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Abstract: Recently, Fourier light field microscopy was proposed to overcome the limitations
in conventional light field microscopy by placing a micro-lens array at the aperture stop of the
microscope objective instead of the image plane. In this way, a collection of orthographic views
from different perspectives are directly captured. When inspecting fluorescent samples, the
sensitivity and noise of the sensors are a major concern and large sensor pixels are required
to cope with low-light conditions, which implies under-sampling issues. In this context, we
analyze the sampling patterns in Fourier light field microscopy to understand to what extent
computational super-resolution can be triggered during deconvolution in order to improve the
resolution of the 3D reconstruction of the imaged data.
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1. Introduction

Based on the principles of integral photography introduced in 1908 [1], lenslet-based (plenoptic)
imaging systems [2] have since attracted a lot of interest and have become an important category
in computational imaging research. Plenoptic cameras, commonly called light field cameras
(although light field imaging is a more generic concept, not limited to lenslet-based devices),
make use of a micro-lens array (MLA) inserted in the optical path at various relative distances to
the camera sensor [3–6] to capture the spatio-angular information of the 3D far scene in a single
shot, enabling various post-acquisition possibilities like volumetric refocusing [3,7,8] or depth
estimation [9–11].
Naturally, the technology was also adopted in optical microscopy, where Levoy et al. [12]

introduced it as light field microscopy (LFM); it is also referred to as integral microscopy (IMic)
in the literature [13,14]. It has since emerged as a very capable scan-less optical imaging modality
well-suited for highly-dynamic fluorescent biological specimens, allowing for subsequent 3D
reconstruction [15–17]. LFM has been demonstrated in various biomedical application, including
recording neuro-dynamics in vertebrate model organisms [18,19] or live cell imaging [20].

While the scan-less 3D imaging capability is very attractive, the modality trades off lateral for
axial resolution. In the early stages, the methods for rendering the 3D scene out of the captured
light field were limited to lateral lenslet resolution [12,15], which is the number of available
micro-lenses. More recently, Broxton et al. [16] demonstrated that superior lateral resolution
(higher than the lenslet count) can be recovered via means of computational super-resolution. The
same principles were explored in light field photography as well [21,22]. The key observation
in these works is that the light sampling pattern of the plenoptic imaging systems is highly
depth-dependent, and that the lenslet sampling rate is considerably below the band limit of
the incoming light field for most of the axial range. Spatial aliasing can then be explored
through sub-lenslet shifts to recover higher lateral resolution at certain depths in the 3D scene.
However, the improvement in resolution is implicitly non-uniform across depth. Moreover, when
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performing 3D reconstruction at uniform object space resolution, the under-sampled (by the
microscope) depths exhibit specific artifacts. This effect is particularly strong around the native
object plane (NOP), which is commonly referred to as the zero plane [16,18]. While the zero
plane artifacts in the reconstruction have been very recently addressed in [17] via a resampling
strategy during the deconvolution process, the recoverable resolution is ultimately limited by the
design of the microscope and the resolution at the NOP remains low.

To address this limitation, there is a considerable amount of research which proposes various
approaches. Examples include defocused plenoptic configurations [17,20,24] which manipulate
the sampling pattern by altering the relative distances in the optical path (e.g. MLA to sensor),
various hardware variations like wavefront coding techniques [25], hybrid systems combining
a light field with a wide field acquisition [26] or simultaneous dual LFM setups [19] with
complementary acquisition parameters. While generally successful to some extent in improving
the lateral resolution or extending the depth of field, these extensions come usually with a
hardware overhead or high computational costs, or both.

Recently, Fourier integral microscopy (FiMic) [27], also called Fourier light field microscopy
(FLFM), was proposed to address the limitations in conventional light field microscopy (or integral
microscopy), by placing a micro-lens array at the aperture stop of the microscope objective. With
such a modification, a Fourier (far-field) image of the aperture stop is recorded by each micro-lens
and thus a collection of orthographic views (elemental images) is directly captured on the sensor.
While compact in design, the proposed microscope demonstrated extended depth of field and
enhanced lateral resolution of the elemental images (EIs) in comparison with the extracted views
in regular light field microscopy [28]. A custom setup (with a specialized MLA consisting of
interleaved micro-lenses with two different focal lengths) based on the same principles, was
recently used to demonstrate impressive resolution in 3D neuro-dynamics recording of fish larvae
[29]. Another recent work [30] proposes deconvolution by a wave-based point spread function
(PSF) in FLFM. The particular PSF introduced, however, carries an unnecessary computational
overhead and is not very flexible with respect to setup variations, as we will discuss in section 3.1.
A feature that inherently characterizes the orthographic images captured in FLFM, when

working with fluorescent samples, is the under-sampling of the PSF. This happens due to the
sensitivity and noise requirements of the camera sensors, which are often met by the use of large
pixels. Note that this problem does not occur in conventional fluorescence microscopy due to the
large magnification factor between the object and the sensor planes.
In this work, we analyze the image formation process in fluorescence FLFM to understand

how the modified microscope samples the light field, and, based on this analysis, we discuss the
conditions and extent of the computational super-resolution that is possible in FLFM. We then
propose a diffraction-aware forward light propagation model to describe the system’s impulse
response and use this to volumetrically reconstruct the images. We evaluate our method on
experimental images of the USAF 1951 resolution target and cotton fibers. As a teaser, Fig. 1
shows clearly superior results compared to the well known shift and sum refocusing algorithm
[23] used in the baseline work by Scrofani et al. [28].

The methods we develop in this work are related to computational super-resolution techniques
used in computer vision and computational photography, where sub-pixel shifts (or sub-lenslet
shifts in light field photography [16]) between multiple aliased views of the same scene are
combined to recover an image at sub-pixel resolution. In this light, computational super-resolution
should not be confused with optical super-resolution which aims at breaking the diffraction limit
of imaging systems, like Stimulated Emission Depletion (STED) or Photoactivated Localization
Microscopy (PALM).
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Fig. 1. Reconstruction of the USAF 1951 resolution target. Top: (a) Raw elemental image
of the resolution target acquired with our experimental FiMic (shown is a close up on groups
6 and 7 of the central elemental image). (b) The post-acquisition refocused image using
the popular algorithm of shifting views and summing up [23]. (c) The deconvolved image
at sensor resolution. (d) The reconstructed image at a 3x super-sampling of the object
space, exploiting complementary multi-view aliasing in the elemental images. Bottom:
Line profiles through the elements 6.4 to 7.3 of the images above. While the elemental
image (a) and the refocused image (b) resolve up to element 6.4 (11 µm), the deconvolution
resolves up to element 6.6 (8.8 µm) in (c) and element 7.1 (7.8 µm) in the computationally
super-resolved image (d).

2. Background

2.1. Fourier integral microscope

A Fourier integral microscope (FiMic) is built by inserting a micro-lens array (MLA) at the
back aperture stop (AS) of a conventional microscope objective (MO) and recording far-field
(Fourier) perspective views of the object under each micro-lens. In order to be consistent with
the nomenclature in the state-of-the-art work [28], we will also refer to the perspective views as
elemental images (EIs).
Figure 2(a) illustrates a ray diagram of the light propagation through a FiMic. Since the

AS is usually not accessible for commercial microscope objectives, the configuration depicted
here employs a telecentric optical relay system (RL1 and RL2, with focal lengths f1 and f2,
respectively) to conjugate the AS plane and the MLA plane. Note that, when f1 , f2, there is a
relay magnification factor Mrelay =

f2
f1 that contributes to the total system magnification. For an

arbitrary source point in front of the objective, o(ox, oy, z), we will represent the axial coordinate
as z = fobj + ∆z, since an object at the front focal plane (the native object plane, NOP) is in focus
in a conventional wide-field microscope. fobj is the focal length of the objective lens. Then ∆z
is an offset from the NOP, and we will refer to it when talking about depth in the subsequent
sections.
A source point at a depth z in front of the MO has a conjugate image at z′ by the first relay

lens, RL1. This intermediate image is then picked up by the second relay lens, RL2, and finally,
magnified images of the field stop (FS) are recorded behind each micro-lens as the light reaches
the camera sensor. The FS, as depicted in Fig. 2(b), controls the lateral extent of the micro-images
as µimage = rFS

fml
f2 . Here rFS is the radius of the FS, fml is the focal length of the micro-lens and

µimage is the radius of the EI formed on the sensor. In order for the EIs to optimally cover the
sensor plane (without leaving space between them or overlapping), the micro-image radius must
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Fig. 2. Image formation in FLFM. (a) Ray diagram: light field propagation through the
Fourier integral microscope. The FiMic depicted here makes use of an optical relay system
(RL1 and RL2 with focal lengths f1 and f2, respectively) which conjugate the back aperture
of the microscope objective (MO) with the MLA plane. The reason for the relay is that the
back aperture is usually not accessible in conventional commercial MOs. A source point
o(ox, oy, z = fobj + ∆z) in front of the MO has a conjugate image by the first relay lens (RL1)
at z′. RL2 picks up this image and magnified images are recorded behind each micro-lens
as the light reaches the camera sensor. fobj denotes the MO focal length and ∆z represents
the axial offset from the native object plane. (b) The field stop (FS) controls the size of the
elemental images (EIs) as well as the size of the microscope’s field of view. See Eq. (1) and
Eq. (2). (c) Overlapping images of the USAF resolution target when the FS is too large.
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match the micro-lens radius, µimage = rml. Then the radius of the FS satisfies:

rFS = rml · f2/fml. (1)

It quickly follows, as depicted in Fig. 2(b), that the FS determines the field of view (FOV) of the
FiMic, as its radius satisfies:

rFOV = rFS · fobj/f1. (2)

Figure 2(c) shows a simulated light field image of the USAF 1951 resolution target with
overlapping EIs when the FS does not satisfy Eq. (1).

2.2. Aliasing and computational super-resolution

By design, behind the micro-lenses, the FiMic records EIs with dense spatial sampling and each
with different angular content. The number of micro-lenses that can be fitted within the AS
is N = Mrelay

robj
rml

, with robj being the radius of the AS. Then such a setup captures N angular
views of the imaged scene. With an equivalent (in terms of MO) wide-field microscope, these
EIs could be captured if pinholes would be placed at certain positions over the AS. Hence, the
recorded light field consists of pinhole views at N locations over the numerical aperture of the
objective, NAobj. The number of micro-lenses controls the spatio-angular resolution trade-off. By
increasing N we may capture more views, however, at a lower spatial resolution as the effective
numerical aperture is reduced proportionally, NAobj

N [28].
When aiming at 3D reconstruction of the imaged object, the resolution of the volumetric

reconstruction is directly determined by the band limit of the recorded signal in each perspective
view. Thus, high-frequency details in the volume can only be recovered if they can be resolved
in the views. Under the Rayleigh resolution criterion for diffraction limited systems [31], two
source points are resolved in each of the EIs, when they are separated by at least a distance:

δdiff = N
λ

2NAobj
, (3)

where λ is the wavelength of the light we employ.
On the other hand, the sampling rate in an EI is crucial in determining how high frequencies

of the light field signal are recorded on the sensor. Within each EI, the sampling period in the
object space is given by the camera pixel pitch, ρpx divided by the total system magnification
factor, MFiMic =

fmlf1
f2fobj

. Then, using Nyquist’s criterion, we define the sensor resolution as:

δsensor = 2
ρpx

MFiMic
. (4)

When δsensor samples the signal below the band limit, high frequency details of the light field
appear aliased as low frequency features in the individual EIs. One could potentially try to
alleviate the under-sampling issues by proper selection of the relay magnification. However, this
is not a good strategy since such an increase of the magnification involves the reduction of the
FOV and the need of high-NA micro-lenses which have poor optical quality [28].

We introduce the super-sampling factor s ∈ Z to characterize the object space sampling rate of
our reconstructed volumes. If we sample the volume at a rate s times the sensor resolution, the
lateral voxel spacing is:

δsuper =
δsensor

s
. (5)

There are various works in computer vision demonstrating computational super-resolution through
combining multiple aliased low-resolution images acquired at sub-pixel camera movements
[32–37]. In light field photography and conventional light field microscopy, computational
super-resolution was addressed by exploiting sub-lenslet sampling [16,17,21,22,38,39].
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Fig. 3. Aliasing and EI sampling rates. a) The EIs formed behind off-axis micro-lenses are
shifted with respect to the centers of the micro-lenses. b) FiMic image of the USAF 1951
resolution target placed at ∆z = −100µm. c) Zoomed-in regions of the EIs in b) showing
distinct aliasing patterns in areas with high frequency features as highlighted by the arrows.
The micro-lens centers (red dots) and the EI centers (dark blue dots) are mismatched for
the off-axis EIs. d) The EIs exhibit different shift pattern with object depth. e) EIs offsets
in pixels from the micro-lens centers with respect to a reference EI (closest to the optical
axis) for objects placed at ∆z = [-120, 120] µm. The µlens index = 0 refers to the central
micro-lens (closest to the OA). f) Sub-pixel shifts of the EIs with respect to the reference EI
over depth. It is these sub-pixel shifts between the captured views that record complementary
aliased information and motivate computational super-resolution.
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In Fourier light field microscopy, the EIs form behind the micro-lenses at specific translational
offsets with respect to their corresponding micro-lens centers. In Fig. 3(a) a ray diagram of the
image formation of a point source away from the NOP is depicted. The first part of the light
propagation is omitted for the sake of clarity of the figure. The center of the image (µimage)
formed behind an off-axis micro-lens, with respect to the optical axis (OA) of the system, is
translationally offset from the corresponding micro-lens (µlens) center. We will refer to the EI
behind the micro-lens centered on the OA as the reference EI, since this image is aligned with
the micro-lens. Then the translational offsets specific to the off-axis EIs are stated with respect to
this image. Figure 3(b) shows an image acquired with our experimental FiMic of the USAF-1951
resolution target placed at ∆z = −100µm in front of the MO. And Fig. 3(c) shows zoomed-in
regions of three arbitrarily picked EIs of the image in Fig. 3(b). The centers of the micro-lenses
are marked in red on the image, while the centers of the EIs are marked in blue to highlight the
misalignment between them. These images contain distinct complementary aliasing patterns
(especially noticeable for elements 6.4 and 6.5 of the USAF target) which motivate computational
super-resolution. Figure 3(d) illustrates how the shift patterns change with object depth and
Fig. 3(e) visualizes these shifts in pixels (between each micro-lens and its corresponding EI) for
an axial range [-120, 120]µm to give an intuitive understanding on how the image formation
in FLFM varies with object depth. The µlens index being zero refers to the reference (central)
micro-lens, which is the closest to the OA.
More interesting for our discussion are the sub-pixel shifts which are the fractional part of

the pixel shifts in Fig. 3(e). Figure 3(f) displays the absolute value of the sub-pixel shifts as a
function of axial position of the source point and µlens index and they appear highly irregular,
although consistent in density across depth. The lack of symmetry with respect to the ’µlens
index’ axis is due to the fact that the reference EI is not perfectly aligned with the optical axis,
but rather the most central one, as it is not trivial to perfectly align the MLA with the optical axis
in practice. However, this misalignment does not impact our reasoning, as long as the location
of the sub-imaging systems (micro-lenses) can be determined. When computing the system’s
response for a specific arrangement, we first detect the relative positions (with respect to the
reference EI) of the centers of the micro-lenses. Also, at the zero plane (∆z = 0µm) the off-axis
EIs show no shift in Fig. 3(f). However, the concept of NOP in experimental FLFM is rather
mathematical than physical as any small displacement from that plane gives rise to a collection of
EIs with subpixel shifts. When we present the results we show that super-resolution is achievable
also around the NOP.
In order to recover high-frequency features, enough images with distinct aliasing patterns

should be combined, such that the sub-pixels shifts constitute a sufficiently dense sampling
pattern [40–43]. Such requirements contribute to the ultimate fundamental resolution limits of
the deconvolved image, the band limit through diffraction limit, the camera pixel size, sensitivity,
fill factor and prior scene information [44]. When the sensor pixels are close to or smaller than
the diffraction limit (generally the case in microscopy), the aliasing is probably neglectable and
computational super-resolution is of relatively low impact. We will discuss these aspects when
we present our results in section 4..

3. 3D reconstruction

In order to obtain a 3D reconstruction of the imaged sample, we aim at characterizing the point
spread function (PSF) of the system and use it to perform deconvolution.

3.1. Light field point spread function model

In this section we introduce a wave-based forward light propagation model to describe the
optical system’s PSF. For that we derive the diffraction pattern of a source point when the light
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propagates through the FiMic from the source to the camera sensor and we discuss the wavefront
at intermediate key planes in the following subsections.
A source point o(0, 0, oz = fobj + ∆zo) in front of the microscope generates, according to

Rayleigh-Sommerfeld theory [45], a wavefront distribution at the front focal plane of the objective:

U0(x, y; o) = (A/r) eikr(sign(∆zo)), (6)

where A is the amplitude of the source electrical field, r =
√

x2 + y2 + ∆z2o is the distance between
the source point and the observation point (x, y) at the front focal plane, k = 2π

λ is the wave
number and λ is the wavelength of the assumed monochromatic light.

According to Debye scalar integral representation, the wavefront distribution at the back focal
plane of the objective is given by [46]:

UAS(ras; o) =
∫ α

0
U0(θ; o) J0(kras sin(θ)) sin(θ) dθ, (7)

where ras = (xas, yas) stands for the lateral coordinate at the AS, α is the aperture angle so that
NAobj = sin(α), and θ = sin−1(ras/fobj). J0 represents the zeroth order Bessel function of the first
kind. From this equation we recognize a Fourier-Bessel transformation between the amplitude at
the front and the back focal planes.
The wave propagation between the AS and the MLA can be accurately described under the

Fresnel approximation, Thus, the wavefront incident on the MLA array is the magnified version
of the wavefront at the MO aperture stop:

UMLA−(xmla, ymla; o) = UAS

(
xmla

Mrelay
,

ymla
Mrelay

; o
)
, (8)

where Mrelay =
f2
f1 . As pointed out in Sec. 2.1, for practical design reasons, the FiMic makes use

of a relay system, depicted by the RL1 and RL2 lens in Fig. 2(a), in order to mimic the MLA
being placed at the AS plane (Fourier plane) of the objective. There is no need to explicitly
model the relay system, however we have to account for the induced magnification factor, Mrelay.
When f1 = f2, the relay is 1:1 and the wavefront distributions UMLA− and UAS are the same.

In [30], the authors have very recently presented a similar wave-based model for describing
the incident field on the MLA. They directly compute the wavefront at the intermediate image
plane (in our naming scenario this is at the back focal plane of RL1) using the Debye integral
derivation for 4f systems [45] and then Fourier transform this field to obtain the distribution at
the MLA. This brings an unnecessary computational overhead and a degree of inflexibility as the
model confines the FiMic design to configurations containing the relay lenses, which as we have
discussed above, do not need explicit modeling. The relay system in our experimental setup is an
auxiliary construction due to the AS not being physically accessible in commercial MOs, and not
an essential specification of the FiMic.

In the next step, the wavefront is further transmitted by the MLA. The field UMLA+ immediately
after the MLA is given by:

UMLA+(xmla, ymla; o) = UMLA−(xmla, ymla; o) · T(xmla, ymla). (9)

Here T is the MLA transmittance function modeled by replicating the single lenslet transmittance
in a tiled fashion, T = reppml,pml

(
t(xl, yl)

)
; with reppml,pml being the 2D replication operator and

pml the spacing between micro-lenses. t(xl, yl) = P(xl, yl)e
ik(x2l +y2l )

2fml is the complex transmittance
function of a lenslet and (xl, yl) are the local lenslet coordinates, while P(xl, yl) is the lenslet pupil
function [16,17].
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Finally, similarly to [17], we employ the Rayleigh-Sommerfeld diffraction solution [31] to
further propagate (for a fml distance) the light field to the sensor plane:

Usens(xs, ys; o) = F −1
{
F

{
UMLA+(xs, ys; o)

}
· Hrs(fX , fY )

}
, (10)

where (xs, ys) are the coordinates at the sensor plane, F represents the Fourier transform operator,
and (fX , fY ) are the spatial frequencies at the image plane. Hrs is the Rayleigh-Sommerfeld transfer
function, given by:

Hrs(fX , fY ) = e

(
ik ·fml
√
1−(λfX )2−(λfY )2

)
. (11)

The fact that we deal with an under-sampled process, in which the PSF is smaller than the pixel
size, the small shape changes in the PSF due to the imperfections in the optical system have
little relevance and therefore validate our decision of using the analytic LFPSF. Additionally, it
must be taken into account that, since we are using well-corrected optical equipment (the MO
and the achromatic lenses), our experiments are subjected to the same aberrations problems as
conventional microscopes, and therefore we do not consider aberrations as a topic of special
concern.

3.2. Effect of scattering

When it comes to scattering effects, the FLFM is less sensitive than classical plenoptic imaging
devices. Note that in conventional LFM, all the rays emitted by a point at the native object
plane should be collected by the same micro-lens. Then, scattering affects (depending on the
magnitude) to an appreciable extent the micro-lens that is capturing the photons and subsequently,
the spatio-angular information captured by the system. In contrast, in FLFM each micro-lens
(combined with the MO) behaves as an independent microscope with a different perspective.
And although each of them has problems with the scattering, they exhibit the same problems as
the native microscope. Finally, the advantage is that the milky background that appears in the
images due to scattering, is compensated in FLFM during the reconstruction procedure, since
only the ballistic photons are recorded with the adequate disparity.

3.3. 3D deconvolution

Given the raw noisy light field sensor measurements m = (mj)j∈J acquired by pixels j ∈ J
(|J | = m) we seek to recover the fluorescence intensity at each discrete point in the volume which
produced these measurements. We represent the discretized volume v by a coefficient vector
(vi)i∈I with |I | = n. Note that the sampling rate in v is dictated by the super-sampling factor s
defined in the previous section. Due to the low photon counts in fluorescence microscopy, the
sensor pixels follow Poisson statistics, yielding the stochastic imaging model: m ∼ Poisson(Av),
where m denotes the light field measurement, v denotes the discretized volume we seek to
reconstruct, and the operator A = (aji)j∈J,i∈I describes the light field forward model, which is
effectively determined by the FiMic point spread function in Eq. (10). For each point in a
fluorescent object, the image intensity is given by the modulus squared of its amplitude [45]:
aji =

��Usens(xs(j), o(i))
��2, where o(i) is the object space coordinate of voxel i, and xs(j) is the

coordinate of sensor pixel j. We now employ the well known Richardson-Lucy algorithm [47,48]
to estimate v. The iterative update in matrix-vector notation reads:

vq+1 =
vq

AT1

[
AT m

Avq

]
, (12)

where q is the iteration count. For a more detailed derivation of the reconstruction algorithm we
refer the reader to [17].
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When we assume an aberration-free context, thanks to the strategic placement of the MLA
at the at the back aperture stop of the MO, the light field PSF of the FiMic is translationally
invariant for a fixed axial coordinate. Each micro-lens represents a sub-imaging system with
spatially invariant PSFs and since all the micro-lenses are identical, the whole FiMic imaging
system can be characterized by a shift invariant LFPSF, as a superposition of these individual
PSFs [29]. Conveniently, this allows for the application of the columns of the matrix A for each
depth ∆z via a 2D convolution operation when implementing the iterative scheme in Eq. (12).

For practical reasons, when we discretize the object using the lateral spacing δsuper introduced
in Eq. (5), we upsample the raw light field image by the super-sampling factor s. To make sure
this step does not alter the measurements, we employ a nearest neighbor upsampling method.

4. Experimental results

In order to demonstrate the potential of our method, the deconvolution results in this section
were obtained at various super-sampling factors and compared with the the refocusing algorithm
of pixel shifting and summing [23] and with the central EI of the raw image. All the results
were obtained after 50 iterations of the scheme in Eq. (12), which coincides with a drop in the
improvement rate (based on the absolute square difference from the previous iteration) below
10−2 and the solutions were initialized with uniform white texture (ones).

It is important to note that the factor s relates to the sampling rate we chose for reconstructing
the volumes and has nothing to do with the actual details that can be recovered, which is the
effective resolution of the FiMic as addressed in section 2.2. We refer the interested reader to
existing discussions on the subject [27,28,30].
The experiments in this work were performed with a custom-built FiMic containing a MLA

with fml = 6.5mm, µlens = 1.0mm (AMUS APH-Q-P1000-R2.95) and an infinity corrected MO
(fobj = 9.0mm and NAobj = 0.4). For recording the images we used a CMOS camera (EO-5012c
1/2") with pixel pitch ρpx = 2.2µm.

4.1. Analysis of the reconstruction resolution

We imaged the USAF-1951 resolution target at various axial positions in the [-120,120]µm range
using our experimental setup. As mentioned in section 2, since the AS was not mechanically
accessible, we used an optical relay system (f1 = 125mm, f2 = 200mm) to conjugate the AS plane
and the MLA plane. This configuration fits N = 11.5 micro-lenses in the AS. Under the resolution
criterions in Eq. (3) and Eq. (4), the expected lateral resolution limit (when λ = 480nm) of this
setup is at best δdiff = 6.9µm, while the sensor sampling resolution is δsensor = 9.7µm. On the
USAF resolution target, these values are approximately represented by the elements 7.2 and 6.5,
respectively.

Figure 4(a) shows the central EI of the raw FiMic image (green), the shift and sum refocusing
algorithm (yellow), our deconvolution at object space sampling s = 1 (red) and s = 3 (blue) of
the groups 6 and 7 of the USAF 1951 resolution target placed at ∆z = {0,−20,−50,−100}µm.
To characterize the recoverable resolution of our FiMic configuration, in Fig. 1 we display
line profiles for elements 6.4 to 7.3 of the USAF target arbitrarily placed at ∆z = −80µm. To
determine if one element is resolved, we check for the existence of an intensity dip of 25% [13].
The central EI, and similarly the refocused image, resolves up to element 6.4, which corresponds
to a lateral resolution of 11µm. By removing the out-of-focus blur, the deconvolution (s = 1)
resolves up to element 6.6 (8.8µm). And by fusing the aliased information in the EIs, in the
super-resolved reconstruction (s = 3), we can recover element 7.1, corresponding to 7.8µm.

It is worth remarking here that the difference between δdiff and δsensor changes with the number
of sub-aperture images, N. It quickly follows from the definitions in Eq. (3) and Eq. (4), that
when λ<4NAmlρpx, the more angular samples we record, the more under-sampled they are by
the system. For our configuration, this inequality is well satisfied and thus the potential for
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Fig. 4. Reconstruction of the USAF 1951 target imaged at ∆z = [-120, 120] µm. a) Example
central EI of the FiMic image (green), the refocused image (yellow), the deconvolved image
at sensor resolution (red), the deconvolved image at 3x sensor resolution (blue) for arbitrarily
picked axial positions ∆z = {0,−20,−50,−100}. When compared to the raw and refocused
images, the deconvolved images appear to better resolve details through deblurring. Element
7.1 appears resolved in the super-resolved image (blue oval). b) Contrast of the USAF
element 7.1 over ∆z = [-120, 120] µm is generally constant for all the methods in a). As
expected, the super-resolved deconvolution shows the best contrast.
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computational super-resolution. On the other hand, although we record N = 11.5 views, this
does not dictate the actual improvement factor we can obtain via super-sampling, which is rather
determined by the density and the level of distinction in the aliasing patterns the EIs exhibit and
ultimately band limited. For the presented USAF target images, reconstructing at s>3 did not
improve the resolution any further.

Finally, in order to analyze the behaviour of the reconstruction regarding object axial positioning,
we compute the contrast measure c = (Imax − Imin)/(Imax + Imin) [16,49], for the element 7.1 for
each method in Fig. 4(a), over the [-120,120]µm axial range. Imax and Imin are the minimal and
maximal intensities along a line perpendicular to the stripes of the element 7.1 The final contrast
(average of the vertical and horizontal stripes contrasts) as a function of depth is aggregated for
all the discussed methods in Fig. 4(b). In agreement with the analysis in Fig. 1, the central EI and
the refocused image show low contrast when compared to the deconvolved and super-resolved
images. And very importantly, the plots suggest that the variation in contrast over the axial
position is rather low, which means the lateral resolution in FLFM is uniform across depth, unlike
in conventional LFM, where the resolution is highly non uniform.
The runtime of one iteration of our unoptimized CPU Matlab implemented algorithm (see

section 6.) is 0.55 seconds at s = 1, and about 16 seconds at s = 3 on an Intel Core i7-6800K
at 3.40 GHz for the USAF target (1920 × 2560). The PSF kernels are very sparse and with
dedicated accelerators for convolution operations the performance of the algorithm can be greatly
improved.

4.2. Reconstruction of a real 3D sample

We further evaluate the proposed methods on real volumetric data of cotton fibers.
Figure 5(a) (left) shows a raw FiMic image of cotton fibers captured with our experimental

setup configured in a similar way as in the previous section. This time, the relay lenses, RL1
and RL2 have focal lengths f1 = 50mm and f2 = 40mm, which introduce a relay magnification,
Mrelay = 0.8x. Under red light with λ = 680nm, the expected lateral resolution limit for this
configuration is δdiff = 4.9µm and the sensor sampling resolution is about the same. In order to
evaluate our proposed computational super-resolution algorithm, we binned the pixels (2x2) in
the LF image to artificially double the sensor pixel size. This results in δsensor = 9.8µm. The LF
image is shown in Fig. 5(a) together with zoomed-in regions of an EI for details. We reconstructed
the sample over an axial range of ∆z = [-150,150]µm for every 10 µm at super-sampling rates
s = 1 and s = 4 as displayed in Fig. 5(b) and Fig. 5(c). While in both cases we see details that are
not visible in the raw image, the improvement in the super-resolved deconvolution is evident.
The close-up in Fig. 5(c), as well as the xz and xy projections cleary show structure that are not
resolved in the normal deconvolution in Fig. 5(b).
Finally, the runtime for one iteration of the algorithm for the cotton fibers is 0.85 seconds

at s = 1, and about 80 seconds at s = 4 for the cotton fibers (740 × 1020 × 31), on the same
workstation (Intel i7-6800K at 3.40 GHz).

5. Conclusion

Fourier light fieldmicroscopy addresses the limitations in conventional LFM,where computational
super-resolution has a major impact. It is then natural to ask ourselves if there is something we
can do computationally to improve the resolution in this different FLFM arrangement. When
inspecting fluorescence specimens, the camera pixels need to be relatively large to cope with
low light conditions. Then for certain FiMic setup configurations, the light field signal is
under-sampled.

In this workwe analyze the sampling requirements in FLFM to understand how the sampling rate
of the camera pixels impacts the recoverable spatial resolution through volumetric deconvolution.
We then derive a flexible wave-based light field point spread function and use it to perform 3D
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Fig. 5. 3D reconstruction of cotton fibers. a) Raw image acquired with our experimental
FiMic setup and zoomed-in regions of an EI for details. b) Maximum intensity projections
(MIPs) and zoomed-in regions of the 3D reconstructed sample (∆z = [-150,150]µm) using
our proposed method at sensor resolution (s = 1). c) MIPs of the super-resolved 3D
reconstruction at 4x sensor resolution (s = 4). The deconvolved images resolve structures
structures that do not show in the EI. The close-ups in b) and c) clearly shows that the
super-resolved reconstruction recovers fine details in the sample, that are not resolved in the
normal deconvolution.
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reconstruction. We demonstrate, using experimental images of the USAF 1951 resolution target,
that when the system samples the light field below its band limit, computational super-resolution
is possible to some extent. Hence, successful deconvolution fuses the complementary information
in aliased perspective views to recover high frequency details in the imaged scene. We further
evaluate the proposed methods for volumetric samples (cotton fibers) and show superior 3D
reconstruction quality over state-of-the-art methods.

6. Implementation and datasets

The example datasets shown in section 4. together with the implementation of the methods
described in this paper are available as part of our 3D reconstruction framework for light field
microscopy oLaF, available at: https://gitlab.lrz.de/IP/olaf.
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