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Food predictability determines space use of endangered vultures:
implications for management of supplementary feeding
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Abstract. Understanding space use of free-living endangered animals is key to informing
management decisions for conservation planning. Like most scavengers, vultures have evolved
under a context of unpredictability of food resources (i.e., exploiting scattered carcasses that
are intermittently available). However, the role of predictable sources of food in shaping
spatial ecology of vultures has seldom been studied in detail. Here, we quantify the home
range of the Egyptian Vulture (Neophron percnopterus), a long-lived raptor that has
experienced severe population decline throughout its range and is qualified as endangered
worldwide. To this end, six adults were tracked by satellite telemetry in Spain during the
breeding season, from 2007 to 2012, recording 10 360 GPS locations. Using Resource
Utilization Functions, we assessed the topology of the Utilization Distribution, a three-
dimensional measure that shows the probability of finding an animal within the home range.
Our results showed how food availability, and principally, how food predictability, determines
ranging behavior of this species. Egyptian Vultures showed consistent site fidelity across years,
measured as the two- and three-dimensional overlap in their home ranges. Space use varied
considerably within the home range and remarkably, places located far from nesting sites were
used more frequently than some areas located closer. Therefore, traditional conservation
measures based on establishing restrictive rules within a fixed radius around nesting sites could
be biologically meaningless if other areas within the home range are not protected too. Finally,
our results emphasize the importance of anthropogenic predictable sources of food (mainly
vulture restaurants) in shaping the space use of scavengers, which is in agreement with recent
findings. Hence, measures aimed at ensuring food availability are essential to preserve this
endangered vulture, especially in the present context of limiting carrion dumping in the field
due to sanitary regulations according to European legislation.

Key words: conservation; Egyptian Vulture; food predictability; home range; kernel density estimators;
Neophron percnopterus; resource utilization functions; satellite telemetry; spatial ecology; utilization
distribution; vulture restaurants.

INTRODUCTION

Vultures have suffered a dramatic decline worldwide,

particularly in Asia and Africa as a consequence of

human direct persecution, indirect poisoning to kill

carnivores, and by the veterinary drug diclofenac

(Ogada et al. 2012). In Europe, besides direct and

indirect persecution, main threats include changes in

livestock husbandry practices from traditional extensive

grazing to an intensive industry, and especially, shortage

of food supply as a consequence of European sanitary

regulations due to an outbreak of bovine spongiform

encephalopathy (BSE) in 2001 (Margalida et al. 2010).

These caused changes in vultures’ behavior (Zuberogoi-

tia et al. 2010, 2013), decreased breeding success, and

have increased mortality among younger age classes

(review in Donázar et al. 2009, Martı́nez-Abraı́n et al.

2012).

Understanding space use of far-ranging animals, such

as vultures, is crucial for conservation planning and,

especially, to inform management decisions regarding

endangered species (Bograd et al. 2010, Kertson and

Marzluff 2011). The combination of recent advances in

‘‘biologging’’ technologies (i.e., the use of miniaturized

animal-attached tags for studying animal’s movements,

behavior, physiology and/or environment) with latest

analytical techniques has allowed us to make a quantum

leap in the field of movement ecology (Kernohan et al.

2001, Nathan et al. 2008, Rutz and Hays 2009).

Paradoxically, despite the endangered status of most

vulture species, our knowledge about ranging behavior

of scavengers is still very limited. Most of our current

knowledge is based on the inference from field observa-

tions of marked animals, direct observations in partic-

ular areas (e.g., breeding territories, vulture restaurants,

and migratory bottlenecks), and limited spatiotemporal

tracking using VHF telemetry (Donázar 1993, DeVault

et al. 2004). However, there is little information from

continued long-term remote-tracking of individuals by
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means of satellite telemetry (Meyburg et al. 2004,

Garcı́a-Ripollés et al. 2010, 2011, López-López et al.
2013, Monsarrat et al. 2013, Phipps et al. 2013).

Vultures are the only obligate vertebrate scavengers
and have evolved under a context of unpredictability of

food resources (i.e., exploiting scattered carcasses that
are intermittently available; Ruxton and Houston 2004).

They provide irreplaceable ecosystem services such as
waste removal, nutrient recycling, and limiting the risk
of disease transmission (DeVault et al. 2003, Ogada et

al. 2012). This, coupled with their rapid decline
worldwide, has led them to be qualified as priority

species for conservation (Directive 2009/147/EC of the
European Union on the Conservation of Wild Birds).

The Egyptian Vulture, Neophron percnopterus, could be
one of the species potentially most affected by changes

in cattle management regime, mainly owing to its low
competitive ability against other vultures (Cortés-

Avizanda et al. 2010) and its low population size
(Garcı́a-Ripollés and López-López 2011). Therefore,

the quantification of space use and the relationship
between environmental features and ranging behavior is

critical to achieve a better understanding of the spatial
ecology of this scavenger. Moreover, this will ultimately

help to inform management actions for its conservation.
The main goals of this study were to: (1) evaluate and

quantify Egyptian Vultures’ home range size during the
breeding season; (2) investigate the relationship between

space use and external factors (i.e., environmental
variables) across years and within the breeding season,
with particular emphasis on how food availability, and

especially, how anthropogenic predictable sources of
food, are determinants of space use and shape the home

range; (3) analyze the degree of repeatability (i.e., site
fidelity) in the patterns of space use of individuals, both

between years and within the breeding season; and
finally (4) derive management recommendations for

environmental assessments, for the management of
anthropogenic food subsidies, and ultimately, for

conservation plans of scavengers species.

METHODS

Study species

The Egyptian Vulture is a long-lived, medium-sized
raptor that has experienced severe population decline

throughout its range and is endangered worldwide,
according to the IUCN Red List (BirdLife International

2013). Reasons for this decline include disturbance at
nesting sites, direct and indirect poisoning, electrocution

by power lines, and reduced food availability due to
changes in traditional farming practices (BirdLife

International 2013). Spain, where 1452–1556 pairs were
surveyed in 2008, holds 30–45% of the European

population (Del Moral 2009). Egyptian Vultures feed
mainly on carrion but occasionally take small verte-

brates, eggs, and even feces (Ferguson-Lees and Christie
2001). They are territorial breeders, but roost commu-

nally on large trees and cliffs placed near suitable

foraging areas, which include dump sites, vulture

restaurants, and livestock farms. The European conti-

nental populations are migratory and travel from their

breeding grounds to wintering areas located in the Sahel

region of Africa (Ferguson-Lees and Christie 2001,

Garcı́a-Ripollés et al. 2010).

Data collection

To quantify Egyptian Vultures’ space use, we

captured six adults at two vulture restaurants located

in Castellón and Guadalajara provinces, Spain, and at

ad hoc artificial feeding stations located within breeding

territories from 2007 to 2009 (Fig. 1). We used bow-net

traps baited with giblets to capture the birds. A 45-g

solar-powered GPS tag from Microwave Telemetry

(Columbia, Maryland, USA) was mounted in a back-

pack configuration and attached using cotton ribbon,

designed to ensure that the harness would fall off at the

end of the tag’s life. The mass of the equipment,

including the harness, metal ring, and tag, was below 3%
of the bird’s body mass, which is within recommended

limits (Kenward 2001). The GPS tags were programmed

to obtain GPS fixes every two hours during the breeding

season (February–September) on a 16 hours ON/8

hours OFF duty cycle (06:00–22:00 hours, Greenwich

Mean Time), which coincided with vulture activity

during daylight hours. Data were retrieved and managed

using the Satellite Tracking and Analysis Tool (Coyne

and Godley 2005).

Only locations recorded during complete breeding

seasons, i.e., since the arrival in Europe from the African

wintering grounds (February–March) until the onset of

autumn migration (August–September), were included

in this study. Therefore, we discarded the data belonging

to the breeding season in which birds were trapped.

Data were filtered to exclude erroneous fixes (i.e., with

0–0 coordinates). Consecutive relocations at known

roosting sites were included as only one independent fix

to avoid a bias toward roosting areas in space use

analyses (Seaman and Powell 1996, Kenward 2001).

Nocturnal movements were also excluded because

Egyptian Vultures do not forage during the nighttime

(López-López et al. 2013).

Field visits to each territory were also regularly

conducted (three to five times per breeding season) to

confirm the presence of the individuals, courtship,

breeding behavior, incubation, and eventually, to record

breeding success (further details about field methods are

available in Garcı́a-Ripollés and López-López 2006).

For the general goals of this study, data for each

breeding season were divided into three periods: (1)

‘‘pre-laying period,’’ which spanned from the arrival at

breeding areas until egg laying (March–April); (2)

‘‘incubation þ nestling period,’’ which comprised 42

days of incubation (Ferguson Lees and Christie 2001)

and the period in which nestlings remained in the nest

just before their first flights (April to late July early

August) (75 days, on average; Donázar and Ceballos
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1989); and (3) ‘‘pre-migration period’’, including the

dependence period of juveniles until the onset of autumn

migration to African wintering grounds (August–Sep-

tember). Egyptian Vultures nest in caves, so when birds

began the incubation, the GPS started to send irregular

GPS locations and several 0–0 coordinates, a clear

indication that the GPS was not directly exposed to

sunlight. This circumstance, followed by an immediate

field visit, allowed us to estimate the egg-laying date with

an error of 63 days.

Space use

We quantified Egyptian Vultures’ home range by

means of fixed-kernel density methods (Worton 1989,

Kenward 2001). To assess different levels of space use,

we computed 95%, 75%, and 50% kernel density

contours using the ‘‘Animal Movement’’ extension for

ArcView 3.2 (Hooge and Eichenlaub 2000). The area

encompassed within the 95% contour represents a

standard measure of the home range, whereas the 50%
kernel is usually considered a good indicator of the core

area of activity (Seaman and Powell 1996; e.g.,

Campioni et al. 2013). We also included an intermediate

measure (i.e., 75% kernel) to achieve a balance between

the entire home range and the areas most used. We used

the least squares cross validation method (LSCV) to

calculate the smoothing parameter (Silverman 1986),

which produces an objective and accurate estimate of

home range size (Silverman 1986, Seaman and Powell

1996). The combination of kernel density estimators

through location-based kernels and LSCV offers an

optimal combination of ecological and statistical valid-

ity (Cumming and Cornélis 2012). Additionally, we also

calculated the ‘‘overall’’ home range as the minimum

convex polygon (MCP) encompassing all relocations

obtained for each bird (Worton 1989). This estimate,

although it usually tends to overestimate the extent of

the ‘‘true’’ home range (Seaman et al. 1999), was

computed to facilitate comparisons with other studies

and regions. Importantly, a preliminary analysis showed

that there was no significant correlation between the

four different measures of home range size (MCP and

kernels 95%, 75%, and 50%) and the number of

relocations obtained per individual (Appendix B: Table

B1). This preliminary test of the effect of sample size on

the home range size is critical because it allows the ruling

FIG. 1. Study area within the Iberian Peninsula (upper left rectangle) and flow chart of the methods used in this study. Satellite
fixes (black circles, lower left) were recorded for each Egyptian Vulture (upper right; photo credit: Valentı́n Moreno) tracked by
GPS satellite telemetry and were used for computing home range size, spatial parameters, and their corresponding three-
dimensional Utilization Distribution (UD, lower right). The height of the UD indicates the relative probability of use within the
home range (Marzluff et al. 2004). Resource attributes (i.e., topography, land use, population, and food availability) were sampled
on a cell-by-cell basis from resource maps within the UD (e.g., in this case, Corine land cover). These attributes were related to the
height of the UD by means of multiple regression analysis adjusted for spatial autocorrelation, thereby obtaining the Resource
Utilization Function, RUF (Marzluff et al. 2004); see Methods for details). Locations and UD shown here are illustrative of a
particular example.
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out of possible bias in the estimation of space use due to

individual variability (Kernohan et al. 2001).

Spatial parameters

We calculated the average spider distance (SD) and

the eccentricity (ECC) of home ranges, which both

represent a measure of spread of the ranging area. SD is

a linear indicator of the home range size and was

calculated as the average distance from the arithmetic

center of all relocations (ACL) to each particular

relocation (Hooge and Eichenlaub 2000). The eccentric-

ity of home ranges was calculated as the distance from

the nest used in each particular year to the ACL, and

was used to assess the extent to which the breeding area

was centered on the home range (Bosch et al. 2010). Like

measures of home range, spatial parameters did not

correlate with the number of relocations per animal

(Table B1, Appendix B).

Resource utilization functions analysis

Traditional resource selection analyses have been

grounded in the comparison of resource use vs. resource

availability (Manly et al. 2002). Resource use can be

easily quantified as the number of locations recorded in

each resource class, or as the proportional occurrence of

a resource within home range (Marzluff et al. 2004).

However, obtaining an adequate measure of resource

‘‘availability’’ becomes a problematic question (Thomas

and Taylor 1990, Millspaugh et al. 2006). To overcome

this problem, Marzluff et al. (2004) proposed an

alternative, straightforward method based on relating

resources to a probabilistic measure of space use, the so-

called utilization distribution (UD). Basically, the UD is

a probability density function obtained through kernel

density analysis that shows the probability of finding an

animal within the home range as a function of relocation

points (Silverman 1986, Worton 1987, Kernohan et al.

2001). Therefore, we obtained the UDs for the

combination of each individual–year (i.e., overall

breeding season, N ¼ 18; e.g., #75657–2009) as well as

for each individual–period–year (N ¼ 54; e.g., #75657–

pre-laying–2009) using the ‘‘Animal Movement’’ exten-

sion for ArcView 3.2 (Hooge and Eichenlaub 2000). The

UD displays a three-dimensional measure of space use

across the home range in which the height of the UD

represents the probability of use at each pixel (Mills-

paugh et al. 2006); see Fig. 1. Then, following Marzluff

et al. (2004), we related space use with resource use using

resource utilization functions implemented in the ‘‘ruf’’

package (Handcock 2012) for R version 2.15.3 (R Core

Team 2013). To that end, we sampled a set of

environmental variables (i.e., resources) at each pixel

of the UD and used multiple regression analysis to relate

the UD height to these environmental predictor

variables (Marzluff et al. 2004). Pixel size was deter-

mined by the smallest pixel size of the environmental

variables (80 3 80 m), thereby increasing spatial

resolution to the limit. The spatial extent of space use

was defined as the 99% fixed-kernel home range

boundary (Marzluff et al. 2004, Kertson and Marzluff

2009). One of the main advantages of the RUF method

is that it accounts for spatial autocorrelation by

incorporating a Matern correlation function (Handcock

and Stein 1993, Marzluff et al. 2004). The importance of

each resource to variations in the UD (i.e., the measure

of resource use) was indicated by the magnitude of the

standardized coefficients of the RUFs (Marzluff et al.

2004). A complete review of the basics and a discussion

of the pros and cons of RUFs can be found in Marzluff

et al. (2004), Millspaugh et al. (2006), and Hooten et al.

(2013).

Environmental variables

To extract landscape metrics and relate them to the

measures of space use, we first created a sampling point

grid that extended across the UD. This was done with

the ‘‘Hawth Tools’’ extension (Beyer 2004) for ArcMap

9.2 (ESRI 2006). The UDs were first sampled to extract

the values of space use (i.e., the height of the UD). Then,

four sets of environmental variables were measured:

topography, land use, population, and food availability.

We avoided sampling a large number of resources to

prevent multicollinearity among predictor variables and

inclusion of resources that could be biologically

meaningless (Mac Nally 2000). Topographic variables

included the measurement of the altitude of each pixel of

the sampling grid through a digital elevation model

(DEM) obtained from the Shuttle Radar Topography

Mission with a resolution of 3-arc seconds (available

online).2 We also calculated the aspect, which was

derived from the DEM and was categorized into five

main classes (1, North; 2, East; 3, South; 4, West; 5, flat

areas). The land cover layer was provided by the Corine

2000 Land Cover program (available online).3 Corine

2000 is divided into 44 land cover classes (i.e., third-level

CORINE codes). We grouped them into four main

categories: artificial surfaces (ART, codes 111–142),

agricultural areas (AGR, 211–244), forests and semi-

natural areas (FOR, 311–335), and wetlands, water

bodies, and rivers (WAT, 411–523). The full Corine land

cover legend is available online through the European

Environmental Agency.4 Human population was ob-

tained from the Spanish Statistical Office corresponding

to the census conducted in 2011 (data available online).5

Population density was computed in ‘‘Spatial Analyst

tools’’ of ArcMap joining the population database with

a point shapefile including the 8117 municipalities of

Spain. Finally, eight resource levels of food availability

were used in the analyses. Seven resources, including the

number of horses, goats, sheep, cows, pigs, rabbits, and

2 http://srtm.csi.cgiar.org/
3 http://www.eea.europa.eu/data-and-maps/data/corine-land-

cover-2000-raster-2
4 http://www.eea.europa.eu/
5 http://www.ine.es/
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poultry per municipality were obtained from the

publicly available Agricultural Survey carried out in
Spain in 2009 (available online).6 Finally, we incorpo-

rated an environmental variable including the presence/
absence of predictable sources of food within the area

encompassed by the full extension of all home ranges.

This resource level included supplementary feeding
places (i.e., vulture restaurants managed by the admin-

istration), dumping sites, poultry waste treatment plants,
and cattle pens where cattle give birth their young. This

layer was created and integrated into a raster data set by

combining information from different Spanish regional
environmental administrations and specific fieldwork

conducted throughout the study period. All samplings
of resources were computed in Geospatial Modelling

Environment software (Beyer 2012).

Site fidelity

To quantify site fidelity of individuals across years
and between periods of the breeding season, we

calculated the two- and three-dimensional home range
overlap (Kernohan et al. 2001) in ArcMap following

Kertson and Marzluff (2009). Two-dimensional overlap
provides a basic measure of site fidelity, regardless of

habitat use within the home range (Fieberg and

Kochanny 2005). Furthermore, three-dimensional over-
lap takes into account differential probabilities of space

use and quantifies site fidelity by means of the UD
(Fieberg and Kochanny 2005). Further details about

specific formulae used for this analysis are available in
Appendix A. In both cases, site fidelity was tested at the

individual level (i.e., within individuals). Between-

individual overlap of home ranges was not computed.
Measures of two- and three-dimensional overlap are

given as percentage 6 standard deviation and range.

Statistical analysis

Space use and spatial parameters were analyzed

considering two temporal scales: (1) an ‘‘overall

timescale’’ including each complete breeding season
and (2) a ‘‘seasonal timescale’’ divided into ‘‘pre-laying,’’

‘‘incubation þ nestling,’’ and ‘‘pre-migration’’ periods,
separately (for a similar approach, see Campioni et al.

2003). The overall scale allowed us to provide a general
estimation of Egyptian Vultures’ spatial ecology and the

seasonal scale enabled us to account for potential

variations in space use within the breeding period.
First, we used the Shapiro-Wilk normality test to

determine whether measures of home range size and
spatial parameters were normally distributed. Because

these variables did not follow a normal distribution,

descriptive results are given in median 6 interquartile
range (Gotelli and Ellison 2004). Next, because we had

repeated measures for the same individual between and
within years, we analyzed overall and seasonal differ-

ences in home range size, spatial parameters, standard-

ized RUF coefficients, and site fidelity by means of

linear mixed models, LMMs (Zuur et al. 2009).

Differences between sexes were not tested due to limited

sample size. The variables ‘‘seasonal period’’ and ‘‘year’’

were included as fixed effects and the ‘‘individual’’ was

incorporated as a random effect. In order to find the best

model structure, we followed the top-down strategy

suggested by Zuur et al. (2009). Initially, we fitted a full

factorial model (‘‘beyond optimal model’’ sensu Zuur et

al. 2009), and then we tried different models, varying the

structure of fixed effects. These models were compared

using the maximum likelihood estimation. Finally,

having selected the best structure of fixed effects, we

presented the best model using the restricted maximum

likelihood estimation (Zuur et al. 2009). Models were

validated by checking for homoscedasticity and normal-

ity of the residuals. To that end, relevant model

diagnostic graphs were computed (residuals against

fitted values, residuals against each explanatory variable,

histogram of residuals, and normality Q–Q [quantile–

quantile] plots; Zuur et al. 2009). When required,

variables were previously log-transformed to meet the

assumptions of LMMs. For models including individual

as the random term, we reported the intra-class

correlation coefficient (ICC), which measures the

correlation between observations from the same indi-

vidual and can be interpreted as a measure of

consistency of the results (Bartko 1966). It was

computed as ICC ¼ d2/(d2 þ r2), where d2 is the

covariance between any two observations for the same

individual and its variance is d2þ r2 (Zuur et al. 2009).

Thus, higher ICC values indicate higher evenness among

observations of the same individual. Moreover, we also

reported a generalized R2 for the random effect,

calculated as the squared correlation between the fitted

values of the model and the observed values of the data

(Zheng and Agresti 2000). This value provides informa-

tion about the amount of variation in the data explained

by the random effect (i.e., between-individual variation);

see Campioni et al. (2013). Computations were run with

the ‘‘nlme’’ extension for R (Pinheiro et al. 2013).

We compared individual standardized RUF coeffi-

cients in order to rank resource use at both overall and

seasonal scales. Relative importance of resources was

evaluated by the magnitude (i.e., positive or negative

sign) of the standardized RUF coefficients (Marzluff et

al. 2004, Millspaugh et al. 2006). To test for consistency

in selection of resource use at the population level, we

tested the null hypothesis that the average b̄ was zero

(see Marzluff et al. [2004] for a complete description of

this method). In addition, for the combination of each

individual–period–year–resource category, we ranked

the models including topography, land use, population,

and food availability (including food predictability)

resources by means of the Akaike information criterion

(Burnham and Anderson 2002). Statistical analyses were

6 http://www.ine.es/jaxi/menu.do?type¼pcaxis&path¼
%2Ft01%2Fp042/E01&file¼inebase&L¼1
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performed using STATISTICA version 10.0 (StatSoft

2010). Statistical significance was set at P , 0.05.

RESULTS

Overall, 10 360 valid GPS fixes were used for analyses,

with a mean 6 SD of 1727 6 856 relocations/bird (range

643–2689). All birds were territorial breeders according

to fieldwork. One bird (transmitter code #75657) was

tracked during five consecutive breeding seasons (2008–
2012), three individuals (#80420, #89730, and #89731)

were tracked during three breeding seasons (2010–2012),

and two birds (#75659 and #80419) were tracked during

two breeding seasons (2009–2010 and 2010–2011).

According to molecular sexing, two birds were males
(#80420 and #89731) and four birds were females

(#75657, #75659, #80419, and #89730).

Home range size

Descriptive values of home range size and spatial
parameters are available in Table 1. At the overall

timescale, median size of home range areas ranged from

47 km2 (core area) to 101 km2 (kernel 75%), 253 km2

(kernel 95%), and 1257 km2 (MCP). At this scale, home

range size and spatial parameters did not show
interannual variations (i.e., the variable ‘‘year’’ was not

included in the best LMMs), thus showing evenness in

ranging behavior across years. At the seasonal timescale,

home range sizes according to kernel 95% (K95), kernel

75% (K75), and kernel 50% (K50) were significantly
lower during the ‘‘incubationþ nestling’’ period (Fig. 2).

The MCP size did not vary among periods. Moreover,

we observed high intra-individual consistency in home

range size (ICCMCP ¼ 0.36; ICCK95 ¼ 0.42; ICCK75 ¼
0.36; ICCK50 ¼ 0.29) and moderate levels of between-
individual variation (R2

MCP ¼ 0.55; R2
K95 ¼ 0.65; R2

K75 ¼
0.64; R2

K50 ¼ 0.60).

Similar results were observed for spatial parameters.

The measures of SD and ECC were significantly lower

during the incubation þ nestling period in comparison

with the other two periods. Again, there was large intra-

individual consistency in spatial parameters (ICCSD ¼
0.39; ICCECC¼0.26) and intermediate levels of between-

individual variation (R2
SD ¼ 0.51; R2

ECC ¼ 0.48). In all

cases, validation results showed nonsignificant deviation

of residuals from a normal distribution (P . 0.05 in all

Shapiro-Wilk tests). Model validation graphs of LMMs

are available in Appendix B: Figs. B1–B8). Remarkably,

all birds’ home ranges were eccentric both at overall and

at seasonal timescales, indicating that breeding sites

were not located in the center of the home range (Table

1).

Predictors of space use

According to model ranking for the combination of

each individual–period–year–resource category, the

RUF analysis showed that the best predictors of space

use at the individual level were those models including

food variables, which were ranked first in 75.00% of

cases. Models including population, topography, and

land-use predictors were ranked first in 15.28%, 5.56%,

and 4.69% of cases, respectively (Fig. 3).

At the population level, the results of RUFs showed

that Egyptian Vultures had increased space use in areas

within the home range where food availability was

higher, especially during the incubationþnestling period

(Table 2). Particularly, in this period, Egyptian Vultures

preferred areas with high density of sheep and poultry

and avoided areas with high concentrations of horses,

cows, and pigs. During the pre-laying period, Egyptian

Vultures avoided areas of higher altitude, and during the

incubation þ nestling period, vultures decreased space

use in southern-oriented areas. Importantly, the occur-

rence of predictable sources of food was the only

predictor of space use that was positively selected in all

three seasons (pre-laying, P ¼ 0.002; incubation þ
nestling, P ¼ 0.002; pre-migration, P ¼ 0.014; Table 2).

These results showed high consistency at the population

level, thus showing that food predictability plays a key

role in shaping the UD for Egyptian Vultures.

TABLE 1. Home range size and spatial parameters (median with IQR in parentheses) of six adult Egyptian Vultures (Neophron
percnopterus) tracked by GPS satellite telemetry in Spain over different periods.

Parameter and units Pre-laying Incubation þ nestling Pre-migration Overall breeding season

MCP (km2) 272.9
(170.6�1701.8)

582.6
(435.9�741.7)

526.4
(370.0�1997.3)

1257.0
(745.2�3954.4)

K95% (km2) 262.5
(205.1�2313.8)

210.7
(125.4�254.8)

303.9
(131.3�2708.3)

253.3
(201.7�1669.9)

K75% (km2) 143.6
(75.0�1171.5)

51.4
(22.3�83.3)

76.3
(47.2�1037.0)

101.2
(62.9�660.6)

K50% (km2) 72.8
(43.2�649.9)

15.9
(11.9�33.5)

37.4
(26.3�555.5)

46.6
(26.4�343.7)

SD (m) 13 489.9
(8723.4–45 118.2)

8219.8
(7037.8–14 038.9)

11 144.4
(8512.7–36675.9)

15 453.6
(12 098.2–30 980.1)

ECC (m) 17 435.2
(7177.5–26750.3)

4828.0
(3471.4�9420.2)

7499.2
(4810.4–20 795.2)

10 400.8
(7627.3–14 731.0)

Notes: Abbreviations are IQR, interquartile range; MCP, minimum convex polygon; K, fixed-kernel density; SD, spider
distance; ECC, eccentricity. Surface units (MCP and kernels) are expressed in square kilometers, and distance units (SD and ECC)
in meters. In all cases, N ¼ 18 (i.e., six individuals per three periods and 18 breeding seasons overall).
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When standardized RUF coefficients were compared

individually among seasons, results of LMMs showed

that Egyptian Vultures showed a clear preference for

areas where predictable food resources and sheep

density were higher (for food predictability, model

estimate 6 SE ¼ 3.869 6 1.652, P ¼ 0.019; for sheep,

model estimate 6 SE ¼ 4.001 6 1.652, P ¼ 0.016). The

other standardized RUF coefficients did not show

differences at the seasonal timescale (Appendix B: Table

B2). At the overall timescale, LMMs did not converge to

a significant model, thus indicating that no relevant

differences in measures of space use were detected across

years.

Site fidelity

In relation to site fidelity, Egyptian Vultures showed a

high level of two-dimensional home range overlap at the

individual level across years and among periods of the

breeding season. The percentage of overlap among

seasonal periods (mean 6 SD) was 68.02% 6 25.53%
(range 0.03�100%, N ¼ 126) and home range overlap

within individuals across years was 72.76% 6 21.97%
(range 4.21–100%; N ¼ 42). No differences were

observed in home range overlap either among seasonal

periods (SEAS) or among years (YR) (all P . 0.05),

FIG. 2. Boxplots of log-transformed home range size of adult Egyptian Vultures (Neophron percnopterus) satellite-tracked in
Spain. Home range was quantified by means of the minimum convex polygon (MCP) and fixed-kernel density methods (see
Methods: Space use for computational details). Horizontal lines show the median, box ends are the 25th and 75th percentiles, and
whiskers show 5th and 95th percentiles. Pre-laying spanned arrival at breeding areas until egg laying (March–April); laying
(incubationþnestling period) included 42 days of incubation and ;75 days in which nestlings remained in the nest just before their
first flights (April to late-July or early August); and pre-migration was the period from juvenile dependence until the onset of
autumn migration to African wintering grounds (August–September). Home range size was significantly lower during the
incubationþ nestling period (except for MCP, encompassing all relocations obtained for each bird). See Results: Home range size
for details.

FIG. 3. Model rankings for each resource category accord-
ing to Akaike Information Criterion. Differences in AIC (i.e.,
DAIC) were computed for the combination of each individual–
period–year–resource category (N¼ 288 models). For example,
models including the resource category ‘‘food’’ were ranked first
in 75% of cases, 4% of cases in second place, 13% in third place,
and 8% in fourth place.

PASCUAL LÓPEZ-LÓPEZ ET AL.944 Ecological Applications
Vol. 24, No. 5



mainly due to important intra-individual variation in

home range overlap in the intra-class correlation

coefficient (ICCSEAS ¼ 0.100; ICCYR ¼ 0.106) and low

levels of between-individual variation (R2
SEAS ¼ 0.135;

R2
YR ¼ 0.168).

Considering the UD, the percentage of three-dimen-

sional overlap among periods was 55.13% 6 16.10%

(range 15.81–81.91%, N ¼ 63) and UD overlap across

years was 67.72% 6 7.5% (range 45.19–76.54%; N¼ 21).

Significant differences were found in the degree of

overlap at the seasonal timescale, which was higher

during the incubation þ nestling period (incubation þ
nestling, model estimate 6 SE ¼ 0.129 6 0.048, P ¼
0.009). Between-individual variation in UD overlap was

low (R2
SEAS ¼ 0.113). At the overall timescale, no

differences were found in the degree of UD overlap

across years. Intra-individual consistency in UD overlap

was high (ICCYR ¼ 0.717) and between-individual

variation was moderate (R2
YR ¼ 0.619).

DISCUSSION

The amount of information available about animal

movement is increasing exponentially, allowing for rapid

advances in our understanding of spatial ecology of

organisms (Cooke et al. 2004). We are now able to

answer old questions (i.e., when, where, and how far

animals move during their life) with novel information,

by quantifying animals’ home ranges, obtaining proba-

bilistic measures of space use, and, ultimately, linking

them with resource selection (Silverman 1986, Worton

1989, Kernohan et al. 2001, Marzluff et al. 2004). To the

best of our knowledge, here we have provided the first

quantitative assessment of the home range size of the

Egyptian Vulture by means of GPS satellite telemetry.

Our results showed greater home range size, as

TABLE 2. Estimates of standardized RUF (resource utilization function) coefficients (b, mean with 95% confidence limits in
parentheses) and P values for six adult Egyptian Vultures tracked by GPS satellite telemetry in Spain over different periods.

Model and resource

Pre-laying Incubation þ nestling Pre-migration Overall breeding season

Standardized b P Standardized b P Standardized b P Standardized b P

Topography �0.318
(�0.609, �0.027)

0.033 �0.302
(�0.585, �0.019)

0.037 0.034
(�0.291, 0.360)

0.835 �0.070
(�0.191, 0.050)

0.247

ALT �1.207
(�2.290, �0.124)

0.031 �0.777
(�1.907, 0.353)

0.165 0.183
(�1.179, 1.545)

0.780 �0.240
(�0.746, 0.265)

0.330

ASP1 �0.063
(�0.230, 0.104)

0.436 �0.246
(�0.515, 0.023)

0.071 0.023
(�0.085, 0.130)

0.662 0.013
(�0.033, 0.058)

0.564

ASP2 �0.054
(�0.275, 0.167)

0.613 �0.076
(�0.316, 0.164)

0.513 0.013
(�0.147, 0.174)

0.862 �0.024
(�0.052, 0.004)

0.090

ASP3 0.053
(�0.178, 0.284)

0.632 �0.109
(�0.210, �0.008)

0.036 �0.083
(�0.363, 0.197)

0.541 �0.030
(�0.076, 0.016)

0.185

Land use �1.971
(�3.904, �0.037)

0.046 �0.721
(�1.778, 0.335)

0.174 0.083
(�0.721, 0.888)

0.835 �0.679
(�1.623, 0.265)

0.153

AGR �1.760
(�4.148, 0.628)

0.137 �0.696
(�2.086, 0.693)

0.302 �0.184
(�1.195, 0.828)

0.706 �0.606
(�1.867, 0.655)

0.322

FOR �2.182
(�5.521, 1.157)

0.184 �0.746
(�2.509, 1.016)

0.381 0.350
(�1.005, 1.705)

0.592 �0.752
(�2.312, 0.807)

0.320

Population, POP 1.038
(�1.270, 3.347)

0.356 0.315
(�1.270, 1.901)

0.680 �0.047
(�0.774, 0.681)

0.893 0.406
(�0.523, 1.335)

0.369

Food �0.160
(�2.501, 2.180)

0.892 �0.189
(�1.367, 0.989)

0.752 �0.192
(�2.102, 1.717)

0.842 0.082
(�0.662, 0.826)

0.828

HOR �3.661
(�8.351, 1.029)

0.118 �2.005
(�3.686, �0.324)

0.022 �0.094
(�2.738, 2.549)

0.941 0.205
(�0.182, 0.592)

0.279

GOAT �9.168
(�19.409, 1.072)

0.076 �3.487
(�8.580, 1.605)

0.167 3.729
(�6.380, 13.838)

0.447 �2.528
(�6.429, 1.372)

0.189

SHEEP 5.998
(�2.870, 14.866)

0.172 3.272
(0.117, 6.428)

0.043 0.135
(�2.980, 3.250)

0.928 0.601
(�0.775, 1.976)

0.370

COWS �5.566
(�12.074, 0.941)

0.089 �4.527
(�8.641, �0.414)

0.033 �2.209
(�7.672, 3.254)

0.405 �1.434
(�4.306, 1.438)

0.307

PIGS 1.176
(�2.867, 5.219)

0.547 �1.915
(�3.798, �0.032)

0.047 1.304
(�1.666, 4.275)

0.367 0.066
(�0.617, 0.749)

0.840

RABB 3.937
(�4.163, 12.037)

0.320 0.516
(�3.485, 4.516)

0.789 �5.312
(�14.791, 4.167)

0.253 1.966
(�0.702, 4.634)

0.138

POULT 1.705
(�3.872, 7.283)

0.527 3.370
(0.445, 6.294)

0.026 �0.541
(�4.732, 3.649)

0.788 0.998
(�1.157, 3.153)

0.342

PRED 4.296
(1.844, 6.749)

0.002 3.265
(1.372, 5.158)

0.002 1.449
(0.327, 2.571)

0.014 0.780
(�0.215, 1.775)

0.116

Notes: Abbreviations are ALT, altitude; ASP, aspect; AGR, agricultural areas; FOR, forests and seminatural areas; POP,
human population density; HOR, horses; RABB, rabbits; POUL, poultry; PRED, predictable sources of food. Relative importance
of resources is indicated by the magnitude (positive or negative) of mean standardized b (Marzluff et al. 2004). Consistency in
selection at the population level is indicated by significance of b. Significant P values (testing the null hypothesis that the average b
¼ 0; see Marzluff et al. 2004) are in boldface.
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calculated as MCPs or as according to fixed-kernel

density estimators, than that reported in previous works.

In fact, explicit works quantifying Egyptian Vulture’s

home range were lacking and data with which to

compare our figures were usually immersed in other

works about other aspects of the basic ecology of

Egyptian Vultures. For example, home range size of a

territorial adult tracked by radio-tracking in Spain was

estimated as 21 km2 (Ceballos and Donázar 1988) and

10–15 km2 in a similar study conducted in Israel with 10

pairs and two trios (Levy 1990). Donázar (1993)

reported a core area size between 0.07 and 0.37 km2.

Home range size of two nonbreeding adults ranged

between 95 and 523 km2 and was estimated at 40 km2

for a nonbreeding immature (Donázar 1993). Differenc-

es between our figures and those provided by previous

studies are easily accounted for by differences in the

tracking methods, indicating that visual observation and

radio-tracking tend to underestimate measures of home

range size (Kenward 2001). Other authors estimated

core area and home range size based on a circle with 1

km (3.14 km2) and 8 km (;200 km2) radii from the nest,

respectively (Carrete et al. 2007), although these

measures were set arbitrarily. The lack of accurate

measures of Egyptian Vulture’s home range could be

explained by the difficulty in capturing adult birds.

Hitherto, the majority of Egyptian Vultures marked

have been nestlings, which usually remain in the floater

population, with most of them in Africa (P. López-

López, C. Garcı́a-Ripollés, and V. Urios, unpublished

data) until sexual maturity is attained, approximately at

the age of five years (Grande et al. 2009).

Our results showed that home range size and spatial

parameters did not vary across years, thus demonstrat-

ing repeatability in ranging behavior regardless of

possible annual variations in ecological conditions. In

contrast, home range was larger during the pre-laying

and pre-migration periods than during the incubationþ
nestling period. All birds exhibited this common pattern,

regardless of individual variations in the absolute size of

their home ranges. Spider distances showed that birds

reduced their foraging movements during the period in

which they were more linked to the nest, probably to

defend their territory and to avoid predation of their

chicks by other raptors (Newton 1979). Interestingly,

our results showed that Egyptian Vultures’ home ranges

were eccentric; that is, territories were not centered in

the nest site. This has important implications from both

an ecological and a conservation point of view.

Ecologically, the main determinant of home range shape

(i.e., according to the kernels’ topology) was the spatial

distribution of predictable sources of food. Similar

results were described by Ceballos and Donázar

(1988), who found that maximum distances traveled by

a marked individual were determined by how far from

its nesting site vulture restaurants were. Similar results

have also been reported for the Eurasian Griffon

Vulture Gyps fulvus (Garcı́a-Ripollés et al. 2011,

Monsarrat et al. 2013). Remarkably, our results showed

that, for all birds, places far from nesting sites (i.e., 20–

30 km away) were used more frequently (i.e., had higher

UD values) than some closer areas (e.g., ,5 km away).

This challenges common approaches in conservation

that are based on the assessments of potential threats

within a pre-fixed radius around nesting sites, which is

set arbitrarily by researchers or by environmental

authorities (Jennrich and Turner 1969). In fact, large-

scale conservation assessments, analyses of habitat

preferences, demographic analyses, and evaluations of

extinction risk were based on this approach, although in

most cases they lacked biological justification (e.g.,

Carrete et al. 2007, 2009, Grande et al. 2009). Therefore,

although the ‘‘precautionary principle’’ could be argued

for this practice (thereby at least part of the core area of

activity is included), we urge that environmental risk

assessments, conservation planning, and studies of

resource selection should incorporate spatially explicit

information and should be evaluated case by case,

taking into account ranging behavior of the target

species rather than relying on a fixed radius around

nesting sites, which may miss additional areas of

importance within the home range.

According to the RUF analysis, the best predictor of

Egyptian Vulture space use at the individual level was

the availability of food resources. This result was

consistent both across years and within seasonal

periods, with all individuals showing a similar pattern.

Interestingly, at the population level, our results

emphasized the importance of predictable sources of

food in shaping the space use of this scavenger.

Predictable sources of food included mainly vulture

restaurants and, to a lesser degree, other places such as

traditional dump sites, slaughterhouses, poultry waste

treatment plants, and cattle pens where cattle are

temporarily housed and give birth their offspring. In

fact, Egyptian Vultures made long displacements daily

or every two to three days to these places (in some cases

up to 250 km outward-and-return), where they could

easily fulfil feeding requirements. In the light of the

ongoing debate about the advantages and shortcomings

of supplementary feeding for vultures (Deygout et al.

2009, Donázar et al. 2009, Cortés-Avizanda et al. 2010,

Dupont et al. 2012), our results highlight the importance

of predictable sources of food in the trophic ecology

and, consequently, in the preservation of this endan-

gered scavenger. In addition, our findings also have an

important conservation implication because predictable

sources of food are potential predictors of the space use

of scavengers (Garcı́a-Ripollés et al. 2011, Monsarrat et

al. 2013, Phipps et al. 2013). Therefore, managers could

take advantage of this information and anticipate

potential impacts of the construction of man-made

structures (e.g., wind farms, power lines, and so forth)

close to, or in the way of, these predictable sources of

food. Conversely, managers can plan in advance the best

location for vulture restaurants.
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The magnitude of resource use by Egyptian Vultures

varied between seasonal periods. Vultures increased

space use in areas where food predictability was higher,

especially during the pre-laying and pre-migration

periods, probably to fulfil energy requirements after

and before migration (Garcı́a-Ripollés et al. 2010,

López-López et al. 2013). Egyptian Vultures are

territorial breeders, but show an important social

behavior at these predictable sources of food, roosting

communally nearby (Cortés-Avizanda et al. 2011).

According to our fieldwork, in all cases communal

roosting places were associated with predictable sources

of food, particularly vulture restaurants. Communal

roosting places play a key role in pair bonding, allowing

the establishment of social relationships, and as infor-

mation centers, where Egyptian Vultures could take

advantage of a crowding effect (Cortés-Avizanda et al.

2011).

Conservation implications

Egyptian Vultures showed high levels of site fidelity

according to both two- and three-dimensional overlap in

their home range across years and among periods of the

breeding season. A high degree of repeatability in space

use indicates that ranging behavior does not change

significantly over time; a similar pattern has also been

reported for other raptors (Campioni et al. 2013). This is

positive from the conservation point of view because it

allows for the establishment of effective, long-term

conservation measures if ecological conditions are not

to change.

Like most scavengers, Egyptian Vultures are human-

subsidized species nowadays, particularly in Europe

(Deygout et al. 2009, Oro et al. 2013). Vulture

restaurants are an essential conservation technique to

preserve populations of endangered scavengers, always

under adequate sanitary guarantees and with a con-

trolled carrion disposal (Dupont et al. 2012). From an

academic point of view, it is easily arguable that

supplementary feeding management should mimic nat-

ural conditions, based on numerous ‘‘light’’ feeding

stations supplemented with low quantities of food, thus

simulating low predictability in food resources as it

occurs in natural conditions (Cortés-Avizanda et al.

2010, 2012, Monsarrat et al. 2013). Policies to favor

population recovery of wild herbivores and the autho-

rization of the abandonment of livestock carcasses in the

field can also be advocated to help to maintain

populations of avian scavengers (Margalida et al.

2010). Notwithstanding, we consider that taking into

account the current framework of highly subsidized

cattle-raising in Europe, especially by the Common

Agricultural Policy of the European Union (available

online),7 the lack of generational turnover in cattle

farmers, and the continuous process of abandonment of

traditional pastoralism (Bernués et al. 2011), conserva-

tion planning of endangered species should meet reality

and be more pragmatic. Recent findings have shown

that predictable anthropogenic food subsidies may help

to increase population numbers of endangered species

through reduction in the variance of demographic

parameters (Oro et al. 2013). Predictable sources of

food buffer the influence of environmental stochasticity

(Cortés-Avizanda et al. 2012, López-López et al. 2013),

thus increasing the time to extinction (Oro et al. 2013).

Considering the key role of vulture restaurants in the

space use of Egyptian Vultures, we advocate to keep

them functioning to facilitate population increase of the

Egyptian Vulture at least to a better conservation status.
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SUPPLEMENTAL MATERIAL

Appendix A

Computation of two- and three-dimensional overlap in home ranges (Ecological Archives A024-055-A1).

Appendix B

Correlation test between measures of home range size, spatial parameters, and the number of relocations obtained per individual;
LMM for the standardized RUF coefficients; and model validation graphs for the LMMs of the home range area (Ecological
Archives A024-055-A2).
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