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Abstract

During the last century, various technologies of 3D image capturing and visual-
ization have spotlighted, due to both their pioneering nature and the aspiration to
extend the applications of conventional 2D imaging technology to 3D scenes. Be-
sides, thanks to advances in opto-electronic imaging technologies, the possibilities
of capturing and transmitting 2D images in real-time have progressed significantly,
and boosted the growth of 3D image capturing, processing, transmission and as
well as display techniques. Among the latter, integral-imaging technology has been
considered as one of the promising ones to restore real 3D scenes through the use
of a multi-view visualization system that provides to observers with a sense of im-
mersive depth. Many research groups and companies have researched this novel
technique with different approaches, and occasions for various complements.

In this work, we followed this trend, but processed through our novel strate-
gies and algorithms. Thus, we may say that our approach is innovative, when com-
pared to conventional proposals. The main objective of our research is to develop
a technique that allows recording and simulating the natural scene in 3D by us-
ing several cameras which have different types and characteristics. Moreover, we
provide a volumetric scene which is restored with great similarity to the origi-
nal shape, through a comprehensive 3D monitor. Our Proposed integral-imaging
monitor shows an immersive experience to multiple observers.

In this thesis we address the challenges of integral image production techniques
based on the computerized 3D information, and we focus in particular on the
implementation of full-parallax 3D display system. We have also made progress
in overcoming the limitations of the conventional integral-imaging technique. In
addition, we have developed different refinement methodologies and restoration
strategies for the composed depth information. Finally, we have applied an ade-
quate solution that reduces the computation times significantly, associated with the
repetitive calculation phase in the generation of an integral image. All these results
are presented by the corresponding images and proposed display experiments.






Resumen

Durante el siglo pasado, las tecnologias de captura y visualizacién de imédgenes en
3D han destacado con fuerza, debido tanto a su caracter pionero como por el atrac-
tivo de la aspiracion de extender a escenas 3D las aplicaciones de la tecnologia de
imagen convencional. Gracias a los avances en las tecnologias opto-electronicas de
imagen, las posibilidades de capturar y transmitir imdgenes 2D en tiempo real han
progresado significativamente e impulsado el crecimiento de las técnicas de cap-
tura, procesado, transmision y display de imagenes 3D. Entre estas tltimas, la tec-
nologia de imagen integral ha sido una de las mas prometedoras para reproducir las
escenas reales 3D mediante el uso de un sistema de visualizacion multi-perspectiva
que proporciona a los observadores una sensacion de profundidad inmersiva. Mu-
chos grupos de investigacién y compaiifas han investigado esta técnica novedosa
desde enfoques diferentes, y en muchas ocasiones complementarios.

En esta Tesis, nos adherimos a esta tendencia, pero hemos abordado nuestro
objetivo de una manera distinta, basada fundamentalmente en el desarrollo y op-
timizacién de nuevos algoritmos. Nuestro enfoque es innovador, al compararlo
con las propuestas convencionales. El objetivo principal de nuestra investigacion
es desarrollar una técnica que permita registrar la escena natural en 3D mediante
el uso de varias de cdmaras de diferente tipo, y mostrar una escena volumétrica
restaurada con gran semejanza con la original a través de un monitor integral 3D
adaptado para presentar una experiencia inmersiva a multiples observadores en
conjunto.

En esta Tesis abordamos los desafios de las técnicas de producciéon de ima-
gen integral basadas en informacién computarizada en 3D, y nos concentramos en
particular en la implementacién del sistema de display 3D de paralaje completo.
También hemos avanzado en la superacion de las limitaciones de la técnica conven-
cional de imagen integral. Ademads, hemos desarrollado diferentes metodologias de
refinamiento y estrategias de restauracion para la informacién de profundidad. Por
dltimo, hemos obtenido una solucién adecuada que permite aminorar significati-



vamente los tiempos de computacion asociados al célculo repetitivo requerido en
fase de generacidn de una imagen integral. Naturalmente, todos estos resultados
estan respaldados por los correspondientes experimentos de imagen y display 3D.



Resumen extendido

Durante el presente siglo, las técnicas de registro y reproduccion de imagenes tridi-
mensionales han destacado por su capacidad de capturar, procesar y mostrar la in-
formacion especial completa de escenas reales o sintéticas. Como prueba de ello,
en la actualidad se desarrollan, a nivel mundial, investigaciones y actividades so-
bre tecnologias 3D en muchos campos diferentes. De hecho, se ha presentado una
inmensa cantidad de articulos en revistas y conferencias sobre imdgenes y visu-
alizacién en 3D, y se han realizado también grandes esfuerzos en investigacién y
desarrollo tanto a nivel gubernamental como industrial. Las aplicaciones en esta
area incluyen la fabricacién de dispositivos de consumo masivo, la seguridad y
defensa de territorios y/o personas individuales, la automatizacién de maquinas,
las aplicaciones biomédicas e, incluso, el entretenimiento. No nos equivocamos si
anunciamos que la década actual serd la década de las imédgenes en 3D.

Esta tesis estd organizada en seis capitulos. El Capitulo 1 comienza con una
breve croénica histérica de la obtencién y reproduccién de imagenes 3D y luego
se presentan motivadamente los objetivos del trabajo. En ese contexto, se sefiala
que, en la actualidad, la mayorfa de las técnicas de captura y generacién de
imdgenes tridimensionales se basan en la estereoscopia. La estereoscopia se de-
fine como cualquier tecnologia que permita una percepcién de profundidad para
observadores binoculares. La estereoscopia convencional opera con dos imagenes
que se presentan en canales separados al ojo izquierdo y derecho del observador.
Esta pareja de imdgenes tiene puntos de vista (o perspectivas) ligeramente difer-
entes. Asi, el observador capta esta paralaje binocular a través de ambos 0jos y
deja que el cerebro obtenga la percepcion de profundidad debido a su dispari-
dad visual. Es el cerebro el que también determina la distancia y lo lejanos que
estan los objetos entre si a través de la magnitud de la disparidad entre las dos
imagenes. Desde un punto de vista histérico, se indican las fuentes que citan ya a
Euclides como conocedor de la percepcion de profundidad binocular, siendo de los
primeros en reconocer en el siglo III que la percepcién de profundidad se obtiene



cuando cada ojo recibe una de dos imagenes diferentes del mismo objeto al mismo
tiempo. En el siglo X VI, Leonardo da Vinci estudié aspectos de la éptica, incluida
la anatomia del ojo y el reflejo de la luz, e incluso intentd explicar la percepcion
estereoscopica de profundidad, mencionando que un objeto dado ocluye diferentes
partes del fondo cuando se observan con el ojo izquierdo en comparacion con el ojo
derecho. Ya en el siglo XIX, el cientifico britanico Charles Wheatstone invent6 el
primer instrumento disefiado para observar esas imdgenes y producir una sensacién
3D, a partir de su “Estereoscopio de espejo reflectante” formado por dos espejos
centrados a 45° de cada ojo del observador. A pesar de funcionar con 1dminas dibu-
jadas, este dispositivo inspiré a muchas compafiias fotogréaficas posteriores a abrir
un nuevo mercado comercial basado en la fotografia estereoscOpica y el estereo-
scopio, alcanzando su auge en el siglo XX. En cualquier caso, la tecnologia de en-
tonces solo podia proporcionar una buena experiencia visual 3D mediante el uso de
anteojos especiales o la utilizacién de dispositivos adicionales para el observador
binocular. De entre los que tuvieron mds difusién, los anaglifos fueron original-
mente los mas usados para la codificacién/descodificacién de estereogramas. Los
anaglifos contienen dos imdgenes de color diferente, en las que dichas imagenes
tienen un contraste complementario (como los colores rojo-cian, verde-magenta o
azul-amarillo). Cuando se observa a través de las gafas de anaglifo codificadas por
colores, cada una de las dos imédgenes es percibida por cada ojo por separado y
el cerebro combina ambas imdgenes dispares integrdndolas en una imagen estere-
oscopica. Esta sencilla técnica presentaba, sin embargo, inconvenientes graves a la
hora de reproducir objetos 3D en color, causando fuertes distorsiones cromaticas
en la percepcién de los objetos. Por ello, fue siendo sustituida progresivamente
por otros modos de codificacién/descodificacién basados en propiedades de la luz
(gafas pasivas) o del sistema visual humano (gafas activas). Las gafas pasivas usan
la polarizacion de la luz (a la que el sistema visual humano es basicamente insen-
sible) para, mediante el uso de filtros polarizadores, crear una ilusién de imagenes
en 3D al restringir la escena que se ajusta con su respectiva informacién a cada
ojo de manera distinta, de modo que cada ojo individual vea solo la imagen hecha
para esa perspectiva, y viceversa. Por otro lado, las gafas activas presentan la ima-
gen destinada al ojo izquierdo mientras bloquean la vista del ojo derecho, y luego
presentan la imagen del ojo derecho mientras bloquean la vista del ojo izquierdo.
Este proceso se repite secuencialmente de modo muy rapido (por encima de la fre-
cuencia critica de fusién del sistema visual humano) para que las interrupciones no
afecten a la fusion percibida de las dos imdgenes en una sola imagen 3D. Ambos
sistemas presentan ventajas e inconvenientes. Por ejemplo, el filtro polarizador de
gafas pasivas no puede bloquear cada imagen clasificada correctamente en algu-
nas situaciones especificas. Asi, si hay algin objeto oscuro al lado de algo bril-



lante en la escena mostrada, un ojo puede notar la luz que estd destinada al otro
0jo y, por lo tanto, aparecen algunas dreas interferidas. Por otro lado, las gafas
activas resuelven esta diafonia 3D o efecto fantasma correctamente. Sin embargo,
las gafas pasivas son econdmicas y no se requieren baterias, por lo que presen-
tan un peso mucho mas reducido. Ademds, las gafas pasivas carecen de efecto de
parpadeo residual, por lo que este tipo de gafas proporcionan menos molestias en
su uso prolongado. Ambas técnicas presentan una deficiencia fundamental en su
propdésito de proporcionar una verdadera inmersién 3D al observador: s6lo propor-
cionan una Unica perspectiva de la escena, uniforme para todos los observadores
incluso cuando se colocan en diferentes posiciones de la escena visualizada. Por
lo tanto, la escena mostrada parece ser demasiado artificial y estar muy alejada de
la experiencia real. En su versién mads sofisticada, ambas tecnologias se pueden
integrar en sistemas de reproduccion individualizada a través del uso de displays
de soporte frontal (HMD), montado en la cabeza o como parte de un casco, que
disponen de una pequefia pantalla para proporcionar la escena para uno o ambos
ojos directamente. Los HMD tienen una gran demanda en la actualidad por sus
aplicaciones en la seguridad y la defensa, el entrenamiento militar o deportivo, la
terapia perceptual e incluso el entretenimiento por la experiencia 3D del consum-
idor general. Los dispositivos HMD recientes disponen de un sensor giroscopico
y reaccionan al movimiento de la cabeza del observador, pudiendo modificar en
tiempo real la perspectiva presentada al observador, pero atn son lentos para re-
producir la verdadera sensacion 3D de la vida real. Ademads, la ergonomia de los
HMD, que los observadores se ponen obligatoriamente en sus cabezas para ver la
escena 3D, es muy reducida debido a su tamafio voluminoso y su peso consider-
able. Ademads, todos estos sistemas, , producen un efecto colateral que impide su
uso prolongado en la mayor parte de los observadores. Tanto las gafas de anaglifo
como las gafas pasivas, las activas y los HMD se basan en la generacién arti-
ficial de la sensacién de profundidad a partir de la disparidad de las imagenes
proporcionadas a cada ojo del observador mientras que se ha de mantener constan-
temente el enfoque del sistema visual sobre el display (ilusidn estereoscoOpica).
Este modo de funcionamiento proporciona, en el mejor de los casos, fatiga vi-
sual asociada al conflicto convergencia/acomodacién inherente a la observacién a
través de estos dispositivos. En la mayor parte de los casos, tras un uso prolon-
gado de estos sistemas, el observador deja de percibir la sensacién tridimensional
de la escena. Un enfoque alternativo para generar las escenas 3D sin necesidad
de ninguna herramienta adicional o equipo portdtil es la autoestereoscopia, en la
que se proporciona al observador la reproduccién 3D a simple vista directamente.
La idea principal de esta técnica es proporcionar numerosas vistas en perspectiva
desde una tunica pantalla, dentro de un rango determinado, permitiendo, ademas,



que varios observadores pueden ver la escena 3D estereoscdpica con sus propios
ojos, manteniendo cada uno perspectivas distintas de la misma. Una de los métodos
utilizados para generar estos displays autoestereoscdpicos se basa en la denomi-
nada fotografia integral, propuesta por el Premio Nobel de Fisica G. Lippmann en
1908. La idea planteada consistié en capturar la escena 3D a través de una ma-
triz de microlentes (o estenopes, en propuestas anteriores) y reconstruirla con el
mismo dispositivo, sustituyendo el sensor (pelicula fotografica, en aquel tiempo)
por la imagen registrada (entonces pelicula revelada) e iluminando en sentido con-
trario el conjunto. Sobre el medio de registro se obtiene un conjunto (imagen in-
tegral) de imdgenes pequefias diferentes (imdgenes elementales), cada una con in-
formacion de perspectiva diferente, y se restablece la escena registrada en orden
inverso al de la etapa de captura. Tras la publicacién de los resultados de Lipp-
mann, muchos equipos de investigacion se involucraron en su desarrollo posterior
y se convirtieron en un catalizador para la investigacion sobre la captura y regen-
eracion de imdgenes autoestereoscOpicas. Sin embargo, su impacto tecnoldgico
fue reducido por la inmadurez de las técnicas de registro disponibles, que no se
adaptaban facilmente al doble proceso de captura/reproduccion de la fotografia in-
tegral. En las ultimas décadas, gracias al avance en los sensores electronicos de
imagen, se han implementado varias de estas propuestas para capturar y transmitir
imdgenes en tiempo real y varias empresas, finalmente, han comercializado pro-
ductos tanto de aplicacién técnica como de consumo masivo basados en la técnica
de Lippmann. Estas cdmaras integrales capturan la informacién espacio-angular
de una escena, a partir de la cual se pueden realizar diversas operaciones de proce-
sado. En particular, estas caimaras pueden componer un mapa de profundidad de
los objetos registrados a partir de la imagen capturada en un solo disparo. Esto
se consigue de modo pasivo empleando iluminacién convencional, a diferencia
de otros dispositivos de captura de mapas de profundidad en los que se requiere
generar una iluminacidn codificada espacial y/o temporalmente de la escena (como
en las cdmaras con iluminacién estructurada o los sensores de tiempo de vuelo).
Otra dificultad técnica en la que la fotografia integral se ha mostrado especial-
mente 1til se refiere a la representacion de la informacién 3D obtenida a partir de
los mapas de profundidad. A pesar de que existen muchas técnicas excelentes de
deteccion de profundidad y un gran avance de las tecnologias digitales, los sis-
temas de visualizacidén convencionales (como television, monitor, teléfono movil
o incluso tabletas digitales) no pueden proporcionar al observador la escena 3D
real como la informacién volumétrica original. Esto se debe a que estos sistemas
de visualizacion solo pueden mostrar simultdneamente proyecciones 2D (vistas o
perspectivas) de la escena registrada. Sin embargo, el objetivo dltimo de los sis-
temas que estamos estudiando es reproducir y mostrar la informacién 3D tal como



es realmente y proporcionar una réplica de la escena 3D original a los observadores
utilizando la informacién 3D digitalizada y procesada en la etapa de captura. La
segunda etapa del proceso descrito por Lippmann ha proporcionado la clave para
poder desarrollar sistemas de display 3D en los que la informacién volumétrica
capturada (por cualquier dispositivo que pueda generar un mapa de profundidad,
estén o no basados en la fotografia integral) se presenta al observador tal y como
se distribuia en la escena real original. Este es el tipo de display al que se han
adaptado todos los resultados de esta tesis para su proyeccion realista, accesible a
multiples observadores simultdneos, con paralaje dindmica, y sin requerir ningtn
equipo portétil adicional o anteojos para observar la escena 3D real restaurada.
Todo esto lleva naturalmente a la definicion de los objetivos de esta tesis. En este
trabajo se abordan varios de los desafios de las técnicas y los algoritmos de pro-
duccién de imagenes integrales y se centra, en particular, en la composicién de
diferentes sistemas de captura y visualizacion 3D de paralaje completo. Asi, se
realizan diferentes propuestas para superar algunas limitaciones de la técnica de
imagen integral convencional y se discuten varias metodologias de refinamiento
en la extraccion de la informacién 3D a partir de la informacién registrada por
diferentes cdmaras/sensores de profundidad. Ademas, se proponen diferentes es-
trategias de generacion de imdgenes integrales, a partir de registros de diferentes
tipos de sensores de profundidad, para la proyeccién 3D realista en un monitor
basado en imagen integral. Todas las propuestas se han validado tanto desde el
punto de vista de la implementacién computacional como su verificacién experi-
mental sobre los monitores integrales disponibles en el Laboratorio de Imagen y
Display 3D de la Universitat de Valencia.

El capitulo 2 ofrece una base tedrica de las aportaciones principales de esta
tesis. En la primera seccién, se describe detalladamente la técnica de imagen in-
tegral (Inl) y el problema pseudoscopico asociado. Inl es una muy prometedora
tecnologia de visualizacién y captura en 3D que ofrece un variacién continua del
punto de vista, paralaje completa y vistas a todo color para multiples observadores
simultaneos. Pero, entre todos, el mérito principal de Inl es transcribir la infor-
macion espacial y angular de los rayos que proceden de la escena 3D al mismo
tiempo. Basado en el enfoque ya citado de la fotografia integral propuesta por G.
Lippmann, Inl es capaz de grabar la escena natural en 3D y mostrar la escena
restaurada usando una matriz de elementos didptricos (p.e., microlentes). La pre-
sentacioén de este mismo registro (originalmente en forma de pelicula fotografica
revelada y sobre un display digital en la actualidad) frente a la misma matriz de
captura regenera una imagen flotante y produce una reconstruccién 3D de la escena
original capturada. Sin embargo, a pesar de la eficacia de esta técnica de repro-
duccién de escenas 3D, es importante sefialar que la imagen capturada mediante la



técnica Inl no es directamente proyectable si se busca una percepcion correcta de
la profundidad relativa de los objetos en la escena. El problema para dicha recon-
struccion fiel es que la reproduccion directa genera una imagen 3D pseudoscépica,
en la que los objetos mds cercanos al observador son los que aparecia més le-
janos al sistema de captura, y viceversa. Este efecto se produce por el cambio en el
sentido de propagacion de la luz en la secuencia del proceso de registro y de visu-
alizacion. Nétese que en la fase de captura, los rayos de luz dispersados del objeto
3D pasan a través de cada elemento de la matriz y cada uno compone una llamada
imagen elemental (EI). En cambio, en la fase de visualizacion, el objeto 3D es
reconstruido por las EI con el mismo conjunto de elementos pero iluminados en
sentido contrario. Asi, desde la escena visualizada, los observadores visualizaran
la parte posterior de la imagen 3D reconstruida en la direccion del objeto 3D a la
matriz de captura/reproduccion. Este efecto implica que la escena 3D visualizada
final tiene una profundidad invertida en 180°. Dicho de otro modo, un objeto 3D
capturado cerca de la matriz reconstruye la escena 3D mads cerca de ésta, y un
objeto mds alejado reconstruye la escena mds lejos de la matriz, respectivamente.
Por lo tanto, las EI sin ningin proceso adicional o método de transformacién no
pueden evitar el problema de la pseudoscopia de la escena reconstruida. En los
capitulos siguientes de la tesis se presentan con detalle algunos métodos para re-
solver estos problemas. Todavia en el Capitulo 2, se pasa a presentar con detalle
los diferentes tipos de cdmaras que se usan en los experimentos desarrollados. La
metodologia sobre como grabar y reproducir fielmente una escena natural en 3D
es una tarea de investigacion de las mas destacadas durante las dltimas décadas,
como parte natural del proceso en el desarrollo de la era digital. De hecho, la cap-
tura de la informacién 3D no puede basarse en el uso de una cdmara fotografica
convencional, ya que ésta transcribe y guarda la escena natural capturada en la
informacién 2D del plano de registro, perdiendo la informacién volumétrica 3D
original. Ademas, la informacién 2D registrada no puede presentar e interpretar
adecuadamente las dreas ocluidas u ocultas e, incluso, tampoco puede observar las
partes veladas en diferentes vistas en perspectiva. Por el contrario, sélo cuando
se registra la informacién 3D completa se superan estas limitaciones. La dltima
seccion del capitulo se dedica a la descripcion de las técnicas empleadas en la tesis
para la generacién, manipulacién y reproduccidn de esta informacién 3D a partir
de la generacién digital de nubes volumétricas de puntos.

En el Capitulo 3, se describen varias metodologias para componer una imagen
integral a partir de los datos 3D computarizados anteriores (nube de puntos), de
una manera mds eficiente y precisa que en los métodos estandar que se utilizan
actualmente en Inl. En la primera seccion, se presentan nuevos métodos para com-
poner la imagen integral utilizando una nube de puntos con diferentes enfoques.



En este sentido, se proponen dos metodologias sobre cémo construir la imagen
integral utilizando una nube de puntos y una matriz virtual de estenopes (VPA).
El primer método consiste en situar el VPA dentro (o cerca) de la nube de puntos
y realizar el esquema de proyeccidn desde cada punto a todos los estenopes uno
tras otro. La segunda estrategia propuesta es disponer el VPA lejos de la nube de
puntos y recoger las perspectivas y, posteriormente, calcular la imagen integral. A
continuacion, se presenta un estudio comparativo de ambos algoritmos, mostrando
sus ventajas y desventajas relativas e identificando el tipo de escenarios en los
que el uso de una u otra de las técnicas es mas adecuado y eficiente. En la sigu-
iente seccion del Capitulo 3, se explica con detalle la técnica de aceleracion de
algoritmos a través de paralelizacion por hardware y se presenta como se utiliza
en la tesis. De hecho, nos enfrentamos al defecto critico conocido del esquema
de célculo repetitivo pesado en el procedimiento de generacién de imédgenes inte-
grales, que lo hace inviable con el procesado en tiempo real a frecuencia estandar
de video. Una de las técnicas de aceleracion de hardware m4s habituales es la cono-
cida informatica acelerada por unidades especificas de procesado grifico (GPU).
La técnica de aceleracion por GPU se basa en el uso de hardware especialmente
disefiado para procesar rdpidamente grandes cantidades de datos, que se utilizan
para realizar célculos pesados de manera mas eficiente de lo que es posible en las
unidades de procesado central (CPU) de uso general. Asi, la GPU se usa princi-
palmente en las partes de los c6digos que requieren mucho tiempo de cémputo al
iterarse de modo intensivo operaciones elementales sobre datos independientes, y
el resto de las aplicaciones se ejecutan simultineamente en la CPU. La adaptacién
de esta técnica al procesado en Inl mejora el rendimiento drasticamente. En la tesis
se explica detalladamente como se aplica en nuestro caso y se presenta el resul-
tado de la comparacién entre el rendimiento usando s6lo CPU y con la aceleracién
a través de GPU. Finalmente, en la ultima seccidn, se describe detalladamente el
procedimiento seguido para preparar la informacién procesada para su uso en un
sistema de visualizacién Inl.

En el Capitulo 4 se presentan los métodos propuestos sobre como mejorar la
calidad de los datos 3D, cémo componer un mapa de profundidad sin distorsiones
a partir de una imagen integral capturada, y cémo recuperar las areas perdidas de
las nubes de puntos. Como se menciond anteriormente, en esta tesis se explota la
informacién 3D generada digitalmente en forma de nube de puntos para componer
una imagen integral que pueda reproducir la escena capturada con informacién
espacial completa. En consecuencia, una nube de puntos especialmente densa no
solo ayuda a crear una buena calidad de la imagen integral, sino que también ayuda
a proporcionar una escena 3D mds inversiva a los observadores. Sin embargo, los
mapas de profundidad generados presentan ciertos defectos debidos a diferentes



causas. Algunos de ellos provienen de la propia limitacién de la camara 3D uti-
lizada en la captura de la escena original o de la pérdida de informacién de las areas
ocluidas y/o ocultas en funcién de la posicion de la cdmara. Asi, en la primera
seccion de este capitulo, se introduce una nueva técnica para restaurar las regiones
de profundidad ambiguas o perdidas e, incluso, las dreas ruidosas del mapa de
profundidad capturado. Nos centramos aqui en sensores de profundidad por in-
frarrojos (IR). De hecho, la técnica de deteccién de profundidad IR es una de las
mads ampliamente utilizadas, a pesar de que dichas cdmaras tienen varios inconve-
nientes. Uno de los mds destacados es que adquieren las imdgenes de profundidad
con cierto ruidos y/o “agujeros” debido a sus propias limitaciones y/o a factores
externos (como la iluminacién de las muestras que puede interferir en los haces IR
utilizados en la determinacién del mapa de profundidad). El objetivo principal en
esta parte de la tesis es recuperar y mejorar la calidad de la imagen de estos mapas
de profundidad, adoptando un método adaptado de filtrado de areas vacias y/o rui-
dosas con muy buen rendimiento de restauracion y robustez. Esta implementacién
se valida también con resultados experimentales que permiten establecer la com-
paracién entre los métodos convencionales y la propuesta original de este trabajo.
En la siguiente seccidn, se introduce una nueva metodologia sobre cémo componer
un mapa de profundidad ultradenso a partir de una imagen integral capturada en
una sola toma. De hecho, como mencionamos anteriormente, las cimaras de Inl
tienen capacidades tnicas de recoleccién de la informacién espacio-angular 3D
de las escenas. En la tesis modificamos y mejoramos una estrategia de estimacion
de profundidad ya publicada para poder compensar ciertas distorsiones de ima-
gen que aparecen en la imagen integral, combinando el método original con una
técnica de calibracion especifica para este tipo de camaras y validdndolo experi-
mentalmente. Con ello, se pudo generar un mapa de profundidad sin distorsiones
de una escena real implementada en el laboratorio. Finalmente, se concluye este
capitulo presentando un método de registro de datos 3D para componer nubes de
puntos ultradensas como combinacién de dos nubes dispersas. Las técnicas de reg-
istro de imdgenes es una tarea rutinaria que superpone dos o incluso mas imagenes
de la misma escena, que fueron capturadas desde diferentes perspectivas por var-
ios sensores y/o cdmaras. Entre otros, el algoritmo iterativo de biisqueda del punto
mas cercano (ICP) es una de las técnicas mas utilizadas para fusionar los pares
de datos 2D y/o 3D. El algoritmo ICP tiene como objetivo encontrar el punto mas
cercano a un punto dado en una entidad geométrica, y calcula el desplazamiento
entre los conjuntos de datos utilizando un procedimiento de refinamiento iterativo.
En este trabajo se aplica el algoritmo ICP bdasico para superar las limitaciones de
los sistemas de vision monocular y, en particular, completar las dreas ocluidas y/u
ocultas sobre la nube de puntos compuesta. Esto ocurre porque la inherente pérdida



de areas superpuestas sobre la linea de vision de una cdmara monocular puede
superarse por el empleo de vistas mdltiples que amplian el FOV y recuperan la
informacién ocluida al complementarse entre si. En la memoria se establecen dos
composiciones de cdmara estéreo diferentes para la generacion de nubes de puntos
compuestas: una es un sistema hibrido de dos cdmaras de profundidad y la otra es
un sistema estéreo de camaras Inl. En el sistema de cdmaras 3D estéreo hibrido se
utilizaron dos cdmaras de deteccidn de profundidad basadas en tecnologias difer-
entes, a saber, una cimara de profundidad de proyeccién de patrén IR estructurado
y otra es una cidmara de medida de tiempo de vuelo (ToF). Ambas cdmaras de
deteccion de profundidad tienen caracteristicas totalmente diferentes y, por tanto,
estos factores diferentes deben homogeneizarse para crear un conjunto de nubes de
puntos uniforme y evitar irregularidades visuales en la escena 3D reconstruida. Por
otro lado, en el sistema de cdmara estéreo-Inl, se explota una cimara de imagen
integral comercial con control deslizante para capturar una misma escena desde
dos posiciones diferentes. En ambos casos, la configuracioén estéreo permitieron
recuperar algunas dreas ocluidas y perdidas de las nubes de puntos individuales,
obteniéndose en el laboratorio reconstrucciones mejoradas de escenas 3D reales.

El Capitulo 5 consiste en la recopilaciéon de las principales publicaciones
académicas que constituyen la base para el desarrollo de esta tesis. Cada articulo
proporciona enfoques diferentes y distintos sobre cémo componer y refinar los
datos 3D densos adquiridos por los diferentes tipos de cdmaras y exponen también
las técnicas y soluciones originales sobre como proporcionar una experiencia 3D
mads inmersiva a los observadores a través del use del monitor de imagen integral
propuesto. Finalmente, el Capitulo 6 concluye esta tesis con una exposicién de los
logros alcanzados y con algunos comentarios sobre nuestras posibilidades futuras
de investigacion.
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Chapter 1

Introduction

During the present century, three-dimensional (3D) imaging techniques have been
spotlighted due to their merits of capturing, processing, and displaying 3D scenes.
As proof of this, widespread international researches and activities on 3D tech-
nologies are performed and applied in many different research fields. In fact, there
are a large number of journal and conference papers on 3D imaging and display, as
well as big efforts in research and development on government, industry, military,
and various different laboratories. This topic is aimed to be exploited for broad
applications including manufacturing, security and defense, surveillance, machine
automation, biomedical applications, and even entertainment. It will not be wrong
to say that current decade will be the decade of 3D imaging.

Most of the 3D imaging techniques is based upon stereoscopy. Stereoscopy
is defined as any technology that enables an illusion of the depth in a display to
binocular observers. Conventional stereoscopy manipulates with two offset im-
ages to the left and right eye of the observer. A noteworthy feature is that the pair
of photo has slightly different viewpoints (or perspectives). Thus, the observer ac-
commodates this binocular parallax through the both eyes and let the brain get the
depth perception because of their visual disparity. The brain also determines the
depth distance and how far objects are away from each other by the amount of
disparity between two images.

In [1], Kheirandish mentioned that stereoscopic depth perception was early as-
sumed by the ancient Greeks. Sir David Brewster mentioned that Euclid knew of
the binocular depth perception. As stated in his book [2], in 280 A.D., Euclid was
the first to recognize that the depth perception is obtained when each eye receives
one of two dissimilar images of the identical object at the same time. However,
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1. Introduction

Figure 1.1: The diagram of stereoscope from Wheatstone’s paper published in the
Transactions of the Royal Society of London, 1838.

source by: https://commons.wikimedia.org/wiki/Category:Wheatstone_ste
reoscopes#/media/File:Charles_Wheatstone-mirror_stereoscope _XIXc.jpg,
©Wikimedia Commons

many people tackled Brewster’s statement about the achievement of Euclid [3],
but, it is an obvious fact that ancient people also studied and got interested in the
geometric properties of light and the portions of stereopsis. In sixteenth century,
Leonardo da Vinci studied aspects of optics including eye anatomy and light re-
flection, and he even attempted to explain about stereoscopic depth perception.
In “Trattato della Pittura di Leonardo da Vinci (Treatise of Painting)”, which is
published in 1584, mentioned that a given object occludes different parts of the
background when they are observed by the left eye as compared to the right eye
[4]. Eventually, in 1838, British scientist Sir Charles Wheatstone invented the first
instrument designed to watch such images and produce a 3D effect. This device
was to be called the “Reflecting Mirror Stereoscope”. Wheatstone’s stereoscope
uses two centered mirrors at 45 degrees from observer’s each eye, and they reflect
each image to the eyes [5]. Interestingly, his device operates with a pair of draw-
ing. This is because the photography was not yet available at that epoch. Anyway,
his achievements inspire many photographic companies to get great interest in a
new commercial market such as stereo photography and stereoscope.

During the twentieth century, stereo photography became more popular and
commercialized. A number of companies emerged who specialized in producing
stereo images and providing 3D effect to viewers. Unfortunately, technology was

2



not yet to the point of providing a good 3D experience without using glasses or uti-
lizing an additional device for binocular observer. Anyhow, anaglyph is a widely
used and applied approach in 3D imaging technique. This approach (as shown in
Figure 1.2(a)) was developed in 1853 by W. Rollmann in Germany. Anaglyph im-
ages contain two differently filtered colored images red-cyan, green-magenta, or
blue-yellow colors, in which these images have complementary contrast. When
sighted through the color-coded anaglyph glasses, each of the two images are per-
ceived by both eyes separately and the brain assembles both images. Finally, the
pair of disparate images is integrated to a stereoscopic image [6, 7].

Another well-known approach for stereoscopic 3D system is to make use of
passive or active 3D glasses. The passive glasses (a.k.a. polarized 3D system), as
shown in Figure 1.2(c), use polarizing filters to create an illusion of 3D images
by restricting the scene that fits with their respective information to each eye dis-
tinctly. These approaches cause each individual eye to see only the image made for
that perspective, and vice versa [8, 9]. On the other hand, the active glasses (a.k.a.
active shutter 3D system), which are shown in Figure 1.2(b), present the image
intended for the left eye while blocking the right eye’s view, and then presents
the right eye’s image while blocking the left eye’s sight. This process repeats very
quickly and sequentially (proper performance is over 30 images pair cycles per
second with 60 Hz display system) so that the interruptions do not interfere with
the perceived fusion of the two images into a single 3D image [10, 11, 12].

Each type of glasses has pros and cons. The active glasses provide the full
image resolution to each eye entirely, and deliver completely separated scenes pre-
cisely. In fact, the polarizing filter of passive glasses cannot block out each classi-
fied images correctly in some specific situations. For instance, if there is some dark
object beside something bright one in the displayed scene, an eye might notice the
light which is intended for the other eye, thus, some interfered areas are appeared.
The active glasses solve such 3D crosstalk or ghosting effect (like two superposed
images) properly. On the other hand, the passive glasses are inexpensive and no
batteries are required, so the weight is light. Besides, the passive glasses do not
have a flickering effect, so that these types of glasses provide lesser dizziness.
These active and passive types of glasses are broadly used in our real life nowa-
days because of their merits and advantages [13, 14].

On the other hand, during the last decades, head-mounted display (HMD) has
also received big demand and attracted interest for the security and defense, mili-
tary training, and even entertainment for the consumer’s 3D experience. This de-
vice is mounted on the head or as part of a helmet, which has a small display to
provide the scene for one or both eyes directly (see Figure 1.2(d)) [15, 16].

However, even though this high influential of the glasses-type 3D display
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1. Introduction
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Figure 1.2: Various stereoscopic imaging devices: (a) Anaglyph glasses; (b) active
3D glasses from Samsung; (c) passive 3D glasses from LG; and (d) head-mounted
display from HTC Vive.

system and HMD device, they have critical defects and limitations. First of all,
glasses-type 3D system is only able to provide the uniformed 3D effect to the ob-
servers even when they are placed in various positions from the displayed scene.
There is no degree of freedom to see the different perspective views, and only pro-
vides a fixed viewpoint. Therefore, the displayed scene seems to be too artificial
and to be far apart from the real experience. Of course, recent HMD devices mount
the gyro sensor and react the observer’s head motion, but they are still clumsy to
cover the human sense. Another critical defect is the visual fatigue. Even though
there is a big advance of technology and big effort to solve this issue during re-
cent days, the highlighted visual and motion sickness symptoms are not solved
yet and many people are still suffering from this problem because of the sense of
artificiality. The last flaw of these systems is that the observers obligatorily put on
these equipments to their heads in order to watch the displayed 3D scene. Espe-
cially, HMD devices have lack of practicality because of its bulky size. These are
inescapable facts and critical defects of early mentioned devices.

Meanwhile, there is another approach to see the 3D scene without needing
any additional tool or wearable equipment. This is commonly known as autostere-
oscopy, which allows watching the 3D scene with the naked eyes directly. The
main concept of this technique is that it provides numerous perspective views
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from the display, within a given range. Moreover, multiple observers can see the
stereoscopic 3D scene with their own eyes, but each having distinct perspectives.
Among others, new and interesting photographic method which is proposed first
by Gabriel Lippmann in 1908 was remarkable. He presented the possibility of cap-
turing and reconstructing the 3D scene by using an array of spherical diopters. He
put this diopter array in front of the photographic film to register an array of dis-
tinct small images, each with different perspective information, and restored the
captured scene in reverse order of pick up stage. He named this technique “pho-
tographie intégrale (Integral Photography: IP)” [17, 18]. After presented this re-
markable research by Lippmann, great interests were awakened in many scientific
groups and became a catalyst for research to autostereoscopic imaging. Since then,
his research followers improved and complemented his achievements steadily, and
some authors renamed it in different ways, such as integral-imaging (Inl) [19, 20],
light field imaging [21], or plenoptic imaging [22, 23].

In the past two decades, thanks to the advance of technology, some proposals
of capturing and transmitting images in real-time were remarkable, and eventually,
several companies announced their plenoptic camera (or light field camera), which
are based on Lippmann’s IP theory. These cameras are able to capture the special
image and perform various image modification functions provided by the manu-
facturers. Thanks to such new concept of photography techniques, these cameras
have been spotlighted by many photographers and consumers, and even many sci-
entific researchers also had a great interest. Above all, these cameras are able to
compose a depth map based on the captured image. In fact, there are various types
of depth-sensing cameras that are already published and broadly used in many
different areas, but most of these 3D cameras mainly exploited additional tech-
nologies to extract the depth information. Besides, the depth map is one of the
most important elements to describe and render our real world into the virtual 3D
space. It is no exaggeration to say that the depth map is one of the core elements
of the computer science in recent days. For that reason, the plenoptic camera has
a great impact for many people because of such accessibility of use, performance,
and even the novelty of technology.

However, even though there are a lot of great depth-sensing techniques and
big advance of digital technologies, the conventional display system (as televi-
sion, monitor, mobile phone, or even tablet PC) cannot provide the real 3D scene
as the original volumetric information. This is because these display systems are
only able to display the transmitted two-dimensional (2D) scene and that is their
main objective. Here, our research was started from this aspect of the conventional
display system. A lot of researches and approaches are already performed to com-
pute and display the real world’s 3D information into digital devices. But at last,
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the final output was converted to 2D information and that’s why the conventional
display systems only provide the 2D scene. Therefore, we want to reproduce and
display the real 3D information as it is, and provide the original 3D scene to the
observers as closely as possible using the combination of computerized 3D infor-
mation and InI technique.

The main aim of our proposal is to let the multiple observers see the restored
real 3D scene with dynamic parallaxes, without any additional wearable equip-
ment or glasses. This thesis addresses the challenges of well computerized 3D
information based integral image production technique and algorithms, and con-
centrates in particular on the composition of a full-parallax 3D display system.
On the other hand, we devoted the best endeavors to research to overcome the
limitations of conventional InI technique. Based on the proposed experimentation,
several depth-holes (or depthless pixels) refinement methodologies and recovering
approaches are discussed and suitable solutions are also presented. Furthermore,
we illustrate the procedures with some imaging experiments to prove the advan-
tages of our approaches.

This dissertation is organized into six chapters. In Chapter 1, we start with a
brief explanation about 3D imaging, and then narrate our research objectives and
motivation. Chapter 2 gives a theoretical background of main components from
this thesis. In Chapter 3, we provide several methodologies on how to compose an
integral image from the computerized 3D data, in a more efficient and accurate way
than in standard methods currently used in Inl. Chapter 4 introduces our various
approaches and algorithms on how to compute and compose the dense 3D data.
Chapter 5 collects our main academic publications which build the basis for the
research in this thesis. Finally, Chapter 6 concludes this thesis with a summary of
the presented works, followed by a discussion of the future works.



Chapter 2

State of the art

2.1 Integral-imaging and pseudoscopic problem

Inl is a promising 3D display technology due to its merits: it delivers continuous
viewing points, full-parallax, and presents full-colored views to multiple observers
in 3D space. In fact, the operating principle of Inl is based on IP technique. One
century ago, as we mentioned in Chapter 1, Lippmann’s IP presented the possibil-
ity of recording the natural scene in 3D and displaying the restored scene using an
array of diopters. Doing so, the developed photographic film is integrated floating
in front of the diopters, and produced a 3D reconstruction of the original captured
scene [17, 18].

On the other hand, in spite of this great merit of 3D scene restoration technique,
it is important to remark that the composed image captured through IP technique
is not directly projectable. The major issue for the 3D scene reconstruction based
on IP is pseudoscopic (PS) problem, which is coming from the different direc-
tions and sequences of the pick up and display process, as shown in Figure 2.1.
In pick up phase, the light rays scattered from the 3D object are passing through
each lens, and compose elemental images (EIs). In display phase, the 3D object is
reconstructed by the Els with the same lens array as the one used in pick up phase.
Interestingly, from the displayed scene, the observers will watch the rear side of
the reconstructed 3D image which is in the direction from the 3D object to the
lens array. This situation means that the final displayed 3D scene has 180°reversed
depth. The main reason of this symptom is that a captured 3D object close to the
lens array reconstructs the 3D scene closer to the displaying lenses, and further
distanced object reconstructs the scene in further away from the lens array, respec-
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Figure 2.1: Scheme of IP technique to pick up and display. Through this direct
pick up process, a reconstructed 3D scene has reversed depth. It is known as pseu-
doscopic problem. See text for further details.

tively. Therefore, the typical Els without any additional process or transformation
method cannot avoid PS problem. To overcome this fundamental drawback, vari-
ous methods for the conversion from PS to orthoscopic (OR) of Els (a.k.a. the PO
conversion), have been proposed by many research groups [24, 25, 26, 27].

The main merit of Inl is to transcribe the spatial and angular information of the
rays that are proceeding from the 3D scene at the same time. Each ray of light can
be described in a given point of its trajectory by the spatial coordinate §, = (x,y,z)
of such point, and the angular inclination 6, = (6,¢) of its trajectory. Once we de-
fine the position and the inclination of the rays proceeding from a 3D scene when
they pass through a given plane, they can easily be described through the radiance
map (we sometimes name the radiance map as the plenoptic map). This fact per-
mits us to reduce one dimension (in particular, a spatial coordinate) in the descrip-
tion of the plenoptic field. If we consider z as the direction perpendicular to the
lens array, then we can represent the radiance map through the four-dimensional
(4D) plenoptic function R(8,,6,) = (x,y;0,¢) [28, 29].

We illustrated this scenario in more understandable way via Figure 2.2. Based
on Lippmann’s scheme, the 3D scene is captured by the diopters array (a small
lens array nowadays), like in Figure 2.2(a). For simplification, we assume that an
array of pinholes substitutes the lens array, and we only consider the rays passing
through each lens center with different incidence angles. This lens array is placed
at a given distance g from the imaging sensor, and each lens of the array captures
a 2D image of the 3D scene, but contains different perspectives, like as distinct
colored rays in Figure 2.2(a). This group of individual perspective information be-
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Figure 2.2: Scheme of integral photography: (a) Conventional Inl system; and (b)
corresponding sampled radiance map.

comes the set of the Els, and hereafter, the whole collection of EIs will be referred
to as the integral image. Thanks to the advance of technology and the big interest
about Inl, the diopters array is substituted nowadays by a micro hemispherical lens
array (a.k.a. Microlens array: MLA), and hereafter, the captured Els are also re-
ferred to as the microimages in further text. In order to avoid overlapping between
the different Els, a set of physical barriers is required.

On the other hand, this captured integral image can be represented in a graphic
scheme, like as in Figure 2.2(b). This sampled radiance map is determined by the
gap g, the lens pitch p, and each pixel size of the imaging sensor & ,. The sampling
period in the spatial direction is given directly by p, and the angular one pg is
given by the following simple equation:

Po = 5p/8~ 2.1

From this radiance map, we can find the ElIs from each column of the sampled
field. On the contrary, each row of the sampled field corresponds to not only a set
of rays passing through the lenses with same incidence angle, but also located in
an equidistant position in the imaging sensor. Thus, any horizontal line in Figure
2.2(b) can be grouped to form a sub-aperture image (or sub-image) of the 3D scene.
Interestingly, every sub-aperture images contain the orthographic (or orthogonal)
views of the 3D scene. For these views, there is no perspective distortion wher-
ever the viewpoint is placed, and all sub-aperture images have same scale with an
identical field of view (FOV) of the scene, while, all of sub-aperture images have
different perspectives. Thus, we could say that the sub-aperture images are equiv-
alent to those obtained with an array of telecentric cameras whose optical axis are
inclined accordingly.
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Figure 2.3: Elemental images array and sub-aperture images array are mutually
convertible each other.

On the other hand, we can confirm that the number of pixels in Els is identical
to the number of viewpoints from each lens, and the total number of EIs in the inte-
gral image is equal to each sub-aperture image’s resolution. Here, it is remarkable
that the collection of Els and sub-aperture images are mutually convertible. The
way of conversion between the integral image and sub-aperture images array is
very simple. As we illustrated in Figure 2.3, a simple image processing procedure
for pixel rearrangement is required. For instance, the collection of left-top pixel
(A;j) from every Els are transposed and assembled to the first sub-aperture image,
and every right-top pixel (B;;) become an element of second sub-aperture image,
respectively. Furthermore, the full image size of both, the integral image and sub-
aperture images array are equal. Figure 2.4 provides this conversion procedure
with an experimental result and details.

The sub-aperture images array is exploited in many different research fields.
Among them, research approaches are performed in image refocusing, image qual-
ity and resolution enhancement, occlusion removal and restoration, object tracking
in heavily occluded situation, as well as depth map calculation from sub-aperture
images, 3D travelling movie composition, etc [25, 26, 30, 31, 32, 33, 34, 35, 36].
We also exploited the sub-aperture images array in our experiments. We will nar-
rate our approaches by using this sub-aperture images array in further chapters in
detail.
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Elemental images array (113x113 EA) Sub- aperture images array (15 X15EA)
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Figure 2.4: Conversion example between the elemental images array and the sub-
aperture images array. Left integral image contains 113 x 113 elemental images
(with 15 x 15 pixels each), and the right array contains 15 x 15 sub-aperture im-
ages (with 113 x 113 pixels each). But, both images have same size (1695 x 1695
pixels).

2.2 3D cameras and plenoptic camera

A methodology on how to record and store the natural scene in 3D as being itself
is one of the most attracted and spotlighted research task during last decades. This
phenomenon was a natural part of the process in the development of digital age,
and it also big endeavors were needed to extend the 2D photography further by a lot
of great pioneers. Among all, a highlighted technique is the stereo vision, which
takes advantage of the disparity information from two aligned cameras. In fact,
the stereo vision technology is based on a similar concept as binocular observer’s
physical formation, and also resembles a biological process of stereopsis at the
depth estimation step. This camera configuration has been the representative of
depth imaging technique for a long period, and various related researches are still
discussed and studied today in order to improve the accuracy of depth estimation
result [37, 38, 39, 40].
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This approach encodes the difference in horizontal (or vertical) pixel coordi-
nates of corresponding image points at the image pair. It means that every calcu-
lated disparity values are in pixel unit, and all of extracted disparity values com-
pose a group of disparty information. These collected information is translated to
a disparity map, and the values in this map are inversely proportional to the depth
at the corresponding pixel location. FLIR Systems company explains the method
on how to determine the depth of a pixel based on the computed disparity value in
[41]. The formula is the following:

Z=fB/d 2.2)

where Z is the depth distance along the camera in z-axis (in metres), f is a focal
length (in pixels), B is the baseline that is the distance between the two aligned
cameras (in metres), and d is the disparity value (in pixels). For instance, if the
disparity value is big, the calculated depth distance is short, and vice versa. This
fact certifies that the disparity value is inversely proportional to the depth distance.
Furthermore, when Z is calculated, the rest of real 3D coordinates, X and Y, also
can be derived via usual projective camera equations, as following formulas:

X=uZ/f (2.3a)
Y =vZ/f (2.3b)

where u and v are the relative pixel location at the 2D image, and (X,Y,Z) are
computed in real 3D coordinates along the camera’s position. Here, note that u
and v do not share the same coordinate system as target pixels’ coordinates of the
2D image. The (u,v) pair is calculated by the center pixel position of width and
height of the 2D image, with following formulas:

u = img xPos — img_WidthCenter (2.4a)
v = img_yPos — img_HeightCenter (2.4b)

where img_xPos and img_yPos are each target pixel coordinates of the 2D image,
img _WidthCenter and img_HeightCenter are 2D image’s center pixel position of
width and height. So in sum, (u,v), f and d are all in the pixel unit, and (X,Y,Z),B
are all in metres, respectively.

However, in order to calculate the disparity map via the stereo camera con-
figuration, people have to calibrate the cameras, derive the fundamental matrix,
extract the camera’s inherent parameters (intrinsic and extrinsic parameters), and
rectify the source images, etc [42, 43, 44]. These procedures are complicate and
the experimental system is not easy to stabilize. For instance, if the camera tilts or
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even shifts its position a little after already performing the camera calibration, one
has to reprocess the whole step from all over again. Fortunately, several companies
launched their own stereo camera system and simplified the modification proce-
dures in order to manipulate the stereo cameras in a much easier way, although the
price is quite expensive and not affordable (see Figures 2.5(a) and (b)) [37, 38].
For that reason, it was not easy to manipulate these commercialized stereo cameras
for many small research groups and young researchers, and much less students for
their academic usage.

Incidentally, the depth-sensing technologies related to the infrared (IR) light
sensor are spotlighted during last decades. The IR depth-sensing camera allows to
acquire the depth information in real-time with a high frame rate. This IR sensing
type depth camera system has caught the attention of many people due to its acces-
sibility and easier usability, as compared with the stereo camera system. In spite
of these merits, however, the IR depth-sensing camera was also very expensive at
the beginning. Recently, after being launched and commercialized by several big
companies, it is easy to find and purchase the various brands of IR depth-sensing
cameras in the commercial market with affordable prices [45, 46, 47, 48, 49, 50].
Thanks to these advanced low-cost cameras, people manipulate these cameras into
their studies and researches, and eventually, a great interest of 3D imaging tech-
nology has arrived.

Among others, Kinect sensor, which is developed by Microsoft and Israel
Company PrimeSense, got really big attention. In fact, in 2011, Kinect was sold
8 million units in its first 60 days on the market, and claimed the Guinness World
Record of being the “fastest selling consumer electronics device” [51]. Two ver-
sions of Kinect devices are released up to now: Kinect vl (Kv1) in 2010 (Figure
2.5(c)), and Kinect v2 (Kv2) in 2014 (Figure 2.5(d)). Interestingly, the original
purposes of these cameras were detecting the human body’s gesture, acquiring the
voice command, and recognizing the user’s facial expression [45, 46, 52, 53]. It
means that these cameras enable the users to control and interact with the enter-
tainments, using their body movements and spatial gestures, instead of the neces-
sity of the additional controllers or joysticks. However, many people manipulate
these cameras into their researches because of the depth acquisition performance
and accuracy.

Kv1 and Kv2 have completely different measurement principle for obtaining a
dense depth map. In detail, Kv1 uses a structured IR light pattern emitter, and then
the IR camera captures and calculates the depth distance through the acquired pat-
tern information. The depth measurement is performed by a triangulation process,
and the distance between picked speckles patterns at the captured scene become
the disparity information, as described in [54, 55]. In comparison, Kv2 utilizes
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Figure 2.5: Various type of 3D cameras: (a) Bumblebee stereo camera from FLIR
Systems; (b) ZED stereo camera from Stereolabs; (c) and (d) Kinect vl and v2
from Microsoft; (e) multi-camera array; (f) PiCam camera from Pelican Imaging;
(g) Lytro plenoptic camera from Lytro; and (h) Raytrix plenoptic camera from
Raytrix. Most of them are already commercialzed and easy to purchase via the
internet, except (e) and (f). (e) is configured by Stanford university, and (f) is no
longer available to purchase. See text for further details.

the Time-of-Flight (ToF) technology, which exploits emitting IR beams pulsed at
high frequency rates. From the reflected IR light from the most 3D surfaces, the
sensor evaluates the depth distance by measuring the IR flash’s returning dura-
tion [56]. Of course, both, the RGB camera and IR camera of Kv1 and Kv2 also
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have different image size and FOV information. Even though several specifications
are released from the manufacturer, further detailed information are not provided
to the consumers, like the coupled areas of the scene between the RGB and IR
cameras, FOV of the RGB camera, etc. To confirm and analyze these issues, we
performed a simple experimental comparison between Kv1 and Kv2 with several
referenced information [52, 53]. Figure 2.6 shows the difference of FOVs between
the RGB and IR cameras of Kv1 and Kv2. We defined a common optical axis for
both devices, and set both Kinects in parallel from a common target, and placed in
the same position. We choose a chessboard pattern as a common target, which has
simple and repetitive shapes, and permits to detect the feature points easily. Most
of all, the regularized pattern influences to improve the accuracy of calibration’s
result [57]. We find the common correspondence feature points in each captured
image and calculate the correlation parameters that define the so-called homogra-
phy matrix (projectivity or projective transformation). These parameters represent
a general plane-to-plane correlation equation in a projective plane [58, 59]. Fi-
nally, these derived values allow to map from 2D view of one camera to another,
and to confirm the coupled areas of the scene based on the FOVs of Kv1 and Kv2’s
cameras.

In despite of their advantages, these IR depth-sensing cameras have some
drawbacks and limitations. First of all, these cameras do not work properly in out-
door environment. The main reason is that the outdoor ambient light (like sun light)
also contains IR light. It means that there are a lot of interferences between the dif-
ferent sourced IR lights, and thus, a captured depth map will not have enough
good quality and dense information, as compared to the original capability. An-
other limitation is that these IR depth-sensing cameras have their limited depth
volume capacities. The way of depth acquisition method in every IR depth-sensing
devices are different, but, commonly these cameras have a maximum acceptability
and limitation due to their inherent specifications. The last flaw of these cameras
system is that they shall be connected to the electrical supply equipment, so that
they are not conveniently portable.

In the meantime, as we mentioned in Chapter 1, several research groups and
companies have released their special cameras which applied Lippmann’s IP the-
ory [60, 61, 62, 63, 64]. Among them, PiCam from Pelican Imaging (Figure 2.5(f))
received big attention because of its very tiny modularized cameras array. The
PiCam provides 16 different perspective images with synthesized 8 Mega pixels
RGB image, and even a depth map which is estimated by using various image en-
hancement algorithms and synthesization skills, as described in [61, 62]. However,
in spite of this camera module’s great performance and competitive price, it is no
longer available to purchase any more. On the other hand, Lytro camera from Lytro
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Figure 2.6: Kv1 and Kv2’s overlapped region at the captured scene. In green rect-
angle is represented by the RGB camera’s view, and red rectangle is the IR cam-
era’s view, respectively. Both, Kvl and Kv2 have different FOV and image size,
and the depth acquisition method is also different.

(Figure 2.5(g)) and Raytrix camera from Raytrix (Figure 2.5(h)) are regarded as
the best-known commercialized plenoptic cameras in the world. These cameras
also provide a dense depth map from a single shot captured plenoptic image via
their veiled technologies.

In fact, we would say that there are two methods of capturing a plenoptic field
based on Lippmann’s photography scheme. One is a synchronized multi camera
array and the other is to perform a simple modification of a single camera. The
important feature from these two methods is that they are not demanding any addi-
tional special lighting emitters or sensors, and they just pick up the 3D scene like as
normal digital cameras contrary to the IR depth-sensing cameras. The first method
has an advantage of allowing the capture with big parallax. However, multi camera
array system has several dificulties: this composition becomes bulky like as Figure
2.5(e), and not only requires to synchronize all cameras, but also the management
of the huge amount of acquired data. As an alternative way, the second method is
very useful when small parallaxes are acceptable. This system works only inserting
an array of microlenses in the image plane, and shifting the imaging sensor axi-
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Figure 2.7: Scheme of image capturing system with two cameras: (a) Conventional
camera; and (b) plenoptic camera. In fact, (a) contains the angular information, but
discarded because of the pixel overlapping problem in same position at the imaging
sensor. On the contrary, (b) can record both, the spatial and angular information
thanks to the insertion of the microlens array.

ally. Therefore, this configuration does not need any synchronization procedure at
the capturing scheme. This camera composition is called the plenoptic camera (or
light field camera), in which Lytro and Ratrix cameras examples in this category
[60].

Figure 2.7 shows the difference of capturing scenario between the conventional
camera and plenoptic camera. In fact, this is little bit far from the real situation
of the general optical system, in which the objectives may be composed by the
combination of numbers of converging and diverging lenses, built with different
glasses that having various focal lengths, and occurred a large aperture stop to
consider the various incidence angles of light. However, in spite of such different
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Figure 2.8: (a) Raw plenoptic image captured by the plenoptic camera (Lytro Il-
lum); and (b) composed sub-aperture images array from the captured plenoptic
image. We can see that the captured raw plenoptic image from Lytro camera (a)
forms in a hexagonal shape. In fact, the hexagonal grids of MLA assist to capture
a higher number of microimages from the scene.

conditions, all these optical elements can be substituted by a single thin lens with
same cardinal parameters, namely, reference plane, focal points, and f-number.
The main difference between Figures 2.7(a) and (b) are the insertion of a MLA at
the image plane.

Note that the plenoptic image captured by the plenoptic camera is also con-
vertible to sub-aperture images array. As we mentioned in previous section, the
sub-aperture images array is used in many different research areas, and it had
very practical applications for our researches during past years, too. In our experi-
ments, we exploited Lytro camera and proceeded several research tasks. However,
we faced some critical problems. In fact, the captured raw plenoptic image using
Lytro camera contains a grayscale image, and the microimages are arranged in a
hexagonal shape (see Figure 2.8(a)). The main difficulty when dealing with this
camera is that there is a Bayer color filter array over the camera’s sensor to capture
the intensity of light with different color spectrum, that follows the conventional
rectangular geometry. Thus, firstly, it must be demosaiced to get the color infor-
mation back, and then composed the coloured sub-aperture images array [65]. To
perform these procedures, we mainly adopted the algorithms in [66, 67] and the
provided toolbox. Figure 2.8(b) shows our experimental result. In further chapters,
we will narrate the methodology on how to perform the depth map estimation by
using this sub-aperture images array.
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2.3 Point cloud

As indicated above, the conventional camera transcribes and saves the captured
natural scene in 3D into the plane 2D information like as a paper or a thin sheet.
Thus, it cannot avoid losing the original volumetric 3D information. Moreover,
the simulated 2D information cannot present and interpret the occluded or con-
cealed areas properly, and even, it is unable to observe the veiled parts in different
perspective views either. On the contrary, the computerized 3D data contain the
volumetric information and overcomes the early mentioned limitations precisely.
The most commonly used methodology to compose and visualize the 3D data is
called the point cloud approach [68, 69]. Basically, each point from a point cloud
contains its coordinate information (x,y,z) with the color intensity (R, G,B), and
a set of points form a 3D shape in the space. Thanks to the composition of the
point, it is convenient to simulate and handle the composed point cloud in the
computer-generated virtual 3D environment. Various research areas are already
performed and applied to the point cloud into their research tasks, such as, geom-
etry, architecture restoration, virtual reality, manufacturing, 3D printing, robotics,
biomedical engineering, computer vision, etc. Thus, it is no wonder that the point
cloud is one of the essential elements in present day to describe and render our real
world into the virtual 3D space.

On the other hand, a point cloud can be extended via fusion between two, or
even more sets of point clouds using a point set registration method. In fact, the
registration methodology calculates and helps to fuse between paired 2D images
(or 2D shapes) or a number of point clouds, so that merged information become
denser and vacant areas of point cloud are recovered by complementing each other.
Due to such merits, this method is still treating as one of the most active research
tasks in the world [70, 71, 72].

We also exploited a point cloud set into our experiments. We composed a point
cloud set by using the combination between the captured depth map and its cor-
respond color image, and generate an integral image via Inl concept in the virtual
3D space. We will narrate our methodology on how to produce the integral image
from the composed point cloud, and also provide the configuration of our proposed
integral-imaging display system in further chapters.
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Figure 2.9: Display of a set of point cloud in the virtual 3D space. From both sub-
figures, it is clear that each point has its own (x,y,z) coordinates with the color
intensity (R,G,B). All of points are arranged along the camera’s position. Note
that the displayed point cloud is captured by Kv1.
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Chapter 3

Integral image production
from point cloud and display

Our main goal in this chapter is to compose an integral image based on a set of
point clouds, and provide a good quality 3D scene to multiple observers by us-
ing our proposed integral-imaging monitor. In fact, our methodology on how to
compose the integral image is originated from IP technique, but we applied and
extended the algorithm with several further particular approaches. In addition, we
exploited a computer acceleration technique to solve the heavy computation time
at the moment of integral image generation scheme. In the first section, we will
narrate our methods on how to compose the integral image using a point cloud
with differentiated approaches. The way of boosting the computation speed will
be presented in the following section, and then we will provide the composition of
our integral-imaging monitor with some details in the last section.

3.1 Production of integral images using point cloud

There have been many trials to make a good quality integral image since Lipp-
mann’s IP technology was announced. However, in spite of the advancement of
science and technology, conventional InI has several drawbacks. Among them, ex-
perimental environment of Inl is confined in the real world’s hardware system.
Besides, most components of the system are not flexible depending on the variable
situations, even, the acquired information is not modifiable in the post-processing
step. In this sense, we moved our research stage to the virtual 3D space, that is, ex-
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perimental parameters are adjustable whenever and wherever we want. This novel
approach was not actively discussed and studied last years, what confirms the nov-
elty of our research.

Our proposal is started from the curiosity on how to compose and visualize the
3D data in efficient way. To reach this goal, we needed to solve several research
issues, such as, the methodologies on how to manipulate and visualize the 3D
information, how to compose an integral image in the virtual 3D space, and how
to solve PS problem precisely.

We first compose a dense point cloud using various 3D cameras, and simulate
them in the virtual 3D space in order to check the acquired 3D data and analyze
their formation in a more intuitive way. We set our experimental system to com-
pose a point cloud via the captured RGB image and depth map from 3D cameras in
real-time, save and load the composed point cloud simply and handy to browse the
simulated point cloud where we want to look at. After that, we formulate a method-
ology on how to compose an integral image from the simulated point cloud. We
investigated various related researches to find a relevant technology, and we de-
cided to adopt the smart pixel mapping method from [73], especially, the usage of
the virtual pinhole array (VPA) concept at the synthetic capturing phase. The VPA
can provide the synthetic information using its tunable parameters. This pinhole
array resembles an array of cameras or a lens array, but the VPA has particular
properties. The components of VPA are configurable, such as the FOV, the pitch,
the gap between the position of pinhole and the virtual imaging sensor, and the
location of VPA.

Afterwards, we need to perform the corresponding post-processing. The im-
age captured by the pinhole (VPA) camera has reversed and inverted PS orien-
tation, as opposed to the original formation and orientation. This phenomenon is
well-known as the response of a “camera obscura”. When an illuminated scene
is projected through a small hole, the penetrated light forms a flipped scene (left
to right, and upside down) [74]. To solve this distortion, we follow Okano [24]’s
approach. We rotate each EI composed via the VPA by 180°about its center. In-
terestingly, this simple image processing procedure avoids this critical defect of IP
tehcnique which is the well-known PS problem. By applying Okano’s approach,
the depth-reversed integral image composed by IP technique is turned-over again,
and thus, the final refined integral image does not have any PS problem, and it has
an accurate depth volume at the displayed scene.

To check this approach, we first set a single virtual pinhole camera along an
imaginary plane in the virtual 3D space, and then pick up a scene in order to verify
its composed result and check the feasibility of our algorithm. After confirming
the performance of this virtual pinhole camera, we increase the number of cam-
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Figure 3.1: Simple synthetic simulation to compose an integral image: (a) Brief
scheme of the proposed experimental environment; and (b) composed integral im-
age captured by the virtual pinhole array. Note that the position of pinholes is rep-
resented by the reference plane in this configuration. All processes are performed
in the virtual 3D space. See text for further details.

eras and proceed a simple simulation, shown in Figure 3.1. We use 2D images as
test target objects in 3 different positions along the z-axis’s direction, as shown
in Figure 3.1(a). Next, we perform a projection procedure from each object’s pix-
els through every virtual pinhole sequencially, from negative (@ < 0) to positive
(a > 0) direction. Figure 3.1(b) shows the projection result. In this figure, we can
confirm that 3 different placed objects are composed by the Els with distinctive
conformations. In detail, the part of object 1 (red dice), which is projected firstly
to the VPA between 3 objects, contains small portions of information from the
original scene in their adjacent Els. The area of object 2 (blue dice), which is po-
sitioned just in front of the VPA, contains its well-focused scene with clear shape.
We could say that the object 2 penetrates itself entirely to the VPA without any
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Figure 3.2: Comparison of the projection scheme between two different situations:
(a) When points are placed in front of the VPA; and (b) when points are located
behind of the pinholes. Both, (a) and (b)’s projection schemes are completely dif-
ferent. If light coming from a point does not reach to the imaging sensor or impact
to the barrier first, the point will be discarded.

invasion of adjacent areas of the Els. Thus, it is apparent that the pixel assignment
composition is strongly dependent on the VPA’s position. Finally, the part of ob-
ject 3 (green dice), which is located after the VPA and projected to pinholes in the
last sequence between 3 objects, is composed with inverted Els. In fact, it is a very
unusual situation in real world to capture the scene along the opposite direction
that the camera is looking at. In virtual 3D space, on the contrary, it is possible to
acquire the scene in such uncommon situation thanks to the evasion from the laws
of physics and nature, and simplification of real world’s complicate conditions.
Therefore, we could perform such projection from the object 3’s pixels to the VPA
directly without any problem.

We can explain these different projection schemes by means of Figure 3.2 with
some examples. Every point (p) to p%) in Figure 3.2(b) is positioned behind of the
VPA, a similar situation as object 3 in Figure 3.1(a). When the projection trajec-
tory impacts first on the imaging sensor and then on the pinhole, a chosen pixel
becomes a component of Els. This sequence is a completely opposite situation to
Figure 3.2(a). Every point (p; to ps) in Figure 3.2(a) are located in front of the
VPA (objects 1 and 2 in Figure 3.1(a) correspond to this case). These points pene-
trate to each pinhole first with different incident angles, and then impact the virtual
imaging sensor later. Thus, Figures 3.2(a) and (b) present completely contrasting
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3.1. Production of integral images using point cloud

(b)

Figure 3.3: Two different approaches to compose an integral image using a point
cloud and the VPA: (a) VPA is placed inside of the point cloud; and (b) VPA is
located far from the point cloud. The position of VPA in (a) decides the position
of reference plane directly; however, this is not the case in (b). Red dots indicate
the pinholes, yellow dots are edge positioned pinholes in the VPA, and yellow
quadrangles show the size of composed image via the pinhole camera, respectively.
The VPA in both, (a) and (b), have same number of pinholes with equidistant
positions (15 x 15), but different gaps in the two approaches.

situations. After all projection procedures are done, the composed Els are rotated
180°about its center position, following Okano’s approach. For that reason, the
object 1 and 2’s composed EIs have the same orientation as the original scene,
and object 3’s Els show an inverted formation, respectively. We can observe these
results with some details when we display the computed integral image using an
integral-imaging monitor. After displaying of Figure 3.1(b), the observation of ei-
ther orthoscopic real (floating outside from the monitor) or virtual (inside of the
monitor) images are strictly determined by the position of the VPA (d in Figure
3.1(a)). From now and hereafter, the plane where the VPA is placed will be re-
garded as the reference plane when the pinholes array is located inside of the scene
under issue. Besides, the reference plane will be identical to the same position of
an integral-imaging monitor.

We used two methodologies to compose an integral image using a point cloud
and the VPA. The first method is to put the VPA inside of (or close to) the point
cloud and perform the projection scheme from each point to all pinholes one after
another (see Figure 3.3(a)). The second strategy is to dispose the VPA far from
the point cloud and pick up the scenes (see Figure 3.3(b)), and then compute the
integral image. To the best of our knowledge, each method has pros and cons with
distinct differences.
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3. Integral image production from point cloud and display

The first approach composes the integral image with great parallaxes, and pro-
vides an abundant depth volume at the displayed scene. In fact, the first approach
has farther gap between each pinholes than the second approach; thus, Els have
good disparities. Besides, the way of placing the VPA inside of the point cloud has
the great merit to select a reference plane in a much simpler and more intuitive
way. However, a problem with this method is that a point which is placed really
close to the VPA (in front or behind the pinholes) cannot be projected to other
pinholes because of the limited incidence angles. The neighboring points from
the VPA also cannot be penetrated to their adjacent pinholes, and therefore, these
points form some apparent black areas (see Figure 2.4’s left image).

The second approach works similarly to the synthetic aperture method. In fact,
that method utilizes only a single digital camera to capture all scenes, and the
camera is mechanically displaced to acquire the different perspectives [75]. On
the contrary, in our proposal, we can virtually acquire each different perspective
images via the VPA directly, and then compose the integral image using the con-
version process between the sub-aperture images and the elemental images array,
as shown in Figure 2.3. This approach is able to produce the Els without any black
pixels, and it provides a large depth of field (DOF) at the displayed scene. However,
this second approach also has a critical defect. If a gap between pinhole cameras
is bigger, the DOF is reduced, and a computed integral image provides a blurred
image at the displayed scene. On the contrary, if the gap is shorter, the parallaxes
are mutually decreased (the displayed scene will be shown like a plane 2D image).
That’s why the second approach must be underwent many trials and errors in order
to find not only the adequate parameters but also the reference plane and the VPA’s
proper position.

So in sum, the first approach is suitable to be applied when the visualized scene
needs great parallaxes, abundant depth perception, and the necessity of tuning the
reference plane’s position frequently, rather than a large DOF of the scene. On
the other hand, the second approach is appropriate to be exploited when the dis-
played 3D scene needs not only great image quality with uniformly-focused ob-
jects but also demands certainly defined reference planes, instead of the dynamic
viewpoints and great 3D perception.

3.2 Boost the computation speed using graphics pro-
cessing unit

One of most usual hardware acceleration techniques is the well-known graph-
ics processing unit (GPU) accelerated computing. GPU acceleration technique
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3.2. Boost the computation speed using graphics processing unit

is based on the use of computer hardware specially aimed to process some vast
amounts of data quickly, used to perform heavy computations more efficiently than
is possible in proceeding on the general-purpose central processing unit (CPU). Es-
pecially, GPU computing assists to provide an improved performance when used
in operations adapted to the application-specific hardware designed system. Thus,
GPU is used mainly in some of the compute-intensive and time consuming por-
tions of the codes, and the rest of applications are run on CPU concurrently. In fact,
CPU is in charge of organizing an entire operating system and managing various
applications, contrary to GPU that is specialized-independent device to accom-
plish its particular missions. For that reason, CPU and GPU can be roughly split
into data-parallelism and task-parallelism, in which data-parallelism is applying
the same operation to multiple data-items, and task-parallelism is doing different
operations simultaneously. So in sum, GPU is designed for data-parallelism, while
CPU is designed for task-parallelism.

The use of GPU computing into the scientific applications and researches was
started quite recently. At the beginning, graphics chips were designed for perform-
ing some fixed-functions in graphics pipelines. However, there are currently big
demands to use GPU in general-purpose applications. Over the years, these graph-
ics chips became increasingly programmable over the 90s, and many researchers
and scientists from various areas started using GPU for their general-purpose com-
puting. This was the advent of the movement called the general-purpose computing
on GPU or GPGPU [76]. Several computer graphics chip companies realized and
payed attention to the potential of bringing this performance to enlarge the scien-
tific community, and they did great endeavor in modifying GPU to make it fully
programmable for scientific purposes and applications. Thanks to those big efforts,
we can use and apply GPU computing techniques into our researches much easier
in recent days.

One of the great benefits of using a GPU is parallel computing. In some bench-
marks result [77], GPU’s parallelism performance has been shown to be 18 times
faster than CPU. This enormous difference in performance comes from the distinct
numbers of cores from CPU and GPU. Nowadays, recent CPUs have multi-core
(2-dual, 3-triple, 4-quad, 6-hexa, 8-octa, 10-deca, and 12-dodeca, respectively) and
the number of cores is still growing steadily. On the contrary, in spite of using many
cores from CPU, the computation parallelism is not suitably compared to GPU. In
fact, on CPU there are 1 or 2 threads per core and GPU has 4 to 10 (a thread
is a kind of worker that performs its own missions, and completely independent
from other threads). GPU has thousands cores, that means that GPU has more than
10000 active threads that are ready for running their tasks in parallel. Thus, liter-
ally, there are enormous differences in the number of threads used between CPU
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Figure 3.4: Scheme of our approach on how to calculate the impact points as a
function of the incidence angle: (a) In CPU; and (b) in GPU. Basically, CPU cal-
culates a single incidence angle from a 3D point to a pinhole ((0,0) pinhole first,
and (0,1) is the next one). On the contrary, GPU calculates every incidence angles
at the same time thanks to GPU’s parallelism.

and GPU.

We also exploited GPU technique into our approach in order to solve our draw-
backs and reduce the processing time. In fact, we faced a critical defect of heavy-
repetitive computation scheme at the integral image generation procedure. In our
conventional approach, we calculate an incidence angle from a 3D point to a sin-
gle pinhole (for example, the left-top positioned yellow pinhole (0,0) in Figure
3.4(a)), and then move to the rest of the consecutive pinholes sequentially. This
repetitive and time-intensive task takes a great deal of time because of a single
thread from CPU manages these whole procedures. Thus, we moved to GPU’s par-
allel computing methodology in order to boost the computation speed. We assigned
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3.3. Display of 3D scenes using an integral-imaging monitor

each pinhole’s index to GPU’s threads and execute the incidence angle calculation
all together in a parallel way. This approach is more effective and improves the
performance dramatically. Figures 3.4(a) and (b) show the distinct approaches to
calculate the incidence angles in CPU and GPU.

3.3 Display of 3D scenes using an integral-imaging
monitor

In the last years, we have exploited normal 2D display devices, such as a liquid
crystal display (LCD) monitor, a tablet PC, or even a mobile phone, in order to
show an integral image and observe the displayed 3D scene. We could say that
the important core parameters that has to be fixed to properly display the integral
image are the following: the distribution of lenslets within the lens array (for in-
stance, a quadrangle or honeycomb arrangement), the focal length of each lenslet,
the number of pixels per millimeter of the display panel, the location of the lenslet
centers respect to the middle of Els, and the gap between the display screen and
lens.

As we mentioned before, the display scheme in Inl is a reversed sequence of
the pick up procedure. We need to put an array of microlenses in front of the
display panel with some specific gap, in order to restore the 3D information back
from the composed integral image. If the gap is not equal to the focal distance
of the lenslets, the displayed scene shows blurred information, or provides some
color distortion problems. The size of Els is also an important component at the
display scheme. Each display device has its own specifications about how many
pixels they have per millimeter (ppm). Most devices’ ppm has decimal numbers.
Els computation when using this decimal number is more challenging than the use
of a natural number. Furthermore, if the size of the displayed Els does not fit with
the lens pitch correctly, the adjacent pixels from neighboring Els will invade each
other. As a result, this size differentiation stops the visual perception of the 3D
effect. For that reason, we firstly exploit natural number to count the number of
Els in the integral image generation scheme, and then we rescale the composed
image to equalize the size between the display panel’s ppm and EIs secondly.

In our experiments, we mainly used a Samsung SM-T700 tablet as our integral-
imaging monitor. This device has a big number of ppm (14.1338px/mm), and
most of all, this tablet fitted with our utilized MLA which has a square forma-
tion, equidistant position between lenses, and proper lens pitch (Model 630 from
Fresnel Technologies, focal length f = 3.3 mm, pitch p = 1.0 mm). We mounted this
MLA in front of our proposed display device and checked the displayed 3D scene.

29



3. Integral image production from point cloud and display

To confirm our proposed experimental result, we composed an experimental set
up, as shown in Figure 3.5. Originally, our main targets are binocular observers,
who can see the 3D nature of displayed scene with their naked eyes. Unfortu-
nately, the provided full-parallax effect cannot be directly demonstrated through
a manuscript or even in a monocular video. To demonstrate this 3D effect, we
replaced the binocular observer with a monocular digital camera, as a recording
device. After that, a collection of pictures is obtained by displacing the camera in
horizontal and vertical direction using a motorized linear stage in front of the pro-
posed integral-imaging monitor. These captured pictures confirm that our proposed
3D monitor provides great parallaxes and dynamic viewing angles.

Recording

Figure 3.5: Overview of experimental system.
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Chapter 4

Dense point cloud
computation methods

In this chapter, we will narrate our methods on how to improve the quality of 3D
data, compose a distortion-free depth map from a captured plenoptic image, as well
as recover the lost areas of the point cloud. As aforementioned, during last years,
we mainly exploited the computerized 3D information at the moment of compos-
ing an integral image. Naturally, a dense point cloud not only assists to make a
good quality of integral image, but also helps to provide an immersive 3D scene to
the observers. On the other hand, a composed depth map contains several defects
that are coming from various reasons. Among others, we faced several drawbacks
that are coming from the utilized 3D camera’s own limitation or its external prob-
lems, or loss of information from the occluded and/or concealed areas along the
single camera’s position. We will present our approaches and methodologies on
how to solve such defects, and present our practical experimental results in fol-
lowing sub-sections. In the first section, we will provide our approach on how to
restore the depth-hole areas (even the noisy areas) of the depth map image cap-
tured by the IR depth-sensing camera. In the following section, we will narrate a
methodology on how to compose a dense depth map from a single-shot captured
plenoptic image. We will finish this chapter by introducing the 3D data registra-
tion method for composing a dense point cloud, and then, providing our practical
experimental results with some imaging experiments.
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4. Dense point cloud computation methods

4.1 Depth-hole filtered point cloud

There are various types of 3D cameras in the market, and most of them are al-
ready utilized in many different research areas. Among them, the IR depth-sensing
technique is one of the broadly used ones. However, the IR depth-sensing cameras
have several drawbacks. In fact, these cameras acquire the depth images with some
noises or depth-holes because of their own limitations and/or external factors. As
we mentioned previously, the IR camera detects the projected IR light informa-
tion (or emitted IR pulse in the case of the ToF camera system) and measures the
depth distance. However, some materials will not reflect the IR light, or diverge the
projected IR light to other directions due to the target object’s non-planar shape.
Besides, some transparent objects will not reflect but completely transmit the IR
light. In some case, there are some interferences occurred that are coming from
the different sourced ambient light, so that the IR depth-sensing camera cannot
measure the depth distance properly. Several research groups tried to solve such
drawbacks using their novel approaches [78, 79, 80, 81].

Among them, we mainly followed Camplani and Salgado’s depth-hole filtering
method [81] due to its good restoration performance and robustness. The strategy
is the following. Firstly, register a base image for the algorithm to initialize the
positions of target depth-hole areas and prepare for the restoration process. Sec-
ondly, capture other image to search the reliable depth information close to the
depth-hole areas using the temporal-consistency map. Thirdly, collect the reason-
able pixels that the registered image does not have, and vice versa. And lastly, fill
in the certified pixels to the registered image, and update the filtering parameters.
The algorithm iteratively computes the same sequence till the end of its iteration
number. In fact, each frame of captured depth map image contains different infor-
mation, and some depth-hole areas appear and disappear continually, so that the
iterative approach is an adequate solution to restore the depth-hole areas. On the
other hand, this depth-hole filtering structure utilizes two source images which are
the depth map image and its correspond RGB image. It means that this algorithm
considers the visual information in the depth map denoising procedure. In fact,
the RGB image verifies the consistent adjacent pixels nearby the depth-hole areas
correctly, and the use of visual information is a more effective way to alleviate the
errors at the object boundaries of the depth map.

Besides, the joint-bilateral filter (JBF), which is an extended algorithm from
the bilateral filter (BF), is applied in this filtering structure. The BF is a broadly
used edge-preserved and noise-reduced smoothing filter. The weight of this filter
is determined by the similarity of adjacent pixels, and non-similar neighboring
pixels are not considered in the filtering procedure. Thus, the blurring effect near
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Figure 4.1: Comparison result between the conventional depth-hole filtering algo-
rithm and our proposed one: (a-c) Conventional algorithm’s results; (d-f) proposed
one’s results; and (g) corresponding RGB image, respectively. Note that (a), (d)
are in the initial frame, (b), (e) are 5 frames proceeded results, and (c), (f) are the
results after 219 frames iteration. Through the panels, we can see the clear differ-
ences between them.

the boundaries is not much increased. The JBF has an extra weight from the BF
that is selected by another guidance image, thus, this algorithm is also known as the
cross-bilateral filter [82, 83]. So in sum, this depth-hole filtering algorithm restores
the depth-hole pixels and homogeneous regions efficiently because of considering
both, the RGB and depth images, and preserves the boundaries of objects thanks
to the characteristic of JBE.

By the way, the conventional depth-hole filtering algorithm restores only very
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tiny areas per frame, so that it cannot cover the big sized depth-holes nor scattered
small sized group of depthless pixels properly. But in fact, these small portions
of depthless pixels are also parts of the potential recovering areas, and thus, the
algorithm demands more further iterations to restore those regions. To solve such
constraints, we additionally applied the median filter after the restoration phase
of the certified pixels. The median filter considers each pixel in the image in turn
and chooses the medium value between its adjacent pixels [80, 84]. Thanks to
such characteristic of the median filter, it is efficient to expand the reliable depth
values into their neighboring pixels, and clean up the noisy and meaningless pixels
in object’s boundary/edge regions. As a result, small and big depth-hole regions
are recovered more efficiently (even faster) than the original algorithm. Figure 4.1
shows the comparison result between the conventional algorithm and our proposed
one. In the conventional algorithm’s result, some big depth-hole areas are not filled
in properly, and even other small regions of depthless pixels still exist. On the
contrary, the result of our proposed method shows that the depthless pixels are
restored properly.

4.2 Dense point cloud computation from plenoptic
camera

Plenoptic cameras have unique light gathering and post-capture processing capa-
bilities. Thanks to such special merits, this camera is really spotlighted in recent
years. Among others, one of the most widespread and interesting research tasks us-
ing plenoptic camera is dense depth map estimation from a captured plenoptic im-
age. In fact, many research groups already announced their novel approaches and
strategies [30, 31, 32]. But, we mainly followed Jeon’s depth estimation method
[32] due to the comprehensible depth estimation strategy, and the accessibility of
modifiable data given by the authors.

Jeon et al. compute the depth map using the stereo matching algorithm be-
tween sub-aperture images. Remarkably, the disparity range between adjacent sub-
aperture images is very narrow (for instance, Lytro camera’s disparity range is + 1
pixel [85]), so that the sub-pixel accuracy calculation is strongly demanded. Due to
such narrow disparity range, the shifting process is performed at the frequency do-
main, and the phase shift theorem is utilized. This scheme is an effective solution
to displace an image position with an accurate sub-pixel distance. The shifted sub-
aperture images become a foundation of the optimal disparities computation. After
that, the stereo matching costs are computed between the central view image and
other ones using a cost-volume-based stereo matching algorithm [86]. The com-
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4.2. Dense point cloud computation from plenoptic camera

puted per-pixel cost-volume is then refined using the weighted median filter [87]
which is an edge-preserving filter and alleviates the coarsely scattered unreliable
matches. Due to the very small viewpoint changes of the sub-aperture images, the
feature correspondences between the central view image and other view images
are used as an additional (or optional) constraint. Anyhow, with the refined cost-
volume, the multi-label optimization process using the graph cuts algorithm [88]
is propagated and the depth map is corrected at the texture regions, which are iden-
tified as being below satisfactory. Lastly, the fitting local quadratic function [89] is
iteratively refining the computed local depth map to estimate a new non-discrete
depth map. This procedure helps to solve the depth discontinuities effectively. Fig-
ure 4.2 shows our experimental result using the adopted depth map estimation
algorithm. In our experiment, we firstly converted the captured plenoptic image
to sub-aperture images array, and then computed the depth map with optimized
parameters which are determined by several trials and errors.

(b)

Figure 4.2: Composed depth map image from a single-shot captured plenoptic im-
age: (a) Center view image from the sub-aperture images array; and (b) composed
depth map using Jeon’s depth map estimation algorithm. We captured the image
by using Lytro [llum plenoptic camera.

On the other hand, there were some unexpected image distortions that appeared
in our captured plenoptic image. In fact, Jeon’s approach considers an aspect of the
MLA distortion problem, and it provides proper solutions in order to solve such
drawback. However, the error that we found came from our camera’s inherent per-
formance (not related with the MLA distortions) so that we needed to solve it
via another extra solution. We mainly adopted Dansereau’s structure and utilized
a given toolbox which is able to decode, calibrate, and rectify the lenselet-based
plenoptic cameras through their specific procedures [66, 67]. After the plenoptic
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camera calibration, we performed the rectification procedure in each sub-aperture
image, and finally, we could get the distortion-free depth map image. Figure 4.3
shows the comparison of depth map images provided by the conventional depth
estimation method and our proposed one. The calibrated and rectified sub-aperture
images compose a better quality of depth map images than the original ones. Es-
pecially, in the border areas of objects and the boundary of depth map images
are displayed the clear differences. To the best of our knowledge, displaying a cap-
tured plenoptic image via the commercial plenoptic camera to the integral-imaging
monitor was not addressed so far, and even not commonly handled such proposal
before we performed.

©

Figure 4.3: Comparison result between the conventional depth estimation method
and proposed one. Note that two image rows are the stereo-plenoptic image pair:
(a-c) Left scene; and (d-f) right scene). On the other hand, each columns is the fol-
lowing: (a),(d) Center view image; (b),(e) conventional depth estimation method
result; and (c),(f) after performing the plenoptic camera calibration with image
rectification procedure, respectively. In fact, there are some unexpected image dis-
tortions at the border area of (a), (b), (d), and (e). On the contrary, (c) and (f) do not
have any image distortion effect, and even they have bettered quality of depth map
images. The red and green coloured rectangle areas indicate the clear differences
between them.
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4.3 3D data registration to restore the depth-holes
using stereo camera systems

The image registration technique is a well-known task that overlays two or even
more images of the same scene, which were captured from different perspectives
by various imaging sensors and/or cameras. Thanks to the advancement of depth-
sensing technology, the 3D data registration technique also got great attention, and
various registration techniques were proposed by many research groups. Accord-
ing to the database of Institute of Scientific Information, more than 1000 papers
were published on the topic of image and data registration during the last two
decades [90]. Among others, the iterative closest point (ICP) algorithm is one of
the broadly used techniques in order to fuse the 2D/3D data pairs [70, 71, 72].
The ICP algorithm aims to find the closest point on a geometric entity to a given
point, and calculates the movement between data sets using an iterative refinement
procedure. The output of ICP algorithm is the rigid (or rigid body) transformation
matrix, which includes the translation and rotation information. However, non-
rigid shapes are not allowed in the basic ICP algorithm. Due to such constraint, the
non-rigid registration method is also spotlighted and actively researched till these
days [91, 92, 93].

We applied the basic ICP algorithm into our research in order to get rid of the
constraints of monocular vision system, and aimed to fill in the occluded and/or
concealed areas of the composed point cloud. In fact, a single 2D/3D camera can-
not avoid losing the overlapped areas or hidden surface information along the line
of sight, and it is an inescapable limitation. On the contrary, multiple views enlarge
the FOV and recover the occluded information by complementing each other. In
our experiment, we set two differentiated stereo camera compositions and perform
the registration procedure using composed point clouds: one is the stereo-hybrid
3D camera system, and the other is the stereo-plenoptic camera system.

In the stereo-hybrid 3D camera system, two depth sensing cameras were used,
namely, one working with a structured IR pattern (Kv1) and another ToF 3D cam-
era (Kv2). Both depth-sensing cameras have totally different characteristics, such
as depth acquisition method, imaging sensor size (RGB and IR cameras of two
devices, thus, totally 4 distinct imaging sensor sizes), captured image size, FOV,
color tone of the acquired RGB images, etc. Thus, such different factors must be
homogenized in order to make a well-unified point cloud set, and prevent a vi-
sual irregularity at the displayed 3D scene. Here, we adopted several significant
algorithms to refine the heterogeneous point cloud pair. Firstly, the different im-
age size problem between the two depth-sensing cameras is solved via the image
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Figure 4.4: Simulated point cloud in the virtual 3D space: (a) and (b) Whole scene
reconstruction before and after the registration process; and (c—e) some magnified
specific parts of the registration result. The red coloured points are the composed
point cloud from Kv1, and the green coloured ones are from Kv2. We can see that
the occluded areas are restored properly thanks to the novel strategy for the uni-
formization process and the 3D registration technique. See text for further details.

scale correction method in hybrid stereoscopic camera system [94]. This method
solves the different images scale information by considering various factors, such
as, imaging sensor size, image size, focal length, FOV, and ppm. Next, the color
tone dissimilarity between two RGB images is corrected by using the color trans-
fer method [95]. Interestingly, this color correction method considers the color
characteristic of both RGB images, and borrows one image’s color characteristics
from another. After correction of the major dissimilarities, two point clouds are
fused via the basic ICP algorithm. Figure 4.4 shows the registration result between
hybrid point clouds. In Figure 4.4(a), the red point cloud captured by Kvl and
the green one from Kv2 have each different scale and depth of volume, and even
they are arranged irregularly. On the contrary, Figure 4.4(b) shows a well-arranged
point cloud set thanks to the proposed unification strategy and the registration al-
gorithm.

On the other hand, in the stereo-plenoptic camera system, we exploited Lytro
[llum camera as a pick up camera, and the camera slider in order to capture a scene
in two different positions. The camera slider not only assisted to move the camera’s
position easily, but also maintains the stability of capturing environment. Besides,
it is difficult to arrange the 2 plenoptic cameras together with a small baseline, so
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Camera

/ slider

Figure 4.5: Overview of the proposed experimental environment for the stereo-
plenoptic camera system. In this experiment, we exploit Lytro Illum plenoptic
camera, and also the use of camera slider to acquire a different perspective view,
generating an equivalent baseline that is rather small.

that the use of camera slider is a suitable alternative in such given situation. In this
experiment, we do not need to perform any further uniformization process between
a stereo image pair due to the advantage of using an identical camera. Firstly, we
captured the first scene and moved to another position via the camera slider in order
to acquire a different perspective scene, and computed a depth map image pair via
our proposed approach, as in the previous section (Figures 4.3(c) and (f) are the
composed results). The composed depth map image pair became two sets of point
clouds, then, they were simulated in the virtual 3D space together. Finally, rigid
transformation matrix was computed via the basic ICP algorithm and completed
the registration process between the two point clouds.

Thanks to the stereo configuration, some occluded and lost areas of the point
cloud are restored properly in both stereo camera systems. To confirm our pro-
posal, we set the experimental environment as shown in Figure 4.5, and Figure
4.6. The figures present three different integral images composed by the different
point cloud conformations: left and right scene, and the registered point cloud set,
respectively. In our experiment, we registered the right scene’s point cloud into
the space of left one. The main reason is that the right scene not only contains the
occluded information of the left scene, but also new objects appear at the scene.
Finally, we displayed the composed integral images into our proposed integral-
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imaging monitor, and performed a comparison between them. To assess our com-
parison result, we recorded the displayed integral images at the same position, and
excerpted specific common regions of the displayed 3D scene. In Figures 4.7(a)
and (b), there are some black coloured areas at the displayed scene. These black
areas are coming from the empty space, that is depth-holes or shadowing areas,
so that these pixels have associated with meaningless depth information. On the
contrary, thanks to the complementation between the two-point clouds, the black
coloured regions are restored and covered precisely, as shown in Figure 4.7(c).

(b) (©

Figure 4.6: Composed integral images: (a) and (b) From left and right scene; and
(c) fused one from (b) to (a), respectively. As we can see through the sub-figures,
(c) has more abundant information and larger FOV than (a) and (b), thanks to the
stereo camera system and registration algorithm.

(a) (b) (@]

Figure 4.7: Comparison between the displayed integral images: (a) and (b) Left
and right scenes; and (c) from our proposed method’s result. We clipped-out a
common area of the recorded scenes in order to ease the comparison. In (a) and
(b), there are some black coloured areas behind of objects. On the contrary, (c)
does not have any black pixels.
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Chapter 5

Summary of Papers

In this chapter, we will summarize the contributions of our 6 main papers, which
are the basis of this thesis. Each paper provides various and distinct approaches
on how to compose and refine the dense 3D data acquired by the different types of
cameras. The papers also narrate our techniques and solutions on how to provide an
immersive 3D experience to the observers via our proposed integral-imaging mon-
itor. We will describe each paper’s main proposals and achievements concisely,
but clearly. The papers appear in the chronological order of publication, and their
contents are organized as follows. In Paper I, our first approach on how to compose
an integral image from the captured 3D data is presented. In Paper II, a method-
ology on how to restore the depth-hole areas in the captured depth map image by
using an efficient hole-filtering algorithm is explained. In Paper III, a new type of
depth-sensing camera is exploited into our experiment, and then the comparison of
performances between the conventionally used 3D camera and newly adopted one
is preceded via several components and factors. In Paper IV, the usage of stereo 3D
camera configuration which is composed by two different types of depth-sensing
cameras at the occluded/concealed areas restoration procedure is explained. The
strategy on how to uniformize the different elements of heterogeneous cameras is
also narrated. In Paper V, a new approach on how to compose an integral image
with point cloud in order to extend our conventional method is presented. Lastly, in
Paper VI, the usage of stereo-plenoptic camera system, which is a novel approach
in Inl, at the dense 3D data composition phase, is explained. Also, a methodol-
ogy on how to boost the integral image computation time using GPU acceleration
technique is narrated.
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5.1 Paperl

A conventional display system is only able to provide 2D information despite of
the original object is 3D shape. In fact, there are a lot of depth-sensing techniques
to acquire dense 3D information, whereas their final displayed scenes are con-
verted to a plane 2D image. Here, we mainly focused on such paradoxical situation,
in which the digitized 3D information is not displayed in their original volumetric
structure through a conventional display system.

There are many alternatives to get a kind of 3D experience by using the glasses-
type stereoscopic 3D system (anaglyph, active or passive 3D glasses), or a wear-
able device (HMD). However, these systems need that the observers put on these
equipments to their heads obligatorily to get the 3D perception. Besides, such sys-
tems only provide a single perspective view so that the displayed scene seems
to be too artificial and to be far apart from the real experience. Furthermore, the
vergence-accommodation conflict inherent in these architectures leads to visual
fatigue in the mid run.

To avoid such drawbacks, we exploited autostereoscopic 3D technology, es-
pecially Inl technique, which provides an immersive 3D perception, continuous
viewing points, full-parallax, and also presents the full-colored scenes to multiple
observers properly. It is noteworthy that the observers can see the 3D scene with
their naked eyes directly, without using any additional wearable device or equip-
ment. Additionally, we mainly adopted the depth-sensing camera into our experi-
ment in order to compose a dense depth map of the 3D scene in real-time. Then, we
simulated the computerized 3D volumetric information into our own experimental
system in order to restore the 3D scene as it is.

Our main contribution in this paper is to compose a PS-free integral image
by using the captured 3D information and the InI technique. To restore and dis-
play the acquired 3D scene as its original volumetric distribution, our proposed
integral-imaging monitor is utilized. Firstly, a dense 3D scene is acquired via the
IR depth-sensing camera, and a set of point cloud is composed (Kvl is mainly
utilized in this paper). The point cloud is composed by the combination between
a depth map and its corresponding RGB image. Secondly, the computerized point
cloud is simulated into the virtual 3D space, and the VPA, whose parameters are
configurable, is placed in a proper position at will. In fact, we put the VPA’s posi-
tion inside of (or close to) the simulated point cloud. Thirdly, the projection scheme
is followed from each 3D coordinate point to all virtual pinholes, one after another.
The methodology on how to compose the Els by using the VPA is already illus-
trated in Chapter 3. Fourthly, the composed EI is rotated by 180°about its center
position in order to avoid PS problem, as following Okano’s approach. And lastly,
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(b)

(d

Figure 5.1: The first experimental result from our proposed method: (a) Single-shot
captured depth map image from Kv1; (b) corresponding RGB image; (c) composed
integral image using the VPA; and (d) displayed integral image via the proposed
integral-imaging monitor. Note that the position of the VPA (also the reference
plane in this configuration) is positioned in the right human model’s middle thigh
(see Figures (c) and (d)). Thus, the left human model is floating outside from the
monitor.

the composed integral image is resized in order to fit with the physical MLA’s pitch
correctly, and then the produced image is displayed via our proposed 3D monitor.
However, the provided full-parallax effect cannot be directly demonstrated in a
manuscript, because of the original target of proposed 3D display system is for
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binocular observers. To prove the effectiveness of our experimental implementa-
tion, we captured the displayed scene through a monocular digital camera moving
in horizontal and vertical direction using a motorized linear stage. Note that such
demonstration method is mainly adopted in our further papers due to the clarity of
proof and ease of use.

To the best of our knowledge, the procedure of displaying a captured 3D scene
from a depth-sensing camera into an integral-imaging monitor was not addressed
so far at that time, what confirms the novelty of our research. Our approach only
needs a single depth map and its corresponding RGB image, so that the require-
ments to produce an integral image and display the full-parallax 3D scene are very
simple. Besides, the way of placing the VPA close to the point cloud has the great
merit of being able to select a reference plane of the displayed scene in a much
simpler and more intuitive way (note that the position of VPA and the reference
plane’s one are equal in this configuration). But over all, the proposed methodology
becomes the foundation of this thesis, and the beginning of our whole proposed re-
searches.

5.2 Paper 11

Kv1 is well-known for its capacity of capturing both, the RGB and the depth map
images simultaneously. However, the IR and RGB cameras of Kv1 are physically
distanced each other so that they must be mapped from one’s view to another.
To solve such drawback, we exploited initially the Kinect’s software development
kit provided by Microsoft. Unfortunately, this method only supports a mapping
procedure from the IR camera to RGB camera, and does not permit to map in
the opposite sequence (from the RGB to IR camera). Besides, there is some noise
appearing after the mapping procedure. That drawbacks must be solved.

On the other hand, Kv1 uses a structured IR light pattern emitter, and the IR
camera captures and measures the depth distances through the acquired pattern in-
formation. However, this type of depth-sensing camera cannot avoid capturing a
defective depth map image because of its own limitations and/or external factors.
There are some groups of black coloured pixels in the acquired depth map image
that correspond to depth-holes or depthless pixels, which do not contain any depth
values. Such meaningless pixels are appearing due to some of the following prob-
lems: occlusion, limited capacity of the depth distance acquisition range, relative
surface angle, or even surface materials. As a result, the depth-holes deteriorate
the quality of composed integral image and eventually relieves the 3D perception.

In this paper, we aimed to fuse the views of RGB and IR cameras of Kvl
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Figure 5.2: The comparison of the raw mapping result between the RGB and depth
map image: (a) Raw images mapping result; and (b) mapping result after the cali-
bration procedure. In this experiment, we were able to map the RGB image to the
depth map image. Note that such mapping sequence is not provided by the given
software development kit from Microsoft. On the contrary, our proposed approach
is able to map between two cameras at will.

without using the given software development kit. We also performed the restora-
tion process of depth-holes in order to improve the quality of displayed 3D scene.
Firstly, the camera calibration is performed in order to calculate and estimate the
inherent parameters of the RGB and IR cameras (the intrinsic and extrinsic param-
eters). Then, the coordinate systems of both cameras are mapped by using the cal-
ibrated parameters, and finally, the RGB and depth map images are merged prop-
erly. Note that we applied the progressive threshold image accumulation method,
and a chessboard pattern is utilized in the camera calibration phase, in order to
find the correspond feature points between two images easily. Secondly, Camplani
and Salgado’s depth-hole filtering method is adopted in order to fill in and recover
the depth-holes. This depth-hole filtering algorithm restores the depth-hole pixels
efficiently after considering both, the RGB and depth images information together.
We already explained this depth-hole filtering algorithm in Chapter 4 with details.
Thirdly, a dense point cloud is composed through the combination of the refined
depth map image and its corresponding RGB image, and eventually, the integral
image is computed and displayed via the integral-imaging monitor.

The camera calibration process between both, the RGB and IR cameras from
Kv1, allows to expand the limited usage of the original software from the manufac-
turer. The calibrated parameters help to map between two cameras freely, at will.
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Our proposed depth-hole filtering algorithm upgrades the performance of adopted
hole-filtering algorithm in a more efficient way (see Figure 4.1 in Chapter 4). Fi-
nally, the refined depth map assists to compose an improved quality of the integral
image, and also helps to display a more immersive 3D scene to the observers.

5.3 Paper III

There are various types of commercialized depth-sensing cameras in the mar-
ket. Among them, Kv1 and Kv2 from Microsoft have been really spotlighted and
widely applied in many different research areas during the recent years. In fact,
both 3D cameras have totally different features, such as, depth acquisition method,
captured image size, FOVs of the RGB and IR cameras, etc. On the other hand,
although the commercial specifications are announced from the manufacturer, sev-
eral detailed information are veiled and not provided to the consumers, like as, the
coupled areas of the scene between the RGB and IR cameras, FOV of the RGB
camera, and the density of the captured depth map, etc. For that reason, we aimed
to analyze such veiled properties and the inherent capacities of the exploited depth-
sensing cameras, and then confirm and verify the known specifications through
our experimental results. We also wanted to expand our conventional research ap-
proach, so that we applied totally different types of 3D cameras into our experi-
ment, and compared the results between the conventionally used IR depth-sensing
camera and newly adopted one.

In this paper, we set several experimental setups to compare the performances
and characteristics of Kv1 and Kv2. Firstly, coupled areas of the scene captured by
the RGB and IR cameras of Kvl and Kv2 are verified and analyzed: where they
are and how much areas are sharing together. Here, we use the chessboard pattern
as a common target, and then the captured images from the RGB and IR cameras
are merged into a single image through the computed correlation parameters. Sec-
ondly, the FOVs of the RGB and IR cameras from Kvl and Kv2 are calculated
via the empirical parameters, and then the FOVs information from the commercial
specification is compared with our derived results. Thirdly, the RGB and depth
map images are captured by Kv1 and Kv2 separately, and then two sets of point
clouds are composed and simulated into the virtual 3D space. After that, the den-
sity of depth information and detailed matters are compared and analyzed. Lastly,
two different integral images are displayed via our proposed 3D monitor, and the
final comparison results are presented.

The confirmed and verified issues through our experiments are the following.
Firstly, the coupled areas of the scene between the RGB and IR cameras from Kv1
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Figure 5.3: Comparison result between Kv1 and Kv2: (a) and (b) Depth map and
RGB images captured by Kv1; (d) and (e) from Kv2, respectively. (c) and (f) are
excerpted images of the displayed 3D scenes from our proposed 3D display sys-
tem. These two distinct results confirm the obvious differences between Kv1 and
Kv2.

and Kv2 are checked and analyzed (see Figure 2.6 in Chapter 2). Secondly, we
confirmed that the announced FOV information from the commercial specifica-
tion given by the manufacturer is only for the IR camera. Besides, the reliability
of official parameters are checked and proved again by us. Thirdly, the density
of acquired depth information from Kv1 and Kv2 have different formations and
characteristics (see Figure 5.4). Kv1 has specific layered structures in each certain
depth distances, so that it is an unavoidable defect that appears some depthless lay-
ers in the point cloud continuously. On the contrary, the Kv2 provides denser depth
information without any regularized figuration, whereas there are some depthless
pixels appeared at times in each corners of the captured depth map image (Figure
5.3(d)). Lastly, the displayed 3D scene (Figures 5.3(c) and (f)) certified that the
Kv2 has much bettered lateral of depth, and having a long range of axial distances
than the Kvl1.
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Figure 5.4: Display of the point clouds into the virtual 3D space: (a) From Kvl;
and (b) from Kv2. In both cases, the position of VPA is located just behind of the
second chair. Interestingly, there are some specific gaps and empty layers in the
simulated 3D points in (a), but not in (b). The depth volume of (b) is also deeper
than (a) because of the different capacity of depth acquisition between Kv1 and
Kv2.

5.4 PaperlV

A single 2D/3D camera cannot avoid losing the information of overlapped areas or
hidden surfaces along the line of sight, and it is an inescapable defect of mono per-
spective view. On the contrary, a multiple camera composition enlarges the FOV
and recovers the occluded information by complementing each other. Due to such
benefits, we exploited the multiple cameras into our experiment. The main purpose
of our experiment is to compose a stereo 3D camera set up, and to fuse two sets
of point clouds in order to fill in the vacant volumetric areas. In fact, the stereo
configuration is the most fundamental and basic approach for the multiple cam-
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era system. Here, we utilized heterogeneous 3D cameras into our experiment. The
main reason is that there are many different 3D cameras in the market, and we
could combine and apply the various different brands of 3D cameras in our fur-
ther additional experiments. However, two different depth-sensing cameras must
be homogenized due to their heterogeneous properties, so that further unification
processes are strongly demanded.

(d (e) ®

Figure 5.5: Comparison result between the displayed integral images: (a) and (b)
Captured by Kv1 and Kv2; and (c) composed result from our proposed approach.
(a) has lack of visual information due to the limited depth acquisition capacity
of Kvl, whereas it contains different perspective information from (b). On the
contrary, (b) has more abundant information than (a) thanks to the bettered depth
acquisition performance of Kv2. However, several objects are concealed and oc-
cluded (for instance, the blue box in (a) and (d)). After the registration process be-
tween (a) and (b), several depth-hole areas are filled in and restored properly thanks
to the stereo 3D camera configuration (the registration process is performed from
(a) to (b) sequence). To compare between the results, we excerpted the common
area of displayed scenes (d-f).

In this paper, we exploited Kvl and Kv2. Both depth-sensing cameras have
totally different characteristics, thus they are suitable equipments according to the
concept of our research. Firstly, the different image size problem between two
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depth-sensing cameras is solved via the image scale correction method. Secondly,
the color tone dissimilarity between two captured RGB images is corrected by
using the color transfer method. Thirdly, the homogenized two sets of point clouds
are then fused via the basic ICP algorithm. Note that such unification strategy
is already explained in Chapter 4 with details. Lastly, the fused point cloud is
simulated into the virtual 3D space, and then a bettered integral image is composed
and displayed via the proposed 3D monitor.

To the best of our knowledge, this was the first time to utilize the stereo-
hybrid 3D camera system to capture the light field, what confirms the novelty
of our research. Our proposed experimental system allows recovering the oc-
cluded/concealed volumetric areas efficiently thanks to the stereo 3D camera con-
figuration and the registration algorithm. The proposed unification strategy also
helps to homogenize the heterogeneous point clouds pair efficiently. We demon-
strated and illustrated the comparison results between hybrid cameras by using
various imaging experiments and details (see Figure 5.5). The last but important
thing is that further researches are available by exploiting the combination of the
different brands of heterogeneous depth-sensing cameras in a future.

5.5 PaperV

Thanks to the advance of science and technology, some proposals of capturing
and transmitting images in real-time were accomplished with a great deal during
the past two decades. After all, several companies announced their plenoptic cam-
eras (or light field cameras), which were influenced by Lippmann’s IP theory. The
main merit of these cameras is capturing both, the spatial and angular information
of light rays at the same time, proceeding from the natural scene in 3D. The man-
ufacturers also provide their handy solutions to extract good qualities of the RGB
and depth map images through the given softwares.

In this Paper, we exploited the plenoptic camera in order to expand our re-
search area by using a new type of camera. Besides, we applied the conventional
method in order to compose an integral image by using the point cloud, as in Paper
1. However, as we already mentioned in Chapter 3, this method has a drawback. If
a 3D point from a simulated point cloud is positioned really close to the VPA (in
front of or behind of the pinholes array), it cannot be projected to other pinholes
because of the limited incidence angles. Even, the neighboring 3D points also can-
not be penetrated to other adjacent pinholes, so that such situation causes to form
some apparent vacant areas in the composed integral image. To solve this defect,
we adopted the concept of synthetic aperture method into our experiment.
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Figure 5.6: Composed integral images with different factors: (a) Composed inte-
gral image through the empirically determined optimum factors; (b) pitch factor
changed from (a); and (c) FOV modified from (a). (d), (e), and (f) are the displayed
3D scenes through the proposed integral-imaging monitor. The composed integral
images have a same reference plane (positioned in the surface of a wall). (b) and
(e) present the blurred scenes because of 5 times larger pitch than (a). (c) and (f)
provide the magnified scenes of (a), in which the FOV is 2 times narrower than (a).

Our proposal in this paper can be divided into 5 steps. Firstly, a point cloud
is composed by the combination between the acquired RGB and depth map im-
ages, and simulated into the virtual 3D space. Here, we directly extracted the RGB
and depth map images by using the given software from the manufacturer (we ex-
ploited Lytro Illum plenoptic camera from Lytro company). Secondly, the VPA is
displaced far away from the point cloud, as in Figure 3.3(b) in Chapter 3. Note
that the number of virtual pinholes is set equal to the number of pixels which is
displayed behind of the each lenslet of the integral-imaging monitor. Besides, the
position of VPA is empirically decided in order to consider the trade-off between
the resolution of Els and the position that the black coloured pixels appear in the
captured images. For instance, if the VPA locates too close to the point cloud, the
composed scene cannot cover the entire information, and even some vacant spaces
(shadowing areas of the captured objects) will appear at the scene. In contrast, if
the VPA moves further from the simulated point cloud, the resolution of the com-
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posed Els are decreased, so that the process of finding a proper position of the
VPA must be underwent following trials and errors. But in the end, the final po-
sition of the VPA, the cropping factor, and the shifting factor will be define after
the decision of the reference plane’s location and the region of interested views
of the scene. Thus, the position of VPA and reference plane’s one are distinct and
separate components in this configuration, contrary to Paper 1. Thirdly, each sub-
aperture image is clipped out by considering the cropping factor and shifting factor.
In fact, the cropping factor selects the size of cropping area at the captured Els, and
the shifting factor decides the moving distance from center-view’s cropping region
to its neighboring views’ one. Fourthly, the cropped sub-aperture images are re-
sized in order to match with the size of the spatial resolution of integral-imaging
monitor. And fifthly, the resized sub-aperture images are converted to the integral
image, as following Figure 2.3 in Chapter 2.

Our proposed approach helps to avoid the black pixels appearing in the integral
image, and also assists to compose a large DOF at the displayed scene. Thanks to
the modifiable factors, the FOV is freely selectable and zoom in a specific region
of interest area of the scene is available, at will (see Figures 5.6(c) and (f)). On the
other hand, it is difficult to decide the optimum parameters for the best result. If
we consider a larger gap between pinholes, the DOF is reduced and the computed
integral image provides a blurred image at the displyed scene (see Figures 5.6(b)
and (e)). On the contrary, if the gap is smaller, the depth perception is reduced and
the parallaxes are mutually decreased; as a result, the reconstructed 3D scene has
flat depth volume and eventually loses the 3D sensation. That’s why it must be
underwent many trials and errors in order to find not only the adequate parameters
but also the reference plane and the VPA’s proper position.

In sum, as we mentioned in Chapter 3, the proposed method in this paper is
appropriate to be exploited when the displayed 3D scene not only needs a great
DOF and uniformly-focused scene, but also demands certainly selected reference
plane. On the contrary, our conventional method, as in Paper 1, is suitable to be
applied when the displayed scene needs great parallaxes, abundant depth sensation,
and the necessity of tuning the reference plane’s position frequently.

5.6 Paper VI

As we mentioned previously, the plenoptic camera has great merits of transcrib-
ing various information into a single-shot captured image. Thanks to such novelty,
this camera has been spotlighted by many photographers and consumers, and even
many scientific researchers also had a great interest of its potential possibilities.
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Among all, this camera got big attention due to the possibility of extracting a
dense depth map. In fact, the manufacturers provide their solutions to extract a
good quality depth map image from a captured plenoptic image, and also support
various useful functions to modify the scene through the given software, but un-
fortunately, they did not open their technical data. Due to such veiled techniques,
many research groups tried to compute and estimate the depth map by using their
novel approaches and solutions.

Meanwhile, hardware acceleration techniques are broadly applied nowadays
throughout the whole society at large. As we mentioned in Chapter 3, GPU ac-
celerated computing, which is a representative hardware acceleration technology,
is mainly aimed to process some vast amounts of data quickly or performs heavy
computations more efficiently. Due to such benefits and great performances of
GPU, we also studied this trendy and powerful technique, and eventually adopted
into our research.

In this paper, we illustrated our proposal to compose a dense point cloud from a
pair of single-shot images captured by the stereo-plenoptic camera configuration.
We exploited GPU acceleration technique in order to boost the heavy-repetitive
computation scheme in the integral image generation procedure. Firstly, a pair of
plenoptic images is captured by the proposed stereo-plenoptic camera system. As
we explained in Chapter 4, we utilized the camera slider in order to capture the
scenes in each different position in an easier way, and also to maintain the stabil-
ity of the capturing environment. In fact, it is difficult to arrange the 2 plenoptic
cameras together in a narrow baseline, thus, the use of camera slider is a suitable
alternative in such given situation (see Figure 4.5 in Chapter 4). Moreover, thanks
to the use of a single camera in the experiment, it was not necessary to perform
any further unification procedures. Secondly, two dense depth map images were
computed, and then two point clouds were composed. In the depth map image esti-
mation phase, we mainly followed Jeon’s method due to the comprehensible depth
estimation strategy (Figures 4.2, 4.3(b), and (e) in Chapter 4 present the composed
results). Meanwhile, some unexpected image distortions appeared in the comput-
erized RGB and depth map images, so that we firstly performed the plenoptic
camera calibration with the rectification procedure in both captured plenoptic im-
ages, and then secondly computed the depth map images (Figures 4.3(c) and (f)
in Chapter 4 show the results). The pair of depth map images and RGB images
were finally modified into two dense point clouds, and simulated into the virtual
3D space. Thirdly, these two point clouds were fused by using the ICP algorithm,
as in Paper 4. Fourthly, the integral image was composed and the computation time
was boosted through GPU acceleration technique. In fact, in our conventional ap-
proach, we calculated an incidence angle from a 3D point to a single pinhole, and
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then moved to the rest of consecutive pinholes sequentially. This repetitive and
time-intensive task takes a great deal of time. Thus, we assigned each pinhole’s
index to GPU’s threads and executed the incidence angle calculation all together
in a parallel way. Fifthly, the composed integral image was displayed and the com-
parison result between the singular plenoptic cameras and proposed stereo camera
configuration were presented (see Figures 4.6 and 4.7 in Chapter 4).

To the best of our knowledge, this was the first time to utilize the stereo-
plenoptic camera system to compose a dense point cloud and display the captured
scenes with full-parallax, what confirms the novelty of our research. The defects
of tilt and distortion problems in the captured plenoptic image were solved via
the adopted plenoptic camera calibration and rectification methods. The proposed
stereo-plenoptic camera configuration and the adopted registration algorithm help
to recover the occluded/concealed volumetric areas efficiently. The last but impor-
tant thing is that we boosted the integral image computation time by exploiting
GPU acceleration technique. Figure 5.7 presents the comparison result between
CPU and GPU’s computation time clearly.

Integral image generation time comparison
between CPU and GPU
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Figure 5.7: Comparison of integral image computation time between CPU and
GPU. The triangles represent the left and right scene’s computation results, and
the rectangles indicate the fused point cloud’s integral image computation results,
respectively. As shown in this figure, GPU accelerated computation speed is much
faster than CPU’s computation result when performing both tasks.
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Chapter 6

Conclusions

In this thesis, we devoted the best endeavors to produce an immersive sense of
depth and perception of 3D, via the combination of computerized 3D information
and InI technique. Our proposals in this thesis are simple and concise, but they have
originality. To the best of our knowledge, our contributions were not addressed so
far at that time, and even not commonly handled before we performed.

To begin with, we simulated a set of composed point clouds into the virtual 3D
space, and put an array of virtual pinhole cameras nearby (inside or a little way
off) the point cloud, at will. After that, the displaced pinholes array composed the
synthetic information with as many as the numbers of virtual cameras and with
tunable parameters. The composed images are then properly handled and edited,
and eventually integrated into an integral image which contains the spatial and
angular information at the same time. Finally, the produced image is displayed
in our proposed 3D monitor, providing an immersive depth perception and full-
parallax to multiple observers all together. Note that this methodology became the
foundation of this thesis, and also the beginning of our whole proposed researches.

Meanwhile, we proposed several approaches on how to handle and refine the
3D data acquired by different types of cameras. In fact, we faced some issues in the
computerized depth map, which are coming from the inherent problems of the uti-
lized cameras, or even due to external factors. Moreover, a singular camera cannot
avoid losing the information of overlapped areas, or the occurrence of occluded
surfaces along the line of sight, so that it is an unavoidable defect of mono per-
spective view. To solve such limitations and/or inescapable problems, we adopted
and applied various novel approaches and techniques. Note that some algorithms
were improved and upgraded respect to the original performance because of our
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6. Conclusions

additional supplements. The introduction of stereo camera configuration enlarged
the FOVs and contributed to recover the occluded information by complement-
ing each other. Here, the composed pair of point clouds is integrated into a single
point cloud properly through the adopted algorithm, and eventually, a bettered
quality integral image is composed and displayed. The last but important thing
is that we solved the critical defect of heavy-repetitive computation at the inte-
gral image generation phase via a hardware acceleration technique. Thanks to the
parallel computing methodology, we improved the efficiency and also boosted the
computation speed dramatically.

As a final remark, we would like to introduce and comment about our further
possibilities of research. Actually, there are many different 3D cameras in the mar-
ket currently, so that we could combine and apply the various different brands of
depth-sensing cameras into our further experiments. Of course these adopted cam-
eras must be homogenized due to their heterogeneous properties, so that a lot of
diverse and different unification procedures should be also strongly demanded. The
combination between microscopy and our proposals will be a great research task
and also a part of a potential application area in the future work. On the other hand,
applying various registration methods in the multiple 3D camera composition is
another potential research complement. In fact, we adopted the basic registration
algorithm into our experiment, but as a matter of fact, there are a lot of robust
algorithms proposed by several research groups. Thus, our potential research com-
plements will also be to improve the quality of displayed 3D scene by applying
diverse registration methods.

Hopefully, we would mind that our achievements of the combination between
computerized dense 3D information and Inl technology could be a piece of mile-
stone to anyone interested in and also needed. We also desire that our efforts would
help the mass adoption of these technologies via various research areas in the com-
ing years.
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Towards 3D Television Through Fusion of Kinect and
Integral-Imaging Concepts

Seokmin Hong, Donghak Shin, Byung-Gook Lee, Adrian Dorado, Genaro Saavedra, and
Manuel Martinez-Corral

Abstract—We report a new procedure for the capture and pro-
cessing of light proceeding from 3D scenes of some cubic meters
in size. Specifically we demonstrate that with the information
provided by a kinect device it is possible to generate an array of
microimages ready for their projection onto an integral-imaging
monitor. We illustrate our proposal with some imaging experiment
in which the final result are 3D images displayed with full parallax.

Index Terms—Integral imaging, kinect, 3D monitors.

1. INTRODUCTION

ONVENTIONAL photography is fully adapted for

recording in a 2D sensor the images of the 3D world.
Although the images produced by photography are essentially
2D, they carry many cues that account for the 3D nature of
the recorded scenes. This is the case, among others, of the per-
spective rules, which make closer objects to appear bigger than
further ones. This effect is due to the well-known fact that the
size of the image in the photographic sensor is determined by
the angular size of objects. Other cues are shadows, occlusions,
or defocus. In case of video recording, the relative speed of
moving objects (or static objects when the camera is moving)
is also a significant depth cue. For most of applications, the
capture and display of 2D images provides enough information
and/or satisfaction to users and minimizes the amount of data
to be stored, transmitted and displayed. This is the reason for
the still massive use of 2D photography and video.
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ations

However, the need for capturing and displaying the 3D in-
formation of 3D scenes is increasing very fast in the 21st Cen-
tury. Its potential application in, for example, microscopy [1],
[2], medical imaging [3]-[6], optical inspection in production
chains [7], security monitoring [8], or virtual simulators for civil
or military applications [9], etc., makes the capture and display
of 3D images a hot topic in the research end/or engineering for
the next decade.

If we discard, at this moment, holography, which still needs
coherent illumination, or stereoscopy, which does not provide
real 3D experiences, we can affirm that technology based
on the Integral Photography principle is in the right way of
producing acceptable 3D experience. Integral Photography was
proposed, in 1908, by Gabriel Lippmann [10]. His proposal
intended to face the problem of conventional photographic
cameras which, when working with 3D scenes, do not have
the ability of recording the angular information carried by the
rays of light passing through their objective [10]. Instead, the
irradiance received by any pixel is proportional to the sum of
radiances of all the rays, regardless of their incidence angle. To
overcome this lack, Lippmann proposed to insert a microlens
array (MLA) in front of the photographic film. This permits
to register an array of microimages, which store a radiance
map with the spatial and angular information of all the rays
proceeding from the 3D scene.

The radiance map has been named in different ways, such
as integral photography [10], integral imaging [12], lightfield
map [13] or even plenoptic map [14], [15]. From this map it is
possible, for example, to tackle the challenge of displaying 3D
images with a flat monitor [16]-[19].

As for the methods for the capture of the integral imaging,
some application-dependent proposals have been made along
the past few years. When the 3D scene is small and close to the
camera, the plenoptic architecture, in which the MLA is inserted
at the focal plane of the camera lens, seems to be the best adapted
[20],[21]. Also interesting is the use of a small array of tiny
digital cameras [22], which can be inserted in a cellular phone.
However, due to low parallax, its utility is restricted to close
objects.

When the 3D scenes are much bigger, of the order of some
cubic meters, a different capture rig is necessary. In this case, the
most useful proposal have been based on the use of large camera
arrays, arranged either in 1D or in 2D grid [23], [24]. Note that
in this case, the proposed techniques need an extremely accurate
synchronization between the cameras, and make use of a huge
amount of data, which are unnecessary for display purposes.

, but republication/redistribution requires IEEE permission.

rights/index.html for more information.
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Our aim here is to propose the fusion between two concepts
that are very different, but which are very successful in the area
of 3D imaging and sensing. We refer to integral imaging and to
kinect technology. This kind of fusion was proposed previously,
but with different aim [25]. Kinect technology permits the regis-
tration, in real time, of accurate depth maps of big, opaque, dif-
fusing 3D scenes. This is obtained with low resolution, which,
however, matches perfectly with the requirements of resolution
of integral-imaging monitors. Then, we propose first to capture
the sampled depth map of a 3D scene with the Kinect. Second,
simulate with our software, the capture of the sampled depth
map with an array of digital cameras whose position, pitch and
resolution are in good accordance with the characteristics of the
integral-imaging monitor. And third, to project this information
onto the monitor, so that the lenses of the MLA integrate the
light emitted by the pixels, producing 3D scenes displayed with
continuous perspective and full parallax.

II. ACQUIRING 3D POINTS CLOUD WITH KINECT

Although, as stated above, there are different methods to
record the information of a three-dimensional scene, in this
contribution we used a Kinect device, which was initially
launched, by Microsoft!, as an add-on accessory for the Xbox
game console on 2010. Its unique features have been de-
terminant to find applications in human's full body tracking
[26], motion detection and voice recognition. However, the
distinctive hallmark of this device is its capability for recording
simultaneously the RGB image and the depth information
in real-time. This can be made because the Kinect has two
different cameras, which can operate with the same resolution
[27], a RGB camera and an infra-red (IR) one. The principle
behind the Kinect technology is based on depth mapping
obtained from projected structured IR patterns. The Kinect's
IR emitter projects a fixed pattern onto the target and both the
depth distance and the 3D reconstructed map are obtained from
the reflected pattern recorded by the IR camera [28], [29]. The
depth information provided by the Kinect is ranged between
800-6000 mm from the sensor plane. However, data should be
acquired, generally, between 1000 and 3000 mm. This is due to
the quality degradation of the depth data for larger distances as
result of the noise and its own low resolution [30].

Our aim here is to achieve a point cloud that includes the
information of 3D position and color intensity. Although the
Kinect provides such information, a limitation comes out from
the fact that the two cameras (RGB and IR) are physically sepa-
rated from each other and, therefore, their fields of view are dif-
ferent. Consequently, both scenes will not match properly, see
left picture in Fig. 1.

To overcome this drawback, we use the function named
‘NuilmageGetColorPixelCoordinateFrameFromDepthPix-
elFrameAtResolution” which is provided by the software
development kit (SDK) of the Kinect, from Microsoft.2. This
function operates by matching depth information onto RGB
image and it works in real time. Fig. 1, right picture, shows the
final result after the proper matching between two cameras.

Microsoft Kinect. [Online] Available: http://www.xbox.com/en-us/kinect/

Fig. 1. (left) Raw mapping result and (right) reconstructed mapping result after
our proposal method. See text for further details.

Fig. 2. Display of a 3D points-cloud. From both panels, it is clear that each
point is given by its (x, y, z) position and its color intensity.

After matching the two images, we reassign the information
into points located in a 3D virtual space using OpenGL environ-
ment. Now, each point is defined by six values: its (X, y, z) coor-
dinates and its RBG color intensities. Based on their depth po-
sitions, the correct arrangement of the whole points is satisfied
by using Standard Template Library (STL) and its associative
container that is called ‘multimap’.3, 4. In Fig. 2, the generated
3D point cloud is shown.

III. DEPTH ARRANGEMENT OF THE 3D POINTS-CLOUD

The next step of our procedure is to prepare the algorithm for
the calculation of the microimages for their projection onto the
integral-imaging monitor. To this end we need first to express
the spatial 3D coordinates of the points in a homogeneous way.
Take into account that coordinates of the 3D point cloud pro-
duced after the previous section, are expressed in pixels (x and
y coordinates) and in millimeters (z coordinate). To make the
system homogeneous we performed a calibration experiment,

2Kinect SDK. [Online] Available:http:/msdn.microsoft.com/en-us/library/
hh855347.aspx

3STL. [Online] Available: http://en.wikipedia.org/wiki/Standard_Template
_Library

4STL-map.  [Online]
1fe2x6kt(v=vs.110).aspx

Available:  http://msdn.microsoft.com/library/
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Fig. 3. Scheme of the algorithm for calculating the microimages. The number
of pixels of the integral image and the number of (x,y) pixels of the points cloud
are similar.

using a chessboard as the object, and concluded that in our case
one pixel was equal to two millimeters in the object space.

For the second step, the characteristics of the Inl monitor need
to be known and expressed in pixel coordinates. Specifically, in
our experiment we used an iPad equipped with retina display
(264 pixels/inch), and a MLA consisting of 147 x 147 lenslets
of focal length f;, = 3.3 mm and pitch p = 1.0 mm (Model
630 from Fresnel Technology). Then, for our algorithms, any
microimage was composed by 11 pixels, the gap between the
microlenses and the display was fixed to g = 36.3 px, and there-
fore the full size of the integral image would be at most 1617 x
1617.

IV. MICRO-IMAGES GENERATION

To generate the microimages we first resize laterally the 3D
points cloud from 480x 640 pixels to 1213x 1617 pixels. Note
that this change does not produce any distortion, since the ratio
is still 4:3. In our computer calculation we simulate an experi-
ment of capture of microimages. In this experiment we placed
the points cloud at a certain distance from a simulated pinhole
array. The distance is equal to the distance between the original
scene and the kinect (see Fig. 3). Note that from now and here-
after, the plane where the synthetic pinhole array is placed will
be named as the reference plane. Then we assigned the values
of the pixels of the microimages by back-projection through the
pinholes, as in [31].

Note that when these microimages are projected onto the
monitor and displayed through the microlenses, the result will
be a 3D image that is floating at a big distance from the mon-
itor. This can reduce drastically the resolution of the displayed
3D scene, and provide a windowed aspect to it. What is more
convenient is to prepare a set of microimages such that the dis-
played 3D image is in the neighborhood of the MLA, with some
parts in front of it and some other parts behind. To obtain this
directly with our algorithm, we can shift axially the 3D cloud
towards the synthetic pinhole array, so that the reference plane
is within the 3D scene (see Fig. 4). From the figure it is apparent
that the microimages strongly depend on the reference plane po-
sition.

JOURNAL OF DISPLAY TECHNOLOGY, VOL. 11, NO. 11, NOVEMBER 2015

(@) (b)

Fig. 4. Scheme of the back-projection algorithm. (a) The reference plane is
close to the 3D point cloud; (b) The reference plane is within the 3D cloud.
Pixel assignment strongly depends on the cloud position.

Fig.5. Collection of microimages generated from the 3D points cloud captured
with the kinect. (a) The full scene is in front of the pinhole array, like in the
scheme shown in Fig. 3. (b) The 3D points cloud was displaced toward the
pinhole array. In this case the front part of the seat of the red office chair is at
the pinhole-array plane.

Finally, following Okano [32], we rotate any microimage by
180° about its center to avoid the pseudoscopic display, and re-
size the matrix to 1145 x 1527 to take into account the resolu-
tion of the retina display (10.39 px/mm).

V. EXPERIMENTAL RESULTS

First we show, in Fig. 5, the microimages calculated for two
different positions of the reference plane.
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Fig. 6. Single-frame excerpt from video recording of the implemented Inl mon-
itor (Media 1). The video is composed of views of the monitor obtained from
different horizontal and vertical positions.

Fig. 7. Kinect output for a 3D scene with human model. (a) RGB picture. (b)
Depth map from the IR picture.

Then, the microimages shown in Fig. 5(b) were displayed on
iPad. The MLA was properly aligned so that pixels were close
to the focal plane. Exact adjustment could not be made, due to
the transparent plate that covers the retina display. This small
misadjustment, about 0.5 mm, resulted in some braiding effect
[33]. The Inl monitor is shown in Fig. 6. It is apparent from the
movie that the monitor projects a full parallax 3D image. This
has been possible after a single shot capture thanks to the fusion
between the kinect capture and integral-imaging processing and
display.

Fig. 8. 3D points cloud of the captured scene. In green text we show the pa-
rameters for the microimages calculation and the position of the reference (or
pinhole-array) plane.

Fig. 9. Integral image ready for its projection onto the InI monitor. Note that
the reference plane was set just behind the back of the human model.

Fig. 10. Single-frame excerpt from video recording of the implemented Inl
monitor (Media 2).

To confirm the utility of our approach we did a second ex-
periment and applied the procedure to a 3D scene with a human
model. In Fig. 7 we show the RGB and the depth-map images
obtained with the kinect. From this information we calculated
the 3D points cloud shown in Fig. 8. In such figure we show
also the parameters for the microimages calculation. Finally,
in Fig. 9 we show the microimages obtained after application
of our algorithm, which are ready for their projection onto the
retina display of the iPad.

Again we aligned the MLA, just placed in contact with the
cover plate of the retina display, and arranged the InI monitor
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for displaying the 3D image of the human model. Note that in
this case we set the reference plane just behind the back of the
model, so that all the body and mainly the left hand were recon-
structed floating (about 3 cm the hand) in front of the monitor.
This cannot be perceived in the video, but was clear for binoc-
ular observers. To show here the 3D nature of the displayed
image we have recorded a video composed by views of the mon-
itor obtained from different horizontal and vertical perspectives.

VI. CONCLUSION

In this paper, we have reported a novel procedure for the
capture, processing and projection of integral images. Whereas
the plenoptic camera is the best suited for the capture of inte-
gral images of small 3D scenes, the method proposed here can
gain competitive advantage over other methods for the capture
of integral images of big 3D scenes. Main advantage of fusing
the kinect and the integral imaging concepts is the acquisition
speed, and the small amount of handled data. Also the algo-
rithms proposed are simple. We have demonstrated the utility
of our method with two experiments, which show that full-par-
allax 3D images can be displayed by an Inl monitor, and that
calculated microimages can be adapted to the characteristics of
the monitor. In further research we will combine the 3D points
clouds obtained with a pair of Kinect, in order to tackle the
problem of potential occlusions.
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Three-Dimensional Integral-Imaging Display
From Calibrated and Depth-Hole Filtered
Kinect Information

Seokmin Hong, Adrian Dorado, Genaro Saavedra, Juan Carlos Barreiro, and Manuel Martinez-Corral

Abstract—We exploit the Kinect capacity of picking up a dense
depth map, to display static three-dimensional (3D) images with
full parallax. This is done by using the IR and RGB camera of
the Kinect. From the depth map and RGB information, we are
able to obtain an integral image after projecting the information
through a virtual pinhole array. The integral image is displayed
on our integral-imaging monitor, which provides the observer with
horizontal and vertical perspectives of big 3D scenes. But, due to
the Kinect depth-acquisition procedure, many depthless regions
appear in the captured depth map. These holes spread to the gen-
erated integral image, reducing its quality. To solve this drawback
we propose here, both, an optimized camera calibration technique,
and the use of an improved hole-filtering algorithm. To verify our
method, we performed an experiment where we generated and
displayed the integral image of a room size 3D scene.

Index Terms—Bilateral filter, bilinear interpolation, camera
calibration, integral imaging, kinect, median filter, 3D display.

1. INTRODUCTION

ONVENTIONAL photography is fully adapted to record
C the 3D world scenes into a two-dimensional (2D) sen-
sor. Although 2D images carry some cues from the 3D nature of
scenes, they still lack important information. Fortunately, nowa-
days there are techniques that are able to record 3D information
from 3D scenes. One interesting method is to record a depth
map. A depth map can be obtained, for example, by the stereo
vision technique, which takes profit from the disparity between
the images captured with two cameras arranged horizontally
[1], [2]. Other techniques are based on the projection of a ran-
dom IR dot pattern [3], [4], or on time-of-flight technology
[5]-[7]. Also interesting is to take profit from the vertical and
horizontal views captured in with integral-imaging (Inl) tech-
nology [8]-[12]. InI can provide 3D images in color with, quasi-
continuous, horizontal and vertical parallax. For this reason it
has been considered as one of the most promising technologies
for next generation of 3D displays [13]-[18].
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In a previous work we proposed the use of the depth map and
a RGB image obtained with a Kinect to calculate an integral
image and project it onto a 3D display system [14]. Although
innovative, this research provided results that must be improved.
The main problem of this previous research was the appearance
of big holes in the depth map, which propagate up to the gen-
erated integral image. Another problem comes from the use the
Kinect’s software-development-kit (SDK). This method imple-
ments a mapping from IR camera to the RGB camera of the
Kinect in order to merge the views of both cameras. But after
applied, the SDK function produces some noise due to an error
in decimal computation. In addition, this method can’t make the
mapping in the opposite direction.

In order to solve these problems, we propose some alterna-
tives. First, we propose a new method for the camera calibra-
tion process between the two different sensors presented in the
Kinect. This procedure is described in Section II. (Fig. 1(a) and
(b)) Second, we propose to recover the lost depth information
by using a filtering algorithm, which is explained in Section
III (Fig. 1(c) and (d)). By applying these changes, we are able
to obtain a better depth map, with lesser holes, due to the fil-
tering and a better calibration process. With this improved 3D
information, we generate higher quality of microimages. The
microimages generation process is descripted in Section IV. Fi-
nally, in Sections V and VI, we provide experimental results and
conclusions respectively (Fig. 1(e)).

II. CALIBRATION BETWEEN THE TWO DIFFERENT TYPE
OF CAMERAS OF THE KINECT

The Kinect device is well known for its capacity of captur-
ing simultaneously, with two different types of camera, both, a
color image and a dense depth map [19]. However, the field-of-
view (FOV) of the two cameras are not matched properly. One
solution to this drawback is the well known Camera Calibra-
tion Technique [20]-[25], which is able to correct the camera-
lens distortions, to figure out the focal length and to estimate
the 3D location of a camera in real world coordinate system.
Furthermore, this process can determine the correlation be-
tween the camera’s own coordinate’s unit (image’s pixel co-
ordinate) and the real world’s measurement unit (millimeters,
centimeters, etc.).

The calibration is a two-step process. First, in order to find
a relationship between two cameras (that is, in order to obtain
their intrinsic and extrinsic parameters) a special pattern must be
captured. Second, the two captures are merged together using

1551-319X © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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(d) (e)

From left to right: (a) Captured raw color intensity image. (b) Processed image: coordinate conversion from color intensity camera to Infra-Red (IR)

camera of the Kinect by using calibrated camera parameters with bilinear interpolation method. (¢) Captured raw depth map image. (d) Image obtained using our
proposed depth-hole filtering algorithm. (e) Final result: single-frame excerpt from the recorded video of the implemented integral imaging monitor.

5 times division
& otsu threshold

1 time division
Input

15 times division
& otsu threshold

10 times division

& otsu threshold Output

& otsu threshold

5 times

Fig. 2.

Sequential steps of the process to detect the chessboard pattern: the image is segmented into different parts. Otsu threshold is applied to each part and

the results are accumulated. The procedure depends on the scene; therefore, we applied several segmentations to the captured scene, from 1 to 15 times flexibly.
Upper row shows the results of original Otsu algorithm. Bottom row shows the result of adding accumulative procedure.

© (d

Fig. 3. Processed result using the proposed threshold technique. (a) Raw
image from IR camera; (b) raw image from RGB camera; (c) thresholded image
from (a); and (d) thresholded image from (b). Chessboard’s corner points are
found correctly even when the image has low illumination.

a transformation that takes into account the data previously
obtained. Therefore, in order to calibrate we use a chessboard
as the reference pattern for both cameras. The main reason of
using a chessboard is that a regularized pattern improves the
accuracy of the calibration [26].

It is worth to note that the image of the chessboard recorded
with the IR camera is very dark, see for example Fig. 3(a) [27].
In order to overcome this drawback we propose to use a new
algorithm that is based in the application of well-known Otsu
thresholding method [28], but in iterative accumulative way.
Our algorithm works as follows:

First, the image / is divided into i different parts, with a
sequential ratio S; =1/il/i. Then, Otsu algorithm, 7' is
applied to each individual part J; /. Finally, the results are saved
accumulatively into destination /,, as shownin Eqs. (1) and (2)

Lo =Y HT(I)+Tas} /2] M
where
I =8 (1) @

The main feature of this new algorithm is that, indepen-
dently of the complexity of the whole image, it highlights the
chessboard pattern. Figs. 2 and 3 show this procedure in detail.

Once applied our algorithm, we can calculate the intrinsic
and extrinsic parameters of the cameras. The intrinsic parame-
ters are: the focal length, the aspect ratio and the central point of
the view. The extrinsic parameters are the camera 3D location
and orientation. We can use the values of theses parameters to
fuse both cameras coordinate systems. The matrix Eqgs. (3) to (5)
rule the process to merge the FOV of the two cameras. In these
equations K represents the intrinsic parameters; 2D point coor-
dinate within each image is represented by p; P is each camera’s
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Fig. 4.

From left to right: (a) Raw RGB intensity image; (b) calibrated RGB image from RGB camera to IR camera, (c) interpolated image’s result and (d) and

(e) raw mapping result in original and calibrated scene respectively. We can see that there are gaps (like as black stripes) in image (b). This is due to an error
coming from the decimal computation procedures between each calibrated pixels. We can fix this by using a bilinear interpolation; the result of the interpolation
is shown in (c). To attest this calibrated result, we make a mapping between the RGB image and depth map image. From the panel (e), we can check that the

calibrated RGB image fuses to depth map image well.

coordinate 3D point. Finally R and T are rotation and translation
matrices. These equations also permit to do an inverse mapping,
so that it is possible to make the mapping (merging the FOV)
between the two cameras in both directions

Prgyy = inv (Kygh) X Prgh (3)
Py= Rx Py, +T “4)
pir = Kix X Py )

Unfortunately, there is still another problem related with the
calibration process. The position of a pixel in an image is given
in natural numbers. The final calibrated pixel coordinate (the one
with the merged FOV) is represented by real numbers, which
are rounded. This generates some gaps within calibrated pixels,
see Fig. 4(b). As result, many pixels are misaligned in the cali-
brated image and therefore, into the 3D point cloud also same.
To solve this problem, we applied a bilinear interpolation to the
empty pixels between calibrated pixels; see Fig. 4 (c).

Finally, taking this into account, the calibrated RGB image
can be mapped well to the IR image. Also, we are able to display
in real time the calibrated images of both cameras. After all this
calibration process, now it is possible to use the depth map and
the RGB image to generate a 3D virtual point cloud in which
we assign to each point its corresponding 3D position and RGB
intensity. The Fig. 5 shows two views of a single shot of the
virtual 3D point cloud corresponding to the recorded scene.

III. DEPTH HOLE FILTERING

From the information captured with the Kinect we can com-
pose a collection of microimages ready to be displayed on an
InI monitor, as we showed in our previous paper [14]. However,
that research had an important drawback. There were depthless
pixels in the recorded depth map, which generated noise into
the calculated microimages.

In the Kinect, the IR light source emits a known pattern
and the depth information is calculated after comparison, by
using triangulation method, between the known illumination
pattern and the observed dots at the captured scene [29]. The
problem arises when some reflective surfaces reflect IR light into
another direction or when the IR light penetrates into transparent
surfaces. This produces a loss in the depth information provided
by the Kinect and thus, generates the holes in the depth map.

1088_mm

Fig. 5. 3D point cloud in the virtual space. From both panels, it is clear that
each point has its own (x, y, z) position and RGB color intensity. Note that each
3D point is ordered on the basis on real world’s measurement unit.

To avoid this drawback, we propose here the use of a depth-
hole filtering process based on Camplani and Salgado work [30].
In order to make the algorithm more efficient, we propose here
some improvements on the original version of the algorithm. The
key idea of Camplani and Salgado filtering process is iteration.
In their proposal the depth map is captured several times. Every
acquired depth-map frame is filtered in order to remove the
spatial noise and purify the object boundaries. This filtered depth
map is used to update both, the depth model and the filtering
algorithm. Therefore, each acquired depth map increases the
quality of the depth model and the applied filter. So, after any
iteration more reliable depth information is obtained.

The flow chart of the hole-filtering algorithm, including our
proposed improvement, is shown in Fig. 7. The real depth infor-
mation D and the color intensity I are captured at every loop. A
computed depth-map model D, 4.1 and consistent depth map
Clepn are the core of this algorithm. The Dy, e is the result of
applying the filter to the depth map and the Cyepy, is a version
of the depth map that only stores the maximum depth values of
all the iterations results.
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2-(a)

2-(b)

Fig. 6.

2-(c)
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2-(d)

Comparison between original (1-(a)-(e), see also Media 1) and proposed (2-(a)—(e), see also Media 2) filtering algorithm: (a) is initial frame,

(b) 5 iterations, (c) 20 iterations, (d) 80 iterations, and (e) 219 iterations. Through the panels, we can compare the process clearly. Above all things, the
proposed strategy can recover the depthless pixel more efficient than the original method.

1. Captured D 2. Collect & 6. Median filter
scene from [— Classify
Kinect depthless pixels
Dinodet
» D’modet 5. Update
/]
Drittered
I 3. Depth data
filtering - 4. Hole filtering
with J.B.F L
D’Fitterea i

« D:Captured depth information ~ + D’: Classified depth pixels from D to D

* I: Captured RGB image * Dmoder : Classified depth pixels from D to Dyuoger
* Cuepen Consistent depth map * D'fitgerea: The depth information being filter processed
* Dimoder: Computed depth map model *  Dyigorea: Final result of fitered depth information

Fig. 7. Flow chart of the proposed hole filtering strategy.

After capturing the 3D scene information, the second step
is collecting and classifying the depthless pixels by using the
captured depth information and a computed depth-map model.
If D has depthless pixels, they are replaced by the corresponding
pixel of Dy, oqe1 if the pixel value is reliable (if Cyp i1, is greater
than threshold value dyj,yes). And if Dy, 4.1 has depthless pixels,
they are replaced by the corresponding pixel from D. Due to this
change in information, D and Dy,,q¢1 become D' and D' y,04e1
respectively. Note that on the first iteration, the value of Dy,odel
and Cyepin are 0, and D’ will be assigned with the value of D.

Next, the depth data is filtered using a joint (or cross) bilat-
eral filter (JBF) [31], in order to improve the classified depth
information’s accuracy. JBF makes depth values reliable and is
able to distinguish edges from surface’s regions by checking and
comparing neighbor pixels on both, the depth map and the RGB
image. Note that JBF is an improved version of the similarity
kernel of the bilateral filtering technique. The bilateral filter-
ing is an edge-preserved and noise-reduced smoothing filter. To
manage each pixel the filter has only two main kernel functions:
the similarity kernel and the closeness kernel. These kernels are

based on a Gaussian distribution and the pixel value is replaced
by a weighted-average from their neighbor pixels [32].

The JBF works as follows; ¢(j, k) is the domain term like as
bilateral filter, s(|[ D7 ,., — D ,.|l) is the similarity kernel in
classified Dyyode1 and s([| I — I*]|) is from the similarity kernel
of color intensity. The scalar 1/ is a normalization factor, and
all of its calculated result is represented by Df..,.q [see, the
Egs. (6) and (7)]

S ko k
Dglmm{: 1/R //k o D"c(j.k)s (HD,fnodol = D'iyodel )
€Qj

s(IP =17) ©)

where
R=[[ - clibs ([0hosa = D) s (17 = 14))
keQj (7)

The fourth step consists on improving the previous filtered
result. If Df . .4 still has some depthless pixels or regions,
some of the missing depth information can still be recovered
using all the data previously obtained. H (C’dcp“,_ Q; ) is a binary
function that evaluates which pixels need to be updated with the
information stored in D’ and I. ¢(j, k) and s(I/ — I*) are the
same filtering functions as Eq. (6)

Dhpises = H Couns )/ [ Delihy
ke
s([7 - 1) ®)

where

W://D“@“ﬂwfﬁm ©

keQj
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Fig.8.

Collection of microimages generated from the 3D points cloud captured with the Kinect. These panels show about different focused planes; (a) is focused

in 870 mm, (b) is 1290 mm, (c) is 1520 mm, (d) is 2385 mm, (e) is 3145 mm, respectively. Each focused plane shows an object with clear shape.

H (Cyeptn, 2j) =

Lif count [Caepen (€) > dinres] /Area (€;) > thy,
0 otherwise :

(10)

The fifth’s step is to update the filtered depthless pixels into
both, Cyepin and Do .1 Parameter ovis a constant weight factor
whose value is obtained from our empirical evidence. The aim
of this value is to obtain stability on the process, giving more
importance to the previous results

) — ) )
D}odet = ®Direred + 1 =) Dy giorp (D
) ; J J
¢l — { Puota if Digaar > Clepun (12)
depth otherwise

The last step is the application of a median filter, which is
our contribution to the process. It helps to expand reliable depth
values into their neighbor pixels or clean up the noise in ob-
ject’s boundary/edge regions. The filter chooses the medium
value between its neighbor pixels. For that reason, it can re-
move efficiently and correctly small rubbish particles and, as
result, Dy,oqde1 and Cepn are updated and becomes a reliable
filtered and computed result.

After a few repetitions using this proposed filtering process,
we can get a clear hole-filled depth map. Fig. 6 shows the results
of applying both, the original algorithm and the proposed one, to
some specific frames. All the images in Fig. 6 correspond to the
consistent depth map Cycp1,. Note that when we add the median
filter, the small and big depth-hole regions were recovered more
efficiently than in the original algorithm [30]. Also, instead of
the traditional 256 depth scales used in the original paper we
used a real depth scale of 3976 (chosen for empirical reasons).
This means that we have more abundant depth information than
the original one.

To finish this section we summarize the parameters used in
the algorithm in Table I.

IV. MICROIMAGES GENERATION

In order to generate the microimages, we follow a process
equivalent to the one reported in our previous paper [14], but

Recording
de

Fig. 9. The overview of our experimental system. We moved the record-
ing device vertically and horizontally to record different perspectives of the
integrated image.

TABLE I
ALGORITHM PARAMETERS

4 for closeness filter ¢ 4.5

4 for similarity filter s for the depth (0 - 3975 scales) 9 x 9
4 for similarity filter s for the color (0 - 255 scales) 9 x9
dibres 5
thy, 0.65
@ 0.04
Median filter size TxT

adapted to a new display device. Specifically, in our experi-
ment the Inl monitor is composed by a Samsung SM-T700
(359 pixels/inch), and a micro-lenslet-array (MLA) consisting
of 113 x 113 lenslets of focal length f;, = 3.3 mm and pitch
p = 1.0 mm (Model 630 from Fresnel Technology). The gen-
erated microimages are then composed by 15 x 15 px, the gap
between the microlenses and the display is fixed to g = 49.5 px,
and the full size of the integral image is 1695 x 1695 px.

The VPA used to capture the synthetic microimages is placed
into the point cloud’s coordinate system. Note that the position
of the VPA will determine the reference plane. Then we project,
using projection mapping, each point of the 3D cloud through
each pinhole of the VPA to obtain the microimages, as in [33].
We resize the image to 1597 x 1197 px to take into account the
resolution of the display system (14.13 px/mm).
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Fig. 10.  Comparison between the original method (7op-Left image, and also Media 3) and the proposed method (7op-Right image, and also Media 4). We have
highlighted some specific parts of the images. It is clear that the result obtained with our proposed method shows more abundant 3D information.

29mm ____29mm

29m

29m

Vetical perspectives Horizontal perspectives

Fig. 11.  Different views of the Inl monitor in the vertical and horizontal direction, showing that the Inl monitor has full parallax. The distance between different
images is 29 mm. The total viewing zone is of 58 x 58 mm. A video of the views is shown in Media 4.

In particular we show, in Fig. 8, the microimages calculated V. DISPLAYED 3D IMAGE
from a VPA situated at different positions. The reference plane
position determines which parts of the 3D image are in front or
behind the screen.

Finally, the generated microimages are displayed onto our Inl
monitor. The MLA was properly aligned in front of the display
system. The Inl monitor displays and integrates the microimages
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towards the observer’s eyes. Thus, a binocular observer can see
some parts of the displayed scene in front of the monitor and
some other behind. However this full-parallax effect cannot be
directly observed in a manuscript or even in a video. In order to
demonstrate here this effect we proceeded as follows. First we
replaced the observer by a monocular digital camera. The Fig. 9
shows our experimental system’s overview. Then we obtained a
collection of pictures after displacing horizontally and vertically
the camera along a region of 58 x 58 mm. With these pictures
we composed a video in which the Inl monitor was observed
from different horizontal and vertical perspectives. The Figs. 10
and 11 show the experimental results with more clarity. As
you can see in Fig. 10, the hole-filtered depth map generates
better images, recovering some of the lost depth information
in the original one. In Fig. 10, we have highlighted with color
rectangles the areas where the differences are clearly shown.
Finally, Fig. 11 shows the different perspectives, vertical and
horizontal, of the Inl display system.

VI. CONCLUSION

In this paper, we have reported how to generate improved mi-
croimages using manipulated 3D information, obtained with a
Kinect device. For that, we use the camera calibration technique
with bilinear interpolation method. Also, we have proposed an
efficient hole-filtering algorithm to fill the depth holes, which
appear in the depth map captured by the Kinect. Therefore, this
well-refined depth information reduces the noise in the recorded
3D information. In order to project our synthesized 3D infor-
mation onto an InI display system, we generate microimages by
using projection mapping through a VPA. To demonstrate the
utility of our proposal, we projected the microimages onto an
InI monitor, providing different, depth-hole free and continuous
horizontal and vertical perspectives to the observer.
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Abstract. We exploit the two different versions of Kinect, v1 and v2, for the calculation of microimages projected
onto integral-imaging displays. Our approach is based on composing a three-dimensional (3-D) point cloud from
a captured depth map and RGB information. These fused 3-D maps permit to generate an integral image after
projecting the information through a virtual pinhole array. In our analysis, we take into account that each of the
Kinect devices has its own inherent capacities and individualities. We illustrate our analysis with some imaging
experiments, provide the distinctive differences between the two Kinect devices, and finally conclude that Kinect
v2 allows the display of 3-D images with very good resolution and with full parallax. ® 2016 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.0E.56.4.041305]

Keywords: three-dimensional display; integral imaging; point cloud; Kinect v1; Kinect v2.
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1 Introduction

Recently, integral imaging (Inl) has been considered as one
of the potential technologies in order to display real world
scenes. Conventionally, the pickup stage of Inl is performed
by inserting a tiny lens array in front of a two-dimensional
(2-D) imaging sensor. A remarkable feature of the Inl
technique is that every captured picture involves different
perspectives information. The reason is that optical rays pro-
ceeding from three-dimensional (3-D) objects are collected
by every lens, and recorded by the imaging sensor with dif-
ferent incidence angles. Here, we name as microimage the
image recorded behind any microlens. The whole array of
microimages is named here as the integral picture. When
the integral picture is projected onto an Inl monitor, it can
provide the observers with 3-D floating color images, which
have full-parallax and quasicontinuous perspective.'™ Many
researchers have applied the Inl technique in different
fields. "

Meanwhile, there are various depth-sensing 3-D imaging
techniques announced to record 3-D scenes. Among them,
one interesting technique is stereovision, which exploits
the disparity information from two arranged cameras.'®!”
However, in the past few years, the use of technologies
related to infrared (IR) light sensors'®>! has become increas-
ingly popular. Especially the Kinect device from Microsoft
that profits from IR lighting technology in the case of depth
acquisition. Until now, there are two different versions of
Kinect. The main commercial specifications of them are
described in Table 1. The Kinect allows acquiring RGB, IR,
and depth maps in real-time with a high frame rate. For that
reason, many researchers are now interested in its capability.
As is well known, both sensors have many different features
for obtaining a dense depth map. The Kinect vl uses a
structured IR dot-pattern emitter and IR camera to evaluate
depth information. In comparison, the Kinect v2 utilizes
time-of-flight (ToF) technology, which consists of emitting

*Address all correspondence to: Seokmin Hong, E-mail: seokmin.hong@uv.es
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IR flashes at high frequency. Having IR light that reflects
from most 3-D surfaces, the sensor can evaluate the depth
distance by measuring the light’s returning time.”** The
main drawback of both, Kinect v1 and Kinect v2, is that they
are limited for long range. Comparable results, but with an
extended range, has been demonstrated but with a different
technology.?*

2 Calibration of Kinect v1 and v2

As seen in Table 1, the commercial specifications of the
Kinects do not reflect all the characteristics of those devices.
In order to extend this information, and also to confirm
some commercial parameters, we performed a number of
experiments.

2.1 Coupled Area at the Scene

The aim of our first experiment was to find the common area
in the scene, and to check both the RGB and IR camera’s
fields of view (FOV) through empirical parameters. For this
experiment, we first defined the standpoint of Kinect devices
as the position of the nut where the tripod is screwed in. Then
we defined an optical axis and set the Kinect frontal face
parallel to the target. As the common target, we choose a
chessboard pattern, which has simple and repetitive shapes
and permits to easily detect feature points. Most of all, the
regularized pattern influence improves the accuracy of the
calibration’s result.> We find common correspondence
features in each captured scene and calculate correlation
parameters, which are called homography, projectivity, or
projective transformation. These parameters represent a gen-
eral plane-to-plane correlation equation in a projective plane.
These values convince to map from one camera’s 2-D view
to another.”*?’ Figure 1 shows the common area in both
Kinect devices.

0091-3286/2016/$25.00 © 2016 SPIE
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Table 1 Comparison between Kinect v1 and v2 specifications.

List Kinect v1 Kinect v2
Released (year) 2010 2014
RGB camera (pixel) 640 x 480 1920 x 1080

(max: 1280 x 960)

FPS in RGB camera 30 (Max: 12) 30 (low-light: 15)
IR camera (pixel) 640 x 480 512 x 424

FPS in IR camera 30 30

Depth acquisition Structured IR ToF

method light pattern

Depth distance (mm) 800-4000 500-4500
Horizontal FOV (deg) 57 70

Vertical FOV (deg) 43 60

2.2 Comparison of Field of View with Empirical
Parameters

Next, we attempt to measure, for both Kinects, the RGB and
IR FOVs. Actually, the official specification did not mention
the RGB FOV. For that reason, we measured the FOVs with
two methods: (a) estimate FOV by calibrated camera param-
eters and (b) physical calibration progress at a certain dis-
tance. First, we use the calibrated camera parameters
reported in Ref. 22 and calculate each FOV by using Eq. (1).
In this equation, C,, and C;, are the RGB and IR physical
imaging sensor sizes, and f is a focal length. R,, and R,
are the calculated angles in the horizontal and vertical

RGB camera
(640x480)

IR camera
(640%480)

AS B ! / ‘.
_—— the Kinget /\;\’
Comprisonaf FOY of #115

Kinect v1

directions.”’ Finally, we derived FOVs from the referenced
parameters (see Table 2).

C, C,
R, = 2arctan (27’;> , R, =2arctan (2—;>

Second, we set up an environment in order to measure the
FOV in a physical calibration progress. We placed the cam-
era in a perpendicular direction from the wall within a certain
distance. Then we stitched a piece of retroreflective (RR)
sheet to the wall in the border area of the captured scene.
Here, the IR camera can only capture an IR light and discard
other light sources. Again, the IR camera cannot detect dif-
fusing surfaces that are normal to the optical axis. In contrast,
RR sheets can directly reflect IR light to the camera and, as a
result, provide an easy way to verify a target’s position in the
IR camera’s scene. From now, we already know about the
Z-axis and width distance in millimeters. Then we can derive
both horizontal and vertical FOVs using trigonometric func-
tion calculations. We illustrate this progress in Fig. 2 and put
our empirical results in Table 3.

One thing worth noting is that through our experiment we
confirmed some important issues. First, the two types of
FOVs do not map properly. Some regions overlap, but not
all parts from the scene are covered. Second, the announced
FOV information from commercial specifications is for the
IR camera. Third, we have proven that the commercial
parameters are reliable. Parameters reported in Ref. 22 are
also reliable, but not in the case of the FOV of the IR camera
of Kinect v1.

M

3 Microimages Generation from
Three-Dimensional Point Cloud

The aim of this research is to analyze and compare the two

Kinect devices when they are concentrated in a specific

RGB camera

IR camera
(\920x\080)

(512x424)

AN
7 of the Kinect Y2
Compatisonof FOV oL the S/

Kinect v2

Fig. 1 Kinect v1 and v2 overlapped region in the captured scene. Green rectangle represents the RGB

view and the red rectangle is the IR view.
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Table 2 FOV result from calibrated camera parameters.

List Kinect v1 Kinect v2

Camera type RGB IR RGB IR
Focal length (mm) 3.099 6.497 3.291 3.657
Imaging sensor: width 3.58 6.66 6.0 5.12
size (mm,

Imaging sensor: height 2.87 5.32 3.38 4.24
size (mm,

Calculated FOV: 60.02 54.27 84.70 69.99
horizontal (deg)

Calculated FOV: 49.69 44.53 54.36 60.20

vertical (deg)

% Retro reflective
. sheet

Height
X-axis

Camera

Fig.2 The overview of our manipulated system. We put the camera at
a certain distance from the wall and measure both vertical and hori-
zontal distances.

application: the calculation of the collection of microimages
that are projected onto an Inl monitor with an aim of display-
ing 3-D images with full-parallax.

The procedure for calculation of microimages is as fol-
lows. First, the captured RGB and depth map images
(see Fig. 3) are modified into a 3-D point cloud, following
Ref. 6. From this result (see Fig. 4), we confirmed that Kinect
v2 is able to capture the depth information of further points.
Moreover, the density of point cloud data is also different.
The Kinect v1, for instance, has a specific layer structure [see
Fig. 4(a)]. But Kinect v2 provides more dense depth infor-
mation without any regularized figuration [see Fig. 4(b)].
The most impressive feature from Kinect v2 is that this
device can acquire depth information of slender targets,
reflective surfaces, or even transparent objects compared
with Kinect v1. In the third step of the procedure, we placed
a virtual pinhole array (VPA) at a certain distance from the
point cloud.

Optical Engineering

041305-3

Table 3 Kinectv1 and v2's RGB, IR camera’s FOV calculation result
from physical calibrating progress.

List Kinect v1 Kinect v2

Camera type RGB IR RGB IR
Width distance (mm) 1177 1101 1814 1394
Height distance (mm) 912 816 1029 1143
Z-axis distance (mm) 1000 1000 1000 1000
Calculated FOV: 60.95 57.67 84.42 69.75
horizontal (deg)

Calculated FOV: 49.03 44.39 54.45 59.50

vertical (deg)

An important thing is that the VPA position decides the
front and rear volumes in the displayed 3-D scenes. Due to
this, the VPA position defines what we call the “reference
plane” of the 3-D scene. In this experiment, we placed the
'VPA just behind the second chair. We assigned each 3-D
point into microimages by back projection through the pin-
holes, as in Ref. 31. The main issue is that different features
of the 3-D point clouds fully reflect into generated microi-
mages. It is important to point out that the calculation of the
microimages needs to take into account the parameters of the
Inl display. Specifically, we need to know the number of
microlenses, their pitch, the gap, and the number of pixels
behind any microlens. Figure 5 shows the calculated micro-
images, which are ready for projection into the Inl display
system described below. These two figures clearly show the
differences of the two devices.

4 Experimental Results of Displayed
Three-Dimensional Image

In order to display our microimages, we used the Samsung
tablet SM-T700 (359 pixels/inch) as a high definition dis-
play, and a microlens array (MLA) consisting of 113 x 113
lenslets of focal length f; = 3.3 mm and pitch p = 1.0 mm
(Model 630 from Fresnel Technology). The resulting micro-
images are composed of 15 pixels. The gap between the
microlenses and the display was fixed to g =49.5 px.
Finally, the full size of integral picture is 1695 X 1695 pixels.
After fixing and aligning the MLA with the tablet, the
resulting Inl monitor displayed 3-D images with full
parallax.

To demonstrate the three-dimensionality of the displayed
images, we implemented the setup shown in Fig. 6, and
recorded pictures of the InlI display from many vertical and
horizontal perspectives. From the pictures’ collection, we
composed two videos, one for the Kinect v1 (Video 1) and
the other for the Kinect v2 (Video 2). Additionally, we
excerpted a pair of frames from any video. These frames
are shown and compared in Fig. 7. This figure confirms
that Kinect v2 is a very powerful tool which can be applied
not only for the versatile management of videogames but
also for the display of 3-D images with full parallax, good
lateral depth, and for a long range of axial distances.
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Fig. 3 Captured images from two versions of Kinect: (a, b) Kinect v1 and (c, d) Kinect v2. Both pairs of
images are captured from the same standpoint.

(a) (b)

Fig. 5 Collection of microimages generated from modified 3-D point
cloud: (a) microimage from Kinect v1 and (b) is from Kinect v2. Both
(a) and (b) are generated based on a given reference plane.

InI display
(b)
Fig. 4 Display the 3-D point cloud into a virtual 3-D space: (a) from Fig. 6 The overview of our experimental system. We moved the
Kinect v1 and (b) from Kinect v2. In both cases, the reference plane is recording device vertically and horizontally to record different perspec-
located just behind the second chair. tives of an integrated image from the proposed Inl display system.
Optical Engineering 041305-4 April 2017 « Vol. 56(4)
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(o) (d

Fig. 7 Images displayed from two different versions of the Kinect: (a,
b) Kinect video 1 and (c, d) Kinect video 2. (a, c) Left-bottom view and
(b, d) right-top view from proposed Inl display (Video 1, mp4, 9.07 MB)
[URL: http://dx.doi.org/10.1117/1.0E.56.4.041305.1] and (Video 2
mp4, 10.6 MB) [URL: http://dx.doi.org/10.1117/1.0E.56.4.041305.2].

5 Conclusion

‘We have reported a comparison of 3-D Inl display based on
two different versions of Kinect, and demonstrated that
Kinect v2 is fully adapted for the task of capturing 3-D opti-
cal information for 3-D display. Specifically, we have dem-
onstrated that an InI monitor injected with the information
calculated from Kinect v2 data has the ability of displaying
3-D images in color for big scenes. The images have good
lateral and depth resolution and also a long range of axial
distances. The main drawback of this technique is the exist-
ence of black-pixel areas, which result from the capture from
a single perspective. In a future work, we will combine the
information captured with more than one Kinect v2, in order
to obtain a 3-D point cloud that is denser and free of perspec-
tive holes.
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ARTICLE INFO ABSTRACT

Keywords: In this paper, we propose an innovative approach for the production of the microimages ready to display onto an
3D display integral-imaging monitor. Our main contribution is using a stereo-hybrid 3D camera system, which is used for
Integral imaging picking up a 3D data pair and composing a denser point cloud. However, there is an intrinsic difficulty in the fact

3D data registration
Color transfer

Point cloud
Stereo-hybrid 3D camera

that hybrid sensors have dissimilarities and therefore should be equalized. Handled data facilitate to generating
an integral image after projecting computationally the information through a virtual pinhole array. We illustrate
this procedure with some imaging experiments that provide microimages with enhanced quality. After projection

of such

onto the integral-i

monitor, 3D images are produced with great parallax and viewing

angle.

© 2017 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

During the last century, the three-dimensional (3-D) imaging sys-
tems have been issued in order to record and display 3-D scenes. Among
them, integral-imaging (InI) has been considered as one of the prospec-
tive technologies in order to reflect real 3-D scenes into a multi-visual
display system. This concept was proposed by G. Lippmann in 1908.
He presented the possibility of capturing the 3-D information and re-
constructing the 3-D scene by using spherical diopter arrays [1-3]. De-
pending on its manipulation, Inl is classified by two stages: pickup and
display. Nowadays, the pickup procedure is performed by placing a tiny
lens array in front of a two-dimensional (2-D) imaging sensor and pro-
ducing the collection of microimages. A noteworthy feature is that every
microimage contains different perspective information. This is because
all of the light rays reflected (or diffused) by an object are transmit-
ted by all the lenses, which distribute the light on different pixels of the
microimages depending on the incidence angle. Hereafter, the whole ar-
ray of microimages is referred to as the integral image. Concerning the
display stage, when the integral image is projected onto an Inl display
system, observers can see the 3-D floating color scene, which has full-
parallax and quasi-continuous perspective view [4-7]. Many researchers
and companies have applied the Inl technique in many different fields
[8-18].

In the meantime, various depth-sensing techniques were launched
in order to record 3-D scenes [19-25]. Among all, one of highlighted
techniques is stereovision, which takes advantage of the disparity infor-
mation from two aligned cameras which has been the representative of

* Corresponding author.
E-mail address: seokmin.hong@uv.es (S. Hong).
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the depth-image sensing for a long period [19-20]. Incidentally, in the
past decades, the use of technologies related to infrared (IR) light sen-
sors has become spotlighted [21-25]. Especially the Kinect device from
Microsoft takes profit from IR lighting technology in the case of depth ac-
quisition. By this time, two different versions of the Kinect are released.
The main commercial specifications of Kinect v1 (Kvl) and v2 (Kv2)
are described in Table 1. These devices allow to acquire RGB images, IR
images and also depth information in real-time with a high frame rate.
As well known, both devices have many different features for obtaining
a dense depth map. Kv1 uses a structured IR light pattern emitter and
IR camera to calculate the depth distance through the captured pattern
[21-23]. In contrast, Kv2 utilizes time-of-flight (ToF) technology, which
exploits emitting IR beams with high frequency. Having the reflected IR
light from most 3-D surfaces, the sensor evaluates the depth distance by
measuring the IR flash’s returning duration [24-25].

In a previous work, we proposed the use of RGB image and depth
information obtained by a single 3-D camera to generate an integral im-
age and project it onto an InI display system [13-15]. However, this
innovative approach still contains several issues that must be improved.
Among them, the main drawbacks are domination of the depth informa-
tion by the noise caused by the limitation of IR light sensing technique;
the low density of depth map, which is restricted by the sensor’s spec-
ification; and the depth-hole problem, which occurs because of the re-
flections and/or occlusions. Mono-perspective devices can see only the
frontal part of scenes, so that occluded area’s information is lost in the
scene.
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Table 1
Comparison between Kv1 and Kv2 specifications.
List Kinect v1 Kinect v2
Released (year) 2010 2014
RGB camera (pixel) 640 x 480 (Max: 1280 x 960) 1920 x 1080
Frames per second in RGB camera 30 (Max: 12) 30 (low-light condition: 15)
IR camera (pixel) 640 x 480 512 x 424
Frames per second in IR camera 30 30
Depth acquisition method Structured IR light pattern Time of Flight
Suitable depth range (mm) 800-4000 500-4500
IR camera’s Horizontal FOV (*) 57 70
IR camera’s Vertical FOV (*) 43 60

Table 2
Calibrated camera parameters to calculate the scale factor between target sensors.
Sensor Coordinate (u: width, v: height) ~ Resolution (# of pixels) ~ Sensor size (mm)  Pixels per mm  Focal length (mm)
Kinect v1 (RGB camera)  u 640 3.58 178.771 3.099
v 480 2.87 167.247
Kinect v2 (IR camera) u 512 5.12 100 3.657
v 424 4.24 100

Fig. 1. Proposed stereo-hybrid 3-D camera system.

@ ‘ ® ©

Fig. 2. Captured depth maps from our experimental camera system: (a) from Kv1, (b) rescaled image; and (c) from Kv2.

In order to solve these limitations, we propose the use of stereo- vantage of binocular system. Thus, depth-hole area is filled in by com-
hybrid 3-D camera system. Fig. 1 shows our camera setting. In com- plementing each other. Another important advantage of the proposed
parison to monocular system, stereo-vision system can generally extend method is yielding denser point cloud. This procedure is described in
the field of view (FOV) against with. In order words, our approach can Section 2. With this improved 3-D data, the microimages are generated
expand the visual space and obtain the occluded information taking ad- ~ with higher quality. The microimages generation process is described
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Fig. 3. 3-D point clouds in the virtual 3-D space: (a) before registration process; (b) after calculation result; in (c-e) we magnified some specific parts of the scene. In the figures, red
color point is rescaled point clouds from Kv1, and green color point is from Kv2 respectively. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)

in Section 3. Finally, in Sections 4 and 5 we provide our experimental
results and conduct the conclusions respectively.

2. Stereo-Hybrid point clouds manipulation

In order to implement the stereo system, it is convenient either the
use of two 3-D cameras of the same model, or the use of two different
3-D cameras with complementary features. In our approach we have de-
cided to make use of Kinect technology. To the best of our knowledge,
high frame rate synchronization of two Kv2 nor two Kv1 is never ad-
dressed so far. Hence at this stage of our research we have decided to
tackle the implementation of a stereo-hybrid technique by taking profit
of complementary features of Kvl and Kv2. Note that even in the case
of 2-D cameras, it has been very unusual to compose hybrid camera sys-
tems [26-28]. This is an evident motivation why we want to use hybrid
3-D cameras into our research, since its outcomes can be very useful for
a potential manipulation of various types of cameras in further research.
In the Section 2.1, the correction of the different scale information be-
tween sensors will be explained. In sequence, the arrangement and reg-
istration of the individual 3-D point cloud information will be shown.
In Section 2.2, the correction of the color dissimilarity of sensors will be
presented.

2.1. Hybrid point clouds registration

In our previous paper [15], we mentioned about the difference be-
tween Kv1 and Kv2. Above all, each Kinect devices has two camera sen-
sors (RGB and IR) by its own, and the four sensors have different FOV
and image resolution. It means that all of them have their own scale
factors, which need to be corrected. In [26], authors proposed how to
correct the scale information in hybrid stereoscopic 2-D camera systems.
The algorithm manages the images captured by two different sensors,
the input image and the target image, and aims to obtain a rescaled in-
put image. Egs. (1) and (2) show how to derive scale factors: i, , refers
to number of pixels in the input image, while j, , is the number of pix-
els in the corrected input image. Besides, f, f are input and target focal

Load source & target image

|

Analysis image’s characteristics
(Discard black pixel)

Filtering
each pixels
(depth>0)

Color transfer

Quit

Fig. 4. Flow chart of the proposed color transferring strategy. The loop is applied voxel
by voxel.
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Fig. 5. Processed result by using referenced color transfer algorithm (a) rescaled RGB image captured by Kv1 (b) the captured RGB image from Kv2 (c) color transferred result from (b)
to (a).

Fig. 6. Orthographic projection of registered 3-D point cloud: (a) before color transferring process (b) is after color transfer. Note that (b) shows more natural textured scene than (a).At
the scene, the black pixels have no information because they are out of the depth-range capacity of IR sensing.
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Fig. 7. Collection of microimages generated from modified 3-D point cloud. In this case,
the reference plane is placed in 2450 mm distance from the origin of Kv2.

Where we have defined parameter
,
P
T fPuw
as the scale factor between target and input sensors.
In our approach, input image is Kv1’s RGB image and target image

is Kv2’s IR image. There are several reasons why we decided to trans-
pose from Kv1’s RGB camera to Kv2’s IR camera. First, mapping from

A

@
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Recording
device

Fig. 8. Overview of experimental system.

IR image to RGB image in Kv1 is feasible because of many solutions
are already released. Second, Kv2 depth information is denser and with
larger FOV than Kv1. Finally, the third reason is that in the Kv2, the
resolution in RGB camera is much bigger than that in IR camera. If we
would map from IR image to RGB image, in Kv2, IR image needs, not
only to up-scaling, but also interpolate the pixel gaps in rescaled image.

(3-a) (3-b) (3-¢)

Fig. 9. Comparison result between displayed integral image: (1-a, b, ) Kv1, (2-a, b, ) Kv2, (3-a, b, ¢) the proposed result. (a, b, c) shows different perspective position where (a) is
left-bottom, (b) is right-bottom, and (c) is right-top from the InI monitor. All images are excerpted from recorded video: media 2, 3, and 4.
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Fig. 10. More detail comparison of displayed integral image. This figure shows the advantage of our approach. We filled in several depth-hole areas and derived to smoother texture at

the scene. Above all, some occluded area is recovered precisely.

To calculate the scale factor, the well-treated data from [29] is fol-
lowed, where both Kinect parameters were calibrated accurately (see
Table 2). Then the scale factors are, 4, = 0.660, 4, = 0.706; and rescaled
input resolutions are j,~422.46, j,~338.68. Fig. 2 shows captured depth
map from Kv1 and Kv2’s IR sensors and rescaled result. See the figures
for further details.

From now on, rescaled image resolution of Kv1’s RGB and Kv2’s IR
camera are adapted to the same scale information. Afterward, the cap-
tured RGB and Depth information from each device can compose point
cloud and dispose into a virtual 3-D space. However, both cloud data are
still mutually shifted and not arranged properly (See Fig. 3(a)). In or-
der to make registration between two point cloud sets, Iterative-Closest-
Point (ICP) algorithm is utilized. ICP algorithm calculates the movement
between two sets of point clouds in order to minimize their distance. ICP
is often used to reconstruct 2-D or 3-D data captured from different posi-
tions. The output of ICP algorithm is rigid (or rigid body) transformation
matrix, which includes translation and rotation [30-32]. Fig. 3 shows
the point cloud before and after registration result. The red and green
colors represent the point cloud obtained by Kv1 and Kv2 respectfully.
As it can be seen, the Kv1’s data are well-aligned into Kv2 and covered
in some occluded area. Especially, Fig. 3(c-e) indicates more detail of
the registration result clearly.

2.2. Color transfer between color images

Even when the two point clouds are registered properly, the RGB im-
ages of the Kv1 and Kv2 still have color dissimilarities. To overcome this
drawback, the color transfer method proposed by Reinhard et al. [33] is
followed, but it is adapted to 3-D images. Our approach is described
in the flowchart of Fig. 4. In the second step, after loading the input
and target point clouds, the black voxels having no color information
are discarded. Then, the voxels without depth information were filtered
out. The reason for such discarding is that those meaningless voxels
would transfer wrong color characteristics. As result of applying the al-
gorithm to all the voxels, the Kv2’s RGB color values are transferred
onto the characteristics of the Kv1’s RGB image. Figs. 5 and 6 show the
color-transfer result clearly. In Fig. 5(a) we show the input RGB image
(obtained with Kv1), in Fig. 5(b) the target RGB image (Kv2) and finally
in Fig. 5(c) the modified input image after the color transference.

Fig. 6 shows orthographic projection of RGB information of regis-
tered 3-D point clouds. Fig. 6(a) shows the point cloud before the color
transfer, while Fig. 6(b) shows the same point cloud after the transfer.
In Fig. 6, the areas of the scene where significant improvement is ob-
tained due to the color transfer have been marked. In order to illustrate
and demonstrate our proposal, the video Media 1 is composed with this
sequence: point clouds of Kv1, Kv2, without registration result, and reg-
istration with color transfer result respectively.
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3. Microimages generation from point clouds

In order to generate the microimages for their projection onto the
Inl display system, our previous approach [14] is followed. Then in our
algorithm we placed a virtual pinhole array (VPA) at a certain distance
from the 3-D point cloud. Indeed, VPA’s location reflects the correla-
tion between real scene and displayed scene. In particular, this position
determines the front and rear volumes at the displayed 3-D scene. Ac-
cordingly, we entitle this position as a reference plane. Then, the voxels
of each point cloud are projected through the VPA, so that the inte-
gral image is composed, as in [34]. In this back-projection scheme, each
microimage records the angular information. In fact, the calculation of
the microimages needs to account for the parameters of the Inl display
system; i.e. the number of microlenses, their pitch, gap, and number
of pixels behind any microlens. Fig. 7 shows calculated microimages,
which are ready for projection through the Inl display.

4. Experimental results of displayed three-dimensional image

In our experiment, the Inl monitor is composed of a Samsung SM-
T700 (359 pixels/inch) tablet, and a MLA consisting of 181x113
lenslets of focal length f= 3.3 mm and pitch p=1.0 mm (Model 630 from
Fresnel Technology). Each microimage is composed of 15x 15 pixels,
the gap between the microlenses and the display is fixed to g=49.5 pix-
els, and thus, the full size of the integral image is 2715x 1695 pixels
(14.13 pixels/mm). After mounting and aligning the MLA in front of
the tablet, the 3-D scene is displayed with full-parallax.

To demonstrate the proposed approach, the setup is implemented as
shown in Fig. 8. The Inl monitor displays and integrates the microim-
ages towards the observer’s eyes. Originally, our target is binocular ob-
servers, who can see the 3-D nature of displayed scene, that is, they can
perceive several parts of the displayed scene in front of the monitor and
some others behind. Unfortunately, this full-parallax effect cannot be
directly demonstrated in a manuscript or even in a monocular video.
In order to demonstrate this effect we proceeded as follows. First the
observer is replaced by a monocular digital camera. Then a collection
of pictures is obtained after displacing horizontally and vertically the
camera along a region of 70 x70 mm. With these pictures, a video is
composed in which the Inl monitor was observed from different perspec-
tives. Media 2 and 3 shows Kv1 and Kv2, and Media 4 shows the final
modified result. All of the recorded videos are composed of different hor-
izontal and vertical perspective views. The Figs. 9 and 10 show this ex-
perimental result more clearly. Modified point clouds are filled in some
depth-hole areas and as a result, it induces denser and smoother texture
of the scene. The most impressive feature is that some occluded areas are
recovered by registration process. Especially, the human model’s head
and blue basket behind of brown box are recovered properly.

5. Conclusion

To the best of our knowledge, this is the first time to utilize a stereo-
hybrid 3-D camera system to capture the light field. Specifically, in or-
der to overcome the limitations of a mono perspective view, the usage
of stereo-hybrid system consisting of two Kinect devices is proposed.
But we had to tackle the challenge of fusing two different 3-D point
clouds with strong dissimilarities: different lateral and axial resolution,
different spectral sensitivities of RGB sensors, and even different lumi-
nance of the 3-D scene when seen from different perspectives. To cope
with these mismatches, some well-known algorithms fitting to our spe-
cific situation have been adapted. To demonstrate our approach, a 3-D
scene is captured with the stereo-Kinect device and the 3-D point clouds
are modified according to our strategy of correcting the dissimilarities.
Finally, the improvements in the displayed images have been demon-
strated by calculating the microimages and projecting them onto an Inl
monitor, which provides the observers with full-parallax 3-D images.

Optics and Lasers in Engineering 103 (2018) 46-54

Since we filled in several depth-hole areas at the integral image and de-
rived to smoother texture at the scene, the experiment confirms that the
quality of 3-D data is improved noticeably. Above all, some occluded
field is recovered precisely and thus, this output proves the benefit of
our manipulation. In a future work, we will apply this technique for dif-
ferent and/or newer types of 3-D cameras: Light-field camera [8-11],
and stereo-vision camera [19-20]. In addition, we will enhance the ac-
curacy of 3-D data registration and color equalization result. Finally, we
would like to point out that a different experimental concept which is
manipulated by LeMaster et al. [35], where they use an array of mid-
wave infrared cameras to obtain depth reconstructions for long distances
is also complementary as our experiment.
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Abstract: In this paper, we propose a new method for the generation of microimages, which processes
real 3D scenes captured with any method that permits the extraction of its depth information.
The depth map of the scene, together with its color information, is used to create a point cloud. A set
of elemental images of this point cloud is captured synthetically and from it the microimages are
computed. The main feature of this method is that the reference plane of displayed images can be set
at will, while the empty pixels are avoided. Another advantage of the method is that the center point
of displayed images and also their scale and field of view can be set. To show the final results, a 3D
Inl display prototype is implemented through a tablet and a microlens array. We demonstrate that
this new technique overcomes the drawbacks of previous similar ones and provides more flexibility
setting the characteristics of the final image.

Keywords: integral imaging; plenoptic imaging; 3D display; CGII

1. Introduction

3D TV implementation is a fascinating challenge for the researchers of many different scientific
communities. The first generation of 3D TV is no longer produced: one of the main drawbacks of
these devices was the need of glasses in order to see the 3D content. For this reason, a new type
of glasses-free device is being investigated, the so-called autostereoscopic displays. Among these,
multi-view displays allow 3D visualization for multiple viewers with stereo and movement parallax,
and overcome the accommodation-convergence conflict [1,2]. This kind of displays are named Integral
Photography (IP) or Integral Imaging (Inl) displays, because their operating principle is based on the
Integral Photography technique. It was proposed one century ago by Gabriel Lippmann to register
the 3D information of a scene [3]. His idea was to replace the objective lens of the photographic
camera with a microlens array (MLA), and to place a photographic film at the focal plane of the
lenses. Doing so, different perspectives of the scene are captured. The part of the photographic film
(nowadays, the portion of the pixelated sensor) behind each microlens corresponds to a different
perspective. These perspective views are called Elemental Images (ElIs) and the set of EIs is the Integral
Image (InI). The aim of Lippmann was to project the images captured with IP through a MLA similar
to the one used in the capturing stage. Doing so, the light emitted by the EIs of the photographic film is
integrated in front of the MLA, producing a 3D reconstruction of the original captured scene (Figure 1).

The great progress in optoelectronic technologies renewed the interest in this technique.
Commercial cameras based on IP, known as plenoptic cameras, are already available on the market [4].
These cameras give access to a great number of applications such as the extraction of the depth map,
or digital refocusing of the picture. Moreover, the continuous advances in displays (4 K and even 8 K
displays are already available on the market) and in MLA manufacturing are a great boost for research
in 3D Inl displays.

Sensors 2018, 18, 2805; d0i:10.3390/s18092805 www.mdpi.com/journal/sensors
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Figure 1. A 3D scene captured and displayed with IP technique. Note that, in the capturing stage,
the observer is in the right side (behind the camera’s sensor), so he sees the violet ball closer. In the
display stage, the observer is in the left side (in front of the MLA of the InI display), so he sees the
orange ball closer: the scene is reconstructed with reversed depth.

It is important to remark that the Els captured through IP technique are not directly projectable in
the 3D InI monitor. Firstly, because the MLA used in the capturing process is not the same of that used
in the display. Moreover, if Els are directly projected, the reconstructed scene will be a pseudoscopic
version of the original one, which means that the scene is reconstructed with reversed depth, as shown
in Figure 1. To solve these problems, some computations have to be made, to convert the Els into the
so-called microimages. The conversion is made by means of a simple transposition, that is, through a
pixel resampling [5].

The proposed method generates and processes the Els to convert them to microimages.
It overcomes the drawbacks of previous ones and is applicable to real scenes. The operating principle
is very simple: the 3D scene is firstly captured and converted to a virtual point cloud. Any method
that permits the extraction of a 2D depth map of the scene can be used for this task. Then, the Els
are synthetically captured from this point cloud through a virtual cameras array. Finally, the Els are
processed and converted to microimages projectable in the 3D Inl display. Since the Els are synthetically
captured, we have much more freedom in adjusting the parameters of the cameras array. In this way,
it is possible to change the characteristics of the final image and the way the scene is reconstructed by
the 3D Inl display. Above all, it is possible to adapt the algorithm to any InI display, without having
to repeat the capture of the scene. A geometrical model of the system is exploited, which permits
directly setting with high precision the reference plane’s position and the field of view of the image.
The reference plane’s position is fundamental because it sets the portion of the 3D scene that will be
reconstructed inside and outside the Inl monitor, changing the depth sensation of the scene. The part
of the scene that is behind the reference plane is reconstructed by the MLA as a virtual image inside
the screen, while the part that is beyond the reference plane is reconstructed as a real image, floating in
front of the screen.

This paper is organized as follows. In Section 2, a quick review on the previous work on techniques
for microimages generation is done. In Section 3, our new technique is described, and the geometrical
model of the system is explained. In Section 4, the experimental results obtained are presented. Finally,
in Section 5, the achievements of the presented work are summarized.

2. Previous Work

As stated before, the Els captured with Lippmann’s technique are not directly projectable in the
InI monitor. Many methods to generate microimages for Inl displays have already been reported.
Kwon et al. [6], Jiao et al. [7] and Li et al. [8] used different techniques to generate synthetically the
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Els, and then process them to obtain the microimages. Instead, Chen et al. [9] directly captured the
microimages putting a virtual pinhole array (VPA) into the 3D model. However, all these methods
only process computer-generated 3D models, not real world 3D scenes.

Among the techniques that process real 3D scenes, Navarro et al. [10] and Martinez-Corral et al. [11]
proposed the so-called Smart Pseudoscopic-to-Orthoscopic Conversion (SPOC). A collection of Els is
optically captured. Then, through a smart pixel mapping, the microimages are obtained, with the
possibility to change the reference plane’s position. This method has some limitations. First, if the
synthetic aperture method is used to capture the Els (Els captured with a single conventional camera
mechanically displaced), the capturing stage is very time-consuming. Moreover, the reference plane’s
position can be set only at determined planes, because just one parameter can be used for this task.

Hong et al. (2015) [12] and Hong et al. (2018) [13] used Kinect cameras to capture the spatial and
depth information of the scene. Then, these data are merged into a point cloud. A VPA is used to
directly obtain the microimages adjusted to the Inl monitor. With this method, the capturing stage is
reduced to a single snapshot of the scene. Besides, the amount of data to process is greatly reduced:
an RGB image and a depth map are sufficient. However, another issue appears. The VPA used to
generate the microimages is set near or directly inside the scene. The point cloud has a finite number
of elements: the ones that are close to the VPA have a very big angle with respect to the pinholes, so
they do not map onto any pixel. For this reason, this part of information of the scene is lost and large
areas with black pixels, that is pixels with no information, appear in the final image.

Piao et al. [14] and Cho and Shin [15] used off-axially distributed image sensing (ODIS) and
axially distributed image sensing (ADS), respectively, to extract the color and depth information of the
3D scene. Again, this information is used to compute synthetically the microimages through a VPA.

The proposed technique overcomes black pixels” drawback and it offers much more flexibility
than the mentioned ones.

3. Proposed Technique

The basic idea is to capture the real 3D scene and convert it to a virtual point cloud in order
to process it synthetically. A set of Els of the virtual 3D scene (the point cloud) is captured through
a simulated cameras array, and processed as in [11] to obtain the microimages. The Els are synthetically
captured from a virtual point cloud and not optically captured from the real scene. Doing so, without
repeating the real scene capturing step, one can change the characteristics of the integral image:
the number of horizontal and vertical EIs, the amount of parallax and the field of view. All can be set
modifying the simulated cameras array.

3.1. Microimages Generation Process
The process can be divided into five steps:

1. Point Cloud creation. The scene is captured and its depth information is extracted. A point cloud
representing the scene is generated merging the RGB and depth information.

2. EIs capturing. The Els are generated using a VPA. The number of virtual pinhole cameras in
vertical (horizontal) direction is set equal to the number of pixels behind each microlens of the
InI monitor in vertical (horizontal) direction. To capture Els, the VPA is placed far away from
the scene. A trade-off between the resolution of the Els and the absence of black pixels depends
on the position of the VPA. If the VPA is set too close to the point cloud, some information of
the scene is lost and black pixels appear in the Els (for the same reason as in [12,13]). On the
other hand, as the VPA is moved further from the point cloud, black pixels’ issue disappears,
but the scene is captured in the Els with lower resolution. Therefore, the position of the VPA is
set empirically at the minimum distance from the point cloud that ensures the absence of black
pixels. Then, this value is refined to set the reference plane’s position, as explained in Section 3.2.
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3. Shifted cropping. A portion of (L x V) pixels of every Els is cropped as in Figure 2. Shifting the
cropped region with a constant step between adjacent EIs, allows setting the reference plane of
the final image. This sets the portion of the 3D scene that will be reconstructed inside and outside
the InI display, changing the depth sensation. More details on the parameters used in this step
are given in Section 3.2.

4. Resize. The cropped EIs (sub-Els) are resized to the spatial resolution of the InI monitor, that is,
the number of microlenses of the MLA in horizontal and vertical direction.

5. Transposition. The pixels are resampled as in Figure 3, to convert the sub-Els to the final
microimages to project in the 3D InI monitor.

©22) 12 ©:2) 2 22

Figure 2. The Els cropping. In the classical (1, v, x, y) parameterization of the integral image,
let us say the central EI's coordinates are (i, vp) and the central pixel’s coordinates of every
EI are (xp, yp). Considering the EI having coordinates (u, v), the central pixel of its sub-EI has
coordinates (x, y) = (xg + (u — ug)a, yo + (v — vy)a).

sub-Els M, pis Nx

b

- J ~ /)
v RV
Ny My

Figure 3. Transposition from sub-Els to microimages. Starting from (Ny x Ny) sub-Els, each one
with (My x My) pixels, we obtain (My x M,) microimages each one with (Ny x Ny) pixels. The
correspondence is: p; j(puly 1) = py,(sub-El; ;), where p means pixel.

3.2. Geometrical Model

One great feature of this algorithm is that, exploiting a geometrical model of the system,
its parameters are adjusted to precisely set the position of the reference plane and the field of view of
the final image.

To set the reference plane’s position, the distance of the VPA and the shifting factor of the sub-Els
(a in Figure 2) can be adjusted. The procedure is the following. First, the VPA’s position is set to the
initial value vpa;. As explained above, it has to be far enough from the scene to avoid black pixels’
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issue. Then, a provisional value of the shifting factor of the sub-Els is calculated (B in Figure 4). As
shown in Figure 4, it is the number of pixels of shifting which makes all the sub-Els converge on the
plane at z = ref

_rPxg

vpa; — ref

where p is the pitch between the cameras and g is the gap of the VPA. As the number of pixels of
shifting must obviously be an integer number, the value of f must be rounded:

B=

« = round(B)

Now, if we consider these values of vpa and &, the reference plane would not be at z = ref. Therefore,
we have to move the VPA’s position to

_pPxg
opag = — +ref

Operating on these two parameters (« and vpa), the reference plane’s position can be set with very
high resolution and precision. In [11], only « could be changed, because the distance of the cameras is
fixed in the optical capturing stage. Thus, the image can be reconstructed only at determined planes,

which depend on the physical and optical parameters of the real scene capture.

_scene >

Ip ‘Ta

Lop Loa

Figure 4. The procedure to set the reference plane’s position. Note that, for graphical convenience,
a VPA with pitch equal to the dimension of a single pinhole camera is shown. Actually, the pitch is
smaller, so the virtual pinhole cameras overlap with each other.

The parameter that sets the field of view of the final image is the number of pixels of the sub-Els.
Let us assume, for instance, that we want to represent all the useful scene given by a point cloud
having a width W. As we can see in Figure 5, the width of the cropped area has to be

_gxW

L d

with d being the distance between the VPA and the reference plane. If we want to reduce the field of
view to a 1/z portion of the scene, it is sufficient to divide by z the previous expression of L. The number
of pixels in the other dimension (in vertical direction, if we assume that L is the number of pixels in
horizontal direction) depends on the resolution of the InI display:

R
v=22L
RX
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with Ry and Ry being the vertical and horizontal spatial resolution of the Inl display respectively.
As explained in the previous section, the sub-Els are finally resized from (L x V) to (Ry X Ry), before
the final transposition.

central
pinhole

Figure 5. Setting the cropping factor. To set the number of pixels of the sub-Els, a simple geometrical
relation can be exploited: L = XT]IW (obviously, L has to be rounded to the nearest integer number).

Reducing L, we can reduce the field of view.
4. Experimental Results

To demonstrate the effectiveness of the proposed method, we applied it to a real 3D scene that we
captured with a Lytro Illum plenoptic camera. The experimental setup is shown in Figure 6a. The RGB
image and the depth map (Figure 6b,c) are extracted through the Lytro Desktop software.

For the implementation of the 3D Inl monitor, we used a Samsung SM-T700 tablet, with a screen
of 14.1492 pixels/mm (ppm), and a MLA (Fresneltech, model 630) composed by lenslets of focal length
f =3.3 mm and pitch p = 1.0 mm. We have exactly 14.1492 pixels per microlens, thus, in the algorithm,
we set the VPA to have 15 x 15 virtual pinhole cameras. In the resize stage, the sub-Els are resized
to 151 x 113 to make maximum use of the MLA in horizontal direction (the MLA is square-shaped,
with a side of 151 mm, so it has 151 x 151 lenslets). Doing so, the final image will be 2265 x 1695.
Nevertheless, it is important to remark the fact that the real number of pixels per microlens is 14.1492,
so the image is finally rescaled to 2136 x 1599 (rescale factor k = 14.1492/15).

Figure 7 presents a comparison between the results obtained with the proposed technique and
with the technique of [12], using the same point cloud as input. In the top row, the three images
generated with the latter, with the reference plane set at three different depths are shown. In the
bottom row, the images obtained with the proposed technique, with the reference plane set exactly at
the same depths of the corresponding images of the top row. Clearly, in the images obtained with the
concurrent method, a large black area (no information area) appears in the region close to the reference
plane’s position. Instead, in the images obtained with the proposed method, this problem does not
occur. There are just some black pixels due to occlusions or bad depth estimation. Figure 8 shows
the image of Figure 7d projected in our 3D InI display prototype. The reference plane is set at the
background, so the map, the doll and the colored bow are reconstructed on the MLA plane, while the
rest of the scene is reconstructed floating in front of it. Video S1 (https://youtu.be/X9UJGEh4CdE) is
a video recording the InI display, which is much more effective than a single picture to perceive the 3D
sensation of the reconstructed scene.
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[©)] (@]

Figure 6. (a) Experimental set-up of the real capture of the 3D scene. (b) The RGB image extracted
from Lytro Desktop software. (c) The depth map of the scene extracted from Lytro Desktop software.

(d)

Figure 7. Top row: Images obtained with the technique of [12]. Bottom row: Images obtained with the
proposed technique. (a,d) Reference plane at the background; (b,e) reference plane at the middle; and
(c,f) reference plane at the foreground.
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Figure 8. The integral image of Figure 7d projected in our 3D Inl display prototype.

In Figure 9, the field of view is reduced by a factor z = 2. The image obtained is shown in Figure 9a,
while in Figure 9b we show the image projected in the InI display.

In Figure 10, the pitch p of the pinhole cameras of the VPA is increased by a factor 5. The reference
plane is set at the same position of the image of Figure 7d. Increasing the pitch has a double effect:
the parallax amount increases while the depth of field (DOF) of the image decreases. On the contrary,
setting an excessively low value of p increases the DOF, but the scene is reconstructed very flatly and
with low parallax, thus losing the 3D sensation. The DOF of the image has to be adjusted to the DOF
of the Inl monitor to obtain a good reconstruction of the 3D scene. Here, p is intentionally set to a very
high value in order to show the effect of an excessively large pitch. In Figure 10a, the integral image is
shown. Comparing with Figure 7d, the DOF is greatly reduced: only the background map is in focus,
while the rest of the objects appear increasingly defocused as we move away from the reference plane.
In Figure 10b, the image projected in the Inl monitor is shown. Note that the objects that are close to
the reference plane are reconstructed well by the Inl monitor, while the ones that are far from it appear
really defocused. For matter of comparison, in Figure 8, which shows the image obtained with a fair
value of p projected in the InI monitor, the whole scene is reconstructed well.

Figure 9. Field of view selection: (a) The integral image obtained with the same reference plane and
pitch of Figure 7d, with half its field of view (z = 2). (b) Projection in 3D Inl display.
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Figure 10. Pitch selection: (a) The integral image obtained with the same reference plane and field of
view of Figure 7d, with five times its pitch. The DOF is greatly reduced with respect to the image of
Figure 7d. (b) Projection in 3D InI display. The objects appear increasingly defocused as we move far
from the reference plane.

5. Conclusions and Future Work

We have proposed a new method for the generation of microimages projectable in 3D InI displays.
The method works with real 3D scenes and is adaptable to any Inl display. It solves the problem
of black pixels” areas and allows setting with precision the field of view of the final image and its
reference plane, so controlling the way the scene is reconstructed by the InI monitor.

In the future work, the main focus will be on the real-time implementation of the system.
Capturing the Els through the VPA is the most time-consuming step, so it must be reassessed. Another
goal is to resolve occlusions by using the information of multiple views of the integral image of the
Lytro. The idea is to extract the depth maps of the lateral EIs and merge the RGB with the depth
information of all these views into a single point cloud.
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ARTICLE INFO ABSTRACT
Keywords: In this paper, we propose a novel approach to produce integral images ready to be displayed onto an integral-
3D display imaging monitor. Our main contribution is the use of commercial plenoptic camera, which is arranged in a stereo

Integral imaging
3D data registration
Point cloud

GPU

Plenoptic camera
Stereo camera

configuration. Our proposed set-up is able to record the radiance, spatial and angular, information simultaneously
in each different stereo position. We illustrate our contribution by composing the point cloud from a pair of
captured plenoptic images, and generate an integral image from the properly registered 3D information. We have
exploited the graphics processing unit (GPU) acceleration in order to enhance the integral-image computation
speed and efficiency. We present our approach with imaging experiments that demonstrate the improved quality

of integral image. After the projection of such integral image onto the proposed monitor, 3D scenes are displayed

with full-parallax.

1. Introduction

During the last century, three-dimensional (3D) imaging techniques
have been spotlighted due to their merit of recording and displaying 3D
scenes. Among them, integral imaging (InI) has been considered as one
of the most promising technologies. This concept was proposed first by
G. Lippmann in 1908. He presented the possibility of capturing the 3D
information and reconstructing the 3D scene by using an array of spher-
ical diopters [1-3]. Nowadays, the pickup procedure is performed by
placing an array of tiny lenses, which is called microlens array (MLA),
in front of the two-dimensional (2D) imaging sensor (e.g. CCD, CMOS).
A collection of microimages is obtained, which is referred to as integral
image. Interestingly, every microimage contains the radiance (spatial
and angular) information of the rays. This is because different pixels
of one microimage correspond to different incidence angles of the rays
passing through each paired microlens. Figs. 1 and 2 show the com-
parison between a conventional and an InI (also known as plenoptic of
light-field) camera. Several companies announced their plenoptic cam-
era, which is based on Lippmann’s integral photography theory [4-6].
On the other hand, in the display stage the MLA is placed in front of a
screen, where is projected the integral image. The microlenses integrate
the rays proceeding from the pixels of the screen and thus, reconstruct
the 3D scene. Consequently, when the integral image is projected onto

* Corresponding author.
E-mail address: seokmin.hong@uv.es (S. Hong).

https://doi.org/10.1016/j.0ptlaseng.2018.11.023

an Inl display, observers can see the 3D scene with full-parallax and
quasi-continuous perspective view.

In the meanwhile, many research groups are investigating how to
acquire the depth map from the plenoptic image [7-9]. Sabater et al.
[7] modeled demultiplexing algorithm in order to compose a proper 4D
Light-Field (LF) image, and calculate the disparities from a restored sub-
images array by using block-matching algorithm. Huang et al. [8] built
their stereo-matching algorithm, and utilized it into their own frame-
work named Robust Pseudo Random Field (RPRF) to estimate the depth
map from the plenoptic image. Jeon et al. [9] calculated the depth
map from an array of sub-aperture images by using the derived cost
volume, multi-label optimization propagates, and iterative refinement
procedure. We mainly applied Jeon’s approach in our experiment.

The main contribution of this paper is to utilize the stereo-plenoptic
camera system in order to get dense depth map from a pair of captured
plenoptic images and get rid of the constraints of monocular vision sys-
tem. Normally, multiple views can enlarge the field of view and recover
the occluded information by complementing each other. For this rea-
son, we can restore the depthless areas of the scene. Another important
benefit from our proposal is to yield nicer quality of the integral image
using a registered pair of point clouds. Besides, the use of the GPU ac-
celeration technique assists to enhance the integral image’s generation
speed.
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Fig 1. Scheme of image capturing system: (a) is a conventional camera; and (b) is a plenoptic camera. The pixels of (a) integrate, and therefore discard, the angular
information even if they have. On the contrary, (b) can pick up both spatial and angular information thanks to the insertion of the microlens array.

Conventional camera Plenoptic camera

I

Recorded
Image

o o s — — —— | ) - —

Fig 2. Illustration of the projected pixels to the imaging sensor, which are shown
in the plenoptic field. The projected pixel from the conventional camera system
gathers into a single pixel. However, plenoptic camera system projects all differ-
ent incident information in independent pixel’s position. This collected image
becomes an integral image.

This paper is organized as follows. In Section 2., our previous re-
lated works are described. In Section 3., our contribution to compose
and manage the point cloud from a pair of captured plenoptic images is
illustrated. In Section 4. the methodology to generate an integral image
from registered 3D information by using GPU acceleration technique
is explained. Finally, in Sections 5. and 6. the experimental results are
provided and the conclusions are carried out, respectively.

2. Related work

The closest work which is related with a stereo-type capturing and
modification method has been published by our group recently. In
[10] we exploited the stereo-hybrid 3D camera system composed of two
Kinect sensors (Kinect v1 and v2), to take profit of different features for
obtaining a denser depth map. Furthermore, we illustrated the benefit
of binocular approach contrary to monocular one with some experimen-
tal results. However, the main distinction from current proposal is that
[10] utilized hybrid camera set-up and obligatorily considered the rem-
edy of the dissimilarities. Most of all, the working distance of the cam-
eras used is restricted because of the usage of an infrared (IR) sensing
technique. In this paper, we exploit the commercial plenoptic camera,
named Lytro Illum. The important thing is that plenoptic cameras are
passive devices in the sense that they do not need any additional light
emitter. It can record the scene from the ambient light source directly. It
means that the working distance of this camera is related to the camera
lenses’ optical properties. Furthermore, this plenoptic camera can decide
the reference plane of the scene thanks to the InI’s features [11,12].

173

Camera
stider

Fig 3. Proposed stereo-plenoptic camera system.

In the meantime, [13] illustrated our approach to generate an inte-
gral image from a point cloud, which is ready to be projected onto an Inl
monitor. However, the bottleneck of this approach was that it required
a long computational time. To solve this critical defect, in current ap-
proach we exploit GPU acceleration technique to generate
in parallel way, reducing the processing time.

8

3. Ster 1 ion

ptic image ip

In order to implement the stereo system, it is convenient to use two
cameras of the same model. Accordingly, in our experimental system we
utilized the camera slider in order to capture the scene in each different
position with a single plenoptic camera, and we placed a tripod eager
to configure the camera’s proper position. Fig. 3 shows the camera set-
up and Fig. 4 shows the overview of our experimental environment.
In Section 3.1, we describe our approach to manipulate the plenoptic
image and obtain the depth map from this handled image. In sequence,
in Section 3.2, we explain the methodology for the arr and
registration process of a pair of point clouds.

3.1. Plenoptic image manipulation

Our proposal in this paper is the use of commercial plenoptic cam-
era. Its software provides various functions: it helps to choose the proper
perspective view, changes the focused plane of the scene, and extracts
the calculated depth map (or disparity map), color image, and an en-
coded raw image format [5]. Fortunately, [14,15] help to decode the
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raw plenoptic image and extract sub-images from this encrypted data.
Interestingly, this extracted raw data contains a grayscale image (see
Fig. 5(a)). The main reason is that there is a Bayer color filter array over
the camera’s sensor to capture the colors. Thus, it must be d iced
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Fig 4. Overview of proposed experimental environment: (a)
is capture for the main scene, and (b) is capture for the cali-
bration process.

Calibration
&« ta

Boundary of
3D objects

Fig 5. (a) is a raw plenoptic image from plenoptic camera, (b)
is a composed sub-aperture image array from plenoptic image.
See text for further details.

Capture plenoptic image
(main scene & calibration target scenes)

to get the color information back. It is noticeable that the color tones of
captured images shown in Fig. 4(a) and 5(b) are different. Note, how-
ever, that the first is the image extracted from Lytro software and the
other is a sub-image extracted through [14,15]. The main reason of that
difference is that they use different Bayer demosaicing algorithms. We
extract the sub-aperture images array in order to follow [9] approach
(see Fig. 5(b)), which estimates the depth map by minimizing stereo-
matching costs between sub-images with sub-pixel accuracy, and cor-
rects the unexpected distortions. However, even after correcting the dis-
tortion problem via the referenced algorithm, the estimated depth map
still has some image distortion effect. Thus, we performed the plenoptic
camera calibration and rectification before the depth map calculation.
The diagram of Fig. 6 shows our approach well.

Fig. 7 shows the comparison between our proposed depth map es-
timation strategy and the output from Lytro’s software (Lytro Destktop
v.5.0.1). Fig. 7(a, b) have more continuous depth levels and stable gra-
dation than Fig. 7(c, d). On the contrary, the sharpness of the targets
and the shape of the object’s surfaces in the former are worse than in
the latter.

3.2. Point cloud modification and registration

The aim of this section is to explain how to compose the point cloud
from the image, and to make registration from one point cloud to the
other in order to arrange them in a proper position. In [13], we com-
posed the point cloud from a pair of color and depth map images. We
assigned six values to each point of the point cloud, namely its (x, y,
z) coordinates and RGB color intensities. Each point of the RGB image

Demosaicing & Decoding
(make sub-aperture image array)
T

|
Plenoptic camera
Calibration
(with calibration target scenes)

(to main scene's sub-aperture images)

1

Jeon's algorithm
(to estimate depth map)

!

| End |

I Image rectification |

Fig 6. Flow chart of our proposed depth estimation strategy.

corresponds to the point of the depth image having the same (x, y) co-
ordinates. So it is sufficient to assign the corresponding depth value to
all the points of the RGB image. Finally, this modified 3D information is
arranged into the virtual 3D space. Afterward, we need to make registra-
tion between left and right point clouds. This is because the two scenes
are mutually shifted and it is necessary to arrange them in a proper way.
To solve this issue, we utilize Iterative-Closest-Point algorithm (ICP), as
in [10]. ICP calculates the movement and minimizes the distance be-
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tween point clouds. As is well known, ICP is often used to reconstruct
2D or 3D data captured from different positions. The output of ICP algo-
rithm is a rigid-body transformation matrix, which includes translation
and rotation information [16-18]. This matrix permits to refer the po-
sition of one point cloud to the other in appropriate way.

4. Integral image generation from the point cloud with GPU
acceleration

Once aligned the pair of point clouds, the resulting one is ready to
generate an integral image. As we mentioned in [13], the production of
an integral image is processed in a virtual 3D space using a virtual pin-
hole array (VPA). We place the VPA in a proper position in the virtual
3D scene, and all the points from the cloud are projected through all the
pinholes by using back-projection technique, as in [19]. Interestingly,
the location of the VPA will represent the position of the displayed im-
age’s reference plane. For instance, a point located behind the VPA will
be reconstructed behind the MLA, while a point in front of the VPA will
be reconstructed floating in front of it. Each point projected through
the pinholes forms the microimages’ pixels and finally, this entire back-
projection mapping calculation produces the integral image.

On the other hand, we also need to consider the scale factor between
input image and integral image’s sizes. The main reason is that the scale
factor decides the nearest-neighbor interpolation’s index, as in [13]. This
interpolation helps to fill the empty pixels during the back-projection
mapping and as a result, proper interpolation index helps to improve
the quality of the integral image. Eq. 1 and 2 show how to derive scale
factors:

Dst, =11,
11, (0]
Dsty = ors, X Orgy,
Dst,
wo = o @
Orgyp

Where II,, is target integral image’s width size, Org,, j is input image,
Dst,, p, is final integral image size, and 4, , is scale factor, respectively.

However, these back-projection mapping and interpolation processes
are heavy work. In order to solve this drawback, we utilize the GPU ac-
celeration technique. The use of central processing units (CPUs) com-
putation has the limitation due to their general purpose of usage. Even
if CPUs have their own threads to compute, their performance is not
sufficient to boost the computation speed because of the way of CPU’s
sequential implementation process and the limited number of CPU Cores
(the number of threads depends on the capacity of CPU’s Cores). On the

() (b)
(c) (d)
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Fig?7. The depth map comparison result: top row images (a, b)
are the estimated depth map result from our approach, while
bottom row images (c, d) are from the output of Lytro’s soft-
ware. Right bar shows the depth intensity value from depth
map image (0: closest area, 255: farthest area).

255

contrary, GPU computation enables to execute thousands of threads to
compute their mission in parallel [20,21]. It means that we can com-
pute the integral image in a parallel way and as a result, we can speed
up the computation time. Fig. 8 shows our approach and the comparison
scheme between CPU and GPU computation. After this process we can
get the integral image, which is ready to be displayed in an InI monitor.

5. Experimental results

In our experiment, we register the right point cloud into the space
of the left one. The main reason is that the right scene not only con-
tains the occluded information of the left scene, but also new objects
appear. On the other hand, regarding the display part, we utilized the
Samsung SM-T700 (14.1338px/mm) tablet as screen, and we mounted
a MLA which has focal length f=3.3mm and pitch p=1.0mm (Model
630 from Fresnel Technology). We utilized 152 x 113 microlenses from
this MLA because this is the maximum possible usage for the screen
used (see Fig. 10’s Inl monitor set-up). A noteworthy feature is that the
number of pinholes of the VPA must match the number of microlenses.
The generated microimage is composed of 15 x 15 pixels, and thus, the
full size of the integral image is 2280 x 1695 pixels. Finally, we need to
resize the integral image to take into account the real number of pixels
per microlens, so the image is finally resized to 2148 x 1597 (resizing
factor k=14.1338px/15px). Fig. 9 shows the result of produced integral
images.

To show our experimental result, we composed the set-up as shown
in Fig. 10. Originally, our main target are binocular observers, who can
see the 3D nature of displayed scene. Unfortunately, the full-parallax ef-
fect cannot be directly demonstrated in a manuscript or even in a monoc-
ular video. In order to demonstrate this 3D effect, we replaced the binoc-
ular observer with a monocular digital camera, as recording device. A
collection of pictures is obtained displacing the camera in horizontal and
vertical direction. Media 1 and 2 show the result obtained with each left
and right scenes, and Media 3 shows the result of the proposed method.
Fig. 11 shows this experimental result with more details. Our proposed
result has better quality than each, left and right, captured scenes. For
instance, left and right scenes have black areas (depthless areas) caused
by occlusions. On the other hand, our proposed method restores these
occluded areas thanks to the registration and complementation between
left and right captured scenes.

Meanwhile, we exploit the parallelism in integral image computa-
tion via NVIDIA CUDA programming model, which is a software plat-
form for solving non-graphics problems in a parallel way [21]. Our hard-
ware specification is the following: Intel i7 4cores in CPU, and NVIDIA
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Referenceplane _

Fig 8. The comparison scheme how to compose an integral image in CPU and GPU computation. Each thread picks single 3D point from the point cloud and computes
the proper pixels of an integral image using VPA projection. From the third step, GPU is able to assign thousands of points in a same time contrary to CPU.

Fig 9. Composed integral image: (a) is from left scene, (b) is from right scene, and (c) image is registered scene between left and right scenes.

Recording

/ device

Microlens array

Inl imonitor

Fig 10. Overview of experimental system.

GeForce GTX 870M in GPU. We tested the algorithm with various in-
terpolation indices to compare the computation speeds (see Fig 12 and
Table 1). We have found that the GPU implementation is much faster
than CPU, especially when we increase the interpolation index. In fact,

Table 1
More detail of comparison result between CPU and GPU computation
time.

List CPU(Sec.) GPU(Sec.)

Kind of the scene  Left, right ~ Registered  Left, right ~ Registered

0 interpolation 109.71 224.59 29.59 60.57

1 interpolation 302.39 629.87 30.47 63.46

2 interpolations 699.40 1432.56 32.68 66.94

3 interpolations 1281.99 2610.55 53.77 109.48

the interpolation index does not affect the computation time in the GPU
implementation.

6. Summary and conclusion

In this paper we utilized the stereo-plenoptic camera system to dis-
play the captured plenoptic image into an Inl monitor and enhance the
quality of the displayed 3D image. We did a plenoptic camera calibra-
tion and rectification to solve the tilted and distorted plenoptic image’s
defect. Furthermore, we extracted the sub-aperture images array from
the calibrated plenoptic image in order to estimate the depth map. This
calculated depth map is used to compose the 3D point cloud, which
is arranged into the virtual 3D space. Then we performed a registra-
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Fig 12. The integral image generation time comparison between CPU and GPU.
The triangle represents the left and right scene’s result, and the rectangle repre-
sents the registered scene’s result.

tion between left and right scene’s point clouds to arrange them in a
proper position. This fused point cloud has denser 3D data and man-
ages to recover the depthless areas properly. Finally, we generated the
integral image via VPA through the back-projection method. To boost
the computation time, we adopted GPU acceleration technique in this
procedure. This generated integral image is displayed in our proposed
integral imaging monitor and it displays an immersive scene with full
parallax to the binocular observers.

In the future work, the main focus will be on the real-time implemen-
tation of the system using different and/or newer types of 3D cameras:
stereo-vision camera [22,23], or even higher quality of plenoptic camera
[4,6]. Another goal is to enhance the accuracy of 3D data registration
using non-rigid objects mapping [24-26].
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Fig 11. Comparison result between displayed integral images:
first row is from left scene, second row is from right scene, and
third row is our proposed result. All the images are excerpted
from recorded video (Media 1, 2, and 3), and we clipped-out a
specific part at the scene in order to emphasize the comparison
result clearly.
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'y material d with this article can be found, in
the online version, at doi:10.1016/j.optlaseng.2018.11.023.
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