
1 

 

Continuous 3-year outdoor operation of a flat-panel membrane photobioreactor to 

treat effluent from an anaerobic membrane bioreactor 

J. González-Camejo
*
, R. Barat, D. Aguado, J. Ferrer. 

CALAGUA – Unidad Mixta UV-UPV, Institut Universitari d'Investigació d’Enginyeria 

de l’Aigua i Medi Ambient – IIAMA, Universitat Politècnica de València, Camí de 

Vera s/n, 46022 Valencia, Spain 

*Corresponding author: jogonca4@upv.es 

 

Abstract 

A membrane photobioreactor (MPBR) plant was operated continuously for 3 years to 

evaluate the separate effects of different factors, including: biomass and hydraulic 

retention times (BRT, HRT), light path (Lp), nitrification rate (NOxR), nutrient loading 

rates (NLR, PLR) and others. The overall effect of all these parameters, which influence 

MPBR performance had not previously been assessed. The multivariate projection 

approach chosen for this study provided a good description of the collected data and 

facilitated their visualisation and interpretation. 

Forty variables used to control and assess MPBR performance were evaluated during 

three years of continuous outdoor operation by means of principal component analysis 

(PCA) and partial least squares (PLS) analysis. The PCA identified the photobioreactor 

light path as the factor with the largest influence on data variability. Other important 

factors were: nitrogen and phosphorus recovery rates (NRR, PRR), biomass 

productivity (BP), optical density of 680 nm (OD680), ammonium and phosphorus 

effluent concentration (NH4, P), HRT, BRT, air flow rate (Fair) and nitrogen and 

phosphorus loading rates (NLR and PLR). The MPBR performance could be adequately 

estimated by a PLS model based on all the recorded variables, but this estimation 
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worsened appreciably when only the controlled variables (Lp, Fair, HRT and BRT) were 

used as predictors, which underlines the importance of the non-controlled variables on 

MPBR performance. The microalgae cultivation process could thus only be partially 

controlled by the design and operating variables.  

A high nitrification rate was found to be inadvisable, since it showed an inverse 

correlation with NRR. In this respect, temperature and microalgae biomass 

concentration appeared to be the main factors to mitigate nitrifying bacteria activity.  

 

Keywords: Membrane photobioreactor; microalgae; nitrifying bacteria; PCA; PLS; 

outdoor.  

 

1 Introduction 

The ever-increasing population together with human activities are the main factors 

responsible for the recent growth in wastewater production (Ling et al., 2019). To avoid 

serious pollution problems, wastewater effluents must be properly treated prior to their 

discharge into natural water bodies (Song et al., 2018). Although urban wastewater 

treatment plants (WWTPs) are now extremely efficient as regards removing pollutants, 

they consume huge amounts of energy (Ling et al., 2019; Marazzi et al., 2019) and the 

nutrients are usually lost by nitrogen stripping or phosphorus precipitation (Whitton et 

al., 2016).  

The wastewater treatment sector thus needs to intensify research on more sustainable 

technologies, not only to remove pollutants from wastewater but also to recover 

resources from them, mainly energy, nutrients and reclaimed water (Nayak et al., 2018; 

Seco et al., 2018). 
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Anaerobic membrane bioreactors (AnMBRs) have been attracting much attention since 

they present lower energy consumption, sludge production and space requirements than 

the classical aerobic processes (Robles et al., 2013). They can also produce biogas from 

organic matter that can sometimes offset the energy required for the treatment process 

(Song et al., 2018).  

AnMBR systems have previously been assessed on a pilot scale, obtaining a high 

quality effluent as regards organic matter and suspended solids (Seco et al., 2018). 

However, their direct discharge into sensitive water bodies is not permitted, since these 

systems contain a large amount of nutrients (Song et al., 2018) which can lead to 

eutrophication, i.e. the sudden proliferation of algae in natural waters, which reduces 

water quality, increases health risks and impairs wildlife (Lau et al., 2019). Microalgae 

cultivation has emerged as the ideal option to avoid this problem, as it can recover 

nutrients from AnMBR effluents (González-Camejo et al., 2019a). It also produces 

valuable microalgae biomass that can be used to obtain biofuels or fertilisers, amongst 

other applications (Seco et al., 2018; Xu et al., 2019). 

Microalgae can be cultivated in either open ponds or closed photobioreactors (PBRs) 

(Nwoba et al., 2019). The latter is able to achieve higher biomass production and 

recover more nutrients than open reactors. However, very few of these plants are being 

operated at industrial scale, mainly due to the inefficiency of large-scale cultivation 

techniques (Kubelka et al., 2018; Nayak et al., 2018; Xu et al., 2019). It therefore seems 

essential to obtain experimental data from real sewage plants for the implementation of 

large-scale outdoor microalgae-based wastewater systems.  

Microalgae cultivation is a high complex process which concerns mass, heat and light 

transfer as well as biological reactions (Xu et al., 2019). Several authors have reported 

seasonal variations in the performance of outdoor microalgae systems (García et al., 
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2018). Apart from ambient conditions (mainly solar light and temperature), there are 

many other factors that influence microalgae growth: PBR design, mixing rate, nutrient 

loading rates, microalgae strains, biomass and hydraulic retention time (BRT, HRT), 

competition with other microorganisms, inhibition by toxic substances, etc. (Cho et al., 

2019; Marazzi et al., 2019). Some of these factors have been independently evaluated in 

outdoor flat-panel MPBRs in previous studies (Table 1). As can be seen, MPBR 

performance varies widely, with nitrogen recovery rates ranging from 1.9 mg N·L
-1

·d
-1 

when the plant was operated as a PBR system (i.e. without filtration) to 21.1 mg N·L
-

1
·d

-1
 when MPBR operations were based on the optimal design and control parameters. 

It therefore seems to be worth analysing thoroughly all the recorded variables 

simultaneously to identify any possible relationships with process performance and to 

gain valuable in-depth knowledge on the process. 
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Table 1. Summary of the results obtained in previous studies 

Parameter 

evaluated 

Value 

Results 

Reference NRR PRR BP 

20 mg S·L
-1

 6.0 1.3 79 

Microalgae-

AOB 

competition 

ATU = 0 mg·L
-1

 1.9 0.2 27 González-

Camejo et al., 

2018
*
 ATU = 5 mg·L

-1
 2.3 0.3 19 

NLR/PLR 

9.7/1.3 g·d
-1

 12.5 1.5 72 

González-

Camejo et al., 

2018 

14.4/1.8 g·d
-1

 11.5 1.4 69 

8.4/1.1 g·d
-1

 7.5 1.1 78 

BRT 

4.5 d 10.3 1.1 74 

González-

Camejo et al., 

2019a 

6 d 9.9 1.2 74 

9 d 7.6 1.0 65 

HRT 

3.5 d 11.1 1.4 65 

González-

Camejo et al., 

2019a 

2 d 9.3 1.1 65 

1 d 8.7 1.4 54 

Light path 

25 cm 9.1 1.2 66 González-

Camejo et al., 

2019a; 2019b 10 cm 19.4 2.2 152 

NO2 

inhibition 

BRT = 2 d
1
 14.1 13.5

3
 136 

González-

Camejo et al., 

2019b 

BRT = 2.5 d
2 19.4 12.0

3
 152 

BRT = 4.5 d
2
 14.5 24.3

3
 108 

NRR: nitrogen recovery rate (mg N·L
-1

·d
-1

); PRR: phosphorus recovery rate (mg P·L
-1

·d
-1

); BP: 

biomass productivity (mg VSS·L
-1

·d
-1

); H2S: sulphide; ATU: allylthiourea to inhibit nitrification; 

NLR: nitrogen loading rate; PLR: phosphorus loading rate; BRT: biomass retention time; HRT: 

hydraulic retention time. 
*
Operation in a PBR system (without filtration): not considered for 

PCA and PLS; 
1
Significant presence of nitrite in the culture; 

2
Negligible NO2 concentration in 

the culture; 
3
Values of nitrification rate (mg N·L

-1
·d

-1
). 
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PCA and PLS have been shown to be useful for understanding processes and optimising 

the performance of WWTPs based on activated sludge technology (Han et al., 2018). 

Trials have also been carried out recently on optimising the microalgae cultivation 

conditions of multiple variables using statistical methods on lab-scale data (Nayak et 

al., 2018). Viruela et al. (2018) also used these multivariate techniques to assess the 

relationship between microalgae performance (in terms of nutrient recovery and 

biomass productivity) with light, temperature and N:P ratio in the short-term (around 4-

5 months) operation of an outdoor MPBR.  

The availability of real long-term data under outdoor conditions is very limited, and is 

especially scarce for periods longer than 12 months. The present study evaluates the 

three-year operation of an outdoor flat-panel MPBR plant, considering all the relevant 

variables, from which valuable information could be obtained on the behaviour of 

microalgae cultures in different ambient and operating conditions.  

The competition between microalgae-nitrifying bacteria for ammonium uptake has been 

identified as a highly relevant factor in the performance of a mixed microalgae culture 

(Galès et al., 2019; González-Camejo et al., 2019c), so that determining the most 

important parameters in nitrifying bacteria activity would help to maintain bacteria 

growth at a minimum and favour microalgae growth. 

The aim of this study was therefore to use multivariate projection techniques to analyse 

the data collected from operating an outdoor MPBR plant treating AnMBR effluent for 

three years in order to identify the key variables in the process and any relationships 

between the parameters.  
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2 Material and methods 

2.1 Microalgae and wastewater 

The nutrient-rich influent to the MPBR plant was from an AnMBR plant that treated 

real sewage (details of this plant and its operation can be found in Seco et al. (2018)). 

The average characteristics of the substrate were a chemical oxygen demand (COD) 

concentration of 67 ± 7 mg COD·L
-1

, a nitrogen concentration of 52.4 ± 8.8 mg N·L
-1

 

(mainly in the form of ammonium (NH4 > 95%), with low amounts of nitrite (NO2) and 

nitrate (NO3)), and a phosphorus concentration of 5.7 ± 1.5 mg P·L
-1 

as phosphate 

(PO4). The considerable variability of the influent characteristics was due to changes in 

both sewage composition and AnMBR plant performance.  

Microalgae were originally obtained from the walls of the secondary settler at the 

Carraixet WWTP and mainly consisted of a mixed culture of the eukaryotic microalgae 

genera Chlorella and Scenedesmus, although low concentrations of cyanobacteria, 

nitrifying and heterotrophic bacteria were also present.  

 

2.2 MPBR plant 

The MPBR pilot plant was in the Carraixet WWTP (39º30’04.0’’N 0º20’00.1’’W, 

Valencia, Spain) and operated continuously outdoors from June 2015 to May 2018. 

During the experimental period the hydraulic retention time (HRT) varied in the range 

of 1-3.5 d, while biomass retention time (BRT) was between 2-9 d. However, there 

were several periods in which operations were stopped for maintenance and there were 

also periods in batch mode, which were not considered for the evaluation of the MPBR 

operations.  

The MPBR plant consisted of two flat-panel PBRs which discharged the culture to a 

membrane tank (MT) to separate the microalgae biomass from the permeate. Full 
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description of the MPBR plant operation can be found in González-Camejo et al. 

(2019a). Both PBRs were continuously air-stirred to ensure appropriate mixing to 

homogenise the culture in terms of nutrient concentration, temperature and light 

availability. It also reduced wall fouling and avoided microalgae settling. An on-off 

valve was opened for 5 s to introduce pure pressurised CO2 (99.9%) into the air system 

whenever the pH measurements rose over 7.5 to maintain optimum pH (Qiu et al., 

2017) and ensure carbon-replete conditions. Twelve LED lamps (Unique Led IP65 WS-

TP4S-40W-ME) were installed on the rear wall of the PBRs to apply a continuous 

irradiance of 300 μmol·m
-2

·s
-1

. The culture was cooled by a thermostatically controlled 

system (Daikin Inverter R410A). The temperature set-point was 25 ºC to keep 

temperatures below 30 ºC, avoiding culture deterioration (González-Camejo et al., 

2019c).  

Two different MPBR plants were operated: i) one with a 25-cm light path PBRs (550 L 

each) during the first half of the operation; i.e., from June 2015 until December 2016; 

and ii) another with a 10-cm light path PBRs (230 L each): from January 2017 until the 

end of the operating period.  

The MT had a filtering area of 3.4 m
2
 and included an industrial hollow-fibre 

ultrafiltration membrane unit (PURON® Koch Membrane Systems model PUR-PSH31, 

0.03 µm pore size). Its total volume accounted for 14 L, which meant non-photic 

volume of 1.25% for the 25-cm MPBR plant and 2.9% for the 10-cm MPBR plant. The 

MT was stirred by the same airflow as the PBRs. Membrane operation consisted of a 

combination of 250 s filtration and 50 s relaxation (F-R cycle) (Robles et al., 2013). 40 

s of back-flushing (in which permeate was introduced into the MT to strip fouling out of 

the membrane) were performed every 10 F–R cycles. Moreover, 60 s of ventilation 

every 20 F–R cycles and 60 s of degasification every 50 F–R cycles were carried out. In 
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the ventilation stage, permeate is pumped from the top of the MT instead of being 

introduced through the membrane pores (as in back-flushing). With respect to 

degasification stage, it consists of a high flow rate filtration period with the goal of 

removing the accumulated gas on the top of the fibres. The gross 20 ºC-standardised 

transmembrane flux (J20) was kept in the range of 15-30 LMH (L·m
-2

·s
-1

). The average 

specific gas demand per unit of membrane area (SGDm) was kept around 0.3-0.4 

Nm
3
·h

-1
·m

-2
. The filtration process was operated continuously, but only the 

corresponding amount of permeate was extracted to control HRT, recycling to the 

system the rest of permeate that was not taken out of the MPBR plant. 

 

2.3 Sampling and Analytical Methods  

During the continuous operations, grab samples were collected in duplicate three times 

a week from the MBPR influent (AnMBR effluent after aeration) and effluent (permeate 

from the filtration unit) as well as from the MPBR culture; i.e. treated water plus 

suspended solids. Ammonium, nitrite, nitrate and phosphate, volatile suspended solids 

(VSS), total chemical oxygen demand (COD), soluble chemical oxygen demand 

(sCOD), total nitrogen and total phosphorus in the culture were analysed according to 

Standard Methods (APHA, 2005). Nutrient concentrations were measured by an 

automatic analyser (Smartchem 200, Westco Scientific Instruments, Westco). COD, 

sCOD, total nitrogen and phosphorus were measured in duplicate once a week. 

Optical density at 680 nm (OD680) and maximum quantum yield of photosystem II 

(Fv/Fm) were measured in-situ by a portable fluorometer AquaPen-C AP-C 100 (Photon 

Systems Instruments). To measure Fv/Fm, the samples were kept in the dark for ten 

minutes to become dark-adapted. 
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Total eukaryotic cells (TEC) were counted twice a week by epifluorescence microscopy 

on a Leica DM2500 with a 100x-oil immersion lens. A minimum of 300 cells were 

counted in duplicate plus at least 100 cells of the most abundant genera with an error of 

less than 20%.  

 

2.4 Calculations  

Biomass productivity (mg VSS·L
-1

·d
-1

), nitrogen recovery rate (NRR) (mg N·L
-1

·d
-1

) 

and phosphorus recovery rate (PRR) (mg P·L
-1

·d
-1

) were calculated following 

González-Camejo et al. (2018).   

Iav was calculated by applying the Lambert-Beer Law (Eq. 1) as reported by Romero-

Villegas et al. (2018): 

     
    

        
                 (Eq. 1) 

Where tPAR is the sum of the solar and artificial photosynthetically active radiation 

applied to the PBRs (µmol·m
-2

·s
-1

),    is an extinction coefficient (m
2
·g

-1
, Eq. 2),    is 

the culture biomass concentration (g·m
-3

), and Lp is the light path (m). 

   
         

      
     (Eq. 2) 

where OD400-700 (-) is the average optical density of the culture in the range of 400-700 

nm; and Lpc (m) is the light path of the spectrophotometer´s cuvette. 

The nitrification rate (NOxR) (mg N·L
-1

·d
-1

) was obtained by Eq. 3: 

     
             

     
   (Eq. 3) 

where F is the treatment flow rate (m
3
·d

-1
); NOxe the concentration of nitrite plus nitrate 

from the effluent (mg N·L
-1

); NOxi is the concentration of nitrite plus nitrate from the 

influent (mg N·L
-1

); and VMPBR is the volume of culture in the MPBR plant (m
3
). It 
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should be remembered that negative NOxR values indicate that the microalgae NOx 

uptake is higher than the NOx produced by the nitrifiers. 

 

2.5 Statistical analysis 

2.5.1 Principal component analysis  

PCA was conducted to assess the relationship between different ambient, operating, 

design and cultivation conditions on the performance of the outdoor MPBR plant. This 

multivariate technique enables to visualise the correlation structure between the 

variables as well as identify patterns in the data such as trends and anomalous data. 

Principal components (PC) are obtained by linear combination of the original variables, 

capturing the underlying phenomenon in the studied system. 

The matrix analysed consisted of 40 variables measured in 560 samples (observations). 

The variables considered included controllable, ambient, influent, effluent, culture and 

performance variables (Table 2). The ambient parameters; i.e. solar photosynthetically 

active radiation (PAR) and culture temperature (T) were monitored since they have been 

widely reported as the main factors in microalgae growth (García et al., 2018; Viruela et 

al., 2018). These parameters represent the daily average obtained from all the monitored 

values (each of them recorded every 10 seconds). The maximum (PARmax, Tmax) and 

minimum (Tmin) daily values of these parameters were also considered as their 

fluctuations can significantly influence microalgae performance (Ippoliti et al., 2016). 

Light path (Lp), HRT, BRT and air flow rate (Fair) were the only parameters which 

could be modified and were thus labelled as controllable variables. Dissolved oxygen 

(DO) concentration has also been reported as a key factor in microalgae performance 

(Ippoliti et al., 2016), as have the nutrient loading rates (González-Camejo et al., 2018), 

i.e. nitrogen (NLR) and phosphorus loading rates (PLR). NRR, PRR, and BP were 
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included since they have been widely used to assess the performance of microalgae 

cultivation systems (Marazzi et al., 2019). Other parameters such as average light 

irradiance (Iav), maximum quantum efficiency (Fv/Fm) and optical density at 680 nm 

(OD680) can provide information on the use of light in the culture, which is related to 

the efficiency of the system (Romero-Villegas et al., 2018). As the main goal of the 

MPBR plant is to treat AnMBR effluent, the effluent nutrient concentrations are 

obviously relevant parameters (García et al., 2018) and can serve as indicators of the 

treatment process. Total eukaryotic cell (TEC) concentration, as well as the 

concentration of genera Scenedesmus (Sc) and Chlorella (Chl), were also included to 

evaluate the possible shift in the microalgae population caused by external factors. COD 

was measured to assess the effect of microalgae stress on MPBR performance (Lau et 

al., 2019; Lee et al., 2018). Optical density ratio between 680 and 750 nm 

(OD680:OD750) has been reported to be related to the microalgae chlorophyll content 

(Markou et al., 2017) and was therefore analysed. pH was also included as the 

microalgae activity modifies pH and in turn is affected by it (Qiu et al., 2017). Lastly, 

since the competition between microalgae and ammonium oxidising bacteria (AOB) can 

be significant when treating AnMBR effluents (González-Camejo et al., 2019c), 

nitrification rate (NOxR) was also considered as indicator of the nitrification process in 

the system. Table 2 shows all the variables used in the PCA and their abbreviations, as 

well as their average values. 

Table 2. Variables used in the PCA 

 Acronym Variable Unit Average value (mean ± SD) 

C
o

n
tr

o
ll

ed
 

v
ar

ia
b

le
s 

BRT Biomass retention time d 4.3 ± 1.6 

HRT Hydraulic retention time d 1.8 ± 0.7 

Lp PBR light path cm 25/10 

Fair Air flow rate vvm 0.14 ± 0.07 
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 Acronym Variable Unit Average value (mean ± SD) 
A

m
b

ie
n

t 
v

ar
ia

b
le

s PAR Daily average PAR µmol·m
-2

·s
-1

 273 ± 102 

PARmax Daily maximum PAR µmol·m
-2

·s
-1

  1298 ± 380 

T Temperature ºC 23.1 ± 3.3 

Tmax Maximum temperature ºC 26.7 ± 3.4 

Tmin Minimum temperature ºC 20.0 ± 4.0 

In
fl

u
en

t 

v
ar

ia
b

le
s 

NLR Nitrogen loading rate g N·d
-1

 22.0 ± 9.7 

PLR Phosphorus loading rate g P·d
-1

 2.4 ± 1.5 

N:Pi Nitrogen-phosphorus ratio of the influent molar 26.3 ± 13.9 

CODi Total chemical oxygen demand of the influent mg COD·L
-1

 65 ± 29 

C
u

lt
u

re
 v

ar
ia

b
le

s 

VSS Volatile suspended solids mg VSS·L
-1

 509 ± 229 

OD680 Optical density at 680 nm - 0.71 ± 0.37 

OD680:OD750 Optical density ratio between 680 and 750 nm - 1.11 ± 0.03 

pH pH - 7.4 ± 0.3 

Fv/Fm Maximum quantum efficiency - 0.67 ± 0.06 

DO Dissolved oxygen mg O2·L
-1

 11.0 ± 1.3 

DOmax Maximum dissolved oxygen mg O2·L
-1

 14.0 ± 2.2 

DOmin Minimum dissolved oxygen mg O2·L
-1

 8.9 ± 0.7 

COD Total chemical oxygen demand of the culture mg COD·L
-1

 1087 ± 458 

sCOD Soluble chemical oxygen demand of the culture mg COD·L
-1

 139 ± 71 

Ni Intracellular nitrogen content % 8.0 ± 2.5 

Pi Intracellular phosphorus content % 1.1 ± 0.3 

N:Pb Nitrogen-phosphorus ratio of the biomass molar 16.7 ± 7.4 

TEC Total eukaryotic cell concentration cells·L
-1

 1.64·10
10

 ± 1.23·10
10

 

Chl Chlorella concentration cells·L
-1

 1.46·10
10

 ± 1.39·10
10

 

Sc Scenedesmus concentration cells·L
-1

 1.75·10
9
 ± 2.39·10

9
 

Iav Average light irradiance in the PBR µmol·m
-2

·s
-1

 39.0 ± 17.7 

NOxR Nitrification rate mg N·L
-1

·d
-1

 8.8 ± 9.5 

E
ff

lu
en

t 
v

ar
ia

b
le

s 

NH4 Ammonium effluent concentration mg N·L
-1

 19.5 ± 15.2 

NO2 Nitrite effluent concentration mg N·L
-1

 0.6 ± 1.7 

NO3 Nitrate effluent concentration mg N·L
-1

 5.5 ± 8.8 

Nt Total nitrogen effluent concentration mg N·L
-1

 25.6 ± 13.1 

P Phosphorus effluent concentration mg P·L
-1

 2.3 ± 1.9 

CODe Total chemical oxygen demand of the effluent mg COD·L
-1

 41 ± 19 

P
er

fo
rm

an
ce

 

v
ar

ia
b

le
s 

NRR Nitrogen recovery rate mg N·L
-1

·d
-1

 16.0 ± 8.2 

PRR Phosphorus recovery rate mg P·L
-1

·d
-1

 1.9 ± 1.1 

BP Biomass productivity mg VSS·L
-1

·d
-1

 130 ± 77 

PAR: Photosynthetically active radiation 
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It should be noted that all the variables shown in Table 2 were related to the MPBR 

biological process and parameters related to membrane filtration were not considered in 

the statistical analysis. 

 

2.5.2 Partial Least Squares analysis 

PLS is a multivariate projection technique that uses two different groups of data; i.e. 

predictors (X) and responses (Y). Its goal is to find latent variables that are not only able 

to explain the variance in X, but also the variance which best predicts the Y variables. 

To identify the variables with the strongest possible relationship with process 

performance, PLS analysis was used with NRR, PRR and BP as responses (Y), while all 

the other variables used in the PCA were predictors (X). Effluent variables were 

included as predictors (in spite of also being a result of the process) because NO2 and 

NO3 are related to nitrification (González-Camejo et al., 2018), while NH4, Nt and P can 

also be indicators of nutrient limitation (Pachés et al. 2018).  

Since the competition between microalgae and nitrifying bacteria can seriously affect 

MPBR performance (González-Camejo et al., 2019c), a further PLS analysis was 

carried out with the nitrification rate (NOxR) as the response and all the other variables 

as predictors (X). Performance variables were also used as predictors as some authors 

have suggested lower nitrification when microalgae activity is high (González-Camejo 

et al., 2019b; Rada-Ariza et al., 2019). 

Both PCA and PLS were conducted on SIMCA-P 10.0 software (Umetrics, Umea, 

Sweden).  
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3 Results and discussion 

Figure 1 shows the evolution of the main performance parameters (NRR, PRR and BP) 

during the 3-year period of MPBR operations. As can be seen in this figure, all three 

variables varied widely. It should be highlighted that the evident improvement in MPBR 

performance after December 2016 corresponded to the reduction of the MPBR light 

path from 25 to 10 cm.  Since the aim of the MPBR was to treat AnMBR effluent, it 

also has to be noted that the legal discharge limits (i.e., 15 mg N·L
-1

 and 2 mg P·L
-1 

according to European Directive 91/271/CEE for a 10,000-100,000-p.e WWTP) were 

only reached between May-December 2017 (data not shown), which coincides with the 

highest MPBR performance (Figure 1). It therefore seems essential to determine the 

conditions that make it possible to meet these limits for the proper treatment of AnMBR 

effluents. 
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Figure 1. MPBR Performance along the 3-year operating period: a) Nitrogen recovery 

rates (NRR); a) phosphorus recovery rates (PRR); and c) biomass productivity (BP). 

 



17 

 

3.1 Principal component analysis 

Raw data was mean-centred and scaled to unit variance to give equal importance to each 

of the variables in the multivariate projection models. A PCA model was fitted to the 

pre-processed data. Four statistically significant principal components (PC) were found, 

according to the cross-validation of the model, explaining 63.9% of the total variance 

(34.6%, 13.8%, 8.0% and 7.5% for PC1, PC2, PC3 and PC4, respectively). This 

explained variance value is high enough to consider that the PCA model gave a fairly 

accurate description of the real data from the MPBR plant.  

Figure 2 shows the main results of the PCA model (score and loading plots).  

 

 

Figure 2. PCA-score plots showing the distribution of observations: a) PC1 vs PC2; b) 

PC3 vs PC4; PCA-loading plot showing the correlation pattern between variables: c) 

PC1 vs PC2; d) PC3 vs PC4. 
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In Figure 2a (score plot of the two first components), a markedly different behaviour 

can be observed with respect to PC1 (which explains most of the data variability; i.e., 

34.6%) in the samples collected from the 10-cm MPBR plant (red points), which are on 

the left of the graph; and the samples from the 25-cm MPBR plant (blue points) on the 

right. This separation between samples is due to the variables with higher weight in 

PC1, which were significantly different in each MPBR plant.  

Figure 2c shows the correlation patterns of all the variables. The positively correlated 

variables are grouped together in the same quadrant, while those inversely correlated 

can be seen on opposite sides of the plot origin (i.e. in the diagonally opposed 

quadrants). Note that the distance of a given variable from the plot origin shows the 

impact of each variable on the model (the longer the distance the stronger the impact). 

Apart from Lp, which was obviously different in each MPBR (due to the shift in PBR 

width), variations in NLR and PLR (nutrient loads), as well as in Fair, were highly 

influenced by the reduction of MPBR volume. In addition, BRT and HRT ranges 

differed in each MPBR plant; i.e. 4.5-9-d BRT and 1-3.5-d HRT for the 25-cm MPBR 

plant and 2-4.5-d BRT and 1-1.5-d HRT for the 10-cm MPBR plant. Performance 

variables (NRR, PRR and BP) were also very different in each MPBR (as can be 

observed in Figure 1). It must be noted that these clear differences in MPBR 

performance in each MPBR plant are likely related to light distribution along the PBRs 

since light availability is reduced at a higher light path (Cho et al., 2019). Probably for 

this reason light path was the parameter with the highest weight in PC1 (0.272, see 

Figure 2c). Moreover, the decline in MPBR performance entailed higher effluent 

nutrient concentrations. This implied that NH4, Nt and P showed significantly different 

values and were inversely related to the performance variables (Figure 2c). With respect 

to nutrient loading rates, high correlation between NLR and PLR and effluent nutrient 



19 

 

concentrations was observed (Figure 2c). Other studies have reported effluent 

concentrations to directly depend on nutrient loads in non-nutrient-limited systems 

(Arbib et al., 2013; González-Camejo et al., 2018). In this respect, the MPBR plant was 

not nutrient-limited during most of the 3-year operation (data not shown). The 

dependence of effluent nutrient concentrations with nutrient loading rates makes 

effluent concentration values barely comparable with different sub-periods or with other 

cultivation systems. For this reason, microalgae performance was assessed in terms of 

biomass productivity and nutrient recovery rates instead. 

On the other hand, solar PAR and oxygen concentration, which have been reported to 

be highly relevant in microalgae cultivation systems (Ippoliti et al., 2016; Moreno-

García et al., 2019; Viruela et al., 2018), were relevant in PC3 and PC4 (Figure 2d, 

15.5% of total variance) but not in the first two components: PC1 and PC2 (48.4% of 

total variance, see Figure 2c). 

Since performance variables (i.e. NRR, PRR and BP) seemed to be highly related in the 

PCA (Figure 2c), lineal correlations between them were carried out (Figure 3). Results 

showed that all these performance variables were statistically related (p-value < 0.01). 

However, data was dispersed, showing coefficients of determination (R
2
) of 59.8%, 

66.8% and 42.8% for relations NRR-PRR, NRR-BP and PRR-BP, respectively (Figure 

3). It has to be highlighted that PRR showed the lowest correlation because phosphorus 

uptake also depends on internal phosphorus (Powell et al., 2009). Despite the 

correlation between NRR and BP was higher than those for phosphorus, its relatively 

low R
2
-coefficient value was probably due to NRR being more dependent on light 

intensity (which can be very variable from one day to another); while BP is hardly 

dependent on temperature, which variations are slower than those of light (Viruela et 

al., 2018).  
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Figure 3. Linear correlations between performance variables: a) Nitrogen recovery 

rate (NRR) vs Phosphorus recovery rate (PRR); b) NRR vs Biomass productivity (BP); 

and c) PRR vs BP.   

 

In addition, some culture performance appeared to be highly related in the PCA. For 

instance, OD680 and VSS were close to each other in the PCA-loading plot (Figure 2c). 

Linear correlation between these variables corroborated this relationship, showing a 

high R
2
-coefficient of 90.5% (Figure 4a), similar to what has been reported by other 

authors (Ling et al., 2019). The high correlation between this optical parameter and 

VSS thus suggested that the culture biomass was mainly composed by microalgae since 

OD680 is related to the chlorophyll content of microalgae (Markou et al., 2017). In fact, 

OD680 and VSS were also highly correlated to TEC (Figure 4b, 4c). Specifically, most 

of these eukaryotic microalgae cell corresponded to genus Chlorella (Chl) (Figure 4d), 

as shown by the average percentage of Chlorella with respect to TEC, which accounted 

for 65.0 ± 39.6% during the 3-year operation.  
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Figure 4. Linear correlations between culture variables: a) Volatile suspended solids 

(VSS) vs optical density of 680 nm (OD680); b) VSS vs total eukaryotic cells (TEC); c) 

OD680 vs TEC; and c) TEC vs Chlorella (Chl). 

 

3.2 PLS analysis 

A PLS analysis was carried out to predict the parameters related to MPBR performance 

(i.e., NRR, PRR and BP), which were used as responses, while all the remaining 

variables were predictors. Four latent variables were statistically significant, according 

to cross-validation. The model was well balanced between fit and prediction 

performance, explaining 55.5% (R
2

x) of the X-matrix (matrix of predictors) variance 

and an accumulated explained variance of the response matrix (Y) of 75.6% (R
2

y). 

Goodness of prediction (Q
2
) accounted for 71.6%. 

Figures 5a, 5b and 5c display the recorded values of NRR, PRR and BP versus the PLS 

predicted values, evidencing the good fit obtained for the three MPBR performance 

variables. The prediction was especially good for biomass productivity (R
2
= 0.920), as 
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could be expected due to the high positive correlation in the PLS model between 

OD680 and VSS (Figure 6a). 

 

 

Figure 5.Observed vs predicted values by the PLS model using all the variables as 

predictors: a) Nitrogen recovery rate (NRR); b) Phosphorus recovery rate (PRR) and, 

c) Biomass productivity (BP); observed vs predicted values by the PLS model that used 

only the controllable variables as predictors: d) NRR; e) PRR and, f) BP.   
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To identify the most important variables in predicting MPBR microalgae performance, 

the variable importance of the PLS projection (VIP) is given in Figure 6b. The VIP 

parameter is a weighted summary of all the X-variable loadings of all the responses. As 

can be seen in Figure 6b, the two most important variables were air flow rate (Fair) and 

light path (Lp), which clearly proves that correct PBR design plays a key role in the 

process.  

Air flow rate has been reported as a key parameter in culture mixing and liquid-gas 

mass transfer (Kubelka et al., 2018). Mixing rate may also be related to the light 

integration of the reactor (Xu et al., 2019). In fact, higher mixing rates make microalgae 

move rapidly from the lit parts of the reactor to darker zones, which improves biomass 

productivity (Barceló-Villalobos et al., 2019). Light path is a key parameter in the light 

available to the reactor, since the radiated light decreases with depth due to the light 

absorbed by the water and biomass (Cho et al., 2019). 

Other important variables in MPBR performance were OD680, VSS, P, HRT, TEC, 

Chl, NH4, Nt, NOxR and BRT (Figure 6b). In the loading plot (Figure 6a) all these 

variables were projected away from the plot origin, showing their important 

contribution to the PLS model. As can be seen in Figure 6a, the BRT and HRT 

operational parameters showed an inverse correlation pattern with MPBR performance 

(i.e. NRR, PRR and BP) since they were projected opposite to the plot origin. This was 

probably due to: i) shorter BRT and HRT tend to obtain higher MPBR performance 

until they reach an optimum value (Rada-Ariza et al., 2019); ii) longer BRTs are likely 

to increase the shadow effect due to higher microalgae biomass and usually favour the 

proliferation of other microorganisms, reducing microalgae performance (González-

Camejo et al., 2019a); iii) longer HRT can limit microalgae due to nutrient depletion 

(Gao et al., 2018; González-Camejo et al., 2018). When the system is nutrient-limited, 
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Nt, NH4 and P can also have a significant effect in MPBR performance. In this respect, 

other authors have reported microalgae limitation when ammonium and phosphorus are 

under 10 and 1 mg·L
-1

, respectively (Pachés et al., 2018). Since these effluent variables 

are also related to microalgae nutrient uptake, it is therefore reasonable to expect that P, 

NH4 and Nt presented a relatively high inverse correlation with microalgae performance 

(Figure 6a). 
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Figure 6. Results of the fitted PLS model: a) Weight plot of the first two latent 

variables; b) Variable Importance in the projection (VIP) of the explicative variables. 
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As expected, OD680 was highly correlated with biomass productivity since its 

correlation with VSS (which is inversely proportional to BP) was high (R
2
 = 89.1%, 

Figure 4a). In addition, the culture was dominated by eukaryotic bacteria, as TEC was 

proportional to VSS (Figure 4b). TEC was thus also expected to be closely related to 

system performance, as was Chl concentration, since Chlorella was the main eukaryotic 

microalgae genus during most of the 3-year continuous operation (Figure 4d), as 

explained in Section 3.1.  

Another important factor was the nitrification rate, which confirms that microalgae-

AOB competition for ammonium uptake had significant effect on MPBR performance, 

as suggested by González-Camejo et al. (2019c). For this reason, another PLS analysis 

was carried out to consider NOxR as a response (see section 3.4).   

Many other variables appeared to be correlated with MPBR performance, which agrees 

with Cho et al. (2019) and corroborates the difficulty of controlling outdoor microalgae 

cultivation. However, the PLS results highlight the fact that MPBR performance is more 

dependent on the operating and design parameters (such as light path, air flow rate, 

BRT and HRT) than on ambient conditions like solar PAR and temperature (Figure 6b). 

Light and temperature have been widely reported as key parameters in nutrient 

assimilation and microalgae growth (Galès et al., 2019; Marazzi et al., 2019). The 

limited influence of environmental factors in the PLS model of MPBR performance 

may be due to the fact that PAR and temperature represent the daily average value of 

these parameters. Solar radiation variation was around 50-500 µmol·m
-2

·s
-1

, while 

instant solar radiation varied in the range of 0-2000 µmol·m
-2

·s
-1

 (Galès et al., 2019).  

In addition, the MPBR plant was additionally lit from an artificial light source (Section 

2.2) which provided better control of the light photons and reduced the shadow effect of 

the culture. Temperature can vary by more than 10 ºC throughout the day, although 
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temperatures over 30 ºC were avoided by cooling the culture (Section 2.2). All these 

factors reduced culture light and temperature variations and may have contributed to the 

small influence of ambient parameters on the PLS model. 

CODe, CODi, COD, Ni, sCOD and NO2 showed low correlations with microalgae 

performance (Figure 6b). Since CODi came from an AnMBR plant which degraded 

most of the organic matter content (Seco et al., 2018) and CODe was the permeate of an 

ultrafiltration system which removed most of the suspended organic matter, their 

variability was relatively low, so that CODe and CODi concentrations were not expected 

to have a significant influence on the model. However, the culture’s COD concentration 

was expected to have a stronger influence on the projection model, since the presence of 

organic carbon in the wastewater has been reported to be able to modify the microalgae 

cell metabolism, changing their activity (Moreno-García et al., 2019). In addition, COD 

is usually directly related to microalgae biomass (Ambat et al. (2018)). sCOD 

concentration was also expected to show higher influence on MPBR performance as it 

can be used as an indirect measure of extracellular organic matter (EOM) content. 

However, the results of the fitted PLS model gave little weight to these variables 

(Figure 6b), possibly due to the production of these organic compounds being increased 

either to microalgae activity (Lau et al., 2019), or when algae are under stress (Lee et 

al., 2018). In addition, the proliferation of competing organisms such as heterotrophs 

(which hinder microalgae activity) reduces the sCOD in the culture (Galès et al., 2019). 

The variance in this parameter could thus be influenced by both high and low 

microalgae and heterotrophic bacteria activity and their correlation pattern could have 

changed throughout the 3-year operating period, reducing their importance in the overall 

model. 
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Unexpectedly, NO2 showed a relatively small influence on the PLS model, since nitrite 

was found to inhibit microalgae growth (González-Camejo et al., 2019b). However, 

nitrite concentration was negligible most of the time during MPBR operations, which 

means little variation in this parameter and so insignificant microalgae growth 

inhibition. This was probably the reason why this variable had little influence on the 

model.  

 

3.3 Controllable variables 

Of all the variables assessed in the PCA (Section 3.1) only Lp, Fair, HRT and BRT could 

be modified or controlled, since they were either design or operating parameters. The 

remainder were either values obtained from measurements or microalgae performance 

parameters and thus could not be modified as desired. Another PLS analysis was 

therefore performed considering only the controlled variables as predictors (X-matrix). 

Figures 5d, 5e and 5f show the values obtained versus the predicted values by the new 

PLS model. In comparison to Figures 5a, 5b and 5c, it is evident that despite the new 

PLS model’s moderately accurate prediction capacity for NRR, PRR and BP, its 

capacity was noticeably worse than the PLS with the full X-matrix as predictors. This 

highlights the variability of the data obtained in outdoor systems, as reported by 

Marazzi et al. (2019) and Xu et al. (2019) and confirms the influence of the influent, 

effluent, ambient and culture variables on MPBR performance. It can thus be concluded 

that the microalgae cultivation process can only be partially controlled by the design 

and operating variables, although there are other parameters related to ambient 

conditions (such as light and temperature), biotic (competition with other 

microorganisms) and abiotic factors (e.g. nutrient loads and pH) that also play a 



29 

 

significant role in microalgae cultivation (Ambat et al., 2018; Barceló-Villalobos et al., 

2019; Galès et al., 2019; Qiu et al., 2017).  

 

3.4 Nitrification 

In the cultivation system studied, the competition between microalgae and ammonium 

oxidising bacteria for ammonium uptake can play a key role in MPBR plant 

performance, as has been shown in González-Camejo et al. (2019c). If nitrifying 

bacteria activity is low, microalgae will be favoured (Marcilhac et al., 2014). 

Conditions that minimise nitrifying bacteria will thus be pursued. For this reason, a 

specific PLS analysis was carried out to determine the main variables related to 

nitrifying bacteria activity to obtain information on the prevalent conditions that affect 

growth.  

The PLS was performed using the same predictors as those described in Section 3.2., 

but with the nitrification rate (NOxR) as the response. Four latent variables were 

statistically significant in the fitted PLS model, according to cross-validation. The 

model explained 56.2% of X-matrix variance (R
2

x) and 85.3% of the response variable 

(R
2

y), with a goodness of prediction parameter (Q
2
) that reached 78.0%. The PLS model 

performance was good, as can be seen in the measured versus predicted PLS 

nitrification rate (see Figure 7a). 

Figure 7b shows the VIP of all the explicative variables (X-matrix). As can be seen, the 

effluent nitrate concentration was the most important parameter related to NOxR 

variability. AOB compete with microalgae for ammonium uptake, transforming it into 

nitrite, while nitrite oxidising bacteria (NOB) carry out the second step of nitrification, 

oxidising nitrite to nitrate. If NOB activity is similar or higher than that of AOB, nitrite 

therefore does not accumulate and the concentration of NO3 appears as a good indicator 
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of nitrifying bacteria activity (Galès et al., 2019). It should be noted that despite 

microalgae being able to absorb nitrate to grow, its consumption rate is significantly 

lower than that of ammonium (González-Camejo et al., 2019c). High NOxR is thus 

inadvisable to reach maximum microalgae performance. 

NRR was another factor which explained high variability of the nitrification rate. In the 

loading plot of the first two latent variables of the fitted PLS model (Figure 7c), the 

projection of both variables lay in opposite quadrants, indicating an inverse correlation 

pattern between them. This result corroborates which was reported by González-Camejo 

et al. (2018; 2019c) and Rada-Ariza et al. (2019), who found that (in short-term 

periods) nitrification rates fell when microalgae activity was higher and highlights the 

importance of reducing nitrifying bacteria activity to the minimum to achieve maximum 

nitrogen recovery by microalgae. 
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Figure 7. PLS model to predict the nitrification rate (NOxR): a) Observed vs predicted 

values; b) Variable Importance in the projection (VIP) of the explicative variables; and 

c) Weight plot of the first two latent variables 

 

With respect to factors other than performance and effluent variables, the recorded 

parameters related to temperature (i.e., T, Tmin and Tmax) showed the highest correlation 

with NOxR (Figure 7b). This was probably due to the high influence of temperature on 

nitrifying bacteria activity. In fact, González-Camejo et al. (2019c) showed that AOB 

can dominate the competition at high temperatures, surpassing the microalgae. This 

means that keeping nitrifying bacteria at moderate temperatures seems to be the main 

control parameter to minimise nitrifying bacteria activity. After temperature, VSS and 

OD680 were the most relevant culture variables related to NOxR (Figure 7b). This was 
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probably related to the fact that higher microalgae biomass concentration (which was 

proportional to VSS and OD680, as can be seen in Figure 4) tended to favour 

microalgae activity in the competition with AOB for ammonium, as suggested by Rada-

Ariza et al. (2019). 

On the other hand, the influence of BRT was surprisingly lower than the other variables 

(Figure 7b). In this respect, Munz et al. (2011) observed partial nitrification (i.e., NO2 

accumulation) when BRT was under 2 days in an activated sludge reactor, while full 

nitrification (i.e., NO3 production) was achieved at BRTs between 3-5 days. The study 

of the MPBR plant corresponding to nitrite inhibition (González-Camejo et al., 2019b) 

showed the highest NRR and the lowest NOxR at a BRT of 2.5 days, while 2 and 4.5 

days reduced MPBR performance (Table 1). It therefore seems that there was no linear 

correlation between BRT and NOxR.  

 

4 Conclusions 

Data obtained during the 3-year operation of an MPBR plant was analysed by statistical 

projection methods. Of the 40 variables evaluated, PCA indicated that the 

photobioreactor light path was the factor with the highest influence on data variability. 

Other relevant factors were Fair, NRR, PRR, BP, OD680, NH4, P, HRT, BRT, NLR and 

PLR. 

The parameters that explained the highest variability of microalgae performance were 

Lp, Fair, OD680, VSS, P, HRT, TEC, Chl, NH4, Nt, NOxR and BRT. On the other hand, 

ambient factors (solar irradiance and temperature) showed a lower influence on MPBR 

performance. 

The MPBR performance estimated by the PLS model worsened appreciably when only 

the controllable variables (Lp, Fair, HRT and BRT) were used as predictors, which 
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highlights the importance of other variables in MPBR performance, and shows that the 

microalgae cultivation process can only be partially controlled by the design and 

operating variables. 

Temperature and microalgae biomass concentration appeared as leading parameters in 

controlling nitrification, while BRT had a relatively small influence on AOB activity. 
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