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Approximate Gaussian Processes and
Derivative Information for
Spatio-Temporal Regression and
Classification

Gabriel Riutort Mayol Enero, 2020

Directores:

Michael Riis Andersen
Virgilio Gómez Rubio
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Chapter 1

Introduction

The Bayesian paradigm is a framework to perform statistical data modeling and
inference based on probabilistic theory and Bayes’ theorem [Bernardo and Smith,
2009, Jaynes, 2003]. This thesis lies between methodological aspects and applica-
tions in real world problems of the Bayesian approach. Regarding the applications,
we consider two real world and novel applications by using mainly Bayesian hi-
erarchical models [Ntzoufras, 2011] and Gaussian processes (GPs) [Rasmussen
and Williams, 2006], and ultimately gain insights into these applied fields: an
application to rock art paintings of spatio-temporal modeling and prediction of
microfading spectrometry (MFS) measurements [del Hoyo-Meléndez et al., 2015],
and an application to image sensor noise of decomposing and estimating noise
sources in image sensors [Dierks, 2004]. Furthermore, it is worth noticing that,
although it has been more briefly developed in the present work and mainly focused
on the statistical modeling, we tackle a classical task of great interest in the field
of remote sensing and environmental geo sciences for spatio-temporal land use
classification.

Regarding the methodological aspects, we make a contribution on the issue of
the high computational cost of performing inference on exact GPs when the number
of observations is large . We conduct an study, analysis and implementation of a
novel method, originally and theoretically developed by Solin and Särkkä [2020], to
approximate GP models and making them faster to compute using sampling methods
[Brooks et al., 2011], especially in low dimensional input spaces. This approximate
GP model is of application on the spatio-temporal land use classification task
performed in this work, where a large number of available observations makes
difficult the applicability of exact GPs, and thus make a contribution on the applied
remote sensing field.

The other methodological aspect tackled in this work is the analysis of the issue
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10 Chapter 1. Introduction

of obtaining overly smoothed posterior distributions that can arises when using
virtual derivative observations to induce monotonicity in functions, especially with
GPs [Riihimäki and Vehtari, 2010]. This problem can arise in the application to
rock art paintings where monotonicity constraints have to be implemented in order
to ensure that the predicted functions are monotonically increasing.

Statistical data modeling is the appropriate framework to solve many of the
problems that involve measurements, especially those which are complex and with
large datasets [Bishop, 2006, Gelman et al., 2013]. Among others, the problems
typically include discovering relationships and/or patterns in the data, predicting
new observations, classifying relevant features, decomposing variability sources
or reconstructing missing values. In order to properly perform those problems, the
underlying process must be modeled accurately by making reliable assumptions on
the model, parameters of that model and structures of dependency among parameters.
Furthermore, the models must be scalable and the computational methods efficient,
since often the datasets are complex and large [Gelman et al., 2013].

The Bayesian approach uses and formulates probabilistic models following the
probability theory rules to perform modeling and make inferences consistently from
data [Bernardo and Smith, 2009]. Bayesian inference is the process of fitting a
probabilistic model to a set of data, learning unknown parameters of that model
and making inferences for unknown quantities and predictions for new observations
[Gelman et al., 2013]. Probability distributions are specified either for observed
quantities and unknown quantities. Inferences are performed through probability
distributions which completely characterize the location and uncertainty of those
quantities.

The main limitation in the Bayesian modeling approach is that inference has
analytic solutions only for trivial models, such as Gaussian models with conjugate
priors, and it is analytically intractable for the most relevant models [Gelman et al.,
2013, Minka, 2000]. Different approximate computational methods, with different
approximation accuracy, are available to perform Bayesian inference. Sampling
methods, such as Markov chain Monte Carlo (MCMC) [Brooks et al., 2011] or
Hamiltonian Monte Carlo (HMC) [Neal et al., 2011], are the most natural and accu-
rate methods and probably the most commonly used. However, sampling methods
have the drawback of being computationally highly demanding, especially when
the number of observations is large or when the number of unknown parameters
is large with strong posterior correlations which cause slow or even inconsistent
convergence of the sampling chains. In order to overcome this, there is a need
for re-parameterizing the models or formulating approximate models with better
scaling properties and with desirable similar performances [Gelman et al., 2013,
Harva et al., 2008].
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On the other hand, real world processes can be complex, for instance, their
dynamics in time and/or space may change or discontinuities may appear. Con-
structing flexible models and including additional information to the models in order
to make them more flexible and realistic is essential to model complex features of
real-world datasets [Alvarez et al., 2013, Särkkä et al., 2018].

Although Bayesian inference is well and broadly established in many scientific
fields such as epidemiology, computer science, robotics and astronomy, there are
still many other areas where this fully probabilistic framework for data analysis and
inference is not well-known, tested or used. Some of those areas are the ones we
enumerated at the beginning of this introduction. First, in application to prehistoric
archeological rock art paintings, we perform a MFS analysis of specimens in the
field of cultural heritage [del Hoyo-Meléndez et al., 2015, Dı́ez-Herrero et al.,
2009], where the use of advanced and flexible statistical models are unusual and
the Bayesian point of view has not been used yet. We propose two modeling
approaches, a spatio-temporal GP model and a spatially correlated spline-based
time-series model [Baladandayuthapani et al., 2008, Ruppert et al., 2003], with the
inclusion of monotonicity and gradient constraints [Riihimäki and Vehtari, 2010,
Solak et al., 2002]. The goal is to predict MFS measurements, that represent
potential color degradation over time, for the whole of unobserved locations on
the surface of rock art paintings. Second, in application to image sensor noise, we
work on the image sensor calibration field [Dierks, 2004, EMVA, 2010, Healey
and Kondepudy, 1994] in which the Bayesian methodology is basically unknown
in terms of the current applicability. We propose a novel application of Bayesian
hierarchical modeling to decompose and characterize the noise components involved
in the image sensing process. And finally, in the remote sensing field, most of the
models used for classification are based on classical statistics or neural networks
[Castelluccio et al., 2015, Luus et al., 2015] which hardly model spatio-temporal
structures present in the data. Furthermore, datasets are usually very large, which
prevents from computational sampling methods that allow for formulating flexible
models and performing accurate inferences. So, in this work, we tackle the land-use
classification task by formulating a spatio-temporal GP model for classification
using the approximate GP model introduced in Chapter 3, which allows for dealing
with much larger datasets than regular GPs.

One of the major advantages of the Bayesian approach is the fully propagation of
uncertainty throughout the probabilistic model [Gelman et al., 2013]. The Bayesian
approach propagates uncertainty to other quantities that are unknown in the model,
which allows us to model certain values of some parameters or attributes of the
model, such as degrees of freedom of the model, smoothness coefficients or other
quantities. Although guesses on their exact values are not required, assumptions
have to be made for their distributions. The Bayesian framework uses the property
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of defining conditional dependencies among quantities to perform hierarchical
modeling which allows for specifying powerful models with complex structures.
Bayesian hierarchical modeling is an excellent example of propagating uncertainties
among different quantities [Gelman and Hill, 2006, Ntzoufras, 2011].

The models considered in this work belong to the class of hierarchical models
since they have some levels of dependencies among parameters of interest. These
models are:

- Gaussian processes for regression and classification, which are used in applica-
tion to rock art paintings and in the spatio-temporal land use classification task,
respectively.

- An additive multilevel random effects linear model, which is used in application
to image sensor noise.

- A spatially correlated spline-based time-series model, which is used in applica-
tion to rock art paintings.

Functional data analysis assumes that there is a functional description for the
process under study and the observations are noisy realizations of this underly-
ing function. GPs are flexible non-parametric prior distributions for multivariate
functions [Rasmussen and Williams, 2006]. GP priors can be used to specify prior
assumptions on the underlying function that describe the underlying relationships
between inputs and response variables. GP is a fully non-parametric model, so the
functional form is determined by the data instead of being fixed with parametric or
semi-parametric forms. Furthermore, implicit assumptions on the GPs can be given
by specifying its mean and covariance functions. The key element of a GP is the co-
variance function that encodes the prior assumptions about the correlation structures
of function values, determining, for example, the smoothness/wiggliness and vari-
ability of the function [Rasmussen and Williams, 2006]. Due to their generality and
flexibility, GPs are of broad interest in machine learning and statistics, with a wide
range of applications, such as regression and classification [Bernardo et al., 1998],
density estimation [Tokdar and Ghosh, 2007], dimension reduction [Lawrence,
2004, Titsias and Lawrence, 2010], and spatio-temporal statistics [Banerjee et al.,
2008, Gelfand et al., 2010].

The main limitation of the implementation of GPs in practical applications is
their computational demands as they scale, in a direct implementation, as O(n3),
with n being the number of observations. This problem becomes more severe
when performing full Bayesian inference through sampling methods, where in
each sampling step we need to invert a Gram matrix of the covariance function
which is a O(n3) operation. Several methods have been proposed to alleviate this,
such as sparse approximation to GP [Quiñonero-Candela and Rasmussen, 2005],
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compactly supported covariance functions [Vanhatalo et al., 2010], variational
inference [Hensman et al., 2017] for GPs and basis functions approximation to GP
[Adler, 1981, Cramér and Leadbetter, 2013]. In this work, we make a contribution
to the class of basis function approximation to GP by performing a study, an analysis
and an implementation of the Hilbert space method to approximate GP recently
developed by Solin and Särkkä [2020]. We analyze the performance of the method
in relation to the key factors of the method, and implement the methodology in a
fully probabilistic programming framework such as Stan software [Carpenter et al.,
2017, Team, 2017].

On the other hand, in modeling problems of learning stochastic functions from
data, there is often a priori knowledge and/or additional information available
concerning the function to be learned, which can be used to improve the performance
of the modeling. This information can be sometimes expressed in terms of the
derivatives of the functions, so the dynamics of the functions can be controlled or
constrained, e.g. increase, decrease and stabilization of the function [Sill and Abu-
Mostafa, 1996]. In particular, since differentiation is a linear operator, the derivative
of a GP is still a GP, as well as the derivative of a linear parametric or semiparametric
model is also linear [Rasmussen, 2003, Solak et al., 2002]. This makes it possible
to include derivative information in the modeling by jointly modeling the regular
process and its derivative process using GPs [Riihimäki and Vehtari, 2010, Solak
et al., 2002] and semiparametric models. However, some inference issues can
arise with this approach of using derivative observations to induce monotonicity
on functions, causing overly smoothed posterior functions when many derivative
observations for monotonicity are used. In this work, we make a contribution by
analyzing and revealing this issue.

This work consists of eight chapters that describe the goals, techniques and
discoveries of the research.

In Chapter 2, a short but complete overview of basics of Bayesian data analysis
and inference is given. We give an overview of the foundations of probability theory
for Bayesian inference, the rule of prior information and model assumptions. We
give brief reviews of the main and most commonly used models: linear generalized
models, non-parametric models and non-linear additive models, with special empha-
sis on the flexibility and usefulness of the Bayesian hierarchical models. We make a
map of the different computational methods for performing inference in Bayesian
models [Harva et al., 2008]. We put emphasis on the sampling methods based on
MCMC and HMC, which are those used through this work to numerically approxi-
mate the required integrals in the Bayesian approach. Finally, a brief overview of
the methodology to perform model assessment, validation and selection is given
[Gelfand et al., 1992, Vehtari and Ojanen, 2012].

In Chapter 3 a Hilbert space method to approximate GPs, originally and recently
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developed by Solin and Särkkä [2020], is methodologically introduced and analyzed,
and implemented in a probabilistic programming framework such as Stan software.
The method has an attractive computational cost as this basically turns the regular
GP model into a linear model, which is also an appealing property in modular
probabilistic programming models, e.g. Stan, WinBUGS [Lunn et al., 2000] and
others. First of all, the exact GP model is described in detail and its main elements of
the covariance and spectral density functions are derived. After that, we perform the
study of the Hilbert space method to approximate GPs, analyzing the performance
of the method in relation to the key factors of the method, seeking to develop
useful procedures to make a diagnosis of the approximation accuracy, and ultimately
make recommendations for the values of the key factors to improve performance.
Several illustrative case studies, simulate and real datasets, where we demonstrate
the performance, the applicability and the implementation of the methodology,
are carried out in this chapter. Among these case studies, one is dedicated to the
spatio-temporal land-use classification task of classifying the land use of parcels
dedicated to growing citrus fruits. This consists of a large dataset with multivariate
predictors derived from satellite images. Furthermore, in Appendix A, additional
case studies assessing and illustrating the performance of the method are also
presented. The model codes for Stan software of case studies are provided for
both exact GP and approximate GP models through links to the author’s GitHub
site https://github.com/gabriuma in the repository basis_functions_

approach_to_GP and subfolder Paper .
In Chapter 4, we illustrate the usage of derivative information as additional

(virtual) observations in two modeling approaches, a GP model and a penalized
spline model. The consideration of derivative information in the modeling can be
used to control the dynamics of the functions. We illustrate the main issue of this
approach to induce monotonicity on functions, that can produce overly smoothed
posterior functions especially when many derivative observations for monotonicity
are used.

In Chapter 5, the application to rock art paintings of modeling and predicting
MFS color fading time-series for new unobserved spatial locations on the surface of
rock art paintings is carried out. Apart from constructing a model that exploits to
the full the correlation structure of the data in a scenario of a short set of sampling
observations, the main motivation of this study is the consideration of monotonicity
and gradient constraints in the modeling aiming to overcome the large fluctuations
in the data and fit the desired properties of monotonicity and stabilization in the
long term for the predicted color-fading time-series.

In Chapter 6, the application to the image sensor is carried out. A novel approach
based on Bayesian hierarchical modeling to decompose the signal recorded by
an image sensor into its different noise sources is proposed. We argue that a

https://github.com/gabriuma
basis_functions_approach_to_GP
basis_functions_approach_to_GP
Paper
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Bayesian multilevel random effects model is a flexible and highly interpretable
model, which also allows for naturally and accurately propagating uncertainty
among noise parameters in comparison with the existing standards for image noise
measurements.

In the novel and real world application cases related to rock art paintings, to
image sensor noise and to spatio-temporal land-use classification, the performance
of the models is assessed in order to describe the quality of the model. The predictive
performance of the model for future observations is assessed by estimating the mean
square error and the likelihood expected utility such as the expected log predictive
density. We use cross-validation to approximate the mean square error and the
expected utilities [Andersen et al., 2019, Vehtari and Ojanen, 2012].

Finally, in Chapter 7 we give an overall conclusion of the work, goals, tech-
niques, findings and future research lines.
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1.1 Summary of publications/submissions

We have worked on the writing of different scientific publications reporting the
main research findings of this work.
The research contents developed in Chapter 3 titled Hilbert space approximate
Bayesian Gaussian processes: A performance analysis, have been included in the
following pre-print scientific publication that is intended to be sent for publication
in Statistics and Computing journal:

Riutort-Mayol, G., Bürkner, P.C., Andersen, M.R., Solin, A. and Vehtari, A.
(2020). Practical Hilbert space approximate Bayesian Gaussian processes for
probabilistic programming. arXiv pre-print arXiv:2004.11408.

The applied study carried out in Chapter 5 titled Application to rock art paintings:
Models with derivative information for modeling microfading spectrometry mea-
surements, have been reported in the following two pre-print scientific publications:

Riutort-Mayol, G., Andersen, M. R., Vehtari, A., and Lerma, J. L. (2019).
Gaussian process with derivative information for the analysis of the sunlight
adverse effects on color of rock art paintings. arXiv preprint arXiv:1911.03454.

Riutort-Mayol, G., Gómez-Rubio, V., Lerma, J. L., and del Hoyo-Meléndez, J. M.
(2019). Correlated functional models with derivative information for modeling
MFS data on rock art paintings. arXiv preprint arXiv:1910.12575.

In addition, related to the work done in Chapter 5, two other publications have been
developed, one of them is published in a scientific journal and the other one has
been submitted for publication:

del Hoyo-Meléndez, J. M., Carrión-Ruiz, B., Riutort-Mayol, G., and Lerma, J. L.
(2019). Lightfastness assessment of levantine rock art by means of microfading
spectrometry. Color Research & Application 44, 547–555.

Carrión-Ruiz, B., Riutort-Mayol, G., Molada-Tebar, A., Lerma, J. L., and
Villaverde, V. (2019). Color degradation mapping of rock art paintings using
microfading spectrometry. Journal of Cultural Heritage. Submitted.

The applied study carried out in Chapter 6 titled Application to image sensor noise:
Hierarchical modeling for estimating noise in image sensors, is published in IET
Image Processing scientific journal:

Riutort-Mayol, G., Gómez-Rubio, V., Marqués-Mateu, A., Lerma, J. L., and
López-Quı́lez, A. (2020). A Bayesian multilevel random-effects model for
estimating noise in image sensors. IET Image Processing. DOI: 10.1049/iet-
ipr.2018.5926. Pre-print available at http://arxiv.org/abs/2004.11849.

http://arxiv.org/abs/2004.11849


Chapter 2

Bayesian inference

This chapter gives a brief overview of the standard workflow of Bayesian data
analysis and inference, as a base framework for all the models, algorithms and
analysis made in this work. The contents of this overview covers the theoretical
basis of Bayesian inference, the most commonly used Bayesian models and com-
putational methods, and the analysis of model validation and assessment. The
Bayesian models used in this work go from generalized linear models, passing
through non-parametric modeling based on Gaussian processes and spline models,
additive Gaussian processes and hierarchical models. A brief overview of the most
commonly used computational strategies in Bayesian inference, making special
emphasis on sampling methods based on Markov chain Monte Carlo, which are the
ones used throughout all this work, is presented. Finally, the methods for model
checking, validation and assessment used in this work are briefly described.

2.1 Fundamentals of Bayesian probability

Bayesian probability [Bernardo and Smith, 2009, Gelman et al., 2013] is a theoretical
framework for inference of unknown quantities when uncertainty is on the premises.
The Bayesian inference process of updating beliefs of certain quantities when new
information is observed relies on Probability theory [Cox, 1946, Jaynes, 2003,
Jeffreys, 1961, Pearl, 1988]. The representation of belief of random variables is
through probability distributions. Given a model describing mutual dependencies of
random variables, Bayesian probability theory can be used to infer all the unknown
quantities. All uncertainties, either in observations and model parameters, are
modeled as probability distributions.

17



18 Chapter 2. Bayesian inference

Bayesian and frequentist paradigms

In statistics there are two major paradigms for inference: frequentist and Bayesian
paradigms.

In frequentist statistics, probability has to be seen as frequency of occurrence
of events, considering these events as in a process having intrinsic randomness1.
Probabilities are only assignable to events or outcomes of an intrinsic random
process, so parameters governing a phenomena are considered as fixed values.
Frequentist approach only refers to aleatory uncertainty of events which is the
intrinsic aleatory uncertainty of a random process, and there is no way to reduce
this uncertainty with new observations since it is intrinsic to the process.

In Bayesian statistics, probability provides a quantification of uncertainty of
events described as probability distribution [Cox, 1946, De Finetti, 2017, Jaynes,
1985]. Probabilities are assignable either to events of an intrinsic random pro-
cess or parameters governing a phenomena. Thus, the Bayesian approach con-
templates aleatory uncertainty and epistemic uncertainty [O’Hagan and Forster,
2004, O’Hagan, 2004]. Epistemic uncertainty refers to uncertainty due to lack of
knowledge of something that is not intrinsically random, so it can be knowable
through new observations, such as the parameters governing a phenomena. If we use
probability distributions to define epistemic uncertainty, then we become Bayesian.

The Bayesian approach describes prior knowledge about the parameters gov-
erning a phenomena through probability distributions. New knowledge about the
parameters governing a phenomena is provided by new observed data described
by the likelihood function, which is the probability distribution of the observed
data conditioned on the parameters governing the phenomena. Through Bayes’
theorem, prior probability distribution of the parameters governing the phenomena is
updated with the observed data likelihood function, obtaining a posterior probability
distribution for the parameters governing the phenomena.

Probability density

A probability density function is used to characterize continuous random vari-
ables. Thus, if x is a random variable with a probability density function p(x), the
probability of the event that x is in the interval (a, b) can be computed as:

p(x ∈ (a, b)) =

∫ b

a
p(x)dx.

1The frequentist probability of an event is the limit of its relative frequency of occurrence when
the experiment is repeated in a very large number of times [Bickel and Lehmann, 2012].
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In addition, the probability density function p(x) must satisfy the two conditions:

p(x) ≥ 0,∫ ∞
−∞

p(x)dx = 1.

Given another continuous variable, for example y, p(x, y) denotes the joint
probability density function of the two variables, and p(y|x) denotes the conditional
probability distribution function of the variable y given the variable x.

In this work, the terms density and distribution are used interchangeably, and we
use the letter p to denote them. The same notation is used for probability density of
continuous variables and probability mass for discrete variables. We sometimes can
use the notation of z ∼ D(b) as a short hand for p(z) = D(z|b), where b denotes
the model parameters of distribution D, and z denotes a random variable.

The sum and product rule

The sum and product are the two fundamental rules [Cox, 1946, Jaynes, 2003] in
probability theory, which, for probability densities, take the form:

Sum rule p(x) =

∫
p(x, y)dy,

Product rule p(x, y) = p(y|x)p(x) = p(x|y)p(y).

The probability of x, p(x), is sometimes called the marginal probability of the
variable x, because it is obtained marginalizing, or integrating out, the variable y.
The product rule specifies that the joint probability distribution of two variables
can be expressed as the product of a conditional distribution p(x|y) and a marginal
distribution p(x), or vice-versa. A formal justification of the sum and product rules
for continuous variables can be found in Feller [2008].

The Bayes’ theorem

From the product rule, and with the symmetry property p(x|y)p(y) = p(y|x)p(x),
we immediately derive the Bayes’ rule [Bayes, 1763]:

p(y|x) =
p(x|y)p(y)

p(x)
=

p(x|y)p(y)∫
p(x|y)p(y))dy

,

which is the key element in Bayesian inference [Bernardo and Smith, 2009], since
it defines the posterior density of y, p(y|x), after including new information of
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x through the conditional probability model p(x|y). The marginal probability of
x, p(x), makes of a normalization constant for the numerator, becoming a proper
probability density function.

The marginalization principle

The marginalization principle comes from the sum rule in probability theory. The
marginalized principle formalizes the generalization or predicting the capacity of a
learning system.

If we can specify the product rule for two related quantities (z, v),

p(z, v) = p(z|v)p(v),

that one can be explained by the other through the likelihood function p(z|v), a
generalization or prediction of the unknown z can be obtained by integration out
over all the different explanations v:

p(z) =

∫
p(z|v)p(v)d(v).

The likelihood function p(z|v) gives the probability of the unknowns for a particular
explanation, and p(v) gives the weights for every possible explanation.

2.2 Bayesian modeling and inference

Joint probability distribution

Bayesian modeling consists in describing in a mathematical form all observable
(data), y, and unobservable (parameter), θ, quantities in a problem, through defining
the joint probability distribution of data and parameters.

We define probability models for the observed quantities, p(y|θ), and unob-
served quantities about we wish to learn, p(θ), and combine them through the
product rule in a joint probability distribution:

p(y, θ) = p(y|θ)p(θ).

The observational model p(y|θ) is a probabilistic model for the observed data
that relates the observed data y with the unknown quantities (parameters) θ we want
to learn. This model represents the evidence provided by the data, summarizes
the information from the data. It is the main source of information and is called
likelihood function. This is the same as in the frequentist approach. Actually, it is
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the unique probabilistic model formulated in a frequentist approach to describe and
solve a problem.

The distribution p(θ) denotes a prior probability distribution for the parameters,
that encodes our prior knowledge about the parameters. This probability distribution
can be an informative or non-informative prior distribution, depending on the reliable
information (knowledge) available for the parameters. This is one of the key features
that differentiate from the frequentist approach, i.e. probability distributions are
defined for the unknown quantities (parameters) and combined with the likelihood
function.

Parameter inference

Obtaining the posterior distribution of the unknowns (parameters) is the key element
of the Bayesian approach. Through Bayes’ rule, the likelihood function (probability
model for the data) and prior distributions for the parameters are combined, and the
uncertainty in the parameters once the data have been observed is updated, obtaining
the posterior distribution of the parameters:

p(θ|y) =
p(y|θ)p(θ)
p(y)

=
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

.

The denominator of Bayes’ rule, p(y) =
∫
p(y|θ)p(θ)dθ, is the marginal likelihood,

as it integrates the likelihood over the prior information of parameters, also known
as the evidence of the model. The marginal likelihood normalizes the posterior into
a proper probability distribution.

The final inference will be a compromise between the evidence provided by the
data and the prior information. With non-informative priors, the inference would be
based mainly on the data.

Predictive inference

The posterior distribution of the parameters p(θ|y) can be used to model the uncer-
tainty of predictions ỹ for new observations. In a Bayesian approach, the posterior
predictive distribution of ỹ is obtained by marginalizing or integrating out the joint
posterior of predictions ỹ and model parameters θ over the model parameters:

p(ỹ|y) =

∫
p(ỹ, θ|y)dθ =

∫
p(ỹ|θ, y)p(θ|y)dθ.

The predictive distribution can also be seen as averaging the predictions of the
model p(ỹ|θ, y) over the posterior distribution of the model p(θ|y).
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Brief comments about priors in the unknowns

One of the main distinguishing things in the Bayesian approach is the consideration
of prior knowledge about the model parameters.

The Bayesian approach allows for performing consistent inferences even when
the prior information is lacking, by marginalizing or integrating out over this prior
information. This property also allows us not to make guesses on certain unknown
quantities, in contrast to classical methods. Furthermore, the Bayesian approach,
by its property of defining conditional dependencies among parameters and model
assumptions in hierarchical modeling, allows for defining lack of prior information
in an appropriate way.

However, the use of uncertainty assumptions makes the Bayesian approach to
be more sensible to prior assumptions than classical methods.

2.3 Models and priors

2.3.1 Generalized linear models

The term generalized refers to specifying different observational models from the
exponential family, denoted by F , for the observations y. The models are linked to
a predictor function η by a specific link function g(·),

p(y|η, φ) = F (y|µ, φ),

g(µ) = η,

where µ represents the mean of the model, E[y|φ] = µ, and φ represent the other
parameters of the model, such as, for example, the variance parameter in normal
models or the shape parameter in gamma models. The predictor function η is
usually linked to the mean parameter µ of the model (although it might also be
another parameter of the model) by a strictly monotonic link function g with inverse
mapping µ = g−1(η). Often, g is a differentiable function in order to be able to
obtain the maximum likelihood estimate (see Section 2.4) conveniently.

The term linear model usually refers to using a parametric form for the functional
relationship (predictor function η) between observed data and predictors (input
variables), such that:

η = βx,

where β is the row-vector of coefficients in a parametric model and x is the column
vector of input values (in this work, the terms input variable, covariate and predictor
are used interchangeably). In parametric models the form of predictor functions are
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defined by a finite, often small, set of parameters β. Parametric models fit possible
nonlinear effects through, for example, binning or polynomials.

In the Bayesian framework, prior distributions have to be defined for the model
parameters µ and φ. In the case of the mean parameter µ, if we have a predictor
function, we will define the priors in the parameters β of the predictor function
instead.

Normal model

The observational model is a Normal distribution, denoted by N , of parameters
mean µ and noise variance σ2:

p(y|µ, σ) = N (y|µ, σ2),

µ = η.

In this case, the canonical link function is the identity function.

Poisson model

The observations are expected to follow a Poisson distribution, denoted by P , with
mean parameter µ:

p(y|µ) = P(y|µ),

log(µ) = η.

In this case, the link function is, for example, the log function, in order to transform
the values of the predictor function η, usually in the continuous real space, to the
strictly positive or equal to zero range of values of the mean of the Poisson model.

Binomial model

In this case, the observations are binary-valued (0,1) observations. These binary
observations are expected to follow a Binomial distribution, denoted by B, with
probability parameter p of being 1:

p(y|p) = B(p),

logit(p) = η.

In this case, the probability p is linked to the predictor function η through the
’logistic’ transformation, logit(·), which transforms the values of the predictor
function, usually in the continuous real space, to the [0,1] range of probabilities.
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In this model, the ’probit’ link function can also be used [Aldrich et al., 1984]. A
Binomial observational model is used in the case studies in Section 3.10 of Chapter
3 and Section A.1 of Appendix A.

Multinomial model

In multi-class classification problems, the observations are multi-class-valued
(1, . . . , J). In this case, a multinomial observational model, denoted byM, may be
used:

p(y) =M(p),

where p = (p1, . . . , pj , . . . , pJ) is a vector of probabilities of each possible class.
In this model, in order the vector of probabilities p of an observation to sum to 1,∑J

j=1 pj = 1, the following constraint has to be considered:

pJ = 1−
∑

((p1, . . . , pJ−1)).

The probability of belonging to a class j can be computed by the ’softmax’ transfor-
mation [Bishop, 2006]:

pj =
exp(ηj)∑J
k=1 exp(ηk)

.

where ηj denotes the predictor function for modeling the probability of belonging
to class j. A multinomial observational model is used in the case study in Section
3.11 in Chapter 3.

2.3.2 Conjugate priors

A prior distribution p(θ) is said to be conjugate to a likelihood function p(y|θ) if the
posterior distribution p(θ|y) has the same functional form as the prior distribution
[Bernardo and Smith, 2009, Gelman et al., 2013]. The use of conjugate priors
for the likelihood produces posterior distributions in a closed form, then makes it
possible to solve the posterior analytically.

Conjugate priors of exponential family For any likelihood function of the ex-
ponential family, a conjugate prior distribution always exists. That is the reason of
the importance of the exponential family distributions, that in simple models and
with the use of conjugate priors, the posterior has analytic solution, which is known
as the conjugate-exponential model.
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2.3.3 Non-parametric models

The term non-parametric means that the shape of the predictor functions are fully
determined by the data as opposed to parametric functions that are defined by a typ-
ically fixed set of parameters. In non-parametric models the number of parameters
grows with the number of data.

Non-parametric functions are extremely flexible since the shape adapts to the
underlying patterns in the data, either linear or nonlinear, smooth or wiggly, without
knowing what these patterns look like. This property may be useful to find unknown
patterns in the data, in contrast to a parametric model.

However, in parametric models, selecting the best model involves constructing
a multitude of models with different forms, parameters and covariables, in the
predictor, followed by a search algorithm to select the best option, which can be a
potentially greedy step.

Non-parametric models are commonly based on kernel functions [Rasmussen
and Williams, 2006, Shawe-Taylor et al., 2004], such as the case of Gaussian
processes, which are extensively used along this work. Basically, a kernel function
k(x,x′) is a function that maps a pair of inputs x and x′ ∈ X (with input domain
X ⊂ IRD) into IR characterizing the similarity of the pair of inputs [Shawe-Taylor
et al., 2004]. Semi-parametric models based on series expansion of basis functions
are usually referred to as non-parametric models. In this work, we use spline models
in Chapters 4 and 5.

2.3.3.1 Gaussian processes

Chapter 3.4 of this work is specifically dedicated to Gaussian processes (GPs). In
the present section, we just briefly introduce them.

GP is a non-parametric model, i.e. an infinite parametric kernel model. GP can
be used as a prior probability distribution for multivariate and non-linear functions
f(x) : IRD → IR, and has the defining property that any finite collection of random
variables are multivariate Gaussian distributed [Bernardo et al., 1998, Rasmussen
and Williams, 2006]. A GP model is completely characterized by its mean and
covariance function. The key element of a GP is the covariance function as it defines
the correlation structure of function values. A covariance function can be expressed
as a positive semidefinite kernel function, such that the Gram matrix corresponding
to the covariance function is positive semidefinite [Rasmussen and Williams, 2006].
Several covariance functions can be used, from stationary (e.g. exponentiated
quadratic, Matern) to non-stationary (e.g. dot product, neural network) functions,
which can also be combined for further increased flexibility [Duvenaud et al., 2013,
2011, Rasmussen and Williams, 2006]. For a review of the different covariance
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functions in Gaussian processes, see Rasmussen and Williams [2006]. Due to their
generality and flexibility, GPs are of abroad interest across machine learning and
statistics [Neal, 1999, Rasmussen and Williams, 2006].

2.3.3.2 Basis function models

Finite parametric non-linear models are basically based on the class of additive
models of non-linear functions [Ruppert et al., 2003, Wood, 2017]. The common
basis function models rest on the series expansion of basis functions. In the one
dimensional case, the predictor of a basis function model approach can be illustrated
as follows:

µ(x) =
∑
k

Zk(x)bk (2.1)

where b = (b1, . . . , bK) is the vector of coefficients and Z = {Zk(x)}Kk=1 is the set
of basis functions. A simple example is the Taylor series expansion in which the
basis functions are polynomials of increasing degree. This scheme allows the mean
to vary nonlinearly as a function of the predictors. The weighted sum of the basis
functions can model non-linear and smooth functions.

Useful options for the form of the basis function, which allows for more flexible
and accurate relationships, are using natural cubic-splines, B-splines, radial splines,
etc. The flexibility of the model depends on the number K of basis functions,
so the more basis functions the more flexible functions are obtained. In order to
avoid overfitting, different approaches can be used, such as the use of a prior on
the number and locations of knots in a kernel or spline model, the use of shrinkage
prior on the spline coefficients, similarly to variable selection procedures [Piironen
et al., 2018], or the use of a penalized version of these models, which are probably
the most commonly used [Crainiceanu et al., 2005, Wood, 2003]. In this work,
we illustrate in Chapters 4 and 5 the formulation of a one-dimensional penalized
Thin-plate cubic-spline model [Ruppert et al., 2003] represented in the form of
linear mixed model as presented in Crainiceanu et al. [2005].

Conditionally on the chosen basis functions, the model is linear in the parame-
ters, then inference can be faced as in linear regression models.

2.3.4 Hierarchical models

The Bayesian framework uses the property of defining conditional dependencies
among quantities to perform hierarchical modeling, which allows for specifying
powerful models with complex structures [Gelman et al., 2013, Gelman and Hill,
2006, Ntzoufras, 2011].
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The basic idea of hierarchical modeling, also known as multilevel models, is to
organize the model using a set of statements of probability conditional dependencies
among quantities and model assumptions. The joint probability should reflect this
dependencies. Generally, a hierarchical structure can be written if the joint distribu-
tion of the parameters can be decomposed to a series of conditional distributions.
The term hierarchical models refers to a general set of modeling principles than to a
specific family of models.

Priors of model parameters are the first level of hierarchy. Priors of model
parameters can depend on other parameters (prior parameters), and new priors
(hyperpriors) are defined over these prior parameters. In this case, the hyperpriors
would be the second level of hierarchy. Following this scheme [Ntzoufras, 2011],
the structure can be extended to more levels of hierarchy. In principle, there is not a
limited level of hierarchy.

Following, we illustrate in equation (2.2) the posterior distribution of a model
parameter in a conditional structure with two-levels of hierarchy. The prior dis-
tribution of model parameter θ, p(θ|a), depends on the prior parameter a, which
hyperprior distribution p(a|b) depends on a fixed value b (hyper-parameter). Notice
that, in equation (2.2), the posterior distribution is presented as proportional to the
likelihood and priors, avoiding the normalizing constant of the marginal likelihood.
In Figure 2.1, the direct acyclic graph of these hierarchical structure is depicted.

p(θ|y) ∝ p(y|θ)p(θ|a)p(a|b) (2.2)

𝑎𝑎b 𝜃𝜃 𝑦𝑦

Hyper-parameter p(a|b)

Hyperprior

p(𝜃𝜃|a)

Prior

p(𝑦𝑦|𝜃𝜃)

Likelihood

Figure 2.1: Graphical representation of a two-level hierarchical prior dependency.

This hierarchical structure usually arises in problems such as multiparameter
models, where parameters can be regarded or connected in some way, or models
in complex phenomena with different levels of hierarchy in the data, or models
with covariance structure, where the covariance is governed by some other parame-
ters, etc. Bayesian hierarchical modeling is an excellent example of propagating
uncertainties among different quantities in complex models with conditional de-
pendencies. Furthermore, Bayesian hierarchical modeling allows us not to make
guesses on certain unknown quantities, in contrast to classical statistics.

The most common and simple view of a hierarchical structure arises when
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model parameters come from a common population distribution. For example, a
model with a common population distribution, N (0, σ2

µ), for the mean parameters,
µi, of a Normal observation model, can be expressed as follows:

Likelihood p(yi|µi, σi) = N (yi|µi, σ)

Prior p(µi|σµ) = N (µi|0, σµ)

Prior p(σ|d) = J1(σ|d)

Hyperprior p(σµ|b) = J2(σµ|b)

where J1 and J2 denote some prior distributions for the scale parameters σ and σµ,
respectively, and b and d are specific-valued parameters for these prior distributions.
The posterior distribution of that model takes the form:

p(µ, σ, σµ|y) ∝ p(y|µ, σ) p(µ|σµ) p(σµ) p(σ)

= N (y|µ, σ)N (µ|0, σµ)J2(σµ|b)J1(σ|d).

In exact Bayes, if we use a diffuse (improper) prior, we should check that
the posterior is proper. In most problems, one should have enough substantive
knowledge about the hyperparameters, at least to constrain them into a finite space.
We can control the variation on the posterior of the hyperparameters with the prior.

In this work, we use sampling methods in all the applications, so we do not need
to study the analytic solution of hierarchical models using conjugate priors. For a
conjugate analysis of hierarchical model see e.g. Gelman et al. [2006].

In hierarchical models, it makes sense the generalization (predictive distribution)
for future values of the parameters. And then, generalization for a future observation
(outcome) corresponding to a future parameter value. For the example above, the
predictive distribution of a future observation ỹ for a future predicted parameter
value µ̃, given the set of actual observations y is:

p(ỹ|y) =

∫
p(ỹ|µ̃, µ, σ, y)p(µ̃|µ, σµ, y)p(µ|σµ)p(σµ)p(σ)dσµdσ

=

∫
N (ỹ|µ̃, σ)N (µ̃|µ, σµ)N (µ|0, σµ)G(σµ|b)F (σ|d)dσµdσ.

Such a hierarchical thinking helps in understanding multiparameter models and
is also useful for developing computational strategies. Hierarchical models can
have enough parameters to fit data well in the case of big datasets. The use of prior
probability distribution to structure some dependency into the parameters can avoid
for overfitting.

Hierarchical models can be considered as a large set of stochastic formulations
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that include many popular models such as the random effects, the variance com-
ponents, the multilevel, the generalized linear mixed, spatial and temporal, and
Gaussian processes. Models with random effects follow a hierarchical structure,
since different parameters share a common distribution with a common variance, for
example generalized random-effects model. Hierarchical models are widely used in
meta-analyses [Woodworth, 2004]. Spatio, temporal and spatio-temporal models
also are models that follow a hierarchical structure since common random effects
are shared among neighbor variables, for example, first order random walk model,
Kriging model, and Conditional Auto-Regressive Models for Areal Data [Banerjee
et al., 2014, Gelman and Hill, 2006]. Models with Gaussian process priors for
functions follow a hierarchical structure since function values are dependent on
covariance function parameters [Gelman et al., 2013].

2.3.5 Generalized additive models

Widely known drawbacks of flexible non-parametric and multi-dimensional models
are that they are often extremely difficult to interpret. If these flexible models
are constrained to be additive over the input dimensions, the fitted models are
much easier to interpret. In Generalized additive models (GAM) [Hastie, 2017,
Larsen, 2015], the functional relationship between predictors and response variable
is decomposed into a sum of low-dimensional non-parametric functions (and an
additional fixed effects part model part if desired):

µ(x1, x2, . . . , xJ) = βx+ s1(x1) + s2(x2) + · · ·+ sJ(xJ),

where the term βx denotes a linear term with the covariates x = (x1, x2, . . . , xJ),
and the terms sj(xj) denote one-dimensional smooth non-parametric functions.

The problem with additive models is that they can be inaccurate if the phe-
nomenon being modeled is not additive. A tradeoff between accuracy and in-
terpretability can be achieved progressively constraining a fully flexible multi-
dimensional model towards to be more and more additive with lower-dimensional
functional additive components.

Low-dimensional functional components helps the interpretation of the model
as marginal effects of a single component does not depend on the values of the other
components, e.g. in the case of unidimensional functions, single input effects can
be interpreted.

Nonparametric models can be extremely flexible as described in Section 2.3.3.
Some nonparametric models, for example GPs, control smoothness of the predictor
functions to prevent overfitting, and tackle the bias/variance tradeoff. Following, we
briefly discuss the use of GPs as individual components in an additive scheme.
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2.3.5.1 Additive Gaussian processes

An additive GP model is a GAM model composed of GP functions. An additive GP
model results in a GP model with a covariance function that is decomposed into the
sum of lower dimensional kernels [Durrande et al., 2012, Duvenaud et al., 2011]
(in this work, the terms covariance function and kernel are used interchangeably,
although we know that not all kernels are covariance functions and that a kernel
is a more general function [Rasmussen and Williams, 2006]). The new additive
kernel allows additive interactions of all orders, ranging from first order interaction
(one-dimensional kernels) all the way to multi-order interaction (multi-dimensional
kernel). The additive kernels of 1st, 2nd, 3rd and dth order of interaction in a
D-dimensional input space, x ∈ IRD, are computed as follows:

k1(x,x′) = α1

D∑
i=1

ki(xi, x
′
i)

k2(x,x′) = α2

D−1∑
i1=1

D∑
i2=i1+1

ki1(xi1 , x
′
i1)ki2(xi2 , x

′
i2)

k3(x,x′) = α3

D−2∑
i1=1

D−1∑
i2=i1+1

D∑
i3=i2+1

ki1(xi1 , x
′
i1)ki2(xi2 , x

′
i2)ki3(xi3 , x

′
i3)

...

kd(x,x
′) =

αd

I1=D−d+1∑
i1=1

I2=I1+1∑
i2=i1+1

· · ·
Id=Id−1+1∑
id=id−1+1

ki1(xi1 , x
′
i1)ki2(xi2 , x

′
i2) · · · kid(xid , x

′
id

)

where ki(xi, x′i) denotes the kernel with one-dimensional inputs xi and x′i, kd(x,x
′)

denotes the additive kernel of order d with D-dimensional inputs x and x′, and
αd is the marginal variance (magnitude) of kd(x,x′). The resulting kernel of an
additive GP model up to the dth order is the sum of the additive kernel from the 1th
to dth order:

k1,...,d(x,x
′) = k1(x,x′) + · · ·+ kd(x,x

′).

The full additive kernel is a sum of the additive kernel of all orders:

k1,...,D(x,x′) = k1(x,x′) + · · ·+ kD(x,x′).

A GP with this kernel (an additive kernel) help us to determine which orders
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of interaction might be important. This model can improve computational efficacy
and interpretability. An additive kernel of all the orders of interaction sums over an
exponential number of terms, which makes it intractable. Duvenaud et al. [2011]
shows how to compute this kernel effectively.

In this work, an additive GP is the model used in the case study of land use
classification in Section 3.11, where we deal with 53 input variables and we consider
a 1st order additive GP model which implies 53 terms. An additive GP model
composed of 53 one-dimensional GP components can be computationally extensive
to be fitted using sampling methods. However, using approximate GPs, as the one
proposed in Chapter 3 of this work, instead of using exact GPs, this additive GP
model with 52 terms (one-dimensional terms) can be fitted using sampling methods
in a few hours of computation.

2.4 Bayesian inference computation methods

Unfortunately, the posterior probability distribution cannot be handled analytically
except in the simplest cases and using conjugate priors [Gelman et al., 2013, Minka,
2000]. Furthermore, it can be analytically intractable with high dimensionality. As
a consequence, the predictive distribution cannot be computed in a closed form.
Therefore, approximations are needed in these cases where exact Bayes can not be
conducted.

In exact Bayes, the use of conjugate priors leads, in most of the cases, to closed-
form and analytically tractable posterior and predictive distributions. The use of
conjugate priors can reduce modeling flexibility and, furthermore, in many cases
it is not possible the use of conjugate priors. Furthermore, even using conjugate
priors, analytic solutions for high dimensional models or very complex hierarchical
models can be difficult.

Approximate methods for solving posterior and marginal distributions in Bayesian
inference can be roughly categorized in point estimates, distributional approxima-
tions, and sampling methods.

Point estimates approach the posterior of the parameter with a single best
point estimate [O’Hagan and Forster, 2004]. A point estimate does not provide
information about the shape of the posterior, so uncertainty is not considered. Point
estimates have the drawbacks of getting possible local optima in non-linear functions
and, also, being based on high probability density instead of high probability mass.
The problems of overfitting are mostly related to point estimates [Bishop, 2006,
Raiko et al., 2006].

• Maximum a posteriori (MAP) optimizes the posterior distribution over the pa-
rameter space. In MAP, the inference is based on conditioning the parameters
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on the data, which corresponds to a Bayesian approach.

• Maximum likelihood (ML) methods optimize the likelihood function over the
parameter space. In ML, the prior distribution of the parameters are flat or
uniform, and inference is based on conditioning the data on the parameters,
which corresponds to a frequentist point of view. ML is the MAP solution
with flat prior. ML estimates are attracted to high but sometimes narrow peaks
and, unfortunately, this effect becomes stronger when the dimensionality
increases [Bishop, 2006, Raiko et al., 2006].

Distributional approximation approaches try to approach the posterior by means
of simple and analytically tractable distributions. Laplace method [Cseke and
Heskes, 2011, Geweke, 1989] is a distributional approach that, centered on single
best estimate, tries to approach the posterior with a simple distribution. Variational
methods try to approach the full posterior with simple distributions by means
of variational methods, such as variational Bayes [Beal et al., 2003, Gershman
et al., 2012], expectation propagation [Cseke and Heskes, 2011, Minka, 2001] or
expectation maximization [Little and Rubin, 2002, Liu et al., 1998].

Empirical Bayes consists in conducting Bayesian inference using point estimates
for the prior parameters, so uncertainty on the prior parameters is ignored.

In a fully Bayesian approach, marginalization over the hyperparameter to obtain
the posterior of model parameters or over the parameters to obtain the predictions,
is needed. To approach these integrals, sampling methods based on Markov chain
Monte Carlo (MCMC) are used.

2.4.1 Sampling methods

As said before, the posterior distribution

p(θ|y) =
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

and, consequently, the predictive distribution

p(ỹ|y) =

∫
p(ỹ|θ, y)p(θ|y)dθ

are, in most of cases, unable to be evaluated in a closed form. It is due to the fact that
computing

∫
p(y|θ)p(θ)dθ is usually difficult. However, the numerator p(y|θ)p(θ)

is usually easily evaluable for any θ.
Monte Carlo methods are based on sampling from the posterior using the

unnormalized posterior (the numerator) h(θ|y) = p(y|θ)p(θ), and these draws
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are treated as a sample of parameter observations. As long as this sample can be
considered as a realization of a stationary ergodic process [Roberts and Rosenthal,
2007], it can be used to compute means, deviations, quantiles, to draw histograms
and to marginalize, etc. For example, the expectation of an arbitrary function f ,
which depends on a random variable θ with probability distribution p(θ), can be
approximated by Monte Carlo integration:

E[f(θ)] =

∫
f(θ)p(θ)dθ ≈ 1

N

N∑
i=1

f(θ∗),

where θ∗ denotes a sample draw and N the number of draws of the sample. Sim-
ilarly, as a main interest in Bayesian inference, the predictive distribution can be
approximated as:

p(ỹ|y) ≈ 1

N

N∑
i=1

p(ỹ|θ∗, y).

Thus, when using sampling methods, generally only the unnormalized posterior is
taken into account, as the posterior is proportional to the likelihood and priors:

p(θ|y) ∝ p(y|θ)p(θ).

Unfortunately, generating a representative sample from the posterior efficiently
is not trivial. The Monte Carlo methods used in Bayesian inference for sampling
from the posterior are: rejection sampling, importance sampling and Markov chain
Monte Carlo.

Markov chain Monte Carlo (MCMC) methods [Brooks et al., 2011, Gilks
et al., 1995, MacKay, 2003] aim to estimate the posterior distribution by means
of the generation of a sequence of random samples from it. MCMC samples are
based on constructing a Markov chain that has the true posterior distribution as its
equilibrium distribution. In a Markov Chain, (θ1, . . . , θt, . . . ), each state θt only
depends on the previous state, and consecutive states are related by a transition
distribution q(θt+1|θt). The difficulty is to generate a Markov chain that converges
to its equilibrium distribution rapidly and with not too high autocorrelation in its
sequence of values. A great amount of research has been conducted on MCMC
methods, and numerous algorithms have been proposed. Excellent references on
MCMC and advanced methods can be found in [Brooks et al., 2011, Gilks et al.,
1995, Robert and Casella, 2013]. Following we make a brief review of the more
relevant MCMC algorithms which have been used in this work.
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Metropolis-Hasting sampling

Metropolis-Hasting algorithm [Hastings, 1970] is one of the most used due to its
simplicity. It is always applicable when the unnormalized posterior can be evaluated
pointwise. The algorithm produces a parameter sequence that converges to the
target distribution p(θ|y). The draw θt+1 is sampled from a proposal distribution
q(θt+1|θt) with an accepting probability given by

min
(

1,
p(θt+1|y)q(θt|θt+1)

p(θt|y)q(θt+1|θt)

)
.

If the proposed draw θt+1 is not accepted, another different draw for the same
state t+ 1 is proposed. The chosen proposal distribution is essential for efficient
sampling and convergence of the algorithm. In practice, finding good proposal can
be difficult in order not to get to many rejections or, contrarily, too often acceptance
that parameter space is too little explored by the chain. This problem may lead
to unrepresentative posterior sample or very slow convergence, especially in high
dimensions.

Gibbs sampling

The Gibbs sampler [Geman and Geman, 1993] can be used for simulating from
multivariate distributions when one is able to simulate from conditional distributions.
The model parameters θ = {θ1, . . . , θD} are updated cyclically from the full
conditional distribution of the dth parameter given all the others, θ−d and the data
y,

p(θd|θ−d, y).

If one can easily sample from full conditional distributions, with Gibbs sampling
there is no need for tuning parameters and searching for transition probabilities.
This is applicable in conditionally conjugate Bayesian models [Gelman et al., 2006]
and in many hierarchical models with conjugate priors. The concept of conditionally
conjugate, as mentioned in Gelman et al. [2013], can be useful when using Gibbs
sampling methods. The conditionally conjugate refers to the posterior of a parameter
conditioned to all the others p(a|b, c) is of the same family of the prior used for that
parameter p(a).

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo algorithm [Duane et al., 1987, Neal, 1993, Neal et al.,
2011] introduces gradient information in improving efficiency on the proposals
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and reduce random walk behavior of the sampling. The gradients help the al-
gorithm to find high probability states. HMC can potentially improve sampling
efficiently, but the gradients of the distribution need to be tractable. Additional pa-
rameters need to be tuned, which makes its implementation more difficult than other
MC methods such as Giggs or Metropolis-Hasting sampling. However, methods
have been recently developed for automatic adaptation of the parameters, such as
no-U-turn sampler (NUTS) [Betancourt, 2016, Hoffman and Gelman, 2014]. HMC
algorithm with sampler NUTS in the probabilistic programming software Stan
[Carpenter et al., 2017, Team, 2017] has been extensively used in Chapters 3, 4 and
5 of this work.

Convergence diagnosis

Reaching convergence on the sample is essential, otherwise, the samples do not
come from the posterior distribution and subsequent analysis are meaningless.

The initial part of the chain may have not reached convergence yet. Furthermore,
it may also include phase for adapting algorithm parameters. So the initial part of
the chain may be non-representative. This initial part is commonly called burn-in or
warm-up and must be thrown away.

Running several chains from different initial values can help diagnosis. Visual
inspection of the chains is straightforward. Furthermore, several methods for
evaluating convergence have been proposed. Perhaps, the most commonly used is
the potential scale reduction factor [Vehtari et al., 2019], which is basically based
on comparing the mean and variance of a single chain to the mean and variance of
all chains in order to assess whether chains are mixing well.

The effective sample size describes the efficiency of dependent sample in terms
of independent draws from the same distribution, is descriptive of the effectiveness
of the sampling and of the autocorrelation of the chain.

Finally, there are problematic distributions for performing sampling methods,
such as distributions with nonlinear dependencies or ’funnels’ distributions, where
optimal proposal depends on location. Furthermore, it can be difficult to move from
one mode to another in multimodal distributions, and the central limit theorem for
expectations does not hold in long-tailed distributions with non-finite variance and
mean.
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2.5 Sensitivity analysis and model validation and compar-
ison

A well-known premise in statistics, which was attributed to the statistician George
Box, is that ”all models are wrong, but some are useful”. A model is just a simple
representation of a true phenomena. Checking model performance and inference
is essential since models can be sensitive to additional information not used in the
modeling or models can be sensitive to the underlying assumptions, such as to
prior and model assumptions. Which may make the posterior distributions either to
underestimate or overestimate the ’true’ posterior density.

In order to conduct a sensitivity analysis, some strategies can be used. For
example, a comparison to simpler methods can be made and, if our method gives
poorer results, our assumptions are questionable. Different models can be applied
and/or different choices for priors can be checked. Sensitivity on essential inference
quantities can be compared, taking into account that, for example, extreme quantiles
are more sensitive than means and medians or extrapolation is more sensitive than
interpolation.

Furthermore, we need to do posterior checking against the observed data. If
an additional representative set of sample data is not available, cross-validation
methods for model checking and comparison by checking predictive accuracy can
be used. For model checking, leave-one-out probability integral transformation
(LOO-PIT) can be used to assess whether the model predictive distributions are
calibrated, that is, they are describing the model predictive uncertainty well. In
case of good calibration of predictive distribution, LOO-PIT values are uniformly
distributed. They are based on computing the probability of a predictive value ỹi to
be lower or equal to its corresponding actual observation yi that has not been taken
part in fitting the model [Gelfand et al., 1992, Gelman et al., 2013]:

LOO-PITi = P (ỹi ≤ yi).

From the models having well calibrated predictive distributions, we would
prefer the one which is most certain, which can be assessed using mean square
predictive error (MSE) or even better using the expected log posterior predictive
density (ELPD). The MSE evaluates, by averaging over all checking observations,
how far new data is from the model by using the distance (error) between the actual
observation yi and the predictive mean ỹi:

MSE =
1

N

N∑
i

(yi − ỹi)2.
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And the ELPD evaluates, by averaging over all checking observations, how far new
data is from the model while taking the posterior uncertainties into account. It is
based on the log-density of new data given the model [Andersen et al., 2019, Vehtari
and Ojanen, 2012]:

ELPD =
1

N

N∑
i

ln(p(yi|y−i)), (2.3)

where y−i denotes the dataset without the observation i.





Chapter 3

Hilbert space approximate
Bayesian Gaussian processes: A
performance analysis

In this chapter, we analyze the performance and practical implementation of a
recently theoretically developed novel approach for low-rank approximate Gaus-
sian processes. Low-rank approximate Gaussian processes are of main interest in
machine learning and statistics due to the high computational demands of exact
Gaussian process models. With this study we make the contribution of analyzing
in detail the performance of the method, providing the recommendations for its
practical implementation. We show the simplicity of the method, with an attractive
computational complexity due to its linear structure, which makes it easier to be
used as building blocks in more complicated models and using statistical program-
ming frameworks. Several illustrative examples of the performance, applicability
and implementation of the method in the Stan programming software are presented,
and their Stan model codes are also provided.

Furthermore, and before going through the main contribution of the chapter, a
detailed introduction to exact Gaussian processes is presented. The prior, posterior
and predictive probability distributions of Gaussian processes are derived. And
the main elements of Gaussian processes, the covariance and the spectral density
functions, are also briefly described. Gaussian processes are the main modeling
framework on which we base and derive most of the modeling contributions and
applications made in this work.

39
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3.1 Introduction

Gaussian processes (GPs) are flexible statistical models for specifying probability
distributions over multi-dimensional non-linear functions [Neal, 1997, Rasmussen
and Williams, 2006]. Their name stems from the fact that any finite set of function
values is jointly distributed as a multivariate Gaussian. GPs are defined by a mean
and a covariance function. The covariance function encodes our prior assumptions
about the functional relationship, such as continuity, smoothness, periodicity and
scale properties. GPs not only allow for non-linear effects but can also implic-
itly handle interactions between input variables (covariates). Different types of
covariance functions can be combined for further increased flexibility. Due to their
generality and flexibility, GPs are of broad interest across machine learning and
statistics [Neal, 1999, Rasmussen and Williams, 2006]. Among others, they find
application in the fields of spatial epidemiology [Banerjee et al., 2014, Diggle,
2013], robotics and control [Deisenroth et al., 2015], signal processing [Särkkä
et al., 2013], as well as Bayesian optimization and probabilistic numerics [Briol
et al., 2015, Hennig et al., 2015, Roberts, 2010].

The key element of a GP is the covariance function that defines the dependence
structure between function values at different inputs, and allows for non-linear
effects. However, computing the posterior distribution of a GP comes with a
computational issue because of the need of inverting the covariance matrix. That is,
given n observations in the data, the computational complexity in covariance matrix
inversion and memory requirements of exact GP implementation in general scale
as O(n3) and O(n2), respectively. This limits their application to rather small data
sets of a few tens of thousands observations at most. The problem becomes more
severe when performing full Bayesian inference via sampling methods, where in
each sampling step we need O(n3) computations when inverting the Gram matrix
of the covariance function, usually through Cholesky factorization. To alleviate
these computational demands, several approximate methods have been proposed.
In Section 3.2, we make a brief review of the most common present methods for
low-rank approximations of GPs. As a summary, these can be roughly classified
into two general approaches. Sparse GPs are based on low-rank approximations
of the covariance matrix with a set of m� n inducing points that summarizes the
actual data (n). An alternative class of low-rank approximations is based on forming
a basis function approximation with m� n basis functions. The basis functions
are usually presented explicitly, but can also be used to form a low rank covariance
matrix approximation.

In this study, we propose an approximate framework for fast and accurate
inference for Gaussian processes. We focus on the basis function approxima-
tion via Laplace eigenfunctions for stationary covariance functions proposed by
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Solin and Särkkä [2020]. Basis function approaches behave computationally like
linear models, which is an attractive property in modular probabilistic programming
models where there is a big benefit if approximation specific computation is simple.
Then, it is easier to use Gaussian processes as building blocks in more complicated
models and can be used as latent functions in non-Gaussian observational models
allowing modeling flexibility. The Laplace eigenfunctions can be computed analyti-
cally and they are independent of the particular choice of the covariance kernel in-
cluding the hyperparameters. While the pre-computation cost of the basis functions
is O(mn), the computational cost in learning the covariance function hyperparame-
ters scales as O(nm+m) in every step of the optimizer. This is a big advantage in
terms of speed for iterative algorithms such as Markov chain Monte Carlo (MCMC).
Another advantage is the reduced memory requirements of automatic differentia-
tion methods used in modern probabilistic programming frameworks, such as Stan
[Carpenter et al., 2017, Team, 2017] and others. This is because the memory require-
ments of automatic differentiation scale with the size of the autodiff expression tree
which in direct implementations is simpler for basis function than covariance matrix
based approach. The basis function approach also provides an easy way to apply
the non-centered parameterization of GPs, which reduces the posterior dependency
between parameters representing the estimated function and the hyperparameters
of the covariance function, which further improves MCMC efficiency. Further-
more, it can be made arbitrarily accurate and the trade-off between computational
complexity and approximation accuracy can easily be controlled.

While Solin and Särkkä [2020] have fully developed the mathematical theory
behind this specific approximation of GPs, further work is needed for its practical
implementation in probabilistic programming frameworks. They do not put much
effort in describing and analyzing the relation among the key factors of the box size
(this can also be referred to as desired prediction space or boundary condition), the
number of basis functions, and the properties of the true functional relationship
between covariates and response variable (smoothness or roughness of the function
to be learned). The performance and accuracy of the method are directly related with
the number of basis functions and the box size. At the same time, successful values
for these two factors depend on the smoothness or roughness of the function to be
learned (the non-linearity of the function to be learned). The time of computation
is mainly dependent on the number of basis functions. In this study, we analyze
in detail the performance and accuracy of the method in relation to these key
factors: the number of basis functions, desired prediction space, and smoothness
or roughness of the function. We provide intuitive visualizations and practical
recommendations for the choice of these factors, which will help users to improve
computational performance while maintaining close approximation to exact GPs.

Although there are several GP specific software packages available to date
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(GPML [Rasmussen and Nickisch, 2010], GPstuff [Vanhatalo et al., 2013], GPy
[GPy, 2012], GPflow [Matthews et al., 2017]), each provide efficient implemen-
tations only for a restricted range of GP based models. In this study, we do not
focus on the fastest possible inference for some specific GP models, but instead are
interested in how GPs can be easily used as modular components in probabilistic
programming frameworks.

The remainder of the chapter is structured as follows. In Section 3.2, a brief
overview of the state-of-the-art is given. In Section 3.3, we describe the main
contributions of this chapter. In Section 3.4, we introduce the exact GP model. In
Section 3.5, we introduce the reduced rank approximations to GPs proposed by
Solin and Särkkä [2020]. In Section 3.6, we analyze the performance of these
approximations under several conditions using analytical and numerical methods.
In Chapter 3.7, we introduce the low-rank approximation for the particular case
of a GP model with a periodic covariance function following Solin and Särkkä
[2014]. Finally, several case studies in which we fit exact and approximate GPs
to real and simulated data using Stan, a probabilistic programming software, are
provided in Sections 3.8, 3.9, 3.10 and 3.11. We end with a brief conclusion in
Section 3.12. More case studies are presented in Appendix A. The Stan model codes
for all case studies are provided through links to the author’s GitHub repository
https://github.com/gabriuma/basis_functions_approach_to_GP .

3.2 State of the art

The GP prior entails an O(n3) complexity that is computationally intractable for
many practical problems. To overcome this scaling problem several schemes have
been proposed. One approach is to partition the data set into separate groups
and performing local inference in each partition [Snelson and Ghahramani, 2007,
Urtasun and Darrell, 2008].

Other global approach is to build a low-rank approximation to the covariance
matrix of the complete data based around ’inducing variables’, also known as
sparse GPs [Bui et al., 2017, Quiñonero-Candela and Rasmussen, 2005]. This
approach, based on inducing points, employs a small set of pseudo data points (m) to
summarise the actual data (n). The storage requirements are reduced to O(nm) and
complexity to O(nm2), where m� n. Some of these methods have been reviewed
in Rasmussen and Williams [2006], and Quiñonero-Candela and Rasmussen [2005]
provide a unifying view of these methods based on approximate generative methods.
Burt et al. [2019] show that for regression with normally distributed covariates in D
dimensions and using the squared exponential covariance function, m = O(logD n)
is sufficient for accurate approximation. Several of these methods (e.g., SoR, DTC,

https://github.com/gabriuma/basis_functions_approach_to_GP
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VAR, FIC) are basically based on choosing a set of m inducing inputs xu aiming to
match their corresponding covariance matrix Ku,u to the covariance matrix of the
actual data, by means of approximating the eigensprectrums. These methods can be
seen as modifications of the Nyström method (see Arthur [1979]) and were originally
introduced to approximate GPs by Williams and Seeger [2000]. In conventional
sparse GP approximations based on inducing points, although the rank of the GP
is reduced considerably to the number of inducing points, this still needs to do the
automatic differentiation and covariance matrix inversion.

The inducing points-based sparse approximation methods works, in practice,
reasonable well in relatively smoothed processes. Vanhatalo et al. [2010] propose the
use of compactly supported covariance function jointly with sparse approximations
to model both short and long range correlations. In general sparse GPs, the number
of inducing points or their locations are crucial in order to capture the correlation
structure. For a discussion on the effects of the inducing points, see Vanhatalo et al.
[2010] and Banerjee et al. [2008].

More recent developments in the context of sparse GPs include a structured
kernel interpolation method [Wilson and Nickisch, 2015], which combines the
inducing points approach and the structure exploiting for scalability, such as Kro-
necker [Saatçi, 2012] or Toeplitz [Cunningham et al., 2008] approaches. This
framework improves the scalability and accuracy of fast kernel approximations
through kernel interpolation. On the other hand, Wang et al. [2019] have recently
developed a scalable approach for exact GPs and they demonstrate that an exact
GP can be fitted over a million points. They make use of GPU parallelization and
methods like linear conjugate gradients, accessing the kernel matrix only through
matrix multiplication.

Another global approach of low-rank approximations is based on forming a
basis function approximation with m� n basis functions. The basis functions are
usually presented explicitly, but can also be used to form a low rank covariance
matrix approximation. Common basis function approximations rely on the spectral
analysis and series expansions of Gaussian processes [Adler, 1981, Cramér and
Leadbetter, 2013, Loève, 1977]. A classical result is that the covariance function
can be approximated with a finite truncation of Mercer series and the approximation
is guaranteed to converge to the exact covariance function when the number of terms
is increased. Another related classical connection is to the works in the relationship
of spline interpolation and Gaussian process priors [Kimeldorf and Wahba, 1970,
Wahba, 1978, 1990]. In particular, it is well-known (see, e.g. Wahba [1990]
and Furrer and Nychka [2007]) that spline smoothing is equivalent to Gaussian
process regression with certain covariance function. The relationship of the spline
regularization with Laplace operators then leads to series expansion representations
that are closely related to the approximations considered here. The spline models
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are also based on a series expansion of basis functions, then the computational
demands are similar to the demands of this approach. However, spline models do
not have an explicit parameter controlling the correlation length as many of the
common GP covariance functions do, and then the fit is covered by the magnitude
parameter. In that sense, spline models do not have the useful interpretation of the
lengthscale parameter. Recent spline models can reproduce the Matern family of
covariance functions (see, e.g., Wood [2003]), however our approach can reproduce
basically all of the stationary covariance functions.

Sparse spectrum GPs are based on a sparse approximation to the frequency
domain representation of a GP [Gal and Turner, 2015, Lázaro Gredilla, 2010,
Quiñonero-Candela et al., 2010], where the spectral representation of the covariance
function is used. Recently, Hensman et al. [2017] presented a variational Fourier
feature approximation for Gaussian processes that was derived for the Matérn
class of kernels, where the approximation structure is set up by a low-rank plus
diagonal structure. They combine the variational methodology with Fourier based
approximations. Another related method for approximating kernels relies on random
Fourier features [Rahimi and Recht, 2007, 2008]. The approximate kernel has a finite
basis function expansion. While Sparse Spectrum GP is based on a sparse spectrum,
the reduced-rank method proposed in this study aims to make the spectrum as ‘full’
as possible at a given rank. Recent related work based on a spectral representation
of GPs as an infinite series expansion with the Karhunen-Loève representation [see,
e.g., Grenander, 1981] is presented by Jo et al. [2019].

The literature contains many parametric models that approximate GP behaviours;
for example, Bui and Turner [2014] included tree-structures in the approximation for
extra scalability, and Moore and Russell [2015] combined local Gaussian processes
with Gaussian random fields.

3.3 Contributions of the chapter

Our main contributions to this recently developed methodology for low-rank GP
model by Solin and Särkkä [2020] goes around these aspects:

• Firstly, clear summarized formulae of the method for the univariate and
multivariate cases is presented. Furthermore, the methodology in the particular case
of a GP with a periodic covariance function is also presented.

• The relations going on among the key factors, the number of basis functions,
the box size, and the lengthscale of the functions to be learned, are investigated. Let
us highlight that the lengthscale is the parameter of the covariance function that
ultimately characterizes the non-linearity of the posterior functions.
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• Recommendations for the values of the key factors based on the recognized
relations among them are given. We provide useful graphs of these relations that
will help the users to improve performance and save time of computation.

• A diagnosis of whether the chosen values for the number of basis functions
and the box size are adequate to fit to the actual data is proposed.

• The generalization of the method to the multidimensional case is described.

• The approach is implemented in a fully probabilistic framework and for
the Stan programming probabilistic software [Carpenter et al., 2017] as well as
subsequently in the brms package [Bürkner, 2017] of the R software [R Core Team,
2014].

• Several illustrative examples, simulated and real datasets, of the performance
and applicability of the model, and accompanied by their Stan model codes, are
developed.

3.4 Gaussian process model

A Gaussian process (GP) is a stochastic process that defines the distribution over a
collection of random variables indexed by a continuous variable, i.e. {f(t) : t ∈ T }
for some index set T . GPs have the defining property that the distribution of
any finite subset of random variables, {f(t1), f(t2), . . . , f(tN )}, is a multivariate
Gaussian distribution.

In this work, GPs will take the role of a prior distribution over function spaces
for non-parametric latent functions in a Bayesian setting. Consider a data set
{xn, yn}Nn=1, where yn is modelled conditionally as p(yn|f(xn), φ), where p is
some parametric distribution with parameters f and φ, and f is an unknown func-
tion with GP prior, which depends on an input xn ∈ IRD. This generalizes triv-
ially to more complex models depending on several unknown functions, such as
p(yn|f(xn), g(xn)), or multilevel models. Our goal is to obtain posterior distribu-
tion for the value of the function f̃ = f(x̃) evaluated at a new input x̃.

We assume a GP prior for f ∼ GP(µ(x), k(x,x′)), where µ : IRD → IR and
k : IRD × IRD → IR are the mean and covariance functions, respectively,

µ(x) = E[f(x)] ,

k(x,x′) = E
[
(f(x)− µ(x))

(
f(x′)− µ(x′)

)]
.

The mean and covariance functions completely characterize the GP prior, and
control the a priori behavior of the function f . Let f = {f(xn)}Nn=1, then the result-
ing prior distribution for f is a multivariate Gaussian distribution f ∼ N (µ,K),
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where µ = {µ(xn)}Nn=1 is the mean and K ∈ IRN×N the covariance matrix, where
Ki,j = k(xi,xj). The covariance function k(x,x′) may depend on a set of hyper-
parameters, θ, but we will not write this dependency explicitly to ease the notation.
The joint distribution of f and a new f̃ is also a multivariate Gaussian as

p(f , f̃) = N

([
µ
µ̃

] ∣∣∣∣∣0,
[
Kf ,f kf ,f̃
kf̃ ,f kf̃ ,f̃

])
,

where kf ,f̃ is the covariance between f and f̃ , and kf̃ ,f̃ is the prior variance of f̃ .
By using the conditional properties of multivariate Gaussian distributions, we can
derive the predictive distribution for f̃ given f analytically,

p(f̃ |f) = N (f̃ |kf̃ ,fK
−1
f ,ff , kf̃ ,f̃ − kf̃ ,fK

−1
f ,fkf ,f̃ ).

The joint distribution of the observations y = {yn}Nn=1 and function values f
and f̃ , p(y,f , f̃), is the product of the conditional distribution for y given f and
the joint distribution for f and f̃ :

p(y,f , f̃) = p(y|f) p(f , f̃).

By marginalizing over f and conditioning on the observations y, we obtain the
posterior distribution of interest

p(f̃ |y) =

∫
p(y|f) p(f , f̃) df

p(y)
, (3.1)

where p(y) is the marginal likelihood and is given by

p(y) =

∫
p(y|f) p(f , f̃) df df̃ . (3.2)

If the observational model p(y|f) is Gaussian, both integrals in equation (3.1) and
equation (3.2) can be solved analytically conditioned on the hyperparameters. For
example, a Gaussian likelihood y ∼ N (f , σ2), with noise variance σ2, yields the
following closed-form solution:

p(f̃ |y) = N (f̃ |µf̃ , σ
2
f̃
),

µf̃ = kf̃ ,f (Kf ,f + σ2I)−1y,

σ2
f̃

= kf̃ ,f̃ − kf̃ ,f (Kf ,f + σ2I)−1kf ,f̃ .
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If p(yn|f(xn), φ) = N (yn|f(xn), σ) then f can be integrated out analytically
(with a computational cost of O(n3) for exact GPs and O(nm2) for sparse GPs).
If p(yn|f(xn), g(xn)) = N (yn|f(xn), g(xn)) or p(yn|f(xn), φ) is non-Gaussian,
the marginalization does not have closed form solution. Furthermore, if a prior distri-
bution is imposed on φ and θ to form a joint posterior for φ, θ and f , approximate in-
ference such as Markov chain Monte Carlo (MCMC) [Brooks et al., 2011], Laplace
approximation ([Rasmussen and Williams, 2006, Williams and Barber, 1998],
expectation propagation [Minka, 2001], or variational Bayes methods
[Csató et al., 1999, Gibbs and MacKay, 2000] need to be used. In this work
we focus on the use of MCMC for integrating over the joint posterior. MCMC is
not usually the fastest approach, but allows accurate inference for general models in
probabilistic programming settings. We consider the computational costs of GPs
specifically from this point of view.

3.4.1 Covariance function and spectral density

The covariance function is the crucial ingredient in a GP as it encodes our prior
assumptions about the variation of the function, and defines a correlation structure
which characterizes the correlations between function values at different inputs. A
covariance function can be expressed as a positive semidefinite kernel function,
such that the Gram matrix corresponding to the covariance function is positive
semidefinite [Rasmussen and Williams, 2006]. In this work, the terms covariance
function and kernel might be used interchangeably.

A stationary covariance function is a function of τ = x− x′ ∈ IRD, such that
it can be written k(x,x′) = k(τ ), which means that the covariance is invariant to
translations. Isotropic covariance functions are those that are function of the distance
between observations, k(x,x′) = k(|x − x′|) = k(r), r ∈ IR, which means that
the covariance is both translation and rotation invariant. The most commonly used
distance between observations is the norm L2 (|x−x′|L2), also known as Euclidean
distance, although other types of distances can be considered.

The Matérn class of covariance functions is given by

kν(τ ) = α
21−ν

Γ(ν)

(√
2ντ

`

)ν
Kν

(√
2ντ

`

)
,

where ν is the order the kernel, Kν the modified Bessel function of the second
kind, and ` > 0 and α > 0 are the length-scale and marginal variance (magnitude),
respectively, of the kernel (covariance function). The particular case where ν =∞
and ν = 3/2 are probably the most commonly used kernels [Rasmussen and
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Williams, 2006]:

k∞(τ ) = α exp

(
− 1

2

τ 2

`2

)
,

k 3
2
(τ ) = α

(
1 +

√
3τ

`

)
exp

(
−
√

3τ

`

)
.

The former is commonly known as squared exponential (exponentiated quadratic)
covariance function. Assuming the Euclidean distance between observations,

r = |x− x′|L2 =
√∑D

i=1(xi − x′i)2, the kernels written above take the form:

k∞(|x− x′|L2) = α exp

(
− 1

2

D∑
i=1

(xi − x′i)2

`2i

)
,

k 3
2
(|x− x′|L2) = α

(
1 +

√√√√ D∑
i=1

3(xi − x′i)2

`2i

)
exp

(
−

√√√√ D∑
i=1

3(xi − x′i)2

`2i

)
.

Notice that the previous expressions have been easily generalized to using a mul-
tidimensional length-scale ` ∈ IRD. The use of a multidimensional length-scale
basically turns the isotropic covariance function into non-isotropic.

Stationary covariance functions can be represented in terms of their spectral
densities. That is, the covariance function of a stationary process, that is function of
τ = x−x′, can be represented as the Fourier transform of a positive finite measure
(Bochner’s theorem, see, e.g. Akhiezer and Glazman [1993]).

(Bochner’s theorem) A complex-valued function k on IRD is the covariance
function of a weakly stationary mean square continuous complex valued random
process on IRD if and only if it can be represented as

k(τ ) =

∫
IRD

e2πis·τdµ(s),

where µ is a positive finite measure.

If the measure µ has a density S(s), then S is known as the spectral density of
the covariance function k, and the covariance function and the spectral density are
Fourier duals, known as the Wiener-Khintchine theorem [Rasmussen and Williams,
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2006]. It gives the following relations:

k(τ ) =

∫
S(s)e2πis·τds,

S(s) =

∫
k(τ )e−2πis·τdτ .

The spectral density functions associated with the Matérn class of covariance
functions are given by

Sν(ω) = α
2DπD/2Γ(ν +D/2)(2ν)ν

Γ(ν)`2ν

(
2ν

`2
+ 4π2ω2

)(ν+D/2)

,

in D dimensions, where variable ω ∈ IRD is a frequency, and ` > 0 and α > 0 are
the lengthscale and magnitude (marginal variance), respectively, of the kernel (see
Rasmussen and Williams [2006]). The particular cases where ν =∞ and ν = 3/2
take the form

S∞(ω) = α
(√

2π
)D
`D exp

(
−0.5`2ω2

)
, (3.3)

S 3
2
(ω) = α

2DπD/2Γ(D+3
2 )
(√

3
)3

1
2

√
π`3

(
3

`2
+ ω2

)−D+3
2

. (3.4)

Particularizing to an input dimensionD = 3 and Euclidean distance ω =
√∑D

i=1 s
2
i ,

and considering a multidimensional lengthscale ` ∈ IR3, the spectral densities writ-
ten above take the form

S∞(ω) = α
(√

2π
)3 3∏

i=1

`iexp

(
−1

2

3∑
i=1

`2i s
2
i

)
,

S 3
2
(ω) = α 32π

(√
3
)3 3∏

i=1

`i

(
3 +

3∑
i=1

`2i s
2
i

)−3

.

3.5 Hilbert space approximate Gaussian process model

The approximate GP method, developed by Solin and Särkkä [2020] and imple-
mented in this chapter, is based on considering the covariance operator of a homoge-
neous (stationary) covariance function as a pseudo-differential operator constructed
as a series of Laplace operators. Then, the pseudo-differential operator is ap-
proximated with Hilbert space methods on a compact subset Ω ⊂ IRD subject to
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some boundary condition. For brevity, we will refer to these approximate GPs
as HSGPs. Below, we will present the main results around HSGPs relevant for
practical application. More details and mathematical proofs are provided in Solin
and Särkkä [2020]. Our starting point for presenting the method is the main result
obtained by Solin and Särkkä [2020] of the definition of the covariance function
as a series expansion of eigenvalues and eigenfunctions of the Laplacian opera-
tor. The mathematical details of this approximation have been briefly presented in
Appendix B.

We begin by focusing on the case of a unidimensional input space (i.e., on GPs
with just a single covariate) such that Ω ∈ [−L,L] ⊂ IR, where L is some positive
real value to which we also refer as boundary condition. As Ω describes the interval
in which the approximations are valid, L plays a critical role in the accuracy of
HSGPs. We will come back to this issue in Section 3.6.

Within Ω, we can write any stationary covariance function with input values
{x, x′} ∈ Ω as

k(x, x′) =

∞∑
j=1

Sθ(
√
λj)φj(x)φj(x

′), (3.5)

where Sθ is the spectral density of the stationary covariance function k (see Section
3.4.1) and θ the set of hyperparameters of k. Terms {λj}∞j=1 and {φj(x)}∞j=1 are
the sets of eigenvalues and eigenfunctions, respectively, of the Laplacian operator
in the given domain Ω. Namely, they satisfy the following eigenvalue problem in Ω
when applying the Dirichlet boundary condition (other boundary conditions could
be used as well):

−∇2φj(x) = λφj(x), x ∈ Ω

φj(x) = 0, x /∈ Ω.
(3.6)

The eigenvalues λj > 0 are real and positive because the Laplacian is a positive
definite Hermitian operator, and the eigenfunctions φj for the eigenvalues problem
in equation (3.6) are sinusoidal functions. Independently of the covariance function,
they can be computed as

λj =

(
jπ

2L

)2

, (3.7)

φj(x) =

√
1

L
sin
(√

λj(x+ L)
)
. (3.8)

If we truncate the sum in (3.5) to the first m terms, the approximate covariance
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function becomes

k(x, x′) ≈
m∑
j=1

Sθ(
√
λj)φj(x)φj(x

′) = φ(x)ᵀ∆φ(x′),

where φ(x) = {φj(x)}mj=1 ∈ IRm is the column vector of basis functions, and
∆ ∈ IRm×m is the diagonal matrix of the spectral densities Sθ(

√
λj):

∆ =

Sθ(
√
λ1)

. . .
Sθ(
√
λm)

 .
Thus, the Gram matrix K of the covariance function k for a set of observations

i = 1, . . . , n and corresponding input values {xi}ni=1 ∈ Ωn can be represented as

K = Φ∆Φᵀ,

where Φ ∈ IRn×m is the matrix of eigenfunctions φj(xi):

Φ =

 φ1(x1) · · · φm(x1)
...

. . .
...

φ1(xn) · · · φm(xn)

 .
As a result, the model for f can be written as

f ∼ N (µ,Φ∆Φᵀ).

This equivalently leads to a linear representation of f via

f ≈ µ+ Φ∆1/2β,

where β = (β1, . . . , βm) ∼ N (0, I), with I the identity matrix.
Let f = {f(xi)}ni=1, then the function f takes the form:

f(x) ≈
m∑
j

(
Sθ(
√
λj)
)1/2

φj(x)βj , (3.9)

where βj ∼ N (0, 1). Thus, the function f is approximated with a finite basis
function expansion (using the eigenfunctions φj of the Laplace operator), scaled by
the square root of spectral density values. A key property of this approximation is
that the eigenfunctions φj do not depend on the hyperparameters θ of the covariance
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function, and therefore only need to be constructed once, at cost O(mn). Instead,
the only dependence of the model on θ is through the spectral density Sθ. The
eigenvalues λj are monotonically increasing with j and Sθ goes rapidly to zero for
bounded covariance functions. Therefore, equation (3.9) can be expected to be a
good approximation for a finite number ofm terms in the series as long as the inputs
values xi are not too close to the boundaries−L and L of Ω. The computational cost
of evaluating the log posterior density of univariate HSGPs scales as O(nm+m),
where n is the number of observations and m the number of basis functions.

The parameterization in equation (3.9) is naturally in the non-centered parame-
terization form with independent prior distribution on βj , which makes posterior
inference easier [see, e.g., Betancourt and Girolami, 2019]. Furthermore, all de-
pendencies on the covariance kernel and the hyperparameters is through the prior
distribution of the regression weights βj . The parameter posterior distribution
p(β|y) is m-dimensional, where m is much smaller than the number of observa-
tions n. Therefore, the parameter space is greatly reduced and this makes inference
faster, especially when sampling methods are used.

3.5.1 Generalization to multidimensional Gaussian processes

The results from the previous section can be generalized to a multidimensional
input space with compact regular domain Ω = [−L1, L1] × · · · × [−Ld, Ld] and
Dirichlet boundary conditions. In a D-dimensional input space, the total number
of eigenfunctions and eigenvalues in the approximation is equal to the number
of D-tuples, that is possible combinations of univariate eigenfunctions over all
dimensions. The number of D-tuples is given by

m∗ =
D∏
d=1

md, (3.10)

where md is the number of basis functions for the dimension d. Let S ∈ INm∗×D be
the matrix of all those D-tuples. For example, suppose we have D = 3 dimensions
and use m1 = 2, m2 = 2 and m3 = 3 eigenfunctions and eigenvalues for the
first, second and third dimension, respectively. Then, the number of multivariate
eigenfunctions and eigenvalues is m∗ = m1 · m2 · m3 = 12 and the matrix
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S ∈ IN12×3 is given by

S =



1 1 1
1 1 2
1 1 3
1 2 1
1 2 2
1 2 3
2 1 1
2 1 2
2 1 3
2 2 1
2 2 2
2 2 3


.

Each multivariate eigenfunction φ∗j corresponds to the product of the univariate
eigenfunctions whose indices corresponds to the elements of the D-tuple Sj·, and
each multivariate eigenvalue λ∗j is a D-vector with elements that are the univariate
eigenvalues whose indices correspond to the elements of the D-tuple Sj·. Thus, for
x = {xd}Dd=1 ∈ Ω and j = 1, . . . ,m∗, we have:

λ∗j =
{
λSjd

}D
d=1

=

{(
πSjd
2Ld

)2
}D
d=1

, (3.11)

φ∗j (x) =
D∏
d=1

φSjd(xd) =
D∏
d=1

√
1

Ld
sin
(√

λSjd(xd + Ld)
)
. (3.12)

The approximate covariance function is then represented as

k(x,x′) ≈
m∗∑
j=1

S∗θ

(√
λ∗j

)
φ∗j (x)φ∗j (x

′),

where S∗θ is the spectral density of the D-dimensional covariance function (see
Section 3.4.1. We can now write the approximate series expansion of the multivariate
function f as

f(x) ≈
m∗∑
j=1

(
S∗θ

(√
λ∗j

))1/2
φ∗j (x)βj , (3.13)

where, again, βj ∼ N (0, 1). The computational cost of evaluating the log posterior
density of multivariate HSGPs scales as O(nm∗ + m∗), where n is the number
of observations and m∗ is the number of multivariate basis functions. Although
this still implies linear scaling in n, the approximation is more costly than in the
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univariate case, as m∗ is the product of the number of univariate basis functions
over the input dimensions and grows exponentially with respect to the number of
dimensions.

3.6 The performance of the approximation

The accuracy and speed of the HSGP model depends on several interrelated factors,
most notably on the number of basis functions and on the boundary condition of
the Laplace eigenfunctions. Furthermore, appropriate values for these factors will
depend on the non-linearity of the estimated function, which is in turn characterized
by the lengthscale of the covariance function. In this section, we analyze the effects
of the number of basis functions and the boundary condition on the approxima-
tion accuracy. We present recommendations on how they should be chosen and
diagnostics to check the accuracy of the obtained approximation.

Ultimately, these recommendations lie on the relationships among the number
of basis functions, the boundary factor and the lengthscale of the function, which
depend on the particular choice of the kernel function. In this work, we built these
relationships for the squared exponential covariance function and Matérn(ν=3/2)
covariance function in the present section, and for the periodic squared exponential
covariance function in Section 3.7. For other kernels, the relationships will be
slightly different, in function of mainly the smoothness or wiggliness of the kernel
effects.

3.6.1 Dependency on the number of basis functions and the boundary
condition

As explained in Section 3.5, the approximation of the covariance function is a series
expansion of eigenfunctions and eigenvalues of the Laplace operator in a given
domain Ω, for instance in a one-dimensional input space Ω = [−L,L] ⊂ IR:

k(τ) =
∞∑
j=1

Sθ

(√
λj

)
φj(τ)φj(0),

where L describes the boundary condition, j is the index for the eigenfunctions
and eigenvalues, and τ = x− x′ is the difference between two input values x and
x′ in Ω. The eigenvalues λj and eigenfunctions φj are given in equations (3.7)
and (3.8) for the unidimensional case and in equations (3.11) and (3.12) for the
multidimensional case. The number of basis functions can be truncated at some
finite positive value m such that the total variation difference between the exact and
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approximate covariance functions is less than a predefined threshold ε > 0:∫
|k(τ)−

m∑
j=1

Sθ(
√
λj)φj(τ)φj(0)| dτ < ε. (3.14)

The specific number of basis functions m needed to satisfy equation (3.14)
depends on the degree of non-linearity of the function to be estimated, that is on
its lengthscale `, which constitutes a hyperparameter of the GP. The approximation
also depends on the boundary L, which will affect its accuracy especially near the
boundaries. As we will see later on, L will also influence the number of basis
functions required in the approximation. In the present study, we will set L an
extension of the desired covariate input domain Ψ = maxi |xi|. Without loss of
generality, we can assume Ψ to be symmetric around zero, that is Ψ = [−S, S] ⊂ Ω.
We now define L as

L = c · S, (3.15)

where S (for S > 0) represents the half-range of the input space, and c ≥ 1 is the
proportional extension factor. In the following, we will refer to c as the boundary
factor of the approximation. The boundary factor can also be regarded as the
boundary L normalized by the half-range S of the input space.

We start with an illustration on how the number of basis functions m and
boundary factor c influences the accuracy of the HSGP approximations, separately.
For this purpose, a set of noisy observations are drawn from an exact GP model with
lengthscale ` = 0.3 and marginal variance α = 1 of the kernel function, using input
values from the zero-mean input domain with half-range S = 1. Several HSGP
models with varying m and L are fitted to this data. In this example, the lengthscale
and marginal variance parameters used in the HSGPs are fixed to the true values of
the data-generating model. Figures 3.1 and 3.2 illustrate the individual effects of m
and c, respectively, on the posterior predictions of the estimated function and on
the covariance function itself. For c fixed to a large enough value, Figure 3.1 shows
clearly how m affects the accuracy on the approximation and the non-linearity of
the estimated function, in the sense that fewer basis functions inaccurately imply
larger lengthscales and consequently less wiggly functional forms. The higher
the wiggliness of the function to be estimated, the more basis functions will be
required. If m fixed to a large enough value, Figure 3.2 shows that c mainly affects
the approximation near the boundaries as well as covariances at long distances.
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Figure 3.1: Mean posterior predictive functions (left) and covariance functions (right) of both the
regular GP model (dashed red line) and the HSGP model for different number of basis functions m,
with the boundary factor fixed to a large enough value.
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Figure 3.2: Mean posterior predictive functions (left) and covariance functions (right) of both the
regular GP model (dashed red line) and the HSGP model for different values of the boundary factor c,
with a large enough fixed number of basis functions.

Next, we will focus on analyzing the interaction effects between these m and c
on the performance of the approximation. The lengthscale and marginal variance of
the covariance function will no longer be fixed but instead their posterior marginal
distributions estimated using dynamic HMC algorithm implemented in Stan [Betan-
court, 2017, Carpenter et al., 2017], for both exact GP and HSGP models. Figure
3.3 shows the functional posterior predictions and the covariance function obtained
after fitting the data, for varying m and c. Figure 3.4 shows the root mean square
error (RMSE) of the HSGP models, computed against the regular GP model. Figure
3.5 shows the estimated lengthscale and marginal variance for the regular GP model
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and the HSGP models. Looking at the RMSEs in Figure 3.4, we can conclude that
the optimal choice in terms of precision and computations would be m = 15 basis
functions and a boundary factor between c = 1.5 and c = 2.5. Further, the choice
of m = 10 and c = 1.5 could still be an accurate enough choice. We may also
come to the same conclusion by looking at the posterior predictions and covariance
function plots in Figure 3.3. From these results, some general conclusions may be
drawn:

• As c increases, m has to increase as well (and vice versa). This is consistent
with the equation (3.7) for the eigenvalues, where L appears in the denominator.

• There exists a minimum c below which a close approximation will never be
achieved regardless of m.
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Figure 3.3: (continued on next page)
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Figure 3.3: Mean posterior predictive functions (left) and covariance functions (right) of both the
regular GP model and the HSGP model for different number of basis functions m and for different
values of the boundary factor c.

Additionally, there is a clear relation of the number of basis functions m and the
boundary factor c with the lengthscale ` of the approximated function. Figures 3.6
and 3.7 depicts how these three factors interact with each other in relation to a close
approximation of the HSGP model, in the cases of a GP with squared exponential
covariance function and Matérn(ν=3/2) covariance function, respectively, and a
single input dimension. More precisely, for a given GP model (with a squared
exponential covariance function) with lengthscale ` and given a boundary factor
c, Figure 3.6 shows the minimum m required to achieve a accurate approximation
in the sense of satisfying equation (3.14). Similarly for Figure 3.7 in the case
of a Matérn(ν=3/2) covariance function.We considered an approximation to be a
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Figure 3.5: Estimated lengthscale (left) and marginal variance (right) parameters of both regular GP
and HSGP models, plotted versus the number of basis functions m and for different values of the
boundary factor c.

close enough when the total variation difference between the approximate and exact
covariance functions, ε in equation (3.14), is below 1% of the total area under the
curve of the exact covariance function k:

ε∫
k(τ) dτ

< 0.01.

Alternatively, these figures could be understood as providing the minimum c that
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we should use for given ` and m. Of course, we may also read it as providing
the minimum ` that can be closely approximated given m and c. We obtain the
following main conclusions:

• As ` increases, c and m required for a close enough approximation decrease.
• The lower c, the smaller m can and ` must be to achieve a close approximation.
• For a given ` there exist a minimum c under which a close approximation is

never going to be achieved regardless of m. This fact can be appreciated in the
figure as the contour lines which represent c have an end in function of ` (Valid
c are restricted in function of `).

As stated above, Figures 3.6 and 3.7 provide the minimum lengthscale that can
be closely approximated given m and c. This information serves as a powerful diag-
nostic tool in determining if the obtained accuracy is acceptable. As the lenghscale
` controls the wiggliness of the functional relationship, it strongly influences the
difficulty of obtaining accurate inference about the function from the data. Basically,
if the lengthscale estimate is accurate, we can expect the HSGP approximation to
be accurate as well.

Having obtained an estimate ˆ̀ of ` from the HSGP model based on prespec-
ified m and c, we can check whether or not ˆ̀ exceeds the minimum lengthscale
provided in Figures 3.6 or 3.7 (depending on which kernel is used). If ˆ̀exceeds this
recommended minimum lengthscale, the approximation is assumed to be good. If,
however, ˆ̀does not exceed recommended minimum lengthscale, the approximation
may be inaccurate and m should be increased or c decreased. We may also use this
diagnostic in an iterative procedure by starting from some initial guess of ` and
initial values for m and c, and if the estimated ˆ̀ is below the minimum lengthscale,
repeat the process while increasing m or decreasing c. As mentioned earlier, c
cannot be decreased too much as the lowest useful value of c is restricted by the
lengthscale. Thus, increasing m may usually the preferred approach.

If we look back to the conclusions drawn from Figures 3.4 and 3.5, where
m = 10 basis functions and a boundary factor of c = 1.5 were enough to closely
approximate a function with ` = 0.3, we can recognize that these conclusions also
matches those obtained from Figure 3.6.

Figures 3.6 and 3.7 were build for a GP with a unidimensional covariance
function, which result in a surface depending on three variables, m, c and `. An
equivalent figure for a GP model with a two-dimensional covariance function would
result in a surface depending on four variables, m, c, `1 and `2, which is more
difficult to be graphically represented. More precisely, in the multi-dimensional
case, whether the approximation is close enough might depend only on the ratio
between wigglyness in every dimensions. For instance, in the two-dimensional
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case, it would depend on the ratio between `1 and `2 and could be graphically
represented. Future research will focus on building useful graphs or analytical
models that provide these relations in multi-dimensional cases. However, as an
approximation, we can use the unidimensional GP conclusions in Figures 3.6 and
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3.7 to check the accuracy by analyze individually the different dimensions of a
multidimensional GP model.

3.6.2 Comparing lengthscale estimates

In this example, we make a comparison of the lengthscale estimates obtained from
the regular GP and HSGP models. We also have a look at those recommended
minimum lengthscales provided by Figure 3.6. For this analysis, we will use various
datasets consisting of noisy draws from a GP prior model with a squared exponential
covariance function and varying lengthscale values. Different values of the number
of basis functions m are used when estimating the HSGP models, and the boundary
factor c is set to a valid and optimum value in every case.

Figure 3.8 shows the posterior predictions of both regular GP and HSGP models
fitted to those datasets. The lengthscale estimates as obtained by regular GP and
HSGP models are depicted in Figure 3.9. As noted previously, an accurate estimate
of the lengthscale can be a good indicator of a close approximation of the HSGP
model to the regular GP model. Further, Figure 3.10 shows the root mean square
error (RMSE) of the HSGP models, computed against the regular GP models, as a
function of the lengthscale and number of basis functions.

Comparing the accuracy of the lengthscale in Figure 3.9 to the RMSE in Figure
3.10, we see that they agree closely with each other for medium lengthscales. That
is, a good estimation of the lengthscale implies a small RMSE. This is no longer
true for very small or large lengthscales. In small lengthscales, even very small
inaccuracies may have a strong influence on the posteriors predictions and thus on
the RMSE. In large lengthscales, larger inaccuracies change the posterior predictions
only little and may thus not yield large RMSEs. The dashed black line in Figure
3.9 represents the minimum lengthscale that can be closely approximated under the
given condition, according to the results presented in Figure 3.6. We observe that
whenever the estimated lengthscale exceeds the minimially estimable lengthscale,
the RMSE of the posterior predictions is small (see Figure 3.10). Conversely, when
the estimated lengthscale is smaller than the minimally estimable one, the RMSE
becomes very large.
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Figure 3.8: Mean posterior predictions of both exact GP and HSGP models, fitted over various datasets
drawn from square exponential GP models with different characteristic lengthscales (`) and same
marginal variance (α) as the data-generating functions (true function).
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Figure 3.9: Data-generating functional lengthscales (`), of the various datasets illustrated in Figure
3.8, versus the corresponding lengthscale estimates (ˆ̀) from the regular GP and HSGP models. 95%
confident intervals of the lengthscale estimates are plotted as dot lines. The different plots represent
the use of different number of basis functions m in the HSGP model. The dashed black line represents
the recommended minimum lengthscales provided by Figure 3.6 that can be closely approximated by
the HSGP model in every case.
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3.7 Low-rank Gaussian process with a periodic covariance
function

A GP model with a periodic covariance function does no fit under the framework
of the HSGP approximation covered in this study, but it has also a low-rank rep-
resentation. In this section, we first give a brief presentation of the results from
Solin and Särkkä [2014], who obtain an approximate linear representation of a
periodic squared exponential covariance function based on expanding the periodic
covariance function into a series of stochastic resonators. Secondly, we analyze
the accuracy of this approximation and, finally, we derive the GP model with this
approximate periodic square exponential covariance function.

The periodic squared exponential covariance function takes the form

k(τ ) = α exp
(
−

2sin2
(
ω0
τ
2

)
`2

)
, (3.16)

where α is the magnitude scale (marginal variance) of the covariance, ` is the
characteristic lengthscale of the covariance, and ω0 is the angular frequency defining
the periodicity.

Solin and Särkkä [2014] derive a cosine series expansion for the periodic
covariance function (3.16) as follows,

k(τ) = α
J∑
j=0

q̃2
j cos(jω0τ), (3.17)

which comes basically from a Taylor series representation of the periodic covariance
function. The coefficients q̃2

j of the previous expression are

q̃2
j =

2

exp
(

1
`2

) bJ−j
2
c∑

j=0

(2`2)−j−2

(j + i)!i!
, (3.18)

where j = 1, 2, · · · , J , and b·c denotes the floor round-off operator. For the index
j = 0, the coefficient is

q̃2
0 =

1

2

2

exp
(

1
`2

) bJ−j
2
c∑

j=0

(2`2)−j−2

(j + i)!i!
. (3.19)

The covariance in equation (3.17) is a J th order truncation of a Taylor series
representation. This approximation converges to equation (3.16) when J → ∞
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Solin and Särkkä [2014].

An upper bounded approximation to the coefficients q̃2
j and q̃2

0 can be obtained
by taking the limit J →∞ in the sub-sums in the corresponding equations (3.18)
and (3.19), and thus leading to the following variance coefficients:

q̃2
j =

2Ij(`−2)

exp
(

1
`2

) ,
q̃2

0 =
I0(`−2)

exp
(

1
`2

) , (3.20)

for j = 1, 2, · · · , J , and where the Ij(z) is the modified Bessel function
[Abramowitz and Stegun, 1970] of the first kind. This approximation implies
that the requirement of a valid covariance function is relaxed and only an opti-
mal series approximation is required [Solin and Särkkä, 2014]. A more detailed
explanation and mathematical proofs of this approximation of a periodic covariance
function is provided by Solin and Särkkä [2014].

In order to assess the accuracy of this representation as a function of the number
of cosine terms J considered in the approximation, an empirical evaluation is carried
out in a similar way than that in Section 3.6 of this work. Thus, Figure 3.11 shows the
minimum number of terms J required to achieve a close approximation to the exact
periodic squared exponential kernel as a function of the lengthscale of the kernel. We
have considered an approximation to be close enough in terms of satisfying equation
(3.14) with ε = 0.5%. Notice that since this is a series expansion of sinusoidal
functions, the approximation does not depend on any boundary condition.

The function values of a GP model with this low-rank representation of the
periodic exponential covariance function can be easily derived. Considering the
identity

cos(jω0(x− x′)) = cos(jω0x)cos(jω0x
′) + sin(jω0x)sin(jω0x

′),

the covariance k(τ) in equation (3.17) can be written as

k(x, x′) ≈ α
( J∑
j=0

q̃2
j cos(jω0x)cos(jω0x

′) +
J∑
j=1

q̃2
j sin(jω0x)sin(jω0x

′)
)
.(3.21)

where τ = x− x′. With this approximation for the periodic squared exponential
covariance function k(x, x′), the approximate GP model f(x) ∼ GP(0, k(x, x′)
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Figure 3.11: Relation among the minimum number of terms J in the approximation and the lengthscale
(`) of the periodic squared exponential covariance function. The right-side plot is a zoom in of the
left-side plot.

equivalently leads to a linear representation of f(·) via

f(x) ≈ α1/2
( J∑
j=0

q̃jcos(jω0x)βj +

J∑
j=1

q̃jsin(jω0x)βJ+1+j

)
, (3.22)

where βj ∼ Normal(0, 1), with j = 1, . . . , 2J + 1. The cosine cos(jω0x) and
sinus sin(jω0x) terms do not depend on the covariance hyperparameters `. The
only dependence on the hyperparameter ` is through the coefficients q̃j , which are
J-dimensional. The computational cost of this approximation scales as
O
(
n(2J + 1) + (2J + 1)

)
, where n is the number of observations and J the

number of cosine terms.
The parameterization in equation (3.22) is naturally in the non-centered parame-

terization form with independent prior distribution on βj , which makes the posterior
inference easier.

3.8 Case study I: 1D Simulated data

In this experiment, we analyze a synthetic dataset with n = 250 observations, where
the true data generating process is a Gaussian process with additive noise. The data
points are simulated from the model yi = f(xi) + εi, where f is a sample from
a Gaussian process using the Matérn(ν=3/2) covariance function with marginal
variance α = 1 and lengthscale ` = 0.15 at inputs values x = (x1, x2, . . . , xn)
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with xi ∈ [−1, 1]. εi is additive Gaussian noise with standard deviation σ = 0.2.
We split the dataset into three parts: 155 data points are used for fitting the model
(training set), 45 data ponts are used for the interpolation test set, and the remaining
50 data points are used for the extrapolation test set.

The regular GP model for fitting this simulated dataset y can be written as
follows,

y = f + ε

ε ∼ N (0, σ2I)

f(x) ∼ GP(0, k(x, x′, θ)),

where f = {f(xi)}ni=1 represents the underlying function at the input values xi,
and ε is the Gaussian noise term with variance σ2, with I representing the identity
matrix. The previous formulation corresponds to the latent form of a GP model.
The function f : IR→ IR is a GP prior with a Matérn(ν=3/2) covariance function
k(xi, xj , θ), which depends on the inputs x and hyperparameters θ = {α, `}.
The hyperparameters α and ` represent the marginal variance and lengthscale,
respectively, of the GP process. Saying that the function f(·) follows a GP model is
equivalent to say that f is multivariate Gaussian distributed with covariance matrix
K, where Kij = k(xi, xj , θ), with i, j = 1, . . . , n.

A more computationally efficient formulation of a GP model with Gaussian
likelihood, and for probabilistic inference using sampling methods such as HMC,
would be its marginalized form,

y ∼ N (0,K + σ2I),

where the function values f have been integrated out, yielding a lower-dimensional
parameter space over which to do inference, reducing the time of computation and
improving the sampling and the effective number of samples.

In the HSGP model, the latent function values f(x) are approximated as in
equation (3.9),

f(x) ≈
m∑
j=1

(
S(
√
λj)
)1/2

φj(x)βj ,

with the spectral density S as a function of
√
λj ,

S(
√
λj) = α2 4

√
3

3

`3
(

3

`2
+ λj)

−2,
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and eigenvalues λj and eigenfunctions φj ,

λj =

(
jπ

2L

)2

,

φj(x) =

√
1

L
sin
(√

λj(x+ L)
)
.

In the previous equations, L is the boundary and m the number of basis functions.
The parameters βj are N (0, 1) distributed, and α and ` are the marginal variance
and lengthscale parameters, respectively, of the approximate covariance function.

In order to do model comparison, in addition to the regular GP model and HSGP
model, a spline-based model is also fitted using the thin plate regression spline
approach in Wood [2003] and implemented in the R-package mgcv [Wood, 2015,
2011]. A Bayesian approach is used to fit this spline model using the R-package
brms [Bürkner, 2017].

The joint posterior parameter distributions are estimated by sampling using
the dynamic HMC algorithm implemented in Stan [Betancourt, 2017, Carpenter
et al., 2017]. A Gamma(1, 1) prior distribution has been used for both observation
noise σ and covariance function marginal variance α, and a Gamma(3.75, 25) prior
distribution for lengthscale `. We use the same prior distributions for the exact GP
model as for the HSGP models.

Figure 3.12 shows the posteriors predictive distributions of the three models,
the regular GP, the HSGP with m = 80 basis functions and boundary factor c = 1.2
(L = c · 1 = 1.2; see equation (3.15)), and the spline model with 80 knots. The true
data-generative function and the noisy observations are also plotted. The sample
observations are plotted as circles and the out-of-sample or test data, which have
not been taking part on training the models, are plotted as crosses. The test data
located at the extremes of the plot are used for assessing model extrapolation, and
the test data located in the middle are used for assessing model interpolation. The
posteriors of the three models, regular GP, HSGP and spline, are pretty similar
within the interpolation input space. However, when extrapolating the spline model
solution clearly differs from the regular GP and HSGP models as well as the actual
observations.

In order to assess the performance of the models as a function of the number
of basis functions and number of knots, different models with different number of
basis functions for the HSGP model, and different number of knots for the spline
model, have been fitted. Figure 3.13 shows the standardized root mean squared
error (SRMSE) for interpolation and extrapolating data as a function of the number
of basis functions and knots. The SRMSE is computed against the data-generating
model. From Figures 3.12 and 3.13, it can be seen a close approximation of the
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Figure 3.12: Posterior predictive means of the proposed HSGP model, the regular GP model, and the
spline model. 95% credible intervals are plotted as dashed lines.

HSGP model to the regular GP model for interpolating and extrapolating data.
However, the spline model does not extrapolate data properly. Both models show
roughly similar interpolating performance.

Figure 3.14 shows computational times, in seconds per iteration (iteration of
the HMC sampling method), as a function of the number of basis functions m, for
the HSGP model, and knots, for the spline model. The HSGP model is on average
roughly 400 times faster than the exact GP and 10 times faster than the spline model,
for this particular application with a univariate input space. Also, it is seen that the
computation time increases slowly as a function of the number of basis functions.

Other case studies are presented next in this chapter and in the appendices.
From those examples, it can be seen how computation time of the HSGP model
increases rapidly with the number of input dimensions (D) since the number of
basis functions in the approximation increases exponentially with D (see eq. (3.10)).
Even though, in a bivariate input space, the computation time increases significantly
with D, the HSGP model works significantly faster than the exact GP for most of
the non-linear 2D functions (even highly wiggly functions; see Figures 3.20 and
A.7-right). However, HSGPs tend to be slower than exact GPs for D > 3 with a
relatively low number of basis functions (m & 5), as well as even for D = 3 with a
moderate high number of basis functions (m & 20; see Figure 3.20). In all of the
investigated cases, choosing the optimal boundary factor in the HSGP approximation
reduces the number of required basis functions noticeably (see Figures A.3, A.7-left
and 3.19) and therefore also reduces computational time drastically in particular in



3.9. Case study II: Birthday data 71

●

●

●

●
● ●

20 40 60 80 100

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

m Knots

S
R

M
S

E

●

●
●

●
● ●

●

● ● ●
● ● ●

20 40 60 80 100
0

1

2

3

4

5

6

m Knots

S
R

M
S

E

●

● ● ●
● ● ●

●

●
●

●

●

●

0 2 4 6 8 10

0
2

4
6

8
10

GP
HSGP
Splines

Figure 3.13: Standardized root mean square error (SRMSE) of the different methods against the
data-generating function. SRMSE for interpolation (left) and SRMSE for extrapolation (right). The
standard deviation of the mean of the SRMSE is plotted as dashed lines.

multivariate input spaces.
Roughly similar or even worse behavior was found for splines where serious

difficulties with computation time were encountered in building spline models for
D = 3 and with more than 10 knots, or even for D = 2 and more than 40 knots
(see Figures A.7-right and 3.20).

The Stan model codes for the exact GP, the approximate GP and the spline mod-
els of this case study can be found online at https://github.com/gabriuma/
basis_functions_approach_to_GP/tree/master/Paper/Case-study_

1D-Simulated-data .

3.9 Case study II: Birthday data

This example is an analysis of patterns in birthday frequencies in a dataset containing
records of all births in the United States on each day during the period 1969–1988.
The model decomposes the number of births along all the period in longer-term
trend effects, patterns during the year, day-of-week effects, and special days effects.
The special days effects cover patterns such as possible fewer births on Halloween,
Christmas or new year, and excess of births on Valentine’s Day or the days after
Christmas (due, presumably, to choices involved in scheduled deliveries, along
with decisions of whether to induce a birth for health reasons). This analysis was
originally addressed in Gelman et al. [2013]. The total number of days within
the period is T = 7305 (t = 1, . . . , T ), then a regular GP model is unfeasible to
be fitted on this dataset as we know inference scales O(T 3) in covariance matrix

 https://github.com/gabriuma/basis_functions_approach_to_GP/tree/master/Paper/Case-study_1D-Simulated-data
 https://github.com/gabriuma/basis_functions_approach_to_GP/tree/master/Paper/Case-study_1D-Simulated-data
 https://github.com/gabriuma/basis_functions_approach_to_GP/tree/master/Paper/Case-study_1D-Simulated-data
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Figure 3.14: Computational time (y-axis), in seconds per iteration (iteration of the HMC sampling
method), as a function of the number of basis functions m, for the HSGP model, and knots, for the
spline model. The y-axis is on a logarithmic scale. The standard deviation of the computational time
is plotted as dashed lines.

inversion. Therefore, an approximate approach has to be used to fit a GP model
on this data. We will use the HSGP model developed in this Chapter, as well as
the low-rank GP model with a periodic covariance function introduced in Section
3.7 which is based on expanding the periodic covariance function into a series of
stochastic resonators [Solin and Särkkä, 2014].

Let’s denote yt as the number of births of day t. The observational model is a
normal model with parameters the mean function µ(t) and noise variance σ2,

yt ∼ N (µ(t), σ2).

The mean function µ(t) will be defined as an additive model in the form:

µ(t) = f1(t) + f2(t) + f3(t) + f4(t). (3.23)

The component f1(t) represents the long-term trends modeled by a GP with
squared exponential covariance function,

f1(t) ∼ GP(0, k1), k1(t, t′) = α1 exp

(
− 1

2

(t− t′)2

`21

)
,

which means the function values f1 = {f1(t)}Tt=1 are multivariate Gaussian dis-
tributed with covariance matrix K1, where K1t,s = k1(t, s), with t, s = 1, . . . , T .
`1 and α1 are the marginal variance (magnitude) and lengthscale, respectively, of
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the GP prior.
The component f2(t) represents the yearly smooth seasonal pattern, using a

periodic squared exponential covariance function (with period 365.25 to match the
average length of the year) in a GP model,

f2(t) ∼ GP(0, k2), k2(t, t′) = α2 exp

(
− 2sin2(π(t− t′)/365.25

`22

)
,

which means the function values f2 = {f2(t)}Tt=1 are multivariate Gaussian dis-
tributed with covariance matrix K2, where K2t,s = k2(t, s), with t, s = 1, . . . , T .
`2 and α2 are the marginal variance (magnitude) and lengthscale, respectively, of
the GP prior.

The component f3(t) represents the weekly smooth pattern using a periodic
squared exponential covariance function (with period 7 of length of the week) in a
GP model,

f3(t) ∼ GP(0, k3), k3(t, t′) = α3 exp

(
− 2sin2(π(t− t′)/7

`23

)
,

which means the function values f3 = {f3(t)}Tt=1 are multivariate Gaussian dis-
tributed with covariance matrix K3, where K3t,s = k3(t, s), with t, s = 1, . . . , T .
`3 and α3 are the marginal variance (magnitude) and lengthscale, respectively, of
the GP prior.

The component f4(t) represents the special days effects, modeled as a horse-
shoe prior model [Piironen and Vehtari, 2017]:

f4(t) ∼ N (0, λ2
t τ

2), λ2
t ∼ C+(0, 1).

A horse-shoe prior allows for sparse distributed effects. Its global parameter τ pulls
all the weights (effects) globally towards zero, while the thick half-Cauchy tails for
the local scales λt allow some of the weights to escape the shrinkage. Different
levels of sparsity can be accommodated by changing the value of τ : with large τ all
the variables have very diffuse priors with very little shrinkage towards zero, but
letting τ → 0 will shrink all the weights f4(t) to zero [Piironen and Vehtari, 2016].

GP priors have been defined over the components f1(t), f2(t) and f3(t). Then,
low-rank representations of the GP priors have to be used in the modeling and
inference. The component f1(t) will be approximated using the HSGP model.
Thus, the function values f1(t) are approximated as in equation (3.9), with the
squared exponential spectral density S as in equation (3.3), and eigenvalues λj and
eigenfunctions φj as in equations (3.7) and (3.8).

The year effects f2(t) and week effects f3(t), as they use a periodic covariance
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function, they do no fit under the main framework of the HSGP approximation
covered in this chapter. However, they do have a representation based on expanding
periodic covariance functions into a series of stochastic resonators (Section 3.7).
Thus, the functions f2(t) and f3(t) are approximated as in equation (3.22), with
variance coefficients q̃2

j as in equation (3.20).

For the component f1(t), m = 30 basis functions and a boundary factor c = 1.5
were used. The lengthscale estimate ˆ̀

1, for this component, normalized by half of
the range of the input x1, is bigger than the minimum lengthscale reported by Figure
3.6 as a function of m and c. Which means that the used number of basis functions
and boundary factor are suitable values for modeling accurately the input effects.

For the components f2(t) and f3(t), J = 10 cosine terms were used. The
lengthscales estimates ˆ̀

2 and ˆ̀
3, for the GP components f2(t) and f3(t), respec-

tively, are bigger than the minimum lengthscale reported by Figure 3.11 as function
of the number of cosine terms J , which means that the approximations are accurate
enough.

Figure 3.15 shows the posterior means of the long-term trend f1(t) and year
patterns f2(t) for the whole period, jointly with the observed data. Figure 3.16 show
the process for one year (1972) only. In this figure, the special days effects f4(t) in
the year can be clearly represented. The posterior means of the the function µ(t)
and the components f1(t) (long-term trend) and f2(t) (year pattern) are also plotted
in this Figure 3.16. Figure 3.17 show the process in the month of January of 1972
only, where the week pattern f3(t) can be clearly represented. The mean of the
the function µ(t) and components f1(t) (long-term trend), f2(t) (year pattern) and
f4(t) (special-days effects) are also plotted in this Figure 3.17.

The Stan model code for the approximate GP model of this case study can be
found at https://github.com/gabriuma/basis_functions_approach_
to_GP/tree/master/Paper/Case-study_Birthday-data .

3.10 Case study III: Diabetes data

The next example presents an epidemiological study of diabetes disease. The study
aims to relate the probability of suffering from diabetes to some risk factors. The
data contains n = 392 individuals (i = 1, . . . , n) from which the binary variable
of suffering (yi = 1) or not suffering (yi = 0) from diabetes have been observed.
The input vector xi = (xi1, xi2, xi3, xi4) ∈ IR4, in a 4D input space (D = 4),
contains the risk factors, Glucose (xi1), Pregnancy (xi2), Age (xi3) and BMI (xi4),
per individual i. The observational model is a Bernoulli model with parameter the

https://github.com/gabriuma/basis_functions_approach_to_GP/tree/master/Paper/Case-study_Birthday-data
https://github.com/gabriuma/basis_functions_approach_to_GP/tree/master/Paper/Case-study_Birthday-data
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Figure 3.15: Posterior means of the long-term trend (f1(·)) and year effects pattern (f2(·)) for the
whole series.
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Figure 3.16: Posterior means of the function µ(·) for the year 1972 of the series. The special days
effects pattern (f4(·)) in the year is also represented, as well as the long-term trend (f1(·)) and year
effects pattern (f2(·)).
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Figure 3.17: Posterior means of the function µ(·) for the month of January of 1972. The week effects
pattern (f3(·)) in the month is also represented, as well as the long-term trend (f1(·)), year effects
pattern (f2(·)) and special days effects pattern (f4(·)).

probability pi of suffering from diabetes per observation i,

yi ∼ Bernoulli(pi).

The goal is to estimate the probability pi as a function of the risk factors, which
function f(·) : IR4 → IR is modeled as a GP with a multivariate squared exponential
covariance function k depending on the risk factors x and hyperparameters θ =
{α, `}, and related to the probabilities pi through the logit link function,

pi = logit(f(xi))

f(x) ∼ GP(0, k(x,x′, θ).

Saying that the function f(·) follows a GP model is equivalent to say that f =
{f(xi)}ni=1 are multivariate Gaussian distributed with covariance matrix K, where
Kij = k(xi, xj , θ), with i, j = 1, . . . , n. The hyperparameters α and ` represent
the marginal variance and lengthscale, respectively, of the GP process. A scalar
lengthscale has been considered in the multivariate covariance function k.

In the HSGP model with D input dimensions, the function f(x) evaluated
at input vector x ∈ IRD is approximated as in equation (3.13), with the D-
dimensional (with a scalar lengthscale) squared exponential spectral density S
as in equation (3.3) and the D-vector of eigenvalues λj and the multivariate eigen-
functions φj as in equations (3.11) and (3.12), respectively.
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(b)   HSGP

0.0

0.2

0.4

0.6

0.8

1.0

−1 0 1 2 3 4
Glucose

−2

−1

0

1

2

P
re

gn
an

cy

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(c)   Splines
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Figure 3.18: Posterior predictive mean functions of the GP (a), HSGP (b) and spline (c) models.
Samples observations of suffering (red points) and not suffering (blue points) from the disease are
plotted.

In order to do model comparison, in addition to the regular GP and HSGP
models, a D-dimensional spline-based model is also fitted using a cubic spline
basis penalized by the conventional integrated square second derivative cubic spline
penalty [Wood, 2017] and implemented in the R-package mgcv. A Bayesian ap-
proach is used to fit this spline model using the R-package brms.

Figure 3.18 shows the mean posterior predictions of probabilities (pi) of the
three models, the regular GP, the HSGP and the spline, fitted over the dataset with
the 2 input dimensions Glucose and Pregnancy (D = 2). The binary observations
yi are also plotted in the plots as colored points. For the HSGP model, m1 = 20 and
m2 = 20 basis functions for each dimension, respectively, were used, which lead to
a total of 400 multivariate basis functions. A boundary factor for each dimension
c1 = 4 and c2 = 4 were used. For the spline model, 20 knots per dimension were
used.

In order to assess the performance of the models as a function of the boundary
factor, the number of basis functions and knots, different models with different
number of basis functions and boundary factor for the HSGP model and different
number of knots for the spline model have been fitted. In all models, the same
boundary factor, number of basis functions and knots per dimension were used.
Figure 3.19 shows the expected log predictive density (ELPD) (see equation 2.3 of
Chapter 2) as a function of the boundary factor c and the number of univariate basis
functions m, for the HSGP model, and knots, for the spline model. The ELPD is
computed over the actual observations by cross-validation. Basically, with slightly
differences, all models show similar performances, due to the fact that the process is
very smooth with a relatively very large lengthscale estimate ` = 4.51. Even though,
a slight pattern of performance improvement can be appreciated as the boundary
factor c increases, which fact is because small boundary factors are not allowed
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Figure 3.19: Expected log predictive density (ELPD) of the different methods as a function of the
boundary factor c and the number of basis functions m, for the HSGP model, and knots, for the spline
model.

when large lengthscales (Figure 3.6).
Figure 3.20 shows the computational times of the different models, regular GP,

HSGP and spline, fitted over the dataset, with 2 input dimensions, 3 input dimensions
and 4 input dimensions, as a function of the boundary factor c and number of
univariate basis functions m and knots. We can appreciate the significant increase
of computational time with higher dimensions for the HSGP and spline models.
This fact reveals that choosing optimal values for the number of basis functions and
boundary factor, looking at the recommendations and diagnosis provided by Figure
3.6, is essential to avoid a excessive computational time, especially in high input
dimensionality. It is interesting to be noticed that considering more than 10 knots
per dimension in the spline model with 3D is not allowed for an amount of 392
observations. Similarly, just the computation of the input data for the spline model
in a 4D input space is computationally very expensive.
The Stan model codes for the exact GP, HSGP and spline models of this case
study can be found at https://github.com/gabriuma/basis_functions_
approach_to_GP/tree/master/Paper/Case-study_Diabetes-data .

3.11 Case study IV: Spatio-temporal land-use classifica-
tion

The next example presents an spatio-temporal classification in land-use of plots
between 2006 and 2015 in a part of the territory of Valencia in Spain dedicated to
growing citrus fruits. A sampling set consists of n = 200 plots with known class.

https://github.com/gabriuma/basis_functions_approach_to_GP/tree/master/Paper/Case-study_Diabetes-data
https://github.com/gabriuma/basis_functions_approach_to_GP/tree/master/Paper/Case-study_Diabetes-data
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Figure 3.20: Time of computation in seconds per iteration (iteration of the HMC sampling method) of
the different models fitted over the dataset, with 2 (left) and 3 (center) and 4 (right) input dimensions,
as a function of the boundary factor c and number of basis functions m, for the HSGP model, and
knots, for the spline model.

The data is recorded in a time series of T = 5 years (2006, 2008, 2010, 2012, 2015)
within the period. The class of each parcel i and time t is stored by a categorical
variable yit representing the K = 5 different possible classes (k = 1, . . . ,K):
k = 1, adult independent citrus fruits; k = 2, aligned citrus fruits; k = 3, irregular
citrus fruits; k = 4, abandoned citrus fruits; k = 5, young citrus fruits.

A bunch of 52 characteristic variables was available for every parcel and time.
These variables were computed from satellite color images and cadastral map by
using the software FETEX for automatic descriptive feature extraction from image-
objects [Ruiz et al., 2011]. These variables concern spectral intensities and empirical
semivariogram of the pixels within a plot, as well as descriptive statistics of the
shape of the plots.

Due to the fact that 52 input variables are too high-dimensional for a multivariate
HSGP model, which computational cost scales as O(nmD + mD), with m the
number of basis functions and D the number of input variables, the multivariate
HSGP model will be formulated as an additive HSGP model.

As it is known, the computational demand of a multivariate HSGP model com-
ponent increases quickly with the number of dimensions, so we should avoid high-
dimensional HSGP components in the additive model. Original input variables are
highly correlated, which would imply the use of high-order interaction components
in the additive model to achieve accurate model performance. Therefore, instead of
using the original variables as inputs, we use their principal components, which are
expect to be linearly uncorrelated. Using the principal components as inputs helps,
in principle, not to have to use as many high-order interaction components in the
additive model.

The principal components (PCs) will be used jointly with the time variable
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as inputs in the classifying additive HSGP model. Let’s denote the matrix X =
[x11 · · · xit · · · xnT ]> ∈ IRnT×D, which contains the input vectors xit ∈ IRD,
D = 53 (52 PCs plus time) for the spatio-temporal observations (plots i = 1, . . . , 200,
and times t = 1, . . . , 5).

The observational model is a multinomial model with parameters the vector of
probabilities pit = (pit,1, . . . , pit,K), where pit,k is the probability of belonging to
class k per parcel i and time t,

yit ∼ multinomial(pit).

The goal is to estimate the vector of probabilities pit as a function of the predictors,
which is a multivariate function f(xit) : IRD → IRK ,

f(xit) =
(
f1(xit), . . . , fK(xit)

)
,

which is related to the vector of probabilities pit through the ’softmax’ link function
(equation 2.1 in Chapter 2):

pit = softmax(f(xit)).

Each individual function fk(x) is modeled as a first-order additive model plus
the second-order additive effects between time input variable (xD) and all the other
inputs as follows:

fk(x) =

D∑
d=1

gd(x
d) +

D−1∑
d=1

hd,D(xd, xD). (3.24)

The first-order components {gd(xd)}Dd=1 in equation (3.24) are modeled as unidi-
mensional HSGP models:

gd(x
d) ∼ HSGP(xd, S, θd,1).

In the HSGP model, a first-order components gd(xd), evaluated at input value
xd ∈ IR, is approximated as in equation (3.9) with the squared exponential spectral
density S as in equation (3.3) and eigenvalues λj and eigenfunctions φj as in
equations (3.7) and (3.8), respectively.

The second-order components {hd,D(xd, xD)}D−1
d=1 in equation (3.24) are mod-

eled as two-dimensional HSGP models:

hd,D(xd, xD) ∼ HSGP(xd, xD, S, θd,D).
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In the HSGP model, a second-order component hd,D(xd, xD), evaluated at in-
puts xd ∈ IR and xD ∈ IR, is approximated as in equation (3.13) with the two-
dimensional (with a scalar lengthscale) squared exponential spectral density S as in
equation (3.3) and the D-vector of eigenvalues λj and the multivariate eigenfunc-
tions φj as in equations (3.11) and (3.12), respectively.

The vector of hyperparameters θd,1 = (αd,1, `d,1) contains the marginal variance
αd,1 and lengthscale `d,1 of the gd(xd) model component. And, the vector of
hyperparameters θd,D = (αd,D, `d,D) contains the marginal variance αd,D and
lengthscale `d,D of the hd,D(xd, xD) model component.

For the first-order components gd(xd), m = 15 basis functions and a boundary
factor c = 2.5 were used. For the second-order components hd,D(xd, xD),m1 = 15
and m2 = 15 basis functions for each dimension, respectively, were used, which
lead to a total of 225 multivariate basis functions. A boundary factor for each
dimension c1 = 2.5 and c2 = 2.5 were used. All the input variables were previously
standardized.

In the case of the first-order components, the normalized lengthscale estimates(
2·ˆ̀d,1

|xdmax−xdmin|

)
are all bigger than the minimum lengthscale reported by Figure

3.6 as a function of m, c. Which means that the used number of basis functions
(m = 15) and boundary factor (c = 2.5) are suitable values for modeling accurately
the input effects.

For the second-order components, the relationships between the number of
basis functions, the boundary factor and the lengthscale is not available for the
multivariate case. However, we can approximately analyze the lengthscale estimates
of the second-order HSGP components analyzing each dimension separately as
unidimensional HSGP models.

Table 3.1 shows the confusion matrix after fitting the model following a
Q-fold cross-validation procedure, with Q = 100, over the training data. Thus,
every fold contains 10 observations. The confusion matrix evaluates the rate of
misclassification per class. Columns represent the true classes and rows represent
the estimated classes. The values within the matrix correspond to the number of
items that fall into every cell. The marginals of the columns (true classes) represent
the percentage of misclassified items in relation to the ’truth’, commonly known as
the omission error. And the marginals of the rows (estimated classes) represent the
percentage of misclassified items in relation to the estimates (classifier), commonly
known as the commission error. The percentage in the down right cell of the matrix
is the overall mean misclassification rate. As can be seen, there exist a high misclas-
sification rate between classes k = 1 and k = 2, between classes k = 1 and k = 3,
and between classes k = 1 and k = 5.
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PPPPPPPPPEstimate
True

k = 1 k = 2 k = 3 k = 4 k = 5

k = 1 90 39 14 3 11 42%
k = 2 46 301 8 2 3 16%
k = 3 8 4 59 4 1 19%
k = 4 5 2 6 342 5 5%
k = 5 8 2 1 0 38 19%

42% 13% 32% 2% 34% 17%

Table 3.1: Confusion matrix after the Q-fold cross-validation procedure over the training data.

Further modeling considerations

In this case study, the temporal correlation structure has been taken into account
jointly with other spatial covariates in a multivariate squared exponential covariance
function. That implies that the covariance structure in the temporal dimension is
modeled as a smooth and monotonically decreasing function in time. The grade of
decay of the covariance in function of time depends on the relations observed in the
data.

However, this prior assumption on the temporal covariance structure might be
too simple for this practical case. In this application case, the class of an observation
is expected to switch in time in different ways. Thus, the assumption of a smooth
and monotonic covariance function in time might not be appropriate or at least too
simple. In this sense, Figure 3.21 provides the first-order transition probabilities
matrix between classes of the sampling dataset. A first-order transition probability
means the probability of a specific class to change to another class when the time
variable changes one unit, that is, the probability of change of a class in one interval
of time. It can be seen that there is a significant probability of some of the classes
to change in time. For example, class k = 1 has 0.64 of probability to change to
class k = 4 when time changes from one time point to the next time point, or class
k = 5 has 0.65 of probability to change to class k = 2 in one time interval. This
suggests that a Markov chain distribution for the time dimension could be more
appropriate. Thus, in further research, we propose modeling this practical case by
specifying a Markov chain model for the transition probabilities of classes in time
and a multivariate Gaussian process prior, with the spatial predictors, to relate the
transition probabilities among plots (space).
The Stan model code for the approximate GP model of this case study can be found
online at https://github.com/gabriuma/basis_functions_approach_
to_GP/tree/master/Paper/Case-study_Land-use-classification .

https://github.com/gabriuma/basis_functions_approach_to_GP/tree/master/Paper/Case-study_Land-use-classification
https://github.com/gabriuma/basis_functions_approach_to_GP/tree/master/Paper/Case-study_Land-use-classification
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Figure 3.21: Probabilities transition matrix between classes

3.12 Conclusion

The GP model entails a complexity that is computationally intractable for many
practical problems, and this problem especially becomes severe when we want to
perform inference using sampling methods. In this Chapter, we have implemented
and analyzed a novel approach for a low-rank representation of GPs, originally and
theoretically developed by Solin and Särkkä [2020]. The method is based on a basis
function approximation via Laplace eigenfunctions. The method has an attractive
computational cost as this basically turns the regular GP model into a linear model,
which is also an attractive property in modular probabilistic programming models.

The dominating cost per log density evaluation (during sampling) isO(nm+m),
which is a big benefit in comparison to O(n3) of a regular GP model. The design
matrix is independent of hyperparameters and therefore only needs to be constructed
once, at cost O(nm). All dependencies on the kernel and the hyperparameters are
through the prior distribution of the regression weights. The parameter posterior
distribution is m-dimensional, where m is much smaller than the number of obser-
vations n, which is greatly reduced in comparison to regular GPs and this makes
inference faster, especially when sampling methods are used. The drawbacks of
the method are the boundary conditions and scaling with respect to the number
of dimensions, i.e. the number of basis functions m scales exponentially with the
number of dimensions.

In this Chapter, we clearly presented the formulae of the method. We have
shown how the method applies for all the stationary covariance functions as long
as they can be represented in terms of their spectral densities. We focused on
the analysis of the accuracy of the approximation in relation to the key factors of
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the method, the number of basis functions, the boundary condition of the Laplace
eigenfunctions and the non-linearity of the function to be learned. .

Basically, if the lengthscale estimate characterizes accurately the non-linearity
of the function to be learned, we can expect the HSGP approximation to be accurate
as well. Thus, the performance of the method relies ultimately on the relationship
among the number of basis functions, the boundary factor and the lengthscale of the
function, which depends on the particular choice of the covariance function. We
made recommendations for the values of these key factors based on the recognized
relations among them. We provided useful graphs of these relations that will help
the users to improve performance and save time of computation. We also diagnose
if the chosen values for the number of basis functions and the box size are adequate
to fit to the actual data.

In this work, we built this relationship for the squared exponential covariance
function and Matern (ν=3/2) covariance functions. For the particular case of a
periodic covariance function we have presented a related methodology based on a
low-rank representation of a periodic kernel following the work of Solin and Särkkä
[2014], and then we analyzed the performance of the approximation in relation to
the number of basis functions.

Furthermore, we put the focus on showing how GPs can be easily used as
modular components in probabilistic programming frameworks (i.e. Stan, Win-
BUGS and others) and can be used as latent functions in non-Gaussian observational
models. We have shown several illustrative examples, simulated and real datasets,
of the performance of the model, where we demonstrated the applicability and
the implementation of the methodology, the reduction of the computation and the
improvement in sampling efficiency. The Stan codes of these case studies have been
provided through links to the author’s GitHub repository.

The main drawback of this approach is that its computational complexity scales
exponentially with the number of dimensions. Hence, in practice, input dimension-
alities larger than 3 start to be too computationally demanding. In these cases, the
proposed HSGP model can be used as low-dimensional components in an additive
modeling scheme. In the spatio-temporal land use classification task performed in
the case study IV (Section 3.11), we model the 52 input dimensions additively using
1D and 2D HSGP model components.

Future research will focus on constructing analytical models for the relationships
between the key factors of the number of basis functions, the boundary factor and
the lengthscale of the function, depicted in Figures 3.6, 3.7 and 3.11, on which
ultimately depend the performance of the approximation. This analytical models
can be useful to automatize the diagnosis of the performance of the approximation.
These relationships have been obtained, in the present study, for the unidimensional
case only. So, another future research line will be focused on analyzing these
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relationships in the multidimensional case, building useful graphs or analytical
models that encode these relationships in multidimensional cases.





Chapter 4

Additional (virtual) derivative
observations to induce
monotonicity and gradient to
functions

In this chapter, we illustrate the use of derivative information as additional or virtual
observations in the modeling, in order to constraint or control the dynamics of
stochastic functions. The methodology is illustrated for GPs and semiparamet-
ric models based on spline functions. The aim is to ultimately reveal and make
recommendations about the issues that can arise when using this methodology to
induce monotonicity on functions, especially when using GP models. Based on
prior knowledge of the functions, controlling or constraining the dynamics of the
functions is especially useful when the data is scarce relative to the complexity of
the model or it is very noisy, and also produces better model extrapolations. This is
the case of the application to rock-art paintings addressed in Chapter 5.

4.1 Introduction

In modeling problems of learning stochastic functions from data, there is often a
priori knowledge and/or additional information available concerning the function to
be learned, which can be used to improve the performance of the modeling. This
information might concern the derivative of the function with respect to an input
variable, so the dynamics of the function can be controlled or constrained. Some-
times, prior knowledge or measurements of the value of the derivative (gradient) of
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the function may be available. And sometimes, such information can be regarded on
the behavior of the function such as being monotonically increasing or decreasing
with respect to some input variables.

Knowing or having measurements of the value of the derivative of the function
implies that specific behaviour regarded to the gradient of the function with respect
to an input variable can be incorporated to the modeling. In general, different
orders of derivatives can be considered. This information can be available in many
applications. For example, in industrial applications where the gradient of the
process under study can be measured at specific input values, or in the case of
modeling the degradation of some substance which degradation is expected to
stabilize eventually.

The monotonicity assumption in general means that a function always increases
(monotonically increasing) or decreases (monotonically decreasing) as a function of
some input variable. There are several ways a stochastic function can be monotonic,
e.g. the expected values of a function are monotonic or all samples from a stochastic
function are monotonic. Monotonic functions arise in many applications, such as
modeling the mortality rate as a function of the age, or modeling the treatment effects
as a function of drug dose response, or modeling the degradation of a substance
as a function of time and influence of adverse factors. Monotonicity can also be a
useful prior information to gain efficiency in algorithms of function optimization
[Li et al., 2017].

Modeling this information, gradients or monotonicity, has several advantages.
Models with additional derivative information have stronger inductive bias, thus
yielding better predictive performance and confidence intervals, especially for
smaller data sets. Specifically, they can be expected to produce more reliable
models, especially where the data is scarse, and produce better model extrapolations.
Furthermore, additional derivative information can improve model interpretation.

In this work we use the term virtual observations instead of additional observa-
tions, in order to make it clear that they are artificial observations we introduce to
induce specific information into the model.

The use of additional or virtual observations of the partial derivative to induce
monotonicity on functions [Riihimäki and Vehtari, 2010, Solak et al., 2002] has
some interesting properties, but also has some issues. The use of virtual obser-
vations allows for imposing different monotonicity in different input dimensions.
Furthermore, by placing virtual points appropriately, unimodality can be imposed
with respect to an input variable [Andersen et al., 2017]. The use of virtual observa-
tions of the partial derivative also allows for imposing constrains concerning the
gradient of the functions. Generally, derivative observations (of different orders)
can be used to constrain the dynamics of the functions in different ways. However,
inducing monotonicity through virtual observations can arise with some practical
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issues, since the monotonicity information is included in the likelihood of the model
through virtual observations instead of into the prior of the function. Which makes
the posterior distribution of the function dependent on the number of the inducing
points. Furthermore, this approach does not guarantee stochastic functions are either
sampling-wise monotonic or even monotonic in expectation.

In this chapter, we illustrate the usage of derivative information as additional or
virtual observations in the modeling, and also reveal the issues that can arise when
using this methodology to induce monotonicity on functions.

The rest of the chapter is structured as follows. In Section 4.2, a brief overview
of the related work is given. In Section 4.3, we describe the main contributions
of this chapter. In Section 4.4 the general observational model is set. In Sections
4.5.1 and 4.5.2, the derivative processes of both Gaussian processes (GPs) and
spline-based models, respectively, are derived and jointly modeled with their regular
processes. Section 4.6 describes the implementation of zero-order constraints which
concern to the function values of the regular process. Section 4.7.1 describes the
implementation of first-order derivative constraints regarded the values of the deriva-
tive (gradients) of the function. In Section 4.7.2, first-order derivative constraints
regarded the the sign of the derivatives for monotonicity are described. Section 4.8
shows the likelihood and joint posterior distribution for the model with derivatives.
Section 4.9 illustrates the main issue of using additional or virtual observations for
monotonicity. Finally, in Section 4.10 brief conclusions are given.

4.2 State of the art

Several methods have been proposed for monotonic regression in the literature. The
predominant focus of the theoretical literature on monotone function estimation has
been on the methodology of order-restricted inference, which is sometimes also
known as isotonic regression [Barlow et al., 1972]. Neelon and Dunson [2004]
approach isotonic regression and order-restricted inference for non-parametric mod-
els in a Bayesian analysis. Brezger and Steiner [2008] induces monotonicity on
penalized B-splines imposing order- restriction by specifying truncated prior dis-
tributions in order to reject the undesired draws for the parameters in the MCMC
sampling. Reich et al. [2011] makes a similar approach imposing order to the regres-
sion parameters by means of reparameterizing and constraining these parameters
with application to a quantile regression model. Shively et al. [2009] proposes two
approaches to obtain monotonic functions, the first using a modified characteriza-
tion of the smooth monotone functions proposed in Ramsay [1998] that allows for
unconstrained estimation, and the second using constrained prior distributions for
the regression coefficients to ensure monotonicity.
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However, imposing monotonicity by construction in non-parametric GP prior
models is more difficult. Generic GP prior models do not restrict the function
values to be monotonically increasing or decreasing with respect to input variables.
Few approaches to induce monotonicity in GP models can be found. Recently,
Andersen et al. [2018] proposes a monotonic model based on applying non-linear
transformation of a GP and then using Hilbert space methods to approximate the
model to make inference tractable.

In addition to monotonic regression imposed by construction, monotonicity can
be expressed in terms of the sign of the partial derivative of the functions [Riihimäki
and Vehtari, 2010, Solak et al., 2002]. Furthermore, gradients of the functions can
also be expressed in terms of the value of the partial derivatives. In order to do that
the derivative process of the model has to be derived and jointly modeled with the
regular process. Thus, jointly modeling observations of the partial derivative and
regular observations.

Linearity of parametric or semiparametric models makes feasible the use of
their derivatives as additional observations jointly with the regular observations. In
the same way, the derivative of a (mean-square differentiable) GP function remains
a GP because differentiation is a linear operator [Rasmussen, 2003, Solak et al.,
2002]. This makes it possible to use derivative observations jointly with regular
observations in a GP model, by extending the covariance function accordingly to
include the covariances between the process and its partial derivatives [Solak et al.,
2002]. Riihimäki and Vehtari [2010] proposed a method for inducing monotonicity
in functions using GPs by using additional observations of the sign of the derivative
of the process in specific locations in the input space. A similar approach of using
additional observations for inducing monotonicity to neural network models was
proposed by Sill [1997]. In Lorenzi and Filippone [2018] the authors use the
same idea to include constraints concerning the derivative of the functions in deep
probabilistic models.

The use of additional (virtual) observations in multi-dimensional input spaces
has the drawback that the number of observations can considerably increase and the
computation becomes very heavy. In this case, approximate inference methods must
be used [Gelman et al., 2013] instead of sampling methods such as MCMC (Markov
chain Monte Carlo). Another option is to settle for a small number of virtual
observations, placed appropriately, as long as the forced function is monotonic.
Riihimäki and Vehtari [2010] propose a method for placing the virtual points based
on the probability of function being negative at the input points, and thus optimize
the computational complexity.
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4.3 Contributions of the chapter

In this chapter, we illustrate the use of derivative information as additional (vir-
tual) observations in the modeling. We illustrate this in two different modeling
frameworks: a GP model [Riihimäki and Vehtari, 2010] and a semiparametric
spline-based model. The derivative process of the model is derived and then both
the regular and derivative processes are jointly modeled. In this way, we can en-
code derivative information in the model by defining observational models for the
derivative observations: observations of the value of the derivative (gradient) and
observations of the sign of the derivative for monotonicity.

Finally, we analyze the issue that can arise when using virtual derivative sign
observations to induce monotonicity on functions. The problem is that the posterior
functions depend on the number and locations of the virtual observations in the
input space. When the number of virtual points is too large, the posteriors tend to be
overly smoothed. However, if the function is smooth, this problem can be avoided
in practice choosing a few virtual points only and placing them appropriately.

4.4 General observational model

We consider a continuous stochastic process based on a collection of
observations y = (y1, . . . , yN ) of the regular process, defined at the subset
A = {i : i = 1, . . . , N} of observational indices, where yi ∈ IR is the value of the
observation i ∈ A. And an associated matrix of inputs XA = [x1 x2 · · · xN ]> ∈
IRN×D, where xi = (xi1, . . . , xid, . . . , xiD) ∈ IRD denotes the vector of input
values for the ith observation, with d = 1, . . . , D denoting the indices for the inputs
variables.

We adopt the model
yi = fi + ei,

where fi is the value of the latent function f : IRD → IR underlying to the
observations and evaluated at xi, i.e. fi = f(xi), and ei is a Gaussian noise term.
So, the observational model for the data can be written as follows:

p(y|f) =
∏
i∈A
N (yi|fi, σ2), (4.1)

where f = (f(x1), . . . , f(xN )) and σ2 is the noise variance.
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4.5 Latent function models with derivatives

4.5.1 Gaussian processes with derivatives

In this section we derive the first-order partial derivative process of a multivariate
GP prior model, and jointly model both the regular and the derivative processes of a
GP. GPs are prior models for multi-dimensional functions (Chapter 3.4).

The function f in equation (4.1) is assumed to follow a zero mean GP prior,
f ∼ GP(0, k(x,x′)), where k : IRD × IRD → IR is the covariance function.
Let f = (f(x1), . . . , f(xN )), then the resulting prior distribution for f is a mul-
tivariate Gaussian distribution f ∼ N (µ,K), where K is the covariance matrix,
with Ki,j = k(xi,xj), with i, j = 1, . . . , N .

We consider a stationary and separable exponentiated quadratic covariance
function which depends on a set of hyperparameters θ. Thus, the element (i, j) of
the covariance matrix K is:

K(X; θ)ij = α2 exp

(
−1

2

D∑
d=1

1

ρ2
d

(xi,d − xj,d)2

)
,

where θ contains the parameters α and ρ = (ρ1, . . . , ρD). The hyperparameter α
is the prior standard deviation of the latent Gaussian process f . The lengthscale
hyperparameter ρd control the smoothness of the covariance function or rate of
decay of the correlation in the direction of the dth predictor (input variable), so
that, the larger the ρd the smoother the correlation function and the smoother the
posterior functions for f ; Although the scale of ρd is dependent on the scale of the
input data along the dimension d. The magnitude α and lengthscale ρd must be
strictly positive parameters.

As differentiation is a linear operator the derivative of a mean-square differen-
tiable GP model is still a GP. This makes it possible to jointly model a function
and its derivatives using GPs, by extending the covariance function accordingly
to include the covariances between the process and its partial derivatives. Hence,
we can write the joint prior distribution for regular function values f and partial
derivatives of function values f ′ as follows

p(f ,f ′|X,X∗, θ) =

N
([

f
f ′

] ∣∣∣∣0, [ Kf,f (X, θ) Kf,f ′(X,X
∗, θ)

Kf ′,f (X,X∗, θ) Kf ′,f ′(X
∗, θ)

])
, (4.2)

where f ′ denotes the values of the partial derivatives of latent function f with respect
to some input dimension evaluated at inputs X∗ associated with the derivative
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observations. The covariance matrix is extended to include the covariances between
observations and partial derivatives (Kf,f ′ and Kf ′,f ) and the covariances between
partial derivatives (Kf ′,f ′). The covariance between a partial derivative and a
function value is given by

Cov

[
∂f i

∂xi,g
, f j
]

=

α2 exp
(
− 1

2

D∑
d=1

ρ−2
d (xi,d − xj,d)2

)
×
(
−ρ−2

g (xi,g − xj,g)
)
,

and the covariance between partial derivatives

Cov

[
∂f i

∂xi,g
,
∂f j

∂xj,h

]
= α2 exp

(
−1

2

D∑
d=1

ρ−2
d (xi,d − xj,d)2

)
× ρ−2

g

(
ζgh − ρ−2

h (xi,h − xj,h)(xi,g − xj,g)
)
.

In the previous equation, ζ denotes the Kronecker Delta function where ζgh = 1 if
g = h, and 0 otherwise [Riihimäki and Vehtari, 2010].

We can now combine the joint prior distribution in equation (4.2) with an
observation model, p(m|f ′), for the partial derivatives observationsm, to encode
information about the partial derivatives of f into the model.

4.5.2 Spline model with derivatives

In this section, we derive the first-order derivative process of a penalized cubic-
spline model in the one-dimensional input space. We focus on semiparametric
regression models using penalized thin-plate splines [Ruppert et al., 2003, Wood,
2003]. Specifically, we focus on the penalized thin-plate splines as presented by
Crainiceanu et al. [2005].

Due to the number of parameters in multivariate spline models is high, in the
sake of simplicity, we consider the process in the one-dimensional case only, such
that the latent function f in equation (4.1) is a 1D-function, f : IR→ IR.

Let f = (f(x1), . . . , f(xN )) be the latent function values underlying the noisy
observations y, where fi is the value of the latent function f evaluated at the input
value xi, i.e. fi = f(xi). Firstly, we assume the latent function f is a thin-plate
cubic-spline function:

f(xi) = β1 + β2xi +
K∑
k=1

Zikuk = Hi·β +Zi·u, (4.3)
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where Hi· = (1, xi) is the row-vector of linear function values of the ith ob-
servations, β = (β1, β2)> is the column-vector of linear coefficients, Zi· =
(Zi1, . . . , ZiK) ∈ IRK is the row-vector of cubic-spline values of the ith obser-
vation, and u = (u1, . . . , uK)> ∈ IRK is the column-vector of spline coefficients,
with K the order of the spline model and number of knots. The kth element of the
vector Zi· of cubic-spline function values is

Zik = φ(xi, κk) =

1

4

(
(κk − 0.5)2 − 1

12

)(
(xi − 0.5)2 − 1

12

)
− 1

24

((
|xi − κk| − 0.5

)4 − 1

2

(
|xi − κk| − 0.5

)2)
, (4.4)

which is the one-dimensional cubic-spline function φ [Nievergelt, 1993] evaluated
at the input value xi and the pre-fixed knot κk corresponding to the kth spline
function, with k = 1, ...,K.

Following, we briefly derive the penalized representation of the thin-plate spline
model of equation (4.3). A more detailed explanation of this approach can be found
in Crainiceanu et al. [2005]. In order to derive the penalized representation, let first
formulate the complete latent model for the observations y:

y = f + ε = Hβ + Zu+ ε,

where y and f denote the column-vectors of observations and latent function
values, respectievely. H ∈ IRN×2 denotes the matrix of linear function values with
ith row Hi·, Z ∈ IRN×K denotes the matrix of cubic-spline function values
with ith row Zi·, and ε ∼ N (0, σ2) is the Gaussian noise term. To perform the
penalization of the model in order to avoid overfitting, we can minimize:

1

σ2
||y −Hβ + Zu||2 +

1

σ2
u

u>Σu,

in which the covariance of the vector u is cov(u) = σ2
uΣ−1, the covariance of

the residuals ε is linear Gaussian cov(ε) = σ2I , and Σ ∈ IRK×K is the matrix of
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penalization with element (q, k):

Σqk = φ(κq, κk) =

1

4

(
(κk − 0.5)2 − 1

12

)(
(κq − 0.5)2 − 1

12

)
− 1

24

((
|κq − κk| − 0.5

)4 − 1

2

(
|κq − κk| − 0.5

)2)
,

that is the cubic-spline function φ evaluated at the pre-fixed knots κq and κk,
corresponding to the qth and kth spline function, respectively, with q, k = 1, ...,K.

If we use the reparametrization u = Σ−1/2b, we obtain an equivalent model
representation of the penalized thin-plate splines in the form of linear mixed models
[Brumback et al., 1999]:

y = f + ε = Hβ + ZΣ−1/2b+ ε,

where the covariance of the vector of spline coefficients b is now linear Gaussian
cov(b) = σ2

b I .

Thus, we represent the latent function f as penalized thin-plate cubic-splines in
the form of linear mixed models:

f(xi) = Hi·β +Zi·Σ
−1/2b, (4.5)

where b = (b1, . . . , bK)> ∈ IRK is the column-vector of penalized spline coeffi-
cients.

In practice, the inverse of the square root of the matrix Σ is often computed as
Σ−1/2 = UD−1/2V >, where UDV > is the singular value decomposition of the
matrix Σ, where D is the rectangular diagonal matrix with the singular values, U
and V are the matrices with the left-singular vectors and the right-singular vectors
of Σ, respectively.

The partial derivative of the penalized cubic-spline function f(xi) in (4.5), with
respect to the input variable takes the form

f ′(xi) =
∂f(xi)

∂xi
= β2 +

∂Zi·
∂xi

Σ−1/2b, (4.6)

where ∂Zi·
∂xi

= (∂Zi1
∂xi

, . . . , ∂ZiK
∂xi

) ∈ IRK is the row-vector of derivative cubic-spline
values of the ith observation, where the element ∂Zik

∂xi
is the partial derivative of the
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cubic spline function Zik in equation (4.4):

∂Zik
∂xi

=
φ(xi, κk)

∂xi
=

1

4

(
(κk − 0.5)2 − 1

12

)
2(xi − 0.5)

− 1

24

(
4
(
|xi − κk| − 0.5

)3 − (|xi − κk| − 0.5
))
, (4.7)

evaluated at the input value xi and knot κk.

4.6 Function value constraint (zero-order constraint)

Before going through the implementation of constraints regarding the derivative of
the function in the next sections, in this section we illustrate the implementation of
constraints regarding the regular values of the function. We can consider sets of
actual or virtual observations to be used as constraining observations, and these can
be considered noisy or with the absence of noise.

Let yB = (y1, . . . , yJ) be the set of constraining observations, with associated
inputs XB = [x1 x2 · · · xJ ]> ∈ IRJ×D and defined at the set B = {i : i =
1, . . . , J} of observation indices.

If the constraining observations are considered noisy, we can incorporate this
into the model by using a Gaussian likelihood with some variance τ2 > 0,

p(yB|fB) =
∏
i∈B
N (yi|f(xi), τ

2),

On the other hand, if the constraining observations are considered with the absence
of noise, e.g. constrainting the function to pass through exactly these observations,
the Dirac delta function δ as the observational model can be considered:

p(yB|fB) =
∏
i∈B

δ(yi − f(xi)), (4.8)

where fB denotes the function values f(xi) at the subset B of points.
In the case of the GP prior model for the latent function (Section 4.5.1),

the function values fB follow the marginalized distribution of equation (4.2),
p(fB|XB, θ) = N

(
fB|KfB ,fB (XB, θ)

)
. In the case of the spline model for the

latent function (Section 4.5.2), the function f follows the model in equation (4.5).
Notice that generally, we can also consider the constraining observations as a

subset of the actual observations y, instead of considering them as a new set of
(virtual) observations.
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4.7 First-order derivative constraint

In this section, we illustrate the implementation of first-order derivative constraints
to the function based on virtual observations of both the value of the partial derivative
(gradient) and the sign of the partial derivative for monotonicity.

4.7.1 First-order derivative value (gradient) constraint

We consider a setm = (m1, . . . ,mL) of virtual observations of the partial deriva-
tive of the function, with associated inputs XC = [x1 x2 · · · xL]> ∈ IRL×D

and defined at the set C = {i : i = 1, . . . , L} of observation indices. Where mi

represents an artificial observation of f ′g(xi) = ∂f(xi)
∂xi,g

, where f ′g : IRD → IR is the
partial derivative function with respect to the gth input variable of interest.

An observation model for these observations, p(m|f ′C), can be used to encode
this derivative information of f (provided bym) into the model.

If the derivative observations m are noisy, we can incorporate this into the
model by using a Gaussian likelihood with some variance τ2 > 0,

p(m|f ′C) =
∏
i∈C
N (mi|f ′g(xi), τ2).

On the other hand, if we want to consider the absence of noise on these observations,
e.g. the function to meet exactly these derivative values, the Dirac delta function δ
as the observational model can be considered:

p(m|f ′C) =
∏
i∈C

δ(mi − f ′g(xi)), (4.9)

with f ′C = (f ′g(x1), . . . , f ′g(xL)). In the case of the GP prior model for the latent
function, the partial derivative function values f ′C follow the marginalized distribu-
tion of equation (4.2), p(f ′C |XC , θ) = N

(
f ′C |Kf ′C ,f

′
C

(XC , θ)
)
. In the case of the

spline model for the latent function, the partial derivative function f ′g follows the
model in equation (4.6).
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4.7.2 Monotonicity constraint

We consider a set z = (z1, . . . , zQ) of virtual observations of the sign of the partial
derivative of the function, with associated inputs XE = [x1 x2 · · · xQ]> ∈
IRQ×D, at the set E = {i : i = 1, . . . , Q} of observation indices. Where zi ∈
{1,−1} represents an artificial observation of sign(f ′g(xi)), with zi = 1 means that
the partial derivative of the function is positive (increasing function) at the given
data point, and zi = −1 means that the partial derivative is negative (decreasing
function).

The probit function Φ : IR → (0, 1) can be used as a likelihood for the signs
of the partial derivatives to encode this derivative information of f (provided by z)
into the model:

p(z|f ′E) =
∏
i∈E

Φ
(
zi · f ′g(xi) ·

1

v

)
. (4.10)

The function Φ in equation (4.10) is the standard Normal cumulative distribution
function and v > 0 is a parameter controlling the strictness of the constraint. When
v approaches zero (v → 0), the function Φ approaches a step function (Figure 4.1).
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Figure 4.1: Standard normal cumulative distribution function (Probit function) for derivative values
f ′(x), for two different values v1 and v2 of the parameter v, with v1 < v2.
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4.8 Likelihood and posterior distributions

In this section, we illustrate the likelihood and joint posterior distribution for the
actual observations yA, the virtual observations yB , the virtual derivative value
observations m and the virtual derivative sign observations z. Let yB and m
be considered with the absence of noise and models in equations (4.8) and (4.9),
respectively.

Thus, the joint likelihood of these vectors of observations given f , fB , f ′C , f ′E
and σ results:

p(y,yB,m, z|f ,fB,f ′C ,f ′E , σ) =

p(y|f , σ)p(yB|fB)p(m|f ′C)p(z|f ′E) =(∏
i∈A
N (yi|f(xi), σ

2)
)(∏

j∈B
δ(yj − f(xj))

)
×
(∏
l∈C

δ(ml − f ′g(xl))
)( ∏

n∈E
Φ
(
zn · f ′g(xn) · 1

v

))
. (4.11)

Posterior distribution in the case of a GP prior for latent function f

The posterior joint distribution of parameters given the data, which is proportional
to the likelihood and prior distributions results:

p(f ,fB,f
′
C ,f

′
E , θ, σ|y,yB,m, z) ∝

p(y,yB,m, z|f ,fB,f ′C ,f ′E , σ)p(f ,fB,f
′
C ,f

′
E |X,XB, XC , XE , θ)p(θ)p(σ),

where p(y,yB,m, z|f ,fB,f ′C ,f ′E , σ) is the likelihood of the model in equation
(4.11) and p(f ,fB,f ′C ,f

′
E |X,XB, XC , XE , θ) is the joint GP prior for regular, f

and fB , and derivative, f ′C and f ′E , latent function values following the equation
(4.2). p(θ) contains the priors for the hyperparameters magnitud α and lengthscales
ρ of the GP model. p(σ) is the prior for the noise variance σ of the model. Based
on prior knowledge of the magnitude of these parameters, we set, for example,
positive half-normal prior distributions (zero-mean normal distribution limited to
the positive input domain [0,∞)) for the hyperparameters α, p(α) = N+(α|0, 10),
and σ, p(σ) = N+(σ|0, 10), and gamma distributions for the hyperparameters ρ,
p(ρd) = Gamma(ρd|1, 0.1) for all d.
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Thus, the joint posterior distribution can be expressed as:

p(f ,fB,f
′
C ,f

′
E , θ, σ|y,yB,m, z) ∝(∏

i∈A
N (yi|fi, σ2)

)(∏
j∈B

δ(yj − fj)
)(∏

l∈C
δ(ml − f ′l )

)( ∏
n∈E

Φ
(
zn · f ′n ·

1

v

))

×N



f
fB
f ′C
f ′E

 |0,


Kf,f Kf,fB Kf,f ′C
Kf,f ′E

KfB ,f KfB ,fB KfB ,f
′
C

KfB ,f
′
E

Kf ′C ,f
Kf ′C ,fB

Kf ′C ,f
′
C

Kf ′C ,f
′
E

Kf ′E ,f
Kf ′E ,fB

Kf ′E ,f
′
C

Kf ′E ,f
′
E




×N+(α|0, 1)
( D∏
d=1

Gamma(ρd|1, 0.1)
)
N+(σ|0, 1). (4.12)

Posterior distribution in the case of a spline model for latent function f

The posterior joint distribution of parameters given the data, which is proportional
to the likelihood and prior distributions results:

p(f ,fB,f
′
C ,f

′
E ,β, b, σ|y,yB,m, z) ∝

p(y,yB,m, z|f ,fB,f ′C ,f ′E , σ) g(f ,fB|β, b, H, Z,Σ)

· h(f ′C ,f
′
E |β, b, ∂H∂x ,

∂Z
∂x ,Σ) p(β) p(b) p(σ),

where p(y,yB,m, z|f ,fB,f ′C ,f ′E , σ) is the likelihood of the model in equation
(4.11), g(f ,fB|β, b, H, Z,Σ) is the spline model for regular f and fB observations
in equation (4.5) and h(f ′C ,f

′
E |β, b,

∂H
∂x ,

∂Z
∂x ,Σ) is the spline model for derivative

f ′C and f ′E observations in equation (4.6). p(β) and p(b) contain the priors for the
linear and spline coefficients β and b, respectively. p(σ) is the prior for the noise
variance σ of the model. Based on prior knowledge of the magnitude of these param-
eters, we define, for example, normal prior distributions for the linear coefficients β,
p(β) = N (β|0, 10I), and for the spline coefficients b, p(b) = N (b|0, 10I), where
I is the identity matrix, and positive half-normal prior distributions for the noise
variance σ, p(σ) = N+(σ|0, 10).
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Thus, the joint posterior distribution can be expressed as:

p(f ,fB,f
′
C ,f

′
E ,β, b, σ|y,yB,m, z) ∝(∏

i∈A
N (yi|fi, σ2)

)(∏
j∈B

δ(yj − fj)
)(∏

l∈C
δ(ml − f ′l )

)( ∏
n∈E

Φ
(
zn · f ′n ·

1

v

))

×N (β1|0, 1)N (β2|0, 1)
( K∏
k=1

N (bk|0, 1)
)
N+(σ|0, 1). (4.13)

4.9 Issues of using virtual derivatives observations for mono-
tonicity

In this section, we analyze the overly smoothing effect of using virtual derivatives
observations for inducing monotonicity on functions. We analyze this effect on both
of using a GP prior and a spline model for the latent function f . With this purpose,
the models are fitted to a simulated dataset from the inverse function, f(x) = −1

x ,
with additive Gaussian noise. The simulated dataset consists of N = 30 single
draws y = (y1, . . . , yN ) from the inverse function, with corresponding inputs values
x = (x1, . . . , xN ) with xi ∈ [−1.5, 1.5] ⊂ IR. To form the final noisy dataset y,
Gaussian noise σ = 1.0 was added to the function draws. The first 20 data points
are used for training the model and the last 10 as testing data points for visually
assessing the extrapolation performance of the models, as can be appreciated in
Figures 4.2 and 4.3.

We consider the observational model for these set of regular observations as in
equation (4.1), in a 1D input space and latent function f : IR→ IR.

In order to induce monotonicity on the function, we consider a set
z = (z1, . . . , zM ) of virtual observations of the sign of the partial derivative of
the function, where M denotes the number of virtual observations considered,
with associated inputs w = (w1, . . . , wM ), with wi ∈ [−1.5, 1.5], at the set
E = {i : i = 1, . . . ,M} of observation indices. Where zi ∈ {1,−1} repre-
sents an artificial observation of sign(f ′g(wi)). The observational model for this
vector z of observations is as in equation (4.10). The parameter v that controls the
strictness of the constraint is set to 10−4.

In the case of using a GP prior model for the latent function f , as developed
in Section 4.5.1, the joint prior distribution of regular f and derivative f ′ function
values is as in equation (4.2). Thus, the marginal posterior distribution of f can be
computed integrating out the joint posterior distribution p(f ,f ′, θ, σ|y, z) over the
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hyperparameters θ = (ρ, α) and σ:

p(f) =

∫
p(y, z|f ,f ′, σ) p(f ,f ′|x,w, θ) p(ρ) p(α) p(σ) d(α) d(ρ) d(σ) =∫ (∏
i∈A
N (yi|f(xi), σ

2)
)(∏

j∈E
Φ
(
zj · f ′(wj) ·

1

v

))
×N

([
f
f ′

]
|0,
[

Kf,f (x, θ) Kf,f ′(x,w, θ)
Kf ′,f (w,x, θ) Kf ′,f ′(w, θ)

])
×N+(α|0, 10) Gamma(ρ|1, 0.1)N+(σ|0, 10) d(α) d(ρ) d(σ).

Figure 4.2-(a) shows the mean posterior functions for this model with a GP prior
for the function f . In red color, the posterior function without virtual observations
of the sign of the derivative for inducing monotonicity is plotted. In graduated
blue colors, the posterior functions with different number of virtual observations
(different subsets E of virtual points) are plotted. The virtual points are placed
evenly over the input space. As commented above the last 10 regular observations
of the dataset (plotted as crosses in Figure 4.2-(a)) are used for testing model
extrapolation of the predictive posterior functions. Figure 4.2-(b) shows a scatter
plot with the posterior mean of the derivatives per pair of points when using different
number of virtual observations for monotonicity. This graph aims to illustrate the
correlation of the derivatives between pair of points of the function. The closer to
the diagonal the higher the correlation. Figure 4.2-(c) shows a zooming of Figure
4.2-(b).

In the case of using a spline model for the latent function f , as developed
in Section 4.5.2, the marginal posterior distribution of function values f can be
computed integrating out the joint posterior distribution p(f ,f ′,β, b, σ|y, z) over
the hyperparameters β, b and σ:

p(f) =

∫
p(y, z|f ,f ′, σ) g(f |β, b, H, Z,Σ)h(f ′|β, b, ∂H∂w ,

∂Z
∂w ,Σ)

· p(β) p(b) p(σ) d(β)
( K∏

k

d(bk)
)

d(σ) =∫ (∏
i∈A
N (yi|f(xi), σ

2)
)(∏

j∈E
Φ
(
zj · f ′(wj) ·

1

v

))
N (β1|0, 1)N (β2|0, 1)

×
( K∏

k

N (bk|0, 1)
)
N+(σ|0, 1) d(β1) d(β2) d(b1) · · · d(bK) d(σ),
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where f(xi) and f ′(wj) follow the model in equations (4.5) and (4.6), respectively.
Similarly to Figure 4.2 explained above, in Figures 4.3 the posterior mean function
(Figure 4.3-(a)) and the mean derivatives per pair of points (Figure 4.3-(b)) for
different number of virtual points for inducing monotonicity are plotted.

We can see in Figures 4.2-(a) and 4.3-(a) how the posterior distribution de-
pends on the number and locations of virtual points; different posteriors are ob-
tained with different numbers of virtual points. Furthermore, monotonicity of
the posterior functions is not guaranteed, especially when the number of vir-
tual points is too small. Furthermore, the posterior functions tend to be overly
smoothed as the number of virtual points increases, especially when using a GP prior
for f (Figure 4.2-(a)). In the case of splines, the functions seem not to be so overly
smoothed and fit better to the dynamics of the process (Figure 4.3-(a)). The cor-
relation between pair of derivatives values is higher for the use of a GP prior for
function f since points are closer to the diagonal in Figure 4.2-(c) than in Figure
4.3-(c).

In monotonic functions, the function values at two arbitrary locations (x, x′)
can never be independent: x′ > x implies f(x′) ≥ f(x). When using virtual
observations to induce monotonicity, the assumption of independence between
function values f(x) y f(x′) is violated. In GP functions, in addition, monotonic
functions do not have a characteristic lengthscale and, as the function values at the
virtual points can no be independent, the lengthscale tends to increase and posterior
functions are smoother and flatter.

However, monotonic functions with a GP prior to function f provides reliable
model extrapolation since it has a stronger inductive bias than the model without
virtual points for monotonicity, as can be seen in Figure 4.2-(a). On the other hand,
monotonic functions with a spline model for function f extrapolate considerably
worse than with GP priors.

4.10 Conclusion

In this chapter, we have illustrated the use of derivative information in the modeling
as additional observations. This methodology can be used to control or constrain the
dynamics of stochastic functions, such as gradients, monotonicity or unimodality
properties of the functions. We have illustrated this for GP prior models and spline
models for stochastic functions.

Furthermore, we have analyzed the main issues that can arise when using many
virtual derivative sign observations for monotonicity. First, the likelihood and
posterior distribution depend on the number and locations of the virtual points. And
secondly, the correlation between pairs of points is larger as the number of virtual
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(a) Mean posterior functions of the regular GP (red line) and the mono-
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points for monotonicity increases, causing overly smoothed posterior distributions,
especially when using GPs. In a Bayesian perspective, the monotonicity constraint
should be specified in the prior rather than in the likelihood function through virtual
observations.

Placing appropriately the virtual points for monotonicity is highly recommended,
and placing as less virtual points as possible, as long as the posterior function
is monotonic, is also recommended. These considerations apply for monotonic
functions with both GP and spline models for the latent function f , although this is
extremely recommendable for GPs.

While the use of virtual observations for monotonicity has some issues, as
studied in this chapter, it has some interesting properties such as to be a flexible
procedure in order to induce different monotonicity in different parts of the input
space or in different input dimensions, as long as this is combined with an appropri-
ate placement of the virtual points. Furthermore, it has been demonstrated in the
present study how the use of virtual points for monotonicity helps for extrapolating
data, especially with GPs.

Finally, as future research we propose the systematic study of using additional
information of the functions such as constraints regarding the function values or
constraints regarding the gradients of the function, jointly with the virtual observa-
tions for monotonicity. This might help for minimizing the over-smoothing effect
of using virtual points for monotonicity.



Chapter 5

Application to rock art paintings:
Models with derivative
information for modeling
microfading spectrometry
measurements

In this chapter, an applied study on a specific problem is carried out. The goals
of this applied study are to model and make predictions of microfading spectrom-
etry (MFS) measurements for new unobserved spatial locations on the surface of
rock art paintings. The main modeling aspects that this application requires to be
solved is the definition of spatio-temporal correlation structures for the data and the
specification of modeling constraints in order to control the dynamics (derivative
properties) of the predicted functions. A GP (introduced in Chapter 3) with deriva-
tives (introduced in Chapter 4) is the model used in the application. Furthermore,
with the aim of comparison, the problem is also solved by formulating a spatially
correlated spline time-series model, with the consideration of model derivatives. A
univariate spline model with derivative information was introduced in Chapter 4 and,
in this chapter, we illustrate how to correlate different univariate spline models, e.g.
spatially located spline time-series models, by correlating their spline coefficients.

107
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5.1 Summary

Microfading spectrometry (MFS) is a method for assessing the photostabilty of
cultural heritage objects to light fading, allowing real time monitoring of spectral
response, i.e. color changes of the surface of the material. The MFS technique
provides measurements of the surface under study, where each point of the surface
gives rise to a time-series that represents potential spectral (color) changes due to
sunlight exposition over time. Thus, MFS measurements can be seen as observations
of an underlying spatio-temporal stochastic process.

Color fading is expected to be non-decreasing as a function of time and stabilize
eventually. These properties can be expressed in terms of the partial derivatives of
the functions. In this work we propose two modeling approaches, a spatio-temporal
GP model and a spatially correlated spline-based time-series model. Both models
take the derivative information into account by jointly modeling the regular process
and its derivative process, in order to force the functions to fit the properties of
non-decreasing and stabilize eventually as a function of time.

A spatio-temporal structure in a GP is easily implemented in a multi-dimensional
covariance function in the GP prior. However, two-way (space and time) spline
models already becomes highly parameterized and hardly interpretable. Instead, we
correlate the different (spatially located) spline time-series by correlating their coef-
ficients across time-series by defining prior distribution with covariance structure,
e.g. GP prior, on them.

A multivariate GP prior model is the more natural way to deal with multi-
dimensional (space and time) data but requires high computational expense in matrix
inversion as it increases rapidly with the spatio-temporal dimensionality. On the
other hand, a spatially correlated time-series model, which correlates the spline time-
series through correlating their spline coefficients, requires less computation, since
it depends on the order K of the spline functions instead of the time dimensionality
T of the GP model (usually K � T ). Furthermore, different levels of complexity
of the covariance structure, with different computational expenses, can be defined.

We fitted the two proposed models to MFS data collected from the surface
of prehistoric rock art paintings. We demonstrated that the colorimetric variables
are useful for predicting the color fading time-series for new unobserved spatial
locations. Furthermore, constraining the model using derivative observations and
derivative sign observations for monotonicity was shown to be beneficial in terms of
both predictive performance and application-specific interpretability. Even though
a multivariate GP prior model is the more natural way for modeling this type of
data, we demonstrate that a spatially correlated time-series model is good enough
for modeling this study case, achieving similar results to the GP model with the
advantage of a considerable reduction of computation.
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5.2 Introduction

Prehistoric rock art paintings are exposed to environmental elements, which can
accelerate their degradation, increasing the risk of losing such a valuable piece of
information about past societies. Apart from and in addition to many other factors,
exposure to sunlight can have adverse effects on these systems due to thermal and
photochemical degradation of the historic materials, and changes in the spectral
properties of the materials is one of its main effects which is mainly related to
the physicochemical properties of the materials [del Hoyo-Meléndez et al., 2015,
Dı́ez-Herrero et al., 2009]. In this study we focused on the study and documentation
of the degree of color changing/fading of paintings, patinas and host rock which is
crucial for the conservation of these systems [Cassar et al., 2001].

It is known that materials with higher light sensitivity usually experience a
rapid color change during the early stages of exposure, followed by a slower rate
after maximum fading has occurred, assuming total disappearance of the atoms
(chromophore) of the molecules of the substance that produces the color at this
second stage of the fading [Feller et al., 1986, Giles, 1965, Giles et al., 1968,
Johnston-Feller et al., 1984]. Thus, fading can not decrease with time and it
is expected to stabilize in the long term. Materials can show different times to
saturation depending on their physicochemical properties and concentration of
chromophores.

The MFS technique is a method for assessing the susceptibility of cultural
heritage objects to light fading [Columbia et al., 2013, Ford, 2011, Ford and Druzik,
2013, Tse et al., 2010]. Each measured point of the surface under study gives rise
to a time-series that represents potential color fading due to light exposition over
time [del Hoyo-Meléndez and Mecklenburg, 2010, Whitmore et al., 1999]. Thus,
MFS measurements can be seen as observations of an underlying spatio-temporal
stochastic process. MFS time-series represents potential color fading from the
current state of the materials.

The MFS instrument is very sensitive to movement and glossy surface effects,
occasionally causing extremely large fluctuations in color fading values registered
during measurements. Furthermore, collected data can be easily contaminated by
changes in the illumination conditions when performed in outside environments,
as it is the case of the surface of rock art paintings. These large fluctuations and
possible systematic noise effects in the observations can cause that models do not
satisfy those properties of monotonicity and long-term stabilization of color fading
over time. Thus, in order to meet these properties and to ensure reliable properties
for color fading estimates in new unobserved locations, it is recommended to include
additional information in the models.

Furthermore, existing lightfastness studies on these systems have been limited



110 Chapter 5. Application to rock art paintings

to analyze the few measured points on the surface of the rock art paintings due to
the difficulty to set up the instrument, especially under harsh conditions.

So, in this work, we propose two reliable modeling frameworks: one based on
Gaussian processes (GPs) and the other on spatially correlated spline time-series.
In both models, the regular process is jointly modeled with the derivative process.
These models aim at rigorously extending the analysis of MFS color-fading in many
other unobserved points on the surface of rock art paintings. Forecasting potential
color-fading in every point of the surface of rock art paintings will be an important
and useful information in order to achieve further successful conservation actions
on these systems.

5.3 State of the art

Functional data usually refers to independent realizations of a functional random
variable that takes values in a continuous space [Ramsay and Silverman, 2007].
Time-series of observations (e.g. color-fading time-series functions) might be the
most common case of functional data in 1D, f(x) : x ∈ IR → IR, but spatially
distributed observations can also be seen as functional data in a 2D space, f(x) :
x ∈ IR2 → IR, or spatio-temporal observations can also be seen as functional data
in a 3D space, f(x) : x ∈ IR3 → IR.

In order to construct a model useful for making predictions of new functional
data as a function of new values of the variables in the input space, the process must
be considered as an structured process with dependence among observations.

Correlated functional models consider the observed functional data as non-
independent functions [Delicado et al., 2010]. A popular approach for correlated
space-time functional data consists in three-way (spatial (2D) and temporal (1D))
penalized spline models [Wood, 2003] with different basis constructions based on
Kronecker products [Currie et al., 2006, Lee and Durbán, 2011] or additive basis
components [Kneib and Fahrmeir, 2006]. Aguilera-Morillo et al. [2017] propose a
mixture of the functional regression model for functional response and penalized
spline spatial regression. However, in general, these models have a large number of
parameters and become hardly interpretable.

Another and powerful approach consists of considering the space-time struc-
tured observations as stochastic realizations of a GP prior with a spatio-temporal
covariance function. GP [Neal, 1999, Rasmussen and Williams, 2006] is a natural
and flexible non-parametric prior model for multi-dimensional functions and with
multivariate predictors (input variables) in each dimension. Furthermore, GP is
sufficiently flexible to model complex phenomena since it allows possible non-linear
effects and can handle interactions between input variables implicitly. GPs are easy
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to generalize/change to new models by changing the covariance function. For a
review of the different covariance functions in Gaussian processes, see Rasmussen
and Williams [2006]. In a separable form, the space-time covariance function is a
result of two independent processes, space and time [Banerjee et al., 2014]. In a
non-separable form, the covariance function models space-time interaction [Cressie
and Huang, 1999, De Iaco et al., 2002]. However, for parametric or semiparametric
models, it is not so easy and natural the generalization to spatio-temporal covariance
structures. For instance, two-way spline models already becomes highly parameter-
ized and hardly interpretable. As an advantage, the time of computation for these
semiparametric models is faster.

A geostatistical approach for spatio-temporal data is the kriging approach for
1D-functional data [Delicado et al., 2008, Giraldo et al., 2010], with the functional
data consisting of the time-series of the data. The spatial correlation of the time-
series is modeled in the covariance function. The dimension of the covariance
matrix is N ×N and the matrix inversion is a O(N3) operation, with N the number
of spatial locations. Although this approach requires less computation that the
spatio-temporal GPs, it has the drawback of being a quite less flexible model in the
spatio-temporal structure since the same spatial structure is defined for the whole
time-series. A related approach can be found in Baladandayuthapani et al. [2008]
where the spatial correlation between the time-series is modeled by defining GPs
with a spatial covariance function across the time-series functional coefficients.
This construction allows for modeling different covariance structures for the spline
coefficients.

Regarding the methods for inducing monotonicity on functions and using deriva-
tive information, they were already discussed in Chapter 4.

5.4 Objectives and methodology of the study

In this chapter, a specific application aiming at modeling and predicting MFS color
fading time-series for new unobserved spatial locations on the surface of rock art
paintings is presented. The main motivation of this study is to construct a model
that exploits to the maximum the correlation structure of the data in order to extend
the analysis and make useful predictions, in an scenario of a short set of sampling
observations, as it is the case of MFS measurements on rock art paintings. In fact,
in the present study case only 13 measured locations on the surface were collected.
A multivariate GP prior model is the more natural way to accomplish this objective
for this type of data. Nevertheless, and in addition to GPs, in this work we also
formulate a spatially correlated spline time-series model in order to make model
comparison.
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Thus, in this study we apply two modeling approaches for correlated functional
data in order to accomplish the objectives and compare their results:

1. A Gaussian process model with a multi-dimensional covariance function.

A multi-dimensional (e.g. space and time) covariance function is the key
element of a GP as it encodes the functional relationship and defines the
correlation structure which characterizes the correlation between function
values at different inputs. Furthermore, the covariance function in a GP
can be extended to jointly model the covariances of regular and derivatives
observations, increasing thus the predictive capacity of the model and, at
the same time, guaranteeing that the predictions are monotonically non-
decreasing and stabilize eventually as a function of time.

2. A spatially correlated spline time-series model.

The color-fading time-series are modeled as penalized cubic-spline functions.
The spatial correlation of the time-series is established by defining multivari-
ate Gaussian process priors distributions over the spline coefficients across
time-series. The derivative of a semiparametric model such as a spline model
is still a linear model and can be used as an additional observation together
with actual observations, thus encoding derivative information of the func-
tions into the modeling and induce monotonicity and long-term stabilization
as a function of time.

Apart from the regular observations we want to include partial derivative obser-
vations and first order constraints in the model. Color degradation is expected to be
non-decreasing as a function of time and stabilize in the long term. These properties
can be expressed in terms of the first order partial derivative of the functions.

In both modeling frameworks, the regular process is jointly modeled with the
derivative process. This makes it possible to use derivative observations jointly
with regular observations. Derivative observations of both the sign and the values
of the partial derivatives are used to induce monotonicity (non-decreasing) and
long-term saturation, respectively, as a function of time. As studied in Chapter 4,
can be practical issues with the approach of inducing monotonicity through the
use of additional (virtual) derivative sign observations. These issues are due to the
fact that the monotonicity information is included in the likelihood of the model
through virtual observations instead of into the prior of the function, which makes
the posterior distribution of the function dependent on the number and location of
the virtual points. When the number of virtual points is too large, the posteriors
tend to be overly smoothed. However, if the function to be learned is smooth, this
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problem can be avoided in practice choosing a few virtual points only and placing
them appropriately.

On the other hand, in order to force the functions to be zero at the starting points
of every time-series, observations with the absence of noise are used at these points.

Physicochemical data for all the points on the surface as inputs to predict new
curves are hard to obtain. Instead, image color values can be used as surrogate input
variables to construct and evaluate the correlation, since these image color variables
are known to be related to the physicochemical properties of the imaged material
[Malacara, 2011]. A multivariate covariance function in a GP allows modeling
trichromatic image color variables jointly with spatial distances as inputs to evaluate
the covariance structure of the data.

In order to conduct model evaluation and comparison, the same models but
without derivative information are also fitted. Cross-validation procedures are
conducted to compute the posterior predictive checks, the expected log predictive
density and the mean square predictive errors in order to do model checking and
assessment of the predictive performance.

The rest of the chapter is structured as follows. Section 5.5 describes the case
study and the available data. Sections 5.7, 5.8 and 5.9 focus on the modeling and
inference formulation of both modeling proposals. Section 5.10 describes the model
checking and model selection procedures. Section 5.11 describes the results of
applying the proposed models on the data set. Section 5.12 discusses about the
results and modeling. Finally, Section 5.13 presents a brief conclusion of the work.

5.5 Case study and data description

In this practical case, we seek to evaluate the degree of color fading over time
and space on rock art paintings caused by direct solar irradiation. The goal is to
construct a model for the set of MFS data and make predictions at new unobserved
locations under the surface of rock art paintings as a function of new input values.

The study area is located in cova Remigia rock art shelter, Castellón (Spain).
Some of its paintings, which are included in UNESCO’s World Heritage List, are
exposed to environmental factors, including the natural daylight depending on
the time of the day and the season of the year. It is well-known that exposure to
sunlight can have adverse effects on these systems due to thermal and photochemical
degradation of the historic materials [del Hoyo-Meléndez et al., 2015].

Each measured point on the surface gives rise to a time-series that represents
color fading over time. Color fading can be described in terms of CIE color
differences ∆E∗ab [Malacara, 2011]. The MFS measurements have a duration of 10
minutes once setup. The sampling frequency will be once per minute, such that the
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Figure 5.1: Image with the points where the MFS observations were measured in Shelter V of Cova
Remigia (left), and observed MFS time-series (right).

resulting time-series will consist of 11 time points (t = 1, . . . , 11). Thus, the spatio-
temporal MFS data set consist of 13 observed locations on the surface (N = 13).
Figure 5.1-left shows their pixel locations on a color image of the study area; each
location incorporates color fading time-series of observations (Figure 5.1-right).
The available input variables for every spatial location are the three image color
variables, Hue (H), Saturation (S) and Intensity (I), and the two spatial coordinates
Sx and Sy. In the temporal dimension, the input variable is the collection of time
points, t = 1, ..., 11, of the MFS time series. Table 5.1 presents summary statistics
for the input variables H , S, I , Sx, and Sy. The input variables H , S, and I have
been re-scaled by dividing by their standard deviations. In the case of Sx and Sy,
they were jointly re-scaled by dividing by their common standard deviation.

Table 5.1: Summary statistics of the input variables

H S I Sx Sy

Mean 5.255 9.704 5.155 3.549 4.969
Std. Dev. 1.0 1.0 1.0 0.732 0.674
1st Qu. 4.359 9.042 4.603 2.910 4.387
3rd Qu. 5.913 10.273 5.772 4.187 5.551

Due to the large fluctuations present in the measurements conducted on these
rock art systems, some modeling issues can arise, such as not starting at zero, not
being monotonically increasing or not stabilizing in the long term as a function of
time, which are properties assumed for the color fading curves, as discussed above.

Thus, the functions must be constrained to be zero at the subset
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B = {(i, t) : t = 1} of starting points of every time-series, that is, the time-
series must start in zero.

Most of the rock art painting systems analyzed so far show stabilization at or
before the 10 minutes of MFS monitoring measurements. Therefore, at the subset
C = {(i, t) : t = 11} of ending sampling points of every time-series, the functions
will be constrained to reach a stabilization as a function of time.

Furthermore, the functions are guaranteed to be monotonically non-decreasing
as a function of time when the partial derivative is non-negative. Thus, virtual points
for monotonicity will be appropriately placed at two time points of every time-series,
denoted by subset E = {(i, t) : t ∈ {7, 10}} of observation indices. We only use
two virtual points in every time-series to prevent the posterior functions to be overly
smoothed, as studied in Chapter 4. At the same time, the use of two virtual points
only will probably be enough to ensure monotonicity in expectation for the entire
time-series, since the time-series functions to be learned are expected to be smooth.

In the case of the spatially correlated spline models, each time-series is modeled
as a cubic-spline function. The order, or number of spline knots K, of the cubic-
spline functions is set to K = 3 (k = 1, . . . ,K) and placed uniformly through the
time points variable.

A comparison with the same models but without derivative information is carried
out and evaluated in terms of both predictive performance and application-specific
interpretability.

The actual equivalency of the exposure time used in MFS in years depends on
the hours and intensity of sunlight that affects the paintings on a changing daily
basis. Without proper monitoring of light, this equivalency is difficult to obtain, so
this aspect of the research was not considered in the current study.

5.6 Observational model

The MFS dataset consist of observations of a continuous stochastic process repre-
sented as a matrix of spatio-temporal output observations Y ∈ IRN×T where the
element yit denotes the observation at the ith location (row) at time t (column), with
i = 1, . . . , N representing the spatial locations and t = 1, . . . , T the time points.
As described in previous Section 5.5, the MFS dataset consists of N = 13 spatial
locations and T = 11 time points.

We consider separable input variables in the spatial and temporal dimensions of
the input space. Thus, a matrix of inputs variables XS = [xS1 xS2 · · · xSN

]> ∈
IRN×5 is associated to the observations in the spatial input dimension, where

xSi = (Hi, Si, Ii, Sxi , Syi) ∈ IR5 (5.1)
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is the row-vector of inputs values for the ith spatial location. And, a vector of
inputs variables xT = (t1, . . . , tT )> ∈ IRT is associated to the observations in
the temporal input dimension, where an element tl is the lth time point, with
l = 1, . . . , T .

We adopt the model yit = fit + eit, where fit is the value of the function
f : IR6 → IR underlying to the observations and evaluated at the input values xSi

and t, i.e. fit = f(xSi , t). And eit is the Gaussian noise. Let F ∈ IRN×T the
matrix of latent function values.

So, the observational model for the data Y given the latent function values F
can be written as follows

p(Y |F ) =
∏
i,t

N (yit|fit, σ2).

5.7 Latent Gaussian process model with derivative infor-
mation

First of all, let’s join the XS and XT matrices of input variables as follows,

X = [XS ⊗ I1 XT ⊗ I2] ∈ IRNT×6,

where the operator ⊗ denotes the Kronecker product, and I1 ∈ IRT and I2 ∈ IRN

are identity column-vectors. A row (it) of matrix X ,

xit = (xSi , t) = (Hi, Si, Ii, Sxi , Syi , t) ∈ IR6, (5.2)

is the vector of spatio-temporal input values at ith spatial location and tth time point.
In addition, let us re-arrange the matrices of spatio-temporal observations Y

and function values F into the column-vectors of NT -dimensionality y ∈ IRNT

and f ∈ IRNT , respectively.

5.7.1 Separable spatio-temporal Gaussian process model

The latent function f is assumed to follow a zero mean GP prior

f ∼ GP(0, α2 kS(xS ,x
′
S) kT (t, t′)), (5.3)

where kS(xS ,x
′
S) : IR5×IR5 → IR and kT (t, t′) : IR×IR→ IR are the covariance

functions for the spatial and temporal input dimensions, respectively, and xS and
x′S denote a pair of spatial input vectors and t and t′ denote a pair of time points.
The parameters α is the overall magnitude of the GP prior model.
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We consider a stationary and separable exponentiated quadratic covariance
function for both kS and kT covariance functions. Thus, the covariance between
the pair (i, j) of spatial locations is:

kS(xSi ,xSj ) = exp

(
−1

2

5∑
d=1

1

ρ2
d

(xSi,d
− xSj,d

)2

)
,

where xSid
and xSjd

are the dth spatial input values for the ith and jth observations,
respectively, and ρd is the lengthscale associated to the dth input variable in the
spatial dimension, d = 1, . . . , 5, which controls the rate of decay of the correlation
in the direction of the dth input variable. Let us collect these lengthscale parameters
into the vector ρS = (ρ1, . . . , ρ5). The variables xSi4 = Sxi and xSi5 = Syi share
the same lengthscale, such that ρ4 = ρ5, which makes the covariance function
dependent on the Euclidean distance between spatial coordinates. Lengtshscales are
strictly positive parameters. And, the covariance between the pair (tl, tn) of time
points is:

kT (tl, tn) = exp

(
− 1

2ρ2
T

(tl − tn)2

)
,

where tl and tn are the lth and nth time points, respectively, and ρT is the lengthscale
associated to the time input variable.

Let f ∈ IRNT a column-vector where the element (i, t) is the value of the GP
latent function f in equation (5.3) evaluated at the inputs xit, i.e. fit = f(xit).
Then the resulting prior distribution for f is a multivariate Gaussian distribution
f ∼ N (µ, α2K), whereK ∈ IRNT×NT is the spatio-temporal covariance matrix
with elementK(i,l),(j,n) = kS(xSi ,xSj ) kT (tl, tn), with i, j = 1, . . . , N and l, n =
1, . . . , T . Thus the element ((i, l), (j, n)) of the covariance matrixK is:

K(XS ,ρS , XT ,ρT )(i,l),(j,n) =

exp

(
−1

2

5∑
d=1

1

ρ2
d

(xSi,d
− xSj,d

)2

)
exp

(
− 1

2ρ2
T

(tl − tn)2

)
=

exp

(
−1

2

( 5∑
d=1

1

ρ2
d

(xSi,d
− xSj,d

)2 +
1

ρ2
T

(tl − tn)2
))

(5.4)

The previous equation (5.4) can also be expressed in terms of the vector of inputs
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xit in equation (5.2)

K(X,ρ)(i,l),(j,n) = exp

(
−1

2

6∑
d=1

1

ρ2
d

(xil,d − xjn,d)2

)

with vector of lenghtscales ρ = (ρ1, . . . , ρ6) = (ρS , ρT ). Notice that the con-
catenation of the vector ρS and the single parameter ρT have been denoted by
(ρS , ρT ).

The overall magnitude α of the GP prior represents the prior standard deviation
of the latent GP function f .

An exponentiated quadratic function assumes stationarity with respect to the
input variables, and using a Kronecker product implies separability with respect to
the spatial and temporal input dimensions.

5.7.2 Gaussian process with derivatives

The joint prior distribution for the latent function values f and partial derivative
function values f ′, using a mean-square differentiable GP model, can be denoted as
follows:

p(f ,f ′|X,X∗, θ) =

N
([

f
f ′

] ∣∣∣∣0, [ Kf,f (X, θ) Kf,f ′(X,X
∗, θ)

Kf ′,f (X,X∗, θ) Kf ′,f ′(X
∗, θ)

])
, (5.5)

where f ′ denotes the values of the partial derivatives of latent function f with respect
to some input dimension evaluated at inputs X∗ associated with the derivative
observations. The covariance matrix is extended to include the covariances between
observations and partial derivatives (Kf,f ′ and Kf ′,f ) and the covariances between
partial derivatives (Kf ′,f ′), in a similar way as explained in Section 4.5.1 of Chapter
4.

The joint prior distribution in equation (5.5) can be combined with an ob-
servation model, p(m|f ′), for the partial derivatives observations m, to encode
information about the partial derivatives of the function f into the model. In this
work, we consider two types of derivative observations:

- observations of the value of a partial derivative of the function with respect to
the time input variable and denoted by mit ∈ IR (mit represents an artificial
observation of f ′(xit) = ∂f(xit)

∂t ),

- and observations of the sign of a partial derivative of the function with respect to
the time input variable and denoted by zit ∈ {1,−1} (zit represents an artificial
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observation of sign(f ′(xit))), where zit = 1 means that the partial derivative
of the function is positive at the given data point and zit = −1 means that the
partial derivative is negative (decreasing function).

5.7.3 A zero-order constraint for time-series to start at zero

In order to force the time-series functions to start at zero, a zero-order constraint
can be specified by using a set of virtual observations equal to zero,

yB = {0 : (i, t) ∈ B}, (5.6)

at the subset B = {(i, t) : t = 1} of starting points of every time-series. And the
Dirac Delta function δ can be used as an observational model for these observations:

p(yB|fB) =
∏
i,t∈B

δ(yit − f(xit)),

where fB denotes the GP latent function values f(xit) at the subset B of points.
While the rest of observations, i.e. the observations y at the subset A = {(i, t) : t >
1} of points and denoted by yA, are considered to be contaminated with Gaussian
noise:

p(yA|fA, σ2) =
∏
i,t∈A

N (yit|f(xit), σ
2),

where fA denotes the GP latent function values f(xit) at the subset A.

5.7.4 A first-order derivative constraint for time-series to stabilize in
the long-term

In order to impose a saturation constraint for long-term stabilization of the time-
series, a set of virtual observations mit of the value of the partial derivative of the
function with respect to the time input variable equal to zero can be considered:

m = {0 : (i, t) ∈ C}, (5.7)

where C = {(i, t) : t = 11} is the subset of ending points of every time-series
where to induce saturation of the function (as explained in Section 5.5). And the
Dirac Delta function δ can be used as an observational model for these observations,

p(m|f ′C) =
∏
i,t∈C

δ(mit − f ′(xit)),
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where f ′(xit) = ∂f(xit)
∂t is the GP latent function partial derivative value at point

(i, t), and f ′C denotes the partial derivative values f ′(xit) at the subset C of points.

5.7.5 Monotonicity constraint for the time-series

The function is guaranteed to be non-decreasing as a function of time when the
partial derivative is non-negative. This constraint can be specified by using a set of
virtual observations of the sign of the partial derivative of the function with respect
to the time input variable equal to one:

z = {1 : (i, t) ∈ E}, (5.8)

where E = {(i, t) : t = {7, 10}} is the subset of desired points where to induce
monotonicity (as explained in Section 5.5). The probit function Φ : IR→ (0, 1) can
be used as a likelihood for the signs of the partial derivatives,

p(z|f ′E) =
∏
i,t∈E

Φ

(
zit · f ′(xit) ·

1

v

)
,

where f ′E denotes the partial derivative values f ′(xit) at the subset E of points. The
parameter v > 0 controls the strictness of the constraint, as seen in Section 4.7.2 of
Chapter 4. In this work we use v = 10−4.

5.7.6 Likelihood function

The joint likelihood of regular observations y = (yA,yB), derivative value obser-
vationsm and derivative sign observations z, given latent functions f = (fA,fB)
and f ′ = (f ′E ,f

′
C) and hyperparameter σ, results:

p(y,m, z|f ,f ′, σ) =

p(yA|fA) p(yB|fB) p(z|f ′E) p(m|f ′C) =( ∏
i,t∈A

N (yit|f(xit), σ
2)
)( ∏

i,t∈B
δ(yit − f(xit))

)
×
( ∏
i,t∈E

Φ
(
zit · f ′(xit) ·

1

v

))( ∏
i,t∈C

δ(mit − f ′(xit))
)
. (5.9)
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5.7.7 Posterior and predictive distributions

Bayesian inference is based on the posterior joint distribution of parameters given the
data, which is proportional to the product of the likelihood and prior distributions,

p(f ,f ′, σ|y,m, z) ∝ p(y,m, z|f ,f ′, σ) p(f ,f ′|X,X∗,ρ, α) p(ρ) p(α) p(σ),

where p(y,m, z|f ,f ′, σ) is the likelihood of the model in equation (5.9) and
p(f ,f ′|X,X∗, θ) is the joint Gaussian process prior of regular f and derivative f ′

latent functions values in equation (5.5). We set positive half-normal prior distribu-
tions (zero-mean normal distribution limited to the positive input domain [0,∞))
for the hyperparameters α, p(α) = N+(α|0, 10), and σ, p(σ) = N+(σ|0, 10),
and gamma distributions for the hyperparameters ρ, p(ρd) = Gamma(ρd|1, 0.1)
for all d. These correspond to weakly informative prior distributions based on
prior knowledge about the magnitude of the parameters. Thus, the joint posterior
distribution can be expressed as follows:

p(f ,f ′, σ|y,m, z) ∝( ∏
i,t∈A

N (yit|f(xit), σ
2)
)( ∏

i,t∈B
δ(yit − f(xit))

)
×
( ∏
i,t∈E

Φ
(
zit · f ′(xit) ·

1

v

))( ∏
i,t∈C

δ(mit − f ′(xit))
)

×N
([

f
f ′

] ∣∣∣∣0, [ Kf,f (X, θ) Kf,f ′(X,X
∗, θ)

Kf ′,f (X,X∗, θ) Kf ′,f ′(X
∗, θ))

])
×N+(α|0, 1)

( D∏
d=1

Gamma(ρd|1, 0.1)
)
N+(σ|0, 1). (5.10)

Predictive inference for new function values ỹ for a new sequence of input
values X̃ can be computed by integrating over the joint posterior distribution,

p(ỹ, m̃, z̃|y,m, z) =∫
p(ỹ, m̃, z̃|f̃ , f̃ ′, σ) p(f̃ , f̃ ′|f ,f ′) p(f ,f ′, σ|y,m, z) df df ′ dσ.

The main computational demands of this model comes from the covariance
matrix inversion operation of optimizing the hyperparameters. In a spatio-temporal
GP model this is a O

(
(NT )3

)
computational demanding operation.
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5.8 Spatially correlated time-series model with derivative
information

5.8.1 Penalized thin-plate spline-based time-series model

We consider a penalized thin-plate cubic-spline function, as it was derived in
equation (4.5) (Section 4.5.2 on Chapter 4), for modeling the latent function of each
time-series of the spatio-temporal data. Thus, the ith time-series latent function
fi : IR→ IR, as a function of the time input variable, takes the form:

fi(t) = Ht·β·i +Zt·Ω
− 1

2b·i. (5.11)

where the tth element of the ith time-series, fit, is the value of the function fi
evaluated at the t time point variable, i.e. fi = fi(t).

Notice that the following equivalences between formulation used in Section
4.5.2 and the one used in the actual section should be done:

- Index i in Section 4.5.2 is index t in the current section.

- Input value xi in Section 4.5.2 is input value t in the current section.

Let fi = (f1(t), . . . , fN (t)) the vector of latent functional values of the ith
time-series, which takes the form:

fi =
(
Hβ·i + ZΩ−

1
2b·i
)>
.

And, let F = [f1 f2 · · · fN ]> ∈ IRN×T the matrix of spatio-temporal latent
function values where fi is the row-vector containing the ith time-series latent
values. F can be expressed as:

F =
(
Hβ + ZΩ−

1
2b
)>
,

where β ∈ IR2×N is the matrix of linear coefficients with ith column β·i =
(β1i, β2i)

> of linear coefficients for the ith time-series, b = [b·1 b·2 · · · b·N ] ∈
IRK×N is the matrix of spline coefficients with ith column b·i = (b1i, . . . , bKi)

> ∈
IRK of penalized spline coefficients for the ith time-series, H ∈ IRT×2 is the matrix
of linear function values with tth rowHt· = (1, t) of linear function values of the
tth time point, Z ∈ IRT×K is the matrix of cubic-spline function values with tth
row Zt· = (Zt1, . . . , ZtK) ∈ IRK of cubic-spline function values of the tth time
point following the equation (4.4) of Chapter 4, and Ω is the matrix of penalization
as derived in Section 4.5.2 of Chapter 4.
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5.8.2 Spatially correlating the spline-based time-series functions

In order to establish a correlation structure among time-series i, the matrix of spline
coefficients b ∈ IRK×N is considered as a realization of a continuous stochastic
process, and a GP prior model with a two-dimensional

(
knots (K) and space (N )

)
covariance function can be defined on them.

With the aim of simplifying the covariance structure, null covariances between
spline coefficients belonging to a different order in the model can be considered,
which is equivalent to define K independent Gaussian process priors, one for each
kth row bk· = (bk1, . . . , bkN ) ∈ IRN of matrix b, such that

p(bk·|XS ,ρk) = N
(
bk·|0, αkCk(XS ;ρk)

)
,

for k = 1, . . . ,K. Ck is the covariance function for the vector of coefficients bk·.
Hyperparameter αk is the standard deviation of the Gaussian process which controls
the overall scale or magnitude of the range of values of the vector bk·. Thus, specific
covariance structure for each kth vector of spline coefficients bk· can be specified.

Furthermore, in this work, we will simplify even more the covariance structure
considering the same spatial structure for every vector of spline coefficients bk·, i.e.,

p(bk·|XS ,ρ) = N
(
bk·|0, αk C(XS ;ρ)

)
,

for k = 1, . . . ,K, and C is a common covariance function for every vector of
coefficients bk·.

The N ×N covariance matrix C is computed by a squared exponential covari-
ance function (Section 3.4 in Chapter 3), dependent on the vectors of input values
xSi in equation (5.1) for every spatial location i, and the vector of lengthscale
parameters ρ = (ρ1, . . . , ρ5),

C(XS ;ρ)(i,j) = exp

(
−1

2

5∑
d=1

1

ρ2
d

(xSi,d
− xSj,d

)2

)
,

where i, j = 1, · · · , N . The lengthscale parameters ρ1, ρ2 and ρ3 correspond
to the input variables H , S and I , respectively. The spatial coordinates input
variables Sx and Sy are sharing the lengthscale parameter (ρ4 = ρ5), such that the
covariance function depends on the (Euclidean) distance between spatial coordinates.
Hyperparameter ρd controls the smoothness of the function for bk· in the direction
of the dth predictor (input variable). The squared exponential covariance function is
a stationary function with respect to the input variables.
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5.8.3 Derivative of the penalized spline-based time-series model

The derivative function f ′i : IR → IR of the penalized cubic-spline function fi in
equation (5.11) with respect to the time input variable takes the form:

f ′i(t) =
∂fi(t)

∂t
= β2i +

∂Zt·
∂t

Ω−
1
2b·i, (5.12)

where ∂Zt·
∂t = (∂Zt1

∂t , . . . ,
∂ZtK
∂t ) ∈ IRK , is the row-vector of the derivative cubic-

spline values at time t, where the elements ∂Ztk
∂t follow the partial derivative function

derived in equation (4.7) (Section 4.5.2 of Chapter 4) with respect to the time input
variable. Notice that in the terms ∂Ztk

∂t we use the same letter t to denote two
different things, the index for the function Ztk and the time input variable t with
respect to which we derive the function Ztk.

5.8.4 A zero-order constraint for time-series to start at zero

Similarly to previous Section 5.7.3, in order to constraint the time-series to be
zero at the set of starting points B = {(i, t) : t = 1}, a Dirac Delta function δ
can be used as an observational model for the set yB (in equation (5.6)) of virtual
observations equal to zero:

p(yB|fB) =
∏
i,t∈B

δ(yit − fi(t)).

While the rest of the observations yA (in Section 5.7.3) are considered to be con-
taminated with Gaussian noise:

p(yA|fA, σ2) =
∏
i,t∈A

N (yit|fi(t), σ2),

where fB and fA denote the function values fi(t) at the subset B and A (in Section
5.7.3) of points, respectively.

5.8.5 A first-order derivative constraint for time-series to stabilize in
the long-term

Similarly to previous Section 5.7.4, in order to impose a saturation constraint for
long-term stabilization of the time-series, i.e. at the subset C = {(i, t) : t = T}
of ending points of every time-series, a Dirac Delta function δ can be used as an
observational model for the setm (in equation (5.7)) of virtual observations of the
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time-partial derivative of the function equal to zero:

p(m|f ′C) =
∏
i,t∈C

δ(mit − f ′i(t)),

with f ′C denotes the partial derivative function values f ′i(t) at the subset C of points.

5.8.6 Monotonicity constraint for the time-series

Similarly to previous Section 5.7.5, in order to guarantee that time-series are non-
decreasing as a function of time, a probit function Φ can be used as the observational
model for the set z (in equation (5.8)) of virtual observations of the sign of the
time-partial derivatives of the function:

p(z|f ′E) =
∏
i,t∈E

Φ

(
zit · f ′i(t) ·

1

v

)
, (5.13)

where E = {(i, t) : t = {7, 10}} is the subset of desired time points where to
induce monotonicity, and f ′E denotes the derivative function values f ′i(t) at subset
E. As before, in this work, we use v = 10−4.

5.8.7 Likelihood function

The joint likelihood of regular observations y = (yA,yB), derivative value ob-
servationsm and derivative sign observations z, given the parameters β, b and σ
results:

p(y,m, z|β, b, σ) =

p(yA|fA) p(yB|fB) p(z|f ′E) p(m|f ′C) =( ∏
i,t∈A

N (yit|fi(t), σ2)
)( ∏

i,t∈B
δ
(
yit − fi(t)

))
×
( ∏
i,t∈E

Φ
(
zit · f ′i(t) ·

1

v

))( ∏
i,t∈C

δ
(
mit − f ′i(t)

))
.

5.8.8 Posterior and predictive distributions

The posterior joint distribution of parameters given the data, which is proportional
to the product of the likelihood and priors, is:

p(β, b, σ|y,m, z) ∝ p(y,m, z|β, b, σ) p(β) p(b|α,ρ) p(α) p(ρ) p(σ),
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where p(y,m, z|β, b, σ) is the likelihood of the model and p(b|α,ρ) is the GP
prior for the spline coefficients b. We set normal prior distributions for the linear co-
efficients β, p(β) = N (α|0, 10I), where I denotes the identity matrix, and positive
half-normal prior distributions for the hyperparameters α, p(α) = N+(α|0, 10),
and σ, p(σ) = N+(σ|0, 10), and gamma distributions for the hyperparameters ρ,
p(ρd) = Gamma(ρd|1, 0.1) for all d. These correspond to weakly informative
prior distributions based on prior knowledge about the magnitude of the parameters.

The joint predictive distribution of new output values ỹ and ỹ′ for a new
sequence of input values X∗ can be computed by integrating out over the posterior
distribution

p(ỹ, m̃, z̃|y,m, z) =

∫
p(ỹ, m̃, z̃|β, b, σ) p(β, b, σ|y,m, z) dβ db dσ.

(5.14)

The main computational demands of this correlated spline model come from
the covariance matrix inversion operation of optimizing the hyperparameters in the
GP prior for the spline coefficients. The proposed model considers the same spatial
covariance structure between spline coefficients belonging to different a order of the
spline functions. This requires O(N3) computation expense in covariance matrix
inversion, where N denotes the number of spatial locations.

5.9 Bayesian inference

To posterior distribution of interest p(f , σ|y,m, z) and p(β, b, σ|y,m, z) are in
general intractable. Hence, to estimate both parameter posterior distribution and
posterior predictive distribution for this model, simulation methods and/or distri-
butional approximations methods [Gelman et al., 2013] must be used. Simulating
methods based on Markov chain Monte Carlo (MCMC) [Brooks et al., 2011] and,
more recently, on Hamiltonian Monte Carlo (HMC) [Neal et al., 2011] are general
sampling methods to obtain samples from the joint posterior distribution. In this
study, HMC methods are used to make inference over the posterior and predictive
distributions. Using sampling methods, such as HMC, the covariance matrix must be
inverted in every step of the sampler. For large data sets where iterative simulation
algorithms are too slow, modal and distributional approximation methods can be
efficient and approximate alternatives.
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5.10 Model checking, predictive performance and model
selection

LOO-PIT values (Section 2.5 in Chapter 2) are used for model checking, and the
ELPD and MSE (Section 2.5 in Chapter 2) are computed using cross-validation for
model comparison, as follows:

LOO-PIT(i,t)∈D = P (ỹit ≤ yit),

ELPD =
1

|D|
∑

(i,t)∈D

ln(p(yit|y−D)),

MSE =
1

|D|
∑

(i,t)∈D

(yit − ỹit)2,

where D denotes the subset of observation indices of new predictions in the cross-
validation, and |D| is its cardinality, yit denotes the actual observation at the itth
point that does not take part in fitting the model, ỹit denotes the predicted value
from the model at the itth point, and y−D denotes the dataset without the subset D
of observations, y−D = {yit : (i, t) /∈ D}. Using simulation methods for inference,
the calculation of the probability that a predicted value is less than observed in the
LOO-PIT is straightforward through the collection of simulations.

Following a leave one out cross-validation scheme (denoted as LOO-CV), the
subset D of observation indices will be just a single observation (i, t), D = {(i, t)}.
The LOO-PIT, ELPD, and MSE will be computed following the LOO-CV scheme.
The LOO-PIT will essentially be useful for model checking, assessing that the
model is compatible with the data. The ELPD and MSE will evaluate the predictive
accuracy of individual observations.

The end goal of this work is to predict complete color-fading time-series at new
unobserved locations. In order to do that, a leave one location out cross-validation
scheme (denoted as LOLO-CV) can be performed, where the subset of observation
indices D will be a complete time-series of a specific spatial location i, D = {(i, t) :
t ∈ {1, . . . , T}}. The statistics ELPD and MSE will be computed following
the LOLO-CV scheme. Plots of predicted new time-series superimposed to their
corresponding actual observations will be shown in order to visually evaluate the
predictive performance. Model selection can be done by comparing the predictive
performance between models using the ELPD and MSE statistics. The best model
is who maximizes the ELPD and/or minimizes the MSE.
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5.11 Experimental results

In this section, we present the results of fitting both of the models proposed, GPs
and correlated splines, to the observed data and conducting the cross-validation
procedures to asses the predictive performance of the models.

The posterior distributions and predictive distributions have been estimated by
HMC sampling methods [Neal et al., 2011] using the Stan software [Carpenter et al.,
2017]. Three simulation chains with different initial values have been launched. The
convergence of the simulation chains was evaluated by the split-Rhat convergence
diagnosis and the effective sample size of the chains [Gelman et al., 2013, Vehtari
et al., 2019]. A value of 1 in the split-Rhat convergence statistic indicates good
mixing of simulated chains. Traditionally accepted good value for split-Rhat would
be between 1 and 1.1. although recently more strict range has also been suggested
[Vehtari et al., 2019]. In our case and for both models, a split-Rhat value lower than
1.05 has been obtained for all parameter simulation chains.

As commented in Section 5.5, the input variables H (Hue), S (Saturation) and I
(Intensity) were previously re-scaled by dividing by their standard deviations. The
Sx and Sy spatial coordinates were jointly re-scaled by dividing by their common
standard deviation. The time input variable t was not re-scaled.

5.11.1 Results of the spatio-temporal Gaussian process modeling ap-
proach

The estimated posterior marginal distributions of the hyperparameters: lengthscales
ρ associated with the input variables, overall magnitude α of the latent GP function
and the observation noise σ of the model, can be visualized in Figure 5.2, and their
estimated modes are shown in Table 5.2.

Input variables Magnitud GP Obs. noise
H S I Sx Sy time
ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 α σ

0.95 18.3 1.3 4.5 8.2 2.4 0.37

Table 5.2: Estimated posterior modes of the hyperparameters.
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Figure 5.2: Posterior marginal density distributions for the hyperparameters: marginal variance α and
lengthscales ρ = {ρ1, ρ2, ρ3, ρ4, ρ6} of the GP prior, and residual noise σ of the model.
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The posterior means of the process p(f |y,m, z) versus the input variables H ,
S and I , and the time points, can be visualized in Figure 5.12 in Appendix 5.A.

In Figure 5.3, the predictive distributions (predictive means and 95% pointwise
credible intervals) of the regular process, p(ỹ|y,m, z), evaluated at the sampling
input space, are plotted as a function of time for specific spatial locations. Addition-
ally, the predictive means without derivative information, p(ỹ|y), are also plotted
for comparison.

The predictive means of the derivative latent process, p(f̃ ′|y,m, z), are plotted
as a function of time for specific spatial locations in Figure 5.4.
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Figure 5.3: Predictive means and 95% pointwise credible intervals of the regular process at the
sampling input space, with and without derivative information, plotted as a function of time and for
specific spatial locations. The actual data y are also plotted as crosses.
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Figure 5.4: Posterior predictive means of the derivative latent functions plotted as a function of time
for specific locations.

Figure 5.5 shows predictive distributions p(ỹi·|y−i·,m−i·, z−i·) of new time-
series following the cross-validation scheme LOLO-CV, which is based on leaving
the whole time-series observartions of the location i out of the training dataset.
Predictive means and pointwise credible intervals for both the model with derivative
information and the model without derivative information are plotted for comparison.
The actual data of the time-series at predicted locations are also plotted to visually
evaluate the predictions.

Table 5.3 shows the ELPD and MSE statistics computed by following the two
different cross-validation scenarios, the LOO-CV and LOLO-CV (as explained in
Section 5.10), and for the model with and without derivatives.

Figure 5.6 shows the frequency histograms of the LOO probability integral
transformation (LOO-PIT) by following the LOO-CV, for both models, with and
without derivatives.

with derivative without derivative
information information

LOO-CV ELPD -0.61 -0.78
MSE 0.14 0.15

LOLO-CV ELPD -16.39 -29.61
MSE 4.12 4.20

Table 5.3: The ELPD and MSE for the model with and without derivative information, computed by
the two cross-validation scenarios, LOO-CV and LOLO-CV.
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Additional information of the estimated joint covariance matrixK of the process
is provided in Appendix 5.B. Images of the spatio-temporal covariance structure of
both the regular and derivatives observations, and for both training and predicting
data points, are depicted in Appendix 5.B.
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Figure 5.5: Predictive means and 95% pointwise credible intervals of new time-series at predicted
locations in the leave-one location-out cross-validation procedure (LOLO-CV), using both models
with and without derivative information. The actual MFS data time-series for every spatial location
are plotted as crosses.
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Figure 5.6: Frequency histograms of the LOO probability integral transformation (LOO-PIT) by
following the LOO-CV, for both models, with (left) and without (right) derivative information.

5.11.2 Results of the spatially correlated time-series modeling approach

The estimated posterior marginal distributions of the hyperparameters: lengthscales
ρ associated to the input variables, overall magnitude α of the GP prior for the
spline coefficients and the observation noise σ of the model, can be visualized in
Figure 5.7, and their estimated modes are shown in Table 5.4.

Figure 5.8 shows the means and 95% pointwise credible intervals of predictive
distributions, p(ỹ|y,m, z), evaluated over the sampling input space and plotted
as a function of time for specific spatial locations and superimposed to the actual
observations y. Additionally, the means of the predictive distribution of the model
without the inclusion of the derivatives, p(ỹ|y), are also plotted for comparison.
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Figure 5.7: Posterior marginal density distributions of the hyperparameters: marginal variance α and
lengthscales ρ = (ρ1, ρ2, ρ3, ρ4) of the GP prior for the spline coefficients, and residual noise σ of
the model.

Lengthscales associated Magnitud GP prior of Obs. noise
to input variables spline coefficients b

H S I Sx Sy

ρ1 ρ2 ρ3 ρ4 ρ5 α σ
1.10 20.0 0.85 7.9 0.58 0.38

Table 5.4: Estimated posterior modes of the hyperparameters.
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Figure 5.8: Predictive distributions (means and 95% pointwise credible intervals) of the regular
process with and without derivative information, plotted as a function of time and for specific spatial
locations. The actual data y are also plotted as crosses.

Table 5.5 shows the ELPD and MSE statistics computed by following the two
different cross-validation schemes, LOO-CV and LOLO-CV, for both spline models,
with and without derivatives.

Figure 5.9, shows the frequency histograms of the posterior predictive checks
(LOO-PIT) by following the cross-validation scheme LOO-CV, for both spline
models, with and without derivatives.
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with derivative without derivative
information information

LOO-CV ELPD -0.61 -0.78
MSE 0.13 0.14

LOLO-CV ELPD -16.40 -33.39
MSE 4.10 4.42

Table 5.5: ELPD and MSE for both models, with and without derivative information, computed by
the two cross-validation schemes, LOO-CV and LOLO-CV.
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Figure 5.9: Histograms of the LOO probability integral transformation (LOO-PIT) by following
LOO-CV, for both the model with derivatives (left) and the model without derivatives (right).

Figure 5.10 shows predictive distributions (predictive means and 95% pointwise
credible intervals) of the proposed model with derivatives, p(ỹi·|y−i·,m−i·, z−i·),
and the model without derivatives, p(ỹi·|y−i·), for new time-series by following the
cross-validation scheme LOLO-CV. The actual data of the time-series y are also
plotted to visually evaluate the predictions.

5.12 Discussion

The input variables were re-scaled in the same way in both modeling approaches, i.e.
the GP model and the correlated spline model, so the lengthscales estimates in both
models are comparable. The lengthscale parameters ρ1 and ρ3, corresponding to the
variables H and I , respectively, are relatively small, in both modeling approaches,
as can be seen in Table 5.2 for the GP model and in Table 5.4 for the spline model.
This indicates that the posterior functions are non-linear with those variables or
that the rate of decay of the correlation is moderately high. Therefore, variations in
the input variables H and I imply a moderately quick decrease in the correlations
allowing for the non-linear effects.

The variables S, Sx, and Sy have larger lengthscales, in both modeling ap-
proaches, as can be seen in Table 5.2 for the GP model and in Table 5.4 for the
spline model. Notice that variables Sx and Sy share the same lengthscale (ρ4 = ρ5),
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Figure 5.10: Predicted means and 95% pointwise credible intervals of new time-series at predicted lo-
cations in the cross-validation scheme LOLO-CV, for both spline models, with and without derivatives.
The actual data points y are also plotted as crosses.
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such that the covariance function depends on the Euclidean distance between spatial
coordinates. This indicates that the function depends on S and Euclidean spatial
distance in a smoother and less non-linear way. Especially, the variable S with a
very long lengthscale contributes with a constant effect of one to the correlation
and implies a constant function to the Gaussian process, thus being an irrelevant
variable to the process.

In the case of the GP modeling approach, separability between the spatial and
temporal input dimensions can be clearly appreciated in Figure 5.12 in Appendix
5.A, where the values of the process f versus the input variables (H , S and I) on
the spatial dimension are independent on the time points, only differing in their
overall scale.

The Frequency histograms of the LOO probability integral transformation (LOO-
PIT) for both modeling approaches, the GP model in Figure 5.6 and the spline model
in Figure 5.9, with and without derivatives, are close to uniform distribution, which
means the model predictions are well calibrated.

The use of an observation model with the absence of noise at the starting time
points, {yit = 0 : t = 1}, forces the predictive distributions p(ỹ|y,m, z) to be zero
at those starting points, in both modeling approaches, as it can be seen in Figures
5.3 and 5.5 for the GP model and Figures 5.8 and 5.10 for the spline model.

Inducing monotonicity by means of virtual observations of the sign of the partial
derivatives at two time points, {sign(∂fit∂t ) = 1 : t ∈ {7, 10}}, has been sufficient
to achieve monotonicity throughout of the time-series in both modeling approaches,
thus preventing an overly smoothing effect on the posterior functions due to using
many virtual points for monotonicity, as studied in Chapter 4 of this work. In the
same way, the consideration of additional observations of the value of the partial
derivative equal to zero at the ending time points, {∂fit∂t = 0 : t = 11}, and an
observation model with the absence of noise for these observations, induced a
stationary state at the ending of the time-series.

All these constraints have to be considered both in the sampling and predicting
data points.

The cross-validation scheme LOLO-CV based on leaving a whole time-series
out of the training data, has been carried out in order to evaluate the prediction per-
formance of complete new time-series at new locations. Figures 5.5 and 5.10 show
the predicted time-series at new locations following the cross-validation scheme
LOLO-CV for the GP model and the spline model, respectively, with and without
derivatives. Predictions are quite similar in both modeling approaches. Closer
predictions to the actual data, narrower predictive intervals and good dynamics of
the functions for the model with derivatives can be appreciated, because mono-
tonicity and saturation constraints improves and reduces the credible intervals of
the predictions. The model without derivatives shows decreasing patterns on the
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functions which are not consistent with the prior knowledge. Credible intervals,
especially at the last part of the spline-based functions (time-series), are getting
much bigger. Here, it can be seen as imposing the monotonicity and saturation
constraints on the spline functions improve considerably the credible intervals.

Monotonicity and long term saturation properties of the curves were not ensured
using the models without derivative information. Hence, the proposed model
with derivative information yields a better fit and predictions for dynamics of the
functions, improving their interpretability. In this sense, the analysis of the color
fading curves using a model without derivative information could not be done
properly because the temporal degradation, especially at the last time points, is
unrealistic.

Tables 5.3 and 5.5 show the MSE and ELPD computed following the two
cross-validation scenarios, LOO-CV and LOLO-CV, for the GP and spline models,
respectively.

The MSE following the LOO-CV of the model with derivatives is slightly
lower than the model without derivatives, in both modeling approaches. The
MSE following the LOLO-CV is lower for the model with derivatives than the
model without derivatives, in both modeling approaches. Furthermore, when the
uncertainty is taken into account in the evaluation with the ELPD statistic, the
improvement of using derivatives is even considerably larger in both CV scenarios.
Therefore, the results of these statistics confirm that the model with derivatives
is closer to new data, either in terms of the expected log-density or the mean
error. Furthermore, the predictive performance for this case study is similar in both
modeling approaches, GPs and splines.

Prediction sensitivity due to the short set of data available has been found in
both modeling approaches. Figures 5.5 and 5.10 show poor predictive performance
in some spatial locations when compared to the observed data. This is due to the
high sensitivity of the model to leaving some data out since the dataset is small.

The order of the covariance matrix is of NT ×NT in the spatio-temporal GP
model, andN×N in the spatially correlated spline model, requiringO

(
(NT )3

)
and

O(N3) computation expense, respectively, in the matrix inversion. This operation
needs to be repeated at each HMC step with changing hyperparameters. This
prevents using sampling methods for Bayesian inference on Gaussian process to
fit and predict large data set, since the computational expenses increase rapidly
with NT and N in each case respectively. In case of large data set, distributional
approximation methods are recommended.

In order to make spatial continuous maps of color fading estimates, predictions
of color fading time-series, p(ỹj·|y,m, z), have been computed for all the spatial
pixel locations j of the rock art painting image (Figure 5.1). As the predictive
performance is similar in both modeling approaches and the spline model is consid-
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Figure 5.11: Spatial distribution over a continuous area of the rock art paintings image and the
temporal evolution at time points t = 3, t = 4, t = 5, t = 6 and t = 11, of predicted mean
color fading estimates from the model.

erably faster, these maps have been computed using the spline approach. In Figure
5.11 six images representing the spatial distribution and their evolution over time of
those color fading estimates are shown. The images correspond to the time points
t = 3, t = 4, t = 5, t = 6 and t = 11, respectively. The spatial distribution over
time of color fading values seems to be quite unvarying. This was expected since
the time-series adjusted in the different locations have similar patterns, smooth,
monotonically increasing and tending to saturate in the long term. Color fading
values, especially when they are low values, like in this case (the maximum is of
7.64), are not worth being converted to the RGB color space and plotted as an image,
because the color changes will be not visible in a RGB image. The best way is
plotting color ∆E∗ab values (Figure 5.11). The science of colorimetry argues that
∆E∗ab values higher that approximately 3.5 would be perceptible for the human eye
looking at the real object [Malacara, 2011].

The actual equivalency of the time points (t = 1, . . . , 11) used in MFS mea-
surements in years depends on the hours and intensity of sunlight that affects the
paintings on a changing daily basis. Without proper monitoring of light, this equiva-
lency is difficult to obtain. Although this aspect of the research was not considered
in the current study, future work will include an evaluation of the location and
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geographical orientation of the paintings together with long-term monitoring of
light and UV radiation with the aim of estimating the dose acting upon the paintings
in years.

5.13 Conclusion

Color is an important aspect in the documentation and conservation of the histor-
ical materials, such as rock art paintings, so the knowledge of the potential color
degradation on these systems is crucial for eventual safeguarding and conservation.
MFS measurements are difficult and lengthy to materialize, especially in these rock
art systems, so an interpolation procedure in order to make predictions for other
locations on the surface is important. Furthermore, these measurements in these
systems are contaminated with large fluctuations, so the consideration of constraints
in the modeling in order to overcome possible modeling issues that may arise due
to these large fluctuations are highly encouraged.

We have formulated two reliable modeling frameworks: one based on Gaussian
processes (GPs) and another on spatially correlated time-series. In both models the
regular process is jointly modeled with the derivative process, thus model constraints
related to the derivative of the functions could be included in the model in order to
fit the desired properties of the MFS functions and minimize the effects of largely
fluctuations in the original observations.

A GP model properly exploits the spatio-temporal covariance structure of the
data by means of its multi-dimensional (space and time) covariance function. Fur-
thermore, the GP has been extended to jointly model the regular and derivatives
observations, and estimate a joint covariance function between regular and derivative,
making it a more informative and rich model and, at the same time, guaranteeing
that the functions are non-decreasing as a function of time.

However, the spatially correlated spline time-series model, which correlates the
time-series by means of correlating their spline coefficients, requires less computa-
tion than the GP model, and the predictive performance in this case study is similar
to the GP, as we can see in CV predictions and MSE and ELPD statistics. The
computation requirements to invert the covariance matrix in the spatially correlated
time-series model has been reduced substantially compared to using a GP model
with a spatio-temporal covariance function. The spatially correlated time-series
model framework, where a complete covariance structure among spline coefficients
is considered, requires O

(
(NK)3

)
computational demand in the covariance matrix

inversion, whereas spatio-temporal GPs require O
(
(NT )3

)
. Notice that the num-

ber of knots K in spline-based models is usually much lower than the number of
time points T (K � T ). In case of null covariance is considered between spline
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coefficients belonging to different spline knots, the computational expenses of the
correlated spline model becomes O(N3K). And furthermore, if the same spatial
structure is considered for the spline coefficients belonging to different spline knots,
as we implemented in the present work, the computational expenses of the proposed
model becomes O(N3).

Taking into account these first order constraints demonstrated being beneficial,
either in terms of predictive performance or application-specific interpretability.
Predictive capacity (MSE ans ELDP) are considerably better with the model with
derivatives compared to the model without derivatives. However, high sensitivity of
the models to leaving some data out has been found due to the data set is small.

A multivariate covariance function in a GP has allowed the usage of many
predictors to evaluate the covariance structure of the data. In this sense, we have
been able to include the color space variables, the spatial distance in the covariance
function, and demonstrated the colorimetric variables being useful to correlate MFS
data. The contribution of the spatial positions on this covariance structure has been
found to be quite weak, consequently, often and widely used traditional spatial or
spatio-temporal models cannot detect a useful correlation structure among the data.

Reliable color fading estimates evolution maps can be elaborated by means of
using the proposed model with derivative information in comparison to the model
without derivative information.

Finally, multivariate covariance metrics and zero and first order constraints
might be very hard to implement outside of a Bayesian framework and Gaussian
process models. A Gaussian process is flexible enough and allowed us to properly
model this complex covariance structure of the time-series dependent on different
input covariates. The Bayesian framework has allowed us to jointly use normally
distributed observations with probit distributed observations of the sign of the partial
derivatives, allowing to fulfill the determinants on the behavior of the functions.

5.A Predictive distributions versus the predictors in the
GP modeling approach

The posterior distributions of the process, p(f |y,m, z), versus the input variables
H , S and I , and the time points, are plotted in Figure 5.12. The variables H , S
and I belong to the spatial dimension. Function f is plotted for the different time
points.
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Figure 5.12: Posterior means of the latent Gaussian process f versus the input variables H , S, and I ,
for specific time points.

5.B Posterior covariance matrix in the GP modeling ap-
proach

The joint covariance matrix K of the process is visualized in Figures 5.13 and
5.14. Figure 5.13-(left) shows the part of the covariance matrix that involves the
regular process. Figure 5.13-(right) shows a submatrix of the covariance matrix
of the regular process, in which the spatio-temporal covariance structure of three
spatial locations and their time-series can be appreciated. The black lines in Figure
5.13-(left) divide the covariance matrix according to whether it involves covariances
among the 13 training data (Kff ) or among the 4 predicting data (Kf̃ f̃ ) or among
the interaction between training and predicting data (Kff̃ and Kf̃f ).

Figure 5.14 shows the parts of the covariance matrix that involve the regular
process and its derivatives (derivative process). The block Kff ′ contains the covari-
ances among regular and derivative observations for the training data. The block
Kf ′f ′ contains the covariances among derivative observations for the training data.
The block Kf̃ f̃ ′ contains the covariances among regular and derivative observations
for the predicting data. The block Kf ′f̃ ′ contains the covariances among derivative
observations for training and predicting data. And, finally, the block Kf̃ ′f̃ ′ contains
the covariances among derivative observations for predicting data.

The subindexes of the matrixK denote the type of observations that are involved
in each covariance block: f - regular observations of training points; f̃ - regular
observations of predicting points; f ′ - derivative observations of training points; f̃ ′ -
derivative observations of predicting points.
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Figure 5.13: Covariance matrix image for the actual and predictive observations of the regular process
(left). Extract from the covariance matrix containing the spatio-temporal covariances of the time-series
of three locations (right).
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Chapter 6

Application to image sensor noise:
Hierarchical modeling for
estimating noise in image sensors

In this chapter, an applied study on a specific problem aimed at decomposing and
estimating the noise sources in image sensing is carried out. This applied study is
a simple and excellent example of the potential and flexibility of the hierarchical
Bayesian modeling framework in order to naturally and accurately propagate uncer-
tainty and solve complex applications with multiple factors and multilevel structures.

6.1 Summary

Sensor noise sources cause differences in the signal recorded across pixels in a
single image and across multiple images. This paper presents a Bayesian approach
to decomposing and characterizing the sensor noise sources involved in imaging
with digital cameras. A Bayesian probabilistic model based on the (theoretical)
model for noise sources in image sensing is fitted to a set of a time-series of images
with different reflectance and wavelengths under controlled lighting conditions. The
image sensing model is a complex model, with several interacting components de-
pendent on reflectance and wavelength. The properties of the Bayesian approach of
defining conditional dependencies among parameters in a fully probabilistic model,
propagating all sources of uncertainty in inference, makes the Bayesian modeling
framework more attractive and powerful than classical methods for approaching
the image sensing model. A feasible correspondence of noise parameters to their
expected theoretical behaviors and well calibrated posterior predictive distributions

145
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with a small root mean square error for model predictions have been achieved in
this study, thus showing that the proposed model accurately approximates the image
sensing model. The Bayesian approach could be extended to formulate further
components aimed at identifying even more specific parameters of the imaging
process.

6.2 Introduction and related work

Some industrial applications require calibrated image sensors. An accurate pro-
cedure to model the image sensor noise is useful for optimizing sensor design as
well as for finding out how much uncertainty, in their different sources, is present
in an image [Dierks, 2004, EMVA, 2010, Kuroda, 2014]. These noise sources are
reflected on differences in the signal recorded among pixels in a single image and
among multiple images coming from different shoots (image captures), and the
variances of these noises are dependent on the level of reflectance imaged.

Image sensing and its different noise components are well documented in the
literature, where their manifestations and relationships are well defined. Aguerre-
bere, Delon, Gousseau, and Musé [Aguerrebere et al.], De-Jiang and Tao [2011],
Reibel et al. [2003] and Dierks [2004] are excellent introductory references for
understanding and extracting a model for image sensing. Based on those references,
in Section 6.4 we describe and formulate a conceptual model for all the compo-
nents involved in image sensing data. This conceptual model will be used as the
data-generating model for the proposed hierarchical Bayesian model in Section
6.6.1.

Healey and Kondepudy [1994], Tsin et al. [2001] and Campos [2000] are also
excellent references where authors determine a model for the sensing process that
additionally include the description of other stages in the practice of imaging appli-
cations, such as the optical system of the camera [Campos, 2000], image processing
parameters [Tsin et al., 2001] and reflectance and illumination variations [Healey
and Kondepudy, 1994]. There are many other references, from different disciplines
such as machine vision, photometry, physics, and electronics, dealing with the
definition of all the parameters involved in the sensing process [Granados et al.,
2010, Grant, 2005, Han et al., 2011, Zhang et al., 2011]. The fact is that their
interpretations agree on the process of image sensing.

In order to estimate the effects and contributions of the sensor noise parameters
on the output image, the data-generating model of the process is fitted to a set of
observed image data. For this purpose, classical iterative optimization algorithms
based on maximum likelihood and point estimates for the parameters [Dong et al.,
2018, Healey and Kondepudy, 1994, Tsin et al., 2001] and the well-known Photon
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transfer method [Janesick et al., 1985], are the current methods used for fitting
and inferring those noise components. In particular, the Photon transfer method
is the technique used to characterize the noise parameters in the ISO [ISO, 2013]
and EMVA [EMVA, 2010] standards for image noise measurements. The Photon
transfer method [De-Jiang and Tao, 2011, Dierks, 2004, Reibel et al., 2003] is based
onnested independent and point estimate computations, which induces probably
high error propagation, apart from the need to do some of other assumptions such
as normality and independence between some parameters (i.e. photo response
non-uniformity and photon noise).

The present study is focused on Bayesian modeling and inference of those sensor
noise components. In the Bayesian context [Bernardo and Smith, 2009, Gelman
et al., 2013, Jaynes, 2003], all inference is based on the (multivariate) joint posterior
distribution of the model parameters and hyperparameters. Computing the joint
posterior distribution is often difficult and, for this reason, different computation
approaches can be used. Markov chain Monte Carlo (MCMC) [Brooks et al., 2011]
are sampling methods that provide samples of the joint posterior distribution of
parameter θ given data y

(
p(θ|y)

)
. These samples can be used to make inference

and assess the significance of the different parameters in the model. In addition,
interactions between different terms can be easily explored by means of their joint
posterior distributions.

Bayes estimates have many advantages compared to point estimates of classical
methods, as it was already stated in Section 2.4 of Chapter 2. Furthermore, Bayesian
hierarchical modeling permits construct models with complex structures, while
propagating all sources of uncertainty in inferences, as it was also commented in
Chapter 2 and Section 2.3.4. Bayesian hierarchical models naturally leads to more
reliable inferences and better real-world answers [Browne et al., 2006, Gelman et al.,
2013]. All these advantages motivates the present work and the use of a Bayesian
approach for the study of image sensing noise components.

6.3 Contributions of the study

In the present work, a novel Bayesian approach in the field of image sensor noise
characterization is performed. A probabilistic model based on the data-generating
model is fitted to a set of a time-series of images with different reflectance and
wavelengths under uniform illumination conditions. The data-generating model
adds several and interacting random components dependent on reflectance and
wavelength, so a Bayesian hierarchical model with conditional dependencies among
model parameters, i.e. a multilevel random-effects model, is a suitable model and
the model proposed to approximate the data-generating model. The unknown param-
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eters in the probabilistic model, which are the parameters of the noise components
of the process, are learned through sampling methods based on MCMC.

The flexibility, accuracy, and intuitiveness of the Bayesian framework for mod-
eling and calibrating the sensor noise components is worth noticing. The results
show a reliable and flexible modeling, able to naturally and accurately propagate
uncertainties of noise parameters.

The rest of the chapter is structured as follows. Section 6.4 reviews all the noise
components, their manifestations and relationships, formulating the data-generating
model (theoretical model) for image sensing. Section 6.5 describes the available
experimental data. Section 6.6 focuses on the modeling and inference formulation
of the proposed Bayesian multilevel random-effects model. Section 6.7 analyzes the
results of fitting the proposed model on the experimental data. Section 6.8 describes
the procedures used for model checking and assessment. 6.9 discusses the standards
for image noise measurements and make a brief qualitative comparison with the
proposed statistical modeling. Finally, Section 6.10 draws some conclusions.

6.4 Image sensing model

A digital image is formed once the electromagnetic energy coming from or reflected
by an object is registered into an image sensor at a certain instant after shooting (im-
age capture). Objects mainly send out reflected energy that originally comes from
light sources, either natural or artificial. The reflectance of an object represents the
capacity to reflect ligth energy and is usually considered as a continuous factor be-
tween 0 and 1, where zero represents null reflectance and one total reflectance [Pratt,
2007]. An image sensor is composed of many individual sensing elements (pixels)
arranged in a regular matrix that registers incoming light at a certain instant or shoot.

Basically, photons of energy emitted from and reflected by the object are cap-
tured by a single pixel. Each one of the photons inside the pixel has a probability,
called quantum efficiency, to create a free electron. Then, from the incoming pho-
tons, a number of electrons are created inside the pixel. Finally, the electrons, after
being converted into a voltage, are amplified and digitized into an output digital
number, also known as the gray level or intensity value of an image [Dierks, 2004,
Healey and Kondepudy, 1994, Tsin et al., 2001].

Following De-Jiang and Tao [2011], Reibel et al. [2003] and Dierks [2004], a
simple model of the output digital numbers yit registered in the i’th pixel and at the
t’th image shoot, as a function of the reflectance r of the reflective object and the
wavelength w of the light, can be written as follows:

yit(r, w) = Ki ·eit(r, w) + µK ·Di + µK ·Ct(r, w) + µK ·Rit +Ait. (6.1)
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The number of electrons eit(r, w) is a function of the number of photons coming
into the pixel and of the probability q(w) of creating a free electron from an
incoming photon by the pixel sensing element. A model for the electrons is usually
approximated as a Poison model

eit(r, w) ∼ Po
(
q(w) · µp(r, w)

)
= Po

(
µe(r, w)

)
, (6.2)

where µe(r, w) is the mean number of the electrons e created from the incoming
photons inside the pixel. µp(r, w) is the mean number of the incoming photons
which are dependent on the reflectance r and the wavelength w. The probability
q(w) is also depending on the wavelength of the light. The variances µp(r, w) of
these Poisson variables are called photon noise and represent the variances of the
incoming energy in function of reflectance and wavelength. Note that the variance
of µe(r, w) also represents the photon noise, since it is directly proportional to the
mean number of photons. Moreover, it should be noted that photon noise is always
present in images and is never dependent on the camera sensor.

The gain factor variable Ki governs the process of converting electrons into
voltage, its amplification and digitalization [Dierks, 2004, Healey and Kondepudy,
1994, Reibel et al., 2003]. There is evidence in the literature of considering Ki

contaminated with Gaussian noise (equation 6.3) which represents one part of the
spatial noise of image sensors, commonly named photo response non-uniformity
(PRNU). PRNU models the inter-pixel differences when generating electrons from
the incoming photons [Dierks, 2004, Gow et al., 2007, Reibel et al., 2003], which
are due to pixel pitch and other pixel characteristics [Dierks, 2004, Gow et al.,
2007].

Ki ∼ N(µK , σ
2
K) (6.3)

In the previous equation (6.3), µK and σ2
K are the mean and variance of the variable

Ki.

In addition to the electrons eit(r, w) generated from the incoming light energy,
current noiseCt(r, w) is an effect by which free electrons can be thermally generated
during the exposure time [De-Jiang and Tao, 2011, Dierks, 2004, Gow et al., 2007,
Reibel et al., 2003] in the t’th image shoot. It is related to the temperature at a
certain instant or shoot and is expected to be an effect varying only on the temporal
dimension t, being constant across pixels [De-Jiang and Tao, 2011, Gow et al.,
2007]. Establishing long intervals between shoots and small exposure times, trying
to maintain low temperatures in the sensor, Ct(r, s) could be considered random and
modeled as a Poisson stochastic variable [EMVA, 2010, ISO, 2013, Marqués-Mateu
et al., 2013]. Temperature inside a pixel depends on the incoming light [De-Jiang
and Tao, 2011, Dierks, 2004, Gow et al., 2007], then current noise will be an effect
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dependent on reflectance r and wavelength w:

Ct(r, w) ∼ Po(µC(r, w)) (6.4)

In the previous equation (6.4), µC(r, w) is the mean of the variable Ct(r, s) as a
function of reflectance and wavelength.

Apart from the light induced electrons, dark electrons Di are generated in the
i’th pixel without the presence of incident light. They are generated from dark
current variations across pixels, and commonly named fixed pattern noise (FPN).
This is an effect affecting the pixel dimension, being the same in all different frames
or shoots [De-Jiang and Tao, 2011, Dierks, 2004, El Gamal et al., 1998]. Although
some cameras may have some kind of non-random spatial (pixel) pattern [Campos,
2000], for most camera sensors this spatial pattern is completely random [El Gamal
et al., 1998] following a Poisson model:

Di ∼ Po(µD), (6.5)

where µD is the mean of the variable Di.
Moreover, reset noise Rit refers to the remaining electrons in the circuitry

capacitors even after being emptied in the previous exposure. It is expected to be an
effect defined independently on both dimensions i and t and completely random, so
modeled by a Poisson variable:

Rit ∼ Po(µR), (6.6)

where µR is the mean of the variable Rit.
The parameters Di, Ct(r, w) and Rit are multiplied in equation (6.1) by the

mean gain parameter µK , to encapsulate the process of converting electrons into
digital numbers.

Finally, after the charge is transferred, and converted into a voltage, amplified
and digitized, the noise effects amplifier, flicker noise (1/f ) [Han et al., 2011] and
quantization add also some noise Ait to the final output digital number [De-Jiang
and Tao, 2011, Dierks, 2004, Han et al., 2011]. They are expected to be random and
normally distributed:

Ait ∼ N(µA, σ
2
A), (6.7)

where µA and σ2
A are the mean and variance of the variable Ait.

The variabilities of Ki (PRNU), Di (FPN), eit(r, w) (photon noise), Ct(r, w)
(current noise), Rit (reset noise), and Ait (amplifier, 1/f and quantization noises)
will be the essential parameters of an image sensor and the quantities of interest
to be estimated from the model as noise parameters in this work. Photon noise is
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Figure 6.1: Flowchart of the image sensing characterized for this work. for specific values of
reflectance r and wavelength w. The index i denotes the pixel dimension and the index t denotes the
exposures.

always present in an image and is never dependent on the camera sensor. The other
noise parameters are dependent on the camera sensor, and so will be the parameters
to compare the quality of different image sensors. The quantum efficiency is also
clearly a very important parameter of quality, although it can only be estimated
with the measurement, by means of a radiometer device, of the number of incoming
photons into any individual pixel.

Figure 6.1 shows a detailed flowchart of the image sensing model that includes
all the parameters and relationships that have been defined above. This flowchart
has been constructed considering specific values of reflectance r and wavelength w,
so they are not included in the noise components depicted in the figure.

6.5 Data description

The experiment consisted of time-sequential imaging of a ColorChecker by using a
trichromatic image sensor camera. A ColorChecker is a reflectance calibration pat-
tern which contains several reflectance patches, each one with constant reflectance
(Figure 6.2). A trichromatic colorimeter provides simultaneous measurements of
three primary wavelengths (usually Red R, Green G, and Blue B). The result of the
experiment is a time series of images with a spatially arranged matrix of pixel-values
across the sensor in each image with different reflectance and wavelengths.
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Figure 6.2: Reflectance calibration pattern.

The experimental data was comprised of 60 images from different shoots
(t=1,...,60). Samples of 500 random pixels (i=1,...,500) from 11 different reflectance
patches (r=1,...,11) were provided for each image, resulting in 5500 pixels through
the sensor, 500 grouped pixels for each one of the 11 reflectance patches. Finally,
three different wavelength ranges of the light were used (w=1,2,3) for each pixel.

One hundred out of this five hundred pixels within each reflectance patch were
used as testing observations for the posterior predictive checks, in order to check
and validate the proposed model performance. Therefore, only 400 pixels in each
one of the reflectance patches were used to fit the model.

In order to get uniform average conditions on the experiment, stable and ho-
mogeneous incident light on both dimensions, spatial and temporal, was needed.
The experiment was conducted under laboratory conditions using a typical col-
orimetry setup following the recommendations of the Commission Internationale
de l’Éclairage [CIE, 2004].

The imaging device used in the experiments was the Foveon X3® Pro 10M
CMOS sensor which has a stack of three photosensitive layers and provides true
trichromatic imagery. It is considered as a high-class device that provides extremely
low-noise readout and removes typically fixed pattern noise associated with other
CMOS sensors [Merrill, 1999]. The dynamic range of the sensor is 12 bits (0-4095
digital numbers or grey levels or intensity values), the total number of pixel sensors
is 2268 columns x 1512 rows x 3 layers, or 3.4 million pixels per layer, and the
pixel pitch of the array is 9.12 µm. This sensor also provides other interesting
practical features such as low power consumption, variable pixel size, and blooming
immunity.
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6.6 Proposed modeling and inference

6.6.1 Multilevel random-effects model

We propose a multilevel random-effects model to approach the theoretical model
in equation (6.1) and its components. Previously, if we approximate the Poisson
variables eit(r, w) in equation (6.1) as Normal variables,

eit(r, w) ∼ N
(
µe(r, w), σ2

e (r, w)
)
, (6.8)

then the component Ki ·eit(r, w) in equation (6.1) can be written as follows:

Ki ·eit(r, w) = (µK + dKi) ·(µe(r, w) + deit(r, w)), (6.9)

where dKi and deit(r, w) are the remaining zero-mean normal variables after
removing the means µK and µe(r, w) of variables Ki and eit(r, w), respectively:

dKi ∼ N(0, σ2
K), (6.10)

deit(r, w) ∼ N
(
0, σ2

e (r, w)
)
. (6.11)

Discarding the component dKi · deit(r, w) in equation (6.9) because it yields a
very low component, then we can rewrite the theoretical model in equation (6.1) as
follows:

yit(r, w) = µK ·µe(r, w) + dKi ·µe(r, w) + µK ·deit(r, w)

+µK ·Di + µK ·Ct(r, w) + µK ·Rit +Ait. (6.12)

Thus, the model in equation (6.12) will be the model to be approached by means
of the proposed Bayesian multilevel random-effects model. The theoretical model
in (6.12) consists in several and interacting random components dependent on
reflectance and wavelength. The hierarchical (multilevel) structure of the pro-
posed model arises from the conditional dependencies of the noise parameters on
reflectance and wavelength.

Reflectance r and wavelength w are continuous factors in the theoretical model
in (6.12). However, in practical experimentations wavelength is provided by the
color band (wavelength range) of a color image and is usually treated as a categori-
cal variable. Also, in our experimentation the real reflectance values of measured
patches of the ColorChecker are unknown, so a convenient way to consider re-
flectance is as levels of a categorical variable.

Let us assume there is an array of observations y ∈ IRN×T×R×W of image
digital numbers, with an element yit(r, w) representing an observation of the image
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Figure 6.3: Directed acyclic graph of the proposed Bayesian model in equations (6.13) and (6.14).

digital number registered at the i’th pixel and at the t’th image shoot and as a
function of levels r and w. Similarly to the previous Section 6.4, N denotes the
pixels in an image sensor (i = 1, ..., N ), T denotes the number of image exposures
(t = 1, ..., T ),R denotes the number of levels of reflectance examined (r = 1, ..., R)
and W denotes the levels of wavelength examined (w = 1, ...,W ).

The collection y of observations is considered to follow a Normal distribution
depending on an underlying mean function f and standard noise σ,

p(y|f) = N (y|f , σ2I), (6.13)

where I is the identity matrix. The mean function f is a sum function of independent
random effects nested inside the fixed effects of the categorical variables r and w.
Thus, for a single observation (i, t), the underlying function takes the form:

fit(r, w) = µ0(r, w) + Si(r, w) + Fi + Tt(r, w) + Pit(r, w). (6.14)

In Figure 6.3 the directed acyclic graph of the proposed Bayesian model in
equations (6.13) and (6.14) is depicted. The parameter µ0(r, w) is the fixed effect
of the categorical variables r and w. It gathers component µK · µe(r, w) in the
theoretical model shown in equation (6.12), which represents the mean reflectance
as a function of r and w.
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The parameter Si(r, w) in equation (6.14) models component dKi · µe(r, w)
in the theoretical model, where µe(r, w) is the mean electrons as a function of
reflectance r and wavelength w, and dKi is the PRNU zero-mean normal random
variable as seen in equation (6.10). Therefore, Si(r, w) can be modeled as a zero-
mean normal prior distribution, defined on the pixel dimension i and as a function
of r and w:

p
(
Si(r, w)|σS(r, w)

)
= N

(
Si(r, w)|0, σ2

S(r, w)
)
. (6.15)

The standard deviation σS(r, w) of this parameter S models the PRNU for specific
levels of r and w.

The parameter Fi in equation (6.14) models the component µK · Di in the
theoretical model, where µK is a constant and Di is the FPN Poisson distributed as
seen in equation (6.5). The assumption of considering Poisson generated electrons
after their conversion to digital numbers (µK ·Di) to normally distributed variables
is truly reasonable in this context. Therefore, the parameter Fi is modeled following
a zero-mean Normal prior distribution:

p
(
Fi|σF

)
= N

(
Fi|0, σ2

F

)
, (6.16)

whose standard deviation σF represents the FPN of the image sensor, which does
not depend on reflectance or wavelength.

The parameter Tt(r, w) in equation (6.14) models component µK · Ct(r, w) in
the theoretical model, where µK is a constant and Ct(r, w) is the current noise
Poisson variable as seen in equation (6.4). Like in the previous case of µK ·Di, the
Poisson variable µK · Ct(r, w) can be approximated as a Normal prior distribution
by the parameter Tt(r, w) as seen below:

p
(
Tt(r, w)|σT (r, w)

)
= N

(
Tt(r, w)|0, σ2

T (r, w)
)
. (6.17)

The standard deviation σT (r, w) of this parameter T will represent the current noise
for specific levels of r and w.

The parameter Pit(r, w) in equation (6.14) models component µK · deit(r, w)
in the theoretical model, where µK is a constant and deit(r, w) is the photon noise
approximated as a zero-mean Normal variable as seen in equation (6.11). Then,
Pit(r, w) is modeled as a zero-mean Normal variable:

p
(
Pit(r, w)|σP (r, w)

)
= N

(
Pit(r, w)|0, σ2

P (r, w)
)
, (6.18)

where its variance σ2
P (r, w) represents the photon noise for the specific levels of r

and w.
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Finally, the residual of the model in equation (6.13) will gather component
µK ·Rit and Ait in the theoretical model, which is expected to be a random Normal
variable defined independently on both dimensions i and t in equations (6.6) and
(6.7). These residuals will also contain other possible independent and uncontrolled
random noise factors in the experimentation or even in the process.

The likelihood function of the observations y given the parameters µ0 =
{µ0(r, w)}, S = {Si(r, w)}, F = {Fi}, T = {Tt(r, w)}, P = {Pit(r, w)}, and
σ, can be seen below:

p(y|µ0,S,F ,T ,P , σ) =∏
∀i,t,r,w

N
(
yit(r, w)|µ0(r, w), Si(r, w), Fi, Tt(r, w), Pit(r, w), σ

)
. (6.19)

6.6.2 Bayesian inference

Bayesian inference is done over the joint posterior distribution of parameters and
hyperparameters given the data, which is proportional to the likelihood and priors,
assuming independent priors among the effects:

p(µ0,S,F ,T ,P , σ|y) ∝ p(y|µ0,S,F ,T ,P , σ)p(µ0)p(S|σS)p(F |σF )

· p(T |σT )p(P |σP )p(σ)p(σS)p(σF )p(σT )p(σP ) =( ∏
∀i,t,r,w

N
(
yit(r, w)|µ0(r, w), Si(r, w), Fi, Tt(r, w), Pit(r, w), σ

))
×
(
N
(
µ0(r, w)|0, 1000

))( ∏
∀i,r,w

N
(
Si(r, w)|0, σ2

S(r, w)
))(∏

∀i
N
(
Fi|0, σ2

F

))
×
( ∏
∀t,r,w

N
(
Tt(r, w)|0, σ2

T (r, w)
))( ∏

∀i,t,r,w
N
(
Pit(r, w)|0, σ2

P (r, w)
))

×N
(
σ|0, 1000

)
N
(
σS(r, w)|0, 1000

)
N
(
σF |0, 1000

)
×N

(
σT (r, w)|0, 1000

)
N
(
σP (r, w)|0, 1000

)
(6.20)

In equation (6.20), p(y|µ0,S,F ,T ,P , σ) is the likelihood of the model, and
p(S|σS), p(F |σF ), p(T |σT ), and p(P |σP ) the priors for the corresponding parame-
ters and p(µ0), p(σ), p(σS), p(σF ), p(σT ) and p(σP ) the priors for the hyperparam-
eters, where σS denotes the collection {σS(r, w)}, and similarly σT = {σT (r, w)}
and σP = {σP (r, w)}. If no prior information is available for the hyperparameters,
we still need to specify vague prior distributions. For the parameters µ0, vague
Normal distributions with large variances are defined. For the standard deviation
parameters σS , σF , σT , σP and σ, we define positive half-Normal distributions with
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large variances [Kass and Wasserman, 1995, Yang and Berger, 1996].
The joint posterior distribution of the parameters have been estimated with

MCMC using Gibbs sampling [Brooks et al., 2011, Geman and Geman, 1993] and
WinBUGS software [Lunn et al., 2000, Ntzoufras, 2011]. Samples of the joint and
marginal posterior distributions of the model parameters are obtained, and estimates
and credible intervals are inferred for the model parameters. Three simulation
chains have been launched for every one of the parameters, with 100000 iterations,
of which the first 30000 iterations were rejected as burn-in, and finally, only 1 of
every 100 was retained with the aim of reducing the correlation in the samples. The
convergence of the simulation chains was evaluated with the split-Rhat convergence
diagnosis and the effective sample size of the chains [Gelman and Rubin, 1992,
Vehtari et al., 2019]. A value of 1 in the split-Rhat convergence statistic indicates
good mixing of simulated chains. Traditionally accepted good value for split-Rhat
would be between 1 and 1.1, although recently more strict range has also been
suggested [Vehtari et al., 2019]. In this study, a split-Rhat value lower than 1.05 has
been obtained for all parameter simulation chains.

6.7 Experimental results and analysis

In this study, we are interested in analyzing the standard deviation parameter esti-
mates σS, σF , σT , σP and σ, which are the quantities that allow us to characterize
the mean noise caused by parameters S, F , T , P and residuals, respectively.
Notice that the units of the estimated effects are units of image digital numbers.

As we will see in next Section 6.7.1, some of the noise estimates are reflectance
dependent, fact that suggests the computation of their coefficients of variation,
in which the linear effect of reflectance (linear-multiplicative effect of the mean
number of electrons) on the parameters is removed. In this way, different sensors or
different experimentations with different dynamic ranges can be compared.

The coefficient of variation (CV ) is the ratio between the standard deviation
and the mean of the component considered (CV = σ/µ), that is, the inverse of the
signal-to-noise ratio. In fact, the coefficient of variation defines the quality of a
sensor as a discriminatory power of a signal. The overall means are represented
by µ0.

6.7.1 Standard deviation of the parameters

Figure 6.4 shows the 95% pointwise credible intervals for the parameters σS

(PRNU), σF (FPN), σT (current noise), σP (photon noise) and σ (reset, ampli-
fier, flicker and quantization noise). They are plotted against the mean effects of the
reflectance and wavelength variables which are modeled by the parameters µ0(r, w).
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Figure 6.4: 2.5% and 97.5% posterior quantiles for the standard deviation of the parameters S (σS)
(a), F (σF ) (b), T (σT ) (c), P (σP ) (d), and residuals (σ) (e), versus mean output-reflectance r and
wavelengths w. In (e), the residual deviation as a function of reflectance r and wavelength w (σ(r,w))
is computed and plotted jointly with the mean residual deviation (σ).
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As stated in Section 6.6, the parameter σS(r, w) models the noise effect of
component µe(r, w) · dKi in the theoretical model, and represents the mean noise
caused by the interpixel differences when generating electrons from the incoming
photons, effect called PRNU and encapsulated in the gain random variable dKi; see
equations (6.3) and (6.10). The increasing of σS(r, w)with respect to reflectance
r (x-axis) (Figure 6.4(a)) is due to the linear-multiplicative effect of the electrons
µe(r, w) on dKi, since dKi is expected to be a zero-mean normal variable indepen-
dent on reflectance. However, this linear behaviour that can be appreciated in the
figure is broken at the lowest values of reflectance. In fact, a non-linear interaction
between PRNU and the light intensity in low and high illumination levels has been
pointed out [Gow et al., 2007]. Estimates for this effect range from around 0.2
digital numbers at low reflectances, to around 6 digital numbers at the highest
reflectances examined in the experimentation.

The estimated parameter σF is not dependent on reflectance and was estimated
around 0.5 digital numbers; see Figure 6.4(b). This represents the mean noise,
whose standard deviation is in equation (6.16), caused by Poisson distributed dark
current variations across pixels (FPN; see equation (6.5)), an effect without the need
of incident light. The estimate found for this effect can be considered a negligible
value for the Foveon X3® image sensor, as specified in the characteristics provided
by the manufacturer.

The estimated parameter σT (r, w) shows a linear dependency with respect to
reflectance r, either in mean and in variance; see Figure 6.4(c). This linear behaviour
was expected since it represents the mean noise, whose standard deviation appears
in equation (6.17), caused by Poisson distributed free electrons thermally generated
during the exposure time (current noise; see equation (6.4)), and temperature inside
a pixel, at a given exposure time, is directly related to incident light and therefore
to reflectance as well. Estimates for this effect range from approximately 0 digital
numbers at the lowest reflectances, to around 15 digital numbers at the highest
reflectances examined in the experimentation.

The estimated parameter σP (r, w) does not increase linearly with respect to
reflectance r (Figure 6.4(d)). As stated in Section 6.6, σP (r, w) models the noise
effects of component µK ·deit(r, w) in the theoretical model (6.12). µK is a constant
and the electrons deit(r, w) are normal approximations (see equations (6.8) and
(6.11)) to Poisson variables (see equation (6.2)), so that their standard deviation
increases with the square root of the mean electrons

(√
µe(r, w)

)
. Then, the slope of

σP will be due to the variance of deit(r, w) (photon noise) which increases with the
square root of electrons or, equivalently, with the squared root of reflectance. Thus,
estimates for this effect increase proportionally to the square root of the reflectance
from very low digital numbers at the lowest reflectances, to around 6 digital numbers
at the highest reflectances, with slight differences among wavelengths.
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Finally, the specifications of the sensor also indicate low-readout noise effects,
for which and jointly with the reset noise, a mean error of 3.3 was estimated in this
study by the mean residual deviation parameter σ in Figure 6.4(e). The residuals are
not completely independent with respect to the reflectance r, and a slight decreasing
trend in the residual deviation at low reflectance can be found. However, this lack
of independence on the residuals is clearly very small with trend effects lower than
1 and, hence, can be considered negligible in practice. For reflectance > 700, the
residuals are without trend. This fact reflects that some of the noise components
(reset noise, amplifier noise, flicker noise, and quantization noise) included in the
residual deviation parameter might be slightly dependent on reflectance at low
intensities.

The gain factor µK is embedded in all the noise parameter estimates, so they
represent units of image digital numbers (electrons times gain factor). The differ-
ences among wavelengths reflect different behaviours, that is, the wavelengths R, G,
and B do not generate exactly the same noise under the same conditions.

6.7.2 Variation coefficients of the parameters

Due to the dependency of the noise estimates, σP of the parameter P , σT of the
parameter T , and σS of the parameter S, on the level of reflectance imaged (Figures
6.4(a), 6.4(c), and 6.4(d)), their coefficients of variation are computed. For the
parameters F and residuals the computation of their variation coefficients make
no sense since both the parameter F is an independent variable on reflectance (see
equation (6.5)) and the residuals can be considered in practice variance-constant
with respect to reflectance (see Section 6.7.1). Their absolute mean noise effects,
σF and σ, were estimated around 0.5 and 3.3 digital numbers, respectively (Figures
6.4(b) and 6.4(e)).

Figure 6.5 shows the coefficients of variation of the parameters S (CVS), T
(CVT ) and P (CVP ).

The coefficient of variation CVS in Figure 6.5(a) is mainly constant with respect
to reflectance, since the linear-multiplicative effect of the electrons µe was removed,
except for the lowest values of reflectance where σS has a non-linear behaviour as
can be seen in Figure 6.4(a). CVS represents the mean proportion of noise, relative
to the input signal, caused by the variability of the normal variable dKi (or effect
of interpixel differences when generating electrons (PRNU)), and was estimated
around 0.004. Which means that the mean PRNU noise is of 0.4% of the input
signal, except at the lowest reflectances that reached up to 5%.

The coefficient of variation CVT in Figure 6.5(b) is constant due to the fact
that the linear effect of the light intensity on the current noise was removed. CVT
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Figure 6.5: 2.5% and 97.5% posterior quantiles for the coefficient of variation of the parameter S
(CVS) (a), parameter T (CVT ) (b), parameter P (CVP ) (c), versus mean output-reflectance µ0 and
wavelengths w.

represents the mean proportion of noise, relative to the input signal, caused by
the free electrons generated by thermal effects in a pixel (current noise), and was
estimated around 0.01. Which means that the mean current noise is of 1% of the
input signal.

As commented above, the slope of the noise effect σP (r, w) of parameter
Pit(r, w) (Figure 6.4(d)) stems from photon noise (variance of the electrons deit(r, w);
see equations (6.2), (6.8) and (6.11)) that increases with the square root of the mean
number of electrons. In fact, when computing the coefficient of variation CVP
in Figure 6.5(c), it can be observed that the resulting slope is very similar to
1/sqrt(µK ·µe(r, w)) which is the coefficient of variation of the photon noise in
output of digital numbers. Thus, the mean proportion of noise, relative to the input
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signal, decline inversely proportional to the square root of reflectance, from over
0.03 at very low reflectances, to 0.004 at the highest reflectances. Which means
that the mean photon noise range from over 3% of the input signal at very low
reflectances, to 0.4% at the highest reflectances.

It can be stated, therefore, that the linear effect of the reflectance does not
imply a lost of quality in the signal, since the coefficient of variation remains equal.
However, it is an exception for the photon noise which does imply a lost of quality
in the low values of the reflectance, as shown in its coefficient of variation in Figure
6.5(c). It is due to the inherent dependency of the variance of the electrons on the
reflectance.

6.8 Model checking and validation

For model checking, common procedures of checking normality and tendencies on
the predicted residuals for the set of test data can be used. Figures 6.6(a) and 6.6(b)
show histograms for all the predicted residuals and the predicted residuals inside
the group (r = ”1”, w = R), respectively, which have the shape of a Gaussian
distribution with zero mean. Figure 6.7(b) shows an interaction plot of the predicted
residuals in order to check the independence between pixel (i) and exposure (t)
dimensions. It is neither noticed any kind of residual pixel pattern over time nor
any kind of residual temporal pattern over the pixel dimension. Despite a slight
trending effect of the residuals with respect to reflectance is foreseen (Figure 6.4(e)),
the residuals can be considered, in practice, stable as function of reflectance, as
stated in previous Section 6.7.1. Thus, it can be concluded that the residuals can be
considered independent, random and normally distributed around zero, showing a
good fitting-to-data scenario.

The frequency histogram of the LOO-PIT values (Section 2.5 in Chapter 2)
showed in Figure 6.7(a) are close to a uniform distribution, which means the model
predictions are well calibrated, and points to a good and reliable approximation to
the real process observed by the data.

The root MSE (Section 2.5 in Chapter 2) of predictions results 3.55 digital
numbers, which compared to the dynamic range of the experimentation (between 0
and 1500 digital numbers) can be concluded that the model is accurate and close to
the data.

6.9 Discussion

The present study aims to argue and show the reliability and accuracy of Bayesian
modeling and inference, by its ability to define proper prior probability distributions
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Figure 6.6: (a) Histogram of all residuals. (b) Histogram of residuals inside the group (r=”1” and
w=R).
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Figure 6.7: (a) Histogram of the predictive posterior checks (LOO-PIT). (b) Interaction plot between
pixel (i) and exposure (t) dimensions inside a group (r=”1” and w=R).

and to infer full posterior probability distributions for the parameters of interest
[Gelman et al., 2013]. This differs from and contrasts with the fixed parameter
definitions and point estimates of the classical methods [Bishop, 2006, Browne
et al., 2006, Raiko et al., 2006].

Furthermore, we emphasized the inherent capability of propagating uncertainty
among quantities of the Bayesian approach [Brown and Prescott, 2014, Gelman et al.,
2013, Gelman and Hill, 2006], in contrast to classical methods and, in particular, in
contrast to the rigidness and error propagation of nested independent point estimate
computations of the commonly used Photon-transfer method for estimating sensor
noise.

The Photon transfer method (Dierks [2004] and ISO [2013]) is considered as
the standards for electronic noise characterization. However standard is subject to
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some assumptions, such as:

- Linear sensitivity (photo-response) of the sensor, i.e., the radiometric response
(gray level values) increases linearly with the number of photons received.

- All noise components are stationary and white with respect to exposures and
pixels. The parameters describing the noise component are invariant with
respect to exposures and pixels.

- Only the total quantum efficiency is wavelength dependent, i.e., the effects
caused by light of different wavelengths can be linearly superimposed.

If these conditions are not fulfilled, the computed parameters by the Photon-transfer
method are meaningless [Tsin et al., 2001]. The Photon-transfer method is based
on the photo-response noise with and without light to determine all the parameters
characterizing completely the sensor radiometry. The Photon-transfer method uses
the property of spatial non-uniformities of a sensor array being the same for every
exposure, to remove the effect of the spatial non-uniformity by differentiating two
images. If temporal non-uniformity is present in the behavior of a sensor, that is, the
mean response is not stationary with respect to exposures, then the estimate does
not represent the different photo-response among pixels. Therefore, the computed
parameters by the Photon-transfer method are meaningless.

However, using statistical modeling, it is not needed to make nested independent
computations but estimating all the components at once in a model. Non-linear
effects for the photo-response of a sensor can be easily considered in a statistical
modeling approach, by using non-linear functions in classical methods and non-
parametric models in a Bayesian approach. In our work, due to the fact that we have
only a few reflectances available, we have defined the parameters µ0 as categorical
factors, which also allow for modeling non-linear effects. If more reflectances were
available, we could define, for example, a non-parametric prior distribution or a
splines model for the parameters µ0.

The present study is a novel attempt to model sensor noise parameters. For this
reason, the data-generating model with the defining effects has been formulated as
found in the general state of the art literature, where noise parameters S and T are
considered completely random-structured effects and independent with respect to
exposures and pixels, respectively. However, correlated effects through the matrix
of pixels and also through the time-series of images (exposures) for the parameters
S and T , respectively, can be naturally considered by using Bayesian hierarchical
models. Furthermore, non-stationary noise parameters, such as pixel effects varying
with exposures or exposures effects varying with pixels, might also be feasibly
considered in a Bayesian framework for the parameters S and T , respectively, or
for both simultaneously under some constraints.
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These powerful and flexible modeling features of Bayesian hierarchical models
[Coley et al., 2017, Dai et al., 2017] are promising in image sensing, opening
the door to formulate new data-generating models where new effects could be
investigated.

6.10 Conclusion

The formulation of a Bayesian hierarchical model based on an additive multilevel
random effects model allowed us to identify the major noise components that take
place in image sensing. The approach presented in this chapter provided a useful
interpretation and an accurate estimation of the image sensing noise parameters.
Bayesian modeling permitted a reliable definition of parameters as random effects,
and by means of the MCMC method, the model is fitted in a way that all the
components share information and uncertainties.

We have focused on the analysis and interpretations of the parameters σS, σF ,
σT , σP and σ which represent the mean noise of the parameters PRNU (σS), FPN
(σF ), current noise (σT ), the interaction between the photon noise and PRNU (σP ),
and reset, amplifier, flicker and quantization noises (σ).

On the other hand, the dependency of the estimated noise parameters σP , σT

and σS on reflectance suggested the computation of the coefficients of variation
(error and mean intensity ratio) in order to remove the linear effect of the mean
level of reflectance imaged. Thus, they can be considered useful quantities to be
compared among sensors as a discriminatory power of the signal.

The coefficients of variation of the noise are larger at lower reflectances than
higher reflectances due to the effect of the photon noise, as can be seen in Figure
6.5(c). The photon noise effects decline inversely proportional to the square root
of the reflectance, from approximately 3% of the registered signal at very low
reflectances, to 0.4% at high reflectances. On the other hand, the effects of the
current noise (Figure 6.5(a)) and PRNU (Figure 6.5(b)) are practically constant
of approximately 1% and 0.4% of the registered signal, respectively. However,
the noise effects are significantly much higher at reflectances close to zero for all
noise parameters, as can be seen in Figures 6.5(a), 6.5(b) and 6.5(c). Which reveal
that high image intensity values are preferred to lower image intensity values for
applications such as, for example, image pattern recognition tasks.

The advantages of using Bayesian hierarchical models have been stated. Pri-
marily, the accurate way of propagating uncertainty among quantities following
probability theory rules. Secondly, the high modeling flexibility and ability to define
parameters with non-linear and correlated effects and multiple factors. For example,
there may be some imaging sensors that show systematic FPN patterns, instead of
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being completely random as the one considered here. Nevertheless, handling this
issue is straightforward in the Bayesian approach provided that appropriate prior
distributions with correlated effects are defined.

A brief comparison of our approach with the existing standards has been made.
The assumptions of linearity and stationary of the parameters, considered by the
standards, can be easily overcome by statistical modeling and, especially, using a
Bayesian approach. Furthermore, the Photon-transfer method is based on nested
independent computations, with highly error propagation, in contrast to the Bayesian
multilevel random-effects modeling approach presented herein.

The Bayesian multilevel random-effects modeling approach presented in this
work is a general methodology that can be applied to any other imaging sensor
or camera, under different experimental, independently of the dynamic ranges.
Comparison among cameras can be carried out with the proposed coefficients. In
the near future, we would like to asses the assumptions of complete randomness of
the current noise and the FPN. For this purpose, we will have to include appropriate
prior distributions with correlated effects in the Bayesian model. Furthermore, we
would like to model all the noise parameters with their exactly defining probability
distributions, instead of approximating them by Normal distributions, which is an
usual assumption in image sensing.



Chapter 7

Conclusion

The motivation of this work has been two-fold. On the one hand, we aimed to make
use of advanced statistical models in Bayesian framework to solve three real-world
applications and ultimately gain insights into these applied fields. On the other hand,
we aimed to make a contribution to two methodological aspects in Bayesian GPs.

In order to solve the real-world applications, the need for some advanced
modeling features arose. For example, flexible modeling to properly control or
constrain the dynamics of the predicted functions were required. Models that
exploit to the full the correlation structure of the data in order to make useful and
accurate generalization of data, also in scenarios with a short and/or very noisy set
of sampling observations, were sought. Good scaling properties in the computation
of the models in the cases of large data sets were also of interest. Furthermore,
hierarchical and flexible modeling to accurately decompose a stochastic signal in its
different components was also sought.

Regarding the methodological contributions, we dealt with the analysis of the
performance and practical implementation of a novel and recently developed low-
rank approximate GP model, with the aim of recognizing the relationships among the
key factors of the method, as well as making recommendations and diagnosis of the
approximation. We focused on its implementation in a probabilistic programming
framework and on the use of computational sampling methods. Furthermore, we
dealt with the analysis of the overly smoothing effect that the use of many virtual
derivative observations to induce monotonicity in functions causes on the posterior
functions, especially in GP functions.

Application to rock art paintings considered in this work, aimed to predict
spectrometry measurements on the surface of rock art paintings. The main objective
in this application was to construct a model that fully exploits the correlation
structure of the data. In the land use classification task, which aimed to perform a
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spatio-temporal classification of the land-uses of parcels dedicated to growing citrus
fruits, also sought a model that would exploit properly the correlation structure of
the data in an scenario of a short set of sampling observations. We argued that a
GP prior model with a multidimensional covariance function is one of the most
natural ways to accomplish this objective for this type of data, which consists of
spatio-temporal stochastic observations with covariance structure assumptions of
continuity, stationarity and monotonicity. In addition, we showed the utility of using
GP prior models as latent functions in non-Gaussian likelihood models such as the
multinomial model for the classification of land-uses carried out in this work.

However, we argued that the spatio-temporal GP model with a square exponen-
tial covariance function was not the most appropriate model for solving the land use
classification task since the class of a parcel is expected to switch arbitrarily in time.
So the assumption of a smooth and monotonic covariance structure over time might
not be the most appropriate or at least too simple to model the temporal structure
of the process. As a line of future research, we propose modeling this application
by specifying a Markov chain model for the transition probabilities of classes in
time and a multivariate GP prior, with the spatial predictors, to relate the transition
probabilities among parcels (space).

In application to rock art paintings, the motivation of including prior knowledge
in the modeling in the form of derivative information, with the aim of inducing
monotonicity and long-term stabilization to the predicted functions, also arose. We
showed that models with additional derivative information have a stronger inductive
bias, yielding better predictive performance and confidence intervals. However,
inducing monotonicity through additional (virtual) observations arises with some
practical issues. Overly smoothed posterior functions are obtained if many inducing
points for monotonicity are used. This is due to the monotonicity information is
included in the likelihood of the model through additional observations instead of
into the prior of the function, which makes the posterior distribution of the function
dependent on the number and location of the inducing points. This overly smoothing
effect is even more severe using GP functions because monotonic functions do not
have a characteristic lengthscale, and the value of the estimated lengthscale tends to
be larger as more inducing points are used. We demonstrated that if the function is
quite smooth this problem can be avoided in practice by choosing fewer inducing
points and placing them appropriately.

The limitation that inference on GPs is computationally very demanding, moti-
vated us to make a contribution to the recently developed Hilbert space approximate
GP model. We analyzed in detail the performance and accuracy of the method,
which ultimately lie on the relationship among the key factors: the number of basis
functions, the boundary factor and the lengthscale of the function. We made recom-
mendations for the values of these key factors based on the recognized relationships
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among them, that will help users in diagnosing and improving performance. We
demonstrated the applicability and the implementation of the methodology, the
reduction of the computation and the improvement in sampling efficiency. The main
drawback of this approach is that its computational complexity scales exponentially
with the number of input dimensions. Hence, in practice, input dimensionalities
larger than 3 become too computationally demanding. In these cases, we proposed
using the approximate GP model as low-dimensional components in an additive
modeling scheme.

Finally, application to image sensor noise consisted in decomposing the signal
recorded by an image sensor into its different noise sources. Our main motivation
was to propose a more flexible, hierarchical and accurate model for characterizing
the noise components in image sensors, in comparison with the existing standards
of image noise measurements. We argued that the Bayesian framework, by its
property of defining conditional dependencies among parameters in a fully proba-
bilistic model, allows for fully propagation of uncertainty among noise parameters,
obtaining accurate and reliable estimates in flexible models. This differs from and
contrasts with the fixed parameter definitions and point estimates of the classical
methods used in the standards for image noise measurement.

This work leaves some lines of future research. The first one was already
stated above when we proposed a mixed model, with Markov chains and GPs,
to address the spatio-temporal land-use classification task. The second line of
future research is to construct analytical models for the relationships among the
key factors of the Hilbert space approximate GP model aiming at automatizing
the diagnosis of the performance of the approximation. The third line of future
research is to analyze these relationships in multidimensional cases, building useful
graphs or analytical models that encode these relationships in multidimensional
approximate GPs. Finally, we propose as a future research line to conduct simulation
experiments to study the possible benefits of using additional information, such as
function value constraints or gradient constraints, to alleviate the overly smoothing
effect on the posterior functions that can arises when using many inducing points
for monotonicity.





Appendix A

More case studies for the Hilbert
space approximate Gaussian
process method

A.1 Case study V: Same-sex marriage data

This data set relates the proportion of support for same-sex marriage to the age. The
data consists of 74 observations of the amount of people yi supporting same-sex mar-
riage from a population ni per age group i (i = 1, . . . , 74). The observational model
is a binomial model with parameters population ni and probability of supporting
same-sex marriage pi per age group i,

yi ∼ Binomial(pi, ni).

The population per age group ni is a known quantity and the goal is to estimate the
same-sex support probability pi or mean number of support people per age group.
Probabilities p = (p1, . . . , p74) are modeled by a Gaussian process (GP) function
f : IR→ IR with a squared exponential covariance function k, as a function of age
input values x = (x1, . . . , x74), and through the logit function as a link function,

pi = logit(f(xi))

f(x) ∼ GP(0, k(x, x′, θ)).

Saying that the function f(·) follows a GP model is equivalent to say that f is mul-
tivariate Gaussian distributed with covariance matrix K, where Kij = k(xi, xj , θ),
with i, j = 1, . . . , 74. The covariance function k depends on the inputs x and
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Figure A.1: Posterior predictive means of the proposed HSGP model, the regular GP model, and the
Splines model. 95% confident intervals are plotted as dashed lines.

hyperparameters θ = {α, `}. The hyperparameters α and ` represent the marginal
variance and lengthscale, respectively, of the GP process.

In the HSGP model, the function f(x) is approximated as in equation (3.9),
with the squared exponential spectral density as in equation (3.3), and eigenvalues
λj and eigenfunctions φj as in equations (3.7) and (3.8).

In order to do model comparison, in addition to the regular GP model and HSGP
model, an splines-based model is also fitted using the Thin Plate Regression Splines
approach in Wood [2003] and implemented in the R-package mgcv [Wood, 2015,
2011]. A Bayesian approach is used to fit this splines model using the R-package
brms [Bürkner, 2017].

Figure A.1 shows the posterior mean predictive distributions of the three models,
the regular GP, the HSGP model with m = 20 basis functions and boundary factor
c = 1.5, and the splines model with 20 knots. Sample observations are plotted as
circles in the figure, and the out-of-sample observations, which have been used for
testing, are plotted as crosses.

For the HSGP model, different models with different number of basis functions
and boundary factor have been fitted. The root mean square errors (RMSE) for
every one of these models have been computed against the regular GP model, and
plotted as a function of the number of basis functions m and boundary factor c
in Figure A.2, for sample (left) and test (right) data. The expected patterns of the
approximation as a function of the number of basis functions and boundary factor
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are recognized: as the boundary factor increases, more basis functions are needed.
Figure A.3 shows the RMSE of the regular GP, HSGP and splines models,

computed against the actual data, for training and test data, as a function of the
number of basis functions m and boundary factor c for the HSGP model, and knots
for the splines model. We can see how the splines models do not extrapolate data
properly.

●

●

●
● ● ● ●

●

●

●

● ● ● ●

●

●

●

●
● ● ●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

5 10 15 20 25 30

0.000

0.005

0.010

0.015

0.020

m

R
M

S
E

●

●

● ●
● ● ●

●

●

● ●

●

● ●

●

●

●

● ● ● ●

●

●

●

●
● ●

●

●

●
●

●

5 10 15 20 25 30

0.00

0.05

0.10

0.15

m

R
M

S
E

0 2 4 6 8 10

0
2

4
6

8
10

c
1.1
1.2
1.5
2
3

Figure A.2: Root mean square error (RMSE) of the HSGP model, computed against the regular GP
model, as a function of the number of basis functions m and boundary factor c. RMSE for sample
data (left) and RMSE for out-of-sample data (right).
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Figure A.3: Root mean square error (RMSE) of the different methods, regular GP, HSGP and splines
models, computed against the actual data, as a function of the number of basis functions m and
boundary factor c for the HSGP model, and knots for the splines model. RMSE for sample data (left)
and RMSE for out-of-sample data (right).
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Figure A.4 shows computational times, in seconds per iteration (iteration of
the HMC sampling method), as a function of the number of basis functions m, for
the HSGP model, and knots, for the splines model. The computational times is
represented in the y-axis which is on a logarithmic scale. The HSGP model is on
average roughly 15 times faster than the regular GP and 5 times faster than the
spline model, for this particular case and univariate input space. Computation time
increases relatively slight with the number of basis functions in a univariate input
space, as can be seen in the figure.

The Stan model codes for the exact GP, the approximate GP and the splines mod-
els of this case study can be found online at https://github.com/gabriuma/
basis_functions_approach_to_GP/tree/master/Paper/Case-study_

Same-sex-marriage-data .
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Figure A.4: Computational time (y-axis), in seconds per iteration (iteration of the HMC sampling
method), as a function of the number of basis functions m and knots. The y-axis is in a logarithmic
scale.

https://github.com/gabriuma/basis_functions_approach_to_GP/tree/master/Paper/Case-study_Same-sex-marriage-data
https://github.com/gabriuma/basis_functions_approach_to_GP/tree/master/Paper/Case-study_Same-sex-marriage-data
https://github.com/gabriuma/basis_functions_approach_to_GP/tree/master/Paper/Case-study_Same-sex-marriage-data
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A.2 Case study VI: 2D Simulated data

This example consists of a simulated dataset with n = 120 (i = 1, . . . , n) single
draws from a GP prior as function of input values xi ∈ {[−1, 1], [−1, 1]} ⊂ IR2 in
a bivariate input space (D = 2). A squared exponential covariance function, with
hyperparameters marginal variance α = 1 and lengthscales `1 = 0.10, for the first
input dimension, and `2 = 0.35, for the second input dimension, is used for the GP
prior. Gaussian noise standard deviation σ = 0.2 was added to the GP draws to
form the final noisy set of observations y ∈ IR120.

The regular GP model over the outcome variable y can be written as follows,

y = f + ε

ε ∼ N (0, σ2I)

f(x) ∼ GP(0, k(x,x′, θ)),

where f = {f(xi)}120
i=1 represents the underlying function at the input values

xi ∈ IR2, ε is the Gaussian noise term with variance σ2, and I represents the
identity matrix. The function f : IR2 → IR is a GP prior with a multivariate squared
exponential covariance function k(xi,xj , θ), which depends on the inputs x and
hyperparameters θ = {α, `1, `2}. The hyperparameters α, `1 and `2 represent the
marginal variance and lengthscales for first and second input dimensions, respec-
tively, of the GP process. Saying that the function f(·) follows a GP model is
equivalent to say that f is multivariate Gaussian distributed with covariance matrix
K, where Kij = k(xi,xj , θ), with i, j = 1, . . . , 120.

The marginalized form, by integrating out the latent values f , of the previous
latent GP model results:

y ∼ N (0,K + σ2I).

In the HSGP model with D input dimensions, the latent function f , evaluated at
input vector x ∈ IRD, is approximated as in equation (3.13),

f(x) ≈
m∑
j

(
S(
√
λj)
)1/2

φj(x)βj ,

where S is the spectral density, as a function of
√
λj , of the D-dimensional squared

exponential covariance function,

S(
√
λj) = σ22π

D∏
d=1

`dexp

(
− 1

2

D∑
d=1

`2d

√
λSjd

2
)
,
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and λj is the D-vector, which elements are the univariate eigenvalues whose indices
correspond to the elements of the D-tupple Sj·,

λj =
{
λSjd

}D
d=1

=

{(
πSjd
2Ld

)2
}D
d=1

,

and φj is the multivariate eigenfunction as the product of univariate eigenfunctions
whose indices correspond to the elements of the D-tupple Sj·,

φj(x) =
D∏
d=1

φSjd =
D∏
d=1

√
1

Ld
sin
(√

λSjd(xd + Ld)
)
,

where xd is the input value corresponding to dimension d. In the previous equations,
j denotes the index for the m =

∏D
d=1md multivariate basis functions , where md

is the number of basis functions considered for dimension d. S is the matrix of
D-tuples, with rows being the indices of every possible combinations of univariate
eigenvalues over the D dimensions. Ld is the boundary for the dimension d. The
parameters βj are N (0, 1) distributed, and α and `d are the marginal variance and
lengthscale of dimension d, respectively, of the approximate multivariate covariance
function.

In order to do model comparison, in addition to the regular GP and HSGP
models, a two-dimensional splines-based model is also fitted using a cubic spline
basis, penalized by the conventional integrated square second derivative cubic spline
penalty [Wood, 2017], and implemented in the R-package mgcv [Wood, 2015, 2011].
A Bayesian approach is used to fit this spline model using the R-package brms
[Bürkner, 2017].

Figure A.5 shows the data-generating GP function, from where the dataset was
drawn, and the mean posterior predictive functions of the three models, the regular
GP, the HSGP, and the splines, fitted over the dataset. Sample observations are also
plotted in the plots as circles. For the HSGP model, m1 = 40 and m2 = 40 basis
functions for each dimension respectively, were used, which lead to a total of 1600
multivariate basis functions. A boundary factor for each dimension c1 = 1.5 and
c2 = 1.5 were used. For the splines model, 40 knots in each dimension were used.

Figure A.6 shows the difference functions between the data-generating function
and the GP, HSGP and splines models, respectively.

In order to assess performance of the models as a function of the number of basis
functions and knots, different models with different number of basis functions, for
the HSGP model, and different number of knots, for the splines model, have been
fitted. In all models, the same number of basis functions and knots per dimension
were used. Figure A.7-(left) shows the root mean squared error (RMSE), computed
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Figure A.5: Data-generating function (a) and posterior predictive mean functions of the GP (b), HSGP
(c) and spline (d) models. Sample points are plotted as circles
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Figure A.6: Mean error between the data-generating function and the GP (a), HSGP (b) and spline (c)
models. Sample points are plotted as circles.
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Figure A.7: Root mean square error (RMSE) (left) and computational time (right) in seconds per
iteration (iteration of the HMC sampling method) of the different methods computed against the
data-generating function, as a function of the boundary factor c, number of basis functions m and
knots.

against the data-generating function, as a function of the boundary factor c, and the
number of univariate basis functions m, for the HSGP model, and knots, for the
splines model. From Figures A.6 and A.7-(left), it can be seen a close approximation
of the HSGP model to the regular GP model. However, the performance of the
splines model is significantly worse.

Figure A.7-right shows the computational times of the different models as a
function of the boundary factor, number of basis functions and knots. Figure A.7
reveals that choosing the optimal boundary factor allows for less number of basis
functions and less computation time. Even though in a bivariate input space the
computation demand increases significantly with the number of dimensions or knots,
either the HSGP or spline models work significantly better than regular GP, even for
highly wiggly functions that require a high number of basis functions or knots for a
accurate approximation. However, serious difficulties with cumputation time were
encountered in building the spline model with 50 knots for this bivariate function.

The Stan model codes for the exact GP, the approximate GP and the splines mod-
els of this case study can be found online at https://github.com/gabriuma/
basis_functions_approach_to_GP/tree/master/Paper/Case-study_

2D-Simulated-data .

https://github.com/gabriuma/basis_functions_approach_to_GP/tree/master/Paper/Case-study_2D-Simulated-data
https://github.com/gabriuma/basis_functions_approach_to_GP/tree/master/Paper/Case-study_2D-Simulated-data
https://github.com/gabriuma/basis_functions_approach_to_GP/tree/master/Paper/Case-study_2D-Simulated-data
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A.3 Case study VII: Leukemia data

The next example presents a survival analysis in acute myeloid leukemia (AML)
in adults, with data recorded between 1982 and 1998 in the North West Leukemia
Register in the United Kingdom. The data set consists of survival and censoring
times ti and censoring indicator zi (0 for observed and 1 for censored) for n = 1043
cases (i = 1, . . . , n). About 16% of cases were censored. Predictors are age (x1),
sex (x2), white blood cell (WBC) (x3) count at diagnosis with 1 unit = 50× 109/L,
and the Townsend deprivation index (TDI) (x4) which is a measure of deprivation
for district of residence. We denote xi = (xi1, xi2, xi3, xi4) ∈ IR4 as the vector of
predictor values for observation i.

As the WBC predictor values were strictly positive and highly skewed, logarithm
transformation is used for it. Continuous predictors were normalized to have zero
mean and unit standard deviation. We assume a log-normal observation model for
the observed survival time, ti, with a function of the predictors, f(xi) : IR4 → IR,
as the location parameter, and σ as the Gaussian noise:

p(ti) = LogNormal(ti | f(xi), σ
2).

We do not have a full observation model, as we do not have a model for the
censoring process. We use the complementary cumulative log-normal probability
distribution for the censored data conditionally on the censoring time ti:

p(yi > ti) =

∫ ∞
ti

LogNormal(yi | f(xi), σ
2) dyi = 1− Φ

(
log(yi)− f(xi)

σ

)
,

where yi > ti denotes the unobserved survival time.
The latent function f(·) is modeled as a Gaussian process, centered around a

linear model of the predictors x, and with a squared exponential covariance function
k. Due to the predictor sex (x2) being a categorical variable (‘1’ for female and ‘2’
for male), we apply indicator variable coding for the GP functions, in a similar way
such coding is applied in linear models [Gelman et al., 2020]. The latent function
f(x), besides of being centered around a linear model, is composed of a general
mean GP function, h(x), defined for all observations, plus a second GP function,
g(x), that only applies to one of the predictor levels (’male’ in this case) and is set
to zero otherwise:

h(x) ∼ GP
(
0, k(x,x′, θ0)

)
,

g(x) ∼ GP
(
0, k(x,x′, θ1)

)
,

f(x) = c+ βx+ h(x) + I[x2 = 2] g(x),
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where I [·] is an indicator function. Above, c and β are the intercept and vector of
coefficients, respectively, of the linear model. θ0 contains the hyperparameters α0

and `0 which are the marginal variance and lengthscale of the general mean GP
function, and θ1 contains the hyperparameters α1 and `1 which are the marginal
variance and lengthscale, respectively, of a GP function specific to the male sex
(x2 = 2). Scalar lengthscales, l0 and l1, are used in both multivariate covariance
functions, assuming isotropic functions.

Using the HSGP approximation, the functions f(x) and g(x) are approximated
as in equation (3.13) of Section 3, with theD-dimensional (with a scalar lengthscale)
squared exponential spectral density S as in equation (3.3) of Section 3, and the
multivariate eigenfunctions φj and the D-vector of eigenvalues λj as in equations
(3.11) and (3.12), respectively, of Section 3.

Figure A.8 shows estimated conditional comparison of each predictor with all
others fixed to their mean values. These posterior estimates correspond to the HSGP
model with m = 10 basis functions and c = 3 boundary factor. The model has
found smooth non-linear patterns and the right bottom subplot also shows that the
conditional comparison associated with WBC has an interaction with TDI.

Figure A.9 shows the root mean square error (RMSE) computed against the
regular GP, and the time of computation as a function of the number of univariate
basis functions m and boundary factor c. As the functions are smooth, a few
number of basis functions and a large boundary factor are required to obtain a good
approximation (Figure A.9-right); Small boundary factors are not allowed when
large lengthscales as can be seen in Figure 3.6. Increasing the boundary factor also
significantly increases the time of computation (Figure A.9-left).

The Stan model code for the exact GP and the approximate GP models of this
case study can be found at https://github.com/gabriuma/basis_functions_
approach_to_GP/tree/master/Paper/Case-study_Leukemia-data .

https://github.com/gabriuma/basis_functions_approach_to_GP/tree/master/Paper/Case-study_Leukemia-data
https://github.com/gabriuma/basis_functions_approach_to_GP/tree/master/Paper/Case-study_Leukemia-data
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Figure A.8: Expected lifetime conditional comparison for each predictor with other predictors fixed to
their mean values. The thick line in each graph is the posterior mean estimated using a HSGP model,
and the thin lines represent pointwise 95% credible intervals.
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in seconds per iteration (iteration of the HMC sampling method) as a function of the number of basis
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Appendix B

Approximation of the covariance
function using Hilbert space
methods

In this section, we briefly present a summary of the mathematical details of the
approximation of a stationary covariance function as a series expansion of eigen-
values and eigenfunctions of the Laplacian operator. This statement is basically
an extract of the work Solin and Särkkä [2020], where the authors fully develop
the mathematical theory behind the Hilbert Space approximation for stationary
covariance functions.

Associated to each covariance function k(x,x′) we can also define a covariance
operator K over a function f(x) as follows:

Kf(x) =

∫
k(x,x′)f(x′)dx′.

From the Bochner’s and Wiener-Khintchine theorem, the spectral density of
a stationary covariance function k(x,x′) = k(τ ), τ = (x − x′), is the Fourier
transform of the covariance function,

S(w) =

∫
k(τ )e−2πiwτ dτ ,

where w is in the frequency domain. The operator K will be translation invariant
if the covariance function is stationary. This allows for a Fourier representation of
the operator K as a transfer function which is the spectral density of the Gaussian
process. Thus, the spectral density S(w) also gives the approximate eigenvalues of

183



184 Appendix B. Hilbert space approximation to a covariance function

the operator K.
In the isotropic case S(w) = S(||w||) and assuming that the spectral den-

sity function S(·) is regular enough, then it can be represented as a polynomial
expansion:

S(||w||) = a0 + a1||w||2 + a2(||w||2)2 + a3(||w||2)3 + · · · . (B.1)

The Fourier transform of the Laplace operator ∇2 is −||w||, thus the Fourier
transform of S(||w||) is

K = a0 + a1(−∇2) + a2(−∇2)2 + a3(−∇2)3 + · · · , (B.2)

defining a pseudo-differential operator as a series of Laplace operators.
If the negative Laplace operator −∇2 is defined as the covariance operator of

the formal kernel l,

−∇2f(x) =

∫
l(x,x′)f(x′)dx′,

then the formal kernel can be represented as

l(x,x′) =
∑
j

λjφj(x)φj(x
′),

where {λj}∞j=1 and {φj(x)}∞j=1 are the set of eigenvalues and eigenvectors, respec-
tively, of the Laplacian operator. Namely, they satisfy the following eigenvalue
problem in the compact subset x ∈ Ω ⊂ IRD and with the Dirichlet boundary
condition (another boundary condition could be used as well):

−∇2φj(x) = λφj(x), x ∈ Ω

φj(x) = 0, x /∈ Ω.

Because −∇2 is a positive definite Hermitian operator, the set of eigenfunctions
φj(·) are orthonormal with respect to the inner product

< f, g >=

∫
Ω
f(x)g(x)d(x)

that is, ∫
Ω
φi(x)φj(x)d(x) = δij ,
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and all the eigenvalues λj are real and positive.
Due to normality of the basis of the representation of the formal kernel l(x,x′),

its formal powers s = 1, 2, . . . can be write as

l(x,x′)s =
∑
j

λsjφj(x)φj(x
′), (B.3)

which are again to be interpreted to mean that

(−∇2)sf(x) =

∫
ls(x,x′)f(x′)dx′.

This implies that we also have

[a0+a1(−∇2)+a2(−∇2)2+· · · ]f(x) =

∫
[a0+a1l

1(x,x′)+a2l
2(x,x′)+· · · ]f(x′)dx′.

Then, looking at equations (B.2) and (B.3), it can be concluded

k(x,x′) =
∑
j

[a0 + a1λ
1
j + a2λ

2
j + · · · ]φj(x)φj(x

′). (B.4)

By letting ||w||2 = λj the spectral density in Equation (B.1) becomes

S(
√
λj) = a0 + a1λj + a2λ

2
j + a3λ

3
j + · · · ,

and substituting in equation (B.4) then leads to the final searched approximation

k(x,x′) =
∑
j

S(
√
λj)φj(x)φj(x

′), (B.5)

where S(·) is the spectral density of the covariance function, λj is the jth eigenvalue
and φj(·) the eigenfunction of the Laplace operator in a given domain.





Appendix C

Resumen en Español / Summary
in Spanish

El paradigma bayesiano es un marco para realizar modelización e inferencia es-
tadı́stica de datos basado en la teorı́a de la probabilidad y el teorema de Bayes
[Bernardo and Smith, 2009, Jaynes, 2003, Jeffreys, 1961, Pearl, 1988]. En este
trabajo de tesis se trabajan algunos aspectos metodológicos y aplicaciones desde el
enfoque bayesiano. Concretamente se realizan dos contribuciones metodológicas,
por una parte, una contribución al problema del alto coste computacional que supone
hacer inferencia en modelos de procesos guassianos (GP) [Neal, 1999, Rasmussen
and Williams, 2006] cuando el número de observaciones es grande y, por otra
parte, el análisis del problema de obtener distribuciones posteriores excesivamente
suavizadas que puede surgir cuando se utilizan muchas observaciones de la derivada
para inducir monotonicidad en las funciones, especialmente con el uso de GPs
[Riihimäki and Vehtari, 2010]. Con respecto a las aplicaciones, se desarrollan dos
aplicaciones novedosas, basadas principalmente en el uso de modelos jerárquicos
bayesianos y GPs, y con el objetivo final de realizar alguna aportación a estos cam-
pos de aplicación. Por una parte, se realiza una aplicación sobre pinturas de arte
rupestre basada en la modelización y predicción espacio-temporal de observaciones
de microfading espectrometry (MFS) obtenidas sobre la superficie de las pinturas
rupestres [del Hoyo-Meléndez et al., 2015]. Y, en segundo lugar, se realiza una
aplicación sobre los sensores de imagen basada en la descomposición y estimación
de los componentes de ruido presentes en los sensores [Dierks, 2004, EMVA, 2010,
Healey and Kondepudy, 1994]. Además, vale la pena señalar que, aunque de una
forma más breve y centrada principalmente en el modelización estadı́stica, y desar-
rollada como un estudio de caso en el Capı́tulo 3 del texto principal de este trabajo
de tesis, se aborda una tarea clásica y de gran interés en el campo de la teledetección
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y del medio ambiente basada en la clasificación espacio-temporal de usos del suelo.
La modelización estadı́stica de datos es el marco apropiado para resolver muchos

de los problemas que involucran mediciones, especialmente aquellos problemas que
son complejos y con muchos datos [Bishop, 2006, Gelman et al., 2013]. Entre otros,
los problemas tı́picamente incluyen el descubrimiento de relaciones y/o patrones
en los datos, predicción de nuevas observaciones, clasificación de caracterı́sticas
relevantes, descomposición de fuentes de variabilidad o reconstrucción de valores
perdidos [Rasmussen and Williams, 2006]. Para abordar de forma adecuada estos
problemas, el proceso subyacente debe ser modelado con precisión, mediante
asunciones realistas sobre el modelo, sobre los parámetros de ese modelo y sobre sus
estructuras de dependencia. Además, los modelos deben tener buenas propiedades
de escalabilidad computacional y deben de ser computacionalmente eficientes, ya
que en muchos casos los conjuntos de datos suelen ser grandes, complejos y con
elevada carga computacional [Gelman et al., 2013].

El enfoque bayesiano usa y formula modelos probabilı́sticos siguiendo las reglas
de la teorı́a de probabilidad para construir modelos y hacer inferencias de forma
consistente a partir de datos [Bernardo and Smith, 2009]. La inferencia bayesiana
es el proceso de ajustar un modelo probabilı́stico a un conjunto de datos, realizar
estimaciones de los parámetros desconocidos de ese modelo, inferir cantidades
desconocidas del modelo y hacer predicciones para nuevas observaciones [Gelman
et al., 2013]. Distribuciones de probabilidad se especifican tanto para las cantidades
observadas como para las cantidades desconocidas. Las inferencias se realizan
a través de distribuciones de probabilidad que caracterizan completamente los
parámetros de localización y variabilidad (incertidumbre) de esas cantidades.

La principal limitación de la inferencia bayesiana es la existencia de soluciones
analı́ticas solo para modelos triviales, como los modelos gaussianos con distribu-
ciones a priori conjugadas, y es analı́ticamente intratable para los modelos más
comunes y relevantes [Gelman et al., 2013, Minka, 2000]. Para realizar inferencia
bayesiana existen diferentes métodos aproximados de computación, y con difer-
entes precisiones en la aproximación. Los métodos de muestreo, como Markov
chain Monte Carlo (MCMC) [Brooks et al., 2011] o Hamiltonian Monte Carlo
(HMC) [Neal et al., 2011], son los métodos más precisos y probablemente los más
utilizados. Sin embargo, los métodos de muestreo tienen el inconveniente de ser
computacionalmente muy exigentes, especialmente cuando el número de obser-
vaciones es elevado o cuando el número de parámetros desconocidos es también
elevado y con fuertes correlaciones entre ellos que causan una convergencia lenta,
o incluso inconsistente, de las cadenas de muestreo. Para aliviar estos problemas
es necesario re-parametrizar los modelos o formular modelos aproximados con
mejores propiedades de escalabilidad, con los que se obtengan resultados similares
[Gelman et al., 2013, Harva et al., 2008].
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Por otro lado, los procesos/problemas reales pueden ser complejos, por ejem-
plo, con dinámicas espacio-tiempo cambiantes o con discontinuidades. Construir
modelos flexibles e incluir información adicional a los modelos para hacerlos más
flexibles y realistas es esencial para modelizar las caracterı́sticas, mayormente com-
plejas, de los datos observados sobre problemas del mundo real [Alvarez et al.,
2013, Särkkä et al., 2018].

El análisis de datos funcionales se basa en la existencia de una descripción
funcional para el proceso en estudio y en que las observaciones son realizaciones
con ruido de esa función subyacente. Los GPs son distribuciones a priori flexibles
y no paramétricas para funciones multivariantes [Rasmussen and Williams, 2006].
Un modelo GP puede usarse para especificar las asunciones previas sobre la función
subyacente que describe las relaciones subyacentes entre las co-variables y la vari-
able respuesta. El modelo GP es un modelo totalmente no paramétrico, por lo que la
forma funcional está determinada por los datos en lugar de por formas paramétricas
o semiparamétricas. Además, se pueden especificar asunciones implı́citas sobre
el modelo GP, especificando sus funciones de media y covarianza. El elemento
principal de un modelo de GP es la función de covarianza que contiene las asun-
ciones a priori sobre las estructuras de correlación de los valores de la función,
determinando, por ejemplo, la suavidad/ondulación y la variabilidad de la función
[Rasmussen and Williams, 2006]. Debido a su generalidad y flexibilidad, los GPs
son de gran interés en machine learning y estadı́stica, con una amplia gama de
aplicaciones, como regresión y clasificación, estimación de densidad, reducción de
la dimensión y estadı́stica espacio-temporal [Neal, 1997, Rasmussen and Williams,
2006]. Entre otras, nos podemos encontrar aplicaciones en los campos de la epidemi-
ologı́a espacial [Banerjee et al., 2014, Diggle, 2013], robótica y control [Deisenroth
et al., 2015], procesamiento de señal [Särkkä et al., 2013], ası́ como también en
optimización bayesiana y métodos numéricos probabilı́sticos [Briol et al., 2015,
Hennig et al., 2015, Roberts, 2010].

La principal limitación en la implementación de modelos de GP en aplicaciones
prácticas es su alta demanda computacional, ya que en una implementación directa
es una operación de complejidad O(n3), siendo n el número de observaciones.
Este problema se incrementa cuando se realiza inferencia bayesiana a través de
métodos de muestreo, donde en cada paso del muestreo se necesita invertir la
matriz Gram de la función de covarianza, lo que supone una operación O(n3). Para
aliviar esta demanda computacional de los GPs, se han propuesto varios métodos
aproximados [Adler, 1981, Cramér and Leadbetter, 2013, Hensman et al., 2017,
Quiñonero-Candela and Rasmussen, 2005, Vanhatalo et al., 2010]. En este trabajo
de tesis hacemos una contribución a los métodos para GPs aproximados basados
en funciones base. Para ello, realizamos el estudio, análisis e implementación
práctica de un método para aproximar GPs recientemente desarrollado por [Solin
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and Särkkä, 2020] y basado en metodologı́a Hilbert space. Se analiza, en el Capı́tulo
3 del texto principal, el método en relación a sus factores principales, se hacen
recomendaciones para su uso y se proponen elementos de diagnóstico de la solución
obtenida. Además, se implementa la metodologı́a en la plataforma de programación
probabilı́stica Stan [Carpenter et al., 2017, Team, 2017].

Por otro lado, en los problemas de modelización y aprendizaje de funciones
estocásticas a partir de mediciones, a menudo se dispone de conocimiento a priori
y/o información adicional sobre la función, que se puede utilizar para mejorar
el resultado de la modelización. Esta información a veces se puede expresar en
términos de las derivadas de las funciones. De esta forma podemos controlar o
constrenir la dinámica de las funciones, por ejemplo, el aumento, disminución y
estabilización de la función [Sill and Abu-Mostafa, 1996]. En particular, dado
que la derivada es un operador lineal, la derivada de un GP sigue siendo un GP,
ası́ como la derivada de un modelo lineal paramétrico o semiparamétrico también
sigue siendo un modelo lineal [Rasmussen, 2003, Solak et al., 2002]. Esto permite
incluir información de la derivada, modelizando de forma conjunta el proceso
regular y su proceso derivado [Riihimäki and Vehtari, 2010, Solak et al., 2002].
Sin embargo, pueden surgir algunos problemas de inferencia con este enfoque de
usar observaciones de la derivada para inducir monotonicidad en las funciones, es
decir, inducir que las funciones sean monotónicamente crecientes o decrecientes.
Concretamente, si se usan muchas observaciones de la derivada para inducir la
monotonicidad, puede producir que la estimación de las funciones posteriores esté
excesivamente suavizada. En este trabajo de tesis se ilustra el uso de observaciones
de la derivada en la modelización y se hace una contribución analizando este
problema.

Aunque la inferencia bayesiana está consolidada en muchos campos cientı́ficos
como la epidemiologı́a, la informática, la robótica y la astronomı́a, todavı́a hay
muchas otras áreas en las que este marco totalmente probabilı́stico para el análisis e
inferencia de datos es desconocido o no se ha utilizado todavı́a. Algunos de estos
campos de aplicación son los que mencionamos al comienzo de esta introducción.
En el primer campo de aplicación, referente a pinturas de arte rupestre, se realiza un
análisis MFS de especı́menes (pinturas) en el campo del patrimonio cultural [del
Hoyo-Meléndez et al., 2015, Dı́ez-Herrero et al., 2009], donde el uso de modelos
estadı́sticos avanzados y flexibles es inusual, y en donde el enfoque bayesiano es
desconocido o todavı́a no ha sido aplicado. Se proponen dos modelos diferentes,
un modelo de GP espacio-temporal y un modelo basado en series temporales
correladas espacialmente [Baladandayuthapani et al., 2008, Ruppert et al., 2003].
En ambos modelos se propone la consideración de constreñimientos basados en
observaciones de gradiente y monotonicidad de la función [Riihimäki and Vehtari,
2010, Solak et al., 2002]. El objetivo de la aplicación es predecir observaciones
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MFS, que representan una posible degradación del color con el tiempo, para el
conjunto de localizaciones no observadas en la superficie de las pinturas de arte
rupestre. En segundo lugar, en la aplicación al ruido de los sensores de imagen
[Dierks, 2004, EMVA, 2010, Healey and Kondepudy, 1994], trabajamos en el
campo de calibración del sensores de imagen en el que la metodologı́a bayesiana es
básicamente desconocida en términos de su aplicabilidad actual. Proponemos una
novedosa aplicación de un modelo jerárquico bayesiano para la descomposición y
caracterización de los diferentes componentes de ruido involucradas en el proceso de
captura de imágenes. Y por último, en el campo de la teledetección, la mayorı́a de los
modelos utilizados para la clasificación se basan en modelización estadı́stica clásica
o redes neuronales [Castelluccio et al., 2015, Luus et al., 2015], que dificilmente
pueden modelar de una forma rigurosa posibles estructuras espacio-temporales
presentes en los datos. Además, los conjuntos de datos suelen ser muy grandes,
lo que impide el uso de los métodos de computación basados en muestreo. Los
métodos de muestreo permiten formular modelos más flexibles y realizan inferencias
más precisas. Por lo tanto, en este trabajo de tesis, se aborda la tarea de clasificación
de usos del suelo formulando un modelo GP espacio-temporal de clasificación,
y para ello se usa el modelo GP aproximado introducido en la Section C.1, que
permite tratar con conjuntos de datos mucho más grandes que los GPs exactos.

Una de las principales ventajas del enfoque bayesiano es la total propagación de
incertidumbre a través del modelo probabilı́stico [Gelman et al., 2013], y ası́ a todas
las cantidades desconocidas en el modelo. Además, el marco bayesiano utiliza la
propiedad de especificar dependencias condicionales entre las cantidades y construir
modelos jerárquicos, permitiendo ası́ definir modelos potentes con estructuras
complejas. La modelización jerárquica bayesiana es también un excelente ejemplo
de propagación de la incertidumbre entre las diferentes cantidades [Gelman and
Hill, 2006, Ntzoufras, 2011].

Los modelos considerados en este trabajo de tesis pertenecen a la clase de
modelos jerárquicos, ya que existen niveles de dependencias entre los parámetros
de interés. Estos modelos son:

- Modelos de GP para regresión y clasificación. Estos modelos se utilizan en la
aplicación sobre las pinturas de arte rupestre y en la aplicación de la clasificación
espacio-temporal de usos del suelo, respectivamente.

- Un modelo lineal aditivo multinivel de efectos aleatorios. Este modelo se utiliza
en la aplicación para la descomposición del ruido en sensores de imagen.

- Un modelo basado en series temporales espacialmente correlacionadas, donde
se utilizan funciones spline para modelar las series temporales. Este modelo se
utiliza en la aplicación de pinturas de arte rupestre.
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C.1 Método Hilbert space para aproximar procesos gaus-
sianos (Chapter 3)

Los GPs son modelos estadı́sticos flexibles para definir distribuciones de probabili-
dad sobre funciones no lineales y multidimensionales [Neal, 1997, Rasmussen and
Williams, 2006]. Su nombre proviene del hecho de que cualquier conjunto finito de
valores de la función se distribuye conjuntamente como una normal multivariante.
El elemento principal de un GP es la función de covarianza que define la estructura
de dependencia entre los valores de función y permite modelar efectos no lineales.
Se pueden combinar diferentes tipos de funciones de covarianza para aumentar
aún más la flexibilidad del modelo. Sin embargo, la función de covarianza es la
principal limitación computacional del modelo debido a la necesidad de invertir
su matriz varianzas-covarianzas para optimizar sus hiperparámetros. Esto limita
su aplicación a conjuntos de datos bastante pequeños de unas pocas decenas de
miles de observaciones como máximo. Se han propuesto varios métodos para aliviar
este problema computacional, como los GPs dispersos [Quiñonero-Candela and
Rasmussen, 2005, Rasmussen and Williams, 2006], las funciones de covarianza
con soporte compacto [Vanhatalo et al., 2010], la inferencia variacional para GPs
[Hensman et al., 2017] y la aproximación de GPs mediante funciones base [Adler,
1981, Cramér and Leadbetter, 2013].

En este estudio, se propone un marco aproximado para acelerar la inferencia
de los procesos gaussianos. El método se basa en el método propuesto por Solin
and Särkkä [2020] para la aproximación de funciones de covarinaza estacionarias
mediante funciones base en forma de funciones propias de Laplace. Las aproxima-
ciones basadas en funciones base se comportan computacionalmente como modelos
lineales, lo cual es una muy buena propiedad para los entornos de programacián
probabilı́stica modular donde existe un gran beneficio si los cálculos especı́ficos
son simples, lo que facilita su uso como bloques en modelos más complejos y como
funciones latentes en modelos de observación no gaussianos.

Si bien en la publicación de Solin and Särkkä [2020] se desarrolla comple-
tamente la teorı́a matemática detrás de esta aproximación especı́fica de GPs, es
necesario realizar un trabajo complementario para su implementación práctica en
entornos de programación probabilı́stica. En su trabajo no se describe y analiza
suficientemente la relación entre los factores principales del método: los lı́mites
del dominio (o espacio de predicción deseado o condición de frontera), el número
de funciones base y las propiedades de la relación funcional entre covariables y
la variable respuesta (suavidad o aspereza de la función que queremos estimar).
La aplicabilidad y la precisión del método están directamente relacionados con el
número de funciones base y los lı́mites del dominio. Al mismo tiempo, los valores
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válidos y deseables para estos dos factores dependen de la suavidad o aspereza de la
función que se va a aprender (la no linealidad de la función que se quiere estimar).
El tiempo de computación depende principalmente del número de funciones base.

En este estudio analizamos en detalle el rendimiento y la precisión del método
en relación con estos factores clave: el número de funciones base, el espacio de
predicción deseado y la suavidad o aspereza de la función. Proporcionamos gráficos
intuitivos y recomendaciones prácticas para la elección de los valores de estos
factores, claves para mejorar el rendimiento computacional mientras se mantiene
una buena aproximación. También se propone el diagnóstico de si los valores
elegidos para el número de funciones base y el lı́mite del dominio son adecuados
para conseguir una buena aproximación. Además, en el presente trabajo se realiza
una descripción de la generalización del método al caso multidimensional.

El enfoque se implementa en un marco totalmente probabilı́stico y para el
software probabilı́stico de programación Stan [Carpenter et al., 2017]. Este trabajo
ha servido de base para la posterior implementación del método en el paquete brms
[Bürkner, 2017] del software R [R Core Team, 2014]. En el texto principal del
trabajo de tesis se desarrollan varios ejemplos, con conjuntos de datos simulados
y reales, ilustrativos del rendimiento y la aplicabilidad del método. Los códigos
de programación de los modelos en Stan para cada uno de los casos de estudio se
pueden encontrar en el siguiente link:

https://github.com/gabriuma/Doctoral_thesis

Nuestro punto de partida para realizar el análisis del método es la aproxi-
maciónón de una función de covarianza estacionaria como un desarrollo en serie de
los valores propios y funciones propias del operador laplaciano obtenido por Solin
and Särkkä [2020].

En primer lugar nos centramos en el caso unidimensional (es decir, el modelo GP
con una sola variable independiente o covariable) tal que Ω ∈ [−L,L] ⊂ IR, donde
L es un valor real positivo al que también nos referimos como condición de frontera.
Debido a que Ω describe el intervalo en el cual las aproximaciones son válidas,
L juega un papel crı́tico en la precisión de la aproximación. L una extensión del
dominio de predicción deseado Ψ. Sin pérdida de generalidad, podemos suponer que
Ψ es simétrico alrededor de cero, es decir Ψ = [−S, S] ⊂ Ω, donde S (para S > 0)
representa el rango medio del dominio de predicción deseado. A continuación
definimos el factor de extensión proporcional c (para c ≥ 1) como c = L

S .
De esta forma, la aproximación de la función de covarianza estacionaria con

valores de la variable independiente {x, x′} ∈ Ω se puede definir como [Solin and
Särkkä, 2020]:

k(x, x′) =
∞∑
j=1

Sθ(
√
λj)φj(x)φj(x

′), (C.1)
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donde Sθ es la densidad espectral de la función de covarianza estacionaria k (ver la
Sección 3.4.1 del texto principal) y θ es el conjunto de hiperparámetros de k. Los
términos {λj}∞j=1 y {φj(x)}∞j=1 son los conjuntos de valores propios y funciones
propias, respectivamente, del operador laplaciano en el dominio dado Ω.

Como resultado, el modelo para f se puede escribir como:

f(x) ≈
m∑
j

(
Sθ(
√
λj)
)1/2

φj(x)βj , (C.2)

donde βj ∼ Normal(0, 1). Por lo tanto, la aproximación de la función f resulta
ser un desarrollo en serie finito de funciones base (usando las funciones propias φj
del operador de Laplace), escaladas por la raı́z cuadrada de los valores de densidad
espectral. Una propiedad clave de esta aproximación es que las funciones propias
φj no dependen de los hiperparámetros de covarianza θ y, por lo tanto, solo deben
calcularse una vez, con un coste computacional de O(mn). En cambio, la única
dependencia de θ es a través de la densidad espectral Sθ. Los valores propios
λj aumentan monotónicamente con j, y Sθ desciende rápidamente a cero para
funciones de covarianza delimitadas. Por lo tanto, se puede esperar una buena
aproximación de la ecuación (C.2) para un número finito de términos de m en la
serie siempre que los valores de entrada xi no estén demasiado cerca de los lı́mites
−L y L de Ω. El coste computacional al optimizar los hiperparámetros de la función
de covarianza es una operación O(nm+m), para cada paso del optimizador, donde
n es el número de observaciones y m el número de funciones base.

La parametrización de la ecuación (C.2) es una parametrización no centrada
con distribución previa independiente en βj , lo que facilita la inferencia posterior,
reduciendo la dependencia posterior entre los parámetros que representan la función
estimada y los hiperparámetros de la función de covarianza, lo que mejora aún
más la eficiencia del algoritmo MCMC. Además, todas las dependencias de los
hiperparámetros de la función covarianza son a través de la distribución previa de
los pesos de la regresión βj . La distribución posterior de los parámetros p(β|y) es
m-dimensional, donde m es mucho más pequeño que el número de observaciones n.
Por lo tanto, el espacio de parámetros se reduce considerablemente y esto hace que
la inferencia sea más rápida, especialmente cuando se utilizan métodos de muestreo.

Además, existe una relación clara entre el número de funciones basem, el factor
de frontera c y el parámetro lengthscale (`) de la aproximación. Aquı́ cabe decir
que el parámetro lengthscale de la función de covarianza caracteriza, en última
instancia, la no linealidad de las funciones posterior. Las Figuras 3.6 y 3.7 del
Capı́tulo 3 del texto principal muestran cómo estos tres factores interactúan entre sı́
en relación a la obtención de una buena aproximación, para el caso de un GP con
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función de covarianza exponencial cuadrática y una función de covarianza Matérn
(ν = 3/2), respectivamente. Más concretamente, la Figura 3.6 muestra el mı́nimo
m requerido para lograr una buena aproximación en función del lenghtscale ` y
el factor de frontera c, para un modelo GP dado (con una función de covarianza
exponencial cuadrática). De manera similar, la Figura 3.7 para el caso de una
función de covarianza Matérn (ν = 3/2).

Alternativamente, estas figuras se pueden interpretar como el mı́nimo valor
de c que debemos usar para unos valores de ` y m dados. Por supuesto, también
se pueden interpretar como el mı́nimo valor de ` para el que se puede conseguir
una buena aproximación dados m y c. A continuación se muestran las principales
conclusiones alcanzadas:

• A valores más altos de `, los valores requeridos de c y m para conseguir una
buena aproximación disminuyen.

• A valores más bajos de c, se pueden usar valores más bajos de m y se deben
aproximar funciones con ` más bajos.

• Para un valor dado de `, existe un mı́nimo c bajo el cual una buena aproxi-
mación no se puede conseguir nunca independientemente de m. Es decir, los
valores válidos de c están restringidos en función de `.

La información que nos proporcionan las Figuras 3.6 y 3.7 del Capı́tulo 3
del texto principal, sirve como herramienta de diagnóstico para determinar si la
precisión obtenida es aceptable. El parámetro lengthscale (`) controla la ondulación
o no linealidad de la relación funcional, y ésta influye fuertemente en la dificultad de
hacer inferencia sobre la función a partir de los datos. Por lo tanto, básicamente, si
la estimación del parámetro ` es precisa, se puede esperar que la aproximación de las
funciones posterior también lo sea. Por lo tanto, dados unos valores preespecificados
de m y c, podemos verificar si la estimación ˆ̀de `, proporcionada por el modelo
aproximado, excede o no el lengthscale mı́nimo proporcionado en la Figura 3.6 del
Capı́tulo 3 del texto principal. Si ˆ̀ excede el lengthscale mı́nimo recomendado,
la aproximación debe ser lo suficientemente buena. Sin embargo, si no lo excede,
la aproximación puede ser inexacta y m debe aumentarse o c disminuirse. El
diagnóstico puede usarse de una forma iterativa.

Proceso gaussiano de bajo rango con función de covarianza periódica (Section
3.7)

Un modelo GP con una función de covarianza periódica no encaja en el marco de
la aproximación cubierto hasta ahora en este estudio. Sin embargo, si que existe
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una representación de bajo rango para una función de covarianza periódica. En
la Sección 3.7 del texto principal, damos una breve presentación de los resultados
de Solin and Särkkä [2014] donde los autores obtienen una representación lineal
aproximada de una función de covarianza exponencial cuadrática periódica basada
en un desarrollo en serie de resonadores estocásticos. Seguidamente, analizamos la
precisión de la aproximación y, finalmente, se deriva el modelo GP con la función
de covarianza exponencial cuadrática periódica aproximada.

C.2 Observaciones adicionales (virtuales) de la derivada
para inducir monoticidad y gradiente a funciones (Chap-
ter 4)

En el capı́tulo 4 del texto principal se ilustra el uso de información de la derivada
mediante observaciones adicionales (virtuales) [Riihimäki and Vehtari, 2010], y se
realiza para dos modelos diferentes: un modelo GP [Neal, 1999, Rasmussen and
Williams, 2006] y un modelo semiparamétrico basado en splines [Ruppert et al.,
2003, Wood, 2017]. En primer lugar, se obtiene la derivada del modelo y posterior-
mente se modeliza conjuntamente el proceso regular y la derivada. Finalmente, se
analizan los problemas que pueden surgir cuando se usan observaciones del signo
de la derivada para inducir monotonicidad en las funciones.

El uso de observaciones adicionales o virtuales de la derivada parcial para
inducir monotonicidad en las funciones [Rasmussen, 2003, Riihimäki and Vehtari,
2010, Solak et al., 2002] tiene algunas propiedades interesantes, pero también tiene
algunos problemas. El uso de observaciones virtuales permite imponer que la
función sea monotónicamente creciente o decreciente en función de la covariable.
Además, eligiendo los puntos de manera apropiada, se puede imponer que la función
sea unimodal con respecto a una covariable [Andersen et al., 2017] y/o un determi-
nado rango. Sin embargo, inducir monotonicidad a través de observaciones virtuales
puede acarrear algunos problemas prácticos, ya que la información de monotonici-
dad se incluye en la verosimilitud del modelo a través de observaciones virtuales en
lugar de en la distribución previa del modelo. Esto hace que la distribución posterior
de la función dependa del número y localización de las observaciones virtuales.
Además, este enfoque no garantiza que las funciones estocásticas sean totalmente
monótonas, ni incluso monótonas en media.

En la Figura 4.2-(a), para el caso de usar GPs, y en la Figura 4.3-(a), para
el caso de usar splines, del Capı́tulo 4 del texto principal, se puede ver cómo
la distribución posterior de la función depende del número y la ubicación de las
observaciones virtuales, es decir, se obtienen diferentes funciones si se usa diferente
número de observaciones virtuales. Además, el que las funciones posteriores sean
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monótonas no está garantizado, especialmente cuando el número de observaciones
virtuales es demasiado pequeño. También, las funciones posteriores tienden a
suavizarse demasiado a medida que el número de observaciones virtuales aumenta,
especialmente cuando se usa un modelo GP para f (Figura 4.2-(a)). Sin embargo, en
el caso del uso de splines, las funciones posteriores no parecen estar tan suavizadas
y parecen ajustarse mejor a la dinámica del proceso (Figura 4.3-(a)). La correlación
entre pares de valores de la derivada es mayor para el uso de un modelo GP, lo que
causa un mayor suavizado de las funciones posteriores.

En funciones monótonas, los valores de función en dos puntos arbitrarios (x, x′)
nunca pueden ser independientes: x′ > x implica f(x′) ≥ f(x). Cuando se usan
observaciones virtuales para inducir monotonicidad, se incumple el supuesto de
independencia entre los valores de función f(x) y f(x′). En las funciones GP,
además, las funciones monótonas no tienen un lengthscale caracterı́stico y, como los
valores de la función en los puntos virtuales no pueden ser independientes, la escala
de longitud tiende a aumentar y las funciones posteriores tienden a ser más suaves y
planas, a medida que se incluyen más observaciones virtuales en el modelo.

Sin embargo, las funciones monótonas con un modelo GP para la función
f proporcionan un modelo de extrapolación más fiable, ya que tienen un sesgo
inductivo más fuerte que el modelo sin observaciones virtuales de monotonicidad,
como puede verse en la figura 4.2-(a) del capı́tulo 4 del texto principal. Por otro lado,
las funciones monótonas con un modelo de splines para la función f extrapolan
considerablemente peor, como puede verse en la figura 4.3-(a) del capı́tulo 4 del
texto principal.

Es recomendable colocar apropiadamente las observaciones virtuales de mono-
tonicidad, y también se recomienda usar la menor cantidad posible de observaciones
virtuales, siempre y cuando la función posterior sea monotónica. Estas consid-
eraciones se aplican a las funciones monótonas, tanto con modelos GP, como con
modelos splines, para la función latente f , aunque es extremadamente recomendable
para los modelos GP.

C.3 Aplicación a pinturas rupestres: Modelos con infor-
mación de la derivada para modelizar medidas de mi-
crofading espectrometry (Chapter 5)

En este capı́tulo se lleva a cabo una aplicación basada en la modelización y la
predicción de observaciones de series temporales de degradación del color (medidas
MFS) [Columbia et al., 2013, Ford, 2011, Ford and Druzik, 2013, Tse et al., 2010]
para puntos no observados en la superficie de las pinturas rupestres. La princi-
pal motivación de este estudio es construir un modelo que explote al máximo la
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estructura de correlación de los datos y ası́ hacer predicciones más útiles, en un
escenario donde el conjunto de observaciones de muestreo es pequeño, como es el
caso del conjunto de observaciones MFS en pinturas rupestres [del Hoyo-Meléndez
et al., 2015]. De hecho, en el presente caso de estudio solo se disponen de obser-
vaciones MFS para 13 puntos de la superficie. Un modelo GP multivariante es la
forma más natural de lograr este objetivo para este tipo de datos. Sin embargo,
en este estudio, además de los GPs [Neal, 1999, Rasmussen and Williams, 2006],
también formulamos un modelo de series de temporales correladas espacialmente
[Baladandayuthapani et al., 2008].

Además de las observaciones regulares, queremos incluir observaciones de la
derivada parcial y añadir restricciones de primer orden en la modelización [Ri-
ihimäki and Vehtari, 2010, Solak et al., 2002]. Se espera que la degradación del
color no disminuya en función del tiempo y se estabilice a largo plazo [Feller
et al., 1986, Giles, 1965, Giles et al., 1968, Johnston-Feller et al., 1984]. Estas
propiedades pueden expresarse en términos de la derivada parcial de primer orden
de las funciones.

La figura 5.1-izquierda del Capı́tulo 5 del texto principal muestra los puntos
observados en el área de estudio y, en la Figura 5.1-derecha, del Capı́tulo 5 del texto
principal, podemos ver las series temporales de observaciones de degradación del
color en cada uno de los puntos. De esta forma, estas observaciones pueden verse
como observaciones de un proceso estocástico espacio-temporal.

En la Figura 5.3, para GPs, y en la Figura 5.8, para splines, del Capı́tulo
5 del texto principal, las distribuciones predictivas (la media y los intervalos de
credibilidad al 95%), evaluadas en los puntos de muestreo, se representan en función
del tiempo y para cada uno de los puntos espaciales. Además, las medias predictivas
obtenidas mediante un modelo sin información de la derivada también se representan
para su comparación.

En la Figura 5.5, para GPs, y en la figura 5.11, para splines, del Capı́tulo
5 del texto principal, se muestran las distribuciones predictivas de nuevas series
temporales a partir de un proceso de validación cruzada, basado en quitar la serie
temporal completa para una ubicación especı́fica fuera del conjunto de datos de
ajuste en cada iteración del proceso de validación cruzada. Las medias predictivas y
los intervalos de credibilidad tanto para el modelo con información de la derivada
como para el modelo sin información derivada se representan para su comparación.
Los datos observados de las series temporales en las ubicaciones predichas también
se representan para evaluar visualmente la precisión de las predicciones.

La consideración de un conjunto virtual de observaciones de valor cero en
los puntos iniciales de las series temporales, {yit = 0 : t = 1}, y un modelo de
observación con ausencia de ruido para este conjunto virtual de observaciones, ha
forzado que las distribuciones predictivas valgan cero en esos puntos.
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Inducir monotonicidad mediante observaciones virtuales del signo de la derivada
parcial con valor 1 en los puntos de tiempo t = 7 y t = 10 de las series temporales,
{sign(∂fit∂t ) = 1 : t ∈ {7, 10}}, y un modelo de observación Probit para estas
observaciones, ha sido suficiente para forzar que el conjunto de la serie temporal
sea monótona, evitando ası́ el efecto de un suavizado excesivo de las funciones
posterior debido al uso de muchas observaciones virtuales, tal y como se estudió en
el Capı́tulo 4 del texto principal. Aquı́ cabe decir que el valor 1 para una observación
del signo de la derivada, indica que la derivada en ese punto debe ser positiva.

Del mismo modo, la consideración de observaciones adicionales del valor de la
derivada parcial igual a cero en los puntos finales de la serie temporal, {∂fit∂t = 0 :
t = 11}, y un modelo de observación con ausencia de ruido para estas observaciones,
ha conseguido que las series temporales se estabilicen al final.

Utilizando modelos sin información de la derivada, no se asegura monotonicidad
y estabilización a largo plazo de las curvas. Por lo tanto, el modelo propuesto
con información derivada consigue un mejor ajuste y mejores predicciones de la
dinámica de las funciones, mejorando ası́ la interpretabilidad del modelo.

Los resultados del error cuadrático medio (MSE) [Bishop, 2006] y el
logaritmo de la densidad predictiva esperada (ELPD) [Andersen et al., 2019, Ve-
htari and Ojanen, 2012] confirman que el modelo con derivadas produce valores
predichos más cercanos a los observados tanto en media como en densidad de
probabilidad, respectivamente.

La equivalencia real en años de los puntos de tiempo (t = 1, . . . , 11) utilizados
en las mediciones de MFS depende de las horas y la intensidad de la luz solar que
afecta a las pinturas diariamente. Sin un control adecuado de la luz, esta equivalencia
es difı́cil de obtener. Aunque este aspecto de la investigación no se consideró en
el estudio actual, el trabajo futuro incluirá una evaluación de la ubicación y la
orientación geográfica de las pinturas junto con el monitoreo a largo plazo de la luz
y la radiación UV con el objetivo de estimar la escala real de tiempo en años.

C.4 Aplicación al sensor de imagen: Modelización jerárquica
para estimar el ruido en sensores de imagen (Chapter
6)

En el presente estudio, se presenta un enfoque bayesiano en el campo de la car-
acterización del ruido en sensores de imágenes. Un modelo probabilı́stico basado
en el modelo generador de los datos se ajusta a un conjunto de datos provenientes
de la adquisición de series temporales de imágenes con diferentes reflectancias y
longitudes de onda en condiciones de iluminación uniformes.

Siguiendo a De-Jiang and Tao [2011], Reibel et al. [2003] y Dierks [2004], se
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puede generar un modelo simple de generación de los datos, donde una observación
individual yit consiste en el valor digital de imagen registrado en el pixel i y en la
imagen correspondiente al tiempo t, en función de la reflectancia r del objeto y la
longitud de onda w de la luz, tal que:

yit(r, w) = µK ·µe(r, w) + dKi ·µe(r, w) + µK ·deit(r, w)

+µK ·Di + µK ·Ct(r, w) + µK ·Rit +Ait, (C.3)

donde dKi es el efecto la falta de uniformidad del registro de fotones de luz en
los pı́xeles (PRNU) [Dierks, 2004, Gow et al., 2007]; deit(r, w) es el número de
electrones registrado; µK es la media de la variable dKi; µe es la media de los
electrones; Di son los ’dark electrons’ generados dentro del ith pixel [De-Jiang
and Tao, 2011, Dierks, 2004]; Ct(r, w) es el ’current noie’ [De-Jiang and Tao,
2011, Dierks, 2004, Gow et al., 2007, Reibel et al., 2003]; Rit es el ’reset noise’;
y finalmente Ait contine los efectos de amplificaión, el ’flicker noie’ (1/f ) [Han
et al., 2011] y cuantificacion [Dierks, 2004].

La figura 6.1, del Capı́tulo 6 del texto principal, muestra el diagrama de flujo
detallado del modelo de detección de imágenes que incluye todos los parámetros que
se han definido anteriormente. Este diagrama de flujo se ha generado considerando
valores especı́ficos de reflectancia r y longitud de onda w.

A continuación en las ecuaciones (C.4) y (C.5) proponemos un modelo jerárquico
Bayesiano [Gelman et al., 2013, Gelman and Hill, 2006, Ntzoufras, 2011] para
aproximar y estimar el modelo teórico de la ecuación (C.3). El modelo propuesto se
trata de un modelo de observación normal para la colección the observaciones y,
dependiente de una función media subyacente f y ruido estándar σ,

p(y|f) = N (y|f , σ2I), (C.4)

donde I es la matriz identidad. La función media f es una función aditiva de efectos
aleatorios anidados dentro de los efectos fijos de las variables categóricas r y w.
Por lo tanto, para la observación (i, t), la función subyacente toma la forma:

fit(r, w) = µ0(r, w) + Si(r, w) + Fi + Tt(r, w) + Pit(r, w) (C.5)

donde i indica el pı́xel del sensor de imagen (i = 1, ..., N ), t indica una imagen en
una exposición dada (t = 1, ..., T ), r denota el nivel de reflectancia (r = 1, ..., R) y
w denota la longitud de onda (w = 1, ...,W ). r y w son variables categóricas.

En la Figura 6.3, del Capı́tulo 6 del texto principal, se representa el grafo del
modelo bayesiano propuesto.

En este estudio, el interés se centra en analizar las estimaciones de las desvia-
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ciones estándar σS, σF , σT , σP y σ, de los parámetros S, F , T , P y residuales,
que son las cantidades que nos permiten caracterizar el ruido medio causado por
cada uno de estos parámetros. Hacemos notar que las unidades de los efectos
estimados son valores digitales de imágenes.

La figura 6.4, del Capı́tulo 6 del texto principal, muestra los intervalos de
credibilidad al 95% para los parámetros σS, σF , σT , σP y σ. Se representan en
función de los efectos medios de las variables de reflectancia y longitud de onda,
recogidos en el parámetro µ0(r, w) del modelo propuesto.

Debido a la dependencia de los parámetros, σP (’photon noise’), σT (’current
noise’) y σS (PRNU), con el nivel de reflectancia, como puede observarse en las
Figuras 6.4 (a), 6.4 (c) y 6.4 (d), del Capı́tulo 6 del texto principal, es necesario
considerar el cálculo de los coeficientes de variación para estos parámetros. El
coeficiente de variación (CV ) es la relación entre la desviación estándar y la
media del componente considerado (CV = σ/µ), es decir, la inversa del ratio
señal/ruido. De hecho, el coeficiente de variación define la calidad del sensor como
la capacidad discriminatoria de la señal. Las medias generales están representados
por el parámtero µ0.

La figura 6.5, del Capı́tulo 6 del texto principal, muestra los coeficientes de
variación de los parámetros S (CVS), T (CVT ) y P (CVP ).

Los coeficientes de variación son mayores a reflectancias bajas que a reflectan-
cias altas, debido al efecto del ’photon noise’, como se puede ver en la Figura
6.5(c) del Capı́tulo 6 del texto principal. Los efectos del ’photon noise’ disminuyen
de forma inversamente proporcional a la raı́z cuadrada de la reflectancia, desde
aproximadamente el 3% de la señal registrada a reflectancias muy bajas, hasta el
0,4% a reflectancias altas. Por otro lado, los efectos del ’current noise’ (Figura
6.5(a)) y PRNU (Figura 6.5(b)) del Capı́tulo 6 del texto principal, son prácticamente
constante de aproximadamente 1% y 0.4% de la señal registrada, respectivamente.
Sin embargo, los efectos son significativamente más altos en reflectancias cercanas
a cero para todos los parámetros de ruido, como se puede ver en las Figuras 6.5(a),
6.5(b) y 6.5(c) del Capı́tulo 6 del texto principal. Esto indica que son preferibles
valores de intensidad de imagen altos a valores de intensidad de imagen bajos en
aplicaciones como, por ejemplo, tareas de reconocimiento de patrones de imagen.

Los valores LOO-PIT [Gelfand et al., 1992, Gelman et al., 2013] se distribuyen
uniformemente, como puede apreciarse en la Figura 6.7(a) del Capı́tulo 6 del texto
principal, lo que indica que la distribuciones predictivas están bien calibradas con
respecto a los datos observados. El MSE [Bishop, 2006] resulta de 3.55 valores
digitales, lo que indica precisión en las predicciones.

El presente estudio tiene como objetivo mostrar la fiabilidad y precisión de la
modelización e inferencia bayesiana, por su capacidad de definir distribuciones de
probabilidad a priori para los parámetros e inferir distribuciones de probabilidad
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posterior conjunta para los parámetros de interés [Gelman et al., 2013]. Esto difiere
y contrasta con las definiciones de efectos fijos y estimaciones puntuales de los
métodos clásicos [Bishop, 2006, Browne et al., 2006, Raiko et al., 2006].

Además, la capacidad inherente de propagar la incertidumbre entre las can-
tidades del enfoque bayesiano [Brown and Prescott, 2014, Gelman et al., 2013,
Gelman and Hill, 2006], contrasta con los métodos clásicos y, en particular, con
la rigidez y la alta propagación de error del cálculo de las estimaciones puntuales,
anidadas e independientes del método de transferencia de fotones [De-Jiang and
Tao, 2011, Dierks, 2004, Reibel et al., 2003] comúnmente utilizado para estimar el
ruido del sensor.

Las propiedades de flexibilidad y precisión de los modelos jerárquicos bayesianos
[Coley et al., 2017, Dai et al., 2017] son prometedoras en este campo, y abren la
puerta a formular nuevos modelos de generación de datos donde se puedan investigar
nuevos efectos.

C.5 Conclusión

La motivación de este trabajo de tesis ha sido doble. Por un lado, contribuir a dos
aspectos metodológicos en los GPs y, por otro lado, utilizar modelos estadı́sticos
bayesianos avanzados para resolver tres aplicaciones del mundo real y, en última
instancia, aportar nuevo conocimiento sobre estos campos aplicación.

Con respecto a las contribuciones metodológicas, se ha tratado el análisis y la
implementación práctica de un modelo de GP aproximado de bajo rango, con el
propósito de analizar las relaciones existentes entre los factores clave del método,
hacer recomendaciones para su uso y proponer herramientas de diagnóstico. Nos
centramos en su implementación en un marco de programación probabilı́stica y en
el uso de métodos de muestreo computacional. Demostramos la aplicabilidad y
la implementación de la metodologı́a, la reducción del coste computacional y la
mejora en la eficiencia del muestreo. El principal inconveniente de este enfoque
es que su complejidad computacional escala exponencialmente con el número de
covariables. Por lo tanto, en la práctica, el uso de más de tres covariables hace que
la computación de este método empiece a ser demasiado costosa. En estos casos,
proponemos utilizar el modelo GP aproximado como componentes individuales
en un esquema de modelización aditiva. Además, tratamos el análisis del efecto
de obtener un suavizado excesivo en las funciones posteriores, causado por el uso
de muchas observaciones virtuales de la derivada para inducir monotonicidad en
las funciones, especialmente en funciones de GP. Por otro lado, demostramos que
si la función es relativamente suave, este problema puede evitarse en la práctica
eligiendo menos observaciones virtuales y localizándolas adecuadamente.
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Para resolver las aplicaciones planteadas en este trabajo de tesis, ha sido nece-
sario de algunas caracterı́sticas de modelización avanzadas. Por ejemplo, se requerı́a
una modelización flexible para controlar o restringir adecuadamente la dinámica
de las funciones predichas. Se buscaron modelos que exploten al máximo la es-
tructura de correlación de los datos para realizar generalizaciones fiables y precisas
de los datos, también en escenarios de conjuntos de observaciones pequeños y/o
con mucho ruido. Encontrar buenas propiedades de escalado computacional para
los modelos en el caso de grandes conjuntos de datos ha sido de especial interés
en este trabajo de tesis. Ası́ como también encontrar una modelización jerárquica
y flexible para descomponer con precisión una señal estocástica en sus diferentes
componentes.

La aplicación a las pinturas de arte rupestre considerada en este trabajo ha
tenido como objetivo predecir mediciones de microfading espectrometry (MFS) en
la superficie de las pinturas. En esta aplicación, y también en la de clasificación de
usos del suelo, el principal objetivo ha sido construir un modelo que explotara al
máximo la estructura de correlación de los datos. Hemos defendido que un modelo
de GP con una función de covarianza multivariante es una de los modelos más
naturales y potentes para lograr este objetivo para este tipo de datos consistentes
en observaciones estocásticas espacio-temporales. Ello es debido principalmente
al uso de funciones de covarianza que definen de forma completa la estructura de
covarianza de los datos en sus diferentes dimensiones e interacciones. Además,
mostramos la utilidad de usar modelos de GP como funciones latentes en modelos
de probabilidad no gaussianos, como el modelo multinomial para la clasificación de
usos del suelo realizada en este trabajo.

Sin embargo, también concluimos que el modelo GP espacio-temporal con una
función de covarianza exponencial cuadrática no es el modelo más adecuado para
resolver la tarea de clasificación del uso del suelo, ya que la clase de una parcela
puede cambiar arbitrariamente en el tiempo. Por lo tanto, la suposición de una
estructura de covarianza suave y monotónica a lo largo del tiempo, podrı́a no ser la
más adecuada, o al menos demasiado simple para modelar la estructura temporal del
proceso. Como lı́nea de investigación futura, proponemos modelar esta aplicación
especificando un modelo de cadena de Markov para las probabilidades de transición
de las clases en el tiempo y un GP multivariado, con los predictores espaciales, para
relacionar las probabilidades de transición entre parcelas (espacio).

Este trabajo de tesis deja algunas otras lı́neas de investigación futuras. La
primera ya se ha mencionado anteriormente. Por un lado, construir modelos
analı́ticos para las relaciones entre los factores clave de los modelos GP aprox-
imados con el objetivo de automatizar el diagnóstico de la aproximación. Por otro,
analizar estas relaciones en casos multidimensionales, construyendo gráficos útiles
o modelos analı́ticos que contengan estas relaciones en GP aproximados y multidi-



204 Appendix C. Resumen en Español / Summary in Spanish

mensionales. Y, finalmente, realizar experimentos de simulación para estudiar los
posibles beneficios de usar información adicional, como restricciones de valor o
restricciones de gradiente de la función, para aliviar el efecto de suavizado excesivo
en las funciones posterior provocadas por el uso de muchas observaciones para
inducir monoticidad.
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