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“…it seems that the laws of physics present 

no barrier to reducing the size of computers 

until bits are the size of atoms, and quantum 

behaviour holds dominant sway.” 

R. P. Feynman (1985) 
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Abstract 
One of the most promising building-blocks for storage and processing of 

information are the so-called molecular nanomagnets and molecular spin qubits. 

These zero-dimensional molecular systems exhibit interesting magnetic 

phenomena, where information is encoded in their spin energy levels. Because 

of the practical inability to fully isolate a quantum-mechanical system, 

uncontrolled interactions with the surrounding environment can damage the 

information either stored or under processing in these systems. Thus, in order 

to build molecular nanomagnets and spin qubits able to satisfy even the most 

demanding challenges either current or future, one first needs to develop a 

rational framework to know how to design a given system as decoupled from 

the detrimental effects of its environment as possible.  

In this dissertation, we conduct a theoretical exploration of some of the most 

important mechanisms that contribute to spin relaxation, i.e., the collapse of the 

information stored and processed in the above-mentioned systems. We aim to 

develop first-principles and efficient methodologies devoted first to quantify the 

damage of these mechanisms, and then to provide synthetic rules to re-design 

and improve a given system at the lab stage. We will apply and test our novel 

methods to a representative set of the most interesting and promising molecular 

nanomagnets and spin qubits. For the purpose of facilitating a systematic use of 

these methods to any interested researcher, we also develop and provide a 

computational framework that incorporates the theoretical models herein 

developed.  
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1 
Motivation 

 

 

1.1 Unsolved Problems 

There is no doubt that nowadays we all live immersed in the so-called 

information age. Every day, big data archives flow all around the world at a 

speed which would have been unconceivable just a few decades ago. Together 

with the need of storing and carrying larger amounts of information, there also 

exists an increasing interest to achieve a larger computational power able to 

satisfy even the most demanding challenges of current interest for society and 

industry. Among these challenges, one can find for example the simulation of 

new materials both for technological gadgets and for space aircrafts, or the in-

silico test of new drugs that help to control and cure the diseases that affect 

human beings. These needs are pushing and will keep doing it until they are all 

covered.  

The rise in the computing capacity of standard computers over the last few 

decades has been possible as technology has been able to fabricate smaller 

transistors to fit a larger number of them in a processing chip. To get some idea, 

every two years the number of transistors in a microprocessor is approximately 

multiplied by two. This is what is known as Moore’s law, named after the co-

founder of Intel Gordon Moore, who established this empirical observation in 

1965. Nonetheless, it is clear that this relentless miniaturization of transistors 

will end up by reaching the nanoscale, where classical physics is not valid 

anymore and the laws of quantum physics enter at play instead.  

Inside this context, it is worth wondering whether the properties of quantum 

systems could be harnessed to build a quantum processor and process 

information. Indeed, this idea was already proposed first by P. Benioff in 1980 
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and then by R. P. Feynman in the first conference of Physics of Computation at 

the Massachusetts Institute of Technology in 1981.1,2 These proposals would 

have remained just an anecdote were it not for the fact that, in 1994, P. Shor 

devised the first quantum algorithm able to conduct prime factorization of large 

integer numbers in polynomial time,3,4 which outperforms the exponential time 

taken in classical computers. This fact represented the proof-of-concept of the 

enormous advantages that a quantum computer could bring respect to classical 

computing, and since then it has drawn the attention of an increasing number of 

researchers all around the world interested in contributing to the development 

of quantum computing.  

The next natural step is to ask which kind of hardware should be employed 

either to store information in it or to implement a given quantum algorithm. 

While at present certain physical systems can be identified as prime candidates, 

it is equally essential to pursue this goal on a broad basis of competing 

approaches by allowing hybridization and cross fertilization between different 

fields (e.g., quantum optics, atomic physics, as well as solid state physics). 

Some of the most commonly studied hardware proposals are those based on: 

cold ion traps,5–11 nuclear magnetic resonance,12–21 cavity quantum 

electrodynamics,22–30 linear optics,31 quantum dots,32–39 phosphorus-donors in 

silicon,40–45 Josephson junctions,46–54 endohedral fullerenes,55–59 and nitrogen-

vacancy centers.60–69 In addition, the emerging research field of nanoscience and 

nanotechnology is also providing alternative approximations. The building-

blocks for quantum hardware would be the so-called molecular nanomagnets,70–

79 and molecular spin qubits,80–89 which will be subject of study in this 

dissertation.90–94 The former could be used as classical memories for 

information storage, and the latter constitutes the most elementary unit for 

quantum processing.  

Although there exists a plethora of promising candidates for hardware, the 

goal of building multi-purpose quantum computers able to efficiently solve 

intractable problems on classical computers seems to be nowadays out of reach. 

Before achieving this goal, several challenges both fundamental and 

technological should first be overcome, being decoherence and scalability two 

of the most representative. The fact of being quite hard to decouple a given 

quantum-mechanical system from its environment is related with the former, 

namely, uncontrolled interactions with the aforementioned system will damage 

-in a certain timescale- the information encoded in the form of qubits. These are 
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the most basic pieces of any quantum processor, and will be introduced in 

chapter 2. On the other hand, the execution of algorithms able to perform tasks 

of increasing complexity will require the interplay of a larger number of qubits 

while keeping quantum information unaltered. This is what scalability refers to. 

There do already exist several small-scale prototypes working with a few 

qubits,4,18,95,96 which are proving that quantum computing is becoming a reality. 

Nonetheless, only the attainment of a quantum processor able to deal with large 

enough numbers of qubits will make quantum computing a tool worth paying 

attention when it comes to solve problems of interest for society and industry.  

 

1.2 Goals 

One of the current key goals is to unveil the role of the different decoherence 

mechanisms acting on molecular spin qubits, in order to establish general and 

rational synthetic rules at the lab stage that allow reaching long enough phase 

memory times. This characteristic time determines the timescale for quantum 

information survival, and will be introduced in chapter 2. To reach this goal, the 

theoretical approximation is proving to be an indispensable tool on how to gain 

increasing insight. Thus, one of the main goals of this dissertation will be to 

develop an ab initio framework devoted to provide first a quantitative estimate 

of the impact of the most important decoherence mechanisms on the phase 

memory time; and then a guide of chemical modifications in the geometrical 

structure of a given molecular spin qubit to increase its phase memory time. All 

in all, the key goal consists in unveiling the explicit structure-property relation 

in molecular spin qubits, where the property is the phase memory time, in order 

to elaborate a general recipe for building a molecular spin qubit with the desired 

phase memory time.  

An important class of magnetic systems that will be subject of study in this 

dissertation are single-ion molecular nanomagnets based on lanthanides and 

uranium. The target relaxation mechanism to focus on in these systems will be 

the one derived from the spin-vibration coupling, which contributes to destroy 

information saved in the form of bit at high enough working temperatures. 

Motivated by the fact that state-of-the-art theoretical methods are still too 

computationally demanding, the second main goal will be to develop a first-

principles inexpensive methodology that allows a generalized and efficient 

evaluation of spin-vibration coupling in single-ion molecular nanomagnets 
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based on lanthanides and uranium. This methodology should also be able to 

provide insight on how the structure of a given molecular nanomagnet has to be 

chemically modified to improve the magnet performance.  

To ensure a systematic and practical application of the methods herein 

developed, the third main goal will be to build a computational framework in 

the form of a software package where all these methods will be implemented. 

This code will be used in a representative set of potential molecular spin qubits 

and molecular nanomagnets.  

 

1.3 Organization of the Thesis 

This dissertation is broken down into three main blocks as follows. 

The first block “Computational Development” is aimed at describing the 

computational framework in the form of a practical and useful software that can 

be provided to any interested researcher. All the models presented in the second 

block are updates that have been implemented on the original code SIMPRE 

developed prior to this dissertation. The first updated version of this code that 

was developed and published within the present work is SIMPRE1.2, and is 

presented in chapter 3. Besides, in this chapter we will also introduce the newest 

version SIMPRE2.0.  

The second block “Theoretical Development and Applications” is focused on 

presenting the theoretical models developed herein and which are devoted to 

unveil the impact of some of the most important spin relaxation mechanisms 

acting on molecular spin qubits and molecular nanomagnets, namely, “Spin-

vibration Coupling” in Chapter 4 and “Magnetic Noise” in Chapter 5. These 

models will be applied to several potential molecular spin qubits and molecular 

nanomagnets of current interest in order to extract a list of chemical 

modifications on the molecular structures that could help to improve the 

performance of these systems.  

In the third and last block “Current Challenges”, some open problems and 

current challenges of wide interest in the field of molecular spin qubits are 

presented and discussed. In chapter 6 “Atomic Clock Transitions in HoW10” we 

propose a novel approach based on the introduction of transition probabilities 

to reproduce the magnetic field dependence of the phase memory time of a 
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molecular spin qubit exhibiting a particularly interesting phenomenon, namely, 

atomic clock transitions. In chapter 7 “Quantum Error Correction” we will study 

Tb3+-based polynuclear magnetic molecules whose energy scheme allows 

defining up to nine qubits. Then, we will discuss on the possibility of 

implementing in it some algorithms such as the Shor’s three- and nine-qubit 

quantum error correction codes.  
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2 
Molecular Nanomagnetism and 

Electron Paramagnetic Resonance 

 

 

2.1 Molecular Nanomagnets and Molecular Spin Qubits 

The aim of this section is to introduce the physical systems that will be 

subject of study in the next chapters, namely, molecular nanomagnets and 

molecular spin qubits. For that, we will firstly review the main advantages of 

quantum computation schemes in order to motivate the applicability of these 

systems in quantum information processing.  

 

Classical vs quantum computing 

Nowadays, we all are used to employ computers in our daily life, which 

exploit classical electronics to store and compute information under the rules of 

the so-called Boolean logics. Particularly, in 1937 Alan Turing established the 

basics of classical computing by introducing the concept of universal computer, 

also known as Turing machine.97 Ten years later, scientists from the University 

of Pennsylvania built the first electronic computer, ENIAC, able to perform 

arithmetic operations with numbers of up to ten digits.98 As technology is 

improved, it is possible to increase the performance of classical computers, 

which relies in our ability of further miniaturizing the transistors of processing 

chips by exploiting advances in nanotechnology. If this miniaturization keeps 

going on, these electronic components will unavoidably reach the atomic scale 

as predicted by the abovementioned Moore’s law. Thus, data processing is 

destined to eventually meet quantum physics towards a common discipline in 
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which information would be stored in components of quantum nature and 

processed under the laws of quantum physics.99 

The proposal raised by Feynman in 1981 was that of building a universal 

quantum simulator in order to study and understand complex quantum systems 

that are intractable by classical computers.100,101 A quantum simulator is a 

quantum system with a well-understood and fully controllable dynamics that 

can be unequivocally mapped onto the one of a target system.102–106 Thus, there 

is no need to solve the complex dynamics of the target system anymore, since 

it can be simulated with a much simpler system. 

 

“Trying to find a computer simulation of physics seems to me to be an excellent 

program to follow out…the real use of it would be with quantum 

mechanics…nature isn’t classical…and if you want to make a simulation of 

nature, you’d better make it quantum mechanical, and by golly it’s a wonderful 

problem, because it doesn’t look so easy.” R. P. Feynman (1981) 

 

Quantum simulation represents one of the most powerful uses of quantum 

computing and one of the biggest advantages over classical computers.107–110 

Functional quantum simulators would allow the development of new materials, 

a deeper understanding of high-temperature superconductivity, or a fine 

description of chemical compounds and chemical reactions.111–114 For example, 

to simulate the dynamics of n independent spin-1/2 systems in a classical 

computer, one would need to store and manipulate a vector of 2n components, 

something impractical as soon as n > 20. Instead, a quantum simulator would 

require a vector of only n components to define the system state. Importantly, 

this proves the significant increase in computational efficiency, since the 

exponential scaling of the problem to solve is replaced by a linear scaling. 

Exploiting the properties of quantum world can provide advantages not found 

in classical computers that are harnessed even by nature, such as the use of 

quantum-based avian compasses by migratory birds.115 This quantum potential 

is also extended to information processing. As mentioned above, P. Shor 

devised a quantum algorithm able to perform prime factorization of integer 

numbers in polynomial time, which contrasts with the exponential time taken 

by classical computers. Interestingly, the success of some encryption methods 



31 

 

in providing privacy for online operations, such as RSA protocols, relies on the 

inability of factorizing large integer numbers within a reasonable time by 

classical computers. However, even a moderately-sized quantum computer 

would be able to perform these factorizations and thus break the cryptographic 

systems that have resisted attacks even from the most powerful classical 

computers.  

Fortunately, the quantum principles exploited to achieve an unprecedented 

computational power also provide new methods to protect information 

transmission, namely, quantum cryptography. This discipline was originally 

introduced by S. Wiesner,116 and subsequently developed by C. Bennett and G. 

Brassard.117–120 The key to this novel approach relies on the uncertainty 

principle which would make information eavesdropping be impossible without 

a high chance of irreversibly disturbing the sent message. Nowadays, there 

already exist implementations of quantum cryptography in the form of quantum 

key distribution marketed by companies such as MagiQ and id Quantique. 

Previously, large-scale experiments proved reliable key distribution across a 

distance of up to several tens of kilometers and under diverse atmospheric 

conditions.121–123 Eventually, quantum cryptography could replace current 

cyphering protocols, although recent simulations suggest that RSA protocols 

could resist attacks even from highly scalable quantum computers.124  

Another important problem whose efficient implementation is due to 

quantum principles is that of searching for a specific entry in a disordered 

database. Indeed, in 1996 L. Grover devised a quantum algorithm able to 

accomplish this task much faster than any classical computer could do.125,126 

Particularly, if the database contains n entries, the average number of 

algorithmic operations to perform before succeeding scales with n  instead of 

n as found in classical algorithms. Grover’s algorithm works by creating a 

superposition of all entries where each on them has the same probability of 

appearing after performing a projective measurement. Then, the probability of 

a successful measurement is increased by submitting this superposition to a 

series of quantum operations devoted to find the target entry from an input 

feature. Successful implementations of this algorithm were already achieved on 

nuclear magnetic resonance setups and, more recently, in single magnetic 

molecules.15,127  
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Quantum computers 

Quantum computing is intended to perform well-defined tasks by storing and 

manipulating information in the form of a determined number of minimal 

quantum registers known as qubits. A well-defined task requires (i) to know 

what input we need, (ii) to define what output we want to get, (iii) to be 

successfully finished within a finite time. During this process, the input qubits 

are properly manipulated through a sequence of steps known as logical gates to 

obtain an output. Qubits are the quantum version of bits, the building blocks of 

classical computers. A bit, or binary digit, is a system with two well-

characterized states denoted as 0 and 1, and is the minimum amount of 

information to deal with. There exist several options of implementing a bit by 

means of diverse magnitudes such as charges, voltages, or electric currents. In 

this last case, the state 0 could be assigned to a flowing current below a given 

threshold, while the state 1 would require a current above the threshold.  

The key to a bit is that its value is necessarily either 0 or 1 without any further 

possibility. Instead, a qubit exploits quantum superposition to produce a general 

state whose value, the minimum amount of information in a quantum computer, 

is simultaneously 0 and 1. Of course, any projective measurement on the qubit 

must be avoided as long as one needs to keep the superposition. This general 

state is written in the form of a ket   as a linear combination of the 

orthonormal elements 0  and 1 , i.e., iji j =  where ij  is the Kronecker’s 

delta: 

 

 0 1  = +   Eq. 1 

 

In Eq. 1, α and β can be any combination of complex numbers such that 
2 2

1 + = . A quantum computer is a device that exploits quantum 

superposition to process information with a much more efficient time scaling 

compared to classical computers. For instance, an exponential scaling can be 

turned into a polynomial scaling as mentioned above. This has a decisive impact 

on the execution time and memory requirement: a quantum technology 

computer will be able to perform tasks utterly intractable on any conceivable 
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non-quantum hardware. Indeed, classical computers use a series of bits to 

constitute a memory register where information is stored. While a classical 

register of n bits represents n values as a unique assignment of each bit to 0 or 

1, a quantum register with n qubits can represent up to the whole set of 2n values 

if each qubit is found in state superposition. Thus, the computation is 

simultaneously performed on all possible combinations of values (ν1,…νn) with 

νi = 0, 1, while a classical computer would only be able to deal with one 

combination at a given time.  

A simple illustration of quantum operations on qubits is provided by the 

CNOT logical gate, which will be presented in chapter 7. This gate flips the 

value of the target qubit whenever the value of the control qubit is 1, and does 

not produce any effect on the target qubit whenever the control value is 0. Let 

us consider that the control qubit is in state superposition 0 1c   = + , and 

the target qubit is 0t = . The joint state is written as 

( )0 1 0 00 10c t       = +  = + , where the first position in the ket 

stands for the control value and the second position represents the target value. 

Since c  contains both 0  and 1 , which is the result of applying a CNOT 

gate on 0t = ? Is it 0 0t = → ? Is it 0 1t = → ? The right answer is 

neither of them but both results at once: 00 11c t     →  = + . Indeed, 

whenever the control value is 0, the target value will remain unaltered with its 

original value 0. On the contrary, if the control value is 1, the target value will 

turn into 1. Hence,   is an entangled state since a measurement to know the 

control value will unavoidably determine the target value. For instance, if the 

former is found to be 0, the latter must be necessarily 0 since its original value 

was 0. In other words, an entangled state cannot be written as a product of two 

factors where each one depends only on a single qubit.  

Qubit states are physically defined in the form of discrete configurations 

found in quantum-mechanical systems such as the ones mentioned in chapter 1. 

For instance, one qubit can be embodied in the superposition of two non-

degenerate energy levels labeled as 0  and 1 . In the general case of 

implementing n qubits one would require 2n levels, which are now labeled as 

1... nx x  with  0,1jx  . This set of levels constitutes the so-called computational 

space in which the algorithm will be conducted by driving a series of allowed 
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and addressable transitions between these levels. Importantly, the 

computational space must fulfil some important requirements to avoid a bad 

implementation of the n qubits. On one hand, this space must be well-isolated 

so that other energy levels cannot interfere while performing the computation. 

On the other hand, any transition must be distinguishable from the rest in order 

not to drive more than one at once.   

 

Scalability and decoherence 

In the pursuit of building a general-purpose quantum computer, it will be 

useful to follow a guide of minimum requirements for any physical 

implementation, since nowadays only small prototypes working with a limited 

number of qubits are available.4,18,95,96 These requirements were established in 

2000 by D. DiVincenzo and read as follows:128 

1. A scalable physical system that allows controlling an increasing number 

of well-characterized qubits as needed. 

2. The ability to reliably initialize each qubit to a known state. 

3. Decoherence times longer than the logical gate running times.  

4. A universal set of logical gates.  

5. The capability to read the result of any given computation by performing 

projective measurements of the qubit states onto the basis set  0 , 1 . 

Basically, a quantum computation initializes the qubits, manipulates them in 

a coherent evolution, i.e. by preserving quantum superpositions, and reads out 

the final result. Each given algorithm is composed of a sequence of logical gates 

that ends in a finite time. In principle, since there is an infinite number of 

algorithms one would also require an infinite set of gates to cover the realization 

of all possible computational tasks. Fortunately, it can be proven that every 

logical gate can be reproduced with an arbitrary precision by a finite set of gates 

known as universal set of logical gates. There exist several universal sets and 

they will be introduced in chapter 7.  

Building a general-purpose quantum computer with a high enough number 

of qubits requires overcoming important challenges such as scalability and 
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quantum decoherence. As far as the former is concerned, a quantum computer 

is intended to efficiently solve intractable problems in classical computers, such 

as prime factorization of large integer numbers or simulation and modelling of 

complex physical systems. As mentioned, a potential quantum computer should 

coherently deal with a large enough number of qubits to conduct non-trivial 

quantum algorithms of wide interest. Moreover, interfaces with direct relevance 

for quantum communication will need to be developed for connecting quantum 

computers in secure networks to allow task parallelization. At this point, we 

recall the quantum cryptography protocols introduced above.  

A moderate goal to achieve in the middle term would be to develop specific-

purpose quantum processors with a few tens of qubits to demonstrate the 

experimental feasibility of implementing quantum algorithms and simulation, 

with emphasis on potential scalability. In particular, the so-called NISQ (Noisy 

Intermediate-Scale Quantum) technology is proving that this goal could become 

a reality.129 Depending on the sophistication in the experimental implementation 

and on how restrictive the required conditions are, it often happens that certain 

qubits of a given physical nature may be more appropriate than others to 

conduct a specific task. Thus, it is likely that there will not be a single winner 

in this race, i.e., different quantum technologies where qubits of different nature 

interact with each other could be complementary. Of course, this fact should 

eventually lead to a rather highly-interdisciplinary research with a well-

coordinated effort.  

Hence, an extra requirement should be added to the Di Vincenzo’s list, 

namely, when dealing with mixed setups, qubits coming from different 

architectures -also known as stationary qubits- will need to be efficiently 

interconverted. In other words, the information carried by a qubit in a given 

architecture should be faithfully transmitted into another qubit of different 

nature. In this sense, the so-called flying qubits would be responsible for 

carrying the relevant information between stationary qubits in different 

architectures.130 For instance, one could foresee that, while quantum operations 

take place in a given part of the device, a qubit could be coherently transferred 

to a magnetic molecule in the form of a photon for a storage time. Then, the 

molecule could be subjected to a quantum error correction protocol and, finally, 

the protected qubit would be coherently transferred back again to a photon to 

be re-introduced in the quantum algorithm under execution.  
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Concerning decoherence, quantum-mechanical systems are not closed but 

they are coupled and irreversibly interact with their environment. Indeed, all 

environmental degrees of freedom not included in the model Hamiltonian are 

not under any active control and hence will act as a noise that results in the 

destruction of quantum superpositions. This process is known as quantum 

decoherence and is one of the main roadblocks to overcome before successfully 

implementing any computational process.131–133 In most of cases, it is not 

possible a total suppression of decoherence and current efforts are intended to 

find optimal physical systems in which this detrimental effect is minimum.  

As mentioned, quantum information is encoded in the form superpositions. 

Thus, quantum coherence is the ability to keep these superpositions intact, while 

decoherence would be the process whereby uncontrolled environmental 

interactions destroy them in a given timescale known as decoherence time. This 

process prevents the quantum system from evolving according to the model 

Hamiltonian. In other words, the evolution of the quantum algorithm will be 

different as expected from the logical gate sequence. Any attempt at 

manipulating qubits leads to what some scientists refer to as the yin-yang of 

quantum computing: on one hand, qubits must weakly interact with their 

environment in order to avoid decoherence. On the other hand, they must also 

strongly interact both with each other to conduct logical gates and with the 

controlled external stimuli that is applied to manipulate them and run the given 

algorithm.134 As it can be seen, quantum computing can become pretty much 

elusive because of the difficulty of simultaneously controlling certain degrees 

of freedom while preventing environmentally-induced decoherence. The 

experimental challenge is to find physical systems with the required nonlinear 

interactions for computation and simultaneously easily accessible from outside 

without a rapid loss of quantum coherence.135 

In principle, as far as we are unable to control and suppress decoherence, 

large-scale quantum computing could remain as a distant dream. Nonetheless, 

by developing clever schemes scientists are also finding ways not to necessarily 

fight decoherence but just to reverse and fix its detrimental effects. Some of 

these methods are collectively known as quantum error correction and will be 

introduced in chapter 7. These error correction schemes are based on entangling 

the qubit containing the relevant information with a set of ancillary qubits. 

Then, after sending all of them through a noisy channel, any error produced on 

the logical qubit will be accordingly corrected to restore its original state.  
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Molecular spin qubits 

The physical systems we will focus on in the next chapters are magnetic 

molecules -which means presence of unpaired electrons- where a single metal 

ion is coordinated by a set of ligands. In these systems, qubits are encoded in 

the spin energy levels, which can be among the several 2S+1 projections of the 

ground electron spin quantum number S. These are the so-called molecular spin 

qubits mentioned in chapter 1. The most simple situation is the one of a ground 

spin doublet S = 1/2 under a static magnetic field, where the 0  and 1  states of 

the single qubit are defined as the non-degenerate ms = ±1/2 components. In 

case of Ln3+ ions where the spin-orbit coupling is larger than the ligand field 

effect, S must be replaced by the quantum number J, which also incorporates 

the quantum number L of the orbital angular momentum. The possible values 

of J are |L+S|,…,|L-S|, and the ground value is determined by the Hund rule: J 

= |L-S| if the 4f-shell is less than half-filled, J = |L-S| whenever this shell is more 

than half-filled, and J = S for half-filled 4f-shells, such as in Gd3+ and Eu2+. If 

the nucleus of the metal ion is magnetic with a ground spin quantum number I 

and is coupled to the electron spin via hyperfine coupling, the 2I+1 projections 

will produce (2J+1)(2I+1) electronuclear spin states. Hence, nuclear spins can 

also be employed to define qubits. The standard experimental technique 

employed to drive these magnetic systems across their spin levels and thus 

perform quantum algorithms will be described in section 2.2.  

Within solid-state spin systems, the molecular strategy presents one 

interesting advantage, namely, the power of chemical design to conduct fine-

tune synthesis à la carte of molecules with the desired properties. This can be 

initially accomplished by varying key parameters as a result of an appropriate 

design.136 Indeed, this approach often allows gradually changing one of these 

parameters inside a series of molecules. Thus, one can systematically study the 

effect of this given property on a target property with the aim of understanding 

how to produce optimal systems through a rational design. Equally important, 

another important possibility is the use of polynuclear magnetic molecules, i.e. 

with several metal ions, for implementing two- or three-qubit logical gates. In 

this case, one needs to achieve magnetically distinguishable metal centers so 

that they can be selectively addressed. This in turn means different coordination 

environments, which can be obtained through a careful ligand design.81,137 For 
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these particular purposes, the field of molecular magnetism has produced a vast 

set of tools to design and study magnetic molecules over the last few decades. 

Experimental working conditions can also be tuned to produce optimal results 

on a given molecule, such as a large number of long-lived Rabi oscillations (see 

section 2.2).138 

The nature of decoherence mechanisms depends on the physical candidate 

for quantum hardware. Particularly, three main mechanisms can be found in the 

case of molecular spin qubits.139 As depicted in Fig. 1, these are: (i) coupling 

with vibration bath, (ii) coupling with surrounding magnetic nuclei (nuclear 

spin bath), (iii) coupling between different magnetic molecules containing 

qubits (electron spin bath). 

 

Fig. 1 Main decoherence mechanisms in molecular spin qubits represented as an arrow in 

a selected single-ion magnetic polyoxometalate. Left: coupling with vibration bath, center: 

coupling with surrounding magnetic nuclei (nuclear spin bath), right: coupling between 

different magnetic molecules (electron spin bath). 

 

The mechanism (i) has to do with the interaction between spin and vibrational 

degrees of freedom via spin-orbit coupling, and will be studied in chapter 4. The 

mechanisms (ii) and (iii) could be merged into a unique one as their origin arises 

in both cases from the coupling between magnetic dipoles, which can be either 

the molecules encoding the qubits or surrounding magnetic nuclei. They both 

will be studied in chapter 5 under the name of magnetic noise.   

In the pursuit of scalable architectures for quantum information processing, 

molecular spin qubits are also pushing to become potential candidates. 

Scalability could be achieved by combining these solid-state qubits with others 

degrees of freedom such as nuclear spins, electron charge, optical photons, and 

superconducting qubits.140 Thus, the key strengths of different qubit 

implementations -including coherent storage of qubits for times exceeding 
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seconds, fast qubit manipulation, single-qubit measurement, and scalable 

methods for entangling spatially separated matter-based qubits- could be 

brought altogether to pave the road for practical solid-state quantum 

technologies.  

Even in the case of only using spin-based qubits, particular architectures for 

scalability have been introduced and studied over the last few years. Finding 

them is crucial as the ultimate goal of multipurpose architectures devoted to 

implement generic algorithms will require moving from ensemble experiments 

with randomly distributed spin qubits, to spatially organizing close magnetic 

entities in periodic arrays to allow controlled inter-qubit communications for 

logical gates, see also chapter 7.81,141,142 Of course, in order to be practical, 

qubits would also need to be arbitrarily initialized, coherently manipulated, 

efficiently measured and also scalable to large numbers. While this is still hard 

to reach for molecule-based spin qubits, important proposals involving 

molecular spin ensembles are already advancing in that direction.143,144 Indeed, 

these proposals are based on superconducting coplanar waveguide resonators 

with arrays of nanoscopic constrictions where the spin ensembles are deposited, 

see Fig. 2.145 By reducing the size of the center line, it is possible to significantly 

increase the magnetic field magnitude in the vicinity of each given constriction. 

Thus, provided a high enough coupling spin-constriction is achieved, this setup 

has been proposed to spatially organize small magnetic entities such as single 

molecular crystals and even individual molecules or ions, communicated via the 

aforementioned waveguides in all cases. A first notable example was provided 

by locally implanting rare-earth ions in a substrate of Al2O3 which are in 

addition coupled to superconducting NbN lumped-element micro-resonators.146 

Simultaneously, thorough studies were conducted to simulate the use of 

molecular spins acting as qubits coupled to the mentioned nano-

constrictions.147,148 Importantly, by using sets of realistic parameters, they 

concluded that both strong and ultra-strong couplings could be achieved when 

using molecular ensembles of spin qubits and even individual molecular spins. 

This would allow using molecular qubits either for storage or processing of 

quantum information in these potential scalable architectures.  
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Fig. 2 Superconducting coplanar waveguides (grey) that connect pairs of molecules 

deposited on nanoscopic constrictions through resonant photons (red). Credits to Dr. 

Salvador Cardona-Serra.  

 

A rather different approach to look for scalability is that based on 

biomolecules as building-blocks. Their exploration as versatile platforms opens 

the door to a detailed engineering of them, thanks to techniques developed in 

molecular biology such as recombinant protein technology or CRISPR-

CAS9.149,150 For instance, DNA origami was successfully employed to control 

the spatially positioning of functional materials by self-assembly and ordering 

gold nanoparticles.151,152 Moreover, linear self-assembling peptides were shown 

to form a variety of stable and versatile nanostructures useful for the rational 

design of functional devices.153 Hence, it is likely that the bio-nanotechnological 

strategy could eventually be applied in the quest for scalability in quantum 

computing. As a matter of fact, spin-carrying metalloproteins were already 

probed by manipulating their quantum states via multifrequency pulsed EPR 

methods,154 while triple-stranded metallo-hellicates were suggested as 

addressable electron spin qubits to implement Lloyd's quantum computer 

proposal.155–157 More recently, molecular chemistry has provided an example of 

a new organic building-block whose control and readout is conducted by using 

a nitrogen-vacancy center in diamond, namely, a synthetic polyproline with 

electron spins localized on attached molecular side groups.158 Importantly, 

although only very few of these spin systems were addressed, this work does 

show that the use of spin-labeled peptides can become a potential resource for 

molecular-based scalable networks engineered with well-established chemical 

methods. In addition, the use of peptidic spin qubits could benefit from the 

possibility of systematic property optimization: whether one is interested in 

quantum coherence or in any other specific related effect, the rational procedure 

to improve the desired property would be to perform a screening of a 
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combinatorial peptide library, i.e. to make combinations of substitutions of 

individual amino acids in the sequence to obtain progressively better properties. 

 

Molecular nanomagnets 

Quantum computing exploits state superposition for data processing but yet 

it is also possible to harness complementary quantum systems to store 

information in the form of classical bits. These systems are known as molecular 

nanomagnets and are characterized by a bistable ground spin state at zero 

magnetic field that can be used as an information bit. Unlike conventional bulk 

magnets, their magnetic properties have a molecular origin. This means that 

collective long-range magnetic ordering of magnetic moments is not necessary 

for bistability and the characteristic molecular magnetic behavior appears even 

at high dilutions in a diamagnetic matrix.159 Herein, we provide a general 

introduction aimed at establishing the basics that will allow us focusing on our 

main goal, namely, to study the vibration-induced spin relaxation that spoils bit 

information encoded in molecular nanomagnets. Thus, after identifying the 

most relevant vibrations for relaxation, it will possible to propose a rational 

molecular re-design in order to block them and improve the magnet 

performance. This last part will be thoroughly conducted in chapter 4 with a 

case study.  

Molecular nanomagnets are zero-dimensional magnetic clusters where either 

a single metal ion or a group of them is coordinated by a set of ligands.160–162 

The former are known as single-ion magnets (SIMs), while the latter are single-

molecule magnets (SMMs). Among the metal ions, the most commonly 

employed were firstly transition metals and subsequently trivalent lanthanides, 

such as Mn3+, Mn4+, Tb3+, Dy3+. The characteristic feature of molecular 

nanomagnets is the presence of a bistable ground spin state at zero field 

separated by a potential barrier, which gives rise to a slow loss of net 

magnetization and thus to a memory effect in the form of magnetic hysteresis. 

Hereunder, we will focus on Ln3+-based SIMs as they are currently the last 

frontier under exploration and are drawing an unprecedented interest.163–165  

Let us first proceed by describing the electronic structure, namely, the 

corresponding Hamiltonian Ĥ  that determines energies and wave-functions, 

see Fig. 3. The first two factors ˆ ˆ
kin e nH H −+  are the electron kinetic energy and 
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electron-nucleus attraction operators of the free metal ion. These factors define 

the ground electron configuration which in this case is of the form [Xe]4fn, 

where n is the number of electrons in the 4f outer shell. The n electrons are 

distributed in the seven 4f orbitals that arise from the seven projections ml = -3, 

-2, -1, 0, +1, +2, +3 of the quantum number l = 3. Note that due to the Pauli 

exclusion principle only two electrons with opposite ms = ±1/2 projections can 

fit in a given orbital at most. The following factor to include, the electron-

electron repulsion operator ˆ
e eH −  with a magnitude lesser than that of ˆ ˆ

kin e nH H −+

, makes all the possible distributions of the n electrons in the seven 4f orbitals 

not to have the same energy. Each given distribution is known as term and the 

so-called Hund’s rules determine the lowest one in energy. To determine the 

number of terms for a given configuration, one has to compute the binomial 

coefficient 2(2l+1)!/e!(2(2l+1)-e)!, where e is the number of electrons and l = 3 

in this case.  

Since Ln3+ ions are polyelectronic, the quantum numbers l, ml, ms that arise 

from solving the Schrödinger equation for a hydrogen-like ion are not well-

defined. Instead, new quantum numbers must be introduced to characterize the 

terms present in many-electron systems. Indeed, these are the quantum numbers 

S, L of the total spin and orbital angular momenta, respectively. A given term 

characterized with given values of S, L is denoted as 2S+1L, where 2S+1 is the 

spin multiplicity and L is replaced by a certain letter depending on its value. As 

with the quantum number l, the values 0, 1, 2, 3, 4, 5, 6, 7… of L correspond to 

the letters S, P, D, F, G, H, I, K… For a given electron distribution in the seven 

4f orbitals, i.e. a term, S, L are calculated just by adding up the values of ms and 

ml of each electron. Note that the doubly-occupied orbitals do not contribute to 

S as the opposite projections ms = ±1/2 cancel with each other, but do contribute 

with 2ml to L. To determine the ground term in energy, we apply the Hund’s 

rules. First, the electrons are distributed such that 2S+1 is maximized. This 

means that the electrons must occupy the maximum number of orbitals with ms 

= +1/2 projection. Only when there are more than seven electrons these orbitals 

could be completed with a new ms = -1/2 electron. The second rule is applied 

only if several terms have the same maximum spin multiplicity. In this case, the 

ground term is the one with the largest value of L. For that, one places the first 

electron in the orbital with ml = +3, the second one in the orbital with ml = +2, 

and so on until the last electron is placed in the orbital with ml = -3. Whenever 
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the ion contains more than seven 4f electrons, the eighth electron would be 

placed again in the orbital with ml = +3 and so on once again. 

 

 

Fig. 3 Russell-Saunders coupling scheme as different interactions of decreasing magnitude 

are added to the full Hamiltonian Ĥ , see main text. The wavenumbers shown are typical 

magnitude orders of the splitting energies. In the systems of our interest, the gap Δ between 

the ground and first excited levels will be large enough as compared to the thermal energy 

kBT.  

 

The following factor to include in the full Hamiltonian is the spin-orbit 

interaction ˆ
SOH , which couples S, L in a new quantum number J that 

characterizes the total angular momentum. This interaction splits each term into 

(2S+1)(2L+1) levels denoted as 2S+1LJ  with allowed values J = |L+S|,…,|L-S|. 

For a given term with values S, L, the ground level is determined by applying 

the third Hund’s rule. If the 4f shell is less than half-filled, the level with the 

smallest value of J lies lowest in energy. Instead, if the shell is more than half-

filled, the ground level will be the one with the largest value of J. In the 

particular case of a half-filled shell, L = 0 and thus J = S corresponds to the 

ground level. The validity of Hund’s rules relies on assuming that the repulsion 

between the 4f electrons is greater enough than the spin-orbit coupling, which 

is considered as a safe estimate for trivalent lanthanide ions due to the compact 

nature of the 4f orbitals. In this case, once any other interaction is smaller than 
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the spin-orbit coupling, the scheme followed to derive the several terms and 

levels is known as Russell-Saunders or LS coupling scheme.  

Up to this point, we have been describing the electronic structure of a free 

Ln3+ ion. The next step is to discuss the effect of a given Ln3+-coordinating 

ligand set, i.e. the ligand field interaction ˆ
LFH , on the levels 2S+1LJ. In most of 

cases, the energy gap Δ between the ground and first excited levels will be larger 

enough than the thermal energy kBT below room temperature. Hence, the 

ground level will be the one mostly populated. If, in addition, the ˆ
LFH  magnitude 

is below enough that of ˆ
SOH , the ground level is split into 2J+1 states according 

to the several projections mJ = -J,…,+J with a negligible interference from 

excited levels. Under these conditions, we will focus only on this low-lying 

multiplet to describe the electronic structure and the magnetic properties of 

Ln3+-based SIMs. Whenever J is a half-integer number, these states will appear 

in the form of degenerate spin doublets in virtue of the so-called Kramers 

theorem. In some particular cases where the metal ion environment is highly 

symmetric, this degeneracy could be even higher. When dealing with 4f4, 4f5, 

4f6 configurations, i.e. Pm3+, Sm3+, Eu3+, it is possible to find that ˆ ˆ
SO LFH H  

instead of ˆ ˆ
SO LFH H . Thus, one will have to bear mind the possible limitations 

of the Russell-Saunders scheme and the crystal field effective approach in these 

situations (see chapter 4). Anyway, Eu3+ is not under consideration on our side 

as its ground level 7F0 has a J = 0 quantum number, which makes this ion be 

inappropriate to display SIM behavior.   

In order not to solve the full Hamiltonian Ĥ , the standard procedure consists 

in mapping this ground multiplet onto an effective (2J+1)-sized Hamiltonian. 

This is the so-called Crystal Field Hamiltonian ˆ
CFH , Eq. 2, which is built in the 

ket basis set  Jm  and depends only on spin degrees of freedom through the 

extended Stevens operators ˆ q

kO .166 All the effects derived from the interactions 

ˆ
kinH , ˆ

e nH − , ˆ
e eH − , ˆ

SOH  are encoded in the crystal field parameters q

kB  (CFPs), which 

reproduce the state energies of the ground 2S+1LJ level multiplet. Importantly, 

symmetric metal-coordinating environments will make some CFPs be 

negligible thus simplifying Eq. 2. There exist two main strategies to determine 

the CFPs involving both first-principles and experimental approaches. On one 

hand, after building the full Hamiltonian Ĥ  one could compare the (2J+1)-sized 
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submatrix associated to the ground level 2S+1LJ with the Crystal Field 

Hamiltonian matrix, Eq. 2, in the ket basis set  Jm . Since ˆ
CFH  is Hermitian, 

this gives rise to a set of J(2J+1) independent linear equations that can be 

uniquely solved to determine the CFPs if there does not exist 

overparameterization.167–169 On the other hand, it is also possible to exploit 

experimental data such as spectroscopically-determined energy differences 

between low-lying states by UV-vis spectroscopy or magnetic properties.170–176 

In this case, one proceeds iteratively by varying the CFPs until getting an 

accurate match between the calculated energies by diagonalizing Eq. 2 and the 

experimental ones. Alternative techniques such as EPR spectroscopy are also 

available and are routinely employed to obtain the CFPs as we will explain in 

section 2.2.  

 

 
2,4,6

ˆˆ
k

q q

CF k k

k q k

H B O
+

= =−

=     Eq. 2 

 

Once the CFPs are known, ˆ
CFH  is diagonalized to obtain 2J+1 states with 

energies Ei and wave-functions i  as a linear combination of the ket basis set 

 Jm . An important parameter is the energy difference between the ground 

and most excited states, known as zero field splitting (ZFS), see Fig. 4. To define 

a classical magnetic memory in the form of information bit, this low-lying 

electronic structure must contain a ground spin doublet, which can be non-

degenerate but yet with a rather small gap. As mentioned above, this is often 

encountered in the case of ground levels 2S+1LJ with a half-integer quantum 

number J. Instead, an integer J splits into an odd number of states and thus can 

give rise either to a singlet or to a doublet as a ground spin state. Under this 

situation, one should engineer the ligand environment to stabilize the spin 

doublet.  
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Fig. 4 Archetypal energy representation of the 2J+1 states associated to the ground level 
2S+1LJ in a molecular nanomagnet. These states are commonly sorted from left to right 

with increasing expected mJ. For the sake of simplicity, it has been considered that 

J Jm m=  in this hypothetical example.  

 

In an ensemble of a given molecular nanomagnet at thermal equilibrium, the 

population 0 ≤ pi ≤ 1 of each state obeys the Boltzmann law. By applying an 

external magnetic field, one of the two ground states is stabilized via Zeeman 

effect and, for a low enough temperature, it will become mostly populated with 

pi0 ≈ 1. In other words, the sample is magnetized and thus we have written an 

information bit in the state i0. After turning the field off, the population 

distribution in which pi0 ≈ 1 and pi ≈ 0 for i ≠ i0 is not the most stable 

thermodynamic situation anymore. Therefore, the ensemble will evolve until 

reaching again the original Boltzmann population in each state. This process is 

known as magnetic relaxation and, of course, its detrimental effect is that of 

destroying the stored bit information. The key point is the timescale, 

characterized by the temperature-dependent relaxation time τ, in which this 

relaxation takes place. With a large τ, the information will be retained for long 

enough so that the given nanomagnet can display a potential applicability. 

Herein, we will focus on the relaxation induced by a thermal bath of vibrations. 

This becomes the relaxation source limiting τ as thermal energy is increased, 
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and hence still hampers the use of molecular nanomagnets at more practical 

temperatures.  

This relaxation source involves quanta of vibrational energy, known as 

phonons, resonant with the energy gaps between pairs of states. Thus, when the 

field is turned off, a series of phonon absorptions and emissions drives the spin 

population from the initial state i0 through the whole 2S+1LJ ground multiplet 

until reaching the thermal equilibrium. The transition rate per unit time γi→f 

between two given states i and f with wave-functions i  and 
f  depends on 

their energy difference and on the strength coupling between spin and vibration 

degrees of freedom. On one hand, the larger this energy difference is the smaller 

γi→f will be. That is why ligand sets are often optimized to maximize the ZFS 

for a given metal ion. Firstly, this was tackled by serendipity but over the last 

few years theoretical methods are proven to be an indispensable tool for a proper 

rational design.71,177–182 These tools have allowed an important increase in the 

ZFS from some hundreds until few thousands of wavenumbers.162,164,165,183  

On the other hand, the coupling strength usually becomes smaller if the ˆ
zJ  

operator expectation values computed at i , 
f  are different enough. Note 

that in the particular case in which i , 
f  coincide with given kets i

Jm , f

Jm

, these expectation values are i

Jm , f

Jm , resp. This means that one should look for 

molecular nanomagnets where the ground spin doublet is the one corresponding 

to the states 


, 


 with ˆ
zJ  expectation values closest to ±J, the highest 

values in magnitude that Jm  can attain. Indeed, if we consider the initial spin 

population in the 


 state, the reversal of part of it until reaching 


 can also 

happen directly without spin flux through intermediate states. Thus, to minimize 

this direct process it is also advisable to use Ln3+ ions among the ones with a 

large ground J quantum number, which in turn maximizes the difference 

between +J and -J. That is why ions such as Tb3+, Dy3+ and Ho3+ with a more 

than half-filled 4f shell are preferred, as in virtue of the third Hund’s rule the 

ground J corresponds to the maximum value |L+S|. Instead, Ln3+ ions with less 

than seven 4f electrons stabilize the minimum value |L-S| as a ground J. 

All in all, the strategy historically explored to rise the timescale for the spin 

reversal has been (i) to use Ln3+ ions with a large ground J and (ii) to search for 

coordination spheres to further maximize the ZFS. This is the expected 
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procedure to follow if one assumes that the most likely relaxation pathway 

consists in a sequence of unit steps through states with increasing expectation 

values 1 ... 1J J J J− →− + → →+ − →+ . In this case, the spin population has first 

to overcome a potential energy barrier given by the ZFS to be reversed, see Fig. 

4. Nevertheless, there also exists a non-negligible probability for the spin 

population to tunnel the barrier through excited states without reaching the top 

of the aforementioned barrier. To minimize this effect, it is important to achieve 

wave-functions i  with a Jm  basis ket mix as little as possible, for example, 

with a proper symmetry in the donor-atom distribution around the Ln3+ ion. 

Whenever this tunneling happens, a large ZFS is ineffective at avoiding 

relaxation and hence any attempt devoted to increase the potential barrier will 

not produce a significant change in τ anymore. Thus, once the electronic 

structure is properly addressed, one should now focus on optimizing those 

molecular features that are limiting the relaxation time. Since the main goal is 

to design nanomagnets working at higher temperatures, an important part of the 

invested energy in driving the spin population will undoubtedly stem from 

vibration modes. In fact, current theoretical methods are intended to guide 

synthetic efforts at the lab stage by identifying the key molecular vibrations that 

promote magnetic relaxation. This approach is already producing positive 

results,164,165 as with this information one can conduct an ad hoc re-design of 

the ligand environment in order to remove or decouple the relevant vibrations.  

Vibration-induced magnetic relaxation can take place through different 

mechanisms whose prevalence depends on the working temperature range. At 

low temperatures, there exists a restricted number of available phonons as only 

low-energy phonons are significantly populated. Thus, the spin in the initial 

state i0 can hardly be promoted to higher excited states before decaying towards 

the other barrier side. Instead, the spin will tunnel the barrier and reach a few 

low-lying states through a direct process driven by phonons whose frequency 

matches the energy gap between the two given states. Whenever this 

mechanism is dominant, the magnetic relaxation rate τ-1 will show a 

proportional dependence with temperature T of the form τ-1 = AT, where A is a 

constant.  

At higher temperatures, mechanisms involving more than one phonon gain 

importance, mainly, the so-called Orbach and Raman processes. The former 

consists in a step-by-step sequence of direct transitions in which the spin is first 
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promoted to higher excited states by phonon absorption and then decays 

towards the other barrier side by phonon emission. This essentially resembles 

Arrhenius-like processes where reactants must first overcome a potential barrier 

before reaching the products. In this case, since the barrier crossing can be 

produced below the highest excited state via quantum tunneling, the barrier 

height Δ is often found to be smaller than the ZFS and does not necessarily 

coincide with any intermediate excited state.184 The dependence of τ-1 in a 

temperature range where the Orbach process dominates is exponential-like 

( )1

0 exp / Bk T − − , where 1

0
−  is the attempt rate at crossing the barrier. In a Raman 

process, the spin transition between two given states is not direct but through 

an intermediate state. Two phonons are involved with a frequency difference 

coinciding with the transition energy. The temperature dependence of τ-1 

follows a potential evolution of the form τ-1 = BTn+7, where B is a constant while 

the exponent n is 0 for an integer J and ±2 for a half-integer J. The expression 

of τ-1 as a function of temperature including the three processes introduced 

above is given Eq. 3. This expression is often used to fit the experimental 

thermal evolution of τ-1 by varying A , B , 1

0
− ,   as free parameters.185  

 

 ( )1 1

0 exp /n

BAT BT k T − −= + + −   Eq. 3 

 

Eq. 3 can also be complemented with a temperature-independent rate 
1

QTM −
 

accounting for quantum tunneling of magnetization between the states  


, 




, which may operate at low enough temperatures.185 Unlike the direct 

process, this is an energy-conserving spin flip-flop event. Hence, neither 

phonons nor excited states are involved and no energy is exchanged with the 

environment. The origin of this tunneling can be found in transverse interactions 

that couple the states 


, 


 in symmetric  
 
+  and antisymmetric 

 
 
−  mixes of different energy. Their energy gap, known as tunneling 

splitting, is proportional to the spin flip-flop rate between 


 and 


.185 These 

interactions include effective transverse magnetic fields and/or hyperfine 

couplings with surrounding magnetic nuclei. To suppress the former, 

nanomagnets are diluted into a diamagnetic matrix composed of isostructural 
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molecules of yttrium (the most commonly used), lanthanum or lutetium. On the 

contrary, the latter plays the dominant relaxation role in diluted samples and 

persists even at very low temperatures. To avoid the limited coercivity derived 

from this mechanism, a small static magnetic field is usually applied to remove 

the degeneracy between the states 


, 


. Since the spin flip-flop is an event 

that requires energy conservation, the action of this field should lower the 

probability of tunneling. Nevertheless, even in nuclear-spin-free nanomagnets 

one still observes a limited coercivity,186,187 which points to the existence of 

more causes behind quantum tunneling of magnetization close to zero field not 

yet unveiled. A measure to figure out the importance of tunneling in relaxation 

consists in checking the magnitude of the perpendicular Landé factor g⊥  

associated to the ground spin doublet 


, 


. As a matter of fact, this is 

responsible for the molecular spin sensitivity to transverse magnetic fields, and 

that is why nanomagnets are designed with a highly-axial ground Landé g 

tensor.188,189  

On the other hand, n is quite often also used as a free parameter and it is 

common to obtain fitting values differing from the expected ones: 5, 7, 9. First 

of all, note that there can exist frontier temperature ranges of coexistence 

between two competing mechanisms. This fact highlights the importance of 

fitting the experimental τ-1 evolution by using Eq. 3 instead of performing a 

separate fit for each term, as this last procedure has historically led to significant 

errors when identifying the dominant relaxation mechanism at each temperature 

range. In second place, the derivation of Eq. 3 relies on some approximations 

and assumptions, namely, perturbation theory up to second order and a Debye-

like phonon density of states ρ.185 The Debye model assumes a quadratic 

dependence of ρ~ω2 with the phonon frequency ω. A legitimate question is to 

what extent the Debye model can be reliable employed for molecular crystals. 

This model has been extensively used to model a plethora of inorganic crystals 

whose paramagnetic entities are single ions but not coordinated by a ligand set 

of molecular nature. Moreover, while it is widely accepted that the observed ρ 

follows the Debye-like behavior up to an energy of about 20 cm-1, this phonon 

density becomes smaller than expected as the energy is further increased.190 

Importantly, the use of a wrong phonon density can lead to failed predictions of 

magnetic relaxation times at high temperatures where we are now turning our 



51 

 

attention,191 and that is why state-of-the-art theoretical methods are trying to 

incorporate the real phonon spectrum. This issue will be addressed in chapter 4.  

 

2.2 Electron Paramagnetic Resonance 

In this section we provide an introduction to the basics of Electron 

Paramagnetic Resonance (EPR) and the experiments required to characterize 

the physical systems described in section 2.1.192 This discussion is divided into 

two parts. First, we will go over continuous wave EPR (cw-EPR) which allows 

determining the electronic structure, and then we will focus on pulsed EPR as a 

routine tool used to drive and probe the quantum coherence of molecular spin 

qubits. Since quantum information is encoded in the spin phase, decoherence in 

molecular qubits will appear in the form of spin dephasing.  

 

Continuous wave EPR 

In the previous section we have introduced the target systems that will be 

subject of study, namely, molecular nanomagnets and molecular spin qubits. 

These zero-dimensional entities are characterized by having a given number of 

open-shell electrons which give rise to a set of spin states. Their energies and 

wave-functions can be determined by means of first-principles calculations, i.e., 

by solving a Schrödinger-like equation where the main physical interactions 

such as electron-electron repulsion and spin-orbit coupling are included. This 

equation involves a Hamiltonian that depends on both spatial and spin degrees 

of freedom. Nonetheless and as presented previously, in the case of our target 

systems it is possible to model their spin state scheme by introducing the Crystal 

Field Hamiltonian which depends only on spin operators and all the effects 

derived from the spatial operators are encoded in the CFPs. These parameters 

can also be determined via first-principles calculations but herein we will 

explain how they can be experimentally obtained by exploiting EPR 

spectroscopy. This step is crucial since after accessing these parameters one can 

then diagonalize the Crystal Field Hamiltonian and thus calculate all the 

physical observables.  

Roughly speaking, a standard EPR spectrometer consists in two parallel coils 

that surround a resonant cavity placed in between them, see Fig. 5. An electric 
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current flowing through these coils generates a static magnetic field that covers 

the whole cavity, which at the same time is illuminated with an electromagnetic 

radiation of a frequency in the microwave range. The sample to be probed is 

placed inside the cavity, and its temperature can be controlled by means of a 

cryostat that makes use of an external liquid helium tank. A computer connected 

to the spectrometer takes charge of controlling its functioning by setting the 

relevant parameters and collecting the experimental data.  

 

 

Fig. 5 Basic picture of a standard EPR spectrometer. Note the two parallel coils and the 

thick pipeline carrying liquid helium to the cavity.  

 

Depending on the frequency employed in the cavity, which lies inside the 

range of the microwave radiation, EPR spectroscopy is classified in different 

bands, see Table.  1. The most popular ones and widely employed are the X and 

Q bands. 
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Table.  1 Classification of the different EPR bands according to their radiation frequency. 

Note that these values are just estimates, the real frequency in a given experiment depends 

on the settings of the spectrometer and can vary around a small neighborhood of the value 

displayed in the table.   

 

 

The magnetic field direction is constant and perpendicular to the coil plane 

and yet it is possible to modify its magnitude. In virtue of the Zeeman effect, 

this field interact with the molecular spin states and will change its energy 

scheme. To account for this coupling, the Crystal Field Hamiltonian needs to 

be complemented with a Zeeman term ˆ
zeeH , which for a weak magnetic field 

(below 1 T) takes the expression in Eq. 4. 

 

 ˆ
zee BH B g J=     Eq. 4 

 

In Eq. 4, µB is the Bohr magneton, ( ), ,x y zB B B B=  is the magnetic field vector,  

g is the electron Landé tensor (a 3x3-sized symmetric matrix), and ( )ˆ ˆ ˆ, ,x y zJ J J J=  

is the electron spin operator. In the case of a spin with J > 1/2, g is often replaced 

by the scalar isotropic value corresponding to the free-ion value gJ, and the 

magnetic anisotropy is thus accounted for by the Crystal Field Hamiltonian. On 

the other hand, when the spin quantum number is J = 1/2 -either real or 

effective- and hence the Crystal Field Hamiltonian vanishes, the g tensor is 

diagonalized to obtain three eigenvalues g1, g2, g3. Then, the corresponding 

eigenvectors can be used to define three orthonormal axis X, Y, Z. For instance, 

after considering the map g1 = X, g2 = Y, g3 = Z, Eq. 4 becomes: 

 

 ( )1 2 3
ˆ ˆ ˆ ˆ

zee B x x y y z zH g B J g B J g B J= + +  Eq. 5 

Band L S C X P K Q U V E W F D 

ν/GHz 1 3 4 10 15 24 35 50 65 75 95 111 140 

ν/cm-1 0.03 0.01 0.13 0.33 0.5 0.8 1.18 1.67 2.17 2.5 3.13 3.7 4.76 
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 The Crystal Field Hamiltonian can also be complemented with other 

interactions such as the hyperfine coupling ˆ
hyH  between the electron and 

nuclear spins of the single metal ion in the magnetic molecule. This interaction 

is expressed as: 

 

 ˆ
hyH J A I=     Eq. 6 

 

 In Eq. 6, ( )ˆ ˆ ˆ, ,x y zI I I I=  is the nuclear spin operator, and A is the hyperfine 

coupling tensor (a 3x3-sized symmetric matrix). ˆ
hyH  is often re-written as a 

function of the eigenvalues A1, A2, A3 of A. Indeed, in the case of a spin with J 

> 1/2, it is assumed that the preferred anisotropy axis -employed to define the Z 

direction- of the given magnetic molecule coincides with one of the 

eigenvectors of A. Hence, the two remaining eigenvectors must coincide with 

the X and Y directions. For instance, by considering the map A1 = X, A2 = Y, A3 

= Z,  ˆ
hyH  becomes: 

 

 1 2 3
ˆ ˆ ˆ ˆ ˆ ˆ ˆ

hy x x y y z zH A J I A J I A J I= + +   Eq. 7 

 

In the case of a spin with J = 1/2 -either real or effective-, it is common to 

assume that both the eigenvectors of g and A coincide. Hence, Eq. 5 and Eq. 7 

can be employed altogether and are added to produce the spin Hamiltonian. The 

expressions in Eq. 5 and Eq. 7 can be simplified in the case of a more restricted 

anisotropy. For instance, an axial anisotropy implies that two eigenvalues are 

equal while the remaining one is different. Let us consider that g1 = g2 ≠ g3 and 

A1 = A2 ≠ A3. The equal and different values are commonly renamed as 3g g= , 

1 2g g g⊥ = = , 
3A A= , 1 2A A A⊥ = = , and the eigenvectors corresponding to g , A  

are associated to the Z direction. Since g1 = g2 and A1 = A2, one can use 

interchangeably the two remaining eigenvectors to associate the X and Y 

directions. Of course, we can also come across the isotropic situation in which 
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all the eigenvalues are equal g1 = g2 = g3, A1 = A2 = A3. In this case, the three 

eigenvectors are interchangeable when associating the spatial directions X, Y, 

Z.  

In a common cw-EPR experiment, the magnitude B B=  of the static 

magnetic field is swept inside a given range while the sample is continuously 

illuminated with microwave radiation of a fixed frequency ν. As mentioned, the 

action of this field is to change the spin energy scheme as its magnitude is 

increased. When the energy gap ΔE = E2 – E1 between two given spin states is 

close to match the irradiation frequency ν, the molecule absorbs a quantum of 

light and the spectrometer records that resonance in the form of a signal peak in 

the cw-EPR spectrum, see Fig. 6. For instance, in the simplest case of a system 

with a ground spin doublet S = 1/2 -where all CFPs vanish- and by considering 
ˆ 0hyH = , there exist two energy states labeled as spin up with ms = +1/2 and spin 

down with ms = -1/2, which are degenerate at B = 0. For weak magnetic fields, 

this degeneracy is removed and the energies E±1/2 of these levels follow the 

straight lines E±1/2 = µBgBms as in Fig. 6, where g is here the Landé factor for the 

given spin doublet.  

 

 

Fig. 6 Left: Energy scheme of a spin doublet labeled with the projections ms = ±1/2 as a 

function of the magnetic field magnitude B. The resonance is produced when the irradiation 

frequency ν closely matches the energy gap ΔE. Right: cw-EPR spectrum where the 

resonance can be recorded as an absorption or as the first derivative of this absorption. 

Signal in arbitrary units.  
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Note that the finite lifetime of excited states leads to an uncertainty in their 

energies. Thus, the resonance condition and the subsequent absorption of one 

photon does not require a strict match ΔE = hν. Indeed, a more realistic picture 

to describe the light-matter interaction needs to introduce an absorption 

probability, which depends on how close ΔE is to hν and attains its maximum 

value at ΔE = hν. This would explain the rather wide and rounded peak in Fig. 

6, which would become narrow and sharp under the roughest approximation 

where the only allowed values for this probability is 0 (ΔE ≠ hν) and 1 (ΔE = 

hν). Moreover, when probing an ensemble of molecules instead of a single one 

there can also exists a complementary effect involved in widened peaks of a 

cw-EPR spectrum. Indeed, local inhomogeneities such as lattice strains and/or 

local magnetic fields produced by neighboring magnetic entities can give rise 

to different energy gaps in different copies of the same molecule for each given 

value of B. Thus, the resonance condition in which ΔE is close to match hν 

arises in a static field window rather than in a specific value. Nevertheless, since 

all molecules are not equally affected by these inhomogeneities if for instance 

they are all not equally oriented and are magnetically anisotropic (the case of 

microcrystalline powders and frozen solutions), it turns out that most of them 

attain the maximum in the absorption probability at a given B0 and produce a 

maximum in the EPR signal at that field. As B becomes smaller or greater than 

B0, there exist a lesser number of resonant molecules which produce a lower 

signal. All these individual signals of decreasing intensity, which are already 

broadened by energy-time uncertainty, overlap with each other and the 

spectrometer records their envelope in the form of a widened peak as depicted 

in Fig. 6. 

A general molecular magnetic system with a ground electron spin quantum 

number J will give rise to a more complex spin energy evolution with B, and 

thus will produce a more sophisticated cw-EPR spectrum. It is possible to 

simulate this spectrum by means of an iterative procedure in which the 

parameters of the complemented Crystal Field Hamiltonian are varied until 

obtaining the best fit. To accomplish this purpose, the software package 

EASYSPIN is often employed.193 This is one of the standard procedures to 

experimentally determine the magnetic anisotropy parameters by exploiting 

EPR spectroscopy, which subsequently allows diagonalizing the given 

Hamiltonian and thus obtaining all physical observables of the molecule -either 

nanomagnet or spin qubit- including its spin energies.  



57 

 

 

Pulsed EPR 

Unlike cw-EPR spectroscopy, in a standard pulsed EPR experiment the static 

field magnitude is fixed at a given value where a resonance in the cw-EPR 

spectrum is observed. Now, instead of continuously illuminating the molecular 

sample, we will rather apply a sequence of finite microwave pulses. These 

typically take between 10 and 100 ns depending on the pulse and on the 

radiation intensity, and their oscillating magnetic component is responsible for 

exciting the spin. By making use of a vast variety of pulse sequences, it is 

possible to gain extensive knowledge on structural and dynamical properties of 

a given magnetic sample, as well as drive quantum algorithms. Although it will 

not be covered in this dissertation, it is equally worth mentioning that spin 

qubits can also be excited and coherently manipulated by means of oscillating 

electric fields.194,195  

In the previous section, we presented the qubit as a well-characterized two-

level system whose wave-function 0 1  = +  is a quantum superposition 

between two orthonormal computational states 0  and 1 . The normalization 

condition 
2 2

1 + =  restricts the values that the coefficients α and β can take 

and, more importantly, allows a geometrical re-interpretation of the qubit as a 

point on the surface of the unit sphere. Indeed, note that 
2 2

1 + =  is the 

equation of the unit sphere where α and β are complex coefficients. Thus, we 

can re-write the qubit wave-function in terms of spherical coordinates 

depending on the zenithal 0 ≤ θ ≤ π and azimuthal 0 ≤ φ ≤ 2π angles:  

 

 cos 0 sin 1
2 2

ie     
 = +   

   
  Eq. 8 

 

Such a geometrical interpretation of the qubit constitutes the so-called Bloch 

Sphere as depicted in Fig. 7. The computational states 0  and 1  correspond to 

the north and south poles of the sphere, and can be respectively recovered with 

the values θ = 0 and θ = π regardless the value of φ. Any other combination 
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between θ and φ gives rise to a superposition of 0  and 1 . In particular, the 

combinations with the same weight in 0  and 1  are achieved in the sphere 

equator and correspond to θ = π/2.  

 

 

Fig. 7 Geometrical interpretation of the qubit as a point   on the surface of the Bloch 

Sphere. This point is parametrized in terms of the zenithal θ and azimuthal φ angles. Note 

that the 0  and 1  computational states correspond to the north and south poles of the 

sphere, resp.  

 

The Bloch Sphere becomes a useful tool when it comes to visualize the effect 

of a microwave pulse on the qubit wave-function  . Indeed, let us consider 

that the molecular sample is magnetized, with a magnetization vector M , by 

applying a static field defining the Z direction. Since the spin states 0  and 1  

are not degenerate, at thermal equilibrium most of molecules occupy the lowest 

state in energy, say 0 . Of course, the larger the energy gap between 0  and 1  

is, the more molecules will occupy the 0  state. Nonetheless, since we are 

working under a fixed static field, enlarging this gap would not be a practical 

option and other techniques devoted to transfer population to a given state such 

as the ones discussed in chapter 8 should be employed.  

By applying a pulse of a proper length t, the molecular population is 

promoted to the 1  state and M  is rotated 180 degrees around an axis contained 
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in the XY plane. Likewise, one could also promote this population to the 0  

state if all of it were initially at the 1  state. In terms of the Bloch Sphere, the 

qubit wave-function   has changed from 0  to 1  via a rotation of 180 

degrees, and that is why this is called a π pulse. On the other hand, the 

application of a pulse with a length t/2 tips or rotates M  by 90 degrees around 

the same axis contained in the XY plane. This means that the qubit wave-

function becomes an equally-weighted superposition ( )0 1 / 2ie  = + , and 

is now found at some point of the Bloch Sphere equator. Since 0  was the initial 

state, this is known as a π/2 pulse and constitutes a routine tool to generate 

quantum superpositions from basis states. As a matter of fact, the π and π/2 

pulses are of a key importance when implementing logical gates in quantum 

algorithms by means of pulse EPR spectroscopy, see chapter 7.  

A simple experiment devised to rotate the magnetization vector M  in a 

controlled manner, and thus to prove that the qubit can be placed in state 

superposition, consists in driving Rabi oscillations. First, we apply a static 

magnetic field defining the Z direction with magnitude B0. This magnetizes the 

sample with M  pointing in this direction. By starting always from this initial 

situation, the application of a microwave pulse with an increasing length rotates 

M  around an axis contained in the XY plane by an increasing angle (nutation). 

The direction of this axis is the propagation direction of the pulse, which in turn 

often defines the X axis direction. Hence, the orthonormal direction both to X 

and Z defines the Y axis direction. In the Bloch Sphere, the qubit is being driven 

between the 0  and 1  states and attaining a state superposition whenever the 

pulse length is not an integer multiple of the π-pulse length, see Fig. 8. In the 

experiment, the z-component Mz of M  is measured and plotted against 

increasing pulse lengths, which gives rise to an oscillatory pattern as depicted 

in Fig. 8 known as Rabi oscillations. Let us recall that the microwave pulse is an 

electromagnetic wave that harmonically oscillates with time. Thus, the 

oscillation frequency, known as Rabi frequency ΩR, is proportional to the 

magnitude B1 of the magnetic field that composes this wave as 1 /R B gB = , 

where ħ is the reduced Planck’s constant and g is the Landé factor associated to 

the spin doublet whose states have been labeled as 0  and 1 .  
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Fig. 8 Top: Damped oscillatory pattern of Rabi oscillations. Signal in arbitrary units. 

Bottom: Different qubit states in the Bloch Sphere for different nutation pulse length. 

 

The striking feature in Fig. 8 is the damped behavior of these oscillations. 

Indeed, let us recall that M  is proportional to the sum of all molecular magnetic 

dipolar moments i  inside a given volume V. Importantly, note that what 

standard EPR spectrometers detect are macroscopic magnitudes such as M . A 

non-damped oscillation would require a nutation of each i  at the same speed. 

Nevertheless, the appearance of local magnetic fields because of the presence 

of neighboring spins and spatial inhomogeneities both in B0 and B1 makes each 

molecule feel a rather different effective 1

iB . Thus, each i  rotates at a different 

frequency and this results in a collective dephasing. After applying a pulse with 

a length equal to a π-pulse length (green dot in Fig. 8), not all i  point in the 

same direction and hence the magnitude of M  is now smaller than before 

applying the pulse. As the pulse length is increased, this dephasing process is 

more important and Mz becomes smaller. For a long enough length, one finds 

the same number of i  pointing in the two directions of the Z axis and Mz 
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vanishes. The decay of Rabi oscillations is produced at a constant rate Γ = 

2π/Tdep, where Tdep determines the characteristic timescale of the dephasing 

process; the evolution of these oscillations is modulated by a decaying 

exponential function as exp(-t/Tdep)cos(ΩRt), where t is the pulse length. Of 

course, to keep control on the qubit states while conducting a quantum 

algorithm, one will need first to minimize the dephasing process as much as 

possible by properly designing the molecular ensemble. 

Pulse EPR spectroscopy can also be exploited to extract information related 

to the characteristic timescales that determine the spin relaxation dynamics. 

Two important parameters that characterize two important spin relaxation 

processes are the so-called spin-lattice T1 and spin-spin T2 relaxation times. 

Indeed, let us recall that once a static magnetic field defining the Z direction is 

applied, the magnetization vector M  is reoriented until reaching a new thermal 

equilibrium in which M  points in the static field direction. After applying a 

microwave pulse contained in the XY plane whose magnetic component tips M

, T1 determines the timescale taken by M  to become again aligned with the 

static field direction. Thus, spin-lattice relaxation is related to magnetic field 

fluctuations perpendicular to the static magnetic field that tip M  around axes 

contained in the XY plane until recovering its equilibrium direction. For 

instance, one can tip M  by 90 degrees with a π/2-pulse and then track the 

magnetization magnitude Mz in the Z direction. The plot of Mz against time will 

show an evolution that can be fitted to Mz = M0(1-exp(-t/T1)) and allows 

extracting T1, where M0 is the magnetization magnitude in the Z direction before 

tipping M . It is also possible to tip M  by 180 degrees with a π-pulse and then 

perform the same tracking of Mz to extract T1. In this case, if we think of the 

two opposed directions M  and M−  along the Z axis as the two states of a 

classical bit, what is being measured is the lifetime of the information saved in 

this bit in the form of M−  direction. The T1 relaxation process depends on 

temperature and involves an energy exchange between the molecule and the 

crystal lattice, which proceeds through excitation of phonon modes until the 

energy is dissipated towards a thermal reservoir. This can be the heat bath that 

surrounds the sample in the experimental setup.  

On the other hand, the T2 relaxation time characterizes the evolution 

timescale of the magnetization magnitude in the XY plane until recovering the 

thermal equilibrium. After tipping M  by 90 degrees with a π/2-pulse, the 
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molecular spins rotate or precess around the Z axis at a speed determined by the 

so-called Larmor frequency 0 /L B gB = , where B0 is the static field 

magnitude. As explained above, magnetic field spatial inhomogeneities parallel 

to the static field direction give rise to a distribution in the Larmor frequency 

and each spin precesses at a different speed. This results in a spin dephasing 

that lead to a loss of net magnetization in the XY plane as all spin projections on 

this plane will eventually point in random directions and cancel each other. If 

for instance the magnetization magnitude Mx is tracked in the X direction against 

time, we will find an evolution than can be fitted to a decaying exponential Mx 

= M0exp(-t/T2) that will allow us extracting T2. Since quantum information is 

stored in the form of superposition between two states, namely M  and M−  

directions, the T2 relaxation time can be related to the lifetime of this 

information encoded, in this case, as a superposition contained in the XY plane. 

Unlike the T1 process, none energy exchange with the crystal lattice is involved 

in the T2-mediated relaxation. Moreover, T1 and T2 timescales are rather 

different and, in particular, spin-spin relaxation quite often proceeds much 

faster than spin-lattice processes, i.e., T2 << T1. In other words, by the time M  

is reoriented in the Z direction, the net magnetization in the XY plane has already 

been completely lost since much before. Nevertheless, especially at high 

enough temperatures, T1 can approach T2 and become similar. Since T1 is an 

upper bound of T2, rising T2 to preserve quantum information for a longer time 

could first require to find strategies to increase T1 depending on the 

experimental conditions such as temperature.  

There exists an alternative EPR experiment that can be performed to 

determine the survival timescale of quantum information encoded as a state 

superposition. This consists in a two-pulse sequence with a variable inter-pulse 

delay time τ, known as Hahn echo sequence, see Fig. 9. The characteristic 

timescale derived from this experiment is called phase memory time Tm and will 

be the one we will use to discuss the systems presented in the next chapters. 

Importantly, T2 and Tm aim to qualitatively describe the same relaxation process. 

Nevertheless, their determination involves rather different experiments and 

hence should not be confused. As a matter of fact, Tm is found to be a lower 

bound of T2 and they both do not necessarily attain the same numerical value 

under the same experimental conditions. Of course, T1 is also an upper bound 

of Tm. 
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Fig. 9 Hahn echo sequence with an inter-pulse delay time τ between π/2 and π pulses. After 

a subsequent delay time τ, the EPR spectrometer records a magnetization peak known as 

echo. 

 

In this two-pulse experiment, a static magnetic field defining the Z axis is 

applied to magnetize the sample -an ensemble of molecular spins- in the field 

direction, Fig. 10 (A). This stabilizes most of the molecular population in the 

ground spin state labeled as 0  in the Bloch sphere. Then, a π/2-pulse is applied 

along the X axis to rotate the magnetization vector M  by 90 degrees, Fig. 10 (B). 

Before applying the next pulse, there exists a waiting time τ that results in a 

collective spin dephasing, Fig. 10 (C) and (D). Indeed, once the π/2-pulse tips 

the individual molecular spins, they all will precess around the static field 

direction. Nevertheless, as explained above, magnetic field fluctuations along 

this direction produce a distribution of Larmor frequencies due to the presence 

of nearby magnetic entities such as magnetic nuclei. Thus, these spins will 

precess at different angular speeds both clockwise and anti-clockwise. After this 

waiting time, also known as delay time, a π-pulse is applied to rotate all 

individual spins by 180 degrees, Fig. 10 (E). If the delay time has not been too 

long to cause an important dephasing, these spins will now precess in opposite 

direction and, after the same waiting time τ, some of them will converge to a 

common axis contained in the XY plane. This convergence, also known as 

refocusing, results in a magnetization peak in the XY plane recorded by the 

spectrometer in the form of echo signal, Fig. 10 (F) and (G). Since not all 

individual spins are refocused, this net XY-magnetization is of course lesser than 

the initial one right after the π/2-pulse. The longer the delay time is, the more 

spins become dephased and a lesser number of them will be refocused; this 

results in a smaller in-plane magnetization. For a long enough delay time after 

the π/2-pulse, all spins point in all directions contained in the XY plane and they 

will do so after applying the π-pulse. Hence, no echo signal will be detected 

anymore. An exponential-like decay is often expected when plotting the echo 
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signal against the total delay time 2τ, which allows extracting the phase memory 

time Tm by fitting this decay to a function proportional to exp(-2τ/Tm).  

 

 

Fig. 10 Consecutive steps in the Hahn echo sequence. (A): a static magnetic field defining 

the Z axis is applied, and the magnetization vector is aligned in this direction. (B): a π/2 

pulse tips the magnetization by 90 degrees. (C) and (D): spins precess at different Larmor 

frequencies due to magnetic field fluctuations parallel to the Z axis (dephasing). (E): after 

a delay time τ, a π pulse rotates each spin by 180 degrees. (F) and (G): some spins are 

refocused and, after a new delay time τ, an in-plane magnetization peak is registered in the 

form of echo signal. The plot of this echo against increasing delay times allows determining 

the phase memory time Tm of the spin qubit. Credits to Dr. Aaron Filler. CC BY-SA 3.0. 

https://upload.wikimedia.org/wikipedia/en/b/b6/Spin_Echo_Diagram.jpg Spin Echo 

Diagram. 

 

The phase memory time Tm can initially be dependent on temperature or not 

depending on which are the mechanisms involved in causing the spin 

dephasing. That is why Tm is often determined at different temperatures to get 

insight on the possible mechanisms that limit this characteristic relaxation time. 

A temperature-independent evolution is often related to a dephasing whose 

main cause is the presence of magnetic nuclei or other paramagnetic entities, 

such as nuclear or electron spin diffusion.196 On the other hand, a temperature 

dependence in Tm is most likely indicating a vibration-induced dephasing, for 

example, at low nuclear spin concentrations or at high enough temperature.196 
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In this case, it is useful and routine to measure T1 inside the given temperature 

range to check whether it is limiting Tm or not due to the thermal activation of 

phonon modes.  

Note that the phase memory time Tm is the result of applying a very particular 

pulse sequence, namely, the Hanh echo sequence. This experiment gives us 

information on the qubit lifetime in this specific two-pulse algorithm. Of course, 

the useful and interesting algorithms devised for practical purposes will involve 

much more sophisticated pulse sequences with more than one qubit at play; 

thus, the question we should really ask is whether the given qubit will be able 

to keep its state superposition before the algorithm of our interest ends. This 

initially prevents the definition of Tm from becoming universal, in the sense that 

a spin qubit with a long Tm will not necessarily behave with such a good 

performance when working as a piece of the selected algorithm. Hence,  

although it is true that finding strategies to increase Tm has provided us with an 

unprecedented and necessary insight to partially block dephasing mechanisms, 

there is currently a “the more the better” fever which should come to an end 

eventually as we are able to integrate spin qubits in complex algorithms, 

especially because some of the longest Tm reported so far have been measured 

under experimental conditions that are not necessarily the most suitable to 

fabricate quantum devices. A likely more useful and realistic magnitude to 

measure the performance of the spin qubits involved in a given algorithm could 

be that of quantum fidelity. Roughly speaking, one could repeat the same 

algorithm either on several copies of the device at once or several times on the 

same device, and then check how the ensemble of results compares statistically 

to the expected one if no dephasing is at play.  

From the experimental side, the determination of the dephasing mechanism 

that limits Tm under given working conditions can be accomplished by 

analyzing the shape of the Hahn echo decay. In some cases, more than one 

mechanism could be involved in the dephasing and one will need to collect 

additional experimental data to identify them. For instance, this can consist in a 

series of comparative measurements where spin concentration, microwave 

frequency and temperature are individually varied. A possible Hahn echo curve 

can consist in the superposition of two exponential decays, where the echo 

signal I is fitted to a biexponential function with two different phase memory 

times Tm,f and Tm,s: 
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 ( ) ( ) ( ) ( ), ,2 0 exp 2 / exp 2 /f m f s m sI I C T C T  = + − + −   Eq. 9 

 

In Eq. 9, Tm,f and Tm,s describe two different dephasing mechanisms working 

at different timescales. Particularly, Tm,f stands for the fast dephasing working 

at short times, while Tm,s accounts for the slow dephasing that operates at longer 

times.196 The former is often connected with spectral diffusion,197 the presence 

of faster relaxing magnetic species such as solvent adducts,192,198,199 as well as 

cluster formation by molecular aggregation in frozen solution.196 This clustering 

can sometimes be avoided through a quick cooling of the sample, or by using 

glassing agents such as S2Cl2 or glycerol (C3H8O3) but with the drawback of 

introducing some extra magnetic nuclei.200 On the other hand, the latter is 

related with the actual spin-spin relaxation process of the probed molecules.  

Another important shape that can adopt the Hahn echo curve can be described 

by a stretched exponential function, which includes the simple exponential 

decay proportional to exp(-2τ/Tm) as a particular case: 

 

 ( ) ( ) ( )( )2 0 exp 2 /
k

mI I C T = + −  Eq. 10 

 

In Eq. 10, k is the so-called stretching parameter, whose numerical value is 

routinely used to identify the main dephasing mechanism at play. Among these 

mechanisms, one can distinguish two important ones such as physical motion 

of magnetic nuclei and diffusion processes. In the former case, k lies 

approximately between 1 and 1.5. This motion can be due to mobile parts both 

in the molecule and in the solvent matrix that should be replaced by more rigid 

alternatives to increase Tm. Methyl group vibrations, librations and especially 

rotations deserve special attention since the latter can take place even at very 

low temperature via quantum tunneling.197,201–203 In this case, there exists a 

series of available options to decrease the dephasing effect derived from methyl 

groups: (i) fluorination, i.e., to replace 1H by 19F which has similar magnetic 

properties but its mass is 19 times greater,136 (ii) to replace the whole -CH3 by 

chlorine, which has a much smaller gyromagnetic ratio than 1H thus allowing 

the construction of bulky ligands with fewer magnetic nuclei,190 (iii) try to 

increase the steric hindrance on them whenever they cannot be substituted.136  
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Diffusion processes can be broken down into three main categories, namely, 

instantaneous diffusion, spectral diffusion, and spin diffusion, which offer a vast 

variety of Hahn echo decays. Since the excitation width of a microwave pulse 

can often be narrower than the spectral energy window, not all molecular spins 

will be necessarily excited. Hence, it is useful to distinguish between excited E 

and non-excited NE spins to describe these processes as nicely done 

elsewhere.204 Instantaneous diffusion involves E-E interactions. Indeed, since 

spins interact with each other through magnetic dipole interactions, often 

anisotropic, the tipping of E spins will give rise to an instantaneous change in 

the local magnetic field that surrounds other E spins. This will add an extra 

phase to the latter by changing the resonance frequency, and will make their 

refocusing be different from the expected one.205 As the field magnitude of a 

magnetic dipole decays with the third power of distance, a large enough 

molecular spin concentration is required for instantaneous diffusion to become 

the main dephasing source.206 That is the reason why Tm measurements are 

usually performed at low molecular concentration, although this condition 

would not be useful at the stage of device design since rather close spin qubits 

will be required to build logical gates. At high molecular spin concentrations, a 

stretching parameter k similar to 1 is often expected in Eq. 10. 

Spectral diffusion has to do with the presence of time-dependent interactions 

of the molecule with its nearest environment, which in turn will result in a time-

dependent transition energy between the two states of the spin qubit. Both 

linewidth and line shape of the measured absorption spectrum will depend on 

the environmental fluctuation timescale -the so-called correlation time τc- as 

compared to the EPR experiment timescale tEPR, and on the transition energies 

available in the sample. If τc << tEPR, the spectrometer is not fast enough to 

resolve each environmental fluctuation and just detects an average transition 

energy. The result is a homogeneously broadened linewidth proportional to 
1

mT −

, but narrower than that expected from the distribution in the transition energy. 

This fact is commonly known as motional narrowing, and the broadening is of 

course a consequence of the energy-time uncertainty: excited energies are 

blurred because of their finite lifetime. On the other hand, if τc >> tEPR, all 

possible static transition energies are detected, which mainly arise due to the 

presence of different molecular environments that shift these energies. Of 

course, since these energies closely lie with each other, the spectrometer will 

only register the envelop of the individual absorption lines. Moreover, since all 
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different molecular environments are not equally likely, these lines will display 

a different absorption intensity that will result in an inhomogeneously 

broadened envelope. The spectral diffusion process lies between these two 

limiting cases. Besides environmental fluctuations, other interactions can 

induce a time-dependence in the transition energy while conducting the Hahn 

echo sequence. Indeed, if somehow NE spins flip while E spins are being 

driven, for instance via spin-lattice relaxation, the local change in the 

surrounding magnetic field of the E spins will give rise to a time-dependent 

transition energy that irreversibly will contribute to shorten Tm. Spectral 

diffusion processes can lower k up to 0.5 if τc is on the order of the pulse 

delay.190 

Spin diffusion also involves E-NE interactions. In particular, pairwise flip-

flop events between NE magnetic nuclei in the sample induce changes in the 

local magnetic field that surround the E molecular spins via dipolar coupling. 

Thus, a nuclear spin matrix or bath with a high enough concentration is a 

prerequisite for this dephasing mechanism to become dominant. Whenever the 

crystal lattice is rigid and instantaneous diffusion does not limit Tm, nuclear spin 

diffusion often becomes the main dephasing source at low temperatures besides 

spectral diffusion. In this case, a value between 2 and 2.5 for the stretching 

parameter k is expected in Eq. 10.190,207,208 Common nuclear flip-flop frequencies 

lie in the kHz range, i.e., flip-flop events operate in the millisecond timescale.209 

These flip-flop rates are dependent on the microwave pulse frequency ωMW and 

fortunately can be suppressed under a strong enough nuclear polarization, which 

means ħω >> kBT, where T is the working temperature. This condition can for 

example be attained at millikelvin temperatures and by operating at the standard 

X and Q bands. Moreover, nuclear spin diffusion can also be quenched inside 

the so-called diffusion barrier, which is approximately 3-6 Å radius around the 

molecular spin.210 Inside this limit, nuclear spins experience strong dipolar 

couplings that shift their Larmor frequencies and flip-flop processes are 

inhibited. Recent experiments have shown that the approach of 1H nuclei to spin 

qubits indeed results in a Tm enhancement for an optimal distance.211,212 Of 

course, spin diffusion can also be originated by spins of a non-nuclear nature 

such as other paramagnetic species in the sample or molecular spins placed in 

different lattice environments.  
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3 
SIMPRE 

 

 

This chapter is devoted to describe the computational framework developed 

and employed to study the molecular systems previously presented. The first 

step is to describe the spin Hamiltonian that is used to calculate the relevant 

energy scheme along with the corresponding wave-functions. This consists of 

the Hamiltonian ˆ
CFH  in Eq. 2 complemented with the terms in Eq. 5 -the Zeeman 

interaction ˆ
zeeH - and Eq. 7 -the hyperfine coupling interaction ˆ

hyH - for 
3A A=  

and 1 2A A A⊥ = = , see chapter 2. The quadrupolar interaction term 2ˆ ˆ
qu zH PI= , 

where P is the associated interaction parameter and 2ˆ
zI  is the squared z-

component of the Ln3+ ion nuclear spin operator, can also be added to ˆ
CFH . Thus, 

our working full spin Hamiltonian Ĥ  is expressed as:  

 

 

( )1 2 3

2,4,6

ˆˆ ˆ ˆ ˆ
k

q q

k k B x x y y z z

k q k

H B O g B J g B J g B J
+

= =−

= + + + +    

( ) 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ
x x y y z z zA J I J I A J I PI⊥+ + + +  

Eq. 11 

 

The magnetic field components Bx, By, Bz are parameterized in terms of 

spherical coordinates as Bx = Bsinθcosφ, By = Bsinθsinφ, Bz = Bcosθ, where B 

is the field magnitude and 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π are the zenithal and azimuthal 

angles, resp. Note that Eq. 11 will be commonly employed in the case of Ln3+-

based single-ion coordination compounds, but of course can also be applied for 

J = S = 1/2 systems in which all CFPs q

kB  vanish. In the general case, a set of 
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input parameters is firstly required to diagonalize the spin Hamiltonian Ĥ . As 

previously introduced, these are the Landé factors g1, g2, g3, the axial and 

perpendicular hyperfine coupling parameters A  and A⊥ , and the quadrupolar 

interaction parameter P. Regarding the CFPs q

kB , they can be either externally 

introduced in the form of input or calculated via an effective model as we will 

explain below. Once all these parameters are introduced, the (2J+1)(2I+1)-sized  

Hamiltonian matrix -built in the ,J Im m  ket basis set associated to the ground 

electron and nuclear spin quantum numbers J and I of the given Ln3+ ion- is 

subsequently diagonalized.  

The diagonalization of Eq. 11 is conducted by means of a home-made 

computational package known as SIMPRE -Single-Ion Magnet PREdiction-, 

which is written in the well-established Fortran programming language. The 

application of the first versions SIMPRE1.0 and SIMPRE1.1,213,214 which are 

previous to the present work and only incorporate the Hamiltonian ˆ
CFH  in Eq. 2, 

was intended to determine energies and wave-functions of the ground 2J+1 

states, as well as to calculate magnetic susceptibility and magnetization curves 

of Ln3+-based SIMs.215 When required, these versions have also been 

accordingly patched to proceed the other way around, namely, to determine the 

CFPs as free parameters by fitting experimental data such as spectroscopically-

determined energies or the aforementioned magnetic properties.215,216  

The subsequent version SIMPRE1.2, which has been developed and 

published in this doctorate,217 includes the extra terms present in Eq. 11 respect 

to ˆ
CFH . The addition of these hyperfine ˆ

hyH  and quadrupolar ˆ
quH  interactions 

to ˆ
CFH  provides now (2J+1)(2I+1) energies and wave-functions, shown along 

with the expectation values  
, ,

ˆ
x y z

J
=

 and  
, ,

ˆ
x y z

I
=

 of the metal ion electron 

and nuclear spin operators as an output. Of course, the first two versions can be 

recovered just by setting B = 0, 0A⊥ = , 0A = , P = 0. In this case, one will obtain 

2J+1 energy levels with a degeneracy equal to 2I+1. The magnetic field can be 

set in any direction, but its magnitude must be moderate (0 – 1 T) as the Zeeman 

interaction ˆ
zeeH  in Eq. 11 is used under the weak-field approximation without 

non-linear dependencies with B. Moreover, this version also incorporates a 

model devoted to provide a theoretical estimate of the phase memory time 
n

mT  
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produced by a nuclear spin bath on a qubit defined in a given single-ion 

magnetic coordination compound. This model will be applied to some particular 

systems that will be analyzed in chapters 5 and 6.  

This last version has been further improved by incorporating new features 

and subroutines devoted to (i) estimate the effect of other sources of spin 

dephasing in molecular qubits and (ii) simulate the vibration-mediated magnetic 

relaxation in Ln3+-based SIMs. These latest updates, thoroughly described in 

chapters 4 and 5, will be published in the form of a new version named as 

SIMPRE 2.0 whose manuscript is currently under preparation and also belongs 

to this dissertation. In Fig. 11, we schematically describe the data flow with a 

color code selected to identify the new subroutines, inputs and outputs that have 

been incorporated in each version.  

The program starts by reading the input data that has been previously set in 

simpre.dat and simpre.par files. At this point, prior to diagonalize the spin 

Hamiltonian in Eq. 11, the CFPs can be either read externally by writing them 

in the input file simpre.cfp or calculated in the subroutines CFP and ROTA such 

as we will explain below. In the chapters 5 and 6 we will choose the first option 

as the CFPs therein employed were experimentally determined via cw-EPR 

spectroscopy. The next step is to build the matrix representations of the 

hyperfine ˆ
hyH  and quadrupolar ˆ

quH  interactions, and this is conducted in the 

subroutines HYPA, HYPE and QUAD. The last included term is the Zeeman 

interaction in the subroutine ENE, which subsequently diagonalizes Eq. 11 and 

then prints energies and wave-functions in the output file simpre.out along with 

the expectation values   
, ,

ˆ
x y z

J
=

 and  
, ,

ˆ
x y z

I
=

. In simpre.par, there exists the 

option to ask for printing energies and wave-functions calculated at different 

magnetic field magnitudes B and orientations (θ,φ). In that case, these energies 

against B and (θ,φ) can be printed column-wise in simpre.ene.out in a much 

simpler format ready for plotting them.  
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Fig. 11 Flow chart of SIMPRE2.0 version. Subroutine names are written in capital letters. 

Both input and output names start with the word simpre. Outputs are named with the ending 

word out. The color code identify the several updates incorporated in each new version. 

Black: 1.0 and 1.1. Red: 1.2. Green: 1.2 and 2.0. Blue: 2.0. The features in green were 

introduced for the first time in SIMPRE1.2, and then they were modified and expanded in 

SIMPRE2.0. 

 

The next subroutines DEC, CFPTEMP, MAGREL, SUS and MAG are 

optional and thus the preparation of their input files can be avoided. DEC is 

devoted to estimate the qubit phase memory times 
n

mT  and 
e

mT  derived from both 
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nuclear and electron spin baths resp., see chapter 5. Note that this subroutine 

can also be applied to powder samples and frozen solutions where molecules 

are distributed in all possible spatial orientations. Under this situation, the 

determination of 
n

mT  and 
e

mT  may require a mathematical integration over all 

these orientations, which is conducted by means of the so-called Lebedev rules 

in the LEBEDEV subroutine as explained in chapter 5. CFPTEMP and 

MAGREL are in charge of simulating the vibration-induced magnetic 

relaxation in Ln3+-based SIMs and will be employed in chapter 4, while SUS 

and MAG calculate magnetic susceptibility and magnetization curves at 

different temperatures and field magnitudes. Magnetizations are calculated for 

powder samples and that is why the Lebedev rules need also to be employed in 

these subroutines. 

 

The radial effective charge model 

As mentioned above, SIMPRE can calculate the CFPs q

kB  by means of an 

effective model known as Radial Effective Charge (REC).216 This was 

implemented in the earliest version SIMPRE1.0 prior to this dissertation and 

hereafter we just reproduce the basis of the model. Indeed, in the case of Ln3+ 

ions, each q

kB  can be rewritten as q k

k ka A r  according to the Stevens 

formalism,218 where ak are the α, β, γ Stevens coefficients, q

kA  are the Stevens 

parameters, and kr  is the expected kth-power of the radial distance r in the 4f 

orbitals. In Eq. 11, each kr  is corrected as ( )1k

kr −  with the Sternheimer 

shielding parameters σk.
219 Each ak, 

kr , σk depends on the Ln3+ ion and is 

tabulated in a subroutine named as LANTA as a function of k. The REC model 

considers each Ln3+-coordinating atom i (σ-type bond) as an effective point 

charge with a magnitude Zi > 0 at a distance Ri from the Ln3+ ion, and does not 

take into account any other atom in the ligands. Note that Zi > 0 and Ri do not 

necessarily have to coincide with formal charges and experimental 

coordination-bond distances ri. The Stevens parameters q

kA  are determined by 

the following relations:214,220  
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In Eq. 12, Eq. 13, Eq. 14, N is the number of Ln3+-coordinating atoms, Zi is the 

effective charge magnitude, e is the electron charge, Ri , θi, φi are the spherical 

coordinates of the effective charge i, pk0, pkq, pk|q| are the prefactors of the 

spherical harmonics 
q

kY , and 0

c

kZ , 
c

kqZ , s

k q
Z  are the tesseral harmonics which are 

linear combinations of 
q

kY  as follows:221 

 

 ( )( )1
1

2

qc q q

kq k kZ Y Y−= + −    ( )( )1
2

qs q q

k kk q

i
Z Y Y−= − −   Eq. 15 

 

In simpre.cfp, one can also introduce the CFPs Bkq in Wybourne notation. In 

this case, all CFPs but Bk0 (k = 2, 4, 6) are complex with real ReBkq and 

imaginary ImBkq parts.  Once these parts are introduced, SIMPRE will convert 

them into q k

kA r  by using conversion factors λkq -tabulated in the subroutine 

ENE- as: 
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k k q k q
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Eq. 16 
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The non-negligible CFPs are determined by the symmetry of the molecule. 

When using SIMPRE, it is common to determine the point group symmetry by 

only considering the Ln3+-ion coordination sphere, i.e., the set of effective point 

charges. Importantly, when dealing with Gd3+-based coordination compounds, 

one is forced to externally introduce the CFPs in q

kB  notation after determining 

them by independent methods since the Stevens coefficients for this ion are 

identically zero. Otherwise, SIMPRE will always provide 2J+1 degenerate 

states while experimentally a small ZFS of the order of 1 K is still observed in 

Gd3+-based SIMs due to a small yet significant magnetic anisotropy.  

The diagonalization of Ĥ  in Eq. 11 produces a set of (2J+1)(2I+1) wave-

functions as a linear combination of the ket basis set  ,J Im m . As a matter of 

fact, the numerical values of the CFPs calculated by SIMPRE change after a 

rotation of the effective point charge coordinates around the Ln3+ ion, and this 

will produce different expressions in each wave-function. Of course, all 

observables (expectation values) derived from Ĥ  will remain unaltered. For the 

sake of simplicity and meaningful comparisons, SIMPRE contains the 

subroutine ROTA which can be used to determine the charge orientation that 

results in the simplest expression of the ground state wave-function, i.e., the one 

with the smallest number of significant ,J Im m  coefficients. In the latest 

version of SIMPRE, this option is only available if all the parameters A , A⊥ , 

P, B are set to be zero. At each step and after the diagonalization of Ĥ  by ENE, 

ROTA performs a rotation and then calls the subroutine CFP to re-calculate the 

CFPs. Subsequently, ENE diagonalizes again Ĥ  to determine the new wave-

function expressions. All this iterative procedure can be skipped if the relevant 

orientation is known beforehand, for example, by using an external program to 

previously orient the molecule.  

As a first approximation to calculate the CFPs, one can use in simpre.dat the 

experimental positions of the coordinating atoms after setting the coordinate 

origin at the Ln3+-ion position. Thus, one only needs to decide the value of each 

charge magnitude Zi. At this point, one has to find a balance between 

overparameterization (up to one different Zi per coordinating atom) and a simple 

description of the system. In the case of homoleptic systems such as the 

examples studied in the next chapters, all donor atoms correspond to the same 

chemical element and an adequate description is often obtained by setting all Zi 
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to be the same value Z. In some cases, this ansatz will be too restrictive to 

properly recover for example covalence effects if important, and may lead to 

poor results as compared with experimental data. To fix this roadblock, it is still 

possible to introduce a second parameter that will significantly improve the 

description of the system properties. This parameter, known as effective radial 

displacement Dr, see Fig. 12, is used to radially get each donor atom closer to the 

Ln3+ ion. Thus, each effective point charge is now placed at a distance Ri = ri – 

Dr from the metal ion smaller than ri. Of course, one could use a different radial 

displacement for each donor atom but once again, in order to avoid 

overparameterization, the same collective displacement will be enough in a 

large majority of cases. The predictive power of the REC model is due to the 

possibility of associating to each type of ligand a reduced set of effective 

parameters, namely, Z and Dr. The specific values of these parameters are 

particular and characterize a given ligand. Therefore, they can be used to predict 

the energy scheme and magnetic properties when replacing the original Ln3+ ion 

by others.215,222–224 

 

 

Fig. 12 Lone electronic pair of a donor atom X oriented towards the nucleus of a trivalent 

lanthanide ion Ln3+ (σ-type metal-ligand bond). The effective point charge is located 

between Ln3+ and X at a distance Ri = ri – Dr from Ln3+, where ri is the experimental Ln3+-

X distance and Dr is the effective radial displacement.  

 

Both Z and Dr can also be used as free parameters to fit experimental data 

such as magnetic susceptibility, magnetization and/or low-lying energies. In 

order to obtain these REC parameters for the target compound, we need to vary 

both of them until obtaining a satisfactory match of a given property Pref. This 

property can be determined either experimentally as mentioned above or e.g. 

via first-principles calculations. In the case of Ln3+-based single-ion 

coordination compounds, a fit of the ground-J multiplet energy states will 
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always be the desired option. Thus, Z and Dr are scanned in order to achieve the 

minimum deviation between Pref and the same property Pfit calculated by 

SIMPRE. This deviation is defined in the form of relative error E as in Eq. 17, 

where n is the number of values to fit of the relevant property.  
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As a starting point for the fitting, or if the REC model is used as a predictive 

tool when working in absence of experimental data,224 it is possible to provide 

a first estimate of Dr and Z in homoleptic compounds by using the following 

semi-empirical approximate expressions that depend on well-known chemical 

concepts:224 

 

 
( )

1L
r

M M L M

N
D

V E E E

 
  

− 
 ,   , /X CN rZ f D=   Eq. 18 

 

In Eq. 18, NL is the coordination number of the Ln3+ ion, VM is the valence of 

Ln3+, i.e. VM = 3, and EM, EL are the Pauling electronegativities of Ln and the 

donor atoms, resp. The effective charge magnitude Z can then be estimated by 

using the relationship on the right, where fX,CN is a factor that depends on the 

Ln3+ coordination number CN and on the coordinating atoms X.224 The use of 

this expression to determine Z is limited since for a given system it requires to 

know fX,CN in advance. For that, one first has to know the REC parameters of a 

large enough set of coordination compounds with different Ln3+ ion but with 

the same or similar ligands with the same coordination number.224 Nevertheless, 

the values obtained with these two equations are expected to be a very useful 

tool to address the widespread need for an inexpensive estimation of a starting 

parameter set in more sophisticated determinations, as well as a route for an 

inexpensive qualitative prediction of the magnetic properties of f-block SIMs. 

All in all, the REC model predictions have been extensively compared 

against first-principles calculations as well as experimental data,215,222,225,226 and 
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have proven to be a competitive tool in terms of efficiency and accuracy. For 

instance, the comparison between the energies of the ground J multiplet 

obtained with the full Hamiltonian (see Chapter 2) and the ones derived by using 

ˆ
CFH  under the REC model in a Er3+-based SIM showed differences of less than 

2 cm-1 in each state.214 These slight differences, that are accompanied by a too 

high computational cost when using the full Hamiltonian, justify the 

assumptions that have been taken in the development of the SIMPRE package, 

which is compatible with its main goal: the prediction of new single-ion 

molecular derivatives as simple, and computationally inexpensive, as possible. 

Hence, the main advantage of the REC model is that it allows estimating the 

CFPs by using the chemical structure of the coordination compound in an 

inexpensive way. In other words, one can keep the simplicity of the electrostatic 

model and at the same time reproduce experimental data with a reasonable 

accuracy.  

 

An illustrative example 

As an illustrative purpose, herein we will show an example of a standard 

CFPs and energies calculation in a 167Er3+-based magnetic coordination 

compound once radial displacements Dr and effective charges Zi are known.217 

The selected molecular compound, [Er(C4H4O5)3]
3- (in short ErODA), consists 

in a single 167Er3+ ion surrounded by a ligand environment with nine 

coordinating oxygen atoms as depicted in Fig. 13.  

 



81 

 

 

Fig. 13 Ball-and-stick representation of ErODA molecular coordination compound. Blue: 

Erbium, Red: Oxygen, Black: Carbon, Pale pink: Hydrogen. 

 

From the X-ray experimental geometry of ErODA, the nine coordinating 

oxygen atoms were firstly directed towards the 167Er3+ ion with the same radial 

displacement Dr = 1.100 Å and charge magnitude Zi = 0.08518 as determined 

elsewhere.215 The spherical coordinates (Ri, θi, φi) of these oxygen atoms after 

correcting their experimental distance ri respect to the 167Er3+ ion are shown in 

Table.  2. After introducing these data in simpre.dat, the most significant CFPs 

calculated as described above can be found in Table.  3. 
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Table.  2 Spherical coordinates (Ri, θi, φi) with corrected radial distances Ri of the nine 

Er3+-coordinating oxygen atoms employed to calculate the CFPs in ErODA compound.  

Ri (Å)  θi (degrees) φi (degrees)  

1.338 90.00 330.00 

1.338 90.00 210.00 

1.338 90.00 90.00 

1.239 46.25 276.72 

1.239 133.75 263.28 

1.239 133.75 23.28 

1.239 46.25 156.72 

1.239 46.25 36.72 

1.239 133.75 143.28 

 

Table.  3 CFPs calculated by means of the REC model for ErODA compound with the 

spherical coordinates shown in the above table and a charge Zi = 0.08518. The remaining 

CFPs are below 10-5 and 10-7 cm-1 resp.  

k q q k

kA r  (cm-1) 
q

kB  (cm-1) 

2 0 29.70522402 0.07544184 

4 0 -109.24821295 -0.00485063 

4 3 1185.03963107 0.05261581 

6 0 -33.04120220 -0.00006839 

6 3 465.78993538 0.00096415 

6 6 -506.46459015 -0.00104835 

 

The ground Er3+ level is 4I15/2 which give rise to 2J+1 =16 spin-orbit coupled 

spin states. On the other hand, the nuclear spin quantum number of the 167Er 

isotope is I = 7/2 with 2I+1 = 8 nuclear states. Thus, the combination of the 

quantum numbers J = 15/2 and I = 7/2 results in (2J+1)(2I+1) = 128 

electronuclear states. Herein, for demonstration purposes we will focus only on 
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the ground and degenerate spin doublet associated to the Kramers-like 4I15/2 

level. The coupling with the I = 7/2 nuclear spin of 167Er produces a low-lying 

energy scheme of 16 electronuclear states as depicted in Fig. 14, whose 

distribution changes as the several interactions A , A⊥ , P are progressively 

turned on respect to ˆ
CFH . To diagonalize Eq. 11, we have used the default 

Sternheimer shielding parameters for the Er3+ ion as well as typical values A  

=0.0052 cm-1, A⊥ =0.0314 cm-1, P =0.0030 cm-1 for Er3+-based  coordination 

compounds.227 Note that the action of A  on ˆ
CFH  is to split the 16 lowest states 

into 8 degenerate spin doublets equally-spaced in energy. This degeneracy is 

removed when the perpendicular interaction A⊥  is subsequently added. 

Interestingly, the noticeable effect of the quadrupolar interaction is to alter the 

spacing between consecutive spin doublets while approximately keeping the 

same energy gaps.  

Note that the first versions 1.0 and 1.1 cannot simulate any split in the ground 

spin doublet of ErODA as hyperfine and quadrupolar interactions are not 

implemented. Instead, the latest versions 1.2 and 2.0 devised and developed in 

this work can now reproduce energy schemes with more fine details. 

Importantly, this is a crucial feature that will be employed in the chapters 5 and 

6 where the qubit states are precisely the result of the coupling between the 

electron and nuclear spins of the metal ion. Moreover, the energy differences 

between electronuclear states often lie in the range of X-band frequencies for 

moderate magnetic fields. Hence, to properly interpret the resonances of cw-

EPR spectra one may need to include the hyperfine and quadrupolar interactions 

in the analysis.  
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Fig. 14 Energy scheme of the lowest sixteen spin states in the ErODA molecular compound 

obtained by diagonalizing Eq. 11 with a zero magnetic field. The effect of the different 

terms in the spin Hamiltonian is shown from left to right by progressively switching on the 

parallel hyperfine coupling A , the perpendicular hyperfine coupling A⊥ , and the 

quadrupolar P terms. zJ  and zI  are the expectation values of ˆ
zJ  and ˆ

zI .  
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4 
Spin-vibration Coupling 

 

 

One of the main topics of this dissertation is the understanding of quantum 

decoherence in molecular spin qubits to minimize its negative effects on 

quantum information. Decoherence is the collapse of quantum information due 

to uncontrolled interactions of qubits with their environment. It is of course a 

major roadblock to overcome in the path to quantum devices, as it creates errors 

that are challenging to correct while conducting quantum algorithms. We are 

going to tackle this problem from theory, by developing and applying methods 

to estimate parameters that describe the relationship between geometric 

structure and decoherence thus facilitating the design of decoherence-protected 

spin-based molecular systems.  

In this chapter, we will study spin relaxation mediated by lattice and 

molecular vibrations, which are assumed to be in thermal equilibrium with the 

sample surrounding (the heat bath). Vibrations are spatial degrees of freedom 

that can affect the orbital angular momentum and, hence, the molecular spin 

itself via spin-orbit coupling. Indeed, the vibrations present at a certain 

temperature, in the form of quanta known as phonons, lead to oscillating electric 

fields that modulate the crystal field splitting of the paramagnetic species. This 

modulation is translated into an oscillating magnetic field by spin-orbit coupling 

(SOC), which can accordingly induce spin transitions.228 Of course, the selected 

metal ion determines the SOC magnitude, which in turn will strongly influence 

spin-lattice relaxation. In particular, a rise in the SOC was found to correlate 

with a decrease in the spin-lattice relaxation times,229,230 but not necessarily with 

the spin-spin relaxation times at low temperature.231 Hence, low SOC values are 

favorable to minimize vibration-mediated spin relaxation, and that is why S = 

1/2 first-row transition metal ions (V4+, Mn2+, Cu2+), which minimize spin-spin 
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relaxation compared to S > 1/2 systems,231 are often preferred as potential 

molecular spin qubits.  

As previously discussed, one of the main long-term goals is the achievement 

of devices able to implement quantum technologies for information storage and 

processing. In this dissertation, the physical platforms which we are focusing 

on are spins in molecules but note that the problem of vibrations is general for 

solid-state devices. Since lattice vibrations couple with spins, we know that 

spin-lattice relaxation will limit the timescale of quantum information survival 

as introduced in chapter 2. In other words, T1 is an upper bound for Tm but, 

depending on the SOC magnitude, T1 could be even similar to Tm. Note that this 

is equally relevant for molecular nanomagnets, where spin relaxation dynamics 

is determined by the magnetic relaxation time τ. While it is true that vibration-

induced relaxation can be minimized by operating at low enough temperature, 

the current attention is rather being drawn in the opposite direction as practical 

devices often work at room temperature. Nevertheless, spin-lattice relaxation 

becomes more important as temperature is raised. In the particular case of 

molecular spin qubits, this means that T1 will eventually run over Tm thus 

preventing quantum information from survival for long enough. Note that this 

can also happen at low temperature even if ligands are nuclear-spin free.232 All 

in all, the key question is clear: how to design molecules with little vibrational 

spin relaxation at high temperature? This is what motivates the current interest 

on understanding SOC in magnetic molecules, since short T1, Tm, τ times still 

hamper the use of these systems at more practical experimental conditions.  

This is still an open problem as we lack a set of well-established design 

principles aimed to block vibrational relaxation in molecules, where key details 

may differ depending on each particular chemical structure. Moreover, recent 

experimental works have evidenced important failures in models that have 

historically been used to describe lattice vibrations.184 For instance, the Debye 

model, known by succeeding at reproducing heat capacities in ionic crystals at 

low temperature, assumes a quadratic dependence ρ ~ ω2 of the phonon density 

of states ρ with the harmonic vibration frequency ω. It is reasonable to expect 

that such a simple dependence cannot incorporate all vibrational richness of 

molecular crystals, which fails even in the much simpler ionic crystals at 

reproducing the T1 thermal evolution unless the experimental phonon spectrum 

is used.191 Indeed, while real phonon spectra do follow the Debye-like quadratic 

dependence at low frequencies, they mostly deviate from this behavior at higher 
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energies.233 Since the target working regime is the high-temperature range, we 

thus need to drop any guess on the phonon spectrum and, from the theoretical 

point of view, this means that we have to estimate a first-principles spectrum, 

i.e., to build a force matrix -often under the harmonic approximation- to 

diagonalize it and get a finite set of vibrational frequencies, reduced masses and 

displacement vectors characterizing the so-called vibration normal modes. This 

calculation constitutes one of the main computational bottlenecks of the 

methodology that will be presented below. In fact, current models devoted to 

estimate spin relaxation times still contain additional restrictions -even 

unrealistic- that limit their performance. These are the following, (i) the 

assumption whereby each mode couples to the spin with the same strength,139 

and (ii) the presence of semi-empirical parameters such as the Debye 

temperature and crystal sound velocities.184 These are roughly estimated or, 

because of this, more often employed as free parameters to fit experimental 

data. Moreover, the determined value of the Debye temperature is quite 

dependent on the experimental technique, which makes it be somewhat 

meaningless.184,234 Regarding (i), future methods will have to address each 

mode individually and be able to calculate its specific coupling strength. All in 

all, in order to gain in predictive and rationalization power, all these roadblocks 

should first be overcome within fully ab initio approaches.  

As a first step to approach this open problem, herein we will focus on 

developing an ab initio methodology to determine the thermal modulation 

exerted by vibrations on magnetic anisotropy parameters (e.g., CFPs) and hence 

spin energies. This was pioneered in 1969 by K. N. Shrivastava in magnetically-

doped ionic crystals such as Eu2+-doped CaF2 with phonons modeled according 

to the Debye model.235,236 Under his approach, the spin Hamiltonian parameters 

are expressed as a sum of a static Coulombian term -whose energetic 

contribution is often determined by hydrostatic pressure measurements- and a 

dynamic phonon term responsible for changing the magnetic energies. They 

both arise from electrostatic and spin-phonon interactions, and are dependent 

on temperature via lattice thermal expansion and Bose-Einstein statistics, resp. 

Once the thermal evolution of a given parameter is measured, the phonon 

contribution can be determined just by subtracting the static counterpart. Then, 

the theoretical expression of this phonon contribution is used to fit its 

experimental thermal evolution by employing the spin-phonon coupling 

strength, including possibly the Debye temperature, as a free parameter. This 
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procedure has produced satisfactory results for instance when modeling the 

axial zero-field splitting parameter in Cr3+-doped alums, and the electron Landé 

factor in Mn2+-doped HgSe.237,238  

In a nutshell, the thermal evolution B(T) of a given magnetic anisotropy 

parameter in magnetically-doped ionic crystals has been so far written in terms 

of three additive terms: 

 

 ( ) ( ) ( ) ( )cstat a opB T B T B T B T= + +   Eq. 19 

 

These three terms in Eq. 19 are the static Bstat(T) and the dynamic acoustic 

Bac(T) and optical Bop(T) phonon contributions. Acoustic phonons are lattice 

vibrations that have long wavelengths compared to interatomic distances. On 

the contrary, optical phonons include all local molecular vibration modes and 

are higher in energy (typically 10 – 103 cm-1), but yet there also exist many low-

energy modes. Thus, these optical phonons can also take the place of acoustic 

phonons in the Orbach and Raman processes. Indeed, for instance, localized V-

S vibrations were reported to contribute in two-phonon relaxation processes in 

an octahedral V(IV)-dithiolene-based molecule.239 Nevertheless, optical 

phonons usually occur at discrete frequencies so that their participation in these 

mechanisms will depend on the energy coincidence between the spin energy 

gaps and the phonon frequency (see section 4.3). This may not be the case of 

librational -small oscillatory rotational motions of a molecule or a side group 

around the equilibrium position- and similar motions as they often lie close 

enough in energy to produce a quasi-continuum able to drive most of spin 

transitions. 

The estimation of Bstat(T) can be achieved provided one knows the relevant 

thermal expansion coefficients or by means of semi-empirical point-charge 

models.184 On the other hand, the first step to find estimates for the magnitudes 

Bac and Bop has been to assume that they depend on the normal coordinates Qk 

of the several normal modes. Then, after implementing a Taylor expansion up 

to second order in Qk, it is possible to obtain Bac and Bop expressions as a 

function proportional to the expectation values k

k

Q , 2

k

k

Q . Since these 
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values are calculated by assuming that phonons are harmonic, k

k

Q  vanishes 

and each 2

kQ  is known. Note that this scheme is recovered by the method that 

we will present below. In the case of Bop, optical phonons lie quite close in 

energy in the vast majority of the studied ionic crystals. Thus, all modes are 

replaced by a single effective mode with frequency ωeff. As a last step, the sum 

in Bac is replaced by an integral over the phonon frequency since at not very 

high temperatures phonons are close enough to form an energy continuum. All 

these considerations result in the following expressions for Bac(T) and Bop(T): 
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In these equations, Kac and Kop are the acoustic and optical spin-phonon 

coupling parameters, θD is the Debye temperature -which determines the 

phonon energy of the minimum wavelength mode in a crystal-, R is an average 

distance between nearest-neighbor ions, ρ is the crystal density, lv  and tv  are 

the longitudinal and transverse crystal sound velocities, and M is the crystal 

mass. As mentioned, the corrections to the Debye-like phonon spectrum, which 

has been used to derive Eq. 20 and Eq. 22, only become important at high enough 

temperatures. Nevertheless, this is nowadays the target regime of interest and 

hence the exact density of phonon states of each particular crystal must now 

replace the Debye ω2 value. In fact, this was already stated, somewhat 

prophetically as we will show below, by Shrivastava in 1969:235 
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“Theoretically probing the high temperature regime would only be possible 

whenever non-Debye calculations were available, which should be point-to-

point calculations.” 

 

Since at high temperature higher energy modes become active, it is quite 

likely that spin relaxation will be mainly promoted by molecular vibrations, 

which can compete with the Raman mechanism and even dominate the T1 

thermal dependence.230,240,241 This is what was found in a thorough and 

systematic study of a series of Cu2+ molecular coordination compounds in 

2005.242 Most importantly, therein it was demonstrated one of the main design 

principles to bear in mind when it comes to lengthen T1 and ultimately Tm, 

namely, the key role of molecular rigidity. Indeed, the shortening in T1 was 

satisfactorily correlated with a decrease in the ligand rigidity by using 

apparently more flexible substituents. Since the energy released during the spin 

relaxation is taken up by the lattice in the form of phonons, a more flexible 

lattice enhances the probability of spin-lattice relaxation by providing a higher 

density of available low-energy modes. Thus, trends of increasing spin-lattice 

relaxation times often correlate with decreasing both flexibility of coordination 

geometry and mobility in the vicinity of the paramagnetic center as reported in 

the literature. This important strategy regarding rigidity -but still limited to a 

small set of systems- is also experimentally being used nowadays to synthesize 

molecules with a slower spin relaxation.184,239,243,244  

Our original intention is to develop a systematic methodology suitable for 

any molecular system, able both to avoid serendipity at the lab stage and to 

estimate spin-vibration couplings from first-principles. In terms of quantitative 

calculations, we intend to answer questions such as the following: What does 

rigidity mean and how it affects spin-vibration coupling and relaxation time? 

Which are the vibration modes that promote spin relaxation? With it, we expect 

to aid at guiding experimental synthetic efforts to re-design and optimize the 

given molecule thus suppressing the detrimental modes. Hopefully, this 

framework could be used to establish a set of general design principles for the 

rational design of robust systems against vibration-mediated spin relaxation. As 

explained above, we will focus on molecular vibrations but yet our method can 

also incorporate any kind of deformation once its harmonic frequency, reduced 
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mass and displacement vector is known. Whenever possible, we will also try to 

connect our conclusions with experimental results. 

 

Derivation of the model and proposed methodology 

The proposed methodology as found elsewhere reads as follows.184,243 Firstly, 

one considers the relevant set of N vibrating atoms. There are many options 

depending on the goal. For instance, this set can be a whole molecule or just a 

part of it,243 but it can also be the unit cell of a molecular crystal.245 Then, one 

performs a geometry relaxation of the given atom set until reaching an 

equilibrium geometry, which lies in a local minimum of the potential energy 

surface of the given set. If this set is surrounded by other atoms, a relaxation of 

it in vacuum without considering these other atoms could become quite 

unrealistic. Depending on the case, a reasonable solution can be to include these 

surrounding atoms but keeping them frozen while the relevant atom set is 

relaxed. Of course, the best option would be to relax both the atom set and the 

surrounding atoms at once as there could be a huge difference between relaxing 

against rigid or mobile walls. Although this could recover the influence of 

distant motion on the relevant atom set if important, here we stumble upon an 

important roadblock, namely, the prohibitive computational cost which limits 

the maximum number of atoms to relax. Yet, one can relax the whole unit cell 

of the given crystal by implementing periodic boundary conditions, which aid 

to recover these distant deforming effects. Nevertheless, under this approach 

the computational cost may also become prohibitive if too many points in the 

reciprocal space are explored. Since the main interest is put on molecular 

vibrations, recent works have been exploring the so-called Γ point which 

practically incorporates all intramolecular normal modes as well as 

intermolecular modes if there exists more than one molecule per unit cell.245  

After performing the relaxation, the next step is to calculate the vibrational 

normal modes at the equilibrium geometry of the atom set. As a result, one will 

obtain a set of R harmonic frequencies 1,..., R  , reduced masses 1,..., Rm m , and 

3N-dimensional displacement vectors 1,..., Ru u  with 1ku = , k = 1,…, R. If the 

relaxed atom set is a whole molecular geometry, then R = 3N-6 or R = 3N-5 

depending on whether it is non-linear or linear, resp. In particular, the 

displacement vector of a given mode k establishes the spatial directions along 
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which each atom vibrates around its equilibrium position. This happens 

according to the expression kkk eqq q Q u= +  , where kq  is the 3N-dimensional 

Cartesian vector of the atom positions out of their equilibrium positions, eqq  is 

the 3N-dimensional Cartesian vector of the atomic equilibrium positions, and 

kQ  is the vibration normal coordinate. This coordinate can take both positive 

and negative values, while the particular case 0kQ =  for every k recovers the 

equilibrium geometry. Both relaxation geometry and normal mode calculation 

are nowadays routinely conducted by a plethora of software packages.246–250  

Secondly, one picks a magnetic property B  of the given molecule whose 

modulation by vibrations is expected to have a decisive impact on spin 

relaxation. For example, it could be the Landé g  factor of an electron spin 

doublet defining a qubit (sections 4.1, 4.2), or the CFPs in a single-ion 

molecular nanomagnet (section 4.3). We now assume that B  is a function of 

the several kQ , i.e., 1( ,..., )RB B Q Q= . In principle, this is an unknown expression 

and that is why a Taylor expansion is performed -which we cut at the second 

order- around the equilibrium geometry characterized by 1 ... 0RQ Q= = = : 
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Q Q Q= = =

   
 + +          

    Eq. 23 

 

In Eq. 23, ( )
e

B  is the value of B  at the relaxed geometry, and the derivatives 

are also evaluated at this geometry. Of course, one can keep higher-order terms 

in the expansion as we will explain below. Under the working harmonic 

approximation, each mode k is characterized by a positive integer number kn  

that determines its number of quanta with energy k , where k  is the angular 

frequency of this mode. Thus, let  1,..., RN n n=  be a given set of vibration 

quantum numbers. Since normal modes are orthogonal, it is known that the 

collective vibrational wave-function ( )1,...,
N

RQ Q  is just the product of the 

individual harmonic wave-functions ( )kn

k kQ  -with 1k kn n

k k  = - of the R 

modes: 
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 ( ) ( )1

1

,..., k

R
nN

R k k

k

Q Q Q
=

 =    Eq. 24 

 

Eq. 24 is now employed to estimate the expectation value N N NB B=    

of 1( ,..., )RB Q Q , where B  is substituted by the right side of Eq. 23. Note that in 

this equation the derivatives are just constant numbers; thus, the expectation 

value is calculated over the variables 
jQ  and 

j kQ Q . Given the power n

kQ  of a 

normal mode coordinate kQ , it can be shown that the expectation value 

k kn nN n N n

k k k kQ Q  =    is zero for n odd, while for n even is calculated as: 

  

 
( )

( )
( )mod 2

/2

/2

0

/ 2/ 2!
2

/ 22 / 2 !
l n

n
n n

l k

n
l kk k

n lni n

nln m 

=

+    
−    

   
   Eq. 25 

 

In Eq. 25, 1i = −  and the restriction l ≡ n (mod 2) means that l has to be such 

that n-l is a multiple of 2. Therefore, the expectation values N N

jQ   and 

N N

j kQ Q   (j ≠ k), both equal to j jn n

j j jQ   and j j k k
n n n n

j j j k k kQ Q     

resp., vanish. The only surviving expectation value is of the form 2N N

kQ 

, i.e., 2k kn n

k k kQ  , which is ( )( )/ 1/ 2k k km n + . By using 2k k =  where k  is 

the linear frequency, we obtain the following estimation of 
N N NB B=   :  

 

 ( )
2

2
1

1 1

4 2

R
N

ke
k k k ke

B
B B n

Q m =

   
 + +   

   
   Eq. 26 

 

Thirdly, as mentioned at the beginning of the chapter, the vibration bath is 

thermalized. Thus, to calculate the thermally-expected value ( )B T  of B  at 

each given temperature T, we consider an ensemble of molecules and 
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implement a Boltzmann average over all possible N  sets in terms of the grand 

canonical ensemble, where the probability ( )( )1

1exp ... / /Rn n

R BE E k T Z− + +  of each 

N N NB B=    is determined by the grand partition function Z : 
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  Eq. 27 

 

The variables ( )1/ 2kn

k k kE h n= +  are the harmonic vibrational energies. After 

replacing 
N

B  by its estimate in Eq. 26, we obtain the following approximate 

expression for ( )B T :  

 

 

2

2
1

1
( ) ( 0)

4

R

k

k k k ke

B
B T B T n

Q m =

 
 = +  

 
   Eq. 28 

 

In this last equation, ( 0)B T =  is the zero-point contribution, and kn  is the 

Bose-Einstein statistics: 

 

 ( )
2

2
1

1
( 0)

8

R

e
k k k ke

B
B T B

Q m =

 
= = +  

 
   Eq. 29 

 

 
( )

1

exp / 1
k

k B

n
k T

=
−

  Eq. 30 

 

The last step consists in calculating the second derivatives ( )2 2/ k e
B Q   

evaluated at the relaxed geometry. For each mode k , one has to generate a set 
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of distorted geometries  ik i
q  around the relaxed one by using a given set of both 

positive and negative values  ik i
Q  in the expression 

i i

k eq k kq q Q u= +  .184,243 

Basically, the minimum value  of kQ  is chosen such that it produces a significant 

enough distortion respect to the relaxed geometry. In other words, the distortion 

must produce on each Cartesian component of each vibrating atom position a 

change at least equal to the experimental crystallographic error of the given 

component. Since each displacement vector is normalized, we have 

min min

k k eqQ q q= − , i.e., ( )
2

min ,min

1 , ,

N
l l

k k eq

l x y z

Q


 
= =

= −  , where ( ), ,l l l

eq eq eqx y z  is the 

equilibrium position of the atom l, and ( ),min ,min ,min, ,l l l

k k kx y z  is the distorted position 

of the atom l under the vibrational mode k for 
min

k kQ Q= . As said, each ,minl l

k eq −  

must equal δαl, which is the experimental crystallographic error in the α 

component of the atom l. Thus, we propose that the minimum value min

kQ  for the 

given vibrational mode k be: 

 

 ( )
2

min

1 , ,

N
l

k

l x y z

Q



= =

=     Eq. 31 

 

Standard X-ray crystallographic techniques do not usually detect hydrogen 

atoms because of their low electron density, and the relevant post-processing 

software does not attribute any crystallographic error to the hydrogen atoms in 

the experimental structure. Hence, we decide not to include any hydrogen atom 

in the expression of min

kQ . Sometimes, there exist components in the 

displacement vectors ku  that are zero or close enough to zero. This means that 

some components of some atoms do not change or hardly change from their 

equilibrium values when the vibrational mode k is working. We also decide to 

exclude from the min

kQ  expression those atom components which do not change 

or hardly change. To decide which atom components must be excluded, we use 

a threshold in the corresponding component of the displacement vector. If the 

absolute value of this component in the displacement vector is not greater than 

the threshold, we set δαl = 0.  
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On the other hand, we choose the maximum displacement max

kQ  of the 

distortion coordinate kQ  as the value min

k kQ s , where ks  is the natural number 

such that min

k kQ s  is the smallest real number above the classical limit in kQ  

corresponding to the ground harmonic vibrational level of the mode k. Hence, 

the number of distorted geometries for each mode k is 2 ks , where the values of 

kQ  are min

kQ j  with , 1,...,k k kj s s s= − − + . Now, one has to perform a series of point-

to-point calculations to determine B  at all distorted geometries  ik i
q  thus 

producing a set of values  jk j
B . Depending on the case, this can routinely be 

conducted by means of software packages such as MOLCAS (section 4.1),251–

253 ORCA (section 4.2),249,250 or SIMPRE (section 4.3). We then fit the plot  jk j
B  

vs min

kQ j  to a polynomial ( )kp Q  with the smallest degree that provides the best 

visual and most reasonable fitting. Then, by deriving ( )kp Q  twice respect to kQ  

and evaluating the result at 0kQ =  we obtain ( )2 2/ k e
B Q  . 

All in all, we have obtained an expression, Eq. 28, that allows us estimating -

up to second order in mode coordinate- the thermal modulation exerted by a set 

of R harmonic vibrations on any given magnetic anisotropy parameter. As it can 

be seen, there are R independent contributions kB  that can be calculated by first-

principles methods, one per mode, see Eq. 32. In other words, since there are 

non-crossed derivatives, we can study the individual effect of each mode by 

separate so that physical interpretations are easier. Therefore, this method 

allows identifying the most problematic vibrations with the highest kB  values, 

and can be used to gain insight on how to re-design the molecule at the lab stage 

to obtain more resilient systems against vibration-mediated spin relaxation.  
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k k

k k ke

B
B n

Q m 

 
=  
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  Eq. 32 

 

From Eq. 32, each kB  is the product between a factor kC  and the boson number 

kn . Each kC  is temperature independent, and defines the spin-vibration 
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coupling parameter of the mode k , see Eq. 33. The boson number kn  

determines the thermal population of the mode k  at each given temperature. 

Hence, the effect of a mode on B  -up to second order in mode coordinate- is a 

balance between how coupled and how populated the mode is. Of course, the 

optimal situation will be the one in which both coupling and population are low 

enough.  
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1

4
k

k k ke

B
C

Q m 

 
=  

 

  Eq. 33 

 

By inspecting Eq. 32, it is already possible to extract some simple conclusions 

on how to design more robust molecules. As said, kB is the contribution of the 

mode k at a given temperature, and we want all of them to be as small as 

possible. On one hand, this can be accomplished if the frequency k  is high 

enough, which means to use rigid molecules such as porphyrines and 

phthalocyanines (section 4.2).244,254 In terms of molecular optimization, one first 

has to visualize which are the atomic movements involved in the detrimental 

modes. Then, either the environment (section 4.1) or the molecule itself (section 

4.3) can be re-designed in order to restrict the relevant movements and hence 

rise their frequencies.164,165 Since metal ion motions can also couple to the spin, 

a complementary strategy can be to use not only rigid molecules but also 

systems where the metal is encapsulated inside a cage, i.e., with a coordination 

environment as tight as possible. Some examples of it can be found in nitrogen-

doped fullerenes and stapled bis-phthalocyanines.255–257 On the other hand, 

reduced masses should also be as large as possible. Let us note that in the 

simplest case of two atoms with masses m1 and m2, the reduced mass μ = 

m1m2/(m1 + m2) is determined by the lightest atom since, if for example m1 << 

m2, then μ ≈ m1. Thus, in principle, to avoid small reduced masses, one could 

try to replace light by heavier atoms with similar nuclear magnetic moment, 

such as H by F,136 which can result in an increase of Tm.258  

As mentioned above, it is possible to keep higher-order terms in the Taylor 

expansion beyond the second order terms. Nonetheless, this brings two 

noticeable drawbacks: (i) the increase in the number of point calculations, and 



100 

 

(ii) the appearance of crossed terms that account for the interplay between 

different modes, which makes physical interpretations be more complicated. 

For instance, the next non-vanishing term to consider if we keep using the 

harmonic vibrational wave-function is the fourth order term. Indeed, all three 

order terms are proportional to ( )3 3/ k e
B Q  , or ( )3 2/ k j e

B Q Q   , or 

( )3 / k j l e
B Q Q Q     which in any case contain at least one coordinate with an odd 

power. On the other hand, the surviving four order terms are the ones 

proportional to ( )4 4/ k e
B Q   and ( )4 2 2/ k j e

B Q Q   , where the latter includes inter-

mode crossed interactions. In this case, the estimate of 
N

B  reads as follows: 
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Eq. 

34 

 

The calculation of ( )4 2 2/ k j e
B Q Q    involves a larger number of point 

calculations, although the generation of distorted geometries around the relaxed 

one -where 0kQ = , 0jQ = - is essentially as simple as in the case of derivatives 

involving only one coordinate. Indeed, one first would apply a distortion along 

the mode k as k eq k kq q Q u= +   respect to 
eqq , and the next distortion would be 

applied by following the mode j respect to kq  and according to ,k j k j jq q Q u= +  . 

The resulting distorted geometry would be determined as 

,

i i i

k j eq k k j jq q Q u Q u= +  +  . Then, after calculating B  at each ,

i

k jq  and generating a 

set of values  ,

i

k j i
B , the two-dimensional plot  ,

i

k j i
B  vs ( ) ,i i

k j
i

Q Q  would be 

fitted to a two-variable polynomial ( ),k jp Q Q . The derivative ( )4 2 2/ k j e
B Q Q    

would be estimated by deriving ( ),k jp Q Q  twice respect to kQ , jQ , and evaluating 

the result at 0kQ = , 0jQ = .  

Although the inclusion of anharmonicity will require to calculate a larger 

number of parameters, it could be conducted as follows. We can list two 
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approaches when recalculating N N NB B=   , namely, (i) to substitute the 

collective harmonic wave-function in Eq. 24, or (ii) to substitute the individual 

harmonic wave-functions ( )kn

k kQ  but keeping the form of the new collective 

wave-function as the product of the individual non-harmonic wave-functions. 

In both cases, if the anharmonic effects are small enough, one can resort to 

perturbation theory, where the harmonic energies and wave-functions would be 

used as a zero-order approximation. In the first case (i), one could calculate a 

collection C of values for the potential energy surface ( )1,..., RV q q  around a local 

minimum e, where kq  is a set of coordinates describing the internal degrees of 

freedom of the vibrating atom set. Since a derivative is a local concept, it is 

enough to calculate C in a small neighborhood of e. Hence, we could determine 

the several distorted geometries around 0kq =  by employing the displacement 

vectors ku  if the harmonic approximation still applies (i.e., k kq Q= ), or for 

instance via a molecular dynamics. After taking the energy origin at the 

minimum, the Taylor expansion around it would read as (let us recall that

( )/ 0k e
V q  = ):  

 

 ( )
2

3

1

1 1

1
( ,..., )

2

R R

R k j

j k k j e

V
V q q q q O q

q q= =

 
= +    
   Eq. 35 

 

If only two and three order terms are kept in Eq. 35, we could use C  to fit the 

resultant expression and obtain the corresponding derivatives ( )2 / k j e
V q q    and 

( )3 / k j l e
V q q q    . Thus, the anharmonicity would be described by the terms 

proportional to the three order derivatives but, of course, one could use any 

other alternative parametric expression to model it. With these ingredients, 

perturbation theory should be able to provide us the collective non-harmonic 

wave-function   to calculate the matrix elements n

kq   and then the 

expectation value B B=   . The second case (ii) offers the advantage of 

always dealing with a single one-dimensional potential energy functions ( )k kV q  

at each mode k. We could also proceed analogously by determining first the 
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derivatives ( )/l l

k k e
d V dq  with l ≥ 2 and then employing perturbation theory. 

Nevertheless, particular expressions to describe anharmonic potential energies 

around a local minimum were already proposed and thoroughly studied long 

ago, such as the ones derived from the Kratzer model ( ) ( )
2

1 /e e

K k k k kV q D q q= −  or 

the well-known Morse model ( )
( )

2

1
e

k k ka q qe

M k kV q D e
− − = − 

 
.259–261 Here, the key 

point is that the matrix elements n

kq   have already been computed.262–264 

In spite of it, both KV  and MV  depend on some parameters such as the 

equilibrium distance 0e

kq  , the well depth (defined relative to the dissociation 

situation) 0e

kD  , and 0ka   determining the well width (the smaller ka  is, the 

wider the well is), which would have to be previously determined.  

 

4.1 [Cu(mnt)2]2- 

The molecular model that we will study by employing the model presented 

above is a Cu2+ complex with formula [Cu(mnt)2]
2-, hereafter referred to as 1, 

where mnt2- = 1,2-dicyanoethylene-1,2-dithiolate.207,243 It is depicted in Fig. 15, 

and shows a nearly D4h symmetry in the copper coordination environment. This 

compound is found in the form of molecular crystal which additionally contains 

diamagnetic counterions PPh4
+ (tetraphenylphosphonium) to balance its charge. 

1 is magnetic with a ground electron spin doublet S = 1/2 that is used to define 

one qubit. Importantly, the ligands of 1 contains atoms with no magnetic nuclei 

or whose magnetic isotopes have a very low occurrence. This allowed 

measuring a long Tm = 68 µs at 7 K -the latest record when reported in 2014- 

after counterion deuteration and dissolving 1 and its Ni-based diamagnetic 

analog in the molar ratio 99.99:0.01. With this promising result, we decided to 

apply our model to check the role of molecular vibrations on the magnetic 

anisotropy of 1.  
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Fig. 15 From top to bottom: Lewis structure, upper view, and side view of the experimental 

geometry of 1 at 100 K. Orange: Cu, Yellow: S, Grey: C, Blue: N. Note that (i) 1 contains 

no H atoms, and (ii) 1 is not strictly planar.  

 

Our original motivation is that of studying the temperature sensitivity of the 

qubit energy gap in 1, i.e. the energy difference between the states 0  and 1 , 

caused by a thermal bath of molecular vibrations. From a quantum computing 

point of view, the successful implementation of a given algorithm relies on 

applying a well-defined pulse sequence between spin states. Nevertheless, 

vibrations as a non-controlled source of noise could alter the spin energies -as 

well as the composition of the corresponding wave-functions- at a given time. 

If the spectrometer frequency   is not accordingly corrected, the new qubit 

gap '  is not matched anymore, and this would result in an unexpected spin 

transition with respect to the one referred in the working time-dependent 

Hamiltonian, Fig. 16.  
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Fig. 16 Change in the qubit energy gap and the wave-function composition caused by non-

controlled vibrations while conducting a quantum algorithm. The spectrometer frequency 

  does not match the new gap '  and the expected spin transition is not produced 

which thus results in a computational error.  

 

Since from a magnetic point of view 1 can be described as a ground doublet 

S = 1/2, the spin Hamiltonian becomes rather simple and only contains the 

Zeeman and hyperfine coupling terms, which are assumed to be axial, see Eq. 

36.207 Moreover, the two eigenvectors corresponding to g , A  are assumed to 

be colinear and this common direction is used to define the Z axis respect to the 

experimental geometry. Just to showcase our model, we consider a hypothetical 

experiment with a magnetic field applied in this direction. Hence, Bx = 0, By = 

0, Bz = B0, where B0 is the field magnitude. If the Zeeman interaction dominates 

over the hyperfine coupling for a moderate B0, the qubit gap   is 0Bg B . Since 

μB and B0 are constants, a change of   with temperature will arise, in principle, 

from the thermal modulation of g  by the vibration bath. Thus, we select B g=  

as the target anisotropy parameter.  

 

 ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ
B x x y y B z z x x y y z zH g B S B S g B S A S I S I A S I ⊥ ⊥= + + + + +  Eq. 36 

 

Before applying the model and obtaining the relevant results, we need to 

point out the following consideration. Both the relaxation of the experimental 

geometry and the distortion of the relaxed geometry produce geometries whose 

eigenvectors associated to the axial eigenvalues 
rdg  will surely not coincide 

with the field direction anymore.  Hence, all 
rdg  need to be corrected to obtain 
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the values 
rdcg  acting in the field direction, which are the ones that really 

determine the qubit gap. This correction is straightforward just by using the 

invertible matrix G  -provided by the employed software package- that 

diagonalizes the g  tensor written in the canonical Cartesian basis set. Indeed, 

if ( ), ,rd rd rddiag g g g⊥ ⊥
 is the diagonal representation in the eigenvector base, then 

( ) 1, ,rd rd rdg Gdiag g g g G−

⊥ ⊥=  and the value 
rdcg  to pick is just the zz component of 

g . Note that to make the last equality meaningful, the three eigenvectors of g  

must appear in G  with the same order that we have employed to build the 

diagonal matrix representation ( ), ,rd rd rddiag g g g⊥ ⊥
. On the other hand, the three 

canonical Cartesian vectors will appear in g  with the same order as in G . In 

general, depending on the software, the expression to relate ( ), ,rd rd rddiag g g g⊥ ⊥
 

and g  could be ( )1 , ,rd rd rdg G diag g g g G−

⊥ ⊥=  instead. These corrected values 
rdcg  

are the ones that we use to represent them against the normal coordinates kQ .  

The relevant atom set to relax is the whole molecule 1. We first tried to relax 

the isolated experimental geometry of 1, as if it were in vacuum. Nevertheless, 

we found that the relaxed geometry largely deviated from the near planarity of 

the experimental structure. We thus had to include in the relaxation process the 

nearest-neighbor counterions, at their experimental positions in the crystal, that 

surround 1, see Fig. 17. This inclusion recovered the mentioned planarity and 

produced a more realistic relaxed geometry, but we needed to keep the 

counterions frozen in order not to reach a prohibitive computational cost. This 

relaxation and the subsequent normal mode calculation was conducted with the 

software Gaussian09 by using the so-called Density Functional Theory 

(DFT).246 The 
rdg  calculations both at the relaxed and the distorted geometries 

were performed with the MOLCAS package as a joint collaboration with Dr. 

Nicolas Suaud (University Toulouse III Paul Sabatier).251–253,265  
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Fig. 17 Frozen nearest-neighbor counterions PPh4
+ at their experimental crystallographic 

positions surrounding 1 in the relaxation process. Orange: Cu, Yellow: S, Grey and Black: 

C, Blue: N, Pale pink: H.  

 

The infrared (IR) spectrum of the molecular crystal containing 1 was 

experimentally determined in the range 400 - 2500 cm-1 by K. Bader et al., see 

Fig. 18, which allows checking the accuracy of our calculated IR spectrum for 1 

in that frequency range. Since the experimental geometry of 1 is relaxed while 

keeping the nearest counterions frozen, the calculated IR spectrum only displays 

vibrations involving 1. This means that the non-marked experimental peaks, 

that correspond to counterion vibrations, do not appear in the calculated 

spectrum. The experimental marked peaks only correspond to vibrations of 1. 

As can be seen, we provide reasonable estimates for the marked peaks with 

relative errors below 5%. There is no available experimental data below 400 

cm-1. Nevertheless, since the calculated peaks in Fig. 18 (top) approach the 

experimental ones as frequency is decreased, we expect that this trend also holds 

below 400 cm-1 and hence our calculated far-IR spectrum might be a good 

estimate of the experimental one.  
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Fig. 18 Top: experimental IR spectrum of the molecular crystal containing 1 (above), and 

calculated IR spectrum at the relaxed geometry of 1 (below), both in the range 400 – 2500 

cm-1. The marked peaks correspond to vibrations of 1, while non-marked peaks only 

involve vibrations in the counterion. Vertical scales are in arbitrary units. Bottom: 

calculated far-IR spectrum at the relaxed geometry of 1 in the range 0 – 400 cm-1.  

 

The calculated far-IR spectrum of 1 in Fig. 18 (bottom) exhibits a first 

noticeable gap in between 305 and 390 cm-1 corresponding to the modes 25 and 
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26, resp. In terms of temperature, these frequencies are 439 K and 561 K. Since 

the upper limit of the experimental temperature range is found at ~300 K, we 

expect that vibrations beyond the aforementioned gap are not significantly 

populated. Thus, we only use the first 25 molecular modes in our model, i.e., R 

= 25. These vibrations do not involve significant covalent bond stretching. 

Instead, the most significant distortions consist in covalent bond bending along 

with coordination bond stretching and bending. On the other hand, in Fig. 19 we 

show two examples of evolutions rdc

zg g=  vs kQ  along the modes k = 24 and k 

= 25 around the relaxed geometry 0kQ = .  

 

 

Fig. 19 gz evolution with Q24 (left) and Q25 (right) between -0.110 Å and +0.110 Å. The 

near-linear dependence of gz with Q25 -a breathing vibration- produces a rather small 

second derivative at Q25 = 0. At Qk = 0 (relaxed geometry), the calculated (gz)e is 2.1425.  

 

The determination of g  in Eq. 36 -as well as g⊥ , A , A⊥ - was experimentally 

conducted by K. Bader et al. via cw-EPR X-band (9.47 GHz) spectroscopy on 

a finely ground powder sample with a molar ratio 98.5:1.5 at T = 5 K ( g  = 

2.093 ± 0.002) and T = 294 K ( g  = 2.091 ± 0.002).207 These two values along 

with their experimental errors give rise to a variation of g  in the temperature 

range 5 K – 294 K relative to T = 5 K that lies inside the interval [-2.9 ‰, 1.0 

‰]. The application of Eq. 28, with the joint effect of the first 25 molecular 

vibrations, produces the values 2.138 and 2.141 at T = 5 K and T = 294 K, resp. 

This results in a positive relative thermal evolution of 1.4 ‰ that lies close to 
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the aforementioned interval. Here, one has to notice that a main source of 

numerical noise is found in the determination of the second derivatives 

( )2 2/ k e
B Q  . Indeed, while satisfactory and unequivocal fittings are found for 

the plots rdc

zg g=  vs kQ , in which the variation of rdc

zg g=  with respect to 0kQ =  

is large enough compared to the noise floor of rdc

zg g= , the fitting procedure is 

not that unequivocal if this variation becomes comparable to the 

aforementioned noise floor and can even conditionate the derivative sign. 

Despite it, the accuracy in the rdg  calculations can be further improved in 

MOLCAS by employing a procedure developed elsewhere and followed by a 

DDCI (Difference Dedicated Configuration Interaction) evaluation of the spin-

free spectrum.266,267 This method led to a more accurate value rdg  = 2.099 

determined at the experimental geometry of 1 around 100 K, but at a prohibitive 

computational cost to be applied in a large set of geometries. Yet, our approach 

to estimate rdg  is satisfactory as compared with standard quantum-chemical 

calculations.268–270 In Fig. 20 we show the kB  contribution of the first 25 

vibrational modes of 1.  

 

 

Fig. 20 Bk thermal contributions in Eq. 32 to ( 0)g T =  of the first 25 molecular modes 

of 1 in the temperature range 5 – 300 K. Inset: zoom-in at the range 10 – 30 K. Note that 

B1 and B3 have very similar thermal evolutions as their slopes only differ in less than 1%. 
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We clearly see two differentiate modes, 4 and 12 in Fig. 21, that display the 

largest Bk contributions relative to the others in the explored temperature range. 

These two contributions are essentially similar in magnitude but with opposite 

sign. This may explain the near thermal-insensitivity of the experimental g  

evolution. Our calculated relative evolution 1.4 ‰ may be positive due to the 

positive contributions of B1 and B3. Contributions from the other modes might 

have a negligible effect as they basically cancel with each other. Below 10 – 15 

K, molecular vibrations are hardly populated (i.e. k Bk T ) which expectedly 

produce rather flat thermal evolutions. On the other hand, at high temperature 

each Bk acquires a linear evolution. Indeed, as Bk T  becomes larger than k , we 

can approximate ( )exp / 1 /k B k Bk T k T  + . Hence, the Boson number in Eq. 32 

becomes proportional to T.  

 

 

 

Fig. 21 Out-of-plane vibrational modes 4 (top) and 12 (bottom) of 1. a-labeled atoms move 

toward the reader while b-labeled atoms move away from the reader and vice versa.  
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The mode 4 is an out-of-plane twisting vibration and, since its frequency 4  

= 34.76 cm-1 is relatively low, it is expected to be populated already from low 

temperature. This mode alters the dihedral angle between the two ligands, which 

behave almost as rigid planes in this case. On the contrary, the mode 12 has a 

much higher frequency 12  = 104.16 cm-1 and can be seen as an out-of-plane 

wagging vibration. In this mode, the ligands are twisted and the orientation of 

the CuS4 moiety is altered while its square planar structure is maintained. In this 

particular molecular system, B4 and B12 essentially cancel each other in the 

explored temperature range but, in other systems, there could have modes with 

the same sign in Bk producing a much more marked g  thermal dependence. If 

it had been the case of 1, we could have proposed some strategies to avoid the 

out-of-plane movements that characterize the modes 4 and 12. Indeed, for 

instance, one could think that some kind of physical or chemical pressure -the 

latter in the form of different or bulkier counterions- applied in the 

perpendicular direction to the molecular plane should be enough to block them. 

In Fig. 22 we depict the spin-vibration coupling constants Ck of Eq. 33 for the 

first 25 modes of 1. Five of them clearly hold the highest magnitudes, namely: 

(a) modes 4 and 13, with positive coupling and (b) modes 12, 23 and 24, with 

negative coupling. Let us recall that the sign of Ck is the sign of the derivative 

( )2 2/ k e
B Q  . Thus, positive couplings increase Bk respect to its value at T = 0 K, 

while the negative ones decrease Bk as temperature is raised. The mode 4 clearly 

gives the largest positive contribution Bk in the whole temperature range. As 

mentioned, besides its remarkable coupling, it is a low-frequency mode and 

hence it becomes populated already from low T. On the contrary, the modes 23 

and 24 have larger couplings but their high frequencies 23  = 278.70 cm-1 and 

24  = 298.81 cm-1 make them become significantly populated only at high 

enough temperature. Ultimately, this fact results in much weaker Bk 

contributions, which supports the assumption of neglecting in our method any 

mode with a frequency beyond 300 cm-1. To elaborate further, another striking 

feature is that, despite the similar coupling constants of the modes 4 and 13 on 

one hand, and the modes 12 and 24 on the other hand, B4 and B12 are clearly 

much higher than B13 and B24, resp., at each given temperature. Of course, the 

reason of this behavior is found in the fact that 13 4   and 24 12  . Hence, the 

modes 4 and 12 are significantly populated before than the modes 13 and 24, 
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resp. The capability of calculating individual spin-vibration coupling constants 

offers the possibility to establish priorities on a given set of modes. In other 

words, it allows deciding which modes should be engineered first whenever 

they seem to couple similarly. 

 

 

Fig. 22 Spin-vibration coupling constants Ck in Eq. 33 of the first 25 molecular modes of 

1, which are sorted by increasing frequency from 21 to 305 cm-1.  

 

Interestingly, we identify modes that largely distort the copper coordination 

sphere but do not couple very much, as well as modes with a significant 

coupling but altering the coordination sphere very little. The first case is 

illustrated by the mode 25 when compared to the modes 13, 23 and 24, see Fig. 

23; while the modes 4 and 12 exemplify the second case. The mode 25 is a 

breathing vibration in which zg  evolves near-linearly along 25Q , see Fig. 19. 

Despite comparable displacements of the coordinating atoms, its second 

derivative is much smaller than those of the modes 13, 23 and 24, which results 

in a rather negligible C25 as seen in Fig. 22. This clearly evidences the crucial 

role of modes with symmetric movements around the metal ion at producing 

linear trends in zg  around 0kQ = . Of course, a small ( )2 2/ k e
B Q   could also be 

achieved with a near-horizontal evolution of B . In the case B g= , this means 

to have a highly isotropic magnetic system with a small enough spin-orbit 

coupling, such as in organic radicals or, among S > 1/2 metals, in Mn2+, Fe3+ 

and Gd3+.138,271 Nevertheless, this strategy should be initially discarded since 

often magnetic anisotropy is desirable to facilitate qubit addressing or to slow 

down magnetic relaxation in molecular nanomagnets.81  
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Fig. 23 Pictures of vibrational modes of 1 including displacement vectors (blue arrows): 

13 (first row), 23 (second row), 24 (third row), 25 (fourth row). The pictures have been 

taken for the values of the distortion coordinate Qk = -1.0 Å (left) and +1.0 Å (right).  
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To end up, it is worth making an effort to connect our conclusions with the 

T1-mediated spin relaxation. In other words, we have found two molecular 

modes with important Bk thermal evolutions but, does it mean they necessarily 

determine the experimental T1 thermal dependence at high temperature? Let us 

simulate this thermal dependence by assuming three different relaxation 

mechanisms at play as commonly done in similar coordination compounds with 

similar T1 evolutions,203,234,241,272,273 namely, the direct, Raman, and local mode 

processes.  In this case, the Raman process is rather modeled with a dependence 

of the form ( ) ( )
9

8/ /R D DA T I T  , where ( )8 /DI T  is the so-called transport 

integral, see Eq. 37. To avoid the numerical evaluation of ( )8 /DI T  which has 

no analytical solution,234,274 it is common to use a term of the form ( )/
n

R DA T   

where the exponent 9 is substituted by an effective exponent n as a free 

parameter.234 Yet, if one desires to keep the original term ( ) ( )
9

8/ /R D DA T I T  , 

there are available phenomenological expressions that reproduce ( )8 /DI T  as a 

function of /D T  for 0.4 ≤ /D T ≤ 18, and can be used to fit 1T  by using D  as a 

free parameter.234 For / 1D T , we can replace /D T  by ∞ and it can be shown 

that ( )8I   = 8!; when / 1D T , 8I  can be approximated as ( )
7

/ / 7D T .234  

 

 ( )
( )

/ 8

8 2

0

e
/

1

D T x

D
x

x
I T dx

e



 =
−

   Eq. 37 

 

The local mode process, described by the right-most term of Eq. 38, represents 

a mechanism similar to that of Orbach. In fact, the Orbach term is recovered 

when ( )exp / 1T . In the present case, the S = 1/2 spin is driven from a given 

ms projection to the reversed one through an energy barrier that is resonant with 

a molecular mode of a characteristic energy Bk  .  

 

 
( )

( )( )
2

1

exp /1

exp / 1

n

D R L

D

TT
A T A A

T T

 
= + + 

 − 
  Eq. 38 
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We now use Eq. 38 to fit the experimentally-determined T1 points of 1 as a 

function of temperature, see Fig. 24.  

 

 

Fig. 24 Fitting (blue curve) to the experimental 1/T1 thermal evolution (red points) of 1,207 

according to Eq. 38.  

 

As seen in Fig. 24, we note that the experimental T1 evolution is satisfactorily 

recovered but, more importantly, both direct and Raman might have a rather 

negligible role due to their small coefficients AD and AR (we just provide their 

magnitude orders) compared to AL. The Debye temperature lies among typical 

values for similar molecular compounds.203,234,241,272,273 The exponent n is close 

to 9, which is the expected value for half-integer spins as mentioned in chapter 

2. The characteristic energy of the molecular local mode involved is found to 

be   ~ 708 K ~ 492 cm-1. While this is a reasonable and possible value,203,272 it 

does not coincide with the frequencies of the modes 4 and 12. Yet, interestingly, 

in our calculated IR spectrum there do exist two modes with a similar energy, 

namely, 30 ~ 501 cm-1 and 31  ~ 506 cm-1. Thus, although T1 starts to become 

similar to Tm from 50 K,207 which is right the temperature where B4 and B12 

acquire a significant contribution in Fig. 20, we cannot initially attribute this 

behavior to the action of the modes 4 and 12 as the whole thermal dependence 

of T1 seems to be dominated by a mode with a clearly different frequency. Of 
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course, to unveil the real role of molecular vibrations, one would have to derive 

an explicit theoretical expression of T1 as a function of them, which is something 

indeed interesting but beyond the scope of the present work.  

 

4.2 [V(dmit)3]2-, [VO(dmit)2]2-, VOPc 

In this section, we will apply the model developed and presented above to 

three S = 1/2 V4+- and VO2+-based molecular coordination compounds, namely, 

[V(dmit)3]
2-, [VO(dmit)2]

2-, VOPc, where dmit =  1,3-dithiole-2-thione-4,5-

dithiolate and Pc = phthalocyanine, hereafter referred to as 2, 3, 4, resp., see Fig. 

25. All of them encode one molecular spin qubit, and have been characterized 

via cw- and pulsed-EPR by R. Sessoli et al. Interestingly, some potential results 

were found.239,244  

On one hand, the joint study of 2 and 3 revealed the key role of the 

oxovanadium (vanadyl) VO2+ moiety in enhancing quantum coherence up to 

room temperature. Indeed, after substituting one dmit ligand in 2 by this moiety, 

3 shows T1 and Tm relaxation times of around 3 – 4 µs and 0.7 – 1.0 µs at T = 

293 K, resp. Note that this reported Tm, which also relies on the additional 

benefit provided by using nuclear spin-free ligands, is even higher than the one 

found in 1 at the same temperature (~0.6 µs), in spite of a much higher electron 

spin concentration in 3. Instead, 2 is able to show quantum coherence only up 

to T = 150 K with T1 = 0.71 µs which limits Tm at 0.2 µs for the same 

temperature. Importantly, these results show that rapid decreases in T1 caused 

by an efficient spin-vibration coupling -thus hampering the use of spin qubits at 

high temperatures- can be modulated after uniquely introducing structural 

modifications as a complementary strategy of reducing the nuclear spin content. 

In this case, a nearly octahedral environment in 2 is replaced by a square 

pyramidal in 3.  
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Fig. 25 Top Left: 2, Top Right: 3, Bottom: 4. Red: V, Black: C, Yellow: S, Dark blue: O, 

Light blue: N. Note that both 2 and 3 do not contain hydrogen atoms. In 4 hydrogen atoms 

are omitted for clarity.  

 

The importance of the metal coordination symmetry as a major influence on 

spin relaxation was already noticed long ago in a series of copper(II) 

coordination compounds, also studied via EPR spectroscopy.242 Indeed, 1/T1 

rates were up to six times faster in pseudo-tetrahedral compounds compared to 

square planar ones. Besides, the relatively higher rigidity found in square planar 

and octahedral coordination geometries enabled longer relaxation times 

compared to tetrahedral environments as well as other geometries. On the other 

hand, 4 is also able to show room-temperature quantum coherence with T1 = 1.1 

µs and Tm = 0.8 µs at T = 300 K. More strikingly, 4 still displays Rabi 

oscillations at the same temperature despite the nuclear-spin active environment 

(1H and 14N nuclei) of VO2+ thus evidencing again the key role of the vanadyl 

moiety. These oscillations are also observed in 3 at room temperature but with 

nuclear-spin free ligands.  
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Herein, we intend to make a comparison on the quantitative level between 2, 

3, and 4 in order to find similarities and differences as well as to extract possible 

correlations to assess the role played by the vanadyl moiety in the spin-lattice 

relaxation. As mentioned, we will rely on our model applied in section 4.1 but 

now it will be complemented with a perturbative analysis on the Landé factor 
rdcg  up to second order in mode coordinate depending on excitation energies 

and matrix elements between pairs of the metal-ion 3d orbitals. We will also try 

to connect our results with experimental facts either to support or discard some 

conclusions derived from them.  

 

Spin-vibration coupling constants and thermal evolutions 

We first proceed by determining spin-vibration coupling constants Ck and 

individual thermal evolutions Bk in Eq. 32 and Eq. 33 of the low-energy 

molecular modes of 2, 3, 4, see Fig. 26, Fig. 27, Fig. 28. The spin Hamiltonian 

employed to describe the ground S = 1/2 electronic structure in these three 

systems is also the one found in Eq. 36 and we select again B g=  as the relevant 

anisotropy parameter to study. The value of g  in Eq. 36 was experimentally 

determined via cw-EPR X-band spectroscopy only at room temperature: 1.985 

(2), 1.970 (3), 1.966 (4). Both 2 and 3 are non-neutral molecules thus the crystal 

contains counter-ions (PPh4
+, tetraphenylphosphonium) to balance the charge. 

We again include the nearest-neighbor counter-ions to 2 and 3 but by keeping 

them frozen in the geometry relaxation. On the contrary, 4 is not charged. In 

this case, we select a molecule of 4 along with the nearest copies in the crystal; 

then, the geometry relaxation is conducted while keeping the latter frozen. In 

fact, we only relaxed the vanadium moiety plus the four vanadium-coordinating 

nitrogen atoms in order not to increase the computational cost -4 is a rather 

medium-sized molecule- and because the focus is put on studying the 

aforementioned moiety together with the vanadium coordination sphere.  
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Fig. 26 Left: spin-vibration coupling constants Ck in Eq. 33 of the first 33 molecular modes 

of 2 from 19 to 280 cm-1. Right: Bk thermal contributions in Eq. 32 to ( 0)g T =  of the 

first 33 molecular modes of 2 in the temperature range 0 – 300 K.  

 

 

Fig. 27 Left: spin-vibration coupling constants Ck in Eq. 33 of the first 28 molecular modes 

of 3 from 25 to 320 cm-1. Right: Bk thermal contributions in Eq. 32 to ( 0)g T =  of the 

first 28 molecular modes of 3 in the temperature range 0 – 300 K. 

 

 

Fig. 28 Left: spin-vibration coupling constants Ck in Eq. 33 of the 18 molecular modes of 

4 from 140 to 1040 cm-1. Right: Bk thermal contributions in Eq. 32 to ( 0)g T =  of the 

18 molecular modes of 4 in the temperature range 0 – 300 K. In this system, only the 

vanadyl moiety and the four vanadium-coordinating nitrogen atoms are left to vibrate. 

 

The geometry relaxation and the vibrational spectrum calculation of 2, 3, 4 

was also performed in the software package Gaussian09 by employing DFT. 
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On the other hand, the 
rdcg  determinations both at the relaxed and distorted 

geometries were conducted now with the code ORCA in collaboration with 

Prof. Eliseo Ruiz and Martín Amoza (University of Barcelona). The resulting 

IR spectrum and 
rdcg  values compared with the experimental data were of better 

accuracy than that of the ones produced for 1. For instance, the calculation of 
rdcg  at the experimental geometries of 2, 3, 4 provided the values 1.997, 1.952, 

1.963 with relative errors of 0.6%, 0.9%, 0.2%, resp. In addition, the relative 

errors of the highest calculated frequencies (1012 - 1036 cm-1), namely vanadyl 

stretching frequencies in 4, which can be taken as un upper bound for the rest 

of calculated frequencies as shown above, lie between 0.7 – 3.0%.275 As done 

with 1, we drop all modes of 2 and 3 with a harmonic frequency above ~300 

cm-1. In the case of 4 we keep all the 18 modes obtained when only the 

abovementioned six atoms are left to vibrate even if some modes are beyond 

the selected frequency limit. We make this decision to include the vanadyl 

stretching mode despite its large harmonic frequency above 1000 cm-1 and 

because 18 is still a reduced number of vibrations for a moderate computational 

cost. Note that, unlike 1, the inclusion of a local mode term does not result in 

satisfactory fittings when modeling the experimental temperature dependence 

of 1/T1. Instead, it is enough to only consider the direct and Raman terms. As 

already mentioned above,211 this means that molecular vibrations in the range 

10 – 100 cm-1 may play the role of acoustic and optical phonons involved in the 

Raman process.  

 

Perturbative analysis in mode coordinate 

In the perturbative treatment up to second order in mode coordinate of 
rdcg , 

the CASSCF wave-functions of the five magnetic molecular orbitals that 

contain the single V4+ valence electron (derived in ORCA by solving the 

relevant Schrödinger-like equation) are firstly projected onto the model vector 

space whose basis set is composed of the five vanadium 3d orbitals xy , yz , 

xz , 2z , 2 2x y− . This projection method is known as ab initio ligand field 

theory (AILFT),276 and allows writing the following simple perturbative 

expression for 
rdcg  as a function of each given mode coordinate kQ : 
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 ( ) ( )
( )

( )( )

2

4
0

1 0

ˆ
i z krdc rdc

k e
i i k

E L E Q
g Q g

S E E Q



=

 
−

   Eq. 39 

 

In Eq. 39 there are several variables to describe: ( )rdc

e
g  is the value of 

rdcg  

evaluated at the relaxed geometry, ζ is the spin-orbit coupling parameter which 

is provided by ORCA and changes rather little in a small neighborhood of the 

relaxed geometry ((ζ)e= 166.4, 169.7, 179.3 cm-1, for 2, 3, 4, resp.), Ei is the 

energy of the excited state iE  while E0 is the energy of the ground state 0E , 

and ˆ
zL  is the z-component of the vanadium orbital angular momentum. In our 

case, S = 1/2 and the sign to choose is the negative one since the V4+ 3d shell is 

less than half-filled. Whenever it is more than half-filled, the sign would be the 

positive one. In the particular case of a half-filled shell, the second-order 

perturbative term in Eq. 39 vanishes. The states 0E  and iE  are linear 

combinations of the abovementioned basis set whose coefficients are provided 

by ORCA: 

 

 

2 2 2

0 0 0 0 2 0 2 2

0 xy yz xz z x y
E c xy c yz c xz c z c x y

−
= + + + + −  

2 2 2

2 2 2i i i i i

i xy yz xz z x y
E c xy c yz c xz c z c x y

−
= + + + + −  

Eq. 40 

 

The matrix elements 0
ˆ

i zE L E  are easily calculated just by knowing the 

action of ˆ
zL  on each basis set element:228 

 

 

2 2ˆ 2zL xy i x y= − −  ˆ
zL yz i xz= −  ˆ

zL xz i yz=  

2 2ˆ 2zL x y i xy− =  2ˆ 0zL z =  

Eq. 41 
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The resulting squared matrix element 
2

0
ˆ

i zE L E  reads as follows, where the 

asterisk denotes the conjugate complex number: 

 

 

2

0
ˆ

i zE L E =   

( ) ( ) ( ) ( )( )2 2 2 2

2
** * *

0 0 0 02 i i i i

xy xy yz xz xz yzx y x y
c c c c c c c c

− −

 
− + − 

 
 

Eq. 42 

 

In Table.  4, we show 
2

0
ˆ

i zE L E  and Ei – E0 of the four excitations 0→i for 

2, 3, 4 at their respective relaxed geometries: 

 

Table.  4 Squared matrix elements (top) and excitation energies (bottom) in Eq. 39 for 2, 

3, 4 evaluated at their relaxed geometries (see Fig. 29, Fig. 30, Fig. 31).  

 

Importantly, for compounds 3 and 4 there clearly exists a quotient 

( )( )
2

0 0
ˆ /i z i

e

E L E E E−  that dominates over the rest, namely, the one 

corresponding to the excitation 0→1 and 0→3 resp. since the excitation 

energies are similar or within the same order of magnitude. On the contrary, 

although these excitation energies are also similar in 2, in this case the four 

quotients are much more similar and none of them can be neglected. Of course, 

  0 1→  0 2→  0 3→  0 4→  

 

2

0
ˆ

i zE L E  

2 8.6·10-3 2.8·10-2 9.3·10-3 1.3·10-2 

3 4.0 2.3·10-4 3.0·10-4 1.2·10-2 

4 3.0·10-4 1.9·10-2 3.9 1.6·10-3 

 

0iE E−  (cm-1)  

2 8449.1 8463.9 26181.2 26899.3 

3 21358.5 23211.4 23943.9 35088.9 

4 22768.3 23092.0 24684.1 34735.6 
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this fact has to do with the wave-function composition in terms of the basis set 

elements xy , yz , xz , 2z , 2 2x y−  of the ground AILFT state 0E . Indeed, 

since 0E  in 3 and 4 is equal to xy  and to a combination of xy  and 2 2x y−  

resp., the non-vanishing matrix elements are only produced with 1E   and 3E

, which equal 2 2x y−  and a combination between 2 2x y−  and xy , resp., see 

Eq. 41 and Eq. 42. On the contrary, in 2,  0E is approximately 2

0 2

z
c z  with 2

0 1
z

c   

and, since 2ˆ 0zL z = , the squared matrix elements 
2

0
ˆ

i zE L E  are rather small 

but, more importantly, similar in magnitude as shown in Table.  4. Hence, while 

for 3 and 4 all excitations but one can be neglected, see Eq. 43 and Eq. 44 resp., 

in the case of 2 the four excitations must be included in Eq. 39.  

 

 Compound 3: ( ) ( )
( )

( )( )

2

1 0

1 0

ˆ

2
z krdc rdc

k e
k

E L E Q
g Q g

E E Q
 −

−
  Eq. 43 

 

 Compound 4: ( ) ( )
( )

( )( )

2

3 0

3 0

ˆ

2
z krdc rdc

k e
k

E L E Q
g Q g

E E Q
 −

−
  Eq. 44 

 

The use of Eq. 39, Eq. 43, Eq. 44 for 2, 3, 4 resp. provide accurate results at 

estimating the value of ( )rdc

kg Q  -determined by ORCA- for 0kQ =  with relative 

errors between 0.2 and 0.4%. In Fig. 29, Fig. 30, Fig. 31, it is shown the electron 

probability density of the five AILFT states for 2, 3, 4 resp. at their relaxed 

geometries.  
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Fig. 29 Electron probability density representation of the five AILFT states at the relaxed 

geometry of 2. Top: 0E , Middle left: 1E , Middle right: 2E , Bottom left: 3E , Bottom 

right: 4E . Green and garnet colors denote space regions where the wave-function is 

positive and negative, resp. 
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Fig. 30 Electron probability density representation of the five AILFT states at the relaxed 

geometry of 3. From top to bottom: 0E , 1E , 2E , 3E , 4E . Green and garnet colors 

denote space regions where the wave-function is positive and negative, resp. 
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Fig. 31 Electron probability density representation of the five AILFT states at the relaxed 

geometry of 4. Top: 0E , Middle left: 1E , Middle right: 2E , Bottom left: 3E , Bottom 

right: 4E . Green and garnet colors denote space regions where the wave-function is 

positive and negative, resp. 

 

Let us elaborate further on the wave-function composition of the five AILFT 

states as it was related to the faster spin-lattice relaxation of 2 with respect to 3 
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in the experimental study.239 Indeed, the faster relaxation of 2 was tentatively 

ascribed to a more pronounced contribution to the ground AILFT state 0E  (i.e., 

the SOMO: semi-occupied molecular orbital) by different vanadium 3d orbitals. 

Instead, as shown above, by employing the same axes definition we found that 

for 2 and 3 2

0 2

0 z
E c z  with 2

0 1
z

c   and 
0

0 xyE c xy  with 0 1xyc  , resp. Hence, 

the difference between 2 and 3 seems to arise not from the SOMO pureness but 

rather from which are the vanadium 3d orbitals involved in it. For this, the key 

chemical factor might be the vanadyl moiety. Respect to 2, where the SOMO is 
2z , the introduction of this moiety in 3 stabilizes a SOMO that, in general, is 

a combination between xy  and 2 2x y−  depending on the X  and Y  axes 

definition. This new composition, besides making ( )rdc

kg Q  be determined by a 

single excitation, seems to be the reason behind the preservation of quantum 

coherence up to room temperature in 3. Thus, an important design principle 

would consist in stabilizing a SOMO mainly composed by a combination 

between the vanadium orbitals xy  and 2 2x y− , while a SOMO 2z  should 

be avoided. In this case, it has been achieved by replacing one of the ligands 

with a vanadyl moiety that results in a square pyramid coordination 

environment.  

 

Mode analysis and correlations 

The analysis of those modes that produce a linear, or near-linear, evolution 

in ( )rdc

kg Q  with the distortion coordinate kQ  -hence, with the beneficial effect of 

a rather small second derivative of ( )rdc

kg Q  respect to kQ - reveals another 

correlation. Both in 3 and 4 it is possible to identify up to three of these modes. 

They involve symmetric motions around the vanadium atom, which may be 

facilitated by a higher molecular symmetry respect to 2. For instance, those 

modes corresponding to 3 involve either joint displacements out of the 

molecular plane of both carbon and sulphur atoms, or a breathing vibration 

where the coordinating sulphur atoms move towards and away from the 

vanadium atom at once. These motions are also found in 4, where the four 

vanadium-coordinating nitrogen atoms execute joint back-and-forth 

movements either out of the molecular plane or in the form of breathing 
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vibration. Interestingly, it is observed that these particular modes of 3 and 4 are 

the ones with the most evident linear evolution in the excitation energy 0→1 

and 0→3 with the distortion coordinate, resp. This linear correlation between 

( )rdc

kg Q  and excitation energy with kQ  seems to be independent from the kind 

of evolution in the corresponding squared matrix element of 3 and 4. Yet, the 

relative variation of the excitation energy in the corresponding range around 

0kQ =  is clearly greater than that of the matrix element for each one of these 

modes. In the compound 2, it is hard to find this correlation as there is more 

than one excitation at play.  

It is equally interesting to mention that those modes with the highest 

magnitude of Ck, which are initially the most detrimental ones, also present 

characteristic atomic motions. As a matter of fact, in all of the three compounds 

2, 3, 4 these modes are also the ones with the highest magnitude in the second 

derivative of ( )rdc

kg Q , despite Ck is also a function of the corresponding 

harmonic frequency and reduced mass. Both in 3 and 4 two of these modes 

involve a vanadyl swaying combined with approaching/separation of pairs of 

vanadium-coordinating sulphur atoms in the case of 3. Besides, in 4 there are 

two extra modes that involve unsynchronized back-and-forth displacements of 

the four coordinating nitrogen atoms inside the molecular plane. The 

abovementioned approaching/separation motions of pairs of coordinating 

sulphur atoms are also observed in the corresponding modes of 2. In this 

compound, other modes involve movements in these coordinating atoms 

outward and inward the ligand plane both synchronized and unsynchronized.  

If the vanadyl swaying is key to relaxation, a possible strategy to further 

enhance coherence could be to block this motion to increase its energy, for 

instance, by introducing steric hindrance around it thus making Ck be smaller. 

Its calculated frequencies in 3 and 4 lie between 300 and 375 cm-1, which may 

not produce a significant population at low temperature but rather the opposite 

at higher temperatures. On the other hand, movements in the coordinating 

sulphur atoms should also be removed and, for that, structures similar to that of 

phthalocyanine such as porphyrin are initially ideal. Indeed, in these structures 

the coordinating atoms are bonded to the ligands via two covalent bonds unlike 

2 and 3 where there is only a single one. This might result in an increased 

frequency of the modes involving these movements as can be checked when 

comparing 4 to 2 and 3, where the relevant modes of the former are about 700 
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-750 cm-1 higher in energy than those of 2 and 3, whose frequencies are between 

250 and 300 cm-1.  

Another point worth mentioning is the relative variation of the squared matrix 

element respect to its value in 0kQ = . Interestingly, among the modes with the 

highest relative variation, which show a parabolic evolution, one find those 

modes with the highest magnitude in Ck. In the particular case of 2 -the fastest 

relaxing system-, these variations are even much higher with respect to 3 and 4, 

and are present in a larger number of modes. Of course, as mentioned, for this 

larger variation to happen, the composition of the AILFT states plays a key role. 

Otherwise, if ideally these states were coincident with the vanadium 3d orbitals

xy , yz , xz , 2z , 2 2x y− , the resulting matrix elements would be rather 

constants and independent of kQ . Hence, as can be seen, the compound with the 

highest relative variations in 
2

0
ˆ

i zE L E  around 0kQ =  corresponds to the one 

with the fastest spin-lattice relaxation at each given temperature.  

On the contrary, a rather opposite correlation with respect to the modes with 

the highest magnitude in Ck is observed in the excitation energies ΔEi = Ei – E0 

for the three compounds. In particular, the modes of 2 with the highest relative 

variation in ΔEi correspond to those with the smallest magnitude of Ck. 

Nevertheless, in this compound one has to note that the change in ( )rdc

kg Q  is 

mostly determined by the variation of 
2

0
ˆ

i zE L E , which is much greater than 

that of ΔEi. In 3, we find the same for those modes with the highest variation in 

ΔEi. In fact, among these modes there is one whose evolution in ( )rdc

kg Q  is close 

to be linear. Another important issue in this compound is that 
2

0
ˆ

i zE L E  does 

not determine the evolution in ( )rdc

kg Q  anymore, since its relative variation in 

the relevant modes is at least one order of magnitude below that of ΔEi. Lastly, 

4 follows the same rule but importantly, besides 
2

0
ˆ

i zE L E  does not control 

( )rdc

kg Q  either, the modes with the highest variation in ΔEi are precisely the ones 

that show the nearest linear trend in ( )rdc

kg Q  with kQ . This behavior in the three 

systems seems to be in agreement with the evolution 2 < 3 ≤ 4 from the worst 

quantum-coherence performance to the best one.  
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All in all, if there are modes with high Ck among the ones with the highest 

variation in ΔEi, there is no need to care about engineering ΔEi since in this case 

it does not seem to determine the evolution of ( )rdc

kg Q . Instead, whenever ΔEi 

does determine the change in ( )rdc

kg Q , the modes with the highest variation in 

ΔEi seem to be the ones that produce near linear evolutions in ( )rdc

kg Q  and hence 

rather small Ck. Therefore, instead of ΔEi, the focus should be put on 

suppressing those factors that can allow changing 
2

0
ˆ

i zE L E  with respect to its 

value at 0kQ = , since a larger variation in this matrix element seems to correlate 

with a worse performance in the target compound. As noted above, this can be 

achieved via a proper composition of the five AILFT wave-functions in terms 

of the orbitals  xy , yz , xz , 2z , 2 2x y− . In the particular case of the three 

compounds under study, the introduction of the vanadyl moiety seems to be 

crucial for it. 

As also suggested in the experimental study,239 it is interesting to compare 

the frequencies of those modes in 2 and 3 that produce the highest values in Ck 

(|Ck·104| ≥ 1) -which may be key for relaxation (see section 4.3)- in order to 

check the vanadyl rigidity role at increasing the given frequencies from 2 to 3. 

In 2, these frequencies are 129.2, 243.5, 245.7 cm-1 with Ck·104 = -1.5, -2.7, -

1.3, resp. On the other hand, in 3 they are 165.7, 183.4, 246.2, 292.2, 318.5 cm-

1 with Ck·104 = 1.2, -1.2, 1.1, 3.3, 4.7, resp. While the last two modes of 3 are 

indeed higher in energy than those of 2, the remaining frequencies (165.7, 

183.4, 246.2 cm-1) lie approximately in between the energy limits 129 and 245 

cm-1 for the frequencies of the modes of 2. Thus, with not much different values 

for k k kB C n=  in the range 100 – 200 K where coherence is lost in 2, the 

introduction of the vanadyl moiety would initially contribute with a rather 

limited role in terms of molecular rigidity. In other words, the rigidity in the 

stretching vibration might not be the only decisive factor behind the enhanced 

performance in 3 respect to 2.  
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4.3 [U(Cpttt)2]+ 

In chapter 2, we have talked about some important strategies that have 

commonly been employed to improve the performance of molecular 

nanomagnets, namely, (i) the need of a large ground J quantum number, (ii) 

non-mixed wave-functions with a ground spin doublet composed by the 

projections ±J, and (iii) a large energy barrier that separates these two 

components. This constitutes the so-called static picture, which can be tuned by 

properly engineering the electronic structure of the low-lying 2J+1 states via 

chemical modification of ligands. Often, this has been enough to systematically 

increase relaxation times in a given temperature range as well as blocking 

temperatures, Tb, which importantly determine the highest temperature that still 

allows observing the magnetic hysteresis loop. Nevertheless, once all the 

parameters in (i), (ii), (iii) are properly optimized, magnetic relaxation will now 

be determined by alternative mechanisms, which are the ones that should now 

be addressed and suppressed. In other words, further optimization of (i), (ii), 

(iii) will not lead to molecular nanomagnets with a better performance if the 

parameters involved therein are not limiting the achievement of higher 

relaxation times and blocking temperatures anymore.277 As mentioned, one of 

the main goals nowadays is to develop operative nanomagnets at increasing 

temperature. This introduces the spin-vibration coupling as one of those new 

key parameters to optimize, since vibration-mediated magnetic relaxation, e.g. 

Raman, Orbach and local mode, becomes more important as temperature is 

raised. If firstly the electronic structure engineering allowed increasing Tb from 

2 K to 14 K in the period 2004 – 2011,160,278 the recent consideration of this 

additional dynamic picture where spins are coupled to lattice and molecular 

vibrations have produced an outstanding jump forward both in τ and Tb from 14 

K to 60 K and 80 K during the last seven years.164,165  

These two last compounds are mononuclear Dy-based bis-metallocenium 

cations, [Dy(Cpttt)2]
+ (Tb = 60 K) and [Dy(Cp*)(CpiPr5)]+ (Tb = 80 K) (where Cpttt 

= {C5H2
tBu3-1,2,4}, Bu3 = C(CH3)3, Cp* = pentamethylcyclopentadienyl, CpiPr5 

= penta-iso-propylcyclopentadienyl), which interestingly do not display an 

axial symmetry but a rather distorted one, see Fig. 32. First-principles 

calculations provided insight on the spin relaxation pathway among the several 

low-lying 2J+1 states in [Dy(Cpttt)2]
+ and, more importantly, allowed 

identifying the relevant molecular vibrations involved in driving the spin 

population across this pathway. The subsequent ligand modification aimed at 
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removing these vibrations produced the compound [Dy(Cp*)(CpiPr5)]+ 

displaying an unprecedented blocking temperature of 80 K. Thus, bis-

metallocenium cations are opening a new avenue for a further improvement in 

the case of Ln-based SIMs, and are currently under an intense study both 

experimental and theoretical.183,279  

 

 

Fig. 32 [Dy(Cpttt)2]
+ (left) and [Dy(Cp*)(CpiPr5)]+ (right) molecular compounds where the 

angles CpDyCp  are 152.8º and 162.5º, resp. Dy: blue, C: black. H omitted for clarity.  

 

By keeping these optimized metallocenium ligands into consideration, it is 

worth wondering now whether the overall magnet performance could be further 

improved by selecting other potential metal ions such as actinides as the next 

natural frontier to explore. Indeed, 5f orbitals in actinides are known to have a 

more diffuse electron density in space than 4f orbitals of lanthanides.159 This 

initially gives rise to a stronger interaction between 5f orbitals and ligand p 

orbitals, which would enhance total zero field splittings and enable actinide ions 

as potential candidates to provide better SIMs.280 For instance, this splitting 

could be larger in U3+ and even up to one order of magnitude higher in U4+ 

respect to lanthanides. Due to the majority radioactive behavior of actinides, 

there exist few candidates available with some very long-lived isotope able to 

produce stable molecular compounds. This fact excludes all actinide ions but 

the ones based on 232Th, 238U, 237Np, 244Pu, and 247Cm, being 238U the most 

popular as others either are present in an extremely low natural occurrence or 
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need to be synthesized in specialized labs. Herein, we will focus on 238U3+ since 

it has a Russell-Saunders ground level 4I9/2 (like Nd3+) with the largest J = 9/2 

quantum number compared to the ions 238U4+ (3H4) and 238U5+ (2F5/2). Indeed, 

while slow relaxation of magnetization has been observed in all these three 

ions,159,280–282 238U3+-based molecular compounds seem to be more inclined 

towards SIM behavior as it has been detected in a range of ligand fields of vastly 

differing symmetries, although only with moderate energy barriers.187,283–290  

Only very recently (2019), the 238U3+ ion has been experimentally tested for 

the first time with one particular bis-metallocenium ligand, altogether also in 

the form of a cationic unsymmetrical compound with bending angle CpUCp  = 

167.82º.291 Contrary to expectations, a poor dynamic magnetic performance was 

measured with no detected slow relaxation at zero field and no reported 

hysteresis loop, and relaxation times only observable up to 6 K under an 

external static field of 1000 Oe. Theoretical calculations suggest that metal-

ligand covalency leads to a partially quenched orbital angular momentum and 

fast magnetic relaxation at zero field via quantum tunneling. Therefore, it seems 

that unsymmetrical actinide metallocenes, unlike the lanthanide-based analogs, 

could be unlikely to produce exceptional SIMs. In this situation, a more suitable 

approach would be to enforce 5f orbital degeneracy by designing systems with 

strict high point symmetry and/or by decreasing the mixing with ligand orbitals. 

In this section, we pursue two goals, one general and one particular. In the 

first place, as shown above, the first-principles evaluation of the spin-vibration 

coupling in molecular nanomagnets is still a hardly systematic task that involves 

many computationally demanding calculations.164,165 Below, we will propose a 

novel ab initio methodology devoted to Ln- and U-based SIMs that relies on a 

single first-principles calculation, while the rest of calculations are inexpensive. 

Importantly, this method produces a drastic decrease in the computational time 

for the first time thus allowing a much faster exploration of potential candidates 

in silico before the lab stage. Moreover, it is able to identify low-frequency 

molecular vibrations that may assume the role of optical phonons in Orbach and 

Raman relaxation processes, which opens the path towards a rational re-design 

of ligands to suppress them and improve the magnet performance. In the second 

place, we intend to particularly rationalize the apparently limited performance 

of bis-metallocenium U3+-based SIMs, as well as to compare them with other 

U3+-based SIMs previously reported. For that purpose, the aforementioned 
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methodology will be applied to the hypothetical analog [U(Cpttt)2]
+ (hereafter 

referred to as 5) of [Dy(Cpttt)2]
+ where Dy3+ is replaced by U3+, which will also 

serve as a prediction.  

In chapter 2, we have discussed the suitability of the Russell-Saunders 

coupling scheme to describe the low-lying electronic structure of Ln ions as 

building blocks of SIMs. Instead, this picture is not necessarily also valid for 

actinide ions,174 since in this case the inter-electronic repulsion (~104 cm-1), 

spin-orbit coupling (~103 cm-1) and ligand field potential (~103 cm-1) become 

similar in magnitude. Ultimately, this brings an important consequence in the 

modelling of actinide-based coordination compounds. Indeed, to properly 

describe this electronic situation, a new coupling scheme may be put at play, 

namely, the J-mixing scheme. This scheme is favorable when there can exist a 

significant enough mixing between the ground level 2S+1LJ and excited ones if, 

for instance, the gap energy   between them is small, see Fig. 3. In other words, 

this ground level cannot be considered as isolated anymore and hence J is no 

longer a well-defined quantum number.  

In particular, calculations have shown that, for 5f2, 5f3 and 5f4 configurations, 

the Russell-Saunders scheme can recover only up to an 80% of the ground state 

wave-function as determined from the J-mixing coupling scheme.292,293 This 

percentage is even lower in the case of Am3+ (44.9%), which constitutes one of 

the worst scenarios. To complete the comparison, note the best situation for 

lanthanide ions with a 94% for Er3+. In the case of the U3+ ion, with a 5f3 

configuration, the Russell-Saunders scheme recovers around an 84.1% of the 

ground state wave-function. This accuracy is further lowered for U4+, with a 5f2 

configuration, where the percentage is around 77.5%.294 These limitations in 

accuracy restrict the use of the package SIMPRE to lanthanides, which only 

considers the ground level 2S+1LJ but neglects any excited one. For a proper 

description of U-based SIMs, one also has to include the excited J multiplets 

whose effects are now more important and not negligible at all. Thus, the 

Crystal Field Hamiltonian (Russell-Saunders + only ground 2S+1LJ) must be 

replaced by the full Hamiltonian Ĥ  in Fig. 3, where kinetic energy, inter-

electron repulsion, spin-orbit coupling and ligand field are treated explicitly 

along with the whole set of J multiplets. Since this coupling scheme is not 

included in SIMPRE yet, we will use the CONDON package which contains 

and diagonalizes Ĥ .174,295  
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Preliminary equations and proposed methodology  

The key tool to evaluate the spin relaxation dynamics is the so-called master 

equation, which determines the time evolution of the spin population flow 

through a set of Hamiltonian eigenstates from an initial situation. We use the 

well-established Pauli master equation, see Eq. 45, as commonly done in the 

case of single-ion molecular nanomagnets.75,164  

 

 
( )

( ) ( )
2 1

1,

J
i

f i f i f i

f f i

dp t
p t p t

dt
 

+

→ →

= 

 = −  , 1,..., 2 1i J= +   Eq. 45 

 

In Eq. 45, J corresponds to the ground level 2S+1LJ for Ln3+ ions, while for U3+ 

we use J = 9/2. On the other hand, ( )0 1ip t   is the spin population present at 

the eigenstate i  at a given time t, and all of them are such that ( ) 1i

i

p t = . To 

solve the master equation, which means to calculate each ( )ip t  as a function of 

time, we will need to set the initial conditions ( )0ip  at t = 0. The transitions rates 

(probability per unit time) from a given i  to any f  and from f  to i  are 

i f →  and f i → , resp. Thus, ( )i f ip t →  and ( )f i fp t →  determine the outcoming and 

incoming flows respect to the given i , resp. Their difference is the net flow in 

i  and equals the variation of its spin population with time according to Eq. 45.   

Besides the initial conditions ( )0ip , we also need to introduce the 

aforementioned transition rates as an input in the master equation. To determine 

the probability per unit time of driving a transition from a state characterized by 

the ket ,i jE n  -where iE  is a given initial eigenstate with energy iE  and the 

quantum number jn  describes the eigenstate of a given 1D harmonic vibrational 

mode j - to another state , 1f jE n   either by emitting or by absorbing a phonon 

-where fE  is the energy of a given final eigenstate 
fE - is common to proceed 

by employing the so-called Fermi Golden Rule.75 This rule is usually prepared 
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to incorporate a given expression of the phonon density of states. For example, 

the most employed phonon density of states is that of the Debye model, where 

this density is proportional to the square of the phonon frequency. Then, one 

integrates the transition rate over this phonon frequency up to the Debye 

temperature, and the resultant expression depends on some parameters such as 

the crystal longitudinal and transverse sound velocities. Let us recall that the 

current main goal is the development of fully ab initio methodologies, in 

particular, by not assuming any specific form in the phonon density of states. 

This means being able to incorporate the vibrational spectrum as provided by 

first-principles calculations. In solid state systems, typical vibrational energies 

are close enough so that it is considered they form an energy continuum. That 

is why the phonon frequency in the Debye model appears as a continuous 

variable -not discrete- which is subsequently integrated over a given real 

interval. On the contrary, a first-principles software will always provide a finite 

number R of vibrational modes (each one with its harmonic frequency, reduced 

mass, force constant and displacement vector). These vibrations are the result 

of diagonalizing the so-called force matrix which has always a finite size. To 

incorporate this finite set of vibrations into the transition rates, we need to 

replace the standard integral of the phonon frequency over a real interval by a 

summation over this given set of vibrations. Thus, the transition rates we show 

below are the result of adapting the standard Fermi Golden Rule, where the 

integral over the phonon frequency have been substituted by a summation over 

all vibrational modes as proposed by Goodwin et al.164 Since the spin-vibration 

coupling is calculated up to second order in perturbation theory, there no exist 

crossed interactions among different vibrational modes and the transition rate 

expressions are just a finite summation over non-interacting harmonic 

vibrations. Moreover, these transition rates have been derived under the so-

called Born-Oppenheimer approximation whereby the electronic and nuclear 

dynamics are uncoupled thus resulting in non-adiabatic electronic transitions. 

Herein, we will work with the vibrationally-induced transition rates between 

given pairs of eigenstates corresponding to the Orbach and second-order Raman 

processes. 
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Orbach transition rates: 

The Orbach relaxation process is a finite sequence of direct transitions 

i f→  where each one of them is driven by only one resonant phonon with the 

energy difference 
f iE E− . The process starts in an initial eigenstate with unity 

population. Then, the spin is excited to higher intermediate eigenstates in the 

potential barrier through phonon absorption. Once the barrier has been crossed 

(either by overcoming the highest eigenstate or by tunneling), this is followed 

by a cascade of de-excitations until reaching a final eigenstate through phonon 

emission. The transition rates read as follows and depend on whether the 

transition i f→  is driven through a phonon absorption or emission:  

 

Absorption ( )
2 2

1

2 ˆ 1
R

i f j j j j j i f

j

i H f n n E E


  →

=

 = − −
  

  Eq. 46 

 

Emission ( )
2 2

1

2 ˆ 1
R

i f j j j j j i f

j

i H f n n E E


  →

=

 = + −
  

  Eq. 47 

 

Second-order Raman transition rates:  

In the second-order Raman process, each transition i f→  is not direct but 

driven through an intermediate eigenstate c , and involves two resonant 

phonons with the energy differences c iE E−  and 
f cE E− . The first phonon j  

mixes i  with c , while the second one l  mixes c  with f . Now, the case 

i fE E=  has a certain transition rate whose value is not necessarily zero. Given 

i  and f , the transition rate expression includes all intermediate eigenstates 

c  but the ones with an energy cE  equal to both iE  and fE . Thus, given i  and 

f , for each c  only one of the following four options is possible: (i) 

i c fE E E  , (ii) i c fE E E  , (iii) i c fE E E  , (iv) i c fE E E  . The transition 

rate expression is as follows:  
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2
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




+
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, ,
j l

j c i l f c

c i f c

c H i f H c
c j c l E E E E

E E E E
 =   − −

− −
  

Eq. 48 

 

In case of (i), the phonon j  is absorbed and the phonon l  is emitted; hence 

( )
2

, 1j j jc j n n = −  and ( )
2

, 1l l lc l n n = +  . In case of (ii), the phonon j  is 

emitted and the phonon l  is absorbed; hence ( )
2

, 1j j jc j n n = +  and 

( )
2

, 1l l lc l n n = − . In case of (iii), the phonon j is emitted and the phonon l 

is emitted; hence ( )
2

, 1j j jc j n n = +  and ( )
2

, 1l l lc l n n = + . In case of 

(iv), the phonon j is absorbed and the phonon l is absorbed; hence 

( )
2

, 1j j jc j n n = −  and ( )
2

, 1l l lc l n n = − .  

 

Strain tensor matrix elements: 

 

 
2

/

1
1

1j B
j j j k T

n n
e


− =

−
     

2

/

1
1

1 j B
j j j k T

n n
e




−
+ =

−
 Eq. 49 

    

These matrix elements describe the strain suffered by the lattice when the 

vibrational mode j absorbs or emits a phonon, where j  is the so-called strain 

tensor. The vibration bath is considered to be thermalized, i.e., its dynamics is 

much faster than that of the magnetic relaxation. Thus, these matrix elements 

are proportional to the Bose-Einstein statistics of the given vibrational mode j, 

and depend only on temperature.75,296,297 Note that when temperature 0T →  the 

left matrix element in Eq. 49 vanishes, but not the right term which tends to 1. 
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This means that some transition rates do not necessarily vanish as 0T → , and 

thus the spin may also relax even at very low temperature. 

 

Distribution of phonon energies: 

 

 ( )
2

1 1
exp

22

j

j

 
 

 

 − 
 = −     

   1,...,j R=   Eq. 50 

 

There is another modification implemented in the above transition rates. The 

original expressions contain the Dirac delta function ( )j  − , where 

f iE E = −  is the energy difference between final and initial eigenstates. The 

conservation of energy implies that   must equal the phonon energy j  of a 

given vibrational mode j. Otherwise, both ( )j  −  and the corresponding 

transition rate vanish, i.e., there is no spin transition. As said above, first-

principles packages provide a discrete vibrational spectrum. Thus, it is quite 

unlikely to find a vibrational mode whose phonon energy exactly matches a 

given energy difference 
f iE E− , and hence one would not observe any spin 

relaxation. To solve this issue, the Dirac delta function is replaced by a Gaussian 

convoluted spectrum around the phonon energy 
j  of the given vibrational 

mode j. In other words, the phonon energy is let to have an uncertainty width 

around its value 
j . This width is determined by the standard deviation 

parameter σ, and can be estimated by inspecting the experimental IR and Raman 

vibrational spectra (the full-width-half-maximum linewidth is twice as much as 

σ). This parameter has to be estimated carefully, since a too small value makes 

the Gaussian convoluted spectrum become too much similar to a delta function, 

and no relaxation is observed. On the contrary, a too large value means a 

continuously flat vibrational spectrum which is not observed for molecular 

systems.  

 

 



140 

 

Spin-vibration coupling matrix elements: 

To model vibration-mediated spin relaxation in molecular nanomagnets, we 

are proposing a new methodology based on the following picture currently 

employed: an equilibrium electronic structure, in the form of a potential barrier 

where the spin is initially located at one side, perturbed by a set of harmonic 

vibrations that drive the spin through a set of Hamiltonian eigenstates. Prior to 

determine the equilibrium electronic structure, one first has to relax the 

molecular geometry. Then, the determination of the IR spectrum provides the 

set of vibrations with harmonic frequencies j , reduced masses jm  and 

displacement vectors ju . The next step is to perform a CASSCF calculation on 

the experimental molecular geometry to extract the lowest 2J+1 spin 

energies.164 After setting the coordinate origin at the metal experimental 

position, the experimental positions of the metal-coordinating atoms are 

introduced in SIMPRE. As explained in chapter 3, this code first calculates the 

CFPs and then diagonalizes the 2J+1-sized Crystal Field Hamiltonian 

corresponding to the ground level 2S+1LJ. The charge magnitudes and the metal-

charge radial distances are varied to fit the CASSCF energies.216,224 To speed up 

the fitting procedure, quite often it will be enough to use the same charge 

magnitude and radial distance variation in each coordinating atom. Thus, we 

project the CASSCF information onto the first coordination sphere via effective 

parameters. Of course, the CASSCF evaluation can be avoided if the low-lying 

experimental energies are available. In this case, the experimental structure used 

in SIMPRE should be determined at the same temperature as that of the 

experimental energies.  

Now, the coordinating atom positions of the relaxed geometry are radially 

varied with the same fitting distance variations previously determined in 

SIMPRE. By using the same found charge values, SIMPRE calculates the 

equilibrium CFPs ( ) 
,

q k

k
eq k q

A r  in Stevens notation. As mentioned above, 

excited states beyond the ground J  multiplet may also influence the low-lying 

electronic structure of actinide SIMs unlike lanthanide ions. Thus, in case of 

U3+, to determine the charge magnitude and the radial distance variation, the 

energy fitting must be replaced by a fitting of the SIMPRE CFPs to the CFPs 

either CASSCF or experimental.  
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The diagonalization in SIMPRE of the equilibrium Crystal Field Hamiltonian 

( )
2,4,6

ˆˆ
k

q k q

eq k k k
eq

k q k

H A r a O
= =−

=    provides the equilibrium electronic structure, i.e., 

the lowest 2J+1 equilibrium eigenstates and energies corresponding to the 

ground level 2S+1LJ. For the U3+ ion, the diagonalization is performed in 

CONDON, where the CFPs must be introduced in Wybourne notation as this 

software uses a rather different implementation of the ligand field operators. 

Then, the obtained eigenstates are truncated to the ordered basis set 

 ,...,J J− +  of the ground J = 9/2 multiplet and then renormalized. 

The perturbing Hamiltonians ( ) ( )
2,4,6

ˆˆ
k

q k q

j k k k
j

k q k j

H A r T a O
= =−

 
=  

 
  , which are 

built in the same ordered basis set as the equilibrium eigenstates, account for 

the perturbation to the equilibrium electronic structure from each vibrational 

mode j. Their determination requires to estimate the temperature-dependent 

change ( ) ( )q k

k
j

A r T  produced in ( )q k

k
eq

A r  after activating each mode j. We 

use our model derived above which provides the following perturbative 

expression up to second-order in mode coordinate jQ  for ( ) ( )q k

k
j

A r T : 

 

 ( ) ( )
2

2

1 1

4 2

q k

kq k

k j
j

j j j
eq

A r
A r T n

Q m 

   
  = +     

  Eq. 51 

 

The determination of ( )2 2/q k

k j
eq

A r Q   is as follows. For each mode j, several 

distorted geometries  jd
d

v  are generated around the relaxed geometry eqv  by 

following the corresponding displacement vector ju . Then, we run  a SIMPRE 

calculation at each distorted geometry d

jv  to determine the set of CFPs q k

kA r  

in cm-1 by following the same procedure employed to determine ( ) 
,

q k

k
eq k q

A r . 

Namely, we apply the same radial distance variations and charge magnitudes to 

the metal-coordinating atoms in these distorted geometries. Hence, for each 
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mode j and each CFP we have a set of pairs ( )( ) ,
d

q k d

k j
j

d

A r Q . By fitting each 

plot ( )
d

q k

k
j

A r  vs 
d

jQ  to a polynomial and evaluating its second derivative at 

0jQ =  we access ( )2 2/q k

k j
eq

A r Q  . Then, by performing a simple vector-

matrix-vector product, it is possible to compute each given spin-vibration 

coupling matrix element ˆ
ji H f . Note that for the first time we introduce a 

temperature dependence in these matrix elements through each boson number 

jn . In the case of U3+, the Stevens coefficients to use in ˆ
jH  are the same of the 

isoelectronic metal ion Nd3+.  

Crucially for our interests, the elements ˆ
ji H f , which compose the 

transition rates   that connect the pairs of eigenstates i  and f , depend 

proportionally on Eq. 86 through the perturbing Hamiltonians ˆ
jH . Thus, we can 

state again the key role of Eq. 51 regarding magnetic relaxation. Indeed, the 

evaluation of this relaxation depends on solving a master equation, which 

determines the time evolution of the spin population through several 

Hamiltonian eigenstates. This equation depends on the abovementioned 

transition rates and they consist in a summation of independent contributions 

each one accounting for a different vibrational mode. As mentioned, the key 

point is that each one of these contributions is proportional to the corresponding 

matrix element ˆ
ji H f . Hence, since ˆ

jH  is proportional to Eq. 51, in order to 

suppress the transition rates and consequently magnetic relaxation, we need to 

unavoidably look for strategies aimed at canceling each ( ) ( )q k

k
j

A r T . We 

already stated that some simple strategies may consist in increasing both the 

harmonic frequencies 
j  and reduced mass 

jm . In addition, a complementary 

and beneficial effect is that of those modes that give a quasi-linear evolution in 
q k

kA r  with jQ  around the relaxed geometry, since they will produce a rather 

negligible second derivative ( )2 2/q k

k j
eq

A r Q  . 
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Application to [U(Cpttt)2]+ 

The geometry relaxation and the vibrational spectrum calculation of 5 is 

conducted again via DFT in Gaussian09. As a starting geometry, we use the 

experimental one of [Dy(Cpttt)2]
+ where Dy3+ is replaced by U3+. In this case, 

this geometry is relaxed in vacuum without any crystal environment. Of course, 

a more realistic relaxation would require to include it as did for 1. Nevertheless, 

calculated relaxation times reasonably similar to the experimental ones were 

obtained for [Dy(Cpttt)2]
+ by relaxing its geometry in vacuum, i.e., by focusing 

only on gas-phase molecular vibrations. Just to illustrate the proposed 

methodology, we thus decided to follow the same approach with the beneficial 

side effect of avoiding to increase the computational cost. Since there is no 

experimental IR spectrum available for 5, we use the same value of σ as in 

[Dy(Cpttt)2]
+, which is σ = 10 cm-1.  

According to our method, we should first perform a CASSCF evaluation on 

an experimental geometry of 5 to obtain ( ) 
,

q k

k
eq k q

A r . Since we lack this 

geometry, the adapted procedure relies on the equilibrium electronic structure 

of [Dy(Cpttt)2]
+ as a starting point which is projected onto 5. Indeed, to 

determine the two REC model parameters that describe the ligand field 

produced by the two coordinating Cpttt rings in 5, our starting point are the 

CASSCF energies determined by Goodwin et al. at the experimental geometry 

of [Dy(Cpttt)2]
+.164 The experimental coordinates of the first coordination sphere 

of [Dy(Cpttt)2]
+ are used as an input in SIMPRE, and the REC parameters are 

varied to fit the aforementioned energies. The best fit, with an error E = 0.03 % 

in Eq. 17, results in Dr = 1.313 Å and Zi = 0.06806. The calculated ground J = 

15/2 multiplet energies (Efit) by SIMPRE with these REC parameters are 

compared with the CASSCF ones (Eref) in Table.  5.  

Subsequently, we apply the calculated REC parameters to the DFT-relaxed 

coordinates of the coordinating atoms in 5. This target compound has identical 

ligands as [Dy(Cpttt)2]
+ only differing in the metal ion. This allows us to transfer 

the REC parameters from [Dy(Cpttt)2]
+ to 5 as demonstrated in several previous 

works.215,222–224 The input coordinates of the relaxed positions of the 

coordinating atoms in 5 and the most important calculated CFPs are reported in 

Table.  6 and Table.  7, resp. 
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Table.  5 Ground J = 9/2 multiplet Kramers doublets determined by CASSCF calculations 

(Eref) and REC model (Efit) for [Dy(Cpttt)2]
+. ΔE = |Eref – Efit|. Relative errors are < 2.6 %. 

Eref –CASSCF (cm-1) Efit –REC (cm-1) ΔE (cm-1) 

0 0 - 

488.6 480.7 7.9 

771.0 775.6 4.6 

956.5 980.9 24.4 

1122.2 1145.4 23.2 

1277.5 1280.5 3.0 

1399.3 1365.4 33.9 

1476.1 1465.4 10.7 

 

Table.  6 Relaxed input coordinates of the coordinating atoms in 5 after applying Dr = 

1.313 Å to the radial spherical coordinate and using a charge magnitude of Zi = 0.06806. 

Label Ri (Å) θi (degrees) φi (degrees) Zi 

C1 1.302 16.97 170.79 0.06806 

C2 1.306 15.43 349.02 0.06806 

C3 1.391 39.05 39.80 0.06806 

C4 1.490 49.27 80.81 0.06806 

C5 1.374 40.50 122.08 0.06806 

C6 1.302 163.04 63.04 0.06806 

C7 1.306 164.55 244.76 0.06806 

C8 1.391 140.94 194.02 0.06806 

C9 1.491 130.73 153.01 0.06806 

C10 1.375 139.51 111.74 0.06806 
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Table.  7 Most important calculated CFPs for 5 at the DFT-relaxed geometry in Stevens (
q k

kA r and q

kB ) and Wybourne (
kqB ) notation. The rest of CFPs are such that q

kB  < 0.1 

cm-1. 

k q q k

kA r  (cm-1) q

kB  (cm-1) kqB  (cm-1) 

2 0 997.8 -6.414 1995.6 

2 1 -1118.3 7.188 -456.5 

2 -1 -568.0 3.651 -231.9 

2 2 -47.1 0.303 -38.5 

2 -2 -64.4 0.414 -52.6 

4 1 -623.1 0.181 -557.3 

 

Now, the CFPs in Wybourne notation calculated at the DFT-relaxed 

geometry of 5 are used as an input in CONDON to determine the equilibrium 

electronic structure of 5, see Table.  8 and Fig. 33. 

 

Table.  8 Lowest five equilibrium Kramers doublets of 5 determined in CONDON. The 

wave-functions were truncated to the ten mJ components corresponding to the ground 

level of U3+ and then renormalized. mJ contributions below 10% are omitted. 

E (cm-1) Wave-function 

0.0 81.5% 9 / 2  + 12.2% 3 / 2   

159.3 40.7% 5 / 2  + 17.7% 3 / 2  + 17.6% 1/ 2  + 13.5% 7 / 2   

331.0 30.2% 3 / 2  + 18.5% 1/ 2  + 18.2% 5 / 2  + 12.0% 7 / 2  

499.1 26.9% 1/ 2  + 25.6% 5 / 2  + 15.7% 7 / 2  + 12.4% 7 / 2  + 

10.3% 3 / 2  

638.3 42.6% 7 / 2  + 21.5% 3 / 2  + 18.0% 1/ 2  
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In the particular case of 5 we found that the contribution of excited J 

multiplets to the lowest 10 equilibrium eigenstates before truncation is rather 

negligible. Note that the zero field splitting ~640 cm-1 is relatively moderate and 

quite below the one observed in [Dy(Cpttt)2]
+ (~1400 cm-1) and 

[Dy(Cp*)(CpiPr5)]+ (~1900 cm-1). Thus, the ground doublet of the first excited 

J  multiplet in 5, which lies around few thousands of cm-1, is far from 

influencing the U3+ ground level. Of course, this is not necessarily the general 

situation for uranium-based coordination compounds. Whenever the ZFS 

becomes comparable to the spin-orbit coupling, excited J multiplets will show 

increasing contributions to the ground one.  

 

 

Fig. 33 Lowest 2J+1 = 10 spin energies of the ground J = 9/2 multiplet of U3+ evaluated at 

the relaxed geometry of 5, along with the corresponding ˆ
zJ  expectation values. 

 

The resolution of the master equation in Eq. 45 provides the temperature 

dependence of the relaxation time τ. Details are routine and are found 

elsewhere.298 In Fig. 34, we show this calculated thermal evolution for 5 by 

employing the Orbach transition rates with initial conditions ( )9/2
0 1p t

−
= = , 

( )0 0
i

p t = =  for i ≠ -9/2. Indeed, since our current interest is the use of a 

molecular magnet as a classical memory storage, the initial spin population is 

all placed at one component of the ground doublet, which acts as the memory 
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bit. In an experiment, this corresponds to magnetize the sample and then to turn 

the magnetic field off. The relaxation time in the temperature range where the 

Orbach process dominates (above some few tens of Kelvin) is experimentally 

modeled by an Arrhenius-like law τ = τ0exp(UeffT
-1). In this process, the spin 

population does not necessarily reach the top of the barrier in Fig. 33 before 

crossing it. Instead, it tunnels the barrier at an effective height given by Ueff. 

The Orbach prefactor 
1

0
−

 represents the number of attempts per unit time to 

tunnel the barrier. From Fig. 34, the fitting produces Ueff = 203 cm-1, and τ0 = 

2.7·10-8 s. As seen in Fig. 33, Ueff would be located around 40 cm-1 above the 

first excited doublet, and is much smaller than those found in [Dy(Cpttt)2]
+ 

(~1223 cm-1) and [Dy(Cp*)(CpiPr5)]+ (~1541 cm-1). On the contrary, the 

estimated Orbach prefactor is at least three orders of magnitude larger than 

those found for [Dy(Cpttt)2]
+ (τ0 = 2.0·10-11 s) and [Dy(Cp*)(CpiPr5)]+ (τ0 = 

4.2·10-12 s). The attempt rate to cross the barrier seems thus to be much slower 

in 5. Nevertheless, the comparison of previously reported uranium SIMs with 5 

reveals that our calculated Orbach prefactor is found among the smallest 

ones.223,290 Note that the calculated times τ at low temperatures in Fig. 34 should 

be considered as an upper bound of the real ones since at these temperatures 

other different mechanisms are often dominant.  
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Fig. 34 Thermal evolution of the Orbach-based relaxation time τ, along with fit to 

determine both the Orbach prefactor τ0 and the effective barrier Ueff in the thermally-

activated regime (T ≥ 30 K). Inset: visual representation of 5. 

 

We repeated the master equation resolution but by employing now the 

second-order Raman transitions rates. This mechanism is far from dominating 

relaxation in the explored temperature range as the calculated times τ are at least 

five orders of magnitude longer than the Orbach-based ones, see Table.  9. The 

reason to calculate the Orbach and second-order Raman relaxation times up to 

50 K is because at this temperature the Orbach relaxation time reaches the 

standard experimental detection limit, which is around 10-6 s. We select 6 K 

(Orbach process) and 11 K (second-order Raman process) as lower bounds for 

temperature since below these values numerical noise becomes too important 

to produce reliable relaxation times.  
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Table.  9 Thermal evolution of the Orbach and second-order Raman relaxation times O  

and R  for 5. 

T (K) 
O  (s) R  (s) 

11 1.8·102 3.4·107 

12 3.9·101 5.1·106 

13 1.0·101 1.1·106 

14 3.3·100 2.9·105 

15 1.2·100 9.3·104 

20 2.9·10-2 1.7·103 

25 2.6·10-3 1.5·102 

30 4.5·10-4 2.9·101 

40 4.2·10-5 3.6·100 

50 9.0·10-6 1.0·100 

 

A complementary information that can also be extracted from the master 

equation when using the Orbach transition rates is the Orbach-mediated 

relaxation pathway followed by the spin population, see Fig. 35. This can be 

accomplished by checking the pairs of eigenstates with the highest transition 

rates. Moreover, it is also possible to identify the vibrations that promote each 

relaxation step in this pathway. Indeed, as explained above, these rates depend 

proportionally on the non-interacting contributions from the several vibrational 

modes. We focus on those modes with the highest relative weight in each rate. 

Once the most contributing ones are identified, we can now visually inspect 

which atomic movements are involved. Then, chemical modifications on the 

molecular structure can be proposed to remove the relevant motions with the 

hope of further suppressing magnetic relaxation and improving the magnet 

performance.  
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Fig. 35 Orbach-driven relaxation pathways of 5 starting at the 3.99zJ = −  equilibrium 

eigenstate with unity population at different temperatures. Arrow shades are proportional 

to the percentage of the transient spin population. The outcome population sum from a 

given eigenstate equals the income population sum to the same eigenstate. Transient 

populations lesser than 1.0% not shown. Note that there is no spin population transfer 

between degenerate states as no quantum tunneling processes are under consideration in 

the master equation.  

 

Below 25 K, we find that only the ground and first excited doublets are 

populated and the spin tunnels the barrier through their components. 

Nevertheless, here we must recall again that we are only considering Orbach-

driven magnetic relaxation. At low temperatures, alternative relaxation 

mechanisms can be at play and dominate, such as the case of the direct process 

where the spin tunnels the barrier through the ground doublet components 
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without populating any excited doublet (quantum tunneling of magnetization). 

Above 25 K, the Orbach process starts to dominate, this is the so-called 

thermally-activated regime where the number of available phonons is high 

enough to promote the spin to excited states. As temperature is raised, both the 

first and second excited doublets become populated, and an increasing spin 

population tunnels the barrier through their components. This is consistent with 

an effective barrier Ueff found in between these two excited doublets. 

Above 30 K, the thermally activated relaxation is at play. The spin population 

flows through excited doublets by absorption and emission of phonons. We 

identify up to six molecular vibrations involved in this relaxation mechanism. 

These are the calculated vibrations 16, 17, 18, 19, 20 ,21, with harmonic 

frequencies ν16 = 135.0115 cm-1, ν17 = 136.8658 cm-1, ν18 = 170.0364 cm-1, ν19 

= 172.5580 cm-1, ν20 = 175.4401 cm-1, ν21 = 175.7696 cm-1, where the last four 

frequencies closely match the gaps between the equilibrium ground and first 

excited doublets (159.3 cm-1), and first and second excited doublets (171.7 cm-

1) in virtue of the selected value σ = 10 cm-1. The vibration 16 is a rocking-like 

deformation of the two Cpttt rings: the two hydrogen atoms bounded to each 

Cpttt ring moves towards and away from the U3+ ion. As a side effect, there are 

also rigid movements of the terc-butyl substituents. This kind of vibration was 

also identified in [Dy(Cpttt)2]
+ as the one promoting the first step in the most 

likely relaxation pathway from the ground doublet to the first excited doublet. 

As mentioned above, it was proposed to substitute these two hydrogen atoms in 

the Cpttt rings by bulkier substituents in order to block this vibration thus 

producing [Dy(Cp*)(CpiPr5)]+. This modification succeeded since this vibration 

is no longer observed and both blocking temperature and experimental effective 

barrier were increased by 20 K and around 300 cm-1, resp. The vibration 17 

involves kind of rigid movements in the terc-butyl substituents. The modes 18 

and 21 are symmetric and antisymmetric breathing-like vibrations: the two rigid 

Cpttt rings moves towards and moves away from the U3+ ion at once and out of 

phase, resp., and are also found in [Dy(Cp*)(CpiPr5)]+. This vibration could be 

hindered by bounding the two coordinating rings, such as it happens in stapled 

bis-phthalocyanines. The vibrations 19 and 20 involve methyl rotations in the 

terc-butyl substituents, which could be partially suppressed if one replaces the 

methyl groups –CH3 by the heavier fluorinated analogs –CF3. In general, since 

the frequencies of some of these six vibrations are close to match the gaps 

between the low-lying spin doublets, the magnet performance could be 
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improved by any structural modification that brought these vibrational modes 

out of resonance. Hence, there may be still room for further improvement in 

these bis-metallocenium-based SIMs, which seem to open more avenues in the 

pursuit of new highly-performing molecular magnets based on f-block 

elements.  

 

Comparison with other systems 

We also calculated the CFPs thermal evolution as shown in Fig. 36. As can be 

seen, important contributions from off-diagonal CFPs are clearly observed, 

which leads to the sizeable Jm  mixing in the equilibrium eigenstates observed 

in Table.  8. This fact opposes a good SIM behavior, where the diagonal CFPs 

should largely dominate over the off-diagonal ones.  

 

 

Fig. 36 Absolute (left) and relative to T = 0 K (right) thermal evolution of the CFPs. Some 

parameters are identified as (k,q), where k and q are the scripts k = 2, 4, 6 and q = -k,…,+k. 

 

Importantly, this heavy mixing is also found in previously reported uranium 

SIMs even for very linear environments,223,282,290 but not in the cutting-edge Dy-

based SIMs [Dy(Cpttt)2]
+ and [Dy(Cp*)(CpiPr5)]+ whose ligand coordination is 

in fact not strictly axial. This clearly constitutes a limitation of uranium SIMs 

compared to those based on the second half of the lanthanide series, namely, 

Tb3+-, Dy3+-, Ho3+-, and Er3+-based SIMs. Thus, the problem behind the 

somewhat disappointing results that have been reported so far in uranium SIMs 
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does not seem to be the lack of linearity but rather the activation of certain off-

diagonal CFPs which can be additionally coupled strongly with vibrations. This 

common pattern does not seem to be an accidental consequence of particular 

molecular geometries, but rather a general feature caused by the low value J = 

9/2 of the U3+ ground level. In particular, and this does depend on the molecular 

geometry, in the reported examples so far there are important Jm  = ±3/2 mixings 

in the low-lying states. For instance, if there is a Jm  = ±9/2 weight in the ground 

doublet, there is also at least some Jm  = ±3/2 weight either in the ground doublet 

or in the first excited doublet. Similarly, if there is a Jm  = ±7/2 weight in the 

ground doublet, there is also at least some Jm  = ±1/2 weight either in the ground 

doublet or in the first excited doublet. 

As mentioned, it seems that some off-diagonal CFPs, especially those of rank 

3 such as 
3

4B  in Fig. 36, are relevant for the majority of the existing uranium SIMs 

from the point of view both of molecular symmetries and of wave-function 

composition. This means that any variation in a rank 3 off-diagonal CFP is 

likely to produce remarkable Jm  mixing thus facilitating fast spin relaxation. 

This fact needs to be considered for chemical design efforts since D3h and nearly 

D3h symmetries are quite often found in uranium coordination compounds. 

Indeed, whenever the first coordination shell is close to D3h, all antisymmetric 

vibrations respect to the symmetry plane σh belonging to D3h are expected to 

largely change rank 3 off-diagonal CFPs. Note that all of the reported uranium 

SIMs show Ueff ∼ 20 − 30 K with 47.6 K as a record,223,290,299 and magnetic 

hysteresis below 5 K in the best of the cases.287 This contrasts with the obtained 

Ueff for some dysprosium complexes such as [Dy(Cpttt)2]
+ (1760 K), 

[Dy(Cp*)(CpiPr5)]+ (2217 K), and [Dy(OtBu)2(py)5]
+ (1815 K),278 where 

magnetic hysteresis are measured up to 80 K for [Dy(Cp*)(CpiPr5)]+.  

A similar comparison can be done between the theoretical estimates of 5 and 

the available experimental data for [Dy(Cpttt)2]
+. In this case, there is a larger 

deviation from linearity in both cases but especially in the uranium analog: 

CpDyCp  = 152.6º versus CpUCp  = 142.4º, resp. This results in a less axial 

environment and, as mentioned, in a much more compressed low-lying energy 

scheme in Fig. 33. Also in 5, the ground doublet is composed of 82% 9 / 2 , and 

the Jm  mixing further increases towards excited doublets. As discussed above, 

this extensive mixing coincides with what has also been calculated in previously 
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reported uranium-based SIMs and is assumed to facilitate spin relaxation. In 

fact, our calculations in 5 show that, in a predominantly Orbach-mediated 

relaxation, the spin population tunnels the barrier just a bit above the first 

excited doublet. These features are in sharp contrast with those exhibited by the 

dysprosocenium molecular nanomagnets [Dy(Cpttt)2]
+ and [Dy(Cp*)(CpiPr5)]+ 

where (i) the low-lying spin states are much purer even with a non-strictly axial 

ligand coordination, and (ii) the effective barrier reaches the most excited 

doublets.279 Thus, according to this electronic structure and the fact that 

calculated relaxation times in 5 are much shorter than those reported for 

[Dy(Cpttt)2]
+ and [Dy(Cp*)(CpiPr5)]+, the experimental performance of 5 in 

terms of SIM behavior is expected to be worse than that of dysprosocenium 

nanomagnets. This seems to evidence the need to set up different design 

strategies for 5f SIMs since simple transmutation strategies -consisting in 

replacing dysprosium by the actinide ion in a carefully designed Dy3+-based 

SIM- might not be enough to exploit the particular full potential of uranium. 

On the other hand, there do seem to exist two significant advances in 5 respect 

to previous uranium SIMs, namely, (i) the effective barrier commonly measured 

appears in the range of dozens of kelvin as mentioned above, while the one 

calculated for 5 reaches several hundreds of kelvin (292 K), (ii) by assuming 

that the Orbach relaxation process dominates between 30 K – 50 K in 5, the 

standard experimental detection limit ~10-6 s for the relaxation time τ would be 

found at 50 K. This upper bound is around one order of magnitude greater than 

that observed in the uranium-based nanomagnets reported so far.223,290 In the 

case of [Dy(Cpttt)2]
+ and [Dy(Cp*)(CpiPr5)]+, the detection limits are reached at 

112 K and 138 K, resp. It is clear that 5 is far from outperforming [Dy(Cpttt)2]
+ 

and [Dy(Cp*)(CpiPr5)]+ even employing bis-metallocenium ligands. As 

discussed, this can be unsurprising since, after all, these ligands seem to be 

optimal for Dy3+ while U3+ could need rather different requirements.  
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5 
Magnetic Noise 

 

 

This chapter is devoted to tackle the spin dephasing caused by an 

uncontrolled magnetic noise that surrounds and interacts with a given molecular 

spin qubit. In particular, we will focus on the mechanisms nuclear spin diffusion 

and instantaneous diffusion, which have already been described in chapter 2. In 

the first case, the noise arises when there is a nuclear spin bath surrounding the 

qubit, while in the second case the noise source is due to the magnetic nature of 

the involved molecules. Since single crystals are hard to achieve for some 

molecular systems, samples are often probed in EPR spectrometers in the form 

of microcrystalline powder or frozen solution. Thus, it is useful to develop a 

framework suited to estimate the phase memory time Tm in these samples. This 

is what we undertake in section 5.1, where a model developed by Witzel and 

Das Sarma and focused on nuclear spin diffusion is extended to deal with the 

aforementioned samples.300 In section 5.2, we will develop a first-principles 

model to estimate Tm when instantaneous diffusion is the main dephasing 

mechanism. This novel approach will allow us reproducing the experimental Tm 

evolution as a function of both magnetic field magnitude and metal ion 

concentration -especially when the latter is high enough- in a challenging 

molecular system displaying atomic clock transitions and in a regular S = 1/2 

spin qubit (section 5.3). On the contrary, in section 5.4 we will use this method 

to rule out instantaneous diffusion as the dominant decoherence source in a 

Gd3+-based molecular spin qubit at the working experimental conditions. Then, 

we will discuss on the possible dephasing mechanisms that can be behind the 

discrepancy between our calculated Tm values and the ones experimentally 

measured. 
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5.1 [Cu(mnt)2]2- 

In this section, we extend a model devoted to estimate the phase memory 

time due to nuclear spin diffusion in single crystal so that it can be used in 

microcrystalline powder or frozen solution.300 This model was originally 

developed and applied to single localized electron spins in semiconductor 

quantum computer architectures, which are surrounded by a nuclear spin bath. 

In particular, a quantitative agreement was obtained when simulating 

experimental Hahn echo decays in phosphorus-doped silicon and quantum dots 

in GaAs. The model is fully quantum-mechanical and incorporates the nuclear 

spin flip-flop dynamics microscopically without making any phenomenological 

statistical (Markovian or otherwise) approximations. Herein, we first provide a 

summary of the original model along with its main assumptions and restrictions, 

and then we will describe our expansion which will be applied to 1, i.e. 

[Cu(mnt)2]
2- (powder sample) as a case study, see Fig. 15 in section 4.1.  

As mentioned, the range of application is focused on those regimes where 

nuclear spin diffusion dominates as a dephasing mechanism. Hence, the Hahn 

echo decay follows a stretched exponential-like evolution exp(-(2τ/Tm)k) with a 

stretching factor k > 2. It is assumed that the Zeeman interaction in the effective 

spin doublet describing the qubit is much stronger than the magnetic interaction 

-modeled as dipolar- between the spin that encodes the qubit and each nuclear 

spin in the bath. The pair-wise interaction between nuclear spins is also modeled 

as dipolar and should also be much weaker than the abovementioned Zeeman 

interaction. Lastly, this Zeeman interaction is also assumed to be much stronger 

than the same interaction on each magnetic nuclei. We use the analytical 

solution found to calculate the Hahn echo decay ν(τ) as a function of the pulse 

delay time τ, which is only available for I = 1/2 nuclear spins, namely, 1H, 15N, 
13C, 31P, 183W, 11F. The working experimental conditions must be such that 

magnetic field magnitude B and temperature are above 0.1 T and 100 mK, resp.  

The model can be applied to general energy schemes arising from spin quantum 

numbers J ≥ 1/2, provided one uses the effective Landé factor g working in the 

applied field direction and associated to the doublet that defines the qubit. The 

calculation of ν(τ) requires to compute the following variables:  
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In Eq. 52, Eq. 53, Eq. 54, μ0 is the vacuum permeability, /B g =  and 

/i N ig =  (i = n, m) are the gyromagnetic ratios of the effective spin doublet 

encoding the qubit and of the magnetic nuclei with nuclear Landé factor ig , nm  

is the angle between the magnetic field B  and the vector nmR  (with magnitude 

nm nmR R= ) that joins the position of two nuclear spins n and m, n  and m  are 

the angles between the magnetic field B  and the vectors nR  and mR  (with 

magnitudes 
n nR R=  and 

m mR R= ) that join the position of the nuclear spins n 

and m with the point magnetic center that contains the qubit (e.g., a single 

localized electron, or a metal ion). Note that nm m nR R R= − . With all these 

ingredients, the Hahn echo ( )   reads as follows: 
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If in the single crystals there exists a distribution in the Landé factor g , one 

would sample a large enough number N  of values  j j
g . Then, after computing 

each ( )j   in Eq. 56, the average echo decay ( ) ( ) /j

j

N   =  would be fitted 

to a stretched exponential function f(τ) = exp(-(τ/Tm)k) to obtain Tm and k. Note 

that a similar procedure applies to powder samples and frozen solutions 

provided the set of resonant directions -where the EPR spectrometer irradiation 

frequency closely matches the qubit energy gap- is finite. In this case, while 

keeping the molecule and nuclear spin bath relative orientation, one will have 

to change the field direction accordingly to perform the ( )j   calculation at each 

one of these directions with the relevant effective g  in each case.  

To extend the model, we focus on the particular cases of either an axial 

effective Landé tensor with g g⊥  where the resonance is produced in the 

circular region g g⊥= , or an isotropic effective Landé tensor with g g⊥=  where 

the resonance is produced in the spherical region g g g⊥= = . For powder 

samples and frozen solutions, in the first case we will have to perform an 

integration over the circle g g⊥= , while in the second case this integration will 

be conducted over the sphere g g g⊥= = . Note that in the case of the axial 

effective Landé tensor, no integration is required if the resonance is produced 

in the direction corresponding to g . 

Let us start with the first case. The diagonalization of the effective Landé 

tensor provides three eigenvectors, two of them, 1u  and 2u , associated to g⊥  and 

the remaining one, 3u , associated to g . To facilitate the calculation, we use the 

following convention. We rotate the crystallographic molecular structure, along 

with the crystallographic positions of all magnetic nuclei, until 1u , 2u , 3u  match 

the canonical Cartesian axes X , Y , Z  resp. Now, the g g⊥=  is contained in 

the XY  plane while the axial axis coincides with the Z  direction. The magnetic 

field is set to be contained in the XY  plane in any given fixed direction no 

matter which one. With this fixed direction, the integration consists in rotating 

both the molecule and the nuclear spin bath -while keeping their relative 

orientation- 360 degrees around the Z  axis. For that, we need first to 
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parameterize each nuclear position, i.e. the vectors nR  and mR , in terms of the 

rotation angle. Given the initial molecular orientation, the known position of 

each nucleus n, ( ) ( ) ( )( ), ,n n n nx y z
R R R R= , can be written in terms of spherical 

coordinates for some  / 2, / 2n   − ,  0,2n   such as: 
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Eq. 59 

 

Any rotation around the Z  axis just adds an angle  0,2   to the azimuthal 

angle n . Hence, the new nuclear position is: 

 

 ( ) ( ) ( )( )cos cos ,cos sin ,sinn n n n n n nR R


      = + +  Eq. 60 

 

Likewise, a similar parameterization ( )mR

 in terms of   is obtained for mR . 

We calculate ( )nmR

 as ( ) ( ) ( )nm m nR R R

  
= − . Note that ( )nm nmR R


=  since any 

rotation always conserve vector magnitudes. Thus, the integral to evaluate for 

each τ value is: 
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Since the above integral cannot be solved analytically, we proceed 

numerically. For that, we consider a finite number N  of equally-spaced angles 

i  and estimate ( )   as the following average: 

 

 ( ) ( )
1

, /
N

i

i

N    
=

 ,   ( )2 1 /i i N = −   Eq. 62 

 

By increasing N , the estimated Hahn echo on the right of Eq. 62 should 

converge to a limiting curve. As mentioned above, the resulting curve is fitted 

to the stretched exponential function f(τ) = exp(-(τ/Tm)k) to obtain Tm and k.  

In the second case, since g g⊥=  there is no need to firstly rotate the molecule 

along with the surrounding nuclear spin bath. Indeed, any set of three mutually 

orthogonal unitary vectors work as eigenvectors of the effective Landé tensor 

and we consider again the three canonical Cartesian axes X , Y , Z . The 

magnetic field is set in a space direction no matter which one. Then, with this 

fixed direction, the integration is made by jointly rotating the molecule and the 

nuclear spin bath over the whole unitary sphere. As made above, we need now 

to parameterize each nuclear position nR . Let us recall that, given the initial 

molecular orientation, the known position of each nucleus n, 

( ) ( ) ( )( ), ,n n n nx y z
R R R R= , can be written in terms of spherical coordinates for 

some  / 2, / 2n   − ,  0,2n   as in Eq. 57. Now, an arbitrary rotation is 

described by two independent angles  / 2, / 2   − ,  0,2   and thus we 

have to find the new expression ( )
,

nR
 

 of nR  as a function of  ,  . For that, 

according to the definition of   and  , we decompose the rotation into two 

elementary rotations. The first one is anti-clockwise with angle   around the 

Z  axis, thus producing ( )nR

 in Eq. 60; the second one is a rotation of ( )nR


 also 
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antic-clockwise with angle   around the unitary vector ( ) /nu R Z M


 = 
 

 where 

( )nM R Z


=  , which is contained in the XY  plane and is also perpendicular to 

the plane generated by ( )nR

 and ( )0,0,1Z = . If ( )nR


 were parallel to Z  (in this 

case, ( )nR

 would not be dependent on   but rather coincident with nR ), we 

would use ( )sin ,cos ,0u  = − . Thus, ( )
,

nR
 

 is found by performing the matrix-

vector product ( ) ( ) ( )
,

,n nR R u R
  

= , where ( ),R u   is the anti-clockwise 

rotation matrix of angle  0,2   around the unitary vector 

( ) ( ), ,/ , ,0n x yu R Z M u u  


 =  =
 

 as follows:  
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The average echo ( )   is obtained by evaluating the following integral for 

each τ: 
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Since the above integral cannot be solved analytically either, we proceed in 

this case numerically by employing the so-called Lebedev rules. A given 

Lebedev rule of precision p  is characterized for producing the same result 

obtained by analytically integrating any polynomial with variables x, y, z for 

which the highest degree term 
i j kx y z  satisfies i + j + k ≤ p. For each given rule, 

the approximation to the integral I  of a function ( ), ,f x y z  over the unit sphere 

-where x, y, z are parameterized in terms of the angles   and  - consists in 



162 

 

using a set with a finite number N  of arrays ( ), ,i i iw   to produce the following 

estimation:  
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    Eq. 65 

 

Importantly, the weights iw  are such that 1i

i

w = . In our particular case, the 

estimation of ( )   is conducted with the following expression for each τ: 
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   Eq. 66 

 

The arrays ( ), ,i i iw   are coded in SIMPRE for several precisions. By 

increasing p , the estimated Hahn echo on the right of Eq. 66 should also 

converge to a limiting curve. Again, the resulting curve is fitted to the stretched 

exponential function f(τ) = exp(-(τ/Tm)k) to obtain Tm and k.  

We now apply the first case to 1. The experimental determination of the phase 

memory time of 1 was conducted by K. Bader et al. in a non-deuterated powder 

sample with a molar ratio 99.999:0.001 at T = 7 K.207 This measurement was 

performed in a Q-band EPR spectrometer in the circular region g  = g⊥  = 

2.0227 of the axial Landé tensor, and provided exp

mT  = 9.23 µs, kexp = 2.48. The 

Cartesian positions of the magnetic nuclei in a microcrystal were determined by 

X-ray crystallography.207 Since the microcrystal contains a number of nuclei too 

large to be handled in a computer, we extract from the crystallographic structure 

several spherical clusters centered at a given copper ion. We then use the 

coordinates of all magnetic nuclei inside the cluster that have some I = 1/2 

isotope, namely, 1H, 15N, 13C, 31P. Note that the relative occurrence of 15N and 
13C is quite low (0.368 and 1.07%, resp.), and thus the main contribution comes 

from 1H and 31P with relative occurrence of ~100 and 100%. We used a radius 

of 40 Å and N  = 72 angles in Eq. 62, which allows to produce the estimate Tm 
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= 9.15 µs and k = 2.69. The simulation is quite accurate in Tm with a relative 

error of 0.9%, while the prediction of k results in a larger relative error of 8.5%. 

We repeated the calculation by increasing both the cluster radius and N , but it 

does not improve the prediction significantly. Note that the much more 

abundant isotope 14N with I = 1 and a relative occurrence of 99.632% is not 

being included as it requires a much more computationally demanding 

numerical treatment (let us recall that for I > 1/2 nuclei there is no analytical 

solution available for ν(τ) in Eq. 56). Yet, the result in which only I = 1/2 

magnetic nuclei are considered is sufficient to provide a quantitative prediction 

of Tm.  

 

5.2 HoW10 

As we explained in chapter 2, there exist two important mechanisms that can 

collapse the quantum information saved in a molecular spin qubit, namely, the 

coupling of the spin qubit with lattice vibrations,164,184,243,245 and the interaction 

of the qubit with surrounding nuclear and electron spins.139 The standard 

method employed to suppress the second one consists in (i) placing qubit-

carriers in nuclear-spin free environments or with little magnetic moments (e.g. 

by deuteration) and (ii) diluting these carriers among their diamagnetic 

analogues, where the magnetic entity is substituted by a diamagnetic one.207 

These strategies are well-established and have allowed reaching unprecedented 

phase memory times around one millisecond in V+4-based molecular spin 

qubits.196 Nevertheless, as also stated above, isolation of qubits is impractical at 

the stage of device design since the implementation of logical gates for quantum 

algorithms crucially relies on communication among close qubits.137,301,302 We 

thus need to design qubits able to maintain their coherence at a high spatial 

concentration of qubit-carrier spins. 

An appealing strategy that could overcome this drawback consists in looking 

for magnetic molecules where spin qubits can be defined in the form of  atomic 

clock transitions, see Fig. 37.303–306 These are avoided crossings between two 

spin states with a given energy gap   in which Zeeman effect vanishes up to 

first order in  , thus making qubit coherence become remarkably insensitive 

to surrounding magnetic noise. To obtain a clock transition, the spin 

Hamiltonian should involve off-diagonal CFPs that allow mixing different spin 

projections to produce an avoided crossing. Importantly, within molecule-based 



164 

 

spin qubits, this approach was recently demonstrated for the first time in 

[Ho(W5O18)2]
9- (hereafter referred to as HoW10), see Fig. 38. HoW10 is a 

magnetic molecule composed of a single Ho3+ ion that is coordinated by two 

polyoxometalate (POM) ligands [W5O18]
6-. In this system, long mT  values were 

reported at an unusual high Ho3+ concentration x as [HoxY1-x(W5O18)2]
9-in a 

close neighborhood of each given atomic clock transition.206  

 

 

Fig. 37 Schematic representation of an atomic clock transition in blue at an avoided 

crossing between two energy states in red. Note the vanishing slopes at the transition field. 

 

In fact, single spin qubits of molecular nature operating at atomic clock 

transitions could be ideal candidates for implementing logical gates as a part of 

scalable architectures.148 Indeed, an important requirement to communicate 

single molecule spins via coplanar waveguides as described in chapter 2 is the 

attainment of the spin-photon strong coupling regime in the nano-constrictions. 

This regime is defined by the condition / 1mgT h  , where g  is the coupling 

strength parameter. Hence, working at clock transitions becomes specially 

promising to enhance the spin-photon coupling, as they can provide sufficiently 

long phase memory times mT . Moreover, in case of magnetic molecules with 

electron spin quantum number 1/ 2J   operating at these particular transitions, 
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the use of tunnel split n  spin states to define the qubit basis can provide not 

only a high qubit coherence,206 but also rise the g  magnitude by a factor of 2n 

respect to the simplest case 1/ 2J = . All in all, in order for a 1/ 2J   molecular 

spin qubit to be a potential candidate in this regard, it must fulfil 2nTm > 70 µs, 

which seems nowadays to be within reach with n = 4.206 

Herein, we aim to theoretically estimate Tm in samples where there is a high 

concentration of spin-qubit carriers provided instantaneous diffusion is the 

dominant dephasing mechanism. The case study is a single-crystal composed 

of many identical and equally-oriented copies of HoW10. Four peculiar narrow 

regions appear in its experimental Tm magnetic field dependence, where Tm 

sharply increases up to a maximum value, see Fig. 39. To understand the origin 

of this limiting value, we firstly applied a state-of-the-art model that 

satisfactorily explained the experimental Tm evolution of a Cu2+-based 

molecular qubit, see section 5.3, at increasing Cu2+ concentration.254 However, 

this model overestimates the experimental Tm top values reached at the clock 

fields in HoW10 as we will see below. This motivated us to propose a new first-

principles model, which relies on another model developed by Stamp and 

Tupitsyn devoted to estimate the  phase memory time 
n

mT  induced by magnetic 

nuclei in case of non-stretched Hahn echo decays.307 Our model does 

successfully reproduce the experimental height of Tm at the clock fields in 

HoW10.  

 

 

Fig. 38 HoW10. Blue spheres: W, magenta sphere: Ho, polyhedron vertexes: O. 
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Model 

The starting point is the abovementioned n

mT -related model developed by 

Stamp and Tupitsyn, where the calculation of the off-diagonal element in the 

qubit reduced density matrix is conducted as a path integral over pairs of qubit 

trajectories.307 From the derivation of this model it follows that the mentioned 

matrix element decays as a non-stretched exponential function ( )exp / n

mT−  with 

time τ (note that in general Tm is defined as the characteristic time for the decay 

of the aforementioned off-diagonal element). It is appropriate since our model 

is to be employed in an experimental regime where instantaneous diffusion 

dominates as a dephasing mechanism. This allows determining an expression 

for n

mT  which in turn is used to define a dimensionless dephasing rate n  whose 

expression is written for convenience as 2 / n

n mT   , being   the energy gap 

between the two spin states of the qubit.139,307 Thus, the rate n  is dependent on 

the off-diagonal matrix element of the qubit reduced density matrix. By 

employing standard techniques developed for the spin-boson model, it is 

possible to find the simple expression ( )
2

2 /n nE =  , where nE  is the magnetic 

nuclear contribution to the echo line half-width E . In fact, this equality is 

derived as a perturbative expression up to second order in /nE  . For that, it is 

necessary to operate under the so-called high-field regime, which means 

nE  .139,254,307 This hypothesis is widely fulfilled in all systems and 

experimental conditions of our interest, since the working spin concentrations 

and field magnitudes in Eq. 11, which determine nE  and   resp., quite often lies 

inside this regime. As a last step, an expression for nE  -shown in section 5.3- is 

derived as a function of the magnetic nuclei positions as well as other variables.  

Our model is intended to apply to coordination magnetic molecules, where 

only one qubit is defined, whose relevant energy scheme is described by the 

spin Hamiltonian in Eq. 11. Note that the parameters in this Hamiltonian are 

often determined via cw-EPR experiments. Nonetheless, whenever 

experimental data is not available, one can resort to first-principles codes such 

as MOLCAS and ORCA to estimate these parameters, see chapter 4. Now, we 

adapt the n

mT -related model to estimate our dephasing rate ( )
2

2 /e eE =   

resulting from the magnetic field produced by the ensemble of qubit-carrying 

molecules, where eE  is the corresponding contribution to the echo line half-
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width and should also fulfil eE  .254 In particular, hereunder it is shown the 

procedure to calculate eE  based on that followed to derive nE . Since the rates 

n  and e  are assumed to be additive,139,307 the collective phase memory time 

reads as ( )2 /n e

m n eT  + = +    .  

Firstly, one considers the dipolar magnetic field jB  that a given metal ion j 

generates at the position of another given metal ion k: 
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The vector connecting these two ions is jkr , with a magnitude jkr ; and their 

magnetic moments are jm  and km . This allows calculating their dipolar 

interaction energy as: 
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  Eq. 68 

 

The diagonalization of Eq. 11 provides ( )( )2 1 2 1J I+ +  energies and wave-

functions  
( )( )1,..., 2 1 2 1

,l l l J I
E 

= + +
, where J and I correspond to the ground level 

2S+1LJ and the nuclear spin quantum number of the metal ion, resp. The wave-

functions are expressed with complex coefficients ( )
n

i
c l  in the basis set 

 
,..., ; ,...,

,
J I

J I m J J m I I
m m

=− =−
 of the Jm  and Im  projections as: 
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l i
n i n I

c l n J i n I I
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We need now to calculate  
( )( )

2 2

1,..., 2 1 2 1 ; , ,

ˆ ˆ
l l

l l J I x y z

J J 


 
= + + =

= , the expectation 

values of each component ( , ,x y z = ) of the squared electron spin operator 2Ĵ . 

After some algebra, one obtains: 
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Eq. 71 

 

 ( )2 2 2ˆ ˆ ˆ1y z x
l l l

J J J J J= + − −   Eq. 72 

 

The asterisk stands for the conjugate complex number. As done in the n

mT -

related model with the nuclear spin bath, we also consider that the qubit is 

coupled to an ensemble of thermalized molecular spins at a given temperature 

T. Thus, the squared expectation values  
( )( )

2

1,..., 2 1 2 1 ; , ,

ˆ
l l J I x y z

J
= + + =

 of each α = x, y, 

z component are distributed according to the Boltzmann law, and this defines 

the Boltzmann-averaged squared expectation values 
2

Ĵ
 as: 

 

 

( )( ) ( )( )2 1 2 1 2 1 2 12
/ /2

1 1
, ,

ˆ ˆ /l B l B

J I J I

E k T E k T

l
l l

x y z

J e J e 



+ + + +

− −

= =
=

  
= 

  
    Eq. 73 
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Also in the n

mT -related model, each magnetic nucleus i in the bath is described 

with an isotropic Zeeman Hamiltonian ˆ ˆi

i N N iH g B I=  , where μN is the nuclear 

magneton, i

Ng  is the nuclear Landé factor, B  is the applied magnetic field and 

ˆ
iI  is the nuclear spin operator. The diagonalization of ˆ

iH  provides a set of 

energies and wave-functions  , ,
1,...,2 1

,
i

i l i l
l I

E 
= +

, where iI  is the nuclear spin 

quantum number. These wave-functions allows determining the expectation 

values  
( )

2 2

, ,
, , , ; 1,..., 2 1

ˆ ˆ

i

i l i l
i l x y z l I

I I 


 
= = +

=  of the α = x, y, z components of 2Î , 

which are also distributed according to the Boltzmann law at a given 

temperature T and define 
, ,

2 1 2 12
/ /2

,
1 1 , ,

ˆ ˆ /
i i

i l B i l B

I I
E k T E k T

i i l
l l x y z

I e I e 



+ +
− −

= = =

 
= 

 
  . Since ˆ

iH  is 

isotropic, each 2

,

ˆ
i l

I  must be independent of the magnetic field direction. Thus, 

we can choose a direction at our convenience to calculate 2

,

ˆ
i l

I . By considering 

the magnetic field in the Z axis direction, the wave-functions  ,
1,...,2 1i

i l
l I


= +

 

become  
,...,i

I i ii

I
m I I

m
=−

, where 
iIm  are the several projections of iI . Each 2

,

ˆ
i l

I  

can now be easily calculated, resulting in 2 2ˆ
i i iI z I Im I m m= ; while 2ˆ

i iI x Im I m  

and 2ˆ
i iI y Im I m  are both equal to ( )( )21 / 2

ii i II I m+ − . At the working magnetic 

fields B  < 0.5 T and temperatures T ≥ 3 K, each nuclear Zeeman energy ,i lE  is 

still far from reaching the thermal energy Bk T , thus ( ),exp / 1i l BE k T− → . Under 

this assumption, it is easy to prove that ( )
2

, ,

ˆ 1 / 3i i
i

x y z

I I I

=

 
= + 

 
, and the nuclear 

magnetic moment is defined as ( )ˆ ˆ ˆ, ,i

i N N x y z
i i i

m g I I I= . In our case, we adapt 

this procedure to define the magnetic moments jm  and km  of the metal ions j, 

k in terms of the electron Landé factors  
, ,x y z

g =
 and Ĵ  as: 

 

 ( )ˆ ˆ ˆ, ,B x x y y z zm g J g J g J=   Eq. 74 
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Note that both metal ions are modeled with the same spin Hamiltonian in Eq. 

11 and hence j km m= , which are renamed as m . Moreover, since the qubit is 

not being described as an effective spin doublet, we will use the free-ion value 

g  both in Eq. 11 and in the Landé factors  
, ,x y z

g =
.  

As mentioned, in the n

mT -related model the qubit is coupled to a thermal 

nuclear spin bath. Each one of the two qubit states, symmetric S and 

antisymmetric A, generates a different dipolar magnetic field ( ) 
,

T

i
T S A

B r
=

 at the 

position ir  of a given magnetic nucleus i. Thus, two different dipolar interaction 

energies are involved, namely,  ( )( ) 
,

T T

i i i
T S A

E B r m
=

= −  . For a given qubit state 

either S  or A , the three terms ( )( ) ( ) 
, ,

T

i i
x y z

B r m
 =

−  whose summation amounts 

to 
T

iE  define the qubit-nucleus interaction vector as ( ) ( ) ( ), , / 2T T T T

i i i i
x y z

E E E E
 

=  
 

 

with ( ) ( )( ) ( ) 
, ,

T T

i i i
x y z

E B r m
  =

= − . The contribution of the magnetic nucleus i 

to nE  is the magnitude A S

i iE E−  of the difference between these two qubit-

nucleus interaction vectors. By considering the whole nuclear spin bath, the 

square nuclear echo line half-width is found to be 
2

2 A S

n i i

i

E E E= − .  

Indeed, when the qubit is in a given state 0 0 +  with 
2 2

1 + = , there 

exists an allowed set of ( )2 1i

i

I +  nuclear spin states in a finite nuclear spin 

bath. For a large enough bath, the density of states as a function of energy 

converges to a Gaussian distribution with a Gaussian line shape by virtue of the 

so-called Central Limit Theorem. The Gaussian line half-width is just nE , and 
2

nE  would be the corresponding variance associated to this distribution. 

Nevertheless, there may be some special situations in which the nuclear density 

of states largely deviates from a Gaussian-like line. This can be encountered 

when all A S

i iE E−  have similar enough values, or when one qubit-nucleus 
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interaction dominates over the others. In this case, this model would not be valid 

anymore.  

In our case, we propose to adapt this procedure to determine eE  as follows. 

From the dipolar interaction energy ( )jk k j jkE m B r= −   in Eq. 68, we consider the 

three terms ( ) ( )( ) 
, ,

k j jk
x y z

m B r
  =

−  whose summation amounts to jkE  and 

define the  interaction vector between the metal ions j, k as 

( ) ( ) ( )( ), , / 2jk jk jk jk
x y z

E E E E=  with ( ) ( ) ( )( ) 
, ,

jk k j jk
x y z

E m B r
   =

= − . We now 

define the contribution of the j, k pair to eE  as the magnitude 
jkE  which, after 

some algebra, reads as follows: 

 

2
2

2
0

38

B
jk

jk

E
r

 



 
=   
 

  

( ) ( )
( )

2
2

2
, , , ,

ˆ ˆ ˆ... 1 3 3
jk jk

jk

x y z x y zjk jk

r r
g J g J r g J

r r
 

 
     


 



= =

    
    − −    

       

   

Eq. 75 

 

To determine the squared electron echo line half-width 
2

eE , we add all j, k 

pairs of metal ions and divide the result by the number N  of these ions in the 

ensemble as done elsewhere:254 

 

 

1 2
2

1

1 N N

e jk

j k j

E E
N

−

= 

=    Eq. 76 

 

As thoroughly mentioned, the magnetic molecules of our interest encoding 

the qubit consist of a single metal ion coordinated by several ligands. Depending 

on the overlapping degree between the ion and ligand orbitals, part of the spin 

density in the ion may be deployed towards the ligands and lead to an effective 
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decrease in the ion spin magnitude. This effect reduces the dipolar interaction 

strength between metal ions (i.e. the surrounding magnetic noise), thus resulting 

in an increase of the qubit coherence, and can be described by the so-called 

covalency parameter 0 1   as introduced and employed elsewhere.254,308 This 

parameter can be estimated by first-principles methods routinely employed in 

computational quantum chemistry such as those based on DFT.308 The limit 

value 1 =  corresponds to a spin density fully located at the metal ion. We 

incorporate   as a correction to nE  and eE . Hence, the corrected phase memory 

time reads as ( )2 2 2/n e

m n eT E E+  =  +
 

. The influence of metal-ligand covalency 

on the spin coherence was recently explored from the experimental side.272 

Indeed, the elongation of the spin-lattice relaxation time, which facilitates 

enabling longer Tm values, was correlated with a greater spin delocalization onto 

the ligand environment.  

Our model will be applied to a single crystal composed of many equally-

oriented copies of HoW10. Each one of these copies is modeled with the same 

values for the spin Hamiltonian parameters and, hence, the calculated 
n e

mT +
 is the 

same for all these copies. Nonetheless, the method can be readily extended to 

simulate experiments where different sets of spin Hamiltonian parameters are 

used to describe each copy. For instance, this situation can be encountered when 

there is a distribution of CFPs due to the presence of dislocations, defects, as 

well as other lattice strains in the crystal. In this case, one would first generate 

a sample of M  sets of parameters according to the given distribution. Then, M  

decoherence times ( )n e

m i
T +  would be calculated in order to build the average spin 

echo ( )( )
1

exp / /
M

n e

m i
i

T M +

=

− . By plotting and fitting this average versus τ to an 

exponential function, we would obtain the overall phase memory time. 

Moreover, the same procedure described in section 5.1 applies to the case of 

powder samples and frozen solutions. In this situation, the echo expressions 

( ),    and ( ), ,     for effective axial and isotropic Landé tensors at given 

angles  ,   are ( )( )exp / n e

mT +−  and ( )( )exp / ,n e

mT  +− . Then, the average echo 

curves are determined as in Eq. 62 and Eq. 66 to extract the overall phase memory 

time.  
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Results 

Under the application of an external magnetic field B , the Hamiltonian 

determining the wave-functions and spin energies of HoW10 in terms of the 

ground electron and nuclear spin quantum numbers J = 8, I = 7/2 is:206  

 

 
0 0 4 4

4 4

2,4,6

ˆ ˆˆ ˆ ˆ ˆ
k k B

k

H B O B O I J B g J
=

= + +   +   A  Eq. 77 

 

We focus on the ground J = |L+S| = 8 multiplet of the Ho3+ ion, which arises 

from the spin-orbit coupled quantum numbers L = 6 and S = 2. As determined 

via cw-EPR spectroscopy by Shiddiq et al., the CFPs are 0

2B = 0.601 cm-1, 0

4B  = 

6.96·10-3 cm-1, 0

6B  = -5.10·10-5 cm-1, 4

4B  = 3.14·10-3 cm-1; while the hyperfine 

coupling parameters are zA  = 830 MHz, 0x yA A= = .206 The axial terms 0 0

2 2
ˆB O , 

0 0

4 4
ˆB O , 0 0

6 6
ˆB O  result, in the case of HoW10, in an isolated 4Jm =   ground doublet 

separated from the first excited state (a 5Jm =   doublet) by at least 20 cm-1. 

This is a robust result that has been confirmed repeatedly over the years by 

methods that rely on different assumptions on the spin Hamiltonian as well as 

different experimental data derived from magnetic properties in the 2-300 K 

temperature range of a whole series of isostructural Ln3+W10 compounds,175,226 

multi-frequency EPR studies of the ground electronuclear multiplet of 

HoW10,
309 or the spectroscopic technique Inelastic Neutron Scattering.310 Since 

this ground state is not being described as an effective spin doublet, g  is set to 

be the free-ion value of 1.25 in Eq. 77. When combined with the eight nuclear 

spin projections of I = 7/2, the ground state 4Jm =   gives rise to a low-lying 

multiplet of 16 states, see Fig. 39. The sizeable interaction 4

4B  generates an 

energy gap Δ ~ 9.18 GHz at the clock fields, which can still be probed via X-

band EPR spectroscopy and defines the long-lived spin qubit. We consider that 

all copies of HoW10 in the single crystal have their magnetic anisotropy axis 

pointing in the same direction, and it defines the direction of B . 

In the experimental work of HoW10,
206 it was established that its extreme 

uniaxial anisotropy results in a rather negligible sensitivity to the perpendicular 

component of the applied magnetic field B . In other words, the effective 
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perpendicular Landé factor of the 4Jm =   ground state is ,effg⊥  < 0.01. Thus, 

since the focus is on this doublet as it defines the spin qubit, the Zeeman term 

ˆ
B B g J    is replaced by the scalar approximation ˆ

B z zgB J , where the Z direction 

is defined by the molecular magnetic anisotropy axis along which B  is applied 

(hence, 
zB B= ). Note that this does not mean that an axial Landé factor is being 

used in Eq. 77 with g = 0 in ˆ
B x xB gJ  and ˆ

B y yB gJ  while g = 1.25 in ˆ
B z zB gJ . 

Instead, the terms ˆ
B x xB gJ  and ˆ

B y yB gJ  are neglected after considering an 

isotropic factor g = 1.25. Nonetheless, the translation of this scalar 

approximation in terms of Eq. 75 means to set gz = 1.25, gx = gy = 0. As 

lanthanide 4f-orbitals are internal enough not to deploy a significant spin 

density towards the ligands, we use 1 =  for HoW10.  

In Fig. 39, Tm remarkably increases around the four clock fields, but only up 

to a maximum value. Since the experimental Hahn echoes decay as non-

stretched exponential functions,206 we firstly applied the n

mT -related model to 

estimate the influence of magnetic nuclei dephasing on Tm. We found n

mT  ~ 300 

μs at the valleys which is much above the experimental values in the whole 

magnetic field range explored. This agrees with the fact that this decoherence 

source might not be limiting qubit coherence, given the clear experimental 

dependence of Tm with the Ho3+ concentration.  

Instead, our e

mT  calculation excellently agrees with the maximum 

experimental Tm values at the clock fields for the relevant Ho3+ concentrations, 

which span over one order of magnitude, see Fig. 39. In contrast, the state-of-

the-art model by M. Warner et al. -with a rather different expression of 
2

jkE  in 

Eq. 75- overestimates the same Tm experimental values. In our calculations, the 

high-field regime holds as the highest eE  ~ 0.05 GHz <<   ~ 9.18 GHz (x = 

10%). Since the calculated ˆ ˆ 5.3x yJ J= = , ˆ 4.0zJ =  in Eq. 73 remain constant 

with zB  and are non-zero, 
2

eE  in Eq. 76 also takes a non-zero value. Hence, 

21/e

m eT E  cannot diverge and reach an arbitrarily high value at the clock fields. 

Note that the analog of Eq. 75 in the n

mT -related model (see section 5.3) is 

proportional to the expectation value differences  
, ,

ˆ ˆ
A S

x y z

J J 
=

−  of the 
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electron spin operator components α = x, y, z evaluated at the symmetric S and 

antisymmetric A states of the qubit  
,T T A S


=

 instead of  
, ,

ˆ
x y z

J
=

 in Eq. 75. It 

turns out that in a small neighborhood of the clock fields, each ˆ ˆ
A S

J J −  

tends to zero and thus 2

nE  vanishes. Since 21/n

m nT E , the n

mT -related model 

wrongly predicts a divergence of n

mT  at the clock fields in contrast to the 

experimental behavior. 
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Fig. 39 Top: spin energy evolutions of HoW10 labeled with the mI projections. Blue lines 

are clock energy gaps. Bottom: magnetic field dependence of Tm (logarithmic scale) in 

HoW10 at T = 5 K for two Ho3+ concentrations. Left: x = 1%. Right: x = 10%. Blue and red 

points are experimental Tm values at different microwave frequencies.206 Green and orange 

curves are theoretical calculations using the model in ref. 254 and that of the present work, 

resp. 

 

As mentioned, calculating eE  in Eq. 76 requires to know the Cartesian 

positions of the metal ions in the single crystal. These positions were already 

determined via X-ray crystallography by Shiddiq et al.206 Similarly to section 

5.1, from the crystallographic structure we extract several spherical clusters of 
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increasing radius centered at a given Ho3+ ion, and then we save all the Ho3+ 

coordinates inside. Let us recall that the orientation of these clusters has to be 

such that B  is applied along the magnetic anisotropy axis of HoW10, which 

defines the Z axis direction. We used a radius of 700 Å as it was enough to 

produce a variation in e

mT  less than 0.01 µs, which assures that the sample-shape 

dependency of e

mT  is safely removed. The other important step is to simulate the 

desired Ho3+ concentration x according to [HoxY1-x(W5O18)2]
9- inside the cluster. 

Indeed, since this concentration is below 100%, a proper number of Ho3+ ions 

must be removed before calculating e

mT . The selected values for x in the 

experiments are 0.01 (1%) and 0.1 (10%),206 which means that we need to 

remove 99 and 90 Ho3+ ions out of 100, resp. For that purpose, we sweep all 

Ho3+ ions and, at each one, a random number p  between 0 and 1 is generated. 

If 0 ≤ p  < 0.01 or 0 ≤ p  < 0.1 resp., we save the ion position; otherwise, we 

drop it. This results in a random dilution that matches the desired concentration. 

Of course, there does not exist a unique way to produce a dilution in the cluster 

with the desired concentration as in other attempts different Ho3+ positions will 

be dropped. We thus generate a finite set of L  dilutions all of them with the 

same concentration -either 1% or 10%-, and calculate 2

eE  at each one. Since all 

of these dilutions are equally likely to occur, we use the arithmetic mean 2

eE  to 

determine e

mT  as 2 2/e

m eT E=  . To also produce a variation in e

mT  less than 0.01 

µs, it was enough to use L  = 90 for x = 0.01 and L  = 1 for x = 0.1. In the 

application of the n

mT -related model, we employed a cluster with a radius of 90 

Å also centered at a given Ho3+ ion, which was enough to reach the limiting 

value in n

mT . Here, we need to save the position of both the central Ho3+ ion and 

the magnetic nuclei. The nuclear spin bath is composed of all magnetic nuclei 

inside the cluster, namely 23Na (counter-ions), 1H (in surrounding water 

molecules), 17O (both in surrounding water molecules and in POM cage), 183W 

(only in POM cage), which are sampled according to their natural abundances.  
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Discussion 

A striking feature of Fig. 39 is the small variation in the calculated e

mT  with Bz. 

This is because 
2/e

m eT E  and 
2

eE  is constant in HoW10. The small rise in e

mT  

arises from the slight increase in Δ at fields away from the clock transitions. 

Our model is only capturing a certain dephasing mechanism, namely 

instantaneous diffusion, which can be experimentally confirmed as the limiting 

one around these transitions given the non-stretched Hahn echo decays and the 

noticeable linear dependence of Tm with the relatively high Ho3+ 

concentrations.206 Instead, out of the clock fields, other mechanisms might be at 

play and hence our model cannot recover the experimental Tm decay. Initially, 

the experimental conditions at the magnetic field range explored, namely a 

temperature of 5 K and a qubit energy gap   ~ 9.18 GHz, should discard a 

significant contribution from vibrational decoherence to the EPR linewidth.139 

As a matter of fact, the spin-lattice relaxation time T1 measured at 5 K in the 

aforementioned field range is about ~20 μs. Besides being quite above Tm, note 

that this value is kept even out of the clock transitions where, on the contrary, 

Tm sharply falls. Hence, T1-related phenomena should not be limiting qubit 

coherence in terms of Tm. In chapter 6, we will elaborate on a hypothesis with 

the aim of reproducing the Tm decay beyond the clock fields.  

Whenever instantaneous diffusion dominates, tuning e

mT  needs to properly 

engineer Δ and 
2

eE . The former depends on the electronic structure determined 

by Eq. 77, and the latter depends additionally on the metal ion concentration in 

the sample. The qubit energy gap Δ in HoW10 at the clock fields is set by the 4

4B  

parameter, which is activated because of the deviation from the D4d symmetry 

in the Ho-coordinating oxygen atoms set.206 Simple calculations made by us 

reveal that Δ scales with 4

4B  as Δ(GHz) = 2.0 4

4B  (cm-1) + 926900 ( )
2

4

4B  (cm-2). 

Besides, we also checked that Eq. 73 is unaffected by changing 4

4B  in a wide 

range around its value 3.14·10-3 cm-1. Thus, given a Ho3+ concentration, we 

expect that a rise in 4

4B  will increase Δ while keeping 2

eE  unaltered. Since 

2/e

m eT E , the phase memory should be consequently increased. 

To understand how e

mT  scales with the metal ion concentration, let us fix the 

electronic structure with given values of Δ, g  and Eq. 73. If we replace jkr  in 
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Eq. 75 by an average effective distance, 2

eE  becomes proportional to 

( ) ( )1/ 1 / 2N N N − . Since N  is large, 1/e

mT N . To assess the validity of this 

expression, let us recall that Tm in HoW10 is ten-fold larger as Ho3+ concentration 

decreases by one order of magnitude. Thus, we expect 10% 1%/ 10N N = . Indeed, 

given the cluster with 700 Å radius, the concentrations x = 10% and x = 1% are 

recovered by keeping the crystallographic positions of 10% 88259N = , 1% 8832N =  

Ho3+ ions inside the cluster resp., and it turns out that 10% 1%/ 9.993 10N N = .  

 

5.3 CuPc 

Our model accounts for qubit coherence in challenging systems displaying 

atomic clock transitions such as HoW10 but is not intrinsically tied to these 

particular transitions. Indeed, as a further test, we checked that our model is also 

able to reproduce the experimental Tm in regular S = 1/2-based molecular qubits. 

Herein, the case study is the Cu2+ phthalocyanine (C32H16N8Cu, hereafter 

referred to as CuPc) shown in Fig. 40, which was experimentally probed via EPR 

spectroscopy by M. Warner et al.254 In this case, we will reproduce its Tm 

evolution against an increasing Cu2+ concentration while keeping fixed the 

magnetic field magnitude. As in HoW10, the recorded Hahn echoes in CuPc also 

decay as non-stretched exponential functions in the whole concentration range 

explored, see below.  
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Fig. 40 CuPc. Black: C, blue: N, dark blue: Cu. Red dashed lines represent coordination 

Cu-N bonds. Hydrogen atoms are omitted for clarity. 

 

CuPc is a magnetic molecule whose qubit is defined as the transition 

1/ 2, 1/ 2J Im m= − = − → 1/ 2, 1/ 2J Im m= + = −  between the relevant spin states 

that arise from the coupling between the Cu2+ electron and nuclear spin quantum 

numbers J = 1/2 and I = 3/2 according to the Hamiltonian: 

 

 ˆ ˆ ˆ ˆ
BH I J B J=   +  A g  Eq. 78 

 

In Eq. 78, the hyperfine coupling parameters and electron Landé factors were 

determined via EPR spectroscopy and the values were found to be 
zA A=  = -

648 MHz, x yA A A⊥ = =  = - 83 MHz, and zg g=  = 2.1577, x yg g g⊥ = =  = 2.0390 

(the latter will be used in Eq. 75 to calculate e

mT ). The Zeeman effect is due to an 

external magnetic field with a magnitude B  = 311.5 mT, which is applied along 

the perpendicular direction to the molecular plane, namely, the magnetic 

anisotropy axis of CuPc. With these magnetic anisotropy parameters, the qubit 

energy gap is Δ ~ 9.73 GHz.  
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To reproduce the experimental Tm evolution of CuPc against the increasing 

Cu2+ concentration, we have to apply both the 
n

mT -related model and our model 

but first the former needs to be adapted to correctly account for the magnetic-

nuclei-induced dephasing in CuPc. Indeed, in this aforementioned model the 

interaction between the molecular spin encoding the qubit and each given 

nucleus in the bath is modeled as a dipolar-like interaction. This is valid if the 

metal ion in the molecule and the given nucleus are far away enough. Instead, 

if they are close to each other, the interaction strength will now be much greater 

than the one predicted by the dipolar-like interaction. This stronger interaction 

is often known as contact hyperfine interaction since the magnetic nucleus is 

close to overlap with the orbitals of the metal ion in the molecule. The coupling 

constants that describe this contact interaction can be determined 

experimentally via cw-EPR spectroscopy. This simply means to expand the spin 

Hamiltonian by including as many terms of the form ˆ ˆ
i iI J A  as close nuclei i 

there are to the metal ion. Then, the coupling constants i

xA , i

yA , i

zA  can be 

determined by fitting the relevant cw-EPR spectrum provided one is able to 

resolve the relevant spin transitions involving both molecular and nuclear spins. 

This is what was done in the experimental work of CuPc by M. Warner et al. 

respect to the four copper-coordinating nitrogen atoms in Fig. 40. For all these 

four nitrogen atoms, the coupling parameters corresponding to their I = 1 

nuclear spin (the most occurring isotope) were found to be N

xA  = 57 MHz, 
N N

y zA A= = 45 MHz. Whenever there is no experimental data available, these 

parameters could also be calculated by means of the standard first-principles 

codes routinely employed in quantum chemistry. The 2

nE  expression in the n

mT -

related model is 
2

2 A S

n i i

i

E E E= − , where the sum incorporates all the magnetic 

nuclei in the bath and the squared qubit-nucleus interaction strength 
2

A S

i iE E−  

reads as follows: 
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In Eq. 79, besides the variables already described in section 5.2 such as

 
, ,

ˆ
i

x y z

I
=

, ir  is the vector connecting the metal ion and the nucleus i, ir  is the 

corresponding inter-distance, i

Ng  is the nuclear Landé factor of the nucleus i, 

and  
, ; , ,

ˆ ˆ
T

T T
T A S x y z

J J 


 
= =

=  are the expectation values of the three 

Cartesian components of the electron spin operator Ĵ  evaluated at the 

symmetric S  and antisymmetric A  states of the qubit  
,T T A S


=

 derived from 

the spin Hamiltonian of the relevant magnetic molecule. These two wave-

functions are expressed in the  
,..., ; ,...,

,
J I

J I m J J m I I
m m

=− =−
 basis set of the Jm  and Im  

projections as: 
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( )( )
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1 1 2 1 1

1 , 1 2 1 1
j IJ

j

k i
j i j I

c k j J i j I I
++

= = − + +

= − − − − + − −   Eq. 80 

 

Thus, after some algebra, the corresponding expectation values are given by 

(here, 1K = −  stands for the imaginary unit, and the asterisk denotes the 

conjugate complex number): 

 

 ( ) ( )
( )( )

( )2 12 1 2

1 1 2 1 1

ˆ 1
j IJ

j

z ik
j i j I

J j J c k
++

= = − + +

= − −   Eq. 81 
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All in all, whenever there is a contact hyperfine interaction between the metal 

ion -i.e., the molecular spin- and a given magnetic nuclei, the expression 
2

A S

i iE E−  in Eq. 79 must be replaced by:307 
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1 ˆ ˆ ˆ
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A S i

i i
i

x y z

E E A I J J   
=

 
− = −

  
  Eq. 84 

 

Before applying Eq. 75 and Eq. 85, we need to describe the geometrical form 

of the molecular and nuclear spin baths, see Fig. 41. Indeed, the samples used in 

the pulsed X-band EPR measurements of CuPc at 5 K were 400-nm thick films 

composed of ~50 nm diameter and nearly spherical CuPc granules. These 

granules present an α-phase-like brick-stack lattice structure. The films were 

grown on a layer of perylene-3,4,9,20-tetracarboxylic dianhydride by 

deposition of CuPc. This deposition forces the CuPc molecules to lie with their 

normal direction to the molecular plane pointing in a common direction that is 

almost perpendicular to the perylene surface. The magnetic field is applied in 

this common direction which, as mentioned above, coincides with the CuPc 
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magnetic anisotropy axis and defines the Z direction. A given Cu2+ 

concentration in the granules is achieved by co-deposition of the proper 

proportion of CuPc and H2Pc molecules, where H2Pc is the diamagnetic 

analogue of CuPc which lacks the Cu2+ ion in exchange for two extra hydrogen 

atoms.  

Now, from the abovementioned lattice structure determined by X-ray 

crystallography, we extract a 50 nm diameter spherical cluster centered at a 

given Cu2+ ion, and then save all Cu2+ ion and magnetic nuclei positions inside. 

To simulate a given Cu2+ concentration c, we need to decide which Cu2+ 

positions are maintained and which ones are removed. Note that in the case of 

CuPc, the concentration c used in the experimental work holds a rather different 

definition than that of HoW10. Indeed, let us calculate the probability 0 ≤ p  ≤ 

1 to save the position of a given Cu2+ ion. Let pM  and dM  be the molar masses 

of CuPc and H2Pc, resp. Let pn  and dn  be the moles of CuPc and H2Pc inside 

the cluster for the given concentration. Thus, the masses of CuPc and H2Pc are 

p p pm M n=   and d d dm M n=  . Since the concentration c is expressed as the 

percentage of CuPc relative to H2Pc by mass, we have 

( ) ( )/ 100 / 100p d p p d dc m m M n M n=  =    , namely, 100d d p pc M n M n  =   . Now, let 

TN  the number of Cu2+ ions inside the cluster when there is a 100% 

concentration. After dilution, p d TN N N+ = , being pN  and dN  the number of 

Cu2+ ions that have been kept and removed, resp. Multiplying the equality  

100d d p pc M n M n  =    by the Avogadro’s number AN , we obtain: 

100d d p pc M N M N  =   . If we replace dN  by d T pN N N= − , we get the expression 

that determines the number of Cu2+ positions to save: 

( ) ( )( )/ / 100 / 1p T p dN N M M c=  +  ≤ TN . Thus, the probability p  of saving a given 

Cu2+ ion is ( ) ( )( )1/ / 100 / 1p dp M M c=  +  ≤ 1, which increases with the 

concentration c. Then, we cover all Cu2+ ions by generating a random number 

0 ≤ r ≤ 1 at each one of them. Whenever 0 ≤ r < p , we keep the position; 

otherwise, we drop it. As in the case of HoW10, this procedure generates a 

random dilution of Cu2+ ions in the granule with the desired concentration c, 

and 
2

eE  is subsequently calculated with the Cartesian coordinates of each Cu2+ 

ion kept. Since other equally likely dilutions with the same concentration can 
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be generated by dropping different Cu2+ ions, we sample several granules and 

consider the arithmetic mean 2

eE  to calculate e

mT  as 2 2/e

m eT E=  . Again, the 

sampling size L  must be large enough to achieve the converged value of 2

eE , 

namely, L  = 80.000 (c = 0.1%), L  = 11.000 (c =1.0% ), L  = 300 (c = 5.0%), 

L  = 30 (c = 10.0%).  

 

 

Fig. 41 Representation of the molecular spin bath (whose preferred magnetic anisotropy 

axis depicted as dark blue arrows is perpendicular to the CuPc plane) for two different Cu2+ 

concentrations, 1.0% (left) and 5.0% (right), inside the spherical granule deposited on top 

of the perylene surface (blue). Note that real number of molecular spins in the granules at 

these concentrations is much larger than that of this figure. CuPc molecules are only drawn 

in the picture on the left just to show their relative orientation to the perylene surface.  

 

We first conducted the calculation of n

mT  by only considering the four copper-

coordinating nitrogen atoms (Eq. 84). As determined elsewhere,254 we set 

0.74 =  and then get n

mT  = 2.2 μs. The high-field approximation holds as nE  ~ 

0.03 GHz <<   ~ 9.73 GHz. In a second calculation, we added the rest of the 

nuclear spin bath (Eq. 79) but found that the calculated n

mT  value remains 

unchanged compared to the previous one. This fact confirms that the magnetic 

nuclei dephasing is limited by the nuclei of the four copper-coordinating 

nitrogen atoms. This is most likely due to the strong contact hyperfine coupling 

between the Cu2+ ion and these four surrounding nitrogen nuclei due to their 

proximity, and the fact that the closest hydrogen atoms are more than 5.5 

angstroms away. This extreme proximity of magnetic nuclei to the metal ion is 
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not present in HoW10. In this system, the Ho3+ ion is coordinated by eight 

oxygen atoms, but their most occurring isotope (16O with a 99.8% abundance) 

has a non-magnetic nucleus.  

Secondly, we evaluated e

mT  also with 0.74 =  at the four different 

concentrations, namely, c = 0.1%, 1.0%, 5.0%, 10.0%. The high-field 

approximation holds again in the whole concentration range as the highest eE  ~ 

0.06 GHz << Δ ~ 9.73 GHz (10% conc.). In Fig. 42, we show the calculated n e

mT +  

values, which satisfactorily agree with the experimental Tm values. As expected, 

molecular-spin-induced dephasing in the form of instantaneous diffusion 

dominates as Cu2+ concentration becomes high, while dephasing induced by the 

nuclear spin bath dominates at low Cu2+ concentration. Let us recall that non-

stretched exponential functions were satisfactorily used to fit the Hahn echo 

decays in the aforementioned concentration range. Note that we are able to 

reproduce the experimental Tm values of CuPc even though the working applied 

magnetic field does not correspond to any clock field. Moreover, the 

experimental T1 values are now at least two order of magnitude above Tm. 

Hence, phonon-induced decoherence might have even a lesser influence 

compared with HoW10.  
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Fig. 42 Phase memory time evolution (logarithmic scale) of CuPc at T = 5 K with the Cu2+ 

concentration. The experimental blue points are from ref. 254. Green and orange dashed 

lines are the n

mT  and e

mT  contributions to n e

mT +  (red curve) calculated by our model. 

 

To end up, it is interesting to unveil additional factors that can make Tm values 

be different between clock-transition-protected and simple S = 1/2 molecular 

spin qubits once instantaneous diffusion becomes the limiting dephasing 

mechanism. Indeed, at the highest Ho3+ and Cu2+ concentrations, the e

mT  values 

in HoW10 at the clock fields are appreciably higher than that of CuPc. To figure 

this difference out, let us fix x = 8.2% concentration in HoW10 (
e

mT ~ 0.57 µs), 

which is the equivalent to c = 10% in CuPc (
e

mT  ~ 0.36 µs). The values of Eq. 73 

in CuPc are ˆ ˆ ˆ 0.5x y zJ J J= = = , noticeably smaller than those of HoW10 at 

the clock fields: ˆ ˆ 5.3x yJ J= = , ˆ 4.0zJ = . As 
2

eE  is initially proportional to 

 
, ,

ˆ
x y z

J
=

 in Eq. 75, we would expect a greater e

mT  value in CuPc. To explain 

the rather opposite behavior, we need to focus on the electron Landé factors of 

HoW10 and CuPc. Indeed, while all these factors are non-zero for CuPc in Eq. 

75, only gz is different from zero for HoW10 in the same equation. Let us recall 
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that, as mentioned, this fact is due to the particular extreme uniaxial anisotropy 

of HoW10. Since Eq. 75 is a three-term and non-negative sum proportional to gα, 
2

eE  takes a smaller value for HoW10, which results in a larger e

mT  value since 
21/e

m eT E  for a similar qubit energy gap Δ. As a matter of fact, simple 

calculations conducted by us show that a decrease of gx and gy in CuPc rises e

mT

. This reveals the crucial role of having an axial electron Landé tensor in the 

spin doublet -either real or effective- defining the qubit, with rather negligible 

perpendicular components and a small parallel component.  

 

5.4 GdW30 

As previously mentioned, the implementation of sophisticated quantum 

algorithms, which may involve a large number of logical gates, critically 

depends on our ability to entangle sets of qubits without damaging the encoded 

information. For this purpose, it is crucial to control both the position and the 

orientation of the relevant physical qubits in space so that they can properly 

communicate with each other. As far as this spatial organization is concerned, 

molecular spin qubits could become potential candidates. 

Nevertheless, an alternative strategy to spatially arrange many copies of a 

given spin qubit is to design a magnetic molecule whose energy scheme allows 

defining more than one qubit in it. The implementation of n qubits requires 2n 

isolated energy levels and, importantly, the transition between each pair of them 

must be addressable and distinguishable from the rest. Thus, it would be 

possible to perform a given quantum algorithm by using a single-molecule. In 

other words, the molecule itself becomes an autonomous and independent 

quantum processor. This is precisely what has recently been proposed by M. D. 

Jenkins et al. on a Gd3+-based magnetic POM, namely [Gd(H2O)P5W30O110]
12-, 

hereafter referred to as GdW30.
271 This molecule consists in a single Gd3+ ion 

entrapped inside a POM cage, whose metal-coordinating atom distribution (ten 

oxygen atoms and one apical water molecule H2O) results in a 5-fold geometry 

around the magnetic ion, see Fig. 43. The Gd-O distance between Gd3+ and the 

oxygen atom of H2O is 2.259 Å, which is compatible with a coordination bond. 

The other Gd-O distances lie between 2.6 and 2.8 Å. Its low-lying energy 

scheme consists in the eight isolated states of the ground J = 7/2 multiplet, and 

thus allows defining three qubits (n = 3) that can be probed by means of EPR 

spectroscopy.138 As a matter of fact, there exist simple algorithms exactly 

involving three qubits, which could be implemented on GdW30 such as one of 
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the Shor’s quantum error correction codes, see chapter 7. The potential of 

GdW30 was envisioned in 2013 when long-lived Rabi oscillations were observed 

under the so-called Hartmann-Hahn condition, i.e., by matching the Rabi 

frequency with the proton Larmor frequency.138 Importantly, it allowed 

increasing the number of these oscillations by a factor of 10.  

 

 

Fig. 43 Left: top view of GdW30. Purple: Gd; dark grey: W; yellow: P; red: O; blue: H. 

Right top: alternative view of GdW30 where the polyhedron vertexes and centers represent 

the O and W atoms, resp. Right bottom: Gd3+ coordination sphere composed of eleven O 

atoms (with different colors).  

 

Of course, the implementation of complex algorithms will require the 

interplay of an increasing number of qubits. In the case of GdW30, this would 

generally mean to assemble several copies in close enough positions to allow 

qubit entanglement. Nonetheless, approaching magnetic molecules with the 

goal of communicating them also leads to an unavoidable detrimental effect. 

Indeed, as explained in other chapters, the nature of the involved molecular 

entities produces a magnetic field that is permanently covering all the space. 

This field results in a magnetic noise which will eventually destroy the 

information at play during the algorithm. The successful implementation of 

GdW30 in a device devoted to perform generic quantum algorithms will require 
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close enough copies of it to allow inter-qubit communication, but with a weak 

enough magnetic noise to keep quantum information -either stored or under 

processing- safe from decoherence. 

Herein, we aim to calculate the effect of magnetic noise –present in a single 

crystal of many equally-oriented copies of GdW30 at a moderate Gd3+ 

concentration– in the form of instantaneous diffusion and nuclear spin bath. 

This will allow us checking whether these dephasing mechanisms are limiting 

the several Tm values of a given set of pairs of energy states in GdW30. An 

estimate yet rough was already provided,271 but now we will employ more 

sophisticated models such as the ones presented in section 5.2. The particular 

set of pairs of energy levels is composed of those pairs whose transitions are 

resonant with the microwave frequencies employed in an X-band EPR 

spectrometer (~9 – 10 GHz). We will compare our calculated values with the 

experimental ones reported by M. D. Jenkins et al. at T  = 6 K,271 and discuss 

on the presence of other Tm-limiting decoherence sources. The electronic 

structure of GdW30, namely energies lE  and wave-functions l  of the ground 

J = 7/2 multiplet is determined by the spin Hamiltonian in Eq. 85.  

 

 ( ) ( )2 2 21ˆ ˆ ˆ ˆ1
3

z x y BH D J J J E J J gB J
 

= − + + − +  
 

  Eq. 85 

 

The axial and rhombic zero-field splitting parameters D  and E  are related 

with 
0

2B  and 
2

2B  as 
0

23D B=  and 
2

2E B= . The values D = 1281 MHz and E = 294 

MHz were determined by means of EPR spectroscopy while keeping g  = 2 

fixed.271 Note that in the case of Gd3+, where the 4f shell is half-filled, the first 

order contribution to the orbital angular momentum is L = 0. Thus, the total 

angular momentum J mainly arises from the spin angular momentum S = 7/2. 

This results in much smaller ZFS of the order of 1 cm-1, and that is why the 

CFPs are between two and three orders of magnitude below those found for 

magnetic coordination compounds based on much more anisotropic Ln3+ ions 

such as Tb3+, Dy3+ or Ho3+. The diagonalization of Eq. 85 is conducted in 

SIMPRE. The last important point is the direction of the applied magnetic field 

B . The orientation of the single crystal in the EPR spectrometer was such that 

this direction coincides with the perpendicular axis to the molecular plane of 

GdW30, see Fig. 43 left, which defines the Z axis direction. Thus, when 

calculating the phase memory times, we apply the magnetic field in this 
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perpendicular axis which is common to all copies of GdW30 in the crystal since 

all of them are equally oriented. Thus, hereafter the magnitude B  of the applied 

magnetic field will be referred to as zB . The eight energy states lE  derived from 

Eq. 85 as a function of a typical zB  range are plotted in Fig. 44.  

 

 

Fig. 44 Zeeman energy scheme of GdW30 as a function of the applied magnetic field, 

derived by diagonalizing Eq. 85. Each Zeeman curve is labeled with the corresponding 

Jm  projection of the ground electron quantum number J = 7/2 of Gd3+. Numbers 1 – 7 

label each resonant transition with the working microwave frequency (~9 – 10 GHz). 

 

The radius of the spherical cluster containing the crystallographic positions 

of the Gd3+ ions is of 400 Å, which was enough to converge the calculated e

mT  

in each pair of energy levels explored. The simulated Gd3+ concentration x in 

[GdxY1-x(H2O)P5W30O110]
12- is x = 0.01 = 1%, which is achieved by randomly 

removing 99 out of 100 Gd3+ ions that are substituted by the chemically similar 

diamagnetic ion Y3+. We also sample several random dilutions -all of them with 

the same concentration- to calculate the averaged e

mT  at each magnetic field. In 
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Fig. 45, we show the comparison between calculated e

mT  and experimental Tm 

values for the particular transitions depicted in .Fig. 44. 

 

 

Fig. 45 Calculated e

mT  and experimental271 Tm phase memory times of GdW30 at each one 

of the seven resonant transitions in the explored magnetic field range (1: 0.125 T, 2: 0.19 

T, 3: 0.27 T, 4: 0.35 T, 5: 0.43 T, 6: 0.51 T, 7: 0.56 T). 

 

A noticeable feature in Fig. 45 is the monotonous decrease in the calculated 
e

mT . Indeed, this is because 2

eE  is constant, while Δ monotonously decreases from 

the first to the seventh transition. This behavior is also observed in the 

experimental Tm, although with a slighter decrease and with the value of the first 

transition lying out of this trend possibly because of a larger experimental error. 

The calculated e

mT  values are around 3 µs above the experimentally reported Tm 

values. Unlike the rough estimate and despite using non-stretched exponential 

functions to extract Tm,271 our results suggest that electron magnetic noise in the 

form of instantaneous diffusion is not the limiting decoherence source at x = 

1%. Yet, due to the proximity between e

mT  and Tm, it could be limiting Tm but in 

competition with other mechanisms.  

To check whether electron magnetic noise is among the dephasing 

mechanisms, it is useful to measure Tm at different Gd3+ ion concentrations as 

did elsewhere.311 These measurements revealed that indeed Tm decreases as 

Gd3+ concentration increases, which means that electron magnetic noise might 

be limiting Tm. Nonetheless, it might only be partially in the light of the two 
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following reasons. First, as mentioned above, the theoretical estimates e

mT  do 

not match the experimental Tm values. Second, Tm does not scale with the Gd3+ 

concentration x as 1/mT x . This scaling characterizes electron magnetic noise 

and, in this case, establishes that a rise in x of one order of magnitude should 

divide Tm by 10 as seen in section 5.2. 

A well-established strategy to reduce the effect of electron magnetic noise is 

by further dilution of the given single crystal. Nonetheless, as we mention 

elsewhere, this is not a useful method since it implies to move the Gd3+ ions 

away, which hence can result in an important alteration of the inter-qubit 

communication. Thus, one needs to choose a concentration that allows a robust 

qubit communication while keeping electron magnetic noise below a safe 

threshold. In a 100% concentrated single crystal of GdW30 the minimum 

distance between pairs of Gd3 ions is around 17 Å, while in our 1% working 

concentration this minimum distance is increased up to ~37 Å. If this distance 

is still too large and further approach of Gd3+ ions is required to allow a safe 

inter-qubit communication, one should first identify and suppress the other 

decoherence sources before rising the single crystal concentration. 

Let us recall that GdW30 is a charged molecule, which requires the presence 

of counter-ions to properly balance the overall charge. Thus, the single crystal 

is composed of several copies of GdW30 surrounded by water molecules and 

potassium cations acting as counter-ions, see Fig. 46. Importantly, the single 

crystal is composed of chemical elements that present a high occurrence of 

isotopes with magnetic nuclei. Namely, tungsten (14%, I  = 1/2) and phosphorus 

(100%, I  = 1/2) atoms in the POM cage, hydrogen atoms (100%, I  = 1/2) in 

water molecules, and potassium cations (100%, I  = 3/2), where I  is the isotope 

nuclear spin quantum number. This bath of magnetic nuclei generates an extra 

magnetic noise which adds to that of the Gd3+ ion bath and, of course, can also 

limit Tm. 

We also considered the model described in section 5.2 devoted to estimate 

the phase memory time n

mT  produced by a given nuclear spin bath. By applying 

this model to a single crystal of GdW30, we subsequently conducted the 

calculation of n

mT  for each one of the seven selected transitions in Fig. 44. For 

that, we employed the crystallographic positions of all magnetic nuclei inside a 

spherical cluster of 40 Å radius, which was enough to converge each n

mT . Our 

results show that n

mT  lies inside the range 51 – 68 µs, whose values are two 

orders of magnitude above the experimental Tm. Thus, magnetic nuclear 
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decoherence might not be among the decoherence mechanisms limiting Tm 

according to this model. 

 

 

Fig. 46 Side view of GdW30 surrounded by the crystallographic positions of some K cations 

(blue) and water molecules (O atoms in dark red, H atoms omitted for clarity). 

 

As discussed in chapter 4, molecular spin qubits can also couple to crystal 

vibrations at any temperature, and this constitutes another important 

decoherence mechanism that becomes more important as thermal energy is 

increased. At T = 6 K, the measurements at each one of the seven transitions led 

to T1 values around 2.5 µs.271 Note that this timescale is close to Tm, which 

suggests that lattice vibrations might be considered as another potential source 

of decoherence. Due to the relatively low working temperature, the vibrational 

states involved might be low in energy such as those from long-wavelength 

phonon modes and low-frequency molecular vibrations. In fact, the latter can 

be significantly coupled even if they are moderately populated at low 

temperature as found in section 4.1 of chapter 4. Since the spin-vibration 

coupling Hamiltonians are proportional to derivatives of the anisotropy 

parameters respect to distortion coordinates, the relevant vibrational modes to 

focus on may be found among those producing significant variations in these 

parameters. As shown, the determination of these evolutions involve many 

point calculations that can be computationally demanding and are beyond the 
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scope of this section. Higher energy modes should play a very limited role not 

significant at all because of their negligible thermal population. 

At first sight, the apparent rigidity of the POM cage would prevent from a 

significant vibrational decoherence. While this observation could be true, we 

must not forget that the Gd3+ ion is coordinated by an apical water molecule, 

which is also embedded in the cage but not covalently bonded to it. This could 

result in a certain freedom of movement that allows the vibration of this water 

molecule with respect to the Gd3+ position. Thus, both independent and 

collective motions of Gd3+ ion and apical water molecule could be examples of 

significantly coupled low-frequency vibrations. In addition, there also exists 

another important decohering movement concerning rotations of magnetic 

nuclei. For instance, it is well known that rotation of methyl groups -CH3 can 

couple to energy states encoding spin qubits.203,210,312 In case of GdW30, the 

rotation would take place in the coordinating water molecule, whose magnetic 

nuclei in the form of two hydrogen atoms would couple to the Gd3+ ion. Of 

course, this would deserve further investigation, since the forced removal of this 

apical water molecule could result in an enhanced coherence for the three qubits 

encoded in the energy scheme of GdW30. In fact, a family of Ln-based POMs 

with a similar coordination environment but excluding the apical water 

molecule has recently been theoretically explored,313 whose Gd3+ derivative 

could offer a promising platform to design more robust single-molecule qubits.  
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6 
Atomic Clock Transitions in HoW10 

 

 

This chapter is a follow-up to section 5.2 concerning the system HoW10, and 

is broken down into three sections. In section 6.1 we will introduce an additional 

concept to the model presented in section 5.2, namely, the transition probability 

between the two energy states that define a spin qubit. First, we will propose 

how this transition probability affects and is related with e

mT ; then, we will 

explain how to calculate it. In section 6.2 we will show the results derived from 

the expanded model along with the input parameters employed to simulate the 

experimental mT  evolution against the applied magnetic field. In section 6.3 we 

will thoroughly discuss on these results and on the connection between this 

transition probability and the reported experiments of HoW10.  

 

6.1 Transition Probability 

To manipulate a two-level system in magnetic molecules (e.g. a spin qubit), 

we need to excite the sample with radiation of a frequency that matches the 

energy gap between the two spin states. This energy gap will depend on the 

applied magnetic field via Zeeman effect. As a matter of fact, the irradiation 

frequency does not need to exactly match the energy gap to drive a transition 

between two spin states. This fact is derived from a fundamental principle in 

quantum mechanics: uncertainty, which in this case means that each one of 

these states has an uncertainty width in its energy. Of course, the closer the 

irradiation frequency is to the energy gap, the more likely a transition will be 

driven between the spin states. Thus, there might exist a transition probability 

involved in the manipulation of a given spin qubit. To the best of our 
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knowledge, decoherence models devoted to estimate the phase memory time mT  

do not mention this probability and, whenever it is below 1, no effect is expected 

on mT .  

The picture we propose to introduce the transition probability Ptrans and to 

relate it with e

mT  is as follows. As exposed in chapter 5, the expression of e

mT  is 

given by 2/e

m eT E=  , where   is the energy gap between the two spin states of 

the qubit and eE  is the electron contribution to the echo line half-width. From 

this expression, an effectively infinite magnetic noise would be translated into 

an infinite value of eE , which would give rise to 0e

mT = . Thus, we propose to 

introduce Ptrans as a new source of noise and define an effective electron 

contribution ,e effE  to the echo line half-width such that 2 2

, /e eff e transE E P= . The 

corrected phase memory time ,e P

mT  reads as 
, 2

,/e P

m e effT E=  , i.e., ,e P e

m trans mT P T= . 

Since 1transP  , ,e P

mT  will always be in general lesser or equal than e

mT , i.e., 
,e P e

m mT T . Hence, the result of the action of Ptrans is to make the qubit behave as 

if it was feeling an additional magnetic noise. Whenever Ptrans = 1, there is no 

additional noise and ,e P

mT  equals e

mT . In summary, a lower transition probability 

caused by a larger mismatch between the irradiation frequency and the qubit 

energy gap will lead to a lower e

mT  than expected.  

The next step is to calculate Ptrans. For this purpose, we will use time-

dependent perturbation theory up to first order. First, we need to express the 

oscillating magnetic field ( ) ( )0

1 1, cosB t r B t k r= −   that composes the microwave 

radiation applied in pulsed EPR spectroscopy. This field couples with the 

magnetic dipolar moment of the molecule and hence is responsible for driving 

a transition between two given spin states. It propagates along the direction 

determined by the wave-vector k , which is orthogonal to the static magnetic 

field 0B  applied by the same spectrometer. The angular frequency ω determines 

the irradiation frequency   (~ 9 – 10 GHz in X-band EPR experiments), and 

t is the pulse length, i.e., the irradiation time (~10 ns). The constant vector 0

1B  

determines the polarization of ( )1 ,B t r , and 0

1B  determines the magnitude (~1 

mT) of this oscillating magnetic field. EPR spectrometers usually employ a 

resonant cavity designed to create a linearly polarized oscillating magnetic field 
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1B , see Fig. 47. Hence, since this is the case of the spectrometer employed to 

probe HoW10, we will consider this model of polarization to calculate Ptrans.  

 

 

Fig. 47 Oscillating magnetic field linearly polarized in blue along with its decomposition 

according to two orthogonal axes in red and green.  

 

In Fig. 47, let us imagine 0B  pointing in vertical direction and use it to define 

the Z axis. On the other hand, let us use the propagation direction of 1B  

determined by k  to define now the X axis. Note that 0B  and k  are orthogonal. 

If we define the Y axis as the axis orthogonal to the X and Z axes, 0

1B is hence 

contained in the YZ plane and is orthogonal to k . Thus, 0

1B  determines the 

constant direction of oscillation of 1B  as colored in blue in Fig. 47. With this 

axes definition, 0

1B  forms an angle -90º ≤   ≤ 90º with the Y axis, which is 

called polarization angle, see Fig. 48. Since this angle is an input for our model, 

we can cover in particular the experiments performed both in parallel (  = 90º) 

and in perpendicular ( = 0º) mode.  
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Fig. 48 Definition of Cartesian axes in an EPR spectrometer. The static magnetic field 0B  

defines the Z axis, the wave-vector k  defines the X axis, and the cross product 0B k  

defines the Y axis. The angle δ between the Y axis and the polarization vector 0

1B  is the 

polarization angle.  

  

The next step is to apply the so-called long wavelength approximation in the 

expression ( ) ( )0

1 1, cosB t r B t k r= −  . Since the wavelength λ of 1B  is much larger 

than the molecular dimensions, i.e. / 1r  , the term k r  is rather negligible 

since 2 / / 1k r r r   . For instance, the wavelength in X- and Q-band 

EPR spectrometers are ~30 and ~9 mm, while the typical molecular dimension 

is ~1 nm. Thus, 1B  is approximated as ( ) ( )0

1 1, cosB t r B t . The calculation of 

Ptrsns requires to solve the time-dependent Schrödinger equation. To keep a 

fluent reading, we will avoid the technical details in the resolution of this 

equation and just give a general scheme of the procedure. These details are 

routine and can be found in any basic course on time-dependent perturbation 

theory up to first order.  

The starting point is the time-dependent wave-function ( )t  in Eq. 86 that 

describes the time evolution of a (magnetic) system with a given set of (spin) 

states characterized by (spin) energies kE  and eigenfunctions k . 

 

 ( ) ( ) ( )exp /k k k

k

t c t itE  = −  Eq. 86 
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kE  and k  are obtained by diagonalizing a given (spin) Hamiltonian Ĥ . In 

the case of HoW10, Ĥ  is the one presented in section 5.2. To determine the time 

evolution of the coefficients ( )kc t , ( )t  is plugged into the time-dependent 

Schrödinger equation in Eq. 87: 

  

 ( )( ) ( ) ( )ˆ ˆH V t t i t
t


+  = 

  
Eq. 87 

 

In Eq. 87, ( ) ( )1
ˆ ˆ

JV t B t= −   is the time-dependent interaction potential that 

describes the coupling between 1B  and the magnetic dipolar moment 

( )( )ˆ ˆ ˆˆ / , ,J B x x y y z zg J g J g J = −  of the molecule. In the expression of ˆ
J , g  are 

the electron Landé factors and Ĵ  are the Cartesian components of the electron 

spin operator Ĵ . Note that in the resolution of Eq. 87 we are considering ( )V̂ t  

as a perturbation; hence, its magnitude has to be small enough as compared to 

Ĥ . Indeed, 0

1B  is found around 1 mT or even below, while 
0B , which 

determines the dominant interaction in Ĥ , i.e. the Zeeman effect, usually lies 

inside the range of some hundreds of mT. In addition, ( )V̂ t  is working only for 

a few tens of ns, which is much shorter than the standard timescale mT  found in 

common molecular spin qubits (above one microsecond). This allows to assume 

that the system in a given eigenfunction at t = 0 will be driven as a closed system 

without significant decohering effects and hence this evolution can be described 

with Eq. 87. 

After working out Eq. 87, an uncoupled set of differential equations is 

obtained. These equations can be readily solved to get the coefficients ( )kc t . 

They are expressed in terms of the initial conditions ( )0kc t = , i.e., the 

coefficients ( )kc t  evaluated at t = 0. Since we want to calculate the transition 

probability between the two qubit states 0  and 1 , let us set the molecule to be 

initialized at t = 0 in one of them. For instance, say 0  with label n. Thus, 
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( )0 1nc t = =  and ( )0 0kc t = =  for every k ≠ n. This allows calculating the 

transition probability ( )n mP t→  from 0  to 1  with label m. Likewise, we can also 

proceed the other way around, i.e., to initialize the molecule in 1  at t = 0 and 

to calculate the transition probability ( )m nP t→  from 1  to 0 . We propose to 

define the working transition probability Ptrans as in Eq. 88. 

 

 
( ) ( )

2

n m m n

trans

P t P t
P

→ →+
=  Eq. 88 

 

The irradiation time t in Eq. 88, which will depend on 0

1B , is the one 

corresponding to a π-pulse, i.e., the right time to drive the system from 0  to 1  

or vice versa. Before showing the expression of ( )n mP t→ , we need first to rename 

the coefficients ( )kc t . Indeed, once a given label n is fixed to describe the initial 

eigenstate at t = 0, the system will eventually be driven to the rest of eigenstates 

with label k. Thus, we rename ( )nc t  as ( )n nc t→  -which determines the probability 

of remaining in the eigenstate n at a given t > 0-; and also rename ( )kc t  as ( )n kc t→  

which determines the probability of driving the system to an eigenstate k at a 

given t > 0. In particular, ( )n mc t→  determines the transition probability from the 

eigenstate n, i.e. 0 , to the eigenstate m, i.e. 1 . The expression of ( )n mP t→  is 

given in Eq. 89. 

 

 
( )

( )

( )

,

2

2

E Enk
or k n

n m

n m

n k

k

c t
P t

c t


=

→

→

→

=

  Eq. 89 

 

The sum in Eq. 89 includes the n eigenstate (k = n) as well as the eigenstates 

k with energy kE  different from nE , where the particular case k = m is included. 
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We consider that the transition from the eigenstate n to any other eigenstate with 

the same energy nE  is negligible compared to the transitions to eigenstates k 

with energy k nE E . Thus, all the eigenstates with energy nE  but the eigenstate 

n are excluded. This sum acts as a normalization constant so that ( ) 1n mP t→   and 

( ) 1n m

m

P t→ = , where the label m is such that m nE E  or m = n. The square 

modulus of the coefficients ( )kc t  are given in Eq. 90, Eq. 91, Eq. 92. 

 

 ( )
( )

2
22 0

1

sin
ˆ1 nn

n n J

t
c t B





→

 
= +   

 
 Eq. 90 

 

 If ( )
( )( )

2
22 0

1

sin / 2
ˆ

k nkn

k n n k J

k n

E E t
E E c t B

E E





→

 − −
  =   

 − − 

 Eq. 91 

 

 If ( )
( )( )

2
22 0

1

sin / 2
ˆ

k nkn

k n n k J

k n

E E t
E E c t B

E E





→

 − +
  =   

 − + 

 Eq. 92 

 

The term 
2

0

1
ˆ kn

J B   (transition rule) describes the coupling strength between 

1B  and ˆ
J , where ˆ ˆkn

J k J n   =  connects the eigenstates n and k. In other 

words, 
2

0

1
ˆ kn

J B   determines how able 1B  is to drive a transition between the 

eigenstates n and k. ˆ ˆnn

J n J n   =  is just the expectation value of ˆ
J  under the 

eigenfunction n . The terms k nE E − −  and k nE E − +  account for the 

resonance in energy between k nE E−  and  . Analogously, an expression for 

( )m nP t→  is also derived as given in Eq. 93.  
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( )

( )

( )

,

2

2

E Emk
or k m

m n

m n

m k

k

c t
P t

c t


=

→

→

→

=

  Eq. 93 

 

6.2 Results 

In the application to HoW10 of the picture described in section 6.1 we are 

only considering the 8th and 9th spin states as sorted by energy for each value of 

the applied magnetic field, which define the two states of the qubit with an 

energy gap 9 8E E = −  that depends on this field. Thus, n = 8, m = 9, and the 

working transition probability is ( ) ( )( )8 9 9 8 / 2transP P t P t→ →= +  where ( )8 9P t→ , 

( )9 8P t→  are given in Eq. 94. 

 

 ( )
( )

( ) ( )

2

8 9

8 9 2 2

8 8 8 9

c t
P t

c t c t

→

→

→ →

=
+

       ( )
( )

( ) ( )

2

9 8

9 8 2 2

9 9 9 8

c t
P t

c t c t

→

→

→ →

=
+

 Eq. 94 

 

We could have considered the full set of the 16 low-lying spin states of 

HoW10, but because of the large difference between 8kE E− , 9kE E−  and  , 

the transitions 8→k, 9→k with k ≠ 8, 9 are rather unlikely. The employed input 

parameters are:  = 9.1765 GHz, t = 32 ns, 0

1B  = 0.5 mT, δ = 90º (i.e., the 0

1B  

direction coincides with that of 0B ). In section 6.3 we will explain the choice of 

these numerical values. 

In Fig. 49, we show the calculated e

mT  and ,e P

mT  along with the experimental mT  

against the applied magnetic field zB  at a Ho3+ concentration of 10% (T  = 5 

K). The maximum transition probability max

transP 0.93 is reached at each clock 

transition (Δ = 9.1765 – 9.1768 GHz), while the minimum probability min

transP

10-3 is located right at the middle of the valleys ( 9.75 GHz).  
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Fig. 49 Tm evolution against the applied magnetic field Bz at a Ho3+ concentration of 10% 

in the experimentally-probed single crystal (T = 5 K). Non-corrected 
e

mT  in orange, 

corrected 
,e P

mT  in green. Blue and red points are experimental Tm values at two different 

 . The highest experimental errors in Tm are found around the clock transition fields.  

 

At the much lower concentration of 1% (T  = 5 K), instantaneous diffusion 

is expected not to be the limiting decoherence mechanism anymore, since high 

enough metal ion concentrations are required for this mechanism to be 

dominant. This agrees with the fact that the calculated ,e P

mT  is now somewhat 

higher than the experimental mT  as shown in Fig. 50. Yet, both the qualitative 

behavior and the order of magnitude of the experimental mT  are recovered.  
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Fig. 50 Tm evolution against the applied magnetic field Bz at a Ho3+ concentration of 1% 

in the experimentally-probed single crystal (T = 5 K). Non-corrected 
e

mT  in orange, 

corrected 
,e P

mT  in green. Blue and red points are experimental Tm values at two different 

 . The highest experimental errors in Tm are found around the clock transition fields. 

 

6.3 Discussion 

Let us start by discussing on the evidence which may support the fact that 

transitions probabilities are at play in the reported experiments of HoW10. First, 

we will put the focus on Fig. 51, which depicts the ESE (Electron Spin Echo) 

detected spectra determined by Shiddiq et al. at different   for a Ho3+ 

concentration of 1% and around the clock transition located at 165.4 mT.206 

These spectra record a peak at the magnetic fields in which a resonance between 

Δ and   is produced.  
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Fig. 51 ESE (Electron Spin Echo) detected spectra at different   for a Ho3+ 

concentration of 1% around a clock transition (CT) as determined by Shiddiq et al.206  

 

The qubit energy gap Δ is 9.1768 GHz at 165.4 mT. Thus, it is reasonable to 

detect a high ESE intensity at this magnetic field for   = 9.20 GHz. As we 

use a   more and more different from Δ = 9.1768 GHz, the detected ESE 

intensity at 165.4 mT is noticeably reduced. This fact agrees with the picture of 

a decreasing transition probability at play as   moves away from the value Δ 

= 9.1768 GHz. In other words, there exists a lesser probability to drive the 

transition 8 ↔ 9 and a lesser number of molecules is excited.  

In second place, Fig. 52 shows field-swept mT  measurements for a Ho3+ 

concentration of 0.1% at different   as also determined by Shiddiq et al.206 It 

is important to note that these measurements are beyond the clock transition 

located at 165.4 mT, and correspond to the so-called normal EPR transitions, 

i.e., 4Jm = −  to 4Jm = +  transitions where the dependence of spin energy with 

the applied magnetic field approaches the linear regime, see Fig. 39. Note that 

because of the small concentration of 0.1%, the model presented in section 5.2 

cannot reproduce the experimental mT  in Fig. 52 as it requires instantaneous 
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diffusion to be the limiting decoherence mechanism, i.e., high enough metal ion 

concentrations.  

 

 

Fig. 52 Field-swept Tm measurements for a Ho3+ concentration of 0.1% at different   

as determined by Shiddiq et al.206 

 

These normal transitions do not follow the definition of a real clock transition 

and qubit coherence becomes more limited. In other words, although mT  is 

moderately peaked, the sharp divergences seen at the four clock transitions are 

clearly absent. In fact, as soon as the Ho3+ concentration is increased up to 1.0%, 

the experimental mT  values at the normal transitions become much shorter (~100 

ns) since the ESE intensity can hardly be detected. A further increase in the Ho3+ 

concentration leads to a total suppression of mT  as the ESE signal can no longer 

be detected.  
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Of course, this is consistent with the fact that dipolar magnetic noise increases 

with increasing metal ion concentration, which results in shorter mT  values. 

Nevertheless, here we are not focusing on the mT  evolution with Ho3+ 

concentration, but on the mT  evolution with the applied magnetic field once both 

Ho3+ concentration and   are fixed. Indeed, even though we are not around 

the position of a clock transition, this does not preclude observing the same 

qualitative evolution of mT : firstly mT  increases up to a maximum value and then 

decreases monotonically as the applied magnetic field is increased. In a small 

neighborhood of each clock transition, see Fig. 39, the two Zeeman curves that 

define the two qubit energies follow a non-monotonic evolution as the applied 

magnetic field is increased: they first approach each other until reaching a gap 

minimum at the clock transitions, and then move away from each other. This 

behavior is nicely correlated with that of mT  as mT  also reaches an extreme value 

right at the clock transitions. Nevertheless, at the normal transitions each one of 

the two Zeeman curves follow a monotonic evolution with the applied magnetic 

field; yet, the mT  evolution is non-monotonic as mentioned above.  

To explain this fact, we might consider the mismatch between Δ and the given 

  as a key variable, since this mismatch does follow a non-monotonic 

evolution by reaching a minimum value when Δ approaches the given  . This 

mismatch is precisely related with the transition probability, see Eq. 90, Eq. 91, 

Eq. 92, in the sense that the smaller the mismatch is the greater the transition 

probability is and vice versa. Thus, the non-monotonic evolution of this 

transition probability could explain the non-monotonic evolution of mT  both at 

the clock transitions and at the normal transitions, either in case the two qubit 

energies follow a non-monotonic evolution or not with the applied magnetic 

field.  

To elaborate further, let us note that in Fig. 52 the peaks are sorted from left 

to right by increasing values of  . This fact is consistent with our approach. 

Indeed, as recently mentioned, Δ increases monotonically as the applied 

magnetic field is increased in this range. When this increasing Δ approaches the 

given  , the transition probability reaches its maximum value and a peak in 

mT  is observed. Thus, the larger Δ is, the larger   has to be in order to observe 

a new peak in mT , and this would explain why the peaks in Fig. 52 are sorted 

from left to right by increasing  . The calculation of Δ right at the magnetic 
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fields where the mT  peaks are observed gives: Δ = 9.3 GHz at 178 mT, Δ = 9.4 

GHz at 182 mT, Δ = 9.5 GHz at 185 mT, Δ = 9.6 GHz at 187 mT, Δ = 9.7 GHz 

at 189 mT, which indeed coincide with the corresponding employed   values 

as expected. These mT  peaks are thus located at a transition probability 

maximum; hence, the divergences in mT  could be the result of the modulation 

of this probability with the applied magnetic field.  

Let us now comment on our choice of the numerical values t = 32 ns, 0

1B  = 

0.5 mT and   = 9.1765 GHz. We used these values to calculate each point of 

the green curves in Fig. 49 and Fig. 50. Nonetheless, since each experimental 

determination of mT  was initially independent from the rest, the values of these 

parameters could be somewhat different depending on the given determination. 

Of course, the best choice for us would be to use the specific set of values that 

was employed to determine each mT . Unfortunately, ref. 206 only provides these 

values either at the clock transitions or inside a bounded range; yet, our values 

are very close or even equal to these experimental values. An important 

limitation to bear in mind is the fact that the parameters 0

2B , 0

4B , 0

6B , 4

4B  and A  

in the Hamiltonian Ĥ  of HoW10 arise from a fitting to a cw-EPR spectrum. It is 

important to check how good this fitting is since Δ critically depends on these 

parameters, and hence both calculations and conclusions. A poor fitting would 

probably lead to use unrealistic values for t, 0

1B  and   when simulating the 

experimental results. Fortunately, this does not seem to be the present case.  

Concerning t, it is the length of a π-pulse. According to ref. 206, a Rabi 

frequency of 15.6 MHz was determined for 0 dB attenuation at the clock 

transitions, which resulted in a π/2-pulse length of 16 ns. Thus, we use t = 32 

ns. The magnitude 0

1B  of the oscillating magnetic field was independently 

measured under the same conditions via the Rabi oscillation frequency of a 

spin-1/2 EPR standard, namely, an organic radical. The values varied from 4 G 

(0.4 mT) at 9.1 GHz, to 9 G (0.9 mT) at 9.75 GHz. Since the irradiation 

frequencies   involved in Fig. 49 and Fig. 50 are 9.12 GHz and 9.20 GHz, a 

value of 0

1B  = 5 G = 0.5 mT might be reasonable and realistic enough. 
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Special attention needs to be focused on the   value. Let us take into 

account that, so far, we have not included the distribution of the 4

4B  parameter 

in our method. Hence, only one value of Δ is found at each clock transition, 

namely, Δ = 9.1765 GHz (23.6 mT), Δ = 9.1765 GHz (70.9 mT), Δ = 9.1767 

GHz (118.1 mT), Δ = 9.1768 GHz (165.4 mT), which is determined by the value 
4

4B  = 3.14·10-3 cm-1. Based on our experience with these calculations, the 

transition probability strongly depends on how close   and Δ are. Thus, this 

probability will quickly fall as soon as   moves away from the given values 

of Δ, and that is the reason why we need to set   = 9.1765 GHz to reproduce 

the experimental evolution of mT  around the clock transitions. Yet, it is possible 

to vary   a bit around 9.1765 GHz and get essentially the same green curves 

as in Fig. 49 and Fig. 50 provided the 0

1B  value is accordingly increased. For 

example, a value of   = 9.185 GHz requires 0

1B  = 0.57 mT. The need to 

increase 0

1B  as   moves away from the given value of Δ in order to keep the 

transition probability high is consistent with the following statement mentioned 

in ref. 206: “The ESE intensity does peak at 9.2 GHz (with reference to Fig. 51), 

above which it decays, although not as rapidly as one may expect purely on the 

basis of the gap distribution. This is due to the increasing B1 field of the 

spectrometer, which enables excitation of more spins and hence the generation 

of stronger echoes at higher frequencies.”.  

Of course, the values to employ in   should be the experimental values 

9.12 GHz and 9.20 GHz. Let us recall that, at the current level of approximation, 

as soon as   becomes different enough from the given value of Δ, the 

transition probability will rapidly fall. Since Δ = 9.1765 GHz – 9.1768 GHz at 

the clock transitions, the use of 9.12 GHz or 9.20 GHz in   produces a fall in 
,e P

mT  that impedes reproducing the experimental mT  values around these 

transitions. Yet, it is possible to recover again the experimental mT  evolution 

provided 0

1B  is properly increased. This rise in 0

1B  offsets the non-inclusion 

of the distribution in Δ (via the Gaussian distribution in 4

4B ) in our method.  
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Nevertheless, this rise may lead to unrealistic 0

1B  values and/or bad results. 

For example, when using   = 9.12 GHz, a value of  0

1B  = 3.9 mT is required 

to keep a high enough transition probability at the clock transitions that allows 

reproducing the maximum experimental value reached by mT . Unfortunately, 

several fast oscillations appear in the rest of the calculated mT  curve due to the 

non-negligible mismatch between   and Δ. At this point, it is useful to recall 

the sinus function in Eq. 90, Eq. 91, Eq. 92. On the other hand, when using   = 

9.20 GHz, it is enough to set 0

1B  = 0.51 mT since 9.20 GHz is much closer to 

  = 9.1765 GHz – 9.1768 GHz. In spite of it, a medium size oscillation still 

appears right at each clock transition in the calculated mT  curve. Certainly, by 

forcing the numerical value of 0

1B , we are trying to offset an effect not yet 

considered, namely, the distribution in Δ via the Gaussian distribution in 4

4B .  

Fortunately, this distribution, with a mean value 4

4B  = 3.14·10-3 cm-1 and a 

standard deviation 4
4B

  = 2.1·10-5 cm-1, can be easily incorporated in our 

method. According to ref. 206, this distributes Δ with a mean value   = 9.177 

GHz and a standard deviation σΔ = 123 MHz, and up to one standard deviation 

it opens a range of ±0.17 GHz around 9.177 GHz where the experimental values 

9.12 GHz and 9.20 GHz of  are included. Thus, there exist molecules whose 

values of Δ at the clock transitions are equal or close enough both to 9.12 GHz 

and to 9.20 GHz. This of course will remove the need of artificially increasing 

0

1B  to keep reproducing the experimental evolution of mT  around the clock 

transitions. Instead, it will possible to keep using the realistic values of 0

1B  

reported for HoW10.  

As mentioned above, the inclusion of the Gaussian distribution in 4

4B  is really 

simple. First, we need to generate a large enough random sample ( ) 4

4 i i
B  of 4

4B  

values obeying the given distribution. Then, the corrected phase memory time 

( ), 4

4

e P

m i
T B  is calculated at each ( )4

4 i
B  value to build the Hahn-echo curves 

( )( )4

4exp 2 / P

m i
T B−  for τ > 0. The experimental Hahn-echo decay is nothing but 
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the superposition of these individual echoes, i.e., ( )( )4

4exp 2 / P

m i
i

T B− . After 

plotting this sum against 2τ, it is fitted to an exponential function 

( ) ( )exp / P

mf x a x T=  −  to extract the overall phase memory time ,e P

mT . This 

process is now repeated in the whole magnetic field range with the same random 

sample of 
4

4B . We will undertake this task in a future work. Of course, besides 

the distribution in 4

4B  -generally, in the spin Hamiltonian parameters- produced 

by the existence of slightly different copies of the same molecule, there can 

exist other factors that also distribute the energy gap Δ but are not included in 

the present model. For instance, the magnetic field is not necessarily 

homogeneous in the whole sample and hence each molecule could feel a rather 

different magnitude. This can be due to imperfections in the applied field or 

internal fields in the sample. Another related issue is the microwave radiation, 

which is not perfectly monochromatic. This will depend on the pulse length -

e.g., long pulses have better well-defined energies- but also on technical details 

about the cavity such as the intensity distribution against frequency.  

According to ref. 206, ESE-envelope (ESEE) modulations are detectable in 

the recorded Hahn-echo decay curves corresponding to the mT  values 

determined out of the clock transitions. These modulations consist in several 

Hahn-echo oscillations at short times. In particular, ESEE modulations are 

observed at the normal transitions and enough of them are detected to confirm 

that they are due to the coupling of the Ho3+ electron spin with the protons 

present in the single crystal. Importantly, these ESEE modulations vanish at the 

clock transitions. As argued, this might mean that the Ho3+ electron spin is 

decoupled from the nuclear magnetic noise at these transitions, and this is the 

reason used in ref. 206 to infer that, in fact, the Ho3+ electron spin is decoupled 

from all magnetic noise, both nuclear and electronic. This fact would explain 

the fast rise of mT  as z CTB B→ , where CTB  is the magnetic field of a given clock 

transition.  

Let us recall from section 5.2 that mT  should not be limited by the nuclear 

magnetic noise in the whole magnetic field range. In other words, ESEE 

modulations may be changing the Hahn-echo decay from a simple exponential 

to an exponential plus some oscillations, but cannot be affecting the echo global 

decay which is what determines the value of mT . Hence, if the disappearance of 
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the ESEE modulations at the clock transitions is not really an evidence that 

allows asserting that the qubit is decoupled from the nuclear magnetic noise, we 

should not consider this disappearance as an evidence to infer that the same 

qubit is also decoupled from the electron magnetic noise either. Given the close 

match between the experimental and calculated mT  values in Fig. 49 and Fig. 50, 

especially at 10% concentration where instantaneous diffusion dominates, the 

experimental rise of mT  could rather be attributed to the fast rise of the transition 

probability close to the clock transitions, instead of the fact that decoherence is 

dominated by a magnetic noise that vanish at first order as z CTB B→ . As a proof 

of concept, experiments on simple spin-1/2 magnetic molecules with negligible 

strains in the Hamiltonian parameters, which would consist in checking whether 

mT  peaks as   is changed for a given resonant magnetic field, could also help 

to probe transitions probabilities and assess the validity of this hypothesis.  
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7 
Quantum Error Correction 

 

 

In previous chapters, we have elaborated on the idea of developing design 

strategies to create spin qubits with increasing protection against 

decoherence.135 While maintaining coherence for long enough is important, 

quantum algorithms can also suffer from errors that should be accordingly 

corrected. As a matter of fact, here one finds a complementary effort: we need 

quantum error correction codes but also highly-coherent qubits as the success 

of these codes rely on robust logical gates. In classical computing, error 

correction is based on encoding information in redundant bits that will help to 

detect and correct errors. Indeed, after sending several copies of a given bit 

through a noisy channel, a majority vote is taken to discard altered bits. 

However, in quantum computing, according to the non-cloning theorem,314 it is 

not possible to build a machine able to produce an exact copy of a quantum 

system in state superposition, i.e., without previously measuring the state of the 

given system. Copying a quantum state implies measuring it and, hence, 

destroying the information saved in the form of quantum superposition.  

In 1995 and 1996, Shor and Steane introduced quantum error correction 

codes for the first time.315,316 Nonetheless, several objections regarding the 

implementation of these codes arose,317 and most of them were focused on two 

points. First, decoherence could destroy the information contained in quantum 

states faster than the error correction speed but, moreover, even if working fast, 

errors could also be introduced if each manipulation is not conducted with a 

proper enough fineness. Second, a given quantum state is specified by a set of 

complex numbers, which suggests that decoherence-induced errors are 

produced in a non-finite variety. Shor and Steane proved that these two 

objections are not necessarily a matter of concern.  
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Indeed, the first objection only applies whenever the decoherence rate is high 

enough to overwhelm error-correction codes, i.e., only if errors occur faster than 

they can be corrected. Fortunately, in virtue of the so-called threshold theorem, 

errors can be corrected as they occur provided the error rate is below a certain 

threshold.318–322 To remove the second objection, let us note that generic errors 

occurring on a single qubit 0 1  = +  can be decomposed into simpler 

errors, namely, bit flip error and phase flip error, see section 8.2. The former 

consists in a change of the qubit value from 0  to 1  or vice versa, while the 

latter happens whenever there is a change of relative sign between 0  and 1 . 

Note that in classical computing only bit flip errors are possible. Thus, it is 

enough to act on these simpler errors when it comes to correcting more complex 

errors occurring on a single qubit. Of course, there could also exist errors 

affecting more than qubit at once. In this case, one should try to look for a clever 

assignment of the qubit labels ... ...ia  ( 0,1ia = ) to the several spin states such 

that only errors on single qubits correspond to non-forbidden transitions. A 

complementary option is to minimize the likelihood of single qubit errors, 

which hence further decreases the likelihood of multi-qubit errors.  

Now, let us consider that an information -or logical- qubit is sent through a 

noisy channel or stored for a given time, and then an error is produced on this 

qubit. The key goal is to detect and correct such error without at the same time 

spoiling the information encoded in the logical qubit. To correct this error, Shor 

and Steane considered the quantum equivalent of redundancy. As a given 

logical qubit cannot be cloned, quantum error correction codes employ ancillary 

qubits which are initialized as a function of the logical qubit state before the 

error occurs. The proper manipulation of these ancillary qubits after the error is 

produced leads to the error correction. Of course, these manipulations will not 

alter the logical qubit state whenever it does not suffer from any error. These 

error correction codes were successfully implemented firstly by means of NMR 

techniques,17,323 and then with trapped ions,324,325 linear optics,326 

superconducting qubits,327 and nitrogen-vacant centers in diamond.328 
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7.1 Quantum Algorithms and Logical Gates 

A quantum algorithm consists in a finite number of unitary transformations, 

also known as quantum logical gates,329 which act on a finite number of qubits 

with the purpose of producing an outcome. Of course, quantum algorithms of 

increasing complexity will require a larger number of logical gates. The optimal 

implementation is when the smallest possible number of gates is used to run a 

given algorithm, which is important for two reasons. First, running times can 

become shorter than decoherence timescale and, second, the error occurrence is 

minimized. In practice, there is no need to know how to implement all the 

required logical gates since any of them can be approximated with a safe enough 

accuracy by a finite sequence composed of a minimal set of elementary gates. 

This set is employed to approximate any logical gate, and is called universal set 

of quantum gates.330  

A universal set of logical gates is always selected to be finite.  Nevertheless, 

combining a finite set of elementary gates can only produce a finite set of 

composed gates, while the number of gates in practice is of course non-finite. 

As mentioned above, this drawback can be satisfactorily solved by 

approximating any given logical gate as a finite sequence of universal gates with 

an accuracy as high as desired, which is guaranteed by the so-called Solovay-

Kitaev theorem.99,331 Two important examples of universal sets are those 

composed of (i) the three gates Hadamard, CNOT, / 8 ,99 and (ii) the three-qubit 

Deutsch gate ( )D  .332 On one hand, (i) means that universal quantum 

computation can be achieved by combining only two-qubit gates.330,333 In other 

words, to conduct any quantum algorithm it is enough to implement logical 

gates acting only on two qubits. On the other hand, the Toffoli gate itself defines 

a universal set of gates for classical computing and coincides with ( )/ 2D  = , 

which proves that all classical gates can be realized in a quantum computer. 

As defined above, a quantum algorithm consists in a sequence of unitary 

transformations  
1

ˆ
i

i
U


 -also known as logical gates- acting on a reduced number 

of qubits. The physical implementation of each given gate requires to identify a 

proper Hamiltonian ˆ
iH  that generates the corresponding transformation as 

( )ˆ ˆexp /íU itH= . Then, the quantum device should designed so that ˆ
iH  can be 

turned on at time 1it t −=  and then turned off at time it t=  with 1i it t−  . The key 
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goal for experimentalists is to provide high-fidelity gates, i.e., able to produce 

a result as close as possible to the expected ideal result. A promising 

experimental setup for quantum computing is nowadays the cold ion trap 

approach proposed by Cirac and Zoller.5 As a matter of fact, some logical gates 

have already been implemented in this setup,334–337 among which one finds the 

paradigmatic CNOT gate.6,338,339 On the other hand, the molecular approach has 

also produced several proof-of-concept systems with two magnetically-

distinguishable metal centers involving both transition and lanthanide ions, 

which are used to implement two-qubit quantum gates such as CNOT, SWAP, 

√SWAP, √iSWAP, and CZ.81,137,301,302,340,341  

 

7.2 Shor’s Quantum Error Correction Code 

Let us start by introducing the logical gates that compose the original Shor’s 

error correction algorithm. The controlled-NOT gate, briefly CNOT, is a two-

qubit gate that changes the state of the target qubit depending on the state of the 

control qubit, which remains unaltered in any case. Any logical gate is also a 

linear transformation, and hence it is enough to state how it acts on a two-qubit 

basis set, for instance, 00 , 01 , 10 , 11 , in the particular case of two-qubit 

gates. In this basis set, the first position corresponds to the control qubit, and 

the second position stands for the target qubit. The action is such that the value 

of the target qubit is flipped whenever the value of the control qubit is 1. 

Otherwise, the target qubit value is not changed. Thus, 00 00→ , 01 01→ , 

10 11→ , 11 10→ . The flipping of the target qubit corresponds to a 180 

degrees rotation in the Bloch sphere along the coordinate line 0 = , see Fig. 7 

in section 2.2. These rules allow us determining the result in the most general 

case when both control and target qubits are in a state superposition 

( ) ( )0 1 0 1   +  + , where 0 0 00 = , 0 1 01 = , 1 0 10 = , 

1 1 11 = . This gate is represented with the symbol in Fig. 53, where the black 

and white circles stand for the control and target qubits, resp.  
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Fig. 53 Symbol of controlled-NOT (CNOT) quantum logical gate. The black dot represents 

the control qubit, while the white circle stands for the target qubit. They both are linked by 

a vertical straight line.  

 

The Hadamard gate, whose symbolic representation is depicted in Fig. 54, is 

a one-qubit gate that is useful to transform the qubit state into a state 

superposition. Let us consider the one-qubit basis set 0 , 1 . Then, the action 

of this gate is such that ( )0 0 1 / 2→ +  and ( )1 0 1 / 2→ − . In the Bloch 

sphere, this consists in a 90 degrees rotation around the Y  axis along the 

coordinate line 0 = . For the general case 0 1 + , the result is 

( ) ( )0 1 / 2    + + −   .  

 

 

Fig. 54 Symbol of Hadamard quantum logical gate.  

 

The Toffoli or controlled-controlled-not gate, briefly CCNOT, is a three-

qubit gate that changes the state of the target qubit depending on the state of the 

two control qubits, which remain unaltered in any case, see Fig. 55. Let us 

consider now the three-qubit basis set 000 , 001 , 010 , 011 , 100 , 101 , 

110 , 111 , where the two first positions correspond to the two control qubits 

and the third position is for the target qubit. The action is such that the value of 

the target qubit is flipped whenever the value of both control qubits is 1. This 

flipping also corresponds to a 180 degrees rotation in the Bloch sphere. 

Otherwise, the target qubit value is not changed. Thus, 000 000→ , 

001 001→ , 010 010→ , 011 011→ , 100 100→ , 101 101→ , 110 111→

, 111 110→ .  
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Fig. 55 Symbol of Toffoli or controlled-controlled-not (CCNOT) quantum logical gate. 

The black dots represent the control qubits, while the white circle stands for the target 

qubit. They all are linked by a vertical straight line. 

 

With these ingredients, we can now introduce the Shor’s quantum error 

correction code depicted in Fig. 56. The relevant information to be protected is 

encoded in the logical qubit in the form of quantum superposition 

0 1  = + . Eight ancillary qubits are all of them initialized at the 0  state 

before starting the algorithm. The circuit in Fig. 56 must be read from left to 

right, where each horizontal line represents the evolution path of each qubit. 

The top line corresponds to the logical qubit, while the remaining ones 

correspond to the ancillary qubits. Before sending all qubits through a noise 

channel E , several CNOT and Hadamard gates are applied as can be seen. The 

present code is useful under the following important assumption: only one qubit 

at most can suffer from an error, which can be either logical or ancillary. In 

other words, the error must affect to a single qubit at most. As mentioned above, 

the error can be a bit flip, a phase flip, or a combination of both. This means 

that the Shor’s code can correct any kind of error always affecting a single qubit. 

Indeed, an error acting on a given qubit can be modeled as a 2x2-sized unitary 

transform U . Since the identity and Pauli matrices I , x , y , z  form a basis 

set for the 2x2-sized unitary matrices, U  can be expressed as the linear 

combination 0 x x y y z zU c I c c c  = + + +  with complex coefficients. If U I= , there 

is no error. If xU = , there is a bit flip error. If zU = , there is a sign flip error. 

If yU i= , there is a combination of both bit and sign flip errors. Hence, due to 

the linearity property of quantum-mechanical operators, it follows that the Shor 

code is able to correct any single-qubit error. Further gates are applied after the 

channel E , which detect the error and recover the initial state of the logical 

qubit. Interestingly, by measuring the state of the ancillary qubits it is possible 
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to know which error occurred without disturbing the logical qubit. Of course, 

to restart the algorithm the ancillary qubits must be initialized again.  

 

 

Fig. 56 Circuit of the Shor’s error correction code. The logical qubit encodes quantum 

information in the form of state superposition 0 1  = + . The ancillary qubits are 

initialized at the 0  state before executing the algorithm.  

 

Subsequently, Steane developed a code able to perform the same task as the 

Shor’s code but by using only seven qubits.316,342 This number was further 

reduced to five qubits by Laflamme and collaborators in the smallest quantum 

algorithm that can correct all one-qubit errors.343 Single-qubit bit and phase flip 

errors can also be corrected separately by using simpler algorithms which 

involve only two ancillary qubits, see Fig. 57 and Fig. 58 respectively. Both five-

qubit and phase flip error corrections codes have already been experimentally 

implemented by means of NMR techniques.17,323,344,345 
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Fig. 57 Quantum circuit of the bit-flip error correction code. CC BY-SA 3.0. Credits to 

https://en.wikipedia.org/wiki/File:Quantum_error_correction_of_bit_flip_using_three_qu

bits.svg 

 

 

Fig. 58 Quantum circuit of the phase-flip error correction code. CC BY-SA 3.0. Credits to 

https://en.wikipedia.org/wiki/File:Quantum_error_correction_of_phase_flip_using_three

_qubits.svg 

 

In this chapter, we study the possibility of implementing the Shor’s quantum 

error correction code on a magnetic molecule where the nine qubits are encoded 

in the low-lying 29 electronuclear spin states. Then, we derive the relationship 

between spin states and qubit labels ... ...ia  ( 0,1ia = ). Importantly, our quantum 

fidelity calculations reveal that the wave-functions can be safely replaced by the 

tensor product between the electron and nuclear parts in an ample realistic 

parameter range, which greatly simplifies the elaboration of such relationship. 

The relationship we select offers the important advantage of favoring the so-

called non-correlated noise. Indeed, one unfortunate simplification in quantum 

error correction consists in assuming that errors affecting different qubits are 

independent. This restriction is useful at an abstract level as it makes theoretical 

developments easier but not necessarily realistic. Our relationship favors this 

restriction to be fulfilled in practice as it is built in such a way that it ensures 

transitions flipping more than one qubit to be forbidden transitions. We also 

propose specific molecular candidates that could be adequate to implement the 

Shor’s code and show they lie inside the parametric range explored. In the last 

section we discuss on the most appropriate experimental techniques that could 

be used to conduct the algorithm.  
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7.3 Selection and Modeling of Quantum Hardware 

Our general scheme is to consider a molecular system with three exchange-

coupled magnetic ions M in linear connectivity M-M-M. Let us now assume 

that the ground electron state of M can be mapped onto an effective spin 

doublet, which would contribute one qubit per ion. To reach the required nine 

qubits, we consider the nuclear spin states of M which should have a nuclear 

spin quantum number I = 3/2. Hence, each M with 2I+1 = 4 = 22 would 

contribute with two additional qubits. All in all, the combination between the 

three electron doublets and the three nuclear quadruplets provides a 23·43 = 29 

dimensional Hilbert space, i.e., a computational basis set for 9 qubits. A 

potential candidate M can be the 159Tb3+ ion, which has a nuclear spin quantum 

number ITb = 3/2 with 100% natural isotopic purity, provided the ground 

electron state is a spin doublet with a large enough energy gap to the excited 

states. Alternatively, one could use the 63Cu2+ (or 65Cu2+) ion also with ICu = 3/2 

and a natural spin doublet JCu = 1/2 as a ground electron state. More transition 

metal candidates exist, but are more problematic from the point of view of 

experimental synthesis.  

The ground electron spin doublet of each 159Tb3+ ion can be modeled in many 

different ways. Of course, the simplest approach could be to use an effective 

spin J = 1/2. Nevertheless, this imposes a severe restriction at zero field, namely, 

in virtue of the so-called Kramers’ theorem the use of an effective spin J = 1/2 

would lead to a degenerate doublet in the absence of other interactions that 

could lift this degeneracy. In order not to lose this degree of freedom at zero 

field, which is in fact a physical property of the systems proposed in section 8.4, 

we propose to use an effective spin J = 1 with a large enough negative value (-

1000 cm-1) in the axial zero-field splitting parameter D . This guarantee 

isolating two components of J = 1 as a ground electron spin doublet, and allows 

removing their degeneracy at zero field by introducing the rhombic zero-field 

splitting parameter E. On the other hand, the zero-field splitting in lanthanide 

coordination compounds largely exceeds the exchange coupling magnitude. 

Thus, standard experiments do not allow to resolve a possible anisotropy in this 

coupling to include such a physical richness in the spin Hamiltonian. Hence, in 

order to avoid over-parametrization, we will consider an isotropic exchange.  
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All in all, the Hamiltonian we employ to model the low-lying energy 

spectrum composed of the lowest and well-isolated 29 = 512 electronuclear spin 

states is found in Eq. 95. 

 

 

( ) ( )( )
3

2 2 2

1 2 2 3 , , ,

1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 ex z i x i y i

i

H J J J J J DJ E J J
=

= − + + + −  

( )( )
3

2

, , ,

1

ˆ ˆ ˆ ˆ ˆ
i i z i z B z i I I z i

i

AJ I PI B gJ g I 
=

+ + + +  

Eq. 95 

 

In Eq. 95, ˆ
iJ  are the electron spin operators of each magnetic metal ion i = 1, 

2, 3, ˆ
iI  are the corresponding nuclear spin operators, Jex is the isotropic 

magnetic exchange between electron spins, D and E are the axial and rhombic 

zero-field splitting parameters, A is the isotropic hyperfine coupling between 

electron and nuclear spins, P is the isotropic nuclear quadrupole parameter, g is 

the effective electron Landé factor associated to the ground doublet of J = 1, gI 

is the nuclear Landé factor, μB and μI are the Bohr and nuclear magneton, and 

Bz is the magnitude of the magnetic field applied in the Z-axis direction, which 

is defined by the molecular anisotropy axis (note that both D and P act on the 

z-component of 2

,
ˆ

z iJ  and 2

,
ˆ

z iI  for each i). We consider that the magnetic exchange 

between nuclear spins is negligible enough not to include any direct coupling 

between them in Eq. 95. Of course, Eq. 95 could be expanded to incorporate both 

anisotropic magnetic exchanges and anisotropic hyperfine couplings.  

In the case of 159Tb3+, we take typical values A = 0.1038 cm-1, P = 0.01 cm-1, 

gI = 0.00073 as found in the literature.346–348 Since the typical value of g for 

lanthanide spin doublets modeled as an effective J = 1/2 is around 18, we select 

g = 9 in Eq. 95 because the magnitude of the effective electron spin we use is as 

much as twice J = 1/2 (i.e. J = 1). We will explore realistic ranges for Jex , E, 

and Bz, as these parameters can be varied with relative ease either by chemical 

or experimental design. In particular, we explore the three-dimensional 

parametric space defined by -1.0 ≤ 2Jex ≤ -0.2 cm-1, 0.0 ≤ 2E ≤ 1.0 cm-1, 0.00 ≤ 

Bz ≤ 0.25 T.349 In fact, we simplified this exploration by reducing it into a two-

dimensional parametric space such that, for each value of Jex, Bz is chosen so 
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that the energy gap between the ground and first excited spin states when A = 0 

closely matches the irradiation frequencies around 95 GHz employed in W-

band EPR spectrometers. This corresponds to 0.09 ≤ Bz ≤ 0.22 T. Of course, 

other spin transitions would require non-standard experimental setups to drive 

them. Eq. 95 is diagonalized by using the software package Magpack.350,351 

In a second independent exploration, we replace 159Tb3+ by Cu2+ and expand 

Eq. 95 to include an axial hyperfine coupling with components 
zA A= , 

x yA A A⊥ = = . This allows us exploring a different parametric space but typical 

in Cu2+ complexes given by  0.005 ≤ A  ≤ 0.030 cm-1, -10.00 ≤ Jex ≤ -1.00 cm-

1, where the following parameters are kept fixed A⊥  = 0.002 cm-1, P = 0.00127 

cm-1, g = 2.1, and gI = 0.00081.352–358 The parametric space is also simplified as 

explained above by applying magnetic fields with a magnitude around 2.25 T. 

Now that in this case D = E = 0 since JCu = 1/2.  

 

7.4 Spin States Labelling 

Since the Shor’s code involves nine qubits, the 29 = 512 lowest electronuclear 

spin states must be labeled as 1 2 3 4 5 6 7 8 9a a a a a a a a a  with 0,1ia = . For the sake of a 

simpler analysis, let us formally consider that the first three positions in these 

kets correspond to the three electron spin qubits and the rest stand for the six 

nuclear spin qubits. Of course, the electron and nuclear degrees of freedom 

appear together in Eq. 95. Nevertheless, if they both could be essentially 

decoupled, we could factorize the wave-functions describing each spin state as 

the tensor product between an electron part and a nuclear part. This would bring 

the important advantage of facilitating the search for a spin-qubit labeling with 

the desired properties mentioned above. Indeed, after rewriting the kets as 

1 2 3 4 5 6 7 8 9a a a a a a a a a , it would be enough to assign 1 2 3a a a  to the 23 = 8 

electron spin states and to assign 4 5 6 7 8 9a a a a a a  to the 26 = 64 nuclear spin states. 

In both cases, the number of spin states to deal with is considerably reduced 

from 512 to 8 and 64 resp.  

To factorize the wave-functions as explained above, we need to compare the 

actual wave-functions with the ones obtained by cancelling the hyperfine 

coupling A , and then check whether these two groups are essentially the same. 
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The measure we consider to compare two given wave-functions and decide how 

similar they are is the so-called quantum fidelity. Given two (normalized) wave-

functions 1

1

N

i i

i

x 
=

 =  and 2

1

N

i i

i

y 
=

 =  expressed in a orthonormal basis set

 
1

N

i i


=
, where ix  and iy  are complex coefficients, the quantum fidelity 12F  

between 1  and 2  is defined in Eq. 96. 

 

 

2
2

12 1 2

1

N

i i

i

F x y
=

=   =   Eq. 96 

 

We calculate ACF  between the actual wave-function A  and the wave-

function C  obtained by cancelling A in 159Tb3+ and both A  and A⊥  in Cu2+, 

for example, by giving a rather negligible value of 10-6 cm-1. Since cancelling 

the hyperfine coupling may change the energy sorting of the wave-functions, 

we match each A  with the C  that maximizes ACF . Given a fixed set of 

parameters, we calculate the 512 fidelities and consider the lowest one lowestF . 

Then, we plot ( )log 1 lowestF−  as a function of Jex and E for 159Tb3+, and as a 

function of Jex and A  for Cu2+. As seen in Fig. 59, the calculated fidelities are 

high enough both in 159Tb3+ ( lowestF  ≥ 0.9999) and in Cu2+ ( lowestF  ≥ 0.999999) for 

wide parametric areas, which allows the safe factorization of the wave-

functions. 
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Fig. 59 ( )log 1 lowestF−  as a function of Jex and E for 159Tb3+ (left), and as a function of Jex 

and A  for Cu2+ (right). 

 

In Table.  10, we label the 23 = 8 spin states corresponding to the electron part 

of the wave-function in terms of the three electron spin qubits 1 2 3a a a . Let us 

recall that these states arise from the coupling of three electron spin doublets, 

either the two well-isolated lowest components of the effective J = 1 in the case 

of 159Tb3+, or the two components of J = 1/2 in the case of Cu2+. Hence, these 

states are expressed in terms of the spin up-down basis set  ,  , 

,  ,  ,  ,  ,  . The coupling of three spin doublets 

results in two doublets J = 1/2 and one quadruplet J = 3/2; we label the spin 

states according to the quantum numbers J and Jm .  
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Table.  10 Selected spin-qubit labeling of the eight states that arise from coupling three 

spins doublets, which results in two doublets J = 1/2 and one quadruplet J = 3/2. A > a, 

and the exact values depend on Jex. We omit normalization constants. 

 

The correspondence was built in such a way that: (a) all spin- and symmetry- 

allowed transitions correspond to single-qubit errors and can hence be corrected 

by the Shor’s code, and (b) the state of the logical qubit (first position in 

1 2 3 4 5 6 7 8 9a a a a a a a a a ) can be unequivocally read from a measurement determining 

the value of Sm . As mentioned, by assuming that the error will occur in the 

electron spin part of the wave-function, we can choose among many valid spin-

qubit mappings for the nuclear spin states. Note that quantum algorithms often 

assume independent spin qubits to produce trivial mappings like 0 =  and 

1 = . This can be unrealistic in many solid-state implementations with 

sizeable magnetic interactions. Indeed, as we have shown, the coupling between 

spins forces a non-trivial spin-qubit labeling. This situation, known as “always-

on coupling”, is usually the general rule in dense solid- state systems. 

 

 

     1 2 3a a a      J     Jm    

111  
1/2 -1/2 ( )A a −  +   

011  
1/2 +1/2 ( )A a −  +   

101  
1/2 -1/2  −   

001  
1/2 +1/2  −   

100  
 3/2 -3/2   

110  
 3/2 -1/2  +  +   

010  
 3/2 +1/2  +  +   

000  
 3/2 +3/2   
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7.5 Molecular Systems as Candidates 

Coordination chemistry is known for its versatility of designing and 

synthesizing molecular candidates devised for an ample set of 

purposes.71,160,161,177,231 In particular, potential candidates that would be 

appropriate to implement the Shor’s code can come either in the form of discrete 

molecules or in the form of single-ion molecular entities connected with each 

other via supramolecular interactions such as hydrogen bonds. For instance, Fig. 

60 (top) shows a Tb3+-based discrete molecular trimer, Tb3(OQ)9.
359 The 

magnetic exchange Jex can be controllably weakened from this discrete situation 

to the supramolecular case exemplified in Fig. 60 (bottom), 

[{Tb(TETA)}2Tb(H2O)8]
+.360  

Instead, the case of Cu2+ may present experimental complications such as the 

difficulty to magnetically isolate each trimer from the rest. Indeed, since the 

Shor’s code only needs a single trimer to be implemented, it is important to 

isolate each one of them to avoid interferences. The standard procedure to 

accomplish this isolation would consist in synthesizing the diamagnetic analog 

of the Tb3+/Cu2+-based trimer, where the Tb3+/Cu2+ ions are replaced by a non-

magnetic ion such as Y3+/Zn2+, resp. Once these diamagnetic analogs were 

synthesized, they would be mixed with the magnetic trimers in a small enough 

proportion to assure that the latter are far enough away with each other. In the 

case of lanthanide ions, 4f-orbitals are quite internal and hardly participate in 

the ligand bonding. Thus, since the main change is produced in these orbitals, 

in the form of a different number of electrons, lanthanide ions acquire a certain 

chemical indistinguishability that allows them forming compounds with the 

same ligand set. On the contrary, 3d orbitals in metal transition compounds do 

participate in the ligand bonding and, of course, their electron content also 

depends on the metal ion. Thus, after producing the magnetic trimer, there does 

not exist a safe certainty to guarantee that synthesizing the Zn2+-based 

diamagnetic analog is also possible. Hence, we will focus the next discussion 

on the Tb3+-based trimer Tb3(OQ)9 as a case study.  
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Fig. 60 Molecular candidates for the implementation of the Shor’s code. Top: Tb3(OQ)9, 

(OQ=Quinoline). Bottom: [{Tb(TETA)}2Tb(H2O)8]
+, (TETA=Triethylenetetramine). 

Purple: Tb, Black: C, Blue: N, Red: O, White: H. 

 

We studied the low-lying electronic structure of Tb3(OQ)9 with the software 

package SIMPRE.213,214 This structure consists in the crystal field splitting of 

the 2J+1 components corresponding to the ground electron spin quantum 

number J of the given lanthanide ion. The calculated two lowest electron spin 

states i , energy gap   between these two states, energy gap   between the 

first and second excited electron spin states, and electron Landé factors 

associated to the two lowest electron spin states for Tb3(OQ)9 are found in Table.  

11. These results reveal that each Tb3+ ion shows a well-isolated ground electron 

spin doublet with a high effective Landé factor such as we needed. Of course, 

the set of molecular trimers in linear connectivity is too broad to explore. 

Nevertheless, we could expect that similar compounds synthesized with a 

similar chemistry will produce values for the relevant parameters in Table.  11 

in the order of magnitude that we need to satisfy our assumptions.  
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Table.  11 Single-ion characterization of 159Tb3+ in Tb3(OQ)9 with (i) composition of the 

two lowest electron spin states i  in terms of the basis set Jm  of the Jm  components 

of the Tb3+ ground electron spin quantum number J = 6, (ii) energy gap   between the 

two lowest electron spin states, (iii) energy gap   between the first and second excited 

electron spin states, and (iv) effective electron Landé factors associated to the two lowest 

electron spin states. 

 

7.6 Experimental Implementation 

The first step would consist in encoding the quantum information as a state 

superposition in the logical qubit. This would require to initialize the molecule 

in its spin state corresponding to the label 000000000 , whose electronic part 

has been intentionally assigned to the ground wave-function   in Table.  10. 

Then, a rotation from 000000000  to 100000000  will result in the desired state 

superposition 0 1 00000000 + . Since the logical qubit is encoded in the 

electronic part of the wave-function, according to Table.  10 this would require 

a coherent transition with a proper pulse length from the spin state   to 

  while preserving the nuclear part. 

In the case of the Tb3+-based trimers, given the magnitude ~0.10 cm-1 = 0.14 

K employed in the hyperfine coupling A, this initialization could be achieved 

by cooling the sample to mK temperatures. There exist alternative options such 

as pumping through excited states and the so-called algorithmic cooling. In the 

first case,361 an accurate irradiation of the sample allows promoting the spin 

population to excited states with much shorter spontaneous deexcitation rates 

towards the ground state. These excited states may lie outside the computational 

Ion 
i    (cm-1)   (cm-1) 

zg  xg  yg  

Tb1 96% 6  0.86 89.7 17.11 0.95 1.10 

Tb2 96% 6  0.92 191.2 17.20 0.54 0.72 

Tb3 96% 6  1.28 83.7 16.81 0.95 1.13 
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Hilbert space, and the irradiation time should not be extended for too long since 

otherwise the increasing thermal energy would deploy ground state population 

towards excited states. This drawback restricts the accuracy in the irradiation 

frequency and hence it would be desirable for the molecule not to contain states 

too close in energy. In the second case,362–366 one first performs a projective 

measurement inside the computational Hilbert space. Then, depending on this 

projected state, a different pulse sequence is applied to drive the spin population 

towards the ground state. Of course, the time taken in this procedure must be 

added to the overall computational time in which the molecule still keeps its 

coherence.  

To execute the Shor’s code, the circuit in Fig. 56 needs to be translated into 

an EPR pulse sequence. The experimental implementation will require the 

ability to apply pulses of many different frequencies to drive the relevant 

transitions between spin states. This could be achieved by means of an Arbitrary 

Waveform Generator operating inside an appropriate energy range.367–369 For 

instance, in the case of Tb3(OQ)9 and in the light of the energy gaps shown in 

Table.  11, a driving frequency of up to some tens of GHz could be required as 

in Q-band EPR spectroscopy. Note that the action of a CNOT gate whenever 

the value of the control qubit is 1 is to flip the value of the target qubit. Thus, 

this gate can be seen as a full transition or a π pulse between those spin states 

whose labels only differ in the value of the target qubit. On the other hand, a 

Hadamard gate consists in transforming 0  into ( )0 1 / 2+  and 1  into 

( )0 1 / 2− . Thus, this gate can be seen as a half transition or a π/2 pulse 

between those spin states whose labels only differ in the value of the relevant 

qubit. In this regard, ENDOR/ELDOR-based techniques have already been 

applied to molecular ensembles -where qubits are encoded in electronuclear 

spin states- in order to implement these gates and thus conduct quantum 

algorithms.370 Moreover, complementary techniques have also been proposed 

to minimize systematic errors that may arise in spin rotation operations and 

hence limit the usefulness of pulsed magnetic spectroscopy for quantum 

computing applications.371 

A minimalistic alternative to the full Shor’s code would consist in 

implementing either the bit flip or phase flip error correction code in Fig. 57 and 

Fig. 58, where only three qubits are required. In particular, Fig. 61 shows the 

pulse sequence that should be driven to run the bit flip correction code. This 
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could be done with no interference from nuclear spin states by using molecular 

trimers with no nuclear spin. For instance, either with lanthanides such as 
164Dy3+ and 166Er3+, or with transition metals such as low-spin 56Fe3+.  

 

 

Fig. 61 Translation of the Shor’s bit-flip error correction code (top) into an EPR pulse 

sequence (bottom). The quantum information is encoded in the logical qubit   at the 

beginning of the code in the form of state superposition 000 100 + = 0 1 00 + . 

 

It is equally important to implement an experimental mechanism to readout 

the computation result as required by the Di Vincenzo’s criteria. Interestingly, 

in our chosen spin-qubit labelling it is possible to measure the value of the 

logical qubit just by determining the sign of the quantum number Sm . While this 

could be experimentally tricky, there exist recent proposals more feasible to 

implement.148 As previously indicated, this possibility consists in placing the 

target molecules in resonant nano-constrictions, which are connected with each 

other through a net of superconducting coplanar waveguides. Under the so-

called dispersive regime, the difference in the energy level spacing of the 

molecule-resonator depends on the logical qubit state, and this would allow 

performing a non-demolition measurement by probing the molecule with a 

proper pulse energy. The ability to measure and initialize such logical qubit can 

be used, after a series of swap operations, to measure and initialize the ancillary 
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qubits instead. This would preserve the state superposition of the logical qubit 

and allow restarting the error correction code. In general, a potential molecular 

candidate devised to implement a given quantum algorithm should also fulfill 

the following two important requirements: (a) to have a low-lying energy 

scheme -determined by cw-EPR spectroscopy- with good enough isolation from 

the rest of the energy spectrum and (b) to show distinguishable and well-

resolved pulsed-EPR signals with sufficiently long relaxation times to allow 

observing Rabi oscillations. 
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Resumen 
 

No hay duda de que hoy en día vivimos todos inmersos en la llamada era de 

la información. Cada día, grandes ficheros de datos fluyen por todo el mundo a 

una velocidad que habría sido inconcebible solo unas pocas décadas atrás. Junto 

con la necesidad de almacenar y transportar grandes cantidades de información, 

existe también un creciente interés por lograr un mayor poder computacional 

capaz de satisfacer los más exigentes desafíos de interés actual para la sociedad 

y la industria. Entre estos desafíos, uno puede encontrar por ejemplo la 

simulación de nuevos materiales tanto para dispositivos tecnológicos como para 

aeronaves espaciales, o la simulación in-silico de nuevos medicamentos que 

ayuden a controlar y curar las enfermedades que afectan a los seres humanos. 

Estas necesidades siguen vigentes y lo seguirán estando mientras no sean 

resueltas. 

El aumento en la capacidad de computación de ordenadores estándar durante 

las últimas décadas ha sido posible según la tecnología ha sido capaz de fabricar 

transistores cada vez más pequeños para disponer un número más grande de 

ellos en un chip de procesamiento. Para hacerse una idea, cada dos años el 

número de transistores en un microprocesador se multiplica aproximadamente 

por dos. Esto es lo que se conoce como Ley de Moore, nombrada así por el 

cofundador Gordon Moore de Intel, quien estableció esta observación empírica 

en 1965. No obstante, es evidente que esta incesante miniaturización de los 

componentes electrónicos acabará por alcanzar la nanoescala, donde la física 

clásica ya no es válida y entran en juego las leyes de la física cuántica en su 

lugar. 

Dentro de este contexto, vale la pena preguntarse si las propiedades de los 

sistemas cuánticos podrían ser aprovechadas para construir un procesador 

cuántico y así procesar información. En efecto, esta idea ya fue propuesta 

primero por P. Benioff en 1980 y luego por R. P. Feynman en la primera 

conferencia de Física de la Computación en el Instituto Tecnológico de 

Massachusetts en 1981. Estas propuestas habrían quedado en una simple 

anécdota de no ser porque, en 1994, P. Shor ideó el primer algoritmo cuántico 

capaz de llevar a cabo factorizaciones en números primos de grandes números 

enteros en tiempo polinomial, lo cual mejora con creces el tiempo exponencial 
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que requieren los ordenadores clásicos. Este hecho representó la prueba de 

concepto de las enormes ventajas que un ordenador cuántico podría traer 

respecto a la computación clásica, y desde entonces ello ha atraído la atención 

de un número creciente de investigadores de todo el mundo interesados en 

contribuir al desarrollo de la computación cuántica. 

El siguiente paso natural es preguntarse qué tipo de hardware debería ser 

empleado ya sea para almacenar información en éste o para implementar un 

algoritmo cuántico dado que la procese. Mientras que por el momento ciertos 

sistemas físicos pueden ser identificados como potenciales candidatos, es 

igualmente esencial perseguir este objetivo sobre una amplia base de enfoques 

que colaboren entre sí permitiendo la interacción de distintas disciplinas físicas 

(por ejemplo, óptica cuántica, física atómica y física del estado sólido). Algunas 

de las propuestas para hardware más comúnmente estudiadas son aquellas 

basadas en: trampas de iones fríos, resonancia magnética nuclear, 

electrodinámica cuántica de cavidades, óptica lineal, puntos cuánticos, dadores 

de fósforo en silicio, uniones de Josephson, fulerenos endohédricos, y centros 

nitrógeno-vacante. De hecho, el emergente campo de la nanociencia y la 

nanotecnología también está proporcionando más aproximaciones alternativas. 

En este caso, las piezas básicas son las que han constituido la materia de estudio 

en esta tesis: los llamados nanoimanes moleculares y los qubits de espín 

molecular. Los primeros podrían ser usados como memorias clásicas para el 

almacenamiento de información, mientras que los segundos constituirían la 

unidad más elemental de procesamiento cuántico. 

A pesar de existir un sinfín de candidatos prometedores para hardware, el 

objetivo de construir ordenadores cuánticos multipropósito capaces de resolver, 

de manera eficiente, problemas intratables por ordenadores clásicos parece estar 

hoy en día aún fuera del alcance. Antes de lograr este objetivo, varios desafíos 

tanto fundamentales como tecnológicos deberán primero ser resueltos, siendo 

la decoherencia y la escalabilidad dos de los más representativos. El primero 

tiene que ver con el hecho de ser bastante difícil desacoplar un sistema mecano-

cuántico dado de su entorno, de manera que ciertas interacciones no controladas 

con dicho entorno dañarán, dentro de una escala temporal, la información 

codificada en forma de qubits. Éstos son las piezas más básicas de cualquier 

procesador cuántico, y han sido presentados en el capítulo 2. Por otra parte, la 

ejecución de algoritmos capaces de realizar tareas de complejidad creciente 

requerirá la interacción de un número de qubits también mayor mientras se 
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mantiene la información cuántica intacta. Esto es a lo que la escalabilidad se 

refiere. Sí existen ya varios prototipos a pequeña escala que funcionan con un 

número reducido de qubits, los cuales están demostrando que la computación 

cuántica de la información se está convirtiendo en realidad. No obstante, solo 

la consecución de un procesador cuántico capaz de incorporar un número de 

qubits lo bastante grande hará de la computación cuántica una herramienta a la 

que merezca la pena prestar atención a la hora de resolver problemas de interés 

para la sociedad y la industria. 

Actualmente en el campo de los qubits de espín molecular, uno de los 

objetivos clave es desvelar el rol de los distintos mecanismos de decoherencia 

que actúan sobre los qubits de esta naturaleza particular, con el fin de establecer 

reglas sintéticas generales y racionales que puedan ser empleadas en el 

laboratorio de manera rutinaria, así alcanzando tiempos de memoria de fase lo 

bastante largos. Este tiempo característico determina la escala temporal dentro 

de la cual la información cuántica puede mantenerse intacta, y ha sido 

introducido en el capítulo 2. En la consecución de este objetivo, el enfoque 

teórico está demostrando ser una herramienta indispensable sobre cómo 

adquirir un creciente conocimiento. Así, uno de los objetivos principales de esta 

tesis ha sido proporcionar un marco de trabajo de primeros principios destinado 

a proveer primero una estimación cuantitativa del impacto de algunos de los 

mecanismos de decoherencia más importantes sobre el tiempo de memoria de 

fase; y luego una guía de modificaciones químicas sobre las estructuras 

geométricas de moléculas dadas que resulten en un incremento de dicho tiempo. 

En conjunto, el objetivo clave consiste en desvelar la relación explícita 

estructura-propiedad en qubits de espín molecular, donde la estructura es de la 

molécula que codifica el qubit y la propiedad es su tiempo de memoria de fase, 

con el fin de elaborar una receta general que permita conocer cómo construir un 

qubit de espín molecular con el tiempo de memoria de fase deseado. 

Otros sistemas magnéticos importantes que han sido objeto de estudio son 

los nanoimanes moleculares mononucleares basados en lantánidos y uranio. El 

mecanismo de relajación estudiado en estos sistemas ha sido el que se deriva 

del acoplamiento espín-vibración, el cual contribuye a destruir la información 

guardada en forma de bit a temperaturas lo bastante altas. Motivados por el 

hecho de que los métodos teóricos actuales son demasiado exigentes 

computacionalmente, el segundo objetivo principal ha sido desarrollar una 

metodología barata de aplicar y de primeros principios que permite una 
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evaluación generalizada y eficiente del acoplamiento espín-vibración y de la 

relajación de espín en nanoimanes moleculares mononucleares basados en 

lantánidos y uranio. Esta metodología también ha logrado ser capaz de 

proporcionar conocimiento sobre cómo la estructura geométrica de uno de estos 

nanoimanes tiene que ser modificada químicamente para mejorar el rendimiento 

del imán en cuestión. 

Para asegurar una aplicación sistemática y práctica de los métodos aquí 

desarrollados, el tercer objetivo principal ha sido construir un marco de trabajo 

computacional en forma de paquete de software en el que todos estos métodos 

han sido programados. Este código ha sido usado en un conjunto representativo 

de qubits de espín molecular y nanoimanes moleculares potenciales. Por último, 

pero no menos importante, el cuarto objetivo principal ha sido presentar y 

discutir sobre el diseño de distintas estrategias moleculares que permitan usar 

qubits de espín para construir arquitecturas escalables destinadas a implementar 

algoritmos cuánticos tales como códigos de corrección cuántica de errores. 

Esta tesis se ha presentado desglosada en tres bloques principales como 

sigue: 

El primer bloque "Computational Development" describe el marco de trabajo 

computacional en forma de un software práctico y útil que pueda ser 

proporcionado a cualquier investigador interesado. Todos los modelos 

presentados en el segundo bloque son actualizaciones que han sido 

implementadas sobre el código original SIMPRE desarrollado con anterioridad 

a esta tesis. La primera versión actualizada de este código que fue desarrollada 

y publicada dentro del presente trabajo es SIMPRE1.2, y es presentada en el 

capítulo 3. Además, en este mismo capítulo, también se presenta la versión más 

reciente de este paquete computacional, SIMPRE2.0. El código en cuestión ha 

sido escrito en el lenguaje de programación FORTRAN, y requiere de la librería 

LAPACK de subrutinas sobre álgebra lineal para ser compilado y ejecutado. En 

aras de buscar una mejor organización, el código está estructurado de forma 

modular, esto es, las distintas funcionalidades se disponen en varias subrutinas 

independientes que son llamadas a conveniencia del usuario. Esto permite 

utilizar solamente aquellas cuya ejecución es requerida, reduciendo así el 

tiempo computacional empleado. Del mismo modo, el input se reparte en varios 

ficheros de manera que solo se usan aquellos que pertenezcan a las subrutinas 

requeridas. Así, se facilita la tarea al usuario ya que éste solo necesitará preparar 
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aquellos que se vayan a utilizar. Igualmente, con el fin de que su manejo sea tan 

cómodo como sea posible, el output del programa también se reparte en varios 

ficheros. Hay uno de ellos que siempre se producirá y que contiene el resultado 

de la diagonalización del Hamiltoniano de espín, esto es, energías, funciones de 

onda, y los valores esperados de los operadores de espín electrónico y nuclear. 

El resto de ficheros output se producirán en función de si las subrutinas a las 

que pertenecen han sido requeridas o no. La ventaja principal de SIMPRE es su 

capacidad de conducir a una amplia variedad de resultados sin por ello consumir 

un excesivo tiempo computacional. En particular, el código original anterior a 

este trabajo ya incorpora el llamado modelo “Radial Effective Charge” (REC), 

que permite una estimación barata de los parámetros de campo cristalino. Todo 

ello sin renunciar a producir predicciones satisfactorias respecto a datos 

experimentales e incluso al nivel de aquellas derivadas de cálculos de primeros 

principios. Los métodos dedicados a simular la relajación de espín y estimar sus 

parámetros característicos -trabajo realizado en esta tesis- también conllevan 

una rápida ejecución y, sobre todo, son sencillos de aplicar ya que en la gran 

mayoría de casos solo se requiere conocer las coordenadas atómicos en un 

cristal molecular, algo que rutinariamente se realiza mediante cristalografía de 

rayos X.  

El segundo bloque "Theoretical Development and Applications" se centra en 

presentar los modelos teóricos desarrollados en esta tesis. Éstos han sido 

ideados para desvelar el impacto de algunos de los mecanismos de relajación 

de espín más importantes que actúan sobre qubits de espín molecular y 

nanoimanes moleculares mononucleares basados en lantánidos y uranio, a 

saber, "Spin-vibration Coupling" en el capítulo 4 y "Magnetic Noise" en el 

capítulo 5. Estos modelos han sido aplicados a varios qubits de espín molecular 

y nanoimanes moleculares potenciales de interés actual, con el fin de extraer 

una lista de modificaciones químicas sobre las estructuras moleculares que 

puedan ayudar a mejorar el rendimiento de estos sistemas en el laboratorio. En 

el capítulo 4, se estudia la relajación de espín mediada por vibraciones, ya sean 

deslocalizadas en la red cristalina o localizadas en la misma molécula. Para ello, 

se ha desarrollado primero un modelo de primeros principios capaz de 

cuantificar la influencia de dichas vibraciones sobre los estados de energía de 

espín en función de la temperatura. Además de la evolución termal de dichos 

estados, también es posible dar una medida del acoplamiento de cada vibración, 

de manera que el efecto conjunto consiste en un balance entre cuán acoplada y 
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cuán poblada está una vibración dada a una cierta temperatura. Posteriormente, 

combinando este enfoque con el modelo REC, ha sido posible llegar a un marco 

teórico general y barato computacionalmente que permite calcular tiempos de 

relajación magnética y determinar los caminos de relajación más probables en 

nanoimanes moleculares mononucleares basados en lantánidos y uranio. Estos 

modelos desarrollados en este capítulo han sido aplicados tanto a un nanoiman 

molecular basado en U3+ como a un conjunto de qubits de espín molecular 

potenciales basados en Cu2+ y V4+. En cada ejemplo, ha sido posible determinar 

aquellas vibraciones más propensas a influir las energías magnéticas, así como 

de promover la relajación de espín. Son por tanto las vibraciones que deberían 

eliminarse en un rediseño de las moléculas en el laboratorio con el fin de 

mejorar el rendimiento de las mismas, tal y como se perseguía en los objetivos.  

En el capítulo 5, en primer lugar, se ha extendido un modelo que estima el 

tiempo de memoria de fase cuando la difusión de espín nuclear es el mecanismo 

de decoherencia dominante al caso en que la muestra se presenta en forma de 

polvo microcristalino o disolución congelada. Esta extensión del modelo, 

basada en las llamadas reglas de Lebedev, se ha aplicado a un qubit de espín 

molecular de Cu2+, proporcionando resultados que están de acuerdo con el 

experimento. De igual modo y con el mismo objetivo, se ha extendido también 

otro modelo destinado esta vez a estimar el tiempo de memoria de fase que 

resulta de un baño de espines nucleares. Esta extensión ha sido testada al 

aplicarse a los qubits de espín moleculares basados en Gd3+ presentados en el 

capítulo 7. Por último, en este capítulo se ha desarrollado un modelo centrado 

en calcular el tiempo de memoria de fase debido a un baño de espines 

electrónicos cuando la difusión instantánea es el mecanismo que domina como 

fuente de decoherencia. Importantemente, dicho modelo ha permitido 

reproducir y explicar el tiempo de memoria de fase de un qubit basado en Ho3+ 

y definido en un entorno de una transición atómica de reloj, donde otros 

modelos anteriores y recientes fallan.  

En el tercer y último bloque "Current Challenges" algunos problemas 

abiertos y desafíos actuales de amplio interés en el campo de los qubits de espín 

molecular son presentados y discutidos. En el capítulo 6 "Atomic Clock 

Transitions in HoW10" hemos propuesto un enfoque novedoso basado en la 

introducción de probabilidades de transición que ha permitido reproducir 

satisfactoriamente la dependencia con el campo magnético del tiempo de 

memoria de fase de un qubit de espín molecular basado en Ho3+. Dado que el 
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modelo funciona una vez la difusión instantánea es la fuente de decoherencia 

dominante, las predicciones resultan tanto mejores según la concentración de 

espines electrónicos es más alta. Se ha discutido también con detalle sobre la 

presencia real de estas probabilidades en base a hechos experimentales que 

puedan sustentar dicha hipótesis. En el capítulo 7, "Scalability", discutimos 

sobre la potencial aplicación de qubits de espín molecular para ser 

espacialmente organizados y así construir arquitecturas escalables capaces de 

implementar algoritmos cuánticos. Aquí hemos presentado dos propuestas 

concretas basadas en (i) sujetar qubits de espín molecular a una clase específica 

de biomoléculas conocidas como "Lanthanide Binding Tags", (ii) incorporarlos 

dentro de estructuras tridimensionales llamadas "Metal-Organic Frameworks". 

En ambos casos, la parte desarrollada en esta tesis ha consistido primero en 

estimar los parámetros de campo cristalino en base a experimentos de 

espectroscopía EPR. A continuación, se han determinado los esquemas de 

estados de energía, lo que a su vez ha permitido estimar los tiempos de memoria 

de fase según los modelos presentados previamente. En estos sistemas, el hecho 

de que dichas estimaciones sean superiores a los valores experimentales, hace 

pensar que están en juego otros mecanismos de decoherencia no considerados. 

En el capítulo 8 "Quantum Error Correction" hemos estudiado moléculas 

magnéticas polinucleares de coordinación basadas en Tb3+, cuyos esquemas de 

energía permiten definir hasta 9 qubits. Luego, hemos discutido sobre la 

posibilidad de implementar en ellas algunos algoritmos tales como los códigos 

de corrección cuántica de errores de Shor de 3 y 9 qubits. Si bien el punto crítico 

a superar es a menudo que los tiempos de memoria de fase sean lo bastante 

largos respecto a los tiempos de puerta lógica, los ejemplos aquí estudiados sí 

sientan un buen precedente que anime a buscar otros sistemas más prometedores 

en el futuro.  
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