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Abstract. Low-dimensional (quasi-) 2D perovskites are being extensively studied in order to enhance the 

stability and the open-circuit voltage of perovskite solar cells. Up to no, thin 2D perovskite layers on the 

surface and/or at the grain boundaries of 3D perovskite have been deposited solely by solution processing, 

leading to unavoidable intermixing between the two phases. In this work, we report the fabrication of 

2D/3D/2D perovskite heterostructures by dual source vacuum deposition, with the aim of studying the 

interaction between the 3D and 2D phases as well as the charge transport properties of 2D perovskites in 

neat 2D/3D interfaces. Unlike what normally observed in solution-processed 3D/2D systems, we found a 

reduced charge transport with no direct evidence of surface passivation. This is likely due to a non-favorable 

orientation of the 2D perovskite with respect to the MAPI and to the formation of 2D phases with very low 

dimensionality (virtually pure 2D). 
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Organic–inorganic metal halide perovskites are being widely studied because of their exceptional 

optoelectronics properties, i.e. high absorption coefficient, ambipolar charge transport, easy-to-tune 

bandgap, among others.1–3 Importantly, high quality perovskite films can be deposited through a variety of 

scalable methods, either from solution or in vacuum, and assembled into optoelectronic thin-film devices.4,5 

These properties lead to the demonstration of perovskite solar cells (PSCs) with certified power conversion 

efficiency (PCE) of 24% in only 10 years of development.6 The most widely studied perovskite 

compositions, such as methylammonium lead iodide (CH3NH3PbI3, MAPI), are based on the three-

dimensional (3D) AMX3 structure, where A represents a monovalent organic or inorganic cation, typically 

methylammonium (MA), formamidinium (FA), or caesium (Cs+), M is a divalent metal cation (Pb2+ or 

Sn2+) and X is a halide (Cl-, Br-, I-). 7–10 In spite of the high efficiency PSCs demonstrated for these materials, 

polycrystalline perovskite thin films still contain defects, notably at the surface, which limits the device 

performance as a consequence of non-radiative charge recombination.11,12 Defects on the surface and on the 

grain boundaries also play an important role in the permeation of moisture or oxygen into the perovskite 

film, accelerating the film/device degradation. Several methods have been reported to simultaneously 

passivate and enhance the stability of perovskites13, most  notably the use of additive, alternative precursors 

or altered stoichiometry,14–16 embedding small alkali metal cations17–19, or the use of thin organic buffer 

layers at the perovskite/transport material interface. 20–23 

More recently, several works reported on mixed dimensional perovskites, using monoammonium or 

diammonium cations which interact with the 3D perovskite, not only passivating surface defects but also 

improving the device stability, thanks to the hydrophobic character of the alkylammonium chains.24,25 The 

structural analysis of modified 3D perovskite films suggested the coexistence of two distinct phases: a 3D 

perovskite layer and a 2D (layered) perovskite. 2D perovskites form when the inorganic lead halide 

framework cannot accommodate the large organic cations into a 3D structure, and collapses into a low 

dimensional material with inorganic sheets separated by the organic cations. The general formula for pure 

2D perovskites is (R-NH3)2MX4, where R is an aliphatic or aromatic group. The layered perovskite family 

is not restricted solely to this structure and thicker inorganic sheets can be incorporated as well. In the 

Ruddlesden–Popper layered perovskites with formula (RNH3)2(A)n−1PbnI3n+1 the thickness of the inorganic 

layers increases with increasing n.26 The properties of this last class of materials, also known as quasi-2D 

perovskite, have been widely studied.2728 It was shown that solar cells with n < 40 show inferior 

performance as a consequence of a reduced charge carrier mobility.2930 Ruddlesden–Popper perovskites 

have been applied to light-emitting diodes and solar cells, showing good charge transport properties, 

enhanced photovoltage and stability.29,31–37383940  

A complementary approach involves the use of 2D-3D bilayers. The underlying concept is to combine the 

high efficiency of 3D absorber with the stabilization and passivation properties of 2D perovskites.41 These 
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bilayers can be prepared by functionalization of the 3D perovskite surface with large ammonium cations, 

resulting in the formation of a thin low dimensional perovskite layers.42–454647,4849 Alternatively, the direct 

processing of a 2D perovskite film on top of a pre-formed 3D material can also be beneficial for the bottom 

perovskite film.5051 Up to now the introduction of thin 2D perovskite layers on the surface and/or at the 

grain boundaries of 3D perovskite has been carried out solely by solution processing, leading to unavoidable 

intermixing between the 2D and 3D perovskites, with the formation of an intermediate, low dimensional 

quasi-2D layer.52 Vacuum deposition is an alternative solvent-free technique suited to develop multilayer 

perovskite structures.53 Vacuum processing of perovskites is intrinsically additive, eliminating issues such 

as the solubility limitation of precursors, or the need of orthogonal solvents in order to process multilayer 

devices.54,55 At the same time, it allows a fine control over the film thickness and the deposition of high 

purity semiconductors.56,57 Recently, a 3D/2D heterojunction produced exclusively by vacuum methods has 

been reported.58 The heterojunction consisted in a MAPI film (formed by conversion of a sublimed PbI2 

layer converted with MAI vapors), subsequently exposed to butylammonium iodide vapors, forming a 

surface layer of the quasi-2D perovskite (BA)2(MA)n‐1PbnI3n+1, with n ≈ 3. While an increase in stability 

was found for the surface-modified solar cells, the performance and especially the photovoltage was not 

found to improve as compared to the reference MAPI devices. 

In this work, we report the fabrication of 2D/3D perovskite heterojunctions by dual source vacuum 

deposition, with the aim of studying the interaction between the 3D and 2D phases as well as the charge 

transport properties of 2D perovskites in neat 2D/3D interfaces. We prepared 2D/MAPI/2D perovskite 

heterostructures by employing pure MAPI (3D) and pure phenethylammonium lead iodide (PEA2PbI4, 2D). 

These structures where integrated in vacuum deposited perovskite solar cells. In order to rationalize the role 

of each interface, we also separately studied the two possible bilayer configurations, 2D/MAPI and 

MAPI/2D. Unlike what observed in solution-processed 3D/2D films, we observed a generally hindered 

charge transport with no direct evidence of surface passivation. These phenomena are likely due to a non-

favorable orientation of the 2D perovskite with respect to the MAPI (growth parallel to the substrate and 

impeding charge transport) and to the formation of 2D phases with very low dimensionality (n virtually 

equal to 1). In spite of to the lower mobility and unfavorable orientation of the 2D perovskite, we identified 

a tradeoff between the open circuit voltage (Voc, which was found to increase up to 1.1 V) and fill factor 

(FF, related to charge transport), as a function of the 2D layer thickness.  

The 2D-PEA2PbI4 perovskite thin films were prepared by co-sublimation of the precursor compounds, 

phenethylammonium iodide (PEAI) and lead iodide, upon calibration of the deposition rate for each 

material. The calibration factor was obtained by comparing the thickness of the thin-film detected from the 

quartz crystal microbalance sensors with that measured with a mechanical profilometer. PEAI can be 

sublimed with a stable and controlled deposition rate, however, it must be properly outgassed in high 
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vacuum before deposition. Details of the thin-film and device fabrication are provided in the Supporting 

Information. Estimation of layered PEA2PbI4 perovskite stoichiometry was performed off-line with X-ray 

diffraction (XRD). The diffractograms (Figure 1a) were collected for both pristine sample and for low-

temperature annealed films (5 minutes at 100 °C in inert atmosphere). The as-prepared materials already 

show the expected XRD pattern for a 2D perovskite, meaning that crystallization occurs already at room 

temperature, as for vacuum deposited MAPI films.  

 

 

Figure 1. a) XRD patterns of 200 nm thick, vacuum deposited PEA2PbI4 perovskite thin films. b) Optical 

absorption and photoluminescence spectra (excitation at 375 nm), c) SEM image and d) AFM topography 

of PEA2PbI4 thin films after annealing at 100 ºC for 5 minutes. The scale bar in both microscopy images is 

400 nm. 

 

However, after the short low-temperature annealing, we observed more intense diffraction peaks, indicating 

a well-crystallized perovskite. The c-axis diffraction signals strongly dominate the diffraction pattern, with 

six observed [00l] peaks (5.4°, 10.8°, 16.3°, 21.7°, 27.2°, 32.8°) corresponding to the (002), (004), (006), 

(008), (0010), and (0012) crystal planes, respectively. The preferential orientation along the [00l] direction 

suggests that the 2D perovskite film grows with the alternating organic and inorganic sheets parallel to the 

substrate’s plane. Such orientation is not a priori favorable for device operation, as the insulating organic 
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sheets would be perpendicular to the direction of charge transport. The optical absorption spectrum of the 

PEA2PbI4 films (Figure 1b) exhibit the characteristic components of 2D perovskites: a band in the UV-blue 

range, corresponding to the interband transitions leading to free carrier generation, and a red-shifted, intense 

peak at 508 nm, due to exciton absorption.59 The corresponding photoluminescence (measured upon 

excitation with a continuous wave laser at 375 nm) shows the expected sharp emission peak with very small 

Stokes shift at 521 nm, with a full width at half-maximum of only 22 nm. Taken together, the XRD and the 

optical characteristics indicates the formation of a pure 2D (n =1) perovskite compound. The morphology 

of the layers was studied by scanning electron microscopy (SEM, Figure 1c) and atomic force microscopy 

(AFM, Figure 1d). The SEM shows a distinct morphology with well-defined, randomly distributed platelets 

(size up to 500 nm) composed by grains in the <100 nm range. These vacuum deposited 2D materials were 

found to be very reproducible and could maintain stable structural properties for more than 6 months (Figure 

S1). 

We then used these 2D films to fabricate perovskite heterostructures. Initially, we deposited 10 nm thick 

PEA2PbI4 films below and on top of a 500 nm thick MAPI film, in order to investigate the influence of the 

2D layers on the morphology and crystallinity of the 3D perovskite. The XRD patterns of a 3D sample on 

glass and sandwiched between 2D layers are presented in Figure S2. As can be observed for the reference 

sample (MAPI on glass), a preferential orientation occurs along the [ll0] direction, as commonly observed 

both for solution-processed and vacuum-deposited MAPI.6061 However, when the MAPI layer is 

sandwiched between two PEA2PbI4 films, we observed a decrease in the intensity of the (110) and (220) 

peaks along with an increase of the (022) and (134) reflections. These observations suggest a change in the 

orientation of the MAPI film when deposited between 2D perovskites. The change of the diffraction profiles 

together with their enlarged FWHM also indicate a reduction of the crystals size for the MAPI film. We 

also noted a weak diffraction signal at low angle (2θ = 12.7º), ascribed to the presence of unreacted PbI2, 

both in the pure MAPI and in the 2D/MAPI/2D heterostructure. The role of a small PbI2 excess in MAPI 

films has been widely studied, but its effect has not been fully rationalized yet. Specifically, in vacuum 

deposited MAPI films and solar cells, the presence of resilient PbI2 has been often identified and it seems 

not to interfere with charge generation and transport.62,63 Interestingly, in several solution-processed 3D/2D 

perovskite systems, an excess PbI2 is intentionally used as a platform to then form a low dimensional 

perovskite by simply spin-coating the corresponding organic ammonium halide.41 In our case, the excess 

PbI2 in the MAPI film is maintained even after deposition of the 2D PEA2PbI4 film. Considering that no 

PbI2 diffraction could be observed in pure PEA2PbI4 films (meaning that the PbI2 signal comes only from 

the underlying MAPI layer), these observations suggest that virtually no intermixing takes place between 

the two materials, resulting in a neat 3D/2D perovskite interface. The formation of a pure PEA2PbI4 film at 



 6 

the interface with MAPI is also supported by the PL of a 2D/3D bilayer, where the signals corresponds to 

those of the pure separeted materials (Figure S7). 

While no changes where observed in the optical absorption of the 2D/MAPI/2D heterostructures (Figure 

S3) as compared to the bare MAPI (the contribution of the very thin PEA2PbI4 films is not noticeable since 

the 3D absorption saturates in the green-blue region of the spectrum), we did observe differences in their 

morphology. The morphology of the 3D layer with and without the 2D perovskite interlayers was 

investigate by scanning electron microscopy (SEM). The surface of the MAPI film appears homogeneous 

and compact (Figure 2a), composed by grains with an average size of approximately 100 nm. 

 

Figure 2. SEM pictures and AFM topographies at different magnifications of a,c) a MAPI film and of b,d) 

a 2D/MAPI/2D heterostructure. e,f) AFM profiles for the same samples. The scale bar in all SEM and AFM 

images is 1 µm. 

 

In the 2D/MAPI/2D heterostructure (Figure 2b), we can already observe how the PEA2PbI4 affects the film 

growth and morphology, as the grain size is reduced and the surface seems more textured as compared to 

the bare MAPI.6465 These effect correlates with the XRD diffraction discussed before (Figure S2). The 

sample surfaces were further analysed by atomic force microscopy (AFM). While homogeneous on a large 

scale (Figure 2c), the MAPI films surface was found to be rather rough, with a root mean square roughness 

RRMS of 13 nm and average height zAVG as high as 50 nm (Figure 2e and S4). The grain size reduction 

observed by SEM for the 2D/MAPI/2D heterostructure was also confirmed by AFM (Figure 2d), where the 

topography was characterized by a RRMS = 8 nm and a strongly diminished zAVG of 27 nm (Figure 2f). At 

the same time, the height distribution was found also to be narrower, indicating a more homogeneous 
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surface. Grain size reduction as a result of the interaction of a 3D perovskite with large cations has also 

been observed previously.42,66 

To evaluate the potential of a 2D/MAPI/2D perovskite heterostructure in photovoltaics, we incorporated it 

in fully vacuum deposited perovskite solar cells using a p-i-n device layout (Figure 3a). The diodes were 

prepared on indium tin oxide (ITO), using molybdenum oxide (MoO3, 5 nm) and N4,N4,N4″,N4″-

tetra([1,1′-biphenyl]-4-yl)-[1,1′:4′,1″-terphenyl]-4,4″-diamine (TaTm, 10 nm) as the hole transport layer 

(HTL), a 500 nm thick MAPI films, fullerene (C60, 25 nm) and bathocuproine (BCP, 8 nm) as the electron 

transport layers (HTLs). The devices were completed with the deposition of a silver electrode (100 nm). 

The low dimensional PEA2PbI4 films were vacuum deposited in between the HTL/MAPI or the MAPI/ETL 

interfaces, varying the thickness between 2.5 and 10 nm. All layers were thermally deposited in high 

vacuum with a base pressure of 10-6 mbar. The current density-voltage (J-V) curves of PSCs were recorded 

under simulated AM 1.5G illumination (100 mW cm−2, Figure 3), and the corresponding photovoltaic 

parameters are summarized in Table 1 (only for devices with 2.5 nm thick 2D films). 

We initially fabricated and tested the triple layer heterojunctions of the type 2D/MAPI/2D. The 

heterojunction device with 2.5 nm thick 2D films showed a short circuit current density (Jsc) exceeding 20 

mA/cm-2, only slightly lower than the reference MAPI solar cell (Table 1 and Figure S5). While the open 

circuit voltage (Voc) was found to decrease of only approximately 6-7 meV compared to the reference, we 

observed a strongly reduced FF (65.5%) even though the two 2D films are only 2.5 nm thick (Figure 3b). 

With increasing thickness of the low dimensional perovskite films, the FF further decreases to 49.7%, 

accompanied by a drastic reduction in the current density, being as low as 8 mA/cm-2 for 10 nm thick 2D 

films.  
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Figure 3. a) Schematics of the p-i-n solar cells employing a perovskite heterostructure as the active layer. 

J–V curve under 100 mW cm−2 illumination of the b) 2D/MAPI/2D, c) 2D/MAPI and d) MAPI/2D 

heterojunctions solar cells for different PEA2PbI4 layer thicknesses. 

 

Clearly the 2D/MAPI/2D heterojunction solar cells suffer from hindered charge extraction, a situation that 

becomes more severe for thicker 2D films. This is in agreement with the formation of PEA2PbI4 films with 

insulating sheets perpendicular to the current flow, as described above. All solar cells based on the 

2D/MAPI/2D heterostructure showed also hysteresis in the J-V curve when scanning in forward (from short 

to open circuit) or reverse (from open to short circuit) bias. However, the Voc for the devices employing 5 

and 10 nm thick PEA2PbI4 films was found to increase up to >1080 mV, meaning that the 2D films are 

indeed capable of reducing non-radiative recombination of the MAPI layer.  

In order to rationalize the properties of the 2D/MAPI/2D heterostructure devices, we fabricated and 

characterized analogous solar cells based on either 2D/3D or 3D/2D bilayers as the active materials, with 

increasing thickness of the PEA2PbI4 films. The heterojunction device with the 2.5 nm thick 2D film at the 

front contact (2D/MAPI, Figure 3c), shows high short circuit current density (Jsc, 22.1 mA cm-2) and very 

good rectification, with fill factor (FF) as high as 78.6% and negligible hysteresis. The Voc is approximately 
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1.05 V, leading to a PCE of 18.3%, comparable to the reference MAPI solar cells. Increasing the thickness 

of PEA2PbI4 to 5 and 10 nm results in lower photocurrent (18 and 16.5 mA cm-2, respectively) and causes 

again a drastic reduction of the FF, which is below 55% for both thicknesses. The cells with thicker 2D 

films show also hysteresis in the J-V curve. However, when compared to bare MAPI, the solar cell 

photovoltage is also found to increase to about 1070 mV for thicker 2D perovskite films.  

 

Table 1. PV performance parameters extracted from the J–V characteristics of p-i-n solar cells of the control 

MAPI absorber device and of 2D/MAPI/2D, 2D/MAPI and MAPI/2D based PSCs with 2.5 nm thick 

PEA2PbI4 2D films. 

Perovskite structure  VOC [mV] JSC [mA cm-2] FF [%] PCE [%] 

MAPI 
fwd 1057 22.7 77.2 18.6 

rev 1056 22.7 78.5 18.9 

2D/MAPI/2D 
fwd 1050 20.1 65.5 13.9 

rev 1050 20.6 66.0 14.3 

2D/MAPI 
fwd 1054 22.1 78.4 18.3 

rev 1051 22.1 78.6 18.3 

MAPI/2D 
fwd 1062 21.7 73.5 17.0 

rev 1061 21.8 76.6 17.7 

 

A similar behaviour was observed for the solar cells based on the MAPI/2D heterojunction (Figure 3d), 

where the PEA2PbI4 is now deposited on top of MAPI, below the C60 ETL. The current density decreases 

with increasing thickness of the 2D perovskite films, from 21.8 mA cm-2 (2.5 nm) to approximately 14 mA 

cm-2 (10 nm). The J-V curves for devices including thicker (5 and 10 nm) 2D films show hysteresis, with 

slightly larger current densities (approximately 1 mA cm-2) in reverse bias. Also for MAPI/2D 

heterojunctions the FF was observed to scale inversely with the thickness of PEA2PbI4, but not as drastically 

as in the case of 2D/MAPI structures. FF decreases from 73.5% to 63.9% when the 2D layer thickness is 

increased from 2.5 to 10 nm. Importantly, with this device configuration we do observe a substantial 

increase in the photovoltage, with the MAPI/2D solar cells having a Voc exceeding 1.1 V for 5 nm thick 

PEA2PbI4 layers. This observation indicates that the 2D perovskite layer is indeed capable of reducing the 

non-radiative recombination within the MAPI film. Interestingly, the fact that no changes in photovoltage 

were observed with the 2D/MAPI heterojunction (as compared to bare MAPI), might indicate that the 

interface chemistry of the 2D/3D interface differs from that of the MAPI/2D one.  

Figure 4 summarizes the thickness dependent photovoltage and FF measured on the different 

heterojunction solar cells. In general, we observe a trend where 2.5 nm thick films of PEA2PbI4, 
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independently on which side of the MAPI are deposited, do not lead to an appreciable increase in the 

photovoltage (for MAPI cells is 1055 mV), while they already undermine the charge extraction, as the FF 

diminishes (Figure 3b). One exception is the 2D/3D heterojunction, where the Voc and FF are essentially 

unchanged with respect to the reference MAPI solar cells, leading to similar PCE exceeding 18%. 

 

 

Figure 4. Trend of the a) Voc and b) FF for the three different heterojunction solar cells as a function of the 

2D perovskite (PEA2PbI4) layer thickness. 

 

Increasing the 2D layer thickness to 5 nm leads to a general enhancement of the Voc, with the devices based 

on the 2D/3D and 2D/3D/2D structures reaching 1070 and 1084 mV, respectively, and a peak for the 3D/2D 

heterojunctions solar cells at 1104 mV. While such 50 mV increase in Voc might appear moderate, it 

corresponds to a 7-fold enhancement of the external photoluminescence quantum yield.67,68 We note that 

devices with different thickness of the 2D films show comparable dark leakage current, indicating that the 

observed changes of voltage have no direct electrical origin (Figure S8). Hence the vacuum deposited 

PEA2PbI4 films on top of MAPI is indeed capable of reducing non-radiative charge recombination, although 

at the expense of FF (70%). For thicker (10 nm) 2D films, we observed a reduction of the Voc, which is 

more prominent for the 3D/2D heterojunction with a 10 nm thick film. Although the incorporation of 2D 

perovskites at the interface with MAPI is beneficial in terms of photovoltage, it leads to a drop in FF which 

became more important once the PEA2PbI4 thickness increase from to 5 nm and 10 nm (Figure 3b). The 

loss in FF can be attributed to the unfavorable orientation of the insulating sheets formed by the bulky 

organic cations within the 2D perovskite films (Figure 1), perpendicularly oriented to the direction of the 

charge transport.  
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Beside the orientation of the 2D perovskite with respect to the substrate, another factor which can contribute 

to the loss in FF is the presence of an energy barrier for the charge extraction (either hole or electron, or 

both) at the 3D/2D heterojunction or at the perovskite/organic interfaces. Such energy barrier is related to 

a misalignment of the energy levels, which is likely to exist at least in one case (either 2D/3D or 3D/2D) as 

a consequence of the larger bandgap of PEA2PbI4 as compared to MAPI. The ionization energy (IE) can be 

used to estimate the valence band maximum (VBM) in an intrinsic semiconductor. We measured via air 

photoemission spectroscopy the IE of both 3D and 2D perovskites (Figure S6). We found an IE for MAPI 

of 5.0 eV, only slightly smaller as compared to recently reported ultraviolet photoemission spectroscopy 

measurements,69 while a larger IE of 5.5 eV was measured for PEA2PbI4 films. This imply the presence of 

an energy barrier for the hole extraction of approximately 0.5 eV, which supports the sever drop in FF 

observed when PEA2PbI4 is deposited in between the HTL and the MAPI (Figure 3b). Estimating the 

bandgap of PEA2PbI4 from the absorption spectrum (2.4 eV) and considering a MAPI bandgap of 1.6 eV69, 

the barrier for the electron extraction at the 3D/2D interface would be of 0.3 eV (Figure S6). The lower 

energy difference among the electronic affinities at the 3D/2D interface agrees with the smaller FF losses 

associated with using the 2D perovskite on top of the MAPI surface and below the ETL. 

The vacuum deposited 2D/3D heterostructures were further studied by means of time resolved microwave 

conductivity (TRMC). Figure 5a depicts the normalized time-dependent conductance traces for bare MAPI 

and 2D/MAPI bilayers, obtained by selectively and homogeneously exciting the 3D MAPI film at 600 nm 

from both sides. Due to the lack of optical absorption at this wavelength, we did not observe any appreciable 

signal from the 2D layer. After a fast initial rise limited by the response time of the microwave cavity, the 

signals decay due to charge recombination or trapping. Interestingly, the decay kinetics of the MAPI and 

2D/MAPI are very similar, and independent on the excitation side and the presence of the 2D layer. Hence, 

from this measurement, we cannot conclude that the MAPI film is effectively passivated by the 2D layer.  
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Figure 5 a) Normalised change in conductance for a MAPI film and a 2D/MAPI bilayer deposited on 

quartz, measured by TRMC with an incident laser pulse of 1011 photons/cm2. Maximum TRMC signal 

heights expressed in charge carrier yield times mobility for excitation at b) 600 nm and c) 510 nm. The 

annotation (sub.) denotes that the light is shined through the quartz substrate.  

 

From the maximum change in photoconductance, Δ𝐺𝑚𝑎𝑥, the product of charge carrier generation 

efficiency per incident photon,  and the sum of electron and hole mobility, ∑ 𝜇 is calculated using: 

 

𝜂 ∑ 𝜇 =
Δ𝐺𝑚𝑎𝑥

𝐼0𝑒𝛽
                                 (1) 

 

0 200 400 600 800

N
o

rm
a

liz
e

d
 p

h
o

to
c
o

n
d

u
c
ta

n
c
e

Time (ns)

lexc = 600 nm

 MAPI

 MAPI (sub.)

 MAPI/2D

 MAPI/2D (sub.)

109 1010 1011 1012 1013 1014
0.01

0.1

1

10

D
G

/(
I 0

e
b
) 

(c
m

2
/(

V
s
))

Incident intensity (cm-2)

lexc = 600 nm

 MAPI

 2D/MAPI

 2D/MAPI (sub.)

109 1010 1011 1012 1013 1014
0.01

0.1

1

10

D
G

/(
I 0

e
b
) 

(c
m

2
/(

V
s
))

Incident intensity (cm-2)

lexc = 510 nm

 2D

 MAPI

 2D/MAPI

 2D/MAPI (sub.)

a)

b)

c)



 13 

where 𝐼0is the incident intensity, e is the elementary charge and b is a geometrical factor. For both the 3D 

film as well as the 3D/2D bilayer the 𝜂 ∑ 𝜇 values are increasing slightly with light intensity reaching values 

close to 10 cm2/Vs, which is comparable to values previously reported and discussed on evaporated 3D 

perovskite layers.70,71 The slight difference in maximum mobility can be related to the different substrate 

on which the 3D MAPI layer has been deposited. Importantly, the dependence of the MAPI film with 

intensity is larger than that of the 2D/MAPI bilayers, which is almost constant (Figure 5b). Such dependence 

can be explained by the fact that the 3D film contains a substantial amount of deep traps, which become 

saturated at higher intensities.72 This observation agrees with the higher Voc values observed for the 

heterostructure devices (Figure 4a). Finally, we excited the samples at 510 nm, which corresponds with the 

maximum absorption of the excitonic band of the 2D perovskite (see Figure 5c). The 2D layer exhibits very 

low signal which can be explained by the high exciton binding energy preventing dissociation of the 

excitons into mobile carriers.73 The MAPI films as well as the 3D/2D bilayer give signal intensities 

comparable to that of excitation at 600 nm implying the charge carrier yield is independent of the used 

wavelengths. Interestingly, exciting the 2D/MAPI sample through the 2D layer leads to a substantial 

decrease of the signal intensity. This can be explained by the fact that a substantial part of the incident light 

is absorbed by the 2D perovskite itself, and the excited states generated in the 2D layer do not lead to mobile 

carriers in the MAPI film by either charge or energy transfer. This inefficient charge carrier generation 

might partially explain the photocurrent losses observed in the heterostructure devices (Figure 3).  

In summary, we show for the first time the fabrication of perovskite heterostructures by dual source vacuum 

deposition. This was achieved by vacuum processing thin layers of the 2D perovskite phenetylammonium 

lead iodide (PEA2PbI4) below and on top of a vacuum deposited methylammonium lead iodide (MAPI) 

film. We investigated the morphology, structure and optical properties of the 2D and 3D separately, as well 

as of the 2D/3D/2D heterostructure, and observed that vacuum deposited PEA2PbI4 films tend to grow with 

the alternating inorganic and organic sheets parallel to the substrate. For this reason, when incorporated 

into devices, the 2D/3D/2D perovskite heterostructure shows a strongly hindered charge extraction, result 

of an interplay of parameters among which the preferential in-plane orientation of the 2D film, the low 

carrier mobility, and the mismatch in the transport energy levels. By separately studying the 2D/3D and 

3D/2D bilayers, we identify a trade-off between the solar cells photovoltage and fill factor, with 3D/2D 

heterojunction solar cells having open-circuit voltage as high as 1.1 V. By time resolved microwave 

conductivity we observed that the density of deep traps in the MAPI active layers is reduced in the presence 

of the 2D perovskite, however, the latter leads to a reduced photocurrent as we did not observe any charge- 

or energy transfer from the 2D film to the MAPI. In general, our results show a marked difference between 

vacuum –deposited and solution-processed 3D/2D architecture, with unfavorable orientation but high phase 

purity obtained by dual-source vapor deposition. Future work will address the vacuum deposition of 
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vertically oriented 2D perovskite films, in order to promote charge transport, and will focus on their role 

on the overall device stability. 
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