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Chapter 1

Introduction

In 1855, an English physician called John Snow presented a map showing the loca-
tions of cholera cases in the London epidemic of 1854 (Snow, 1855). He investigated
the pattern formed by these locations and suggested that a public water pump on
Broad Street was the source of the disease outbreak. The creation of this map and
the subsequent analysis of the epidemic is widely considered as the first example of a
spatial data analysis and one of the origins of epidemiology (Susser and Bresnahan,
2001).

Since 1855, many types of spatial data have emerged, especially during the last
decades. Indeed, spatial statistics is the field of knowledge specifically devoted to
the analysis of all kind of spatial data. There are three main types of spatial data,
namely point patterns, areal data and geostatistical data (Cressie, 1993), which have
given rise to the development of three main lines of research among spatial statistics
researchers. The following paragraphs include a description of these three data types
and a brief summary of the techniques that have traditionally been employed for the
analysis of each of them. Before that, it is worth noting that spatial data usually
allows incorporating a temporal component, which leads to the formation of spatio-
temporal data. Hence, there exists many specific methodologies that generalize the
fundamental tools coexisting for the three main subfields of spatial statistics to fit
within the context of spatio-temporal data.

A point pattern is a set of points that lie on a certain space or region. Each point of
a spatial point pattern is usually referred to as an event. The stochastic mechanism
that generates a point pattern is called a spatial point process (Illian et al., 2008;
Diggle, 2013). Given a point pattern, the most common goal is to investigate its
structure. In particular, it is usually of interest to determine whether the points of
the pattern present some dynamic of attraction or inhibition or, in contrast, if they
satisfy the hypothesis of complete spatial randomness (Diggle, 2013). The joint use
of non-parametric techniques such as the K-function (Ripley, 1977) with multiple
model-based approaches (Diggle, 2013) facilitate the investigation of point patterns.

Areal data are observations from a random process over a countable number of
spatial regions or units. The number of times that a type of event has occurred in
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each administrative unit of a city over a period of time constitutes a very typical
example of areal data. The employment of spatially-lagged models (Anselin, 1988)
and generalized linear models accounting for the spatial autocorrelation between the
regions (Banerjee et al., 2004) is a common practice to explain a response variable
on the basis of a set of covariates. Furthermore, detecting regions where a variable
presents a particularly high value (hotspots) is another very important application
(Anselin, 1995; Kulldorff, 1997).

Geostatistical data corresponds to a collection of measurements available over a con-
tinuous region. Geostatistics was initially conceived for ore reserve estimation, but
the possible applications of this branch of spatial statistics are countless. The vari-
ogram and kriging are possibly the two capital concepts in the field of geostatistics
(Cressie, 1993; Krige, 1960; Matheron, 1963).

Despite the persistence of this classification of spatial statistics into three subfields,
it has been argued that the most important distinction should be made between
spatially continuous and spatially discrete stochastic processes (Diggle et al., 2013).
In addition, there is an existing trend to unify all kind of spatial data and techniques
and, in particular, to use model-based geostatistics to deal with areal data and point
patterns (Diggle and Giorgi, 2019). In order to work in this direction, log-Gaussian
Cox processes are a fundamental tool (Møller et al., 1998).

Spatial and spatio-temporal statistics can be applied to many fields of research. Be-
sides epidemiology and geology, which have already been mentioned, spatial data
often arises in the context agriculture, astronomy, biology, criminology, hydrology,
meteorology, remote sensing and traffic safety, among others. Indeed, the collabo-
ration of both the Local Police of Valencia and the Spanish National Police with
the Department of Statistics and Operations Research of the University of Valencia
was a decisive factor to orient this thesis to the investigation of spatial and spatio-
temporal data of special interest in the fields of criminology and traffic safety, and
to the development of statistical techniques that facilitate the undertaking of this
capital objective.

More specifically, the main objective of this thesis was to identify “research gaps”
among the extensive literature on the use of spatial-temporal statistical methods
for the analysis of crime and traffic safety data. As part of the development of this
thesis, the investigation has focused on different support structures for data analysis,
on statistical modelling of spatial data, on the spatio-temporal study of contagious
events, on the quality of spatial data, or on the development of specific software,
among others. In all cases, the aim was to improve the existing methodology, both
to address some rather theoretical issues and to carry out practical studies more
accurately.

The following sections provide a description of several relevant topics that are usually
involved in the spatial and spatio-temporal analysis of crime and traffic safety data.
First, section 1.1 is dedicated to introduce briefly a singular spatial structure called
linear network. Although several of the analyses that are presented in this thesis
are performed at the area level, the employment of linear networks spans across a
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substantial part of the thesis. Second, the different studies that have been carried
out for the development of this thesis are described and contextualized throughout
Sections 1.2.1 and 1.2.2, outlining the whole structure of the document.

1.1 Linear networks

Road network structures were introduced in the context of spatial statistics some
years ago, providing the basis for analyzing events typically lying on such structures,
which are more generaly referred to as linear networks. Indeed, a planar linear
network, L, is defined as a finite collection of line segments, L = ∪ni=1li, in which
each segment contains the points li = [ui, vi] = {tui + (1 − t)vi : t ∈ [0, 1]} (Ang
et al., 2012; Baddeley et al., 2015, 2017). Following graph theory nomenclature,
these segments are sometimes referred to as the edges of the linear network, whereas
the points that determine the extremes of such segments are known as the vertices
of the network.

Hence, a point process X on L is a finite point process in the plane such that all
points of X lie on the network L (Ang et al., 2012; Baddeley et al., 2015, 2017).
Similarly, a collection of events that is observed on L is known as a point pattern,
x, in L.

The investigation of spatial patterns lying on linear networks is gaining attention
in the last years. The design of new and more accurate/efficient kernel density
estimators (McSwiggan et al., 2017; Moradi et al., 2018, 2019; Rakshit et al., 2019b),
the introduction of graph-related intensity measures (Eckardt and Mateu, 2018), the
construction of local indicators of spatial association (Eckardt and Mateu, 2017), or
the estimation of relative risks (McSwiggan et al., 2019) are some topics that are
starting to be developed for linear networks.

1.2 Applications

Spatial and spatio-temporal techniques are massively applied in the context of both
criminology and traffic safety. Next sections highlight several types of analyses that
are of particular interest in these two fields, from both a methodological and a
practical perspective.

1.2.1 Traffic safety analysis

Research on traffic safety dates back at least to the 40s of last century. Gordon
(1949) suggested the convenience of treating injuries and deaths that originate from
traffic accidents as one more type of epidemiological data. Hence, the two main goals
of traffic safety analysis have been the determination of factors that are associated
with more traffic accidents (or with a certain typology of accident) and the accurate
location of zones where traffic accidents are especially likely, which are usually called
hotspots.
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Both goals lead researchers to take a spatial approach. The choice of a spatial
model to measure the relationship between a response variable representing accident
counts or rates at a certain level of resolution and a set of covariates defined on
the same scale is vital to avoid overlooking the likely presence of autocorrelation
in the outcomes, and hence possibly bias and confound the estimations of model
parameters. On the other hand, hotspot detection is a common practice in many
fields that produce spatial data, particularly traffic accident data. Many methods are
available for this purpose, which again require considering the spatial characteristics
of the data.

Already in the 70s, the use of spatial techniques for analyzing traffic safety data
became a usual practice. Moellering (1976) proposed the use of computer animated
films to observe the spatio-temporal distribution of traffic accident patterns, which
can be considered as a seminal contribution that was followed by many other stud-
ies published in the next years and decades. A few years ago, Lord and Mannering
(2010) summarized many of the issues that deserve consideration for performing the
statistical analysis of a traffic accident dataset. Besides certain questions such as
controlling for overdispersion, underreporting or low sample sizes, the necessity of
considering the presence of spatial and temporal autocorrelation in the data was
also highlighted. In fact, more recently, Mannering et al. (2016) reviewed the meth-
ods and modelling approaches that can be chosen to incorporate spatial effects into
traffic safety analysis. In the typical context of modelling the accident counts ob-
served on a set of regions, the use of negative binomial and zero-inflated models is
recommended to account for overdispersion and the possible excessive presence of
zeros in the response. In addition, several suitable modelling techniques are indi-
cated: random parameters count models, random parameters tobit model, random
parameters generalized count models, latent-class (finite mixture) models, etc.

Linear networks are a suitable support to face the two main objectives that have
been described in the previous paragraphs, although they entail certain technical
difficulties. Indeed, modelling, for instance, accident counts at the road segment level
is more subject to errors, by far, than analyzing accident outcomes on the basis of an
areal subdivision of a region. More precisely, representing a road structure through
a linear network implies simplifying certain urban features, which can complicate
the location of some geocoded accident in the proper road segment. Given this
difficulty, which arose at the first stage of the development of this thesis, the author
developed the R package SpNetPrep (Spatial Network Preprocessing). This package
allows users to perform the manual curation of a linear network representing a
road network structure with the aid of a Shiny-based interactive application. This
application provides users the possibility of adding and removing vertices and edges
of the network, the capability of adding a direction to the network according to traffic
flow, and the opportunity of inspecting and editing a point pattern lying on the
road network. Furthermore, the package also contains a function that automatically
simplifies the linear network structure by merging, under certain conditions of length
and angle, the edges of the network that are joined by a second-degree vertex.
Chapter 8 of this thesis contains a larger description of this package.
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With the aid of SpNetPrep, several spatio-temporal analyses of traffic accident data
have been carried out over the road network of Valencia, constituting a substantial
part of this thesis. First, a district of Valencia was selected to perform a spatial
modelling of traffic accident counts at the road segment level (Briz-Redón et al.,
2019e). The necessity of curating both the road network structure and the traffic
accident dataset provided by the Local Police of Valencia led to choose only one
district of Valencia for this analysis. The main objective of this study was to find
covariates or factors that increase the incidence of traffic accident counts at the
street level. In particular, data modelling accounted for the presence of road inter-
sections across the network under investigation. It is usually observed that many of
the accidents that occur in either a urban or a rural area are located in or near to a
road intersection, so it was convenient to consider the proximity of an intersection
when defining the statistical models. More specifically, the original road network
was split to distinguish between intersection and non-intersection road segments.
Furthermore, the modelling of the data was combined with coldspot/hotspot detec-
tion, which was mainly based on network-constrained density estimation and local
indicators of spatial association (Anselin, 1995), to gain a better understanding of
the factors possibly involved with traffic accidents. Chapter 2 is totally dedicated
to this analysis.

The second study that was carried out focused on the detection of hotspots along
the road network of Valencia where a type of traffic accident is overrepresented
(Briz-Redón et al., 2019b). The methodology proposed by Kelsall et al. (1995) to
produce relative risk surfaces was adapted to allow the estimation of the relative
probability of occurrence that corresponds to a type of event that takes place along
a linear network. Then, an strategy is proposed to detect differential risk hotspots
on the network, according to the relative probability values previously inferred.
Both the magnitude of the probability estimate and the sample size involved in its
calculation are accounted for the determination of the hotspots. The full procedure is
described in Chapter 3, which includes an application with a traffic accident dataset
providing information on the collision type and on the types of vehicles involved
in each accident. The R package DRHotNet (Differential Risk Hotspots in a Linear
Network), which is available in CRAN, implements the complete differential risk
hotspot procedure. This R package is depicted in Chapter 8.

Even though the analysis of traffic accidents at the road segment level provides
the highest level of accuracy for both researchers and traffic safety professionals, the
study of accidents at an areal level is still of interest. Specifically, analyzing the traffic
accident counts that are recorded on a collection of administrative units or police
areas during a period of time facilitates the consideration of certain environmental
or socio-demographic variables to assess their relationship with traffic accidents. In
this regard, the choice of a particular areal unit of analysis can affect the statistical
results that one carries out. This issue is known as the modifiable areal unit problem
(MAUP) in the field of spatial statistics (Openshaw, 1984). This thesis includes a
case study (Briz-Redón et al., 2019c) on the consequences of varying the scale or
the zoning of a collection of regions in the context of traffic safety analysis (Chapter
5). The effects of modifying any of these two factors on both the response and the
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covariates, and the impact on model estimation and performance are investigated
in detail.

1.2.2 Criminology

The study of crime from a spatial perspective started to gain certain importance in
the 50s of last century. For instance, Shannon (1954) analyzed the spatial distribu-
tion of crime rates across American states. In the decade of the 70s the discipline
started to consolidate through multiple studies focused on explaining the spatially-
varying incidence of the most relevant crime types (Block, 1979; Brantingham and
Brantingham, 1975; Georges, 1978; Harries, 1973; Stephenson, 1974). At the begin-
ning of the 80s, the foundations of spatial criminology were definitely established by
Patricia and Paul Brantingham (Brantingham and Brantingham, 1981, 1984).

The use of linear networks to perform a spatial analysis has become essential in crim-
inology to properly capture the distribution of crime events across space. Indeed,
last years are bringing to the field many studies focused on the evaluation of the law
of crime concentration on a city or region. The law of crime concentration states
that “for a defined measure of crime at a specific microgeographic unit, the concen-
tration of crime will fall within a narrow bandwidth of percentages for a defined
cumulative proportion of crime” (Weisburd, 2015). Hence, it is necessary to analyze
spatial crime data at a proper scale to truly appreciate the level of crime concen-
tration. The employment of linear networks and hence the fact of locating crimes
at the road segment level usually yields more realistic levels of event concentration
than that provided by areal units of analysis.

There are several mechanisms that explain the spatially-varying incidence of crime
in the short-, mid- and long-term. The presence of criminogenic features in a city
can stimulate, facilitate or complicate criminals’ activities and, as a consequence of
this, explain crime rates in the mid- and long-term. Three main types of places are
distinguished in literature: crime attractors, crime generators and crime detractors
(Brantingham and Brantingham, 1995; Kinney et al., 2008). Crime attractors are
places that constitute a singular context that naturally offers more opportunities
with regard to committing a crime. Basically, the locations of a city where certain
type of crime is common (for instance, someplace where drug dealers and consumers
usually meet) are also likely to attract other criminal actions. On the other hand,
crime generators are places that attract the presence of many people and hence
provide more targets to criminals. A shopping mall or a football stadium are two
examples of crime generators. Finally, a crime detractor is a place that makes the
development of criminal activities more complicated. A police station is an example
of crime detractor because it implies a higher presence of capable guardians (police
officers) within a neighbourhood from the station. There exists multiple statistical
modelling approaches to assess if one feature (or set of features) of a city have
an influence on crime outcomes (Briz-Redón et al., 2019a). The different methods
that are compared in Chapter 6, even though the application shown in it does not
correspond to a crime dataset (it is again related to traffic safety), are all of potential
use in this context.
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On the other hand, explaining crime occurrence in the short term is intimately con-
nected with the phenomenon of crime repetition. Virtually all types of crime have
been investigated in the context of repetition or near-repetition, which refers to the
increased likelihood of observing a crime in the proximity (in space and time) of
a previous criminal event of the same type. Hence, some authors have referred to
the phenomenon of crime repetition as a epidemiological contagious process (Loftin,
1986). Indeed, the Knox test originally conceived for epidemiological studies (Knox
and Bartlett, 1964) is still the main tool to assess the magnitude and spatio-temporal
extent of the near-repeat phenomenon for a type of crime and a spatio-temporal win-
dow, although new approaches are gaining importance (Mohler et al., 2011; Reinhart
and Greenhouse, 2018).

The main drawback of the Knox test is that it does not account for spatio-temporal
risk heterogeneity, which in the context of crime repetition complicates the distinc-
tion between near-repeats that are connected (explained by the so-called “boost”
theory) and those that are unconnected (explained by the so-called “flag” theory).
In Chapter 4 the classical version of the Knox test is adjusted following the work
of Schmertmann (2015). One modification of the proposal made by Schmertmann
is also provided (Briz-Redón et al., 2020). The adjusted version of the test is im-
plemented to analyze the magnitude and extent of the near-repeat phenomenon
considering a dataset of burglaries recorded in Valencia.

The final research that was conducted in the context of this thesis deals with geocod-
ing quality and the presence of missing data as a consequence of non-geocoded
events. This issue is of interest for every discipline that requires using spatial data,
but it has been particularly emphasized in the context of quantitative criminology.
In 2004, J. Ratcliffe declared that an 85% hit rate (percentage of geocoded events)
was a minimum acceptable geocoding hit rate for conducting a spatial analysis (Rat-
cliffe, 2004a). Chapter 7 contains a reestimation of this rate by accounting for some
spatial factors (intensity, clustering and aggregation levels) that were overlooked
in the first estimation. Furthermore, the procedure proposed in Ratcliffe (2004a)
(based on the Mann-Whitney test) is extended to other statistical methods of inter-
est. Thus, it has been found that the 85% initially proposed may be too low under
certain conditions (Briz-Redón et al., 2019d).



Chapter 2

Modelling traffic accident counts at
the road segment level: Accounting
for road intersections

This Chapter includes a statistical modelling of traffic accidents at the road segment
level. In order to represent true neighbouring relationships between road segments,
a directed road network structure accounting for traffic flow has been used. There
were three methodological objectives: to present and discuss some issues that arise
when conducting a spatial analysis of traffic accidents located on a road network,
to analyze traffic accidents at road intersections, including a specific strategy that
draws together both road intersection and non-intersection zones along the net-
work, and to combine the results produced by the two statistical approaches finally
chosen, spatial count models and coldspot/hotspot detection, in order to achieve
more complete conclusions regarding the effect of various road characteristics on the
occurrence of traffic accidents for the road network of interest.

2.1 Introduction

Traffic accidents are still a quite frequent cause of death for the European population,
especially in the younger age groups. Even though the number of accidents has
gradually decreased in the most developed countries of the world during the last
decade, many efforts, in terms of prevention and road planning, are still being made
to reduce their occurrence and severity. In this regard, studies aimed at analyzing
the occurrence and distribution of traffic accidents can be very helpful, and could
be broadly classified according to three main objectives: finding road and/or traffic
characteristics associated with a higher occurrence of accidents, detecting zones
with a high concentration of accidents and discovering the types of accidents that
tend to produce more serious consequences for the vehicle passengers or road users
involved. In this study, the modelling of accident counts at the road segment level
with explanatory purposes is the main goal, although the detection of microzones
of the network that show a singular risk of accident is also carried out. This section

8
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starts with a literature review on both topics: modelling traffic accidents outcomes
and finding zones of high accident risk. This is followed by a review of the literature
on the analysis of traffic accidents occurring in intersection and non-intersection
zones. This issue has also been addressed in the analysis contained in this study.

2.1.1 Review of models and methods

Many important quantitative studies that have focused on factors that may be affect-
ing traffic safety have been carried out through areal units of analysis. For instance,
Quddus (2008) modelled traffic accident counts at the census ward level, which made
it possible to explain the number of accidents from information related to traffic char-
acteristics (volume and speed), road design and socio-demographic factors. Traffic
volume and a proxy for poverty showed a significant positive association with traffic
accidents. Similarly, Huang et al. (2010) studied traffic accident frequency at the
county level considering traffic-related, demographic and socioeconomic character-
istics of the counties being studied. This work focused on distinguishing two types
of exposure variables: population and average daily vehicle miles travelled (DVMT)
per county. The model using DVMT as the exposure yielded more significant asso-
ciations with traffic accidents, some of which were positive (traffic intensity, density
of principal and minor arterials, and percentage of young population) and others
were negative (freeway density and average travel time to work).

In order to favour more accurate investigations, road networks have increasingly
been used in traffic safety analysis in the last few years. The use of these structures,
composed of links (segments) and vertices (points where two or more links meet),
is becoming more popular, in spite of the technical difficulties their use entails. In
this regard, it is worth noting that many of the factors that have been proved to
generally increase the occurrence of traffic accidents require a road segment level
analysis. Indeed, the list of infrastructure characteristics that were determined to
be risky for drivers and users in a recent systematic review of published studies
by Papadimitriou et al. (2019) included traffic volume, road surface (low friction),
low curve radius, number of lanes, absence of paved shoulders, narrow shoulders,
different junction types, etc. Although an areal-based analysis may also help to
gain knowledge about the association of traffic accidents with any of these road
characteristics, a road segment level analysis would be recommended to guarantee
an appropriate investigation.

Given the convenience of using road networks for analyzing traffic accident out-
comes, this paragraph includes a description of several studies that were performed
at the road segment level, which enabled their corresponding authors to properly
investigate certain infrastructure characteristics. For example, Aguero-Valverde and
Jovanis (2008) found a positive association of traffic volume and certain shoulder
widths with traffic accidents. In addition, Guo et al. (2017) developed a measure
(integration) which reflects the accessibility of a node in the network, depending on
its neighbourhood geometry. It was found that networks with a high integration
value, which usually resemble a grid pattern, tend to be associated with more traffic
accidents. Finally, Barua et al. (2016) analyzed severe and no-injury traffic acci-
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dents at the road segment level, finding that road segment length, average annual
daily traffic, density of unsignalized intersections, business land use and the number
of lanes showed a significant and positive association with both accident types.

On the other hand, several studies that have incorporated linear networks to treat
accident datasets have only focused on detecting zones with a high concentration
of accidents (hotspots). Indeed, Huang et al. (2016) suggested that the detection
of hotspots at the micro-level is more accurate and useful for revealing risky road
configurations than the use of areal macro-zones. For example, Xie and Yan (2013)
applied kernel density estimation (KDE) to a linear network structure to evaluate
distribution of traffic accidents and to find clusters of roads with a high proportion of
accidents. They studied the impact of subdividing the network into shorter spatial
units (segments), called lixels (Xie and Yan, 2008), and the variations observed
depending on the choice of the kernel bandwidth parameter. A similar approach was
taken by Nie et al. (2015) to prove that the application of network KDE improved
the performance of local indicators of spatial association (LISA) to better identify
accident hotspots.

To finish the literature review, it is of need to highlight certain aspects that deserve
attention every time a statistical modelling of accident counts is performed. First,
regardless of the choice of areal units or road segments for conducting the analysis,
the consideration of spatial effects has almost become a requirement (Mannering and
Bhat, 2014; Mannering et al., 2016). Getting back to some of the studies described
above, some of them showed that the use of non-spatial models can lead to either
spatially autocorrelated model residuals (Quddus, 2008; Huang et al., 2010) or to a
significantly lower fit to the data (Aguero-Valverde and Jovanis, 2008). Both facts
suggest that overlooking spatial effects is inappropriate. Moreover, Xu et al. (2017)
tested a modification of the model proposed in Huang et al. (2010) that allowed the
effects of the covariates to vary spatially. These authors observed that it is even
advisable to include such variations, as otherwise biased estimates of the model’s
coefficients may arise.

Besides the consideration of spatial heterogeneity, other issue that often arises when
performing a road segment level modelling of accident counts is the high presence
of zeros (segments where no accident has been recorded). Zeng et al. (2017) used a
Tobit model to control for left-censored accident rates that may be the consequence
of under-reporting. Speed was associated with higher crash rates, whereas average
annual daily traffic displayed a significant negative correlation. Anastasopoulos
(2016) compared multivariate Tobit and zero-inflated models for modelling accident
counts with a high percentage of zeros. Both strategies showed their own limitations,
but each was capable of capturing zero-state heterogeneity across the road network.

2.1.2 Traffic safety at road intersections

The high rates of traffic accidents that are usually observed in proximity to road
intersections is the reason for the existence of many studies on this topic. Thus,
this paragraph includes a literature review (in chronological order) on the topic
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of modelling the occurrence of traffic accidents around road intersections. For in-
stance, Castro et al. (2012) studied the spatio-temporal incidence of accident counts
at urban intersections. It proved to be advisable to consider both the spatial and
the temporal effect, and a significant effect was found for roadway configuration,
approach roadway typology and traffic flow, among other factors. Xie et al. (2014)
also developed several modelling approaches to analyze accident occurrence at in-
tersections. The consideration of a hierarchical spatial model accounting for the
effects produced at intersections by contiguous segments (corridor-level) clearly out-
performed the rest of the models applied. Huang et al. (2017) analyzed accident
counts at road intersections considering types of users (pedestrians, bicycles or mo-
tor vehicles) involved in accidents with a multivariate Poisson lognormal regression
model. Moreover, Lee et al. (2017) used a mixed effects negative binomial model
accounting for macro-level and micro-level factors to study accident counts at road
intersections. Several covariates constructed at both levels of spatial resolution were
found to be associated with more accidents at intersections. Cai et al. (2018) im-
plemented a grouped random parameters multivariate spatial model at two levels,
segments and intersections. Covariates were defined separately over segments, inter-
sections and wider zones (allowing the inclusion of covariates, such as socio-economic
characteristics, at a lower spatial resolution). Zhao et al. (2018) used multivariate
Poisson log-normal and zero-inflated univariate and multivariate Poisson models to
study accident frequency (by severity level) at signalized intersections, consisting of
the road segments at 200 ft upstream from the signal controlling the intersection.
Lastly, Alarifi et al. (2018) proposed the use of a multivariate hierarchical Poisson
lognormal model that accounts for the spatial relationships between road segments
and intersections located along the same corridor. Average annual daily traffic vari-
ables at roadway segments and intersections, absolute speed limit difference between
a major and a minor road meeting at an intersection, and driveway density showed
positive associations with the number of traffic accidents.

With regard to the distance threshold of 200 ft chosen by Zhao et al. (2018), it needs
to be highlighted that the definition of intersection-related traffic accidents presents
a low level of agreement. For instance, Miaou and Lord (2003) considered a distance
of 15 m ('50 ft) from intersection locations, Ye et al. (2009) 75 m ('250 ft), Zhao
et al. (2018) 60 m ('200 ft) and Das et al. (2008) analyzed the range 0 to 60 m at
increments of 15 m. Furthermore, besides the lack of agreement, intersection zones
are not clearly defined in many of the papers in the field. Finally, it is also highly
remarkable how several of these papers focused entirely on intersection entities alone,
avoiding consideration of the road segments surrounding intersections. Although
Lee et al. (2017) and Cai et al. (2018) considered zonal effects that were shared
by close segments and intersections, only Alarifi et al. (2018) have conducted a
unified consideration of road segments and intersections. In this regard, Miaou and
Lord (2003) pointed out the advisability of modelling data taking all kind of road
entities simultaneously, which according to these authors would include segments,
intersections and ramps. The implicit assumption of independence between entities
may lead to ignoring many important spatial relationships that are likely to exist
between them.
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The rest of the Chapter is structured as follows. The next section contains a com-
plete description of the data employed for the analysis, including the traffic accident
dataset recorded during the period of study and the network structure that rep-
resents the underlying space where these accidents occurred. This is followed by
a methodological section that provides a description of the procedure followed to
include the consideration of intersection zones, the definition of spatial neighbour-
hoods between road segments of the network, the specification of the spatial count
models used to fit the data, the methods employed to assess the performance of such
models, the definition of one class of network-constrained kernel density estimation
and the procedure applied to locate zones of high and low risk along the network.
Finally, there is a discussion of the performance and implications of the methods
applied.

2.2 Data

2.2.1 Accident information

A total of 5738 traffic accidents recorded by the Local Police Department of the
city of Valencia (Spain) during the years 2005 to 2017 in the Eixample District
of the city were used. Each of these accidents was geocoded from the address
information recorded by the Police minutes after the accident had occurred. Once
the coordinates of each accident were obtained, these were projected onto a linear
network representing the traffic streets of the Eixample District of Valencia. This
two-stage process was revised carefully in order to ensure a high level of accuracy.

2.2.2 Network structure

A linear network composed of 279 vertices and 444 road segments, representing a
total length of 33.57 km, was used for the analysis. The vertices where more than
two segments meet correspond to road intersections, which were 227 in the case of
this network. Figure 2.1a contains a map (Graul, 2016; OpenStreetMap contribu-
tors, 2017) that shows the zone of the city of Valencia where the road network of
interest is located. Some parts of this network were previously simplified without
altering its basic geometrical structure in order to reduce the number of short road
segments which could hinder the subsequent modelling of the data. Moreover, net-
work preprocessing included the slight modification of highly complex intersections
and the removal of pedestrian streets, which were performed with the SpNetPrep R
package (Briz-Redón, 2019).

In addition, for the purpose of improving the analysis, the network was given di-
rectionality according to the traffic flow of this district of Valencia as of the end of
December 2017 (see Figure 2.1b). Some of the road segments of the network were
defined as bidirectional, representing two-way streets present in the district where
no median strip separates the two flows of vehicles. However, bidirectional road
segments were only 5% of the total, a fact that completely justifies the definition of
traffic flow directionality along the network. In addition, for road segments divided
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(a) (b)

Figure 2.1: Road structure of study displayed over a map of the city of Valencia (a)
and its representation as a linear network made of links and vertices, with arrows
indicating traffic flow directionality (b)

by a median strip two (parallel) road segments were available in the network at a
distance proportional to the width of the strip.

Finally, the possible changes in direction of traffic that could have been made during
the period of years considered have not been taken into account due to the difficulty
of tracking them. However, as Eixample District is very close to the centre of
Valencia and is part of a very well-established area of the city, it can be assumed
that changes of traffic direction must have been minimal in the period 2005-2017.

2.2.3 Network-related covariates

Several factors that could be associated with vehicle collisions are considered at the
road segment level. These mainly include the presence of specific public services
in the road segment (parking slots, traffic lights and bus stops) and basic charac-
teristics of the roads that the links in the network represent. The latter include
the number of lanes in the road, the presence of a bus lane (binary), the type of
road (main or not, binary), the number of roads that directly connect to each road
segment of the network, distinguishing whether they allow traffic to enter or leave
it, a categorical covariate representing average annual daily traffic (AADT) and a
categorical covariate assigning a geometric typology to each road segment (this one
is described in the Methodology). In this regard, it is worth noting that AADT is
not available for every road segment in Valencia, but only for the most travelled av-
enues and streets. Hence, the data available was used to define a 5-level categorical
covariate representing the following ranges for AADT: <7000 (level 1), 7000-16000
(level 2), 16000-25000 (level 3), 25000-55000 (level 4) and >55000 (level 5). These
ranges represent the least travelled road segments of the city for which scarce data is
available (level 1) and the four quartile-based intervals that follow from the available
AADT values (levels 2 to 5). It is worth noting that the strategy of categorizing
AADT values has already been tested by several authors (Hao and Daniel, 2014;
Fan et al., 2015; Yasmin et al., 2016).
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Furthermore, numbers of lanes and neighbouring roads (referred to here as neigh-
bours) were truncated and recoded for values higher than 5 and 3, respectively. To
obtain the number of neighbours the network that was considered was actually an
extension of the final one employed for the analysis, in order to avoid an unrealistic
low number of neighbours for the road segments at the edge of the network. Fi-
nally, as the network of study represents a fairly small and homogeneous population
area, it was concluded that the inclusion of demographic or socioeconomic variables
was not of interest. Table 2.1 includes a description and statistical summary of the
covariates introduced in this section.

Variable Description Mean SD
Main road Main road segment of the city (binary) 0.626 0.484
Parking slots Existence of public parking slots in the road segment (binary) 0.613 0.671
Traffic light Presence of a traffic light in the road segment (binary) 0.617 0.487
Bus stops Existence of public bus stops in the road segment (binary) 0.110 0.314
Bus lane Presence of a bus lane in the road segment (binary) 0.572 0.495
No. of lanes Number of traffic lanes in the road segment 2.176 1.349
No. of in-neighbours Number of neighbouring road segments allowing traffic to enter the road segment 1.770 0.631
No. of out-neighbours Number of neighbouring road segments allowing traffic to leave the road segment 1.775 0.629
AADT Average annual daily traffic (5 levels) 2.286 1.539

Table 2.1: Variables description and basic statistics, where SD denotes the standard
deviation

2.3 Methodology

2.3.1 Software

The R programming language (3.4.1 version, R Development Core Team, Vienna,
Austria) (R Core Team, 2018) was used to obtain all the results presented in this
study. The R packages bayesplot (Gabry and Mahr, 2018), brms (Bürkner et al.,
2017), ggmap (Kahle and Wickham, 2013a), spatstat (Baddeley et al., 2015), spded
(Bivand and Piras, 2015) and SpNetPrep (Briz-Redón, 2019) were specifically re-
quired for performing the analysis and the data curation process.

2.3.2 Definition of intersection zones

In order to capture the differential risk between road locations around intersections
and road segments between them, the original network structure was modified by
creating shorter road segments in the proximity of each road intersection. The
insertVertices function of the R package spatstat (Baddeley et al., 2015) was key for
performing this task.

Specifically, road segments of 20 meters were inserted around intersection neigh-
bourhoods (so that the furthest point of the segment from the intersection was at a
distance of 20 m), which were determined to be intersection analysis zones (IAZs).
On the other hand, segments not satisfying this condition, most of which are be-
tween two IAZs, were declared as middle analysis zones (MAZs). Thus, the original
network of study was divided into 683 IAZs and 292 MAZs, leading to the forma-
tion of a new road network (referred to from now on as a split network) made up
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Segment type

IAZ

MAZ

Figure 2.2: Graphical description of the split network showing the locations of IAZs
and MAZs

of 810 vertices and 975 road segments (the original had 279 vertices and 444 road
segments). As an illustration, Figure 2.2 displays the distribution of IAZ and MAZ
along the split network.

Therefore, the definition provided for IAZ and MAZ allowed for the coexistence of
street zones subject to different rules and causalities while being represented by a
unique geometrical entity: the road segment (note that the sum of the number of IAZ
and MAZ coincides with the number of road segments of the final network). This fact
led to a unified definition of neighbourhood relationships and covariates for the two
types of zone that mainly arise when dealing with traffic accident datasets. Indeed,
the term segment is used without distinction for both types of zone throughout the
Chapter, even though in related literature it is only used for what it has been defined
as MAZs.

The choice of a distance of 20 meters was mainly based on knowledge of the road
network of study and on similar distances used in literature (Miaou and Lord, 2003).
Indeed, this distance allows a fair representation of IAZs as intersection-approaching
or intersection-leaving segments. The selection of a shorter threshold distance was
rejected due to the lack of sufficient certainty on the data collection procedure to
guarantee the correct location of accidents at such a level of resolution around in-
tersections. Furthermore, the objective was to employ the road segment as the only
spatial unit of study, and this would be undermined if a threshold very close to 0
were chosen (as the IAZ would almost become the intersection point itself).

Regarding the definition of the covariates at the level of the new split road network,
these simply follow the values available for the original network. Hence, each IAZ
or MAZ of the split road network acquires the value (for a given covariate) of the
corresponding whole road segment in the original non-split network. An exception
was made with traffic lights, given their frequent location around road intersection
zones. For this reason, a value of 1 was assigned to an IAZ or MAZ for the indicator
related to traffic light presence if and only if a traffic light was present in the same
road segment (before splitting) at a distance lower than 20 m from the middle point
of the IAZ/MAZ. As an illustration, Figure 2.3 provides a graphical description
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Figure 2.3: Graphical description at the road segment level of the following network-
related variables: (a) main road indicator, (b) parking slot presence, (c) traffic light
presence, (d) bus stop presence, (e) bus lane presence, (f) number of lanes, (g)
number of in-neighbours (h) number of out-neighbours and (i) AADT

of every covariate considered for the analysis, which enables us to appreciate the
distinction made for traffic lights (Figure 2.3c).

2.3.3 Concept of neighbourhoods

The road segments that form the already defined directed network structure consti-
tute the basic spatial units on which to perform the statistical analysis. Given a road
segment, i, in the directed linear network, its neighbourhood, N(i), can be defined
in four different ways depending on whether the traffic flow information available is
used. At the simplest level, if this information is not used, two road segments i and j
are neighbours if they are connected by a vertex of the network. However, the use of
the traffic flow leads to the definition of three other types of neighbourhoods. First,
neighbourhood between i and j can be established if it is possible to travel from i to
j or from j to i, in either direction, without passing through another road segment
of the network; this is denoted Ndir(i). In addition, if a distinction is made between
travelling from i to j or vice versa, it is possible to separate the neighbouring road
segments that allow you to reach i (N in

dir(i)) from those that allow you to leave from
i to another road segment of the network (N out

dir (i)) (see Figure 2.4 for examples of
all these types of neighbourhood). From now on these last two types of neighbours
are referred to as in-neighbours and out-neighbours, respectively.

The four definitions of neighbourhood structures can lead to the construction of four
different adjacency matrices. Thus, a Wdir matrix based on Ndir neighbourhoods
was the only one employed as it was considered the most suitable for the goals
established. Regarding this matrix, its entries, wij, are called weights and it holds
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Figure 2.4: Examples of types of neighbourhood in a directed linear network. The
six road segments that are contiguous to road segment i allow the construction of
the neighbourhoods N(i) = {a, b, c, d, h, j}, Ndir(i) = {b, d, h, j}, N in

dir(i) = {b, h}
and N out

dir (i) = {d, j}

that wij = 1/|N(i)|, if j ∈ N(i) (row normalization), and 0 otherwise.

2.3.4 Road segment neighbourhood geometry

The geometric structure surrounding each road segment of the network was studied,
a procedure made possible by the road network structure. Given a road segment
of the network, the factors considered for each neighbouring road segment were the
neighbourhood type (in or out) and the angles formed between the road segment
and its neighbours. Road segment length and the number of in and out neighbours
were also included to better discriminate between road segments. As was done with
the other covariates previously defined (with the exception of the indicator factor for
traffic lights), the geometry is studied from the perspective of the original network.
Later, the values obtained are assigned to the road segments of the split network
accordingly.

A total of six types of neighbours were defined by combining the angles of the
road segments and the direction of the traffic. Angles between road segments were
classified (measured in [0◦, 180◦]) into three groups: straight (]150◦, 180◦]), right
(]60◦, 120◦[) and sharp ([0◦, 60◦]

⋃
[120◦, 150◦]). Each of these types of angle was

then crossed with the in/out information associated with each neighbouring road
segment to create the six possible scenarios.

The same strategy was followed with the lengths of the neighbouring road segments.
In this case, the road segments were divided into three groups (short, medium and
long) according to the 33.33% and 66.67% quantiles of the road segment length dis-
tribution. Again, the three groups created were crossed with the in/out information,
producing six new classification groups.

The k-means algorithm (Hartigan and Wong, 1979) was then applied to a total set
of fifteen geometric-related variables for each of the road segments: the number of
neighbours belonging to each of the six angle-direction and length-direction combi-
nations, the road segment length and the number of in and out neighbours. A value
of k = 4 was chosen, since convergence was not reached for higher values of k, and
this made it possible to form four clusters of 42, 130, 163 and 109 road segments,
respectively.
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Figure 2.5: (a) Clustering of the road segments of the spatial network according to
their neighbourhood geometry. (b) Detailed neighbourhood of a road segment, i, of
the directed network. Six road segments share a vertex with i, but only four of these
allow traffic to flow from i or to i. The values of the geometric variables for road
segment i are: Straightin = 1, Rightin = 0, Sharpin = 1, Straightout = 1, Rightout =
0, Sharpout = 1, Shortin = 1, Mediumin = 1, Longin = 0, Shortout = 1, Mediumout

= 0, Longout = 1, Length = 41.7, |N in
dir(i)| = 2, |N out

dir (i)| = 2

Table 2.2 summarizes the mean values for the variables employed in the clustering
procedure and Figure 2.5 includes the graphical representation of the four clusters
and an example of construction of the geometric-related variables for a specific road
segment. According to these results, Cluster 2 is mainly composed of medium-
long road segments with a high average number of neighbouring road segments that
form a right angle, which is associated with being part of a crossroads (90-degree
intersection). Cluster 3 is formed by very short road segments, a high proportion of
which involve acute angles, representing abrupt changes of direction in the directed
network. Cluster 1 clearly presents the highest road segment length and an high
number of neighbours. Finally, Cluster 4 is made up of short-medium length road
segments and quite high connectivity with short-length road segments compared
with Clusters 1 and 2.
Cluster Straightin Rightin Sharpin Straightout Rightout Sharpout Shortin Mediumin Longin Shortout Mediumout Longout Length |N in

dir| |N out
dir |

1 0.45 0.81 0.48 0.40 0.74 0.74 0.21 0.64 0.88 0.29 0.69 0.90 170.66 1.83 1.98
2 0.45 0.93 0.63 0.42 0.98 0.59 0.28 0.58 1.15 0.27 0.57 1.15 115.84 2.17 2.11
3 0.21 0.46 0.88 0.21 0.52 0.86 0.75 0.48 0.31 0.74 0.50 0.34 23.80 1.58 1.61
4 0.25 0.59 0.84 0.29 0.53 0.78 0.53 0.75 0.39 0.52 0.77 0.31 68.40 1.77 1.78

Table 2.2: Mean values of the variables used to perform the clustering of the road
segments according to their geometry

2.3.5 Accident count modelling

A Bayesian spatial model with Zero-Inflated Negative Binomial response (ZINB)
was implemented to fit the observed accident counts for the split network structure
(composed of 975 road segments). If Y ∼ NB(µ, ψ) (basic negative binomial distri-
bution of mean µ and shape ψ) then it holds that E(Y ) = µ, V (Y ) = µ + µ2

ψ
and

P (Y = x) = (x+ψ−1
ψ−1 )( ψ

µ+ψ
)ψ( µ

µ+ψ
)x. The zero-inflated version of the NB distribution
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acts as a double-stage process that makes it possible to increase the probability of
value 0. Thus, if z denotes the structural probability of 0 for the ZINB distribution,
its probability mass satisfies the next stepwise function:

P (Z = 0) =

{
z + (1− z)P (Y = 0) , x = 0
(1− z)P (Y = x) , x > 0

where Y ∼ NB(µ, ψ) and Z ∼ ZINB(µ, ψ, z).

Then, on the basis of the choice of a ZINB distribution for the response (accident
counts) the next spatial model (Model 1) was specified:

Yi ∼ ZINB(µi, ψ, z)

log(µi) = log(Lengthi) + xiβ + φi (Model 1)

where Yi is the number of accidents observed at road segment i, µi and ψ are the
mean (for road segment i) and overdispersion (shape) values for the ZINB distribu-
tion, z is the probability of value 0 for the ZINB distribution, the natural logarithm
acts as a link function for the mean risk at segment i (µi), the natural logarithm of
each segment’s length is added as an offset, xi is a vector that contains the values
for the covariates described in Table 2.1 corresponding to segment i along with a
factor indicating whether the road segment belongs to the IAZ class, β is a vector of
coefficients to control the effect of these predictors and φi represents a spatial effect
for road segment i.

The spatial effect was modelled using a conditional autoregressive (CAR) structure
(Besag, 1974; Besag et al., 1991):

φi | φj, j 6= i ∼ N(α
n∑
j=1

wijφj, τ
−1
i )

where α ∈ [0, 1] is a spatial dependence parameter that measures the strength of
spatial autocorrelation (α = 0 reflects the complete absence of such effect), τi is a
precision parameter that varies with i and wij the entry at the (i, j) position of the
neighbourhood matrix Wdir (wii = 0, ∀i).

In particular, the joint distribution of Φ = (φ1, ..., φn) satisfies the Gaussian multi-
variate probability distribution (Banerjee et al., 2004):

Φ ∼ N(0, [τ(D − αWdir)]
−1).

where D is a diagonal matrix that contains the number of in- and out-neighbours
of each spatial unit.

Moreover, a second model (Model 2) specifically focused on the effect of the covari-
ates on IAZs was implemented with the following linear predictor for log(µi):

log(µi) = log(Lengthi) + xiβ + xiγIIAZ + φi (Model 2)
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where IIAZ is an indicator function for IAZ and γ represents the vector of coefficients
that measure the effect of the covariates at IAZ. Hence, Model 1 only considers
the effect of IAZ as one of the factors being studied, whereas Model 2 allows the
determination of the differential effect that each covariate can produce at the road
segment level depending on the zone of analysis (IAF or MAF). Furthermore, for
these two models, the inflation probability, z, was modelled through a logit equation
that makes it possible to estimate a different value of z for each zone type:

logit(z) = zIntercept + zSlopeIIAZ ←→ z =
exp(zIntercept + zSlopeIIAZ)

1 + exp(zIntercept + zSlopeIIAZ)
(2.1)

where IIAZ is again an indicator function for IAZ.

The estimation of the parameters of the two models was performed with the brms
R package (Bürkner et al., 2017), which is based on the statistical software Stan
(Carpenter et al., 2017).

2.3.6 Model checks

Several techniques were applied in order to check for the propriety of the different
models employed for representing the observed accident counts. In this section, the
methods used for this task, which included conditional predictive ordinate (CPO),
general correlation coefficients and Moran’s I, are briefly described.

The CPO method (Stern and Cressie, 2000; Marshall and Spiegelhalter, 2003) re-
quires data simulation from the posterior distribution of a fitted Bayesian model.
Indeed, if the values for the covariates of the models are left fixed as in the data
used to fit the model, the accident counts simulated at each draw behave like repli-
cates of the original counts (y) and are denoted by Y rep (Gelman et al., 2013). If
a model represents the counts properly, the observed counts should agree with the
distribution of a simulated dataset of Y rep. Then, a high departure between y and
Y rep may indicate a poor performance from the model. In this regard, CPO is a
simulation-based tool that has already been used in similar research studies (Yang
et al., 2013; Xie et al., 2014) with the main purpose of identifying outliers within
the data, which in this case correspond to road segments. For this purpose, the
distribution of Y rep

i for every spatial unit (road segment) i is evaluated from all the
original data except yi itself (in a similar way to the leave-one-out cross-validation
procedure). Thus, the goal is to find spatial units whose observed count value is far
enough from the simulated distribution of Y rep

i |y−i, where y−i denotes the original
data with the exclusion of yi. The determination of a p-value that tests this question
for unit i is done through a reweighting of the Y rep with the choice of the following
weight:

ρ
(k)
−i =

1

P (yi|Λ(k))

where k is the index for the simulation, yi is the number of accidents observed for
spatial unit i, Λ(k) represents the parameters sampled for the model at simulation
number k (which includes the corresponding values for λi’s, ψ, z and Φ) and P rep-
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resents the probability function of a ZINB distribution that follows the parameters
in Λ(k). Then, a p-value that allows outlier identification is approximated with the
next expression (Marshall and Spiegelhalter, 2003):

P (Y rep
i ≤ yi|y−i) ≈

yi−1∑
g=0

∑K
k=1 P (Y rep

i = g|Λ(k))ρ
(k)
−i∑K

k=1 ρ
(k)
−i

+
1

2

∑K
k=1 P (Y rep

i = yi|Λ(k))ρ
(k)
−i∑K

k=1 ρ
(k)
−i

(2.2)

General correlation coefficients are an extension of Pearson’s correlation coefficient
(Pearson, 1896) making it possible to compare two possibly related numerical vectors
of the same length. Specifically, it can be employed to compare the distribution of
ranks shown by the observed accident counts and the counts fitted by any statistical
model applied. The formula for a general correlation coefficient, Γ, is:

Γ =

∑n
i=1,j=1 aijbij√∑n

i=1,j=1 a
2
ij

∑n
i=1,j=1 b

2
ij

where the coefficients aij and bij must be anti-symmetric (aij = −aji, bij = −bji).
As two important particular cases, if robs and rexp denote the ranks (in decreasing
order) of the observed and fitted accident counts per spatial unit (respectively),
the following choices of aij and bij correspond to Kendall and Spearman correlation
coefficients (Kendall, 1938; Spearman, 1904):

aij = sgn(robsi − robsj ), bij = sgn(rexpi − rexpj )

aij = robsi − robsj , bij = rexpi − rexpj

where sgn(x) = x/|x| (sign function). A high value of Γ, regardless of the specific
selection of aij and bij, indicates a high level of agreement between the ranked
observed accident counts and the ones predicted by a model. This is a clear sign of
a good model fit.

Finally, Moran’s I (Moran, 1950a,b) consists in a global estimation of the spatial
autocorrelation of a variable indexed in according to a system of spatial units. Its
definition is the following:

I =

n∑
i=1

∑
j∈Ndir(i)

1

ni
(xi − x̄)(xj − x̄)

n∑
i=1

(xi − x̄)2

where xi is a variable indexed by spatial unit and x̄ its average. Thus, Moran’s I
makes use of the predefined neighbourhood structure and behaves as a correlation
between the variable of interest and a variable that assigns to each of the spatial
units a weighted average of the values of its neighbours. Under the hypothesis of no
spatial autocorrelation, it holds that E(I) = −1/(n− 1), where n is the number of
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spatial units (975). Hence, negative Moran’s I values for the residuals of the model
would be an indicator of a good performance from the fitted Bayesian count models
in capturing the spatial effect.

2.3.7 Kernel density estimation

Kernel density estimation (KDE) is commonly used to obtain the intensity of a
point pattern that lies on a space. Particularly, it can be used to estimate the
intensity of a point pattern along a linear network, requiring modifications of the
classical formulas (valid for areal units) to account for the particularities of this
spatial structure (Okabe et al., 2009; Okabe and Sugihara, 2012). In this study, the
equal-split continuous kernel density defined by McSwiggan et al. (2017) is computed
at the middle point of every road segment i of the linear network following the next
equation, by which the fσ(i) values are obtained:

fσ(i) =
∑

x∈A(mi,σ)

k(dL(x,mi))a
C(π) (2.3)

where mi is the middle point of the road segment i of the linear network, σ is the
kernel’s bandwidth, A(mi, σ) is the set of points of the network at a distance from
mi up to σ where an accident took place, k(u) = 1

σ
√
π
e(

−u
σ

)2 is the kernel function
(Gaussian), dL is the distance along the network and aC(π) =

∏m
j=1

2
deg(vj)

, where
π = [v1, ..., vm] denotes the set of vertices of the network that have to be passed
through to travel the shortest path that joins mi with x and deg() represents the
degree of a vertex of the network, meaning the number of road segments incident to
the vertex. It needs to be remarked that the computation of the distance dL between
any two points of the network makes use of its directed structure, providing a realistic
measure of the distance between the two points according to traffic flow.

A Gaussian kernel was selected because it is the most common option, and no other
kernel functions were explored because this choice usually has little effect on the
results (Silverman, 2018). On the choice of the bandwidth parameter, a value of
around σ = 50 m would be optimal if the non-parametric test proposed by Cronie
and Van Lieshout (2018) were followed. However, the larger value of σ = 100 m was
applied in agreement with previous studies on road networks that have employed
KDE for hotspot detection (Xie and Yan, 2013; Nie et al., 2015).

Finally, edge effects (Okabe and Sugihara, 2012) need to be discussed because the
network used for the analysis is to a certain extent artificially bounded, being only
a part of the larger road network of Valencia. First, it needs to be remarked that
the kernel construction chosen (Equation 2.3) alleviates edge effects, as stated by
McSwiggan et al. (2017). Second, Eixample District is delimited by pedestrian and
secondary roads (to the north and south), a train station (to the west) and a green
area (to the east), which to some extent make the district naturally bounded (Figure
2.1a enables us to appreciate some of these points). Furthermore, the two roads
bordering the network of analysis to the north and south are important avenues of
Valencia which account for most of the accidents in the vicinity (these avenues are
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part of the network analyzed). All these facts allow us to conclude that accident
densities estimated along the four roads that form the border of the network are
reasonable.

2.3.8 Coldspot/hotspot detection

The use of the count models was supplemented with a search for zones of the network
with a particularly low or high incidence of traffic accidents; these are usually known
as coldspots and hotspots, respectively. Several approaches to this problem coexist
in recent literature on traffic accident data, including some of the studies already
mentioned in the Introduction (Xie and Yan, 2013; Nie et al., 2015; Thakali et al.,
2015; Harirforoush and Bellalite, 2016). These methods mainly agree in the use of
KDE to obtain a smooth representation of the observed point pattern, a process
which is commonly followed by the detection of zones of the network whose KDE
values present a significant spatial autocorrelation.

Here, KDE was computed with σ = 100 m at the middle point of each road segment
of the network considering the dL distance along the network that accounts for
traffic flow (following Equation 2.3). Then, the local version of Moran’s I statistic
known as LISA (Anselin, 1995) was obtained for each road segment following the
next formula:

Ii =
xi − x̄∑

i(xi − x̄)2/n

∑
j

wij(xj − x̄)

The road segments showing a significant local association (a threshold of 0.1 was used
for the p-value instead of the usual 0.05 to minimally extend some of the coldspot-
s/hotspots, allowing a wider part of the network to be analyzed) were selected and
grouped according to their contiguity. Other inputs such as the accident count per
road segment or the accident rates were also considered for computing the LISA
values, but KDE was the only one capable of providing a sensible number of zones
along the network presenting similar behaviour in terms of dangerousness. Finally,
the basic average intensity of the point pattern (number of events per unit length)
in each of the zones of interest was compared with the mean intensity in its first-
order neighbourhood (the set of all the first-order neighbours of the road segments
composing the zone), which made it possible to detect both low-intensity (coldspot)
and high-intensity (hotspot) parts of the network showing a differential incidence of
traffic accidents in comparison with the road segments in their surrounding areas.

Finally, once the coldspots and hotspots had been located in the network, the values
of the covariates of the road segments that formed them were individually analyzed
to confirm or put into question the conclusions that could be drawn from the use of
the count models.

2.4 Results and discussion

A total of four Monte Carlo Markov chains (MCMC) of length 30000 were run for
the two models starting from non-informative priors for the parameters involved.
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The length of the chains was chosen to be large enough to ensure the convergence
of the estimates of all the parameters involved in the models, which was afterwards
checked using common validation tools (scale reduction factor close to 1 for all esti-
mates and visual inspection of the chains). The choice of a ZINB model is sensible
according to the values in Table 2.3, which was validated through subsequent pre-
dictive checks of a graphical nature. First, accident counts are clearly overdispersed
with a variance-to-mean ratio of 31.22 for the original network. Second, 23.2% of the
road segments (103 of the 444 road segments that form the original network) have
no accidents recorded for the period being considered, which leads to the choice
of a zero-inflated response. Furthermore, the inequality observed in the accident
counts per road segment leads to a Gini index (Gini, 1912) of 0.67, with more than
the 50% of the accidents recorded concentrated in 52 of the segments of the orig-
inal network (these segments represent only 15% of the length of the network), in
agreement with previous studies of a similar nature (although not focused on traffic
accidents) referring to the law of crime concentration (Weisburd, 2015). These par-
ticularities of the data of study are also present when the network is split into IAZs
and MAZs. However, whereas the variance-to-mean ratio is not so heavily affected,
the number of zeros is much higher in IAZs. For this reason, the estimation of
the zero-inflated probability was made dependent on the zone, as described in the
previous methodological section regarding count model specifications.

Original network Split network
IAZs MAZs

Mean 12.92 5.75 6.21
Variance 403.46 189.94 123.25
Variance/Mean 31.22 33.06 19.84
% Zeros 23.20 49.19 18.84
Gini Index 0.67 0.80 0.66
No. of accidents 5738 3924 1814
No. of segments 444 683 292
Road length (m) 33571.09 14166.96 19404.13

Table 2.3: Summary of the response (counts at the road segment level) for the
original and the split road network

Table 2.4 displays the values obtained for the three kinds of validation tools that were
applied. Moran’s I values were negative for both models, which is a sign of good
performance as it indicates the absence of spatial autocorrelation between model
residuals. Correlation coefficients (Γ) derived from the comparison of observed and
expected counts at the road segment were very similar and significantly greater than
0 for both models, although a slight improvement can be appreciated for Model 1.
Regarding the percentage of potential outliers according to the CPO method (IAZs
and MAZs showing a p-value lower than 0.05 according to Equation 2.2), the results
are again very close, but better again for Model 1. In conclusion, Model 1 presents
better results than Model 2 by a narrow margin, but both models offer a reasonable
basis to allow conclusions to be drawn from them regarding the occurrence of traffic
accidents in the network of analysis.
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Model 1 Model 2
Γ (Kendall) 0.37 0.34
Γ (Spearman) 0.47 0.43
% Potential outliers 13.85 15.28
Moran’s I -0.06 -0.04

Table 2.4: Values obtained for the statistical tools employed for model comparison

Therefore, let us now concentrate on model parameters and on the effects that the
covariates being considered could have had on the accidents that occurred in the
network of study during the period 2005-2017. Table 2.5 shows the results for Model
1 and Model 2, in which the missing levels of any covariate are implicitly present
as they are considered the reference levels for the covariate (the other levels are
estimated in relation to the missing one). If the estimation for the coefficient cor-
responding to a covariate (β’s and γ’s) or a structural parameter (ψ, z and α) lies
in the 90% credible interval (all derived from the MCMC procedure), then the ef-
fect of that covariate or structural parameter is significant with 90% credibility. All
structural parameters were found to be significant in all models. Hence, a modelling
approach that includes spatial heterogeneity (α > 0), overdispersion (ψ > 0) and a
zero-inflated distribution that depends on the zone (MAZ or IAZ) is justified. Pa-
rameters ψ and z driving the ZINB distribution present very similar estimates for the
two models. The higher percentage of zeros in IAZs is clear from the estimates ob-
tained for the slope parameter (zSlope > 8), which models z through a logit equation.
This particularly means (for instance, for Model 1) that z = exp(−8.69+8.32)

1+exp(−8.69+8.32)
' 0.41

in IAZs (following Equation 2.1), a value that is not surprising in view of Table
2.3. On the other hand, z = exp(−8.69)

1+exp(−8.69) < 2 · 10−4 indicates that zero-inflation
is not needed for modelling accident counts in MAZs, that is, a non-modified NB
distribution would be suitable enough.

With regard to covariate effects, Model 1 indicates that main roads, roads contain-
ing a bus lane and approaching-intersection segments (IAZs) are associated with a
higher accident count. In contrast, the existence of parking slots in the road and
geometries of type 3 and 4 correlate with fewer traffic accidents at the road segment
level for the network of study. Regarding these two geometry types, as mentioned
previously, they mainly include short and sharp road segments (Cluster 3) and short-
medium segments that are highly connected with the latter (Cluster 4). The sign
of the coefficient related to Cluster 3 may be considered inconsistent with literature
reporting higher crash risks for skewed road intersections (Harwood et al., 2000;
Nightingale et al., 2017; Kumfer et al., 2019), which is supported by the fact that
skewed intersections cause longer traverse times than 90-degree intersections and
poor visibility for drivers, among other things (Gattis and Low, 1998). However, it
is worth noting that most of the research regarding skewed intersections is based on
high-speed rural intersections. The Eixample network analyzed in this study repre-
sents a low-to-moderate-speed urban area. No significant associations are found for
the rest of the covariates, including the multilevel categorical ones representing the
number of lanes in the road, the number of entrances/exits and the AADT level.
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On the other hand, Model 2 provides a more complex depiction of the effect of the
covariates being studied, as it considers a differential effect for each of them depend-
ing on the zone type (IAZ or MAZ). Among the β parameters, which now represent
effects within MAZs, only the one representing the effect of Cluster 3 remains sig-
nificant (with the same sign as in Model 1). Despite not being significant with 90%
credibility, the effects of main roads and the presence of a bus lane should not be
completely overlooked according to the confidence intervals obtained. In addition,
Model 2 points out the different contribution that some factors may make to the
risk of traffic accidents in IAZs or MAZs. Road geometry reflected by Cluster 4 now
appears as significant only for IAZs, presenting a even more negative coefficient than
in the case of Model 1. Moreover, the association of the two highest levels of AADT,
4 and 5, with traffic accidents presents a differential behaviour between MAZs and
IAZs. Indeed, both β parameters are significant and positive, suggesting an increase
in the number of traffic accidents in MAZs, but the two corresponding γ parameters
are negative, indicating a protective effect (or, at least, a less detrimental effect)
against traffic accidents in the most travelled road segments when a road intersec-
tion is near. Therefore, the distinction between IAZs and MAZs has allowed us to
find a significant association between some AADT levels and traffic accidents that
depends on the proximity to road intersections, a result that somehow compensates
the surprising (according to previous research) non-significant estimates found for
the AADT levels in Model 1.

The computation of network-constrained KDE values with σ = 100 m leads to the
smooth representation of traffic accidents shown in Figure 2.6a. This Figure shows
that one of the main avenues located in the network (which also has the highest
values for AADT) has a very high accident rate along all its length. Similarly,
avenues and main roads bordering the network contain some zones of high accident
rates. In contrast, the central part of the network shows much lower values than
neighbouring locations. Therefore, the KDE values computed at the middle points of
the 975 segments forming the split network were used to find (through LISA values)
coldspots and hotspots accurately located in the network, which are displayed in
Figure 2.6b. Identifying coldspots and hotspots enables us to compare the values
presented by the covariates in the road segments forming them, but also in the rest
of the network. Table 2.6 contains the mean values (weighted by each road segment’s
length) of the covariates at coldspots, hotspots and average road segments (neither
a coldspot nor a hotspot), which enables us to check the high relative frequency of
main roads, bus lanes, 4 or more lanes, 3 or more in- and out-neighbours and levels
4 and 5 of AADT in the road segments belonging to hotspots in comparison to
those in coldspots or in average microzones. On the latter, it must be remembered
that many of these covariates or levels were not yielded as a significant factor by
the count models. Finally, the geometries of type 3 (for IAZs), 2 and 4 (for MAZs)
are particularly high in hotspots, which may be unexpected according to the results
shown by the two models fitted. In this regard, it is worth remarking that one
should not expect road characteristics particularly represented in hotspots/coldspots
to display a significant association with traffic accidents from a global modelling
perspective. Hence, the combination of two statistical methodologies can either
strengthen the validity of the conclusions or call them into question.
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2.5 Conclusions

Traffic safety analyses set over areal spatial units have been of interest for many
years, but the recent development of statistical techniques on linear networks is
bringing new advances and challenges for this subject. Specifically, in this study, a
linear network has been used to analyze a geocoded dataset of accidents that took
place in the city of Valencia (Spain) during the period 2005-2017. In this regard, the
proper consideration of road intersections and the combination of several statistical
techniques have been emphasized.

Indeed, the study of traffic accidents around road intersections is of special inter-
est given the high percentage of them that occur close to them. Typically, these
analyses are done independently of the values observed for road segments between
intersections. This strategy can potentially lead us to miss important relationships
(mainly of a spatial type) between intersections and segments in between which may
detract from the validity of the results. In this article, the definition of IAZs and
MAZs along the directed linear network available has provided a unified approach
(involving spatial relationships and the definition of covariates) to this issue that
does not exclude any type of road entity.

On the other hand, from a modelling perspective, the coexistence of multiple method-
ologies to treat accidents datasets provides a flexible framework for analyzing many
kinds of specific questions of interest, but this fact also leads to great difficulties
when trying to decide on a particular approach. In this study, overdispersion of ac-
cident counts and the disparate effects that arise at road segments near intersections,
producing both a high concentration of traffic accidents and a high presence of zeros,
were addressed through a zero-inflated negative binomial distribution. In addition,
spatial relationships between road segments were included with a CAR distribu-
tion based on a neighbourhood matrix that accounted for traffic flow. Later, model
quality was assessed employing several validation tools, including checks based on
simulated data that led to outlier detection, but also more classical techniques such
as correlation coefficients and Moran’s I.

Furthermore, this study has combined the use of spatial count models with the
detection of coldspots and hotspots. The results derived from each of the approaches
have been discussed and compared, providing coherent results even though some
differences were noted. This kind of local analysis could be very useful for validating
the results from the statistical models and and questioning some of the conclusions
yielded by the former, increasing the robustness of the final results. In this regard,
the nature of KDE alleviates the existence of geocoding inaccuracies that may arise
when conducting a spatial analysis of this kind, especially when it is done at the road
segment level. Indeed, the risk of making mistakes as a consequence of bad geocoding
are higher for the construction of the response variable representing accident counts
at the road segment level. Here, a small inaccuracy can lead to situating a traffic
accident in the wrong road segment, altering the counts of two segments. Kernel
density estimation, however, produces a smooth representation of the intensity of
traffic accidents along the network that can even absorb some of the geocoding
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Figure 2.6: Quintile distribution of the KDE values for σ = 100 m (a) and coldspots
(green) and hotspots (red) detected after the computation of LISA statistics from
these KDE values for the split network made of 20 m IAZ. In (a), each road segment
of the split linear network is coloured according to the KDE value at its middle point

inaccuracies that usually occur, as suggested by Harada and Shimada (2006) and
Zandbergen (2009).

Overall, the modelling approach revealed that spatial heterogeneity, overdispersion
and the effect of road intersections on adjacent road segments (including zero-
inflation) must be accounted by analyzing the distribution of accident counts in
the Eixample District of Valencia. The generalization of these findings to other ur-
ban areas may be risky, because this kind of analysis is always data-dependent, but
it should always be reasonable to consider it. In addition, the detection of hotspots
and coldspots identified the fact that main roads, the existence of a bus lane in the
road, 4 or more lanes and high AADT values are associated with higher accident
counts at the road segment level. The effect of other covariates remained unclear
or non-significant and may require further analysis. In any case, this study was
slightly limited in terms of covariates, which should be addressed in the future with
the availability of more complete and accurate geographic information systems.
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Model 1 Model 2
Covariate β Lo Up β Lo Up
(Intercept) -3.01 -3.42 -2.60 -3.43 -3.99 -2.88
Main road 0.41 0.04 0.78 0.50 -0.09 1.09
Parking slots -0.27 -0.51 -0.02 -0.14 -0.49 0.20
Traffic light -0.08 -0.30 0.14 -0.20 -0.68 0.28
Bus stops 0.02 -0.25 0.30 0.21 -0.19 0.60
Bus lane 0.36 0.04 0.68 0.39 -0.09 0.88
No. of lanes (2) -0.29 -0.64 0.05 0.01 -0.50 0.53
No. of lanes (3) 0.20 -0.23 0.65 0.00 -0.67 0.68
No. of lanes (4) 0.36 -0.22 0.94 -0.06 -1.02 0.89
No. of lanes (≥ 5) -0.04 -0.64 0.56 0.01 -0.87 0.90
No. of in-neighbours (2) 0.05 -0.16 0.27 0.03 -0.31 0.36
No. of in-neighbours (≥ 3) 0.05 -0.38 0.48 -0.07 -0.70 0.56
No. of out-neighbours (2) 0.04 -0.19 0.26 0.03 -0.31 0.37
No. of out-neighbours (≥ 3) 0.29 -0.15 0.73 -0.04 -0.71 0.63
Cluster (2) 0.06 -0.23 0.35 0.04 -0.35 0.44
Cluster (3) -0.43 -0.81 -0.06 -1.24 -2.25 -0.25
Cluster (4) -0.59 -0.91 -0.28 0.05 -0.41 0.49
AADT (2) 0.10 -0.32 0.51 0.11 -0.52 0.74
AADT (3) -0.15 -0.58 0.29 -0.26 -0.94 0.42
AADT (4) 0.28 -0.31 0.88 1.22 0.32 2.13
AADT (5) 0.48 -0.10 1.06 1.34 0.36 2.34
IAZ 1.58 1.35 1.79 2.43 1.67 3.18
Covariate|IAZ γ Lo Up γ Lo Up
Main road|IAZ - - - -0.27 -1.01 0.46
Parking slots|IAZ - - - -0.22 -0.68 0.25
Traffic light|IAZ - - - 0.07 -0.47 0.61
Bus stops|IAZ - - - -0.30 -0.83 0.23
Bus lane|IAZ - - - -0.04 -0.66 0.58
No. of lanes (2)|IAZ - - - -0.33 -1.01 0.34
No. of lanes (3)|IAZ - - - 0.42 -0.43 1.28
No. of lanes (4)|IAZ - - - 1.05 -0.12 2.24
No. of lanes (≥ 5)|IAZ - - - -0.07 -1.21 1.08
No. of in-neighbours (2)|IAZ - - - 0.09 -0.33 0.51
No. of in-neighbours (≥ 3)|IAZ - - - 0.19 -0.64 1.01
No. of out-neighbours (2)|IAZ - - - 0.01 -0.42 0.44
No. of out-neighbours (≥ 3)|IAZ - - - 0.70 -0.16 1.57
Cluster (2)|IAZ - - - 0.00 -0.54 0.55
Cluster (3)|IAZ - - - 0.68 -0.40 1.79
Cluster (4)|IAZ - - - -1.19 -1.79 -0.59
AADT (2)|IAZ - - - 0.03 -0.76 0.82
AADT (3)|IAZ - - - 0.04 -0.81 0.89
AADT (4)|IAZ - - - -1.76 -2.91 -0.61
AADT (5)|IAZ - - - -1.55 -2.76 -0.36
Parameter Est. Lo Up Est. Lo Up
ψ 1.71 1.06 2.65 1.56 1.07 2.33
zIntercept -8.69 -15.87 -4.68 -8.61 -15.63 -4.63
zSlope 8.32 4.30 15.49 8.27 4.28 15.30
α 0.11 0.01 0.32 0.17 0.01 0.47

Table 2.5: Summary of the results obtained with Models 1 and 2. Coefficient esti-
mates (β and γ) in bold represent covariates significant with 90% credibility, whereas
Lo and Up denote the lower and upper bounds (respectively) of the 90% credible
intervals for such estimates
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Covariate Coldspots Average Hotspots
IAZ MAZ IAZ MAZ IAZ MAZ

Main road (1) 0.33 0.00 0.53 0.47 0.94 0.94
Parking slots (1) 0.63 0.65 0.65 0.77 0.23 0.34
Traffic light (1) 0.25 0.00 0.52 0.07 0.63 0.29
Bus stops (1) 0.08 0.00 0.14 0.20 0.13 0.15
Bus lane (1) 0.33 0.00 0.52 0.50 0.82 0.98
No. of lanes (1) 0.71 1.00 0.56 0.59 0.17 0.07
No. of lanes (2) 0.25 0.00 0.21 0.21 0.09 0.11
No. of lanes (3) 0.04 0.00 0.13 0.12 0.12 0.23
No. of lanes (4) 0.00 0.00 0.07 0.04 0.40 0.21
No. of lanes (≥ 5) 0.00 0.00 0.04 0.04 0.21 0.38
No. of in-neighbours (1) 0.28 0.26 0.26 0.24 0.46 0.34
No. of in-neighbours (2) 0.61 0.74 0.63 0.63 0.36 0.37
No. of in-neighbours (≥ 3) 0.08 0.00 0.11 0.14 0.18 0.30
No. of out-neighbours (1) 0.16 0.39 0.27 0.21 0.42 0.33
No. of out-neighbours (2) 0.84 0.61 0.63 0.67 0.37 0.34
No. of out-neighbours (≥ 3) 0.00 0.00 0.10 0.12 0.21 0.33
Cluster (1) 0.12 0.00 0.13 0.31 0.04 0.00
Cluster (2) 0.20 0.39 0.40 0.51 0.22 0.62
Cluster (3) 0.09 0.00 0.20 0.02 0.49 0.00
Cluster (4) 0.59 0.61 0.28 0.16 0.25 0.37
AADT (1) 0.71 1.00 0.60 0.67 0.11 0.06
AADT (2) 0.04 0.00 0.13 0.13 0.12 0.11
AADT (3) 0.25 0.00 0.12 0.08 0.09 0.13
AADT (4) 0.00 0.00 0.07 0.08 0.13 0.40
AADT (5) 0.00 0.00 0.07 0.04 0.55 0.30
Total road length (m) 506.87 144.95 10969.22 17626.74 2682.96 1632.44
No. of road segments 25 3 538 256 120 33
No. of accidents 7 1 1989 1066 1928 747

Table 2.6: Relative frequencies of the covariates in the road segments that form
the coldspots, average zones and hotspots detected. Each frequency is obtained by
averaging the values of the covariates for all the road segments in each set, but
weighting them according to their corresponding lengths. For the binary variables
only the frequencies of presence at the road segment (value of 1) are shown



Chapter 3

Identification of differential risk
hotspots along a linear network

In this Chapter a procedure that allows detecting microzones of a road network
where a specific type of accident is overrepresented is fully described. Then, the
procedure is employed for the analysis of a geocoded traffic accident dataset includ-
ing information on collision and vehicle types involved in each accident. Investigating
the existence of microzones that are especially dangerous for a collision or vehicle
type is a topic of interest from a prevention perspective due to the differential risk
of severity that they usually trigger for the people involved in the accident, and also
for better understanding how certain spatial road configurations may be correlated
with certain collision or vehicle types.

3.1 Introduction

It is well known that collision and vehicle type are two capital variables that con-
dition the severity of a traffic accident. To cite a couple of studies in this regard,
Chang and Wang (2006) found vehicle type to be the most crucial factor that de-
termines the severity of a traffic accident (which was determined to be superior for
pedestrians, motorcyclists and cyclists), whereas Golob et al. (1987) verified that
fixed-object and crossing were the most severe types of collisions. Thus, having the
ability to detect the small sections of a road structure (which are called microzones
in the remainder of the Chapter) that are particularly prone to present a specific
type of accident is of great interest in order to implement preventive measures, spe-
cially for the type of accidents whose severity is expected to be higher. In the next
paragraphs, a revision of previous studies that focused on the occurrence and causal-
ity of traffic accidents (considering the effect of collision or vehicle type) is carried
out.

Regarding collision types, Dell’Acqua et al. (2013) defined several safety performance
functions to establish the risk that associates to several collision types (head-on, rear-
end, single-vehicle run-off-road) under a set of possible scenarios mainly involving
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surface conditions, light presence and the geometric structure of the street. Hos-
seinpour et al. (2014) specifically analyzed head-on collisions with a wide range of
count-data models which showed that horizontal curvature, terrain type and heavy-
vehicle traffic correlated with a high risk of observing this type of traffic accident.
Finally, Wang et al. (2017) recently employed multivariate Poisson-lognormal mod-
els to analyze the factors contributing to traffic accidents with different severity,
ranging from property-damage-only to fatal. In this work, the type of collision was
mainly classified in terms of its directionality: same-direction, intersecting-direction,
opposite-direction and single-vehicle. The results of the models dependent on these
four types of collisions unveiled a differential effect of several road characteristics,
as wide lanes associating with more opposite-direction accidents but less of single-
vehicle type, or shoulder widths of more than 8 feet presenting a negative association
with single-vehicle collisions, among other examples.

On the other hand, many studies have focused on the investigation of a specific type
of vehicle, with an special emphasis being put on the estimation of the probability
of injury and the severity associated with it. For instance, some studies have inves-
tigated these effects in accidents involving bicycles (Kim et al., 2007; Walker, 2007),
motorcycles (Shankar and Mannering, 1996; Savolainen and Mannering, 2007) or
heavy vehicles (Chang and Mannering, 1999; Anderson and Hernandez, 2017).

Motivated by these previous studies, the goal was designing a new methodology to
detect microzones of a road network presenting a differential risk for a specific ac-
cident typology. The Chapter is structured as follows. First, the network structure
that was used for the analysis is accurately described and located in its real con-
text. Secondly, the traffic accident dataset that was employed is depicted, including
a summary of the curation process and a detailed subsection on the information
available regarding each traffic accident (by type of collision and vehicle). Then, a
methodology is proposed to find microzones of the network that show a differential
risk for a collision or vehicle type, including the posterior application of a Monte
Carlo technique that serves to determine the statistical significance of each of these
microzones. This procedure is fully displayed through an exemplification that makes
use of accidents involving motorcycles. Finally, the methodology is applied and dis-
cussed for multiple collision and vehicle types.

3.2 Data

3.2.1 Network structure

A linear network composed of 1664 vertices and 2513 segments, which represented
a total length of 191.14 km of road structure was analyzed. This network broadly
included the city center of Valencia (Ciutat Vella District) and its five surround-
ing districts (l’Eixample, Extramurs, Campanar, la Saïdia and el Pla del Real),
which are all shown, subdivided according to their boroughs, in Figure 3.1a (Open-
StreetMap contributors, 2017; Graul, 2016). This area of Valencia contains some of
the most travelled avenues of the city and represents, as a whole, an homogeneous
and highly connected road structure.
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Network complexity was reduced without altering its basic geometrical shape with
the application of a simplification algorithm that merges segments sharing a vertex of
second degree (through which only two segments are connected). Moreover, network
preprocessing included the slight modification of highly complex intersections, the
transformation of roundabouts into simple polygons of no more than six sides, and
the removal of pedestrian streets. The complete process was performed with the
help of the R package SpNetPrep (Briz-Redón, 2019).

Finally, the network was endowed with a direction according to traffic flow at this
part of Valencia (also performed with SpNetPrep). Some of the segments of the
network were defined as bidirectional, representing two-way roads where no median
strip separates the two flows of vehicles. If a median strip is located in a road, two
(parallel) segments are defined for the network. A representation of the final network
that was employed in this study is available in Figure 3.1b, including the direction of
traffic flow. The few differences that can be appreciated between the administrative
structure portrayed in Figure 3.1a and the linear network in Figure 3.1b, were only
executed to give the border of the whole structure a more solid representation.

(a) (b)

Figure 3.1: Boroughs of the area of the city of Valencia that was studied (a) and
complete network structure used for the analysis, with arrows indicating the traffic
flow (b). In (a), the nomenclature of each borough is overlayed on the map, with
the first number indicating the district the borough belongs to, from 1 to 6: Ciutat
Vella, l’Eixample, Extramurs, Campanar, la Saïdia and el Pla del Real

3.2.2 Accident dataset

A total of 11006 traffic accidents registered by the Police Department of the city
of Valencia (Spain) during the years 2014 to 2017, which took place in the roads
belonging to the area of the city described in the previous section were analyzed.
Each of these accidents was accurately geocoded into the network from the address
information recorded by the Police officers minutes after the accident had occurred.
Manual curation of the data broadly included the following steps: selection of the
accidents that took place in streets located within the districts of the area of analysis,
geocoding (longitude-latitude coordinates) of the accidents from the street addresses
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reported by the Police via the Google Maps API and the R package ggmap (Kahle
and Wickham, 2013a), revision of the obtained coordinates by applying reverse
geocoding with the same package, and final inspection of the projection of these
coordinates into the linear network.

As it was already mentioned in the introduction, each traffic accident in the dataset
had information attached that made the point pattern become a marked point pat-
tern. The marks regarding the collision type and the vehicles involved in each
accident were chosen to be further analyzed and are described in the following two
sections.

Types of collisions

Accidents are classified by Police officers according to the way they took place,
leading to a quite complex variable with dozens of different categories. Considering
the frequencies of these categories and examining the coincidence between some of
them, only six collision types were established for the dataset: Crossing, Fixed-
object, Rear-end, Run-off-road, Run-over and Side. The following lines include a
brief description of each of these types.

• Crossing : The head of a vehicle collides to one of the sides (lateral) of another
(moving) vehicle. Frontal collisions (between the front ends of two vehicles)
were also assigned to this group as they were not abundant enough to establish
a specific category.

• Fixed-object : A vehicle collides to a parked vehicle or to any fixed element in
the street.

• Rear-end : The head of a vehicle collides to the end of another (moving) vehicle.

• Run-off-road : A vehicle loses control and leaves its traffic way, possibly invad-
ing the opposite direction of traffic flow or the sidewalk.

• Run-over : A vehicle hits a person and possibly drives over him/her. Some-
times it is also employed when a vehicle hits another one of clearly lower
dimension and/or weight.

• Side: Lateral collision between two or more vehicles.

It must be remarked that some traffic accidents can be quite complex and involve
several types of collisions and situations, making the treatment of this type of data
quite challenging. In fact, a part of the accidents that took place in the road
network considered during the period 2014-2017 remained without collision type
being assigned due to the lack of information available in this regard, or because the
literal concept annotated was completely different to the six predominant types that
have been just defined (avoiding a proper recodification of the collision type). Table
3.1 shows the relative frequencies of the different collision types in the dataset (they
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represent 86.35% of the total because of the accidents uninformed or categorized
with an infrequent type of collision) and the Moran’s I values (Moran, 1950a,b)
shown by each of the patterns, which confirm the significant spatial autocorrelation
of every type of collision (at the 0.05 level, even though the Run-off-road type is at
the limit).

Types of vehicles

Information regarding the types of vehicles implicated in each accident was also
available. As expected, cars were the vehicles that appeared more frequently in the
dataset by far, followed by motorcycles (mopeds were also recoded to this type).
The involvement of cars in most of the traffic accidents led to discard its specific
study, putting the focus on the rest of vehicle types.

Particularly, the other types of vehicles present in the dataset were bicycles, buses
(private and public), lorries and vans. Accidents implicating public buses were sep-
arated from those involving private ones because the former are subject to specific
routes, and also because of their singular importance as part of the public trans-
portation system of the city.

It is needed to say that this mark of the point pattern was used in the form of a
set of binary variables referring to each of the types of vehicles registered in the
dataset. Therefore, each accident allowed the presence of several vehicle types, a
situation that did not hold for the collision type. As a consequence, the addition of
the relative frequencies in Table 3.1 exceeds 100.

The possibility that some microzones of the road network are particularly danger-
ous for some of these vehicle types was deeply analyzed, which seems reasonable
according to the high values of the Moran’s I in Table 3.1 that indicate the presence
of spatial aggregation, specially for public buses.

3.3 Methodology

3.3.1 Software

The R programming language (3.4.1 version, R Development Core Team, Vienna,
Austria) (R Core Team, 2018) was used to obtain all the results presented in this
work. The R packages ggmap (Kahle and Wickham, 2013a), spatstat (Baddeley
et al., 2015), spded (Bivand and Piras, 2015) and SpNetPrep (Briz-Redón, 2019)
were specifically required for some parts of the analysis.

3.3.2 Estimating a relative probability for each type of acci-
dent

Kernel density estimation (KDE) is typically used in spatial statistics to estimate
the intensity of a point pattern over a geographical space, as shown in Chapter
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Mark Category n % I (p-value)

Collision type

Crossing 3082 28.00 0.04 (0.00)
Fixed-object 1518 13.79 0.06 (0.00)
Rear-end 2691 24.45 0.16 (0.00)
Run-off-road 198 1.80 0.03 (0.05)
Run-over 701 6.37 0.13 (0.00)
Side 1314 11.94 0.08 (0.00)

Vehicle type

Bicycle 635 5.77 0.09 (0.00)
Car 9524 86.53 0.11 (0.00)
Lorry 420 3.82 0.03 (0.05)
Motorcycle 2811 25.54 0.12 (0.00)
Private Bus 212 1.93 0.11 (0.00)
Public Bus 747 6.79 0.21 (0.00)
Van 916 8.32 0.05 (0.00)

Table 3.1: Sample sizes, relative frequencies and Moran’s I values (with associated
p-values testing the null hypothesis of no spatial autocorrelation) of all the categories
available for the two marks considered

2 (Section 2.3.7). The equal-split continuous kernel density estimator for linear
networks (McSwiggan et al., 2017) is now recalled:

λσ(x) =
∑

z∈A(x,σ)

k(dL(x, z))aC(π) (3.1)

where all the parameters and variables act as in Equation 2.3. For the development
of the current methodology, the Gaussian kernel (represented by k(·) in Equation
3.1) was also used for simplicity, due to the known fact that this choice has little
effect on the results (Silverman, 2018). Bandwidth parameters (σ) ranging from 50
m to 150 m were tested in order to check the effect of this election.

KDE can be used to estimate the spatially-varying relative probability of occurrence
for a type of event or the relative risk between several event types, both two ap-
plications of special interest in case-control and related studies (Kelsall and Diggle,
1998; Diggle et al., 2005; Serra et al., 2013). Hence, if {yi}ni=1 represents the binary
outcomes (for example, case or control) of a collection of events observed at points
{xi}ni=1, KDE allows the derivation of a risk surface (Kelsall et al., 1995; Kelsall
and Diggle, 1995) over space that can be interpreted as a conditional probability of
observing a case (Yi = 1) at a location Xi, with Xi and Yi representing the random
location of a spatial event and its outcome, respectively. In addition, in a more
general setting, the case-control situation can be extended and one can set yi = 1 if
one mark of the point pattern takes certain value at point xi, and 0 otherwise. This
approach is taken, which enables defining a risk surface regarding the involvement
of a specific collision or vehicle type in the neighbourhood of a point xi.

Therefore, according to the formulas derived by Copas (1983) and Kelsall and Diggle
(1998) for planar point patterns, an estimate (that depends on the bandwidth σ) of
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the risk presented by a type of event at a location x is:

pσ(x) =
n∑
i=1

Kσ(x− xi)yi
/ n∑

i=1

Kσ(x− xi)

where n is the number of events observed and Kσ(u) = h−2K(σ−1u) is a kernel
function with K(u) = (2π)−1 exp(−1

2
||u||2) (Gaussian), being || · || the euclidean

norm. This formula is then adapted to the case of the network KDE, which leads
to the estimation of a relative probability of risk for any typology of accident at a
location x of the road network:

pσ(x) =
n∑
i=1

λσ(xi)yi

/ n∑
i=1

λσ(xi) (3.2)

where λσ(x) follows Equation 3.1. Hence, pσ(x) approximates the relative probabil-
ity for the typology of traffic accident being represented by yi = 1 to be observed
at location x, which relies on the information provided by all the traffic accidents
occurred within a linear radius (following the network structure) of σ meters from
x.

3.3.3 Detecting differential risk hotspots

The main objective of the study was to design a methodology capable of identifying
microzones of a road network where certain accident typology is overrepresented.
From now on, these microzones will be referred to as differential risk hotspots (see
Figure 3.2 for a full graphical description). Many previous studies have already dealt
with the accurate detection of hotspots at the road segment level (Xie and Yan,
2013; Nie et al., 2015; Harirforoush and Bellalite, 2016), but focusing on a type of
accident and assessing risk in relation to other types has been less investigated by far.
Therefore, the following paragraphs include a description of the procedure proposed
for differential risk hotspot detection, which relies on the estimation (across space)
of a relative probability of occurrence for each event type, according to Equation
3.2. An implementation of this methodology is available in the R package DRHotNet,
which is fully described in Chapter 8.

The first step of the procedure consists in estimating (with Equation 3.2) the relative
probability of a specific accident typology along the complete spatial network. Such
estimates need to be computed at a partition of the whole road network in order to
obtain a estimation of the risk that the type of accident presents across space. In
particular, the middle points of the 2513 segments of the road network from Valencia
could have been chosen for this step, but in order to gain accuracy, specially near and
around road intersections, the linear network was subdivided into shorter segments
that are called lixels in literature (Xie and Yan, 2008) (Figure 3.2b). A value of 50
m was chosen such that the length of the segments of the new network (from now
referred to as the lixellized network) did not exceed this threshold. The resulting
lixellized network presented a total of 5099 segments and 4250 vertices, in which all
traffic accidents available of any type were projected (Figure 3.2c).
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Once the probabilities of risk were computed for a typology of accident at the middle
points of the lixellized network (Figure 3.2d), several approaches were tested for
attempting the definition of representative hazardous hotspots of road segments for
each accident’s typology. Firstly, following one of the most usual methodologies,
local Moran’s I (LISA) statistic values (Anselin, 1995) were computed for each of
the lixels. Then, lixels showing a significant local association at the 0.05 level were
selected and grouped according to their contiguity, leading to potential differential
risk hotspots. However, probably due to the only moderate spatial autocorrelation
showed by some of the types of accidents along the network and also to the small
sample size at many microzones, this approach did not provide satisfactory results.

Therefore, an alternative method was finally established, which consisted in selecting
the road segments with a superior relative probability estimate in comparison with
the mean value for the whole network. More specifically, road segments associated
with a relative probability exceeding the mean value for the network in more than
k times the standard deviation presented by all the probabilities estimated were
preselected. From this set of pieces of the network of length up to 50 m, only
those where n or more accidents had occurred within a linear radius of σ meters
(the bandwidth value chosen for estimating the probabilities) were finally selected
for the construction of the hotspots (Figure 3.2e). Thus, the inclusion of the n
parameter allows discarding some estimated probabilities that are not based on
a large enough dataset of traffic accidents, which could be artificially large and
consequently meaningless.

A sensitivity analysis was carried out on k and n with several values of the bandwidth
parameter in order to find sensible choices of these two parameters that allow the
obtention of a reasonable set of differential risk hotspots. The prediction accuracy
index (PAI) developed by Chainey et al. (2008), which has already been used in
some studies involving traffic accidents (Thakali et al., 2015) or crimes (Van Patten
et al., 2009), was slightly modified to perform this analysis. Hence, a type-specific
PAI (PAItype) was defined as follows:

PAItype =
ntype/Ntype

m/M

where ntype is the number of traffic accidents recorded in the hotspots with the type
of interest, Ntype the total number of traffic accidents in the study with the type of
interest, m is the length (in meters) of all the hotspots detected, and M is the total
length of the network structure being considered (191.14 km).

Thus, the PAItype index computes the ratio between the proportion of accidents
that took place in the set of differential risk hotspots obtained and the proportion
of network length that is spanned by these hotspots. A higher value of the PAItype
index indicates that the hotspots found have proportionally condensed more traffic
accidents for a given length of road, which represents a better performance in this
context.
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3.3.4 Assessing hotspot significance

The use of a KDE technique facilitates the estimation of the intensity of a point
pattern over a space and the detection of microzones that show high/low values of
intensity in comparison with their surroundings. However, the mere use of KDE does
not provide a statistical significance value that helps to discriminate which hotspots
show a more notorious differential behaviour for a type of collision or vehicle. In
this regard, the methodology introduced by Bíl et al. (2013) is partially imitated
to find which of the predefined differential risk hotspots deserves to be declared as
a microzone of high dangerousness for a specific typology of accident, and not a
consequence of the small sample size that the pattern presents at some microzones
of the network, even though a right choice of the n parameter reduces the chances
of this undesired possibility. Hence, the procedure described in the previous section
serves to obtain a set of differential risk hotspots, whereas the process described in
this one enables to assess a statistical significance value to each of these hotspots,
which could then be ranked according to their importance, but also be rejected if
they do not show enough statistical evidence of presenting a differential risk for the
type of traffic accident being studied.

The methodology that is defined to check the statistical significance of each differ-
ential risk hotspot is now described. First, the point pattern available is left fixed
in space whereas the marks (collision and vehicle type) of the events are changed
randomly a total of 750 times. Following a Monte Carlo approach in order to test
the null hypothesis of random mark assignment (meaning random type of collision
or vehicles implicated), for every single simulation, and for every differential risk
hotspot being analyzed, the probabilities of risk are computed at the middle points
of the lixels forming each hotspot (considering each simulated marked point pat-
tern). Then, a probability of risk for the type of accident is assigned to each hotspot
at every simulation by simply averaging the probabilities estimated for every lixel
(the average is weighted by lixel’s length to increase the contribution of longer lix-
els, even though this decision barely alters the results). This process generates an
empirical distribution for the probability of risk at every differential risk hotspot,
allowing the construction of a statistical significance measure (a p-value) for each of
them, completing the procedure that allows the detection differential risk hotspots
in a directed road network. The assessment of a statistical significance to each dif-
ferential risk hotspot can eventually lead to discard some of them or, at least, reduce
their importance in favor of the most significant ones (Figure 3.2f).

On the choice of the value 750 as the number of simulations performed to assess
statistical significance, the study of Robey and Barcikowski (1992) was followed.
Assuming a type I error α = 0.05, a type II error β = 0.2 (which implies a power
for the test of 0.8) and a “liberal criterion” according to the definition of robustness
for a statistical test introduced by Bradley (1978), a value around 750 would be
recommended. A larger choice may be better depending on the level of uncertainty
one wishes to undertake, but here the definition of 750 iterations was considered fair
enough according to the results that were obtained and the computation time that
was saved avoiding the use of a more stringent criterion.
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: Graphical description of the procedure implemented in order to detect
differential risk hostpots. Starting from a road network of interest (a), this is seg-
mented into shorter elements called lixels (b). The traffic accidents available are
then projected into the lixellized network in (b), some of which can be of one spe-
cific type (orange points), whereas the rest are of any other type (blue points), as
shown in (c). Next, KDE is employed to produce an estimation of the probability of
risk for the accident type being studied (symbolized by the orange points) at each
of the middle points of the lixellized network (d). As an illustration, in (d) the lixels
are coloured according to a sensible guess of these probabilities in view of the point
pattern in (c), ranging from average or below average (gray) to very high (purple).
The lixels satisfying the conditions imposed by the k and n parameters are selected
(in red) and grouped, becoming differential risk hotspots (e). Finally, a Monte Carlo
technique is applied to the hostspots in (e), yielding a value of significance for each
of them that can occasionally lead to their rejection (f)

3.3.5 Ranking hotspots according to further criteria

The detection of microzones of a road network presenting a singular risk for a col-
lision or vehicle type should be followed by the implementation of a set of counter-
measures that attempt to improve their safety. As stated, the procedure introduced
in this Chapter allows the ranking of the differential risk hotspots found according
to their empirically determined statistical significance.

However, it would be sensible to bring into the equation several external factors, not
considered explicitly by the procedure described in this Chapter, that are capital to
establish a systematic decision-making process that optimizes the social cost-benefit
associated to the application of traffic safety countermeasures. Hence, the absolute
number of traffic accidents found in a hotspot, the proportion of severe accidents ob-
served or some collision/vehicle types particularly overrepresented (which are highly
correlated with severity outcomes) are only a few of the factors that may be incor-
porated for this matter. In this regard, some methodologies for hotspots ranking
that allow the combination of several indicators, like the one developed by Coll et al.
(2013), would be useful.
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3.4 Results and discussion

This section starts with a subsection that illustrates the methodology proposed in
this Chapter by showing all the steps that were followed to detect microzones of the
linear network where traffic accidents involving motorcycles were overrepresented.
Furthermore, this section includes a discussion on the choice of the k and n param-
eters and their appropriateness depending on the necessities of the researchers and
professionals involved in the design of preventive measures. The second subsection
contains a summary and analysis of the differential risk hotspots that are obtained
for all the typologies of traffic accidents considered in the study.

3.4.1 Example of application: motorcycle accidents

Motorcycles contributed to 2811 of the 11006 accidents available in the dataset,
representing 25.54% of the total of accidents. Following Equation 3.2, the relative
probability of observing an accident involving a motorcycle was estimated along
the complete lixellized network with a bandwidth value of σ = 100 m (Figure 3.3a
displays a graphical representation of these estimations, with the lixels presenting
a value higher than 0.3 being coloured accordingly). Several bandwidth parameters
were tested, ranging from 50 to 150 m, and a value of 100 m was found a suitable
choice according to the results obtained. The use of bandwidths lower than 100
m, specially those that are close to 50 m, leads to the frequent generation of many
short hotspots that fail to connect to other microzones of the network (reducing
the comprehensibility of the results), whereas the election of a larger value around
150 m seems to excessively extend the effect of the point pattern, likely producing
fictitious microzones of differential risk.

As an illustration, the application of the hotspot detection methodology with k = 1
and several values of n is shown in Figures 3.3b-3.3d. As expected, for a fixed k, a
larger value of n is more restrictive and less microzones of the network are pointed
out.

The effect of the election of k and n is further investigated with the use of a set of
values in the range [0, 2] for k and varying n from 10 to 50. Figure 3.4 shows the
values of PAItype (Figure 3.4a) and the proportion of accidents involving a motor-
cycle (Figure 3.4b) for the sets of hotspots determined for the different values of k
and n. Other vehicles (and types of collisions) were investigated with such graph-
ical descriptions and provided similar results, so the arguments stated in the next
paragraphs that are based on the case of motorcycle accidents stay true in general.

As it has already been explained, PAItype index measures the ratio between the
proportion of accidents of interest found within a set of hotspots (in this example,
presenting a differential risk for motorcycles) and the proportion of length that these
hotspots represent in the whole network structure. Therefore, the highest value of
PAItype would indicate the k and n values that optimize the procedure, in the sense of
providing a minimal road length structure (the set of hotspots) given the number of
motorcycle accidents that occurred on it. Figure 3.4a suggests that a choice around
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k = 1.5 and n = 45 would be the optimal for PAItype in this example. Moreover, in
this study the interest lies in the relative probability of accident for a specific type
of collision or vehicle, more than on the microzones of the network that contain the
majority of them (PAItype focuses on this). In this regard, Figure 3.4b shows how
the proportion of accidents involving a motorcycle increases as k and n do, although
a very restrictive selection of k and n would imply a too reduced number of hotspots.

In conclusion, the variation of the k and n parameters can lead to very different
sets of differential risk hotspots. A value for k in the interval [1,2] and n ≥ 30
seem appropriate to obtain a reasonable number of microzones along the network
presenting differential risk for one specific type of collision or vehicle, but the final
election should remain to the decision of the researchers, and specially the profes-
sionals that could be in charge of establishing preventive measures according to the
results obtained (police officers and traffic experts). To illustrate this idea, Table
3.2 describes the results that were obtained from the differential hotspot detection
procedure for several values of k and n (still with accidents involving motorcycles).
With the exception of the most restrictive parameter values, the microzone that is
spanned by the set of hotspots extends for some (or many) kilometers, suggesting
the use of a more exigent combination if the wish is to focus only in the most relevant
parts of the network for the accident typology of interest.

Keeping this in mind, the procedure here described for motorcycle accidents was
performed for most of the possible outcomes of the two marks attached to the point
pattern (collision and vehicle type) with k = 1, n = 40 and σ = 100, including the
posterior application of the Monte Carlo technique to obtain information regarding
significance. These results are shown in the next section.

3.4.2 General application of the methodology

The procedure is employed with the different types of vehicles and collisions informed
at the available dataset, providing the significant differential risk hotspots that are
shown in Figure 3.5 and Figure 3.6 (at the 0.05 level). As in the example included
in the previous section, the values k = 1 and n = 40 were chosen in order to obtain
a initial set of differential risk hotspots. Later, the statistical significance of these
hotspots was assessed by the Monte Carlo technique, yielding the final collection
that appears in Figures 3.5 and 3.6 (only those with a p-value lower than 0.05 are
selected). Specifically, in the case of motorcycle accidents, Figure 3.6a includes the
hotspots from the group shown in Figure 3.3c that were yielded significant by the
Monte Carlo procedure, even though the ones rejected could also be reconsidered
once the former are inspected and treated by the authorities.

Occasionally, the differential risk procedure yields differential risk hotspots formed
by only one lixel, which are specially notorious in the less frequent types of accidents
that naturally involve a minimal number of hotspots. The examination of some of
this one-lixel hotspots unveils some problematic situation that needs to be explained.
The use of the KDE technique with a bandwidth of 100 m implies that the probabil-
ity of risk that is estimated at the middle point of each lixel of the network is based
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Figure 3.3: Estimated probabilities of observing an accident that involves a motor-
cycle for each lixel of the linear network (a) and differential risk hotspots detected
after the application of the methodology with k = 1 and (b) n = 20, (c) n = 30 and
(d) n = 40

on a slightly wider microzone that the lixel itself (which can not exceed a length of
50 m by construction). This situation can eventually lead to the declaration of a sin-
gular lixel of the network as a differential risk hotspot, although only a little number
of accidents of the type being studied have occurred within that lixel. Even though
such a hotspot could be simply a false positive produced by the methodology being
proposed, the problem addresses automatically sometimes if one thinks about the
middle point of the lixel as the center of a linear radius of 100 m along the network
(following traffic flow) where that type of accident is overrepresented. For instance,
this situation takes place with the one-lixel differential hotspot detected for bicycle
accidents in Borough 2.2 and with the one found in the border of the Boroughs 3.1
and 3.3 related to run-over collisions (see Figure 3.1a for locating these boroughs).
In the former, no accidents involving bicycles were observed from 2014 to 2017, but
6 out of the 42 accidents that occurred in a radius of 100 m from the middle point
of this lixel in the same period of time implicated a cyclist. Indeed, the estimated
relative probability for an accident in this lixel to involve a bicycle was 0.17 (very
close to the simple proportion), which is far superior to the proportion of bicycle
accidents in the whole dataset (0.06). Similarly, no run-overs were recorded in the
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k n Hotspots Nmotorcycle N pmotorcycle Length (m) PAImotorcycle
0.5 10 287 1247 2936 0.42 40692.88 2.08
1 10 181 583 1128 0.52 18217.86 2.18

1.5 10 98 200 320 0.62 6559.52 2.07
2 10 41 55 74 0.74 2320.5 1.61

2.5 10 14 14 15 0.93 588.62 1.62
0.5 20 235 1027 2461 0.42 26287.38 2.66
1 20 124 443 881 0.50 10277.83 2.93

1.5 20 48 129 220 0.59 2754.69 3.18
2 20 14 20 27 0.74 555.54 2.45

2.5 20 4 5 5 1.00 125.80 2.70
0.5 30 183 862 2107 0.41 17272.68 3.39
1 30 85 347 708 0.49 5853.93 4.03

1.5 30 25 100 178 0.56 1308.92 5.19
2 30 5 10 16 0.62 159.03 4.28

2.5 30 0 - - - - -
0.5 40 128 704 1739 0.40 12032.39 3.98
1 40 50 277 568 0.49 3824.72 4.92

1.5 40 16 84 155 0.54 880.23 6.49
2 40 2 4 8 0.50 86.04 3.16

2.5 40 0 - - - - -
0.5 50 101 583 1434 0.41 8262.58 4.80
1 50 35 240 489 0.49 2688.96 6.07

1.5 50 13 84 154 0.55 701.51 8.14
2 50 2 4 8 0.50 86.04 3.16

2.5 50 0 - - - - -

Table 3.2: Description of the differential risk hotspots (denoted simply as hotspots
in this Table) that are detected when applying the procedure with different values
of k and n for σ = 100 m, where Nmotorcycle is the number of accidents involving
motorcycles in the complete set of hotspots for two given values of the parameters,
N is the total number of traffic accidents recorded in the same space, and pmotorcycle
is the proportion Nmotorcycle/N . It can be appreciated that for some combinations
of these two parameters no hotspots are determined

aforementioned differential hotspot regarding this kind of collision, but in a radius
of 100 m from its middle point a total of 11 out of 56 traffic accidents belonged to
this type (the estimation of the relative probability of a run-over collision at this
lixel was 0.21, much larger than the proportion of 0.06 for the complete network).

Therefore, one should consider each of the differential hotspots pointed out by the
procedure as the core of a slightly extended microzone of the network that manifests
a differential risk for one specific type of accident. This way of thinking about
the hotspots is usually unnecessary, as the lixels that form the hotspot normally
encompass most of the accidents recorded in that microzone of the network, but
becomes a requirement to give sense to the shortest hotspots that are composed by
only one lixel. In the same vein, with regard to the interpretation of a particular
differential risk hotspot, it is worth to remark that the type of collision should be
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Figure 3.4: PAImotorcycle results (a) and proportion of traffic accidents involving a
motorcycle (b) within the set of hotspots obtained with different values of k and n
and a bandwidth value of σ = 100 m

also accounted. For instance, for run-off-road accidents, a detected microzone may
be the consequence of a triggering condition located dozens of meters apart, in the
same or in a connected road, which is where countermeasures should really focus.

As a summary, Table 3.3 describes the differential risk hotspots that were found for
the different collision and vehicle types. This table includes the number of traffic
accidents of each type that were recorded within the corresponding set of hotspots
and the proportion of accidents they represented along this microzone of the road
network. In order to minimize the possible presence of differential risk hotspots
that point out a very specific microzone of the network but are really representing a
wider part of it (issue treated in the previous paragraphs), the number of accidents
of each type occurred within an extension of the hotspots is also indicated (a 75 m
linear radius from the extreme points that include the complete hotspot).

Regarding the PAItype values that were obtained, Table 3.4 indicates that these
ranged from 5 to 16, approximately, being specially high for run-off-road collisions,
bicycles, lorries and buses (private and public). Hence, the detection of differential
risk hotspots was in average further optimized for the vehicles than for the collision
types, suggesting an overall higher level of dispersion along the road network for
the latter. Furthermore, Table 3.4 indicates that accidents involving public buses
presented the higher level of concentration at differential risk hotspots, followed by
private buses, side collisions and rear-ends. Table 3.4 also points out that the pro-
cedure presented in this Chapter is specifically focused on the finding of microzones
along the road network that are particularly dangerous for a collision or vehicle type,
and not on the microzones where the collision or vehicle type is more concentrated
(with higher accident counts), which usually associates with arterial and busy roads
regardless of the collision or vehicle type.

Finally, an exploratory analysis of the coincidence of differential risk hotspots be-
tween collision and vehicle types was performed. Figure 3.7 shows the percentage of
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road structure spanned by differential risk hotspots that is shared by each collision
and vehicle type. This percentage is obtained in relation to the collision or vehicle
type whose set of differential risk hotspots is longer. The highest percentages were
found between side collisions and buses (both private and public), with a maximum
percentage of coincidence close to 20% for side collision and public bus. Other re-
markable but minor associations included crossing with motorcycles and rear-ends
with motorcycles and private buses.

Crossing accidents

Average or low risk

Differential risk hotspot

0 m 500 m 1000 m

(a)

Fixed−object accidents

Average or low risk

Differential risk hotspot

0 m 500 m 1000 m

(b)
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Figure 3.5: Differential risk hotspots that are statistically significant (at the 0.05
level) for each collision type after the application of the detection procedure with
k = 1, n = 40 and σ = 100

3.5 Conclusions

This Chapter has fully described a methodology that provides microzones of a road
network that present a significant high risk for a type of collision or vehicle. These
microzones are called differential risk hotspots. The successful implementation of
such methodology obviously requires that the road network itself is taken as the
space where the traffic accidents are located (areal spaces are not accurate enough
for this matter). Furthermore, it is recommended to fraction the road network into
shorter pieces to increase precision.

The use of a KDE-based technique which is typically used in case-control studies
has rendered possible to estimate a probability of risk along the whole network for
every type of collision and vehicle properly informed in the available dataset. From
these estimates, a procedure that accounts for the disparity between each estimate
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Figure 3.6: Differential risk hotspots that are statistically significant (at the 0.05
level) for each vehicle type after the application of the detection procedure with
k = 1, n = 40 and σ = 100

and the mean proportion of the type of accident in the complete road network (that
also excludes the parts of the network lacking a representative sample) has been
designed. The election of the two parameters that define the procedure is vital to
obtain a sensible number of differential risk hotspots.

Indeed, the detection of microzones of a road network structure that present a
differential risk for some type of collision or vehicle type should be a previous step
to the definition of preventive measures that diminish its dangerousness. Depending
on the resources available, the number of microzones of the road network that one
would like to consider for further analysis and treatment could be very different.
For this reason, the parameters of the algorithm could be chosen in a less restrictive
way in order to find a larger number of microzones at which preventive measures
could be implemented. Oppositely, if only a very reduced number of measures can
be afforded, the values of the parameters should be increased and this naturally
would lead to only a few microzones to be further studied.

Furthermore, the differential risk hotspot detection procedure is complemented with
the posterior inclusion of a Monte Carlo technique that scores the importance of each
hotspot. In this final step, the hotspots presenting a statistical significance under
a fixed threshold could be discarded or left aside from a first package of preventive
measures.
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Type Hotspots Length Nhotspots
type Nhotspots

total Nextended
type Nextended

total photspotstype pextended
type pnetwork

type

Crossing 48 2.97 251 416 660 1400 0.60 0.47 0.28
Fixed-object 13 0.63 27 54 106 373 0.50 0.28 0.14
Rear-end 43 5.15 409 866 823 2193 0.47 0.38 0.24
Run-off-road 19 1.13 15 108 39 537 0.14 0.07 0.02
Run-over 10 0.39 11 27 51 339 0.41 0.15 0.06
Side 30 4.42 237 867 410 2112 0.27 0.19 0.12
Bicycle 22 1.06 45 184 87 683 0.24 0.13 0.06
Lorry 11 0.98 34 185 63 543 0.18 0.12 0.04
Motorcycle 36 3.30 263 537 568 1485 0.49 0.38 0.26
Private Bus 27 3.00 45 383 81 1429 0.12 0.06 0.02
Public Bus 26 5.39 231 1047 339 1978 0.22 0.17 0.07
Van 15 0.77 31 100 73 423 0.31 0.17 0.08

Table 3.3: Summary statistics for all the sets of differential risk hotspots (denoted
simply as hotspots in this Table) that were determined as statistically significant
by the Monte Carlo procedure (at the 0.05 level) for the collision and vehicle types
considered, after the application of the detection methodology with k = 1 and
n = 40. The table includes the number of differential risk hotspots that were found
in each case, its total length (in kilometers), the number of traffic accidents of that
type (Nhotspots

type ) and in total (Nhotspots
total ) that were recorded within the hotspots, the

number of traffic accidents of that type (N extended
type ) and in total (N extended

total ) that were
recorded within the hotspots or within an extension of 75 meters around them, the
proportionNhotspots

type /Nhotspots
total (photspotstype ), the proportionN extended

type /N extended
total (pextendedtype )

and the global proportion of the type of accident along the complete road network
pnetworktype (also available in Table 3.1)

Type % Traffic accidents % Road length PAItype
Crossing 8.14 1.55 5.25
Fixed-object 1.78 0.33 5.37
Rear-end 15.20 2.69 5.64
Run-off-road 7.58 0.59 12.83
Run-over 1.57 0.20 7.71
Side 18.04 2.31 7.79
Bicycle 7.09 0.56 12.72
Lorry 8.10 0.51 15.79
Motorcycle 9.36 1.73 5.41
Private Bus 21.23 1.57 13.49
Public Bus 30.92 2.82 10.96
Van 3.38 0.40 8.43

Table 3.4: Description of the sets of differential risk hotspots found for each collision
and vehicle type considering the percentage of traffic accidents (for the corresponding
type) and road length (in relation to the whole network) that the set represents. The
quotient of these two percentages is equivalent to the PAItype value associated
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Figure 3.7: Percentage of coincident road length presented between the set of differ-
ential risk hotspots obtained for the collision and vehicle types considered after the
application of the procedure with k = 1, n = 40 and σ = 100. This percentage is
computed with respect to the collision or vehicle type whose set of hotspots spans
over a larger number of meters (through the quotient between coincident road length
and total length of the longer set of hotspots)



Chapter 4

Adjusting the Knox test for the
analysis of the near-repeat
phenomenon

In this Chapter, the primary goal is to highlight the necessity of adjusting the classic
version of the Knox test for assessing the presence of space-time interaction to get
a more accurate representation of the magnitude and duration of the near-repeat
phenomenon in the context of criminology. The classical version of the Knox test
and a modification of it based on the work of Schmertmann (2015), which allows
adjusting the results of the original test under the more plausible assumption of
varying risk in space and time, are described in detail. The adjustment of the
Knox test is exemplified through the analysis of a dataset of burglaries occurred
in Valencia (Spain) in the period 2016-2017. In particular, several covariates over
an areal covering of the whole city are defined to measure their time-varying effect
on the risk of burglary to make the adjustment of the original Knox test possible.
Furthermore, regarding the dataset used, a methodological subsection focused on
the time uncertainty issue that it presents has been also added, even though this is
only a minor goal of the study.

4.1 Introduction
In the field of criminology, repeat victimization refers to the repetition of some
criminal event against the same victim. The analysis of the repeat victimization
phenomenon has been of great interest since decades ago (Loftin, 1986; Sparks,
1981). A more general framework regarding repeat victimization is the near-repeat
phenomenon, which does not necessarily deal with those events that produce against
the same victim (exact-repeat), but with those that occur at a close distance, in space
and time, from the spatio-temporal location of a previous crime (near-repeat). This
study is focused on the near-repeat rather than on the exact-repeat phenomenon.

The near-repeat phenomenon has been massively analyzed in the last decades for a
wide range of crimes. For instance, armed street robberies (Haberman and Ratcliffe,

50
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2012), shootings (Ratcliffe and Rengert, 2008), or gun assaults (Wells et al., 2012)
have been researched under the near-repeat framework. Besides, some researchers
have even analyzed the coexistence of several near-repeat dynamics for different
crime types, as Youstin et al. (2011) did with shootings, robberies and auto thefts
that had occurred in Jacksonville (Florida, USA).

Seeing the studies cited above, it follows that the near-repeat phenomenon can
involve two general types of victims: people and private properties. In particular, the
near-repeat phenomenon is usually observed for residential burglaries, as Johnson
et al. (2007) showed through the analysis of burglary events occurred in a total of
ten areas from five different countries. As the dataset used for supporting the goals
of the present study is a collection of burglaries, hereinafter the focus is put on the
mechanisms that drive the near-repeat phenomenon from the perspective of this
type of crime.

Two main theories explain the existence of the near-repeat phenomenon with bur-
glaries: “flag” and “boost” (Johnson, 2008). These two theories coexist and overlap
in reality, becoming hard many times to determine which of the two is really driv-
ing the near-repeat phenomenon in a place. In fact, the presence of a near-repeat
dynamic for the burglaries occurred in a city has been analyzed as a phenomenon
dependent on the weekday (Glasner and Leitner, 2016), socioeconomic characteris-
tics (Zhang et al., 2015) and housing homogeneity (Townsley et al., 2003). Now,
the two theories that attempt to describe the near-repeat of burglaries are briefly
described in the following paragraphs.

It is well known that the characteristics of a place alter the intrinsic risk associated to
every crime type, including burglaries. Thus, a zone of a city can provide particular
facilities to burglars that can lead to higher burglary rates and, as a consequence of
this, to the repeat victimization of a property or a set of neighbouring properties.
This mechanism of near-repeat generation is known as “flag” in criminology, which
basically refers to the overall attractiveness (permanent or transitory) of a place for
offenders.

The other well-established theory that explains the existence of the near-repeat sit-
uation is called “boost”. It has been observed that burglars tend to choose properties
where they have broken in before, or very close ones to these because they can make
use of their previous experience and then increase their chances of success (Polvi
et al., 1991). Indeed, the “boost” hypothesis can sometimes be validated when a
burglar (or group of burglars) are proved to be responsible for the commission of
several offences that were close in space and time (Bernasco, 2008), or strongly sus-
pected if a singular “modus operandi” is being used repeatedly in a particular zone
(Ratcliffe and McCullagh, 1998).

Despite the “boost” and “flag” are two well-established theories in criminology that
partially explain the near-repeat phenomenon, there is a lack of statistical method-
ology fully oriented to distinguish the “proportion” of near-repeats coming from each
effect in a real context. For instance, Short et al. (2009) implemented a mathemat-
ical model to evaluate if the distribution of the time intervals between exact-repeat
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burglaries occurred in Long Beach (California, USA) only depended on risk het-
erogeneity and not on the previous occurrence of a similar offence. With this aim,
these authors estimated a theoretical distribution for the time intervals between
exact-repeats, which allowed them to reject the null hypothesis of complete tempo-
ral randomness and conclude that another mechanism (of a “boost” nature) had to
be responsible for a proportion of the near-repeats.

4.1.1 Factors influencing crime risk: the case of burglaries

This section’s goal is to show how burglary risk heterogeneity can arise as a conse-
quence of a wide range of factors. Many of the studies pursuing the identification of
covariates that may influence burglary risk follow a spatial approach making use of
risk terrain modelling (RTM) techniques. These usually involve the segmentation
of the whole area under investigation into spatial units that make possible to mea-
sure the variation across space of the factors considered for the analysis and hence
model crime risk according to them. The following paragraph includes a description
of several papers that used RTM to investigate some factors that are suspected of
affecting burglary risk.

Moreto et al. (2014) distinguished between instigator (originator) burglaries, near-
repeats, and isolated (in space and time) burglaries. These authors showed that in-
stigators and near-repeats were more strongly associated with areas of high burglary
risk than the rest of the burglaries, according to a set of covariates that considered
the effect of land uses, pawn shops, drug market locations, among others. Caplan
et al. (2015) investigated the influence on burglary rates of several features of the
landscape including, for instance, bars, parks, or schools. They found that the prox-
imity to foreclosures was the factor that increased the risk more severely. Nobles
et al. (2016) analyzed the effect of several covariates on different types of burglaries
within the context of the near-repat phenomenon. Thus, an index of concentrated
disadvantage, residential instability, racial heterogeneity, and street connectivity
showed a positive association with near-repeat burglaries. Andresen and Hodgkin-
son (2018) obtained multiple significant covariates, some of whom showed a positive
association with burglaries (number of dwellings, unemployment rate, pawnbrokers,
etc.), whereas others behaved oppositely (percentage of recent immigrants, median
income).

Most of the factors analyzed in the studies cited above were closely related to crime
attractors/generators and to demographic/socioeconomic characteristics of the pop-
ulation living in the place under investigation, leaving essential characteristics of the
road network aside. The following lines fill this gap. Beavon et al. (1994) suggested
that road network complexity acts as a natural barrier against crimes. Under the
assumption that criminals tend to operate around the zones that are part of their
regular activity space, complex (highly-dense and lowly-accessible) road structures
should be less travelled, in general, and then provide fewer opportunities to crim-
inals. In agreement with Beavon et al. (1994), Ye et al. (2018) recently found a
negative correlation between road density and property crime. Besides road density,
the connectivity of street segments within a city is another factor that has deserved
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investigation. Indeed, Davies and Johnson (2015) found a positive association be-
tween the number of burglaries observed at streets and the global connectivity level
(betweenness) of such segments across the city of Birmingham (UK). However, Frith
et al. (2017) found that this association was only holding for non-local connectiv-
ity in several towns of Buckinghamshire (UK) (non-local connectivity implies the
computation of a street’s connectivity only from those street segments that are at
some predefined distance far). This finding was explained on the basis that streets
highly-connected at a local level allow the presence of more usual pedestrians that
behave as natural guardians of the place. Staying on this subject, dead-end streets
have also been specifically studied within the context of searching covariates that
explain burglary risk heterogeneity. The work from Johnson and Bowers (2010) sug-
gests that the presence of dead-end streets reduce crime risk, although Hillier (2004)
considered this statement valid only for linear and easy-to-police dead-end streets.
Murakami et al. (2004) used four parameters coming from graph theory to charac-
terize road network forms and investigate their relationship with convenience store
robberies in Tokyo (Japan). Although these authors could not achieve solid conclu-
sions regarding the effects of these parameters (given the results obtained for their
data), the relationship between network’s structure and the level of crime oppor-
tunity may deserve further investigation. The first two parameters that Murakami
et al. (2004) used, β = e/v and γ = e/3(v -2) (where e and v represent the num-
ber of road segments and intersections, respectively), somehow measure network’s
topology, representing partial (β) and overall connectivity (γ). On the other hand,
η = L/e and π = L/T (where L and T are the total road length and network’s
diameter) are metric indicators that account for the diameter and total length of
the road structure being considered in relation to the number of edges and vertices.
Thus, η and π can be interpreted as the average road length and the intricacy of
the network, respectively. Kansky and Danscoine (1989) and Liu and Zhao (2015)
provide a deeper description of all these parameters.

Specific characteristics of buildings and dwellings can lead burglars to search for
better cost-benefit scenarios. Chang (2011) detected that buildings presenting an
average condition showed a higher association with burglaries than the worst and
best-looking buildings in a South Korean city. Malczewski and Poetz (2005) used
a geographically weighted regression to assess that the value of dwellings produced
significant local variations in the risk of burglary in London (Ontario, Canada).
Mennis et al. (2011) obtained that a high percentage of vacant housing was producing
more property crimes in Philadelphia (USA).

Finally, several demographic characteristics have been associated with a higher bur-
glary risk at both the individual and spatially-aggregated level. Cohen and Cantor
(1981) found that residents living in the city center, young residents, people with
incomes in the highest and lowest categories, and people whose homes are unoccu-
pied have all greater than average odds to suffer a residential burglary. On the other
hand, at a spatially-aggregated level, some authors have also identified that racial
heterogeneity may be a factor that leads to higher crime rates (Hipp, 2011).

Given this reasonably extensive literature review, it seems clear that there is a
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wide variety of factors that may modify the risk of burglary across space and time.
The presence of such spatio-temporal risk heterogeneity can increase the number
of near-repeats through a ‘flag’ type mechanism, rather than through a ‘boost’.
However, researchers overlook this aspect when applying the most used statistical
test existing for measuring the near-repeat phenomenon: the Knox test (Knox and
Bartlett, 1964).

4.1.2 The statistical assessment of near-repeats

In this section, several statistical methodologies that allow measuring the magnitude
and significance of the near-repeat phenomenon given a dataset of events located in
space and time are described.

The well-known Knox test proposed by Knox and Bartlett (1964) is the most usual
tool in quantitative criminology to evaluate the presence of the near-repeat phe-
nomenon in relation to one criminal event of interest, as shown in many studies
from the last few years (Chainey et al., 2018; de Melo et al., 2018; Glasner and Leit-
ner, 2016; Glasner et al., 2018; Haberman and Ratcliffe, 2012; Hino and Amemiya,
2019; Hoppe and Gerell, 2019; Johnson, 2010; Piza and Carter, 2018; Powell et al.,
2018; Sturup et al., 2018). The Knox test is a non-parametric tool that mainly relies
on a statistic based on the count of pairs of events that are close in space and time,
given a prespecified spatio-temporal threshold. Thus, the Knox ratio between the
number of close events observed to those expected under the null hypothesis of no
space-time interaction (of no near-repeat phenomenon) serves to assess the statisti-
cal significance of the results. Similarly, Mantel (1967) constructed a test through
the sum of the products between the temporal and the spatial distances associated
with each pair of events available in the dataset. The null hypothesis of Mantel’s
test states that spatial and temporal distances are independent. Jacquez (1996)
suggested the replacement of geographical-based distances by neighbour relations.
Hence, he designed a test for space-time interaction based on the count of case pairs
that are k nearest neighbours in space and time (simultaneously). Gabriel and Dig-
gle (2009) developed the space-time inhomogeneous K -function (STIK), which is a
generalization of the classical spatial K -function (Ripley, 1977). The STIK function
enables to test for space-time clustering and interaction by comparing the values pro-
vided by this function for the dataset under investigation with the ones that would
be yielded by a Poisson inhomogeneous spatio-temporal process. Finally, the self-
exciting model developed by Mohler et al. (2011) is another alternative to analyze
the near-repeat phenomenon. This kind of model has two main parts: a background
rate (for instance, following a Poisson distribution) and a triggering component.
The triggering component is usually driven by a kernel function (Ogata, 1998) that
allows controlling the elevation and decay of the risk of the event possibly affected
by the near-repeat phenomenon to occur again. Mohler (2014) also implemented
one addition to the model described by Mohler et al. (2011) that consisted in the
inclusion of a mark representing the capacity of each event to lead to more incidents
of the same type. More recently, Reinhart and Greenhouse (2018) have proposed
a self-exciting model that includes spatially-varying covariates for the estimation of
the background rate.
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However, despite the availability of new and promising methodologies, the Knox
test is still a valid and practical option to measure the near-repeat phenomenon,
being nowadays the most preferred methodology among many of the researchers
in the field. Indeed, the Near Repeat Calculator (NRC), a software developed by
Ratcliffe (2009) widely used for the computation of the Knox test among quantitative
criminologists, has been cited 64 times (according to Google Scholar) since 2011 (as
of June 2019). More specifically, the NRC reached a maximum number of citations
in 2018, 16 of which came from criminology papers that declared the use of the
NRC to conduct part of the research (this analysis was performed with the aid of
the Publish or Perish software (Harzing, 2007)). Motivated by the constant and
current use of the Knox test in crime-related studies, the focus has been put on
assessing and showing the necessity of making some adjustments to the standard
version of this test to produce more accurate results.

As already highlighted, the Knox test is the most used technique for assessing the
presence of the near-repeat phenomenon, but it presents some limitations. Reinhart
and Greenhouse (2018) pointed out that one drawback of the Knox test in compari-
son to self-exciting models is its incapability of globally measuring the rate and form
of the decay of the near-repeat phenomenon. Furthermore, Ornstein and Hammond
(2017) pointed out the necessity of isolating the effect produced by crime contagion
(“boost” effect) from that resulting from spatio-temporal crime risk variations. This
is an issue already discussed in previous studies from the perspective of bias pres-
ence in space-time interaction tests as a consequence of overlooking exposure shifts
and risk heterogeneity (Kulldorff and Hjalmars, 1999; Mantel, 1967). Specifically,
Ornstein and Hammond (2017) constructed an agent-based computational model
to simulate burglary contagion and assess the performance of the Knox test. They
confirmed that the Knox test can reliably detect the presence of some “boost” effect,
but they also observed some deficiencies. First, the relationship between the real
magnitude of the “boost” (a parameter of the model constructed) and the one de-
termined by the Knox ratio is not linear. Furthermore, they found that even in the
absence of a “boost”, changes in baseline risk can produce Knox ratios consistently
greater than 1, erroneously suggesting the existence of a contagion process.

Indeed, the standard Knox test relies on the hypothesis of constant relative risk
(CRR) in space and time, which constitutes a very hard assumption, especially as
the temporal window of observation is enlarged. In this regard, Kulldorff and Hjal-
mars (1999) constructed a modification (KH test) of the Knox test that accounts for
the bias that arises when spatio-temporal risk variations are not considered. They
suggested the consideration of the exposure unit related to the event of interest
(usually human population) and its incorporation to the Knox test to produce more
reliable results. However, years later, Schmertmann (2015) found the persistence of
some bias in the results produced by the KH test, which were then corrected with
the provision of a new empirical test based on the Metropolis-Hastings algorithm
(Hastings, 1970; Metropolis et al., 1953) that does not modify the spatial and tem-
poral margins of the observed map, avoiding the bias that sometimes affects the
KH test. In summary, overlooking spatio-temporal risk variations can bias the re-
sults yielded by the standard Knox test and lead to the overdetection of significant
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spatio-temporal intervals under which the near-repeat phenomenon is not actually
taking place, or to the underdetection of intervals that are really affected by the
phenomenon (the overdetection or underdetection will depend on the direction of
the bias).

4.2 Data

4.2.1 Burglaries dataset

A dataset provided by the Spanish National Police containing information about
2647 geocoded burglaries occurred in the city of Valencia during the years 2016 and
2017 was analyzed. The availability of geographical coordinates for every recorded
burglary allowed analyzing of this crime at the most accurate level of spatial reso-
lution. As an illustration, Figure 4.1 shows kernel density estimation (KDE) values
(at the road segment level), which are derived from the locations of the burglaries
following the network-constrained version introduced by McSwiggan et al. (2017).
On the other hand, the temporal location of a good part of these events presented a
higher level of uncertainty. The nature of burglaries is different from other common
crimes such as assaults, in the sense of not being possible to determine, sometimes,
the exact time at which a burglary has happened. A high percentage of burglar-
ies take place when the owners of the property being invaded are away from home
following their daily routines, or even on a long period of absence due to holiday
travelling. For this reason, it is usual that the only information available regarding
the moment a burglary has occurred is a pair of reference dates (or hours within a
date) that delimit the temporal location of the burglary. These two reference times
are commonly referred to as “from date” and “to date” (or “from hour” and “to hour”
if the date is known). They represent, respectively, the last moment at which the
owners can assure that the property had not been burgled yet and the moment at
which the owners (or the Police, or some neighbours, etc.) found that the burglary
had been committed.

4.2.2 Road network structure

In order to guarantee an accurate analysis of the occurrence of burglaries in the city
of Valencia, the road structure of this city was employed for the analysis. Thus,
the coordinates available for each crime were located into a spatial structure in the
form of a graph made of edges and vertices. The use of this structure facilitates the
performance of a more realistic analysis than the one that an areal representation
of the city would enable us, as the spatial distance between any two events can be
computed according to the way people can travel across the city. In addition, the
availability of a digitized version of the road network allows the definition of some
specific covariates based on street characteristics that would be otherwise missing
from the analysis.

Technically, the road structure that was used in the analysis was made up of 9151
vertices and 12944 edges. These edges represent road segments of the city, with an
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Figure 4.1: Graphical description of burglaries in the city of Valencia through
network-constrained KDE values

average length of 65.13 meters. From the total number of vertices, 6129 (67%) had
a degree higher or equal to three, meaning that at least three road segments of the
network were incident to them (representing road intersections).

4.3 Methods

4.3.1 Software

The R programming language (3.5.0 version, R Development Core Team, Vienna,
Austria) (R Core Team, 2018) was used to obtain all the results presented in this
work. The R packages changepoint (Killick and Eckley, 2014), ggmap (Kahle and
Wickham, 2013a), igraph (Csardi and Nepusz, 2006), rgeos (Bivand and Rundel,
2018a), spatstat (Baddeley et al., 2015) and SpNetPrep (Briz-Redón, 2019) were
explicitly required for some parts of the analysis.

4.3.2 Time information uncertainty

The near-repeat phenomenon has been investigated for the burglary dataset intro-
duced in the previous section on a daily basis, meaning that an uncertainty of some
minutes (or hours) between the “from date” and the “to date” was unimportant if
both dates were the same. However, for burglaries presenting a “from date” that



58 Chapter 4. Adjusting the Knox test

was different from its corresponding “to date”, two strategies were tested to address
this issue. First, the midpoint date between the “from date” and the “to date” was
computed as the date halfway between the two available dates. The second strategy
that was carried out was the employment of the concept of aoristic time, which has
already been treated in several previous works in the field of criminology (Ratcliffe,
2002, 2004b). Indeed, the aoristic time has been suggested to be a more accurate
choice, overall, than the midpoint or other approximations such as the “from date”
or the “to date” themselves (Ashby and Bowers, 2013). Taking this approach into ac-
count, burglaries whose exact date of occurrence is not known are evenly distributed
along the period determined by the “from date” and the “to date” recorded for them.
For instance, a burglary occurred from date 2016-1-1 to date 2016-1-5 is weighted
0.2 along the five days that form this uncertain temporal interval.

Figure 4.2 shows the three time series that represent the evolution of the number
of burglaries in Valencia for the years 2016 and 2017, considering the crimes whose
dates are known precisely and the two estimations of the total number of burglaries
that are derived from using the midpoint and aoristic approximations. The time
series based on known dates lies below the other two because only 60.7% of the
events recorded were known with the required precision (exact date). In addition,
the gap between the curves is very notorious within the summer months which,
in agreement with the longest vacation periods for Spanish citizens, undertake the
highest level of temporal uncertainty.

A high similarity was found between the two time series derived from the use of
the midpoint and aoristic dates (Figure 4.2). Furthermore, the spatial patterns of
certain and uncertain burglaries did not show remarkable differences in terms of
spatial clustering, which was checked through the nearest-neighbour index (Clark
and Evans, 1954; Cressie, 1993) and visual exploration. Both facts led to discarding
the aoristic approach for the rest of the study given the simplicity and inferior
computational cost of the midpoint method and, more importantly, the fact that the
management of time uncertainty is not the primary goal of the present investigation.
Thus, the choice of the midpoint method is fair enough for achieving the research
purposes of comparing the standard and adjusted version of the Knox test, despite
the fact that the aoristic approach is probably the most accurate option available.
Nevertheless, research on how the choice of a specific methodology for the imputation
of uncertain dates can affect the results of the Knox test, which is currently missing
in the literature to the best of my knowledge, may be of particular interest.

4.3.3 The Knox test

The seminal work from Knox and Bartlett (1964) established a statistical method-
ology that allows the identification of space-time interactions for any collection of
events that are located in space and time. The so-called Knox test assesses the pres-
ence of such interactions by measuring the number of paired events that occur within
a spatio-temporal interval and comparing this value with the one expected under
the null hypothesis of no space-time interaction. More specifically, if σ and τ rep-
resent, respectively, a spatial and a temporal interval, the following statistic, Xσ,τ ,
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Figure 4.2: Time series representing the incidence of burglaries (grouped by time
intervals of 10 days) during the period of two years considered. The series accounting
for events whose date of occurrence was known is compared to the ones obtained by
using the midpoint and aoristic strategies

represents the number of paired events that fall within the two specified intervals:

Xσ,τ =
n∑
i=1

n∑
j=i+1

SijTij

where n is the total number of events in the dataset, i and j are indexes for such
events and Sij (Tij) is an indicator function that takes the value 1 if the spatial
(temporal) distance between events i and j lies within the spatial (temporal) interval
determined by σ (τ), and 0 otherwise. As the road network structure was available,
the distance between two burglary events was measured in terms of the shortest-
path distance, which is the minimal distance (in meters) required to travel from
one event to the other while only passing through the edges and vertices that form
such structure. The absence of a road network where the events of interest reside
would oblige to use some alternatives as the Euclidean or Manhattan distances, but
shortest-path provides a more exact measure. Indeed, Manhattan and especially
Euclidean distances could increase the counts within a given spatio-temporal window
significantly, as investigated by Groff and Taniguchi (2018).

The null hypothesis of the absence of space-time interaction is assessed with the
estimation of an empirical probability distribution for Xσ,τ (for each specific combi-
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nation of σ and τ considered). This distribution allows the construction of a p-value
that evaluates the significance of this statistic and the estimation of the Knox ratio
(observed/expected) that represents the departure of the observed value Xσ,τ from
the one expected under the hypothesis of spatio-temporal randomness regarding the
occurrence of burglaries.

To obtain the empirical distribution of the statistic Xσ,τ , 5000 simulated datasets
were created and their corresponding Xσ,τ values computed, following the classi-
cal Monte Carlo approach. For this task, the observed spatial locations for the
burglaries were left fixed, whereas their time locations were randomly permutated
across the complete dataset (Mantel, 1967). More precisely, if n is the number of
burglaries in the dataset, this process consisted in the generation of 5000 random
permutations of the natural numbers from 1 to n, reassign the observed dates to
the spatial locations according to these permutations and compute the new Xσ,τ for
this simulated combination of spatial and temporal locations. Then, p-values were
estimated (for each choice of σ and τ) as p = r/N , where N represents the total
number of simulations that were computed (5000) and r the number of simulated
ratios that were greater than or equal to the observed statistic, Xσ,τ .

4.3.4 Adjusting the Knox test

The Knox test was modified to account for the variations of burglary risk in space
and time across the city of Valencia during the two years being considered. This
is performed through the inclusion of several covariates that attempt to represent
the variations in risk across space and time, which attempt to remove the effects
that the wrong assumption of CRR may have on the results yielded by the Knox
test. The approach presented in this Chapter is heavily based on the adjustment
described in Schmertmann (2015).

Schmertmann (2015) proposed two main ways of adjusting the Knox test (via the
Metropolis-Hastings algorithm) that were capable of addressing the bias issue that
generally arises with other modifications of the Knox test: through exposure shifts
and through covariates. The second option, based on covariate differential effects in
space and time, was chosen to adjust the results of the Knox test associated to the
dataset of burglaries analyzed. In the following paragraph this decision is justified.

If the context of an epidemiological study, the population size would be the expo-
sure variable, and its use to adjust the Knox test would be entirely required, as it
has been exemplified in previous studies (Schmertmann, 2015; Schmertmann et al.,
2010). In this work, as burglaries are a crime on private properties where people
live, the exposure should not be population but dwelling units instead. The 28682
housing units (buildings or independent houses) registered in Valencia for the year
2016, comprising a total of 382539 dwelling units (exposure), were geocoded for
the analysis. Figure 4.3 shows the distribution of the housing units in Valencia
in 2016, indicating the number of dwellings available at each unit. Independent
houses and small buildings mainly located in the city center and in peripheral parts
of the city of medium-low socioeconomic status. On the other hand, most of the
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large buildings are located far away from the city center, usually within the context
of wealthier neighbourhoods. The fact that burglary data was only available for
2016-2017, and the negligible level of dwelling construction in Valencia during this
period led to discard the modification of the Knox test proposed by Schmertmann
(2015) solely based on exposure shifts and select the one accounting for covariate
effects as the reference. Furthermore, it is worth noting that the inclusion of the
covariates can be carried out contemplating two different scenarios. First, if the
covariates available vary in space and time, then it could be determined the “global”
effect that the covariate has (considering the whole period under investigation) on
the existence of crime risk heterogeneity across space and time (as a consequence
of the spatio-temporal variations in the covariates). This is exactly the approach
depicted by Schmertmann (2015) regarding the adjustment of the Knox test through
covariates. Second, covariates may have a fixed value over the period under anal-
ysis, but the relationship of each of them with crime outcomes could be variable
over time, which is another mechanism of baseline crime risk modification. Given
the nature of the covariates available for performing the case-study shown (most of
which were unaltered during the period under investigation), the second option was
selected. In the rest of the section the adjustment of the Knox test proposed by
Schmertmann (2015) is specified and an alternative approach for modelling crime
risk heterogeneity through covariate values is introduced.

No. of dwellings

Less than 10

10 − 25

25 − 50

50 − 75

75 or more

Figure 4.3: Point pattern over the road network of Valencia representing the location
of houses and buildings in the city. The colour and size of each point indicates the
number of dwellings (exposure unit) the house or building comprise

Some of the basic terminology introduced by Schmertmann (2015) is now presented.
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The map of observed burglaries, M 0, is defined as the set of spatio-temporal loca-
tions, (s, t), where a burglary occurred (at spatial location s, on date t). Then, given
a permutation ρ = (ρ(1), ..., ρ(n)) of the first n natural numbers (where each ρ(i)
is a natural number from 1 to n, where repetitions are not allowed), a permutated
map, Mρ, is defined as the set of pairs, (s, tρ), representing a burglary occurred at
spatial location s on the permutated date given by tρ.

Following the previous notation, the probability of every possible permutated spatio-
temporal map of burglaries in the dataset after a permutation of the dates can
be related to exposure shifts and spatio-temporally varying covariates as follows
(Schmertmann, 2015):

P (Mρ) ∝ exp

(
n∑
i=1

logN(si, tρ(i))

)
exp

(
n∑
i=1

γ · Z(si, tρ(i))

)
(4.1)

where n is the number of burglaries available in the dataset, (s,t) are the spatio-
temporal coordinates of a burglary, ρ is a permutation of the first n natural numbers,
· is the classical scalar product, N (s,t) is the exposure value at (s,t), Z (s,t) is a
vector of covariates evaluated at (s,t), and γ’ is a vector of coefficients representing
the global effects on crime risk estimated for these covariates.

Equation 4.1 was then adapted to fit a context of no spatio-temporal variation in
both the exposure and the covariates:

logP (Mρ) ∝
n∑
i=1

α(tρ(i)) · Z(si) (4.2)

where n, s, t, ρ, and · represent the same than in Equation 4.1, Z (s) is a vector of
covariates evaluated at spatial location s, and α(t) is a vector of coefficients associ-
ated with the effect of these covariates on burglary risk that varies over time. Note
that both Equation 4.1 and Equation 4.2 represent a proportionality relationship (a
likelihood) and not an exact probability value.

Hence, Equation 4.2 focuses on the spatio-temporal variation of the effects that the
covariates have on burglary risk. Putting Equation 4.2 into practice requires the
partition of the whole space (Valencia) and time (2016-2017) to estimate burglary
risk heterogeneity (this part is explained in Section 3.6). Hence, if t∗ is a date
within the time window, α(t∗) may be better understood as α(T ), being T the
period which contains date t∗. Section 3.6 clarifies how the coefficients that form
α(t) are estimated.

4.3.5 Metropolis-Hastings algorithm

The basic Monte Carlo test presented in previous sections implicitly implies that
every permutation of the dates observed (known exactly or available in the form of
“from date” and “to date”) is equally likely for the locations where the burglaries
occurred (which remain fixed in the construction of this test). This fact implies that
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each of the n! possible permutations of the n temporal locations available in the
dataset can be assigned with equal probability (1/n!) to the spatial locations that
have been observed for the burglaries.

The Metropolis-Hastings algorithm (Chib and Greenberg, 1995; Hastings, 1970;
Metropolis et al., 1953) modifies the standard Monte Carlo approach through the
exploration of permutations that are more likely to be observed according to the
road network and exposure characteristics.

Instead of producing a completely new permutation at each iteration of the process
(as the basic Monte Carlo does), the Metropolis-Hastings algorithm generates a
proposal permutation from the last one available, forming a chain of explored states
that is usually referred to as a Monte Carlo Markov chain (MCMC). Starting from
the map of burglaries observed, M 0, each proposal only permutes a subset of the
n temporal locations of the current map in the chain, forming a new map (state)
that is incorporated to the chain if and only if its relative probability in comparison
with the previous one in the chain is large enough. Otherwise, the next state of the
chain is defined with the same map available in the former iteration. These steps
are specified with more precision in the following lines:

1. Take the identity permutation, ρ0 = (1, 2, . . . , n), that corresponds to the
observed spatio-temporal locations of the burglaries (all dates are fixed). Compute
Xσ,τ , and start the chain with ρ0 and the likelihood of M 0 (following Equation 4.2).

2. The iterative process starts. For K iterations do:

• Generate a proposal distribution that permutes J (even number) of the n
temporal locations of the current map in the chain. Specifically, if a1, . . . ,
aJ are the J indexes sampled, the permutation consists in the interchange of
positions a1 ↔ a2, aJ−1 ↔ aJ .

• Compute the relative likelihood, R, between the new proposal and the last
element of the chain (again, Equation 4.2 is invoked).

• Obtain a value, u, following a uniform distribution in the interval [0,1]. If u ≤
min(R,1), the proposal is accepted and added to the chain. If u > min(R,1),
the proposal is not accepted and the chain is updated with the same proposal
and map than in the previous iteration.

3. Once the chain of states is formed, the first B are eliminated (a process called
“burn-in”). Furthermore, the chain can be “thinned” by extracting a subset of the
states that are far enough from each other, avoiding an excessive correlation between
close states.

4. The final chain of states (after the steps followed in 3.) provides an adjusted
empirical distribution of the Xσ,τ statistics that allows making inference on it as in
the standard Monte Carlo procedure. The simulated Knox ratios that are extracted
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from the chain can be used to compute an empirical p-value as in the case of the
Monte Carlo procedure.

Regarding the values of the parameters involved in the implementation of the algo-
rithm, in this study the choices of K = 27000, J = 50, B = 2000 and a thinning
achieved by choosing one of every five values of the chain were finally selected. Un-
der these conditions, the effective sample size of each chain (for each combination
of σ and τ) was (27000−2000)/5=5000.

4.3.6 Burglary risk estimation

With the goal of estimating burglary risk across space (Valencia) and time (2016-
2017), the partition of both components was required. This section explains how
this was performed. Besides, several other options are indicated.

The whole area of Valencia being analyzed was subdivided into 201 equal-sized
hexagons of around 0.22 km2 (288.68 m of side length). The choice of a grid was
preferred over administrative divisions, such as boroughs or census tracks, for the
avoidance of boundary effects (boundaries of administrative units are usually located
along the main roads of the city) and the presence of highly unequal spatial units
of analysis. Furthermore, the use of hexagonal grids is really frequent in spatial
modelling and can even provide certain advantages over squared or rectangular grids
at some situations (Birch et al., 2007). Figure 4.4a shows the composition of the
hexagonal grid and the quintile within the distribution of burglary counts each
hexagon belongs to.

Burglary count

Quintile 1

Quintile 2

Quintile 3

Quintile 4

Quintile 5

(a)

P

Road network

Hexagon grid

Hexagon around P

(b)

Figure 4.4: Burglary counts at the hexagonal grid defined over the area of study (a)
and example of construction of a hexagon around a location where a burglary took
place (P) for the estimation of a burglary risk around it (b)

With regard to the choice of several periods along with the whole time window, in the
analysis of the burglaries occurred in Valencia this was solved through changepoint
detection, which is a methodology developed for time series analysis that pursues the
identification of abrupt changes in a time series (Killick et al., 2012). Other sensible
choices for the segmentation of the complete time window (not based on the own
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data) would be the definition of periodic intervals (months or group or months), or
even more specific periods based on external information (following police advice).
Any choice of the periods serves to adjust the standard version of the Knox test, as
a varying effect (in space and time) will be provided to each covariate, allowing the
adjustment of the test to produce.

Thus, the coefficients in α(t) (Equation 4.2) were estimated through a quasi Poisson
generalized linear model (GLM), because of the overdispersion observed for the
burglaries at the hexagon level (the negative binomial or the Poisson-lognormal
models would be other two reasonable choices). If Yi represents the burglary counts
at hexagon i and Zj(i) a covariate evaluated at hexagon i, a GLM model is based
on the linear relationship between a link-function (as the natural logarithm) and a
set of covariates, which can be expressed as follows (Faraway, 2016):

log (ri) = α0 + E (i) + α1Z1 (i) + · · ·+ αkZk (i) (4.3)

where ri satisfies E [Yi | Z1 (i) , . . . , Zk (i)] = ri (conditional expectation of Yi), rep-
resenting burglary risk at hexagon i, α0 is the constant coefficient of the model, E (i)
is an offset term that represents the number of dwelling units available at hexagon
i (level of exposure), Zj(i) is the value of the j th covariate at hexagon i and αj
is the coefficient that represents the effect of the covariate Zj. The quasi Poisson
modelling approach captures the overdispersion present in the counts by allowing
the variance of the Yi’s to be increased by a factor ϕ > 1.

Therefore, if Equation 4.3 is assumed as a mechanism that explains burglary risk
for the area of study, Equation 4.2 can then be rewritten in the following way:

logP (Mρ) ∝
n∑
i=1

log(r(si)) (4.4)

where r(si) is the value of burglary risk predicted for a hexagon centered at si and
having the same size than the hexagons that form the grid (Figure 4.4b), according
to Equation 4.3. The definition of a GLM model in the form of Equation 4.3 for each
of the periods considered within the years 2016 and 2017 allowed determining of a
vector α for each of them. Thus, the temporal variations in the effects produced by
the covariates to burglary intensity are accounted for. Now, a detailed description
of the set of covariates that was selected for the analysis is included in the following
section.

4.3.7 Covariates selection and construction

Adjusting the standard Knox test to account for the intrinsic spatio-temporal inter-
action in burglary risk makes it necessary to perform a careful selection of the set of
covariates that will be involved in the adjustment. In this case, the search focused on
three aspects that can cause risk heterogeneity: the geometry of the road network,
the characteristics of the units of exposure, which are the dwellings available in the
city, and some demographic characteristics of the residents of the city.
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As a summary, Table 4.1 contains a brief description of all the covariates considered
with the aim of adjusting the standard Knox test. The values for these covariates
were obtained for each of the hexagons forming the grid defined over the city of
Valencia. Hence, the use of the term “road network” in Table 4.1 refers to the
specific zone resulting from the intersection of the whole road network and each
hexagon of the grid. On the other hand, Table 4.2 displays a summary of the event
of interest (burglaries), the exposure unit (dwellings) and the set of covariates over
the hexagonal grid that was used for the analysis.

This set of covariates attempts to gather several of the factors (described in Section
4.1.1) that have been investigated concerning their influence on burglary risk. Data
unavailability usually obliges researchers to adapt or approximate some of the co-
variates used by other authors when performing their studies. Indeed, while several
geometric-related and population-related covariates were defined in a very similar
way as it has been done in prior studies, the exposure-related (dwelling-related)
covariates required the introduction of some modifications, which are now depicted.

The level of attractiveness that a building or dwelling may have for burglars could
have been measured through the visual inspection of streets of Valencia. However,
as this process is highly complex and costly, the cadastral value and the antiquity
of the dwellings were chosen as a proxy of attractiveness for the characterization of
the dwellings in Valencia. Cadastral values are assigned by official appraisers of the
administrative office in charge of this task. It is worth noting that the cadastral value
of a dwelling can occasionally be quite different from the current market price of it,
but the correlation between the two values is usually high. Similarly, the percentage
of dwellings that are occupied could only be estimated from the two databases that
contain, respectively, the registry of people inscribed in the city and the registry of
built dwellings.

Regarding the geometric-related covariates, these were all constructed at the hexag-
onal level (road density, dead-ends, number of intersections, β and π). In this regard,
betweenness was finally discarded for the analysis, as its consideration at the hexag-
onal level may be misleading. A road segment level analysis would be the right
context for using this measure.

The rest of the covariates related to network’s geometry were also constructed at
the hexagonal level (road density, dead-ends, number of intersections, β and π).
Despite this strategy leads to lose the road-segment level resolution that naturally
fits some of these covariates, obtaining an aggregated value over a grid of areal units
also helps to gain knowledge on network’s structure at a different scale.

Finally, some basic demographic characteristics of the residents living at each hexagon
of the grid were considered, which included the percentage of the population in the
age range 16-24 years and over 65 years, and the percentage of immigrants. The
availability of a dataset including both the number of residents in every building
or house in Valencia and the geographical coordinates corresponding to each of the
latter allowed computing these covariates with high accuracy.
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Type of factor Covariate Description

Geometry-related

Road density Total length (in meters) of the road network
Dead-ends Number of dead-end streets located along the road network
No. of intersections Number of vertex in the road network that connect three or more streets
β e/v
π L/T

Exposure-related
Cadastral value Average official value (in euros per m2) for dwellings in the road network
Antiquity Average antiquity (in years) for dwellings in the road network
Occupation Average percentage of occupied dwellings in the road network

Population-related
16-24 population Percentage of population in the age range 16-24 years
≥ 65 population Percentage of population in the age range ≥ 65 years
Immigrant population Percentage of immigrant population

Table 4.1: Description of the covariates employed in order to adjust the results
derived from the classical Knox test. For the formulas of β and π, e denotes the
number of edges of a road network, v the number of vertex, T its diameter (longest
distance reachable within the network) and L its total length

Mean SD Min Max
Event No. of burglaries 15.29 13.06 0.00 58.00
Exposure No. of dwellings 2211.22 1366.93 53.00 5125.00

Covariates

Road density 4396.99 1535.57 1048.26 10038.66
Dead-ends 3.09 2.70 0.00 11.00
No. of intersections 35.04 22.94 4.00 186.00
β 1.16 0.09 0.90 1.40
π 5.01 2.00 1.14 12.23
Antiquity 48.73 25.63 6.52 201.53
Cadastral value 262.91 83.62 28.75 486.80
Occupation 68.60 13.18 17.88 90.20
16-24 population 8.25 1.92 0.00 14.29
≥ 65 population 20.03 8.35 3.08 93.75
Immigrant population 11.77 5.23 0.00 32.35

Table 4.2: Summary statistics for the geometric and exposure related covariates at
the hexagons forming the grid

4.4 Results and discussion

Adjusting the standard Knox test on the basis of the covariates considered required
following Equation 4.3. In this regard, the time-dependent vector of coefficients α(t)
was obtained through the fit of several GLMs (Equation 4.4) including the covariates
described in Section 4.3.7 (previously standardized), considering the burglary counts
observed (over the hexagonal grid of Figure 4.4a) at different periods within the years
2016 and 2017 as the response of the models. Specifically, the following five periods
were determined through the changepoint analysis of the time series of burglary
counts: January 2016-June 2016, July 2016-August 2016, September 2016-March
2017, April 2017-August 2017 and September 2017-December 2017. As it can be
appreciated in Figure 4.2, the periods July 2016-August 2016 and April 2017-August
2017 witnessed the highest number of burglaries. The other three periods, however,
represented medium-to-low risk periods for burglaries in Valencia for the years 2016
and 2017. Table 4.3 shows the coefficients derived from each of the GLMs models
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defined for each period within 2016-2017 indicated.

Covariate Jan 16-Jun 16 Jul 16-Aug 16 Sep 16-Mar 17 Apr 17-Aug 17 Sep 17-Dec 17
Constant -6.682* -6.9878* -6.5966* -6.4245* -7.1763*
Road density 0.3268 0.0616 0.3319 -0.0692 -0.1907
Dead-ends -0.1131 -0.2185* -0.0760 0.0502 -0.0241
No. of intersections -0.0007 0.2134 -0.0305 0.1722 0.1663
β -0.1510 -0.0839 -0.1744 -0.0514 -0.0906
π -0.0041 -0.0197 0.0221 -0.0123 0.1490
Antiguity 0.0386 -0.0542 0.0732 0.2479* 0.0530
Cadastral value 0.1943 0.2609 0.0237 0.2188 0.1410
Occupation 0.3223* 0.1781 0.0727 0.2577* 0.1050
16-24 population 0.0001 -0.0293 0.0466 -0.1008 0.1819
≥ 65 population 0.3418* 0.2045 0.2821* 0.3231* 0.2519
Immigrant population 0.0650 -0.0179 -0.1482 -0.0100 0.1296

Table 4.3: Coefficients obtained from the modellization of burglary counts (using
GLMs) with a set of geometric and exposure related covariates at different periods
of the years 2016 and 2017. An asterisk (*) indicates significance for any of the
coefficients at the 0.1 level

Several spatio-temporal windows were defined in order to assess the existence of a
near-repeat effect for burglaries in the city of Valencia, and to compare how both
the standard and the adjusted version of the Knox test behave for the burglary
dataset. The spatial component was represented by intervals of 120 meters length.
Furthermore, in order to allow for the detection of spatially closer incidents, the first
interval [0,120[ was divided into three parts: 0 (same location), ]0,60[ and [60,120[
meters. The temporal component was considered through several intervals (in days)
representing a distance of one or several weeks: [0,7[, [7,14[, etc.

The results obtained from the application of the classical version of the Knox test
considering the midpoint dates of burglaries in order to deal with time uncertainty
are displayed in Table 4.4 (left). As expected, the near-repeat phenomenon drove
to some extent the burglaries occurred in Valencia during 2016 and 2017, with an
observed number of repeated burglaries (in the same location) within the same week
around ten times higher than what would be expected by chance. With regard to
the rest of spatio-temporal windows, the existence of a near-repeat phenomenon was
clear for τ = [0,7[ and every of the spatial intervals tested (in decreasing magnitude
as the distance increases). In addition, near-repeats were also observed when con-
sidering longer periods. Specifically, the phenomenon was remarkably pronounced
for σ = 0 and τ = [7,14[, and for σ = ]0,60[ with τ = [7,14[, [14,21[ and [28,35[ days.

On the other hand, adjusting the Knox test led to the values that are provided in
Table 4.4 (right), next to the ones obtained for the standard test. The comparison
of both sub-tables allows checking that the adjustment of the standard version of
the test reduced the magnitude of many of the Knox ratios. For instance, the Knox
ratio decreased from 10.88 to 10.42 (4.2% reduction) for σ = 0 and τ = [7,14[.

More interestingly, the level of statistical significance displayed by some of the es-
timated Knox ratios changes remarkably after the adjustment is made. In this
regard, Table 4.5 shows the p-values associated with each Knox ratio, which are ob-
tained from the simulated ratios obtained from the Monte Carlo (standard test) and
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Knox test Adjusted Knox test
σ

τ [0, 7[ [7, 14[ [14, 21[ [21, 28[ [28, 35[ [0, 7[ [7, 14[ [14, 21[ [21, 28[ [28, 35[
0 10.88** 2.16** 0.84 1.21 1.01 10.42** 2.09** 0.81 1.19 0.98

]0, 60[ 2.00** 1.59** 1.72** 1.09 1.80** 1.95** 1.59** 1.68** 1.09 1.76**
[60, 120[ 1.43** 1.11 1.22 0.96 0.99 1.36** 1.06 1.19 0.92 0.98

[120, 240[ 1.29** 1.10 1.05 1.25** 1.02 1.23** 1.06 1.01 1.22** 0.97
[240, 360[ 1.23** 1.18** 1.06 1.12* 1.12* 1.18** 1.14** 1.02 1.10* 1.10*
[360, 480[ 1.20** 1.13** 1.05 1.06 1.08* 1.16** 1.10* 1.02 1.03 1.07
[480, 600[ 1.11** 1.07* 1.06 1.10** 1.02 1.08* 1.04 1.03 1.08* 1.00

Table 4.4: Adjusted ratios for Xσ,τ (observed/expected) with different selections of
σ (in meters) and τ (in days) for the standard and adjusted Knox test, employing
5000 simulations. A double asterisk (**) indicates the significance of the ratio at
the 0.01 level, whereas a single asterisk (*) means the same for the 0.05 level. The
significance of the ratios is derived from the empirical p-values estimated for each σ
and τ from the simulations provided by the Monte Carlo and Metropolis-Hastings
procedures

Knox test Adjusted Knox test
σ

τ [0, 7[ [7, 14[ [14, 21[ [21, 28[ [28, 35[ [0, 7[ [7, 14[ [14, 21[ [21, 28[ [28, 35[
0 0.0000 0.0001 0.7452 0.2988 0.5260 0.0000 0.0000 0.7550 0.3140 0.5720

]0, 60[ 0.0000 0.0011 0.0005 0.3421 0.0000 0.0000 0.0048 0.0006 0.3388 0.0000
[60, 120[ 0.0018 0.2119 0.0508 0.6289 0.5511 0.0008 0.3328 0.0694 0.7558 0.5828

[120, 240[ 0.0000 0.0604 0.2355 0.0000 0.3773 0.0006 0.1564 0.4418 0.0008 0.6038
[240, 360[ 0.0000 0.0006 0.1160 0.0100 0.0113 0.0000 0.0020 0.3746 0.0162 0.0290
[360, 480[ 0.0000 0.0011 0.1117 0.0890 0.0285 0.0000 0.0204 0.2814 0.2292 0.0758
[480, 600[ 0.0039 0.0333 0.0683 0.0054 0.3016 0.0160 0.1500 0.2322 0.0430 0.5008

Table 4.5: Empirical p-values obtained for the Knox ratios shown in Table 4.4. The
cells that are shaded correspond to p < 0.01 (darker colour) and 0.01 ≤ p < 0.05
(lighter colour)

Metropolis-Hastings (adjusted test) procedures. Indeed, if two common significance
levels as 0.01 and 0.05 are selected (for illustrative purposes) to decide which spatio-
temporal intervals are implicated in the near-repeat phenomenon, several differences
arise (Table 4.5). Concretely, at the 0.01 level, the Knox ratios corresponding to
three combinations of σ and τ (σ = [480,600[ with τ = [0,7[, σ = [360,480[ with τ
= [7,14[, and σ = [480,600[ with τ = [21,28[) are not statistically significant when
considering the adjusted p-values. Similarly, at the 0.05 level there are two combi-
nations of σ and τ that are affected by the adjustment of the test (σ = [480,600[
with τ = [7,14[, and σ = [360,480[ with τ = [28,35[).

In view of the consequences that adjusting the Knox test had on the results for
the burglary dataset analyzed, one could think that the effort carried out to adjust
the classical version of the Knox test was not worth it. In fact, the Knox ratios
corresponding to the values of σ and τ that are more strongly involved with the near-
repeat of burglaries in Valencia were only moderately affected by the adjustment.
There seems to be no way to predict how much the adjustment of the Knox test
will change the results that the standard test yields but, in any case, adjusting the
Knox test should not be overlooked under the presence of crime risk heterogeneity



70 Chapter 4. Adjusting the Knox test

in space and time. Furthermore, it is worth noting that from a practical point of
view, discarding only one spatio-temporal with regard to its connection with the
near-repeat phenomenon may be of value. In this analysis, for instance, adjusting
the Knox test revealed that although the first week after a burglary’s occurrence
presents an elevated risk of repetition for all the spatial intervals considered up to
480 m, this effect seems to dissipate from this threshold. In addition, it can also be
appreciated that the statistical significance of the Knox ratio corresponding to σ =
[480,600[ and τ = [21,28[ gets dramatically reduced if the test is adjusted. These
“small” differences can be truly important in practice.

4.5 Conclusions

Despite its limitations, the Knox test seems to be still the most used tool in the field
of quantitative criminology to assess the near-repeat phenomenon. The greatest
limitation that arises when using the Knox test is the impossibility of bringing
crime heterogeneity into the equation.

The primary goal of this study was purely methodological: highlighting the necessity
of adjusting the basic version of the Knox test to account for crime heterogeneity to
obtain a more realistic picture of the magnitude and spatio-temporal extent of the
near-event phenomenon in the area under analysis. To this aim, this methodologi-
cal advice was put into practice using a dataset of burglaries occurred in Valencia
(Spain).

In order to adjust the Knox test for this dataset, the method proposed in Schmert-
mann (2015) was modified in order to adjust the classical version of the Knox test
through covariate effects varying in time. Under the presence of exposure shifts
and spatio-temporal variations among the covariates (which was not the case), the
adjustment proposed by Schmertmann (2015) could be followed straightly. The
adjustment required the use of the Metropolis-Hastings algorithm, which allowed
approximating the empirical distribution of the Knox ratio for each of the spatio-
temporal intervals selected for the analysis.

Several covariates related to road network’s geometry, dwelling characteristics and
demography were considered. The selection of the covariates relied on a literature
review on the topic of crime risk heterogeneity particularly focused on burglary
events. Despite the fact that the construction of certain covariates is not always
possible, the use of sensible proxies should be generally accurate enough to fulfill
the purpose of adjusting the standard Knox test according to some of the factors
that may influence crime risk.

The adjustment of the Knox test described in this Chapter requires the partition
of the space-time. Space can be segmented following an established administrative
division, or using a regular grid. Regarding the segmentation of the whole period
under investigation into several subperiods, a data-based procedure was followed
(changepoint methodology for time series analysis). This step could be carried out
in a different way choosing, for instance, a periodic segmentation of the temporal
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window. The effect of the choice of a certain spatial or temporal subdivision on the
adjustment may be severe, so sensitivity analyses would be advisable. The finding of
an “optimal” space-time segmentation, somehow meaning that it maximizes space-
time variation, was out of the scope of this investigation, but it is a topic of interest.

Regarding the analysis performed on the burglary dataset described, the differences
yielded by the adjusted version of the Knox test (in comparison with the standard
test) may be perceived as only modest, although several remarkable variations were
actually observed. It is worth noting that under a considerably larger temporal
window (for instance, a decade), the spatio-temporal variation of both exposure
(dwellings) and covariate effects would have been greater, and then the consequences
of adjusting the Knox test would likely have been more notorious. In any case,
under a scenario of spatio-temporal crime risk heterogeneity, considering the use
of an adjusted version of the Knox test to favor a more accurate analysis of the
near-repeat phenomenon is strongly recommended.



Chapter 5

The modifiable areal unit problem:
Accounting for scale and zoning

In this Chapter, a complete investigation of MAUP effects is carried out using a
dataset of traffic crashes occurred in Valencia (Spain). Whereas some related pa-
pers in the field have only focused on scale (Lee et al., 2014; Xu et al., 2014), most
of them have tested different zonings without controlling the scale factor explicitly.
This fact makes it challenging to determine if MAUP effects are a consequence of
scale, zoning or the interaction between the two. This study tries to fill this gap
with a simultaneous investigation of several basic spatial units (BSUs) and aggrega-
tion levels that allow the distinction between scale and zoning effects, in seeking to
provide a more complete depiction of the phenomenon. Two modelling approaches,
conditional autoregressive models and geographically weighted regressions have been
used for this objective, following the choices of similar analyses. Furthermore, it has
been specifically investigated how the changes in scale or zoning affect several ques-
tions involved in any macroscopic statistical modelling. These include the spatial
autocorrelation of the covariates, multicollinearity among covariates and the basic
distributional characteristics of the response variable. The investigation of MAUP
usually focuses on the changes that finally arise in the estimation of model parame-
ters after a switch of scale or zoning, but the changes in the underlying characteristics
of the data being modelled are frequently overlooked. More insights on this issue
are also provided.

5.1 Introduction
Traffic safety analysis at the macroscopic level requires the definition of a basic spa-
tial unit (BSU) for performing the analysis. Hence, the whole area of investigation
needs to be covered by BSUs that allow researchers to analyze the incidence and
causality of traffic crashes across it. The definition of BSUs can be done both man-
ually, through the advice of experts of the field, or automatically on the basis of an
algorithm specifically designed for BSU delineation.

The choice of a certain BSU over an area of interest is closely related to the well-
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known modifiable areal unit problem (MAUP). MAUP refers to the effects that
carries the change from a collection of BSUs to another with regard to statisti-
cal inference and interpretation (Openshaw, 1984). In a seminal paper, Openshaw
(1977) presented the two main factors that need to be addressed for the delineation
of an area into BSUs: scale and zoning. Scale, or aggregation level, refers to the
number of zones in which the whole area of study is subdivided for performing the
analysis. Hence, given a scale, zoning is the way the BSUs are joined forming the
zones of analysis while preserving the specified scale. Openshaw (1977) proved that
the election of the zones has an effect on spatial interaction models, in terms of fit-
ting and parameter estimates. For this reason, he proposed a methodology in order
to find the zoning subdivision of the area of analysis that optimizes model perfor-
mance. More specifically, Openshaw also studied the consequences of MAUP on
linear regression (Openshaw, 1978) and correlation coefficients (Openshaw, 1979),
although he recognized that there are high difficulties for assessing the problem
theoretically, leaving simulation studies as the main tool available for its approach.
Years later, Fotheringham and Wong (1991) extended the examination of MAUP
to multivariate statistical analysis, considering multiple linear regression and mul-
tiple logistic regression within the context of two classical administrative divisions:
block groups and census tracts. The aggregation of both divisions at different scales
allowed observing that MAUP was capable of creating a severe instability in pa-
rameter estimates when the zoning or, more remarkably, the scale were modified.
These authors found that the interpretation of some of the variables included in the
models could be dramatically altered due to MAUP, as changes in the signs of the
parameter estimates were appreciated. In addition, goodness of fit was observed
to grow monotonically as aggregation level got increased. In a more observational
work, Lee et al. (2018) have investigated the effects of MAUP in means, variances
and Moran coefficients, considering several scales and levels of autocorrelation for
the variables involved. They have concluded that MAUP effects are not strong on
means, unless a very high spatial autocorrelation is present, and that higher levels
of aggregation tend to decrease the variance. Finally, it is worth noting that despite
the fact that the study of the MAUP and its consequences in statistical inference
have mainly been of descriptive or exploratory nature, recent works are trying to fill
this gap by providing more accurate measurements of MAUP effects. Remarkably,
Duque et al. (2018) have proposed a nonparametric test, S-maup, that measures
the sensitivity to MAUP of a spatially intensive variable. Therefore, the S-maup
test can be used to determine the level of aggregation at which MAUP effects do
not impact the statistical analysis severely. As a drawback, the S-maup test lacks a
theoretical definition. Indeed, an extensive simulation procedure was implemented
by the authors in order to be able to supply critical values for different levels of scale
and autocorrelation for the spatial variable.

5.1.1 TAZ delineation and MAUP effects in traffic safety
analysis

The convenient delineation of an area into traffic analysis zones (TAZs), which be-
have as BSUs from the perspective of the present research, requires several consider-
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ations to be made, although the guidelines suggested in literature are usually varied
and even contradictory. In a pioneering work, O’Neill (1991) proposed six criteria
for the delineation of TAZs, including the homogeneity of socioeconomic charac-
teristics, population and trip attraction levels, the minimization of intrazonal trips
and the employment of physical, historical or administrative boundaries. Martínez
et al. (2009) made use of a mobility survey available for the city of Lisbon (Portu-
gal) in order to design TAZs fitting the following four criteria: boundaries are set
over roads presenting a low trip generation density, intra-TAZ trips are minimized,
TAZs with a very low or large number of trips are avoided and homogeneity within
a TAZ is pursued as much as possible. Dong et al. (2015) used a K-means algo-
rithm to classify a predefined set of cell areas according to primary features (traffic
volume, hourly inflow, outflow and incremental flow) and optimizing features (peak
and valley values for the primary features).

Efforts have also been made in order to account for the boundary effect in TAZ delin-
eation. Siddiqui and Abdel-Aty (2012) proposed the distinction between boundary
and interior pedestrian crashes considering a buffer of 100 ft from TAZs boundaries.
Covariate information was weighted in the case of boundary crashes depending on
the length of shared boundary between contiguous TAZs. Then, the specification of
two analogous models for both types of crashes allowed the detection of differential
effects for some of the covariates included in the study. Furthermore, there exists
some simple methods that allow the allocation of traffic crashes occurred near TAZ
boundaries, including half-and-half ratio, one-to-one ratio and ratio of exposure.
Very recently, Zhai et al. (2018a) proposed a novel model-based iterative method for
assigning crashes located close to boundaries. This was proven to produce better
predictions at the BSU level than the other boundary assignation methods and to
increase the number of significant covariates detected.

Several authors have investigated MAUP in the context of traffic safety analysis,
which are now briefly discussed. First, Thomas (1996) noted that changes in scale
may alter the probability distribution that best fits the nature of the available crash
counts. Indeed, Thomas (1996) worked at the road segment level in order to infer
three length thresholds that would require a distinct modelling strategy for crash
counts: a Poisson distribution for very short segments (less than 1 hm), an interme-
diate empirical distribution for middle segments and a normal distribution for long
segments (more than 20 hm).

In the last decade, however, most of the research studies related to MAUP were set-
tled in the context of areal units of analysis. For instance, Lee et al. (2014) took the
more than 1000 TAZs already defined for several counties in Central Florida (USA)
and combined them into new subdivisions of the space containing from 100 to 1000
TAZs (in intervals of 100 TAZs). Specifically, total crash rates available for the
period of study were employed by the regionalization algorithm for the obtention of
sets of homogeneous zones containing the different number of TAZs specified. The
Brown-Forsythe test was applied in order to check how the changes in TAZs affected
the variance of crash rates. A moderate value of this test with a certain TAZ system
represents an optimal situation, which means that the scale at which the TAZs are
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defined is suitable for detecting both local and global variation. Thus, the definition
of 500-700 TAZs was found optimal for the data analyzed in Lee et al. (2014). Xu
et al. (2014) tested different TAZ schemes including from 50 to 738 units of analysis.
They suggested the use of 350 or more TAZs (for their case study) in order to reduce
MAUP effects because for this scale they found a superior number of significant co-
variates and more stable coefficient estimations. Similarly, Ukkusuri et al. (2012),
used ZIP codes and census tracts as TAZs, determined that a finer aggregation level
(census tracts in their study) was more suitable for data modelling as it enables
a higher data variability and greater explanatory power. Abdel-Aty et al. (2013)
modelled crash counts occurred at two American counties at the level of TAZs,
block groups and census tracts, considering total, severe and pedestrian crashes.
Relevant differences were found in terms of the number of significant variables that
were yielded by models based on different spatial units and, more specifically, in
the type of factor (roadway related vs. commute related) providing more significant
variables. Amoh-Gyimah et al. (2017) investigated several spatial units that may
be used as TAZs, including statistical area levels, postal areas, state electoral divi-
sions, grid cells and Thiessen polygons developed around the centroids of Melbourne
Integrated Transport Model. These authors made use of several statistical models
to provide a more complete perspective of the effects that the choice of TAZs can
lead to. The presence of MAUP was evident as they observed that a reduction in
the number of zones produced an increase in the number of significant variables.
Furthermore, they concluded that the selection of the modelling technique is an-
other important factor that may reduce MAUP. Indeed, geographically weighted
Poisson regression appeared to be less affected by MAUP than random parameter
negative binomial. These authors also suggest the use of Thiessen-based and grid
cells for prediction purposes, according to their results. Zhai et al. (2018b) applied a
multivariate Poisson lognormal model with multivariate conditional auto-regressive
prior on block groups, census tracts, zip codes and predefined BSUs for the analysis
of traffic crashes occurred in a county of Florida (USA). Important variations were
found in relation to coefficient sign, magnitude and significance, and the larger units
showed a superior forecasting performance. In addition, the detection of high-crash
locations revealed some unexpected situations, as certain zones that were shared by
all the BSU configurations showed a completely opposite behaviour depending on
the underlying BSU-dependent model being used for such assessment. Finally, in
a review paper regarding the effects of MAUP in traffic safety analysis, Xu et al.
(2018) proposed four potential solutions: avoiding data aggregation, considering the
spatial variation of the covariates employed for data modelling (an issue that is usu-
ally skipped), defining an optimal zoning system for the analysis and conducting
sensitivity analyses in order to check for MAUP presence and magnitude, regardless
of the strategies undertaken for attempting its reduction.
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5.2 Data

5.2.1 Crash dataset and road structure characteristics

A total of 18037 traffic crashes that took place in the city of Valencia (Spain) during
the years 2014 and 2015 were analyzed (Figure 5.1a). Geographical coordinates for
each of these crashes and information regarding the date and hour of occurrence
were provided by the Local Police of Valencia. The available coordinates were used
to locate the crashes on a spatial representation of the road network of the city
(linear network), as a guarantee of accuracy. This road network has a length of
840.3 km (with a diameter of almost 11.6 km) and contains 6110 road intersections.
Arterial roads of Valencia, which were employed to define BSUs, extend up to 168.3
km and are also displayed in Figure 5.1a.
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Figure 5.1: Points representing the locations of traffic crashes that occurred in
Valencia during the years 2014 and 2015 (a) and time series (displayed by hour and
weekday) of traffic crashes observed in Valencia during the same period (b)

5.2.2 Covariate definition

Several covariates were constructed to explain the incidence of traffic crashes among
BSUs for the years of study, which were classified into environmental, network-
related and socioeconomic. Environmental covariates included the consideration of
different services (public or private) that are located along the road network which
are known to influence the dynamics of traffic flow and in consequence are likely
to affect crash rates. The services selected were schools (from preschool to high
school level), bars/restaurants, hotels, private companies (mainly financial, legal or
insurance), bus and tram stops.

Network-related covariates were precisely derived from the information provided by
the road network structure, and included non-pedestrian road length, which was
considered as an exposure, average road betweenness and number of road intersec-
tions (involving any road type, main or not). Betweenness is a measure of network
connectivity and was computed for each road segment of the network according to
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the next formula (Freeman, 1977):

Be =
∑
i∼j

σij(e)

σij

where i and j are vertex of the network that are connected by a path (i ∼ j), σij the
number of shortest paths between i and j and σij(e) the number of shortest paths
that connect i and j while passing through the edge e of the network.

Finally, socioeconomic and demographic information was introduced through the
percentages of population in the range 16-24 and over 65 years, and also with the
average power of cars (in hp), which clearly correlates with economic status.

It is of need to highlight that the data that was used to construct this set of covariates
for different zonal schemes and levels of aggregation was available in point-referenced
format. Hence, it was possible to aggregate the data at any desired level of aggre-
gation or zoning system. In addition, the availability of the digitized version of the
road network of the city allowed the computation of the betweenness or the number
of road intersections. All these steps were carried out through specific GIS functions
available in the R programming language (R Core Team, 2018).

BSU configuration
CTs TMs TIs HEXAs

Type Variable Mean SD Mean SD Mean SD Mean SD
Crashes No. of traffic crashes (CRASH) 31.74 36.11 31.29 30.50 47.52 46.52 34.43 35.86

Environmental

No. of undergraduate educational centres (EDU) 0.62 0.87 0.61 1.03 0.93 1.29 0.68 1.05
No. of bars/restaurants (BAR) 8.49 9.35 8.37 10.56 12.71 13.97 9.31 13.54
No. of companies (COMP) 29.54 49.66 29.13 34.28 44.23 49.12 32.41 60.72
No. of hotel rooms (HOT) 14.34 71.58 14.14 53.21 21.47 66.85 15.76 63.04
No. of parking zones (PARK) 0.16 0.47 0.16 0.44 0.24 0.62 0.18 0.52
No. of bus stops (BUS) 1.67 2.18 1.64 1.74 2.50 2.39 1.82 1.77
No. of tram stops (TRAM) 0.05 0.30 0.05 0.26 0.08 0.31 0.06 0.25

Traffic-related Average betweenness (BETW) 518.97 1013.62 786.17 2020.76 760.32 1703.99 384.92 853.54
Intersection density per road km (INT) 8.71 6.33 8.61 6.42 9.01 6.78 6.96 5.51

Socioeconomic/demographic
% of young (16-24 years) population (YP) 9.87 2.12 9.06 4.43 9.41 3.49 7.96 5.47
% of old (≥ 65 years) population (OP) 24.02 5.97 23.27 10.12 24.54 11.11 21.74 17.23
Average horsepower of cars (HP) 12.25 0.72 11.78 2.88 12.09 2.13 10.67 4.22

Table 5.1: Description of the covariates defined for the analysis and basic statistics
of these covariates for the four BSU configurations tested (in their original configu-
ration, prior to aggregation/regionalization)

5.2.3 BSU definitions

In the absence of an established TAZ configuration for the city of Valencia (which
is probably the most used areal unit in the field of traffic safety analysis), several
possibilities were explored for the investigation of MAUP effects. The use of census
tracts (CTs) of Valencia and a grid of hexagonal BSUs (HEXAs) are two easy-to-
implement options that were tested. Particularly, CTs have been investigated in
many previous studies (Wier et al., 2009; Abdel-Aty et al., 2013; Cai et al., 2017).
Regarding the use of hexagons, these have been recommended over square grids in
related literature on traffic safety and MAUP given its more compact shape (Loidl
et al., 2016). The scarcity of road network at some areas in the North of Valencia led
to join some of the hexagonal units that were covering them, but these modifications
were minimal in relation to the whole hexagonal grid.
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Furthermore, two more specific BSU schemes were delineated on the basis of two cap-
ital elements of any urban traffic network: main roads (segments) and intersections
between main roads (points). It is known that these two road entities absorb a sub-
stantial percentage of traffic crashes, being the case of road intersections especially
treated in literature (Miaou and Lord, 2003; Huang et al., 2017; Lee et al., 2017).
Thiessen polygons (also known as Voronoi or Dirichlet polygons) were constructed
around points located along main roads of the city and exactly at main intersec-
tions, generating two BSU types that hereinafter are referred to as TMs (Thiessen
polygons based on main roads) and TIs (Thiessen polygons based on intersections
between main roads). Given a collection of locations in a planar space, the Thiessen
polygon built from one of these locations, P , contains all the points of the space
that are closer to P than to any of the other locations established. Hence, each
of the Thiessen polygons defined as a BSU was associated with a particular point
along the main road structure (in-between a main road) or to a main intersection of
the city. The use of TMs, TIs or HEXAs clearly alleviates the uncertainties derived
from crashes located near BSU boundaries, which may have a strong effect in the
case of CTs given the historical tendency of defining administrative divisions along
main roads, where many crashes occur (Table 5.2).

Then, Figure 5.2 includes the four types of BSU configurations that were defined
over the region of study, which provide enough evidence of how the change of the
system alters substantially the spatial distribution of traffic crashes across the city.
For instance, the central district of Valencia includes several CTs and HEXAs where
the crash rate belongs to the highest quintile (Figures 5.2a and 5.2d), but this effect
clearly reduces when the TMs and TIs are considered (Figures 5.2b and 5.2c).

The number of CTs in Valencia at the beginning of the year 2015 (566) served as
a guide in order to define the other three BSU systems in a way they presented a
comparable scale (similar number of BSUs). In the case of TIs, the initial scale was
conditioned by the number of main intersections in Valencia, rendering it impossible
the implementation of a finer BSU scheme of this nature, than that presented in
Figure 5.2c. Thus, the four baseline configurations in Figure 5.2 composed of 566
CTs, 574 TMs, 378 TIs and 515 HEXAs were chosen to analyze the MAUP effect
in the modelling of traffic crash counts for the available dataset.

BSU configuration < 5 m (%) < 10 m (%) < 20 m (%) Mean distance (m)
CTs 35.36 45.29 59.56 27.99
TMs 8.75 18.32 30.23 48.77
TIs 6.65 11.54 22.73 64.78
HEXAs 5.83 11.91 22.40 52.19

Table 5.2: Percentage of crashes located near BSU boundaries considering five dis-
tance thresholds (5, 10 and 20 m) and mean distance from crashes to BSU boundaries
for the four BSU configurations employed in the analysis



5.3. Methodology 79

0 m 1000 m 2000 m

CRASH

< 9

9 − 16

16 − 25

25 − 48

> 48

(a)

0 m 1000 m 2000 m

CRASH

< 10

10 − 19

19 − 29

29 − 44.4

> 44.4

(b)

0 m 1000 m 2000 m

CRASH

< 16

16 − 27

27 − 40.2

40.2 − 72.6

> 72.6

(c)

0 m 1000 m 2000 m

CRASH

< 2

2 − 17

17 − 35

35 − 58

> 58

(d)

Figure 5.2: Crash counts (CRASH) in Valencia considering a BSU configuration
composed of CTs (a), TMs (b), TIs (c) and HEXAs (d). Districts of Valencia are
overlayed (thicker lines, in black) for better readability and comparison

5.3 Methodology

5.3.1 Software

The R programming language (3.5.1 version, R Development Core Team, Vienna,
Austria) (R Core Team, 2018) was used to obtain all the results presented in this
work. The R packages ClustGeo (Chavent et al., 2017b), ggplot2 (Wickham, 2016),
INLA (Rue et al., 2009; Martins et al., 2013; Lindgren and Rue, 2015), rgeos (Bivand
and Rundel, 2018a), spatstat (Baddeley et al., 2015), spded (Bivand and Piras, 2015),
spgwr (Bivand and Yu, 2017) and SpNetPrep (Briz-Redón, 2019) were specifically
required for performing the analysis.

5.3.2 Regionalization algorithm

The term regionalization was defined by Guo (2008) as the process of aggregating
a set of spatial entities into a reduced number of regions in a way that a prede-
fined objective function is optimized. There are several important regionalization
algorithms, including SKATER (Assunção et al., 2006), REDCAP (Guo, 2008) and
ClustGeo (Chavent et al., 2017b). In this study the latter was chosen, which is im-
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plemented in the R package ClustGeo (Chavent et al., 2017a). The next paragraphs
contain a brief description of how this method works and how it was used.

Given a number of clusters, K, to be formed and two matrices, D0 and D1, that
represent the homogeneity and physical distances (respectively) between the spatial
units available before regionalization, the ClustGeo algorithm relies on the minimiza-
tion of a measure called mixed within-cluster inertia, defined as the sum of the mixed
inertias of all of the clusters established. The mixed inertia of a cluster, Cα

k , follows
the next expression (Chavent et al., 2017b):

Iα(Cα
k ) = (1− α)

∑
i∈Cαk

∑
j∈Cαk

wiwj
2µαk

d20,ij + α
∑
i∈Cαk

∑
j∈Cαk

wiwj
2µαk

d21,ij

where α ∈ [0, 1] is a parameter that controls the importance that the homogeneity
and physical distances (represented by D0 and D1) have in the clustering procedure,
k ∈ {1, ..., K} is the index for the cluster, wi is the weight of spatial unit i, µαk =∑

i∈Cαk
wi and d0,ij (resp. d1,ij) is the normalized dissimilarity between spatial units

i and j in D0 (resp. D1).

In this study, the total number of crash counts registered per BSU during the pe-
riod 2014-2015 at four time slots (23h-7h, 7h-14h, 14h-20h and 20h-23h, which were
selected according to the daily trends observable in Figure 5.1b) and at the week-
ends were used to define the dissimilarity matrix D0. Regarding D1, this matrix
was constructed from the Euclidean distances between the centroids of the BSUs.
Furthermore, the weights (wi) were set equal for all BSUs and a value of α = 0.1 was
chosen, giving much importance to the spatial distances between the BSUs during
the aggregation procedure (the investigation of the optimal value of α suggested by
ClustGeo led to this choice).

It needs to be remarked that there is a technical difference between SKATER and
REDCAP algorithms and the method implemented in ClustGeo. Indeed, the choice
of K in ClustGeo does not represent the number of contiguous and homogeneous
regions that are created, but the number of homogeneous regions (according to the
variables provided to the algorithm) that need to be regrouped later in order to fully
satisfy the contiguity constraints. Hence, the input K in ClustGeo is a lower bound
of the number of BSUs that are generated at the end of the process, although both
values barely differ. The use of several values of K, from 100 to 500 in intervals of
100, allowed MAUP to be investigated in the present study with five different levels
of spatial aggregation, which are denoted by AG100, AG200, AG300, AG400 and
AG500 within the rest of the analysis.

5.3.3 Crash counts modelling

Conditional autoregressive model

The modelling of crash counts at the macroscopic level requires the consideration of
data overdispersion. Two common choices in the field of traffic safety analysis to ad-
dress this issue are negative binomial (also known as Poisson-Gamma) and Poisson
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lognormal probability distributions (Lord and Mannering, 2010). Both have their
own advantages and disadvantages, Poisson lognormal being more recommended in
cases of high overdispersion (particularly skewed distribution of the counts), whereas
negative binomial has been suggested to be more suitable for moderately overdis-
persed counts, and also for counts with a large number of zeros (Khazraee et al.,
2018; Shirazi and Lord, 2018). In the context of this study, it is hard to choose
between one distribution or the other, as the change in scale or zoning alters the
statistical properties that are involved in this decision. Anyhow, as the crash counts
available under the different combinations of aggregation level and BSU type were
overall only moderately overdispersed, a negative binomial distribution was selected.

Therefore, a conditional autoregressive (CAR) model with negative binomial (NB)
response was chosen to fit the crash counts recorded for each BSU. The use of a CAR
structure for modelling crash counts is a usual strategy in traffic safety analysis to
account for spatial heterogeneity (Quddus, 2008; Huang et al., 2010).

If Y ∼ NB(µ, ψ) (basic NB distribution of mean µ and shape ψ) then it holds that
E(Y ) = µ, V (Y ) = µ+ µ2

ψ
and P (Y = x) = (x+ψ−1

ψ−1 )( ψ
µ+ψ

)ψ( µ
µ+ψ

)x. Then, assuming
a NB distribution for the response (crash counts) the following spatial model was
implemented:

Yi ∼ NB(µi, ψ)

log(µi) = log(Ei) + β0 +

p∑
m=1

βmXim + φi
(5.1)

where Yi is the number of crashes observed at BSU i, µi and ψ are, respectively,
the mean risk (for BSU i) and overdispersion (1/ψ) values for the NB distribution,
the natural logarithm acts as a link function for µi, Ei (exposure at BSU i) is the
length of non-pedestrian road at BSU i which acts as an offset of the equation,
Xim represents the value of the m-th covariate at BSU i, βm is the coefficient that
controls the effect of the m-th covariate and φi represents a spatial effect for BSU i.
Regarding the selection of the exposure, the unavailability of vehicle miles travelled
data (traffic volume) for non-main roads of Valencia left non-pedestrian road length
as the natural choice, a possibility already considered in previous research studies
(Qin et al., 2004; Imprialou et al., 2016).

The spatial effect in Equation 5.1 was modelled using the following CAR structure
(Besag, 1974; Besag et al., 1991):

φi | φj, j 6= i ∼ N(
n∑
j=1

wijφj, τ
−1
i )

where wij is an indicator parameter that is 1 if BSUs i and j are contiguous and 0
otherwise, and τi is a precision parameter that varies with BSU i.
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Geographically weighted regression

Geographically weighted regression (GWR) is a form of linear regression that cap-
tures the spatial heterogeneity present in the data by allowing model parameters to
vary locally (Brunsdon et al., 1996; Fotheringham et al., 2002; Nakaya et al., 2005).
GWR has already been used in traffic safety analysis (Hadayeghi et al., 2010; Matkan
et al., 2011; Xu and Huang, 2015; Gomes et al., 2017), including some analyses from
the perspective of MAUP effects (Amoh-Gyimah et al., 2017).

The mathematical expression that corresponds to the GWR model is the following:

log(µi) = log(Ei) + β0(BSUi) +

p∑
m=1

βm(BSUi)Xim (5.2)

where µi, Ei and Xim are as in Equation 5.1. The main feature of GWR is the
consideration of local regression parameters (in contrast to global parameters of
Equation 5.1) which are denoted by βm(BSUi) in Equation 5.2. As in Equation 5.1,
a NB distribution was used in the definition of the model to consider overdispersion.
A modification of GWR called semiparametric GWR consisting in the combination
of fixed and spatially-varying effects for the covariates involved in the model has
also been used in traffic safety analysis (Xu and Huang, 2015; Amoh-Gyimah et al.,
2017). However, the classical version of the GWR model was employed in order to
provide a more unified framework for the comparison of the set of models obtained
for each aggregation level and zoning, which is the main purpose of this analysis.

Hence, a GWR model behaves similarly to a generalized linear model (GLM), al-
though for the former the parameters that compose the model are estimated locally,
at each BSU, depending on the crash counts and covariate values at the surrounding
areal units. The influence that BSU i produces on another BSU j (denoted as wij)
was controlled by the following Gaussian kernel function:

wij = e−0.5
d2ij

σ2

where dij is the Euclidean distance between BSU i and BSU j (between their cen-
troids) and σ is the fixed bandwidth employed by the kernel function, which repre-
sents the level of influence that the rest of BSUs have on a given BSU with regard
to model fitting (a higher value for σ means that model parameters are estimated
on the basis of a wider zone around each BSU). Several other kernel functions are
available instead of the Gaussian (bisquare, for instance), but this choice is usually
not responsible of strong effects on the results (Silverman, 2018).

Regarding the bandwidth, a value of σ = 2 km was chosen in this study for all the
BSUs and aggregation levels being considered. Other authors opted for the choice
of a specific optimal bandwidth for each BSU and aggregation level (Amoh-Gyimah
et al., 2017), but here a fixed value was used in order to avoid the presence of a
source of variation other than scale or zoning, which are the focus of the analysis.
The value of 2 km was chosen because it was close to the optimal values that were
observed for the different BSUs and aggregation levels tested.
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5.3.4 Assessment of model performance

The goodness of fit of the CAR models was assessed through Bayesian deviance
information criterion (DIC) (Spiegelhalter et al., 2002). Similarly, AIC was used for
GWR models. In addition, several measurements of model performance typically
used in other traffic safety analysis papers on the MAUP for model comparison were
considered for both CAR and GWR models: mean absolute deviation (MAD) (Lee
et al., 2014; Xu et al., 2014; Amoh-Gyimah et al., 2017; Zhai et al., 2018b), sum of
absolute deviation (SAD) (Lee et al., 2014; Xu et al., 2018; Zhai et al., 2018b) and
percent mean absolute deviation (PMAD) (Lee et al., 2014; Xu et al., 2018).

The formulas for MAD, SAD and PMAD are the following:

MAD =
1

n

n∑
i=1

|ei|

SAD =
n∑
i=1

|ei|

PMAD =

∑n
i=1 |ei|∑n
i=1 |yi|

where n is the number of BSUs and ei = yi − ŷi represents the difference between
the number of crashes observed at BSU i (yi) and the number fitted by the model
(ŷi).

From the perspective of interpreting the results, a lower value of any of the afore-
mentioned statistics (DIC, AIC, MAD, SAD or PMAD) indicates a better fit to the
available data.

5.3.5 Statistical tools for covariate exploration

Several statistical tools were used to explore the covariates provided to the models
at different scales and zonings, and hence provide more instruments to analyze their
sensitivity to the MAUP. This section includes a brief description of these tools.

Average nearest neighbour index (NNI) measures the level of clustering/dispersion
of a point pattern. Hence, it is suitable for the exploration of a covariate constructed
from a pattern of points located across the area of investigation (EDU, BAR, COMP,
HOT, PARK, BUS and TRAM among the set of covariates used in the present
research). The definition of the NNI is the following (Clark and Evans, 1954; Cressie,
1993):

NNI =
1
P

∑P
i=1DNN(i)

1
2

√
A
P

where P is the number of points that form the pattern, A the area of the whole
space where the pattern lies and DNN(i) is the distance from point i to its nearest
neighbour (the closest point to i in the pattern). The NNI represents a ratio between
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the average nearest-neighbour distance observed for the pattern and the value that
would be expected under the hypothesis of random spatial distribution. A NNI
lower than 1 indicates that the pattern is clustered, whereas a value higher than 1
is a sign of the dispersion of the pattern. More specifically, the following z-score
(z ∼ N(0, 1)) is associated to the computation of the NNI, which allows one to
assess the statistical significance of the index under the null hypothesis of NNI = 1
(Clark and Evans, 1954):

z =

1
P

∑P
i=1DNN(i)− 1

2

√
A
P

0.26136√
P 2/A

Moran’s I (Moran, 1950a,b) was computed for every combination of BSU, aggrega-
tion level and covariate available. Moran’s I is defined as follows:

I =

n∑
i=1

∑
j∈N(i)

1

ni
(xi − x̄)(xj − x̄)

n∑
i=1

(xi − x̄)2

where N(i) represents the set formed by the neighbours of BSU i, which has cardi-
nality ni, xi is the value of a covariate at BSU i and x̄ the mean value of the covariate
across all spatial units available. Moran’s I behaves as a spatial autocorrelation co-
efficient for areal-based data. Under the hypothesis of no spatial autocorrelation,
it holds that E(I) = −1/(n − 1), where n is the number of spatial units in each
case. A higher Moran’s I value indicates a higher tendency of the covariate to show
strongly associated values for neighbouring BSUs.

Multicollinearity among the covariates considered was investigated through the Vari-
ance Inflation Factor (VIF) (Fox, 1991), which is defined as follows for a given
covariate or predictor, Xj:

VIFj =
1

1−R2
j

where R2
j is the R2 found when regressing all other covariates onto Xj (Miles, 2014).

A higher value of VIF suggests that the covariate is more susceptible to lead to
multicollinearity issues. A value of VIF not greater than 10 is usually interpreted
in literature as a sign of no severe multicollinearity (Miles, 2014).

5.4 Results and discussion

Tables 5.4-5.7 include the parameters estimated for the CAR models considering
each BSU configuration and aggregation level. On the other hand, Figures 5.6-5.9
display the densities (distributions) of the local parameter estimates obtained from
the GWR models for each BSU type, aggregation level and covariate. The distribu-
tions of these local parameters were scaled (divided by their standard deviation) to
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facilitate the graphical comparison.

The main conclusion that yields from all these results is that MAUP effects have
heavily affected the macroscopic traffic safety analysis performed. In the present
section, an initial subsection gives insights into the varying nature of the data (re-
sponse and covariates) as one changes scale or zoning. The subsequent subsections
contain a description of how the variations in aggregation level (scale) or BSU type
(zoning) changed model parameter estimates and a performance comparison of all
the models implemented. After that, the associations derived from all the models
and BSU configurations tested are globally evaluated in pursuit of more solid con-
clusions (despite the consequences of MAUP) that allow the identification of some
factors that correlate with more traffic crashes.

5.4.1 Effects of MAUP on input data

Before analyzing scale and zoning effects on parameter estimations considering both
CAR and GWR models, an investigation of the consequences of MAUP on the input
data that is afterwards modelled (response and covariates) was performed.

The distributional characteristics of the response (crash counts) for different BSUs
and aggregation levels are shown in Table 5.3, from which it yields that overdis-
persion (through the coefficient of variation) and kurtosis reduced as the level of
aggregation was increased. Furthermore, it can also be observed in Table 5.3 that
the percentage of zeros (percentage of BSUs where no traffic accident was recorded)
was almost negligible for most of the combinations between a BSU and an aggrega-
tion level, excluding the HEXAs.

The magnitude of the spatial autocorrelation shown by the response variable and
the covariates also suffers from scale and zoning changes. Figure 5.3 displays all
Moran’s I indexes computed for each combination of a BSU and aggregation level,
which suggests that it is hard to predict the level of spatial autocorrelation after a
change of scale. Indeed, some covariates tend to be more spatially autocorrelated
as aggregation increases (the number of parking zones, for TMs), whereas other
covariates show the opposite behaviour (the number of companies, for HEXAs).
In addition, CTs and HEXAs show overall higher levels of spatial autocorrelation
for the covariates than TMs and TIs. This is remarkable for traffic crashes, which
display a particularly high spatial autocorrelation in the case of HEXAs, rather than
in the other three BSUs considered for investigation. The spatial autocorrelation of
some of the covariates is more deeply discussed in the following subsections.

Finally, the computation of variance inflation factors (VIF) leads to the conclusion
that multicollinearity issues were not present for the distinct dataset analyzed (at
different scales and zonings), as VIF factors were always below 10 (Figure 5.4). How-
ever, it is important to appreciate that VIF consistently increased as the level of ag-
gregation increased, specially for some covariates such as the number of bars/restau-
rants (BAR), the number of companies (COMP) and intersection density (INT).
Hence, this analysis suggests that the level of aggregation should not be excessively
increased in order to avoid multicollinearity among the covariates.
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Figure 5.3: Moran’s I values for the response (CRASH) and the covariates for each
BSU type and aggregation level tested

5.4.2 Parameter variations across aggregation levels

Given the moderate level of significance achieved by the set of covariates, an 80%
credibility level was also considered along with the most usual 90% level for the
estimations yielded by the CAR models. Figure 5.5 displays a graphical summary of
the significance achieved by all the covariates involved in the analysis. According to
Figure 5.5, the hypothesis of obtaining more significant variables and the consequent
higher interpretation power at lower levels of aggregation suggested by Xu et al.
(2014) was true in the case of CTs, but it was not clear, at all, for the rest of
BSU configurations. Anyhow, this question could have been better addressed in the
presence of a higher number of significant covariates.

The level of aggregation applied to each BSU configuration through the regional-
ization algorithm produced moderate-to-severe effects in parameter estimates for
the CAR models. Hence, although the parameter estimates evolved moderately
with changes in the scale (Tables 5.4-5.7), several covariates were only significant
at some of the aggregation levels tested. However, some of the covariates did not
seem affected by MAUP and remained significant with each aggregation level (old
population percentage and average horsepower for CTs, and number of educational
centers and average horsepower for both TMs and TIs). Despite not being signifi-
cant for the most aggregated scheme considered (AG100), the positive association
between traffic crashes and the number of bus stops for HEXAs was also consistent.
Remarkably, none of the covariates that were found significant (at 80% of credibil-
ity) experimented a change of effect (from positive to negative, or vice versa) after
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Figure 5.4: Assessment of multicollinearity among the covariates through variance
inflation factor (VIF) for each BSU type and aggregation level tested

a shift in the scale. This is a positive result, since it indicates that MAUP effects
were not the strongest possible across aggregation levels.

Regarding the GWR models, Figures 5.6-5.9 show that local parameter distributions
may vary acutely after some changes on the aggregation level. It is hard to assess if
the distribution of the local parameters tends to be more concentrated (leptokurtic)
or flat (platykurtic) as the level of aggregation increases/decreases, as this seems
strongly dependent on the covariate and the BSU. Furthermore, the contradictory
presence of local parameters of opposite signs that takes place for most of the covari-
ates is a well-known issue that often arises in GWR models (Hadayeghi et al., 2010;
Xu and Huang, 2015; Amoh-Gyimah et al., 2017). Figure 5.10 shows the behaviour
of the local parameter estimates obtained from the GWR models through the signs
of 5th, 10th, 20th, 80th, 90th and 95th percentiles. Hence, a negative value for 80th,
90th or 95th percentiles indicates a high agreement among the local GWR coeffi-
cients and a negative association of the covariate with crash counts. Analogously, a
positive 5th, 10th or 20th percentiles means the same but for a positive association.

In contrast to CAR models, for which no covariate showed a significant change of
effect after a variation in scale, the GWR models experimented this issue for the
covariates representing the number of companies (COMP), parking zones (PARK)
and intersection density (INT) when using CTs (considering the percentile-based cri-
teria that has been employed for assessing the association between crash counts and
covariates with the GWR models). This lack of coherence was specifically serious for
the number of companies, a covariate that showed a strong autocorrelation accord-
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BSU AG CV Kurtosis Zeros (%)
CT AG100 0.71 1.77 0.00
CT AG200 0.87 3.41 0.00
CT AG300 0.88 4.71 0.00
CT AG400 0.92 10.86 0.25
CT AG500 1.04 16.07 0.40
TM AG100 0.54 1.76 0.00
TM AG200 0.72 0.59 0.00
TM AG300 0.76 2.11 0.33
TM AG400 0.79 7.07 0.50
TM AG500 0.88 12.03 0.60
TI AG100 0.69 1.65 0.00
TI AG200 0.77 1.49 0.00
TI AG300 0.81 6.77 0.00

HEXA AG100 0.85 2.32 2.68
HEXA AG200 0.83 -0.15 6.50
HEXA AG300 0.88 1.63 7.00
HEXA AG400 0.84 3.75 5.75
HEXA AG500 1.01 4.70 10.00

Table 5.3: Basic distributional properties of the response variable (crash counts)
corresponding to each BSU type and aggregation level, where CV means coefficient
of variation (standard deviation to mean ratio)

ing to Moran’s I at this BSU system (Figure 5.3). The exploration of crash counts
and the number of companies (COMP) at AG100, AG300 and AG500 (Figure 5.12)
unveils some singular patterns around the city center (some surrounding Districts
are highlighted in blue in Figure 5.12). Thus, whereas at AG100 most of the BSUs
presenting a high number of companies were located within these Districts, the use
of a more disaggregated configuration provided greater variation in the number of
companies across the whole city, with many more BSUs in the periphery of Valencia
presenting high values. With regard to intersection density (INT), this covariate also
presented high Moran’s I values (Figure 5.3), but visual inspection was far less clear
than in the case of the number of companies, becoming challenging to figure out how
the effect of intersections changed from AG300 to AG400 and again from AG400
to AG500 (for CTs and the GWR models). On the other hand, it is remarkable
how the number of educational centers (EDU), which presents the more coherent
behaviour across BSUs and aggregation levels in the case of the GWR models, is
one of the covariates that showed a lower range of values for Moran’s I statistic.
Similarly, this result also agrees with that provided by the NNI (Table 5.8), as some
of the covariates based on point patterns lying over the city presenting a high level
of clustering (companies, NNI=0.26) display a more sensitive to MAUP behaviour
than other that, albeit clustered, show a more regular pattern (educational centers,
NNI=0.86). A similar level of consistence to that found for the educational centers
was also obtained for the number of tram stops (TRAM) in the case of the GWR
models, although this covariate resulted non-significant for almost all combinations
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AG100 AG200 AG300 AG400 AG500
Covariate Est. SD Est. SD Est. SD Est. SD Est. SD
Intercept -13.2477* 2.6119 -11.4619* 1.8909 -8.8597* 1.6753 -8.0273* 1.1308 -8.1816* 1.0403
EDU -0.0327 0.0261 -0.0661* 0.0260 -0.0797* 0.0285 -0.0778* 0.0303 -0.0656* 0.0308
BAR 0.0025 0.0027 0.0030 0.0027 0.0021 0.0033 -0.0017 0.0035 0.0004 0.0042
COMP -0.0005 0.0006 -0.0005 0.0006 0.0000 0.0009 0.0002 0.0009 0.0002 0.0009
HOT 0.0002 0.0004 0.0002 0.0003 0.0003 0.0004 0.0001 0.0004 0.0001 0.0004
PARK -0.0230 0.0657 -0.0970 0.0607 -0.0187 0.0665 0.0102 0.0659 -0.0249 0.0661
BUS 0.0006 0.0134 0.0224* 0.0121 0.0186 0.0141 0.0156 0.0150 0.0222 0.0155
TRAM -0.0436 0.0949 0.0424 0.0763 -0.0065 0.0924 -0.0711 0.0906 -0.0586 0.0911
BETW 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000 0.0001 0.0000 0.0001* 0.0000
INT -0.0130 0.0187 -0.0053 0.0122 -0.0010 0.0093 0.0095 0.0076 0.0051 0.0065
YP -0.0265 0.0523 -0.0019 0.0313 0.0260 0.0245 0.0122 0.0206 0.0170 0.0176
OP 0.0322* 0.0151 0.0156 0.0096 0.0161* 0.0085 0.0120* 0.0072 0.0131* 0.0063
HP 0.7517* 0.2087 0.6004* 0.1487 0.3605* 0.1355 0.3111* 0.0921 0.3169* 0.0842
ψ 3.0831* 0.4127 8.8277* 2.9744 6.5329* 1.8981 5.4961* 1.3313 5.2406* 1.0798

Table 5.4: Estimates with standard deviation (SD) for the parameters involved in
the CAR model, considering CTs as BSUs. An asterisk (*) indicates the significance
of a parameter with a 90% credibility

of aggregation level and BSU for the CAR models. The NNI of the point pattern
formed by the tram stops was 1.30 (Table 5.8), clearly indicating the dispersed
configuration of these stops across Valencia.

5.4.3 Parameter variations across BSU types

Contrary to scale, MAUP effects from zoning variations were by far more severe in
this case study. Indeed, some covariates showed a significant and opposite effect
depending on the BSU system being considered, including old population percent-
age, the number of bus stops and intersection density (Figure 5.5). The cases of
both the number of bus stops and intersection density were specifically related to
the differential behaviour exhibited by the highest aggregation level, AG100. This
aggregation level was clearly the least coherent among all the levels tested, possibly
indicating its unsuitability to capture some micro-variations present in the data.
On the other hand, the percentage of old population (OP) appeared as a highly
sensitive-to-MAUP covariate, standing out from all the ones supplied to the models.
Thus, whereas this covariate showed a clear positive association with traffic crashes
for CTs and, to a lesser extent, for TIs, it associated with a decrease in crash counts
with HEXA units at the three most aggregated levels. This contradictory result
was investigated through the cartographic representation of crash counts (CRASH)
and the old population covariate for CTs and HEXAs at AG100, AG200 and AG300
(Figure 5.13). In all the maps available in Figure 5.13, the border of a census tract
located in the South of Valencia (which is the largest of the city) is highlighted in
blue. This census tract constitutes a wide area of low population density and a
high percentage of residents with 65 or more years of age (OP). In addition, the
area is not dense in road network, which naturally reduces the number of traffic
crashes. Hence, the use of HEXAs led to a covering of this census tract with several
hexagons of very high percentage of old population and very low number of crashes,
which surely affected the estimation of the parameter related to this covariate. On
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AG100 AG200 AG300 AG400 AG500
Covariate Est. SD Est. SD Est. SD Est. SD Est. SD
Intercept -8.3199* 1.2364 -7.7404* 1.0021 -7.2087* 0.7263 -6.7423* 0.6376 -6.0589* 0.5407
EDU -0.0475* 0.0270 -0.0515* 0.0279 -0.0732* 0.0316 -0.0963* 0.0325 -0.0967* 0.0324
BAR 0.0019 0.0026 0.0029 0.0028 -0.0002 0.0034 -0.0016 0.0035 -0.0031 0.0038
COMP -0.0002 0.0006 0.0001 0.0009 -0.0002 0.0010 0.0002 0.0011 -0.0001 0.0013
HOT -0.0001 0.0004 0.0007 0.0005 0.0009 0.0006 0.0008 0.0006 0.0010* 0.0006
PARK -0.0126 0.0594 -0.0397 0.0625 -0.0185 0.0800 -0.0870 0.0799 -0.0357 0.0788
BUS -0.0380* 0.0118 -0.0010 0.0140 -0.0039 0.0163 -0.0086 0.0193 0.0079 0.0208
TRAM -0.1556* 0.0792 0.0021 0.0988 -0.0631 0.1141 -0.1625 0.1170 -0.1163 0.1138
BETW 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
INT -0.0033 0.0164 0.0081 0.0107 0.0115 0.0098 0.0000 0.0075 -0.0006 0.0066
YP 0.0082 0.0398 0.0365 0.0268 0.0042 0.0195 0.0084 0.0165 0.0061 0.0143
OP 0.0339* 0.0122 -0.0039 0.0083 0.0026 0.0059 0.0038 0.0052 0.0021 0.0047
HP 0.3635* 0.0993 0.3028* 0.0755 0.2849* 0.0568 0.2565* 0.0501 0.1996* 0.0428
ψ 3.8533* 0.5287 8.4472* 1.7932 3.1448* 0.5569 2.7796* 0.3599 2.9332* 0.3634

Table 5.5: Estimates with standard deviation (SD) for the parameters involved in
the CAR model, considering TMs as BSUs. An asterisk (*) indicates the significance
of a parameter with a 90% credibility

the other hand, the use of CTs summarizes this part of the city in only one area
presenting a high percentage of old population and moderate value of crash counts,
which can barely alter model estimations. In conclusion, the use of covariates that
depend on possibly sparse population should be used with special care, as the choice
of the wrong BSU type in such cases could lead to artefactual associations between
the covariate and crash rates observed.

The differences in local parameter estimates for the GWR models across the four
BSU types is rather evident (Figure 5.10). Several covariates presented a controver-
sial behaviour with a strong dependence to the BSU system. These discrepancies
are more obvious than with the CAR models given the higher number of covariates
that are highlighted with the specified percentile criteria. Leaving apart the AG100
aggregation level because it has overall produced more disparate results (reducing its
reliability), there were still some covariates showing inconsistent associations with
crash counts, confirming the consequences of MAUP in this case study. Further-
more, a global high level of coincidence between two distributions of local parame-
ter estimates derived from GWR (at two different scales and/or zonings) does not
guarantee, at all, that the local estimates vary similarly across space, which is clear
in view of Figure 5.11.

5.4.4 Model performance comparisons

Table 5.9 provides information with regard to model fitting for all the BSU systems
and aggregation levels employed in the study. It is appreciable that CAR models
performance improved gradually (decrease in DIC) as the aggregation increased
(reaching the minimums at AG100 for all the BSU systems). Although this is an
issue already pointed out by Fotheringham and Wong (1991), that does not always
represent a real improvement in model quality and interpretation, in this case may
be also the consequence of a weak multicollinearity among the covariates at AG100
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AG100 AG200 AG300
Covariate Est. SD Est. SD Est. SD
Intercept -6.7825* 1.5880 -6.8832* 0.9019 -6.2381* 0.6777
EDU -0.0399 0.0281 -0.0633* 0.0330 -0.0580* 0.0298
BAR 0.0028 0.0028 0.0022 0.0034 0.0039 0.0035
COMP 0.0007 0.0007 0.0012 0.0009 -0.0004 0.0009
HOT -0.0002 0.0005 0.0002 0.0006 0.0003 0.0005
PARK -0.0133 0.0632 -0.0286 0.0724 -0.0143 0.0638
BUS -0.0182 0.0128 -0.0123 0.0167 0.0002 0.0161
TRAM -0.0962 0.0754 -0.2074* 0.1079 -0.1248 0.1088
BETW -0.0001 0.0001 0.0000 0.0001 0.0000 0.0000
INT -0.0126 0.0178 -0.0052 0.0125 -0.0126 0.0085
YP -0.0452 0.0485 0.0329* 0.0193 0.0226 0.0142
OP 0.0207 0.0145 0.0138* 0.0074 0.0010 0.0043
HP 0.2806* 0.1284 0.2234* 0.0604 0.1994* 0.0471
ψ 3.2962* 0.4602 2.3784* 0.2386 7.0513* 2.1572

Table 5.6: Estimates with standard deviation (SD) for the parameters involved in
the CAR model, considering TIs as BSUs. An asterisk (*) indicates the significance
of a parameter with a 90% credibility

(specially for HEXAs).

On the other hand, for any fixed scale with the exception of AG100, HEXAs ap-
peared as the optimal choice for the CAR models. Hence, the use of hexagonal grids
would be a reasonable recommendation, although care must be taken with areas of
low population density if population-related covariates are being used, as shown in
the previous subsection. For the latter, CTs or other administrative division should
be more convenient.

One positive conclusion is the substantial level of agreement shown by the CAR and
GWR models for each BSU system and level of aggregation, as it can be observed
from the comparison of Figure 5.5 and Figure 5.10. However, GWR models showed
superior values for MAD, SAD and PMAD for most of the combinations of BSU
types and aggregation levels, an opposite result to that found by other authors (Xu
and Huang, 2015; Amoh-Gyimah et al., 2017). The use of semiparametric GWR
models or an adaptive version of their kernel’s bandwidth may have led to more close
performance results for some combinations of scale and zoning, but this possibility
was discarded to guarantee a fair comparison between models in the context of this
analysis, which is more focused on model parameter estimations rather than on
model performances.

5.4.5 Parameter interpretations

Despite MAUP effects, several associations between crash counts and some of the
covariates were observed at several combinations of aggregation level and BSU type,
deserving a deeper analysis. In particular, the number of undergraduate educational
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AG100 AG200 AG300 AG400 AG500
Covariate Est. SD Est. SD Est. SD Est. SD Est. SD
Intercept -8.8001* 1.3441 -4.8880* 0.7877 -5.2212* 0.6348 -4.3829* 0.4955 -5.1725* 0.3578
EDU -0.0457 0.0396 -0.0470 0.0299 -0.0759* 0.0311 -0.0814* 0.0339 -0.0435 0.0334
BAR 0.0001 0.0035 -0.0026 0.0030 -0.0010 0.0037 -0.0008 0.0038 0.0012 0.0036
COMP -0.0011 0.0010 -0.0002 0.0009 -0.0001 0.0009 0.0011 0.0011 0.0011 0.0010
HOT 0.0004 0.0006 0.0004 0.0007 0.0002 0.0006 0.0006 0.0006 0.0005 0.0006
PARK 0.1677 0.1075 0.0371 0.0781 0.0741 0.0796 0.0406 0.0805 0.0068 0.0766
BUS 0.0267 0.0231 0.0816* 0.0204 0.0902* 0.0212 0.0934* 0.0229 0.1336* 0.0222
TRAM -0.1348 0.1352 0.1095 0.1633 -0.0518 0.1356 -0.0057 0.1233 0.0244 0.1290
BETW 0.0001 0.0002 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0000
INT 0.0908* 0.0409 0.0151 0.0199 0.0097 0.0153 0.0021 0.0102 -0.0012 0.0090
YP 0.0455 0.0397 0.0036 0.0261 0.0079 0.0126 0.0175 0.0121 0.0021 0.0095
OP -0.0199* 0.0103 -0.0127* 0.0075 -0.0096* 0.0056 -0.0038 0.0047 -0.0033 0.0037
HP 0.3438* 0.0971 0.0395 0.0520 0.0703 0.0464 -0.0055 0.0347 0.0480* 0.0274
ψ 1.4053* 0.1862 1133.6054* 9922.7680 205.1350* 579.7774 79.1317* 100.2495 103.7747* 162.6996

Table 5.7: Estimates with standard deviation (SD) for the parameters involved in the
CAR model, considering HEXAs as BSUs. An asterisk (*) indicates the significance
of a parameter with a 90% credibility

EDU BAR COMP HOT PARK BUS TRAM
NNI 0.86 0.51 0.26 0.35 1.08 0.70 1.30
p-value 0.00* 0.00* 0.00* 0.00* 0.15 0.00* 0.00*

Table 5.8: Nearest neighbour indexes (NNI) and p-value associated with each index.
An asterisk (*) indicates the statistical significance of the index (p < 0.05), which
indicates clustering (NNI<1) or dispersion (NNI>1)

centers showed a consistent negative correlation with crash counts, whereas average
horsepower of the cars in the BSU generally associated with more traffic crashes.
Other covariates, such as the number of bus stops in the BSU, the average between-
ness of its road segments or the percentage of population with 65 or more years
living in the BSU also suggested the presence of a positive relationship, but uncer-
tainties from MAUP issues were stronger for them. The knowledge of the city being
analyzed arouses the suspicion that some of these correlations could be related to a
hidden (not included in the models) factor as it is the distance to the city center of
Valencia (case of average horsepower and old population), but this question would
require a specific research.

5.5 Conclusions
This study is, to the best of my knowledge, the first one that provides a simultaneous
investigation of scale and zoning effects regarding the modifiable areal unit problem
in the context of traffic safety analysis. Furthermore, another capital objective was
to specifically assess how a change in the aggregation level or BSU type may affect the
basic characteristics of both the response variable being considered (crash counts)
and the set of covariates included in the models. The consequences of MAUP for
the data analyzed were notorious from the perspective of both scale and (specially)
zoning alterations. Some of the effects of MAUP were understandable from visual
inspection of the data, as shown through some exemplifications, but it is really
tough sometimes to explain certain model parameter disagreements that arise from
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Figure 5.5: Summary of the results obtained for the CAR models, considering the
four types of BSUs and the levels of aggregation that were applied

a change in aggregation level or BSU configuration.

The comparative analysis yielded that CAR models using hexagonal gridded units
(HEXAs) were the best choice according to the performance measurements adopted.
The employment of BSU types based on the road network being analyzed (TMs and
TIs), which naturally avoided boundary effects (although HEXAs even outperformed
them in this aspect), did not lead to better model performances. Anyhow, model
performance measures should not be the only instrument to select one combination
of scale and zoning over others. Indeed, the use of CAR models and HEXAs also
unveiled controversial behaviours for some model parameter estimates. These were
found to be a consequence of the fact of using a BSU type (hexagonal unit) that
may not be the best one to represent demographic characteristics of the area of
investigation. Thus, even though the results for census tracts were more modest in
terms of model performance, this kind of administrative unit is possibly the most
suitable one to seek more robust conclusions if several demographic covariates are
present.

The analysis of the MAUP presented in this study has also emphasized how the
changes in scale or zoning alter the typology of the response and predictor variables
that are eventually provided as the input to a statistical model. Specifically, higher
aggregation levels associated with a reduction in overdispersion and kurtosis. This
result suggests that the choice of a modelling approach once a change in scale or
zoning has been produced should be well addressed, implying the reconsideration
or even rejection of a previously selected approach. Furthermore, higher levels of
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Figure 5.6: Combined graph showing the distributions of local parameter estimates,
for the covariates used in the GWR models (in rows) and each level of spatial
aggregation (in columns) tested for the CTs

spatial aggregation yielded an overall increase of variance inflation factors, a sign of
multicollinearity risk that leads to the conclusion that an excessive aggregation of
the data should be avoided, or at least properly checked. The spatial nature of some
of the covariates has also provided some clues on their sensitivity towards MAUP.
Indeed, covariates having low levels of spatial autocorrelation or generated from
point patterns not extremely clustered have displayed a more coherent behaviour
among scales and zonings. However, this issue requires a deeper investigation.

Moreover, some limitations of this study deserve some comment. First, it is worth
noting that selecting a proper exposure measure is essential to avoid bias in pa-
rameter estimations. Indeed, the lack of consideration of a exposure measure could
have a greater impact on statistical estimations than a variation in scale or zoning.
Due to the unavailability of traffic volume, non-pedestrian road length was used as
a proxy for exposure. Second, the choice of certain homogeneity criteria to carry
out the regionalization process may be another factor, other than scale and zoning,
that affects model fitting. In this analysis, homogeneity criteria were solely based
on crash counts. Other factors, such as land use and socio-economic characteristics,
should also be considered in future studies.

To conclude, this study has provided more evidence regarding the complications
that the MAUP can create in the context of a spatial traffic safety analysis. The
performance of sensitivity analyses (testing different BSUs at various levels of scale
and zoning) suggested by Xu et al. (2018) considering model estimates for several
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Figure 5.7: Combined graph showing the distributions of local parameter estimates,
for the covariates used in the GWR models (in rows) and each level of spatial
aggregation (in columns) tested for the TMs

scales or zonings (or both) seems unavoidable, but this kind of analysis should also
include the investigation of the “intermediate” factors that affect statistical inference
such as the modelling approach, the multicollinearity shown by the covariates and
their spatial autocorrelation. The consideration of all of these factors should help
researchers to achieve firmer conclusions, although one cannot forget that it is still
likely that the MAUP will never be solved (Manley, 2014).
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Figure 5.8: Combined graph showing the distributions of local parameter estimates,
for the covariates used in the GWR models (in rows) and each level of spatial
aggregation (in columns) tested for the TIs
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Figure 5.9: Combined graph showing the distributions of local parameter estimates,
for the covariates used in the GWR models (in rows) and each level of spatial
aggregation (in columns) tested for the HEXAs
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Figure 5.10: Summary of the results obtained for the GWR models, considering the
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Figure 5.11: Estimated local parameters for the GWR model considering CTs, TMs,
TIs and HEXAs for EDU (a-d), BAR (e-h) and BUS (i-l) at AG300. Districts of
Valencia are overlayed (thicker lines, in black) for better readability and comparison
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Figure 5.12: Crash counts (a-c) and COMP values (d-f) for CTs at AG100, AG300
and AG500 (in order of appearance at each row, from more to less aggregated).
Some central Districts of Valencia are highlighted in blue

AG BSU CAR GWR
DIC MAD SAD PMAD AIC MAD SAD PMAD

AG100 CT 1317.37 60.55 6963.82 38.77 1348.66 54.29 6243.25 35.21
AG100 TM 1311.01 62.20 7029.14 39.13 1276.00 51.04 5767.66 32.53
AG100 TI 1243.94 72.99 7737.23 43.07 1241.80 55.19 5849.80 32.99
AG100 HEXA 1306.55 102.84 11517.79 64.95 1330.17 56.50 6327.53 35.68
AG200 CT 1920.69 18.34 3667.84 20.42 2185.88 37.25 7449.06 42.01
AG200 TM 1881.92 10.35 2101.65 11.70 2156.57 37.89 7691.15 43.37
AG200 TI 2116.80 42.06 8411.20 46.83 2169.72 34.07 6813.67 38.43
AG200 HEXA 1586.44 2.56 512.40 2.89 2164.42 37.73 7546.31 42.56
AG300 CT 2694.35 14.33 4299.53 23.94 3073.02 29.43 8828.77 49.79
AG300 TM 2906.43 22.33 6698.53 37.29 3017.90 31.04 9313.18 52.52
AG300 TI 2739.21 11.64 3490.79 19.43 3068.26 26.49 7947.48 44.82
AG300 HEXA 2311.54 3.57 1071.61 6.04 3050.20 27.52 8256.20 46.56
AG400 CT 3455.81 11.98 4792.86 26.68 3918.14 23.66 9463.93 53.37
AG400 TM 3700.36 20.20 8078.93 44.98 3868.05 25.05 10021.12 56.51
AG400 HEXA 2981.30 2.99 1194.31 6.74 3903.94 22.20 8879.82 50.08
AG500 CT 4103.36 10.73 5367.13 29.88 4772.90 19.95 9976.61 56.26
AG500 TM 4386.43 15.87 7934.65 44.17 4724.74 21.20 10597.96 59.77
AG500 HEXA 3275.34 1.99 997.13 5.62 4768.70 17.18 8590.50 48.45

Table 5.9: Models performance in terms of DIC and AIC (for CAR and GWR
models, respectively), MAD, SAD and PMAD for all the BSU configurations and
levels of aggregation tested
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Figure 5.13: Crash counts for CTs (a-c) and HEXAs (d-f) and OP values for CTs
(g-i) and HEXAs (j-l) at AG100, AG200 and AG300 (in order of appearance at each
row, from more to less aggregated). A CT in the South of Valencia is highlighted in
blue



Chapter 6

Modelling risk in relation to multiple
sources: The effect of school
locations on traffic accidents

The aim of this Chapter is to present the use of several statistical techniques in
order to estimate the effects that school locations and commuting to school may
have on the incidence of traffic accidents in specific time windows. These techniques
are applied to a dataset of traffic accidents recorded over two years in the city of
Valencia (Spain). The objectives are both methodological and practical, as will be
highlighted within the text.

6.1 Introduction

Guaranteeing safety near school locations is a fundamental objective for the experts
in charge of traffic management, especially in order to protect children from traffic
accidents. In Spain, high densities of vehicles are usually observed around school
locations at starting and ending times on school days. This is a factor that certainly
conditions traffic flow and dangerousness at these times, but few scientific research
studies are available on this issue in Spain. Hence, the following paragraphs include
a description of several studies conducted in the last fifteen years on the subject of
traffic safety around schools, the factors involved and the implications. An emphasis
is placed on the methodological approaches chosen for these studies.

Most of them have focused on areal zones centered around school locations (buffer
zones). First, Abdel-Aty et al. (2007) employed a log-linear model and a set of
categorical variables including driver characteristics, pedestrian/cyclist characteris-
tics and other characteristics related to traffic, road and vehicle typologies. These
authors showed that most of the traffic accidents involving school-aged children
took place close to school locations, considering a buffer zone of 0.5 miles from
each school. More specifically, they found higher accident rates for middle and high
school children, which was associated with the fact that these schools are frequently

100
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situated in the vicinity of a multi-lane high-speed road. Clifton and Kreamer-Fults
(2007) modelled five types of aggregated dependent measures (two related to acci-
dent occurrence and three to pedestrian exposure) through linear regression on the
basis of 0.25 mile buffer zones around schools. Among the set of covariates consid-
ered by these authors, percentage of nonwhite residents and population density were
associated with more traffic accidents, whereas transit access (percentage of house-
holds within 0.25 miles of a transit stop) correlated negatively with accident counts.
Warsh et al. (2009) created buffer zones with a radius ranging from 150 to 450 m
around schools and confirmed the higher proportion of child pedestrian-vehicular
accidents at 7.00 - 10.00 and 15.00 - 17.00. They also observed a decrease in the
risk for older students, specially those in the 15-17 age group. Yu and Zhu (2016)
assessed the presence of modifiable areal unit problems (MAUP) (Amoh-Gyimah
et al., 2017; Zhai et al., 2018b; Xu et al., 2018) in the specific context of school
safety by defining 0.5, 1, 1.5, and 2 mile buffer zones around each school. It was
found that highways and interstates, traffic-generating land uses and transit stops
were associated with more traffic accidents. On the other hand, higher sidewalk
coverage and local roads around schools correlated with fewer traffic accidents.

The use of buffer zones around school locations can be combined with a case-control
study design. Indeed, Rothman et al. (2017b) performed a case-control study in
Toronto (Canada) by distinguishing school attendance boundaries belonging to the
highest quartile of pedestrian-vehicle accident rates (cases) from those in the lowest
(controls). It was found through a multivariate logistic regression that some factors
such as one way streets, crossing guards, traffic signal density and social disadvan-
taged areas were associated with a higher incidence of traffic accidents. Moreover,
Rothman et al. (2017a) focused their research on traffic safety near schools around
risky drop-off behaviours following the same case-control strategy as Rothman et al.
(2017b). Observational covariates related to risky behaviours by both drivers and
pedestrians in school proximities were obtained, and these were then investigated
in combination with a collection of environmental covariates through logistic re-
gressions. Several important findings for safety planning were found, including, for
instance, the association between traffic congestion and risky driving and walking
behaviours.

Furthermore, in the last few years there has been an increasing number of studies
approaching the research from a road segment level perspective. For example, Hwang
et al. (2017) considered street segments at a 0.25 mile distance from school locations
and a buffer distance of 100 ft around these street segments as the focus of their
analysis. Accident counts at the road segment level were recoded into a binary
outcome and logistic regression was used for modelling purposes. These authors
found a positive correlation between accident rates and block length, proportion
of missing sidewalks, crosswalk density and commercial land use. Furthermore,
the study revealed some factors specifically affecting students from disadvantaged
neighbourhoods. Park et al. (2018) compared negative binomial and Poisson inverse
Gaussian model approaches and found that the latter provided better results in
terms of forecasting accuracy. They worked at the road segment level, considering
roadways connected to a school building or to a nearby area over which school-
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related activities were taking place. Finally, Yu (2015) made use of a hierarchical
logistic model at two spatial levels: neighbourhood and road segment. The findings
were similar to those of Yu and Zhu (2016).

The Chapter is structured as follows. First, the data used in the analysis is de-
scribed, including the dataset of traffic accidents, the collection of schools and ty-
pologies available in the city, and the set of covariates considered with explanatory
objectives. This is followed by a methodological section containing an exploratory
analysis that helps to determine the time windows that may be affected by school-
related trips, and the explanation of four different statistical methods (observed
vs expected ratios, spatial count models, case-control logistic regression and multi-
ple source regression) that allow us to investigate the causal relationship between
school locations and traffic accidents occurring during the time windows predefined
through the exploratory analysis just mentioned. The results derived from each of
the methods are then discussed and compared.

6.2 Data

6.2.1 Accident dataset

A total of 18037 traffic accidents recorded by the Local Police of Valencia (Spain)
during the years 2014 and 2015 were used for the analysis. Geographical coordi-
nates for the accidents and information about the date and time of occurrence were
provided by the Local Police. The accidents were located with precision on the road
network of the city. This road network has a total length of 840.3 km (with a diam-
eter of nearly 11.6 km) and contains 6110 road intersections. Information regarding
the type of traffic accident (vehicle-vehicle, vehicle-pedestrian, etc.), its severity (se-
vere, non-severe, etc.) and the age of the people involved was unavailable, although
no reporting bias in favour of a specific type of accident should be present.

6.2.2 School dataset

A total of 372 schools of various age levels located in Valencia were considered for the
analysis (Figure 6.1). Four main levels of education in Spain can be distinguished
(with approximate ages): Preschool I (0-3 years), Preschool II (4-5 years), Primary
(6-11 years) and Secondary (12-17 years). For research purposes, the schools were
classified into four categories, according to the educational levels offered: All-level
(81 schools), Preschool (178 schools, which include centers that offer only Preschool
I or II or both), Primary (81 schools) and Secondary (32 schools). Hence, one of the
objectives was also to assess whether differential associations with traffic accidents
arise depending on the school classification.

6.2.3 Covariate definition

Several covariates were considered in order to control for baseline effects that may
be responsible for the higher incidence of traffic accidents near schools. These co-
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variates were classified into three categories: traffic-related, environmental and so-
cioeconomic/demographic. The values for these covariates were always computed
over basic spatial units (BSU) of analysis, which varied depending on the analysis
being performed. Table 6.1 contains a description of all the covariates treated during
the analysis, which were conveniently standardized in order to facilitate parameter
interpretation and comparison. In particular, the following lines describe two of the
covariates included: betweenness and land use entropy.

Betweenness (BETW) is a measure of network connectivity that was used as a proxy
for average vehicle miles travelled per road segment, which was already defined on
Section 5.2.2. Land use entropy (LUE) was defined as in Rothman et al. (2017b),
following the next expression:

LUE(BSUi) = −
∑

j pij log(pij)

log(n)

where j iterates over the indexes associated with the land uses that are present at
BSU i (otherwise, the logarithmic expression is not computable), pij is the proportion
of land use of type j at BSU i and n is the total number of land uses considered by
the Land Occupancy Information System (SIOSE, by its acronym in Spanish). The
LUE index lies in the [0,1] interval, with a value closer to 1 indicating higher land
diversity and 0 meaning a unique land use.

Type Variable
Accidents No. of traffic accidents
Exposure Non-pedestrian road length

School-related

No. of schools (all types)
Distance to the closest All-level school
Distance to the closest Preschool school
Distance to the closest Primary school
Distance to the closest Secondary school

Environmental

No. of education-related services per road km
No. of services from various sectors (non-educational) per road km
% of road length with parking spaces available
No. of parking zones per road km
No. of bus stops per road km
Land use entropy

Traffic-related

Average betweenness per road segment
Complex intersections (four-or-more-leg) per road km
Main road length per road km
Traffic lights per road km

Socioeconomic and demographic No. of school-aged residents (0-18 years) per road km
Percentage of high-end cars

Table 6.1: Description and classification of the covariates defined for the analysis
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Figure 6.1: School locations in the city of Valencia distinguished by the academic
level they offer. The central district of Valencia (city center) is highlighted with a
thicker black line

6.3 Methodology

6.3.1 Software

The R programming language (3.5.2 version, R Development Core Team, Vienna,
Austria) (R Core Team, 2018) was used to obtain all the results presented in this
work. The R packages DEoptim (Mullen et al., 2011), ggplot2 (Wickham, 2016),
INLA (Rue et al., 2009; Martins et al., 2013; Lindgren and Rue, 2015), rgeos (Bivand
and Rundel, 2018a), spatstat (Baddeley et al., 2015) and spded (Bivand and Piras,
2015) were specifically required to perform the complete analysis.

6.3.2 Time window of analysis

A preliminary question was to determine the hours within the day that may be
affected by traffic dynamics generated as a consequence of arrivals at (or departures
from) schools. School starting and ending times should be the axes of such a tem-
poral interval, but this is hard to define because most schools in Valencia are free to
determine their own schedules (subject to some common restrictions). Furthermore,
it is quite normal for students in Spain to attend extracurricular activities during
weekday evenings (immediately after school), which are usually carried out in the
school facilities or in the surrounding area (extracurricular academies, institutions
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Figure 6.2: Histograms and scaled densities along the timeline of school days (in
2014-2015) shown by traffic accidents that occurred close to a school and far from
schools for a threshold distance of 50 m (a)-(b) and 150 m (c)-(d)

or centers are frequently located in the vicinity of a school).

Exploratory analyses were performed (Figure 6.2) and two time windows of interest
were finally established: the one around school starting times and the period in the
afternoon and evening that includes school ending times and the subsequent hours.
Hence, the two time windows 7:30 - 9:30 and 15:00 - 19:00 were selected for further
analysis. In view of Figure 6.2, it seems that school locations do not have an strong
effect on the incidence of traffic accidents around starting times, but this period of
the day was maintained for further investigation. The choice of the interval 7:30 -
9:30 was based on the fact that most schools in Valencia start their classes in the 8:00
- 9:00 window. In contrast, the period 15:00 - 19:00 shows a clear differential effect
in terms of density of accidents close to and further away from schools, especially
for short threshold distances such as 50 m, for example (Figure 6.2b). From now
on, the time window 7:30 - 9:30 will be referred to as the Starting Time Window
(STW) and 15:00 - 19:00 will be denoted as the Evening Time Window (ETW).
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6.3.3 Observed vs. expected ratios

The first statistical analysis to identify the association between traffic accidents
and school locations consisted in computing observed/expected accident ratios at
different distance thresholds, σ, from all schools in the city. The sequence of values
selected for σ were 25, 50, 75, 100, 150, 200, 250 and 300 m, which allowed analyzing
the effect of interest at various spatial scales.

A Monte Carlo approach was taken to assess the statistical significance of the ratios
considering the full set of schools and each school type separately for the two time
windows established. This process consists in generating 999 datasets that preserve
the locations observed for all the accidents recorded in 2014-2015, while permutating
their corresponding dates and times of occurrence. Hence, the number of traffic
accidents that lie below the threshold distance (σ) from a school location (for both
STW and ETW) is kept for each simulation. The average of the 999 simulated
values represents an expected value, which is then compared with the real number
observed, providing an observed/expected ratio. The 2.5th, 5th, 95th and 97.5th
percentiles of the set of simulated distributions of counts are kept to make it possible
to assess a significance level for each observed/expected ratio (for a given σ).

6.3.4 Macroscopic modelling

A conditional autoregressive (CAR) model with negative binomial (NB) response
was chosen to fit the accident counts recorded on school days in the STW or ETW
(a total of 800 and 2884, respectively, for the period 2014-2015) over a hexagonal
grid of 198 BSUs of side length slightly over 250 m and an area of around 0.175 km2.
The use of a hexagonal grid was preferred over the employment of administrative
division units (such as boroughs or census tracts) because it provides the possibility
of defining a spatial unit of analysis of intermediate scale. This makes it possible to
perform an accurate analysis while keeping a good balance between the number of
spatial units and the number of covariates being considered. Hexagonal units con-
taining a minimal road structure (mostly located within a green area or in semirural
zones along the periphery of the city) were removed from the grid in order to avoid
a possible distortion of the results.

If Y ∼ NB(µ, ψ) (NB distribution of mean µ and shape ψ) then it holds that E(Y ) =

µ, V (Y ) = µ + µ2

ψ
and P (Y = x) = (x+ψ−1

ψ−1 )( ψ
µ+ψ

)ψ( µ
µ+ψ

)x. Then, assuming a NB
distribution for the accident counts, the following spatial model was implemented:

Yi ∼ NB(µi, ψ)

log(µi) = log(Ei) + λ0 +

p∑
m=1

λmXim + φi
(6.1)

where Yi is the number of accidents observed at hexagonal unit i, µi and ψ are,
respectively, the mean risk (for hexagonal unit i) and overdispersion (shape) values
for the NB distribution, the natural logarithm acts as a link function for µi, Ei
(exposure at hexagonal unit i) is the length of non-pedestrian road at hexagonal
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unit i (offset of the equation), Xim represents the value of the m-th covariate at
hexagonal unit i, λm is the coefficient that controls the effect of the m-th covariate
and φi represents a spatial effect for hexagonal unit i, which is derived from the
neighbourhood structure formed by the hexagons that are part of the grid.

The spatial effect was modelled through the well-known CAR structure (Besag, 1974;
Besag et al., 1991):

φi | φj, j 6= i ∼ N(α
n∑
j=1

wijφj, τ
−1
i ) (6.2)

where τi is a precision parameter that varies with spatial unit i and wij is an indicator
parameter that is 1 if hexagonal units i and j are contiguous and 0 otherwise. The
use of a CAR structure for the modelling of accident counts at the macroscopic level
is a common practice in traffic safety analysis (Quddus, 2008; Huang et al., 2010).

6.3.5 Risk modelling in relation to several point sources

Diggle and Rowlingson (1994) proposed a class of regression models inspired by
previous works focused on estimating disease risk around one hazardous point source.
This kind of model has been successfully applied in many epidemiological studies
involving pollution sources that negatively affect human health (Ramis et al., 2011;
Reeve et al., 2013). Analogously, this approach could be useful to model the risk
triggered by the close presence of a particular type of building within the road
network, such as a school. As far I know, multiple source regression models have
not been used before in the field of traffic safety analysis.

Diggle et al. (1997) adapted the work from Diggle and Rowlingson (1994) to enable
this class of models to be used with aggregated data. This approach was chosen for
the available dataset, considering the same hexagonal grid that was employed for the
CAR modelling of accident counts. Hence, Equation 6.3 displays the mathematical
expression of this multiple source regression technique, which accommodates four
sources of risk that correspond to the four school types that exist in Valencia.

Yi ∼ Po(µi)

µi = exp

( p∑
m=1

λmXim

) 4∏
j=1

f(dij)

f(dij) = 1 + αj exp(−(dij/βj)
2)

(6.3)

where j indicates school type (1 = All-level, 2 = Preschool, 3 = Primary, 4 =
Secondary), αj is the proportional increase (or decrease) in risk produced by school
type j, dij is the distance in km between hexagonal unit i and type j (from the
centroid of the hexagon to the closest element of school type j) and βj measures the
rate of decay in risk that occurs as distance from type j increases.

Diggle et al. (1997) approximated the log-likelihood function associated with the
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model in Equation 6.3 through the next expression:

L(Λ,α,β) = −
∑
i

µi +
∑
i

Oi log(µi) (6.4)

where Λ, α and β represent the three vectors of coefficients that include, respec-
tively, the λm’s, αj’s and βj’s, µi follows Equation 6.3 and Oi is the number of
accident counts observed in hexagonal unit i. The expression in Equation 6.4 was
maximized with the aid of the R package DEoptim (Mullen et al., 2011). The method
implemented in DEoptim relies on the theory of differential evolution algorithms for
global optimization (Price et al., 2006).

6.3.6 Case-control study

The calculation of observed/expected ratios in buffer zones of various radii from
each school location enabled detecting those with higher ratios. Thus, the same
Monte Carlo procedure described in Section 3.3 was applied around each of the
schools for STW and ETW, separately, to assess statistical significance. Schools
with a significantly (at the 0.10 level) high (over 1) observed/expected ratio within
a certain buffer zone built around them were considered as cases for establishing of
a case-control study. On the other hand, schools presenting a ratio lower than 1
(not necessarily showing statistical significance for such a low ratio) were declared
as control schools. Hence, a sample of cases and controls was obtained, constraining
buffer zones around school locations to not overlap (avoiding an excess of multi-
collinearity). A distance of σ = 100 m was found optimal for defining the buffer
zones according to the number of cases and controls provided (choosing this distance
allowed having a case:control ratio close to 1:4) and the spatial accuracy achieved.
Then, a multivariate logistic regression model was specified:

log

(
pi

1− pi

)
= log(Ei) +

p∑
m=1

λmXim + φi + Typei (6.5)

where pi
1−pi represents the odds ratio for a school being a case. Ei, λm, Xim and

φi are as in Equation 6.1, but now for the buffer zone associated with school i.
Neighbourhood relationships for estimating φi were now established between schools
(either cases or controls) if they were closer than 500 m. For each of the few isolated
schools in the city (under a threshold distance of 500 m), the closest school from
those available was defined as the unique neighbour. Finally, a factor representing
school type was added to the model.

6.4 Results and discussion

This section contains one subsection for each of the statistical approaches chosen for
this study. Each part begins by reporting the results obtained for the corresponding
approach, indicating some technical issues, and then sets out the interpretations and
implications in terms of traffic safety analysis that may be drawn from them.
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6.4.1 Risk ratios by school type

The observed vs expected ratios strategy was used with buffer zones of various
radii centred at all the school locations available in Valencia. Table 6.2 indicates
the estimated risk ratios (observed/expected) that were overall achieved for each
school type and for the complete set of schools, along with the statistical significance
derived for them from 999 Monte Carlo simulations. No significant associations were
found (at the 0.1 level) for the STW, although the estimated ratios are higher for
Preschool and Secondary. On the other hand, several associations were determined
to be significant for ETW, including the one considering all school typologies for the
lowest value of σ. The lower sample of traffic accidents at STW probably reduced
the statistical power of the test, and therefore the chances of observing statistically
significant ratios.

Therefore, it can be concluded in the light of Table 6.2 that the contribution of
school locations to traffic accidents in Valencia is not high in magnitude, although
some of the associations found for ETW are quite notable. In this regard, Figure
6.2b already suggested the high presence of traffic accidents within 50 m of school
locations from 15:00 to 19:00.

σ (m)
STW 25 50 75 100 150 200 250 300
All-level - 0.92 0.91 0.91 1.10 1.05 1.00 1.00
Preschool - 1.11 1.10 1.05 1.00 0.99 1.01 1.02
Primary - 0.87 0.86 0.99 0.97 0.94 0.95 0.97
Secondary - 0.95 1.23 1.12 1.05 0.97 0.90 0.93
All types - 1.00 1.01 1.00 1.03 1.01 1.02 1.01
ETW 25 50 75 100 150 200 250 300
All-level 0.97 0.89 1.04 1.03 1.01 1.01 1.00 0.99
Preschool 1.23 1.14 1.03 1.03 0.99 1.02 1.01 1.00
Primary 1.25 1.25 1.10 1.08 1.06 1.03 1.03 1.03
Secondary 0.79 0.83 0.84 1.07 0.99 1.03 1.03 1.03
All types 1.15 1.05 1.03 1.04 1.00 1.01 1.00 1.00

Table 6.2: Risk ratios for each combination of distance threshold (σ), school type
or combination of types and time window (STW or ETW). Risk ratios in bold were
found significant at the 0.1 level. The ratios for σ = 25 m at STW were unreliable
due to the small samples available and are not shown

6.4.2 Spatial count models

The analysis through CAR models revealed several associations between accident
counts at the macroscopic level (hexagonal units) and the set of covariates, with
little difference shown by the two time windows considered (see Figure 6.3 for a
graphical summary of the data). When the distances to each school type were
considered, the differences between STW and ETW increased. Hence, the CAR
model for STW revealed a negative association for the Primary type, although for
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ETW the same model indicated a positive association for the All-level type and a
negative one for Preschool and Primary (Table 6.3). Here the signs of the coefficients
estimated need to be understood differently given the nature of these distance-based
covariates. Thus, higher distances to Preschool and Primary schools correlated with
fewer traffic accidents, whereas the same situation was associated with more traffic
accidents when considering All-level schools. In other words, a decrease in accident
counts was attributed to the proximity of an All-level school (given these results),
while an increase arose with the close presence of Preschools and Primary schools.

Main roads and higher bus stop density correlated with more traffic accidents for
STW and ETW, as shown in Table 6.3. On the other hand, higher land use entropy
was associated with fewer accidents (Table 6.3), possibly suggesting calming effects
in traffic produced by the coexistence of different types of facilities. The positive
association of traffic accidents with main roads and areas dense in bus stops is
consistent with other studies (Yu, 2015; Yu and Zhu, 2016). However, the result for
land use entropy is far more unexpected according to previous literature (Rothman
et al., 2017b). Moreover, complex intersections were associated with more traffic
accidents at STW (also showing a positive estimate for ETW), which seems entirely
plausible given the natural increase in risk that these road entities produce (Miaou
and Lord, 2003; Huang et al., 2017; Lee et al., 2017). The analysis of intersection
characteristics and their relationship with actual and perceived risk for students is
another topic of interest (Lee et al., 2016).

STW ETW
Covariate Est. p5 p10 p90 p95 Est. p5 p10 p90 p95
(Intercept) 1.29 1.19 1.21 1.36 1.38 2.58 2.51 2.53 2.63 2.65
No. of schools -0.00 -0.11 -0.09 0.08 0.11 -0.06 -0.14 -0.13 0.01 0.03
Distance to closest All-level 0.13 -0.07 -0.03 0.28 0.33 0.20 0.06 0.09 0.31 0.34
Distance to closest Preschool -0.10 -0.27 -0.23 0.03 0.07 -0.17 -0.29 -0.26 -0.07 -0.04
Distance to closest Primary -0.22 -0.44 -0.39 -0.04 0.01 -0.32 -0.48 -0.44 -0.20 -0.16
Distance to closest Secondary -0.04 -0.19 -0.16 0.08 0.11 -0.01 -0.12 -0.10 0.08 0.11
No. of educational services -0.04 -0.20 -0.16 0.08 0.12 -0.01 -0.13 -0.10 0.09 0.11
No. of services (non-educational) 0.01 -0.18 -0.14 0.16 0.21 0.06 -0.09 -0.05 0.18 0.22
% of road with parking slots 0.01 -0.11 -0.08 0.10 0.12 0.06 -0.02 -0.01 0.13 0.15
No. of parking zones 0.01 -0.13 -0.10 0.12 0.16 0.04 -0.07 -0.05 0.12 0.14
No. of bus stops 0.13 0.01 0.04 0.22 0.25 0.08 -0.00 0.02 0.15 0.17
Land use entropy -0.11 -0.22 -0.20 -0.03 -0.01 -0.17 -0.25 -0.23 -0.10 -0.09
Betweenness -0.01 -0.12 -0.10 0.07 0.10 -0.01 -0.10 -0.08 0.05 0.07
No. of complex intersections 0.13 0.01 0.04 0.23 0.26 0.05 -0.05 -0.03 0.12 0.14
Main road length 0.34 0.20 0.23 0.45 0.48 0.23 0.12 0.15 0.31 0.33
No. of traffic lights -0.04 -0.20 -0.16 0.08 0.12 -0.01 -0.13 -0.10 0.09 0.11
No. of school-aged residents 0.01 -0.12 -0.09 0.11 0.14 -0.07 -0.17 -0.15 0.00 0.03
Percentage of high-end cars 0.06 -0.06 -0.04 0.17 0.19 0.07 -0.03 -0.01 0.14 0.17
ψ 3.34 2.35 2.52 4.30 4.66 4.15 3.23 3.41 4.95 5.21

Table 6.3: Estimates (Est.) and 5th, 10th, 90th and 95th percentiles of the posterior
distributions of the parameters involved in the CAR model for both time windows
considered (STW and ETW). Estimates shown in bold are significant with 90%
credibility
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Figure 6.3: Hexagonal grid coloured according to accident counts observed at STW
(a) and ETW (b). The school locations are represented with black squares (All-
level), circles (Primary), diamonds (Preschool) and triangles (Secondary)

6.4.3 Multiple source regression

The model described in Equation 6.3 was fitted for the four types of schools, which
were taking the role of sources of putative risk, and the set of covariates consid-
ered. The optimization of the log-likelihood function associated with this model
(Equation 6.4) required choosing some constraints for the parameters involved to
reach convergence. The addition of covariates to the model was done successively
in order to avoid overfitted models and to guide the choice of the constraints. The
baseline model with no covariates was also tested. Finally, the constraints defined
were −1 ≤ λm ≤ 1, −1 ≤ αj ≤ 5 and 0 ≤ βj ≤ 2. Furthermore, only the four co-
variates that showed a greater effect through the CAR modelling of accident counts
were used in the final model: the number of bus stops, land use entropy, the num-
ber of complex intersections and main road length. Hence, a parsimonious criterion
was followed, as the inclusion of more covariates barely increased the value of the
log-likelihood function. The parameter estimates obtained for the multiple source
regression model are shown in Table 6.4. The relative risk curves (as a function of the
distance to each school type) derived from the estimates of the α and β parameters
are shown in Figure 6.4.

All the coefficients found for the multiple source regression are coherent overall
with those obtained through the macroscopic CAR modelling. In particular, the
differential effects produced by the two factors, school type and time window of
analysis, appear again, as is evident from Figure 6.4. The use of this modelling
technique enables the risk to be characterized easily as a function of the distance to
the source. For instance, according to the results obtained, the relative risk starts at
a value slightly over 4 in the immediate vicinity of a Primary school for the ETW,
and is then progressively reduced to 2 as the distance from the source reaches a
value of 1.5 km.
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λ1 λ2 λ3 λ4 α1 α2 α3 α4 β1 β2 β3 β4
STW 0.05 0.33 0.09 -0.13 -0.56 0.43 4.24 0.45 1.15 1.24 0.95 0.83
ETW 0.09 0.29 0.08 -0.18 -0.49 3.38 2.99 0.71 1.96 1.73 1.97 1.39

Table 6.4: Parameter estimates obtained for the multiple source regression models in
the two time windows, STW and ETW. Parameters λ1, λ2, λ3 and λ4 were associated
with the number of complex intersections, main road length, number of bus stops
and land use entropy, respectively. The indexes for the α’s and β’s represent: 1 =
All-level, 2 = Preschool, 3 = Primary, 4 = Secondary
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Figure 6.4: Relative risk curves derived from the source regression model with co-
variates for the four types of schools available in Valencia in STW (a) and ETW
(b). The black dashed line indicates a relative risk of 1

6.4.4 Multivariate logistic regression

A total of 40 cases and 160 controls were established for the STW (Figure 6.5a),
and 45 cases and 155 controls for the ETW (Figure 6.5b), following the Monte Carlo
procedure explained in Section 3.3. Hence, a fair ratio of around 4 control schools
for each school defined as a case were included in the multivariate logistic model.
As indicated in Section 3.5, the choice of a radius σ = 100 m for the construction of
the buffer zones was based on the availability of a controls/cases ratio that allows
detecting the differences between the two conditions. The consideration of a higher
value of σ made the non-overlapping condition between buffer zones too restrictive
to obtain a sufficient sample of both cases and controls, whereas a smaller value
complicated particularly the identification of cases given the loss of sample size and
statistical power.

Table 6.5 shows the results for the multivariate logistic regression fitted to the sam-
ples of cases and controls (for STW and ETW) and covariates available in a radius
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of 100 m around them. Contrary to the CAR modelling of accident counts over
the hexagonal grid, the results from the case-control approach presented multiple
differences between STW and ETW. Indeed, the number of complex intersections,
the percentage of road length with parking slots, the number of parking zones and
the percentage of high-end cars decreased the probability of a school being a case in
STW, whereas the number of non-educational services and the number of bus stops
had the same effect for the ETW. On the other side, the number of traffic lights was
the only covariate that increased the probability of case in the STW, while main
road length, the number of educational services and the percentage of high-end cars
showed this behaviour for the ETW.

These findings will now be discussed in relation to a school location being unsafe
(case) or not (control). The facility of parking (represented by both the percent-
age of road providing parking slots and the number of parking zones) indicated a
protective effect in the STW. This is a reasonable result, as a lack of parking oppor-
tunities usually generates complicated and competitive traffic movements that may
be responsible for an increase in traffic accidents. On the other hand, the number
of parking zones seems to increase the risk in the ETW. The proximity of most of
the parking zones in Valencia to shopping areas may be producing this effect in the
ETW. In any case, one should not overlook the fact that establishing a correlation
between parking difficulties and the number of vehicles arriving at a school at start-
ing and ending times (possibly causing complex traffic dynamics that may lead to
more accidents) is a hard task. Indeed, the scarcity of parking facilities leads many
students’ parents to reduce the use of their private vehicles to commute to school,
but such reductions can also be seen as an incentive for other parents, generating
some kind of equilibrium situation (Black et al., 2001).

Regarding the increase in risk suggested by main road length and the number of
educational services in the ETW, both were expected. The first, because it usually
correlates with more traffic accidents, regardless of the context being studied. The
second, because these activities attract high numbers of commuters in the ETW,
although the tendency to locate educational services near schools may be increasing
this effect (which may also be responsible for the positive association of educational
activities with traffic accidents in the STW).

The rest of the associations revealed by the case-control analysis are harder to inter-
pret and in many cases require the consideration of confounding factors that have
not been included in the models due to their unavailability. For example, the num-
ber of complex intersections was associated with a decrease in the probability of
being a risky school zone, the opposite result to that found with the CAR model. It
is logical that users drive more carefully in a small area (100 m buffer zone) which is
dense in complex intersections, a fact that may explain this result. However, when
a higher level of spatial aggregation is considered, as in the macroscopic modelling
described in Section 3.4, a high number of complex intersections is more likely to be
associated with an increase in traffic accidents.

The number of bus stops, which showed a positive correlation with traffic accidents
according to the macroscopic modelling, was associated with a decrease in risk at
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the ETW. The fact of being a school located in a zone of the city endowed with
several bus stops should reduce the number of commuters by private vehicle and
therefore traffic congestion, although a higher number of bus stops does not always
imply a higher level of connectivity within the public bus network. As in the case
of complex intersections, at a higher level of spatial aggregation, it is more plausible
that bus stop density should be associated with an increase in traffic dangerousness.

The behaviour of other covariates, such as the number of traffic lights or the number
of non-educational services, may be a consequence of the presence of confounding
effects. The number of traffic lights in the STW is possibly absorbing the more ex-
pected effect of main road length, as these two covariates are moderately correlated.
On the other hand, the number of non-educational services is highly concentrated
in the southern zone of the city center and its contiguous district in this direction,
which mostly presented control schools in the ETW, even though the two facts do
not seem to be related.

Another covariate whose behaviour showed a strong dependence on the time window
being considered was the percentage of high-end cars registered in the zone. This
covariate was chosen as an approximation to socioeconomic status, given the un-
availability of other sources of information (such as income level or housing price),
yielding a positive association with traffic accidents only in ETW. Participating
in extracurricular activities is much more frequent among students belonging to
wealthier families (Leung et al., 2019), as most of these activities are not publicly
financed. Consequently, more vehicles may be arriving at schools located in wealth-
ier areas and afterwards transporting students to the location of the extracurricular
activities. In contrast, students enrolled in schools situated in more economically
depressed areas of the city are more likely to go home by their own means (under the
plausible assumption that students’ homes are on average closer to their school than
extracurricular activities that do not take place at the same school). Nevertheless,
these findings would require a deeper and more specific investigation to confirm this
effect.

Finally, the categorical covariate adding the effect of school type presented differ-
ent behaviour between the STW and the ETW, considering that in Table 6.5 the
estimates are computed in relation to the All-level type (which is hidden because it
is the reference category). In the case of the STW, Primary and Secondary types
showed a significant increase in the odds ratios for being a case, in agreement with
the other models tested (especially in the case of Primary schools). However, all the
estimates for the ETW were not significant with 90% credibility, a surprising result
in view of the previous models.

6.5 Conclusions
In this Chapter, several approaches have been followed to measure the effect of school
locations on traffic accidents in Valencia. From a methodological perspective, the
main conclusion is the desirability of applying different methods to obtain consistent
knowledge about the phenomenon of interest. All the statistical techniques chosen
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STW ETW
Covariate Est. p5 p10 p90 p95 Est. p5 p10 p90 p95
(Intercept) -2.13 -2.90 -2.71 -1.57 -1.43 -0.95 -1.64 -1.47 -0.44 -0.30
No. of educational services 0.30 -0.04 0.03 0.57 0.65 0.66 0.24 0.33 0.99 1.09
No. of services (non-educational) 0.16 -0.51 -0.35 0.66 0.79 -1.04 -1.80 -1.61 -0.51 -0.38
% of road with parking slots -0.36 -0.75 -0.66 -0.08 -0.00 0.07 -0.29 -0.21 0.36 0.44
No. of parking zones -0.47 -0.98 -0.85 -0.12 -0.05 0.30 -0.01 0.05 0.56 0.64
No. of bus stops 0.14 -0.20 -0.12 0.40 0.48 -0.23 -0.61 -0.52 0.05 0.12
Land use entropy -0.40 -0.81 -0.71 -0.09 -0.00 0.01 -0.38 -0.29 0.32 0.40
Betweenness 0.05 -0.30 -0.22 0.31 0.37 0.08 -0.31 -0.21 0.37 0.44
No. of complex intersections -0.49 -0.92 -0.82 -0.17 -0.09 0.09 -0.24 -0.17 0.34 0.41
Main road length 0.02 -0.39 -0.29 0.33 0.42 0.35 -0.04 0.05 0.65 0.74
No. of traffic lights 0.58 0.17 0.25 0.92 1.01 0.25 -0.16 -0.07 0.57 0.66
No. of school-aged residents 0.09 -0.32 -0.23 0.40 0.48 0.11 -0.33 -0.24 0.45 0.54
Percentage of high-end cars -0.16 -0.59 -0.48 0.14 0.22 0.25 -0.11 -0.02 0.52 0.59
School type (Preschool) 0.17 -0.71 -0.52 0.87 1.08 -0.51 -1.36 -1.17 0.17 0.36
School type (Primary) 1.11 0.15 0.36 1.87 2.10 -0.48 -1.40 -1.20 0.23 0.43
School type (Secondary) 1.14 -0.01 0.24 2.05 2.31 -0.63 -1.94 -1.63 0.36 0.62

Table 6.5: Estimates (Est.) and 5th, 10th, 90th and 95th percentiles of the posterior
distributions of the parameters involved in the logistic model for both time windows
considered (STW and ETW). Estimates shown in bold are significant with 90%
credibility

for accomplishing the research purposes established have provided information about
the question of interest from different perspectives, providing several points of agree-
ment between them. However, each technique has offered a particular view of the
phenomenon, highlighting the necessity of carefully choosing a specific approach and
even the advisability of using more than one in order to strengthen the findings.

First, observed vs expected ratios of traffic accidents were computed at a range of
distances from school locations. Although this approach has the disadvantage of not
allowing the use of any auxiliary information (covariates), it serves to get an overall
idea of the magnitude of the effect being analyzed. In this study, it was a starting
point which suggested that school locations have an impact on traffic accidents,
albeit only a moderate impact. Furthermore, the observed vs expected ratios also
made it possible to define case and control schools for the subsequent performance of
a case-control study design. In the absence of external information (if no particular
school zone has been declared dangerous by traffic experts), this simple method can
fill the gap.

Besides observed vs expected ratios, three other statistical models were used in the
analysis: macroscopic CAR modelling, multiple source regression and a logistic re-
gression under a case-control design. The macroscopic modelling of accident counts
indicated that some environmental and traffic-related factors, such as the number
of bus stops, land use entropy, main road length and the number of complex inter-
sections, have an effect on the incidence of traffic accidents in the two time windows
investigated within school-days. Furthermore, this model enabled confirming that
in the city of Valencia the type of school entails a specific risk with respect to traffic
accident occurrence. The last statement was also confirmed through the multiple
source regression model. According to both modelling approaches, the All-level
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Figure 6.5: Case and control buffer zones (100 m radius) defined around school
locations in STW (a) and in ETW (b). The school locations are represented by
black squares (All-level), circles (Primary), diamonds (Preschool) and triangles (Sec-
ondary)

school type shows an overall protective effect against traffic accidents in the city of
Valencia. On the other hand, proximity to Primary (in both time windows studied)
and Preschool schools (in the ETW) is subject to more risk.

Regarding the case-control study, the logistic models showed substantially different
results for the STW and the ETW. For instance, this modelling approach does
not detect any significant effect from school types for the ETW, a result that is
inconsistent with the other methods employed. It is worth of noting that the case-
control study design may be too sensitive to the choice of cases and controls and the
results should be interpreted with caution, especially if the methodology for selecting
both cases and controls is not supported by other evidence apart from the not
large sample of traffic accidents available. Furthermore, it needs to be remembered
that each model type relies on a different type of spatial unit of analysis (arbitrary
hexagonal units covering the city vs buffer zones around schools), a fact that is
likely to give rise to MAUP effects. Hence, the scope and extent of each approach
is different and direct comparisons are not completely suitable. In any case, the
results suggest that this approach could be powerful for detecting small effects that
a macroscopic modelling of accident counts may otherwise miss. One drawback of
this approach, in comparison to the former, is the likely possibility of dealing with
small samples of school locations that can make difficult, or even impossible, the
achievement of reliable parameter estimates.

From a practical perspective, within the context of traffic safety around school lo-
cations, two important results are now discussed: the need to distinguish between
coexisting school types and the consideration of time windows other than those that
strictly correspond to school starting and ending times. With regard to school types,
and getting back to the fact that All-level schools have been shown to be a safer con-
text for vehicle traffic, it is worth noting that the differences between school types
coexisting in Valencia go beyond the age levels. Indeed, most of the All-level schools
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in Valencia are semiprivate, and parents of students enrolled in this kind of school
have, on average, higher income levels and educational attainment than parents of
students registered at public institutions (Llera and Pérez, 2012), a category that
includes the vast majority of Primary and Secondary schools in Valencia. Further-
more, it needs to be remarked that it is a very challenging task to disentangle the
origin of the protective effect found for All-level schools, meaning that it is unclear
whether commuting time is particularly dangerous for certain school surroundings
given the travel mode choices or travel behaviours of their students (or of the adults
in charge) or, alternatively, whether some schools (or school types) are located in in-
trinsically riskier/safer areas for driving. Although it is known that All-level schools
in Valencia correlate with higher socioeconomic status of students, it is not possible
to extract more conclusions in this regard, in the absence of more precise information
on commuters’ travel mode choices and attitudes towards safe driving, walking or
cycling. It can only be guessed that more educated parents will be more predisposed
towards safety (Murray, 1998). The place of residence and socioeconomic charac-
teristics of students belonging to each school, which are sometimes used to make
approximations about travel modes (Wilson et al., 2010; Kelly and Fu, 2014), were
not available either. In any case, even if this information was available, the inference
of travel modes from students’ characteristics could have been highly uncertain, as
Valencia is quite different from the cities where these studies were developed.

On the other hand, it is remarkable that the evening time window is often over-
looked in the study of traffic safety around school locations. Many of the research
papers available focus on the first hours in the morning, but traffic generated in the
evening as a consequence of collecting students and taking them to leisure activities
deserves more attention. Indeed, several papers that have compared school and non-
school trips (those related to extracurricular or leisure activities) have coincided in
pointing out that the use of private vehicles is much more likely in non-school trips
(Hjorthol and Fyhri, 2009; Fyhri and Hjorthol, 2009; Park et al., 2018), probably
augmenting traffic volume. The initial exploratory analysis and the computation of
risk ratios near schools already suggested this situation, which was confirmed via
the macroscopic modelling and the multiple source regression with the detection of
significant effects for most of the school types.

Finally, it is worth mentioning the main limitations of this study, which are a con-
sequence of data unavailability. Besides the absence of information regarding travel
mode choices, there was also a lack of data regarding the trip destination of vehicles
involved in the traffic accidents employed for the analysis and of the age of the peo-
ple travelling in them. In other words, an unproved causal relationship had to be
established: traffic accidents that occurred in proximity to schools in the STW or
ETW were assumed to be a consequence of the traffic dynamics generated by people
commuting to school. Of course, these accidents could involve the commuters them-
selves or other traffic users with a non-school destination not influenced by school
commuters. Furthermore, one cannot overlook the possibility that traffic accidents
temporally associated with school starting and ending times do not occur as close
to school locations as one might expect, a possibility suggested by Kingham et al.
(2011), which makes this kind of research very challenging.



Chapter 7

Geocoding quality and missing data:
Reestimating a minimum acceptable
hit rate

The main goal of this Chapter was to revise the minimum acceptable hit rate de-
termined by Ratcliffe (2004a), while accounting for some of the factors that may
have an influence on such estimation. Indeed, the two characteristics that essen-
tially characterize a point pattern of events, namely intensity and clustering level,
and the level of aggregation presented by the set of spatial units covering the whole
space where the pattern lies are explicitly analyzed. Some alternatives to the Mann-
Whitney test, or the specification of non-uniform geocoding error distributions in the
context of Ratcliffe’s procedure, are also considered. The investigation is performed
through several crime datasets collected by the Local Police of Valencia (Spain) and
simulated datasets that allowed controlling for each of the factors under considera-
tion.

7.1 Introduction

The process of geocoding is generally automated, although its success strongly de-
pends on both the quality of the textual description representing the place to be
geocoded and the quality of the base street files that are employed for matching the
results. Indeed, Zandbergen (2009) identified three main errors that derive from
the process of geocoding: incompleteness (non-geocoded locations), positional er-
ror (distance between the geocoded location and the real location), and erroneous
assignment to some underlying areal unit.

The existence of geocoding errors or inaccuracies can lead researchers to perform
biased statistical analyses and hence extract mistaken conclusions from them. There
are multiple studies available in the literature that have focused on this issue. Oliver
et al. (2005) compared the distribution and clustering patterns of cancer cases at
counties (∼100% geocoding success) to those presented at census tracts (∼74%
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geocoding success), observing notorious disparities. Zimmerman et al. (2008) showed
that the statistical power for detecting spatial disease clustering gets reduced if
both the disease risk and the geocoding failure distributions are spatially associated.
DeLuca and Kanaroglou (2008) checked that the choice of a spatial geocoding tool
can have an impact on the subsequent data analysis. Concretely, although the
bivariate K-function (Diggle, 2013) and to a lesser extent the ratio of kernel density
estimates did not show remarkable disparities for the two geocoding tools that they
tested, the scan statistic for cluster detection (Kulldorff, 1997) displayed a greater
sensitivity to the choice of a specific geocoding tool.

In the present Chapter, the focus is put on the first of the three geocoding error types
identified by Zandbergen (2009): data incompleteness that arises as a consequence of
having non-geocoded locations. In this regard, Harries et al. (1999) identified several
common errors that usually lead to completely fail to geocode a location described
by a text, such as misspelling the street name, entering an incorrect street type or
introducing a house number that does not correspond to the street provided. Given
a dataset of locations to be geocoded, the hit rate (or match rate) is the percentage
of the locations that are geocoded with a certain level of accuracy (prespecified
according to research conditions or purposes). Therefore, a natural question that
arises in this context is: what is the minimum acceptable hit rate that one needs
to achieve to rely on the subsequent analysis of the data? Although this question
has received little attention in literature, Ratcliffe (2004a) designed a methodology
(that will be described later) to provide an answer to it. Then, the methodology
was applied to five crime datasets collected at different areas of New South Wales
(Australia), and a hit rate of 85% was determined to be a first estimate of a minimum
acceptable geocoding hit rate.

It is worth noting that the original minimum acceptable hit rate of Ratcliffe (2004a)
still remains, to the best of my knowledge, as the only estimation available in liter-
ature. Indeed, this paper has been cited repeatedly since its publication by many
researchers performing a spatial analysis (near 300 citations according to Google
Scholar as of August 2019), who usually declare that a geocoding hit rate above
the threshold of 85% has been achieved (as a guarantee of having geocoded a large
enough percentage of the events of interest). Furthermore, the minimum acceptable
hit rate of 85% has also been considered for the construction of a nonparametric test
of similarity for area-based spatial patterns (Andresen, 2009, 2016), which is largely
used in quantitative criminology, among other fields of research.

One limitation of the investigation conducted by Ratcliffe (2004a) (as the author
himself declares) is the fact that it assumes that geocoding errors are uniformly
distributed across space. There is enough evidence, in view of existing literature,
to firmly believe that this assumption may not hold in reality: recently constructed
houses may not be included in the base street file being used for geocoding pur-
poses (Ratcliffe, 2004a); rural zones and street segment length (for urban addresses)
associate with higher positional errors, whereas road intersection density correlates
with a lower incidence of error (Zimmerman and Li, 2010); geocoding failure rates
associates with certain socio-demographic covariates (Oliver et al., 2005).
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In addition, it is worth mentioning that the estimate proposed by Ratcliffe (2004a) is
based on the use of the Mann-Whitney nonparametric test for comparing two count
distributions. However, there exist several area-based (Alba-Fernández et al., 2016;
Andresen, 2009, 2016; Wheeler et al., 2018) and distance-based (Hahn, 2012) tests in
literature that could be employed instead to compare a fully geocoded dataset with
an incomplete version of it. Other methodologies inspired on kernel smoothing that
do not rely on areal data could be also considered (Borrajo et al., 2019; Fuentes-
Santos et al., 2017). Furthermore, certain statistical measures that are usually
employed in spatial analyses, such as some popular indices to assess global (Moran,
1950a,b) or local spatial association (Anselin, 1995; Getis and Ord, 1992), may also
be particularly affected by lower than desired geocoding hit rates. Hence, although
the Mann-Whitney test is a good option for the purposes established in Ratcliffe’s
methodology, exploring some of the alternative approaches available seems rather
convenient.

Hence, the rest of this Chapter is structured as follows. The Data section includes
a description of the crime datasets and spatial representations of Valencia (Spain)
that were used to reestimate and investigate Ratcliffe’s first estimate of a minimum
acceptable hit rate. The Methodology section contains multiple subsections. First,
the procedure proposed by Ratcliffe (2004a) is depicted. Then, other statistical
measures that could be chosen for determining this kind of estimation (instead of
the Mann-Whitney test) and a strategy to simulate a non-random removal of the
points within Ratcliffe’s procedure are also explained. The last subsection of the
Methodology is dedicated to point processes and point pattern generation, which
are essential for the performance of simulation studies. The Results section has a
subsection corresponding to each of the analyses that were executed, which involved
the crime datasets of Valencia mentioned above and several simulation studies. A
final Conclusions section summarizes the findings and presents some discussions.

7.2 Data

7.2.1 Crime events from Valencia

A dataset of 11768 crime incidents recorded by the Local Police of Valencia during
the years 2014 and 2015 was considered for the analysis. For each incident, geograph-
ical coordinates had been obtained by the 092 Call Center of Valencia managed by
the Local Police. This service geocodes the origin of citizen calls in order to offer a
quick response to the incident. Thus, it is assumed that a dataset coming from the
092 Call Center is geocoded with a 100% hit rate.

The incidents that the 092 Call Center receives are codified according to caller’s
explanations. The dataset was constructed from the calls codified as robbery (5332
events), burglary (1198 events), theft (2465 events), car theft (706 events) and van-
dalism (2067 events). Hence, the whole crime dataset was splitted into five smaller
datasets, allowing the investigation of various levels of intensity and spatial cluster-
ing depending on the type of crime.
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7.2.2 Spatial representations of Valencia

Four different spatial structures representing the city of Valencia were chosen for
the analysis, which are displayed in Figure 7.1. Three of them are areal subdivisions
of the city: boroughs, Thiessen tessellations constructed around main road intersec-
tions and census tracts. The fourth structure considered was the road network of
Valencia.

Boroughs and census tracts are two of the three administrative divisions coexisting
in Valencia (districts is the other one). A total of 70 boroughs and 566 census tracts
of the city (as of January of 2015) were used for the analysis. Thus, the choice
of both administrative units allowed approaching the research at two very different
spatial scales.

A division of the city through a Thiessen tessellation, which was already described
on Section 5.2.3, was also performed. Concretely, the polygons were set around the
main road intersections of the city, meaning the physical intersections between any
combination of two main roads of Valencia. Hence, each of the Thiessen polygons
defined represents the neighbourhood of a main intersection of the city. This proce-
dure generated a total of 378 Thiessen polygons, which constitutes an intermediate
spatial scale between boroughs and census tracts.

Finally, a representation of the road network of Valencia made of 9099 vertices and
12886 road segments (spatial units where events are located) was also available for
the analysis. The choice of this structure may imply losing a part of the sample, as
some events take place in zones of the city that are not close to the road network
and hence cannot be properly located in the structure. In order to reduce network’s
complexity and hence favour a less sparse distribution of the event counts at the
road segment level, the road network was simplified using the SpNetPrep R package
(Briz-Redón, 2019). Therefore, the road network finally used had 7986 vertices and
11773 segments, which approximately represents a 9% reduction in the number of
segments with respect to the original one.

7.3 Methodology

7.3.1 Software

The R programming language (3.5.2 version, R Development Core Team, Vienna,
Austria) (R Core Team, 2018) was used to obtain all the results presented in this
study. The R packages ggplot2 (Wickham, 2016), rgeos (Bivand and Rundel, 2018a),
spatstat (Baddeley et al., 2015), spded (Bivand and Piras, 2015) and SpNetPrep (Briz-
Redón, 2019) were specifically required for performing some parts of the study.

7.3.2 Estimation of a minimum acceptable hit rate

The method proposed by Ratcliffe (2004a) was used to determine a minimum ac-
ceptable hit rate for each spatial structure and point pattern under investigation.



122 Chapter 7. Reestimating a minimum acceptable hit rate

0 m 2000 m 4000 m

E

N

W

S

(a)

0 m 2000 m 4000 m

E

N

W

S

(b)

0 m 2000 m 4000 m

E

N

W

S

(c)

0 m 2000 m 4000 m

E

N

W

S

(d)

Figure 7.1: The four spatial configurations of Valencia that were employed for the
analysis: boroughs (a), Thiessen tessellations based on the main road intersections
of the city (b), census tracts (c) and road network (d)

This method follows a Monte Carlo approach, which, given a dataset of events, al-
lows the generation of an empirical distribution for the minimum hit rate through
an iterative process. The steps that need to be carried out are the following (for
each iteration):

1. Start with a point pattern lying on a spatial structure, assuming a 100% hit
rate for the pattern (no data is missing). Compute the original distribution of the
points across the spatial units forming the spatial structure (this means counting
the number of events lying on each spatial unit).

2. Randomly select 1% of the points of the pattern and remove them.

3. Compute the new distribution of the points across the spatial structure.

4. Assess if the new and the original distributions are statistically different (through
the Mann-Whitney test). If they are statistically different, record the percentage of
points removed and start again at (1) (new iteration). If they are not statistically
different, go back to step (2) and repeat the subsequent steps.

The replication of these steps for a certain number of times enables generating an
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empirical distribution of the minimum acceptable hit rate, which is the variable
under analysis. The mean value of the empirical distribution can be taken as the
estimate of the minimum acceptable hit rate.

A workflow diagram that may be helpful to better understand this procedure is
available in Ratcliffe (2004a).

7.3.3 Beyond the Mann-Whitney test

Two methods other than the Mann-Whitney test have been considered to estimate
a minimum acceptable geocoding hit rate. First, a parametric approach has been
tested consisting in the specification of a generalized linear model that assesses if
there is a significant dissimilarity between two count distributions. Second, a clus-
ter and outlier detection procedure based on local indicators of spatial association
(Anselin, 1995) has also been implemented. The estimations are obtained for each
crime dataset available from Valencia.

Comparing two distributions through generalized linear models

A generalized linear model (GLM) (Faraway, 2016) provides a more flexible mod-
elling framework than ordinary linear regression by allowing model residuals to be
non-normally distributed. Concretely, in a GLM, the relationship between a re-
sponse variable, Y = {Yi}ni=1, following an exponential family distribution with
mean {ηi}ni=1, and a set of regressors, X1 = {X1i}ni=1, ..., Xk = {Xki}ni=1, is ex-
pressed by means of a link function, g(·) (a natural logarithm is a common choice):

g(ηi) = γ0 + γ1X1i + ...+ γkXki

where ηi satisfies E[Yi|X1i, ..., Xki] = ηi, γ0 is a constant term, and γj is the coefficient
associated to the effect of regressor Xj. The choice of a certain distribution type
from the exponential family (Poisson, binomial, negative binomial, etc.) should be
based on the properties of Y .

The GLM scheme can be used to assess if two count distributions are significantly
different. Indeed, if Y1 = {Y1i}ni=1 and Y2 = {Y2i}ni=1 denote the two distributions,
one can consider the union of Y1 and Y2, Y = {Yk}2nk=1 = {Y11, ..., Y1n, Y21, ..., Y2n},
and a binary regressor X = {Xk}2nk=1 such that Xk = 0, if k ≤ n, and 1 otherwise.
Then, the following univariate GLM can be fitted for the purpose of comparing the
distributions of Y1 and Y2:

g(ηi) = γ0 + γXi (7.1)

Therefore, if the fitting of a GLM model following Equation 7.1 yields that γ is
significantly different from 0 (p < 0.01), one would conclude that the distributions
of Y1 and Y2 are significantly different. If one chooses a Gaussian distribution for
Y , the test just described is exactly equivalent to the classical Student’s t-test for
comparing two samples. However, a discrete distribution would be more suitable if
Y1 and Y2 represent counts of events.
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Cluster and outlier detection with LISA

As it has been stated in previous Chapters, Moran’s I (Moran, 1950a,b) is a measure
of global spatial autocorrelation for area-based spatial patterns. A higher Moran’s I
value indicates a higher tendency of the variable to show strongly associated values
for neighbouring spatial units. The local version of Moran’s I index called LISA
(Anselin, 1995) can be used for performing cluster/outlier detection, as shown in
Chapter 2 (hotspots and coldspots are two types of clusters). If Ii denotes the
local indicator of spatial association for spatial unit i, then spatial units showing
a significant value Ii 6= 0 (p < 0.01) can be assigned to one of the following four
categories: high-high (unit i has a high value and it is surrounded by high-valued
units), high-low (unit i has a high value, but it is surrounded by low-valued units),
low-high (unit i has a low value, but it is surrounded by high-valued units) and low-
low (unit i has a low value and it is surrounded by low-valued units). The high-high
and low-low zones are usually referred to as clusters, whereas high-low and low-high
zones are commonly called outliers.

In the context of Ratcliffe’s procedure, it is considered that two datasets (one com-
plete and the other one missing a certain percentage of points) provide the same
information if their corresponding categorizations of spatial units according to LISA
indices are exactly the same. Hence, once the percentage of points removed led
to an erroneous categorization of (at least) one spatial unit, that percentage was
annotated for the corresponding iteration.

7.3.4 Introduction of non-uniform geocoding error rates in
Ratcliffe’s procedure

The consideration of non-uniform (in space) geocoding error rates and its imple-
mentation within Ratcliffe’s procedure was performed as follows. First, events were
classified according to a given condition (dependent on some spatial characteris-
tic) into two groups representing two different geocoding error rates: “baseline” and
“increased”. To this end, a numeric parameter denoted by β was introduced, al-
lowing the distinction between those events belonging to the “baseline” group and
those belonging to the “increased” group. More specifically, events belonging to the
“baseline” group were assigned a weight of 1, whereas events corresponding to group
“increased” were assigned a weight 1 + β. Then, the probability of removing one
event from a dataset (in the context of the procedure described in Section 7.3.2) is
set to be proportional to the weight assigned to the event (1 or 1 + β). In other
words, this selection procedure assumes that an event of the group “increased” is
more likely to be non-geocoded by a factor 1 + β.

It is important to remark that the method just described involving parameter β is
insufficient to represent all kind of non-uniform geocoding error rates that may arise
for a given dataset. However, the strategy proposed in this section is enough to
measure how the presence of certain non-uniform geocoding rates across space may
affect the estimation of a minimum acceptable hit rate. Specifically, several real
situations that may originate non-uniform geocoding error rates can be modelled
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through this method, where a higher value of β represents a greater disparity from
uniformity.

7.3.5 Remarks on point process theory

An homogeneous planar Poisson point process (Diggle, 2013) (from now on, referred
to as an homogeneous Poisson process) was considered for the analysis of the effect
of the intensity of the pattern on the minimum acceptable hit rate. A Matérn cluster
process (Matérn, 1986) (from now on, referred to as a Matérn process) was selected
for simulating point patterns of varying levels of intensity and clustering. In the
following lines both processes are briefly described.

An homogeneous Poisson process of intensity λ > 0 satisfies the following three
properties (Diggle, 2013):

1. Given an areal region of the plane, A, the number of points that lie on A, N(A),
follows a Poisson distribution with mean λ|A|.

2. If N(A) = n, the n points are distributed uniformly on A.

3. If A and B are two disjoint regions of the plane, N(A) and N(B) are independent
variables.

On the other hand, a Matérn process of parameters λ > 0, s > 0 (scale) and µ > 0
can be generated through the following two steps:

1. An homogeneous Poisson process of intensity λ generates a set of “parent points”.

2. A cluster of “offspring points" is generated (uniformly) inside a disc of radius s
centred on each “parent point”. The number of “offspring points" lying around each
“parent point” follows a Poisson distribution of parameter µ.

The Matérn process is a special case of the more general class of Neyman-Scott
processes (Neyman and Scott, 1958). The intensity of a Matérn process of param-
eters λ, s and µ is λ · µ. Increasing the value of s implies that the points forming
each cluster are progressively less concentrated around their corresponding “parent
points”, leading to relatively lowly-clustered point patterns. Contrarily, very small
values of s are expected to generate highly-clustered point patterns.

The generation of point patterns following the properties of both Poisson and Matérn
processes was performed with the spatstat R package (Baddeley et al., 2015). As an
illustration, Figure 7.2 shows several examples of point patterns generated with this
R package for different choices of the parameters (in a squared area representing
2500 m2). From (a) to (b) the intensity of the underlying homogeneous Poisson
process is increased by a factor of 3. On the other hand, the two patterns in (c) and
(d) were created following a Matérn process, imposing a higher clustering level to
the one in (c) in comparison to the one in (d) (s = 0.5 vs s = 4).
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(a) (b)
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Figure 7.2: Four examples of simulated point patterns over a squared area of 2500
m2: homogeneous Poisson process with λ = 0.1 (a), homogeneous Poisson process
with λ = 0.3 (b), Matérn process with (λ, s, µ) = (0.1, 0.5, 1) (c) and Matérn process
with (λ, s, µ) = (0.1, 4, 1) (d)

7.4 Results

7.4.1 Crime datasets from Valencia

Mann-Whitney test

The first step was to replicate the procedure depicted in Ratcliffe (2004a) with
the five crime datasets recorded in Valencia for the period 2014-2015. In this case,
however, each crime dataset was investigated considering four different spatial struc-
tures covering the city: boroughs, Thiessen polygons generated around main road
intersections in the city, census tracts and road network. It was found sufficient to
carry out the Monte Carlo process 250 times (as it was done in Ratcliffe (2004a))
to guarantee a reliable estimation of a minimum acceptable hit rate in each case.

The estimations of a minimum acceptable hit rate for the crime datasets of Valencia
are shown in Table 7.1, where some basic characteristics of the point patterns cor-
responding to each of the crime types investigated such as the intensity (number of
points per unit area or length, denoted by λ̂) or the nearest neighbour index (NNI)
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(defined in Section 5.3.5) are also shown.

First, one can observe in Table 7.1 how the minimum acceptable hit rate (MAHR)
varies largely depending on the crime or structure type that is selected for its es-
timation. It is notorious that, for each crime type, the minimum acceptable hit
rate gets higher as the number of units that constitute the spatial representation
of Valencia increases. Indeed, in the case of census tracts the minimum acceptable
hit rate gets very close to 90% for some of the crime types, whereas for the road
network the hit rate attains a maximum value of 99% (for all the datasets). Further-
more, among the five crime types, it is also evident that the minimum acceptable hit
rates estimated for the robbery, theft, and vandalism datasets are higher than those
found for the burglary and car theft ones. Interestingly, the higher the number of
records available in the dataset (the higher the intensity of the point pattern), the
higher the minimum acceptable hit rate becomes. On the other hand, it is hard to
find a relationship between the clustering level (NNI) of each point pattern and the
minimum acceptable hit rate obtained.

Crime Structure Units Events λ̂ NNI MAHR (%) LO 95% CI UP 95% CI

Robbery

Boroughs 70 5332 1.08 · 10−4 0.58 74.50 73.13 75.87
Thiessen 566 5332 1.08 · 10−4 0.58 83.70 82.39 85.01
Census tracts 378 5332 1.08 · 10−4 0.58 88.74 87.62 89.87
Network 11773 4858 6.36 · 10−3 0.58 99.00 99.00 99.00

Burglary

Boroughs 70 1198 2.43 · 10−5 0.62 69.57 67.83 71.32
Thiessen 566 1198 2.43 · 10−5 0.62 72.79 69.15 76.43
Census tracts 378 1198 2.43 · 10−5 0.62 79.52 77.00 82.04
Network 11773 1116 1.43 · 10−3 0.76 99.00 99.00 99.00

Theft

Boroughs 70 2465 4.99 · 10−5 0.63 71.70 69.90 73.51
Thiessen 566 2465 4.99 · 10−5 0.63 80.66 79.08 82.24
Census tracts 378 2465 4.99 · 10−5 0.63 86.75 85.19 88.31
Network 11773 2270 2.94 · 10−3 0.68 99.00 99.00 99.00

Car theft

Boroughs 70 706 1.43 · 10−5 0.80 71.51 68.19 74.83
Thiessen 566 706 1.43 · 10−5 0.80 77.34 74.30 80.37
Census tracts 378 706 1.43 · 10−5 0.80 80.70 77.86 83.55
Network 11773 619 8.42 · 10−4 0.83 99.00 99.00 99.00

Vandalism

Boroughs 70 2067 4.19 · 10−5 0.70 75.97 74.32 77.61
Thiessen 566 2067 4.19 · 10−5 0.70 81.16 79.40 82.92
Census tracts 378 2067 4.19 · 10−5 0.70 86.27 85.01 87.53
Network 11773 1894 2.46 · 10−3 0.69 99.00 99.00 99.00

Table 7.1: Minimum acceptable hit rates (MAHR) estimated for the five crime
datasets available for Valencia, along with the lower and upper bounds of the em-
pirical 95% tolerance interval obtained for each estimation. The point patterns
corresponding to each of the datasets are described according to their size (number
of events), level of clustering (NNI) and intensity (λ̂). The number of spatial units
(areal or linear) of each spatial structure considered is also indicated. It is worth
noting that λ̂ is measured in 1/m2 in the case of boroughs, Thiessen polygons and
census tracts, but in 1/m in the case of the road network structure

GLM approach and LISA indices

Table 7.2 shows the minimum acceptable hit rates that were obtained considering
the GLM approach and the identification of clusters/outliers through LISA indices.
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A negative binomial distribution and a natural logarithm as the link function were
chosen for setting the GLM approach explained in Section 7.3.3, with the response
Y = {Yi}ni=1 representing crime counts per spatial unit. The negative binomial
was selected with the aim of allowing the model to account for data overdispersion.
The estimations provided by this method were very similar to those yielded by the
Mann-Whitney test.

Remarkably, the estimations obtained for the road network are again very high, as
the removal of 1% of the points forming the dataset alters the distribution of the
counts at the road segment level. One might have thought that the high minimum
acceptable hit rate obtained for the road network through the Mann-Whitney test
could be a consequence of the highly skewed distribution that event counts present
at the road segment level (McElduff et al., 2010), but the GLM approach based on
a negative binomial probability distribution led to analogous results.

Contrarily, the categorization of the spatial units according to LISA indices showed
to be much more sensitive to the existence of non-geocoded data. In this case,
minimum acceptable hit rates raised dramatically except for the spatial structure
based on city’s boroughs. This fact suggests that the estimation of a minimum
acceptable hit rate is strongly dependent on the methodology that is chosen to
determine if the complete and incomplete datasets provide the same interpretation
of the data. As an illustration, Figure 7.3 shows how the results that LISA indices
provide can be affected by removing a small percentage of the points of the dataset.

GLM LISA
Crime Structure MAHR (%) LO 95% CI UP 95% CI MAHR (%) LO 95% CI UP 95% CI

Robbery

Boroughs 76.00 75.83 76.16 55.64 26.56 84.73
Thiessen 84.00 84.00 84.00 93.46 80.96 100.00
Census tracts 88.32 87.12 89.53 98.02 94.20 100.00
Network 99.00 99.00 99.00 99.00 99.00 99.00

Burglary

Boroughs 65.44 64.14 66.75 53.02 25.93 80.12
Thiessen 75.48 74.19 76.77 97.28 91.83 100.00
Census tracts 81.22 80.15 82.30 98.92 98.24 99.61
Network 99.00 99.00 99.00 99.00 99.00 99.00

Theft

Boroughs 72.29 71.12 73.46 83.56 42.57 100.00
Thiessen 82.00 82.00 82.00 98.77 97.06 100.00
Census tracts 85.00 85.00 85.00 96.71 87.04 100.00
Network 99.00 99.00 99.00 99.00 99.00 99.00

Car theft

Boroughs 72.33 71.03 73.62 85.49 53.42 100.00
Thiessen 78.74 77.60 79.87 98.96 98.22 99.71
Census tracts 81.48 80.19 82.77 97.98 94.35 100.00
Network 99.00 99.00 99.00 99.00 99.00 99.00

Vandalism

Boroughs 75.62 74.36 76.87 74.57 32.68 100.00
Thiessen 83.00 83.00 83.00 98.46 95.52 100.00
Census tracts 87.00 87.00 87.00 98.90 98.04 99.76
Network 99.00 99.00 99.00 99.00 99.00 99.00

Table 7.2: Minimum acceptable hit rates (MAHR) estimated for the five crime
datasets available for Valencia, along with the lower and upper bounds of the em-
pirical 95% tolerance interval obtained for each estimation, considering the GLM
approach and the clusters and outliers derived from LISA indices
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Figure 7.3: Classification of the census tracts of Valencia according to the LISA
indices obtained for robberies. Results from the complete dataset (a) and from a
simulated 99% hit rate dataset (b). The census tracts whose border is coloured in
green in (b) are affected by the removal of a sample of 106 events randomly selected
(2% of the whole robbery dataset). The one in the city center is suddenly assigned to
the high-high type, whereas the one in the northern area of the city is not detected
anymore as a high-high zone

Effect of non-uniform geocoding errors

The crime datasets available for Valencia were reanalyzed considering that the pres-
ence of non-geocoded events may not be randomly distributed across the city. Thus,
two experiments were performed pretending to represent, according to background
experience, two sources of error that can arise during a manual data collection pro-
cess, leading to lower geocoding hit rates at particular locations of the city (Figure
7.4 displays both experimental settings in the case of the robbery dataset).

First, it is usually observed that the events that take place in certain street types
are more susceptible of not being geocoded. Indeed, avenues and squares are espe-
cially conflicting street types for geocoding purposes. According to my experience,
the occurrence of events in somewhere on an avenue or a square is more likely to
produce incomplete descriptions of the exact place where the event took place. A
first experimental setting, denoted by Experiment I, was defined to account for this
issue in some of the crime datasets studied.

Similarly, a second experiment, referred to as Experiment II, was also carried out.
In this case, the bias effect was incorporated to the central district of Valencia (city
center) and its two adjacent district. It is also observed that geocoding inaccuracies
can arise from the fact that most Police officers are assigned to one district or
borough of the city. Hence, some inappropriate practices when collecting the data,
that can increase the chances of producing geocoding failures, can be associated to
the people carrying out the process. Furthermore, in the context of the city center
of Valencia, this source of error could be also a consequence of the higher complexity
of this area of the city in terms of road network structure.
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Figure 7.5 shows the minimum acceptable hit rates that were reestimated for rob-
beries and car thefts as the β parameter controlling the strength of the non-uniform
geocoding error rate was increased from 1.5 to 10 (in steps of 0.5 units). The conse-
quences of increasing β depended on the type of non-uniform geocoding error rate
that has been introduced. Thus, whereas the non-uniform geocoding error included
in Experiment II increased the estimations obtained for the minimum acceptable hit
rate, the effect produced by Experiment I was almost negligible.
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Figure 7.4: Locations of the robberies recorded in Valencia in 2014 and 2015. For
experimental purposes, a higher geocoding error rate was assumed for the robberies
occurred in avenues and squares (Experiment I) (a) and also for the robberies that
took place in the city center and adjacent districts (Experiment II) (b)
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Figure 7.5: Estimations of a minimum acceptable hit rate shown as a function
of β (magnitude of the increased error) for the Experiment I and Experiment II,
considering the four spatial structures available for Valencia for robberies (a) and
car thefts (b)

7.4.2 Simulation studies

Motivated by the initial analysis of the crime datasets available for Valencia, several
simulation studies were carried out to better account for some of the factors that may
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have an impact on the establishment of a minimum acceptable hit rate. Specifically,
the intensity and spatial autocorrelation of the point pattern, and the aggregation
level of the spatial structure, were the three examined factors. It is worth noting
that all these simulation studies were performed considering the Mann-Whitney test
as the tool that determines if a complete and an incomplete dataset are equivalent.
Thus, according to the results obtained in previous sections, the estimations of
minimum acceptable hit rates that were obtained through the simulation studies may
be notably low for the execution of certain techniques (cluster detection). However,
it was found suitable to limit the analysis to the Mann-Whitney test for the purpose
of investigating the effect of the intensity, clustering and aggregation levels on such
estimations.

Squared grids consisting of n×n cells defined over a square representing an area of 64
km2 were used for all the simulation studies performed. The area of the square was
chosen to be similar to the area of Valencia (49.4 km2). The number of iterations
of Ratcliffe’s procedure was reduced to 100 for all the computations involved in
the simulation studies in order to decrease the cost (the variability observed in the
estimations was very low, a fact that guided this decision).

Study I: Effect of the intensity level on the minimum acceptable hit rate

Point patterns of intensity λ ∈ {5·10−6, 10−5, 5·10−5, 10−4, 5·10−4, 10−3, 5·10−3, 10−2}
(measured in 1/m2) following an homogeneous Poisson process were generated over
a 25× 25 grid (625 cells) covering the square of 64 km2 used for all the simulation
studies. The use of lower values of λ was discarded because they lead to point
patterns with too few events that make the analysis more unreliable (too dependent
on the simulated point pattern). Indeed, using a value of, say, λ = 10−6 implies the
construction of a dataset of only 64 points, on average. Hence, the purpose was to
estimate a minimum acceptable hit rate for each intensity level following Ratcliffe’s
methodology.

The minimum acceptable hit rates estimated for each intensity level are shown in
Figure 7.6. It is clear that the minimum acceptable hit rate becomes progressively
higher as the intensity of the point pattern increases. For an intensity value λ = 10−5

the estimation is very similar to that provided by Ratcliffe (2004a). However, for
orders of magnitude higher than 10−5, the minimum acceptable hit rate needs to be
raised, according to this experimental study.

Nevertheless, it is worth noting that many of the real datasets that are analyzed
by researchers present intensity levels notably lower than the highest values of λ
used in this simulation study. For instance, the five crime datasets from Valencia
have an intensity below 1.1 · 10−4 1/m2 when they are considered over the areal
representation of the city, and below 7 · 10−3 1/m when they are projected into the
linear network.
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Figure 7.6: Estimations of a minimum acceptable hit rate shown as a function of
the intensity (λ) defined for each point pattern generated through an homogeneous
Poisson process

Study II: Effect of the clustering level on the minimum acceptable hit
rate

Matérn processes were simulated (over the same 25 × 25 grid used in the previous
simulation study) for enabling the investigation of the effect of the clustering level
of a point pattern on the determination of a minimum acceptable hit rate. The
value of µ involved in the definition of a Matérn process was set to 1, forcing the
global intensity of the process (λ · µ) to coincide with λ (intensity of the “parent”
process). Thus, the intensity values tested (λ) were the same considered for the
previous simulation study. Finally, parameter s was varied in the range ]0, 160] in
order to make possible the generation of point patterns displaying different levels of
clustering.

Figure 7.7 shows the results corresponding to this simulation study. It can be ob-
served that the presence of some level of clustering in a point pattern usually leads to
lower minimum acceptable hit rates than in the case of patterns lacking a clustered
structure (patterns following an homogeneous Poisson process). Indeed, Figure 7.7
suggests that higher clustering levels (lower values of s) are usually associated with
lower minimum acceptable hit rates. However, this finding presents a greater un-
certainty for point patterns of low intensity (λ = 5 · 10−6), which make the analysis
more dependent on the simulated pattern for which a minimum acceptable hit rate
is estimated, rather than on the parameter chosen for its generation (the scale of
the Matérn process, s, in this case). On the other hand, for the highest values of
λ that were tested (0.005 and 0.01), the effect of the clustering level is completely
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Figure 7.7: Estimations of a minimum acceptable hit rate shown as a function of
the intensity (λ) and clusters’ radius (s) defined for each point pattern generated
through a Matérn process. Empty circles correspond to the values obtained in the
Simulation Study I for homogeneous Poisson processes

absorbed by the one produced by the intensity (the minimum acceptable hit rate is
not reduced).

In conclusion, the existence of clustering in a point pattern appears to reduce the
minimum acceptable hit rate. Hence, achieving the minimum acceptable hit rates
that were estimated in the Simulation Study I for totally random patterns should
be sufficient, regardless of the presence of an attraction dynamic between the points
of the pattern. In other words, the fact that many real spatial patterns show a
certain (or even a high) level of clustering can be helpful to reduce, to some extent,
minimum acceptable hit rates.

Study III: Effect of the aggregation level of the underlying structure on
the minimum acceptable hit rate

The aggregation level of a spatial structure where a point pattern lies is given by the
number of units that form the structure. Concretely, reducing the number of spatial
units leads to the configuration of more aggregated structures, whereas increasing
the number of units implies the opposite. Changing the aggregation level of a
spatial domain usually carries some effects on statistical estimations and properties,
as shown in Chapter 5.

Hence, the value of n that defines the n×n squared grids that have been considered
for the simulation studies described before (for n = 25) was varied from 5 to 50 in
steps of 5 units. A point pattern was simulated following an homogeneous Poisson
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Figure 7.8: Estimations of a minimum acceptable hit rate shown as a function of
the number of cells (n) and intensity (λ) defined for each point pattern generated
through an homogeneous Poisson process. The values λ = 5 · 10−3 and λ = 10−2

are represented with the same colour and shape because all the estimations were
coincident. The points corresponding to λ = 5 · 10−4 and λ = 10−3 for n = 10 also
overlap

process for each of the intensities already tested in the previous simulation studies.
Then, the methodology for estimating a minimum acceptable hit rate was used
considering the n× n squared grid corresponding to each value of n.

Figure 7.8 indicates that increasing the value of n (that is, creating more disaggre-
gated grids) increases the minimum acceptable hit rate. Furthermore, it is worth
noting that this effect is particularly notorious when one increases the value of n
within the range [5, 20]. After that, the minimum acceptable hit rate seems to be-
come rather stable and unaffected by the increments of n (for all the intensity values
being considered).

Providing an estimation of a minimum acceptable hit rate given an in-
tensity value

Finally, a logistic growth equation was used to model the minimum acceptable hit
rate (MAHR) as a function of the logarithm (with base 10) of the intensity of the
point pattern:

MAHR(log10 λ) =
φ1

1 + e−(φ2+φ3 log10 λ)
(7.2)

The upper bounds of the 95% tolerance intervals empirically obtained for the min-
imum acceptable hit rates estimated in the Simulation Study I were fitted through
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Figure 7.9: Logistic fit (blue curve) of the upper bounds of the 95% tolerance in-
tervals obtained for the estimations of minimum acceptable hit rates obtained. The
logistic curve corresponds to the parameters φ1 = 99.07, φ2 = 9.46 and φ3 = 1.52,
according to Equation 7.2

Equation 7.2. These values were selected in order to obtain the most conservative
approximation possible. The upper bounds corresponding to the 25×25 grid were
found suitable enough as increasing the aggregation level from n = 20 barely al-
tered the results (Figure 7.8). Table 7.3 includes the estimations that Equation 7.2
provides for the intensity levels used in the simulation studies.

Intensity (λ) 5 · 10−6 10−5 5 · 10−5 10−4 5 · 10−4 10−3 5 · 10−3 10−2

MAHR (%) 79.68 85.85 94.06 95.84 97.93 98.35 98.82 98.91

Table 7.3: Proposals of minimum acceptable hit rates (MAHR) for planar point
patterns of certain intensity levels according to the model fit shown in Figure 7.9

7.5 Conclusions

Achieving a high geocoding hit rate when one deals with point-referenced data is
essential to perform a reliable statistical analysis. Multiple inadequate practices
that may occur during the data collection stage can lead to the emergence of non-
geocoded events that become unusable for the analysis. The existence of missing
data always implies reducing the statistical power of any statistical test executed.
Furthermore, and even more importantly, missing data can increase the risk of bias
if the data that is not geocoded follows a non-random pattern. Therefore, it is
important to determine a minimum acceptable hit rate that guides researchers, in
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the sense of making them aware of the geocoding hit rate they should achieve to
guarantee, to some extent, a fair analysis of the data.

Overall, the results suggest that the well-accepted 85% hit rate may be insuffi-
cient under certain conditions. Indeed, analyzing large datasets or using highly-
disaggregated spatial supports are two reasons that should oblige researchers to in-
crease their geocoding hit rates, according to the simulation studies that have been
carried out. In particular, road networks, which are becoming especially popular in
the last years to conduct spatial analyses, have shown to be particularly sensitive to
the presence of non-geocoded data, according to the crime datasets that were ana-
lyzed over this type of spatial structure. This result may have been a consequence
of the fact that the intensity of the patterns increased when switching from an areal
support to a linear one (the network), or the result from having many more spatial
units and hence data sparsity. Furthermore, it has been observed that cluster/out-
lier detection based on LISA indices is more sensitive, by far, to the presence of
non-geocoded data. Hence, the minimum acceptable hit rates may need to be raised
dramatically when applying some methodologies of this nature. In this regard, it is
important noting that providing a “universal” minimum acceptable hit rate seems
rather unlikely.

This investigation also presents some limitations and research gaps that could be
filled in the future. First, performing a more computationally intensive study would
be convenient to provide more accurate estimations of a minimum acceptable hit rate
as a function of intensity, clustering or aggregation levels. It is worth noting that
the effect of the intensity level on minimum acceptable hit rates has been investi-
gated by considering one simulated dataset for each intensity value tested. Although
this strategy enables capturing a relationship between point pattern intensities and
minimum acceptable hit rates, the generation of multiple datasets should be taken
into account to also control for dataset-depending effects. In addition, the area of
the underlying window where the events are located may also require a specific in-
vestigation. Second, in view of the remarkable raise that minimum acceptable hit
rates experimented when performing cluster/outlier detection through LISA indices
(in contrast to the Mann-Whitney test or the GLM approach, which simply indicate
if the count distributions of a complete point-referenced dataset and an incomplete
version of it are statistically different), a specific investigation on how the presence
of non-geocoded data affects the estimation of covariate effects through statistical
models may be of special interest. Third, the implementation of simulation studies
where non-uniform geocoding errors are systematically introduced is another possi-
ble line of research for the future. Finally, it is worth mentioning that point patterns
that are characterized by the presence of a regular or a repulsion tendency between
the points (in contrast to clustered ones) have not been considered. It is true that
these point patterns are more unusual than clustered ones in some fields such as
criminology or epidemiology, but they frequently arise in situations of competition
between animal or plant species (Stoll and Bergius, 2005).

In conclusion, it is important to highlight again that establishing a minimum accept-
able geocoding hit rate heavily depends on the research purposes being pursued or,
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put more simply, on the statistical techniques that are going to be used. Therefore,
it is necessary to provide the same advice that Ratcliffe (2004a) gave: “we should
attempt to achieve a hit rate of 100% every time”.



Chapter 8

Software development

Carrying out complex statistical analyses requires the use of advanced statistical
software that has already been developed by other researchers. In this regard, the
R programming language (R Core Team, 2018) has been used to perform all the
studies included in this thesis. At the same time, the singularities of your analysis
or data often lead you to design new software. Thus, this Chapter presents two R
packages that have been created during the development of this thesis.

8.1 SpNetPrep: Overview of the package

The interest in working at the road level renders some technical difficulties due
to the high complexity of these structures, specially in terms of manipulation and
rectification. The R Shiny app SpNetPrep, which is available online and via an R
package named the same way, has the goal of providing certain functionalities that
could be useful for a user which is interested in performing an spatial analysis over
a road network structure. The SpNetPrep package does not deal with statistics,
but with the previous steps that can be required in order to perform a spatial
statistical analysis of a point pattern that lies on a linear network representing a road
structure. In this regard, the name chosen for the package summarizes its main goal
of "Spatial Network Preprocessing" (SpNetPrep). The main feature provided by the
SpNetPrep package is an interactive application that allows to carry out the complete
preprocessing of a linear network that comes from a road structure. First, the user
needs to install the package via CRAN or via GitHub. Then, the execution of the
function runAppSpNetPrep() in the R console launches the application allowing
its full use, which is also possible to be done online following the link https://
albriz.shinyapps.io/spnetprep/. If the application is run from the R console,
it is necessary to click the option "Open in browser" when it shows, or define "Run
external" for the opening of Shiny applications in order to be able to download the
modifications performed on the objects uploaded to it.

According to the technical difficulties that the development of a spatial analysis over
a linear network implies, the SpNetPrep takes advantage of the R packages leaflet
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(Graul, 2016) and shiny (Chang et al., 2018) to provide an intuitive application that
helps to reduce such difficulties.

Specifically, the SpNetPrep package focuses on the following parts of the preprocess-
ing process that could be required prior to any spatial analysis over a linear network:
network creation and edition, network direction endowment and point pattern re-
vision and modification. Now, the complications that can be derived from each of
these steps are discussed.

Users can obtain a road network of their interest via the OpenStreetMaps (OSM)
platform (Haklay and Weber, 2008; OpenStreetMap contributors, 2017) or from
other public or private sources. In addition, based on OpenStreetMaps, R users
can employ the R packages osmar (Eugster and Schlesinger, 2013) and osmdata
(Padgham et al., 2017) to get from console the network they wish. However, the
obtention of a complete and detailed road network in a properly digitallized format
that enables its use in the R framework can become much harder than the finding
of administrative divisions in a suitable format, which are usually the base of many
spatial statistics studies that deal with the commonly known as lattice data.

When the user is in possession of a road network in a right R format (these formats
will be described later), the SpNetPrep application includes a "Network Edition"
section that usually would constitute the starting point of the preprocessing phase.
At this part of the application, users can introduce their networks in order to delete
edges, join vertex to form new edges and create new points that are connected to the
preexisting vertex or directly between them. Of course, users that had previously
created their road networks with SpNetPrep can use this edition section to make
changes on them.

The manual edition (or curation) of a linear network representing a road structure
is an important step that must be taken in order to correct possible mistakes (not
updated road configurations), remove some undesired parts (pedestrian or secondary
roads, depending on the application) and also to simplify some zones of the network
whose complexity could obscure the analysis being performed (which is sometimes
very notorious in round-abouts or complex intersections).

Furthermore, in view of the difficulties that sometimes can arise when trying to
obtain a road network structure, the "Network Edition" section of the SpNetPrep
application could also be employed to create a road network from scratch (the user
would need to upload a dummy road network of at least one segment within the
region of interest). Of course, this would not be a good option if the aim of the user
is the creation of a complex road network made of hundreds of kilometers, but it
can be a cost-effective option for creating small road networks within an urban area,
or even for a long network representing highways or rural roads given its (usually)
greater simplicity.

Another important question to take into consideration when working with a lin-
ear network structure is its directionality. Depending on the kind of dataset being
treated, network direction could be of no interest, but this should not be the case
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when analyzing traffic-related data. In fact, traffic flow could be dramatically in-
fluential for some classical spatial analysis that arise from this kind of data. For
example, in order to fit a spatial model to a collection of accident counts at the road
segment level (for instance, with the spdep package from Bivand and Piras (2015)),
the provision of a directionality to the linear network would become essential to
define a realistic neighbourhood structure. In a similar way, if a geostatistical ap-
proach was established (see the gstat package, from Pebesma (2004)) to predict a
quantitative measure along a road network which is likely affected by traffic flow (as
the level of pollution), the lack of consideration of the directions that can be taken
by the vehicles that use the network could lead to meaningless results.

Again, it is not easy, at all, to find the information required to endow a linear network
based on a road structure with a directionality. The network structures available
in OSM contain some information regarding the direction of the streets and some
cartographic platforms include the direction of traffic (measured in angles) at some
points of the structure, but, in general, it can be really hard to obtain such informa-
tion for a road network of your interest. For this reason, the "Network Direction"
section of the SpNetPrep application attempts to facilitate the enhancement of a
network with this valuable information.

Once the network structure is properly curated and endowed with a direction (if
necessary), a point pattern can be formed along the network structure from a dataset
containing geocoded information. In the case the information on the location of each
event is in the form of a postal address, the R package ggmap (Kahle and Wickham,
2013b) can be very useful by providing an R interface that allows geocoding via the
Google Maps API.

Then, when the coordinates of the events of interest are already available, regardless
of the way they have been obtained, it is time to project them into the linear
network. This step can be achieved straight by using the (shortest) orthogonal
projection of each pair of coordinates into the linear network, for example with
the project2segment function of the R package spatstat (Baddeley et al., 2015).
However, depending on the level of accuracy of the coordinates, this process can lead
to wrongly locate some of the events on the linear network. If the coordinates have
been derived from postal addresses, one could find the points of the network whose
projection distance (from their imputed coordinates to their projected) exceeds some
threshold that could be indicating that something went wrong (short projection
distances should be admitted, as the linear network is only a representation of
the real space where the events of interest take place). Therefore, the "Edit a
Point Pattern" section of the application allows the user to investigate this issue.
While providing a whole picture of the distribution of the point pattern in the road
network being studied, this section of the application offers the user information
on the obtained projection distances remaining to the decision of the user if further
revision of the geocoding process is required, or if there is a part of the road structure
that is not well represented by the linear network in use.

As a summary, Figure 8.1 contains a workflow diagram that indicates the four steps
that should be considered before performing an spatial analysis of a point pattern
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on a linear network.

Start Network
Creation

Network
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Point
Pattern
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Figure 8.1: Workflow that describes all the steps that could be carried out in order to
perform a spatial statistics analysis on a point pattern that lies on a linear network.
Some of these steps which lead to the final statistical analysis may be skipped but, at
least, all of them should be considered. The blocks pointing the steps of the process
include some of the R packages that would allow to successfully achieve each of them

8.1.1 Technical issues

Linear networks in R

There are two main classes coexisting in R that represent what a linear network
is: SpatialLines and linnet. The class SpatialLines belongs to the sp package
(Pebesma and Bivand, 2005), whose capabilities are fully described in Bivand et al.
(2013). In case it is needed to attach some information to the edges that form the
linear network, the class SpatialLinesDataFrame from the same package should be
used instead. On the other hand, the class linnet is part of the spatstat package,
focused on spatial statistics analysis and modelling. Hence, both object classes can
be used effectively to manage spatial linear networks in R, although it is required to
choose the linnet format in order to get the capability of using all the statistical
methods for linear networks implemented in the spatstat package.

There are several functions in R that facilitate the conversion between SpatialLines
and linnet objects. Specifically, as.linnet.SpatialLines from the maptools (Bi-
vand and Lewin-Koh, 2017) R package converts SpatialLines into linnet objects,
whereas the double application (in this order) of the as.psp and as.SpatialLines.psp
functions of the spatstat and maptools packages, respectively, enable the conversion
from a linnet object into a SpatialLines one.

Geographical projections

Coordinate Reference Systems (CRS) are essential to locate entities in space. Con-
cretely, each CRS defines a specific map projection that unambiguously determines
the location of every point on the Earth, which logically makes impossible to work
with two geographic objects that are described in a different projection.

The usual longitude and latitude coordinates, which range from -180◦ to 180◦ and
-90◦ to 90◦, respectively, correspond to the WGS84 (World Geodetic System 1984)
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geographical projection. One important characteristic of the WGS84 projection sys-
tem is that it considers the whole world as a unique zone, that is, a pair longitude-
latitude in this CRS system determines only one point of the Earth. However, this
situation does not hold for the Universal Transverse Mercator (UTM) projection
system, another well known CRS that divides the world into 60 zones whose co-
ordinates are denoted easting and northing in analogy with longitude and latitude
(respectively). The use of the UTM system is more convenient for performing sta-
tistical analysis given its higher level of accuracy (specially when working with small
areas) and also because the coordinates it provides are expressed in meters, which
renders very easy to compute distances.

The sp package allows to deal with projection systems by means of the CRS class and
the proj4string method. The following lines exemplify how to proceed, assuming
that wgs84object and utmobject are two sp objects expressed in WGS84 and UTM
(zone 30) coordinates, respectively, whose projections had not been established yet
in the R environment. Basically, the proj4string assigns a projection system to
an sp object whereas the spTransform function changes an sp object’s projection
from one system to the other.

> CRS_wgs84 <- CRS("+proj=longlat +datum=WGS84
+ellps=WGS84 +towgs84=0,0,0")

> CRS_utm <- CRS("+proj=utm +zone=30 ellps=WGS84")
> proj4string(wgs84object) <- CRS_wgs84
> proj4string(utmobject) <- CRS_utm
> wgs84object_transform <- spTransform(wgs84object, CRS_utm)
> utmobject_transform <- spTransform(utmobject, CRS_wgs84)

Working with files in the SpNetPrep application

Format .RDS has been chosen for all the files possibly involved during the use of the
SpNetPrep application, which means that inputs and outputs will always be in this R
file format. Functions readRDS and saveRDS allow to read and create, respectively,
a .RDS file for its use in the application or in the usual R console.

On the CRS system, the SpNetPrep application is only ready to accept input files
from that are expressed in UTM coordinates. These coordinates are then internally
converted into the WGS84 system in order to be usable by the leaflet functions
that are employed for making the application work. Consequently, the output files
that can be downloaded after the use of any of the sections of the application are
also in UTM coordinates, allowing its direct use for statistical analysis if no more
preprocessing steps are required.

Furthermore, for the "Network Edition" and "Network Direction" parts of the ap-
plication the inputs are required to belong to the sp package, whereas for "Point
Pattern Revision" it is needed to upload an object that has been created with the
lpp function of spatstat (more details later). The UTM zone needs to be specified
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by the user with the proj4string method in the case of the sp objects and typ-
ing it on the corresponding text input for the "Point Pattern Revision" section of
the application as otherwise the application will yield an error message. In case of
trouble during the construction of the input files, the data objects SampleNetwork,
SampleDirectedNetwork and SamplePointPattern available in the package can
serve as a reference for the sections "Network Edition", "Network Direction" and
"SamplePointPattern", respectively, although the first of these data objects also
works for the "Network Direction" part.

Finally, it is convenient to remark that, even though the application has been subject
to the usual debugging tests, the raise of an error could break the application and
make users lose their work. For this reason, it is highly recommended to execute
and download the changes being performed in the road network or point pattern
being used regularly.

8.1.2 Network edition

Manual edition of the geometry of a linear network is one of the main purposes of
the SpNetPrep application. This process includes the manual rectification of the
network, which basically consists of performing edge addition/deletion and vertex
addition/deletion. Furthermore, the application provides an algorithm of automatic
simplification that reduces network’s complexity while accounting for its basic ge-
ometric structure, which will be later described. First, the use of the "Network
Edition" section of the application is explained.

Application’s use

There are four basic actions that can be performed for editing the linear network
manually: "Join vertex", "Remove edge", "Add point (+edge)" and "Add two points
(+edge)". The user only has to select the more convenient option and proceed intu-
itively. If "Remove edge" is selected, the click on an edge of the network (anywhere
all along its length) serves to mark the edge in red, indicating a removal state.
Oppositely, by choosing any of the options "Join vertex", "Add point (+edge)" or
"Add two points (+edge)" the user needs to click on two points of the map accord-
ingly to the option being selected. For the "Join vertex" option, two vertex must be
clicked, whereas for the "Add two points (+edge)" two points of the map (that are
not vertex) have to be clicked. Finally, the "Add point (+edge)" requires that the
user clicks on a point and on a vertex of the network (in this order). All these three
options that imply the addition of edges (and maybe vertex) to the road network
are marked in green. The click of the button "Rebuild linear network" makes this
manual editions effective and when the map refreshes the new (edited) road net-
work is available for the user (which can be downloaded by clicking on the button
available at the bottom of the application).

Now, let’s see and example of use of the "Network edition" section of the appli-
cation (Figure 8.2a includes a picture of the main elements of the application, al-
though this does not correspond to the real distribution on-screen of these elements).
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First, the user should introduce a road network (in the form of a SpatialLines
or SpatialLinesDataFrame object) whose segments are expressed in UTM coordi-
nates. Then, zoom can be increased to focus on a little part of the network, involving
a little number of roads (Figure 8.2b).

(a) (b)

Figure 8.2: Overview of the "Network Edition" section of the SpNetPrep application
(a) and example of a road network uploaded into the application (b)

At this point, the user could find something to rectify or change, which could finally
derive into the road structure displayed in Figure 8.4a (differences from Figure 8.2b
can be appreciated at the central part of the image). To arrive to this new net-
work structure, the user would have to perform several steps with the SpNetPrep
application, including edge removal, vertex connection and the addition of a new
point that connects to a preexisting vertex (Figure 8.3a). Then, network should be
rebuilt (Figure 8.3b) allowing the definition of two new vertex connections (Figure
8.4a) that finally lead to the network in Figure 8.4b. It has to be noted that the
execution of the connections in Figure 8.4a require the rebuilt of the network as in
Figure 8.3b, otherwise the new point "drawn" in Figure 8.3a would not be available
to create these two new connections.

(a) (b)

Figure 8.3: Use of the "Join vertex" (in green), "Remove edge" (in red) and "Add
point" options (in green) in the SpNetPrep application (a), and resulting network
after pressing "Rebuild linear network" (b)
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(a) (b)

Figure 8.4: Another use of the "Join vertex" (in green) option of the "Network
Edition" section (a) that leads to the final corrected road structure in (b)

Automatic network simplification

The SpNetPrep package includes a function called SimplifyLinearNetwork, which
is also provided in the sidebar panel of the "Network Edition" section of the appli-
cation, that could be very helpful during the network preprocessing process. This
function (which accepts and produces linnet objects) consists in the execution of
an algorithm that attempts to automatically reduce network’s complexity without
altering its basic geometric configuration. The main objective of the algorithm is to
merge the pairs of edges of the network that are connected by a second-degree vertex
(with only two incident edges) into only one edge. Equivalently, this action means
to join two vertex of the network whose path of connection only passes through
another vertex of the network.

Two are the parameters that control the extent to which this algorithm simplifies
the linear network: edge Length and Angle between edges. The tuning of these two
parameters allows the user to test several simplifications of the network that imply
different levels of conservation of its geometric structure. Both parameters work in
the same direction: merging between two edges only produces if their lengths (of
both) are lower than Length and if the angle they form is below the value of Angle.
The continuous increase of Length and Angle can derive into a very simplified
network (with a minimal number of vertex and edges), but this process has the cost
of producing a geometric structure much more dissimilar to the original one.

More specifically, an analysis on the choice of Length and Angle was performed by
using a road network from the city of València (Spain). The Angle parameter was
varied from 0◦ to 90◦, whereas Length made it from 0 m to 500 m. The level of
simplification achieved with every combination of the parameters was measured in
terms of the percentage of second-degree vertex that were removed by merging their
two incident edges, which is the objective of the algorithm. The Hausdorff distance
(Huttenlocher et al., 1993) was then used to measure the geometric dissimilarity
existing between the original road network and each of its simplifications, which
was achieved with the aid of the gDistance function of the rgeos package (Bivand
and Rundel, 2018b). Hence, the ratio between the level of simplification obtained
and the geometric dissimilarity produced was computed for every combination of
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parameters as a measure of efficiency for the algorithm. As a guide, a choice of
Angle between 15◦ and 30◦, and a Length from 50 m to 80 m suggested optimality
(the optimal was attained for an Angle of 22.5◦ and a Length of 65 m) for the network
tested, although these parameters could be less convenient for other road networks.
As an illustration, Figure 8.5 shows the application of the SimplifyLinearNetwork
function of the package with an Angle of 25◦ and a Length of 65 m. A reduction
in the number of two-degree vertex of the network can be clearly appreciated from
Figure 8.5a to Figure 8.5b.

Furthermore, for users that fail to determine a value for Angle and Length that
work properly in all kind of roads of their network of interest, the algorithm allows
the specification of several values for the Angle parameter dependent on the value
of Length. For instance, one could wish to simplify extremely short edges of the
network connected by a two-degree vertex, even though the angle they form is quite
abrupt. In this case, the user can establish a threshold of 40◦ if both edges are shorter
than 10 m, and a threshold of 25◦ otherwise. This information can then be passed to
the algorithm function with a 2×2 matrix as the following, which would be created in
the R console with the basic instruction M <- matrix(c(10,60,40,25),nrow=2).

M =

Length Angle( )
10 40 Condition 1
60 25 Condition 2

For practical reasons, the use of a combined condition for the Angle and Length
parameters is only available in the SimplifyLinearNetwork of the package, which
can be used from the R console. The "Network Edition" only includes an option
to perform the simplification procedure with a global value for Angle and Length.
At this section of the application, one can alter the values of these parameters and
explore the results that produce, but the deeper employment of the algorithm (possi-
bly including the use of the gDistance function to measure geometric dissimilarity)
requires to be in the R console.

The following lines include an application of the SimplifyLinearNetwork function
to the SampleNetwork available in the package including both, a unique value for
Angle and Length and a combined effect of these parameters. The parameters of the
SimplifyLinearNetwork function are (in this order): network, Angle, Length and
M, which are not always specified in the next code for preserving the margins. As it
can be seen, the direct use of Angle and Length leads to a superior simplification
of the network (less edges), but some users could be particularly interested in the
simplification of pairs of very short edges that meet in a two-degree vertex, which is
accounted if the M matrix is used.

> network <- as.linnet(SampleNetwork)
> network
Linear network with 1664 vertices and 2513 lines
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> simplified_network_1 <- SimplifyLinearNetwork(SampleNetwork,25,65)
> simplified_network_1
Linear network with 1598 vertices and 2447 lines
> M <- matrix(c(10,60,40,25),nrow=2)
> simplified_network_2 <- SimplifyLinearNetwork(SampleNetwork,M=M)
> simplified_network_2
Linear network with 1639 vertices and 2488 lines

(a) (b)

Figure 8.5: A road network introduced as input (a) and its simplified version after the
application of the SimplifyLinearNetwork function with Angle = 25 and Length
= 65 (b)

8.1.3 Network direction

Application’s use

The "Network Direction" section of the application allows the user to endow the net-
work with a direction according to traffic flow, which is facilitated by the presence of
arrows indicating this information in the OSM layers. The option "Add flow" enable
users to define a flow along the network by simply clicking on the two connected
vertex that form the edge they want to give direction to (first click on the origin,
second on the end, according to traffic flow). Analogously, "Remove flow" performs
the opposite action by removing a direction previously defined, which requires to
select the two vertex that form the road segment whose direction is being eliminated
(the order of the selections is not important). The function addFlows of the leaflet
package overlays a blue arrow on the map when a direction is set, and also erases it
when the user decides to undo the defined direction (Figure 8.6).

Even though the "Add flow" and "Remove flow" options are sufficient to give direc-
tion to the whole network, "Add long flow" and "Remove long flow" attempt to save
some time to the user. These functions take advantage of the shortespath function
that was used to generate Chapter 17 of Baddeley et al. (2015) and is available
in http://book.spatstat.org/chapter-code/R/. This function finds the vertex
that have to be passed through to travel the shortest path that joins two given ver-
tex of the road network, considering that all possible paths along the road network
can be taken (without accounting for traffic flow). Therefore, the "Add long flow"
option of this section of the application allows to define directionality, at once, for

http://book.spatstat.org/chapter-code/R/
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(a) (b)

Figure 8.6: A zone of a road network introduced as an input in the "Network
Direction" section of the SpNetPrep application (a) and manual addition of traffic
flow to the network by using the options "Add flow" and "Add long flow" (b)

all the edges that form the shortest path between two vertex that are not directly
connected by an edge. This option can then be very helpful to provide direction to
a set of road segments that follow a specific direction that are, simultaneously, the
shortest path that joins two vertex of the road network. For example, long avenues
can be properly endowed with a direction at once with this option of the application,
but it can easily lead to mistakes if it is tested between vertex of the network that
require to take more intricate paths to make them connected. Anyway, the "Remove
long flow" option allows to undo a wrong direction assignment produced by "Add
long flow".

Direction information storage

The directionality of the linear network is stored in the form of a data.frame with
three columns named V1, V2 and Dir. For each edge of the network, i, V1 and
V2 contain the indexes of the vertex of the network that define edge i (origin
and end, according to the way the network was defined or created, which can be
meaningless in terms of traffic flow). This data.frame is then attached to the
SpatialLines introduced by the user, or added to the existing data.frame if the
input is a SpatialLinesDataFrame object. Obviously, users that have already used
the "Network Direction" section of the application with a specific road network only
have to upload it again in order to make editions to its directionality, and the V1,
V2 and Dir columns of the data.frame will be modified accordingly.

There are four possible values for the Dir column: 0, -1, 1 and 2. A value of 0
indicates the absence of a direction for an edge, 2 means double way direction,
1 that direction exists from vertex in column V1 to vertex in column V2 and -1
just the opposite (from vertex in V2 to vertex in V1). For example, the following
lines include an example of such a data.frame, which describes the minimal linear
network (with five edges and six vertex) represented in Figure 8.7.

V1 V2 Dir
1 2 2
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1 3 -1
2 4 1
1 5 1
2 6 -1

Taking this information into account, users can establish neighbouring relationships
between the road segments of their networks that respect traffic flow (employing
functions from the spdep package, for example) or compute distances between points
that really represent the way vehicles move along the network.

v3 v1 v2
v4

v5 v6

e1e2 e3
e4 e5

Figure 8.7: Example of a linear road network following usual notation for the edges
(ei) and vertex (vi). Arrows represent the direction of traffic flow

8.1.4 Point Pattern Revision

Application’s use

A point pattern that lies on a linear network can be created in R with the lpp
function of the spatstat if a spatial point pattern (ppp class) and a linear network
object (linnet class) are available. The use of the function marks from the same
package allows to add several informative variables to each point of the pattern.

It is always useful to have the possibility of visualizing such a point pattern, which
can be done with the "Point Pattern Revision" section of the SpNetPrep application
keeping the default option "Explore pattern" (if the pattern is marked, the values of
the first ten marks, following the definition of the object, are shown when clicking
each event). First, visualization usually provides a better understanding of the point
pattern which can condition the posterior statistical analysis, but also allows to check
that the creation of the point pattern on the linear network produced correctly.

For illustrating this section of the application, Figure 8.8a shows a Poisson generated
point pattern simulating traffic accidents occurred on the road network of the city
of València (generated with rpoislpp from spatstat with an intensity value of 0.01).
Several marks were created randomly and attached to the point pattern to make
possible the emergence of a popup message when clicking on a point of the pattern
(Figure 8.8b).

Edition of the point pattern

It has already been mentioned that the automatic creation of a point pattern that
lies on a linear network in R implies the orthogonal projection of a collection of
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geocoded events into the network. This operation generally leads to an accurate
representation of the observations, but it can produce some misplaced events along
the road network.

As it is suggested in Figure 8.8b, one could compute the projection distance (by
extracting the d component of the list that the proj2segment function returns) from
each geocoded event to the linear network and include it as a mark of the pattern
in order to facilitate the inspection of this operation (here, the projection distance
mark was also generated randomly from a uniform distribution only for illustration,
as the Poisson generated pattern lies exactly on the network). In addition, as another
preventive measure, in case the coordinates of the events came from the geocoding
of postal addresses, these could also be added as a string mark that allows the user
to better check if this process went straight.

(a) (b)

Figure 8.8: An example of a point pattern that lies on a road network as it can be
visualized in SpNetPrep (a), and information that is displayed (marks of the point
pattern, if available) when an event is clicked

Given the fact that some points of the pattern could be projected into the wrong
place after the simple application of the orthogonality criterion, the "Point Pattern
Revision" part of the application includes an option "Move event" that allows users
the change the location of the event within the network. A first click on the event
to be moved and a second on the exact position of the network where it should be
(so the user needs to click on the corresponding edge of the network and not on the
underlying map) is enough to perform this task.

8.1.5 Summary

This Chapter has presented the main functionalities and purposes of the SpNetPrep
R package. Mostly based on a shiny application that makes use of the leaflet library,
SpNetPrep allows users to carry out the complete preprocessing of a linear network
that represents a road structure, as a previous step to the execution of a spatial (or
spatio-temporal) statistics analysis.

The use of linear networks is becoming popular in recent times to provide more real-
istic investigations of many events of interest that take place along road structures.
However, dealing with linear networks can be quite more complicated than using
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other typical spatial structures, which in some extremes cases could even lead to
discard its use.

The SpNetPrep application is then divided into three sections that attempt to reduce
the difficulties that associate to the most common issues that arise when working
with linear networks that represent road structures. First, the availability of road
networks in the right format is sometimes scarce or not of enough depth to satisfy the
necessities of the researchers. Second, linear networks that represent road structures
can present both mistaken and excessively complex road segment configurations.
The "Network Edition" section of the application provides several tools to try to
overcome these two main difficulties, including an algorithm that automatically
simplifies the network accounting for its geometric shape.

Another important step to perform before the execution of a spatial analysis over
a linear network is the revision of the point pattern that is being employed. Point
patterns on linear networks are commonly built by applying the orthogonal projec-
tion of a set of coordinates into the linear network. Even though this can work well
most of the times, the excessive simplifications of the road structure or the inaccu-
racies derived from the geocoding of the events could cause serious alterations in the
pattern. The section "Point Pattern Edition" allows users to inspect and correct a
point pattern that lies on a network.

Finally, the SpNetPrep application includes a more specific part about "Network
Direction". The tools available in this section of the application enable users to
endow their whole road network according to traffic flow. This task could be really
costly if the network is of considerable dimensions, but the value it can provide to
some particular statistical analysis should make it worth it.

8.2 DRHotNet: Overview of the package

Hotspot detection basically consists in finding zones of a space where certain event is
highly concentrated. There exists a wide variety of methods in literature that allow
researchers to identify hotspots at a certain level of accuracy or spatial aggregation.
Some of them have been massively used in the last decades, including certain lo-
cal indicators of spatial association such as LISA (Anselin, 1995) or the Getis-Ord
statistic (Getis and Ord, 1992), and the spatial scan statistic (Kulldorff, 1997). The
first two of these methods are implemented in the R package spdep (Bivand et al.,
2013), whereas the scan statistic is implemented in DCluster (Gómez-Rubio et al.,
2005) (although there are other R packages that also provide an implementation of
these methods). Furthermore, many new R packages focused on hotspot detection
have been released in the last years, most of them being model-based and oriented
to disease mapping studies that are carried out over administrative (areal) units
(Allévius, 2018; Gómez-Rubio et al., 2019; Meyer et al., 2017).

However, the analysis of certain types of events requires detecting hotspots at a
level of spatial accuracy greater than that provided by administrative or regular
areal units. Indeed, many research studies of the fields of criminology (Andresen
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et al., 2017; Weisburd, 2015) and traffic safety (Briz-Redón et al., 2019e; Nie et al.,
2015; Xie and Yan, 2013) that have been published in recent years were entirely
carried out on road network structures rather than on administrative units. More
specifically, some quantitative criminologists have estimated that around 60% of the
total variability in crime incidence occurs at the street segment level (Schnell et al.,
2017; Steenbeek and Weisburd, 2016), a fact that shows the essentiality of using
road segments instead of areal structures to capture the spatial concentration of
certain events more properly.

Fortunately, road network structures were introduced in the context of spatial statis-
tics some years ago, providing the basis for analyzing events lying on such structures,
which are usually referred to as linear networks. Indeed, the investigation of spatial
patterns lying on linear networks is gaining attention in the last years. The design of
new and more accurate/efficient kernel density estimators (McSwiggan et al., 2017;
Moradi et al., 2018, 2019; Rakshit et al., 2019b), the introduction of graph-related
intensity measures (Eckardt and Mateu, 2018), the construction of local indicators
of spatial association (Eckardt and Mateu, 2017), or the estimation of relative risks
(McSwiggan et al., 2019) are some topics that have recently started developing for
linear networks.

Besides the theoretical requirements and advances, it is worth noting that using
linear networks for carrying out a spatial or spatio-temporal analysis entails certain
technical difficulties. In this regard, the R package spatstat (Baddeley et al., 2015)
provides multiple specific functions that allow R users to carry out statistical analy-
ses on linear networks. Furthermore, efforts are constantly being made to reduce the
computational cost of adapting certain classical spatial techniques to the singular
case of linear networks (Rakshit et al., 2019a).

Despite the existing necessity of analyzing point-referenced data coming from certain
fields of research at the street level, there are not many software tools fully designed
for hotspot detection on road networks. One relevant contribution in this regard
is the KDE+ software (Bíl et al., 2016), although this is not integrated in R. The
package DRHotNet, which has been created during the development of this thesis, is
specifically prepared for allowing R users to detect differential risk hotspots (zones
where a type of event is overrepresented) along a linear network. The methodology
behind the functionalities of DRHotNet has been already presented in Chapter 3 of
this thesis. Next section shows how this package can be used.

8.2.1 Using DRHotNet

This section shows the complete use of the DRHotNet package with a dataset of
crime events recorded in Chicago (Illinois, US). The computation time is indicated
for some of the steps (measured in real time for the user). An Intel(R) Core(TM)
i7-6700HQ CPU @ 2.60GHz processor was used in this case.

First of all, the following R libraries have to be loaded to reproduce the example:

> library(DRHotNet)
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> library(lubridate)
> library(maptools)
> library(raster)
> library(rgeos)
> library(sp)
> library(SpNetPrep)
> library(spatstat)
> library(tigris)

Downloading and preparing the linear network

The examples provided in this section fully employs open data available for Chicago.
First, geographic data from Chicago was downloaded from the United States Census
Bureau through package tigris (Walker, 2016). Specifically, census tracts and the
road network of the state of Massachusetts were loaded into the R console. The
function intersect from the package raster (Hijmans, 2019) can be used.

0 m 500 m 1000 m

Figure 8.9: Road network (in black) corresponding to the Near West Side Commu-
nity Area of Chicago. Census tracts of the area are overlayed in blue.

> cook.tracts <- tracts(state = "Illinois", county = "031")
> class(cook.tracts)
[1] "SpatialPolygonsDataFrame"
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attr(,"package")
[1] "sp"
> cook.network <- roads(state = "Illinois", county = "031")
> class(cook.network)
[1] "SpatialLinesDataFrame"
attr(,"package")
[1] "sp"

The objects cook.tracts and cook.network are composed of 1319 polygons and
77698 lines, respectively (as of the end of September 2019). Now, both objects are
used to construct a smaller road network that corresponds to the Near West Side
Community Area of Chicago.

> names.tracts <- as.character(cook.tracts@data[,"NAME"])
> select.tracts <- c("8378","2804","8330","2801","2808","2809","8380",

"8381","8331","2819","2827","2828","8382","8329",
"2831","2832","8333","8419","8429","2838")

> cook.tracts.select <- cook.tracts[which(names.tracts%in%select.tracts),]
> chicago.SpLines <- intersect(cook.network, cook.tracts.select)
> length(chicago.SpLines)
[1] 1116

Object chicago.SpLine (SpatialLinesDataFrame) has 1116 lines. Then, this ob-
ject’s coordinates are converted into UTM (Chicago’s UTM zone is 16):

chicago.SpLines <- spTransform(chicago.SpLines,
"+proj=utm +zone=16 ellps=WGS84")

Now the corresponding linnet object is created:

> chicago.linnet <- as.linnet(chicago.SpLines)
> chicago.linnet
Linear network with 9431 vertices and 10559 lines
Enclosing window:

rectangle = [442563.5, 447320] x [4634170, 4637660] units

It is worth noting how the transformation of the network into a linnet object
increases dramatically the number of line segments (from 1116 to 10559). This is a
consequence of the fact that SpatialLines objects can handle curvilinear segments,
made of multiple line segments, as a single line. However, linnet objects follow
strictly the definition of linear network provided in the Introduction, which excludes
this possibility.

It is required that the network is fully connected in order to allow the computation
of a distance between any pair of points. This can be checked with the function
connected.
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> table(connected(chicago.linnet, what = "labels"))

1 2
9429 2

This output means that there is a connected component of 9429 vertices and a
separate component of only two vertices. The use of connected with the option
what = "components" enables us to extract the larger connected component for
the analysis, discarding the other one.

> chicago.linnet.components <- connected(chicago.linnet,
what = "components")

> chicago.linnet.components
[[1]]
Linear network with 9429 vertices and 10558 lines
Enclosing window:
rectangle = [442563.5, 447320] x [4634170, 4637660] units
[[2]]
Linear network with 2 vertices and 1 line
Enclosing window:
rectangle = [442563.5, 447320] x [4634170, 4637660] units
> chicago.linnet <- chicago.linnet.components[[1]]

At this point, it is worth considering the possibility of reducing network’s complexity.
The function SimplifyLinearNetwork of SpNetPrep can be used for this purpose. A
reasonable choice of the parameters is Angle = 20 and Length = 50 (Briz-Redón,
2019). This choice of the parameters means that a pair of segments meeting at
a second-degree vertex is merged into one single segment if the angle they form
(measured from 0◦ to 90◦) is lower than 20◦ and if the length of each of them is
lower than 50 m. Hence, network’s complexity is reduced (in terms of number of
segments and lines) while its geometry is preserved. The following lines of code
execute SimplifyLinearNetwork (computation time: 5.06 seconds) and redefine
chicago.SpLine according to the structure of the final linnet object.

> chicago.linnet <- SimplifyLinearNetwork(chicago.linnet,
Angle = 20, Length = 50)

> chicago.linnet
Linear network with 2564 vertices and 3693 lines
Enclosing window:
rectangle = [442563.5, 447320] x [4634170, 4637660] units
> chicago.SpLines <- as.SpatialLines.psp(as.psp(chicago.linnet))

Thus, the final road network from Chicago has 3693 lines and 2564 vertices. An
example of how SimplifyLinearNetwork reduces network’s complexity is shown
in Figure 8.10, which corresponds to a squared zone of Chicago’s network with a
diameter of 600 m.
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(a) (b)

Figure 8.10: Extracting a part of the road network structure analyzed from Chicago.
Original structure extracted (left), made of 273 lines and 260 vertices, and simplified
version of it (right) with 114 lines and 101 vertices.

Downloading and preparing crime data

Point-referenced crime datasets corresponding to several cities from the United
States of America can be downloaded through the R package crimedata (Ashby,
2019). Concretely, crimedata currently provides (as of September 2019) crime open
data recorded in Austin, Boston, Chicago, Detroit, Fort Worth, Kansas City, Los
Angeles, Louisville, Mesa, New York, San Francisco, Tucson and Virginia Beach.
Therefore, the function get_crime_data from this package can be used for down-
loading a dataset of crime events recorded in Chicago in the period 2007-2018.

> chicago.crimes <- get_crime_data(years = 2007:2018, cities = "Chicago")
> dim(chicago.crimes)
[1] 39151 12

The year, month and hour of occurrence of each crime can be extracted with the
corresponding functions of the package lubridate (Grolemund and Wickham, 2011).

> chicago.crimes$year <- year(chicago.crimes$date_single)
> chicago.crimes$month <- month(chicago.crimes$date_single)
> chicago.crimes$hour <- hour(chicago.crimes$date_single)

Then, a marked point pattern lying on chicago.linnet can be created with function
lpp to provide the framework required by the DRHotNet package. A data.frame is
passed to lpp including the coordinates of the events (in UTM), the type of event
according to the receiver of the offense (offense_against), and the year, month
and hour of occurrence that have been just computed.
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> chicago.crimes.coord <- data.frame(x = chicago.crimes$longitude,
y = chicago.crimes$latitude)

> coordinates(chicago.crimes.coord) <-~ x + y
> lonlat_proj <- "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"
> utm_proj <- "+proj=utm +zone=16 ellps=WGS84"
> proj4string(chicago.crimes.coord) <- lonlat_proj
> chicago.crimes.coord <- spTransform(chicago.crimes.coord, utm_proj)
> X.chicago <- lpp(data.frame(x = chicago.crimes.coord@coords[,1],

y = chicago.crimes.coord@coords[,2],
offense_against = chicago.crimes$offense_against,
year = chicago.crimes$year,
month = chicago.crimes$month,
hour = chicago.crimes$hour),
chicago.linnet)

Warning message:
37825 points were rejected as lying outside the specified window

A total of 37825 points are rejected because they lie outside the road network.
Hence, a marked point pattern of 1326 crimes that lie on chicago.linnet remains
for the analysis. The four marks are categorical, presenting the following values and
absolute frequencies:

> table(X.chicago$data$offense_against)

other persons property society
80 268 831 147

> table(X.chicago$data$year)

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
138 130 133 129 116 97 94 90 85 111 105 98

> table(X.chicago$data$month)

1 2 3 4 5 6 7 8 9 10 11 12
103 78 120 102 111 114 138 101 115 124 114 106
> table(X.chicago$data$hour)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
62 33 44 24 23 15 31 29 61 72 53 73 82 63 66 78 69 75
18 19 20 21 22 23
52 76 70 72 52 51

Hence, DRHotNet functionalities are now applicable to X.chicago. In the main
example shown, the relative occurrence of crimes against persons along the road
network included in X.chicago is analyzed. To this end, the functions of the pack-
age are used following the steps that have been established for the differential risk
hotspot detection methodology previously described.
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Estimating a relative probability surface

The function RelativeProbabilityNetwork of DRHotNet has to be used at first
to estimate a relative probability surface over the linear network. As it has been
explained, this implies estimating a relative probability in the middle point of each
segment of the network.

> rel_probs_persons <- RelativeProbabilityNetwork(X = X.chicago,
lixel_length = 50,
sigma = 250,
mark = "offense_against",
category_mark = "persons")

In this example (computation time: 1.53 seconds), an upper bound of 50 m is
chosen for lixel’s length. This means that segments shorter than 50 m are not split,
whereas those longer than 50 m are split into several of no more than 50 m length.
This operation is performed internally by RelativeProbabilityNetwork with the
function lixellate from spatstat. The bandwidth parameter, σ, is set to 250 m.
The mark and category_mark parameters are used to specify the type of event that
is under analysis.

The exploration of the object rel_probs_persons with function str allows the user
to check that the choice of a 50 m threshold for lixel’s length produces 7614 segments
along the network. Thus, a relative probability is estimated in the middle point of
each of these segments, which can be accessed typing $probs:

> str(rel_probs_persons)
List of 5
$ probs : num [1:7614] 0.131 0.162 0.137 0.115 0.108 ...
$ lixel_length : num 50
$ sigma : num 250
$ mark : chr "offense_against"
$ category_mark: chr "persons"

The function PlotRelativeProbabilities can then be used to obtain a map of
the relative probability surface as the one shown in Figure 8.11b. Figure 8.11 also
contains the relative probability surfaces corresponding to the choices of σ = 125
(Figure 8.11a), σ = 500 (Figure 8.11c) and σ = 1000 (Figure 8.11d). It can be
observed that the choice of a larger value for σ smooths the relative probability
surface, which in the case of σ = 500 or σ = 1000 leads to the configuration of a
small number of clearly distinguishable zones of the network in terms of the relative
probability of offenses against persons. Indeed, whereas the use of σ = 125 allows
the user to obtain quite extreme relative probability values at some segments of the
network (the values vary from 0 to 0.99), choosing σ = 1000 causes that all the
relative probabilities lie in the interval [0.07, 0.32].
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In view of Figure 8.11, σ = 250 seems a reasonable choice (although some proce-
dures for bandwidth selection could be explored for taking this decision). Therefore,
this selection of the bandwidth parameter is maintained to display now how the
DRHotspots_k_n function of the package performs.

Detecting differential risk hotspots

The function DRHotspots_k_n needs four parameters to be specified: X (a point
pattern on a linear network), rel_probs (an object like the one obtained in the
previous step), k and n. Parameters k and n control the differential risk hotspot
procedure, as it has been explained before. For example, you can try with k = 1
and n = 30 (computation time: 1.12 minutes):

> hotspots_persons <- DRHotspots_k_n(X = X.chicago,
rel_probs = rel_probs_persons,
k = 1, n = 30)

The output of the function DRHotspots_k_n presents the following structure:

> str(hotspots_persons)
List of 8
$ DRHotspots :List of 5
..$ : num [1:12] 247 313 314 1150 1151 ...
..$ : num [1:12] 551 552 553 554 5080 ...
..$ : num [1:8] 1093 1818 2466 4575 6127 ...
..$ : num 4271
..$ : num [1:2] 5533 5535
$ k : num 1
$ n : num 30
$ lixel_length : num 50
$ sigma : num 250
$ mark : chr "offense_against"
$ category_mark: chr "persons"
$ PAI_type : num 7.82

The first component of hotspots_persons contains the differential risk hotspots
that have been detected for the values of k and n provided to DRHotspots_k_n. In
this case, five differential risk hotspots are found, which are formed by 12, 12, 8,
1 and 2 road segments, respectively. The object hotspots_persons also contains
the values of the parameters involved in the computation of the hotspots and a final
component that includes the global PAItype for the set, which is 7.82 in this example.

The function SummaryDRHotspots can be used to provide a summary of each of the
differential risk hotspots determined by DRHotspots_k_n (computation time: 15.50
seconds):
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> summary_persons <- SummaryDRHotspots(X = X.chicago,
rel_prob = rel_probs_persons,
hotspots = hotspots_persons)

The output of SummaryDRHotspots includes a count of the number of events lo-
cated within each differential risk hotspot and how many of these correspond to the
category “persons”:

> summary_persons[,c("Events type (ctr)", "All events (ctr)",
"Prop. (ctr)")]

Events type (ctr) All events (ctr) Prop. (ctr)
1 4 11 0.36
2 5 8 0.62
3 0 1 0.00
4 0 0 NaN
5 0 0 NaN

The summary also contains the length (in meters) of each differential risk hotspot
and the PAItype that corresponds to each of them:

> summary_persons[,c("Length in m (ctr)", "PAI_type (ctr)")]
Length in m (ctr) PAI_type (ctr)

1 456.86 9.13
2 366.01 14.24
3 265.71 0.00
4 42.70 0.00
5 68.78 0.00

Furthermore, the output of SummaryDRHotspots also provides the same statistics
for an extension of each of the hotspots. The reason to include this information
is because if there are not many events available in the dataset (as it happens in
this example), the method can determine differential risk hotspots where very few
events, if any, have taken place. Indeed, in the output of SummaryDRHotspots shown
above, there are two hotspots including zero events, one including only one, and two
more containing a very reduced number of crimes. The fact of employing kernel
density estimation to infer a relative probability surface makes more convenient
to think of each differential risk hotspot as the union of a center or core (what
DRHotspots_k_n returns, the hotspot itself) and an extension of it. Hence, by
considering an extension of the differential risk hotspot one can better appreciate
the zone of the network that has been accounted for in the estimation of the relative
probability values corresponding to the segments of the hotspot.
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By default, the extension computed by SummaryDRHotspots coincides with a neigh-
bourhood of the segments forming each differential risk hotspot of order o = σ

Lixel length

(rounded to the nearest integer), although a different order can be specified through
the parameter order_extension. In this example, we have o = 250

50
= 5, which is

used by SummaryDRHotspots if no other order is indicated:

> summary_persons[,c("Events type (ext)", "All events (ext)",
"Prop. (ext)")]

Events type (ext) All events (ext) Prop. (ext)
1 14 42 0.33
2 14 50 0.28
3 11 33 0.33
4 10 30 0.33
5 5 15 0.33
> summary_persons[,c("Length in m (ext)", "PAI_type (ext)")]
Length in m (ext) PAI_type (ext)

1 3526.69 4.14
2 3285.57 4.44
3 1921.33 5.97
4 1318.60 7.91
5 1072.17 4.86

It can be observed that all extensions of the differential risk hotspots include a
reasonable number of events and that the corresponding proportions of offenses
against persons are clearly above the global proportion for the dataset, which is
268/1326 ≈ 0.20.

Assessing the statistical significance of the hotspots

Following with the choice of k = 1 and n = 30, it only remains to estimate a p-
value for each of the differential risk hotspots detected. This can be done calling the
function SummaryDRHotspots again and specifying compute_p_value = T. A total
of 200 iterations are selected for performing the Monte Carlo simulation process
(computation time: 18.89 minutes):

> summary_persons <- SummaryDRHotspots(X = X.chicago,
rel_prob = rel_probs_persons,
hotspots = hotspots_persons,
compute_p_value = T,
n_it = 200)

> summary_persons$‘p-value‘
[1] 0.015 0.010 0.035 0.035 0.000
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Therefore, the five differential risk hotspots detected with k = 1 and n = 30 are
statistically significant (p < 0.05). It is worth noting, however, that the usual signif-
icance level of 0.05 should be reduced (corrected) if many differential risk hotspots
are detected to avoid the presence of multiple comparison problems.

Choosing k and n

Remember that a higher value of either k or n represents using a more stringent
criterion regarding hotspot detection. This is illustrated through the four maps
available in Figure 8.12, which can be generated with the function PlotHotspots
of DRHotNet. For instance, as in the following example for the object hotspots
created previously (which corresponds to Figure 8.12d):

> PlotHotspots(X = X.chicago, hotspots = hotspots)

Indeed, Figure 8.12 shows the differential risk hotspots that DRHotspots_k_n detects
for the choices of k = 0.5 and n = 20 (Figure 8.12a), k = 1.5 and n = 20 (Figure
8.12b), k = 1 and n = 10 (Figure 8.12c), and k = 1 and n = 30 (Figure 8.12d).
Two of these combinations of conditions on k and n are implicitly represented by
the other two. Consequently, the differential risk hotspots shown in Figure 8.12b are
contained in Figure 8.12a, and those in Figure 8.12d are contained in Figure 8.12c.
The choice of k = 1 and n = 30 leads to the highest global PAItype among the four
combinations of parameters indicated, with the value of 15.6 mentioned before. In
this regard, it is recommended to perform a sensitivity analysis on the values of
k and n to decide which combination is more convenient. The sensitivity analysis
carried out in Chapter 3 yielded that a choice around k = 1.5 and n = 45 was
optimal in terms of the PAItype for the traffic accident dataset that was investigated.
However, each dataset should require a specific analysis.

Thus, a sensitivity analysis on k and n can be carried out with the function Sensitivity_k_n.
The user has to provide a point pattern (X), an object containing the relative prob-
abilities of a type of event along the network (rel_probs) and a set of values for k
and n (ks and ns, respectively):

> sensitivity_analysis <- Sensitivity_k_n(X = X.chicago,
rel_prob = rel_probs_persons,
ks = seq(0,3,0.5),
ns = seq(10,30,5))

> sensitivity_analysis
n = 10 n = 15 n = 20 n = 25 n = 30

k = 0 3.05 3.60 4.36 4.72 5.58
k = 0.5 3.93 4.90 5.96 6.23 6.52
k = 1 4.62 5.82 6.11 6.66 7.82
k = 1.5 5.44 7.63 4.52 0.00 0.00
k = 2 5.66 18.14 0.00 0.00 NA
k = 2.5 7.06 NA NA NA NA
k = 3 0.00 NA NA NA NA
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The output from Sensitivity_k_n is a matrix that contains the PAItype values
that correspond to each combination of k and n indicated by ks and ns. A NA value
represents that no differential risk hotspots can be found for such combination of
parameters. According to this matrix, the highest PAItype value is achieved for k = 2
and n = 15.

Therefore, one can choose the values of k and n that maximize the PAItype (consid-
ering the parameters provided in ks and ns) to determine the final set of differential
risk hotspots. However, this criteria may lead sometimes to detect a very low num-
ber of differential risks hotspots and hence to miss zones of the network that may
also deserve some attention. Hence, a more conservative approach could be con-
sidering several combinations of k and n that yield some of the highest values of
PAItype and explore each set of differential risk hotspots associated. Then, one could
investigate the output of SummaryDRHotspots for each combination of parameters
(including the computation of p-values) to better decide which zones of the network
are relevant for the type of event of interest.

Other applications of the methodology

This final section shows the results that are obtained for other type of events for
comparative purposes. First, the marks X.chicago are recoded into binary outcomes
as follows:

> year_after_2012 <- ifelse(X.chicago$data$year>2012, "Yes", "No")
> month_winter <- ifelse(X.chicago$data$month%in%c(12,1,2), "Yes", "No")
> hour_21_3 <- ifelse(X.chicago$data$hour%in%c(21:23,0:3), "Yes", "No")
> marks(X.chicago) <- data.frame(as.data.frame(marks(X.chicago)),

year_after_2012 = year_after_2012,
month_winter = month_winter,
hour_21_3 = hour_21_3)

The relative probability surfaces have to be computed. The values for lixel.length
and sigma used in the previous examples are chosen again.

> rel_probs_after_2012 <- RelativeProbabilityNetwork(X = X.chicago,
lixel_length = 50,
sigma = 250,
mark = "year_after_2012",
category_mark = "Yes")

> rel_probs_winter <- RelativeProbabilityNetwork(X = X.chicago,
lixel_length = 50,
sigma = 250,
mark = "month_winter",
category_mark = "Yes")

> rel_probs_21_3 <- RelativeProbabilityNetwork(X = X.chicago,
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lixel_length = 50,
sigma = 250,
mark = "hour_21_3",
category_mark = "Yes")

The corresponding sensitivity analyses are carried out:

> sensitivity_after_2012 <- Sensitivity_k_n(X = X.chicago,
rel_prob = rel_probs_after_2012,
ks = seq(0,3,0.5),
ns = seq(10,30,5))

> sensitivity_after_2012
n = 10 n = 15 n = 20 n = 25 n = 30

k = 0 2.09 2.67 3.45 4.98 8.71
k = 0.5 2.58 2.99 4.28 7.16 16.81
k = 1 5.43 7.61 9.71 17.64 28.91
k = 1.5 3.40 NA NA NA NA
k = 2 NA NA NA NA NA
k = 2.5 NA NA NA NA NA
k = 3 NA NA NA NA NA
> sensitivity_winter <- Sensitivity_k_n(X = X.chicago,

rel_prob = rel_probs_winter,
ks = seq(0,3,0.5),
ns = seq(10,30,5))

> sensitivity_winter
n = 10 n = 15 n = 20 n = 25 n = 30

k = 0 2.88 4.02 5.06 7.36 9.89
k = 0.5 3.14 4.60 4.30 6.97 6.03
k = 1 5.18 7.35 1.32 0.00 NA
k = 1.5 0.83 0.00 NA NA NA
k = 2 0.00 NA NA NA NA
k = 2.5 NA NA NA NA NA
k = 3 NA NA NA NA NA
> sensitivity_21_3 <- Sensitivity_k_n(X = X.chicago,

rel_prob = rel_probs_21_3,
ks = seq(0,3,0.5),
ns = seq(10,30,5))

> sensitivity_21_3
n = 10 n = 15 n = 20 n = 25 n = 30

k = 0 2.42 3.20 4.49 4.69 4.81
k = 0.5 3.00 4.08 5.30 5.55 6.03
k = 1 3.04 3.94 4.74 4.11 0.00
k = 1.5 3.67 4.58 6.37 5.94 NA
k = 2 5.46 5.79 7.30 5.58 NA
k = 2.5 12.03 11.36 14.41 5.67 NA
k = 3 0.00 0.00 0.00 NA NA
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The highest PAItype values for year_after_2012, month_winter and hour_21_3 are
28.91, 9.89 and 14.41, respectively. The differential risk hotspots that are obtained
for the combination of k and n that lead to these PAItype values can be visualized
with PlotHotspots (Figure 8.13):

> hotspots_after_2012 <- DRHotspots_k_n(X = X.chicago,
rel_prob = rel_probs_after_2012,
k = 1,
n = 30)

> PlotHotspots(X = X.chicago, hotspots_after_2012)

> hotspots_winter <- DRHotspots_k_n(X = X.chicago,
rel_prob = rel_probs_winter,
k = 0,
n = 30)

> PlotHotspots(X = X.chicago, hotspots_winter)

> hotspots_21_3 <- DRHotspots_k_n(X = X.chicago,
rel_prob = rel_probs_21_3,
k = 2.5,
n = 20)

> PlotHotspots(X = X.chicago, hotspots_21_3)

8.2.2 Summary

The R package DRHotNet for detecting differential risk hotspots on linear networks
has been described. The use of linear networks in the context of hotspot detection
is becoming more important over the years, particularly in the fields of criminology
and traffic safety. In addition, it is also of great interest sometimes to detect zones
of a linear network where certain type of event is especially overrepresented. Hence,
DRHotNet consists of an easy-to-use tool implemented in R to accurately locate the
microzones of a linear network where the incidence of a type of event is considerably
higher than in the rest of it.
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Relative probabilities ’persons’ (offense_against),

lixel_length = 50, sigma = 125

[0, 0.03] ]0.03, 0.1] ]0.1, 0.2] ]0.2, 0.34] ]0.34, 0.99]

(a)

Relative probabilities ’persons’ (offense_against),

lixel_length = 50, sigma = 250

[0, 0.11] ]0.11, 0.16] ]0.16, 0.22] ]0.22, 0.28] ]0.28, 0.77]

(b)

Relative probabilities ’persons’ (offense_against),

lixel_length = 50, sigma = 500

[0, 0.14] ]0.14, 0.18] ]0.18, 0.21] ]0.21, 0.26] ]0.26, 0.52]

(c)

Relative probabilities ’persons’ (offense_against),

lixel_length = 50, sigma = 1000

[0.07, 0.15] ]0.15, 0.2] ]0.2, 0.22] ]0.22, 0.24] ]0.24, 0.32]

(d)

Figure 8.11: Outputs from the function PlotRelativeProbabilities for the fol-
lowing choices of σ: 125 (a), 250 (b), 500 (c) and 1000 (d).
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Differential risk hotspots ’persons’ (offense_against),

lixel_length = 50, sigma = 250,

k = 0.5, n = 20

DRHotspot (center) DRHotspot (extension), order = 5

(a)

Differential risk hotspots ’persons’ (offense_against),

lixel_length = 50, sigma = 250,

k = 1.5, n = 20

DRHotspot (center) DRHotspot (extension), order = 5

(b)

Differential risk hotspots ’persons’ (offense_against),

lixel_length = 50, sigma = 250,

k = 1, n = 10

DRHotspot (center) DRHotspot (extension), order = 5

(c)

Differential risk hotspots ’persons’ (offense_against),

lixel_length = 50, sigma = 250,

k = 1, n = 30

DRHotspot (center) DRHotspot (extension), order = 5

(d)

Figure 8.12: Outputs from the function PlotHotspots for the following choices of
k and n: k = 0.5 and n = 20 (a), k = 1.5 and n = 20 (b), k = 1 and n = 10 (c) and
k = 1 and n = 30 (d).



168 Chapter 8. Software development

Differential risk hotspots ’Yes’ (year_after_2012),

lixel_length = 50, sigma = 250,

k = 1, n = 30

DRHotspot (center) DRHotspot (extension), order = 5

(a)

Differential risk hotspots ’Yes’ (month_winter),

lixel_length = 50, sigma = 250,

k = 0, n = 30

DRHotspot (center) DRHotspot (extension), order = 5

(b)

Differential risk hotspots ’Yes’ (hour_21_3),

lixel_length = 50, sigma = 250,

k = 2.5, n = 20

DRHotspot (center) DRHotspot (extension), order = 5

(c)

Figure 8.13: Outputs from the function PlotHotspots for the marks
year_after_2012, month_winter and hour_21_3 and the categorical value Yes for
the three, considering the combinations of k and n that maximize the PAItype (for
the values of k and n tested).



Chapter 9

Conclusions and future work

This final chapter summarizes the main outcomes that have been obtained in the
context of developing and applying spatio-temporal techniques to analyze crime and
traffic safety data, while also indicating some lines of research that could be explored
in the future.

A capital goal from the start was to analyze spatial data at the road segment level.
Using linear networks as a spatial window is becoming more relevant in several fields,
especially in those two in which the focus has been put on: criminology and traffic
safety. The technical complexity of managing linear networks led to the creation of
the R package SpNetPrep (Chapter 8). With the aid of this package, several studies
were carried out, including multivariate analyses (Chapter 2) and the development
of a differential risk hotspot detection procedure for linear networks (Chapter 3),
which also gave raise to another R package, DRHotNet (Chapter 8), which allows
the user to carry out the complete procedure, providing several capabilities such
as the visualization of the hotspots or the performance of sensitivity analyses on
the two parameters involved. This hotspot detection methodology could be further
investigated by integrating statistical models to fit event counts at the road segment
level, allowing for the inclusion of covariate information. In this regard, specifying
a suitable modelling approach would be essential, as the analysis of event counts at
the road segment level usually leads to the presence of overdispersion in the data
and to an excessive number of zeros.

Another analysis that made use of the road network structure of Valencia is presented
in Chapter 4. In this analysis, the classical version of the Knox test for assessing
the presence of space-time interaction is modified by accounting for spatio-temporal
risk heterogeneity for the investigation of a dataset of burglaries. Two main mech-
anisms that can be used to adjust the Knox test are described: the one proposed
by Schmertmann (2015), which considers fixed covariate effects that vary in space
and time as the covariates, and an alternative approach that contemplates the ex-
istence of space-time varying covariate effects (with the covariate values remaining
constant). The latter was chosen due to data unavailability for a long enough pe-
riod, but both approaches are reasonable to achieve the goal of adjusting the usual
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version of the Knox test in order to get more accurate results. In this regard, car-
rying out more specific investigations on the choice of both mechanisms, including
the consideration of different spatial and temporal domains, could be of interest.

From the analysis of spatial data at the road segment level, the research moved
towards area-level analyses. Despite the necessity of considering road networks for
gaining accuracy, there are still enough reasons to analyze data at the level of areal
spatial units. First, it is hard many times to obtain valuable covariates at the road
segment, which can detract from the usefulness of the road-level analysis. Further-
more, for practical reasons such as the implementation of preventive measures, it
can be more convenient to analyze event counts per census tract or police district.

Chapter 5 is devoted to one fundamental issue with regard to area-level spatial
analyses: the modifiable areal unit problem (MAUP). This chapter includes a de-
tailed case study that focuses on examining the possible effects of the MAUP in
macroscopic safety analysis, although the findings could be extended to other fields
of research. In particular, the investigation was carried out by accounting for the
two main spatial characteristics whose variation is usually implicated in the MAUP:
scale and zoning. The results suggested that the variations in scale were less influ-
ential in model estimations (for both CAR and GWR models), although there were
remarkable differences among the set of covariates considered. In this regard, the
analysis also showed that a count-based covariate that is defined on the basis of a
highly-clustered point pattern may be more sensitive to the MAUP than a covariate
that is defined from a more regular pattern. In addition, one should not overlook
how the basic characteristics of the response variable involved in model fitting are af-
fected by any change in scale and/or zoning. Hence, the choice of a certain modelling
approach should also account for the possible variations in the statistical properties
of the response variable. In the future, further research could be conducted by per-
forming simulation studies accounting explicitly for the main factors that have been
already outlined: scale, zoning and characteristics of both response and covariates.
These simulation studies could be helpful to determine with greater accuracy the
extent of the consequences of the MAUP and, more importantly, the steps that can
be carried out in order to attempt minimize to its effects.

Chapter 6 includes a comparative analysis of different methodologies that can be
considered for analyzing how certain fixed landscape features (as schools) increase
(or decrease) the presence of an event of interest (as traffic accidents). The sta-
tistical techniques that were used for the comparison were: observed vs expected
ratios (defined for several spatial radii), conditional autoregressive models, multiple
source regression models and logistic regression models under the context of a case-
control design. Although the different approaches yielded quite coherent results,
some differences emerged, especially in view of the results provided by the logistic
regression models based on case and control schools. Thus, from a methodological
perspective, the main conclusion obtained from this research was the necessity of
testing more than one modelling approach to achieve more robust conclusions and
the potential of case-control designs to gain more singular insights from the data.
All these approaches could be further investigated in the future and compared with
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other popular modelling techniques in the context of analyzing the effect of fixed
locations on crime outcomes such as risk terrain modelling (RTM).

The final study that was conducted during the development of this thesis, which
is provided in Chapter 7, was dedicated to investigate how the presence of non-
geocoded (missing) data can affect and even reduce the reliability of a spatial anal-
ysis. The main goal of the study was to reestimate the first minimum acceptable
hit rate (minimum percentage of events that need to be geocoded to rely on the
subsequent spatial analysis of the data) that was provided fifteen years ago in the
literature, with no more research being done ever since. The new reestimation
accounted for some characteristics of both the spatial window (aggregation level)
and the point pattern under study (intensity and clustering levels) that were not
considered for the first estimation. The analysis revealed that the intensity of the
pattern strongly affects the minimum acceptable hit rate. Furthermore, the likely
presence of non-uniform mechanisms of non-geocoded data and the possibility that
different statistical techniques are more sensitive to the existence of non-geocoded
data are also explored. This study could be relevant for spatial statisticians that
may have missing data after carrying out a geocoding procedure. In particular, the
new insights provided into the minimum acceptable hit rate may be useful for the
analysis of both crime and traffic safety data, which are particularly prone to have
non-geocoded events for multiple reasons.

To conclude, it is important to remark that, from a practical perspective, the re-
sults derived from the investigations carried out during the development of this thesis
have unfortunately not yet been applied. The future implementation of preventive
measures following some of the statistical models and techniques that are described
in this thesis would surely lead to new methodological challenges and hence would
provide the right context to make possible the design of more accurate methods for
crime and traffic accident prevention. In this regard, it is worth noting that putting
these methodologies into practice is important to start to reduce the incidence of
crimes and traffic accidents and to gain more insights into the methodologies estab-
lished.



Resumen

En 1855, un médico inglés llamado John Snow presentó un mapa que mostraba la
ubicación de los casos de cólera detectados durante la epidemia londinense de 1854
(Snow, 1855). Snow investigó el patrón formado por estas ubicaciones y sugirió que
una fuente de agua pública situada en Broad Street había sido la causante del origen
del brote epidémico. La creación de este mapa y el posterior análisis de la epidemia
son ampliamente considerados como el primer ejemplo de análisis espacial de datos
y uno de los orígenes de la epidemiología (Susser and Bresnahan, 2001).

Desde 1855, han surgido muchos tipos de datos espaciales, especialmente durante
las últimas décadas. De hecho, la estadística espacial es el campo de conocimiento
dedicado específicamente al análisis de todo tipo de datos espaciales. Existen tres
tipos principales de datos espaciales, a saber, los patrones puntuales, los datos sobre
agregados espaciales y los datos geoestadísticos (Cressie, 1993), que han dado lugar al
desarrollo de tres líneas principales de investigación entre los expertos en estadística
espacial. En los párrafos siguientes se describen estos tres tipos de datos y se hace
un breve resumen de las técnicas que tradicionalmente se han empleado para el
análisis de cada uno de ellos. Antes de eso, cabe destacar que los datos espaciales
suelen permitir incorporar una componente temporal, lo que conduce a la definición
de datos espacio-temporales y a la existencia de multitud de extensiones de las
herramientas fundamentales de la estadística espacial que pueden ser utilizadas en
un contexto de datos espacio-temporales.

Un patrón puntual es un conjunto de puntos que se encuentran en un determi-
nado espacio o región. Cada punto de un patrón puntual suele denominarse evento.
El mecanismo estocástico que genera un patrón puntual se llama proceso puntual
(Diggle, 2013). Dado un patrón puntual, el objetivo más común es investigar su
estructura. En particular, suele ser de interés determinar si los puntos del patrón
presentan alguna dinámica de atracción o inhibición o, por el contrario, si satisfacen
la conocida como hipótesis de aleatoriedad espacial completa (Diggle, 2013). El
uso combinado de técnicas no paramétricas como la K-función (Ripley, 1977) con
múltiples enfoques basados en modelos (Diggle, 2013) facilita la investigación de los
patrones puntuales.

Los datos sobre agregados espaciales son observaciones de un proceso aleatorio sobre
un número contable de regiones o unidades espaciales. El número de veces que un
tipo de evento ha ocurrido en cada unidad administrativa de una ciudad durante un
período de tiempo constituye un ejemplo muy típico de datos agregados. El empleo
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de modelos con retardo espacial (Anselin, 1988) o de modelos lineales generalizados
que tienen en cuenta la autocorrelación espacial entre las regiones (Banerjee et al.,
2004) es una práctica común para explicar la variable respuesta en base a un conjunto
de covariables. Además, la detección de regiones en las que una variable de red
presenta un valor particularmente alto (hotspots) es otra aplicación muy importante
(Anselin, 1995; Kulldorff, 1997).

Los datos geoestadísticos corresponden a una colección de medidas disponibles en
una región continua. La geoestadística se concibió inicialmente para la geología
minera, pero las aplicaciones posibles de esta rama de la estadística espacial son in-
numerables. El variograma y el kriging son posiblemente los dos conceptos capitales
en el campo de la geoestadística (Cressie, 1993; Krige, 1960; Matheron, 1963).

Pese a la persistencia de esta clasificación de la estadística espacial en tres subáreas,
se ha argumentado que la distinción más importante debe hacerse entre los procesos
estocásticos espacialmente continuos y los espacialmente discretos (Diggle et al.,
2013). Además, la tendencia actual es la de tratar de unificar todo tipo de datos
y técnicas espaciales y, en particular, la de utilizar modelos geoestadísticos para
el tratamiento de datos agregados y patrones puntuales (Diggle and Giorgi, 2019).
Para trabajar en esta dirección, los procesos log-Gaussianos de tipo Cox son una
herramienta fundamental (Møller et al., 1998).

La estadística espacial y espacio-temporal puede aplicarse a muchos campos de in-
vestigación. Además de la epidemiología y la geología minera, que ya se han men-
cionado, los datos espaciales suelen surgir en el contexto de otras disciplinas como
la agricultura, la astronomía, la biología, la criminología, la hidrología, la meteo-
rología, la seguridad vial y la teledetección, entre otras. De hecho, la colaboración
tanto de la Policía Local de València como de la Policía Nacional con el Departa-
mento de Estadística e Investigación Operativa de la Universidad de València ha
sido un factor decisivo para orientar esta tesis a la investigación de datos espaciales
y espacio-temporales de especial interés en los campos de la criminología y la se-
guridad vial, y al uso y desarrollo de técnicas estadísticas específicas que faciliten la
consecución de este objetivo capital.

De forma más concreta, el objetivo principal de esta tesis era el de identificar “re-
search gaps” entre la amplia literatura existente sobre el uso de métodos estadísti-
cos espacio-temporales para el análisis de datos sobre seguridad vial o criminología.
Como parte del desarrollo de esta tesis se ha investigado sobre diferentes estructuras
de soporte para el análisis de los datos, sobre modelización estadística de datos de
tipo espacial, sobre el estudio espacio-temporal de eventos de tipo contagioso, so-
bre la calidad de los datos espaciales, o sobre el desarrollo de software específico,
entre otros. En todos los casos, la pretensión era mejorar la metodología existente,
tanto para abordar algunas cuestiones de tipo más bien teórico, como para realizar
estudios prácticos de manera más precisa.

En los siguientes párrafos se describen varios temas relevantes que suelen estar im-
plicados en el análisis espacial y espacio-temporal de los datos procedentes de estos
dos campos. En primer lugar, se introduce una estructura espacial singular llamada



174

red lineal. Aunque varios de los análisis que se presentan en esta tesis se realizan
sobre unidades con área, el empleo de redes lineales se extiende a través de una
parte sustancial de la tesis. En segundo lugar, se describen y contextualizan los
diferentes estudios que se han realizado para el desarrollo de esta tesis, perfilando
toda la estructura del documento.

Las estructuras de tipo red lineal se introdujeron en el contexto de la estadística
espacial hace algunos años, proporcionando la base para el análisis de eventos que
normalmente se sitúan sobre estructuras de tipo grafo como puede ser una red de
calles o carreteras. En efecto, una red lineal plana, L, se define como una colección
finita de segmentos lineales, L = ∪ni=1li, en la que cada segmento contiene los puntos
li = [ui, vi] = {tui + (1 − t)vi : t ∈ [0, 1]} (Ang et al., 2012; Baddeley et al., 2015,
2017). Siguiendo la nomenclatura de la teoría de grafos, estos segmentos son a veces
denominados aristas de la red lineal, mientras que los puntos que determinan los
extremos de tales segmentos se conocen como los vértices de la red.

Por lo tanto, un proceso puntual X sobre L es un proceso puntual finito en el plano,
de tal manera que todos los puntos de X se encuentran en la red L (Ang et al.,
2012; Baddeley et al., 2015, 2017). De manera similar, una colección de eventos que
se observa en L se conoce como un patrón puntual, x, en L.

La investigación de los patrones espaciales que yacen en redes lineales está ganando
atención en los últimos años. El diseño de nuevos y más precisos/eficientes esti-
madores de densidad de tipo kernel (McSwiggan et al., 2017; Moradi et al., 2018,
2019; Rakshit et al., 2019b), la introducción de medidas de intensidad basadas en la
estructura de tipo grafo (Eckardt and Mateu, 2018), la construcción de indicadores
locales de asociación espacial (Eckardt and Mateu, 2017), o la estimación de riesgos
relativos (McSwiggan et al., 2019) son algunos de los temas que se están empezando
a desarrollar para las redes lineales.

Las redes lineales son un soporte adecuado para afrontar una gran variedad de análi-
sis espaciales o espacio-temporales sobre datos criminológicos o de seguridad vial.
Además, las técnicas espacio-temporales se aplican masivamente tanto en el contexto
de la criminología como en el de la seguridad del tráfico, con independencia del tipo
de soporte de los datos. En los siguientes párrafos se destacan varios tipos de análi-
sis que son de particular interés en estos dos campos, tanto desde una perspectiva
metodológica como práctica.

El análisis estadístico de la seguridad vial se remonta, al menos, a los años 40 del siglo
pasado. Gordon (1949) sugirió la conveniencia de tratar las lesiones y muertes que
se originan en los accidentes de tráfico como un tipo más de datos epidemiológicos.
Así pues, en décadas posteriores los dos objetivos principales para los analistas
cuantitativos de la seguridad vial han sido la determinación de los factores que se
asocian a un mayor número de accidentes de tráfico (o a una determinada tipología de
accidente) y la localización exacta de las zonas (“hotspots”) en las que los accidentes
de tráfico son especialmente probables.

Ambos objetivos suelen llevar a los investigadores a adoptar un enfoque espacial. La
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elección de un modelo espacial para medir la relación entre una variable respuesta
que representa los conteos o tasas de accidentes a un cierto nivel de agregación es-
pacial y un conjunto de covariables definidas sobre las mismas unidades espaciales
es vital para evitar pasar por alto la probable presencia de autocorrelación en los
resultados y, por lo tanto, posiblemente sesgar y distorsionar las estimaciones de los
parámetros del modelo. Por otra parte, la detección de “hotspots” es una práctica
común en múltiples campos que producen datos espaciales, incluyendo el de la se-
guridad vial. Existen numerosos métodos para afrontar este propósito, que también
requieren considerar las características espaciales de los datos.

Ya en los años 70, el uso de técnicas espaciales para analizar datos de accidentes de
tráfico se convirtió en una práctica habitual. Moellering (1976) propuso el uso de
películas animadas por ordenador para observar la distribución espacio-temporal de
los patrones de accidentes de tráfico, lo que puede considerarse como una contribu-
ción fundamental que fue seguida por muchos otros estudios publicados en los años y
décadas siguientes. Hace unos años, Lord and Mannering (2010) resumió la mayoría
de aspectos que merecen ser considerados antes de realizar el análisis estadístico de
un conjunto de datos de accidentes de tráfico. Además de ciertas cuestiones como el
control de la sobredispersión, la presencia de datos faltantes o la escasez de muestra,
también se destacó la necesidad de considerar la presencia de autocorrelación espa-
cial y temporal en los datos. De hecho, más recientemente, Mannering et al. (2016)
revisó los métodos y enfoques de modelización que pueden elegirse para incorporar
los efectos espaciales en el análisis de la seguridad vial. En el contexto típico de la
modelización de los recuentos de accidentes observados en un conjunto de regiones,
se recomienda el uso de modelos binomiales negativos e inflados en cero para tener
en cuenta la sobredispersión y la posible presencia excesiva de ceros en la respuesta
(donde los ceros se refieren a las unidades espaciales donde ningún accidente ha sido
registrado).

Las redes lineales son también un soporte adecuado para afrontar los dos objetivos
principales que se han descrito en los párrafos anteriores, aunque conllevan ciertas
dificultades técnicas. En efecto, la modelización, por ejemplo, de los conteos de ac-
cidentes registrados a nivel de tramo de calle o carretera está más sujeta al error que
el análisis de conteos sobre la base de una subdivisión de la región de estudio dotada
de unidades espaciales con área. En efecto, la representación de una estructura vial
a través de una red lineal implica la simplificación de ciertas características urbanas,
lo que puede complicar la localización de algún accidente en el segmento de la red
que corresponde. Dada esta dificultad, que surgió en la primera etapa del desarrollo
de esta tesis, se desarrolló el paquete R SpNetPrep (Spatial Network Preprocessing).
Este paquete permite a los usuarios realizar la depuración manual de una red lineal
que representa una estructura de calles con la ayuda de una aplicación interactiva
basada en R Shiny. Esta aplicación ofrece a los usuarios la posibilidad de agregar
y eliminar vértices y aristas de la red, la capacidad de agregar direccionalidad a
la red de acuerdo con el flujo de tráfico, y la oportunidad de inspeccionar y editar
un patrón puntual que ya se ha situado sobre la red. Además, el paquete también
contiene una función que simplifica automáticamente la estructura lineal de la red
fusionando, bajo ciertas condiciones de longitud y ángulo, las aristas de la red que
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están unidas por un vértice de segundo grado. El Capítulo 8 de esta tesis contiene
una descripción más amplia de este paquete.

Con la ayuda de SpNetPrep, se han realizado varios análisis espacio-temporales de
datos de accidentes de tráfico en la red de carreteras de València, constituyendo
una parte sustancial de esta tesis. En los siguientes párrafos se ofrece un resumen
de estos estudios. En primer lugar, se ha seleccionado un distrito de València para
realizar una modelización espacial de los recuentos de accidentes de tráfico a nivel
de calle. La necesidad de depurar tanto la estructura de la red como el conjunto
de datos sobre accidentes proporcionado por la Policía Local de València llevó a
elegir sólo un distrito de València para el análisis. El objetivo principal de este
estudio fue encontrar covariables o factores que incrementen la incidencia de los
accidentes de tráfico a nivel de calle. En particular, la modelización de los datos
tuvo en cuenta la localización de las zonas de intersección entre calles. Se suele
observar que muchos de los accidentes que ocurren en una zona urbana o rural se
localizan en el entorno de una intersección, por lo que considerar la proximidad a una
intersección en la definición de los modelos estadísticos parece más que conveniente.
Más específicamente, la red vial original se dividió para distinguir entre los segmentos
de carretera de tipo intersección y los de tipo no intersección (según su situación
frente al conjunto de intersecciones detectadas). Además, con el fin de confirmar
los factores posiblemente implicados en los accidentes de tráfico, la modelización de
los datos se combinó con la detección de “coldspots” y “hotspots”, la cual se basó
principalmente en la estimación de la densidad de accidente a lo largo de la red (en
su versión “network-contstrained”) y en los indicadores locales de asociación espacial
(Anselin, 1995). El Capítulo 2 está totalmente dedicado a este análisis.

El segundo estudio realizado se centró en la detección de “hotspots” sobre la red de
carreteras de València donde un tipo de accidente de tráfico está sobrerrepresentado.
La metodología propuesta por Kelsall et al. (1995) para producir superficies de
riesgo relativo se adaptó para permitir la estimación de la probabilidad relativa
de ocurrencia que corresponde a un tipo de evento que tiene lugar a lo largo de
una red lineal. Luego se propone una estrategia para detectar “hotspots” de riesgo
diferencial en la red, de acuerdo a los valores de probabilidad relativa previamente
inferidos. Tanto la magnitud de la estimación de la probabilidad como el tamaño de
la muestra involucrada en su cálculo son considerados para la determinación de los
“hotspots”. El procedimiento completo se describe en el Capítulo 3, el cual incluye
una aplicación de la metodología a través de un conjunto de datos de accidentes
de tráfico que proporcionaba información sobre el tipo de colisión y sobre los tipos
de vehículos implicados en cada accidente. El paquete de R DRHotNet (Differential
Risk Hotspots in a Linear Network), disponible en CRAN, implementa el método al
completo. Este paquete de R se describe en detalle en el Capítulo 8.

Aunque el análisis de los accidentes de tráfico a nivel de calle proporciona el mayor
nivel de precisión tanto para los investigadores como para los profesionales de la
seguridad vial, el estudio de los accidentes a nivel de área sigue siendo de interés.
Concretamente, el análisis de los conteos de accidentes de tráfico que se registran en
un conjunto de unidades administrativas o áreas policiales durante un período de
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tiempo facilita la consideración de determinadas variables ambientales, estructurales
o sociodemográficas para evaluar su relación con los accidentes. En este mismo
sentido, la elección de una determinada unidad de análisis territorial puede afectar a
los resultados estadísticos que se realicen. Esta cuestión se conoce como el problema
de la unidad de área modificable (MAUP) en el ámbito de la estadística espacial
(Openshaw, 1984). Esta tesis incluye un estudio de caso sobre las consecuencias
de variar la escala o la zonificación de un conjunto de regiones en el contexto del
análisis de la seguridad vial (Capítulo 5). Se investigan en detalle los efectos de la
modificación de cualquiera de estos dos factores tanto en la respuesta como en las
covariables, y el impacto en la estimación y el rendimiento del modelo.

El estudio de la delincuencia desde una perspectiva espacial comenzó a cobrar cierta
importancia en los años 50 del siglo pasado. Por ejemplo, Shannon (1954) analizó la
distribución espacial de los índices de criminalidad de todos los estados americanos.
En la década de los 70 la disciplina comenzó a consolidarse a través de múltiples estu-
dios enfocados a explicar la incidencia espacialmente variable de los tipos de crímenes
más relevantes (Block, 1979; Brantingham and Brantingham, 1975; Georges, 1978;
Harries, 1973; Stephenson, 1974). A principios de los años 80, los fundamentos
de la criminología espacial fueron establecidos definitivamente por Patricia y Paul
Brantingham (Brantingham and Brantingham, 1981, 1984).

El uso de redes lineales para realizar un análisis espacial se ha convertido en una
práctica esencial en criminología para capturar adecuadamente la distribución de
los eventos criminales en el espacio. De hecho, los últimos años están trayendo al
campo muchos estudios enfocados en la evaluación de la ley de concentración del
crimen en una ciudad o región. La ley de concentración del crimen establece que un
cierto nivel de concentración del crimen tiende a suceder en una parte de la región
de estudio proporcionalmente menor (Weisburd, 2015). Por lo tanto, es necesario
analizar los datos espaciales del crimen a una escala apropiada para apreciar ver-
daderamente el nivel de concentración del mismo. El empleo de redes lineales y por
lo tanto el hecho de ubicar los delitos a nivel de calle usualmente produce niveles
más realistas de concentración del evento de interés que los proporcionados por las
unidades espaciales con área.

Existen varios mecanismos que explican la incidencia espacialmente variable del
crimen en el corto, mediano y largo plazo. La presencia de características criminó-
genas en una ciudad puede estimular, facilitar o complicar las actividades de los
delincuentes y, como consecuencia de ello, explicar las tasas de criminalidad a medio
y largo plazo. En la literatura se distinguen tres tipos principales de lugares: los
que atraen el crimen, los que favorecen su generación y los que lo perjudican (Brant-
ingham and Brantingham, 1995; Kinney et al., 2008). Los atractores son lugares
que constituyen un contexto singular que naturalmente ofrece más oportunidades
con respecto a la comisión de un delito. Básicamente, es probable que los lugares
de una ciudad en los que cierto tipo de delito es común (por ejemplo, algún lugar
en el que los traficantes y consumidores de drogas suelen reunirse) también atraigan
otras acciones delictivas. Por otra parte, los generadores de delitos son lugares que
atraen la presencia de muchas personas y, por lo tanto, proporcionan más objetivos
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a los delincuentes. Un centro comercial o un estadio de fútbol son dos ejemplos
de generadores de delito. Por último, un detractor de la delincuencia es un lugar
que complica el desarrollo de las actividades delictivas. Una comisaría de policía es
un ejemplo de detractor de la delincuencia porque implica una mayor presencia de
“guardianes” (agentes de policía) en un entorno de la comisaría. Existen múltiples
alternativas de modelización estadística para evaluar si cierto lugar (o un conjunto
de lugares) de una ciudad influye en las tasas de delincuencia. Los diferentes méto-
dos que se comparan en el Capítulo 6, aunque la aplicación que se muestra en él no
corresponde a un conjunto de datos sobre crímenes (de nuevo está relacionado con
la seguridad del tráfico), son de uso potencial en este contexto.

Por otro lado, la ocurrencia de un delito a corto plazo está íntimamente relacionada
con el fenómeno de la repetición. Prácticamente todos los tipos de delito han sido
investigados en el contexto de la repetición o casi-repetición, lo que se refiere a la
mayor probabilidad de observar un delito en la proximidad (en el espacio y el tiempo)
de un evento delictivo previo del mismo tipo. Por lo tanto, algunos autores se han
referido al fenómeno de la repetición del delito como un proceso epidemiológico
contagioso (Loftin, 1986). De hecho, la prueba de Knox, concebida originalmente
para estudios epidemiológicos (Knox and Bartlett, 1964), sigue siendo la principal
herramienta para evaluar la magnitud y la extensión espacio-temporal del fenómeno
de casi-repetición para un tipo de delito, aunque cada vez son más importantes
algunos nuevos enfoques ajenos al test de Knox (Mohler et al., 2011; Reinhart and
Greenhouse, 2018).

El principal inconveniente del test de Knox es que no tiene en cuenta la heterogenei-
dad del riesgo espacio-temporal, lo que en el contexto de la repetición de delitos
complica la distinción entre las casi-repeticiones que están conectadas (explicadas
por la llamada teoría “boost”) y las que no lo están (explicadas por la llamada teoría
“flag”). En el Capítulo 4 se ajusta la versión clásica del test de Knox siguiendo
el trabajo de Schmertmann (2015). Una modificación de la propuesta hecha por
Schmertmann también se proporciona en este Capítulo. La versión ajustada de
la prueba se implementa para analizar la magnitud y extensión del fenómeno de
casi-repetición considerando un conjunto de datos de robos registrados en València.

La investigación final que se llevó a cabo en el contexto de esta tesis trata sobre la
calidad de la geocodificación y la presencia de datos faltantes como consecuencia de
eventos no geocodificados. Este tema es de interés para todas las disciplinas que
requieren del uso de datos espaciales, pero ha sido particularmente enfatizado en
el contexto de la criminología cuantitativa. En 2004, J. Ratcliffe declaró que una
tasa de geocodificación (porcentaje de eventos geocodificados) del 85% era una tasa
mínimamente aceptable para llevar a cabo un análisis espacial (Ratcliffe, 2004a).
El Capítulo 7 contiene una reestimación de esta tasa teniendo en cuenta algunos
factores espaciales (niveles de intensidad, clustering y agregación) que se pasaron
por alto en la primera estimación. Además, el procedimiento propuesto en Ratcliffe
(2004a) (basado en el test de Mann-Whitney) se extiende a otros métodos estadísti-
cos de interés. Así, se ha comprobado que el 85% inicialmente propuesto puede ser
demasiado bajo determinadas condiciones.
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