 

màscara de núvols MAIAC. Addicionalment, es va ampliar la validació de patrons 

espacials repetint aquest mateix procediment mitjançant dades de la suite VIIRS.  

 

5.3. –  Estimació de l’evapotranspiració 

 

5.3.1.- Dades in-situ 

 

Una descripció general de les dades de les estacions in-situ utilitzades es pot trobar en 

Saleska et al. (2013). Per tal d’obtenir els valors diaris d’evapotranspiració (ET) se 

sumaren els valors d’ET horaris. S’exclogueren aquells valors que no tenien al mínim 20 

observacions. Els models varen ser validats utilitzant aquests valors. No obstant, per tal 

de tenir en compte el problema del tancament del balanç d’energia es consideraren dues 

correccions : Bowen Ratio (BR) i Energy Residual (ER). Els valors d’ET corregits horaris 

se sumaren per tal d’obtenir el valor diari. D’aquests valors corregits es descartaren 
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aquells que compliren que el ratio entre corregit/no-corregit fora menor a 0.5 o major que 

2 (Ershadi et al., 2014). A part de les observacions dels fluxos turbulents també 

s’utilitzaren els valors de radiació neta (Rn), radiació incident d’ona curta i llarga (SRin, 

LRin,) i els valors de temperatura (Ta), pressió de vapor de l’aigua (ea) velocitat del vent 

(Ws) i pressió de l’aire  (P). Aquests valors a escala horària foren agregats a escala diària, 

diürna o nocturna depenent de les exigències del model.  

 

5.3.2.- Dades de reanàlisi 

 

Les dades meteorològiques a escala regional foren obtingudes dels reanàlisis: MERRA-

2, ERA-Interim and GLDAS-2.1. La Taula 5.9 presenta les variables de reanàlisi de les 

que es deriven les inputs dels models. Les variables de reanàlisi de MERRA-2 es van 

obtenir dels productes M2T1NXRAD, M2T1NXSLV i M2T1NXLND. Les dades de 

GLDAS-2.1 es van derivar del producte GLDAS_NOAH025_3H. En el cas de ERA-

Interim, s’obtingueren directament de la plataforma de descàrrega. Aquests valors a 

escala horària foren agregats a escala diària, diürna o nocturna depenent de les exigències 

del model. En el cas de SEBS, els valor instantanis s’obtingueren a partir de la 

interpolació lineal entre els dos valors horaris més pròxims al pas del satèl·lit. Per tal de 

reduir l’escala espacial (1km i 5km) es va fer ús d’una interpolació gaussiana entre els 

veïns més pròxims.  

 

5.3.3.- Dades de satèl·lit 

 

Les dades de satèl·lit utilitzades en aquest apartat són: l’altura de la vegetació (h), la 

fracció de vegetació (𝑓𝑐) , l’emissivitat, la TST, l’albedo i el Normalized Difference 

Vegetation Index (NDVI). En la Taula 5.10 s’especifica el procediment seguit per tal 

d’obtenir aquestes variables.  

 

5.3.4.- Dades del sòl i mètode gap-filling 

 

A causa de la seua dependència amb la TST, el model SEBS presenta un número molt 

limitat d’observacions en comparació als altres models. Per tal d’alleugerir aquest 

problema, es considerà un mètode de gap-filling per als dies amb núvols. Per tal d’aplicar 

aquest mètode es necessita de les propietats del sòl “wilting point” i “field capacity”. 

Aquestes foren obtingudes a partir de l’Harmonized World Soil Database (HWSD) 

(FAO,2012) juntament amb la indexació proposada en Anderson et al. (2007).  
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El mètode gap-filling es basa en la relació existent entre la fracció d’evapotranspiració 

potencial (𝑓𝑃𝐸𝑇) i la fracció d’aigua disponible per la planta (𝑓𝐴𝑊). Aquesta relació ve 

donada per les equacions 5.21 a 5.23. El procediment es troba detallat en la Taula 5.12. 

 

 

5.3.5- Configuració dels models 

 

PT-JPL:  

- La temperatura òptima de creixement ha sigut fixada a 25ºC. Aquest valor ha sigut 

aplicat prèviament en la modelització a escala global (Yuan et al., 2010; García et 

al., 2013).  

- En el càlcul de la humitat relativa tant per a 𝑒𝑎 com 𝑒𝑠 s’utilitzaren els valors a 

migdia.  

- El model PT-JPL ha sigut aplicat a escala diària. El valor de G ha sigut negligit.  

 

PM-Mu: 

- Per tal de facilitar la implementació el valor de 𝑓𝑐 ha sigut el mateix que l’utilitzat 

en la resta de models (és a dir no s’ha utilitzat el 𝑓𝑎𝑝𝑎𝑟). 

- NDVI i l’albedo s’han obtingut dels productes MAIAC.  

- Els valors d’ET nocturns negatius foren descartats en el càlcul diari.  

 

SEBS:  

- S’utilitza la parametrització per a vegetació alta de Timmermans et al. (2013).  

- Es va considerar una fracció evaporativa constant per tal de passar els valors 

horaris a diaris.  

- Estimacions de SEBS en dies amb núvols foren proporcionades pel mètode gap-

filling. Per tal de facilitar la notació aquesta versió s’anomena com SEBS-GF.  

- Els valors diaris d’ET corresponen al valor mitjà entre els obtinguts per TERRA 

i AQUA. 

 

LSASAF:  

- Per tal de reduir el cost computacional associat, el model ha sigut forçat a escala 

diària en comptes d’horària. En particular, tan sols s’ha considerat el forçament 

diürn. La contribució de G fou negligida. 

- 𝜆𝐸  fou calculada com la suma 𝜆𝐸𝑐𝑓𝑐  +  𝜆𝐸𝑠(1 − 𝑓𝑐) . Les classes EBF i sòl 

(Ghilain et al., 2011) foren seleccionades per a aquest càlcul.  

- Es va considerar un valor representatiu de 𝑧0𝑚 igual a 2.5 i 0.001 per als bosc i el 

sòl nu . 𝑧0ℎ es va calcular a partir de 0.1𝑧0𝑚 i 𝑑0 com 
2ℎ

3
.  
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5.3.6- Avaluació dels models 

 

En la Taula 5.13 es presenten els inputs necessaris per a cada model. Aquest han sigut 

forçats a la resolució temporal indicada en aquesta taula. Els models foren validats 

d’acord amb dos escenaris diferents (Taula 5.14). En l’escenari I, els models foren forçats 

amb els inputs de les estacions i dades de satèl·lit. En canvi, en l’escenari II, els models 

foren forçats amb dades de reanàlisi i satèl·lit. A causa de la falta de mesures, en alguns 

casos com en el model LSASAF s’ha hagut d’utilitzar dades d’humitat del sòl de reanàlisi 

en l’escenari I. Així també, per a algunes estacions alguns models no s’han pogut fer 

funcionar. Els estadístics utilitzats en aquesta avaluació han sigut el biaix, la desviació 

estàndard, el Root Mean Square Error (RMSE), el coeficient de correlació i el coeficient 

de Taylor. Addicionalment, també s’ha fet ús de diagrames de Taylor.  

 

5.3.7- Avaluació de la qualitat dels reanàlisis 

 

La qualitat dels reanàlisis fou avaluada mitjançant comparació directa dels inputs 

proporcionats per aquests models amb els inputs meteorològics de les estacions. S’han 

utilitzat els mateixos estadístics que en l’apartat anterior. El factor que més afecta a la 

incertesa d’aquestes mesures és la discrepància espacial existent entre aquests dos tipus 

de dades.  

 

5.3.8- Anàlisi de sensitivitat 

 

Els efectes de la incertesa dels inputs de reanàlisi en els outputs del models d’ET ha sigut 

avaluada mitjançant un anàlisi de sensitivitat global. Entre els diferents mètodes existents 

s’ha fet ús del mètode de Sobol (Sobol, 2001, Saltelli et al., 2010). Aquest mètode està 

basat en una descomposició Analysis of Variance (ANOVA). Com a resultat proporciona 

una sèrie d’índexs que quantifiquen la contribució independent de cada variable (índex 

primer), així com la interacció entre dues variables (índex segon). Aquests efectes es 

poden observar conjuntament mitjançant l’índex total.  

 

5.3.9- Comparació de patrons espacials 

 

Les discrepàncies entre els models també han sigut avaluades mitjançant la comparació 

dels patrons espacials de l’ET acumulada anualment. Açò s’ha aconseguit mitjançant una 

simple diferència d’imatges i analitzant els valors mitjans zonals a escala mensual. A part 

dels models considerats també es van incloure en la comparació els següents models: 

GLEAM (Miralles et al., 2011; Martens et al., 2017), MERRA-Land (Reiche et al., 2011), 
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ERA-Interim i GLDAS-2.1. Addicionalment, els models també foren comparats amb els 

corresponents inputs mitjançant regressió linear.  

 

 

III. Resultats  

 

6. Detecció de núvols en imatges MODIS utilitzant una aproximació probabilística  

 

6.1. Descripció de la base de dades  

 

En la Figura 6.1 es presenten les condicions d’observació de la base de dades considerada 

per tal d’aprendre els models. Es fa palès ací el rang tan restringit de l’angle d’observació 

(al voltant de 17-19º). Aquest problema encara que no impedeix el desenvolupament del 

treball necessita de l’avaluació del seu impacte. En la Taula 6.1, es presenta una 

comparació de les dues màscares de núvols de referència utilitzades. S’observa que 

aquestes classifiquen igualment un 78.3% (14.85% + 63.45%) del total de les mostres. El 

21.7% restant representa les possibles classificacions errònies. D’aquestes el 19.18% 

corresponen a instàncies on MYD35 classifica com a no-núvol i CPR/CALIOP com a 

núvol. En la base de dades definitiva, els núvols representen un 81% i els no-núvol o 

vegetació un 19%.  

 

6.2 Validació amb la base de dades 

 

En la Figura 6.3 es presenten les corbes de fiabilitat (reliability curves). Es pot observar 

com MLP és l’únic model que proporciona probabilitats ben calibrades. Pel que fa a GNB, 

QDA i SVM les estimacions tendeixen a ser optimistes. LDA i RF presenten una forma 

sigmoïdal. En la Taula 6.2, es presenta els estadístics OA i Kappa. Centrant-nos en les 

prediccions obtingudes una vegada calibrades les probabilitats tenim que tots els models 

són capaços de reproduir òptimament la base de dades. En particular, RF, SVM i MLP 

presenten un millor funcionament que GNB, LDA i QDA. Pel que fa al cost 

computacionals, tots els models són eficients. El cost es va calcular amb un total de 

214311 mostres.  

 

6.3 Validació amb imatges 

 

En la Figura 6.5, es presenta la selecció del valor llindar utilitzat per a discriminar entre 

núvol i no-núvol. El valor màxim de Kappa referent al valor llindar es presenta en la Taula 

6.3. També es mostren els valors de MYD35 i MAIAC. Com es pot observar, el grup 
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GNB-LDA-QDA proporciona valors més elevats de Kappa que el grup RF-SVM-MLP. 

En particular, LDA proporciona el valor màxim (0.722). Tots els models són capaços de 

millorar els resultats de MYD35 i MAIAC. En la Taula 6.4, es presenten els resultats per 

a diferents rangs de visió (angle zenital). Es comprova com el resultats empitjoren a 

mesura que augmenta l’angle. El grup GNB-LDA-QDA continua proporcionant valors 

dels estadístics més elevats. En termes del cost computacional tots els models són 

eficients. La validació continua amb l’avaluació de l’estadístic Kappa per a cada imatge 

individual (Figura 6.6). A més, en la Figura 6.7 es mostra la comparació de la cobertura 

nuvolosa d’aquestes imatges. S’observa com MYD35 i MAIAC tendeixen a subestimar i 

sobreestimar aquesta respectivament. En la Figura 6.8, es presenta una comparació visual 

per a un conjunt de 2 imatges.  

 

6.4 Validació amb dades in-situ 

 

En la Taula 6.5 es presenten els resultats de la validació in-situ. La validació es va realitzar 

sobre un conjunt de 110 dies. La distribució de núvol i no-núvol correspon a un 95% i 

5% respectivament. Encara que aquestes classes clarament no es troben equilibrades, 

s’assumeix que aquesta és la distribució de l’estació. MYD35 estima la presència de no-

núvols com el 15% mentre que MAIAC el 2.7%. Els models proporcionen valors entre 

4% i 5%. S’observa (Taula 6.5) que tots els models classifiquen bé els núvols, la principal 

discrepància ve a l’hora de la classe no-núvol. En termes del coeficient Kappa, els models 

proporcionen millors resultats que MYD35 i MAIAC. Els millor funcionament el 

proporciona MLP, seguit per LDA, SVM, RF, GNB i QDA.  

 

7. Algoritme d’estimació de la TST adaptat als boscos tropicals de l’Amazones 

 

7.1.- Validació amb la base de dades simulades 

 

En la Taula 7.1 es presenta l’anàlisi de sensitivitat dels algoritmes. Per a la versió 

simplificada del SW, l’error total de LST es mou entre 0.520 K i 0.896 K. Per a la versió 

generalitzada l’error varia entre 0.841 i 1.695 K. L’augment resulta de la consideració 

addicional de les contribucions d’emissivitat i vapor d’aigua. Un 1% d’emissivitat 

contribueix entre 0.732 i 1.549 K. El vapor d’aigua presenta una contribució menor amb 

0.184 K. Els resultats de la validació amb les dades test es presenten en la Taula 7.2 i les 

figures 7.1-7.4. Exceptuant el cas de VIIRS SW generalitzat, tots els algoritmes tenen un 

biaix nul i valor de coeficient de correlació majors que 0.9. El RMSE varia entre 0.36 i 

1.0 K amb valors superiors en condicions diürnes. En termes del vapor d’aigua i de l’angle 

d’observació es mostra que el SW simplificat és més estable que el SW generalitzat.  
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7.2.- Validació T-based 

 

Els resultats de la validació T-based es recullen en les Taules 7.3 i 7.4. Començant per la 

validació diürna, per a TERRA els algoritmes MODIS-SW i MODIS-DN tenen un RMSE 

entre 2.7 K i 2.9 K. L’algoritme SW generalitza no proporciona una millora dels resultats. 

L’algoritme SW simplificat millora els productes MODIS amb una diferència en RMSE 

fins a 0.8 K. Per a AQUA, MODIS SW i MODIS-TES proporcionen valors semblants de 

RMSE (2.3 K i 2.9 K), no obstant amb un biaix negatiu i positiu respectivament. MODIS-

DN presenta un RMSE de 2.66 i 3.05 K. Ambdós algoritmes SW (generalitzat i 

simplificat) milloren els resultats dels productes MODIS. El valor menor de RMSE s’obté 

per a la versió simplificada (1.68 K i 1.90K per a radiòmetres i pirgeòmetre, 

respectivament). Per a VIIRS, la versió SW simplificada millora la versió SW 

generalitzada amb una reducció entre 0.4 K i aproximadament 0.5 K de RMSE. No 

obstant, VIIRS-TES és l’algoritme que proporciona un millor funcionament (reducció 

entre 0.2 K i 0.4 K de RMSE respecte SW simplificat). Per a SLSTR, l’algoritme operatiu 

funciona millor que la resta d’algoritmes considerats amb una diferència màxima de 

RMSE de 0.68 K respecte del SW simplificat. Passant a la validació nocturna, s’observa 

que generalment els valors de RMSE decreixen en un rang entre 0.7 K i 2 K. Per a 

TERRA, MODIS-SW funciona millor que MODIS-DN (RMSE al voltant d’1.3 K enfront 

d’un valor al voltant de 1.6 K). L’algoritme SW simplificat és capaç de millorar la resta 

dels algoritme amb valors de RMSE diferència fins a 0.5 K. Per a AQUA, MODIS-TES 

funciona pitjor que MODIS-SW i MODIS-DN. El primer té un valor RMSE de 1.8 K -2 

K enfront de 1.2 K-1.3 K per a SW i 1.3 K -1.7 K per a DN. Els dos algoritmes SW 

proposats són capaços de millorar aquests resultats, sent la versió simplificada la millor 

d’ambdós. Per a VIIRS, l’algoritme SW proporciona els valors mínims de RMSE de tots 

els algoritmes considerats (0.88 K -0.98 K). Per a SLSTR, conclusions anàlogues al cas 

diürn s’han obtingut. No obstant, la diferència entre l’algoritme operatiu i el SW proposat 

s’ha reduït.  

 

7.3.- Validació R-based 

 

Utilitzant les dades in-situ de Tambopata i considerant una diferència màxima de 1K per 

a s’obtenen els següents valors llindars -0.1K < (𝑇12𝑜𝑏𝑠
− 𝑇12𝑠𝑖𝑚

) < 0.3K. No obstant, 

tenint en compte la limitació imposada per l’abundant cobertura nuvolosa els valors 

llindars finalment foren -0.2K<  (𝑇12𝑜𝑏𝑠
− 𝑇12𝑠𝑖𝑚

) < 0.4K. Aquests proporcionen una 

diferència menor que  2K. En la Figura 7.10 es presenten els resultats de la validació R-

based. S’observa com l’algoritme proposat presenta un valor menor del biaix i de 

desviació estdandard. La diferencia en termes de RMSE és d’aproximadament 0.9 K, 1.7 

K, 0.7 K i 1.5 K per a MODIS-SW TERRA, MODIS-SW AQUA, MODIS-DN TERRA 

i MODIS-DN AQUA.  
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7.4.- Patrons espacials 

 

Observant els patrons espacials de les Figures 7.11 i 7.12 es comprova que la diferencia 

en els patrons de TST entre MOD35 i QC/MAIAC prové de l’eliminació de la 

contaminació dels núvols. No obstant açò redueix el número de dies disponibles. Pel que 

fa a la comparació entre QC i MAIAC es comprova que ambdós reprodueixen patrons 

similars. Addicionalment, en la Figura 7.13 es presenten els resultats anàlegs per a VIIRS. 

S’observa certa similitud entre VIIRS i AQUA per al cas de la TST.  

 

 

8. Comparació d’algoritmes d’estimació de l’evapotranspiració basats en dades de 

teledetecció 

 

8.1.- Escenari I   

 

8.1.1. Validació dels algoritmes 

En la Figura 8.1, es presenta la validació dels algoritmes. Els models proporcionen valors 

de R entre 0.5 i 0.9. Els valors de l’estadístic S es mouen entre 0.7 i 0.9 i el RMSE entre 

0.55-1.25 mm/dia. Els models mostren un funcionament similar, no obstant això PT-JPL 

presenta els valors més elevats de R (0.65-0.88) en comparació amb PM-Mu (0.56-0.74), 

SEBS (0.56-0.77), SEBS-GF (0.58-0.76) i LSASAF (0.53-0.69). A més, PT-JPL 

proporciona els millors resultats considerant valors in-situ corregits (RMSE = 0.55 

mm/dia, R = 0.88 i S = 0.91), seguit de SEBS, SEBS-GF i PM-Mu. El pitjor funcionament 

s’obté per a LSASAF (RMSE = 1.50 mm/dia, R = 0.55 i S = 0.77). Els resultats de la 

validació individual de les estacions es presenta amb diagrames Taylor en la Figura 8.3. 

Considerant valor in-situ corregits, PT-JPL funciona millor que la resta de models (més 

pròxim al punt d’observació). Pel que fa als valors no corregits tots els models presenten 

un funcionament similar.   

 

8.1.2. Evolució temporal  

L’ anàlisi de l’evolució temporal es presenta en la Figura 8.4. S’observa que els models 

són capaços de seguir l’evolució dels valors in-situ, obtenint valors màxims en setembre. 

LSASAF no obstant presenta el pic en Agost, cal dir no obstant que les estacions K67 i 

CAX no foren incloses a causa de la falta de dades. Al llarg de l’any, PT-JPL, SEBS i 

SEBS-GF es troben dins del rang preestablert pels valors in-situ. En canvi, LSASAF i 

PM-Mu presenten una subestimació i sobreestimació dels valors respectivament.  
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8.2.- Escenari II  

 

8.2.1. Avaluació de la qualitat dels reanàlisis i anàlisi de sensitivitat 

En la Taula 8.2 es presenta la validació dels reanàlisis considerats. Generalment, els 

inputs de velocitat de vent presenten una incertesa més elevada (60% d’error relatiu). Els 

inputs de radiació un 30%, els d’humitat un 15% i els de temperatura un 10%. Pel que fa 

a la radiació, es comprova que la diferència més important entre els reanàlisis és el biaix 

proporcionat. MERRA-2 sobreestima Rn24, SRinday i  SRinhour i subestima LRinday i LRinhour. 

El mateix comportament s’observa per a GLDAS-2.1, no obstant aquest sobreestima 

SRinday. ERA-Interim sobreestima els valors instantanis mentre que subestima els valors 

diürns i diaris. Pel que fa a l’anàlisi de sensitivitat, es comprova que la variabilitat dels 

inputs de radiació és el factor dominant que explica la variabilitat de l’ET.  

 

8.2.3. Validació dels algoritmes 

En la Figura 8.7 es presenten els resultats de l’escenari II. S’observa una clara deterioració 

del funcionament dels models respecte de l’escenari anterior (R (0.2-0.3) i S (0.5-0.7) han 

disminuït mentre que el RMSE ha augmentat (1.1-1.7 mm/dia) ). Tenint en compte la 

incertesa dels reanàlisis aquest era un resultat esperat. Cal destacar que es troba una clara 

relació entre la sobreestimació i subestimació dels inputs de radiació observada en 

l’apartat anterior amb l’observada en aquest. Pel que fa als resultats de les estacions 

individuals es presenten en la Taula 8.3 i Figura 8.8. En aquest escenari, no hi ha cap 

combinació de model+reanàlisi en particular que proporcione els millors resultats.  

 

8.2.4. Evolució temporal  

Els resultats d’aquesta secció es presenten en la Figura 8.9. Per a PT-JPL, MERRA-2 i 

GLDAS-2.1 sobreestimen els valors in-situ, en canvi ERA-Interim els subestima. Per a 

PM-Mu, MERRA-2 proporciona la major coincidència amb els valors in-situ. ERA-

Interim i GLDAS-2.1 subestimen els valors in-situ. Pel que fa a SEBS-GF, MERRA-

2/GLDAS-2.1 i ERA-Interim proporcionen una desviació positiva i negativa 

respectivament. Per a LSASAF, la màxima discrepància s’obté per a MERRA-2, no 

obstant açò resulta amb un millor acord amb les dades in-situ.  

 

8.2.5. Comparació de patrons espacials 

De la Figura 8.10 es pot comprovar com discrepàncies entre els reanàlisis considerats 

poden induir una diferencia major de 500 mm/any en el valor anual cumulatiu d’ET. En 

particular, les desviacions negatives màximes s’obtenen per a LSASAF-ERA i LSASAF-
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GLDAS seguits per LSASAF-MERRA, PM-Mu-ERA i PM-Mu-GLDAS. Les 

desviacions positives màximes s’obtenen per a MERRA-2 i GLDAS-2.1 seguits per PT-

JPL-GLDAS i SEBS-GF-GLDAS. A partir de la Figura 8.11, es pot comprovar com la 

contribució màxima als patrons espacials prové dels inputs de radiació. Pel que fa a 

l’evolució temporal (Figura 8.12) els models segueixen el mateix patró espacial encara 

que proporcionant valors absoluts diferents.  

 

 

Conclusions 

 

En aquest apartat, presentem les principals conclusions derivades d’aquest estudi. S’han 

organitzat segons les tres línies de recerca seguides.  

 

Pel que fa al primer objectiu les principals conclusions han sigut:  

 

- Les observacions simultànies dels sensors CPR/CALIOP i MODIS poden ser utilitzades 

com a base de dades de referencia per tal d’aprendre algoritmes supervisats. No obstant 

la base resultant es troba restringida a unes condicions d’observació limitades. En aquest 

treball, hem fet ús d’una aproximació probabilística (estimació de les probabilitats en 

comptes de prediccions) per tal d’evitar aquest problema.  

 

- La validació utilitzant imatges ha demostrat que els mètodes probabilístics (LDA, GNB 

i en una mesura menor QDA) proporcionen millor resultats que RF, SVM i MLP. Aquest 

fet resulta d’haver heretat les deficiències de la base de dades generada.  

 

- La metodologia emprada millora els resultats de les màscares MODIS ja que es capaç 

de corregir les deficiències observades en els productes MYD35 i MAIAC (subestimació 

i una sobreestimació de la cobertura dels núvols, respectivament).  

 

- Els models presenten un bon equilibri entre la exactitud dels resultats i el cost 

computacional associat. En particular, LDA destaca entre la resta de models obtenint el 

valor màxim del coeficient Kappa i el menor cost associat.  

 

- La implementació de la metodologia emprada és directa i pot ser adaptada a altres 

regions amb requeriments mínims. Les dades CPR/CALIOP i MODIS són 

proporcionades directament per l’equip CloudSat. A més, aquesta metodologia pot ser 

adaptada fàcilment a altres sensors com VIIRS.  
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Pel que fa al segon objectiu, les conclusions principals han sigut:  

 

- La incertesa dels radiòmetres infrarojos SI-100 i IR-120 ha sigut inferior a 1K. A més 

de la comparació amb les dades del sensor CNR4 s’ha obtingut un RMSE de 0.8 K. 

Complint així els requisits del llocs de validació de TST.  

 

- A partir de la validació amb dades simulades independents, es va comprovar que per a 

la regió d’estudi considerada l’algoritme SW simplificat proporciona millor resultats que 

el general (reducció del RMSE entre 0.1-0.4 K i més estabilitat per a angles de visió més 

grans i per a un contingut de vapor d’aigua major).  

 

- De la validació T-based s’han obtingut les següents conclusions:  

 

-   Per a MODIS-TERRA, els algoritmes MODIS-SW i MODIS-DN 

proporcionen un RMSE de fins a 2.70 K -2.83 K  en el cas diürn  i d’1.40 K -

1.70 K per al cas nocturn. Per al dia el SW generalitzat no va proporcionar una 

millora dels resultats. A la nit en canvi, s’obté una disminució de fins a 0.1 K 

en el RMSE. El SW simplificat sí que millora els algoritmes MODIS tant al 

dia com a la nit amb una disminució de 0.2 K – 0.8 K de RMSE. 

 

- Per a MODIS-AQUA, durant el dia MODIS-SW i MODIS-TES tenen un 

funcionament similar (valors RMSE al voltant de 2.3 K per al radiòmetre i 2.9 

K per al radiòmetre net CNR4). MODIS-DN presenta uns resultats pitjors amb 

un RMSE de 2.66 K i 3.05 K respectivament. A la nit, MODIS-TES 

proporciona el pitjor funcionament de tots els algoritmes MODIS, amb una 

diferència en RMSE que oscil·la entre 0.1 K i 0.7 K. MODIS-TES sobreestima 

els valors de TST in-situ (biaix positiu) mentre que MODIS-SW i MODIS-

DN presenten un biaix negatiu. Tant el algoritme SW generalitzat com 

simplificat són capaços de millorar els resultats de la validació amb una 

disminució de RMSE fins a 1.3 K. La versió simplificada és la que millor 

resultats proporciona.  

 

- Per a VIIRS es va comprovar que l’algoritme SW simplificat millora 

l’algoritme SW general, amb diferències d'aproximadament 0.2 K-0.5 K en el 

RMSE. Durant el dia, VIIRS-TES proporciona el millor funcionament amb 

una diferència de 0.2 K a 0.3 K respecte a l’algoritme SW simplificat. No 

obstant això, durant la nit, VIIRS-TES no supera aquest últim. S'obté una 

diferència de 0.7 K a 0.8 K en RMSE. 

 

- Per a SLSTR, el producte L2 proporciona un millor acord amb les 

observacions in situ que el que presenta l’algoritme SW simplificat  

(diferència d'aproximadament 0.6 K en RMSE diürn i una diferència de 0.07 

K en RMSE nocturn). El SW generalitzat proporciona un pitjor funcionament. 
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No obstant, cal recordar que la validació s’ha realitzat sobre un conjunt de 

dades menor.  

 

-  La validació amb el mètode R-based s’ha mostrat com una alternativa vàlida al T-based.  

La incertesa associada es trobava dins dels límits de 2 K. A causa de limitacions 

pràctiques, aquest mètode només es va aplicar a la validació diürna de MODIS. El SW 

simplificat proposat redueix la incertesa en l'estimació de LST (RMSE) en 0.7 a 1.7 K en 

comparació amb algoritmes operatius MODIS.  

 

- A partir de la comparació de patrons espacials, es va veure que la diferència revelada en 

els patrons de TST entre MOD35 i QC / MAIAC deriva de la correcció de l'efecte de 

contaminació dels núvols.  

 

Pel que fa al tercer objectiu, les conclusions principals han sigut:  

 

- S’ha comprovat que quan s’utilitzen dades amb una incertesa menor (escenari I), es pot 

obtenir valors de RMSE inferiors a 1 mm/dia. Demostrant per tant la capacitat de les 

dades MODIS per d’estimar l’ET en la regió.  

 

- En l’escenari I, els models considerats presenten un rang de biaix entre -1.08 i 0.92 

mm/dia amb un rang de RMSE entre 0.55 i 1.50 mm/dia. Els valors de R es mouen entre 

0.55 i  0.88. Entre aquests models, PT-JPL va proporcionar el rang de valor R més alt 

(0.65-0.88) i el millor funcionament, tenint en compte la correcció “energy residual” 

(RMSE = 0.55 mm / dia i R = 0.88). A més, va donar el punt més proper al punt 

d’observació en el diagrama de Taylor. 

 

- LSASAF proporciona una clara subestimació en comparació amb la resta de models. 

Els motius principals atribuïts a aquest comportament són l’ús de dades d’humitat del sòl 

obtingudes de reanàlisi (descripció problemàtica en la regió  + desajust espacial entre les 

dades). S’ha comprovat que aquest problema es redueix quan s’inclou un terme 

d’intercepció.  

 

- PM-Mu presenta un funcionament similar al PT-JPL (és a dir, una diferència de RMSE 

d'aproximadament 0.2 mm / dia i una desviació màxima de 0,1 en valor R). No obstant 

això, es va comprovar que els valors d'entrada difereixen dels seus valors òptims (𝑓𝑐 i 𝑅𝑛). 

No obstant, utilitzant el valor de 𝑓𝑎𝑝𝑎𝑟 en comptes de 𝑓𝑐 la sobreestimació es redueix.  

 

- SEBS proporciona uns resultats similars a PT-JPL. Tot i això, pel fet de dependre de les 

observacions de TST, les estimacions de SEBS estan limitades per la cobertura nuvolosa 

continuada de la regió. S’obté una disminució dràstica (d’un factor 4) del nombre 

d’estimacions disponibles respecte del model PT-JPL. Per tal d’evitar aquest problema es 

va considerar l’ús d’un mètode de gap-filling (Anderson et al., 2007) per tal de 

proporcionar estimacions en els dies amb núvols. Malgrat que es va produir un increment 

del número d’estimacions, es va observar una subestimació respecte dels valors de SEBS.  
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- En l’escenari II,  el RMSE presenta valors superiors a 1 mm/dia. A més s’obté una 

correlació deficient (valor R màxim al voltant de 0.3). Aquests pitjors resultats 

s’expliquen principalment per la incertesa d’aquestes dades. La validació d’aquests inputs 

es va realitzar mitjançant la comparació directa entre els inputs de les estacions in-situ i 

les de reanàlisi. La velocitat del vent és la variable amb més incertesa amb un error relatiu 

superior al 60%, seguit per els inputs de radiació amb un 30%, els d’humitat amb un 15% 

i els de temperatura amb un 10%.  

 

- Per analitzar l'impacte de la incertesa del reanàlisi sobre la incertesa del model es va fer 

un anàlisi de la sensibilitat de Sobol. A partir d’aquesta anàlisi, es va trobar que la 

incertesa dels inputs de radiació governaven la incertesa del model.  

 

-Respecte dels inputs de radiació s’ha comprovat que  

MERRA-2 tendeix a sobreestimar la radiació neta diària i la radiació solar descendent. 

ERA-Interim tendeix a subestimar ambdues variables, i GLDAS-2.1 tendeix a 

sobreestimar la radiació neta diària mentre que subestima la radiació solar descendent. 

Els biaixos d'aquestes variables es tradueixen directament en biaixos en les estimacions 

d'ET. A més, les discrepàncies entre aquestes entrades expliquen discrepàncies entre els 

models  d’ET.   
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Abstract 

 

 

Amazonian tropical forests play a significant role in global water, carbon and energy 

cycles. Considering the relevance of this biome and the climate change projections which 

predict a hotter and drier climate for the region, the monitoring of the vegetation status of 

these forests becomes of significant importance. In this context, vegetation temperature 

and evapotranspiration (ET) can be considered as key variables. Vegetation temperature 

is directly linked with plant physiology. In addition, some studies have shown the existing 

relationship between this variable and the CO2 absorption capacity and biomass loss of 

these forests. Evapotranspiration resulting from the combined processes of transpiration 

and evaporation links the terrestrial water, carbon and surface energy exchanges of these 

forests. How this variable will response to the changing climate is critical to understand 

the stability of these forests. Satellite remote sensing is presented as a feasible means in 

order to provide accurate spatially-distributed estimates of these variables. Nevertheless, 

the use of satellite passive imagery for analysing this region still has some limitations 

being of special importance the proper cloud masking of the satellite data which becomes 

a difficult task due to the continuous cloud cover of the region.  

Under the light of the aforementioned issues, the present doctoral thesis is aimed at 

estimating the land surface temperature and evapotranspiration of the Amazonian tropical 

forests using remote sensing data. In addition, as cloud screening of satellite imagery is a 

critical step in the processing chain of the previous magnitudes and becomes of special 

importance for the study region this topic has also been included in this thesis. We have 

mainly focus on the use of data from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) which is amongst major tools for studying this region. Regarding the cloud 

detection topic, the potential of supervised learning algorithms for cloud masking was 

studied in order to overcome the cloud contamination issue of the current satellite 

products. Models considered were: Gaussian Naïve Bayes (GNB), Linear Discriminant 

Analysis (LDA), Quadratic Discriminant Analysis (QDA), Random Forests (RF), 

Support Vector Machine (SVM) and Multilayer Perceptron (MLP). These algorithms are 

able to provide a continuous measure of cloud masking uncertainty (i.e. a probability 

estimate of each pixel belonging to clear and cloudy class) and therefore can be used 

under the light of a probabilistic approach. Reference dataset (a priori knowledge) 

requirement was satisfied by considering the collocation of Cloud Profiling Radar (CPR) 

and Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) observations with 

MODIS sensor. Model performance was tested using three independent datasets: 1) 

collocated CPR/CALIOP and MODIS data, 2) MODIS manually classified images and 

3) in-situ ground data. For the case of satellite image and in-situ testing, results were 

additionally compared to current operative MYD35 (version 6.1) and Multi-Angle 

Implementation of the Atmospheric Correction (MAIAC) cloud masking algorithms. 

These results showed that machine learning algorithms were able to improve MODIS 

operative cloud masking performance over the region. MYD35 and MAIAC tended to 

underestimate and overestimate the cloud cover, respectively. Amongst the models 

considered, LDA stood out as the best candidate because of its maximum accuracy 

(difference in Kappa coefficient of 0.293/0.155 (MYD35 /MAIAC respectively)) and 

minimum computational associated. 
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Regarding the estimation of land surface temperature (LST), the aim of this study was to 

generate specific LST products for the Amazonian tropical forests. This goal was 

accomplished by using a tuned split-window (SW) equation. Validation of the LST 

products was obtained by direct comparison between LST estimates as derived from the 

algorithms and two types of different LST observations: in-situ LST (T-based validation) 

and LST derived from the R-based method. In addition, LST algorithms were validated 

using independent simulated data. In-situ LST was retrieved from two infrared 

radiometers (SI-100 and IR-120) and a CNR4 net radiometer, situated at Tambopata test 

site (12.832 S, 62.282 W) in the Peruvian Amazon. Apart from this, current satellite LST 

products were also validated and compared to the tuned split-window. Although we have 

mainly focus on MODIS LST products which derive from three different LST algorithms: 

split-window, day and night (DN) and Temperature Emissivity Separation (TES), we 

have also considered the inclusion of the Visible Infrared Imaging Radiometer Suite 

(VIIRS) sensor. In addition, a first assessment of the Sea and Land Surface Temperature 

Radiometer (SLSTR) is presented. Validation was performed separately for daytime and 

nighttime conditions. For MODIS sensor, current LST products showed Root Mean 

Square Errors (RMSE) in LST estimations between 2 K and 3K for daytime and 1 K and 

2 K for nighttime. In the best case (with a restrictive cloud screening) RMSE errors 

decrease to values below 2K and around 1 K, respectively. The proposed LST showed 

RMSE values of 1K to approximately 2 K and 0.7-1.5 K (below 1.5 K and below 1 K in 

the best case) for daytime and nighttime conditions, thus improving current LST MODIS 

products. This is also in agreement with the R-based validation results, which show a 

RMSE reduction of 0.7 K to 1.7 K in comparison to MODIS LST products. For the case 

of VIIRS sensor daytime conditions, VIIRS-TES algorithm provide the best performance 

with a difference of 0.2 K to around 0.3 K in RMSE regarding the split window algorithm 

(in the best case it reduces to 0.2 K). All VIIRS LST products considered have RMSE 

values between 2 K and 3K. At nighttime, however VIIRS-TES is not able to outperform 

the SW algorithm. A difference of 0.7 K to 0.8 K in RMSE is obtained. Contrary to 

MODIS and the SW LST products, VIIRS-TES tends to overestimate in-situ LST values. 

Regarding SLSTR sensor, the L2 product provides a better agreement with in-situ 

observations than the proposed algorithm (daytime difference in RMSE around 0.6 K and 

up 0.07 K at nighttime).  

In the estimation of the ET, we focused on the evaluation of four commonly used remote-

sensing based ET models. These were: i)  Priestley-Taylor Jet Propulsion Laboratory (PT-

JPL), ii) Penman-Monteith MODIS operative parametrization (PM-Mu), iii) Surface 

Energy Balance System (SEBS), and iv) Satellite Application Facility on Land Surface 

Analysis (LSASAF). These models were forced using remote-sensing data from MODIS 

and two ancillary meteorological data sources: i) in-situ data extracted from Large-Scale 

Biosphere-Atmosphere Experiment (LBA) stations (scenario I), and ii) three reanalysis 

datasets (scenario II), including Modern-Era Retrospective analysis for Research and 

Application (MERRA-2), European Centre for Medium-range Weather Forecasts 

(ECMWF) Re-Analysis-Interim (ERA-Interim), and Global Land Assimilation System 

(GLDAS-2.1). Performance of algorithms under the two scenarios was validated using 
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in-situ eddy-covariance measurements. For scenario I, PT-JPL provided the best 

agreement with in-situ ET observations (RMSE = 0.55 mm/day, R = 0.88). Neglecting 

water canopy evaporation resulted in an underestimation of ET measurements for 

LSASAF. SEBS performance was similar to that of PT-JPL, nevertheless SEBS estimates 

were limited by the continuous cloud cover of the region. A physically-based ET gap-

filling method was used in order to alleviate this issue. PM-Mu also with a similar 

performance to PT-JPL tended to overestimate in-situ ET observations. For scenario II, 

quality assessment of reanalysis input data demonstrated that MERRA-2, ERA-Interim 

and GLDAS-2.1 contain biases that impact model performance. In particular, biases in 

radiation inputs were found the main responsible of the observed biases in ET estimates. 

For the region, MERRA-2 tends to overestimate daily net radiation and incoming solar 

radiation. ERA-Interim tends to underestimate both variables, and GLDAS-2.1 tends to 

overestimate daily radiation while underestimating incoming solar radiation. 

Discrepancies amongst these inputs resulted in large absolute deviations in spatial 

patterns (deviations greater than 500 mm/year) and temporal patterns. 
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Overview and problem statement 

 

The Amazon forests, with approximately 5.3 million km², represent the 40 % of the global 

tropical forest area (Aragão et al., 2014). It contains around a quarter of the world’s 

terrestrial species (Dirzo & Raven, 2003) with approximately 16000 tree species (ter 

Steege et al., 2013). Fifteen percent of the global photosynthesis occurs in these forests 

(Malhi, 2008) and they store an estimated 120 billion tons of carbon (Phillips et al., 2009; 

Atkinson et al., 2011) which is equivalent to more than 10 years’ worth of global fossil-

fuel emissions (Davidson et al., 2012). In addition, these forests have an important role 

in maintaining local and regional rainfall and contribute to the hydrological cycle by 

means of moisture transport inside and outside the region (Marengo et al., 2018). These 

forests release large amounts of water vapour to the atmosphere via evapotranspiration, 

which ranges from 35% to over 80% of the precipitation of the region (see Marengo et 

al., 2018 and references therein). In addition, moisture is transported to the La Plata basin 

and Southeastern regions by means of the South American low-level jest east to the Andes 

representing a significant source of precipitation (Marengo et al., 2004; Zemp et al., 

2014). Apart from this, Amazon ecosystem additionally mediates the approximately 20% 

of water inflow into the oceans through the Amazon river (Nobre et al., 2016).  

The climate of Amazonia has become more extreme during the last few decades. Analysis 

of air temperature trends revealed a warming of 0.5ºC since 1980 (Jiménez et al., 2018). 

Rainfall trends show statistically significant negative values for the southern Amazonia 

(Espinoza et al., 2019) with a 25% of reduction in rainfall between 2000 and 2012 (Hilker 

et al., 2014). Over this same region, several studies show an increase in the length and 

intensity of the dry season (Fu et al., 2013; Marengo et al., 2011). In addition, in the recent 

years there have been several extreme climatic events: three mega-floods were detected 

in 2009, 2012 and 2014 and three mega-droughts in 2005, 2010 and 2016 (Marengo & 

Espinoza, 2016). In particular, these three droughts have been of particular importance 

because the strong impacts they have had on the rainforests and its carbon cycle. Both 

2005 and 2010 droughts led to losses of biomass resulting from increased mortality rates 

and small declines in growth during and after drought events (Feldpausch et al., 2016). 

At basin scale they also impacted the exchange of CO2 between the vegetation and the 

atmosphere by reversing the long-term carbon sink of these forests and becoming the 

vegetation a net source of CO2 (Phillips et al., 2009; Gatti et al., 2014; Feldpausch et al., 

2016). The 2016 drought experienced record-breaking warming (Jiménez-Muñoz et al., 

2016b). In addition, the net forest carbon balance was also altered by the increased tree 

mortality and the reduced net primary productivity (Leitold et al., 2018). 

 

Deforestation and forests fire are additional drivers of change in the Amazon region 

(Marengo et al., 2018). Substantial losses of these forests by deforestation are expected 

to impact the land-atmosphere energy exchange and precipitation at regional scale (Werth 

& Avissar, 2002; Sampaio et al., 2007; Bagley et al., 2014) as well as the global carbon 

balance via an alteration of global CO2 concentration (Betts et al., 2004; Phillips et al., 
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2009). Fires are able to alter forests characteristics. They promote the establishment of 

fire-adapted species thus leading to a more savannah-like ecosystem (Nepstad et al., 

2008). An increase in frequency and severity of fires is associated to an increase in tree 

mortality (Balch et al., 2011; Brando et al., 2014). In addition, fires can also affect 

regional climate (Andreae et al., 2004) because of the aerosol particles emitted during fire 

combustion. Of particular concern for the region is the role that could play the combined 

effects of repeated droughts and deforestation in combination with fire, which according 

to some studies have the potential to cause the collapse of the rainforest ecosystem (Cox 

et al., 2000, 2004, 2008). Various studies have suggested the shift of the Amazon forest 

into a drier savanna-like biome (Oyama & Nobre, 2003; Sampaio et al., 2007 among 

others) as a consequence of the drastic reduction of rainfall due to increase deforestation. 

This Amazon dieback is thought to occur after passing after a tipping point, which has 

been associated with a critical threshold of drought linked to the global warming or 

deforestation exceeding a certain threshold value (Marengo et al., 2018 and references 

therein). Although several observational and modelling studies have pointed to some 

degree of forest resilience (Brando et al., 2008; da Costa et al., 2010; Ramming et al., 

2010; Huntingford et al., 2013) it is still uncertain whether or not future climate change 

and other anthropogenic stressors will lead to this possible dieback scenario (Marengo et 

al., 2018).  

 

In this context, an accurate monitoring of the vegetation changes is of special importance. 

Satellite remote sensing is the only viable means in order to observe these forests in a 

spatially comprehensive and temporally frequent fashion. In particular, the MODIS on 

board the National Aeronautics and Space Administration (NASA) Terra and Aqua Earth 

Observation (EO) polar orbiting system satellites since 2000 and 2002 providing multiple 

day products is among today’s major tools for the climate monitoring of this region 

(Hilker et al., 2015, Jiménez-Muñoz et al., 2015). The most common approach for 

analysing vegetation dynamics for phenology and drought assessment has been the use 

of time-series analysis of vegetation indices such as the Enhanced Vegetation Index (EVI) 

and the Normalized Difference Vegetation Index (NDVI) (Saleska et al., 2007; Samanta 

et al., 2010; Atkinson et al., 2011; Samanta et al., 2012; Hilker et al., 2012,2014, among 

others). Nevertheless, results and conclusions for these studies have been controversial. 

Several studies suggest that MODIS surface reflectance uncertainties is likely to cause 

these discrepancies (Asner & Alencar et al., 2010; Samanta et al., 2012).  

 

Less attention however has been paid to the use of other variables such as vegetation 

temperature, which being linked with plant physiology is a key variable in the 

understanding of the vegetation dynamics. In particular, some studies have investigated 

the relationship between this variable and the CO2 absorption capacity, showing that an 

increase in temperature could result in a negative impact on tropical forest CO2 uptake 

and productivity (Clark et al., 2003; Doughty & Goulden, 2008). Also, anomalous high 

values have been proved to be more important than precipitation deficits in causing losses 

of biomass during drought periods (Galbraith et al., 2010). In Toomey et al. (2011) it was 

suggested that heat stress played an important role in the 2005 and 2010 droughts and that 
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models should incorporate both heat and moisture stress in order to predict drought effects 

on these forests. Jiménez-Muñoz et al. (2013, 2015, 2016ab) and Jimenez et al. (2018) 

pointed out the valuable information that could be derived from monitoring land surface 

temperature anomalies for the region. These studies are the basis of the development of 

the Thermal Amazoni@ project (ipl.uv.es/thamazon), a prototype platform for the 

dissemination and friendly visualization of LST and thermal indices maps (Jiménez-

Muñoz et al., 2015). This monitoring system is expected to be relaunched with updated 

and improved information extracted from the LST and ET products developed in this 

thesis. 

 

Thermal remote sensing (as optical remote sensing) does have some important limitations 

mainly due to imperfect cloud masking and atmospheric correction. Regarding the first 

limitation, the proper cloud detection of clouds in satellite imagery is a critical step in any 

remote-sensing processing chain in order to ensure accuracy in the provided results. Due 

to the continuous cloud coverage of the region of study (cloud cover may be as high as 

70% during the dry season and greater than 90% for the wet season (Hilker et al., 2012)) 

this becomes of crucial importance. For the particular case of MODIS sensor, cloud 

detection is accomplished using MODIS operative cloud mask MOD35 (MYD35) which 

uses a threshold based approach (Ackerman et al., 1998). An alternative suite of products 

is developed by the MAIAC algorithm which uses a multi-temporal approach in order to 

detect clouds (Lyapustin et al., 2008). Several issues in the performance of this MOD35 

(MYD35) cloud mask were reported globally. Overestimation in some global regions was 

found in Liu et al. (2013). Biases related to land cover were determined by Leinenkugel 

et al. (2013) and Wilson et al. (2014). Deficient cloud masking has been identified as one 

of the main factors affecting accuracy of MODIS downstream products (Crosson et 

al.,2012; Williamson et al., 2013). For Amazonian region, cloud contamination impacts 

on surface variable retrieval were reported by Hilker et al. (2012), Gomis-Cebolla et al. 

(2018). In order to solve operative cloud mask deficiencies in the recent years machine 

learning algorithms have emerged as an alternative candidates for satellite cloud masking. 

In particular, for the MODIS sensor, ensembles of decision trees (Kilpatrick et al., 2018), 

support vector machines (Ishida et al., 2018) and neural networks (Chen et al., 2018) were 

able to outperform MODIS cloud mask detection accuracy. Other algorithms have been 

successfully applied to a wide range of sensors (we refer the reader to chapter 1 for a 

bibliographic review of the applications of these methods). Main issue about these 

methods is that they are based on a supervised approach (i.e. they need accurate reference 

data in order to learn the models). Several studies have pointed out the potential use of 

active sensors such as the Cloud Profiling radar (CPR) onboard CloudSat platform and 

the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIOP) 

onboard the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation 

(CALIPSO) platform in order to provide a reference cloud dataset and thus overcome this 

issue.  

 

Regarding the second limitation, estimation of land surface temperature can be obtained 

by a wide variety of methods depending on sensor characteristics (Li et al., 2013). In 
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particular, operational land surface temperature products are currently available from a 

variety of instruments. For the particular case of MODIS sensor, three different LST 

products exist which are based on the Generalized Split-Window (Wan & Dozier et al., 

1996), the Day-Night (DN) algorithm (Wan & Li, 1997) and the Temperature-Emissivity-

Method (Matsunaga et al., 1994; Gillespie et al., 1995) respectively. VIIRS sensor 

considered the successor of MODIS provides two products which are based on the single 

split-window algorithm of Yu et al. (2005) and the TES algorithm. The SLSTR developed 

by the European Space Agency uses the algorithm of Prata (2002). Nevertheless, the 

performance of these products over the region is not well documented due mainly due to 

the scarcity on in-situ LST measurements that can be used for validation. This, can be 

achieved by direct ground comparison of satellite LST estimates and in-situ LST 

observations, which is called T-based validation. Additional techniques exist that can 

overcome the need of in-situ observations such as the R-based method proposed in Wan 

& Li (2008). In order to escape from the possible limitations that offer the current LST 

products, alternative retrieval algorithms can be applied. Among the possible candidates 

the Sobrino & Raissouni (2000) formulation which was developed by the Global Change 

Unit (GCU) meet all the requirements for this task. This method (and also the operative 

ones) makes use of simulated at-sensor brightness temperature values databases in order 

to derive the algorithm coefficients. The success of the retrieval algorithm heavily relies 

on the accuracy of the simulated values. Therefore, using a specific database that properly 

represents the study region conditions would help to refine the LST estimations for this 

region. 

 

Apart from the land surface temperature there are other key variables that explain the 

functioning of these forests. As pointed out before, evapotranspiration represents a major 

contribution to the water and energy exchanges of the region. In particular, the response 

of this variable to the changing climate is critical to understand the stability of these 

forests in the larger global system (Cox et al., 2000). Accurate knowledge of temporal 

and spatial variations of this variable is therefore of crucial importance for the complete 

understanding of the functioning of these forests. Nevertheless, estimation of tropical 

evapotranspiration is hindered by the lack of continuous and spatially dense ground-based 

measurements in the region. Although understanding of Amazonian forest processes has 

greatly advanced through the establishment of a network of eddy covariance flux towers 

across the Brazilian Amazon, providing continuous measurements of energy water and 

carbon fluxes in the context of the LBA program (Araujo et al., 2002), these 

measurements are temporally limited and represent point-scale information only. Remote 

sensing driven models are presented as an alternative feasible means to overcome this 

issue and provide spatially distributed ET information at regional and global scale (Mu et 

al., 2007, 2011; Fisher et al., 2008; Miralles et al., 2011). In order provide 

evapotranspiration estimates these models generally require three categories of inputs:  

land surface variables, surface radiation and surface meteorology inputs. At regional and 

global scale, land surface variables could be obtained from MODIS sensor while surface 

radiation/meteorology inputs are commonly derived from reanalysis models. As pointed 

out in Badgley et al. (2015) the quality of the derived evapotranspiration and its potential 
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biases is directly impacted by the uncertainty from these coarser reanalysis data. How 

uncertainty derived from the model assumptions (i.e. model uncertainty) in conjunction 

with the uncertainty derived from the difference in these input datasets is able to explain 

the observed variability in the estimations is a major difficulty for the accurate retrieval 

of this variable. 

This doctoral research has been conducted in the Global Change Unit (GCU), a research 

group with an extensive experience in the field of thermal remote sensing including LST 

and ET retrieval from remote sensing data. In this thesis we present for the first time in 

this research group the application and development of LST and ET algorithms over the 

large vegetated area of the Amazon forests. 

 

Objectives of the thesis 

 

The aforementioned issues highlight the key role of the Amazon ecosystem in the global 

climate and global carbon and water cycles, as well as the potential of thermal remote 

sensing techniques for the monitoring of surface processes over this region. Therefore, 

the research activities performed during this doctoral period can be linked to three main 

objectives:   

I. Cloud masking using machine learning based methods.  

II. LST estimation and validation for different medium resolution sensors. 

III. Estimation of evapotranspiration from different remote-sensing models. 

The accomplishment of these objectives was performed by breaking them down into the 

following specific objectives.  

 

I. Cloud masking using machine learning based methods 

- Evaluate the suitability of supervised machine learning methods for providing 

alternative MODIS cloud masking over the study region. 

- Evaluate the use of collocated simultaneous observations between CPR/CALIOP 

and MODIS sensors as a source of training data.  

- Derive of a continuous measure of cloud masking uncertainty (i.e. probability 

estimates) from the models that can be tuned to adapt user conditions. 

- Compare the performance of six supervised methods: GNB, LDA, QDA, RF, 

SVM and MLP. 

- Validate the models results by visual inter-comparison with images and in-situ 

cloud data.  

- Compare the performance of the proposed approach with MODIS operational 

cloud masking methodologies (MYD35 and MAIAC).  
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II.  LST estimation and validation for different medium resolution sensors 

- Generate a database of simulated brightness temperatures that properly represents 

the atmospheric conditions of the study region. 

- Based on the split-window algorithm (Sobrino & Raissouni, 2000) use the 

previous database in order to retrieve new algorithm coefficients for each of the 

sensors considered: MODIS, VIIRS and SLSTR.  

- Validate the derived tuned algorithm using in-situ LST corrected for emissivity 

and atmospheric effects.  

- Validate the current LST products for MODIS, VIIRS and SLSTR sensors and 

compare the results with the tuned split-window.  

- Expand the validation to other spatial points using the R-based validation method 

for MODIS sensor.  

- Compare the LST estimated from the SW and for the operational MODIS LST 

products at image scale by visual comparison of the spatial patterns.  

 

III. Estimation of evapotranspiration from different remote-sensing models  

- Estimate the evapotranspiration using remote-based models. In particular: PT-

JPL, PM-Mu, SEBS and LSASAF algorithm. 

- Validate and compare the model performance using in-situ eddy covariance data 

from the LBA network (scenario I). 

- Consider the impact of coarse reanalysis data in the performance at image 

(regional) scale (scenario II) by assessing model estimates and reanalysis inputs.  

- Perform a sensitivity analysis on the models in order to obtain the variable that 

contributes the most to model variability in scenario II.  

- Compare the evapotranspiration estimates from the models considered at image 

scale by visual comparison of the spatial patterns and zonal means.  

 

Thesis outline 

In order to accomplished the previously stated objectives, this thesis has been structured 

into three main parts: background (Part I), data and methods (Part II) and results (Part 

III).  

- Part I is dedicated to introduce the required background related with the methods 

for cloud detection using satellite imagery and the retrieval of land surface 

temperature and evapotranspiration from space. Chapter one is dedicated to cloud 

detection. After a brief review of the state-of-the-art on the topic focusing on 

MODIS operative cloud masks it provides a description of the supervised learning 

algorithms employed in this thesis together with the methodology to obtain well-

calibrated probabilities. Chapter two reviews the general aspects of the radiative 

transfer equation in the thermal range of the electromagnetic spectrum and gives 

a short compilation of the current land surface temperature and emissivity 
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retrieval algorithms focusing on MODIS, VIIRS and SLSTR sensors. In addition, 

it presents the split-window technique used in this work. Chapter three provides a 

brief description of the water transport in the atmosphere together with an 

overview of the algorithms selected for evapotranspiration retrieval using remote 

sensing data.  

 

- Part II deals with the description of the data and methodology employed. Chapter 

four provides an overview of the satellite sensors and meteorological reanalysis 

and land surface assimilation models from which we have used data. In addition, 

the region of study (Amazonian region) is defined and the in-situ test sites together 

with its instrumentation are presented. In particular, the Manacapuru test site was 

used for cloud mask validation, the Tambopata test site was employed in land 

surface temperature validations tasks and the five eddy-covariance sites belonging 

to the Large-Biosphere-Atmosphere network for evapotranspiration estimates 

validation. Chapter five addresses the data processing and methodology followed 

in this thesis. It is divided into the three sections corresponding to the three general 

objectives stated in the previous section. In section I, firstly the preprocessing of 

the data employed in the proposed cloud scheme is provided. In particular we 

used: 1) collocated MODIS and CPR/CALIOP orbits, 2) MODIS products and 3) 

Manacapuru test site in-situ ground cloud cover fraction derived from the Total 

Sky Imager. Secondly, the training and probability calibration of the six 

supervised classifications considered for cloud detection evaluation is provided. 

Finally, the methodology and statistical metrics for model evaluation are given. 

Section two starts with the correction of in-situ LST derived from the infrared 

radiometers and net radiometers installed in Tambopata test site followed by the 

presentation of the MODIS, VIIRS and SLSTR products employed. Then the 

methodology followed for the generation of simulated database of brightness 

temperatures, which will be used for split-window coefficients retrieval, is 

explained. The section ends with the validation methodology of the current 

satellite products and the tuned split-window algorithm derived. Two methods 

were used: T-based and R-based validation. Spatial patterns were also used for 

comparison. Section three is dedicated to the evapotranspiration retrieval 

methodology. Firstly, it presents the pre-processing of the in-situ eddy covariance 

data of the LBA sites. Secondly, it presents the processing of the reanalysis data 

and satellite products used. Thirdly, the soil data and the gap-filling technique 

aimed at providing SEBS evapotranspiration estimates for cloudy days are 

detailed. Next points deal with specific details on the model configuration 

employed and the evaluation methodology of model evapotranspiration estimates 

and reanalysis meteorological inputs. In particular, two different scenarios were 

considered depending on the meteorological data used: i) using in-situ data from 

LBA networks (scenario I) and ii) reanalysis datasets (scenario II). The section of 

ends with the sensitivity analysis performed and the methodology used for the 

comparison of the spatial patterns.  
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- Part III addresses the results derived from the application of the methodology 

described in Part II. It consists in three chapters, each corresponding to a specific 

objective of the thesis. Chapter six presents the validation results of the 

probabilistic cloud masking approach followed. Apart from validation over the 

generated database derived from collocated satellite measurements, its 

performance is compared at image and in-situ scale with operative MODIS cloud 

masks. Discussion of these results concludes the chapter.  Chapter seven presents 

the results of the split-window LST retrieval algorithm and its comparison with 

the current operative LST products for MODIS, VIIRS and SLSTR sensors. Apart 

from the T-based and R-based validation results, the split-window algorithm was 

also evaluated over the generated simulated database. For the special case of 

MODIS and VIIRS sensors split-window results were also compared to current 

products by visual comparison of the spatial patterns. The chapter concludes with 

the discussion of the results. Chapter eight is devoted to the intercomparison of 

remote-sensing based evapotranspiration algorithms. Results are presented 

separately for each scenario and consists of the validation of the algorithms and 

the comparison of the temporal evolution. Scenario II also include the results from 

the reanalysis quality assessment, the sensitivity analysis and the spatial patterns 

comparison. A brief discussion of the two scenarios is given at the end of the 

chapter.  

The thesis ends summarizing the main conclusion and findings of the research. The 

work is closed by a series of appendices. Appendices A.1 to A.4 contain 

supplementary information from the description of the test sites and the results 

section. Appendix B lists the scientific articles published in relation with this thesis.   
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1. - Cloud detection methods 

 

 

1.1. - Cloud types and classification 

 

According to the World Meteorological Organization (WMO), a cloud is defined as a 

hydrometeor consisting of minute particles of liquid water or ice, or of both, suspended 

in the atmosphere and usually not touching the ground. It may also include larger particles 

of liquid water or ice, as well as non-aqueous liquid or solid particles such as those present 

in fumes, smokes or dust (WMO, 2017). 

 

Figure 1.1: View of the 10 main cloud types: Cirrus (Ci), Cirrocumulus (Cc), Cirrostratus (Cs), 

Altocumulus (Ac), Altostratus (As), Nimbostratus (Ns), Stratus (St), Stratocumulus (Sc), Cumulus (Cu), 

Cumulonimbus (Cb) (https://cloudatlas.wmo.int/useful-concepts.html).  

 

The International Cloud Atlas of the WMO classifies cloud based on: 1) the genus, which 

is the main characteristic form of the cloud. 10 different types of genus exist (Figure 1.1), 

2) the species, which is related to the shape of the clouds or their internal structure, 3) the 

varieties that define the special characteristics of the arrangement and transparency of the 

genus, 4) the supplementary features and accessory clouds that form near them and 5) the 

mother cloud, which provides the origin of the cloud (WMO, 2017). This classification 

is similar to the one used in plant and animal classification, and hence it also uses Latin 

names. It was originally developed by Howard (1804).  

The 10 genus of clouds typically occur at certain ranges of heights in the troposphere 

(Figure 1.1). According to this, clouds are classified also by altitude: low, middle and 

high clouds (Table 1.1).  
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Table 1.1. Approximate heights of each level, and the genus occurring in each (adapted from 

https://cloudatlas.wmo.int/home.html).  

Level Genera Composition Polar region 
Temperate 

region 

Tropical 

region 

High 

Cirrus (Ci) 

Cirrocumulus (Cc) 

Cirrostratus (Cs) 
 

Ice crystals 3 – 8 km 5 – 13 km 6 –18 km 

Middle 

Altocumulus (Ac) 

Altostratus (As) 

Nimbostratus (Ns) 
 

Water 2 – 4km 2 – 7 km 2 – 8 km 

Low 

Stratus (St) 

Stratocumulus (Sc) 

Cumulus (Cu) 

Cumulonimbus (Cb) 
 

Water 2 km 2 km 2 km 

  

 

1.2. - Review of cloud detection methods using passive remote sensing 

 

The presence of clouds strongly affects the retrieval accuracy of atmospheric and surface 

parameters from passive satellite sensors. In the visible (VIS) and near infrared (NIR) 

parts of the electromagnetic spectrum clouds contribute to the sensor signal by attenuating 

the surface radiation and by reflecting radiation while in thermal infrared (TIR) region 

the cloud-emitted radiation superimposes the earth-emitted radiation. Depending on the 

characteristics of the cloud, its radiation can completely overwhelm the target radiation, 

thus impeding the solar radiation reaching the surface in the VIS/NIR or blocking the 

surface contribution in the TIR. Thus, either surface or cloud parameters retrieval need 

an accurate cloud identification in order to correctly separate the surface from the clouds 

and ensure accuracy in the results. To do so, a set of features that maximize the difference 

between clouds and the underlying surface is used. These features are derived from the 

different spectral, spatial and temporal response between clouds and others surfaces.  

Cloud masking approaches differ in the way the algorithm considers these features. A 

major division can be made between the physically based and statistically based. In the 

first group, the common approach is a rule-based classification based on the physical 

properties of the clouds. It consists in applying a series of thresholds test on different 

physical features (e.g. albedo, brightness temperature). These thresholds may be static or 

adaptative (Di Vittorio & Emery, 2002) empirically derived or pre-calculated using 

radiative transfer models (RTM). Test results can be combined resulting into a binary flag 

or into a few cloud confidence categories (Ackerman et al., 1998). Most of the operational 

cloud masking applications of current earth orbiting sensors, such as MODIS (Ackerman 

et al., 1998), VIIRS (Godin, 2014) or Copernicus Sentinel-sensors follow this approach. 

In this group, it is worth noting the well-known cloud detection for LANDSAT, Fmask 
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(Zhu & Woodcock, 2012), which has also been applied to Sentinel-2 images (Frantz et 

al., 2018) and the automated cloud-cover assessment algorithm (ACCA) (Irish et al., 

2000, 2006) which is also applied for LANDSAT. Other threshold based tests which are 

not implemented in an operational chain but they are worth mentioning are: Vemury et 

al. (2001), Hutchison et al. (2005), Yang et al. (2007), Luo et al. (2008), Scaramuzza et 

al. (2011), Sun et al. (2016) and Zhai et al. (2018). Apart from these spectral thresholds, 

spatial information has also been incorporated in the cloud detection method in order to 

improve cloud detection and classification accuracy (Christodolou et al., 2003; Li et al., 

2017). Besides, several algorithms that take advantage of multi-temporal information 

have been proposed (Lyapustin et al., 2008; Hagolle et al., 2010; Liu et al., 2013; Zhu & 

Woodcock, 2014).  

Statistically based cloud masking approaches differ from the physically based methods in 

the sense that they infer from the totality of the features considered (i.e. not individual 

features) the statistical properties of the underlying clear and cloudy classes considered. 

In the past decades, several researches has been made on this topic. For simplification, 

we also include in this group the machine learning techniques. In the literature we find 

the application of Bayesian methods to Advanced Along-Track Scanning Radiometer 

(AATSR) in Bulgin et al. (2018), Hollstein et al. (2014), and for the National Oceanic 

and Atmosphreic Administration (NOAA)’s Advanced Very High Resolution 

Radiometer (AVHRR) in Heidinger et al. (2012) and  Karlsson et al. (2015). Discriminant 

analysis methods were applied to the Spinning Enhanced Visible and InfraRed Imager 

(SEVIRI) in Amato et al. (2008). Maximum Likehood Classification was applied in Li et 

al. (2003) for MODIS sensor. K-NN (nearest neighbour) was used in Ricciardelli et al. 

(2008) for METEOSAT Second Generation. Some examples of the SVM are Mazzoni et 

al. (2007), Lee et al. (2004) and Ishida et al. (2018). This latter was based on MODIS 

data. Neural networks have been widely applied. Some examples are: Tian (2000), 

Saitwal et al. (2003), Lafont et al. (2006), Jang et al. (2006), Liu et al. (2009) and more 

recently Hughes & Hayes (2014) for LANDSAT and Chen et al. (2018) for MODIS 

sensor. Other techniques include Fuzzy Logic introduced in Ghosh et al. (2006), and 

random forests, decision trees or stochastic gradient descent in Hollstein et al. (2016) for 

Sentinel-2 MultiSpectral Instrument (MSI). These previous techniques, require a 

reference database containing features and associated labels (clouds or clear), in order to 

learn the models. They are referred as supervised techniques. On the contrary 

unsupervised techniques do not need a labelled dataset, the algorithm acts on the 

information without previous guidance. The work of Gomez-Chova et al. (2007) stands 

out in this group apart from other techniques such as Markov Random Fields (Le-Hégarat-

Mascle & André, 2009). In addition to all these methods, as a subset of machine learning 

methods, deep learning-based cloud detection methods benefiting from the application of 

deep convolutional features have achieved high accuracies in image classification tasks 

(Li et al., 2019; Chai et al., 2019).  

For supervised techniques, in order to overcome the issue of needing training data 

synthetic datasets derived from RTM simulations (Chen et al. 2018) or collocated cloud 

data from other sensors in a common approach used (Heidinger et al., 2012; Musial et al., 
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2014; Hollstein et al., 2014). For the particular case of sensors on-board the A-Train 

constellation, the CloudSat satellite, carrying CPR radar-sensor, and CALIPSO satellite 

carrying a CALIOP lidar-sensor, have been used successfully for this task for AVHRR 

sensor (Heidinger et al., 2012; Karlsson et al., 2015).  

 

1.3. - MODIS cloud mask algorithms  

 

MODIS cloud detection is currently accomplished by the MOD35 operative cloud mask. 

Alternative cloud masking is applied in the MAIAC suite products available as a part of 

the version 6 of MODIS products. In the following a brief description of these algorithms 

as extracted from the respective algorithm theoretical basis document (Ackerman et al., 

2010; Lyapustin & Wang, 2007)) is provided.  

 

1.3.1. - MOD35 

 

MOD35 cloud detection algorithm uses a combination of variety of spectral and spatial 

variability thresholds in order to provide the level of confidence of a pixel being clear 

(Ackerman et al., 1998). Briefly, the process is as follows: a pixel is assigned to a 

particular domain according to the surface type (water, land, snow, coastline an desert) 

and illumination characteristics (daytime or nighttime). Next, a series of threshold tests 

are applied, returning each test with a confidence level (from 0 (low) to 1 (high)) that the 

pixel is clear. The election of the particular tests employed is determined by the former 

assignation of the pixel to a specific domain (Table 1.2). These test results are arranged 

into five different groups according to their cloud distinction capability. A minimum 

confidence level of all the tests grouped together is considered representative of each 

group (i.e 𝐺𝑗=1,..,5 = min[𝐹𝑖], where  𝐹𝑖 are the test results within a group, and 𝐺𝑗=1,..,5 are 

the group confidences). Eventually, the product of all these minimum values give the 

definitive confidence of the pixel being clear. This level is assessed using four different 

categories: confident clear (>99%), probably clear (>95%), uncertain/probably cloudy 

(>66%) and cloudy (<66%). 

Inputs to the cloud masking algorithm include level 1B MODIS radiance data (channels, 

B1, B2, B4, B5, B6, B7, B17, B18, B19, B20, B22, B26, B27, B28, B29, B31, B32, B33 

and B35) together with ancillary data: viewing geometry, land water map and topography 

from MOD03 product. Apart from daily snow/ice map provided by National Snow and 

Ice Data Center (NSIDC) and daily sea ice concentration product from NOAA.  
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Table 1.2. MODIS cloud test executed for a given processing path: daytime ocean (DO), nighttime ocean 

(NO), daytime land (DL), nighttime land (NL), polar daytime (PD), polar nighttime (NP), coastal daytime 

(CD), coastal nighttime (CN), desert daytime (DD) and desert nighttime (DN) (Ackerman et al., 2010). 

Test DO NO DL NL PD PN CD  CN DD DN 

𝑩𝑻𝟏𝟏 X X         

𝑩𝑻𝟏𝟑.𝟗 X X X X X X X X  X 

𝑩𝑻𝟔.𝟕 X X X X X X X X X  

𝑹𝟏.𝟑𝟖 X  X  X  X  X X 

𝑩𝑻𝟑.𝟗 − 𝑩𝑻𝟏𝟐    X  X    X 

(𝑩𝑻𝟖.𝟔 − 𝑩𝑻𝟏𝟏)&(𝑩𝑻𝟏𝟏 − 𝑩𝑻𝟏𝟐) X X X X X X X X X X 

𝑩𝑻𝟏𝟏 − 𝑩𝑻𝟑.𝟗 X X X X X X X X X  

𝑹𝟎.𝟔𝟔|𝑹𝟎.𝟖𝟕 X  X    X X   

𝑹𝟎.𝟖𝟕/𝑹𝟎.𝟔𝟔 X  X       X 

𝑩𝑻𝟕.𝟑 − 𝑩𝑻𝟏𝟏    X  X     

Surface Temperature test X X  X       

𝑩𝑻𝟖.𝟔 − 𝑩𝑻𝟕.𝟑  X         

𝑩𝑻𝟏𝟏 variability test  X         

 

 

1.3.2. - MAIAC 

 

MAIAC is a new land and inland water cloud mask algorithm developed as a part of the 

multi-angle implementation of the atmospheric correction algorithm for the MODIS 

sensor (Lyapustin et al., 2008). In contrast to the static MODIS cloud mask, this algorithm 

benefits from the use of temporal information, which is employed in the generation of a 

pre-built reference images used as a target comparison. Covariance analysis is used to 

build the reference images. This algorithm also possesses a dynamic land-water-snow 

mask which guides the surface and aerosol retrieval in rapid changing conditions, such as 

fires and flood (Lyapustin & Wang, 2007). The cloud mask is actually updated during 

these retrievals. In Figure 1.2, the general flowchart of the algorithm is shown.  

 

The process is as follows. In a first place, a series of tests (snow, cirrus and clear-sky) are 

applied to the received tiles. If after these tests, the block is declared cloud-free then the 

reference cloud image (refcm) is updated and the algorithm proceeds to complete the land 

type classification (confirm_LWSmask). If the block has clouds, a further analysis of 

covariance is performed. In case, there is no available refcm the algorithm waits until new 

data arrives. At pixel level, clouds are identified by direct comparison with the refcm data, 

based on the fact that clouds are brighter and colder than the background. The reference 

surface pixel comes from the refcm and the estimates of brightness temperature comes 

from the clear land pixels detected by spectral tests for a given block or from the cloud-
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free neighbor blocks identified by high covariance (Lyapustin et al., 2008). In case the 

covariance of the block is high, the algorithm first tries to initialize the refcm. 

CM_highCov, and CM_lowCov modules are responsible of providing the pixel level 

classification. Module initRefcm produces cloud mask only if initialization is successful. 
 

The MAIAC cloud mask algorithm uses as an input  five 500 m resolution MODIS bands 

B1, B2, B4, B5, B7, a 1 km band B26, and 1 km thermal bands B31, B32. As an output, 

it produces an integral cloud mask with values of CM_CLEAR for clear conditions and 

CM_PCLOUD (possibly cloud) or CM_CLOUD for cloudy conditions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2.  The general flowchart of MAIAC cloud mask algorithm. Here, rectangles represent separate 

functions, diamond shapes stand for the separate subroutines (algorithms), and round-corner rectangles 

indicate decision (branching) points. The letters in parentheses show spatial and temporal domains of 

operations at pixel- (P) and/or block- (B) level, and using the data of the last Tile (T) only or using the full 

time series of the Queue (Q) (Lyapustin & Wang, 2007). MODIS 1LB data granules are split into 600 km 

Tiles (T), which are further split into blocks (B) of 25 km x 25 km for the covariance analysis.  
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1.4. - Reference machine learning and statistical methods for cloud detection 

 

Classification in the context of remote sensing can be understood as the process in which 

every pixel in the original image is assigned a label that corresponds to one of the pre-

definite classes. A categorical map is obtained as a result. From a statistical point of view, 

a classifier can be defined as a function  𝑓:Φ ⟶ Ω, where Φ refers to the observational 

space (all the possible values that an observation can take) and Ω to the classes space (the 

classes in which to classify the observations). Each observation is defined as 𝑥 =

[𝑥1, 𝑥2, … . , 𝑥𝐷]  where 𝐷  is the total number of features. 𝑓  is also called decision-

function. In this learning of the mapping function a difference is made between the case 

we have labelled data (i.e. class labels and associated observations) or not. In the first 

case, it is called supervised learning, while in the second case it is called unsupervised 

learning. In this study, we have focused on supervised learning in order to accomplish the 

goal of detecting cloud using remote sensing data. In the following a brief description of 

the reference machine learning and statistical methods used is given. This review has been 

based on the bibliographic revision of the works of Hastie et al. (2005), Bishop (2006) 

and Mather & Tso (2016). We refer the reader to these works for a deeper description of 

the methods. 

 

1.4.1.- Naïve Bayes 

 

Bayes theorem is expressed in Equation 1.1. It states that the posterior probability 

𝑃(𝑦𝑘|𝑥)  is the product of the prior probability 𝑃(𝑦𝑘) by the conditional probability 

𝑃(𝑥|𝑦𝑘) divided by the marginal probability 𝑃(𝑥). 𝑃(𝑦𝑘|𝑥) is the probability that an 

object belongs to class 𝑦𝑘  given the observation is 𝑥. 𝑃(𝑦𝑘) represents the knowledge 

that we have about the class before the observations are available. 𝑃(𝑥|𝑦𝑘) represents the 

likelihood of an observation 𝑥  given their class 𝑦𝑘 . 𝑃(𝑥)  is calculated as 

∑ 𝑃(𝑥|𝑦𝑘)𝑃(𝑦𝑘)
𝑘
𝑖 .  

𝑃(𝑦𝑘|𝑥) =
𝑃(𝑦𝑘)𝑃(𝑥|𝑦𝑘)

𝑃(𝑥)
 

The pixel 𝑖 will be allocated into the class 𝑘 that has the largest 𝑃(𝑦𝑘|𝑥) value (Equation 

1.2). This classification criterion is called as Maximum a Posteriori (MAP).  

𝑦𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑃(𝑦𝑗|𝑥))∀𝑦𝑗 

Since in general 𝑃(𝑥) is set to be uniform, Equation 1.2 can be rewritten as in Equation 

1.3.  

       𝑦𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑃(𝑦𝑗)𝑃(𝑥|𝑦𝑗))∀𝑦𝑗  

 (1.1) 

 (1.2) 

 (1.3) 
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The particularity of the naïve bayes classifier is that it assumes that features are 

conditionally independent (i.e. naïve assumption). In this case 𝑃(𝑥|𝑦𝑘) can be calculated 

as 𝑃(𝑥|𝑦𝑘) = ∏ 𝑃(𝑥𝑖|𝑦𝑘)
𝐷
𝑖 , where 𝑃(𝑥𝑖|𝑦) is assumed to be Gaussian (Equation 1.4), 

where 𝜇𝑦 and 𝜎𝑦  are the mean and covariance class values. In addition, 𝑃(𝑦𝑘) can be 

easily derived as the relative frequency of class 𝑦𝑘 in the training dataset.  

𝑃(𝑥𝑖|𝑦) =
1

√2𝜋𝜎𝑦2
exp(−

(𝑥𝑖 − 𝜇𝑦)
2

2𝜎𝑦2
) 

 

1.4.2. - Linear and Quadratic Discriminant Analysis 

 

These algorithms also use Bayes Theorem in order to provide class predictions estimates. 

In this case however, 𝑃(𝑥|𝑦𝑘) is modelled as a multivariate Gaussian distribution with 

density given by Equation 1.5, where Σ𝑦 are the covariance matrixes and 𝜇𝑦 are the class 

means for the classes considered.  

              𝑃(𝑥|𝑦𝑘) =
1

(2𝜋)
𝐷
2 |Σ𝑦𝑘|

1
2

exp(−
1

2
(𝑥 − 𝜇𝑦𝑘)

𝑇
Σ𝑦𝑘
−1(𝑥 −𝜇𝑦𝑘))                    

Introducing Equations 1.5 into 1.3 and taking logarithms in order to eliminate the 

exponent, we have the following expression (Equation 1.6).  

𝑦𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥 {−
1

2
𝑙𝑛|Σ𝑦𝑘| + ln 𝑃(𝑦𝑘) −

1

2
(𝑧 − 𝜇𝑘)

𝑇Σ𝑦𝑘
−1(𝑧 − 𝜇𝑘)} 

= 𝑎𝑟𝑔𝑚𝑎𝑥{−𝑙𝑛|Σ𝑦𝑘| + 2ln 𝑃(𝑦𝑘) − 𝜇𝑘
𝑇Σ𝑦𝑘

−1𝜇𝑘 + 2𝑧𝑇Σ𝑦𝑘
−1𝜇𝑘 − 𝑧𝑇Σ𝑦𝑘

−1𝑧} 

A classifier according to Equation 1.6 is called a quadratic classifier and the decision 

function is a quadratic decision function (quadratic dependence in 𝑧). The boundaries 

between the compartments of such a decision function are pieces of quadratic 

hypersurfaces in the N-dimensional space. This is the case of the quadratic discriminant 

analysis. Taking the special case when Σ𝑦𝑘 = Σ  and after making the necessary 

calculation, leads to the situation of Equation 1.7.  

𝑦𝑘 = 𝑎𝑟𝑔𝑚𝑎𝑥{2ln 𝑃(𝑦𝑘) − 𝜇𝑘
𝑇Σ−1𝜇𝑘 + 𝑧𝑇2Σ−1𝜇𝑘} 

As we observe the quadratic dependence has disappeared and the decision function takes 

a form that is linear. This corresponding classifier is called a linear classifier and 

corresponds to the Linear Discriminant Analysis.  

 

 

 

 (1.5) 

 (1.6) 

 (1.4) 

 (1.7) 
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1.4.3.- Random Forests 

 

Random Forests is an ensemble learning method used for combining predictions of 

multiple decisions trees. In order the trees to be de-correlated each tree is built from 

different training datasets derived by bagging (i.e. sample with replacement from the 

original dataset). In addition, random subsets of features are considered at each candidate 

splits. Trees are fully grown (i.e. without pruning). Briefly explaining the algorithm is as 

follows. For each of the trees considered draw a bootstrap sample from the training data. 

Then grow a random forest tree, by recursively repeating the following steps for each 

terminal node of the tree, until the tree is fully-grown (minimum node size is one): 1) 

select 𝑝 ≤ 𝐷 variables at random. The default value for 𝑝 is √𝐷 although it depends on 

the problem and thus should be treated as a tuning parameter. 2) Pick the best 

variable/split point among the 𝑝 features and 3) split the node into two daughter nodes. 

In step 2, at each node 𝑚 considering the splitting variable 𝑗 and the split-point 𝑠 the 

candidate split 𝜃 = (𝑗, 𝑡𝑚)  partitions the data (𝑄)  into two subsets 𝑄𝑙𝑒𝑓𝑡(𝜃) =

(𝑥, 𝑦)|𝑥𝑗 ≤ 𝑡𝑚 and 𝑄𝑟𝑖𝑔ℎ𝑡(𝜃) = (𝑥, 𝑦)|𝑥𝑗 > 𝑡𝑚. The best splitting point is selected as the 

one that minimises the impurity the node impurity given by Equation 1.8.  

𝐺(𝑄, 𝜃) =
𝑛𝑙𝑒𝑓𝑡

𝑁𝑚
𝐻 (𝑄𝑙𝑒𝑓𝑡(𝜃)) +

𝑛𝑟𝑖𝑔ℎ𝑡

𝑁𝑚
𝐻(𝑄𝑟𝑖𝑔ℎ𝑡(𝜃)) 

 where 𝑁𝑚 is the number of observations of the region given by the node 𝑚 and 𝑛𝑙𝑒𝑓𝑡 and 

𝑛𝑟𝑖𝑔ℎ𝑡 are the numbers of observations for the left and right regions respectively. As a 

measure of impurity Gini index is commonly used. It is given by Equation 1.9, where 

𝑝𝑚𝑘 is the proportion of class 𝑘 observations in node 𝑚.  

𝐻 =∑𝑝𝑚𝑘(1 − 𝑝𝑚𝑘)

𝐾

𝑘=1

 

Random forest is grown up to a defined number of trees (𝑛trees). The final classification 

decision is taken as the majority vote between all the trees class predictions. The most 

important parameters to tune in random forests are the number of trees and the maximum 

depth of the tree (mdepth). 𝑛trees corresponds in a monotonic decrease of the prediction 

error, while mdepth is related to the generalization ability of the forests.  

 

1.4.4. - Support Vector Machines 

 

Given N pairs of training data with 𝑥𝑖 ∈ ℝ𝐷  and 𝑦𝑖 ∈ {−1,1}, and assuming the two 

classes are separable (i.e. no overlapping between classes Figure 1.3 (a)) the task of a 

support vector classifier is to find the hyperplane defined by 𝑓(𝑥) = 𝑥𝑇𝛽 + 𝛽0 = 0 

(where𝛽 is the normal to the optimal decision hyperplane and 𝛽0 represents the closest 

distance to the origin of the coordinate system) that maximizes the margin (M in Figure 

 (1.8) 

 (1.9) 
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1.3) between the training points for class +1 and -1. Defining ‖𝛽‖ = 1/𝑀 , the 

optimization problem is given by Equation 1.10.  

 

min
1

2
‖𝛽‖∀𝛽, 𝛽0 

subject to 𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0) ≥ 1, 𝑖 = 1,……𝑁 

 

In practice, however the constraints in Equation 1.10 cannot be satisfied as the classes 

can overlapped in the feature space (Figure 1.3 (b)). In order to relax these constraints we 

defined the slack variables, 𝜉 = (𝜉1, 𝜉2, 𝜉3, … . . , 𝜉𝑁)  which are proportional to some 

measure of cost. With this, the optimization problem is given by Equation 1.11.  

 

min
1

2
‖𝛽‖ + 𝐶∑𝜉𝑖

𝑁

𝑖=1

∀𝛽, 𝛽0 

                             subject to 𝜉𝑖 ≥ 0, 𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0) ≥ 1 − 𝜉𝑖 , 𝑖 = 1,……𝑁 

 

The first part in Equation 1.11 aims to maximize the margin while the second part seeks 

to penalize the training sample located on the wrong side of the decision boundary. This 

is done by the parameter 𝐶.  

 

 

 
 

Figure 1.3. Support vector classifiers. Separable case is shown in panel a). The decision boundary is the 

solid line, while broken lines bound the shaded maximal margin of width 2𝑀 = 2/‖𝛽‖. Panel b) shows the 

non-separable (overlap) case. The points labeled 𝜉𝑗
∗ are on the wrong side of their margin by an amount 

𝜉𝑗
∗ = 𝑀𝜉𝑗 ; points on the correct side have 𝜉𝑗

∗ = 0. The margin is maximized subject to a total budget ∑𝜉𝑖 ≤

𝑐𝑡. Hence ∑𝜉𝑗
∗ is the total distance of points on the wrong side of their margin (Hastie et al., 2005).  

 

 (1.10) 

 (1.11) 
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In order to solve the problem in Equation 1.11 we apply Lagrange multipliers. The 

Lagrangian (primal) function is given by Equation 1.12, where 𝛼𝑖 ≥ 0 and 𝜇𝑖 ≥ 0 are the 

Langrangian multipliers.  

 

𝐿𝑃 =
1

2
‖𝛽‖2 + 𝐶∑𝜉𝑖

𝑁

𝑖=1

−∑𝛼𝑖[𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0) − (1 − 𝜉𝑖)] −

𝑁

𝑖=1

∑𝜇𝑖𝜉𝑖

𝑁

𝑖=1

 

 

In addition, the corresponding Karush-Kuhn-Tucker conditions are: 𝛼𝑖 ≥ 0, 𝜇𝑖 ≥ 0, 

𝜉𝑖, ≥ 0 , 𝜇𝑖𝜉𝑖 = 0 , 𝛼𝑖[𝑦𝑖(𝑥𝑖
𝑇𝛽 + 𝛽0) − (1 − 𝜉𝑖)] = 0  and 𝑦𝑖(𝑥𝑖

𝑇𝛽 + 𝛽0) − (1 − 𝜉𝑖) ≥

0, ∀𝑖. In order to solve the Equation 1.12 we want to minimize it with respect to 𝛽, 𝛽0 

and 𝜉𝑖.Setting the derivatives of 𝐿𝑃 equal to 0 we obtain Equations 1.13 to 1.15 

 

𝜕𝐿

𝜕𝛽
= 0 ⇒ 𝛽 = ∑𝛼𝑖𝑦𝑖𝑥𝑖

𝑁

𝑖=1

 

𝜕𝐿

𝜕𝛽0
= 0 ⇒ 0 = ∑𝛼𝑖𝑦𝑖

𝑁

𝑖=1

 

 

𝜕𝐿

𝜕𝜉𝑖
= 0 ⇒𝛼𝑖 = 𝐶 − 𝜇𝑖 

 

By substituting Equations 1.13-1.15 into Equation 1.12 we obtain the Lagrangian dual 

objective function. The problem in Equation 1.12 is thus transformed in maximizing 

Equation 1.16 with respect to the Lagrangian multipliers 𝛼𝑖.  

 

𝐿𝐷 =∑𝛼𝑖 −
1

2
∑∑𝛼𝑖𝛼𝑖

′𝑦𝑖𝑦𝑖
′𝑥𝑖

𝑇𝑥𝑖′

𝑁

𝑖′=1

𝑁

𝑖=1

𝑁

𝑖=1

 

     subject to 0 ≤ 𝛼𝑖 ≤ 𝐶,∑ 𝛼𝑖𝑦𝑖 = 0𝑁
𝑖=1  

 

 

From Equation 1.16 we see that the solution for 𝛽  has the form 

of 𝛽 =∑ 𝛼𝑖
𝑁
𝑖=1 𝑦𝑖𝑥𝑖. In this expression only nonzero �̂�𝑖 accounts for the solution. These 

observations are called the support vectors. Among these support vector points, some will 

lie in the edge of the margin ( 𝜉𝑖 = 0) and hence will be characterized by 0 < 𝛼𝑖 < 𝐶. 

These can be used to solve for 𝛽0. Typically, an average of all the solutions is used for 

numerical stability. The remainder points (𝜉𝑖 > 0) have 𝛼𝑖 = 𝐶. Once the solutions of 𝛽 

and 𝛽0 are known the decision function can be written as in Equation 1.17. The tuning 

parameters of this procedure is the cost parameter C.  

 

𝑓(𝑥) = sgn(∑𝑦𝑖𝛼𝑖𝑥𝑖
𝑇𝑥𝑗 + 𝛽0)

𝑁

𝑖=1

 

 (1.12) 

 (1.13) 

 (1.14) 

 (1.15) 

 (1.16) 

 (1.17) 
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There are some cases that a linear hyperplane is unable to separate the classes 

appropriately. In this situation, the training samples are projected into a higher 

dimensional space, ℋ, via a nonlinear vector mapping function Φ:ℝD ⟶ℋ (Figure 1.4). 

In this higher dimensional space, the separability between classes is increased. In order 

to account for this change, the feature vector 𝑥 and training samples 𝑥𝑖 must be changed 

by their mapped values (i.e. Φ(𝑥) and Φ(𝑥𝑖), respectively) in the previous equations. It 

is worth noting that in Equations 1.16 and 1.17 these mapping occurs in the form of inner 

products (i.e 〈Φ(xi),Φ(xj)〉). Thus, we need not to specify the transformation Φ at all, 

but only the knowledge of the kernel function defined as in Equation 1.18 that computes 

inner products in the transformed space. This Kernel needs to satisfy Mercer’s conditions 

(Mather, 2009).  

 

𝐾(𝑥𝑖, 𝑥𝑗) =  〈Φ(xi),Φ(xj)〉 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Sketch of the mapping of the Support vector machine into higher dimension. In the linearly 

non-separable case, Support Vector Machine maps the raw data into a higher dimension in order to increase 

the separability between classes (Mather, 2009).  

 

 

1.4.5.- Multi-layer Perceptron 

 

A multilayer perceptron is a class of feedforward artificial neural network. It 

consists of at least three layers: an input layer, a hidden layer and an output layer. In a 

first place, the input variables 𝑥1, …… , 𝑥𝐷 (i.e. the same as features) are combined in a set 

of M linear combinations, where M corresponds to the number of hidden units (Figure 

1.5). Equation 1.19 gives these combinations.  

𝑎𝑗 =∑𝑤𝑗𝑖
1𝑥𝑖 + 𝑤𝑗0

1

𝐷

𝑖=1

 

 (1.18) 

 (1.19) 
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where 𝑗 = 1,…… ,𝑀, and the superscript 1 indicates that the corresponding parameters 

are in the first layer of the networks. The parameters 𝑤𝑗𝑖 and 𝑤𝑗0 refer to the weights and 

biases respectively. 𝑎𝑗 is known as activation. Each of them is then transformed using a 

differentiable, non-linear activation function ℎ() in order to give the so-called hidden 

units (i.e. 𝑧𝑗 = ℎ(𝑎𝑗)). A general election is the logistic sigmoid function (i.e. 𝜎(𝑎) =

1/(1 + exp(−𝑎)). 

 

Figure 1.5. Network diagram for the two-layer neural network. The input, hidden and output variables are 

represented by nodes, and the weight parameters are represented by links between the nodes, in which the 

bias parameters are denoted by links coming from additional input and hidden variables 𝑥0 and 𝑧0. Arrows 

denote the direction of information flow through the network during forward propagation (Bishop, 2006).  

 

Values  𝑧𝑗 are again linearly combined (Equation 1.20) in order to give the activation 

outputs, where the superscript 2 indicates that it is the second layer and 𝑘 = 1,… . 𝐾 is the 

total number of output nodes.  

𝑎𝑘 =∑𝑤𝑘𝑗
2 𝑧𝑗 + 𝑤𝑘0

2

𝑀

𝑖=1

 

Finally, the output activations 𝑎𝑘 are transformed using an appropriate activation function 

depending on the nature of the data (i.e. binary classification uses a logistic sigmoid,  

multiclass classification a softmax activation and standard regression the identity 

function). The different stages can be combined and give Equation 1.21.  

𝑦𝑘(𝑥, 𝑤) = 𝜎(∑𝑤𝑘𝑗
2 ℎ(∑𝑤𝑗𝑖

1𝑥𝑖 + 𝑤𝑗0
1 ) + 𝑤𝑘0

2 )

𝐷

𝑖=1



𝑀

𝑗=1

 

In order the MLP to fit the training data properly the weights parameters need to be 

adjusted (i.e. to train the MLP). This is done by minimizing a measure error of the fit. For 

classification problems, this is the standard cross-entropy loss function (Equation 1.22).  

 

 

 (1.20) 

 (1.21) 
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𝐿(𝑤) = −∑𝑦𝑖ln𝑦�̂� − (1 − 𝑦𝑖) ln(1 −𝑦�̂�)

𝑁

𝑖

+
1

2
𝛼‖𝑤‖2 

where 𝑦�̂� refer to the target vectors and 𝑦𝑖 to the class predictions estimates. The term 

(1/2)𝛼‖𝑤‖2 is a L-2 regularization term that penalizes complex models.α controls the 

magnitude of the penalty. 

The minimization of Equation 1.22 is obtained by the so-called back-propagation method. 

This consists in two main steps. In the first one, the current weights are fixed (initial 

random weights for first application) and then the MLP is feed forward (i.e. predictions 

estimates are obtained from Equation 1.21). In the second step, the loss error is back-

propagated into the network and used in order to compute new values for the weights. 

This can be achieved by gradient descent (Equation 1.23).  

      𝑤(𝜏+1) = 𝑤𝜏 − 𝜂∇Loss𝑤
𝜏  

where (∇Loss𝑤
𝜏 ) is the gradient of the loss with respect to the weights, 𝜂 is the learning 

rate with a value larger than 0 and 𝜏 refers to the iteration step. The algorithm stops when 

it reaches a maximum number of iterations or when the improvement in the loss is below 

a certain small threshold. Training of the MLP needs selecting a structure (number of 

hidden layers (𝑛hlayers) and nodes (𝑛hnodes) per layer), an activation function, a learning 

rate and alpha regularization parameter in order to prevent overfitting. 

 

1.5. - Probability calibration 

 

Most supervised learning methods produce classifiers that output score values which can 

be used to rank the examples in the test set from the most probable to the least probable 

member of a given class (Zadrozny & Elkan, 2002). Nevertheless, for several applications 

this ranking is not enough as what is needed is accurate and correctly calibrated estimates 

of the true probability that each class example is a member of the class of interest. In 

order to transform this model ranking into accurate probability estimates a calibration 

method needs to be applied. A classifier is said to be perfectly calibrated when for a 

sample or bin of examples with predicted probability p for the positive class, the expected 

proportion of positives is equal to p. Intuitively, if we consider all the examples to which 

a classifier assigns a score 0.8, then 80% of these examples should be members of the 

class in question. In the following, we focus on two common used methods: the Plat 

Scaling (Platt, 1999) and Isotonic regression (Zadrozny & Elkan, 2001-2002). These 

methods are applicable only to binary classifiers. For multiclass classification, the 

solution consists into decomposing the problem into many binary classifiers, calibrate 

them and then combine the results.  

 

 (1.22) 

 (1.23) 

58



1. - Cloud detection methods 

 

 

Following, Zadrozny & Elkan (2002) notation, the two classes considered are denoted as 

positive and negative class respectively, i.e. 𝑦𝑘 ∈ {−1,+1}. The aim of the calibration is, 

given a scoring or membership value 𝑓  provided by a classifier, to calculate the 

probability of the positive and negatives classes (i.e. 𝑃𝑐𝑎𝑙(+1|𝑓)  and 𝑃𝑐𝑎𝑙(−1|𝑓) ). 

Conditional probabilities for the negative class are usually estimated as the complement 

of the positive class. In the case of Platt’s Scaling and Isotonic regression, this is 

accomplished via a mapping function. In Platt’s method, the idea is to apply a sigmoid 

function to the values of 𝑃𝑐𝑎𝑙(+1|𝑓) as given by Equation 1.24.  

𝑃𝑐𝑎𝑙(+1|𝑓) =
1

1 + exp(𝐴 · 𝑚 + 𝐵)
 

where parameters A and B are determined by minimising the negative log-likehood of 

the training data (Equation 1.25).  

𝑎𝑟𝑔𝑚𝑖𝑛 {−∑𝑐𝑖ln(𝑃𝑐𝑎𝑙(+1|𝑓)) − (1 − 𝑐𝑖) ln(1 − 𝑃𝑐𝑎𝑙(+1|𝑓))

𝑁

𝑖

} 

In order to avoid overfitting of the training data, this equation uses noisy class labels 

(𝑐𝑖)such that for 𝑦+ it takes the value of 𝑐𝑖 = (𝑁+ + 1)/(𝑁+ + 2) and for 𝑦− the value 

of 𝑐𝑖 = 1/(𝑁− + 2). 𝑁+ and 𝑁− refer to the number of positive and negative samples in 

the training dataset.  

In the case of the Isotonic regression method, the function is given by Equation 1.26, 

where 𝑠 is an isotonic (monotonically increasing) function and 𝜖𝑖 is an individual error 

term.  

𝑃𝑐𝑎𝑙(+1|𝑓) = 𝑠(𝑓𝑖) + 𝜖𝑖 

Given the training dataset (𝑓𝑖, 𝑦𝑖), the Isotonic regression problem is finding an isotonic 

function �̂� such that (Equation 1.27):  

�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛∑(𝑦𝑖 − 𝑠(𝑓𝑖))
2
 

In order to constrain the function to [0,1], true class binary labels are modified (i.e. 𝑦𝑖 ∈

{0,1}). One algorithm that finds a stepwise constant solution for this problem is the pair-

adjacent violators (PAV) (Ayer et al., 1955). Briefly explaining the algorithm is as 

follows. Suppose we have a set of examples {𝑥𝑖}𝑖
𝑁 for which we know the true labels. We 

first sort them according to their scores (descendant order). Then we assign true positive 

examples (i.e. one of the two classes considered) a calibrated probability (𝑃𝑐𝑎𝑙(𝑥𝑖)) of 1 

and true negative examples (i.e. the other class) a calibrated probability of 0. We thus 

have a calibrated probability (𝑃𝑐𝑎𝑙)succession of 1s and 0s following a score descendant 

order. The idea of PAV algorithm is that this probability sequence is isotonic (i.e. 𝑃𝑐𝑎𝑙(𝑖 +

1) ≥ 𝑃𝑐𝑎𝑙(𝑖)). If this is not the case, for each pair of consecutive probabilities such that 

𝑃𝑐𝑎𝑙(𝑖) ≥ 𝑃𝑐𝑎𝑙(𝑖 + 1)the PAV algorithm replaces both of them by their probability 

average (𝑃𝑐𝑎𝑙(𝑖) +𝑃𝑐𝑎𝑙(𝑖 + 1))/2. This process is repeated (using the new values) until 

 (1.24) 

 (1.25) 

 (1.26) 

 (1.27) 
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an isotonic set is reached. At the end, PAV provides a set of intervals that accomplish the 

isotonic assumption and a probability estimate for each of them. To obtain an estimate 

for a test sample 𝑥𝑖, we find the interval 𝑖 for which the score value of 𝑥𝑖 is between the 

lowest and the highest scores in the interval and assign 𝑃𝑐𝑎𝑙(𝑖) as the probability estimate 

for 𝑥𝑖. If the classifier scores the examples perfectly (one that scores all positives as 1 and 

negatives as 0) the estimated 𝑃𝑐𝑎𝑙(𝑖) remains unchanged. Nevertheless, if the scores do 

not give any information about the ordering of the examples, 𝑃𝑐𝑎𝑙(𝑖) will be a constant 

function whose value is the average of all 𝑃𝑐𝑎𝑙(𝑥𝑖) values in the interval, which is the base 

rate of positive examples (i.e. it returns the fractions of positive examples in that interval). 
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2.- Land surface temperature retrieval from space 

 

 

2.1. Radiative Transfer Equation 

 

A black body is a system in thermal equilibrium that absorbs all incident electromagnetic 

radiation and does not reflect any. In addition, it isotropically emits the greatest amount 

of energy (i.e. and ideal emitter) at a given temperature. The radiation emitted at a 

wavelength λ and temperature T us described by Planck’s law (Equation 2.1).  

𝐵𝜆(𝑇) =
𝑐1𝜆−5

exp (
𝑐2

𝜆𝑇
) − 1

 

where 𝐵𝜆(𝑇) is the spectral radiance of a black-body (Wm-2µm-1sr-1) at temperature T (K) 

and wavelength λ (µm). 𝑐1  and 𝑐2  are physical constants with values 𝑐1 = 1.191 ·

108 𝑊𝜇𝑚−4𝑠𝑟−1𝑚−2 , 𝑐2 = 1.439 · 104 𝜇𝑚𝐾 . Most of natural objects do not 

correspond to the definition of a black body, and their emissivity 𝜀 needs to be considered. 

Hemispheric spectral emissivity of a natural body is defined as in Equation 2.2.  

𝜀(𝜆, 𝑇) =
𝑀(𝜆, 𝑇)

𝑀𝑏(𝜆, 𝑇)
 

where 𝑀(𝜆, 𝑇) is the object exitance in Wm-2  and 𝑀𝑏(𝜆, 𝑇) is the isothermal blackbody 

exitance (Wm-2 ) . 𝜀(𝜆, 𝑇) depicts the object’s capacity for emitting thermal radiation and 

it is determined by the object’s composition and physical status. Depending on the value 

of 𝜀, objects can be classified as perfect radiators (blackbodies) in which 𝜀(𝜆) = 𝜀 = 1, 

grey bodies for which 0 <  𝜀(𝜆) < 1 being 𝜀(𝜆) constant and perfect reflectors when 

𝜀(𝜆) = 𝜀 = 0. Nevertheless, the most common case is having an object which emissivity 

as an 𝜆 dependence (i.e. 𝜀(𝜆) = 𝑓(𝜆)) which is denoted as a selective radiator. In this 

case, the object can be characterized by its own spectral signature.  

In order to define the radiance of natural body we need to introduce the notion of 

directional spectral emissivity which is given by Equation 2.3.  

𝜀𝜆(𝜃, 𝜑, 𝑇) =
𝐿𝜆(𝜃, 𝜑, 𝑇)

𝐵𝜆(𝑇)
 

where 𝐿𝜆(𝜃, 𝜑, 𝑇) is the radiance of the real object and 𝐵𝜆(𝑇) is the radiance of the black-

body. As observed in Equation 2.3, the emission process presents directional effects, thus 

emissivity is dependent on the direction. In the case the emitting surface is Lambertian 

𝜀𝜆(𝜃, 𝜑, 𝑇) =  𝜀𝜆(𝑇) in all directions. From Equation 2.3, the radiance of a natural body 

can be defined as in Equation 2.4.  

𝐿𝜆(𝜃, 𝜑, 𝑇) =  𝜀𝜆(𝜃, 𝜑, 𝑇)𝐵𝜆(𝑇) 

In addition, from Equation 2.4 it is possible to define a brightness temperature (Tb) (or 

blackbody equivalent temperature) as the temperature of a blackbody that emits the same 

 (2.1) 

 (2.3) 

 (2.4) 

 (2.2) 
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radiance 𝐿𝜆(𝜃, 𝜑, 𝑇) of the natural body at temperature T, according to (Equation 2.5). Tb 

has the dimensions of temperature but lacks the physical meaning of temperature.  

𝐿𝜆(𝜃, 𝜑, 𝑇) =  𝜀𝜆(𝜃, 𝜑, 𝑇)𝐵𝜆(𝑇) =  𝐵𝜆(𝑇𝑏) 

Radiation emitted by the surface suffers different processes when crossing the atmosphere. 

Assuming a cloud-free atmosphere in thermodynamic equilibrium (Figure 2.1), following 

Li et al. (2013) notation the channel infrared radiance (𝐼𝑖), received by a sensor at the top 

of the atmosphere (TOA) is given by Equation 2.6:   

 

𝐼(𝜃, 𝜑) = 𝑅𝑖(𝜃, 𝜑)𝜏𝑖(𝜃, 𝜑) + 𝑅𝑎𝑡𝑖↑(𝜃, 𝜑) + 𝑅𝑠𝑙↑(𝜃, 𝜑) 

 

where the measured 𝐼𝑖  comes from the contribution of three terms: 𝑅𝑖(𝜃, 𝜑)𝜏𝑖(𝜃, 𝜑) 

which is the surface outgoing radiation attenuated by the atmosphere (path 1 in Figure 

2.1). 𝑅𝑖(𝜃, 𝜑) is the land leaving radiance and 𝜏𝑖(𝜃, 𝜑) is the atmospheric transmissivity.  

𝑅𝑎𝑡𝑖↑(𝜃, 𝜑)  which is an atmospheric emission term represents the upward thermal 

radiance (path 2 in Figure 2.1), 𝑅𝑠𝑙↑(𝜃, 𝜑)  which is the atmospheric scattering term 

represents the upward solar radiance (path 3 in Figure 2.1) . 𝜃 and 𝜑 represent the zenithal 

and azimuthal viewing angles. The channel radiance 𝑅𝑖 observed in channel i at ground 

level is given by Equation 2.7.  

 

𝑅𝑖(𝜃, 𝜑) =  𝜀𝑖(𝜃, 𝜑)𝐵𝑖(𝑇𝑠) + [1 − 𝜀𝑖(𝜃, 𝜑)]𝑅𝑎𝑡𝑖↓(𝜃, 𝜑) +  [1 − 𝜀𝑖(𝜃, 𝜑)]𝑅𝑠𝑙↓(𝜃, 𝜑)

+ 𝜌𝑏𝑖(𝜃, 𝜑, 𝜃𝑠, 𝜑𝑠)𝐸𝑖 cos(𝜃𝑠) 𝜏𝑖(𝜃𝑠, 𝜑𝑠) 

 

𝑅𝑖(𝜃, 𝜑) comes from the contribution of four terms: 𝜀𝑖(𝜃, 𝜑)𝐵𝑖(𝑇𝑠) which represents the 

surface emission (path 4 in Figure 2.1). 𝜀𝑖(𝜃, 𝜑)  and 𝑇𝑠  are the effective surface 

emissivity and temperature. [1 − 𝜀𝑖(𝜃, 𝜑)]𝑅𝑎𝑡𝑖↓(𝜃, 𝜑)  term represents the surface 

reflected down-welling atmospheric emission (path 5 in Figure 2.1). 𝑅𝑎𝑡𝑖↓(𝜃, 𝜑) is the 

downward atmospheric thermal radiance. [1 − 𝜀𝑖(𝜃, 𝜑)]𝑅𝑠𝑙↓(𝜃, 𝜑)  is the solar diffusion 

radiance reflected by the surface (path 6 in Figure 2.1). 𝑅𝑠𝑙↓(𝜃, 𝜑)  is the downward solar 

diffusion radiance. The fourth term is given by 𝜌𝑏𝑖(𝜃, 𝜑, 𝜃𝑠, 𝜑𝑠)𝐸𝑖 cos(𝜃𝑠) 𝜏𝑖(𝜃𝑠, 𝜑𝑠) and 

represents the direct solar radiance reflected by the surface (path 7, in Figure 2.1). 

𝜌𝑏𝑖(𝜃, 𝜑, 𝜃𝑠, 𝜑𝑠)  is the bi-directional reflectivity of the surface, 𝐸𝑖  is the Top-of-

Atmosphere (TOA) solar irradiance and 𝜃𝑠 , 𝜑𝑠  the solar zenith and solar azimuth, 

respectively.  

 

In Equations 2.6 and 2.7, all variables and parameters are channel-effective values. The 

spectral quantities are averaged by the spectral response of the sensor according to 

Equation 2.8.  

𝑋𝑖 =
∫ 𝑔𝑖(𝜆)𝑋𝜆𝑑𝜆

𝜆2

𝜆1

∫ 𝑔𝑖(𝜆)𝑑𝜆
𝜆2

𝜆1

 

 

 (2.6) 

 (2.5) 

 (2.7) 

 (2.8) 
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where 𝑔𝑖(𝜆) is the spectral response function in channel i and 𝜆2 and 𝜆1 are the lower and 

upper boundaries of the wavelength in channel and X stands for the variables considered. 

Taking into account that the bandwidth of the channels is generally narrow and the 

various spectral quantities involved in Equations 2.6 and 2.7 should not offer rapid 

variations (i.e. atmospheric emissivity and transmissivity are not very variable in the 

spectral interval of the channels), the use of channel magnitudes in the radiative transfer 

equation (RTE) can be considered a good approximation of the RTE with monochromatic 

quantities.  

 

It is worth noting here that in the thermal infrared domain (8-14 µm) the contribution of 

solar radiation at the TOA is negligible, the solar terms can be neglected and Equations 

2.6 and 2.7 take the following form (Equations 2.9-2.10):  

 

𝐼(𝜃, 𝜑) = 𝑅𝑖(𝜃, 𝜑)𝜏𝑖(𝜃, 𝜑) + 𝑅𝑎𝑡𝑖↑(𝜃, 𝜑) 

 

𝑅𝑖(𝜃, 𝜑) =  𝜀𝑖(𝜃, 𝜑)𝐵𝑖(𝑇𝑠) + [1 − 𝜀𝑖(𝜃, 𝜑)]𝑅𝑎𝑡𝑖↓(𝜃, 𝜑) 

 

 

 

 
 

 (2.9) 

 (2.10) 
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Figure 2.1. Illustration of radiative transfer equation in infrared domain. 𝐼𝑖  and 𝑅𝑖  are the radiance 

measured by the channel i at the TOA and ground level, respectively. These radiances can be expressed in 

terms of TOA (𝑇𝑖) and ground level (𝑇𝑔) brightness temperatures. Path 1 represents the radiance observed 

at ground level attenuated by the atmosphere. Path 2 and 3 represent the upward atmospheric thermal 

radiance and the upward solar diffusion radiance, respectively. Path 4 represents the radiance emitted 

directly by the surface. Path 5 and 6 represent the downward atmospheric thermal radiance and solar 

diffusion radiance reflected by the surface, respectively. Path 7 represents the direct solar radiance reflected 

by the surface (Li et al. (2013)).  

 

 

As observed in Equations 2.9 and 2.10, the determination of the LST from space requires 

not only the knowledge of atmospheric information but also knowledge of the land 

surface emissivity (LSE). The implementation of atmospheric corrections is difficult 

because the need of accurate of vertical profiles of atmospheric water vapour and 

temperature, which both  are higly variable (Perry & Morran, 1994). Nevertheless, even 

if these quantities are accuratelye estimated, the retrieval of LST from space is still an 

undetermined problem. For N channels measuring radiance, we have a system of N 

equations with N+1 unknows (N emissivities + unknown LST). In order to solve this 

system, emissivity values must be known by a priori information or by assuming a 

constraint on emssivities values such as in TES model (Gillespie et al., 1996). 

  

Apart from these previous difficulties, it is worth noting here the interpretation issue of 

these derived LST estimates. LST is a kinetic quantity that represents the thermodynamic 

temperature of the skin layer of a given surface (a few millimeters in the TIR region). 

This temperature definition differs from the definition of thermodynamic temperature 

(measured by a thermometer in a thermal equilibrium system). For homogeneous and 

isothermal surfaces, these two quantities are reported to be equivalent. However, most 

natural surfaces do not accomplish these conditions. In addition, taking into account the 

spatial resolution of the remote-sensing LST instruments (ground-based, airborne and 

spaceborne), the measured LST is the aggregated radiometric surface temperature of the 

ensemble of components within the sensor field of view (Norman & Becker, 1995). This 

fact complicates the physical interpretation of the satellite derived LST and its relation to 

other temperatures (aerodynamic and thermodynamic) used in estimating surface fluxes 

or other applications (Li et al., 2013).  
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2.2. Operative LST algorithms for medium resolution sensors 

 

In order to determine the LST from space many algorithms which use different 

assumptions and approximations for solving the RTE and the LSE requirement have been 

proposed. In Li et al. (2013) a comprehensive revision of these algorithms is given. In the 

following, we focus on describing the LST algorithms employed in the retrieval of current 

LST products used in this work.  

 

 

2.2.1.- MODIS 

 

2.2.1.1- Split-window algorithm 

 

NASA’s current operational MODIS LST products are derived using the split-window 

algorithm developed by Wan & Dozier (1996) which has a similar formulation as the one 

proposed by Becker & Li (1990). It is given by Equation 2.11.  

 

 

LST = b0 + (𝑏1 + 𝑏2

1 − 𝜀

𝜀
+  𝑏3

∆𝜀

𝜀2
)

𝑇31 + 𝑇32

2
 +  (𝑏4 + 𝑏5

1 − 𝜀

𝜀
+  𝑏6

∆𝜀

𝜀2
)

𝑇31 − 𝑇32

2
 

 

 

 

where 𝑇31 and 𝑇32 refers to the MODIS brightness temperatures of thermal bands 31 and 

32 centered on 11.03 μm and 12.02 μm, respectively. 𝜀  and ∆𝜀  are the mean and 

emissivity difference between bands 31 and 32 and 𝑏𝑖 (𝑖 = 0 − 6) are the split-window 

coefficients which depend on surface emissivity, viewing zenith angle, surface air 

temperature (𝑇𝑎) and atmospheric water vapour content. In the standard LST product, 

information about these last two variables is taken from the MODIS atmospheric profile 

product (MOD07) (Wan, 2008). Emissivity values in band 31 and 32 are defined as a 

combination of green and senescent components estimated from land cover types in each 

MODIS pixel through a look-up-table (LUT) based on TIR bidirectional reflectance 

distribution function (BRDF) an emissivity modelling (Snyder et al., 1998). 

 

Instead of using fixed 𝑏𝑖 coefficients a multi-dimensional lookup table (LUT) is used in 

order to cover a wide range of the variations of surface and atmospheric conditions. For 

each view zenith angle (VZA) (9 viewing angles are selected to cover the MODIS surface 

viewing angle range from nadir to 65.5 º, the atmospheric water vapour (WV), averaged 

emissivity ε, and Ta or LST are divided into several tractable sub-ranges. Considering 

these sub-ranges the coefficients are retrieved by minimizing Equation 2.11 using 

simulated radiative transfer calculations of 𝑇31  and 𝑇32 . Regarding the different 

parameters, the water vapour is divided into sub-ranges up to 6.5 g/cm2 with an overlap 

of 0.5 g/cm2. The ε is separated into two groups, one varying from 0.90 to 0.96 and the 

other one varying from 0.94 to 1.0. The Ta sub-ranges are divided by 273, 281, 289, 295, 

 (2.11) 
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300, 305, and 310 K. The LST varies within Ta ± 16 K and may be divided into four 

overlapped sub-ranges (Wan & Dozier, 1996). For a value of VZA not included in the 

LUT, the coefficients 𝑏𝑖  can be linearly interpolated using the cosine of the VZA.  

 

According to Wan & Dozier (1996), the LST is estimated in two steps. In the first step 

LST is estimated with coefficients 𝑏𝑖 covering the entire LST range of Ta ± 16 K. In the 

second step, the LST is refined by using the corresponding coefficients 𝑏𝑖 associated with 

the difference between the approximate LST (first step) and Ta.  

 

In order to improve the LST and emissivity retrieval for bare soil grids in hot and warm 

bare soil zones within latitude range from -38º to 49.5º, in Wan (2014) a new set of split-

window coefficients (one set for daytime and one for nighttime) was derived.  The ranges 

of the parameters employed in MODTRAN simulations are: the atmospheric surface 

temperature is set as 280–325 K for the daytime and 275–305 K for the nighttime. The 

atmospheric column water vapor varies from nearly zero to 5.5 cm. The variation in 

surface emissivity in bands 31 and 32 is around the averaged values for the soil and 

samples selected. The range of (LST – Ta) is set as from 8–29K for daytime LSTs and 

from −10–4K for nighttime LSTs.  

 

 

2.2.1.2.- Day-Night algorithm 

 

The day-night (DN) algorithm was developed in order to simultaneously retrieve LST 

and LSE using a combination of day/night pairs of Middle-Infrared-Radiation (MIR) and 

TIR data (Wan & Li, 1997). The DN method consists into setting Equations 2.6 and 2.7 

for daytime and nighttime conditions considering three key assumptions. These are: 1) 

the LSE variations between day and night can be neglected, thus assuming equal 

emissivity values for day and night. In addition, a lambertian surface is considered. 2) 

The bidirectional reflectance factors in the mid-infrared thermal channels have very small 

variation (<2%) and is assumed identical for each mid-infrared channel used. 3) The 

MODIS atmospheric sounding channels and the corresponding retrieval algorithms 

provide the atmospheric temperature and humidity profiles. The profiles shapes are 

accurate and can be described with two parameters: the air temperature at the surface 

level, 𝑇𝑎 , and the atmospheric water vapour (𝑊𝑉) . With these assumptions, the 

atmospheric parameters in Equations 2.6 and 2.7 (i.e. 𝑅𝑎𝑡𝑖↑ , 𝑅𝑠𝑙↑ , 𝑅𝑎𝑡𝑖↓ , 𝑅𝑠𝑙↓ , 𝐸𝑖 , 

𝜏𝑖(𝜃𝑠, 𝜑𝑠)  and 𝜏𝑖(𝜃, 𝜑))  can be retrieved from 𝑇𝑎  and 𝑊𝑉  values and atmospheric 

radiative transfer codes. Apart from these variables, we still have as unknowns the surface 

parameters 𝜀𝑖, 𝑇𝑠 and 𝜌𝑏𝑖. Taking into account that the algorithm uses two observations 

(day and night), for N channels thus we have a total of N+7 unknowns (N channels LSEs, 

2 LSTs, 2 𝑇𝑎 , 2 𝑊𝑉  and 1 𝜌𝑏𝑖  in the MIR channel). In order to make the equations 

deterministic, it is required that 𝑁 ≥ 7. MODIS seven selected bands selected are: 20, 22, 

23, 29, 30, 31 and 32. These channels lie in the atmospheric windows of 3.5-4.2 µm and 

8-13 µm respectively.  
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According to Li et al. (2013), this LST retrieval algorithm entails some strengths in 

comparison to other algorithms that use multiple observations, such as the day/night 

temperature independent spectral indices method and the Two-Temperature method. For 

example, the correlation amongst equations is decreased due to the contribution of solar 

terms in the MIR channels, thus making the solution more stable and accurate. In addition, 

the introduction of two additional variables 𝑇𝑎  and 𝑊𝑉  help to account for the 

uncertainties in the initial atmospheric profiles. Moreover, as long as the surface 

emissivity does not change significantly, daytime and nighttime observations collected 

over several days is appropriated in order to run the algorithm. Nevertheless, this LST 

algorithm also suffers from some weaknesses. In particular, the problems of 

misregistration and variations in the satellite viewing conditions of the matched pair of 

observations (Wan, 2008). Some refinements in this algorithm were implemented for a 

better LST retrieval (Wan, 2008; Wan, 2014). These include: the   combined use of 

TERRA and AQUA MODIS data, an increase in the number of sub-ranges of viewing 

angles, the use of temporal and viewing conditions constraints and the incorporation of 

the MODIS split-window method as a close component in the DN algorithm.  

 

 

2.2.1.3.- Temperature Emissivity Separation (TES) method 

 

The TES method comprises three mature modules: the normalization emissivity method 

(NEM) (Gillespie, 1995), the spectral ratio (SR), and the maximum–minimum apparent 

emissivity difference method (MMD) (Matsunaga, 1994). In Figure 2.2 the flow diagram 

of the process is presented. In the following, according to MOD21 algorithm theoretical 

basis document (Hulley et al., 2012) a brief description of the three modules is given. 

 

The role of the NEM module is to compute the surface kinetic temperature TNEM and a 

correct shape of the emissivity spectrum. Initially a first value of 𝜖𝑚𝑎𝑥 is set as 0.99  which 

is typical of vegetated surfaces, snow and water. For geologic materials such as rock and 

sands an initial value of 0.96 can be chosen. With this initial value, the ground radiance 

( 𝑅𝑖)  is calculated. The NEM temperature (TNEM) is estimated by inverting Planck 

function using 𝜖𝑚𝑎𝑥 and 𝑅𝑖 and then taking the maximum of those temperatures. With this 

TNEM a new emissivity spectrum is calculated. The process is then repeated (i.e. 

calculating a new 𝑅𝑖′ ) until convergence (i.e. 𝑅𝑖+1 − 𝑅𝑖 < 𝑡2 , where 𝑡2  is set as the 

radiance equivalent to NEΔT of the sensor). The process is stopped if the number of 

iterations exceeds a limit N = 12 or if  |𝛥2𝑅′/𝛥𝑐2 >  𝑡1|, where 𝑡1 is also set to radiance 

equivalent of NEΔT for the sensor. In this case, correction is not possible. After this 

process, the need of an 𝜖𝑚𝑎𝑥 reset is checked. This optimization is only useful for pixels 

with low emissivity contrast and therefore is only executed if the variance (𝑣) for 𝜖𝑚𝑎𝑥 is 

less than an empirically determined threshold(𝑉1). In case 𝑣 > 𝑉1, the pixel is assumed 

to consist of either rock or soil and 𝜖𝑚𝑎𝑥 is reset to 0.96. In case 𝑣 < 𝑉1, then values for 

𝜖𝑚𝑎𝑥 of 0.92, 0.95, 0.97, and 0.99 are used to compute the variance for each corresponding 

NEM emissivity spectrum. A plot of variance 𝜈 versus each 𝜖𝑚𝑎𝑥 value results in an 

upward-facing parabola with the optimal 𝜖𝑚𝑎𝑥 value determined by the minimum of the 
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parabola curve in the range 0.9<𝜖𝑚𝑎𝑥<1.0. This minimum is set to a new 𝜖𝑚𝑎𝑥 value, and 

the NEM module is executed again to compute a new 𝑇𝑁𝐸𝑀. Further tests are used to see 

if a reliable solution can be found for the refined 𝜖𝑚𝑎𝑥. If the parabola is too flat, or too 

steep, then refinement is aborted and the original  𝜖𝑚𝑎𝑥 value is used. Finally, if the 

minimum 𝜖𝑚𝑎𝑥  corresponds to a very low 𝜈, then the spectrum is essentially flat 

(graybody) and the original 𝜖𝑚𝑎𝑥 = 0.99 is used. 

 

In the spectral ratio module, the NEM emissivities (𝜖𝑖) are rationed to their average value 

in order to calculate a 𝛽𝑖 spectrum. In the MMD module, first the spectral contrast of 𝛽𝑖 

spectrum is calculated (MMD). This is related to the minimum emissivity 𝜖𝑚𝑖𝑛 in the 

spectrum using an empirical relation determined from laboratory measurements. In this 

expression, 𝛼1= 0.985, 𝛼2=0.7503, and 𝛼3=0.8321. The TES emissivities are then 

calculated by re-scaling the 𝛽𝑖  emissivities by a factor 𝜖𝑚𝑖𝑛/min (𝛽𝑖) . Finally the 

temperature can be refined, by inverting the Planck function using 𝑅𝑖′ and the maximum 

of 𝜖𝑇𝐸𝑆. With this 𝜖𝑚𝑎𝑥 value the correction of reflected 𝐿𝜆 ↓ . 

 

The TES algorithm uses a radiative transfer model (typically MODTRAN) in order to 

correct the at-sensor radiances to surface radiances (i.e calculation of the transmissivity, 

path and downward thermal radiances). In this process, a water vapour scaling 

atmospheric correction method is used in order to adjust the retrieval during very warm 

and humid conditions (Tonooka, 2005). Numerical simulation and some field validations 

have demonstrated that the TES can retrieve the LST to within about ± 1.5 K and the 

LSEs to within about ± 0.015 when the atmospheric effects are accurately corrected 

(Gillespie et al., 1996, 1998). In addition, validation results have shown consistent 

accuracies at the 1 K level over all land surface types (Hulley et al., 2012). 
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Figure 2.2. Flow diagram of the TES algorithm in its entirety, including the NEM, RATIO, and MMD 

modules. Details are included in the text, including information about the refinement of 𝝐𝒎𝒂𝒙 (extracted 

from Hulley et al., 2012). 
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2.2.2.- VIIRS 

 

Since August 2012, the NOAA VIIRS Environmental Data Record (EDR) has been 

operationally produced using a single split window algorithm (Yu et al., 2005). It is given 

by Equation 2.12.  

 

𝐿𝑆𝑇 = 𝑎0 + 𝑎1𝑇15 + 𝑎2(𝑇15 − 𝑇16) + 𝑎3(𝑠𝑒𝑐𝜃𝑣 − 1) + 𝑎4(𝑇15 − 𝑇16)2 

 

where 𝑇15 and 𝑇16 are the brightness temperatures measured in channels M15 and M16 

centered on 10.76 µm and 12.01 µm respectively. 𝜃𝑣 is the satellite viewing zenith angle.  

𝑎𝑖 are algorithm coefficients derived from regression analyses of MODTRAN radiative 

transfer simulations over 17 different surface types as defined by the International 

Geosphere-Biosphere Program (IGBP). The algorithm regression coefficients were 

generated from an ensemble of MODTRAN radiative transfer simulations using a 

comprehensive set of geophysical parameters (VIIRS LST ATBD, 2011). In particular, 

surface temperatures and atmospheric temperature and water vapour profiles were 

derievd from National Center for Environmental Prediction (NCEP) and band-averaged 

spectral emissivity values for each surface type were derived from the MOSART 

database. A different set of coefficients are derived for daytime and nighttime conditions. 

The bias and precision requirements specified by NOAA’s Joint Polar Satellite System 

(JPSS) program for the VIIRS LST EDR are 1.5 K and 2.5 K, respectively for clear 

conditions (VIIRS LST ATBD, 2011).  

 

In line with production of the new MOD21 LST & E product, NASA is currently in the 

processing of an equivalent TES-based product for VIIRS, termed VNP21. For a full 

detailed description of the algorithm and data inputs please see the VNP21 ATBD 

(https://viirsland.gsfc.nasa.gov/PDF/VNP21_LSTE_ATBD_v2.1.pdf). A brief 

description of TES algorithm is also provided in the previous MODIS LST algorithms 

section.  

 

 

2.2.3.- SLSTR 

 

The SLSTR algorithm (Equation 2.13) is developed as an evolution of the AATSR LST 

algorithm (Prata, 2002).    

 

𝐿𝑆𝑇 = 𝑎𝑓𝑖𝑤 + 𝑏𝑓𝑖(𝑇11 − 𝑇12)𝑛 + (𝑏𝑓𝑖 + 𝑐𝑓𝑖)𝑇12 

 

where 𝑇11 and 𝑇12 are the brightness temperature of SLSRT 11µm and 12µm bands and 

𝑛 , 𝑎𝑓𝑖𝑤, 𝑏𝑓𝑖 and 𝑐𝑓𝑖 parameters are given by Equations 2.14 to 2.17.  

 

 

 

 (2.12) 

 (2.13) 
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𝑛 = 1/cos (
𝜃𝑣

𝑚
) 

 

𝑎𝑓𝑖𝑤 = 𝑑(𝑠𝑒𝑐𝜃𝑣 − 1)𝑝𝑤 + 𝑎𝑣𝑖𝑓 + 𝑎𝑠𝑖(1 − 𝑓) 

 

𝑏𝑓𝑖 = 𝑏𝑣𝑖𝑓 + 𝑏𝑠𝑖(1 − 𝑓) 

 

𝑐𝑓𝑖 = 𝑐𝑣𝑖𝑓 + 𝑐𝑠𝑖(1 − 𝑓) 

 

In these equations, 𝜃𝑣 is the satellite view zenith angle, 𝑓 is the vegetation fraction, 𝑝𝑤 is 

the atmospheric water content (in cm). The parameters 𝑑 and 𝑚 are empirical parameters 

determined using radiative transfer simulations. The coefficients 𝑎𝑓𝑖𝑤 , 𝑏𝑓𝑖  and 𝑐𝑓𝑖  are 

retrieved separately for each biome from the Globcover classification (denoted by the 

subscript i). They are obtained by weighting by the vegetation fraction 𝑓 the regression 

coefficients obtained considering a 100% (𝑣) and 0% (𝑠) of vegetation fraction (i.e. 𝑎𝑣𝑖 , 

𝑎𝑠𝑖  , 𝑏𝑣𝑖  , 𝑏𝑠𝑖  , 𝑐𝑣𝑖  and 𝑐𝑠𝑖). These coefficients are supplied separately for daytime and 

nighttime conditions. A full description of the retrieval algorithm can be found in the 

SLSTR Algorithm Theoretical Basis Document for Land Surface Temperature 

(Remedios, 2012).  

 

 

2.3.- LST and LSE algorithms developed at the Global Change Unit  

 

In the following, the split-window algorithm used for LST estimation in this thesis is 

presented. In addition, a brief introduction to the NDVI Thresholds method (NDVITHM) 

for LSE retrieval is also provided. 

 

 

2.3.1- Split-window algorithm (Sobrino and Raissouni (2000)) 

 

The basis of the technique is that the radiance attenuation for atmospheric absorption is 

proportional to the radiance difference of simultaneous measurements at two different 

wavelengths, each subject to different amounts of atmospheric absorption (McMillin, 

1975). In particular, the bands located in the atmospheric window between 10 and 12 μm 

are used. The split-window is given by Equation 2.18, where 𝑇𝑖 and 𝑇𝑗 are the at-sensor 

brightness temperatures at the SW bands (in K), 𝜀 is the mean emissivity of channels i 

and j, ∆𝜀 is the emissivity difference, w is the total atmospheric water vapour content 

(gcm-2) and 𝑎0  to 𝑎6  are the split-window coefficients which are retrieved statistical 

regression of simulated data.  

 

𝑇𝑠 = 𝑇𝑖 + 𝑐1(𝑇𝑖 − 𝑇𝑗) + 𝑐2(𝑇𝑖 − 𝑇𝑗)
2

+ 𝑐0 + (𝑐3 + 𝑐4𝑊)(1 − 𝜀) + (𝑐5 + 𝑐6𝑊)∆𝜀 

 

 

 (2.14) 

 (2.15) 

 (2.16) 

 (2.17) 

 (2.18) 
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The mathematical structure was firstly proposed by Sobrino et al. (1996) and later 

modified by Sobrino & Raissouni (2000). The main advantages of this algorithm are the 

following: 1) It is a physics-based algorithm, since it is obtained from the radiative 

transfer equation (RTE) applied to two different bands; 2) it takes into account both 

emissivity and water vapor effects; 3) it includes both LST and SST cases; and 4) it is 

totally operational. Simulated validation and in-situ validation results show that LST 

retrieved from this SW is typically below 2 K of RMSE.  

 
 

 

2.3.2.- NDVI threshold method (Sobrino et al. (2008)) 

 

According to Sobrino et al. (2008), the emissivity retrieved by a sensor channel can be 

expressed as in Equation 2.19:  

 

𝜀𝜆 =  {

 𝑎𝜆 + 𝑏𝜆𝜌𝑟𝑒𝑑                                     𝑁𝐷𝑉𝐼 < 𝑁𝐷𝑉𝐼𝑠                                                

𝜀𝑣𝜆𝑃𝑣 + 𝜀𝑠𝜆(1 − 𝑃𝑣) + 𝐶𝜆               𝑁𝐷𝑉𝐼𝑠 ≤ 𝑁𝐷𝑉𝐼 ≤ 𝑁𝐷𝑉𝐼𝑣                             
𝜀𝑣𝜆                                                    𝑁𝐷𝑉𝐼 > 𝑁𝐷𝑉𝐼𝑣                                              

 

 

where 𝜀𝑣𝜆 and 𝜀𝑠𝜆 are the vegetation and soil emissivities. 𝐶𝜆 is a term which takes into 

account the cavity effect due to surface roughness (C = 0, for flat surfaces). 𝑃𝑣 is the 

proportion of vegetation (i.e. vegetation fraction cover) that is obtained from the NDVI 

as in Equation 2.20:  

 

𝑃𝑣 = (
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑠

𝑁𝐷𝑉𝐼𝑣 − 𝑁𝐷𝑉𝐼𝑠
)

2

 

 

𝑁𝐷𝑉𝐼𝑠 and 𝑁𝐷𝑉𝐼𝑣 are set as 0.2 and 0.5 in Sobrino et al. (2008), nevertheless they should 

be recalculated in order to adequate to specific conditions. When 𝑁𝐷𝑉𝐼 < 𝑁𝐷𝑉𝐼𝑠, the 

pixel is considered to be bare soil and the emissivity is estimated from an empirical 

relationship with the red band of the sensor. When > 𝑁𝐷𝑉𝐼𝑣 , the pixel is assumed to be 

fully vegetated and a value of 0.99 is assumed. When 𝑁𝐷𝑉𝐼𝑠 ≤ 𝑁𝐷𝑉𝐼 ≤ 𝑁𝐷𝑉𝐼𝑣, the 

pixel is considered mixed and the emissivity value results from a weighted mean between 

𝜀𝑣𝜆 and 𝜀𝑠𝜆 taking also into account the cavity effect.  

 

In Equation 2.19, there is a discontinuity at 𝑁𝐷𝑉𝐼𝑠 and 𝑁𝐷𝑉𝐼𝑣. In addition, for some soil 

specimens 𝜀𝜆 and 𝜌𝑟𝑒𝑑 have a poor relationship. These problems are formally solved by 

simplifying the NDVITHM as in Equation 2.21. Although this method contains several 

improvements in comparison to other emissivity classification methods, it still fails to 

indicate considerable changes in the LSE, especially for areas without vegetation cover.   

 

𝜀𝜆 =  {

 𝜀𝑠𝜆                                                      𝑁𝐷𝑉𝐼 < 𝑁𝐷𝑉𝐼𝑠                                                

𝜀𝑣𝜆𝑃𝑣 + 𝜀𝑠𝜆(1 − 𝑃𝑣) + 𝐶𝜆               𝑁𝐷𝑉𝐼𝑠 ≤ 𝑁𝐷𝑉𝐼 ≤ 𝑁𝐷𝑉𝐼𝑣                             
𝜀𝑣𝜆                                                    𝑁𝐷𝑉𝐼 > 𝑁𝐷𝑉𝐼𝑣                                              

 

 

 (2.19) 

 (2.20) 

 (2.21) 
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3.1.- Turbulent transport of heat and water in the atmosphere 

 

Transport of heat and mass in the atmosphere is produced by turbulence. This latter can 

be visualized as consisting of irregular swirls of air motion called eddies (Figure 3.1). 

Superimposed on each other and having different sizes, these eddies are carried along 

with the wind bouncing with random motion. They are responsible of transport of heat, 

mass (water) and momentum in the atmosphere. These are generated by two ways: 

mechanical turbulence generated by friction between the moving air and land surface (i.e. 

the wind), and thermal turbulence, generated by buoyancy of the hot/cold air from the 

surface (i.e. gradient of temperature).  

 

Figure 3.1 Airflow can be imagined as a horizontal flow of numerous rotating eddies, that is, turbulent 

vortices of various sizes, with each eddy having horizontal and vertical components (Wang & Dickinson, 

2012). 

 

The part of the atmosphere in which these turbulence (production and suppression) is 

noticeable is called the atmospheric boundary layer (ABL). It is the turbulent layer 

between the surface and the non-turbulent free troposphere. A main subdivision can be 

made between the outer region and atmospheric surface layer (ASL) (Figure 3.2 (a)). As 

indicated also by this Figure, the ABL has a strong diurnal variation due to the variation 

in insolation. At daytime under unstable conditions it reaches depths of 1 to 2 km. The 

ABL is heated from below and convection causes strong turbulence mixing leading to 

more or less uniform profiles (Figure 3.2 (b)). The outer region may be referred then as 

the mixed layer. At the top of the ABL an inversion layer (also called entrainment zone) 

separates the ABL from the free-troposphere. A strong inversion of the temperature 

profile causes the capping of the ABL (Figure 3.2 (b)). During nighttime, the ASL is in 

stable conditions due to the radiative cooling of the surface. The outer layer becomes 

uncoupled from the surface by the developing of the stable nocturnal layer. In this case, 

boundary layer can reach from tens of meters to approximately 500 m at sunrise 

(Brustaert, 2005). This weak nighttime turbulence the strong gradients in Figure 3.2 (b).  
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Although the entire ABL is influenced by the surface. In the following of the chapter, we 

are focusing on the description of processes occurring at the ASL. It represents roughly 

the 10% of the ABL. This region is characterized by large gradients in temperature and 

wind speed. In addition, the vertical turbulent fluxes do not change appreciably from their 

value at the surface.  

 

Figure 3.2. Temporal evolution of a fair weather boundary layer (ABL) over land under clear sky 

conditions (a). Sketch of the profiles of mean wind speed, mean potential temperature and the turbulent 

sensible heat flux in the ABL with depth h (b). Extracted from Brutsaert, 2005 and Moene & Van Dam 

2014.  

For modelling purposes, the transport of heat, water (mass) and momentum between 

different levels of the atmosphere due to motion of the eddies can be seen as an analog of 

the molecular diffusion processes in a gas. This is the basis of the K-theory (Brustaert, 

1982), that establishes that the fluxes of momentum, energy and mass (water) are given 

by Equations 3.1 to 3.3.  
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𝜏 = 𝜌𝐾𝑚
𝜕�̅�

𝜕𝑧
 

𝐻 = −𝜌𝑐𝑝𝐾𝐻
𝜕�̅�

𝜕𝑧
 

𝐸 = −𝜌𝐾𝑣
𝜕�̅�

𝜕𝑧
 

where 𝜏 (kgm-1s-2) is the shear stress term, 𝐻 (Wm-2) is the sensible heat flux, 𝐸 is the 

mass flux (kgm-2s-1), latent heat flux is given by 𝜆𝐸 where 𝜆 (J kg-1) is the latent heat of 

vaporization. 𝐾𝑚, 𝐾𝐻 and 𝐾𝑣 (m2s-1) are the turbulent transfer coefficients for horizontal 

momentum, sensible heat and water vapour, 𝜌 (kgm-3) is the air density, 𝑐𝑝 (J kg-1 K-1) 

the specific heat air at constant pressure, , �̅�  (ms-1), �̅�  (K) and �̅�  (kgkg-1) are the 

horizontal wind speed, air temperature at specific water concentration of the water in the 

air.  

It is known that the turbulent transfer coefficients increase with height above the surface, 

wind speed, surface roughness and heating at the surface (Campbell & Norman, 2012). 

Assuming that they have some value characterized by surface properties at the exchange 

surface (i.e. where 𝑧 = 𝑑 + 𝑧0𝑚  or 𝑧 = 𝑑 + 𝑧0ℎ  or 𝑧 = 𝑑 + 𝑧0𝑣  respectively), they 

increase linearly with 𝑢∗(ms-1) and 𝑧 (m) according to Equations 3.4 to 3.6.  

𝐾𝑚 = 𝑘𝑢∗(𝑧 − 𝑑0)/𝜙𝑚 

𝐾𝐻 = 𝑘𝑢∗(𝑧 − 𝑑0)/𝜙ℎ 

𝐾𝑣 = 𝑘𝑢∗(𝑧 − 𝑑0)/𝜙𝑣 

where 𝑘 is the von Karman constant equal to 0.4, 𝑢∗ is the friction velocity. It is defined 

as 𝑢∗ = (𝜏/𝜌)
1/2. In this shear stress term (𝜏) it is included the effects of wind speed, 

surface roughness and surface heating (Campbell & Norman, 2012). 𝑧 is the height above 

the surface (m) and 𝑑0 is the zero displacement height (m), that corresponds to height of 

the surface that actually the flow experiences (i.e. the height where the drag acts on the 

canopy elements or null for bare soil). 𝜙𝑚, 𝜙ℎ and 𝜙𝑣 are dimensionless influence factors 

which equal one for pure mechanical turbulence. From these equations, the meaning of 

the so-called roughness lengths of momentum (𝑧0𝑚), heat (𝑧0ℎ) and water (𝑧0𝑣) can be 

deduced. They represent the characteristic length (m) which makes the K coefficients 

equal to the values they have at the exchange surface. A common practice is to assume a 

correspondence between 𝑧0ℎ  and 𝑧0𝑣 . This approach presupposes that the drag of the 

surface is the same for all scalars. 𝑧0ℎ can be related to 𝑧0𝑚 by Equation 3.7 (Garratt & 

Hicks, 1973).  

𝑘𝐵−1 = ln (
𝑧0𝑚
𝑧0ℎ

) 

For the case of pure mechanical turbulence (𝜙𝑚 = 𝜙ℎ = 𝜙𝑣 = 1), taking expressions 

3.4-3.6 into equations 3.1.-3.3. and integrating between the exchange surface and a 

 (3.1) 

 (3.2) 

 (3.3) 

 (3.4) 

 (3.5) 

 (3.6) 

 (3.7) 
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generic height z, the following wind, temperature and water vapour concentration profiles 

are obtained (Equations 3.8 to 3.10).  

𝑢(𝑧) =
𝑢∗
𝑘
ln (

𝑧 − 𝑑0
𝑧0𝑚

) 

𝑇(𝑧) = 𝑇0 −
𝐻

𝑘𝜌𝑐𝑝𝑢∗
ln (

𝑧 − 𝑑0
𝑧0ℎ

) 

𝑞(𝑧) = 𝑞0 −
𝐸

𝑘𝜌𝑢∗
ln (

𝑧 − 𝑑0
𝑧0𝑣

) 

where 𝑇0  (K) and 𝑞0   (kgkg-1) represent the temperature and specific water vapour 

concentration at the exchange height. Wind speed at this height is null. The values of 

roughness lengths can be derived from Equations 3.8 to 3.10 as the intercepted term of 

the linear regression of ln(𝑧 − 𝑑0) against the mean profile difference (i.e. 𝑇(𝑧) − 𝑇0). 

These equations apply only for neutral conditions (i.e. adiabatic conditions). 

The buoyancy of air can also play a role in the turbulent transport in the atmosphere. 

Strong heating of the air at the surface causes an increase of the turbulence and mixing, 

while strong cooling suppresses mixing and turbulence. This turbulence production (or 

suppression) is directly related to sensible heat flux at the surface. If H is positive (surface 

warmer than the air) the atmosphere is said to be unstable (i.e. mixing is enhanced), while 

if H is negative, the atmosphere is said to be stable (i.e. mixing is suppressed by thermal 

stratification). Unstable and stable conditions usually happen at daytime and nighttime 

respectively (Figure 3.2). In this situation Equations 3.8 to 3.10 need to be corrected. 

These diabatic corrections are made based on the Monin-Obukhov similarity theory 

(MOST) (Monin-Obukhov, 1954).   

A measure of the atmospheric stability can be derived from the kinetic energy budget for 

a steady-state atmosphere (Lumley & Panofsky, 1964) given by Equation 3.11.  

−
𝑢∗
3

𝑘(𝑧 − 𝑑)
+
𝑔𝐻

𝜌𝑐𝑝𝑇
= 𝜀𝑣𝑑 

where the first term represents the mechanical production of turbulent kinetic energy and 

the second term the convective production (i.e. buoyancy). Both terms equal the viscous 

dissipation of the energy (𝜀𝑣𝑑). To characterize the role of buoyancy in the production of 

turbulence, often the ratio of convective to mechanical production is used. This provides 

a measure of atmospheric stability and it is given by Equation 3.12.  

𝜁 =  −
𝑔𝐻𝑘(𝑧 − 𝑑)

𝜌𝑐𝑝𝑇𝑢∗3
≡
(𝑧 − 𝑑)

𝐿
  

where L refers to the Monin-Obukhov length (m). Although in many cases the effect of 

the water vapour on the density stratification can be neglected, it is still advisable to 

 (3.8) 

 (3.9) 

 (3.10) 

 (3.11) 

 (3.12) 
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include whenever possible. Therefore, the Monin-Obukhov length can be written as in 

Equation 3.13.  

𝐿 =
−𝜌𝑢∗

3

𝑘𝑔 (
𝐻
𝑐𝑝𝑇

+ 0.61𝐸 )
 

where 𝑔 is the acceleration gravity (ms-2) and the rest of the parameters have been defined 

previously. In terms of this length, when L assumes negative values (L<0), the 

atmospheric conditions are unstable (i.e. the actual thermal gradient is greater than the 

reference adiabatic one). When L assumes positive values (L>0) the atmospheric 

conditions are stable (i.e. the thermal gradient is lower than the adiabatic one). When |𝐿| 

has high values (i.e. 𝜁 is near zero), the atmosphere is adiabatic (neutral) conditions.  

For this new situation, the same previous methodology is applied. Nevertheless, 𝜙𝑚, 𝜙ℎ, 

𝜙𝑣 need to be taken into account. These functions depend on 𝜁, increasing from unity to 

positive 𝜁 and decreasing with negative 𝜁.  𝜙ℎ  and 𝜙𝑣  are assumed to be equal. For a 

revision of the possible exact form of these functions we refer the reader to Brutsaert 

(1982) and Campbell & Norman (2012). For the models used in this work they have been 

provided when needed. Considering these corrections, Equations 3.8 to 3.10 take the 

following expressions (Equations 3.14 to 3.16), where 𝜓 (𝜁) =  ∫ [1 − 𝜙(𝑥)𝑑𝑥/𝑥
𝜁

0
.  

 

𝑢 =
𝑢∗
𝑘
[ln (

𝑧 − 𝑑0
𝑧0𝑚

) − 𝜓𝑚 (
𝑧 − 𝑑0
𝐿

) + 𝜓𝑚 (
𝑧0𝑚
𝐿
)] 

𝜃𝑠 − �̅� =
𝐻

𝑘𝑢∗𝜌𝑐𝑝
[ln (

𝑧 − 𝑑0
𝑧0ℎ

) − 𝜓ℎ (
𝑧 − 𝑑0
𝐿

) + 𝜓ℎ (
𝑧0ℎ
𝐿
)] 

𝑞𝑠 − �̅� =
𝐸

𝑘𝑢∗𝜌
[ln (

𝑧 − 𝑑0
𝑧0𝑣

) − 𝜓𝑣 (
𝑧 − 𝑑0
𝐿

) + 𝜓𝑣 (
𝑧0𝑣
𝐿
) 

 

3.2. The energy budget constraint 

 

Apart from the similarity relationships, the turbulent fluxes are also linked to the surface 

by the energy budget. Applying the conservation of energy at the surface the energy 

budget reads as follows (Equation 3.17). All terms have units of Wm-2. 

𝑅𝑛 = 𝐻 + 𝜆𝐸 + 𝐺 + 𝐴𝑐 + Δ𝑆 

In this equation, 𝑅𝑛  is the net radiation reaching the surface and it is defined as in 

Equation 3.18.  

𝑅𝑛 = (1 − 𝛼)𝑆↓ + 𝜀𝐿↓ − 𝜀𝜎𝑇𝑠
4 

 (3.13) 

 (3.14) 

 (3.15) 

 (3.16) 

 (3.17) 

 (3.18) 
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where 𝑆↓ (Wm-2) is the solar incoming radiation, 𝛼 is the surface albedo, 𝜀 is the surface 

emissivity, 𝐿↓ (Wm-2) is the incoming longwave radiation and 𝑇𝑠 (K) is the land surface 

temperature. 𝜎 is the Stephan-Boltzmann constant (5.67·108 Wm-2K-4). 𝐻 and 𝜆𝐸 refer to 

the sensible and latent heat flux described in the previous section. 𝐺 is the specific energy 

flux leaving the surface layer due to conduction processes. By neglecting horizontal 

exchanges, it can be expressed as in Equation 3.19.  

𝐺 =  −𝜆𝑔 (
𝜕𝑇(𝑧)

𝜕𝑧
)
𝑧=0

 

where 𝜆𝑔 (Wm-1K-1) is the soil thermal conductivity, 𝑇(𝑧) is the soil temperature (K) and 

𝑧 (m) is the distance along vertical axis. The value assumed at the surface layer (z=0) is 

the same term which appears in the energy budget. The positive daytime values of G 

(warming) often tend to be compensated by negative nighttime values (cooling) and 

therefore daily values of G are often neglected in the surface energy budget. For practical 

applications the soil heat flux can also be assumed to be proportional to net radiation (i.e. 

𝐺 = 𝑐𝑅𝑛 , where c is an empirical constant) (Brutsaert, 2005). 𝐴𝑐  refers to the 

photosynthesis which represents a small fraction of the 𝑅𝑛 and also usually neglected. Δ𝑆 

refers to the heat storage of the system. It is usually omitted when it is applied to a thin 

layer of water, soil or canopy. Nevertheless, in the case of tall vegetation, it may have to 

be considered (Moore & Fisch, 1986). Still, on a daily basis it can be safely neglected.  

 

3.3- The process of transpiration 

 

Stomata are the main path way for the exchange of both CO2 and water vapour between 

the plant and the atmosphere. These are small opening that occur mainly on the plant 

leaves. In Figure 3.3, a representation of the water pathway through the leaf is given. 

Water is pulled from the xylem into the cell walls of the mesophyll, where it evaporates 

into the air spaces within the leaf. The water then exits the leaf through the stomatal pore. 

Along this pathway water moves predominantly by diffusion (difference in water vapour 

concentration). In the case of CO2, it diffuses in the opposite direction along its 

concentration gradient (low inside, higher outside). If this water loss is formulated in 

terms of potential difference and resistances, two resistances on this route can be 

identified: the leaf stomatal resistance (𝑟𝑠) and the leaf boundary layer resistance (𝑟𝑏). 

This latter provides the link between the air within the canopy and the conditions at the 

leaf surface.  

 

As the outward diffusion of water and CO2 is produced in a simultaneous way, all plants 

need to regulate the competing demands of taking up CO2 while limiting water loss. The 

functional solution of this dilemma is the temporal regulation of stomatal apertures. On a 

sunny morning, when water is abundant and photosynthetic activity is favored due to the 

incoming solar radiation (i.e. the demand of CO2 inside the leaf is large), the stomatal 

 (3.19) 
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pores are wide open. On contrary, at night as there is no demand for CO2, the stomatal 

apertures are kept small in order to prevent water loss. When there are conditions of water 

stress the stomata will open less or even remain closed. This avoids dehydration.  

 

 

Figure 3.3. Water pathway through the leaf (Taiz et al., 2015).  

 

 

3.4.- Evapotranspiration retrieval methods using remote sensing data 

 

In Figure 3.4 a temporal revision of the state of art of evapotranspiration retrieval using 

remote-sensing data is provided. For further details, several literature reviews that expand 

this topic exist: Courault et al. (2005), Kalma et al. (2008), Li et al. (2009), Wang & 

Dickinson (2012) and Zhang et al. (2016).  

Although it is difficult to establish a definitive classification of evapotranspiration 

algorithms, for this section we have adopted the classification proposed in Zhang et al. 

(2016) (Table 3.1). In this way, algorithms can be classified into models that calculate the 

𝜆𝐸  as a residual of the energy budget (i.e. 𝜆𝐸 = 𝑅𝑛 −𝐻 − 𝐺 ). According to the 

description that they do of the surface they can be divided into one-source and two-source. 

In the latter, an explicit flux partition is obtained for soil and vegetation components. 

Amongst these models we can further consider a subdivision between single-pixel models 

such as SEBS or TSEB that do not require information from the other pixels and 

contextual models that require the specification of wet and dry points from the image such 
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as METRIC and SEBAL. In line with this need of contextual information, VI-Ts methods 

make use of the triangle space in order to determine the wet and dry edge. With some 

variations, pixel 𝜆𝐸 value is an interpolation of the 𝜆𝐸 values at these edges. Apart from 

these algorithms, there are physical-based models such as the ones based on Penman-

Monteith and Priestley-Taylor logic. We can also mention the empirical methods, which 

are based on statistical relationships (or machine learning algorithms) between 𝜆𝐸 

observations and remote sensing or meteorological magnitudes. Other methods make use 

of the water balance budget or its link with the carbon budget. 

In Table 3.1 a bibliographic summary of the main advantages and disadvantages of each 

category is provided.  

 

 

 

Figure 3.4. Chronological line of selected key publications in satellite remote-sensing evapotranspiration 

model development (adapted from Zhang et al., 2016).  
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Table 3.1. Summary of the existing major satellite-based evapotranspiration retrieval methods (adapted 

from Zhang et al., 2016).  

Model Advantages Disadvantages 

Minimum 

Forcing 

requirements 

One-

source 

SEB 

- simple 

- low requirement for 

meteorological data 

- only available for clear-sky 

- requires parametrization of excessive 

resistance and local calibration 

- susceptible to 𝑇𝑠 and 𝑇𝑎 errors 

- requires scaling of instantaneous to daily 

values 

 

𝑅𝑛, 𝑇𝑠, 𝑇𝑎, 𝑢 

and VI 

 

Spatial 

variability 

- simple 

- low requirement of 

meteorological data 

- only available for clear-sky 

- requires parametrization of excessive 

resistance and local calibration 

- susceptible to 𝑇𝑠 and 𝑇𝑎 errors 

- requires scaling of instantaneous to daily 

values 

 

𝑅𝑛, 𝑇𝑠 and 𝛼 or 

VI 

Two-

source 

SEB 

- low requirement for 

meteorological forcing 

- only available for clear-sky 

-high sensitivity to surface temperature 

errors 

-requires scaling of instantaneous to daily 

values 

 

𝑅𝑛, 𝑇𝑠, 𝑇𝑎, 𝑢 

and VI 

Ts-VI 

- low sensitivity to Ts 

errors 

- low meteorological 

data requirement 

 

- only available for clear-sky  

- relationship derived from Ts-VI space is 

oversimplified 

- requires scaling of instantaneous to daily 

values 

 

𝑅𝑛, 𝑇𝑠 and VI 

Penman-

Monteith 

- ET partition 

- process-based,  

- temporally continuous  

- flexible time step 

- low requirements for 

surface temperature 

 

- high meteorological forcing requirements 

- simplified semi-empirical estimate of 

canopy conductance 

- models may require local calibration 

𝑅𝑛 or radiation 

inputs, 𝑇𝑎,  VPD 

and VI 

Priestley-

Taylor 

- simple 

- moderate requirement 

for meteorological 

forcing 

-ET partition 

 

- simplifications of physical processes 

- requirement of ground heat flux as input 

(or assumed negligible) 

- applied on a monthly time scale 

𝑅𝑛, 𝑇𝑎, 𝛼, VPD, 

P, 𝜃 and snow 

water equivalent 

for GLEAM 

Water 

balance 

- simple and easy to 

apply 

- cannot directly derive gridded E 

- coarse spatiotemporal resolution 

- sensitive to precipitation data error 

 

P, Q and Δ𝑆 

Water 

carbon 

linkage 

- consideration of the 

linkage between carbon 

and water fluxes 

- high requirements for forcing data 

- impacted by data gaps and errors 

- empirical carbon-water relationships 

 

Varies for 

different models 

Empirical - simple, easy to apply 

- requires calibration 

- degraded capability outside the 

calibration area 

- over-simplification of physical processes;  

- subject to weather condition if land 

surface temperature is required 

 

Varies for 

different models 

but at least 𝑅𝑛 

and VI.  
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3.5 Reference remote sensing based evapotranspiration algorithms 

 

After broadly reviewing the current evapotranspiration algorithms that make use of 

remote sensing data, in this section we focus on presenting the physical formulation of 

the four evapotranspiration algorithms considered in this work.  

 

3.5.1 Priestley-Taylor Jet Propulsion Laboratory (PT-JPL) 

 

In PT-JPL algorithm actual ET is derived by scaling the Priestley –Taylor potential 

evapotranspiration (Priestley & Taylor, 1972) considering different eco-physiological, 

atmospheric and soil constraints. Priestley-Taylor potential ET is given by Equation 3.20.  

𝜆𝐸 = 𝛼𝑃𝑇
Δ

Δ + 𝛾
(𝑅𝑛 − 𝐺) 

where 𝛼𝑃𝑇 is the Priestley-Taylor constant (1.26), Δ is the slope of saturation-to-vapour 

pressure curve (kPa/K), 𝛾 is the psychrometric constant (kPa/K), 𝑅𝑛 is the net radiation 

(Wm-2) and 𝐺 (Wm-2) is the soil heat flux.  

In PT-JPL model, 𝜆𝐸  is partitioned into three contributions:  λE𝐼  (interception 

evaporation),  λE𝑐  (canopy transpiration) and λE𝑠  (bare soil evaporation). These 

contributions are given by Equations 3.21 to 3.23.  

                                                         λE𝐼 = 𝑓𝑤𝑒𝑡𝛼𝑝𝑡  
Δ

Δ+ 𝛾
𝑅𝑛𝑐                                      

                                          λE𝑐 = (1 − 𝑓𝑤𝑒𝑡)𝑓𝑔𝑓𝑀𝑓𝑇𝛼𝑝𝑡  
Δ

Δ+ 𝛾
 𝑅𝑛𝑐                                     

                              λE𝑠 = (𝑓𝑤𝑒𝑡 + 𝑓𝑆𝑀(1 − 𝑓𝑤𝑒𝑡))𝛼𝑝𝑡
Δ

Δ+ 𝛾
 (𝑅𝑛𝑠 − 𝐺)                             

where 𝑅𝑛  is partitioned into a soil component (𝑅𝑛𝑠) and a canopy component (𝑅𝑛𝑐). 

These terms are calculated as 𝑅𝑛𝑠 = 𝑅𝑛exp (−𝑘𝑅𝑛𝐿𝐴𝐼) and 𝑅𝑛𝑐 = 𝑅𝑛 − 𝑅𝑛𝑠. The light 

extinction coefficient 𝑘𝑅𝑛 assumes a value of 0.6 and LAI (m2m-2) is derived as: 𝐿𝐴𝐼 =

(− ln(1 − 𝑓𝑐)/𝑘𝑃𝐴𝑅) (Fisher et al., 2008). 𝑓𝑐 is the fraction vegetation cover that in Fisher 

et al. (2008) is assumed equal to the fraction of photosynthesis active radiation (PAR) 

(Wm-2) intercepted by total vegetation cover (𝑓𝐼𝑃𝐴𝑅) and 𝑘𝑃𝐴𝑅 is equal to 0.5.   

In Equations 3.21 to 3.23 the constraints used refer to: relative surface wetness (𝑓𝑤𝑒𝑡), 

green canopy fraction (𝑓𝑔), plant temperature constraint (𝑓𝑇), plant moisture constraint 

(𝑓𝑀) and soil moisture constraint (𝑓𝑆𝑀). These terms are defined in Equations 3.24 to 

3.28:  

 

 

 (3.20) 

 (3.21) 

 (3.22) 
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𝑓𝑤𝑒𝑡 = 𝑅𝐻4 

𝑓𝑔 = 𝑓𝐴𝑃𝐴𝑅/𝑓𝐼𝑃𝐴𝑅 

𝑓𝑀 = 𝑓𝐴𝑃𝐴𝑅/𝑓𝐴𝑃𝐴𝑅𝑚𝑎𝑥 

𝑓𝑇 = exp[−(
𝑇𝑎 − 𝑇𝑜𝑝𝑡

𝑇𝑜𝑝𝑡
)

2

] 

𝑓𝑆𝑀 = 𝑅𝐻
𝑉𝑃𝐷
𝛽  

where 𝑅𝐻  is the relative humidity. 𝑓𝐴𝑃𝐴𝑅  and 𝑓𝐼𝑃𝐴𝑅  are the fraction of PAR that is 

absorbed (APAR) and intercepted (IPAR) by green vegetation cover. According to Fisher 

et al. (2008), they are defined as: 𝑓𝐴𝑃𝐴𝑅 = 1.3632 · 𝑆𝐴𝑉𝐼 − 0.048 and 𝑓𝐼𝑃𝐴𝑅 = 𝑁𝐷𝑉𝐼 −

0.05 , where SAVI and NDVI are the Soil Adjusted and Normalized Difference 

Vegetation Indexes, respectively. SAVI can be calculated as 𝑆𝐴𝑉𝐼 = 0.45 · 𝑁𝐷𝑉𝐼 +

0.132 (Ershadi et al., 2014). Maximum yearly 𝑓𝐴𝑃𝐴𝑅 value is used in the calculation of 

𝑓𝑀. 𝑇𝑎 refers to the maximum air temperature and 𝑇𝑜𝑝𝑡 (ºC) to the optimum plant growth 

temperature calculated as 𝑇𝑚𝑎𝑥  (ºC) at 𝑚𝑎𝑥{𝑃𝐴𝑅𝑓𝐴𝑃𝐴𝑅𝑇𝑚𝑎𝑥 /𝑉𝑃𝐷}  and represents to the 

maximum air temperature at the time of the peak in canopy activity (i.e. maximum 𝑓𝐴𝑃𝐴𝑅 

and minimum 𝑉𝑃𝐷). 𝑉𝑃𝐷  is the vapour pressure deficit (𝑒𝑠 − 𝑒𝑎) in kPa. 𝛽  constant 

assumes a value equal to 1.0 kPa. The hypothesis behind 𝑓𝑆𝑀 is that surface moisture 

status is linked to and reflects the evaporative demand of the atmosphere (i.e. the soil 

moisture is reflected in the adjacent atmosphere). As the strongest link between 

atmospheric and soil moisture is at midday, the conditions at this time are used 

(𝑅𝐻𝑚𝑖𝑛, 𝑇max ) instead of daily averages for this calculation. In addition, for 𝑓𝑤𝑒𝑡 

constraint it assumes to be zero for relative humidity (RH) values less than 0.7.  

As observed, the model is driven with only five inputs:  𝑅𝑛, NDVI, SAVI, maximum air 

temperature (Tmax), and water vapor pressure (ea). In Fisher et al. (2008), estimated 

evapotranspiration was derived by using monthly means of tower-based meteorological 

measurements and also monthly AVHRR and ISLSCP-II (International Satellite Land-

Surface Climatology Project, Initiative II) data. Nevertheless, some studies (Yuan et al., 

2010; Garcia et al., 2013) have shown that it can be successfully applied considering daily 

forcing.  
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3.5.2 Penman Monteith-Mu (PM-Mu) 

 

Mu et al. (2011) follows the Penman-Monteith logic (Monteith, 1965) in order to estimate 

𝜆𝐸. It is given in Equation 3.29.  

𝜆𝐸 =
Δ(𝑅𝑛 − 𝐺) + 𝜌𝑐𝑝𝑉𝑃𝐷/𝑟𝑎

Δ + γ(1 +
𝑟𝑠
𝑟𝑎
)

 

where 𝜌 is the density of the air, 𝑐𝑝 is the specific heat capacity of the air, 𝑟𝑎 (sm-1) is the 

aerodynamic resistance and 𝑟𝑠  (sm-1) is the surface resistance to evapotranspiration, 

which is an effective resistance to evaporation from land surface and transpiration from 

the plant canopy.  Δ , 𝛾 , 𝑅𝑛 , 𝐺  and 𝑉𝑃𝐷  have been defined previously in the PT-JPL 

model.  

The PM-Mu model used in this study was firstly introduced in Cleugh et al. (2007), which 

used Equation 3.29 to estimate ET over Australia using MODIS data. Based on this 

model, Mu et al. (2007) developed a two-source ET model using remotely sensed data, 

suggesting its applicability for global ET estimation. Finally, in Mu et al. (2011) the 

version used in this study is provided. As in PT-JPL model, 𝜆𝐸 (Wm-2) results from the 

contribution of three terms: evaporation from a wet canopy or interception term (λE𝑤𝑐), 

transpiration from the canopy (λE𝑐) and evaporation from the soil (λEs).  

Evaporation from a wet canopy is calculated using Equation 3.30,  

λE𝑤𝑐 = 𝑓𝑤𝑒𝑡𝑓𝑐  
Δ 𝑅𝑛𝑐 +  𝜌𝐶𝑃𝑉𝑃𝐷/𝑟𝑎

𝑤𝑐

 (Δ +  𝛾
𝑟𝑠
𝑤𝑐

𝑟𝑎
𝑤𝑐)

 

where 𝑓𝑤𝑒𝑡  is calculated in the same form as in PT-JPL model, 𝑓𝑐  represents the 

vegetation cover fraction (the fraction of PAR, 𝑓𝐴𝑃𝐴𝑅, is used as a surrogate for 𝑓𝑐), 𝑅𝑛𝑐 

represents the canopy net radiation and resistances 𝑟𝑎
𝑤𝑐  and 𝑟𝑠

𝑤𝑐  represent the 

aerodynamic resistance and surface resistance for wet canopy, and are calculated 

following Equations 3.31 and 3.32.   

𝑟𝑎
𝑤𝑐 =

𝑟ℎ
𝑤𝑐𝑟𝑟

𝑤𝑐

𝑟ℎ
𝑤𝑐 + 𝑟𝑟

𝑤𝑐 

𝑟𝑠
𝑤𝑐 =

1

𝑓𝑤𝑒𝑡𝑔𝑒𝐿𝐴𝐼
 

where 𝑟ℎ
𝑤𝑐 and 𝑟𝑟

𝑤𝑐 are the wet canopy resistance to sensible hear flux and wet canopy 

resistance to radiative heat transfer, respectively. They are defined as in Equations 3.33 

and 3.34.  

 

 (3.29) 

 (3.30) 

 (3.31) 

 (3.32) 
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𝑟ℎ
𝑤𝑐 =

1

𝑓𝑤𝑒𝑡𝑔ℎ𝐿𝐴𝐼
 

𝑟𝑟
𝑤𝑐 =

𝜌𝑐𝑝

4𝜎(𝑇𝑎 + 273.15)3
 

In Equations 3.31 to 3.34, 𝑔𝑒 and 𝑔ℎ (ms-1) are the leaf conductance to evaporated water 

vapour and sensible heat per unit of LAI, respectively. 𝜎  is the Stephan-Boltzmann 

constant. 𝑇𝑎 is the air temperature in ºC.  

Regarding the available energy, 𝑅𝑛𝑐 is calculated as a function of 𝑅𝑛 and 𝑓𝑐 (i.e. 𝑅𝑛𝑐 =

𝑓𝑐𝑅𝑛). In Mu et al. (2011) 𝑅𝑛 is calculated as in Equation 3.35.  

𝑅𝑛 = (1 − 𝛼)𝑅𝑠 + (𝜀𝑎 − 𝜀𝑠)𝜎(𝑇𝑎 + 273.15)
4 

where 𝛼 is the surface albedo, 𝑅𝑠 is the shortwave incoming radiation, 𝜀𝑎 and 𝜀𝑠 are the 

atmospheric and surface emissivity respectively. 𝜀𝑎  is given by 𝜀𝑎 = 1 −

0.26exp (−7.77 · 10−4 · 𝑇𝑎
2) and 𝜀𝑠 is equal to 0.97.  

The contribution from the canopy transpiration is calculated as in Equation 3.36.  

λE𝑐 = (1 − 𝑓𝑤𝑒𝑡)𝑓𝑐  
Δ 𝑅𝑛𝑐 +  𝜌𝐶𝑃𝑉𝑃𝐷/𝑟𝑎

𝑡

(Δ +  𝛾
𝑟𝑠
𝑡

𝑟𝑎
𝑡)

 

where 𝑟𝑎
𝑡  and 𝑟𝑠

𝑡  are the aerodynamic and surface resistances for transpiration 

respectively. 𝑟𝑎
𝑡 is calculated as in Equation 3.37. 

𝑟𝑎
𝑡 =

𝑟ℎ
𝑡𝑟𝑟
𝑡

𝑟ℎ
𝑡 + 𝑟𝑟

𝑡  

where the convective heat transfer resistance (𝑟ℎ
𝑡)  is given by  𝑟ℎ

𝑡 = 1/𝑔𝑏𝑙  and the 

radiative transfer resistance (𝑟𝑟
𝑡) is calculated as  𝑟𝑟

𝑡 = 𝑟𝑟
𝑤𝑐 with 𝑔𝑏𝑙 (ms-1) being the leaf-

scale boundary layer conductance per unit LAI and assumed equal to that of the sensible 

heat (i.e. 𝑔𝑏𝑙 = 𝑔ℎ) 

In the case of 𝑟𝑠
𝑡 it is calculated as the inverse of the bulk canopy conductance (𝐶𝑐) (i.e. 

𝑟𝑠
𝑡 = 1/𝐶𝑐) where 𝐶𝑐 (ms-1) is calculated as in Equation 3.38.  

𝐶𝑐 = {

(1 − 𝑓𝑤𝑒𝑡)((𝐺𝑠
𝑠𝑡 + 𝐺𝑠

𝑐𝑢)𝐺𝑠
𝑏)

𝐺𝑠
𝑠𝑡 + 𝐺𝑠

𝑐𝑢 + 𝐺𝑠
𝑏

𝐿𝐴𝐼           𝐿𝐴𝐼 > 0, (1 − 𝑓𝑤𝑒𝑡 > 0)

0                                                                 𝐿𝐴𝐼 = 0, (1 − 𝑓𝑤) = 0 

  

In this Equation 3.38, the canopy boundary-layer conductance 𝐺𝑠
𝑏 (ms-1) is assumed equal 

to 𝑔ℎ (i.e (𝐺𝑠
𝑏 = 𝑔ℎ), the cuticular conductance ( 𝐺𝑠

𝑐𝑢) (ms-1)  is calculated as 𝐺𝑠
𝑐𝑢 = 𝑟𝑐𝑜𝑟𝑟𝑔𝑐𝑢 

and the stomatal conductance (𝐺𝑠
𝑠𝑡) (ms-1)  is given by 𝐺𝑠

𝑠𝑡 = 𝐶𝐿𝑚(𝑇𝑚𝑖𝑛)𝑚(𝑉𝑃𝐷)𝑟𝑐𝑜𝑟𝑟. The 

leaf cuticular conductance 𝑔𝑐𝑢 is per unit LAI and assumed equal to 0.00001 ms-1. In addition, 

the mean potential stomatal conductance (𝐶𝐿) (ms-1)   is per unit LAI and is assumed constant 

 (3.33) 

 (3.34) 

 (3.35) 

 (3.36) 

 (3.37) 

 (3.38) 
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for each biome. The 𝑟𝑐𝑜𝑟𝑟 is used to adjust the 𝐺𝑠
𝑠𝑡 based on the standard air temperature 

and pressure (Equation 3.39).  

𝑟𝑐𝑜𝑟𝑟 =
1

101300
𝑃𝑎 (

𝑇𝑎 + 273.15
293.15

)
1.75 

𝑚(𝑇𝑚𝑖𝑛) multiplier limits potential stomatal conductance by minimum air temperature 

(𝑇𝑚𝑖𝑛) and 𝑚(𝑉𝑃𝐷) multiplier used to reduce the potential stomata conductance by 𝑉𝑃𝐷 

(Pa). They are given by Equations 3.40 to 3.41, where 𝑇𝑚𝑖𝑛
𝑜𝑝𝑒𝑛, 𝑇𝑚𝑖𝑛

𝑐𝑙𝑜𝑠𝑒, 𝑉𝑃𝐷𝑜𝑝𝑒𝑛 and 

𝑉𝑃𝐷𝑐𝑙𝑜𝑠𝑒 depend on biome type.  

𝑚(𝑇𝑚𝑖𝑛) =  

{
 
 

 
 

1                                       𝑇𝑚𝑖𝑛  ≥    𝑇𝑚𝑖𝑛
𝑜𝑝𝑒𝑛   

𝑇𝑚𝑖𝑛 − 𝑇𝑚𝑖𝑛
𝑐𝑙𝑜𝑠𝑒

𝑇𝑚𝑖𝑛
𝑜𝑝𝑒𝑛 − 𝑇𝑚𝑖𝑛

𝑐𝑙𝑜𝑠𝑒                    𝑇𝑚𝑖𝑛
𝑐𝑙𝑜𝑠𝑒 < 𝑇𝑚𝑖𝑛 < 𝑇𝑚𝑖𝑛

𝑜𝑝𝑒𝑛   

0                                        𝑇𝑚𝑖𝑛  ≤    𝑇𝑚𝑖𝑛
𝑐𝑙𝑜𝑠𝑒

         

 

𝑚(𝑉𝑃𝐷) =  {

1                                       𝑉𝑃𝐷 ≤    𝑉𝑃𝐷𝑜𝑝𝑒𝑛   
𝑉𝑃𝐷 − 𝑉𝑃𝐷𝑐𝑙𝑜𝑠𝑒

𝑉𝑃𝐷𝑜𝑝𝑒𝑛 − 𝑉𝑃𝐷𝑐𝑙𝑜𝑠𝑒
                   𝑉𝑃𝐷𝑐𝑙𝑜𝑠𝑒 < 𝑉𝑃𝐷 < 𝑉𝑃𝐷𝑜𝑝𝑒𝑛   

0                                        𝑉𝑃𝐷 ≥    𝑉𝑃𝐷𝑐𝑙𝑜𝑠𝑒

         

 

The last contribution to total 𝜆𝐸  comes from the evaporation from the soil and is 

calculated as in Equation 3.42.  

λEs = (𝑓𝑤𝑒𝑡 +  𝑅𝐻
𝑉𝑃𝐷
𝛽 (1 − 𝑓𝑤𝑒𝑡 ))

Δ (𝑅𝑛𝑠 − 𝐺) +  𝜌𝑐𝑃𝑉𝑃𝐷/𝑟𝑎
𝑠

(Δ +  𝛾
𝑟𝑠
𝑠

𝑟𝑎
𝑠)

 

where 𝑟𝑎
𝑠 and 𝑟𝑠

𝑠 are aerodynamic and surface resistances for the soil surface. The term 

𝑅𝐻𝑉𝑃𝐷/𝛽 is based on the complementary hypothesis and describes the land-atmosphere 

interactions. 𝛽 assumes a value of 200 Pa. 𝑅𝑛𝑠 is calculated as 𝑅𝑛𝑠 = (1 − 𝑓𝑐)𝑅𝑛 and G 

is obtained from 𝐺 = 𝐺𝑠𝑜𝑖𝑙(1 − 𝑓𝑐) and 𝐺𝑠𝑜𝑖𝑙 is given by Equation 3.43.  

 

𝐺𝑠𝑜𝑖𝑙 = {

4.73𝑇𝑎 − 20.87      ( 𝑇𝑚𝑖𝑛
𝑐𝑙𝑜𝑠𝑒 ≤ 𝑇𝑎𝑛𝑛 < 25º𝐶) 𝑎𝑛𝑑 (𝑇𝑑𝑎𝑦 − 𝑇𝑛𝑖𝑔ℎ𝑡 ≥ 5º𝐶)

0.0             ( 𝑇𝑎𝑛𝑛 ≥ 25º𝐶) 𝑜𝑟 ( 𝑇𝑎𝑛𝑛 < 𝑇𝑚𝑖𝑛
𝑐𝑙𝑜𝑠𝑒) 𝑜𝑟 (𝑇𝑑𝑎𝑦 − 𝑇𝑛𝑖𝑔ℎ𝑡 ≥ 5º𝐶)

0.39𝑅𝑛                                                                               𝑎𝑏𝑠(𝐺) > 0.39 · 𝑎𝑏𝑠(𝑅𝑛)               

 

 

  𝑟𝑎
𝑠 is calculated in a similar way to 𝑟𝑎

𝑤𝑐 and 𝑟𝑎
𝑡 and is given by Equation 3.44.  

 

 (3.39) 

 (3.40) 

 (3.41) 

 (3.42) 

 (3.43) 
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𝑟𝑎
𝑠 =

𝑟ℎ
𝑠𝑟𝑟
𝑠

𝑟ℎ
𝑠 + 𝑟𝑟

𝑠 

 

where the resistance to radiative transfer is equal to 𝑟𝑟
𝑤𝑐 and the resistance to convective 

heat transfer (𝑟ℎ
𝑠) is assumed equal to 𝑟𝑠

𝑠. This resistance is calculated as 𝑟𝑠
𝑠 = 𝑟𝑐𝑜𝑟𝑟𝑟𝑡𝑜𝑡𝑐. 

𝑟𝑐𝑜𝑟𝑟 is given in Equation 3.39 and 𝑟𝑡𝑜𝑡𝑐 is given by Equation 3.45.  

 

𝑟𝑡𝑜𝑡𝑐 =  

{
 

 

𝑟𝑏𝑙
𝑚𝑎𝑥 −

𝑟𝑏𝑙
𝑚𝑎𝑥                                                𝑉𝑃𝐷 ≤    𝑉𝑃𝐷𝑜𝑝𝑒𝑛    

(𝑟𝑏𝑙
𝑚𝑎𝑥 − 𝑟𝑏𝑙

𝑚𝑖𝑛)(𝑉𝑃𝐷𝑐𝑙𝑜𝑠𝑒 − 𝑉𝑃𝐷)

𝑉𝑃𝐷𝑐𝑙𝑜𝑠𝑒 − 𝑉𝑃𝐷𝑜𝑝𝑒𝑛
     𝑉𝑃𝐷𝑐𝑙𝑜𝑠𝑒 < 𝑉𝑃𝐷 < 𝑉𝑃𝐷𝑜𝑝𝑒𝑛   

𝑟𝑏𝑙
𝑚𝑖𝑛                                               𝑉𝑃𝐷 ≥    𝑉𝑃𝐷𝑐𝑙𝑜𝑠𝑒

         

 

𝑟𝑏𝑙
𝑚𝑎𝑥 , 𝑟𝑏𝑙

𝑚𝑖𝑛 , 𝑉𝑃𝐷𝑜𝑝𝑒𝑛 , 𝑉𝑃𝐷𝑐𝑙𝑜𝑠𝑒 , 𝑇𝑚𝑖𝑛
𝑜𝑝𝑒𝑛 , 𝑇𝑚𝑖𝑛

𝑐𝑙𝑜𝑠𝑒 , 𝑔ℎ , 𝑔𝑒  and 𝐶𝐿  are parameters 

that depend on the biome type and need to be calibrated. In Table 3.2, the parameters 

values provided in Mu et al. (2011) are presented.  

 

Table 3.2. Biome Properties Look-Up Table (BPLUT) for MODIS ET. ENF: evergreen needleleaf forest; 

EBF evergreen broadleaf forest; DNF deciduous nedleleaf forest; DBF deciduous broadleaf forest; MF 

mixed forest; WL woody savannas; SV savannas; CSH closed shrubland; OSH open shrubland; Grass 

grassland, urban built-up or sparsely vegetated; Crop cropland (adapted from Mu et al. (2011)). 

 

 
𝑻𝒎𝒊𝒏

𝒐𝒑𝒆𝒏

(ºC) 

𝑻𝒎𝒊𝒏
𝒄𝒍𝒐𝒔𝒆 

(ºC) 

𝑽𝑷𝑫𝒐𝒑𝒆𝒏 

(Pa) 

𝑽𝑷𝑫𝒄𝒍𝒐𝒔𝒆 

(Pa) 

𝒈𝒉 

(ms-1) 

𝒈𝒆 

(ms-1) 

𝑪𝑳 

(ms-1) 

𝒓𝒃𝒍
𝒎𝒊𝒏 

(sm-1) 

𝒓𝒃𝒍
𝒎𝒂𝒙 

(sm-1) 

ENF 8.31 -8 3000 650 0.04 0.04 0.0032 65 95 

EBF 9.09 -8 4000 1000 0.01 0.01 0.0025 70 100 

DNF 10.44 -8 3500 650 0.04 0.04 0.0032 65 95 

DBF 9.94 -6 2900 650 0.01 0.01 0.0028 65 100 

MF 9.5 -7 2900 650 0.04 0.04 0.0025 65 95 

CSH 8.61 -8 4300 650 0.04 0.04 0.0065 20 55 

OSH 8.8 -8 4400 650 0.04 0.04 0.0065 20 55 

WL 11.39 -8 3500 650 0.08 0.08 0.0065 25 45 

SV 11.39 -8 3600 650 0.08 0.08 0.0065 25 45 

Grass 12.02 -8 4200 650 0.02 0.02 0.007 20 50 

Crop 12.02 -8 4500 650 0.02 0.02 0.007 20 50 

 

 

 

 

 (3.44) 

 (3.45) 
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3.5.3. SEBS 

 

In SEBS (Su, 2002), 𝜆𝐸 is obtained as a residual term of the surface energy balance (i.e. 

𝜆𝐸 = 𝑅𝑛 − 𝐻 − 𝐺0). 𝑅𝑛 and 𝐺0 are defined as follows (Equations 3.46 to 3.47).  

𝑅𝑛 = (1 − 𝛼)𝑆↓ + 𝜀𝐿↓ − 𝜀𝜎𝐿𝑆𝑇
4 

𝐺0 = 𝑅𝑛[Γ𝑐 + (1 − 𝑓𝑐)(Γ𝑠 − Γ𝑐)] 

where 𝛼 is the surface albedo, 𝑆↓ is the downward solar radiation, 𝐿↓ is the downward 

longwave radiation, 𝜀 is the surface emissivity, 𝜎 is the Stephan-Boltzmann constant and 

LST is the land surface temperature. In Equation 3.46, 𝑅𝑛 represents the net radiation, 𝑓𝑐 

the vegetation fraction cover and Γ𝑐  and Γ𝑠  represent the ratio of soil heat flux to net 

radiation and take values of Γ𝑐 = 0.05 and Γ𝑠 = 0.315.  

In order to derive the sensible heat flux, the similarity theory is used. In Su (2002) a 

distinction is made between the Atmospheric Boundary Layer  which uses the Bulk 

Atmospheric Boundary Layer Similary (BAS) correction functions (Brustaert, 1999) and 

the Atmospheric Surface Layer (ASL) which uses the Monin-Obukhov Similarity (MOS) 

functions also proposed by Brutsaert (1999). The ABL refers to the part that is directly 

influenced by the presence of the Earth’s surface and responds to the surface forcings 

with a timescale of an hour or less, while ASL refers to the bottom 10% of ABL (Su, 

2002). The selection of the similarity theory employed depends on the magnitude of the 

reference height (𝑧𝑟𝑒𝑓) and the height of the ASL (ℎ𝑠𝑡). In order to derive this last 

quantity the height of the ABL(ℎ𝑖) is required as input data to SEBS model. In case when 

no information is provided a default value of 1000 m can be used. In Su (2002), the ℎ𝑠𝑡 

is calculated taking into account that it is proportional to ℎ𝑖 over moderated rough terrain 

and proportional to the surface roughness over very rough terrain (Brustaert, 1999). This 

translates into Equation 3.48, in which default SEBS parameters were used.  

ℎ𝑠𝑡 =  max (0.12ℎ𝑖 , 125𝑧0𝑚)  

If 𝑧𝑟𝑒𝑓 < ℎ𝑠𝑡 , then MOS set of equations applies, otherwise BAS does. As it can be seen 

BAS only applies when we are dealing with atmospheric information at mid and upper 

levels of the atmosphere. Therefore, in the following only a brief explanation of retrieving 

H using MOS is provided. The set of established equations are given by Equation 3.13 to 

3.16. In Equation 3.13, the contribution of 𝐸  is not included. In these equations the 

stability corrections functions need to be specified for the unstable and stable conditions 

of the atmosphere. Unstable conditions are given by Equations 3.49 to 3.51, where where 

𝑦 =  −(𝑧 − 𝑑)/𝐿 , 𝑥 = (𝑦/𝑎) 1/3 ,Ψ0 = (−𝑙𝑛𝑎 + 3
1/2𝑏𝑎1/3𝜋/6), and a = 0.33, b = 0.41, c = 

0.33, n = 0.78, d = 0.057. Stable conditions are given by Equations 3.52 to 3.53, where 𝑦𝑠 =

 (𝑧 − 𝑑)/𝐿, 𝑎𝑠 = 1, 𝑏𝑠 = 2/3, 𝑐𝑠 = 5 and 𝑑𝑠 = 1. Unstable correction functions are given 

by Brustsaert (1999). Equation 3.49 apply for 𝑦 ≤ 𝑏−3 and Equation 3.50 apply for 𝑦 >

 (3.46) 

 (3.47) 

 (3.48) 
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𝑏−3. For stable conditions, the expressions proposed by Beljaars & Holtslag (1991) and 

evaluated by van den Hurk & Holtslag (1997) were used.  

 

Unstable conditions 

Ψ𝑚(𝑦) = ln(𝑎 + 𝑦) − 3𝑏𝑦
1
3 +

𝑏𝑎
1
3

2
ln [

(1 + 𝑥)2

1 − 𝑥 + 𝑥2
] + 3

1
2𝑏𝑎

1
3 tan−1 [

2𝑥 − 1

3
1
2

] + Ψ0          

Ψ𝑚(𝑦) =  Ψ𝑚(𝑏
−3)                                                                                                                      

Ψℎ(𝑦) = [
1 − 𝑑0
𝑛

] ln [
𝑐 + 𝑦𝑛

𝑐
] 

 

Stable conditions 

Ψ𝑚 = −[𝑎𝑠𝑦𝑠 + 𝑏𝑠 (𝑦𝑠 −
𝑐𝑠
𝑑𝑠
) exp(−𝑑𝑠𝑦𝑠) + 𝑏𝑠𝑐𝑠/𝑑𝑠             

Ψℎ = −[(1 +
2𝑎𝑠
3
𝑦𝑠)

1.5

+ 𝑏𝑠 (𝑦𝑠 −
𝑐𝑠
𝑑𝑠
) exp(−𝑑𝑠𝑦𝑠) + (

𝑏𝑠𝑐𝑠
𝑑𝑠

− 1)] 

 

In SEBS, the roughness height for heat transfer is calculated as 𝑧0ℎ = 𝑧0𝑚/exp (𝑘𝐵
−1). 

In order to estimate 𝑘𝐵−1, the model proposed by Su (2001) is used. 𝑘𝐵−1 is thus given 

by Equation 3.54.  

𝑘𝐵−1 = 𝑓𝑐
2𝑘𝐵𝑐

−1 + 2𝑓𝑐𝑓𝑆𝑘𝐵𝑚
−1 + 𝑓𝑠

2𝑘𝐵𝑠
−1 

the first term in Equation 3.54 follows the full canopy model of Choudhury & Monteith 

(1988) and it is given by 𝑘𝐵𝑐
−1 = 𝑘𝐶𝑑/[4𝐶𝑡𝛽(1 − exp (−𝜂𝑒𝑐/2))] with 𝐶𝑑  is the drag 

coefficient of the leaves and takes a value of 0.2, 𝐶𝑡 is the heat transfer coefficient of the 

leaf. For most canopies and environmental conditions 𝐶𝑡 is bounded by 0.005 𝑁 ≤ 𝐶𝑡 ≤

0.075 𝑁, being N the number of sides of a leaf to participate in heat exchange. 𝛽 is the 

ratio between the friction velocity and the wind speed at canopy height. It can be 

calculated from leaf area index (LAI) as 𝛽 = 0.32 − 0.264exp (−15.1𝐶𝑑𝐿𝐴𝐼). 𝜂𝑒𝑐 is the 

within-canopy wind speed profile extinction coefficient calculated as 𝜂𝑒𝑐 = 𝐶𝑑𝐿𝐴𝐼/2𝛽
2. 

The third term is that of Brutsaert (1982) for bare soil surface and it is calculated as 

𝑘𝐵𝑠
−1 = 2.46(𝑅𝑒∗)

1/4 − ln (7.4). 𝑅𝑒∗ is the roughness Reynolds number 𝑅𝑒∗ = ℎ𝑠𝑢∗/𝜈. 

ℎ𝑠 is the roughness height of the soil equal to 0.009 m and 𝜈 is the viscosity of the air 

given by 𝜈 = 1.327 · 10−5(𝑝0/𝑝)(𝑇/𝑇0)
1.81 with p and T being the ambient pressure and 

air temperature and 𝑝0 = 101.3 𝑘𝑃𝑎 and 𝑇0 = 273.15 𝐾. 𝑢∗  is the friction velocity is 

given by 𝑢∗ = 𝑢𝑧𝑟𝑒𝑓𝑘/ln [(𝑧𝑟𝑒𝑓 − 𝑑0)/𝑧0𝑚]  where 𝑢𝑧𝑟𝑒𝑓  is the wind speed at the 

reference height and 𝑑0 is given by 0.667ℎ. h is the height of the canopy. The second 

term describes the interaction between vegetation and a bare soil surface and it is given 

by 𝑘𝐵𝑚
−1 =  𝜅𝛽𝑧0𝑚/𝐶𝑡

∗ℎ. ℎ is the canopy height and 𝐶𝑡
∗ = Pr−2/3𝑅𝑒∗

−1/2, where Pr is 

 (3.49) 

 (3.50) 

 (3.51) 

 (3.52) 

 (3.53) 

 (3.54) 
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the Prandtl number equal to 0.7. This term is weighted by 𝑓𝑐 and 𝑓𝑠 which are the canopy 

and soil fraction cover.  

In order to determine the evaporative fraction, SEBS uses energy balance considerations 

at limiting cases (wet and dry limits). Under the assumption of dry-limit, the latent and 

sensible heat are given by Equations 3.55 and 3.56.  

 𝜆𝐸𝑑𝑟𝑦 = 𝑅𝑛 − 𝐺0 − 𝐻𝑑𝑟𝑦 ≡ 0   

 𝐻𝑑𝑟𝑦 = 𝑅𝑛 − 𝐺0.  

At the wet limit, 𝜆𝐸 reaches a maximum value and 𝐻𝑤𝑒𝑡 a minimum (but not zero). In 

addition, at this point 𝜆𝐸 coincides with potential evapotranspiration and its value could 

be derived from a Penman-Monteith type of equation (Equation 3.29). In this expression, 

the internal resistance (𝑟𝑠 is equal to 0) and then 𝐻𝑤𝑒𝑡 is evaluated as in Equation 3.57.  

𝐻𝑤𝑒𝑡 = ((𝑅𝑛 − 𝐺0) −
𝜌𝐶𝑝

𝑟𝑒𝑤

𝑒𝑠 − 𝑒

𝛾
)/(1 +

Δ

𝛾
)  

The external resistance 𝑟𝑒𝑤 can be expressed as in Equation 3.58.  

𝑟𝑒𝑤 =
1

𝑘𝑢∗
[ln (𝑧 −

𝑑0
𝑧0ℎ

) − Ψℎ (𝑧 −
𝑑0
𝐿𝑤
) + Ψℎ (

𝑧0ℎ
𝐿𝑤
)] 

where the Monin-Obukhov length at wet limit (𝐿𝑤) (Equation 3.59).  

𝐿𝑤 = −
𝜌𝑢∗

3

𝑘𝑔0.61(𝑅𝑛 − 𝐺0)𝜆
 

The relative evaporation is evaluated after the limiting cases as in Equation 3.60.  

Λ𝑟 =
𝜆𝐸

𝜆𝐸𝑤𝑒𝑡
= 1 −

𝜆𝐸𝑤𝑒𝑡 − 𝜆𝐸

𝜆𝐸𝑤𝑒𝑡
= 1 −

𝐻 − 𝐻𝑤𝑒𝑡
𝐻𝑑𝑟𝑦 − 𝐻𝑤𝑒𝑡

 

Then the evaporative fraction can be derived as in Equation 3.61.  

Λ =
Λ𝑟λEwet
𝑅𝑛 − 𝐺

=
λE

𝑅𝑛 − 𝐺
 

In order to upscale the instantaneous fluxes to daily values, assuming that the evaporative 

fraction is conservative, the daily evapotranspiration value can be estimated as in 

Equation 3.62.  

𝐸𝑑𝑎𝑖𝑙𝑦 = 8.64 · 10
7Λ

𝑅𝑛̅̅̅̅

𝜆𝜌𝑤
 

 

 

 

 (3.55) 

 (3.56) 

 (3.57) 

 (3.58) 

 (3.59) 

 (3.60) 

 (3.61) 

 (3.62) 
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3.5.4 LSA-SAF 

 

The LSA-SAF model (Ghilain et al., 2011) can be described as a Soil Vegetation 

Atmosphere Transfer (SVAT) scheme modified to accept input data from external 

sources (Gellens-Meulenberghs et al., 2007). The parametrizations from TESSEL SVAT 

scheme (van den Hurk et al., 2000; Balsamo et al., 2009) are used as a baseline for model 

development, with a few variants in the formulations. These are: model runs decoupled 

from the atmospheric model and uses data from external sources like satellite remote 

sensing data, numerical weather prediction model output and recent information about 

land-cover characteristics.  

In LSASAF model, the surface energy balance is solved independently for each of the so-

called tiles. A tile is considered a smaller homogenous entity (vegetation, bare soil, snow 

etc). In practice, a maximum of four tiles (3 types of vegetation + bare soil) are allowed 

by pixel. The fluxes at pixel scale are then a weighted contribution of the fluxes of all the 

tiles composing the pixel.  

The sensible (𝐻𝑖) and latent (𝜆𝐸𝑖) are computed for each tile using Equations 3.63 and 

3.64. This surface energy balance is computed in a conceptual layer called skin layer. 

This latter represents the coverage of the land surface as a flat layer, without description 

of the 3-D structure of the canopy. 

𝐻𝑖 =
𝜌

𝑟𝑎𝑖
[𝑐𝑝(𝑇𝑠𝑘𝑖 − 𝑇𝑎) − 𝑔𝑧𝑎] 

𝜆𝐸𝑖 =
𝐿𝑣𝜌

𝑟𝑎𝑖 + 𝑟𝑠𝑖
[𝑞𝑠𝑎𝑡(𝑇𝑠𝑘𝑖) − 𝑞𝑎(𝑇𝑎)] 

where 𝜌 is the air density, 𝑟𝑎𝑖 is the aerodynamic resistance,  𝑐𝑝 is the heat capacity at 

constant pressure, 𝑇𝑠𝑘𝑖 is the surface skin temperature, 𝑇𝑎 is the air temperature at level  

𝑧𝑎  above the surface, 𝑔  is the acceleration due to gravity, 𝐿𝑣  is the latent heat of 

vaporization, 𝑟𝑠𝑖  is the stomatal resistance, 𝑞𝑎(𝑇𝑎) is the value of the surface specific 

humidity at height 𝑧𝑎  and  𝑞𝑠𝑎𝑡(𝑇𝑠𝑘𝑖)  is the specific humidity at saturation. 𝑟𝑎𝑖  is 

calculated as function of the atmospheric stability following Monin-Obukhov similarity 

theory (Equation 3.65).  

1

𝑟𝑎𝑖
=

𝑘𝑢∗𝑖

ln (
𝑧𝑎 − 𝑑𝑖
𝑧0ℎ𝑖

) − 𝜓ℎ (
𝑧𝑎 − 𝑑𝑖
𝐿𝑖

) + 𝜓ℎ (
𝑧0ℎ𝑖
𝐿𝑖
)
 

where  𝐿𝑖 and 𝑢∗𝑖 are the friction velocity and Monin-Obukhov stability length defined as 

in Equations 3.13 and 3.14. The sensible heat and momentum stability functions (𝜓ℎ and 

𝜓𝑚) are defined as in Beljaars & Viterbo (1994). For the case of stable conditions, they 

agree with Equations 3.52 and 3.53 in the description of SEBS model, while for unstable 

conditions they take the following form (Equations 3.66 and 3.67), where 𝑥 =

(1 − 16𝑧/𝐿)1/4.  

 (3.63) 

 (3.64) 

 (3.65) 
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𝜓𝑚 =
𝜋

2
− 2 atan(𝑥) + ln

(1 + 𝑥)2(1 + 𝑥2)

8
  

𝜓ℎ = 2 ln(
1 + 𝑥2

2
)  

The stomatal resistance is calculated following the same Jarvis approach (Jarvis, 1976) 

adopted in TESSEL SVAT scheme (Viterbo & Beljaars, 1995; van den Hurk et al., 2000). 

For vegetation, the general formulation is given by Equation 3.68.  

𝑟𝑠𝑖 =
𝑟𝑠𝑚𝑖𝑛𝑖
𝐿𝐴𝐼𝑖

𝑓1(𝑆𝑖𝑛)𝑓2(�̅�)𝑓3(𝐷𝑎) 

For the particular case of bare ground, a simplified formulation is used (Equation 3.69).  

𝑟𝑠𝑖 = 𝑟𝑠𝑚𝑖𝑛𝑖𝑓2(�̅�1) 

where 𝑓1(𝑆 ↓), 𝑓2(�̅�) and 𝑓3(𝐷𝑎) functions are given by Equations 3.70 to 3.72 and taken 

from van den Hurk (2000).  

𝑓1(𝑆𝑖𝑛)
−1 = min (1,

0.004𝑆𝑖𝑛 + 0.05

0.81(0.004𝑆𝑖𝑛 + 1)
) 

𝑓2(�̅�)
−1  =   

(�̅� − 𝜃𝑤𝑝)

(𝜃𝑓𝑐 − 𝜃𝑤𝑝)
 

𝑓3(𝐷𝑎)
−1 = exp (−𝑔𝐷𝐷𝑎) 

 

where 𝑆𝑖𝑛 is the solar radiation incoming, �̅� is the averaged water content in the root zone, 

𝜃𝑤𝑝and 𝜃𝑓𝑐 are the wilting point and field capacity of the soil assumed equal to 0.171 and 

0.323 m3/m3. �̅� is calculated according to Equation 3.73 and 3.74.  

�̅� =  ∑𝑅𝑘max (𝑓𝑙𝑖𝑞𝑘𝜃𝑘, 𝜃𝑤𝑝)

4

𝑘=1

 

𝑓𝑙𝑖𝑞𝑘 = 

{
 
 

 
 
1                                                                                             𝑇𝑘 > 𝑇𝑓1            

1 − 0.5 (1 − sin (
𝜋(𝑇𝑘 − 0.5𝑇𝑓1 − 0.5𝑇𝑓2)

𝑇𝑓1 − 𝑇𝑓2 
))           𝑇𝑓2 ≤ 𝑇𝑘 ≤ 𝑇𝑓1

0                                                                                   𝑇𝑘 ≤ 𝑇𝑓2

  

 

where 𝑇𝑓1 and 𝑇𝑓2 are two constant temperatures of 1ºC (274.15 K) and -3º C (270.15 K). 

𝑇𝑘 and 𝜃𝑘 are the soil layer temperature and water content temperature of the NWP output 

(i.e. as derived from reanalysis) and 𝑅𝑘 is the root distribution per vegetation type in % 

over the four soil layers (Table 3.3). In the case of the soil resistance, only the water 

content of the first soil layer (�̅�1)is considered. 𝐷𝑎 is the calculated as 𝑒𝑠𝑎𝑡(𝑇𝑎) − 𝑒𝑎(𝑇𝑎). 

 (3.66) 

 (3.67) 

 (3.68) 

 (3.69) 

 (3.70) 

 (3.71) 

 (3.72) 

 (3.73) 

 (3.74) 
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As in the case of  𝑟𝑠𝑚𝑖𝑛,  𝑔𝐷 is a vegetation type parameter. In Table 3.3, values are 

provided. 

 

Table 3.3. Vegetation type considered in the LSASAF algorithm and associated parameters: minimum 

stomatal resistance (𝑟𝑠𝑚𝑖𝑛 ), coefficient for the dependency of canopy resistance on water vapour pressure 

deficit (𝑔𝐷) and root distribution per vegetation type in % over the four soil layers  (𝑅𝑘). In the case of 𝑅𝑘, 

from left to right values correspond to increasing values of depth.  

Vegetation type 𝒓𝒔𝒎𝒊𝒏 (s/m) 𝒈𝑫 (hPa-1) 𝑹𝒌 

Bare soil 50 0 100-0-0-0 

Snow --- --- ------ 

Deciduous Broadleaved trees 300 0.03 24-38-31-7 

Evergreen Needleleaved trees 250 0.03 26-39-29-6 

Evergreen Broadleaved trees 250 0.03 25-34-27-14 

Crops 180 0 24-41-31-4 

Irrigated crops 180 0 24-41-31-4 

Grass 110 0 35-38-23-4 

Bogs and Marshes 250 0 25-34-27-11 

 

At tile level i, the surface energy budget acts as a constraint and it is expressed by 

Equation 3.75.   

𝑅𝑛𝑖 − 𝐻𝑖 − 𝜆𝐸𝑖 − 𝐺𝑖 = 0  

 

where 𝑅𝑛𝑖 and 𝐺𝑖 are the net radiation and soil heat flux and are calculated as in Equations 

3.76 and 3.77.  

𝑅𝑛 = (1 − 𝛼)𝑆↓ + 𝜀(𝐿↓ − 𝜎𝑇𝑠𝑘𝑖
4 ) 

 

𝐺𝑖 = 0.5 exp(−2.13(0.88 − 0.78exp (−0.6𝐿𝐴𝐼))𝑅𝑛𝑖 

 

where 𝑇𝑠𝑘𝑖 is the model variable representing the surface temperature at tile level, 𝜎 is the 

Stephan-Boltzmann constant,  𝛼 and 𝜀 are the surface and emissivity surface. 𝑆↓ and 𝐿↓ 

are the solar and longwave incoming radiation. All these values represent pixel values.  

 

The surface energy balance is composed of four non-linear equations 3.63, 3.64, 3.65 and 

3.13 and for unknowns (𝐻𝑖 , 𝜆𝐸𝑖 , 𝑇𝑠𝑘𝑖, 𝑢∗𝑖). The rest of equations need to be taken into 

account trough an iterative method. Neutral stability is assumed as initial condition. 

Iteration is stopped when pixel estimates of latent and heat fluxes are stabilized using a 

predefined precision. Heat fluxes for the whole pixel are calculated as a weighted 

contribution for each tile.  

 

 

 

 

 

 (3.75) 

 (3.76) 

 (3.77) 
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3.6.- Observations of Evapotranspiration  

 

Retrieval of 𝜆𝐸 from estimations from satellite requires ground-based 𝜆𝐸 measurements 

in order to validate and also calibrate these methods. Currently, at landscape scale (i.e. 

meters to kilometers) the eddy covariance technique (EC), the energy balance Bowen 

ratio (BR) tower systems, lysimeters and scintillometers are able to provide these values. 

At even larger scale, such as that of a river basin, region or continent, 𝜆𝐸 can also be 

estimated from the surface water budget or atmospheric water balance. In Table 3.4, a 

summary of the 𝜆𝐸 observation and estimation methods is provided.  

The EC technique measures 𝐻 and 𝜆𝐸 fluxes from the statistical covariance of heat and 

moisture variations and vertical velocity using rapid response sensors at frequencies that 

are typically equal to or greater than 10 Hz (Wang & Dickinson, 2012). EC systems 

include a fast-response three-dimensional wind sensor (sonic anemometer) and an 

infrared gas analyzer. EC technique is a well-established method and deployed trough 

global networks such as FLUXNET (Baldocchi et al., 2001). A typical error of about 5.-

20% or 20-50 W/m2 has been reported (Foken, 2008). The main problematic aspect about 

this technique is the energy balance closure ratio (i.e 𝑅 = (𝐻 + 𝜆𝐸)/(𝑅𝑛 − 𝐺)) which 

report an imbalance of the 20% (Wilson et al., 2002). For further discussion on this issue 

we refer the reader to Foken et al. (2008) and Foken et al. (2011) works and references 

therein.  

The Bowen Ratio method is also well established trough U.S Atmospheric Radiation 

Measurement (ARM) system. It is based on simultaneous measurements of vertical 

gradients of air temperature and humidity that can be related using the Bowen Ratio (𝛽) 

(Equation 3.78). Once 𝛽 is known, 𝜆𝐸 and 𝐻 can be estimated from the surface energy 

balance equation.  

𝛽 =
𝐻

𝜆𝐸
=
𝐶𝑝(𝑇𝑎1 − 𝑇𝑎2)

𝜆(𝑞1 − 𝑞2)
 

Although this method presents some benefits, mainly that it requires less maintenance 

and is generally cheaper than the EC systems, it presents also several impediments: the 

difficulty in measuring small gradients over surfaces with efficient turbulent transfer. In 

addition, these measurements must lie within a constant-flux layer that becomes thin 

under high stable conditions. Besides, surface energy must be closed, which difficult the 

implementation for heterogeneous areas at short-time intervals. One of the main 

assumption is that turbulent transfer coefficients for heat and water are assumed to be 

identical.  

Lysimeters are measuring devices introduced into the soil that can be used for measuring 

the amount of actual evapotranspiration. The measurement is directly obtained from the 

soil-water balance. These systems can be classified into non-weighting lysimeters and 

weighting-lysimeters. The first ones measure the amount of water percolating from the 

base of the lysimeter using a soil-water profile measurement method (such as neutron 

 (3.78) 
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probe). Precipitation can be measured with a rain gauge. Evapotranspiration can 

indirectly be retrieved from these measurements. In the case of weighting-lysimeters, 

precipitation, storage changes and drainage is measured directly (and in this way 

evapotranspiration) considering the mass change over time. Precision of lysimeters is 

about 0.05 mm to 0.1 mm equivalent water for hourly estimates (Holmes, 1984), thus 

commonly being used as reference for comparison with other methods. Nevertheless, it 

has a different scale (point measurement) that EC and BR methods. The main 

disadvantages of this technique include the difficulty in its construction and maintenance 

(Rana & Katerji, 2000) and the disturbance of the natural conditions by instrument itself 

(WMO, 2008).   

Scintillometers are becoming a common alternative to EC and BR methods, because of 

its ability to quantify energy distributions at different scales (Lagouarde, 2002). This 

technique is based on the detection of intensity fluctuations caused by fluctuations of the 

refractive index of the air. These scintillations are indicators of the turbulent eddies in the 

scintillometer path. Generally, a scintillometer system consists of a transmitter and a 

receiver. Measurements at visible and radio (>1mm) wavelengths are performed in order 

to deduce the structure parameter of temperature and moisture from the structure 

parameter of refractive index of the air. From these structure parameters and making use 

of MOST similarity theory 𝐻 and 𝜆𝐸 fluxes can be estimated (DeBruin, 2009), being 𝜆𝐸 

calculated as a residual of the surface energy budget (Wang & Dickinson, 2012). The 

main inconvenient of this technique is the dependence on the MOST theory. It was 

reported that the overestimation of 𝐻 flux (against EC 𝐻 measurements) was related to 

the selection of the roughness parametrization and universal function of MOST (Zhang 

et al., 2010).  

 

𝜆𝐸 can also be estimated from the surface water balance and atmospheric water balance 

at basin or continental scale taking into account Equations 3.79 and 3.80.  

 

𝐸𝑇 = 𝑃 − 𝑄 − 𝑑𝑤/𝑑𝑡 

 

where 𝑃 is the precipitation, 𝑄 the river discharge and 𝑑𝑤/𝑑𝑡 the change of terrestrial 

water storage. Accuracy of the estimated 𝐸𝑇 comes from the accuracy of each input 

variable. Over well-maintained gauged networks accuracy of 𝑃 should be less than 10% 

but this value can increase for satellite retrievals (Wang & Dickinson, 2012). In addition, 

errors in 𝑄 are far from negligible ( Baldassare & Montanari, 2009). The last term can be 

derived from the Gravity Recovery and Climate Experiment (GRACE) satellite (Güntner, 

2008).  

 

𝐸𝑇 =  𝑃 + ∇H𝐶̅
̅̅ ̅̅ ̅̅ + 𝜕𝑊/𝜕𝑡 

 

In Equation 3.80,  𝑊 represents the column storage of atmospheric water vapor and 𝐶̅ the 

vertically integrated two-dimensional atmospheric water vapour flux. The operator ∇H 

represents the horizontal divergence. This method requires reanalysis data in order to 

 (3.79) 

 (3.80) 
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estimate ∇H𝐶̅
̅̅ ̅̅ ̅̅  and 𝜕𝑊/𝜕𝑡, nevertheless it was shown that these data has substantial errors 

(Roads, 2003; Dominguez & Kumar, 2008). This method is only able to provide estimates 

at a monthly time scale and at low spatial resolution. This latter is determined by the fact 

that this balance can be applied only to areas large enough so that errors in estimates of 

atmospheric convergence are small (Lettenmaier & Famiglietti, 2006).   

 

 

 

Table 3.4. Summary of the 𝜆𝐸 observation and estimation methods (extracted from Wang & Dickinson, 

2012). * depend on measurement height above the canopy and wind speed 

Method Temporal scale Spatial scale Advantages Disadvantages 

Eddy 

covariance 

Half hourly to 

yearly 

Hundreds of 

meters*  

Direct and 

independent 

measurement of 

𝜆𝐸 and 𝐻  

-Energy closure problem 

-Gap in bad weather and 

other conditions 

Bowen Ratio 
Half hourly to 

yearly 

Hundreds of 

meters*  

Energy is 

balanced 

-Diffusivity for water and 

heat is assumed to be equal 

-Energy balance is assumed  

 

Lysimeter 

Half hourly to 

yearly 

 

Point 

measurement 

 

Direct 

observation of 𝜆𝐸 

 

- Environment is disturbed 

 

Scintillometer 
Half hourly to 

yearly 

Meters to 

kilometers 

Capture 𝐻 and 𝜆𝐸 

over large scale 

with known 

footprints 

 

- Depends on MOST 

Surface water 

balance 

Monthly to 

yearly 

Hundreds to 

thousands of 

kilometers 

Direct estimate 

Regional and 

global estimation  

 

- Accuracy guaranteed only 

for low temporal (multiyear 

average) and spatial 

resolution 

Atmospheric 

water balance 

Monthly to 

yearly 

Hundreds to 

thousands of 

kilometers 

 

Regional and 

global estimation  

 

- Low accuracy 
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4.1. - Sensors  

 

4.1.1. - MODIS 

 

The Moderate Resolution Imaging Spectroradiometer was launched into Earth orbit by 

NASA in 1999 on board the Terra platform satellite, and in 2002 on board the Aqua 

satellite (Figure 4.1). Together the instruments image the entire Earth every 1 to 2 days. 

They acquire data in 36 spectral bands (0.4 µm to 14.4 µm) and at varying spatial 

resolutions (250 m, 500 m and 1 km). They are able to provide measurements in large-

scale global dynamics, including changes in Earth’s cloud cover, radiation budget and 

processes occurring in the oceans, on land, and in the lower atmosphere. In Table 4.1, 

technical characteristics of MODIS sensor are provided.   

 

Table 4.1. Technical characteristics of MODIS sensor. SNR refers to signal to noise ration and NET to 

noise-equivalent temperature difference. 

Orbit 
705 km, 10:30 descending node (Terra), 13:30 ascending node 

(Aqua), sun-synchronous, near-polar 

Swath dimensions 2330 km (cross track) by 10 km (along track at nadir) 

Scanning angle ±55º (65º maximum vza) 

Temporal resolution 1-2 days (ground track cycle of 16 days) 

Radiometric resolution 12 bits 

Spatial resolution 250 m (bands 1–2) 500 m (bands 3–7) 1000 m (bands 8–36) 

Spectral resolution  

Band Bandwidth (µm) SNR/NET Band Bandwidth (µm) SNR/NET 

1 0.620-0.670 128 20 3.660-3.840 0.05 

2 0.841-0.876 201 21 3.929-3.989 2.00 

3 0.459-0.479 243 22 3.929-3.989 0.07 

4 0.545-0.565 228 23 4.020-4.080 0.07 

5 1.230-1.250 74 24 4.433-4.498 0.25 

6 1.628-1.652 275 25 4.482-4.549 0.25 

7 2.105-2.155 110 26 1.360-1.390 150 (SNR) 

8 0.405-0.420 880 27 6.535-6.895 0.25 

9 0.438-0.448 838 28 7.175-7.475 0.25 

10 0.483-0.493 802 29 8.400-8.700 0.05 

11 0.526-0.536 754 30 9.580-9.880 0.25 

12 0.546-0.556 750 31 10.780-11.280 0.05 

13 0.662-0.672 910 32 11.770-12.270 0.05 

14 0.673-0.683 1087 33 13.185-13.485 0.25 

15 0.743-0.753 586 34 13.485-13.785 0.25 

16 0.862-0.877 516 35 13.785-14.085 0.25 

17 0.890-0.920 167 36 14.085-14.835 0.25 

18 0.931-0.941 57    

19 0.915-0.965 250    
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Figure 4.1. Artistic view of Terra (left) and Aqua (right) platforms 

 

4.1.2. – VIIRS 

 

Visible Infrared Imaging Radiometer Suite was launched into Earth orbit on board the 

Suomi NPP satellite in 2011 (Figure 4.2). The instrument is a whiskbroom scanning 

radiometer that collects visible and infrared imagery and radiometric measurements of 

the land, atmosphere, cryosphere and oceans. VIIRS extends and improves upon a series 

of measurements initiated by the Advanced High Resolution Radiometer (AVHRR) and 

the MODIS sensor. In Table 4.2, technical characteristics of VIIRS sensor are provided.  

Table 4.2. Technical characterization of VIIRS sensor. SNR refers to signal to noise ration and NET to 

noise-equivalent temperature difference. 

Orbit 824 km, 13:30  ascending node, sun-synchronous, near-polar 

Swath dimensions 3040 km (cross track) by 12 km (along track at nadir) 

Scanning angle ±56.28º (70º maximum vza) 

Temporal resolution 1 day (ground track cycle of 16 days) 

Radiometric resolution 12 bits (M1-M4,M-7, M-13 High and Low gain) 

Spatial resolution I-Imagery (375m), M-Moderate (750 m), DNB (750m) 

Spectral resolution  

Band Bandwidth (µm) SNR/NET Band Bandwidth (µm) SNR/NET 

I-1 0.6-0.68 214 (S) M-6 0.739-0.754 368 

I-2 0.85-0.88 264 (S) M-7 0.846-0.885 457/631 

I-3 1.58-1.64 149 (S) M-8 1.23-1.25 221 

I-4 3.55-3.93 0.4 (S) M-9 1.371-1.386 227 

I-5 10.5-12.4 0.4 (S) M-10 1.58-1.64 586 

DNB 0.5-0.9  M-11 2.23-2.28 22 

M-1 0.402-0.422 588/1045 M-12 3.61-3.79 0.12 

M-2 0.436-0.454 572/1010 M-13 3.97-4.13 0.04 

M-3 0.478-0.488 628/988 M-14 8.4-8.7 0.06 

M-4 0.545-0.565 534/586 M-15 10.26-11.26 0.03 

M-5 0.662-0.682 336/631 M-16 11.54-12.49 0.03 
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Figure 4.2. Artistic view of the Suomi-NPP platform. 

 

4.1.3. – SLSTR  

 

Sea and Land Surface Temperature Radiometer is a dual scan view angle sensor (Figure 

4.3). It was launched into Earth orbit onboard the Sentinel 3-A and Sentinel 3-B platforms 

in 2016 and 2018 respectively. The mission is aimed at maintaining the continuity with 

the (A) ATSR series of instruments. In Table 4.3, technical characteristics of SLSTR 

sensor are provided.   

 

Table 4.3. Technical characterization of SLSTR sensor.  

Orbit 814.5 km, 10:00 descending node, Sun-synchronous 

Swath dimensions 1400 km (nadir view), 740 km (dual view) 

Scanning angle Almost nadir (nadir view), 55º (oblique view) 

Temporal resolution 0.5 to 1 day (nadir), 0.9-1.9 (dual) (ground track cycle 27 days) 

Spatial resolution 500 m (VIS-SWIR), 1000 m (IR-fire) 

Spectral resolution  

Band Bandwidth (µm) SNR/NET Band Bandwidth (µm) SNR/NET 

S1 0.535-0.574 >20 S7 3.074-4.140 < 80 mK 

S2 0.640-0.679 >20 S8 10.078-11.630 < 50 mK 

S3 0.847-0.889 >20 S9 11.118-12.928 < 50 mK 

S4 1.354-1.396 >20 F1 3.344-4.410 < 1K 

S5 1.553-1674 >20 F2 10.078-11.630 < 0.5 K 

S6 2205.6-2305.9     

 

 

 

 

 

 

 

 

Figure 4.3. SLSTR instrument overview (left) and sketch of the instrument viewing geometry (right).  
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4.1.4. - CPR and CALIOP  

 

The Cloud Profiling radar (CPR) is a 94 GHz nadir-looking radar and the Cloud-Aerosol 

Lidar with Orthogonal Polarization (CALIOP) is a lidar operating at 532 nm and 1064 

nm. They were both launched in 2006 onboard the CloudSat and CALIPSO platforms 

respectively (Figure 4.4). Forming part of the A-Train constellation they flied along the 

same orbit close to each other (less than 2 minutes, Figure 4.5) so that footprints of both 

sensors overlapped, allowing to sense the same atmosphere volume. In Figure 4.5, the A-

Train configuration over time is shown. In 2018, however due to technical issues both 

CloudSat and CALIPSO lowered their orbit out of the A-Train (16.5 km below). With 

this new configuration, simultaneity between A-Train and C-Train (CloudSat and 

CALIPSO) is obtained every 20 days.  

CPR provides vertical profiles of the radar cross section and thus the refraction index, 

which is a measure for the concentration of cloud and precipitation particles. CALIOP 

provides information on the vertical distribution of aerosols and clouds and their optical 

and physical properties. CALIOP is built around a diode-pumped Nd:YAG laser 

producing linearly-polarized pulses of light at 1064 nm and 532 nm. Two-wavelength 

polarization measurements provide information on aerosol size and hydration. 

Combination of the data from both sensors (which work at different wavelengths and 

therefore sense different cloud occurrences) allows to obtain an almost complete 

characterization of the vertical cloud structure. In this way, CloudSat can penetrate the 

clouds that CALIPSO can’t and CALIPSO can detect the thin, high cirrus clouds omitted 

by CloudSat. In Table 4.4, technical characteristics of CPR and CALIOP sensor are 

provided.   

 

 

 

 

 

 

 

 

Figure 4.4. Artistic view of CloudSat and CALIPSO platforms.  
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Figure 4.5. A-Train configuration over time 

 

Table 4.4. Technical characterization of CPR and CALIOP sensors.  

CPR  CALIOP 

Nominal Frequency 94 GHz  Wavelengths 532 nm, 1064 nm 

Pulse Width 3.3 µs  Pulse energy 110 mJoule/channel 

PRF 4300 Hz  Repetition rate 20.25 Hz 

Minimum Detectable Z <-29 dBZ  Receiver telescope 1.0 m diameter 

Data Window 0-25 km  Polarization 532 nm 

Antenna Size 1.85 m  Footprint/FOV 100 m/ 130 µrad 

Dynamic Range 70 dB  Vertical resolution 30-60 m 

Integration Time 0.16 s  Horizontal resolution 333 m 

Vertical Resolution 500 m   Linear dynamic range 22 bits 

Cross-track Resolution 1.4 km   Data rate 316 kbps 

Along-track Resolution 1.7 km    

Repeat cycle 16 days    

 

 

4.2. - Reanalysis and land surface assimilation models 

 

An atmospheric reanalysis is able to provide a description of the state of the atmosphere 

in a consistent four-dimensional way by combining a numerical weather prediction model 

with observations. The sources of data are: surface observations from land and ships, 

ocean buoys and upper air observations from radionsondes, aircraft and satellites (Barry 

& Carleton, 2001). A data assimilation system is used in order to incorporate these 

observations to the system and to constrain the reanalysis as close as possible to the 

observed atmospheric state. The assimilation scheme consists of the processing of 

observed data, interpolation, initialization, numerical forecast and post-processing 

(Kanamitsu, 1989). The forecast model has a crucial role in the data assimilation process. 

Making use of model equations it is possible to extrapolate information from locally 

observed parameters to unobserved parameters in a physically meaningful way, and also 

to propagate the atmospheric state in time (Dee et al., 2001). This propagated atmospheric 
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state (background) is updated, at regular time intervals, typically 6 or 12 hours, with 

observations, in order to form the analysis at that time. This update step typically uses 

variational data assimilation, whereby a cost function is minimized iteratively.  

Reanalysis used in the present dissertation belong to the third-generation of global 

reanalysis. First generation of reanalysis were developed in 1990s. They were: 

NASA/DAO reanalysis (1980 - 1993), the NCEP/NCAR reanalysis (1948 - present), also 

called NCEP-1 reanalysis, and the ECMWF ReAnalysis (ERA) ERA-15 reanalysis (1979 

- 1993). They were generated by optimal interpolation assimilation schemes. In the early 

2000s several problems were resolved including the parametrization of physical processes 

in the same grid network (Kanamitsu et al., 2002). These new reanalysis belong to the 

second generation. They were: the JRA-25 reanalysis (1979 - 2004) from Japan, the 

NCEP-2 reanalysis (1979 - present), and the ERA-40 reanalysis (1958 - 2001). These 

reanalyses were based on three-dimensional variational (3DVAR) assimilation schemes. 

Third generation of reanalysis was developed in 2010s. They were generated by improved 

data assimilation schemes compared to 3DVAR. These reanalyses are: NASA/GMAO 

MERRA reanalysis (1979 – present), the NCEP CFSR reanalysis (1979 - 2008), the JRA-

55 reanalysis (1958 – 2012), the 20CR reanalysis (1871 – present), and the ERA-Interim 

reanalysis (1979 – present). 

In Table 4.5, a brief comparison of the MERRA-2 and ERA-Interim reanalysis is 

presented. In the following, a brief description of the reanalysis system is provided based 

on references in Table 4.5. MERRA-2 is an updated version of MERRA reanalysis 

(Rienecker et al., 2011). MERRA-2 is produced with 5.12.4 of the GEOS atmospheric 

data assimilation system. GEOS atmospheric model (Rienecker et al. 2008; Molod et al. 

2015) and the Gridpoint Statistical Interpolation analysis scheme (Wu et al. 2002; Kleist 

et al. 2009) are the key components of the reanalysis system. . The model uses a cubed-

sphere horizontal discretization at an approximate resolution of 0.5° × 0.625° and 72 

hybrid-eta levels from the surface to 0.01 hPa. The analysis is computed on a latitude–

longitude grid at the same spatial resolution as the atmospheric model using a 3DVAR 

algorithm based on the Gridpoint Statistical Interpolation with a 6-h update cycle and the 

so-called First Guess at appropriate time procedure for computing temporally accurate 

observation-minus-background departures (Gelaro et al., 2017). Incremental analysis 

update procedure is used in order to correct the background state.  

ERA-Interim is a global atmospheric reanalysis produced by the European Centre for 

Medium-Range Weather Forecasts (ECMWF), covering the data-rich period since 1979. 

It uses the ECMWF's Integrated Forecast System (IFS) cycle 31r2. The horizontal 

resolution of the data set is ∼79 km (TL255 spectral grid) on 60 model levels from the 

surface up to 0.1 hPa (an altitude of about 65 km). The assimilation algorithm of the 

system is a four-dimensional variational analysis (4D-VAR) with a 12 h analysis window. 

Currently, ERA-Interim is being phased out and replaced by the next-generation ERA-5. 

This reanalysis is produced using the IFS cycle 41r2 with 4-D-Var data assimilation. 

ERA-5 benefits from a horizontal resolution of ∼31 km (TL639 spectral grid) and a 

vertical resolution of 137 hybrid sigma–pressure levels, with the top level located at 
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0.01 hPa (an altitude of about 80 km). ERA-5 will eventually replace the ERA-Interim 

reanalysis. For a more detailed description of this reanalysis see Hersbach & Dee (2016).  

 

Table 4.5. MERRA-2 and ERA-Interim comparison table.  

 MERRA-2 ERA Interim 

Source NASA ECMWF 

Spatial domain Global Global 

Period of record 1980-present 1979-present 

Assimilation 

Algorithm 

3D-VAR, with incremental 

update; aerosol data assimilation, 

observation corrected precipitation 

forcing for land surface and 

aerosol wet deposition 

4D-VAR 

Model Resolution 
Native cube sphere grid output is 

interpolated to 5/8 lon x1/2 lat 

deg; 72 sigma levels 

TL255L60 and N128 reduced 

Gaussian 

Dataset Resolution 5/8º lon x 1/2º lat  72 model levels  0.75ºx0.75ºx60 levels  

Available timestep Sub-daily, daily, monthly Sub-daily, daily, monthly 

Reference 
Gelaro et al., 2017 

Bosilovich et al., 2015 

Dee et al., 2011 

Berrisford et al., 2009 

 

Apart from reanalysis, meteorological data were extracted from land assimilation 

systems. In particular, Global Land Assimilation system (GLDAS-2) (Rodell et al., 2004) 

was used. It integrates a large quantity of satellite-based, ground-based observations and 

model (re)analysis data in order to parameterize, force and constrain sophisticated 

numerical land surface models towards the goal of producing, physically consistent, high 

resolution fields of land surfaces states and fluxes. Datasets are available in a 3-hourly 

and monthly time resolution starting on January of 1948 to present with spatial resolutions 

of 0.25º and 1.00º. NASA GLDAS-2 has two components: one forced entirely with the 

Princeton meteorological forcing data (hereafter, GLDAS-2.0), and the other forced with 

a combination of model and observation based forcing datasets (hereafter, GLDAS-2.1). 

For further information on forcing datasets, please refer to 

https://ldas.gsfc.nasa.gov/gldas/forcing-data.  
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GLDAS products are retrieved from the Land Information System (LIS) , which is an 

open source flexible land-surface modeling and data assimilation software framework 

developed at NASA Goddard within the Hydrological Sciences Laboratory (Kumar et al., 

2006). GLDAS is a specific use of this software. Enabled by this LIS system GLDAS 

drives four offline (not coupled to the atmosphere) land surface models. They are: Mosaic, 

Noah, Community Land Model (CLM) and the Variable Infiltration Capacity model 

(VIC). In the following a brief description of the models as extracted from the GLDAS 

Land Surface Model description (https:/disc.gsfs.nasa.gov/information/documents, 

accessed the 3th of August 2019) is given.  

- Mosaic (Koster & Suarez 1996) is a stand-alone, 1-D column model that can be 

run both uncoupled and coupled to the atmospheric column. Mosaic was the first 

to treat subgrid scale variability by dividing each model grid cell into a Mosaic of 

tiles (after Avissar & Pielke 1989) based on the distribution of vegetation types 

within the cell. Mosaic's physics and surface flux calculations are similar to the 

SiB LSM (Sellers et al., 1986). 

 

- Noah (Chen et al., 1996) is the National Centers for Environmental 

Prediction/Oregon State University/Air Force/Hydrologic Research Lab (Noah) 

and has been used operationally in NCEP models since 1996.  It is a stand-alone, 

1-D column model which can be executed in either coupled or uncoupled 

mode.  The model applies finite-difference spatial discretization methods and a 

Crank-Nicholson time-integration scheme to numerically integrate the governing 

equations of the physical processes of the soil-vegetation-snowpack medium 

 

- VIC (Liang et al. 1994) is a stand-alone, 1-D column model that is run uncoupled. 

The model focuses on runoff processes that are represented by the variable 

infiltration curve, a parameterization of sub-grid variability in soil moisture 

holding capacity, and nonlinear baseflow. Various simulation modes are available 

including, water balance, energy balance, frozen soil, and other special cases. 

 

- CLM (Dai et al., 2003) includes superior components from each of three 

contributing models: the NCAR Land Surface Model (Bonan, 1998), the 

Biosphere-Atmosphere Transfer Scheme (Dickinson et al. 1993), and the LSM of 

the Institute of Atmospheric Physics of the Chinese Academy of Sciences (Dai & 

Zeng 1997). The model applies finite-difference spatial discretization methods 

and a fully implicit time integration scheme to numerically integrate the governing 

equations. CLM can be run as a stand-alone, 1-D column model. It is also the land 

model for NCAR's coupled Community Climate System Model (CCSM).  
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4.3. - Study area and in-situ sites 

 

4.3.1. - Amazonian region 

 

In Figure 4.6, the Amazonian evergreen broadleaf forests as defined in this study are 

displayed. They were delineated from the intersection of pixels classified as “Evergreen 

Broadleaf Forests” in MCD12Q1 (1km) and MCD12C1 (5 km) MODIS land cover 

products and a geographical vector covering the political regions of Amazonia. This 

region encompasses the countries of Colombia, French Guiana, Suriname, Guyana, 

Venezuela, Ecuador, Perú, Bolivia and Brazil. This region is characterized by a flat 

topography (Figure 4.7(a)) (i.e. in exception of the Andes mountains the elevation of 

study region is less than 500 m) and is covered by dense tropical forest (mean annual 

NDVI value around 0.8 with 1-σ annual standard deviation of 0.02, Figure 4.7 (b)). The 

climate is hot and wet. Mean daily air temperature ranges between 298 K and 300 K 

(Figure 4.7(c)). Annual precipitation of the region range from approximately 1000 

mm/year to values greater than 5000 mm/year at some locations (Figure 4.7 (d)), showing 

two maximum (3000 mm/year or more) located around the mouth of the Amazon River 

and over the northwestern part of the region (Espinoza et al., 2009). Rainfall is also 

abundant at the central area and close to the southeast due to the South Atlantic 

Convergence Zone (SACZ) established during the austral summer (Espinoza et al., 2009). 

The Andean region is characterized by a high spatial rainfall variability, registering the 

highest and lowest rainfall values in the region. In Figure 4.7(e), the soil classification of 

the region according to the Harmonized Soil World Database is provided. 

 
Figure 4.6. Map of the Amazonian evergreen broadleaf forests. The location of Tambopata (in-situ LST) 

station, together with LBA stations (K34, K67, K83, RJA and CAX) and Manacapuru station (in-situ cloud 

cover) is also displayed.  
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Figure 4.7. Topographic, vegetation, climate and soil conditions for the Amazon Evergreen Forests. Digital 

Elevation Model (DEM) was extracted from the Shuttle Radar Topography Mission (strm.csi.cgiar.org). 

Annual NDVI represents the mean NDVI derived from 2000-2014 MAIAC NDVI product. Air temperature 

(at 2m) was derived from MERRA-2 reanalysis over 2000-2006 years. Precipitation field was calculated 

from the Tropical Rainfall Measuring Mission (TRMM) data product from 1998-2018. Soil texture was 

extracted from the Harmonized Soil Word Database (FAO, 2012) according to USDA soil texture 

classification. 

 

 

 

 

 

 

d) 

b) 

e) 

c) 

a) 
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In the following, a brief description of the variability of the precipitation for the region is 

provided. This has been based on previous reviews of Amazonian climate (Fisch et al., 

1998; Vera et al., 2006; Garreaud, 2007; Nobre et al., 2009; Garreaud et al., 2009; 

Espinoza et al., 2009). Tropical rainfall over the study region experiences a pronounced 

seasonal cycle, showing contrasting rainfall regimes between the northern and the 

southern Amazon (Nobre et al., 2009; Garreaud et al., 2009; Espinoza et al., 2009). These 

changes are controlled by the annual cycle of solar radiation (Nobre et al., 2009) and by 

complex interactions in low-level moisture transport (Fu, 1999). During the austral winter 

(June-July-August) the maximum continental rainfall is located to the north of the 

equator, almost in line with the oceanic ITCZ (Figure 4.8 (b)) while the central part of the 

continent (including southern Amazonia) experiences its dry season (Garreaud, 2007). 

During the austral spring (September-October-November), a rapid shift of the area of 

intense convection is produced between the northern extreme of the continent and 

latitudes south of the equator (Marengo et al., 2001). During the austral summer 

(December-January-February) the so-called South American Monsoon System is 

established. Associated with it, the southern parts of the region experiment a peak in 

rainfall and runoff. The SASM features the SACZ, which is a southeastward band of 

cloudiness and precipitation extending from southern Amazonia toward southeastern 

Brazil and the surrounding Atlantic Ocean (Vera et al., 2006). It is displayed in Figure 

4.8(a). In addition, a deep continental low forms over the dry and hot Chaco region 

(approximately at 25ºS) is formed as a regional response of the tropospheric circulation 

to the strong convective heating over the Amazon. It forces the trades that transport 

moisture from the Atlantic Ocean to turn south along the Andes towards the extra-tropics 

of South America (Garreaud et al., 2009). This northerly flow, organized in a low-level 

jet (South-American Low-Level jet) with its core at about 1km above the ground 

(Garreaud et al., 2007), is able to transport considerable amounts of moisture to between 

the Amazon and La Plata Basin (Vera et al., 2006). At upper levels of the atmosphere, the 

SASM features two distinctive characteristics: the well-defined anticyclone centered over 

Bolivia, the “Bolivian High” and a trough near the coast of northeast Brazil (Nobre et al., 

2009). Their situation is also displayed in Figure 4.8(c).  During the early fall, deep 

convection gradually diminishes over the subtropics and begins to shift northwards, with 

the demise of the South American Monsoon by the end of April (Garreaud, 2007). 
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Figure 4.8. Long-term mean precipitation for January and July superimposed upon the low level (925 hPa) 

and upper levels (300 hPa) winds. The ITCZ in panels (a) and (b) represent the Intertropical Convergence 

Zone. In addition, in panel (a) the South American Convergence Zone (SACZ) together with the chaco low 

(L). In panel (c) Bolivian High and northeast Brazil trough are displayed by letters H and L respectively. 

(adapted from Garreaud et al., 2009).  

 

 

The time evolution of rainfall conditions over the Amazon region exhibits non-regular 

fluctuations on a wide range of temporal scales (Garreaud et al., 2007). These fluctuations 

include the synoptic-scale variability on a sub monthly time-scale (2 to 10 days), the 

intraseasonal variability (from 10 to 90 days) and the low frequency variability, which 

involves changes between consecutive years (interannual) or in the scale of decades 

(interdecadal). Regarding the synoptic-scale variability, the fluctuations tends to exhibit 

a quasi-weekly periodicity associated with the passage of midlatitude disturbances that 

owe their existence to the baroclinic instability of the tropospheric flow (Garreaud et al., 

2009). On intraseasonal scale, the 30- to 60-day oscillation is the principal mode of 

climatic fluctuations over tropical South America (Nobre et al., 2009). Interannual 

variability is linked to Atlantic and the Tropical Pacific Oceans. Evidences that the 

tropical Atlantic influences interannual climate variability of the Americas are provided 

by among others Marengo (1992), Liebman et al. (2001), Ronchail et al. (2002). The 

influence of the tropical Sea Surface Temperature (SST) over Amazonian rainfall is 

associated with Hadley-like cell perturbations. A positive rainfall anomaly can result from 

the northward displacement of the ITCZ due to one of the following reasons: anomalously 

H 

L 

ITCZ ITCZ 

L 

ITCZ 

ITCZ ITCZ 
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warm water in the tropical North Atlantic, cold surface waters in the equatorial South 

Atlantic or a weakening in the northeast trades (Nobre et al., 2009). In the case of the 

Tropical Pacific, the El-Niño-Southern-Oscillation (ENSO) phenomenon characterized 

by irregular fluctuations between its warm (El Niño) and cold (La Niña) is the major 

source of interannual variability over much of South America (Garreuad et al., 2009 and 

Nobre et al.,2009 and references therein). Episodes of el Niño are typically associated 

with a below normal rainfall and warmer than normal conditions in the northern part of 

South America, as well as anomalously wet conditions in the southeastern portion of the 

continent and central Chile. Opposite rainfall anomalies are typically observed in both 

regions during La Niña events (Garreaud, 2009). Regarding the variability at longer time-

scales (i.e. decadal and inter-decadal) the “climate shift” around the mid 70s (the 

northern/southern part of Amazonia shows relatively less/more rainfall in comparison 

with the formed period) is consistent with the change in polarity in the Pacifical Decadal 

Oscillation (PDO) (from cold to warm) (Garreaud et al., 2009). The PDO is an established 

phenomenon lasting 20-30 years in the Pacific. It is detected as warm or cool surface 

waters in the Pacific Ocean north of 20º (Mantua, 1997). When PDO is in positive phase 

water is colder in the central and western Pacific and warmer in the eastern Pacific. With 

a negative PDO the reverse is observed.  

 

 

4.3.2. - Manacapuru site 

 

In-situ cloud measurements used in the present dissertation belonged to the Green Ocean 

Amazon (GoAmazon2014/5) Experiment that was performed near the city of Manaus 

(central region of the Amazon basin) from January 2014 through 31 December 2015. The 

objective of this experiment was to understand and quantify the linked processes between 

vegetation and atmospheric chemistry on one hand and aerosol production and their 

connection to aerosols, clouds, precipitation on the other (Martin et al., 2016). To this 

end, the Manaus metropolis was used as a natural laboratory as it superimposes the 

background conditions of the central Amazon basin to the pollution plume from the city. 

Amongst the instrumented in-situ sites Manacapuru site (T3) was operated by the 

Atmospheric Radiation Measurement (ARM) Climate Research Facility of the United 

States Department of Energy. This facility included the ARM Mobile Facility One (AMF-

1) and the ARM Mobile Aerosol Observing System (MAOS) (Mather & Voyles, 2013). 

The T3 site was located at 3.2130ºS, 60.5981º W (70km of Manaus). It was a pasture site 

of 2.5km by 2km situated 2km to the north of a lightly travelled two-lane road (AM-070) 

that connects Manaus to Manacapuru (Martin et al., 2016).  

Amongst the in-situ instrumentation a Total Sky Imager (TSI-880) was installed in order 

to detect cloud occurrences. This instrument is an automatic full-colour sky imager 

system that provides real-time processing and display of daytime sky conditions. It 

replaces the need for human observers under all weather conditions. Refer to Appendix 

A.1 for technical characterization of the TSI-880 instrument. Image acquisitions are 
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provided for solar elevations greater than 10 degrees with an interval of 30 s. The 

functioning of the instrument is as follows: 1) images from the sky are captured via a 

solid-state charge-coupled device looking downward onto a heated, rotating 

hemispherical mirror. A shadow band on the mirror blocks the intense direct-normal light 

from the sun, thereby protecting the imager optics. 2) An image processing program 

running on a user-provide PC workstation captures and displays the images at a user 

defined sampling rate. It saves the images to JPEG files for analysis. 3) Images are 

analyzed in order to infer both fractional sky cover and sunshine duration. The analysis 

step first masks out obstructions (the imager, its arm and the sun-blocking band). 

Fractional sky cover is determined by a processing algorithm that examines the colour 

relationships of the remaining image pixels to infer whether the pixel represents clear sky 

or thin or opaque clouds. In addition, the differential of brightness along the sun blocking 

band is analyzed to infer if the sun is blocked by cloud or not (i.e. a sunshine meter).   

 

4.3.3.- Tambopata site 

 

Tambopata test site (12.832 S, 69.282 W) is located in the Peruvian Amazon (Madre de 

Dios, Perú). This site is located at an elevation of 225 above the sea level. It has a yearly 

precipitation of 2580 mm/year. Annual mean temperature is about 299.2 K with a 

standard deviation of 2.8 K. Maximum and minimum temperature reach values of 308 K 

and 293 K, respectively. Dry season as defined by the number of month having less than 

100 mm/month of precipitation extends from May to September (derived from TRMM 

precipitation product). The station is situated in a homogenous area characterized by 

dense tropical forest (mean NDVI of a 3x3 kernel of 0.83 with a standard deviation of 

0.02). Canopy height reaches values of 30 m (Simard et al., 2011).  

The equipment at Tambopata site consists of two infrared radiometers sensors (SI-111 

and IR120) and a CNR4 net radiometer (Figure 4.9). Infrared radiometers determine the 

surface temperature of an object without physical contact. The CNR4 net radiometer 

consists of a pyranometer pair, one facing upward, the other facing downward, and a 

pyrgeometer pair in a similar configuration. The pyranometer pair measures the short-

wave radiatio and the pyrgeometer pair measures long-wave radiation. All 4 sensors are 

integrated directly into the body of the instrument. For a detailed description of technical 

specifications of the sensor, please refer to Appendix A.1. 
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Figure 4.9. Tambopata test site tower site (perspective from below) together with images of CNR4 net 

radiometer (lower left) and infrared radiometers (lower right).  

 

4.3.4.- LBA network 

 

The Large-Biosphere-Atmosphere (LBA) program was created in 1993 with the purpose 

to develop the knowledge about the Amazon mainly in the fields of climate physics and 

biogeochemistry (Keller et al., 2004; Gonçalves et al., 2013). One of the achievements of 

this program was the establishment of a network of eddy covariance flux towers across 

the Brazilian Amazonia, providing important measures of energy, water and carbon 

fluxes (Saleska et al., 2013). In the present dissertation, we complied original flux data 

from five LBA eddy covariance towers (Figure 4.6, Table 4.6): the Reserva Cuierias near 

Manaus city (K34 forest), the Tapajos National forest, near Santarem (K67 and K83 

stations), the Caxiuana National forest near Belem (CAX station) and the Reserva Jaru 

forest (RJA station). In the following a brief description of the in-situ stations conditions 

as provided by the references in Table 4.6 is given. For a description of the 

instrumentation at each site, refer to Appendix A.1. In addition, in Figure 4.10 a 

description of the monthly meteorological and vegetation conditions for the sites is given.  
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- Manuas K34 is the most western of the central Amazonian sites and is located 

about 60 km north of Manaus, embedded in a vast area of pristine rainforest 

(Andreae et al., 2002). In contrast to Santarem sites (the nearest neighbouring 

LBA sites) it has a shorter dry season. Direct oceanic influence on the climate can 

be neglected (1600 km from the Atlantic). K34 tower was erected in 1999. It is a 

1.5 m × 2.5 m‐section aluminium tower, 50 m tall, on a medium sized plateau 

(60.209º W, 2.609º S 130 m asl). Near the centre of the reserve a selective logging 

experiment was conducted in 1987/99 and 1993 with 12 ha and 4 ha being 

investigated respectively. The extraction of trees represented approximately the 

15% of average dry biomass for the area. Nevertheless, the resultant small 

disturbance is located about 8 km from the tower and hence represents only the 

0.05% of the footprint of the tower (Araujo et al., 2002). Although three is a little 

large-scale relief in this region, at smaller scale the dense drainage network has 

formed a pattern of plateaus and valleys with a maximum height difference of 

about 60 m. In a 1km, 5km and 10km radius area of the site plateaus represented 

a 40%, 54% and 58% respectively (Araujo et al., 2002). Plateaus are covered 

mostly by clayey Oxisols and valleys by sandy Spodosols. The most frequent 

botanical families in the region are: Caesalpiniaceae, Vochysiaceae, 

Euphorbiaceae, Clusiaceae, Sapotaceae, Myristicaceae, Rutaceae, 

Malphighiaceae, and Anacardiaceae are most frequently found (Jardim & 

Hosokawa, 1987).  

 

- Santarem K67 station is located at the Tapajos National Forest (54.959º W, 2.857º 

S Para Brazil). The forest is bounded by the Tapajos River to the west and the BR-

163 highway on the east. The tower was located approximately at 6 km from both 

bounds, in an area of largely contiguous forest extending for tens of kilometres to 

the north and south (Hutyra et al., 2007). The soils are predominately nutrient-

poor oxisols with pockets of sandy ultisols, both having low organic content and 

cation exchange capacity (Silver et al., 2000). The forest is on a flat terrain and 

has a closed canopy with a mean height of approximately 40-45 m and emergent 

trees reaching up to 55 m. Although this forest can be classified as ‘primary’ with 

abundant large logs, numerous epiphytes and uneven age distribution and 

emergent trees (Clark, 1996).  

 

- Santarem K83 (54.971º W, 3.017ºS) is situated also in the Tapajos National Forest 

about 50 km south of the city of Santarem, Para Brazil (da Rocha et al., 2004). 

The vegetation was closed tropical forest with emergent canopy (Hernandez Filho 

et al., 1993). The forest is semidecidous, with mostly evergreen and a few 

deciduous species. The site is situated on a flat plateau that extended many 

kilometres to the north, south and east. Forest extended 8/40 km to the south/north 

before reaching pasture and 5 km to the east before reaching pasture on the far 

side of the BR-163 highway. Forest continue 8 km west to the edge of the plateau 

before dropping to the Tapajos River (14 km from the tower). The total relief 

within 1-2 km of the tower was 10 m, with occasional 10-30 m deep stream 
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gulleys farther from the tower (Goulden et al., 2004). The soil was a yellow latosol 

clay (Haplic acrorthox). About 15% of the trees with diameter at breast height 

greater than 35 cm were selectively logged over a 700-ha area during three months 

starting September 2001 (da Rocha et al., 2004). 

 

- Caxiuana (CAX) station (51.454ºW, 1.748ºS) is situated approximately 350 km 

to the west of the city of Belem. The forest is extensive (33000 ha) and largely 

undisturbed, having been a reserve since the 1970 (Carswell et al., 2002). It is a 

dense lowland terra firme forest with a mean annual rainfall of 2500 mm, a canopy 

height of 35 m and aboveground dry biomass of 200 m3ha-1 and a basal area of 

30-35 m2ha-1 (Carswell et al., 2002).  The soil is largely a yellow latosol (oxisol 

in U.S. Department of Agriculture soil taxonomy), but has areas of iron sand 

approximately 3–5 m below the surface. The most frequent botanical families in 

the region are: Sapotaceae, Chrysobalanaceae and Lauraceae. The climate of the 

site is influenced by the river (Baía de Caxiuana, 6 km south-east). The tower was 

positioned on a plateau, the closest small river being 400 m to the south-west and 

another small river located 600 m to the east, but was thought to not substantially 

contribute to the north-easterly fetch (Carswell et al., 2002).  

 

- Reserva Jaru (61.933º W, 10.078ºS) is located inside the Reserva Jarú forest 

which is a terra firme forest area located about 100 km north of Ji-Paraná 

(Rondonia, Brazil). It consists of around 268000 ha of undisturbed tropical forest. 

Altitude is about 150 m above sea level. The canopy has a mean height of 35 m 

with higher trees reacher up to 45 m (Andreae et al., 2002). Understory vegetation 

of only a few meters consists mainly of palms. Forest reserve has been suffering 

some small scale slash and burn activities, especially close to north-western 

border. In addition, surface heterogeneity of the area is observed due to a few hills 

near the tower (closest hill is about 2 km northeast of the tower). Nevertheless, in 

spite of these heterogeneities fetch can be considered to be predominantly 

undisturbed forest (von Randow et al., 2004).  
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Figure 4.10. Monthly averages of the precipitation (blue bars), evapotranspiration (orange line) and Leaf 

Area Index (LAI). Precipitation and evapotranspiration were obtained from in-situ LBA observations and 

LAI from the MAIAC NDVI data using Fisher et al. (2008) formulation. In the case of CAX, only 

precipitation is displayed as there were not enough evapotranspiration observations available.  
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5.1.- Cloud detection algorithm 

 

In this section, we describe the different types of data employed in the proposed cloud 

detection scheme, as well as their preliminary processing. In particular, three types of data 

were used: 1) collocated MODIS and CPR/CALIOP orbits, 2) MODIS products and 3) 

in-situ ground cloud cover fraction derived from the Total Sky Imager. Six supervised 

classification algorithms were considered for cloud detection evaluation. They were: 

Gaussian Naïve Bayes (GNB), Linear Discriminant Analysis (LDA), Quadratic 

Discriminant Analysis (QDA), Random Forests (RF), Support Vector Machine (SVM) 

and Multilayer Perceptron (MLP). For a theoretical description of these models, please 

refer to section 1.4. 

In front of global operative MODIS cloud masking algorithms (MYD35 and MAIAC) 

these algorithms benefit from the fact that they can be optimized to properly represent the 

local cloud conditions of the region. In addition, these algorithms are able to provide a 

continuous measure of cloud masking uncertainty (i.e. scores that can be converted to 

probability estimates or probability estimates) and therefore can be used for cloud 

masking under a probabilistic approach, which is the goal of this study.  

 

5.1.1.-Collocated MODIS and CPR/CALIOP orbits 

 

The purpose of collocated MODIS and CPR/CALIOP orbits was the creation of a truth 

reference database (i.e. clear and cloud labels and associated features) that served to train 

the machine learning models. Collocated satellite observations between different sensors 

were applied previously for this purpose with optimal results (Musial et al., 2014; 

Hollstein et al., 2014; Heidinger et al., 2012; Karlsson et al., 2015). In addition, MODIS 

sensor (on-board the AQUA platform) and CPR (on-board CloudSat) and CALIOP (on-

board CALIPSO) were placed in the same orbit being able to sense the same atmospheric 

volume with a maximum time lag of 1-2 minutes (see section 4.1.4). Therefore, 

considering collocated MODIS and CPR/CALIOP observations can serve to provide high 

confident information of cloud occurrences.  

Data used in the generation of the reference database were downloaded from CloudSat 

Data Processing Center (http://www.cloudsat.cira.colostate.edu). In particular, we used 

the 2B-CLDCLASS-LIDAR and MODIS-AUX products. Auxiliary information was 

extracted from 2B-GEOPROF and 2B-FLXHR-LIDAR. Below a brief description of the 

products is provided.  
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 2B-CLDCLASS-LIDAR (Sassen & Wang, 2008) combines CloudSat and 

CALIPSO lidar measurements in order to classify clouds. As an ancillary field it 

also provides the combined CPR and CALIOP cloud detection results over the 

vertical profiles. As spatial domain (i.e. spatial and vertical resolution) of both 

instruments differ, the combined product is provided at CPR spatial domain (i.e. 

lidar observations are weighted in the CPR footprint).  

 

 MODIS-AUX is an intermediate product that contains a subset of ancillary 

MODIS radiance and cloud mask data that overlaps and surrounds each CPR 

footprint. Using CPR geolocation data as reference, and a great-circle nearest 

neighbour scheme the closest MODIS pixel is located and a 3-pixel across-track 

by 5-pixel along-track grid of each MODIS parameter of interest is extracted and 

stored. If the CloudSat geolocation for a particular ray is missing or the closest 

MODIS pixel is more than 0.95 km from the CloudSat ray, the resulting MODIS 

geolocation data and the associated data vectors are filled with a missing value 

flag. 

 

 

 2B-GEOPROF (Marchand et al., 2008) product identifies those levels in the 

vertical column sampled by CloudSat that contain significant radar echo from 

hydrometeors. 2B-FLXHR-LIDAR (L’Ecuyer et al., 2008) product provides 

estimates of broadband fluxes and heating rates consistent with liquid and ice 

water content estimates from CPR, CALIPSO and MODIS. Ancillary data (i.e. 

land sea mask and land cover) were extracted from these products.  

 

In Table 5.1, the layers selected from the products are presented. MODIS bands refer to 

top of atmosphere reflectance (TOA). For each product, a total of 1002 orbits covering 

the Amazonian tropical forests region (80ºW-45ºW,10ºN-20ºS) for the year 2007 were 

downloaded. Products used belong to product version 4. Main issue with this version is 

that uses MODIS collection 5.1 data as input, nevertheless at the time of performing the 

study version 5 of Cloudsat products (using MODIS collection 6.0) was not still released. 

Spatial resolution of 2B-CLDCLASS-LIDAR, 2B-GEOPROF, 2B-FLXHR-LIDAR 

products is determined by CPR resolution (1.7 along-track x 1.4 across-track). In the case 

of MODIS-AUX product, nearest MODIS 1km pixel to each footprint was selected.  
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Table 5.1. Products and layers used for reference database creation.  

Products  Layers Explanation 

2B-CLDCLASS-LIDAR 
Cloudlayer 

 

Total cloud layers combining 

radar and lidar 

2B-GEOPROF Navigation_land_sea_flag Land/Sea mask 

2B-FLXHR-LIDAR Land_Char Land cover 

MODIS-AUX 

EV_250_RefSB B1: 645 nm, B2: 859 nm 

EV_500_RefSB 
B3: 469 nm, B4: 455 nm, B7: 

2130 nm 

EV_1KM_RefSB B26: 1375 nm 

Cloud_Mask 

Modis cloud flags: Clear, 

Probably clear, Cloudy, 

Probably Cloudy 

 

Collocated orbits were pre-processed in order to restrict the data to the tropical forest 

class and to screen non-valid pixels. Pre-processing steps consisted in: 1) screening sea 

pixels considering Land/Sea mask, 2) screening nighttime pixels and non-Evergreen 

Broadleaf forest (EBF) pixels and 3) screening non-valid pixels and non-valid class labels 

assignments. In particular, only pixels satisfying that Cloudlayer = 0 and MODIS cloud 

mask = Probably Clear / Clear and pixels satisfying that Cloudlayer > 0 and MODIS cloud 

mask = Probably Cloudy/Cloudy were selected. These points represent the clear and 

cloudy labels in the database. This consideration was assumed in order to take into 

account the overfitting risk of the models due to the superior cloud sensitivity of active 

(CPR/CALIOP) sensors in comparison to passive (MODIS) sensors. Using confident 

information from both types of sensors (i.e. a pixel is considered clear or cloudy when 

both sensors assign a clear or cloudy label) were are not forcing the models to detect 

clouds that are theoretically impossible to detect using MODIS data. It is worth noting 

however, that this collocated dataset will inherit the cloud detection limitations of the 

sensors. For the Amazonian tropical forests, MODIS cloud detection (MYD35) fails in 

detecting the abundant small low clouds over the region (Hilker et al., 2012). 

CPR/CALIOP combination fails in detecting hydrometeors layers in a 1km range above 

the surface (Mace et al., 2014). Nevertheless, considering the temporal and spatial extent 

used for the generation of the dataset it is assumed that the samples considered encompass 

the totality of all possible cloud instances present in the region. Apart from these aspects, 

one important issue about the collocated database that needs to be considered is the 

agreement between the database (used to train the models) and the MODIS swath viewing 

conditions. CPR/CALIOP are near-nadir instruments while MODIS cover a wider view 

zenith angle range. This is a limitation that the current approach has (i.e. the collocation 

of both sensors observations will result in a database with only near-nadir measurements) 

and needs to be taken into account when analysing model results.  

After initial pre-processing, definitive database used resulted in 477.415 data points. It 

consisted in binary labels (cloud and clear flags) obtained as explained previously and 

associated features for each label. A total of 7 features (derived from MODIS TOA 

reflectance) were selected: 5 MODIS spectral bands (top of atmosphere (TOA)): B1, B3, 
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B4, B7, B26 and 2 vegetation indexes (VI) the NDVI and the ratio vegetation index (RVI) 

which are given by (B2-B1)/(B1+B2) and B2/B1. Although machine learning models are 

able to deal with a high number of features, for the classification problem proposed (i.e. 

discrimination between very green vegetation and clouds) the reduced set of features were 

considered sufficient. They cover the most important pieces of vegetation and cloud 

information provided by MODIS channels. Visible bands and vegetation indexes are 

commonly used for discriminating vegetation and cloudy pixels (Ackerman et al., 1998; 

Lyapustin et al., 2008). B7 is used in MAIAC algorithm (Lyapustin et al., 2008) and B26 

is used in order to detect thin cirrus clouds (Ackerman et al., 1998). A reduced number of 

features (7 MODIS visible and near infrared bands) was also used in Chen et al. (2018) 

for cloud masking using neural networks with positive results in comparison to MYD35 

cloud mask.  

Last step of pre-processing consisted in scale features (converting to 0-1 range) in order 

to accommodate to machine learning models requirements. Scaling was done considering 

maximum and minimum values of the corresponding features. In addition, this reference 

database was randomly split into two datasets: train and test. A proportion of 2/3 (319868 

data points) and 1/3 (157547 data points) was used in order to split the data. Models were 

trained on the train dataset and test dataset was reserved to test model performance over 

unseen data.  

 

5.1.2-MODIS products 

 

In Table 5.2 MODIS products at image level considered in the study are presented. Layers 

selected are also provided. They correspond to version 6.1 (v6.0 for MCD12Q1). 

MYD021KM products provide the MODIS TOA radiances from which features are 

derived, MYD03 product the geolocation files used for reprojection purposes and the 

Land/Sea Mask. Land cover is obtained from the MCD12Q1 product. In addition, 

MODIS cloud mask as derived from the MYD35 algorithm (MYD35_L2 product) and 

MAIAC algorithm (MAIACABRF product) were used for comparison with model 

results. MCD12Q1 data and MAIACABRF data were reprojected to swath projection in 

order to work on a common spatial framework. MYD021KM, MYD03, MYD35_L2 and 

MCD12Q1 were downloaded from ladsweb.nascom.nasa.gov while MAIACABRF 

product was obtained from dataportal.nccs.nasa.gov. 
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Table 5.2.  MODIS products and layers selected used in the present study.  

Products Layers Explanation 

MYD021KM EV_250_RefSB 

EV_500_RefSB 

EV_1KM_RefSB 

B1: 645 nm, B2: 859 nm 

B3: 469 nm, B4: 455 nm, B7: 2130 nm 

B26: 1375 nm 

MYD03 Land/Sea Mask Land/Sea Mask 

MCD12Q1 LC_Type1 Annual IGBP classification (EBF class) 

MYD35_L2 Cloud_Mask MYD35 cloud/clear flags 

MAIACABRF Status QA MAIAC cloud/clear flags 

 

These MODIS products were used for image and in-situ testing purposes (in section 5.1.5 

model testing is explained). For image-testing only 20 images (i.e. 20 days) were 

considered. In order to take a period outside the training period, the year 2014 was 

selected.  They are summarized in Table 5.3. They are identified by DOY.TIME. DOY 

refers to the day of the year (DOY) and time refers to the satellite passing time and it is 

given in Universal Time Coordinates (UTC). For in-situ testing, the time period 

considered expands from January to June 2015. For each of time period considered, 

MODIS products in Table 5.2 were downloaded and processed.  

 

Table 5.3.  Time period used for Image-testing and in-situ testing.   

Testing Time period 

Image based 

  1) 001.1735,    2) 005.1710,    3) 025.1825,     4) 050.1820 

  5) 075.1810,    6) 100.1805,    7) 100.1810,     8) 125.1800 

  9)150.1755,  10) 175.1745,  11) 175.1750,  12) 200.1740 

13) 200.1745,   14) 225.1735, 15) 250.1730, 16) 275.1725 

17) 300.1715,   18) 300.1720,  19) 300.1855,  20) 325.1710 

In-situ based 01/01/2015 to 31/07/2015 

 

The 20 MODIS swath images were aimed at generating an image-based reference 

database that could serve to validate cloud detection algorithm performance (models and 

MYD35/MAIAC). Reference database was created by manually classifying these images. 

In order to do so, for each swath image a 400x400 pixel region was extracted. Subsets 

were extracted in order to facilitate manual classification tasks. They were selected in 

order to properly represent cloud occurrence and satellite viewing conditions over the 

region. Manual classification was performed with ENVI software. It consisted in the 

following steps: 
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1) manually selecting distinctive regions of interest (vegetation and clouds) over 

RGB true colour images. For challenging regions additional features (same as in 

the database creation) were considered in order to better discriminate between 

both classes.  

 

2) classifying the image using a maximum likehood classifier. This was selected due 

to its relative high accuracy and speed. Previous selected regions served as a 

training dataset for the classification. Same 7 features as in previous section were 

used for classification.  

 

3) for misclassified regions in the classified images repeat step 1 and 2 until 

classification visually agree with RGB true colour view. Adding labels from the 

difficult areas provides the classifier a better description of these problematic 

regions thus reducing the associated misclassification. In order to minimize the 

effect of the human error, a two-step approach was followed. Images were initially 

labelled and revisited some time later in order to re-evaluate past classifications.  

 

4) as comparison is restricted to EBF pixels, last step consisted in screening non-

EBF pixels using MCD12Q1 land cover layer.  

 

For in-situ testing, processing of the MODIS products consisted in extracting a 3x3 kernel 

centered at the Manacapuru in-situ station. Definitive cloud labels, were assigned using 

the most common value in this kernel. After filtering non-valid data, a total of 110 data 

points (i.e. days with a measurement) were left for validation.  

 

5.1.3- In-situ ground data 

 

In-situ cloud occurrences were derived from the Total Sky Imager (TSI-880) at 

Manacapuru site. Data time availability is provided in Table 5.3. This site land cover is 

characterized by being “Natural Vegetation Mosaic”. Nevertheless, models were 

designed to “Evergreen Broadleaf Forests” pixels. In spite of this discrepancy, in-situ 

ground data was considered valid for model testing because among other factors the 

ground data scarcity of the region and that no different cloud distribution is expected for 

the pixel (the station effectively lies in the Amazon region and the most common land 

cover value in a 3x3 kernel is EBF).  

We used the maotsiskycoverM1.b1 product. Amongst other layers, this product provides 

the percent of opaque and thin clouds that exists in the recorded images. A total cloud 

fraction was obtained by summing these two percentages. In order to account for the 

different spatial and temporal resolutions, in-situ cloud fraction measurements were 

averaged during the 5 minutes of time duration of MODIS satellite time overpass. For 

discriminating between clear and cloudy occurrences a threshold of 25% of cloud fraction 
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was considered (clear < 25% and cloud ≥ 25%). This threshold value was selected in 

order to not completely restrict the clear-sky occurrences.  

 

5.1.4. - Model training and probability calibration 

 

As performing model training and model calibration on the same dataset will introduce 

an unwanted bias, train dataset was additionally split in two different datasets: train and 

calibration. A proportion of 2/3 for train and 1/3 for calibration was considered. Size 

databases resulted in 214311 for train and 105557 for calibration. Overall generated 

dataset consisted in train + calibration + test. The methodology employed for model 

training and probability calibration can be summarized in three major steps: 1) train 

models on the train set, 2) train the calibration models on the calibration set and 3) score 

the train models and calibration models on the test dataset. In order to follow a consistent 

notation, models trained on the train set (being their probability not calibrated) are named 

as pre-calibrated, and models trained on the train dataset and their probability calibrated 

dataset are named as post-calibrated.  

Training for GNB, LDA and QDA models consisted in estimating the required parameters 

(covariance and class means) from the training dataset. For the case of RF, SVM and 

MLP training consisted in optimizing model parameters. For each model, different 

parameter combinations were tested and the best parameter combination was selected 

evaluating the averaged 5-fold cross validation Kappa coefficient (this statistic is 

described in model testing section). Parameters were allowed to vary over a pre-definite 

parameter space (5.4). In the case of RF model, 𝑚𝑑𝑒𝑝𝑡ℎ and 𝑛𝑡𝑟𝑒𝑒𝑠 were allowed to vary. 

Default scikit-learn values were assumed for 𝑛𝑙𝑒𝑎𝑓, 𝑛𝑓𝑒𝑎𝑡 and 𝑛𝑠𝑎𝑚𝑝 (after initial testing 

variations in these parameters did not alter the results). In the case of MLP, logistic 

function was used as an activation function. Learning rate ( 

𝜂) was fixed constant (default scikit-learn value) to 0.001. 𝑛ℎ𝑙𝑎𝑦𝑒𝑟𝑠 was restricted to 1. 

𝑛ℎ𝑛𝑜𝑑𝑒𝑠 and α were optimized considering the parameter space in Table 5.4.  

Calibration dataset was used in order to calibrate the probabilities estimates for each 

model. Probability calibration is a rescaling operation that allows to better calibrate the 

model probabilities or to add support for probability prediction (i.e. transform model 

scores into probability estimates). Main goal of calibration is to obtain well-calibrated 

classifiers. A non-parametric approach based on isotonic regression was used (Zadrozny 

& Elkan 2002–2001). 

 

For methodology implementation, we used the Sklearn open source python package 

(Pedregosa et al., 2011). This package provides simple and efficient tools for data mining 

and data analysis. It provides tools for both model training and probability calibration. It 

is built on NumPy, SciPy and matplotlib packages.  
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Table 5.4. Parameter search space and optimal values for the parameters of the models that need to be 

optimized during the training process.  

Model Parameter Parameter space Optimal value 

RF 

𝑛leaf ---- 2 

𝑛samp ---- 2 

𝑛feat ---- 4 

mdepth [2-7] 7 

ntrees [25-100] 100 

Split criterion ----- Gini index 

 

SVM 

 

C 

 

[10-5-105] 

 

1 

MLP 

Activation function ----- Logistic 

𝜂 ----- 0.001 

𝑛ℎ𝑙𝑎𝑦𝑒𝑟𝑠 ----- 1 

nhnodes [2-7] 2 

α [10-7-10-1] 10-5 

 

 

5.1.5-Model testing 

 

Evaluation of model performance was obtained using confusion matrices and derived 

statistics. In particular, we use overall accuracy (OA) and Cohen Kappa coefficient. They 

are presented in Table 5.5. For the confusion matrix, the diagonal elements represent the 

number of points for which the predicted label is equal to the true label, while off-diagonal 

elements are those that are mislabelled by the classifier. The higher the diagonal values 

of the confusion matrix the better, indicating many correct predictions. Overall accuracy 

provides the percentage of pixels being correctly classified. It has values between 0 to 1. 

Values closer to 1 indicates better performance. Kappa coefficient expresses the chance-

corrected measure of agreement between two annotators. It is calculated taking into 

account the relative observed agreement (Po) and the hypothetical probability of chance 

agreement (Pe). If there is a perfect agreement (Po = 1) Kappa takes a value equal to 1. If 

there is no agreement other than what would be expected by chance (Po = Pe) Kappa takes 

a value of 0. It is considered a more robust measure than OA. It is able to deal with models 

build from unbalanced data (i.e. class distributions not equivalent).  

When evaluating the suitability of a classifier for satellite cloud masking retrieval, apart 

from its accuracy a quantitative measure of the computational cost associated is needed 

(i.e. an excessive computational cost will prevent the implementation of a classifier in an 
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operative processing chain). We considered the time employed in performing the 

calculations (i.e. time difference between the start and the end of the calculus) as the 

measure of computational cost. A computer with 8GB RAM and an Intel Core i3-6100 

processor was used for doing so. 

 

Table 5.5. Confusion matrix and derived metrics for comparison of model predictions and true label 

predictions.  

Confusion matrix 

 Model clear Model cloud  

Truth clear a b N1 = a+b 

Truth cloud c d N2 = c+d 

 N3 = a+c N4 = b+d N5 = a+b+c+d 

Statistics 

Overall accuracy (OA) (a+d)/(a+b+c+d) 

Cohen Kappa coefficient 

(Po- Pe)/(1-Pe) 

Po = OA 

Pe = (N3·N1 + N4·N2) /(N5)2 

 

Goodness of the probability estimation for the models considered was performed using 

reliability curves. This curve plots the mean predicted probability (X axis) versus the 

fraction of positive real cases (Y axis). The processing is as follows. First, the prediction 

space is discretized into ten bins. Cases with predicted values between 0 and 0.1 fall in 

the first bin, between 0.1 and 0.2 in the second bin, etc. For each bin, the mean predicted 

value is plotted against the true fraction of positive cases. If the model is well calibrated 

the points will fall near the diagonal line. In addition, the Brier score loss was used as a 

measure of the accuracy of probabilistic predictions. Across the N items, this score 

measures the mean squared difference between the predicted probability assigned to the 

possible outcome for item (𝑓𝑖  ) (i.e. probability estimation value) and the actual outcome 

(𝑜𝑖) (i.e. 0 or 1). It is given by Equation 5.1. This formulation is mostly used for binary 

events. The lower the Brier score is for a set of predictions, the better the predictions are 

calibrated. It takes values between 0 and 1(the maximum possible difference between the 

predicted probability and the actual outcome must be 1).  

𝐵𝑟𝑖𝑒𝑟 𝑠𝑐𝑜𝑟𝑒 =
1

𝑁
∑(𝑓𝑖 − 𝑜𝑖)2

𝑁

𝐼=1

 

The methodology followed for model testing is summarized in Table 5.6. Briefly, it can 

be divided in three main blocks. In the first block, the performance of the selected models 

was validated on the reserved test dataset. Their probability estimates are evaluated in 

order to check if they provide well-calibrated estimates.  

 

 

 (5.1) 
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In the second block, testing is performed over the 20 manually classified images in order 

to test the validity of the supervised classification approach to other viewing angles. Only 

EBF pixels were used for comparison. As true label data provides binary values, and 

models provide probability estimates a threshold needs to be specified in order to assign 

clear or cloud flags respectively. Doing this, we were able to reassign model class 

predictions according to their uncertainty rather than using the default model class 

predictions. The threshold selection effect was evaluated by evaluating the agreement 

(Kappa coefficient) between models and truth reference images. For this purpose, 

discrimination between clear and cloudy occurrences was obtained by considering 

thresholds in the probability estimates as follows: clear ≥ threshold and cloud < threshold. 

Definitive threshold value is selected as the one that maximises the previous agreement. 

In addition, MYD35 and MAIAC cloud masks were also used for comparison purposes. 

For MYD35 a pixel was considered clear if associated flag was Clear or Probably Clear, 

and was considered cloudy when flag reported Cloudy or Probably Cloudy. For MAIAC 

case, Probably Cloudy and Cloudy labels were combined in order to flag cloudy pixels.  

In the third block, the performance of the supervised classification and MYD35/MAIAC 

models was validated considering in-situ cloud data. Same methodology as image testing 

for model performance and model comparison is followed 

 

Table 5.6. Testing strategy for model performance testing and comparison 

Testing Truth data Methodology Metrics 

Database Test dataset 

- Evaluate model performance 

- Evaluate probability estimates 

- Probability calibration estimates 

OA, Kappa, 

computational cost, 

reliability curves, 

brier score  

Image 
20 classified 

images 

- Probability threshold estimation 

- Evaluate model performance 

- Comparison with MYD35 and MAIAC 

OA, Kappa, 

computational cost, 

visual comparison 

In-situ 
Total Sky 

Imager 

- Evaluate model performance 

- Comparison with MYD35 and MAIAC 

OA, Kappa and 

confusion matrix 
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5.2. - LST retrieval  

 

In this section, we describe the different types of data employed in the retrieval of the 

coefficients of the SW algorithms proposed and the comparison with operative LST 

products. In particular, we focused on the development and validation of LST algorithms 

for MODIS sensor on-board TERRA and AQUA platforms and VIIRS sensor. In 

addition, we provide an early assessment for SLSTR sensor on-board Sentinel-3. The data 

we used were: 1) Tambopata in-situ corrected LST derived from infrared radiometers SI-

111 and IR-120, and net radiometer. 2) Atmospheric profiles and vegetation emissivity 

spectra employed in the database simulation, 3) sensor TOA radiances and operative LST 

products.  LST retrieval algorithms proposed and current operative LST products were 

validated using three independent datasets: 1) simulated database, 2) in-situ LST (T-based 

approach) and 3) for MODIS sensor LST as derived from the R-based validation method. 

 

5.2.1. - In-situ data and characterization of uncertainties 

 

Land surface temperature can be obtained from radiometer measurements using the 

radiative transfer equation (Equations 2.9 and 2.10 in chapter 2). Generally, radiometers 

are collocated at a few meters above ground level (forest top in this case). With this 

configuration, it can be assumed that the atmospheric transmissivity for the atmospheric 

layer between the surface and the sensor equals 1, that is to say no significant atmospheric 

absorption exists. Thus, upward atmospheric radiance is approximately null. With these 

assumptions the measured radiance at the sensor is provided by Equation 5.2:  

𝐿𝑔𝜆 =  휀𝜆𝐵𝜆(𝑇𝑠) + (1 − 휀𝜆)𝐿𝜆
↓  

where 𝐿𝑔𝜆 refers to the ground leaving radiance (Wm-2μm-1sr-1 )(i.e. the same that arrives 

at the sensor), 휀𝜆 is the surface emissivity, 𝐵𝜆(𝑇𝑠) is the Planck radiance at surface 

temperature (𝑇𝑠). 𝐿𝜆
↓ is the downwards atmospheric radiance. In Equation 5.2, the term 

(1 − 휀𝜆)𝐿𝜆
↓ refers to the reflected downwards radiance emitted by the atmosphere. The 

subscript 𝜆 refers to the spectral character of each parameter, that is each parameter is 

referred at an effective wavelength 𝜆. This effective value is provided by Equation 5.3: 

𝜆𝑒𝑓𝑓 =  ∫ 𝜆𝑓(𝜆)𝑑𝜆 / ∫ 𝑓(𝜆)𝑑𝜆 

𝜆 are the wavelengths included in the filter function (8-14µm) and  

𝑓(𝜆) is the filter response function. In Figure 5.1, the response filters of the two 

radiometers considered SI-111 and IR-120 is displayed. Effective wavelength is also 

provided.  

 

 (5.2) 

 (5.3) 
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Figure 5.1. SI-111 and IR120 spectral normalized response. 

 

Surface temperature can be retrieved by isolating (𝑇𝑠) and inverting Planck law (Equation 

2.1 in chapter 2) as follows (Equation 5.4):  

𝑇𝑠 =
𝑐2

𝜆
{ln [

휀𝜆𝑐1

𝜆5(𝐿𝑔𝜆 − (1 − 휀𝜆)𝐿𝜆
↓)

+ 1]}

−1

 

where 𝑐1 and 𝑐2 are the Planck’s radiation constants with respective values of 1.19104·108 

Wµm4m-2sr-1 and 14387.7 µmK. 𝜆 refers to the effective wavelength. Note that retrieving 

LST from Equation 5.4 requires the knowledge 휀𝜆 and 𝐿𝜆
↓. A fixed value of 0.99 was 

assumed for 휀𝜆 as representative of dense green vegetation. 𝐿𝜆
↓ can be derived using 

radiative transfers codes such as MODTRAN and atmospheric profiles as input (see next 

section for simulation procedure). Because 𝐿𝜆
↓ is an hemispheric integrated down-welling 

radiance, it should be estimated for multiple angles (i.e. Gaussian angles: 11.6º, 26.1º, 

40.3º and 53.7º plus 0º, 65º, 70º,80º,85º and 89º for a better description at large angles) 

(Galve et al., 2008). Nevertheless, this implies multiple simulations and typically a unique 

simulation at nadir of 𝐿𝜆
↓ is performed. Nevertheless, this 𝐿𝜆

↓(0º) can be approximated 

to the hemispheric down-welling radiance by taking into account that 𝐿𝜆
↓ at an angle of 

53º represents well the hemispherically integrated 𝐿𝜆
↓ value from the sky (Kondratyev 

,1969). These two values are related by a factor of 1.3 (i.e. 𝐿𝜆
↓(53º) = 1.3𝐿𝜆

↓(0º)) 

(Sobrino & Cuenca, 1999). In this study, we make use of this last relationship in order to 

retrieve the hemispheric 𝐿𝜆
↓.  

The uncertainty of LST as derived by the IR-120 and SI-100 radiometers come from the 

contribution of several terms: uncertainty of the radiometers, emissivity, down-welling 

radiance, the pass band effect, and spatial variability of the in-situ stations (Skokovic, 

2017). The uncertainty of a new radiometer is specific by the manufacturer (Tables A.1.1 

and A.1.2 in appendix A.1) and is below 0.2 K. Nevertheless, this value increases with 

 (5.4) 
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time due to its use. From direct calibration with black body sources (Skokovic, 2017) it 

is known that these can reach maximum uncertainties of 0.4 K along the years. In the case 

of the emissivity, assuming a 휀 value of 0.990 and 𝛿휀 of 0.005 which can be assumed for 

vegetation (Skokovic, 2017) results in a contribution of 0.18 K. This value was calculated 

as the RMSE between unperturbed and emissivity perturbed LST values. The contribution 

from the down-welling radiance gives an error of 0.04 K. Assuming a representative 

profile of the atmospheric conditions of the region, the difference between the 

hemispheric integrated value using different MODTRAN runs and only one run using the 

previous relationship gives a difference of 0.6. Taking into acount this value the resulting 

error in LST is of 0.04 K. In García-Santos et al. (2012), comparing different 

hemispherical radiance retrieval methods showed that difficult conditions gave a 

difference of 3 Wm-2sr-1µm-1 between methods. Using this value as an upper threshold for 

the error we obtain a RMSE difference between perturbed and unperturbed values of 0.2 

K. Regarding the pass-band effect, a maximum overestimation of -0.1 K can be obtained 

when using emissivity values of 0.99 (Skokovic, 2017). The last contribution left is the 

spatial variability and it is related with the assumption that the spatial point of the station 

is representative for all the satellite pixel. In order to calculate this contribution, one clou-

free LANDSAT-8 image was downloaded for 19th August 2014 and a homogeneity 

analysis was performed. Using the brightness temperature of band 10 (10.6-11.2 µm and 

at spatial resolution of 100 m), and for 3x3, 5x5 ,10x10 and 15x15 it was found that 1-σ 

deviation between the values had a value of 0.08 K. Minimum and maximum observed 

values were 296.81-297.11 K. With all these contributions, the final uncertainty 

associated to in-situ LST as derived from radiometers is of 0.5 K. This value was 

calculated as the quadratic sum of the individual errors. As we can observed it is  less 

than 1K. For validation purposes, both in-situ LST values were simply averaged. Doing 

this a more representative measure is provided as infrared radiometers do not exactly 

point to the same spatial point.  

For pyrgeometer sensors LST was obtained by correcting the upwelling longwave 

radiation measured at the sensor (𝐿↑) by the longwave down-welling (𝐿↓) as in Equation 

5.5.  

𝐿𝑆𝑇 =  [
𝐿↑ − (1 − 휀)𝐿↓

휀𝜎
]

1
4

 

 

where 𝜎 represents the Stefan Boltzmann constant and has a value 5.67·10-8 Wm-2K-4. 𝐿↑ 

and 𝐿↓ are in Wm-2. As in the case of radiometers, 휀 was assumed a fixed value of 0.99. 

The uncertainty of LST as derived by the pyrgeometer can be obtained by error 

propagation (Equation 5.6).  

 

 (5.5) 
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𝛿𝐿𝑆𝑇 =
1

4휀𝜎𝐿𝑆𝑇3
√[(𝛿𝐿↑)2 + (

(𝐿↑ − 𝐿↓)

휀
(𝛿휀))

2

+ ((1 − 휀)𝛿𝐿↓)
2

] 

 

As can be seen in Equation 5.6, the first term inside the square root is the one that 

contributes most to the total error. Assuming a 휀 value of 0.999 and 𝛿휀 of 0.005, the 

second term and third term contribute with a 0.5% and 1% respectively. The first term 

contributes with an uncertainty as indicated by the manufacturer which for the CNR4 

sensor is of < 10%. A value of 5% is assumed for practical calculations. For representative 

values of 𝐿↑ and 𝐿↓ around 400 W/m2 this tipically results in uncertainties of 20 W/m2. 

Assuming a (𝐿↑ − 𝐿↓) difference of 40 W/m2, the resulting error in LST is >3 K. This 

high uncertainty in comparison to the radiometer comes from the uncertainty provided by 

the sensor itself (an assumed 5%). Nevertheless, comparing the CNR4 derived in-situ 

LST against the LST derived from radiometers (i.e. average of both radiometers), an 

uncertainty of 0.8 K is derived (Figure 5.2). As a null bias is obtained the major 

contribution comes from the dispersion of the data. It is worth noting that the temporal 

resolution of both sensors is different (radiometers every 5 minutes while CNR4 every 10 

minutes). Therefore, this 0.8 K value is assumed as representative of the pyrgeometer 

uncertainty. Adding the spatial variability term a resulting value of 0.83 is derived. As we 

can observed it is  less than 1K. 

 

 

 

 

 

 

 

 

 

Figure 5.2. Comparison of in-situ pyrgeometer LST against in-situ radiometer LST. LST radiometer is 

taken as the average between the two sensors (SI-111 and IR120). Comparison was performed at satellites 

time overpass.  
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5.2.2. - Satellite data  

 

In Table 5.7, the list of satellite products and layers selected together with an explanation 

of its purposes is provided. MODIS products were downloaded from 

https://earthdata.nasa.gov/ and MAIAC products from dataportal.nccs.nasa.gov. MODIS 

products correspond to version 6. Sentinel data was downloaded from the Copernicus 

Open Access Hub. MODIS products are provided at 1km spatial resolution in exception 

of MXD11C1 and MCD12C1 which are given at 5km.  VIIRS data is given at 750 m and 

SLSTR at 1km.  

In order to validate MODIS and VIIRS LST retrieval algorithms at the station, for the 

time period December-2014 to March-2019 MX021KM, MXD03, MXD07_L2, 

MXD05_L2, MXD_35_L2, MXD11_L2, MXD21, MXD11C1, 

MAIACXBRF/MCD19A1, VNP03MOD, VNP02MOD and VNP21 products were 

downloaded for the in-situ station. In the case of the MXD21 product, only data 

corresponding to AQUA platform (i.e. MYD21KM) were used as MOD21 is still not 

available for the time-period of the in-situ station. Pre-processing consisted in applying 

respective scaling factors and extracting in-situ station pixel. In the case of MXD07_L2 

atmospheric profiles were input to MODTRAN 5.2 radiative transfer code (explained in 

the next section) in order to derive the in-situ 𝐿𝜆
↓. In addition, this atmospheric profile 

product was also used in the retrieval of the Split-Window coefficients and for R-based 

validation method. MXDTBGA and MXD11A1 and MXD11C1 were used in order to 

retrieve the MODIS bands 31 and 32 and the MODIS LST values for the R-based 

validation approach. For implementation at basin scale the vegetation mask constructed 

as explained in section 4.3.1) was used in order to screen non-forest pixels.  

Apart from MODIS and VIIRS validation (which the present study is mainly focused 

about) we provide an early assessment of the performance of the LST product from the 

SLSTR sensor. In addition, results were compared to the generalized Split-Window. 

Sentinel products were downloaded for the period July-August 2017. Data included 

Brightness Temperatures (L1 RBT) and the level 2 LST product (L2 LST). For each 

product test site values were extracted.  
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Table 5.7. List of satellite products and layers selected used in this section. X can take values of O or Y, 

referring to MOD (TERRA platform) or MYD (AQUA platform) respectively.  

MODIS 

Product Layer Purpose 

MXD021KM EV_1KM_Emissive MODIS B31 and B32 extraction 

MXD03 Latitude, Longitude In-situ station location 

MXD07_L2 

Retrieved_Temperature_Profile 

Retrieved_Moisture_Profile 

Retrieved_Height_Profile 

Atmospheric profiles used for in-situ LST 

correction and algorithms coefficients 

retrieval 

MXD05_L2 Water_Vapor_Infrared Water vapour used in general SW 

MXD35_L2 Cloud_Mask Cloud mask flagging 

MAIACXBRF 

MCD19A1 
Status_QA Cloud mask flagging 

MXD11_L2 LST, QC, View_angle MODIS LST retrieval 

MXD21 LST, QC MODIS LST retrieval 

MXD11A1 LST_Day_1km, QC_Day MODIS LST retrieval 

MXD11C1 LST_Day_CMG, QC_Day MODIS LST retrieval 

MXDTBGA Band 31, Band 32 
MODIS B31 and B32 extraction 

R-based validation 

MCD12Q1 

MCD12C1 
Land Cover Type 1 (IGBP) Tropical forests delineation 

   

VIIRS 

Product Layer Purpose 

VNP03MOD Latitude, longitude In-situ station location 

VNP02MOD M15, M16 VIIRS M15, M16 extraction 

VNP21 LST VIIRS LST retrieval 
   

SLSTR 

Product Layer Purpose 

L1_RBT S8, S9 SLSTR S8, S9 extraction 

L2_LST LST SLSTR LST retrieval 
   

 

 

5.2.3. - Simulations 

  

At sensor brightness temperature can be simulated from forward simulations driven by 

the radiative transfer equation (Equations 2.9-2.10 in chapter 2), the combined used of 

atmospheric profiles and radiative transfer codes and emissivity spectra. Once we have a 

simulated dataset that accurately reproduces sensor measurements, the coefficients of the 

Split-Window LST retrieval algorithm can be derived by statistical minimization (i.e. 

linear regression) of this dataset. In the following, the data and methodology for the 

generation of this simulated database is presented.  
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5.2.3.1 Radiative Transfer codes 

 

In order to retrieve the atmospheric parameters involved in the radiative transfer equation 

(atmospheric transmissivity and up-welling and down-welling radiances) we used the 

MODTRAN radiative transfer code. In particular, we use the version 5.2.0 (Berk et al., 

2008). MODTRAN stands for MODerate spectral resolution atmospheric 

TRANSsmittance algorithm and computer model. It was developed and continues to be 

maintained through a longstanding collaboration between Spectral Sciences, Inc. (SSI) 

and the Air Force Research Laboratory (AFRL). The spectroscopy of 

MODTRAN®5.2.0.0 is based on HITRAN2008 line compilation (Rothman et al., 1992; 

Rothman et al., 1998) with updates through January, 2007. In addition, this new version 

provides the ability to handle new species not already included in the built-in profile and 

molecular parameter files. A summary of the features included in this version is provided 

in Berk et al. (2008). 

MODTRAN computes line-of-sight atmospheric spectral transmittances and radiances 

over the ultraviolet through long wavelength infrared spectral regime (0 - 50,000 cm-1; > 

0.2 μm). MODTRAN radiation transport physics is based on an atmospheric “narrow 

band model” algorithm with a resolution as fine as 0.2 cm-1 from its 0.1 cm-1. In the 

solving of the radiative transfer equation MODTRAN includes the effects of molecular 

and particulate absorption/emission and scattering, surface reflections and emission, 

solar/lunar illumination, and spherical refraction. MODTRAN is able to provide accurate 

and fast modeling of stratified, horizontally homogenous atmospheres. The atmosphere 

is modelled via constituent vertical profiles, both molecular and particulate, which can be 

defined using built-in models or by user-specified radiosonde or climatology data. 

 

5.2.3.2 Atmospheric soundings 

 

Atmospheric vertical profiles were retrieved from the MXD07_L2 product (Table 5.7). 

Parameters provided by this product include the total column estimates of precipitable 

water vapour, ozone and atmospheric stability together with temperature and moisture 

profiles. Profiles are distributed in 20 atmospheric levels: 

5,10,20,30,50,70,100,150,200,250,300,400,500,620,700,780,850,920,950 and 1000 hPa. 

The algorithm uses 11 infrared MODIS bands (bands 25 and from 27 to 36) in order to 

extract the vertical profiles with a statistical regression. All of these parameters are 

produced at day and night at 5x5 1-km MODIS pixel resolution when at least 9 

observations are cloud free. For a detailed description of the product please refer to 

Borbas et al. (2011).  
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The atmospheric profiles used for the generation of the simulated database, were collected 

from 1118 spatial random points distributed in the study region (as defined by the 

vegetation mask) as in Figure 5.3. For each point, the cloud-free profiles were collected 

from the period 2014-2016. Atmospheric profiles were additionally averaged in a 5x5 

pixel window. Therefore, each spatial point represented a spatial area of 25x25 km. 

Atmospheric profiles were input to MODTRAN code and we obtained the spectral 

atmospheric transmissivity and radiances (up-welling and down-welling). MODTRAN 

simulations were performed at the observed satellite view zenith angle. Spectral values 

were convolved considering the sensors spectral response in order to derive the channel 

values. In Figure 5.4, the spectral response of the sensors considered is presented.  

Considering the spatial distribution and the temporal extent of the collected profiles, and 

taking into account that the profiles are observed by MODIS itself it is assumed that the 

simulated database is able to properly capture the observed distribution of the atmospheric 

parameters. It is worth mentioning that a simulated database was retrieved separately for 

TERRA and AQUA platforms at daytime and nighttime conditions. Therefore, it resulted 

in 4 different simulated databases. For the case of VIIRS and SLSTR sensors, AQUA and 

TERRA databases respectively were considered in order to derive the algorithms 

coefficients. In Figure 5.5, the description of the simulated databases for daytime and 

nighttime conditions in terms of water vapour and satellite view zenith angle is displayed. 

Although some overlapping between daytime and nighttime histograms is observed, 

hotter and wetter conditions are obtained for daytime in comparison to nighttime case. 

Regarding, satellite viewing conditions histograms are equivalent.  

 

 

 

 

 

 

 

 

 

 

Figure 5.3. Spatial location of the atmospheric profiles. In green it is displayed the Amazon evergreen 

broadleaf forests. In red and black are displayed the train and test spatial points.  
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Figure 5.4. Spectral response functions for the thermal bands of the MODIS, VIIRS and SLSTR sensors 

in the 8-14 µm window.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Simulated daytime and nighttime databases description. Histograms for air temperature, water 

vapour (w/cosθ) and view zenith angle are displayed.  
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5.2.3.3. Emissivity spectra 

 

In order to obtain the at-sensor radiances emissivity values are required. Thus, in this 

simulation a series of emissivity spectrums extracted from the ASTER (Advanced 

Spaceborne Thermal Emission and Reflection Radiometer) spectral library (Baldrige et 

al., 2009). It is available at http://speclib.jpl.nasa.gov. This library is formed by three 

spectral libraries belonging to the JHU (Johns Hopkins University), JPL (Jet Propulsion 

Laboratory) and the USGS-Reston (United Status Geological Survey) centers. It is a 

compilation of over 3400 spectra of natural and man-made materials. In February 2018, 

a new release which added over 1100 new vegetation and non-photosynthetic vegetation 

spectra.   

For our case, we selected the available vegetation spectra. They correspond to grass, 

coniferous and deciduous. It is worth noting here, that these were the only vegetation 

spectra available at the time of performing the study (before February 2018). These three 

spectra were convolved using sensors spectral responses in Figure 5.4 and were employed 

in order to generate the simulated database.  

Once we have the atmospheric transmissivity, up-welling, down-welling radiance and 

emissivity values at-sensor radiances and brightness temperatures are derived by simply 

applying the RTE. In these simulations, surface temperature was assumed equivalent to 

the first temperature in the given atmospheric profile. From a comparison between air 

temperature and the pyrgeometer LST an RMSE of 1.4 K was retrieved. Therefore, the 

previous assumption is considered valid for the simulation of at-sensor radiances. 

 

 

5.2.4. - Algorithms coefficients and sensitivity analysis 

 

Taking into account the three emissivity spectra and the total amount of atmospheric 

profiles the total amount of simulated data points for the cases considered: TERRA-day, 

AQUA-day, TERRA-night and AQUA-night were approximately 542000, 870000, 

650000  and 680000 respectively. These datasets were split into a train dataset (70%) and 

a test dataset (30%). The train was used in order to retrieve the split-window coefficients 

by linear regression of these datasets. The test dataset was employed in order to validate 

the retrieved split-window algorithms over unseen data. Two versions of the split-window 

were derived. They are denoted by generalized and simplified. In the generalized version, 

a set of 6 coefficients were retrieved. In this case, all contributions (i.e. water vapour and 

emissivity terms) were included. For the particular case of the tropical forests, which have 

and emissivity value of 0.99 and spectral emissivity difference is negligible, the terms 

involving water vapour and emissivity can be omitted and the split-window reduces to a 

set of 3 coefficients. This case is denoted as the simplified version.  
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 The uncertainty of the split-window is given by the quadratic sum of the different error 

sources (Equation 5.7).  

𝑒(𝑇𝑠) =  √𝛿𝑠𝑖𝑚
2 + 𝛿𝑁𝐸∆𝑇

2 + 𝛿𝜀
2 + 𝛿𝑤

2  

where 𝛿𝑠𝑖𝑚 is the standard deviation of the algorithm obtained in the minimization 

(standard error of estimation), 𝛿𝑁𝐸∆𝑇 is the noise equivalent delta temperature (NEΔT), 

𝛿𝜀 is the error due to the uncertainty of the surface emissivity, 𝛿𝑤 is the error due to the 

uncertainty of the atmospheric water vapour content. These contributions are given by 

Equations 5.8- 5.10:  

𝛿𝑁𝐸∆𝑇 =  √(
𝜕𝑇𝑠

𝜕𝑇𝑖
)

2

𝑒2(𝑇𝑖) +  (
𝜕𝑇𝑠

𝜕𝑇𝑗
)

2

𝑒2(𝑇𝑗)  

𝛿𝜀 =  √(
𝜕𝑇𝑠

𝜕휀
)

2

𝑒2(휀) +  (
𝜕𝑇𝑠

𝜕∆휀
)

2

𝑒2(∆휀)  

𝛿𝑤 = (
𝜕𝑇𝑠

𝜕𝑤
) 𝑒(𝑤) 

 

where 𝑒(∆휀) =  √𝑒2(휀𝑖) + 𝑒2(휀𝑗) and 𝑒(휀) =
1

2
√𝑒2(휀𝑖) + 𝑒2(휀𝑗) . Considering Equations 

4.8-4.10 and performing the partial derivatives we obtain the following expressions 

(Equations 5.11-5.13):  

 

𝛿𝑁𝐸∆𝑇 =  √[1 + 2𝑐2(𝑇𝑖 − 𝑇𝑗) + 𝑐1]
2

𝑒2(𝑇𝑖) + [−𝑐1 − 2𝑐2(𝑇𝑖 − 𝑇𝑗)]
2

𝑒2(𝑇𝑗) 

 

𝛿𝜀 =  √[−(𝑐3 + 𝑐4𝑤]2𝑒2(𝛿𝜀) + (𝑐5 + 𝑐6𝑤)[𝑒2(휀𝑖) + 𝑒2(휀𝑗)] 

 

𝛿𝑤 = [𝑐4(1 − 휀) + 𝑐6∆휀]𝑒(𝑤) 

 

 

In order to calculate these expressions, the following typical errors are used: 𝑒(𝑇𝑖) =

𝑒(𝑇𝑗) = 0.1 K, 𝑒(휀𝑖) = 𝑒(휀𝑗) = 0.01 and 𝑒(𝑤) = 0.5 g/cm2. These reference values of 

uncertainties have been justified and considered in other simulations exercises (Jimenez-

Muñoz & Sobrino, 2008). For the case of the generalized algorithm, we will have 

contributions from all the terms while for the simplified version only 𝛿𝑁𝐸∆𝑇 and 𝛿𝑠𝑖𝑚 will 

be contributing.  

 

 

 

 

 (5.7) 

 (5.8) 

 (5.9) 

 (5.10) 

 (5.11) 

 (5.12) 

 (5.13) 
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5.2.5. - T-based validation 

 

For this study, in-situ LST measurements were obtained from both the infrared radiometer 

(SI-100 and IR-120) and the CNR4 (net radiometer). As explained above, for the case of 

the radiometer the mean value of the two sensors was used for practical purposes. 

Validation was performed separately for daytime and nighttime conditions. In Table 5.8, 

the validation algorithms are summarized. For the case of the generalized SW, 휀 was 

assumed a fixed value of 0.99 and ∆휀 a value of 0.005 for all the three sensors. Water 

vapour for all the three sensors was directly extracted from the MXD05_L2 product.  

For practical purposes, LST daytime values were filtered for clouds using the MXD35_L2 

and MAIAC cloud masks in the case of MODIS sensor at daytime. Nighttime LST values 

were filtered using MXD35_L2.  For VIIRS sensor, both daytime and nighttime LST 

estimates were filtered using the VNP35_L2 cloud mask as embedded in the VNP21 

product. In the case of SLSTR, possible LST cloud-contaminated values were screen by 

considering only values with a maximum difference of 6 K with in-situ LST values. In 

order to screen unseen clouds by sensors cloud masks this temperature difference filter 

was also applied for both MODIS and VIIRS. In order to analyze the possible effects of 

this restriction, results were also retrieved for a maximum difference of 15 K and 3 K 

(Appendix A.3). Other cloud screening procedures were tested such as the error LST 

values (<1K) provided by the LST products, nevertheless this provides similar results to 

the 3 K case with an important reduction of LST values.  

 

Table 5.8. List of validated algorithms according to the scenarios considered.   

Scenario Validated algorithms 

TERRA-day SW-gen, SW-simpl, MODIS SW, MODIS day-night 

TERRA-night SW-gen, SW-simpl, MODIS SW, MODIS day-night 

AQUA-day SW-gen, SW-simpl, MODIS SW, MODIS day-night, MODIS TES 

AQUA-night SW-gen, SW-simpl, MODIS SW, MODIS day-night, MODIS TES 

VIIRS-day SW-gen, SW-simpl, VIIRS-TES 

VIIRS-night SW-gen, SW-simpl, VIIRS-TES 

SLSTR-day SW-gen, SW-simpl, LEVEL-2 LST 

 

LST retrieval algorithms performance was evaluated using the following metrics: bias, 

standard deviation of the difference (σ), root mean square (RMSE), correlation coefficient 

(R) and the number of available points (N). The expressions are given by Equations 5.14-

5.17, where 𝑥 refers to LST estimates and 𝑦 to in-situ LST values:  
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5.2.6.- R-based validation 

 

As an alternative to the T-based validation method, R-based approach allows to validate 

LST values in points where we do not have any in-situ measurements. In this case, LST 

is obtained from the RTE using the at-sensor brightness temperature (TOA) and 

atmospheric profiles of temperature and water at the time of satellite observation. This 

method can be briefly summarized in two steps:  

 

1) Inverse simulation: R-based in situ LST (TR) is obtained from the 11 μm band 

using the RTE and at-sensor radiance, atmospheric profiles and surface emissivity 

data. The 11 μm band is used because it is less affected by variations in 

atmospheric water vapour and temperature.  

 

2) Direct simulation: using derived R-based surface temperature (TR), brightness 

temperature at bands 11 μm and 12 μm are calculated using the same coincident 

atmospheric profiles and emissivity data. The accuracy of the atmospheric is 

assessed with the test suggested by Wan & Li (2008). This test involves 

calculating the difference 𝛿 (𝑇11 − 𝑇12) = (𝑇11 − 𝑇12)𝑜𝑏𝑠 − (𝑇11 − 𝑇12)𝑠𝑖𝑚, that 

is the difference between the observed MODIS TOA radiance and simulated TOA 

radiances. Taking into account that T11 observed and simulated are equal, the 

difference reduces to 𝛿 (𝑇11 − 𝑇12) = (𝑇12𝑜𝑏𝑠
− 𝑇12𝑠𝑖𝑚

). This test is based on the 

fact that atmospheric effect is larger at 12 μm. When the atmospheric profile used 

for R-based LST calculation is over (under) correcting the atmospheric effect, 

then 𝛿 (𝑇11 − 𝑇12) < 0 (> 0)  since the calculated profile based 𝑇11 − 𝑇12 value 

is large (smaller) than the actual LST value. As validation should be restricted to 

cases in which the atmospheric effect is small, a maximum and minimum 

thresholds are applied to 𝛿 (𝑇11 − 𝑇12). The optimal threshold value for this 

 (5.14) 

 (5.15) 

 (5.16) 

 (5.17) 
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difference is selected so that the difference between the simulated TR and the in-

situ LST lies within 1K. 

 

 

Due to the downloading and processing cost associated, this validation was restricted to 

the MODIS daytime case. In this case, MODIS-SW and MODIS day-night and SW-simpl 

were validated. We used 100 random points from the test simulated database. MODIS 

radiance values and MODIS LST values can be easily derived from reprojected MODIS 

products, thus reducing the downloading and computational cost associated. Cloud mask 

information was derived from MAIACXBRF product (i.e. MAIAC algorithm). The time 

period of this validation is December 2014- December 2016 period. This method requires 

a good knowledge of the spectral emissivity of the site. Taking into account that the 

selected spatial points correspond to evergreen broadleaf forests a value of 0.99 is 

assumed. In order to find the optimal threshold value for 𝛿 (𝑇11 − 𝑇12) Tambopata test 

in-situ LST values were used.   

 

 

5.2.7.- Spatial patterns 

 

In order to complete the validation analysis, for the particular case of MODIS daytime a 

comparison between the spatial patterns of clear-sky days and LST obtained from MODIS 

standard product and the simplified SW algorithm was performed. In particular, seasonal 

mean LST values together with the number of clear sky days per season for the year 2014 

were used for comparison. Results from MODIS operative algorithms were retrieved 

from the MOD11A1 and MYD11A1 products.  Seasons included in the analysis were 

JFM (January-February-March), AMJ (April-May-June), JAS (July-August-September) 

and OND (October-November-December). Comparison was performed at three different 

levels of cloud masking: i) the MOD35 cloud mask as included in the MOD11 product 

without any additional QA discrimination (LST not produced due to clouds), ii) the 

MOD35 cloud mask as included in the MOD11 product and the additional filter based on 

the QC layer (LST not produced due to clouds + LST produced other quality) (Nishida et 

al., 2003; Williamson et al., 2013), and iii) the MAIAC cloud mask. For simplicity, we 

will refer to these three cases as MOD35, QC and MAIAC, respectively. Additionally, 

spatial pattern validation was extended repeating this same procedure using VIIRS data. 

Having satellite overpass time similar to AQUA and considered to be the successor of 

MODIS, VIIRS is presented as an add-on in order to validate the results derived from the 

LST presented here.  
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5.3. – Evapotranspiration retrieval  

 

In this section, we described the different types of data employed in the comparison of 

evapotranspiration retrieval algorithms, as well as their preliminary processing and 

evaluation methodology. In particular, three types of data were used: 1) in-situ eddy 

covariance turbulent fluxes and meteorological data, 2) reanalysis meteorological data 

and 3) land surface variables derived from satellite data. Four evapotranspiration retrieval 

algorithms were considered for model evaluation. They were: Priestley-Taylor Jet 

Propulsion Laboratory (PT-JPL), Penman-Monteith MODIS operative parametrization 

(PM-Mu), Surface Energy Balance System (SEBS), and Satellite Application Facility on 

Land Surface Analysis (LSASAF) algorithm). In addition, the gap-filling technique used 

to provide evapotranspiration estimates for cloudy days in SEBS model is presented.  

 

5.3.1.- In-situ data 

 

The LBA experiment provides a high-quality in-situ dataset of hourly surface heat fluxes 

and meteorological data of the tropical forests of the Amazonian region, making them an 

appropriate source for model evaluation. A general description of the dataset can be found 

in Saleska et al. (2013). LBA data were available at ORNL Distributed Archive Active 

Centre (ftp://daac.ornl.gov/data/lba/carbon_dynamics/CD32_Brazil_Flux_Network/). 

Five stations were selected from this dataset based on two criteria: the availability of all 

required input data for simulation using the different models in this study and that stations 

must have and associated value of 2 in the International Geosphere-Biosphere Programme 

(IGBP) classification (i.e. representing Evergreen Broadleaf Forests). In this dataset, an 

initial quality control procedure was applied in order to flag non-valid data (refer to 

Saleska et al., 2013). For the study, only observed measurements were considered (i.e. no 

gap-filling procedure was used).  

Eddy covariance (EC) method was used for obtaining in-situ flux estimates of 

evapotranspiration and sensible heat flux at the LBA stations. Hourly latent heat flux (LE) 

values were converted to mm/hour using  𝐸𝑇 =  𝐿𝐸/𝜆, where 𝜆 is the latent heat of 

vaporization (Jkg-1) and is given by 𝜆 = (2.501 − 0.002361𝑇𝑎) · 106 (Maidment, 1993). 

𝑇𝑎 refers to the hourly air temperature in Kelvins. Daily evapotranspiration values (mm/d) 

were obtained by summing hourly values (mm/hour). Daily values were excluded as 

missing data if less than 20 (out of 24) measurements were not available. 

Model performance was evaluated mainly using these non-corrected ET values. 

Nevertheless, in order to take into account the observed non-closure issue two common 

non-closure techniques (Bowen Ratio and Energy Residual) were also considered. In 

Figure 5.6, the average energy balance closure at hourly scale for the stations considered 

is presented. This is in agreement with the closure values observed for most of the tropical 

sites within the LBA experiment (i.e. 70-80%) (Fisher et al., 2009).  
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Figure 5.6. Hourly energy balance closure for the selected LBA-sites.  

Following Twine et al., (2000), energy balance can be closed if turbulent heat flux 

measurements are distributed according to the Bowen Ratio 𝛽 = 𝐻/𝐿𝐸.  The Bowen 

Ratio correction is applied as: 𝐿𝐸𝐵𝑅 = 𝑅𝑛/(1 + 𝛽) and 𝐻𝐵𝑅 = 𝛽𝑅𝑛/(1 + 𝛽). 

Alternatively, the lack of closure can be approached by calculating the latent heat flux as 

a residual term in the energy balance equation 𝜆𝐸𝐸𝑅 = 𝑅𝑛 − 𝐻 using the observed fluxes. 

This method is known as the Energy Residual method (ER). It is worth noting here, that 

both in Figure 5.6 and in the applied corrections the terms of soil heat flux and the heat 

storage of the system were not included due to the continuous discontinuity of the 

available data. Nevertheless, these values approach zero when integrated at daily scale, 

which is the case.  Hourly corrected evapotranspiration values were corrected and 

summed to daily values. As in the non-corrected case, daily values were excluded as 

missing data if less than 20 (out of 24) measurements were not available. In the case of 

the Bowen Ratio method, as 𝛽 approaches -1 it gives non-physical values. An absolute 

value of 1 mm/hour was used in order to reject non-valid ET measurements. In addition, 

in order to minimize this effect, we only consider as valid, pixels that accomplish the ratio 

of corrected/uncorrected values were greater than 0.5 or less than 2 as in Ershadi et al. 

(2014).  

In the literature, several reasons were attributed to the lack of closure in eddy covariance 

method: instrument spatial representativeness, instrumental and methodological 

limitations and uncertainties, insufficient estimation of storage terms, unmeasured 

advective fluxes among others (Malhi et al., 2002; Wilson et al., 2002; Hasler & Avissar, 

2007; Foken et al., 2011; Stoy et al., 2013). In spite of these reasons, the mechanism for 

this imbalance remains unclear. Likewise, the best way to handle it in terms of data 

correction is still a topic under discussion (Foken et al., 2012). In the present study, the 

three types of in-situ ET data were used in order to consider the impact of these methods 

in the evaluation metrics, and therefore provide bounds on the range in the probable model 

performance.  
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Apart from in-situ turbulent fluxes, in-situ surface radiation (Rn, SRin, LRin,) and surface 

meteorology inputs (Ta, ea, Ws, P) were used for forcing evapotranspiration models. 

Hourly inputs were averaged over daily, daytime/nighttime time intervals in order to 

accommodate to models requirements. A minimum SRin threshold of 10 W/m2 was used 

for separating daytime and nighttime conditions. 

 

 
 

5.3.2.- Reanalysis data 

 

Meteorological data at a coarser resolution were obtained by three different reanalyses: 

MERRA-2, ERA-Interim and GLDAS-2.1. MERRA-2 provides data at an hourly scale 

with a 0.5º x 0.65 º spatial resolution while ERA-Interim and GLDAS-2.1 provide data at 

a three hourly scale with a spatial resolution of 0.75º x 0.75º and 0.25º x 0.25º 

respectively. Table 5.9 presents the reanalysis variables from which model inputs are 

derived. MERRA-2 reanalysis variables were obtained from M2T1NXRAD, 

M2T1NXSLV and M2T1NXLND products. GLDAS-2.1 data were derived from 

GLDAS_NOAH025_3H product. In the case of ERA-Interim, variables were directly 

retrieved from the data-downloading platform.  

The three reanalysis directly provide the incoming surface radiation (SRin, LRin,), air 

temperature (Ta) and pressure (P). Net radiation is considered as the sum of the net 

shortwave radiation and net longwave radiation. Wind speed is obtained as the module of 

the wind components for MERRA-2 and ERA-Interim. Water vapour pressure is retrieved 

from specific humidity (MERRA-2 and GLDAS-2.1) or from dew point temperature 

(ERA-Interim) variables considering the relations expressed in Equations 5.18 to 5.20 

(Ambaum, 2010).  

 

 𝑞 =
𝑒

1.61(𝑝 − 𝑒) + 𝑒
 

                                                

𝑒𝑠(𝑇𝑑) = 𝑒𝑎(𝑇𝑑) 
 

𝑒𝑠(𝑃𝑎) = 611.2 exp (
17.67 · T(ºC)

T(ºC) + 243.5
) 

                                               

Rootsm (ERA-Interim and GLDAS-2.1) was derived by averaging the four-layered 

reanalysis soil water content taking into account a modulating soil temperature function, 

the root distribution and fixed values of wwp (0.171 m3/m3) and wfc (0.323 m3/m3) 

(Equation 3.73-3.74 in chapter 3). Soilsm is computed in a similar approach but 

considering only the first soil layer. Rootsm and Soilsm (MERRA-2) were computed by 

inverting root-zone (GWETROOT) and soil (GWETTOP) wetness derived from 

MERRA-Land (Reiche et al., 2011) considering previous fixed wwp and wfc values. 

 (5.18) 

 (5.19) 

 (5.20) 
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Table 5.9.  List of reanalysis variables according to model inputs.  

Input MERRA-2 

variables 

ERA-Interim 

variables 

GLDAS-2 

variables 

SRin  SWGDN ssrd SWdown_f_tavg 

LRin LWGAB strd LWdown_f_tavg 

Rn LWGNT + SWGNT ssr + str SWnet_t_avg+ LWnet_t_avg 

Ta T2M t2m T_air_f_inst 

ea Q2M d2m Q_air_f_inst 

Ws (U2M2 + V2M2)1/2 (u102 + v102)1/2 Wind_f_inst 

P PS sp Psurf_f_inst 

Rootsm, 

Soilsm 

GWETROOT 

GWETTOP 

stl1-stl4 

swvl1-swvl4 

SoilMoix_xcm_inst 

SoilTMPx_xcm_inst 

 

Hourly and three hourly forcing inputs were averaged in order to obtain daily and 

daytime/nighttime values. Same in-situ SRin threshold was considered for daytime and 

nighttime partition. For SEBS model, inputs at satellite time overpass were derived by 

linear interpolation between closest time acquisitions. Forcing inputs were spatially 

interpolated, considering a Gaussian interpolation between nearest neighbours, to a 1km 

scale for validation purposes and at 5 km for regional scale implementation.  

 

5.3.3.- Satellite data 

 

Table 5.10 presents the land surface variables derived from MODIS data. A reference of 

each product is provided. Spatial resolution of the products is 1km. Canopy height is 

available at https://webmap.ornl.gov./ogcs/datasets. In the case of vegetation fraction, we 

used the global product derived in Broxton et al. (2014). In this work, annual fc was 

retrieved by scaling the annual maximum observed NDVI at each pixel (Nmax) between 

the maximum soil (Ns) and vegetation (Nv) NDVI using the following relationship: 𝑓𝑐 =

(𝑁max −𝑁𝑠)/(𝑁𝑣 − 𝑁𝑠). Due to the characteristics of the region, assuming of a constant 

vegetation fraction for the entire year is plausible. In the case of emissivity, a simple linear 

mixing between the emissivity of vegetation (0.99) and the emissivity of the soil (0.96). 

LST employed in this study was retrieved from the LST products presented in Gomis-

Cebolla et al. (2018) and section 5.2. LAI was calculated following the parametrization 

of PT-JPL model. 𝑓𝑖𝑝𝑎𝑟 is obtained as NDVI-0.05 and 𝑘𝑝𝑎𝑟 takes a value of 0.35. Albedo 

and NDVI were retrieved from the MAIAC suite products, available at 

dataportal.nccs.nasa.gov. MAIAC albedo corresponds to the combination of MOD43B3 

black-sky and white-sky albedo weighted with respective relative direct and diffuse 

incident fluxes. For both NDVI and albedo in order avoid the lack of data due to 

continuous cloud coverage of the region monthly albedo and NDVI values were used to 

force the models. Missing monthly data was filled with the monthly climatological mean 

for the period 2000-2016. 
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For remote sensing data, same spatial resampling as reanalysis input data was considered. 

For regional scale implementation, tropical forests were delineated as explained in section 

4.3.1. 

 

Table 5.10. Land surface variables derived from MODIS remote sensing data.  

Product Explanation Reference 

Canopy height (h) 
Global canopy height derived  

from spaceborne lidar  
Simard et al. (2011) 

Vegetation fraction (fc) 
Global green vegetation fraction derived 

from MODIS multitemporal analysis 
Broxton et al. (2014) 

Emissivity (ε) 휀𝑣𝑓𝑐 + (1 − 𝑓𝑐)휀𝑠  Sobrino et al. (2008) 

LST SW simplified algorithm  
Gomis-Cebolla et al. 

(2018) 

LAI − ln(1 − 𝑓𝑖𝑝𝑎𝑟)/𝑘𝑝𝑎𝑟 Fisher et al. (2008) 

α 
Surface albedo at a given solar zenith 

angle in ambient atmospheric condition 

Lyapustin & Wang 

(2007) 

NDVI 
8-day angular corrected normalized 

difference vegetation index 

Lyapustin & Wang 

(2007) 

 

 

5.3.4.- Soil data and gap-filling technique 

 

For gap-filling purposes (SEBS model), gridded soil properties (wwp and wfc) were 

obtained from Harmonized World Soil Database (HWSD) (FAO,2012). Following 

Anderson et al. (2007), they were indexed according to texture class (Table 5.11). The 

HSWD is based on soil mapping units with varying sizes. Thus, no fixed spatial resolution 

can be given.  
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Table 5.11. Soil moisture retention properties assigned to each HSWD texture class (extracted from 

Anderson et al., 2007).  

Texture class 𝜃𝑤𝑝 𝜃𝑓𝑐 b 

Sand 0.033 0.091 1.7 

Loamy sand 0.055 0.125 2.1 

Sandy loam 0.095 0.207 3.1 

Silt loam 0.133 0.330 4.7 

Silt 0.133 0.330 4.7 

Loam 0.117 0.270 4.5 

Sandy clay loam 0.148 0.255 4 

Silty clay loam 0.208 0.366 6.6 

Clay loam 0.197 0.318 5.2 

Sandy clay 0.239 0.339 6 

Silty clay 0.250 0.387 7.9 

Clay 0.272 0.396 7.6 

 

In the following a brief explanation of the gap-filling technique using an available water 

model as obtained from Anderson et al. (2007) is given. This method is based on the fact 

that the fraction potential evapotranspiration (𝑓𝑃𝐸𝑇) and the available water fraction (𝑓𝐴𝑊) 

can be related by a stress function as 𝑓𝑃𝐸𝑇 = 𝑓𝑛 (𝑓𝐴𝑊). The function considered is derived 

from physical principles, relating to soil and water potentials. These expressions are given 

by Equations 5.21 to 5.23.  

 

𝑓𝑃𝐸𝑇 = 𝐸𝑇/𝑃𝐸𝑇 

𝑓𝐴𝑊 =
𝐴𝑊

𝐴𝑊𝐶
=

(𝜃 − 𝜃𝑤𝑝) ·  𝑑

(𝜃𝑓𝑐 − 𝜃𝑤𝑝) ·  𝑑
 

𝑓𝑛 =  1 −
1

(1 + 1.3𝑓𝐴𝑊)𝑏
 

 

ET is the actual evapotranspiration (mm/d) or plant water uptake and PET is the potential 

evapotranspiration (mm/d). For the case of SEBS it was calculated assuming the 

maximum evaporative fraction (i.e. Λ = 1) when upscaling from hourly to daily values. 

AW is the actual plant available water and AWC is the available water capacity of the 

soil. 𝑑 is the thickness of the soil layer supplying water to transpiring vegetation. A soil-

layer of 0-289 cm was assumed according to root distribution in evergreen broadleaf 

forests (van den Hurk et al., 2000).  𝜃 is the current soil moisture content (m3/m3) and 

𝜃𝑤𝑝 and 𝜃𝑓𝑐 represent the soil water content at wilting point and field capacity (m3/m3). 

Wilting point is defined by convention as the water content at -1.5 kPa of suction pressure 

and represents the minimal amount of water in the soil that the plants requires not to wilt. 

At this stage, the soil still contains some water but it is too difficult for the roots to suck 

it from the soil. Field capacity is defined as the bulk water content retained in soil at -33 

 (5.21) 

(5.22) 

(5.23) 
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kPa of hydraulic head. It represents the amount of soil moisture held in the soil after 

excess water has drained away and the rate of downward movement has decreased. At 

this stage, the water and air contents of the soil are considered to be ideal for plant growth. 

𝜃𝑤𝑝 and 𝜃𝑓𝑐 values were obtained from Table 5.11. 

The gap-filling technique is accomplished by maintaining running pools of available 

water for the root zone (0-280 cm). In Table 5.12, the process is summarized.  On clear 

days, the soil moisture conditions are inferred from the measured fluxes or 

evapotranspiration (steps 1 to 3). The available water for the next day will be therefore 

the calculated AW minus the water uptake by vegetation in that day. On cloudy days, the 

process is inverted. Evapotranspiration values are inferred from the soil moisture 

conditions (steps 1 to 3). The AW is updated for the next day by decrementing AW by 

the calculated ET.  

 

Table 5.12. Gap-filling process for days with no ET estimate (extracted from Anderson et al., 2007).  

 

 

 

 

 

 

5.3.5- Model configuration 

 

In chapter 3, the theoretical formulation of the models is presented. Nevertheless, in this 

study some modifications were performed in order to estimate the ET. Below, they are 

explained: 

 

PT-JPL:  

- In Fisher et al. (2008), in the plant temperature constraint ( 𝑓𝑇 ) the optimal plant 

growth temperature (𝑇𝑜𝑝𝑡) was estimated as the air temperature of the annual peak 

of canopy activity. Nevertheless, due to in-situ data scarcity for the present study 

𝑇𝑜𝑝𝑡 was fixed at a constant value of 25ºC. This value has been applied previously 

for global evapotranspiration modelling across different types of biomes (Yuan et 

al., 2010; García et al., 2013). 

- For the calculation of the relative humidity, 𝑒𝑎 and 𝑒𝑠 were obtained at midday 

conditions (i.e. at 𝑇𝑚𝑎𝑥 conditions). Preliminary analysis showed that using 𝑒𝑎 at 

this time instead of daily 𝑒𝑎 improved the results. 

- Although PT-JPL model (Fisher et al., 2008) was originally developed for 

monthly time scale, previous studies showed that it can also be applied 

Steps Clear days Cloudy days 

1) 𝑓𝑃𝐸𝑇 = 𝐸𝑇/𝑃𝐸𝑇 𝑓𝐴𝑊 = 𝐴𝑊/𝐴𝑊𝐶 

2) 𝑓𝐴𝑊 = 𝑓𝑛−1(𝑓𝑃𝐸𝑇) 𝑓𝑃𝐸𝑇 = 𝑓𝑛 (𝑓𝐴𝑊) 

3) 𝐴𝑊 = 𝑓𝐴𝑊𝐴𝑊𝐶 𝐸𝑇 = 𝑓𝑃𝐸𝑇𝑃𝐸𝑇 

4) 𝐴𝑊𝑛𝑒𝑥𝑡 = 𝐴𝑊 − 𝐸𝑇 𝐴𝑊𝑛𝑒𝑥𝑡 = 𝐴𝑊𝑟𝑧 − 𝐸𝑇 
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successfully considering daily inputs (Yao et al., 2017; García et al., 2013). With 

this daily assumption, G was considered negligible in the present study.  

 

PM-Mu: 

- PM-Mu (Mu et al., 2007-2011) uses MODIS 𝑓𝑎𝑝𝑎𝑟 as a surrogate of 𝑓𝑐. In order 

to facilitate the implementation of the model 𝑓𝑐 in this study was derived from the 

in-situ site information or from Broxton et al. (2014) product.  

- In PM-Mu NDVI and albedo are derived from MODIS products, while in this 

study we have use NDVI and albedo from the MAIAC suite products.  

- For the nighttime λE calculation, negative ET values were discarded. The stations 

considered generally provide a positive contribution to the ET at night. In 

addition, MODIS nighttime clearly underestimates Rn, thus introducing an 

important negative deviation that will be introduced in the calculation of daily ET 

estimates (see chapter 7). Preliminary analysis showed that when neglecting these 

values more accurate ET estimates and higher R values were obtained.  

 

SEBS:  

- Timmermans et al. (2013) parametrization for tall vegetation was used in order to 

retrieve H. This includes the use of the following update during the iterative 

process: ln (
𝑧𝑜𝑚

𝑧𝑜ℎ
) =

52√𝑢∗𝑙

𝐿𝐴𝐼
− 0.69 where 𝑙 is the length scale of leafs over viscous 

boundary layers occurs. It takes a value of 0.027. For the roughness parameter 

𝑧0𝑚, a value of 2.5 was assumed (Brutsaert, 2005). In addition, G flux is obtained 

as 𝐺 = 0.34𝑅𝑛𝑒𝑥𝑝(−0.46𝐿𝐴𝐼). 

- A constant evaporative fraction was assumed in order to upscale the hourly 𝜆𝐸 

fluxes to daily ET values. In this daily step calculation G was considered 

negligible.  

- SEBS estimates on cloudy days (no LST data) was accomplished by the gap-filled 

method explained in the previous section. In order to facilitate notation for the rest 

of the paper, not gap filled SEBS model (clear days only) is named as SEBS and 

gap-filled model (clear and cloudy days) is named as SEBS-GF. 

- SEBS model was run independently at TERRA and AQUA time overpasses using 

TERRA and AQUA measured LST. The resulting daily used for validation was 

the average between the two daily values obtained from TERRA and AQUA.  

 

LSASAF:  

- In original formulation, 𝜆𝐸 is calculated at a hourly scale and aggregated at a daily 

scale. In this study, in order to reduce the computational time associated model 

was forced directly considering daily inputs. In particular, daytime forcing was 

considered as nighttime model 𝜆𝐸 values were negligible. At this daytime scale 

𝐺 was assumed to have a zero value. Preliminary analysis showed that calculating 
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𝐺 as in Ghilain et al.(2011) resulted in an overestimation of in-situ 𝐺. In addition, 

neglecting daytime 𝐺 is also assumed in PM-Mu model for the study region 

conditions. In LSASAF algorithm, 𝜆𝐸 is calculated by iteratively solving the 

surface energy budget (𝑅𝑛 − λE − 𝐻 = 0). 

- In this study, 𝜆𝐸 was calculated as 𝜆𝐸𝑐𝑓𝑐 + 𝜆𝐸𝑠(1 − 𝑓𝑐). EBF and bare soil  

(Ghilain et al., 2011) were selected in order to derive 𝜆𝐸𝑐 and 𝜆𝐸𝑠 (i.e only two 

tiles were selected for λE calculation). 

- For the roughness parameter 𝑧0𝑚, a value of 2.5 and 0.001 were considered for 

forests and bare soil (Brutsaert, 2005). 𝑧0ℎ was obtained as 0.1𝑧0𝑚 and 𝑑0 as  
2ℎ

3
  

(Brutsaert, 2013). For bare soil a height of 0.01 m was considered.  

 

5.3.6- Model evaluation 

 

In Table 5.13, the required inputs for the models considered are summarized. 

Evapotranspiration models differ in the required input data and the parametrization of 𝜆𝐸 

employed. These differences arise from the logical approach considered in the ET 

estimation (scaling PET for PT-JPL, Penman-Monteih logic for PM-Mu, residual scheme 

for SEBS and SVAT scheme for LSASAF), the evapotranspiration components modelled 

( λE𝐼, λE𝑐 and λE𝑠 are considered for PT-JPL and PM-Mu, λE𝑐 and λE𝑠 are considered 

for LSASAF and λE is considered for SEBS) and the explicit model parametrization 

(𝑅𝑛, 𝑅𝑛 partition, 𝑟𝑎 and 𝑟𝑠). 

As seen in Table 5.13 the PT-JPL is the least-data demanding model. PM-Mu and 

LSASAF are the most complex and most demanding models because of aerodynamic and 

surface explicit description. In PM-Mu, however no soil moisture is required. SEBS being 

less complex than PM-Mu and LSASAF is dependent to LST observations. For this 

model, the gap-filling explained in the previous section was employed in order to provide 

ET estimates for the cloudy days. Due to the continuous cloud cover of the region, the 

number of available days for ET estimation is drastically reduced when using satellite 

LST. An issue which actually the other models do not suffer.  
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Table 5.13. List of required data and parameters for evapotranspiration models as used in the present study. 

Static fields are indicated with an asterisk (*). Models were forced considering the temporal resolution 

indicated. 

Model PT-JPL PM-Mu SEBS LSASAF 

Surface 

Radiation 
Rn24 SRin 

SRin, LRin, 

Rn24 
SRin, LRin 

Surface 

Meteorology 
Tmax, eaTmax Ta, Tmin, Tann, ea, P Ta, ea, Ws, P Ta, ea, Ws, P, 

Land Surface 

Variables 

NDVI, 

NDVImax 
𝛼, LAI, h*, fc* 

LST, ε*, 𝛼 , 

LAI, h, fc 
ε, 𝛼, LAI, h, fc 

Soil Variables   Soil texture Rootsm, Soilsm 

Roughness 

Parameters* 
  z0m z0m 

Biome 

parameters* 
 

glh, gle, CL, rblmax, rblmin, 

Tminclose, Tmaxclose, 

VPDminclose, VPDmaxclose 
 rsmin 

Temporal 

resolution 
Daily Daytime + Nighttime Hourly +Rn24 Daytime 

 

Model performance was validated under two scenarios (Table 5.14). In scenario I, models 

were forced using surface and meteorology inputs from in-situ station, land surface 

variables from remote sensing data and Rootsm and Soilsm (LSASAF) from MERRA-2 

reanalysis due to the lack of stations soil moisture measurements. For scenario II, surface 

and meteorology together with soil moisture inputs were retrieved from reanalysis 

(MERRA-2, ERA-Interim or GLDAS-2.1). Gridded soil properties (gap-filled SEBS) 

were derived from HWSD database and land surface variables were derived from remote 

sensing data. For each scenario, ET models estimates were validated using in-situ ET 

observations. In scenario I, due to SRin input data scarcity, LSASAF could be only run 

for K34, K83 and RJA stations and PM-Mu used Rn for K67 station. SEBS also used 

station Rn (due to the continuous lack of SRin and LRin measurements at LST time 

observations). The small number of available LST observations also limited SEBS model 

for CAX station. In scenario II, SEBS was not considered for validation (instead, gap-

filled SEBS was used). In both scenarios, models were forced considering the temporal 

resolution indicated in Table 5.13. 
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Table 5.14. List of data sources and variables used in the two forcing scenarios considered. 

Forcing Scenario Data source Variables 

I 

FLUXNET 

MERRA-2 

MODIS 

HWSD 

Surface Meteorology, Surface Radiation 

Soil and root-zone soil moisture 

Land Surface Variables 

Soil texture 

II 

REANALYSIS 

 

MODIS 

HWSD  

Surface Meteorology, Surface Radiation, Soil 

moisture 

Land Surface Variables 

Soil texture 

 

Model performance was evaluated using the following metrics: bias, Root Mean Square 

(RMSE), correlation coefficient (R) and Taylor skill score (S) (Taylor, 2001). Taylor skill 

score is given by Equation 5.24. For the rest of the metrics refer to section 5.2.5 for their 

expression.  

                                 𝑆 = 4 ×
1+𝑅

(𝜎𝑚𝑜𝑑𝑒𝑙/𝜎𝑜𝑏𝑠+𝜎𝑜𝑏𝑠/𝜎𝑚𝑜𝑑𝑒𝑙)2×(1+𝑅0)
                                                 

 

where 𝑅0 represents the maximum theoretical correlation (𝑅0=1, in this study). 𝜎𝑚𝑜𝑑𝑒𝑙 

and 𝜎𝑜𝑏𝑠 refers to the standard deviation of modelled and observed values respectively. S 

varies from zero to one. Higher S value indicating better performance. In addition, Taylor 

diagrams were used in order to compare models results in a comprehensive way. Three 

statistics are summarized in a Taylor diagram: standard deviation (STD) (displayed as the 

radial distance), correlation coefficient (displayed as the angle in the polar plot) and 

centered root mean square difference (RMSD) (displayed as the distance to observation 

point which is given by R=1, STD = 1 and CRMSD = 0 coordinates). 

 

5.3.7- Reanalysis quality assessment 

  

Apart from evaluating model performance, evaluating the quality of the reanalysis data 

(used in Scenario II) is of special importance in order to understand the impact of 

reanalysis inputs in the quality of models results (i.e. if biases in model estimates can be 

explained by biases in reanalysis inputs). This assessment was obtained by directly 

comparing reanalysis forcing inputs against in-situ forcing inputs. Same metrics used for 

model validation were considered. In the case of surface meteorology inputs (Ta, ea and 

Ws) this result in comparing variables values at different heights (i.e. in-situ and 

reanalysis measurements heights differ), nevertheless this discrepancy is not expected to 

lead comparison results. Main important factor to be considered is the spatial discrepancy 

between coarse resolution gridded reanalysis and in-situ data. In addition, the observed 

in-situ data are influenced by local environment conditions such as topography and land 

cover.  

 (5.24) 
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5.3.8- Sensitivity analysis 

 

The effects of uncertainty of inputs parameters on evapotranspiration model output 

uncertainty can be evaluated using sensitivity analysis. Between, the different existent 

methods several variance-based Global Sensitivity Analysis such as Sobol’ method 

(Sobol, 2001, Saltelli et al., 2010) were used recently to perform sensitivity analysis on 

PT-JPL (Garcia et al., 2013; Zhang et al., 2017). This method is based on ANOVA 

(analysis of variance) decomposition. Assuming that all model inputs are independent, 

output model uncertainty or variance (which results from propagating input variables 

uncertainty into the model) is decomposed into percentages that can be attributed to the 

independent contribution of input variables (Sobol first index) and interactions among 

inputs variables (Sobol second index). A total percentage can be computed gathering 

these two effects (Sobol total index). These percentages serve to identify the key input 

variables that drive model variance (i.e. the higher the percentage the higher the effect is). 

This technique can be used for non-linear models as no assumption between model input 

and output is required. Main drawback is the high computation intensity associated.  

In the following a description according to Song et al. (2012) is provided. Formally, given 

a model 𝑌 = 𝑓(𝑋), where Y is the model output and 𝑋 = (𝑋1, 𝑋2, … . 𝑋𝑘). A variance 

decomposition of 𝑓 suggested by Sobol (1990) is given by Equation 5.25:  

𝑉(𝑌) =  ∑ 𝑉𝑖 +  ∑ ∑ 𝑉𝑖𝑗 … . +𝑉1 …𝑘

𝑘

𝑗=𝑖+1

𝑘

𝑖=1

𝑘

𝑖=1

 

where X is rescaled to a k-dimensional unit hypercube Ω𝑘, Ω𝑘 =  {𝑋|0 ≤ 𝑋𝑖 ≤ 1, 𝑖 =

1 … 𝑘}. 𝑉(𝑌) is the total unconditional variance. 𝑉𝑖 is the partial variance or ‘main effect’ 

of 𝑋𝑖 and 𝑋𝑗 on the total variance minus their first-order effects.  

Following Saltelli et al. (2008) the first-order sensitivity index 𝑆𝑖 and total effect 

sensitivity index 𝑆𝑇𝑖 are given by Equations 5.26 and 5.27:  

𝑆𝑖 =
𝑉𝑖

𝑉(𝑌)
=

𝑉[𝐸(𝑌|𝑋𝑖)]

𝑉(𝑌)
 

𝑆𝑇𝑖 = 𝑆𝑖 +  ∑ 𝑆𝑖𝑗

𝑗 ≠𝑖

+ ⋯ =
𝐸[𝑉(𝑌|𝑋~𝑖)]

𝑉(𝑌)
 

 where 𝑋~𝑖 denotes variation on all input parameters but 𝑋𝑖, 𝑆𝑖𝑗 is the contribution to the 

total variance by the interactions between parameters. In order to compute 𝑆𝑖 and 𝑆𝑇𝑖 two 

independent input parameter sampled matrices 𝑃 and 𝑄 with dimensions (𝑁, 𝑘) were 

created. 𝑁 is the sample size and 𝑘 is the number of input parameters. Each row in matrix 

𝑃 and 𝑄 represents a possible value of 𝑋. The variables ranges in the matrices are scaled 

between 0 and 1. The Monte Carlo approximations for 𝑉(𝑌), 𝑆𝑖 and 𝑆𝑇𝑖 are defined as in 

Saltelli et al. (2010) and are given by Equations 5.28 to 5.31:  

 (5.25) 

 (5.26) 

 (5.27) 
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𝑓0̂ =
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�̂�(𝑌)

𝑁
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Where superscript …̂ is the estimate, 𝑓0̂ is the estimated value of the model output, 𝑃𝑄
(𝑖)

 

represents all columbns from 𝑃 except the i-th column which is from 𝑄 using a radial 

sampling scheme (Saltellit and Annoni, 2010). To compute 𝑆𝑖 and 𝑆𝑇𝑖 simultaneously, a 

scheme suggested by Saltelli (2002) was used which reduced the models runs to 

𝑁(𝑘 + 2). To sample the 𝑃 and 𝑄 matrices the Sobol’ quasi-random sampling technique 

(Sobol’, 1967) was used. The quasi-random sequence helps to distribute the sampling 

points as uniformly as possible in the variable space to avoud clustering and increases the 

convergence rate (Saltelli et al., 2008).  

Implementation of Sobol sensitivity analysis consists in 4 main steps: 1) a pre-sobol 

analysis in which the parameters to be perturbed should be defined together with the lower 

and upper bounds. The distribution of these parameters needs to be specified. Generally, 

a constant distribution is chosen.  2) The generation of the parameter sets using the Sobol 

sequence, 3) Running of the model using the pre-definite parameter sets and 4) the 

calculation of the Sobol indices. This sensitivity analysis task can be performed using 

statistitical toolboxes such as the Python SALib toolbox (Herman & Usher, 2017) which 

contains all the needed functions.   

In Table 5.15, the parameters used in the pre-sobol analysis for each model are presented. 

A uniform distribution between the lower and upper bounds is assumed in order to 

perturbe the models. Variables used in this analysis correspond to surface radiation, 

surface meteorology, land surface variables and soil variables. Surface pressure (P) and 

static variables such as ε, h, fc and soil texture were not included in the analysis. In order 

to consider also the temporal variation of the sensitivity indices along the year, the 

analysis was performed on average monthly values. Each monthly variable (X) was 

perturbed within a range (X-range, X+ range), where range corresponds to the calculated 

input uncertainties in the reanalysis quality assessment. A representative value for the 

three reanalysis considered was applied. These values are presented in Table 5.15. This 

is the case for surface radiation and meteorology inputs. For Rootsm and Soilsm (no 

previous RMSE calculated) a 15 % of variation was considered (obtained from the 

discrepancy amongst reanalysis soil moisture estimates). Land surface variables (𝛼 and 

 (5.28) 

 (5.29) 

 (5.30) 

 (5.31) 
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NDVI) were perturbed a 10% and LST was perturbed in a ± 3 K range. In the case of 

SEBS and LSASAF, although the humidity variable refers to the specific humidity, the 

range is provided in ea for similarity with other models.  

For each analysis, 𝑁(𝑘 + 2) model simulations were run. 𝑁 is the sample size and equals 

2500 and 𝑘 is the number of inputs variables which depends on each model. This results 

in 17500 runs for PT-JPL model, 27500 runs for PM-Mu, SEBS and LSASAF models.  

 

Table 5.15. List of data sources and variables used in the two forcing scenarios considered. Radiation inputs 

are given in W/m2 , temperature inputs in K, humidity inputs in Pa and wind speed in m/s.  

Model Input Range Model Input Range 

PT-JPL 

NDVI 10% 

PM-Mu 

𝛼  10% 

NDVImax 10% LAI 10% 

Rn24  [x-50, x+ 50] SRinday [x-125, x+125] 

Tmax [x-3,x+3] Taday,  [x-2, x+2] 

eaTmax [x-600, x +600] Tminday [x-2, x+2] 

  eaday [x-600, x+ 600] 

  Tanight,  [x-2, x+2] 

  Tminnight [x-2, x+2] 

  eanight [x-600, x+600] 

SEBS 

𝛼  10% 

LSASAF 

𝛼  10% 

LAI 10% LAI 10% 

Rn24 [x-50, x+ 50] SRinday [x-125, x+ 125] 

SRinhour [x-250, x+ 250] LRinday [x-20, x+ 20] 

LRinhour [x-20, x+ 20] Taday [x-2, x+ 2] 

Tahour [x-3, x+ 3] eaday [x-600, x+ 600] 

eahour [x-600, x+ 600] Wsday [x-1.5, x+ 1.5] 

Wshour [x-2, x+ 2] Rootsmday 15% 

LST [x-3, x+ 3] Soilsmday 15% 

 

 

5.3.9- Spatial patterns comparison 

 

Apart from validating the model performance in scenario I and II, model ET estimates 

were compared at regional scale (Amazonian tropical forests only as defined by the 

vegetation mask) by assessing discrepancies in annual cumulative ET spatial patterns 

(year 2004) using difference maps and monthly zonal mean values. Spatial mean values 

were calculated considered only pixels from the vegetation mask described in section 

4.3.1. Four additional models (apart from models considered) were included for the 

comparison. In particular, GLEAM (Miralles et al., 2011; Martens et al., 2017), MERRA-

Land (Reiche et al., 2011), ERA-Interim and GLDAS-2.1. GLEAM calculates ET via a 

PT approach considering a soil moisture stress computation and a Gash analytical model 

of rainfall interception loss (Miralles et al., 2011). MERRA-Land is an offline replay of 
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MERRA with model-generated precipitation corrected using rain-gauge and with model 

parameter changes (Reiche et al., 2011). Surface fluxes in ERA-Interim are based on land 

surface model TESSEL forced by atmospheric analysis and short range forecasts (van 

den Hurk et al., 2000).  GLDAS-2.1 consists of multiple off-line land surface models. For 

the study NOAH Land model was considered. 

Benefiting from these estimates and in order to expand the sensitivity analysis and explore 

what are the variables that are driving ET at regional scale, model outputs were compared 

with model inputs (radiation, temperature, humidity, NDVI, wind speed and soil moisture 

inputs) by linear regression. R2 was employed in order to quantify this contribution.  
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6.1. Database description  

 

As the accuracy of the retrieved training dataset is a key factor that affects directly model 

results, in the following a brief description is presented. In Figure 6.1, histograms of the 

training database viewing conditions are shown. In Figure 6.2, histograms for the features 

considered as input for the statistical models are presented. In Table 6.1, the confusion 

matrix between CPR/CALIOP and MYD35 is presented for comparison of two reference 

cloud masks. 

From Figure 6.1, the viewing condition issue can be observed. Satellite view zenith angle 

(Figure 6.1 (a)) is restricted to the range of 17-19º. Sun zenith angle (Figure 6.2 (b)) 

ranges from 23º to almost 50º. In order to ensure accuracy in the results, these database 

viewing conditions should agree with MODIS swath image conditions. Database sun 

view zenith angle almost covers the observed solar conditions at MODIS time overpass 

for the study region (10º to 55º), however database view zenith angle does not reproduce 

MODIS swath view zenith angle conditions (0º to 65º). This limitation is due to the fact 

that CPR/CALIOP are nadir-instruments. Although this fact does not preclude the study 

it has to be taken into account when analysing model results.  

 

 

Figure 6.1. Histograms of the training dataset viewing conditions: (a) satellite zenith angle and (b) solar 

zenith angle. 

 

Figure 6.2(a) and Figure 6.2(b) present the features values of the clear (tropical 

vegetation) and cloudy classes. Violon plots were used in order to plot the results. With 

these plots we are able to observe the full distribution of the data. Tropical class is 

characterized by reproducing vegetation spectral behaviour. Due to chlorophyll 

absorption in the blue (B1) and red (B4) band the green band (B3) presents a peak. In 

addition, B26 (1.375 µm) and B7 (2.13 µm) present small values due to their proximity 

to the absorption bands of water (1.4 µm and 1.9 µm). For NDVI and RVI high index 

values indicate green vegetation. Nevertheless, RVI present a higher intra-class 

variability than NDVI. Cloudy class present higher values of spectral reflectance (B1, B3, 

B4, B7 and B26) than the clear class. Spectral reflectance values additionally present a 
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higher intra-class variability than the vegetation counterparts. Amazonian tropical forests 

are characterized by a relative homogenous green cover in contrast to clouds which 

present high variability. In the visible range (B1, B3 and B4) the typical flat spectral 

behaviour of clouds is observed. In addition, for B26 and B7 the value decrease is also 

associated with the proximity of water absorption bands. NDVI and RVI, present the 

typical low values for non-vegetation class. In this case however, NDVI presents a higher 

intra-class variability than RVI. It is worth mentioning that due to angle bias in the dataset 

no angle features were considered as input for the models. Nevertheless, some angle 

dependence still exists in the features considered. This dependence is addressed in section 

6.2. 

 

Figure 6.2. Violon plots of the features considered for classification: (a) clear class and (b) cloud 

class. Values were calculated over the training dataset. 

 

Comparison of the two reference cloud masks was performed in order to observe the 

different cloud detection amongst the sensors considered. From Table 6.1, it is observed 

that both cloud masks equally classify a 78.3% (14.85% + 63.45%) of the total data points. 

Misclassifications represent the 21.7% (2.52% +19.18%), mainly because 19.18% of 

MYD35 clear pixels are masked as clouds by CPR/CALIOP. Taking into account the 

superior sensitivity of active sensors for cloud masking in front of passive sensors such 

as MYD35, this result was expected. In fact, MYD35 clear and cloudy classes represent 

the 34.03% and 65.97% respectively while CPR/CALIOP clear and cloudy classes have 

values of 17.37% and 82.63%. For the generated database (created on the equally 

classified pixels) clear and cloudy classes represent the 19% and 81% respectively.  
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Table 6.1. Confusion matrix in percentage of CPR/CALIOP and MYD35 cloud masks. CPR/CALIOP is 

used as reference data. Results are calculated over the training dataset.  

 

 
MYD35 

Clear Cloud 

CPR/CALIOP 
Clear 14.85 2.50 

Cloud 19.18 63.45 

 

 

6.2 Database validation 

 

In Figure 6.3 and Table 6.2 the testing of the database is presented. In Figure 6.3, 

pre-calibrated and post-calibrated reliability curves are displayed. Probability of 

belonging to clear class is represented. As it can be observed MLP (Figure 6.3(f)) is the 

only model that provides well calibrated probabilities. For instance, considering MLP 

there are 50% of clear instances when predicted probability assumes a value of 0.5. 

Considering pre-calibrated results, GNB (Figure 6.3(a)), QDA (Figure 6.3(c)) and SVM 

(Figure 6.3(e)) probability predictions tend to be optimistic (fraction of positives higher 

than the mean predicted value). LDA (Figure 6.3(b)) presents a sigmoidal shape, for lower 

mean predicted values probability overestimate the observed distribution of positives 

while for higher mean predicted values the contrary is observed. RF (Figure 6.3(d)) 

additionally follows a sigmoidal shape, nevertheless it presents the opposite behaviour. It 

is worth noting that from all these models, RF is the one that shows a better probability 

estimation. For post-calibrated results it is observed that isotonic regression proved 

successful in retrieving well-calibrated probabilities. These results can also be observed 

with the Brier score values in Table 6.2. A decrease is obtained when comparing pre-

calibrated and post-calibrated cases. MLP followed by RF show little to no-change after 

this process.   

 

173



6.- MODIS probabilistic cloud masking 

 

 

 

Figure 6.3. Reliability curves for model probability estimation testing: (a) GNB, (b) LDA, (c) QDA, (d) 

RF, (e) SVM and (f) MLP. For each model pre-calibrated results are displayed in blue and post-calibrated 

(denoted by iso of isotonic regression) are displayed in orange. Fraction of positives refers to the number 

of existent cloud instances given a probability threshold value (Mean predicted value). 

 

In Table 6.2, OA, Kappa and brier score metrics for the test dataset are presented 

for both the pre-calibrated and post-calibrated scenarios. It is shown that in terms of OA 

and Kappa metrics, probability calibration is able to increase model performance (GNB, 

QDA and SVM) or keep it almost unaltered (LDA, RF and MLP models with maximum 

difference of 0.001 and 0.003 for OA and Kappa). Predictions estimates from the 

probability classifiers (post-calibrated) were obtained using a default value 0.5. Focusing 

on the post-calibrated scenario, it can be observed that all models are able to properly 

reproduce test dataset (minimum OA and Kappa value of 0.917 and 0.703 for LDA 

model). RF, SVM and MLP models however present a major level of agreement (higher 

OA and Kappa values) than GNB, LDA and QDA models. In particular, RF and LDA 

provide the best and worst agreement respectively. It is worth noting here that these 

results represent the level of agreement between model classification results and the test 

dataset (i.e. if models are able to properly reproduce test dataset class distributions). 

Nevertheless, this dataset is not completely reproducing MODIS conditions (restricted 

viewing angles), therefore a perfect adjustment of the models to these restricted data could 

result in a bad adaptation to other viewing conditions.  A certain degree of flexibility thus 

needs to be allowed. These results show this situation, especially for the GNB, LDA and 

QDA models. Considering computational cost, all models considered are computationally 

efficient. Computational cost was calculated considering 214311 samples. GNB, LDA 
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and QDA benefit from a lower training time than RF, SVM and MLP. Training time was 

computed considering the best parameter combination obtained from cross-validation. 

For testing time RF presents the major cost associated, with MLP and SVM presenting 

better/equal cost than GNB, LDA and QDA models.  

 

Table 6.2. Test overall accuracy and Kappa coefficient metrics for the classifiers considered. The training 

and testing computational cost is also presented.  

   PRE-CALIBRATED   

Metrics GNB LDA QDA RF SVM MLP 

OA 0.923 0.916 0.933 0.970 0.963 0.965 

Kappa coefficient 0.718 0.706 0.802 0.900 0.878 0.884 

Brier score loss 0.069 0.067 0.057 0.022 0.578 0.026 

Training time (s) 0.318 0.422 0.451 37.152 37.148 57.262 

Testing time (s) 0.113 0.011 0.129 1.083 0.012 0.032 

   POST-CALIBRATED   

Metrics GNB LDA QDA RF SVM MLP 

OA 0.942 0.917 0.952 0.971 0.963 0.965 

Kappa coefficient 0.810 0.703 0.841 0.907 0.887 0.883 

Brier score loss 0.040 0.058 0.036 0.021 0.028 0.026 

 

 

 

6.3 Image validation 

 

In Figure 6.4, an example of model probability estimates is presented (DOY 5 and 17:10 

UTC crossing time). Location (Figure 6.4(a)), true color (Figure 6.4(b)) and manually 

classified image (Figure 6.4 (c)) are additionally shown. Clear probability is considered 

for display. Cloud probability can be derived as 1- clear probability. Considering the true 

color image, it can be observed the difficult situation classification algorithms have to 

deal with. Nevertheless, the statistical models considered are able to provide an accurate 

representation. Clouds present probabilities closer to 0 while tropical forests have values 

closer to 1. For this example, it can be observed that main existing differences between 

models arise between two groups (GNB-LDA-QDA (Figure 6.4(d)(e)(f)) and RF-SVM-

MLP (Figure 6.4(g)(h)(i)). It is observed that for the range of intermediate clear 

probability values (corresponding mainly to cloud edges and small clouds) the second 

group tends to provide higher absolute values than the first group and thus tending to label 

these pixels as clear.  
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Figure 6.4. Clear probability estimates of DOY 5 (17:10 UTC time overpass) for the models considered: 

(d) GNB, (e) LDA, (f) QDA, (g) RF, (h) SVM and (i) MLP. True color image (b) and manually classified 

image (c) together with its location inside the swath image (a) are also displayed.  

 

In Figure 6.5 the threshold selection process is shown. Kappa coefficient is 

calculated over the entire image dataset (20 images). MYD35 and MAIAC Kappa values 

are also displayed for comparison. In exception of RF, maximum Kappa values points 

mark the change between the ascendant and descendant behaviour. Starting from these 

point models start to overestimate cloud condition (assign more clear pixels to the cloudy 

class) and thus a decrease in the performance is obtained. For RF kappa maximum value 

is reached at the maximum threshold considered. In Table 6.3, model maximum Kappa 

values together with MYD35 and MAIAC Kappa values are shown. As it can be seen in 

Figure 6.5, GNB-LDA-QDA group provide higher values than RF-SVM-MLP group. In 

particular, LDA provides the best performance (0.722 of Kappa value) and MLP the worst 

performance (0.604 of Kappa value). With a Kappa value of 0.567 MAIAC cloud 

masking algorithm improves MYD35 performance (0.429) however lies below the worst 

performance Kappa value (0.604 for MLP) of the statistical models. Considering 

computational cost at image level (Table 6.3) all models are computationally efficient. 

RF and LDA stands out as having the highest and lowest cost associated respectively.  
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Figure 6.5. Probability threshold selection for label assigning. For each model considered Kappa 

coefficient is calculated considering different probability thresholds values in the range of 0 to 1. MYD35 

and MAIAC Kappa values are also displayed. 

 

Table 6.3. Probability threshold selected together with its associated Kappa value for the models 

considered. Computational cost at image level is also presented. MYD35 and MAIAC Kappa values are 

also provided.  

Model Threshold Kappa coefficient Computational cost (s) 

MYD35 ---- 0.429 ---- 

MAIAC ---- 0.567 ---- 

GNB 0.900 0.713 1.72 

LDA 0.850 0.722 0.37 

QDA 0.875 0.713 1.47 

RF 0.990 0.670 9.49 

SVM 0.975 0.646 0.42 

MLP 0.975 0.604 1.00 

 

Comparison of the performance for all the cloud masking algorithms under 

different satellite viewing conditions is presented in Table 6.4. Doing this, we are able to 

assess view zenith angle dependence in model performance. Three ranges (vza ≤ 20º, 

20º<vza<40º and vza≥40) were considered for comparison. Both Kappa and OA metrics 

are presented. Several results can be obtained from Table 6.4. Excepting MAIAC case, 

all cloud masking algorithms performance decrease with angle. In addition, as in overall 

results (Table 6.3), GNB-LDA-QDA group provides better performance than RF-SVM-

MLP group. While in the first group all three models provide similar metrics values in 

the second group RF provides the best performance. All the statistical models considered 

are able to improve MYD35 performance, nevertheless only GNB-LDA-QDA are able to 

always outperform MAIAC performance. For RF model, although it does outperform 

MAIAC a minor discrepancy is obtained in comparison to the first group.  
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Table 6.4. Model performance (Kappa coefficient and OA metrics) under three different view zenith angle 

(vza) ranges.  

Model vza ≤ 20º 20º < vza < 40º vza ≥ 40º 

 OA 
Kappa 

coefficient 
OA 

Kappa 

coefficient 
OA 

Kappa 

coefficient 

MYD35 0.760 0.474 0.723 0.411 0.740 0.377 

MAIAC 0.861 0.516 0.723 0.564 0.910 0.625 

GNB 0.904 0.734 0.901 0.698 0.923 0.710 

LDA 0.908 0.741 0.908 0.715 0.925 0.709 

QDA 0.904 0.738 0.900 0.700 0.920 0.700 

RF 0.899 0.716 0.893 0.649 0.912 0.633 

SVM 0.876 0.611 0.879 0.580 0.900 0.582 

MLP 0.867 0.637 0.865 0.581 0.887 0.592 

 

In Figure 6.6 model performance (Kappa coefficient) is evaluated at image level 

for each of the 20 images subsets manually classified. MYD35/MAIAC Kappa values are 

also displayed for comparison. For the models considered, GNB (Figure 6.6(a)) and LDA 

(Figure 6.6 (b)) provide the best performance. They have the highest Kappa values and 

provide the minimum number of intersections with MAIAC. RF (Figure 6.6(d)) provides 

similar Kappa values as GNB/LDA, nevertheless there are two cases in which model 

performance is below MYD35 performance (275_1725 and 300_1855 images). This is 

also observed for SVM (Figure 6.6(e)) in image 300_1720 and for MLP (Figure 6.6(f)) 

in 275_1725 and 300_1855 images. QDA (Figure 6.6(c)) although with lower Kappa 

values than GNB/LDA always outperform MYD35. In addition, it is worth mentioning 

that MYD35 generally provides the worse performance. MAIAC cloud masking 

generally outperforms MYD35 excepting for three cases (075_1810, 100_1805, 

300_1720 images). For the models considered, GNB and LDA generally outperform both 

MYD35 and MAIAC. This result can also be observed in Figure 6.7 in which the cloud 

cover of these algorithms is shown. Results from manually classified images are also 

presented. Cloud cover was calculated as the ratio between cloudy pixels and the total 

number of pixels. GNB and LDA (Figure 6.7(a)(b)) closely reproduce reference cloud 

cover in comparison to the rest of the models. Reference cloud cover and model estimated 

cloud cover lies between MYD35 and MAIAC providing the minimum and maximum 

amount of clouds respectively.  
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Figure 6.6. Model performance (Kappa value) over each of the manually classified images (image testing 

dataset). Results correspond to: (a) GNB, (b) LDA, (c) QDA, (d) RF, (e) SVM and (f) MLP models. In 

each model subplot, model results are displayed in blue and MYD35 and MAIAC in red and green 

respectively. Image identification is provided in Table 6.2.  

 

 

Figure 6.7. Image testing dataset derived cloud cover. Results are displayed for each model considered: (a) 

GNB, (b) LDA, (c) QDA, (d) RF, (e) SVM and (f) MLP. In each model subplot, cloud cover from the 

manually classification (REF) is displayed in orange and model, MYD35 and MAIAC in blue, red and 

green respectively.  
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In Figure 6.8, a visual comparison for DOYs 175_1745 (Figure 6.8(a)) and 

275_1725 (Figure 6.8(b)) between MYD35/MAIAC and the models considered is shown. 

Additional images are presented in Supplementary Material. As observed in Figure 6.8(a) 

and Figure 6.8(b) MYD35 (Figure 6.8(a)(b)(iv)) provides an underestimation of the cloud 

cover (Figure 6.8(a)(b)(ii)). Although bigger and thicker clouds are correctly assigned 

MYD35 misses the great amount of small clouds in the images. MAIAC (Figure 

6.8(a)(b)(v)) capturing the small cloud distribution provides a better detection of clouds. 

Nevertheless, it tends to overestimate the total cloud cover (Figure 6.8(b)(ii)).  For the 

models considered, GNB and LDA followed by QDA provide the best agreement with 

reference data. RF, SVM and MLP provide a worse performance. In Figure 6.8(a) it can 

be observed that they do not reproduce as accurate as GNB/LDA the reference data. In 

addition, Figure 6.8(b) a complete overestimation of cloud cover is observed.  

 

 

Figure 6.8. Visual intercomparison of models and MYD35/MAIAC cloud masking results for doys 

175_1745 (a) and 275_1725 (b). For each doy, results are displayed as follows: (i) Location, (ii) Reference 

manually classified image, (iii) True color image, (iv) MYD35, (v) MAIAC, (vi) GNB, (vii) LDA, (viii) 

QDA, (ix) RF, (x) SVM and (xi) MLP results. Cloud and clear labels are displayed in white and green 

respectively. Non-EBF pixels are displayed in black.  
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6.4 In-situ validation 

 

In Table 6.5, model and MYD35/MAIAC in-situ testing is shown. Results are presented 

using confusion matrices together with OA and Kappa coefficient metrics. Data points in 

confusion matrices represent days with a valid satellite measurement. In-situ testing 

dataset consisted in a total of 110 days (i.e. for each day a satellite measurement of the 

station). Cloudy and clear-sky days represent approximately the 95% (i.e. 104/110) and 

5% (6/110) of the total amount of data. Although clear and cloudy classes are clearly 

imbalanced (with a major representation of the cloudy class) it is assumed that this 

distribution represent the cloud distribution of the station. MYD35 flags approximately a 

15% (i.e. 16/110) of the data as clear-sky, while MAIAC flags the 2.7% (i.e. 3/110). 

Models tend to flag the 4% and the 5% as clear-sky. Taking into account the respective 

cloud underestimation and overestimation of MYD35 and MAIAC, it is expected that the 

observed in-situ cloud frequency lies between these two limits.  

 

Table 6.5. In-situ testing results of MYD35, MAIAC, GNB, LDA, QDA, RF, SVM and MLP algorithms. 

Results are presented using confusion matrices together with OA and Kappa coefficient values. Samples in 

confusion matrices represent available days (i.e. for each day a prediction of clear/cloud in the station is 

obtained). 

 Confusion matrix   

  In-situ 
OA Kappa coefficient 

  Clear Cloud 

MYD35 
Clear 6 10 

0.910 0.510 
Cloud 0 94 

MAIAC 
Clear 3 0 

0.972 0.653 
Cloud 3 103 

GNB 
Clear 4 1 

0.973 0.713 
Cloud 2 103 

LDA 
Clear 4 0 

0.982 0.791 
Cloud 2 104 

QDA 
Clear 4 1 

0.973 0.713 
Cloud 2 103 

RF 
Clear 4 0 

0.982 0.791 
Cloud 2 104 

SVM 
Clear 4 0 

0.982 0.791 
Cloud 2 104 

MLP 
Clear 5 1 

0.983 0.824 
Cloud 1 103 
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It is observed (Table 6.5) that all models correctly classify the cloud class, major 

discrepancy in model performance derives from the ability of the models to properly 

classify the clear class. MYD35 properly flags the 6 clear-sky days, but it also 

misclassifies clouds samples as clear samples. MAIAC flags only 3 samples of the 6 clear 

samples. Its misclassification consists in flagging clear samples as cloud samples. Models 

are able to flag more clear samples than MAIAC (4 and 5 depending on the model) but 

also have misclassifications. Same MAIAC misclassification type is observed in LDA, 

RF and SVM. For GNB, QDA and MLP there are also cloud samples, which are 

misclassified as clear samples. In terms of the Kappa coefficients, models provide a better 

performance than MYD35 and MAIAC. Best performance amongst models is obtained 

for MLP, followed by LDA, SVM, RF, GNB and QDA. For OA metric, same results can 

be derived. Nevertheless, this metric does not take into account for the imbalanced 

problem in the dataset, thus the higher values observed (greater than 0.9).  

 

6.5 Discussion 

From database description, it was observed that considering the collocation of 

CPR/CALIOP and MODIS observations as training data entails one important deficiency. 

While MODIS swaths cover a range of 0-65º in view zenith angle, the database viewing 

conditions are restricted to lie between 17-19º (Figure 6.1(a)). Apart from this, it was 

observed that considering confident labels from both sensors when generating the 

reference database was able to correct the cloud underestimation in MYD35 (cloud 

percentage of approximately 65% in Table 6.1 and Figure 6.7) and provide a more robust 

reference database that it is able to properly represent the cloud distribution of the region. 

Clear and cloud classes represent the 19% and 81% for the reference database (Table 6.1) 

and the mean cloud cover of manually classified images (Figure 6.7) is approximately the 

80%.  

From database testing, it was observed that a probability calibration was needed 

in order to correct the probability estimates of the models. In exception of MLP (Figure 

6.3(f)), rest of the models pre-calibrated probabilities lie apart of the diagonal line (Figure 

6.3). These results agree with Niculescu-Mizil & Caruana (2005) in which a comparison 

of several machine learning methods (such as RF, SVM and Naïve Bayes) probability 

estimates was performed, pointing out that neural nets and bagged trees predicted well 

calibrated probabilities. In addition, it was observed that RF, SVM and MLP models were 

able to adjust better (higher OA and Kappa coefficients) to the test data than probabilistic 

models (GNB, LDA and QDA). This result was expected, as these are complex models 

(RF, SVM and MLP) that can be optimized in order to maximize classification results. It 

is worth noting here, that only a binary problem between green vegetation and clouds is 

being considered here. Other classes (such as bare soil or water), were discarded in order 

to not introduce additional misclassifications between these classes. Moreover, we are 

only interested in the tropical forests in Amazonia. 
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 From image testing, it was observed that the models are able to improve MYD35 

and MAIAC performance over the region of study. In Figure 6.5, it is observed that 

assuming the default 0.5 of well-calibrated classifiers (i.e. with no tuning of the 

probability threshold) all models are able to improve MYD35 performance. LDA model 

is able to outperform both MYD35 and MAIAC. After tuning of the probability threshold 

(Table 6.3), all model Kappa coefficient values surpass MYD35 and MAIAC Kappa 

values. In particular, a maximum and minimum increase of 0.293 and 0.175 is obtained 

for LDA and MLP models. Regarding MAIAC algorithm, a maximum and minimum 

increase of 0.155 and 0.037 is obtained also for LDA and MLP. This better performance 

is also observed in Figure 6.6. In exception of some images, models generally outperform 

MYD35 and MAIAC results (models provide higher Kappa values). Nevertheless, it is 

worth noting that some models perform better than others. Probabilistic models (GNB, 

LDA and QDA) outperform RF, SVM and MLP models (Table 6.3 and Figure 6.6). In 

particular, higher Kappa values were obtained for the first group. For the second group 

several misclassified images were observed (Figures 6.6 and 6.8(b)). In addition, GNB 

and LDA models better reproduce the cloud cover of the manually classified images than 

the rest of the models and MYD35 and MAIAC algorithms (Figure 6.7). Main reason 

behind this behaviour is that complex models (RF, SVM and MLP) adapted too well to 

the view angle biased training dataset, thus overfitting and not properly adapting to other 

viewing conditions. LDA is the less adapted to the training dataset (lowest Kappa value 

in Table 6.2) and the most adapted to the image testing dataset (highest Kappa value in 

Table 6.3). Considering the angle influence it was observed that models were able to adapt 

to other viewing conditions without a systematic bias (Table 6.4). Apart from these 

results, an underestimation and overestimation of cloud cover was reported for MYD35 

and MAIAC algorithms (Figure 6.7 and Figure 6.8). MAIAC however always outperform 

MYD35 algorithm. MYD35 fails in properly classifying the abundant small clouds (and 

thus underestimating the cloud cover) over the study region, while MAIAC provides a 

more restrictive cloud masking (Figure 6.8). MAIAC using a temporal approach (i.e. 

using clear sky scenes as references) is shown to be more sensitive to small and difficult 

clouds. It is worth mentioning here, that the accuracy of previous results depends on the 

accuracy of the manually classified images. Manually classified image cloud sensitivity 

lies in the expected range between MYD35 (underestimation) and MAIAC 

(overestimation) (Figure 6.7). Thus, proving its validity for being used as a testing 

database. In addition, if human errors existed in the dataset they should have led to 

unexpected classification results. 

Considering in-situ testing results, all models outperform MYD35 and MAIAC in 

terms of OA and Kappa metrics (Table 6.5). When analyzing these results, it is worth 

taking into account that we are dealing with a clear imbalanced distribution (95% of 

clouds and 5% of clear points). In addition, there is the spatial and temporal discrepancy 

issue between satellite and in-situ conditions together with the land cover discrepancy. A 

3x3 kernel was used in order to alleviate the effects of the last issue. All algorithms 

properly label the cloud class and main classification issues arise in labelling clear cases. 

The models considered provide a clear-sky sensitivity between MYD35 and MAIAC (i.e. 

183



6.- MODIS probabilistic cloud masking 

 

 

flagging more clear cases than MAIAC but committing misclassifications). About the 

accuracy of the in-situ testing dataset, a higher cloud frequency that the observed in 

previous sections is obtained. Nevertheless, its absolute agrees with the MAIAC and 

model cloud distribution observed. In addition, MYD35 reports a 15% but we have to 

take into account also the underestimation issue. In addition, increasing the representation 

of clear cases by raising the threshold value (to higher values than 25%) will also result 

in misclassified clear flags. Therefore, in spite of being imbalanced it properly represents 

the in-situ cloud distribution.  

About the validity of the presented approach, it was found that the combination of 

collocated CPR/CALIOP and MODIS observations together with probabilistic models is 

proved suitable for MODIS cloud masking. Although machine learning algorithms were 

able to generally improve MYD35 and MAIAC performance, the current approach is 

limited to probabilistic models (especially LDA followed by GNB). These models were 

able to better deal with the issue in viewing conditions derived from the collocated 

training database. In addition, they were shown computationally efficient at image level 

(Table 6.4). In particular, LDA presents the lowest computational cost associated. A 

probability calibration however is needed in order to provide accurate probability 

estimates. The approach presented here accomplished study goals (cloud masking of 

Amazonian evergreen tropical forests) nevertheless it presents some limitations in order 

to applied in a larger scale. The expansion to other types of surfaces can be easily solved 

by introducing additional classes and features in the training dataset. The viewing 

conditions issue can be alleviated by proper radiative simulations at different angles. Thus 

providing a more robust training dataset. In addition, although in the present study we 

focused only on individual model results, an ensemble of models can be applied in order 

to boost the cloud masking accuracy.  
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7.1.- Simulated database validation 

 

In Table 7.1, the coefficients of the split window and the results from the sensitivity 

analysis for MODIS, VIIRS and SLSTR cases are presented. Daytime and nighttime 

coefficients were derived from the TERRA-AQUA-daytime and TERRA-AQUA-

nighttime simulated databases respectively.  

For the simplified version of the SW algorithm, the total LST error ranges from 0.520 K 

to 0.896 K. Higher total contributions are obtained for daytime than nighttime. In 

particular, because a decrease in the standard error of the algorithm (𝛿𝑎𝑙𝑔). A mean value 

of 0.36 K against a mean value of 0.53 K for the cases considered. For the generalized 

version of the SW algorithm, total LST ranges from 0.841 K to 1.695 K. This increase 

results from the consideration of additional contributions of emissivity and water vapour. 

As observed in Table 7.1, emissivity is the dominant contribution to the total LST error. 

Uncertainty in emissivity of about 1% lead to a contribution ranging from 0.732 K to 

1.549 K. On the contrary, the uncertainty in water vapour has a minor contribution, with 

a maximum value of 0.184 K. As in the simplified case, higher total contributions are 

obtained for daytime than nighttime, mainly because of a decrease in 𝛿𝑎𝑙𝑔, 𝛿𝜀 and 𝛿𝑤.  

In Table 7.2 and Figures 7.1 to 7.4, the validation of the split-window algorithms using 

the independent simulated database is presented. In Table 7.2, except in the case of VIIRS 

generalized SW for the nighttime case, all the SW algorithms provide a null bias and R 

values higher than 0.9. The RMSE is thus dominated by the standard deviation retrieved 

from the simulation. Values of σ range from 0.36 K to 1.0 K with also higher values at 

daytime. In addition, it is observed that the simplified versions for all the sensors 

considered tend to adjust better to the validation dataset and thus provide a lower σ value 

than the generalized version.  

In Figures 7.1 to 7.4 validation results are analysed in terms of the water vapour content 

and viewing angle. In terms of water vapour (Figures 7.1 and 7.3) LST differences tend 

to mostly lie between ± 1 K, except for large values of water vapour (w>6 g/cm2). This is 

especially observed at daytime, for nighttime however, a more stable behaviour is 

observed. Comparing the results from the simplified and the generalized versions, it is 

seen that data dispersion is higher in the case of the generalized version than in the 

simplified. This is particularly seen for the daytime case of AQUA and VIIRS, Figure 7.3 

(c)(e) show a linear ascending behaviour while Figure 7.1 (c)(e) is more stable for the 

different w values. In terms of the viewing angle (Figures 7.2 and 7.4), although 

maximum/minimum LST differences can reach to absolute values up to 6 K, the boxplots 

interquartile tend to lie between ± 1 K for all the viewing angles considered. Generally, a 

slight increase with angle is observed for angles higher than 30º. Considering the 

comparison between the simplified and the generalized version same conclusion as for 

the case of water vapour are obtained. The deviation between validation temperature and 

SW temperature are higher for the generalized version than for the simplified (more 

separation between the extremes of the boxplot and wider interquartile range).  
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Table 7.2. Validation of the generalized and simplified split-window algorithms for the independent 

simulated dataset. Subscripts gen and simpl refers to the generalized and simplified versions of the 

algorithms.  

 Daytime Nighttime 

 
Bias 

 (K) 

σ 

 (K) 

RMSE 

(K) 
R 

Bias 

 (K) 

σ 

 (K) 

RMSE 

(K) 
R 

TERRASW-gen 0.00 0.58 0.58 0.98 0.00 0.36 0.36 0.98 

TERRASW-simpl 0.00 0.48 0.48 0.98 0.00 0.33 0.33 0.98 
         

AQUASW-gen -0.02 1.00 1.00 0.91 0.00 0.38 0.38 0.99 

AQUASW-simpl  -0.03 0.57    0.57 0.97 0.00 0.33 0.33 0.99 
         

VIIRSSW-gen 0.02 0.98 0.98 0.91 0.47 0.48 0.67 0.98 

VIIRSSW-simpl 0.01 0.59 0.59 0.97 -0.06 0.38 0.38 0.99 
         

SLSTRSW- gen 0.00 0.43 0.43 0.98 0.00 0.41 0.41 0.98 

SLSTRSW-simpl -0.06 0.36 0.36 0.99 0.00 0.38 0.38 0.99 

 

 

 

 

Figure 7.1. Difference between the temperature derived from the radio-sounding and the temperature 

estimated from the simplified version of the Split-window (Trad and TSW) against the atmospheric path water 

content (w/cosθ): a) TERRADAY, b) TERRANIGHT , c) AQUADAY ,d) AQUANIGHT , e) VIIRSDAY , f) 

VIIRSNIGHT , g) SLSTRDAY  and h) SLSTRNIGHT.  
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Figure 7.2. Difference between the temperature derived from the radio-sounding and the temperature 

estimated from the simplified version of the split-window (Trad and TSW) against the sensor view zenith 

angle a) TERRADAY, b) TERRANIGHT , c) AQUADAY ,d) AQUANIGHT , e) VIIRSDAY , f) VIIRSNIGHT , g) 

SLSTRDAY  and h) SLSTRNIGHT. 

 

 

Figure 7.3. Difference between the temperature derived from the radio-sounding and the temperature 

estimated from the generalized version of the split-window (Trad and TSW) against the atmospheric path 

water content (w/cosθ): a) TERRADAY, b) TERRANIGHT, c) AQUADAY ,d) AQUANIGHT , e) VIIRSDAY , f) 

VIIRSNIGHT , g) SLSTRDAY  and h) SLSTRNIGHT. 
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Figure 7.4. Difference between the temperature derived from the radio-sounding and the temperature 

estimated from the simplified version of the split-window (Trad and TSW) against the sensor view zenith 

angle a) TERRADAY, b) TERRANIGHT , c) AQUADAY ,d) AQUANIGHT , e) VIIRSDAY , f) VIIRSNIGHT , g) 

SLSTRDAY  and h) SLSTRNIGHT. 

 

7.2.- T-based validation 

 

LST algorithm validation using in-situ LST was performed separately for daytime and 

nighttime conditions. The screening procedure detailed in section 5.2.5 was applied for 

eliminating cloud contaminated values. Validation metrics are presented in Table 7.3 and 

Table 7.4, respectively. In Figures 7.5 to 7.8 scatterplots of in-situ LST against LST 

estimated from the algorithms validated are presented. It is worth noting that although 

some discrepancy in absolute values due to the number of available points may exist 

between the two sensors, in general a similar performance is observed (i.e. maximum 

differences in RMSE of 0.5 and 0.6 for nighttime and daytime cases respectively).  

Starting with the daytime validation, for MODIS sensor operative MODIS LST 

algorithms (MODIS-SW and MODIS-DN) provide an uncertainty between 2 K and 3 K. 

For TERRA platform, no difference is observed between MODIS-SW and MODIS-DN 

algorithms with RMSE values between 2.7 K and 2.9 K. In this case, the major 

contribution to the uncertainty comes from the bias with values around 2.3 K in absolute 

value while the dispersion of the data contributes with 1.4 K to 1.6 K. It is observed that 

the use of the generalized SW proposed in this study does not provide an improvement of 

the validation metrics. On the contrary, the simplified version agrees better with the in-

situ LST values than the rest of the algorithms. This is mainly because a reduction in the 
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bias with values ranging from -1.4 to approximately -1.7 K. In this case, the standard 

deviation has also decreased with a difference of 0.1 K -0.3 K.  

For the case of AQUA, in terms of RMSE both the MODIS SW and TES have similar 

performance (values of 2.3 K for the radiometer and 2.9 K for the pyrgeometer). 

Nevertheless, TES tends to overestimate the in-situ LST values (bias value of 1.64/1.29 

K for radiometer/pyrgeometer) while SW underestimates them (bias value of -1.69/-2.38 

K  for radiometer/pyrgeometer). In terms of data dispersion, a maximum difference of 

0.15 K (pyrgeometer) is obtained for both algorithms. MODIS-DN underperform these 

algorithms with RMSE of 2.66 K and 3.05 K, mainly because an increase in the bias 

(absolute value) for both sensors. Considering the comparison of the SW proposed here, 

both the generalized and the simplified version are able to provide a better performance 

than MODIS operative LST algorithms (minimum RMSE value is obtained for the 

simplified SW followed by the generalized version). A reduction in the bias (absolute 

value) (from 1.4 K to approximately 1.9 K) is the responsible of this better agreement 

with the in-situ LST values.  

For VIIRS sensor, the simplified SW is able to outperform the generalized version with 

an approximate reduction of 0.4 K-0.5 K in the RMSE. The bias is the main responsible 

of this fact (absolute reduction of about 1.0 K). It is worth noting that the higher values 

of standard deviation are obtained for this sensor. It should be said that cloud pixels were 

screened simply as indicated by MYD21 product and by considering values with an 

absolute difference of 6 K. In the case of MODIS, they were also filtered by MAIAC 

cloud mask. Regarding the VIIRS-TES product is providing best performance with a 

reduction in the RMSE of 0.2 K to around 0.3 K from the SW-simplified. As in the case 

of MYD21, it gives a positive bias. 

For the case of the SLSTR sensor, simplified SW algorithm outperform the generalized 

split-window because a reduction in the RMSE of 0.6 K  to 0.7 K, having the simplified 

case RMSE values around 2 K. In this case, operative L2 product provides a better 

agreement with in-situ LST values than the algorithms proposed here. Mainly also 

because of an absolute reduction in the bias. Nevertheless, it is worth noting that 

validation was performed over a small number of points (only 20).  

Moving to the nighttime validation results, it is observed that RMSE values have 

generally decrease and range from approximately 0.7 K to 2 K. For TERRA platform, 

MODIS-SW provides a better performance than MODIS-DN (around 1.2 K-1.3 K of 

RMSE for SW against 1.6 K-1.7 K for DN). In the case of MODIS-DN, a higher data 

dispersion is obtained (1.2 K-1.3 K against 0.9 K-1 K of MODIS-SW). In the case of the 

generalized SW proposed in this study a similar performance to MODIS operative LST 

algorithms is obtained (a slight RMSE decrease of 0.12 K only for radiometer, for 

pyrgeometer similar values are obtained). In terms of the bias, an absolute difference of 

0.1 K is obtained. In the case of the standard deviation, a slight decrease (around 0.1 K) 

is observed. The simplified version of the SW is able to outperform the above-mentioned 

algorithms with RMSE values of 0.7 K - 1.5 K (having MODIS operative algorithms 
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RMSE values of approximately 1.3 K - 1.7 K). As in the daytime counterpart, an absolute 

reduction of the bias is obtained.  

For AQUA platform. MODIS TES provides the worst performance of all MODIS-SW 

and MODIS-DN (highest absolute value of bias and highest standard deviation for these 

three cases for both the radiometer and the pyrgeometer). MODIS-TES provides a 1.8 K 

(radiometer) and 2.0 K (pyrgeometer) of RMSE, while MODIS-SW has values of 1.2 K 

-1.3 K and DN values of around 1.3 K-1.7 K. In addition, MODIS-TES tends to 

overestimate in-situ LST values while MODIS-SW and MODIS-DN tend to 

underestimate them. Both the generalized and the simplified SW proposed are able to 

improve the validation metrics (RMSE decrease ranging from 0.3 K to 1.3 K). Although 

the simplified version still provides a better agreement with in-situ values the deviations 

from the generalized results in this case is lower than for the daytime case.  

For the case of VIIRS sensor, same conclusions as in the daytime case can be observed. 

Simplified SW is able to outperform the generalized SW version with an approximate 

reduction of 0.2 K to 0.3 K in the RMSE because a reduction in the bias (absolute value) 

around 0.3 K. In this case, VIIRS-TES is not able to outperform both generalized and 

simplified split-window. A difference of 0.7 K to 0.8 K in RMSE is obtained regarding 

the simplified SW. In the case of the SLSTR sensor, the generalized SW provides the 

worst performance (RMSE of 1.8 K). In this case, L2 and SW tend to provide similar 

performance (maximum RMSE difference of 0.07 K). In this case, although the simplified 

SW reduces the standard deviation the bias of L2 is the lowest of both algorithms.  

In Appendix A.3, same validation procedure is repeated in this case considering a 

maximum difference of 15 K and 3 K. For the case of 15 K, uncertainty increase to values 

of 2 K to almost 5 K, mainly because of the unscreened clouds (observed in the high 

standard deviations values retrieved). For the case of 3 K, RMSE decreases to values 

lower than 2 K. In this case, also the number of available points is reduced. Nevertheless, 

the same conclusions obtained from this analysis can be derived from the results in the 

Appendix A.3. A better performance is generally obtained for the simplified version of 

the SW in comparison to the generalized version of SW, and MODIS operative 

algorithms. For the case of VIIRS sensor, better daytime performance is still obtained for 

VIIRS-TES, nevertheless considering a difference of 3 K the discrepancy is reduced. For 

nighttime case, SW provide better performance than VIIRS-TES. For the case of SLSTR, 

L2 product still provides a better agreement with in-situ values. It is worth noting here 

the sensitivity of the algorithms proposed to the proper cloud filtering. The previous 

conclusions may not completely hold for the 15 K case due to the presence of unscreened 

clouds that difficult the proper comparison. In this case, MODIS operative algorithms can 

outperform the algorithms proposed.  
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7. - LST retrieval algorithm adapted to the Amazon evergreen forests  

 

 

 

 

Figure 7.5. Scatterplots in in-situ radiometer LST against estimated LST for the daytime case. MODIS-

SW, MODIS-TES and MODIS-DN refers to the LST as extracted from the MXD11_L2, MYD21_L2 

product and MXD11C1 product.  SW-sim and SW-gen refers to the simplified and generalized SW 

proposed. a) TERRA platform (1km) , b) AQUA platform (1km), c) TERRA platform (5km), d) AQUA 

platform (1km), e) VIIRS sensor and f) SLSTR sensor.  

 

 

Figure 7.6. Scatterplots in in-situ pyrgeometer LST against estimated LST for the daytime case. MODIS-

SW, MODIS-TES and MODIS-DN refers to the LST as extracted from the MXD11_L2, MYD21_L2 

product and MXD11C1 product.  SW-sim and SW-gen refers to the simplified and generalized SW 

proposed. a) TERRA platform (1km) , b) AQUA platform (1km), c) TERRA platform (5km), d) AQUA 

platform (1km), e) VIIRS sensor and f) SLSTR sensor. 
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Figure 7.7. Scatterplots in in-situ radiometer LST against estimated LST for the nighttime case. MODIS-

SW, MODIS-TES and MODIS-DN refers to the LST as extracted from the MXD11_L2, MYD21_L2 

product and MXD11C1 product.  SW-sim and SW-gen refers to the simplified and generalized SW 

proposed. a) TERRA platform (1km) , b) AQUA platform (1km), c) TERRA platform (5km), d) AQUA 

platform (1km), e) VIIRS sensor and f) SLSTR sensor. 

 

 

Figure 7.8. Scatterplots in in-situ radiometer LST against estimated LST for the nighttime case. MODIS-

SW, MODIS-TES and MODIS-DN refers to the LST as extracted from the MXD11_L2, MYD21_L2 

product and MXD11C1 product.  SW-sim and SW-gen refers to the simplified and generalized SW 

proposed. a) TERRA platform (1km) , b) AQUA platform (1km), c) TERRA platform (5km), d) AQUA 

platform (1km), e) VIIRS sensor and f) SLSTR sensor. 
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7.3. - R-based validation 

 

For the particular case of MODIS sensor daytime case, validation was extended to a set 

of 100 pixels randomly selected within the study area. R-based validation method, which 

does not require in situ data (Wan & Li, 2008) was used for this purpose. This validation 

was limited to MODIS sensor because of the huge amount of data needed in order to 

extend to other points. The MODIS brightness temperature of bands 31 and 32 can be 

obtained from the MXDTBGA tile product, thus facilitating the associated processing. In 

addition MODIS-SW and MODIS-DN estimates can be obtained from the MXD11A1 (at 

1km resolution) and MXD11C1 (at 5 km resolution). Validation was focused on the 

simplified SW, MODIS-SW and MODIS day-night algorithm.  

 

The optimal threshold value for Tb32 is selected so that the difference between the 

simulated LSTR and the actual LST lies within 1K. Wan & Li (2008) proposed a 

threshold of  ± 0.3 K for MODIS data and Hulley et al. (2012) showed that a threshold of  

± 0.5 K resulted in a good balance between the number of profiles and the accepted 

accuracy. Nevertheless, taking into account that we dispose of in-situ LST measurement 

at Tambopata site, the threshold can be derived by direct comparison with these values. 

According to the results presented in Figure 7.9, the threshold values -0.1K 

< (𝑇12𝑜𝑏𝑠
− 𝑇12𝑠𝑖𝑚

) < 0.3K provides a difference of 1K in the difference between the R-

based temperature and the LST in situ. However, taking into account the limitations in 

the number of clear-sky pixels imposed by the study region a final threshold of -

0.2K< (𝑇12𝑜𝑏𝑠
− 𝑇12𝑠𝑖𝑚

)< 0.4K was considered in order to increase the number of points. 

This recalculated threshold values provide a difference of less than  2K (Figure 7.9). 

 

 

Figure 7.9.  Determination of the optimal threshold value for Tb32 (TMOD32 – TSIM32). Tb32 is represented 

against the difference between the TR (derived from the R-based method) and TIN-SITU as derived in the 

section 5.1. 
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In addition, in Table 7.5, the comparison of in-situ LST as derived from the radiometers 

and as derived from the R-based method (i.e. by inverting the radiative transfer equation).  

As it can be seen, the bias metric together with standard deviation and the RMSE are 

within  2K. LST as derived from the R-based method derived can be assumed as a source 

of in-situ data with a maximum uncertainty of 1.85 K.  

Table 7.5. Error metrics derived from the comparison of in situ LST against reference LST obtained with 

the R-based method over the Tambopata test site considering a threshold of -0.2K<Tb32<0.4K. RMSE: 

Root Mean Square Error, MAE: N: number of data points. 

 Bias (K) σ (K) RMSE (K) N 

TERRA 1km -1.08 1.16 1.58 44 

AQUA 1km 0.99 1.18 1.54 15 

TERRA 5 km  -1.37 1.23 1.85 38 

AQUA 5 km 0.73 1.30 1.49 9 

 

In Figure 7.10, R-based validation results are presented using scatterplots. In addition, 

bias ± σ, together with the correlation coefficient (R) are displayed. The number of 

available points and the number of spatial points having data after applying the specified 

threshold are also provided. It is observed that the proposed LST algorithm shows lower 

values of bias and standard deviation in comparison to MODIS-SW (Figure 7.10 (a)(b)) 

and MODIS-DN (Figure 7.10 (c)(d)). The difference in terms of RMSE (MODIS 

operative algorithm minus proposed SW algorithm) is approximately of 0.9 K, 1.7 K, 0.7 

K and 1.5 K for MODIS-SW TERRA, MODIS-SW AQUA, MODIS-DN TERRA and 

MODIS-DN AQUA cases. In spite the reduction of the initial spatial reference points, the 

number of values is still elevated in order to provide a reliable validation dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.10. Simulated R-based (TR) against estimated temperature (Talg). Red cross refers to MODIS 

operative algorithms. Blue circle refers to the proposed SW algorithm. a) TERRA 1km, b) AQUA 1km, c) 

TERRA 5 km and d) AQUA 5 km. MODIS 1km algorithm is MODIS-SW and MODIS 5km algorithm is 

c

) 

d

) 

a

) 
b

) 
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MODIS-DN. Results include mean ± bias, correlation coefficient, N: total number of points and S: number 

of spatial points with data. The line 1:1 is also represented.  

 

7.4. - Spatial patterns 

 

Considering the results presented in Figures 7.11 and 7.12, it can be seen that the 

difference revealed in LST patterns between MOD35 and QC/MAIAC arise from the 

correction of cloud-contamination effect. QC and MAIAC spatial patterns are enhanced 

after removing the alteration (colder-than-true) of temperature introduced by clouds. The 

use of an additional cloud filtering however considerably reduces the number of available 

clear-sky-days (Figures 7.11-7.12). This becomes especially evident for the northeast 

region for TERRA JFM/AJM, and AQUA QC JFM where after screening clouds it is 

produced a lack of available data. MOD35 provides more cloud-free pixels than 

QC/MAIAC (Figure 7.11). MAIAC however it is able to provide more cloud-free pixels 

than QC for AQUA (Figures 7.11-7.12) and also for TERRA (southeast region of 

AJM/JAS). These results agree well with previous studies (Hilker et al., 2012) in which 

MAIAC was shown to provide about 20-80% more cloud-free pixels depending on season 

than MYD09 surface reflectance product when applying all the quality control checks. 

For the comparison of QC and MAIAC we see that MAIAC reproduces QC patterns. In 

this case, however the discrepancies due from an enhancement of some region by the LST 

product presented here cannot be properly addressed due to the low number of available 

points. However, when comparing TERRA (equatorial crossing time 10:30 am) and 

AQUA (equatorial crossing time 1:30 pm) results we see that MAIAC spatial patterns 

agree well. A spatial warming located in the northern region predominantly during 

JFM/AJM and a more widespread warming for JAS and OND is observed for both 

TERRA and AQUA.  
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Figure 7.11.  Spatial patterns of LST (left image) and Number of clear sky days (right image) for TERRA. 

For every panel the results are shown using rows as seasons (JFM, AMJ, JAS and OND) and columns as 

cloud masks filtering (MOD35, QC and MAIAC).   

 

 

Figure 7.12.  Spatial patterns of LST (left image) and Number of clear sky days (right image) for AQUA. 

For every panel the results are shown using rows as seasons (JFM, AMJ, JAS and OND) and columns as 

cloud masks filtering (MOD35, QC and MAIAC).   
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In Figure 7.13 seasonally LST and number of clear-sky days is presented for VIIRS. For 

the implementation of these comparison, brightness temperature of bands 15 and 16 were 

derived from the swath product NPP_VMAES_L1 (ladsweb.nascom.nasa.gov). 

Additionally, VNP35_L2 was considered for cloud masking. Obtained by heritage of 

MOD35_L2 product (MOD35 cloud mask) only pixels consider as confident clear were 

used for the LST retrieval. Considering VIIRS and MAIAC AQUA results having both 

an equatorial crossing time of 1:30 pm we see that VIIRS reproduces AQUA spatial 

patterns. Additionally, VIIRS number of clear-sky days’ spatial pattern is similar to 

MOD35. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.13.  Spatial patterns of LST (left image) and Number of clear sky days (right image) for VIIRS 

sensor. Only confident clear pixels were considered for LST retrieval. For every panel the results are shown: 

JFM, AMJ, JAS and OND.  

 

7.5. - Discussion  

 

From the simulated database validation, it was observed that the inclusion of the 

emissivity and water vapour contributions in the SW (i.e. generalized SW) do not result 

in an improvement in the accuracy of the estimated LST. In fact, considering only 

contributions from the brightness temperature (i.e. the simplified SW) reduced the 

retrieved RMSE up to 0.4 K (Table 7.2). In addition, it shows more stability at large 

viewing angles and water vapour conditions than the generalized SW.  

From the T-based validation, algorithms of three different sensors were validated: 

MODIS, VIIRS and SLSTR. For MODIS sensor, it was observed that amongst the 

MODIS algorithms considered DN algorithm provided the worst performance for 

daytime conditions (absolute deviations of the RMSE up to approximately 0.4 K). This 

was also true for the nighttime case but only for TERRA platform. For AQUA, MODIS-

TES gives the highest RMSE values (up to 0.6 K of difference with the other MODIS 

algorithms). For daytime, it has a similar performance to MODIS-SW. Nevertheless, it 
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tends to tends to overestimate the in-situ LST values (positive bias) while MODIS-SW 

tends to underestimate them (negative bias). The in-situ location is characterized by being 

vegetation in an area of wet atmospheric conditions. Precisely, at surfaces with low 

spectral contrast emissivity (e.g water, snow, vegetation) and under hot and wet 

atmospheric conditions, some reports have exhibited that significant errors in the LST 

and LSE may arise for TES algorithm. (Coll et al., 2007; Hulley & Hook, 2009, 2011). 

Considering the SW algorithms proposed in this study, same conclusions obtained in the 

simulated database section can be applied to this section. The simplified version always 

outperforms the generalized version (at nighttime however, the difference is reduced). In 

addition, it also outperforms the rest of MODIS operative algorithms. For the case of the 

generalized version, there is not always an increase in the performance when comparing 

to MODIS algorithms. The best performance of the proposed simplified algorithm can be 

attributed to the fact that it was retrieved from a specific simulated database over the 

region. It is expected that this database is able to better represent the atmospheric 

conditions that a global database, such as the one used in MODIS LST retrieval.  

For VIIRS sensor, it was show that the simplified SW algorithm is able to improve the 

generalized SW with differences up to 0.5 K in the RMSE. In addition, it outperforms 

VIIRS-TES nighttime case with a reduction of 0.7 K - 0.8 K in the RMSE. For daytime 

case, nevertheless VIIRS-TES agrees better with the in-situ LST observations. For the 

case of SLSTR sensor, L2 product provides a better agreement with in-situ observations 

that the algorithm proposed. Nevertheless, only a first assessment is presented with the 

validation being limited to a restricted number of points.  

At this point, it is worth also mentioning the impact of a proper cloud screening in the 

LST validation. In MODIS and VIIRS sensors clouds were screened using operative 

cloud masks. Nevertheless, this could not completely eliminate the presence of 

unscreened clouds. In order to overcome this issue, only pixels that deviate a specified 

amount from in-situ LST measurements were used for validation. Three different 

quantities were considered: 3 K, 6 K and 15 K. In this section, 6K case validation results 

were presented. 3 K and 15 K are in the Appendix A.3. In the 15 K (Table A.3.1 and 

A.3.2), the presence of clouds is evident due to the high standard deviations observed (2.5 

K to 4 K). Therefore, a more restrictive filtering is needed. A difference in 6 K is assumed 

to be valid. It represents a higher 3σ distance from the maximum LST error as derived 

from the sensitivity analysis (1.695x3 = 5.085). In addition, only pixels deviating a 

maximum amount for all the algorithms considered are used. Therefore, the algorithms 

are compared over the same performance range. For the case of 3 K difference (Table 

A.3.3 and A.3.4) , results were retrieved in order to see the effect of a more restrictive 

filtering. For this case, same conclusions obtained for 6 K difference case hold true. For 

the case of 15 K, although generally same behaviour is observed there are cases where 

MODIS, VIIRS and SLSTR operative algorithms outperform the SW proposed. 

However, in these cases it is evident the presence of clouds (σ values of 3 and 4 K).  

R-based method was shown to provide an alternative in-situ validation. Associated 

uncertainty was within the limits of 2 K. Same conclusions for MODIS sensor are 
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obtained using this method. The simplified SW proposed reduce the uncertainty in LST 

estimation (RMSE) in 0.7 to 1.7 K in comparison to MODIS operative algorithms.  

From the spatial patterns comparison, it was seen that the difference revealed in LST 

patterns between MOD35 and QC/MAIAC arise from the correction of cloud-

contamination effect. QC and MAIAC spatial patterns are enhanced after removing the 

alteration (colder-than-true) of temperature introduced by clouds. The cloud masking is 

especially important for the generation of monthly or seasonal means of LST, as usually 

considered in climate related studies. When cloud detection is relaxed more clear sky 

pixels are available within a month, but the monthly mean may be biased because of the 

consideration of LST values for cloudy pixels in the computation of the mean value. In 

contrast, a very restrictive cloud detection leads to a decrease in the number of clear sky 

pixels, which jeopardizes the computation of a monthly mean over areas with high cloud 

cover occurrence. 
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8.1. - Forcing scenario I  

 

8.1.1. Algorithm validation 

In scenario I, model performance for PT-JPL, PM-Mu, SEBS/SEBS-GF and LSASAF 

evapotranspiration algorithms was evaluated by comparing model estimates forced with 

in-situ data against in-situ ET observations. In Figure 8.1, the performance of the models 

for the totality of the stations is shown. Metrics used for validation are presented for both 

the uncorrected and corrected (Bowen Ratio and Energy residual) case. It is worth noting 

at this point that some discrepancy between metrics derived from these corrections is 

expected.  

Models considered perform at R values ranging from 0.5 to 0.9. S values range from 0.7 

to 0.9 and RMSE values lie between 0.55-1.25 mm/day. Models tend to provide a similar 

performance, nevertheless PT-JPL provides the highest R values range (0.65-0.88) in 

comparison to PM-Mu (0.56-0.74), SEBS (0.56-0.77), SEBS-GF (0.58-0.76) and 

LSASAF (0.53 - 0.69).  

 

 

Figure 8.1. Scatterplots of model ET estimate against in-situ ET uncorrected observations. Bias, RMSE, 

R, and S metrics were calculated considering observations from all the stations. Metrics derived considering 

corrected ET values (Bowen Ratio/Energy Residual) are presented between parenthesis.  

207



8.- Intercomparison of remote-sensing based evapotranspiration algorithms 

Best performance amongst models is obtained for PT-JPL (RMSE = 0.55 mm/day, R = 

0.88 and S = 0.91) followed by SEBS (similar RMSE and S but lower R), SEBS-GF and 

PM-Mu. SEBS model especially suffers from the lack of input LST observations due to 

the continuous cloud cover of the region (minimum N value). On the contrary, PT-JPL 

being the least-data demanding is the less prone to suffer from the lack of input data issue 

(maximum N value). The gap-filling technique used is shown to alleviate in part this 

problem, nevertheless it is observed that SEBS-GF tends to underestimate SEBS values. 

Worst performance is obtained for LSASAF (RMSE = 1.50 mm/day, R = 0.55 and S = 

0.77). In exception of LSASAF, best agreement between in-situ observations and models 

estimates is found when considering corrected ET measurements, especially for the 

Energy Residual correction (i.e. an increase in R and S values and a decrease in RMSE). 

For PT-JPL, PM-Mu, SEBS and SEBS-GF overestimation is generally observed for the 

uncorrected case. Bias values are decreased when considering ET corrected values. 

LSASAF generally tends to underestimate in-situ ET observations for both the 

uncorrected and corrected cases.  

Apart from validating model ET estimates, additional fluxes provided by models 

themselves were also evaluated. This is the case of Rn for PM-Mu, Rn and H for LSASAF 

and H and λE for SEBS (Figure 8.2). For SEBS, due to data scarcity Rn was directed 

extracted from in-situ observations. The scatterplots for calculated net radiation (daytime 

and nighttime) for PM-Mu are shown (Figure 8.2 (a)(b)). For daytime conditions, PM-

Mu tends to underestimate in-situ Rn, nevertheless a good agreement is found between 

the two datasets (R value of 0.95). For nighttime conditions, PM-Mu Rn estimates do not 

correlate with observed Rn. They are centered about a point of -60 W/m2 while in-situ Rn 

range from -70 to 10 W/m2. It is worth noting here that considering these nighttime values 

in the calculation of ET estimates will introduce an important negative deviation, that is 

not physically justified. Therefore, for the nighttime values calculated ET values were 

discarded in the calculation.  

For the case of LSASAF, the scatterplots of Rn and H are shown in Figure 8.2 (c)(d). It 

is worth remembering here that for running LSASAF model, G flux was discarded. 

Available in-situ daytime G flux data mean values lie within the range of -1 to 3 W/m2 

while calculated daytime LSASAF G flux provided values between 20 to 30 W/m2. From 

a preliminary analysis, it was concluded that neglecting these G flux values provide more 

accurate validation results than considering calculated G. In Figure 8.2(c)(d), it is 

observed that LSASAF tends to underestimate in-situ Rn and overestimate in-situ H. Rn 

has a small negative bias of approximately 8 W/m2, while for H a positive bias ranging 

from 50 to 70 W/m2 is obtained. Taking into account that in this model the λE is derived 

as a residual from the energy balance, these biases (in particular H) will directly affect 

the accuracy of λE (and ET) estimates. In particular, a bias of 50 to 70 W/m2 is equivalent 

to 0.9-1.2 mm/day.  
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Validation of instantaneous H and LE fluxes for both TERRA and AQUA are shown in 

Figure 8.2 (e)(f)(g)(h). SEBS tends to underestimate H flux for both TERRA and AQUA, 

and therefore tends to overestimate λE flux. Generally, (in exception of H flux for 

TERRA) a better agreement with in-situ results is obtained using corrected values than 

using non-corrected values. Considering a representative value of 350 W/m2 and 500 

W/m2 for TERRA and AQUA hourly Rn values, and a representative value of 200 W/m2 

and 350 W/m2 for LE flux and assuming a deviation of 50 W/m2 (RMSE ET-corrected 

values) a maximum deviation of 0.15 and 0.1 is obtained in the evaporative fraction, 

which will be translated into the daily ET estimates.  

Results from individual stations are shown in Table 8.1 and Figure 8.3. Metric values in 

Table 8.1 refer to the mean value ± standard deviation of the metrics derived from the 

uncorrected case and Bowen Ration and Energy Residual case. In the case of RMSE, 

mean value goes from 0.65 ± 0.14 (K67 PT-JPL) to 1.52 ± 0.41 (LSASAF RJA). For R 

metric mean values lie between 0.40 ± 0.15 (SEBS RJA) to 0.83 ± 0.09 (PT-JPL K34). 

In the case of the Taylor skill score S ranges from 0.64 ± 0.04 (PM-Mu K67) to 0.90 ± 

0.03 (LSASAF K34). Generally, better model performance is obtained for K34, K67 and 

K83. In the case of RJA and CAX, each model provides the highest RMSE value and 

lowest R value (for the case of S metric no particular behaviour is observed). This 

observed discrepancy amongst stations is more accused for the PM-Mu, SEBS and 

LSASAF models. An additional aspect to consider when analyzing these values is the 

number of available points from which the metric was calculated. For the case of CAX 

station the lowest number of points (less than 50) is provided. For the bias metric, it is 

observed that the observed underestimation of LSASAF (Figure 8.2) mainly results from 

the negative bias in K34 and RJA station. In addition, for PM-Mu and SEBS a positive 

bias is obtained for all the stations. RJA and CAX stations have a higher variability 

between metrics (standard deviation of 0.6 and 1.1) than the rest of the stations.   

Individual station validation results are also visualized using Taylor Diagrams in Figure 

8.3. Models are represented by colors and evapotranspiration corrections by shapes 

(triangle – ET (uncorrected ET values), square– BR (Bowen Ratio) and circle – ER 

(Energy Residual)). Models generally perform at R values ranging from 0.5 to 0.9 and 

CRMSD less than 1. For CAX and RJA maximum R is obtained at 0.8. In addition, for 

RJA minimum R value is situated at 0.2 and CRMSD can be greater than 1. Considering 

corrected ET values PT-JPL outperform the rest of the models (i.e. the blue square and 

the blue circle are closer to the observation point than the rest of the squares and circles 

respectively). For the uncorrected case there is no model that provides a superior 

performance for all the stations.  
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Figure 8.2. Validation of other fluxes provided by the ET models considered: a) daytime PM-Mu Rn b) 

nighttime PM-Mu Rn c) daytime LSASAF Rn, d) daytime LSASAF H e) SEBS H for TERRA platform, f) 

SEBS LE for TERRA platform, g) SEBS H for AQUA platform, h) SEBS LE for AQUA platform. Bias, 

RMSE, R, and S metrics were calculated considering observations from all the stations. Metrics derived 

considering corrected ET values (Bowen Ratio/Energy Residual) are presented between parenthesis. 
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Table 8.1. Bias, RMSE, correlation coefficient (R), Taylor skill score (S) metrics together with the number 

of available points (N) for the individual station validation. Values refer to the mean value ± standard 

deviation of the validation values from the uncorrected case and the Bowen Ratio and Energy Residual 

case.  

 
BIAS (mm/d) 

 
PT-JPL PM-Mu SEBS SEBS-GF LSASAF 

K34 0.28 ± 0.30 0.26 ± 0.44 0.32 ± 0.33 0.22 ± 0.33 -1.00 ± 0.42 

K67 -0.02 ± 0.41 0.11 ± 0.45 0.00 ± 0.41 -0.21 ± 0.42 --- 

K83 -0.28 ± 0.25 0.36 ± 0.14 0.08 ± 0.26 -0.11 ± 0.25 -0.16 ± 0.21 

RJA 0.60 ± 0.64 0.59 ± 0.63 0.60 ± 0.62 0.28 ± 0.60 -0.98 ± 0.62 

CAX 0.33 ± 1.18 0.10 ± 1.16 --- --- --- 
 

RMSE (mm/d) 
 

PT-JPL PM-Mu SEBS SEBS-GF LSASAF 

K34 0.76  ± 0.24 0.94 ± 0.16 0.84 ± 0.23 0.90 ± 0.13 1.27 ± 0.36 

K67 0.65 ± 0.14 0.69 ± 0.22 0.68 ± 0.18 0.77 ± 0.10 --- 

K83 0.73 ± 0.27 0.74 ± 0.13 0.77 ± 0.19 0.75 ± 0.23 0.75 ± 0.20 

RJA 1.09 ± 0.41 1.23 ± 0.34 1.28 ± 0.36 1.08 ± 0.23 1.52 ± 0.41 

CAX 1.14 ± 0.63 1.23 ± 0.39 --- --- --- 
 

Correlation coeffiicent (R) 
 

PT-JPL PM-Mu SEBS SEBS-GF LSASAF 

K34 0.83 ± 0.09 0.81 ± 0.08 0.63 ± 0.12 0.60 ± 0.05 0.82 ± 0.07 

K67 0.80 ± 0.10 0.59 ± 0.19 0.79 ± 0.12 0.76 ± 0.09 --- 

K83 0.72 ± 0.11 0.71 ± 0.09 0.65 ± 0.11 0.68 ± 0.09 0.64 ± 0.08 

RJA 0.68 ± 0.12 0.59 ± 0.12 0.40  ± 0.15 0.60 ± 0.12 0.48 ± 0.11 

CAX 0.70 ± 0.10 0.53 ± 0.09 --- --- --- 
 

                  Taylor skill score (S) 
 

 
PT-JPL PM-Mu SEBS SEBS-GF LSASAF 

K34 0.89 ± 0.06 0.89 ± 0.03 0.78 ± 0.07 0.77 ± 0.04 0.90 ± 0.03 

K67 0.86 ± 0.08 0.60 ± 0.21  0.87 ± 0.08 0.87 ± 0.06 --- 

K83 0.73 ± 0.16 0.76 ± 0.11 0.80 ± 0.08 0.79 ± 0.11 0.73 ± 0.12 

RJA 0.82 ± 0.07 0.78 ± 0.06 0.69 ± 0.08 0.79 ± 0.07 0.73 ± 0.05 

CAX 0.74 ± 0.01 0.64 ± 0.04 --- --- --- 
 

Number of points (N) 
 

PT-JPL PM-Mu SEBS SEBS-GF LSASAF 

K34 733 200 91 295 164 

K67 723 179 225 623 --- 

K83 439 214 130 319 300 

RJA 453 426 85 314 448 

CAX 41 44 --- --- --- 
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Figure 8.3. Taylor diagrams for the LBA in-situ stations. Models are represented by colors and 

evapotranspiration corrections by shapes (triangle – ET (uncorrected ET values), square – BR (Bowen 

Ratio) and circle – ER (Energy Residual)).  

 

8.1.2. Temporal evolution 

The temporal evolution of the models is compared considering time series of monthly 

mean values (Figure 8.4). Results using data from all the stations and individual station 

data are both displayed. Values were calculated considering at least 15 points for each 

month. Results for CAX station is not displayed as it didn’t have the minimum number 

of available points. In-situ observations are also displayed. Variability in these 

measurements due to the energy balance closure issue is represented by the shadowed 

area. The lower, intermediate and upper limit indicate uncorrected, BR and ER correction 

ET observations respectively. Regarding the discrepancy between these values, it is 

observed that a greater deviation is observed between uncorrected and corrected values 

than between corrections.  

Focusing on results from all the stations, models generally follow in-situ ET temporal 

pattern with maximum values in September. LSASAF peaks in August, nevertheless it is 

worth noting that K67 and CAX were not able to be included (contrary to the rest of the 

models). Along the year, PT-JPL, SEBS and SEBS-GF always lie in the determined range 

of in-situ ET. PT-JPL and SEBS being closer to the corrected rank than SEBS-GF which 

tends to underestimate SEBS estimates. LSASAF clearly underestimates in-situ ET 

values. From May to October the deviation is reduced to the increase in ET estimates. In 

this same period overestimation is found for PM-Mu.  Amongst the models considered 

the major coincidence is found for PT-JPL and SEBS. Nevertheless, due to the lack of 
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LST input data a complete year of estimates is not reached for SEBS (July-October 

providing the maximum number of observations).  

Focusing on individual stations results, same previous conclusions for PT-JPL, SEBS and 

SEBS-GF can be derived.  In addition, same overestimation and underestimation for PM-

Mu and LSASAF is observed. Models generally follow in-situ temporal pattern. 

Nevertheless, for the RJA station PM-Mu and LSASAF are not able to reflect the decrease 

in the observed ET for the months of May-October. PT-JPL better reflects this pattern 

and thus it provides the best performance.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4. Time series of ET model monthly mean values. In-situ ET observations are represented by the 

shadowed area (lower, intermediate and upper limit indicating uncorrected, BR and ER ET observations 

respectively).  
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8.2.- Forcing Scenario II  

 

8.2.1. Reanalysis quality assessment 

Before proceeding to the validation of models, in order to assess the impact of the 

reanalysis meteorological data on model performance reanalysis inputs were compared 

against in-situ station meteorological inputs. An aspect to take into account when 

analysing the results is the spatial discrepancy between the in-situ point data and 

reanalysis data (minimum spatial resolution of 0.25º). In Table 8.2, calculated metrics 

(bias, RMSE and R) from the evaluation are shown. Metrics were calculated with a 

number of available points ranging from 500 to 4000 depending on model and forcing 

variable considered. In order to facilitate the notation for the rest of the section, MERRA, 

ERA and GLDAS are used as an abbreviation of MERRA-2, ERA-Interim, and GLDAS-

2.1 reanalysis.  

Several conclusions can be derived from Table 8.2. Generally, instantaneous values (at 

satellite time overpass) provide greater deviations from in-situ observations than averaged 

values (daytime, nighttime and daily). For radiation inputs, main difference amongst 

reanalysis is observed for the bias metric (similar RMSE and R values for the three 

reanalysis). MERRA tends to overestimate Rn24, SRinday and SRinhour while underestimating 

LRinday and LRinhour. Same behaviour is obtained for GLDAS although it tends to 

underestimate SRinday. ERA tends to overestimate instantaneous values while 

underestimating daytime and daily values. For temperature inputs (in exception of Taday) 

ERA provides the best agreement with in-situ observations amongst reanalysis. 

Overestimation is generally found for the three reanalysis (in exception of Taday for ERA 

and Tminday for ERA and GLDAS) with maximum deviations for Tmax and Tahour. For 

humidity inputs, contrary to temperature inputs (in exception of eahour) ERA provides the 

worst performance for modelling humidity inputs (maximum R value of 0.21). Maximum 

R values are obtained for GLDAS however with also maximum RMSE values. In terms 

of bias, ERA and GLDAS overestimate eaTmax while underestimate the rest of the inputs. 

MERRA only overestimates eanight however with a R value of 0.02. Wind speed inputs are 

underestimated for the three analyses. R Best agreement is obtained for ERA (minimum 

RMSE and maximum R values).  

It is worth noting at these point, that although larger absolute values are obtained for 

radiation and humidity inputs in comparison with temperature and wind speed (Table 5.15 

in chapter 5). Generally, for the three reanalysis, wind speed is the most uncertain 

parameter with a greater than 60% of relative error, followed by radiation inputs 

(approximately 30% for solar radiation variables), humidity (15%) and temperature 

inputs (maximum relative error of 10%).  
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Table 8.2. Bias, RMSE and R values derived from the comparison of in-situ inputs against reanalysis 

inputs. The temporal resolution of the inputs is indicated by a subscript (day refers to daytime, night to 

nighttime and hour to hourly values at the time of satellite overpass). 

 MERRA ERA GLDAS 

Radiation inputs (W/m2) 

 BIAS RMSE R BIAS RMSE R BIAS RMSE R 

Rn24 9.16 48.77 0.31 -10.36 44.07 0.37 8.65 43.53 0.39 

SRinday 10.7 124.17 0.26 -37.54 113.43 0.37 -28.56 109.08 0.37 

LRinday -20.08 23.09 0.50 -15.38 18.60 0.68 -19.75 24.5 0.45 

SRinhour 141.80 241.47 0.33 94.8 216.05 0.34 126.66 224.54 0.39 

LRinhour -16.04 23.55 0.57 1.39 15.55 0.67 -2.12 20.91 0.53 

Temperature inputs (K) 

 BIAS RMSE R BIAS RMSE R BIAS RMSE R 

Taday 0.38 1.95 0.48 -1.24 2.07 0.61 0.31 1.99 0.58 

Tminday 1.36 2.20 0.17 -0.62 1.46 0.55 -0.41 1.70 0.62 

Tanight 0.75 1.85 0.34 0.10 1.31 0.62 0.60 1.73 0.48 

Tminnight 1.28 2.16 0.17 0.08 1.30 0.56 0.26 1.70 0.38 

Tahour 0.62 2.94 0.44 0.18 2.30 0.49 1.24 3.32 0.50 

Tmax 2.0 2.81 0.50 0.80 2.30 0.41 3.18 4.28 0.38 

Humidity inputs (Pa) 

 BIAS RMSE R BIAS RMSE R BIAS RMSE R 

eaTmax -168.34 484.73 0.34 196.54 522.38 0.06 262.94 600.50 0.35 

eaday -225.95 531.94 0.12 -135.59 539.65 0.05 -148.65 572.8 0.30 

eanight 56.32 453.85 0.02 -126.97 484.7 0.05 -179.60 607.9 0.14 

eahour -327.23 542.32 0.29 -249.13 533.60 0.21 -524.65 787.3 0.17 

Wind speed (m/s) 

 BIAS RMSE R BIAS RMSE R BIAS RMSE R 

Wsday -1.29 1.38 0.53 -0.44 0.68 0.60 -0.96 1.06 0.51 

Wshour -1.92 2.18 0.34 -0.09 0.93 0.56 -0.77 1.19 0.55 

 

8.2.2. Sensitivity analysis 

Model sensitivity analysis results are displayed in Figure 8.5. It is observed that model 

output variability (uncertainty) can be explained by input radiation variability 

(uncertainty). For PT-JPL Rn24 is able to completely explain model variability. For PM-

Mu SRinday (playing the major role) followed by eaday and Taday (especially from May to 

November) are the key variables driven model output uncertainty. For SEBS, Wshour, 

SRinhour and LST contribute in a secondary way in comparison to Rn24. This input 

sensitivity is also expected for SEBS estimates on cloudy days (SEBS-GF) (PET is 

directly estimated from Rn24). For LSASAF, SRinday followed by Rootsmday, eaday and 

Taday, can explain model output variability.  Taking into account the sensibility of the 

models to these variables, uncertainty in these inputs will be directly translated into model 

uncertainty. In Figure 8.6 we analyze the model deviations resulting from these 

uncertainties. For all the models, absolute deviations of approximately 2 mm/d are 

reached.  
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Figure 8.5. Sobol sensitivity analysis for the models considered. Temporal resolution of model inputs is 

indicated by a subscript (day refers to daytime, night to nighttime and hour to hourly values at the time of 

satellite overpass). 

 

 

Figure 8.6. Bias analysis for the models considered. Bias was calculated as the difference between 

perturbed values and unperturbed values. Only radiation variables being responsible of the model variability 

were considered for perturbation. For SEBS, SRinhour was also included in the analysis.  
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8.2.3. Algorithm validation 

In Figure 8.7, scenario II validation results are presented using scatterplots. A 

deterioration in model performance from Scenario I is observed (R and S metrics have 

decreased while RMSE has increased). Taking into account reanalysis input quality this 

result was expected. R metrics range from 0.2 to 0.3. S metrics range from approximately 

0.5 to approximately 0.7 and RMSE values lie in the range of 1.1-1.7 mm/day. It is worth 

noting here the coincidence between the models R values range and the previous R values 

range derived for the radiation inputs. In addition, there is an agreement between 

overestimation/underestimation for the models and the positive/negative bias calculated 

from the reanalysis inputs (Rn24 and SRin). For PT-JPL and SEBS-GF which uses Rn24 

input, ERA forced results always tend to underestimate MERRA and GLDAS results 

(positive bias for MERRA/GLDAS and negative for ERA). Same conclusion is obtained 

considering SRin and PM-Mu and LSASAF. In terms of R, S and RMSE metrics, there is 

no particular combination (model+reanalysis) that clearly outperform the rest of the 

combinations (PM-Mu-ERA and LSASAF-MERRA provide the best metrics but with 

little discrepancy from the rest) 
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Figure 8.7. Scatterplots of ET derived from the selected models (scenario II) against in-situ measurements 

considering all stations. For each model, bias, RMSE, R and S, together with the number of points available 

for validation are shown. Metrics derived considering Bowen Ratio/Energy Residual method are presented 

between parenthesis.  

 

Individual stations validation results are shown in Table 8.3 and Figure 8.8. As in scenario 

I, Table 8.3 values refer to the mean value of the metrics derived from the uncorrected 

case and Bowen Ration and Energy Residual case. Contrary to scenario I, no particular 

discrepancy emerges between the results from the different stations. Same conclusions as 

obtained from Figure 8.7 can be derived for individual stations. The negative Rn24 ERA 

bias translate into a negative bias (or closer to zero bias) when comparing with MERRA 

and GLDAS results. The underestimation of LSASAF model (Figure 8.7) is observed in 

each of the stations for ERA and GLDAS. In terms of RMSE, models perform between 1 

to 2 mm/day without a particular pattern. For R metric, values range between 0 to 0.4. 

The low R-values for PT-JPL-GLDAS and PM-Mu-MERRA in Figure 8.7 are also 
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observed for each of the stations (in exception of K34). For S metric, values range 

between 0.4 to 0.7,  

 

Table 8.3. Bias, RMSE, correlation coefficient (R), Taylor skill score (S) metrics together with the number 

of available points (N) for the individual station validation (scenario II). Values refer to the mean value of 

the validation values from the uncorrected case and the Bowen Ratio and Energy Residual case. 

 

 

 

 

 

 

 

 

 BIAS (mm/d) 

 PT-JPL PM-Mu SEBS-GF LSASAF 

 M E G M E G M E G M E G 

K34 0.44 0.20 0.85 0.61 0.07 0.09 0.09 -0.21 0.20 -0.14 -0.51 -0.45 

K67 0.52 -0.04 0.67 0.52 0.20 0.12 0.18 -0.35 0.20 0.08 -0.29 -1.04 

K83 0.37 -0.02 0.40 0.26 0.11 0.10 0.31 -0.32 0.20 0.08 -0.56 -0.74 

RJA 0.51 0.39 0.72 0.37 -0.22 -0.25 0.34 0.0 0.18 -0.05 -0.86 -0.66 

CAX -0.13 -0.77 -0.21 -0.57 -0.62 -0.03 --- --- ---- -0.74 -1.14 -1.54 

 RMSE (mm/d) 

 PT-JPL PM-Mu SEBS-GF LSASAF 

 M E G M E G M E G M E G 

K34 1.52 1.26 1.60 1.45 1.19 1.28 1.54 1.33 1.44 1.31 1.31 1.45 

K67 1.29 1.01 1.54 1.35 1.12 1.20 1.25 1.21 1.21 1.02 1.16 1.81 

K83 1.24 1.06 1.31 1.26 1.18 1.15 1.30 1.24 1.19 1.10 1.29 1.44 

RJA 1.47 1.36 1.60 1.51 1.38 1.39 1.31 1.35 1.31 1.26 1.54 1.53 

CAX 1.60 1.68 1.71 1.67 1.67 1.33 1.94 --- --- 1.60 1.94 2.03 

 Correlation coeffiicent (R) 

 PT-JPL PM-Mu SEBS-GF LSASAF 

 M E G M E G M E G M E G 

K34 0.24 0.32 0.30 0.30 0.43 0.39 0.26 0.34 0.35 0.31 0.43 0.39 

K67 0.28 0.35 0.02 0.12 0.39 0.23 0.32 0.33 0.31 0.40 0.42 0.12 

K83 0.14 0.20 0.07 0.17 0.28 0.15 0.19 0.22 0.25 0.21 0.27 0.30 

RJA 0.25 0.18 0.02 0.02 0.07 0.14 0.20 0.14 0.23 0.25 0.08 0.05 

CAX 0.19 -0.01 0.07 0.14 0.09 0.27 ---- --- --- 0.26 0.08 0.50 

 Taylor skill score (S) 

 PT-JPL PM-Mu SEBS-GF LSASAF 

 M E G M E G M E G M E G 

K34 0.60 0.50 0.62 0.58 0.64 0.67 0.63 0.63 0.67 0.58 0.64 0.69 

K67 0.63 0.63 0.50 0.55 0.68 0.61 0.63 0.65 0.64 0.69 0.69 0.51 

K83 0.55 0.54 0.52 0.57 0.62 0.56 0.57 0.59 0.60 0.58 0.62 0.60 

RJA 0.62 0.51 0.47 0.50 0.43 0.50 0.55 0.52 0.57 0.53 0.41 0.47 

CAX 0.59 0.33 0.52 0.56 0.52 0.54 0.52 ---- ---- 0.57 0.52 0.72 
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Taylor diagrams are displayed in Figure 8.8. In this case, only results derived from 

uncorrected ET observations are shown. For Bowen Ratio and Energy Residual, Taylor 

Diagrams are shown in the Appendix A.4. Nevertheless, same conclusions can be 

obtained.  Shapes (triangle, square and circle) represent the reanalysis and colours 

represent models. Models generally perform at R values ranging from -0.1 to 0.5 and 

CRMSD greater than 1. On the contrary to scenario I, there is no combination (model + 

reanalysis) that provides the maximum agreement for all the stations. Nevertheless, in 

general, PT-JPL-ERA and LSASAF-MERRA tend to provide the minimum CRMSD 

values. In the case of K34 station, this value is provided by PM-Mu-ERA and LSASAF-

ERA.  

 

 

Figure 8.8. Taylor diagrams for individual station considering reanalysis forcing.  

 

8.2.4. Temporal evolution 

The temporal evolution of the monthly mean values (Figure 8.9) was used in order to 

compare in-situ forced and reanalysis forced ET estimates. In-situ ET observations were 

also included for comparison (same shadowed area as in Figure 8.4). For PT-JPL model, 

MERRA and GLDAS tend overestimate in-situ forced estimates while ERA tend to 

underestimate these values. For MERRA and GLDAS this overestimation also results in 

an overestimation of in-situ observations for both uncorrected and corrected values. ERA 

is still within the range of ET observations values. For PM-Mu, MERRA provides the 

major coincidence with in-situ forced estimates. ERA and GLDAS on the contrary tend 

to underestimate these values. This fact however tends to alleviate PM-Mu overestimation 

issue and thus results in a better agreement with in-situ observations. For SEBS-GF 
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scenario II estimates generally follow scenario I estimates. A positive deviation is found 

for MERRA and GLDAS. ERA provides the maximum (and negative) deviation. For 

LSASAF, maximum discrepancy among scenarios is obtained for MERRA. This 

deviation results in a better agreement with in-situ observations. ERA and GLDAS tend 

to follow scenario I estimates, maximum difference between reanalysis is found from 

September to October. Analyzing results by reanalysis, a strong seasonal behavior 

(similar temporal pattern for all the models) is found for ERA in contrast to MERRA and 

GLDAS (difference in temporal patterns between PT-JPL and PM-Mu/SEBS-

GF/LSASAF).  

 

 

Figure 8.9. Time series of ET model monthly mean values for each combination (model + reanalysis) 

considered. In-situ ET observations are represented by the shadowed area (lower, intermediate and upper 

limit indicating uncorrected, BR and ER ET observations respectively).  
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8.2.5. Spatial patterns comparison 

In Figure 8.10, the difference maps used for the comparison of model spatial patterns are 

shown. The ensemble (mean value) of all the models was considered as truth data. From 

Figure 8.10, it is observed that discrepancies amongst reanalysis can induced maximum 

absolutes differences greater than 500 mm/year in annual cumulative ET values. 

Maximum negative deviations are obtained for LSASAF-ERA and LSASAF-GLDAS 

followed by LSASAF-MERRA and PM-Mu-ERA and PM-Mu-GLDAS. Maximum 

positive deviations are obtained for MERRA and GLDAS followed by PT-JPL-GLDAS 

and SEBS-GF-GLDAS. For the reference models major deviations from the ensemble 

model are obtained for GLEAM and MERRA. 

Discrepancy amongst spatial patterns is also driven by differences in reanalysis inputs. 

Greater discrepancies are obtained when considering a fixed ET model forced with 

different reanalysis than when considering a fixed reanalysis and different models. In 

particular, it is observed that models driven by the same radiation input (PT-JPL/SEBS-

GF for Rn24 and PM-Mu/LSASAF for SRin) tend to share similar spatial patterns 

(although some discrepancy may exist). This leads to the conclusion that differences in 

ET spatial patterns are generally explained by differences amongst reanalysis radiation 

inputs. In order to test, this hypothesis for the year 2004, model ET estimates were 

compared with model inputs (radiation, temperature, humidity, NDVI, wind speed and 

soil moisture inputs) by linear regression. These results are analysed in terms of R2-value 

(Figure 8.11). Only results for MERRA reanalysis are presented. ERA and GLDAS 

results are in Annex A.4. As it can be observed, independently of the model considered 

main contribution comes from the radiation inputs. Although some contribution also 

provides from other inputs. In particular, temperature and humidity for PM-Mu and 

temperature, humidity, wind speed and soil moisture for LSASAF model.   

In Figure 8.12, the temporal evolution of the models is displayed using zonal mean values. 

Input net radiation is also displayed for comparison. Taking into account that growth and 

water use in tropical forests is radiation driven (Wagner et al., 2017) the comparison with 

radiation evolution can serve to indicate model performance. Discrepancies amongst 

model temporal evolution is also driven by reanalysis differences. For each reanalysis, 

models follow the same temporal pattern although differing in ET absolute values. 

Models are able to reproduce the temporal evolution of net radiation. Major deviation is 

obtained for PT-JPL-GLDAS. In particular, ERA follows a stronger seasonal net 

radiation evolution in comparison to GLDAS and MERRA. Considering the comparison 

of model temporal evolution between the reference models and the four models 

considered, the agreement with GLDAS and ERA is greater than with GLEAM and 

MERRA. In GLDAS and ERA the increase in ET values is observed for the period of 

May-December (with a peak in September/October) while for GLEAM and MERRA this 

behaviour is observed from January to September (with minimum values in September).  
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Figure 8.10. Annual cumulative ET (year 2004) spatial patterns (deviation from the ensemble mean). 
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Figure 8.11. R2 value derived from the linear regression of ET model estimates against model inputs 

(MERRA-forcing). Radiation inputs refer to Rn24 (PT-JPL and SEBS-GF) and SRin (PM-Mu and 

LSASAF). Temperature and humidity inputs refer to Ta and ea forced at the temporal scale indicated by 

the models. Soil moisture refers to the root zone soil moisture for LSASAF model. Non significative values 

(p<0.05) are displayed in black.  
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Figure 8.12. Temporal evolution of zonal mean values for the Amazonian region.  

 

8.3.- Discussion  

 

8.3.1.- Forcing scenario I  

 

Rn was shown to control the seasonal variation of 𝜆𝐸 over the tropical forests in Amazonia 

(Fisher et al., 2009; da Rocha et al., 2009). The four models considered rely on radiation 

inputs for evapotranspiration estimation, hence their general agreement with in-situ 

observations (Figure 8.1). In addition, it was observed that the temporal evolution of 

model ET estimates follow closely the temporal evolution of in-situ ET measurements 

reaching maximum values around August-September (Figure 8.4). Nevertheless, the best 

performance was obtained for PT-JPL (minimum RMSE and maximum R values range) 

(Figure 8.1). Same conclusion is derived for each individual station (minimum RMSE 

and maximum R value in Table 8.1 and minimum distance to the observation point in 

Figure 8.3). These results could be attributed to the simplified approach used in estimating 

ET, which avoids the need of explicitly parametrizing the aerodynamic and surface 

resistance. As 𝜆𝐸 is mainly explained by Rn, the use of a more complex description 

(resistances) is not expected to contribute in a significant amount to 𝜆𝐸 explanation, 

instead additional noise is introduced by the use of additional parameters (Fisher et al., 

2005). This is particular true for PM-Mu model. Considering the same 𝜆𝐸 partition as 

PT-JPL, the resistance formulation proposed does not result in an improved performance. 

These resistances are calculated using biome-specific physiological parameters. The most 
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arguably assumption about these values is that they do not change over space or time. For 

all the forests of the Amazon region same generic biome-specific properties are assumed, 

thus ignoring the high species diversity and the complex forest canopy structure. PM-Mu, 

however, succeeds in avoiding the need of soil moisture data, which for the region it is 

one of the most difficult parameter to model (Fisher et al., 2009). Main issue associated 

with PM-Mu is that it tends to overestimate in-situ ET observations (Figure 8.4). Mainly 

because of K34 and RJA stations. Because of the general reported underestimation for 

PM-Mu model (Michel 2016; Miralles et al., 2016) in comparison to other models, it is 

worth remembering here that we used 𝑓𝑐 as obtained from the in-situ stations or the 

satellite data, while PM-Mu uses MODIS 𝑓𝑎𝑝𝑎𝑟. The use of this value is thought to be 

driven the observed underestimation in MODIS algorithms (Talsma et al., 2018). For the 

region, MODIS 𝑓𝑎𝑝𝑎𝑟 takes values around 0.85 (Senna et al., 2005). With these new value, 

the overestimation observed is reduced. In appendix A.4 (Table A.4.1) the metrics and 

temporal evolution using all stations data are given. Although bias is reduced (0.06 for 

BR correction and -0.26 for ER correction), RMSE and R values are similar to the ones 

obtained previously. As observed in Figure 8.2, an underestimation of approximately 20 

W/m2 is derived for daytime PM-Mu Rn (daytime is the major contribution to daily ET). 

Even with this underestimation, PM-Mu still provides higher ET estimates than PT-JPL. 

PM-Mu relies on the use of biophysical parameters that have been calibrated. This 

calibration process is able to adjust the model to provide accurate ET estimates even if 

inputs values differ from their optimum values  (underestimation in both Rn and 𝑓𝑐 ). It is 

worth noting here, that a calibration in order to meet the local conditions will also serve 

in order to increase the performance of the model.  

SEBS model perform similar to PT-JPL, main discrepancy arises in R and S metrics. This 

similar performance could be attributed that both models heavily rely on daily Rn for ET 

estimation. In PT-JPL, PET (and therefore daily Rn) is scaled to ET values using 

biophysical constraints, for SEBS daily Rn is scaled using a pre-calculated evaporative 

fraction. As this fraction is calculated at the satellite time overpass, the variability 

introduced by using instantaneous values together with the assumption of constant value 

of evaporative fraction could help to explain the discrepancy for R and S metrics. In 

SEBS, the explicit parametrization of surface resistance (and the problematic 

parametrization associated) is avoided by calculating 𝜆𝐸 as a residual term. Accuracy in 

the results is thus determined by the accuracy in calculating 𝑟𝑎 (and the derived H). Van 

der Kwast et al. (2009) pointed out to LST errors as a source of 𝑟𝑎 uncertainty. In 

particular, the split-window algorithm used in this study was demonstrated to provide 

more accurate LST estimates than current MODIS LST operative products (Gomis-

Cebolla et al., 2018). SEBS differ from the rest of the models in the fact that no 𝜆𝐸 

partition is considered. Nevertheless, SEBS one-source approach can be assumed for the 

region (𝜆𝐸𝑠 can be neglected, and the LST observations are expected to reflect the effect 

of intercepted water on the leaves and canopy for 𝜆𝐸𝐼).  

Main limitation of SEBS model is the lack of ET estimates for cloudy days. In order to 

deal with this problem, ET was derived from the 𝑓𝐴𝑊 in these days. This technique was 
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shown to overcome this issue nevertheless it tended to underestimate SEBS values. This 

fact may result from the simplification used (transpiration results only from the 

contribution of soil moisture). Although this assumption is generally true for water 

limited regions it may not offer a complete description for energy limited regions 

(evapotranspiration is mainly determined by the incoming radiation rather than the 

available water). In addition, this technique use default soil properties values that may not 

properly represent the local soil conditions of the in-situ stations. It also entails one 

additional aspect, the alteration in the ET estimates distribution. Due to the continuous 

cloud cover of the study region, 𝑓𝐴𝑊 ET estimates contribute more to the total distribution 

than SEBS estimates (i.e. from approximately 1600-1700 SEBS-GF estimates, only 500-

600 are from SEBS).  

LSASAF provides the worst performance amongst the models considered. ET estimates 

were clearly underestimated. In LSASAF, an explicit parametrization of 𝑟𝑠 and 𝑟𝑎 is used 

in order to estimate 𝜆𝐸. 𝑟𝑠 is calculated by upscaling 𝑟𝑠𝑚𝑖𝑛 using Jarvis functions. A 

constant value of 𝑟𝑠𝑚𝑖𝑛 is assumed for all the forests of the Amazonia. Apart from this 

issue, the soil moisture is considered in this calculation. The problematic description of 

this input together with the spatial mismatch between in-situ point station and reanalysis 

data negatively affect model performance. Apart from this, LSASAF (and also SEBS-

GF) use default soil properties values that may not properly represent the soil conditions 

of the in-situ stations. In addition, as in SEBS, there is a dependency on roughness 

parameters for 𝑟𝑎 calculation. Therefore, uncertainty in this parametrization could also 

affect model performance. An additional reason behind the underestimation of LSASAF 

model is the not inclusion of an interception term in the 𝜆𝐸 partition. In order to test this 

hypothesis, 𝜆𝐸𝐼 was calculated assuming 𝑟𝑠 equal to 0 (as in open waters). Same 

vegetation roughness lengths driving 𝑟𝑎 . 𝜆𝐸 components were weighted as in PM-Mu by 

a 𝑓𝑤𝑒𝑡 factor. Results are presented in Table A.4.2 (Appendix A.4). They indicate that the 

inclusion of this new term help to overcome the underestimation issue. Although some 

variability in validation metrics is expected because of this fact, same model comparison 

conclusions can be derived in terms of R and S metrics. Therefore, stressing the 

importance of the previously commented issues (reanalysis soil moisture). It is worth 

mentioning here that in the new launch of LSASAF ET products the lack of 𝜆𝐸𝐼 is 

explicitly addressed by modulating the vegetation 𝑟𝑠 by a wet fraction term. 

Apart from the above mentioned model limitations, it has to be taken into account that 

the resulting deviations between in-situ ET observations and modelled ET estimates result 

also from the contribution of other causes. In particular, it is worth noting the extra 

uncertainty introduced by the spatial mismatch between ground measurements and 

remote sensing data. Footprints for eddy covariance range from 0.1 to 0.5 km2 (Kljun et 

al., 2004) depending on the reference height. This scale is much smaller than the MODIS 

(or MERRA) pixel 1km2 resolution. In addition, uncertainty in these remote sensing data 

will also introduce uncertainty in the modelled ET estimates. This uncertainty may be 

derived from an imperfect cloud masking and atmospheric correction of these data (Hilker 

et al., 2012; Gomis-Cebolla et al., 2018). Another cause of deviation to take into account 

is the uncertainty derived from the in-situ eddy-covariance measurements. At nighttime 
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eddy covariance measurements are generally unreliable because of low turbulence (Fisher 

et al., 2007). In addition, there is the issue of the lack of energy closure and the possible 

deviations introduced by the selection of a specific correction method. As it was observed 

validation metrics (and therefore the final conclusions) were dependent on the type of in-

situ data (uncorrected or corrected) and the type of correction considered (BR or ER). 

Nevertheless, it is worth noting that same model comparison conclusions were derived 

from BR and ER (although with different validation metrics values).  

 

 8.3.2.- Forcing scenario II  

 

With respect to scenario I, scenario II differs in the use of reanalysis meteorological data 

for forcing the models. It is therefore necessary to quantify the existing errors in these 

input data in order to address their impact on model performance. Uncertainty in these 

data results from reanalysis inherent errors and the spatial mismatch between ground 

measurements. Reanalysis quality was addressed by comparison of reanalysis inputs 

against in-situ stations inputs. From Table 8.2, the poor quality of these data can be 

deduced. Wind speed with a relative error greater than 60%, followed by radiation inputs 

(30%), humidity (15%) and temperature inputs (10%). In addition, R values range from 

0.3 to 0.7 for radiation, temperature and wind variables while for humidity variables a 

maximum value of 0.35 is obtained. The impact of these inputs uncertainty on model 

output was assessed using the Sobol global sensitivity analysis. From Figure 8.5, it can 

be deduced that radiation inputs are the key variables driven model output, and therefore 

model uncertainty will result mainly from radiation input uncertainty.  This fact, is clearly 

in agreement with the fact that the tropical forests of Amazonia are energy driven (Fisher 

et al.,2009; da Rocha et al., 2009). In particular, for PT-JPL and SEBS model Rn24 is the 

key variable. A bias in these input will be therefore directly translated into a bias in the 

estimates, which can reach up to 2 mm/d (Figure 8.6). Considering the scaling logic of 

PET for PT-JPL and the assumption of constant evaporative fraction this result could be 

expected. In addition, this fact also explained the similarity in PT-JPL and SEBS results 

in scenario I. In the case of PM-Mu, model variability is mainly driven by SRin variability. 

A bias in SRin translates into a direct bias in Rn and therefore in the estimates (up to 2 

mm/d, Figure 8.6). It is worth mentioning the role played by Ta and ea variables (especially 

from May to November). These inputs are involved in the calculation of VPD (es is 

derived from Ta). During these months, VPD generally increases (due to a decrease in 

RH) therefore contributing more to 𝜆𝐸. In addition, Ta is also involved in the calculation 

of Rn. For LSASAF, SRin explains most of the model variance causing a maximum 

deviation of 2 mm/d. Nevertheless, ea, Ta and Rootsm additionally play an important role. 

Taking into account model parametrization these results were expected. ea is involved in 

the 𝜆𝐸 calculation, explicitly (specific humidity) and implicitly (in the calculation of 𝑟𝑠). 

The same holds true for Ta but for the sensible heat flux. Rootsm is used in 𝑟𝑠 calculation. 

Therefore, the effect of reanalysis inputs on model estimates is not as direct as in the other 
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models. It is worth noting here, that model is almost insensitive to wind speed (even if it 

is the most uncertain input).   

From Figure 8.7 and 8.8, it is observed the negative impact these inputs have on model 

performance. It is observed that for some models (PM-Mu-ERA and LSASAF-MERRA) 

the biases introduced by model parametrization tend to cancel out when considering input 

forcing data with an opposite bias (i.e. the overestimation of in-situ ET values for PM-

Mu is alleviated when considering a SRin that has a negative bias). This fact could explain 

the slight improvement observed for these models. Nevertheless, no particular 

combination stood out as the best performing one (Figure 8.7 and 8.8). Taking into 

account the similarity in reanalysis radiation inputs, this result was somehow expected.  

The effect of reanalysis biases in ET estimates is clearly deduced in Figure 8.9. These 

biases are mainly explained by the biases in reanalysis radiation inputs. For PT-JPL, the 

positive bias in MERRA and GLDAS reanalysis explains the overestimation of in-situ 

forced results. The contrary is observed for ERA. For PM-Mu, the ERA and GLDAS 

underestimation observed correlates with the negative bias in SRin. The best agreement 

provided by MERRA could be explained because the biophysical constants used in the 

model were calibrated considering this reanalysis data as input (Mu et al., 2011). For 

future developments this specific model parameter calibration could be a solution in order 

to avoid the issue of reanalysis inputs. For SEBS-GF the bias in Rn24 is directly translated 

into model estimates. For LSASAF, the biases observed in ET estimates could be 

explained mainly by the SRin bias. Amongst reanalysis it was found that ERA provides a 

stronger seasonal behaviour than MERRA and GLDAS (Figure 8.9 and Figure 8.12). This 

fact is directly translated into ET temporal patterns. This results helps to confirm the 

suspicion that input data quality is more important than model quality in order to explain 

the results. This can also be deduced considering spatial patterns comparison (Figure 

8.10). Spatial discrepancy amongst different reanalysis is greater than amongst models 

that use the same reanalysis. In addition, the selection of a specific reanalysis explains the 

temporal variability (models differ in the absolute values provided). In agreement, with 

previous results it was observed that ET spatial patterns and temporal behaviour was 

leaded by radiation inputs (Figure 8.11). Biases in these inputs translated directly into 

biases in ET estimates (same explanation of Figure 8.9 applied here) and were able to 

explain maximum negative deviations greater than 500 mm/year for LSASAF using ERA 

and GLDAS reanalysis (the underestimation effect of LSASAF is increased by the 

negative bias of these reanalysis) and deviations ranging between ± 500 mm/year for the 

rest of the models.  
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In this section, we present the main conclusions derived from this study. They have been 

organized according to the three research lines followed. In order to be self-contained a 

brief summary of the work done is provided before the conclusions.  

 

I. MODIS probabilistic cloud masking 

 

MODIS sensor on-board TERRA and AQUA platforms is amongst major tools for 

studying the Amazonian tropical forests. Nevertheless, MODIS operative surface variable 

retrieval was reported to be impacted by cloud contamination effects (Hilker et al., 2012; 

Gomis-Cebolla et al., 2018). A proper cloud masking is a major consideration in order to 

ensure accuracy when analysing Amazonian tropical forests current and future status. In 

this study, we investigated the feasibility of using supervised machine-learning 

algorithms for Amazonian tropical forests cloud masking using MODIS data. The main 

drawback of these techniques is the need of high quality datasets in order to train the 

models. In order to overcome this issue, we used collocated observations of MODIS and 

CPR/CALIOP. This approach was successfully applied previously for AVHRR cloud 

masking in Heidinger et al. (2012) and Karlsson et al. (2015). Six different supervised 

algorithms were considered: GNB, LDA, QDA, RF, SVM and MLP. These classifiers are 

able to provide score values that can be transform to probability estimates (i.e. for each 

class example, the probability of membership of the class of interest), and therefore can 

be used for probability cloud masking. Model performance was tested using three 

independent datasets: 1) collocated CPR/CALIOP and MODIS data, 2) MODIS manually 

classified images and 3) in-situ ground data. For satellite image and in-situ testing results 

were additionally compared to current operative MYD35 (version 6.1) and MAIAC cloud 

masking algorithms.  

 Major conclusions of the present study are:  

- The use of collocated CPR/CALIOP and MODIS observations can be used as 

training data for machine learning algorithms, nevertheless the resulting database 

is restricted to a certain viewing conditions range. This issue will be inherited by 

the models that are train on this dataset.  

 

- In order to facilitate the generalization of the models to other viewing conditions 

a probabilistic approach can be considered. Instead of focusing on predictions, we 

focused on obtaining a measure of cloud masking uncertainty (i.e. probability 

estimates) that can be tuned to adapt to other conditions.  

 

- Amongst the algorithms considered, GNB, LDA, QDA and SVM presented a 

distort probability estimation. RF and MLP were shown to provide more well-

calibrated probabilities. Isotonic regression was proved successful in order to 

solve this issue.  
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- From the satellite and in-situ testing results it was shown that under the approach 

followed, probabilistic methods (LDA, GNB and in a less extent QDA) provided 

better performance than other machine learning algorithms such as RF, SVM and 

MLP. This fact results from inheriting the deficiencies of the generated database. 

Although, RF, SVM and MLP are able to adapt better to more complex situations 

that GNB, LDA and QDA the viewing conditions limitation tend to bias the 

RF/SVM/MLP estimations. GNB/LDA/QDA less adapted to the train dataset are 

therefore more capable to better generalize to other viewing conditions.  

 

 

- The proposed approach improves MODIS cloud masking methodologies because 

it is able to correct the deficiencies observed in MYD35 and MAIAC cloud masks. 

A cloud cover underestimation and overestimation over the study region was 

reported by MYD35 and MAIAC respectively. 

 

- Models have a good trade-off between accuracy and computational cost. In 

particular, LDA stands out from the rest of the models obtaining the maximum 

accuracy and lowest computational cost.  

 

- The proposed approach provides a refinement of MODIS cloud mask products by 

using a ready-to-use implementation. Collocated CPR/CALIOP and MODIS 

orbits are directly provided by the CloudSat datateam. And the methodology can 

therefore be applied for other regions. Apart from this, it can be easily expanded 

to other sensors such as VIIRS onboard the SUOMI-NPP, which is considered as 

the continuity of MODIS mission.  

 

- Nevertheless, the dependence on the collocated dataset and the viewing conditions 

and surface type restrictions arise as the main weaknesses in order to extend the 

proposed approach to other regions. Surface type issue can be solved by 

introducing additional classes and features. Viewing conditions issue can be 

alleviated by proper radiative simulations at different angles.  

 

II. LST retrieval algorithm adapted to the Amazon evergreen forests 

 

The use of thermal satellite imagery has been proven as a valuable tool to monitor tropical 

forests (Jiménez-Muñoz, 2013, 2015, 2016a, 2016b, 2018). In particular, some studies 

showed the relationship between this variable and the CO2 absorption capacity and 

biomass loss of these tropical forests proving the potential use of vegetation temperature 

in the monitoring of the vegetation status (Toomey et al, 2011). Nevertheless, the use of 

these type of data over tropical forests still has some limitations being of special 

importance the atmospheric correction under very humid conditions and the possible high 

occurrence of cloudy pixels. In addition, the performance of these land surface 
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temperature products is poorly evaluated due to the restrictions imposed by the 

availability of in-situ data. The aim of this study was to generate specific LST products 

for the Amazonian tropical forests. This goal was accomplished by using a tuned split-

window equation. The performance of this algorithm was compared to operative LST 

products. The study was mainly focused on MODIS sensor, nevertheless it has been 

expanded to include other sensors such as VIIRS and SLSTR. Validation of the LST 

products was obtained by direct comparison between LST estimates as derived from the 

algorithms and two types of different LST observations: in-situ LST (T-based validation) 

and LST derived from the R-based method. In addition, LST algorithms were validated 

using independent simulated data. In-situ LST was retrieved from two infrared 

radiometers (SI-100 and IR-120) and a CNR4 net radiometer, situated at Tambopata test 

site (12.832 S, 62.282 W) in the Peruvian Amazon.  

Major conclusions derived from this study are: 

- Uncertainty from in-situ SI-100 and IR-120 infrared radiometers was less than 1 

K, thus meeting the requirements for LST validation tests sites. In addition, LST 

as derived from CNR4 sensor in comparison to the infrared derived LST show a 

null bias and a RMSE of 0.8 K. Thus also proving the validity of the CNR4 data 

for LST validation. 

 

- In order to generate the tune-split window equation a simulated database was 

employed. This database was derived using MODTRAN radiative transfer code, 

ASTER emissivity spectra and MODIS atmospheric profiles gathered from more 

than 1000 spatial points over the region for 3 years.  

 

- Two version of the tune split-window were considered. One generalized equation 

with contributions including emissivity and water vapour terms, and one 

simplified equation in which these previous terms were neglected.  

 

- From the simulated database validation, it was observed that for the particular case 

of the region which features a dense green vegetation the inclusion of the 

emissivity and water vapour contributions in the SW (i.e. generalized SW) do not 

result in an improvement in the accuracy of the estimated LST. In fact, the 

simplified version reduces the RMSE by 0.1K to 0.4 K. In addition, it is more 

stable at larger viewing angles and higher water content.  

 

- From the T-based validation it was concluded that:  

 

o For MODIS sensor on-board TERRA platform, MODIS operative LST 

algorithms (MODIS-SW and MODIS-DN) provide an RMSE up to 2.70 

K and 2.83 K at daytime and up to 1.40 K to 1.70 K at nighttime. For 

daytime case, the generalized SW did not provide an improvement in 

validation metrics. At nighttime a decrease up to 0.1 K in RMSE is 

obtained. The simplified SW proposed was able to improve MODIS LST 
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algorithms (daytime and nighttime) with a decrease of 0.2 K to 0.8 K of 

RMSE.  

 

o For MODIS sensor on-board AQUA platform, at daytime the MODIS-SW 

and MODIS-TES have similar performance (RMSE values around 2.3 K 

for the radiometer and 2.9 K for the CNR4 net radiometer). MODIS-DN 

underperform these algorithms with RMSE of 2.66 K and 3.05 K 

respectively. At nighttime, MODIS-TES provide the worst performance 

of all MODIS operative LST algorithms, with a difference in RMSE 

ranging from 0.1 K to 0.7 K. MODIS-TES tends to overestimate in-situ 

LST values while MODIS-SW and MODIS-DN tend to underestimate 

them. Both the generalized and the simplified SW proposed are able to 

improve the validation metrics (RMSE maximum decrease up to 

approximately 1.3 K). The simplified version provides a better agreement 

than the generalized version (a decrease in RMSE up to approximately 0.6 

K).  

 

 

o For VIIRS sensor, it was show that the simplified SW algorithm is able to 

improve the generalized SW algorithm with differences of approximately 

0.2 K to 0.5 K in the RMSE. For daytime conditions, VIIRS-TES provide 

the best performance with a difference of 0.2 K to around 0.3 K in RMSE 

regarding the simplified split window algorithm. At nighttime however, 

VIIRS-TES is not able to outperform both generalized and simplified split-

window. A difference of 0.7 K to 0.8 K in RMSE is obtained regarding 

the simplified SW. 

 

o For the case of SLSTR sensor, L2 product provides a better agreement 

with in-situ observations that the simplified SW algorithm proposed 

(difference of around 0.6 K in daytime RMSE and a difference up to 0.07 

K in nighttime RMSE). In the case of the SLSTR sensor, the generalized 

SW provides the worst performance. Nevertheless, only a first assessment 

is presented with the validation being limited to a restricted number of 

points.  

 

o In MODIS and VIIRS sensors clouds were screened using operative cloud 

masks. Nevertheless, this could not completely eliminate the presence of 

unscreened clouds. In order to overcome this issue, only pixels that deviate 

a specified amount from in-situ LST measurements were used for 

validation. A difference in 6 K was assumed to be valid. An additional 

threshold of 3 K was used in order to see the effect of a more restrictive 

filtering. In this case, a maximum reduction of 1.1 K in RMSE could be 

obtained regarding metrics derived from the 6 K threshold.  
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- R-based method was shown to provide an alternative in-situ validation. 

Associated uncertainty was within the limits of 2 K. Due to practical limitations, 

this method was applied only to MODIS daytime case validation. MODIS-SW, 

MODIS-DN and the simplified SW were compared. The simplified SW proposed 

reduce the uncertainty in LST estimation (RMSE) in 0.7 to 1.7 K in comparison 

to MODIS operative algorithms.  

 

- From the spatial patterns comparison, it was seen that the difference revealed in 

LST patterns between MOD35 and QC/MAIAC arise from the correction of 

cloud-contamination effect. QC and MAIAC spatial patterns are enhanced after 

removing the alteration (colder-than-true) of temperature introduced by clouds.  

 

III. Intercomparison of remote-sensing based evapotranspiration algorithms 

over Amazonian forests 

 

Evapotranspiration is a key variable in the understanding of the Amazonian tropical 

forests and their response to climate change (Cox et al., 2000). Remote-sensing based 

evapotranspiration models are presented as a feasible means in order to provide accurate 

spatially-distributed ET estimates over this region. In this work, the performance of four 

commonly used ET remote sensing models was evaluated over Amazonian tropical 

forests using MODIS data. Remote sensing models included were: i) PT-JPL, ii) PM-Mu, 

iii) SEBS, and iv) LSASAF operative algorithm. These models were forced using two 

ancillary meteorological data sources: i) in-situ data extracted from LBA stations 

(scenario I), and ii) three reanalysis datasets (scenario II), MERRA-2, ERA-Interim, and 

GLDAS-2.1.  

Major conclusions derived from this study are: 

- When using accurate inputs (scenario I), ET retrieved using remote-sensing data 

can reach an uncertainty less than 1 mm/day. Therefore, proving the capability of 

MODIS data in order to estimate ET in the region.  

 

- Models considered performed at a bias range of -1.08 to 0.92 mm/day, at a RMSE 

range of 0.55 to 1.50 mm/day and with R-values ranging from 0.55 to 0.88. 

Amongst these models, PT-JPL provided the higher R value range (0.65-0.88) and 

the best performing point considering Energy Residual balance closure correction 

(RMSE = 0.55 mm/day and R = 0.88). In addition, it gave the closest point to the 

observational point in Taylor Diagrams.  

 

- Amongst the models, LSASAF provides the most discrepant performance. In 

particular, a clear underestimation was found in comparison to the rest of the 

models. Reasons behind this fact are reanalysis soil moisture was used in order to 

force the model. The problematic description of this input in the region together 
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with the spatial mismatch between in-situ point station and reanalysis data 

negatively affect model performance. In addition, this issue is alleviated when 

considering the inclusion of an interception term.  

 

- PM-Mu shows similar performance to PT-JPL (i.e. a difference in RMSE of 

approximately 0.2 mm/day and a maximum deviation of 0.1 in R-value). 

Nevertheless, it was shown that inputs values differ from their optimal values (𝑓𝑐 

and Rn). 

 

- SEBS performance was similar to that of PT-JPL. Nevertheless, being dependent 

on LST observations, SEBS estimates are limited by the continuous cloud cover 

of the region. A drastically decrease in the number of available estimations of a 

factor 4 in comparison to PT-JPL model was obtained.  

 

- A gap-filling procedure based on inferring ET from soil moisture status using a 

function stress (Anderson et al., 2007) was employed in order to provide estimates 

on cloudy days. This technique was proved to alleviate this issue, nevertheless it 

resulted in an underestimation of SEBS values.  

 

- When using reanalysis data in order to force the remote-sensing models, ET 

retrieved accuracy increased to values greater than 1 mm/day. In addition, a poor 

correlation (maximum R-value around 0.3) is obtained. 

 

- This poor performance is mainly explained by the poor accuracy of the reanalysis 

data. Validation of these inputs was performed by direct comparison with in-situ 

surface radiation, meteorological inputs. Wind speed is the most uncertain 

variable modelled by the reanalysis with a relative error greater than 60%, 

followed by radiation inputs (30%), humidity (15%) and temperature inputs 

(10%).  

 

- In order to analyse the impact of reanalysis uncertainty on model uncertainty 

Sobol sensitivity analysis was used. From this analysis, it was found that model 

uncertainty was mainly driven by reanalysis radiation uncertainty.  

 

- About the reanalysis radiation inputs, MERRA-2 tends to overestimate daily net 

radiation and incoming solar radiation. ERA-Interim tends to underestimate both 

variables, and GLDAS-2.1 tends to overestimate daily radiation while 

underestimating incoming solar radiation. Biases in these variables are directly 

translated into biases in the ET estimates. In addition, discrepancies amongst these 

inputs explain discrepancies between models ET estimates.  

 

- From the comparison of all possible combinations of model + reanalysis, no 

particular combination outperform the rest. As all the reanalysis considered 

perform poorly, no clear distinction is derived. This fact, thus serve to emphasize 
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the need to improve the accuracy of reanalysis estimates in order to improve the 

accuracy in ET estimates. 
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Table A.1.1.- Technical characterization of SI-111 sensor.  

 

Table A.1.2.- Technical characterization of IR120 sensor. 

Parameter Value 

Field of View (FOV)  20° (half angle)  

Dimensions  92 mm long by 28 mm diameter  

Response Time  <1 second to changes in target temperature  

Target Output Signal  20 mV per °C (difference from sensor body)  

Signal Offset  removed by calibration (supplied)  

Typical noise level  IR120 0.05°C RMS (as measured by a CS datalogger)  

Wavelength Range  IR100: effective bandwidth: 8 to 14 μm (some sensitivity from 

2-6 μm)  

Calibrated Range  -25°C below body temperature to +25°C above body 

temperature  

Operating Range  -25°C to +60°C  

Accuracy over Calibrated Range  ±0.2°C (against a blackbody source over a 50°C temperature 

span under laboratory conditions)  

Current Consumption  0.4 mA when excitation applied, 0 mA quiescent  

Sensor output impedance  320 Ω  

Thermopile Excitation Voltage  +2 to +3.5V  

Thermistor Excitation Voltage  -2.5V or +400 mV 

 

 

 

Parameter Value 

Input Power  2.5 V excitation (for thermistor)  

Response Time  < 1 s (to changes in target temperature)  

Target Temperature Output Signal  60 μV per °C difference from sensor body  

Body Temperature Output Signal  0 to 2500 mV  

Optics  Germanium lens  

Wavelength Range  8 to 14 μm (corresponds to atmospheric window)  

Field of View (FOV)  22° half angle  

Operating Temperature Range  -55° to +80°C  

Operating Relative Humidity Range  0 to 100% RH  

Cable Description  4.5 m (14.76 ft) twisted, shielded 4-conductor wire with 

Santoprene casing, ending in pigtails  

Absolute Accuracy   ±0.2°C (-10° to +65°C)/ ±0.5°C (-40° to +70°C) 

Uniformity   ±0.1°C (-10° to +65°C)/ ±0.3°C (-40° to +70°C) 

Repeatability   ±0.05°C (-10° to +65°C)/ ±0.1°C (-40° to +70°C) 

Diameter  2.3 cm (0.9 in.)  

Length  6 cm (2.4 in.)  

Weight  190 g (6.7 oz)  
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Table A.1.3.- Technical characterization of CNR4 sensor.  

Parameter Value 

Spectral range (50% points) 0.3 to 2.8 µm = 300 to 2800 (short wave) nm 

Spectral range (50% points) 4.5 to 42 µm = 4500 to 42000 (long wave) nm 

Sensitivity 5 to 20 µV/W/m² 

Temperature dependence of 

sensitivity (-10 ºC to +40 ºC) 

< 4 % 

Response time < 18 s 

Non-linearity < 1 % 

Operating temperature -40 to +80 °C for CNR4, -40 to +70 °C for CNF4  

Power supply 12 VDC, 1.25 A (with heater on) for the optional CNF4 ventilation 

unit 

Ventilation power 5 W continuously 

Heating power 10 W externally switched 

 

 

 

Table A.1.4.- List of measurements, instruments and measurements heights for the Automatic Weathers 

Station and for Eddy Correlation Instrument at the K34 tower (extracted from Araujo et al., 2002).  

Measurement Instrument Used Height, m/Depth, m 

Shortwave in and out Kipp & Zonen Pyranometer CM 21 44.60 
Longwave in and out Kipp & Zonen Pyrgeometer CG 1 44.60 
PAR LI-COR LI-190SZ quantum sensor 51.6 
Relative humidity Vaisala HMP35A 51.1 
Soil heat flux Hukseflux SH1 0.01 
Wind direction Vector W200P 51.45 
Wind speed vertical profile Vector A100R 51.9; 42.5; 35.3; 28.0 
Rainfall EM ARG-100 51.35 
Surface temperature Heimann KT15 infrared sensor 50.40 
Air pressure Vaisala PTB100A 32.45 
Longwave in and out temperature PT100 44.60 
Air temperature vertical profile PT100 51.1; 42.5; 35.5; 28.0; 15.6; 

5.2 CO2 concentration vertical profile PP Systems CIRAS SC IRGA 53.1; 35.3; 28.0; 15.6; 5.2;  
0.5 H2O concentration vertical profile PP Systems CIRAS SC IRGA 53.1; 35.3; 28.0; 15.6; 5.2;  
0.5 Soil temperature profile IMAG-DLO MCM101 0.01; 0.05; 0.2; 0.4; 1.0 

Soil moisture profile IMAG-DLO MCM101 0.01; 0.05; 0.2; 0.4; 1.0 
CO2 concentration IRGA LI-COR 6262 closed-path 53,1  
H2O concentration IRGA LI-COR 6262 closed-path 53,1 
U, V and W wind vectors speed solent three-axis ultrasonic 

anemometer 
53,1 
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Table A.1.5. List of Environmental Measurements, Instruments, and Measurement Heights on the K67 

Tower (extracted from Hutyra et al.,2007) 

Measurement  Instrument Height on Tower  

Eddy flux measurement IRGA, LI-6262, Licor, Lincoln, NE 57.8 m 

Net radiation Rebs Q7.1 with RV2 ventilation 64.1 m 

Photosynthetically active 

radiation (PAR)    

Licor 190-SA 
63.6 m and 15.1  m 

Aspirated air temperature Met One 076B-4 aspirations with YSI 

44032 thermistors       

61.9, 49.8, 39.1, 28.4, 18.3, 10.1, 2.8, 

and 0.6 m  

Atmospheric pressure MKS 627A Baratron pressure 

transducer 
Ground-level 

Dew point hygrometers EdgeTech 200M 57.9 m 

Wind speed Spinning cup anemometer, Met One 

010C 
64.1, 52, 38.2, and 30.7  m 

Wind direction Met One 020C 64.1 m 

Precipitation Texas Electronics 076B-4 42.6 m 

 

Table A.1.6. List of Environmental Measurements, Instruments, and Measurement Heights on the K83 

Tower (extracted from da Rocha et al., 2004). 

Measurement Instrument Height on Tower 

CO2 and H2O densities 
Li-Cor 7500 open-path 

Li-Cor 6262 close path 
64 m 

Air temperature and 

wind 
sonic anemometer (Campbell Scientific) 64 m 

Precipitation TE525 rain gauge; Texas  Electronics 64 m 

incoming short-wave 

radiation 
CM6B pyranometer; Kipp & Zonen 64 m 

net radiation Q*7.1 ventilated net  radiometer 64 m 

soil moisture 

 

Campbell Scientific CS615 water content 

reflectometers 
5- to 250-cm depth 

soil heat flux 

 
REBS HFT3.1  heat  flux plates at  2  cm 

 

Table A.1.7. List of Environmental Measurements, Instruments, and Measurement Heights on the CAX 

Tower (extracted from Carswell al., 2002). 

 

 

 

 

 

 

 

Measurement Instrument Height on Tower 

Wind velocity three-dimensional sonic anemometer   53 m  

H2O concentration Li-6262 infrared gas analyzer  53 m 

solar and longwave radiation CNR1, Kipp & Zonen, 45.5 m 

Air temperature shielded thermistors 16 m and 32 m 

soil temperature Thermocouple probes at 5 cm depth 

Saturation deficit aspirated Delta T psychrometer 

WP1-UM2, Delta-T Devices, Cambridge, UK 
53 

Wind direction wind vane (Campbell Scientific) 53 
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Table A.1.8. List of Environmental Measurements, Instruments, and Measurement Heights on the RJA 

Tower (extracted from von Randow et al., 2004). 

Meteorological 

variables 

Used instrument, manufacturer 

(model) 
Heights 

 

Incident and reflected short 

wave radiation 

Pyranometers Kipp & Zonen 

(CM21) 
19.3 m 

Incident and emitted long wave 

radiation 

Pyrgeometers Kipp & Zonen 

(CG1) 
19.3 m 

Photosynthetically Active 

Radiation (PAR) 

Quantum sensor LI-COR (LI-

190SZ) 
25.6 m 

Air temperature 
Vaisala thermohygrometer 

(HMP35A),  PT100 resistors 
60.0;45.2;35.0;25.3:15.3;5.3 m 

Relative humidity 
Vaisala thermohygrometer 

(HMP35A) 
60 m 

Wind speed Cup anemometers Vector A100R 61.1;45.2;34.7;25.3 

Wind direction Wind vane Vector (W200P) 60.7 m 

Rainfall Rain gauge EM ARG-100 60.3 m 

Surface radiative temperature Infrared sensor Heimann (KT15) 59.1 m 

Atmospheric pressure Barometer Vaisala (PTB100A) 40 m 

Temperature of pyrgeometers PT100 resistors 54.3 m 

Vertical profile of CO2 and water  

vapour concentration** 

Infrared gas analyser PP Systems 

(CIRAS SC) 
62.7;45.0;35.0;25.0;2.7;0.05 m 

Soil heat flux Flux plates Hukseflux (SH1) 1 and 10 cm (depth) 

Soil temperature profile 
Soil thermometers IMAG-DLO 

(MCM101) 
0.05;0.15;0.3;0.6;1.0m (depth) 

Soil moisture profile 
FDR sensors IMAG-DLO 

(MCM101) 
0.05;0.15;0.3;0.6;1.0m (depth) 

Soil moisture profile with Neutron  

probe 
Neutron probe Every 20 cm down to 3.6 m (depth) 

High frequency measurements 
of 3-D wind speed, 

temperature, H2O and CO2  
concentration (10.4 Hz) 

Eddy correlation system (Gill Sonic 

Anemometer and LI-COR 6262 

IRGA) 

62.7 m 

 

 

Table A.1.9 . Technical characterization of TSI-880 instrument.  

Parameter Value 

Image resolution 352 x 288 colour, 24-bit JPEG format 

Sampling rate Variable, with maximum of one image every 30 s 

Operating temperature -40ºC to +44ºC 

Weight/Size 32 kg / 20.83”x18.78” x 34.19” 

Power requirements 115/230 VAC; mirror heater duty cycle varies with 

air temperature; 560 W with heater on/ 60 W off 

Software Image application supports MS-Windows 

Data storage Local workstation disk 

Communication 10BaseT/RJ45 (15m) 
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Appendix A.4 

 

 

 
Figure A.4.1. Taylor diagrams considering Scenario-II and Bowen-Ratio corrected values. 

 

  

 
Figure A.4.2. Taylor diagrams considering Scenario-II and Energy-Residual corrected 

values.  
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Figure A.4.3. R2 value derived from the linear regression of ET model estimates against model inputs 

(ERA-Interim forcing). Radiation inputs refer to Rn24 (PT-JPL and SEBS-GF) and SRin (PM-Mu and 

LSASAF). Temperature and humidity inputs refer to Ta and ea forced at the temporal scale indicated by 

the models. Soil moisture refers to the root zone soil moisture for LSASAF model. Non significative values 

(p<0.05) are displayed in black.  
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Figure A.4.4.. R2 value derived from the linear regression of ET model estimates against model inputs 

(GLDAS 2.1 forcing). Radiation inputs refer to Rn24 (PT-JPL and SEBS-GF) and SRin (PM-Mu and 

LSASAF). Temperature and humidity inputs refer to Ta and ea forced at the temporal scale indicated by 

the models. Soil moisture refers to the root zone soil moisture for LSASAF model. Non significative values 

(p<0.05) are displayed in black.  
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Figure A.4.5 . Time series of ET model monthly mean values. For PM-Mu a vegetation fraction cover 

value of 0.85 (same as fapar) was considered. In-situ ET observations are represented by the shadowed area 

(lower, intermediate and upper limit indicating uncorrected, BR and ER ET observations respectively). 

 

 

Figure A.4.6. Time series of ET model monthly mean values. For LSASAF, an interception term was added 

in the total latent heat flux calculation. In-situ ET observations are represented by the shadowed area (lower, 

intermediate and upper limit indicating uncorrected, BR and ER ET observations respectively). 
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Table A.4.1 Validation metrics for PM-Mu with vegetation cover fraction assumed equal as fapar (0.85). 

Metrics considered were the bias, the root mean square error (RMSE), the correlation coefficient (R), the 

Taylor Skill Score (S) and the number of points used (N). All stations were used in this validation. ET refers 

to uncorrected in-situ ET observations, BR and ER to Bowen Ratio and Energy Residual correction 

methods.  

  
BIAS 

(mm/day) 

RMSE 

(mm/day) 
R S N 

ET 0.70 1.10 0.63 0.82 1305.00 

BR 0.06 1.02 0.54 0.73 1084.00 

ER -0.26 0.78 0.74 0.85 1169.00 

 

 

Table A.4.2. Validation metrics for LSASAF considering the inclusion of an interception term to the total 

latent heat flux calculation. Metrics considered were the bias, the root mean square error (RMSE), the 

correlation coefficient (R), the Taylor Skill Score (S) and the number of points used (N). All stations were 

used in this validation. ET refers to uncorrected in-situ ET observations, BR and ER to Bowen Ratio and 

Energy Residual correction methods.  

 

  
BIAS 

(mm/day) 

RMSE 

(mm/day) 
R S N 

ET 0.92 1.51 0.61 0.66 1602.00 

BR 0.29 1.32 0.61 0.68 1084.00 

ER -0.04 1.04 0.75 0.77 1320.00 
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