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Abstract

In the Materials Science field, two-dimensional materials have gained the scientific
community attention in recent years. The change and the appearance of novel prop-
erties when their thickness is reduced to nanometric scale has special interest for its
fundamental properties study for, from these base, the design and its implementa-
tion in devices. The wide variety of materials with the possibility of being exfoliated
at the two-dimensional level opens the field to different applications, from optoelec-
tronic devices, detection and sensing, energy storage, catalysis, medical applications

and quantum information technologies, among others.

This thesis gathers results in both directions: a fundamental science level study in
two-dimensional materials less explored by the scientific community and its imple-

mentation in optoelectronic devices focused on different applications.

In the first part, optical and electrical properties of the family of III - VI semi-
conductors, less explored and complementary in many properties to the well-known
transition-metal dichalcogenides will be studied. The photoluminescence of Gal-
lium Selenide will be analysed, where a shift in its luminescent emission of 120 meV
is demonstrated experimentally when the thickness of GaSe slabs is reduced from
the bulk to 8 nm, a result superior to that reported at the moment and consis-
tent with that expected by calculations, with a shift from 2.02 eV in its bulk state
up to 3.2 eV when the monolayer is obtained, from the visible spectra to the near
ultraviolet according to first principles calculations. The oxidation mechanism of
this material under normal conditions is also studied by techniques such as atomic
force microscopy, optical contrast and X-ray photoelectron spectroscopy to under-
stand the evolution in its degradation processes detected in two-dimensional GaSe
samples. A second member of the III-VI semiconductor family has been studied
in this thesis, Indium Selenide, a material whose optical properties are known to a
greater extent, but whose electrical properties in its two-dimensional form have not

been explored will be the focus of the study. This thesis demonstrates the usage of



multiterraced nanosheets of this material as heterojunctions without defects in its
junction that behave as p - n heterojunctions, the basis of modern optoelectronics
in devices such as transistors, photodetectors or photodiodes. Based on the change
in its band structure when thickness is reduced, its behavior as a photodetector is
studied through its I - V characteristics and a detailed study of the carrier recom-
bination in the barrier generated by the change of prohibited band gap in the area
where the thickness changes. In addition, for the modeling and design of electrical
devices using this material, the dependance of the work function with the nanosheet
thickness is studied by means of Kelvin probe force microscopy and first principles
calculations, demonstrating that the work function of InSe slightly increases when
the two-dimensional liimit is reached. Finally, as an application of this material in
its two-dimensional form, its abilities for sensing of gases by means of the change
in the photoluminescence of the samples exposed to different concentrations, times
and gases is proposed and demonstrated. Thiols will be used due to their pres-
ence of the sulfide radical, present in different organic food and similar decays and

trinitrotoluene as an example of gas present in bomb detection, among others.

After presenting the III -VI semiconductors, a second part of the thesis will focus on
its experimental implementation in proto-devices to take advantage of or to optimise
the properties described above, comparing the results in each case with monolay-
ers of transition metal dichalcogenides such as Tungsten Selenide or Molybdenum
Selenide. Specifically, we will try to take advantage of the recently demonstrated
out-of-plane dipole nature of the Indium Selenide nanosheets, contrary to the tran-
sition metal dichalcogenides, which hampers its usage in the vertical excitation -
vertical collection usual configuration in scientific studies. First, through the use of
silicon oxide microspheres on the two-dimensional nanosheets, the extraction and
collection of their photoluminescence will be optimised, both in the case of Indium
Selenide and Tungsten Selenide. Besides, the behavior as an out-of-plane dipole
will be demonstrated in the case of the Indium Selenide and the low energy con-
tribution of the Tungsten Selenide photoluminescent emission associated with the
charged exciton or trion due to the whispering gallery modes that occur in the
microspheres. This technique offers an additional control to the photoluminescent
emission of these materials depending on the diameter of the microspheres, both in
an enhancement in its intensity and in the effective emission position peak collected

for its implementation in a specific application.

After this, these two-dimensional materials will be studied in vertical heterostruc-



tures together with perovskite nanocrystals with visible photoluminescent emission,
obtaining an enhancement in the photoluminescence collected in the case of Indium
Selenide nanosheets compared to that obtained together with Molybdenum Selenide,
where the photoluminescence detected is reduced by depositing a nanocrystalline
perovskite on the exfoliated monolayers. The reason for this effect is the reab-
sorption by the Indium Selenide of what is emitted by the perovskite layer on top,
due to the optimal arrangement of its out-of-plane dipole and the multidirectional
emission of the perovskites, as opposed to the in-plane dipole of transition metal
dichalcogenides, already optimal for vertical excitation and collection. These studies
support are promising for the engineering of optoelectronic devices based on these

two-dimensional heterostructures.

Finally in this second part, the possible integration of these two-dimensional mate-
rials into photonic devices is studied. In particular, the behavior of Indium Selenide
nanosheets and Tungsten Selenide and Molybdenum Selenide monolayers on pho-
tonic waveguides is studied, allowing excitation and collection interchangeably in
the horizontal and vertical directions to the exfoliation plane, in all possible con-
figurations. After some essays steps with Indium Selenide, the implementation of
the transition metal dichalcogenides in the photonic waveguides is studied in detail,
obtaining experimental measurements in all guiding configurations, as well as their
different behavior in its absorption and photoluminescent emission against polarised

light in the waveguide.

In a third and final part of the thesis two two-dimensional materials not explored
in the literature will be presented: Bismuth Sulfide and Molybdenum Oxide. In the
case of Bismuth Sulfide, a semiconductor material is presented that, in addition to
its anisotropy between the exfoliation plane and the vertical direction, presents an
unusual optical and structural anisotropy within the plane, demonstrated by several
optical techniques such as Raman spectroscopy, photoluminescence, optical contrast,
differential reflectivity and transmittance. The application of such anisotropy in op-
tical fibers as a Fabry-Perot cavity in its core is demonstrated, from which results
its birefringence is obtained in comparison with other reported laminar materials.
Finally, Molybdenum Oxide is presented as a two-dimensional insulating material,
uncommon in the two-dimensional materials field, where hexagonal Boron Nitride is
the only one considered. The exfoliability of Molybdenum Oxide and its advantages
over hexagonal Boron Nitride are demonstrated: its absence of low temperature de-

fects and its almost-zero nuclear spin compared to hexagonal Boron Nitride, which



hampers its usage in nuclear spintronics oriented devices. The usage of this new
material as a two-dimensional insulator is demonstrated by the encapsulation of
transition metal dichalcogenides monolayers within this material and studying its
behavior at low temperature, from its single photon emitters behavior to the nar-
rowing in the emission and absorption of the encapsulated semiconductor, obtained

by photoluminescence and differential reflectivity at low temperature, respectively.
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1 Introduction

This chapter will describe the framework in which this thesis is framed, from a
brief description of the field state-of-the-art, as well as its growing interest applied
in different fields and the importance and potential in its growth. Finally, it will
describe the focus of the thesis and its objectives, as well as the different projects

worked within it.

1.1 State-of-the-art: graphene, two-dimensional

transition metal dichalcogenides and hBN

Within material science, nanomaterials is a field in its heyday, we are in an apogee
where new studies around different nanomaterials and their properties are presented
every day, obtaining newer and newer properties. The accumulted knowledge in this
field has promoted that expansion and implementation of these nanomaterials at a
commercial level. It is a field that experiences an exponential growth but that

society incorporates in its day to day at an overwhelming pace.

In nanomaterials, at least one dimension is in the nanometric scale [68]. In this
regime, the atoms or molecules that consitute the nanomaterial experience qualita-
tive changes in their properties, which affect the final nanomaterial properties. In
these configurations, size-effects properties become relevant. Effects such as quan-
tum confinement, superparamagnetism or surface plasmon resonances take their

place in these nanomaterials.

When we mention a material, in general, the three-dimensional (3D) or bulk mate-
rial is considered. In a nanomaterial, if all its dimensions are restricted in the range
of a few nanometers (not exceeding 500 nm as a general rule, considering after that

the micrometric scale), they are usually called zero-dimensional (0D) materials. For
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Chapter 1 Introduction

instance, nanoparticles or quantum dots belong to this family. Studies that com-
pletely cover the scientific spectrum, e.g. from its use for leading medical purposes
[20, 25, 59, 34] or quantum technologies to be developed [19, 39, 52, 65] or as funda-
mental parts in daily applications, from body creams [38, 28] to televisions [43, 21],

among others.

Two of the dimensions of the material are nanometric in a one-dimensional (1D)
material, with nanowires at their maximum example. Like before, cutting-edge
studies are deployed around these materials [5, 7] meanwhile they are completely
embodied in our DNA [35], or any carbon nanotube racket tennis that we can
purchase as examples of day-to-day 1D materials. And last but not least, if only
one of its dimensions is considered nanometric, a two-dimensional (2D) or layered

material is the object of study. Is in these 2D materials where this thesis is framed.

Perhaps one of the best examples chronologically of these dimensionality variety lies
among the carbon materials. Carbon, in its 3D form, is graphite. It has been used
since the 4th millenium BC [27], usually known as black lead or plumbago, and uses
as a steel component [54], dry lubricant [53] or any pencil we use are not impressive

nowadays.

However, in the past, the scientific community saw a potential in this material,
with a structure which made possible its nanometric form. It was not until 1985
when fullerene, its 0D form, was obtained [70]. This fact suggested the 1D form
existance, the carbon nanotubes, which 6 years later, in 1991, were first demostrated
[16]. Although the 2D graphite (called graphene in a monolayer (ML) state) was
the starting material to understand and theoretically form fullerenes and carbon
nanotubes, it was the last obtained, when in 2004 A. Geim and K. Novoselov isolated
a graphene ML sheet [322].

Graphene was the first 2D material obtained, by a simpler technique than previ-
ously proposed: graphite, from its bulk state, was exfoliated in MLs of graphene
using commercial scotch tape. However, the simplicity of its obtaining method has
not been what astonished the scientific community (creating its own field, that of
2D materials, one of the most cutting-edge and booming fields in the last years),
but its amazing properties, completely different from those of its 3D state. The
ML of graphene turned out to possess one of the highest thermal and electrical
conductivities [26]. Besides, its mechanical properties, such as stiffness or strength,

highlighted among similar materials, supporting very high strain prior to mechanical
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1.1 State-of-the-art: graphene, two-dimensional transition metal dichalcogenides
and hBN

failure [228], being able to be bent or wrinkled without damage.

However, in optoelectronics, its massless Dirac fermions band structure [238, 48]
opened the study of this novel electrical properties, becoming the 2D quintessential
conducting material. Many efforts were made to open a gap in this material by many
techniques to use graphene as a 2D semiconductor for devices. From morphological
manipulations through strain [64, 49, 31, 69, 46|, shear [30], patterning graphene
into nanoribbons [42] or periodic ripples [44], changing its chemistry through hy-
drogenation [33] or applying a perpendicular electric field [48], among others. But
the specific conditions for this fact and its difficulty opened the gate wide open for
other 2D materials to complement graphene, in these cases, already intrinsically

semiconductors in their 3D form.

2D Transition Metal Dichalchogenides (TMDs) such as Molybdenum Sulphide (MoS,),
Molybdenum Selenide (MoSe;), Tungsten Sulphide (WSs) and Tungsten Selenide
(WSey) were obtained with similar techniques to graphene up to its 2D ML form
and could be, after graphene, the most studied 2D materials. Among the several
studies about this family of materials worth noting, due to the quantum confine-
ment effects in the exfoliation plane, the indirect-to-direct transition in their band
gap when the materials are exfoliated from their bulk state to their ML [316, 338]
and their strong exciton binding energy, which makes them ideal for their excitonic
physics study even at room temperature (RT). For the first time, intrinsically 2D
semiconductor materials had been obtained for their application in optoelectronics.
So after a 2D conductor and 2D semiconductors, hexagonal Boron Nitride (hBN)
was obtained with similar techiques in its ML state. With a 5.97 eV band gap [71],
filled the void as a 2D insulator.

Figure 1.1: Cites per year in the last 15 years about 2D topics, data obtained from
Web of Science, Fundacion Espafiola para la Ciencia y la Tecnologia (FECYT).
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Chapter 1 Introduction

These ideas not only boosted the interest about their basic properties among the
scientific community, as observed in Figure 1.1, but also about applications of that
interesting properties. Fields such as optoelectronic devices [50, 41, 29, 51], teleco-
munications [13, 23, 66], biosensing [110, 109, 102, 111] or medicine [67, 32, 58, 15]
started to apply these studies to actual applications or devices. In some cases, 2D
materials not only surpass the materials already used with better performance, but

also complemented them enhancing or giving new capabilities.

The relevance of these 2D materials was not only achieved in already-fundamented
fields, but creating or supporting fields where the other materials could not achieve,
such as foldable wearable technologies [72, 11, 37, 9], valley- and spintronics [18, 24,
57, 60, 8], quantum technologies [1, 36, 17, 55] or superconductivity [45, 56] are a

few examples.

The nanomaterials cited before are just examples of the most and first 2D materials
studied. But just as we have the periodic table that collects all the elements, and
those elements come together to form an large variety of materials, to keep attention
to a few of these when describing the material science field in general is to be basically
blinded. When we talk about 2D materials we have to think about all of them, the
acquaintances and those that are to come, their properties and those that have not
yet been discovered, the already proposed applications and the applications that

will come. Therefore, the study of new 2D materials is needed.

The future of the 2D materials seems unimaginable, and the limit of their potential
applications, unreachable. The number of materials that obtain new properties in
their 2D state only increases every day, and the variety in these properties and
their different combinations predicts a field that in the coming years will only grow
exponentially, both in its understanding and in its implementation in different and

new applications.

1.2 Objective of the thesis

In this context, this thesis focuses beyond the next premises:

o Among the different methods of preparing 2D materials, each with different
advantages and disadvantages, all the samples studied will be prepared by mi-
cromechanical exfoliation (Subsection 2.1.1), a technique with which samples

of great purity and quality are obtained in order to study its new properties.
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1.3 Organisation of the chapters

o Less-explored 2D materials, their properties and their implementation in de-

vices are main concerns in this thesis.

e In order to compare the less-explored 2D materials addressed, “classic” TMDs
will be studied for comparison, obtaining new understanding in their properties

too.

o This thesis has a great experimental weight, since the whole process will be
addressed: from the preparation of different 2D materials, to its characteri-
sation through different techniques, the study of their properties via different
methods, to its implementation in devices for specific applications, concerning
different fields, from sensing, to microresonators, perovskites, implementation
in integrated optical waveguides, optical fibres... The inmersion of the 2D ma-
terials explored in different enviroments or fields, together with the study of
its basic properties, raises a broad vision of its application in different fields,

with the aim of opening new mixed-fields of study.

Therefore, among the III-VI semiconductors, Gallium Selenide (GaSe) and Indium
Selenide (InSe) will be studied. First, their basic optical and electrical properties
will be addressed, to finally include them among different devices to enhance or

apply its properties on a specific matter.

Besides, new 2D materials barely explored with in-plane anisotropy such as Bis-
muth Sulphide (BiyS3) as a semiconductor and Molybdenum Trioxide (MoOs) as an

insulator will be presented, studied and a device implementation will be proposed.

The completion of this doctoral thesis is part of the Low-dimensional materials
(Lowdim) line of research within the Optoelectronic Materials and Devices Unit
(UMDO) of the Institute of Materials Science of the University of Valencia (IC-
MUYV). Besides, the last chapter has been developed in the Institute of Photonics
and Quantum Sciences (IPaQS) of the Heriot-Watt University (Edinburgh, United
Kingdom) during a 5-months stay.

1.3 Organisation of the chapters

This thesis starts briefly sketching the field state-of-the-art in which is framed, the

2D materials, and presenting the background of well-known 2D flagship materials
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Chapter 1 Introduction

such as graphene, the TMDs or hBN, pointing out the several applicability fields
and its potential (Chapter 1).

After that, the experimental techniques that have been addressed and employed
through the different projects embraced during this thesis have been presented,
achieving the whole process, from the preparation and characterisation of samples,
through its study of various optical and electrical properties, to the implementation

of these materials in devices and applications (Chapter 2).

One of the focuses of this thesis aims in less-explored semiconductors beyond the
TMDs for optoelectronic applications: the III-VI semiconductors, where optical

properties of GaSe and electrical properties of InSe will be studied (Chapter 3).

ITI-VI semiconductors exhibit not enough absorption or emission in some circun-
stances, so next Chapters explore techniques to overcome this issue, from the usage
of microspherical resonators to tune the optical response of 2D materials (Chapter
4), to the development and characterisation of 2D InSe/perovskites hybrid het-
erostructures (Chapter 5), ending with an integrated-device-oriented study through
their implementation in optical waveguides (Chapter 6). In all of them, even though
the objective starts as enhancement to the III-VI semiconductors, have been repro-
duced for comparison with better-known semiconductors such as TMDs, reaching

new understanding about their nature.

Finally, after three chapters where the anisotropy between the z direction and the x -
y exfoliation plane becomes quite relevant, the non-frequent in-plane x - y anisotropy
has been evaluated in two poorly unexplored 2D materials: BiyS3 as a semiconductor
(Chapter 7) and MoOj3 as an insulator (Chapter 8), concluding both proposing an

application using nanosheets of the materials presented.

The thesis will end concluding the main results of the different projects involved and

its future prospects (Chapter 9).
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2 Experimental techniques

In this chapter, a description of the experimental techniques employed in the differ-

ent projects involved in the course of the thesis will be presented.

2.1 Sample preparation

The sample preparation methods from its bulk state to nanosheets and the transfer

mechanisms to develop different devices will be described in this section.

2.1.1 Micromechanical exfoliation

In 2004, A. Geim and K. Novoselov [322] obtained for the first time via microme-
chanical exfoliation graphene nanosheets using a simple and, even today, one of the
more effective techniques to obtain thin films up to MLs of exfoliable materials,
obtaining high-quality nanosheets which conserve a defined and homogeneus crysta-
lographic orientation. It is a top-down technique that exploits the laminar structure
of the volumic material to be exfoliated and the difference in the strength between
the weak interlayer van der Waals (vdW) bonds and the strong intralayer covalent
bonds. By using this technique, a freshly cleaved bulk layered crystal is deposited
on a scotch or adhesive tape and is gently peeled off several times in the tape, being
folded repeatedly against itself. Due to the weaker vdW interlayer bonds, in each
exfoliation the peeled off material separated from the bulk source will be thinner,
obtaining eventually up to MLs of the original material. The more times the ma-
terial is exfoliated, the nanosheets obtained will be thinner, at the cost of losing
superficial size of the final nanosheets, so a compromise between this two effects is

what is sought.

There is not a receipt for the ideal amount of times or pressure to apply in every

exfoliation, it depends on the material exfoliated. Blue Nitto Tape has been used in
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order to reduce as possible the amount of remaining adhesive residues in the final
nanosheets exfoliated. Finally, once the material has been exfoliated on the tape,
the last exfoliation will be performed between the tape and the target substrate to

randomly transfer or re-exfoliate the nanosheets from the tape to the substrate.

Depending on the material, heating the target substrate during contact with the
tape enhance the ratio of thinner nanosheets attached. A description of this process

can be seen in Figure 2.1.

Figure 2.1: Micromechanical exfoliation: description from the bulk material to the
nanosheets obtained in the target substrate.

This technique has been employed for the preparation of every material studied
in this thesis (see Appendix A). Usually these steps have been performed in air,
but depending the application it has been done in an Argon (Ar) enviroment in a
glovebox to prevent sample degradation due to its interaction with to Oy and HyO

in air.
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2.1 Sample preparation

2.1.2 Substrate preparation

Before the exfoliation of the material to be prepared, the target substrate must be
chosen according to the specific application or study to be pursued. The substrate on
which a 2D material is deposited greatly determines its properties given its surface-
to-volume ratio [101, 349, 100, 98], so it can be used to enhance or hamper the
desired future measurements. In this thesis, the most used substrates have been the

following;:

 Polydimethylsiloxane (PDMS) stamps: this substrate has been selected for its
viscoelastic behavior and transparence, that makes it suitable for deterministic
transfer techniques (see subsection 2.1.3.1). The PDMS stamp used in this
thesis has been purchased from Gelpak (usually Gelfilm 4, since in this one
better samples were obtained). The preparation consist, first, on cleaning a
glass microscope slide in four x three steps: Thorlabs lens tissue cleaning with
the solvent, ultrasonic 7 min bath in a solvent, air pump cleaning and 10 min
heating at 130 °C, using, in this order, ethanol, acetone and isopropanol as
solvents. After that, the desired stamp (usually, around 6 x 6 mm) is cut
from the source polimer and, after detaching its two-sided plastic protection,

transfer it to the cleaned glass slide.

« Silicon/Silicon Oxide (Si/SiO) substrates: if the exfoliated sample is going to
be directly studied and does not need a specific deterministic transfer, usually
the most employed substrate has been Si/SiO,, with different SiOy thicknesses
(90, 110, 285, 300 and 500 nm, in this thesis) considering its effect on the
properties to be studied [87]. The preparation of these substrates starts with
the wafer (purchased from Epak), from where they were cut using a diamond
cutter (usually, 6 x 6 mm, but deppends on the application) from the Si side.
After that, a similar cleaning procedure to that used in the previous glass
microscope slides (four x three steps: Thorlabs lens tissue cleaning with the
solvent, ultrasonic 7 min bath in a solvent, air pump cleaning and 10 min
heating at 130 °C, using, in this order, ethanol, acetone and isopropanol as

solvents) is needed before its usage.

Other substrates have been used as a direct target substrate after the micromechan-

ical exfoliation, with similar preparation method as described before, such as:

 SiO, substrates for transmission measurements (Chapter 7).
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o Indium Tin Oxide (ITO) substrates for Kelvin-Probe Force Microscopy (KPFM)

measurements (Chapter 3).

Figure 2.2: Substrates used through the thesis. From upper left to bottom right,
PDMS stamp on glass slide, ITO, Si/SiO, (285nm) and SiOs.

2.1.3 Deterministic transfer of two-dimensional nanosheets

In some projects, it is desired a deterministic transfer of the nanosheets exfoliated.
The ability to transfer a nanosheet in any substrate with a micrometric precision al-
low the engineering of devices with different materials. As examples of the potential

of these techniques, in this thesis they have been used to:

o Perform vertical heterostructures, stacking different nanosheets (Chapter 5
and Chapter 8).

o Their usage in precise treated substrate locations, such as:
— Previously lithographed electrical contacts on a substrate (Chapter 3).
— Optical waveguides patterned on a substrate (Chapter 6).
— The core of a fibre (Chapter 7).

The next subsections describe the two techniques that allow this deterministic con-

trol on the nanosheets previously prepared.

2.1.3.1 All-dry viscoelastic transfer

Based on the technique described in [81] it is possible to control the position and
orientation of a previously prepared nanosheet using a setup similar to that described

in Figure 2.3.
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2.1 Sample preparation

Figure 2.3: Setup for deterministic transfer of nanosheets. On the top left,
schematic diagram of the main elements. On the right and bottom left, picture
of the setup employed.

For that, the nanosheet must be exfoliated from the tape to a PDMS stamp, as
described in previous lines and located via optical microscopy (Subsection 2.2.1).
Facing down the nanosheet, the microscope slide is attached to a XYZ micromanip-
ulator, so the nanosheet to be transfered can be located using the microscope above.
Then, the target substrate is placed on a second micromanipulator (XY - rotor in the
setup used) with a holder and attached (double-side tape or using vacuum through

a hole underneath).

Due to the fact that both the glass slide and the PDMS stamp are transparent, it
is possible to use the microscope above to focus down to the target substrate in
order to align the precise position where the nanosheet is wanted to be transferred.
Once they are aligned, the PDMS stamp micromanipulator is pressed down to get
closer the nanosheet and the substrate. The microscope can change its vertical focus

from the nanosheet to the target substrate and back during the approaching process
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as needed, always keeping nanosheet and target location on the substrate aligned.
Finally, the stamp with the nanosheet is pressed against the target substrate, which
can be observed with a change in the optical contrast in the areas in contact. Once
the nanosheet is in contact in the location desired, the stamp is peeled off gently
using the PDMS stamp micromanipulator, being the nanosheet attached to the
target substrate, detaching itself from the previous PDMS stamp. Pictures during

the process can be seen in Figure 2.4.

Figure 2.4: Pictures of the process transferring a nanosheet on a substrate.

Besides the XYZ position of the nanosheet and the XY position and orientation of
the target substrate (using the micromanipulators), the tilt between the nanosheet
and the substrate has huge impact on the transfer, which can be controlled adding

a tilt stage on the XYZ stamp micromanipulator before the glass slide.

The ability to control which area of the PDMS stamp will touch the substrate first

(and therefore, in the lift off process, will be the last area attached to the substrate) is
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critical for some samples, due to the morphology of the nanosheets to be transferred
or the appearance of air bubbles during the contact. Usually, in the lift off process,
it is desired to detach first thicker samples, which use to drag thinner ones instead
of the opposite, where the nanosheet can be broken or the thinner area re-attached
to the PDMS. Besides, the amount of tilt will control the speed of contact. Finally,
for some materials, a heater under the target substrate during the lift off can modify

the viscosity of the PDMS, improving the transfer process.

It is the fastest and the highest transfer rate technique compared with other transfer
techniques like the hot pick-up transfer (Subsection 2.1.3.2) or the wet transfer
technique [86]. However, the top surface of the nanosheet transferred will have
always been in contact with the PDMS, leaving possible residues if another nanosheet

is transferred above (producing lower quality surfaces contact).

2.1.3.2 Hot pick-up transfer

This technique is described in [90]. If what was intended in the all-dry technique
was to transfer a nanosheet from the PDMS stamp to the target substrate, in the
hot pick-up transfer what is sought is the detaching of nanosheets from a substrate
to a stamp. To do so, on the PDMS stamp can be attached a smaller 1 x 1 mm
Polypropylene carbonate (PPC), due to the fact that this polymer has a glass-to-
liquid temperature around 40 - 65 °C. Therefore, in contact with the nanosheet to
detach from the substrate, it can be heated up, reaching its glass state, embracing
the nanosheet. Then, cooling down to RT the polymer would solidify, being able to

substract the nanosheet from the original substrate.

This process can be done as many times as nanosheets are needed, starting with the
top one to, finally, deposit the whole stack of nanosheets detached from independent
substrates to a final target substrate. With this technique, only the top surface of the
top layer will be in contact with the polymer, leaving the remaining lattices cleaner,
only having being in contact with the original substrate on one side (i.e., being clean
as the substrate has been previously cleaned) and air on the other (the nanosheet
can be exfoliated and stacked in an Ar enviroment, avoiding deterioration). This
is, therefore, the best technique for vertical heterostructures where the interlattices

between the nanosheets is sought to be the cleanest.

Hot pick-up transfer setup from the Institute of Photonics and Quantum Sciences
(IPaQs) of the Heriot-Watt University (Edinburgh, United Kingdom) has been used
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in Chapter 8, aiming for the cleanest interlayers possible for, among others, the
detection of single-phonon emitters at low temperature (LT). The steps used in

these heterostructures have been the following:
o Heat-up the substrate with the nanosheet to be picked-up at 110°C.

o Make contact between PPC and the nanosheet at that temperature. PPC

becames fluid.
e Cool down the attached substrate - nanosheet - PPC structure until RT.
o Lift up the stack from the substrate, the nanosheet is snatched up.

o Repeat steps for each nanosheet. When two nanosheets are in contact, anneal

at 110°C for 5 min to enhance its bonding.

o To release the whole stack, make contact with the target substrate, heat up

at 110°C, anneal for 10 min and lift up.

Pictures of these steps can be watched in Figure 2.5, where a WSe, ML has been

encapsulated between two MoQOj3 nanosheets.
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Figure 2.5: Hot pick-up transfer steps: pictures of the nanosheets lifted up and,
finally, transferred on a substrate.

2.2 Optical characterisation

In this section, the optical characterisation techniques employed in the previously

prepared samples and devices will be described.

2.2.1 Optical microscopy

The next step after the preparation of nanosheets in any substrate described before is
its identification. The determination of the location and thickness of thin nanosheets
is possible due to the natural optical contrast (OC) between the nanosheets and
the substrate [322]. A change in the light phase through the nanosheet and the

reflectivity variation between the substrate and the structure substrate/nanosheet
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allow a reliable and fast thickness caracterisation method, as reported for graphene
[83, 82], TMDs [89], hBN [80, 84] or III-VI semiconductors [87, 133, 208].

OC can be experimentally calculated using the optical microscopy pictures as

OC — RsubstTate_Rnanosheet
Rsubstrate

being Ryanosheet and Rgyupstrate the nanosheet /substrate structure and substrate re-

flectance, respectively.

The usage of band-pass filters capturing the pictures or the collection of the reflected
light through a spectrometer improves this technique adding a wavelength depen-
dance. It is usual when spectras are analysed to define the differential reflectivity
(DR) as

DR — Rnanosheet—Rsubstrate

Rpanosheet

since improves the visualisation of the nanosheet absorption effect compared with
OC [76].

Three different setups have been used to obtain OC or DR through the next chapters:

o A Nikon Eclipse LV150A optical microscope equipped with a Nikon DS-FI2
high-definition color camera (transmittance Red - Green - Blue (RGB) chan-
nels in Figure 2.6 for OC calculations in Chapter 3) for image acquisition from
the laboratory ESA-VSC Consortium with different band-pass filters centred
at visible wavelengths were used with full width at half maximums (FWHMs)
of ~40 nm (Figure 2.6).

o A Zeiss Axio Scope.Al microscope with an Axiocam ERc 5s camera.

o A Mightex white source with a 0.5 m focal length spectrometer and a nitrogen-
cooled charge-coupled device with a measured spectral resolution of ~75 yeV
at A = 750 nm for an 1800 lines/mm grating in the Institute of Photonics and
Quantum Sciences (IPaQS) of the Heriot-Watt University (Edinburgh, United

Kingdom) for DR measurements in Chapters 7 and 8.
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Figure 2.6: On the left, Zeiss microscope, generally used for the optical identifica-
tion of the nanosheets exfoliated. On the right, charged-coupled device (CCD)
channels (up) and band-pass filters (bottom) transmittances on the camera used
for OC measurements.

OC has been used in every sample in this thesis in order to obtain its location
and identification as ML, bilayer (BL), trilayer (TL) or thin nanosheets prior to
its usage or further characterisation through other techniques. Specifically, OC has
been analysed in Chapter 3 and Chapter 7, and DR in Chapter 7 and Chapter 8.

2.2.2 Transmission measurements

Transmission measurements have been used to study the light absorption in 2D
materials. SiO, substrates, an Ocean Optics DH-2000 UV-VIS-NIR Lightsource,
an Ocean Optics RedTide USB650 spectrometer and a Thorlabs camera for sample
location in the first measurements and optical fibres optimised for 980 nm, a near IR
source and an Optical Spectrum Analyser (OSA) lastly have been used in Chapter
7.
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Figure 2.7: Transmission setup elements used in Chapter 7 to obtain the transmit-
tance in BisSs nanosheets.

2.2.3 Photoluminescence

Photoluminescence (PL) envolves any light emission process from any form of ma-
terial produced after an incident radiation absorbed (hence the prefix photo, due
to the photons exciting electrons to a higher energy level in a material). After the
photoexcitation, relaxation processes involving the electrons and the holes in the
material excited occur, where other photons of a different energy are radiated. The

PL setups used through this thesis are described in the following lines:

« A Horiba Scientific Xplora y-Raman system with 532 nm laser excitation from
the Servei Central de Suport a la Investigacié6 Experimental (SCSIE) in the
University of Valencia have been utilised through many Chapters (3, 4, 5, 6,
7), either as a proper study technique or for the characterisation of TMDs or

ITI-VIs thichness prior to their transfer for a future application. The excitation
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optical beams were focused on the sample with a ~lum? spot surface, with a

power not exceeding 100uW to prevent overheating (Figure 2.8a).

o In Chapter 6 a multioriented PL in fibre setup have been employed, using a
532 nm and He-Ne (633 nm) excitation source and an Ocean Optics RedTide
USB650 spectrometer. In this setup, in the horizontal direction the whole
waveguide section have been excited/collected, and a ~200um? collection and

excitation vertical spot to cover the sample have been used (Figure 2.8b).

e In Chapter 8 a LT confocal u-PL setup from the Institute of Photonics and
Quantum Sciences (IPaQS) in the Heriot-Watt University, using a 532 nm
Cobalt excitation with an objective lens (Numerical aperture (NA) of 0.82
yielding a diffraction limited focus of ~560 nm at A = 750 nm) is used to
spatially map the PL from the samples placed on automated nanopositioners
in a T = 3.5 K closed-cycle cryostat. All spectra were acquired with a 0.5 m
focal length spectrometer and a nitrogen-cooled charge-coupled device with a
measured spectral resolution of ~75 ueV at A = 750 nm for an 1800 lines/mm

grating (Figure 2.8c¢).
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Figure 2.8: PL setups. Horiba Scientific Xplora y-Raman system in the top - left
(a), multi-oriented waveguide optical setup in the bottom - left (b) and hand-made
LT confocal yu-PL setup on the right (c).

2.2.4 Raman spectroscopy

Raman spectroscopy is an spectroscopical technique used in several fields to study
the low frequency modes in matter such as vibrational and rotational among others.
It is based in inelastic dispersion phenomenoms, or Raman dispersion, in monocro-

matic light, generally a visible range laser, near infrared or near ultraviolet.

During this thesis it has been used in Chapter 7 in a Horiba Scientific Xplora u-
Raman system with 532 nm laser excitation, same setup used for PL in Subsection
2.2.3 (Figure 2.8a). The excitation optical beams were focused on the sample with

a ~1lum? spot surface, with a power not exceeding 100uW to prevent overheating.

38



2.3 Electrical characterisation

2.3 Electrical characterisation

The techniques employed through this thesis aiming to the study of the electrical

properties of the materials addressed will be presented in this section.

2.3.1 |-V characterisation

The electrical behavior of a material can be determined studying the relation be-
tween the voltage and the current in which a material is exposed in different con-
ditions. Even more, its behavior with and without a light excitation is relevant to

this study as a photodetector.

In Chapter 3, a Keithley multimeter has been used to obtain the current - voltage
(I - V) characteristics to measure the photocurrent generated using as contacts Au
microgaps deposited via Karl Siiss KG microplotter by Dr. Alberto Maulu and
lithographied gold contacts on the nanosheets by Dr. Josep Canet-Ferrer using a
white light source from Schott - Fostec. Finally, a confocal y-PL setup (similar to the
setup in Figure 2.8¢) with a ~1um? spot 405 nm laser have been used as excitation
source, as seen in Figure 2.9, to measure the photocurrent generated in a previously

deposited InSe staggered nanosheet.
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Figure 2.9: Confocal y-PL setup used as excitation source for I - V characterisation.

2.3.2 Atomic Force Microscopy and Kelvin-Probe Microscopy

Even though OC, PL or Raman spectroscopy are techniques to characterise in-
directly the nanosheets thicknesses, it can be directly measured via Atomic Force
Microscopy (AFM). In order to understand its functioning, the elements which com-
pose an AFM will be described in Figure 2.10.
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Figure 2.10: Schematic of the main elements in a AFM [88, 85, 75].

e Probe: it is a tip, Si in the setup used, that will go through the sample, sep-
arated a few nanometers away, and which will be affected by the electrostatic
forces of the material, so that forces will appear on this tip depending on the

proximity to the sample.

o Cantilever: it is a flexible lever that holds the tip, and due to the forces that
appear on the tip, it flexes. It has a mirror that reflects the light that comes

from a fixed laser, reaching a four-quadrant photodetector.

o Four-quadrant photodetector: the laser is reflected in the cantilever, initially
detected in the center of the quadrants (it should be previously calibrated to
be so). However, by changing the measuring point, the force can change by
changing the distance to the nanosheet, and therefore the orientation of the
cantilever mirror will change, which will reflect the laser to a different point

from the center, detected by the photodetector.

o Data processing unit: this component will take the data given by the four-
quadrant photodetector, applying a voltage to the piezoelectric that control
the position of the sample so that the reflected laser beam returns to the center

of the quadrants.

o Piezoelectrics: due to the small voltages they receive, these piezoelectrics
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(three, one in each spatial direction) will move the sample. It should be
noted the high nanometric precision of these movements, necessary for these
measures. The piezoelectrics X and Y will sample the entire area to be studied
while the piezoelectric Z will move in such a way that the reflected laser beam
remains in the center. Therefore, by measuring how the sample is moved using

the piezoelectric Z, the thickness of the sample would be characterised.

An AFM from Nanotec in contact mode will be used to obtain a nanometric precision
thicknesses in Chapter 3 and Chapter 7.

Due to the conductance of the usual Si probes (usually metal-coated for this tech-
nique), and using a conductor substrate, it is possible to measure the current through
a nanosheet applying a controlled voltage using substrate and probe as contacts.
Kelvin-Probe Force Microscopy (KPFM) allow the study of the electrical proper-
ties in the nanosheets with the nanometrical precission of an AFM. The cantilever
forms a capacitor with the surface which, when scanning the sample, opposite to
usual AFM technique, is not piezoelectrically driven at its mechanical resting posi-
tion although an alternating current (AC) voltage is applied, which will cause the
cantilever to vibrate. A direct-current (DC) potential difference between the probe
and the surface will be applied in order to minimise the frequency of vibration for
every point scanned, obtaining a contact potential difference (Vopp) map (Figure

2.11). Vepp will be related with the work function of the materials in contact as

VCPD = ¢pr0be - ¢contact

where ¢prope aNd Peontace 15 the work function of the probe and the contact point,
respectively. In order to characterise ¢prope, the reported substrate work function

(ITO, [191, 193, 192]) has been employed, as

Gprove = Vopp(rTo) + @170
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Figure 2.11: Electrical band alignment in a contact in KPFM.

This technique has been employed in Chapter 3 using the same Nanotec AFM setup
as before. The data measured by KPFM has been analysed in collaboration with
Dra. Ana Cros-Stotter.

2.3.3 X-ray photoelectron spectroscopy

X-ray photoelectron spectroscopy (XPS) is a technique which allow the study of
the chemical composition and the atomic electronic states (therefore, the bonding
state between the composing atoms) in the superficial layers of a sample. By mea-
suring the kinetic energy and the number of electrons emitted by the sample when

irradiated by X-rays, it can be obtained the bonding energy of the atoms excited.

In Chapter 3, XPS measurements have been performed in a Thermo VG Scientific
ESCALAB-210 ultrahigh vacuum system (base pressure 10"1° mbar). The Mg K,
line (1253.6 ¢V) has been used as excitation source and the measurements have
been taken over an area of 1 mm? of the Si/SiO, substrate on which nanoflakes were
exfoliated. The C 1s peak (fixed to 285 e€V) has been used as the binding energy

reference.
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2.4 Other techniques

2.4.1 Ellipsometry

Ellipsometry is an optical technique which allows the study of the dielectric proper-
ties (such as refractive indexes, absorption...) of thin films with a micrometric spa-
cial resolution. It is based in reflectivity measurements and comparing the detected
light (r,) and the emitted (r,), different properties like its composition, thickness,
roughness, crystalline nature... can be obtained when the data is compared with a

model.

In the configuration used, three different angles of incidence (AOI) have been mea-
sured to characterise the refractive indexes in the three XYZ directions in exfoliated
nanosheets, through the analysis of the amplitude ratio upon reflection (tan W) and

the phase shift (A), which depend on the reflectivity data measured as
p=1t=tanWe™

The ellipsometry measurements have been performed in the Institute of Photonics
and Quantum Sciences (IPaQS) of the Heriot-Watt University (Edinburgh, United
Kingdom) in an ellipsometer from Accurion in a Jacomex Glovebox. The model
used in Chapter 8 to obtain the refractive indexes has been analysed and compared

with the experimental data in collaboration with Dr. Mauro Brotons-Gisbert.

2.4.2 X-Ray Diffraction

X-Ray Diffraction (XRD) is a method to determine the atomic and molecular struc-
ture of a crystal using an incident X-Ray emission, which will diffract into specific
directions. By measuring these angles and intensities, the crystallographic orienta-

tion of the atoms can be obtained.

The measurements and the analysis of the data to characterise the a and b cristal-
lographic orientations on a bulk material has been performed in collaboration with

Dra. Maria del Carmen Martinez Tomas in Chapter 7.
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3 1l1-VI semiconductors: optical and

electrical properties

Following the current framework described in the field of 2D materials (Chapter 1), a
less-explored family of 2D materials will be studied in detail in this chapter: the 2D

materials based in III-VI semiconductors, with InSe and GaSe as its representatives.

3.1 Gallium Selenide

The results and comments described in this subchapter have been already published
in “Quantum size confinement in gallium selenide nanosheets: band gap tunability
versus stability limitation”, Daniel Andres-Penares, Ana Cros, Juan P Martinez-
Pastor and Juan F Sédnchez-Royo, Nanotechnology, Volume 28, Number 17 (2017).

In this subsection, an updated view of this publication will be presented, with added

supplementary information.

3.1.1 Introduction

Following the trend described in Chapter 1, other 2D semiconductors have started
to attract the attention of the scientific community trying to overcome limitations
of existing 2D semiconductors. 2D TMDs are direct bandgap, only, at the ML
regime, so they have a limited application in optoelectronics. Black Phosphorous,
with a direct band gap in the infrarred [373, 351], is a promising candidate for

optoelectronics. However, it is unstable.

2D semiconductors based on III-VI materials, like InSe or GaSe, have demonstrated
to be able to provide a wide optical bandgap window that can even reach the low-

energy side of the visible spectrum. Following the path marked by 2D InSe, in
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this chapter we study the prospects and limitations of 2D GaSe for optoelectronic

applications.

Gallium selenide (GaSe), an indirect III-VI layered semiconductor with a ~2.02 eV
band gap at RT [142], arises as one of the most promising candidates to extend even
further the optical window of 2D materials with potential optoelectronic applica-
tions. This material gained interest in the past due to its non lineal optical properties
[147, 131, 142]. Among the ITI-VI semiconductors, GaSe has been the first material
reported as obtained in a 2D nanosheet regime. On one hand, the band gap of GaSe
ML has been predicted increase by 1.2 eV with respect to that of bulk GaSe due
to quantum confinement effects [214]. On the other hand, GaSe nanosheets have
been already used as photodetectors with high responsivity and high external quan-
tum efficiency [140], as high-performance field-effect transistors [145], and in hybrid
heterostructures giving rise to photodetectors that combine a high gain with a fast
photoresponse [249, 115]. Also, few layer GaSe may present potential applications
for spin-polarization control [211], non-linear optics [127], and in optical microcav-
ities [113]. Lately, its behavior as a saturable absorber for Q-switched [126] and
mode-locked [122] laser has been demonstrated. These facts suggest that 2D GaSe
may become a very versatile material for visible -or even ultraviolet- electronics and
optoelectronics with tunable and optimised functionalities. Moreover, experimen-
tally, it has been reported that the PL of GaSe nanosheets blueshifts only by 20
meV when the thickness of the nanosheet is reduced to a BL [140], a value that
largely differs from the band-gap blueshift of 0.7 eV expected for a BL of GaSe by

first-principles calculations [214].

Besides of the particular question presented above about the magnitude of the tun-
ability range of the band gap of GaSe nanosheets, there is a general requirement
that any 2D material must satisfy for the development of related devices, which is
precisely to guarantee a relatively high structural stability under ambient conditions
[146]. The stability of bulk GaSe has been studied in the past [139, 116], showing a
well-established temperature-dependent oxidation diagram. Around RT (below 400
K), bulk-GaSe oxidation mostly produces elemental Se and GayQO3, whereas above
400 K the simultaneous formation of GasSes and GayOj3 takes place. At higher tem-
peratures, GasSesz tends to disappear in GaSe, favouring the formation of GayO3 as
the main oxidation product. Oxidation processes appear also to deeply affect to the
luminescent response of relatively thick GaSe nanosheets [118, 99], which hampers

the further development of 2D GaSe optoelectronic devices. In fact, freshly prepared
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bulk-like GaSe nanosheets show a clear PL peak centered at the energy position ex-
pected for bulk GaSe, but the intensity of the PL signal quenches as the exposition
time in air increases [118, 99]. Oxidation processes taking place in bulk-like GaSe
nanosheets at RT have been studied by Raman, PL, Auger, and XPS [118], revealing
that oxidation of bulk-like GaSe nanosheets proceeds as in bulk GaSe, i.e., through
the formation of Se and Gay03. Nevertheless, an additional and clear Raman sig-
nature coming from GaySes was also noted in these nanosheets [118] that suggests
an oxidation process slightly different from that demonstrated in bulk material at
RT [139, 116].

In this subchapter, a tuning of the optical band gap of 120 meV from bulk to 8 nm
thick in freshly exfoliated GaSe nanosheets is demonstrated, by means of u-PL and
AFM. In this range of thicknesses, the obtained nanosheet-thickness dependence of
the optical band gap can be estimated by the quantum size confinement of carriers in
a quantum well of infinite barriers within the effective mass approximation. Second,
it is evidenced that GaSe nanosheets exposed to air experience a strong oxidation
process that exhibits a deep impact on their morphology and structural composi-
tion. Such oxidation process is clearly responsible for the quenching of the exciton
PL of freshly-prepared GaSe nanosheets thinner than 8 nm. Morphologically, oxi-
dation introduces strain that promotes the formation of nanospikes at the surface
whose height increases as the thickness of the nanosheet does. Structurally, XPS
results reveal that, in few layer nanosheets, the incorporated oxygen progressively
replaces Se giving rise mostly to Ga,O3, an oxidation diagram that differs from that
observed for bulk GaSe and bulk-like GaSe nanosheets under ambient conditions.
The oxidation effects is thus introducing a strong limitation in the investigation of
basic optical properties in few-layer GaSe, which can be reason why any remarkable
band gap increase have been reported before. Present results allow understand ox-
idation effects in few layer GaSe nanosheets that should be prevented before their

incorporation in future applications and devices.
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3.1.2 Photoluminescence measurements

Figure 3.1: (a) u-PL spectra acquired in different points of a multi-terrace GaSe
nanosheet freshly exfoliated on a Si/SiO, substrate. The optical image of the
nanosheet is shown at the top, in which measurement points have been indicated
by filled circles whose color corresponds to that of the spectrum shown in the
main figure. The thickness of each terrace is indicated on the corresponding
u-PL spectrum acquired. (b) Nanosheet-thickness dependence of the PL-peak
maximum of the spectra shown in (a). Solid line corresponds to the thickness
dependence of the exciton optical transition expected by using a simple model of a
square quantum well potential of infinite height. (c) u-PL spectra acquired in GaSe
nanosheets just after exfoliation and after 24 h exposed to ambient conditions.

From bulk GaSe monocrystals (see Appendix A), atomically thin GaSe samples were
micromechanically exfoliated on Si/SiO, (300nm) substrates (Subsection 2.1.1). The
luminescent response of atomically thin GaSe nanosheets has been studied by y-PL
(using the Horiba Xplora described in Subsection 2.2.3). Figure 3.1a shows the y-
PL spectra acquired in selected points of a freshly exfoliated nanosheet (shown
at the inset of Figure 3.1a) corresponding to terraces of a particular thickness,
as determined by AFM (for more details, see Subsection 2.3.2). In the thickest

nanosheets the maximum of the PL signal appears at 1.99 eV, as would be expected
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for exciton recombination in bulk GaSe. As the thickness of the nanosheet decreases,
the PL signal shifts to higher energies and decreases in intensity, similarly to that
observed in other III-VT layered semiconductors as InSe [125, 208, 334].

It should be noticed here that, although few layer GaSe nanosheets were obtained by
micromechanical exfoliation, the PL intensity of these thinner than 8 nm is strongly
quenched and unmeasurable within our experimental signal-to-noise ratio. From
results shown in Figure 3.1a it appears that the maximum of the PL-peak measured
at each particular terrace of the nanosheet runs from 1.99 eV, in nearly bulk terraces,
to 2.11 eV, in 8 nm thick ones (Figure 3.1b). These results are clearly in contrast
with previous observations reporting a blueshift of the maximum of the PL-peak
of only 20 meV when the thickness of the nanosheet is reduced to a BL (2 nm
thick) [140]. The blueshift of the PL peak evidenced in Figures 3.1a and b can be
attributable to quantum-size confinement effects on the optical band gap of GaSe

nanosheets due to the natural quantum-well determined by a few layer GaSe sheet.

In order to check this hypothesis, the thickness dependence of the energy of the
exciton optical transition (E22) has been analysed in terms of a square quantum

well potential of infinite barriers, given by

EQD (d) — Egulk _ Ebulkz + w2h2

exc exc Qdm” ¢

where Eg“lk = 2.0¢V and E%* = 19.2meV are the direct band gap energy and
exciton binding energy in bulk GaSe at RT [142], respectively, d is the quantum
well thickness, and m, = (me’HlC + m;nlc)_1 = 0.10mg is the exciton reduced mass,
as obtained from reported values of the electron (m.. = 0.26m) and hole (my). =

0.17my) effective masses along the c-axis [142].

This simple model, although a constant exciton binding energy has been assumed,
reproduces very well the thickness dependence of the exciton energy, E*2 obtained
experimentally (Figure 3.1b), indicating that, in line with that observed in other 2D
semiconductors [338, 125, 334], the band gap of GaSe nanosheets can be effectively
tuned by quantum-size confinement effects. These results are relevant for further

development of band gap tunable optoelectronic devices based on 2D GaSe.

However, to achieve this purpose, the nature of potential oxidation processes tak-
ing place in atomically thin GaSe nanosheets must be studied in detail and their
stability under ambient conditions guaranteed, mostly taking into account results
already reported for bulk GaSe [139, 116] and bulk-like GaSe nanosheets [118, 99|
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revealing strong oxidation effects. Indeed, atomically thin nanosheets appear also
to experience strong oxidation. In fact, apart from the lack of PL signal mentioned
above for freshly prepared nanosheets thinner than 8 nm, it is observed that, already
after 24 h exposed to air, the intensity of the PL signal of relatively thick nanosheets
strongly diminishes and even becomes effectively quenched for 12 nm thick ones, as
shown in Figure 3.1c. More subtle oxidation effects can be observed to occur even
at early states of oxidation: Although a good agreement has been found between
the experimental and calculated thickness dependence of E%2 (Figure 3.1b), a small
thickness-offset of 2 nm seems to exist between them. This small thickness offset
can be due to oxidation effects at the nanometric scale, since AFM measurements
were carried out in unavoidably oxidised samples and consequently slightly thicker

than as prepared.

In this context, it would be interesting, for basic and technological purposes, to
clarify whether oxidation of GaSe nanosheets occurs in a layer-by-layer fashion, as
it has been observed in WSe, nanosheets [148], which would imply that controlled
oxidation may be used to create nanosheets of a selected effective thickness. In
this case, it may be expected a progressive blueshift of the PL-response of GaSe
nanosheets to occur as the ambient exposition time increases, since a layer-by-layer
reduction of the effective GaSe thickness would enhance quantum confinement effects

on the exciton optical transition.

3.1.3 Oxidation processes in two-dimensional GaSe

As mentioned above, the PL intensity of GaSe nanosheets appears to progressively
decrease as the exposition time increases without any appreciable blueshift of the
main PL peak (Figure 3.1c). These facts indicate that strong oxidation processes
homogeneously occur inside the atomically thin GaSe nanosheets, which tend to in-
troduce a large density of defects inside GaSe nanosheets that enhance non-radiative

recombination processes.
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Figure 3.2: (a) Optical images of a selected GaSe nanosheet acquired just after
exfoliation on a Si/SiO, substrate and after (b) 4 days and (c) 12 days in ambient
conditions. (d) AFM image of a GaSe nanosheet and thickness profile (upper plot)
along the path indicated on the image by a white line. (e) Three-dimensional
perspective of the AFM image of the nanosheet shown in (d), revealing a high
density of nano-spikes on the thickest terrace of the nanosheet. (f) Optical contrast
values measured in the green channel from selected areas of homogeneous thickness
of the GaSe nanosheet shown in (a)-(c).

The oxidation process evidenced above has deep effects on morphological and struc-
tural properties of GaSe nanosheets exposed to ambient conditions, as observed in
optical (Figures 3.2a and c¢) and AFM (Figures 3.2d and e) images. The presence
of randomly distributed spots can be optically detected to emerge on the nanosheet
surface, as it has been already reported [118]. It can be noticed that such oxidation
spots do not act as seeds for further local oxidation, but their density increases with
the exposition time to air. AFM images of Figures 3.2d and e are representative of
our observations in more than 10 samples of thickness ranging from few nanometers
to bulk-like.
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Figure 3.3: AFM image of an aged GaSe nanosheet with terraces of different thick-
ness. Notice the presence of nanospikes spread over the whole sample, these ap-
pearing as brilliant spots. At the bottom, two different thickness profiles are
shown, these corresponding to the paths (1) and (2) indicated on the AFM image
by solid lines. Paths (1) and (2) probe terraces of the nanosheet with a thickness
of 10-20 nm and 30-40 nm, respectively. In the 10-20 nm thick terrace, nanospikes
reach heights of even 40 nm, whereas they reach heights of even 70 nm in the 30-40
nm thick terrace.

They reveal that surface spots observed by optical microscope arise from nanospikes
originated by surface oxidation. Furthermore, the height of these spikes appears
to depend on the thickness of the nanosheet: they introduce a surface roughness of
around 5 nm in an atomically thin nanosheet 7 nm thick (Figure 3.2d), although the
nanospikes can reach values as high as 70 nm in 40 nm thick bulk-like nanosheets
(Figure 3.3). Thinnest nanosheets present a higher surface-to-volume ratio and,
consequently, a lower internal resistance to structural modifications produced by
the oxidation process than the thickest ones. Therefore, the observation of: (i)

nanospikes whose height depends on the nanosheet thickness and (ii) optical spots
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related to the nanospikes which do not act as seeds for further local oxidation; sug-
gest that strong local structural relaxation processes take place which are associated

to the strain introduced by the nanosheet oxidation.

Morphologically, the appearance of the spikes due to surface oxidation is expected
to deeply modify the OC of GaSe nanosheets, as evaluated as described in Subsec-
tion 2.2.1. In fact, optical dark spots related to spikes are observed on relatively
thick nanosheets (the yellow ones in Figures 3.2a and ¢), whereas they are optically
detected as clear spots on thinner nanosheets (blue ones in Figures 3.2a and c).
Indeed, this observation shall be related to modifications of the light interference
pattern that makes visible GaSe nanosheets on Si/SiOy substrates, but may indi-
cate that the validity of standard OC methods, which have been extensively used
as a fast tool to accurately estimate the thickness of a large variety of 2D materials
[133, 123], can be put into question to accurately estimate the thickness of GaSe
nanosheets. To illustrate the effects of oxidation on the OC of GaSe nanosheets,
it is shown in Figure 3.2f the OC in the green channel [133] extracted from im-
ages acquired in GaSe nanosheets under different ambient exposition times (Figures
3.2a and c¢). From these results, it appears that GaSe oxidation processes tend to
increase OC (negative) values of nanosheets, especially for the thicker ones. This
effect can be attributable to an enhancement of light scattering due the increase of
surface roughness, at the same time that reduces the effective light reflectance of

the nanosheets with a high oxidation degree.
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Figure 3.4: XPS spectra of the (a) Ga 2pz/, and (b) Se 3d core levels acquired in
GaSe nanosheets exfoliated on Si/SiOy substrates, as a function of the ambient
exposition time of the sample previous to each measurement (which has been
indicated on each corresponding spectrum). Blue curves are the result of fitting
of the experimental spectra, by considering two Gaussian peaks (red curves). The
position of each Gaussian peak has been indicated by vertical dashed lines.

Results mentioned above clearly establish the strong influence of oxidation on the
structural, morphological, optical, and luminescent properties of atomically thin
GaSe nanosheets. In the following, it is approached the question of the nature
of oxidation reactions taking place in these nanosheets under ambient exposition.
To this purpose, XPS measurements have been performed on a Si/SiOy substrate

sustaining a high density of few-nanometers thick GaSe nanosheets.

Figure 3.4 shows XPS spectra measured in GaSe nanoflakes under different expo-
sition time to ambient conditions. GaSe nanosheets appear to remain stable under
vacuum, since the Se 3d and Ga 2p peaks exhibit no change in shape neither addi-
tional peaks have been detected after few days in vacuum. However, early exposition
to air already produces an asymmetric broadening of the Ga 2p and Se 3d core-level

peaks towards higher and lower binding energies, respectively, which tends to be
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enhanced as the exposition time to air increases. Gaussian deconvolution of the
Ga 2p and Se 3d peaks allows resolving two additional core-level components which
emerge and develop, due to ambient exposition, at the high and low energy side of
the Ga 2p and Se 3d peaks attributable to GaSe, respectively. The reacted Ga 2p
core-level component, which emerges at energies +1.0 eV far from that of GaSe, can
be attributed to Ga atoms with a Ga™® oxidation state, whereas the reacted Se 2p
component, emerging at -0.90 eV far from that of GaSe, can be originated by the
presence of Se atoms with a Se? oxidation state. These results point out to the
formation of GasSes-like at the surface of the GaSe nanosheets after ambient ex-
position, in agreement with that observed in bulk GaSe [116] and GaSe nanosheets
[118].

However, it seems not to be the main product of the oxidation of the GaSe nanosheets,
since the Se?/Ga™ atomic ratio, as extracted from XPS, appears to reach values
significantly lower than that expected for nominal GaysSes. In fact, the Se?/Ga™
ratio only seems to reach values as high as 0.15 for samples exposed up to three days
in air, which suggests that most of the Ga™ originated by the nanosheet oxidation
adopts a GayOj3 structure in atomically thin GaSe nanosheets. Moreover, a larger

exposition time appears to reduce the Se?/Ga™® atomic ratio in the nanoflakes.

All these facts suggest an oxidation diagram in which GaSe nanosheets exposed to
air tend to experience a structural modification of their surface in which oxygen
progressively replaces Se giving rise mostly to GasO3. Replaced Se appears transi-
torily to adopt a GasSes-like configuration, but further oxidation seems to reduce
the presence of GasSes in favour of GayOs. In contrast to previous works [118],
traces from amorphous Se were not detected by XPS, which suggests that residual
Se becomes finally desorbed from the nanosheets. Collaterally, the formation of the
Gay 03 overlayer seems to prevent further oxidation of the deepest part of the thick-
est GaSe nanosheets, as revealed by XPS for nanosheets exposed up to one month
in air. These results suggest an oxidation process scheme that seems to differ from
that observed in bulk and bulk-like GaSe nanosheets.

At RT, oxidation of bulk GaSe mostly produces elemental Se and GayO3 [139, 116].
However, oxidation of bulk-like nanosheets appears to produce [121], also, GasSes,
i.e., a product that would be obtained by oxidation of bulk GaSe at temperatures
over 400 K [139, 116]. As discussed above, oxidation of atomically thin nanosheets

produces, mainly, Ga;O3, with a residual presence of GasSes that diminishes as the
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oxidation time increases. Oxidation processes observed here to occur in atomically
thin GaSe nanosheets at RT appear better corresponding to what is observed in bulk
GaSe at temperatures higher than 400 K [139, 116]. All these facts clearly indicate
that decreasing the thickness of GaSe plays a similar role, from the point of view
of the oxidation, to the increase of the oxidation temperature, which can be readily
understood by considering that the surface-to-volume ratio increases by reducing the
thickness of GaSe nanosheets and consequently enhances oxidation effectiveness, as

increasing temperature does.

3.1.4 Conclusions

Results reported here demonstrate that the optical band gap band of atomically thin
GaSe can be tuned by 120 meV from bulk to 8 nm thick nanosheet due to quantum
confinement effects and suggest that even higher optical band gap blueshifts can
be obtained in thinner nanosheets. Recent publications obtained a shift up to 2.42
eV in a BL [410]. Atomically thin GaSe nanosheets are, however, unstable under
ambient conditions. Our results reveal the nature of the oxidation reactions taking
place in atomically thin GaSe nanosheets that should be prevented before their
incorporation in future applications and devices. These oxidation reactions differ
from these occurring in bulk or bulk-like GaSe nanosheets and have a deep effect
on the structural, optical, and luminescent properties of GaSe nanosheets. Oxygen
progressively replaces Se giving rise to GasQOg3, with a residual presence of GasSes

at the surface that diminishes in favour of Ga;O3 at long ambient exposition times.

Structurally, oxidation produces the emergence of sharp nanospikes at the nanosheet
surface and introduces a large density of defects that strongly limit the luminescent
response of the nanosheet, especially of these thinner than 8 nm. These results are
relevant for the design and development of photonic/optoelectronic devices based
on a two-dimensional semiconductor that is one of the few layered materials whose
band gap lies in the high energy side of the visible spectrum and can potentially
reach the ultraviolet region. However, stability arises here as a major question to be
addressed in next future. Possible encapsulation procedures by the use of different

polymers are being currently investigated to solve such an issue [130].
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3.2 Indium Selenide

3.2.1 Introduction

InSe was obtained as a III-VI 2D semiconductor after GaSe [125, 208, 334]. Similar
to other members in the III - VI semiconductors, an InSe ML shares a Dg, point
group symmetry, consisting in two atomic In layers embebed between two atomic
Se layers, bonded covalently forming tetrahedra. This basic layered structure is
determined by the hexagonal lattice parameters a = b = 0.4002nm [169]. Due to
vdW forces this ML are weakly bonded to consitute the bulk material, but different
stacking sequences define different polytypes: 3, v, 0 and €, as can be observed in
Figure 3.5. In this thesis, y-InSe has been used (see Appendix A), with a non-
primitive unit cell in the hexagonal description formed by three basic layers stacked
in a ABC sequence (¢ = 24.946A) [169].

Figure 3.5: Structural polytypes in bulk InSe. From left to right, 3, v, 6 and ¢
with an AB, AB, ABC and ABCD stacking sequences, respectively.

The band-structure analysis in bulk y-InSe was studied in the 90’s [163, 164, 151],
with a well-known correction of ~0.8 eV from ab-initio calculations to be compared
with the experimentally measured direct band gap at RT of 1.25 eV [156]. Besides,
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due to the mechanical anisotropy between the c¢ direction and the layer plane, a
different effective mass for electrons and holes have been found when these directions
are compared (m; | . = 0.138my, mg . = 0.081mg, mj, . = 0.73mq, my, . = 0.17my)
[158, 154]. Also, transport properties in bulk InSe highlight due to its high doping
versatility, from n - type (e.g., using Sn and Si impurities [150, 160]) to p - type (e.g.,
with Zn or Pt [162, 172]), reaching experimentally reported values up to 103cm?/V's
[155].

Bulk InSe gained interest in the past specially due to its non-linear optics properties
[131, 147], specially in the infrared range for second-harmonic applications [176].
This fact, the stability in air compared with other III - VI, besides its direct band gap
(unlike TMDs) offering a RT PL emission due to band-to-band transitions and its
great mobility aimed for a versatile material in optoelectronic applications, starting

its study in its 2D form.

When this material is exfoliated, due to quantum confinement effects, one of the
largest band gap tunability ranges appear in InSe nanosheets, from 1.25 eV in bulk
to 2.1 eV in the ML state [334]. This result contrast with TMDs, where due to the
indirect to direct transition in their band structure [333] from few-layer to ML, the
tunability is reduced to its ML form. That is the reason why procedures like strain
[199], chemical doping [217] or the transfer onto different refractive index substrates
have been used to acquire some tunability, needed in some applications. In the case
of InSe, similar techniques can be used, such as nanotexturing effects to add more
tunability [334].

Besides, its recently discovered out-of-plane (OP) dipolar behavior [297] hampers
their reduced absorption coefficient and therefore, their quite low PL intensity in a
vertical excitation — vertical collection approach, compared with the in-plane (IP)

dipole observed in TMDs, which will be a key element in future chapters.

3.2.2 Electrical properties

As previously highlighted, InSe mobility in its bulk state aimed for its application in
optoelectronic devices in its 2D form. Devices based on few-layer InSe have shown
promising results as field-effect transistors with mobilities comparable to its bulk-
form [258], large current on—off ratios [226], as high performance photodetectors

[375] and as sensors [206].
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In this subsection, the electrical properties of InSe nanosheets will be explored.

3.2.2.1 | - V characterisation of defect-free n - n* heterojunctions in InSe

different-layered nanosheets

The most straightforward optoelectronic devices, such as photodetectors, photodi-
odes, phototransistors, for instance, are based in p - n heterojunctions, where two
different materials (one n - doped and the other p - doped, i.e., with electron and
hole in excess, respectively) are in physical contact, increasing in the material bar-
rier the carrier recombination processes. Therefore, this barrier (which nature will
be studied later), based in the different band gap between both materials, is the key
element in these devices. However, due to the necessity of two different materials
in contact to form these structures, an unavoidable mechanical contact will appear,

hampering the final performance due to the intrinsic defects [161, 167, 171].

This problematic can be found in any heterojunction made until the appearance of
2D semiconductors. Due to quantum confinement it is possible to obtain different
band gap energies within the same material, e.g., in layered 2D materials, in which
each different-thickness area came from the same bulk material, maintaining its
structural quality. As a example, a planar heterojunction based in this premise has
been demonstrated in MoSs [173] despite the non-ideality of partly-indirect TMD
BL band gap. In this project, defect-free n - n™ heterojunctions in InSe exfoliated
nanosheets have been performed taking advantage of the always-direct different band
gap due to the different thicknesses in the samples. Using a band structure model
are theoretically understood and physically explained the I - V curves that has been
characterised obtaining as a result the behavior expected in p - n heterojunctions,

proving that this kind of structures work as a photodetector when illuminated.

Prior to the study of multiterraced nanosheets, for comparison, Figure 3.6 shows
the I - V characteristics in InSe homogeneous nanosheets transferred on Au contacts
(see Subsections 2.1.1 and 2.1.3.1). The Au microgap contacts have been prepared
by Dr. Alberto Maulu by photolithography (see Subsection 2.3.1). The contacted
nanosheets have been completely iluminated with a halogen white light source, using
different power excitation values. In homogeneus nanosheets, where no different
thicknesses appear and, therefore, no different band gap energies are present between
contacted areas, a symmetrical behavior in the I - V characteristics applying positive

and negative voltage biases is obtained. This behavior is similar to the expected
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where no barrier is found between the contacts due to the symmetry on the system.

Figure 3.6: I - V characteristics in homogeneus InSe nanosheets. On the left,
optical images of homogeneous volumic InSe nanosheets transfered onto a gold
microgap. On the right, photocurrent generated applying different ilumination
power, obtaining a simetric behaviour with positive and negative bias.

In contrast with these homogeneus nanosheets behavior, multiterraced InSe nanosheets
have been analysed in Figure 3.7, observing an asymmetrical behavior in positive
and negative voltage bias, similar to p - n heterojunctions [177, 157, 166, 179]. In
Figure 3.7a, a similar transfer method as previous samples have been used, locat-
ing the thickness barrier between both contacts that can be seen via OC. RT PL
measurements have been taken in each thickness to determine the band gap dif-
ference (see Subsection 2.2.3 [334]), obtaining 1.2467eV to 1.2704eV in the thicker
sample and 1.60eV to 1.36eV in the thinner one. In Figure 3.7c, due to the thinner
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nanosheet thicknesses, on top of exfoliated samples, e-beam lithography has been
performed by Dr. Josep Canet-Ferrer, to prevent sample physical hampering due to

the transfer on microgaps.

Figure 3.7: I - V characteristics in multiterraced InSe nanosheets. On the left,
optical images of layered InSe nanosheets transfered onto a gold microgap (up)
or contacted with e-beam (down). On the right, photocurrent generated applying
different ilumination power, obtaining an asymmetric behaviour with positive and
negative bias.

The asymmetry in the I - V curves in layered nanosheets applying positive and
negative voltage biases, unlike homogeneous ones, must be produced by an intrinsic
inner barrier in the layered samples. In the barrier surroundings, due to the different
energy band gap between both thicknesses, a different carrier density (in this case,
electrons due to the n - doped original material, Appendix A) is expected. Some
carriers from one thickness will pass to the other, enhancing a n* doping of the
thicker terrace [170, 152, 180, 178], due to the higher number of electrons in com-

parison. Therefore, a n - n™ heterojunction is expected in the inner edge between
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thicknesses. This fact has been studied in Figure 3.8.

Figure 3.8: Excitation position impact in photocurrent generation. On the left,
schematic setup used to measure. On the right, the photocurrent generated in a
layered InSe nanosheet exciting the sample along the change of thickness with a
Imm?-spot 405nm laser applying different voltajes. The 0 position has been set
in the edge location between thicknesses of the sample along the line measured.

Figure 3.8 shows the photocurrent generated in the layered nanosheet when the
sample is excited in different points. In this case, instead of an halogen white
light source iluminating the whole nanosheet, a 405nm laser has been used, with a
spot around 1mm? with a constant ~70uW excitation power to have control in the
position excited, observing an enhancement in the photocurrent generated closer to
the barrier edge. A line-scan in different positions perpendicular to the microgap
direction have been taken. This enhancement in the photocurrent generated in the
barrier surroundings is explained due to the higher density of accumulated carriers,
where the recombination is enhanced in this n - n™ heterojunction, being reduced
exciting further from this location. Besides, similar to previous measurements, an
asymmetrical behavior in the photocurrent generated is observed applying negative
or positive voltage bias due to the inner band gap barrier (the asymmetry is less
visible due to the fact that the excitation is now in one precise wavelength instead
of the whole visible spectra, adding its contribution and effect). Finally, when no
bias is applied, photocurrent is generated following the same behavior, proving the

intrinsic barrier due to the different thicknesses.

This behavior is understood considering the band alignment shown in Figure 3.9

between two materials with different band gaps using two assumptions:
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« Even though the band gap is different, the electronic affinity (y) will be the
same for both thicknesses (being InSe both of them, contrary when different

materials are used).

o The electronic difference between thicknesses will be produced by the different
band gaps due to the change by quantum confinement, added to the fact
that the thinner area (higher band gap) will sustract carriers to the thicker
one (smaller band gap). However, this carrier difference consideration is no

specially relevant for the qualitative explanation due to its lesser contribution.

Figure 3.9: Band structure alignment of different InSe thickness nanosheets.

After the Fermi level alignment the electrons do not observe a difference between
positive and negative bias (having, therefore, a carrier current J, equal for both
biases), but in the valence band a barrier appears, having holes accumulation for
positive bias (J, = 0) and free-pass for negative bias (J, # 0). This qualitative

behavior matches the measurements previously described.

3.2.2.2 Kelvin Probe microscopy on ITO

In the previous subsection, multiterraced InSe nanosheets have been proved to be-
have as a planar electrical n - n™ heterojunction due to the band structure alignment
of different InSe thicknesses and the inner-barrier between them. However, in or-
der to theoretically explain this band alignment, y, directly related with the work
function (¢), has been considered equal regardless the thickness. This assumption,

although valid for thicker samples, is not expected to remain in thinner nanosheets.
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Just as a change in the band structure has been demonstrated by quantum con-
finement, theoretically [184, 181] and experimentally, e.g., via PL measurements
[125, 208, 334], a change in ¢ is expected by reducing the thickness of the samples
for the same reasons. Density functional theory (DFT) calculations have been pre-
sented about the dependance with thickness in $-InSe [183], but no experimental
nor theoretical dependance study has been found in the bibliography about y-InSe

and the thickness of the nanosheets.

In order to modelise prior to develop optoelectronic devices where the electrical
contacts between different materials is involved this is a necessary value to consider.
From the behavior with the metalic contacts [190, 188] or to simulate the carrier
transport between materials in contact, ¢ is the value which determine the junction
type to expect [189, 98].

In this subsection, the electrical properties, specifically ¢, for different InSe thick-
nesses will be measured via Kelvin Prove microscopy and compared with DFT cal-

culations for y-InSe different thicknesses.

InSe nanosheets have been exfoliated on ITO substrates (see Subsections 2.1.1 and
2.1.2) and topography and KP measurements have been taken (Subsection 2.3.2 for
more details) in collaboration with Dra. Ana Cros-Stotter. RT PL measurements
have been measured for every nanosheet to confirm AFM topography measurement
thicknesses [334].
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Figure 3.10: KPFM measurements in semibulk InSe nanosheet: optical image (a)
and KPFM map (b), highlighting with different dashed lines the averaged areas
shown on the right CPD curves for every different thickness.

Figure 3.10 and 3.11 show the KP results on different InSe thicknesses. Optical
images (Figures 3.10a and 3.11a) can be compared with KP maps (Figures 3.10b
and 3.11b), observing different behavior due to the multiterraced thicknesses. In
every area (marked with dashed lines), average contact potencial difference (CPD)
between the sample and the tip is shown on the right in both figures (for more
details, see Subsection 2.3.2), observing a shift to lower CPD when the thickness is

reduced.
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Figure 3.11: KPFM measurements in a thinner InSe nanosheet: optical image (a)
and KPFM map (b), highlighting with different dashed lines the averaged areas
shown on the right CPD curves for every different thickness.

By using the CPD signal of ITO and taking the ¢ of ITO as a value of reference
(4.65 e¢V) [191, 193, 192] we have obtained the thickness dependence of the InSe
¢ shown in Figure 3.12. These results reveal that the ¢ value of 2D InSe as thin
as 6-7 layers is that of bulk InSe. For thinner layers, the ¢ tends to increase.
To understand these results, we have calculated the thickness dependence of the
electron affinity and bandgap of InSe. These calculations have been performed by Dr.
Alejandro Molina using Quantum Expresso [187]. The local density approximation
including spin-orbit interaction with spinorial wave functions was used, with norm-
conserving full relativistic pseudopotentials [186]. A slab model with a 20 A vacuum
thickness has been used to avoid interactions between periodic images. Ab-initio
calculations have been corrected taking into account the well-known underestimation
from DFT calculations in semiconductor band gaps, using the y = 4.55 InSe bulk
value measured as reference to locate the conduction band reported for volumic InSe
[212, 185, 175, 174].
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Figure 3.12: Work function (¢) in different InSe thicknesses measured via KPFM
compared with DFT calculations for the valence band (VB) and the conduction

band (CB).

From these results, one can estimate the thickness dependence of the ¢ of InSe, that
may be approximated by (E.+E,)/2, as would correspond to intrinsic InSe. From
this analysis, it seems that the ¢ of 2D InSe tends to remain practically unaltered

in the range of thicknesses explored here, altough at the lower thicknesses explored,
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the blueshift of the InSe bandgap tends to start to increase the ¢ of InSe, although

the electron affinity appeared to decrease.

3.2.3 Application in sensing

Once the electrical properties of InSe have been studied, in this subsection an ap-
plication will be presented using this material, in this case, using its change in its
optical properties. 2D semiconductors are great candidates to be applied in gas sens-
ing. The surface - to - volume ratio in this materials [101, 349, 100, 98], due to their
laminar morphology, is ideal in order to react with particles suspended in air, which
will change drastically the properties of the semiconductor [102, 110, 109]. Com-
paring the properties before and after the exposure to the gas could be a method to

identify presence and conditions of different gases.

Due to the high reactivity in air of the Se radicals [105] and its always direct band gap
(which makes all nanosheets thicknesses appliable), InSe is a promising candidate
for these purposes, taking into account that the radicals S and N, similar in structure
with Se radicals present in InSe, are quite present in different situations, such as
batteries malfunction [106], organic decomposition [97, 103] or bombs detection
[96]. In this subchapter different 2D thicknesses of InSe will be exposed to different

concentrations, times and different gases and the PL intensity change will be studied.

Three different solutions (prepared by Dr. Rafael Abargues-Lopez and Eduardo
Aznar-Gadea) will be analysed:

1. Pure 2-mercaptoethanol (2-MET > 99%, Sigma Aldrich).
2. Pure 3-nitrotoluene (3-NT 99%, Sigma Aldrich).
3. 2-MET 0.1M solution in water (using 0.7813 g of pure 2-MET adding 100 mL

of water).

2-MET has been chosen due to the presence of a S radical, quite common in the
descomposition of organic matter (aiming for applications, e.g., in food industry
[97, 103]) as one of the most reactive gases in this family. 3-NT, on the other hand,
represents a N radical, being 3-NT interesting, for instance, in safety applications

to detect traces of bombs in air [96].

Although InSe is stable in air [99], in order to prevent as many exposition with air

as possible, the whole experimental process for every sample will be performed in
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the same day. First, InSe nanosheets will be exfoliated in Si/SiO, (285nm) and
identified via OC (see Subsections 2.1.1 and 2.1.2). After that, y-PL measurements
will be taken to caracterise every sample before and after the gas exposition in a
Horiba Xplora setup, described in Subsection 2.2.3 with a micrometric 532nm laser

excitation.

The exposition to the gas will be performed attaching the substrate bottom-up to
the bottom of the lid covering the solution to be studied, leaving the substrate faced-
down exposed directly to the previously over-exposed solution for the desired time.
Figure 3.13 collects the results after several samples in different conditions, gases

and exposition times, showing the average in any case.

Figure 3.13: Gas sensing with InSe. (a) Example in a PL spectra before and after
the exposition to 2-MET after 30s, (b) Ratio PL intensity after / before exposition
to a gas. Error bars due to the different samples measured in the same conditions.

In Figure 3.13b two different situations can be observed: at the beginning, the PL
intensity increases due to the fact that the gas is going to localise the Se defects in
the InSe surface [108, 104, 107], promoting electron-hole interaction and therefore,
the PL emission. However, increasing that exposition (more time or concentration),

the gas will be forced to penetrate inside the material, hampering that PL.

Also can be observed that longer exposition times for the low-concentration gases
produce the same effect as smaller times for the pure gas. Besides, 2-MET solutions
are more reactive than 3-NT. Finally, it has been analysed the effect of highly
saturated HoO enviroments, producing a slight decrease in PL, which should be

taken into account for longer exposition times.

The different behavior between semi-bulk samples and thinner ones will be shown

in Figure 3.14. Due to the surface - to - volume ratio difference, in thinner samples
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the reactivity will be larger compared with their volumic counterparts, as the effect
in their PL. will increase. For this Figure, it has been chosen as a limit between
thin and semi-volumic samples a PL peak emission in 1.35¢V. When the ratio drops
to zero, no sample has been measured for that specific range of thicknesses, gas

concentration and time.
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Figure 3.14: Gas sensing with InSe. Ratio PL intensity after / before exposition
to a gas for semi-volumic samples (a) and for thinner nanosheets (b).

Finally, in some of the samples exposed, it has been observed a shift in the PL
emission after the exposition to the gas. This fact can be explained because due
to the reactivity of the surface to the molecules in air, with high concentrations or
exposition times, the effective thickness of the sample could be reduced in one layer,
considering the top layer completely bonded to the molecules in air, obtaining a shift
in the PL emission of the resulting nanosheet. More measurements and samples are

needed to corroborate this fact.

Figure 3.15: Gas sensing with InSe. Shift produced after the exposition to the gas
in three different samples.
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3.3 Conclusions

In this Chapter, the potential of III - VI semiconductors for optoelectronic appli-
cations have been shown. However, in both cases, GaSe and InSe, some of their

properties are hampered due to its nature.

In GaSe, experimental results reported here and in the literature demonstrated the
wide optical band gap can be tuned due to quantum confinement effects up to
the ultraviolet. However, GaSe nanosheets are unstable in air, and the oxidation
processes and its behavior is explored. This issue can be solved via encapsulation

of the freshly-exfoliated GaSe nanosheets, as demonstrated in literature.

In InSe, the relatively unknown electrical properties in its bidimensional state have
been explored. However, the reported OP dipole, contrary to the usual vertical
excitation - vertical collection scientific approach hampers its usage, which will be

studied in the following Chapters.

Concerning the electrical properties in InSe nanosheets, the I - V characteristic
curves have been measured in homogeneous and layered InSe exfoliated samples
obtaining a different behavior using positive and negative bias: symmetric in ho-
mogeneous ones and asymmetric in layered samples. This asymmetry is similar to
the obtained in p - n heterojunction photodiode behavior, matching the n - n™ het-
erojunction produced in multiterraced nanosheets due to the difference in its band
gap. With a more detailed excitation system several conclusions have been obtained
that point to the existence of an intrinsic inner-barrier in the layered samples due
to the thickness (and, therefore, band gap) difference. This barrier is theoretically
understood taking into account some assumptions, where the result is the appear-
ance of a barrier in the valence band, explaining all the conclusions obtained in the
previous measurements. Therefore, the usage of multiterraced InSe nanosheets have

been demonstrated as heterojunction, adding the absence of defects in the junction.

However, one of the previous assumptions concerns a constant y when the thickness
change, assumption valid for semibulk thicknesses, but not expected in thinner ones.
A related magnitude, ¢, has been studied varying the thickness in different InSe
nanosheets, obtaining a dependance with thickness following the trend calculated
via DF'T. Further analysis is needed to relate cuantitatively these two magnitudes
with the carrier concentration in each nanosheet, which influence the location of the

Fermi energy in each case.
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Finally, an application using the optical properties of InSe has been presented. A
change in the PL in exfoliated InSe nanosheets has been observed in presence of
different gases due to the reactivity of surface exfoliated Se free radicals in InSe.
3-MET and 3NT as a S and N radical example, respectively, have been exposed to
freshly exfoliated nanosheets. At lower concentrations and exposition times, the gas
bonds and localise Se defects on the surface of the nanosheets, enhancing its PL.
However, at higher concentration or exposition times, this molecules get embedded

in the material, hampering its PL.

This effect is enhanced in thinner nanosheets due to its surface - to - volume ratio,
more important compared with thicker ones. Lastly, in a few samples, a PL shift
has been detected after the exposition to the gas, matching the shift expected when
a layer is reduced due to quantum confinement. Further measurements must be
performed to verify this effect. The data presented demonstrate InSe nanosheets as

thin film gas detectors, which can be measured directly with its PL change.
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4 Microspherical resonators and

two-dimensional semiconductors

PL emission and light emission management in 2D semiconductors is a major matter
for the implementation of optoelectronic and photonic applications. In this sense,
several strategies have been considered in order to enhance and tune light emission of
2D semiconductors for a specific device. In this chapter, SiO, microspheres deposited
on top of exfoliated 2D nanosheets have been used to enhance the PL of III -
VI 2D semiconductors by means of the whispering gallery modes (WGM) in the
microspheres as well as to obtain a fine-tuning of the PL peak wavelength in TMDs,
as another degree of freedom for photonic applications, by varying the microsphere
diameter. Besides these advantages, microspheres produce an effective lensing effect
of the incident laser beam that increases the excitation power density and hence
PL intensity on the observation area of the 2D semiconductor, without any change
in the laser setup used in the experiment added to a reverse lensing in collection.
More relevant is the coupling between the microspheres and the dipole of the 2D
semiconductor. Particularly, the OP dipolar behavior in InSe is clearly revealed by
its PL enhancement effect, as compared to the case of TMDs where neutral and

charged exciton to are characterised by IP and OP dipoles, respectively.

4.1 Introduction

2D materials have attracted the scientific community attention since the appearance
of graphene [322]. Several physical properties such as mechanical strength and flexi-
bility [228], on/off current ratio, high mobility [220] and a band gap tunability [227]
due to quantum confinement make them excellent candidates for next generation
applications in many fields, highlighting optoelectronics [201, 203, 238, 223|, spin-
tronics [231, 194, 202] and valleytronics [221, 213|, among others. These properties
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have been the focus for the growing interest in recent years on 2D materials. The
zero band gap in graphene hampers its applications in optoelectronic and photonic
devices and this was what motivated the study of other 2D materials with finite

energy band gap, i.e., 2D semiconductors.

On one hand, semiconducting TMDs such as MoSy, WS,, MoSe, and WSe, proved
themselves as the first suitable candidates overcoming that issue [234, 326, 225, 232].
Due to the indirect to direct transition in their band structure [333] from few-layer to
the monolayer, TMDs have demonstrated high absorption coefficient and emission
efficiency, especially under vertical excitation — vertical collection (backscattering)
configuration, due to their excitonic IP dipolar behavior [297], the optimal dipole
orientation for a vertical excitation. However, in optoelectronic applications, only
ML is used, with a fixed PL wavelength emission. That is the reason why pro-
cedures like strain [195, 199], chemical doping [217] or the transfer onto different
refractive index substrates have been used to provide for some tunability of the PL
spectrum, needed in some applications. Multilayered substrates such as distributed
Bragg reflectors (DBR) [200] or photonic nanocavities [229, 235, 300] have been
demonstrated to optimize the PL intensity for different TMD MLs.

On the other hand, IIT - VI layered materials such as InSe and GaSe also show po-
tential applications for next generation electronics and optoelectronics due to their
suitable band gap tunability [208, 334, 410, 198] (see Chapter 3). However, the
recently demonstrated excitonic out-of-plane (OP) dipolar behavior of InSe [297] is
the origin of the reduced absorption coefficient of monochalcogenides and therefore,
their quite low PL intensity in the vertical excitation — vertical collection configura-
tion, as compared to 2D TMDs.

In this chapter, SiOy microspheres have been deposited on top of exfoliated 2D or
near-2D nanosheets semiconductors, WSe, and InSe, respectively, to overcome both
issues: whispering gallery modes (WGM) in the microspheres can be used to enhance
PL emission of III-VI semiconductors due to the coupling of these modes to their
OP dipole and to obtain a fine-tuning in the emission of TMDs as another degree
of freedom varying the microsphere diameter. Besides, an effective excitation and
collection lensing effect appeared in both of them, increasing the excitation power
to the sample and, therefore, the final PL emission. Finally, the dipolar behavior in
InSe is demonstrated as OP, where an IP nature in the neutral exciton X° and an
OP behavior for the charged exciton X* is demonstrated for WSe, ML due to the
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different coupling and resonance intensity with the tangential propagation nature of
the WGMs in the microspheres.

4.2 Applications in I11-VI for enhancement

InSe and WSe; 2D nanosheets have been micromechanically exfoliated using the
well-known scotch-tape technique (see Subsection 2.1.1 and Appendix A). SiO5 mi-
crospheres solved in HyO (from Sigma — Aldrich) have been used, with a nominal
S5um diameter (4.83 £ 0.19 um). In order to have a sparse concentration of these
microspheres in solution, different aliquots in ethanol were prepared, and dropped
onto the exfoliated substrates via spin coating, after which high vacuum is applied
to force evaporation and avoid H,O residues. In the case of WSe; ML nanosheets,
microspheres in their surroundings were shoved until precisely placed on top of the

nanosheets, by using a tip probe attached to the transfer setup micromanipulators.

u-PL measurements have been performed in a Horiba Scientific Xplora micro-Raman
system (as described in Subsection 2.2.3). It is interesting to note here that we have
maintained the same focal distance for PL spectra acquired in the 2D semiconductor
without and with microspheres on top of them, in order to be able to perform a more

direct quantitative comparison.

The global enhancement effect by placing SiO5 microspheres on top of InSe nanosheets
can be nicely observed in their PL spectra (Figure 4.1). An enhancement factor of
50 is measured if the microsphere resonance is very close to the PL peak energy,

whereas the enhancement reduces to 5 — 8 times when it is detuned.
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Figure 4.1: PL enhancement in semibulk-InSe exfoliated nanoflakes in the presence
of microspheres: (a) Optical microscope image of the sample with microspheres on
top; (b) u-PL intensity map; (c) and (d) u-PL spectra of the same InSe nanosheet
before (blue curves) and after (red curves) placing SiOy microspheres on top.

Due to the presence of microspheres on top of the InSe nanosheets we should consider
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two effects. First of all, from the excitation point of view, the difference between
air and the microsphere refractive index will produce a lensing effect [211, 230, 209],
i.e., an extra focusing effect of the excitation beam on the sample surface that
increases the excitation power density on the sample, which will be reproduced in
the collection step, lensing the emission of the nanosheet to our collection, adding
emission that would otherwise have been outside the numerical aperture of our
setup (NA = 0.9 in this case). The second effect is related to the internal spherical
modes of the microsphere or WGMs. The PL emission from InSe nanosheets, due
to the proximity to the microsphere, will couple to the WGMs producing almost
equi-spaced resonances in PL intensity [239, 233, 204]. The spectral position of the
WGMs will depend mostly on the precise diameter of the microsphere on top of the
2D-sample that is being considered, which produces small variations of the WGM
wavelengths. In fact, when a WGM is located precisely at the PL peak energy the
enhancement factor raised up to 50 (Figure 4.1c), as compared to factors 5 to 8
(Figure 4.1d) when the WGM is detuned with the PL peak. This low enhancement
factor (5 to 8) is hence moslty attributed to the effective lensing in collection effect.
A similar behavior can be observed in other semibulk and thinner InSe samples,
which is the case of a 6.5nm-thick InSe nanosheet (Figure 4.2a) whose RT p-PL is
centered at 1.4 eV (blue curve in Figure 4.2b) [334]. For this nanosheet we observe
two clearer resonances in its 1-PL spectrum (red curve in Figure 4.2b), due to the

SiO5 microspheres on top (Figure 4.2a).

Figure 4.2: PL enhancement in thin InSe exfoliated nanoflakes in the presence of
microspheres: (a) Optical image of a thin sample with SiOy microspheres on top;
(b) p-PL spectra comparing the emission of the thin InSe nanoflake before (blue
curve) and after placing the microspheres (red curve).
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4.3 Applications in two-dimensional transition metal

dichalcogenides for fine-tuning

Figure 4.3: PL enhancement and fine tuning in WSe, ML exfoliated nanoflakes in
presence of microspheres: (a) Optical image of a sample with a microsphere on
top; (b) PL enhancement map using the ML emission as intensity reference; (c)
p-PL spectra of the ML nanosheet without (blue curves) and with a microsphere
on top (red curve); (d) Power of the scattered light by the WGMs in a 5Sum
microsphere from a point electric dipole normalized to its power Py in vacuum,
which is separated 3nm from the microsphere surface, as simulated by using the
Mie theory under resonant conditions, and IP scattering in the inset.
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The spectral dependence of the WGMs due to the precise diameter of the micro-
sphere can be also used as a tool to produce a fine-tuning of the light emission in
TMDs. If a WGM does not match the PL peak energy of the TMD, a certain spectral
shift will be typically observed in the PL line due to the differential enhancement at
the detuned WGM wavelengths as compared to the surroundings. This is the case
of the WSey ML (Figures 4.3a), where the SiOy microsphere on top produces a p-PL
enhancement of around a 2.5-to-4 factor (Figures 4.3b-c), other than a clear redshift
of the spectrum in the order of 6-7 meV (red curve in Figure 4.3¢). In both cases,
for InSe and WSe,, the size of the SiOy microsphere can be precisely calculated to
produce the appropriate spectral position of the WGMs, which are simulated the-
oretically in Figure 4.3d. In one case the matching between a WGM and the PL
peak energy for a given III - VI semiconductor nanosheet, in order to enhance its PL

peak intensity, is targeted. In the other case, the TMD semiconductors, the interest

resides in defining the desired PL (blue/red) shift.

In Figure 4.3d, the power P emitted by a point electric dipole, normalised to its
power Py in vacuum, separated 3 nm from the dielectric microsphere (n = 1.4607;
[196, 218] 5um diameter), has been simulated using the well-known Mie theory [222]
and imposing the resonance condition over their associated scattering coefficients
by Dr. Carlos Zapata-Rodriguez. For instance, the resonant frequencies of the
TE modes can be estimated to an excellent approximation by solving the equation
nj,(nz)/j;(nx) = ny(z)/n(x) in terms of the normalised variable z = kR, where
Ji and n; are the spherical Bessel and Neumann functions of order 1, respectively,
n and R are the refractive index and the radius of the spherical microresonator,
respectively, and k the light wavenumber in vacuum [215]. Once we have estimated
the spectral positions of the WGM resonances for a given microsphere diameter (5
um in Figure 4.3d), the spectral position dependence for other diameters can be
estimated by using the relation wyd; = wads, where wy (ws) is the known (unknown)
frequency of a WGM for the microsphere of diameter d; (ds). This relation is valid
as long as the chromatic dispersion of the sphere is neglected, useful to calculate
the diameter needed for a specific application in short optical ranges, as the case

evaluated in this work.

The Quality factors (Q) in our theoretical simulations are reaching values in the
range 10% - 10%, which are far from our experimental Q-factors, in the range 30 —
100. This difference can be perfectly understood, because of the use of commercial

SiOg microspheres deposited on a Si/SiO, substrate, instead of perfect microspheres
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in vacuum. Of course, the Q-factor of the microresonators can be eventually opti-
mised for a specific application, for example by using shell-coated polymer dielectric
microspheres [236] or different shaped high-Q microresonators [219], with higher

refractive index than the substrate.

However, apart from the observed enhancement 2.5-to-4 factor for the PL intensity
in WSey MLs, it is worth to highlight the important difference with respect to the
7-to-50 enhancement factors measured in the case of InSe nanosheets. We attribute
such a difference to the dipolar orientation of the optical excitonic transition in
the two studied semiconductor nanosheets due to the different collection areas in

presence of the microspheres.

A first common effect between the two experimentally studied cases is the effec-
tive lensing effect in excitation and collection (green shadowed areas in Figure 4.4),
which gives the same enhancement factor ~2 in the PL intensity. This extra fo-
cusing through the microsphere of the excitation laser is the same in both cases,
similar to the emitted light that can be collected in presence of the microsphere,
hence independent of the nanosheet material. The difference is clearly observed for
higher enhancement factors, as explained below by considering the dipolar nature

of excitons in both materials.
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Figure 4.4: On top of a microsphere — nanosheet photoluminescence ratio in InSe
nanosheet (a) and WSe, monolayer (b). Different enhancement contributions in
the materials have been highlighted with shadowed areas in green, orange and
purple as effective lensing effect, OP dipole contribution and IP non-contribution,
respectively.

InSe thin films have been recently demonstrated to exhibit excitonic OP dipoles
[297]. In fact, we observe a similar PL lineshape (top panel of Figure 4.4a) and hence
an oscillatory behavior for the PL intensity (enhancement) ratio of the nanosheet
with /without microsphere (black curve in bottom panel of Figure 4.4a) through the
whole PL band energy region (this region has been highlighted in Figure 4.4 by using
orange shadowed areas). This behavior nicely agrees with the coupling between the
excitonic OP dipole and the tangential propagation direction in the WGM in the
microspheres, giving rise to the observed maxima in the oscillatory PL ratio curve, as
calculated previously, observing only 4 resonances in the range measured (assigned
to the OP modes in Figure 4.3d) instead of 7 - 8 modes (as expected with IP modes).
Due to the similar shape on the ratio in the whole range, we conclude that the OP

behavior is homogeneous in this emission.
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However, two different situations appear in WSey ML, as observed in Figure 4.4b.
In this case, at energies above its PL peak (top panel of Figure 4.4b), where the
neutral exciton X° emission dominates [317], the PL intensity ratio (black curve in
bottom panel of Figure 4.4b) drops to the background ~2 enhancement ratio very
fast (shadowed violet region in Figure 4.4b). Simultaneously, at energies below its
PL peak, we observe resonances in the PL intensity ratio (orange shadowed ratio
in Figure 4.4b), similarly to InSe, i.e., consistent with an excitonic OP dipolar
behavior in WSe,, and reaching comparable enhancement factor values ~8. The
energy region of the p-PL spectrum in the WSey ML where this effect is observed
coincides with the expected contribution from charged exciton X recombination
(WSe, is unintentionally p-doped and higher hole concentrations are accumulated
on the nanosheet edges and defects, which is the origin of a certain proportion of
positively charged trions contributing to the PL of this material [317]). This dipolar
behavior can be also observed in the previous simulations (Figure 4.3d). When the
dipole is oriented radially to the microsphere (OP), only TM modes are excited, with
more intense resonances. However, when it is set tangentially (IP), both TE and
TM modes are excited at lower intensities, being TE excitation dominant. This fact,
added to the low Q-factor values measured, explain the different coupling between an
IP and OP dipole in the WGM on the microsphere, producing the different behavior

in their resonances.

Besides, let’s consider two different areas in our nanosheets: the area in contact with
the microsphere and the proximities, slighly distanced, but with emission collected
by the microsphere. The coupling to the WGMs is hampered drastically when the
distance to the microsphere increases, e.g., in the surroundings to the contact po-
sition. In the area in contact, both IP and OP contributions will resonate in the
WGM. However, due to the localised-nature of the charged excitons in TMDs, re-
combinations in the area will effectively produce the WGMs, in comparison with the
IP contribution in TMDs, assigned to neutral excitons, with higher recombination
distances. In the areas close to this contact position, no WGMs will be produced
due to the increased distance to the microsphere. However, IP contribution, due
to its dominant nature, will be collected, masking the resonances produced in the
contact area, opposite to the OP contribution due to charged excitons, where its

localised nature hampers spacially distanced recombinations.
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4.4 Conclusions

In summary, here we present a new and simple technical approach to enhance the
optical properties in 2D semiconductors, overcoming some of their basic limitations.
For TMDs it is shown how can be matched their photoluminescent emission for
a specific known wavelength. Firstly, after knowing the wavelength needed for a
particular application, the microsphere diameter required can be calculated prior
to locate it on top of a ML to be able to use the WGMs inside the microsphere
to tune the emission to the desired wavelength. For the ITI-VI semiconductors, the
same method should be used to identify first the diameter wanted to match the
WGM with the PL peak emission of the III-VI semiconductor thickness used. In
this chapter the usage of microspheres to enhance PL emission is presented, opening
the possibility for specific applications to optimise the conditions proposed, such as
better resonators for higher Q-factors, aiming for lasing effect in these materials, for

instance.

Besides, this approach gives more understanding about the dipolar nature in both
materials. For InSe, an OP dipole behavior is found when simulated scattered
light from a point electric OP dipole is compared with the experimental results,
demonstrating its recent OP reported nature. This fact focuses this material on
its use in optoelectronics and integrated photonics. On the other hand, for WSe,
MLs, two different components have been obtained: an IP dipolar behavior at higher
energies, where the neutral X° exciton is located, and an OP dipolar nature at lower

energies, where the charged excitons X* take place.
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5 Perovskites and two-dimensional

semiconductors

Shortly after the isolation of the first 2D materials, it was conceived the stacking
of different 2D materials with the aim of forming new nanomaterials with tailored
properties. First, similar to how it was discovered, graphene was implemented along-
side other structures to take advantage of its properties in existing elements. From
decorated-graphene nanosheets with CdS-clusters for photocathalysis [245], with
ZnO as a gas sensor [257], with DNA for chemical sensors [286], or Ca and Li for
hydrogen storage [270] and superconductivity properties [263], respectively. Usually,
graphene were used due to its surface - to - volume ratio and its great conductivity

to cover that issue in other nanomaterials.

Soon, 2D TMDs were incorporated to this race. In this case, aiming for opto-
electronic applications due to its semiconductor nature. PbS quantum dots for
phototransistors [272, 278] and photodetectors [255, 259] or Fe;O4 nanoparticles
for battery applications [285], for instance. The usage of this materials combined
with nanoparticles (e.g., Pt [291, 276], Pd [293], MoS, [277]) as electrocatalysts for
hydrogen evolution reaction and water splitting has been specially studied by the

scientific community.

On the other hand, 2D materials and perovskites have been two of the main explored
topics in the last years [279, 246, 294]. Their ease of fabrication, combined with their
strong solar absorption [248, 256, 265] and low non-radiative carrier recombination
rates [252] make them interesting in solar cells [262, 284, 281, 252, 271], achieving up
to a 20% in its external quantum eficiency [253]. Among all their optical properties,
for this chapter, it is worth noticing their multi-oriented photoluminescent emission
(247, 254, 273], as shown in Figure 5.1.

These perovskites have been also exploited to complement (or be complemented)

by 2D materials. With graphene, among others, they have been implemented in
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photodetectors [411, 282] and phototransistors [274, 260], to act as solar cells [60] or,
as described previously, as oxygen reduction reaction electrocatalyst [283]. Similar
optoelectronic-oriented devices can be found in literature using TMDs [387, 251, 244,
266, 269, 288, 280]. These are examples of different nanomaterials which combined

offer enhanced properties, complementing them for specific applications and devices.

The multi-directionallity previously highlighted in perovskites emission contrast
with the OP dipolar behavior in InSe [297], which hampers its absorption and emis-
sion in a classical vertical excitation - vertical collection configuration, as described

in previous chapters.

In this chapter, PL of InSe nanosheets with and without presence of perovskites will
be compared, obtaining an enhancement in its emission due to the reabsorption be-
tween the perovskites multi-oriented photoluminescent emission and the OP dipole
in InSe, presenting its joint use as a way to increase its absorption. For comparison,
two different synthesised perovskites will be utilised, and in order to demonstrate
the OP dipolar relevance for the reabsorption, MoSes, known for its IP dipole as a
TMD, will be compared.

5.1 Theoretical background

The structure that will be studied in this project is defined in Figure 5.1. On a
Si/SiOy substrate with a 285 nm thick SiO, layer, a 2D material will be exfoliated
and, on top of it, perovskite agglomerates will be transferred. The comparison
between areas with and without the presence of perovskites will be the focus of
the later measurements. In the case of InSe, due to the OP dipole orientation
[297], a vertical excitation in the z-direction is not ideal for its absorption (Figure
5.1a), compared with other 2D materials like the TMDs, which IP dipole orientation
optimise the z-direction absorption (Figure 5.1b).

In presence of the perovskites, two contrary effects will occur. First, due to its
presence on top of the 2D material, the direct excitation power that can excite the
2D material will be partially blocked by the perovskites on top, absorbing most of
the excitation that without the perovskites it would have arrived directly to the
2D material. This first effect will be highly hampering for the TMDs due to their

optimal absorption in this direction.
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However, opposed to this effect, the perovskites will have its own emission, in all
directions due to its nature [247, 254, 273|, being this excitation another source that
could be absorbed by the 2D material underneath. In the case of InSe, due to its OP
dipole, the reabsorption will be relevant compared with the not ideal absorption in
the z-direction, as opposite with a TMD, where the absorption was already optimal
without the perovskites, so the reabsorption in this case will be the main source
for the InSe and not harnessed by the TMD (Figures 5.1c and 5.1d, respectivelly).
These two contraposed effects will be the main difference that will be analysed in

the following lines.

Figure 5.1: Sample diagram of the absorption and dipoles orientation with the
effects expected exciting in the vertical direction to (a) an InSe sample, (b) a
TMD sample, (c¢) an InSe sample with perovskites on top and (d) a TMD sample
with perovskites on top.
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5.2 InSe and perovskites

InSe and MoSe, 2D nanosheets have been prepared through the well-known scotch-
tape micromechanically exfoliation technique (see Subsection 2.1.1 and Appendix
A). InSe samples have been then directly transferred onto Si substrates coated with
285nm of SiO,, as described in Subsection 2.1.2. Bulk MoSe,; (Appendix A) has been
used here to obtain MoSe; nanosheets. ML were exfoliated using the same scotch-
tape technique to a PDMS stamp. ML identification has been done using their
known PL emission at RT [333], and then through the all-dry viscoelastic technique
transferred onto Si/SiOy (285nm) cleaned substrates similar as used for InSe. The
samples have been identified via OC using a Zeiss Axio Scope.al microscope with

an Axiocam ERc bs camera (for more details, see Subsection 2.2.1).

The synthesis of the perovskites used and their purification have been carried out by
Juan Navarro-Arenas. Perovskite nanocrystals (PNCs) of CsPbl; (red perovskites)
and CsPbBr3 (green perovskites) were synthetised following the hot-injection method
[292]. A reprecipitation method was used for the purification of the PNCs; two sol-
vent /antisolvent (hexane/ethyl acetate) washing cycles were applied to archieve high
purity PNCs. This washing procedure was key to allow the isolation of the PNCs
for the further processing into heterostructures by the 2D-transfer techniques. For
both kind of perovskites, after the synthesis, a PDMS stamp was used to pluck areas
with high perovskite agglomerates concentration, identified by their back-scattering
emission under a 404 nm laser excitation and detected with a Pixelink camera with
a longpass edge 450nm filter in the collection, to transfer these localised areas on
top of the nanosheet previously exfoliated through the all-dry viscoelastic technique

(Subsection 2.1.3.1), adapted to the perovskites transfer.

A Horiba Scientific Xplora y-Raman system using a 532nm CW excitation laser have
been used to perform the u-PL measurements, not exceeding 60uW of power in InSe
and 10uW in MoSe, to prevent overheating in the samples (Subsection 2.2.3). The
optical beams in the excitation and collection spot have been focused to less than
lum?. Tt has been took into account the same focal distance during the PL spectra
mapping in each sample in order to being able to compare intensities in areas with

perovskites with areas without them.

First, green perovskites agglomerates have been used to excite InSe samples through
reabsorption. Perovskites with emission centred in the green-range in the wavelength

spectra have been chosen due to the quasi-resonant excitation using a 532 nm CW
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laser, increasing to optimise the distance between InSe and the perovskites absorp-

tion to enhance it.

Although the perovskites and the 2D exfoliated materials will be in contact in the
vertical heterostructure, a relevant charge transfer between them is not expected
due to the transfer method, in which the contact surfaces have been exposed to air
and perovskites nature: organic ligands surrounding the agglomerates hamper the
carrier transfer to and from the 2D underneath [289, 275, 268]. For that reason, in
this project only reabsorption will be considered as re-excitation mechanism between

these two materials.

In Figure 5.2a can be seen the optical image, being able to determine optically the ar-
eas corresponding exclusively with InSe, areas with the only presence of perovskites
and areas with perovskites on top of the InSe nanosheet (highlighted, respectively,
with dashed black, red and green bounds). These are the areas to compare, the bare
InSe against InSe with perovskites, comparing an average using different points in
Figure 5.2b, observing that in the areas presenting perovskites (as shown optically
and in the inset spectra at higher energies, observing the tail of their emission) the
InSe PL is enhanced. This can be observed in Figure 5.2c, where a PL map is shown
integrating the collection between 1.23 and 1.36 eV, the range of energies where the

InSe has its PL emission.

Finally, in order to re-determine the areas with perovskites a PL map integrating
the collection intensity between 1.95 and 2.15 eV has been shown in Figure 5.2d,

matching this area with the area with enhanced InSe emission.
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Figure 5.2: (a) Optical image of an InSe nanosheet with green perovskites on top,
defining three different areas: exclusively with InSe (black), exclusively with per-
ovskites (red) and with InSe and perovskites on top (green), (b) PL spectra show-
ing the average emission in different points in the InSe area and in the InSe with
perovskites area, (¢) PL map integrating the InSe emission (1.23 — 1.36 ¢V), (d)
PL map integrated in the green perovskites emission (1.95 — 2.15 eV).

Reabsorption effects have been observed in 2D InSe/perovskites systems when dif-
ferent perovskites have been used, which have their PL emission centred in the
red-range wavelength spectra. In this case the agglomerates obtained, due to the
nature of the synthesis, are smaller, but still can be observed optically (Figure 5.3a)
and, in order to support this localisation, in the PL map integrated between 1.70

and 2.00 eV, where the perovskites have their emission (Figure 5.3d).

With these comparison between the map shown in the Figure 5.3d (the location of
the perovskites agglomerates) and the PL map in the Figure 5.3c (integrating the
emission spectra between 1.23 and 1.36 €V, the InSe emission) can be observed the
same effect: that in the areas where the perovskites are located, the intensity in the

InSe emission is enhanced. Averaged PL spectra are shown in Figure 5.3b. In this
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case, due to the high difference between the emission of the perovskites compared
with the InSe nanosheets two different maps have been taken, one for each energy

range, in order to avoid saturating the collection.

Figure 5.3: (a) Optical image of an InSe nanosheet with red perovskites on top (in
this case, small agglomerates can be seen on top of the InSe nanosheet, marked
with dashed red bounds), (b) PL spectra showing the average emission in differ-
ent points in the InSe area and in the InSe with perovskites area, (¢) PL map
integrating the InSe emission (1.23 — 1.36 eV), (d) PL map integrated in the red
perovskites emission (1.70 — 2.00 V).

In both cases, using green or red perovskites, it is shown that in the areas where the
perovskites are located, which can be seen optically (Figures 5.2a and 5.3a respec-
tively) or in the PL map (Figures 5.2d and 5.3d respectively), the InSe PL emission
is enhanced (Figures 5.2c and 5.3c respectively) compared with the areas without
perovskites on top (Figures 5.2b and 5.3b respectively shows both PL spectra for
comparison). The fact that the InSe samples, due to its OP dipole, absorbs the
emission in all directions of the perovskites exceeds the blocking of vertical exci-

tation that the perovskites absorb and do not reach the InSe, which would not be
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properly absorbed by that dipole.

5.3 MoSe; and perovskites

Finally, a different exfoliated material will be used in order to demonstrate the
relevance of the OP dipole in the reabsorption that enhance the InSe emission.
MoSe, has been used as an example of the TMDs, all of them with IP dipole, due
to its minor absorption energy compared with WSes, MoS; or WSy in order to
optimise the reabsorption between perovskites and material, separating them. Red
perovskites have been transferred on top and the same measurements have been

taken to compare with the InSe samples.
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5.3 MoSe, and perovskites

Figure 5.4: (a) Optical image of an MoSe; nanosheet with red perovskites on top
(in this case, two big agglomerates can be seen on top of the MoSe, nanosheet,
marked with dashed red bounds), (b) PL spectra showing the average emission
in different points in the MoSe;y area and in the MoSe, with perovskites area, (c)
PL map integrating the MoSe, emission (1.52 — 1.62 e¢V), (d) PL map integrated
in the red perovskites emission (1.80 — 1.90 eV).

In this case, contrary with the InSe nanosheets, we observe a decrease of PL emission
in presence of the perovskites (Figure 5.4b, where PL spectras taken only in presence
of MoSe, monolayer and in areas with red perovskites on top of MoSey are compared,
as can be seen in the PL maps in Figures 5.4c and 5.4d of optically from Figure
5.4a). Due to the IP dipole orientation in MoSe; ML the absorption of the excitation
source was optimal without the perovskites, so the perovskites on top only block it,

and the multi-oriented perovskites emission is not harnessed.

This result contrast with a recent publication [250], where instead of transferring
the perovskite on top of the TMD, is the TMD that is above, not being blocked
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and, therefore, obtaining greater emission from the substrate.

5.4 Conclusions

The perovskites and 2D materials interaction due to reabsorption mechanisms has
been studied in this chapter. First, using perovskites on top of InSe exfoliated
nanosheets, the PL enhancement in the areas with perovskites has been proved due
to the reabsorption of the multi-directional perovskites emission by the OP InSe

dipole, which in the absence of perovskites was not ideal for vertical excitation.

This effect has been demonstrated using different perovskites, with photoluminescent
emission in the green-range and the red-range wavelength spectra. In order to
demonstrate that the dipole orientation was the main reabsorption mechanism, a
MoSe, ML sample has been studied, this case with an IP dipole. In this case the
presence of perovskites, instead of enhancing the PL emission, hampers it due to

the blocking of the optimal vertical excitation source.

With this study we present two messages: first, the implementation of perovskites in
order to enhance the optical properties for OP materials and second, an experimental
demonstration of the OP dipole nature in InSe, compared with the IP nature in
TMDs, with MoSe, as example. These two materials together open the door to
devices for large-range light absorption with the usage of different perovskites which

will be absorbed by the InSe underneath for optical applications.

Even more, combining the enhanced optical properties in InSe due to the presence of
perovskites (as demonstrated in this project) with the InSe electrical properties (high
mobility [242, 258] compared with the perovskites, which organic ligands diminish
[264, 287, 261]) could be explored in future projects optimising the carrier transport

between the surfaces in both materials.
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6 Light-matter interaction in
two-dimensional materials on

waveguides

In this chapter, the optical measurements of 2D nanosheets on waveguides will
be analysed. This project has been developed in collaboration with Dr. Isaac
Suérez-Alvarez (waveguide preparation and measurements), Rodolfo Canet-Albiach
(preparation of samples and measurements), Dr. Mauro Brotons-Gisbert and Dr.

Alejandro Molina-Sanchez (theoretical discussion).

6.1 Introduction

In previous chapters, several optoelectronic properties of 2D materials have been
studied, showing promising results for its implementation for specific applications.
As in most publications on the field, the properties to be studied on a material and its
potential use as a photodiode, photodetector, solar cell, for instance, is demonstrated
using the air as path for transporting the photons involved. These types of devices,
although perfectly useful and valid to demonstrate this purpose, are very sensitive
and unstable to calibration, where any mechanical disturbance, however minimal,
completely cancels the detection and usability of the effect pursued. In order to
do so in photonic devices, the excitation source and the photoluminescent emission

must be collected and contained in every step through the whole process.

Generally speaking, in photonic applications, where the wavelengths involved in the
processes in the devices lying in the visible and near infrared spectra (400 nm -
1100 nm), optical waveguides are the channel of choice for light transportation. Due
to the internal optical modes in the waveguides and effects such as total internal

reflexion due to the difference between refractive indexes, light is confined in the
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device, avoiding losses due to multidireccional emission on the materials involved
or mechanical disaligning on the elements. Usually, optical materials (i.e., they do
not absorb propagating photons) are used, such as polymers (PDMS [305, 303] or
PMMA [306, 304, 299], for instance) and Si-compounds (SiNy [307, 308, 311] or SiOq

in fibre optics, like the project developed in Chapter 7) in most cases.

The relevance of photon confinement and guiding of waveguides is highlighted in
some projects specially, from using a TMD as a saturable absorber for lasing [309],
an experiment showing a two-particle bosonic-fermionic quantum walk [337], surface
plasmons using these materials [301] or any photonic-device oriented for a foldable
usage [314].

Another advantage of the integration of waveguides into devices is their complete
compatibility and integration with the Si and CMOS optoelectronic industry devel-
oped in the last years [315, 393, 312, 313, 339], optimising the cicle of basic research

- device implementation - development into commercial devices.

Due to the recent birth of the 2D materials field (2004 with the discovery of graphene
[322] and its rise in 2010 with the Nobel prize [310]), most publications aimed for
the basic properties, leaving a proper photonic implementation for future projects.
Although in the electrical part some publications obtained flexible and reliable con-
tacts [300, 298], in the optical or photonic part not so many articles focus on this
topic. Note the usage of Black Phosphorus as a photodetector integrated in a Si
waveguide [336] (aiming for a more optoelectronic device), the waveguide collection
for WSey quantum emitters [320] and second-harmonic generation in MoSe, [319],
a polarization-dependent study in MoS2 on a waveguide [325] and, specially, the
encapsulation of a MoSs ML in a waveguide [317], where the excitation is in the
horizontal direction and its collection in the vertical direction, project aiming for
similar objectives as this chapter attemps. However, these processes need further

study for its proper implementation in large scale devices [302].

This directionality effect on the excitation and collection is expected to be specially
relevant in InSe. As commented in previous chapters (Chapters 4 and 5), the usual
scientific vertical excitation - vertical collection approach hampers InSe due to its OP
dipolar behavior [297], deminishing its absorption and emission. This problematic
could be fixed with different configurations involving the horizontal direction, highly

unexplored in general, which take advantages from this OP orientation.

In this chapter, starting with InSe and, for comparison, WSey; and MoSe; as TMDs
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6.2 Guiding InSe photoluminescence

examples, will be integrated on an optical waveguide for its further study. To do so,
every excitation - collection configuration possible has been explored, as shown in

Figure 6.1.

The waveguides used for this chapter have been prepared by Dr. Isaac Suarez-
Alvarez, and a MoSe, sample whose measurements will be presented in this chapter,
has been prepared by Rodolfo Canet-Albiach.

Figure 6.1: Schematic waveguide and sample measurements configurations, la-
beled, in this order, as the “excitation - collection” directions.

6.2 Guiding InSe photoluminescence

In order to measure through this approach the OP dipolar behavior in InSe, an

exfoliated sample with a shift in its RT PL emission, proving therefore quantum
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confinement (with a thickness of 4 nm due to its emission at 1.45 eV [334]), was
transferred via all-dry viscoelastic transfer (see Subsections 2.1.1 and 2.1.3.1) on
a 1D waveguide prepared using photolitography in SU-8 photoresist resin. The
PL measurements performed in a horizontal excitation - vertical collection, vertical
excitation - horizontal collection and horizontal excitation - horizontal collection
have been taken using the hand-made setup showed in Subsection 2.2.3 (Figure
2.8b), where the directions for excitation and collection can be freely chosen between
horizontal and vertical in any configuration possible (Figure 6.1), while the vertical
excitation - vertical collection measurements have been performed in the Horiba

Xplora y-Raman setup described in Subsection 2.2.3 (Figure 2.8a).

In spite of all essays performed, no data in any guiding configuration, in which the
horizontal direction is involved, was obtained due to the low PL of InSe compared
with the intrinsic waveguide resin emission. As an example of the results obtained,
Figure 6.2 shows the PL response of an InSe flake on a waveguide measured in a con-
focal vertical excitation and collection configuration, where the confocal resolution

allow its detection.

Figure 6.2: PL measurements in InSe on SU-8 waveguide: on the left (a), optical
image of the sample transferred (highlighted with dashed red areas) and, on the
right (b), RT PL measured in a confocal vertical excitation and collection of the
InSe nanosheet (red) and the SU-8 waveguide (black) before the transfer and the
PL measured after the sample was transferred (blue).

Due to this experimental unavoidable emission, hampering every measurement taken
in InSe, the following waveguide devices were prepared using TMDs MLs, with
higher RT PL emission [335, 333, 338, 321], instead of InSe in order to optimise the

techniques and experimental setup prior to start studying this material. Besides, 2D
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Poly(methyl methacrylate) (PMMA) waveguides, will be employed (if not indicated

otherwise) instead of the SU-8 1D ones to avoid its resin fluorescence.

6.3 Guiding transition metal dichalcogenides

photoluminescence

The 2D PMMA waveguides have been prepared via spin coating on a Si wafer,

obtaining thicknesses of ~1 um on top of Si substrate to have confinement in the

vertical direction (instead of a confinement in 2 directions, vertical and horizontal, in

the 1D waveguides). After several monolayered TMD samples transferred onto 2D

PMMA waveguides it can be observed the following common summary experimental

results, as these sumarised in Figure 6.3:

Horizontal excitation - vertical collection: double narrower separated peak

emission.

Vertical excitation - horizontal collection: wide emission with an apparent

shoulder at lower energies.

Horizontal excitation - horizontal collection: wide emission with an apparent

shoulder at lower energies.

Vertical excitation - vertical collection: unlike the previous configurations,
the y-PL Horiba Xplora confocal setup (described in Subsection 2.2.3) has
been used, with a collection spot around ~1 pm?, allowing a micrometric-
resolution mapping study. A wide emission was observed in any point, but
in edges, cracks or folded areas a clearer shoulder, even as a second peak can
be observed, but never isolated or separated from the other peak as in the

horizontal excitation - vertical collection configuration.
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Figure 6.3: PL emission measured in WSey (a) and MoSe, (b) on 2D PMMA
waveguides in different configurations. WSe, measurements have not been nor-
malised (except vertical - vertical configuration) to show intensities comparison.
MoSe; measurements have been normalised according to the factors on the legend

In the first set of measurements, these shown in Figure 6.3, it can be observed
different emission detected just varying the configuration of the measurement. Two
different emission components can be observed depending on the excitation and
collection direction. In both materials, a weak feature can be observed in the low-
energy side of PL peak attributable to the X* exciton appearing around 1.61 eV for
WSe, and 1.50 eV for MoSey [329, 328, 327, 324, 326|, which has been marked by
dotted lines. The relative intensity of this feature, as compared to that of the X°
exciton, strongly depends on the excitation/collection modes. These facts have been

observed in all samples studied, resulting independent of the following parameters:

o Traversed waveguide distance, this fact allows discarding reabsorption in the
waveguide (as observed in Figure 6.4a, where the same sample, transferred
in an area close to an edge of a 2D PMMA waveguide, has been measured
in horizontal excitation and vertical collection, but rotating the sample in
both sides, exciting through the longer and the shorter guiding side, with
qualitatively no change in the measurements but an intensity change due to

the losses in collection in the longer guiding direction).

 Size of the sample in the guiding direction, this fact allows discarding reabsorp-
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tion in the own TMD (after measuring several samples with different WSe,
MLs of different sizes, no qualitatively effect has been observed apart from

having an enhancement in intensity detected in larger samples).

o Excitation laser, as observed in Figure 6.4b, where 532nm and 633nm have

been used as excitation source.

o Waveguide material or configuration, discarding different waveguide material
influence or effect in 1D or 2D confinement (as observed in Figure 6.4c¢, obtain-
ing similar behavior in WSe; MLs in 1D SU-8 considering its own fluorescence,
2D PMMA or 1D PMMA waveguides).

« TMD monolayer used, obtaining the same behavior in WSe; and MoSe, (each
of them in its own RT emission range [333]), this fact allows discarding a
possible dark exciton as the low energy peak, since in MoSe, this peak should
appear at higher energies [332, 429, 330]).

Figure 6.4: PL measurements in WSey on waveguides, changing the propagation
distance in the excitation direction (a), the excitation laser wavelength (b) and
material and confinement directions in the waveguide (c).

In all measurements, it is present the emission expected at RT attributable to the
exciton X in the transferred material at higher energies (1.66 eV in WSey and 1.59
eV in MoSe, [333]). However, the lower energy peak/shoulder, after discarding dark
exciton or reabsorptions in the active material or waveguide, can be atributed to the
bounded exciton or charged exciton X* (due to the p-doping in our bulk material,
see Appendix A), coherent with reported energy position [329, 328, 327, 324, 326].

This is demonstrated in the confocal vertical excitation and collection PL maps,

131



Chapter 6 Light-matter interaction in two-dimensional materials on waveguides

where this contribution, although present in every point in the tail of the emission,
is clearly enhanced in the borders, edges or raised parts [323]. In these areas the
localised defects increase the density of electrons, recombining in bounded excitons

in that areas, as observed in Figure 6.5.

Figure 6.5: Confocal vertical excitation and collection PL map in a MoSe; mono-
layer on a 2D PMMA waveguide. In the optical image in (a) has been marked
different coloured points, which spectras are shown in (d) as an example of an
average point, and (e) and (f) points on the edges where the bounded exciton
contribution is enhanced. In (b) and (c), the PL maps integrating in the bounded
exciton energies (b) and the X° exciton (c), respectively. In the PL spectras,
it has been highlighted two different contributions X and XY, fitting with two
separated gaussian components.

However, this two-contribution emission in the RT PL in TMDs monolayers, where
the exciton X° and the charged exciton X* are the responsible of the effects before

described does not explain the following experimental observations:

o Comparing measurements taken in the same sample, the peak position of
both contributions is not constant changing the configuration. This fact is
clearly shown in Figure 6.3a, where the double peak observed in horizontal

excitation - vertical collection does not match with the other measurements,
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nor the charged exciton with the shoulders observed nor the X° with the peak

maximum position.

o Even though the localised exciton does not have a specific energy position
(the fact that it is created dominantly in localised defects like borders or tilted
edges differs one from the others, producing a wide band emission) it has
been observed that it shifts to higher energies when the localised exciton is

enhanced, reducing the X° exciton intensity (Figures 6.5d, e and f).

e It does not explain why in horizontal excitation - vertical collection the con-
tributions are clearly separated. Such an intense narrowing due exclusively to

the configuration measurement is not expected.

A polarisation study has been realised, as shown in Figure 6.6, where the horizontal
collection is filtered through a linear polariser, obtaining more intensity when the
polariser matches the reported IP X° directionality, variance not seen in the energy

ranges where the X* is expected.

On the left in Figure 6.6, what has been polarised is the excitation arriving to the
ML, observing, therefore, its absorption behavior. After renormalising, no qualita-
tively change is observed in the X° exciton nor in the X*. Independently of the
polarisation in the excitation, the propagation ? vector is perpendicular to the IP

or OP dipole, agreeing with the absorption expected behavior.

On the right, the collection has been filtered through a polariser, collecting the emis-
sion of the sample depending on the polarisation. In this case, after renormalising,
exciton X is unaffected (besides having an increased intensity in TE polarisation
due to the natural IP TMD behavior), but at lower energies the emission is reduced
when the IP component is blocked (polariser in TM mode, vertical). This situa-
tion affects the low-energy shoulder where the exciton X is located, showing OP

behavior, opposite to X°, due to the preference in the waveguide to TE modes.
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Figure 6.6: Polarisation study in PL in waveguides. On the left, horizontal po-
larised excitation and vertical collection and on the right vertical excitation and
horizontal polarised collection. (a) and (d) show the experimental diagram, while
(b), (e) and (c), (f) show the measurements in WSey and MoSe,, respectively.

With this concept in mind it is easy to understand some previous concerns about the
experimental results. At RT, in normal conditions, X° is the dominant contribution
in TMDs ML PL. Besides, due to the IP carrier confinement in the nanosheet, the
nature of this contribution behaves as an IP dipole, as observed in the collection
polarisation measurements, agreeing with the IP dipolar behavior reported in TMDs
MLs [297] due to its dominant behavior.
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Finally, as observed in Figure 6.5, X° contribution is reduced in the edges and tilted
nanosheet borders, where the bounded exciton formation is enhanced and the X°
emission is hampered. In our measurements involving the horizontal direction, these
contributions are detected clearly due to the fact that all the sample is excited and its
emission collected, adding up all localised defect contributions to become a relevant
emission. At LT, the lifetime of these two contributions increase, narrowing its
emission, being able to separate the isolated contribution of X° and X, as observed
in literature [329, 328, 327, 324, 326].

However, the double peak nature in horizontal excitation - vertical collection mea-
surements remains undetermined. This bounded exciton localisation cannot be ex-
plained due to Fabry-Perot resonances (Figure 6.7) nor polaritonic effects (Figure
6.8). Figure 6.7a and b show a colorplot of reflectivity, as a function of the emis-
sion angle and the emission energy, calculated for a WSe; and MoSe, ML on a
PMMA /SiO,/Si substrate as that used in this work. Taking into account that the
numerical aperture of the objective used in our experiments (22°), it would be ex-
pected that emission at 1.65 eV, that corresponds to that of WSe,, was strongly
suppresed. This may explain results shown in Figure 6.6b. However, similar calcu-
lations would predict an enhancement of emission at 1.55 eV, that contrasts to the
minimum of emission observed in MoSe, at this energy. Refractive indexes for WSe,
and MoSe; MLs used for the calculations have been obtained from [296].

Figure 6.7: Reflectivity calculations considering the multilayered structure Si /
SiOy (1 ym) / PMMA (1 ym) / TMD ML (1 nm) / air as a Fabry-Perot cavity
for WSes (left) and MoSe, (right) as TMD ML.

Regarding a polaritonic influence in the separation of both peaks, in Figure 6.8 can
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be observed similar PL. when the collection angle is changed. The directionality of
polaritonic effects should vary drastically when the angle is changed, this fact allows

discarding this explanation.

Figure 6.8: PL collection in the vertical direction exciting in the horizontal direc-
tion with (blue) and without (red) a slight change in the collection angle.

6.4 Conclusions

In this chapter, 2D WSe; and MoSe; ML have been implemented in waveguides,
exploring not only horizontal excitation - vertical collection [317], but all different
configurations possible. This waveguide implementation, specially in the horizontal
excitation - horizontal collection, highlights due to its clear compatibility with inte-
grated optoelectronic devices, as well as current Si integrated technologies. These
results, therefore, show the compatibility of this materials with a more tecnological
and commercial appliability, withholding the fabrication techniques already devel-

oped and standarised.

Besides, for TMDs, at RT, two different contributions in their PL emission have been
observed: the neutral exciton X" and the charged exciton X*, showing a dipolar
nature as reported or already studied in other chapters. These results matches
recent publications [317, 329, 326]. However, our results show that in a horizontal
excitation - vertical collection, these contributions are clearly separated. This fact,

on one hand, leaves these components narrower to its usage for a specific application,
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allowing the interaction separately in each of them and, on the other hand, separate
them for its further study without complex conditions such as low temperatures
(326, 327] or magnetic fields [330].

Even though this chapter started aiming to the study of the OP dipolar InSe nature
and its implementation, it has resulted in a study on other semiconductors like the
TMDs. Therefore the next step, after optimising the techniques used using TMDs,

InSe nanosheets will be studied in future projects.
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7 Bismuth Sulphide

In this chapter, the anisotropy in exfoliated Bismuth Sulphide nanoflakes will be

explored, from its optical properties to its implementation in fibre optics.

7.1 Introduction

In the previous chapters, the anisotropy between the exfoliation direction (z) and
the exfoliation plane (x - y plane) concerning the IP or OP dipolar behavior of
the 2D nanosheets studied fundamented the approach to each project. Even more,
this laminar structure, from its mere concept, implies and is built from a charac-
teristic anisotropy, at least in the mechanical properties, when these directions are
compared. The mechanical properties in the x — y exfoliation plane compared with
the vertical z direction diverse hugely, reason why these 2D materials even exist.
However, this laminar structure does not pigeonhole these materials just among the

biaxial symmetrical materials.

Different materials have shown not only anisotropy in the z direction (like every 2D
exfoliable material), but also within the layer plane. This anisotropy in the exfo-
liation plane is increasing its amount of interest in order to fabricate nanodevices
taking into advantage these anisotropic planar properties. In this context, black
phosphorus [381, 363, 364, 384, 371, 354] is the most studied anisotropic material.
This material differs from other well-known 2D materials, like graphene [372, 361] or
the TMDs [197, 113, 370, 377], in which two different non-equivalent in-plane crys-
tallographic directions are present (usually called armchair and zigzag directions)
(373, 379]. Not only its mechanical [384], electrical [363] or thermal properties [375]
have been demonstrated to be anisotropic, but optical properties such as its photo-
luminescence [373, 349, 376, 380], Raman scattering [380, 368, 362, 387, 383, 385],
optical contrast [356], absorption [356] or optical phase [347] have shown anisotropic

behaviour too.
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Using these properties, different applications and possibilities have been proposed,
from polarisation-sensitive broadband photodetectors [376, 380, 368, 362, 387, 383,
356, 385, 347, 351], linearly polarised ultrafast lasers [343] or optical waveplates
[379]. Black phosphorus is not the only example among the 2D materials, e.g.,
Rhenium Sulphide (ReSs) [348, 378, 367, 340, 382, 365, Rhenium Selenide (ReSe,)
[346] or Titanium Sulphide (TiS,) [344, 374], among others, have shown different

anisotropic properties in the exfoliation plane.

In this project we will study the optical properties in BiyS; exfoliated nanosheets,
demonstrating anisotropy in the layer plane. Finally, we will propose an application

in fibre optics using this anisotropy.

Although basic properties of BiyS3 were studied in the past in different configu-
rations, from nanoparticles, nanoribbons, nanorods, bulk or thin films preparation
[404, 391, 396, 450, 392, 397, 400, 394], not many aim for its anisotropic nature
[395, 401]. In the last years, a few publications can be found about this material,
most of them aiming for its synthesis [398, 403, 399, 451, 402] or some applications
in batteries [393] and photodetectors [448] in its solved and nanoparticle nature.

The lack of studies in exfoliated samples motivated this project.

7.2 Theory and crystallographic structure

In normal conditions, the most stable and common crystallographic structure for
BiyS3 is orthorhombic, with a Pnma (62) Hermann Maugin space group [403], as

shown in Figure 7.1.
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Figure 7.1: Crystallographic structure of BisSs: (a) 3D representation and view
from the a, b and c axes, (b), (¢), and (d) respectively.

A layered structure with vdW bonds in the a-direction can be observed. However,
when the remaining two directions are compared, the difference between the bond
density in the b-axis is higher compared with the c-axis (Figure 7.1c). This fact
helped in the past to easily identify these directions [395], comparing the fracturing
in one dimension with a bending in the other, due to the different bonding strength

between ¢ and b axis, respectively.

In micromechanically exfoliated samples (Figure 7.2a) can be observed typically
rectangles, where due to this crystallographic difference ease the recognition of this
directions, coinciding the shorter side with the c-axis (weaker density in covalent
bonds) and the b-axis with the longer one (due to the stronger covalent bonds
density in comparison). In order to confirm this fact, Raman measurements have
been taken in exfoliated samples from bulk BisS; monocrystals (for more details,
see Subsection 2.1.1 and Appendix A).
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7.3 Optical properties: anisotropy in-plane

7.3.1 Photoluminescence and Raman spectroscopy

Figure 7.2: Raman and PL measurements in BisS; nanosheets: optical image (a)
and Raman spectra detected when excitation polarisation source is parallel to the
b-axis (blue) and to the c-axis (red), showing a difference in the By, peak. In PL
measurements, different intensity detected rotating the sample measured.

In easily recognizable rectangular-shaped samples (Figure 7.2a), Raman spectroscopy
has been studied (Subsection 2.2.4). The laser has been lineally polarised for the
measurements in one of the rectangular sides defining the crystallographic directions
of the exfoliated nanosheets. Raman peaks correspond with the peaks reported for
BiyS3 [403], but By, peak appears just as a shoulder with one polarization and as a
proper peak in the other. By, is a longitudinal optical mode, so it is observed that
in the direction where the bonds are weaker (short side of the rectangle, c-axis) the

mode is enhanced due to the vibrational freedom compared with the other direction
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(longer side, b-axis), where the bonds are stronger.

These nanosheet orientation and crystallographic axes correspondence has been
verified studying the same Raman polarised measurements in a volumic material
in which its crystalographic orientations were identified via XRD spectroscopy by
Dra. Maria del Carmen Martinez Toméas. Raman spectroscopy is a fast and re-
liable technique to characterise the crystallographic orientation of the samples for
non-rectangular shaped BiyS3 samples, but usually the optical picture is enough to

identify them due to their rectangular shape.

This anisotropy in the b and ¢ axes can be observed in different optical properties.
Using the same Horiba Xplora Raman setup, a different intensity in PL spectra has
been found rotating the sample due to the polarised excitation and the difference
in absorption between the two directions [401], observing less intensity when the

excitation polarisation is parallel with the b-axis.

The samples showed in Figure 7.2a have been measured via AFM (see Subsection
2.10), obtaining thicknesses of 540 + 1 nm, 203 + 1 nm and 216 4+ 1 nm, respectively,

discarding quantum effects due to confinement in this nanosheets.

7.3.2 Optical Contrast anisotropy

OC measurements (see Subsection 2.2.1 for more details) behave similarly to PL
when a polariser is fixed and the sample is rotated. In this case, due to the difference
between the absorption between the two axes, OC follows the rectangular directions
of the nanosheet, as shown in Figure 7.3, where using bandwidth filters in 450, 550

and 650 nm can be observed an angular dependence as the sample is rotated.
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Figure 7.3: OC measurements when a linear polarised is fixed after the white light
source and the BiyS3 nanosheet is rotated: optical image without wavelength filter
(a) and OC using a 450, 550 and 650 nm filter, respectively.

7.3.3 Differential Reflectivity anisotropy

DR has been measured (see details in Subsection 2.2.1) in the samples in Figure 7.2a
where can be observed different peak intensities when the sample is rotated alongside
polarisation direction. Since DR and absorption are highly related, this behaviour
is explained coinciding the maximum DR peak intensities when the polarisation

matches the c-axis direction in the samples.
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Figure 7.4: Maximum and minimum DR spectra rotating Bi,S; nanosheets from
Figure 7.2a, matching the ¢ and b crystallographic directions, respectively.

7.3.4 Transmission measurements

On BiyS; nanosheets exfoliated on SiOg transparent substrates (see Subsections
2.1.1, 2.1.2 and 2.2.2), transmission measurements were taken, as shown in Figure
7.5. Even though the collection and illumination spot is larger than the sample mea-
sured area, an effect in the global transmittance measured when the BiyS3 nanosheet
is rotated along and against the polarisation direction can be observed. Further mea-
surements will be taken using an illumination and collection spot completely within

the sample.
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Figure 7.5: Transmission measurements rotating a Bi,S3 nanosheet through a po-
larised white source.

7.3.5 Optical properties conclusion

In previous subsections the anisotropy in the exfoliation x - y plane of Bi;S3 nanosheets
has been demonstrated. Raman spectroscopy, PL, OC, DR and transmission mea-
surements prove this anisotropy due to the different vibrational freedom in its atoms
because its mechanical anisotropy in the b and ¢ bonds direction (Raman) and to
the anisotropy in the absorption between both directions (PL, OC, DR and trans-
mission). However, due to its huge absorption in both directions, in the wavelengths
close to the BiyS; band gap (1.36 eV, 911 nm) no counts have been detected in DR

or transmission.

Measurements via ellipsometry (see Subsection 2.4.1) have been taken in the Insti-
tute of Photonics and Quantum Sciences from the Heriot-Watt University (Edin-
burgh, United Kingdom) to obtain the refractive indexes in the three directions to
finally characterise the optical properties of this material, which will be analised by

Dr. Mauro Brotons-Gisbert to complete an optical analysis of this material.
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7.4 Application in fiber optics

Finally, once the IP anisotropy has been demonstrated (through Raman, PL, OC,
DR and transmission measurements), it will be explored an application in fibre optics
devices. In concrete, different exfoliated BisS3 nanosheet have been transferred
(details in Subsection 2.1.3.1) capping the core of a fibre in order to act as a plane-
parallel sheet to the light transmited through its core, with interferences below the

material band gap.

The transmission measurements in fibres have been taken in collaboration with Dra.
Martina Delgado Pinar and Dr. Miguel Vicente Andrés Bou. These interferences or
resonances (acting the nanosheet as a Fabry-Perot cavity) can be tuned rotating the
sample, as can be seen in Figure 7.6 as an example of the samples prepared. This
rotation, due to the refractive index change between the b and ¢ axes, will create

small windows of transmittance that could be tuned for a specific application.
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Figure 7.6: 980nm fibre before (a) and after (b) the nanosheet deposition. (c)
Transmission spectra detected through the sample rotating the polarisation (red
and blue) and reference without sample (black). (d) Transmittance through the
sample in both directions.

In Figure 7.6d, 4 resonant peaks can be observed in each curve, being the first peak
at the same wavelength in both anisotropy directions, coinciding with the zero-order
of resonance in a Fabry-Perot interferometer, as the nanosheet can be compared with

two parallel-reflective sheets.

Resonances will occur at wavelengths at which light exhibit a constructive inter-
ference after the reflections inside the nanosheet, which will be quantified with an
integer mode index ¢, relating wavelengths with resonances as 2nd = g A,, being n,
d and ), the refractive index in a specific direction, the thickness of the sample and

the g-mode wavelength resonance, respectively.

Therefore, the dependence between the refractive index change (or birrefringence,
An) can be obtained as d An(\) = 1 ¢(X\) AX(A) comparing the difference in wave-

length between same modes. Despite not having measured the thickness d of the
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precise sample, an estimate can be approximated using the thicknesses obtained in

the samples from Figure 7.2a, measured via AFM, between 200 and 500nm.

Figure 7.7: Birrefringence between the b and ¢ axes in BisS3 nanosheets. On the
left, depending on the thickness and on the right, different thicknesses have been
used to estimate the actual value.

Using thicknesses from 200nm to 500nm, birrefringence values up to 0.08 can be

obtained in this material, comparable with the obtained in ReSs and ReSe, [379].

7.5 Conclusions

In this chapter, the IP optical anisotropy of BisS3 nanosheets has been studied. From
a crystallographical point of view, the material aimed for a structural anisotropy
between the b and ¢ axes in the exfoliation plane, which has been verified through

several techniques such as Raman spectroscopy, PL, OC, DR and transmission.

These techniques show an anisotropy in the refractive index, more important in the
absorption. Finally, this anisotropy in its optical properties has been implemented

as a plane-parallel sheet in a fibre to act in the transmitted light through its core.

From a transferred nanosheet on the core of a fibre, transmittance measurements
have been obtained, obtaining resonance windows as a Fabry-Perot inferometer. A
birrefringence up to 0.08 has been obtained in this sample estimating its thickness,

comparable with other birrefringent laminar materials such as ReS; and ReSe,.
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8 Molybdenum Trioxide

Even though the main focus of this thesis aims to the 2D semiconductors, their
properties and their implementation in optoelectronic devices, in this chapter MoOs,
a new clean zero nuclear spin 2D insulator will be presented to fulfil the absence
in the 2D material framework of substitutes to hBN as insulator. This project
have been developed under the supervision of Prof. Dr. Brian D. Gerardot in the
Institute of Photonics and Quantum Sciences (IPaQS) in the Heriot-Watt University
(Edinburgh, United Kingdom) during a 5-months research stay.

8.1 Introduction

In order to develop optoelectronic devices for any application needed, from a simplis-
tic point of view, there are mostly three main components to work with: conductors,
semiconductors and insulators. With these three basic “blocks”; every imaginable
device like transistors, photodetectors, LEDs, capacitors... can be structured by

the combination of this different elements and their properties.

Among the 2D materials, only hBN is known as an insulator for these applications
[415, 427, 410, 408, 442, 432, 411]. During the last years, this material has been
vastly studied and employed in basically every 2D project where a 2D insulator is
involved. It has been, therefore, the only option since no other common 2D insulator

is known.

However, hBN has its own disadvantages. First, the hBN that can be obtained
in the market is plenty of defects at LT, observing PL emission due these defects,
hampering its usage in optoelectronic applications [416, 405]. To fulfil that issue,
T. Taniguchi and K. Watanabe developed a method to synthesise hBN with an
outstanding quality, without defects to compromise the result [443]. Nevertheless,

not every research group has access to it.
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Second, hBN presents serious disadvantages for the development of 2D related de-
vices with potential applications in spintronics. Boron and Nitrogen have an intrinsic
nuclear spin [438, 449], which would mask any spin signal coming from the active

elements of any eventual 2D device incorporating hBN.

In this chapter, a new material to replace hBN as a 2D transparent insulator in the
situations where the disadvantages already exposed would determine the behavior

of the final application will be proposed.
The looked-for properties will be the following:

o It must behave as an insulator compared with the rest of the materials among
the most known 2D semiconductors, so its band gap should be as high as
possible. For the usually employed materials in the 2D semiconductors list
(TMDs, III-VI semiconductors, BP...), a semiconductor with a band gap

over 3 eV could be considered enough for an insulator in comparison.

e In order to obtain 2D samples it must have a laminar crystallographic struc-

ture, either experimentally mechanically exfoliated or theoretically.

e A zero nuclear spin is needed. For that purpose, every atom in its atomic
configuration should have a nuclear spin number I = 0. To fulfil that condi-
tion their atomic numbers Z and A must be even. This condition, atomically
speaking, will be dependent of the natural abundance percentage of the iso-

topes possible, so the less frequent with a non-zero nuclear spin, the better.

Before start looking for possible alternatives, the previously listed properties of hBN
will be commented in order to compare them. hBN has a band gap of approx. 5.955
eV at RT [440], behaving as an insulator among the usual 2D materials, and it has
already used as a 2D layered material in many publications [415, 427, 410, 408, 442,
432, 411]. In order to check the nuclear spin behaviour, its nuclear spin numbers

will be analysed.

Table 8.1: Nuclear spin number and abundance in nature of Boron and Nitrogen
[438, 449].

Element | Z | A | T | % in nature
B Boron 10| 3 19.9
1115 80.01

N | Nitrogen | 7 | 14 | 1 99.632
151 0.5 0.368

ot
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In Table 8.1 it can be observed that in case of Boron, with an 80.1% a nuclear spin
number of 1.5 is found, reaching a value of 3 in the remaining 19.9% in nature. In case
of Nitrogen, with a 99.632%, a value of 1 in the nuclear spin number is expected,
being 0.5 in the remaining 0.368%. These values and percentages are extremely

damnific for hBN as a 2D insulator for any nuclear spin application involved.

Table 8.2 contains all the theoretical exfoliable materials considered as possible
candidates with band gap over 3 eV [412], which nuclear spin value have been tested.
For every material, abundance percentage and value has been analysed compared
with hBN, and for simplicity and trying to avoid excessive numerical data, a numeric
code has been assigned considering these factors to define a nuclear spin ideality
(NSI), from 4 to 1 in order of increasing ideality, closer to zero, as an orientative

value to compare materials in this context.

Table 8.2: Theoretically exfoliable 2D materials [412] with band gap higher than
3 eV, analysing the nuclear spin ideality.

| Formula | Band gap (eV) | NSI | | Formula | Band gap (eV) | NSI |

LiBH4 6.4 4 Srls 3.8 4
AIOCI 5.8 4 CaHI 3.7 4
SrBrF 5.3 4 Mgl, 3.6 4
MgBr, 4.8 3 TIF 3.6 4
NaCN 4.8 4 PbCIF 3.5 3
BN 4.7 3 BaHI 3.4 4
RbCl 4.6 4 LaOl 3.4 4
ZnCl, 4.5 3 |4 ZnBrs 3.4 3
OLuBr 4.4 4 Mg(OH), 3.3 2
SrHBr 4.4 3 OLul 3.3 4
YOCI 4.4 3 ZrNCl 3.3 3
CaHBr 4.2 3 CdBry 3.2 3
LaOBr 4.0 4 ScOBr 3.2 4
CdCl, 3.9 3 PbBrF 3.1 3
SnkFy 3.9 3 MnOs 3.1 4
SrHI 3.9 4 MoO4 3.1 1
Ca12 3.8 4 SbQOSQ 3.0 4

Among this list the three best candidates will be Mg(OH),, Ca(OH)y and MoOsg,
which as example of the methodology employed to assign a nuclear spin ideality,

will be studied separately.

163



Chapter 8

Molybdenum Trioxide

Table 8.3: Nuclear spin number and abundance in nature of Hydrogen, Oxygen,

Magnesium and Calcium [438, 449].

Element Z | A T |% innature
H Hydrogen | 1 | 1 | 0.5 99.9885
2 1 0.0115
3105 0.0
O Oxygen 8 16| 0 99.757
171 2.5 0.038
18] 0 0.205
Mg | Magnesium | 12 | 24 | 0 78.99
25| 2.5 10.00
26| 0 11.01
Ca Calcium |20 40| O 96.941
41 | 3.5 0.0
421 0 0.647
43 | 3.5 0.135
44 1 0 2.086
46| 0O 0.004
48 | 0 0.187

In case of Ca(OH), and Mg(OH)s, both having the OH radical, Hydrogen, with a

99% of the atoms will have a nuclear spin number of 0.5, hampering its usage. In

case of Oxygen, only a 0.038% of the atoms will have a nuclear spin number of 2.5, so

after seeing the percentages in the rest of materials could be considered negligible.

In Magnesium, a relevant 10.00% will have a nuclear spin number of 2.5, being

3.5 in case of Calcium only in a 0.135%. Compared with hBN the improvement

is enormous and could be enough for some applications involving nuclear spin, but

MoOg3 will be studied looking for the purest zero spin insulator.

In next Table the nuclear spin numbers in MoO3 will be analysed.
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Table 8.4: Nuclear spin number and abundance in nature of Oxygen and Molyb-
denum [438, 449].

Element Z | A I | % in nature
O Oxygen 8 116 | 0 99.757
17 | 2.5 0.038
810 0.205
Mo | Molybdenum | 42 | 92 | 0 14.84
94 | 0 9.25
95 | 2.5 15.92
9% | 0 16.68
97 | 2.5 9.55
98 | 0O 24.13
100 | 0O 9.63

Concerning the Oxygen, as before, only a 0.038% of the atoms in nature will have a
nuclear spin number of 2.5, being negligible. However, in Molybdenum, due to the
natural percentage abundance isotopes there is a relevant probability to have non-
zero nuclear spin in 25.47% of the Mo atoms in nature. The probability to have two
of this Mo atoms with non-zero nuclear spin next to each other is 6.487%. This is
not the ideal scenario, but and after looking the probabilities of the other materials,
it is clearly the best compared with any other candidate considered. Therefore,

MoQO3 will be the chosen to study in this project as a zero nuclear spin insulator.

The thermically stable phase is the o-MoOj, with a Pnma (62) structure [425, 418],

as define in Figure 8.1.
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Figure 8.1: Orthorrombic o-MoO3 Pnma (62) structure: (a) standart orientation of
the crystal shape and views along the a, b and ¢ axis, (b), (c¢), and (d) respectively.

This material has a laminar structure (Figure 8.1d). Mo-O bonding within each

layer has a covalent behavior, whereas bonding between layers is of vdW type.

Although some articles about MoO3 have been found in the bibliography, from
synthesis methods and basic properties [439, 423, 434, 431, 436, 441, 413, 409, 422,
430, 426, 407, 406, 417, 445, 437, 444, 428, 447, 435] to devices aiming to different
purposes [414, 429, 419, 421, 433], none of them properly studies its behaviour and

propose it as an insulator for exfoliable 2D optoelectronic devices.

8.2 Optical properties and cleanness at low

temperature

MoOj3 bulk samples (Appendix A) have been used for the next experiments. Exfo-

liated samples were prepared using the usual scotch-tape method using Nitto tape
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(Subsections 2.1.1 and 2.1.2), proving its layered structure, with similar nanosheet
shapes compared to BisS3 in Chapter 7 (Figures 7.2 and 7.3), as can be observed in
Figure 8.2, aiming at a possible anisotropy in the layer plane, which will be explored
later in this chapter (Section 8.4).

The material obtained was transferred to Si/SiO2(90nm) common substrates and
after that, cooled down up to 4 K in an attoDry 1000 Cryostat to study its PL
emission at LT (see details in Subsections 2.1.1, 2.1.2, 2.2.1 and 2.2.3).

Figure 8.2: Optical images of exfoliated MoOg3 samples.

20 s acquisitions (longer than usual) were measured, at high excitation power (50uW)
in a Cobolt 532nm laser as excitation source to measure different PL maps to check
if MoO3 has defects at LT. As seen in Figure 8.3, no PL is detected due to the MoO3
nanosheet, only the PL emission already present in Si/SiO,, that appears due to
the high-power long acquisition measurements, has been amplified due to the cavity

behavior of the nanosheet on top.

Similar measurements measurements have been performed in different samples with
different conditions (acquisition time or power) at LT, proving in all of them the

absence of defects in MoOs with emission at LT.
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Figure 8.3: y-PL map and spectra at low temperature in MoOs samples: reflectiv-
ity at 780nm map, optical image and PL spectra in different substrate points and
sample points (bottom left and bottom right, respectively).

8.3 Applications as encapsulation materials

Finally, once demonstrated MoOj3 as a great candidate as a zero-nuclear spin 2D
insulator and its absence of defects at LT, a prototypical device will be prepared
using MoOj3 as insulator. A WSe, ML (mechanically exfoliated, see Appendix A
and Subsections 2.1.1 and 2.1.2 for more details) has been fully encapsulated using
this material using the hot pick-up transfer technique (see Subsection 2.1.3.2) in
an Ar environment (glovebox GP Campus Jacomex) to prevent the appearance of

impurities related to HoO or Oxygen among the nanosheets contact lattices.

First, DR at LT (which behaves qualitatively in a similar way compared to ab-
sorption, for more details, see Subsection 2.2.1) will be presented in three different
situations: on the WSe, ML, on the ML on top of a bottom MoOj3 and in the ML
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completely encapsulated, top and bottom:

Figure 8.4: On the left, optical image of WSe; ML encapsulated in MoOs.
On the right, DR comparing the WSe, ML on Si/SiO, substrate (black), on
Si/Si05/Mo0Oj (green) and covered with MoOjs on top (red).

A shift (from 723 nm to 712 nm) and a line narrowing (from 47.45 meV to 26.79 meV
in width) in the DR is observed when the WSey; ML is on Si/SiO5/MoO3, compared
to that directly on Si/SiOy. Such a peak blueshift can be attributable to dielectric
effects due to changes in the refractive index underneath. Line narrowing can be
attributable to the decrease of roughness in the WSe, ML when it is on MoO3 and
its isolation from the SiO, substrate. A slight further line narrowing (from 26.79
meV to 21.98 meV in width) is obtained when encapsulated adding a MoO3 on top
for the same reason. These qualitative results are comparable with the reported
WSey, ML encapsulated in hBN [424].

Secondly, u-PL measurements have been taken at LT on the device. Only PL emis-
sion due to the defect band is measured at L'T in WSe, due to the thermal behaviour
of the X° free exciton at LT, which intensity is reduced in these conditions in favour
of the localised excitons [377]. Some localised emitters in the WSey defect band
were found, with usual crossed-polarized fine structure splitting (FSS) and usual
power dependence between both peaks as compared with the behaviour found when
encapsulated with hBN [420].
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Figure 8.5: Fine structure splitting in LT emitters in WSe,; encapsulated mono-
layer on MoQOgs. Crossed-polarized behaviour rotating polarization and power
dependence between both peaks.

Therefore, these results demonstrate the main objective of the project: present
MoOQO3 as a new clean 2D insulator, with close to zero-nuclear spin capabilities for
2D spintronic devices and similar insulator behavior in 2D devices. However, one
of the devices prepared presented a set of surprising characteristics and properties

that deserves to be highlighted, which will be analysed in the following lines.

The same procedure has been used to prepare the device, in this case with a WSe,
BL encapsulated in MoQOs, in the same Ar environment via hot pick-up transfer
(see Subsection 2.1.3.2). Unlike in the previous cases, a huge shift in the PL (in
both direct and indirect band in the WSe; BL) and DR has been obtained when
comparing the BL on Si/SiO; and encapsulated in MoOs (Figure 8.6). u-PL at RT
has been measured using the same setup, with 1.88 uW of power excitation and 60
s acquisition time. For the DR, at room and low temperature, it has been used the

previous white light source from Mightex.
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8.3 Applications as encapsulation materials

Figure 8.6: yu-PL (in counts, on the left) and DR (on the right) spectra at RT on
different points in a WSey BL encapsulated by MoOg, starting in the WSey BL
on Si/Si0, taking measures towards the encapsulated area.
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Figure 8.7: DR spectra at LT on different points in a WSe, BL encapsulated in
MoOj3 (coloured) and on WSey BL on Si/SiOs (black).

In case of PL measurements at RT, it has been obtained a shift in the direct band
emission from 758 nm to 667 nm (91 nm, 0.22315 eV) and from 840 nm to 756
nm (84 nm, 0.164 V) for the indirect band, over a factor 10 compared with the
around 15 meV shift in reported publications encapsulated with hBN [424]. DR at
RT matches this shift, from 750 nm to 650 nm.

Finally, the LT DR shows a huge shift too (from 725 nm to 655 nm), compatible
with the RT measurements. It is worth noticing that in both cases, WSe; capped BL
DR widens compared to DR in the bare WSey BL. Further measurements must be
taken concerning this topic to clarify these results, although these results have been
verified and proved solid due to the different techniques and different temperatures

measured. The main differences in this device presented are:
o WSe, BL encapsulated instead of a ML.

« Different orientation in the encapsulating MoO3 material. In the encapsulated ML
the crystallographic orientation of the encapsulating MoOj3 are almost perpendicular

between each other, being parallel in the BL device (Figure 8.4 and Figure 8.6).

This second effect will be analysed considering the MoOj3 anisotropy in the layer

plane.
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8.4 Anisotropy in MoO;

Even though there are some works studying the MoOj refractive index without
considering or even mentioning possible anisotropy in this material [430, 446], other
works point to its relevance [441]. This anisotropy could act as another degree
of freedom for the final device application, being able to tune the conditions of the
encapsulation due to the orientation, e.g., for different tuning in the final emission of
a semiconductor encapsulated. In order to show this effect, DR has been measured
for different angles in the layer plane in a MoOjs sample, as seen in Figure 8.8,
proving a relevant shift comparable with the shift observed in the BL device, showing

anisotropic behavior.

Figure 8.8: DR spectras rotating in the layer plane a MoO3 nanosheet.

Ellipsometry measurements (see Subsection 2.4.1) have been taken to obtain the
refractive index in both directions in nanosheets exfoliated to characterise and un-
derstand the anisotropy of this material. The refractive index modeling from the
measurements taken by ellipsometry has been carried out by Dr. Mauro Brotons-

Gisbert, whose results are shown in the Figure 8.9.
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Figure 8.9: Ellipsometry measurements and refractive indexes in MoOj3
nanosheets.

8.5 Conclusions

To sum up, MoOj3 has been proved as a candidate to complement hBN as a 2D
insulator. First, due to its zero nuclear spin for spintronic applications, a rare
characteristic among the 2D exfoliable materials and second, due to its cleanness at

LT, properties where clearly surpass hBN.

This proposal as a clean 2D insulator has been applied as a capping material for a
WSey; ML, obtaining similar behavior as capped in hBN, proving its applicability
for 2D optoelectronic devices, specially in spintronic applications. Finally, due to
another device prepared with a WSey BL encapsulated in MoQOg, obtaining a shift
in PL at RT and in DR at both room and low temperature around 10 times larger
as reported in any semiconductor encapsulated in hBN, the anisotropy of MoOj3 has
been studied.
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Shown in its DR and through an ellipsometry study, the refractive index along the
three axis have been obtained, adding another degree of freedom to tune a final

device emission for a specific application.
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9 Conclusions and future prospects

This thesis covers various two-dimensional semiconductors, from their preparation
and study of basic properties to its implementation and characterisation in different
optoelectronic devices. With a large experimental component, it brings together sev-
eral micromanipulation and characterisation techniques in diverse elements such as
microspheres, perovskites, waveguides, optical fibres... to be implemented together

with the two-dimensional materials for that purposes.

In Chapter 3, the optical and electrical properties of the family of III - VI semicon-
ductors have been studied. PL of exfoliated GaSe nanosheets have been measured,
obtaining a shift in its luminescent emission of 120 meV when it reaches a thickness
of 8 nm. This result contrasts with experimental publications previously reported,
agreeing with first principle calculations reported before. However, no experimental
results have been obtained in nanosheets thinner than 8 nm due to the hampering
and deterioration of the samples in our experiments. The oxidation mechanism of
this material on air has been also studied, which can be observed via OC and AFM
as spots and spikes, respectively, formed in the surface of the nanosheets after exfo-
liation due to strong local structural relaxation processes that take place which are
associated to the strain introduced by the nanosheet oxidation. Using XPS measure-
ments, it is concluded that these oxidation reactions differ from these occurring in
bulk or bulk-like GaSe nanosheets and have a deep effect on the structural, optical,
and luminescent properties of GaSe nanosheets. Taking into account this deteriora-
tion and hampering, in Ar atmosphere or encapsulating the material, GaSe and its
band gap tunability becomes relevant in optoelectronic devices with InSe or GaS,
taking advantages of its similar structure and wide band gap tunability, from the
infrared in case of InSe to ultraviolet in GaSe, that could cover the whole solar

spectra for photodetection applications using this IIT - VI semiconductors family.

After this, electrical properties in InSe nanosheets have been studied. First, it is

demonstrated the usage of multiterraced nanosheets of this material as heterojunc-
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tions without defects in its junction that behave as p - n heterojunctions. Based
on the change in its band structure when thickness is reduced, its behavior as a
photodetector is understood through its I - V characteristics and a detailed study
of the carrier recombination in the barrier generated by the change of band gap in
the area where the thickness changes. The interest in these results resides not only
in InSe, but in the possibility using different materials such as GaSe for different
photodetector range, as explained before. Besides, these techniques exploit InSe
great mobility for electric applications. In addition, for the modeling and design of
electrical devices with this material, the dependance of the work function with the
nanosheet thickness is studied by means of KPFM, accompanied by first principles
calculations, obtaining a similar trend together with the experimental data. It is
one of the first projects aiming for the characterisation of the electrical properties
with dependance on thickness in literature in order to take advantage of the free-
defect heterojunctions that can be developed. In future projects, due to the work
function dependence on carrier concentration, obtaining the electronic affinity for
each thickness can be a further step to better comprehension of this mechanisms.
Finally, as an application of this material in its two-dimensional form, its usage for
sensing of gases due to the change in the PL of the samples exposed to different
concentrations, times and gases is proposed and demonstrated, taking advantage on
its wide band gap tunability and, therefore, sensing range. In this case, the effect
and usability is demonstrated, but further statistics to obtain sensibility, effect with

other gases could be interesting to reach its full potential for its implementation.

After proposing III - VI semiconductors and some of their fundamental properties,
next Chapters aimed for the enhancement or implementation of these properties
in optoelectronic and photonic devices. Chapter 4 uses microspherical resonators
to enhance and tune the effective photoluminescent emission in InSe and WSe,
nanosheets by means of a lensing effect in excitation and collection and due to the
resonances or WGM that these emissions create in the microspheres. It fullfills what
it was sought: an enhancement in the RT PL emission in both materials (specially in
InSe) and a tunability mechanism for WSes, adding understanding about its dipolar
nature. In following projects, LT measurements in order to separate the contribu-
tions detected would help to a further fundamental study of the intrinsic IP and OP
components in the materials analysed, due to the limitations in a micrometric range
in the areas coupled to the WGMs.

In Chapter 5, perovskites have been analysed together with 2D semiconductors to
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enhance its optical properties. In case of InSe, due to its OP dipolar nature, mul-
tidirectional perovskites on top enhances its emission, contrary to IP TMD MLs,
where the vertical disposition were optimal. Here it is demonstrated the combina-
tion of properties: where the great absorption in perovskites enhance the optical
properties in InSe, distinguishing the effect produced in InSe and TMDs. Further
studies could aim on the opposite: a device where the outstanding mobility proper-
ties in InSe nanosheets enhance the electrical properties in perovskites, handicapped
due to its nanoclusters nature, hampering carrier transport in the material. With
these considerations and studies, a mixed optoelectronic device, where the optical
absorption is given by the perovskites, and the optoelectronic behavior (wide range
tunability and mobility) by InSe nanosheets is possible, with the better of both

materials.

Chapter 6 demonstrates the implementation of 2D materials in integrated optics as
photonic waveguides for further applications. First of all, an horizontal excitation -
horizontal collection, i.e., a guiding configuration, has been achieved for the first time
in literature using evanescent excitation and collection to do so. Besides, the double-
peak detection when the TMD is excited in the horizontal direction and collected in
vertical opens and enhances its usability for photonic devices due to the narrowing
in the detection and the separation in its contributions. Even though these studies
gave new understanding in TMD MLs fundamental behavior, the initial idea for
this project remains unachieved: InSe implementation, which after the knowledge
obtained in the measurements presented, will be the next material to analyse. Its
OP nature, already demonstrated not only in the bibliography, but in Chapters 4
and 5, is ideal for these kind of horizontal techniques. Further studies must aim in
this direction, once the techniques are optimised for other 2D materials. Besides, in
order to maximise the comprehension we have on TMDs, LT measurements, where
neutral exciton and charged exciton can be precisely located and isolated, would
help this study.

Finally, in Chapters 7 and 8, two new 2D materials are presented: BisS3 and MoOs,
opening its usage among other semiconductors. Both count with an IP anisotropy
that can be useful in some application, each one in its field, as demonstrated in each
Chapter: as a semiconductor with an exceptional absorption and as an insulator,
where only hBN takes its place. In the case of BiyS3, due to its tunable absorp-
tion, can be envisioned, e.g, as a controlable saturable absorber using these two

directions, a linear polariser or a waveplate. In the case of MoOj3, opens the door
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to nuclear spintronic studies, field blocked using hBN due to its own nuclear spin,
which applications for nuclear spintronic devices could follow the trend marked by

other spintronic devices already studied at an atomic level.

In the last paragraphs of this thesis, instead of only aiming at the results and
conclusions obtained in the gathered projects (which can be found in detail in their
separated subsections per Chapter), it is worth noticing that for each result obtained,
new projects can be envisioned by applying that results. These last paragraphs
attemp to mirror and reproduce the first paragraphs of this thesis: that within
material science, nanomaterials (and specially, 2D materials) constitute actually a
field in its heyday, where research on different materials, different properties and

different applications only grow everyday, which potential seems unreachable.

186



Conclusions and future prospects

Figure 9.1: The Ilustrated Guide to a Ph.D., original work from Matt Might,
http://matt.might.net /articles/phd-school-in-pictures/
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Appendix A. Materials used

o GaSe: GaSe monocrystals here used to prepare the nanosheets were cleaved
perpendicular to the (001) direction from an ingot grown by the Bridgman-
Stockbarger method [135, 121].

o InSe: InSe monocrystals used here to prepare the nanosheets were cleaved
perpendicular to the (001) direction from an ingot grown by the Bridgman
method from a nonstoichiometric In; g55€eg95 melt. To act as n-dopant, tin,
in a content 0.01%, was introduced previously to growth. From these ingots,
thin n-doped InSe samples were cleaved and used to prepare atomically thin

InSe nanosheets.
o 2-MET and 3-NT purchased from Sigma - Aldrich.
o Microspheres: purchased from Sigma - Aldrich.
o WSey: bulk WSe; used in this thesis were purchased from HQ Graphene.

o MoSe,: synthesized by the flux zone technique, avoiding halides in its growth,

from 2D Semiconductors.

o Perovskites: CsPbl; and the CsPbBrs nanocrystals were synthetized following
the hot-injection method. A reprecipitation method was used for the purifi-
cation of the PNCs; two solvent/antisolvent (hexane/ethyl acetate) washing

cycles were applied to archieve high purity PNCs.

e BiyS;: bulk BisS3 monocrystals grown by the Bridgman method from a stoi-
chiometric polycrystalline material which was previously obtained by reaction

of Bi and S (3N and 5N8 in purity, respectively).

e MoOj3: purchased from 2D Semiconductors.
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Appendix B. List of Abreviations

0D, 1D, 2D, 3D Zero-, One-, Two-, Three-dimensional
AFM, KPFM Atomic, Kelvin-Probe Force Microscopy

BiyS; Bismuth Sulphide
GaSe Gallium Selenide
hBN Hexagonal Boron Nitride
I-V Current - Voltage
InSe Indium Selenide

IP, OP In-plane, Out-of-plane
ITO Indium Tin Oxide

LT, RT Low, Room temperature

ML, BL, TL Monolayer, Bilayer, Trilayer

MoOg Molybdenum Trioxide
MoS, Molybdenum Sulphide

MoSe, Molybdenum Selenide

OC, DR Optical contrast, Differential reflectivity

PDMS, PMMA, PPC Polydimethylsiloxane, Poly(methyl methacrylate)
o, Y Work function, Electronic affinity
PL Photoluminescence

PPC Polypropylene carbonate
SiOq Silicon Oxide
TMD Transition Metal Dichalchogenides
vdW van der Waals

WGM Whispering gallery modes
WS, Tungsten Sulphide
WSe, Tungsten Selenide
XPS X-ray photoemission spectroscopy
XRD X-ray diffraction
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Appendix C. Related publications

C.1 Already published, included in this thesis

e Quantum size confinement in gallium selenide nanosheets: band gap tun-
ability versus stability limitation, Daniel Andres-Penares, Ana Cros, Juan
P. Martinez-Pastor, Juan F. Sdnchez-Royo, Nanotechnology 28 (17), 175701
(2017)

C.2 Already published, not included in this thesis

o Out-of-plane orientation of luminescent excitons in two-dimensional indium
selenide, Mauro Brotons-Gisbert, Raphaél Proux, Raphaél Picard, Daniel
Andres-Penares, Artur Branny, Alejandro Molina-Sanchez, Juan F. Sanchez-
Royo, Brian D. Gerardot, Nature Communications 10 (1), 1-10 (2019)

o Optical Contrast and Raman Spectroscopy Techniques Applied to Few-Layer
2D Hexagonal Boron Nitride, Marie Kre¢marova, Daniel Andres-Penares, Ladislav
Fekete, Petr Ashcheulov, Alejandro Molina-Sanchez, Rodolfo Canet-Albiach,
Ivan Gregora, Vincent Mortet, Juan P. Martinez-Pastor, Juan F. Sanchez-

Royo, Nanomaterials 9 (7), 1047 (2019)

« Optical contrast of 2D InSe on SiO,/Si and transparent substrates using band-
pass filters, Mauro Brotons-Gisbert, Daniel Andres-Penares, Juan P. Martinez-
Pastor, Ana Cros, Juan F. Sdnchez-Royo, Nanotechnology 28 (11), 115706
(2017)

o Nanotexturing to enhance photoluminescent response of atomically thin in-
dium selenide with highly tunable band gap, Mauro Brotons-Gisbert, Daniel
Andres-Penares, Joonki Suh, Francisco Hidalgo, Rafael Abargues, Pedro J.
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Rodriguez-Canté, Alfredo Segura, Ana Cros, Gerard Tobias, Enric Canadell,
Pablo Ordején, Jungiao Wu, Juan P. Martinez-Pastor, Juan F. Sanchez-Royo,
Nano letters 16 (5), 3221-3229 (2016)

C.3 To be published in the next months, included in
this thesis

The following list gathers the separate publications that are intended to be sent in
the coming months as these are understood as different projects. The final publica-
tion title, as well as the order and number of authors of each one is provisional with

respect to what can finally be sent and accepted in the future.

o [ - V characterisation of defect-free n - N heterojunctions in InSe different-
layered nanosheets and work function analysis via Kelvin probe force mi-
croscopy, Daniel Andres-Penares, Alberto Maulu, Josep Canet-Ferrer, Ana
Cros, Juan P. Martinez-Pascual, Juan F. Sdnchez-Royo (Subsections 3.2.2.1
and 3.2.2.2)

« Photoluminescence effect in InSe exfoliated nanosheets for gas sensing applica-
tions, Daniel Andres-Penares, Rafael Abargues-Lopez, Eduardo Aznar-Gadea,
Juan P. Martinez-Pastor, Juan F. Sanchez-Royo (Subsection 3.2.3)

o SiOs-microsphere resonators for light emission management upon dipole orien-
tation of 2D semiconductors, Daniel Andres-Penares, Juan P. Martinez-Pastor,

Carlos J. Zapata-Rodriguez, Juan F. Sanchez-Royo (Chapter 4)

o Enhanced photoluminescence in exfoliated Indium Selenide nanosheets har-
nessing the out-of-plane dipole orientation through reabsorption from per-
ovskites multi-directional emission, Daniel Andres-Penares, Juan Navarro-

Arenas, Juan P. Martinez-Pastor and Juan F. Sdnchez-Royo (Chapter 5)

o Waveguide implementation of WSey; and MoSe, exfoliated monolayers, Daniel
Andres-Penares, Isaac Suarez-Alvarez, Rodolfo E. Canet-Albiach, Mauro Brotons-
Gisbert, Alejandro Molina-Sanchez, Juan P. Martinez-Pastor, Juan F. Sanchez-
Royo (Chapter 6)

« Anisotropy in exfoliated Bismuth Sulphide nanoflakes: optical properties and

implementation in fibre optics, Daniel Andres-Penares, Mauro Brotons-Gisbert,
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Martina Delgado-Pinar, Alejandro Molina-Sanchez, M. Carmen Martinez-Tomas,
Miguel V. Andrés-Bou, Juan P. Martinez-Pastor, Juan F. Sinchez-Royo (Chap-
ter 7)

o Molybdenum oxide: a new clean zero nuclear spin 2D insulator, Daniel Andres-
Penares, Mauro Brotons-Gisbert, Juan F. Sanchez-Royo, Brian D. Gerardot
(Chapter 8)
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Appendix D. Resumenes en distintas

lenguas oficiales

D.1 Resumen amplio en castellano

Dentro del campo de la Ciencia de Materiales, los materiales bidimensionales han
acaparado la atencion de la comunidad cientifica en los tltimos anos. Desde la apari-
cién del grafeno en 2004, el interés y estudio de éste y otros materiales similares
han aumentado exponencialmente. El cambio y la apariciéon de nuevas propiedades
cuando el espesor de éstos se ve reducido a escalas nanométricas tiene un especial
interés para el estudio de sus propiedades fundamentales para, a partir de éstas, el
disefio y su implementaciéon en dispositivos de diversa indole. En cuanto al grafeno,
sus sorprendentes propiedades mecanicas, como su dureza, flexibilidad y elasticidad,
asi como su alta conductividad térmica y eléctrica y el comportamiento como cuasi-
particulas sin masa (i.e., como fermiones de Dirac) de los electrones que se trasladan
sobre el mismo, fomentaron el estudio de este material. Sin embargo, la dificultad
para abrir en este material una banda prohibida en su estructura de bandas, que en
condiciones normales se comporta como un conductor, promovio la investigacion e
interés en otros materiales laminares que intrinsecamente se comportaban en estado
voliimico como semiconductores de forma natural, pero que pudieron ser obtenidos

en su estado bidimensional con técnicas similares a las utilizadas para el grafeno.

La gran variedad de materiales con posibilidad de ser exfoliables a nivel bidimen-
sional que han aparecido tras la estela del grafeno, asi como las distintas propiedades
que poseen, abren el campo a distintas aplicaciones, desde dispositivos optoelectréni-
cos, deteccion y sensado, almacenamiento de energia, catélisis, aplicaciones médicas
y tecnologias de informacién cuantica, entre otras. El hecho de poder encontrar en
estos materiales tanto aislantes, conductores y semiconductores, materiales flexibles,

transparentes y de gran dureza, asi como propiedades mas exéticas como supercon-
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ductividad, aislantes topoldgicos, entre otros.

En este contexto, la presente tesis estda enfocada y recoge resultados considerando
las siguientes premisas: (1) dentro de los diferentes métodos de preparacién de ma-
teriales bidimensionales, cada uno con sus distintas ventajas y desventajas, se ha
elegido la exfoliacion micromecanica debido a la pureza y ordenacion cristalografica
conservada de su precursor voliimico en las muestras obtenidas de cara a la obtenciéon
de dispositivos de mayor calidad; (2) se exploraran tanto desde un estudio a nivel
de ciencia fundamental para el entendimiento de nuevas propiedades en distintos
materiales bidimensionales poco explorados por la comunidad cientifica, asi como su
implementacién en dispositivos optoelectronicos enfocados a distintas aplicaciones
mediante el uso de sus propiedades; (3) para comparar las propiedades estudiadas en
los materiales bidimensionales tratados, los mayormente conocidos dicalcogenuros
de metales de transicién seran estudiados en las mismas condiciones, obteniendo
mayor entendimiento en sus propiedades; (4) la presente tesis tiene una gran com-
ponente experimental, ya que todo el proceso para los distintos materiales sera
recogido y tratado, desde la preparacion de distintos materiales bidimensionales, su
manipulacién y ordenacion mediante distintas técnicas, asi como su caracterizacion
en distintos aspectos, desde el estudio de distintas propiedades 6pticas, eléctricas y
morfologicas a su implementaciéon y caracterizacion en dispositivos orientados a apli-
caciones especificas en diversos campos, desde sensado, a su implementacién junto
con microresonadores, perovskitas, guias opticas fotonicas integradas o fibras opti-
cas, tanto para el estudio de las propiedades basicas de dichos materiales como para

tener una visién global y general de su aplicaciéon en distintos ambitos y campos.

En una primera parte, se estudiaran las propiedades épticas y eléctricas de la fa-
milia de los semiconductores 111 - VI, poco explorados y complementarios en muchas
propiedades a los mas conocidos dicalcogenuros de metales de transicion. Se estudi-
ard la fotoluminiscencia a temperatura ambiente de muestras exfoliadas de Seleniuro
de Galio, donde experimentalmente se demuestra un corrimiento en su emision lu-
miniscente debido a efectos de confinamiento cuantico de 120 meV al llegar a 8 nm
de espesor, resultado superior al reportado en el momento de estudio, y que sigue
la tendencia a lo reportado tedricamente, con un corrimiento desde los 2.02 eV en
su estado volumico hasta 3.2 eV al llegar a la monocapa, llegando desde el visible al
ultravioleta cercano segtun calculos de primeros principios reportados. Sin embargo
y pese al gran interés en este material debido al gran rango del espectro que barre

al reducir su espesor, también se estudia el mecanismo de oxidacién de este material
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en condiciones normales, a tener en cuenta en este material, mediante técnicas como
microscopia de fuerza atémica, contraste éptico y espectroscopia de fotoemisién de
rayos X para comprender la evolucién en su deterioro de cara a su implementacion.
Estas reacciones de oxidacién difieren de las estudiadas en muestras volimicas de
Seleniuro de Galio y tienen un importante efecto en las propiedades épticas, estruc-
turales y luminiscentes de las muestras exfoliadas. Opticamente, se demuestra que
técnicas como el contraste 6ptico pierden precision debido a la aparicion de man-
chas de distinta coloracién que, por tanto, perjudican su estudio analitico mediante
esta técnica, debido a la apariciéon de nanopilares en la superficie de las muestras
exfoliadas — reportados mediante microscopia de fuerza atémica - debido a una gran
densidad de defectos que aparecen en muestras recién exfoliadas tras 24h que re-
ducen su intensidad de fotoluminiscencia al aumentar el tiempo expuestas al aire.
Este estudio experimental permite, por una parte, demostrar experimentalmente
el gran potencial de las muestras exfoliadas de Seleniuro de Galio dado su amplio
rango de tunabilidad con el espesor de las mismas y, por otro, ofrece entendimiento
de los mecanismos de deterioro de cara a evitarlo previo su uso en dispositivos

optoelectronicos con este material.

Tras esto, se pasara al Seleniuro de Indio, material cuyas propiedades 6pticas se cono-
cen en mayor medida, pero cuyas propiedades eléctricas en su estado bidimensional
no han sido apenas exploradas. Por ello, en esta tesis, aprovechando la gran movil-
idad reportada de las muestras exfoliadas de Seleniuro de Indio, comparables a su
estado voluimico, se demuestra experimentalmente el uso de muestras multiescalon-
adas de este material (i.e., nanocopos que presentan distintos espesores dentro del
mismo material) como heterouniones sin defectos en la interfase que se comportan
como heterouniones p - n, elemento base de la optoelectréonica moderna en disposi-
tivos como transistores, fotodetectores o fotoemisores. Basados en el cambio en su
estructura de bandas al cambiar de espesor (por efectos de confinamiento cuéntico,
similar a lo anteriormente demostrado en muestras exfoliadas de Seleniuro de Galio,
al reducir el espesor de este material a escalas nanométricas, la banda prohibida de
los nanocopos se separa, produciendo diferentes bandas prohibidas dentro del mismo
nanocopo) se estudia su funcionamiento como fotodetector mediante sus caracteris-
ticas I - V y un estudio detallado de la recombinacién de portadores en la barrera
generada por el cambio de banda prohibida en el cambio de espesor. Mediante
técnicas de microfotoluminiscencia se obtiene fotocorriente generada por muestras

multiescalonadas en ausencia de voltaje aplicado y un comportamiento asimétrico
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al aplicar voltajes positivos y negativos, pruebas de la naturaleza de heterounion de
las muestras multiescalonadas, teniendo un comportamiento simétrico en muestras
con un solo espesor dada la ausencia de barrera interna. Ademas, de cara a la mod-
elizacion y diseno de dispositivos eléctricos con este material, se estudia la variacion
de la funciéon de trabajo de distintos espesores del material mediante microscopia
de fuerza de sonda Kelvin, acompanado de calculos de primeros principios, obte-
niendo una tendencia similar junto con los datos experimentales. Estos resultados
demuestran, por tanto, la necesidad de caracterizar dichos valores para los diferentes
espesores en este material de cara a su utilizacion en dispositivos optoelectrénicos
dada su relevancia a la hora de formar distintos tipos de contactos eléctricos en-
tre materiales que afectarian al desempleo final del dispositivo. Finalmente, como
aplicacion de este material, se propone y demuestra su uso para el sensado de gases
debido al cambio en la fotoluminiscencia de las muestras expuestas a distintas con-
centraciones, tiempos y gases. Se usardan como gases tioles debido a su presencia
del radical sulfuro, presente en distintos decaimientos organicos de alimentos y sim-
ilares y trinitrotolueno como ejemplo de gas presente en la deteccién de explosivos,
entre otros. Se observa que, a bajas concentraciones y tiempo de exposicion frente
a estos gases, la fotoluminiscencia de las muestras exfoliadas aumenta debido a la
localizacion de los defectos de selenio superficiales en las nanocapas, para tras ello
disminuir a mayores concentraciones y tiempos de exposiciéon al embeberse dichos
gases dentro de las nanocapas, provocando por ello defectos en las mismas que re-
ducen su emisién. Ademads, se observa una mayor respuesta en muestras delgadas
en comparacion con muestras mas volimicas al tener una mayor ratio superficie —
volumen. Estos tres resultados han sido demostrados para muestras de Seleniuro
de Indio, apuntando por ello comportamientos similares en otro tipo de materiales

como, por ejemplo, en muestras escalonadas de Seleniuro de Galio.

Tras la presentacion de los semiconductores III - VI, una segunda parte de la tesis
se centrard en su implementacion experimental en dispositivos conceptuales para
aprovechar u optimizar las propiedades antes descritas, comparando los resultados
en cada caso con monocapas de dicalcogenuros de metales de transicion como el Sele-
niuro de Tungsteno o el Seleniuro de Molibdeno, al ser materiales cuyas propiedades
se conocen en mayor medida y en algunas de ellas presentan su contraparte en los
semiconductores III - VI. En concreto, se intentara aprovechar la recientemente de-
mostrada naturaleza dipolar del Seleniuro de Indio como perpendicular al plano de

exfoliacion, distinta a los dicalcogenuros de metales de transicién y a la mayoria
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de materiales bidimensionales reportados, hecho que perjudica su uso en la config-
uracion de excitacion vertical - coleccion vertical usual en los estudios cientificos,
pero que puede ser aprovechado en otras situaciones. Primero, mediante el uso de
microesferas de éxido de silicio depositadas por goteo sobre las muestras exfoliadas
de ambos materiales bidimensionales se optimizara la extraccion y coleccion de su
fotoluminescencia, tanto en el caso de Seleniuro de Indio como en el Seleniuro de
Tungsteno, debido al aumento en la superficie excitada y, finalmente, un aumento en
la coleccién global de la emision de las muestras. Por la presencia de la microesfera
y el desenfoque producido en comparacion con la situaciéon previamente enfocada en
ausencia de la microesfera, hace que la cantidad de material excitado y, por tanto,
donde se fomentard la recombinaciéon de portadores, aumentara, aumentando con-
secuentemente su emision fotoluminiscente. Tras ello, una vez los nanocopos han
sido excitados, su emision sera re-enfocada por la microesfera, de forma que la colec-
cion total aumentara con respecto a la situacion sin la misma debido a la apertura
numérica del sistema de coleccién, que se vera aumentado de forma efectiva por
dicho efecto lente en coleccion debido a la microesfera. Finalmente, se demostrara
el comportamiento como dipolo perpendicular al plano en el caso de la emision foto-
luminiscente de los nanocopos de Seleniuro de Indio, asi como de la componente de
baja energia en la emisién fotoluminiscente de las monocapas de Seleniuro de Tung-
steno, siendo estas asociadas al trién o exciton cargado. Esta naturaleza dipolar se
ve reflejada como perpendicular al plano debido a las resonancias que presenta la
emision colectada, provocada por los modos de galeria susurrante que se producen
en las microesferas por la excitacién emitida por el material bidimensional, actuando
estas microesferas como elemento dispersante. La cantidad y forma cualitativa de
estos modos resonantes observados en la emision global colectada coinciden con las
resonancias de un dipolo perpendicular al plano tras una microesfera dispersora,
calculados tanto por métodos analiticos como numeéricos, en comparacion con los
calculados para un dipolo paralelo al plano, donde la distancia entre modos se re-
duce claramente. El hecho de estudiar la emision fotoluminiscente de las muestras
bidimensionales junto con las microesferas depositadas sobre ellas ofrece un control
adicional a la emision fotoluminiscente de estos materiales en funcién del didmetro
de dicha microesfera, cuyo valor puede ser modificado de cara a variar la posicion de
los modos de galeria susurrantes en ella, tanto en aumento de intensidad como en
posicién del pico efectivo de emision colectado de cara a su implementacion para una

aplicacion en concreto al poder afinar la posicion de dichas resonancias en funcion
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de la finalidad deseada.

Cambiando de sistema para aprovechar la naturaleza dipolar antes descrita, es-
tos materiales bidimensionales, tanto el Seleniuro de Indio como el Seleniuro de
Molibdeno, se estudiaran en heteroestructuras verticales junto con nanocristales de
perovskitas con emisién en el visible. Estas heteroestructuras verticales han sido
preparadas tratando los cristales de perovskitas de forma similar a un material bidi-
mensional mediante transferencia viscoelastica seca para cubrir zonas del material
exfoliado con perovskitas y asi poder comparar las zonas cubiertas con las zonas sin
tratar. En presencia de las perovskitas sobre los nanocopos exfoliados, se observa
un aumento de la fotoluminescencia colectada en el caso de los nanocopos de Se-
leniuro de Indio en comparacion a lo obtenido junto con monocapas de Seleniuro
de Molibdeno, donde la fotoluminescencia detectada se ve reducida al depositar un
nanocristal de perovskitas sobre las muestras exfoliadas. El aumento de fotoluminis-
cencia en el caso del Seleniuro de Indio se ha verificado con dos tipos de perovskitas,
con emision en la zona del espectro visible en el rojo y en el verde, respectivamente.
El motivo de dicho efecto es la reabsorcion por parte del Seleniuro de Indio de lo
emitido por la perovskita superior, que absorbera parcialmente la excitaciéon que
llega al conjunto y tendra su propia emision fotoluminiscente, debido a la disposi-
cién optima del dipolo perpendicular al plano de los nanocopos de Seleniuro de
Indio con respecto a la emision multidireccional de las perovskitas, en comparacion
a la ausencia de perovskitas, donde el dipolo perpendicular al plano del Seleniuro
de Indio perjudica la absorcion de la excitacion vertical. En contraposicion a esta
situacion, el dipolo paralelo al plano de los dicalcogenuros de metales de transicion,
en este caso reflejado en las monocapas de Seleniuro de Molibdeno, que ya tenia
una disposicion 6ptima para la excitacion y coleccion vertical, la presencia de las
perovskitas sobre las mismas deteriora su emision final al absorber parte de la ex-
citacion que no se consigue reabsorber por la emision de la perovskita. Este estudio,
junto con lo descrito anteriormente con las microesferas y lo previamente reportado,

confirma la naturaleza dipolar en el Seleniuro de Indio como perpendicular al plano.

Finalmente, y para cerrar esta segunda parte de dispositivos enfocados a optimizar
la extraccion efectiva en los semiconductores IIT - VI, con vistas a la implementacion
de estos materiales bidimensionales en dispositivos fotonicos integrados, se estudia
el comportamiento de nanocopos de Seleniuro de Indio y monocapas de Seleniuro de
Tungsteno y Seleniuro de Molibdeno sobre guias de onda foténicas, permitiendo asi

la excitacion de las muestras y la coleccion de su emision fotoluminiscente indistin-
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tamente en las direcciones horizontal y vertical al plano de exfoliacién, en todas las
configuraciones posibles. Tras unos primeros pasos con el Seleniuro de Indio, se es-
tudia en detalle la implementacién de los dicalcogenuros de metales de transicion en
las mismas, Seleniuro de Tungsteno y Seleniuro de Molibdeno, obteniendo medidas
experimentales en todas las configuraciones de guiado (es decir, tanto en excitacién
horizontal — coleccién vertical, excitacién vertical — coleccién horizontal, excitacion
horizontal — coleccion horizontal y la ya ampliamente estudiada excitacion vertical —
coleccion vertical), asi como su distinto comportamiento con respecto a la absorcién
y emision frente a luz polarizada en la guia. En las muestras preparadas de ambos
materiales, Seleniuro de Molibdeno y Seleniuro de Tungsteno, se observa emisiéon en
todas las configuraciones, confirmando la posibilidad de guiado de los mismos, siendo
esta configuracion de excitacion horizontal — coleccion horizontal la que presenta po-
tenciales aplicaciones en Optica integrada. Sin embargo, en excitacién horizontal —
coleccién vertical, a diferencia del resto de configuraciones, donde cualitativamente
es similar, se observa un doble pico con una disminuciéon de la anchura de ambos
picos. Estos resultados han sido verificados para guias de onda de distintos mate-
riales, distintos laseres de excitacion y diferente confinamiento en la guia, tanto en
ondas planas como en guias en una dimension, en diversas medidas, corroborando
dichos resultados experimentales. Mediante medidas de microfotoluminiscencia se
determina que en las monocapas de los dicalcogenuros de metales de transicion se
observan dos contribuciones en su emision fotoluminiscente, causantes de los distin-
tos resultados experimentales observados. En estas medidas se pueden observar la
contribucion del excitéon neutro, dominante en la mayoria de las situaciones, y el
trién a menores energias, que produce la asimetria en la emision de estos materiales.
La contribucién debida al trién se puede observar con mayor intensidad en bordes
o pliegues del material, donde se producen defectos y acumulacién de portadores,
aumentando la recombinacion de excitones localizados o cargados. Siendo el trién
una cuasiparticula formada por dos huecos y un electréon (en nuestro caso, dado
el dopado p del material original volimico del que se han obtenido las monocapas
estudiadas), esta acumulacién de portadores fomenta la formacion de esta recom-
binacién, produciendo emisién a menor energia a la del excitén neutro. De esta
forma se observa el distinto peso de estas contribuciones en funcién del punto me-
dido en la muestra. Esta separacion de contribuciones tiene especial interés dado
que permite la manipulacion de ambas seniales separadamente para aplicaciones,

por ejemplo, de codificacién de informaciéon. Con ello, y haciendo un estudio en las
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guias fotonicas con respecto a la polarizacién de la luz emitida y colectada, se ob-
serva un distinto comportamiento dentro de las componentes que intervienen en la
emision fotoluminiscente de los dicalcogenuros de metales de transicion con respecto
a su naturaleza dipolar, donde se observa un comportamiento de emisiéon paralela
al plano, coherente con lo esperado por su naturaleza dipolar en el plano, como se
ha reportado para el exciton neutro en los dicalcogenuros de metales de transicion.
Estos resultados ayudan a su entendimiento y aprovechamiento de cara a disposi-
tivos en el plano, donde especialmente los semiconductores III — VI antes estudiados
tienen especial interés debido a su comportamiento dipolar perpendicular al plano,
asentando las bases y técnicas experimentales para su futura implementacion en
foténica integrada compatible con técnicas ya conocidas empleadas en la industria
del silicio, donde a diferencia de los dicalcogenuros de metales de transicion, en los
semiconductores IIT — VI se espera un rendimiento similar al obtenido en los mate-
riales con dipolo en el plano en la configuracién de excitacién vertical — coleccion

vertical ampliamente estudiada.

En una tercera y tltima parte de la tesis se presentaran dos materiales bidimension-
ales no explorados en la literatura: el Sulfuro de Bismuto y el Triéxido de Molibdeno.
En el caso del Sulfuro de Bismuto, se presenta un material semiconductor como los
anteriormente estudiados dicalcogenuros de metales de transicion y los semiconduc-
tores III — VI que, a diferencia de éstos y lo que le hace destacar es que, ademas de
presentar anisotropia entre el plano de exfoliacion y la vertical (anisotropia que todos
los materiales bidimensionales presentan, al menos a nivel estructural y morfolégico,
lo que permite que sean exfoliables en capas), presenta una gran anisotropia optica y
estructural entre las direcciones x — y dentro del propio plano de exfoliacion. Tras la
exfoliacion del material, mediante microscopia éptica se observan nanocapas clara-
mente con forma rectangular en el plano x — y de exfoliaciéon en comparacion con lo
distintos angulas y formas observadas en otros materiales. Estas dos direcciones en
las muestras rectangulares en el Sulfuro de Bismuto denotan dos ejes (determinados
por ambos lados de los rectangulos que forman las muestras) como los ejes 6pticos
ordinario y extraordinario de dicha anisotropia, demostrado mediante espectroscopia
Raman y difraccién de rayos X. Esta anisotropia es experimentalmente demostrada
por diversas técnicas Opticas como espectroscopia Raman tanto en muestras delgadas
como volimicas (donde un modo de vibracién asociado a la direccién cristalogréfica
en una de las direcciones se ve claramente anulada al rotar la muestra con respecto a

la polarizacién de excitacion), fotoluminescencia (donde se observa una reduccién de
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intensidad de emision fotoluminiscente colectada al rotar los nanocopos), contraste
6ptico y reflectividad diferencial (siendo el contraste 6ptico medido en tres rangos
distintos en el visible, rojo, azul y verde y la reflectividad diferencial en todo el
espectro visible, donde ambas propiedades siguen una dependencia lobular al rotar
la muestra con respecto a un polarizador lineal en coleccién) y transmitancia, donde
en todas ellas se observa un comportamiento dependiente de la orientacién de las
nanocapas con respecto a la direcciéon de polarizacion de la luz de excitacion o la
coleccion, dependiente de la distinta absorcién entre ambos ejes en el material estu-
diado. Una vez la anisotropia de este material ha sido demostrada, se presenta la
aplicacién de dicha anisotropia al depositar muestras exfoliadas de este material en
el nicleo de fibras épticas, que actiian como cavidad de Fabry-Perot en el ntcleo de
las mismas. La apariciéon de bandas de transmitancia tras las miltiples reflexiones
internas en el material es producida interferencias constructivas que, a determinadas
longitudes de onda, cumplen que estan en fase. Al rotar la polarizacién de la luz
incidente en la muestra con respecto a los ejes cristalograficos es posible modificar
la posicién de dichas bandas, dando un grado de libertad como polarizador o filtro
de banda estrecha. De los primeros 6rdenes de interferencia y la diferencia entre la
posicion entre picos entre ambas direcciones se obtienen resultados de la birrefrin-
gencia del sulfuro de bismuto al rotar polarizacion de la luz en el nticleo con respecto
a las direcciones de la muestra depositada en comparacién con otros materiales lam-
inares reportados. Finalmente, a diferencia de los anteriores semiconductores lam-
inares, se presenta el Triéxido de Molibdeno como material bidimensional aislante,
propiedad poco frecuente en el campo de los materiales bidimensionales, donde el
Nitruro de Boro hexagonal es el tnico utilizado para este cometido en dispositivos
donde un aislante bidimensional es empleado. Se demuestra la exfoliabilidad del
Trioxido de Molibdeno, obteniendo nanocapas rectangulares similares a las antes
obtenidas en el Seleniuro de Bismuto, asi como sus ventajas con respecto al Nitruro
de Boro hexagonal como material laminar aislante: primero se presenta al material
con un espin nuclear casi-nulo en comparaciéon con el Nitruro de Boro hexagonal
y otros posibles candidatos dentro de los tedrica o experimentalmente exfoliados,
hecho que impide el uso del nitruro de boro hexagonal en dispositivos orientados a
la espintrénica atémica y tras esto, se demuestra experimentalmente la ausencia de
defectos localizados emisores de fotoluminiscencia a baja temperatura, que actiien
como puntos de emision que afecten al resultado final del dispositivo diseniado, pre-

sente en la mayoria de nitruro de boro hexagonal crecido a dia de hoy. El uso de este
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nuevo material como aislante bidimensional se demuestra mediante dispositivos de
dicalcogenuros de metales de transiciéon encapsulados en este material y estudiando
su comportamiento a baja temperatura. Primero, se obtiene un ligero corrimiento
y un estrechamiento en la reflectividad diferencial de las monocapas de seleniuro
de tungsteno encapsuladas en este material, resultado similar al obtenido al encap-
sularlo en nitruro de boro hexagonal y, ademas, se estudia el comportamiento de
varios emisores de fotén tinico presentes en el semiconductor encapsulado mediante
microfotoluminiscencia, observando desdoblamiento de estructura fina, un compor-
tamiento de polarizacién cruzada en ambas contribuciones y una tendencia con la
potencia de excitacion similares a las reportadas, probando por tanto su uso como
aislante en sustitucion al nitruro de boro hexagonal. Sin embargo, otros resultados
usando el trioxido de molibdeno, en este caso encapsulando una bicapa de seleniuro
de tungsteno, destacan con diferencia con respecto a los anteriormente mencionados
y los reportados con otros materiales en la literatura. Tanto en fotoluminiscencia y
reflectividad a temperatura ambiente como en reflectividad diferencial a baja tem-
peratura, se observan corrimientos en torno a diez veces superiores a los reportados
en otros casos y materiales, tanto en la contribucion del excitén directo y el indirecto
en el caso de la fotoluminiscencia como en la absorciéon observada en la reflectividad
diferencial. El hecho de que se haya producido en una bicapa de seleniuro de tung-
steno en vez de en una monocapa y la distinta orientacion relativa de los nanocopos
de trioxido de molibdeno que encapsulan a la misma se proponen como causantes de
dicho corrimiento inesperado, siendo demostrada tras esto la anisotropia de nanoco-
pos exfoliados de triéxido de molibdeno mediante reflectividad diferencial al rotar la
muestra con respecto a la polarizacion de coleccion, propiedad ya atisbada al com-
parar la forma rectangular de las muestras exfoliadas con las anteriores de sulfuro
de bismuto. Finalmente, y de cara a caracterizar 6pticamente dicha anisotropia en
nanocapas de triéxido de molibdeno, se obtiene por elipsometria mediante el uso
de tres dngulos de incidencia el indice de refraccién en el espectro visible de este

material, presentando diferente valor en las tres direcciones espaciales.

La presente tesis, por tanto, cerraria presentando las conclusiones antes expuestas

y futuros proyectos que se abren tras los mismos.
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D.2 Resumen breve en castellano

En el campo de la Ciencia de Materiales, los materiales bidimensionales han aca-
parado la atencién de la comunidad cientifica en los tltimos anos. El cambio y
la apariciéon de nuevas propiedades cuando su espesor se ve reducido a escalas
nanomeétricas tiene un especial interés para el estudio de sus propiedades funda-
mentales para, a partir de éstas, el diseno y su implementacién en dispositivos de
diversa indole. La gran variedad de materiales con posibilidad de ser exfoliables a
nivel bidimensional abre el campo a distintas aplicaciones, desde dispositivos opto-
electronicos, deteccién y sensado, almacenamiento de energia, catalisis, aplicaciones

médicas y tecnologias de informacién cuantica, entre otras.

Esta tesis recoge resultados en ambos sentidos: un estudio a nivel de ciencia funda-
mental en materiales bidimensionales poco explorados por la comunidad cientifica
y su implementacién en dispositivos optoelectrénicos enfocados a distintas aplica-

ciones.

En una primera parte, se estudiaran las propiedades épticas y eléctricas de la fa-
milia de los semiconductores I1I - VI, poco explorados y complementarios en muchas
propiedades a los conocidos dicalcogenuros de metales de transiciéon. Se estudiara
la fotoluminiscencia del Seleniuro de Galio, donde experimentalmente se demuestra
un corrimiento en su emision luminiscente de 120 meV al llegar a 8 nm de espesor,
resultado superior al reportado en el momento y que sigue la tendencia a lo repor-
tado tedricamente, con un corrimiento de los 2.02 €V en su estado voltimico hasta
3.2 eV al llegar a la monocapa, llegando desde el visible al ultravioleta cercano segin
calculos de primeros principios. También se estudia el mecanismo de oxidacion de
este material en condiciones normales mediante técnicas como microscopia de fuerza
atomica, contraste optico y espectroscopia de fotoemision de rayos X para compren-
der la evolucién en su deterioro de cara a su implementacion en dispositivos. Tras
esto, se pasard al Seleniuro de Indio, material cuyas propiedades épticas se conocen
en mayor medida, pero cuyas propiedades eléctricas en su estado bidimensional no
han sido exploradas. Por ello, en esta tesis se demuestra el uso de muestras mul-
tiescalonadas de este material como heterouniones sin defectos que se comportan
como heterouniones p - n, base de la optoelectronica moderna en dispositivos como
transistores, fotodetectores o fotoemisores. Basados en el cambio en su estructura
de bandas al cambiar de espesor, se estudia su funcionamiento como fotodetector

mediante sus caracteristicas I - V y un estudio detallado de la recombinacién de
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portadores en la barrera generada por el cambio de banda prohibida en el cambio
de espesor. Ademads, de cara a la modelizacion y diseno de dispositivos eléctricos
con este material, se estudia la variacion de la funcién de trabajo de distintos es-
pesores del material mediante microscopia de fuerza de sonda Kelvin, acompanado
de calculos de primeros principios, obteniendo una tendencia similar junto con los
datos experimentales. Finalmente, como aplicaciéon de este material, se propone y
demuestra su uso para el sensado de gases debido al cambio en la fotoluminiscencia
de las muestras expuestas a distintas concentraciones, tiempos y gases. Se usaran
como gases tioles debido a su presencia del radical sulfuro, presente en distintos
decaimientos organicos de alimentos y similares y trinitrotolueno como ejemplo de

gas presente en la deteccién de bombas, entre otros.

Tras la presentacion de los semiconductores III - VI, una segunda parte de la tesis
se centrard en su implementacion experimental en dispositivos conceptuales para
aprovechar u optimizar las propiedades antes descritas, comparando los resultados
en cada caso con monocapas de dicalcogenuros de metales de transiciéon como el
Seleniuro de Tungsteno o el Seleniuro de Molibdeno. En concreto, se intentara
aprovechar la recientemente demostrada orientacion vertical al plano de exfoliacion
de los excitones en el Seleniuro de Indio que contrasta con orientacién horizontal
de éstos en los dicalcogenuros de metales de transicion, hecho que perjudica su uso
en la configuracion de excitacion vertical - coleccion vertical usual en los estudios
cientificos. Primero, mediante el uso de microesferas de 6xido de silicio sobre las
muestras bidimensionales se optimizara la extraccion y coleccién de su fotolumines-
cencia, tanto en el caso de Seleniuro de Indio como en el Seleniuro de Tungsteno.
Ademaés, se demostrara el comportamiento como dipolo perpendicular al plano en
el caso del Seleniuro de Indio y de la componente de baja energia del Seleniuro de
Tungsteno asociada al trion o exciton cargado debido a las resonancias debidas a los
modos de galeria susurrante que se producen en las microesferas. Esta técnica ofrece
un control adicional a la emision fotoluminiscente de estos materiales en funcion del
didmetro de dicha microesfera, tanto en aumento de intensidad como en posicién del
pico efectivo de emision colectado de cara a su implementacién para una aplicacion

en concreto.

Tras ello, estos materiales bidimensionales se estudiaran en heteroestructuras ver-
ticales junto con nanocristales de perovskitas con emision en el visible, obteniendo
un aumento de la fotoluminescencia colectada en el caso del Seleniuro de Indio en

comparacion a lo obtenido junto con Seleniuro de Molibdeno, donde la fotolumines-
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cencia detectada se ve reducida al depositar un nanocristal de perovskitas sobre las
muestras exfoliadas. El origen de dicho efecto es la reabsorcién por parte del Seleni-
uro de Indio de lo emitido por la perovskita superior, debido a la disposicion 6ptima
de su dipolo perpendicular al plano con respecto a la emision multidireccional de las
perovskitas, en contraposicion al dipolo paralelo al plano de los dicalcogenuros de
metales de transicion, ya éptimo para la excitacion y colecciéon vertical. Este estudio
confirma la naturaleza dipolar en el Seleniuro de Indio como perpendicular al plano

junto con el resultado anterior.

Finalmente, en esta segunda parte y con vistas a la implementacion de estos ma-
teriales bidimensionales en dispositivos foténicos integrados, se estudia el compor-
tamiento del Seleniuro de Indio y monocapas de Seleniuro de Tungsteno y Seleniuro
de Molibdeno sobre guias de onda foténicas, permitiendo la excitacion y coleccion
indistintamente en las direcciones horizontal y vertical al plano de exfoliacién, en
todas las configuraciones posibles. Tras unos primeros pasos con el Seleniuro de
Indio, se estudia en detalle la implementacion de los dicalcogenuros de metales de
transicién en las mismas, obteniendo medidas experimentales en todas las configu-
raciones de guiado, asi como su distinto comportamiento con respecto a la absorcién

y emision frente a luz polarizada en la guia.

En una tercera parte de la tesis se presentaran dos materiales bidimensionales no
explorados en la literatura: el Sulfuro de Bismuto y el Oxido de Molibdeno. En
el caso del semiconductor Sulfuro de Bismuto, estudiaremos la anisotropia de sus
propiedades 6pticas en el plano de las capas, mediante diversas técnicas Opticas como
espectroscopia Raman, fotoluminescencia, contraste 6ptico, reflectividad diferencial
y transmitancia. Tras ello, se demuestra la aplicacion de dicha anisotropia en fi-
bras opticas como cavidad de Fabry-Perot en el nicleo de las mismas, de donde se
obtienen resultados de su birrefringencia en comparacién con otros materiales lam-
inares reportados. Finalmente, se presenta el Oxido de Molibdeno como material
bidimensional aislante, poco frecuente en el campo de los materiales bidimension-
ales, donde el Nitruro de Boro hexagonal es el tnico utilizado. Se demuestra la
exfoliabilidad del Oxido de Molibdeno y sus ventajas con respecto al Nitruro de
Boro hexagonal: su ausencia de defectos a baja temperatura y su espin nuclear casi-
nulo en comparaciéon con el Nitruro de Boro hexagonal, hecho que impide su uso en
dispositivos orientados a la espintronica. El uso de este nuevo material como aislante
bidimensional se demuestra mediante dispositivos de dicalcogenuros de metales de

transicion encapsulados en este material y estudiando su comportamiento a baja
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temperatura, desde sus emisores de foton tnico al estrechamiento en la emision y
absorcién del semiconductor encapsulado, obtenido por fotoluminiscencia y reflec-

tividad diferencial a baja temperatura, respectivamente.
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D.3 Resum breu en valencia

En el camp de la Ciencia de Materials, els materials bidimensionals han acaparat
I’atencié de la comunitat cientifica en els ultims anys. El canvi i 'aparicié de noves
propietats quan el seu gruix es veu reduit a escales nanomeétriques té un especial
interés per al estudi dels seu propietats fonamentals per a, a partir de les quals, el
disseny i la seua implementacié en dispositius de diversa indole. La gran varietat
de materials amb possibilitat de ser exfoliables a nivell bidimensional obri el camp
a distintes aplicacions, des de dispositius optoelectronics, deteccié i sensat, em-
magatzemament d’energia, catalisi, aplicacions mediques i tecnologies d’informacié

quantica, entre altres.

Aquesta tesi recull resultats en ambdds sentits: un estudi a nivell de ciencia fon-
amental en materials bidimensionals poc explorats per la comunitat cientifica i la

seua implementacié en dispositius optoelectronics enfocats a distintes aplicacions.

En una primera part, s’estudiaran les propietats optiques i electriques de la familia
dels semiconductors III - VI, poc explorats i complementaris en moltes propietats
als coneguts dicalcogenurs de metalls de transicid. S’estudiara la fotoluminiscen-
cia del Selenur de Gal - li, on experimentalment es demostra un corriment en la
seua emissié luminiscent de 120 meV a l'arribar a 8 nm de gruix, resultat superior
al reportat en el moment i que seguix la tendencia al reportat teoricament, amb
un corriment dels 2.02 eV en el seu estat volimic fins a 3.2 eV a l'arribar a la
monocapa, arribant des del visible a 'ultravioleta proxim segons calculs de primers
principis. També s’estudia el mecanisme d’oxidaci6é d’aquest material en condicions
normals mitjangant tecniques com microscopia de forga atomica, contrast optic i
espectroscopia de fotoemissio de raix X per comprendre I'evolucié en el seu dete-
riorament de cara a la seua implementacié. Després d’aco, es passara al Selenur
d’Indi, material del qual les propietats optiques es coneixen en major grau, pero les
propietats electriques en el seu estat bidimensional no han estat explorades. Per
aixo, en aquesta tesi es demostra 1'is de mostres multiescalonades d’aquest material
com heterounions sense defectes que es comporten com heterounions p - n, base de
I'optoelectronica moderna en dispositius com a transistors, fotodetectors o fotoe-
missors. Basats en el canvi en la seua estructura de bandes al canviar de gruix,
s’estudia el seu funcionament com fotodetector mitjancant les seues caracteristiques
[ - Viun estudi detallat de la recombinaci6é de portadors en la barrera generada pel

canvi de banda prohibida en el canvi de gruix. A més, de cara a la modelitzacio i
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disseny de dispositius electrics amb aquest material, s’estudia la variaci6é de la fun-
ci6 de treball amb differents gruixos del material mitjangant microscopia de forca de
sonda Kelvin, acompanyat de calculs de primers principis, obtenint una tendencia
semblant junt amb les dades experimentals. Finalment, com a aplicacié d’aquest
material, es proposa i demostra el seu s per al sensat de gasos a causa del canvi
en la fotoluminiscéncia de les mostres exposades a differents concentracions, temps
i gasos. S’utilitzaran per aix6 gasos com a tiols degut a la seua presencia del radical
sulfur, present en distints decaiments organics d’aliments i semblants, i trinitrotolué

com a exemple de gas present en la deteccié de bombes, entre altres.

Després de la presentacio dels semiconductors I - VI, una segona part de la tesi es
centrara en la seua implementacié experimental en dispositius conceptuals per tal
de aprofitar o optimitzar les propietats abans descrites, comparant els resultats en
cada cas amb monocapes de dicalcogenurs de metalls de transicié com el Selenur
de Tungste o el Selenur de Molibde. En concret, s’intentara aprofitar la recent-
ment demostrada naturalesa dipolar del Selenur d’Indi com a perpendicular al pla
d’exfoliacié, diferent dels dicalcogenurs de metalls de transicié, fet que perjudica el
seu us en la configuracié d’excitacié vertical - col - leccio vertical usual en els estudis
cientifics. Primer, mitjangant 1'is de microesferes d’oxid de silici sobre les mostres
bidimensionals s’optimitzara 1'extraccié i col - leccié de la seua fotoluminescencia,
tant en el cas de Selenur d’Indi com en el Selenur de Tungste. A més, es demostrara
el comportament dipolar com a perpendicular al pla en el cas del Selenur d’'Indi i
de la component de baixa energia del Selenur de Tungste associada al trié o ex-
cito carregat a causa de les ressonancies degudes als modes de galeria xiuxiuejants
que es produixen en les microesferes. Aquesta tecnica oferix un control addicional
a l’emissié fotoluminiscent d’aquestos materials en funcié del diametre de dita mi-
croesfera, tant en augment d’intensitat com en la posicié del pic efectiu d’emissio

col - lectat de cara a la seua implementacié per a una aplicacié en concret.

Després d’aixo, estos materials bidimensionals s’estudiaran en heteroestructures ver-
ticals junt amb nanocristalls de perovskites amb emissié en el visible, obtenint un
augment de la fotoluminescencia col - lectada en el cas del Selenur d’Indi en compara-
ci6 a allo que s’ha obtingut junt amb Selenur de Molibde, on la fotoluminescencia
detectada es veu reduida al depositar un nanocristall de perovskites sobre les mostres
exfoliades. El motiu d’aquest efecte és la reabsorcié per part del Selenur d’Indi d’allo
que s’ha emes per la perovskita superior, a causa de la disposicié optima del seu

dipol perpendicular al pla respecte a ’emissié multidireccional de les perovskites,
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en contraposicié al dipol paral - lel al pla dels dicalcogenurs de metalls de transicio,
ja optim per a l'excitacio i col - leccié vertical. Aquest estudi confirma la naturalesa

dipolar del Selenur d’Indi com a perpendicular al pla junt amb el resultat anterior.

Finalment en aquesta segona part, de cara a la implementacié d’aquestos materi-
als bidimensionals en dispositius fotonics integrats, s’estudia el comportament del
Selenur d’Indi i monocapes de Selenur de Tungste i Selenur de Molibde sobre guies
d’ones fotoniques, tot permetent l'excitacié i col - leccié indistintament en les di-
reccions horitzontal i vertical al pla d’exfoliacid, en totes les configuracions possi-
bles. Després d'uns primers passos amb el Selenur d’'Indi, s’estudia en detall la
implementaci6 dels dicalcogenurs de metalls de transicié en les mateixes, obtenint
mesures experimentals en totes les configuracions de guiat, aixi com el seu distint

comportament respecte a ’absorcio i emissié enfront de llum polaritzada en la guia.

En una tercera part de la tesi es presentaran dos materials bidimensionals no explo-
rats en la literatura: el Sulfur de Bismut i 'Oxid de Molibdé. En el cas del Sulfur de
Bismut, es presenta un material semiconductor que, a més de presentar anisotropia
entre el pla d’exfoliaci6 i la vertical, presenta una gran anisotropia optica i estruc-
tural dins del pla, demostrada per diverses tecniques optiques com espectroscopia
Raman, fotoluminescencia, contrast optic, reflectivitat diferencial i transmitancia.
Després d’ago, es demostra ’aplicacié d’aquesta anisotropia en fibres optiques com a
cavitat de Fabry-Perot en el nucli de les mateixes, d’on s’obtenen resultats de la seua
birefringéncia en comparacié amb altres materials laminars reportats. Finalment,
es presenta I’Oxid de Molibdé com a material bidimensional aillant, poc freqiient
en el camp dels materials bidimensionals, on el Nitrur de Bor hexagonal és 1'inic
utilitzat. Es demostra Pexfoliabilitat de I'Oxid de Molibde i els seus avantatges re-
specte al Nitrur de Bor hexagonal: la absencia de defectes a baixa temperatura i el
seu espin nuclear quasi-nul en comparacié amb el Nitrur de Bor hexagonal, fet que
impedix el seu Us en dispositius orientats a 1’espintronica. L’s d’este nou material
com a aillant bidimensional es demostra mitjancant dispositius de dicalcogenurs de
metalls de transicié encapsulats en aquest material i estudiant el seu comportament
a baixa temperatura, des dels seus emissors de fot6 tinic a ’estretiment en I’emissio i
absorcié del semiconductor encapsulat, obtingut per fotoluminiscencia i reflectivitat

diferencial a baixa temperatura, respectivament.
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