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Abstract 

Halide perovskites have shown excellent photophysical properties for solar cell applications 

which led to a rapid increase of the device efficiency. Understanding the charge carrier dynamics 

within the active perovskite absorber and at its interfaces will be key to further progress in their 

development. Here we present a series of fully evaporated devices employing hole transport 

materials with different ionization energies. The open circuit voltage of the devices, along with 

their ideality factors, confirm that the former is mainly determined by the bulk and surface 

recombination in the perovskite, rather than by the energetic offset between the valence band 

of the perovskite and the highest occupied molecular orbital of the organic transport layers. 

These results help to further understand the origin of the open circuit potential in perovskite 

solar cells, which is an important parameter that needs to be improved to further boost power 

conversion efficiencies.  

 

 



Introduction 

Perovskite solar cells are one of the most interesting alternatives to current photovoltaic 

technologies. Since the publication of the first solid state solar cells reports based on 

methylammonium lead iodide (MAPI) 1,2, the development of the technology has resulted in a 

rapid increase of the device efficiencies, exceeding 22% 3 . Identifying the unique properties of 

halide perovskites is essential to understand the reasons for this remarkable progress. In this 

regard, unveiling the long charge carrier diffusion lengths4–6, sharp optical absorption edges 7 and 

weak exciton binding energies 8–10 are some of the key discoveries that contributed to explain 

the excellent device performances, as well as to gauge the full material potential.  

However, there is still some debate regarding the main factors affecting the open circuit potential 

(Voc) of the devices11. In general, the splitting of electron and hole quasi-Fermi levels defines the 

maximum achievable Voc and it is determined by the charge generation/recombination rates 

along with the distribution of electronic states and charge carriers of the materials12. In multilayer 

perovskite solar cells, the problem shifts towards the role of the charge selective and transporting 

layers in contributing to the final Voc. Several reports have associated the high achieved Voc to a 

high energy difference between  the highest occupied molecular orbitals (HOMO) of the hole 

transport material (HTM) and the lowest unoccupied molecular orbitals (LUMO) of the electron 

transport material (ETM), together with a good alignment of these energy levels with the 

perovskite valence and conduction band, respectively13–18. Although some reports show an 

increase of the Voc for HTMs with higher ionization energy (IE)17,19,20, this trend is not necessarily 

reflected on the record performing perovskites solar cells, where best Voc’s have been reported 

for both high HOMO (closer to the vacuum level) HTMs with well-aligned energy levels; and low 

HOMO (further from the vacuum level) HTMs with non-perfectly aligned energy levels 21,22. More 

specifically, recent publications discuss the negligible Voc  dependence on the ETM 23 and HTM 

energy levels 24. This view is also in line with previous results, where Voc’s  higher than that 

expected from the HTM energy levels were obtained17. However, in all these cases, the HOMO 

of the employed HTM was close in energy to or just above the perovskite valence band maximum 

(reciprocally, the LUMO level of the ETM was aligned or slightly below the perovskite conduction 

band). 



Analyzing the effect of a set of HTMs with different HOMO energies appears as a straightforward 

approach to systematically investigate the relationship between the Voc   and the energy levels of 

the extraction layers. However, it is important to note that the replacement of the HTM can also 

affect the interfacial charge recombination25, which has a large impact on the Voc. In addition, the 

large majority of the studies suffer from the limitations associated to solution-processed solar 

cells. This is in particular the case for p-i-n device architectures in which the holes are extracted 

through the front contact. In this configuration, the polar solutions containing the perovskite 

precursors are applied onto the apolar aromatic HTMs, leading to poor wetting and consequently 

poorly controlled film growth.  Hence the resulting perovskite film is strongly affected by the 

surface of the HTM26, leading to different morphologies and, most likely, different trap densities. 

Moreover, most studies have been carried out on n-i-p solar cells, where the large majority of 

charge carriers is generated at the ETM/perovskite interface, which could reduce the effect of 

the HTM and underestimate its impact on the Voc17,24. 

 

 

Figure 1. a) Energy diagram of different HTMs with respect to MAPI. The energy values of the 
HOMOs were determined by photoemission spectroscopy in air (PESA) (see supporting 
Information Figure S1). b) Scheme of completed stack with different HTMs. 
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Here, we present a series of fully vacuum deposited perovskite solar cells with different HTMs. 

Vacuum deposition allows for the direct modification or substitution of any layer in the device 

stack with a negligible effect on the rest, as no solvents are used and hence no wetting or de-

wetting is occurring. In addition, the high voltages previously obtained with vacuum-deposited 

MAPI solar cells, which indicates the absence of non-radiative recombination paths at the 

selective interfaces, 21 make it an ideal reference system to study interfacial modifications. 

Therefore, we are able to produce and study high efficiency perovskite solar cells based on a 

series of HTMs with more than 0.66 eV difference in their IE, including materials with IE more 

than 0.3 eV higher and lower than the perovskite valence band. 

 

 

Results and discussion 

The different vacuum-deposited materials used as HTMs are 4,4′,4′′-Tris[phenyl(m-

tolyl)amino]triphenylamine (m-MTDATA), N4,N4,N4”,N4”-tetra([1,1´-biphenyl]-4-yl)- [1,1´:4´,1”-

terphenyl]-4,4”-diamine (TaTm) and Tris(4-carbazoyl-9-ylphenyl)amine (TcTa). Their respective 

ionization energies of 5.0 eV, 4.4 eV, 5.7 eV (Figure 1a) were measured using photo-electron 

spectroscopy in air (see supporting Information Figure S1). The solar cells were fabricated 

following a p-i-n architecture consisting of pre-patterned ITO on glass with ITO, MoO3, HTM, 

MAPI, fullerene (C60), 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) and Ag as a top 

contact (Figure 1b). Detailed experimental conditions can be found in the Supplementary 

Information. Using a p-i-n device structure ensures that the majority of carriers are generated at 

the HTM/perovskite interface. Representative current-voltage characteristics measured under 

100 mW cm-2 illumination in forward and reverse bias are displayed in Figure 2a, whereas the 

corresponding photovoltaic parameters with the associated statistical error (>10 samples per 

parameter) can be found in Table 1. Slight current-voltage hysteresis is only visible in the TcTa 

based device, while it is negligible in the other cases. Devices based on TaTm show the highest 

current, 20.1 mA cm-2, in contrast to the ones with TcTa and m-MTDATA, which are 1.2 mA cm-2 

lower. The FF of TaTm and m-MTDATA based devices are comparable (76% and 75% 



respectively), with a lower value (64%) obtained for the solar cells employing TcTa. More 

interestingly, devices with m-MTDATA and TcTa show almost no difference in Voc (1.008 V and 

1.000 V) yet with an IE difference as large as 0.66 eV among them. Devices with TaTm present 

the highest Voc of 1060 mV. Since these results do not show any evident trend between the HTMs 

energetics and the resulting Voc, further studies were carried out to elucidate the relationship 

among those parameters.  

The dominant type of recombination was investigated by measuring the Voc as a function of light 

intensity 27. Figure 3 shows the light intensity dependent Voc and ideality factor for devices with 

different HTMs. The Voc depends logarithmically on the light intensity and introducing the ideality 

factor nID as a pre-factor we find 27: 

𝑒𝑒𝑉𝑉𝑜𝑜𝑜𝑜 = 𝐸𝐸𝑔𝑔 − 𝑛𝑛𝐼𝐼𝐼𝐼𝑘𝑘𝐵𝐵𝑇𝑇 𝑙𝑙𝑙𝑙 𝐼𝐼0
𝐼𝐼

         (1) 

with Eg being the bandgap, T the temperature, kB the Boltzmann constant and I0 the reverse 

saturation current. Measuring the Voc as a function of light intensity for devices with varying 

HTMs results in ideality factors of ∼1.7 for TaTm and ∼1.2 for TcTa and m-MTDATA. Ideality 

factors close to one can be attributed to direct recombination, which is usually interpreted as 

non-radiative surface recombination (if the associated Voc is low compared to the absorber’s 

band gap) or to radiative bulk recombination (in case of high Voc’s). Ideality factors close to 2 are 

usually associated to non-radiative SRH recombination. Therefore, against the common believe, 

low ideality factors are not necessarily beneficial. In fact several  perovskite solar cells with low 

ideality factors and low Voc have been reported 11,28,29. 

Considering this, devices using TaTm show higher Voc and an ideality factor of 1.7, while the solar 

cells with TcTa and m-MTDATA have lower Voc and an ideality factor of 1.2. This points towards 

an enhanced surface recombination which limits the Voc of the TcTa and m-MTDATA devices, 

while the Voc of TaTm is mainly determined by SRH-recombination. The origin of the larger surface 

recombination at the interface between MAPI and TcTa or m-MTDATA is not clear yet. The IE of 

the HTM itself is unlikely to influence the splitting of the quasi-Fermi levels, in particular the 

position of the holes’ quasi-Fermi level (EFh), which is determined by the absorber. This is justified 

by the low exciton binding energy30 and small dark charge carrier density 31 of MAPI, and it is in 



line with previous observations where modifications of the HTM and ETM energetics did not 

affect the photovoltage 23,24. However, our results also suggest that it is possible using HTMs with  

a HOMO lower than the absorber’s CB without a significant voltage penalty associated to the 

energetics.  

It is thus important to discuss the implications of these HTMs in the other relevant photovoltaic 

parameters of the devices.

 

Figure 2. (a) J-V curves under 100mW cm-2 illumination in forward and reverse bias and (b) EQE 
spectra of representative perovskite solar cells produced with different 5nm thick HTMs. 

 

Table 1. IPs of different HTMs and representative photovoltaic parameters obtained when 
implemented in solar cells. 

HTM IP (eV) PCE (%) Voc (mV) Jsc (mA/cm2) FF 

m-MTDATA 5.0 14.4 ± 1.2 1008 ± 4 18.9 ± 0.5 75 ± 3 

TaTm 4.4 16.3 ± 0.8 1060 ± 6 20.1 ± 0.8 76 ± 1 

TcTa 5.7 12.2 ± 1.6 1000 ± 8 18.9 ± 1.1  64 ± 9 
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Figure 3. Light intensity dependent Voc and extracted ideality factors for perovskite solar cells 
with different HTMs.  

 

The three solar cells mainly differ in FF, with TaTm and m-MTDATA having high values of around 

75 and TcTa having a lower FF of 64. This can be attributed to a higher series resistance of TcTa, 

which is also reflected in the dark IV-curve above around 1V (Figure S2). All devices reach 

relatively high short circuit currents, 20.1 mA/cm2 for TaTm and 18.9 mA/cm2 for TcTa and m-

MTDATA. The EQE curves shown in Figure 2b are very similar which is consistent with the results 

discussed before. This point highlights the good extraction of the photogenerated charge 

obtained with both TcTa and m-MTDATA despite their HOMO level mismatch with the perovskite 

valence band. To confirm this point, the charge injection from MAPI to the HTMs was studied 

using femtosecond transient absorption spectroscopy (TAS). Figure 4 shows the time-resolved 

transient absorption dynamics for perovskite/HTM double layers. Samples were excited with 

laser pulses at 600 nm with a constant excitation density of 1.4⋅1017 cm-3, and probed at the 

maximum of the perovskite ground state bleaching (GSB) band. An instantaneously reduced 

signal in the perovskite GSB is observed upon the addition of the HTMs, indicating that the hole 

injection takes place for all HTMs, even faster than the time resolution of the setup of about 60 

d b



fs. The TA spectra at different time delays after excitation for the perovskite/TaTm bilayer are 

shown in Figure S5. A detailed photophysical study of the systems will be published subsequently. 

 

Figure 4. Time-resolved transient absorption dynamics for neat MAPI and the perovskite/HTM 
double layers, excited at 600 nm (at constant excitation density of 1.4⋅1017 cm-3) and probed at 
the perovskite maximum ground state bleaching band. 

 

Conclusions 

In summary, we produced a stack of fully evaporated devices based on different HTMs with an 

IP-difference as high as 0.66eV among them. Devices produced with these HTMs showed Voc`s 

ranging from 1000 mV (TcTa,) to 1060 mV (TaTm). The measurement of the respective ideality 

factors allows us to explain the differences in VOC by the nature of the recombination processes. 

These results support that the VOC of perovskite solar cells is not necessarily limited by the 

energetics of the hole transporting material, but mainly by the different recombination paths. In 

addition, we show efficient charge extraction by HTMs with misaligned HOMO with the 

perovskite (>300 meV above and below the perovskite’s valence band). These results point 

towards HTM designing routes which can improve the performance of perovskite solar cells, 

focusing on the interfacial recombination reduction rather than on the energetic alignment. 
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