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How do we represent a molecule?

• N electrons and M nuclei
• Fixed nuclei in a given position 

(Born-Oppenheimer approx.)
• Electrostatic interactions between

point charges
• → (Differential) Schrödinger 

equation not resolvable
analytically



A resolvable model: Hartree-Fock

• Electrostatic interaction
between average charge
distributions

• → (Differential) Schrödinger 
equation resolvable

• Electron motion correlation is
added a posteriori (if needed)



Molecular Hamiltonian

• System → molecule: 
– N electrons
– M nuclei

Spatial coor. Spin coor.

(in atomic units)

Electronic Hamiltonian:: h(ri)



One-electron and many-electron
wavefunctions

Many-electron wavefunction:

• Hartree Product (HP):

• Slater determinant: antisymmetrized product (AP)

Molecular spin-orbital:



Slater determinant properties :

• If then

Therefore

• If A† = A–1 (unitary)

• Physically: “independent” electron model

• must be linearly independent

• We will assume that are orthonormal, i. e.,



Slater determinant classification :
Restricted

Each pair of spin-orbitals have the same spatial part

Unrestricted

open shell

...

closed shell

...

...

...

...

r = N+1, …∞
unoccupied or 
virtual spin-orbitals

a = 1, …N
Occupied spin-orbitals

...



Electronic energy and total energy

Electronic energy, E0:

One-electron term:

Coulomb integral:

Exchange integral:

a = 1,...N



Electronic energy and total energy

Coulomb operator, Jb(1):

Exchange operator, Kb(1) :

Thus,

Total Potential Energy:



Hartree-Fock Theory

a = 1,...N

→ r = N+1, …∞

The optimal set of spin-orbitals will be those minimizing the energy (Variational principle)

In HF theory one assumes that the wavefunction is monodeterminantal

The wavefunction must be kept normalized

Which means that

How can we vary the wavefunction? Changing the spin-orbitals ….

We can do this by ‘mixing’ an occupied orbital with a virtual one by a small amount (η << 1)

And if ¬ is real



Hartree-Fock Theory

a = 1, …N
r = N+1, …∞

a = 1, …N
r = N+1, ...∞

f

Then the variation in the wavefunction is:

According to the variational principle:

Developing the expression of energy:

Where f is the Fock operator, according to the variational principle



Hartree-Fock Theory
Then, we need to find one-electron functions:

We have a one-electron operator, the fock operator:

We now know that the best spin-orbitals are those that fulfill the condition:

We also know that the fock operator acting on a spin-orbital will give us another
function that can be expressed using a complete basis of functions:

occupied virtual

considering then

0

● The fock operator acting on an occupied spin-
orbital gives another spin-orbital written as a 
combination of occupied spin-orbitals.

● Of all the possible sets of spin-orbitals, there is
one that simplifies the previous equation …



Hartree-Fock Theory

Unitary
transformation

a = 1, …N a = 1, …N



Hartree-Fock Theory

a = 1,...N

r = N+1, …∞ →

a = 1, …N



Hartree-Fock Theory

Take home message about HF:

- We have transformed an N-electron problem into an N-monoelectron
problem

- We assume that the wavefunction can be expressed as the
antisymmetrized products (one determinant or configuration) of spin-
orbitals

- We look for the best spin-orbitals using the variational principle

- The fock operator gives the energy of one electron in the field of the
nuclei, which ‘feels’ an average interaction with the rest of electrons
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Physical Meaning of the HF solutions

• Fock equation:

• Solutions of the Fock equation 
for N electrons:
– N occupied spin-orbitals (a,b…), 

the rest of the spin-orbitals will 
be virtual or unoccupied (r,s…)

...

...

r = N+1, …∞
Unoccupied or 
virtual spin-orbitals

a = 1, …N
Occupied spin-orbitals



Orbital energy
Multiplying the Fock equation by <χi one obtains:

This is the energy (kinetic and potential) of the electron alone in
the field of the nuclei (h) plus the Coulomb (J) and exchange
interaction (K) with all other electrons



What is the physical meaning of the 
Fock operator and its eigenfunctions?

a = 1, …N

Since:

Occupied orbitals

a = 1, …N



Occupied spin-orbitals

• Summarizing → energy of an occupied spin-orbital:

• The energy of the occupied orbital includes:
– <a|h|a> ⇒ energy of the electron alone in the field of the nuclei
– Interaction with the other (N-1) electrons in the other occupied 

spin-orbitals b≠a:
• <ab|ab>  Coulomb interaction 
• – <ab|ba> exchange interaction



What is the physical meaning of the 
Fock operator and its eigenfunctions?

a = 1, …N

Considering:

a = 1, …N

Occupied orbitals

Virtual orbitals

r = N+1, …∞

👀👀

...

...

r = N+1, …∞

a = 1, …N



Virtual spin-orbitals
• Summarizing: → energy of a virtual spin-orbital

• The energy of the virtual orbital includes:
– <r|h|r> the energy of the electron alone in the field of the nuclei
– Interaction with all the N electrons in the N occupied spin-orbitals b

• <rb|rb> Coulomb interaction
• – <rb|br> exchange interaction

– It is equivalent to the energy of an ADDITIONAL electron in a system 
with a total of (N+1) electrons



Physical meaning of the orbital energies



Ionization potentials

• System with N electrons ⇒ Slater determinant:

• If one eliminates the electron in the spin-orbital c, 
:



Ionization potentials

• The ionization potential will be:

• In this model, the ionization potential is the 



Electron affinity

• The electron affinity is defined as:

• The wavefunction, after adding one electron to the system, to 
the r virtual spin-orbital, 

is:

• Therefore:



Koopmans’ Theorem (KT)
Given:
• A system of N electrons

• A set of spin-orbitals (SO)
– Occupied SO: energies {εa}

– Virtual SO: energies {εr}

• Ground state: Slater determinant NΨ0〉 = χ1χ2…χa-1χaχa+1…χN〉, 

Then:
• Ionization potential: energy needed to obtain the cation with (N-1) electrons 

– Determinant with identical spin-orbitals: (N-1)Ψa〉 = χ1χ2…χa-1χa+1…χN〉, obtained by eliminating the 
electron in the spin-orbital χa

– IP = –εa

• Electron affinity: energy needed to remove an electron from the anion with (N+1) electrons
– Determinant with identical spin-orbitals: (N+1)Ψr〉 = χrχ1χ2…χN〉, obtained by adding an electron to 

virtual  spin-orbital χr

– EA = –εr



• Two defects:
– Missing orbital relaxation: the orbitals of the 

cation and anion are assumed to be the same as 
for the neutral system

– Missing the correlation effects: involved in the 
Hartree Fock method itself 

Koopmans’ Theorem (KT) 



KT Limitations: orbital relaxation

• One assumes that the spin-orbitals are 
“frozen”: the positive ion (N-1 electrons) or 
negative ion (N+1 electrons) spin-orbitals are 
equal to those of the neutral system (N 
electrons)
– The relaxation of the spin-orbitals that would arise 

if they were optimized in a specific HF calculation 
for the positive or negative ion is neglected. 

– Relaxation should stabilize ions, therefore KT 
overestimates the absolute values of IP and EA



KT limitations: Electron correlation

• KT does not include correlation effects:
– Electron correlation: more important for systems 

with more electrons ⇒ the anion will be stabilized 
more than the neutral system, which in turn is 
stabilized more than the cation

– If correlation energy was included, the EA would 
be smaller and the IP greater (in absolute values) 
than the values obtained by KT 



KT limitations: combined effect

• In KT values, the relaxation and correlation 
errors,
– IP: have different signs and their effects are 

partially compensated
– EA: have the same sign their effects are added
– In general, KT IPs are closer to the experimental 

values than EAs



N

N-1

Koopman Orbital 
relaxation

Correlation

N

N+1

Koopman Orbital 
relaxation

Correlation

KT limitations: combined effect
IP EA

In general, KT IPs are closer to the experimental 
values than EAs
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General Scheme for RHF

Hartree-Fock Equations
Basis Set 

Restricted Spin-Orbitals

Roothaan-Hall 
Equations

Density Matrix Charges

Energy

Population

Analysis

SCF Calculation

Electronic
Density



Restricted spin-orbitals

Open shell

...

Closed shell

...

χi(xi) = ψj(ri) η(ωi)Restricted molecular spin-orbital: η(ωi)
α(ωi)

β(ωi) 

The same spatial orbital ψj allows us to build a pair of spin-orbitals

• Closed shell: All spatial orbitals are doubly occupied
• Open shell: There are spatial orbitals that are only singly occupied (α or β)



HF equation for closed shell 

• Integro-differential HF equation :

• Fock operator:

• J and K operators:

Pairs of electrons

Integral vanishes for different spins

a

b



Introduction of a basis set

• HF equations:
– Cannot be solved analytically
– Only a numerical solution can be obtained ⟹ Tables 

of values of each MO at each point in space
• Introduction of a basis set: LCBF approximation 

(Linear Combination of Basis Functions)
– A set of functions is chosen: {φµ}µ=1…K

– They constitute a K-dimensional representation basis. 
Exact if K → ∞

– They allow us to obtain analytical expressions for MOs
{φµ | µ = 1,2, ...K} i = 1,2, ...Kψi C µi φµ



Introduction of a basis set
• Now the problem is to calculate the values of the coefficients

{Cµi}µ=1…K, i=1…K (indexes run over basis functions and MOs)

• By substituting ψi in the HF equation:

• After multiplying by <φµ| and integrating:

• One can define two matrices:
– Overlap matrix: Sµν = <φµ|φν>
– Fock matrix: Fµν = <φµ|f|φν>

Roothaan equations



Roothaan equations

KiCSCF iii 1== ∑∑
ν

νµν
ν

νµν ε



Properties of S and F

• Properties of S:
– K x K Hermitian matrix
–
– Sµµ = 1

<
<

Sµν < 1 Sµν ≈ 0



Coefficient matrix & Density matrix
• The coefficient matrix gives the MO composition in terms of the AOs 

• For one electron described by ψa(r), the spatial probability density is:
|ψa(r)|2

• For a closed shell molecule described by a Slater determinant, the total 
charge density is:

• After introducing the basis set:

Density 
matrix

i = 1,2, ...Kψi C µi φµ



Density matrix and population analysis

• Mulliken atomic charges: 

– Number of electrons associated to φµ:

– Number of electrons associated to the atom A:

– Net charge associated to the atom A:

(P S)µµ



Fock matrix

⇒

F is a Hermitian matrix of K x K size
F matrix elements in the basis set:

Where:

⇒ F(C) C = S C ε



How can we solve Roothaan eqs?BEGIN

n = 0

Obtaining of
C(n)

F(n)

calculation

E(n)

calculation

Integral 
calculation

Read
{RA} {ZA}

N {φµ}

Solve
F(n) C = S C ε

n = n +1

C(n) = C
ε(n) = ε

Converged?END
NOSI

MOs are calculated in a Self-
Consistent Field (SCF)

Scheme for SCF



Summary

{φµ | µ = 1,2, ...K} i = 1,2, ...Kψi C µi φµ

f (r1) ψi (r1) = εi ψi (r1)

Fµν = < φµ|f| φν >

Sµν = < φµ|φν >

F = F(C)

F(C) C = S C ε

SCF procedure (Self-Consistent Field)

F C = S C ε

Hartree-Fock

Roothaan eqs.

Basis set

SCF





Expected values

• Total energy:

• One-electron properties:
– Defined by an operator as the sum of terms depending on 

the coordinates of a single electron: 

– The average value will be: 



Charge density

• Charge density →  
displayed as contour 
maps

• Charge density: 
vitamin C molecule 

• Colours 
– Negative potential in red
– Positive potential in blue



Other population analysis

• Since tr(A B) = tr(B A):
• Lowdin population 

analysis: a = ½
• Net charge associated 

to atom A:
• P’ density matrix in the 

symmetrically 
orthogonalized basis set

P’ µµ = (S1/2 P S1/2)µµ



Basis set orthogonalization

• The basis set {φµ} is not necessarily orthogonal  ⇒ S matrix
• Transformation X from {φµ} to {φµ’}

• X form:

• Two possibilities:
– Symmetrical orthogonalization: X = S-1/2

– Canonical orthogonalization: X = Us-1/2 ⇐ s = U†SU



Orthogonal basis set

• Transformation of C: 
C’ = X-1 C
C = X C’

• By substituting in the Roothaan eq.: 
F X C’ = S X C’ ε
(X† F X)C’ = (X† S X) C’ ε
F’ =  X† F X
F’ C’ = C’ ε ⇒ C = X C’
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Basis Set 

Unrestricted Spin-Orbitals

Pople-Nesbet Equations

Density Matrix Charges

Energy

Population

Analysis
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Restricted spin-orbitals

open shell

...

closed shell

...

χi(xi) = ψj(ri) η(ωi)Restricted molecular spin-orbital: η(ωi)
α(ωi)

β(ωi) 

The same spatial orbital ψj allows us to build a pair of spin-orbitals
• Closed shell: all spatial orbitals are doubly occupied
• Open shell: there are singly occupied spatial orbitals (α or β)



Is this correct?

• Must the spatial orbital of an electron α always 
be the same of an electron β?

• Let us consider a system of 3 electrons:

• The electron 1s(α) has an exchange interaction 
with 2s(α), but 1s(β) does not

• The electrons 1s(α) and 1s(β) feel different 
potentials

➞



Unrestricted spin-orbitals

...

...

There are two separated sets of spatial orbitals:
• For α spin ⟹ {ψi

α|i=1, 2, …, K} 
• For β spin ⟹ {ψj

β|j=1, 2, …, K} 

Unrestricted molecular spin-orbital:
χi

α(xi) = ψi
α(ri) α

χj
β(xi) = ψj

β (ri) β



Unrestricted HF equations

• If we use unrestricted spin-orbitals, then the 
HF equation becomes:

• Where the Fock operator takes the form:



The Fock operator

• Taking into account the possible interactions:
– Two electrons with the same spin have both Coulomb 

and exchange interactions 
– Two electrons with different spins have only Coulomb 

interactions



Fock equations

• The equations for α and β spin-orbitals are 
coupled due to the Coulomb interaction 
between electrons with different spins

• Integrals needed:
– hii

α, hii
β : Kinetic energy and nuclear attraction

– Jij
αβ = Jji

βα : Coulomb interaction between α and β
– Jij

αα, Jij
ββ : Coulomb interaction between electrons 

of the same spin
– Kij

αα, Kij
ββ : Exchange interaction



Electronic energy



Introduction of a basis set

{φµ | µ = 1,2, ...K}

Fµν
α = < φµ|fα| φν >

Fµν
β = < φµ|fβ| φν >

Sµν = < φµ|φν >
Pople-Nesbet eq.:   Fα Cα = S Cα εα

Fβ Cβ = S Cβ εβ

i = 1,2, ...Kψi
β C µi

β φµ

i = 1,2, ...Kψi
α   C µi

α φµ

fα (r1) ψi
α (r1) = εi

α ψi
α (r1)

fβ (r1) ψi
β (r1) = εi

β ψi
β (r1)



Unrestricted Density Matrices

Charge Densities

Density Matrices



Unrestricted Density Matrices
...

...

...

...



What if Nα = Nβ?

• There are two possible independent solutions:
– The restricted solution

⇒ Pα = Pβ = P/2 
⇒ Fα = Fβ = F

– In some cases an unrestricted solution of lower 
energy can exist
⇒ Pα ≠ Pβ ⇒ Initial trial with Pα ≠ Pβ, but even then the 
restricted solution can be obtained
→ The dissociation problem!!!



H2: The dissociation problem

• Closed shell system, geometry in equilibrium 
⇒The RHF solution is OK

• At infinite distance, 2 atoms with 2 degenerated 
orbitals with 1 electron in each ⇒ UHF method

• There can be more than one solution for the 
intermediate RAB depending on the starting 
orbitals



HA
− HB

+ HB
− HA

+ HB• HA•HA• HB•

When R→∞, s→0:

• Potential energy curves:
MOs H2 RHF in Minimal Basis Set HA– HB

The hydrogen molecule



• curves de energy potential:

When R→∞, s→0:

!!!! E
(H

2)
 −

2
E

(H
)  

   
(a

u)
   

  

R (au)

BM

Exact
(Kolos-Wolniewicz)

 ≠ 2 E(H)

The hydrogen molecule



• Potential energy curves:

True ground state of H2 at R→∞: two H(2S) atoms

The hydrogen molecule

Unrestricted solution:

• If R  ≤ 2.3 au Restricted
Solution

• If R  > 2.3 au
Unrestricted
Solution

• If R→∞
Dissociation Energy: OK!
Wavefunction:      OK!



Why?
Let’s write the unrestricted MOs as a linear combination of the restricted MOs:

By substituting the expression of ψ1 and ψ2:

Limiting values:

• If θ = 0º ⇒ restricted solution: c1 = c2 = [2(1 + s)]-1/2

• If s = 0 and θ = 45º ⇒ c1 = 1 and c2 = 0, then: ψ1
α = φ1 and ψ1

β = φ2 ⇒ 2 separated atoms
• If θ has values between 0º and 45º ⇒ ψ1

α and ψ1
β have intermediate compositions 

• θ varies with the internuclear distance, R

Two normalized coefficients



How does E0 depend on θ?
Electronic energy of an unrestricted determinant |ψ1

α(1)α(1) ψ1
β(2)β(2)> 

For θ = 0º ⇒ restricted solution:

Optimal value of θ:

That has two solutions:

The value of integrals
depends on R



How does E0 depend on θ?

For θ = 0º ⟺ restricted solution:

Classification of the end value:

The sign of the second
derivative depends on R

The sign of the second derivative changes when this is equal to zero:

Saddle Point:
Occurs at R ~ 1.2 Å

• For R < 1.2 Å ⇒ RHF SOLUTION MINIMUM ⇔

• For R > 1.2 Å ⇒ RHF SOLUTION MAXIMUM ⇔



How does E0 depend on θ?

For ⟺ unrestricted solution:

• At R < 1.2 Å ⇒ cos2θ > 1 ⇒ UHF SOLUTION UNDEFINED

• At R > 1.2 Å ⇒ cos2θ < 1 ⇒ ⇒ UHF SOLUTION MINIMUM

• At R = ∞ ⇒ cos2θ = ½ ⇒ θ = 45º ⇒ 2 H atoms

Classification of the end value:



R (Å) 2nd 
derivative Class

Minimum
Energy

Solution

< 1.2 > 0 MINIMUM RHF

1.2 = 0 SADDLE
POINT

> 1.2 < 0 MAXIMUM RHF

> 1.2 > 0 MINIMUM UHF

R Intervals

CONCLUSION
For R > 2,3 au (≈1.2 Å) TWO SOLUTIONS exist:

• Restricted  solution ⇒ MAXIMUM
• Unrestricted solution ⇒ MINIMUM
• Obtaining one or the other 

depends on the starting set of MOs (initial estimate) 



Density Functional Theory (DFT)

Computational Chemistry
Elective Course

Degree in Chemistry
4th Year



Contents

• Basic principles of the density functional 
theory (DFT)

• Kohn-Sham approximation 
• Applications of DFT
• DFT strengths and weaknesses



Wavefunction and electron density

For a system of N electrons
• Wavefunction: 

– depends on 4N variables (3N spatial variables and 
N spin variables)

• Electron density:
– Represents the density of probability to find any 

of the electrons in the system
– Depends on ONLY 3 variables (x,y,z)



Electron density properties
• Non-negative functional with only 3 variables, 

independent of the total number of electrons, N
– Tends towards zero at infinite:    ρ(r⟶∞) = 0
– Integrates to N:     ∫dr ρ(r) = N

• It can be measured experimentally (X-Ray 
diffraction, electron diffraction, …)

• At the position of the nuclei, the electron 
density gradient is discontinuous and a cusp 
appears 

Electron density of the H2 molecule along the molecular axis 



DFT methods

• Solve the state of N-electron systems using 
ρ(r) instead of Ψ(x1,…,xN)
– For a 10-electron system 

• Wavefunction depends on 40 coordinates
• Electron density depends on 3 coordinates

– For a system with 1000 electrons
• Wavefunction depends on 4000 coordinates
• Electron density depends on 3 coordinates

• PROBLEM: The exact ρ(r) is unknown



1st Hohenberg-Kohn theorem

• First HK theorem : The properties of a molecule in its ground 
state are completely determined by the electron density of the 
ground state ρ0(x,y,z). ⇒ any property (E, for ex.) of the ground 
state is a functional of ρ0: E0=F[ρ0(r)]

• Only states the existence of the functional and not how to find 
it ⇒ That is the question!

• It is assumed that approximate functionals give reasonable 
approximations of the properties of the system



2nd Hohenberg-Kohn theorem
Second HK theorem: Any electron density functional will give an energy value 
greater than or equal to the true ground state energy
• Let v(r) be the external potential of the system (nuclei potential) and Ev[ρ] 

the functional of the electronic energy
• Let ρt be an approximation of the electron density of the ground state 

satisfying 
– ∫dr ρt(r) = N ⇒ The electron number must be conserved
– ρt(r) ≥ 0 ∀r ⇒ The electron number cannot be negative 

• Let E0(ρ0) be the true ground state energy
• Then: 

Ev[ρt] ≥ E0(ρ0)
• It is analogous to the variational principle
• Ev[ρ] is an unknown functional… ⇒ if one uses approximate functionals ⇒

IT IS NOT VARIATIONAL



Kohn-Sham (KS) equations

• Are analogous to Hartree Fock but in the context of DFT
• Are the basis of DFT calculations
• What do we need?: 

– A good approximation of the density ρ0

– The exact functional of energy Ev[ρ]
⇒ direct calculation of the energy

– ANY OF THE 2 CONDITIONS CAN BE ACHIEVED

• KS equations: 
– Express the energy as a sum of terms, one of them is the “unknown”, 

assumed to be “small” relative to the other
– Use a trial density to initiate calculations, and they will be improved 

iteratively



KS equations
• In KS equations a non-interacting reference system is used: 

– Fictitious
– The electrons do not interact, but…
– ρr = ρ0 (the system real density)
– The deviation of the real behavior is accumulated in a small term that 

we must build
• The total energy is obtained by:

E0 = <T[ρ0]> + <VNe[ρ0]> + <Vee[ρ0]>
• Where

– T is the electronic kinetic energy
– Vne is the interaction between nuclei and electrons
– Vee is the interaction between electrons
– The three are functionals of ρ0
– All terms are average values



KS energy
• Reference system: non-interacting electrons with the same electronic 

distribution as the real system

• Kinetic electron energy of the reference system:

• Kinetic energy of the real system is the energy of the reference, plus a 
small deviation:

KS orbitals



KS Energy

• Nuclei-electron interaction:

v(ri) ➞ external attractive potential between the ith electron 
and all nuclei

• In general, one can write:

• Average electron-nucleus interactions will be:



KS Energy

• The energy of interaction between electrons in the real
system is obtained by the sum of the interaction in the 
reference system and a term that accounts for the difference:

• Differences between the real and reference systems are due 
to correlation and exchange



KS energy and XC potential

• The Kohn-Sham energy can be written:

• Correlation-exchange (XC) energy:
– The deviation of the kinetic energy with respect to the 

reference: correlation kinetic energy
– The deviation of the e-e repulsion from the classical 

system: correlation and exchange potential 

• KS energy:



• KS energy:

• XC energy: 
– Problematic term 
– It is assumed to be small
– Requires the design of adequate functionals: principal problem in DFT

KS energy and XC potential



Kohn-Sham equations

• By substituting in E0, taking the first derivative with respect to the 
ψi

KS (which is made equal to zero) and requiring them to be 
orthonormal➞ KS equations:

– εi
KS ➞ KS orbital energies

– vXC(1) ➞ correlation-exchange potential 
– N/2 equations (closed shell)
– hKS (1) ➞ Kohn-Sham operator 

KS equations are equivalent to HF



HF and KS comparison
• KS:

– Orbitals ➞ artefact for computation 
– Exact KS energy, if known

• ρ0(r)
• EXC[ρ0]

– Gives an approximate solution to an exact equation
– There are no means to systematically improve the results ➞ IT IS NOT  

variational
• HF: 

– Approximation that does not properly include the correlation
– Gives an exact solution to an approximate equation
– Allows a systematic improvement of the results

• Better basis sets
• Larger perturbation order in MP or CC
• More extensive CI 



Solving KS equations

1. Expand the KS orbitals in a basis set of dimension K 
(i.e. 6-31G*):

2. Substitute the KS MO into the equations
3. Multiply by  <φν| ⇒ equations in matrix form :

h C = S C ε
– Requires calculation of the matrix hµν = <φµ|hKS|φν>
– Trial density ➞ sum of atom densities



Iterative procedure
1. Specify geometry, charge and multiplicity
2. Specify basis set
3. Trial initial ρ➞ superposition of ρ of atoms
4. Calculate vXC(r)=δEXC/δρ, by means of the chosen EXC functional 
5. Calculate the hKS operator 
6. Calculate the matrix hµν = <φµ|hKS|φν>
7. Orthogonalize the h matrix and diagonalize it, deorthogonalize the 

coefficient matrix
8. Calculate an improved ρ with the KS OM of 7
9. Come back to 4 with the new ρ. Verify the convergence in 7
10. After convergence calculate the KS E0
11. With the derivatives of E0 with respect to RI, one can optimize the 

geometry



Which EXC functional do we choose?

By searching the “divine functional”. Successive 
approximations…
• LDA: Local Density Approximation
• LSDA: Local Spin Density Approximation
• GGA: Generalized Gradient Approximation
• MGGA: Meta-GGA
• HGGA: hybrid GGA
• HMGGA: hybrid MGGA
• Completely non-local theory 



Jacob’s ladder
“Divine” functional

Scientists inventing
functionals

Kohn dreaming of
the perfect functional



L(S)DA: Local (Spin) Density
Approximation

• Uniform electron gas: e-s move over a background with a uniformally
positive charge distribution, in such a way that the ensemble is neutral

– εXC(ρ(r)) ➞ exchange-correlation energy by particle of an electron uniform gas 
of density ρ(r)

– The energy per particle is weighed with ρ(r)
– εXC(ρ(r)) = εX(ρ(r)) + εC(ρ(r))
– εX = -(3/4)(3ρ(r)/π)1/3 (Bloch, Dirac, end of the 20’s)
– εC is obtained from simulations of quantum Monte-Carlo of the homogeneous 

e- gas

• Bond lengths of ~2%



GGA: Generalized Gradient
Approximation

• Information on the density gradient is used to 
obtain XC ∇ρ(r) ⇒ inhomogeneity of the true ρ(r)

• Becke hybrid functional
EXC

hyb = α EX
KS + (1 – α) EXC

GGA

– EX
KS ➞ Calculated with the KS wavefunction and MOs

– EXC
GGA ➞ An appropriate GGA functional 

– α an adjustable parameter
• Reduce the LDA errors by a factor of 3 to 5



DFT Applications

• Molecular structures : bond lengths (Å)

• Vibrational frequencies (cm-1): set of 122 molecules

Bond LDA BLYP BP86 Exp.

H–H R(H–H) 0,765 0,748 0,752 0,741

CH3–CH3 R(C–C) 1,510 1,542 1,535 1,526

R(C–H) 1,101 1,100 1,102 1,088

HCCH R(C–C) 1,203 1,209 1,210 1,203

R(C–H) 1,073 1,068 1,072 1,061

method RMS Error Molec >10% Desv > 100 cm-1

BP86 41 6 142(H2), 115(HF), 106(F2)

B3LYP 34 6 132(HF), 125(F2), 121(H2) 



DFT Applications

• Atomization Energies:
➞ LDA < GGA < hybrid functional
– Deviation [kcal/mol] between calculated and 

experimental
molecule LDA BLYP molecule LDA BLYP

CH 7 0 F2 47 18

CH3 31 -2 O2 57 19

CH4 44 -3 N2 32 6

C2H2 50 -6 CO 37 1

C2H4 86 -6 CO2 82 11



DFT: Strengths and Weaknesses
• Strengths :

– Includes correlation from the beginning
– Cost is similar to HF and achieves precision comparable to methods that include correlation (e. 

g. MP2)
– Saturates the basis set faster than ab initio
– Works with electron density, experimentally accessible

• Weaknesses:
– Exact EXC[ρ0] is unknown
– There are no ways to systematically improve the functional
– Progress is based on experience and intuition, verified with the experiments ⇒ philosophy 

somewhat semiempirical
– Some functionals include semiempirical parameters
– It is not a variational method, except with the exact functional, which is unknown
– One cannot know a priori if a given functional is appropriate to a given problem
– Problems with van der Waals molecules or those with weak interactions
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Introduction
In a PES (Potential Energy Surface), stable species appear as valleys. Therefore, in a 
chemical reaction, the transformation of one stable species into another will correspond to 
a path between one valley and another. The speed of the transformation can be obtained 
from the minimum energy required to pass from reactant to product. 

The simplest PES is a monodimensional one :
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Potential Energy 
Surfaces

Nucleus, electrons.
Schrodinger equation

Cross sections

Macroscopic (“bulk”)
Coefficients

Spectroscopy, 
Reaction dynamics

Molecular beams

Chemical kinetics

Thermophysical properties

Theories of molecular 
collision

Statistical mechanics

Connection between PES and theory, experiment

Introduction



Ha + HbHc HaHb + Hc

3*3 – 6 = 3 variables

Rab increases

Rbc decreases

θabc takes the optimum value

3-D PES Rab ; Rbc ; V

Introduction

What happens if we have to look at more coordinates?

Let us look at a simple example, the reaction between H and the H2 molecule. The first 
problem is choosing the appropriate coordinates to study the corresponding reaction PES



HaHb + HcHa + HbHc

 

We calculate the potential energy of the system for different pairs of values over the
coordinates that we have selected to follow the reaction (Rab; Rbc), optimizing the rest. The
result, which can be represented in 3D or contour, is known as the potential energy surface
(PES)



HaHb + HcHa + HbHc

 

In the representation by contour levels, the value of the curve corresponds to the potential
energy of the system, while the axes are the distinguished coordinates



 

HaHb + HcHa + HbHc

Rab≈0.74 Å
Rbc≈2.6 Å
Products

Rbc≈0.74 Å
Rab≈2.6 Å
Reactants

Stable structures on the PES (reactants,
products, intermediates) are minima in both
directions, and correspond to valleys on the map



 

HaHb + HcHa + HbHc

Rab →∞
Rbc→∞

Rab ≈0.93 Å 
Rbc≈0.93 Å

There are other stationary structures that are
minima in all directions except for those which
are maxima. These structures have the minimum
energy required to move from one minimum to
another, and are known as transition structures.



 

Ha--Hb--Hc

Ha--Hb--Hc Symmetrical Stretching

Ha--Hb--Hc
Asymmetrical Stretching

On the PES we can follow two directions. The TS
is a minimum along one of these directions and a
maximum along the other.



Ha--Hb--Hc

Symmetrical Stretching

Ha--Hb--Hc

Asymmetrical Stretching
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The ONLY direction in which the TS is a maximum is known as the transition vector. It is a
normal mode of vibration that allows the TS to transform into reagents or products. This
normal mode is characterized by having one imaginary frequency.



 

HaHb + HcHa + HbHc

Minimum Energy Path
When reactants are transformed into products,
they can follow any possible trajectory on the
PES, but most will pass near the TS. The path of
minimum potential energy going from the TS to
the reactants and products tells us how the
reaction occurs.



 

HaHb + HcHa + HbHc

Minimum energy path

1) Approach of Ha (Hb-Hc ≈ constant)

3) Hc leaves (Ha-Hb≈ cte)

2) Ha-Hb becomes shorter and Hb-Hc becomes
longer
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iv) The motion along the reaction coordinate is described classically.

B + C ⇆ X‡ → Products ‡

Reactivos

Productos

Punto de Silla

δ

∆ε‡

i) We assume that all reactants reaching the dividing surface will proceed to the product

ii) We assume that the reactants keep an equilibrium distribution corresponding to the
temperature, T

iii) We will assume that the ensemble of structures along the dividing surface (the
transition state) also keeps an equilibrium distribution corresponding to
temperature, T

Transition State Theory

Saddle Point

Reactants

Products
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B + C ⇆ X‡ → Products
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‡

∆ε‡

Using TST it is possible to find an expression for the rate constant according to the microscopic
properties of reactants and the transition state. In particular, the rate constant can be
obtained from the partition functions as well as the energy difference between their
fundamental states.

Alternatively, one can find the rate constant from the difference in free energy between the TS
and the reactants. This free energy difference can refer to different standard States (i.e. 1 bar
or 1 M) and depends on the number of molecular species we present in the reactants (n):
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Summary HF: 
Roothaan equations (closed shell)

Potential energy

Density matrix elements

Fock matrix elements

Bielectronic integrals

Roothaan equations

(𝑐𝑐𝜇𝜇𝜇𝜇: Mol. Orb. coefficients)

(𝜀𝜀: Mol. Orb. eigenvalues)

(S: overlap matrix C: matrix of Mol. Orb. coefficients)
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Summary HF: 
SCF algorithm and cost

Step Cost

1) Computation of mono- and bielectronic integrals O(N4)

2) Construction of core Hamiltonian Hc

3) Estimation of an initial density matrix

4) Construction of Fock matrix F

5) Orthogonalization using S1/2  F’C’ = ε C’ O(N3)

6) Diagonalization of the Fock matrix F’
C’ coefficients are obtained

O(N3)

7) Inverse transformation C’  C

8) Construction of the new density matrix
Back to 4) unless convergence

O(N3)



Introduction to semiempirical
methods

• They aim to reduce the computational cost and introduce 
electronic correlation

• Equations are simplified to decrease the computation 
time (the cost of integrals decreases from O(N4) to O(N2))

• Some parameters are added to correct the simplification
• Those parameters are obtained by fitting to experimental 

data (empiric parameters) 
– Electronic correlation

• The name (semiempirical) comes from the combination 
of quantum theory and the use of experimental 
information

• More stable than classical mechanics because they are 
based on quantum chemistry



General approximations in 
semiempirical methods

• Only valence electrons
– Core electrons are treated in an averaged manner 

by decreasing the nuclear charge or adding special 
core functions

• Minimal basis set, normally Slater functions
• Certain bielectronic integrals are deleted
• Sometimes, monoelectronic integrals are also 

deleted



Classification of 
semiempirical methods

• Pariser-Parr-Pople (PPP) – 1950s
• Extended Hückel – 1960s
• Zero differential overlap (ZDO)

– Neglect of diatomic differential overlap (NDDO) – 1960s
• Modified neglect of differential overlap (MNDO) – 1977 
• Austin Model 1 (AM1) – 1985 
• Parameter Model 3 (PM3) – 1989 
• Parameter Model 6 (PM6) – 2007 
• Parameter Model 7 (PM7) – 2013 

– Intermediate neglect of differential overlap (INDO), 
MINDO – 1960s

– Complete neglect of differential overlap (CNDO) – 1960s



𝐻𝐻 𝐶𝐶𝑖𝑖 = 𝑆𝑆 𝐶𝐶𝑖𝑖 𝐸𝐸𝑖𝑖
• 𝐻𝐻 – Hamiltonian matrix
• 𝐶𝐶𝑖𝑖 – Mol. Orbs. coefficients
• 𝐸𝐸𝑖𝑖 – Orbital energies
• 𝐻𝐻𝑖𝑖𝑖𝑖 – Ionization potentials of the valence shell
• 𝐻𝐻𝑖𝑖𝑖𝑖 = 𝐾𝐾 𝑆𝑆𝑖𝑖𝑖𝑖 (𝐻𝐻𝐻𝐻𝐻𝐻 + 𝐻𝐻𝐻𝐻𝐻𝐻) / 2, where 𝐾𝐾 =

1,75

Extended Hückel



ZDO

• Common approximation in the most 
popular semiempirical methods

• Imposes µA(r)νB(r)=0 for µ, ν in 
different atoms (A ≠ B)

• Thus, bielectronic integrals <µν|λσ>
with 3 and 4 centers (the most 
numerous ones) are neglected

• To compensate this elimination, 
parameters are added into (some of) 
the remaining integrals

Atomic orbital 
µA is centered
on atom A, 
etc.



NDDO, INDO, CNDO

• Semiempirical method based on ZDO
• For bielectronic integrals (ZDO):

– <µAνC|λΒσD>= δABδCD<µAνC|λBσD>

• For monoelectronic integrals:
– Neglect those involving 3 centers
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NDDO (MNDO, AM1, PM3), INDO, CNDO

• Atomic parameters are used to compensate 
for the approximations

• The MNDO, AM1 y PM3 variants only differ in 
the treatment of the core and how 
parameters are assigned (see Exercise 2 in the 
practical session)
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NDDO, INDO, CNDO

• Semiempirical method based on ZDO
• For bielectronic integrals (ZDO):

– ZDO: <µAνC|λBσD>= δABδCD<µAνC|λBσD>
– Also neglect 2-center integrals in which the AO on 

the atom are different; only keep
• <µAνB|µAνB> – 2-center integrals
• <µAνA|λAσA> – 1-center integrals

• For monoelectronic integrals:
– Same as for NDDO



NDDO, INDO (MINDO), CNDO

• Empirical parameters and fitted diatomic 
parameters are added

• Iµ: Ionization potential of an electron in atomic 
orbital µ

• βAB: Fitted diatomic parameter

• Largely superseded by NDDO models based on 
atomic parameters (MNDO, AM1, PM3)
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NDDO, INDO, CNDO

• Semiempirical methods based on ZDO
• Most drastic approximations in the series 

NDDO, INDO, CNDO
• For bielectronic integrals (ZDO):

– Keep only:
• <(µAνB|µAνB> – 2-center integrals
• <µAνA|µAνA> – 1-center integrals



MNDO, AM1, PM3
• MNDO

– Superseded by AM1, PM3
– Problems:

• Exaggerated steric effects
• Unreliable hydrogen bonds
• Hypervalent molecules too unstable
• TSs are too high for bond formation/breaking

• AM1
– M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Am. Chem. Soc. 107, 3902-3909 (1985)
– Reparametrization of the core functions (with respect to MNDO)
– Improvements to MNDO

• Hydrogen bond energies more or less correct (bad geometries)
• Improved activation energies
• Better treatment of hypervalent molecules (still significant errors)

– Problems
• Alkyl groups too stable (~2 kcal/mol por CH2)
• Nitro groups too unstable
• Peroxide bonds too short

• PM3
– J. J. P. Stewart, J. Comput. Chem. 10, 209-220 (1989)
– Automatic reoptimization of the parameters (before by hand)
– Only a few atoms available
– General improvement with respect to MNDO y AM1 (average errors of bond lengths and y ∆Hf decrease)
– Problems

• Hydrogen bonds ~0.1 Å too short
• Almost all sp3 nitrogen atoms are pyramidal
• Charges in N atoms sometimes not very reliable
• Si – halogen bonds very short
• Wrong structures for NH2NH2 y ClF3



MNDO, AM1, PM3 
(performance) 

Average error for formation enthalpies
∆Hf (kcal/mol)



MNDO, AM1, PM3 
(general problems)

• Barriers of rotation around partial double 
bonds too low

• Parameters for metals based on few data
• Bad description of dispersion forces and weak 

interactions



MNDO/d

• Adds d type functions to MNDO
• Relevant for metals
• Improves the description of polarization in 2nd

row atoms
• General improvement with respect to MNDO, 

AM1 y PM3



MNDO, AM1, PM3, MNDO/d 
(performance) 

Average error in the enthalpies of formation 
∆Hf (kcal/mol)



PM6

• NDDO method with improved parameters and 
improved core-core interaction terms 
(diatomic parameters are used as in MINDO)

• 70 parametrized elements
• Corrects problems with AM1 and PM3
• Add d functions for metals, like in MNDO/d

J. J. P. Stewart, J. Mol. Model13, 1173-1123 (2007)



AM1, PM3, PM6
(performance) 

Average error in
∆Hf (kcal/mol)

J. J. P. Stewart, J. Mol. Model. 13, 1173-1123 (2007)

Average error in
bond lengths (Å)



Improvements in PM6 
(non-covalent interactions)

• PM6-DH, PM6-DH2, PM6-D3H4X
• Adds terms for an accurate description of 

dispersion (C6/R6)
• Similar to the dispersion corrections in DFT
• Also adds terms for an accurate description of 

hydrogen bonds

PM6-DH: J. Rezac, J. Fanfrlik, D. Salahub, and P. Hobza, J. Chem. Theory Comput. 5, 1749-1760 (2009)
PM6-DH2: M. Korth, M. Pitonak, J. Rezac, and P. Hobza, J. Chem. Theory Comput.6, 344 (2010)
PM6-D3H4X: J. Rezac and P. Hobza, J. Chem. Theory Comput. 8, 141 (2012)



PM7…

• J. J. P. Stewart, J. Mol. Model. 19, 1-32 (2013)
• Subsequent improvements to PM6
• Adds explicit terms to treat non-covalent 

interactions, based on the –DH2, –DH+, –D3H4 
corrections to PM6 

• Aimed to expand use to systems other than those 
used in the calibration

• Reduces bond length errors (5%) and enthalpy of 
formation errors (10%) (in organic solids 60%) 
with respect to PM6



PM6, PM6-D, PM7 
(performance) 

J. Rezac, P. Hobza, Chem. Phys. Lett. 568, 161 (2013)

RMS error (%) in 
intermolecular 

interaction energies
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Contents

• Electron correlation
• Electron correlation methods

– Configuration Interaction (CI)
– Perturbation theory (Møller-Plesset; MPn)
– Coupled-cluster (CC)

• Formal properties of methods:
– Extensivity
– Size-consistency
– N-dependence



Chemical precision
• Chemical Precision: Modelling of experiments 

with a precision equivalent to experimental 
values, ∼ 1 kcal·mol-1

• The energy of a medium sized molecule ~105-106

kcal·mol -1 → Accuracy of 1 in ~1.000.000 
(reached in ~1995, medium sized molecules)



Problems… computational chemistry

• Chemistry ⇒ small energy differences
– Spectroscopy: 2 energy levels 
– Thermochemistry: reaction products and reactants 
– Stereochemistry-energetics: different molecular 

conformations 
– Ionization Potentials or Electron Affinities: between an 

atom or molecule and an ion 
– Chemical kinetics: reactants and transition states 

• ~1% of total energy ⇒ small errors in the calculation 
of total energies ⇒ large errors in the differences



Some orders of magnitude

• DEclass; DEex ; DEcor as a function 
(more or less) of the electron 
number along with the 
experimental bond energy 

• ALL ARE OF THE SAME 
ORDER!!!

• No component of the electron-
electron energy can be 
neglected



How costly is a good calculation?

Contribution Cost 
 

Methane 
Value 

 (N=10) 

Benzene 
Value 

 (N=42) 
EHF ~ O(N6) 1 × 106 5,5 × 109 

Ecor  Exact ~ O([2N]!/N!) 7 × 1011 2,4 × 1075 

Ecor  Approx ~ O(N6) 1 × 106 5,5 × 109 

Ecor  Good ~ O(N8) 1 × 108 9,8 × 1012 
 



What is electron correlation?

• N-electron system (atom or molecule)
– In HF theory the wavefunction is approximated as 

a Slater Determinant:

– SOs are obtained by diagonalizing the Fock
matrix



What is electron correlation?
• Fock operator: repulsion among electrons is

included in an averaged form

• The real operator includes the instantaneous e--
e- repulsion term: (r12)-1

• Electron Correlation: electrons move in an
attempt to minimize particle-particle interactions



• HF energy: E0
• Exact energy for a given basis set: E0

• Correlation energy for a given basis set: 
Ecorr= E0- E0

• If the basis set were complete:
Ecorr → Ecorr exact

What is electron correlation?



What is electron correlation?

EHF finite basis set

Eexact finite basis set

EHF infinite basis set

Eexact infinite basis set

Experimental energy

EHF limit

ECORR (finite basis set)
ECORR (infinite basis set)

Born-Opp. Approx.
No relativistic effects

Energy



How is electron correlation introduced? 

• HF gives K orbitals, where N/2 
are occupied (for closed shell)

• The other orbitals can be used
to build excited configurations

• Degree:
– S: single
– D: double
– T: triple
– Q: quadruple
– …

• The wavefunction can be 
completed with them

Ground Conf.
|Ψ0>

...

Single Conf. 
|Ψa

r>

...

Double Conf. 
|Ψab

rs>

...

...

...

b

a

r

s

...
...



Electron correlation methods
• 3 fundamental types:

– CI: Configuration Interaction
• Linear combination of configurations
• Linear variations
• Different methods according to the excited conf.: DCI, SDCI, 

SDTQCI
• All possible configurations: FCI, exact in the basis set

– MPn: perturbational methods
• Series development of the HF function using excited conf.
• Different orders of perturbation: MP2, MP4…

– CC: Coupled Cluster methods 
• Exponential development of the HF function
• Different excitation levels: CCD, CCSD, CCSDT, CCSD(T), CCSDTQ



Configuration interaction

• Conceptually simple, computationally 
complex

• Diagonalize the H matrix in the basis of N-
electron functions (Slater determinants)

• Wave function:

Coefficients can be determined using the Variational Principle!



ΨO ΨS ΨD ΨT ΨQ

One occupied S.O. of the HF determinant is replaced by one virtual (unoccupied) S.O.



But, how many determinants?
• N electrons
• K basis functions → 2K spin-orbitals
• Determinant: Take N from 2K spin-orbitals, 

regardless of the order:

• For N=40, K=100 →
2050157995198589154962348028592667411382810 ≈ 2 x 1042

• We need to use truncated CI →
the most important contributions are given by configurations with less 

excitations: double CI (DCI), single and double CI (SDCI) …. Because we 
need to consider the configurations with bigger interactions with ΨO

Full Configuration Interactions



HA
− HB

+ HB
− HA

+ HB• HA•HA• HB•

H2 RHF MOs in MBS

HA– HB

DCI: Hydrogen molecule

Ionic Conf. Covalent Conf.

Normalization constants



HA
− HB

+ HB
− HA

+ HB• HA•HA• HB•

H2 RHF MOs in MBS

HA– HB

DCI: Hydrogen molecule

Ionic Conf. Covalent Conf. 



H2 DCI: The role of D

HA
− HB

+ HB
− HA

+ HB• HA•HA• HB•

DCI:

Re greater than HF
De smaller than HF

Decreases the weight of ionic conf. 
Increases the weight of the covalent conf.



He− H+ H− He+

H• He•He• H•

HHe+ RHF MOs in MBS

SDCI: The S configurations

As ionic conf. 
increases, the
other decreases

S: Repolarize
the wavefunction



H-He+: Properties

Method Re/Å µ/D ν/cm-1 E/a.u.

HF 0.930 2.094 2524.9 -2.85427

DCI 0.913 1.917 2737.7 -2.86224

SDCI 0.914 1.910 2739.5 -2.86269

HF, DCI and SDCI with STO-3G using G09 



Configuration interactions

• Linear variation method
• H is built on the basis of determinants and 

then diagonalized
• All determinants → FCI:

– Lowest E → Ground State
– Higher E → Excited States
– Exact solution in the basis set
– Upper limit to the system energy



Rayleigh-Schrödinger perturbation theory

• Partition of the Hamiltonian:

– H is not exactly solvable
– H0 can be solved exactly :

• {Ei
(0),Ψi

(0)} are the zero order solutions
• We expect {Φi,Ei} to be close to {Ψi

(0),Ei
(0)}

• Enhancement procedure of {Ψi
(0),Ei

(0)}, 
approaching {Φi,Ei}

• H0 is the Fock operator and Ei
(0) the sum of 

orbital energies



Series development

• Taking
• We develop {Φi,Ei} in the Taylor series with

λ

• Target: to write {Φi,Ei} as a function of 
Ei 

(0), |i> and <i|V|j>



Further development
• By substituting the developments in the exact

Schrödinger equation:

• Assuming intermediate normalization and that 
|i> is normalized: 



Even further development

• By equating terms with equal n power of λ



Initial equations: energy of order n

The energy of order n
is obtained from the
n-1 order function

By multiplying by <i|
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Initial equations: energy of order n



Wavefunction: superposition principle

• The wavefunction at any order is developed as a linear 
combination of the zero order wavefunctions:

• Each component of the wavefunction can be obtained from
the scalar product of the unitary vector in a given direction
times the function:



First order wavefunction



Second order energy

• From the obtained result:



Third order energy

DEPENDS on N2!!



Summarizing
• The energy of order n is obtained from the 

wavefunction of  n-1 order
• In E(3) (and E(4)), a term depending on N2

appears
• At higher orders, terms of N3, N4, etc. 

appear



General formulation of coupled cluster
(CC)

• Approaching the exact function:
– n, the maximum order of excitation to be considered, is chosen

• CCSD: Double
• CCSDT: Triple

– For determinants of order > n: 
coefficients ≈ product of coefficients of determinants with order ≤ n

• For example, in CCSD 
– Includes only mono and diexcitations
– CT, CQ, … are approximated as a product of CS and CD among 

them



The trick… 
the exponential ansatz

Ω0 Wave Operator

• The exact wavefunction is obtained from an operator
acting on the HF solution

• The operator is an exponential of operators creating
mono-, di-, and tri-… excitations



The trick… 
the exponential ansatz

Ω0 Wave Operator

• Developing the exponential as a Taylor expansion



The trick…  
the exponential ansatz

Ω0 Wave Operator

• In order to obtain the CCSD solution we must include
mono- and diexcitations



CC methods
• Configurations of different order appear:

– S: T1 (Cluster)
– D: T2 (linked Cluster) and T1

2 (unlinked Cluster)
– T: T1

3 and T1T2 (unlinked Clusters)
– Q: T1

4, T1
2T2 and T2

2 (unlinked Clusters)
– Etc. until ∞

• In general, each excited configuration can be obtained
as a sum of several elementary contributions:



Formal properties
• If the limit is attained in CI, CC or MP-n: 
⇒ The solution is exact in the basis set (FCI)

• What if you cannot reach the limit? (the usual 
situation)
– CI: Upper limit to E in truncated CI (variational). 
– CC and MP-n: non-variational, they can give E<Eexac



Formal properties
How do the methods behave for N electrons as N grows?

• N-Dependency: The calculated E for N identical non-interacting 
systems must be equal to N times the E of one of the systems

• Size-Consistency: The calculated E for N different non-interacting 
systems must be equal to the sum of the fragment Es: Method must 
dissociate correctly

• Size-Extensivity: The calculated E for systems of different size must 
give results depending on the first power of the number of electrons N



Formal properties

• Truncated CI: IS NOT size-consistent, nor 
size-extensive, nor has the correct N-
dependence

• MP: IS in each perturbation order

• CC: IS in each truncation level



Comparison of methods for acetone

Method/basis set Input Energy /au time/min

HF/6–31G* opt AM1 geom, Hessian -191.96224 7

HF/6–31G* opt + freq AM1 geom, Hessian -191.96224 14

MP2/6–31G* single point (sp) HF/6–31G* geom -192.5216 1

MP2/6–311G** sp HF/6–31G* geom -192.64662 7

MP2/6–31G* opt AM1 geom, Hessian -192.5239 11

MP2/6–31G* opt + freq AM1 geom, Hessian -192.5239 91

MP4SDTQ/6–31G* sp MP2/6–31G* geom -192.57982 33

MP4SDTQ/6–311G** sp MP2/6–31G* geom -192.71075 245

QCISD(T)/6–31G* sp MP2/6–31G* geom -192.57883 93

QCISD(T)/6–311G** sp MP2/6–31G* geom -192.70884 490

CCSD(T)/6–31G* sp MP2/6–31G* geom -192.57808 132

CCSD(T)/6–311G** sp MP2/6–31G* geom -192.70798 725

PentiumPro 200 MHz G94W
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1. Introduction
Chemistry can be considered as an exercise on potencial energy surfaces (PES):

• A vibrational spectrum is obtained from the molecular motion in a 
potential energy well.

• A reaction or a conformational change is defined as the molecular transit 
from one well on the PES to another.

• An electronic transition is considered as the transit from one PES to 
another.

A PES is a set of molecular potential energy values corresponding to every possible
configuration of the nuclei forming it.



1. Introduction

There are different  methods to obtain the PES for a system. We can easily classify 
them by:

Ab Initio or Density Functional Theory
• These methods explicitly consider all electrons in the system, and therefore can be 
applied to any kind of molecule

• The only limitation is the computational cost. They are usually applied to systems 
with less than 100 atoms (although this number changes as new computers, 
methods and algorithms are developed).

• For the same reason, it is difficult  to carry out rigorous treatment of the 
environments (solvent, solid surfaces, protein) in which the process under study 
takes place

• These methods can be used for any structure on a given PES (minima, saddle 
points…) as well as for excited states



1. Introduction

Semiempirical methods

• In semiempirical methods, some parameters are used in order to compensate the 
fact that certain Hamiltonian terms are not explicitly calculated

• They can be applied to any system depending on the chosen parametrization, as 
well as to excited states

• Its use is restricted to systems containing  102-103 atoms

• These parameters can be deduced from either experimental properties or ab initio 
calculations on a model system



1. Introduction

Molecular mechanics (MM) methods

• In molecular mechanics methods, electrons are not treated explicitly 

•They can be applied to any system depending on the function and the chosen 
parametrization, although it is difficult to deal with processes containing electronic 
reorganization

•It can be used with huge systems (more than 104 atoms), allowing us to include 
environmental effects in the study of chemical processes

• These parameters can be obtained from experimental properties or ab initio 
calculations on model systems

• Potential energy is obtained from a function that only contains nuclear coordinates 
and parameters



1. Introduction

Molecules are considered as a group of atoms in space joined by bonds and
governed by mechano-classical potential energy functions

The general form of the potential energy in MM
methods is:

V = Intramolecular + Intermolecular 

V =  Bond + Angle + Dihedral + Improper Dihedral  + Crossed terms +  
van der Waals + Electrostatic

Normally intramolecular potential energy is written as a series of terms associated
to variables defining the molecular geometry (distances, angles and dihedral
angles) while intermolecular contribution is often written as a sum of electrostatic
and van der Waals terms



1. Introduction

An example of an energy function which is widespread in many force fields would
be:
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1. Introduction

The justification of molecular mechanics methods resides in the observation that
bond properties are often transferable from one molecule to another:

• Spectroscopy studies show that bond lengths and force constants are 
nearly the same for each type of bond, no matter the molecule

• Thermodynamic properties, such as the enthalpy of formation, can be 
calculated from bond energies. These energies can also be considered as 
approximately constant.

We should then be able to obtain molecular geometries and energies from the
bonds in the molecule, or the “type” of atoms involved in the bonds, where “type of
atoms” refers to any variant of atom implied in bond formation

Example: a C atom can present different modes of bonding: simple, aromatic,
double or triple. What the C is bonded to (e.g. whether the C is terminal or not) can
also determine the definition of a new type of atom.



1. Introduction

The definition of a force field includes:

• The energy terms appearing in the energy function (which type of 
functionals are chosen for each contribution)

• The set of values chosen for the evaluation of the different parameters 
appearing in the energy terms, which depend on the type of atoms

• The types of atoms included (the larger the types of atoms included, the 
more precision the force field will have, but its development will be more 
difficult)

The parameters’ transferability is an important characteristic in a force field.
Therefore, it should be possible to use the same parameters to treat propane,
butane or pentane molecules, for example. It would only make sense to develop a
new group of parameters in very small systems in which high precision is required.



2. Energy terms

Bond Stretching
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In principle, the potential energy of a system can always be expressed as Taylor’s
expansion. Therefore, for a diatomic molecule in which the potential energy
depends only on the distance, we could write (taking the energy minimum (r0) as
the origin of expansion):

The first term can be taken as zero by convention, while the second term is zero
since it is evaluated at the minimum position. For small displacements, we can
approximate the energy by means of a quadratic function of the distance (this
conclusion will be valid for small displacements in any other variable: distances,
angles…)
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2. Energy terms 

Only when considering small displacements with respect to the equilibrium position
is the quadratic functional valid. Since the force constants associated to the bond
tension are usually large (typically 103 kJ·mol-1·Å-2), the variations in distance are
moderate (except under drastic temperature or energy conditions), then this
approximation does usually give good results.

Some typical values for simple, double and triple carbon bonds, taken from de
MM2 force field are:

enlace k (kJ·mol-1·Å-2) r0 (Å)

Csp3-Csp3 1330 1.523

Csp3-Csp2 1330 1.497

Csp2-Csp2 2890 1.337



2. Energy terms

However, the quadratic function wrongly predicts increasing energies as the bond
is stretched, being unable to reproduce the dissociation effect.
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On the other hand, this function predicts a smaller increase in energy for bond
distances that are less than the equilibrium. While the experimental curve tends
to infinity when r→0, the quadratic function does not. This function allows
structures with bond distances shorter than in real molecules.

quadratic



2. Energy terms
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2. Energy terms

Valence Angle Bending
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Small deformations in the bond angle between atoms ijk can be described by a
polynomial expansion as:

Where θijk is the angle between bonds ij and jk. The force constants depend on the
three atoms which are implied in the bonds

Many force fields use a quadratic expansion (OPLS; CHARMM, AMBER,
GROMOS), while others such as MM2 or MM3 use up to a 6th order term for
certain combinations of atoms.



2. Energy terms

The following table provides some examples of reference values and force
constants for important bond angles in the MM2 force field

Angle θ0 (grades) K (kJ·mol-1·grade-2)

Csp3-Csp3-Csp3 109.47 0.0414

Csp3-Csp2=Csp2 121.4 0.0506

Csp3-Csp2=O 122.5 0.0423

Csp3-Csp3-H 109.47 0.0331



2. Energy terms

Torsion

Let’s consider four atoms joined in a secuence ijkl. The dihedral or torsion angle
associated to this secuence is defined as the angle between bonds ij and kl when
they are projected over a plane which divides the bond jk perpendicularly.

i

j
k

l The standard is to take the angle as positive if the
bond in front of the plane has to be rotated
clockwise, and negative if it is rotated anticlockwiseω<0

The torsion angle is periodic. The range of values can be defined between
0 ≤ ω≤ 2π or between - π ≤ ω≤ + π



2. Energy terms
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The observed displacements in the torsion angle are much larger than those found
for bond distances or angles, so a polynomial expansion around the equilibrium
value is not valid. Furthermore, we need a periodic function. Normally the torsion
term is modelled by a Fourier’s expansion:

Vn is the force constant associated with rotation, and defines the energetic barrier
for it. n gives the peroidicity, while the phase angle δ allows us to displace the
minimum energy position.
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2. Energy terms
These terms can be combined to reproduce more complex behaviors:
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2. Energy terms
Crossed terms
The presence of crossed terms in a force field shows the connection between the
different internal coordinates. For example, as a bond angle gets smaller, we
observe a lengthening of the bonds in order to reduce the repulsion between the
atoms involved:

3

2

1

The stretching-bending coupling can be treated with the same kind of expression
(as used in MM2 and MM3 force fields):

In general, these terms only appear in force fields which are designed to
accurately reproduce molecular properties, and those that are normally restricted
to small or medium-sized molecules.
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2. Energy Terms

The streching-stretching coupling between C=O y C-N bonds in amides can be
very important. This term can be modelled as:
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2. Energy terms
Intermolecular interactions
In molecular mechanics, atoms which do not belong to the same molecule, or
those that are separated by more than three bonds (1-5 interaction), do interact by
means of intermolecular terms (van der Waals + electrostatics)

1
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The total or partial interaction between atoms 1-4 is also allowed in certain force
fields (usually reduced to a set %). In this way, the treatment of torsion is more
extrapolable. For example, the differences between the rotation around the C-C
bond in ethane and chloroethane can be attributed to steric effects included in the
van der Waals term between the Hs from one carbon and Hs or Cl from the other:
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2. Energy terms
1-4 intermolecular interactions are often multiplied by a factor of 0.5 (depending on
the force field) simulating the damping of these interactions due to electronic
redistributions that can take place between atoms separated only by three bonds.

The usual form for the van der Waals interaction is the Lennard-Jones potential or
12-6 potential:
























 σ
−









 σ
ε=

6

ij

ij
12

ij

ij
ijij rr

4)r(V

Van der Waals parameters are needed for each possible pair of atom types. In
order to avoid this, the Lorentz-Berthelot combination rules may be employed so
that only 2 parameters are needed for each atom type:
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One can obtain van der Waals parameters from the packing data in crystals, as
well as from the simulation of liquids, in which case these parameters may be
adjusted to reproduce the liquids’ structural and thermodynamic properties

Van der Waals interactions



2. Energy terms
Electrostatic interactions

The usual way to describe electrostatic interactions is by means of interactions
between partial charges, which are assigned to each atom in the molecule.
Therefore , for two molecules A and B we will have.
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As mentioned previously, this electrostatic interaction is calculated for atoms
belonging to different molecules, or those separated by 3+ bonds in one molecule.

• The advantage is that with an appropiate charge distribution, one
can represent any molecule (dipolar, cuadrupolar…)

• The problem is that atomic charges are not an observable, so many
definitions and schemes are possible for their calculation.



3. Force field examples
Force field classification

Force fields can be classified according to various criteria:

According to the terms included in the potential function
• Class I: only quadratic terms are used to describe the tension and angle 
bond terms  (AMBER, OPLS, CVFF, GROMOS, CHARMM)

• Class II: these force fields include an expansion of higher order for
tension and angle as well as crossed terms (MM2, MM3, CFF93)

• Class III: these force fields include terms of higher order and more
crossed terms than in class II. They also take into account specific
effects like hyperconjugation (MM4)

According to the data origin used in the parametrization
• Experimentals

• Quantum

• Hybrids



Force field classification

Classification according to the more common field of application

• Organic force fields (MM3, MM4)

• Biological force fields (AMBER, CHARMM, GROMOS)

• Inorganic force fields (YETI, SHAPES)

• Universal force fields (UFF)

3. Force field examples



Force fields for simulating water
There are many force fields to study liquid water, due to its importance. Most of 
these force fields are pairwise, although there are also some that explicitly include 
polarization.

Normally they are parametrized by comparing simulations to the experimental 
properties of liquid water, but they can also be parametrized using ab initio studies 
of water clusters.

Many force fields for water are rigid: they do not allow changes in OH distances nor 
in the HOH angle. In these force fields, water molecules can only translate and 
rotate.

3. Force field examples



Based on the number and the positioning of the point charges, they can be 
classified in four types:

Normally, only one center is considered for van der Waals interactions (the oxygen 
atom)

3. Force field examples



Force fields used for water simulation

SPC SPC/E TIP3P PPC TIP4P TIP5P

Tipo a a a b
(Polarizable)

c d

r(OH),(Å) 1.0 1.0 0.9572 0.943 0.9572 0.9572

HOH (deg) 109.47 109.47 104.52 106 104.52 104.52

ϕ (deg) --- --- --- 127 52.26 109.47

σ(Å) 3.166 3.166 3.15061 3.334 3.15635 3.12

ε (kJ·mol-1) 0.650 0.650 0.6364 0.6000 0.6480 0.6694

q(O) -0.82 -0.8472 -0.834 0.0 0.0 0.0

q(H) 0.41 0.4238 0.417 0.517 0.52 0.2410

q(M) 0.0 0.0 0.0 -1.034 -1.04 -0.2410

r(OM), Å --- --- --- 0.106 0.15 0.7

3. Force field examples



Force fields used for water simulation

SPC SPC/E TIP3P PPC TIP4P TIP5P Exp

Dipole (D) 2.27 2.35 2.35 2.52 2.18 2.29 2.85-2.95

Dielectric
Constant

65 71 82 77 53 81.5 78.4

Auto
Diffusion10-5

(cm2s-1)

3.85 2.49 5.19 2.6 3.29 2.62 2.30

U (kJ·mol-1) -41.0 -41.5 -41.1 -43.2 -41.8 -41.3 -41.5

Temp.  of 
Maximum
density (C)

-45 -38 -91 4 -25 4 3.984

Expansion 
coeff. 10-4

(ºC-1)

7.3 5.14 9.2 --- 4.4 6.3 2.53

Results obtained for liquid water at 25 ºC and 1 atm (except the maximum density 
temperature)

3. Force field examples



MMX force fields (X=2, 3, 4)

These force fields are due to the pioneering work of Allinger and coworkers

They are designed for organic molecules:
• MM2 force field gives good results for energy and geometry. 
• MM3 was designed to better reproduce vibrational frequencies
• MM4 force field includes new crossed terms to decribe electronic effects 

such as hyperconjugation or the explicit treatment of lone pairs.

Streching and bending include anharmonic terms until third order in MM2 and until 
fourth order in MM3.

The van der Waals interaction is treated by a Hill potential

It includes streching-bending crossed terms 

MMX are experimental force fields: they use experimental properties to fit the 
parameters (thermodynamics, geometric and spectroscopic properties)

3. Force field examples



________________________________________ 
Saturated hydrocarbons. Deviation between 
experimental and MM3/MM4 results 
 
 MM4  MM3 
Distances (Å) 0.004 0.004 
Angles (°) 1 1 
Frequencies (cm-1) 24 36 
________________________________________ 
Unsaturated hydrocarbons. Deviation between 
experimental and MM3/MM4 results 
 
 MM4  MM3 
Distances (Å) 0.004 0.005 
Angles (°) 1 1.1 
Frequencies (cm-1) 25-31 38-52 
_______________________________________ 

3. Force field examples

Ethylene



AMBER force field (Assisted Model Building and Energy Refinement)

It was first developed in 1984 as a ‘united atom’ version and as an ‘all atom’ version 
in 1986 for the study of biomolecules.

Stretching and bending terms are harmonic.

Van der Waals interactions are treated with a 12-6 potential.

The torsion term depends only on the central atom.

It included a specific term for hydrogen bonds of the 12-10 type in the first versions, 
but the later development of better sets of charges made this unnecessary.

3. Force field examples



OPLS force field (Optimized Potential for Liquid Simulations)

It was first developed as a ‘united atom’ version and after as an ‘all atom’ version for 
the study of liquids (water, alcohol, polar and non-polar solutions…). It was then 
extended  to the study of proteins and all kinds of biomolecules.

It uses the same energy potential as AMBER, and never included an explicit term for 
hydrogen bonds.

3. Force field examples



CHARMM force field (Chemistry at Harvard Macromolecular Mechanics)

It was first developed as a ‘united atom’ version and after as an ‘all atom’ version for 
the study of aminoacids.
It uses the same potential energy function as AMBER. The first versions included a 
12-10 hydrogen bond term modulated for a set of functions that were independent of 
hydrogen bonds angles and distances. In more recent versions, hydrogen bonds do 
not include any special term.

4. Force field examples

It includes a harmonic term to describe improper angles known as the Urey-Bradley 
term.
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Which force field should I choose for my problem?

This is a difficult question to answer. It is usually safer to search the bibliography for 
studies carried out on systems similar to the one we are interested in. However, 
there are some general rules:

4. Force field validation

• For organic molecules MMX force fields(X=2, 3,…) and MMFF94
give good results. More generic force fields (as UFF) give worse
results

• For biomolecules OPLS, AMBER, CHARMM and GROMOS force
fields give results of similar quality

• For specific studies of nucleic acids AMBER and CHARMM force
fields seem to be the most appropiate

• In general it is difficult to find a force field that gives good results for
inorganic complexes
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A well designed force field can provide interaction energies and geometries of 
similar quality to ab initio calculations.

The following graph compares interaction energies between nucleobases obtained 
at the AM1, HF/6-31G* levels and with a AMBER force field with the results of 
MP2/6-31G* calculations

4. Force field validation



Molecular Dynamics

Computational Chemistry
Elective Course

Chemistry Degree
4th year



Contents

1. Introduction

2. The system

3. Molecular dynamics

4.   Practical questions



Bibliography

M. P. Allen, D. J. Tildesley
Computer Simulation of Liquids
Oxford University Press, New York 1989

A. R. Leach
Molecular Modelling
Longman, London, 1996

D. Frenkel & B. Smit
Understanding Molecular Simulation
Academic Press, San Diego, 1996

J. Andrés & J. Bertrán (eds)
Química Teórica y Computacional
UJI, Castellón, 2007



1. Introduction

The solution of the quantum or classical Hamiltonian gives possible states
(microstates) in which the system can be found.

In the case of molecules, the use of the Born-Oppenheimer approximation to solve 
the molecular Hamiltonian results in the definition of molecular structures. This 
concept can be very useful to study chemical processes (chemical reactions, 
conformational equilibria…)

However, this strategy is not usually enough to describe chemical processes, 
except gas phase processes involving a reduced number of atoms.

In any other situation (e.g. reactions in solution), we need to consider that 
experimental observables are an average over a huge number of microstates (and 
structures) that the system can visit during the time it takes for measurements to be 
carried out.
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1. Introduction

Therefore, the solution of the Hamiltonian is not enough to correctly
describe the system under study:

• We need to consider many microstates in our analysis in order to find average
properties. Mechanical properties (internal energy, pressure…) are an average of 
all the values that this property takes in the microstates that our system visits during
measurement. Therefore, the internal energy (U) is the average energy (E) of the
visited microstates:

• Not all of the properties can be directly obtained from the Hamiltonian. Non-
mechanical properties (temperature, entropy, free energy…) are not defined for just 
one microstate. Therefore, entropy (S) can be obtained from the number of ways to 
distribute the system between the possible microstates (W):
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Simulation methods are designed to obtain a great number of microstates
starting from realistic models of the system in which we are interested. This
means the model must contain a large enough number of particles (molecules)
and a potential energy function that accounts for both intra- and intermolecular
terms.

1. Introduction

There are two main simulation methods:
• Molecular dynamics: the microstates are obtained as a time sequence which
is determined by an approximate solution of the equations for motion in the
system (often using a newtonian treatment).
The rN positions and the velocities (or momenta), pN, of N particles are both
considered, giving access to the both the kinetic and potential energies.

• Monte Carlo: microstates are obtained by random displacements of the
coordinates of one or more particles. Microstates obtained in this way do not
form a time sequence.
Only the coordinates of the particles are considered, but not their momenta or
velocities.



The aim of simulation methods is to study ‘realistic’ systems. Therefore, when 
choosing the model to best represents the system to be studied, the three 
following points should be considered:

2. The system

• The number of molecules or atoms that form the system. This is
obviously limited by the computational capacity (time and memory)

• The number of microstates that are going to be generated to obtain
the averaged properties of our system, which will be limited by the
available calculation time.

• The potential that governs the system behavior (intra and 
intermolecular interactions)



One of the most important problems in a simulation is the number of particles
(atoms or molecules) that can be described. Let’s consider the case of liquid
water: a typical simulation can include about 104 molecules, which corresponds
to a spherical micro-drop of 40 Å diameter!! This microdrop has nothing to do
with a macroscopic quantity of water (around one mole), since most of the
molecules in the microdrop will be influenced by surface effects.

2. The system

Obviously, we need techniques that deal with ‘small’ systems while avoiding the
boundary effects in such a way that they behave as macroscopic systems. In
general these techniques can be divided in two classes:

• Periodic Boundary Conditions
• Non-Periodic Boundary Conditions

2.1. The boundary



2. The system
Periodic Boundary conditions

In this method, the original system or simulation cell is surrounded by identical
copies. The number of molecules we describe does not increase since the motion of
the copies is exactly the same as that for the molecules of the simulation cell. The
advantage is that now all of the molecules in the system are surrounded by more
molecules, and therefore surface effects vanish.

If a molecule leaves the initial cell, another will enter from a neighbouring cell. The
system no longer ‘feels’ walls nor artificial limits.

L



2. The system
Periodic boundary conditions

The simulation cell can be cubic (such as in the previous figure) or any other
geometry adapted to the problem we are studying, as long as it assures the space is
completely filled: parallelepiped, truncated octahedron, hexagonal prism, rhombic
decahedron.
For example, DNA is often studied using the hexagonal prism:

Furthermore, it is possible to use periodic conditions in only two directions. For
example, if we want to study surface or membrane phenomena we apply periodic
conditions in just two dimensions:



2. The system
Periodic boundary conditions

Periodic conditions are commonly used in simulations, but they have some
limitations:

• We cannot observe fluctuations with a wavelength longer than the box size

• Its use imposes an artificial periodicity in the system, which can favor the
appearance of ‘crystalline’ behavior.

In order to minimize these problems the simulation cell must be as large as
possible. The effect of using periodic conditions can be validated by comparing the
results of simulations that have been done in cells with different sizes and shapes.

• Some systems do not require the use of periodic conditions, such as the study of
molecular aggregates in gas phase.
• In some cases, such as in non-homogeneous systems, the use of periodic
conditions can present some difficulties.
• Finally, in some systems, such as macromolecules in solution, the use of periodic
conditions may need too many solvent molecules in the simulation cell.



The potential energy of the system can be obtained from an expression which is
a function of the relative positions of the particles. In general, it is necessary to
evaluate ½N·(N-1) distances between particles.

In a big system, or in a simulation employing periodic conditions, we should
evaluate the interaction between distant particles, which are mostly irrelevant
from a quantitative point of view. For example, the Lennard-Jones potential is <
1% at distances longer than 2.5·σ.

2. The system

2.2. Potential energy truncation



2. The system
One possibility is the use of a cutoff distance: the interaction energy between
particles that are at longer distances than a fixed value (rcut) are assumed to be
negligible.
Cutoff radii of less than 10 Å are not usually recommended, but they must be
smaller than L/2 to avoid interactions between a molecule and its replica.

rcut

In order to be computationally efficient, the cutoff distance must be combined with
the use of a list of neighbours. This list tell us which particles are found in the cutoff
area, or next to it, for each particle. In this way, we only need to evaluate distances
between each particle and its neighbours. This list is not updated for each new
system configuration, but is typically updated for every 10-20 configurations.



2. The system

rcut rlist
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2. The system
Truncation problems
A problem associated to truncation is discontinuity. The interaction energy
vanishes when the distance is larger than the cutoff radius, and this causes
potential energy ‘jumps’ as the molecules move away from or approach each
other during the simulation.

The following image compares a complete Lennard-Jones potential with that
obtained after truncation at a certain cutoff radius.
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truncated



2. The system
Truncation problems
A way to reduce the cutoff radius effect is to multiply the potential energy function
by a function of the distance (the switching function or S(r)) that takes values
between 0 and 1, allowing a smooth transition between the complete value of the
potential and the truncated one. An example of a switching function is:
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The next picture compares the complete Lennard-Jones potential with the
truncated one and the switched one. The latter avoids discontinuities in the
potential (but not in its derivatives): it is possible to define other, more
sophisticated functions of S(r) to avoid discontinuities in both its first and second
derivatives.
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3.Molecular Dynamics
3.1. Introduction
Molecular dynamics simulations (MD) generate configurations of the system as a
time sequence. With this purpose, the equations of motion in the system are
solved, often in its classical version (Newton equations). It must be considered
that this is not a correct approximation to study the motion of very light particles
(such as H atoms)

The first MD was carried out by Alder and Wainwright in 1956 for a system made
up of rigid spheres. The first MD simulation of a realistic system was made by A.
Rahman in 1964: liquid argon was simulated using a Lennard-Jones potential.



3.Molecular Dynamics

MD simulations are very similar to the process of a real measurement of the
system: one prepares the system and measures it during a certain amount of
time.
MD programs are based on a very simple algorithm:

1. The coordinates and initial velocities are read
2. The potential energy and forces are calculated
3. The Newton equations are integrated
4. The properties are calculated, and then go back to step 2

To integrate the equations of motion (the heart of an MD program) we need to
know the forces that are acting on each particle. Newton equations are often
solved in cartesian coordinates, therefore we need the forces as a function of
coordinates x, y, z.



3.Molecular Dynamics
3.2. Integrating the equations of motion
Once we know the forces that are acting on each particle, we can now integrate
the Newton equations to find the coordinates and velocities that the particles will
have as time progresses:

The most effective methods to solve differential equations are those based on
finite differences. The general idea is the following: given the particles’
coordinates and velocities at a certain time t, we can try to find the coordinates
and velocities at a subsequent time (t+∆t) using a Taylor’s expansion for
coordinates and velocities:

where O(∆tn) shows the presence of terms that depend on the powers of ∆t that
are higher or equal to n.



3.Molecular Dynamics
A simple truncatation of the previous equations at n=2, assuming constant forces
during the time step ∆t, does not usually provide a good (accurate and stable)
integration algorithm. Such an algorithm must fulfill certain requirements:

• It must be fast (although integration is not the rate-determining step in a MD
simulation)

• It must allow us to use a time step ∆t that is as large as possible. This will
allow us to cover a larger simulation time with the same number of
simulation steps. In molecular simulations, ∆t is often in the order of fs and
the simulation time tends to be larger than 102 ps (meaning, at least, 105-
106 integration steps)

• It must conserve the total energy: MD produces, in principle, NVE
trajectories

• It must be reversible in time



3.Molecular Dynamics
One of the simplest, yet most effective, algorithms is the so called Verlet-
algorithm
Let’s take a Taylor’s expansion for positions at t+∆t and t-∆t:

If we add both equations we get:
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Arranging and rejecting terms of an order equal to or higher than ∆t4:

According to this equation, using the positions of the two preceding steps, we can
predict the new ones with an error in the order of ∆t4. Although the algorithm does
not directly use the velocities, they can be derived from the relationship:

Rejecting terms in the order of ∆t3



3.Molecular Dynamics
3.2. Constant temperature (NVT) dynamics
Newton equations are conservative, meaning that they produce a NVE trajectory.
Nevertheless, most of the experimental information is obtained from systems in
which the temperature remains constant. There are several strategies to obtain
trajectories in the NVT ensemble. We recall that the equipartition principle
establishes a relationship between the kinetic translational energies and the
temperature. Therefore, an instantaneous temperature (T(t)) simulation could be
defined from the velocities:

Where Nf refers to the number of degrees of freedom of the system. This
expression suggests that we can obtain a trajectory at the desired temperature
(T0), scaling the particle velocities:
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3.Molecular Dynamics 
A widely-used method is the Langevin equation. This method adds friction and
random forces to the real ones, both of which aim to represent the effect of a
heating bath on the particles and the molecular collisions that take place. The
Langevin equation of motion is given by:

Where γ is a friction parameter (in units of time-1) or damping constant. The
random force R is a Gaussian distribution defined by the statistical properties:

where T the target temperature.



4. Practical questions
Every simulation has at least 3 steps: initialization, equilibration and production

Initialization
Preparation of the initial configuration for the study, the set of coordinates or
coordinates and velocities of the atoms in our system.

If we do not have the configuration from a previous simulation, we will need to
estimate the configuration to start with the simulation.

• In homogeneous systems (liquid, gases) we can use a homogeneous
distribution of the molecules in the total volume, reproducing the
experimental density in the simulation conditions. We can use the
coordinates corresponding to a face-centered cubic crystal.



• For non-homogeneous systems, such as solutions of proteins, DNA,
or solid surfaces, we can use X-ray structures as starting points for the
simulations

The initial configuration can be submitted to several optimization cycles in order
to relax the forces acting on the system. This step is often essential in molecular
dynamic simulations to prevent divergences in the MD algorithm.

4. Practical questions



Initial velocities can randomly be obtained from a Maxwell-Boltzmann distribution
corresponding to the temperature of the study.
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This Maxwell-Boltzmann distribution is only valid for translation velocities, and not
for rotational nor vibrational components. Nevertheless, after a (generally) small
simulation time, energy redistribution between molecular degrees of freedom is
reached

4. Practical questions



Equilibration

This is the part of the simulation in which the system evolves under certain
conditions (number of molecules, temperature, total energy, volume…) until it
reaches equilibrium.

Equilibrium is reached when the average properties do not change during the
simulation

Production

Once we have reached equilibrium, the system is studied by generating the
desired number of configurations (MD or MC) to analyze the desired structural or
enegetic properties.

4. Practical questions



Molecular dynamics example: Na+ in water

31.4 Å

MD from a sodium ion in a box containing 1032 TIP3P water molecules

Na+ q=+1
σ=3.3305 Å  
ε= 0.00277 kJ·mol-1

Periodic boundary conditions

Switched cut-off  radius 12 Å

2 simulations were done,  NVE and NVT (T=300K)

4. Practical questions



Molecular dynamics example: Na+ in water
NVE NVT
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